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Preface

This text is an exposition of the work on the interaction between contact topol-
ogy in dimension three and Heegaard Floer homology which I did in the years
approximately between 2004 and 2012. It is divided into four chapters: the first
one is a quick exposition of background material about contact structures, Hee-
gaard Floer homology and sutured manifolds, while the following three, which
contain the original material, correspond each to a different point of view on
the topic.

The second chapter deals with applications of Heegaard Floer homology to con-
tact topology centred on the relation between the Ozsváth–Szabó contact invari-
ants, Giroux torsion and symplectic fillability. The main results of this chapter
are the first examples of tight contact structures with trivial Ozsváth–Szabó
contact invariants, the effect of generalised Lutz twists on those invariants, the
classification of tight contact structures on the three manifolds −Σ(2, 3, 6n− 1)
for n ≥ 2 and the first examples of strongly fillable contact structures which
are not Weinstein fillable. As it is common in Mathematics when a story is
told for the second time, this chapter follows a logical rather than chronological
order: the results on the effect of generalised Lutz twists on the contact invari-
ant with twisted coefficients and the classification of tight contact structures on
−Σ(2, 3, 6n− 1) are stated first, even if they came the last, and previous results
are derived as corollaries, even if they were originally proved by more ad hoc
arguments.

The third chapter deals with an application of contact topology to Heegaard
Floer homology: I will describe how contact structures, via the contact invariant,
plaid a fundamental role in the original proof that knot Floer homology detects
fibred knots, focusing on the genus one case. As a corollary it follows that, if the
Poincaré homology sphere is obtained by surgery on K, then K is a trefoil knot,
answering a question of Kirby and Zhang. The fourth chapter is, up to minor
modifications, a survey on the isomorphism between Heegaard Floer homology
and embedded contact homology which has been submitted to the proceedings
of the Boyerfest.

After 2012 I started working more on higher dimensional contact and symplectic
topology. These more recent results are not included in this text to preserve
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at least some unity of action, given that unity of time and place are irremedi-
ably lost, but I would still like to mention them briefly. In [16], with Vincent
Colin, Ko Honda and Michael Hutchings we extended the definition of sutured
manifold to high dimension, defined the notion of a contact form adapted to
a sutured manifold, defined sutured contact homology and studied some of its
basic properties. The three-dimensional part of that work is briefly mentioned
in Subsection 4.4.5. In [42], with Klaus Niederkrüger and Chris Wendl, we
studied the topology of subcritical handle attachments and produced the first
examples of tight contact structures on connected sums in dimension at least
five which are not the result of a contact connected sum. In contrast, basic con-
vex surface theory implies that, in dimension three, a tight contact structure
on a connected sum necessarily arises as a contact connected sum. In the series
of articles [6, 8, 7] with Baptiste Chantraine, Georgios Dimitroglou Rizell and
Roman Golovko we developed a Floer homology for Lagrangian cobordisms and
used it to give topological constraints on Lagrangian cobordisms from a Legen-
drian submanifold to itself, to study the effect of Lagrangian surgeries on Floer
homology and, using the latter, to prove that the wrapped Fukaya category of
a Weinstein manifold is generated by the cocores of the critical handles of a
Weinstein handle decomposition.
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12. “Ozsváth–Szabó invariants and fillability of contact structures”, Math. Z.
253 (2006), no. 1, 159–175;

13. “Strongly fillable contact 3–manifolds without Stein fillings” Geom. Topol.
9 (2005), 1677–1687;

5



14. “On the classification of tight contact structure” (with S. Schönenberger),
in “Topology and Geometry of manifolds” Proceedings of Symposia in
Pure Mathematics, volume 71 (2003), editors Gordana Matić and Clint
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Chapter 1

Preliminaries

1.1 Contact structures

A contact structure ξ on a (2n + 1)-dimensional manifold M is a maximally
nonintegrable plane field, and the pair (M, ξ) is called a contact manifold. In
this text all contact structures are cooriented, which means that ξ = kerα for
some 1-form α on M , called a contact form. We will distinguish a contact
structure ξ by its conjugate ξ, which is the same hyperplane field as ξ but with
the opposite coorientation. If α is a contact form for ξ, then −α is a contact
form for ξ; thus α is well defined up to multiplication by a strictly positive
function on M . Frobenius theorem states that ξ is a contact structure if and
only if α ∧ (dα)n is a volume form, so M is an orientable manifold. The sign
of α ∧ (dα)n does not depend on the choice of the contact form (inducing the
given coorientation), and therefore ξ orients M . If (M, ξ) is a contact manifold,
we will always regard M as an oriented manifold with the orientation induced
by ξ.

Two contact manifolds (M0, ξ0) and (M1, ξ1) are isomorphic (or contactomor-
phic) if there exists a diffeomorphism ϕ : M0 → M1 such that ϕ∗ξ0 = ξ1. Two
contact structures ξ0 and ξ1 on the same manifoldM are isotopic if there is a dif-
feomorphism ϕ : M → M smoothly isotopic to the identity such that ϕ∗ξ0 = ξ1.
Finally, ξ0 and ξ1 are homotopic if they can be connected via a smooth family of
hyperplane fields ξt. We could be tempted to introduce one further equivalence
relation by requiring homotopy through contact structures. However a classical
theorem of Gray implies that, at least on closed manifolds, homotopy through
contact structures implies isotopy.

By the recent result of Borman, Eliashberg and Murphy [2] contact structures
exist on any odd-dimensional manifold as long as a certain homotopic obstruc-
tion vanishes. However in this text we will consider only contact structures on
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three-manifolds, where the existence is a classical result due to Martinet and
Lutz [86, 85].

Definition 1.1.1. Let (M, ξ) be a contact three-manifold. We say that ξ is
overtwisted if there is an embedded disc D ⊂ M such that ξ|∂D = TD|∂D. On
the other hand, if no such disc exists, ξ is called tight.

The existence theorem for contact structures on three-manifolds can be eas-
ily improved to prove that every homotopy class of 2-plane fields on a three-
manifold contains an overtwisted contact structure. Eliashberg introduced over-
twisted contact structures in [19] to prove the following theorem.

Theorem 1.1.2 (Eliashberg [19]). Two overtwisted contact structures on a
closed three-manifold are isotopic if and only if they are homotopic as oriented
plane fields.

On the other hand, the problem of the existence and classification of tight
contact structures on three manifolds is still largely open and almost nothing is
known outside the realm of Seifert fibred manifolds. However it is not because of
the subtleties of their classification that tight contact structures are interesting,
but because of their relations with symplectic geometry and low-dimensional
topology. We will explore some of these links in the next chapters. Recently
a similar dichotomy between flexible overtwisted contact structures and rigid
tight contact structures has emerged also in higher dimension by the work of
Borman, Eliashberg and Murphy [2].

The topological notion of surgery can be adapted to the contact setting. A
Legendrian knot (or link) L in (M, ξ) is a knot (or link) which is everywhere
tangent to ξ. A Legendrian knot carries a canonical framing called the contact
framing. A contact manifold (M ′, ξ′) is obtained from (M, ξ) by Legendrian
surgery (or contact (−1)-surgery) along L if M ′ is obtained from M by Dehn
surgery along L with coefficient −1 with respect to the contact framing and ξ′ is
obtained by extending ξ|M\ν(L) so that the extension is tight inside the surgery
solid torus. The classification of tight contact structures on solid tori [54, 48]
shows that this extension is unique. Contact (+1)-surgery is defined similarly
and is the inverse operation of Legendrian surgery: if (M ′, ξ′) is obtained from
(M, ξ) by Legendrian surgery, then (M, ξ) is obtained from (M ′, ξ′) by contact
(+1)-surgery. See [18] for more details on contact surgery.

Giroux torsion is a topological invariant of contact three-manifolds introduced
by Giroux in [46, 47]. We denote by ζn, for n ≥ 1, the contact structures
ζn = ker(sin(2πnz)dx+ cos(2πnz)dy) on T 2 × [0, 1] = R2/Z2 × [0, 1].

Definition 1.1.3. A contact three-manifold (M, ξ) has Giroux torsion n, for
n ≥ 1, if there is a contact embedding (T 2 × [0, 1], ζn) →֒ (M, ξ) but no contact
embedding of (T 2 × [0, 1], ζn+1). If no contact embedding of (T 2 × [0, 1], ζn)
exists for any n, then (M, ξ) has torsion 0. If there exists one for any n, then
(M, ξ) has infinite torsion.
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We can define Giroux torsion along a torus T by restricting Definition 1.1.3
to contact embeddings of (T 2 × [0, 1], ζn) such that the image of T 2 × {0} is
smoothly isotopic to T .

An overtwisted contact structure has infinite torsion by Eliashberg’s classifi-
cation. The converse is one of the most important open conjectures in three-
dimensional contact topology:

Conjecture 1.1.4. If (M, ξ) has infinite torsion, then it is overtwisted.

The fundamental role of Giroux’s torsion is exemplified by the coarse classifica-
tion theorem of Colin, Giroux and Honda [17]: for every three-manifold there
is a finite number of tight contact structures with the property that any other
tight contact structure can be obtained from one of those by a finite number
of modifications, called generalised Lutz twists, which increase Giroux’s torsion.
Lutz twists will play a crucial role also in this text, and therefore we will recall
their definition.

Let (M, ξ) be a contact three-manifold. If S ⊂ M is an embedded surface,
the characteristic foliation of S is the singular foliation on S which integrates
the singular line field ξ ∩ TS. A torus T ⊂ M is called pre-Lagrangian if its
characteristic foliation is linear. By [35, Theorem 2.5.22] a Pre-Lagrangian torus
T has a standard neighbourhood which is contactomorphic to R2/Z2 × [−ǫ, ǫ]
with the contact structure ker(sin(z)dx+ cos(z)dy).

Definition 1.1.5. A contact manifold (M, ξ′) is obtained from (M, ξ) by a gen-
eralised Lutz twist along T if we replace a neighbourhood of T contactomorphic
to (T 2 × [−ǫ, ǫ], ker(sin(z)dx+cos(z)dy)) with one which is contactomorphic to
(T 2× [−ǫ, ǫ], ker(sin(ϑ(z)))dx+cos(ϑ(z))dy)), where ϑ : [−ǫ, ǫ] → R is a smooth
function such that ϑ′ > 0, ϑ(−ǫ) = −ǫ and ϑ(ǫ) = 2π + ǫ.

The homotopy class of of the contact structure does not change after a gener-
alised Lutz twist by [46, Theorem 2.2], but the isotopy class in general does.
The result is often overtwisted, and this is always the case if the torus T is
compressible: in fact, by Dehn’s lemma, there is a curve on T which bounds
an embedded disc in M whose interior is disjoint from T , and after a gener-
alised Lutz twist, that curve is isotopic to a leaf of the characteristic foliation
of a torus isotopic to T . Then that leaf bounds an overtwisted disc. On the
other hand, when (M, ξ) is universally tight (which means that ξ pulls back to
a tight contact structure on the universal cover of M) and T is incompressible,
a generalised Lutz twist around T produces a tight contact structure; see [10].

1.2 Symplectic fillability

We recall that a symplectic form on a 2n-dimensional manifoldW is a differential
2-form ω such that dω = 0 and ωn is a volume form. There is a strong rela-
tionship between contact topology and symplectic topology due to the fact that
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contact structures provide natural boundary conditions for symplectic struc-
tures on manifolds with boundary. The key observation is that, if (M, ξ) is a
contact manifold and α is a contact form, then dα|ξ is a symplectic form on ξ
(in the sense of symplectic vector bundles) and moreover the conformal class of
dα|ξ is independent of the choice of the contact form. Depending on how tight
the relation between contact structure and symplectic form is, there are several
notions of symplectic fillability. Since ω orients W and ξ orients M , in all the
definitions that follow we will require that the orientation of M as boundary of
W coincides with the orientation induced by ξ.

Definition 1.2.1. A symplectic manifold (W,ω) is a weak symplectic filling of
a contact three-manifold (M, ξ) if ∂W = M and ω|ξ > 0.

By a slight abuse of notation, we denote the pull-back of ω to M by ω|M . This
convention for the pull-back will be used throughout the text.

Definition 1.2.2. A symplectic manifold (W,ω) is a strong symplectic filling
of a contact three-manifold (M, ξ) if ∂W = M and there is a contact form α for
ξ such that ω|M = dα.

Definition 1.2.3. A symplectic manifold (W,ω) is a Liouville filling of a contact
three-manifold (M, ξ) if ∂W = M and ω = dβ with β|M = α for a contact form
α of ξ.

Definition 1.2.4. A symplectic manifold (W,ω) is a Weinstein filling of a con-
tact three-manifold (M, ξ) if it is a Liouville filling, and moreover the Liouville
vector field Z, defined by the equation ιZω = β, is gradient-like for a Morse
function f : W → R which has M as a regular level.

The complex analytic notion of Stein filling is equivalent, from a symplectic
point of view, to the notion of Weinstein filling by [9]. Since Stein structures
came under the spot before Weinstein structures, all statements in this work
regarding Weinstein fillings were originally stated for Stein fillings. When the
focus is not on the contact manifold at the boundary we will write Liouville or
Weinstein domain instead of Liouville or Weinstein filling.

Example 1.2.5. The standard symplectic four-ball is a Weinstein domain; the
contact structure induced on the boundary S3 is called the standard contact
structure and will be denoted by ξst.

Every notion of symplectic filling has a corresponding notion of cobordism,
whose definition is straightforward. A symplectic cobordism has a positive,
or convex, end at the boundary component where the boundary orientation
coincides with the orientation coming from the contact structure, and has a
negative or concave end where the two orientations disagree. We follow the
convention that cobordisms go from the negative end to the positive end. To
a filling of (M, ξ) of any type we can associate a cobordism of the same type
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from (S3, ξst) to (M, ξ) by removing a Darboux ball. In the following we will
be interested only in Liouville and Weinstein cobordisms.

Every Weinstein cobordism from (M, ξ) to (M ′, ξ′), with ξ = kerα, is obtained
from the trivial cobordism ([0, 1] ×M,d(etα)) by a sequence of index one and
two symplectic handle attachments. On the boundary, the effect of an index
one symplectic handle attachment is a contact self-connected sum and the effect
of an index two symplectic handle attachment is a Legendrian surgery along a
Legendrian knot. See [35, Chapter 6] or [50] for more on symplectic handle
attachments.

The following inclusions
{
Weinstein
Fillable

}
⊂

{
Liouville
Fillable

}
⊂

{
Strongly
Fillable

}
⊂

{
Weakly
Fillable

}
⊂ {tight}

are all obvious but the last one, which is deep theorem of Eliashberg and Gromov
[20, 51]. They are all strict: tightness does not imply weak fillability by Etnyre
and Honda [25] and weak fillability does not imply strong fillability by Eliash-
berg [21]. In Subsection 2.4.3 I will describe the first (and, essentially, the only
known) examples of strongly fillable but not Liouville fillable contact manifolds.
Finally Bowden [5] proved that Liouville fillability does not imply Weinstein fill-
ability by a modification of the examples in Subsection 2.4.3. However Bowden’s
examples are reducible, and it would be interesting to have Liouville fillable but
not Weinstein fillable contact structures on irreducible manifolds.

1.3 Heegaard Floer homology

In this subsection we review some of the properties of Heegaard Floer homology.
For the definitions and a more thorough exposition of the properties we refer to
the original articles of Ozsváth and Szabó [93, 92, 97]. However, a sketch of the

definition of ĤF will be given in Subsection 4.3.1.

Let M be a closed, connected, oriented three-manifold. We denote by F the field
with two elements and by F[H2(M ;Z)] the group algebra of H2(M ;Z). Given

an F[H2(M ;Z)]-algebra A, the Heegaard Floer homology group ĤF (M ;A) is an
A-module which is an invariant of M up to diffeomorphism. If A = F[H2(M ;Z)]

we will write ĤF (M) and if A = F we will write ĤF (M) for ĤF (M ;A). It
is possible to define Heegaard Floer homology also in characteristic zero, with
some extra complications, but characteristic two is sufficient for all applications
we will describe.

Example 1.3.1. Given a Z-module A, to any cohomology class ω ∈ H2(M ;A)
we associate an F[H2(M ;Z)-algebra Aω as follows. As a ring, Aω = F[A], which
we write as “polynomials” in a variable t with coefficients in F and exponents
in A, and the action of c ∈ H2(M,Z) is defined by

c · t = t〈ω,c〉

12



via the Kronecker pairing between homology and cohomology, after regarding c
as a homology class with coefficients in A via the natural map H2(M ;Z)⊗A →
H2(M ;A). In practice we will always have A = Z or A = R.

Let Spinc(M) denote the set of Spinc structure on M . Following Turaev [111],
we can identify Spinc(M) with the set of the equivalences classes of oriented
2-dimensional plane fields on M which are homotopic outside a ball. Spinc(M)
is an affine space over H2(M ;Z). If t ∈ Spinc(M), its first Chern class c1(t) ∈
H2(M ;Z) is, by definition, the Euler class of an oriented 2-plane field on M
representing t. If α ∈ H2(M ;Z), then c1(t + α) = c1(t) + 2α. Heegaard Floer
homology groups split according to Spinc structures:

ĤF (M ;A) =
⊕

t∈Spinc(M)

ĤF (M, t;A).

The groups ĤF (M, t;A) are nontrivial only for finitely many Spinc structures.

Heegaard Floer homology is functorial with respect to cobordisms. However,
the general statement for twisted coefficients is quite involved; see [97, Section
3.1]. Here we will describe cobordism maps only in two cases: for coefficients in
F or in the algebras Aω of Example 1.3.1. Note that the former is the particular
case of the latter for A = {0}. Let W be a connected oriented cobordism from
M0 to M1 and Ω ∈ H2(W ;A) which restricts to ωi ∈ H2(Mi;A). For every
Spinc structure s on W there are maps (called cobordism maps)

F̂W,s : ĤF (M0, s|M0
) → ĤF (M1, s|M1

) (1.1)

F̂W,s;Ω : ĤF (M0, s|M0
;Aω0

) → ĤF (M1, s|M1
;Aω1

). (1.2)

The “untwisted” map (1.1) is linear over F and depends only on the diffeo-
morphism type of (W, s) relative to the boundary. The “twisted” map (1.2) is
linear over Aω and depends, up to multiplication by powers of t, on the diffeo-
morphism type of (W, s) relative to the boundary and on Ω. Both are nonzero
only for finitely many Spinc structures. if (W, s) is a product Spinc cobordism

and Ω ∈ H2(W ;A) ∼= H2(Mi;A), then then the maps F̂W,s and F̂W,s;Ω are the
identity.

Cobordism maps satisfy gluing formulas for concatenations of cobordisms.

Proposition 1.3.2 ([97, Theorems 3.4 and 3.9]). if (W1, s1) and (W2, s2) are
Spinc cobordisms from M0 to M1 and from M1 to M2, respectively, such that
s1|M1

= s2|M1
, and W denotes the composed cobordism, then

F̂W2,s2 ◦ F̂W1,s1 =
∑

s∈Spinc(W ):s|Wi
=si

F̂W,s.

If moreover Ω ∈ H2(W ;A) and Ωi is its restriction to Wi, then

F̂W2,s2;Ω2
◦ F̂W1,s1;Ω1

=
∑

s∈Spinc(W ):s|Wi
=si

F̂W,s;Ωt
〈Ω∪(s−s0),[W ]〉

for an arbitrary reference Spinc structure s0.

13



Let (M, ξ) be a contact three-manifold. The contact structure determines a
Spinc structure tξ on M . The Ozsváth–Szabó contact invariant, or simply the
contact invariant, of (M, ξ) with coefficients in an F[H2(M ;Z)]-algebra A is an

element c(ξ;A) ∈ ĤF (−M, tξ;A) introduced by Ozsváth and Szabó in [96]. If
A = F we write c(ξ) and if A = F[H2(M)] we write c(ξ) instead of c(ξ;A). The
contact invariant is well defined up to multiplication by invertible elements of A
and its equivalence class is an invariant of ξ up to isotopy. Its definition and the
proof of invariance rely on Giroux’s correspondence between contact structures
and open book decompositions [49].

If c1(tξ) is a torsion class, then ĤF (−M, tξ;A) is a Q-graded vector space (see

[89]) and, by [96, Proposition 4.6]1, c(ξ;A) ∈ ĤF−d(ξ)(−M, tξ;A), where d(ξ) is,
up to factors, the homotopy invariant defined by Gompf in [50, Definition 4.2].
It is defined as follows: if (W,J) is an almost complex manifold with ∂W = M
and ξ = TM ∩ J(TM), then

d(ξ) =
1

4
(c1(J)

2 − 2χ(W )− 3σ(W ) + 2) (1.3)

where σ is the signature, χ the Euler characteristic, and c1(J)
2 ∈ Q is well

defined because c1(ξ) is a torsion class.

The main properties of the contact invariants are the following. More properties
will be introduced when needed.

Theorem 1.3.3 (See [96, Theorem 1.4] and [90, Theorem 4.2]). If ξ is over-
twisted, then c(ξ;A) = 0 for every F[H2(M ;Z)]-algebra A. If (W,Ω) is a weak
symplectic filling of (M, ξ) and ω = [Ω|M ] ∈ H2(M ;R), then c(ξ;Aω) is a non-

torsion element of ĤF (−M, tξ;Aω); in particular c(ξ;Aω) 6= 0.

Corollary 1.3.4 (See also [38, Theorem 2.13]). If ξ is strongly fillable, then
c(ξ) 6= 0

The contact invariant is functorial with respect to the change of coefficients.

Lemma 1.3.5. If A0 and A1 are algebras over F[H2(M ;Z)] and A0 → A1 is
an algebra homomorphism, then there is a morphism of A0-modules

ĤF (M, t;A0) → ĤF (M, t,A1).

If ξ is a contact structure in M , then the contact invariant c(ξ;A1) is the image
of c(ξ;A0) under the morphism above, but of course for −M instead of M .

The contact invariant is functorial also (and more importantly) with respect to
Weinstein cobordisms. The following statement is a straightforward generali-
sation of [38, Lemma 2.11], which was a refinement of [96, Theorem 4.2] and
[83, Theorem 2.3]. Plamenevskaya in [99, Theorem 4] had already proved the
same result for Weinstein cobordisms coming from Weinstein fillings (i.e. where
(M0, ξ0) = (S3, ξst).)

1Beware the typos!
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Proposition 1.3.6. if (W,ω) is a Weinstein cobordism from (M0, ξ0) to (M1, ξ1)
and k is the canonical Spinc structure on W induced by ω, then

F̂W,s(c(ξ1)) =

{
c(ξ0) if s = k, and

0 if s 6= k,

where W denote the cobordism W turned “upside-down”, i.e. seen as a cobordism
from −M0 to −M1.

It is expected that Proposition 1.3.6 holds also for Liouville cobordisms. How-
ever, at the moment we can prove it only for Liouville cobordisms coming from
Liouville fillings. The following proposition is an easy consequence of [38, Re-
mark 2.14].

Proposition 1.3.7. if (W,ω) is a Liouville cobordism from (S3, ξst) to (M, ξ)
and k is its canonical Spinc structure, then

F̂W,s(c(ξ)) =

{
c(ξst) 6= 0 if s = k, and

0 if s 6= k.

Heegaard Floer homology comes in different flavours and so far we have dis-
cussed only the simplest one. To a three-manifold M with a Spinc structure
t we can associate also the Heegaard Floer homology groups HF∞(M, t;A),
HF−(M, t;A) andHF+(M, t;A). Among these other groups, onlyHF+(M, t;A)
will be used in this text. It satisfies all properties we have described here for
ĤF (M, t;A) and, in addition, it comes equipped with an A-linear map

U : HF+(M, t;A) → HF+(M, t;A)

which fits into an exact triangle

HF+(M, t;A)
U // HF+(M, t;A)

ww♥♥♥
♥♥
♥♥
♥♥
♥♥

ĤF (M, t;A).

ggPPPPPPPPPPP

(1.4)

The maps in this triangle also commute with the cobordism maps. The main
virtue of HF+ over ĤF is that it is related to the invariants of four-manifolds;
see [97]. The contact invariant c+(ξ;A) in HF+(M, t;A) is defined as the image
of c(ξ;A) by the map in (1.4).

1.4 Sutured manifolds and Floer homology

Sutured manifolds were introduced by Gabai in [29] to construct taut foliations
on three manifolds.
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Definition 1.4.1. ([29, Definition 2.6]) A sutured manifold (M,γ) is a compact
oriented three-manifold M together with a set γ ⊂ ∂M of pairwise disjoint
annuli A(γ) and tori T (γ). Each component of A(γ) is a tubular neighbourhood
of an oriented simple closed curve called suture. Finally every component of
∂M \ γ is oriented, and its orientation must be coherent with the orientation of
the sutures.

We define R+(γ) as the subset of ∂M \ γ where the orientation agrees with the
orientation induced by M on ∂M , and R−(γ) as the subset of ∂M \ γ where
the two orientations disagree. We define also R(γ) = R+(γ) ∪ R−(γ). We will
denote the union of the sutured by Γ and define M \ Γ = R(Γ) = R+(Γ) ⊔
R−(Γ) where R±(Γ) retracts onto R±(γ). Since we will only be concerned with
sutured manifolds with T (γ) = ∅, Γ determines γ and we will write also (M,Γ)
for (M,γ). Sometimes we will think of sutured manifolds as manifolds with
boundary, and sometimes as manifolds with boundary and corners at ∂A(γ).

An important example of sutured manifold is the following.

Definition 1.4.2 (See [30, Definition 2.1]). The sutured manifold (M,γ) is a
product sutured manifold if, up to diffeomorphism, M = R × [−1, 1] and γ =
∂R×[−1, 1] for some surface R (possibly with boundary) and R±(γ) = R×{±1}.

In relation to contact topology and Heegaard Floer homology, it is natural to
consider the more restrictive notion of balanced sutured manifold introduced by
Juhász in [69].

Definition 1.4.3. A sutured manifold (M,γ) is balanced if

• T (γ) = ∅,

• M has no closed connected component,

• every connected component of ∂M intersects γ nontrivially, and

• χ(R+(γ)) = χ(R−(γ)).

If (M,Γ) is a balanced sutured manifold, a relative Spinc structure t on (M,Γ)
is a homology class of nowhere vanishing tangent vector fields on M which are
positively transverse to R+(Γ), negatively transverse to R−(Γ), and along Γ
point from R−(Γ) to R+(Γ). The set of Spinc structures on (M,Γ), denoted
Spinc(M,Γ), is an affine space over H2(M,∂M ;Z) and, moreover, there exists
a map

c1 : Spin
c(M,Γ) → H2(M,∂M ;Z)

such that, for α ∈ H2(M,∂M), we have c1(t+ α) = c1(t) + 2α.

Let (M,Γ) be a balanced sutured manifold, t ∈ Spinc(M,Γ) a Spinc structure
and A an algebra over F[H2(M ;Z)]. The sutured Floer homology group of (M,Γ)
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with coefficients in A is a finitely generated A-module SFH(M,Γ, t;A) which is
a diffeomorphism invariant of (M,Γ). We will write SHF (M,Γ, t) when A = F
and SFH(M,Γ, t) when A = F[H2(M)]. We denote also

SFH(M,Γ;A) =
⊕

t∈Spinc(M,∂M)

SFH(M,Γ, t;A).

As explained in [69], the Heegaard Floer homology group ĤF (M) can be rein-
terpreted as the sutured Floer homology group SFH(M(1),Γ(1)), where M(1)
is the complement of an open ball in M and Γ(1) consists of a single connected
curve in ∂M(1) ∼= S2.

If (M, ξ) is contact manifold with convex boundary and Γ is the dividing set
of ∂M , then (M,Γ) is a balanced sutured manifold by [45]. Similarly to the
close case, ξ determines a relative Spinc structure tξ and, according to Honda,
Kazez and Matić [58], a contact class c(ξ;A) ∈ SFH(−M,−Γ, tξ;A) which is
well defined up to multiplication by invertible elements in A. When A = F we
write c(ξ) and when A = F[H2(M ;Z)] we write c(ξ).

Remark 1.4.4. The contact class is denoted by EH(ξ) in [58]. Its definition
relies on the choice of a partial open book decomposition and the proof of
invariance on a relative version of the Giroux correspondence. Since even less
details have appeared in the relative case, I will not call the relative contact
class a contact invariant. This has no consequence on the use we will make of
it: in the applications it will be enough to compute c(ξ) for a fixed partial open
book decomposition.

In our the application of sutured Floer homology we will use the following
gluing theorem, which generalises the one of Honda, Kazez and Matić from [56]
to twisted coefficients.

Theorem 1.4.5 ([40, Theorem 12]). Let (M0,Γ0) and (M1,Γ1) be balanced
sutured manifolds with M1 ⊂ int(M0). If ξ is a contact structure on M0 \
int(M1) with convex boundary and dividing set Γ0 on ∂M0 and Γ1 on ∂M1,
then there is a map

Φξ : SFH(−M1,−Γ1) → SFH(−M0,−Γ0)

which is linear over F[H2(M1;Z)] with respect to the F[H2(M1;Z)]-module struc-
ture on SFH(−M0,−Γ0) induced by the inclusion M1 →֒ M0. Moreover, Φξ

satisfies the following property: if ξ1 is a contact structure on M1 with convex
boundary and dividing set Γ1 and ξ0 is the contact structure on M0 obtained by
gluing ξ1 with ξ, then

Φξ(c(ξ1)) = c(ξ0).

The same remark as before is in place here: the invariance of Φξ relies on the
relative Giroux correspondence. In the applications it will be enough to work
with a fixed partial open book decomposition of ξ.
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Chapter 2

Giroux torsion, fillability

and the contact invariant

2.1 Introduction

In this chapter we explore the relations between the Ozsváth–Szabó contact
invariant, Giroux torsion and symplectic fillability. Since every contact manifold
with positive Giroux torsion is the result of a generalised Lutz twist, the starting
point will be the following result, which was obtained in collaboration with
Honda.

Theorem 2.1.1 ([40, Theorem 2]). Let (M, ξ) be a closed, oriented, connected
contact three-manifold and T ⊂ M a pre-Lagrangian torus. If (M, ξ′) is obtained
from (M, ξ) by a generalised Lutz twist along T , then for every F[H2(M ;Z)]-
module A,

c(ξ′;A) = (e[T ] + 1)c(ξ;A).

The statement of Theorem 2.1.1 was inspired by the work of Hutchings and
Sullivan [62] on the embedded contact homology of the three-torus. The proof
is in two steps. In the first step we show that the effect of a generalised Lutz
twist along T is the multiplication by a universal polynomial evaluated in the
homology class of T . To do this, we use sutured Floer homology and Theorem
1.4.5 to localise the computation to a neighbourhood of T . In the second step we
pin down the polynomial by computing the contact invariants for two contact
structures of T 3 which differ by a generalised Lutz twist. To do this we construct
a Weinstein cobordism W0 from T 3 to T 3 which decreases Giroux torsion and
compute the associated map in Heegaard Floer homology by embedding W0

into an elliptic surface and using the four-dimensional invariants from [97].

Theorem 2.1.1 gives a more direct and unified explanation of some previous
vanishing results which had been proved originally by more ad hoc arguments.
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Figure 2.1: The surgery diagram defining M(r1, r2, r3, r4)

The following corollary is a consequence of Theorem 2.1.1 and the naturality of
the contact invariant with respect to change of coefficients (Lemma 1.3.5).

Corollary 2.1.2. If a contact manifold (M, ξ) has positive Giroux torsion, then
c(ξ) = 0.

This result was first conjectured in [37, Conjecture 8.3], partial results were ob-
tained in [38, 37], where I produced the first examples of tight contact structures
with trivial Heegaard Floer invariants, and by Lisca and Stipsicz in [84], and
was finally proved in [41]. Together with Corollary 1.3.4, it implies the following
nonfillability result, which was conjectured by Eliashberg and first proved by
Gay in [34].

Corollary 2.1.3. A contact manifold with positive Giroux torsion is not strongly
symplectically fillable.

If T is a separating torus, then e[T ]−1 = 0. This and Theorem 1.3.3 immediately
imply the following corollary. The nonfillability part, although not explicitly
stated there, follows also from the argument in [34].

Corollary 2.1.4. If (M, ξ) has positive Giroux torsion along a separating torus,
then c(ξ) = 0 and (M, ξ) is not weakly symplectically fillable

On the other hand, Colin [11] and Honda, Kazez and Matić [57] have proved that
on any manifold M with an incompressible torus T there exist infinitely many
nonisomorphic tight contact structures with positive Giroux torsion along T .
This gives large infinite families of tight contact structures with trivial Heegaard
Floer contact invariants which generalise the following examples from [37].

Example 2.1.5. Let M = M(r1, r2, r3, r4) be the three-manifold described by
the surgery diagram in Figure 2.1 with ri ∈ Q∩(0, 1). From the surgery diagram
it is easy to construct a Seifert fibration of M over S2 with four singular fibres.
Thus we can decompose M = M ′

0 ∪ T 2 × [0, 1] ∪ M ′
1 where M ′

i is a Seifert
manifold which fibres over D2 with two singular fibres. By [52, Proposition 2.2
and Section 1.2], M ′

i is a surface bundle over S1. Let ξ′i be a contact structure on
M ′

i obtained by the first half of the construction of Thurston andWinkelnkemper
[110]. Thus the boundary of each M ′

i is a pre-Lagrangian torus and we define
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a contact structure ξ over M by gluing (M ′
0, ξ

′
0) and (M ′

1, ξ
′
1) with a suitable

contact structure on T 2 × [0, 1] with positive Giroux torsion. Thus we know
by Corollary 2.1.4 that c(ξ) = 0. (In [37] this was shown using the explicit
construction of ξ.) We can see that ξ is tight in two ways: either we observe that
(M, ξ) is decomposed into universally tight pieces glued along pre-Lagrangian
tori and apply Colin’s gluing theorem [10, Theorem 4.2], or we exhibit a contact
form for ξ whose Reeb vector field has no contractible Reeb orbits and apply
Hofer’s theorem [53, Theorem 1] producing a contractible Reeb orbit from an
overtwisted disc.

These contact manifolds were the first examples of tight contact manifolds with
trivial contact invariants for every choice of coefficients, in a somewhat cheating
way because they are rational homology spheres, and therefore they do not
support non trivial twisted coefficients. They were also the first known examples
of universally tight contact structures which are not weakly fillable. Of course
there was no reason to expect that the two notions should be related; the fact
that we knew no example of universally tight but not weakly symplectically
fillable contact manifold only shows the lamentable state of our understanding
of three-dimensional contact topology at that time.

The following corollary gives a very partial positive answer to Conjecture 1.1.4.
It follows from Theorem 2.1.1 because Z[H2(M ;Z)] is a Noetherian ring.

Corollary 2.1.6. Let (M, ξ) be a contact three-manifold and let (M, ξn), for
n ≥ 0, be the contact manifold obtained by performing n generalised Lutz twists
along a pre-Lagrangian torus T ⊂ M . If [T ] 6= 0 ∈ H2(M ;Z) and c(ξ) is
nontorsion (e.g. when (M, ξ) is weakly symplectically fillable), then

1. ξn has finite torsion along T for n ≥ 0;

2. ξn and ξm are pairwise nonisotopic for n 6= m.

Next we use Theorem 2.1.1 to classify the tight contact structures on the three-
manifolds −Σ(2, 3, 6n−1), which are the three-manifolds defined by the surgery
diagram in Figure 2.2. They owe their name to being diffeomorphic to the link
of the polynomial p(x, y, z) = x2 + y3 + z6n−1 near the singular point (0, 0, 0),
but with the opposite orientation. Contact structures on these manifolds have
been studied for a long time. Lisca and Matić in [82] used Seiberg-Witten invari-
ants to distinguish between contact structures defined as Legendrian surgeries
on the different Legendrian realisation of the link in Figure 2.2 for n > 1. (see
Figure 2.3). Later Etnyre and Honda [25] proved that −Σ(2, 3, 5) supports no
tight contact structure, giving the first example of such a manifold. A partial
understanding of tight contact structures on −Σ(2, 3, 6n− 1) was instrumental
in exhibiting the first examples of tight (in fact, weakly symplectically fillable)
contact structures with vanishing Heegaard Floer contact invariant with un-
twisted coefficients in [38]. Since those examples have positive Giroux torsion,
that result has been superseded by Corollary 2.1.2. Finally it was proved in

20



0

−n

Figure 2.2: Surgery diagram for −Σ(2, 3, 6n− 1)

[36] that −Σ(2, 3, 6n − 1) carries a strongly fillable contact structure which is
not Stein fillable when n ≥ 3, thus showing that strong and Stein fillability are
different concepts in dimension three.

For any n ≥ 2 we define

Pn =

{
(i, j) ∈ Z× Z :

0 ≤ i ≤ n− 2,
|j| ≤ n− i− 2 with j ≡ n− i (mod 2)

}
.

In Subsection 2.4.1 we will construct contact structures ηni,j on −Σ(2, 3, 6n− 1)
for all for all (i, j) ∈ Pn by Legendrian surgery on contact structures ξi, with
Giroux torsion i, on the three-manifold obtained by 0-framed surgery on the
right-handed trefoil knot.

Proposition 2.1.7. The contact structures ηni,j are all strongly symplectically
fillable.

Proof. They are weakly fillable because the contact structures ξi are all weakly
symplectically fillable and Legendrian surgery preserves weak fillability (see [26,
Theorem 2.5]). Moreover −Σ(2, 3, 6n − 1) is a homology sphere for all n, and
therefore any weak symplectic filling of (−Σ(2, 3, 6n− 1), ηni,j) can be deformed
to a strong symplectic filling; see for example [22, Proposition 4.1].

We can visualise Pn (and the contact structures indexed by its elements) as a
“Pascal” triangle with n−1 rows and (n−2, 0) at its upper vertex. For example
for n = 5 we have

η53,0
η52,−1 η52,1

η51,−2 η51,0 η51,2
η50,−3 η50,−1 η50,1 η50,3 .

(2.1)

For any n, the contact structures on the bottom row (i.e. with i = 0) are those
considered by Lisca and Matić in [82], which are obtained by Legendrian surgery
on all possible Legendrian realisations of the link in Figure 2.2 (see Figure 2.3),
and therefore are Stein fillable. Olga Plamenevskaya proved in [99] that their

contact invariants are linearly independent in ĤF (Σ(2, 3, 6n− 1)).
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Using convex surfaces it was proved in [44, Subsection 2.2], generalising an
argument from [43], that every tight contact structure on −Σ(2, 3, 6n − 1) is
isotopic to ηni,j for some (i, j) ∈ Pn. Thus, to classify tight contact structures on
−Σ(2, 3, 6n− 1) it remains to show that all contact structures ηni,j are pairwise
non isotopic. This will be achieved by computing their Ozsváth–Szabó contact
invariants.

Theorem 2.1.8. The Heegaard Floer contact invariant of ηni,j is

c(ηni,j) =

i∑

k=0

(−1)k
(
i

k

)
c(ηn0,j−i+2k). (2.2)

Theorem 2.1.8 can be reformulated in plain English as follows. Any (i, j) ∈ Pn

determines a sub-triangle Pn(i, j) ⊂ Pn with top vertex at (i, j) defined as

Pn(i, j) = {(k, l) ∈ Pn : 0 ≤ k ≤ i and j − k ≤ l ≤ j + k} .

The contact invariant of ηni,j is then a linear combination of the invariants of
the contact structures parametrised by the pairs in the base of Pn(i, j). In
order to compute the coefficients we associate natural numbers to the elements
of Pn(i, j), starting by associating 1 to the vertex (i, j), and going downward
following the rule of the Pascal triangle. Then the numbers associated to the
elements in the bottom row, taken with alternating signs, are the coefficients
of the contact invariants of the corresponding contact structures in the sum in
Equation (2.2).

The computation of the contact invariants of the contact structures ηni,j is based
on the computation of the contact invariant with twisted coefficients of the
contact structures ξi, which has been made possible by Theorem 2.1.1. It might
look surprising, at first sight, that one has to use twisted coefficients to compute
the invariants of contact structures on a homology sphere, which of course allows
no nontrivial coefficient systems. The reason of the effectiveness of twisted
coefficients in this situation is twofold. On the one hand, the large indeterminacy
of the contact invariant with twisted coefficients allows the invariants of different
ηni,j , with n and i fixed, to be mapped to different representatives of c(ξi). On
the other hand, the contact invariants c(ξi) are all nonzero and pairwise distinct
for i ≥ 0 by Theorem 2.1.1, while the “untwisted” invariants c(ξi) vanish for
i > 0 by Corollary 2.1.2.

Equation (2.2) and Plamenevskaya’s result imply that, for a fixed n > 1, the
contact invariants c(ηni,j) are pairwise distinct, and therefore the contact struc-
tures ηni,j are pairwise non isotopic. Thus we have the following corollary.

Corollary 2.1.9. −Σ(2, 3, 6n − 1) admits exactly
n(n− 1)

2
distinct isotopy

classes of tight contact structures and the contact structures ηni,j for (i, j) ∈ Pn

are a set of representatives.
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n−j

2
cusps n+j

2
cusps

Figure 2.3: Legendrian surgery presentation of (Yn, η
n
0,j).

Finally, in Subsection 2.4.3 we will use Theorem 2.1.8 to prove the following
slight generalisation of [36, Theorem 1.5], which provided the first examples of
strongly fillable contact structures which are not Weinstein fillable.

Theorem 2.1.10. The contact structures ηni,0 are not Liouville fillable for i > 0.

The contact structures of Theorem 2.1.10 are those on the axis of the triangle
2.1 which lie above the bottom row. It is still an open question if all the contact
structures ηni,j with i > 0 are not Weinstein fillable.

The staring point for the proof of Theorem 2.1.10 is the observation that the
contact structure ηni,−j is isotopic to the conjugate of ηni,j for all n ≥ 2 and all
(i, j) ∈ Pn. In particular, the contact structures on the axis of the triangle (2.1)
are isotopic to their own conjugates. This symmetry and the structure of the
contact invariants c(ηni,0) imply that a hypothetical Stein filling of (−Σ(2, 3, 6n−
1), ηni,0) must contradict Proposition 1.3.7 if i > 0.

Bowden used the contact manifolds (−Σ(2, 3, 6n−1), ηnn−2,0) (i.e. the top vertices
of the triangles) as building blocks for constructing the first examples of con-
tact three-manifolds which are Liouville fillable but not Weinstein fillable. He
proved that ηnn−2,0 arises as perturbation of a taut foliation on −Σ(2, 3, 6n− 1),
and it follows from Eliashberg and Thurston [24, Corollary 3.2.5] and the fact
that Σ(2, 3, 6n − 1) is a homology sphere that (−Σ(2, 3, 6n − 1), ηnn−2,0) is a
boundary component of a Liouville manifold with disconnected boundary and
that the other boundary component is (Σ(2, 3, 6n−1), η′). (We don’t care what
contact structure η′ is.) Attaching an index one Weinstein Handle between
the two boundary components produces a Liouville filling of −(Σ(2, 3, 6n −
1)#Σ(2, 3, 6n− 1), ηnn−2,0#η′). If (−Σ(2, 3, 6n− 1)#Σ(2, 3, 6n− 1), ηnn−2,0#η′)
were Weinstein fillable, it would follow from a result of Eliashberg in [20, Sec-
tion 8] that both (−Σ(2, 3, 6n − 1), ηnn−2,0) and (Σ(2, 3, 6n − 1), η′) would be
Weinstein fillable, contradicting Theorem 2.1.10.
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2.2 A word about integer coefficients

Theorem 2.1.1 in [40] and Corollary 2.1.2 in [41] were stated and “proved” for
integer coefficients. However, Massot pointed out a gap in the proofs if we
consider coefficients in a ring of characteristic different from two. On the other
hand, the problem disappears if we work in characteristic two.

In this section I will explain the gap and what has to be done to fix it. In
order to define Floer homology over the integers (or, more generally, over rings
with characteristic different from two) it is necessary to fix a coherent orien-
tation of the moduli spaces of pseudoholomorphic strips which are counted in
the differential. In the case of Heegaard Floer homology and sutured Floer ho-
mology there are 2b2(M) choices of coherent orientation systems for the moduli
spaces, which means that Heegaard Floer homology over the integers is not
uniquely defined unless M is a rational homology sphere. For a closed manifold
M , one can still fix a preferred coherent orientation system by requiring that
HF∞(M, t) ∼= Z[U,U−1] with trivial action of H2(M ;Z) for any torsion Spinc

structure t; see [92, Theorem 10.2]. However, in sutured Floer homology there
is no infinity version, and therefore this strategy for fixing a preferred coherent
orientation system is not available.

Another approach to the definition of a preferred orientation system in Heegaard
Floer homology is to follow [28, Chapter 8] (or [102, Chapter 11]). In this
approach coherent orientation systems are determined by Spin structures on the
Heegaard tori and there is a natural candidate for a preferred Spin structure
on an n-dimensional torus Tn: the one which is induced by the group structure
of Tn. This Spin structure can be equivalently characterised as the one whose
restriction to any homologically essential curve in Tn does not extend to the
disc. The advantage of this approach is that it applies equally well to closed
manifolds and sutured manifolds. A problem is that, when we go to cobordisms,
this is not the choice of Spin structure which makes the surgery sequence of [92,
Theorem 9.1] exact; see [102, Theorem 1.16]. There is, however, a possible
way out: in fact several choices of Spin structures can correspond to the same
coherent orientation system in the sense of Ozsváth and Szabó and we expect
that the surgery sequence is exact for a choice of Spin structures which induce
the preferred coherent orientation system in the sense of Ozsváth and Szabó.
Fixing the details of this approach to defining Heegaard Floer homology with
integer coefficients is a work in very slow progress with Juhász and Zemke.

Since once a preferred orientation system on sutured Floer homology is fixed
the proofs of all results of this chapter will work over the integers as they are,
we write the statements in the form they will have at that point; in particular
we keep writing negative signs which look silly in characteristic two.
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2.3 Generalised Lutz twists and contact invari-

ants

In this section we sketch the proof of Theorem 2.1.1. For the details we refer
to [40]. First, we observe that, by the naturality of the contact invariant under
change of coefficients (Lemma 1.3.5), it is enough to prove Theorem 2.1.1 for
A = F[H2(M ;Z)].

The first step uses Theorem 1.4.5 to localise the computation. If T ⊂ M is a pre-
Lagrangian torus, then the local model for a neighbourhood of a pre-Lagrangian
torus implies that T has a neighbourhood N0

∼= T 2 × [0, π/2] such that, for a
suitable choice of coordinates, ξ|N0

= ker(sin(t)dx + cos(t)dy). We define the
slope of a closed curve in T 2 so that the leaves of the characteristic foliation of
T 2 × {0} have slope 0 and those of the characteristic foliation of T 2 × {π/2}
have slope ∞. We perturb N0 near its boundary to obtain N ∼= T 2 × [0, π/2]
with convex boundary and dividing set Γ = Γ0 ∪ Γπ/2, where Γ0 ⊂ T 2 × {0}
and Γπ/2 ⊂ T 2 × {π/2} consist of two parallel curves each of slope 0 and ∞
respectively. The contact structure ξ|N is what is called a basic slice in [54].

By [40, Lemma 13], the sutured Floer homology of (N,Γ0∪Γ1) is SFH(N,Γ0∪
Γ1) = A⊕A⊕A⊕A with each summand in a different relative Spinc structure
and moreover the invariant of a basic slice generates the summand corresponding
to its Spinc structure. We can perform the Lutz twist along T supported inside
int(N) so that ξ and ξ′ coincide on M \ int(N) and therefore ∂N is still convex
with dividing set Γ0 ∪ Γ1. Since ξ|N and ξ′|N are homotopic relative to the
boundary, c(ξ′|N ) and c(ξ|N ) belong to the same Spinc summand, and therefore
c(ξ′|N ) = p(t)c(ξ|N ) for some Laurent polynomial p(t) which is well defined
up to multiplication by integer powers of t. Thus Theorem 1.4.5 implies that
c(ξ′) = p(e[T ])c(ξ).

The polynomial p(t) is independent of ξ because (N, ξ|N ) and (N, ξ′|N ) are uni-
versal models for the neighbourhood of a pre-Lagrangian torus before and after
a generalised Lutz twist. For this reason we can determine p(t) by computing
an explicit models. We recall the contact structures

ξn = ker(sin(2πnz)dx+ cos(2πnz)dy)

on T 3 for n ≥ 1. The contact structure ξ1 is Weinstein fillable because it is the
canonical contact structure on the unit cotangent bundle of T 2. Up to isotopy,
ξn+1 is obtained from ξn by performing a generalised Lutz twist.

Let ω ∈ H2(T 3;Z) be the cohomology class of the closed form dx∧dy. We denote
byHF+(T 3;Aω)

free the quotient ofHF+(T 3;Aω) by the subgroup of Aω-torsion
elements. It follows from [40, Proposition 19] that HF+(T 3;Aω)

free ∼= Aω and is
concentrated in degree − 1

2 . Moreover c(ξ1;Aω) has nonzero image c(ξ1;Aω)
free

in HF+(T 3;Aω)
free. Thus c(ξn;Aω)

free = p(t)n−1c(ξ1;Aω)
free.

Let a, b ⊂ T 2 be two simple closed curves intersecting transversely at one point
and let τa and τb be the corresponding positive Dehn twists. It is well known
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that (τaτb)
6 = id in the mapping class group of T 2. After turning Dehn twists

into Legendrian surgeries, we obtain a Stein cobordism W0 with (T 3, ξn+1) at
the negative end and (T 3, ξn) at the positive end for every n ≥ 2. We can regard
W0 also as the total space of a Lefschetz fibration over the annulus with fibre T 2

and twelve singular fibres corresponding to the twelve Dehn twists in (τaτb)
6.

Let Ω be a symplectic form on W0 compatible with the Lefschetz fibration and
normalised so that its cohomology class restricts to ω on the two boundary
components. Let

F+

W 0;Aω,free
: HF+(T 3;Aω)

free → HF+(T 3;Aω)
free

the map induced by the upside-down cobordism. Then

F+

W 0;Aω,free
(c(ξn;Aω)

free) = c(ξ(n+1);Aω)
free.

To conclude the proof of the theorem, it is enough to show that F+

W 0;Aω,free
acts

as the multiplication by t−1 on HF+(T 3;Aω)
free ∼= Aω

∼= F[t, t−1]. This can be
done by comparing the four-dimensional invariants of the elliptic surfaces E(n),
which can be described as the concatenation of n copies of the cobordism W0

with two copies of T 2 ×D2 glued at the ends; see [40, Section 4].

2.4 Contact structures on the Brieskorn spheres

−Σ(2, 3, 6n− 1)

In this section we define the contact structures ηni,j and sketch the proofs of
Theorem 2.1.8 and Theorem 2.1.10.

2.4.1 Construction of the tight contact structures

We introduce the notation

Yn = −Σ(2, 3, 6n− 1)

and, coherently with the standard surgery convention, we define Y∞ to be the
three-manifold obtained by 0-surgery on the right-handed trefoil knot. We de-
scribe Y∞ as a quotient of T 2 × R (with coordinates (x, y) on T 2 and t on
R):

Y∞ = T 2 × R/(v, t) = (Av, t− 1)

where A : T 2 → T 2 is induced by the matrix

(
1 1
−1 0

)
. In [47] Giroux con-

structed a family of weakly symplectically fillable contact structures ξi on Y∞

for i ≥ 0 as follows. For any i ≥ 0, fix a function ϕi : R → R such that:
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(1) ϕ′
i(t) > 0 for any t ∈ R, and

(2) (2i+ 1)π ≤ sup
t∈R

(ϕi(t+ 1)− ϕi(t)) < 2(i+ 1)π.

By condition (1) the 1-form

αi = sin(ϕi(t))dx+ cos(ϕi(t))dy

defines a contact structure ξ̃i = kerαi on T 2 × R. Moreover it is possible
to choose ϕi such that the contact structure ξ̃i is invariant under the action
(v, t) 7→ (Av, t − 1) and therefore defines a contact structure ξi on Y∞. The
following proposition was proved by Giroux.

Proposition 2.4.1 ([47, Proposition 2]). For any fixed integer i ≥ 0 the contact
structure ξi is tight, and its isotopy class does not depend on the chosen function
ϕi.

For every i ≥ 1 the contact structure ξi is obtained by performing n − 1 gen-
eralised Lutz twists on ξ0. Moreover, from the classification of tight contact
structures on torus bundles of Giroux and Honda [48, 55] it is easy to see that
the contact structure ξ0 is obtained by Legendrian surgery on S3 with the stan-
dard contact structure.

The knot
F = {0} × R/(0, t) = (0, t− 1) ⊂ Y∞

is Legendrian with respect to ξi for any i.

Definition 2.4.2. For any (i, j) ∈ Pn the contact manifold (Yn, η
n
i,j) is obtained

by Legendrian surgery on (Y∞, ξi) along a Legendrian knot Fi,j which is obtained
by applying n−i+j−2

2 positive stabilisations and n−i−j−2
2 negative stabilisations

to F .

To show that the underline three-manifold is Yn we observe that, if Y∞ is identi-
fied with the 0-surgery on the right-handed trefoil knot, then F corresponds to a
meridian, and the framing on F induced by the contact structure ξi corresponds
to the framing −i− 1 on the meridian. See [38, Lemma 3.5] for more details.

In the computation of the contact invariants we will need the homotopy in-
variants of the contact structures ξi and ηni,j . For every i ≥ 0 the canonical
Spinc structure tξi is the unique Spinc structure on Y∞ with trivial first Chern

class, which is also the unique Spinc structure for which ĤF (−Y∞, t) 6= 0 by the
adjunction inequality [92, Theorem .1]. The three-dimensional homotopy invari-
ants of the contact structures ξi and ηni,j have been computed in [44, Lemma
4.7] and [38, Theorem 3.12] respectively. For all n, i and j their values are

d(ξi) = −
1

2
, d(ηni,j) = −1. (2.3)
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2.4.2 Computation of the contact invariants

In this subsection we prove Theorem 2.1.8. First we recall the relevant Heegaard
Floer homology groups. By Equation (2.3) c(ξi) has degree 1

2 and c(ηni,j) has

degree 1. Let T ⊂ Y∞ a generator of H2(Y∞;Z) ∼= Z and take ω ∈ H2(Y∞; 1
2Z)

such that 〈ω, T 〉 = 1. Then by [44, Lemma 4.9]

ĤF 1
2
(−Y∞;Aω) ∼= Aω

∼= F[t1/2, t−1/2]

and by [89, Section 8.1], together with the exact triangle relating HF+ and ĤF ,

ĤF 1(−Yn) ∼= Fn−1.

Moreover, by [99, Section 3] the contact invariants c(ηn0,−n+2), . . . , c(η
n
0,n−2) form

a basis of ĤF 1(−Yn). We omit the Spinc structures because both groups are
nontrivial only in one.

Legendrian surgery on the trefoil knot in Figure 2.3 induces a Weinstein cobor-
dism from (S3, ξst) to (Y∞, ξ0) and we denote by V∞ the underlying smooth
cobordism. Similarly Legendrian surgery on Fi,j induces a Weinstein cobor-
dism from (Y∞, ξi) to (Yn, η

n
i,j) and we denote by Vn the underlying smooth

cobordism, which is the same for all (i, j) ∈ Pn because the curves Fi,j are
all smoothly isotopic. We omit the Weinstein structure from the notation
because the cobordism maps in Heegaard Floer homology depend on it only
through the canonical Spinc structure, and on the cobordisms Vn and V∞ there
is a unique choice for it because the restriction maps Spinc(Vn) → Spinc(Y∞)
and Spinc(V∞) → Spinc(Y∞) are isomorphisms. We call Ω the extension of
ω ∈ H2(Y∞; 1

2Z) to both V∞ and Vn. Then, by Proposition 1.3.2 and 1.3.6, for

some representatives of F̂V ∞;Ω and F̂V n;Ω
we have

F̂V ∞;Ω(F̂V n;Ω
(c(ηn0,j))) = tj/2. (2.4)

See [44, Lemma 4.12] for the details of the computation. Equation (2.4) implies

that we can identify ĤF 1
2
(Y∞;Aω) ∼= F[t1/2, t−1/2] so that c(ξ0) = 1 and

F̂V n;Ω
(c(ηn0,j)) = tj/2 (2.5)

up to multiplication by powers of t±1/2.

Remark 2.4.3. Equation (2.5) shows that the indeterminacy of the contact
invariant is intrinsic and unavoidable.

The topological input in the proof of Theorem 2.1.8 is the existence of a link C ⊂
Y∞ which is Legendrian for all contact structures ξi and such that Legendrian
surgery on it takes the contact manifold (Y∞, ξi+1) to (Y∞, ξi) for all i ≥ 0. We
call W∞ the cobordism associated to this surgery. The link C is constructed
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in [44, Section 4.1] using open book decompositions. It is related to the link
producing the cobordism W0 which was used in the proof of Theorem 2.1.1 but
different, as that link is Legendrian only starting from ξ2. It is possible to use
W0 instead of W∞ in proof of Theorem 2.1.8 (at least with coefficients in F):
the only difference is that the case n = 3 has to be treated separately. This is
implicitly done in the proofs of [38, Theorem 1.1] and [36, Theorem 2.4].

We can regard C as a Legendrian link in each (Yn+1, η
n+1
i+1,j). The cobordism in-

duced by Legendrian surgery on C, denoted byWn, then goes from (Yn+1, η
n+1
i+1,j)

at the negative end to (Yn, η
n
i,j) at the positive end. These cobordisms satisfy

W∞ ∪Y∞
Vn = Vn+1 ∪Yn+1

Wn

and moreover the homology class ω ∈ H2(Y∞; 1
2Z) extends to W∞, Vn and

Vn+1. Since there is no risk of confusion, we will call Ω any of these extensions.

If we choose representatives of F̂V n;Ω
and F̂V n;Ω

so that Equation (2.5) holds

and of F̂W∞;Ω so that it is the multiplication by t
1
2 − t−

1
2 , then the diagram

ĤF 1(−Yn)
F̂Wn //

F̂V n;Ω

��

ĤF 1(−Yn+1)

F̂V n+1;Ω

��

ĤF 1
2
(−Y∞)

F̂W∞;Ω // ĤF 1
2
(−Y∞)

(2.6)

is commutative by [44, Lemma 4.13].

We can compute c(ηn+1
1,j ) by the the commutativity of Diagram 2.6: in fact

F̂V n+1;Ω
(c(ηn+1

1,j )) = F̂W∞;Ω(F̂V n;Ω
(c(ηn0,j))) = t(j+1)/2 − t(j−1)/2,

and therefore
c(ηn+1

1,j ) = c(ηn+1
0,j+1)− c(ηn+1

0,j−1) (2.7)

because the map F̂V n+1;Ω
is injective.

Theorem 2.1.8 now follows by induction on n. The initial step is n = 2; since
there is a unique tight contact structure on Y2 there is nothing to prove in this
case. Now we assume that Formula (2.2) holds for the tight contact structures
on Yn, for some n, and we prove that this implies that Formula (2.2) holds for
the tight contact structures on Yn+1. From the surgery construction we have

F̂Wn
(c(ηni,j)) = c(ηn+1

i+1,j),

which means that F̂Wn
maps the “Pascal” triangle (2.1) for Yn to the part of

the “Pascal” triangle for Yn+1 which lies above the bottom row. On Yn+1 the
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induction hypothesis gives the following expression for the contact invariants of
ηn+1
i,j , for i ≥ 1, in terms of the contact invariants of ηn+1

1,j :

c(ηn+1
i+1,j) =

i∑

k=0

(−1)k
(
i

k

)
c(ηn+1

1,j−i+2k). (2.8)

If we substitute c(ηn+1
1,j ) in Equation 2.8 with the right-hand side of Equation

2.7 and apply the recursive definition of the binomial coefficients, we obtain
Equation (2.2) for n+ 1, and therefore we have proved Theorem 2.1.8.

2.4.3 Contact structures without Liouville fillings

In this Subsection we will sketch the proof of Theorem 2.1.10. For the details
we refer to [36]. The set of oriented contact structures and the set of Spinc

structures on a three-manifold M both admit a natural involution called conju-
gation. For a contact structure ξ on M , the conjugated ξ is the contact structure
obtained from ξ by inverting the orientation of the planes. A Spinc structure
on a three-manifold can be seen as a nonsingular vector field up to homotopy
outside a ball and thus, if t is represented by a vector field v, then the conjugate
t is represented by the vector filed −v. The two notions are obviously related:
in fact tξ = tξ.

There is an involution J : ĤF (M, t) → ĤF (M, t) defined in [92, Theorem 2.4].
We recall that the isomorphism J preserves the Q-grading of the Heegaard–
Floer homology groups when c1(t) is a torsion cohomology class, and is a natural
transformation in the following sense.

Proposition 2.4.4. ([97, Theorem 3.6]) Let (W, s) be a Spinc–cobordism be-
tween (M1, t1) and (M2, t2). Then the diagram

ĤF (M1, t1)
F̂W,s

−−−−→ ĤF (Y2, t2)yJ

yJ

ĤF (M1, t1)
F̂W,s

−−−−→ ĤF (Y2, t2)

commutes.

The contact invariant behaves well with respect to conjugation.

Lemma 2.4.5. ([38, Theorem 2.10]). If (Y, ξ) is a contact manifold, then

c(ξ) = J(c(ξ)).

As a corollary, we obtain a strong restriction on the Liouville fillings of self-
conjugate contact structures.
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Proposition 2.4.6. If (M, ξ) is a contact manifolds such that ξ is isotopic to
ξ and W is a Liouville filling of (M, ξ) with canonical Spinc structure k, then
k = k.

Proof. By Lemma 2.4.5 J(c(ξ)) = c(ξ). If we regard W as a Liouville cobordism

from (S3, ξst) to (M, ξ), then Lemma 2.4.4 implies that F̂W,k(c(ξ)) = F̂W,k(c(ξ))

because J acts trivially on ĤF (S3). Finally, Proposition 1.3.7 implies that
k = k.

The following lemma, whose proof is almost immediate from the explicit con-
struction of the contact structures ηni,j , is the main geometric input in the proof
of Theorem 2.1.10.

Lemma 2.4.7 ([38, Proposition 3.8]). For all n ≥ 0 and all (i, j) ∈ Pn the
contact structure ηni,j is isotopic to the conjugate of ηni,−j.

Proof of Theorem 2.1.10. Let W be a hypothetic Liouville filling of (Yn, η
n
i,0)

with i > 0 and let k be its canonical Spinc structure. By Lemma 2.4.7 ηni,0 is

isotopic to ηni,0. Then by Proposition 2.4.6 k = k.

Proposition 2.4.4, Lemma 2.4.7 and k = k imply that F̂W,k(c(η
n
i,j)) = F̂W,k(c(η

n
i,−j)).

Now we compute F̂W,k(c(η
n
i,0)) for i ≥ 1 using 2.1.8: if n is odd, then the

expression of c(ηni,0) has an even number of terms, which cancel two by two,

and therefore F̂W,k(c(η
n
i,0)) = 0, contradicting Proposition 1.3.7. If n is even,

then (i, 0) ∈ Pn if and only if i is even and the expression of c(ηni,0) has an
odd number of terms which cancel two by two except for the central one, so
F̂W,k(c(η

n
i,0)) = (−1)k

(
2k
k

)
for 2k = i. Since

(
2k
k

)
is even for k ≥ 1 we obtain

F̂W,k(c(η
n
i,0)) = 0 also when n is even, contradicting Proposition 1.3.7 again.
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Chapter 3

Detecting fibred knots

3.1 Introduction

We recall some basic terminology in knot theory. If K ⊂ S3 is a knot, a Seifert
surface for K is an embedded connected and oriented surface Σ ⊂ S3 such that
∂Σ = K. The genus of a knot K, denoted g(K), is the smallest genus of a Seifert
surface of K. It is easy to see that g(K) = 0 if and only if K is the trivial knot.
A knot K is fibred if there exists a locally trivial fibration S3 \K → S1. The
closure of each fibre is a Seifert surface with smallest genus. The trivial knot
is fibred and the only fibred knots1 of genus one are the trefoil knots and the
figure eight knot. For any g > 1 there are infinitely many fibred knots of genus
g, but they remain sparse.

Knot Floer homology is an invariant for null-homologous knots in three-manifolds
introduced independently by Ozsváth and Szabó in [91] and by Rasmussen in
[101]. It can be regarded as a relative version of Heegaard Floer homology. For
a knot K in S3 — the only case we consider here — and any integer d the knot

Floer homology group ĤFK(K, d) is a finite dimensional graded vector space
over F. (A lift to integer coefficients is also possible, but we won’t consider it.)

Knot Floer homology can be seen as a categorification of the Alexander poly-
nomial in the sense that

+∞∑

d=−∞

χ(ĤFK(K, d))T d = ∆K(T ) (3.1)

where ∆K(T ) denotes the symmetrised Alexander polynomial of K. However

the groups ĤFK(K, d), and in particular the bottom non trivial group, contain
more information than just the Alexander polynomial, as the following results
show.

1Here we mean knots up to isotopy. It would be more precise to say knot types, but we
will abuse the terminology because there is no real risk of confusion.
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Theorem 3.1.1. ([90, Theorem 1.2]) Let K be a knot in S3. Then

g(K) = max
{
d ∈ Z : ĤFK(K,−d) 6= 0

}
.

Theorem 3.1.2. (See [96, Theorem 1.1]) Let K be a knot in S3 with genus g.

If K is a fibred knot, then ĤFK(K,−g) = F.

In this chapter we sketch the proof of the following partial converse to Theorem
3.1.2.

Theorem 3.1.3 ([39, Theorem 1.4]). Let K be a genus-one knot in S3. If

ĤFK(K,−1) = F, then K is fibred.

Remark 3.1.4. Sometimes, and in particular in [39], these results are stated for

ĤFK(K, g). The two formulations are equivalent because knot Floer homology

satisfies the symmetry ĤFK(K, d) ∼= ĤFK(K,−d) for all d ∈ Z.

Since the only fibred knots of genus one are the trefoil knots and the figure-
eight knot, which have nonisomorphic knot Floer homology groups, Theorem
3.1.3 implies the following corollary.

Corollary 3.1.5. Knot Floer homology detects the trefoil knots and the figure-
eight knot.

Ozsváth and Szabó in [95] proved that if a rational surgery on a knot K ⊂
S3 produces the Poincaré homology sphere Σ(2, 3, 5), then K has the same
Heegaard Floer homology of the left-handed trefoil knot. Thus, corollary 3.1.5
implies the following corollary.

Corollary 3.1.6. If a rational surgery on a knot K ⊂ S3 produces the Poincaré
homology sphere Σ(2, 3, 5), then K is the left-handed trefoil knot.

This result was conjectured by Kirby in a remark after Problem 3.6(D) of his list
[72] and by Zhang in [113]. Corollary 3.1.5 has also been used by Ozsváth and
Szabó to prove that the trefoil knot and the figure-eight knot are determined
by their Dehn surgeries [98].

The proof of Theorem 3.1.3 was inspired by the proof of Theorem 3.1.1 and
by a nonfibredness criterion of Gabai; see Lemma 3.2.11. Its strategy is the
following. From a genus-one knot K we construct a closed three manifold M
with a genus two closed surface Σ ⊂ M such that

• K is fibred if and only if M fibres over S1 and Σ is a fibre, and

• ĤFK(K,−1) ∼=
⊕

〈c1(t),[Σ]〉=−2

HF+(M, t).
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We will denote HF+(M,−1) =
⊕

〈c1(t),[Σ]〉=−2

HF+(M, t).

If K is not fibred, we construct two taut foliations F+ and F− on M from
two sutured hierarchies in which the first cutting surface is Σ and the second
cutting surfaces S+ and S− satisfy g(S±) > 0 and are, morally speaking, the
same surface with opposite orientations.

Then we perturb F+ and F− to contact structures ξ+ and ξ− as in [24]. The
contact invariants c+(ξ+) and c+(ξ−) belong to HF+(M,−1). We proved that
they are linearly independent by showing that (M, ξ+) and (M, ξ−) can be
obtained by Legendrian surgery on contact manifolds (M ′, ξ′+) and (M ′, ξ′−)
such that the contact invariants c(ξ′+) and c(ξ′−) are both nontrivial and belong
to different Spinc structures. The main property of M ′ is that S± become closed
surfaces and therefore we can evaluate the Euler classes of ξ′+ and ξ′− on them.
If W is the cobordism induced by the surgery, then F+

W
(c+(ξ±)) = c+(ξ′±),

and therefore c+(ξ+) and c+(ξ−) are linearly independent. This shows that

dim ĤFK(K,−1) ≥ 2.

Theorem 3.1.3 was generalised to knots of higher genus and in more general
three-manifolds by Ni in [88]. For a wide class of knots his proof follows the
strategy of the proof of Theorem 3.1.3, and then he proves gluing formulas for
knot Floer homology and uses them to reduce the remaining cases to the ones
he has already considered. Finally Juhász in [70] gave a simpler proof based on
sutured Floer homology: given a nonfibred knot of genus g, he constructs two su-
tured hierarchies in the knot complement similar to those which are constructed
in [39] and [88], but uses the sutured Floer homology techniques he developed

to produce two linearly independent elements in ĤFK(K,−g) bypassing taut
foliations and contact structures.

3.2 Sutured Hierarchies

In this section we will consider only sutured manifolds (M,γ) with T (γ) = ∅ (i.e.
without toric components). Unlike in the case of balanced sutured manifolds, we
allow connected components of ∂M without sutures. The condition χ(R+(γ)) =
χ(R−(γ)) is not required a priori, but will be satisfied a posteriori by all sutured
manifolds we will construct.

Definition 3.2.1 ([29, Definition 2.2]). Let S be a compact oriented surface
S =

⋃n
i=1 Si with all Si connected. We define the norm of S to be

x(S) =
∑

i:χ(Si)<0

−χ(Si).

Definition 3.2.2. ([29, Definition 2.4].) Let S be a properly embedded oriented
surface in the sutured manifold (M, ξ). We say that S is norm minimising in
H2(M,γ) if ∂S ⊂ γ, S is incompressible, and its norm x(S) is minimal in the
homology class of S in H2(M,γ).
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If S realises the minimal norm in its homology class and all its connected com-
ponents have negative Euler characteristic, then it is incompressible.

Definition 3.2.3. ([29, Definition 2.10].) A sutured manifold (M,γ) is taut if
R(γ) is norm minimising in H2(M,γ).

Example 3.2.4. Product sutured manifolds are taut.

We will give the following definition only in the simpler case when no component
of γ is a torus, because this is the case we are interested in.

Definition 3.2.5. ([29, Definition 3.1] and [31, Correction 0.3].) Let (M,γ) be
a sutured manifold with T (γ) = ∅, and let S be a properly embedded oriented
surface in M such that:

1. no component of S is a disc with boundary in R(γ),

2. no component of ∂S bounds a disc in R(γ),

3. for every component λ of ∂S ∩ γ, one of the following holds:

(a) λ is a non-separating properly embedded arc in γ, or

(b) λ is a simple closed curve isotopic to a suture in A(γ).

Then S defines a sutured manifold decomposition

(M,γ)
S
 (M ′, γ′)

where M ′ = M \ S and

γ′ = (γ ∩M ′) ∪ ν(S+ ∩R−(γ)) ∪ ν(S− ∩R+(γ)),

R+(γ
′) = ((R+(γ) ∩M ′) ∪ S+) \ int(γ

′),

R−(γ
′) = ((R−(γ) ∩M ′) ∪ S−) \ int(γ

′),

where S+ and S− are the portions of ∂M ′ corresponding to S where the normal
vector to S points respectively out of or into ∂M ′.

A taut sutured manifold decomposition is a sutured manifold decomposition

(M,γ)
S
 (M ′, γ′) such that both (M,γ) and (M ′, γ′) are taut sutured mani-

folds.

Definition 3.2.6. ([29, Definition 4.1]) A sutured manifold hierarchy is a se-
quence of taut sutured manifold decompositions

(M0, γ0)
S1
 (M1, γ1) . . .

Sn
 (Mn, γn)

where (Mn, γn) is a product sutured manifold.
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Figure 3.1: Cut-and-paste surgery

The main results in sutured manifold theory are that for any taut sutured
manifold (M,γ) there is a sutured manifold hierarchy starting from (M,γ) [29,
Theorem 4.2], and that we can construct a taut foliation on (M,γ) from a
sutured manifold hierarchy starting from (M,γ) such that R(γ) is union of
leaves [29, Theorem 5.1]. Thus sutured manifold theory translates the problem
about the existence of taut foliations into a finite set of combinatorial data. The
particular result we will use in our applications is the following.

Proposition 3.2.7. Let M be a closed, connected, irreducible, orientable three-
manifold, and let Σ be a genus minimising connected surface representing a
non-trivial class in H2(M ;Q). Denote by (M1, γ1) the taut sutured manifold
where M1 = M \Σ and γ1 = ∅. If g(Σ) > 1 and there is a taut sutured manifold
decomposition

(M1, ∅)
S
 (M2, γ2)

then M admits a smooth taut foliation F such that

1. Σ is a closed leaf,

2. F is a product foliation in a neighbourhood of Σ, and

3. e(F , S) = χ(S), where e(F , S) denotes the relative Euler class of TF
evaluated on S.

Remark 3.2.8. A properly embedded surface S in M1 = M \ Σ gives a taut
sutured manifold decomposition

(M1, γ1)
S
 (M2, γ2)

if for translates Σ′
+ and Σ′

− of the boundary components Σ+ and Σ− of M \Σ
the surfaces S +Σ′

+ and S +Σ′
− obtained by cut-and-paste surgery (see Figure

3.1) are norm minimising in H2(M1, ∂S). In fact S+Σ′
+ and S+Σ′

− are isotopic
to R+(γ2) and to R−(γ2) respectively, and being norm minimising in M1 clearly
implies being norm-minimising in the smaller manifold M2 = M1 \ S.
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We end this section with a digression into the detection of product sutured
manifolds. We won’t need these results, but they were the source of inspiration
for Lemma 3.3.1.

Definition 3.2.9 ([31, Definition 0.1]). Let (M,γ) be a sutured manifold. A
product annulus A in (M,γ) is a properly embedded annulus A ⊂ M such
that one boundary component of A is contained in R+(γ) and the other one in
R−(γ). A product disc D in (M,γ) is a properly embedded disc D ⊂ M such
that |π0(∂D ∩ γ)| = 2 and each component of ∂D ∩ γ is nonseparating in γ.

Product discs and annuli detect where a sutured manifold is locally a product.
It is therefore not difficult to prove the following lemma.

Lemma 3.2.10 (See [30, Theorem 1.9]). Let (M,γ)
S
 (M ′, γ′) be a sutured

manifold decomposition. If S is either a product annulus or a product disc, then
(M,γ) is a product sutured manifold if and only if (M ′, γ′) is a product sutured
manifold.

Proving that a sutured manifold is not a product is a harder question, but
sometime the following lemma can be useful.

Lemma 3.2.11 ([30, Corollary 2.7]). If the sutured manifold decompositions

(M,γ)
S
 (M ′, γ′) and (M,Γ)

−S
 (M ′′, γ′′) yield both taut sutured manifolds

and S is neither a product annulus nor a product disc, then (M,γ) is not a
product sutured manifold.

3.3 From nonfibredness to taut foliations

We introduce some notation. Let K be a genus-one knot in S3, and let YK be
the the three-manifold obtained as 0-surgery on K. Let T be a minimal genus
Seifert surface for K and let T̂ be the torus in YK obtained by capping T off with
a meridian disc of the solid torus of the surgery. We denote MT̂ = YK \ T̂ and

∂MT̂ = T̂+ ∪ T̂−, where T̂+ is given the orientation induced by the orientation

of MT̂ by the outward normal convention, and T̂− is given the opposite one. By
[32, Corollary 8.3] MT̂ is irreducible and moreover, by [32, Corollary 8.19], it is

diffeomorphic to the product T̂ × [0, 1] if and only if K is fibred.

By a folklore result2 the symmetrised Alexander polynomial ∆K is monic and
has degree one if and only if the maps (ι±)∗ : H1(T̂±;Z) → H1(MT̂ ) induced by

the inclusions ι± : T̂± →֒ MT̂ are isomorphisms. We say in this case that MT̂ is
a homology product. This fact is not limited to genus one knots; see [39, Lemma
4.10] for a proof.

2Thanks to Stefan Friedl for the communications
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Assume that ∆K is monic and has degree one, so thatMT̂ is a homology product.

We take oriented simple closed curves α± and β± in T̂± such that both α+∪−α−

and β+ ∪−β− bound a surface in MT̂ . We assume also that α+ and β+, as well
as α− and β−, intersect transversally in a unique point.

Let µ be a properly embedded arc in MT̂ with one endpoint on T̂− and one

on T̂+ which closes to the core of the surgery torus in YK . We orient µ from

T̂− to T̂+. Denote by S+
n (α) the set of the connected and properly embedded

surfaces in M which are bounded by α+ ∪ −α− and which intersect the arc
µ transversally in exactly n positive points and in no negative points, and by
S−
n (α) the set of the surfaces with the same property bounded by −α+ ∪ α−.

Let S+
n (β) and S−

n (β) be the same for the curves β+ and β−. Let κ
+
n (α) be the

minimal genus of the surfaces in S+
n (α) and define κ−

n (α), κ
+
n (β), and κ−

n (β) in
analogous ways.

Lemma 3.3.1. The sequences {κ+
n (α)}, {κ

−
n (α)}, {κ

+
n (β)}, and {κ−

n (β)} are
non increasing. If MT̂ is not homeomorphic to a product, then for all n ≥ 0 we
have either κ+

n (α) 6= 0 and κ−
n (α) 6= 0, or κ+

n (β) 6= 0 and κ−
n (β) 6= 0.

Proof. The sequences are nonincreasing because T̂+ and T̂− are tori, and there-

fore cut-and-paste surgery of a surface in S±
n (α) or S±

n (β) with T̂± does not
increase the genus.

Assume that there are annuli Aα ∈ S+
n (α)∪S−

n (α) and Aβ ∈ S+
n (β)∪S−

n (β). By
a standard argument in low-dimensional topology we can assume that, after an
isotopy, Aα∩Aβ consists only of a segment connecting α+∩β+ with α−∩β−. The
boundary of M \(Aα∪Aβ) is homeomorphic to S2, and therefore M \(Aα∪Aβ)
is homeomorphic to T+ \(α+∪β+))× [0, 1] ∼= D3 because M is irreducible. This
proves that M is homeomorphic to T+ × [0, 1].

Now fix a genus one fibred knot K0 and denote by T0 a genus one Seifert surface
of K0, which is necessarily the closure of a fibre of the fibration on S3 \ K0.
We form the connected sum K#K0, which has a Seifert surface Σ obtained
by a boundary connected sum between T and T0. Let YK#K0

be the three-

manifold obtained as 0-surgery on K#K0 and Σ̂ the closed surface obtained by
capping Σ off with a meridian disc of the solid torus of the surgery. We denote
MΣ̂ = YK#K0

\ Σ̂ and ∂MΣ̂ = Σ̂+ ⊔ Σ̂−.

Proposition 3.3.2. Let K be a genus one knot in S3 such that ∆K is monic
of degree one. If K is not fibred, then there exist two smooth taut foliations F+

and F− on YK#K0
such that

1. Σ̂ is a leaf for both,

2. both are product foliations in a neighbourhood of Σ̂, and
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3. there exists a properly embedded surface R ⊂ MΣ̂ such that ∂R ∩ Σ̂+ and

∂R ∩ Σ̂− are both connected and e(F+, R) 6= e(F−, R).

The rest of the section is the proof of the proposition. From now on, we assume
that K is a knot in S3 of genus one which is not fibred and whose symmetrised
Alexander polynomial is monic of degree one. By Lemma 3.3.1 (and possibly
after renaming the curves α and β) κ±

n (α) 6= 0 for any n ≥ 0, and moreover
there is an integer m such that κ±

m+i(α) = κ±
m(α) for all i ≥ 0. We fix closed

surfaces S+
m ∈ S+

m(α) and S−
m ∈ S−

m(α) such that S+
m has genus κ+

m(α) and S−
m

has genus κ−
m(α).

Let ν denote a tubular neighbourhood. then MT̂ \ ν(µ) is homeomorphic to
S3\ν(T ). We can divide ∂(MT̂ \ν(µ)) in two pieces: ∂h(MT̂ \ν(µ)) = ∂MT̂ \ν(µ)
called the horizontal boundary, and ∂v(MT̂ \ ν(µ)) = ∂ν(µ) \ ∂MT̂ called the
vertical boundary. We denote by µ0 a similar segment in MT̂0

. It is easy to
see (e.g. [39, Lemma 4.13]) that YK#K0

is diffeomorphic to the three manifold
obtained by splicing the complements of K and K0 so that meridian is matched
with meridian and longitude is matched to longitude. Moreover Σ̂ = T∪T0 glued
along the boundary. Thus we can decompose MΣ̂ as (MT̂ \ν(µ))∪(MT̂0

\ν(µ0))
glued together along their vertical boundary.

From S+
m and S−

m we can construct surfaces Ŝ+ and Ŝ− in MΣ̂ by gluing a copy
of T0 to each one of the m components of S±

m∩∂v(MT̂ \ν(µ)). From an abstract

point of view Ŝ+ and Ŝ− are obtained by performing a connected sum with a

copy of T̂0 at each of the m intersection points between S+
m or S−

m and µ, and

therefore g(Ŝ±) = κ±
m(α) +m.

Consider the taut sutured manifold (MΣ̂, γ) where γ = ∅. We claim that

(MΣ̂, γ)
Ŝ+
 (MΣ̂ \ Ŝ+, γ+)

(MΣ̂, γ)
Ŝ−

 (MΣ̂ \ Ŝ−, γ−)

are taut sutured manifold decompositions. By Remark 3.2.8, to prove this it
is enough to prove to proving that the surfaces Ŝ+ + Σ̂+, Ŝ+ + Σ̂−, Ŝ− + Σ̂+,

and Ŝ− + Σ̂− obtained by cut-and-paste surgery between Ŝ± and Σ̂± are norm
minimising in H2(MΣ̂, α+ ∪ α−).

We recall that T̂+ and Σ̂+ are oriented by the outward normal convention, while

T̂− and Σ̂− are oriented by the inward normal convention. For this reason µ∩T̂+

and µ ∩ T̂− consist both of one single positive point.

We will consider only Ŝ+ + Σ̂+, the remaining cases being similar due to the

above consideration. Let S̃ ⊂ MΣ̂ be a surface with ∂S̃ = α− ∪ α+ in the same

relative homology class as Ŝ+ + Σ̂+ and norm minimising in H2(MΣ̂, α− ∪α+).

We can see S̃ as the union of two (possibly disconnected) properly embedded
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surfaces with boundary S ⊂ MT̂ \ ν(µ) and S0 ⊂ MT̂0
\ ν(µ0); then χ(S̃) =

χ(S) + χ(S0). We can easily modify S̃ without increasing its genus so that
it intersects ∂v(MT̂ \ ν(µ)) and ∂v(MT̂0

\ ν(µ0)) in homotopically non trivial
curves. The number of connected components of ∂S0 = ∂S ∩ ∂v(MT̂ \ ν(µ))
counted with sign is m+ 1.

Since χ(S) + χ(S0) = χ(S̃) = 2 − 2g(S̃), and S̃ is norm minimising, both S
and S0 minimise the norm in their relative homology classes. MT̂0

\ ν(µ0) is a
product T0× [0, 1], and therefore χ(S0) is equal to the negative of the number of
components of ∂S0 counted with sign, i.e. χ(S0) = −(m+1). We can modify S0

without changing χ(S0) so that it consists of some boundary parallel annuli and
m+1 parallel copies of T0, and then we push the boundary parallel annuli into
MT̂ \ν(µ), so that we have a new surface S′ ⊂ MT̂ \ν(µ) whose intersection with
∂v(MT̂ \ ν(µ)) consists of exactly m + 1 positively oriented non trivial closed
curves. If we glue discs to these curves we obtain a surface S+

m+1 ∈ S+
m+1(α)

such that
g(S̃) = g(S+

m+1#T̂
#(m+1)
0 ) = κ+

m+1(α) +m+ 1.

Since

g(Ŝ+ + Σ̂+) = g(Ŝ+)+ 1 = g(S+
m#T̂#m

0 )+ 1 = g(S+
m)+m+1 = κ+

m(α)+m+1

and κ+
m+1(α) = κ+

m(α), we conclude that g(Ŝ+ + Σ̂+) = g(S̃), which implies

that g(Ŝ+ + Σ̂+) is norm minimising in its relative homology class.

By Proposition 3.2.7 the taut sutured manifold decompositions

(MΣ̂, γ = ∅)
Ŝ+
 (MΣ̂ \ Ŝ+, γ+)

(MΣ̂, γ = ∅)
Ŝ−

 (MΣ̂ \ Ŝ−, γ−)

provide taut smooth foliations F+ and F− such that Σ̂ is a closed leaf for both
so that, in particular,

〈e(F+), [Σ̂]〉 = 〈e(F−), [Σ̂]〉 = χ(Σ̂) = −2.

Moreover e(F+, Ŝ+) = χ(Ŝ+) and e(F−, Ŝ−) = χ(Ŝ−).

Take any surface R ∈ S+
0 (α); then −R ∈ S−

0 (α), and therefore [Ŝ+] = [R]+m[Σ̂]

and [Ŝ−] = −[R] + m[Σ̂] as relative homology classes in H2(MΣ̂, α+ ∪ α−).
Therefore

e(F+, Ŝ+) = e(F+, R) +mχ(Σ̂) = e(F+, R)− 2m

and
e(F−, Ŝ−) = e(F−,−R) +mχ(Σ̂) = −e(F−, R)− 2m.

This implies

e(F+, R) = χ(Ŝ+) + 2m = χ(S+
m) = −2κ+

m(α) (3.2)
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α+

α−

R

Figure 3.2: A somewhat misleading picture of R ⊂ Y \ Σ̂

and
e(F−, R) = −χ(Ŝ−)− 2m = −χ(S−

m) = 2κ−
m(α). (3.3)

Recall that χ(S±
m) = −2κ±

m(α) because S+
m and S−

m have 2 boundary components
each. Equations 3.2 and 3.3 imply that e(F+, R) 6= e(F−, R) because κ±

m(α) > 0.

3.4 From taut foliations to knot Floer homology

In this section we prove that the foliations F+ and F− constructed in Proposition

3.3.2 produce distinct elements in ĤFK(K,−1). A more general intermediate
statement is the following.

Proposition 3.4.1. Let Y be a closed three-manifold with H1(Y ;Z) = Z. If
there exist two taut foliations F+ and F− on Y such that

1. F+ and F− have a common leaf Σ̂ of genus g > 1,

2. both are product foliations in a neighbourhood of Σ̂, and

3. there exits a properly embedded surface R ⊂ MΣ̂ = Y \ Σ̂ such that

(a) ∂R = α+ ⊔ α− where α+ ⊂ Σ+ and α− ⊂ Σ− are nonseparating

simple closed curves (∂MΣ̂ = Σ̂+ ⊔ Σ̂−), and

(b) e(F+, R) 6= e(F−, R),

then dimHF+(Y, 1− g) > 1, where HF+(Y, 1− g) =
⊕

〈c1(t),[Σ̂]〉=2−2g

HF+(Y, t).
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Before sketching the proof of this proposition, we show how it implies Theorem
3.1.3.

Proof of Theorem 3.1.3. Let K be a genus one knot in S3 which is not fibred.

If ∆K is not monic of degree one, then ĤFK(K,−1) 6= F by Equation (3.1).
Then, from now on, we assume that ∆K is monic and has degree one. We choose

a genus one fibred knot K0. We recall that ĤFK(K, d) = ĤFK(K0, d) = 0 for

d < −1 and ĤFK(K0,−1) ∼= F; thus by the Künneth formula for knot Floer ho-

mology [91, Corollary 7.2] we conclude that ĤFK(K#K0,−2) ∼= ĤFK(K,−1).
Let YK#K0

be the three-manifold obtained by performing 0-surgery on K#K0:
by [91, Corollary 4.5] and the symmetry of knot Floer homology [91, Equation

(3)], ĤFK(K,−1) ∼= HF+(YK#K0
,−2). Since K is not fibred and ∆K is monic

of degree one, Propositions 3.3.2 and 3.4.1 provide two distinct nonzero elements
in HF+(YK#K0

,−2). This proves Theorem 3.1.3.

In the rest of this section we prove Proposition 3.4.1. The strategy of the
proof is to perturb F+ and F− to contact structures ξ+ and ξ− on −Y so that
c+(ξ±) ∈ HF+(Y, 1−g), and then to construct a new three-manifold Yφ together
with a Weinstein cobordism W from −Yφ to −Y such that F+

W
(c+(ξ+)) and

F+

W
(c+(ξ−)) are linearly independent in HF+(Yφ). Now we see the construction

in more detail.

We choose a diffeomorphism φ : Σ̂+ → Σ̂− such that φ(α+) = α−, which exists
because α+ and α− are non separating, and form a new three-manifold Yφ from

MΣ̂ by gluing Σ̂+ to Σ̂− using φ. We decompose φ as a product φ =
∏

τc1 . . . τck
where each τci is a positive Dehn twist around a non-separating curve ci ⊂ Σ̂.

We identify a tubular neighbourhood of Σ̂ on which F+ and F− are product

foliations with Σ̂× [−1, 1] and choose distinct points t1, . . . , tk in (−1, 1). Then
we define the link

C = c1 × {t1} ∪ . . . ∪ ck × {tk} ⊂ Y.

The surface Σ̂ × {ti} induces a framing on ci × {ti}, and one can see that Yφ

is obtained by (−1)-surgery on the link C where the surgery coefficient of each
component is computed with respect to that framing. Equivalently, −Yφ is
obtained by (+1)-surgery on the same link C seen as a link in −Y .

Using [39, Lemma 3.5], which is a slightly more controlled version of Eliashberg
and Thurston’s perturbation from [24], we can perturb F+ and F− to contact
structures ξ+ and ξ− on −Y such that α± and C are Legendrian for both ξ+ and

ξ− and the contact framing coincides with the framing induced by Σ̂. By the
proof of [90, Theorem 1.2] we have c+(ξ±) 6= 0. Invariant of contact structures
coming from the perturbation of taut foliations in general are nontrivial only
with twisted coefficients; to have nonvanishing with untwisted coefficients here
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it is important that H2(Y ) is generated by the class of Σ̂ and 〈c1(ξ±), [Σ̂]〉 =
2− 2g < 0.

We denote by ξ′± the contact structures on −Yφ obtained by contact (+1)-
surgery along C. Contact (+1)-surgery is the inverse operation of Legen-
drian surgery, and therefore there are Weinstein cobordisms from (−Yφ, ξ±)
to (−Y, ξ±) with the same underlying smooth cobordism W . The map

F+

W
: HF+(Y, g − 1) → HF+(Yφ, g − 1) (3.4)

is an isomorphism by an argument which is similar to the proof of [94, Lemma
5.4]. First, by the composition formula [97, Theorem 3.4] it is enough to prove
that the map in Equation (3.4) is an isomorphism when W is obtained by a
single handle attachment. In this case Yφ is obtained from Y by (−1)-surgery
along a curve c, and therefore F+

W
fits into the exact triangle of [92, Theorem

9.12], which in the case at hand becomes

HF+(Y, g − 1)
F+

W // HF+(Yφ, g − 1)

vv❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

HF+(Y0, g − 1)

hh❘❘❘❘❘❘❘❘❘❘❘❘❘

where Y0 is obtained by 0–surgery on c.

Since c bounds a disc in Y0, there is a surface Σ′ ⊂ Y0 with χ(Σ′) > χ(Σ̂) =
2g − 2. Such surface violates the adjunction inequality [92, Theorem 7.1], and
therefore HF+(Y0, g − 1) = 0. This implies that

F+

W
: HF+(Y, g − 1) → HF+(Yφ, g − 1)

is an isomorphism, and therefore c(ξ′±) = F+

W
(c+(ξ±)) 6= 0.

In Yφ the surface R ⊂ MΣ closes up to a surface R. Moreover, it is easy to
verify that

〈c1(ξ
′
±), [R]〉 = e(F±, R)

and therefore c+(ξ′) and c+(ξ′−) belong to different Spinc structures because
e(F+, R) 6= e(F−, R). This proves that c+(ξ+) 6= c+(ξ−) because F+

W
is injec-

tive.
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Chapter 4

Heegaard Floer homology

and embedded contact

homology

4.1 Introduction

In the search for gluing formulas for gauge theoretic invariants of four-manifolds
(Donaldson’s invariants and Seiberg-Witten invariants) it was soon realised that
the object which should be associated to a three-manifold is a Floer homology.
The first to be constructed was instanton Floer homology in [27] by Floer himself,
although only for integer homology spheres. On the other hand, the develop-
ment of a Seiberg-Witten Floer homology languished for several years, until
Kronheimer and Mrowka defined monopole Floer homology in [73].

In the meantime the deep connection between gauge theory and symplectic
geometry became clear. For example, Atiyah proposed a conjectural reinterpre-
tation of instanton Floer homology as a Lagrangian intersection Floer homology,
now known as the “Atiyah-Floer conjecture”, in [1] and Taubes proved in [103]
that the Seiberg-Witten invariants on a symplectic four-manifold are equivalent
to a count of J-holomorphic curves which, in most cases, are embedded. This
result is usually called “SW=Gr”.

Motivated by the Atiyah-Floer conjecture, Ozsváth and Szabó defined Heegaard
Floer homology in [93, 92] as a symplectic counterpart of Monopole Floer homol-
ogy. Instead of the original definition, in this article we will use an equivalent one
given by Lipshitz in [80]. The starting point of the construction of Heegaard
Floer homology is a pointed Heegaard diagram (Σ,α,β, z) which describes a
three-manifold M . Here Σ is a genus g > 0 Heegaard surface associated to
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some self-indexing Morse function with a unique maximum and a unique mini-
mum, α is the collection of the attaching circles for the index one critical points,
β is the collection of the attaching circles for the index two critical points, and
z is a base point in the complement of α and β. The Heegaard Floer complexes
are generated by g-tuples of intersection points between the α-curves and the β-
curves and the differential counts certain J-holomorphic curves in R× [0, 1]×Σ
with boundary on R× {0} ×β and R× {1} ×α. We refer to Section 4.3 for an
overview of Heegaard Floer homology in its cylindrical reformulation.

Hutchings, later in collaboration with Taubes, defined embedded contact homol-
ogy in [60, 63, 64] motivated by SW=Gr and by Eliashberg, Givental and Hofer’s
symplectic field theory [23]. The starting point for embedded contact homology
is a contact form α on M . A contact form determines the Reeb vector field R
by

ιRdα = 0 and α(R) = 1.

The embedded contact homology complex is generated by finite sets of simple
Reeb orbits with finite multiplicities (called orbit sets) and its differential counts
certain J-holomorphic curves in the symplectisation (R×M,d(esα)). We refer
to Section 4.4 for an overview of embedded contact homology.

Thus by the end of the last decade we had three Floer homology theories for
three-manifolds, each with its strengths and weaknesses, which were expected
to be isomorphic. The relative advantage of monopole Floer homology is its
link with geometry, that of embedded contact homology is its link with Reeb
dynamics and that of Heegaard Floer homology is that it needs less sophisticated
analytical tools than the previous two, which makes it relatively computable and
easier to develop. On the other hand, the relation of these three theories with
instanton Floer homology is still to be clarified.

While Heegaard Floer homology and embedded contact homology were defined
with the purpose of being isomorphic to monopole Floer homology according to
some big picture, the actual proofs of the isomorphisms, which appeared in the
last ten years, span several hundred pages of very technical arguments. The iso-
morphism between monopole Floer homology and embedded contact homology
is due to Taubes and appeared in [104, 105, 106, 107, 108]. The isomorphism
between monopole Floer homology and Heegaard Floer homology is due to Kut-
luhan, Lee and Taubes and appeared in [74, 75, 76, 77, 78]. The isomorphism
between Heegaard Floer homology and embedded contact homology, which ap-
peared in [12, 14, 15, 13], is the topic of this chapter.

These isomorphisms have already had various applications. The most striking
ones are the proofs, for contact three manifolds, of the Weinstein conjecture by
Taubes [109] and of the Arnold’s chord conjecture by Hutchings and Taubes [66,
67] based on the isomorphism between monopole Floer homology and embedded
contact homology proved by Taubes.

The picture, however, is not yet complete for several reasons. First of all, the
definitions of the isomorphisms require some choices, but it is not clear at what
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extent the result depends on them. Second, we do not know if composing two of
the isomorphisms we obtain the third one.1 Finally, monopole Floer homology
and Heegaard Floer homology are “almost” 3 + 1 topological quantum field
theories, but it is not known if the isomorphisms commute with maps induced
by cobordisms.

The isomorphism between Heegaard Floer homology and embedded contact
homology is expressed in a more precise way by the following theorem.

Theorem 4.1.1. Let M be a closed three manifold and ξ a contact structure
on M . Then there are isomorphisms

Φ̂∗ : ĤF (−M) → ÊCH(M),

Φ+
∗ : HF+(−M) → ECH(M)

such that the diagram

. . . // ĤF (−M) //

Φ̂∗

��

HF+(−M)
U //

Φ+
∗

��

HF+(−M) //

Φ+
∗

��

. . .

. . . // ÊCH(M) // ECH(M)
U // ECH(M) // . . .

(4.1)

commutes. Moreover the isomorphisms map the contact class to the contact
class and match the splitting according to Spinc structures on the Heegaard Floer
side to the splitting according to first homology classes on the embedded contact
homology side.2

Vinicius Ramos in [100] proved that Φ̂∗ and Φ+
∗ respect also the grading by

homotopy classes of plane fields which exists in both theories.

A natural setting for relating Heegaard Floer homology and embedded contact
homology is that of open book decompositions (see Definition 4.3.6) because an
open book decomposition determines both a Heegaard splitting and a contact
structure. The Heegaard splitting is obtained by taking as Heegaard surface
the union of two opposite pages. The contact structure is provided by the
Thurston-Winkelnkemper construction [110].

Fix an open book decomposition (S, h) for M where S has genus g > 0. The first

step in the definition of the isomorphisms to adapt the definitions of ĤF (−M)

and ÊCH(M) to the open book decomposition (S, h). For Heegaard Floer
homology this is achieved by pushing all interesting intersection points between
the α- and β-curves to one side of the Heegaard surface obtained from (S, h);
see Subsection 4.3.3.

1This question will make sense only after answering the previous one.
2For simplicity we will not talk about Spinc structures.
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For embedded contact homology, this is achieved in [12] and reviewed in Sub-

sections 4.4.3 and 4.4.4. There we introduce the group ÊCH(N, ∂N) for the

mapping torus N of (S, h) and prove that ÊCH(M) ∼= ÊCH(N, ∂N). This
group is defined as a direct limit

ÊCH(N, ∂N) = lim
−→

ECHi(N),

where ECHi(N) is the homology of a chain complex generated by the orbit sets
in N which intersect a fibre i times and the direct limit is taken with respect
to maps ECHi(N) → ECHj+1(N) defined by increasing the multiplicity of an
elliptic orbit in ∂N . This elliptic orbit can be regarded intuitively as a receptacle
for the J-holomorphic curves in R × M which intersect the cylinder over the
binding.

Chain maps between Floer complexes are often defined by counting holomorphic
curves in some symplectic cobordism.

Convention 4.1.2. In this chapter we will use the convention that symplectic
cobordisms go from the positive end to the negative end. This is the opposite of
the convention we used in the previous chapters.

Here, we use the open book (S, h) to build a symplectic cobordism W+ from
[0, 1] × S to N and a symplectic cobordism X+ from [0, 1] × Σ to M . Count-
ing holomorphic curves in W+ and X+ with suitable Lagrangian boundary

conditions gives maps Φ∗ : ĤF (−M) → ECH2g(N) and Φ+
∗ : HF+(−M) →

ECH(M). After composing Φ∗ with the natural map ECH2g(N) → ÊCH(N, ∂N),

we obtain the map Φ̂∗. The maps Φ∗ and Φ̂∗ are defined in [14] (with a slightly
different notation), while Φ+

∗ is defined in [13]. Both are reviewed in Section
4.5. Strictly speaking, in the construction of Φ, we replace the embedded Floer
homology groups of N with isomorphic periodic Floer homology groups; see
Subsection 4.4.6.

In [14] we also define a map Ψ∗ : ECH2g(N) → ĤF (−M) by counting holo-
morphic curves in a symplectic cobordism W− passing through a base point.
The cobordism W+ is defined as a compactification of W+ turned upside-down.
The Lagrangian boundary condition on W− is singular, and this leads to many
more potential degenerations of holomorphic curves. For this reason, the proof
that Ψ∗ is defined is longer and more difficult than the proof that Φ∗ is defined.
The construction of Ψ∗ is reviewed in Section 4.6.

Then, in [15] we prove that Φ∗ and Ψ∗ are inverses of each other by composing
the two cobordisms and degenerating them in a different way. The proof that
Φ∗ ◦Ψ∗ and Ψ∗ ◦Φ∗ are the identity is thus reduced to a computation of some
relative Gromov-Taubes invariants. This step is briefly described in Section 4.7.

Finally we prove that the natural map ECH2g(N) → ÊCH(N, ∂N) is an iso-
morphism by an argument based on stabilising the open book decomposition.
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This last step is described in Section 4.8. This finishes the proof that Φ̂∗ is an
isomorphism. A simple algebraic argument based on the commutativity of the
diagram (4.1) and the properties of the map U in both theories shows that Φ+

∗

is also an isomorphism.

Convention 4.1.3. Throughout this chapter we will follow the convention that
all three-manifolds are connected, oriented and compact. If N is a three-manifold
with boundary, we will denote int(N) = N \ ∂N .

4.2 Moduli spaces of J-holomorphic curves

In this section we review some generalities about moduli spaces of holomorphic
curves with the goal of fixing notations and conventions. The reader should
keep in mind that we are not trying to give a one-size-fits-all definition of the
various moduli space we will use: each one will be defined in due course; here
we introduce the terminology that we will use in their definitions.

Let Y be a compact, oriented three-manifold. A stable Hamiltonian structure
on Y is a pair (α, ω) where α is a 1-form and ω is a closed 2-form which satisfy
α ∧ ω > 0 and ker dα ⊂ kerω. Stable Hamiltonian structures in this article will
satisfy also one of the following conditions:

(i) dα = ω, or

(ii) dα = 0.

Clearly when (i) is satisfied α is a contact form on Y. Fibrations over S1

are the main source of stable Hamiltonian structures satisfying (ii). In fact, if
π : Y → S1 is a locally trivial fibration with fibre S, it is always possible to
find a representative of the monodromy φ : S → S preserving an area form ω,
and therefore to regard ω as a 2-form on Y. If dt is a length form on S1 and
we define α = π∗dt, then (α, ω) will be called the stable Hamiltonian structure
induced by the fibration π : Y → S1.

A stable Hamiltonian structure determines a Reeb vector field3 R on Y, which
is the vector field defined by the equations

{
α(R) = 1,

ιRω = 0.

An almost complex structure J on R × Y is compatible with the stable Hamil-
tonian structure (α, ω), or with the contact form α when (i) is satisfied, if

• J is invariant under translations in the R direction,

3Called also Hamiltonian vector field, especially when α is not a contact form.
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• J(∂s) = R, where s denotes the coordinate on R,

• J(ξ) = ξ, where ξ = kerα, and

• ω(·, J ·) is an Euclidean metric on ξ.

Let (X ,ΩX ) be a symplectic four-manifold, possibly with boundary and cylin-
drical ends (in the latter case also called a symplectic cobordism). Positive ends
are identified with (0,+∞)×Y and negative ends are identified with (−∞, 0)×Y
where Y is a three manifold which, of course, depends on the end. Each Y is
endowed with a stable Hamiltonian structure and, on each end, ΩX = d(esα)
if the stable Hamiltonian structure on Y satisfies (i), or ΩX = ds ∧ α + ω if it
satisfies (ii). In the boundary of X there is a Lagrangian submanifold L. The
intersection of L with an end is a half cylinder over a collection of properly
embedded curves in ∂Y which are tangent to ξ. Those curves are called the
boundary at infinity4 of L.

On X we choose an almost complex structure JX which is compatible with ΩX

and with the stable Hamiltonian structures on the ends. In order to have SFT
compactness for JX -holomorphic curves, we assume that ∂X is union of JX -
holomorphic submanifolds which, by positivity of intersection, form a barrier
for JX -holomorphic curves. Note that, in most cases, X will be the total space
of a symplectic fibration X

̟
−→ B over a noncompact surface with boundary and

the last condition on JX is obtained by asking that ̟ should be holomorphic,
at least near ∂X . We often require more properties form the almost complex
structures, but in the text we will recall only those which are relevant for a first
reading.

Definition 4.2.1. A JX -holomorphic curve5 in X with boundary in L is a triple
(F, j, u) such that (F, j) is a smooth Riemann surface, possibly with boundary
and punctures, and u : F → X is a proper map satisfying du ◦ j = JX ◦ du and
mapping each connected component of ∂F to a distinct connected component6

of L. If F is connected, then (F, j, u) is called irreducible. If F0 ⊂ F is a
connected component, the restriction (F0, j|F0

, u|F0
) will be called an irreducible

component of (F, j, u).

When X is the total space of a symplectic fibration ̟ : X → B we say that a
holomorphic curve (F, j, u) is a degree d multisection of X if ̟ ◦ u : F → B is a
branched cover of degree d.

We can compactify F to F by adding the punctures back. If p ∈ F \ F is
a puncture, we say that V is a neighbourhood of p (in F ) if V ∪ {p} is a

4This term will be used only in this section.
5or simply a holomorphic curve when the almost complex structure is clear from the con-

text.
6At some point we will need to consider a singular Lagrangian submanifold. In that case,

we will assume that each connected component of ∂F is sent to a distinct connected component
of the smooth part of the Lagrangian submanifold.
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neighbourhood of p in F . The punctures of F are divided into positive and
negative punctures so that u maps a neighbourhood of a positive puncture to a
positive end of X and a neighbourhood of a negative puncture to a negative end.
Around each positive puncture we choose coordinates (s, t) ∈ (0,+∞) × [0, 1]
for a boundary puncture and (s, t) ∈ (0,+∞) × S1 for an interior puncture.
Around negative punctures we choose similar coordinates with (0,+∞) replaced
by (−∞, 0). If e is either a Reeb orbit in Y reparametrised so that it has
period one, or a Reeb chord connecting two points of the boundary at infinity
of L reparametrised over [0, 1], we say that u is positively (resp. negatively)
asymptotic to e if, in the neighbourhood of a positive (resp. negative) puncture,
lim

s→±∞
u(s, t) = e(t) (with positive sign for positive punctures and negative sign

for negative punctures). We call an end of a holomorphic curve (F, j, u) the
restriction of u to a neighbourhood of a puncture which is mapped to an end of
X by u.

Definition 4.2.2. If X = R× Y and JX is adapted to the stable Hamiltonian
structure on Y, a JX -holomorphic curve in X is either a trivial cylinder or
strip if it parametrises R × e where e is, respectively, a closed Reeb orbit or a
Reeb chord. In a general symplectic manifold X we say that an end of a JX -
holomorphic curve is trivial if it coincides with a portion of a trivial cylinder or
strip.

We say that two holomorphic curves (F, j, u) and (F ′, j′, u′) are equivalent, and
write (F, j, u) ∼ (F ′, j′, u′), if there exists an orientation-preserving diffeomor-
phism φ : F → F ′ extending smoothly over the punctures such that φ∗j = j′

and u = u′ ◦ φ. Given a set e of chords and orbits in the various ends, the
moduli space7 MX (e) is the quotient by the equivalence relation ∼ of the space
of JX -holomorphic curves in X with boundary on L which are asymptotic to
the chords and orbits in e. In the definition of MX (e) the topology of F is
not fixed, and therefore different element of MX (e) can have different genera,
number of punctures and number of connected components. Moreover, multiple
orbits are treated in the embedded contact homology way, which means that
only their total multiplicity in e counts. For example, if e contains an orbit γ
with multiplicity two, then holomorphic curves8 in MX (e) can have either one
end at a double cover of γ or two ends at γ. See [60] or Subsection 4.4.1 for
more details.

If X = R × Y, the almost complex structure JX is compatible with the sta-
ble Hamiltonian structure on Y and, in case Y has boundary, the Lagrangian
boundary condition L is R-invariant, then translations in the R direction act on
MX (e). This situation will be called the cylindrical setting.9 We will denote

the quotient of MX (e) by this action by M̂X (e).

7In the next sections we will distinguish chords and orbits belonging to different ends of
X . Here, for simplicity, we don’t.

8We will always call the elements of the moduli spaces “holomorphic curves” even if, strictly
speaking, they are equivalence classes of holomorphic curves

9This terminology will be used only in this section.
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Let T (F ) be the Teichmüller space of complex structures of F and Aut(F, j) the
group of automorphisms of the Riemann surface (F, j). To a JX -holomorphic
curve (F, j, u) we associate a formal deformation complex

0 → TidAut(F, j)
L
−→ T[j]T (F )⊕ Ω0(F ;u∗TX )

Dj,u
−−−→ Ω0,1(S;u∗TX ) → 0

where Dj,u is the formal linearised Cauchy-Riemann operator where j is also
considered as a variable, and L is the formal linearisation of the action of
Aut(F, j). If the ends of u are nondegenerate (possibly in the Morse-Bott sense),
a suitable Sobolev completion (with weights) of the formal deformation complex
is an elliptic complex. Let Hi (for i = 0, 1, 2) be its homology groups, which are
finite dimensional because of the Fredholm property. We define the Fredholm
index of a JX -holomorphic curve (F, j, u) as

ind(u) = − dimH0 + dimH1 − dimH2

If u is not constant (and it will never be constant in this chapter), then H0 = 0.
We say that (F, j, u) is regular if the linearised operator Dj,u is surjective in
the appropriated Sobolev completion, i.e. if H2 = 0. If (F, j, u) is nonconstant
and regular, then some neighbourhood of it in the moduli spaces MX (e) is
diffeomorphic to a ball of dimension ind(u). Moreover, in the cylindrical setting,

if ind(u) ≥ 1, then some neighbourhood of [u] in M̂X (e) is diffeomorphic to a
ball of dimension ind(u) − 1. This is all standard holomorphic curves theory,
and the reader can find the details in the many expositions of the topic.

In the chapter we will more often use another index, which is specific to holo-
morphic curves in four-dimensional symplectic manifolds: the ECH-type index
I(u). For its definition we refer to the original articles ([60, 61], where it was
first introduced for embedded contact homology and [14, 15, 13] for its extension
to the various symplectic cobordisms used in the proof of Theorem 4.1.1). Here
we will only state its main properties which will be used in the next sections:

1. homology invariance: I(u) depends only on the relative homology class
defined by u (after a suitable compactification);

2. concatenation: if two holomorphic curves (F+, j+, u+) and (F−, j−, u−)
such that the positive ends of u− match the negative ends of u+ are glued
to a holomorphic curve (F, j, u) along the matching ends, then I(u) =
I(u−) + I(u+); and

3. index inequality: if δ(u) is an algebraic count of singularities of u as in [87,
Appendix E], then

ind(u) + 2δ(u) ≤ I(u). (4.2)

Moreover there is equality if u has no end which is asymptotic to a closed
Reeb orbit.
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The index inequality was first proved by McDuff for closed curves as the ad-
junction inequality (see [87, Appendix E] for a more modern exposition) and
reinterpreted by Taubes as an index inequality (see [103]). For punctured curves
it was proved by Hutchings in [60] (see also [61]) in order to define embedded
contact homology. The extension to other settings is straightforward and is
done in [14].

The index inequality has the following important consequence: if I(u) < 2
(and, in some cases, also if I(u) = 2) then u is embedded and I(u) = ind(u).
Embeddedness in particular implies somewhere injectivity, and therefore for a
generic almost complex structure JX all holomorphic curves of low ECH-type
index are regular by standard techniques; see in [87, Section 3.2]. A similar
result holds for holomorphic curves of higher index satisfying constraints of
sufficiently high codimension. For this reason in [14, 15, 13] we do not need
to worry about the regularity issues which trouble many parts of symplectic
topology.

Given a property⋆ (e.g. I = 0), we denote the subset of JX -holomorphic curves
in MX (e) satisfying ⋆ by M⋆

X (e). This convention will be used throughout
this chapter.

For sake of brevity, in the next sections we will always denote a holomorphic
curve (F, j, u) simply by u. In view of the embeddedness of the holomorphic
curves of low index, we will also often identify a holomorphic curve with its
image.

4.3 Heegaard Floer homology

4.3.1 A review of Heegaard Floer homology

In this section we briefly review the Heegaard Floer homology groups associ-
ated to a closed three-manifold M . We will work with Lipshitz’s “cylindrical
reformulation” from [80] instead of with the original definition from [93].

Every closed three-manifold can be encoded by a pointed Heegaard diagram
(Σ,α,β, z) associated to a Heegaard decomposition of M . Here Σ is a closed,
oriented, connected surface of genus g which divides M into two handlebodies
Hα and Hβ , and α = {α1, . . . , αg} and β = {β1, . . . , βg} are collections of g
pairwise disjoint simple closed curves in Σ which bound discs in Hα and Hβ

respectively and are linearly independent in H1(Σ;Z). Finally z ∈ Σ−α−β is
a base point, which is not needed to describe M , but is a crucial ingredient in
the definition of the Heegaard Floer chain complexes.

After fixing an area form ω on Σ, we obtain a stable Hamiltonian structure
(dt, ω) on [0, 1] × Σ with Reeb vector field R = ∂t. The submanifolds Lα =
R × {1} × α and Lβ = R × {0} × β are Lagrangian for the symplectic form
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ΩX = ds ∧ dt + ω. We choose an almost complex structure on X which is
compatible with the stable Hamiltonian structure (dt, ω) and such that the
surface R× [0, 1]× {z} is holomorphic.

We denote by Sα,β the set of unordered g-tuples of intersection points y =
{y1, . . . , yg} between α- and β-curves for which there is a permutation σ ∈ Sg

such that yi ∈ αi ∩ βσ(i). Given y+,y− ∈ Sα,β , we consider the moduli space10

MX(y+,y−) of J-holomorphic curves in X with boundary on Lα ∪ Lβ and
asymptotic to chords [0, 1] × y± for s → ±∞ (HF -curves in the following).
Translations in the R direction act on MX(y+,y−) and we denote the quotient

by M̂X(y+,y−).

To a J-holomorphic curve u ∈ MX(y+,y−) we associate two topological quan-
tities: an “intersection number” nz(u), defined as the algebraic intersection of
the image of u with R × [0, 1] × {z} (see [87, Appendix E] for the intersection
number between two J-holomorphic curves), and the ECH-type index11 I(u)
([14, Equation 4.5.4]), which in this context is a reformulation of Lipshitz’s in-
dex formula [80, Corollary 4.3] (see also [81]). The index inequality is proved
in [14, Theorem 4.5.13]. By positivity of intersection for J-holomorphic curves
in dimension four, nz(u) ≥ 0. Moreover, by the index inequality, for a generic
almost complex structure we have I(u) ≥ 0 for all HF-curve u.

The chain complex ĈF (Σ,α,β, z) is freely generated, as a vector space over the
field with two elements F, by the g-tuples of intersection points in Sα,β. The
differential is defined by

∂̂y+ =
∑

y−∈Sα,β

#M̂I=1,nz=0
X (y+,y−)y−.

The chain complex CF+(Σ,α,β, z) is freely generated, as a vector space over
F, by the pairs [y, i] where y ∈ Sα,β and i ∈ N. The differential is defined by

∂+([y+, i]) =
∑

y−∈Sα,β

∑

0≤j≤i

#M̂I=1,nz=j
X (y+,y−)[y−, i− j].

In order to have finite sums we need to assume weak admissibility, which can be
rephrased by asking that the curves α and β be exact Lagrangian submanifolds
for some primitive of ω on Σ\{z}. Weak admissibility can always be achieved up
to isotopy of the α- and β-curves and deformation of ω. See [93, Section 4.2.2]
or [80, Section 5].

The homologies of ĈF (Σ,α,β, z) and CF+(Σ,α,β, z) are denoted by ĤF (M)
and HF+(M) respectively. The fact that they are well defined invariants of
three-manifolds up to diffeomorphism was proved in [93] and reproved in [80]
for the cylindrical reformulation we are using in this chapter. Naturality is
addressed in [71].

10The same moduli spaces are denoted by MX
J (y,y′) in [14].

11denoted by IHF in [14].
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The map U : CF+(Σ,α,β, z) → CF+(Σ,α,β, z) defined as

U([y, i]) =

{
[y, i− 1] if i ≥ 1,

0 if i = 0

is a chain map. The short exact sequence

0 −→ ĈF (Σ,α,β, z) −→ CF+(Σ,α,β, z)
U
−→ CF+(Σ,α,β, z) −→ 0

induces the exact triangle

HF+(M)
U // HF+(M)

yyrr
rr
rr
rr
r

ĤF (M)

ee▲▲▲▲▲▲▲▲▲

(4.3)

in homology. Heegaard Floer homology decomposes as a direct sum of groups
indexed by Spinc structures and the triangle (4.3) holds for every summand.
For simplicity we will not discuss this decomposition.

4.3.2 A geometric interpretation of the U-map

This subsection is taken from [13, Section 3]. In [93, 80], the U -map

U : CF+(Σ,α,β, z) → CF+(Σ,α,β, z)

is defined algebraically as U([y, i]) = [y, i − 1]. The goal of this section is to
give a geometric definition of the U -map which is analogous to that of ECH.

Let us fix12 z = (0, 1
2 , z) ∈ X = R × [0, 1] × Σ, and let J♦ be a generic small

perturbation of J supported near z such that R× [0, 1]×{z} remains holomor-
phic. This perturbation is needed so that J♦-holomorphic curves do not have a
closed irreducible component passing through z .

Given y+,y− ∈ Sα,β we denote by MX(y+,y−; z) the moduli space of J♦-
holomorphic curves in X with boundary on Lα∪Lβ which are positively asymp-
totic to [0, 1]×y+, negatively asymptotic to [0, 1]×y− and pass through z. Note
that nz(u) ≥ 1 for u ∈ MX(y+,y−; z).

Definition 4.3.1. The geometric U -map with respect to the point z is the map

Uz([y+, i]) =
∑

y−∈Sα,β

i∑

j=1

#MI=2,nz=j
X (y+,y−; z)[y−, i− j].

12What is called z here is called zf in [13] and what is called z here is called z in [13].
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(
0, 1−τ

2

)
τ → 1

Figure 4.1: Moving the base point toward the boundary.

Note that the sum starts from j = 1 because if u passes through z, then nz(u) ≥
1 by positivity of intersection.

Standard arguments in symplectic geometry based on the compactness and glu-
ing results of [80] show that the geometric U -map

Uz : CF+(Σ,α,β, z) → CF+(Σ,α,β, z)

is a chain map. The main result of the subsection is the following.

Theorem 4.3.2. There exists a chain homotopy

H : CF+(Σ,α,β, z) → CF+(Σ,α,β, z)

such that
Uz − U = H ◦ ∂+ + ∂+ ◦H (4.4)

and H([y, 0]) = 0 for all y ∈ Sα,β.

Proof. We will define a chain homotopy between Uz and U by moving z to-
wards the boundary and identifying a count of holomorphic curves in the limit
configuration with the map U . More precisely, for τ ∈ [0, 1) we consider
zτ = {0} × { 1−τ

2 } × {z} and let J♦
τ be a small deformation of J in a neigh-

bourhood of zτ such that R × [0, 1] × {z} remains holomorphic for all τ . For
τ = 0 we have z0 = z and J♦

0 = J♦.

Let MX(y+,y−; z∗) be the moduli space of J♦
τ -holomorphic curves in X with

boundary on Lα ∪Lβ which are positively asymptotic to [0, 1]×y+, negatively
asymptotic to [0, 1]× y− and pass through zτ for some τ ∈ (0, 1). The map H
is defined as

H([y+, i]) =
∑

y−∈Sα,β

i∑

j=1

#MI=1,nz=j
X (y+,y−; z∗)[y−, i− j].

The structure of the boundary of the compactification of the moduli spaces
MI=2

X (y+,y−; z∗) implies that H is a chain homotopy between Uz and a map

55



defined by counting certain broken holomorphic curves in the limit τ → 1. To
finish the proof we need to identify this map with U . This will be done in the
rest of the section.

In the limit τ → 1 a disc with an interior marked point bubbles off from the
strip R× [0, 1], and therefore we obtain X̃ = B̃×Σ where B̃ = (B⊔D)/ ∼ with
B = R× [0, 1], D = {|x| ≤ 1} ⊂ C and ∼ identifies (0, 0) ∈ B with −1 ∈ D. See
Figure 4.1. For an appropriate choice of J♦

τ , the limit almost complex structure
is J on B×Σ and a small perturbation J♦

D of a product almost complex structure

JD on D × Σ such that J♦
D and JD coincide outside of a small neighbourhood

of z1 = (0, z) ∈ D × Σ. From now on we write z1 = z.

We define the ECH-type index I — in fact a relative version of Taubes’s index
from [103] in this case — for a homology class A ∈ H2(D × Σ, ∂D × β) which
admits a representative F such that each component of ∂F maps to a distinct
component of ∂D×β. Let (τ, τ ′) be the trivialisation of T (D×Σ) along ∂D×β

such that τ is induced by a radial and outward-pointing vector field along ∂D
tangent to D, and τ ′ is induced by a vector field along β tangent to Σ and
transverse to β. Let Q(τ,τ ′)(A) be the intersection number between F and a
push-off of F , where ∂F is pushed along τ ′. We define13

I(A) = c1(T (D × Σ)|A, (τ, τ
′)) +Q(τ,τ ′)(A). (4.5)

If u is a holomorphic curve in D × Σ with boundary on ∂D × β representing a
relative homology class A as above, then by the index inequality

I(A) = ind(u) + 2δ(u). (4.6)

In particular u is an embedding if and only if ind(u) = I(A). See [14, Theorem
4.5.13] for the proof of a similar result. Let Ak0,k1

= k0[D×{pt}]+k1[{pt}×Σ].
If k0 ≤ g, where g is the genus of Σ, an easy computation gives

I(Ak0,k1
) = k0 + k1(2− 2g) + 2k0k1. (4.7)

In particular, I(Ag,k1
) = 2k1 + g.

We fix points14 yi ∈ βi for i = 1, . . . , g and denote by MD×Σ(Ak0,k1
; z,y) the

moduli space of J♦
D-holomorphic curves in D × Σ with boundary on ∂D × β

representing the homology class Ak0,k1
and passing through (z, 0) and k0 points

of the form (−1, yi).

Remark 4.3.3. If k1 ≤ 0, a standard compactness argument shows that the
moduli spaces MD×Σ(Ak0,k1

; z,y) are empty, provided that J♦
D is close enough

to a product almost complex structure.

13The formula in [13, Definition 3.2.1] has an extra term µ(τ,τ ′)(∂A), which vanishes here
by our choice of trivialisation.

14These points are called wi in [13].
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Lemma 4.3.4. Let uτi , for τi → 1 as i → ∞, be a sequence of J♦
τi-holomorphic

curves in MI=2,nz=j
X (y+,y−; zτi) for some fixed y± ∈ Sα,β and j > 0. Then,

up to passing to a subsequence, uτi converges to a pair of holomorphic curves
(uB , uD) where uB is a union of trivial strips B × {y} in B ×Σ over an inter-
section point y ∈ Sα,β and uD ∈ MD×Σ(Ag,1; z,y). In particular y+ = y− = y

and j = 1.

Proof. By Gromov compactness a subsequence of uτi converges to a pair (uB , uD)
where uB is a J-holomorphic curve in MX(y+,y−) and uD is a J♦

D-holomorphic
curve in MD×Σ(Ag,k1

; z,y) for some y = (y1, . . . , yg). A simple computation
shows that

I(uB) + I(uD) = 2− g. (4.8)

By Equation(4.7) we can rewrite Equation (4.8) as I(uB) + 2k1 = 2. Since
k1 ≥ 1 by Remark 4.3.3 and I(uB) ≥ 0, this implies that I(uB) = 0 and k1 = 1;
in particular uB is a union of trivial strips and therefore y± = y and j = 1.

The moduli spaces MD×Σ(Ag,1; z,y) are zero dimensional and consist of em-
bedded J♦

D-holomorphic curves by Equations (4.6) and (4.7). We denote

G(g) = #MD×Σ(Ag,1; z,y).

Thus, by Lemma 4.3.4, H is a homotopy between Uz and G(g)U . In order to
computeG(g) we further degenerateD×Σ. The first step is to degenerateD into
D∪S2, where 0 ∈ D is identified with∞ ∈ S2 ∼= C∪{∞} and z = (0, z) ∈ S2×Σ.
Let J♦

S denote the limit almost complex structure on S2 ×Σ, which we assume
to be a small perturbation of a product almost complex structure JS in a small
neighbourhood of z.

Holomorphic curves in MD×Σ(Ag,1; z,y) degenerate into pairs of curves consist-
ing in the trivial multisection D×{y} in D×Σ and a J♦

S -holomorphic curve in
S2 ×Σ representing the homology class Bg,1 = g[S2] + [Σ] and passing through
the points z = (0, z) and (∞, y1), . . . , (∞, yg). We denote the moduli space of
such curves by MS2×Σ(Bg,1; z,y).

Holomorphic curves in MS2×Σ(Bg,1; z,y) can be reducible and only the irre-
ducible component passing through (0, z) has to be regular. We denote the
subset of MS2×Σ(Bg,1; z,y) consisting of irreducible J♦

S -holomorphic curves by
Mirr

S2×Σ(Bg,1; z,y). Simple index considerations taking into account the homo-
logical and point constraints imply that the elements in MS2×Σ(Bg,1; z,y) \
Mirr

S2×Σ(Bg,1; z,y) consist of {∞} × Σ with g spheres in the class [S2], one of
which passes through (0, z). However these curves cannot be glued to the g
sections D × {yi} on D × Σ — in fact topological considerations prevent even
the existence of a pregluing. Thus we have proved that

G(g) = #Mirr
S2×Σ(Bg,1; z,y).

The following lemma completes the proof of Theorem 4.3.2.
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Lemma 4.3.5. G(g) = 1 for all g ≥ 1.

Proof. In the proof we will degenerate Σ along g−1 separating curves in order to
obtain a nodal surface Σ̃ whose irreducible components are tori. We choose the
curves so that each irreducible component contains exactly one of the points
yi. Since the base point z remains in one component, the almost complex
structure on S2 × Σ̃ is a product almost complex structure in all but one of the
irreducible components of S2 × Σ̃. Since a product almost complex structure
is not generic enough, before degenerating Σ we need to modify J♦

S . To this

aim we introduce a generic almost complex structure J♥
S on D×Σ among those

making the projection S2 × Σ → Σ into a holomorphic map and keeping the
section {∞} × Σ holomorphic.15 The cardinality of the set Mirr

S2×Σ(Bg,1; z,y)

is the same for J♦
S and J♥

S ; from now on we will work with the latter almost
complex structure.

As Σ degenerates towards Σ̃, holomorphic curves in Mirr
S2×Σ(B1,g; z,y) degen-

erate into holomorphic curves in S2× Σ̃, with the same point constraints, which
are irreducible in each irreducible component of S2 × Σ̃, and such that two ir-
reducible components meet at one point when two irreducible components of
S2 × Σ̃ meet. This shows that G(g) = G(1)g.

It remains to compute G(1). When g = 1, there are two (reducible) JS-
holomorphic curves (i.e. for a product almost complex structure) passing through
(0, z) and (∞, y): one with image S2 × {z} ∪ {∞} × Σ and the other one with
image {0}×Σ∪S2 ×{y}. As stated in [87, Example 8.6.12], the latter deforms
into an irreducible J♥

S -holomorphic curve passing trough (0, z) and (∞, y) and
giving G(1) = 1.

4.3.3 Adapting ĤF to an open book decomposition

Let M be a closed three-manifold, B ⊂ M a link, S a compact, oriented,
connected surface with nonempty boundary, and h : S → S an orientation-
preserving diffeomorphism such that h|∂S = id.

Definition 4.3.6. An open book decomposition ofM with binding B, page S and
monodromy h is a locally trivial fibration π : M \B → S1 with fibre int(S) and
monodromy h such that the closure of any fibre is a surface with boundary whose
boundary is B. The pair (S, h) is called an abstract open book decomposition.

In this section we explain how to associate a pointed Heegaard diagram to
an open book decomposition and compute ĤF (−M) from the page and the

15The section {∞} × Σ is not regular, and thus neither J♦
S

nor J♥

S
are generic almost

complex structures. What we are computing here are a simple instance of relative Gromov-
Witten invariants in the sense of [68].
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ai bi

x′′
i

xi

x′
i

Figure 4.2: A portion of S1. The shaded regions are the “thin strips” Di and
D′

i which connect x′′
i to xi or x

′
i.

monodromy, using a construction from [59]. From now on we assume that ∂S
is connected and S has genus g.

We identify S1 ∼= [0, 2]/0 ∼ 2. An open book decomposition with page S and
monodromy h gives rise to a Heegaard decomposition M = Hα ∪ Hβ, where

Hα = π−1([0, 1]), Hβ = π−1([1, 2]), and the Heegaard surface Σ = S1 ∪ −S0 is
the union of two pages16 glued along the binding.

A basis of arcs for S is a collection of 2g pairwise disjoint properly embedded
arcs a = {a1, . . . , a2g} in S such that S \ a is a connected polygon. Starting
from a basis a for S, we can construct α- and β-curves for Σ as follows:

α = (a× {1}) ∪ (a× {0}) and β = (b× {1}) ∪ (h(a)× {0}).

Here b is a small deformation of a relative to its endpoints, so that each pair ai
and bi intersects each other transversely at three points: two of the intersections
are their endpoints xi and x′

i on ∂S and the third intersection is an interior point
x′′
i ; see Figure 4.2. This means that all the intersection points of α and β lie in

S0, with the exception of the points x′′
i = x′′

i × {1}. We place the base point z
on S1, away from the “thin strips” Di and D′

i, i = 1, . . . , 2g, given in Figure 4.2.
The positioning of z prevents holomorphic curves involved in the differential
for ĈF (−Σ,α,β, z) — besides the ones corresponding to the thin strips —
from entering S1. Hence all of the nontrivial holomorphic curve information
is concentrated on S0. Here the homology of ĈF (−Σ,α,β, z) is isomorphic to

ĤF (−M) since we reversed the orientation of Σ.

Let Sa,h(a) ⊂ Sα,β consist of 2g-tuples y, all of whose components are intersec-

tions are in S0. We define17 CF (S,a, h(a)) as the chain complex generated by
Sa,h(a) and whose differential counts holomorphic curves in R× [0, 1]×S. Then

we define ĈF (S,a, h(a)) as the quotient of CF (S,a, h(a)) modulo the identifi-
cations {xi} ∪ y0 ∼ {x′

i} ∪ y0 for all (2g − 1)-tuples of chords y0. The quotient

16We call a page not only the abstract surface S, but also all surfaces St = π−1(t).
17The same chain complex is called ĈF

′
(S,a, h(a)) in [14].
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inherits a differential because no holomorphic curve in R× [0, 1]×S can have a
positive end at one of the chords over xi, x

′
i unless it has an irreducible compo-

nent which is a trivial strip over that chord by [14, Claim 4.9.2], and therefore
we are quotienting by a subcomplex. The identifications {xi} ∪ y0 ∼ {x′

i} ∪ y0

are the algebraic consequence of the thin strips Di and D′
i. The following propo-

sition was proved in [14, Theorem 4.9.4]:

Proposition 4.3.7. ĤF (S,a, h(a), z) ≃ ĤF (−Σ,α,β, z).18

Remark 4.3.8. x = {x1, . . . , x2g} is a cycle and its homology class [x] ∈

ĤF (−M) is the contact invariant of the contact structure supported by the
open book decomposition; see [59].

4.4 Embedded contact homology

4.4.1 A review of embedded contact homology

In this subsection we briefly review the embedded contact homology groups as-
sociated to a closed three-manifoldM . Embedded contact homology was defined
by Hutchings [60] and Hutchings-Taubes [63, 64] and is intimately connected
with the dynamics of Reeb vector fields. Invariance was shown by Taubes in
[104, 105, 106, 107, 108] by proving an isomorphism between embedded contact
homology and monopole Floer homology.

Let α be a contact form on M . We assume that every closed Reeb orbit is non-
degenerate, which means that its linearised first return map does not have 1 as
an eigenvalue. Contact forms satisfying this property are called nondegenerate.
The linearised first return map is a symplectic transformation, and therefore its
eigenvalues are {λ, λ−1}, where λ is either real or in the unit circle. Then a
closed Reeb orbit is:

• hyperbolic if the eigenvalues of its linearised first return map are real, or

• elliptic if they lie on the unit circle.

The chain complex ECC(M,α) is generated by finite sets γ = {(γi,mi)}, called
orbit sets, where:

• γi is a simple closed Reeb orbit,

• mi is a positive integer, and

• if γi is a hyperbolic orbit, then mi = 1.

18Here we consider ĤF (−Σ,α,β, z) and there ĤF (Σ,β,α, z). The two groups are isomor-
phic.
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We will denote the set of orbit sets by O. An orbit set γ will also be written
multiplicatively as

∏
γmi

i , with the convention that γ2
i = 0 whenever γi is

hyperbolic. The empty orbit set ∅ will be written multiplicatively as 1.

We choose an almost complex structure J on R × M compatible with α. Let
γ+ = {(γ+

i ,m+
i )} and γ− = {(γ−

i ,m−
i )} be orbit sets. We denote byM(γ+,γ−)

the moduli space of J-holomorphic curves in R×M which are positively asymp-
totic to covers of the closed Reeb orbits γ+

i with total multiplicity m+
i as

s → +∞ and negatively asymptotic to covers of the closed Reeb orbits γ−
i

with total multiplicity m−
i as s → −∞. Moreover, we consider equivalent two

J-holomorphic curves which differ only by (branched) covers of trivial cylinders
with the same multiplicity. Translations in the R direction acts on the moduli
spaces; we denote the quotient by M̂(γ+,γ−).

The ECH index for J-holomorphic curves in R × M is defined in [60, Defini-
tion 1.5]. The following lemma is a consequence of the index inequality proved
in [61, Theorem 4.15].

Lemma 4.4.1 ([63, Proposition 7.15]). Let J be a generic almost complex struc-
ture compatible with α. Then:

1. A J-holomorphic curve u with I(u) = 0 is a union of branched covers of
trivial cylinders over simple closed Reeb orbits. (Such curves are called
connectors.)

2. A J-holomorphic curve u with I(u) = 1 (resp. 2) is a disjoint union of a
connector and an embedded J-holomorphic curve u′ with I(u′) = ind(u′) =
1 (resp. 2).

The ends of a J-holomorphic curve u in M(γ+,γ−) without connector com-
ponents determine partitions of the multiplicities of the elliptic orbits in γ+

and γ−. It turns out that, when I(u) = 1 or I(u) = 2, these partitions must
coincide with preferred partitions called the outgoing and incoming partitions
for positive and negative ends, respectively. The incoming and outgoing parti-
tions can be computed from the dynamics of the linearised Reeb flow. For their
definition see [60, Section 4.1] or [61, Definition 4.14]. For the relation between
these partitions and the ECH index see [61, Theorem 4.15], for example. In this
chapter we will not need the precise definition of those partitions, except for the
following fact, which is a direct consequence of [61, Definition 4.14].

Lemma 4.4.2. Let γ be a simple elliptic orbit and suppose that its linearised
Reeb flow is conjugated to a rotation by an angle 2πθ. If 0 < θ < 1

m , then
the incoming partition of (γ,m) is (m) and the outgoing partition is (1, . . . , 1︸ ︷︷ ︸

m

).

On the other hand, if − 1
m < θ < 0, then the incoming partition of (γ,m) is

(1, . . . , 1︸ ︷︷ ︸
m

) and the outgoing partition is (m).
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The differential on ECC(M,α) is defined as

∂γ+ =
∑

γ−∈O

#M̂I=1(γ+,γ−)γ−.

The map ∂ was shown to satisfy ∂2 = 0 by Hutchings and Taubes in [63, 64]. The
homology of ECC(M,α) is the embedded contact homology group ECH(M).
It is independent of the choice of contact form α, contact structure ξ, and
compatible almost complex structure J by the work of Taubes in [104, 105, 106,
107, 108] showing the isomorphism with monopole Floer homology.

Remark 4.4.3. The moduli spaces M(γ+,γ−) can be nonempty only if γ+

and γ− define the same homology class. Thus ECC(M,α) decomposes as a
direct sum of complexes indexed by classes in H1(M ;Z). This decomposition,
which in ECH(M) depends on α only through the Euler class of the contact
structure it defines, is analogous to the decomposition of the Heegaard Floer
complexes according to Spinc structures.

Given a point z ∈ R ×M , we denote by M(γ+,γ−; z) the moduli space of J-
holomorphic curves asymptotic to γ± and passing through z where, as before,
we identify curves which differ by a connector component. For a generic point
z, the map19 U : ECC(M,α) → ECC(M,α) is defined as

U(γ+) =
∑

γ−∈O

#MI=2(γ+,γ−; z)γ−.

The same techniques used to show that ∂2 = 0 also show that U is a chain

map; see [65, Section 2.5] for more details. Then ÊCC(M,α) is defined as the

cone of U and ÊCH(M) is its homology. As before, the isomorphism with

monopole Floer homology proved by Taubes shows that ÊCH(M) is invariant
of all choices.

4.4.2 Morse-Bott theory for embedded contact homology

In several steps of the proof of Theorem 4.1.1 we will use Morse-Bott techniques
extensively. Here we will give a brief description of those techniques and refer
the reader to [3] and [4] for a general treatment and to [12, Section 4] for one
which is more adapted to embedded contact homology. For the purposes of
this paper, a contact form is Morse-Bott if every closed orbit of its Reeb vector
field is either isolated and nondegenerate, or belongs to an S1-family and is
nondegenerate in the normal direction.20 We denote a Morse-Bott S1-family of

19This map is called U ′ in [13].
20In general, there is also the case where the Reeb orbits come in two-dimensional families;

however this will not occur here.

62



simple closed Reeb orbits by N and the Morse-Bott torus corresponding to N
by TN =

⋃
x∈N

x.

Let {v1, v2} be an oriented basis for ξ at some point p ∈ TN so that v1 is
transverse to TN and v2 is tangent to TN . The linearised first return map of

the Reeb flow on ξp is given, in the basis {v1, v2}, by the matrix

(
1 0
a 1

)
with

a 6= 0.

Definition 4.4.4. TN is called a positive Morse-Bott torus if a > 0 and a
negative Morse-Bott torus if a < 0.

A Morse-Bott contact form α can be perturbed into nondegenerate forms αǫ,
for ǫ > 0 sufficiently small, which depend on the choice of a Morse function on
each Morse-Bott S1-family. The close Reeb orbits of the forms αǫ will be the
nondegenerate closed Reeb orbits of α together with the closed Reeb orbits in the
Morse-Bott tori corresponding to the critical points of the Morse functions on
the Morse-Bott families. We will swipe under the carpet the actual construction
of the contact forms αǫ and the fact that they are nondegenerate only up to
orbits of some action (i.e. period) Lǫ, with Lǫ → +∞ as ǫ → 0, so that a limiting
procedure is involved in computing ECH(M) from a Morse-Bott contact form.

If we choose a family of almost complex structures Jǫ compatible with αǫ and
converging to an almost complex structure J compatible with α as ǫ → 0, a
sequence of Jǫ-holomorphic curves converges into a “cascade” of J-holomorphic
curves some of whose ends are connected to negative gradient trajectories in the
Morse-Bott families. The negative gradient trajectories which can appear are
of three types:

• flow-lines between critical points,

• semi-infinite trajectories between a critical point and an end of a holomor-
phic piece of the cascade, and

• finite trajectories joining a positive and a negative end of different holo-
morphic pieces.

See [4, Section 11.2] for a precise statement.

The converse is more delicate: a cascade of J-holomorphic curves whose ends are
joined by negative gradient flow trajectories in general cannot be deformed to
a Jǫ-holomorphic curve without using some abstract perturbation theory which
has not been rigorously established yet. The main problem is that a family of
simply covered Jǫ-holomorphic curves — which are thus regular for a generic
Jǫ — could degenerate into a cascade in which some of the holomorphic curves
are multiply covered and could even have negative Fredholm index.

We will therefore restrict our attention to a special class of Morse-Bott cascades
in which finite negative gradient trajectories are not allowed and at most one of
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the holomorphic pieces is not a cover of a trivial cylinder. Those cascades are
called very nice Morse-Bott buildings in [12]. Let γ± = {(γ±

i ,m±
i )} be orbit sets

where each γ±
i is either a nondegenerate closed Reeb orbit of α or a closed Reeb

orbit corresponding to a critical point of the Morse function on a Morse-Bott
family. We denote21 by MMB(γ+,γ−) the moduli space of very nice Morse-
Bott buildings in R×M with positive ends at γ+ and negative ends at γ−. We

denote by M̂MB(γ+,γ−) the quotient by translations and by MMB(γ+,γ−; z)
the subspace of those cascades passing through a generic point z ∈ R ×M . In
the Appendix to [12] we prove that every very nice J-holomorphic building can
be perturbed to a Jǫ holomorphic curve for ǫ sufficiently small. Hence we have
the following theorem.

Theorem 4.4.5. For a generic almost complex structure J compatible with α
and ǫ sufficiently small there are injections

M̂MB,I=1(γ+,γ−) →֒ M̂I=1(γ+,γ−) and

MMB,I=2(γ+,γ−; z) →֒ MI=2(γ+,γ−; z)

where the moduli spaces on the left hand side are defined using the almost com-
plex structure J and the moduli spaces on the right hand side are defined using
a perturbed almost complex structure Jǫ.

4.4.3 Embedded contact homology of manifolds with torus

boundary

In this section we define several flavours of embedded contact homology for
manifolds with torus boundary; see [12, Section 7] for more details. Let N be a
three-manifold with ∂N ∼= T 2 and let α be a contact form on N such that ∂N
is foliated by Reeb orbits. We assume that the foliation is linear for some choice
of coordinates in ∂N . Then, we say that α is rational if the Reeb orbits on ∂N
are closed, and irrational if they are dense. If α is rational, we assume that ∂N
is a Morse-Bott torus. We choose a Morse function with a unique maximum
and minimum on the corresponding Morse-Bott S1-family. After perturbing
α using this Morse function22, the Morse-Bott family of orbits foliating ∂N
is replaced by a pair of nondegenerate orbits: an elliptic one called e and a
hyperbolic one called h. If ∂N is a positive Morse-Bott torus, then e comes
from the maximum and h from the minimum, while if ∂N is negative, then h
comes from the maximum and e from the minimum. In the following definitions
we will assume that ∂N is a negative Morse-Bott torus when α is rational. The
similar definitions in the positive case are left to the reader.

21In [12] the same moduli spaces are denoted by MMB,vn(γ+,γ−) because they consist of
very nice Morse-Bott buildings.

22To perform the perturbation it is convenient to enlarge N slightly; we will ignore this
technical point.
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Definition 4.4.6. The chain complex ECC(int(N), α) is generated by orbit
sets contained in the interior of N and the differential is defined by counting
J-holomorphic curves in R× int(N).

This definition makes sense because the foliation by Reeb orbits in ∂N prevents
J-holomorphic curves with asymptotics in int(N) from touching ∂N by posi-
tivity of intersection. (Alternatively, we can say that R × ∂N is a Levi-flat23

surface.)

Definition 4.4.7. The chain complex ECC(N,α) coincides with ECC(int(N), α)
if α is irrational, and is generated by orbit sets built from closed Reeb orbits
in int(N) plus e and h on ∂N . The differential counts very nice Morse-Bott
buildings contained in R×N .

The proof that this definition makes sense consists in showing that a one-
dimensional family of very nice Morse-Bott buildings in R × N cannot break
into a non very nice Morse-Bott building; see [12, Lemma 7.12]. This is a con-
sequence of the fact that, by the trapping lemma [12, Lemma 5.3.2], positive
ends of J-holomorphic curves in R ×N at the closed Reeb orbits foliating ∂N
must be trivial.

Definition 4.4.8. The chain complex ECC♭(N,α) is generated by orbit sets
built from closed Reeb orbits in int(N) plus e and the chain complex ECC♯(N,α)
is generated by orbit sets built from closed Reeb orbits in int(N) plus h.

Both ECC♭(N,α) and ECC♯(N,α) are subcomplexes of ECC(N,α) because e
and h can appear only at the negative end of a very nice Morse-Bott building,
except for connectors and two negative gradient flow trajectories from h to e in
their Morse-Bott family.

Invariance was addressed only for ECH(N,α) when α is an irrational contact
form; for the other flavours it will not be needed.

Proposition 4.4.9 ([12, Proposition 7.2.1]). Let α1 and α2 be contact forms on
N which agree on ∂N to first order (and in particular the Reeb vector fields and
the characteristic foliations of α1 and α2 on ∂M are equal) and define contact
structures ξi = kerαi which are isotopic relative to the boundary. If ∂N is
foliated by Reeb orbits of irrational slope, then there is an isomorphism

ECH(N,α1) ∼= ECH(N,α2).

The strategy of the proof is to extend (N,αi), i = 1, 2, to closed contact mani-
folds so that the closed Reeb orbits not contained in N have much larger action
and to use the action properties of the continuation maps for embedded contact
homology of closed three-manifolds.

23Named after Eugenio Elia Levi, an Italian mathematician who was killed in action during
WWI. His brother Beppo Levi was forced into exile by the fascist racial laws of 1938.
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When ∂N is a negative Morse-Bott torus, we define two further versions of
embedded contact homology for (N,α) which are, in some sense, embedded
contact homology groups relative to the boundary. We recall that ECC(N,α)
can be seen as a commutative algebra generated by simple closed Reeb orbits
with the relation that γ2 = 0 if γ is hyperbolic. Let 〈e−1〉 be the ideal generated
by e − 1. Even if the differential does not respect the multiplicative structure,
this ideal is a subcomplex because only connectors can have e at a positive end.
We define

ECC(N, ∂N,α) = ECC♭(N,α)/〈e− 1〉 and

ÊCC(N, ∂N,α) = ECC(N,α)/〈e− 1〉.

We denote the differential in ECC(N, ∂N,α) by ∂rel and in ÊCC(N, ∂N,α) by

∂̂rel. Factoring out h, we can decompose ∂̂rel as follows. If γ is an orbit set not
containing h, we can write

∂̂rel(γ) = ∂rel(γ) + hUrel(γ)

∂̂rel(hγ) = h∂̂rel(γ).

From (∂̂rel)
2 = 0 we deduce that the map

Urel : ECC(N, ∂N,α) → ECC(N, ∂N,α)

is a chain map and ÊCC(N, ∂N,α) is the cone of Urel. The name of Urel is
motivated by the fact that it plays the role of the map U in embedded contact
homology relative to the boundary.

Given a ∈ H1(N ;Z), let ECCa(N,α) be the subcomplex of ECC(N,α) gener-
ated by orbit sets in the homology class a. The same notation is used for the
sharp and flat flavours. From the fact that only connectors can have e at a
positive end, it is easy to see that the map

ECCa(N,α) → ECCa+[e](N,α)

γ 7→ eγ

is a chain map.

If a ∈ H1(N ;Z)/〈[e]〉, we denote by ECCa(N, ∂N,α) the subcomplex of ECC(N, ∂N,α)
generated by orbit sets in the class a. Note that H1(N ;Z)/〈[e]〉 is the first ho-
mology group of the closed manifold obtained by Dehn filling N along the slope
of e. The following lemma is almost immediate.

Lemma 4.4.10. Suppose [e] 6= 0 in H1(N ;Z). If a ∈ H1(N ;Z) and a is its
image in H1(N ;Z)/〈[e]〉, then

ECHa(N, ∂N,α) = lim
−→

{
ECH♭

a+j[e](N,α)
}
j∈N

ÊCHa(N, ∂N,α) = lim
−→

{
ECHa+j[e](N,α)

}
j∈N

.
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The relation between embedded contact homology of N relative to the boundary
and embedded contact homology of the Dehn filling of N along the slope of e
is the main result of [12]. The following theorem is a generalisation of [12,
Theorem 1.1.1], expressed in a slightly different language.

Theorem 4.4.11. Let N be a three-manifold with torus boundary and let α be
a contact form on N such that ∂N is a negative Morse-Bott torus for the Reeb
vector field. Let moreover M be the Dehn filling of N along the slope of e. If
there is a cohomology class ϕ ∈ H1(N ;Z) such that ϕ([γ]) ≥ 0 for all closed
Reeb orbit γ and ϕ([e]) > 0, then there exist isomorphisms

σ∗ : ECH(N, ∂N,α) → ECH(M),

σ̂∗ : ÊCH(N, ∂N,α) → ÊCH(M)

such that the diagram

. . . // ÊCH(N, ∂N) //

σ̂∗

��

ECH(N, ∂N)
Urel //

σ∗

��

ECH(N, ∂N)

σ∗

��

// . . .

. . . // ÊCH(M) // ECH(M)
U // ECH(M) // . . .

commutes. Moreover, the maps σ∗ and σ̂ are compatible with the direct sum
decompositions according to homology classes.

The proof of Theorem 4.4.11 will be sketched in the next subsection. A heuristic
reason why it is expected to hold is the following. Let αδ, 0 < δ ≪ 1, be a family
of contact forms on M = N ∪ V such that, on the solid torus V ∼= D2 × (R/Z)
with cylindrical coordinates (r, θ, z), their Reeb vector fields Rδ are tangent
to the concentric tori {r = const} and have constant slope 1

δ (away from the
core). As we send δ → 0, the Conley-Zehnder index of the core goes to +∞
and we should therefore be able to ignore it. At the same time, one expects
that IECH = 1 holomorphic curves that cross the core when δ > 0 should
be in one-to-one correspondence with holomorphic curves which have e at the
negative end when δ = 0. This is the reason for identifying e = 1. Similarly, if
we place the marked point z on the core and h correspondingly, then IECH = 2
holomorphic curves that pass through z should be in one-to-one correspondence
with IECH = 1 holomorphic curves which have h at a negative end when δ = 0.

4.4.4 How to prove Theorem 4.4.11

A special contact form on M

Let α be a contact form on N which is nondegenerate in int(N) and has a
negative Morse-Bott torus of closed Reeb orbits at ∂N . To keep the discussion

67



closer to [12] we assume that there is a properly embedded surface S ⊂ N such
that [∂S] · [e] = 1 and the Reeb vector field of α is positively transverse to
S. This ensures the existence of a cohomology class ϕ ∈ H1(N ;Z) such that
ϕ([γ]) ≥ 0 for every closed Reeb orbit γ and ϕ([e]) = 1.

We decompose M = N ∪T 2× [1, 2]∪V where V is a solid torus whose meridian
is attached to the slope of e. We identify T 2 × {1} with ∂N and T 2 × {2} with
∂V . The region T 2 × (1, 2) will be called the no man’s land.24 We choose a
contact form αM on M such that:

1. αM restricts to α on N , so that, is particular, ∂N is a negative Morse-Bott
torus,

2. the closed Reeb orbits in the no man’s land have arbitrarily large action
and foliate the tori T 2 × {c} for c ∈ (1, 2),

3. αV = αM |V is nondegenerate in int(V ) and ∂V is a positive Morse-Bott
torus,

4. every closed Reeb orbit in int(V ) is transverse to a disc bounded by a
meridian,

5. there is an exhaustion of concentric solid tori V0 ⊂ V1 ⊂ . . . ⊂ int(V )
such that ∂Vi is linearly foliated by Reeb orbits of irrational slope ri with
ri → +∞ as i → +∞ (for some choice of coordinates in which e has slope
+∞) and all closed Reeb orbits in V \ Vi have slope larger that ri.

On the Morse-Bott S1-family of closed Reeb orbits corresponding to ∂V we
choose a Morse function with a unique minimum and a unique maximum point
and denote by e′ the (elliptic) orbit corresponding to the maximum and h′ the
(hyperbolic) orbit corresponding to the minimum.

The last condition on αM implies that the closed Reeb orbits in the no man’s
land can effectively be ignored in computing ECH(M). In order to prove this
rigorously we need a direct limit argument, and therefore we need a family of
contact forms αM for which the closed Reeb orbits in the no man’s land have
larger and larger action. This direct limit is somewhat involved because it must
be repeated at each step of the proof of Theorem 4.4.11, and therefore we prefer
to ignore it. For this reason, from now on, every statement in this section will
hold after an unexpressed direct limit. See [12, Sections 9.2 and 9.3] for the
detailed construction of the contact forms.

After ignoring the closed Reeb orbits in the no man’s land, ECC(M,αM ) be-
comes isomorphic, as a vector space, to ECC(V, αV ) ⊗ ECC(N,α), but the
differential ∂M on ECC(M,αM ) is not the usual differential of a tensor product
of complexes.

24The name was suggested by a visit to the remains of Berlin’s wall.
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A filtration

The next step is to introduce a filtration25 F on ECC(V, αV ) ⊗ ECC(N,αN )
to simplify the differential. To construct this filtration, we choose a generator
η ∈ H1(V ;Z) which evaluates positively on the closed Reeb orbits in int(V )
and define Fp as the subspace generated by orbit sets γ ⊗ Γ with η([γ]) ≤ p.
Note that Fp = {0} for p < 0 and F0 is generated by orbit sets of the form
γ ⊗ Γ where γ contains only orbits in ∂V .

Lemma 4.4.12 ([12, Corollary 9.4.2]). The differential ∂M preserves the vector
spaces Fp for all p.

Sketch of proof. Let u be an embedded holomorphic curve in R × M between
γ+ ⊗ Γ+ and γ− ⊗ Γ−. We denote by [u] ∈ H2(M,

⋃
γ+
i ∪

⋃
γ−
j ) the relative

homology class determined by the projection of u to M . If γ+ and γ− do not
contain orbits in ∂V , then it is easy to see that

η([γ+])− η([γ−]) = [u] · [e′] ≥ 0

by positivity of the intersections between the image of u and the holomorphic
cylinder R × e′. If γ+ or γ− contain orbits in ∂V the proof is more subtle
because one has to use positivity of intersection with the nonclosed Reeb orbits
on the tori ∂Vi, but it follows the same idea.

The next step is to describe the differential induced in the graded complex
or, in fancy words, in the zero page of the spectral sequence associated to the
filtration. For that we use Morse-Bott techniques, which are justified by the
following lemma.

Lemma 4.4.13 (See [12, Corollary 9.5.2]). A Morse-Bott building u between
γ+⊗Γ+ and γ−⊗Γ− with I(u) = 1 and η(γ+) = η(γ−) is very nice. Moreover
its projection to M is contained either in N or in V or in the no man’s land.

Proof. If I(u) = 1 and u is not very nice, it must have two irreducible compo-
nents joined by a finite length Morse trajectory: the condition I(u) = 1 rules
out the possibility that u is not very nice because of two irreducible components
which are not connectors and are not linked by a Morse trajectory, since those
two components could be translated independently in the R-direction. Then
u must have either a positive end at an orbit of ∂N or a negative end at an
orbit of ∂V . In either case, positivity of intersection with nearby Reeb orbits
implies that u approaches that orbit with a framing different from the framing
induced by the Morse-Bott torus, and therefore a topological argument forces
η(γ+) > η(γ−). For the details see Lemma 9.5.1 and Corollary 9.5.2 of [12].
The last claim holds because the tori in the no man’s land foliated by Reeb
orbits form a barrier for holomorphic curves by the blocking lemma [12, Lemma

25The idea of this filtration was suggested to us by Michael Hutchings.
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5.2.3], which is a consequence of positivity of intersection between the projection
of u to M and the Reeb vector field. For the details of this last argument see
the proof of [12, Lemma 9.5.3].

The holomorphic curves in the symplectisation of the no man’s land can be
described using a finite energy foliation first constructed by Wendl in [112]; see
[12, Section 8.4]: there is a foliation of R×T 2× [1, 2] by a cylinders with positive
end at the closed Reeb orbits in T 2 × {2} = ∂V and negative end at the closed
Reeb orbits in T 2 × {1} = ∂N . After Morse-Bott perturbation, this foliation
gives two I = 1 holomorphic curves in R × T 2 × [1, 2]: one cylinder from e′ to
h and one cylinder from h′ to e. Moreover, the foliation obstructs the existence
of any other embedded holomorphic curve in R × T 2 × [1, 2]. The same holds
for Morse-Bott buildings u with I(u) = 2 and constrained to pass through a
generic point in R×M .

Given two orbit sets γ′ =
∏

γ
m′

i

i and γ =
∏

γmi

i (in multiplicative notation),

we set γ/γ′ =
∏

γ
mi−m′

i

i if m′
i ≤ mi for all i; otherwise we set γ/γ′ = 0. We

denote Ep
0 = Fp/Fp+1; then E0 =

⊕
Ep

0 is a chain complex with differential ∂0
induced by ∂M . The differential ∂0 respects the direct sum decomposition by
construction, and we denote by Ep

1 the homology of Ep
0 .

As a vector space we can still identify E0
∼= ECC(V, αV ) ⊗ ECC(N,α). More

precisely, if we denote the subcomplex of ECC(V, αV ) generated by orbit sets γ
such that η([γ]) = p by ECCp(V, αV ), then Ep

0
∼= ECCp(V, αV )⊗ ECC(N,α).

From Lemma 4.4.13 and the description of the I = 1 holomorphic curves in the
symplectisation of the no man’s land, it follows that the differential ∂0 is

∂0(γ ⊗ Γ) = (∂V γ)⊗ Γ+ (γ/e′)⊗ hΓ+ (γ/h′)⊗ eΓ+ γ ⊗ (∂NΓ), (4.9)

where ∂N and ∂V denote the differential of ECC(N,α) and ECC(V, αV ) re-
spectively. See [12, Lemma 9.5.3].

Computation of E1

By factoring out the terms h′ and h, we can write the differentials ∂V and ∂N
as:

{
∂V γ = ∂♭

V γ

∂V (h
′γ) = h′∂♭

V γ + ∂′
V (h

′γ)

{
∂NΓ = ∂♭

NΓ+ h∂′
NΓ

∂N (hΓ) = h∂♭
NΓ

(4.10)

where γ ∈ ECC♭(V, αV ), Γ ∈ ECC♭(N,α), ∂♭
V and ∂♭

N are the differentials for
the chain complexes ECC♭(V, αV ) and ECC♭(N,α) respectively, and the terms
∂′
V (h

′γ) and ∂′
NΓ do not contain h′.

If we write
Cp

k,k′ = (h′)k
′

ECC♭
p(V, α)⊗ hkECC♭(N,α)
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with (k, k′) ∈ {0, 1}2, then we can describe the differential ∂0 on Ep
0 by the

following diagram, where each Cp
k,k′ carries the internal differential ∂♭

V ⊗1+1⊗

∂♭
N :

Cp
0,1

1⊗h∂′
N+·/e′⊗h

//

∂′
V ⊗1+·/h′⊗e

��

Cp
1,1

∂′
V ⊗1+·/h′⊗e

��
Cp

0,0

1⊗h∂′
N+·/e′⊗h

// Cp
1,0.

(4.11)

Thus we can filter each Ep
0 by k′ − k and the first term of the corresponding

spectral sequence (i.e. the homology of the graded complex associated to the
filtration) is ECH♭

p(V, αV )⊗ ECH♭(N,α).

We make a digression into the embedded contact homology of the solid torus.

Lemma 4.4.14 ([12, Lemma 8.1.2(4)]). ECH♭(V, αV ) ∼= F[e′].

Sketch of proof. We start by computing ECH(int(V ), αV ). We recall the ex-
haustion V0 ⊂ Vi ⊂ . . . ⊂ int(V ) by concentric solid tori. Each ∂Vi is linearly
foliated by Reeb orbits with irrational slope. Positivity of intersection with the
Reeb flow implies that holomorphic curves with ends in Vi are contained in Vi

and thus, by [12, Lemma 8.3.1], we have

ECH(int(V ), αV ) ∼= lim
−→

ECH(Vi, αV |Vi
).

Since αV |Vi
is irrational, Proposition 4.4.9 applies, and therefore we can compute

ECH(Vi, αV |Vi
) using a different contact form with a unique simple closed Reeb

orbit; see [12, Section 8.2]. For those contact forms the ECH index I can be
lifted to an absolute index on closed orbits, which is moreover preserved by
continuation maps; see Lemmas 8.2.2 and 8.2.3 in [12]. A direct computation
shows that the ECH index of the closed Reeb orbits of the new contact forms
on Vi grows with i. In the direct limit only the empty set survives, and thus we
have ECH(int(V ), αV ) ∼= F. See [12, Proposition 8.3.2].

In order to compute ECH♭(V, αV ) we restrict the filtration F induced by η ∈
H1(V ;Z) to ECC♭(V, αV ). The induced spectral sequence collapses at E1 =
F[e′]⊗ ECH(int(V ), αV ) ∼= F[e′]. See [12, Section 8.5].

This implies that ECH♭(V, αV ) ⊗ ECH♭(N,α) = 0 for p > 0 and therefore
Ep

0 = 0 for p > 0. Thus the spectral sequence induced by F collapses at
the E1 term and the inclusion F0 ⊂ ECC(M,αM ) induces an isomorphism
E0

1 = H(F0) ∼= ECH(M).

Now we compute E0
1 . Given a finite set of simple closed Reeb orbits γ1, . . . , γn

we define R[γ1, . . . , γn] as the polynomial algebra generated by those orbits
over F with the relation that γ2 = 0 if γ is hyperbolic. Using this notation,
ECC0(V, αV ) = R[e′, h′]. There are only three holomorphic curves with I = 1
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between those orbits: two cylinders from e′ to h′ coming from gradient flow
trajectories in the Morse-Bott family corresponding to ∂V and one holomorphic
plane positively asymptotic to h. See Propositions 8.4.4 and 8.4.5 of [12] for the
construction of this plane. Thus ∂V ((e

′)i) = 0 and ∂V ((e
′)ih′) = (e′)i, so we

can write E0
0
∼= R[e′, h′]⊗ ECC(N,α) with differential

∂0(γ ⊗ Γ) = γ ⊗ (∂NΓ) + (γ/h′)⊗ (1 + e)Γ+ (γ/e′)⊗ hΓ. (4.12)

Simple algebra now implies that E1
0
∼= ECH(N, ∂N,α). In fact γ⊗Γ is a cycle

only if γ = 1 and ∂NΓ = 0; the third term of Equation (4.12) implies that, if
hΓ is a cycle, then it is a boundary, and the second term implies that eΓ = Γ

in homology.

Definition of σ

The argument of the previous paragraphs gives a noncanonical isomorphism
ECH(M,αM ) ∼= ECH(N, ∂N,α). Now we show that this isomorphism is in
fact induced by a geometrically meaningful chain map. We define the complex

ECC♮(N,α) = R[h′]⊗ ECC♭(N,α)

with differential

∂♮(γ ⊗ Γ) = γ ⊗ ∂♭
N (Γ) + γ/h′ ⊗ (1 + e)Γ. (4.13)

It is easy to show that ECH♮(N,α) ∼= ECH(N, ∂N,α).

We define

σ(γ ⊗ Γ) =
∞∑

i=0

(e′)iγ ⊗ (∂′
N )iΓ. (4.14)

The sum is well defined because (∂′
N )k+1(Γ) = 0 if ϕ([Γ]) = k, where ϕ is a

class in H1(N ;Z) such that ϕ([e]) = 1.

Since γ = (h′)j for j = 0, 1, the image of σ is contained in F0, which is the first
nonzero group of the filtration, and therefore to show that σ is a chain map it is
enough to verify that σ ◦∂♮ = ∂0 ◦σ. This is an easy verification using Equation
(4.9) and the fact that ∂′

N commutes with ∂♭
N and the multiplication by e.

Finally one can prove without much effort by algebraic considerations similar
to those of the previous paragraph that the map σ induces an isomorphism in
homology.

The U map and the hat version

We recall that the U map in ECC(M,αM ) counts I = 2 holomorphic curves in
R × M passing through a generic base point z ∈ R × M . In order to simplify
the computation, we put the base point in the symplectisation of the no man’s
land R× T 2 × (1, 2). The following lemma is proved by the same techniques we
used to study the differential.
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Lemma 4.4.15 (See [12, Lemma 9.9.3]). The map U preserves the filtration
F . In the lowest filtration level F0, it is given by

U(γ ⊗ Γ) = γ/e′ ⊗ Γ. (4.15)

The unique holomorphic curve contributing to U in the lowest filtration level
is a cylinder from e′ to e belonging the finite energy foliation of R × T 2 ×
[1, 2] described in [12, Section 8.4] which was already used to understand the
differential ∂0.

On the other hand, we define the map U ♮ : ECC♮(N,α) → ECC♮(N,α) by

U ♮(γ ⊗ Γ) = γ ⊗ ∂′
NΓ. (4.16)

By comparing Equation (4.16) with Equations (4.13), (4.14) and (4.15), we
obtain that U ♮ is a chain map and that the diagram

ECC♮(N,α)
U♮

//

σ

��

ECC♮(N,α)

σ

��
ECC(M,αM )

U // ECC(M,αM )

commutes. The map U ♮ corresponds to Urel under the isomorphism ECH♮(N,α) ∼=
ECH(N, ∂N,α), and therefore we have established part of Theorem 4.4.11.

We also define the chain complex

ÊCC
♮
(N,α) = R[h′]⊗ ECC(N,α)

with differential

∂̂♮(γ ⊗ Γ) = γ ⊗ ∂NΓ+ γ/h′ ⊗ (1 + e)Γ.

The decomposition of the differential ∂N described in Equation (4.10) implies

that ÊCC
♮
(N,α) is the cone of the map U ♮. Moreover one can easily prove that

ÊCH
♮
(N,α) ∼= ÊCH(N, ∂N,α), and therefore the remaining part of Theorem

4.4.11 follows from the naturality of the mapping cone construction.

4.4.5 Sutured embedded contact homology

Sutured embedded contact homology is a version of embedded contact homology
for balanced sutured manifolds which was defined in [16]. In this subsection we
relate some sutured embedded contact homology groups to some versions of
embedded contact homology introduced in Subsection 4.4.3.
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Definition 4.4.16 (See [16, Definition 2.8]). A contact form α is adapted to the
balanced sutured manifold (M,γ) if α|R±(γ) are Liouville forms on R±(γ) and
the Reeb vector field is transverse and outward pointing on R+(γ), transverse
and inward pointing at R−(γ) and tangent to γ, so that γ is foliated by Reeb
trajectories going from R−(γ) to R+(γ). Most often we will write (M,Γ) for
(M,γ), where Γ is the suture.

The simplest example of a sutured manifold with an adapted contact form
is the following: we take a compact, oriented surface with boundary P and
form the product sutured manifold (M,γ) with M = P × [−1, 1] and γ =
∂P × [−1, 1]. Then the contact form is α = λ+ dt, where λ is a Liouville form
on P , is adapted to (M,γ). However many more interesting examples exist:
in fact, contact sutured manifolds are a fairly general concept, as the following
proposition shows.

Proposition 4.4.17 (See [16, Lemma 4.1]). Let (M, ξ) be a contact manifold
with convex boundary and no closed connected component, and let Γ be the
dividing set of ∂M . Then ξ admits a contact form which is adapted to the
balanced sutured manifold26 (M,Γ).

The interest of sutured contact manifolds is that they form a fairly large class
of contact manifolds for which SFT and ECH compactness hold: see Corollaries
5.19 and 5.21 of [16]. In [16] we considered sutured contact manifolds of any
dimension, and that level of generality introduced extra complications in the
proof of compactness. In dimension three, however, the story is fairly simple:
all we need to show is that a J-holomorphic curve in R×M which is asymptotic
to closed Reeb orbits of α cannot touch R × ∂M if J belongs to a suitable
class of almost complex structures. Roughly speaking, we define a function t
on a neighbourhood of ∂M by integrating the Reeb vector field, and a function
τ in a neighbourhood of N(Γ) ∼= (−ǫ, 0] × Γ × [0, 1] in M such that, in that
neighbourhood, we can write α = dt + eτdθ with θ a coordinate on Γ and τ is
the coordinate in (−ǫ, 0]. We say that an almost complex structure J on R×M
is tailored to (M,Γ, α) if it is compatible with α and moreover t is harmonic and
τ is subharmonic with respect to the Laplacian induced by J ; see Sections 3.1,
5.2 and 5.3 of [16]. Thus, if u is a J-holomorphic curve which is asymptotic to
closed Reeb orbits, the maximum principle applied to t ◦ u and τ ◦ u is enough
to show that u cannot intersect the region where t and τ are defined. It is easy
to see that the space of tailored almost complex structures is nonempty and
contractible in dimension three.

All other aspects of the theory of J-holomorphic curves (i.e. regularity, Fredholm
theory, transversality, gluing, etc.) are semi-local in nature, and therefore do
not change if the ambient manifold is not closed. Thus, we can define the
sutured embedded contact homology complex ECC(M,Γ, α) as the vector spaces
over F generated by orbit sets in M with differential counting J-holomorphic

26(M,Γ) is a balanced sutured manifold by [45].
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curves in R×M with ECH index I = 1 for a tailored almost complex structure
J . These complexes were defined in [16] and were inspired by sutured Floer
homology defined by Juhász in the context of Heegaard Floer homology in [69].
We conjectured the following.

Conjecture 4.4.18 ([16, Conjecture 1.5]). Let (M,Γ, α) be a sutured contact
manifold. Then there is an isomorphism

ECH(M,Γ, α) ∼= SFH(−M,−Γ),

which moreover respects the decomposition into first homology classes on the left
hand side and relative Spinc structures on the right hand side.

The proof of this conjecture is currently a work in progress in collaboration with
Colin, Honda and Spano. Evidence came from the proof of gluing maps which
are formally analogous to Juhász’s map for sutured decompositions from [70]
and Honda, Kazez and Matić’s map for gluing along convex surfaces from [56]:
see Theorems 1.9 and 1.10 in [16].

The sutured embedded contact homology groups are independent of the contact
form and the almost complex structure in the following sense.

Theorem 4.4.19 ([12, Theorem 10.2.2]). Let α1 and α2 be contact forms
adapted to the balanced sutured manifold (M,Γ) and let J1 and J2 be almost
complex structures on R×M such that Ji is tailored to (M,Γ, αi) for i = 1, 2.
If ξ1 = kerα1 and ξ2 = kerα2 are isotopic through contact structures making
∂M convex with dividing set Γ, then

ECH(M,Γ, α1) ∼= ECH(M,Γ, α2),

where the first group is defined using J1 and the second using J2. Moreover
this isomorphism preserves the decomposition of the sutured embedded contact
homology groups as direct sums of subgroups indexed by homology classes in
H1(M).

The proof is similar to the proof of Proposition 4.4.9. This result has been proved
independently, but with similar techniques, by Kutluhan, Sivek and Taubes [79],
who also prove naturality of the isomorphism. In light of Conjecture 4.4.18 we
expect that the sutured contact homology groups should be independent also of
the contact structure, but at the moment we are not able to find a direct proof
of this more general invariance.

Two more basic but important examples of sutured manifolds are the following:

• given a closed three-manifold M and an embedded codimension zero ball
B ⊂ M , we define the balanced sutured manifold (M(1),Γ1), where
M(1) = M \ int(B) and Γ1 is a connected curve in ∂M(1);
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K

Figure 4.3: The first return map of the Reeb vector field of αM on a longitudinal
section of a neighbourhood of K. The top and the bottom are identified.

• given a closed three-manifold M and knot K ⊂ M , we define a balanced
sutured manifold (M(K),ΓK), where M(K) = M \ Nbd(K) is the com-
plement of an open tubular neighbourhood of K and ΓK consists of two
parallel copies of the meridian of K with opposite orientations.

Sutured embedded contact homology for these two sutured manifolds is related
to the embedded contact homology groups defined in subsection 4.4.3 as follows.

Theorem 4.4.20 ([12, Theorem 10.3.1 and Theorem 10.3.2]). Let M be a
closed three-manifold, K ⊂ M a knot and N the complement of an open tubular
neighbourhood of K in M . Then there exist a contact form on N as in Subsection
4.4.3 and adapted contact forms α1 on (M(1),Γ1) and αK on (M(K),ΓK) such
that

ECH(M(1),Γ1, α1) ∼= ÊCH(N, ∂N,α) and

ECH(M(K),ΓK , αK) ∼= ECH♯(N,α).

Sketch of proof. Let αM be a contact form onM as in Subsection 4.4.4. The first
return map of the Reeb vector field of αM in a neighbourhood of K containing
∂N and after the Morse-Bott perturbation is depicted in Figure 4.3. The sutured
manifold (M(1),Γ1) is identified to the subset of M described in the left side
of Figure 4.4. The adapted contact forms α1 is the restrictions of αM to M(1).
However, the contact form α′

K obtained by restricting αM to M(K) is not
adapted to the suture because its restriction to R±(ΓK) is not a Liouville form.
This can be seen from the fact that the contact structure is negatively transverse
to the component of ∂R±(ΓK) which is closer to K. The issue can be corrected
by adding a layer to that component in which the Reeb vector field remains
constant and the contact structure rotates until it satisfies the sutured condition.
The new sutured manifold is diffeomorphic to (M(K),ΓK) and the contact form
αK we obtain is adapted to (M(K),ΓK).
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Figure 4.4: The ball B and the neighbourhood Nbd(K) are obtained by rotating
the shaded regions on the left and on the right, respectively, around the vertical
axis. The top and the bottom are identified.

Both ECC(M(1),Γ1, α1) and ECC(M(K),ΓK , αK) are generated by orbit sets
containing closed Reeb orbits in N and h′; moreover the holomorphic plane in
R×M which is positively asymptotic to h′ does not contribute to the differential
of ECC(M(K),ΓK , αK). At this point, the result follows by some algebra like
in the proof of Theorem 4.4.11, but easier.

From Theorem 4.4.11 we deduce the following corollary.

Corollary 4.4.21. ECH(M(1),Γ1, α1) ∼= ÊCH(M,αM ).

Combining Conjecture 4.4.18 with Theorem 4.4.18 and the relation between
sutured Floer homology and knot Floer homology, we obtain the following con-
jecture.

Conjecture 4.4.22. If K ⊂ M is a null-homologous knot of genus g, N is the
complement of an open tubular neighbourhood of K and α is a contact form on
N for which ∂N is a negative Morse-Bott torus foliated by meridians of K, then

ECH♯
i (N,α) ∼= ĤFK(−M,−K, i− g),

where ECH♯
i (N,α) denotes the homology of the subcomplex of ECC♯(N,α) gen-

erated by orbit sets in N with total linking number27 i with K.

4.4.6 Periodic Floer homology and open books

We recall from Giroux [49] that a contact form is supported by an open book
decomposition if its Reeb vector field is tangent to the binding and positively

27The linking number and the Alexander grading in knot Floer homology depend on a choice
of Seifert surface if H2(M ;Z) 6= 0. Here we assume that we have made the same choice in
both cases.
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transverse to the interior of the pages. In the same article he also announced
an equivalence between contact structures up to isotopy and open book decom-
positions up to positive stabilisation [49], but we will only need the easy part
of the equivalence for our purposes; namely the existence of contact forms sup-
ported by open book decomposition and the isotopy between contact structures
supported by open book decompositions related by positive stabilisations.

Let (S, h) be an abstract open book decomposition for M . We assume, without
loss of generality, that ∂S is connected, and identify the mapping torus of h,
denoted by N , with the complement of a tubular neighbourhood of the binding.
On h we assume the following:

• h
∗β − β is exact for some Liouville form β on S, and

• h(y, θ) = (y, θ− y) for coordinates (y, θ) ∈ (−ε, 0]×R/Z in a collar of ∂S.

By a Moser’s trick argument one can always find a representative of the mon-
odromy satisfying the conditions above (see [12, Lemma 9.3.2]) and, by a re-
finement of Thurston and Winkelnkemper’s construction from [110], one can
construct a contact form α on M which is supported by the open book decom-
position (S, h), and such that the first return map of the Reeb flow in N is h

and ∂N is a negative Morse-Bott torus; see [12, Lemma 9.3.3] and [14, Lemma
2.12]. Thus the Reeb flow of α on N satisfies the conditions of Subsections 4.4.3
and 4.4.4 permitting to define ECH(N, ∂N,α) and prove the isomorphism with
ECH(M,α).

We define
ECHi(N,α) =

⊕

a·[S]=i

ECHa(N,α),

where a ∈ H1(N) and [S] ∈ H2(N, ∂N) is the relative homology class of a page
of the open book decomposition. Thus, by Lemma 4.4.10,

ÊCH(N, ∂N,α) = lim
−→

ECHi(N,α).

In the definition of the isomorphism between ĤF (−M) and ÊCH(M) it will
be useful to pass to periodic Floer homology groups.

There is a family of stable Hamiltonian structure (ας , ως)ς∈[0,1] such that ως =
dας for ς ∈ (0, 1] (i.e. ας is a contact form for ς 6= 0), α1 = α and (α0, ω0) is
the stable Hamiltonian structure induced by the fibration π : N → S1. See [14,
Section 3.1]. Let Jς be a smooth family of almost complex structures on R×N
compatible with (ας , ως).

The Periodic Floer homology complexes PFCi(N,α0, ω) are defined in the same
way as the embedded contact homology complexes ECCi(N,α): the different
names have only a historical motivation. We can also define all decorated version
of periodic Floer homology as in Subsection 4.4.3. By comparing regular J0-
holomorphic curves with Jς -holomorphic curves with ς > 0 sufficiently small,
we obtain the following result.

78



Lemma 4.4.23 (See [14, Theorem 3.6.1]). For every i ∈ N there exists ςi ∈ (0, 1]
such that, for all ς ∈ (0, ςi], there is an isomorphism of chain complexes

PFCi(N,α0, ω0) ∼= ECCi(N,ας).

This is not yet enough for taking direct limits because ςi becomes smaller as i
increases and might tend to zero.28 However, arguing with more care, we can
prove the following.

Lemma 4.4.24. For α and (α0, ω0) as above, there is an isomorphism

lim
−→

PFHi(N,α0, ω0) = P̂FH(N, ∂N,α0, ω0) ∼= ÊCH(N, ∂N,α).

Proof. We need to define continuation maps ECCi(N,α) → ECCi(N,αςi) for
every i ∈ N such that the diagrams

ECCi(N,α)

·e

��

// ECCi(N,αςi) PFCi(N,α0, ω0)

·e

��
ECCi+1(N,α) // ECCi+1(N,αςi+1

) PFCi(N,α0, ω0)

commutes. To define the continuation maps ECCi(N,α) → ECCi(N,αςi), we
slightly enlarge N to N ′ so that ∂N ′ is foliated by Reeb orbits of irrational
slope and no new closed Reeb orbit intersecting a page less than i+ 2 times is
created, and invoke Proposition 4.4.9. The continuation maps are supported29

on holomorphic curves which are contained in R×M endowed with a symplectic
form which interpolates between α and αςi . By the trapping lemma [12, Lemma
5.3.2], curves with a positive end at e must contain a trivial cylinder over e, and
therefore the commutativity of the diagram follows.

4.5 The open-closed maps Φ and Φ+

In this section we define maps from Heegaard Floer homology to embedded
contact homology. As it often happens in symplectic geometry, these maps will
be defined by counting holomorphic curves in symplectic cobordisms. Here the
symplectic cobordisms will come from an open book decomposition (S, h) of M .

28This issue was pointed out to us by Thomas Brown.
29See [12, Theorem 3.1.2] for the definition of supported and an overview on continuation

maps in ECH and [67] for the full story.
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4.5.1 The maps Φ and Φ̂∗

Let B+ be the unit disc with one puncture in the interior and one puncture
on the boundary, which we identify biholomorphically with the subset of the
cylinder R×R/2Z obtained by rounding the corners of R×R/2Z\(2,+∞)×(1, 2).
We define a fibration

πW+
: W+ → B+

with fibre S and monodromy h, and equip the total space with the symplectic
form Ω+ = ds ∧ dt + ω, where (s, t) are coordinates on B+ ⊂ R × R/2Z and
ω = dβ is an area form on S which is preserved by h. We can view (W+,Ω+)
as a symplectic cobordism (with boundary) between [0, 1]× S and N . We refer
to [14, Section 5] for more details about this construction.

Let a = {a1, . . . , a2g} be a basis of arcs of S. We define a Lagrangian submani-
fold La ⊂ ∂W as the trace of the parallel transport of {3}× {1}× a along ∂B+

with respect to the symplectic connection defined as the Ω+-orthogonal to the
tangent spaces of the fibres. Then,

La ∩ [3,+∞)× {1} × S = [3,+∞)× {1} × a

La ∩ [3,+∞)× {0} × S = [3,+∞)× {0} × h(a).

In the following Ôk will denote the set of orbit sets in N with total intersec-
tion number k with a fibre. We fix an almost complex structure J+ on W+

which is compatible with Ω+ and with the stable Hamiltonian structures at
the ends. Given a Heegaard Floer generator y ∈ Sa,h(a) and a periodic Floer

homology generator γ ∈ Ô2g, we denote by MW+
(y,γ) the moduli space of J+-

holomorphic curves in W+ with boundary on La which are positively asymptotic
to [0, 1]×y and negatively asymptotic to γ. Holomorphic curves in MW+

(y,γ)
are somewhere injective because distinct connected components of the boundary
are on distinct connected components of La. Thus, for generic J+, the moduli
spaces MW+

(y,γ) are (disjoint unions of) smooth manifolds of the dimension
predicted by the Fredholm index.

The ECH-type index I for J+-holomorphic curves in MW+
(y,γ) is defined

in [14, Definition 5.6.5]. By the index inequality [14, Theorem 5.6.9], J+-
holomorphic curves u with I(u) = 0 are embedded and have Fredholm index
Ind(u) = 0, and therefore are isolated. We define

Φ: CF (S,a, h(a)) → PFC2g(N,α0, ω)

such that, on each y ∈ Sa,h(a), it is given by

Φ(y) =
∑

γ∈Ô2g

#MI=0(y,γ)γ. (4.17)
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Compactness and gluing for holomorphic curves in Heegaard Floer homology
and embedded contact homology extend to holomorphic curves in W+. There-
fore the usual argument on the ends of one-dimensional moduli spaces proves
that Φ is a chain map; see [14, Proposition 6.2.2]

Lemma 4.5.1 ([14, Theorem 6.2.4]). The map Φ induces a chain map

Φ: ĈF (S,a, h(a)) → PFC2g(N,α0, ω)

and moreover Φ(x) = e2g, where x represents the contact class.

Sketch of proof. The statement follows from the following fact, proved in [14,
Lemma 6.2.3]: a J+-holomorphic curve in W+ with boundary on La which is
positively asymptotic to a chord over an intersection point x on ∂S (i.e. x = xi

or x = x′
i for some i) has an irreducible component consisting of a trivial section

B+ × {x} followed by a gradient flow trajectory connecting the orbit over x to
e in the Morse-Bott family associated to ∂N . In fact it follows from topological
properties of holomorphic curves that a nonconstant positive end at x cannot
be contained in W+.

Finally we define the map Φ̂∗ : ĤF (−M) → ÊCH(M) of Theorem 4.1.1 as the

composition of Φ∗ : ĤF (S,a, h(a)) → ECH2g(N,α0, ω) with the inclusion

PFC2g(N,α0, ω) → P̂FC(N, ∂N,α0, ω) ∼= ÊCH(N, ∂N,α)

and the isomorphism σ̂∗ : ÊCH(N, ∂N,α) → ÊCH(M) of Theorem 4.4.11.

Remark 4.5.2. We could have defined the map Φ using the contact form α
instead of the stable Hamiltonian structure (α0, ω) at the negative end of W+.
However, working with the stable Hamiltonian structure induced by the fibration
will be useful in the construction of the inverse map Ψ in Section 4.6.

4.5.2 The map Φ+

The map Φ+ will be defined by counting holomorphic curves in a symplectic
cobordism with boundary (X+,ΩX+

) from [0, 1]×Σ to M . The symplectic form
ΩX+

will not be exact, and therefore the count will require some extra care.

The symplectic cobordism (X+,ΩX+
)

We describe a simplified construction of (X+,ΩX+
) and refer the reader to [13,

Section 4] for the actual details, with the warning that the notations will not
correspond exactly.
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Let (Σ,α,β, z) be the pointed Heegaard diagram for −M associated to the open
book decomposition (S, h) as in Subsection 4.3.3.30 In particular Σ = S0∪−S1.
For technical reasons we need to assume that S has genus at least two. We also
fix an area form ω+ on Σ, whose properties will be specified in the construction
of X+.

We decompose M = N ∪ T 2 × [1, 2] × V as in Subsection 4.4.4 and choose a
contact form λ on M which is supported by the open book decomposition (S, h)
and moreover satisfies the following properties:

1. λ|N = α (in particular ∂N is a negative Morse-Bott torus),

2. ∂V is a positive Morse-Bott torus,

3. Reeb orbits in int(V ) and in the no man’s land T 2× (1, 2) are long31, and

4. (α, dα) is close to the stable Hamiltonian structure (α0, ω) induced by the
fibration N → S1 with fibre S, so that ECC2g(N,α) is isomorphic to
PFC2g(N,α0, ω).

At least at a first approximation, the symplectic cobordism (X+,ΩX+
) will

satisfy the following properties:

1. the positive end is

X>
+ = [3,+∞)× [0, 1]× Σ, ΩX+

|X>
+
= ds ∧ dt+ ω+;

2. the negative end is

X<
+ = (−∞,−1]×M, ΩX+

|X<
+
= d(esλ);

3. there is a symplectic surface Sz ⊂ X+ such that

Sz ∩X>
+ = [3,+∞)× [0, 1]× {z} and Sz ∩X<

+ = ∅;

4. ΩX+
|X+\Sz

= dΘ for some one-form Θ such that Θ|X<
+
= esλ;

5. there is a Legendrian submanifold Lα ⊂ ∂X+ such that

X>
+ ∩ Lα = ([3,+∞)× {0} × β) ∪ ([3,+∞)× {1} ×α)

and Θ is exact on Lα; and

6. there is an embedding of W+ into X+ such that W+ ∩ Sz = ∅,

X>
+ ∩W+ = [3,+∞)× [0, 1]× S0, X<

+ ∩W+ = (−∞,−1)×N,

and the restriction of ΩX+
to W+ is close to Ω+ (see the proof of Lemma

4.5.5).

30What we call Σ here was called −Σ there.
31What “long” means will be made clear in Lemma 4.5.5.
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Figure 4.5: Schematic diagram for X0
+∪X1

+ which indicates the fibres over each
subsurface.

We refer to [13, Lemma 4.1.1] for a more precise description of (X+,ΩX+
). We

will give here only a sketch of the construction; the details, which are quite
delicate, can be found in [13, Section 4.1].

We identify S0
∼= S and extend h : S0 → S0 to a diffeomorphism h

+ : Σ → Σ
which, on S1, restricts to a perturbation of the identity by a small Hamiltonian
isotopy. We require that β = h

+(α). Let B0
+ = B+ ∩ [0,+∞)× S1; i.e. we cut

the negative end out of B+. We define X0
+ as the bundle over B0

+ with fibre Σ
and monodromy h

+. If ω+ is an area form on Σ preserved by h
+, then we define

ΩX0
+

= ds ∧ dt + ω+. The component of the boundary of X0
+ over {0} × S1

is a three-manifold N+ obtained as mapping torus of (Σ, h
+). It contain the

mapping torus N of (S, h) as a closed submanifolds of codimension zero.

We define X1
+ = D2 × S1 and ΩX1

+
= ωD2 + ω+|S1

where, of course, ωD2 is

the standard symplectic form on D2. Then we glue X0
+ and X1

+ by identifying
∂D2 × S1 ⊂ ∂X1

+ with N+ \ int(N), which is the mapping torus of (S1, h
+|S1

).
We can glue the symplectic forms ΩX0

+
and ΩX1

+
because h

+|S1
is Hamiltonian

isotopic to the identity. The gluing of X0
+ and X1

+ is schematically depicted in
Figure 4.5. Thus X0

+ ∪X1
+ is a manifold with boundary and (concave) corners

and the compact boundary component of X0
+ ∪X1

+ is homeomorphic to M . We
smooth the corner and modify the symplectic form near the compact boundary
component so that, in a collar, it looks like a piece of the symplectisation of
(M,λ). Finally we obtain (X+,ΩX+

) by completing X0
+∪X1

+ with the negative
half-symplectisation ((−∞, 0]×M,d(erλ)) of (M,λ).

We assume that the base point z ∈ S1 is a fixed point for h
+; then we define

the symplectic surface
Sz = (B0

+ ∪D2)× {z}.

Finally, we define a Lagrangian submanifold Lα ⊂ ∂X+ such that

X>
+ ∩ Lα = ([3,+∞)× {0} × β) ∪ ([3,+∞)× {1} ×α).
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Note that ∂X+ ⊂ X0
+, which is the portion of X+ which has the structure of

a symplectic surface bundle, and therefore has a symplectic connection. As it
was the case for La ⊂ ∂W+, we define Lα as the trace of the parallel transport
of {3} × {1} ×α along ∂B+ with respect to symplectic connection.

Definition of Φ+

We fix a generic almost complex structure J+ on X+ which is compatible with
ΩX+

and the stable Hamiltonian structures at the ends, and makes Sz holomor-
phic. Given a 2g-tuple of intersection points y ∈ Sα,β and an orbit set γ ∈ O
(i.e. built from simple closed Reeb orbits in M) we denote by MX+

(y,γ) the
moduli space of J+-holomorphic curves in X+ with boundary on Lα which
are positively asymptotic to [0, 1] × y and negative asymptotic to γ. To a
curve u ∈ MX+

(y,γ) we associate an ECH-type index I(u) and the intersec-
tion number F(u) between the image of u and the surface Sz. By positivity of
intersection, F(u) ≥ 0.

We define the map Φ+ : CF+(Σ,α,β, z) → ECC(M,λ) as

Φ+([y, i]) =
∑

γ∈O

i∑

j=0

#MI=0,F=j
X+

(y,γ)γ. (4.18)

Theorem 4.5.3. Φ+ is a well defined chain map.

This follows from the usual analysis of moduli spaces. However, the symplectic
form ΩX+

is not exact, and therefore some extra care is needed. For exam-
ple, fixing the intersection number F is an important ingredient for proving
compactness of the moduli spaces. Moreover, J+-holomorphic curves with no
positive ends can exist, and we have to exclude them from the count. This is
done by showing that they have large ECH-type index; see Lemmas 5.6.2 and
5.6.3 of [13]. The assumption on the genus of S is used here.

We need to show that the maps Φ̂∗ and Φ+
∗ fit into the commutative diagram

(4.1). In [13, Section 6] this is done by comparing the mapping cones of U in
Heegaard-Floer homology and embedded contact homology. For simplicity we
prefer to ignore algebraic complications and illustrate only the geometric ideas
of [13, Section 6]. Thus, instead to work with cones, we will sketch only the
proofs of commutativity of the two squares displayed in (4.1). The next theorem
shows commutativity of the right-hand square.

Theorem 4.5.4 ([13, Theorem 5.9.1]). The map Φ+ commutes up to homotopy
with the maps U on Heegaard Floer homology and embedded contact homology.

Proof. The maps U are defined by counting I = 2 holomorphic curves pass-
ing through a generic point: in embedded contact homology by definition and
in Heegaard Floer homology by Theorem 4.3.2. We define a chain homotopy
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between Φ+ ◦ U and U ◦ Φ+ by moving a base point from the positive end of
X+ to the negative end, and counting I = 1 holomorphic curves in X+ passing
through the moving point at some isolated instant.

Now we prove commutativity of the left-hand square.

Lemma 4.5.5 ([13, Lemmas 5.8.1 and 5.8.2]). If y ∈ Sa,h(a) and u ∈ MF=0
X+

(y,γ),

then γ ∈ Ô2g (i.e. it is built from closed Reeb orbits in N) and the image of u
is contained in W+.

Proof. Since F(u) = 0, the image of u is contained in X+ \ Sz, where ΩX+
is

exact. Thus an energy estimate shows that γ is built from closed Reeb orbits
in N plus e′ and h′ because orbits in int(V ) and in the no man’s land are
long. Then, using positivity of intersection with the J+-holomorphic surfaces
Cθ = B+ × {θ} ⊂ W+, where θ ∈ ∂S, we obtain that γ is built from closed
orbits in N and the image of u is contained in W+.

If ΩX+
|W+

is sufficiently close to Ω+, not only we can identify ECC2g(N,α)
and PFC2g(N,α0, ω), but we can also choose J+ on X+ and J+ on W+ so
that there is a bijection between J+-holomorphic curves contained in W+ and
J+-holomorphic curves. Then Lemma 4.5.5 implies that there is a commutative
diagram

CF (S,a, h(a)) //

Φ

��

CF+(Σ,α,β, z)

Φ+

��
ECC2g(N) // ECC(M)

where the top arrow is the inclusion y 7→ [y, 0]. In homology, both this map

and Φ factor through ĤF (S,a, h(a)), and this proves the commutativity of the
left-hand square.

The next theorem is proved by an algebraic trick which generalises Ozsváth and
Szabó’s observation that ĤF (M) is trivial if and only if HF+(M) is trivial32

in [92, Proposition 2.1].

Proposition 4.5.6 (See [13, Theorem 6.1.5]). Φ+
∗ is an isomorphism if and

only if Φ̂∗ is an isomorphism.

4.6 The closed-open map Ψ

In this section we will define a closed-open map

Ψ: PFC2g(N,ω, α0) → ĈF (S,a, h(a)).

32ĤF (M) andHF+(M) are never trivial, but subgroups associated to some Spinc structures
can be trivial.
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First, we observe that the naive map that we would obtain by turning the
cobordism W+ “upside-down” does not work: if we stack W+ on top of the
upside-down cobordism, which we will call W−, the map we obtain is not ho-
motopic to the identity because holomorphic curves from an Heegaard Floer
generator to itself have negative index. A similar phenomenon happens in [33],
where the composition of the open-closed map from Hochschild homology to
symplectic cohomology with the closed-open map from symplectic cohomology
to Hochschild cohomology is a “Poincaré duality” rather than the identity. In
our case, to amend the naive map, we cap off the surface S with a disc, but
this operation comes with the price of working with holomorphic curves with
boundary conditions on a singular Lagrangian with boundary, which introduces
an incredible amount of complication.

4.6.1 Definition of Ψ

Let D be a disc. On D we consider polar coordinates (ρ, φ) with ρ ∈ [0, 1] and
write z∞ for the origin. Let S be the capped-off surface obtained by gluing D to
S along their boundary. For every m ≫ 0 (i.e. large enough that all conditions
we impose on it make sense) we define a diffeomorphism hm : S → S such that

hm|S = h and hm|D(ρ, φ) = (ρ, φ+ νm(ρ))

where νm(ρ) = 2π
m for ρ ≤ 1

2 , νm(ρ) > 0 for ρ ∈ [0, 1) and νm(1) = 0. We

also assume that hm converges to a diffeomorphism h∞ for m → ∞. For the
complete list of properties of νm see [14, Subsection 5.1.2] and for a graphical
description of the action of hm on D see Figure 4.6. Most of the time we will
write h for hm and assume m ≫ 0. Similarly, every object depending on hm

may or may not have an index m depending on the context.

We extend the arcs ai in S to arcs ai in S by straight lines in D, so that they
all meet at z∞. We assume, among other things, that the angles at z∞ between
two consecutive arcs is an integer multiple of 2π

m larger than 4πg
m and that, as

m → ∞, the portions of the arcs in D1/2 = {ρ ≤ 1/2} converge to the segment
{φ = 0}. This last property will be used in the proof of Theorem 4.6.4. See [14,
subsection 5.2.2] for the complete description of the arcs ai.

Let B− be the unit disc with one puncture in the interior and one puncture
on the boundary, which we identify biholomorphically with the subset of the
cylinder R×R/2Z obtained by rounding the corners of R×R/2Z \ (−∞,−2)×
(1, 2). We define a fibration

πW−
: W− → B−

with fibre S and monodromy h , and equip the total space with the symplectic
form Ω− = ds∧dt+ω, where (s, t) are coordinates on B− ⊂ R×R/2Z and ω is an
area form on S which is preserved by h and extends ω. We can view (W−,Ω−)
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Figure 4.6: The extended arcs and the action of hm on D. The black arcs are
portions of the ai and the red ones are portions of the h(ai).

as a symplectic cobordism (with boundary) from N to [0, 1]×S, where N is the
mapping torus of (S, h). We refer to [14, Section 5] for more details about this
construction. Note that N carries a stable Hamiltonian structure (α0, ω) which
is induced by the fibration π : N → S1. Its only closed Reeb orbit contained in
N \N and intersecting a fibre at most 2g times is the orbit δ0 corresponding to
z∞.

In W− there is the subset W− which is the total space of the fibration over B−

with fibre S and monodromy h. Since h|D is isotopic to the identity, there is an
identification W− \ int(W−) ∼= B− ×D which induces a map33

πD : W− \ int(W−) → D.

We will denote similar maps for R× [0, 1]× S and R×N by the same symbol.

We define an immersed Lagrangian submanifold with boundary La by parallel
transport of a = (a1, . . . , a2g) placed at the fibre over (−3, 1). Then,

La ∩ (−∞,−3]× {1} × S = (−∞,−3]× {1} × a

La ∩ (−∞,−3]× {0} × S = (−∞,−3]× {0} × h(a).

The manifold La is embedded in the interior and has a clean self-intersection at
the boundary.

We fix an almost complex structure J− on W− which is generic among those
whose restriction to W− \ int(W−) is the pull back of a split almost complex
structure on B− ×D so that, in particular, the map πD is holomorphic.

We call σ−
∞ = B− × {z∞} ⊂ W− the section at infinity. For our choice of

almost complex structure, σ−
∞ is holomorphic, regular (i.e. its linearised Cauchy-

Riemann operator is surjective) and ind(σ−
∞) = 0; see [14, Lemma 5.8.9].

We denote by O2g the set of orbit sets built from closed Reeb orbits in N with
total intersection number 2g with a fibre and by S

a,h(a) the set of 2g-tuples of

33This map is called πD2 in [14].
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intersection points between a and h(a). A subtlety in the definition of S
a,h(a)

is that z∞ can be repeated, unlike all other intersection points, because it can
be seen as an intersection point between different pairs of arcs. We denote the
moduli space of J−-holomorphic curves in W− with boundary on La, positively
asymptotic to γ ∈ O2g and negatively asymptotic to y ∈ S

a,h(a) by MW−
(γ,y).

We also fix the base point m = {(0, 3
2 )} × {z∞} ∈ W− and denote the set of

J−-holomorphic curves in MW−
(γ,y) which pass through m by MW−

(γ,y;m).

Let z†∞ ∈ S be a point near z∞ in the complement of the arcs a and h(a). We
denote by (σ−

∞)† the J−-holomorphic multisection which intersects each fibre in
the orbit of z†∞ under the monodromy h. We recall that h has order m ≫ 0 near
z∞ and therefore (σ−

∞)† intersects each fibre m times. Given a J−-holomorphic
map u ∈ MW−

(γ,y), we define n∗(u) as the algebraic intersection number

between (σ−
∞)† and the image of u. The orbit of z†∞ gives rise to holomorphic

multisections and to intersection numbers, still denoted by n∗, also in R × N
and R × [0, 1] × S. Since both (σ−

∞)† and u are J−-holomorphic, n∗(u) ≥ 0 by
positivity of intersection. To u we associate also an ECH-type index I(u); see
Definition 5.6.6 and Subsection 5.7.7. If u has no ends at δ0 or at the chord
over z∞, then I(u) ≥ 0 for a generic J− by the index inequality [14, Theorem
5.6.9]. Moreover, I(σ−

∞) = 0.

We define a map Ψ: ECC2g(N,α0, ω) → CF (S,a, h(a)) by

Ψ(γ) =
∑

y∈Sa,h(a)

#MI=2,n∗=m

W−

(γ,y;m)y

(where γ ∈ Ô2g) and, finally, the map Ψ: ECC2g(N,α0, ω) → ĈF (S,a, h(a))

by composing Ψ with the projection CF (S,a, h(a)) → ĈF (S,a, h(a)).

By a standard argument involving the index inequality we can prove that the
moduli spaces MI=2,n∗=m

W−

(γ,y;m) are zero-dimensional manifolds. However,

showing that they are compact, and even more showing that Ψ is a chain map,
occupy a large portion of [14] because of the unusual structure of the Lagrangian
boundary condition La and the presence of the extra orbit δ0 and intersection
point z∞. In the next subsection we will give an outline of the argument.

4.6.2 Ψ is a chain map

To prove that Ψ is a chain map we analyse the boundary of the compactification
of the one-dimensional moduli spaces MI=3,n∗=m

W−

(γ,y;m). The first step is to

verify that SFT compactness holds.

Theorem 4.6.1 (See [14, Section 7.3]). Let un be a sequence of holomorphic

curves in MI=i,n∗=m

W−

(γ,y;m). Then, up to taking a subsequence, un converges

in the SFT sense to a building u∞ = (u−h
∞ , . . . , u0

∞, . . . ul
∞), where uk

∞ is one of
the following:
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• a holomorphic curve in W− with boundary on La and passing through m

for k = 0,

• a holomorphic curve in R×N for k > 0, or

• a holomorphic curve in R × [0, 1] × S with boundary on (R × {1} × a) ∪
R× ({0} × h(a)) for k < 0.

Moreover ul
∞ has positive ends at γ, u−h

∞ has negative ends at y and the positive
ends of uk

∞ match with the negative ends of uk+1
∞ for k = −h, . . . , l−1. Finally,

I(u−h
∞ ) + . . .+ I(ul

∞) = i and n∗(u
−h
∞ ) + . . .+ n∗(u

l
∞) = m.

Despite the unusual situation, the proof of Theorem 4.6.1 follows the proof of
the usual SFT compactness theorem in [4] very closely. See [14, Section 7.3] for

the details. Even if γ ∈ Ô2g and y ∈ Sa,h(a), the holomorphic curves uk
∞ can

have one of the following features, which we will call “bad degenerations”:

(i) ends at δ0 (for k ≥ 0) or at the chord over z∞ (for k ≤ 0),

(ii) boundary points at the boundary34 of La, or

(iii) closed irreducible components.

Any bad degeneration appearing in the compactification of MI=3,n∗=m

W−

(γ,y;m)

gives rise to a boundary component which contributes neither to ∂ ◦Ψ nor Ψ◦∂.
In fact, it will turn out that Ψ is not a chain map, but we will be able to exclude
enough bad degenerations and show that the contribution of the remaining ones
is in the kernel of the projection from CF (S,a, h(a)) to ĈF (S,a, h(a)).

In [14, Section 7.5] we use topological tools — the intersection numbers n∗ and
the ECH-type index — to prove that bad degenerations can follow only a limited
number of patterns, which are described in [14, Theorem 7.6.1], and then we
exclude all patterns but one by studying, via a rescaling argument inspired by
[68], how the sequence un approaches the limit. For sake of simplicity, here we
will outline a slightly different argument, which has the advantage of highlighting
the main ideas while being simpler to describe.

Definition 4.6.2. A thin strip is a holomorphic curve u in R× [0, 1]×D such
that πD ◦u covers the small bigon in D between an arc in ai and its image under
h .

A thin strip is positively asymptotic to the chord over z∞ and negatively asymp-
totic to a chord over one among the intersection points xi or x

′
i. Moreover, if u

is a thin strip, then it is regular and satisfies I(u) = 1 and n∗(u) = 1. The next
proposition summarises some of the results of [14, Section 7.5].

34This type of bad degeneration is called “boundary points at z∞” in [14].
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Proposition 4.6.3. Let un be a sequence of J−-holomorphic curves in Mn∗=m

W−

(γ,y;m)

converging to u∞ = (u−h
∞ , . . . , u0

∞, . . . ul
∞). Then the following hold:

1. there is at most one nontrivial negative end (i.e. which does not belong to
a trivial cylinder) at a cover of δ0 in all uk

∞ with k > 0;

2. if one of the holomorphic curves uk
∞ has a negative end at a cover of δ0,

then u0
∞ has an irreducible component which is a cover of the section at

infinity σ−
∞;

3. if some uk
∞ with k < 0 has a positive end at the chord over z∞, then some

uk
∞ with k > 0 has a negative end at a cover of δ0;

4. any nontrivial irreducible component of uk
∞ (with k < 0) with a positive

end at the chord over z∞ is a thin strip;

5. no uk
∞ has a boundary point at the boundary of La; and

6. no uk
∞ has a closed irreducible component.

Sketch of proof. The main tool is the analysis of the contributions of ends at
covers of δ0, ends at the chord over z∞ and boundary points at the boundary of
La to n∗(u∞). By [14, Lemma 7.4.1], a nontrivial positive end at a p-fold cover
of δ0 contributes at least p to n∗(u∞), while a nontrivial negative end contributes
at least m− p. By [14, Lemma 7.4.2] a nontrivial positive end at the chord over
z∞ contributes 1 to n∗(u∞) if it belongs to a thin strip, and at least 2g otherwise,
while a nontrivial negative end contributes at least 2g. Finally, by [14, Lemma
7.4.4] a boundary point at the boundary of La contributes at least 2g. All these
claims are easy consequences of positivity of intersection between holomorphic
curves. As an example, we will compute the contribution of a boundary point at
the boundary of La in u0

∞. The composition πD ◦u0
∞ is defined and holomorphic

in a neighbourhood of such a point. Since holomorphic functions are open, its
image covers a region between two arcs in a in a neighbourhood of z∞. Thus,
if we take z†∞ close enough to z∞, the section (σ−

∞)† will intersect the image of
u0
∞ at least 2g times near the boundary point at the boundary of La.

Suppose that there are two nontrivial negative ends at δ0 with multiplicity p′

and p′′ respectively. Then they contribute 2m − p′ − p′′ to n∗(u∞). Since
p′ + p′′ ≤ 2g ≪ m and n∗(u∞) = m, we have a contradiction. This proves (1).

The map πD ◦ u0
∞ is holomorphic, and therefore open, in a neighbourhood of

the point mapped to m. Thus, by unique continuation of holomorphic curves,
a neighbourhood of that point contributes m to n∗(u∞), unless the irreducible
component of u0

∞ passing through m is a cover of the section at infinity σ−
∞.

This proves (2).

A nontrivial negative end at a chord over z∞ contributes at least 2g to n∗(u∞).
Thus, by the argument above, if there is a positive end at a chord over z∞,
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an irreducible component of u0
∞ is a cover of σ−

∞, and thus, for some k > 0,
the holomorphic curve uk

∞ has a nontrivial negative end at a cover of δ0. This
proves (3).

A nontrivial positive end at a chord over z∞ contributes at least 2g to n∗(u∞)
unless it belongs to a thin strip. By (3), there is a nontrivial negative end at a
cover of δ0 which contributes m − p with p < 2g. This is a contradiction, and
thus (4) is proved.

Either there is a nontrivial negative end at a cover of δ0, which contributes
m− p to n∗(u∞), or the irreducible component of u0

∞ passing through m is not
a cover of σ−

∞ and therefore contributes m to n∗(u∞). A boundary point at the
boundary of La contributes at least 2g, which is a contradiction in both cases
because p < 2g. This proves (5).

A closed irreducible component of u∞ is homologous to a branched cover of
a fibre S. Its Fredholm index, computed by the Riemann-Roch formula, is
negative, and therefore such a component cannot exist for a generic almost
complex structure J−.

35 This proves (6).

Now suppose
l∑

k=−h

I(uk
∞) = 3. By [14, Lemma 7.5.5] I(u0

∞) ≥ 0 and I(uk
∞) ≥ 1

for k 6= 0, which implies that we can have buildings with at most four levels in the
boundary of the compactification of MI=3,n∗=m

W−

(γ,y;m). Moreover I(u0
∞) = 2

if no irreducible component of u0
∞ is a cover of σ−

∞ because passing through m

is a codimension-two constraint. Therefore two-level buildings have I(u0
∞) = 2

and correspond to either Ψ ◦ ∂ or ∂ ◦Ψ. On the other hand, bad degenerations
necessarily appear in buildings with three or four levels and have an irreducible
component which is a cover of the section at infinity σ−

∞.

A holomorphic building u∞ in the compactification of MI=3,n∗=m

W−

(γ,y;m) with

a bad degeneration is called of type (A) if I(u1
∞) = 2 and of type (B)36 if

I(u1
∞) = 1. If u∞ is of type (A), then u∞ = (u−1

∞ , u0
∞, u1

∞), where u0
∞ contains

σ−
∞ as an irreducible component and u−1

∞ is a thin strip. Buildings of type (B)
can be ignored as a consequence of the next theorem. We will use a limiting
argument for m → ∞, and therefore we will have manifolds W−,m constructed
from hm, almost complex structures J−,m and so on. However, all manifolds
W−,m are diffeomorphic, so we fix a model W− and regard all J−,m as almost
complex structures on it.

Theorem 4.6.4 ([14, Theorem 7.10.1]). If m is large enough, buildings of type

(B) do not appear in the boundary of the compactification of MI=3,n∗=m

(W−,J−,m)
(γ,y;m)

for any γ ∈ Ô2g and y ∈ Sa,h(a).

35In [14] we use an ECH index computation to show that a building u∞ with a closed
component has I > 3.

36Buildings of type (A) correspond to buildings of type (1) and buildings of type (B) cor-
respond to buildings of type (2) to (6) in [14, Theorem 7.6.1].
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The proof of this theorem occupies the subsections from 7.7 to 7.10 of [14]; here
we will sketch only the main ideas. Assume that there is a sequence mi → +∞
for i → +∞ such that, for any i, there is a sequence of J−,mi

-holomorphic curves

ui,j in MI=3,n∗=mi

(W−,J−,mi
)
(γ,y;m) converging, as j → +∞, to a building ui,∞ with

I(u1
i,∞) = 1. We know from Proposition 4.6.3 that there is only one nontrivial

negative end in ui,∞ at a cover of δ0 for every i and, moreover, it must belong
to an irreducible component of index one. For simplicity, we assume that the
end is at δ0; the case of a nontrivial cover is slightly more complicated, but does
not need any new idea. To simplify the situation further, we assume that every
ui,∞ contains a level u1

i,∞ with I(u1
i,∞) = 1 from an orbit set γ+ to an orbit

set δ0γ−, a level u0
i,∞ which contains σ−

∞ as an irreducible component and has

other components contained in W−, and a level u−1
i,∞ which is a thin strip from

the chord over z∞ to a chord over one of the intersection points xi or x
′
i. There

may be one more level, but it will not be relevant to our argument.

The end of u1
i,∞ at δ0 (which, we recall, is parametrised by (s, t) ∈ (−∞, 0] ×

R/2Z) satisfies the expansion37

πD ◦ u1
i,∞(s, t) = eπ(1−

1
m

)sfi(t) + o(eπ(1−
1
m

)s) (4.19)

where fi(t) = cie
πit, with ci ∈ C, is the asymptotic eigenfunction of the end.

See [14, Lemma 7.7.3]. For a generic choice of almost complex structure, and up
to taking a subsequence, the coefficients ci converge to c 6= 0 by Lemma 7.7.6
and Lemma 7.7.9 in [14]. Translations in the variable s multiply ci by a positive
real number, and therefore we can assume that |c| = 1. Since the moduli spaces
of holomorphic curves in R×N with I = 1 and fixed asymptotic eigenfunction
are finite up to translations, the set C of possible limit values c are finite.

Definition 4.6.5 (See [14, Definition 7.7.10]38). A bad radial ray in C is a
half-line −icR+ for c ∈ C.

We observe that −i = eπ
3
2 t and, as we will see later, it is no coincidence that

the projection of m to B− is (0, 3
2 ). As explained in [14, Remark 7.7.11] we can

assume without loss of generality that −1R+ is not a bad radial ray.

After extracting a diagonal subsequence ui,j(i), we find sequences R±
i → +∞ for

i → +∞ and holomorphic maps ũi : B−∩ [−R−
i , R

+
i ]×R×R/2Z → W− (called

truncations in [14, Subsection 7.8.1]) which parametrise the portions of ui,j(i)

contained in a neighbourhood of the section at infinity σ−
∞. We define holomor-

phic functions w̃i = πD ◦ ũi and, after fixing a compact neighbourhood K of
(0, 3

2 ) in B−, we define constants Ci = ‖w̃i‖L∞(K) and holomorphic functions

37We apologise with the reader for using i both as an index and to denote the imaginary
unit.

38[14, Definition 7.7.10] differs from the definition we give here in the notation (i and C have
a different meaning there) and for the fact that, in [14], we consider also the case of ends to
multiple covers of δ0.
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wi =
w̃i

Ci
. If the diagonal subsequence and the truncations are chosen care-

fully (i.e. as in [14, Lemma 7.8.4]), the functions wi converge to a holomorphic
function w∞ : B− → C such that:

• w∞ has a unique and simple zero at (0, 3
2 ),

• w∞(∂B−) ⊂ R+,

• lim
s→+∞

w∞(s,t)
|w∞(s,t)| = ceiπt for some c ∈ C, and

• lim
s→−∞

w∞(s, t) ∈ R+.

See [14, Theorem 7.8.15].

The map (s, t) 7→ (s, 1− t) defines an anti-holomorphic involution of B− fixing
(0, 3

2 ) — remember that t ∈ R/2Z. The function

f(s, t) = w∞(s, t)/w∞(s, 1− t)

is thus holomorphic, bounded, and has real boundary conditions. Moreover,
it satisfies lim

s→−∞
f(s, t) = 1 and therefore, by standard one-variable complex

analysis, f(s, t) = 1 for all (s, t) ∈ B−, so w∞(s, t) = w∞(s, 1− t). This implies
that w∞(s, 3

2 ) ∈ R for all s ∈ [−2,+∞) = B− ∩
(
R×

{
3
2

})
. Since (0, 3

2 ) is
the unique zero of w∞ and w∞(∂B+) ⊂ R+, we have −ic ∈ −1R+. This is
a contradiction because −1R+ is not a bad radial ray, and therefore we have
shown that, for i sufficiently large, no building of type (B) with a simple end at

δ0 can be in the boundary of the moduli space MI=3,n∗=mi

(W−,J−,mi
)
(γ,y;m).

If the nontrivial end of each ui,∞ at a cover of δ0 is not simple, the limit of
the sequence of holomorphic functions wi must be taken in the SFT sense and
yields a building w∞ = (w−a

∞ , . . . , wb
∞) of holomorphic functions wk

∞ : F̃ k
∞ → C

where F̃ k
∞ is a branched cover of R × [0, 1] for k < 0, of B− for k = 0 and of

R × S1 for k > 0. See [14, Subsection 7.8.7]. Then, we apply the involution
argument component by component and obtain a similar contradiction. This
ends the proof of Theorem 4.6.4.

From now on we will assume that m is large enough that Theorem 4.6.4 holds.
In order to prove that Ψ is a chain map, it remains to prove the following.

Theorem 4.6.6 (Reformulation of [14, Theorem 7.2.2]). If γ ∈ Ô2g is an
orbit set and y,y′ ∈ Sa,h(a) are 2g-tuples of intersection points which differ
only by replacing one intersection point xi with x′

i for some i, the numbers of
boundary points corresponding to buildings of type (A) in the compactifications
of MI=3,n∗=m(γ,y;m) and MI=3,n∗=m(γ,y′;m) are equal.
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For the rest of the section we will identify the quotient of a moduli space by the
R action with a slices for that action (i.e the moduli spaces M̂ with a slice M̃
in the corresponding moduli spaces M).

Let y∞ ∈ S
a,h(a) be the 2g-tuple of intersection points obtained by replacing xi

or x′
i in y or y′ with z∞. We fix γ′ ∈ Ô2g−1 and, for r ≫ 0, define

P = [r,+∞)2×M̃I=1,n∗=1

R×[0,1]×S
(y∞,y)×MI=0,n∗=0

W−

(δ0γ
′,y∞)×M̃I=2,n∗=m−1

R×N
(γ, δ0γ

′).

Gluing gives us an embedding39

G : P → MI=3,n∗=m

W−

(γ,y).

To prove Theorem 4.6.6 we need to understand when the image of G belongs
to MI=3,n∗=m

W−

(γ,y;m) and show that, essentially, it will only depend on how

holomorphic curves in M̃I=2,n∗=m−1

R×N
(γ, δ0γ

′) approach δ0.

To a sequence (T−,n, T+,n, u
−1, u0, u1) ∈ P with T±,n → +∞ we associate a

holomorphic function w : B− → C by the truncate-and-rescale technique used
in the proof of Theorem 4.6.4 applied to the sequence G(T−,n, T+,n, u

−1, u0, u1).
We can see this function as a sort of normal vector to (u−1, u0, u1) in the com-

pactification of the moduli space MI=3,n∗=m

W−

(γ,y) along which the sequence

G(T−,n, Tn,+, u
−1, u0, u1) approaches (u−1, u0, u1).

The function w satisfies the following properties:

• w(s, t) ∈ R+ ·eiη(t) for all (s, t) ∈ ∂B−, where η : [0, 1] → R is a decreasing
function (depending only on La) such that η(0) = π

m and η(1) = 0;

• lim
s→−∞

∣∣w(s, t)− c1e
− π

m
(s+it−i)

∣∣ < ∞ for some c1 ∈ R+; and

• lim
s→+∞

∣∣w(s, t)− c2e
π(s+it)

∣∣ < ∞ for some c2 ∈ C×.

Functions of this sort form a non-empty open cone N inside a three-dimensional
real vector space, are determined by the constants c1 and c2 and have a unique
zero. See [14, Subsection 7.12.1] for the proof of all these properties (and
more). Moreover, the zero of a holomorphic function w associated to a sequence
(T−,n, T+,n, u

−1, u0, u1) is the limit of the projections to B− of the intersection
points between the image of G(T−,n, T+,n, u

−1, u0, u1) and the section at infinity
σ−
∞.

The careful reader has surely observed that the truncate-and-rescale technique in
the proof of Theorem 4.6.4 produced functions which were bounded for s → −∞,

39Strictly speaking, we should allow the glued curve to have boundary on the Lagrangian
submanifolds associated to the extension of the arcs ai to the other side of z∞; these are the
extended moduli spaces of [14, Definition 5.7.24]. However, [14, Claim 7.12.12] shows that this
is a technical complication which can be ignored at a first reading.
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while here they have a pole of order π
m . The reason is that there we took a limit

for m → +∞ which made the pole disappear; on the other hand, here we work
with a large, but fixed value of m.

We fix r0 > r and denote ∂P(r0) = {T+ = r0} ⊂ P. If r0 is generic and suffi-
ciently large, then G(∂P(r0)) intersects transversely every branch of the moduli

spaces MI=3,n∗=m

W−

(γ,y;m) converging to a building (u−1, u0, u+1) with u−1 ∈

M̃I=1,n∗=1

R×[0,1]×S
(y∞,y), u0 ∈ MI=0,n∗=0

W−

(δ0γ
′,y∞) and u+1 ∈ M̃I=2,n∗=m−1

R×N
(γ, δ0γ

′).

We define Υ′ : ∂P(r0) → B− such that Υ′(T−, r0, u
−1, u0, u+1) is the projection

to B− of the intersection point between the image of G(T−, r0, u
−1, u0, u+1) and

σ−
∞. We define a second map Υ′′ : ∂P(r0) → B− such that Υ′′(T−, r0, u

−1, u0, u+1)
is the (unique) zero of a holomorphic function w whose constants c1 and c2 are
determined by the asymptotic eigenfunctions of u±1. Both functions are proper,
and therefore their degrees are well defined.

For r0 large enough, the holomorphic curves in G(∂P(r0)) which intersect σ−
∞

near m are close to breaking into the building (u−1, u0, u+1) by [14, Lemma
7.12.15], so Υ′ and Υ′′ are C0 close by the truncate-and-rescale argument defin-
ing w and therefore they have the same degree. Since (0, 3

2 ) is a regular value
for Υ′ and Υ′′ depends only on the asymptotic eigenfunctions of the ends of
u±1, this implies that the cardinality of the set

G(∂P(r0)) ∩MI=3,n∗=m

W−

(γ,y;m)

depends only on the asymptotic eigenfunctions of the ends of u±1. Now recall
that u−1 is a thin strip. The asymptotic eigenfunction of its positive end, which
can be easily computed explicitly — see [14, Subsection 7.7.1], depends only by
the local behavior of the arcs ai and h(ai), which is the same for both ends of
the arc. Thus the same construction with y′ at the place of y gives the same
result. Thus we have proved the following theorem.

Theorem 4.6.7. Ψ is a chain map.

4.7 Homotopies

In this section we prove the following.

Theorem 4.7.1. Φ∗ : ĤF (S,a, h(a)) → PFH2g(N,α0, ω) is an isomorphism.

In order to prove Theorem 4.7.1 we define a chain homotopy H between Ψ ◦ Φ
and a quasi-isomorphism Θ, and a chain homotopy K between Φ ◦ Ψ and the
identity. These chain homotopies are defined by counting isolated holomorphic
curves in one-parameter families of cobordisms. The definition of these maps
and the proof that they have the required properties occupies the largest part
of [15].
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La

La

L
b

L
b

L
h(b)

L
h(a)

×

B−∞,2

B−∞,1

Figure 4.7: The surface B−∞,2 to the left and B−∞,1 to the right. The ×
represents the point b−∞ and the label on the boundary are the Lagrangian
submanifolds.

We define the fibration πW+
: W+ → B+ with fibre S and monodromy h. In

W+ we consider the singular Lagrangian submanifold La ⊂ ∂W+ defined as
the trace of the parallel transport of a copy of a on π−1

W+
(3, 1) along ∂B+.

Given y ∈ Sa,h(a) and γ ∈ Ô2g, we denote by MW+
(y,γ) the moduli space of

holomorphic curves inW+ with boundary on La which are positively asymptotic
to [0, 1]×y and negatively asymptotic to γ. We define the multisection (σ+

∞)† in
analogy with (σ−

∞)† in W− and denote the induced intersection number by n∗.
If we choose the almost complex structure on W+ so that (σ+

∞)† is holomorphic,
by [14, Lemma 5.4.9] we have

Mn∗=0

W+
(y,γ) = MW+

(y,γ). (4.20)

4.7.1 Homotopy for Ψ ◦ Φ

For τ ∈ R we define Bτ as a smoothing of

R× R/2Z \ ((eτ ,+∞)× (1, 2) ∪ (−∞,−eτ )× (1, 2)),

which can also be seen, up to a biholomorphism, as an annulus with two punc-
tures on the boundary. We choose a smooth family of points40

bτ ∈ (−eτ , eτ )×

{
3

2

}
⊂ Bτ

such that (Bτ , bτ ) converges, as τ → ±∞, to (B±∞, b±∞) where:

• B+∞ = B+ ⊔B− (with B+ on top of B−) and b+∞ = (0, 3
2 ) ∈ B−, and

40These points are denoted by mb(τ) in [15].
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ai
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#
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z∞

Figure 4.8: The arcs ai, bi, h(ai), and h(bi) near z∞.

• B−∞ = B−∞,1⊔B−∞,2 where B−∞,1 is obtained from {−2 ≤ s ≤ 2}∪{0 ≤
t ≤ 1} ⊂ R2 by smoothing the corners (and therefore is biholomorphic to
D2 \ {±1,±i}), B−∞,2 = [−2, 2]× R and b−∞ = (0, 0) ∈ [−2, 2]× R. See
Figure 4.7.

Every Bτ admits an anti-holomorphic involution which contains bτ in its fixed
point set. This property is used in a symmetry argument similar to that of
Subsection 4.6.2.

For each τ ∈ R, we define a fibration

πW τ
: W τ → Bτ

with fibre S and monodromy h (depending on an integer m ≫ 0 which will be
suppressed from the notation; the reader should keep in mind that all statements
hold for m large enough). For τ = ±∞ the fibrations extends to fibrations over
the limit surfaces. The total space W τ (for τ ∈ R∪{±∞}) admits a symplectic
form ΩW τ

such that all fibres are symplectic.

Let b = (b1, . . . , b2g) be small Hamiltonian perturbations of a (depending on
m) such that

• ai ∩ bi = {z∞, x♯
i,1, x

♯
i,2, x

♯
i,3}, where x♯

i,2 ∈ int(S) and x♯
i,1, x

♯
i,3 ∈ S \ S,

• bi, near z∞, is obtained from ai by a small clockwise rotation, and

• bi approaches ai sufficiently fast as m → ∞.

See Figure 4.8. We denote ∂+Bτ = ∂Bτ ∩ ([0,+∞)×R/2Z) and ∂−Bτ = ∂Bτ ∩
((−∞, 0]× R/2Z). On ∂+Bτ we consider the singular Lagrangian submanifold
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La obtained by parallel transporting a and on ∂−Bτ we consider the singular
Lagrangian submanifold L

b
obtained by parallel transporting b, so that

La ∩ [2eτ ,+∞)× {1} × S = [2eτ ,+∞)× {1} × a,

La ∩ [2eτ ,+∞)× {0} × S = [2eτ ,+∞)× {0} × h(a),

L
b
∩ (−∞,−2eτ ]× {1} × S = (−∞,−2eτ ]× {1} × b,

L
b
∩ (−∞,−2eτ ]× {0} × S = (−∞,−2eτ ]× {0} × h(b).

The Lagrangian submanifolds La and L
b
induce Lagrangian submanifolds in

∂W±∞ in an obvious way. See Figure 4.7 for the Lagrangian submanifolds in
∂W−∞.

Let Wτ ⊂ W τ be the total space of a fibration with fibre S and monodromy h.
We choose a generic family of almost complex structures Jτ onW τ which restrict
to the pull-back of a split almost complex structure on W τ \Wτ

∼= Bτ ×D. We
also fix a family of marked points mτ = (bτ , z∞) ∈ W τ .

Given y+ ∈ Sa,h(a) and y− ∈ Sb,h(b), we denote the moduli space of pairs (τ, u),

where τ ∈ R and u is a Jτ -holomorphic curve in W τ with boundary on La∪L
b
,

positively asymptotic to [0, 1] × y+, negatively asymptotic to [0, 1] × y− and
passing through mτ by MW∗

(y+,y−;m∗). To any u in this moduli space we
associate the ECH-type index I(u) satisfying the index inequality — see [15,
Subsection 3.2.6] — and the intersection number n∗(u), which is the algebraic
intersection between u and the Jτ -holomorphic multisection (στ

∞)† defined by a
point z†∞ ∈ S close to z∞ and not on the arcs a and b; see [15, Notation 3.2.9].

Definition 4.7.2. We define41 the map H : CF (S,a, h(a)) → CF (S,b, h(b))
by

H(y+) =
∑

y−∈Sb,h(b)

#MI=1,n∗=m

W∗

(y+,y−;m∗)y−. (4.21)

Let S♯ be the set of unordered 2g-tuple of intersection points x♯
1,j(1), . . . , x

♯
2g,j(2g)

between a and b. In particular no intersection point is equal to z∞. Given y+ ∈
Sa,h(a), y− ∈ Sb,h(b) and x± ∈ S♯, we will denote the moduli spaces of holo-

morphic curves in W−∞,1 with boundary conditions La∪L
b
∪L

h(b)∪L
h(a) and

asymptotic to chords over y+, x+, y− and h(x−) at the four ends of W−∞,1 (in
counterclockwise order starting from the top) by MW−∞,1

(y+,x+,y−, h(x−)).
Similarly, we denote the moduli space of holomorphic curves in W−∞,2 with

boundary conditions La∪Lb
which are asymptotic to chords over x♯

± for t → ±∞

and pass throughm−∞ = (0, 0) byMW−∞,2
(x♯

+,x
♯
−;m−∞). In the following def-

inition we abbreviate M1(y+,x
♯
+,y−, h(x♯

−)) = MI=0,n∗=0

W−∞,1
(y+,x

♯
+,y−, h(x♯

−))

and M2(x
♯
+,x

♯
−) = MI=2,n∗=m

W−∞,2
(x♯

+,x
♯
−;m−∞).

41For sake of exposition, we define here a simplified homotopy map.
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Definition 4.7.3. We define the map Θ: CF (S,a, h(a)) → CF (S,b, h(b)) as

Θ(y+) =
∑

y−∈Sb,h(b)

∑

x
♯
±
∈S♯

#
(
M1(y+,x

♯
+,y−, h(x♯

−))×M2(x
♯
+,x

♯
−)

)
y−.

(4.22)

Theorem 4.7.4. The maps H and Θ satisfy the relation

∂ ◦H +H ◦ ∂ = Ψ ◦ Φ+Θ+ V (4.23)

for a map V whose image is generated by elements of the form {xi}∪y′+{x′
i}∪y

′

where xi and x′
i here denote the intersection points of bi ad h(bi) on ∂S and y′

is a (2g − 1)-tuple of intersection points between the remaining arcs.

Theorem 4.7.4 is proved by analysing the degenerations of the moduli spaces
MI=2,n∗=m

W∗

(y+,y−;m∗). Degenerations which occur at some τ ∈ R contribute

to the left hand side, degenerations which occur at τ → +∞ contribute to
Ψ ◦ Φ + V and degenerations which occur at τ → −∞ contribute to Θ. For
τ → +∞, the cobordisms W τ degenerate into the juxtaposition of W+ on top
of W− with the base-point m+∞ ∈ W−. Sequences of holomorphic curves in
MI=2,n∗=m

W∗

(y+,y−;m∗) degenerate, for τ → +∞, either to two-level buildings

in MI=0,n∗=0

W+
(y+,γ) × MI=2,n∗=m

W−

(γ,y;m+∞) for some γ ∈ Ô2g or to three-

level buildings involving a holomorphic curve in W+ with a negative and at δ0,
the section at infinity σ−

∞ in W−, and a thin strip in R × [0, 1] × S. The two-
level degenerations contribute to Ψ◦Φ by Equation (4.20), while the three-level
degenerations contribute to V .

The main tools we use in the analysis of bad degenerations are, as for proving
that Ψ is a chain map, the intersection numbers n∗, the ECH-type index I
and truncate-and-rescale arguments to analyse how a degenerating sequence
approaches its limit. However, the cases to treat are many more than in the
previous section and their analysis is more difficult.

Theorem 4.7.5. The map Θ induces a quasi-isomorphism

Θ: ĈF (S,a, h(a)) → ĈF (S,b, h(b)).

Before proving Theorem 4.7.5 we explain how, together with Equation (4.23),
it proves that Ψ∗ ◦ Φ∗ is an isomorphism. The missing step is to prove that H
induces a map H : ĈF (S,a, h(a)) → ĈF (S,b, h(b)). Unfortunately we were not
able to prove directly that H({xi} ∪ y′) = H({x′

i} ∪ y′) if y′ is a (2g − 1)-tuple
of intersection points between the remaining arcs, and thus we extend all maps
in Equation (4.23) to a chain complex generated by 2g-tuples of intersection

points which can contain z∞ and whose homology is ĤF (S,a, h(a)). This, of
course, brings in more bad degenerations to control.
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Now we sketch the main steps of the proof of Theorem 4.7.5. We consider the two
subsets S♯

odd and S♯
even of S♯: the first consists of 2g-tuple {x♯

1,j(1), . . . , x
♯
2g,j(2g)}

where x♯
i,j(i) ∈ {1, 3}, and the second of the unique element {x♯

1,2, . . . , x
♯
2g,2}. By

[15, Lemma 3.2.15], the moduli spaces MI=2,n∗=m

W−∞,2
(x♯

+,x
♯
−;m−∞) is nonempty

only when x
♯
− ∈ S♯

odd and x
♯
+ ∈ S♯

even.

For any x
♯
− ∈ S♯

odd and x
♯
+ ∈ S♯

even, the number of elements in the moduli space

MI=2,n∗=m

W−∞,2
(x♯

+,x
♯
−;m−∞) is equal to the relative Gromov-Taubes invariant G3

defined as the number of embedded holomorphic curves inD2×S with boundary
on ∂D2 × a, representing the relative homology class [S] + 2g[D2] and passing
through (0, z∞), (x1, 1), . . . , (x2g, 1), (x2g+1,−1), . . . , (x4g,−1) with xi, xi+2g ∈
ai. See [15, Subsection 2.4.1].

By [15, Theorem 2.4.2] G3 = 1; the proof is similar to the computation of the
relative Gromov-Taubes invariant in Subsection 4.3.2. Then we can rewrite

Θ(y+) =
∑

y−∈Sb,h(b)

∑

x
♯
+∈S♯

odd

∑

x
♯
−
∈S♯

even

#MI=0,n∗=0

W−∞,1
(y+,x

♯
+,y−, h(x♯

−))y−.

This sum now has a fairly standard interpretation in Heegaard Floer theory as
composition of two triangle maps which are know to give an isomorphism in
homology: see [15, Lemma 3.3.13]. We can also argue as follows: any 2g-tuple
of intersection points y+ ∈ Sa,h(a) has a closest 2g-tuple of intersection points

y− ∈ Sb,h(b). There is a unique holomorphic curve in W−∞,1 of small energy

with I = 0, n∗ = 0 and ends at y+, x
♯
+ ∈ S♯

even, y− and x
♯
− ∈ S♯

odd: it is a
union of 2g sections whose projection to the fibre covers small fishtail-shaped
quadrilateral as those appearing in Figure 4.8.

Remark 4.7.6. It might be surprising, at a first careless look, that those curves
have index zero. The reason is that the concave angle gives a holomorphic map
from a disc with four punctures on the boundary to S covering the quadrilateral
for any conformal structure of the puncture disc, which depends on the cross-
ration of the four punctures. However, we are not looking just for maps into S
but for multisections of W−∞,1 → B−∞,1, so we also have a holomorphic map
from the four punctured disc to B−∞,1. The conformal structure of B−∞,1 is
fixed, and that fixes the conformal structure of the four punctured disc.

Thus the “low energy part” of Θ is an isomorphism, and therefore Θ is a
quasi-isomorphism by standard homological algebra. If a component of y+

is either xi or x′
i, a direct inspection shows that every element in the mod-

uli space MI=0,n∗=0

W−∞,1
(y+,x

♯
+,y−, h(x♯

−)) must have the small energy quadri-

lateral starting at xi or x′
i as an irreducible component. This implies that

Θ({xi} ∪ y′) = Θ({x′
i} ∪ y′) for all y′, and therefore Θ induces a well defined

map Θ: ĈF (S,a, h(a)) → ĈF (S,a, h(a)) which is still a quasi-isomorphism.
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4.7.2 Homotopy for Φ ◦Ψ

In this section Bτ will denote a family of cylinders with a disc removed which,
for τ → ±∞, converges to B±∞ such that:

• B+∞ = B− ⊔B+ (with B− on top of B+), and

• B−∞ = B−∞,1 ∨ B−∞,2 where B−∞,1 = R × R/2Z, B−∞,2 = D2, and
the two components are attached by identifying (0, 3

2 ) ∈ R × R/2Z with
0 ∈ D2.

In Bτ we choose a marked point bτ (depending smoothly on τ) such that
lim

τ→±∞
bτ = b±∞ where b+∞ = (0, 3

2 ) ∈ B− and b−∞ = i
2 ∈ D2. We will

also assume that every Bτ admits an anti-holomorphic involution such that bτ
is contained in its fixed point set. This property is used in a symmetry argument
similar to that of Subsection 4.6.2.

Definition 4.7.7. We say that the Reeb vector field of N satisfies Property
(††)i if every simple elliptic orbit of degree at most i has first return map which
is conjugated to a rotation by a sufficiently small negative angle so that its
incoming partition is (1, . . . , 1︸ ︷︷ ︸

i times

) and its outgoing partition is (i).

By [14, Section 2.5] it is possible to assume Property (††)i, for any i, after a C1-
small modification of the stable Hamiltonian structure supported on arbitrarily
small neighbourhoods of the elliptic orbits of degree at most i. Note that we
can see Property (††)i as a property of the monodromy h. In this subsection we
will always assume Property (††)2g.

For each τ ∈ R, we define a fibration

πW τ
: W τ → Bτ

with fibre S and monodromy h (depending on an integer m ≫ 0 which will be
suppressed from the notation). As in the previous subsection, the reader should
keep in mind that all statements hold for m large enough. For τ = ±∞ these
fibrations extend to fibrations over the limit surfaces. The total space W τ (for
τ ∈ R∪{±∞}) admits a symplectic form ΩW τ

such that all fibres are symplectic.

On ∂W τ , for τ ∈ R∪{±∞}, we consider the Lagrangian submanifold La defined
as the trace of the symplectic parallel transport along ∂Bτ applied to a copy
of a on the fibre over a point of ∂Bτ . We also fixed a family of marked points
mτ = (bτ , z∞) ∈ W τ .

Let Wτ ⊂ W τ be the total space of the fibration over Bτ with fibre S and
monodromy h. We choose a generic family of almost complex structures Jτ
on W τ among those which restrict to the pull-back of a split almost complex
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structure on W τ \Wτ
∼= Bτ ×D. Since W−∞,1 = R×N , we also require that

J−∞,1 be compatible with the stable Hamiltonian structure on N .

Given orbit sets γ± ∈ Ô2g, the moduli space of pairs (u, τ) where τ ∈ R and u

is a Jτ -holomorphic curve in W τ with boundary on La, positively asymptotic
to γ+, negatively asymptotic to γ− and passing through mτ is denoted by
MW∗

(γ+,γ−;m∗). To any u in this moduli space we associate the ECH-type
index I(u) satisfying the index inequality — see [15, Subsection 4.2.6] — and the
intersection number n∗(u), which is the algebraic intersection between the image
of u and the Jτ -holomorphic multisection (στ

∞)† defined by a point z†∞ ∈ S close
to z∞ and not on the arcs a.

Definition 4.7.8. We define the mapK : ECC2g(N,α0, ω) → ECC2g(N,α0, ω)
by

K(γ+) =
∑

γ−∈Ô2g

#MI=1,n∗=m

W∗

(γ+,γ−;m∗)γ−. (4.24)

We say that a holomorphic curve u in W−∞,1 passes through ζ ∈ π−1

W−∞,1
(0, 3

2 )

with multiplicity r if the multiplicity of ζ as intersection point between u
and π−1

W−∞,1
(0, 3

2 ) is r.42 We fix an identification π−1

W−∞,1
(0, 3

2 )
∼= S. An

element z ∈ Sym2g(S) can be seen as a set of “points with multiplicities”
z = {(ζ1, r1), . . . , (ζl, rl)} with ζi ∈ S, ri > 0 and r1 + . . . + rl = 2g. Given
z ∈ Sym2g(S), we denote the moduli space of holomorphic curves in W−∞,1 =
R × N which are positively asymptotic to γ+ and negatively asymptotic to

γ− for γ± ∈ Ô2g and pass through ζi ∈ π−1

W−∞,1
(0, 3

2 ) with multiplicity ri

by MW−∞,1
(γ+,γ−; z). Similarly, we denote the moduli space of holomorphic

curves in W−∞,2 = D2 × S with boundary on La = ∂D2 × a, representing the
relative homology class [S] + 2g[D2] and passing through m−∞ = ( i

2 , z∞) and

z ∈ Sym2g(S) by MW−∞,2
(m, z).

Definition 4.7.9. We define the map Ξ: ECC2g(N) → ECC2g(N) as

Ξ(γ+) =
∑

γ−∈Ô2g

∑

z∈Sym2g(S)

#
(
MI=0,n∗=0

W−∞,1
(γ+,γ−; z)×MW−∞,2

(m, z)
)
γ−.

The sum is finite because the moduli spacesMI=0,n∗=0

W−∞,1
(γ+,γ−; z) are nonempty

only for finitely many z ∈ Sym2g(S).

The following theorem is proved by analysing the degenerations of the moduli
spaces MI=2,n∗=m

W∗

(γ+,γ−;m∗). To control the bad degenerations and show

that either they cannot occur or they come in pairs we use a combination of

42To make sense of the multiplicity of the intersection we must assume that π−1

W−∞,1
(0, 3

2
)

is holomorphic. In fact, in [14] and [15] we assume that most almost complex structures are
compatible with the various fibrations.
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intersection theory, index computations, truncate-and-rescale and symmetry ar-
guments like in Subsection 4.6.2.

Theorem 4.7.10. The maps K and Ξ satisfy the relation

∂ ◦K +K ◦ ∂ = Φ ◦Ψ+ Ξ. (4.25)

Degenerations ofMI=2,n∗=m

W∗

(γ+,γ−;m∗) which occur at some τ ∈ R contribute

to the left hand side, degenerations which occur at τ → +∞ contribute to Φ◦Ψ
because W+∞ is the juxtaposition of W− on top of W+ and the base point
m+∞ is in W−, as in the previous subsection, and degenerations which occur
at τ → −∞ contribute to Ξ.

Property (††)2g is used in the proof Theorem 4.7.10 to simplify the gluing of
the broken holomorphic curves appearing in the definition of Ξ to holomorphic
curves in MI=2,n∗=m

W∗

(γ,γ;m∗) when there is an elliptic orbit with multiplicity

larger that one in γ; see the proof of [15, Lemma 4.3.4]. We take γ+ = γ− =

γ because holomorphic curves in MI=0,n∗=0

W−∞.1
(γ+,γ−) are necessarily branched

covers of trivial cylinders because we have chosen J−∞,i compatible with the
stable Hamiltonian structure.

To exemplify the use of Property (††)2g suppose for simplicity that we want to

glue (v1, v2) where v1 ∈ MI=0,n∗=0

W−∞,1
(γ2g, γ2g; z) is a degree 2g branched cover of

the trivial cylinder over some elliptic orbit γ. Then z = {(ζ, 2g)} with ζ = γ( 32 ).
Recall that, in the definition of the moduli spaces for embedded contact ho-
mology, branched covers of trivial cylinders with the same degree are identified,
but when we glue we must choose a representative. The ends of the curve after
gluing must satisfy the incoming and outgoing partitions, which means that we
must choose a representative of v1 satisfying the same conditions. The form of
the partitions of γ implies that we can choose v1 to be a branched cover of γ
with a unique branch point at ζ of order 2g − 1.

To prove that Φ∗ ◦Ψ∗ is an isomorphism, it remains to compute Ξ.

Theorem 4.7.11. Ξ is the identity.

To prove the theorem, we first compute the number of elements in the mod-
uli spaces MW−∞,2

(m−∞, z). To do so, we degenerate B−∞,2
∼= D2 into a

copy of D2 attached to a copy of S2 along a point so that m−∞ remains
in S2. Holomorphic curves in MW−∞,2

(m−∞, z) degenerate to constant sec-

tions of D2 × S passing through the points in z and holomorphic curves in
S2 × S in the homology class [S] + 2g[S2] passing through m−∞ and z. We
denote the moduli space of the latter holomorphic curves by MS2×S(m−∞, z).
Thus #MW−∞,2

(m−∞, z) = #MS2×S(m−∞, z). By [15, Theorem 2.3.3] (second

Gromov-Witten computation) #MS2×S(m−∞, z) = 1 for any z ∈ Sym2g(S).
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The proof is similar to the computation of the relative Gromov-Taubes invari-
ant in Subsection 4.3.2. This computation implies that

Ξ(γ+) =
∑

γ−∈Ô2g

#MI=0,n∗=0

W−∞,1
(γ+,γ−)γ−.

Since, for a suitable choice of almost complex structure, the moduli space

MI=0,n∗=0

W−∞,1
(γ+,γ−) consists of trivial cylinders, Ξ is the identity map. This

proves Theorem 4.7.11 and therefore concludes the proof of Theorem 4.7.1.

4.8 Stabilisation

In Section 4.7 we proved that Φ∗ : ĤF (S,a, h(a)) → PFH2g(N,α0, ω) is an iso-
morphism if h satisfies Property (††)2g. In view of Lemma 4.4.24, to prove that

Φ̂∗ is an isomorphism it remains to prove that PFH2g(N,α0, ω) is isomorphic

to P̂FH(N, ∂N,α0, ω); this will be done by a stabilisation argument.

In this section it would be desirable to assume Property (††)i for all i, but this
is not possible. Nevertheless, in practice, we can pretend it is for the following
reason.

Lemma 4.8.1 (See [15, Lemma 5.5.2]). There is a sequence of stable Hamilto-
nian structures (αi

0, ω
i) with Reeb vector field Ri satisfying Property (††)i such

that

• Ri and Ri+1 coincide outside of a small neighbourhood of the orbits of Ri

of degree (i.e. intersection with a fibre) i+ 1, and

• the continuation maps

Ki : PFCi(N,αi
0, ω

i) → PFCi(N,αi+1
0 , ωi+1)

satisfy Ki(γ) = γ for every generator of PFCi(N,αi
0, ω

i).

This implies that

lim
−→

PFHi(N,αi
0, ω

i) = P̂FH(N, ∂N,α0
0, ω

0).

Proposition 4.8.2. If h satisfies Property (††)2g+2, then the map

j : ECC2g(N) → ECC2g+2(N), j(γ) = e2γ

induces an isomorphism in homology.
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Figure 4.9: The pair of pants P . The negative gradient trajectories of the Morse
function f are shown.

We recall that j is a chain map because no holomorphic curve in R×N can have
a nontrivial positive end at a cover of e.

Let (T, hT ) be the open book decomposition of S3 such that T is a torus with
one boundary component and hT is isotopic, relative to the boundary, to the
product of right-handed Dehn twists along two curves intersecting exactly at
one point. In particular, the binding is the positive trefoil knot. Let NT be the
mapping torus of (T, hT ). We also assume that h

∗
TβT − βT is exact for some

Liouville form βT on T and that the Reeb vector field of the stable Hamiltonian
structure on NT induced by the fibration is nondegenerate and satisfies Property
(††)2g+2 on int(NT ), while ∂NT is a negative Morse-Bott torus.

Next, we take a pair of pants P with ∂P = ∂1P ⊔∂2P ⊔∂3P , we fix a symplectic
form on P and choose a function f : P → R which is sufficiently close to 1 in
the C∞ topology and such that its negative gradient flow is as shown in Figure
4.9. We denote the time 1 flow of f by hP and the mapping torus of (P, hP ) by

NP . Finally, we define S̃ = P ∪ S ∪ T , where ∂1P is glued to ∂S and ∂2P to
∂T . We define also h̃ : S̃ → S̃ such that h̃|S = h, h̃|T = hT and h̃|P = hP . Then

(S̃, h̃) is an abstract open book decomposition of M with page of genus 2g + 2

and we denote the mapping torus of (S̃, h̃) by Ñ .

Let {a2g+1, a2g+2} be a basis of arcs for T and, for i = 2g+1 or 2g+2, let {xi, x
′
i}

be the intersection points between ai and hT (ai) on ∂T . On S̃ we consider a
basis of arcs ã = (ã1, . . . , ã2g+2) where ãi, for i = 1, . . . , 2g + 2, is obtained by

extending ai up to ∂S̃ = ∂3P . The intersection points between and ãi and h̃(ãi)

in S̃ will be denoted by x̃i and x̃′
i. Observe that the boundary behavior of the

monodromy hP forces one intersection point in int(P ) between ãi and h̃(ãi) for
each segment of ãi \ ai.
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We define the stabilisation map

S : ĈF (S,a, h(a)) → ĈF (S̃, ã, h̃(ã)), S(y) = y ∪ {x̃2g+1, x̃2g+2}.

Similarly, we define the stabilisation map

T : ECC2g(N) → ECC2g+2(Ñ), T(γ) = e23γ.

It is easy to see that S and T are chain maps.

Lemma 4.8.3. S induces an isomorphism in homology.

Proof. One can check that

ĤF (S̃, ã, h̃(ã)) ∼= ĤF (S,a, h(a))⊗ ĤF (T,aT , hT (aT ))

and ĤF (T,aT , hT (aT )) is generated by the class of {x̃2g+1, x̃2g+2}. Since y ∪
{x̃2g+1, x̃2g+2} is homologous to y ∪ {x2g+1, x2g+2} because of the intersection

points between ãi and h̃(ãi) contained in int(P ), the lemma follows.

Lemma 4.8.4. T induces an isomorphism in homology.

Proof. By an argument similar to the proof of Lemma [15, Lemma 5.2.1],

Φ
(S̃,̃h)

(y ∪ {x̃2g+1, x̃2g+1}) = e23Φ(S,h)(y),

and therefore there is a commutative diagram

ĈF (S,a, h(a))
S //

Φ(S,h)

��

ĈF (S̃, ã, h̃(ã))

Φ
(S̃,h̃)

��

PFC2g(N)
T // PFC2g+2(Ñ).

Then Theorem 4.7.1 and Lemma 4.8.3 imply that T induces an isomorphism in
homology.

Let ι : PFC2g+2(N) → PFC2g+2(Ñ) be the inclusion of complexes induced by

the inclusion N ⊂ Ñ .

Lemma 4.8.5. The inclusion ι is a chain map and induces an injective map
ι∗ : PFH2g+2(N) → PFH2g+2(Ñ).

Proof. Both claims are a consequence of [15, Lemma 5.2.1], stating that each

irreducible component of a holomorphic curve in R × Ñ is contained in one of
R × N , R × NT or R × NP . This is a consequence of the blocking lemma [12,
Lemma 5.2.3], the trapping lemma [12, Lemma 5.3.2] and Property (††)2g+2,
which helps us control the behaviour of the curves at the ends, and therefore
their relative homology classes.
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Proof of Proposition 4.8.2. Let ι : PFC2g+2(N) → PFC2g+2(Ñ) be the inclu-
sion, which is a chain map by [15, Lemma 5.2.1]. We claim that the diagram

PFH2g(N)
T∗ //

j∗

��

PFH2g+2(Ñ)

PFH2g+2(N)

ι∗

66♥♥♥♥♥♥♥♥♥♥♥♥

commutes. In fact, by Morse-Bott theory, there are holomorphic cylinders from
h1P to e and e3 coming from the unstable manifolds of h1P for the negative
gradient flow of f (see Figure 4.9 and [15, Lemma 5.2.2]) and therefore, if γ is
a cycle in PFC2g(N), we have ∂(h1P (e+ e3)γ) = e2γ + e23γ.

The claim implies that ι∗ ◦ j∗ is an isomorphism, and therefore ι∗ is surjective.
Thus it is invertible by Lemma 4.8.5, and this shows that j∗ = ι−1

∗ ◦ T∗ is
invertible.

In view of Lemma 4.8.1 we can repeat the stabilisation argument arbitrarily

many times and conclude that the natural map PFH2g(N) → P̂FH(N, ∂N) is

an isomorphism. This implies that Φ̂∗ is an isomorphism and therefore finishes
the proof of Theorem 4.1.1.
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