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“If you want to find the secrets of the universe, think in terms of energy, frequency
and vibration.”

- Nikola Tesla

It blasts many doubts, foresees what is not obvious |
Science is the eye of everyone, one who hasn’t got it, is like a blind ||

- Sanskrit verse from Hitopadesha, 800-950 CE
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LMI Linear Matrix Inequality
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Nomenclature

A = [ai,j ]ni,j=1 A is a square matrix with element ai,j at ith

row and jth column, for all i = 1, ..., n and
j = 1, ..., n

A−1 inverse of matrix A
A> transpose of matrix A
A∗ complex conjugate transpose of matrix A

A⊗B Kronecker product of matrices A and B
[A](i,j) element from ith row and jth column of matrix

A

blkdiag{A1, .., An} block diagonal matrix with A1, ..., An as its
diagonal blocks

B(τ̄ , ε) an open ball of radius ε ∈ R+
0 centred at τ̄ ,

B(τ̄ , ε) := {θ̄ ∈ Rm ||θ̄ − τ̄ || < ε}
C([a, b];Rn) banach space of continuous functions mapping

[a, b] to Rn

C set of all complex numbers
det(A) determinant of matrix A

∆ : L2e(a, b)→ L2e(c, d) operator ∆ receives an input belonging to
L2e(a, b) and produces an output belonging to
L2e(c, d)

L2e(a, b) extended L2 space of all square integrable
and Lebesgue measurable functions defined on
interval (a, b), with L2 norm defined as ||q||22 =∫ b
a
q(s)∗q(s)ds
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λmax(A) maximum eigenvalue of matrix A
N set of all natural numbers
N0 set of all natural numbers including zero
R set of all real numbers
Rn n-dimensional real coordinate space

R+(R−) set of all positive (negative) real-numbers
R+

0 (R−0 ) set of all non-negative (non-positive) real-
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R(λ) real part of complex number λ
σi(A) i-th singular value of matrix A

trace[A] trace of matrix A
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|| · || euclidean vector norm
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||φ||s supremum norm of φ ∈ C([−τmax, 0];Rn),
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Abstract

The presented thesis is devoted to the design of structured dynamic Linear
Time-Invariant (LTI) feedback controllers (such as decentralised, distributed,
and overlapping controllers) for linear time-delay systems. Scalable and
computationally efficient algorithms are proposed for robust control design.
The proposed algorithms use frequency domain-based techniques, grounded in
necessary and sufficient conditions for stability.

An approach is initially proposed to design decentralised, distributed, and
overlapping fixed-order controllers for generic Multiple-Input Multiple-Output
(MIMO) plants with time-delays modelled using Delay Differential Algebraic
Equations (DDAEs) (which are flexible in modelling interconnected systems).

As a next step, the approach for generic systems is extended to the case when
more information about the interconnection between (sub-)systems is known:
a structure exploiting method is proposed. The systems considered are delay
coupled identical systems arranged in some network topology, which are to be
controlled by identical fixed-order decentralised, distributed, or overlapping
controllers. By using the structure exploiting approach, we improve the
computational efficiency for the controller design with the number of subsystems.
This structure exploiting method reduces the overall design problem to a robust
or simultaneous controller design problem for one parameterised subsystem,
where the allowable values of the parameter are related to the network topology
(eigenvalues of the adjacency matrix of the network graph). We suggest treating
these parameters as perturbations (contained in specific intervals or regions
in the complex plane) determined by the topology of the network. By using
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r ABSTRACT

state-of-the-art (frequency domain-based) optimisation tools for robust control
design, we ensure that the achieved stability property, robustness property, and
the computational complexity of the controller design problem are independent
of the number of subsystems and the network topology.

An extension to design decentralised controllers which are robust against
communication imperfections (such as model uncertainties, time-varying delays,
aperiodic sampling, and asynchrony) is presented. An input-output L2 stability
criterion is proposed. The approach is based on rewriting the plant and sampled-
data controllers as a feedback interconnection of a continuous-time closed-
loop system and an uncertainty block (which represents the errors induced by
the communication). Furthermore, an efficient (and scalable) control design
approach is proposed for a network of quasi-identical sampled-data systems
(with non-identical uncertainties and communication imperfections) through
structure exploitation.

Finally, an application of the automated heterogeneous (parameter) vehicular
platoon using Cooperative Adaptive Cruise Control (CACC) is considered. An
approach is proposed to design stabilising controllers that achieve strict L2

string stability. The predecessor-follower topology of the platoon with CACC is
exploited to ensure that the overall computational complexity (for designing
identical controllers) is independent of the number and combination of the
heterogeneous vehicles in the platoon.



Samenvatting

Dit proefschrift beschrijft het ontwerp van gestructureerde dynamische feedback
regelaars zoals gedecentraliseerde, gedistribueerde en overlappende regelaars-
voor lineaire tijdsinvariante (LTI) systemen. Er wordt gefocust op algoritmen
voor robuust regaal ontwerp met een beperkte rekencomplexiteit en een goede
schaalbaarheid. Deze algoritmen zijn gebaseerd op het frequentiedomein en
de noodzakelijke en voldoende voorwaarden worden gebruikt voor stabiliteit.
Eerst wordt een aanpak voorgesteld om gedecentraliseerde, gedistribueerde
en overlappende regelaars met vaste orde te ontwerpen voor generieke
meerdere-invoer meerdere-uitvoer (MIMO) -systemen met tijdvertragingen.
Deze systemen worden gemodelleerd met behulp van differentiaal-algebraïsche
vergelijkingen met vertragingen (DDAEs), omdat deze toelaten om gekoppelde
systemen eenvoudig te modelleren.

In een volgende stap wordt een gespecialiseerde methode voorgesteld voor
systemen met een bepaalde structuur. De beschouwde systeemklasse bestaat
uit netwerken van gekoppelde (deel)systemen met vertraging in de koppeling,
aangestuurd door identieke gedecentraliseerde, gedistribueerde of overlappende
regelaars, met een vooraf vastgelegde dimensie. Door de netwerkstructuur uit te
buiten verbeteren we de rekenefficiëntie voor het regelaar ontwerp met betrekking
tot het aantal subsystemen. De methode reduceert het algehele ontwerpprobleem
tot een robuust of simultaan regelaar ontwerp voor één geparametriseerd
deelsysteem. De toegestane waarden van de parameter zijn gerelateerd aan
de netwerkstructuur. Meer specifiek, ze zijn gelijk aan de eigenwaarden van
de verbindingsmatrix van de netwerkgraaf. In deze scriptie stellen we voor

s



t ABSTRACT

om deze parameters te behandelen als verstoringen met waarden in specifieke
intervallen of gebieden in het complexe vlak, bepaald door de topologie van
het netwerk. Door gebruik te maken van state-of-the-art (frequentiedomein
gebaseerde) optimalisatietechnieken voor een robuust controllerontwerp zorgen
we ervoor dat het bereikte niveau van de stabiliteit, de robuustheid en de
rekencomplexiteit van het ontwerpprobleem van de regelaars onafhankelijk zijn
van het aantal deelsystemen en van de netwerkstructuur.

In dit proefschrift presenteren we ook een uitbreiding om gedecentraliseerde rege-
laars die robuust zijn tegen communicatie-imperfecties, zoals modelonzekerheid,
tijdsafhankelijke vertragingen, niet-periodieke bemonstering en a-synchroniteit,
te ontwerpen. Hiervoor wordt een input-output L2 stabiliteitscriterium
voorgesteld dat het systeem en de sample data- controllers modelleren als
een feedback interconnectie tussen een continue gesloten kring systeem en
een onzekerheid, die de imperfecte communicatie voorstelt. Verder wordt
een efficiënte (en schaalbare) ontwerpmethode voor sample-data controllers
voorgesteld voor een netwerk van quasi-identieke systemen met niet-identieke
onzekerheden en communicatie-imperfecties.

Ten slotte beschouwen we het regelen van een heterogene groep voertuigen met
behulp van Cooperative Adaptive Cruise Control (CACC). We stellen een aanpak
voor om stabiliserende controllers te ontwerpen die strikte L2 stringstabiliteit
garanderen. De voorganger-volger topologie van het peloton met CACC wordt
benut om de algehele rekencomplexiteit van het controllerontwerpprobleem
te verminderderen. Bovendien is de rekencomplexiteit van het voorgestelde
algoritme onafhankelijk van het aantal voertuigen en de volgorde van de
voertuigen in het peloton.



Résumé

Notre monde hyperconnecté repose sur de nombreux systèmes comme l’Internet,
le système bancaire mondial, le réseau électrique, la 5G et l’Internet des Objets,
pour n’en citer que quelques-uns. Cette intrication croissante doit cependant
s’accompagner d’une exigence accrue dans la compréhension et le contrôle des
dynamiques complexes pouvant émerger de ces interconnexions. Pourtant, il
semble irréaliste d’envisager des solutions de contrôle supervisé de ces systèmes
complexes, dans lesquelles un nœud disposerait de toute l’information sur le
réseau et pourrait le contrôler globalement. Notre travail porte donc sur la
conception de lois de contrôle décentralisées et distribuées, où les contrôleurs
communiquent localement plutôt que globalement. De telles stratégies de
contrôle cette sont mieux adaptées à la réalité actuelle : elles tendent à une
meilleure efficience en termes d’exigences de communication, de diagnostic des
pannes et de maintenance. La conception de tels structures et algorithmes de
contrôle est cependant ambitieuse, car ils doivent collectivement répondre à des
objectifs globaux tout en agissant localement. Constituant une autre source
de complexité, des phénomènes de retard apparaissent inévitablement dans ces
situations, inhérents aux temps de communication dans le graphe, mais aussi
aux latences de calcul intervenant au niveau des capteurs et des actionneurs
(qui doivent souvent économiser leur énergie). Jusqu’à présent, les méthodes
disponibles pour la conception de contrôleurs décentralisés ou distribués n’étaient
pas facilement applicables aux systèmes avec retards multiples. De plus, le
cadre théorique sous-jacent n’était pas adapté aux systèmes complexes où la
dynamique globale est largement déterminée par les interactions des composants
individuels.
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v ABSTRACT

Cette thèse est consacrée à la conception de contrôleurs dynamiques structurés
(décentralisés, distribués, ou imbriqués) pour la commande à base de modèles
linéaires à retards (LTI, pour Linear Time-Invariant). Des algorithmes de
conception efficaces et extensibles en dimension sont proposés pour garantir la
robustesse du contrôle, y compris dans le cas d’un réseau comportant un grand
nombre de sous-systèmes. Ils utilisent des techniques du domaine fréquentiel,
reposant sur des conditions nécessaires et suffisantes de stabilité.

Une approche est d’abord proposée pour concevoir des contrôleurs d’ordre fixe
décentralisés, distribués et imbriqués, pour des processus à retards et à entrées
et sorties multiples (MIMO, pour multi-input / multi-output) modélisés grâce
à des équations différentielles algébriques avec retard (DDAE), permettant de
représenter des systèmes interconnectés génériques. Dans un deuxième temps,
cette approche générique est approfondie pour des cas mieux spécifiés : lorsqu’on
dispose de davantage d’informations sur l’interconnexion entre sous-systèmes,
un procédé d’exploitation de structure est proposé. On considère en particulier
que les sous-systèmes sont identiques, couplés par les liens à retards, disposés
selon une topologie de réseau donnée, et qu’ils doivent être commandés par
des contrôleurs (décentralisés, distribués ou imbriqués) identiques et d’ordre
fixe. En exploitant la structure, nous améliorons l’efficacité calculatoire pour la
conception du contrôleur, ce qui devient un atout important lorsque le nombre
de sous-systèmes augmente. Cette méthode d’exploitation de la structure réduit
le problème de conception global à un problème de conception simultanée
d’un contrôleur robuste pour un seul sous-système paramétré, où les valeurs
paramétriques autorisées sont liées à la topologie du réseau (valeurs propres
de la matrice d’adjacence du graphe de réseau). Nous suggérons de traiter ces
paramètres comme des perturbations déterminées par la topologie du réseau et
contenues dans des intervalles ou des régions spécifiques du plan complexe. En
utilisant des outils récents pour l’optimisation à partir du domaine fréquentiel,
nous garantissons que la propriété de stabilité obtenue, la propriété de robustesse
et la complexité de calculatoire du problème de conception du contrôleur, sont
indépendantes du nombre de sous-systèmes et de la topologie du réseau.

Nous présentons ensuite une extension à la conception de contrôleurs
décentralisés robustes vis-à-vis des incertitudes de modèles (par exemple,
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lorsque le modèle unique des sous-systèmes n’est qu’une approximation)
et des imperfections de communication (retards variables, échantillonnage
apériodique, asynchronisme, bruit). Un critère de stabilité entrée/sortie L2

est proposé. Cette approche repose sur la réécriture du processus et de ses
contrôleurs échantillonnées sous la forme d’une interconnexion entre un système
en boucle fermée et en temps continu d’une part, et d’un bloc d’incertitude qui
représente les imperfections induites par la communication, d’autre part. Comme
précédemment, cette approche générique est ensuite considérée en exploitant
des informations de structure du réseau, pour conduire à la conception d’un
contrôle structuré, efficace et extensible en dimension. On considère ainsi
un réseau de systèmes échantillonnés quasi-identiques (c’est-à-dire avec des
incertitudes différentes autour d’un modèle de base identique), en tenant compte
des imperfections de communication.

Pour finir, ces résultats sont appliqués à la conduite coopérative de véhicules
hétérogènes (hétérogénéité paramétrique) utilisant un régulateur de vitesse
coopératif adaptatif (CACC, pour Cooperative Adaptive Cruise Control). Une
approche est proposée pour concevoir des contrôleurs stabilisants assurant la
stabilité chaînée (strict string L2 stability) d’un convoi de véhicules (platooning).
Lorsqu’on considère le problème de la conception de contrôleurs identiques,
l’exploitation de la topologie prédécesseur-suiveur du convoi sous CACC permet
de garantir que la complexité informatique globale est indépendante du nombre
et de la combinaison des véhicules hétérogènes du convoi.

Les résultats de cette thèse ont été publiés dans (Dileep et al., 2018a), (Dileep
et al., 2018b), (Dileep et al., 2018c), (Dileep et al., 2019) et (Dileep et al., 2020).





Chapter 1

General introduction

This thesis is dedicated to the topic of distributed control for large scale systems
with time-delays. We propose approaches to design distributed controllers for
generic time-delay systems. Furthermore, we consider the special case where
the systems are composed of a group of subsystems with time-delays (strongly)
interacting with each other. For this special case, we propose scalable and
computationally efficient algorithms to design distributed controllers which
guarantee global objectives while acting and sensing locally. In the following
sections within this chapter, we present the context of this thesis, the concept
of structurally constrained controllers, linear time-delay systems, and existing
tools for the design of centralised and structurally constrained controllers for
linear time-delay systems. These concepts are essential to understand the
problems considered in this thesis (described at the end of this chapter) and
our approaches to tackle them.

1.1 Context

Challenges are arising in science, society, and industry induced by the
overgrowing complexity of systems in the hyper-connected world. In general,
systems are entities composed of well-defined components. Complexity emerges

1
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Figure 1.1: Some examples of complex systems.

as a result of the interactions (and, in particular, the resulting feedback loops)
of the components within the system, which are generally not based on a
predetermined plan. The conventional methods used to define a system with
reference to its individual components become less reliable. The complexity
defies the definition on an element basis as interactions between the elements
play a bigger role than the behaviour of the elements themselves.

Electricity transmission and distribution, traffic flow, global banking system,
and communication networks are some examples that clearly pose challenges
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which include encountering problems that are beyond classical scientific or
engineering knowledge. These networks of man-made systems are reaching
complexity levels that are beyond the level of human understanding (Aström
et al., 2011). Many researchers are focusing on understanding these systems
and are trying to develop models that can capture their behaviour accurately.
Some examples of the complex systems are also shown in Figure 1.1.

Control theory could be utilised to give a relevant and helpful perspective on
understanding and controlling such complex systems. Key concepts in control
theory are dynamical system modelling, feedback, adaptation, and robustness.
System models for control purposes do not aim at accuracy or exhaustiveness of
the representations (which, in complex systems, is neither possible nor desirable),
but balance the following trade-offs:

• an abstraction level which is sufficiently rich to catch the complexity and
sufficiently simple to be traceable;

• analysis and control methods which are robust enough to compensate
for modelling errors and varied enough to suggest constructive ways for
understanding/influencing the stability and performance of the complex
systems.

In this context, the motivation for this work relies on the fact that the classical
controller design methodologies used for such complex systems are, in general,
computationally cumbersome and not scalable. Also, for large networks, it is
expensive, if not impossible (for example in vehicular platoons), to control all
the (sub-)systems using mainstream centralised control strategies.

In the 1990s, distributed control architectures1 were generally preferred over
centralised control due to their practicality and costs involved (Lunze, 1992;
Siljak, 2013). This trend seemed to change for some time in the 2000s with the
popularisation and development of internet and other wireless communication
technologies resulting in Networked Control Systems (NCS) (Bemporad et al.,
2010; Donkers et al., 2011; Hetel et al., 2017) which aided centralised control

1The terms related to control architectures will be explained in Seciton 1.2. Distributed
control architectures include decentralised and overlapping control architectures.
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strategies. However, in the recent years, distributed control architectures
are gaining popularity (again) resulting from the overgrowing complexity in
systems (mainly due to the hyper-connectivity and the enormous amounts of
sensors employed). Many researchers acknowledge the need to develop scalable
and computationally efficient algorithms that are decentralised and deployable
at huge distributed scales which are supported by local decisions and global
coordination, see (Lamnabhi-Lagarrigue et al., 2017) and the references therein.

Large power stations

Transmission grid
Factories

Large wind farms

Foreign
transmission grid

Distribution grid

City power stations

Industrial customers

Wind farms

Solar farms

City/rural network

Figure 1.2: A simple layout of modern electricity grids.

Distributed controllers are relevant for many applications. For example, in the
application of power systems, distributed and cooperative control techniques
have been receiving large attention, see (Arioua et al., 2014; Wang et al.,
2015) and the references therein. This is mainly due to the emergence of
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Figure 1.3: Illustration of the examples for complex time-delay systems
considered in this thesis.

distributed generating stations, HVDC links, and smart grids, as a result of the
environmental concerns, which generate electricity closer to users or loads, see
Figure 1.2. This is in contrast to the classical setting wherein large amounts of
power were produced at a few locations and transmitted through long distances
to cities or industries. Therefore, it is necessary that the distributed controllers
implemented in such settings cooperate to ensure that unwanted disturbances are
not introduced into the power system due to their individual actions (undesirable
counteractions).

Consider, as another application, the control of a platoon of vehicles using
Cooperative Adaptive Cruise Control (CACC) technique, see (Darbha et al.,
2019; Ploeg et al., 2014a) and the references therein. This is an automated
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vehicle following system based on inter-vehicular exchange of data through
wireless communication and radar or lidar (see Figure 1.3). One of the main
objectives of the controllers is to ensure that the vehicle follows a trajectory or
the vehicle in front. Another important objective is to prevent the amplification
of disturbances in the upstream direction of vehicles. Again, for this application,
it is desirable to design a distributed controller for each vehicle in the platoon.
The application to CACC in automated platoon is discussed in more detail
within Chapter 4 of this thesis.

Despite their ubiquitous use, designing distributed controllers may be challenging
as they have to collectively meet global objectives while acting (and sensing)
locally with actuators (and sensors) which may not be reliable all the time.
Additionally, time-delays arise in a wide range of applications (such as
engineering, natural, or social sciences) due to transport, communication,
measurement, control or computation delays (Michiels et al., 2017). Including
such time-delays in the system models make them infinite-dimensional (Richard,
2003). In general, state-of-the-art methods for decentralised control do not carry
over easily to systems with time-delays. Hence, a shift of the control paradigm
is needed, which is the goal of this thesis.

1.2 Control architectures

Automatic control is essential for complex systems such as intelligent
transportation systems, robotic systems, manufacturing systems, and many
industrial operations. In this thesis, we call the objects (or a group of objects
that interact with each other) to be controlled a plant. We refer to the overall
system that includes both the plant and the control system as the closed-loop
system. Note that the plant may also be referred to as a system: for instance, in
the vehicle platooning problem (Ploeg et al., 2014b), the vehicle (a multi-physical
system) is considered to be a plant whose trajectory needs to be controlled in
relation to other vehicles.

We consider Linear Time-Invariant (LTI) plants with time-delays in this thesis
(Gu et al., 2012). The adopted LTI model implies the assumption that the
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superposition principle holds. In general, this assumption corresponds to the
local approximation (around some equilibria) or to the use of active linearisation
(by feedback control). This assumption may be supported by the fact that we
consider systems with delay effects. In the presence of time-delays, most of the
constructive stability algorithms are developed in the LTI framework (Fridman,
2014; Gu et al., 2012; Michiels and Niculescu, 2014; Richard, 2003).

A commonly used control architecture is that of the feedback control (also
referred to as the closed-loop control architecture). Feedback control system
maintains a prescribed relationship between the measured output from sensors
and the reference input by comparing them and using the difference as a means
of control through actuators. Such means of control enable the system to adjust
its performance to meet a desired output response (Ogata, 2010). Alternatively,
there are open-loop control architectures wherein the measured output or other
plant signals have no effect on the control action. However, this thesis focuses
on the design of LTI feedback control systems.

Feedback control of large scale systems may be seen as a feedback control of
Multiple Input Multiple Output (MIMO) plants with large number of states,
inputs and outputs.

In general, engineers select control architectures in an ad-hoc manner. Hence,
there are plenty of control architectures available to study. However, in this
thesis, we focus on a few generic architectures (such as decentralised, distributed,
and overlapping controllers) which are commonly used, see (Bakule, 2008; Siljak,
2013; van Schuppen and Villa, 2014).

The classical approach would be to design centralised controllers for such systems.
This is a simple conceptual framework with one controller and one system. Many
procedures are already available for the design of centralised controllers for linear
systems. However, the centralised control configuration is often impractical to
implement for large-scale systems which could be due to the large costs involved
in implementing the communication links, the large delays in communication, or
the large computational costs and lack of scalability (such as in power systems
(Wang et al., 2015) and automated vehicular platoons (Darbha et al., 2019;
Ploeg et al., 2014b)). Model-based controller synthesis can become cumbersome
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if the system model is large and the corresponding structure is not exploited.
This calls for alternative control strategies such as distributed, decentralised, or
overlapping control. Illustrations of some generic control configurations such
as centralised, decentralised, distributed, and overlapping control (in the same
order) are shown in Figure 1.4. Now we categorize some of the commonly used
control configurations, similar to (Bakule, 2008), as follows.

K K1 K2

P P P

K1 K2

P

(a) (b) (c) (d)

K1 K2

Figure 1.4: Overview of (a) centralised, (b) decentralised, (c) distributed, and
(d) overlapping control configurations for the MIMO plant. Here, P is the
MIMO plant and K, K1, and K2 are the controllers.

Centralised controllers: A MIMO plant is said to have a centralised controller
when it receives (sends) all the actuator (sensor) information from (to) the
controller (see Figure 1.4-(a)).

Decentralised controllers: AMIMO plant is said to have a decentralised controller
when it is controlled by multiple (local) controllers that do not communicate
with each other. Also, the corresponding actuator (controlled input) and sensor
(measured output) information are unique for each controller (see Figure 1.4-(b)).

Distributed controllers: A MIMO plant is said to be controlled using a
distributed controller when a collection of local controllers (of a decentralised
controller) communicate some information between each other (see Figure 1.4-
(c)). The information shared between sub-controllers may include controller
state, measured output, or controlled input.

Overlapping controllers: A MIMO plant is said to have an overlapping controller
when the local controllers (of a decentralised controller) share some of the sensor
information (measured output) between each other (see Figure 1.4-(d)). Unlike
distributed controllers, overlapping controllers do not share any information on
controller state or controlled input.
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Figure 1.5: A qualitative analysis of the peak performance for the different
control configurations considered in this thesis.

Notice that decentralised, overlapping, and distributed controllers can be seen
(from a mathematical perspective) as special cases of centralised controllers
with some fixed structure (due to constraints in communication), see Figure
1.5. These controllers are structured in the sense that some elements of the
corresponding gain or coefficient matrices may have a fixed value (such as zero).
Structure for the controller may also arise from predetermined conditions or
from other given structures such as a PID controller.

The communication or implementation costs and time-delays involved when
using (localised) decentralised controllers may be minimal in comparison to other
control configurations. However, the lack of interaction between the controllers
and the lack of consideration of any information from neighbouring sensors or
actuators could limit their achievable performance. Therefore, distributed or
overlapping controllers maybe preferred over decentralised controllers for some
applications such as power systems and intelligent transportation systems.

1.3 Literature on design of decentralised controllers

In this section, some of the techniques available to design LTI decentralised
feedback controllers for LTI plants (without time-delays) are presented from
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the rich literature on the topic. We focus on these works due to their relevance
to this thesis. We refer to (Lunze, 1992; Siljak, 2013) for a general overview of
the concept of decentralised feedback control. Distributed and decentralised
control was a popular research topic in the 90s (Davison and Chang, 1990;
Geromel et al., 1999; Ikeda et al., 1993). Recently, the topic of decentralised and
distributed control has (again) received the attention of many researchers, see
(Alavian, 2017; Alavian and Rotkowitz, 2015a; Bakule, 2008; Bauer et al., 2013;
Thomas et al., 2018; van Schuppen and Villa, 2014) and the references therein,
due to the overgrowing hyper-connectivity of modern large-scale systems and
the enormous amounts of sensors employed.

In (Savastuk and Siljak, 1994), an optimal decentralised control using the
classical method of Lagrange was presented. The authors in (Savastuk and
Siljak, 1994) formulated the decentralised information structure constraints as
differential equations, which were added to the equations of motion to form a
suitable set of constraints for the minimization of a cost functional.

In (Stankovic et al., 2000), an overlapping control law was proposed for an
automated vehicular platoon. It was obtained by using the inclusion principle,
that is, by decomposing the original system model using an appropriate input or
state expansion. The Linear Quadratic (LQ) control technique was applied to
these locally extracted subsystems. The local quadratic criteria directly reflected
the desired system performance. However, optimization was carried out by using
a sequential algorithm adapted to the lower block triangular structure of the
closed-loop system model, which was specific to the application. Contraction
to the original space provided a decentralised controller for the application
which preserved the asymptotic stability and the steady-state behaviour of the
controller obtained in the expanded space.

In (Zecevic and Siljak, 2004), an approach was proposed to design decentralised
controllers in the time domain using Lyapunov-based stability conditions
expressed in terms of Linear Matrix Inequalities (LMIs). The resulting control
was robust with respect to uncertainties, and was based on imposing several
types of information structure constraints on the LMIs.

In (Lavaei et al., 2008), a design approach for decentralised controller was
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proposed which consisted of local estimators so that each controller estimates
the state of the whole formation. It was noted that due to the cooperation
between these decentralised controllers, the overall control structure could be
considered as a centralised controller.

The tuning of a decentralised PID controller for a large flexible space structure in
(Shi et al., 2016) uses the frequency domain-based direct optimisation approach.
In (Shi et al., 2016) and (Davison et al., 2009), a performance index was proposed
which was motivated by optimal transient shaping and the index was minimised
by tuning PID controller gains under the constraint that the system is stable
for systems.

Additionally, in (Alavian and Rotkowitz, 2013), (Alavian and Rotkowitz, 2015b),
(Alavian, 2017) and the references therein, it is shown that for particular
combinations of LTI plants and admissible controllers, the H∞ design problem
can still be recast as a convex optimisation problem.

1.4 LTI time-delay systems

The goals of this thesis include the design of decentralised controllers for time-
delay systems. Hence, in this section, we (briefly) introduce time-delay systems
and some of the existing tools available to design (centralised) controllers for
them. We refer to (Fridman, 2014; Gu et al., 2012; Michiels and Niculescu,
2014; Richard, 2003) and the references therein for more detail on time-delay
systems and their properties. Time-delays are inherent to various complex
systems and often deteriorate the system performances. Systems with time-
delays are often known as time-delay systems, hereditary systems, systems
with after-effect, and systems with time-lag (Gu et al., 2012). Analysis of
time-delay systems has become attractive to researchers due to their prevalence
in applications such as chemical processes, engine cooling systems, aircraft
systems, hydraulic systems, irrigation channels, supply networks, communication
channels, electrical power systems, and metallurgical processing systems (Alanis
and Sanchez, 2017). Time-delays may arise in these systems due to transport,
communication, measurement, control, or computation delays. The time-delays
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may be known or unknown, constant or time-varying, deterministic or stochastic
depending on the system that is considered (Alanis and Sanchez, 2017). Delays
represent a versatile modeling tool for communication effects, since it can
gather distance, packet loss, sampling, and asynchronism phenomena into one
unique time effect (Kruszewski et al., 2012; Richard and Divoux, 2007; Zhang
et al., 2014). In this thesis, the applications of sampled data control system
and automated vehicle following system are considered in Chapters 3 and 4,
respectively. Many other examples of time-delay systems include congestion
control in communication networks, neural networks, populations dynamics,
epidemics, control of turbulent flows, and pressure control, see (Anthonis et al.,
2007; Erneux, 2009; Feingesicht et al., 2017; Foley and Mackey, 2009; Fridman,
2014; Hollot et al., 2002; Kolmanovskii and Myshkis, 1999; Sipahi et al., 2011)

In this work, we consider linear time-invariant plants with constant time-delays
described by Delay Differential Algebraic Equations (DDAEs), see (Gumussoy
and Michiels, 2011; Michiels, 2011) and the references therein, in the most
general form

P :


Epẋp(t) = Ap0xp(t) +

∑m
i=1Apixp(t− τi) +Bp1u(t) +Bp2w(t),

y(t) = Cp1xp(t),

z(t) = Cp2xp(t),

(1.1)

where xp(t) ∈ Rnp is the instantaneous state (solution) vector at time t. The
time-delays are assumed to be time-invariant and satisfy 0 < τi ≤ τmax. The
state of system (1.1) is a function xp,t corresponding to the past time-interval
[t − τmax, t]. That is, xp,t(θ̃) = xp(t + θ̃), −τmax ≤ θ̃ ≤ 0, then let xp,0 = φ,

and xp(θ̃) = φ(θ̃), −τmax ≤ θ̃ ≤ 0. Similarly, u(t) ∈ Rnu and y(t) ∈ Rny

are instantaneous controlled input and measured output vectors at time t,
whereas the instantaneous exogenous input and the instantaneous exogenous (or
controlled) output are represented as w(t) ∈ Rnw and z(t) ∈ Rnz respectively.
We use the notations R, R+

0 and R+ to represent sets of real numbers, non-
negative real numbers and strictly positive real numbers respectively, and
xp ∈ Rnp is a short notation for (xp1, ..., xpnp).The measured output y is made
available to the controller for feedback computation. Throughout the thesis, A,
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B, C, D and E (with or without subscript) will be used to represent constant
real-valued matrices. We allow the leading matrix Ep in (1.1) to be singular. For
well-posedness of system (1.1), we consider the following assumption throughout
out this thesis which is satisfied in most practical cases of interest.

Assumption 1 There exist a pair of matrices U and V such that matrix
UTAp0V is invertible, where the columns of U and V form a minimal basis for
the left and right null spaces of matrix Ep respectively.

Assumption 1 ensures that DDAE (1.1) without inputs is semi-explicit
(differentiation index equal to 1) (Fridman, 2002; Gumussoy and Michiels,
2011). This assumption is satisfied by retarded and neutral type time-delay
systems considered in this thesis.

For the purpose of defining the solution of system (1.1), we consider its inputs
to be zero (u ≡ 0 and w ≡ 0). Then, a forward solution of (1.1) on the interval
[0, t0], ∀ t0 > 0, with an initial condition φ, is an absolutely continuous function
that satisfies the differential equation (1.1) almost everywhere on the interval
[0, t0] (Michiels, 2011). Let us consider the initial condition φ ∈ X ,

X :=
{
φ ∈ C([−τmax, 0];Rnp) : UTAp0φ(0) +

m∑
i=1

UTApiφ(−τi) = 0
}
,

where U ∈ Rnp×ν is a minimal basis for the right nullspace of Ep (with
rank(Ep) = np − ν), such that UTEp = 0. Then, it is shown in (Fridman,
2002) that for every initial condition φ ∈ X , t0 > 0, a forward solution for
(xp(φ))(t) exists and is uniquely defined on the interval [0, t0]. Here, we use the
notation (xp(φ))(t) to show that the forward solution in time is dependent on
the initial condition φ.

Even without the presence of the feed-through terms, input delays, or output
delays, the model given by (1.1) allows to describe LTI systems with discrete
delays in their most general form, including systems of retarded and neutral
type, delays in input and output, non-trivial feed-through, and delayed
interconnections of subsystems. This is portrayed below with the help of
a simple example.
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Example 1.4.1 Let us consider the presence of time-delays at the controlled
input, the measured output and the first-order derivative of the state vector in
an LTI system (a neutral type time-delay system),ψ̇(t) + e1ψ̇(t− θ1) = aψ(t) + b0u(t) + b1u(t− θ2),

y(t) = c0ψ(t) + c1ψ(t− θ3) + du(t),
(1.2)

where a, b0, b1, e1, d, c0 and c1 are constants, θ1, θ2 and θ3 are constant time-
delays, ψ is the instantaneous state, u is the input, and y is the output. Using
dummy variables γψ, γu and γy, we can rewrite the system as

γ̇ψ(t) = aψ(t) + b0γu(t) + b1γu(t− θ2),

0 = −γψ(t) + ψ(t) + e1ψ(t− θ1),

0 = −γu(t) + u(t),

0 = −γy(t) + c0ψ(t) + c1ψ(t− θ3) + dγu(t),

y(t) = γy(t).

(1.3)

The dummy variables γψ, γu and γy , defined by the 2nd-4th equations in (1.3),
allow to move a delay in the derivative of the state variable (inherent to a
neutral type system), in the input and the output to a delay in a (pseudo) state
variable, and then remove the feed-through term from the output equation. That
is, by defining the new state vector as xp(t) = [γT

ψ (t) ψT(t) γT
u (t) γT

y (t)]T, the
LTI system (1.2) can be turned into form (1.1). ◦

Furthermore, as differential equations and algebraic equations modelling
connections can be directly included in (1.1), the latter is very amendable for
modelling interconnected systems. Due to the generality of system description
(1.1), it is possible to consider classes of non-causal systems and systems with
impulsive solutions. In order to exclude such systems, Assumption 1 has been
consider for well-posedness (Gumussoy and Michiels, 2011). The following
section recalls some of the techniques available to analyse and design fixed-order
controllers for time-delay systems of the form (1.1).
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P

w(t) z(t)

u(t) y(t)
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Figure 1.6: The closed-loop system of plant and controller.

1.5 Stabilisation and fixed-order controller design

The system described in (1.1) is to be controlled using a feedback controller
with prescribed order “nc”,

K :

ẋc(t) = Acxc(t) +Bcy(t),

u(t) = Ccxc(t) +Dcy(t),
(1.4)

where xc(t) ∈ Rnc is the controller state vector. Here, the case of nc = 0
corresponds to a static or proportional controller of the form u(t) = Dc y(t).
The other cases of nc ≥ 1 correspond to a dynamic controller as given in (1.4),
where Ac is a matrix of size nc × nc. Throughout this thesis, we assume that
plants of the form (1.1) can be stabilised using a fixed-order controller of the
form (1.4). The feedback interconnection of plant (1.1) and controller (1.4) can
be described, when defining x = [xTp uTγTwxTc yT]T, by the following DDAE (see
Figure 1.6), Eẋ(t) = A0x(t) +

∑m
i=1Aix(t− τi) +Bw(t),

z(t) = Cx(t),
(1.5)

where

E =


Ep 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 I 0
0 0 0 0 0

 , A0 =


Ap0 Bp1 Bp2 0 0
Cp1 0 0 0 −I
0 0 −I 0 0
0 0 0 Ac Bc

0 −I 0 Cc Dc

 , (1.6)
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and, for i = 1, ...,m, we have

Ai =


Api 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , B =


0
0
I

0
0

 , C
T =


Cp2

0
0
0
0

 .

Now we outline two popular classes of techniques to perform stability analysis
of linear TDSs. First, using frequency domain-based techniques, necessary
and sufficient conditions for exponential stability are generally expressed in
terms of the position of the characteristic roots (eigenvalues) of the system post-
Laplace transformation (Apkarian and Noll, 2018; Michiels and Niculescu, 2014;
Partington and Bonnet, 2004). Second, using time domain-based techniques,
sufficient conditions for exponential stability are generally expressed in terms of
LMI using Lyapunov-Krasovskii and Lyapunov-Razumikhin stability conditions
(Fridman, 2014).

Note that for well-posedness of the closed-loop system (1.5), Assumption 1
changes to the following assumption.

Assumption 2 Matrix UT (Ap0 +Bp1DcCp1)V is invertible.

Assumption 2 rephrases Assumption 3.1 in (Gumussoy and Michiels, 2011)
(see appendix for proof), which ensures that DDAE (1.1) without inputs is
semi-explicit (differentiation index equal to 1) and that this property is not
altered by the feedback. We refer to (Gumussoy and Michiels, 2011) for more
details.

The direct optimisation approach of (Michiels, 2011) and (Gumussoy and
Michiels, 2011) may be used to stabilise and subsequently optimise the robustness
of the closed-loop system in the frequency domain. In this case, it is possible
to directly optimise stability and performance measures as a function of the
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parameter vector p̄, containing the tunable parameters of the controller, that is,

p̄ = vec
([

Ac Bc

Cc Dc

])
(1.7)

for a non-structured controller of dimension nc. Notice in (1.6) that all the
controller parameters are contained in matrix A0, which can be emphasized
by using the notation A0(p̄). The frequency domain-based direct-optimisation
approach is adequate for the design of structurally constrained controllers. We
say that an LTI controller is structurally constrained if its coefficient matrices
have elements that are fixed (hence, they are not available for design). However,
the traditional design methods using LMI approach cannot be (easily) adapted
to the case of structurally constrained output-feedback controllers.

First, we briefly discuss the traditional methods available for control design and
provide a reasoning for not adopting them. Then, the concepts of the adopted
frequency domain-based optimisation technique are recalled.

1.5.1 Traditional methods for controller design

Traditional methods for designing stabilising and optimal H∞ controllers for
LTI MIMO plants with time-delays are grounded in the Riccati equation and
LMI framework (see (Fridman, 2014) and references therein) using sufficient
conditions for stability. In general, controllers designed by these methods are
not structured and their dimension is equal or larger than the order of the plant
(full order controllers).

The classical approach for control design based on matrix inequalities with an
unknown output-feedback static controller gain matrix gives rise to a bilinear
(non-convex) optimisation problem. Several attempts to solve this optimisation
problem can be found in the literature (Chen and Zheng, 2006; Fridman and
Shaked, 2002; Li and de Souza, 1997; Zeng et al., 2015; Zhang et al., 2005).
For example, in (Barreau et al., 2018), an iterative LMI procedure which
takes advantage of the elimination lemma was introduced to solve the bilinear
optimisation problem. Intuitively, the problem does not become simpler for the
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design of robust and stabilising structured (for decentralised, overlapping, or
distributed controllers) or fixed-order controllers for systems with multiple delays
at input, output, and state. Therefore, this thesis focuses on using frequency
domain-based direct optimisation techniques of (Michiels, 2011) and (Gumussoy
and Michiels, 2011) grounded in necessary and sufficient conditions for stability
which are adequate for designing structured (decentralised, distributed, PID,
and overlapping) and lower-order (or fixed-order) controllers. However, using
this approach implies that only LTI systems with constant time-delays can be
considered for control design. Then, some nonlinear and time-varying properties
of the (linearised) systems may be treated later, on the basis of the resulting
LTI controller, using techniques from robust control theory (which are generally
conservative). The objective functions used for optimisation of the controller
parameters in the frequency domain are described in the following subsections.

1.5.2 Robust spectral abscissa optimisation

In this thesis, we focus on (strong) exponential stability of LTI systems with
constant time-delays. The notion of exponential stability (of the null solution)
is defined as follows for (1.1) when the inputs are zero (Michiels and Niculescu,
2014).

Definition 1.5.1 (Exponential stability) The null solution of (1.1), when u ≡ 0
and w ≡ 0, is exponentially stable if and only if there exist constants α1 > 0
and α2 > 0 such that,

∀ φ ∈ X , ∀ t ≥ 0, ||(xp(φ))(t)|| ≤ α1e−α2t||φ||s,

where || · ||s is the supremum norm, ||φ||s = supθ̃∈[−τmax,0] ||φ(θ̃)||2.

However, plant (1.1) need not be stable and we would like to design a controller
that guarantees the exponential stability of the closed-loop system (1.5). For
this purpose, the frequency domain-based direct optimisation technique is
adopted for the reasons mentioned in Section 1.5.1. The spectral abscissa of
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the closed-loop system (1.5) with w ≡ 0 is defined as follows,

c(p̄; τ̄) = sup
λ∈C
{R(λ) : detM(λ, p̄; τ̄) = 0}, (1.8)

where p̄ is defined in (1.7),

M(λ, p̄; τ̄) = λE −A0(p̄)−
m∑
i=1

Aie−λτi ,

τ̄ ∈ (R+)m is the vector of time-delays (τ̄ = [τ1 .... τm]T), and R(λ) is the real
part of the complex number λ. Notice that we stress the dependence of functions
on τ̄ and p̄ only when necessary. However, for the optimisation problem, the
objective function only has controller parameters (p̄) as variables. We use the
notation m(a; b) throughout this thesis to express m as a function of variable
a, depending on parameter b. The exponential stability of the null solution of
(1.5) is equivalent to the condition c(p̄; τ̄) < 0 (see (Michiels, 2011)). However,
the function τ̄ 7→ c(p̄; τ̄) might not be continuous and could be sensitive to
infinitesimal delay changes (in general, as neutral time-delay system could be
included in model (1.1)). Therefore, we define the robust spectral abscissa
C(p̄; τ̄) in the following way:

C(p̄; τ̄) := lim
ε→0+

sup
τ̄ε∈B(τ̄ ,ε)

c(p̄; τ̄ε). (1.9)

In (1.9), B(τ̄ , ε) is an open ball of radius ε ∈ R+
0 centred at τ̄ , B(τ̄ , ε) := {θ̄ ∈

Rm : ||θ̄ − τ̄ || < ε}. The sensitivity of the spectral abscissa with respect to
infinitesimal delay perturbations has been resolved by considering the robust
spectral abscissa, since this function can be shown to be a continuous function
of the delay parameters (and also parameters in p̄), see (Michiels, 2011). We
use the following neutral type example taken from (Michiels, 2011) to show that
C(p̄) may be greater than c(p̄).
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Figure 1.7: Characteristic roots of (1.10) for delays (τ1, τ2) = (1, 2) (indicated
with blue ‘x’) and (τ1, τ2) = (0.99, 2) (indicated with red ‘o’).

Example 1.5.2 Consider the system[
1 0
0 0

]
ẋ(t) =

[
0 − 1

8
−1 1

]
x(t)+

[
0 0
0 − 3

4

]
x(t−τ1)+

[
0 0
0 1

2

]
x(t−τ2). (1.10)

In Figure 1.7, we plot the rightmost characteristic roots for two sets of delay
values: (τ1, τ2) = (1, 2) and (τ1, τ2) = (0.99, 2). The blue dashed line corresponds
to the spectral abscissa and the red dashed line corresponds to the robust spectral
abscissa of system (1.10) with delays (τ1, τ2) = (1, 2). Thus, although the zero
solution is asymptotically stable for (τ1, τ2) = (1, 2), the stability is not robust
to an infinitesimal delay perturbation.

We now define the concept of strong exponential stability.

Definition 1.5.3 The null solution of (1.5) when w ≡ 0 is strongly
exponentially stable if there exists a number ε > 0 such that the null solution of

Eẋ(t) = A0x(t) +
m∑
i=1

Aix(t− (τi + δτi)))

is exponentially stable for all δτ̄ ∈ Rm satisfying ||δτ̄ || < ε and τi + δτi ≥ 0, i =
1, ....,m.
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In (Michiels, 2011) it has been shown that the null solution is strongly
exponentially stable iff C(p̄) < 0. To obtain a strongly exponentially stable
closed-loop system and to maximise the exponential decay rate of the solutions,
the tunable controller parameters (in p̄) are tuned for minimising robust spectral
abscissa, that is, they are obtained by minimising

min
p̄
C(p̄). (1.11)

1.5.3 Strong H∞ norm optimisation

The H∞ norm was introduced in the 1970s and early 1980s, see (Helton,
1978; Tannenbaum, 1980; Zames, 1981). Subsequently, the H∞ methods were
developed and are now routinely used for control design. The H∞ norm may be
used for designing systems with optimal (energy) gain from input disturbances
w to some output signal z. Additionally, the robustness of stability for systems
with parametric uncertainties can be recast in terms of the H∞ norm. In this
thesis, the system performance levels are expressed in terms of the H∞ norm.

The transfer function matrix from w to z of the system represented by (1.5) is
given by

G(λ, p̄; τ̄) := C
(
λE −A0(p̄)−

m∑
i=1

Aie−λτi
)−1

B. (1.12)

Under assumption of internal stability, the H∞ norm of the transfer function
matrix given in (1.12) can be expressed as

||G(jω, p̄; τ̄)||H∞ = sup
ω∈R

σ1(G(jω, p̄; τ̄)), (1.13)

where σ1 is the maximum singular value

σ1(G(jω, p̄; τ̄)) =
√
λmax(G(jω)∗G(jω)), (1.14)

of the matrix G(jω), where λmax is the maximum eigenvalue of a matrix. If
G(s) is a scalar function, then ||G||H∞ = supω∈R |G(jω)|. The H∞ norm can
also be defined in the time domain. For this purpose, let L2[0,∞) be the L2

space of all square integrable and Lebesgue measurable functions defined on
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the time interval [0,∞). Additionally, let the L2 norm be defined as

||w||L2 =

√∫ ∞
0

w(t)∗w(t)dt. (1.15)

Then, it can be shown that the following equality holds (Fridman, 2014)

||G||H∞ = sup
{
||z||L2

||w||L2

: w ∈ L2[0,∞), w 6= 0
}
. (1.16)

Therefore, the H∞ norm reflects a worst case energy amplification ratio of the
output signal energy ||z||L2 to the input signal energy ||w||L2 .

Similar to the spectral abscissa function, the function τ̄ ∈ (R+)m 7→
||G(jω, p̄; τ̄)||H∞ might not be continuous and could be sensitive to infinitesimal
delay changes (in general, inherited from the behaviour of the transfer function
at high frequencies). We use the following example taken from (Gumussoy and
Michiels, 2011) to illustrate this behaviour.
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Figure 1.8: The maximum singular value plot of G(jω) in (1.17) for (τ1, τ2) =
(1, 2) as a function of ω.

Example 1.5.4 Consider the transfer function

G(λ; τ̄) = λ+ 2.1
(λ+ 0.1)(1 + 0.25e−λτ1 + 0.5e−λτ2) . (1.17)
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Figure 1.9: The maximum singular value plot of G(jω) in (1.17) for (τ1, τ2) =
(0.999, 2) as a function of ω.

We plot the maximum singular values for two sets of delay values: (τ1, τ2) = (1, 2)
(in Figure 1.8) and (τ1, τ2) = (0.999, 2) (in Figure 1.9) as a function of ω. The
dashed line in Figures 1.8-1.9 correspond to the H∞ norms of system (1.17)
with delays (τ1, τ2) = (1, 2) and (τ1, τ2) = (0.999, 2), respectively. This example
illustrates that the H∞ norm of the transfer function G may be sensitive to
small delay perturbations. It has been shown in (Gumussoy and Michiels, 2011)
that the H∞ norm is not continuous in the delays at (τ1, τ2) = (1, 2) for this
example and, hence, sensitive with respect to infinitesimal delay perturbations.

Therefore, under the assumption of strong exponential stability of the null
solution, we define the strong H∞ norm |||G(jω, p̄; τ̄)|||H∞ as follows.

|||G(jω, p̄; τ̄)|||H∞ := lim
ε→0+

sup
τ̄ε∈B(τ̄ ,ε)

||G(jω, p̄; τ̄ε)||H∞ (1.18)

Contrary to the (standard)H∞ norm, the strongH∞ norm continuously depends
on the delay parameter. The continuous dependence also holds with respect to
the elements of the system matrices, which include the elements in p̄, as shown
in (Gumussoy and Michiels, 2011).
To improve the robustness or performance levels expressed in terms of the H∞
norm of (1.13), tunable controller parameters (in p̄) can be optimised by solving
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the problem
min
p̄
|||G(jω, p̄)|||H∞ . (1.19)

Finally, note that if the closed-loop system corresponds to a delay system
of the retarded type, then the robust spectral abscissa and strong H∞ norm
reduce to the standard spectral abscissa and H∞ norm (see (Michiels, 2011)
and (Gumussoy and Michiels, 2011)).

1.6 General problem setting

The work in this thesis is dedicated to the following problem:

“Develop scalable and computationally efficient algorithms for the design of
robust and stabilising LTI decentralised, distributed, and overlapping feedback
controllers for LTI time-delay systems”.

More precisely, we provide methods to design a (structured) controller for the
following cases.

• The generic case where the plant to be controlled is a Multiple-Input
Multiple-Output LTI time-delay system as in (1.1).

• A special case where not only the controller but also system (1.1) is
structured. The special case addressed corresponds to system (1.1)
composing of identical or quasi-identical (identical subsystems with non-
identical uncertainties) subsystems or nodes arranged in some network
topology.

For the generic case, the approaches to design (structured) controllers will be
based on translating the structure into an appropriate sparsity pattern on the
controller coefficient matrices. For the special case, the approaches to design
structured controllers will be based on a decoupling transformation. The latter
problem for structured systems is formulated using some concepts from graph
theory (Bapat, 2010) in the following subsection.
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1.6.1 Systems with network structure

Consider that the system of form (1.1) is composed of a network, corresponding
to the interconnection of subsystems, where the interconnections are described
by a directed graph G = {V, E , AM} with a set of nodes V = {1, 2, 3, ...., n} and
a set of edges E ⊂ V ×V . The edge (i, j) ∈ E connects from node j ∈ V to node
i ∈ V. The graph G need not be strongly connected. The weighted adjacency
matrix, denoted by

AM = [aMi,j ]ni,j=1 ,

has zero diagonal entries and non-negative off-diagonal entries such that aMi,j >

0 if and only if the corresponding edge (i, j) ∈ E . For more details on graph
theory and adjacency matrices, we refer to (Bapat, 2010).

Each of the n subsystems or nodes hosts a dynamical system described by a
DDAE as 

Êpẋpi(t) = Âp0xpi(t) +
∑m
k=1 Âpkxpi(t− τk)

+B̂p1ui(t) + B̂p2wi(t) + B̂p3uci(t),

yi(t) = Ĉp1xpi(t),

zi(t) = Ĉp2xpi(t),

yci(t) = Ĉp3xpi(t), i = 1, . . . , n,

(1.20)

where xpi ∈ Rn̂p is the instantaneous state, ui ∈ Rn̂u is the controlled input,
yi ∈ Rn̂y is the measured output, wi ∈ Rn̂w is the exogenous input, and zi ∈ Rn̂z

is the exogenous output of node “i”. The additional input uci ∈ Rnuc and output
yci ∈ Rnyc are related to the coupling with other nodes or subsystems in the
network, described by

uci(t) =
n∑
j=1

aMi,jycj(t), i = 1, . . . , n. (1.21)

For the same reason as that of (1.1), DDAE (1.20) allows to describe LTI
subsystems in their most general form. Throughout this thesis, the word
“node” is used interchangeably with “subsystem”, since each node under
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consideration is a dynamical subsystem. Notice that the system (1.20)-(1.21)
is a special case of the system (1.1) with xp(t) = [xp1(t)> . . . xpn(t)>]>,
y(t) = [y1(t)> . . . yn(t)>]>, u(t) = [u1(t)> . . . un(t)>]>, w(t) =
[w1(t)> . . . wn(t)>]>, and z(t) = [z1(t)> . . . zn(t)>]>.

For simplicity of the presentation in this section, analysis is performed on the
network topologies assuming that they have a kind of normalised adjacency
matrix based on the concept of normalised Laplacian matrices in (Graham
and Chung, 1996). In this thesis, we consider a normalised adjacency matrix
to satisfy the row sum condition

∑n
j=1 aMi,j = 1 ∀ i = 1, ..., n, whenever the

in-degree of row i is not zero2. Let the spectrum of the adjacency matrix AM
be denoted by {λa1, ...., λan}. A normalised adjacency matrix has the property
that all its eigenvalues have modulus smaller than or equal to 1 independent
of its dimension ( |λai| ∈ [0, 1], since

∑n
j=1 aMi,j = 1, i = 1, ..., n). This will

play a significant role in the scalable design of distributed controllers (more
details on why will be presented in Chapter 2). Some frequently used network
topologies for large-scale or complex systems (with n nodes) are described in
Appendix A.

1.6.2 Challenges

All the works mentioned in Section 1.3 were focused on designing LTI
decentralised (feedback) controllers for non-delayed systems. However, their
techniques do not carry over easily to systems with time-delays, as the system
models become infinite-dimensional. The control design problem addressed
in this thesis is characterised by three main challenges. First, with the
aforementioned classical control design approaches imposing constraints on the
structure or order of the controller gives (typically) rise to non-convex bilinear
matrix inequalities, which are difficult to solve (Barreau et al., 2018). Second, by
including delays the system models become infinite-dimensional (Michiels et al.,
2017), hence, any controller design problem involving tuning of finitely many

2Note that we can “normalise” an arbitrary adjacency matrix AM when its row sum∑n

j=1 aMi,j = dg , i = 1, ..., n, dg > 0. That is, we can rewrite yci(t) = dgĈp3xpi(t) and
uci(t) = d−1

g

∑n

j=1 aMi,jycj(t), i = 1, ..., n in (1.20)-(1.21).
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controller parameters can be considered as a reduced-order controller design
problem. Also, it is difficult to implement full order controllers for time-delay
systems, hence, they are generally avoided in applications. Furthermore, as
the number of subsystems increase in (1.20), there is a large increase in the
computational complexity of the corresponding controller design problem. That
is, it may not always be possible to solve the (non-convex) controller design
(optimisation) problem for very large number of subsystems due to the large
computation time required.

A few researchers have proposed methods to design structured controllers for
time-delays systems. In (Özer and İftar, 2015), a method was proposed to
design decentralised controllers for systems with time-delays as an extension
of the decentralised pole assignment algorithm in (Davison and Chang, 1990),
where the centralised controller design algorithm was used to design a controller
for each agent at each step. However, at each step all the tunable parameters
were therefore not (simultaneously) considered. Alternatively, in (Apkarian and
Noll, 2018), H∞ controller synthesis was proposed for decentralised control by
imposing structure in the controller design algorithm. They used the Nyquist
stability criterion and grid-based optimisation technique for H∞ controller
synthesis. The method proposed in this thesis complements the approach in
(Apkarian and Noll, 2018).

In general, the design of structurally constrained (decentralised, distributed, and
overlapping) controllers for time-delay systems, in a scalable and computationally
efficient manner, is a largely open problem in the literature. Hence, one of
the main goals of this thesis will be to solve this open problem. Furthermore,
we propose scalable or computationally efficient methods to design control for
networked systems (with aperiodic sampling and time-varying delays using
the small gain theorem recalled in Appendix B) and automated platoons of
heterogeneous (parameter) vehicles.

1.7 Structure of the thesis

The remainder of this thesis is organised as follows.
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Chapter 2

A methodology is proposed in Chapter 2 for the design of robust structurally
constrained controllers for linear time-delay systems, focusing on decentralised
and overlapping fixed-order controllers for MIMO plants. The methodology is
grounded in a direct optimisation approach and relies on the minimisation of
the spectral abscissa and H∞ cost functions, as a function of the controller or
design parameters. First, an approach applicable to generic MIMO time-delay
systems is presented, which is based on imposing a suitable sparsity pattern
with the possibility of fixing elements in the controller parametrisation. Second,
we show that if the delay system to be controlled has by itself the structure of
a network of coupled identical subsystems, this structure can then be exploited
by an improved algorithm for the design of decentralised (or overlapping) fixed-
order controllers for the infinite-dimensional system, thereby increasing the
computational efficiency and scalability with the number of subsystems. Several
numerical examples are used to illustrate the effectiveness of the methodology,
as well as its extension towards consensus type problems. Furthermore, an
extension to a scalable algorithm, which has an exponential stability condition
that is independent of the number of nodes, using a novel structure exploiting
tool is presented for the design of decentralised controllers. The results of this
chapter have been presented in (Dileep et al., 2018a), (Dileep et al., 2018b),
and (Dileep et al., 2018c).

Chapter 3

In Chapter 3, a methodology is proposed for the design of sampled-data
fixed-order decentralised controllers for MIMO LTI time-delay systems with
asynchronous sensors and actuators, time-varying transmission delays, and
aperiodic sampling. We model the errors induced by the network imperfections
using an operator approach leading to an L2 stability criterion. First, the
proposed method is applied to generic MIMO LTI systems with time-delays.
Second, when the delay system to be controlled has the structure of a
network of coupled quasi-identical subsystems, we use a scalable algorithm to
design identical decentralised controllers through network structure exploitation.
Quasi-identical subsystems are identical subsystems that have non-identical
uncertainties or network imperfections. By exploiting the structure, we increase
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the computational efficiency and scalability with the number of subsystems.
Finally, the effectiveness of the methodology is illustrated using a numerical
example. The results of this chapter have been presented in (Dileep et al., 2020).

Chapter 4

In Chapter 4, the application of heterogeneous vehicular platoons with
Cooperative Adaptive Cruise Control (CACC) configuration, based on the
problem formulation of TNO (Helmond, Netherlands), is presented. We
consider Linear Time Invariant (LTI) models with constant time-delays at
state, input, and output for the vehicles. The closed-loop systems of (identical)
local controllers and heterogeneous parameter vehicles are modelled by a
system of delay differential algebraic equations. The design problem of
stabilising (identical) controllers achieving L2 string stability for one vehicle
look-ahead platoon is reduced to a simultaneous controller design problem for
a parameterised (sub)system, where the allowable values of the parameters
correspond to heterogeneity (including time-delays) of the vehicles. By treating
the heterogeneity in parameters as perturbations contained in specific intervals
or regions, we determine the values for pseudo-spectral abscissa and robust
induced-L2 norm. Hence, we ensure that the achieved exponential stability
and string stability properties along with the overall computational complexity
(of designing the controller) are independent of the number of vehicles. The
effectiveness of the approach is validated by numerical experiments using the
MATLAB software. The results of this chapter have been presented in (Dileep
et al., 2019).

Chapter 5

Finally, Chapter 5 presents the general conclusions of this thesis and some
directions for future work.





Chapter 2

Design of decentralised
controllers

2.1 Introduction

In this chapter, we address the design of structurally constrained stabilising and
H∞ optimal controllers for large-scale linear systems with time-delays, including
systems having a network structure. For large-scale MIMO plants it is often
infeasible to implement centralised controllers (see (Lamnabhi-Lagarrigue et al.,
2017; Lunze, 1992; Siljak, 2013) and the references therein). As a consequence,
structurally constrained controllers, in particular decentralised or distributed
(PID) controllers, are favourable for industrial applications (McMillan, 2012).

The methodology used in this chapter is grounded in the direct optimisation
approach for controller design, where objective functions specifying performance
criteria are directly optimised as a function of the available controller or design
parameters. More specifically, the stabilisation and robust controller design
problem for the delay system are translated into solving the, in general, non-
smooth non-convex optimisation problems of minimising the spectral abscissa
function and H∞ norms (see (Michiels, 2011) and (Gumussoy and Michiels,

31
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2011) respectively) using dedicated optimisation algorithms. This approach
generalises the one underlying the HIFOO package (Burke et al., 2006) and the
one underlying the MATLAB function hinfstruct (Apkarian and Noll, 2006),
both for finite-dimensional LTI systems.

The subject-matter of this chapter is three-fold. First, the direct optimisation
approach for designing fixed-order H∞ optimal controller for time-delay systems
is extended towards a more general class of structured controllers for MIMO
plants, which includes decentralised and overlapping controllers (recalling from
(Dileep et al., 2018b)). We assume that controllers are overlapping when
they consider measured output from neighbouring subsystems. Hereby the
structural constraints are translated into sparsity patterns for the controller
parameterisation, as done in (Ozer and Iftar, 2015) for the stabilisation problem.
The approach starts from a state space representation and fully exploits
properties of delay systems. Particularly for neutral type systems with multiple
delays, it explicitly takes into account the fragility (problem) of potential
sensitivity of the spectral abscissa and H∞ norms with respect to infinitesimal
delay perturbations (Hale and Verduyn Lunel, 2002; Michiels et al., 2009b). The
adopted approach complements the approach for infinite-dimensional systems
in (Apkarian and Noll, 2018), which is based on appropriately sampling the
frequency response.

Second, we consider systems which have themselves a network structure. We
show how in the design of classes of decentralised and distributed fixed-order
controllers, the structure of the overall system can be exploited by a refined
method, in order to arrive at a higher computational efficiency, and improved
scalability with respect to the number of subsystems. More precisely, we
will assume that the MIMO plant consists of a network of coupled identical
subsystems, each of them having an identical local controller to be designed.
The key will be a decoupling transformation reducing the overall design problem
into a robust or simultaneous controller design problem for one parameterised
subsystem, where the allowable values of the parameter are related to the
adjacency matrix of the network graph (Col et al., 2018; Rejeb et al., 2018).
The same kind of transformation has been used for the design of full order
distributed controllers for delay-free systems in (Massioni and Verhaegen, 2009),
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(a) MIMO plant and structurally
constrained controller.
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Figure 2.1: Classes of systems under consideration. Section 2.2 presents an
approach for the design of structured controllers for generic MIMO plants
(shown in Fig. 2.1a for the special case of decentralised feedback control). In
Section 2.3 a particularised approach is presented for a class of systems having
a network structure (Fig. 2.1b).

within an LMI framework. It has also proven its usefulness in the analysis of
linear consensus problems (see, e.g. (Morarescu et al., 2016; Olfati-Saber and
Murray, 2004) and the references therein), and of network synchronisation, as it
lays at the basis of the so-called Master Stability Function (Pecora and Carroll,
1998).

Third, we focus on network topologies that have the (eigenvalue) parameter
related to the network topology confined to a specific subset Ω of the
complex plane (an interval on the real axis, a circle,. . . ), which can be chosen
independently of the number of nodes. In such a case, sufficient conditions
for stability, achieving a desired level of performance of the network, can be
obtained by taking a robust control point of view and handling the network
related parameter as an uncertain parameter confined to the full set Ω. Note
that if the (Hausdorff) distance between the spectrum of the adjacency matrix
and Ω goes to zero when the number of systems goes to infinity, the conservatism
of the sufficient conditions disappears in the limit. In this chapter, we illustrate
this approach by means of the decentralised stabilisation problem for network
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topologies for which the set Ω is an interval on the real axis. The robust
stabilisation problem of a system, affected by uncertainty confined to an interval
on the real axis, fits within the framework of the (real structured) pseudospectral
abscissa optimisation. The novel method proposed in (Borgioli and Michiels,
2018) for the computation of the pseudospectral abscissa of a delay system
(see Section 2.4 for the definition) is able to fully exploit the structure of
the uncertainty. Hence, the related robust stability conditions are necessary
and sufficient. The method in (Borgioli and Michiels, 2018) is based on the
discretisation of a gradient flow maximising the real part of the right most
eigenvalue in the space of perturbations. The optimisation of the pseudospectral
abscissa as a function of the controller parameters, which may be a non-convex
and non-smooth function, is performed with the HANSO algorithm (Hybrid
Algorithm for Non-Smooth Optimisation, see (Overton, 2009)). The final
contribution of this chapter consists of combining the ingredients spelled out
above, the decomposition approach of networks and the pseudospectral abscissa
optimisation, which allows us to design stabilising decentralised fixed-order
controllers for network of coupled systems, with computational complexity
independent of the number of nodes.

The presented algorithms for structurally constrained controller design, with
the possibility of network exploitation, have been integrated in the existing
software tool tds_hopt for fixed-order H∞ optimisation of delay systems
corresponding to the article (Gumussoy and Michiels, 2011). The updated
software tool (tds_hopt-nse, see (Dileep and Michiels, 2018b)) allows the
designer to select the sub-controller input-output interactions and specify their
orders. Additionally, the user can also specify the adjacency matrix and other
matrices corresponding to the input or output signals exchanged between coupled
subsystems.

Both presented methods start from system models in terms of linear delay-
differential algebraic equations (DDAEs), which are very flexible and general
as they allow a systematic description of (sub)-systems, controllers and their
interconnections. DDAE models include delay systems of both retarded and
neutral type and preserve linearity of system matrices with respect to the
controller parameters in the closed-loop system description. We will also
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illustrate how, relying on the DDAE framework mentioned in Section 1.4, the
applicability of the design method can be extended towards synchronisation and
consensus type problems in networks of delay-coupled systems. This involves
the design of feedback controllers acting on output measurements, relative with
respect to the output of other subsystems. The targeted classes of systems,
related to the main contributions of this chapter as mentioned above, are
illustrated in Fig. 2.1.

The remainder of this chapter is organised as follows. Section 2.2 presents
a direct optimisation approach to design structurally constrained controllers
for time-delay systems with multiple inputs and multiple outputs. Section
2.3 addresses the application to networks of interconnected systems, and the
exploitation of the network structure. Some numerical examples are presented in
Section 2.3.5, where an example of a consensus-type problem is considered. Then,
an extension to a scalable algorithm for the design of stabilising decentralised
controllers and the corresponding numerical example is presented in Section
2.4. Finally, some concluding remarks are given in Section 2.5. The results of
this chapter have been presented in (Dileep et al., 2018a), (Dileep et al., 2018b),
and (Dileep et al., 2018c).

2.2 Design of structurally constrained controllers

In this section, we formalise the design problem of structured controllers for
generic time-delay systems of the form (1.1). Several kinds of structurally
constrained controllers can be obtained by enforcing constraints on elements of
the controller coefficient matrices contained in

PM :=
[
Ac Bc

Cc Dc

]

and only use the free parameters as variables in the optimisation problem
described in the previous section (see (Dileep et al., 2018b) for more details).
For decentralised and overlapping controllers this amounts to introducing a
sparsity pattern, as can be portrayed with the help of the following example.
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Example 2.2.1 Consider a MIMO plant containing two control inputs and
two measured outputs, and a controller parameterised in the following way:


ẋc1

ẋc2

u1

u2

 =

PM︷ ︸︸ ︷
ac11 0 bc11 0

0 ac22 bc21 bc22

cc11 0 dc11 0
0 cc22 dc21 dc22



xc1

xc2

y1

y2

 . (2.1)

The controller is of order 2 (nc = 2), however, two sub-controllers of order
1 are present. We can observe that if the elements bc21 and dc21 are set be
zero, we have decentralised sub-controllers, that is, interactions between their
states, inputs, and outputs are decoupled. If elements bc21 and dc21 are non-zero,
the sub-controllers are overlapping, that is, the input and sub-controller state
interactions are decoupled, but one of the measured output is shared between the
two sub-controllers. ◦

The sparsity pattern can be described by a binary matrix FM of the same
dimensions as PM (pMi,j being the (i, j)-th element of PM ), whose (i, j)-th
element satisfies

fMi,j =

0, if pMi,j is an optimisation variable;

1, if pMi,j is a fixed element.
(2.2)

This allows us to redefine the parameter vector from (1.7) to include only the
non-zero/non-fixed elements using the information in FM ,

p̄ = vec
FM

PM = vec
FM

([
Ac Bc

Cc Dc

])
, (2.3)

where vecFM PM is a vector containing the elements of PM for which the
corresponding element in FM is equal to one, keeping the same order as in
vec PM .

Notice that the (structured) control design problem for generic system (1.1)
has been translated into sparsity patterns on the controller coefficient matrices.
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That is, the controller parametrisation in (1.7) used for minimising the robust
spectral abscissa function in (1.11) and the strong H∞ norm function in (1.19)
is replaced by the controller parametrisation in (2.3). The controller parameters
(in p̄) can also be optimised for the function fo(p̄),

fo(p̄) =

∞, if C(p̄) ≥ 0,

αo C(p̄) + (1− αo) |||G(jω, p̄)|||H∞ , if C(p̄) < 0.
(2.4)

Here 0 ≤ αo ≤ 1 is the weight used for linear combination of the objective
functions. The two objective functions in this combination are in general
non-convex. They may be not-everywhere differentiable, even not-everywhere
Lipschitz continuous, see (Gumussoy and Michiels, 2011; Michiels, 2011) where
using the same approach (unstructured) fixed-order controllers are designed.

In our implementation, the HANSO (Hybrid Algorithm for Non-smooth
Optimisation) code, see (Overton, 2009), is used for solving the optimisation
tasks. The algorithm relies on a routine for the computation of the
considered objective function as well as its gradient whenever the objective
function is differentiable. The value of the objective function is obtained by
computing rightmost eigenvalues of the DDAE for the spectral abscissa, and
by a generalisation of the Boyd-Balakrishnan-Kabamba (Boyd et al., 1989)
/ Bruinsma-Steinbuch (Bruinsma and Steinbuch, 1990) algorithm for the
H∞ norm, relying on computing imaginary axis solutions of an associated
Hamiltonian eigenvalue problem. It typically constitutes the dominant
computational cost in every iteration. On the contrary, derivatives of the
objective functions with respect to controller parameters are obtained at a
negligible cost from left and right eigenvectors. By this property and by the
fact that fixed-order controllers of lower order are desirable for application,
reducing the number of variables beyond the imposed structure, e.g., by working
with canonical forms, does not have a considerable impact on the overall
computational cost. We refer to (Gumussoy and Michiels, 2011; Michiels, 2011)
and the references therein for more information on the previously described
algorithmic components.

A strongly exponentially stable closed-loop system is required to start the
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optimisation of objective functions involving the strong H∞ norm. If this is not
the case, a preliminary stabilisation phase is performed based on optimising the
robust spectral abscissa. Due to the non-convexity of the objective functions,
there is no guarantee of convergence to the global minimum. In our software,
this is addressed by using randomly generated initial values for the controller
parameters, along with initial controllers specified by the user, and choosing
the best solution from them.

Other controllers

One can use the concept of structural constraints to design many other types
of controllers. A kind of distributed controller can be considered by including
the off-diagonal elements of the Ac matrix in the vector p̄. PID controllers are
commonly used as feedback controllers in the industry. It is also possible to
structurally constrain the dynamic controller to represent a PID controller and
optimise its gains. Let us consider the PID controller mentioned in (Toscano,
2013),

K(s) = KP +KI
1
s

+KD
s

1 + dfs
, (2.5)

for which a realisation is determined by the controller matrices,

[
Ac Bc

Cc Dc

]
=


0 0 KI

0 − 1
df

− 1
d2
f

KD

1 1 KP + 1
df
KD

 . (2.6)

Here df is the time constant of the filter applied to the derivative action.
The physical reliability is safeguarded by ensuring the properness of the PID
controller using this low-pass first order filter (Toscano, 2013). If we assume
df to be a constant, we can translate the problem of designing a stabilising or
robust PID controller into an optimisation problem for the proposed algorithm
as given below.

FM =

0 0 1
0 0 1
0 0 1

→ PM =

0 0 bc11

0 − 1
df

bc21

1 1 dc11

→ p̄ =

bc11

bc21

dc11


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The new values for the gains of the PID controller can be obtained from
the optimised dynamic controller using KI = bc11 , KD = −d2

fbc21 and KP =
dc11 − 1

df
KD.

2.3 Exploiting network structure of systems

We particularise the approach (for generic systems) presented in Section 2.2 for
the case of designing a decentralised (or overlapping) controller for a special
class of systems. These systems have some network structure, consisting of
identical subsystems to be controlled by identical local controllers, see Fig.
2.1b. We consider the case where a system of the form (1.1) is composed of
subsystems of the form (1.20) and (1.21). We assume that each subsystem can
be controlled using a fixed-order LTI feedback controller of the formẋci(t) = Âcxci(t) + B̂cyi(t),

ui(t) = Ĉcxci(t) + D̂cyi(t), i = 1, ..., n.
(2.7)

Recall that the weighted adjacency matrix is denoted by

AM = [aMi,j ]ni,j=1 .

Defining xi(t) = [xTpi(t) uTi (t) γTwi x
T
ci(t) yTi (t)]T, the closed-loop system state

xi ∈ Rncl which includes the plant and the controller can be written in the
DDAE form asÊẋi(t) = Â0xi(t) +

∑m
k=1 Âkxi(t− τk) +

∑n
j=1 aMi,jB̂Ĉxj(t) + B̂2wi(t)

zi(t) = Ĉ2xi(t), i = 1, . . . , n,
(2.8)
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where

Ê =


Êp 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 I 0
0 0 0 0 0

 , Â0 =


Âp0 B̂p1 B̂p2 0 0
Ĉp1 0 0 0 −I
0 0 −I 0 0
0 0 0 Âc B̂c

0 −I 0 Ĉc D̂c

 , (2.9)

and

Âk =


Âpk 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , B̂ =


B̂p3

0
0
0
0

 , B̂2 =


0
0
I

0
0

 ,

Ĉ =
[
Ĉp3 0 0 0 0

]
, Ĉ2 =

[
Ĉp2 0 0 0 0

]
.

The state-space representation for the overall structured system then takes the
form

I ⊗ Ê


ẋ1(t)
ẋ2(t)
...

ẋn(t)

 = I ⊗ Â0


x1(t)
x2(t)
...

xn(t)

+
m∑
k=1

I ⊗ Âk


x1(t− τk)
x2(t− τk)

...
xn(t− τk)



+AM ⊗ B̂Ĉ


x1(t)
x2(t)
...

xn(t)

+ I ⊗ B̂2


w1(t)
w2(t)

...
wn(t)

 ,

z1(t)
z2(t)
...

zn(t)

 = I ⊗ Ĉ2


x1(t)
x2(t)
...

xn(t)

 .
(2.10)

In the following subsections, we describe how the model in (2.10) can be
decomposed for stability and robustness optimisation.
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2.3.1 Decoupling for the stabilisation problem

Based on the (complex) Schur decomposition theorem (see (Meyer, 2000)), there
always exists a unitary transformation matrix T ∈ Cn×n and an upper-triangular
matrix Z ∈ Cn×n such that

TAMT
−1 = Z. (2.11)

Note that spectrum of AM appears on the diagonal of Z. Let us consider the
whole system where w(t) ∈ Rn·n̂w and z(t) ∈ Rn·n̂z are the exogenous input and
output respectively, and x(t) ∈ Rn·ncl and x̄(t) ∈ Rn·ncl are the state before
and after the transformation respectively. Also, w(t) = [wT

1 (t) ... wT
n (t)]T,

z(t) = [zT1 (t) ... zTn (t)]T, x(t) = [xT1 (t) ... xTn (t)]T, and x̄(t) = [x̄T1 (t) ... x̄Tn (t)]T.
If we apply the transformation using T̂ (that is, x(t) = T̂−1x̄(t)) to (2.10),
where T̂ = T ⊗ I, we obtain the equation

(I ⊗ Ê) ˙̄x(t) = (I ⊗ Â0)x̄(t) +
m∑
k=1

(I ⊗ Âk)x̄(t− τk) + (Z ⊗ B̂Ĉ)x̄(t)

+ T̂ (I ⊗ B̂2)︸ ︷︷ ︸
(I⊗B̂2)T̂

w(t), z(t) = (I ⊗ Ĉ2)T̂−1︸ ︷︷ ︸
T̂−1(I⊗Ĉ2)

x̄(t).
(2.12)

Note that this transformation does not affect Â0, Âk or Ê because of the
property

T̂ (I ⊗ Â0)T̂−1 = (T ⊗ I)(I ⊗ Â0)(T−1 ⊗ I) = TT−1 ⊗ Â0.

Observing that for zero exogenous input, (2.12) has a cascaded structure, the
following theorem directly follows.

Theorem 2.3.1 Let the spectrum of AM be denoted by {λa1, . . . , λan}. System
(2.12) with w ≡ 0 is exponentially stable if and only if the system

Ê ˙̄xi(t) =
(
Â0 + λaiB̂Ĉ

)
x̄i(t) +

m∑
k=1

Âkx̄i(t− τk) (2.13)
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is exponentially stable ∀ i ∈ {1, ..., n}. Moreover we have

C(p̄) = max
1≤i≤n

C̃(p̄, λai), (2.14)

where C̃(p̄, λai) is the robust spectral abscissa of (2.13).

Proof. The assertions follow from the block-triangular structure of (2.12), with
(2.13) appearing as a diagonal block, and from the corresponding structure of
the associated eigenvalue problem.

Now the the robust spectral abscissa function in the minimisation problem of
(1.11) changes to (2.14) for systems of the form (2.10).

2.3.2 Decoupling for the H∞ optimisation problem

Now we focus on the decomposition of the system norms, under an additional
assumption, for G(s) defined as the transfer function of (2.10) from w to
z. We start by stating this assumption (recall that a matrix T is unitary if
T ∗T = TT ∗ = I).

Assumption 3 There exists a unitary transformation matrix T such that
TAMT

−1 = Λa, with Λa = diag(λa1, . . . , λan).

The above assumption is satisfied for graphs with a symmetric or circulant
adjacency matrix. We now arrive at the main theorem.

Theorem 2.3.2 If Assumption 3 is satisfied, then we can express

||G(jω, p̄)||H∞ = max
i∈{1,..,n}

||G̃(jω, p̄;λai)||H∞ (2.15)

and

||G(jω, p̄)||H2 =

√√√√ n∑
i=1
||G̃(jω, p̄;λai)||2H2

, (2.16)
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where G̃(jω, p̄;λai), i = 1, . . . , n, is the transfer function of system

Ê ˙̄xi(t) =
(
Â0 + λaiB̂Ĉ

)
x̄i(t) +

m∑
k=1

Âkx̄i(t− τk) + B̂2w̄i(t),

z̄i(t) = Ĉ2x̄i(t).

(2.17)

Proof. When choosing T in (2.11) according to Assumption 2, the transforma-
tion to (2.12) can be done with Z = Λa. Since Λa is a diagonal matrix, system
(2.12) can be fully decoupled. However, input and output signals get mixed.
We can express this decoupling as

G(s) = T̂−1Ḡ(s)T̂ , (2.18)

where T̂ = T ⊗ I, with

Ḡ(s) =


G̃(s, p̄;λa1) . . . 0

... . . . ...
0 . . . G̃(s, p̄;λan)

 . (2.19)

Since T̂ is a unitary matrix (T̂ T̂ ∗ = T̂ ∗T̂ = I), induced by T being unitary
from Assumption 3, we get(

T̂−1Ḡ(s)T̂
)∗ (

T̂−1Ḡ(s)T̂
)

= T̂
∗ (
Ḡ (s)∗Ḡ(s)

)
T̂ ,

having the same spectrum as Ḡ(s)∗Ḡ(s). In this way, we obtain

||G(s)||H∞ = ||Ḡ(s)||H∞ , ||G(s)||H2 = ||Ḡ(s)||H2 .
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The assertion regarding the H∞ norm directly follows. For the H2 norm we get

||Ḡ(s)||H2 =

√
1

2π

∫ +∞

−∞
trace[Ḡ(jω)∗Ḡ(jω)]dω

=

√√√√ n∑
i=1

1
2π

∫ +∞

−∞
trace[G̃(jω;λai)∗G̃(jω;λai)]dω

(2.20)

and the proof is complete.

Now the strongH∞ norm function in the minimisation problem of (1.19) changes
to (2.15) for systems of the form (2.10) with a normal adjacency matrix. It is
important to observe that equation (2.17) can be interpreted as the closed-loop
system formed by (1.20) and (2.7), provided coupling (1.21) is replaced with
uci(t) = λaiyci(t). Hence, the decoupling (on which Theorem 2.3.2 is based)
can be visualised as in Fig. 2.2.

u1

y1

y2

u2

u4

y3

u3

y4

z2

w2

z1

w1

w4

z3

w3

z4

P̃

P̃

P̃

P̃

K

K

K

K

......

......

(a) Structured plant with identical
subsystems and controllers.

λai are the eigenvalues of AM , where
i ∈ {1, 2, ..., n}.

K

λai

w̄i z̄i
P̃

(b) Decoupled system.

Figure 2.2: Decoupling of the structured plant of identical subsystems. The
relation between their stability properties and their system norms of the transfer
functions from w to z (and w̄ to z̄), are described by Theorems 2.3.1 and 2.3.2.
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2.3.3 Discussion

The stabilisation and H∞ optimisation problem of (2.10) can be turned into a
simultaneous stabilisation and H∞ optimisation problem of n plants of the form
(2.13) and (2.17), respectively, to optimise the controller parameters contained
in matrix Â0, using Theorems 2.3.1-2.3.2. This is particularly useful for the
adopted direct optimisation approach. Recall that the dominant computational
cost of evaluating the robust spectral abscissa and the strong H∞ norm amounts
to computing the rightmost eigenvalues of a DDAE and the imaginary axis
solutions of an associated Hamiltonian eigenvalue problem respectively. In both
cases, the number of operations with the algorithms proposed in (Michiels,
2011) and the references therein scales with the cube of the dimension, leading
to a reduction from O((n · ncl)3) to O(n · (ncl)3). Moreover, one can also
interpret (2.17) as an uncertain system, where the uncertainty is contained in the
eigenvalue parameter taking n different values. When handling this uncertainty
using methods from robust control, similar to that done in (D’Andrea and
Dullerud, 2003; Massioni and Verhaegen, 2010) for delay-free systems, there is
potential to arrive at scalable design methods whose cost does not depend on
the size of the network. This will be worked out in Section 2.4.

For the existence of the decoupling it is essential that the subsystems/nodes in G
are identical with respect to system dynamics. We also assume that the coupling
features are identical, including constant communication delays independent
of the link (which are absorbed in the DDAE model for the subsystems, as
we shall illustrate in Section 2.3.5). For the relation between system norms
expressed in Theorem 2.3.2, two additional conditions are to be satisfied. First
the transformation matrices used to diagonalise the adjacency matrix must be
unitary. Note that this is satisfied whenever the adjacency matrix is symmetric,
corresponding to symmetric bi-directional coupling, or circulant. The (complex)
Schur decomposition and spectral decomposition of a matrix coincide when the
matrix is a normal matrix. Second, one has to restrict to the induced norm
from w to z in the H∞ problem formulation, in which the exogenous inputs
and regulated outputs of the individual nodes are equally weighted.

The exploitation of the network structure, inferred from Theorem 2.3.1 (spectral
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abscissa) and first part of Theorem 2.3.2 (H∞ norm) has been integrated in
the publicly available software as an additional feature to tds_hopt. It relies
on modifying the objective functions (1.9) and (1.18) accordingly.

2.3.4 Generalisations to distributed controllers

The approach discussed in the previous subsections might be misconceived to
be restricted to the case of a fully decentralised control configuration. Due to
the generality of DDAEs in modelling interconnected systems, it is possible
to include namely classes of distributed and overlapping controllers in the
framework sketched in the beginning of Section 2.3, see Figure 2.3. This is
illustrated with the help of the following cases.

u1
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w4
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P̃

P̃

P̃

P̃
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K

......
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(a) Structured system with identical
subsystems and distributed controller.

λai are the eigenvalues of AM , where
i ∈ {1, 2, ..., n}.

K

λai

z̄i w̄i

P̃

(b) Decoupled system.

Figure 2.3: Decoupling of the structured system and distributed controller. The
interactions between different subsystems and the interactions between different
controllers are described by the same network.
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Proposition 2.3.3 The closed-loop system of plant (1.20)-(1.21) and a
distributed controller of the formẋci(t) = Âcxci(t) + B̂c1yi(t) +

∑n
j=1 aMi,juj(t),

ui(t) = Ĉc1xci(t) + D̂c1yi(t) +
∑n
j=1 aMi,juj(t), i = 1, ..., n,

(2.21)

can be re-written as a closed-loop system consisting of a plant of the form
(1.20)-(1.21) and a decentralised controller of the form (2.7).

Proof. Let us would modify system description (1.20)-(1.21) to

Êpẋpi(t) = Âp0xpi(t) +
∑mA

k=1 Âpkxpi(t− hAk ) + B̂p1ui(t) + B̂p2wi(t)
+[B̂p3 0]uci(t),

0 = −ξi(t) + ui(t)
0 = −ηi(t) + [0 I]uci(t)

yi(t) =
[
Ĉp1xpi(t)
ηi(t)

]
,

zi(t) = Ĉp2xpi(t),

yci(t) =
[
Ĉp3xpi(t)
ξi(t)

]
, i = 1, . . . , n,

(2.22)
and

uci(t) =
n∑
j=1

aMi,jycj(t), i = 1, . . . , n. (2.23)

where we consider the first three equations in (2.22) as the modified plant
DDAE. Now the seemingly decentralised controller of the form (2.7) would
correspond to an overlapping controller, whose input yi consists not only of the
original plant’s output Cp1xpi but also of the weighted average of the outputs
generated by neighbouring controllers. The latter can be seen from

ηi(t) =
n∑
j=1

aMi,jξj(t) =
n∑
j=1

aMi,juj(t).

Now we can use Theorems 2.3.1-2.3.2 to design robust controller for this case.
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Hence, the proof is complete. ◦

Remark 1 In Section 2.3.5, we will consider the control of a group of
subsystems with diffusive coupling. In this application, the coupling between
systems is only realised through the control. Such a control is of diffusive type
resulting in overlapping controllers. We will show that the model for the closed
loop system can still be turned into the form of (1.20) and (2.7).

Finally, the decomposition approach trivially extends to the case where the
controllers communicate their state to neighbouring controllers under the
condition that the interactions between different subsystems and the interactions
between different controllers are described by the same network,ẋci(t) = Âcxci(t) + B̂c1yi(t) + B̂c2

(∑n
j=1 aMi,jĈc2xcj(t− τ)

)
,

ui(t) = Ĉc1xci(t) + D̂c1yi(t) + D̂c2

(∑n
j=1 aMi,jĈc2xcj(t− τ)

)
,

i = 1, ..., n, with τ representing a transmission delay. However, after decoupling
the system, the i-th controller would become ˙̄xci(t) = Âcx̄ci(t) + λaiB̂c2Ĉc2x̄ci(t− τ) + B̂c1ȳi(t),

ūi(t) = Ĉc1x̄ci(t) + λaiD̂c2Ĉc2x̄ci(t− τ) + D̂c1ȳi(t), i = 1, ..., n,

and, hence, it also depends on the eigenvalue parameter. This is consistent with
(Massioni and Verhaegen, 2009) for the delay-free case.

2.3.5 Numerical examples

We use some numerical examples to illustrate the network exploitation
methodology presented earlier. Note that all the simulations performed for this
thesis used an Intelr Core™ i7-6820HQ CPU at 2.7 GHz with 8GB RAM.
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C(p̄ = 0) = 0.8549

(a) No feedback

K

K

K K

K

C(p̄) = −3.3672

(b) ui = Kyi

K1

K3

K2 K4

K5

C(p̄) = −4.0846

(c) ui = Kiyi

Figure 2.4: Robust spectral abscissa computed for the example system and the
closed-loop subsystems.

A system with input and coupling delays

Consider the following system with a network structure,

ẋpi(t) =

 0 0.5

0.5 −3

xpi(t) +

0

5

ui(t− 0.1) + Iuci(t− 0.3) +

1

1

w(t),

yi(t) =

1 1

0 1

xpi(t), yci(t) = Ixpi(t), uci(t) =
∑n
j=1 aMi,jxpj(t),

zi(t) = Ixpi(t), i = 1, ..., 5,
(2.24)

whose adjacency matrix can be written as

AM =


0 0.5 0.5 0 0

0.5 0 0 0.5 0
0.5 0 0 0 0.5
0 0.5 0 0 0.5
0 0 0.5 0.5 0

 . (2.25)

Without control the system is unstable, with robust spectral abscissa equal to
0.8549. The approach of Section 2.2 is used to design decentralised controllers
of the form

ui(t) = Kiyi(t), i = 1, ..., 5, (2.26)
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using the following values (generated randomly) as starting points for
optimisation,

K̃1 =
[
−0.8045 0.6966

]
, K̃2 =

[
0.8351 −0.2437

]
,

K̃3 =
[
0.2157 −1.1658

]
, K̃4 =

[
−1.1480 0.1049

]
,

K̃5 =
[
0.7223 2.5855

]
,

(2.27)

leading to

K1 =
[
−10.2555 9.2164

]
, K2 =

[
−13.9911 12.3932

]
,

K3 =
[
−14.3001 12.7874

]
, K4 =

[
−11.3138 9.9052

]
,

K5 =
[
−10.0127 9.1918

]
,

(2.28)

and a minimal robust spectral abscissa of −4.0846. Subsequently, using the
methodology of Section 2.3, a static stabilising controller was designed by
minimising the (robust) spectral abscissa, using the starting point (generated
randomly) K̃ = [ 0.3188 − 1.3077] for optimisation, leading to

ui(t) = Kyi(t) =
[
−8.9481 7.7775

]
yi(t), (2.29)

and a minimal robust spectral abscissa of −3.3672. This value is greater than
the value corresponding to the control law ui = Kiyi, because of the constraint
that the gains are equal to each other. In Fig. 2.4, the robust spectral abscissa
values for the subsystems and controllers are shown. Finally, the controller
gains K and Ki, i = 1, ..., 5, were optimised for the (strong) H∞ norm of the
transfer function from w to z, to obtain K̆ and K̆i, i = 1, ..., 5.
The results are shown in Table 2.1, which illustrates a trade-off between

performance and robustness, expressed here in terms of the robust spectral
abscissa and the H∞ norms respectively. The average time taken for the
objective function evaluation in the optimisation process is given in the column
of “function evaluation time” in Table 2.1. As expected, we can also observe in
Table 2.1 that the average time required for computing the objective functions
have been reduced considerably by using the network structure exploitation
approach (from 0.1079s to 0.0625s and from 13.676s to 1.7556s for spectral
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Table 2.1: Results obtained for simple numerical example using the two
approaches
Simple
numerical
example

Objective function H∞
norm

Spectral
abscissa

Function
evaluations
(No.)

Function
evaluation
time (s)

No feedback — ∞ 0.8549 — —
ui = Kyi Robust spectral abscissa

(αo = 1)
3.2246 −3.3672 326 0.0625↓

ui = K̆yi Strong H∞ norm (αo =
0)

2.7661↓ −2.1936↑ 38 1.7556↓

ui = Kiyi Robust spectral abscissa
(αo = 1)

2.8662 −4.0846 432 0.1079↑

ui = K̆iyi Strong H∞ norm (αo =
0)

2.7580↓ −2.6168↑ 53 13.676↑

0 50 100 150
−4

−2

0

2

HANSO iteration number

C
(p

)

ui = Kyi
ui = Kiyi

(a) Robust sectral abscissa optimisation.

0 5 10 152.6

2.8

3

3.2

HANSO iteration number

|||
G

(j
w
,p

)||
| H
∞ ui = K̆yi

ui = K̆iyi

(b) Strong H∞ norm optimisation.

Figure 2.5: Convergence profile of the optimisation process for (a) robust
spectral abscissa (αo = 1) and (b) strong H∞ norm (αo = 0) of the simple
numerical example.

abscissa and H∞ norm evaluations respectively).

Figure 2.5 shows the convergence of the optimisation problems through HANSO
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iterations for the results given in Table 2.1. Due to the non-convexity of the
problem, different starting points could lead to different results and therefore
different convergence profiles (including the number of iterations or function
evaluations). In the optimisation process, HANSO might perform multiple
objective function evaluations within one iteration. For more details on the
controllers and other results presented in this chapter, please refer to the
complementary software package (Dileep and Michiels, 2018b).

A neutral type time-delay system

Let us consider a neutral type time-delay system

 0 1

0.5 2

 ẋpi(t) +

 0 0

0.2 1

 ẋpi(t− 0.2) =

1 −0.5

0 2

xpi(t)
+

1

0

ui(t− 0.5) + Iuci(t− 0.3) +

1

1

w(t),

yi(t) =

1 1

0 1

xpi(t), yci(t) = Ixpi(t), uci(t) =
∑n
j=1 aMi,jxpj(t),

zi(t) = Ixpi(t), i = 1, ..., 5,
(2.30)

whose adjacency matrix is the same as in (2.25). Without control, this system
is unstable with a robust spectral abscissa equal to 0.7927. However, using the
approach of network structure exploitation presented in Section 2.3, we were
able to find a stablising controller (optimising with αo = 1)

K̂ =
[
−0.8420 −3.2729

]
,

and subsequently a robust controller (optimising with αo = 0)

K̄ =
[
−1.6118 −2.5654

]
.
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The results corresponding to robust spectral abscissa and strong H∞ norm are
given in Table 2.2. In this example, the results have not been compared to the

Table 2.2: Results obtained for neutral type time-delay system
Neutral type
system

Objective function H∞
norm

Spectral
abscissa

Function
evaluations
(No.)

Function
evaluation
time (s)

No feedback — ∞ 0.7927 — —
ui = K̂yi Robust spectral abscissa

(αo = 1)
8.5494 −0.4870 96 0.80073

ui = K̄yi Strong H∞ norm (αo =
0)

6.3943↓ −0.3719↑ 48 4.3647

design approach using structural constraints in the controller. The resulting
conclusions were not found to qualitatively differ from that presented in the
previous example.

A consensus type problem

We use the following numerical example, motivated by the model from (Zheng
et al., 2014), to treat consensus type problems.

ψ̇i(t) =

0 1 0
0 0 1
0 0 − 1

dc


︸ ︷︷ ︸

Ag

ψi(t) +

0
0
1


︸︷︷︸
Bg

ui(t− τ̆),

yi(t) =
[

0 1 0
0 0 1

]
︸ ︷︷ ︸

Cg

ψi(t).

(2.31)

We consider a network of n nodes, each node corresponding to a subsystem,
and R ≥ 0 virtual nodes, indexed by i ∈ {n+ 1, ..., n+ R}. The dynamics of
the virtual nodes, which are used to generate external reference trajectories
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(e.g., a leader), can be written as

ψ̇i(t) = Agψi(t),

yi(t) = Cgψi(t) ∀ i = n+ 1, ..., n+R.

(2.32)

We consider identical controllers for all subsystems and diffusive coupling
between them. Let the function t ∈ R → xri(t) be a reference trajectory for
subsystem i such that

ẋri(t) = Agxri(t), i = 1, . . . , n+R,

xri(t) = ψi(t), i = n+ 1, ..., n+R,

xri(t)− xrj(t) =
[
di,j 0 0

]T
, i, j ∈ {1, ..., n+R}, t ≥ 0,

(2.33)

where di,j ∈ R+ is the constant prescribed reference between the subsystems
i and j. If we consider the new state as ψ̄i(t) = ψi(t) − xri(t) then we can
reformulate (2.31) as

˙̄ψi(t) = Agψ̄i(t) +Bgui(t− τ̆),

ȳi(t) = Cgψ̄i(t),
(2.34)

since by definition ψi − xri = 0, i = n+ 1, ..., n+R, the control law1 is

ui(t) = K

 n∑
j=1

aMi,j (ȳj(t)− ȳi(t))−
n+R∑
j=n+1

aMi,j ȳi(t)


︸ ︷︷ ︸∑n

j=1
aMi,j ȳj(t)−ȳi(t)

, i = 1, . . . , n.
(2.35)

Unlike in the standard form of (1.20) and (2.7), system (2.34)-(2.35) features
input delay as well as controllers acting (partly) on differences in outputs.

1In order to simplify notations and shorten the equations, we denote by u(t) = Ky(t) the
application of a feedback controller coupling y(t) to u(t), whose transfer function is given by
K(s).
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However, using dummy variables (ν and ξ) we can rewrite (2.34)-(2.35) as

˙̄ψi(t) = Agψ̄i(t) +Bgνi(t− τ̆) + w(t)

0 = −νi(t) + ui(t)

0 = −ξi(t)− Cgψ̄i(t) + uci(t)

ȳi(t) = ξi(t)

yci(t) = Cgψ̄i(t)

z(t) =
[
0 1 0

]
ψ̄i(t)

, (2.36)

which is of form (1.20) with xpi =
[
ψ̄T
i (t) νTi (t) ξTi (t)

]T
, while the coupling

becomes
uci(t) =

n∑
j=1

aMi,jycj(t), i = 1, . . . , n. (2.37)

The feedback is described in the Laplace domain by

ui(s) = K(s)ȳi(s), i = 1, . . . , n, (2.38)

where K(s) is the transfer function of the dynamic controller. We allow virtual
nodes, therefore, it is possible that

∑n
j=1 aMi,j ≤ 1. Now we consider the

system to have network topologies of ring and series type. They are presented
as follows.

Ring topology: consensus problem

For a ring configuration there are no virtual nodes (R = 0), and recall that the
adjacency matrix is described by

AM1 =


0 . . . 0 1
1 . . . 0 0
... . . . ...

...
0 . . . 1 0

 (2.39)
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for unidirectional coupling, and by

AM2 =



0 0.5 0 . . . 0 0.5
0.5 0 0.5 . . . 0 0
0 0.5 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 0 0.5

0.5 0 0 . . . 0.5 0


(2.40)

for bidirectional coupling. Without virtual nodes, the row-sum condition

n∑
j=1

aMi,j = 1, i = 1, . . . , n,

is satisfied, hence, the adjacency matrix always has an eigenvalue equal to one
(Michiels and Nijmeijer, 2009). As shown in Appendix D, this implies that,
independent of the control, the closed-loop system (2.36)-(2.38) always has a
double eigenvalue at zero. This is because we are dealing with a consensus
problem, where every solution with xri(t) − xrj(t) =

[
di,j 0 0

]T
, i, j ∈

{1, ..., n}, correspond to a stationary solution.

As a consequence of the above, the robust spectral abscissa for the closed-loop
system is always greater than or equal to zero. However, to maximise the speed
in which a consensus is reached we optimise instead

C̆(p̄; τ̄) := lim
ε→0+

sup
τ̄ε∈B(τ̄ ,ε)

c̆(p̄; τ̄ε),

c̆(p̄) = max
1≤i≤n
i6=k

{
sup
λ∈C
{R(λ) : detM̃(λ;λai) = 0}

}
,

(2.41)

where M̃ is the characteristic matrix of (2.13) and k is such that λak = 1 (similar
to (Rejeb et al., 2018)). When optimising the above modified spectral abscissa
for plant (2.36)-(2.38) and (2.40), with n = 5 and controller order nc = 1, we
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obtainẋci(t) =
[
−86.2588

]
xci(t) +

[
−249.5680 −48.9190

]
ȳi(t),

ui(t) =
[
−8.0038

]
xci(t) +

[
−23.8468 −4.7045

]
ȳi(t).

(2.42)

The corresponding rightmost eigenvalues are visualised in Figure 2.6. In general,
defining any exogenous inputs and regulated outputs results in the strong
H∞ norm for the closed-loop system to be equal to infinity, due to the fact
that the system does not settle back to the original stationary solution after a
perturbation.
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−4

−2

0

2

4

C̆(~p) = −0.3003
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Plant & controller (excl. eigenvalues at λai = 1)
Plant (& eigenvalues at λai = 1)

Figure 2.6: Optimised spectrum plotted for the consensus problem of five
subsystems in a ring topology with bidirectional communication links.

Series topology: mixed consensus/reference tracking problem

Let us now consider the system to be in series topology. In case of unidirectional
coupling, a special treatment should be given to the first subsystem, which we
can solve by adding a virtual node (R 6= 0) that serves as a generator of the
reference trajectory for this subsystem. In this way we arrive at elements aMi,j

contained in

AM3 =


0 . . . 0 0
1 . . . 0 0
... . . . ...

...
0 . . . 1 0

 . (2.43)
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All eigenvalues of AM3 are equal to zero, implying that the decomposition
approach leads to identical subsystems of form (2.17). The interpretation is
as follows: for each subsystem we have to solve the same control problem
of tracking the outputs generated by preceding subsystem. For bidirectional
coupling, a special treatment should also be given to the last subsystem, in
order to preclude any asymmetry, and the adjacency matrix takes the form

AM4 =



0 0.5 0 . . . 0 0
0.5 0 0.5 . . . 0 0
0 0.5 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 0 0.5
0 0 0 . . . 0.5 0


, (2.44)

where there exist virtual nodes (R 6= 0) communicating with the first and last
nodes. We consider n(= 4) subsystems and we first design controller K(s)

Table 2.3: Strong H∞ norm optimisation.
Example Feedback

control
Robust spec-
tral abscissa

Strong H∞
norm

A group of four
subsystems

ui = K(s)ȳi −0.2103 20.5379
ui = K̆(s)ȳi −0.1648↑ 8.2504↓

in (2.35) as a dynamic LTI controller of order nc = 3 minimising the (robust)
spectral abscissa, resulting in a spectral abscissa of −0.2103. Subsequently,
we use this controller as starting point to optimise the (strong) H∞ norm of
the transfer function from w to z for the system in (2.36) and we obtain the
robust controller K̆(s). The robust spectral abscissa and strong H∞ norm
values obtained are shown in Table 2.3. The maximum singular value plots
of the transfer function from w to z for the structured closed-loop systems
(ui = K(s)ȳi and ui = K̆(s)ȳi) are shown in Figure 2.7.
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(a) ui = K(s)ȳi.
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(b) ui = K̆(s)ȳi.

Figure 2.7: The maximum singular value plot of the transfer function from w to
z for the structured closed-loop systems before and after the strong H∞ norm
optimisation of the controller parameters.

2.4 Extension to a scalable algorithm

From Theorem 2.3.1, the design of stabilising decentralised controllers can be
recast as the simultaneous stabilisation problem of finding controller parameters
such that (2.17), with w̄i ≡ 0, is exponentially stable ∀ i = 1, . . . , n. For
some typologies, the eigenvalues corresponding to their network adjacency
matrices (λai) for any number of nodes (n) are confined to a real interval, i.e
λai ∈ Ω := [p, q] where p ∈ R, q ∈ R and p < q. Since the only difference
between the systems’ equations in (2.17) lies in parameters λai, a sufficient
condition for stability is given by the robust stability of the uncertain system

Êη̇(t) =
(
Â0 + λaB̂Ĉ

)
η(t) +

m∑
k=1

Âkη(t− τk), (2.45)
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subject to interval uncertainty λa ∈ [p, q], for which necessary and sufficient
conditions can be obtained within the real structured pseudospectral framework
developed in (Borgioli and Michiels, 2018). The characteristic matrix of (2.45)
can be written as

M̆(λ) = λÊ −
(
Â0 + B̂λavĈ + B̂δÂ0Ĉ

)
−

m∑
k=1

Âke−λτk , (2.46)

with λav = p+q
2 and the uncertainty |δÂ0| ≤ |q−p|

2 . We note that this is a
special type of the problem mentioned in (Borgioli and Michiels, 2018).

Considering all real valued perturbations such that

|δÂ0| ≤ ε := |q − p|2 ,

we can define the real structured pseudospectrum of (2.46) as

Λε :=
⋃

|δÂ0|≤ε

{
λ ∈ C : detM̆(λ) = 0

}
.

The pseudospectral abscissa (αε) is given by

αε := sup{R(λ) : λ ∈ Λε}. (2.47)

Hence, a necessary and sufficient condition for exponential stability of (2.45)
∀ λa ∈ [p, q] is given by αε < 0. An algorithm to compute the pseudospectral
abscissa is provided in (Borgioli and Michiels, 2018). It is based on generating
a sequence of ε-bounded perturbations, such that the spectral abscissa is
monotonically increasing, and the corresponding eigenvalue converges to the
globally right-most point of the pseudospectrum.

2.4.1 Controller design approach

Recall that the stabilisation problem of (2.10) was turned into a simultaneous
stabilisation optimisation problem of n subsystems of the form (2.13) to optimise
the controller parameters contained in matrix Â0, using Theorem 2.3.1. However,
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the stability property of the closed-loop system of the plant and the (resulting)
controller is dependent on the number of subsystems. Now we reformulate the
stabilisation problem of (2.10) as a robust stabilisation problem of uncertain
(sub-)system (2.45) for scalability with the number of subsystems (n). That is,
we design a controller of the form (2.7) that stabilises a system of the form (1.20)
independent of the number of subsystems (n). In order to find such a robustly
stabilising controller and minimise the worst-case asymptotic decay rate of
solutions, we can minimise the pseudospectral abscissa by tuning controller
parameters, i.e., we solve the optimisation problem

min
p̄
αε. (2.48)

Recall that vector p̄ contains all the tunable controller parameters, which are
contained in the closed-loop system matrix Â0 (see (2.3) and (2.9)). As the
objective function is non-convex and not-everywhere differentiable we use a
dedicated optimisation algorithm for this task, HANSO (see (Overton, 2009)).

In Section 2.4.2, we will show an example for which λai ∈ R ∀ i = 1, ..., n,
however there are other network topologies for which the adjacency matrix
has non-real eigenvalues (e.g., a ring topology with unidirectional coupling).
This would translate to a problem with complex valued perturbations (B̂λaĈ)
to system matrix Â0. The algorithm in (Borgioli and Michiels, 2018) can be
extended to treat such problems.

The pseudospectral abscissa optimisation approach for designing decentralised
controller has many advantages. First, the size (n) of AM increases with the
number of subsystems in the structured system, leading to more eigenvalues (λai).
Therefore, the computational complexity of optimising the spectral abscissa
of the overall system depends on the number of subsystems (O(n · (ncl)3))
(and even O((n · ncl)3) if the decomposition is not employed). However, the
computational complexity of the pseudospectral abscissa optimisation does not
depend on the number of subsystems. Second, a controller designed to stabilise
“n” subsystems might not be stabilising for a different value of “n”, as will be
demonstrated using a numerical example in the next subsection.
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2.4.2 Numerical example

Let us consider a simple numerical example for which a stabilising controller
has to be designed such that it can control a group of identical subsystems
arranged in a network topology (with adjacency matrix AM whose eigenvalues
satisfy λai ∈ [−1, 1] ∀ i ∈ {1, ..., n}). The sub-systems can be described by

ẋpi(t) =

1 3

2 −0.5

xpi(t) +

0

1

ui(t− 0.1)

+

4 0

0 0

uci(t− 0.2),

yi(t) =

1 1

0 1

xpi(t),
yci(t) = Ixpi(t), uci(t) =

∑n
j=1 aMi,jxpj ,

(2.49)

∀ i = 1, ..., n. In the following subsections, we will consider systems (2.49),
arranged in two network topologies.

Series network topology

Let us consider a series network topology with bidirectional coupling, for which
matrix AM is of the form (same as (2.44))

AM =



0 0.5 0 . . . 0 0
0.5 0 0.5 . . . 0 0
0 0.5 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0.5
0 0 0 . . . 0.5 0


n×n

, (2.50)

whose eigenvalues consist of

λai = cos(i π

n+ 1) : i = 1, ...., n. (2.51)
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For n = 3, the adjacency matrix has a spectrum given by λ̂a =
{−0.7071, 0, 0.7071}. Choosing the controller order equal to one and minimising
the spectral abscissa c(p̄) of the coupled system lead us to the controller Ks1

given by ẋci(t) = −9.5309xci(t) + [−15.3689 − 3.5134]yi(t),

ui(t) = −2.9752xci(t) + [−19.3607 5.8863]yi(t),
(2.52)

for 1 ≤ i ≤ 3.

The optimisation of the pseudospectral abscissa of (2.46), constraining λai to
the interval [−1, 1], leads us to controller Kα given byẋci(t) = −4.3275xci(t) + [−4.3547 6.2463]yi(t),

ui(t) = 6.9677xci(t) + [−13.8842 0.8332]yi(t),
(2.53)

for 1 ≤ i ≤ n, which is in fact stabilising for any n ∈ [1,∞].

In Figures 2.8-2.9 we compare the performance of both controllers. The
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Figure 2.8: The spectral abscissa of (2.49) with (according to the decomposition)
uci(t) = λaiyci(t), for varying λai ∈ [−1, 1]. We consider i) local controller
Ks1 (αε = 0.3478) designed by minimising c(p̄) for n = 3 (i.e., for λ̂a =
{−0.7071, 0, 0.7071}), ii) local controller Kα (αε = −0.4151) designed by
minimising the pseudospectral abscissa of (2.45) for λa ∈ [−1, 1], and iii)
the absence of feedback control (αε = 4.0793).
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Figure 2.9: The local controller Ks1 obtained by optimising the spectral abscissa
of three (n = 3) subsystems in a bidirectionally coupled series network, with the
spectrum of the adjacency matrix given by λ̂a = {−0.7071, 0, 0.7071}, results
in a unstable network system for more than seven subsystems. Therefore, for
improved scalability we could design a controller Kα through pseudospectral
abscissa optimisation, ∀ λai ∈ [−1, 1] leading to a stable network system for
any number of subsystems n ∈ [1,∞].

pseudospectral abscissa (when λai ∈ [−1, 1]) for the system reduced from
αε = 4.0793 for the case of no feedback control to αε = −0.4151 when controlled
using Kα (see Figure 2.8). Therefore, the structured closed loop system is
stable as long as the adjacency matrix of the network structure AM has all
its eigenvalues in the interval [−1, 1]. This means that the closed loop system
is guaranteed to be stable (with spectral abscissa ≤ −0.4151) for any number
of nodes in the series, ring, star and fully connected network topologies with
bidirectional coupling. Since, under mild conditions on the coupling weights,
the eigenvalues of their adjacency matrices are contained in the interval [−1, 1]
(see Appendix A for more details).

Although controller Ks1 achieves lower spectral abscissa for λ̂a, it results in a
positive pseudospectral abscissa. We show the evaluation time for computing
spectral abscissa (using the network structure exploitation algorithm for various
n) and pseudo-spectral abscissa functions in Table 2.4.
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Table 2.4: Evaluation times for computing spectral abscissa (using the network
structure exploitation approach) and pseudo-spectral abscissa functions for the
closed-loop system of (2.49) and K̄α.

n
Spectral
abscissa

Pseudo-
spectral
abscissa

1 0.1705s
2 0.2129s
3 0.2559s
4 0.2755s
5 0.3163s
10 0.3974s 0.4642s
20 0.5570s
30 0.7449s
100 1.8449s
200 3.3440s
300 4.9742s

Ring network topology

Let us consider the sub-systems in (2.49) to be arranged in a ring topology with
bidirectional coupling. Recall from (A.5) and (A.6) in Chapter 1 that we have
a circulant AM matrix of the form

AM =



0 0.5 0 . . . 0 0.5
0.5 0 0.5 . . . 0 0
0 0.5 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0.5

0.5 0 0 . . . 0.5 0


n×n

,

with the spectrum given in (Michiels and Nijmeijer, 2009) as

λai = cos(2π
n

(i− 1)) : i = 1, ...., z and n ∈ Z+ \ {1},
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where z = n+2
2 or n+1

2 for even or odd values of n respectively. All the
eigenvalues given by (A.6) have a multiplicity of two, except for ‘±1’ which
have multiplicity one.
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Figure 2.10: The local controller Ks2 obtained by optimising the spectral
abscissa for three (n = 3) subsystems in a bidirectionally coupled ring network,
with the spectrum of the adjacency matrix given by λ̃a = {−0.5,−0.5, 1},
results in an unstable network system for two or four subsystems. On the
contrary, the local controller Kα obtained by minimising the pseudospectral
abscissa stabilises the system for any number of subsystems n.

Optimising the spectral abscissa of the closed-loop system for n = 3 (for which
the adjacency matrix has a spectrum λ̃a = {−0.5,−0.5, 1}) results in the
controller Ks2 given byẋci(t) = −10.1209xci(t) + [3.0604 12.1140]yi(t),

ui(t) = 3.5645xci(t) + [−19.3998 6.0459]yi(t),
(2.54)

for 1 ≤ i ≤ 3 (n = 3). Note that we can control the subsystems in this
network also using the controller Kα in (2.53), as the eigenvalues of the network
adjacency matrix satisfy λai ∈ [−1, 1] ∀ i ∈ {1, . . . , n}, ∀ n ∈ [1,∞]. We observe
in Figure 2.10 that the stability of this network is affected adversely by small
change in n for the closed-loop system with the controller Ks2. This is due to
the presence of the eigenvalue ‘-1’ in the spectrum of AM for even numbers of
subsystems (n).
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2.5 Conclusions

The problem of the decentralised/overlapping controller design for systems with
time-delays has been addressed in this chapter. A technique for generic LTI
systems modelled by DDAEs is presented, based on imposing sparsity constraints
in the controller parameterisation, and a structure exploiting approach is
proposed for networks of identical systems and local controllers. By means of a
numerical example, the applicability to consensus type problems is demonstrated,
while also illustrating the flexibility of the modelling framework and control
technique.

Additionally, a scalable methodology to design dynamic (LTI) fixed-order
controllers for large-scale interconnected systems was presented. We conclude
that using a direct optimisation approach and a decomposition, it might be
possible to design a stabilising decentralised controller independent of the
number of nodes. Here, the network related parameters are interpreted
as a bounded uncertainty and handled by considering the corresponding
pseudospectral abscissa function as the objective function. As already mentioned
in Section 2.3.4, the decomposition approach can be extended to classes of
distributed or overlapping controllers, including the case of interacting controllers
communicating their state with neighbours.

The proposed direct optimization approach is a non-conservative technique for
controller design in the frequency domain, grounded in necessary and sufficient
stability conditions. The approach is flexible with respect to the structure
that can be imposed on the controller. Issues related non-convexity and non-
smoothness of the optimisation problem in general (especially for H∞ norm)
are still present as in the centralised setting. The non-smoothness is handled
by using the special algorithm HANSO. With respect to the non-convexity, the
algorithm can converge to local optima which are not global. The latter is
mitigated by considering sufficiently large number of randomly generated (or
user specified) starting points for the optimisation problem.

Finally, note that all the algorithms presented in this chapter have been
implemented in a publicly available software (Dileep and Michiels, 2018b).





Chapter 3

Decentralised controllers in a
network of sampled-data
systems

3.1 Introduction

For many applications, stability and performance levels may be guaranteed for
their (respective) continuous-time system models. However, when implemented,
continuous time information is not available (Hristu-Varsakelis and Levine,
2005), the sensors and actuators may not be operating synchronously, and
the sampling may be aperiodic. Systems with aperiodic sampling can be
interpreted as Time-Delay Systems (TDSs), hybrid systems, discrete-time
systems with varying parameters, feedback interconnections of systems, etc.
(Bragagnolo et al., 2016; Fiacchini and Morarescu, 2016; Hetel et al., 2017;
Kruszewski et al., 2012; Prieur et al., 2018). In this chapter, the case of Linear
Time Invariant (LTI) systems with time-delays (at state, controlled-input, and
measured-output) of retarded type is addressed from a feedback interconnection
point of view. In the centralised control setting, techniques have been proposed

69
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for stability analysis of LTI systems in (Fridman, 2014; Fujioka, 2007; Kao and
Lincoln, 2004; Kao and Rantzer, 2007; Mirkin, 2007) and the references therein.
Furthermore, the stability analysis of LTI systems with distributed sensors and
aperiodic sampling was dealt in (Fiter et al., 2018) and was extended to include
static decentralised controllers and time-varying delays (arising from controllers,
sensors, and actuators) in (Thomas et al., 2018). Some researchers have also
contributed to the field of (centralised) controller design for the case of periodic
sampling such as (Fujioka et al., 2005; Mirkin et al., 1999). In this chapter,
we focus on both stability conditions and design approaches for sampled-data
fixed-order decentralised controllers for LTI systems with time-delays. These
controllers may be subjected to control imperfections such as aperiodic sampling,
jitter, varying time-delays, and asynchrony. This is largely an open problem in
the literature.

The main contributions of this chapter are three-fold. First, stability conditions
are presented for generic LTI systems with constant time-delays (at input,
output, and state) stabilised by fixed-order decentralised controllers taking into
account control imperfections (induced by the implementation of the controller
in a sampled-data system with feedback delays). The approach is based on
rewriting the closed-loop system of the Multiple Input Multiple Output (MIMO)
plant and sampled-data fixed-order controller as a feedback interconnection of a
nominal (continuous-time) Delay Differential Algebraic Equation (DDAE) and
an uncertainty block. Then, an input-output L2 stability criterion is proposed.
All the control imperfections are absorbed at the uncertainty (operator) block
in this feedback interconnection.

Second, the frequency domain-based direct optimisation approach of (Gumussoy
and Michiels, 2011; Michiels, 2011) is used to optimise the controller parameters
for robustness against control imperfections by minimising the H∞ norm of
an appropriately defined transfer function. Additionally, it is shown that
the conservatism of the optimised robustness criterion can be reduced by
exploiting the structure of the uncertainty block using scaling parameters.
The methodology used to design these parameters is grounded in the frequency
domain-based direct optimisation approach, where objective functions specifying
performance criteria are optimised as a function of the controller parameters.
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The spectral abscissa (stability) and H∞ norm (robustness) are, in general, non-
smooth non-convex functions of fixed-order controller parameters (Gumussoy
and Michiels, 2011; Michiels, 2011). The work of (Gumussoy and Michiels,
2011; Michiels, 2011) generalises the one underlying the HIFOO package (see
Burke et al. (2006)) and the MATLAB function hinfstruct (see Apkarian
and Noll (2006)) from finite dimensional systems to that considering time-
delay systems. The adopted frequency domain-based optimisation approach
for controller parameters complements the approach for infinite dimensional
systems considered in (Apkarian and Noll, 2018). The adopted approach is
very flexible in exploiting the structure of the controller. Structures such as
decentralised, distributed, overlapping, lower-order, and PID1 controllers can
be handled.

As a third contribution and main result of this chapter, a scalable controller
design approach is proposed for large-scale systems composed of quasi-identical
subsystems connected through some delayed network. In this chapter, identical
subsystems that have non-identical uncertainties or control imperfections are
considered as quasi-identical subsystems. The control design problem is solved
for a lower dimensional system using network structure exploitation (using the
approach of Chapter 2) while guaranteeing stability of the large network. Even
though we consider the subsystems to be identical in the problem formulation,
it will be shown that the control imperfections (or other uncertainties) need
not be identical.

The remainder of the chapter is organised as follows. Section 3.2 introduces the
MIMO time-delay plants which are to be stabilised by sampled-data decentralised
controllers. Section 3.3 recasts the problem of maximizing robustness against the
control imperfections to a standard H∞ norm optimisation problem. Section 3.4
presents the direct optimisation approach in the frequency domain to optimise
robustness (in terms ofH∞ norm) of the controllers against control imperfections.
This H∞ norm characterises the maximum allowable uncertainty. Section 3.4.2
recalls the concept of network structure exploitation (from Chapter 2) and how
it may be utilised to improve computational efficiency in designing decentralised

1See the recent survey of (Samad, 2019), wherein PID controllers still have a strong
industrial impact.
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controllers that are robust (against control imperfections). A numerical example
is presented in Section 3.5. Finally, some concluding remarks are given in
Section 3.6. The results of this chapter have been presented in (Dileep et al.,
2020).

3.2 MIMO plant and decentralised controllers

In applications, controllers are often implemented as algorithms programmed on
embedded processors which might work at different frequencies. The controllers
could be distributed over different communication channels which may function
aperiodically. In this chapter, we first consider a generic Multiple Input Multiple
Output (MIMO) continuous-time plant with n ∈ N inputs and outputs, to be
controlled by n decentralised dynamic controllers. The dynamics of the Linear
Time Invariant (LTI) MIMO plants with constant time-delays considered in
this chapter are described byψ̇p(t) = Aψp,0 ψp(t) +

∑m
j=1Aψp,jψp(t− τψ,j) +

∑n
i=1Bψp,i ui(t− τu,i),

yi(t) = Cψp,i ψp(t− τy,i), i = 1, ...., n,
(3.1)

for almost all t ≥ 0, where ψ̇p is the right-hand derivative of the state vector
ψp, ui ∈ Rnui is the ith controlled-input, yi ∈ Rnyi is the ith measured-output,
ψp ∈ Rnp is the plant state vector, τj , τy,i, τu,i > 0 are constant delays, and
Aψp,0, Aψp,j , Cψp,i, Bψp,i are real valued constant matrices, i = 1, ..., n, j =
1, ...,m.

In Chapter 2 and (Michiels, 2011), it has been shown that plants of the form
(3.1) can be rewritten in the general DDAE form using an augmented state
vector xp = [ψT

p γTψ,y γ
T
ψ,u]T as

Epẋp(t) = Ap0 xp(t) +
∑mn
j=1Apjxp(t− τj)

+
∑n
i=1Bpi ui(t),

yi(t) = Cpi xp(t), i = 1, ...., n,

(3.2)
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where γψ,y and γψ,y are dummy vectors used for representing output vector
y = [yT1 , ..., yTn ]T and input vector u = [uT1 , ..., uTn ]T respectively, and Ep may
be singular. Notice that all the time-delays are now associated with the
augmented state vector, that is, {τ1, ..., τmn} = {τψ,1, ..., τψ,m}∪{τy,1, ..., τy,n}∪
{τu,1, ..., τu,n}. Sections 3.2.1-3.2.2 will introduce the problem of stabilising
plants of the form (3.2) through sampled-data control and a related input-output
L2 stability criterion.

Furthermore, a special case of plant (3.2) is also considered in this chapter.
The special case corresponds to a MIMO plant composed of “n” identical
subsystems coupled through a network. Similar to Section 1.6, we consider
a network described by a directed graph G = {V, E , AM} with a set of nodes
V = {1, 2, ...., n} and a set of edges E ⊂ V×V . The edge (i, j) ∈ E connects from
node j ∈ V to node i ∈ V. AM is the adjacency matrix of the corresponding
network structure, with aMi,j being the entry at row i and column j. The
adjacency matrix is a square matrix with zero diagonal elements and its off-
diagonal element (aMi,j) is considered to be the weight of the corresponding
edge (i, j). We assume that the associated time-delays and the information
exchange between these subsystems are identical. Then, we can re-write (3.2),
which correspond to the (nodal) dynamics, as

Êp ẋpi(t) = Âp0xpi(t) +
∑n
j=1,j 6=i aMi,jF̂pxpj(t)

+
∑mn
k=1 Âpk xpi(t− τk) + B̂p ui(t),

yi(t) = Ĉp xpi(t), i = 1, ..., n.

(3.3)

The above system model is also in the most general DDAE form since Ēp
is allowed to be singular. Hence, this system can also be used to represent
subsystems which are delay coupled with the help of an augmented state vector.
The design of robust (identical) decentralised controllers for such systems can
be made computationally efficient using the network structure exploitation
approach developed in Chapter 2.



74 DECENTRALISED CONTROLLERS IN A NETWORK OF SAMPLED-DATA SYSTEMS

P

K1

ρ1
k ζ1

k

s1
k a1

k

y1

ŷ1
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Figure 3.1: Closed-loop system of the decentralised controllers (Ki) and the
MIMO plant (P ) with constant time-delays and control imperfections.

3.2.1 Sampled-data decentralised control

Consider the sampled-data decentralised control configuration shown in Figure
3.1. The sampling and actuation sequences for the control are introduced as
follows. The ith measured output (yi) is sampled according to a sampling
sequence {sik}k∈Z+

0
, represented using a set of instants, where si0 ∈ (0, h̄i],

sik+1 = sik + hik, (3.4)

and hik ∈ (0, h̄i], k ∈ Z+
0 , i = 1, ..., n. The sampling intervals (hik) consider

imperfections in sampling such as jitters and data packet dropouts. The ith

controlled-input is sampled according to a sequence {ζik}k∈Z+
0
where ζi0 ∈ (0, κ̄i],

ζik+1 = ζik + κik, (3.5)

and κik ∈ (0, κ̄i], k ∈ Z+
0 , i = 1, ..., n. The sequence of instants at which the ith

controller receives the sampled output is denoted by {ρik}k∈Z+
0
, where

ρik = sik + ϑik, (3.6)

and ϑik ∈ [0, ϑ̄i], k ∈ Z+
0 , i = 1, ..., n. The asynchrony between sensors and

controllers are denoted by ϑik, k ∈ Z+
0 , i = 1, ..., n. Asynchrony may occur due
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to sensor delays. The controlled-input is implemented at the plant according to
actuation instants {aik}k∈Z+

0
, where

aik = ζik + κik, (3.7)

and κik ∈ [0,κi], k ∈ Z+
0 , i = 1, ..., n. Here, κik denote the asynchrony

between controllers and actuators (which includes the computation delays in the
controllers). The following assumption is considered throughout this chapter
for the sampling and receiving instants of the closed-loop system with control
imperfections.

Assumption 4 We assume that there exist positive real valued bounds
hi, ηi, ϑi,κi, and κi such that the kth closed-loop control sequence satisfies

0 < sik ≤ ρik ≤ ζik ≤ aik, ∀ k ∈ Z+
0 , i = 1, ..., n. (3.8)

The above assumption ensures that the output sampled at the instant sik from
the sensor is used for the computation of controlled-input at the instant ζik
which is implemented at the instant aik. That is, the actuation data and control
data are ordered with respect to the moments of time when sensor data is
transmitted. This ensures that the control input based on yi(sik) can be applied
at time-interval [aik, aik+1), k ∈ Z+

0 . Notice that the contrary case ρik > ζik
corresponds to an irrational case where the kth sequence input to the controller
is received before the kth sequence controlled input is computed. Also, the cases
ρik > aik or ζik > aik correspond to the cases where the kth sequence control data
is processed before the kth sequence actuation data is applied. The asynchrony
between sensors and actuators can be described using {ηik}k∈Z+

0
, where

ηik = aik − sik, (3.9)

and ηik ∈ [0, η̄i], k ∈ Z+
0 , i = 1, ..., n. Based on the sufficient condition of

Assumption 4, the sampled-output received at the controller is

ŷi(t) =

yi(0), ∀ t ∈ [0, ρi0),

yi(sik), ∀ t ∈ [ρik, ρik+1),
(3.10)
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∀ k ∈ Z+
0 , i = 1, ..., n. We consider the dynamics of the ith fixed-order controller

to be

ẋci(t) = Aci xci(t) +Bci ŷi(t),

ûi(t) = Ccixci(t) +Dciŷi(t),
(3.11)

for almost all t ≥ 0, where the controller state is denoted by xci(t) ∈ Rnci ,
the controller coefficient matrices Aci, Bci, Cci, and Dci are constant and real
valued, and the controlled-input implemented at the plant is

ui(t) =

ûi(0), ∀ t ∈ [0, ai0),

ûi(ζik), ∀ t ∈ [aik, aik+1),
(3.12)

∀ k ∈ Z+
0 , i = 1, ..., n. We recall from Assumption 4 that xci(ζk) and yi(sk)

are the ith controller state information and the measured-output from ith plant,
respectively, used for computing ûi(ζik). Then, we have

ûi(0) = Ccixci(0) +Dciŷi(0) = Ccixci(0) +Dciyi(0),

ûi(ζik) = Ccixci(ζik) +Dciŷi(ζik)

= Ccixci(ζik) +Dciyi(sik), k ∈ Z+
0 , i = 1, ..., n.

(3.13)

3.2.2 A feedback interconnection interpretation

In this subsection, we rewrite the closed-loop system of (3.2) and (3.11) as a
feedback interconnection of a nominal system and an uncertainty block. This
interpretation allows us to use a simple input-output L2 stability criterion,
extending the work of (Fiter et al., 2018; Thomas et al., 2018), for the design of
dynamic controllers for DDAEs. For this purpose, we represent the piecewise-
constant controlled-input and measured-output in continuous-time using time-
varying errors, that is,ẋci(t) = Aci xci(t) +Bci(yi(t) + ei1(t)),

ui(t) = (Ccixci(t) + ei2(t)) +Dci(yi(t) + ei3(t)),
(3.14)
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Figure 3.2: A signal yi(t) used to illustrate that the errors ei1 and ei3 due to
sampling need not be same.

∀ t ≥ 0, i = 1, ..., n, where the error signals are

ei1(t) =

yi(0)− yi(t), ∀ t ∈ [0, ρi0)

yi(sik)− yi(t), ∀ t ∈ [ρik, ρik+1)
, (3.15)

ei2(t) =

Cc,ixci(0)− Ccixci(t), ∀ t ∈ [0, ai0)

Cc,ixci(ζik)− Ccixci(t), ∀ t ∈ [aik, aik+1)
, (3.16)

ei3(t) =

yi(0)− yi(t), ∀ t ∈ [0, ai0)

yi(sik)− yi(t), ∀ t ∈ [aik, aik+1)
, (3.17)

∀ k ∈ Z+
0 , i = 1, ..., n. Here, ei1(t) arises due to the sampled output implemented

at the controller, ei2(t) arises due to the sampled controller-state implemented
at the input, and ei3(t) arises due to the sampled output implemented at the
input. Note that ei1 and ei3 need not be same due to the transport delay, this is
evident in Figure 3.2. Now we define the uncertainty operator. For this purpose,
consider zi = [zTi,1 zTi,2]T, zi ∈ L2e[0,∞), wi = [ei1 ei3 ei2]T, wi ∈ L2e[0,∞), and
the (bounded) integral operators ∆i

1, ∆i
2 and ∆i

3 on L2e[0,∞), i = 1, ..., n, such
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that

ei1(t) = (∆i
1zi,1)(t)

:=

−
∫ t

0 zi,1(θ)dθ, ∀ t ∈ [0, ρi0)

−
∫ t
si
k
zi,1(θ)dθ, ∀ t ∈ [ρik, ρik+1)

,

(3.18)

ei2(t) = (∆i
2zi,2)(t)

:=

−
∫ t

0 zi,2(θ)dθ, ∀ t ∈ [0, ai0)

−
∫ t
ζi
k
zi,2(θ)dθ, ∀ t ∈ [aik, aik+1)

,

(3.19)

ei3(t) = (∆i
3zi,1)(t)

:=

−
∫ t

0 zi,1(θ)dθ, ∀ t ∈ [0, ai0)

−
∫ t
si
k
zi,1(θ)dθ, ∀ t ∈ [aik, aik+1)

,

(3.20)

∀ k ∈ Z+
0 , i = 1, ..., n. Let ∆̃i be an (uncertainty) operator on L2e[0,∞) defined

by

wi(t) = (∆̃izi)(t) :=

(∆i
1zi,1)(t)

(∆i
3zi,1)(t)

(∆i
2zi,2)(t)

 , i = 1, ...., n, (3.21)

where wi(t) is an exogenous input to the nominal system and zi(t) is an
exogenous output from the nominal system.

We introduce the following proposition to recast the closed-loop system of (3.2)
and (3.11) as a feedback interconnection of a continuous-time nominal system
and an uncertainty block.

Proposition 3.2.1 Closed-loop system (3.2) and (3.11) can be rewritten as
a feedback interconnection of a nominal system in the DDAE form, using the
augmented state vector x,Eẋ(t) = A0x(t) +

∑mn
j=1Ajx(t− τj) +Bw(t),

z(t) = Cx(t),
(3.22)
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Figure 3.3: The control imperfections in Figure 3.1 are absorbed in the operators
∆̃i, i = 1, ..., n.

and an uncertainty operator on L2e[0,∞) defined by

w(t) = (∆̃z)(t) :=


(∆̃1z1)(t)

...
(∆̃nzn)(t)

 , (3.23)

where w = [wT
1 . . . wT

n ]T, z = [zT
1 . . . zT

n ]T (see Figure 3.3), and the coefficient
matrices in (3.22) are

A0 =



Ap0 Bp 0 0 0 0
0 −I Bw1 0 Cc Dc

0 0 −I 0 0 0
0 0 0 I 0 0
0 0 Bw2 0 Ac Bc

Cp 0 0 0 0 −I


,
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Ai =



Api 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

E =



Ep 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Cz1 0 0 0 Cz2 0
0 0 0 0 I 0
0 0 0 0 0 0


,

C =
[
0 0 0 I 0 0

]
,

B =
[
0 0 I 0 0 0

]T
,

Bp =
[
Bp1 . . . Bpn

]
, Cp =


Cp1
...

Cpn

 ,

Cc =


Cc1 0

. . .
0 Ccn

 , Dc =


Dc1 0

. . .
0 Dcn

 ,

Ac =


Ac1 0

. . .
0 Acn

 , Bc =


Bc1 0

. . .
0 Bcn

 ,

Bw1 =


0 I Dc1 0

. . .
0 0 I Dcn

 ,
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Bw2 =


Bc1 0 0 0

. . .
0 Bcn 0 0

 ,

Cz1 =



Cp1

0
...

Cpn

0


, Cz2 =



0
Cc1

0

. . .

0 0
Ccn


.

Proof. Since the controlled-inputs are piecewise constant and there is no feed-
through, the outputs yi, i = 1, ..., n, are piecewise continuously differentiable.
That is, for any t2 > t1 ≥ 0, we can expess yi(t2)− yi(t1) =

∫ t2
t1
ẏi(θ)dθ ∀ i =

1, ..., n. Similarly, the functions Ccixci, i = 1, ..., n, are also piecewise
continuously differentiable, then we can express Ccixci(t2) − Ccixci(t1) =∫ t2
t1
Cciẋci(θ)dθ, i = 1, ..., n. Therefore, the errors can be rewritten as

ei1(t) =

−
∫ t

0 ẏi(θ)dθ, ∀ t ∈ [0, ρi0)

−
∫ t
si
k
ẏi(θ)dθ, ∀ t ∈ [ρik, ρik+1)

,

ei2(t) =

−
∫ t

0 Cciẋci(θ)dθ, ∀ t ∈ [0, ai0)

−
∫ t
ζi
k
Cciẋci(θ)dθ, ∀ t ∈ [aik, aik+1)

,

ei3(t) =

−
∫ t

0 ẏi(θ)dθ, ∀ t ∈ [0, ai0)

−
∫ t
si
k
ẏi(θ)dθ, ∀ t ∈ [aik, aik+1)

,

(3.24)
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∀ k ∈ Z+
0 , i = 1, ..., n. Then closed-loop system (3.2) and (3.14) can be rewritten

in the feedback interconnection form of

Epẋp(t) = Ap0 xp(t) +
∑mn
j=1Apjxp(t− τj) +

∑n
i=1Bpi ui(t),

yi(t) = Cpi xp(t),

ẋci(t) = Acixci(t) +Bciyi(t) +
[
Bci 0 0

]
wi(t),

ui(t) = Ccixci(t) +Dciyi(t) +
[
0 I Dci

]
wi(t),

zi(t) =

 ẏi(t)

Cciẋci(t)

 , i = 1, ...., n,

(3.25)

and

wi(t) = (∆̃izi)(t), i = 1, ...., n. (3.26)

The plant in (3.22) is another simplified DDAE form of (3.25) where zi,1(t) =
ẏi(t), zi,2(t) = Cciẋci(t), i = 1, ..., n, hence proved. ◦

Remark 2 Plant (3.22) is obtained using the augmented state vector x =
[xT
p u

TγT
wγ

T
z x

T
c y

T]T, where γw and γz are dummy vectors for w and z,
respectively, xc = [xT

c1 . . . xT
cn]T, u = [uT

1 . . . uT
n ]T, and y = [yT

1 . . . yT
n ]T.

Remark 3 Plant (3.2) has no exogenous inputs or outputs. However, it is
possible to consider other exogenous inputs (which will arise in the first line
of (3.25)) or outputs in its dynamics in addition to the control imperfections.
Such a system can also be recast into the form of (3.22) with minor changes in
the coefficient matrices, input vector, and output vector.

Notice that by rewriting the system in the DDAE form (3.22), we have enforced
all the controller parameters to be contained within A0.
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3.3 Stability criterion: generic case

Using the problem described in the previous section as our motivation, we study
the feedback interconnection of a plant G and an uncertainty block ∆̃z = Gw + f

w = ∆̃z + g,
(3.27)

where f, g ∈ L2e[0,∞). The operator G on L2e[0,∞) describes the input-output
map of the nominal system (3.22) (with zero initial conditions). In the frequency
domain, it is described by the transfer function matrix

G(s) := C(sE −A0 −
mn∑
j=1

Aje−sτj )−1B. (3.28)

The operator ∆̃ is already defined in (3.23). The feedback interconnection
(3.27) can represent the decentralised control system given by (3.2) and (3.14),
affected by perturbations at the state, represented by f and g, and with zero
initial condition. A direct consequence of the small gain theorem (Fridman,
2014; Khalil, 2002; Zames, 1966) recalled in Appendix B is that the mapping[

f

g

]
−→

[
w

z

]
, (3.29)

resulting from the feedback interconnection of (3.27) has a finite L2 gain if
||G||L2 · ||∆̃||L2 < 1. We consider a feedback interconnection to be input-output
L2 stable when its mapping has a finite L2 gain. Since G is linear and time-
invariant, the induced-L2 norm ||G||L2 = ||G||H∞ . Based on Assumption 4, we
introduce the following lemma.

Lemma 3.3.1 The integral operators ∆i
1,∆i

2, and ∆i
3 satisfy

||∆i
j ||L2 ≤ γij , j = 1, 2, 3, i = 1, ..., n, (3.30)
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where

γi1 = h̄i + ϑ̄i,

γi2 = κ̄i + κ̄i,

γi3 = h̄i + η̄i, i = 1, ...., n.

(3.31)

Proof. The proof is given in Appendix E. �

To determine a condition for input-output stability of the feedback interconnec-
tion of (3.27), the following lemma is presented.

Lemma 3.3.2 The L2 gain of the operator ∆̃i can be bounded as follows,

||∆̃i||L2 ≤ γ̄i, (3.32)

where
γ̄i := max{

√
(γi1)2 + (γi3)2, γi2}, i = 1, ..., n. (3.33)

Proof. The proof follows from Lemma 3.3.1 and by considering the worst case
L2 gain. �

Combining the above results, a sufficient condition for input-output stability of
the feedback interconnection of (3.27) is presented in the following theorem.

Theorem 3.3.3 Assume that the nominal system described using the transfer
function matrix defined in (3.28) is exponentially stable. Then, the feedback
interconnection (3.27) (as in Figure 3.3) is guaranteed to be input-output L2

stable if it satisfies the condition,

max
i∈{1,...,n}

γ̄i < (||G(jω)||H∞)−1
,

where the transfer function matrix G(jω) from w to z is defined in (3.28) and
γ̄i, i = 1, ..., n, are defined in terms of the sampling interval and asynchrony
bounds in (3.31) and (3.33).
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Proof. The proof follows directly by virtue of the small gain theorem and
Lemma 3.3.2. ◦

Next, we introduce a less conservative robust stability condition by exploiting
the structure of the operator ∆̃. To do so, we rely on scaling the feedback
connection according to the structure of the block diagonal operator ∆̃ (see
(Michiels et al., 2009a; Shamma, 1994) and the references therein for more
details). We define (diagonal) scaling matrices X and X̃, such that

X :=


δ̆1 . . . 0
... . . . ...
0 . . . δ̆n

 , X̃ :=


δ̂1 . . . 0
... . . . ...
0 . . . δ̂n

 ,

δ̆i =
[
δi,1 0
0 δi,2

]
, δ̂i =

[
δi,1I2×2 0

0 δi,2

]
, i = 1, ..., n,

(3.34)

and δi,j ∈ R \ {0}, i = 1, ..., n, j = 1, 2, are scalar parameters. Notice that X
and X̃ have a structure related to ∆̃, and X̃ 6= X because the dimensions of
input and output vectors are different. For simplicity of the presentation, we
combine all the scalar parameters in a vector, δ̄ = [δ1,1 δ1,2 . . . δn,1 δn,2]T. For
the block-diagonal operator considered, we have, by definition, X−1∆̃X̃ = ∆̃.
Due to the feedback interconnection of (3.25)-(3.26), we know that introducing
the scaling matrices does not affect its stability property. We are now ready to
improve the criterion in Theorem 3.3.3 using the following proposition.

Proposition 3.3.4 Assume that the nominal system described using the
transfer function matrix in (3.28) is exponentially stable. Then, a sufficient
condition for the feedback interconnection of (3.27) to be input-output L2 stable
is

max
i∈{1,...,n}

γ̄i <

(
inf
δ̄
||X(δ̄)G(jω)X̃−1(δ̄)||H∞

)−1
. (3.35)

For simplicity of the presentation, we define a new (transfer) function Ĝ(jω, δ̄) :=
XGX̃−1(jω, δ̄).

Remark 4 The values for scaling parameters (δ̄) in (3.35) are determined by
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solving a non-convex optimisation problem. This problem will be shown later in
Secton 3.4.1.

3.4 Controller design

We build on the approach of (Gumussoy and Michiels, 2011; Michiels, 2011) to
directly optimise the robustness against control imperfections (by minimising
||G||H∞) of the nominal time-delay system (3.22) as a function of the parameter
vector p̄. Notice that an exponentially stable nominal system (DDAE with
continuous-time control) is required to initialise the optimisation of objective
functions involving the H∞ norm. If this is not the case, a preliminary
stabilisation phase is conducted based on optimising the spectral abscissa.
The vector p̄ contains the tunable parameters of the decentralised controllers

p̄T = [p̄T1 . . . p̄Tn ], where p̄i = vec
([

Aci Bci

Cci Dci

])
, (3.36)

i = 1, ..., n. For the special case of static controller (as considered by Thomas
et al. (2018)), only elements of Dci exist. In the following subsections, we
describe the objective functions for which the controller parameters may be
optimised.

3.4.1 Generic case

Recall that the spectral abscissa of the nominal system (3.22) with w ≡ 0 is
defined as follows,

c(p̄) = sup
λ∈C
{R(λ) : detM(λ, p̄) = 0}, (3.37)

where the characteristic matrix

M(λ, p̄) := λE −A0(p̄)−
mn∑
i=1

Aie−λτi .
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Note that the dependence of functions on p̄ is only made explicit in the notation
when necessary. The exponential stability of the null solution of the system
in (3.22) is determined by the condition c(p̄) < 0 (see (Michiels, 2011)). We
know that the null solution of the system in (3.22) is exponentially stable iff
c(p̄) < 0. With respect to the optimisation problem, the objective function is
tuned with respect to the controller parameters (p̄). To obtain a exponentially
stable system that maximises the exponential decay rate of the solutions, the
controller parameters (in p̄) are optimised for the minimum of spectral abscissa,
that is, they are obtained by

min
p̄
c(p̄). (3.38)

The transfer function matrix from w to z of the nominal system represented by
(3.22) is given by

G(s, p̄) = C
(
sE −A0(p̄)−

mn∑
i=1

Aie−sτi
)−1

B. (3.39)

Given that system (3.22) is exponentially stable, that is c(p̄) < 0, the H∞ norm
of the transfer function matrix given in (3.39) can be expressed as

||G(jω, p̄)||H∞ = sup
ω∈R

σ1(G(jω, p̄)). (3.40)

To improve robustness against control imperfections written in terms of the H∞
norm of (3.40), controller parameters (in p̄) may be optimised by minimising
the function

min
p̄
||G(jω, p̄)||H∞ . (3.41)

Hence, the maximum allowable upper-bound for the sampling intervals and
asynchrony for which the closed-loop system is stable is improved by solving
the non-convex optimisation problem in (3.41). This can be implemented
numerically using the algorithm in (Gumussoy and Michiels, 2011). For
minimsing both the objective functions, we use gradient-based optimisation
algorithm HANSO (Overton, 2009) which can handle non-smooth optimisation
problems.
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For a less conservative result, it also possible to consider Proposition 3.3.4 and
simultaneously tune parameters in both δ̄ and p̄ to minimise

min
δ̄, p̄
||Ĝ(jω, p̄, δ̄)||H∞ . (3.42)

Alternatively, it is possible to consider a two layer (min-min) optimisation
problem, wherein the outer layer tunes p̄ and inner layer tunes δ̄ for minimising
the function

min
p̄

(
min
δ̄
||Ĝ(jω, p̄, δ̄)||H∞

)
. (3.43)

Although optimisation problems (3.42) and (3.43) have the same solution, the
numerical implementation may lead to different results. Since these optimisation
problems are in general non-convex, the local minima found may not correspond
to each other. We use the gradient-based optimisation algorithm HANSO to
solve the optimisation problems of (3.42) and (3.43). We compute gradients
for the optimisation problems using the approach in (Gumussoy and Michiels,
2011).

3.4.2 Network structure exploitation

In this section, the special case of structured MIMO plant as in (3.3) is considered.
Assume that the identical subsystems are to be controlled using identical fixed-
order controllers, that is, Aci = Âc, Bci = B̂c, Cci = Ĉc, and Dci = D̂c ∀ i =
1, ...., n in (3.25), see Figure 3.4. Let us consider an augmented (sub-)system
state vector xTi = [xTpi uTi γTwi γ

T
zi x

T
ci y

T
i ] ∀ i = 1, ..., n, where γzi and γwi are

dummy vectors used to represent zi and wi respectively. Then, we can rewrite
closed-loop system (3.3) and identical fixed-order controllers using the state
vector xT = [xT1 . . . xTn ] as

I ⊗ Êclẋ(t) = (I ⊗ Âcl,0 +AM ⊗ F̂cl)x(t) +
∑mn
k=1 I ⊗ Âcl,k x(t− τk)

+I ⊗ B̂clw(t),

z(t) = I ⊗ Ĉclx(t),
(3.44)
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ŷn

un

ûn
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Figure 3.4: The structured MIMO plant considered in this chapter. Identical
subsystems P̃ (with constant time-delays at input, output, and state) connected
through some network (described by the adjacency matrix AM ) are to be
stabilised by identical local (fixed-order) controllers with non-identical control
imperfections.
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and at the level of uncertainty operator, there is no change from (3.23). The
coefficient matrices in (3.44) are

Âcl,0 =



Âp0 B̂p 0 0 0 0
0 −I

[
0 I D̂c

]
0 Ĉc D̂c

0 0 −I 0 0 0
0 0 0 I 0 0
0 0

[
B̂c 0 0

]
0 Âc B̂c

Ĉp 0 0 0 0 −I


,

Âcl,k =



Âpi 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

Êcl =



Êp 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0[
Ĉp

0

]
0 0 0

[
0
Ĉc

]
0

0 0 0 0 I 0
0 0 0 0 0 0


,

F̂cl =



F̂p 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, B̂cl =



0
0
I

0
0
0


,

Ĉcl =
[
0 0 0 I 0 0

]
.
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According to the complex Schur decomposition theorem (Meyer, 2000), there
always exists an unitary matrix T such that

AM = TZT ∗, (3.45)

where Z is an upper triangular matrix. Then, by performing a similarity
transformation using x̄ = (T ⊗ I)x and using the property that some matrices
commute (like (T ⊗ I)(I ⊗ B̂cl) = (I ⊗ B̂cl)(T ⊗ I)) we obtain

z(t) = (T ∗ ⊗ I)(I ⊗ Ĉcl)x̄(t). (3.46)

It is clear from above that omitting the transformation by (T ⊗ I) at input
side and (T ∗ ⊗ I) at output side in (3.46) does not affect the H∞ norm since
T is unitary. In this chapter, the control imperfections are considered only at
the communication between controllers and plants. We recall the main result
(Theorems 2.3.1-2.3.2) of Chapter 2, which is stated as the following theorem
(see Chapter 2 for proof).

Theorem 3.4.1 Let {λa1, . . . , λan} denote the spectrum of AM . Also, we
consider the group of subsystems

Êcl ˙̄xi(t) =
(
Âcl,0 + λaiF̂cl

)
x̄i(t) +

mn∑
k=1

Âcl,kx̄i(t− τk) + B̂clw̄i(t),

z̄i(t) = Ĉclx̄i(t), i = 1, . . . , n.

(3.47)

Then the following results hold:

1. System (3.44) with w ≡ 0 is exponentially stable if and only if system
(3.47) with w̄i ≡ 0 ∀ i = 1, ..., n is exponentially stable. Moreover the
spectral abscissa c(p̄) of (3.44) satisfies

c(p̄) = max
i∈{1,..,n}

c̃(p̄, λai), (3.48)
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where
c̃(p̄, λai) = sup

λ∈C
{R(λ) : detM̄(λ, λai, p̄) = 0}, (3.49)

and the characteristic matrix

M̂(λ, λai, p̄) := λÊcl − Âcl,0(p̄)− λaiF̂cl −
mn∑
k=1

Âcl,ke−λτk . (3.50)

2. If AM is a normal matrix, then

||G(jw, p̄)||H∞ = max
i∈{1,..,n}

||G̃(jw, λai, p̄)||H∞ , (3.51)

where G̃(jw, λai, p̄) is the transfer function matrices of system (3.47) from
w̄i to z̄i.

Then, we have the following corollary from the theorem stated above.

Corollary 3.4.2 Assume that AM is a normal matrix. Then, a sufficient
condition for the feedback interconnection of (3.27), for the case where system
(3.22) is structured as in (3.44), to be input-output L2 stable becomes

max
i∈{1,...,n}

γ̄i <

(
max

i∈{1,...,n}
||G̃(jw, λai, p̄)||H∞

)−1
, (3.52)

where
G̃(s, λai, p̄) = Ĉcl

(
M̂(s, λai, p̄)

)−1
B̂cl.

Proof. The proof follows from Theorem 3.3.3 and the latter part of Theorem
3.4.1. ◦

In order to efficiently design identical decentralised controllers of the form (3.14)
that are robust against control imperfections, we replace the minimisation
objective (3.38) with

min
p̄

max
i∈{1,..,n}

c̃(p̄, λai), (3.53)
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for faster exponential decay rate of the solutions and (3.41) with

min
p̄

max
i∈{1,..,n}

||G̃(jw, λai, p̄)||H∞ , (3.54)

for improving robustness against control imperfections. The network structure
exploitation is performed by transforming the coupling between subsystems to
some kind of self-coupling through λai. Recall that the transformation matrices
used to diagonalise the adjacency matrix must be unitary, which is satisfied when
the adjacency matrix is symmetric, corresponding to bi-directional coupling, or
a circulant matrix.

Notice that using the approach of network structure exploitation implies that
we can no longer reduce conservatism using the scaling approach presented
at the end of Section 3.3, since the scaling would not correspond to a unitary
transformation.

3.5 Numerical example

In this section, we perform simulation-based studies on a numerical example
made up of n identical third order subsystems subject to different control and
input perturbations. This example provides a simple illustration for the systems
in Section 3.4.2. The simulations are performed using the MATLAB software
tool described in (Dileep and Michiels, 2018c), which relies on extending the
results in (Gumussoy and Michiels, 2011; Michiels, 2011) towards scalable
algorithms for the design of sampled-data decentralised controllers. We specify
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the plant (3.3) as

ẋpi(t) =


−10 0 0

1 0 0

0 1 0

xpi(t) +
∑n
j=1 aMi,j


1 0 0

0 1 0

0 0 0

xpj(t− 0.2)

+


10

0

0

ui(t) + Ωi(t),

yi(t) =

0 1 0

0 0 1

xpi(t− 0.1), i = 1, ..., n,

(3.55)

where the normal adjacency matrix AM has the elements

aMi,j =

0.5, if |i− j| = 1,

0, otherwise,
(3.56)

∀ i, j = 1, ...., n. In (3.55), there is an additional exogenous input vector Ωi(t)
whose role will be discussed later on. The above plant is to be controlled by
identical dynamic controllers of the form (3.11). The third and fourth equations
of the corresponding system (3.25) then take the formẋci = Ācxci + B̄cyi +

[
B̄c 0 0

]
wi(t),

ui = C̄cxci + D̄cyi +
[
0 I D̄c

]
wi(t), i = 1, ..., n.

(3.57)

The exogenous outputs are

zi(t) =
[
Cgẋpi(t)
C̄cẋci(t)

]
, Υi(t) = xpi(t), i = 1, ..., , n. (3.58)

Notice that closed-loop system (3.55)-(3.58) is an example of the form (3.44)
and hence we can exploit the network structure. However, we also consider
new exogenous inputs (Ωi(t)) to the subsystems in (3.55) and new exogenous
outputs (Υi(t)) in (3.58). These terms allow us to consider some additional
disturbances to the subsystems, besides the control imperfections. For example,
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these terms could provide an insight on the allowable parametric uncertainties
on the plant’s state-coefficient matrix. However, it can be easily shown that all
the results presented in the previous sections still carry over to this situation.

First, we consider system (3.55)-(3.58) to be a small network with three
subsystems (n = 3). To illustrate the instability that may be due to the
control imperfections in Figure 3.5, we use a second order controller Kb, whose
coefficient matrices are

Āc = 103 ·

[
−2.4639 −0.9459

2.796 −2.2546

]
,

B̄c = 103 ·

[
0.0660 −0.4056
−0.2102 0.1232

]
,

C̄c = 103 ·
[
7.8543 1.0195

]
,

D̄c = 103 ·
[
−0.2953 1.0865

]
,

(3.59)

for each of the three subsystems in (3.55). The spectral abscissa of closed-loop
system (3.55) and Kb is -2.050, when n = 3, wi ≡ 0, Ωi ≡ 0, i = 1, 2, 3.
For the purpose of illustration, controller Kb was selected in such a way that
the H∞ norm of the transfer function matrix resulting from the corresponding
closed-loop system was high.

We obtain a new controller Ksd by minimising the H∞ norm of the transfer
function matrix of system (3.55)-(3.58), when n = 3, from

ŵ = [wT
1 wT

2 wT
3 ΩT

1 ΩT
2 ΩT

3 ]T,

to
ẑ = [zT1 zT2 zT3 ΥT

1 ΥT
2 ΥT

3 ]T,

to 9.93 using the network structure exploiting algorithm. That is, a feedback
interconnection of (3.55)-(3.58) and any bounded uncertainty operator with
an induced-L2 norm less than 1

9.93 is input-output L2 stable. For example, in
addition to the control imperfections, closed-loop system (3.55)-(3.58), when
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(a) Continuous-time system stabilised by the second order
controller Kb with no control imperfections. The spectral
abscissa of the closed-loop system is -2.050.
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(b) The closed-loop system is unstable with control imperfec-
tions.

Figure 3.5: Simulation of closed-loop system (3.55) and Kb, when n = 3, for
the initial value xpi(0) = 1, xci(0) = 1 ∀ i = 1, 2, 3. For clarity of presentation,
we use only eT3 xp2, where e3 is the 3rd column vector of the identity matrix.
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Figure 3.6: Closed-loop system of plant (3.55) and Ksd in (3.60) with control
imperfections, when n = 3, is stable even though it is slower than Kb. The
spectral abscissa of plant (3.55) and Ksd in (3.60) when ŵ ≡ 0 is -0.3569. The
upper-bounds for sampling intervals and asynchrony used in this simulation
were defined to satisfy (3.52) (to verify the result presented in the previous
section) and were identical to that used for the simulation of Figure 3.5b.
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u3(t)
ŷ1(t)
ŷ2(t)
ŷ3(t)

Figure 3.7: The input signals (received at plant) and output signals (received
at controllers) corresponding to the plant and Ksd in(3.60) with control
imperfections (using the settings same as Figure 3.6).
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n = 3, is also input-output L2 stable for any (non-identical) perturbation on
the subsystem’s state (xpi) coefficient matrices which has an induced-L2 norm
less than 1

9.93 . We observe that the H∞ norm corresponding to (only) control
imperfections, when n = 3, from w = [wT

1 wT
2 wT

3 ]T to z = [zT1 zT2 zT3 ]T while we
assume Ωi ≡ 0, i = 1, 2, 3, in (3.55)-(3.58) is equal to 5.81. The H∞ synthesis
controller Ksd has the coefficient matrices

Āc =
[
−6.8101 −0.0109
−0.3745 −4.5357

]
, B̄c =

[
−2.9243 1.8633
−4.0221 −4.0900

]
,

C̄c =
[
0.0524 0.5468

]
, D̄c =

[
−0.6876 −0.4615

]
.

(3.60)

The simulation results for the initial conditions of xpi(t0) = 1̄, xci(t0) = 1̄, i =
1, 2, 3, t0 ≤ 0 are presented in Figures 3.6-3.7, where 1̄ is used to represent a
matrix or vector of appropriate dimension having all elements equal to 1. Note
that the control imperfections (or the upper-bounds for the sampling intervals
and asynchrony) were ensured to be the same ( 1

5.8 ) for obtaining results using
Kb in Figure 3.5 and using Ksd in Figures 3.6-3.7 (see (Dileep and Michiels,
2018c) for details on the software and numerical data used for the example).

Additionally, we note that the conservatism in these results was not negligible in
simulations. Therefore, we aim at reducing the conservatism using the approach
of Section 3.4.1. For this purpose, the scaling parameters (δi,j , i = 1, 2, 3, j =
1, 2 in (3.34)) are optimised using “1” (no scaling) as their initial value while
not exploiting the network structure. Among other experiments, the scaled H∞
norm as in (3.43), when n = 3, from w to z was minimised (by tuning only δ̄)
from 5.81 to 4.86 for the plant (3.55) and controller Ksd in (3.60).

Now consider that system (3.55)-(3.58) has a large number of subsystems
(n� 3), while retaining the same topology, then the general approach proposed
in Section 3.4.1 becomes computationally cumbersome. The eigenvalues (λai)
of AM in (3.56) can be expressed as

λai = cos(i π

n+ 1), i = 1, ...., n, (3.61)

that is, λai ∈ [−1, 1] ∀ i = 1, ..., n. Therefore, an increase in the number
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Table 3.1: The H∞ norms computed for closed-loop system (3.55)-(3.58), when
n > 3, from ŵ(= [wT

1 . . . wT
n ΩT

1 . . . ΩT
n ]T]T) to ẑ(= [zT1 . . . zTn ΥT

1 . . . ΥT
n ]T)

with K̄sd in (3.62) using the network structure exploitation approach.
n H∞ norm
10 11.8721
50 12.8393
100 12.8770
300 12.8885
500 12.8895

of subsystems (n) results in a denser distribution of the eigenvalues (λai) in
the interval [−1, 1]. This allows us to extend the scalable algorithm for the
design of stabilising controllers described in Section 2.4. More precisely, λai
is interpreted as an uncertain parameter confined to the interval [−1, 1] and
the worst case value of the H∞ norm is optimised over this interval (solving
a min-max optimisation problem) to obtain a controller K̄sd whose coefficient
matrices are

Āc =
[
−7.4310 0.9451
−1.7851 −6.9873

]
, B̄c =

[
−3.5450 1.8700
−2.2913 −4.4404

]
,

C̄c =
[
−2.8900 1.5787

]
, D̄c =

[
−3.3538 −0.0728

]
.

(3.62)

K̄sd guarantees an upper bound on the H∞ norm (from ŵ to ẑ) of 12.89,
which is independent of the number of subsystems n in (3.55)-(3.58) and
asymptotically exact as n → ∞ (see Table 3.1). Simulation-based studies
were also performed for closed-loop system (3.55)-(3.58), when n = 500, with
K̄sd in (3.62). Also, the sampling instants and delays were defined to satisfy
the criterion in (3.52). The simulation results for the initial condition of
xpi(t0) = 1̄, xci(t0) = 1̄, i = 1, ..., 500, t0 ≤ 0, are presented in Figures 3.8-3.9.
For simplicity of representation, simulation results of only three subsystems
(i = 1, 250, 500) are shown in Figures 3.8-3.9.
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Figure 3.8: Closed-loop system of plant (3.55) and K̄sd with control
imperfections, when n = 500, is stable. The upper-bounds for sampling intervals
and asynchrony used in this simulation were defined to satisfy (3.52) (to verify
the result presented in the previous section).
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ŷ250(t)
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Figure 3.9: The input signals (received at plant) and output signals (received
at controllers) corresponding to the plant and K̄sd with control imperfections
(using the settings same as Figure 3.8), when n = 500.
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3.6 Conclusions

In this chapter, we presented an approach to design stabilising decentralised
controllers for generic MIMO plants which are robust against control
imperfections (due to sampled-data controllers) and other input disturbances.
The system (with the sampled-data decentralised controllers) was rewritten as a
feedback interconnection of a continuous-time closed-loop system and a bounded
(integral) operator. The closed-loop systems are modelled using DDAEs, which
are flexible in modelling interconnected systems. Sparsity constraints are
enforced in the parameterisation process within the optimisation to ensure that
decentralised controllers are obtained. Additionally, we proposed a method to
reduce some conservativeness in the result, which exploits the structure of the
operator. Furthermore, the computational efficiency of the controller design
algorithm is significantly improved in the case of a structured MIMO plant,
wherein the plant is composed of quasi-identical subsystems, at the price that
the local controllers need to be identical and the scaling approach to reduce the
conservatism is not applicable any more.

Throughout the chapter we assumed that the controllers were dynamic LTI
controllers, whose parameters are determined by solving optimisation problems.
The methodology trivially extends to other classes of controllers, such as
(decentralised) PID controllers, as shown in Section 2.2.

Finally, note that all the algorithms presented in this chapter have been
implemented in a publicly available software (Dileep and Michiels, 2018c).





Chapter 4

Application to cooperative
adaptive cruise control

4.1 Introduction

Problems related to traffic jams, growing constraints in highway capacities, and
improving efficiency in road transport systems have caught the attention of
researchers worldwide. Cooperative Adaptive Cruise Control (CACC) techniques
are attractive as an automated vehicle following system based on inter-vehicular
exchange of data through wireless communication, in addition to radar or lidar
(Ferguson et al., 2017; Ploeg et al., 2014b; Qin et al., 2017). As a matter of fact,
CACC is known to reduce the time gaps between vehicles significantly (Ploeg
et al., 2014b). For the case of CACC, it is impractical to employ centralised
controllers (see (Ferguson et al., 2017; Gao et al., 2018; Guanetti et al., 2018; Li
et al., 2018; Ploeg et al., 2014a; Qin et al., 2017) and the references therein). One
of the main objectives to be considered when designing controllers for CACC
is the prevention of amplification of disturbances in the upstream direction
of vehicles. This problem is generally represented using the notion of string

103
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stability1. There are several definitions available for string stability in the
literature, focusing on various aspects of cascaded systems (see (Oncu et al.,
2014; Wang and Nijmeijer, 2015; Wang et al., 2017)).

Many researchers assume homogeneity of vehicles in large platoons (networks).
Homogeneity in the platoon is assumed at a higher layer in (Ploeg et al., 2014b)
by considering the possibility of cancelling out heterogeneity using lower layer
controllers. However, this might not be suitable for some scenarios which include
multi-brand vehicular platoons with heterogeneity in time-delays. In (Gao et al.,
2016), sufficient conditions for designing string stable distributed controllers
for a heterogeneous platoon (solved using small gain theorem and LMI) were
presented. In (Wang and Nijmeijer, 2015), a pole-zero cancellation method
was proposed to cancel heterogeneity in engine time constants through post-
compensation of the wireless feed-forward signal. In (Wang et al., 2017), the
string stability of heterogeneous vehicular platoons in an adaptive cruise control
configuration with non-connected automated vehicles has been considered. We
refer to (Gao et al., 2018; Guanetti et al., 2018; Li et al., 2018,1; Sabau et al.,
2017) and the references therein for recent advancements in the corresponding
field. In general, control design methods proposed in literature were not easily
applicable to platoons with heterogeneous time-delay parameters.

In this chapter, we study the possibility to optimise, with reduced complexity, the
stability and robustness/performance of (identical) local controllers for the large
scale LTI heterogeneous vehicular platoons in an one vehicle look-ahead topology
with numerous (constant) time-delays. The heterogeneous time-delays could be
present in these systems due to actuation, sensors or communication (see (Ploeg
et al., 2015)). We consider sufficient conditions for (strict) string stability, based
on the L2 gain, as in (Ploeg et al., 2014a). The method proposed in (Ploeg
et al., 2014b) has been modified to incorporate the problem of heterogeneity
and time-delays. The one vehicle look-ahead topology is considered to design
identical controllers for heterogeneous (parameter) vehicles, by optimising them
for sufficient conditions of string stability in terms of (maximum) L2 gain. It
is important to note that by considering the (energy-based) L2 string stability
conditions for heterogeneous vehicular platoon, there is no insight on the L∞

1The string stability condition considered in this chapter will be defined in Section 4.4.3.
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string stability (which is related to the possible overshoot for signal in the
time domain). Since we consider the frequency domain approach, we have
necessary and sufficient stability conditions for the LTI system with time-delays.
Additionally, it might be possible to add an upper layer of control to one vehicle
look-ahead CACC, so as to include the possibility of information transfer from
the last vehicle to the first vehicle (see (Fusco et al., 2016; Zegers et al., 2017)).
Similar to previous chapters, we adopt non-conservative frequency domain-based
approaches proposed in (Gumussoy and Michiels, 2011; Michiels, 2011) to design
structured and fixed-order controllers for the application of automated vehicular
platoons that uses CACC.

The remainder of this chapter is organised as follows. Section 4.2 presents
the linearised vehicle plant model considered and the outputs available to the
controller. Section 4.3 describes the Delay Differential Algebraic Equation
(DDAE) used to model the heterogeneous vehicular platoon with time-delays.
Section 4.4 reviews the direct optimisation-based approach available for designing
robust fixed-order (identical) controllers for CACC. Section 4.5 validates the
proposed approach using MATLAB software. Finally, Section 4.6 contains the
concluding remarks. The results of this chapter have been presented in (Dileep
et al., 2019).

4.2 Vehicle model

Table 4.1: Heterogeneity in the CACC network.
Notation Parameter of the vehicle i

hi Head-way time constant
dci Drive-line time constant
τai Actuation delay
τbi Communication delay
τci Sensor delay

In this section, we present the vehicle models used for the CACC problem
considered in this chapter. The LTI vehicle model has been taken from (Ploeg
et al., 2014b), however, we consider existing (constant) time-delays and some
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heterogeneous elements in the dynamics of the vehicles. The heterogeneity
considered in this chapter is confined to the parameters in Table 4.1.
We assume all the parameters in Table 4.1 to be positive and real-valued. We
consider the ith vehicle model asṡi(t)v̇i(t)

ḟi(t)

 =

 vi(t)
fi(t)

− 1
dci
fi(t) + 1

dci
ui(t− τai)

 , (4.1)

∀ i = 1, ..., n where n is the total number of vehicles in the platoon, si is the
position, vi is the velocity, and fi is the acceleration of vehicle i. Given a
reference trajectory, sref,0(t) = vref,0 · t, we stabilise and control the system
around the stationary solution (when ui = 0)

si(t) = sref,i(t) = vref,0 · t−
i∑

k=1
(hkvref,0 + Lk + rk),

i = 1, ...., n, where Li is the length, ri is the standstill distance, and hi is the
head-way time constant of vehicle i. That is, we consider each vehicle to be
associated with a reference trajectory with real-valued constant velocity vk,0.
Note that the reference distance for vehicle i from the vehicle ahead has a
velocity component. We can describe the relative motion of the ith vehicle as

ψsi(t) = si(t)− sref,i(t), ψvi(t) = vi(t)− ṡref,i(t),

ψfi(t) = fi(t)− s̈ref,i(t) = fi(t), ∀ i = 1, ..., n.
(4.2)

For the virtual vehicle 0, we consider v0 = vref,0, s0 = sref,0, then ψs0 =
0, ψv0 = 0. The equations in (4.1) change toψ̇si(t)ψ̇vi(t)

ψ̇fi(t)

 =

 ψvi(t)
ψfi(t)

− 1
dci
ψfi(t) + 1

dci
ui(t− τai)

 , (4.3)
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and the corresponding transfer function from ui to ψsi can be written as

Gi(s) = e−τais
(dcis+ 1)s2 . (4.4)

We assume that the controller of vehicle i has access to the position error
(epi(t)), the velocity error (ėpi(t)), and the input signal transmitted from
the vehicle ahead through wireless communication (ui−1(t)), that is yi(t) =
[epi(t− τci) ėpi(t− τci) ui−1(t− τb(i−1))]T. The position error is given by

epi(t) = si−1(t)− si(t)− hivi(t)− Li − ri

= ψs(i−1)(t)− ψsi(t)− hiψvi(t),
(4.5)

and the velocity error is given by

ėpi(t) = vi−1(t)− vi(t)− hifi(t)

= ψvi−1(t)− ψvi(t)− hiψfi(t),
(4.6)

for all vehicles i = 1, ..., n (by definition, ψs0 = 0, ψv0 = 0).

4.3 One vehicle look-ahead platoon with CACC

The dynamics of the one vehicle look-ahead platoon without control is given
(using the state xpi(t) = [epi(t) ψvi(t) ψfi(t) γui(t) γTyi(t)]T) by

Epẋpi = Api0xpi(t) +Api1xpi(t− τai)

+Api2xpi(t− τci) +Bpi1ui(t) + Fpi0xp(i−1)(t)

+ Fpi1xp(i−1)(t− τb(i−1)) + Fpi2xp(i−1)(t− τci),

yi(t) = Cpi0xpi(t), i = 1, ..., n, xp0 ≡ 0,

(4.7)

where epi is the position error, vi is the relative velocity, and ai is the acceleration
of plant/vehicle i, whereas γui and γyi are dummy variables for controlled input
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ui and output to controller yi respectively. Note that for simplicity of the
presentation we consider i = 1, ..., n in (4.7) and for the case where i = 1, we
define xp,(i−1) = xp,0 ≡ 0. We use I and 0 to denote the identity matrix and
the matrix with zero entries of appropriate dimensions, respectively, and [ · ](j,k)

denotes the element at the jth row and kth column of a matrix. In the matrices
below

Api0 =


0 −1 −hi 0 0
0 0 1 0 0
0 0 − 1

dci
0 0

0 0 0 −1 0
0 0 0 0 −I

, Bpi1 =


0
0
0
1
0

,

[Fpi0](j,k) =

1, if (j, k) = (1, 2)

0, otherwise,

[Api1](j,k) =

 1
dci
, if (j, k) = (3, 4)

0, otherwise,

Cpi0 =
[
0 0 0 0 I

]
,

Api2 =



0 0 . . . 0
...

...
. . .

...
0 0 . . . 01 0 0

0 −1 −hi
0 0 0

 0 . . . 0


,

[Fpi1](j,k) =

1, if (j, k) = (7, 4)

0, otherwise,

[Fpi2](j,k) =

1, if (j, k) = (6, 2)

0, otherwise,
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Ep =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

,

Api,j is given for i = 1, ..., n, Fpi,j is given for i = 2, ..., n, and Fp1j = 0 (i = 1),
where j = 0, 1, 2. We also consider each subsystem to be controlled by a
fixed-order LTI feedback controller (order nc) of the formẋci(t) = Acxci(t) +Bcyi(t),

ui(t) = Ccxci(t) +Dcyi(t), i = 1, ..., n.
(4.8)

A static controller (nc = 0) would have only the Dc component corresponding to
[kp kd kff ] as in (Ploeg et al., 2014b) (with kff = 1). We consider the scenario
of the heterogeneous vehicles being controlled using identical local controllers
ui(s) = K(s)yi(s) ∀ i = 1, ..., n. We define the following state vector for the
closed-loop system

xi(t) = [xTpi(t) uTi (t) xTci(t) yTi (t)]T,

which includes plants, controllers, and network interconnections. We re-write
the system equations using the new state xi ∈ Rncl , in the form of DDAE (see
Chapter 2 and (Gumussoy and Michiels, 2011) for more details on DDAE)

Eẋi(t) = Ai0xi(t) +Ai1xi(t− τai) +Ai2xi(t− τci)

+Fi0xi−1(t) + Fi1xi−1(t− τb(i−1))

+Fi2xi−1(t− τci) ∀ i = 1, . . . , n, x0 = 0,

(4.9)

where the matrices are

E =


Ep 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0

, Ai0 =


Api0 Bpi1 0 0
Cpi0 0 0 −I

0 0 Ac Bc

0 −I Cc Dc

 ,
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Ai1 = blkdiag{Api1, 0, 0, 0}, Fi0 = blkdiag{Fpi0, 0, 0, 0},

Ai2 = blkdiag{Api2, 0, 0, 0}, Fi1 = blkdiag{Fpi1, 0, 0, 0},

Fi2 = blkdiag{Fpi2, 0, 0, 0},

i = 1, ..., n, where the abbreviation blkdiag{·} implies the block diagonal matrix.
Notice in the above equation that the controller parameters are contained
in matrix Ai0, as indicated with the dashed box. Recall that in the direct
optimisation approach from Section 2, stability and performance measures
expressed in terms of the spectral abscissa and H∞ norms are optimised as a
function of the elements of controller matrices Ac, Bc, Cc and Dc. For this
application, we contain all the controller parameters in a vector

p̄ = vec
[
Ac Bc

Cc Dc

]
. (4.10)

Whenever appropriate, we stress the dependence of Ai0 on these parameters
with the notation Ai0(p̄).

4.4 Stability and performance objectives

We optimise the controller parameters in p̄ for stability objectives in terms of
spectral abscissa and pseudo-spectral abscissa using algorithms which have been
already mentioned in Chapter 2. Additionally, we tune controller parameters for
robustness objectives in terms of induced-L2 norms, using a graphical frequency-
gridding approach2. In this section, we present an approach to exploit the one
vehicle look-ahead topology of the platoon for the (efficient) design of controllers.
The objective functions considered in this chapter are as follows.

4.4.1 Platoon stability: spectral abscissa

The linear models of vehicles and the platoon used in this chapter are not
stable. The vehicle models in (4.3), when ui ≡ 0, have a double eigenvalue at

2We use bode plot and patternsearch: a built-in optimisation algorithm within MATLAB.
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zero. This has a physical interpretation. Since the remaining eigenvalue is in
the open left half plane (− 1

dci
), the reached solution with respect to the speed

and the offset of the position component depend on the initial condition and
disturbances. Therefore, as a first step we stabilise the platoon by computing
local controllers that minimise the spectral abscissa. The spectral abscissa (c(p̄))
of the closed-loop system in (4.9) can be expressed as follows

c(p̄) = sup
λ∈C
{R(λ) : detM(λ, p̄) = 0},

where,

M(λ, p̄) =



M1 0 0 . . . 0
F̂2,1 M2 0 . . . 0

0 F̂3,2 M3 . . . 0
...

... . . . . . . ...
0 0 . . . F̂n,(n−1) Mn


,

(4.11)

where
Mi(λ, p̄) = λE −Ai0(p̄)−Ai1e−λτai −Ai2e−λτci , (4.12)

∀ i = 1, ..., n and

F̂i,(i−1)(λ) = −Fi,0 − Fi,1e−λτb(i−1) − Fi,2e−λτci , (4.13)

∀ i = 2, ..., n. Recall that we use the notation R(λ) to indicate the real part of
the complex number λ (eigenvalue), also, Mi corresponds to the characteristic
matrix of individual vehicles and F̂i(i−1) appears due to the interaction between
vehicles.

Since the differences between Mi ∀ i = 1, ..., n lie in some parameters within
the state coefficient matrices (see (4.12)), we can rewrite it as

Mδ(λ, p̄, p̂i) = λE − Ā0(p̄, p̂i)− Ā1(λ, p̂i)− Ā2(λ, p̂i), (4.14)

∀ i = 1, ..., n, where p̂i = [dci hi τai τbi τci]T is the plant parameter vector
corresponding to vehicle i, Ā0(p̄, p̂i) = Ai0(p̄), Ā1(λ, p̂i) = Ai1e−λτai , and
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Ā2(λ, p̂i) = Ai2e−λτci .

Theorem 4.4.1 For the systems given in (4.9), the spectral abscissa in (4.11)
is equivalent to

c(p̄) = max
{

sup
λ∈C
{R(λ) : det(Mδ(λ, p̄, p̂i)) = 0} : i = 1, ..., n

}
. (4.15)

Proof. The assertions for Theorem 4.4.1 directly follow from the block-
triangular structure of (4.11), then (4.15) arises from the diagonal blocks,
and from the structure of the associated eigenvalue problem.

The exponential stability of the whole CACC network in look-ahead topologies
does not depend on the interaction/coupling of vehicles due to the lower block
diagonal structure of the eigenvalue problem which is evident from (4.12). We
minimise the spectral abscissa of the platoon in (4.9) for a faster exponential
decay rate of solutions (towards the stationary reference solution),

min
p̄
c(p̄).

However, the computational complexity of this stabilisation approach (using
network structure exploitation) still depends on the number of vehicles.

4.4.2 Motivation for string stability

1 2
3

s0, v0

Radar

Figure 4.1: Heterogeneous platoon of three vehicles in a classical ACC one
vehicle look-ahead topology.

We illustrate the importance of guaranteeing performance levels for heteroge-
neous platoons using a classical Adaptive Cruise Control (ACC) configuration
(see Figure 4.1). We simulated the heterogeneous vehicular platoon using third
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Figure 4.2: Deceleration response, accelerations of heterogeneous (parameter)
vehicles in an ACC platoon which is exponentially stable but the energy of the
signals is amplified through the string of vehicles.
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Figure 4.3: Deceleration response, velocities of heterogeneous (parameter)
vehicles in an ACC platoon which is exponentially stable. The amplification of
energy in the acceleration signals through the string results in the braking of
the third vehicle.

order LTI models with delays (using (4.1)-(4.6)) in the ACC configuration
stabilised by a random PD controller which uses delayed information on the
position and velocity errors. We now introduce a disturbance (deceleration
input) in the reference vehicle. As we can see in Figures 4.2 and 4.3, a small
deceleration signal in the reference vehicle (0), results in undesirable responses
through the string. In Figure 4.3, it can be seen that the deceleration reference
signal could result in negative velocity during simulation. However, in reality, it
would be saturated (at zero). One way to interpret this effect would be that
the lack of performance standards could result in undesirable stops (velocity
= 0 m/s2) or traffic jams. Even though the undesirable effects on traffic flow
are simulated in this subsection using a platoon of three vehicles, due to the
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nature of the problem and based on intuition, we can say that the performance
worsens as the number of vehicles increase in the string. Hence, in addition
to exponential stability, it would be useful to guarantee performance levels
of automated vehicles for smooth traffic flows. An approach was proposed to
mitigate this problem in (Ploeg et al., 2014b) using energy based induced-L2

norm of cascaded subsystems. We build on the approach of (Ploeg et al.,
2014b) to redefine the performance problem as a “strict string stability problem”
for heterogeneous platoons in terms of the induced-L2 norm. We call the
(exponentially stable) platoon to be strict string stable for any finite disturbance
(in terms of L2 norm) at input u1 and time t1 ≥ 0 if

||zi(t)||L2 ≤ ||zi−1(t)||L2 , ∀ i = 2, ..., n,

where zi can be ψai or ψvi. The above condition is strict due to the fact that
we require all the individual vehicles to reduce the energy of the disturbance
through the string of vehicles in the platoon.

4.4.3 Platoon string stability

In this subsection, we focus on formulating a condition for the strict string
stability of the vehicular platoon. We assume throughout this chapter that
we observe signals (inputs, accelerations, and velocities) for some exogenous
disturbance (wc(s)) at the input of the first vehicle such that u1(s) = wc(s) +
K(s)y1(s). We define the transfer function of the closed-loop system (4.9) from
wc(s) to the input observed at vehicle i as

Pi(s) := ui(s)
wc(s)

∀ i = 1, ..., n.

The induced-L2 norm of the transfer function can be written as

||Pi||H∞ = sup
w 6=0

||ui||L2

||wc||L2

∀ i = 1, ..., n,



STABILITY AND PERFORMANCE OBJECTIVES 115

where the L2 norm is defined on the interval t ∈ [0,∞)

||ui(t)||L2 =

√∫ ∞
0

(ui(t))2dt,

hence,
||ui||L2 ≤ ||Pi||H∞ ||wc||L2 ∀ i = 1, ..., n.

The string stability sensitivity function corresponding to the controlled input is

Γ(s) :=
ui(s)
wc(s)
ui−1(s)
wc(s)

= Pi(s)(Pi−1(s))−1. (4.16)

If we derive the above string stability function assuming heterogeneity in the
parameters of vehicles in the platoon, we would obtain

Γ(s, p̄, p̂i, p̂i−1) = (Kffe−τb(i−1)s +Gi−1K
fbe−τcis)

(1 +Kfb(his+ 1)Gie−τcis)
, (4.17)

∀ i = 2, ..., n, where Gi contains the plant dynamics as in (4.4),

K(s) = Cc(sI −Ac)−1Bc +Dc

=
[
Kfb1(s) Kfb2(s) Kff(s)

] (4.18)

is the stabilising controller (ui(s) = K(s)yi(s), ui ∈ R, yi ∈ R3). For simplicity
of the presentation, we use Kfb(s) = Kfb1(s) + sKfb2(s) to denote the feedback
part of the controller corresponding to the signal epi. The function Γ in (4.17)
contains the plant and the controller parameters of vehicle i, and some plant
parameters of vehicle i − 1. Recall that we denote the controller parameters
and the plant parameters of vehicle i using p̄ and p̂i respectively. The CACC
configuration that arises from (4.9) for heterogeneous (parameter) vehicles is
given in Figure 4.4.

Note that (4.17) is considered in (Ploeg et al., 2014b) for strict string stability.
This is sufficient for their case, as the string stability sensitivity function
corresponding to the controlled input and the acceleration are the same for
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his+ 1
e−τa(i−1)s

dc(i−1)s+1

e−τais
dcis+1e−τb(i−1)s

s

e−τcis
K(s) Gi(s)

Gi−1(s)
epi

ui−1
uiψs(i−1)

ψfi

ψf(i−1)

ψsi

−
+

Vehicle i

Figure 4.4: The one vehicle look-ahead configuration of CACC.

homogeneous vehicular platoons. However, this is not valid for the case of
heterogeneous vehicular platoons. Therefore, we rewrite the string stability
sensitivity function in terms of acceleration (observing the accelerations for the
exogenous input wc). The new string stability sensitivity function (corresponding
to acceleration) becomes

Ψ(s, p̄, p̂i, p̂i−1) =
ψfi(s)
wc(s)

ψf(i−1)(s)
wc(s)

=
e−τais
dcis+1 ·

ui(s)
wc(s)

e−τa(i−1)s

dc(i−1)s+1 ·
ui−1(s)
wc(s)

=
(Kffe−τb(i−1)s +Gi−1K

fbe−τcis)(dc(i−1)s+ 1)e−τais

(1 +Kfb(his+ 1)Gie−τcis)(dcis+ 1)e−τa(i−1)s
,

(4.19)

∀ i = 2, ..., n. Note that Ψ is the string stability sensitivity function
corresponding to both acceleration and velocity (ψfi(s) = s · ψvi(s)). Based on
the assumptions mentioned above, for L2 strict string stability of heterogeneous
vehicular platoons, we define the following (similar to (Ploeg et al., 2014b)).

Definition 4.4.2 We consider the interconnected system (4.9) to be L2 strict
string stable if c(p̄) < 0 and

sup
ω∈R
|Ψ(jω, p̄, p̂i, p̂i−1)| ≤ 1 ∀ i = 2, ..., n.
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Finally, we optimise (using frequency-gridding approach) the function

min
p̄

max
i∈{2,...,n}

(
sup
ω∈R
|Ψ(jω, p̄, p̂i, p̂i−1)|

)
,

subject to the constraint c(p̄) < 0, in order to obtain a stabilising controller
that achieves strict L2 string stability.

4.4.4 Platoon stability: pseudospectral abscissa

In this section, we solve the stabilisation problem of platoons in look-ahead
topologies, using a method whose computational complexity is independent
of the platoon size. We can formulate it as a problem of a parameterised
system, and compute the pseudospectral abscissa for some structured real-
valued perturbations. Since the differences between the vehicles in (4.12) lie in
some parameters within the state coefficient matrices (see (4.14)), a sufficient
condition for stability is given by the robust stability of the corresponding
uncertain system. Let us define the pseudospectrum of the perturbed system,

Λ :=
⋃
p̂δ∈R

{λ ∈ C : det(Mδ(λ, p̄, p̂δ)) = 0} , (4.20)

where the vector p̂δ (corresponding to a vehicle) is the uncertainty vector
belonging to a closed region R ∈ R5. We assume that each element of the
uncertain parameter vector p̂δ is independent of other elements and lies in a
closed real interval. That is, p̂δ,i ∈ [âi, b̂i], where p̂δ,i is the i-th element of p̂δ
and 0 < âi < b̂i, i = 1, ..., n.

Note that M̄δ in (4.20) can include all the characteristic matricesMi ∀ i = 1, ..., n
as in (4.12) by defining the heterogeneity in vehicle parameters to be contained
within R. For robust stability optimisation, we introduce the pseudospectral
abscissa

α := sup{R(λ) : λ ∈ Λ}. (4.21)

Since the matrices in (4.14) are affine in the uncertain parameters, the
pseudospectral abscissa can be computed using the structure exploiting
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algorithm for real-valued perturbations in (Borgioli and Michiels, 2018). The
objective would be to minimise the pseudospectral abscissa

min
p̄
α,

to obtain a stable system for all perturbations belonging to the region R with
α < 0.

4.4.5 Investigating a robust string stabilising controller

The platoon string stability problem in the previous subsection can be extended
to find a controller optimising an “uncertain” string stability function Ψ to
increase scalability to multiple vehicles (when heterogeneity in vehicle parameters
can be confined to real intervals). Let us consider the function Ψ to be uncertain
with perturbations at all the vehicle/plant parameters (including time-delays).
We define the vectors p̂δ (corresponding to the parameters of a vehicle) and
p̆δ (corresponding to the parameters of the vehicle ahead) as the uncertainty
vectors belonging to a closed region R ∈ R5. Similar to Section 4.4.4, we
assume that each element of the uncertain parameter vectors (p̂δ and p̆δ) is
independent of other elements and lies in a closed real interval. That is,
p̂δ,i ∈ [âi, b̂i] and p̆δ,i ∈ [ăi, b̆i], where p̆δ,i is the i-th element of p̆δ, 0 < ăi < b̆i,
and 0 < âi < b̂i, i = 1, ..., n.

We define the objective function corresponding to the robust induced-L2 norm
(the worst case L2 gain for all the perturbations) as

χ∞ :=

maxp̂δ,p̆δ∈R {supω∈R |Ψ(jω, p̄, p̂δ, p̆δ)|} , α < 0,

∞, α ≥ 0.
(4.22)

By intuitively minimising the worst case scenarios using the approach in
Section 4.4.3, the robust induced-L2 norm may be brought to a desirable
value (χ∞ ≤ 1). This provides robust performance for all the bounded
perturbations/uncertainties in terms of the maximum induced-L2 norm. In this
chapter, we determined χ∞ by maximising induced-L2 norm for all the possible
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combinations of the elements from the uncertain parameter vectors (p̂δ and p̆δ)
which lie in closed intervals in the real coordinate space.

4.5 Simulation-based studies

Let us consider a case of a heterogeneous platoon with three vehicles (n = 3),
whose parameters are given in Table 4.2. We consider only three vehicles in the
platoon for simplicity of the presentation. Our aim is to guarantee (exponential)

Table 4.2: The vehicle parameters used for simulations.
i dci hi τai τbi τci
1 0.07 0.7 0.18 0.018 0.18
2 0.1 0.8 0.2 0.02 0.2
3 0.01 0.6 0.15 0.015 0.15

stability and (string stability) performance for the platoon3. The string stability
sensitivity function considered is

Ψ(s, p̄, p̂l, p̂k) = (Kffe−τbks +GkK
fbe−τcls)(dcks+ 1)e−τals

(1 +Kfb(hls+ 1)Gle−τcls)(dcls+ 1)e−τaks ,
(4.23)

k = 1, 2, 3, l = 1, 2, 3, where vehicle l is following vehicle k. The nine
possible combinations of vehicles result in nine (strict) string stability functions
corresponding to each pair.

Considering that the vehicles (with parameters in Table 4.2) are to be controlled
by identical controllers, we minimise the objective function (while c(p̄) < 0)

min
p̄

max
k,l∈{1,2,3}

(
sup
ω∈R
|Ψ(jω, p̄, p̂l, p̂k)|

)
, (4.24)

3The software tool and the vehicular platoon example are available in (Dileep and Michiels,
2018a)
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to obtain the string stabilising controller (K)

ẋci(t) =

−1.4999 1.5909

0.5346 −3.8166

xci(t)
+

 1.9677 −1.2820 −1.7317

−0.4932 1.1862 0.7864

 yi(t)
ui(t) =

[
−1.0527 0.3931

]
xci(t)

+
[
1.7204 0.0702 0.0178

]
yi(t),

∀ i = 1, 2, 3.

(4.25)

In (4.24), we considered the worst case over all possible configurations of the
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Figure 4.5: Frequency response of the function Ψ for all the nine possible
combinations of the three heterogeneous vehicles in the platoon.
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Figure 4.6: Acceleration response for the reference signal vref,0 (platoon of the
three vehicles controlled using the controller K).
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Figure 4.7: Velocity response for the reference signal vref,0 (platoon of the three
vehicles controlled using the controller K).
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Figure 4.8: Position errors for the reference signal vref,0 (platoon of the three
vehicles controlled using the controller K).

platoon. Note that a change in the configuration of the platoon does not affect
its exponential stability (or spectral abscissa). A preliminary minimisation
of c(p̄) was performed to ensure that the starting values for p̄ in (4.24) had
c(p̄) < 0 (exponential stability). The frequency responses are plotted in Figure
4.5 for the function Ψ(s, p̄, p̂l, p̂k) with K given in (4.25) ∀ k = 1, 2, 3, l = 1, 2, 3.
The time responses of accelerations and velocities for a reference signal (v0 =
vref,0, a0 = v̇ref,0) are shown in Figures 4.6-4.7 for a combination of the three
vehicles from Table 4.2 (in the platoon) simulated using MATLAB. Similarly,
the time responses of position errors for vehicles in the same arrangement are
given in Figure 4.8.

Notice that the above mentioned approach is not scalable with the number
of vehicles, since its computational complexity is dependent on the number
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of vehicles (n2 string stability functions). To improve the scalability of the
controller design algorithm with the number of vehicles, we may use the objective
functions mentioned in Sections 4.4.4 and 4.4.5. Let us consider a platoon with
the number of vehicles n � 3. Now we assume that the elements of the
parameter vectors of the heterogeneous vehicles in the platoon are independent
of each other and lie in a closed real interval, that is,

dci ∈ [0.01, 0.1], hi ∈ [0.6, 0.8], τai ∈ [0.15, 0.2],

τbi ∈ [0.015, 0.02], and τci ∈ [0.15, 0.2]
(4.26)

∀ i = 1, ..., n, ∀ N \ {0}. The robust induced-L2 norm for the one vehicle
look-ahead vehicular platoon using K given in (4.25) was also investigated.
The robust induced-L2 norm in (4.22) satisfied the condition χ∞ ≤ 1 and
the corresponding pseudospectral abscissa defined in (4.21) is α = −0.1485.
In summary, the controller K given in (4.25) is also guaranteed to maintain
exponential stability and strict L2 string stability as per Definition 4.4.2 for
any number of vehicles in system (4.9) and for any combination within the
platoon, given that the vehicle parameters are confined to the intervals in (4.26).
A heuristics approach was utilised to design the controller K given in (4.25).
This controller was obtained by optimising controller parameters for a finite set
of vehicle parameters using the algorithm in Section 4.4.3. This set of vehicle
parameters included the set in Table 4.2 and the set of vehicle parameters which
tended to be the arguments for the worst-case induced L2 norm (χ∞) in (4.22)
when the robust string stability condition was violated.

4.6 Conclusions

The design problem of stabilising (identical) controllers that achieves strict
L2 string stability for heterogeneous (parameter) vehicular platoons in the
one vehicle look-ahead topology was considered. We proposed an approach to
design the controllers satisfying the stability and performance requirements for
the linearised third order heterogeneous vehicle plant models. The proposed
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approach was implemented in MATLAB and the corresponding results were
presented.

A scalable design approach to obtain (identical) decentralised controllers was
also proposed for the case of the heterogeneous one vehicle look-ahead platoon,
where the computational complexity is independent of the platoon size. We
ensure that the achieved exponential stability and string stability properties are
independent of the number of vehicles in the platoon, given that their parameters
are confined to some real intervals. This improves the computational efficiency
and scalability with the number of vehicles.

The network structure can also be exploited for the case where the heterogeneous
(parameter) vehicles in a platoon (with one-vehicle look-ahead topology) have
non-identical controllers. Then, using the same approach mentioned in this
chapter, it is possible to design each controller (corresponding to a vehicle)
independently. That is, we can decouple the control design problem (to satisfy
both stability and string stability objectives) for each vehicle in the platoon.
However, the computational costs involved in the controller design phase will
depend on the number of vehicles.

Finally, note that all the algorithms presented in this chapter have been
implemented in a publicly available software (Dileep and Michiels, 2018a).





Chapter 5

General conclusions

5.1 Summary

The design problem of a structured (decentralised, distributed, overlapping, or
PID) controller for interconnected systems with time-delays has been addressed
in this thesis with a focus on the decentralised control configuration. As a first
step, a generic (non-conservative) frequency domain-based direct optimisation
technique for the design of decentralised LTI controllers for continuous-time
LTI systems modelled by DDAEs was presented in Chapter 2. This approach
was grounded in necessary and sufficient stability conditions and imposed
sparsity constraints in the controller parametrisation. Furthermore, a structure
exploiting approach was proposed for networks of identical (sub-)systems and
local controllers. By means of a case-study, the applicability to consensus type
problems was shown, while also illustrating the flexibility of the modelling
framework and control technique.

In Chapter 3, we presented an approach to design (input-output) stabilising
decentralised controllers for generic MIMO plants which are robust against
communication imperfections (such as model uncertainties, time-varying delays,
aperiodic sampling, and asynchrony) and other input disturbances. The
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approach was based on rewriting the networked system of the MIMO plant
and sampled-data fixed-order controllers with time-delays as a feedback
interconnection of a nominal (continuous-time) TDS and an uncertainty
operator. That is, all the communication imperfections are concentrated at
the (bounded) uncertainty operator in this feedback interconnection. Then, an
input-output L2 stability criterion is proposed (using the small gain theorem).
The closed-loop systems were modelled using DDAEs, which are flexible in
modelling interconnected systems. Sparsity constraints were enforced in the
parameterisation process within the optimisation to ensure that decentralised
controllers are obtained. Additionally, we proposed a method to reduce some
conservativeness in the result, which exploits the structure of the operator.
Furthermore, the computational efficiency of the controller design algorithm
is significantly improved in the case of a structured MIMO plant, where the
plant is composed of (quasi-)identical subsystems, at the price that the local
controllers need to be identical and the scaling approach to reduce conservatism
is not applicable any more.

A scalable methodology was presented in Chapter 3 to design dynamic (LTI)
fixed-order controllers for large-scale interconnected systems composed of quasi-
identical subsystems connected through some delayed network. We concluded
that using a direct optimisation approach and a decomposition (through network
structure exploitation), one could design a stabilising decentralised controller
independent of the number of nodes (or subsystems), by treating the network
related eigenvalue parameter as a parameter subjected to bounded uncertainty.
The implementation was based on the algorithm described in (Borgioli and
Michiels, 2018) for the pseudospectral abscissa computation, which was briefly
recalled in Chapter 2, and an extension of the algorithm in (Gumussoy and
Michiels, 2011) to include the min-max optimisation problem of the robust-H∞
norm, which was presented in Chapter 3.

Finally, the design problem of stabilising (identical) controllers that achieve strict
L2 string stability for the application of heterogeneous (parameter) vehicular
platoons in the one vehicle look-ahead topology was considered in Chapter 4.
We proposed a scalable approach to design identical controllers satisfying the
stability and performance requirements for linearised third order heterogeneous
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vehicle models. The achieved exponential stability and string stability properties
were independent of the number (and combination) of the vehicles in the platoon.
The proposed approach was implemented in MATLAB and the corresponding
results were presented. Here, we assumed that the vehicles can be modelled
using DDAEs and that their parameters (corresponding to the heterogeneity)
are confined to some real intervals.

Throughout the thesis, controllers were designed using non-conservative direct
optimization techniques in the frequency domain, grounded in necessary and
sufficient conditions for stability. The approach is flexible with respect to the
structure that can be imposed on the controller. Hence, it is adequate to
design decentralised, distributed, overlapping, or PID type controllers. However,
issues related non-convexity and non-smoothness of the optimisation problem in
general (especially for H∞ norm) are still present as in the centralised setting.
The non-smoothness is handled by using the special algorithm HANSO. With
respect to the non-convexity, the algorithm can converge to local optima which
are not global. The latter is mitigated by considering sufficiently large number
of randomly generated (or user specified) starting points for the optimisation
problem. In general, we assumed that the controllers to be designed were
dynamic LTI controllers. However, the methodology presented in this thesis
trivially extends to other classes of controllers, such as (decentralised) PID
controllers, as shown in Section 2.2.

All the algorithms presented in this thesis have been implemented in publicly
available software, see (Dileep and Michiels, 2018a), (Dileep and Michiels, 2018b)
and (Dileep and Michiels, 2018c).

5.2 Future work

Some directions for future work were revealed during this work. They are
as follows. First, the network topology was assumed to be time-invariant
throughout this thesis. However, in many applications (such as power systems
and platoon of drones), the network topology could be time-varying (which
could also be switching), see (Cai and Ishii, 2014; Cheng et al., 2017; Popov
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and Werner, 2012) and the references therein. Hence, the analysis and design of
controllers or control strategies for systems with time-varying network topology
is an open problem of interest. Note that some time-domain based tools (using
LMI solvers) may be useful for the case of systems with switched topologies (Fiter
et al., 2018; Hetel et al., 2017), and they could be combined with our approach.
In this case, there may be some conservatism in the resulting conditions.

Second, network structure exploiting algorithms were presented in this thesis
for the design of stable and robust controllers for LTI systems with constant
delays. Exploitation of the network structure for a class of linear parameter-
varying or time-varying systems is still an open problem. We may use a time
domain-based approach to consider this problem. A starting point could be the
results reported in (Fiter et al., 2018; Hilhorst et al., 2016; Pfifer and Seiler,
2015). Note that systems with time-varying network topology may be a special
case of this problem.

Third, the frequency domain-based approach utilised for the (fixed-order
controller design and) minimisation of spectral abscissa and H∞ norm, in
general, involves non-convex optimisation. That is, the final solution could
be a local optima and, hence, it depends on the starting point. Another
research direction includes finding a suitable starting point for such non-convex
optimisation problems that could guarantee the convergence to a solution
which is the global optimum. In (Monnet et al., 2016), a global optimisation
approach is presented for the design of robust structured controllers for LTI
systems without time-delays. The design problem is formulated as a min-max
optimisation problem, and was solved using a branch and bound algorithm
based on interval arithmetic.

Finally, this thesis focused on computationally efficient (structured) controller
design methodologies for a given network topology. Another research problem
could be the design of an optimal (in terms of stability or performance levels)
network topology for interconnecting a given group of dynamical system (Fardad
et al., 2014; Shafi et al., 2012). This problem may be framed as a discrete
optimisation problem.



Appendix A

Frequently used network
topologies

Series network topology - unidirectional coupling

1 2 3 4 n

Figure A.1: Series network topology - unidirectional coupling

In a series network, each node is connected to two neighbouring nodes except
for the two nodes at the end of the series which are connected to (only) one
subsystem. In the literature, it is also referred to as a line network, see (van
Schuppen and Villa, 2014). For series network topology with unidirectional
coupling (see Figure A.1), the adjacency matrix may take the form

AM =


0 . . . 0 0
1 . . . 0 0
... . . . ...

...
0 . . . 1 0

 . (A.1)
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The adjacency matrix AM in (A.1) has a zero eigenvalue with algebraic
multiplicity n.

Series network topology - bidirectional coupling

1 2 3 4 n

Figure A.2: Series network topology - bidirectional coupling

For a series network with bidirectional coupling (see Figure A.2), the adjacency
matrix may take the form

AM =



0 1 0 . . . 0 0
0.5 0 0.5 . . . 0 0
0 0.5 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 0 0.5
0 0 0 . . . 1 0


. (A.2)

The eigenvalues of AM in (A.2) can be described using

λai = cos((i− 1) π

n− 1) for i = 1, ...., n and n ∈ Z+
0 \ {1}. (A.3)

Ring network topology - unidirectional coupling

In a ring network, each node is connected to two other nodes. For the ring
network topology with unidirectional coupling (see Figure A.3), the adjacency
matrix may take the form

AM =


0 . . . 0 1
1 . . . 0 0
... . . . ...

...
0 . . . 1 0

 . (A.4)
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1

2
3

4
n

Figure A.3: Ring network topology - unidirectional coupling

The eigenvalues of AM in (A.4) can be described (as taken from (Michiels and
Nijmeijer, 2009)) using

λai = e−j[2π(i−1)/n] for i = 1, ...., n and n ∈ Z+
0 .

Ring network topology - bidirectional coupling

1

2
3

4
n

Figure A.4: Ring network topology - bidirectional coupling

For the ring network topology with bidirectional coupling (see Figure A.4), the
adjacency matrix may take the form

AM =



0 0.5 0 . . . 0 0.5
0.5 0 0.5 . . . 0 0
0 0.5 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 0 0.5

0.5 0 0 . . . 0.5 0


. (A.5)
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The eigenvalues of AM in (A.5) can be described described using

λai = cos(2π
n

(i− 1)) for i = 1, ...., n and n ∈ Z+
0 \ {1, 2}. (A.6)

Fully connected network topology - all-to-all coupling

1

2
3

4
n

Figure A.5: Fully connected network topology

In a fully connected network (with equal weights), each node is connected to all
the other nodes (see Figure A.5). Then, the adjacency matrix of this network
topology may take the form

AM =



0 1
n−1

1
n−1 . . . 1

n−1
1

n−1
1

n−1 0 1
n−1 . . . 1

n−1
1

n−1
1

n−1
1

n−1 0 . . . 1
n−1

1
n−1

...
...

... . . . ...
...

1
n−1

1
n−1

1
n−1 . . . 0 1

n−1
1

n−1
1

n−1
1

n−1 . . . 1
n−1 0


. (A.7)

The eigenvalues of AM in (A.7) are 1 with algebraic multiplicity one and − 1
n−1

with algebraic multiplicity n− 1, where n ∈ Z+
0 \ {1}.
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1 2

3

4

n

Figure A.6: Star network topology with bidirectional coupling

Star network topology - one-to-all coupling

In a star connected network, all the nodes are connected to one globally accessible
node (see Figure A.6). Then, the adjacency matrix may take the form

AM =



0 1
n−1

1
n−1 . . . 1

n−1
1

n−1
1 0 0 . . . 0 0
1 0 0 . . . 0 0
...

...
... . . . ...

...
1 0 0 . . . 0 0
1 0 0 . . . 0 0


. (A.8)

The eigenvalues of AM in (A.8) are 1 with algebraic multiplicity one, −1
with algebraic multiplicity one, and 0 with algebraic multiplicity n− 2, where
n ∈ Z+

0 \ {1}.



Appendix B

Small gain theorem

In this subsection, we recall the concept of small gain theorem from robust
control theory. The system (1.5), with transfer function G and zero initial
condition, can be viewed as an operator G : L2[0,∞)→ L2[0,∞) mapping the
input space w ∈ L2[0,∞) to the output space z ∈ L2[0,∞). Note that we only
consider causal systems. A system is said to be finite input-output L2 stable if
it has a finite L2 gain, that is,

||G||L2 = inf{γ : ||Gw||L2 ≤ γ||w||L2 ∀ w ∈ L2[0,∞)}. (B.1)

Additionally, for LTI systems ||G||L2 = ||G||H∞ . Given two causal systems
with finite L2 gain G : L2[0,∞)→ L2[0,∞) and ∆ : L2[0,∞)→ L2[0,∞), we
consider the following feedback interconnection

z = Gw + f,

w = ∆z + g,

(B.2)

where f, g ∈ L2[0,∞) (see Figure B.1). The operator ∆ is generally used in
robust control theory to represent the uncertainties and perturbations that
affect the nominal system G (system (1.5) with zero initial condition), and the
signals f, g may also be used to consider some non-zero initial conditions for
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g
z

w
f+

+ ∆

G

Figure B.1: The feedback interconnection of G and ∆.

the system (1.5) (Vidyasagar, 2002). The following small gain theorem holds,
and its proof is given in (Fridman, 2014; Khalil, 2002).

Theorem B.0.1 Assume that G and ∆ are input-output L2 stable, and G is
LTI. Then the mapping [

f

g

]
−→

[
w

z

]
, (B.3)

is input-output L2 stable if (||G||H∞ · ||∆||L2) < 1.

Consequently, the robust control design problem consists of synthesising a
controller that minimises the ||G||H∞ norm, which may also be interpreted as
maximising the allowable L2 bound on the uncertainties or perturbations such
that the input-output stability remains guaranteed.



Appendix C

Well posedness of the
systems considered

In this section of appendix we refer to the Assumption 3.1 in (Gumussoy
and Michiels, 2011) applied to the closed loop system (1.5) which reads as
det(ŨTA0Ṽ ) 6= 0 where the columns of matrix Ũ and Ṽ are the (minimal) basis
for the right and left nullspace of E respectively,

ŨTE = 0 and EṼ = 0.

This can be rephrased as the Assumption 1 mentioned in this paper, using the
theorem below.

Theorem C.0.1 Matrix UT (Ap0 +Bp1DcCp1)V being non-singular is equiva-
lent to ŨTA0Ṽ being non-singular.
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Proof. We consider the following relations for U and V with Ũ and Ṽ

respectively,

ŨT =


UT 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 0 I

 ; Ṽ =


V 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0
0 0 0 I

 . (C.1)

Using (2.9) and (C.1) we can write the expression

X̄ := ŨTA0Ṽ =


UTAp0V UTBp1 UTBp2 0
Cp1V 0 0 −I

0 0 −I 0
0 −I 0 Dc

 . (C.2)

The matrix ŨTA0Ṽ being invertible is equivalent to the block

X̄b :=

 0 0 −I
0 −I 0
−I 0 Dc

 (C.3)

and the Schur complement (X̄/X̄b) of the block X̄b of the matrix X̄ being
invertible. We can see that X̄b is always invertible (independent of Dc) due to
its structure. X̄/X̄b is invertible if

X̄/X̄b = UTAp0V −
[
UTBp1 UTBp2 0

]
X̄−1
b

Cp1V0
0


= UTAp0V + UTBp1DcCp1V

(C.4)

is invertible. The proof is complete.



Appendix D

Consensus problem in a ring
network topology

In this section of the appendix we show that the closed-loop system (2.36)-(2.38)
in a ring configuration has double zero eigenvalues, independent of the control.

Theorem D.0.1 There always exist two zero eigenvalues for the closed-loop
system of system (2.36) in ring network topology and their controller(s),
irrespective of the controller parameters and the number of subsystems.

Proof. The closed-loop system can be written in the DDAE form of (2.8)
for w ≡ 0 using (2.7) and (2.36). For this, we consider the new state xi(t) =

138



CONSENSUS PROBLEM IN A RING NETWORK TOPOLOGY 139

[ψ̄T
pi(t) νTi (t) ξTi (t) xTci(t)]T ,
I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I

 ẋi(t) =


Ag 0 0 0
0 −I D̂c Ĉc

−Cg 0 −I 0
0 0 B̂c Âc

xi(t) +


0 Bg 0 0
0 0 0 0
0 0 0 0
0 0 0 0

xi(t− τ̆)

+


0
0
I

0

uci(t),
yci(t) =

[
Cg 0 0 0

]
xi(t).

(D.1)

Now we can bring the above equation, supplemented with (2.37) in a decoupled
form as in (2.13), after the use of an appropriate transformation matrix,

I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I

 ˙̄xi(t) =



Ag 0 0 0
0 −I D̂c Ĉc

−Cg 0 −I 0
0 0 B̂c Âc

+ λai


0 0 0 0
0 0 0 0
Cg 0 0 0
0 0 0 0


 x̄i(t)

+


0 Bg 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 x̄i(t− τ̆),

(D.2)

i = 1, ..., n. Based on the assumption that the system has a ring network
topology, AM contains an eigenvalue 1 ∀ n ∈ N \ {1} at some value i = k

(λak = 1). The k-th subsystem then takes the form
I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I

 ˙̄xk(t) =


Ag 0 0 0
0 −I D̂c Ĉc

0 0 −I 0
0 0 B̂c Âc

 x̄k(t) +


0 Bg 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 x̄k(t− τ̆).

(D.3)
The above equation shows that the spectrum of system matrix Ag, which
contains a double eigenvalue at zero, is part of the spectrum of the closed-loop
system. The proof is complete.
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Remark. Theorem D.0.1 also holds true for other network typologies whose
adjacency matrix has at least one eigenvalue equal to 1. �



Appendix E

Upper-bound for the
operators

In this section of Appendix, we present the preliminary lemmas required to
prove Lemma 3.3.1 followed by the proof itself. First, we generalise the proof of
Lemma 1 in (Thomas et al., 2018). For this purpose, we define new sequences
{bl}l∈Z in time to satisfy

{bl : bl+1 − bl = δbl, l ∈ Z}, (E.1)

and δbl ∈ (0, δ̄b] ∀ l ∈ Z, δ̄b ∈ R+. Also, the sequences {cl}l∈Z satisfy

{cl : cl = bl + δcl, l ∈ Z}, (E.2)

and δcl ∈ [0, δ̄c] ∀ l ∈ Z, δ̄c ∈ R+. Also, we define a general bounded integral
operator ∆ on L2e(−∞,∞) that operates on the input based on the above
sequences, that is

ŵ(t) = (∆({bl, cl}l∈Z)ẑ)(t) :=
∫ t

bl

ẑ(θ)dθ, ∀ t ∈ [cl, cl+1), l ∈ Z. (E.3)
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We abuse the notation for the operator as shown above, ∆({bl, cl}l∈Z), to
generalise it for any two sets of sequences that satisfy the above conditions
as {bl}l∈Z and {cl}l∈Z. Now we prove the following lemma for this general
operator.

Lemma E.0.1 The L2 induced norm of the operator ∆({bl, cl}l∈Z) is upper-
bounded by δ̄b+ δ̄c, that is,

||∆({bl, cl}l∈Z)||L2 ≤ δ̄b+ δ̄c

Proof. By definition, we have

ŵ(t) =
∫ t

bl

ẑ(θ)dθ, ∀ t ∈ [cl, cl+1), l ∈ Z. (E.4)

Then by virtue of Jensen’s inequality, we can write

ŵ(t)Tŵ(t) =
(∫ t

bl

ẑ(θ)dθ
)T(∫ t

bl

ẑ(θ)dθ
)
,

≤ (t− bl)
∫ t

bl

ẑT(θ)ẑ(θ)dθ, ∀ t ∈ [cl, cl+1),

≤ (δ̄b+ δ̄c)
∫ t

bl

ẑT(θ)ẑ(θ)dθ, ∀ t ∈ [cl, cl+1),

(E.5)

since we know that t ∈ [cl, cl+1)

t− bl ≤
≤δ̄c︷ ︸︸ ︷

cl+1 − bl+1 +
≤δ̄b︷ ︸︸ ︷

bl+1 − bl ∀ t ∈ [cl, cl+1), l ∈ Z.

Substituting θ = t+ p in the above equation and using the fact t ∈ [cl, cl+1),
we get

ŵ(t)Tŵ(t) ≤ (δ̄b+ δ̄c)
∫ 0

−(δ̄b+δ̄c)
ẑT(t+ p)ẑ(t+ p)dp. (E.6)
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Integrating both the sides with respect to t in (E.6), we get

∫ ∞
−∞

ŵ(t)Tŵ(t)dt ≤ (δ̄b+ δ̄c)
∫ ∞
−∞

(∫ 0

−(δ̄b+δ̄c)
ẑT(t+ p)ẑ(t+ p)dp

)
dt,

≤ (δ̄b+ δ̄c)
∫ 0

−(δ̄b+δ̄c)

(∫ ∞
−∞

ẑT(t+ p)ẑ(t+ p)dt
)

dp,

(E.7)

where θ = t+ p, since θ →∞ as t→∞ and θ → −∞ as t→ −∞, we have

∫ ∞
−∞

ŵ(t)Tŵ(t)dt ≤ (δ̄b+ δ̄c)
∫ 0

−(δ̄b+δ̄c)

(∫ ∞
−∞

ẑT(θ)ẑ(θ)dθ
)

dp. (E.8)

Consequently, we have

||ŵ||2L2
≤ (δ̄b+ δ̄c)2||ẑ||2L2

, (E.9)

hence proved. ◦

The idea underlying the proof of Lemma 3.3.1 is that the bounded operators
on L2e[0,∞) considered in this paper can be seen as a special case of the
operators on L2e(−∞,∞) considered by the authors in (Thomas et al., 2018).
To illustrate this, we define the new sequences {ŝil}l∈Z in time to satisfy

{ŝil : ŝil+1 − ŝil = ĥil, l ∈ Z}, i ∈ {1, ..., N}, (E.10)

ŝik = sik ∀ k ∈ Z+
0 , and ĥil ∈ (0, h̄i] ∀ l ∈ Z. Also, the sequences {âil}l∈Z satisfy

{âil : âil = ŝil + η̂il , l ∈ Z}, i ∈ {1, ..., N}, (E.11)

âik = aik ∀ k ∈ Z+
0 , η̂il ∈ [0, η̄i] ∀ l ∈ Z, and âil < 0 ∀ l ∈ Z−. Using Lemma

E.0.1, we know that ||∆({ŝil, âil}l∈Z)||L2 ≤ h̄i + η̄i for any input (with finite
energy) to the operator. We define two new operators, an extension operator
D : L2e[0,∞)→ L2e(−∞,∞) such that

(Dz̃)(t) :=

z̃(t), ∀ t ∈ [0,∞),

0, ∀ t ∈ (−∞, 0),
(E.12)
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and a restriction operator R : L2e(−∞,∞) → L2e[0,∞) such that z̃(t) =
(Rẑ)(t) := ẑ(t) ∀ t ∈ [0,∞), then, we have the following lemma.

Lemma E.0.2 The following relation holds true,

(∆i
3z̃)(t) = (R∆({ŝil, âil}l∈Z)Dz̃)(t). (E.13)

Proof. Using the fact that âil < 0 ∀ l ∈ Z−, we can write

(∆({ŝil, âil}l∈Z)Dz̃)(t) =


∫ t
ŝi
l
Dz̃(θ)dθ, ∀ t ∈ [âil, âil+1), l ∈ Z+

0 ∪ {−1},

0, ∀ t ∈ (−∞, âi−1).
(E.14)

However, for the case in the above equation when l = −1 or t ∈ [âi−1, â
i
0), we

know that âi−1 < 0 < âi0 then using (E.12) we have

∫ t

ŝi−1

Dz̃(θ)dθ =


∫ t

0 z̃(θ)dθ, ∀ t ∈ [0, âi0),

0, ∀ t ∈ [âi−1, 0),
(E.15)

then we can rewrite (E.14) as

(∆({ŝil, âil}l∈Z)Dz̃)(t) =


∫ t
si
k
z̃(θ)dθ, ∀ t ∈ [aik, aik+1), k ∈ Z+

0 ,∫ t
0 z̃(θ)dθ, ∀ t ∈ [0, ai0),

0, ∀ t ∈ (−∞, 0),

(E.16)

hence proved. ◦

Proof of Lemma 3.3.1. From Lemmas E.0.1 and E.0.2 we directly have

||∆i
3||L2 ≤ ||∆({ŝil, âil}l∈Z)||L2 ≤ h̄i + η̄i,

or ||∆i
3||L2 ≤ γi3 ∀ i ∈ {1, ...., N}. Similarly, using Lemma E.0.1 and

slightly modifying Lemma E.0.2 (by changing the sequences in (E.10)-(E.11)
accordingly), it can also be shown that ||∆i

1||L2 ≤ γi1 and ||∆i
2||L2 ≤ γi2, ∀ i ∈

{1, ...., N}. Hence, Lemma 3.3.1 has been proved. ◦



Bibliography

Alanis, A. Y. and Sanchez, E. N. (2017). Chapter 5 - neural observers with
unknown time-delays. In Alanis, A. Y. and Sanchez, E. N., editors,
Discrete-Time Neural Observers, pages 99 – 128. Academic Press.

Alavian, A. (2017). Optimization-based Robustness and Stabilization in
Decentralized Control. PhD thesis, Department of Electrical and Computer
Engineering, University of Maryland.

Alavian, A. and Rotkowitz, M. (2015a). Decentralized non-overshooting
stabilization. In 2015 American Control Conference (ACC), pages 4785–
4790.

Alavian, A. and Rotkowitz, M. (2015b). On the pole selection for h-infinity
optimal decentralized control. In 2015 American Control Conference
(ACC), pages 5471–5476.

Alavian, A. and Rotkowitz, M. C. (2013). Q-parametrization and an SDP
for H-infinity-optimal decentralized control. IFAC Proceedings Volumes,
46(27):301 – 308.

Anthonis, J., Seuret, A., Richard, J., and Ramon, H. (2007). Design of a pressure
control system with dead band and time delay. IEEE Transactions on
Control Systems Technology, 15(6):1103–1111.

Apkarian, P. and Noll, D. (2006). Non-smooth H-infinity synthesis. IEEE
Transactions on Automatic Control, 51(1):71–86.

Apkarian, P. and Noll, D. (2018). Structured H∞-control of infinite-dimensional
systems. International Journal of Robust and Nonlinear Control,
28(9):3212–3238.

Arioua, L., Marinescu, B., and Monmasson, E. (2014). Control of high voltage

145



146 BIBLIOGRAPHY

direct current links with overall large-scale grid objectives. IET Generation,
Transmission Distribution, 8(5):945–956.

Aström, K., Albertos, P., Blanke, M., Isidori, A., Schaufelberger, W., and Sanz,
R. (2011). Control of Complex Systems. Springer London.

Bakule, L. (2008). Decentralized control: An overview. Annual Reviews in
Control, 32(1):87 – 98.

Bapat, R. (2010). Graphs and Matrices. Universitext. Springer-Verlag London.
Barreau, M., Gouaisbaut, F., and Seuret, A. (2018). Static state and output

feedback synthesis for time-delay systems. In 2018 European Control
Conference (ECC), pages 1195–1200.

Bauer, N., Donkers, M., van de Wouw, N., and Heemels, W. (2013).
Decentralized observer-based control via networked communication.
Automatica, 49(7):2074 – 2086.

Bemporad, A., Heemels, M., and Vejdemo-Johansson, M. (2010). Networked
Control Systems. Lecture Notes in Control and Information Sciences.
Springer London.

Borgioli, F. and Michiels, W. (2018). Computing distance to instability for
delay systems with uncertainities in the system matrices and in the delay
terms. In 17th Annual European Control Conference (ECC).

Boyd, S., Balakrishnan, V., and Kabamba, P. (1989). A bisection method for
computing the h-infinity norm of a transfer matrix and related problems.
Mathematics of Control, Signals and Systems, 2(3):207–219.

Bragagnolo, M. C., Morărescu, I.-C., Daafouz, J., and Riedinger, P. (2016).
Reset strategy for consensus in networks of clusters. Automatica, 65:53 –
63.

Bruinsma, N. A. and Steinbuch, M. (1990). A fast algorithm to compute the
h-infinity-norm of a transfer function matrix. Systems & Control Letters,
14(4):287 – 293.

Burke, J., Henrion, D., Lewis, A., and Overton, M. (2006). HIFOO - a matlab
package for fixed-order controller design and H-infinity optimization. IFAC
Proceedings Volumes, 39(9):339 – 344. 5th IFAC Symposium on Robust
Control Design.

Cai, K. and Ishii, H. (2014). Average consensus on arbitrary strongly connected
digraphs with time-varying topologies. IEEE Transactions on Automatic



BIBLIOGRAPHY 147

Control, 59(4):1066–1071.
Chen, W.-H. and Zheng, W. X. (2006). On improved robust stabilization of

uncertain systems with unknown input delay. Automatica, 42(6):1067 –
1072.

Cheng, T., Kan, Z., Klotz, J. R., Shea, J. M., and Dixon, W. E. (2017). Event-
triggered control of multiagent systems for fixed and time-varying network
topologies. IEEE Transactions on Automatic Control, 62(10):5365–5371.

Col, L. D., Tarbouriech, S., and Zaccarian, L. (2018). H-infinity control design
for synchronisation of identical linear multi-agent systems. International
Journal of Control, 91(10):2214–2229.

D’Andrea, R. and Dullerud, G. E. (2003). Distributed control design for
spatially interconnected systems. IEEE Transactions on automatic control,
48(9):1478–1495.

Darbha, S., Konduri, S., and Pagilla, P. R. (2019). Benefits of v2v communication
for autonomous and connected vehicles. IEEE Transactions on Intelligent
Transportation Systems, 20(5):1954–1963.

Davison, E. J. and Chang, T. N. (1990). Decentralized stabilization and pole
assignment for general proper systems. IEEE Transactions on Automatic
Control, 35(6):652–664.

Davison, E. J., Davison, D. E., and Lam, S. (2009). Multivariable three-term
optimal controller design for large-scale systems. In Proceedings of the
48h IEEE Conference on Decision and Control (CDC) held jointly with
2009 28th Chinese Control Conference, pages 940–945.

Dileep, D., Borgioli, F., Hetel, L., Richard, J.-P., and Michiels, W. (2018a). A
scalable design method for stabilising decentralised controllers for networks
of delay-coupled systems. In 5th IFAC Conference on Analysis and Control
of Chaotic Systems , Netherlands.

Dileep, D., Fusco, M., Verhaegh, J., Hetel, L., Richard, J.-P., and Michiels, W.
(2019). Achieving an L2 string stable one vehicle look-ahead platoon with
heterogeneity in time-delays. In European Control Conference, Naples,
Italy.

Dileep, D. and Michiels, W. (2018a). tds_hopt-cacc, a software tool to design
CACC controller for heterogenous vehicular platoons through structure
exploitation. Available at http://twr.cs.kuleuven.be/research/

http://twr.cs.kuleuven.be/research/software/delay-control/CACCproblem.zip
http://twr.cs.kuleuven.be/research/software/delay-control/CACCproblem.zip
http://twr.cs.kuleuven.be/research/software/delay-control/CACCproblem.zip


148 BIBLIOGRAPHY

software/delay-control/CACCproblem.zip.
Dileep, D. and Michiels, W. (2018b). tds_hopt-nse, a software tool for structured

controller design for DDAEs with network structure exploitation. Available
at http://twr.cs.kuleuven.be/research/software/delay-control/

tds_hopt-nse.zip.
Dileep, D. and Michiels, W. (2018c). tds_hopt-nse v2, a software tool for sampled

data structured controller design for DDAEs with network structure
exploitation. Available at http://twr.cs.kuleuven.be/research/

software/delay-control/tds_hopt-nse2.zip.
Dileep, D., Michiels, W., Hetel, L., and Richard, J.-P. (2018b). Design of robust

structurally constrained controllers for mimo plants with time-delays. In
2018 European Control Conference (ECC), pages 1566–1571.

Dileep, D., Thomas, J., Hetel, L., Wouw, N. v. d., Richard, J.-P., and Michiels,
W. (2020). Design of L2 stable fixed-order decentralised controllers in
sampled data networks with time-delays. European Journal of Control.

Dileep, D., Van Parys, R., Pipeleers, G., Hetel, L., Richard, J.-P., and Michiels,
W. (2018c). Design of robust decentralised controllers for MIMO plants
with delays through network structure exploitation. International Journal
of Control.

Donkers, M. C. F., Heemels, W. P. M. H., van de Wouw, N., and Hetel, L. (2011).
Stability analysis of networked control systems using a switched linear
systems approach. IEEE Transactions on Automatic Control, 56(9):2101–
2115.

Erneux, T. (2009). Applied Delay Differential Equations. Surveys and Tutorials
in the Applied Mathematical Sciences. Springer New York.

Fardad, M., Lin, F., and Jovanovic, M. R. (2014). Design of optimal sparse
interconnection graphs for synchronization of oscillator networks. IEEE
Transactions on Automatic Control, 59(9):2457–2462.

Feingesicht, M., Polyakov, A., Kerhervé, F., and Richard, J.-P. (2017). Siso
model-based control of separated flows: Sliding mode and optimal control
approaches. International Journal of Robust and Nonlinear Control,
27(18):5008–5027.

Ferguson, J., Donaire, A., Knorn, S., and Middleton, R. H. (2017). Decentralized
control for L2 weak string stability of vehicle platoon. IFAC-PapersOnLine,

http://twr.cs.kuleuven.be/research/software/delay-control/CACCproblem.zip
http://twr.cs.kuleuven.be/research/software/delay-control/CACCproblem.zip
http://twr.cs.kuleuven.be/research/software/delay-control/CACCproblem.zip
http://twr.cs.kuleuven.be/research/software/delay-control/tds_hopt-nse.zip
http://twr.cs.kuleuven.be/research/software/delay-control/tds_hopt-nse.zip
http://twr.cs.kuleuven.be/research/software/delay-control/tds_hopt-nse2.zip
http://twr.cs.kuleuven.be/research/software/delay-control/tds_hopt-nse2.zip


BIBLIOGRAPHY 149

50(1):15012 – 15017. 20th IFAC World Congress.
Fiacchini, M. and Morarescu, I. (2016). Stability analysis for systems with

asynchronous sensors and actuators. In 2016 IEEE 55th Conference on
Decision and Control (CDC), pages 3991–3996.

Fiter, C., Korabi, T.-E., Etienne, L., and Hetel, L. (2018). Stability of LTI
Systems with Distributed Sensors and Aperiodic Sampling, pages 63–82.
Springer International Publishing.

Foley, C. and Mackey, M. C. (2009). Dynamic hematological disease: a review.
Journal of Mathematical Biology, 58(1):285–322.

Fridman, E. (2002). Stability of linear descriptor systems with delay: a lyapunov-
based approach. Journal of Mathematical Analysis and Applications,
273(1):24 – 44.

Fridman, E. (2014). Introduction to Time-Delay Systems: Analysis and Control.
Systems & Control: Foundations & Applications. Springer International
Publishing.

Fridman, E. and Shaked, U. (2002). An improved stabilization method for
linear time-delay systems. IEEE Transactions on Automatic Control,
47(11):1931–1937.

Fujioka, H. (2007). Stability analysis of systems with aperiodic sample-and-hold
devices. IFAC Proceedings Volumes, 40(23):310 – 315. 7th IFAC Workshop
on Time Delay Systems TDS 2007, Nantes, France, 17–19 September,
2007.

Fujioka, H., Kao, C. Y., Almer, S., and Jonsson, U. (2005). Sampled-data H∞
control design for a class of pwm systems. In Proceedings of the 44th
IEEE Conference on Decision and Control.

Fusco, M., Semsar-Kazerooni, E., Ploeg, J., and van de Wouw, N. (2016).
Vehicular platooning: Multi-layer consensus seeking. In 2016 IEEE
Intelligent Vehicles Symposium (IV), pages 382–387.

Gao, F., Hu, X., Li, S. E., Li, K., and Sun, Q. (2018). Distributed adaptive sliding
mode control of vehicular platoon with uncertain interaction topology.
IEEE Transactions on Industrial Electronics, 65(8):6352–6361.

Gao, F., Li, S. E., Zheng, Y., and Kum, D. (2016). Robust control
of heterogeneous vehicular platoon with uncertain dynamics and
communication delay. IET Intelligent Transport Systems, 10(7):503–513.



150 BIBLIOGRAPHY

Geromel, J. C., Bernussou, J., and de Oliveira, M. C. (1999). H2-norm
optimization with constrained dynamic output feedback controllers:
decentralized and reliable control. IEEE Transactions on Automatic
Control, 44(7):1449–1454.

Graham, F. and Chung, F. (1996). Spectral Graph Theory. Regional conference
series in mathematics. Conference Board of the mathematical sciences.

Gu, K., Kharitonov, V., and Chen, J. (2012). Stability of Time-Delay Systems.
Control Engineering. Birkhäuser Boston.

Guanetti, J., Kim, Y., and Borrelli, F. (2018). Control of connected and
automated vehicles: State of the art and future challenges. Annual
Reviews in Control, 45:18 – 40.

Gumussoy, S. and Michiels, W. (2011). Fixed-order H-infinity control for
interconnected systems using delay differential algebraic equations. SIAM
Journal on Control and Optimization, 49(5):2212–2238.

Hale, J. K. and Verduyn Lunel, S. M. (2002). Strong stabilization of neutral
functional differential equations. IMA Journal of Mathematical Control
and Information, 19:5–23.

Helton, J. W. (1978). Orbit structure of the mobius transformation semigroup
action onh-infinity (broadband matching). Adv. in Math. Suppl. Stud.,
page 129–197.

Hetel, L., Fiter, C., Omran, H., Seuret, A., Fridman, E., Richard, J.-P., and
Niculescu, S. I. (2017). Recent developments on the stability of systems
with aperiodic sampling: An overview. Automatica, 76:309 – 335.

Hilhorst, G., Pipeleers, G., Michiels, W., Oliveira, R. C. L. F., Peres, P. L. D.,
and Swevers, J. (2016). Fixed-order linear parameter-varying feedback
control of a lab-scale overhead crane. IEEE Transactions on Control
Systems Technology, 24(5):1899–1907.

Hollot, C. V., Misra, V., and and, D. T. (2002). Analysis and design of controllers
for aqm routers supporting tcp flows. IEEE Transactions on Automatic
Control, 47(6):945–959.

Hristu-Varsakelis, D. and Levine, W. (2005). Handbook of Networked and
Embedded Control Systems. Control Engineering - Birkhäuser. Birkhäuser
Boston.

Ikeda, K., Shin, S., and Kitamori, T. (1993). Fault tolerance of decentralized



BIBLIOGRAPHY 151

adaptive control. In Proceedings ISAD 93: International Symposium on
Autonomous Decentralized Systems, pages 275–281.

Kao, C.-Y. and Lincoln, B. (2004). Simple stability criteria for systems with
time-varying delays. Automatica, 40(8):1429 – 1434.

Kao, C.-Y. and Rantzer, A. (2007). Stability analysis of systems with uncertain
time-varying delays. Automatica, 43(6):959 – 970.

Khalil, H. (2002). Nonlinear Systems. Pearson Education. Prentice Hall.
Kolmanovskii, V. and Myshkis, A. (1999). Introduction to the Theory and

Applications of Functional Differential Equations. Mathematics and Its
Applications. Springer Netherlands.

Kruszewski, A., Jiang, W. ., Fridman, E., Richard, J. P., and Toguyeni,
A. (2012). A switched system approach to exponential stabilization
through communication network. IEEE Transactions on Control Systems
Technology, 20(4):887–900.

Lamnabhi-Lagarrigue, F., Annaswamy, A., Engell, S., Isaksson, A., Khargonekar,
P., Murray, R. M., Nijmeijer, H., Samad, T., Tilbury, D., and den Hof,
P. V. (2017). Systems and control for the future of humanity, research
agenda: Current and future roles, impact and grand challenges. Annual
Reviews in Control, 43:1 – 64.

Lavaei, J., Momeni, A., and Aghdam, A. G. (2008). A model predictive
decentralized control scheme with reduced communication requirement for
spacecraft formation. IEEE Transactions on Control Systems Technology,
16(2):268–278.

Li, S. E., Gao, F., Li, K., Wang, L., You, K., and Cao, D. (2018). Robust
longitudinal control of multi-vehicle systems—a distributed h-infinity
method. IEEE Transactions on Intelligent Transportation Systems,
19(9):2779–2788.

Li, S. E., Zheng, Y., Li, K., Wu, Y., Hedrick, J. K., Gao, F., and Zhang,
H. (2017). Dynamical modeling and distributed control of connected
and automated vehicles: Challenges and opportunities. IEEE Intelligent
Transportation Systems Magazine, 9(3):46–58.

Li, X. and de Souza, C. E. (1997). Delay-dependent robust stability and
stabilization of uncertain linear delay systems: a linear matrix inequality
approach. IEEE Transactions on Automatic Control, 42(8):1144–1148.



152 BIBLIOGRAPHY

Lunze, J. (1992). Feedback control of large scale systems. Prentice-Hall
international series in systems and control engineering. Prentice-Hall.

Massioni, P. and Verhaegen, M. (2009). Distributed control for identical
dynamically coupled systems: A decomposition approach. IEEE
Transactions on Automatic Control, 54(1):124–135.

Massioni, P. and Verhaegen, M. (2010). A full block s-procedure application to
distributed control. In American Control Conference (ACC), 2010, pages
2338–2343. IEEE.

McMillan, G. K. (2012). Industrial Applications of PID Control, pages 415–461.
Springer London.

Meyer, C. (2000). Matrix Analysis and Applied Linear Algebra:. Other Titles in
Applied Mathematics. Society for Industrial and Applied Mathematics.

Michiels, W. (2011). Spectrum-based stability analysis and stabilisation of
systems described by delay differential algebraic equations. IET Control
Theory Applications, 5(16):1829–1842.

Michiels, W., Fridman, E., and Niculescu, S.-I. (2009a). Robustness assessment
via stability radii in delay parameters. International Journal of Robust
and Nonlinear Control, 19(13):1405–1426.

Michiels, W., Hilhorst, G., Pipeleers, G., Vyhlídal, T., and Swevers, J. (2017).
Reduced modelling and fixed-order control of delay systems applied to a
heat exchanger. IET Control Theory & Applications, 11:3341–3352(11).

Michiels, W. and Niculescu, S. (2014). Stability, Control, and Computation for
Time-Delay Systems. Society for Industrial and Applied Mathematics,
Philadelphia, PA.

Michiels, W. and Nijmeijer, H. (2009). Synchronization of delay-coupled
nonlinear oscillators: An approach based on the stability analysis of
synchronized equilibria. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 19(3):033110.

Michiels, W., Vyhlídal, T., Ziték, P., Nijmeijer, H., and Henrion, D. (2009b).
Strong stability of neutral equations with an arbitrary delay dependency
structure. SIAM Journal on Control and Optimization, 48(2):763–786.

Mirkin, L. (2007). Some remarks on the use of time-varying delay to model
sample-and-hold circuits. IEEE Transactions on Automatic Control,
52(6):1109–1112.



BIBLIOGRAPHY 153

Mirkin, L., Rotstein, H., and Palmor, Z. (1999). H2 and H∞ design of sampled-
data systems using lifting. part I: General framework and solutions. SIAM
Journal on Control and Optimization, 38(1):175–196.

Monnet, D., Ninin, J., and Clement, B. (2016). A global optimization approach
to structured regulation design under h-infinity constraints. In 2016 IEEE
55th Conference on Decision and Control (CDC), pages 658–663.

Morarescu, I.-C., Michiels, W., and Jungers, M. (2016). Effect of a distributed
delay on relative stability of diffusely coupled systems, with application
to synchronized equilibria. International Journal of Robust and Nonlinear
Control, 26(7):1565–1582.

Ogata, K. (2010). Modern Control Engineering. Instrumentation and controls
series. Prentice Hall.

Olfati-Saber, R. and Murray, R. M. (2004). Consensus problems in networks of
agents with switching topology and time-delays. IEEE Transactions on
Automatic Control, 49(9):1520–1533.

Oncu, S., Ploeg, J., van de Wouw, N., and Nijmeijer, H. (2014). Cooperative
adaptive cruise control: Network-aware analysis of string stability. IEEE
Transactions on Intelligent Transportation Systems, 15(4):1527–1537.

Overton, M. L. (2009). HANSO: a hybrid algorithm for non-smooth optimization.
Computer Science, New York University.

Ozer, S. M. and Iftar, A. (2015). Decentralized controller design for time-delay
systems by optimization. IFAC-PapersOnLine, 48(12):462 – 467.

Partington, J. R. and Bonnet, C. (2004). H-infinity and bibo stabilization of
delay systems of neutral type. Systems and Control Letters, 52(3):283 –
288.

Pecora, L. M. and Carroll, T. L. (1998). Master stability functions for
synchronized coupled systems. Phys. Rev. Lett., 80:2109–2112.

Pfifer, H. and Seiler, P. (2015). Robustness analysis of linear parameter varying
systems using integral quadratic constraints. International Journal of
Robust and Nonlinear Control, 25(15):2843–2864.

Ploeg, J., Semsar-Kazerooni, E., Lijster, G., van de Wouw, N., and Nijmeijer,
H. (2015). Graceful degradation of cooperative adaptive cruise control.
IEEE Transactions on Intelligent Transportation Systems, 16(1):488–497.

Ploeg, J., Shukla, D. P., van de Wouw, N., and Nijmeijer, H. (2014a). Controller



154 BIBLIOGRAPHY

synthesis for string stability of vehicle platoons. IEEE Transactions on
Intelligent Transportation Systems, 15(2):854–865.

Ploeg, J., van de Wouw, N., and Nijmeijer, H. (2014b). Lp string stability of
cascaded systems: Application to vehicle platooning. IEEE Transactions
on Control Systems Technology, 22(2):786–793.

Popov, A. and Werner, H. (2012). Robust stability of a multi-agent system under
arbitrary and time-varying communication topologies and communication
delays. IEEE Transactions on Automatic Control, 57(9):2343–2347.

Prieur, C., Queinnec, I., Tarbouriech, S., and Zaccarian, L. (2018). Analysis
and Synthesis of Reset Control Systems. now.

Qin, W. B., Gomez, M. M., and Orosz, G. (2017). Stability and frequency
response under stochastic communication delays with applications to
connected cruise control design. IEEE Transactions on Intelligent
Transportation Systems, 18(2):388–403.

Rejeb, J. B., Morărescu, I.-C., and Daafouz, J. (2018). Control design with
guaranteed cost for synchronization in networks of linear singularly
perturbed systems. Automatica, 91:89 – 97.

Richard, J.-P. (2003). Time-delay systems: an overview of some recent advances
and open problems. Automatica, 39(10):1667 – 1694.

Richard, J.-P. and Divoux, T. (2007). Systèmes commandés en réseau. IC2
Systèmes Automatisés. Hermès-Lavoisier.

Sabau, S., Oara, C., Warnick, S., and Jadbabaie, A. (2017). Optimal
distributed control for platooning via sparse coprime factorizations. IEEE
Transactions on Automatic Control, 62(1):305–320.

Samad, T. (2019). IFAC Industry Committee Update, Initiative to Increase
Industrial Participation in the Control Community. Number 2 in
Newsletters April 2019. IFAC.

Savastuk, S. K. and Siljak, D. D. (1994). Optimal decentralized control. In
Proceedings of 1994 American Control Conference - ACC ’94, volume 3,
pages 3369–3373 vol.3.

Shafi, S. Y., Arcak, M., and El Ghaoui, L. (2012). Graph weight allocation
to meet laplacian spectral constraints. IEEE Transactions on Automatic
Control, 57(7):1872–1877.



BIBLIOGRAPHY 155

Shamma, J. S. (1994). Robust stability with time-varying structured uncertainty.
IEEE Transactions on Automatic Control, 39(4):714–724.

Shi, X. Q., Davison, D. E., Kwong, R., and Davison, E. J. (2016). Optimized
decentralized control of large scale systems. In 2016 12th IEEE
International Conference on Control and Automation (ICCA), pages
127–134.

Siljak, D. (2013). Decentralized Control of Complex Systems. Dover Publications.
Sipahi, R., Niculescu, S., Abdallah, C. T., Michiels, W., and Gu, K. (2011).

Stability and stabilization of systems with time delay. IEEE Control
Systems Magazine, 31(1):38–65.

Stankovic, S. S., Stanojevic, M. J., and Siljak, D. D. (2000). Decentralized
overlapping control of a platoon of vehicles. IEEE Transactions on Control
Systems Technology, 8(5):816–832.

Tannenbaum, A. (1980). Feedback stabilization of linear dynamical plants
with uncertainty in the gain factor. International Journal of Control,
32(1):1–16.

Thomas, J., Hetel, L., Fiter, C., van de Wouw, N., and Richard, J. (2018). L2-
stability criterion for systems with decentralized asynchronous controllers.
In 2018 IEEE Conference on Decision and Control (CDC), pages 6638–
6643.

Toscano, R. (2013). Structured Controllers for Uncertain Systems: A Stochastic
Optimization Approach. Advances in Industrial Control. Springer London.

van Schuppen, J. and Villa, T. (2014). Coordination Control of Distributed
Systems. Lecture Notes in Control and Information Sciences. Springer
International Publishing.

Vidyasagar, M. (2002). Nonlinear Systems Analysis. Society for Industrial and
Applied Mathematics, second edition.

Wang, C. and Nijmeijer, H. (2015). String stable heterogeneous vehicle platoon
using cooperative adaptive cruise control. In 2015 IEEE 18th International
Conference on Intelligent Transportation Systems, pages 1977–1982.

Wang, M., Li, H., Gao, J., Huang, Z., Li, B., and van Arem, B. (2017). String
stability of heterogeneous platoons with non-connected automated vehicles.
In 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), pages 1–8.



156 BIBLIOGRAPHY

Wang, T., O’Neill, D., and Kamath, H. (2015). Dynamic control and
optimization of distributed energy resources in a microgrid. IEEE
Transactions on Smart Grid, 6(6):2884–2894.

Zames, G. (1966). On the input-output stability of time-varying nonlinear
feedback systems–part ii: Conditions involving circles in the frequency
plane and sector nonlinearities. IEEE Transactions on Automatic Control,
11(3):465–476.

Zames, G. (1981). Feedback and optimal sensitivity: Model reference
transformations, multiplicative seminorms, and approximate inverses.
IEEE Transactions on Automatic Control, 26(2):301–320.

Zecevic, A. I. and Siljak, D. D. (2004). Design of robust static output feedback for
large-scale systems. IEEE Transactions on Automatic Control, 49(11):2040–
2044.

Zegers, J. C., Semsar-Kazerooni, E., Fusco, M., and Ploeg, J. (2017). A multi-
layer control approach to truck platooning: Platoon cohesion subject to
dynamical limitations. In 2017 5th IEEE International Conference on
Models and Technologies for Intelligent Transportation Systems (MT-ITS),
pages 128–133.

Zeng, H., He, Y., Wu, M., and She, J. (2015). Free-matrix-based integral
inequality for stability analysis of systems with time-varying delay. IEEE
Transactions on Automatic Control, 60(10):2768–2772.

Özer, S. M. and İftar, A. (2015). Decentralized controller design for time-delay
systems by optimization. IFAC-PapersOnLine, 48(12):462 – 467. 12th
IFAC Workshop onTime Delay SystemsTDS 2015.

Zhang, B., Kruszewski, A., and Richard, J.-P. (2014). A novel control design
for delayed teleoperation based on delay-scheduled lyapunov–krasovskii
functionals. International Journal of Control, 87(8):1694–1706.

Zhang, X.-M., Wu, M., She, J.-H., and He, Y. (2005). Delay-dependent
stabilization of linear systems with time-varying state and input delays.
Automatica, 41(8):1405 – 1412.

Zheng, Y., Li, S. E., Wang, J., Wang, L. Y., and Li, K. (2014). Influence of
information flow topology on closed-loop stability of vehicle platoon with
rigid formation. In 17th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pages 2094–2100.



Curriculum vitae

Deesh Dileep

E-mail : deesh.dileep@gmail.com
Date of Birth : 16 July 1992
LinkedIn : www.linkedin.com/in/deeshdileep/

Education

Mar. 2017 - Feb. 2020 Joint-Ph.D. at KU Leuven, Belgium & Centrale
Lille, France.

Sep. 2014 - Aug. 2016 M.Sc. in Electrical Engineering (Intelligent
Electrical Power Grids group) at TU Delft,
Netherlands.

Sep. 2010 - Apr. 2014 B.E. in Electrical and Electronics Engineering at
R. V. College of Engineering, Bangalore, India.

157



158 CURRICULUM VITAE

Experience

Apr. 2018 - Jun. 2018 Secondment at Dept. of Integrated Vehicle Safety,
TNO, Helmond, Netherlands.

Oct. 2016 - Feb. 2017 Electrical design engineer at ESB International,
Bahrain.

Jul. 2015 - Aug. 2016 Trainee (Internship & Master thesis) at TenneT
TSO B.V., Arnhem, Netherlands.



List of publications

Journal

• Design of stabilising fixed-order decentralised controllers for sampled-data
network with time-delays. D. Dileep, J. Thomas, L. Hetel, N. v. d. Wouw,
J.-P. Richard and W. Michiels. European Journal of Control (2020).

• Design of robust decentralised controllers for MIMO plants with delays
through network structure exploitation. D. Dileep, R. V. Parys, G.
Pipeleers, L. Hetel, J.-P. Richard and W. Michiels. International Journal
of Control (2018).

Proceedings of conference

• Achieving an L2 string stable one vehicle look-ahead platoon with
heterogeneity in time-delays. D. Dileep, M. Fusco, J. Verhaegh, L. Hetel,
J.-P. Richard and W. Michiels. European Control Conference 2019, Italy.

• A scalable design method for stabilising decentralised controllers for
networks of delay-coupled systems. D. Dileep, F. Borgioli, L. Hetel, J.-P.
Richard and W. Michiels. 5th IFAC Conference on Analysis and Control
of Chaotic Systems 2018, Netherlands.

• Design of robust structurally constrained controllers for MIMO systems
with time-delays. D. Dileep, W. Michiels, L. Hetel and J.-P. Richard.
European Control Conference 2018, Cyprus.

159







FACULTY OF ENGINEERING SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NUMERICAL ANALYSIS AND APPLIED MATHEMATICS

Celestijnenlaan 200A box 2402

B-3001 Leuven


	Contents
	General introduction
	Context
	Control architectures
	Literature on design of decentralised controllers
	LTI time-delay systems
	Stabilisation and fixed-order controller design
	Traditional methods for controller design
	Robust spectral abscissa optimisation
	Strong H norm optimisation

	General problem setting
	Systems with network structure
	Challenges

	Structure of the thesis

	Design of decentralised controllers
	Introduction
	Design of structurally constrained controllers
	Exploiting network structure of systems
	Decoupling for the stabilisation problem
	Decoupling for the H optimisation problem
	Discussion
	Generalisations to distributed controllers
	Numerical examples

	Extension to a scalable algorithm
	Controller design approach
	Numerical example

	Conclusions

	Decentralised controllers in a network of sampled-data systems
	Introduction
	MIMO plant and decentralised controllers
	Sampled-data decentralised control
	A feedback interconnection interpretation

	Stability criterion: generic case
	Controller design
	Generic case
	Network structure exploitation

	Numerical example
	Conclusions

	Application to cooperative adaptive cruise control
	Introduction
	Vehicle model
	One vehicle look-ahead platoon with CACC
	Stability and performance objectives
	Platoon stability: spectral abscissa
	Motivation for string stability
	Platoon string stability
	Platoon stability: pseudospectral abscissa
	Investigating a robust string stabilising controller

	Simulation-based studies
	Conclusions

	General conclusions
	Summary
	Future work

	Frequently used network topologies
	Small gain theorem
	Well posedness of the systems considered
	Consensus problem in a ring network topology
	Upper-bound for the operators
	Bibliography

