
HAL Id: tel-03078788
https://hal.science/tel-03078788v1

Submitted on 16 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact and approximation algorithms for some packing
and covering problems in graphs

Cédric Bentz

To cite this version:
Cédric Bentz. Exact and approximation algorithms for some packing and covering problems in graphs.
Computer Science [cs]. Sorbonne Université, UPMC, 2017. �tel-03078788�

https://hal.science/tel-03078788v1
https://hal.archives-ouvertes.fr

Habilitation à Diriger les Recherches

in the �eld of

Computer Science (Informatique)

entitled

Exact and approximation algorithms for
some packing and covering problems in

graphs

submitted at

Université Pierre et Marie Curie

by

Cédric BENTZ

and publicly defended on

November 13th, 2017

in front of the following committee members:

Éric COLIN DE VERDIÈRE Reviewer

CNRS Research Director at LIGM, Marne-La-Vallée

Thomas ERLEBACH Reviewer

Professor at Univ. Leicester, UK

Irena RUSU Reviewer

Professor at Univ. Nantes

Bruno ESCOFFIER Advisor

Professor at Univ. Pierre et Marie Curie, Paris

Cristina BAZGAN

Professor at Univ. Paris Dauphine

Alain BILLIONNET

Professor Emeritus at ENSIIE, Évry

Yannis MANOUSSAKIS

Professor at Univ. Paris Sud

Contents

1 Introduction 3
1.1 Foreword . 3
1.2 General presentation of the report 5
1.3 Basic notions and problems 6

2 Integral multi�ows & multicuts 9
2.1 Introduction . 9
2.2 Solving MaxIMF & MinMC by using duality 10
2.3 Solving MinMC with few source-sink pairs 20
2.4 Solving variants of MaxIMF and MinMC 25

3 Colorings with cardinality constraints 31
3.1 Introduction . 31
3.2 Degree-constrained edge colorings of complete (bipartite) graphs 32
3.3 Colorings with cardinality constraints on a given set of chains 35
3.4 Colorings with �local� cardinality constraints on a �xed partition 37

4 Blockers and d-transversals in graphs 43
4.1 Introduction . 43
4.2 Minimum d-transversals for matchings 44
4.3 Minimum d-transversals for stable sets 48
4.4 Minimum blockers for the chromatic number 51

5 Steiner trees & related variants 55
5.1 Introduction . 55
5.2 Steiner trees with a bound on the number of branching or

di�using nodes . 56
5.3 Steiner trees with edge capacities 60
5.4 Routing along Steiner trees or networks when edges can fail . 63

6 Conclusions and perspectives 67

Bibliography 71

1

CONTENTS 2

Personal publications 76

Appendix A: Open problems related to integral multi�ow and
multicut problems 81

Appendix B: List of supervised students 83

Abstract 85

Chapter 1

Introduction

1.1 Foreword

Long before mobile computing changed our daily lives drastically, the
development of computers, which began in the middle of the 20th century,
already led scientists to study how to make use of them as e�ciently as
possible. In particular, it led them to ask new questions such as: what can
be computed by a computer? And how fast can it be computed?

Computer scientists studied such questions with the help of formal mod-
els (on which standard computers, even the most recent ones, are based),
namely Turing machines. In particular, it enabled theorists to de�ne com-
plexity classes for combinatorial problems, such as P and NP (both contain
only decision problems) [41]. The complexity class a given problem belongs
to then re�ects the kind of algorithms (in terms of running time or of re-
quired space) it can be solved with. Problems in NP can be solved in time
polynomial in the size of the input by a non deterministic Turing machine,
and problems in P can be solved in time polynomial in the size of the input
by a deterministic Turing machine. Lots of practical combinatorial problems
can be shown to be in NP, but few of them are likely to belong to P.

The work of S. Cook and R. Karp showed the existence of hard problems
for NP, i.e., problems harder than any other problem in NP, as well as
relations between problems inNP. Such relations are obtained via the notion
of reductions, which can also be seen as transformations. If any instance of a
given problem Π1 can be transformed in polynomial time into an instance of a
given problem Π2, then Π1 can be polynomially reduced to Π2, and hence Π2

is more general, or harder, than Π1. The hardest problems inNP, also called
NP-complete problems, are then the ones to which any problem in NP can
be polynomially reduced. Given an optimization problem, one can always
de�ne an associated decision problem (called its decision version), and a
problem that is not in NP (as, for instance, it is not a decision problem),
but is nevertheless more general than any problem inNP, is calledNP-hard.

3

CHAPTER 1. INTRODUCTION 4

One of the main conjectures in theoretical computer science is that P
is not equal to NP, i.e., that there exist problems in NP (in particular,
all the NP-complete problems) that cannot be solved in polynomial time
(i.e., in time polynomial in the size of the input by a deterministic Turing
machine). When studying a practical problem (or its decision version), the
�rst question to be answered is whether this given problem is NP-complete
(and hence, from this conjecture, unlikely to be in P) or not, and, if the
answer is �yes�, then we can try to solve it practically in several ways.

First, if the problem at hand is an optimization problem, then we can
try to compute in polynomial time a �good�, but not necessarily optimal,
solution. An algorithm that computes such a solution is generally called an
approximation algorithm if the quality of the computed solution is guaranteed
a priori (before actually running the algorithm), and a heuristic otherwise.
When considering algorithms for maximization problems, the approximation
ratio of such algorithms is de�ned as the ratio between the optimal value and
the value of the returned solution [66]. (For minimization problems, just use
the inverse ratio.) If this ratio is equal to 1, then the algorithm computes an
optimal solution. Otherwise, the closer to 1, the better. In order to use these
concepts to classify optimization problems, theoretical computer scientists
have de�ned approximation classes for optimization problems, which are
similar to complexity classes for decision problems. For instance, the class
of problems that admit approximation algorithms having a ratio as close to
1 as wanted (possibly without reaching 1) is called PTAS (for Polynomial-
Time Approximation Schemes). Another example is the class of problems
that admit approximation algorithms having a constant ratio, which is called
APX. The hardest problems for APX, which are not in PTAS (unless P
equals NP), are called APX-hard (or APX-complete if they are in APX).

Second, we can express the problem that must be solved with the help
of some classical model in mathematical programming, such as linear pro-
gramming with integral variables (also called integer linear programming),
and then solve the problem using suitable algorithms (such as Branch &
Bound). Obviously, the running time of such algorithms is not guaranteed
to be polynomial, but in practice one can hope they run faster than a basic
exhaustive search, in particular when implemented in a commercial solver.

Third, one can solve a more restricted problem, by considering real-life
additional constraints or imposing a special (but relevant) structure on the
instances to be solved, in the hope that this may yield an easier problem (e.g.,
one that belongs to P). Another way of restricting the problem is to assume
that, in practice, some part of the input (called a parameter) is small. This is
the basic idea in the �eld of parameterized complexity, which extends classical
computational complexity [30]. Given a parameter k for a problem Π, an
algorithm solving Π is FPT (or Fixed-Parameter Tractable) with respect to
k if it runs in time O(f(k)nc), where f(·) is any computable function, n is
the size of the input, and c is a constant. In other words, the non-polynomial

CHAPTER 1. INTRODUCTION 5

part in the running time only depends on k. The class FPT is then the one
of parameterized problems admitting FPT algorithms. Other parameterized
classes named W[1], W[2], etc., have been de�ned, and contain problems
�harder� than the ones in FPT. Actually, the relationship between FPT and
W[1]/W[2]/etc. is similar to the one between P and NP: a parameterized
problem that is W[1]-hard/W[2]-hard/etc. is unlikely to be FPT, unless
some very likely conjecture in parameterized complexity collapses.

We shall present in Section 1.2 the class of combinatorial problems that
we will be interested into throughout this report, as well as its general struc-
ture, and then provide in Section 1.3 some basic NP-complete problems, as
well as some notions from graph theory that will be useful.

1.2 General presentation of the report

In this report, I shall review all the results, related to several covering
and packing problems in graphs, that were obtained with di�erent co-authors
since 2003. Assume we are given an m×n matrix A = (aij) and two vectors
b and c of respective sizes m and n, which are such that all aij 's, all bi's and
all cj 's are positive rational numbers. A packing problem is a problem that
can be modelled as the following (integer) linear program:

max

n∑
j=1

cjxj

s. t.

n∑
j=1

aijxj ≤ bi ∀i ∈ {1, . . . ,m} (1.1)

xj ≥ 0 (xj ∈ N) ∀j ∈ {1, . . . , n}

A covering problem is a problem that can be modelled as the following
(integer) linear program:

min

n∑
j=1

cjxj

s. t.

n∑
j=1

aijxj ≥ bi ∀i ∈ {1, . . . ,m} (1.2)

xj ≥ 0 (xj ∈ N) ∀j ∈ {1, . . . , n}

In both cases, the xj 's can take any positive real values, or only positive
integral values, depending on the problem that is considered. When the xj 's
are not required to take positive integral values, the problem can be solved
in time polynomial in n and m as a linear program. Otherwise, the problem
generally becomes hard. We shall give examples of such packing and covering
problems in the next section of this chapter, and also throughout the report.

CHAPTER 1. INTRODUCTION 6

The �rst of my articles that needs to be mentioned here is [BCR13].
This article deals with the issue of modeling and solving packing and cover-
ing problems in graphs using linear programming: it was written with Denis
Cornaz and Bernard Ries, and greatly inspired the presentation of this re-
port. Indeed, the general idea on which this article is based is that all kinds
of packing and covering problems in graphs share, to some extent, some com-
mon principles, such as the fact that, while �nding (near-)optimal solutions
is often a hard task, �nding provably good feasible solutions may be easy.

Any constraint having the same form as Constraints (1.1) will be called
a packing constraint, and similarly any constraint having the same form as
Constraints (1.2) will be called a covering constraint. In this report, we
shall also consider packing problems with additional covering constraints, or
covering problems with additional packing constraints. In other words, we
shall consider packing problems, covering problems, as well as combinatorial
problems with both packing and covering constraints.

The general structure of the present report is as follows. In the next sec-
tion, we describe the basic notions and problems that will be needed to read
and understand the remainder of the report. In Chapter 2, we study a pair
of related packing and covering problems, which respectively generalize the
maximum �ow and minimum cut problems: namely, the maximum integral
multi�ow problem and the minimum multicut problem, as well as some of
their variants. In Chapter 3, we study several problems consisting of coloring
the vertices of a graph, i.e., covering them by �colors�, under di�erent types of
cardinality constraints, which can naturally be seen as packing constraints.
In Chapter 4, we study d-transversal problems, i.e., problems consisting of
covering a given number d of times all the optimal solutions of a given graph
optimization problem. Finally, in Chapter 5, we study several variants of the
Steiner tree problem, which asks to cover, by a connected subgraph (called
a Steiner tree), some pre-speci�ed vertices (called terminals) of a graph.

1.3 Basic notions and problems

We shall now review the basic notions and problems that we will need in
the remainder of the report.

Cook's Theorem states that the satis�ability problem (called SAT), a ba-
sic problem in propositional logic, isNP-complete [41]. Assume we are given
a set of boolean variables x1, x2, . . . (each variable xi having two associated
literals, namely xi itself and its negation x̄i) and a set of clauses, each one
of them being a disjunction of some the literals associated with the boolean
variables. Then, each clause among this set of clauses is satis�ed, i.e., of
value true, if at least one of its literals is true. The problem SAT consists in
determining whether there exists a truth assignment (i.e., a way of giving a
value true or false to each variable), called satisfying truth assignment, for

CHAPTER 1. INTRODUCTION 7

which all clauses are satis�ed. Variants of this problem can be obtained, in
particular, by restricting the number of literals by clause and/or adding an
objective function. For instance, the problem called 3SAT is the special case
of SAT where each clause contains at most three literals, and the problem
called Max2SAT is the variant of SAT where each clause contains at most
two literals, and the problem consists in determining the maximum number
of clauses that can be satis�ed by a truth assignment. Both these variants,
as well as other similar variants, remain NP-hard (NP-complete for 3SAT).
This is the case, for instance, for the problem Monotone1-in-3SAT, a
variant of 3SAT that will be detailed when needed.

Throughout the report, we shall also need some basic graph notions. We
will describe the main ones here, but, for any other basic notion not de�ned
here, the reader can refer to any book about graph theory, should it be
needed. Given a graph G, the line graph of G is the graph where there is
one vertex for each edge of G, and an edge between two of its vertices if the
associated two edges in G share a vertex. A graph G is bipartite if its vertex
set can be partitioned into two sets L (for Left) and R (for Right) such that,
for any edge uv of G, we have u ∈ L and v ∈ R. A graph is complete if there
is an edge between any two of its vertices, and we de�ne the complement of a
graph G with n vertices as the graph obtained from G by taking a complete
graph on the n vertices of G, and then removing from this complete graph
the edges of G. A subgraph (i.e., a subset of vertices and/or edges) of a graph
G is a clique if it is a complete graph in its own right.

Given a graph G, apart from cliques, we can de�ne other types of sub-
graphs: for instance, a stable set in G is the complement of a clique in G, a
matching in G is a set of vertex-disjoint edges, and a vertex cover in G is a
set of vertices of G that contains at least one vertex of each edge of G.

In fact, for each of these four types of subgraphs, we can de�ne an associ-
ated graph optimization problem, by searching, in a graph G, the maximum
size (or minimum size, for a vertex cover) of such a subgraph, which will
simply be called the stability number of G in the case of a stable set. All
the problems obtained in this way are NP-hard in general, except �nding a
matching of maximum size, which can be done in polynomial time. However,
they can all be solved in polynomial time in bipartite graphs: in particular,
the famous König's Theorem for bipartite graphs states that, in such graphs,
the maximum size of a matching equals the minimum size of a vertex cover.

A notion related to stable sets is the one of proper colorings: a proper
(vertex) coloring of a graph G is an assignment of colors (for instance, num-
bers) on the vertices of G, such that any two adjacent vertices receive dif-
ferent colors. Such a coloring can also be seen as a partition of the vertices
of G into stable sets (one for each color). The minimum number of colors
needed for a proper coloring of a graph G is called the chromatic number of
G, and is denoted by χ(G): computing χ(G) is NP-hard in general, but we
have χ(G) ≤ 2 in any bipartite graph G (as L and R are two stable sets).

CHAPTER 1. INTRODUCTION 8

We end this section by describing a graph parameter that can be seen
as a measurement of the tree-likeness of a graph. Indeed, not all graphs are
trees, and bipartite graphs are not the only relevant generalizations of trees.

A tree decomposition of a graph G = (V,E) is a pair
(
{Xi|i ∈ I}, T

)
where Xi ⊆ V,∀i ∈ I, are bags of vertices of G, T = (I, F) is a tree, and:

(1)
⋃
i∈I Xi = V ,

(2) For every edge uv ∈ E, there is an i ∈ I such that u, v ∈ Xi,

(3) For all i, j, l ∈ I, if j lies on the path between i and l, thenXi∩Xl ⊆ Xj .

The width of a given tree decomposition of a graphG equals maxi∈I |Xi|−
1. The tree-width of a graph G, denoted by tw(G), is the minimum width
of a tree decomposition of G, taken over all tree decompositions of G. Note
that trees (and hence chains and stars) have tree-width 1. Without loss of
generality, we can also assume that the tree decomposition is nice [55], i.e.:

• T is rooted at some node r,

• T is binary and has O(|V |) nodes,

• If a node i has two children j and k then Xi = Xj = Xk (join node)

• If a node i has one child j, then either

(a) |Xi| = |Xj | − 1 and Xi ⊂ Xj (forget node)

(b) |Xi| = |Xj |+ 1 and Xj ⊂ Xi (introduce node)

Given two vertices i, j of T , we will use the notation j � i to denote the fact
that j is either i or a descendant of i with respect to r. Given a node i ∈ I,
let Yi = E∩(Xi×Xi), i.e., Yi is the subset of E induced by the vertices in Xi.
Moreover, let Ti =

⋃
j�iXj and let G[Ti] be the subgraph of G induced by Ti.

Chapter 2

Integral multi�ows & multicuts

2.1 Introduction

In this chapter, we review results about integral multi�ow and multicut
problems, which form a pair of related packing and covering problems, re-
spectively. I started studying such problems during my PhD thesis [4], and I
have continued to work on some related open questions after I defended it in
2006. In both problems, we are given an edge-capacitated graph G = (V,E)
(directed or not) and a list of source-sink pairs (si, s

′
i).

The basic versions of such problems can be modeled by two linear pro-
grams with integral variables (ILP). The �rst one models the maximum in-
tegral multi�ow problem (MaxIMF), and is as follows:

max

|P|∑
j=1

fj

(ILP-IMF) s. t.
∑

j s. t. e∈pj

fj ≤ capa(e) ∀e ∈ E (2.1)

fj ∈ N ∀j ∈ {1, . . . , |P|}

where P =
⋃
i{simple paths linking si to s′i}, capa(e) is the capacity of

edge e, pj is the jth path of P, and fj is the amount of �ow routed on pj .
The maximum integral multi�ow problem hence consists in routing as

much �ow units (i.e., integral amounts of �ow) as possible on the paths of P
(i.e., linking one source si to its corresponding sink s′i) while respecting the
capacity constraints on the edges, and therefore it is a packing problem.

Note that the case where all capacities are equal to 1 is actually an im-
portant special case of MaxIMF. In this case, no path can carry more than
1 unit of �ow, and at most one path from P carrying 1 unit of �ow can go
through each edge. This case hence consists in routing the maximum num-
ber of edge-disjoint paths from P, and is known as MaxEDP.

9

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 10

Here is the second ILP. It models theminimum multicut problem (MinMC):

min
∑
e∈E

capa(e)ze

(ILP-MC) s. t.
∑
e∈pj

ze ≥ 1 ∀j ∈ {1, . . . , |P|} (2.2)

ze ∈ {0, 1} ∀e ∈ E

where ze is equal to 1 if edge e is selected, and 0 otherwise. MinMC

hence consists in selecting a set of edges of minimum total capacity, such
that any path in P (i.e., linking one source si to its corresponding sink s′i)
contains at least one such edge, and therefore it is a covering problem.

Actually, the continuous relaxations of these ILPs are two dual linear pro-
grams (simply associate a nonnegative dual variable ze to every constraint
(2.1)). Moreover, the number of variables in (ILP-IMF) is exponential, as
is the number of constraints in (ILP-MC). There also exist alternative ILPs
for these two problems that have a polynomial number of variables and con-
straints (by using �ow-based variables), but we will not need them. How-
ever, these other ILPs imply that the continuous relaxations of MaxIMF

andMinMC can be solved in polynomial time: in the case of MaxIMF, this
corresponds to the maximum multi�ow problem, i.e., for each pair (si, s

′
i),

the amount of �ow routed from si to s′i on each edge can be non integral.
One of the main consequences of the duality between these formulations

is that many researchers have worked on �nding relevant special cases where
MaxIMF and MinMC have the same optimal value (as in the continuous
case, by strong duality in linear programming) or optimal values that are
�close� to each other (if one is only interested in �good� solutions for both
problems), as well as exhibiting su�cient conditions ensuring such properties.

In the next section, we shall review some of our results related to such
questions, and in the subsequent sections we shall deal with the complexity
of both MaxIMF and MinMC in di�erent cases. Also note that some open
problems related to this chapter are given in Appendix A.

2.2 Solving MaxIMF & MinMC by using duality

The �rst remark of this section is simply a direct consequence of the du-
ality relationship between the continuous relaxations of the ILPs modeling
MaxIMF andMinMC, described above. If, given an edge-capacitated graph
G (along with a list of source-sink pairs), one knows both a feasible solution
F to the instance of MaxIMF de�ned on G and a feasible solution C to the
instance of MinMC de�ned on G that are such that val(C) ≤ α · val(F),
where val(C) and val(F) denote the respective values of C and F , then

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 11

F and C are α-approximate solutions for the instances of MaxIMF and
MinMC (respectively) de�ned on G. For instance, Garg et al. designed
a polynomial-time algorithm that computes such a pair of solutions with
α = 2, when G is a tree [43]. Their algorithm is �guided� by the complemen-
tary slackness (or optimality) conditions in linear programming, in order to
compute C from F : such algorithms are called primal-dual algorithms.

Thus, when α is small enough (e.g., a constant), designing approximation
algorithms in such a way implies in particular that the associated optimal
values of MaxIMF and MinMC are not too far away from each other.

The case where α = 1 simply implies that the associated instances of
MaxIMF and MinMC have the same optimal values: in such a case, the
reasons behind this fact often lie in some properties of the underlying linear
programming formulation, which we shall discuss.

When trying to solve a hard combinatorial problem in the context of a
real-life application, one tends to use simple (and easy-to-implement) heuris-
tics, with or without guaranteed quality performance. As far as MaxIMF

is concerned, with applications ranging from routing through telecommuni-
cation networks to wiring in VLSI circuits, one of the best known and most
used heuristics is the simple following one [54]:

SPF

While P is not empty do:

1. Route as much �ow as possible on the shortest path p in P,
2. Update the residual capacities, and delete any edge with residual

capacity equal to 0, as well as any vertex that becomes isolated,

3. Remove from P the path p and any other path containing at least
one deleted edge.

As indicated, we will refer to this heuristic as SPF (for Shortest Path First).
It should be noticed that, although P may contain an exponential number of
paths, SPF can be implemented to run in polynomial time, since in practice
it amounts to computing a shortest path in a residual graph at most O(|E|)
times, without actually deleting paths from P (the deletion of an edge usually
resulting in the deletion of an exponential number of paths from P).

It is known for a long time that SPF has an approximation ratio of
O(
√
|E|) in terms of |E| [54], which means O(

√
|V |) in sparse graphs where

|E| = O(|V |) (e.g., planar graphs). However, it was highlighted in [Ben09a]
that SPF can behave very badly even on some simple families of trees,
by providing such families where the ratio of O(

√
|V |) is actually reached.

Hence, even for what seems like �simple� instances, relying on a heuristic

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 12

based solely on this principle may result in providing very bad solutions,
although such a heuristic does work well in practice whenever su�ciently
short paths are available for routing.

To overcome this shortcoming, a heuristic that essentially routes �ow
iteratively along a set of spanning trees was proposed in [Ben09a], and its
performance was studied theoretically under some speci�c conditions. More-
over, a variant of the following approximation algorithm, combining SPF
with the previously mentioned heuristic, was also suggested:

AH4MAXIMF

• For λ ranging from 0 to |V | do:

1. While there remain paths in P of length at most λ, run SPF on
G. Let G′ be the graph obtained from G at the end of this step.

2. Compute a spanning tree with maximum total capacity on each
connected component of G′, using essentially Kruskal's algorithm.

3. Run the approximation algorithm of Garg et al. [43] on each tree
S obtained at Step 2, to get a feasible integral multi�ow FS and a
feasible multicut CS on S such that val(CS) ≤ 2·val(FS). Update
the residual capacities, and delete from G′ any edge with residual
capacity equal to 0, as well as any vertex that becomes isolated.

4. If val(FS) > 0 for some S, then go to Step 2.

• Output the best solution obtained, where each solution is the combi-
nation of the solution computed at Step 1 for a given λ and of the
solution computed by going through Steps 2 to 4 for this same λ.

We will refer to this heuristic as AH4MAXIMF (for Another Heuristic
For MAXimum Integral MultiFlow), and to the heuristic consisting only of
Steps 3 to 5 (i.e., without running SPF �rst) as MST +GA (for Maximum
Spanning Tree + Garg et al.'s Algorithm), or simply ST + GA if the span-
ning tree obtained at Step 3 is not computed as a maximum spanning tree
(in which case we shall give details about how it is computed).

Note that the solution computed by AH4MAXIMF is at least as good
as the one computed by SPF (thanks to the case λ = |V |) and as the one
computed by MST +GA (thanks to the case λ = 0). Moreover, apart from
SPF and AH4MAXIMF , there are not many heuristics speci�cally known
for MaxIMF. However, it should be mentioned that Chekuri, Khanna and
Shepherd have written an impressive series of papers where they investigated
approximation algorithms for MaxIMF when the tree-width of the graph
is small, or when the minimum capacity is a small integer larger than or

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 13

equal to 2. Unfortunately, these algorithms are quite involved, quite hard to
implement, and thus unlikely to be used in practice [13, 14, 15, 16].

The initial intuition behind ST +GA was that, thanks to Garg et al.'s 2-
approximation algorithm forMaxIMF in trees [43], we know an e�cient and
easy way of routing a good integral multi�ow in a tree, whereas MaxIMF

remains APX-hard in this case. Moreover, this algorithm uses only basic
graph algorithms (essentially a breadth-�rst search, and the computation
of a set of least common ancestors), so it is rather simple to implement.
Therefore, using this algorithm as a subroutine inside a more general one
seemed like a sound idea, provided that under relevant assumptions this
would still yield good theoretical approximation ratios.

The seminal paper of Garg et al. studying MaxIMF and MinMC on
trees [43] inspired many research papers, which generalized or improved these
results in some way. For instance, one can notice that their approximation
ratio of 2 is, in this case, 2(γ(G)+1), where γ(G) is the cyclomatic number of
G (with γ(G) = 0 if G is a tree, by de�nition). Actually, the �rst motivation
for introducing MST +GA was to prove the following set of results:

Theorem 2.1 ([Ben05, Ben09a]). All the tractability and approximability
results proved in the paper of Garg, Vazirani and Yannakakis [43] can be
generalized to undirected graphs with bounded cyclomatic number.

In other words, the approximation results in [Ben09a] were proved by
making use of MST +GA. However, Garg et al. also proved other results,
which we will not fully describe here, such as the polynomial-time solvability
of MaxEDP, i.e., the special case where all capacities are 1, and so where
we look for edge-disjoint paths: this theorem states that these other results
hold in undirected graphs with bounded cyclomatic number as well, while
this is not true for other natural generalizations. For instance, MaxEDP

becomes APX-hard even in some speci�c families of cacti (i.e., graphs where
any two cycles share no common edge). It should be noticed that a graph G
with cyclomatic number γ(G) has tree-width O(γ(G)) (so having bounded
cyclomatic number is a special case of having bounded tree-width), and
that the complete graph Kt has tree-width t − 1 and cyclomatic number
Θ(t2). Hence, the family of graphs G with cyclomatic number γ(G) = O(1)
contains graphs with (constant but) arbitrarily large tree-width: a graph G
with cyclomatic number γ(G) can have tree-width Ω(

√
γ(G)).

In contrast with Theorem 2.1, there exist cases where applying Garg et
al.'s algorithm on a maximum spanning tree of the input graph does not
always yield a good solution for the whole graph. This is why the variant
ST + GA was also considered: the choice of the spanning tree on which
Garg et al.'s algorithm will be applied must then be made according to some
rules, which can depend on the structure of the underlying graph. Let us
now describe an application of this idea, which also appeared in [Ben09a].

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 14

There exist several ways of expressing the fact that a graph is �tree-like�,
and the more a graph resembles a tree, the more applying ideas that worked
well for trees is likely to yield good results in such a graph as well. One such
way (actually a rather classical one) is to consider graphs with bounded
tree-width, and one of the most widely known classes of planar graphs with
bounded tree-width is the class of k-outerplanar graphs for k = O(1).

Roughly speaking, a planar graph is a k-outerplanar graph if removing at
most k times its vertices lying on the outer face (and updating the outer face
accordingly after each such removal) results in a graph with no vertex. In
[Ben09a], I introduced a new subclass of k-outerplanar graphs called k-edge-
outerplanar graphs. The de�nition of such graphs is easily obtained from the
previous one by replacing �vertex� by �edge�.

It is rather easy to see that any k-edge-outerplanar graph is also a k-
outerplanar graph, but the converse is not true in general (for instance, the
complete bipartite graph K2,t is 2-outerplanar but d t2e-edge-outerplanar).
However, it was proved in the same paper that, if the degree of any vertex is
bounded inside each block of a k-outerplanar graph with k = O(1), then this
graph is also k′-edge-outerplanar for some k′ = O(1). A wheel graph, or any
Halin graph (i.e., any planar graph obtained by connecting the leaves of a
tree into a cycle), provides an example showing that such a condition is not
necessary for a k-outerplanar graph with k = O(1) to be k′-edge-outerplanar
for some k′ = O(1). Also note that, if a graph is either a k-outerplanar graph
or a k-edge-outerplanar graph, then it has tree-width O(k).

There exist simple and classical families of graphs which are k-edge-
outerplanar (and hence also k-outerplanar) for some k = O(1). For instance,
any rectilinear grid with Θ(k) rows and columns has tree-width Θ(k), and is
both a Θ(k)-outerplanar and a Θ(k)-edge-outerplanar graph. Such graphs
provide a way of showing, in particular, that the class of k-edge-outerplanar
graphs with k = O(1) contains graphs with (constant but) arbitrarily large
tree-width, which means that, for any constant K, there is a Θ(K)-edge-
outerplanar graph whose tree-width is at least K.

Using ST +GA, where the spanning tree is computed level by level (and
so is not a maximum spanning tree), as well as an additional step during
which a feasible multicut for the whole graph is computed based on the one
for the spanning tree, we obtain the following result:

Theorem 2.2. [Ben09a] Given any k-edge-outerplanar graph with capaci-
ties 1, a feasible integral multi�ow F and a feasible multicut C satisfying
val(C) ≤ 4k · val(F) can be computed in polynomial time.

An easy consequence is the following result:

Corollary 2.1. There exists a family of graphs of bounded (but arbitrarily
large) tree-width, containing the rectilinear grids with at least one bounded
dimension, in which the ratio between the optimal values of MinMC and
MaxIMF is O(1), provided that all capacities are O(1).

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 15

To the best of our knowledge, this result provides the only known class
of graphs of bounded (but arbitrarily large) tree-width in which the optimal
values of MinMC andMaxIMF are �close�, i.e., for which the ratio between
these two optimal values is O(1), and moreover for which this ratio is linearly
related to tw(G), the tree-width of the input graph G, as this ratio is actually
O(tw(G)). Indeed, the algorithm of Chekuri, Khanna and Shepherd in [15]
shows that, in graphs of bounded tree-width, this ratio is O(log(|V |)), not
O(1). Moreover, applying it to k-outerplanar graphs with k = O(1) cannot
help in improving this ratio to O(1) either.

Note that Theorem 2.1 also provides such a class of graphs (with no
restriction on the capacities), but a far less general one, and in addition one
that does not contain rectilinear grids with only one bounded dimension (i.e.,
in which either the number of rows or the number of columns is bounded).

Later, Naves et al. did manage to prove that the ratio between the
optimal values of MinMC and MaxIMF is actually O(1) in all graphs of
bounded tree-width, by using a much more complex approach [12]. However,
they were not able to prove a linear dependence with respect to tw(G), the
tree-width of the input graph G; the ratio they obtained is O(2tw(G)).

It should be noticed that the approach used to prove Theorem 2.2 only
works for MaxEDP (i.e., MaxIMF with capacities 1), or for MaxIMF if
all capacities are O(1). However, Garg et al. established that MaxEDP

essentially captures the hardness of the general case, by providing a family
of undirected planar graphs with capacities 1 in which the ratio between the
optimal values of MinMC and MaxIMF (i.e., MaxEDP) is Ω(

√
|V |) [43].

Such a family of graphs is constructed from rectilinear grids, by replacing
vertices by edges in order to obtain degree-3 vertices, and Theorem 2.2 shows
that, if one dimension of the grid is bounded, then this ratio shrinks to
O(1) (note that Theorem 2.1 would not be su�cient to prove such a result).
Later, the authors of [65] con�rmed the intuition that MaxEDP is actually
the �hardest� case by proving that, if the minimum capacity is 2, essentially
excluding the case of MaxEDP, then the ratio between the optimal values
of MinMC and MaxIMF is O(1) in undirected planar graphs. (Recently, a
polylogarithmic ratio was proved in general undirected graphs [23].)

However, applying MST +GA on 1-edge-outerplanar graphs, which we
shall simply call edge-outerplanar graphs (or cacti), together with an addi-
tional step during which a feasible multicut for the whole graph is computed
based on the one for the maximum spanning tree, yields both a feasible in-
tegral multi�ow F and a feasible multicut C satisfying val(C) ≤ 4 · val(F)
[Ben09a], while Erlebach obtained a 3-approximation for MaxEDP in 2-
edge-connected edge-outerplanar graphs (also called trees of rings) [34].

We now go back to the case of rectilinear grids. A lot of decision problems
related to the existence of edge-disjoint paths in such graphs and slightly
more general ones have been studied before 1990 [39, 40, 53]: when the

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 16

sources and sinks can lie anywhere inside the grid, the problem of deciding
whether edge-disjoint paths linking si to s′i for each i simultaneously exist
is NP-complete, even if some parity condition on the degrees (after adding
an edge between each pair (si, s

′
i)), called Eulerian condition, holds [59].

However, the problem is easier if all sources and sinks lie on the outer face. In
particular, Frank gave necessary and su�cient conditions for the existence of
such disjoint paths in this case [39], and later extended this characterization
to planar graphs where all sources and sinks lie on the outer face, and any
vertex not on the outer face has even degree [40].

In [BCR07], we studied MaxIMF and MinMC in particular rectilinear
grids called two-sided, in the hope that the strong results concerning the ex-
istence of disjoint paths in grids could be used to solve related optimization
problems e�ciently. A two-sided grid is a rectilinear grid where all sources
and sinks lie on the uppermost and lowermost rows of the grid, and at most
one source/sink can lie on each vertex of these two rows. Furthermore, as
Frank, we implicitly assume that, for each i, si and s′i can be linked by at
most one path: therefore, in this case, solving MaxEDP is equivalent to
�nding the maximum number of source-sink pairs (si, s

′
i) that can simulta-

neously be linked by edge-disjoint paths in the grid.
A well-known necessary condition for the existence of edge-disjoint paths

between si and s′i for each i in a graph G = (V,E) is the cut condition: for
each W ⊂ V , the number of edges of E having one endpoint in W and one
endpoint in V \W must be greater than or equal to the number of pairs (si, s

′
i)

such that one of {si, s′i} lies in W and the other one in V \W . Okamura
and Seymour showed in particular that, in a planar graph that satis�es the
Eulerian condition and where all sources and sinks lie on the outer face, this
condition is necessary and su�cient for the existence of disjoint paths [61].

Note that a two-sided grid does not necessarily satisfy the Eulerian con-
dition; however, some of the necessary and su�cient conditions stated by
Frank in this case are in fact equivalent to the cut condition on some par-
ticular subsets of V . One example of such subsets is the set of all vertices
lying on the left of any given column c (called a vertical cut): requiring the
cut condition on all such sets of vertices is then equivalent to requiring that
the number of rows in the grid is greater than or equal to the congestion of
the grid, i.e., the maximum number of pairs having one endpoint on the left
of c (included) and one endpoint on the right of c, over all columns c. Such
a condition will be called the congestion condition.

The �rst step of the approach we proposed in [BCR07] was to prove that
determining the maximum number of source-sink pairs (si, s

′
i) that can be

selected in a two-sided grid so as to satisfy the congestion condition can
be done e�ciently, by solving a linear program having a totally unimodular
constraint matrix. Alternatively, it was also observed that this can be done
by solving a call control on a chain, a problem that was solved in linear time
by Adamy, Ambuehl, Sai Anand and Erlebach [1].

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 17

The second step of this approach was to use Frank's results in order to
prove that, in some cases, satisfying the congestion condition is in fact suf-
�cient to simultaneously route all the selected source-sink pairs along edge-
disjoint paths, while in any case �sacri�cing� at most one of the selected
source-sink pairs ensures that all the other selected ones can be simultane-
ously routed along edge-disjoint paths. The link with a linear program hav-
ing a totally unimodular constraint matrix, established during the previous
step, also allowed us to prove, by means of the Okamura-Seymour theorem,
that the dual of this linear program actually models MinMC in this special
case. A hole in the proof of one of the main lemmas was later pointed out
by Guyslain Naves, but we were able to �x it, and to write down the details
in a proper erratum [BCR]. We obtained in particular the following result:

Theorem 2.3 ([BCR07, BCR13]). In any two-sided grid with capacities 1
that does not satisfy the congestion condition and has an odd number of rows,
the optimal values of MaxIMF (i.e.,MaxEDP) and MinMC are the same,
and can be computed in linear time.

The results concerning MaxEDP can be generalized to MaxIMF when
all capacities are equal to a common value κ (uniform capacities), provided
that the amount of �ow routed from si to s′i is not allowed to be greater
than κ, by using the pair of linear programs mentioned above, as well as a
variant of the Okamura-Seymour theorem that applies to edge-capacitated
planar graphs. More precisely, we gave a characterization of the cases where
MaxIMF andMinMC have the same optimal value when κ ≥ 2, and showed
that, in all other cases, the di�erence between these optimal values is 1 (as
this was already established when κ = 1). This yields:

Theorem 2.4 ([BCR07]). In any two-sided grid with uniform capacities, the
di�erence between the optimal values of MaxIMF and MinMC is at most
1, and these optimal values can be computed in polynomial time.

Figure 2.1: Edge-disjoint paths in a rectilinear grid.

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 18

Figure 2.1 shows a rectilinear grid with 10 columns, 2 rows, and 10 source-
sink pairs. All the sources si lie on the uppermost row, and all the sinks s′i
lie on the lowermost row. For instance, s′2, s

′
8 and s

′
10 lie respectively on the

1st, the 3rd and the 8th column.
The congestion of the whole grid is 4 (the value is reached for c = 4

or c = 6), and the minimum number of source-sink pairs that we have to
�sacri�ce� in order to satisfy the congestion condition, i.e., in order to obtain
a congestion that does not exceed 2, is 2. Moreover, the only way to achieve
this is to �sacri�ce� (s3, s

′
3) and (s8, s

′
8), so any of the two linear programs

mentioned above has optimal value 10− 2 = 8.
However, in the rectilinear grid obtained in this way, Frank's conditions

show that it is not possible to simultaneously route the 8 remaining source-
sink pairs along edge-disjoint paths, and so at least one additional source-sink
pair needs to be �sacri�ced�. Here, sacri�cing (s10, s

′
10) is su�cient to ensure

that the 7 remaining source-sink pairs can be simultaneously routed along
edge-disjoint paths (these 7 paths are the 7 dotted lines in the �gure): thus,
MaxEDP has optimal value 7, although MinMC has optimal value 8.

We also proved in [BCR07] that MinMC is NP-hard in rectilinear grids
that are not two-sided, even if all sources and sinks lie on the outer face and
all capacities are 1. Finally, note that, while �nding edge-disjoint paths in
planar graphs where any vertex not on the outer face has even degree and
where all sources and sinks lie on the outer face can be done e�ciently thanks
to the results that Frank proved in [40], which can be seen as a generaliza-
tion of both the Okamura-Seymour theorem and Frank's previous results
concerning rectilinear grids, MaxEDP is APX-hard in this case, as it is
APX-hard in 1-outerplanar graphs (also called outerplanar graphs). Actu-
ally, as we already mentioned earlier in this section, it is even APX-hard in
edge-outerplanar graphs. Therefore, it seems very unlikely that results such
as ours can be extended, in some way, to this more general case.

Now, we turn our attention towards directed graphs. Indeed, apart from
trees, Garg, Vazirani and Yannakakis also studied the use of primal-dual algo-
rithms for variants of MaxIMF andMinMC in directed graphs. In the mul-
titerminal variants of these problems, we are given, in an edge-capacitated
graph, a set of terminal vertices T = {t1, t2, . . . , t|T |} with |T | ≥ 2, and the
source-sink pairs are (ti, tj) for all pairs (i, j) with i 6= j.

In [42], Garg et al. described a divide-and-conquer primal-dual algorithm
that, in any multiterminal instance de�ned on a directed graph, computes
in polynomial time a feasible integral multi�ow F and a feasible multicut C
such that val(C) ≤ 2 log2(|T |)·val(F). Moreover, Costa et al. showed in [27]
that, in any multiterminal instance de�ned on a directed acyclic graph, any
optimal integral multi�ow F and any optimal multicut C satisfy val(F) =
val(C), by reducingMaxIMF andMinMC in this case to classical maximum
�ow and minimum cut problems, respectively.

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 19

In [Ben06, Ben07], I introduced a new parameter TL ⊆ T for these prob-
lems: TL is the set of lonely terminals, which is de�ned as the set of terminals
that lie on at least one directed cycle containing no other terminal. Note
that |TL|, the number of lonely terminals, is upper-bounded both by |T | and
by the number of directed cycles in the digraph, and that it can be arbi-
trarily smaller than these two bounds. Thanks to this parameter, I was able
to slightly improve the approximation result of Garg et al., as well as to
provide some kind of dichotomy results for computing optimal solutions to
such problems. The �rst result can be stated as follows:

Theorem 2.5 ([Ben07]). Given any multiterminal instance de�ned on a arc-
capacitated digraph, a feasible integral multi�ow F and a feasible multicut C
such that val(C) ≤ 2 log2(|TL| + 2) · val(F) can be computed in polynomial
time, by preprocessing the digraph and then applying Garg et al.'s algorithm.

I also described in [Ben07] a family of instances showing that the ratios
2 log2(|T |) and 2 log2(|TL|+ 2) are essentially tight. However, this does not
necessarily mean that there exists no way of determining a feasible integral
multi�ow F and a feasible multicut C satisfying val(C) = O(val(F)), and
so this very question is still an open one. Here is the second set of results:

Theorem 2.6 ([Ben07]). If we consider the restriction of MaxIMF and
MinMC to multiterminal instances de�ned on directed graphs, we have:

• If |TL| = 0, or if |TL| = 1 and |T | = 2, then any optimal integral
multi�ow F and any optimal multicut C satisfy val(F) = val(C), and
such optimal solutions can be computed in polynomial time,

• In all other cases, MaxIMF is APX-hard.

Note, in particular, that if the input graph is a directed ring (i.e., a
graph consisting only of one directed cycle), then |TL| = 0. However, when
switching from multiterminal instances to non multiterminal ones, things are
a bit di�erent in this case. Directed rings have been studied in [BCLR09],
together with undirected rings (i.e., graphs consisting only of one cycle), since
any undirected ring can be transformed into a directed one by directing the
edges clockwise, and doubling the number of source-sink pairs.

This was not stated explicitly in [BCLR09], but, in a directed ring, the
optimal value of MinMC is at most twice the one of the continuous relax-
ation of (ILP-MC). Indeed, if there is an optimal multicut consisting of only
one arc, then it is easy to see that there exists an optimal solution for Max-

IMF where this arc will be saturated, and so the optimal values of MinMC

and of the continuous relaxation of (ILP-MC) will be the same. Otherwise,
any optimal multicut contains at least two arcs. By removing the arc hav-
ing the smallest capacity in such a solution, we are left with a path. It is
well-known that, in a path, MinMC and the continuous relaxation of (ILP-
MC) have the same optimal value (which is, by assumption, greater than or

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 20

equal to the capacity of the arc that was removed to obtain a path), since
the constraint matrix of this linear programming formulation is an interval
matrix, and hence is totally unimodular. This concludes our claim.

What was stated and proved explicitly in [BCLR09], however, is the
following result about the optimal value of MaxIMF:

Theorem 2.7 ([BCLR09]). Let F be a maximum multi�ow in a directed
ring. Then, the optimal value of MaxIMF in this ring is bval(F)c.

Moreover, the proof shows that an integral multi�ow of value bval(F)c
can be computed e�ciently by using a linear program with a totally uni-
modular constraint matrix. We also proved in [BCLR09] that, when all
capacities are equal, an optimal integral multi�ow can be computed in linear
time. Since we have val(F) ≤ 2bval(F)c, the worst case being when val(F)
lies in the interval [1,2[, the previous theorem immediately implies, together
with the above discussion, that we have the following result:

Corollary 2.2. In directed rings, the ratio between the optimal values of
MinMC and MaxIMF is at most 4.

Note, however, that this may be a rough estimate. The simple example
of a directed ring with three vertices a, b, c, three arcs (a, b), (b, c), (c, a) with
capacity 1, and three source-sink pairs (a, c), (b, a), (c, b), shows that this
ratio can be at least as high as 2. Indeed, in this case, we have val(F) = 3

2 ,
bval(F)c = 1, and any optimal multicut has value 2 (it consists of two arcs).

2.3 Solving MinMC with few source-sink pairs

During my PhD thesis, I studied the complexity and inapproximability
of MinMC in directed acyclic graphs, as well as in some generalizations.
Indeed, the related problem of simultaneously routing the maximum number
of source-sink pairs (si, s

′
i) along arc-disjoint paths in a directed acyclic graph

is known to be polynomial-time solvable when the number of source-sink
pairs is O(1), while in general digraphs both this problem andMinMC have
been proved to be NP-hard even with only two source-sink pairs [38, 42].

Drawing inspiration from a proof detailed in [8], I proved, by proposing
a reduction from 3SAT, thatMinMC is NP-hard in directed acyclic graphs,
even under very speci�c restrictions:

Theorem 2.8 ([Ben08]). MinMC is NP-hard in directed acyclic graphs,
even if all weights are 1, all vertex degrees are at most 3, and the underlying
undirected graph is a bipartite cactus.

It was also highlighted that, actually, MinMC in directed acyclic graphs
is equivalent to MinMC in layered digraphs, by means of a simple transfor-
mation. A layered digraph is a directed graph G = (V,E) whose vertex set

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 21

can be partitioned into q ≥ 2 sets V1, . . . , Vq such that, for each arc (u, v),
we have u ∈ Vi and v ∈ Vi+1 for some i ∈ {1, . . . , q − 1}. The Vi's will be
called layers, and we let p = maxi |Vi|. The proof of Theorem 2.8 showed
that this NP-hardness result still holds if either p = O(1) or q = O(1).

However, if both p and the number of source-sink pairs are O(1), then
an e�cient dynamic programming algorithm was proposed, yielding:

Theorem 2.9 ([Ben08]). In layered digraphs, MinMC is FPT with respect
to p = maxi |Vi| and the number of source-sink pairs.

Actually, the dynamic programming algorithm used in this case even
shows that MinMC becomes linear-time solvable when both p = maxi |Vi|
and the number of source-sink pairs are O(1).

These results raised two types of questions: on the one hand, what can be
said about inapproximability results, and, on the other hand, what happens
if we bound (only) the number of source-sink pairs? In [Ben08], the former
question was answered partially. In order to show how, we �rst need to make
some comments on directed acyclic graphs and their possible generalizations.

Although the de�nition of the �right� notion of tree-width is rather clear
in undirected graphs, this is far from being the case in directed graphs.
Actually, several notions have been proposed during the years, and each one
shares some properties with its undirected counterpart, but none manages to
gather all the nice properties that would be needed [5, 49, 51]. This is why
it is much harder to compare results related to such widths (in particular,
tractability results when �some� width is small) in directed graphs. However,
to the best of our knowledge, all these widths share the fact that the digraphs
with the smallest width are exactly the directed acyclic graphs. Hence,
proving a hardness result in directed acyclic graphs would allow to prove
the same hardness result in all digraphs with bounded width, whatever this
width is (provided that it is among the ones that we mentioned).

Unfortunately, there was no result in [Ben08] concerning the inapprox-
imability of MinMC in directed acyclic graphs, but I showed that, when one
of these widths is bounded, an APX-hardness result holds:

Theorem 2.10 ([Ben08]). MinMC is APX-hard in digraphs with bounded
directed tree-width.

One of the ten main open questions that I mentioned in my PhD thesis
was: what is the complexity of MinMC in directed acyclic graphs with O(1)
source-sink pairs? I kept on working on this question, and was �nally able
to deal with both of the above questions at the same time in [Ben11]:

Theorem 2.11 ([Ben11]). MinMC is APX-hard in directed acyclic graphs,
even when there are only two source-sink pairs.

The reduction used to prove this theorem is from the problemMax2SAT

(an alternative proof, which works only for three source-sink pairs, uses a

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 22

reduction from the minimum vertex cover problem), and also shows that this
hardness result remains true in layered digraphs where all capacities are 1
and the number of layers q is O(1), hence complementing Theorem 2.9.

It should also be noticed that, up to a constant factor, this result is best
possible when the number of source-sink pairs is O(1) (to see this, simply take
as a heuristic solution the union over all i of a minimum cut between si and
s′i), and that it matches the best inapproximability result known forMinMC

in general digraphs having an arbitrary number of source-sink pairs that is
based only on the assumption P6=NP. Indeed, there exist slightly stronger
inapproximability results for the general case, but to the best of our knowl-
edge they are all based on stronger complexity assumptions [11, 20].

Let us now turn to undirected graphs. When there are only two source-
sink pairs (s1, s

′
1) and (s2, s

′
2), MinMC is known to be tractable. Indeed, it

su�ces to compute two minimum cuts, one separating {s1, s2} from {s′1, s′2},
and the other separating {s1, s′2} from {s′1, s2}: the best solution among these
two cuts is an optimal solution for MinMC [67]. However, the problem has
been shown to be APX-hard when there are three pairs (or more) [28]. So,
it is natural to study its complexity in relevant special cases when there are
O(1) pairs, as otherwise the problem is APX-hard even in stars [43].

In [Ben08], I showed, by using a result of Dahlhaus et al. concerning the
multiterminal variant of the problem, that the following result holds:

Theorem 2.12 ([Ben08]). When the number of source-sink pairs is O(1),
MinMC is polynomial-time solvable in graphs of bounded tree-width.

The proof relies on a reduction fromMinMC to its multiterminal variant,
which is polynomial and increases the tree-width of the graph by a constant
when the number of source-sink pairs is O(1). (We shall give more details
about a variant of this reduction in the next paragraph, as we will need it
for subsequent results.) I later discovered that this result has been proved
independently in [46], using a slightly di�erent proof.

I also studied the case of planar graphs. I proved in particular that the
case where sources and sinks lie on the outer face can be reduced e�ciently
to a tractable case of the multiterminal variant. Actually, any optimal so-
lution to an instance of MinMC can be seen as a partition of the input
graph into connected components such that, for each i, no connected com-
ponent contains both si and s′i. By linking all the sources and sinks in each
connected component to a dedicated terminal, using edges with su�ciently
large capacities, one obtains an instance of the multiterminal variant. If the
number of source-sink pairs is O(1), then obviously the number of partitions
to enumerate is O(1). When the input graph is planar and all the sources
and sinks lie on the outer face, I showed that the partitions that need to
be enumerated satisfy some strong properties, which ensure that the multi-
terminal instances that are generated during the algorithm remain planar.

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 23

As the multiterminal variant of MinMC is known to be polynomial-time
solvable in planar graphs if the number of terminals is O(1) [28], this yields:

Theorem 2.13 ([Ben09c]). When there are O(1) source-sink pairs and all
sources and sinks lie on the outer face, MinMC is tractable in planar graphs.

The algorithm used to prove this theorem even shows that, in this case,
the problem can be solved in linear time when there are two source-sink pairs.
This result left as open the existence of an FPT algorithm for MinMC with
respect to the number of source-sink pairs in this case (actually, a very recent
proof of mine, which extends ideas already mentioned in [Ben09b] but is still
unpublished, shows that such an algorithm does exist [Ben17a]), as well as
the complexity of MinMC in planar graphs when the number of source-
sink pairs is O(1), a case that was listed as one among ten open questions
in my PhD thesis. In order to settle this question, I tried to adapt some
of the e�cient algorithms that were known for the multiterminal variant
of the problem in this case. Among the three algorithms I was aware of,
two were based on strong properties linked to the multiterminal nature of
the problem at hand: on the one hand, a matroid structure [47], and, on
the other hand, the fact that, in any optimal solution to a multiterminal
instance, any connected component of the associated partition contains only
one terminal [28]. Therefore, it seemed unlikely that there was a way to
adapt these two ones to the more general case of MinMC.

By studying the third algorithm, due to Yeh [68], I �nally discovered that
its proof was wrong. Roughly speaking, one of the main properties used in
this proof stated that, if we enumerate enough vertices, replacing some part
of an optimal solution by a minimum cut separating a terminal and the
enumerated vertices from the other terminals yields another solution. In my
PhD thesis, I provided a counter-example to this statement (see Figure 2.2).

In this multiterminal instance, the �ve terminals, t1 to t5, are the big
black vertices at the center and in the four corners of the grid, and the only
optimal solution is given by the 32 edges crossed by the dashed lines, which
all have capacity 1. Any edge incident to t1 has capacity 2, while any other
bold edge has capacity 1. Any edge not mentioned yet has a su�ciently
large capacity. Yeh's algorithm identi�es the �ve big black vertices incident
to the bold edges (including t1), and the proof claims that replacing the
28 edges of the current solution not lying on the outer face by a minimum
cut separating these �ve black vertices from the four other terminals (t2 to
t5) yields a new feasible solution. However, the only such minimum cut is
obtained by removing the bold edges (for a total capacity of 24), and these
edges clearly do not yield a feasible solution to the considered multiterminal
instance, as t2 is not separated from tj , for each j ∈ {3, 4, 5}, for instance.

This counter-example was also mentioned in [Ben09b], and later it was
proved in [18] that the algorithm itself (and not only its proof) is not correct.

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 24

t5 t2

t3t4

 t1

Figure 2.2: A counter-example to the proof of Yeh's algorithm.

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 25

In [Ben12], I proposed another e�cient algorithm for solving MinMC in
this case, based on the geometric notion of homotopic paths. Unfortunately,
a hole in the proof of one of the lemmas was found by Éric Colin de Verdière,
who later provided his own algorithm to solve MinMC in polynomial time
when the graph is planar and the number of source-sink pairs is O(1) [24].

2.4 Solving variants of MaxIMF and MinMC

In this section, we describe some algorithmic results concerning problems
that can be seen as variants or generalizations of MaxIMF or MinMC.

In the �rst variant we shall consider, we are given a list of source-sink
pairs in an edge-capacitated rectilinear grid, all capacities being equal to a
common integer c ≥ 1. More precisely, we are interested in the case of a
so-called dense channel : all sources (resp. sinks) lie on the uppermost (resp.
lowermost) row, and the number of source-sink pairs equals the number of
columns. Therefore, all vertices on the uppermost (resp. lowermost) row are
sources (resp. sinks), and any other vertex is neither a source nor a sink.

Such a setting arises, for instance, in the context of VLSI layout: nodes
need to be connected together by wires on a rectilinear board, and there is
a limit on the number of wires that can be installed in parallel. Moreover,
because installing wires is costly, one wants to install wires so that their total
length is as small as possible. Formally, we want to link each source to its
corresponding sink with a path, while respecting the capacity constraints on
the edges, and while minimizing the total length of the paths we use.

When c = 1, this problem amounts to �nding edge-disjoint paths linking
each source to its corresponding sink, while minimizing the total length of
these paths. Frank's results on edge-disjoint paths in rectilinear grids, men-
tioned in Section 2.2, imply that such edge-disjoint paths cannot exist in a
dense channel, except in the very special case where every source-sink pair
can be routed along a vertical path. In all other cases, Formann, Wagner
and Wagner showed in [37] that, if one adds an additional column on one
side (left or right) of the grid, then a routing of minimum total length can
be computed in polynomial time, and cannot use shortest paths.

For all other values of c, we proved in [BCPZ07] that this problem can
be solved in polynomial time, and that, in any optimal solution, any source-
sink pair is routed along a shortest path. Actually, we proved a slightly
more general result, extending partial results previously obtained by three
of the authors of [BCPZ07]: this remains true even if all �horizontal� edges
have the same capacity, and all �vertical� edges have the same capacity (not
necessarily equal to the one of the horizontal edges), provided that at least
one of these two capacities is not equal to 1 (otherwise, we are in the case
studied by Formann et al.). Summing up, we proved the following result:

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 26

Theorem 2.14 ([BCPZ07]). In a dense channel where all horizontal edges
have the same capacity, all vertical edges have the same capacity, and not all
capacities are equal to 1, one can compute in polynomial time, if it exists, a
set of paths linking each source to its corresponding sink, while satisfying all
capacity constraints and minimizing the total length of the paths in this set.
Moreover, any path in this set of paths is a shortest path.

Now, we shall focus our attention on two generalizations of MinMC.
The �rst one consists, in its simplest version, in adding a cardinality

constraint (i.e., bounding the number of edges used in a solution) toMinMC.
That is, we add a packing constraint to a covering problem. The results
presented here were obtained during the Master's internship that N. Derhy
did under the supervision of M.-C. Costa, F. Roupin and myself [29].

When there is only one source-sink pair,MinMC is simply the minimum
cut problem. We proved in [BCDR09] that, even in this special case, adding
a cardinality constraint makes the problem much harder:

Theorem 2.15 ([BCDR09]). Computing the minimum capacity of a cut that
separates a given source from a given sink and uses no more than a given
number of edges is a strongly NP-hard problem.

When there is more than one source-sink pair, it is known that MinMC

is polynomial-time solvable in directed trees [27], since in particular the
constraint matrix of the ILP formulation (ILP-MC) is totally unimodular.
Thanks to a small example, we showed in [BCDR09] that adding a cardinality
constraint can destroy this property, even in directed stars (i.e., directed
graphs whose underlying undirected graph is a star). Actually, we proved
that the problem becomes much harder even in this very special case:

Theorem 2.16 ([BCDR09]). The problem obtained by adding a cardinality
constraint to MinMC is strongly NP-hard, even in directed stars.

However, in another well-known special case (i.e., paths), we proved that
adding a cardinality constraint does not destroy the total unimodularity of
the constraint matrix of (ILP-MC). This implies:

Theorem 2.17 ([BCDR09]). The problem obtained by adding a cardinality
constraint to MinMC is polynomial-time solvable in paths.

Actually, we also provided a (combinatorial) polynomial-time dynamic
programming algorithm forMinMC with cardinality constraint in this case.

We also noticed in [BCDR09] that the problem obtained by adding a car-
dinality constraint toMinMC can be seen as a special case of a multicriteria
multicut problem. Given a set of bounds B1, . . . , Bν and a list of source-sink
pairs in a graph where each edge e is weighted by a weight vector w(e) of
size ν, the multicriteria multicut problem consists in deciding whether there

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 27

exists a multicut whose total edge weight with respect to the ith components
of the weight vectors w is smaller than or equal to Bi, for each i ∈ {1, . . . , ν}.
When ν = 2 and the second component of each weight vector is 1, the prob-
lem amounts to deciding whether there is a multicut using at most B2 edges,
and whose total capacity (given by the �rst components of the weight vectors
w) is at most B1. For this more general problem, we showed:

Theorem 2.18 ([BCDR09]). When weight vectors are arbitrary, the mul-
ticriteria multicut problem is NP-complete in paths, in the weak sense if
ν = O(1) (even if ν = 2), and in the strong sense otherwise.

The second generalization of MinMC that we shall consider will be called
partial MinMC. Consider a MinMC instance, together with an integer p:
the problem is then to compute the minimum capacity of a set of edges whose
removal leaves no path from si to s′i, for at least p source-sink pairs (si, s

′
i).

If p equals the number of source-sink pairs, then this is exactly MinMC.
Moreover, partial MinMC can be seen as a partial covering problem.

A natural question is then: can we exhibit cases where MinMC and
partial MinMC do not share the same complexity status? The answer to
this question was unknown until D. Chalu and I proved the following result,
during the Master's internship he did under my supervision:

Theorem 2.19 ([9]). Partial MinMC is strongly NP-hard in directed stars.

Since the full proof of this result is available only in D. Chalu's Master
thesis, we provide the main steps here.

First, we show that partial MinMC in directed stars is polynomially
equivalent to another partial covering problem, called the Partial Weighted
Vertex Cover problem (or PWVC), in bipartite graphs. In this problem, we
are given a node-weighted graph, and the goal is to compute the weight of a
minimum-weight set of vertices that covers at least a given number of edges.
It is clearly NP-hard in general graphs (as optimally covering all edges is),
and we will show that it remains NP-hard in bipartite graphs.

Take any instance of partial MinMC in a directed star. We can assume
without loss of generality that all sources have out-degree 1 and in-degree
0, and that all sinks have out-degree 0 and in-degree 1. We associate an
undirected bipartite graph to this directed star by taking as vertices the
sources and sinks (the weight of each vertex being the weight of the arc
incident to the corresponding source or sink), and by adding an edge between
two vertices if the corresponding source and sink in the directed star belong
to the same source-sink pair. Then, in the partialMinMC instance de�ned in
a directed star, removing an arc is clearly equivalent, in the PWVC instance
de�ned in a bipartite graph, to selecting the vertex (source or sink) this arc
is incident to. Conversely, any PWVC instance in a bipartite graph can be
polynomially reduced to a partial MinMC instance in a directed star, using
the same correspondence (edges become source-sink pairs).

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 28

It remains to show that PWVC is strongly NP-hard in bipartite graphs.
We reduce from the following problem, which was shown to be strongly NP-
complete in [BCDR09]: given a connected bipartite graph G with bipartition
(L,R) and an integer l ≥ 1, decide whether there exists a vertex cover of
G having l vertices in L and r = ν(G) − l vertices in R, where ν(G) is the
minimum size of a vertex cover in G. Take any instance of this problem
in a graph G with m edges, and link m + 1 ≥ ν(G) pendant vertices to
each vertex in L (this yields a new bipartite graph G′). Moreover, in G′,
set the weight of any vertex to 1 if it belongs to R, and to m+ 1 otherwise.
Then, it is easy to see that in G′ there exists a vertex cover of weight at
most l(m + 1) + (ν(G) − l) = lm + ν(G) that covers at least m + l(m + 1)
edges if and only if in G there exists a vertex cover having l vertices in L
and r = ν(G) − l vertices in R. The �if� part is trivial, and the �only if�
part comes from the fact that taking at least l vertices in L is the only way
to cover at least l(m + 1) edges, taking more than l vertices in L would
cost at least (l + 1)(m + 1) > lm + ν(G), and covering the m edges of G
using l vertices in L (which already cover l(m+1) edges incident to pendant
vertices) and r = ν(G)− l vertices in R is the only way to cover m+ l(m+1)
edges in G′. This ends the proof of Theorem 2.19.

Although we do not provide all the details here, it was also shown in [9]
that partial MinMC can be solved in polynomial time in rooted trees, using
a dynamic programming algorithm. Therefore, if P 6=NP, partial MinMC

does not have the same complexity status in directed stars and in rooted trees
(whileMinMC is polynomial-time solvable in both cases, as it is polynomial-
time solvable in directed trees).

During the PhD thesis of P. Le Bodic, we further studied the complexity
of partialMinMC, and of some related problems. It was shown, in particular,
that the partial version of another cut problem does not behave like its non
partial counterpart. Assume we are given an integer p and a set of k terminal
sets of vertices T1, . . . , Tk (or clusters) in a graph. A cluster Ti is isolated
from a cluster Tj if, for each pair of vertices u ∈ Ti and v ∈ Tj , there is
no path from u to v. The partial MinVMCC (for partial minimum vertex
multi-cluster cut) problem then consists in computing the minimum number
of vertices that need to be removed in order to isolate at least p of the clusters
from all the others. On the one hand, it was proved in [57, BB12] that:

Theorem 2.20 ([57, BB12]). Partial MinVMCC is NP-hard in the strong
sense in undirected trees.

On the other hand, note that the non partial version of MinVMCC (i.e.,
the case where p = k) can be solved in polynomial time in undirected graphs
of bounded tree-width (and hence in undirected trees), by using a dynamic
programming algorithm similar to the one mentioned in [28].

CHAPTER 2. INTEGRAL MULTIFLOWS & MULTICUTS 29

Finally, let us mention that a general result regarding (partial) MinMC

was proved in [57, BB12]. Given a list of source-sink pairs in a graph G, let
H denote the graph whose vertex set is composed of the sources and sinks
in G, and where there is an edge between two vertices if and only if there
exists a source-sink pair they both belong to. Moreover, let G + H denote
the graph obtained from G by adding the edges in H (except when such an
edge already exists in G), and similarly let G+ H̄ denote the graph obtained
from G by adding the edges in H̄, the complement of H (except when such
an edge already exists in G). Then, the following holds:

Theorem 2.21 ([57, BB12]). Partial MinMC is polynomial-time solvable
when min(tw(G+H), tw(G+ H̄)) = O(1), tw(·) being the related tree-width.

Note that this theorem uni�es and generalizes to partial MinMC two
results previously known for MinMC. First, it was noticed in [28] that the
multiterminal variant of MinMC can be solved by a polynomial-time dy-
namic programming algorithm in graphs of bounded tree-width (in this case
we have tw(G + H̄) = O(1), since H is a clique). Second, it was proved
in [44] that MinMC is polynomial-time solvable when tw(G + H) = O(1),
hence generalizing the result of Theorem 2.12. Also note that a simple modi-
�cation of the APX-hardness proof described in [43] forMinMC shows that
only requiring that tw(G) + tw(H) = O(1) is not su�cient to ensure that
(partial) MinMC becomes polynomial-time solvable.

Chapter 3

Vertex and edge colorings with

cardinality constraints

3.1 Introduction

In this chapter, we review results about vertex and edge coloring problems
having some sort of additional cardinality constraints.

Coloring problems can be seen as covering problems, as basically they
consist in covering the vertices (or edges) of a graph using only some speci�ed
type of subgraphs (each vertex, or each edge, must be covered in this way).
The type of subgraphs that will be used depends on the coloring problem that
is considered: for instance, recall that the classical vertex coloring problem
(also called proper vertex coloring) consists in covering the vertices of a graph
using the minimum number (or a given number) of stable sets (each stable
set in such a solution being then referred to as a color).

Adding cardinality constraints to such a problem thus amounts to adding
packing constraints to a covering problem. In the next three sections, we will
consider three di�erent special cases of this general setting. In Section 3.2,
we will consider non proper edge coloring problems in complete bipartite
graphs, in which we de�ne a bound on the number of edges of each color
incident to each vertex, and also require that the subgraph induced by the
edges of each color has a special structure. In Section 3.3, we will consider
vertex (and edge) coloring problems in which we are given a set of (not
necessarily disjoint) chains in a graph, together with bounds (i.e., cardinality
constraints) on the number of vertices (or edges) of each color in each chain,
and we look for a coloring (proper or not) satisfying these bounds. Finally,
in Section 3.4, we will consider vertex (and edge) colorings when a partition
of the vertex set is given, and we look for a proper coloring satisfying given
bounds on the number of vertices of each color in each set of the partition.

We will also show that the problems considered in Sections 3.2 and 3.3
generalize the following problem, which was in fact what motivated their

31

CHAPTER 3. COLORINGS WITH CARDINALITY CONSTRAINTS 32

study in the �rst place. We are given a list of p1 + p2 integers h1, . . . , hp1 ,
v1, . . . , vp2 , and we consider the problem of deciding whether there exists a
p1 × p2 matrix containing 0's and 1's such that, for each i ∈ {1, . . . , p1}, the
number of 1's on row i is exactly hi, and, for each j ∈ {1, . . . , p2}, the number
of 1's on column j is exactly vj . This problem, known as one of the basic
problems in discrete tomography, was studied by Ryser, who gave necessary
and su�cient conditions for such a matrix to exist [64]. It should be noticed
that these conditions can be checked in polynomial time. The complexity
status of natural generalizations of this problem was open several years ago,
so we became interested in them, and started working on characterizing or
at least identifying tractable special cases of these generalizations.

The papers to which this chapter is related contain numerous results, and
we will not describe them all. We will only highlight and comment those that
we consider as the most interesting ones. Any reader interested in having
knowledge of other results not presented here can refer to the respective
journals where these papers have been published.

3.2 Degree-constrained edge colorings of complete
(bipartite) graphs

In this section, we consider an edge coloring problem. We are given
a complete bipartite graph with bipartition (L,R), three colors, and, for
each vertex, the number of edges of each color that must be incident to it.
The problem that we consider, denoted by DC-EdgeCol, then consists in
deciding whether there exists an (non necessarily proper) edge coloring with
three colors that satis�es all the degree requirements.

We can assume that these requirements are given as upper bounds, as
the sum of the three requirements for each vertex v is exactly its degree in
the whole bipartite graph, i.e., |L| if v ∈ R and |R| if v ∈ L. Therefore, these
requirements can actually be expressed as packing constraints.

Also note that DC-EdgeCol can actually be viewed as the problem of
deciding whether there exists a (non necessarily complete) bipartite graph
that satis�es the degree requirements for the colors 1 and 2 (the edges of
color 3 being only useful to obtain a complete bipartite graph).

For similar reasons, it is not hard to see that, when there is no edge
of color 3 (i.e., there are only two colors), DC-EdgeCol is equivalent to
deciding whether there exists a (non necessarily complete) bipartite graph
where the degree of each vertex is the number of edges of color 1 that must
be incident to it. This problem, in turn, is equivalent to deciding whether
there exists a |L| × |R| matrix containing 0's (when there is no edge) and
1's (when there is an edge) such that, for each i ∈ {1, . . . , |L|}, the number
of 1's on row i is exactly the degree of the ith vertex in L, and, for each
j ∈ {1, . . . , |R|}, the number of 1's on column j is exactly the degree of the

CHAPTER 3. COLORINGS WITH CARDINALITY CONSTRAINTS 33

jth vertex in R. That is, it is equivalent to the basic problem solved by Ryser
in [64]. However, when there are three colors (and not two) in a complete
bipartite graph, the complexity status of the problem remained open for a
long time (more details on this case are given below).

When we became interested in DC-EdgeCol due to its equivalence with
this open problem in discrete tomography, we wanted to identify additional
(graph) requirements that could make the problem easier, or harder. For
instance, imposing a special structure or condition on the subgraph induced
by the edges of color 1, by the ones of color 2, or by the ones of color 1 or 2,
may precisely lead to either easier or harder problems.

In the remaining of this section, instead of considering three colors in a
complete bipartite graph, we will consider two colors in the bipartite graph
(to be determined) obtained by removing the edges of color 3. Moreover, we
shall also consider the problem DC-EdgeCol in complete graphs (and not
complete bipartite anymore) with three colors: let us refer to this variant
as DC-Complete-EdgeCol. Again, instead of reasoning directly on a
complete graph with three colors, we will consider two colors in the graph
(to be determined) obtained by removing the edges of color 3.

We �rst established a link between the hardness of both problems:

Theorem 3.1 ([BCP+09]). DC-Complete-EdgeCol is at least as hard
as DC-EdgeCol, as the latter can be reduced to the former.

As DC-EdgeCol is known to be NP-complete since 2012 [33] (before
this paper, only the variant with four or more colors was known to be in-
tractable [19]), so is DC-Complete-EdgeCol.

We also proposed a su�cient condition for an instance of DC-EdgeCol
or DC-Complete-EdgeCol to have a solution: more precisely, if the num-
ber of edges of color 1 or 2 is not smaller than some lower bound that we
computed, then there always exists a solution (complete bipartite graph
with three colors). Then, we studied DC-Complete-EdgeCol and DC-
EdgeCol under the assumption that the subgraph induced by the edges of
color 1 or 2 has a special structure, and provided necessary and su�cient
conditions for a solution to exist. Note that all these conditions can be
checked in polynomial time. More precisely, we have proved:

Theorem 3.2 ([BCP+09]). When we require that the graph induced by the
edges of color 1 or 2 must be a tree, there exist necessary and su�cient
conditions, which can all be checked in polynomial time, for an instance of
DC-EdgeCol or DC-Complete-EdgeCol to have a solution.

This theorem is essentially proved with the help of two key lemmas, called
the recoloring and recycling lemmas. The recoloring lemma states that we
can merge two connected components of the subgraph induced by the edges
of color 1 or 2 into a single connected component, provided that each of these

CHAPTER 3. COLORINGS WITH CARDINALITY CONSTRAINTS 34

connected components contains one edge of a given color (1 or 2), and at
least one of these two edges lies on a cycle. The recycling lemma basically
states that, under some weak assumptions, an edge not lying on a cycle can
be put on a cycle, without modifying the number of connected components.

In the proof of Theorem 3.2, we apply the recoloring lemma while we can
(decreasing by one the number of connected components each time we use
it). Then, we show that the recycling lemma can be used, and use it. After
that, the recoloring lemma can be used again, which concludes the proof.

The next result deals with disjoint chains covering the whole graph:

Theorem 3.3 ([BCP+09]). When we require that the graph induced by the
edges of color 1 or 2 must be a set of vertex-disjoint chains spanning all ver-
tices, there are necessary and su�cient conditions, which can all be checked
in polynomial time, for an instance of DC-EdgeCol to have a solution.

For DC-Complete-EdgeCol, we can even require that the edges of
color 1 or 2 induce a hamiltonian cycle (i.e., simple and spanning all vertices):

Theorem 3.4 ([BCP+09]). When we require that the edges of color 1 or 2
must induce a hamiltonian cycle, the following conditions are necessary and
su�cient for an instance of DC-Complete-EdgeCol to have a solution:

• the number of edges of color 1 or 2 incident to each vertex is two,

• there is a vertex incident to an edge of color 1 and to one of color 2.

These conditions can be checked in polynomial time and are clearly neces-
sary (the second one being necessary for a connected solution to exist). The
su�ciency comes from the recoloring lemma: the only case where this lemma
cannot be applied is when the edges of color 1 or 2 induce two monochromatic
vertex-disjoint cycles, but this is impossible from the second condition.

Now we turn to the case where both the edges of color 1 and the edges
of color 2 must have a special structure. We �rst study hamiltonian chains:

Theorem 3.5 ([BCP+09]). When we require that the edges of each color (1
and 2) must induce a hamiltonian chain, there exist necessary and su�cient
conditions, which can all be checked in polynomial time, for an instance of
DC-EdgeCol or DC-Complete-EdgeCol to have a solution.

Then, we study the case of cycles:

Theorem 3.6 ([BCP+09]). When we require that the edges of each color
(1 and 2) must induce a cycle, the following conditions are necessary and
su�cient for an instance of DC-EdgeCol to have a solution:

• the edges of each color (1 and 2) induce a set of disjoint cycles,

• we have neither the forbidden con�guration given in Figure 3.1, nor
the one obtained by exchanging edges of color 1 and edges of color 2.

CHAPTER 3. COLORINGS WITH CARDINALITY CONSTRAINTS 35

Figure 3.1: A forbidden con�guration for Theorem 3.6. The black vertices
are in L, the white ones are in R, and the number on each edge is its color.

In [25], the �rst condition of Theorem 3.6 is shown to be equivalent to a
set of necessary and su�cient conditions, which can be checked in polynomial
time, corresponding to a set of �pathological cases� that must be forbidden.

Finally, DC-Complete-EdgeCol behaves in a similar way in this case,
although the associated necessary and su�cient conditions are a bit simpler:

Theorem 3.7 ([BCP+09]). When we require that the edges of each color
(1 and 2) must induce a cycle, there exist necessary and su�cient condi-
tions, which can all be checked in polynomial time, for an instance of DC-
Complete-EdgeCol to have a solution.

3.3 Colorings with cardinality constraints on a given
set of chains

In this section, we consider the following problem Col-CC: we are given
a list of colors, a graph, and a list of (not necessarily disjoint) chains in this
graph, together with the number of vertices of each color that each chain
must contain, and we are thus looking for a (not necessarily proper) vertex
coloring such that each chain given in the input contains the right number
of vertices of each color. Note that these numbers of vertices can as well be
given as upper bounds in the input since, for each chain, the sum of these
numbers is exactly the total number of vertices on the chain (so, each of
these numbers must be reached anyway in any feasible coloring). This way,
we can de�ne these constraints as packing (or cardinality) constraints.

Assume for instance that we are given a rectilinear grid with p1 rows
and p2 columns, and two colors. For each i ∈ {1, . . . , p1}, the ith row
(one of the chains given in the input) must contain hi vertices of color 1
and p2 − hi vertices of color 2. Similarly, for each j ∈ {1, . . . , p2}, the jth
column (one of the chains given in the input) must contain vj vertices of
color 1 and p1− vj vertices of color 2. Then, �nding a (non proper) coloring

CHAPTER 3. COLORINGS WITH CARDINALITY CONSTRAINTS 36

satisfying the cardinality constraints on the p1 + p2 chains in this special
case is equivalent to �nding a p1 × p2 matrix containing 0's (corresponding
to vertices of color 2) and 1's (corresponding to vertices of color 1) such that,
for each i ∈ {1, . . . , p1}, the number of 1's on row i is exactly hi, and, for
each j ∈ {1, . . . , p2}, the number of 1's on column j is exactly vj .

In the above special case, which is Ryser's problem [64], the input graph
is a rectilinear grid, and the number of colors is two. When there are four (or
more) colors, the problem is known to be NP-complete (even in rectilinear
grids where the set of chains is as above), as the corresponding problem in
discrete tomography (reconstructing a matrix with four colors, knowing the
number of times each color appears in each row and each column) is [19].
However, the complexity of the problem remained open in other special cases
(for instance, in other families of bipartite graphs), or when there are three
colors. We studied the former question, and the latter one was settled in
2012 (the problem being actually NP-complete) by Dürr et al. [33].

The �rst noticeable result that we obtained in [BCdW+08] concerning
Col-CC is the following negative one:

Theorem 3.8 ([BCdW+08]). Col-CC is NP-complete in trees with maxi-
mum degree three, even when there are only two colors.

The proof is made by reduction from the NP-complete problem 1-in-

3SAT with no negated literal (also calledMonotone1-in-3SAT), a variant
of 3SAT where each clause must contain exactly one true literal, and which
will be described formally in the next section. Informally, in any instance of
this problem, we have a set of variables and a set of clauses of size 3 de�ned
on these variables (with only positive literals), and the idea of the reduction
is to associate a leaf to each variable and a gadget to each clause. Then, we
de�ne chains in each clause gadget in order to ensure that each such gadget
has only 3 possible colorings: for each of these 3 colorings, exactly one of the
3 associated variable leaves has color 1. Having color 1 can thus be associated
with being true in a truth assignment, and we prove the equivalence between
the solutions to the Col-CC and 1-in-3SAT instances in this way.

However, restricting the way the chains given in the input can interact
with each other makes the problem easier when there are two colors:

Theorem 3.9 ([BCdW+08]). When there are two colors, Col-CC can be
solved in polynomial time when any chain given in the input has at most two
vertices in common with other chains given in the input.

Imposing strong restrictions on the lengths of the chains given in the
input also makes the problem easier:

Theorem 3.10 ([BCdW+08]). Col-CC can be solved in polynomial time
when any chain given in the input contains at most two vertices.

CHAPTER 3. COLORINGS WITH CARDINALITY CONSTRAINTS 37

It was also proved in [BCdW+08] that the problem becomesNP-complete
if chains containing 3 (or more) vertices are allowed, even with only 3 colors.

When the graph is a tree and the chains given in the input are almost
disjoint, a rather intricate algorithm, called the Forced and Forbidden Colors
procedure, and based on several non trivial properties, can be used to show:

Theorem 3.11 ([BCdW+08]). Col-CC can be solved in polynomial time
in trees when any two chains given in the input share at most one vertex.

When we impose in addition that any solution must be a proper coloring,
the problem (which is trivial with two colors) becomes a bit harder to deal
with. However, one can show the following (positive) result:

Theorem 3.12 ([BCdW+08]). When any solution is required to be a proper
coloring, Col-CC can be solved in polynomial time in trees when any two
chains given in the input share at most one common vertex.

A reduction inspired by the one used to prove Theorem 3.8 yields:

Theorem 3.13 ([BCdW+08]). When any solution is required to be a proper
coloring, Col-CC is NP-complete in trees with maximum degree three, even
when there are only three colors.

Finally, if we consider the case of (non necessarily proper) edge colorings,
then we impose the number of edges of each color that each chain given in the
input must contain. In this case, the complexity of the problem (denoted by
EdgeCol-CC) is open in trees, but we were able to prove that the problem
is hard in graphs that are hardly more general than trees:

Theorem 3.14 ([BCdW+08]). EdgeCol-CC is NP-complete in cacti with
maximum degree three and no cycle of length four or more, even when there
are only two colors.

3.4 Colorings with �local� cardinality constraints
on a �xed partition

In this section, we consider the following problem Col-LocalBounds:
we are given a list of k colors, a graph G = (V,E), a partition (V1, V2, . . . , Vp)
of the vertex set V , and a list of p·k bounds n11, . . . , n1k, . . . , np1, . . . , npk such
that

∑k
j=1 nij = |Vi| for each i, and we want to decide whether there exists a

proper coloring such that, for each i ∈ {1, . . . , p} and for each j ∈ {1, . . . , k},
the number of vertices of color j in Vi is nij . Again, note that, because of the
condition

∑k
j=1 nij = |Vi| for each i, the numbers nij can as well be given

as upper bounds in the input. This way, we can, as in the previous section,
de�ne these constraints as packing (or cardinality) constraints.

CHAPTER 3. COLORINGS WITH CARDINALITY CONSTRAINTS 38

When p = 1, the problem is known as the Capacitated Coloring problem
(see [7]): Gravier et al. showed that this problem is polynomial-time solvable
in graphs of bounded tree-width when the number of colors k is O(1) [45].
Other very well-known special cases of Capacitated Coloring also include
the Equitable Coloring problem (where the sizes of any pair of color classes
must di�er by at most 1), and the Bounded Coloring problem (where all
the bounds nij are equal), for which numerous results are known (see in
particular [6, 7, 45], as well as additional links referenced in these papers).

In [BP09], we proved the following result, with the help of a dynamic
programming algorithm:

Theorem 3.15 ([BP09]). When both p and the number of colors k are O(1),
we can solve Col-LocalBounds in polynomial time in trees.

Applications ofCol-LocalBounds, and in particular links with schedul-
ing problems, were also discussed in this paper.

Later, I continued working on a generalization of Col-LocalBounds,
named WeightedListCol-LocalBounds. In this more general problem,
any vertex v has a weight w(v) and a list of possible colors L(v), and the
p · k bounds are denoted by W11, . . . ,W1k, . . . ,Wp1, . . . ,Wpk, and are such
that

∑k
j=1Wij =

∑
v∈Vi w(v) for each i. The problem consists in deciding

whether there exists a proper coloring such that, for each i and for each j,
the total weight of the vertices of color j in Vi is Wij , and which is a valid
list-coloring, i.e., the color of any vertex v in this coloring belongs to L(v).
For this problem, the following set of (unpublished) results can be shown:

Theorem 3.16. When both p and the number of colors k are O(1), we
can solveWeightedListCol-LocalBounds in pseudo-polynomial time in
graphs of bounded tree-width. If, in addition, all vertex weights are bounded
by a polynomial in the input size, then we can solve it in polynomial time.

Proof. In order to design a dynamic programming algorithm that solves
WeightedLocallyBoundedListColoring in an e�cient way provided
that a tree decomposition

(
{Xi|i ∈ I}, T

)
of the input graph G having min-

imum width tw(G) is given, let us de�ne the following function f :

• f(i, ci, ω11, . . . , ω1k, . . . , ωp1, . . . , ωpk) = true if there is a list-coloring
of G[Ti] where each vertex u ∈ Xi has color ci(u) and the total weight
of vertices of G[Ti] having color c in Vh is ωhc, and false otherwise.

To describe the algorithm, one now simply needs to write down the in-
duction equations de�ning the values of f(·), for each type of nodes of T :
forget, introduce, join and leaf (see Section 1.3). Then, these values will be
computed in a bottom-up fashion, starting from the leaves of T .

Note that, by the de�nition of tree decompositions, any two vertices
linked by an edge in G must both belong to at least one common bag of the

CHAPTER 3. COLORINGS WITH CARDINALITY CONSTRAINTS 39

tree decomposition (Condition (2)). This implies that a (list-)coloring that
is proper in each bag is also proper in the whole graph G, provided that each
vertex has the same color in each bag it belongs to. Moreover, Condition (3)
ensures that the subgraph of T induced by the bags any given vertex belongs
to is connected, and hence in all these bags this vertex will have the same
color if we do not change its color whenever we move (in T) from one bag
to an adjacent one. Therefore, in order to show that a vertex list-coloring is
proper in Ti, it su�ces to ensure that it is a proper list-coloring in Xi, and
that the color of any vertex remains the same when moving from one bag of
Ti to an adjacent one. Here are the equations computing the values of f(·):

If i is a forget node. Let j denote its child such that Xj = Xi ∪ {v}:

f(i, ci, ω11, . . . , ωpk) =
∨

cj :(cj(u)=ci(u) ∀u∈Xi)∧(cj(v)∈L(v))

f(j, cj , ω11, . . . , ωpk)

Proof. Each vertex must keep its color when moving from Xj to Xi.

If i is an introduce node. Let j denote its child such that Xj = Xi \{v},
and assume that v ∈ Vh:

f(i, ci, ω11, . . . , ωpk) = E
∧
f(j, cj , ω11, . . . , ωhci(v) − w(v), . . . , ωpk)

where E = (ci(v) ∈ L(v))
∧

(ci(v) 6= ci(u) ∀u : uv ∈ Yi)
∧

(cj(u) = ci(u) ∀u ∈
Xj)

∧
(ωhci(v) ≥ w(v)).

Proof. The conditions ci(v) ∈ L(v) and ci(v) 6= ci(u) ensure that the list-
coloring is valid in the subgraph of G induced by Xi.

If i is a join node. Let j and l denote its two children, and let wihc be the
total weight of vertices v ∈ Xi ∩ Vh such that ci(v) = c, for each h and c.

f(i, ci, ω11, . . . , ωpk) =∨
(q11,...,qpk)∈Qi

(
f(j, ci, ω11 + wi11 − q11, . . . , ωpk + wipk − qpk) ∧ f(l, ci, q11, . . . , qpk)

)
where Qi = {(q11, . . . , qpk) : wihc ≤ qhc ≤ ωhc ∀h ∀c}.

Proof. We try all the possible combinations of vertex weights between the
two children of node i, and take into account the fact that the weights of the
vertices in Xi must be counted both in Tj and in Tl.

If i is a leaf node. In this case, we just have to check that the coloring
function ci provides a valid locally bounded list-coloring of G[Xi].

f(i, ci, ω11, . . . , ωpk) = E
∧

(w({v ∈ Xi ∩ Vh : ci(v) = c}) = ωhc ∀h ∀c)

where E = (ci(v) ∈ L(v) ∀v ∈ Xi)
∧

(ci(v) 6= ci(u) ∀u, v ∈ Xi : uv ∈ Yi).

CHAPTER 3. COLORINGS WITH CARDINALITY CONSTRAINTS 40

Root value. The value computed at the root r of T is:∨
cr:cr(u)∈L(u) ∀u∈Xr

f(r, cr,W11, . . . ,Wpk)

We conclude the proof by noticing that the overall running time we obtain
is O(n(maxh,cWhc)

pkktw(G)+1((maxh,cWhc)
pk + tw(G)(tw(G) + pk))).

Note that Theorem 3.16 generalizes both Theorem 3.15 (where w(v) = 1
for each vertex v, the tree-width is 1, and any vertex can take any color)
and the results in [45]. This theorem can also easily be extended to the case
where one wants to properly color edges instead of vertices.

Furthermore, if the tree-width of the input graph is arbitrary, then
Col-LocalBounds is NP-complete (even if k = 3 and p = 1), as the
basic problem of deciding whether a graph can be colored with 3 colors is.

Actually, one can show that the conditions p = O(1) and k = O(1) are
necessary in Theorem 3.16, since otherwise the problem is strongly NP-
complete, and that the problem is weakly NP-complete even if they hold.

Assume that the vertex weights are arbitrary, and set k = 2 and p = 1.
Take any instance I of the weakly NP-complete Partition problem, where
we are given n+1 positive integers a1, . . . , an, B such that

∑n
i=1 ai = 2B, and

we want to decide whether there exists I ′ ⊂ {1, . . . , n} such that
∑

i∈I′ ai =
B. Consider a set of n isolated vertices v1, . . . , vn (a graph with tree-width 0)
that can take any color, and de�neW11 = W12 = B, as well as w(vi) = ai for
each i. Then, the answer to instance I is yes if and only if the answer to this
instance of WeightedListCol-LocalBounds is yes. This implies that
WeightedListCol-LocalBounds is weakly NP-complete in this case.

Assume now that the number of colors k is arbitrary. Bodlaender and
Fomin have shown that deciding whether there exists an equitable coloring
with k colors when some vertices are already colored is stronglyNP-complete
in trees [6]. However, ensuring that a vertex v takes color c can be done
by imposing that the list of possible colors for v contains only c. Hence,
WeightedListCol-LocalBounds generalizes this problem, and is also
strongly NP-complete in trees, even if w(v) = 1 for each vertex v and p = 1.

Finally, assume that p is arbitrary. In this case, it can be shown that
WeightedListCol-LocalBounds remains strongly NP-complete, by us-
ing a reduction from the following well-known NP-complete problem, which
is mentioned in the previous section, but which we now describe formally [41]:

Monotone1-in-3SAT

Instance: A set X of ν boolean variables x1, . . . , xν , and a set of µ clauses,
each one containing exactly three (non negated) boolean variables from X.
Question: Decide whether there exists a truth assignment for the variables
in X such that in every clause there is exactly one variable equal to true.

CHAPTER 3. COLORINGS WITH CARDINALITY CONSTRAINTS 41

More precisely, the following result holds:

Theorem 3.17. WeightedListCol-LocalBounds is NP-complete in
the strong sense in forests, even if k = 2 and w(v) = 1 for each v ∈ V .

Proof. Given an instance of Monotone1-in-3SAT, we construct an in-
stance of WeightedListCol-LocalBounds as follows: the graph G con-
sists of ν vertex-disjoint stars, one star per variable xi. We denote by vi the
central vertex of the ith star, and by u0i , . . . , u

occ(i)
i its leaves, where occ(i) is

the number of occurrences of xi in the set of clauses. Then, we de�ne k = 2,
p = ν + µ, and, for each vertex v, w(v) = 1. Moreover, any vertex can take
any color. The partition of the vertices of G and their target weights are
given by: Vh = {vh, u0h} and Wh1 = Wh2 = 1 for each h ∈ {1, . . . , ν}, and
Vh = {uai , ubj , uck}, Wh1 = 1 and Wh2 = 2 for each h ∈ {ν + 1, . . . , ν + µ},
where we consider that the (h − ν)th clause consists of the ath occurrence
of the variable xi, of the bth occurrence of the variable xj , and of the cth
occurrence of the variable xk.

It is easy to check that we have the following equivalence between this
WeightedListCol-LocalBounds instance and the initialMonotone1-

in-3SAT instance: for each i ∈ {1, . . . , ν}, variable xi is equal to true if and
only if vi has color 2, which concludes the proof.

Complementary results for this problem in other classes of graphs (such
as cographs and split graphs) have been obtained recently, but will not be
discussed here; the interested reader can refer to [Ben17b].

Chapter 4

Blockers and d-transversals in
graphs

4.1 Introduction

In this chapter, we review results about minimum d-transversals for sev-
eral graph problems. Formally, given a weighted graph G, an integer d,
and a graph parameter π(G) that cannot increase under vertex (resp. edge)
deletions and that is equal to the optimal weight of a set of vertices (resp.
edges) satisfying a given graph property Π, a d-transversal for π(G) is a set
of vertices (resp. edges) that intersects at least d times any set of vertices
(resp. edges) of weight π(G) satisfying property Π in G. A related notion is
the following: a blocker for a graph parameter π(G) as de�ned previously is
a set B of vertices (resp. edges) such that π(G−B) < π(G), where G−B is
the graph obtained from G by removing the vertices (resp. edges) in B [26].

In fact, it is not hard to see that we have the following equivalence:

Proposition 4.1 ([ZRP+09]). Given a weighted graph G and a graph pa-
rameter π(G) that cannot increase under vertex (resp. edge) deletions and
that is equal to the optimal weight of a set of vertices (resp. edges) satisfying
a given graph property, a set of vertices (resp. edges) is a 1-transversal for
π(G) if and only if it is a blocker for π(G).

Examples of graph parameters that we shall consider are α(G), the sta-
bility number of G, where the property Π consists in being a stable set, and
ν(G), the maximum size of a matching in G (which can be e�ciently com-
puted), the property Π then consisting in being a matching. The general
problem that we shall study consists in determining the minimum size (or
cost, if each vertex or edge also has a cost) of a d-transversal or blocker.
Proposition 4.1 shows that d-transversals can be seen as generalizations of
blockers: other generalizations or variants of blockers for di�erent graph
parameters were considered in [3, 26, 69], but will not be discussed here.

43

CHAPTER 4. BLOCKERS AND D-TRANSVERSALS IN GRAPHS 44

Note that, basically, such a problem is hard in two ways: �rst, computing
the value of π(G) may be hard (this is the case, for instance, for π(G) = α(G)
in general graphs); second, even if π(G) can be computed e�ciently, there
may be a huge number of optimal vertex (or edge) sets satisfying the property
Π. In particular, proving that the decision version of such a problem belongs
to NP (or not) may be a hard task. In the case of blockers (i.e., d = 1), this
fact may remain hard to prove whenever computing π(G) is NP-hard, but
the decision version of the problem is obviously in NP otherwise.

In any case, this clearly de�nes a family of covering problems, as one
wants to cover at least d times, in an optimal way, any set of vertices (resp.
edges) of weight π(G) satisfying property Π in G.

4.2 Minimum d-transversals for matchings

This section reviews results about the case where the property Π consists
in being a matching, and all edge weights are 1. In other words, one wants
to determine the minimum size of a set of edges intersecting at least d times
any maximum matching of a graph G, for d ≤ ν(G).

In [ZRP+09], we �rst established, with the help of a rather intricate
reduction from the NP-hard maximum clique problem, the complexity of
�nding a minimum-size blocker for ν(G) in arbitrary bipartite graphs:

Theorem 4.1 ([ZRP+09]). Determining the minimum size of a blocker for
ν(G) is NP-hard in bipartite graphs.

From this theorem and Proposition 4.1, �nding the minimum size of a
1-transversal for ν(G) is also NP-hard in bipartite graphs. Actually, this
can also be extended to d-transversals for d > 1:

Theorem 4.2 ([ZRP+09]). For any d ≥ 1, determining the minimum size
of a d-transversal for ν(G) is NP-hard in bipartite graphs.

This latter result is obtained by reducing the case d = 1 to the case where
d can take any value, by adding to any initial bipartite instance a matching
of size d− 1. Moreover, note that, for any d ≥ 1, the decision version of the
problem consisting in determining the minimum size of a d-transversal for
ν(G) is actually in NP. More precisely, given any potential d-transversal Td
in a graph G with m edges, checking that Td is indeed a d-transversal for
ν(G) can be done by giving a weight 1 to any edge in Td and a weight 1 + 1

m
to any other edge, and then computing a maximum matching of maximum
weight, which can be done in polynomial time. If this maximum weight is
at most ν(G)(1 + 1

m)− d
m , then any maximum matching must use at least d

edges from Td, establishing that Td is a d-transversal for ν(G).

CHAPTER 4. BLOCKERS AND D-TRANSVERSALS IN GRAPHS 45

Since the problem of determining the minimum size of a d-transversal for
ν(G) is NP-hard in arbitrary bipartite graphs, we studied its complexity in
several families of bipartite graphs in [ZRP+09] and [RBP+10]. For instance,
the cases of chains and rings can be solved easily (the details, which are left to
the reader, are also given in [ZRP+09]). Another natural family of bipartite
graphs is the class of regular bipartite graphs, for which we have:

Theorem 4.3 ([ZRP+09]). Given any bipartite graph G such that all n
vertices have the same degree ∆, a minimum-size d-transversal for ν(G) can
be found in polynomial time, by taking the d∆ edges incident to the vertices
of any independent set of size d, for any d ∈ {1, . . . , n2 }.

The proof is divided into two parts. First, as a direct consequence of
Hall's Theorem, we know that such a graph G contains ∆ disjoint perfect
(and hence maximum) matchings, meaning that any d-transversal must con-
tain at least d∆ edges. Second, as any vertex is incident to an edge of
any perfect matching, taking all the edges incident to the vertices of any
independent set of size d indeed yields a d-transversal of size d∆.

We also provided a family of instances showing that, in this case, there
may exist minimum-size d-transversals that are not obtained as in Theorem
4.3. Figure 4.1 illustrates the case where ∆ = 3 and d = 4: the solution
obtained by taking the bold edges is a d-transversal of size d∆ = 12, and
hence of minimum size, but it is also a matching.

Figure 4.1: A matching of size 12 (in bold edges), which is also a minimum-
size 4-transversal in a regular bipartite graph of degree 3.

A natural way of obtaining bipartite graphs that are not regular (but not
by far) is by considering the rectilinear grids. We studied them in [RBP+10],
and proved that the structure of minimum-size d-transversals can be very
di�erent from the one described in Theorem 4.3.

We shall deal with three di�erent main cases, establishing closed formulas
for each one of them, before concluding:

• The numbers of rows and columns are even,

• The numbers of rows and columns are odd,

• The number of rows is even and the number of columns is odd.

The following lemma deals with the �rst main case:

CHAPTER 4. BLOCKERS AND D-TRANSVERSALS IN GRAPHS 46

Lemma 4.1 ([RBP+10]). Let Gm,n be a rectilinear grid with m rows and n
columns, m and n being even. A minimum-size d-transversal for ν(Gm,n)

1. (when m = 2 or n = 2)

• has size 2d for d = 1 or d = 2.

• has size 3d− 2 for d ∈ {3, . . . , ν(Gm,n)}.

2. (when m ≥ 4 and n ≥ 4)

• has size 2d for d ∈ {1, 2, 3, 4}.
• has size 3d− 4 for d ∈ {5, . . . ,m+ n− 4} and max{m,n} > 4.

• has size 4d−m− n for d ∈ {m+ n− 3, . . . , ν(Gm,n)}.

The construction associated with each of these �ve cases is also given
explicitly, and the solutions obtained mainly consist in taking all the edges
incident to a particular set of vertices, as in Theorem 4.3.

We now turn to the second main case:

Lemma 4.2 ([RBP+10]). Let Gm,n be a rectilinear grid with m rows and n
columns, m and n being odd. A minimum-size d-transversal for ν(Gm,n)

1. (when m = 1 or n = 1)

• has size 2d for d ∈ {1, . . . , ν(Gm,n)}.

2. (when m ≥ 3 and n ≥ 3)

• has size 3 for d = 1.

• has size 2d+ 2 for d = 2 or d = 3.

• has size 12 for d = 4 and m = n = 3.

• has size 3d− 1 for d ∈ {4, . . . ,m+ n− 3} and max{m,n} > 3.

• has size 4d−m− n+ 2 for d ∈ {m+ n− 2, . . . , ν(Gm,n)}.

Again, the construction associated with each of these six cases is also
given explicitly, and the solutions obtained mainly consist in taking all the
edges incident to a particular set of vertices, as in Theorem 4.3.

Finally, we deal with the third main case:

Lemma 4.3 ([RBP+10]). Let Gm,n be a rectilinear grid with m rows and n
columns, m being even and n odd. A minimum-size d-transversal for ν(Gm,n)

1. (when n = 1)

• has size d for d ∈ {1, . . . , m2 = ν(Gm,1)}.

2. (when m = 2 and n ≥ 3)

CHAPTER 4. BLOCKERS AND D-TRANSVERSALS IN GRAPHS 47

• has size 2d for d = 1 or d = 2.

• has size 3d− 2 for d ∈ {3, . . . , n = ν(G2,n)}.

3. (when m ≥ 4 and n = 3)

• has size 2d for d ∈ {1, . . . , m2 + 2}.
• has size 3d− m

2 − 2 for d ∈ {m2 + 3, . . . ,m}.
• has size 5d− 5m

2 − 3 for d ∈ {m+ 1, . . . , 3m2 = ν(Gm,3)}.

4. (when m ≥ 4 and n ≥ 5)

• has size 2d for d ∈ {1, 2, 3, 4}.
• has size 3d− 4 for d ∈ {5, . . . ,m+ n− 3}.

• has size 4d−m−n−1−
⌊
d−(m+n−3)

n−3
2

⌋
for d ∈ {m+n−2, . . . , mn4 +

m
4 + n−5

2 }.

• has size 4d−m−n−
⌊

mn
2
−d

n−1
2

⌋
for d ∈ {mn4 +m

4 +n−3
2 , . . . , ν(Gm,n)}.

As in the two previous lemmas, the construction associated with each case
is given, but this time the solutions obtained make use of special structures
called dancats (for dancing caterpillars), shown in Figure 4.2:

Figure 4.2: A dancat (in bold edges) on a grid.

Depending on the case that is considered, the dancats are then completed,
either with a matching or with the set of all edges incident to some vertices,
in order to obtain a minimum-size d-transversal. As Lemmas 4.1, 4.2, and
4.3 cover all possible cases, this immediately yields:

CHAPTER 4. BLOCKERS AND D-TRANSVERSALS IN GRAPHS 48

Theorem 4.4 ([RBP+10]). Given any rectilinear grid Gm,n with m rows
and n columns, a minimum-size d-transversal for ν(Gm,n) can be computed
in polynomial time, for any d ∈ {1, . . . , ν(Gm,n)}.

Unlike the bipartite graphs that were considered above, the last family
of bipartite graphs that we studied has arbitrary maximum degree, but no
cycles. In other words, we studied trees, and, using a rather intricate dynamic
programming approach, we obtained the following result:

Theorem 4.5 ([RBP+10]). For any d ∈ {1, . . . , ν(G)}, the minimum size
of a d-transversal for ν(G) can be computed in polynomial time in trees.

More precisely, the algorithm used to prove Theorem 4.5 runs in O(n5)
time in any tree with n vertices. Later, Zenklusen even managed to solve
this problem in polynomial time in graphs of bounded tree-width [69].

One last result concerns the minimum size of a d-transversal for ν(G) in
non bipartite graphs, and more precisely in complete graphs:

Theorem 4.6 ([ZRP+09]). Let n and d ≥ 1 be two integers such that 2d ≤ n,
and let r = bn2 c − d. Let us denote by Kn the complete graph on n vertices.
The minimum size of a d-transversal for ν(Kn) is then:

•
(
n
2

)
−
(
2r+1
2

)
if d ≤ bn2 c −

2
5n + 3

5 , and a d-transversal of this size can
then be obtained by taking all the edges incident to n− 2r− 1 vertices.

•
(
n−r
2

)
if d ≥ bn2 c −

2
5n+ 3

5 , and a d-transversal of this size can then be
obtained by taking a clique on n− r vertices.

The proof of this theorem is a bit technical, and shows that the con-
structions described in the theorem are actually the only ones that can lead
to minimum-size d-transversals. This implies, in particular, that the case
d = bn2 c −

2
5n+ 3

5 is the only one where Kn contains two (and exactly two)
non-isomorphic minimum-size d-transversals. For instance, when n = 4 and
d = 1, a minimum-size 1-transversal (or equivalently, from Proposition 4.1,
a minimum-size blocker) has size 3, and can be obtained either by taking
a triangle, i.e., a clique on 3 vertices (leaving only a claw in the remain-
ing graph), or by taking a claw corresponding to the 3 edges incident to an
arbitrary vertex (leaving only a triangle in the remaining graph).

4.3 Minimum d-transversals for stable sets

This section reviews results about the case where the property Π consists
in being a stable set. In other words, given a graph G where each vertex
has both a cost and a weight, one wants to determine the minimum cost (or
size, if all costs are 1) of a set of vertices intersecting at least d times any
maximum-weight stable set of G, for some d ≥ 1.

CHAPTER 4. BLOCKERS AND D-TRANSVERSALS IN GRAPHS 49

Note that the maximum value that d can take is α(G) if all weights are
1, whereas it is equal to the minimum size of a maximum-weight stable set
otherwise: both this value and α(G) may be hard to determine. However,
we shall study the problem in bipartite graphs, and in this case α(G) can be
computed in polynomial time. Also note that Theorem 4.2 implies that, for
any �xed d ≥ 1, determining the minimum size of a d-transversal for α(G)
is NP-hard in line graphs of bipartite graphs (as a matching in any graph
corresponds to a stable set in the associated line graph).

In [BCP+12], we showed the following theorem:

Theorem 4.7 ([BCP+12]). Given a bipartite graph G where each vertex has
both a cost and a weight, a minimum-cost set of vertices intersecting at least
d times any maximum-weight stable set of G can be found in polynomial time,
for any possible value of d ≥ 1.

As this result is based on strong properties of maximum-weight stable
sets in bipartite graphs, which can be of independent interest, we describe
the main steps of the proof, without providing all the details. In the remain-
der of the section, let G be a bipartite graph where each vertex v has a cost
c(v) and a weight w(v), and let (L,R) be its bipartition and E its edge set.

The �rst step consists in partitioning G into three sets of vertices:

• The forced vertices, which belong to all maximum-weight stable sets,

• The excluded vertices, which belong to no maximum-weight stable set,

• The other vertices of G, called free vertices.

Note that any excluded vertex can be removed from G, as it belongs
neither to a maximum-weight stable set nor to an optimal d-transversal for
α(G). Moreover, such a partition can be computed in polynomial time, as
the maximum weight of a stable set in a bipartite graph (either G or a graph
obtained from G by removing some vertex) can be determined by computing
a maximum �ow in an associated directed graph. To see this, orient the
edges of G from L to R, and assign to each such arc an in�nite capacity.
Then, add two vertices s and s′, an arc of capacity w(v) from s to any vertex
v in L, and an arc of capacity w(v) from any vertex v in R to s′. Clearly,
the value of a maximum �ow from s to s′ in this directed graph G′ equals,
in G, the total weight of vertices minus the maximum weight of a stable set.

Also note that a forced vertex does not necessarily belong to a minimum-
cost d-transversal for α(G), as its cost can be prohibitive. However, we can
remove it from G for now, as we shall show later how to deal with it. Hence,
we can assume, without loss of generality, that all vertices of G are free,
which implies that L and R are two disjoint maximum-weight stable sets.

CHAPTER 4. BLOCKERS AND D-TRANSVERSALS IN GRAPHS 50

The second step consists in identifying forbidden arcs in G′, i.e., arcs
that carry no �ow unit in any maximum �ow from s to s′. In particular, we
show that these arcs can be identi�ed in polynomial time, and that, when
G is connected and there are no such arcs in G′, L and R are the only
maximum-weight stable sets in G.

Therefore, we de�ne a (unique) partition of G in the following way: we
remove from G all the edges associated with the forbidden arcs of G′, and
denote by G1, . . . , Gh the h connected components of the resulting graph.
Then, it is clear that, for each i, the only two maximum-weight stable sets
in Gi are obtained by taking either the vertices both in L and in Gi or the
vertices both in R and in Gi. As L is a maximum-weight stable set in G
(containing all the vertices both in L and in Gi, for each i), this implies
that we have the following characterization: a stable set in G has maximum
weight if and only if, for each i, it contains either all the vertices both in L
and in Gi or all the vertices both in R and in Gi.

We construct another directed graph from G, denoted by
−→
G : there is a

vertex i for each Gi, and an arc between two vertices i and j if and only if
there exists an edge uv in G such that u is both in Gi and in L, and v is both
in Gj and in R. Note that, by the de�nition of

−→
G and the characterization

of maximum-weight stable sets in G, if a maximum-weight stable set in G
contains all the vertices both in Gi and L for some i, then it must contain
all the vertices both in Gj and L, for all successors j of i in

−→
G .

We also de�ne the following relationship between two vertices u ∈ R
and v ∈ L of G: u 4 v if and only if u and v belong to Gi for some i,
or u ∈ Gi and v ∈ Gj , and there exists a directed path from i to j in

−→
G .

From the above discussion, for any pair of vertices u, v such that u 4 v, any
maximum-weight stable set in G contains either u or v. Hence, taking any d
pairs of vertices ui, vi such that ui 4 vi for each i yields a d-transversal for
α(G) of size 2d. Note that, since L and R are two disjoint maximum-weight
stable sets in G, any d-transversal for α(G) must contain at least 2d vertices.

The third step consists in constructing another bipartite graph associated
with G, denoted by G̃: the vertices of G̃ are the vertices of G, and there is an
edge between two vertices u and v with cost c(u) + c(v) if and only if u 4 v.
We also add in G̃ an isolated edge of cost c(v) for each forced vertex v that
was in G. Then, it is not hard to see that there is an equivalence between
d-transversals for α(G) obtained as described above (when, in addition, we
allow forced vertices) and matchings of size d in G̃.

A rather technical proof allowed us to establish that the minimum size
of a maximum-weight stable set in G is equal to ν(G̃), which implies that
computing a minimum-cost d-transversal for α(G) containing only forced
vertices and pairs of vertices ui, vi such that ui 4 vi for each i is equivalent
to �nding a minimum-cost matching of size d in G̃. Another technical proof

CHAPTER 4. BLOCKERS AND D-TRANSVERSALS IN GRAPHS 51

establishes that this is the only way of obtaining inclusion-wise minimal d-
transversals for α(G) in bipartite graphs, concluding the whole proof.

We make two last remarks. On the one hand, we previously obtained
similar results for trees in [BCdW+11], before we managed to generalize
them to bipartite graphs. On the other hand, the above characterization
of maximum-weight stable sets in bipartite graphs enabled us to obtain in
[BCP+12] similar results when the graph parameter is not α(G), but the
minimum weight of a vertex cover (a well-known related parameter).

4.4 Minimum blockers for the chromatic number

This section reviews results about a variant of the blocker notion as
de�ned in Section 4.1: here, we want to decrease by at least 1 the chromatic
number χ(G) of a graph G by removing as few edges as possible. A set of
edges whose removal decreases the chromatic number of a graph G by at
least 1 will be called a chromatic blocker for G. A related problem is the
following: we want to decrease by at least 1 the stability number of a graph
G by adding as few edges as possible. A set of non-edges whose addition
decreases the stability number α(G) of a graph G by at least 1 will be called
a stability blocker for G. As in the previous sections, and for similar reasons,
proving that such a problem belongs to NP (or not) may be a hard task.

Note that, when looking for a minimum-size chromatic blocker for a graph
G, we can assume without loss of generality that χ(G) ≥ 3, as the problem is
trivial otherwise: a graph can be colored with only one color if and only if it
has no edge. For similar reasons, when looking for a minimum-size stability
blocker for G, we can assume without loss of generality that α(G) ≥ 3.

It is easy to see that �nding a minimum-size chromatic blocker in a
complete graph is trivial, as one edge is enough. Similarly, any minimum-size
stability blocker in a graph with no edge consists of only one edge. However,
we showed in [BBPR15] that both problems are NP-hard in general:

Theorem 4.8 ([BBPR15]). Determining the minimum size of a chromatic
blocker (resp. of a stability blocker) is an NP-hard problem.

For the stability blocker, the proof uses a polynomial Turing reduction
from the problem of computing α(G) for a graph G. Let G1, . . . , Gn be n
copies of G, where n is the number of vertices of G. For each i, add a set Ii
of i+ 1 isolated vertices, and an edge between each of these vertices and any
vertex of Gi. We ask whether, in each Gi∪ Ii, there exists a stability blocker
containing only one edge. If i ≥ α(G), then such an edge can be used to
decrease the stability number of Ii (and hence of Gi∪Ii) by 1, and hence the
answer is yes. If i = α(G)− 1, then we need to add one edge to decrease the
stability number of Ii and at least one edge to decrease the stability number
of Gi, and hence the answer is no, concluding the proof.

CHAPTER 4. BLOCKERS AND D-TRANSVERSALS IN GRAPHS 52

Because of these NP-hardness results, we then studied the problems in
relevant special cases. We �rst considered the case of split graphs, i.e., graphs
whose vertex set can be partitioned into a stable set S and a clique K:

Theorem 4.9 ([BBPR15]). A minimum-size chromatic blocker (resp. sta-
bility blocker) can be determined in polynomial time in split graphs.

For the chromatic blocker, we can assume without loss of generality that
the chromatic number is the size of K. If K has at least 4 vertices, then
removing two disjoint edges is enough: the chromatic number of K decreases
by 2, and we use an additional color for S if needed. Otherwise, K is a
triangle, and removing its 3 edges is enough to obtain a bipartite graph. In
both cases, we obtain chromatic blockers of size at most 3, and a minimum-
size chromatic blocker can thus be determined by brute-force enumeration.

For the stability blocker, we can assume without loss of generality that
the stability number is the size of S. We choose 3 vertices in S, and add
three edges between them to obtain a triangle. The stability number of S
decreases by 2, and we can select at most one additional vertex from K in
any stable set. This stability blocker has size 3, and thus a minimum-size
stability blocker can be determined by brute-force enumeration.

The second special case that was considered in [BBPR15] is the one
of complements of bipartite graphs. Computing a minimum-size stability
blocker is trivial in this case (as α(G) = 2 for such a G), so we are interested
in chromatic blockers. We provided in [BBPR15] a full characterization of
the value taken by the minimum size of a chromatic blocker in such graphs,
based on a rather long case analysis involving seven conditions. However,
proving that the problem is polynomial-time solvable is much easier:

Theorem 4.10 ([BBPR15]). A minimum-size chromatic blocker can be de-
termined in polynomial time in the complements of bipartite graphs.

Properly coloring the vertices of a graph G always consists in covering
them by stable sets. However, in this special case, the only possible stable
sets are non-edges and isolated vertices. If G contains at least 2 disjoint
stable sets of size 2 (note that there necessarily exists a proper optimal
vertex coloring that uses them), then we can merge them into a single stable
set of size 4 by removing at most 4 edges. Otherwise, either the graph has at
most 3 vertices or there exist at least 2 stable sets of size 1, and we can merge
two such stable sets into a stable set of size 2 by removing one edge. In both
cases, we obtain chromatic blockers of size at most 4, and a minimum-size
chromatic blocker can thus be determined by brute-force enumeration.

The last special case that was considered in [BBPR15] is the one of
bipartite graphs. Computing a minimum-size chromatic blocker is trivial in
this case, so we are interested in stability blockers. We provided in [BBPR15]
the following characterization for determining the minimum size of a stability
blocker in such graphs, based on the partition described in Section 4.3:

CHAPTER 4. BLOCKERS AND D-TRANSVERSALS IN GRAPHS 53

Theorem 4.11 ([BBPR15]). Let G be a bipartite graph, and let G1, . . . , Gh
be the (unique) partition of the free vertices of G, i.e., Gi is the ith connected
component of the graph obtained by removing, from the subgraph of G induced
by the free vertices, the edges associated with the forbidden arcs of the directed
graph G′. The minimum size of a stability blocker in G is equal to:

• 1 if and only if G contains at least two forced vertices,

• 2 if and only if G contains at most one forced vertex, and:

(a) either G contains exactly one forced vertex,

(b) or there is an i such that Gi contains at least four vertices,

(c) or G contains the graph in Figure 4.3 as a subgraph,

(d) or G contains the graph in Figure 4.4 as a subgraph.

• 3 if and only if we are not in the above cases and there exist two integers
i and j such that i 6= j and G contains an edge having one endpoint in
Gi and one endpoint in Gj,

• 4 otherwise.

Figure 4.3: A graph containing three vertices from L (black vertices) and
three vertices from R (white vertices). The three rectangles represent three
di�erent graphs Gi of the partition of G (each rectangle is such a graph).

Figure 4.4: A graph containing four vertices from L (black vertices) and four
vertices from R (white vertices). The four rectangles represent four di�erent
graphs Gi of the partition of G (each rectangle is such a graph).

Chapter 5

Steiner trees & related variants

5.1 Introduction

In this chapter, we review results about several variants of Steiner tree
problems. Let T be a set of K terminal vertices, or simply terminals, in
a connected undirected graph G where each edge e has a cost (or length)
c(e) ∈ Q+. A Steiner tree in G is a tree covering the K terminals: as G is
assumed to be connected, such a tree always exists (take any spanning tree,
for instance). Moreover, the vertices in G that do not belong to T are called
Steiner vertices. We shall also consider the case of directed graphs: in this
case, we are interested in rooted Steiner trees. Let r be a root vertex (or
simply root) in a graph G: there must be a (directed) path from r to any
vertex in G. A rooted Steiner tree in G with respect to r is a Steiner tree
rooted at r in G; we shall omit �with respect to r� except when necessary.
In undirected graphs, a rooted Steiner tree can be viewed as a Steiner tree
covering both T and r, which can be ensured by adding r to T . Hence, in
this case, there is no need to consider rooted Steiner trees explicitly.

The minimum (rooted) Steiner tree problem (MinSteinerTree) is to
determine a tree S in G, rooted at r, spanning all the terminals and having
minimum total length (or cost). As any Steiner tree must cover pre-speci�ed
vertices (the terminals), this is clearly a covering problem. The case where
G is undirected has been widely studied: it has many applications, as shown
in [17, 50], and the associated decision problem was one of R. Karp's 21
NP-complete problems [41]. Also note that Steiner trees are actually the
basic routing components used for multicast routing in networks.

When all vertices are terminals, MinSteinerTree becomes the mini-
mum spanning tree problem, which is well-known to be solvable in polyno-
mial time, using for instance greedy algorithms, such as the ones of Kruskal
or Prim. In general, however, MinSteinerTree is APX-hard, although
it can be solved in FPT time with respect to the number of terminals [31],
and admits constant-factor approximation algorithms [50, 63].

55

CHAPTER 5. STEINER TREES & RELATED VARIANTS 56

Note that, in this problem, requiring that any feasible solution is a Steiner
tree is actually not explicitly needed: it is su�cient to require that we can
route 1 unit of �ow from r to each terminal (i.e., any feasible solution covers
all the terminals), and that, if an edge is used by at least 1 unit of �ow, then
its full cost must be paid. In this way, any optimal solution has to be a tree;
otherwise, it can easily be transformed (by rerouting �ow units if needed)
into a feasible solution that is a Steiner tree, without increasing the total
cost. This may not be the case when additional constraints are considered.

There are less results about the case where the graph is directed, which
is a generalization of the undirected case; only non constant ratio approxi-
mation algorithms are known [10]. Such a case occurs, for instance, when
considering multicast routing in asymmetric networks [58]. Note that, un-
like in undirected graphs, this case also generalizes the well-known set cover
problem (SetCover), even in directed acyclic graphs. In SetCover, we
are given a set of elements E, and a set X of subsets X1, . . . , Xν of elements
of E, and we want to determine the minimum number of subsets from X
needed to cover all the elements of E (an element e of E is covered by Xi if
e belongs to Xi). The decision version of the problem is to decide whether
all the elements of E can be covered by a given number of subsets from X.

On the one hand, a logarithmic inapproximability bound is known for
SetCover [35], and the best lower bound known for the approximability
of MinSteinerTree in directed graphs is actually based on this result and
on the fact that SetCover polynomially reduces to MinSteinerTree in
directed acyclic graphs. On the other hand, the best upper bound known for
the approximability of MinSteinerTree in directed graphs is polynomial in
K: namely, there exists a O(Kε)-approximation algorithm for this problem,
for any ε > 0 [10]. Moreover, no better approximation algorithm is known
for the special case of MinSteinerTree in directed acyclic graphs either.

5.2 Steiner trees with a bound on the number of
branching or di�using nodes

In this section, we consider two generalizations of MinSteinerTree,
studied during the PhD thesis that D. Watel did under the supervision of D.
Barth, M.-A. Weisser and myself. Given a Steiner tree S rooted at a vertex r,
a branching vertex is a vertex having at least two children in S. The �rst gen-
eralization, which consists in �nding a minimum-cost Steiner tree having at
most a given number p of branching vertices, was introduced in [WWBB13]
and motivated by a routing problem in optical networks. Actually, installing
a device that enables a vertex to duplicate the data it receives may be costly
in such networks, and therefore, in practice, the number of vertices that can
duplicate data is limited by the available budget. Hence, if we route the data
along a Steiner tree, as it is commonly the case, we obtain the above problem.

CHAPTER 5. STEINER TREES & RELATED VARIANTS 57

Note that, if the number of branching vertices must be at most p = K−1,
then the problem is exactly MinSteinerTree. However, when p ≤ K − 2,
the problem is hard even with costs 0:

Theorem 5.1 ([WWBB13]). For any p ≤ K − 2, deciding whether there
exists a Steiner tree with at most p branching vertices is NP-complete:

• in directed graphs, for any �xed K ≥ 2.

• in planar graphs (directed or undirected).

To prove the �rst part of this theorem, take any directed graph G and
two source-sink pairs (s1, s

′
1) and (s2, s

′
2). Add a root r and K = 2 terminals

t1 and t2, as well as four arcs (r, s1), (s
′
1, t1), (t1, s2), (s

′
2, t2): then, �nding a

tree rooted at r that covers t1 and t2 with p = 0 amounts to �nding in G two
vertex-disjoint paths linking s1 to s′1 and s2 to s′2 respectively, which is an
NP-complete problem [38]. This reduction can be generalized to any value
of p by adding a gadget linked to s′2, in order to ensure that there can be no
branching vertex inside G. The second part is proved by reduction from the
NP-complete hamiltonian path problem, which consists in deciding whether
there exists a path that goes through each vertex once and only once.

By adapting the above reductions, we can also show:

Theorem 5.2 ([WWBB13]). For any p ≤ K − 2, the problem of �nding
the minimum cost of a Steiner tree with at most p branching vertices is NP-
hard to approximate within a ratio O(n1−ε) for any ε > 0, even if a feasible
solution always exists and is given in the input, in the following cases:

• in directed graphs with n vertices and unit costs, for any �xed K ≥ 2.

• in planar graphs (directed or undirected) with n vertices and unit costs.

Note that this lower bound is best possible when all costs are 1, as taking
any feasible solution yields a O(n)-approximation algorithm in this case.

In directed acyclic graphs, we have the two following results:

Theorem 5.3 ([WWBB13]). When p = O(1), the problem of �nding the
minimum cost of a Steiner tree with at most p branching vertices can be
solved in polynomial time in directed acyclic graphs. Moreover, the problem
is W[2]-hard with respect to p in directed acyclic graphs.

The �rst part of the theorem is proved by enumerating all the possible
sets of at most p branching vertices, and then solving for each such set an
instance of the minimum-cost �ow problem. The second part is proved by an
FPT-reduction from the SetCover problem parameterized by the number
of sets that can be in the solution, and shows that the �rst part is essentially
best possible, as the problem is unlikely to be FPT with respect to p.

CHAPTER 5. STEINER TREES & RELATED VARIANTS 58

Given a Steiner tree S rooted at vertex r, we de�ne the pattern of S
as the tree obtained from S by iteratively contracting any edge having at
least one endpoint which is both di�erent from r and neither a terminal
nor a branching vertex. In the pattern of S, the only vertices are then r,
terminals, and branching vertices. By enumerating all the possible patterns
of a (minimum-cost) solution, and then extending every pattern to a solution
(whenever this is possible) by computing vertex-disjoint paths (of minimum
total cost) between the endpoints of each edge of the pattern, we can show:

Theorem 5.4 ([WWBB13]). When K = O(1), the problem of �nding a
minimum-cost Steiner tree with at most p branching vertices is:

• polynomial-time solvable in planar directed graphs if all costs are 0,

• polynomial-time solvable in undirected graphs if all costs are 0,

• polynomial-time solvable in undirected graphs of bounded tree-width.

Note that the complexity of the problem with arbitrary costs remains
open in the �rst and second cases of Theorem 5.4.

To de�ne the second generalization of the (rooted) Steiner tree problem
that we shall consider, we need to introduce several notions. Given a graph
G, the shortest paths graph of G (or metric completion of G) is the graph
whose vertices are the ones of G, and in which there is an edge between any
two vertices u and v, whose cost is the distance between u and v in G.

Given a Steiner tree S rooted at a vertex r in the shortest paths graph
of a graph G, a di�using vertex in G is a branching vertex of S in the
shortest paths graph of G. In this setting, any vertex is actually assumed
to be able to transmit a data to several successors, provided that it receives
the data enough times. If the same data is sent several times to a vertex,
then, for instance, the cost of sending it twice is twice the cost of sending
it once. On the contrary, a di�using vertex is able to transmit a data to
several successors, even if it receives the data only once. Hence, any vertex
can be a branching vertex, but a di�using vertex shall be a branching vertex
(otherwise, making it a di�using vertex is useless). In the remainder of this
section, we consider the problem of �nding an optimal routing in a graph G
having at most d di�using vertices, i.e., a minimum-cost Steiner tree in the
shortest paths graph of G rooted at r and that has at most a given number
d of branching vertices. Note that such a Steiner tree always exists (for
instance, take any hamiltonian path starting at r in this complete graph).

In [WWBB15], we showed the following positive result regarding the
parameterized complexity of the problem with respect to K:

Theorem 5.5 ([WWBB15]). A minimum-cost routing with at most d dif-
fusing vertices can be computed by an algorithm that is FPT with respect to
K, while using only polynomial space. In particular, when d = K − 1, the
algorithm returns a minimum-cost Steiner tree.

CHAPTER 5. STEINER TREES & RELATED VARIANTS 59

This algorithm is obtained by combining the notion of pattern mentioned
above (but where the non-leaf vertices of the pattern are not labeled, and
hence the number of patterns that need to be considered in this case is FPT
with respect to K) and a dynamic programming approach, which computes
the best solution associated with each pattern. Note that it was known
for a long time that MinSteinerTree is FPT with respect to K using
dynamic programming only [31], but the only known algorithms that use
polynomial space are not FPT. For instance, the algorithm in [36] runs in
time O(5.96KnO(log(K))) in graphs with n vertices, while the algorithm in
[60] is FPT with respect to K only when all costs are O(1) (when costs are
arbitrary, a pseudo-polynomial factor appears in its running time).

In [WWBB14, WWBB16], we obtained the following results regarding
the parameterized complexity of the problem with respect to d:

Theorem 5.6 ([WWBB14, WWBB16]). When d = O(1), the problem of
�nding the minimum cost of a Steiner tree with at most d branching vertices
in a shortest paths graph is polynomial-time solvable. Moreover, the problem
is W[2]-hard with respect to d.

The �rst part of the theorem is proved by enumerating all the possible sets
of at most d di�using vertices, and then �nding a minimum-weight spanning
tree. As in Theorem 5.3, the second part is proved by an FPT-reduction
from the SetCover problem parameterized by the number of sets that can
be in the solution, and shows that the �rst part is essentially best possible,
as the problem is unlikely to be FPT with respect to d. We also studied in
[WWBB14, WWBB16] another parametrization of the problem:

Theorem 5.7 ([WWBB14, WWBB16]). When K−d = O(1), the problem of
�nding the minimum cost of a Steiner tree with at most d branching vertices
in a shortest paths graph is NP-hard.

Finally, an approximation-preserving reduction from MinSteinerTree

to the case where there are at most d di�using nodes implied two results,
given in [WWBB14, WWBB16]. The �rst one deals withMinSteinerTree:

Theorem 5.8 ([WWBB14, WWBB16]). There is an
⌈
K−1
d

⌉
-approximation

algorithm for MinSteinerTree that runs in polynomial time if d = O(1).

The second one is a negative one for the case with at most d di�using
vertices, and is based on a complexity assumption di�erent from P 6=NP:

Theorem 5.9 ([WWBB14, WWBB16]). There is no O
(
K
d

)
-approximation

algorithm for computing the minimum cost of a Steiner tree with at most d
branching vertices in a shortest paths graph unless NP⊆ZTIME[nlog

O(1)n].

CHAPTER 5. STEINER TREES & RELATED VARIANTS 60

5.3 Steiner trees with edge capacities

In this section, we consider another generalization of the (rooted) Steiner
tree problem. Assume each edge e has a capacity capa(e), i.e., an upper
bound on the number of paths containing e and linking r to terminals.
In other words, for every arc e = (u, v) in a Steiner tree S rooted at r,
the subtree of S rooted at v must contain at most capa(e) terminals (with
capa(e) ≤ K, without loss of generality), which adds a packing constraint to
MinSteinerTree, a covering problem. The minimum-length capacitated
(rooted) Steiner tree problem (MinCapSteinerTree) is de�ned as follows:

Minimum-length (rooted) Capacitated Steiner Tree Problem
Input. A connected graph G = (V,E) with |V | = n vertices; a set T =
{t1, ..., tK} ⊂ V of K ≥ 2 terminals; a root vertex r ∈ V \ T ; two functions
on E: a nonnegative length function c and a positive capacity function capa.
Goal. Determine, if it exists, a minimum-length directed tree S rooted at r
in G, spanning all the vertices of T and not violating the capacity constraints.

If G is undirected and e = (u, v) is an arc of S, then [u, v] must be an
edge of G. Note that MinSteinerTree is the special case of MinCap-

SteinerTree where capa(e) = K for all e ∈ E (in this case, a feasible
solution always exists). MinCapSteinerTree appears naturally in several
contexts, for example in the design of wind farm collection networks [48] or
of telecommunication networks [17], or in power distribution system opti-
mization [32]. When c(e) = 0 for all e ∈ E, MinCapSteinerTree turns
into a decision problem: determine whether there exists or not a tree rooted
at r, spanning all the terminals, and not violating the capacity constraints.

When K = n− 1, i.e., any feasible solution is a spanning tree, MinCap-

SteinerTree is solvable in polynomial time if capa(e) = 2 for all e ∈ E,
while it is NP-hard if capa(e) = 3 for all e ∈ E [41]. In [2, 52], the authors
provide approximation algorithms for a variant of MinCapSteinerTree

where the capacities are uniform and there always exists a feasible solution,
since it is assumed that the input graph is a metric completion.

Our main result in [BCH16] is a complete characterization of the com-
plexity of MinCapSteinerTree, which enables us to distinguish between
easy and hard cases of the problem for digraphs, directed acyclic graphs and
undirected graphs. In particular, we show that there are strong links be-
tween MinCapSteinerTree and another well-known graph optimization
problem, namely �nding vertex-disjoint paths of minimum total length be-
tween source-sink pairs. Moreover, whenever MinCapSteinerTree with
arbitrary lengths is intractable while the case with lengths 0 is not, we pro-
vide approximation results forMinCapSteinerTree nearly as good as the
best ones for MinSteinerTree. Therefore, any inapproximability result
we obtain is in fact an intractability result for the case with lengths 0.

CHAPTER 5. STEINER TREES & RELATED VARIANTS 61

Note that any undirected instance of MinCapSteinerTree can be
transformed into a directed one by replacing each edge by two opposite arcs
with the same length and capacity. Hence, any positive result (existence of a
polynomial-time algorithm or approximation result) for directed graphs also
holds for undirected graphs, while any negative result for undirected graphs
(NP-hardness or inapproximability result) also holds for directed graphs.

Apart from the assumption on the graph itself (undirected, directed with
or without circuits), several parameters are considered. Namely, the number
K of terminals, the minimum and maximum edge capacities, and the edge
lengths: K can be O(1) or not; the minimum and maximum edge capacities
can be non depending on K, they can be greater than or equal to K − κ
(1 ≤ κ ≤ K − 1), and they can be equal (uniform capacity) or not; the edge
lengths can be all equal to 0, all equal to a positive value (i.e., uniform),
or non uniform. In [BCH16], we settle all cases except one, namely the
undirected case with uniform capacity and �xed K ≥ 3, but we prove that
MinCapSteinerTree is then equivalent to �nding, in an undirected graph,
vertex-disjoint paths of minimum total length linking O(1) source-sink pairs,
a problem whose complexity is a long-standing open question [56].

The three trees drawn in Figure 5.1 provide a picture of the possible
cases for the three types of graphs (undirected or directed graphs, acyclic or
not). The numbers assigned to the leaves of these trees refer to the theorems
that were used to prove the associated results, but we will not detail them
further here: two leaves where the same number appears simply correspond
to results that are proved by the same theorem. The values of the three
parameters appear on the branches and each branching node corresponds to
a partition of the possible cases: the value on a branch excludes the values
on the branches to the left. For instance, in undirected graphs, the capacities
can be either all equal to 1, or at least K − 1, or uniform of value at least 2
and at most K − 2, or, �nally, any other values not yet considered.

Moreover, if a leaf corresponds to a branch where the values of some of the
parameters are unspeci�ed, then this means that the associated result holds
even in the most general case (if it is a positive, i.e., tractability result) or
in the most speci�c case (if it is a negative, i.e., hardness result) with regard
to the unspeci�ed values. For instance, the NP-hardness result associated
with Leaf 7 holds even if K is �xed (i.e., if K = O(1)) and if all lengths are
0 (since neither the value of K nor the lengths appear on this branch), and
the result associated with Leaf 11 holds for any lengths and any capacities
(since only the assumption on K being �xed appears on this branch).

Therefore, for digraphs, the branch �any capacity� includes the case of
uniform capacities between 2 and K−2 for K �xed (or not). Also note that,
if the capacity is uniform and K = O(1), then there exists some constant
κ such that all capacities are equal to K − κ: hence, in the tree associated
with undirected graphs in Figure 5.1, the branch �any capacity�, which leads
to Leaf 8, excludes the case where K is �xed (contained in Leaves 9 and 10).

CHAPTER 5. STEINER TREES & RELATED VARIANTS 62

11

1

13

12

3 ; 13

Fixed KUnfixed K

Capa

=1

Capa

≥ K-κ

Any

capacity

Lengths

= 0

Any

length
1

4

6

3 ; 4

Capa

=1

Capa

≥ K-1

Any

capacity

Lengths

= 0

Any

length

5

Fixed KUnfixed K

1

4

7

3 ; 4

Capa

=1

Any

capacity

Lengths

= 0
Any

length

5

Fixed KUnfixed K

Uniform

capacity

Capa

≥ K-1

9

8

Capa

= K-κ

Any

capacity

Any

length
Lengths

= 0

3 + 9 10

Unfixed K Fixed K

DAG

DIGRAPH

UNDIRECTED GRAPH

Polynomial

NP-complete

and approximable

NP-complete and

unapproximable

NP-complete and

approximability open

Open

Figure 5.1: An overview of the results giving a complete characterization
of the complexity of �nding Steiner trees satisfying given edge capacities.
(Note that DAG stands for directed acyclic graph.)

CHAPTER 5. STEINER TREES & RELATED VARIANTS 63

5.4 Routing along Steiner trees or networks when
edges can fail

In this last section, we consider two kinds of problems related to routing
data along one or several Steiner trees or networks, in particular when one
of the edges in the graph can fail.

The �rst set of results has been obtained during the PhD thesis that
T. Lefebvre did under the supervision of S. Elloumi, E. Gourdin (research
engineer at Orange Labs) and myself. The purpose of his thesis was to pro-
vide answers to the following question: given a telecommunication network
that supports multicast routing, is there some bene�t (in terms of cost, or
in terms of achievable throughput) to also use network coding?

In order to support multicast routing (see also Sections 5.1 and 5.2), a
network must allow any of its nodes to copy the data it receives, and then
emit it towards all its successors (even if the data was received only once).
While a classical routing (or �ow) can be viewed as an assignment of values
to a set of paths, linking a given source to a given sink (see Section 2.1), a
multicast routing (or Steiner �ow) can be viewed as an assignment of values
to a set of Steiner trees, linking a given source to a given set of terminals. This
also means that a multicast routing can be viewed as a fractional packing of
Steiner trees (i.e., of structures covering both the source and the terminals).

Roughly speaking, using network coding can be viewed as combining
(with the help of a so-called coding scheme) several data received by a node
into a single data, which will be emitted towards its successors. It can be
proved that, if the network is represented by a directed graph, then a routing
using both multicast and network coding can be viewed as the superposition
of several maximum �ows (i.e., any one of them can use all the capacity
available on each arc), namely one from the source to each terminal.

In both cases, we want to de�ne a static routing, i.e., one that cannot
be modi�ed even if some edge failure occurs in the network. For such a
routing, its residual throughput is the throughput that is still achieved by
this routing, even if any edge can fail (this corresponds to the worst case).

The initial question was actually studied in several settings [58]:

• when each edge has a convex cost function, and the goal is to minimize
the total cost while ensuring a given throughput,

• when there are actually several sources, each with its own set of termi-
nals (multi-commodity case) and an associated weight, and the goal is
either to maximize the total weighted throughput, or to maximize the
common throughput of all commodities (fairness requirement),

• when there can be one edge failure in the network, and the goal is
either to minimize the total cost for a given residual throughput (each
edge having an integral cost) or to maximize the residual throughput.

CHAPTER 5. STEINER TREES & RELATED VARIANTS 64

Moreover, in each setting, the network (graph) can be either undirected,
bi-directed, or directed. Each setting has an associated gain, de�ned as the
ratio between the optimal throughput of a multicast routing using network
coding and the optimal throughput of one not using it (reverse the ratio
if costs are considered). Obviously, such a ratio is at least 1, and, in each
setting, theoretical upper bounds on it are provided [58, BEGL14, BEGL15].

This gain is also computed on real-life instances, which requires in partic-
ular to compute the optimal value of the multicast routing without network
coding (for the multicast routing with network coding, this is generally much
easier, as it amounts to solving a linear program or a convex problem). In the
case of convex cost functions, this is essentially done by using Frank-Wolfe
algorithm and di�erential calculus, and solving a combinatorial Steiner tree
problem at each step. In all other cases, this is done by using column gener-
ation, and solving a combinatorial Steiner tree problem (or some variant of
it) to generate columns at each step.

The second set of results was obtained during the Master's internship,
and then the PhD thesis, that T. Ridremont did under the supervision of M.-
C. Costa, one other researcher (D. Porumbel during the Master's internship
and A. Hertz during the PhD thesis), and myself.

The problem studied during the Master's internship of T. Ridremont can
be viewed as a reliable Steiner tree problem, and consists in computing an
optimal Steiner tree rooted at some given vertex r, when all vertices, except
r, are terminals (so any Steiner tree is in fact a spanning tree), and we
want to minimize, in the worst case, the number of terminals (i.e., vertices)
disconnected from r when we delete some edge from the graph. This is
a reliable Steiner tree problem in the sense that we want to minimize the
biggest impact that one edge failure can cause in the network.

We proved the following hardness result:

Theorem 5.10 ([62]). Determining a spanning tree, rooted at a given root
vertex r, and minimizing the maximum number of vertices disconnected from
r when any one edge is removed, is strongly NP-hard.

This is proved via a reduction from the problem 3-Partition, a variant
of the problem Partition de�ned in Section 3.4, which is stronglyNP-hard.

Several ILP formulations for this problem and some of its variants were
also proposed and tested on real-life instances.

The basic problem studied during the PhD thesis of T. Ridremont can
be viewed as a reliable Steiner network problem. A (rooted) Steiner network
in a graph G is a connected subgraph of G that covers all the terminals (and
the root), but is not required to be a tree. In particular, if we add edge
capacities (as in Section 5.3) or if we want the network to be resilient to one
edge failure, or both, then optimal solutions will not (always) be trees.

CHAPTER 5. STEINER TREES & RELATED VARIANTS 65

Given a graph with a root vertex r, edge costs, and edge capacities,
the problem that we consider thus consists in determining a minimum-cost
Steiner network rooted at r such that, for any edge e, there exists a �ow in
this network that does not use e and simultaneously conveys 1 unit of �ow
from r to any terminal, while respecting the edge capacities.

This problem is NP-hard, and quite hard to solve e�ciently in practice.
In order to solve it exactly, three formulations were developed in [BCPR17].

The �rst one is an ILP based on �ow variables with two indices, and has
a polynomial (but big) number of variables and constraints. However, the
optimal value of its continuous relaxation is not good enough, and hence it
cannot be used in practice to solve the problem when the input graph has
more than forty or �fty vertices, even with a commercial solver like CPLEX.

The second one is an ILP based on a cutset formulation, and has few vari-
ables but an exponential number of constraints. It can be solved by column
generation, and provides better results than the previous formulation.

The third and last one is a bi-level program, whose second level is a min�
max problem, the max part being actually a maximum �ow formulation.
Since this linear programming formulation is well-known to have a totally
unimodular constraint matrix, one can �forget� the integrality constraints,
replace this linear program by its dual one, and obtain a min�min problem,
which is easily seen to be equivalent to a simple min problem. Then, this new
bi-level program can be solved by considering the convex hull corresponding
to the feasible integral solutions of the problem at the second level, and
progressively generating (by using a constraint generation procedure) the
constraints associated with the extreme points of this convex hull. The
subproblem used to generate these constraints is hard but far smaller than
the original one, and in the end this formulation reveals to be the most
e�cient one. Moreover, it is almost oblivious to the number of edges that
can fail, and hence, unlike the two previous ones, it can be used to solve the
problem e�ciently even when several edges can fail (instead of one only).

Chapter 6

Conclusions and perspectives

Throughout this report, several partial conclusions on some general ques-
tions about families of packing and covering problems in graphs have been
reached and highlighted. Some are speci�c to one or two of these families,
others are common to all of them. For instance, given some �basic� prob-
lem in one of the families of covering problems, one of these major general
questions is: what kind of packing constraints are we allowed to add to the
basic problem in order to ensure that we stay su�ciently close to it? Here,
�staying close� would simply mean �keeping most of its good properties�. An-
other related one would be to add packing constraints to the basic problem
in order to be su�ciently �far� from it.

Concerning integral multi�ows and multicuts, the number of elements
(i.e., paths) to be packed or covered can be exponential in the size of the
input graph. Even restricting the number of source-sink pairs is not su�cient
to change this fact, although this sometimes does make MinMC easier, and
sometimes not (see Section 2.3). Similarly, adding constraints such as the
ones considered in Section 2.4 (cardinality constraints, or requiring only a
partial covering) does not always make the problem harder, or easier. The
results from these two sections are thus a �rst step towards understanding
which types of constraints lead to harder problems, and which do not.

Another relevant question is: can we �nd necessary and/or su�cient
conditions for the ratio between the optimal values of MinMC and MaxIMF

to be O(1), or at least small enough? This question has been studied in
Section 2.2, but, again, only partial answers are known. Quite recently, two
very nice papers involving Julia Chuzhoy and David Kim led, on the one
hand, to a slightly improved upper bound for this ratio in planar graphs, and,
on the other hand, to an improved inapproximability bound for MaxIMF,
also in planar graphs (the best lower bound previously known was APX-
hardness) [21, 22]. However, the gap between these two bounds remains
signi�cant, meaning that there is still a lot of room for improvement.

67

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 68

More details on nine other problems in this �eld of research, which were
mentioned as open and particularly worth studying in [4], and which have
not all been settled, can be found in Appendix A.

Concerning coloring problems, and their links to discrete tomography,
the complexity of the generalization of the basic problem described by Ryser
that uses three colors instead of two remained open for a long time, before
Dürr et al. were �nally able to settle it [33] (see Section 3.1). However, this
case represents a kind of boundary case: with two colors, the problem is easy;
with three or more colors, it becomes hard. So, the general question we re-
ally want to fully answer is: when there are three colors, can we characterize
the kind of structures that we can impose on the solutions we want to obtain,
in order to make the problem easy? Sections 3.2 and 3.3 provide partial an-
swers (even for proper colorings), but we are still far from a characterization.

Concerning d-transversal and blocker problems, the number of elements
(i.e., optimal solutions to a graph optimization problem) to be covered can
also be exponential in the size of the input graph. This is one of the reasons
why proving that such a problem belongs to NP or not may be a hard task,
depending on the graph parameter that is considered. Actually, the fact that
the nature of a d-transversal problem is heavily in�uenced by the graph pa-
rameter it is related to also implies that there is not really a �basic� problem
in this case. Therefore, it is hard to identify general properties or ideas com-
mon to all d-transversal problems (apart from the hardness of relating them
to NP). In Sections 4.2 to 4.4, structural results are provided for several
special cases, illustrating for instance the fact that switching from regular
bipartite graphs to nearly regular bipartite graphs (such as the rectilinear
grids) can strongly impact the structure of optimal solutions.

A natural way of looking for general ideas, which may be good candidates
for being common to all d-transversal problems, would be to consider solv-
ing these problems with approximation (instead of exact) algorithms. This
may still be hard, especially when problems are not known to be in NP,
but this is worth trying as this seems like a promising lead that, to the best
of our knowledge, was not studied yet (although some papers did study the
approximability of related, but easier, problems [69]).

Finally, concerning problems related to Steiner trees and networks, the
ones that have been studied in Chapter 5 either stay close to the classical
Steiner tree problem (for instance, when limiting the number of di�using
nodes) or not (for instance, when limiting the number of branching nodes,
or when adding capacities, except in very special cases). Indeed, in some of
these variants, it becomes necessary to require that the feasible solutions are
trees (otherwise, even optimal solutions may not be trees), and sometimes
there does not even exist feasible solutions.

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 69

Again, the initial question was: can one exhibit natural su�cient (either
necessary or not) conditions on the packing constraints to be added in order to
ensure that the problem obtained stays close enough to the classical Steiner
tree problem? The results presented in Sections 5.2 and 5.3 provide some
partial answers, and should be completed in this perspective.

Another aspect that has been studied (see Section 5.4) was the impact
of a failure on a static multicast routing, i.e., on a set of Steiner trees, or on
a Steiner network. But what about the case where, whenever one edge fails,
one wants to ensure, at minimum cost, that there still exists a routing using
a single Steiner tree, while not violating any capacity constraint?

This is di�erent both from using a Steiner network (in which the data
that must reach each terminal can be routed along several paths) and from
considering a static routing on a set of Steiner trees, and this setting also
generalizes the one considered (and fully characterized) in Section 5.3, which
would correspond to the case where no edge can fail.

Moreover, this can make things considerably easier in some situations.
For instance, if the graph represents a network used for collecting or dis-
tributing electrical power, taking into account the physics equations cor-
responding to the way the energy is routed inside the network amounts to
adding non linear constraints (known as �load-�ow equations�, or �power-�ow
equations�) to the model. However, if the energy is assumed to be routed
along a Steiner tree, then it can be shown that these non linear equations
simply turn into classical �ow conservation and capacity constraints, which
are linear constraints. This is also a particularly relevant and challenging
way of combining covering problems with reliability issues, as well as relat-
ing covering problems with additional capacity (i.e., packing) constraints to
the design of power distribution (or power collection) networks.

The last two open problems related to Steiner trees that should once
again be mentioned are actually long-standing open questions. First, can
we design better approximation algorithms for the minimum rooted Steiner
tree problem in directed graphs? Indeed, lower and upper bounds are known
for the approximability of this problem, but the gap between them remains
signi�cant. Second, can we solve in polynomial time the only case left as open
in Section 5.3, or is it NP-hard? In other words, what is the complexity of
the problem where one wants to determine vertex-disjoint paths of minimum
total length linking O(1) source-sink pairs in an undirected graph? And what
happens when the graph is a planar directed graph?

Bibliography

[1] U. Adamy, C. Ambuehl, R. Sai Anand, and T. Erlebach. Call Control
in Rings. Proceedings ICALP, LNCS 2380 (2002) 788�799.

[2] E. Arkin, N. Guttmann-Beck, and R. Hassin. The (K, k)-Capacitated
Spanning Tree Problem. Discrete Optimization 9 (2012) 258�266.

[3] C. Bazgan, S. Toubaline, and Z. Tuza. The most vital nodes with respect
to independent set and vertex cover. Discrete Applied Mathematics 159
(2011) 1933�1946.

[4] C. Bentz. Résolution exacte et approchée de problèmes de multi�ot
entier et de multicoupe : algorithmes et complexité (in French). PhD
thesis, CEDRIC-CNAM (2006).

[5] D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, and J. Obdrzalek.
The DAG-Width of Directed Graphs. Journal of Combinatorial Theory,
Series B 102 (2012) 900�923.

[6] H.L. Bodlaender and F.V. Fomin. Equitable colorings of bounded
treewidth graphs. Theoretical Computer Science 349 (2005) 22�30.

[7] F. Bonomo, S. Mattia, and G. Oriolo. Bounded coloring of co-
comparability graphs and the pickup and delivery tour combination
problem. Theoretical Computer Science 412 (2011) 6261�6268.

[8] G. Cǎlinescu, C.G. Fernandes, and B. Reed. Multicuts in unweighted
graphs and digraphs with bounded degree and bounded tree-width.
Journal of Algorithms 48 (2003) 333�359.

[9] D. Chalu. Résolution e�cace de problèmes de multicoupes partielles (in
French). MPRI Master's thesis, LRI (2011).

[10] M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai, A. Goel, S. Guha,
and M. Li. Approximation Algorithms for Directed Steiner Problems.
Journal of Algorithms 33 (1999) 73�91.

71

BIBLIOGRAPHY 72

[11] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar.
On the Hardness of Approximating Multicut and Sparsest-Cut. Com-
putational Complexity 15 (2006) 94�114.

[12] C. Chekuri, G. Naves, and B. Shepherd. Maximum Edge-Disjoint Paths
in k-Sums of Graphs. Proceedings ICALP (2013) 328�339.

[13] C. Chekuri, S. Khanna, and B. Shepherd. Edge-Disjoint Paths in Planar
Graphs. Proceedings FOCS (2004) 71�80.

[14] C. Chekuri, S. Khanna, and B. Shepherd. Multicommodity �ow, well-
linked terminals, and routing problems. Proc. STOC (2005) 183�192.

[15] C. Chekuri, S. Khanna, and B. Shepherd. A Note on Multi�ows and
Treewidth. Algorithmica 54 (2009) 400�412.

[16] C. Chekuri, S. Khanna, and B. Shepherd. Edge-Disjoint Paths in Planar
Graphs with Constant Congestion. SIAM J. Comput. 39 (2009) 281�301.

[17] X. Cheng, Y. Li, D.-Z. Du, and H.Q. Ngo. Steiner Trees in Industry.
Chapter in Handbook of Combinatorial Optimization, pp. 193�216. D.-Z.
Du and P.M. Pardalos (eds.), Springer (2005).

[18] K. Cheung and K. Harvey. Revisiting a simple algorithm for the planar
multiterminal cut problem. Oper. Res. Lett. 38 (2010) 334�336.

[19] M. Chrobak and C. Dürr. Reconstructing polyatomic structures from
discrete X-rays: NP-completeness proof for three atoms. Theoretical
Computer Science 259 (2001) 81�98.

[20] J. Chuzhoy and S. Khanna. Hardness of cut problems in directed graphs.
Proceedings STOC (2006) 527�536.

[21] J. Chuzhoy, D. Kim, and S. Li. Improved approximation for node-
disjoint paths in planar graphs. Proceedings STOC (2016) 556�569.

[22] J. Chuzhoy, D. Kim, and R. Nimavat. New hardness results for routing
on disjoint paths. Proceedings STOC (2017) 86�99.

[23] J. Chuzhoy and S. Li. A Polylogarithmic Approximation Algorithm for
Edge-Disjoint Paths with Congestion 2. J. of the ACM 63 (2016) 1�51.

[24] É. Colin de Verdière. Multicuts in Planar and Bounded-Genus Graphs
with Bounded Number of Terminals. Algorithmica 78 (2017) 1206�1224.

[25] M.-C. Costa, D. de Werra, and C. Picouleau. Using graphs for some
discrete tomography problems. Disc. Appl. Math. 154 (2006) 35�46.

[26] M.-C. Costa, D. de Werra, and C. Picouleau. Minimum d-blockers and
d-transversals in graphs. J. Comb. Optim. 22 (2011) 857�872.

BIBLIOGRAPHY 73

[27] M.-C. Costa, L. Létocart, and F. Roupin. Minimal multicut and maxi-
mal integer multi�ow: A survey. European Journal of Operational Re-
search 162 (2005) 55�69.

[28] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M.
Yannakakis. The complexity of multiterminal cuts. SIAM Journal on
Computing 23 (1994) 864�894.

[29] N. Derhy. Résolution pratique de problèmes de multicoupes dans les
graphes non orientés (in French). Master's thesis, CEDRIC-CNAM
(2005).

[30] R. Downey and M. Fellows. Parameterized Complexity. Springer, New
York (1999).

[31] S. Dreyfus and R. Wagner. The Steiner problem in graphs. Networks 1
(1971) 195�207.

[32] G. Duan and Y. Yu. Distribution System Optimization by an Algo-
rithm for Capacitated Steiner Tree Problems with Complex �ows and
Arbitrary Cost Functions. International Journal of Electrical Power and
Energy Systems 25 (2003) 515�523.

[33] C. Dürr, F. Guiñez, and M. Matamala. Reconstructing 3-Colored Grids
from Horizontal and Vertical Projections isNP-Hard: A Solution to the
2-Atom Problem in Discrete Tomography. SIAM Journal on Discrete
Mathematics 26 (2012) 330�352.

[34] T. Erlebach. Approximation algorithms and complexity results for path
problems in trees of rings. Proc. MFCS, LNCS 2136 (2001) 351�362.

[35] U. Feige. A threshold of lnn for approximating set cover. Journal of the
ACM 45 (1998) 634�652.

[36] F. Fomin, F. Grandoni, D. Kratsch, D. Lokshtanov, and S. Saurabh.
Computing optimal steiner trees in polynomial space. Algorithmica 65
(2013) 584�604.

[37] M. Formann, D. Wagner, and F. Wagner. Routing through a dense chan-
nel with minimum total wire length. Journal of Algorithms 15 (1993)
267�283.

[38] S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeo-
morphism problem. Theoretical Computer Science 10 (1980) 111�121.

[39] A. Frank. Disjoint paths in a rectilinear grid. Combinatorica 2 (1982)
361�371.

BIBLIOGRAPHY 74

[40] A. Frank. Edge-disjoint paths in planar graphs. Journal of Combinato-
rial Theory, Series B 39 (1985) 164�178.

[41] M. Garey and D. Johnson. Computers and Intractability: a Guide to
the Theory of NP-completeness. Freeman & Co., San Fransisco (1979).

[42] N. Garg, V. Vazirani, and M. Yannakakis. Multiway Cuts in Directed
and Node Weighted Graphs. Proceedings ICALP (1994) 487�498.

[43] N. Garg, V. Vazirani, and M. Yannakakis. Primal-dual approxima-
tion algorithms for integral �ow and multicut in trees. Algorithmica
18 (1997) 3�20.

[44] G. Gottlob and S. Tien Lee. A logical approach to multicut problems.
Information Processing Letters 103 (2007) 136�141.

[45] S. Gravier, D. Kobler, and W. Kubiak. Complexity of list coloring prob-
lems with a �xed total number of colors. Discrete Applied Mathematics
117 (2002) 65�79.

[46] J. Guo, F. Hü�ner, E. Kenar, R. Niedermeier, and J. Uhlmann. Com-
plexity and exact algorithms for vertex multicut in interval and bounded
treewidth graphs. Europ. J. of Oper. Res. 186 (2008) 542�553.

[47] D. Hartvigsen. The planar multiterminal cut problem. Discrete Applied
Mathematics 85 (1998) 203�222.

[48] A. Hertz, O. Marcotte, A. Mdimagh, M. Carreau, and F. Welt. Op-
timizing the Design of a Wind Farm Collection Network. Information
Systems and Operational Research 50 (2012) 95�104.

[49] P. Hunter and S. Kreutzer. Digraph measures: Kelly decompositions,
games, and orderings. Theoret. Comput. Sci. 399 (2008) 206�219.

[50] F. Hwang, D. Richards, and P. Winter. The Steiner Tree Problem. An-
nals of Discrete Mathematics 53, Springer (1992).

[51] T. Johnson, N. Robertson, P. Seymour, and R. Thomas. Directed Tree-
width. Journal of Combinatorial Theory, Series B 82 (2001) 138�154.

[52] R. Jothi and B. Raghavachari. Approximation Algorithms for the Ca-
pacitated Minimum Spanning Tree Problem and Its Variants in Network
Design. ACM Transactions on Algorithms 1�2 (2005) 265�282.

[53] M. Kaufmann and K. Mehlhorn. Routing problems in grid graphs. In
B. Korte, L. Lovász, H. Prömel, A. Schrijver (eds.): Algorithms and
Combinatorics, Vol. 9, Paths, Flows and VLSI-Layout. Springer (1990).

BIBLIOGRAPHY 75

[54] J. Kleinberg. Approximation algorithms for disjoint paths problems.
PhD thesis, MIT (1996).

[55] T. Kloks. Treewidth, Computations and Approximations. Lecture Notes
in Computer Science 842 (1994).

[56] Y. Kobayashi and C. Sommer. On Shortest Disjoint Paths in Planar
Graphs. Discrete Optimization 7 (2010) 234�245.

[57] P. Le Bodic. Variantes non standard de problèmes d'optimisation com-
binatoire (in French). PhD thesis, LRI-Univ. Paris-Sud (2012).

[58] T. Lefebvre. Optimization of information �ows in telecommunication
networks. PhD thesis, CEDRIC-CNAM (2016).

[59] D. Marx. Eulerian disjoint paths problem in grid graphs is NP-
complete. Discrete Applied Mathematics 143 (2004) 336�341.

[60] J. Nederlof. Fast polynomial-space algorithms using inclusion-exclusion.
Algorithmica 65 (2013) 868�884.

[61] H. Okamura and P. Seymour. Multicommodity �ows in planar graphs.
Journal of Combinatorial Theory, Series B 31 (1981) 75�81.

[62] T. Ridremont. Optimisation robuste du câblage dans les parcs d'énergie
renouvelable (in French). Master's thesis, CEDRIC-CNAM (2015).

[63] G. Robins and A. Zelikovsky. Improved Steiner tree approximation in
graphs. Proceedings SODA (2000) 770�779.

[64] H.J. Ryser. Combinatorial properties of matrices of zeros and ones.
Canadian J. Math. 9 (1957) 371�377.

[65] L. Seguin-Charbonneau and B. Shepherd. Maximum Edge-Disjoint
Paths in Planar Graphs with Congestion 2. Proceedings FOCS (2011)
200�209.

[66] V. Vazirani. Approximation algorithms. Springer (2001).

[67] M. Yannakakis, P. Kanellakis, S. Cosmadakis, and C. Papadimitriou.
Cutting and partitioning a graph after a �xed pattern. Proceedings
ICALP, Lecture Notes in Computer Science 154 (1983) 712�722.

[68] W.-C. Yeh. A simple algorithm for the planar multiway cut problem.
Journal of Algorithms 39 (2001) 68�77.

[69] R. Zenklusen. Matching interdiction. Discrete Applied Mathematics 158
(2010) 1676�1690.

Personal publications

[BB12] Cédric Bentz and Pierre Le Bodic. On the complexity of par-
tial colored multiterminal cut problems. In Proceedings 2nd In-
ternational Symposium on Combinatorial Optimization, ISCO
2012, Athens, Greece, April 17�21, 2012.

[BBPR15] Cristina Bazgan, Cédric Bentz, Christophe Picouleau, and
Bernard Ries. Blockers for the stability number and the chro-
matic number. Graphs and Combinatorics, 31(1):73�90, 2015.

[BCDR09] Cédric Bentz, Marie-Christine Costa, Nicolas Derhy, and
Frédéric Roupin. Cardinality constrained and multicriteria
(multi)cut problems. J. Discrete Algorithms, 7(1):102�111,
2009.

[BCdW+08] Cédric Bentz, Marie-Christine Costa, Dominique de Werra,
Christophe Picouleau, and Bernard Ries. On a graph col-
oring problem arising from discrete tomography. Networks,
51(4):256�267, 2008.

[BCdW+11] Cédric Bentz, Marie-Christine Costa, Dominique de Werra,
Christophe Picouleau, and Bernard Ries. Minimum d-
transversals of maximum-weight stable sets in trees. Electronic
Notes in Discrete Mathematics, 38:129�134, 2011.

[BCH16] Cédric Bentz, Marie-Christine Costa, and Alain Hertz. On the
edge capacitated steiner tree problem. CoRR, abs/1607.07082,
2016.

[BCLR09] Cédric Bentz, Marie-Christine Costa, Lucas Létocart, and
Frédéric Roupin. Multicuts and integral multi�ows in rings.
European Journal of Operational Research, 196(3):1251�1254,
2009.

[BCP+09] Cédric Bentz, Marie-Christine Costa, Christophe Picouleau,
Bernard Ries, and Dominique de Werra. Degree-constrained
edge partitioning in graphs arising from discrete tomography.
J. Graph Algorithms Appl., 13(2):99�118, 2009.

77

PERSONAL PUBLICATIONS 78

[BCP+12] Cédric Bentz, Marie-Christine Costa, Christophe Picouleau,
Bernard Ries, and Dominique de Werra. d-transversals of stable
sets and vertex covers in weighted bipartite graphs. J. Discrete
Algorithms, 17:95�102, 2012.

[BCPR17] Cédric Bentz, Marie-Christine Costa, Pierre-Louis Poirion, and
Thomas Ridremont. Formulations for designing robust net-
works. an application to wind power collection. In Proceed-
ings 8th International Network Optimization Conference, INOC
2017, Lisboa, Portugal, February 26�28,, page (to appear in
Electronic Notes in Discrete Mathematics), 2017.

[BCPZ07] Cédric Bentz, Marie-Christine Costa, Christophe Picouleau,
and Maria Zrikem. The shortest multipaths problem in a ca-
pacitated dense channel. European Journal of Operational Re-
search, 178(3):926�931, 2007.

[BCR] Cédric Bentz, Marie-Christine Costa, and Frédéric Roupin.
Erratum to: "C. Bentz, M.-C. Costa, F. Roupin. Max-
imum integer multi�ow and minimum multicut problems
in two-sided uniform grid graphs [Journal of Discrete Al-
gorithms 5 (2007) 36-54]". Technical Report CEDRIC-
07-4068, CEDRIC laboratory, CNAM-Paris, France (url:
https://cedric.cnam.fr/index.php/publis/article/BCR07a).

[BCR07] Cédric Bentz, Marie-Christine Costa, and Frédéric Roupin.
Maximum integer multi�ow and minimum multicut problems in
two-sided uniform grid graphs. J. Discrete Algorithms, 5(1):36�
54, 2007.

[BCR13] Cédric Bentz, Denis Cornaz, and Bernard Ries. Packing and
covering with linear programming: A survey. European Journal
of Operational Research, 227(3):409�422, 2013.

[BEGL14] Cédric Bentz, Sourour Elloumi, Éric Gourdin, and Thibaut
Lefebvre. Network coding for survivable multicast video stream-
ing networks. In Proceedings 6th International Workshop on Re-
liable Networks Design and Modeling, RNDM 2014, Barcelona,
Spain, November 17�19,, 2014.

[BEGL15] Cédric Bentz, Sourour Elloumi, Éric Gourdin, and Thibaut
Lefebvre. On the minimum convex cost multicast �ow prob-
lem. In Proceedings 7th International Network Optimization
Conference, INOC 2015, Warsaw, Poland, May 18�20,, pages
1�8, 2015.

PERSONAL PUBLICATIONS 79

[Ben05] Cédric Bentz. Edge disjoint paths and max integral multi-
�ow/min multicut theorems in planar graphs. Electronic Notes
in Discrete Mathematics, 22:55�60, 2005.

[Ben06] Cédric Bentz. The maximum integer multiterminal �ow prob-
lem. In Marina L. Gavrilova, Osvaldo Gervasi, Vipin Ku-
mar, Chih Jeng Kenneth Tan, David Taniar, Antonio Laganà,
Youngsong Mun, and Hyunseung Choo, editors, Computational
Science and Its Applications - ICCSA 2006, International Con-
ference, Glasgow, UK, May 8-11, 2006, Proceedings, Part III,
volume 3982 of Lecture Notes in Computer Science, pages 738�
747. Springer, 2006.

[Ben07] Cédric Bentz. The maximum integer multiterminal �ow prob-
lem in directed graphs. Oper. Res. Lett., 35(2):195�200, 2007.

[Ben08] Cédric Bentz. On the complexity of the multicut problem
in bounded tree-width graphs and digraphs. Discrete Applied
Mathematics, 156(10):1908�1917, 2008.

[Ben09a] Cédric Bentz. Disjoint paths in sparse graphs. Discrete Applied
Mathematics, 157(17):3558�3568, 2009.

[Ben09b] Cédric Bentz. New results on planar and directed multicuts.
Electronic Notes in Discrete Mathematics, 34:207�211, 2009.

[Ben09c] Cédric Bentz. A simple algorithm for multicuts in planar
graphs with outer terminals. Discrete Applied Mathematics,
157(8):1959�1964, 2009.

[Ben11] Cédric Bentz. On the hardness of �nding near-optimal
multicuts in directed acyclic graphs. Theor. Comput. Sci.,
412(39):5325�5332, 2011.

[Ben12] Cédric Bentz. A polynomial-time algorithm for planar multi-
cuts with few source-sink pairs. In Dimitrios M. Thilikos and
Gerhard J. Woeginger, editors, Parameterized and Exact Com-
putation - 7th International Symposium, IPEC 2012, Ljubljana,
Slovenia, September 12-14, 2012. Proceedings, volume 7535 of
Lecture Notes in Computer Science, pages 109�119. Springer,
2012.

[Ben17a] Cédric Bentz. An FPT algorithm for planar multicuts with
sources and sinks on the outer face. CoRR, abs/1708.05903,
2017.

PERSONAL PUBLICATIONS 80

[Ben17b] Cédric Bentz. Weighted and locally bounded list-colorings
in split graphs, cographs, and partial k-trees. CoRR,
abs/1709.05000, 2017.

[BP09] Cédric Bentz and Christophe Picouleau. Locally bounded k -
colorings of trees. RAIRO - Operations Research, 43(1):27�33,
2009.

[RBP+10] Bernard Ries, Cédric Bentz, Christophe Picouleau, Dominique
de Werra, Marie-Christine Costa, and Rico Zenklusen. Block-
ers and transversals in some subclasses of bipartite graphs:
When caterpillars are dancing on a grid. Discrete Mathematics,
310(1):132�146, 2010.

[WWBB13] Dimitri Watel, Marc-Antoine Weisser, Cédric Bentz, and Do-
minique Barth. Steiner problems with limited number of
branching nodes. In Thomas Moscibroda and Adele A.
Rescigno, editors, Structural Information and Communication
Complexity - 20th International Colloquium, SIROCCO 2013,
Ischia, Italy, July 1-3, 2013, Revised Selected Papers, volume
8179 of Lecture Notes in Computer Science, pages 310�321.
Springer, 2013.

[WWBB14] Dimitri Watel, Marc-Antoine Weisser, Cédric Bentz, and Do-
minique Barth. Directed steiner tree with branching constraint.
In Zhipeng Cai, Alex Zelikovsky, and Anu G. Bourgeois, editors,
Computing and Combinatorics - 20th International Conference,
COCOON 2014, Atlanta, GA, USA, August 4-6, 2014. Proceed-
ings, volume 8591 of Lecture Notes in Computer Science, pages
263�275. Springer, 2014.

[WWBB15] Dimitri Watel, Marc-Antoine Weisser, Cédric Bentz, and Do-
minique Barth. An FPT algorithm in polynomial space for the
directed steiner tree problem with limited number of di�using
nodes. Inf. Process. Lett., 115(2):275�279, 2015.

[WWBB16] Dimitri Watel, Marc-Antoine Weisser, Cédric Bentz, and Do-
minique Barth. Directed steiner trees with di�usion costs. J.
Comb. Optim., 32(4):1089�1106, 2016.

[ZRP+09] Rico Zenklusen, Bernard Ries, Christophe Picouleau, Do-
minique de Werra, Marie-Christine Costa, and Cédric Bentz.
Blockers and transversals. Discrete Mathematics, 309(13):4306�
4314, 2009.

Appendix A: Open problems

related to integral multi�ow

and multicut problems

In my PhD thesis [4], defended in 2006 and written in French, I provided a
list of ten open problems related to integral multi�ows and multicuts, which I
considered as major ones in this research �eld. For the sake of completeness,
I shall include them again in this report, in the same order as in [4]:

1. What is the complexity of MaxEDP in (undirected or directed) planar
graphs, when the number of source-sink pairs is O(1)?

2. What is the complexity of MaxEDP in graphs of bounded tree-width,
when the number of source-sink pairs is O(1)?

3. What is the complexity of MaxEDP in graphs of bounded tree-width,
when the maximum degree is O(1)?

4. Does there exist an O(1)-approximation algorithm for MaxEDP in
graphs of bounded tree-width?

5. Can we �nd better approximation algorithms for MaxEDP in undi-
rected graphs? And in undirected planar graphs?

6. Does there exist an O(1)-approximation algorithm for the multitermi-
nal variant of MaxIMF in directed graphs?

7. What is the complexity of the multiterminal variant of MinMC in
planar graphs, when the terminals lie on the boundary of O(1) faces?

8. Does there exist a PTAS for the multiterminal variant of MinMC in
planar graphs?

9. Does the multiterminal variant of MinMC admit an algorithm that is
FPT with respect to the number of terminals in planar graphs?

10. What is the complexity of MinMC with O(1) source-sink pairs: (i) in
directed acyclic graphs, and (ii) in undirected planar graphs?

81

Problem 1 also appeared as Problem GT04-3 in [Open problems. Chap-
ter in Graph Theory in Paris, Proceedings of a Conference in Memory of
Claude Berge, pp. 381�389. A. Bondy, J. Fonlupt, J.-L. Fouquet, J.-C.
Fournier, and J.R. Alfonsin (eds.), Birkhäuser (2007)].

Since 2006, most of these problems have indeed been studied, and settled.

Problem 1 was proved to be NP-hard in [G. Naves. The hardness of
routing two pairs on one face. Mathematical Programming 131 (2012) 49�
69], even with only two sources and two sinks, all lying on the outer face.

Problem 4 was dealt with in [12], and the answer is yes.

Problem 5 was addressed in several ways, and, as mentioned in Chap-
ter 6, Chuzhoy et al. recently managed to slightly improve the best upper
and lower bounds known for approximating MaxEDP in undirected planar
graphs [21, 22], but the gap between these bounds is far from being closed.

Problem 8 was settled in [M. Bateni, M. Hajiaghayi, P. Klein, and C.
Mathieu. A polynomial-time approximation scheme for planar multiway
cut. Proceedings SODA (2012) 639�655], and the answer is yes.

Problem 9 was studied in [D. Marx. A Tight Lower Bound for Planar
Multiway Cut with Fixed Number of Terminals. Proceedings ICALP (2012)
677�688], and the answer is no (under the Exponential Time Hypothesis).

Finally, Problem 10(i) is APX-hard even with two source-sink pairs, as
shown in [Ben11], while Problem 10(ii) is tractable, as shown in [24].

However, as far as I know, Problems 2, 3, 6 and 7 are still open.

82

Appendix B: List of supervised

students

This appendix provides the list of all the PhD, post-doc, and Master stu-
dents that I (co-)supervised since 2005, as well as the associated publications.

PhD students:

1. Co-advisor, with Marie-Christine Costa (ENSTA) and Alain Hertz
(GERAD laboratory, Montreal), of Thomas Ridremont. This PhD
started in September 2015, and focuses on the study of variants of the
Steiner tree problem, where edges (or arcs) have capacity and/or can
fail. (Associated publication: [BCPR17].)

2. Co-advisor, with Sourour Elloumi (ENSIIE) and Éric Gourdin (Orange
Labs), of Thibaut Lefebvre. This PhD took place from 2012 to 2016,
and was funded by a CIFRE PhD scholarship, in collaboration with
Orange Labs. It focused on the study of the impact, on several routing
strategies (Multicast, Network Coding), of link failures in a telecom-
munication network. (Associated publications: [BEGL14, BEGL15].)

3. Co-advisor, with Dominique Barth (UVSQ/PRiSM) and Marc-Antoine
Weisser (Supélec) of Dimitri Watel. This PhD took place from 2011
to 2014, and was funded by the DIGITEO project APPAS. It focused
on the design of e�cient algorithms (exact or not) for solving variants
of the Steiner tree problem in directed graphs (in particular when the
number of nodes that can duplicate the data is limited). (Associated
publications: [WWBB13, WWBB14, WWBB15, WWBB16].)

4. Co-advisor, with Abdel Lisser (LRI), of Pierre Le Bodic. His PhD the-
sis, whose topic was �Non standard variants of discrete optimization
problems�, was defended on September 2012, and focused in particular
on the study of partial cut problems, such as partial multicuts and
partial multiterminal cuts. (Associated publication: [BB12].)

83

Post-doctoral student:

• Supervisor of Benoît Robillard, which was a post-doctoral student at
the LRI during one year, in 2011-2012. Under my supervision, he
worked on partial cut problems and d-blocker problems.

Master students:

1. Co-supervisor, with Daniel Porumbel (CNAM) and Marie-Christine
Costa (ENSTA), of the Master 2 internship of Thomas Ridremont,
which took place from March to September 2015, on the topic: �Ro-
bust Steiner trees�.

2. Co-supervisor, with Christophe Picouleau (CNAM), of the Master 2
internship of Kpotissan Adjetey-Bahun (a student from the MPRO �
Master Parisien de Recherche Opérationnelle), which took place from
March to August 2012, on the topic: �A study of d-blockers of disjoint
paths in graphs�.

3. Supervisor of the Master 2 internship of Didier Chalu (a student from
the MPRI � Master Parisien de Recherche en Informatique), which
took place from March to July 2011, on the topic: �E�cient algo-
rithms for partial multicut problems�.

4. Co-supervisor, with Frédéric Roupin (CNAM) and Marie-Christine
Costa (CNAM), of the Master 2 internship of Nicolas Derhy, which
took place from March to September 2005, on the topic: �Multicuts
with cardinality constraints�. (Associated publication: [BCDR09].)

84

Abstract

Title: Exact and approximation algorithms for some packing and covering
problems in graphs.

In this HDR thesis, we consider several families of packing and covering
problems in graphs, namely:

• Multicuts and integral multi�ows, as well as some variants.

• Vertex and edge colorings with cardinality constraints, most of them
being linked to a basic problem in discrete tomography.

• Blockers and d-transversals for some classical graphs parameters: the
matching number, the stability number, and the chromatic number.

• Steiner trees and networks, as well as variants or generalizations (which
are obtained, for instance, by adding edge or arc capacities, or by
assuming that some edges or arcs can fail).

We study the computational complexity of all these problems, design
approximation algorithms for some hard cases (or prove that such algorithms
cannot exist), and exhibit several relevant parameters that allow to prove the
�xed-parameter tractability, with respect to such parameters, of some special
cases (while other special cases are proved to be �xed-parameter intractable).

85

