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Contributions and thesis outline

Introduction and modeling

Chapter 1 is an introduction (in French) to the industrial problem we tried to model:
how to adapt bandits theory to the sequential learning problem of demand side manage-
ment. It also gives an overview of the thesis results.

Chapter 2 briefly introduces the multi-armed bandit model and the Upper Confidence
Bound (UCB) algorithm, initially studied by Auer et al. [2002a]. Then, we propose an
elementary bandit approach for demand side management by offering price incentives. We
focus on the main differences between our framework and classical bandit theory. Finally,
we define a pseudo-regret criteria and, by adapting the UCB algorithm, we offer

?
T lnT

upper bound on it.

Chapter 3 gives a non-exhaustive review of electricity demand forecasting methods and
presents an open data set used in the thesis experiments. Next, the focus is on generalized
additive models, a powerful and efficient semi-parametric approach to model electricity
consumption.

Bandit algorithms for demand side management

Chapter 4 proposes a contextual-bandit approach for demand side management of an
homogeneous population by offering price incentives. The electrical demand is modeled
using methods presented in Chapter 3. We propose an algorithm inspired by LinUCB (see
Li et al., 2010) and offer T 2/3 upper bounds on this regret (up to poly-logarithmic terms).
Simulations show the efficiency of our strategies.

Chapter 4 generalizes this approach.

Towards application

Chapter 6 proposes an approach for clustering customers according to their consumption
behavior, with a view to dropping the previous homogeneous population assumption. It
also looks at hierarchical forecasting in the context of energy demand and proposes an
approach combining an aggregation algorithm with a projection onto a coherent subspace.

Chapter 7 proposes a method to generate individual power consumption profiles using
conditional variational auto-encoders. We built this data generator for an ex-ante as-
sessment of our demand side management policies. A large set of consumers is clustered
according to their consumption behaviour and price responsiveness, then consumption
profiles are simulated for each cluster.
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Synthesis

Chapter 8 generalizes the theoretical results of Chapter 4 to provide a contextual-bandit
approach for personalized demand side management. The previous assumption of a ho-
mogeneous population is dropped and, by clustering of non-homogenous population into
several homogenous groups (by the method of Chapter 6), a protocol for personalized
demand side management. Experiments, using the data simulator provided in Chapter 7
to test the proposed strategies, conclude the chapter.

Publications

Chapter 4 and Chapter 7 are based on two articles published during the thesis:
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Notation
Without further indications, }x} denotes the Euclidean norm of a vector x. Other norms are
indexed by a subscript: e.g., the supremum norm of x is is denoted by }x}8. The estimation of
any variable X is denoted by pX; alternative estimations (provided after smoothing, aggregation,
projection etc.) are denoted by rX. Most of the time X̄ denotes some average value. We tried
to use notation as consistent as possible throughout the manuscript; they are all redefined within
the chapters. The notation of the variables that appear in several chapters (sometimes in various
forms) are summarized here.

α, β Exploration terms
B Confidence bound related to power consumption estimation
c Power consumption target
C Boundness constants on power consumption
δ Risk level

ε, E, e Noise
ϕ Mapping function to model the expected power consumption
Γ Boundness constants on the infinity norm of the covariance matrix relative to power

consumption
g Sub-set of households
G Set of household sub-sets
G Number of household clusters
h Half-hour
H Number of half-hours in a day
i Household or cluster of households
I Set of all households
κ Constants appearing in deviation inequalities
K Number of arms (Chapter 2) or incentive signals (tariffs)
λ Regularization parameter for ridge regression
` Loss
L Cumulative loss
µ Average the power consumption
υ Humidity (Chapter 6)
π Position in the year
p Distribution of the incentive signal sent
P Set of of legible distributions of the incentive signal sent
ρ Sub-Gaussian constant
r Instantaneous regret
R Cumulative regret
σ2 Variance of the power consumption
Σ Covariance matrix relative to power consumption
s, t Time steps (half-hour for Chapters 3 – 6; days for Chapters 7 and 8)
τ Temperature
θ Parameter modeling the power consumption to estimate

T , T0 Time horizons
V Matrix modeling knowledge acquired in past iterations
ξ Effect of incentive signal (tariff) on power consumption
X Parametric space of exogenous variables
x, X Vector of exogenous variables (expect for Chapter 6: power consumption)
y, Y Power consumption
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Note for non-French speakers:

“Bandit manchot” is the French translation for “one-armed bandit”;
however, a word-to-word translation would be “crook penguin”.

With this pun I tried to illustrate each chapter of the manuscript.
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Introduction et vue d'en-
semble des résultats

L’objectif de la thèse est de développer des méthodes d’apprentissage
séquentiel, et plus précisément des algorithmes de bandits, pour le pilotage
la consommation électrique. Après une brève présentation des enjeux indus-
triels et du cadre théorique, les principales contributions de la thèse sont
exposées ; les perspectives envisagées pour la suite des travaux concluent
cette introduction.
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1 Pilotage de la consommation électrique

Les recherches se sont concentrées sur le pilotage de la consommation électrique (c’est-à-
dire sur sa maîtrise), un enjeu de taille pour la fiabilité du système électrique, qui dans un
contexte de transition énergétique et numérique, n’a de cesse de se complexifier. Ce système
électrique comprend l’ensemble des activités nécessaires à la mise à disposition de l’énergie
électrique : sa production, son transport (via les lignes haute tension), sa distribution (via
les lignes moyenne et basse tensions), et sa fourniture (contrat, offre tarifaire...).

1.1 Équilibre entre production et consommation électriques

Pour l’heure, l’électricité ne se stocke à grande échelle qu’à des coûts prohibitifs et via des
dispositifs peu performants. Sous peine d’effondrement du système électrique, l’équilibre
entre la production et la consommation doit donc être rigoureusement maintenu à chaque
instant. La gestion de cet équilibre est complexe et nécessite avant tout de s’attarder
quelque peu aux spécificités de la demande électrique d’une part, et à celles du “mix de
production” d’autre part.

La consommation électrique française
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Lundi Mardi Mercredi Jeudi Vendredi Samedi Dimanche

Hiver
Printemps
Été
Automne

Figure 1.1 – Puissance électrique instantanée hebdomadaire (moyennée sur l’année 2016) consom-
mée en France (en GW) selon les saisons.

Les besoins électriques des entreprises comme des particuliers (qui représentent environ
un tiers de l’électricité consommée) sont divers et varient au cours de la journée, de la
semaine, des conditions météorologiques ou encore d’évènements exceptionnels. De fait,
la demande est généralement bien plus importante au cours de la journée que la nuit
et son profil journalier se déforme selon que le jour est ouvrable ou non. Thermosen-
sible, la consommation française varie aussi au gré des saisons, l’utilisation des chauffages
électriques entraînant une hausse de la demande en hiver. Les profils hebdomadaires de
la consommation française tracés en figure 1.1 pour les quatre saisons de l’année 2016
illustrent ces dépendances. Cette même année la consommation d’électricité en France
métropolitaine, qui représente environ un quart de l’énergie finale consommée, s’est élevée
à 483,2 TWh, ce qui correspond à environ 7 000 kWh consommés par an et par habitant –
contre plus de 50 000 kWh/habitant en Islande et une moyenne mondiale proche de 2 700
kWh/habitant. Notons que les données utilisées pour tracer ces courbes sont les relevés de
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consommation, disponibles en open data1, fournis par le Réseau de Transport Électrique
(RTE). Enfin, de nombreux évènements, prévisibles ou non, impactent significativement
la consommation. Par exemple, en mars 2020, les mesures pour lutter contre la pandémie
de Covid-19 telles que la fermeture des commerces non essentiels et le ralentissement de
l’activité du secteur industriel ont entraîné une chute de 15% de la demande électrique
française ; des baisses de la consommation plus réjouissantes sont aussi observées lors des
vacances scolaires ou des jours fériés.

La production électrique française

Afin de répondre à cette demande, les centres de production sont répartis aux quatre
coins de la France. À titre d’exemple, les différents moyens de production français mis
en œuvre le 3 octobre 2017 (date officielle du début de la thèse) sont représentés en
figure 1.2. Dans les centrales électriques, les générateurs sont entraînés par des machines
thermiques alimentées par combustion d’une énergie primaire. Lorsque ce combustible
est fossile (charbon, gaz naturel ou pétrole), la centrale est dite “thermique” tandis que
le terme “bioénergies” est utilisé pour des combustibles organiques (biomasse, déchets).
Ces énergies représentent respectivement 7,9 et 1,8% de l’électricité produite sur l’année
2019. Dans les centrales nucléaires (70,6% de la production), c’est la fission de noyaux
d’atomes lourds qui dégage de la chaleur. Les barrages hydro-électriques (11,2%) et les
fermes éoliennes (6,3%) utilisent l’énergie de l’eau et du vent, transformée en énergie
mécanique via une turbine hydraulique ou d’une hélice, pour entraîner un générateur
électrique. En cas de sur-production (ou de prix de l’électricité très faibles), dans certains
barrages, il est possible de remontrer l’eau par pompage, et ainsi stocker l’électricité sous
forme d’énergie potentielle. Enfin, les panneaux photovoltaïques (2.2%) convertissent une
partie de l’énergie du rayonnement solaire en courant continu.
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20 GW

40 GW

60 GW

00:00 04:00 08:00 12:00 16:00 20:00

Thermique

Nucléaire

Hydraulique

Bioénergies

Éolien

Solaire

Exports

Pompage

Figure 1.2 – Puissance électrique instantanée (en GW) générée en France le 3 octobre 2017.

La gestion de l’équilibre

RTE transporte l’électricité, via les lignes à haute tension, des centrales aux postes sources ;
elle est ensuite distribuée via le réseau de distribution (Enedis) aux particuliers et aux en-
treprises (les plus énergivores sont directement rattachées au réseau de transport). Cet
acheminement est complexe du fait de la multiplicité des points de génération de l’électri-

1https://www.rte-france.fr/eco2mix
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cité et des nombreux échanges entre régions et avec les pays frontaliers. La figure 1.3 pré-
sente la production, la consommation et les échanges électriques entre les régions françaises
le 3 octobre 2017 à midi. RTE est en charge de l’équilibre global entre la consommation et
la production d’électricité mais impose à chaque fournisseur (tel EDF) de gérer son propre
équilibre, qui doit prouver à chaque instant qu’il injecte physiquement la consommation
de son portefeuille de clients. Les écarts compensés par RTE sont pénalisés (voir la fin du
chapitre 5 pour plus de détails).

200 3650 7100 10550

(a) Production

2000 3625 5250 6875

(b) Consommation

− 2500 0 2500 5000 7500

(c) Échanges

Figure 1.3 – Puissance produite (à gauche), consommée (au centre) et échangée (à droite) sur le
réseau électrique en France le 3 octobre 2017 à 12:00 (en MW).
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Figure 1.4 – Profils de consommation normés (échelle unitaire) utilisés par Enedis la semaine du
2 au 8 octobre 2017 pour les clients en contrat de base (tarification standard en gris) et les clients
en contrat heures creuses/heures pleines (tarification HC/HP en bleu).

Les principales sources de production électrique présentent des caractéristiques bien dif-
férentes. Les énergies éolienne et solaire sont intermittentes : elles dépendent des vents et
de l’ensoleillement, quand les autres moyens de production sont plus “programmables” (no-
tons toutefois que la production d’électricité hydraulique nécessite que les barrages soient
remplis, que l’utilisation des stocks hydrauliques est soumise à des contraintes écologiques
ou touristiques et que certaines centrales hydroélectriques fonctionnent sans retenue d’eau
– ou au fil de l’eau – et donc sans possibilité de stockage de celle-ci). Le volant principal
de la gestion de la demande repose sur la flexibilité des centrales programmables, dont
l’activité est déterminée par anticipation de la demande. Les prévisions de cette dernière
doivent donc être aussi précises et fiables que possible, pour permettre d’actionner au
mieux les différents moyens de production. Elles sont réalisées à différents horizons : les
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prévisions à moyen terme (de quelques mois à quelques semaines) permettent de plani-
fier les opérations de maintenance des centrales et les prévisions à court et très court
termes (d’une quinzaine de jours à quelques heures) de déterminer leur activité. Prévoir la
consommation électrique est donc une activité essentielle pour les producteurs, fournisseurs
et distributeurs d’électricité ; elle est plus largement détaillée au chapitre 3. Notons que les
centrales nucléaires sont historiquement peu flexibles (bien qu’elles soient plus “manœu-
vrables” aujourd’hui) et demeurent par ailleurs bien moins ajustables à la consommation
que les centrales thermiques, de sorte qu’en réponse à des pointes de consommation, les
producteurs ont généralement recours à des combustibles fossiles. Pour les exploitants des
centrales nucléaires, une courbe de consommation lisse serait idéale. L’électricité française
étant principalement nucléaire, EDF a été pionnier en proposant dès 1965 des tarifs heures
creuses/heures pleines qui incitent les clients à consommer hors des pointes de consom-
mation (lorsque l’électricité est moins chère). Les profils de consommation normés (i.e.
divisés par les consommations moyennes des foyers) de clients à un tarif de base et à un
tarif heures creuses/heures pleines sont représentés sur la figure 1.4 pour la semaine du 2
au 8 octobre 2017 et attestent de l’efficacité de tels contrats (les données sont disponibles
en open data sur le site d’Enedis2). En effet, pour le profil HC/HP, les pointes de consom-
mation sont observées plutôt la nuit, en décalé par rapport au profil de base. De telles
stratégies dites d’effacement, qui visent à réduire provisoirement de la consommation des
clients (en échange d’avantages financiers), se sont ensuite développées et ce notamment
avec les acteurs industriels énergivores.

1.2 Évolution du système électrique

Un système au cœur de la transition écologique...

52
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Figure 1.5 – Profil journalier de l’impact carbone du kWh (en gCO2/kWh), moyenné sur l’année
2016 et au pas de temps demi-horaire (données disponibles sur le site web de RTE).

La volonté d’intégrer des énergies renouvelables, sujettes aux changements météorolo-
giques, au “mix” de production complexifie la gestion de l’équilibre : il devient de plus
en plus difficile de planifier la production en fonction de la demande. Par exemple, le 3
octobre 2017, les panneaux photovoltaïques n’ont produit de l’électricité qu’entre 8 et 20
heures et l’électricité éolienne était essentiellement générée la nuit (cf. figure 1.2). Ces
plages horaires sont évidemment amenées à évoluer au gré des conditions météorologiques
et plus la part du renouvelable intermittent augmentera, plus les fournisseurs chercheront
à inciter les consommateurs à s’adapter à la production électrique, c’est-à-dire déplacer

2https://www.enedis.fr/coefficients-des-profils
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leurs usages électriques lorsque de l’électricité est disponible. Notons aussi que les fermes
éoliennes et solaires génèrent, en comparaison aux centrales classiques, de petites quanti-
tés d’électricité ; elles sont nombreuses et viennent se greffer un peu partout sur le réseau,
modifiant ainsi sa structure jusqu’alors plutôt “centralisée”. Toujours dans une perspective
écologique, le profil journalier moyen (sur l’année 2016) de l’impact carbone du kWh est
tracé en figure 1.5. Il est clair que l’électricité consommée en journée rejette plus de CO2

que la même quantité d’électricité consommée la nuit. Ceci s’explique par le recours aux
centrales thermiques pour répondre aux pointes de consommation. C’est donc au moment
où l’énergie est produite en grande quantité qu’elle a l’impact carbone le plus fort. Dans
un souci de diminution du CO2 rejeté par la production d’électricité, l’idéal serait donc
de lisser au maximum la demande électrique.

... et de la transition numérique

Le système électrique évolue aussi du côté des consommateurs : de nouveaux usages appa-
raissent tels que les véhicules électriques et certains foyers produisent eux-mêmes une partie
de leur électricité, grâce à des panneaux photovoltaïques installés sur les toits des maisons
(auto-consommation). L’installation de compteurs intelligents permet d’envisager le pilo-
tage de certains appareils électriques dont les usages peuvent être décalés dans le temps,
par exemple la recharge des voitures électriques, le chauffage des ballons d’eau chaude ou
encore la mise en fonctionnement des pompes de piscine. Ces compteurs pourraient aussi
assurer un accès aux données de consommation rapide et précis ainsi qu’une communica-
tion quasi-instantanée entre les acteurs du système électrique. Des solutions de pilotage
de la demande électrique peuvent ainsi être imaginées : les producteurs d’électricité et les
gestionnaires des réseaux pourraient communiquer directement avec les consommateurs
en leur offrant des incitations à consommer lorsque la production est importante, ou in-
versement, à réduire leur consommation lorsque la situation est plus critique. Des réseaux
intelligents (plutôt connus sous la dénomination de smart grids), dans lesquels l’informa-
tion circule en temps réel, émergent déjà, à l’échelle de villes ou de quartiers ; par exemple
à Carros et dans le Grand Lyon, où Enedis pilote les projets Nice Grid et Smart Electric
Lyon. Enfin, notons que le développement des véhicules électriques permet d’envisager un
stockage décentralisé de l’électricité, via l’utilisation des batteries, qui peuvent être mises
à disposition du réseau et ainsi se charger ou se décharger en fonction de la demande et
de la production électrique (technologie vehicle-to-grid ou V2G).

Dans ce nouveau système électrique (illustré en figure 1.6), décentralisé, bas-carbone
et connecté, le pilotage dynamique de la consommation devient un enjeu de taille pour
la gestion de l’équilibre production-consommation électrique : il permettrait de lisser la
consommation, évitant ainsi les pointes de consommation et le recours aux centrales ther-
miques d’une part, et de mieux intégrer les énergies renouvelables intermittentes d’autre
part.

1.3 Stratégies de gestion de l’énergie

Plus concrètement, le pilotage de la consommation électrique pourrait se matérialiser par
l’envoi de signaux – tels que des changements des prix de l’électricité – qui permettrait
d’inciter les usagers à la consommation en cas de production d’électricité importante (via
un prix réduit) ou, au contraire, à sa réduction (via un prix plus élevé) lors de chutes
de production (en l’absence de vent et de soleil, par exemple). Ils pourront alors ajuster

22



Figure 1.6 – Illustration d’un système électrique en transition écologique et numérique.

la part variable de leur consommation, et décaler dans le temps certains usages, éven-
tuellement via des systèmes de contrôle des appareils électriques (smart home). Notons
qu’EDF met aussi en place des systèmes de pilotage à distance directement au niveau
des appareils électriques (sans passer par l’envoi de signaux d’incitation tarifaire) ; par
exemple au cours de l’expérimentation “Une Bretagne d’avance”3, des interruptions des
chauffages sont commandées à distance afin de réduire la consommation au moment des
pointes (les durées des coupures sont calculées pour ne pas altérer le confort de vie des
consommateurs, qui peuvent, à tout moment reprendre le contrôle de leur chauffage). Ces
possibilités de maîtrise de la consommation électrique (demand side management ou en-
core demand response en anglais) sont actuellement largement étudiées (voir Palensky and
Dietrich, 2011 pour un aperçu plus complet des solutions développées).

Positionnement de la thèse

Afin de piloter de la demande électrique au niveau des consommateurs, un enjeu crucial
est de choisir, de façon dynamique, les bons signaux à envoyer aux usagers, qui modu-
leront leur consommation en conséquence afin qu’elle s’ajuste au mieux à la production
d’électricité. Les algorithmes utilisés pour choisir ces signaux devront apprendre la réac-
tion des consommateurs face aux envois tout en optimisant ces derniers ; nous parlerons
de compromis exploration – exploitation.

L’objectif de cette thèse est la conception de systèmes automatiques d’envoi de signaux
d’incitation tarifaire et ce à l’échelle des consommateurs individuels. Remarquons qu’une
fois les choix tarifaires effectués et les signaux envoyés aux usagers, seules les consomma-
tions électriques associées à ces choix sont observées. Le problème s’inscrit ainsi dans un
cadre dit d’information partielle (ou “bandit information” en anglais) – en opposition au
cadre d’information complète (“full information”), pour lequel il serait possible d’observer
les consommations électriques associées à chaque choix tarifaire. Ainsi, nous chercherons à
piloter la consommation électrique, par envoi d’incitations tarifaires, en utilisant les outils
de la théorie des bandits stochastiques (que nous présentons dans la section suivante).

3La commission de régulation de l’énergie (CRE) documente les projets de type smart grids sur le site
http://www.smartgrids-cre.fr
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L’enjeu principal réside dans une modélisation pertinente de ce problème d’apprentis-
sage par renforcement (elle est détaillée en section 3), viennent ensuite les questions de
l’adaptation des algorithmes de bandits aux cas du pilotage de la consommation puis de
leurs applications.

2 Théorie des bandits

Cette partie présente brièvement les fondements de la théorie des bandits à plusieurs bras
sur laquelle repose l’essentiel des contributions théorique de la thèse. Après avoir décrit
le cadre général, nous nous attarderons sur deux algorithmes fondamentaux : l’algorithme
Upper Confidence Bound (UCB) et sa version “bandits linéaires” LinUCB, qui ont très
largement inspiré les stratégies proposées par la suite. Ce cadre mathématiques est plus
formellement introduit dans le chapitre 2, où sont aussi rappelées les preuves des résul-
tats théoriques énoncés ci-dessous. Enfin, nous décrirons la modélisation adoptée pour le
pilotage de la demande électrique et comment nous envisageons d’adapter la théorie des
bandits.

2.1 Modèle de bandits stochastiques à plusieurs bras

Si le modèle de bandits à plusieurs bras a initialement été introduit par Thompson, 1933
dans l’objectif d’améliorer certains procédés de tests cliniques, il tire son nom de la manière
imagée dont il est souvent formulé : un statisticien passe les portes d’un casino et fait face
à une rangée de machines à sous – aussi appelées bandits manchots – dont les probabilités
de gains lui sont inconnues et variables d’une machine à l’autre. À chaque fois qu’il joue sur
une machine, il reçoit une récompense, régie par la loi de probabilité associée à la machine
choisie. Ne connaissant pas ces lois, pour maximiser ses gains, il doit tester les différentes
machines à sous tout en jouant le plus possible sur celle qui semble maximiser ses récom-
penses. Nous parlerons de compromis exploration-exploitation. Quelles machines faut-il
jouer ? Quand et comment ? Comment être sûr d’avoir repéré la meilleure machine ? La
théorie mathématique des bandits explore différentes stratégies de maximisation des gains.

Nous considérons K machines à sous numérotées de 1 à K, et au tour t, nous notons
It la machine à sous choisie par le statisticien. Comment choisir It sachant que précédem-
ment, aux tours 1, 2, . . . , t ´ 1, les machines I1, I2 . . . , It´1 ont été jouées et que les gains
Y1, Y2, . . . , Yt´1 ont été observés ? Plus formellement, une distribution νk est associée à
chaque machine k et lorsque le joueur la choisit, c’est-à-dire lorsque It = k, il reçoit une
récompense

Yt | It = k „ νk .

Le modèle des bandits stochastiques à plusieurs bras repose sur l’hypothèse que les récom-
penses associées à une même machine sont indépendantes et identiquement distribuées.
Un algorithme de bandits se définit par une stratégie, c’est-à-dire par des règles qui per-
mettent de sélectionner, à chaque tour, la machine à jouer.

L’espérance E(νk) des gains de la machine k (c’est-à-dire le gain moyen de la machine
k) sera notée µk, de sorte que, si le joueur joue un très grand nombre T de fois sur cette
machine k, son gain total sera proche de Tµk. Si ces espérances étaient connues, la meilleure
stratégie consisterait à ne jouer que sur une seule et même machine : la machine k‹ ayant
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l’espérance la plus élevée. Afin d’évaluer la performance d’une stratégie, un critère de
pseudo-regret est généralement introduit ; il compare, en espérance, les gains associés à la
stratégie adoptée par le statisticien et ceux de la meilleure stratégie possible. Dans le cas du
problème de bandits à plusieurs bras, en jouant T tours, un joueur omniscient remporterait
un gain en moyenne égal à Tµk‹ . Remarquons qu’à un tour t, conditionnellement à la
machine choisie It, le gain espéré est µIt – puisqu’il vérifie E[Yt|It] = µIt (c’est l’hypothèse
fondamentale du modèle de bandits stochastiques à plusieurs bras). Aussi, le pseudo-regret
se définit par :

R̄T = Tµk‹ ´

T
ÿ

t=1

µIt .

Remarque 1. Idéalement, il faudrait comparer Tµk‹ avec le gain cumulé
řT

t=1 Yt et non
avec

řT
t=1 µIt . Mais ces deux quantités sont liées (elles sont égales en espérance) et grâce

à des inégalités de déviation (telle que l’inégalité d’Azuma-Hoeffding) il est possible de
montrer qu’elles sont proches et donc qu’en cherchant à maximiser

řT
t=1 µIt , le statisticien

maximise aussi son gain réel
řT

t=1 Yt. Tout ceci est plus largement discuté au chapitre 2,
dans lequel la notion de pseudo-regret est plus formellement introduite.

Lorsque les gains sont bornés, disons entre 0 et 1, le pseudo-regret est toujours compris
entre 0 et T (puisque les espérances µ1, . . . , µK sont toutes dans l’intervalle [0, 1]) ; il est
donc, au pire, linéaire en T . Notre objectif sera de montrer que, lorsque l’on joue un grand
nombre de fois, le pseudo-regret moyen de nos stratégies converge vers 0, autrement dit
que

R̄T

T
TÑ8

Ñ 0 .

Obtenir des bornes sous-linéaires en T pour le pseudo-regret permet ainsi de s’assurer du
bien-fondé d’une stratégie et c’est ce que démontreront les résultats théoriques de la thèse.

2.2 Algorithme Upper Confidence Bound

L’algorithme étudié par Auer et al. [2002a] se fonde sur l’estimation d’espérances µ1, µ2,
..., µK . Le statisticien qui adopte la stratégie Upper Confidence Bound (UCB) commence
par jouer sur chaque machine une fois. Puis, à chaque tour t et pour chaque machine k,
il considère une estimation pµt´1,k de µk. Cette estimation est calculée à partir des gains
observés lorsque la machine k a été jouée : elle est la moyenne empirique

pµt´1,k =
1

Nt´1,k

t´1
ÿ

s=1

Ys1tIs=ku où Nt´1,k =
t´1
ÿ

s=1

1tIs=ku ,

et où 1tIt=ku est égal à 1 si It = k et 0 sinon. L’entier Nt´1,k correspond donc au nombre de
coups joués sur la machine k avant le tour t. À chacune des machines, le statisticien associe
un niveau de confiance αk,t, qui quantifie l’incertitude qu’il a sur l’estimation pµt´1,k. Ses
calculs lui permettent d’affirmer que si jamais il joue la machine k au tour t, il aura de
très fortes chances d’obtenir un gain dont l’espérance est comprise dans l’intervalle[

pµt´1,k ´ αt,k , pµt´1,k + αt,k

]
.

Très optimiste face à ses incertitudes, le statisticien décide alors de jouer comme si les
machines allaient lui rapporter des gains aussi grands que plausiblement possible, c’est-à-
dire comme si chaque machine k allait lui rapporter le gain pµt´1,k +αt,k. Ainsi, au tour t,
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il joue la machine associée au gain le plus important selon ses suppositions et choisit

It P argmax
kPt1,...,Ku

 

pµt´1,k + αt,k

(

.

Les caractéristiques principales des niveaux de confiance αk,t sont qu’ils diminuent lorsque
la machine k est jouée : observer un nouveau gain associé à la machine k permet de mettre
à jour pµt´1,k et d’être ainsi plus confiant sur cette estimation. De plus, ils augmentent
lentement avec t, de sorte que le statisticien finira toujours par retourner jouer sur une
machine qui rapporte peu (pour s’assurer qu’elle est bien sous-optimale). Ces niveaux de
confiance permettent ainsi de trouver un bon compromis entre exploration (lorsque αk,t

est grand, le statisticien n’est pas confiant sur son estimation pµt´1,k et s’il choisit It = k,
c’est pour améliorer sa connaissance de la machine k) et exploitation (lorsque αk,t est
petit, le statisticien est très confiant sur son estimation pµt´1,k et s’il choisit It = k, c’est
pour de bonnes raisons : la machine k lui a déjà rapporté beaucoup).

Figure 1.7 – Illustration de l’algorithme Upper Confidence Bound (UCB). La machine de gauche
a été jouée souvent (l’intervalle de confiance [ pµt´1,k ´ αt,k , pµt´1,k + αt,k] est petit et l’estimation
du gain est importante : cette machine a déjà rapporté beaucoup). À l’inverse, l’estimation de
l’espérance du gain de la machine du milieu est faible et l’intervalle de confiance est grand : le
peu de fois où elle a été jouée, elle n’a pas rapporté beaucoup. Son intervalle de confiance n’est
toutefois pas assez large pour exiger un nouveau tour d’exploration. Enfin la machine de droite a
le niveau pµt´1,k + αt,k le plus élevé, elle est donc jouée ; le gain observé va permettre de mettre à
jour le gain moyen (qui semble pour l’heure n’être ni bon ni mauvais) et de diminuer la taille de
l’intervalle de confiance.

Remarque 2. Pour l’algorithme UCB, les niveaux de confiance sont fondés sur l’inégalité
de Azuma-Hoeffding (cf. chapitre 2 pour plus de détails) et définis, pour t ě K, par

αt,k =

d

2 ln t
Nt´1,k

.

L’algorithme UCB est illustré en figure 1.7. De telles stratégies ont été largement étu-
diées et permettent d’obtenir de bons résultats tant sur le plan théorique que pratique ;
en choisissant correctement les niveaux de confiance (ceci est largement détaillé au cha-
pitre 2), il est possible de montrer que l’espérance du pseudo-regret est sous-linéaire, et
plus précisément d’ordre

O
(?
T lnT

)
.
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2.3 Algorithme LinUCB

L’algorithme LinUCB, introduit par Li et al. [2010], est une généralisation de l’algorithme
UCB au cas où il existe une dépendance linéaire entre l’espérance des gains et certaines
variables contextuelles.

Dans ce cadre étendu du modèle de bandits à plusieurs bras, l’espace d’action du sta-
tisticien n’est plus forcément discret, il ne choisit alors plus une machine k P t1, . . . ,Ku,
mais une action que nous noterons pt et qui appartient à un espace P. À chaque tour
t, il observe un vecteur de variables contextuelles noté xt qui oriente son choix pt P P ;
il reçoit ensuite le gain Yt. L’hypothèse majeure du modèle de bandits contextuels avec
dépendance linéaire est que, conditionnellement au contexte xt et à l’action pt, l’espérance
du gain satisfait

E
[
Yt |xt, pt

]
= ϕ(xt, pt)

Tθ ,

où ϕ est une fonction connue dite de transfert (ou de “mapping”) et θ est un vecteur
paramètres inconnus. L’intérêt d’une telle hypothèse se comprend sûrement mieux avec
un exemple : supposons, comme dans l’application originale des modèles de bandits aux
test cliniques, que nous cherchions à comparer l’efficacité de deux médicaments. Un tour
t correspond à l’arrivée d’un patient à qui il faut attribuer un traitement pt. Le gain mo-
délise la guérison ou non du malade et le contexte xt pourrait alors rassembler diverses
informations sur le patient (son âge, sa taille, etc.). En supposant que les taux de guéri-
son décroissent linéairement avec l’âge des patients mais qu’ils varient d’un traitement à
l’autre, le modèle précédent peut tout à fait convenir.

Notons qu’en omettant les variables contextuelles et en restreignant l’espace P aux
vecteurs e1, . . . , eK de la base canonique de RK (c’est-à-dire les K-vecteurs (1, 0, 0, . . . ),
(0, 1, 0, . . . ), etc.), nous retrouvons le modèle de bandits à plusieurs bras.

Dorénavant, l’action optimale dépend du contexte (un traitement peut être plus efficace
chez les enfants que chez les adultes, par exemple) ; et pour le joueur omniscient, qui
connaît θ, la meilleure action à prendre au tour t est

p‹
t P argmax

pPP
ϕ(xt, p)

Tθ .

Exactement de la même façon que dans le cas du modèle de bandits à plusieurs bras, il est
alors possible de définir le pseudo-regret, qui compare, en espérance, la meilleure stratégie
à celle adoptée :

R̄T =
T
ÿ

t=1

ϕ(xt, p
‹
t )

Tθ ´

T
ÿ

t=1

ϕ(xt, pt)
Tθ .

L’algorithme LinUCB repose sur une estimation du paramètre θ (tout comme l’algo-
rithme UCB reposait sur l’estimation des espérances µ1, µ2, . . . , µK) obtenue à l’aide des
observations passées. Au tour t, nous noterons pθt´1 cette estimation, calculée à partir des
variables x1, p1, Y1, . . . , xt´1, pt´1, Yt´1 (par régression Ridge). Pour chaque action p, un
niveau de confiance αt,p, qui quantifie le niveau d’exploration de l’action, est aussi défini.
Dès lors, après un premier tour d’exploration (p1 choisit aléatoirement, par exemple), à
un tour t ě 2, l’algorithme LinUCB choisit l’action pt de façon optimiste :

pt P argmax
pPP

 

ϕ(xt, p)
T
pθt´1 + αt,p

(

,
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ce qui assure un regret sous-linéaire d’ordre

O
(?
T lnT

)
.

Tout ceci est parfaitement documenté dans chapitre 19 de la monographie Lattimore and
Szepesvári [2020].

2.4 Modélisation adoptée pour le pilotage de la demande électrique

Le pilotage de la consommation électrique peut être vu comme un problème d’appren-
tissage séquentiel. À chaque tour t, l’algorithme choisit un signal incitatif à envoyer aux
usagers, qui modulent en conséquence leur consommation électrique. Cette dernière est
ensuite observée par l’algorithme qui apprend ainsi les réactions des consommateurs face
aux changements tarifaires. Nous rappelons que l’algorithme ne peut pas observer ce qu’il
se serait produit avec un signal différent, nous sommes bien dans un cadre d’information
partielle et il est ainsi naturel de considérer un modèle de bandits.

Au tour t + 1, l’algorithme décide du nouveau signal à envoyer, et ainsi de suite. Afin
de maintenir l’équilibre entre la production et la consommation électrique, il est impératif
que les usagers consomment exactement l’électricité produite. Aussi, le choix des signaux
à envoyer dépendra d’une consommation cible qui sera donnée à l’algorithme, cette cible
correspond par exemple à la production électrique. Comme certaines variables météoro-
logiques et calendaires influent significativement sur la consommation électrique, il est
essentiel qu’elles soient elles aussi observées par l’algorithme. Au tour t + 1, ce dernier
décidera donc du signal à envoyer en fonction de la production électrique et des variables
contextuelles, et il le fera en utilisant toutes les informations (cibles, variables contex-
tuelles, signaux tarifaires et consommations électriques) recueillies aux tours précédents.
La figure 1.8 illustre ce problème d’apprentissage séquentiel ; il sera formalisé plus loin par
le protocole 1.

Figure 1.8 – Illustration d’un protocole d’apprentissage séquentiel pour le pilotage de la demande
électrique.

Les algorithmes de bandits sont largement utilisés pour modéliser les problèmes d’ap-
prentissage séquentiel puisque la machine à sous du tour t est choisie en fonction des
machines jouées et des gains remportés aux tours précédents. Dans le cas du pilotage
de charge, les signaux à envoyer aux clients joueront le rôle des machines à sous ou des
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actions à prendre pt et la consommation, celui des gains Yt. Le contexte xt regroupe les va-
riables météorologiques et calendaires qui influent significativement sur la consommation
(en plus du prix de l’électricité). Les modèles diffèreront cependant du cadre classique :
l’objectif n’est plus de maximiser les gains mais d’approcher au mieux une cible connue
(la production d’électricité).

3 Algorithme optimiste pour le pilotage de la consommation
d’une population homogène – cf. chapitres 4 et 5

Afin de concevoir des systèmes automatiques efficaces pour répondre aux enjeux industriels
énoncés, la modélisation de la problématique

Appliquer la théorie mathématique des bandits au problème d’apprentissage
séquentiel du pilotage de la consommation électrique

était déterminante. Les littératures sur les modèles de bandits d’une part, et sur les modé-
lisations de la consommation électrique d’autre part, étant très riches, il était primordial
de formaliser convenablement le problème. Après avoir fixé une modélisation de la consom-
mation électrique (en nous autorisant certaines hypothèses de départ), un protocole pour
le pilotage de la demande a été établi. Les recherches se sont alors concentrées sur l’éla-
boration d’un algorithme de bandits destiné à piloter la consommation électrique d’une
population homogène d’usagers. Il permet d’atteindre, en grande probabilité, un regret
sous-linéaire et ses performances théoriques ont été illustrées par des expériences réalisées
sur un jeu de données de consommation de foyers londoniens soumis à des changements
dynamiques du prix de l’électricité.

Avant d’aborder formellement la question du pilotage, nous tenions à présenter succinc-
tement le jeu de données qui a été utilisé tout au long de la thèse et qui a largement inspiré
notre modélisation du problème.

Données issues du projet Low Carbon London

Les données utilisées pour tester les algorithmes de bandits sont disponibles en open data4,
ce qui permet de s’inscrire dans une démarche de reproductibilité des résultats par la com-
munauté. Elles regroupent les relevés de consommation d’un millier de foyers londoniens
ayant participé au projet Low Carbon London mené par UK Power Networks, au pas de
temps demi-horaire et tout au long de l’année 2013. Ces foyers ont été soumis à des prix
de l’électricité dynamiques : trois tarifs (bas, standard ou élevé) pouvaient être appliqués.
L’ensemble des foyers recevait le même signal de prix. Les tarifs ainsi que leur plage horaire
étaient communiqués un jour à l’avance via les compteurs électriques et ont été conçus
pour être représentatifs des types de signaux qui pourraient être utilisés pour piloter la
consommation des usagers. Ces données précieuses, présentées en détail au chapitre 3, ont
orienté une partie des travaux.

Nous nous sommes en effet appuyés sur le projet Low Carbon London pour modéliser
les signaux d’incitation tarifaire : nous nous focaliserons sur un nombre fini de tarifs à

4https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
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envoyer aux consommateurs (tels que bas, standard ou élevé – une autre approche aurait
pu considérer des prix de l’électricité continus, comme c’est le cas sur le “marché de gros”
de l’électricité).

De plus, une analyse descriptive poussée de ces données (cf. chapitre 3) a permis de
mieux comprendre l’impact d’un tarif sur la consommation et de pouvoir, par la suite,
proposer une modélisation cohérente. À titre d’exemple, la figure 1.9 représente l’effet de
l’envoi d’un signal tarifaire sur la consommation moyenne de l’ensemble de la population. Il
est clair que le tarif élevé induit une baisse de la consommation et le tarif bas, un pic. Mais
notons que ces effets sont très dépendants des heures de la journée pour lesquels ils sont
appliqués : les baisses ou les hausses de consommation engendrées par des changements
de prix de l’électricité sont plus significatives en journée que la nuit.

0.20 kWh

0.30 kWh

0.40 kWh

Lundi Mardi Mercredi Jeudi Vendredi Samedi Dimanche

Tarif élevé
Tarif standard
Tarif bas

Figure 1.9 – Impact des variations du prix de l’électricité (élevé en marine, standard en bleu
et bas en vert) sur la consommation électrique des foyers du projet Low Carbon London sur une
semaine de l’année 2013.

3.1 Modélisation de la consommation et protocole d’apprentissage sé-
quentiel

Notre première modélisation considère une population homogène de consommateurs ; ces
derniers répondent donc tous, en moyenne, de la même manière à un changement des
prix de l’électricité. Nous supposons que le fournisseur d’électricité dispose de K tarifs. À
chaque demi-heure, selon qu’il est maître de sa production ou non (dans le cas d’un four-
nisseur d’énergies intermittentes, par exemple), il fixe ou reçoit une consommation cible
(qui sera une entrée de l’algorithme de bandits) et observe des variables contextuelles
(température, jour de la semaine, etc.). Il peut scinder la population en plusieurs parties
et envoyer à chaque sous-population un tarif différent. En choisissant correctement la taille
de chaque sous-population ainsi que les tarifs à envoyer, il espère alors approcher au mieux
la consommation cible, c’est-à-dire la production d’électricité. Le schéma de la figure 1.10
illustre ce processus, qui est répété toutes les demi-heures.

Plus formellement, au tour t, l’algorithme reçoit une consommation cible ct ainsi qu’un
vecteur de variables contextuelles xt. Il choisit alors les proportions pt,1, . . . , pt,K , regrou-
pées dans un vecteur pt, de sorte qu’une proportion pt,1 de la population reçoit le tarif 1,
une proportion pt,2 la tarif 2 et ainsi de suite. La population étant supposée homogène, la
façon dont elle est partitionnée n’a pour l’heure aucune importance. Après avoir envoyé
les tarifs, l’algorithme observe la consommation Yt. Afin de quantifier la justesse de son
choix pt, il subit alors une perte

`t =
(
Yt ´ ct

)2
,
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Figure 1.10 – Illustration d’une itération du protocole de pilotage de la demande électrique
d’une population homogène. En entrée, l’algorithme reçoit les variables contextuelles xt et une
consommation cible ct (la production d’électricité) et a observé la consommation au tour précédant
Yt´1. Il a aussi accès à l’historique (tours 1 à t´ 1) des consommations, des variables contextuelles
et des tarifs choisis. Il choisit alors les proportions de la population à qui il envoie les différents
tarifs. Sur cet exemple, il scinde la population en deux et envoie le tarif bleu à 6/13 de la population
et le tarif vert au 7/13 restant.

c’est-à-dire la différence au carré entre la cible et la consommation observée. Cette perte
peut être vue comme l’opposé des gains des machines à sous du problème classique de
bandits.

Détaillons à présent la modélisation de la consommation électrique ; elle est la clé qui
nous permettra de proposer un algorithme en réponse à ce protocole de pilotage résumé
plus loin, au protocole 1.

Modélisation de la consommation avec un modèle additif généralisé

Tout au long de la thèse, la consommation électrique sera majoritairement modélisée à
l’aide de modèles additifs généralisés, très largement utilisés à EDF et présentés en détail
au chapitre 3. La consommation électrique est alors vue comme la somme des effets des
différentes variables contextuelles (température, jour de la semaine, etc.). À chaque tour
t, la consommation suit donc un modèle de la forme :

Yt = f1(pt) + f2(température) + f3(jours de la semaine) + ¨ ¨ ¨ + bruit ,

où les fonctions f1, f2, etc. sont des fonctions lisses (généralement obtenues par projection
sur des bases de splines – cf. chapitre 3). Lorsqu’un tel modèle est supposé, il est possible
de définir une fonction de transfert ϕ et de se ramener au modèle linéaire, de sorte que, à
un tour t, conditionnellement à xt et pt, l’espérance de la consommation Yt est :

E
[
Yt |xt, pt

]
= ϕ(xt, pt)

Tθ ,

où θ est un vecteur de paramètres inconnu. L’établissement, à partir du modèle additif
généralisé, du modèle linéaire ci-dessus est expliqué au chapitre 3.

Nous verrons un peu plus loin qu’il était aussi primordial de modéliser le terme de
bruit. Comme nous avons observé sur les données que les consommations résultantes de
l’application de tarifs spéciaux pouvaient être très variables (car ces derniers engendrent
une modification des comportements de clients) ; le bruit devra déprendre des signaux pt
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choisis. Le modèle adopté est le suivant : au tour t, lorsque le fournisseur choisi le vecteur
de proportion pt, la consommation électrique Yt est égale à

Yt = ϕ(xt, pt)
Tθ + pT

t εt .

Les vecteurs aléatoires ε1, ε2, . . . , sont sous-gaussiens5, indépendants et identiquement dis-
tribués, de moyenne nulle et de matrice de covariance Σ. Cette dernière permet de mo-
déliser la variance de la consommation électrique, qui diffère d’un signal tarifaire envoyé
à l’autre et n’est pas connue du fournisseur d’électricité. Notre modélisation est plus am-
plement discutée au chapitre 4 (un second modèle, pour lequel le bruit est indépendant
des vecteurs pt choisis, y est aussi introduit). Ainsi, l’effet des incitations tarifaires im-
pacte la consommation électrique au niveau de son espérance (via la fonction f1 et donc
le paramètre θ) d’une part, et de sa variance (via la matrice de covariance Σ), d’autre part.

Protocole 1 Pilotage de la consommation électrique
Entrée

Fonction de transfert ϕ
Paramètres inconnu

Vecteur θ
Matrice de covariance Σ

Pour t = 1, 2, . . .
Observation d’un vecteur de contexte xt et d’une cible ct
Choix des proportions de population pt
Observation de la consommation résultante Yt = ϕ(xt, pt)

Tθ + pT
t εt

Perte subie (Yt ´ ct)
2

Objectif
Minimiser la perte cumulée LT =

T
ÿ

t=1

(Yt ´ ct)
2

3.2 Minimisation du regret

Au vu du protocole, un fournisseur d’électricité omniscient (c’est-à-dire connaissant le
vecteur θ et la matrice Σ) observant le vecteur xt et la cible ct choisira le vecteur de
proportion qui minimise l’espérance de sa perte :

p‹
t = argmin

p

 

`t,p
(

où `t,p = E
[
(ϕ(xt, p)

Tθ + pTεt ´ ct)
2 |xt, p

]
=
(
ϕ(xt, p)

Tθ ´ ct

)2
+ pTΣp .

Ces calculs, détaillés au chapitre 4, montrent que le meilleur choix à prendre à un tour
t dépend du vecteur θ et de la matrice Σ. En effet, il est possible que les meilleures pro-
portions à choisir ne soient pas celles qui sont associées à des consommations en moyenne
très proches de la cible. La variance (via la matrice Σ) de la demande électrique joue un
rôle majeur dans notre modélisation : les tarifs spéciaux étant généralement associés à une

5 Pour ρ ą 0, un vecteur aléatoire ε de dimension d est ρ–sous-gaussien si, @ ν P Rd, E
[
eν

Tε
]

ď eρ
2}ν}2/2.
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variabilité importante, il est parfois préférable de rester à un tarif standard et être sûr de
perdre un peu plutôt que d’appliquer un tarif spécial et risquer de perdre beaucoup. Notre
algorithme présenté ci-après va permettre de gérer ce compromis biais-variance.

Notons que pt correspond à l’action prise par le statisticien dans le cadre des bandits
linéaires et p‹

t à la meilleure action a jouer au tour t. Exactement comme dans ce cadre
classique présenté en seconde partie, nous introduisons alors le pseudo-regret

R̄T =
T
ÿ

t=1

`t,pt ´

T
ÿ

t=1

`t,p‹
t
.

Nous avons ensuite proposé un premier algorithme de bandits (cf. section 3 du chapitre 4)
qui s’inspire très largement de l’algorithme LinUCB. L’idée est d’estimer, à chaque tour t,
pour chaque vecteur de proportions p, l’espérance de la perte `t,p qui sera subie ainsi que
de calculer un intervalle de confiance autour de cette estimation. Cette dernière est rendue
possible grâce à la modélisation, sous forme linéaire, de la consommation électrique. Elle
repose sur l’estimation préalable du paramètre θ (exactement comme dans l’algorithme
LinUCB) ainsi que sur l’estimation de la matrice Σ (grâce à des tours d’exploration dé-
terministe – cf. chapitre4).

Pour t et p donnés, l’estimation et le niveau de confiance sont respectivement notés p`t,p
et αt,p. Notre algorithme, lui aussi optimiste, agit comme si les pertes allaient être aussi
petites que plausiblement possible et choisit les proportions pt selon le critère :

pt P argmin
p

 

p`t,p ´ αt,p

(

.

Remarque 3. Comme nous regardons des pertes et non des gains, les signes + deviennent
des signes ´ et au lieu de choisir la machine associée au gain plausiblement possible le
plus grand, nous choisissons les proportions associées à la perte plausiblement possible la
plus petite (de même pour le regret qui a été défini en changeant les signes).

La modélisation posée a permis de démontrer que le pseudo-regret de notre algorithme
était bien sous-linéaire et nous énonçons ici une version très simplifiée de notre résultat –
qui correspond au Théorème 4 du chapitre 4).

Théorème. Pour un risque δ P]0, 1[, en choisissant correctement les niveaux de confiance
αt,p, avec probabilité supérieure à 1 ´ δ, le pseudo-regret satisfait

R̄T =
T
ÿ

t=1

`t,pt ´

T
ÿ

t=1

min
p
`t,p = O

(
T 2/3 ln2

(
T/δ

)a
ln(1/δ)

)
.

Dans certains cas très favorables (qui supposent notamment que la variance de la
consommation est indépendante des tarifs envoyés), nous avons montré que le pseudo-
regret était de l’ordre de ln2 T (cf. Théorème 5).

Perspective : optimalité théorique de l’algorithme

D’un point de vue purement théorique, il reste à regarder l’optimalité de l’algorithme
proposé. En effet, nos résultats montrent que l’algorithme optimiste permet d’apprendre
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les bons signaux incitatifs à envoyer, mais pas qu’il est optimal. Pour ce faire, il faudrait
s’intéresser aux lower bounds de notre modèle de bandits, pour obtenir un résultat du
type : “peu importe la stratégie adoptée, le pseudo-regret sera toujours supérieur à ...”.
Cela permettrait de quantifier l’écart entre le regret de l’algorithme développé et le regret
du meilleur algorithme possible, et donc d’évaluer les possibilités d’amélioration.

3.3 Gestion des effets rebond et de bord

La possibilité d’envoyer des tarifs demi-heure par demi-heure n’étant absolument pas réa-
liste en pratique, un aspect important fut de généraliser les travaux précédents afin d’inté-
grer ces contraintes opérationnelles. Le fournisseur choisira désormais un profil journalier
de tarif qu’il enverra à ses clients la veille ; et il observera un profil de consommation
journalier en fin de journée. Cette extension permet aussi de modéliser les effets rebond
et de bords observés lors de l’envoi d’un tarif spécial. Plus précisément, lorsqu’un tarif
élevé est envoyé, l’effet de ce tarif dure généralement plus longtemps que la plage horaire
sur laquelle il est effectivement appliqué (les consommateurs veulent être sûrs de ne pas
consommer quand les prix sont élevés et éteignent leurs appareils avant l’application effec-
tive du tarif). À l’inverse, pour un tarif bas, l’effet dure généralement moins longtemps (les
usagers ne consomment que lorsque les prix sont effectivement faibles). C’est ce que nous
désignerons par “effet de bord”. De plus lorsqu’un tarif haut est appliqué sur une certaine
plage horaire, une baisse de la consommation est observée, mais cela génère généralement
une hausse de la consommation à un autre moment de la journée car les usages électriques
ne peuvent pas être décalés indéfiniment (à l’inverse l’application d’un tarif bas peut en-
gendrer une baisse de consommation à un autre moment de la journée). Ce phénomène
est connu sous le nom “d’effet rebond”.

3.4 Extension aux pertes quelconques

Ces premiers résultats théoriques ont été étendus à des fonctions de pertes plus générales.
Lorsque le fournisseur d’électricité choisit le vecteur de proportions pt, il subit désormais
une perte

`t = f(Yt,pt , ct) ,

où f est une fonction vérifiant certaines hypothèses explicitées au chapitre 5. Cette fonction
peut par ailleurs varier d’une demi-heure (ou d’un jour) à l’autre.

3.5 Premières applications

Une fois ces résultats théoriques établis, l’objectif final était leur mise en application. Tes-
ter un algorithme de bandits est par ailleurs loin d’être évident. En effet, seuls les relevés de
consommation électrique associés aux choix tarifaires fixés par les fournisseurs d’électricité
sont disponibles. Un jeu de données en “information complète” – comportant, à chaque
instant, les relevés associés à tous les choix tarifaires possibles – est cependant nécessaire
à l’évaluation des algorithmes. Ces relevés indisponibles sont alors simulés. Ils aspirent à
être les plus réalistes possibles afin d’attester des performances réelles des algorithmes et
envisager une mise en œuvre opérationnelle.

Lors des premières expériences menées sur le jeu de données Low Carbon Data, les re-
levés de consommation ont été simulés selon le modèle de consommation pré-établi. Bien
que peu réalistes sur le plan opérationnel (l’envoi se fait demi-heure par demi-heure, sans
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aucune restriction sur les choix – un tarif élevé pendant plusieurs jours est possible, par
exemple), elles ont appuyé la théorie.

Notre première méthodologie d’expérimentation soulève toutefois une question de fond
importante : est-il raisonnable de tester les algorithmes avec des données générées selon
le modèle présupposé par l’algorithme ? Évidemment, ces premiers tests sont nécessaires
pour illustrer la performance des stratégies proposées, mais si une mise en œuvre opéra-
tionnelle est envisagée, la robustesse des algorithmes doit être évaluée : que se passe-t-il si
les données de consommation se suivent pas exactement la modélisation considérée ? Nous
verrons en seconde partie de la section suivante comment nous avons tenté d’aborder cette
problématique.

4 Segmentation des foyers et simulation de données : vers
l’application des résultats théoriques

La mise en application des résultats théoriques nécessitait une connaissance approfondie
des problématiques de prévision de consommation électrique, qui sont extrêmement liées
aux recherches, et ce à deux niveaux : les modèles de prévision sont, d’une part, intégrés
aux algorithmes de bandits – qui doivent estimer correctement la consommation pour op-
timiser le choix des signaux – et permettent, d’autre part, de simuler des données – et ainsi
de tester les algorithmes. Aussi, des travaux sur la prévision de la consommation d’agrégats
de foyers, segmentés selon leur profil, et reliés par des contraintes dites hiérarchiques (telle
que : la consommation totale est la somme des consommations des différents agrégats)
ont ensuite été menés. Ils ont permis de mieux appréhender l’hétérogénéité des profils de
consommation, et ont ouvert la voie vers le pilotage personnalisé (les résultats théoriques
suggéraient par ailleurs qu’une extension levant l’hypothèse d’homogénéité de la popu-
lation était possible). Les recherches se sont ensuite concentrées sur l’élaboration d’un
générateur de données de consommation électrique construit à partir d’auto-encodeurs
variationnels conditionnels, qui permettra de tester la robustesse des algorithmes à des
données qui ne suivent pas exactement les modèles supposés par ces derniers.

4.1 Prévision de consommation électrique de groupes de foyers reliés
hiérarchiquement – cf. chapitre 6

L’hypothèse précédente d’homogénéité de la population n’est pas vraiment réaliste, d’une
part car au sein d’un même réseau électrique, les conditions météorologiques peuvent dif-
férer et d’autre part, car les habitudes de consommation sont propres à chaque foyer. Ces
derniers sont toutefois généralement catégorisés selon la taille de leur logement, le nombre
de personnes qui l’occupent, le type de chauffage, les appareils électriques utilisés etc.,
ou grâce à un historique de relevés de consommation. Dans un second temps de la thèse,
nous nous sommes focalisés sur la prévision de la consommation électrique d’agrégats de
foyers, préalablement regroupés selon leurs habitudes de consommation et sur l’utilisation
de liens hiérarchiques entre ces agrégats pour améliorer les prévisions. L’objectif est de
prévoir la consommation à différents niveaux d’agrégation. En effet, si la prévision de la
consommation globale est essentielle pour assurer l’équilibre sur tout le réseau électrique,
des prévisions à des échelles plus petites permettent d’envisager un pilotage plus local (si
les prévisions sont faites région par région, par exemple) et plus personnalisé (si les pré-
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visions sont réalisées par groupe comportemental). Notons qu’en pratique, la somme des
consommations locales est égale à la consommation globale, mais que ce n’est forcément
pas le cas pour les prévisions (qui sont souvent réalisées indépendamment les unes des
autres). En outre, plus le niveau d’agrégation est élevé, plus la courbe de consommation
est lisse (les comportements erratiques des individus se moyennent) et plus cette dernière
est facile à prévoir. Il ne semble donc pas inutile de prévoir les consommations aux diffé-
rents niveaux d’agrégation, indépendamment, puis de les combiner, en vue de les améliorer.

Le jeu de données utilisé pour les expériences est décrit au chapitre 6, il rassemble
les relevés de consommation d’environ 1 500 ménages, répartis sur plusieurs régions de
Grande-Bretagne. Il n’est plus question ici de mesurer l’impact d’un tarif dans le but
d’implémenter des stratégies de pilotage de la consommation (les foyers de ce jeu de don-
nées n’étant pas soumis à des prix variables de l’électricité), mais plutôt de développer
des méthodes de segmentation des usagers et de prévision de leur consommation afin de
s’affranchir de l’hypothèse d’homogénéité de la population, et de pouvoir ainsi concevoir
des algorithmes de pilotage personnalisé.

L’objectif de ces travaux est de proposer des méthodes de prévision de la consommation
électrique de groupes de foyers, et ce à différents niveaux d’agrégation. Nous considérons,
par exemple, que la population est segmentée en différentes régions, chaque région ayant
sa propre météo, ainsi qu’en différents groupes, chaque groupe ayant un profil de consom-
mation différent. Nous souhaitons obtenir des prévisions de consommation pour chaque
sous-groupe d’une même région, pour chaque groupe, pour chaque région et aussi pour la
population totale. Cette hiérarchie à trois niveaux est illustrée en figure 1.11.

Figure 1.11 – Illustration de la prévision sous contrainte hiérarchique.

Segmentation des foyers

Avant de prévoir les consommations électriques, il a fallu segmenter les foyers. Différentes
méthodes ont été testées : des segmentations fondées sur les caractéristiques des foyers
(critères socio-démographiques, type de chauffage) ainsi qu’une segmentation utilisant
les historiques de consommation. Pour cette seconde méthode, l’historique de relevés de
consommation de chaque foyer est d’abord résumé en quelques variables (grâce à une
technique de réduction de dimension), qui sont ensuite données à des algorithmes de seg-
mentation classiques (de type k-means, par exemple). Ces derniers répartissent alors les
foyers dans les différents groupes. Les profils de consommation électrique hebdomadaire
moyens sont tracés sur la figure 1.12 et illustrent des habitudes de consommation signifi-
cativement différentes d’un groupe à l’autre.
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0.10 kWh

0.20 kWh

0.30 kWh

0.40 kWh

Lundi Mardi Mercredi Jeudi Vendredi Samedi Dimanche

Groupe  1 − 174 foyers     Groupe  2 − 807 foyers     Groupe  3 − 252 foyers     Groupe  4 − 312 foyers     

Figure 1.12 – Segmentation des foyers en fonction de relevés de consommation.

Méthodologie : une prévision en trois étapes

Une fois ces groupes définis, une hiérarchie similaire à celle de la figure 1.11 est alors ob-
tenue. La méthode utilisée pour obtenir les prévisions de consommation est la suivante.
Pour chaque nœud de la hiérarchie, une prévision est réalisée. Différentes méthodes (fon-
dées sur les modèles linéaires, les modèles additifs généralisés ou les modèles de forêts
aléatoires), détaillées au chapitre 6, ont par ailleurs été testées et comparées. Par la suite,
pour chaque nœud, l’ensemble des prévisions est utilisé pour prévoir de nouveau la consom-
mation du même nœud. Pour ce faire, nous avons utilisé des algorithmes d’agrégation. Ces
algorithmes reçoivent en entrée plusieurs prévisions et renvoient une combinaison de ces
prévisions, c’est-à-dire une moyenne pondérée des prévisions. Les poids de cette moyenne
sont appris par l’algorithme au fur à mesure des itérations. De tels algorithmes ont fait leur
preuve à EDF et sont généralement utilisés pour mélanger les prévisions d’un même agré-
gat de foyers mais issues de méthodes de prévisions différentes (cf. Goude [2008] et Gaillard
[2015] pour plus de détails). L’idée d’utiliser ici les algorithmes d’agrégation était de pou-
voir corriger automatiquement les mauvaises prévisions : si la consommation d’un des
nœuds est mal prévue alors que celles des nœuds d’à côté le sont correctement, l’algo-
rithme est capable d’utiliser les bonnes prévisions pour corriger la prévision du nœud qui
pose problème. Tout cela fonctionne car les prévisions sont liées par les comportements
des usagers et les variables contextuelles d’une part, mais aussi par les contraintes hiérar-
chiques (la somme des consommations de sous-groupes comportementaux d’une région est
égale à la consommation de la région etc.) d’autre part. Par ailleurs, comme rien jusqu’alors
n’assure que ces contraintes soient vérifiées, une dernière étape, dite de projection, permet
d’améliorer encore les prévisions tout en s’assurant qu’elles sont cohérentes (c’est-à-dire
que les contraintes hiérarchiques sont vérifiées). La démarche est résumée par le schéma
ci-dessous.

Prévision Agrégation Projection
Historique de données
Variables contextuelles

Prévisions
finales

Résultats

Nous avons démontré que, sous certaines hypothèses prises sur l’algorithme d’agrégation
utilisé, la méthode proposée permettait d’améliorer les prévisions dans leur ensemble ;
c’est à dire que la somme des erreurs sur toutes les prévisions diminue (cf. Théorème 9).
Les résultats numériques obtenus sur les données de Grande-Bretagne, en utilisant trois
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algorithmes d’agrégation vérifiant les hypothèses du théorème, ont été encore plus convain-
cants que la théorie. En effet, les prévisions ont été améliorées à la fois au niveau des petits
agrégats, mais aussi au niveau global ; c’est à dire que les erreurs sur les prévisions locales
d’une part, et l’erreur sur la prévision globale d’autre part, ont diminué.

4.2 Simulations de données de consommation électrique – cf. chapitre 7

Nous rappelons que pour tester efficacement un algorithme de bandits pour le pilotage de
la demande électrique, il est nécessaire de disposer des relevés de consommation associés à
chaque choix possible de l’algorithme. Comme seule la consommation résultante des prix
effectivement appliqués est observée, un tel jeu de données n’existe pas. Les relevés in-
disponibles seront donc simulés et devront être les plus réalistes possibles. Idéalement, les
données de consommation simulées doivent reproduire les effets rebond et de bords induits
par des changements tarifaires. Pour ce faire, nous générerons des profils de consomma-
tion journaliers : le simulateur prendra en entrée des variables contextuelles telle que la
température, le jour de la semaine etc. ainsi qu’un profil tarifaire journalier (constitué des
tarifs appliqués pour chaque demi-heure de la journée) et renverra un profil de consom-
mation réaliste (mais aléatoire – pour tenir compte de la variabilité de la consommation
électrique). Afin de tester la robustesse des algorithmes proposés, nous avons opté pour
une approche “boîte noire” orientée données qui ne suppose aucune connaissance préalable
sur la consommation électrique et ne nécessite aucune paramétrisation de modèle. Elle re-
pose sur l’utilisation d’auto-encodeurs variationnels conditionnels, des systèmes constitués
de réseaux de neurones introduits par Kingma et al. [2014] et présentés au chapitre 7.
Afin d’attester du bien-fondé d’une telle méthode, les données simulées ont été comparées
à celles générées par des méthodes s’appuyant sur les modèles additifs généralisés, qui
requièrent une expertise métier.

Méthodologie

Notre simulateur tente de reproduire des profils journaliers de consommation électrique
semblables à ceux du jeu de données Low Carbon Data. Les foyers ont tout d’abord été
répartis, en fonction de leurs habitudes de consommation et de leur réaction face aux
changements des prix de l’électricité, en plusieurs groupes (grâce à une méthode similaire
à celle présentée dans le paragraphe précédent). Pour chaque groupe, un auto-encodeur
variationnel conditionnel, prenant en entrée les profils journaliers de consommation du
groupe ainsi que les profils tarifaires et les variables contextuelles, a ensuite été entraîné.
Il était alors possible de simuler de nouveaux relevés de consommation pour chaque groupe,
pour n’importe quel profil tarifaire et n’importe quelles conditions météorologiques. Un
jeu de données en information complète a ainsi pu être obtenu.

Résultats

Les résultats ont montré que le simulateur capturait correctement l’effet des variables
contextuelles ainsi que l’effet d’un profil tarifaire journalier : il est capable de reproduire
les effets de bord et de rebond. De plus, pour les mêmes variables contextuelles et les
mêmes prix en entrée du simulateur, les échantillons générés différaient d’un groupe de
consommateurs à l’autre ; ce qui montre que l’approche de segmentation proposée répartit
correctement les foyers en fonction de leur réactivité à un profil tarifaire. Sur la figure 1.13,
des profils de consommation simulés sont tracés sur les trois premiers jours de l’année 2013.
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Ils correspondent tous à la consommation d’un même groupe de foyers, soumis à différents
profils tarifaires : un tarif standard en noir, un tarif bas en début de la journée en jaune
et un tarif élevé le soir en bleu.

0.10 kWh

0.20 kWh

0.30 kWh

0.40 kWh

0.50 kWh

1er jan. 2 jan. 3 jan.

Figure 1.13 – Simulation de profils de consommation pour différents profils tarifaires.

Enfin, nous avons remarqué que le simulateur de profils de consommation peinait à
générer des données cohérentes lorsqu’un nouveau profil tarifaire (c’est-à-dire non observé
dans les données d’apprentissage) était donné en entrée. Cela paraît assez intuitif : n’ayant
pas d’exemple à disposition, le simulateur n’a aucune idée du profil de consommation à
associer à ces nouveaux tarifs. Afin d’améliorer ce dernier, nous envisageons d’ajouter de
nouvelles données d’apprentissage, issues d’expériences différentes de celle menée sur les
foyers du projet Low Carbon London, et ce grâce à des méthodes dites de transfer learning.

5 Synthèse et perspectives : vers un pilotage personnalisé – cf.
chapitre 8

Les derniers travaux tentent de concilier les contributions précédentes et visent à proposer
un algorithme de pilotage de la consommation personnalisé (les signaux incitatifs envoyés
à un usager dépendent de son profil de consommation) prenant en compte des contraintes
opérationnelles (un tarif élevé ne peut par exemple pas être appliqué trop longtemps).

5.1 Modélisation d’une population non-homogène et algorithme opti-
miste

La contribution finale de la thèse (cf. chapitre 8) considère une population qui n’est plus
homogène mais segmentée en G groupes de foyers ayant les mêmes habitudes de consom-
mation électrique. Chaque groupe est vu comme une sous-population homogène, soumise
à des conditions météorologiques qui lui sont propres et sa consommation électrique est
modélisée de la même manière que l’était la population homogène dans la première contri-
bution.

À chaque tour t, le fournisseur d’électricité souhaite maintenir l’équilibre global entre
la production et la consommation et fixe (ou reçoit) donc une consommation cible ctot

t .
Afin de pouvoir favoriser l’intégration des énergies intermittentes à un niveau plus local,
par exemple en incitant les foyers proches d’une ferme éolienne à consommer en période
de vent fort, nous supposons que le fournisseur peut aussi fixer des cibles locales cg

t , où g
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est un sous-ensemble de groupes de foyers. En fonction des conditions météorologiques de
chaque groupe, ainsi que des cibles fixées, l’algorithme choisit alors, pour chaque groupe
i = 1, . . . , G, un vecteur de proportions pit (la proportions pit,1 du groupe i reçoit le tarif 1,
la proportion pit,2 le tarif 2, etc.) et observe ensuite les G consommations Y 1

t,p1t
, . . . , Y G

t,pGt
.

Il subit alors la perte

`t =
( G
ÿ

i=1

Y i
t,pit

´ ctot
t

)2
+
(
ÿ

iPg
Y i
t,pit

´ cg
t

)2
+ . . . ,

c’est à dire la somme des pertes associées à chacune des cibles. La figure 1.14 schématise
ce procédé, répété à chaque tour t.

Figure 1.14 – Illustration d’une itération du protocole de pilotage de la demande électrique
pour une population non-homogène. En entrée, l’algorithme reçoit des variables contextuelles de
chaque groupe, une consommation cible globale (la production d’électricité), ainsi que certaines
cibles locales (induites par exemple par la production d’énergie solaire ou éolienne). Il a accès à
l’historique de consommation de la population (avec les variables contextuelles et les tarifs choisis
sur les itérations passées). Pour chaque groupe, il choisit alors les tarifs à envoyer ainsi que leurs
proportions respectives. Sur cet exemple, il ne scinde que les groupe du haut, à qui il envoie le
tarif bleu au 4/7 du groupe et le tarif vert au 3/7 restant, le groupe du milieu reçoit le tarif vert
et celui du bas le bleu.

En généralisant les travaux présentés au chapitre 4, un algorithme de bandits optimiste
est proposé et permet de répondre à ce problème de pilotage de charge personnalisé et
contraint. Le Théorème 10 du chapitre 8 démontre que cet algorithme assure un regret
sous-linéaire, puisqu’avec grande probabilité, il vérifie

R̄T = O
(
T 2/3

)
.

Notons tout de même que cette borne sur le regret dépend du nombre de groupes de foyers
G, via un facteur 2G´1G.

5.2 Résultats expérimentaux et améliorations envisagées

Des expériences ont été menées, dans des cas simplifiés, sur les données Low Carbon Lon-
don. Elles utilisent le simulateur de données construit à l’aide des auto-encodeurs variation-
nels et ont montré que l’algorithme apprenait rapidement à envoyer des profils tarifaires
permettant d’approcher les cibles à la fois locales et globales. Mais les algorithmes propo-
sés se sont avérés difficiles à implémenter et nous avons pris certaines libertés vis-à-vis de
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la théorie dans les expériences présentées. Ces résultats expérimentaux ont donc vocation
à être améliorés.

Tout d’abord, nous rappelons que l’algorithme partage les sous-populations en choisis-
sant les proportions

pt P
 

argmin
p

p`t,p ´ αt,p

(

.

À chaque tour t, il doit ainsi résoudre un problème de minimisation. Ce dernier peut avoir
plusieurs solutions et est compliqué à résoudre (car il n’est pas convexe). En outre, l’en-
semble des choix possibles de l’algorithme peut être immense. À titre d’exemple, lorsque
le choix des proportions pt est restreint et que tous les foyers d’un même groupe re-
çoivent le même tarif, dans le cas où trois tarifs sont disponibles et où l’algorithme choisit
chaque jour, pour quatre groupes différents, un profil tarifaire demi-heure par demi-heure,
(348)4 « 4.1091 possibilités (c’est plus que le nombre d’atomes dans l’univers) s’offrent
à lui. Heureusement, certaines de ces possibilités peuvent d’ores et déjà être éliminées :
d’un point de vue opérationnel, il n’est par exemple pas envisageable d’envoyer un profil
tarifaire passant d’un tarif élevé à un tarif bas toutes les demi-heures. En pratique nous
avons jusqu’alors restreint les choix des vecteurs pt à un ensemble fini relativement petit,
s’affranchissant ainsi de la question de la minimisation d’une fonction non convexe sur un
espace de grande dimension – qui méritait pourtant d’être approfondie.

Notons aussi que les niveaux de confiance αt,p stipulés par la théorie sont généralement
très grands, ce qui conduit à des algorithmes qui explorent énormément (et exploitent
alors peu les connaissances acquises aux cours des itérations). Trouver le bon niveau d’ex-
ploration est un second enjeu expérimental important.

5.3 Perspectives

Au cours de la thèse, les premières hypothèses, notamment celle concernant l’homogénéité
de la population, ont été abandonnées et des algorithmes de pilotage personnalisés et pre-
nant en compte certaines contraintes opérationnelles ont alors pu être proposés. Il reste
encore toutefois de nombreuses pistes à explorer pour envisager la mise en place effective
d’algorithmes de bandits pour le pilotage de la demande électrique.

Notons que les résultats, à la fois théoriques et appliqués, obtenus sur l’amélioration des
prévisions de consommation d’agrégats de foyers reliés par des contraintes hiérarchiques
n’ont pas directement impacté les recherches sur le pilotage de la consommation. Ils sou-
lèvent cependant de nouvelles problématiques. Serait-il possible d’intégrer ces travaux à
l’algorithme de pilotage personnalisé ? À chaque itération, ce dernier estime les consom-
mations électriques associées à chaque groupe de foyers (avant d’estimer les pertes puis les
niveaux de confiance). L’idée serait d’améliorer ces prévisions à l’aide d’étapes d’agréga-
tion et de projection. Nous espérons qu’alors, les algorithmes seront capables d’apprendre
encore plus vite les bons signaux de prix à envoyer aux usagers.

Nous tenions aussi à noter que pour nos modèles, les groupes de foyers sont fixés à
l’avance et restent constant au cours du temps. D’un point de vue opérationnel, il serait
intéressant de pouvoir faire varier ces groupes. Un foyer dont les habitudes de consomma-
tion changent (lorsque les enfants quittent la maison pour aller faire leurs études, ou suite
à l’achat d’une voiture électrique, par exemple) pourrait ainsi être déplacé d’un groupe
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à l’autre. Aussi, il semblerait intéressant de coupler les algorithmes de bandits avec des
algorithmes de segmentation séquentiels. Dès lors, de nouveaux problèmes apparaissent : si
un groupe change significativement de comportement, l’algorithme de bandits devra “ou-
blier” ce qu’il a appris et ré-apprendre les nouvelles habitudes de consommation du groupe.

Ces deux perspectives principales soulèvent une nouvelle problématique visant à

Intégrer des méthodes séquentielles de prévisions et de segmentation des foyers
aux algorithmes de pilotage personnalisé de la consommation électrique

et qui pour l’heure, demeure ouverte. La modélisation et la formalisation du problème, qui
constituent un enjeu préalable de taille, permettront sans doute d’envisager plus sereine-
ment la conception de ces nouvelles approches.

6 Résumé de la démarche scientifique et plan du manuscrit
La structure du manuscrit et les liens entre les chapitres sont schématisés en figure 1.15
(en anglais, comme le reste du manuscrit). Le chapitre 2 introduit mathématiquement les
modèles de bandits à plusieurs bras ainsi que l’algorithme UCB. Un algorithme de bandits
pour le pilotage dans un cas basique y est aussi proposé et une borne sur son pseudo-regret
démontrée. Le chapitre 3 présente le jeu de données Low Carbon London ainsi qu’un bref
historique des méthodes de prévision de la consommation électrique. Il s’attarde plus lon-
guement sur les modèles additifs généralisés, largement utilisés à EDF et à l’origine de
notre modélisation de la consommation électrique. Les chapitres 4 et 5 introduisent les

Figure 1.15 – Contents and organization of the thesis manuscript
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premiers algorithmes de bandits pour le pilotage de la consommation électrique d’une
population homogène. Le chapitre 6 présente les travaux sur la segmentation des foyers
ainsi que sur la prévision d’agrégats de foyers reliés par des contraintes hiérarchiques et
le chapitre 7, le simulateur de données. Enfin, l’algorithme de bandits pour un pilotage
personnalisé est proposé au chapitre 8.

La figure 1.16 retrace la chronologie de la thèse. Le sujet posé en début de thèse, ainsi
que toutes les questions qui se sont soulevées au fil des recherches et auxquelles nous avons
tenté de répondre sont en bleu clair. Les contributions sont brièvement explicitées en bleu
marine et les différents verrous qu’il reste à lever ainsi que les perspectives pour les travaux
futurs sont mentionnés en vert.

Figure 1.16 – Chronologie et démarche scientifique de la thèse. En bleu clair : les questions
soulevées au cours de la thèse, en marine : les contributions apportées en réponse et en vert : les
perspectives.
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2
Multi-armed bandit models,
mathematical framework

This chapter briefly introduces the multi-armed bandit model and the
Upper Confidence Bound (UCB) algorithm, initially studied by Auer et al.
[2002a]. Both distribution-dependent and distribution-free regret bounds
are recalled. Then, we propose an elementary bandit approach for demand
side management by offering price incentives. We focus on the main
differences between our framework and classical bandit theory. Finally, we
define a pseudo-regret criteria and, by adapting the UCB algorithm, we
offer

?
T lnT upper bound on it.
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1 Introduction

William R. Thompson originally introduced the multi-armed bandit problem for a medi-
cal application (see Thompson, 1933). Traditionally, clinical trials identify the best of two
treatments with A/B testing: by blindly splitting a large population in two sub-groups,
they compare subjects’ responses to variant A against variant B and determine which of
the two variants is more effective. Thompson’s idea was to consider a sequential approach:
patients volunteering to take part in the trial arrive one by one and an agent decides which
of the two treatments is assigned to them using the responses of the previous patients.
Mathematically, this trial is model by two slot machines, also called “one-armed bandits”
characterized by two unknown probabilistic distributions. A gambler (or an agent) enters
in the casino and starts playing. At each new round, she has to decide which machine
to play with: should she test the one that seems inferior but hasn’t been played much
yet or continue playing the one that looks best currently? She thus faces an exploration-
exploitation dilemma.

Bandits are classic reinforcement learning problems generally divided in two frame-
works: stochastic bandits, for which the feedback (response to treatment or slot machine
reward) is sampled from a probability distribution specific to the chosen arm (treatment
or slot machine) and adversarial bandits, for which there is no assumption on how the
feedbacks are generated. We refer to the exhaustive survey of Bubeck and Cesa-Bianchi
[2012] and to the pedagogic book of Lattimore and Szepesvári [2020] which present the
different frameworks and algorithms that have been proposed over the last few decades.
The modelings considered in this thesis fall under the umbrella of stochastic bandits and
among the different existing algorithms we will focus on Upper Confidence Bound (UCB)
strategies.

As far as we know, the bandits have not yet been set up in clinical trials, although it
is still a high-potential research topic and the design of these solutions is ongoing (see,
e.g. Bastani and Bayati, 2020 and Aziz et al., 2020). They are already use for many ap-
plications dealing with sequential decision-making under uncertainty. For example, some
solutions have been developed for configuring web interfaces, by including recommenda-
tion, dynamic pricing and ad placement (see, among others Mary et al., 2015 and Vernade
et al., 2017) and for financial portfolio design (see, e.g. Shen et al., 2015). Throughout
this thesis, we propose some adaptation of the bandit theory for demand side manage-
ment. This chapter is dedicated to the presentation of the well-known multi-armed bandit
framework and to the introduction of an elementary method for demand side management
with bandits.

Section 2 below recalls the mathematical modeling of the multi-armed bandit problem
and the UCB algorithm. In Section 3, we propose a basic approach of demand side
management and Section 5 establishes some theoretical results for an optimistic algorithm
which chooses tariffs to influence the power consumption of a population of consumers.
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2 Stochastic multi-armed bandits

2.1 The multi-armed stochastic bandit model

In a multi-armed stochastic bandit model, a gambler faces a row of K slot machines
(sometimes known as “one-armed bandits”) and has to decide which one to play with
to maximize her rewards (see Figure 2.1). A collection of K probability distributions
denoted by ν1, . . . , νK over R defines a multi-armed stochastic bandit problem: with
each arm k P t1, . . . ,Ku is associated the probability distribution νk with an expecta-
tion µk = E( νk ). In what follows, we denote by µ‹ = maxk=1,...,K µk the expectation
associated with the best slot machine(s) to play. At each round t = 1, 2, . . . , the gambler
picks an arm It and gets a reward Yt, drawn at random according to νIt : this is the only
feedback she has access to. Therefore, conditionally to the chosen arm, the reward is
independent from the past and we have Yt|It „ νIt . Protocol 2 below sums up this online
procedure.

Figure 2.1 – A row of K slot machines.

Protocol 2 Simplest Case of Multi-Armed Bandits
Input

Number of arms K
Unknown parameters
K probability distributions ν1, . . . , νK over R

for t = 1, 2, . . . do
Choose an arm It P t1, . . . ,Ku

Get and observe the reward Yt | It „ νIt
end for
Aim

Minimize in high probability or in expectation the pseudo-regret R̄T = T µ‹´
řT

t=1 µIt

If the player knew the distributions ν1, . . . , νK then her best strategy would be: play an
optimal arm k‹ such that µk‹ = µ‹ at each round. But the gambler starts from scratch,
with no information on the probability distributions: she picks the arm It according to the
past actions I1, . . . It´1 and the past observations Y1, . . . , Yt´1. A bandit strategy maps
the past experience of the player I1, Y1, . . . , It´1, Yt´1 to her next choice It. By denoting
by Xt,k the reward of arm k at round t, to evaluate the performance of a strategy, we
consider the regret RT , first introduced by Lai and Robbins [1985],

RT
∆
= max

kPt1,...,Ku

T
ÿ

t=1

Xt,k ´

T
ÿ

t=1

Yt , with Yt = Xt,It .

We emphasize that, as rewards are random, the best arm to play at a round t is not
necessary an optimal arm and that maxkPt1,...,Ku

řT
t=1Xt,k may be reached for a sub-
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optimal arm. But in bandit framework and contrary to a “full-information” setting where
all Xt,1, . . . , Xt,K are observed, the only feedback we have is the reward Yt associated
with the picked arm It. This is why, in stochastic multi-armed bandits, the strategy is
generally compared to the best reward in expectation µ‹. Moreover, we notice that, with
the filtration Ft = σ(I1, Y1, . . . , It, Yt), at a round t, the arm picked It is Ft´1-measurable
variable such that E[Yt|cFt´1] = E[Yt|It] = µIt . By summing over the round t = 1, . . . , T ,
the tower rule gives

E

[
T
ÿ

t=1

Yt

]
=

T
ÿ

t=1

E
[
E
[
Yt |Ft´1

] ]
= E

[
T
ÿ

t=1

µIt

]
.

This expression suggests to consider the so-called pseudo-regret R̄T , the random variable
which satisfies E[Tµ‹ ´

řT
t=1 Yt] = E[R̄T ], and is defined as the difference between the

cumulative expected reward of the best possible strategy and the one of the strategy
associated with the choices (It)tě1

R̄T
∆
= Tµ‹ ´

T
ÿ

t=1

µIt .

We highlight that we have E[R̄T ] ď E[RT ]. For any k = 1, . . . ,K, we denote the gap of the
arm k by ∆k

∆
= µ‹ ´µk. Therefore, a sub-optimal arm k is characterized by a positive gap

∆k ą 0 whereas, for an optimal arm k‹, for which µk‹ = µ‹, the gap is null. Notice that
to bound the pseudo-regret, it suffices to bound, for each sub-optimal arm k, the random
integer NT,k, which counts the number of times arm k has been picked between rounds 1
and T . Indeed, with these notations, the pseudo-regret can we rewritten

R̄T =
T
ÿ

t=1

(
µ‹ ´ µIt

)
=

T
ÿ

t=1

∆It =
ÿ

k |∆ką0

∆kNT,k , with NT,k =
T
ÿ

s=1

1tIs=ku .

In the sequel, we focus on controlling the pseudo-regret in high probability or in expecta-
tion. We highlight that under suitable assumption, such results on R̄t ensure also a control
of the regret RT . For example, by assuming that the rewards are bounded between 0 and
1, applying the Azuma-Hoeffding inequality to the sequence of the Ft-adapted random
variables (Yt ´ µIt)tě1 gives that, for any δ P (0, 1), with probability at least 1 ´ δ,

ˇ

ˇ

ˇ

ˇ

T
ÿ

t=1

Yt ´

T
ÿ

t=1

µIt

ˇ

ˇ

ˇ

ˇ

ď

c

2T ln 2

δ
.

Therefore, we will pay a bound of order
?
T in addition to the bound on the pseudo-

regret. To maximize the rewards, bandit algorithms should pick optimal arms as often
as possible. But to be sure that these arms are indeed optimal, they must test all the
different possibilities. They thus face an exploration-exploitation trade-off. We highlight
that the pseudo-regret is always smaller than

R̄T ď Tµ‹ ´ min
kPt1,...,Ku

T
ÿ

t=1

µk = T max
kPt1,...,Ku

∆k ,

and is therefore naturally linear in T . We aim to do better by providing bandit algorithms
with sub-linear pseudo-regrets.

From now on, we focus on rewards that are bounded between 0 and 1, so the probability
distributions ν1, . . . , νK are defined over [0, 1].
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2.2 Upper confidence bound strategies

The present section recalls the Upper Confidence Bound algorithm studied by Auer et al.
[2002a]. Generally, the theoretical results on this algorithm provide some upper bounds
on the pseudo-regret of the form:

E [ R̄T ] ď O
(?

T lnT
)
.

In Chapters 4, 5 and 8, we will establish some regret bounds in high probability for the
contextual bandit models we will consider. For the best of our knowledge, there is no
high-probability logarithmic bound on the pseudo-regret for the UCB algorithm, which
is an any time strategy (there is no need to know the time horizon T in advance). This
is why, after presenting this well-known algorithm and the results associated with it, we
introduce a δ-risk level version of UCB that must be folklore knowledge. The regret
bound will state with probability at least 1 ´ δ. From this result, with the time horizon
information, we may choose the risk δ to deduce a regret bound in expectation. We will
also remark that the UCB algorithm in a moving risk-level version of our δ-UCB algorithm.

This section is cut into four parts: the three first subsections recall the UCB algorithm
and the two classical bounds obtained on its pseudo-regret (namely, on the expectation
of its regret), while the last subsection introduces a δ-risk level UCB-version. Theorem 2
and Corollary 2 establish some regret bounds for this new algorithm with high probability
and in expectation, respectively.

2.2.1 Principle of optimism and upper confidence bound algorithm

Based on the principle of optimism in the face of uncertainty, upper confidence bound
strategies choose arms to play “optimistically” depending on the past observations. More
precisely, at any round t, for each arm k = 1, . . . ,K, they compute an empirical mean
reward pµt´1,k from the previous rewards associated with arm k. They also introduce a
confidence level αt,k on it: with high probability, the true mean reward µk satisfies

µk P

[
pµt´1,k ´ αt,k, pµt´1,k + αt,k

]
.

Generally, confidence levels αt,k increase with t to promote exploration and decrease when-
ever arm k is chosen. Indeed, a new reward Yt, drawn from νk leads to an update of the
empirical mean pµt,k, on which we are thus more confident. Then, algorithms act as if the
environment is as favorable as plausibly possible and as if the reward for arm k at t was
pµt,k + αt,k. Therefore they choose the one which maximizes this quantity.

Algorithm 1 was studied by Auer et al. [2002a] and is illustrated in Figure 2.1. It starts
by K rounds of deterministic exploration (one per arm), then at each round t ě K + 1
and for each arm k, it computes the estimations pµt´1,k of the means µk:

pµt´1,k
∆
=

1

Nt´1,k

t´1
ÿ

s=1

Ys1tIs=ku, with Nt´1,k =
t´1
ÿ

s=1

1tIs=ku,

and sets the confidence levels

αt,k =

d

2 ln t
Nt´1,k
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Figure 2.2 – Illustration of the principle of optimism. The upper bounds of the segments corre-
spond to the terms pµt´1,k + αt,k. The second arm is well-estimated (αt,2 is small), while the last
arm has been picked only a few times (αt,K is large). Even if the empirical mean of the blue arm is
smaller than the one of the second arm, the upper confidence bound algorithm chooses it: a large
uncertainty on pµt´1,k forces exploration.

on it. Then, it chooses the next arm optimistically:

It P argmax
kPt1,...,Ku

 

pµt´1,k + αt,k

(

.

Algorithm 1 UCB (Upper Confidence Bound) Algorithm [Auer et al., 2002a]
1: Unknown parameters
2: K probability distributions ν1, . . . , νK P [0, 1]
3: Initialization
4: for each arm the counter N0,k = 0 and the empirical mean pµ0,k = 0
5: for t = 1, . . . , T do
6: if t ď K then
7: It = t
8: else

9: Choose optimistically the next arm It P argmax
kPt1,...,Ku

pµt´1,k +

d

2 ln t
Nt´1,k

10: end if
11: Observe the reward Yt P [0, 1]
12: Update for each arm the counter Nt,k = Nt´1,k + 1tIt=ku

13: Update for each arm the empirical mean pµt,k =
1

Nt,k

(
pµt´1,kNt´1,k + Yt1tIt=ku

)
14: end for

The idea of using confidence bounds came from the work of Lai and Robbins [1985] and
a first version of UCB algorithm can be found in Lai [1987]. The one stated in Algorithm 1
and the analysis provided below is from Auer et al. [2002a]. The following proofs of regret
bound can also be found, under different versions, in the survey Bubeck and Cesa-Bianchi
[2012] or in the book Lattimore and Szepesvári [2020].

2.2.2 Statement of the regret bound

Theorem 1 below states a regret bound for the UCB algorithm. The bound is called
distribution-dependent because it depends on the probability distributions ν1, . . . , νK
through the gaps ∆1, . . . ,∆K .

Theorem 1. If the distributions ν1, . . . , νK have supports all included in [0, 1], then, for
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any T ě 1, the pseudo-regret of Algorithm 1 satisfies

E
[
R̄T

]
ď

ÿ

k |∆ką0

(
2 +

8 lnT
∆k

)
.

To prove this result, we will use the adaption of Azuma-Hoeffing inequality stated
in Lemma 1 below and proved in Appendix, which is based on Hoeffding’s lemma (see
Lemma 2). It holds because all the rewards lie in [0, 1] and mostly because for an arm
k, the rewards Yt for the rounds t such that It = k are independent and identically
distributed. This can been proved using Doob’s optional skipping (see Doob, 1953, Chapter
III, Theorem 5.2). With the re-indexation

τk,n = mintt ě 1, Nt,k = nu ,

this trick ensures that the variables
(
Yτk,n

)
n

are independent and identically distributed
according to νk.

Lemma 1 (Azuma-Hoeffing inequality with a random number of summands). For any
k P t1, . . . ,Ku, for any t ě k (so that Nt,k ě 1), for any δ P (0, 1),

P

(
µk ą pµt,k +

d

ln(1/δ)
2Nt,k

)
ď tδ

and by symmetry,

P

(
µk ă pµt,k ´

d

ln(1/δ)
2Nt,k

)
ď tδ .

Proof of Theorem 1. Foremost, we recall that to bound the expectation of the pseudo-
regret, it suffices to bound the expectation of the random integer Nt,k, for each sub-optimal
arm k. Indeed, by linearity of the expectation, the expectation of the pseudo-regret satisfies

E
[
R̄T

]
=

ÿ

k |∆ką0

∆kE
[
NT,k

]
.

The proof breaks down into three steps: Step 1 states the causes leading the optimistic
algorithm to play a sub-optimal arm; then, in Step 2, the expectations E

[
NT,k

]
are upper-

bounded; finally, Step 3 concludes the proof.

‹ Step 1: Reasons to play a sub-optimal arm. Let k‹ be an optimal arm, so ∆k‹ = 0. First
of all, at a round t ě K + 1, a sub-optimal arm k |∆k ą 0 is picked only if at least one of
the following events happens:

(i) µk ă pµt´1,k ´ αt,k (µk over-estimated)
(ii) µ‹ ą pµt´1,k‹ + αt,k‹ (µ‹ under-estimated)
(iii) ∆k ď 2αt,k (arm k not picked often enough)

We will see that the first two events (i) and (ii) hold rarely while the last event ensures the
exploration-exploitation trade-off. It occurs if ∆k ď 2αt,k, which is equivalent, by replac-
ing the confidence level by its definition to Nt´1,k ď 8 ln t/∆2

k. These expressions suggest
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that the confidence level αt,k is too big compared to the gap ∆k because the sub-optimal
arm k has not been picked often enough: Nt´1,k is too small to get a sharp enough esti-
mation of µk good enough to distinguish arm k from an optimal arm.

By definition of Algorithm 1, if arm k is picked, in particular, we have

pµt´1,k‹ + αt,k‹ ď pµt´1,k + αt,k . (2.1)

So, if inequalities (i) and (ii) do not hold, the gap ∆k is bounded by:

∆k = µ‹ ´ µk
(̄i) and ¯(ii)

ď pµt´1,k‹ + αt,k‹ ´ pµt´1,k + αt,k

(2.1)
ď 2αt,k = 2

d

2 ln t
Nt´1,k

.

‹ Step 2: Bounds on the expectation of the number of times each sub-optimal arm has been
played. For the first K rounds, the algorithm play deterministically by picking It = t, so
NT,k = 1+

řT
t=K+1 1tIt=ku. Then, for any T ě K+1 and any sub-optimal arm k |∆k ą 0,

by decomposing it depending on whether the events (i), (ii) or (iii) defined below occur,
the number of times arm k has already been played after round T satisfies

NT,k =
T
ÿ

t=1

1tIt=ku

ď 1 +
T
ÿ

t=K+1

1tIt=k and (i)u +
T
ÿ

t=K+1

1tIt=k and (ii)u +
T
ÿ

t=K+1

1tIt=k and (iii)u . (2.2)

Therefore, the expectation the number of times sub-optimal arm k has been played is
bounded by

E[NT,k] ď 1+
T
ÿ

t=K+1

(
P
(
It = k and (i)

)
+P
(
It = k and (ii)

))
+E

[
T
ÿ

t=K+1

1tIt=k and (iii)u

]
.

A straightforward application of Lemma 1 with δ = t´4 leads to

P
(
It = k and (i)

)
ď P(i) = P

(
µk ă pµt´1,k ´ αt,k

)
= P

(
µk ă pµt´1,k ´

d

2 ln t
Nt´1,k

)
ď (t´ 1)t´4 ď t´3 ,

and symmetrically, P
(
It = k and (ii)

)
ď t´3. It remains to bound the last term of

Equation (2.2):
T
ÿ

t=K+1

1tIt=k and (iii)u =
T
ÿ

t=K+1

1tIt=k and Nt´1,k ď 8 ln t/∆2
ku

(tďT )
ď

T
ÿ

t=K+1

1tIt=k and Nt´1,k ď 8 ln T/∆2
ku .

For any t, the indicator 1tIt=k and Nt´1,k ď 8 ln T/∆2
ku can equal 1 only if Nt,k ď 8 lnT/∆2

k + 1;
so the sum

řt
s=1 1tIs=ku = Nt,k is controlled by this number and we get the deterministic

upper-bound:
T
ÿ

t=K+1

1tIt=k and (iii)u ď

(8 lnT
∆2

k

+ 1
)

´ 1 =
8 lnT
∆2

k

,
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where the ´1 is because Ik = k is not included in the sum over t = K +1, . . . , T . Finally,
by combining the two bounds above, the expectation of NT,k is upper-bounded by

E[NT,k] ď 1 +
T
ÿ

t=K+1

(
P
(
It = k and (i)

)
+ P

(
It = k and (ii)

))
+ E

[ T
ÿ

t=K+1

1tIt=k and (iii)u

]

ď 1 + 2
T
ÿ

t=K+1

t´3 +
8 lnT
∆2

k

ď 1 +

ż +8

K
2t´3dt+ 8 lnT

∆2
k

ď 2 +
8 lnT
∆2

k

.

‹ Step 3: Bound in the expectation of the pseudo-regret. By summing the bounds on
E[NT,k] over the sub-optimal arms and using ∆k ď 1, we control the expectation of the
pseudo-regret:

E
[
R̄t

]
=

ÿ

k |∆ką0

∆kE
[
NT,k

]
ď

ÿ

k |∆ką0

(
2 +

8 lnT
∆k

)
.

2.2.3 Distribution-free regret bound

The regret bound stated in the previous section depends on the distributions ν1, . . . , νK
through the gaps ∆1, . . . ,∆K , for k = 1, . . . ,K. This dependence is not always desirable:
the smaller these gaps, the higher the regret bound. For example, for a fixed horizon
time T , if the magnitude of gap associated with a sub-optimal arm is equal to 1/T , the
established regret bound is linear. Therefore, there is some bandit problem ν1, . . . , νK for
which the previous regret bound has no interest. However, from the previous analysis, a
so-called distribution-free regret bound, namely which does not depend on the gaps ∆k,
can be obtained: this is Corollary 1 below.

Corollary 1 (Distribution-free regret bound in expectation). If the distributions ν1, . . . , νK
have supports all included in [0, 1], then, for any T ě K, the pseudo-regret of Algorithm 1
satisfies

E[R̄T ] ď
a

KT (2 + 8 lnT ) .

Proof of Corollary 1. We deduce this distribution-free regret bound from the one of Theo-
rem 1 using the Cauchy–Schwarz inequality. We recall that E

[
R̄T

]
=

ř

k |∆ką0∆kE[NT,k],
so applying the mentioned inequality leads to

E
[
R̄T

]
=

ÿ

k |∆ką0

(
∆k

b

E
[
NT,k

])(b
E
[
NT,k

])

ď

d

ÿ

k |∆ką0

∆2
kE
[
NT,k

]gf
f

eE
[

ÿ

k |∆ką0

NT,k

]
.

As the sum of NT,k over all the arms is equal to T , the second factor of the above inequality
equals

?
T . Moreover, we recall (see Step 2 of the proof of Theorem 1) that the expectation
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of Nt,k, for a sub-optimal arm k, is bounded by

E
[
Nt,k

]
ď 2 +

8 lnT
∆2

k

.

Therefore, as gaps ∆k lie in [0, 1], the expectation of the pseudo-regret satisfies

E
[
R̄T

]
ď

g

f

f

e

ÿ

k |∆ką0

∆2
k

(
2 +

8 lnT
∆2

k

)?
T ď

d

ÿ

k |∆ką0

(
2 + 8 lnT

)?
T

ď

b

KT
(
2 + 8 lnT

)
.

Remark 1. Note that, with α ą 2, the α-UCB version – see, for example, Bubeck and
Cesa-Bianchi [2012] – is defined with the deviation levels α ln t

2Nt,k
. In this case, one may

obtain the bound in expectation

E[R̄T ] ď
ÿ

k |∆ką0

(
α ´ 2

α
+

2α lnT
∆k

)
.

2.2.4 An optimistic algorithm with a δ-risk level

Algorithm 2 stated below is a δ-risk level version of UCB for which the only difference
with Algorithm 1 (see lines 9 and 10) is the confidence term αt,k, which now equals

αt,k =

d

ln(t3/δ)
2Nt´1,k

.

We detail in the analysis of the pseudo-regret below how to establish, from these confidence
levels, a regret bound with probability at least 1 ´ δ, for δ P (0, 1). Exactly as in the
previous sections, after the first K rounds of deterministic exploration (one per arm),
Algorithm 2 chooses the next arm optimistically:

It P argmax
kPt1,...,Ku

pµt´1,k + αt,k .

For this new algorithm, a distribution-dependent and a distribution-free regret bounds
are obtained with high probability (see paragraphs 2.2.4.1 and 2.2.4.2, respectively). We
also show that, when the time horizon T is known, it is possible to deduce a bound on the
expectation of the pseudo-regret from this high-probability regret bound.

2.2.4.1 High-probability regret bound

Theorem 2. If the distributions ν1, . . . , νK have supports all included in [0, 1], then, for
any T ě K, the pseudo-regret of Algorithm 2 satisfies

R̄T ď
ÿ

k |∆ką0

(
1 +

2 ln(T 3/δ)

∆k

)
,

with probability at least 1 ´ δ.
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Algorithm 2 δ-Upper Confidence Bound Algorithm
1: Unknown parameters K probability distributions ν1, . . . , νK P [0, 1]
2: Input
3: risk level δ P (0, 1)
4: Initialization
5: for each arm the counter N0,k = 0 and the empirical mean pµ0,k = 0
6: for t = 1, . . . , T do
7: if t ď K then
8: It = t
9: else

10: Choose optimistically the next arm It P argmax
kPt1,...,Ku

pµt´1,k +

d

ln(t3/δ)
2Nt´1,k

11: end if
12: Observe the reward Yt P [0, 1]
13: Update for each arm the counter Nt,k = Nt´1,k + 1tIs=ku

14: Update for each arm the empirical mean pµt,k =
1

Nt,k

(
pµt´1,kNt´1,k + Yt1tIt=ku

)
15: end for

Proof of Theorem 2. The proof of this theorem is similar to the one of Theorem 1. The
only difference is in Step 2: instead of bounding the expectation of NT,k for the sub-
optimal arms, we will bound the random integers NT,k with probability at least 1 ´ δ.
By replacing the confidence levels by their new expressions αt,k =

a

ln(t3/δ)/2Nt´1,k at
a round t ě K + 1, a sub-optimal arm k |∆k ą 0 is still picked only if at least one of
the events (i), (ii) or (iii) defined in the proof of Theorem 1, holds (see Step 1). We now
consider the event E below, which occurs with probability 1´ δ and which gathers, for all
t ě K, and for all sub-optimal arms, the events (i) and (ii):

E ∆
=

!

@ t ě K + 1, @ k |∆k ą 0 : pµt´1,k ď µk + αt,k

and, for k‹ : pµt´1,k‹ ě µ‹ ´ αt,k‹

)

.

Therefore, over E , at each round t ě K+1, for all sub-optimal arms k (such that ∆k ą 0),
the estimations pµt´1,k do not over-estimate the means µk and for the optimal arm k‹

(such that ∆‹
k = 0) for which the estimation pµt´1,k‹ does not under-estimate the best

mean µ‹. For each round t ě K + 1, there are at most K inequalities in E (if the optimal
arm is unique, there are exactly K) and each of them occurs with probability at least
1´ (t´ 1)δ/t3 (by applying Lemma 1 with a risk level δ/t3). Using Lemma 1 and a union
bound, we get that the probability that E does not occur is bounded by

P[Ē ] ď K
+8
ÿ

t=K+1

ˆ
δ

t2
ď Kδ

ż +8

K

1

t2
dt = Kδ

[
´

1

t

]+8

K

= δ .
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If the event E occurs then, for any T ě K + 1, for any sub-optimal arm k |∆k ą 0,

NT,k ď 1 +
T
ÿ

t=K+1

1tIt=k and (i)u +
T
ÿ

t=K+1

1tIt=k and (ii)u +
T
ÿ

t=K+1

1tIt=k and (iii)u

over E
ď 1 +

T
ÿ

t=K+1

1 
It=k and Nt´1,k ă 2 ln(t3/δ)/∆2

k

( .

We showed in Step 2 of the proof of Theorem 1 that
řT

t=K+1 1
 

It=k and Nt´1,k ă 8 ln t/∆2
k

(

was deterministically bounded by 8 lnT/∆2
k. In the same way, we upper-bound the second

term of the inequality above:
T
ÿ

t=K+1

1 
It=k and Nt´1,k ă 2 ln(t3/δ)/∆2

k

( ď
2 ln(T 3/δ)

∆2
k

.

As in Step 3, it remains to sum the bounds on NT,k over the sub-optimal arms to control
the pseudo-regret with probability 1 ´ δ and conclude the proof. Indeed, when E occurs,
we have

R̄t =
ÿ

k |∆ką0

∆kNT,k ď
ÿ

k |∆ką0

(
1 +

2 ln(T 3/δ)

∆k

)
.

From this high-probability regret bound, by choosing a risk-level of order 1/T (or even
smaller), it is possible to get a bound on the expectation of the pseudo-regret. We highlight
that this δ-risk level algorithm is not an any time strategy: to obtain a regret bound in
expectation, we use the time horizon information. By taking a moving risk level δt =
1/t at each time step, we recover the classical Upper Confidence Bound algorithm (see
Algorithm 1). In this case, as the algorithm does not depend anymore on a risk level,
and as far as we know, there is no bound in high probability. However, it guarantees the
bound on the pseudo-regret expectation stated in Theorem 1. Corollary 2 below states
the result in expectation, when the time horizon T is known.

Corollary 2 (regret bound in expectation). If the distributions ν1, . . . , νK have supports
all included in [0, 1], then, for any T ě K, the expectation of the pseudo-regret of Algo-
rithm 2 run with δ = 1/T , satisfies

E[R̄T ] ď 1 +
ÿ

k |∆ką0

(
1 +

8 lnT
∆k

)
.

Proof of Corollary 2. As all ∆k are bounded between 0 and 1, the pseudo-regret R̄T is
always smaller than T . For any u, we have

E[R̄T ] ď T P(R̄T ą u) + uP(R̄T ď u) .

By choosing u =
ř

k |∆ką0

(
1+2 ln(T 3/δ)/∆k

)
, we decompose the expectation of R̄T depend-

ing on whether it is controlled by the bound established in Theorem 2 (that occurs with
probability 1 ´ δ) or not (in which case we bound it by T ). Therefore, we get

E[R̄T ] ď Tδ +
ÿ

k |∆ką0

(
1 +

2 ln(T 3/δ)

∆k

)
.
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By choosing δ = 1/T , we conclude the proof.

2.2.4.2 Distribution-free regret bound

Corollary 3 (Distribution-free regret bound in high probability). If the distributions
ν1, . . . , νK have supports all included in [0, 1], then, for any T ě K, the pseudo-regret of
Algorithm 2 satisfies

R̄T ď
a

KT (lnT 3/δ + 1) ,

with probability at least 1 ´ δ. Moreover, by choosing δ = 1/T , the expectation of the
pseudo-regret satisfies

E[R̄T ] ď 1 +
a

KT (8 lnT + 1) .

Proof of Corollary 3. We deduce this distribution-free regret bound from the one of The-
orem 2 using the Cauchy–Schwarz inequality. Indeed, applying the inequality leads to

R̄T =
ÿ

k |∆ką0

(
∆k

a

NT,k

)(
a

NT,k

)
ď

d

ÿ

k |∆ką0

∆2
kNT,k

d

ÿ

k |∆ką0

NT,k.

As the sum of NT,k over all the arms is equal to T and as, with probability at least 1 ´ δ,
for all sub-optimal arms k, we have Nt,k ď 1+ ln(T 3/δ)/∆2

k; the pseudo-regret is bounded
by:

R̄T ď

d

ÿ

k |∆ką0

(
1 + ln(T 3/δ)

)?
T

ď

c

KT
(
1 + ln(T 3/δ)

)
,

with probability at least 1 ´ δ. To get the bound in expectation, we do exactly as in the
proof of Corollary 2.

3 Stochastic multi-armed bandits for demand side manage-
ment

Previous results and algorithms are well-known and we now present the main objectives
of the thesis and how it will be possible to use bandit theory to perform demand side
management, that is, to influence the power consumption in order to maintain the balance
between the production and the consumption of electricity. The simplest modeling is
introduced: it relies on the multi-armed bandit problem introduced above and will become
more complex through Chapters 4, 5 and 8. We also propose an algorithm for this simple
bandit approach and provide a O(T lnT ) bound on its regret.
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3.1 Framework, objectives and examples

3.1.1 Consumption modeling

We consider the power consumption of an homogeneous population of households which,
at each round t depends, among others, on some exogenous factors (temperature, wind,
season, day of the week, etc.), forming a context vector xt P X , where X is some para-
metric space. To manage demand, the electricity provider sends some incentive signals
to its customers (for example, it changes electricity price by making it more expensive
to reduce consumption or less expensive to encourage customers to consume more now
rather than in some hours). We assume that K ě 2 price levels (tariffs) are available.
The consumption of the population getting tariff k P t1, . . . ,Ku is assumed to be of the
form φ(xt) + Yt, where the random variable Yt „ νk models the effect of tariff k (which
we assume to be independent of the context in this chapter). We make no assumption on
the distributions (νk)1,...,K .

Therefore, at a round t, the electricity provider picks the tariff It which is sent to all
households, and observes the resulting mean power consumption:

φ(xt) + Yt, with Yt | It „ νIt .

The mean is obtained by averaging the power consumption of households over the whole
population. In this basic modeling, only the distributions (νk)1,...,K are unknown, that is,
the electricity provider has a complete knowledge on how the consumption depends on
contextual variables xt but it has no idea on how the population reacts to a tariff change.
Thus, we assume that the function φ is known and also that its support is included in
[0, C]. In this new framework, the tariffs play the role of the slot machines and the effect
of a tariff the one of the reward. If we wanted to maximize the power consumption, we
could directly apply the algorithms presented in Section 2.2. But our aim is different: we
do not want to maximize consumption at all cost but rather fit it as well as possible with
electricity production. We explain below how to model this new objective.

3.1.2 Target, loss function and online protocol

To manage demand response, the electricity provider may set a power consumption target
ct to reach at each round t. This target is assumed to be bounded by the constant C.
When it chooses a tariff k, it observes the resulting tariff effect Yt, drawn from the distri-
bution νk. To measure the relevance of its choice, it fixes a loss function `t : R Ñ [0, 1] and
suffers the loss `t(Yt) P [0, 1]. This loss function varies over time: in particular, it depends
on the target, but may also change with the electrical market, the costs of electricity pro-
duction, the meteorological conditions, etc. We will discuss some realistic modeling of the
true losses suffered by the electricity provider in Chapter 5 and provide below two basic
examples of loss functions.

Example 1: Quadratic clipped losses. Without paying attention to the financial costs
caused by poor electricity demand management, we consider here the quadratic difference
between the power consumption and its target, which is a smooth function. It is the loss
function considered in Chapter 4 and 8. In the present chapter, we only deal with bounded
losses, and this is why we clip the quadratic loss as explained below.
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`t
(
y
)
=

#

1
C2

(
φ(xt) + y ´ ct

)2 if |f(xt) + y ´ ct| ď C

1 else.
ct

1

φ(xt) + y

`t(y)

As we assumed that targets ct and consumptions with no tariff effects φ(xt) were
bounded between 0 and C, we always get (φ(xt) ´ ct)

2 ď C2. So if the effect Yt of
the tariff is not too important, we will generally have that the quadratic difference be-
tween the power consumption and its target (φ(xt) + Yt ´ ct)

2 is equal to C2`t(Yt). So
most of the time, C2`t(y) will be equal to (φ(xt) + y ´ ct)

2 and the clipping is merely
considered to make sure that the losses lie in [0, 1].

Example 2: Asymmetric absolute clipped losses. For the electricity provider, it can be
sometimes costlier to under-produce than to over-produce (or vice versa). To model this
phenomenon, we could introduce some weights pt,l and pt,r to ponder the losses depending
on whether the consumption is above or below the target. We can then define an asym-
metric absolute loss function by

`t
(
y) =

$

’

&

’

%

pt,l
(
ct ´ φ(xt) ´ y

)
if ´ C

pl
ď ct ´ φ(xt) ´ y ď 0

pt,r
(
φ(xt) + y ´ ct

)
if 0 ď φ(xt) + y ´ ct ď C

pr

1 else.
ct

1

φ(xt) + y

`t(y)

We will also consider asymmetric absolute losses in Chapter 5.

We point out that, at each round t, the loss function `t is known beforehand, it en-
compasses all dependencies on the context xt through the consumption level φ(xt) but
also the target consumption ct. The only unknowns are the distributions ν1, . . . , νK that
model the effect of tariffs and the electricity provider aims to choose tariffs to minimize
the cumulative losses

LT
∆
=

T
ÿ

t=1

`t(Yt) .

3.2 Introduction of a pseudo-regret, differences with classical bandit the-
ory and literature discussion

There exists many variants of the multi-armed stochastic bandits problem presented in
Section 2.2 and, after presenting it, we point out that our “target-tracking” framework
differs from the existent ones.

3.2.1 Bias-variance trade-off and pseudo-regret

Our setting differs from the classical bandits because even if feedbacks are also of the form
Yt | It = k „ νk, our aim is different: we do not want to maximize Yt but to be as close as
possible to a given target, so to minimize `t(Yt). The best tariff to choose is then

k‹
t P argmin

kPt1,...,Ku

EY „νk

[
`t(Y )

]
.
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Generally, the expected value of a function of a random variable X is not the value of the
function applied to E[X], namely

EY „νk

[
`t(Y )

]
‰ `t

(
E(νk)

)
.

Therefore, it is no longer enough to focus on the expectations of the distributions ν1 . . . , νK .
Moreover, estimating EY „νk

[
`t(Y )

]
is expensive since `t can be complicated and changes

over time.

For example, we consider, for any x P X and c P [0, C] the two arms ν1 and ν2 associated
with the normal distribution N (ϕ(x)´c, variance) and the Dirac δϕ(x)´c+bias, respectively.
If for a round t, we observe xt = x and ct = c, we get

EY „ν1

[(
ϕ(x) + Y ´ c

)2]
= variance and EY „ν2

[(
ϕ(x) + Y ´ c

)2]
= bias .

Thus, without taking into account the clipping between 0 and 1, the quadratic loss func-
tion of Example 1 leads to a bias-variance trade-off. Indeed, the best tariff to play is not
necessary the one which is the closest in expectation to the target (i.e. arm 1) and it may
be better to chose a tariff more stable (i.e., arm 2).

From now on, we introduce the expected losses at round t associated with tariff k:

`t,k
∆
= EY „νk

[
`t
(
Y
) ]
.

With this notation, at a round t, the best tariff to pick is k‹
t P argminkPt1,...Ku `t,k and the

expected loss suffered is `t,It . We recall that in the classical multi-armed bandit problem,
the best arm to play was always k‹ P argmaxkPt1,...,Kuµk and the expected reward was µIt .
Moreover, we focused on the pseudo-regret

max
kPt1,...Ku

T
ÿ

t=1

µk ´

T
ÿ

t=1

µIt = Tµ‹ ´

T
ÿ

t=1

µIt .

Similarly, we can now define a pseudo-regret as the difference between the cumulative
expected loss associated with the chosen strategy and the one for the best possible strategy
(namely, the strategy adopted if the distributions ν1, . . . , νK are known):

R̄T =
T
ÿ

t=1

`t,It ´

T
ÿ

t=1

min
kPt1,...Ku

`t,k .

Here, contrary to the classical setting, the minimum over the set of arms t1, . . .Ku is
inside the sum. We recall that the pseudo-regret is a random variable because the chosen
tariffs I1, . . . , IT can be random. Protocol 3 summarizes the online setting described above.

3.2.2 Adversarial bandits

Because of the dependence on `t, for a chosen tariff k, the losses `t(Yt) for the instants such
that It = k (namely, the variables

(
`τk,n(Yτk,n)

)
n

with τk,n = mintt ě 1, Nt,k = nu) are not
i.i.d anymore. As a consequence, we could have considered adversarial bandits: in such
a setting, there is no assumption on how the rewards are generated and the environment
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Protocol 3 Target Tracking for Multi-Armed Bandits
Input

Number K of available tariffs
Unknown parameters
K probability distributions ν1, . . . , νK on R

for t = 1, 2, . . . do
Observe a loss function `t : R Ñ [0, 1], which does not depend on the past
Choose a tariff It P t1, . . . ,Ku

Observe a resulting effect Yt „ νIt
Suffer a loss `t(Yt)

end for
Aim

Minimize in high probability or in expectation the pseudo-regret

R̄T =
T
ÿ

t=1

`t,It ´

T
ÿ

t=1

min
kPt1,...Ku

`t,k

is called the “adversary”. More precisely, at a round t, for each tariff k, the adversary
chooses the losses `adv

t,k and the gambler suffers the one associated with the tariff she picks:
`adv
t,It

. The pseudo-regret is then defined as the difference between the expected loss of the
gambler strategy and the expected loss of the best constant strategy (namely, a strategy
which consists in picking always the same arm):

R̄adv
T = E

[ T
ÿ

t=1

`adv
t,It

]
´ min

kPt1,...,Ku
E
[ T
ÿ

t=1

`adv
t,k

]
.

Note that, for adversarial bandits, the pseudo-regret is not random. Algorithm Exp3
(Exponential weights for Exploration and Exploitation, see Auer et al., 2002b) run for
losses that are in [0, 1] ensures a regret bound of

?
2TK lnK. In our framework, the

notations and assumptions introduced above, the adversary would have chosen the losses
this way:

`adv
t,It = `t(Yt) with Yt | It „ νIt .

and the pseudo-regret would have been

R̄adv
T = E

[ T
ÿ

t=1

`t
(
Yt
)]

´ min
kPt1,...,Ku

E
[ T
ÿ

t=1

`t
(
Xt,k

)]
with X1,k, . . . , XT,k „ νk .

Then, the tower rule would have led to

R̄adv
T = E

[ T
ÿ

t=1

E
[
`t(Yt) |Ft´1

]]
´ min

kPt1,...,Ku

T
ÿ

t=1

EX„νk

[
`t(X)

]
= E

[ T
ÿ

t=1

`t,It

]
´ min

kPt1,...,Ku

T
ÿ

t=1

`t,k ,

where we recall that `t,k = EY „νk [`t(Y )]. In our adaptation of the stochastic bandit frame-
work, the evaluated strategies are compared to non-constant strategies and the random
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pseudo-regret is

R̄T =
T
ÿ

t=1

`t,It ´

T
ÿ

t=1

min
kPt1,...,Ku

`t,k .

Therefore, the expectation of pseudo-regret for stochastic bandits satisfies

E
[
R̄T

]
ě R̄adv

T ,

and the two pseudo-regrets are equal in expectation only if the best tariff to pick does not
vary over time (namely if the best strategy is constant). To bound R̄T ensures a better
control of losses and our framework is thus better adapted to stochastic bandit than to
adversarial bandits. Indeed, in the next section, under the assumption on how the effects
Yt are generated and by knowing the loss functions `t, we see how to obtain some bound
in high probability and in expectation on the pseudo-regret R̄T of order

?
T lnT .

3.2.3 Contextual bandits

We highlight that in stochastic contextual bandit theory (we further discuss these bandit
settings in Chapter 4), the best arm also varies over time. Here, we recall that it depends
on the loss function `t (so on the target, the contextual variables etc.). But, to the best
of our knowledge, the aim is always to maximize the cumulative reward or to find the
best arm to play for a given time budget (which is a different problem called best arm
identification, see among others Audibert and Bubeck [2010]).

The framework closest to ours would therefore be that of the contextual bandits, in
which the gambler aims to maximize its reward Xt drawn from distributions that may
vary with time. More formally, a contextual bandit protocol generally follows the following
procedure (see, among others Perchet and Rigollet, 2013). At a round t ě 1, the gambler
observes a context zt P C, where C is some context space. Then, she chooses an arm
It P t1, . . . ,Ku and gets the reward

Xt | tIt = ku „ νk(zt) .

For each arm k, the distribution νk now depends on the context zt, so, given zt, the best
arm to play is:

k‹(zt) P argmax
kPt1,...,Ku

E
(
νk(zt)

)
.

Depending on how the distributions evolve, so under suitable conditions on E(νk(zt)),
some regret bounds have already been obtained. For example, linear contextual bandits
assume that, for each arm k, there is an unknown vector θk such that

E
(
νk(zt)

) ∆
= µk(zt) = zT

t θk .

Under such assumptions, the LinUCB algorithm proposed by Li et al. [2010] offered
?
T

upper-bounds on its pseudo-regret (up to polylogarithmic terms), this framework is fur-
ther discuss in Chapter 4. Bandit problems under less restrictive assumptions on µk(zt)
have also been studied, see among others Valko et al. [2013] and Foster et al. [2018].
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An optimal strategy maps each context zt to an optimal arm k‹(zt). To learn one,
we will therefore have to estimate for each zt, and each k P t1, . . . ,Ku, the expectation
E (νk(zt)) = µk(zt). For a finite number of contexts C = tz1, . . . , z|C|u, by playing the UCB
algorithm (or another bandit algorithm) per context, we may obtain some regret bounds
of

?
T order with a multiplicative constant which depends on the number of contexts

|C|. Indeed, if we assume that for a fixed context zi, for any T ě 1, the pseudo-regret
associated this context zi satisfies

R̄i
T =

T
ÿ

t=1

µIt(zi) ´ min
kPt1,...,Ku

Tµk(z
i) ď

?
KT lnT ,

where is a constant; by denoting by T (i) the number of times the context zi have been
picked by the environment, we get that

R̄T =
T
ÿ

t=1

max
kPt1,...,Ku

µk(zt) ´

T
ÿ

t=1

µIt(zt) =
ÿ

iPC

(
max

kPt1,...,Ku

T
ÿ

t=1

µk(z
i) ´

T
ÿ

t=1

µIt(z
i)

)
1tzt=ziu

=
ÿ

iPC

(
max

kPt1,...,Ku
T (i)µk(z

i) ´
ÿ

t | zt=zi

µIt(z
i)

)
=

ÿ

iPC
R̄i

Ti
ď

ÿ

iPC

a

KT (i) lnT (i) ,

with
ř

iPC T (i) = T . By using Jensen’s inequality on the squared root function, which is
concave, we then obtain

R̄T ď
a

K|C|T lnT .

Imposing a finite number of context is quite restrictive and the environment should gener-
ally be able to pick a context zt in a larger space. Another possibility is the discretization
of set of contexts. Under some assumption on the regularity (Lipschitz, Hölder etc.) of
the functions z Ñ µk(z), a grid tz1, . . . , z|C|u of |C| contexts may be considered. It has to
be fine enough to ensure that, no matter how the experiment picks the context zt, there
exists i P t1, . . . , |C|u, such that, for any arm k,

|µk(z
i) ´ µk(zt) | ď ε ,

where ε is an approximation error. Then, by summing over t and using the bound obtained
of a finite number of contexts, we get

R̄T = εT +
ÿ

iPC
R̄i

T ď εT +
a

K|C|T lnT .

To obtain a sub-linear bound, the approximation error ε has to be of order 1/Tα, with
α ą 0, which requires a very fine grid and therefore a large number of contexts |C| (gen-
erally of order 1/εβ „ Tαβ, with β ą 0).

In our framework, we recall that, when a tariff k is picked, we observe the tariff effect
Yt, with Yt | It = k „ νk and suffer the loss `t(Yt) P [0, 1], or, in other works, we observe
the reward

Xt = 1 ´ `t(Yt), with 1 ´ `t(Yt) | `t, It = k „ νk(`t) .

Therefore, in a contextual bandit setting, the context (previously denoted by zt) refers to
the loss function `t. With Example 1, the two variables xt and ct are enough to define
`t and we could consider zt = (xt, ct). More generally, zt may contain exogenous context
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variables xt, the target consumption ct and some additional information on the type of
loss (quadratic, absolute, etc.) considered at round t. With our notation, the loss function
`t gathers all this information. We emphasize that an optimal strategy maps each loss
function `t to an optimal arm k‹(`t) and with the notations introduced above,

`t,k = EY „νk [`t(Y )] = E
(
νk(`t) =

)
1 ´ µk(zt) , where zt = `t.

Therefore, for a finite number of contexts L = t`1, . . . , `|L|u, with for example the loss
functions `i = maxt(ϕ(xi) + y ´ ci)/C2, 1u, we could get that

R̄T ď
a

K|L|T lnT .

Imposing a finite number of context is too restrictive for our framework and the discretiza-
tion of set of contexts, namely of the set of loss functions requires a very fine grid to get
a sub-linear bound. It is likely that the order of the obtained regret bound is worst than?
T and computationally, the discretization is not efficient (we recall that the algorithm

requires K exploration rounds in each context, namely for each loss function). In such a
framework, it seems therefore unreasonable to consider an infinite number of types of loss
(like asymmetric absolute with weights changing at each round, see Example 2). Such a
solution is thus not conceivable, both theoretically and practically.

Another possibility would be to make some strong assumptions (like a linear depen-
dence) on the way the distributions νk evolve with the loss functions `t, but this would
completely restrict our framework.

Remark 2. This contextual point of view can be adapted to the framework of the adver-
sarial bandits by considering |C| Exp3 algorithms (one per context) or the Exp4 algorithm
introduced by Auer et al. [2002b], see Section 4.2 of Bubeck and Cesa-Bianchi [2012] for
further details. The obtained bound will be of order

a

T |C|K lnK, as for the stochastic
framework with a finite number of contexts (or of loss functions `1, . . . , `|L|). As in the
stochastic version of contextual bandits, we could deal with an infinite number of contexts
using discretization approaches. Quickly, these solutions would become computationally
inefficient and would provide regret bounds of order high than

?
T .

In what follows, we show how to use both knowledge of `t and stochastic assumption
Yt | It = k „ νk (which will be Yt | It = k „ νk,t in Chapter 4) in a way to provide some
regret bounds of the form

?
T , where depends on K and lnT and is a small compared

to the bound obtain for contextual bandit solutions. The considered algorithm is easily
implemented and has a computational cost much lower than those related to contextual
bandits.

3.2.4 Multi-arm bandits to electricity demand management: literature
discussion

Recently, even at the same time as the thesis work, bandit approaches have been developed
for demand side management. We discuss here the work we are aware of and point out
the differences with our frameworks.
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Wang et al. [2014] consider a system that consists of K electric loads (or arms) that can
be deployed by an aggregator. The dynamics of a load is described by a pair of two-state
Markov chains, one characterizing state transitions when the load is deployed and one
characterizing state transitions when the load is not deployed. In each case, the load may
be in one of two states, depending on whether it is available for consumption curtailment
or not. Therefore, when a load is deployed (or chosen) and if it is available, it curtails
the electrical consumption. At each time step t, the aggregator chooses up to N loads to
participate in demand response, where N is the “budget’’. The objective of the aggregator
is to maximize the expected consumption curtailment, subjected to the contraint that the
number of chosen loads at t equals N . They propose an ε-greedy algorithm (an algorithm
that explores with probalility ε and exploits with probability 1´ ε) and show numerically
that its regret is of logarithmic order in time, and outperforms a UCB-inspired algorithm.
Our approach differs from that of Wang et al. [2014]. Indeed, the arm of their bandit
problem (which correspond to electric loads) are defined by Markov chains with unknown
transition probabilities whereas they correspond to tariffs and are defined by unknown
probability distribution in our framework. But the main difference is that we do not aim
at minimizing feedbacks (namely, reducing consumption) but at minimizing losses (which
are a function of feedbacks and a target).

While we were developing our approach, Moradipari et al. [2018] proposed a framework
quite similar to ours: At each time step, they observe a target and choose tariffs in or-
der to minimize a function of the electrical demand and the target); but they propose a
Thompson Sampling based algorithm to minimize the regret. They provide a discussion
on regret bounds for their algorithm. We point out that their approach does not model
the dependencies between power consumption and some contextual variables, such as tem-
perature (although this will be the case in our framework presented in Chapter 4.

Very recently, Li et al. [2020] modeled the demand reduction of customers with a
Bernoulli distributions. They thus consider a simple customer behavior model, where
each customer i may either respond to a demand respons event by reducing one unit of
power consumption with probability 0 ď pi ď 1, or not respond with probability 1−pi.
At each time t, there is a demand response event with a nonnegative demand reduction
target determined by the power system. The aggregator aims to select a subset of cus-
tomers, such that the total demand reduction is as close to the target as possible. They
consider quadratic losses and to learn and select the right users, they propose a bandit ap-
proach and a UCB-inspired algorithm: Combinatorial Upper Confidence Bound-Average.
They consider both a fixed time-invariant target and time-varying targets, and show that
their algorithm achieves O(lnT ) and O(

?
T lnT ) regrets respectively. Finally, Chen et al.

[2020] complicate the customer behavior model by including the influences of environmen-
tal factors (temperatures, changes in lifestyles, etc.) and propose and algorithm based on
Thompson Sampling. Numerical simulations are performed to demonstrate its learning
effectiveness.

4 Upper confidence bound algorithm for target tracking

We propose an adaptation of the UCB algorithm recalled above to track some moving tar-
gets (defined throughout the loss functions `t) and minimize the pseudo-regret introduced
in Protocol 3. We consider a δ-risk level optimistic algorithm in the next section and we
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provide a pseudo-regret analysis based on the proofs of Section 2.2. Finally, we present a
moving risk level version of this algorithm, which defines an anytime strategy and ensures
a bound on the expectation of the pseudo-regret.

5 Upper confidence bound algorithm for target tracking
We propose an adaptation of the UCB algorithm recalled above to track some moving tar-
gets (defined throughout the loss functions `t) and minimize the pseudo-regret introduced
in Protocol 3. We consider a δ-risk level optimistic algorithm in the next section and we
provide a pseudo-regret analysis based on the proofs of Section 2.2. Finally, we present a
moving risk level version of this algorithm, which defines an anytime strategy and ensures
a bound on the expectation of the pseudo-regret.

5.1 Optimistic algorithm

We emphasize that, in general,

EY „νk

[
`t
(
Y )
]

‰ `t
(
EY „νk [Y ]

)
,

so it is not useful to estimate the means of the laws (νk)k=1,...,K as it was done in the UCB
algorithm for the multi-armed bandit problem. Instead, to hope to choose the best tariff
at round t, we have to compute, for each tariff k, an estimation of the expected loss `t,k
(and not an estimation of the expected effect). In the same way that we estimated the
mean µk = E(νk) with

pµt´1,k =
1

Nt´1,k

t´1
ÿ

s=1

Ys1tIs=ku ,

for a fixed function `, we can estimate the expectation `k = EX„νk [`(X)] with

p`k =
1

Nt´1,k

t´1
ÿ

s=1

`(Ys)1tIs=ku .

In particular, for a round t, by taking ` = `t, depending on which tariff Is have been picked,
we average the losses `t(Ys), where the indexes s and t may be different. Therefore, for
k P t1, . . . ,Ku, we compute the empirical mean of the loss associated with tariff k (the
increase in the algorithm complexity is discussed in the remark below ):

p`t,k
∆
=

1

Nt´1,k

t´1
ÿ

s=1

`t
(
Ys
)
1tIs=ku with Nt´1,k =

t´1
ÿ

s=1

1tIs=ku .

Moreover, it should be noted, that, because there is no control on the functions `t, it would
not have been possible to just use `t(Yt), with the same indexes. Indeed, the functions `t
may induce some dependencies between the losses. For example, the environment could
choose `1 = ¨ ¨ ¨ = `tT/2u : x ÞÑ 0 and `tT/2u+1 = ¨ ¨ ¨ = `T : x ÞÑ 1; in this case for a
fixed tariff k, when it is picked, the losses `t(Yt), for It = k (namely, for n = 1, 2, . . . ,
the variables `τk,n(Yτk,n) with τk,n = mintt ě 1, Nt,k = nu) are not identically distributed
(whereas, by using Doob’s optional skipping, for n = 1, 2, . . . , the variables Yτk,n and
`t(Yτk,n) are i.i.d, by assuming `t deterministic).
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Once the expected losses have estimated, the optimistic algorithm, stated in Algo-
rithm 3, considers the same confidence levels as Algorithm 2 and after K first deterministic
rounds It = t, it chooses at each round t ě K + 1 the tariff

It P argmin
kPt1,...,Ku

p`t,k ´ αt,k with αt,k =
ln(t3/δ)
2Nt´1,k

.

Remark 3. The main difference between Algorithm 3 and Algorithm 2 is in the estimation
of the losses: it has to be updated at each time step, depending on the loss function `t and
computationally, this has a cost. Previously, at a round t, for a new observation Yt, only
the empirical mean of the reward associated with arm It was updated, with

pµt,It =
1

Nt,It

(
Nt´1,Itpµt,It + Yt

)
and @ k ‰ It, pµt,k = pµt´1,k .

Therefore three basic operations were done: one multiplication, one addition, one division;
and for the round t+ 1, only the 2K variables pµt,k and Nt,k were needed. While, with the
new setting, at a round t, the empirical mean of the loss associated with tariff It is

p`t+1,k =
1

Nt,k

t
ÿ

s=1

`t+1(Ys)1tIs=ku .

So all the variables I1, Y1, . . . It, Yt have to be stored (namely, 2T quantities) and t evalua-
tions of the loss function `t, t additions and K divisions have to be done to provide p`t+1,k

for each tariff.

5.2 Distribution-free analysis of the pseudo-regret

Theorem 3. For all distributions ν1, . . . , νK with supports in R, for any T ě 1 and
any sequence of loss functions with supports in [0, 1], `1, `2, . . . , `T , the pseudo-regret of
Algorithm 3 satisfies

R̄T
∆
=

T
ÿ

t=1

`t,It ´

T
ÿ

t=1

min
kPt1,...Ku

`t,k ď K + 2
b

2KT ln
(
T 3/δ

)
,

with probability at least 1 ´ δ.

Remark 4. Even if the best tariff may change at each round, we obtain a bound of the
same order O(

?
T lnT ) as the classical distribution-free one for the UCB algorithm.

Proof of Theorem 3. The analysis of the pseudo-regret is very similar to the proofs of
Theorems 1 and 2. In the classical setting, a distribution-dependent bound was firstly
obtained and then, the distribution-free bound was deducted. As the best tariff to play
may change at each step, such a trick is not possible here. Indeed, previously the regret
bound depended on the gaps ∆k = µ‹ ´µk. Now, for a round t and a tariff k, we introduce
the time dependent gap

∆t
k

∆
= `t,k ´ `k‹

t ,t
with k‹

t P Argmin
k

`t,k ,

so k‹
t denote a best tariff to play. Therefore, it seems complex to consider a distribution-

dependent analysis. However, by using the same type of concentration inequalities, we
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Algorithm 3 δ-Tracking Upper Confidence Bound Algorithm
1: Unknown parameters
2: K probability distributions ν1, . . . , νK P R
3: Input
4: risk level δ P (0, 1)
5: initialization
6: for each tariff the counter Nk,0 = 0
7: for t = 1, . . . , T do
8: if t ď K then
9: It = t

10: else
11: Observe the loss function `t : R Ñ [0, 1]

12: Compute for each tariff k the empirical loss p`t,k =
1

Nt´1,k

t´1
ÿ

s=1

`t
(
Ys
)
1tIs=ku

13: Choose optimistically the next tariff

It P Argmin
kPt1,...,Ku

p`t,k ´

d

ln(t3/δ)
2Nt´1,k

14: end if
15: Observe Yt P R
16: Update for each tariff the counter Nt,k = Nt´1,k + 1tIt=ku

17: end for

manage to obtain a distribution-free regret bound. Indeed, a straightforward application of
Lemma 1 on the estimations of the losses, computed with the variables `t(Y1), . . . , `t(Yt´1)
(see Remark 6 in Appendix for further details), gives that for all k P t1, . . . ,Ku, all t ě K
(so Nt,k ě 1), and all δ P (0, 1),

P

(
`t,k ą p`t,k ´

d

ln 1
δ

2Nt,k

)
ď tδ and P

(
p`t,k ă `t,k +

d

ln 1
δ

2Nt,k

)
ď tδ. (2.3)

The proof is broken down into three steps: as in the proof of Theorems 1, Step 1 provides
the necessary conditions for playing a sub-optimal tariff; then the pseudo-regret associated
with each tariff is bounded in Step 2; Step 3 concludes the proof. The main difference
with the previous analysis is in Step 2.

‹ Step 1: Reasons to play a sub-optimal tariff. At a round t ě K + 1, the instantaneous
pseudo-regret rt = `t,It ´ `t,k‹

t
(bounded by 1) can then be rewritten rt = ∆t

It
. Note that

if It = k one of these three inequalities is satisfied:

(i) `t,k ą p`t,k + αt,k (the loss associated with k is underestimated)

(ii) `t,k‹
t

ă p`t,k‹
t

´ αt,k‹
t

(the loss associated with k‹
t is overestimated)

(iii) ∆t
k ď 2αt,k (tariff k has not been played enough)

Indeed, with It = k, Algorithm (3) ensures

p`t,k ´ αt,k ď p`k‹
t ,t

´ αt,k‹
t

ñ p`t,k ´ p`k‹
t ,t

ď αt,k ´ αt,k‹
t
.
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If (i) and (ii) are not satisfied, then

∆t
k = `t,k ´ `k‹

t ,t

(̄i) and ¯(ii)
ď p`t,k + αt,k ´ p`k‹

t ,t
+ αt,k‹

t

(Algorithm 3)
ď 2αt,k .

As in the proof of Theorem 2, we introduce the following event, which gathers events (i)
and (ii) for all rounds t ě K + 1:

E ∆
=

!

@ t ě K + 1, @ k |∆t
k ą 0 : p`t,k ď `t,k + αt,k and p`t,k‹

t
ě `t,k‹

t
´ αt,k‹

t

)

. (2.4)

Moreover, by a union bound and by using inequalities (2.3) we get, in a similar manner,
that event E holds with probability as least 1 ´ δ. From now on, we consider event E , so
for any round t, a sub-optimal tariff k is played only if ∆t

k ď 2αt,k.

‹ Step 2: Bounds on the contribution of tariff k in the pseudo-regret under event E. With
the notation introduced above, notice that the pseudo-regret equals

R̄T =
K
ÿ

k=1

T
ÿ

t=1

∆t
k1tIt=ku =

K
ÿ

k=1

R̄T,k , with R̄T,k
∆
=

T
ÿ

t=1

∆t
k1tIt=ku .

We point out that for the classical setting, the gaps ∆t
k did not depend on t so the

contribution of arm k to the pseudo-regret was R̄T,k = ∆kNT,k and we just had to bound
the integers NT,k. Here, we focus, for k P t1, . . . ,Ku, on R̄T,k, the contribution of tariff k
to the pseudo-regret. As the strategy on the first K steps is deterministic with It = t, the
tariff k is played exactly once between step 1 and step K and depending on which of the
events the event (i), (ii) or (iii) occurs, we have

R̄T,k ď 1 +
T
ÿ

t=K+1

∆t
k1tIt=k and (i)u

+
T
ÿ

t=K+1

∆t
k1tIt=k and (ii)u +

T
ÿ

t=K+1

∆t
k1tIt=k and (iii)u . (2.5)

In the classical bandit framework, we directly upper-bounded ∆k
řT

t=1 1tIt=k and (iii)u using
that all Nt,k were bounded by 8 lnT/∆2

k. Here, the gaps are not anymore constant, but
by noticing that

∆t
k 1tIt=k and (iii)u = ∆t

k 1tIt=k and∆t
kď2αt,ku ď 2αt,k 1tIt=ku ,

the last term of Equation (2.5) satisfies

T
ÿ

t=K+1

∆t
k 1tIt=k and (iii)u =

T
ÿ

t=K+1

∆t
k 1tIt=k and∆t

kď2αt,ku

ď

T
ÿ

t=K+1

2αt,k1tIt=ku =
T
ÿ

t=K+1

2

d

ln(t3/δ)
2Nt´1,k

1tIt=ku

ď
a

2 ln(T 3/δ)
T
ÿ

t=K+1

1
a

Nt´1,k

1tIt=ku ,
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where we simply upper-bound t by T to get the last inequality. As the integer Nt´1,k

increases by 1 each time tariff k is played, we have

T
ÿ

t=K+1

1
a

Nt´1,k

1tIt=ku =

NT´1,k
ÿ

n=1

1
?
n
= 1 +

NT´1,k
ÿ

n=2

1
?
n
.

By using the integral test for convergence, we may upper bound the sum by an integral
as follows: for any N ě 2,

N
ÿ

n=2

1/
?
n ď

ż N

1

1
?
x

dx =
[
2
?
x
]N
1

= 2
?
N ´ 2 ,

therefore, we get

NT´1,k
ÿ

n=1

1/
?
n ď 1 + 2

a

NT´1,k ´ 2 ď 2
a

NT´1,k .

By combining all the inequalities above, under the event E , only events (iii) hold. Thus,
with the decomposition stated in Equation (2.5), for all k = 1, . . . ,K, the contribution of
tariffs k in the pseudo-regret is bounded by

R̄T,k ď 1 + 2
a

2 ln(T 3/δ)
a

NT´1,k .

‹ Step 3: Regret bound with high probability. With
řK

k=1NT´1,k = T ´ 1, by applying
Jensen’s inequality, we get

K
ÿ

k=1

1

K

a

NT´1,k ď

g

f

f

e

K
ÿ

k=1

NT´1,k

K
=

c

T ´ 1

K
ď

a

T/K .

By summing the contribution of each tariff, if the event E holds, the pseudo-regret is
bounded by:

R̄T =
K
ÿ

k=1

R̄T,k ď K + 2
a

2KT ln(T 3/δ) .

We recall that event E holds with probability at least 1´ δ, which concludes the proof.

To obtain a bound on the expectation of the pseudo-regret, we may as in Corollary 2,
take δ = 1/T and get

E
[
R̄T

]
= 1 +K + 4

?
2KT lnT .

If the time horizon T is unknown, it is still possible to bound the pseudo-regret’s expecta-
tion by considering a moving risk level δt = 1/t, at each time step t (similarly, Algorithm 1
was a δt = 1/t-version of Algorithm 2). So, for each round t ě K +1, we can consider the
optimistic algorithm which picks:

It P argmin
kPt1,...,Ku

p`t,k ´ αt,k with αt,k =

d

2 ln t
Nt´1,k

, (2.6)

and which, for the first K rounds, chooses It = t. Corollary 4 below states a regret bound
in expectation for this moving risk-level algorithm.
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Corollary 4. For all distributions ν1, . . . , νK with supports in R, for any T ě K and
any sequence of loss functions with supports in [0, 1], `1, `2, . . . , `T , the expectation of the
pseudo-regret of Algorithm 2.6 satisfies

E
[
R̄T

]
ď 3K + 4

?
2KT lnT .

Proof of Corollary 4. The proof looks like the one of Theorem 3, the only difference is
that, there is no need to introduce an event E . By replacing the confidence levels αt,k

by
a

2 ln t/Nt´1,k, for any t ě 1, as ∆t
k ď 1, using the linearity of the expectation,

Equation 2.5, which still holds, leads to:

E
[
R̄T,k

]
ď 1 +

T
ÿ

t=K+1

P[(i)] + P[(ii)] + E
[
∆t

k1tIt=k and ∆t
kď2

a

2 ln t/Nt´1,ku

]
. (2.7)

By applying Lemma 1 for each round t between K + 1 and T , with δ = t´4, we obtain
(see Step 2 of the proof of Theorem 1 for further details)

T
ÿ

t=K+1

P[(i)] + P[(ii)] ď

T
ÿ

t=K+1

2t´3 ď 2 . (2.8)

Then, exactly as in Step 2 of the proof of Theorem 3, by using that

∆t
k1tIt=k and ∆t

kď2αt,ku ď 2αt,k1tIt=ku ,

with αt,k =
a

2 ln t/Nt´1,k, we get that
T
ÿ

t=K+1

∆t
k1tIt=k and ∆t

kď2
a

2 ln t/Nt,ku
ď

T
ÿ

t=K+1

2

d

2 ln t
Nt,k

1tIt=ku

ď 2
?
2 lnT

T
ÿ

t=K+1

d

1

Nt,k
1tIt=ku = 2

?
2 lnT

NT,k
ÿ

n=1

1
?
n
.

Then, the integral test for convergence gives
T
ÿ

t=K+1

∆t
k1tIt=k and ∆t

kď2
a

2 ln t/Nt´1,ku
ď 4

a

2NT´1,k lnT .

By summing over the tariffs, Jensen’s inequality (see Step 3 of the proof of Theorem 3)
leads to the deterministic bound:

K
ÿ

k=1

T
ÿ

t=K+1

∆t
k1tIt=k and ∆t

kď2
a

2 ln t/Nt,ku
ď 4

?
2KT lnT . (2.9)

Finally, by injecting Equations (2.8) and (2.9) into Equation (2.7), we bound the expec-
tation of the pseudo-regret of Algorithm (2.6) by

E
[
R̄T

]
=

K
ÿ

k=1

E
[
R̄T,k

]
ď

K
ÿ

k=1

(
1 + 2 + E

[ T
ÿ

t=K+1

∆t
k1tIt=k and ∆t

kď2
a

2 ln t/Nt´1,ku

])
ď 3K + 4

?
2KT lnT ,

which concludes the proof.
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Remark 5. These analyses also hold when the gaps are constant over t; but, within a
multiplicative constant, the previous distribution-free regret bounds are better. For example,
for Algorithm 1, the first and well-known analysis provided a distribution-free regret bound
equal to

a

KT (2 + 8 lnT ) TÑ8
„ 2

?
2KT lnT .

While, with this new analysis, we obtain the bound 3K + 4
?
2KT lnT TÑ8

„ 4
?
2KT lnT .

6 Perspectives
We point out that we develop this target tracking with bandit framework for demand side
management. However, it may be possible to consider other applications. Indeed, in a
decision process, as soon as the aim is not to maximize the reward but to get close to a
target (by introducing some loss functions `t that are known and may change throughout
the rounds), the propose method can be considered.

The main drawbacks of the modeling above are the assumptions made on the power
consumption. Indeed, we assumed the effects of the tariff Yt to be independent on the
contextual variables, which is not really suitable. For example, a change in the electricity
price during the night may have less impact than a change during a peak-hour. The
temperature may also affect the tariff effects: if people are thermo-sensitive, they should be
unlikely to reduce their consumption when they need to heat their households. Moreover,
we made the strong assumption that we knew the function φ, namely the part of the
consumption that did not depend on the tariff. In a more realistic approach of demand
side management, the effect of every exogenous variables (temperature, days, tariffs, etc.)
on the expected power consumption should to be learn by the electricity provider (namely,
without any prior knowledge on how people consume). Therefore, in Chapter 4, the bandit
feedback considered will be the power consumptions (and not any more the tariff effects).
Furthermore, for a chose tariff It = k, they will be of the form Yt = φ(xt, k)+noise, where
the function φ is unknown.
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Appendix

Proof of Azuma-Hoeffing inequality with a random number of summands

Here we prove Lemma 1 used in Step 2 of the proof of Theorem 1, to bound the proba-
bility that event (i) or (ii) occurs. It is based on Hoeffding’s lemma, which is recalled in
Lemma 2 below and proved at the end of the section.

Lemma 2 (Conditional Hoeffding’s lemma). Let X be a random variable such that, almost
surely, X P [a, b], then for any σ-algebra G,

@x P R, E
[
ex(X´E[X|G])ˇ

ˇG
]

ď e
x2

8
(b´a)2 .

In the proof of Lemma 1, together with the filtration (Ft)
∆
=
(
σ(I1, Y1, . . . , It, Yt))tě0

)
,

we introduce the Ft-martingale

Zt
∆
=

t
ÿ

s=1

(
Ys ´ µk

)
1tIs=ku = Nt,k

(
pµt,k ´ µk

)
.

Indeed, It is Ft´1-measurable so, given how rewards are drawn, we have first E[Yt|Ft´1] =
E[Yt|It] = µIt and therefore,

E
[
(Yt ´ µk)1tIt=ku|Ft´1

]
= (µIt ´ µk)1tIt=ku = 0 .

Therefore, Zt is Ft-adapted and its conditional expectation equals 0. As each increment
(Ys ´ µk)1tIs=ku is bounded between ´µk and 1 ´ µk, by applying the classical Azuma-
Hoeffing inequality to the Ft-martingale Zt, we would have obtained, for any ε ą 0,

P[Zt ě ε] ď e2ε2/t,

and in particular, with ε =
a

t ln(1/tδ)/2,

P
(
pµt,k ´ µk ě

d

t

Nt,k

d

ln(1/tδ)
2Nt,k

)
ď tδ.

To avoid the factor
a

t/Nt,k in the deviation bound, we use, in the proof, the fact that
the estimation pµt,k is computed on random number of observations, and we thus reach a
better deviation bound than the direct application of the classical inequality.

Proof of Lemma 1. The proof is based on the fact that (Mt)tě0 is a super-martingale with
respect to the filtration (Ft), with for any x ą 0,

Mt
∆
= exp

(
xZt ´

x2

8
Ntk

)
= exp

( t
ÿ

s=1

(
x(Ys ´ µk) ´ x2/8

)
1tIs=ku

)
.

Indeed, as Zt and Nt,k are Ft-adapted, Mt is too. To prove that, for any t ě 1,
E[Mt|Ft´1] ď Mt´1, we recall that the random variable

(
Yt ´ µk

)
1tIt=ku is almost surely

bounded between ´µk and 1 ´ µk and that its expectation is null:

E
[(
Yt ´ µk

)
1tIt=ku

]
= E

[
E
[
(Yt ´ µk)1tIt=ku|Ft´1

]]
= 0 .
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Therefore, by using Lemma 2, we obtain that

x P R, E
[

exp
(
x
(
Yt ´ µk

)
1tIt=ku

)
|Ft´1

]
ď e

x2

8 . (‹)

But, we can reach an even better bound by decomposing the conditional expectation
according to the value of the Ft´1-measurable random variable 1tIt=ku:

E
[

exp
(
x
(
Yt ´ µk

)
1tIt=ku

)
ˇ

ˇFt´1

]
= E

[
exp

(
x
(
Yt ´ µk

)
1tIt=ku

)
ˇ

ˇFt´1

]
1tIt=ku + e01tIt‰ku

(‹)
ď ex

2

8
1tIt=ku + 1tIt‰ku = exp

(x2
8
1tIt=ku

)
.

So, (Mt)tě0 is a super-martingale:

E
[
Mt

ˇ

ˇFt´1

]
=Mt´1E

[
exp

(
(x(Yt ´ µk) ´ x2/8)1tIt=ku

)ˇ
ˇ

ˇ
Ft´1

]
ď Mt´1 ,

and, for any x ą 0, we obtain that

E
[

exp
(
xZt ´

x2

8
Nt,k

)]
= E[Mt] ď E[M0] = 1 . (‹‹)

For each deterministic possible value s = 1, . . . , t of Nt,k, for any x ą 0, and any ε ą 0,
we use a Markov-Chernoff bound to obtain

P
(
Zt ě ε and Nt,k = s

)
ď e´xεE

[
exZt1tNt,k=su

]
= e´xε+x2

8
s E
[
exZt´x2

8
s1tNt,k=su

]
ď e´xε+x2

8
sE
[

exp
(
xZt ´

x2

8
Ntk

)] (‹‹)
ď e´xε+x2

8
s .

And, by choosing x = 4ε/s, we get that,

@ ε ą 0, @ s ě 1, P
(
Zt ě ε and Nt,k = s

)
ď e´2ε2/s (‹‹‹)

We recall that we aim to bound

P

(
pµt,k ´ µk ď

d

ln 1/δ

2Nt,k

)
= P

(
Zt ď

c

Nt,k ln 1/δ

2

)
.

so it only remains to sum the inequality above over s for each s = 1, . . . t, with ε =
b

s ln 1/δ
2 ,

to conclude the proof:

P

(
Zt ď

c

Nt,k ln 1/δ

2

)
ď

t
ÿ

s=1

P
(
Zt ď

c

s ln 1/δ

2
and Nt,k = s

)
(‹‹‹)

ď

t
ÿ

s=1

exp
(

´
2s ln 1/δ

2s

)
= tδ .

We now prove the conditional version of Hoeffding’s lemma stated and used above.
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Proof of Lemma 2. Let us fix x P R and denote by Y = X ´ E[X|G] the random variable
that is almost surely bounded between A = a ´ E[X|G] ď 0 and B = b ´ E[X|G] ě 0
(which are G-measurable random variables). By using the convexity of y ÞÑ exy on

Y =
B ´ Y

B ´A
A+

Y ´A

B ´A
B , we get exY ď

B ´ Y

B ´A
exA +

Y ´A

B ´A
exB .

By taking the expectation conditionally to G and using that A and B are G-measurable,
and keeping in mind that E[Y |G] = 0, we get

E[exY |G] ď
B

B ´A
exA +

´A

B ´A
exB .

It only remains to apply Lemma 3 below with p = ´A/(B ´A) (which is in [0, 1] because
A ď 0 and B ě 0) and u = x(B ´A) = u(b´ a) to conclude the proof.

Lemma 3 (Non-conditional Hoeffding’s lemma for Bernoulli distributions). For any p P

[0, 1] and any u P R,
(1 ´ p)e´pu + pe(1´p)u ď eu2/8 .

Proof of Lemma 3. We consider the random variable X which follows a Bernoulli distri-
bution of parameter p P [0, 1], so E[X] = p and 0 ď X ď 1 almost surely. The inequal-
ity of the lemma is a straightforward application of (non-conditional) Hoeffding’s lemma
(see Hoeffding, 1994) which states that, for all u P R,

E
[
euX

]
= peu + 1 ´ p ď exp

(
uE[X] +

u2

8

)
= eupeu2/8 .

By dividing the inequality above by e´pu, we conclude the proof.

Remark 6. We point out that Lemma 1 also holds for the expected losses `t,k and their
estimations p`t,k (computed with the variables `t(Y1), . . . , `t(Yt´1)). We recall that, for a
round t and a tariff k, these quantities are defined by:

`t,k = EY „νk

[
`t(Y )

]
and p`t,k =

1

Nt´1,k

t
ÿ

s=1

`t(Ys)1tIs=ku .

In the proof above, it suffices to replace the variables µk and pµt,k by `t+1,k and p`t+1,k,
respectively, and to update the Ft-martingale Zt =

řt
s=1

(
Ys ´ µk

)
1tIs=ku with

Zt =
t
ÿ

s=1

(
`t+1(Ys) ´ `t+1,k

)
1tIs=ku

to get the result. Therefore, for all k P t1, . . . ,Ku, for all t ě K (so Nt,k ě 1), and for all
δ P (0, 1), we have

P

(
`t,k ą p`t,k ´

d

ln 1
δ

2Nt,k

)
ď tδ and P

(
p`t,k ă `t,k +

d

ln 1
δ

2Nt,k

)
ď tδ .
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3
Forecasting of power
consumption

After a brief introduction on the industrial challenges of forecasting electric-
ity consumption and a non-exhaustive review of commonly used methods,
the chapter presents the open data set ”Low Carbon London” created and
published by UK Power Networks. It contains electricity consumption
records of households subjected to dynamic electricity tariffs. A succinct
descriptive analysis is also provided. Next, the focus is on generalized
additive models, a powerful and efficient semi-parametric approach to
model electricity consumption. An application of these methods to the Low
Carbon London data set concludes the chapter.

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
1.1 Motivations and industrial challenges 80
1.2 History of forecasting methods and literature discussion 80

1.2.1 Exogenous variables useful for forecasting power consump-
tion 81

1.2.2 Parametric and semi-parametric methods 81
1.2.3 Non-parametric methods 82
1.2.4 Online expert aggregation 82

2 Low Carbon London data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.1 Underlying dataset 83

2.1.1 Electricity consumption and tariff data 84
2.1.2 Electricity tariffs data 86
2.1.3 Meteorological and calendar data 86

2.2 Descriptive analysis 87
2.2.1 Seasonalities and calendar variables effect 88
2.2.2 Temperature effect 88
2.2.3 Tariff effect 89

3 Generalized additive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.1 Uni-variate semi-parametric regression: an example with cubic splines 92
3.2 Additive models 95
3.3 Generalized additive models [GAM] 96

4 Application to the Low Carbon London data set . . . . . . . . . . . . . . . . . . . . . 97
4.1 Estimations and predictions of power consumption 97
4.2 Measurement of the tariff impact on power consumption 100

79



P
ow

er
C
on
su
m
p
ti
on

F
or
ec
as
ti
n
g

P
ow

er
C
on
su
m
p
ti
on

F
or
ec
as
ti
n
g

1 Introduction

1.1 Motivations and industrial challenges

Electricity is still difficult to store, except at prohibitive costs, and this is why the bal-
ance between production and consumption needs to be constantly maintained. Indeed,
the security of the system and the power grid must be ensured to avoid blackouts. This
management is becoming increasingly difficult since many intermittent means of produc-
tion, such as wind power or photo-voltaic, are connected to the grid. The flexible means
of electricity production (water dams, nuclear plants, coal and gas plants) are currently
adapted according to the energy consumption forecasts. A slight improvement in elec-
tricity demand forecasting can bring significant benefits by reducing production costs,
limiting the financial penalties imposed by system operators in case of mismanagement
of the production/consumption balance and increasing the trading advantages, especially
during the peak periods (see, e.g. Bunn and Farmer [1985])

In the short-term (from a few hours to two weeks) or in the middle-term (from two weeks
to five years), electricity consumption forecasts are therefore essential for scheduling and
optimizing the use of power plants. In addition, in the long-term (from five to fifty years),
electricity consumption forecasts provide prospects for the evolution of the customer port-
folio. They are therefore useful both for adapting commercial offers accordingly and for
defining an investment strategy.

Electricity consumption forecasts are required at different levels of aggregation. Fore-
most, forecasts of global consumption (e.g. for an entire country), on the one hand, and
of consumption at the interfaces between the transport network (high-voltage lines) and
the distribution network (medium- and low-voltage lines), on the other hand, are essential
both for network operators, which must dispatch electricity, and for electricity providers,
which must produce the quantity of electricity corresponding to that consumed. How-
ever, with the integration of decentralized means of production such as wind and solar
farms, as well as the development of auto-consumption, it also becomes essential to fore-
cast consumption at the lowest aggregate levels. Indeed, due to the increase in the uptake
of distributed generation and storage systems, dis-aggregated load forecasting becomes
essential. Electricity grids are becoming “smart” and there is no doubt that forecasting of
power consumption plays a key role in their proper management. In the same time, smart
meters, which are being massively deployed, will be a valuable new source of information
and may also offer new services to consumers.

Forecasting electricity consumption over different time horizons and geographical scales
is therefore crucial for electricity suppliers and grid operators. In the current context of
energy and digital transition, models must be as efficient as possible and will have to adapt
to the evolution of power systems and to the new challenges that accompany it.

1.2 History of forecasting methods and literature discussion

EDF is active in many power generation technologies as nuclear, hydro, wind, solar,
biomass, geothermal, fossil-fired and marine energies. To response to the electricity de-
mand by managing these production units, it developed over the last decades accurate
consumption forecasting models. The company collected electricity production and con-
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sumption data history over many years and gained sound knowledge of power consumption
forecasting.

1.2.1 Exogenous variables useful for forecasting power consumption

Electricity consumption varies according to many variables, which are primarily meteoro-
logical, calendar and related to electricity pricing options. First of all, because of the large
demand of electrical heating in cold weather, temperature is essential to obtain relevant
forecasts. Among others, Engle et al. [1986] and Taylor and Buizza [2002] investigated
the non-linear relationship between temperature and electricity consumption; they used
a semiparametric regression and artificial neural networks, respectively. Moreover, Taylor
[2003] showed that some exponential smoothings of the temperature, which model build-
ings inertia or consumers reaction delay, are likely to improve the predictions. Other
weather variables like wind, humidity, precipitation or cloud cover may also influence the
electricity consumption, see Taylor and Buizza [2003]. Calendar variables are also taken
into account in the vast majority of the power consumption models (see, for example
Haida and Muto [1994]). Finally, many demand-response strategies (which influence con-
sumption in one direction or the other) rely on changes in the price of electricity, which
therefore also have an impact on electricity consumption; see, among others, Lescoeur and
Galland [1987] which presents the French experience of using marginal cost pricing for
good demand side management, and Kostková et al. [2013] which gives an overview of the
load management methods, techniques and programs theoretically described or practically
used in several countries. Therefore, to model and forecast electricity consumption, the
proposed approaches provide predictions based on exogenous weather, calendar and price
information. They may also consider past load data, using traditional time series tech-
niques.

1.2.2 Parametric and semi-parametric methods

Among the parametric approaches, Ramanathan et al. [1997] proposed a multiple re-
gression model (one for each hour of the day) with a dynamic error structure, based on
auto-regressive models. Moreover, univariate methods based on exponential smoothing
and SARIMA (seasonal auto-regressive integrated moving average) models can be found
in Hyndman et al. [2002] and Abraham and Nath [2001], respectively. Before 2006, the
electricity consumption approaches used by the operational EDF entities consisted in re-
gression methods coupled with classical times series models such as (S)ARIMA models
(see, e.g., Ernoult et al., 1983).

More complex relationships between the electricity consumption and its covariates have
also been studied. For example, in Engle et al. [1986], the non-linear effect of the tem-
perature is estimated using an extension of smoothing splines and Harvey and Koopman
[1993] captured the seasonal patterns and the temperature effect using a time-varying
spline model. Antoniadis et al. [2006] proposed an approach based on functional ker-
nel non-parametric regression estimation techniques. With Generalized Additive Models
(GAM), studied by Fan and Hyndman [2012] and Pierrot and Goude [2011], the expected
power consumption is modeled as a sum of independent exogenous variable effects. These
effects are approached with smooth functions which can capture nonlinearities. This semi-
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parametric approach is currently used in an operational manner in many EDF entities in
order to provide forecasts at different time horizons and at various levels of aggregation.

The main drawback of a such modeling is its weak ability to adapt to changes in power
consumption behaviors due to the evolution of economic growth, the development of new
electrical uses (for instance, electrical vehicles), the opening of new electricity markets,
etc Ba et al. [2012] proposed an online learning algorithm to track the smoothing func-
tions of additive models and therefore to adapt the electricity consumption models to an
ever-changing environment. It should also be noted that Wood et al. [2015] developed
generalized additive model fitting methods for large data sets, considering a practical ap-
plication in electricity grid load prediction.

Finally, it must be emphasized that the previous methods focused on point forecast-
ing (generally, the expected consumption). However, probabilistic electricity consumption
forecasting gives additional information on the variability and uncertainty of the consump-
tion and is becoming valuable for production planning or smart grid management. With
regard to this objective Hyndman and Fan [2010] proposed to forecast the probability
distribution of annual and weekly peak electricity demand using GAMs and later Fasiolo
et al. [2020] provided a generalization of GAMs for fitting additive quantile regression
models.

1.2.3 Non-parametric methods

Load forecasting has not escaped the current machine learning trend and many applica-
tions in the electrical field, based on neural networks or decision trees have been success-
fully carried out. For example, Ben Taieb and Hyndman [2014] and Chen et al. [2004]
proposed, in load forecasting competitions, methods based on gradient boosting and sup-
port vector machine, respectively. Random forests also provided relevant power consump-
tion forecasts (see, e.g. Dudek, 2015) as well as artificial neural networks (see among
others, Asar and Mcdonald, 1994 and Ringwood et al., 2001 and more lately Kong et al.,
2017). Since several years, black-box models have also been examined in EDF Research
and Development department. This recent research gives promising results even if these
models suffer, compared to GAM, of a lack of interpretability: this is one of the reasons
they are not yet used by operational EDF entities.

1.2.4 Online expert aggregation

To conclude this review of the methods used at EDF for forecasting electricity consump-
tion, it should be noted that it is sometimes useful to combine forecasts obtained from
different models. Some of the predictions may be relevant in specific conditions (peak
hours, winter, etc.) while others are better at other times; this is why it can be interesting
to combine them. Goude [2008] and Gaillard [2015] proposed and implemented algorithms
for online predictors aggregation which significantly improve the electricity consumption
forecasts. These black-box algorithms take as input several predictors (several forecasting
models) and output a linear combination of the forecasts provided by the predictors. The
weights in the linear combination are constantly adjusted according to the most recent past
prediction errors. This is further presented and discussed in Chapter 6. The R-Package
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Opera1, see Goude and Gaillard [2016], gathers these algorithms, which are used in certain
EDF entities.

As the demand side management strategies implemented in this thesis will target ag-
gregates of a hundred to a thousand households, the focus is on short and medium term
forecasting of both global and local energy consumption (at an aggregation level of around
100 households). It is essential, before tackling the implementation of bandit algorithms,
to study in more detail the specificities of electricity consumption at these levels and terms
and to propose a realistic model of the latter. Section 2 presents the power consumption
data set used throughout the manuscript, called “Low Carbon London data set” in the
sequel. Most of consumption models we will use will be based on generalized additive
models. In Section 3, GAM theory is briefly introduced. All the presented results can be
found in the exhaustive monograph Generalized Additive Models: An Introduction with
R by Wood [2006]. Finally, an application of GAMs to the Low Carbon London data is
provided in Section 4.

2 Low Carbon London data

In Chapters 4, 7 and 8, we consider an open data set created and published by UK Power
Networks and containing electricity consumption (in kWh per half-hour) of around 5,000
households throughout 20132. Since weather has a strong impact on energy consumption,
open source data points of London air temperature were added to the data set. These
records were gathered by the U.S.A. scientific agency NOAA (National Oceanic and At-
mospheric Administration) and are available online3. The next subsection presents the
data in more detail and is followed by a descriptive analysis.

2.1 Underlying dataset

Between November 2011 and February 2014, 5,567 London households took part in the
UK Power Networks led Low Carbon London project. These households were recruited
as a balanced sample representative of the Greater London population and an CACI
Acorn group4 was assigned to each of them. Among these households, a sub-group of
approximately 1,100 was subjected to a dynamic Time of Use (ToU) tariff throughout
the year 2013. The tariff values were among High (67.20 p/kWh), Low (3.99 p/kWh), or
Normal (11.76 p/kWh); and the (half-hourly) intervals where these prices are applied, were
announced one-day-ahead via the smart meter or text message. According to UK Power
Networks, the signals sent were designed to be representative of those that could be used in
the future, whether to manage the integration of renewables into the electricity generation
mix or to test the potential of using a high price to reduce stress on grids during periods of
over-consumption. All ToU households received the same tariffs and non-ToU households
were on a flat rate tariff of 14.228 p/kWh; we refer to them as Standard (Std) customers.
The report Schofield et al. [2014] provides a full description of this experimentation and
an exhaustive analysis of the results.

1https://CRAN.R-project.org/package=opera
2https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
3www.noaa.gov
4https://acorn.caci.co.uk/
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Figure 3.1 – Four households electricity consumption (in kWh) per half-hour, over seven days.
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Figure 3.2 – Distribution of the annual electricity consumptions (in kWh) of 1,007 ToU house-
holds.

2.1.1 Electricity consumption and tariff data

The data set contains energy consumption readings in kWh for each customer at half-
hourly intervals. Time slots and price signal schedules are also available. Since the
dissertation focuses on demand management strategies, we are interested in household
behaviors in response to changes in electricity prices. Therefore, the experiments will be
based on ToU households consumption readings. Only households with more than 95% of
data available (1,007 ToU households) are kept and the same number of Std households are
sampled to build a control group. The missing values in the time series were filled by linear
interpolation, using the previous and next interval records for small gaps. For longer peri-
ods of missing data, records were missing over longer time intervals and we then considered
the energy consumption half an hour by half an hour. By selecting the records associated
with a specific half-hour, we imputed the missing records by linear interpolation, i.e. from
the consumption of the days preceding and following at the same half-hour. Energy con-
sumption readings for the first seven days of 2013 are plotted for four randomly selected
ToU households in Figure 3.1. Households 1 and 2 present rather similar consumption
curves, with periods of low and high consumption for each day. The times of these drops
or peaks differ from household to household. The curve for Household 3 is almost flat
and at a very low level during the first five days, it becomes much more significant, with
many consumption peaks during the last two days. It would seem that the members of
this household went on holiday (probably for Christmas and New Year), leaving a few
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Figure 3.3 – Electricity consumption (in kWh) per half-hour, over seven days of four clusters of
100 households.
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Figure 3.4 – Electricity consumption (in kWh) per half-hour, over seven days, averaged over
1,007 ToU households (in blue) and 1,007 Std households (in grey).

appliances on standby, and that on their return, the household started consuming again.
The consumption curve for Household 4 shows a peak each morning, which could be due to
the connection of an energy intensive appliance. Individual electricity consumption is thus
extremely erratic, making it difficult to model and predict. The histogram of Figure 3.2
represents the annual consumption of the 1,007 households. The majority of households
consumes between 2,000 and 5,000 kWh per year, although a few are very energy intensive.

A level of aggregation of at least a hundred households enables to smooth consumption,
which will then be more easily modeled and predictable (whereas individual consumption
is erratic and unpredictable). Figure 3.3 represents, still for the first seven days of 2013,
the average electricity consumption of four clusters of one hundred households. And the
higher aggregation level, the smoother the electricity consumption. Indeed, the average
electricity consumption of 1,007 ToU and 1,007 Std households is shown in Figure 3.4,
these curves are much smoother than those for individual consumptions. Even if the ToU
households received the Normal tariff for this period almost every time (from January, 1st
to 7.), the average electricity consumption of the ToU and Std households differ. Indeed,
the consumption Tou is always lower than the consumption Std and this difference is even
more significant between 8 a.m. and 6 p.m. From now on, we denote by Y1, Y2, . . . the time
series of the average power consumption of the ToU household at half hourly intervals.
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Figure 3.5 – Distributions of tariffs Low (in green), Normal (in blue) and High (in navy) according
to the half-hour of the day (on the left) and to the days of the week (on the right).

2.1.2 Electricity tariffs data

For the ToU households, electricity price varies among three tariffs: Low, Normal and
High and are denoted by j1, j2, . . . . Throughout the Low Carbon London project, these
tariffs have been carefully chosen and their distributions are not uniform at all. Therefore,
we must be aware of possible biases that exist in the data set and we should be careful
with the conclusions drawn from our experiments. Figure 3.5 shows the distribution of the
three tariffs according to the time of day and the days of the week. It should be noted that
the high tariff is more often given at the evening peak of consumption (between 6 and 10
p.m.) and during the weekends. This is because we want to have a better understanding
of the possible drop in consumption caused by a high price in this particular time slot. It
should also be noted that, during the same day, a special rate (Low or High) applies only
for a few hours; the rest of the day is under the Normal tariff. There are thus operational
constraints, which were considered during the Low Carbon London project experience.
This is an important component to take into account: when testing strategies, it will be
necessary to make sure that the tariffs are not sent over too long a time slot (we will
neglect these constraints in our first models, though).

2.1.3 Meteorological and calendar data

As mentioned above, since weather has a strong impact on energy consumption, we added
half-hourly data points of air temperature in London τ1, τ2, . . . obtained from hourly public
observations after linear interpolation. It is common in the electricity forecasting literature
(e.g., Fan and Hyndman, 2012) to use nonlinear distributed lag models (namely to τt´1,
τt´2 etc. to predict Yt). Here, we use an exponentially weighted temperature – a “smoothed
temperature” τ̄t, that models the thermal inertia of buildings and is defined as follows: for
any round t ě 1, it is defined by

τ̄t =

"

τ11 if t = 1

(1 ´ a)τt + aτ̄t´1 = (1 ´ a)
řt´2

k=0 a
kτt´k + atτ1 else,

where the smoothing parameter a is in [0, 1]. Using this smoothed temperature is more
parsimonious than taking all the lag temperatures τt´1, τt´2, . . . into account and it is
likely to improve forecasts (see among others, Taylor, 2003 and Goude et al., 2014). Note
that between these two approaches Carroll et al. [1997] also proposed to use linear com-
binations of past temperatures of the form τ̃t =

řt
k=0 βkτt´k to improve predictions. To

tune a, we performed an exhaustive grid search (by testing many values on the prediction
models described in Section 4) and set a = 0.998. This value is consistent with the one
generally used in electricity consumption forecasting models developed at EDF R&D. Fig-
ure 3.6 represents both realized and smoothed temperatures. As desired, the exponentially
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Figure 3.6 – Half-hourly temperature (in grey) and exponentially smoothed temperature (in
blue).
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Figure 3.7 – Average daily ToU household electricity consumption for the year 2013.

smoothed temperature is not at all erratic and there is also a certain delay, compared to
the realized temperature, in its variations.

Finally, energy consumption also depends on calendar variables such as the half-hour
of the day, the day, the season etc. Thus, for a round t, three additional variables were
created: ht, the half-hour of the record, the categorical variable “type of day” wt that
takes values 0 on Sunday, 1 on Monday and so on, and the position in the year κt, a con-
tinuous variable which increases linearly from 0 (on January, 1st) to 1 (on December, 31st).

The power consumption records provided by the Low Carbon London project, the tem-
peratures archived by NOAA, the exponentially smoothed temperatures and the calendar
variables created are summarized in Table 3.1.

2.2 Descriptive analysis

Electricity consumption is characterized by several seasonalities. In Figure 3.7, the aver-
age daily consumption is plotted over the year 2013. It varies over the months: in winter,
due to the termo-sensitivity of households, electricity consumption is high, whereas it de-
creases in summer. In July and August, consumption is even lower than in the other hot
months: many households probably went on summer holidays, leaving the buildings empty.
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Variable Notation
Average (over 1,007 ToU households) half-hour energy consumption Yt
Half-hour tariff among Low, Normal and High jt
Half-hour London air temperature τt
Half-hour London air smooth temperature τ̄t
Type of day (0 for Sunday, 1 for Monday etc.) wt

Position in the year (0 on January, 1st at 00:00 and 1 on December, 31st at 23:30) πt
Half-hour index (0 at 00:00 and 47 at 23:30) ht

Table 3.1 – Summary of the variables provided and created.
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Figure 3.8 – Average ToU household electricity consumption at half-hourly intervals, averaged
over the 52 weeks of the year 2013.

2.2.1 Seasonalities and calendar variables effect

Figure 3.8 shows the average weekly consumption at half-hourly intervals. It should be
noted that there is a daily seasonality: for each day, the consumption curve follows the
same evolution. It is low at night, with a first peak around 8 a.m., when consumers wake
up. Power consumption then stagnates until the evening, when there is a second, even
more important peak: household members go home, cook dinner, turn on the TV, etc. and
it collapses for the night. It is therefore highly correlated with the activities of household
members. Furthermore, household electricity consumption is highest at weekends, when
individuals are not working and potentially staying at home. In particular, the curves sig-
nificantly differ between 10 a.m. and 4 p.m. for Saturday and Sunday, on the one hand,
and for working days, on the other hand; in this time slot, people can stay at home on
weekends while they have to go to work on the other days of the week. Moreover, we notice
a delayed morning peak: individuals probably get up later (see Figure 3.9). Therefore,
electricity consumption also presents a weekly seasonality.

2.2.2 Temperature effect

In Figure 3.10, we plotted the average daily power consumption and the average daily
temperatures (realized and smoothed) over the year 2013. Visually, it is clear that tem-
peratures and consumption are strongly correlated. More precisely, in winter, there is
a strong negative correlation between temperature and energy consumption (see left of
Figure 3.11). This is due to the temperature sensitivity of households that use electric
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Figure 3.9 – Average ToU household electricity consumption at half-hourly intervals, averaged
over days of the year 2013, depending on the day of the week (Sun., Mon. etc.).
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Figure 3.10 – Average daily ToU household electricity consumption in khW (in blue) and average
daily realized (solid line) and smoothed (dashed line) temperatures in ˝C (in grey) for the year
2013.

heating. In summer, the relationship between temperature and consumption is less visible.
It is slightly positive because of the use of air conditioning (see right of Figure 3.11).

2.2.3 Tariff effect

Finally, we investigate the effect of tariff changes on the electricity consumption. Fig-
ure 3.12 displays boxplots of the average consumption depending on both the tariff and
the hour of the day. Except between 5 p.m. and 11 p.m., the higher the price, the lower
the electricity consumption. We explain in the following paragraph the reason why the
effect of a tariff change is counter-intuitive in the evening. An important point to note here
is that the effect of a tariff change, i.e. the decrease or increase in load, seems to depend
strongly on the time of day when the tariff change is applied: for example, a change during
the night has practically no effect. As load adjustment to the electricity price is not yet
automated, during the night, people are probably unlikely to wake up to turn on their
electrical devices (although some, such as washing machines, can be programmed). On
the opposite, a change in the price of electricity during the day has a significant impact.
It should also be noted that the load variance is generally greater for Low tariffs than for
High or Normal tariff. This seems quite logical, since reacting to a change in tariff requires
a change in consumption habits, which is not always possible. This variability in reactions
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Figure 3.11 – Average daily ToU household electricity consumption in khW (in blue) and average
daily realized (solid line) and smoothed (dashed line) temperatures in ˝C (in grey) in January and
February (to the left) and in July and August 2013 (to the right).
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Figure 3.12 – Boxplot of electricity consumption for ToU households (in green for Low tariff,
blue for Normal tariff and navy for High tariff) depending on the hour of the day.

to tariff changes is much higher for Low tariff than for High tariff: there is only a loss of
profit if one does not react to Low tariff (whereas there is potentially more to lose if one
continues to consume when the tariff is High). On the opposite, a High tariff provokes
generally the same reaction: limiting the power consumption as much as possible to pay
less. Therefore the variance is most of the time lower than for Normal and Low tariffs. We
note, however, that the boxplots associated with Normal tariff are calculated with many
more observations than those associated with Low or High tariffs (see Figure 3.5), and
that these results must thus be considered with some caution.

Surprisingly, for a few hours during the evening consumption peak, the median load
value for High tariff is higher than that of Normal tariff. Remembering the purposes of
the Low Carbon London project, this actually makes sense: tariff were designed to test
the potential to use high price signals to reduce stress on local distribution grids during
periods of stress. Therefore, there is some bias in the data set and we should compare
the load of ToU households with that of Std households to properly measure the impact
of a tariff change. In Figure 3.13, the average daily electricity consumptions associated
with the three tariffs are plotted separately for ToU and Std sub-populations. We em-
phasize that for the Std households, a change in tariff should not have any impact on
their consumption: they were always on a constant tariff. Nevertheless, looking at the
graphs to the left of Figure 3.13, the load of Std households is higher during the evening
consumption peak for High tariff than for Normal or Low tariff. Therefore, High tariff
was sent during periods of stress and it is logical to observe a less significant effect on
the electricity consumption of ToU households. Finally, Figure 3.14 shows the electricity
consumption over one week for both populations. Compared to the control group, namely
Std households, ToU households react significantly to a change of the tariff: High tariff
generally leads to a decrease in consumption, and conversely, Low tariff to an increase in
consumption; however, these effects are less visible at night.
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Figure 3.13 – Daily average electricity consumption for ToU households (on the left) and Std
Households (on the right) depending on the tariff received only by ToU households (in green for
Low tariff, blue for Normal tariff and navy for High tariff).
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Figure 3.14 – Average electricity consumption of ToU (in green for Low tariff, blue for Normal
tariff and navy for High tariff) and Std (in grey) households from Sunday February 26. to Saturday
March 4.

This descriptive analysis points out the correlation between the average electricity con-
sumption Yt and the exogenous variables introduced below. To model and predict the
load, we will therefore consider the realized and smoothed temperatures, τt and τ̄t, respec-
tively, the position in the year πt, the day of the week wt, the half-hour index ht and the
tariff jt. All these variables are gathered in a contextual variable vector denoted by xt.
Throughout the thesis, we will generally consider some semi-parametric modeling of the
load in the form:

Yt = f(xt) + noise ,

where the function f has to be estimated. As previously mentioned, GAMs form a powerful
and efficient semi-parametric approach used by EDF to model electricity consumption. We
will illustrate this in Section 4 on the Low Carbon London data set. But above all, we will
briefly present generalized additive models (GAM) in the next section. We will also show
how a GAM can be expressed as an over-parameterized linear model. This writing leads to
the assumptions made in the following chapters: they will concern the modeling of energy
consumption and will be fundamental to obtain theoretical results on the convergence of
the proposed bandit algorithms.

3 Generalized additive models

Generalized additive models were originally introduced by Hastie and Tibshirani [1986] to
blend properties of generalized linear models with additive models. The model is defined
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by an equation linking a response variable Y to some predictor variables, x. The variable
of interest Y is assumed to follow an exponential family distribution (e.g. normal, binomial
or Poisson distributions). This distribution is specified along with a link function g (such
as the identity or logarithmic function) relating the expected value of Y to the predictor
variables via a structure such that

g
(
E[Y ]

)
= f1(x1) + f2(x2) + f34(x3, x4) + . . . ,

where the function fi are smooth functions of the covariates. In order to define these
“smooth functions”, some spaces in which they can be represented will be introduced.
The specification of the dependencies between the response variable and its covariates is
therefore quite flexible, it can be non linear and non parametric, so that many different ef-
fects can be modeled (as opposed to parametric modeling where the relationships are very
detailed). Generally, these smooth functions are estimated by penalized regression splines
(which are functions defined piece-wise by polynomials), and their degrees of smoothness
are chosen from data using a generalized cross-validation criteria.

For convenience, in the next subsection, we focus on an univariate cubic spline regres-
sion and how to set its degree of smoothness. Then, we will generalize this penalized
regression method to any generalized additive model. We recall that all the results below
are extracted from the monograph by Wood [2006].

3.1 Uni-variate semi-parametric regression: an example with cubic splines

We consider the basic model, where a random response variable Y depends on a single
variable x,

Y = f(x) + ε , with ε „ N (0, σ2) .

With no loss of generality,we assume that the covariate x lies between 0 and 1. To estimate
the smooth function f , we first choose an appropriate basis of functions b1, . . . bq, defining
the space of functions to which f (or a close approximation thereof) belongs. Therefore,
we assume that there exists a representation of f of the form

f(x) =

q
ÿ

`=1

b`(x)θ` ,

where the coefficients θ` are unknown and have to be estimated. This transformation
yields a linear model and it is now possible to estimate θ1, . . . , θq with classical linear
regression methods. Indeed, denoting by θ = (θ1, . . . , θq) the vector of coefficients, we get
the linear model

Y = f(x) + ε =
(
b1(x), . . . , bq(x)

)T
θ + ε ,

so it is enough to estimate the vector θ to get an approximation of f . We point out that
there exist various options to approximate the function f based on, for example, kernels,
Fourier transformations, wavelets, etc.

Given a set of n observations (yt, xt), the n equations yt = f(xt) + εi can be stacked
together and by using the expression of f in the function basis b1, b2, . . . , bq, they can be
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written in matrix notation as

Y = Xθ + E where Y =


y1
y2
...
yn

 , X =


b1(x1) . . . bq(x1)
b1(x2) . . . bq(x2)

...
...

...
b1(xn) . . . bq(xn)

 and E =


ε1
ε2
...
εn

 .
The line t of the design matrix X is made of the images of xt by the functions b1, . . . , bq.
We assume that the noises ε1, . . . , εn are independent and identically distributed random
variables (with a centered Gaussian distribution of variance σ2) and we are therefore in
the classical linear regression framework.

A cubic spline basis. By assuming that f can be correctly approximated by a cubic
spline, namely a continuous up to second derivative piecewise-cubic polynomial function,
we may define a finite basis of functions to represent it. The points where the pieces of
cubic polynomials join are called the knots of the spline. Their number q and locations
are specified by the statistician. They are generally chosen evenly spaced across the range
of observed values of x or at quantiles of the distribution of x values. Here, we denote
the locations of the knots by x‹

0, . . . , x
‹
q´1 (as we assumed that x lies in the interval [0, 1],

we set x‹
0 = 0 and x‹

q´1 = 1) and once they are defined, we may consider a classical basis
(proposed in the monographs by Wahba, 1990, Gu, 2002 and Wood, 2006): for x P [0, 1],
the functions b1, b2, . . . bq are defined by

b1(x) = 1, b2(x) = x, bi+2 = R(x, x‹
i ), for i = 1, . . . , q ´ 2 (3.1)

with R(x, x‹) =
1

4

((
x‹ ´ 1/2

)2
´ 1/12

)((
x´ 1/2

)2
´ 1/12

)
´

1

24

((
|x´ x‹| ´ 1/

)4
´ 1/2

(
|x´ x‹| ´ 1/2

)2
+ 7/240

)
.

In Figure 3.15, these functions, scaled between 0 and 1, are plotted for q = 7 and for knots
evenly spaced, that is, with x‹

i = i/6, for i = 0, . . . , 6.

We emphasize that f may be represented in an other bases of functions, like in a poly-
nomial basis (b1(x) = 1, b2(x) = x, b3(x) = x2, and so on) or in a truncated power
function basis (e.g. b1(x) = 1, b2(x) = x, b3(x) = |x ´ x‹

1|+, b4(x) = |x ´ x‹
2|+ etc., with

|x|+ = maxtx, 0u).

Control of the smoothness of f . The smaller q, the smoother the function f . Indeed,
for the cubic spline basis defined above, for q = 2, the estimated function will be linear.
For splines, q is generally the number of knots and this corresponds to q ´ 1 portions of
polynomials. When it increases, f becomes less and less smooth and too many knots lead
to over-fitting of the data. In order to choose q properly, we could test different values. As
models with q ´ 1 knots (whether uniformly spaced or at quantiles of the distribution of
x values) are not nested within q knots models, such an approach would be problematic.
Indeed, it would not be enough to add a function to the q ´ 1-dimension base to get the
q-dimension base, it would actually be necessary to redefine all the functions again, and
it would also be ineffective from a computational point of view. It could also be possible
to start from a large value of q and thus a fine grid of knot and to drop them one by
one, successively. At the end of this process, the knots may be unevenly spaced, leading
to a poor model performance; especially since for spline regression models, the estimated
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Figure 3.15 – A rank-7 cubic spline basis, with knot locations uniformly distributed between 0
and 1. Functions, defined in Equation (3.1), were scaled between 0 and 1.

models depend quite strongly on the locations chosen for the knots. A good alternative
to control the degree of smoothness of f is to set the size of the basis q to a large number
(slightly larger than assumed), and to add a regularity term in the regression minimization
problem. Therefore, the vector θ is estimated by minimizing

›

›Y ´Xθ
›

›

2
+ λ

ż 1

0
f2(x)2dx ,

where λ ą 0 is an hyper-parameter controlling the trade-off between model fit and model
smoothness (we further detail how to choose it below). A very erratic function, with
a boom and bust curve, generally leads to strong variations in the second derivative,
which, therefore, has an important squared norm. Such a regularization term involving
the second derivative thus allows to smooth the function f : the greater this regularization
term, the more the function will tend to be linear (these are the functions with zero
second derivative). We point out that adding such regularization terms is common for
linear regression: among others, Ridge regression (see, e.g. Hoerl et al., 1962) is used
to deal with the problem of multi-collinearity by adding a L2-norm regularization term
λ}θ}2 and Lasso regression (see Tibshirani, 1996) performs both θ estimation and variable
selection with a L1-norm regularization term λ}θ}1. Because of the representation of f in
the function basis b1, . . . , bq, the regularization term can be written as a quadratic form
of θ:

ż 1

0
f2(x)2dx = θTSθ ,

where the positive definite matrix S is known (see, e.g. Lancaster and Šalkauskas, 1986, Gu,
2002 or Wood, 2006). Therefore, the function to minimize becomes }Y ´ Xθ} + λθTSθ.
It is continuously differentiable and convex in θ; by canceling its gradient we obtain the
penalized least-square estimator

pθ = (XTX + λS)´1XTY .

It only remains to set the hyper-parameter λ. This can be done by using the following
generalized cross validation criteria proposed in the monograph by Wood [2006] and im-
plemented in the R-package mgcv, see Wood [2020]. Let us denote by pf -t

λ , the estimation of
f associated with the hyper-parameter λ computed without using the observation (yt, xt),
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that is, for any x P [0, 1], we have

pf -t
λ (x) =

q
ÿ

`=1

b`(x)pθ
-t
` (λ) with pθ -t(λ) = (X -tT

X -t + λS)´1X -tT
Y -t ,

where we denote by X -t and Y -t the design matrix and the response vector associated
with the observations (ys, xs), for s ‰ t, respectively. Then, for any λ ą 0, we consider
the leave-one-out cross-validation criteria:

CV(λ) =
1

n

n
ÿ

t=1

(
pf -t
λ (xi) ´ yt

)2
.

The computation of this score requires to fit nmodels for each λ and is therefore completely
inefficient in practice. However, one can show that each term of the above sum may be
fairly well approximated by ( pfλ(xt) ´ yt)

2/(1 ´ Att)
2, where pfλ is computed using all

the observation (yt, xt) and A is the influence matrix A = X(XTX + λS)´1XT. By
approximating each weight 1 ´ Att by the mean weight Tr(In ´ A)/n = (n ´ Tr(A))/n
(with In the n-identity matrix), the generalized cross validation score is obtained:

GCV(λ) =
n(

n´ Tr(A)
)2 n

ÿ

t=1

(
pfλ(xt) ´ yt

)2
,

and hyper-parameter λ is chosen by minimizing it.

3.2 Additive models

In this section, we extend the uni-variate model defined above to a multivariate model.
By considering several explanatory covariates x1, x2, . . . , we now assume that the response
variable Y satisfies:

Y = f1(x1) + f2(x2) + . . . + noise =
ÿ

i

fi(xi) + ε , with ε „ N (0, σ2) . (3.2)

We specify a function basis for each effect. For categorical effects (i.e., if some xi is a
categorical variable taking values 1, 2, . . . , qi), the function is assumed to be a sum of
indicators:

fi(xi) =

qi
ÿ

`=1

1txi=`uθ
i
` .

Otherwise, for continuous variables, the functions fi may be represented with cubic splines
(others functions can be considered like polynomial, B-splines, thin plate splines etc.,
see Wood, 2006 for further details), that is

fi(xi) =

qi
ÿ

`=1

bi`(xi)θ
i
` .

We highlight that the model now contains several functions, which introduces an identifia-
bility problem. Indeed, any constant could be simultaneously added to f1 and subtracted
from f2 and so on, without changing the resulting model. Before fitting the model, some
identifiability constraints have therefore to be imposed. For example, if we consider a set of
n observations (yt, x1,t, x2,t, . . . )1ďtďn we may require that for all i ě 2,

řn
t=1 fi(xi,t) = 0.
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For each variable xi, let us denote by Xi, θi and Si the design matrix, the parameter
vector and the regularization matrix associated with the estimation of the effect fi. We
emphasize that for categorical variables, Xi is obtained by one-hot encoding the variable
xi, that is for observation t, the tth line of Xi is(

1txi,t=1u, . . . ,1txi,t=qiu

)
,

and that Si is null. For continuous variables, as detailed the previous subsection, the
design matrix is made of the lines (bi1(xi,t), . . . , b

i
qi(xi,t)) and the regularization matrix

depends on the regularization term imposed on the smoothness of fi. For all variables,
the parameter vector θi is made of the coefficients θi1, . . . , θiqi . Therefore, to estimate the
smooth functions fi, it is enough to find the vectors θi which minimize

›

›

›
Y ´

ÿ

i

Xiθi
›

›

›

2
+
ÿ

i

λiθ
iT
Siθi .

We now introduce the design matrix X and the regularization matrix S of the additive
model:

X =
[
X1 |X2 . . .

]
and Sλ =

ÿ

i

λiSi where Si =

0 0 0
0 Si 0
0 0 0

 .
With θ, the parameter vector obtained by aggregating the vectors θ1, θ2, . . . , Equation (3.2)
yields the linear model

Y = Xθ + ε ,

and by minimizing
›

›Y ´Xθ
›

›

2
+
ř

i λiθ
TSiθ, we obtain the estimator

pθ =
(
XTX + Sλ

)´1
XTY .

Exactly as in the previous section, the vector λ = (λ1, λ2, . . . ) is chosen with a generalized
cross validation criteria.

We emphasize that, eventually, we may consider cross-effects, namely functions that de-
pend on two (or more) variables xi and xi1 . The smooth function fii1 is then approximated
by introducing a basis per variable

fii1(xi, xi1) =

qi
ÿ

`=1

q1
i

ÿ

`1=1

bi`(xi)b
i1

`1(xi1)θii
1

``1 .

Exactly as for univariate effects, we obtain a linear expression of the model (see Chapter 4
of Wood, 2006 for further details).

3.3 Generalized additive models [GAM]

A GAM may model even more complex relationships between the response variable Y and
its covariates x. Indeed, we recall that it relates Y , a random variable with a specified
distribution from the exponential family, to a sum of smooth functions of the covariates
x via a link function g:

g
(
E[Y ]

)
= f1(x1)+f2(x2)+f34(x3, x4)+. . . , with Y „ exponential family distribution.
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Generalized linear models (GLMs) derive from linear models, and, similarly, GAMs derive
from additive models. While linear models are fitted by least squares, GLMs are estimated
with a maximum likelihood estimator that can be found using an iteratively reweighted
least squares algorithm (IRLS), see Nelder and Wedderburn [1972] for further details.
In the previous section, we showed how additive models were estimated by penalized
least squares, and in the same way, GAMs are generally fitted by penalized likelihood
maximization. The penalized iteratively re-weighted least squares algorithm (P-IRSL)
described and implemented in the perfectly well-documented R-package mgcv can be used
to fit GAMs. As we will mainly use additive models, we do not give more details on this
algorithm but we refer to the monograph by Wood [2006] for an exhaustive presentation.
However, we emphasize that the P-IRLS approach will be used, through the gam function
of the mgcv-package, in many of our experiments. To use it, we need to choose the
distribution of the response variable (binomial, Gaussian, Gamma, Poisson distribution
etc.). We highlight this interesting extension: for the Gaussian distribution, it is possible
to consider a variance which also depends on the covariates; a second model, for the
standard deviation, must then be specified (see gaulss function for further details)

4 Application to the Low Carbon London data set

In this last section, thanks to the mgcv-package, we fit two generalized additive models on
the data set presented in Section 2. The first one is a toy mode while the second one is
more complex and will be used in the last section to measure the impact of a tariff change.

4.1 Estimations and predictions of power consumption

Experiment design and assessment of the forecasts. To evaluate the predictions, we
introduce the well-known root mean square error (RMSE) and mean absolute percentage
of error (MAPE). For n observations Y1, . . . Yn and respective forecasts pY1, . . . pYn, these
errors are defined by

RMSE =

g

f

f

e

1

n

n
ÿ

t=1

(
Yt ´ pYt

)2 and MAPE =
100

n

n
ÿ

t=1

ˇ

ˇ

ˇ

ˇ

Yt ´ pYt
Yt

ˇ

ˇ

ˇ

ˇ

.

The generalized additive models will be fitted on a sub-sample of the Low Carbon Lon-
don data, and we will use the remaining observations as a test set (i.e. to evaluate the
predictions and to be sure that the models are not over-fitting the training data). More
precisely, we split the T = 48 ˆ 365 = 17, 520 observations (corresponding to average en-
ergy consumption of ToU households, at half-hour intervals, throughout 2013) into a train
set and a test set . The test set is composed of 12 weeks, evenly space over 2013, it thus
represents approximately a quarter of the observations. The train set consists of the rest
of the observations. After fitting a model, for each half-hourly time step t P t1, . . . , T u,
given the covariates xt, we can then predict the power consumption denoted by pYt. For
both sets, we can then compute the RMSE and the MAPE. These in-sample errors and
out-of-sample errors, computed on the train set and the test respectively, assess the quality
of the forecast. We recall that for each time step t P t1, . . . , T u, the response variable Yt
is the average electricity consumption of the ToU households for the half-hour considered
and that the covariates are weather and calendar variables (see Table 3.1).
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Figure 3.16 – Effects on the energy consumption psτ and psπ of the temperature (on the left), and
of the position in the year (in the middle), respectively; and of the half-hour of the day (on the
right), (pαh)0ďhď47, as estimated under the generalized additive model of Equation (3.3).

A basic model. Firs, the following elementary model is fitted on the data: it only takes
into account the effect of the realized temperature τt and of the position in the year πt,
which are modeled by splines, and of the half-hour ht, which is a categorical variable.
Therefore, it can be written as

Yt = sτ (τt) + sπ(πt) +
47
ÿ

h=0

αh1tht=hu + εt with εt „ N
(
0, σ2

)
, (3.3)

where the functions sτ and sπ are cubic splines and cyclic cubic splines (the function has
the same value at its upper and lower boundaries), respectively. The coordinates of sτ
and sπ in their spline bases and the coefficients αh are estimated on the train set using
the function gam of the mgcv package. Once the model fitted, the resulting estimators are
denoted by psτ , psπ and pαh. In Figure 3.16, we plotted the coefficients pαh are plotted in
function of h, as well as both functions psτ and psπ (on the range of the values, observed
on the train set, of τt and πt, respectively). These effects may be quite well interpreted.
Indeed, on the right-most figure, , we can clearly recognize a daily profile of electricity con-
sumption; note that the half-hour effect is significant and varies between approximately 0.1
and 0.3 kWh. In the center of the figure, the plot of the effect of temperature leads to the
conclusions drawn from the descriptive analysis, i.e., the lower the temperature, the higher
the consumption (due to the termo-sensitivity of the households). From around 22˝C, the
temperature can continue to rise without any effect on consumption. It should however be
noted that in other countries, where the use of air conditioners (AC) is widespread, elec-
tricity consumption increases with high temperatures (due to the use of AC in summer).
Finally, the position in the year has a smaller effect (between ˘0.02 kWh) on the power
consumption; it is negative around May and August, and positive in winter.

We emphasize that in some of the electricity demand literature, the log demand is
modeled instead of demand because this allows the covariates to have multiplicative (not
additive) effects, see among others Fan and Hyndman [2012]. Here, we tried both model-
ings and obtained better results with the additive model (3.3).

Once these effects have been estimated, for any half-hourly time step t = 1, . . . , T of
train or test set, the model provides the forecasts

pYt = psτ (τt) + psπ(πt) +
47
ÿ

h=0

pαh1tht=hu .
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Figure 3.17 – Observations (in grey) and forecast (in blue) provided by the generalized additive
model of Equation (3.3) of the average electricity consumption of ToU households from Sunday
January 22. to Saturday January 28.

RMSE (in Wh) MAPE (in %)
Estimation 25.2 10.91
Prediction 25.9 10.93

Table 3.2 – Root mean squared error (RMSE) and mean absolute percentage of error (MAPE)
for the estimation (in-sample forecasts) and for the prediction (out-of-sample forecasts) based on
the GAM of Equation (3.3).

For the first week of the test set, both forecasts pYt (in blue) and observations Yt (in grey)
are plotted in Figure 3.17. While the model correctly catches the daily seasonality, it
poorly estimates the drops and peaks around this mean daily consumption and forecasts
from a day to an other are quite similar (which is consistent with the fact that we did
not consider any “type of day” information). Table 3.2 provides the RMSE and MAPE
computed on both train and test sets from the forecasts. Results are clearly improvable,
which is why we consider the more complex model below.

A second model. Since the half-hour ht has a strong impact on the electricity power
consumption, it may be more efficient to consider a model per half-hour (see e.g. Fan
and Hyndman, 2012 and Goude et al., 2014). Therefore, with the realized and smoothed
temperatures τt and τ̄t, the type of day (among Sunday–0, Monday–1 etc.) wt, the position
in the year πt and the tariff (which is Low, Normal or High) jt, the additive model to fit
on the train set is

Yt =
47
ÿ

h=0

(
ξhLow1tjt=Lowu + ξhNormal1tjt=Normalu + ξhHigh1tjt=Highu

+
6
ÿ

w=0

ζhw1twt=wu + shτ (τt) + shτ̄ (τ̄t) + shπ(πt) + εht

)
1tht=hu , (3.4)

with εht „ N
(
0, σ2(h)

)
. We therefore consider 48 independent models, related to 48 noise

variances σ2(h). The RMSE and MAPE scores are much better (see Table 3.3), which
confirms the value of using calendar variables and smoothed temperatures, on one hand,
and of considering a mode per half-hour, on the other hand, to forecast the load. Looking
at both observations and forecasts plotted in Figure 3.18 for the first week of the test set,
there is no doubt that this new model is much better than the previous one. We highlight
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Figure 3.18 – Observations (in grey) and forecasts (in blue) provided by the generalized additive
model of Equation (3.4) of the average electricity consumption for ToU households from Sunday
January 22. to Saturday January 28.

RMSE (in Wh) MAPE (in %)
Estimation 12.6 4.47
Prediction 12.9 4.69

Table 3.3 – Root mean squared error (RMSE) and mean absolute percentage of error (MAPE)
for the estimation (in-sample forecasts) and for the prediction (out-of-sample forecasts) based on
the GAM of Equation (3.4).

that it is not uncommon that EDF obtains MAPE less than 2% for the forecasting of its
entire customer portfolio load and that these forecasts are therefore extremely valuable
for the management of the electricity production.

Remark 7. In Chapter 4, we will assume that, for a time step t, a vector xt composed
of the exogenous variables τt, τ̄t, πt, wt and ht, and a tariff j, the power consumption Yt
follows the linear model

Yt = ϕ(xt, j)
Tθ + noise ,

where the mapping function ϕ results from an underlying additive model. For example, it
may be of the form

ϕ(xt, jt) =
(
b11(x1), b

1
2(x1), . . . ,1tjt=Lowu,1tjt=Normalu,1tjt=Highu

)
.

4.2 Measurement of the tariff impact on power consumption

From the model fitted in the previous section, it is possible to measure (in expectation) the
impact of a tariff change on the electricity consumption. Indeed, for any covariates ht, jt,
wt, πt, τt and τ̄t, the additive model provides an estimator of the expected consumption:

pYt = pξht
jt

+ pζht
wt

+ sht
τ (τt) + sht

τ̄ (τ̄t) + sht
π (πt) .

By replacing, in the above equation, jt by Low, Normal and High, the model outputs, for
any time step t, three estimations, which we denote by pY Low

t , pY Normal
t and pY High

t respec-
tively. Figure 3.19 shows the forecasts for a week for which several tariff changes occur.
The curve color depends on the tariff (green for Low, blue for Normal and navy for High).
We superimpose the forecasts pY Normal

t ; we then get an estimated measure of the expected
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Figure 3.19 – Forecasts (given by the generalized additive model of Equation (3.3) of the average
electricity consumption of ToU (in green for Low tariff, blue for Normal tariff and navy for High
tariff) households from Sunday February 26. to Saturday March 4.
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Figure 3.20 – Boxplot of the estimated electricity consumption of ToU households (in green for
Low tariff, blue for Normal tariff and navy for High tariff) depending on the hour of the day.
Estimations come from the generalized additive model of Equation (3.3).

amountof electricity gained or lost with the tariff change. As expected (and as seems logi-
cal), High and Low tariffs lead to lower and higher consumption, respectively. Moreover, it
seems that the application of Low tariff during the night of March 1st to 2nd had no effect.

Figure 3.20 provides box-plots of the estimations of the expected average power con-
sumptions pY Low

t , pY Normal
t and pY High

t depending on both the tariff and the half-hour. Com-
pared to the ones of Figure 3.12, which were computed with the observed average power
consumptions, these box-plots are based on the same number of observations (365, one for
each day of 2013). But what is really interesting about this graph is that it frees us from
the bias induced by the choice of tariff application times. We recall that the report of the
Low Carbon London project (see Schofield et al., 2014) mentioned that High tariff were
especially chosen during stress period (for example, when the electricity provider forecasts
that the consumption will be very high because of a cold temperature). Consequently,
we initially obtained surprising results: during the evening load peak, the electricity con-
sumption associated with High tariff was equal or even higher than that associated with
Normal tariff. Now, we can see that for each half-hour of the day, the consumption is lower
for High tariff than for Normal tariff. Therefore, our modeling reveals that the application
of the tariff has indeed led to a decrease in consumption (as we saw when comparing ToU
households to Std households).

We highlight that box-plot associated with tariffs Low and High are actually the trans-
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lation of the tariff Normal box-plot by ξhLow and ξhHigh, respectively. By including more
complex relationships between the tariff and the other covariates, or even by considering a
model per tariff, we could obtain sharper results on the distribution of the expected daily
power consumption associated with each tariff. Moreover, by using the option gaulss-
family in the gam-function, we could also have estimated the variance of the noise, and
especially its dependence on the tariff, within the framework of an additive model. Then,
we could have estimated the probability distribution associated with each tariff, for each
half-hour of the day. Unfortunately, the number of observations in the data set is not
sufficient to implement such solutions. Finally, we point out that even if we had such
probability distributions, we would still have to look at the intra-day correlations between
the half-hourly power consumptions and the tariffs of the day. Indeed, for a given half-
hour, the tariff profile of the whole day influences the associated electricity consumption,
and not just the tariff for the half-hour in question. We will further detail the modeling
of these dependencies in the last section of the next chapter.
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4
Target tracking for contex-
tual bandits: application to
demand side management

This chapter proposes a contextual-bandit approach for demand side
management by offering price incentives. More precisely, a target mean
consumption is set at each round and the mean consumption is modeled as
a complex function of the distribution of prices sent and of some contextual
variables such as the temperature, weather, and so on. The performance of
our strategies is measured in quadratic losses through a regret criterion. We
offer T 2/3 upper bounds on this regret (up to poly-logarithmic terms)—and
even faster rates under stronger assumptions—for strategies inspired by
standard strategies for contextual bandits (like LinUCB, see Li et al.,
2010). Simulations on a real data set gathered by UK Power Networks, in
which price incentives were offered, show that our strategies are effective
and may indeed manage demand response by suitably picking the price levels.

The first five sections of this chapter have been written, published
and presented in collaboration with Pierre Gaillard, Yannig Goude and
Gilles Stoltz at ICML 2019 (International Conference on Machine Learning).
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1 Introduction

Electricity management is classically performed by anticipating demand and adjusting ac-
cordingly production. The development of smart grids, and in particular the installation
of smart meters (see Yan et al., 2012, Mallet et al., 2014), come with new opportuni-
ties: getting new sources of information, offering new services. For example, demand-side
management (also called demand-side response; see Albadi and El-Saadany, 2007, Siano,
2014 for an overview) consists of reducing or increasing consumption of electricity users
when needed, typically reducing at peak times and encouraging consumption of off-peak
times. This is good to adjust to intermittency of renewable energies and is made possible
by the development of energy storage devices such as batteries or even electric vehicles
(see Fischer et al., 2015, Kikusato et al., 2018); the storages at hand can take place at
a convenient moment for the electricity provider. We will consider such a demand-side
management system, based on price incentives sent to users via their smart meters. We
propose here to adapt contextual bandit algorithms to that end, which are already used
in online advertising. Other such systems were based on different heuristics (see Shareef
et al., 2018, Wang et al., 2015).

The structure of this chapter is to first provide a modeling of this management system, in
Section 2. It relies on making the mean consumption as close as possible to a moving target
by sequentially picking price allocations. The literature discussion of the main ingredient
of our algorithms, contextual bandit theory, is postponed till Section 2.3. Then, our main
results are stated and discussed in Section 3: we control our cumulative loss through a
T 2/3 regret bound with respect to the best constant price allocation. A refinement as
far as convergence rates are concerned is offered in Section 4. A section with simulations
based on a real data set concludes the chapter: Section 5. For the sake of length, most of
the proofs are provided in the supplementary material.
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2 Setting and models
Our setting consists of a modeling of electricity consumption and of an aim – tracking a
target consumption. Both rely on price levels sent out to the customers.

2.1 Modeling of the electricity consumption

We consider a large population of customers of some electricity provider and assume it
homogeneous, which is not an uncommon assumption, see Mei et al. [2017]. The con-
sumption of each customer at each round t depends, among others, on some exogenous
factors (temperature, wind, season, day of the week, etc.), which will form a context vec-
tor xt P X , where X is some parametric space. The electricity provider aims to manage
demand response: it sets a target mean consumption ct for each time instance. To achieve
it, it changes electricity prices accordingly (by making it more expensive to reduce con-
sumption or less expensive to encourage customers to consume more now rather than in
some hours). We assume that K ě 2 price levels (tariffs) are available. The individual
consumption of a given customer getting tariff j P t1, . . . ,Ku is assumed to be of the form
φ(xt, j)+ white noise, where the white noise models the variability due to the customers,
and where φ is some function associating with a context xt and a tariff j an expected
consumption φ(xt, j). Details on and examples of φ are provided below. At round t, the
electricity provider sends tariff j to a share pt,j of the customers; we denote by pt the
convex vector (pt,1, . . . , pt,K). As the population is rather homogeneous, it is unimportant
to know to which specific customer a given signal was sent; only the global proportions
pt,j matter. The mean consumption observed equals

Yt,pt =
řK

j=1 pt,j φ(xt, j) + noise .

The noise term is to be further discussed below; we first focus on the φ function by means
of examples.

Example 3: Linear model. The simplest approach consists in considering a linear
model per price level, i.e., parameters θ1, . . . , θK P Rdim(X ) with φ(xt, j) = θT

j xt. We de-
note θ = (θj)1ďjďK the vector formed by aggregating all vectors θj . This approach can
be generalized by replacing xt by a vector-valued function b(xt). This corresponds to the
case where it is assumed that the φ( ¨ , j) belong to some set H of functions h : X Ñ R,
with a basis composed of b1, . . . , bq. Then, b = (b1, . . . , bq). For instance, H can be given
by histograms on a given grid of X .

Example 4: Generalized additive models. Generalized additive models form a powerful
and efficient semi-parametric approach to model electricity consumption as a sum of inde-
pendent exogenous variable effects (see Chapter 3 for further details). In our simulations,
see (7.8), we will consider a mean expected consumption of the form φ(xt, j) = φ(xt, 0)+ξj ,
that is, the tariff will have a linear impact on the mean consumption, independently of
the contexts. The baseline mean consumption φ(xt, 0) will be modeled as a sum of simple
R Ñ R functions, each taking as input a single component of the context vector:

φ(xt, 0) =
řQ

i=1 f
(i)(xt,h(i)) ,

where Q ě 1 and where each h(i) P
 

1, . . . , dim(X )
(

. Some components h(i) may be
used several times. When the considered component xt,h(i) takes continuous values, these
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functions f (i) are so-called cubic splines: C2–smooth functions made up of sections of cubic
polynomials joined together at points of a grid (the knots). Choosing the number qi of
knots (points at which the sections join) and their locations is sufficient to determine (in
closed form) a linear basis

(
b
(i)
1 , . . . , b

(i)
qi ) of size qi, see Chapter 3 for details. The function

f (i) can then be represented on this basis by a vector of length qi, denoted by θ(i):

f (i) =
řqi

j=1 θ
(i)
j b

(i)
j .

When the considered component xt,h(i) takes finitely many values, we write f (i) as a sum
of indicator functions:

f (i) =
řqi

j=1 θ
(i)
j 1

tv
(i)
j u

,

where the v(i)j are the qi modalities for the component h(i). All in all, φ(xt, j) can be
represented by a vector of dimension K+ q1+ . . .+ qQ obtained by aggregating the ξj and
the vectors θ(i) into a single vector.

Both examples above show that it is reasonable to assume that there exists some un-
known θ P Rd and some known transfer function ϕ such that φ(xt, j) = ϕ(xt, j)

Tθ. By
linearly extending ϕ in its second component, we get

Yt,pt = ϕ(xt, pt)
Tθ + noise .

We will actually not use in the sequel that ϕ(x, p) is linear in p: the dependency of ϕ(x, p)
in p could be arbitrary.

We consider the two following models that only differ by the noise term. In Model 1,
we make the assumption that the variance of the noise varies from a tariff to another:
non-standard pricing often leads to higher variability – power consumption data confirm
this see 5.1). The second modeling assume that the global noise term does not depend on
the picked tariffs pt.

2.1.1 Modeling of the consumption with a tariff-dependent noise

We first recall that we assumed that our population is rather homogeneous, which is a
natural feature as soon as it is large enough. Therefore, we may assume that the variabil-
ities within the group of customers getting the same tariff j can be combined into a single
random variable εt,j . We denote by εt the vector (εt,1, . . . , εt,K). All in all, we will mainly
consider the following model.

Model 1: Tariff-dependent noise. When the electricity provider picks the convex vector
p, the mean consumption obtained at round t equals

Yt,p = ϕ(xt, p)
Tθ + pTεt .

The noise vectors ε1, ε2, . . . are ρ–sub-Gaussian1 i.i.d. random variables with E[ε1] =
(0, . . . , 0)T. We denote by Σ = Var(ε1) their covariance matrix.

1 For ρ ą 0, a d–dimensional random vector ε is ρ–sub-Gaussian if for all ν P Rd, E
[
eν

Tε
]

ď eρ
2}ν}2/2.
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No assumption is made on Σ in the model above (real data confirms that Σ typically
has no special form, see 5.1). However, when it is proportional to the K ˆ K matrix [1],
the noises associated with each group can be combined into a global noise, leading to the
following model. It is less realistic in practice, but we discuss it because regret bounds
may be improved in the presence of a global noise.

2.1.2 Modeling of the consumption with a global noise

Model 2: Global noise. When the electricity provider picks the convex vector p, the
mean consumption obtained at time instance t equals

Yt,p = ϕ(xt, p)
Tθ + et .

The scalar noises e1, e2, . . . are ρ–sub-Gaussian i.i.d. random variables, with E[e1] = 0.
We denote by σ2 = Var(e1) the variance of the random noises et.

2.2 Tracking a Target Consumption

We now move on to the aim of the electricity provider. At each time instance t, it picks an
allocation of price levels pt and wants the observed mean consumption Yt,pt to be as close
as possible to some target mean consumption ct. This target is set in advance by another
branch of the provider and pt is to be picked based on this target: our algorithms will ex-
plain how to pick pt given ct but will not discuss the choice of the latter. In this article we
will measure the discrepancy between the observed Yt,pt and the target ct via a quadratic
loss: (Yt,pt ´ ct)

2. We may set some restrictions on the convex combinations p that can
be picked: we denote by P the set of legible allocations of price levels. This models some
operational or marketing constraints that the electricity provider may encounter. We will
see that whether P is a strict subset of all convex vectors or whether it is given by the set
of all convex vectors plays no role in our theoretical analysis.

As explained in Section 3.1, we will follow a standard path in online learning theory: to
minimize the cumulative loss suffered we will minimize some regret.

After picking an allocation of price levels pt, the electricity provider only observes Yt,pt :
it thus faces a bandit monitoring. Because of the contexts xt, the problem considered falls
under the umbrella of contextual bandits. No stochastic assumptions are made on the
sequences xt and ct: the contexts xt and ct will be considered as picked by the environment.
Finally, mean consumptions are assumed to be bounded between 0 and C, where C is some
known maximal value. The online protocol described in Sections 2.1 and 2.2 is stated in
Protocol 4. We see that the choices xt, ct and pt need to be Ft´1–measurable, where
Ft´1

∆
= σ(ε1, . . . , εt´1) .

2.3 Literature Discussion: Contextual Bandits

In many bandit problems the learner has access to additional information at the begin-
ning of each round. Several settings for this side information may be considered. The
adversarial case was introduced in Auer et al. [2002b, Section 7, algorithm Exp4]: and
subsequent improvements were suggested in Beygelzimer et al. [2011] and McMahan and
Streeter [2009]. The case of i.i.d. contexts with rewards depending on contexts through an
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Protocol 4 Target Tracking for Contextual Bandits
Input

Parametric context set X
Set of legible convex weights P
Bound on mean consumptions C
Transfer function ϕ : X ˆ P Ñ Rd

Unknown parameters
Transfer parameter θ P Rd

Covariance matrix Σ of size K ˆK (Model 1)
Variance σ2 (Model 2)

for t = 1, 2, . . . do
Observe a context xt P X and a target ct P (0, C)
Choose an allocation of price levels pt P P
Observe a resulting mean consumption

Yt,pt = ϕ(xt, pt)
Tθ + pT

t εt (Model 1)
Yt,pt = ϕ(xt, pt)

Tθ + et (Model 2)
Suffer a loss (Yt,pt ´ ct)

2

end for
Aim

Minimize the cumulative loss LT =
T
ÿ

t=1

(Yt,pt ´ ct)
2

unknown parametric model was introduced by Wang et al. [2005b] and generalized to the
non-i.i.d. setting in Wang et al. [2005a], then to the multivariate and nonparametric case
in Perchet and Rigollet [2013]. Hybrid versions (adversarial contexts but stochastic depen-
dencies of the rewards on the contexts, usually in a linear fashion) are the most popular
ones. They were introduced by Abe and Long [1999] and further studied in Auer [2002]. A
key technical ingredient to deal with them is confidence ellipsoids on the linear parameter;
see Dani et al. [2008], Rusmevichientong and Tsitsiklis [2010] and Abbasi-Yadkori et al.
[2011]. The celebrated UCB algorithm of Lai and Robbins [1985] was generalized in this
hybrid setting as the LinUCB algorithm, by Li et al. [2010] and Chu et al. [2011]. Later,
Filippi et al. [2010] extended it to a setting with generalized additive models and Valko
et al. [2013] proposed a kernelized version of UCB. Other approaches, not relying on confi-
dence ellipsoids, consider sampling strategies (see Gopalan et al., 2014) and are currently
extended to bandit problems with complicated dependency in contextual variables [Man-
nor, 2018]. Our model falls under the umbrella of hybrid versions considering stochastic
linear bandit problems given a context. The main difference of our setting lies in how we
measure performance: not directly with the rewards or their analogous quantities Yt,pt in
our setting, but through how far away they are from the targets ct.

3 A regret bound with tariff-dependent noise modeling

This section considers Model 1. We take inspiration from LinUCB (Li et al., 2010, Chu
et al., 2011): given the form of the observed mean consumption, the key is to estimate the
parameter θ. Denoting by Id the d ˆ d identity matrix and picking λ ą 0, we classically
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do so according to

pθt
∆
= V ´1

t

t
ÿ

s=1

Ys,psϕ(xs, ps) where Vt
∆
= λId +

t
ÿ

s=1

ϕ(xs, ps)ϕ(xs, ps)
T . (4.1)

3.1 Regret as a proxy for minimizing losses

We are interested in the cumulative sum of the losses, but under suitable assumptions
(e.g., bounded noise) the latter is close to the sum of the conditionally expected losses
(e.g., through the Hoeffding–Azuma inequality). Typical statements are of the form: for
all strategies of the provider and of the environment, with probability at least 1 ´ δ,

LT =
řT

t=1(Yt,pt ´ ct)
2 ď

řT
t=1 E

[
(Yt,pt ´ ct)

2
ˇ

ˇFt´1

]
+O

(a
T ln(1/δ)

)
.

All regret bounds in the sequel will involve the sum of conditionally expected losses LT

above but up to adding a deviation term to all these regret bounds, we get from them a
bound on the true cumulative loss LT . Now, the choices xt, ct and pt are Ft´1–measurable,
where Ft´1 = σ(ε1, . . . , εt´1). Therefore, under Model 1,

E
[
(Yt,pt ´ ct)

2
ˇ

ˇFt´1

]
= E

[(
ϕ(xt, pt)

Tθ + pT
t εt ´ ct

)2 ˇˇ
ˇ
Ft´1

]
=
(
ϕ(xt, pt)

Tθ ´ ct
)2

+ E
[
(pT

t εt)
2
ˇ

ˇFt´1

]
+ E

[
2
(
ϕ(xt, pt)

Tθ ´ ct
)
pT
t εt

ˇ

ˇ

ˇ
Ft´1

]
=
(
ϕ(xt, pt)

Tθ ´ ct
)2

+ pT
t Σpt , (4.2)

that is, after summing,

LT =
T
ÿ

t=1

(
ϕ(xt, pt)

Tθ ´ ct
)2

+ pT
t Σpt .

We therefore introduce the (conditional) regret

RT =
T
ÿ

t=1

(
ϕ(xt, pt)

Tθ ´ ct
)2

+ pT
t Σpt ´

T
ÿ

t=1

min
pPP

!(
ϕ(xt, p)

Tθ ´ ct
)2

+ pTΣp
)

.

This will be the quantity of interest in the sequel2.

3.2 Optimistic algorithm

3.2.1 All but the estimation of the covariance matrix

We assume that in the first τ rounds an estimator pΣτ of the covariance matrix Σ was
obtained; details are provided in the next subsection. We explain here how the algorithm
plays for rounds t ě τ + 1. We assumed that the transfer function ϕ and the bound
C ą 0 on the target mean consumptions were known. We use the notation [x]C =
min

 

maxtx, 0u, C
(

for the clipped part of a real number x (clipping between 0 and C).
We then estimate the instantaneous losses (4.2)

`t,p
∆
= E

[
(Yt,p ´ ct)

2
ˇ

ˇFt´1

]
=
(
ϕ(xt, p)

Tθ ´ ct
)2

+ pTΣp

2With the definition in Chapter 2, this quantity is a “pseudo-regret”; for convenience, let call it “regret”.
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associated with each choice p P P by:

p`t,p =
([
ϕ(xt, p)

T
pθt´1

]
C

´ ct

)2
+ pT

pΣτp .

We also denote by αt,p deviation bounds, to be set by the analysis. The optimistic algo-
rithm picks, for t ě τ + 1:

pt P argmin
pPP

 

p`t,p ´ αt,p

(

. (4.3)

Remark 8. In linear contextual bandits, rewards are linear in θ and to maximize global
gain, LinUCB Li et al. [2010] picks a vector p which maximizes a sum of the form
ϕ(xt, p)

T
pθt´1+rαt,p. Here, as we want to track the target, we slightly change this expression

by substituting the target ct and taking a quadratic loss. But the spirit is similar.

3.2.2 Optimistic algorithm: estimation of the covariance matrix

The estimation of the covariance matrix Σ is hard to perform (on the fly and simultane-
ously) as the algorithm is running. We leave this problem for future research and devote
here the first τ rounds to this estimation. We created from scratch the estimation of Σ
proposed below and studied in Lemma 5, as we could find no suitable result in the litera-
ture.

For each pair

(i, j) P E
∆
=

 

(i, j) P t1, . . . ,Ku2 : 1 ď i ď j ď K
(

we define the weight vector p(i,j) as: for k P t1, . . . ,Ku,

p
(i,j)
k =

$

&

%

1 if k = i = j,
1/2 if k P ti, ju and i ‰ j,
0 if k R ti, ju.

These correspond to all weights vectors that either assign all the mass to a single com-
ponent, like the p(i,i), or share the mass equally between two components, like the p(i,j)
for i ‰ j. There are K(K + 1)/2 different weight vectors considered. We order these
weight vectors, e.g., in lexicographic order, and use them one after the other, in order.
This implies that in the initial exploration phase of length τ , each vector indexed by E is
selected at least

τ0
∆
=

Y

2τ
K(K+1)

]

times. At the end of the exploration period, we define pθτ as in (4.1) and the estimator

pΣτ P argmin
pΣPMK(R)

τ
ÿ

t=1

(
pZ2
t ´ pT

t
pΣpt
)2
, where pZt

∆
= Yt,pt ´

[
ϕ(xt, pt)

T
pθτ
]
C
. (4.4)

Note that pΣτ can be computed efficiently by solving a linear system as soon as K is small
enough.

Remark 9. We implicitly assume that P contains all the p(i,j)k .
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3.3 Statement of the regret bound

Assumption 1 – Boundedness assumptions. They are all linked to the knowledge that
the mean consumption lies in (0, C) and indicate some normalization of the modeling:

}ϕ}8 ď 1 , }θ}8 ď C , ϕTθ P [0, C] .

As a consequence of these boundedness assumptions, }θ} ď
?
dC and all eigenvalues of Vt

lie in [λ, λ+ t], thus
ln
(
det(Vt)

)
P
[
d lnλ, d ln(λ+ t)

]
.

Finally, we also assume that a bound Γ is known, such that @p P P, pTΣp ď Γ . A last
consequence of all these boundedness assumptions is that L ∆

= C2 + Γ upper bounds the
(conditionally) expected losses `t,p =

(
ϕ(xt, p)

Tθ ´ ct
)2

+ pTΣp.

Theorem 4. Fix a risk level δ P (0, 1) and a time horizon T ě 1. Assume that As-
sumption 1 holds. The optimistic algorithm (4.3) with an initial exploration of length
τ = O(T 2/3) rounds satisfies

RT ď O

(
T 2/3 ln2

(
T

δ

)c
ln 1

δ

)

with probability at least 1 ´ δ.

When the covariance matrix Σ is known, no initial exploration is required and the re-
gret bound improves to O(

?
T lnT ) as far as the orders of magnitude in T are concerned.

These improved rates might be achievable even if Σ is unknown, through a more efficient,
simultaneous, estimation of Σ and θ (an issue we leave for future research, as already
mentioned at the beginning of Section 3.2.2).

We emphasize that the expected losses depend on both Σ and θ, which must therefore
be estimated correctly. The regret bound derives from the two deviation inequalities
on the estimators pθt and pΣτ (defined in Equations (4.1) and (4.4)), which are proved
in Sections 3.3.1 and 3.3.2, respectively. The proof of the theorem is then stated in
Section 3.3.3.

3.3.1 Deviation inequality on the parameter vector estimation

A straightforward adaptation of earlier results (see Theorem 2 of Abbasi-Yadkori et al.,
2011 or Theorem 20.2 in the monograph by Lattimore and Szepesvári, 2020) yields the
following deviation inequality.

Lemma 4. No matter how the provider picks the pt, we have, for all t ě 1 and all
δ P (0, 1),

b(
pθt ´ θ

)T
Vt
(
pθt ´ θ

) ∆
=

›

›V
1/2
t

(
pθt ´ θ

)›
› ď

?
λ‖θ‖+ ρ

c

2 ln 1

δ
+ d ln 1

λ
+ ln det(Vt) ,

with probability at least 1 ´ δ.
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Actually, the result above could be improved into an anytime result (“with probability
1´ δ, for all t ě 1, ...”) with no effort, by applying a stopping argument (or, alternatively,
Doob’s inequality for super-martingales), as Abbasi-Yadkori et al. [2011] did. This would
slightly improve the regret bounds below by logarithmic factors. The deviation bound of
Lemma 4 plays a key role in the algorithm. We introduce the following upper bound on
it:

Bt(δ)
∆
=

?
λdC + ρ

b

2 ln 1
δ + d ln

(
1 + t

λ

)
. (4.5)

Proof of Lemma 4. The proof below relies on Laplace’s method on super-martingales,
which is a standard argument to provide confidence bounds on a self-normalized sum
of conditionally centered random vectors. See Theorem 2 of Abbasi-Yadkori et al. [2011]
or Theorem 20.2 in the monograph by Lattimore and Szepesvári [2020].

Under Model 1 and given the definition of Vt, we have the rewriting

pθt = V ´1
t

t
ÿ

s=1

ϕ(xs, ps)Ys,ps = V ´1
t

t
ÿ

s=1

ϕ(xs, ps)
(
ϕ(xs, ps)

Tθ + pT
s εs
)

= V ´1
t

(
(Vt ´ λId)θ +Mt

)
= θ ´ λV ´1

t θ + V ´1
t Mt ,

where we introduced

Mt =
t
ÿ

s=1

ϕ(xs, ps)p
T
s εs ,

which is a martingale with respect to Ft = σ(ε1, . . . , εt). Thus, by a triangle inequality,
›

›V
1/2
t

(
pθt ´ θ

)›
› =

›

› ´ λV
´1/2
t θ + V

´1/2
t Mt} ď λ

›

›V
´1/2
t θ

›

›+
›

›V
´1/2
t Mt

›

› .

On the one hand, given that all eigenvalues of the symmetric matrix Vt are larger than λ

(given the λId term in its definition), all eigenvalues of V ´1/2
t are smaller than 1/

?
λ and

thus,
λ
›

›V
´1/2
t θ

›

› ď λ
1

?
λ
‖θ‖ =

?
λ‖θ‖ .

We now prove, on the other hand, that with probability at least 1 ´ δ,

›

›V
´1/2
t Mt

›

› ď ρ

c

2 ln 1

δ
+ d ln 1

λ
+ ln det(Vt) ,

which will conclude the proof of the lemma.

‹ Introducing super-martingales. For all ν P Rd, we consider

St,ν = exp
(
νTMt ´

ρ2

2
νTVtν

)
and now show that it is an Ft–super-martingale. First, note that since the common
distribution of the ε1, ε2, . . . is ρ–sub-Gaussian, then for all Ft´1–measurable random vec-
tors νt´1,

E
[
eνT

t´1εt
ˇ

ˇ

ˇ
Ft´1

]
ď eρ2}νt´1}2/2 . (4.6)

Now,

St,ν = St´1,ν exp
(
νTϕ(xt, pt)p

T
t εt ´

ρ2

2
νTϕ(xt, pt)ϕ(xt, pt)

Tν

)
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where, by using the sub-Gaussian assumption (4.6) and the fact that
ř

j p
2
j,t ď 1 for all

convex weight vectors pt,

E
[
exp
(
νTϕ(xt, pt)p

T
t εt

ˇ

ˇ

ˇ
Ft´1

]
ď exp

(
ρ2

2
νTϕ(xt, pt) p

T
t pt

loomoon

ď1

ϕ(xt, pt)
Tν

)
.

This implies E
[
St,ν

ˇ

ˇFt´1

]
ď St´1,ν .

Note that the rewriting of St,ν in its vertex form is, with m = V ´1
t Mt/ρ

2:

St,ν = exp
(
1

2
(ν ´m)T ρ2Vt (ν ´m) +

1

2
mTρ2Vtm

)
= exp

(
1

2
(ν ´m)T ρ2Vt (ν ´m)

)
ˆ exp

(
1

2ρ2
›

›V
´1/2
t Mt

›

›

2
)
.

‹ Laplace’s method—integrating St,ν over ν P Rd. The basic observation behind this
method is that (given the vertex form) St,ν is maximal at ν = m = V ´1

t Mt/ρ
2 and then

equals exp
(›
›V

´1/2
t Mt

›

›

2
/(2ρ2)

)
, which is (a transformation of) the quantity to control.

Now, because the exp function quickly vanishes, the integral over ν P Rd is close to this
maximum. We therefore consider

St =

ż

Rd

St,νdν .

We will make repeated uses of the fact that the Gaussian density functions,

ν ÞÝÑ
1

a

det(2πC)
exp
(
(ν ´m)TC´1(ν ´m)

)
,

where m P Rd and C is a (symmetric) positive-definite matrix, integrate to 1 over Rd.
This gives us first the rewriting

St =
b

det
(
2πρ´2V ´1

t

)
exp
(

1

2ρ2
›

›V
´1/2
t Mt

›

›

2
)
.

Second, by the Fubini-Tonelli theorem and the super-martingale property

E
[
St,ν

]
ď E

[
S0,ν

]
= exp

(
´λρ2}ν}2/2

)
,

we also have

E
[
St

]
ď

ż

Rd

exp
(
´λρ2}ν}2/2

)
dν =

b

det
(
2πρ´2λ´1Id

)
.

Combining the two statements, we proved

E

[
exp
(

1

2ρ2
›

›V
´1/2
t Mt

›

›

2
)]

ď

d

det
(
Vt
)

λd
.

‹ Markov-Chernov bound. For u ą 0,

P
[
›

›V
´1/2
t Mt

›

› ą u
]
= P

[
1

2ρ2
›

›V
´1/2
t Mt

›

›

2
ą

u2

2ρ2

]
ď exp

(
´
u2

2ρ2

)
E

[
exp
(

1

2ρ2
›

›V
´1/2
t Mt

›

›

2
)]

ď exp
(

´
u2

2ρ2
+

1

2
ln

det
(
Vt
)

λd

)
= δ
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for the claimed choice

u = ρ

c

2 ln 1

δ
+ d ln 1

λ
+ ln det(Vt) .

3.3.2 Deviation inequality on the covariance matrix estimation

Lemma 5. For all δ P (0, 1), the estimator (4.4) satisfies: with probability at least 1 ´ δ,

sup
pPP

ˇ

ˇ

ˇ
pT
(
pΣτ ´ Σ

)
p
ˇ

ˇ

ˇ
ď (K + 8)κτ

?
τ/τ0 = O(κτ/

?
τ) = O

(
1

?
τ

ln2(τ/δ)
a

ln(1/δ)

)
,

where we recall that τ0 = t2τ/(K(K + 1))u and where, κτ =
(
C + 2Mτ

)
Bτ (δ/3) +M 1

τ

with
Mτ

∆
= ρ/2 + ln(6τ/δ) and M 1

τ
∆
=M2

τ

a

2 ln(3K2/δ) + 2
a

exp(2ρ)δ/6.

For simplicity of notation, we introduce the following upper bound:

υτ (δ)
∆
= (K + 8)κτ

?
τ/τ0. (4.7)

We derived the proof scheme of Lemma 5 from scratch as we could find no suitable result
in the literature for estimating Σ in our context. We first consider the following auxiliary
result.

Lemma 6. Let τ ě 1. Assume that the common distribution of the ε1, ε2, . . . is ρ–sub-
Gaussian. Then, no matter how the provider picks the pt, we have, for all δ P (0, 1), with
probability at least 1 ´ δ,

›

›

›

›

›

τ
ÿ

t=1

ptp
T
t

(
pΣτ ´ Σ

)
ptp

T
t

›

›

›

›

›

8

ď κτ
?
τ , with κτ

∆
=
(
C + 2Mτ

)
Bτ (δ/3) +M 1

τ .

Proof of Lemma 6. We can show that pΣτ defined in (4.4) satisfies
τ
ÿ

t=1

ptp
T
t
pΣτptp

T
t =

τ
ÿ

t=1

pZ2
t ptp

T
t , (4.8)

where we recall that pZt
∆
= Yt,pt ´

[
ϕ(xt, pt)

T
pθτ
]
C

. Indeed, with,

Φ
(
pΣ
) ∆
=

τ
ÿ

t=1

(
pZ2
t ´ pT

t
pΣpt

)2
=

τ
ÿ

t=1

(
pZ2
t ´ Tr

(
pΣptp

T
t )
)2
,

using ∇ATr(AB) = B, we get

∇
pΣ
Φ
(
pΣ
)
=

τ
ÿ

t=1

2ptp
T
t

(
pZ2
t ´ pT

t
pΣpt

)
,

which leads to (4.8) by canceling the gradient and keeping in mind that pT
t
pΣpt is a scalar

value. Let us denote, for all t ě 1

Zt
∆
= Yt,pt ´ ϕ(xt, pt)

Tθ = pT
t εt .
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To prove the lemma, we replace pΣτ by using (4.8) and apply a triangular inequality:
›

›

›

›

τ
ÿ

t=1

ptp
T
t

(
pΣτ ´ Σ

)
ptp

T
t

›

›

›

›

8

ď

›

›

›

›

τ
ÿ

t=1

( pZ2
t ´ Z2

t )ptp
T
t

›

›

›

›

8

+

›

›

›

›

›

τ
ÿ

t=1

Z2
t ptp

T
t ´ ptp

T
t Σptp

T
t

›

›

›

›

›

8

(4.9)

We will consecutively provide bounds for each of the two terms in the right-hand side of
the above inequality, each holding with probability at least 1´ δ/3. To do so, we focus on
the event defined below where all Zt are bounded:

Eτ (δ)
∆
=

 

@t = 1, . . . τ, |Zt| ď Mτ

(

, (4.10)

with Mτ defined in the statement of the lemma. We will show below that Eτ (δ) takes
place with probability at least 1´δ/3. All in all, our obtained global bound will hold with
probability at least 1 ´ δ, as stated in the lemma.

‹ Bounding the probability of the event Eτ (δ). Recall that pt is Ft´1 = σ(ε1, . . . , εt´1)
measurable. For t P t1, . . . , τu, as εt is a ρ–sub-Gaussian variable independent of Ft´1,

E
[
exp(pT

t εt)
ˇ

ˇ

ˇ
Ft´1

]
ď exp

(
ρ}pt}

2

2

)
ď exp

(ρ
2

)
;

see Footnote (1 page 241) for a reminder of the definition of a ρ–sub-Gaussian variable.
Using the Markov-Chernov inequality, we obtain

P
(
Zt ě Mτ

ˇ

ˇFt´1

)
ď E

[
exp(Zt)

ˇ

ˇ

ˇ
Ft´1

]
exp(´Mτ )

ď exp
(ρ
2

´Mτ

)
=

δ

6τ
. (4.11)

Symmetrically, we get that P(Zt ď ´Mτ ) ď δ/6τ. Combining all these bounds for
t = 1, . . . , τ , the event Eτ (δ) happens with probability at least 1 ´ δ/3.

‹ Upper bound on the first term in (4.9). By Assumption 1, we have ϕ(xt, pt)Tθ P [0, C],
thus

| pZt ´ Zt| =
ˇ

ˇ

ˇ
ϕ(xt, pt)

Tθ ´
[
ϕ(xt, pt)

T
pθτ
]
C

ˇ

ˇ

ˇ
ď C ,

and therefore, on Eτ (δ),
ˇ

ˇ pZt + Zt

ˇ

ˇ ď
ˇ

ˇ pZt ´ Zt

ˇ

ˇ+
ˇ

ˇ2Zt

ˇ

ˇ ď C + 2Mτ
∆
=M2

τ .

Noting that all components of ptpT
t are upper bounded by 1,

›

›

›

›

τ
ÿ

t=1

( pZ2
t ´ Z2

t )ptp
T
t

›

›

›

›

8

ď

τ
ÿ

t=1

ˇ

ˇ pZ2
t ´ Z2

t

ˇ

ˇ =
τ
ÿ

t=1

ˇ

ˇ( pZt ´ Zt)( pZt + Zt)
ˇ

ˇ

ď M2
τ

g

f

f

eτ
τ
ÿ

t=1

( pZt ´ Zt)2 ,

where the last inequality was obtained by | pZt + Zt| ď M2
τ together with the Cauchy-

Schwarz inequality. Using that
ˇ

ˇy ´ [x]C
ˇ

ˇ ď |y ´ x| when y P [0, C] and x P R, we note
that

ˇ

ˇ pZt ´ Zt

ˇ

ˇ ď

ˇ

ˇ

ˇ
ϕ(xt, pt)

T(pθτ ´ θ)
ˇ

ˇ

ˇ
.
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All in all, we proved so far

›

›

›

›

τ
ÿ

t=1

( pZ2
t ´ Z2

t )ptp
T
t

›

›

›

›

8

ď M2
τ

g

f

f

eτ(pθτ ´ θ)T

(
τ
ÿ

t=1

ϕ(xt, pt)ϕ(xt, pt)T

)
(pθτ ´ θ)

=M2
τ

b

τ(pθτ ´ θ)T (Vτ ´ λI) (pθτ ´ θ)

ď M2
τ

b

τ(pθτ ´ θ)TVτ (pθτ ´ θ) =M2
τ

›

›V 1/2
τ

(
θ ´ pθτ

)›
›

?
τ ,

where Vτ = λI +
řτ

t=1 ϕ(xt, pt)ϕ(xt, pt)
T was used for the last steps. From Lemma 4 and

the bound (4.5), we finally obtain that with probability at least 1 ´ δ/3,
›

›

›

›

τ
ÿ

t=1

( pZ2
t ´ Z2

t )ptp
T
t

›

›

›

›

8

ď M2
τ Bτ (δ/3)

?
τ = (C + 2Mτ )Bτ (δ/3)

?
τ . (4.12)

‹ Upper bound on the second term in (4.9). Recall that pt is Ft´1 measurable and that
in Model 1, we defined Zt = Yt,pt ´ ϕ(xt, pt)

Tθ = pT
t εt, which is a scalar value. These two

observations yield

E
[
Z2
t ptp

T
t

ˇ

ˇFt´1

]
= E

[
ptZ

2
t p

T
t

ˇ

ˇFt´1

]
= E

[
ptp

T
t εtε

T
t ptp

T
t

ˇ

ˇFt´1

]
= ptp

T
t E
[
εtε

T
t

ˇ

ˇFt´1

]
ptp

T
t = ptp

T
t Σptp

T
t . (4.13)

We wish to apply the Hoeffding–Azuma inequality to each component of Z2
t ptp

T
t , however,

we need some boundedness to do so. Therefore, we consider instead Z2
t 1t|Zt|ďMτ u. The

indicated inequality, together with a union bound, entails that with probability at least
1 ´ δ/3,
›

›

›

›

›

τ
ÿ

t=1

Z2
t 1t|Zt|ďMτ uptp

T
t ´

τ
ÿ

t=1

E
[
Z2
t 1t|Zt|ďMτ uptp

T
t

ˇ

ˇ

ˇ
Ft´1

]››
›

›

›

8

ď M2
τ

a

2τ ln(3K2/δ) . (4.14)

Over Eτ (δ), using (4.13) and applying a triangular inequality, we obtain
›

›

›

›

τ
ÿ

t=1

Z2
t ptp

T
t ´ ptp

T
t Σptp

T
t

›

›

›

›

8

=

›

›

›

›

τ
ÿ

t=1

Z2
t 1t|Zt|ďMτ uptp

T
t ´

τ
ÿ

t=1

E
[
Z2
t ptp

T
t

ˇ

ˇFt´1

]››
›

›

8

ď

›

›

›

›

τ
ÿ

t=1

Z2
t 1t|Zt|ďMτ uptp

T
t ´

τ
ÿ

t=1

E
[
Z2
t ptp

T
t 1t|Zt|ďMτ u

ˇ

ˇFt´1

]››
›

›

8

+
τ
ÿ

t=1

›

›

›

›

E
[
Z2
t ptp

T
t 1t|Zt|ąMτ u

ˇ

ˇFt´1

]››
›

›

8

. (4.15)

We just need to bound the last term of the inequality above to conclude this part. Using
that x2 ď exp(x) for x ě 0, we get

E
[
Z2
t 1t|Zt|ąMτ u

ˇ

ˇ

ˇ
Ft´1

]
ď E

[
exp
(
|Zt|
)
1t|Zt|ąMτ u

ˇ

ˇ

ˇ
Ft´1

]
.

Applying a conditional Cauchy-Schwarz inequality yields

E
[

exp
(
|Zt|
)
1t|Zt|ąMτ u

ˇ

ˇ

ˇ
Ft´1

]
ď

b

E
[

exp
(
2|Zt|

) ˇ
ˇFt´1

]
E
[
1t|Zt|ąMτ u

ˇ

ˇFt´1

]
.
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Now, thanks to the sub-Gaussian property of εt used with ν = 2pt and ν = ´2pt, we have

E
[

exp
(
2|Zt|

)
ď E

[
exp(2Zt)

ˇ

ˇFt´1

]
+ E

[
exp(´2Zt)

ˇ

ˇFt´1

]
ď 2 exp(2ρ) .

The bound (4.11) and its symmetric version indicate that

P
(
|Zt| ě Mτ

ˇ

ˇFt´1

)
ď

δ

3τ
.

We therefore proved

E
[

exp
(
|Zt|
)
1t|Zt|ąMτ u

ˇ

ˇ

ˇ
Ft´1

]
ď

c

2 exp(2ρ) δ

3τ
.

Thus, we have E
[
Z2
t 1t|Zt|ąMτ u

ˇ

ˇFt´1

]
ď 2

a

exp(2ρ)δ/(6τ) and as all components of the
ptp

T
t are in [0, 1],

›

›

›
E
[
Z2
t 1t|Zt|ąMτ uptp

T
t

ˇ

ˇFt´1

]›
›

›

8
ď 2

c

exp(2ρ) δ
6τ
. (4.16)

Finally , combining (4.15) with (4.14) and (4.16), we get with probability 1 ´ δ/3

›

›

›

›

τ
ÿ

t=1

Z2
t ptp

T
t ´ ptp

T
t Σptp

T
t

›

›

›

›

8

ď M2
τ

a

2τ ln(3K2/δ) + 2τ
a

exp(2ρ)δ/(6τ) =M 1
τ

?
τ ,

where M 1
τ is defined in the statement of the lemma.

‹ Combining the two upper bounds into (4.9). Combining the above upper bound with (4.9)
and (4.12), we proved that with probability 1 ´ δ,

›

›

›

›

τ
ÿ

t=1

ptp
T
t

(
pΣτ ´ Σ

)
ptp

T
t

›

›

›

›

8

ď M 1
τ

?
τ +M2

τBτ (δ/3)
?
τ ,

which concludes the proof.

By choosing specific vectors pt, for t = 1, . . . , τ and using Lemma 6, we prove below
how the estimator (4.4) satisfies the inequality of Lemma 5.

Proof of Lemma 5. Applying Lemma 6 together with

ptp
T
t

(
pΣτ ´ Σ

)
ptp

T
t = ptTr

(
pT
t

(
pΣτ ´ Σ

)
pt

)
pT
t = Tr

((
pΣτ ´ Σ

)
ptp

T
t

)
ptp

T
t

we have, with probability at least 1 ´ δ, that for all pairs of coordinates (i, j) P E,
ˇ

ˇ

ˇ

ˇ

ˇ

τ
ÿ

t=1

Tr
((

pΣτ ´ Σ
)
ptp

T
t

)[
ptp

T
t

]
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ď κτ
?
τ . (4.17)

Remember that in the set E considered, we only have pairs (i, j) with i ď j. However,
for symmetry reasons, it will be convenient to also consider the vectors p(i,j) with i ą j,
where the latter vectors are defined in an obvious way. We note that for all 1 ď i, j ď K,

p(i,j)p(i,j)
T
= p(j,i)p(j,i)

T
. (4.18)

119



T
ar
ge
t
T
ra
ck
in
g
w
it
h
B
an
d
it
s

T
ar
ge
t
T
ra
ck
in
g
w
it
h
B
an
d
it
s

T
ar
ge
t
T
ra
ck
in
g
w
it
h
B
an
d
it
s

Now, our aim is to control
ˇ

ˇ

ˇ
qT
(
pΣτ ´ Σ

)
q
ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

ˇ

Tr
((

pΣτ ´ Σ
)
qqT
)ˇ
ˇ

ˇ

ˇ

(4.19)

uniformly over q P P. The proof consists of two steps: establishing such a control for
the special cases where q is one of the p(i,j) and then, extending the control to arbitrary
vectors q P P, based on a decomposition of qqT as a weighted sum of p(i,j)p(i,j)T vectors.

‹ The case of the p(i,j) vectors. We first consider the off-diagonal elements 1 ď i ă j ď K.
Note that since pt is of the form p(i

1,j1) for all 1 ď t ď τ , we have[
ptp

T
t

]
i,j

=

"

1/4 if pt = p(i,j),
0 otherwise. (4.20)

Using that pt = p(i,j) at least for τ0 rounds, Inequality (4.17) entails
τ0
4

ˇ

ˇ

ˇ
Tr
((

pΣτ ´ Σ
)
p(i,j)p(i,j)

T
)ˇ
ˇ

ˇ
ď κτ

?
τ ,

or put differently,
ˇ

ˇ

ˇ
Tr
((

pΣτ ´ Σ
)
p(i,j)p(i,j)

T
)ˇ
ˇ

ˇ
ď

4κτ
?
τ

τ0
. (4.21)

Now, let us consider the diagonal elements. Let 1 ď i ď K. We have

[
ptp

T
t

]
i,i

=

$

’

’

&

’

’

%

1 if pt = p(i,i),

1/4 if pt = p(i,j) for some j ą i,

1/4 if pt = p(k,i) for some k ă i,
0 otherwise,

(4.22)

where we recall that the pt are necessarily of the form p(k,`) with k ď `. Therefore,
Inequality (4.17) yields

τ0

ˇ

ˇ

ˇ

ˇ

ˇ

Tr
((

pΣτ ´ Σ
)(
p(i,i)p(i,i)

T
+

1

4

ÿ

jąi

p(i,j)p(i,j)
T
+

1

4

ÿ

kăi

p(k,i)p(k,i)
T
))ˇˇ

ˇ

ˇ

ˇ

ď κτ
?
τ ,

which we rewrite by symmetry – see (4.18) – as
ˇ

ˇ

ˇ

ˇ

ˇ

Tr
((

pΣτ ´ Σ
)(
p(i,i)p(i,i)

T
+

1

4

ÿ

j‰i

p(i,j)p(i,j)
T
))ˇˇ

ˇ

ˇ

ˇ

ď
κτ

?
τ

τ0
. (4.23)

‹ Decomposing arbitrary vectors q P P. Now, let q P P. We show below by means of
elementary calculations that

qqT =
K
ÿ

i=1

K
ÿ

j=1

u(i, j) p(i,j)p(i,j)
T
, with u(i, j) = 2qiqj if i ‰ j and u(i, i) = 2q2i ´ qi. (4.24)

Indeed, by identification and by imposing u(i, j) = u(j, i) for all pairs i, j, the equali-
ties (4.20) and the symmetry property (4.18) entail, for k ‰ k1:

qkqk1 =
[
qqT
]
k,k1 =

K
ÿ

i=1

K
ÿ

j=1

u(i, j)
[
p(i,j)p(i,j)

T]
k,k1 =

u(k, k1)

4
+
u(k1, k)

4
=
u(k, k1)

2
,
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which can be rephrased as u(k, k1) = u(k1, k) = 2qkqk1 . Now, let us calculate the diag-
onal elements, by identification and by the equalities (4.22) as well as by the symmetry
property (4.18):

q2k =
[
qqT
]
k,k

=
K
ÿ

i=1

K
ÿ

j=1

u(i, j)
[
p(i,j)p(i,j)

T]
k,k

= u(k, k) +
ÿ

i‰k

u(i, k)

4
+

ÿ

j‰k

u(k, j)

4

= u(k, k) +
1

2

ÿ

i‰k

u(i, k) = u(k, k) +
ÿ

i‰k

qkqi = u(k, k) +
K
ÿ

i=1

qkqi ´ q2k = u(k, k) + qk ´ q2k ,

which leads to u(k, k) = 2q2k ´ qk. We introduce the notation P (i,j) = p(i,j)p(i,j)
T and in

light of (4.21) and (4.23), we rewrite (4.24) as

qqT =
K
ÿ

i=1

u(i, i)

(
P (i,i) +

1

4

ÿ

j‰i

P (i,j)

)
+

K
ÿ

i=1

ÿ

j‰i

(
u(i, j) ´

u(i, i)

4

)
P (i,j) .

‹ Controlling arbitrary vectors q P P. Therefore, substituting this decomposition of qqT

into the aim (4.19), and using the linearity of the trace as well as the triangle inequality
for absolute values, we obtain

ˇ

ˇ

ˇ
qT
(
pΣτ ´ Σ

)
q
ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ
Tr
((

pΣτ ´ Σ
)
qqT
)ˇ
ˇ

ˇ
ď

K
ÿ

i=1

ˇ

ˇu(i, i)
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Tr
((

pΣτ ´ Σ
)(
P (i,i) +

1

4

ÿ

j‰i

P (i,j)
))ˇˇ

ˇ

ˇ

ˇ

+
K
ÿ

i=1

ÿ

j‰i

ˇ

ˇ

ˇ

ˇ

u(i, j) ´
u(i, i)

4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Tr
((

pΣτ ´ Σ
)
P (i,j)

)ˇ
ˇ

ˇ

ˇ

We then substitute the upper bounds (4.21) and (4.23) and get

ˇ

ˇ

ˇ
qT
(
pΣτ ´ Σ

)
q
ˇ

ˇ

ˇ
ď
κτ

?
τ

τ0

(
K
ÿ

i=1

ˇ

ˇu(i, i)
ˇ

ˇ+ 4
K
ÿ

i=1

ÿ

j‰i

ˇ

ˇ

ˇ

ˇ

u(i, j) ´
u(i, i)

4

ˇ

ˇ

ˇ

ˇ

)
.

By the triangle inequality, by the values 2qiqj of the coefficients u(i, j) when i ‰ j and by
using |u(i, i)| ď qi,

K
ÿ

i=1

ˇ

ˇu(i, i)
ˇ

ˇ+ 4
K
ÿ

i=1

ÿ

j‰i

ˇ

ˇ

ˇ

ˇ

u(i, j) ´
u(i, i)

4

ˇ

ˇ

ˇ

ˇ

ď K
K
ÿ

i=1

ˇ

ˇu(i, i)
ˇ

ˇ+ 4
K
ÿ

i=1

ÿ

j‰i

ˇ

ˇu(i, j)
ˇ

ˇ

ď K
K
ÿ

i=1

qi + 8
K
ÿ

i=1

ÿ

j‰i

qiqj = K + 8
K
ÿ

i=1

qi(1 ´ qi) ď K + 8 .

Putting all elements together, we proved supqPP

ˇ

ˇ

ˇ
qT
(
pΣτ ´ Σ

)
q
ˇ

ˇ

ˇ
ď

κτ
?
τ

τ0
(K + 8) = υτ (δ),

which concludes the proof of Lemma 5.

3.3.3 Analysis – proof of Theorem 4

The analysis exploits how well each pθt estimates θ and how well pΣτ estimates Σ. The
regret bound, as is clear from Proposition 1 below, also consists of these two parts.
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Proposition 1. Fix a risk level δ P (0, 1) and an exploration budget τ ě 2. Assume that
Assumption 1 holds. Consider the estimator pΣτ of Σ such that suppPP

ˇ

ˇpT(Σ ´ pΣτ )p
ˇ

ˇ ď υ
with probability at least 1 ´ δ/2, by taking υ = υτ (δ/2) ą 0 – see Equation (4.7). Then
choosing λ ą 0 and

at,p = min
!

L, 2C Bt´1(δt
´2)

›

›V
´1/2
t´1 ϕ(xt, p)

›

›

)

,

αt,p = υ + at,p , (4.25)

the optimistic algorithm (4.3) ensures that with probability 1 ´ δ,
řT

t=τ+1 `t,pt ´
řT

t=τ+1 minpPP `t,p ď 2
řT

t=τ+1 αt,pt .

Remark 10. Li et al. [2010] pick α(t, p) proportional to
›

›V
´1/2
t´1 ϕ(xt, p)

›

› only, but we need
an additional term to account for the covariance matrix.

Lemma 5 above studies how well pΣτ estimates Σ and we are thus left with controlling
the sum of the at,p to prove Proposition 1

Proof of Proposition 1. We show below (Step 1) that for all t ě 2, if
›

›V
1/2
t´1

(
pθt´1 ´ θ

)›
› ď Bt´1(δt

´2) and }Σ ´ pΣt}8 ď υ , (4.26)

then
@p P P,

ˇ

ˇ`t,p ´ p`t,p
ˇ

ˇď αt,p . (4.27)

Property (5.7), for those t for which it is satisfied, entails (Step 2) that the corresponding
instantaneous regrets are bounded by

rt
∆
= `t,pt ´ min

pPP
`t,p ď 2αt,pt .

It only remains to deal (Step 3) with the rounds t when (5.7) does not hold; they account
for the 1 ´ δ confidence level.

‹ Step 1: Good estimation of the losses. When the two events (4.26) hold, we have

ˇ

ˇ`t,p ´ p`t,p
ˇ

ˇ =

ˇ

ˇ

ˇ

ˇ

(
ϕ(xt, p)

Tθ ´ ct
)2

+ pTΣp´

([
ϕ(xt, p)

T
pθt´1

]
C

´ ct

)2
+ pT

pΣtp

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇpTΣp´ pT
pΣtp

ˇ

ˇ+

ˇ

ˇ

ˇ

ˇ

(
ϕ(xt, p)

Tθ ´ ct
)2

´

([
ϕ(xt, p)

T
pθt´1

]
C

´ ct

)2ˇˇ
ˇ

ˇ

.

On the one hand,
ˇ

ˇpTΣp´ pT
pΣtp

ˇ

ˇ ď υ while on the other hand,
ˇ

ˇ

ˇ

ˇ

(
ϕ(xt, p)

Tθ ´ ct
)2

´

([
ϕ(xt, p)

T
pθt´1

]
C

´ ct

)2ˇˇ
ˇ

ˇ

=
ˇ

ˇ

ˇ
ϕ(xt, p)

Tθ ´
[
ϕ(xt, p)

T
pθt´1

]
C

ˇ

ˇ

ˇ
ˆ

ˇ

ˇ

ˇ
ϕ(xt, p)

Tθ +
[
ϕ(xt, p)

T
pθt´1

]
C

´ 2ct

ˇ

ˇ

ˇ
,

where by Assumption 1, all quantities in the final inequality lie in [0, C], thus
ˇ

ˇ

ˇ
ϕ(xt, p)

Tθ +
[
ϕ(xt, p)

T
pθt´1

]
C

´ 2ct

ˇ

ˇ

ˇ
ď 2C .
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Finally,
ˇ

ˇ

ˇ
ϕ(xt, p)

Tθ ´
[
ϕ(xt, p)

T
pθt´1

]
C

ˇ

ˇ

ˇ
ď

ˇ

ˇϕ(xt, p)
Tθ ´ ϕ(xt, p)

T
pθt´1

ˇ

ˇ

ď

›

›

›
V

1/2
t´1

(
θ ´ pθt´1

)›
›

›
}V

´1/2
t´1 ϕ(xt, p)} , (4.28)

where we used the Cauchy-Schwarz inequality for the second inequality, and the fact that
ˇ

ˇy´ [x]C
ˇ

ˇ ď |y´x| when y P [0, C] and x P R for the first inequality. Collecting all bounds
together, we proved
ˇ

ˇ

ˇ

ˇ

(
ϕ(xt, p)

Tθ ´ ct
)2

´

([
ϕ(xt, p)

T
pθt´1

]
C

´ ct

)2ˇˇ
ˇ

ˇ

ď 2C
›

›

›
V

1/2
t´1

(
θ ´ pθt´1

)›
›

›

looooooooomooooooooon

ďBt´1(δt´2)

}V
´1/2
t´1 ϕ(xt, p)} ,

but of course, this term is also bounded by the quantity L introduced at the beginning of
Section 3. This concludes the proof of the claimed inequality (5.7).

‹ Step 2: Resulting bound on the instantaneous regrets. We denote by

p‹
t P argmin

pPP

 

`t,p
(

(4.29)

an optimal convex vector to be used at round t. By definition (4.3) of the optimistic
algorithm, we have that the played pt satisfies

p`t,pt ´ αt,pt ď p`t,p‹
t

´ αt,p‹
t
, that is, p`t,pt ´ p`t,p‹

t
ď αt,pt ´ αt,p‹

t
.

Now, for those t for which both events (4.26) hold, the property (5.7) also holds and yields,
respectively for p = pt and p = p‹

t :

`t,pt ´ p`t,pt ď αt,pt and p`t,p‹
t

´ `t,p‹
t

ď αt,p‹
t
.

Combining all these three inequalities together, we proved

rt = `t,pt ´ `t,p‹
t
=
(
`t,pt ´ p`t,pt

)
+
(
p`t,pt ´ p`t,p‹

t

)
+
(
p`t,p‹

t
´ `t,p‹

t

)
ď αt,pt + (αt,pt ´ αt,p‹

t
) + αt,p‹

t
= 2αt,pt ,

as claimed. This yields the 2
ř

αt,pt in the regret bound, where the sum is for t ě τ + 1.

‹ Step 3: Special cases. We conclude the proof by dealing with the time steps t ě τ + 1
when at least one of the events (4.26) does not hold. By a union bound, this happens for
some t ě τ + 1 with probability at most

δ

2
+ δ

ÿ

těτ+1

t´2 ď
δ

2
+ δ

ż 8

2

1

t2
dt = δ ,

where we used τ ě 2. These special cases thus account for the claimed 1 ´ δ confidence
level.

Remark 11. The main difference with the regret analysis of LinUCB provided by Chu
et al. [2011] or Lattimore and Szepesvári [2020] is in the first part of Step 1, as we need
to deal with slightly more complicated quantities: not just with linear quantities of the form
ϕ(xt, p)

Tθ. Steps 2 and 3 are easy consequences of Step 1.
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We are now left with proving the following lemma to conclude the analysis.

Lemma 7. No matter how the environment and provider pick the xt and pt,

T
ÿ

t=τ+1

at,pt ď

c(
2CB

)2
+
L2

2

c

dT ln λ+ T

λ
= O

(a
T lnT ln(T/δ)

)
,

where B ∆
= BT (δ/T

2) =
?
dλC + ρ

a

2 ln(T 2/δ) + d ln(1 + T/λ).

Remark 12. This lemma follows from a straightforward adaptation/generalization of
Lemma 19.1 of the monograph by Lattimore and Szepesvári [2020]; see also a similar
result in Lemma 3 by Chu et al. [2011].

Proof of Lemma 7. We consider the worst case when all summations would start at the
round τ + 1 = 2. By definition, the quantity B upper bounds all the Bt´1(δt

´2). It
therefore suffices to upper bound

T
ÿ

t=2

min
!

L, 2CB }V
´1/2
t´1 ϕ(xt, pt)}

)

ď
?
T

g

f

f

e

T
ÿ

t=2

min
!

L2,
(
2CB

)2
}V

´1/2
t´1 ϕ(xt, pt)}2

)

=
?
T

g

f

f

e

T
ÿ

t=2

min

#

L2,
(
2CB

)2( det(Vt)
det(Vt´1)

´ 1

)+

where we applied first the Cauchy-Schwarz inequality and used second the equality

1 + }V
´1/2
t´1 ϕ(xt, pt)}

2 = 1 + ϕ(xt, pt)
TV ´1

t´1ϕ(xt, pt) =
det(Vt)

det(Vt´1)
,

that follows from a standard result in online matrix theory, namely, Lemma 8 below. Now,
we get a telescoping sum with the logarithm function by using the inequality

@b ą 0, @u ą 0, mintb, uu ď b
ln(1 + u)

ln(1 + b)
, (4.30)

which is proved below. Namely, we further bound the sum above by

T
ÿ

t=2

min

#

L2,
(
2CB

)2( det(Vt)
det(Vt´1)

´ 1

)+
ď
(
2CB

)2 T
ÿ

t=2

min

#

L2(
2CB

)2 , det(Vt)
det(Vt´1)

´ 1

+

ď
(
2CB

)2 T
ÿ

t=2

L2/
(
2CB

)2
ln
(
1 + L2/

(
2CB

)2) ln
(

det(Vt)
det(Vt´1)

)

=
L2

ln
(
1 + L2/

(
2CB

)2) ln
(

det(VT )
det(V2)

)
ď

L2

ln
(
1 + L2/

(
2CB

)2) d ln λ+ T

λ

where we used Assumption 1 and one of its consequences to get the last inequality. Finally,
we use 1/ ln(1 + u) ď 1/u+ 1/2 for all u ě 0 to get a more readable constant:

L2

ln
(
1 + L2/

(
2CB

)2) ď
(
2CB

)2
+
L2

2
.
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The proof is concluded by collecting all pieces. Finally, we now provide the proofs of two
either straightforward or standard results used above.

‹ Standard Result in Online Matrix Theory. The following result is extremely standard in
online matrix theory (see, among many others, Lemma 11.11 in Cesa-Bianchi and Lugosi,
2006 or the proof of Lemma 19.1 in the monograph by Lattimore and Szepesvári, 2020).

Lemma 8. Let M a dˆ d full-rank matrix, let u, v P Rd be two arbitrary vectors. Then

1 + vTM´1u =
det
(
M + uvT)

det(M)
.

The proof first considers the case M = Id. We are then left with showing that det
(
Id +

uvT
)
= 1 + vTu, which follows from taking the determinant of every term of the equality[

Id 0
vT 1

] [
Id + uvT u

0 1

] [
Id 0

´vT 1

]
=

[
Id u
0 1 + vTu

]
.

Now, we can reduce the case of a general M to this simpler case by noting that

det
(
M + uvT) = det(M) det

(
Id +

(
M´1u

)
vT
)
= det(M)

(
1 + vTM´1u

)
.

‹ Proof of Inequality (4.30). This inequality is used in Lemma 19.1 of the monograph
by Lattimore and Szepesvári [2020], in the special case b = 1. The extension to b ą 0 is
straightforward. We fix b ą 0. We want to prove that

@u ą 0, mintb, uu ď b
ln(1 + u)

ln(1 + b)
. (4.31)

We first note that
mintb, uu = b

ln(1 + u)

ln(1 + b)
for u = b

and that mintb, uu = b for u ě b, with the right-hand side of (4.31) being an increasing
function of u. Therefore, it suffices to prove (4.31) for u P [0, b], where mintb, uu = u.
Now,

u ÞÝÑ b
ln(1 + u)

ln(1 + b)
´ u

is a concave and (twice) differentiable function, vanishing at u = 0 and u = b, and is
therefore non-negative on [0, b]. This concludes the proof.

We are now ready to conclude the proof of Theorem 4. Using for the first τ ě 2 rounds
that L = C2+Γ upper bounds the (conditionally) expected losses `t,pt , Proposition 1 and
Lemmas 5 and 7 show that, with probability 1 ´ δ

RT ď τL+ Tυ +
T
ÿ

t=τ+1

at,pt ď τL+O
(
T ln2

(τ
δ

)c ln(1/δ)
τ

+
a

T lnT ln(T/δ)
)
.

Picking τ of order T 2/3 concludes the proof.
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Dependence on the number of tariffs K and on the dimension of parameter vector d. The
dependence of υ = υτ (δ/2) on K and d is in K2 and

?
d, respectively. Moreover, the de-

pendence of B̄ on θ-dimension is also in
?
d. Combining these dependencies with Lemma 7

and the inequality just above, we obtain that the regret bound is linear in d and cubic in
K. However, we emphasize that d intrinsically depends on K.

Case of known covariance matrix Σ. We then have υ = 0 in Proposition 1 and we may
discard Lemma 5. Taking τ = 2, the obtained regret bound is 2L+

a

T lnT ln(T/δ). In
this case, the regret bound is linear in d and does not depend directly on K.

Remark 13. The algorithm of Theorem 4 depends on δ via the tuning (4.25) of α. But
we can also define a regret with full expectations E

[
`t,pt

]
and minE

[
`t,p
]

– remember from
Sections 3.1 and 3.2.1 that the losses `t,p are conditional expectations. In that case the
algorithm can be made independent of δ. Only Step 3 of the proof of Proposition 1 is to
be modified. The same rates in T are obtained.

4 Fast rates, with global noise modeling
In this section, we consider Model 2 and show that under an attainability condition stated
below, the order of magnitude of the regret bound in Theorem 4 can be reduced to a poly-
logarithmic rate. This kind of fast rates already exist in the literature of linear contextual
bandits (see, e.g., Abbasi-Yadkori et al., 2011, as well as Dani et al., 2008) but are not so
frequent. We underline in the proof the key step where we gain orders of magnitude in
the regret bound. Before doing so, we note that similarly to Section 3.1,

E
[
(Yt,p ´ ct)

2
]
=
(
ϕ(xt, p)

Tθ ´ ct
)2

+ σ2 , (4.32)

which leads us to introduce a regret RT defined by

RT =
T
ÿ

t=1

(
ϕ(xt, pt)

Tθ ´ ct
)2

´

T
ÿ

t=1

min
pPP

!(
ϕ(xt, p)

Tθ ´ ct
)2)

.

Thus, as far as the minimization of the regret is concerned, Model 2 is a special case of
Model 1, corresponding to a matrix Σ that can be taken as the null matrix [0]. Of course,
as explained in Section 2.1, the covariance matrix Σ of Model 2 is σ2[1] in terms of real
modeling, but in terms of regret-minimization it can be taken as Σ = [0]. Therefore, all
results established above for Model 1 extend to Model 2, but under an additional assump-
tion stated below, the T 2/3 rates (up to poly-logarithmic terms) obtained above can be
reduced to poly-logarithmic rates only.

Assumption 2 – Attainability. For each time instance t ě 1, the expected mean
consumption is attainable, i.e.,

D p P P | ϕ(xt, p)
Tθ = ct .

We denote by p‹
t such an element of P. In Model 2 and under this assumption, the

expected losses `t,p defined in (4.32) are such that, for all t ě 1 and all xt P X ,

min
pPP

`t,p = `t,p‹
t
= σ2 . (4.33)

126



T
ar
ge
t
T
ra
ck
in
g
w
it
h
B
an
d
it
s

T
ar
ge
t
T
ra
ck
in
g
w
it
h
B
an
d
it
s

T
ar
ge
t
T
ra
ck
in
g
w
it
h
B
an
d
it
s

As in Model 2 the variance terms σ2 cancel out when considering the regret, the variance
σ2 does not need to be estimated. Our optimistic algorithm thus takes a simpler form.
For each t ě 2 and p P P we consider the same estimators (4.1) of θ as before and then
define

r`t,p =
(
ϕ(xt, p)

T
pθt´1 ´ ct

)2
(no clipping needs to be considered in this case). We set

βt,p = Bt´1(δt
´2)2 }V

´1/2
t´1 ϕ(xt, p)}

2 (4.34)

and then pick:
pt P argmin

pPP

!

r`t,p ´ βt,p

)

(4.35)
for t ě 2 and p1 arbitrarily. The tuning parameter λ ą 0 is hidden in Bt´1(δt

´2)2. We get
the following theorem, whose proof re-uses many parts of the proofs of Proposition 1 and
Lemma 7. Without Assumption 2, a regret bound of order

?
T up to logarithmic terms

could still be proved.

Theorem 5. In Model 2, assume that the boundedness and attainability assumptions
(Assumptions 1 and 2) hold. Then, the optimistic algorithm (4.35), tuned with λ ą 0,
ensures that for all δ P (0, 1),

RT ď d

(
4B

2
+
C2

2

)
ln λ+ T

λ
= O

(
ln2 T

)
,

with probability at least 1 ´ δ, where B is defined as in Lemma 7.

Proof of Theorem 5. The key observation lies in Step 1 (and is tagged as such) and the
rest is standard maths. Because of the expression for the expected losses (4.32) and the
consequence (4.33) of attainability, the regret can be rewritten as

RT =
T
ÿ

t=1

`t,pt =
T
ÿ

t=1

(
ϕ(xt, pt)

Tθ ´ ct
)2
.

We first successively prove (Step 1) that for t ě 2, if the bound of Lemma 4 holds, namely,
›

›

›
V

1/2
t´1

(
θ ´ pθt´1

)›
›

›
ď Bt´1(δt

´2) , (4.36)

then

`t,pt ď 2βt,pt + 2r`t,pt , (4.37)
r`t,pt ď βt,pt +

r`t,p‹
t

´ βt,p‹
t
, (4.38)

r`t,p‹
t

ď βt,p‹
t
. (4.39)

These inequalities collectively entail the bound `t,pt ď 4βt,pt . Of course, because of As-
sumption 1, we also have `t,pt ď C2. It then suffices to bound the sum (Step 2) of the `t,pt
by the sum of the min

 

C2, 4βt,pt
(

and control for the probability of (4.36).

‹ Step 1: Proof of (4.37)–(4.39). Inequality (4.38) holds by definition of the algorithm.
For (4.39) and (4.37), we re-use the inequality (4.28) proved earlier: for all p P P,(

ϕ(xt, p)
T
(
θ ´ pθt´1

))2
ď

›

›

›
V

1/2
t´1

(
θ ´ pθt´1

)›
›

›

2
}V

´1/2
t´1 ϕ(xt, p)}

2

ď Bt´1(δt
´2)2 }V

´1/2
t´1 ϕ(xt, p)}

2 ∆
= βt,p , (4.40)
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where we used the bound (4.36) for the last inequality. This inequality directly yields (4.39)
by taking p = p‹

t . Now comes the specific improvement and our key observation: using
that (u+ v)2 ď 2u2 + 2v2, we have

`t,pt =
(
ϕ(xt, pt)

Tθ ´ ϕ(xt, pt)
T
pθt´1 + ϕ(xt, pt)

T
pθt´1 ´ ct

)2
ď 2
(
ϕ(xt, pt)

Tθ ´ ϕ(xt, pt)
T
pθt´1

)2
+ 2

(
ϕ(xt, pt)

T
pθt´1 ´ ct

)2
loooooooooooomoooooooooooon

=r`t,pt

,

which yields (4.37) via (4.40) used with p = pt.

‹ Step 2: Summing the bounds. First, the bound (4.36) holds, by Lemma 4, with prob-
ability at least 1 ´ δt´2 for a given t ě 2. By a union bound, it holds for all t ě 2 with
probability at least 1´ δ. By bounding `t,pt by C2 and the Bt´1(δt

´2) by B, we therefore
get, from Step 1, that with probability at least 1 ´ δ,

RT ď C2 +
T
ÿ

t=2

min
!

C2, 4B
2
}V

´1/2
t´1 ϕ(xt, p)}

2
)

.

Now, as in the proof of Lemma 7 above,
T
ÿ

t=2

min
!

C2, 4B
2
}V

´1/2
t´1 ϕ(xt, p)}

2
)

=
T
ÿ

t=2

min

#

C2, 4B
2
(

det(Vt)
det(Vt´1)

´ 1

)+

ď 4B
2

T
ÿ

t=2

C2/
(
4B

2)
ln
(
1 + C2/

(
4B

2)) ln
(

det(Vt)
det(Vt´1)

)
=

C2

ln
(
1 + C2/

(
4B

2)) ln
(

det(VT )
det(V1)

)

ď

(
4B

2
+
C2

2

)
d ln λ+ T

λ
.

This concludes the proof.

Dependence on the dimension of parameter vector d. We recall that the dependence of B̄
on θ-dimension is in

?
d. Thus, the regret bound is quadratic en d – which intrinsically

depends on K.

5 Application to the Low Carbon London data set
Our simulations rely on a real data set of residential electricity consumption, in which
different tariffs were sent to the customers according to some policy. But of course, we
cannot test an alternative policy on historical data (we only observed the outcome of the
tariffs sent) and therefore need to build first a data simulator.

5.1 The underlying real data set / the simulator

We consider open data published3 by UK Power Networks and fully described in Section 2
of Chapter 3. It contains energy consumption (in kWh per half hour) at half hourly in-
tervals of a thousand customers subjected to dynamic energy prices. We considered their

3SmartMeter Energy Consumption Data in London Households – see https://data.lon-
don.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
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mean4 consumption. As far as contexts are concerned, we considered half-hourly tem-
peratures τt in London, obtained from https://www.noaa.gov/ and the following calendar
variables: the day of the week wt (equal to 0 for Sunday, 1 for Monday, etc.), the half-hour
of the day ht P t1, . . . , 48u, and the position in the year: πt P [0, 1], linear values between
πt = 0 on January 1st at 00:00 and πt = 1 on December the 31st at 23:59.

5.1.1 Realistic simulator

The simulator is based on the following additive model, which breaks down time by half
hours:

φ(xt, j) =
48
ÿ

h=1

[
shτ (τt) + shπ(πt) + ηh

]
1tht=hu +

6
ÿ

w=0

ζw1twt=wu + ξj , (4.41)

where the shτ and shπ are functions catching the effect of the temperature and of the yearly
seasonality. As explained in Example 4, the transfer parameter θ gathers coordinates of
the shτ and the shπ in bases of splines, as well as the coefficients ηh, ζw and ξj . Here, we
work under the assumption that exogenous factors do not impact customers’ reaction to
tariff changes (which is admittedly a first step, and more complex models could be con-
sidered). Our algorithms will have to sequentially estimate the parameter θ, but we also
need to set it to get our simulator in the first place. We do so by exploiting historical data
together with the allocations of prices picked, of the form (0, 1, 0), (1, 0, 0) and (0, 0, 1)
only on these data (all customers were getting the same tariff), and apply the formula (7.8)
through the R-package mgcv, see Wood [2020] (which replaces the λ identity matrix with a
slightly more complex definite positive matrix S, see Wood, 2006). The deterministic part
of the obtained model is realistic enough: its adjusted R-square on historical observations
equals 92% while its mean absolute percentage of error equals 8.82%. Now, as far as
noise is concerned, we take multivariate Gaussian noise vectors εt, where the covariance
matrix Σ was built again based on realistic values. Namely, we considered the time series
of residuals associated with our estimation of the consumption. The diagonal coefficients
Σj,j were given by the empirical variance of the residuals associated with tariff j, while
non-diagonal coefficients Σj,j1 were given by the empirical covariance between residuals of
tariffs j and j1 at times t and t˘48. (A more realistic model might consider a noise which
depends on the half-hour of the day).

Numerical expression obtained. More precisely, the variance terms Σ1,1, Σ2,2, and Σ3,3 were
computed with respectively 788, 15 072 and 1 660 observations, while the non-diagonal
coefficients were based on fewer observations: 1 318 for Σ2,3 and 620 for Σ1,2, but only 96
for Σ1,3. The resulting matrix Σ is

Σ = σ2

1.11 0.46 0.04
0.46 1.00 0.56
0.04 0.56 2.07

 with σ = 0.02.

To get an idea of the orders of magnitude at stake, we indicate that in the data set con-
sidered, the mean consumption remained between 0.08 and 0.21 kWh per half-hour and

4Only such a level of aggregation allows a proper estimation (individual consumptions are erratic);
Sevlian and Rajagopal, 2018.
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that its empirical average equals 0.46.

Off-diagonal coefficients are non-zero. We may test, for each j ‰ j1, the null hypothesis
Σj,j1 = 0 using the Pearson correlation test; we obtain low p–values (smaller than some-
thing of the order of 10´13), which shows that Σ is significantly different from a diagonal
matrix. We may conduct a similar study to show that it is not proportional to the all-ones
matrix, nor to any matrix with a special form.

5.2 Experiment design: learning added tariff effects

Target creation. We focus on attainable targets ct, namely, φ(xt, 1) ď ct ď φ(xt, 3). To
smooth consumption, we pick ct near φ(xt, 3) during the night and near φ(xt, 1) in the
evening. These hypotheses can be seen as an ideal configuration where targets and cus-
tomers portfolio are in a way compatible.

Set of legible allocations of price levels. We assume that the electricity provider cannot
send Low and High tariffs at the same round and that population can be split in N = 100
equal subsets. Thus, the set of price levels P is restricted to the grid

"( i
N
, 1 ´

i

N
, 0
)
,
(
0,

i

N
, 1 ´

i

N

)
, i P

!

0, . . . , N
)

*

.

Training period, testing period. We create one year of data using historical contexts and
assume that only Normal tariffs are picked at first: pt = (0, 1, 0); this is a training period,
which corresponds to what electricity providers are currently doing. As they can accurately
estimate the covariance matrix Σ by ad-hoc methods, we assume that the algorithm knows
the matrix Σ used by the simulator. Then the provider starts exploring the effects of tariffs
for an additional month (a January month, based on the historical contexts) and freely
picks the pt according to our algorithm; this is the testing period. The estimation of θ in
this testing period is still performed via the formula (7.8) and as indicated above (with
the mgcv package), including the year when only pt = (0, 1, 0) allocations were picked. For
learning to then focus on the parameters ξj , as other parameters were decently estimated
in the training period, we modify the exploration term αt,p of (4.3) into

αt,p = 2CBt´1(δt
´2)}rV

´1/2
t´1 pt} , with rVt´1 = λId +

t´1
ÿ

s=1

psp
T
s .

Finally, we pick a convenient λ.

5.3 Results

Algorithms were run 200 times each. The simplest set of results is provided in Figure 4.3:
the regrets suffered on each run are compared to the theoretical orders of magnitude of
the regret bounds. As expected, we observe a lower regrets for Model 2. The bottom
parts of Figures 4.1–4.2 indicate, for a single run, which allocation vectors pt were picked
over time. During the first day of the testing period, the algorithms explore5 the effect of

5Note that, over the first iterations, the exploration term for Model 2 is much larger than the exploita-
tion term (but quickly vanishes), which leads to an initial quasi-deterministic exploration and an erratic
consumption (unlike in Model 1).
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Tue. Jan. 1

Low−tariff mean consumption
Normal−tariff mean consumption
High−tariff mean consumption

Wed. Jan. 30

0.10

0.15

0.20

0.25

0.30

0.35

Expected mean consumption (approx.)
Target consumption

Figure 4.1 – Left: January 1st (first day of the testing set). Right: January 30th (last day of the
testing set).
Top: 200 runs are considered. Plot: average of mean consumptions over 200 runs for the algorithm
associated with Model 1 (full black line); target consumption (dashed red line); mean consumption
associated with each tariff (Low–1 in green, Normal–2 in blue and High–3 in navy). The envelope
of attainable targets is in pastel blue. Bottom: A single run is considered. Plot: proportions pt
used over time.

Tue. Jan. 1

Low−tariff mean consumption
Normal−tariff mean consumption
High−tariff mean consumption

Wed. Jan. 30

0.10

0.15

0.20

0.25

0.30

0.35

Expected mean consumption (approx.)
Target consumption

Figure 4.2 – Same legend, but with Model 2 (full black line).

Tue. Jan. 1 Tue. Jan. 8 Tue. Jan. 15 Tue. Jan. 22 Tue. Jan. 29

~ T ln(T)
   Regret

Tue. Jan. 1 Tue. Jan. 8 Tue. Jan. 15 Tue. Jan. 22 Tue. Jan. 29

0.00

0.05

0.10

0.15

0.20

0.25

~ T ln(T)
~ ln2(T)
   Regret

Figure 4.3 – Regret curves for each of the 200 runs for Model 1 (left) and Model 2 (right). We
also provide plots of c

?
T lnT and c1 ln2(T ) for some well-chosen constants c, c1 ą 0; these are the

rates to be considered as the covariance matrix Σ is assumed to be known.
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tariffs by sending the same tariff to all customers (the pt vectors are Dirac masses) while
at the end of the testing period, they cleverly exploit the possibility to split the population
in two groups of tariffs. We obtain an approximation of the expected mean consumption
φ(xt, pt) by averaging the 200 observed consumptions, and this is the main (black, solid)
line to look at in the top parts of Figures 4.1–4.2. Four plots are depicted depending on the
day of the testing period (first, last) and of the model considered. These (approximated)
expected mean consumptions may be compared to the targets set (dashed red line). The
algorithms seem to perform better on the last day of the testing period for Model 2 than
for Model 1 as the expected mean consumption seems closer to the target. However, in
Model 1, the algorithm has to pick tariffs leading to the best bias-variance trade-off (the
expected loss features a variance term). This is why the average consumption does not
overlap the target as in Model 2. This results in a slightly biased estimator of the mean
consumption in Model 1.

6 Taking into account “rebound” and “side” effects

In our first modeling of the power consumption, we have assumed that it depends only
on exogenous variables and on the current price levels. However, choosing a non-standard
tariff may modify the power consumption over several hours even after the tariff is back to
standard. For example, if some customers need to charge their electric vehicle, they likely
do so if the tariff is low. Regardless of the price level after loading, they will probably not
consume much. On the contrary, if a high rate is applied all day, they will connect the
vehicle, whatever the price, because it needs to be charged. Similarly, a low tariff applied
over a whole day will not lead to an increase in consumption at all half-hours of the day.
Customer flexibility has some limits that were not taking into account so far. The effect
of previous tariffs on consumption is known as “rebound effect”. Moreover, for Low tariff,
the effect lasts less than desired because consumers wait until they are well within the
tariff window to be sure they will consume when prices are low. Conversely, for the High
tariff, the effect lasts longer: consumers stop consuming before and resume after the tariff
window to make sure they do not consume when prices are high. Therefore, the fall or
rise of the energy consumption, induced by a special tariff, may occur a little bit before
– for High tariff – or after – for Low tariff – the effective establishment of a special tariff;
and it may last longer – for High tariff – or less long – for Low tariff – than the period
in which the tariff is actually applied. This is called a “side effect”. To take into account
these effects, we propose the three modelings above. The first one is a straightforward
extension of previous results which has however a high interest in practice. The second
approach considers daily consumption profiles: the time step will refer to days and at each
new day, the electricity provider will simultaneously observe 48 consumption records (one
for each half-hour of the day before), some exogenous variables of the current day and a
target profile – namely 48 consumption targets to reach. Therefore, it will choose all the
48 price levels – one convex vector per half-hour. This modeling takes intrinsically into
account within-day rebound and side effects: the price levels for a given day are all picked
and communicated to customers at the same time. The underlying consumption model
will link the chosen tariffs to the 48 power consumption records. Thus, price levels picked
for a given half-hour may influence the consumptions associated with all the half-hours of
the considered day. Moreover, we detail below how some daily operational constraints can
be taken into account with such a approach. The main drawback of this model is that the
tariffs picked for a given day (even those chosen for the late evening), have no influence on
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the consumption of the next day (even early in the morning). So we finally consider a third
and final approach which combines the two previous ones for a daily profile management
which takes into account rebound and side effects that can spread over several days.

6.1 A simple approach considering historical price levels

First, at a round t ą t0, we may simply consider the price level pt´1, pt´2, . . . , pt´t0 as
exogenous variables. In our previous modeling (Models 1 and 2), we have assumed the
consumption to depend on some context xt P X . There was no assumption on these vari-
ables, which could be deterministic or stochastic. The expected consumption associated
with tariffs pt was ϕ(xt, pt)Tθ, where ϕ(xt, pt) and θ were vectors of dimension d. Here,
we replace xt P X by (xt, pt´1, . . . , pt´t0) P X ˆ Pt0 . Since there is no assumption on
contextual variables xt all the previous results apply by adapting the mapping function
ϕ : X Ñ Rd into rϕ : X ˆ Pt0 Ñ Rrd. The only change is an increase of the dimension of
the parameter vector to estimate – which was θ in our previous modeling and which we
denote here by rθ. For example, to take into account past price levels, we could add a linear
effect to the previous consumption model, which would lead to K ˆ t0 new coefficients to
be estimated, so rd = d + Kt0. Indeed, by considering the same underlying generalized
additive model as before, and denoting by ξ´s the K-vector of parameters associated with
the effect of the tariffs chosen at t´ s, the expected consumption at round t ą t0 is:

rϕ(xt, pt´1, . . . , pt´t0 , pt)
T
rθ =


ϕ(xt, pt)
pt´1

...
pt´t0


[
θ, ξT

´1, . . . , ξ
T
´t0

]
= ϕ(xt, pt)

Tθ +
t0
ÿ

s=1

pT
t´sξ´s.

In the rd-vector rθ to estimate, there are some new coefficients: those of vectors ξ´1, . . . , ξ´t0 ,
which model the impact of previous tariffs on current consumption. For the noise, we may
consider the same terms as in Models 1 and 2 depending on whether the noise depends on
chosen tariff or not.

Remark 14. Note that the noise term does not depend on past tariffs. This kind of
approach would belong to the family of autoregressive–moving-average (ARMA) models.

A slight adaptation of algorithm initialization may be needed: to learn the coefficients
linked to pt´1, . . . , pt´t0 , we need to start bandit algorithms at t ą t0 rounds. Except in the
case of Model 1, when Σ is unknown: the price levels are deterministic for the τ = o(T 2/3)
first rounds (pure exploration), no adaptation is required. Therefore, this extension of
previous results ensures regret bounds of the orders as before – namely, O(T 2/3 ln2 T ) for
Model 1 and O(ln2 T ) for Model 2. We recall that the dependence in the dimension of the
parameter vector – d or rd – in the regret bound is linear for Model 1 and quadratic for
Model 2.

Remark 15. Since the consumption of the past day may have a significant impact on
that of the current day, we can, in the same way, consider the power consumptions at
t´ 1, t´ 2, . . . as exogenous variables.
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We highlight the notion of regret associated with this approach is

RT =
T
ÿ

t=t0+1

(
rϕ(xt, pt´1, . . . , pt´t0 , pt)

T
rθ ´ ct

)2
+ pT

t Σpt´

T
ÿ

t=t0+1

min
pPP

!(
rϕ(xt, pt´1, . . . , pt´t0 , p)

T
rθ ´ ct

)2
+ pTΣp

)

,

Thus, at a round t, the expected loss of our strategy is compared to the expected loss of
the best strategy, conditionally to the vectors pt´1, . . . , pt´t0 picked for our strategy. This
latter has no reason to be equal to the expected loss of the “global” best strategy and thus

RT ‰

T
ÿ

t=t0+1

(
rϕ(xt, pt´1, . . . , pt´t0 , pt)

T
rθ ´ ct

)2
+ pT

t Σpt´

T
ÿ

t=t0+1

(
rϕ(xt, p

‹
t´1, . . . , p

‹
t´t0 , p)

T
rθ ´ ct

)2
+ p‹

t
TΣp‹

t ,

where, for t ą t0, p‹
t argminpPP

!(
rϕ(xt, p

‹
t´1, . . . , p

‹
t´t0 , p)

T
rθ ´ ct

)2
+ pTΣp

)

and p‹
t = pt

otherwise.

6.2 A second approach considering daily profile management

6.2.1 Consumption modeling

Another modeling of rebound and side effects relies on the consideration of consumption
profiles. Each day, customers consume a certain amount of electricity they distribute dur-
ing the day according to their daily tariff profiles and to the flexibility of their equipment.
Here, a new round t corresponds to a new day, and at each time step, we focus on the
daily consumption profile, which gathers H = 48 half-hourly consumptions. In all that
follows, days are broken down into H time ranges (we consider H = 48, this parameter
can be changed according to the frequency of the consumption records and those of the
possible price changes sent by the electricity provider). Thus, at a day t, prices levels are
given for all the 48 half-hours of the day, which is much more realistic than our previous
modeling. Indeed, in the Low Carbon London project – which provides the data set we
used in the experiments of Section 5, the tariff prices were given a day ahead via the smart
meter or text message to mobile phone.

At a day t, the electricity provider observes some context vector xt P X , where X is
the new parametric space. This vector gathers contextual variables of the current day:
for example, it may contain H records of temperature (one for each half-hour), of wind,
the day of the week, the season etc. It also observes H consumption targets c1c , . . . , cHt
to reach at each half-hour of the day. Then, it picks H convex vectors p1, . . . , pH . These
vectors are grouped in a K ˆH – matrix p = (p1, . . . , pH) and we denote by P Ă (∆K)H

the new set of legible allocations of price levels.

For each half-hour h = 1, . . . , H, the power consumption depends on the context xt of
the day and on all the vectors p1t , . . . pHt – but there is no dependence on the tariffs picked
the day before. To model the H consumptions, we consider an approach similar to that
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presented in Section 2.1: for a day t, at an half-hour h, with tariffs p P P picked, the
power consumption equals:

Y h
t,p = φ(xt,p)

Tθh + noise .

Thus, we consider H models that are linked by the same mapping function φ : xˆRd, but
the H vectors of parameters θh differ from an half-hour model to another. The function
φ gathers the H power consumption models. For example, if we consider Model 1 for
each half-hour, so that, for all h = 1, . . . , H, we have E[Y h

t,p] = ϕ(xht , p
h)Tθ(h), where the

contextual vector xht contains the exogenous variables associated with half-hour h and θ(h)
is the corresponding parameter vector of dimension d; we set

φ
(
xt,p

)
=
(
ϕ(x1t , p

1), ϕ(x2t , p
2), . . . , ϕ(xHt , p

H)
)

and θh =

 0dˆ(h´1)

θ(h)
0dˆ(H´h)

 ,

where 0n is a n-dimensional vector of 0. The dimension d is then d = d ˆ H. Note that
when some of the components of the context vectors xht are common from one half-hour to
another, it is possible to reduce this dimension. As in Model 1, we assume that the noise
term depends on the chosen tariffs. More precisely, for each half-hour h, the noise term
will be of the form (ph)Tεht – where ph is the price levels of the considered half-hour. Ex-
actly as in previous modeling (but now, t refers to days), the H-dimensional vectors of K
noise vectors (ε11, . . . , εH1 ), (ε12, . . . , ε

H
2 ), . . . will be independent and identically distributed.

To model the possible correlations between the noise terms at different half-hours of the
same day, we introduce the matrices of covariance Σhh1

= cov(εh1 , εh
1

1 ), for 1 ď h, h1 ď H.
Therefore, the noise term (ph)Tεht depends only on the price levels of the considered half-
hour, but noises at h and h1 are linked through vectors εht and εh

1

t . More precisely, for
any tariffs k and k1, we assume a correlation cov(εht,k, εh

1

t,k1) = Σhh1

k,k1 between residuals at
the two half-hours of the same day h and h1 when the tariffs k and k1 are pickled. This
modeling is summed up in Model 3 below.

Model 3: Daily profile consumptions. At a day t, when the electricity provider observes
the context variables xt and picks the K ˆ H–matrix p = (p1, . . . , pH), made of the H
convex vectors ph which correspond to the price levels chosen at the instants h, the daily
consumption profile Yt,p is the H-vector:

Yt,p =



Y 1
t,p
...
Y h
t,p
...
Y H
t,p


=



φ(xt,p)
Tθ1 + (p1)Tε1t

...
...

...
φ(xt,p)

Tθh + (ph)Tεht
...

...
...

φ(xt,p)
TθH + (pH)TεHt


,

where φ : x ˆ P ÞÑ Rd is a known mapping function and θ1, . . . θH are unknown pa-
rameter d–vectors. For any h, the noise K-vectors εh1 , εh2 , . . . are ρ–sub-Gaussian i.i.d.
random variables with E[εh1 ] = (0, . . . , 0)T. For two half-hours h and h1, we denote by
Σhh1

= Cov
(
εh1 , ε

h1

1

)
the covariance matrix of vectors εh1 and εh1

1 .
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Notation. In what follows, we extend the results of Model 1 to Model 3. Since price
levels and consumptions are now matrices and vectors (because the whole day is taken
into account at each time step t), we write them in bold letters and we refer to a specific
half hour by super-scripting the variable by h. All other variables to be updated with this
new modeling (contextual vector, mapping function, dimension of parameter vector etc.)
– but which remain of the same nature (vector, function, constant, etc.) – are written in
underlined letters (mapping function, dimension, etc.). Finally, for losses, expected losses
and deviation bounds we will simply replace the subscript p with p.

Taking into account some operational constraints. By picking all the price levels of the
day at the same time, some operational constraints may be taken into account. In the
following examples, we consider that a single tariff is chosen for each half-hour for all the
population – namely, the pht vectors are Dirac masses. First, if we do not want that the
customers receive the tariff k for more than n half-hours of the same day, we can restrict
P to the set of vectors p which satisfy condition (i) below. To be sure that the tariff k
is not picked on too long a period (typically n half-hours), we can impose condition (ii).
Finally, the electricity provider could stipulate in the contract of its customers that, if a
high tariff (denoted by k) is chosen, a low tariff (denoted by k1) will also be chosen on the
same day and restricts P to the set of vectors which satisfy condition (iii).

(i) :
H
ÿ

h=1

1tphk=1u ď n, (ii) :
H´n
ÿ

h=0

1 řn
i=1 1tph+i

k
=1u

ěn
( = 0, (iii) :

ÿ

1ďh,h1ďH

1tphk=1u1tph
1

k1=1u
ą 0.

We can also impose that tariffs are not changed too many times on the same day, etc.
Therefore, lots of operational constraints may be taken into account in the set P . Note
that it is less direct to write these constraints mathematically when the vectors pht are not
Dirac masses. By replacing terms 1tphk=1u with 1tphk‰0u, we can be sure that the opera-
tional constraints are satisfied, but by choosing cleverly in the population the customers
which receive tariffs k and k1 at the different half-hours of the day, we may consider less
restrictive constraints. For example, we may apply High tariff to 80% of the population
(and Normal tariff to the 20% left) for as long as we want, without it being sent to one of
the customers more than two consecutive hours. Indeed, by splitting the population into
5 groups and by changing the group which receives Normal tariff every half-hour, each
customer will receive, High tariff for two hours or less, then Normal tariff for an half-hour
break, and again High tariff for two extra hours etc. Finding optimal planning could be a
difficult task that we do not deal with here.

Finally, for simplicity of notation (and exposition), we did not introduce any dependence
on t in P – or in P for Models 1 and 2. However, this would be possible as soon as the
sets considered are independent of past price levels – namely, they are deterministic or
depend solely on exogenous contextual variables (we denote by P1,P2, . . . these sets).
Indeed, there would be no change in the regret analysis and this enables to specify different
constraints depending on, for example, the day of the week – for example, no high tariff
on Sundays or when the temperature is lower than 0˝C. In this case, we assume that the
knowledge of P t is acquired at the beginning of round t so that the regret is now

T
ÿ

t=1

`t,pt
´

T
ÿ

t=1

min
pPPt

`t,p ,

where `t,p is the expected (conditional) loss at t associated with the price levels p P P t.
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6.2.2 Target profile, loss function and regret

For any day t, the electricity provider sets H targets c1t , . . . , cHt . Being close to the target
may be more important at certain times of the day – such as peak hours – than at others.
Thus, it can set some coefficients κ1t , . . . , κHt to weigh the losses. The higher κht is, the
closer the consumption at the half-hour h has to be to cht . With no loss of generality,
we can assume that these weights are between 0 and 1 – indeed, it is enough to normal-
ize them. Then, it observes the context vector xt and chooses all the price levels for the
day pt P P and suffers the loss

řH
h=1 κ

h
t (Y

h
t,pt

´cht )
2. Protocol 5 sums up this online process.

Protocol 5 Target Daily Profile Tracking for Contextual Bandits
Input:

Breakdown of day into H time ranges
Set of legible vectors of convex vectors P
Bound on the consumption C
Transfer function φ : X ˆ P Ñ Rd

Unknown parameters:
Transfer parameters θ1, . . . , θH P RdˆH

Covariance matrices Σ11,Σ12, . . . ,ΣHH P
(
MK(R)

)Hˆ(H´1)/2

for days t = 1, 2, . . . do
Observe a context xt, the targets c1t , . . . , cHt and weights κ1t , . . . , κHt P [0, 1]H

Choose, for each time ranges h, an allocation of price levels pht such that

pt = (p1t , . . . , p
H
t ) P P

Observe a resulting consumption profile Yt,p = (Y 1
t,p, . . . , Y

H
t,p)

T, with

Y h
t,p = φ(xt,p)

Tθh + (ph)Tεht (Model 3)

end for
Suffer a loss

řH
h=1 κ

h
t

(
Y h
t,pt

´ cht

)2
For any day t, the contextual vector xt, the picked tariffs pt and the targets c1t , . . . , cHt

and the weights κht are Ft´1–measurable, where Ft´1 = σ(ε11, . . . , ε
H
1 , ε

2
1, . . . , ε

H
t´1). There-

fore, under Model 3, for an half-hour h P t1, . . . , Hu, calculations similar to those of
Section 3.1 give

E
[
(Y h

t ´ cht )
2
ˇ

ˇFt´1

]
=
(
φ(xt,pt)

Tθh ´ cht

)2
+ (ph)TΣhhph ,

where we recall that Σhh = Var(εh1). So, for any day t, by summing over the H time
ranges, we obtain that the expected conditional loss is

H
ÿ

h=1

κht E
[
(Y h

t ´ cht )
2
ˇ

ˇFt´1

]
=

H
ÿ

h=1

κht

((
φ(xt,pt)

Tθh ´ cht

)2
+ (ph)TΣhhph

)
.

To ensure the minimization of the cumulative loss in expectation, we will compare, at each
round t, our choices pt P P to the choices of the best possible strategy – namely the one
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which minimizes the cumulative conditional expected loss. The new regret is then

R̄T
∆
=

T
ÿ

t=1

H
ÿ

h=1

κht

((
φ(xt,pt)

Tθh ´ cht

)2
+ (pht )

TΣhhpht

)

´

T
ÿ

t=1

min
pPP

H
ÿ

h=1

κht

((
φ(xt,p)

Tθh ´ cht

)2
+ (ph)TΣhhph

)
. (4.42)

In Section 6.4, we provide an optimistic algorithm and a regret bound on R̄T of order
O
(
T 2/3

)
which are similar to those of Section 3. Here we give a sketch on how we deduce

this analyze from the previous one.

Proof sketch. We emphasize that, for two different half-hours of the same day h ‰ h1, and
two tariffs k, k1, the correlation terms E

[
εhkε

h1

k1

]
= Σhh1

kk1 do not appear in the expression
of the expected loss. Thus, the algorithm of Section 6.4.1 below only need to estimate
parameter vectors θh and the matrices Σhh – there is no need to estimate matrices Σhh1 .
We do so exactly – but it is H times slower – as in Sections 3.3.1 and 3.3.2, respectively
and obtain some deviation inequalities on the estimations of parameter vectors θh and
the matrices for Σhh. The deviation bounds associated with the estimations of θh do not
depend on h because the H expected consumptions φ(xt,pt)

Tθh are linked by the same
vector φ(xt,pt). Thus, only a slight adaptation of the deviation bound αt,p (in the level
risk δ and up to the multiplicative constant H) is required in the optimistic algorithm
– details are provided in Section 6.4.1. Then, under boundedness assumption similar to
Assumption 1, by union bound over the half-hours h, we will obtain a regret bound in
high probability of the same order as Model 1 – namely, of order O

(
T 2/3 ln2 T

)
.

6.3 Final approach: daily profile model with historical price levels

This third approach combines the two previous ones. Indeed we consider a daily con-
sumption model – namely, Model 3, but we include in the exogenous variables xt price
levels chosen during the last t0 days (pt´1, . . .pt´t0). This is exactly what we did in Sec-
tion 6.1 where we included past tariffs in the contextual variables of Models 1 and 2. Thus,
we now replace the vector xt by (xt, p

1
t´1, . . . , p

H
t´1, . . . , p

1
t´t0 , . . . , p

H
t´t0), so the dimension

of the contextual vectors is increased by KHt0. We recall that there is no assumption
on these exogenous variables, they can be deterministic as well as stochastic and that,
therefore, all the previous results apply with an adaptation of the mapping function. For
example, for a given half-hour h, the addition of linear effects for past price levels leads
to this new modeling:

rφ(xt, p
1
t´1, . . . , p

H
t´1, . . . , p

1
t´t0 , . . . , p

H
t´t0 ,pt)

T
rθ h = ϕ(xt,pt)

Tθh +
t0
ÿ

s=1

H
ÿ

h1=1

(ph
1

t´s)
Tξhh

1

´s ,

where the K-vector ξhh1

´s models the effect of the price levels applied at half-hour h1 on
day t´ s on the consumption at half-hour h on day t. The only change is the increase of
the dimension of the vector rθ h: there are KHt0 new coefficients ξhh1

´s to estimate. We can
then generalize the definition of regret and get some bound to control it.
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6.4 Regret bound for daily profile demand side management (i.e., for
the model discussed in Section 6.2)

The present section extends the results presented in Section 3 and follows the same struc-
ture. Indeed, we first generalize the optimistic algorithm (4.3) and then provide the
analysis of the regret defined in Equation (4.42), which differs only in a few points from
that of Section 3.3.3. We recall that we aim to minimize the regret, that can be rewritten:

R̄T
∆
=

T
ÿ

t=1

`t,pt
´

T
ÿ

t=1

min
pPP

`t,p ,

where the instantaneous expected loss associated with the choices p P P is

`t,p
∆
=

H
ÿ

h=1

κht

((
φ(xt,p)

Tθht´1 ´ cht
)2

+ (ph)TΣhhph
)
,

where τ denotes the number of iterations used at the beginning of the algorithm to estimate
the covariance matrices (pure deterministic exploration). We still assume that the power
consumption at any day t and any half-hour h lies in [0, C] and we update Assumption 1
of Model 1 to Model 3 by requiring that, no matter how the environment provides the xt,

}φ}8 ď 1, }θh}8 ď C, @p P P , φ(xt,p)Tθh P [0, C] and (ph)TΣhphh ď Γ. (4.43)

Since all the κht are bounded between 0 and 1, a consequence of all these boundedness
assumptions is that L = H(C2 + Γ) upper-bounds the (conditionally) expected losses.

6.4.1 Optimistic Algorithm

In Section 3, at round t, we estimate θ and Σ to provide, for any p P P, an estimation p`t,p
for the expected loss `t,p with an associated deviation bound αt,p. Then, the optimistic
algorithm (4.3) picks the price levels optimistically – namely, the ones which minimize
tp`t,p ´ αt,pu. Here, in exactly the same way, the key is to estimate the parameter vectors
θh and the correlation matrices Σhh – this will be done exactly as in Section 3.2. So, for
any p P P , we will be able to estimate the expected loss `t,p and an associated deviation
bound αt,p.

More precisely, for some parameter λ ą 0, at a day t, the H estimators pθht of the
d-vectors θh are computed in parallel, with for h P t1, . . . Hu,

pθht
∆
= (V t)

´1
t
ÿ

s=1

Y h
s,ps

φ(xs,ps) , where V t
∆
= λId +

t
ÿ

s=1

φ(xs,ps)φ(xs,ps)
T . (4.44)

Moreover, for some fixed τ ą 0, we consider the H estimators pΣhh
τ of the K ˆK-matrices

Σhh, with for h P t1, . . . Hu,

pΣhh
τ P argmin

pΣhhPMK(R)

τ
ÿ

s=1

((
pZh
s

)2
´phs

T
pΣhhphs

)2

, where pZh
s

∆
= Y h

s,ps
´

[
φ(xs,ps)

T
pθhτ

]
C
. (4.45)

Then, for t ě τ + 1, given the mapping function φ, we compute the estimator p`t,p of the
instantaneous expected loss `t,p associated with the choices p P P :

p`t,p
∆
=

H
ÿ

h=1

κht

(([
φ(xt,p)

T
pθht´1

]
C

´ cht

)2

+ (ph)T
pΣhh
τ ph

)
.
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We detail in the next section how the deviation bound below ensures some theoretical
guarantees on the regret but here is an intuition of how we build it: we simply sum over
h some deviation bounds of( [

φ(xt,p)
T
pθht´1

]
C

´ cht

)2
+ (ph)T

pΣhh
τ ph,

which are the estimators of the expected losses associated with the half-hours h. These H
deviation bounds are adaptations of the one defined in Proposition 1 – the main change is
the risk level δ that needs to be updated to ensure, by an application of the union bound,
that each expected loss (one per half-hour) is correctly estimated. Therefore, we consider
the following deviation bound:

αt,p
∆
=

( H
ÿ

h=1

κht

)[
υ + min

!

L, 2CBt(δ/t2H)
›

›V
´1/2
t´1 φ(xt,p)

›

›

)

]
,

where υ andBt are adaptations of υ and Bt defined in the next section. We emphasize that
the term in the brackets does not depend on h: all the deviation bounds are equal because
of the same underlying mapping function φ that models the consumptions. Finally, the
optimistic algorithm for daily profile management picks, for t ě τ + 1,

pt P argmin
p PP

 

p`t,p ´ αt,p

(

. (4.46)

6.4.2 Analysis of the regret

Theorem 6. Fix a risk level δ P (0, 1) and a time horizon T . Assume that the boundedness
assumptions (4.43) hold. The optimistic algorithm (4.46) with an initial exploration of
length τ = O(T 2/3) rounds satisfies

R̄T ď O
(
HT 2/3 ln2

(T
δ

)c
ln 1

δ

)
,

with probability at least 1 ´ δ.

Remark 16. If all the matrices Σhh are known, the regret bound is in O
(a

T lnT ln(T/δ)
)
.

We emphasize that the regret bound depends linearly on the number of time ranges H.
The analysis is really similar to the one of the regret associated with Model 1 and the
proof below follows the same sketch as the proof of Proposition 1.

Proof of Theroem 6. First, by using Lemmas 4 and 5 and for an application of the union
bound, we prove that with probability at least 1´ δ, the deviation inequalities on the 2H
estimators pθht and pΣhh

τ below are true for all t ą τ , where τ the exploration budget to esti-
mate covariance matrices. Then, all the instantaneous expected regrets (`t,pt

´minpPP `t,p)
are bounded by 2αt,p. Finally, it only remains to sum these deviation bounds over t and
to conclude the proof by applying Lemma 7.
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For a given t ą τ and for any h P t1, . . . , Hu, Lemmas 4 and 5 (see Sections 3.3.1
and 3.3.2, respectively) ensure that

P
(

}(V t´1)
1/2(pθht´1 ´ θh)} ěBt(δ/t2H)

)
ď

δ

t2H

where Bt(δ/t2H) =
a

λdC + ρ

c

2 ln t
2H

δ
+ d ln

(
1 + t/λ

)
and

P
(

sup
pPP

ˇ

ˇ

ˇ
(ph)T

(
pΣhh
τ ´ Σhh

)
ph
ˇ

ˇ

ˇ
ě υ

)
ď

δ

2H
where υ = υτ (δ/2H) .

Therefore, by an application of the union bound, with probability at least 1 ´ δ, for all
h P t1, . . . , Hu and for all t ą τ ě 2, we have

›

›V
1/2
t´1(

pθht´1 ´ θh)
›

› ďBt(δ/t2H) and sup
pPP

ˇ

ˇ

ˇ
(ph)T

(
pΣhh
τ ´ Σhh

)
ph
ˇ

ˇ

ˇ
ď υ . (4.47)

In the same way as in Step 1 of the proof of Proposition 1, as soon as these 2H inequalities
are true, we get

max
hPt1,...,Hu

(
ˇ

ˇ

ˇ

(
φ(xt,p)

Tθh ´ cht

)2
´

( [
φ(xt,p)

T
pθht´1

]
C

´ cht

)2ˇ
ˇ

ˇ
+
ˇ

ˇ

ˇ
(ph)TΣhhph ´ (ph)T

pΣh
τp

h
ˇ

ˇ

ˇ

)
ď 2CBt

(
δ/t2H

)›
›V

´1/2
t´1 φ(xt,p)

›

›+ υ .

By summing over all the half-hours, for any p P P , we obtain that
ˇ

ˇ

ˇ
`t,p ´ p`t,p

ˇ

ˇ

ˇ
ď

( H
ÿ

h=1

κh
)[

2CBt(δ/t2H)
›

›V
´1/2
t´1 φ(xt,p)

›

›+ υ
]
.

Exactly as in Step 2 of the proof of Proposition 1, by using the inequality above for p = pt

and p = p‹
t (where p‹

t
∆
= minpPP `t,p), combined with the definition of Algorithm (4.46),

we obtain that, with probability at least 1 ´ δ,
T
ÿ

t=τ+1

`t,pt
´

T
ÿ

t=τ+1

min
pPP

`t,p ď 2
T
ÿ

t=τ+1

αt,pt
.

Lemma 7 ensures that no matter how the environment and provider pick the xt and pt,
T
ÿ

t=τ+1

min
!

L, 2CBt(δ/t2H)
›

›V
´1/2
t´1 φ(xt,p)

›

›

)

ď

(c(
2CBT (δ/T 2H)

)2
+
L2

2

d

dT ln λ+ T

λ

)
.

So, by using the definition of αt,pt
and summing over h, as all the κht lie in [0, 1], we get

T
ÿ

t=τ+1

αt,pt
ď H

(
Tυ +

c(
2CBT (δ/T 2H)

)2
+
L2

2

d

dT ln λ+ T

λ

)
.

Finally, we recall that υ = υτ (δ/2H) = O
(
1
τ ln2(Hτ/δ)

a

H/δ
)

– see Lemma 5 – and we
bound the instantaneous expected regret

(
`t,pt

´ minpPP `t,p

)
by L for the τ first rounds

and we get

R̄T ď τL+
T
ÿ

t=τ+1

αt,pt
= O

(
τL+H

(
a

T lnT ln(TH/δ) +
T

?
τ

ln2(τH/δ)
a

ln(H/δ)
))

.

As L = H(C2 + Γ), we obtain the linear dependence on H and picking τ of order T 2/3

concludes the proof.
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5
Target tracking for contex-
tual bandits: a generaliza-
tion to general loss functions

This chapter generalizes the contextual bandit approach to demand man-
agement presented in Chapter 4. The target mean consumption is still fixed
at each round and the average consumption still modeled as a function of
the distribution of prices sent and of some contextual variables; but the
performance of our strategies is now measured with any loss function -
instead of a quadratic loss function. More precisely, we first show how to
extend the previous algorithm and regret bound in the case of a Gaussian
model and a polynomial loss function and we then briefly present other
possible extensions. Finally, we illustrate the interest of this work with a
practical example of a non-quadratic loss function.

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
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1 Introduction

Chapter 4 proposed a contextual-bandit approach for demand side management by offer-
ing price incentives. More precisely, a target mean consumption was set at each round and
the mean consumption was modeled as a complex function of the distribution of prices
sent and of some contextual variables such as the temperature, weather, and so on. The
performance of our strategies was measured in quadratic losses through a regret criterion.
We offer T 2/3 upper bounds on this regret (up to poly-logarithmic terms). This chapter
extends the previous work (see Sections 2 and 3 of Chapter 4) to loss functions more gen-
eral than the quadratic loss. This is good news for the potential applications of bandits
for demand side managements in real life, as losses are not generally quadratic. For ex-
ample, over-consumption can have a much more devastating effect on the power grid than
under-consumption. Therefore, taking into account non-symmetrical losses is a major is-
sue. Section 5 discusses how this result could be applied in practice and how to define the
losses according to the objectives of the electricity supplier. In this chapter, we consider
any loss function regular enough and known in advance (it may not be always the case in
practice). As any function may be approximated by an interpolation of Lagrange polyno-
mials, we first focus on polynomial loss functions, which have some regularity properties
useful for establishing regret bounds. Therefore we will obtain theoretical guarantees on
the regret of a more practical modeling of demand response policy.

We retain the two models of the power consumption introduced in Chapter 4, so condi-
tionally to the tariff picked by the electricity provider, the expected power consumption is
still modeled by a semi-parametric function (to be estimated) of some contextual variables
and of the tariffs chosen. The two models differ in their noise terms: for the first, noise
depends on chosen tariffs, whereas for the second, it does not. We assume that noises are
Gaussian – instead of sub-Gaussian – and that we know their variance or covariance matrix
(depending on the power consumption model considered). In addition, we consider a loss
function which is a polynomial function of the difference between the power consumption
and the target consumption. With no loss of generality, this loss function is firstly fix
over time in Sections 2 and 2.3 and we extend this framework to loss functions which may
change at each round in Section 4. Then, we show how to control the cumulative loss
though a

?
T lnT regret bound.

In Section 2, we present the two power consumption modelings and the new target
tracking protocol; we also show how it is possible to compute the expected losses (under
the normality assumptions on the noises). Section 3 states the regret bound. Its analysis
is similar to that of Theorem 4 in Chapter 4: the key is to prove that a good estimation
of power consumption provides a good estimation of expected losses. Section 4 discusses
other possible extensions. Finally, Section 5 presents a practical application in which a
non-quadratic loss may be useful.

2 Modeling of the power consumption and expectation of
the polynomial losses

First of all, we update Models 1 and 2 presented in Chapter 4: from now on, we consider
Gaussian noises for which we know the variance or the covariance matrix (depending on
whether or not the noise depends on the chosen price levels). These models are defined
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below and we refer to them as Models 1G and 2G. Next, we introduce the loss function,
which is a polynomial function of the difference between the observed and the target power
consumption. We also define the new protocol (see Protocol 6). In Section 2.3, we present
the calculations, for both models, of the expected losses.

2.1 Gaussian modelings of the power consumption

We have retained the notations of Chapter 4. Therefore, the power consumption as-
sociated with a contextual vector xt P X and some price levels pt P P is denoted by
Yt,pt ; furthermore the electricity provider, which chooses vectors pt, aims to approach
a target consumption ct. For both models, this consumption will still be of the form
Yt,pt = ϕ(xt, pt)

Tθ+ noise, where the mapping function ϕ : X Ñ Rd is known and the pa-
rameter θ P Rd has to be estimated. As in Chapter 4, the first model considers a noise term
that depends on the chosen vector pt, while the second model considers a global noise term.

Model 1G: Tariff-dependent Gaussian noise. When the electricity provider picks the
convex vector p, the mean consumption obtained at time instance t equals

Yt,p = ϕ(xt, p)
Tθ + pTεt .

The noise vectors ε1, ε2, . . . are Gaussian i.i.d. random variables with E[ε1] = (0, . . . , 0)T.
We denote by Σ = Var(ε1) their covariance matrix.

We point out that the only difference with Model 1 in Chapter 4 is the Gaussian assump-
tion: in the previous modeling, noises were assumed to be only sub-Gaussian. Similarly,
we introduce the following global noise model, which is the Gaussian version of Model 2
of Chapter 4.

Model 2G: Global Gaussian noise. When the electricity provider picks the convex vector
p, the mean consumption obtained at time instance t equals

Yt,p = ϕ(xt, p)
Tθ + et .

The scalar noises e1, e2, . . . are Gaussian i.i.d. random variables, with E[e1] = 0. We
denote by σ2 = Var(e1) the variance of the random noises et.

In what follows, we assume that Σ or σ2 are known. Therefore, unlike the algorithm
in Chapter 4, here, it will not be necessary to estimate Σ and initial exploration will be
required to do so.

Assumption 3 – Knowledge of Σ or σ2. The covariance matrix Σ (for Model 1G) and
the variance σ2 (for Model 2G) are known.

In the next section, we introduce the loss function, which is no longer the quadratic
difference between energy consumption and its target. Protocol 6,which is almost identical
to Protocol 4 in Chapter 4, recalls the steps involved in the on-line tracking of a power
consumption target ct.
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2.2 Target tracking with polynomial losses

In the following, we introduce the concept of polynomial loss function. We emphasize
that focusing on the family of polynomial loss functions comes with some generality: we
could approximate any nonpolynomial loss function with a polynomial interpolation in
the Lagrange form.

Assumption 4 – Polynomial loss function (of degree q). For a power consumption y
and a target consumption c, the loss function ` : R2 Ñ R satisfies `(y, c) = P (y ´ c), with
P a polynomial function of degree q, which can be written in the form

P : x ÞÑ

q
ÿ

n=0

anx
n .

We could also have defined the loss function `(y, c) = P (c ´ y) instead of P (y ´ c).
Both choices are possible and symmetrical. Moreover, we make no assumption about the
non-negativity of the coefficients an, for n = 0, . . . , q, as even if it seems counter-intuitive,
the losses can be non-positive. Indeed, to approach some real loss function, the Lagrange
polynomial interpolation could provide a polynomial function which would be negative in
some places.

Since the loss function is now defined, the online protocol that models the online tracking
of a power consumption target is stated in Protocol 6. We also recall that the choices xt,
ct and pt need to be Ft´1–measurable, where Ft´1

∆
= σ(ε1, . . . , εt´1) for Model 1G and

Ft´1
∆
= σ(e1, . . . , et´1) for Model 2G.

2.3 Conditional expectation of the losses

In this section we show that, for any round t, the conditional expected loss is a polynomial
function of the distance between the expected power consumption ϕ(xt, pt)Tθ and its target
ct. Indeed, it is possible to obtain an equality of the form:

`t,pt = E
[
`(Yt,pt , ct)

ˇ

ˇFt´1

]
=

q
ÿ

m=0

κm(pt)
(
ϕ(xt, pt)

Tθ ´ ct
)m

,

where the coefficients κm(pt) can be computed and depend on the variance of the noise,
namely on the covariance matrix Σ or on σ2. We highlight that, exactly as in Chapter 4, we
aim to minimize the cumulative conditional expected loss and that the regret R̄T further
defined will be written with the conditional expected `t,p, for any p P P. This equation is
actually crucial to obtain regret bounds. Indeed by replacing θ by its estimator, we may
consider an estimator of `t,pt , then the confidence interval on the estimation of θ previously
obtained (see Section 3 of Chapter 4) will lead to confidence intervals on the conditional
expected loss estimations and therefore to the inequalities required to bound the regret.

To obtain this equality, we first introduce the distance between the expected power
consumption and its target

dt,pt
∆
= ϕ(xt, pt)

Tθ ´ ct .
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Protocol 6 Target Tracking for Contextual Bandits with Polynomial Loss Function
Input

Parametric context set X
Set of legible convex weights P
Bound on mean consumptions C
Transfer function ϕ : X ˆ P Ñ Rd

Polynomial P : x ÞÑ
řq

n=0 anx
n and loss function ` : (y, c) ÞÑ P (y ´ c)

Unknown parameters
Transfer parameter θ P Rd

Covariance matrix Σ of size K ˆK (Model 1G)
Variance σ2 (Model 2G)

for t = 1, 2, . . . do
Observe a context xt P X and a target ct P (0, C)
Choose an allocation of price levels pt P P
Observe a resulting mean consumption

Yt,pt = ϕ(xt, pt)
Tθ + pT

t εt (Model 1G)
Yt,pt = ϕ(xt, pt)

Tθ + et (Model 2G)
Suffer a loss `(Yt,pt , ct) = P (Yt,pt ´ ct) =

řq
n=0 an(Yt,pt ´ ct)

n

end for
Aim

Minimize the cumulative loss LT =
T
ÿ

t=1

q
ÿ

n=0

an(Yt,pt ´ ct)
n

Moreover, we denote by et,pt the noise term associated with the price levels pt P P, which
is equal to pT

t εt (Model 1G) or to et (Model 2G), so we get that Yt,pt ´ ct = dt,pt + et,pt .
As in the case of quadratic loss, we will develop `(Yt,pt , ct) = P (Yt,pt ´ ct) = P (dt,pt + et)
to obtain the polynomial d ÞÑ

řq
m=0 κm(pt)d

m.

Because of the expression of the polynomial P (see Assumption 4), for any (d, e) P R2,
by expanding powers of d+ e with the binomial formula, P (d+ e) is equal to

P (d+ e) =

q
ÿ

n=0

an(d+ e)n =

q
ÿ

n=0

an

n
ÿ

k=0

(
n

k

)
dken´k =

q
ÿ

k=0

(
q
ÿ

n=k

an

(
n

k

)
en´k

)
dk .

For any round t, with the expression above, as pt, xt and ct are Ft´1-measurable, the
expected loss associated with price vector pt can new be written, by linearity of conditional
expectation, as

`t,pt = E
[
`(Yt,pt , ct)

ˇ

ˇFt´1

]
= E

[
P (dt,pt + et,pt)

ˇ

ˇFt´1

]
=

q
ÿ

k=0

( q
ÿ

n=k

an

(
n

k

)
E
[
en´k
t,pt

ˇ

ˇFt´1

])
dkt,pt .

By a mere change in the summation index, we obtain that

q
ÿ

n=k

an

(
n

k

)
E
[
en´k
t,pt

ˇ

ˇFt´1

]
=

q´k
ÿ

i=0

ak+i

(
k + i

k

)
E
[
eit,pt

ˇ

ˇFt´1

]
,
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so the expected loss is

`t,pt =

q
ÿ

k=0

( q´k
ÿ

i=0

ak+i

(
k + i

k

)
E
[
eit,pt

ˇ

ˇFt´1

])
d k
t,pt

=

q
ÿ

n=0

( q´n
ÿ

k=0

an+k

(
n+ k

n

)
E
[
ekt,pt

ˇ

ˇFt´1

])
dn
t,pt .

Therefore, we can rewrite the expected loss associated with price levels p in the following
way:

`t,pt =E
[
P (dt,pt + et,pt)

ˇ

ˇFt´1

]
=

q
ÿ

m=0

κm(pt)d
m
t,pt =

q
ÿ

m=0

κm(pt)
(
ϕ(xt, pt)

Tθ ´ ct

)m
where κm(pt)

∆
=

q´m
ÿ

k=0

am+k

(
m+ k

m

)
E
[
ekt,pt

ˇ

ˇFt´1

]
.

To compute the coefficients κm(pt), it is sufficient to explicitly calculate the expectations
E[ekt,pt |Ft´1], for k = 0, . . . , q, depending on the chosen model. We start with Model 2G,
for which these (conditional) expectations take an elementary form.

‹ Expression of E[ekt,pt |Ft´1] for Model 2G. The noise terms et,pt = et are scalar
centered Gaussian i.i.d random variables of variance σ2 independent on pt; therefore for
any integer k ě 0, by using the expression of the moments of a centered normal distribution
of variance σ2, we have

E
[
e2k+1
t,pt

ˇ

ˇFt´1

]
= 0 and E

[
e2kt,pt

ˇ

ˇFt´1

]
=

(2k)!

2kk!
σ2k .

In Model 1G, the noise term depends on both vectors pt and εt, so the calculations of
E
[
ekt,pt

ˇ

ˇFt´1

]
are less easy and the calculations are provided in Appendix. The key is the

use of Isserlis’ theorem (see Isserlis [1918] for further details), a formula that allows the
computation of higher-order moments of the multivariate normal distribution in terms of
its covariance matrix.

Therefore, for both models, we can compute E[ekt,pt |Ft´1] and the calculations are true
for any Ft´1-measurable vector p P P and all the coefficients κm(p) can be computed. We
emphasize that in the case of Model 2G, κm(p) does not depend on p – we will write κm
– and we have the closed form

κm = κm(p) =

t(q´m)/2u
ÿ

k=0

am+2k

(
m+ 2k

m

)
(2k)!

2kk!
σ2k.

For Model 1G, κm(p) does depend on p. We do not provide any closed form here, but we
highlight that κm(p) is a sum of some products of the coefficients σii1 of matrix Σ and of the
price levels pi and pi1 , for (i, i1) P t1, . . . ,Ku, and it can be computed in practice. Moreover,
since all price levels p P P lie in the K-dimensional simplex, for any j P t1, . . . ,Ku, the
component pj is bounded by 1 and using the expression of Equation (5.14), we get that
for p P P, the coefficient κm(p) is bounded, by a constant which depends on maxi,i1 σi,i1 .
Therefore, we introduce, for Model 1G,

κ̄m
∆
= max

pPP
|κm(p)| .

148



T
ar
ge
t
T
ra
ck
in
g
w
it
h
B
an
d
it
s

T
ar
ge
t
T
ra
ck
in
g
w
it
h
B
an
d
it
s

T
ar
ge
t
T
ra
ck
in
g
w
it
h
B
an
d
it
s

T
ar
ge
t
T
ra
ck
in
g
w
it
h
B
an
d
it
s

For Model 2G, we set κ̄m = |κm|. As we made no assumption on the non-negativity of
the coefficients an, for n = 0, . . . , q, the coefficients κm(p) may be negative.

Remark 17. Considering the quadratic loss leads to q = 2 with a2 = 1 and a0 = a1 = 0.
In that case, we get that

κ0(p) = E
[
e2t,pt

ˇ

ˇFt´1

]
=

"

pT
t Σpt for Model 1G
σ2 for Model 2G

κ1(pt) = 2E
[
et,pt

ˇ

ˇFt´1

]
= 0 and κ2(pt) = 1 .

The corresponding conditionally expected losses are given by

`t,pt =

# (
ϕ(xt, pt)

Tθ ´ ct
)2

+ pT
t Σpt for Model 1G(

ϕ(xt, p)
Tθ ´ ct

)2
+ σ2 for Model 2G

as defined in Chapter 4 for Models 1 and 2, respectively.

‹ Summary of the section. The above shows that for a polynomial loss, the conditional
expectation of the loss associated with price levels tariff pt P P at a round t is of the form

`t,p
∆
=

q
ÿ

m=0

κm(p)
(
ϕ(xt, p)

Tθ ´ ct

)m
, (5.1)

where the coefficients κm(p) can be computed explicitly, when the power consumption
follows Models 1G or 2G. This formula is also valid for the chosen vector pt which are
Ft´1-measurable. For a time budget T ě 1, we can now introduce the regret

RT
∆
=

T
ÿ

t=1

`t,pt ´

T
ÿ

t=1

min
pPP

`t,p . (5.2)

3 A regret bound with Gaussian noises

The closed form of the conditionally expected loss `t,p associated with the choice p P P
`t,p suggests to estimate it by simply replacing θ by its estimator in Equation (5.1). We
will show how a good estimation of θ induces, for any p P P, a good estimation of the
expected loss `t,p, which we denote by p`t,p. Given a confidence level on p`t,p, we will then
define an optimistic bandit algorithm very similar to the one defined in Chapter 4. We
will also prove some regret bounds using the same arguments as the ones of the proof of
Theorem 4 of Chapter 4.

3.1 Good estimation of the losses

For λ ą 0, at any round t, we consider the estimation of the parameter θ defined in
Chapter 4:

pθt = V ´1
t

t
ÿ

s=1

Ys,psϕ(xs, ps) where Vt = λId +
t
ÿ

s=1

ϕ(xs, ps)ϕ(xs, ps)
T .
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Lemma 4 (of the same chapter) ensures that, for a risk level δ P (0, 1), no matter how the
provider picks the pt, we have, for all t ě 1, with probability at least 1 ´ δ,

›

›V
1/2
t

(
pθt ´ θ

)›
› ď Bt(δ) =

?
λdC + ρ

c

2 ln 1

δ
+ d ln

(
1 +

t

λ

)
.

Here, we also considered the same boundedness assumptions (see Chapter 4) which are
all linked to the knowledge that the average consumptions lie in [0, C] and indicate some
normalization of the modeling.

Assumption 5 – Boundedness assumptions. For any round t ě 1 and any p P P, we
assume that

ϕ(xt, p)
Tθ P [0, C] , with }ϕ}8 ď 1 and }θ}8 ď C .

A consequence of these boundedness assumptions is that, for any contextual vector xt,
target ct and price levels p P P, the expected difference between the consumption and
the target |ϕ(xt, p)

Tθ ´ ct | is bounded by C. Therefore, for any m = 0, . . . , n, with
κ̄m = maxpPP |κm(p)| the expected losses `t,p can be bounded by

|`t,p| ď

q
ÿ

m=0

|κm(p)
(
ϕ(xt, p)

Tθ ´ ct
)m

| ď

q
ÿ

m=0

κ̄m
ˇ

ˇϕ(xt, p)
Tθ ´ ct

ˇ

ˇ

m

ď L where L
∆
=

q
ÿ

m=0

κ̄mC
m . (5.3)

For any p P P, with [x]C is the clipped part of a real number x (clipping between 0 and C),
we consider the estimation of the loss:

p`t,p
∆
=

q
ÿ

m=0

κm(p)
([
ϕ(xt, p)

T
pθt´1

]
C

´ ct

)m
. (5.4)

The following lemma shows that the quality of this estimation depends on the equality of
the estimation of θ.

Lemma 9. For any round t and any allocation of price levels p P P, the difference between
the expected loss and its estimation satisfies

ˇ

ˇ `t,p ´ p`t,p
ˇ

ˇ ď M
ˇ

ˇϕ(xt, p)
Tθ ´ ϕ(xt, p)

T
pθt´1

ˇ

ˇ

where M
∆
= κ̄1 +

q
ÿ

m=2

κ̄mmC
m´1 =

q
ÿ

m=1

κ̄mmC
m´1 .

Proof of Lemma 9. For any p P P, the distance between the expected power consumption
and its target is dt,p = ϕ(xt, p)

Tθ´ct and pdt,p = [ϕ(xt, p)
T
pθt´1]C ´ct denotes its estimation.

Using the polynomial expressions of `t,p and p`t,p, we get that

ˇ

ˇ `t,p ´ p`t,p
ˇ

ˇ =
ˇ

ˇ

ˇ

q
ÿ

m=0

κm(p)dm
t,p ´

q
ÿ

m=0

κm(p)pdm
t,p

ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

q
ÿ

m=1

κm(p)
(
dm
t,p ´ pdm

t,p

)ˇ
ˇ

ˇ

ď

q
ÿ

m=1

|κm(p) | ˆ |dm
t,p ´ pdm

t,p| ď

q
ÿ

m=1

κ̄m |dm
t,p ´ pdm

t,p| .
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For any m ě 2, as am ´ bm = (a´ b)
řm´1

k=0 a
m´1´kbk, we can factorize dm

t,p ´ pdm
t,p this way:

ˇ

ˇ dm
t,p ´ pdm

t,p

ˇ

ˇ =
ˇ

ˇ dt,p ´ pdt,p
ˇ

ˇ ˆ

ˇ

ˇ

ˇ

m´1
ÿ

k=0

dm´1´k
t,p

pd k
t,p

ˇ

ˇ

ˇ

ď |dt,p ´ pdt,p|

m´1
ÿ

k=0

Cm´1 = mCm´1
ˇ

ˇϕ(xt, p)
Tθ ´

[
ϕ(xt, p)

T
pθt´1]C

ˇ

ˇ

The second inequality comes from the boundedness assumptions 5. Indeed, as ct, ϕ(xt, p)Tθ
and [ϕ(xt, p)

T
pθt´1]C lie in [0, C], the differences dt,p and pdt,p are bounded by C; and for

any k = 0, . . . ,m ´ 1, we obtain that
ˇ

ˇdm´1´k
t,p

pd k
t,p

ˇ

ˇ ď Cm´1´kCk = Cm´1. Then, it only
remains to sum over m to conclude the proof.

Remark 18. Considering the quadratic loss, namely q = 2, κ̄1 = 0 and κ̄2 = 1, we get
M = 2C. This is exactly the inequality obtained in Chapter 4 (see Step 1 of the proof of
Proposition 1).

3.2 Statement of the regret bound

As in Chapter 4, for t ě 2 the optimistic algorithm picks

pt P argmin
pPP

 

p`t,p ´ at,p
(

. (5.5)

and p1 arbitrarily, with at,p the new deviation bounds to be set in the analysis. The
following theorem states a regret bound of order O

(?
T lnT

)
(in Theorem 4 of Chapter 4,

when the covariance matrix Σ is known we obtained a regret bound of the same order).
Only the constants need to be updated, they will depend on bounds κ̄m and on some
powers of C, up to Cq.

Theorem 7. Fix a risk level δ P (0, 1) and a time horizon T ě 1. Assume that Assump-
tion 5 holds. The optimistic algorithm (5.5) satisfies

RT = O

(
?
T lnT

c

ln 1

δ

)
with probability at least 1 ´ δ/2.

The regret analysis follows the same steps as the one provided in Section 3 of Chapter 4.
First, we show that deviation bounds at,p of the form

at,p = min
!

,4Bt´1(δt
´2)

›

›V
´1/2
t´1 ϕ(xt, p)

›

›

)

(by replacing the constants to be set below by the symbols and 4), ensures that, with
probability 1 ´ δ/2, for all t = 2, . . . , T , the instantaneous regrets rt = `t,pt ´ minpPP `t,p
are bounded by 2at,p (see Proposition 2 below). It exploits how well each pθt´1 estimates θ.
Then, Lemma 7 of Chapter 4 is used to provide a bound on

řT
t=2 2at,p of order O(

?
T lnT ).

Proposition 2. Fix a risk level δ P (0, 1). Under Assumption 5, by choosing

at,p = min
!

2L, MBt´1(δt
´2)

›

›V
´1/2
t´1 ϕ(xt, p)

›

›

)

,

151



T
ar
ge
t
T
ra
ck
in
g
w
it
h
B
an
d
it
s

T
ar
ge
t
T
ra
ck
in
g
w
it
h
B
an
d
it
s

T
ar
ge
t
T
ra
ck
in
g
w
it
h
B
an
d
it
s

T
ar
ge
t
T
ra
ck
in
g
w
it
h
B
an
d
it
s

the optimistic algorithm (5.5) ensures that with probability 1 ´ δ/2,

T
ÿ

t=1

`t,pt ´

T
ÿ

t=1

min
pPP

`t,p ď 2L+ 2
T
ÿ

t=2

at,pt .

We recall that L =
řq

m=0 κ̄mC
m and M =

řq
m=1 κ̄mmC

m´1.

Proof of Proposition 2. We show below that for all t ě 2, if the estimation pθt´1 of θ is
good enough to ensure

›

›V
1/2
t´1

(
pθt´1 ´ θ

)›
› ď Bt´1(δt

´2) , (5.6)

then the instantaneous regret is bounded:

rt = `t,pt ´ min
pPP

`t,p ď 2at,pt .

The conditionally expected losses `t,p are bounded by L (see Equation (5.3)). The clipping
in the definition of p`t,p in Equation (5.4) ensures that L also bounds these estimators.
Therefore, for any round t and any vector p P P,

ˇ

ˇ `t,p ´ p`t,p
ˇ

ˇ ď 2L. We emphasize that we
made no assumption on the non-negativity of the loss function and this is why the factor
2 arises (compared to the deviation bounds introduced for Theorem 4 of Chapter 4).
Moreover, by using Lemma 9 and Equation (5.6), we obtain

ˇ

ˇ `t,p ´ p`t,p
ˇ

ˇ ď M
ˇ

ˇϕ(xt, p)
Tθ ´ ϕ(xt, p)

T
pθt´1

ˇ

ˇ ď M
›

›V
1/2
t´1ϕ(xt, p)

›

›

›

›V
1/2
t

(
pθt´1 ´ θ

)›
›

ď MBt´1(δt
´2)

›

›V
1/2
t´1ϕ(xt, p)

›

› .

Therefore, if the event (5.6) holds,

@p P P,
ˇ

ˇ`t,p ´ p`t,p
ˇ

ˇď at,p . (5.7)

With p‹
t P argminpPP

 

`t,p
(

an optimal convex vector to be used at round t, by defini-
tion (5.5) of the optimistic algorithm, it played an allocation pt that satisfies

p`t,pt ´ at,pt ď p`t,p‹
t

´ at,p‹
t
, that is, p`t,pt ´ p`t,p‹

t
ď at,pt ´ at,p‹

t
.

Now, for those t for which event (5.6) holds, the property (5.7) also holds and yields,
respectively for p = pt and p = p‹

t :

`t,pt ´ p`t,pt ď at,pt and p`t,p‹
t

´ `t,p‹
t

ď at,p‹
t
.

Combining all these three inequalities together, we get

rt = `t,pt ´ `t,p‹
t

=
(
`t,pt ´ p`t,pt

)
+

(
p`t,pt ´ p`t,p‹

t

)
+

(
p`t,p‹

t
´ `t,p‹

t

)
ď at,pt + (at,pt ´ at,p‹

t
) + at,p‹

t
= 2at,pt .

With r1 ď 2L, by summing the instantaneous regrets for t ě 2, if the event 5.6 holds for
all t ě 2, we get the claimed bound.

We do as in Step 3 of the proof of Proposition 1 of Chapter 4 to deal with the time
steps t ě 2 when the event (5.6) does not hold. Using Lemma 4 of Chapter 4 recalled
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in Equation (3.1), each of these events happens with probability at least 1 ´ δt´2. By a
union bound, this happens for some t ě 1 with probability at most

δ
ÿ

tě2

t´2 ď δ

ż 8

2

1

t2
dt = δ/2 ,

These special cases thus account for the claimed 1 ´ δ/2 confidence level.

By replacing L by 2L and 2C by M in Lemma 7 of Chapter 4, we get that no matter
how the environment and provider pick the xt and pt,

T
ÿ

t=2

at,p =
T
ÿ

t=2

min
!

2L, MB }V
´1/2
t´1 ϕ(xt, pt)}

)

ď

b(
MB

)2
+ 2L2

c

dT ln λ+ T

λ
= O

(a
T lnT ln(T/δ)

)
,

where B ∆
= BT (δ/T

2) =
?
dλC+ρ

a

2 ln(T 2/δ) + d ln(1 + T/λ). This concludes the proof
of Theorem 7.

4 Some other possible extensions

This section briefly outlines other possible extensions. First, we explain that a regret bound
of order

?
T lnT may be obtained for complex loss function beyond polynomial functions

for Models 1G and 2G. We also consider the case of unknown variance or covariance matrix
and show that it is possible to obtain sub-linear regret bounds through a initial exploration
step that estimates these variance terms. The two lasts subsections presents very quickly
the cases of non-Gaussian noise and loss functions that vary over iterations. Finally, we
emphasize that we could also consider a daily profile Gaussian model to take into account
rebound and side effects in the power consumption profiles, exactly as the daily profile
Model 3 associated with Model 1 (see Section 6 of Chapter 4).

4.1 Non-polynomial loss functions

This section explains how to generalize the previous regret analysis to any loss function
` : (y, c) ÞÑ `(y, c) which satisfies Assumption 6 below. This assumption held for poly-
nomial loss functions `(y, c) = P (y ´ c) and it is actually sufficient that it is true for
the considered loss function (polynomial or not) to control the regret (under boundedness
assumptions, see Assumption 5). A basic approach could consider an approximation of
the loss function with polynomials (we will show how to do it in the last paragraph of
the section) but this would lead to worst constants in the regret bound than in the one
obtained below.

Assumption 6 – Properties of the loss function. For the loss function `, there exists
a function f : [´C,C] ˆ P Ñ [´L,L] such that, for any round t, no matter how the
environment picks vectors xt and pt and the target ct, the conditional expectation of the
loss `

(
Yt,pt , ct

)
can be rewritten

E
[
`
(
Yt,pt , ct

)
|Ft´1

]
= f(dt,pt , pt), with dt,pt = ϕ(xt, pt)

Tθ ´ ct .
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Moreover, for all p P P, the functions f( ¨ , p) are M -Lipschitz.

We point out that the function f may depend on the covariance matrix Σ for Model 1G
or on the variance σ2 for Model 2G.

Remark 19. For polynomial loss functions, for any d P [´C,C] and any p P P, we had

f(d, p) =

q
ÿ

k=0

κm(p)dm .

Under Assumption 6, exactly as for polynomial losses, we introduce the estimators of
the conditional expected losses

p`t,p = f(pdt,p, p) with pdt,p =
[
ϕ(xt, p)

T
pθt´1

]
C

´ ct .

The M -Lipschitz property of f( ¨ , p) ensures that a good estimation of θ induces a good
estimation of the expected losses. Indeed, under Assumption 6, for any round t and any
p P P, we have

|`t,p ´ p`t,p| = |f
(
dt,p, p

)
´ f

(
pdt,p, p

)
| ď M |dt,p ´ pdt,p| =M

ˇ

ˇϕ(xt, p)
Tθ ´

[
ϕ(xt, p)

T
pθt´1

]
C

ˇ

ˇ .

This inequality corresponds to Lemma 9 in the case of polynomial losses. By considering
the optimistic algorithm

pt P argmin
pPP

 

p`t,p ´ at,p
(

with at,p = min
!

2L, MBt´1(δt
´2)

›

›V
´1/2
t´1 ϕ(xt, p)

›

›

)

, (5.8)

we can then redo exactly the same analysis of regret as in the previous section. Propo-
sition 2 and Theorem 7 are still true and we obtain a regret bound of the order of
O
(?
T lnT

)
.

In the next paragraphs, we focus on Model 2G and give some examples of loss functions
that may or may not satisfy Assumption 6. Finally, in the last paragraph of this section
we explain how we can still control the regret when we cannot find any closed form of the
expected losses, namely when the function f is unknown.

‹ General loss function for Model 2G. In what follows, we consider Model 2G and
we assume that there exists a function g : R Ñ R, such that

@ (y, c) P R ˆ [0, C] , `(y, c) = g(y ´ c) .

Then, for any round t, as pt and ct are Ft´1-measurable, with dt,pt = Yt,pt ´ ct, the
conditionally expected loss satisfies

`t,pt = E
[
g(Yt,pt ´ ct)

ˇ

ˇFt´1

]
(Model 2G)

= E
[
g(X)

]
with X „ N (dt,pt , σ

2) .

Thus, as soon as the function x ÞÑ g(x) exp
(

´ (x ´ dt,pt )
2/2σ2

)
can be integrated over R, the

conditionally expected loss is

`t,pt =
1

σ
?
2π

ż

R
g(x) exp

(
´

(x´ dt,pt)
2

2σ2

)
dx .
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For Model 2G, the noise term does not depend of the allocation of price levels picked so
the functions f( ¨ , p) are all equal, for the ease of notation, we thus write f(dt,pt) instead
of f(dt,pt , pt) (this was also the case for polynomial losses, the coefficients κm(p) did not
depend on tariffs chosen). Therefore, if the loss is a function of the distance between
the power consumption and its target, namely if the function g exists, and if for any
d P [´C,C], the function x ÞÑ g(x) exp

(
´ (x ´ d)2/2σ2

)
can be integrated over R (so if g

does not grow too fast), the function f defined in Assumption 6 is

f : [´C,C] Ñ R

d ÞÑ 1
σ

?
2π

ż

R
g(x) exp

(
´

(x´ d)2

2σ2

)
dx . (5.9)

The counter-example below presents a loss function for which the function f is not defined.

‹ A loss function which does not satisfy Assumption 6 for Model 2G. If we
consider the exponential loss

` : (y, c) ÞÑ exp
( (y ´ c)2

2σ2

)
,

we get g(x) = exp(x2/2σ2). Then, for any round t, to compute the conditionally expected
loss `t,pt , the function x ÞÑ exp

(
(2x´ dt,pt)dt,pt

)
has to be integrated over R, which is not

possible. Therefore Assumption 6 does not hold.

We now detail the pinball loss case, a function which will be used in the practical appli-
cation of Section 5 to model the real costs suffered by the electricity providers when the
balance between consumption and production is not guaranteed.

‹ The case of the pinball loss for Model 2G. Each of the electricity providers is re-
sponsible of the balance between its electricity production and the power consumption of
its customers. To maintain the global balance, electricity network managers impose some
financial penalties which are proportional to the absolute difference between the announced
production ct and the power consumption Yt,pt of the electricity provider customers. The
multiplying coefficient is different depending on whether the electricity provider is in a
situation of over- or under-consumption, compared to its production (this practical ap-
plication is fully detailed in Section 5). We highlight that pinball losses are generally
used to obtain quantile forecasts (see Steinwart et al., 2011) and we can also see it from
this point of view: if the electricity provider does not want to exceed a target too much
(no more than 95% of the time, for example), we may consider the pinloss associated
with the corresponding quantile (the quantile at level α = 0.95). Here, we introduce
α P [0, 1] and consider a loss equal to α|Yt,pt ´ ct| in the case of an over-consumption and
to (1´α)|Yt,pt ´ ct| for an over-production. Therefore, at each round t, the loss suffered is

`(Yt,pt , ct) = (1 ´ α)|Yt,pt ´ ct|1tYt,ptďctu + α|Yt,pt ´ ct|1tYt,ptěctu .

With g the function such that `(y, c) = g(y ´ c) defined by

g(x) =

"

(1 ´ α)|x| if x ď 0
α |x| if x ě 0 ,
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it is possible to compute, for any d P [´C,C], the function f defined in Equation (5.9),
which is equal to

f(d) =
1

σ
?
2π

ż

R

(
(1 ´ α)|x|1txď0u + α|x|1txě0u

)
exp

(
´ (x ´ d)2/2σ2

)
dx

= (1 ´ α)
1

σ
?
2π

ż 0

´8

´x exp
(

´ (x ´ d)2/2σ2

)
dx+ α

1

σ
?
2π

ż +8

0
x exp

(
´ (x ´ d)2/2σ2

)
dx .

With the variable change t = (x ´ d)/σ in the integrals and by denoting the normal
cumulative distribution function by Φ(x) =

şx
´8

exp
(

´ t2/2
)
dt, we obtain

f(d) = (1 ´ α)
1

?
2π

ż ´d/σ

´8

´(d+ tσ) exp
(

´ t2/2
)
dt+ α

1
?
2π

ż +8

´d/σ
(d+ tσ) exp

(
´ t2/2

)
dt

= d
(

´ (1 ´ α)Φ(´d/σ) + α
(
1 ´ Φ(´d/σ)

))
+ (1 ´ α)

σ
?
2π

[
exp(´t2/2)

]´d/σ

´8
´ α

σ
?
2π

[
exp(´t2/2)

]+8

´d/σ

= d
(
α ´ Φ(´d/σ)

)
+

σ
?
π

exp
(

´ d2/2σ
)
.

For any real number x, Φ(x) P [0, 1] and exp(´x2) ď 1, so we get that for any d P [´C,C],
|f(d)| is bounded by C+σ

a

2/π. Moreover, f is derivable and as Φ1(x) = 1?
2π

exp(´x2/2),
we get

f 1(d) = α ´ Φ
(

´ d/σ
)
+
d

σ
Φ1
(

´ d/σ
)

´
d

σ
?
π

exp
(

´ d2/2σ
)

= α ´ Φ
(

´ d/σ
)
+

d

σ
?
π

exp
(

´ d2/2σ
)

´
d

σ
?
π

exp
(

´ d2/2σ
)

= α ´ Φ
(

´ d/σ
)

P [α ´ 1, α] .

With 0 ď α ď 1, the derivative of f is bounded by 1, so f is 1-Lipschitz. Therefore, for
any round t and any vector pt P P, we obtain

E
[
|Yt,pt ´ ct|

ˇ

ˇFt´1

]
= f(dt,pt), with dt,pt = ϕ(xt, pt)

Tθ ´ ct ,

where the function f is bounded by C + σ
a

2/π on [´C,C] and 1-Lipschitz. So, if we
consider Model 2G and the pinball loss, Assumption 6 holds and we can control the regret
associated with the optimistic algorithm (5.8), by taking L = C + σ

a

2/π and M = 1 in
the definition of the deviation bounds at,p.

Finally, if Assumption 6 does not hold, we show how it is still possible to obtain some
regret bound, by using a polynomial interpolation of the loss function.

‹ Polynomial interpolation of the loss function. We now consider a non-polynomial
loss function `np. Let us denote by ` a polynomial interpolation of this function (e.g. com-
puted with Lagrange polynomials). If the approximation ` satisfies, for any d P [´C,C],

`np(d) = `(d) + γd, with |γd| ď γ ,
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where γd denotes the approximation error; we can still control the regret by a bound of
order O

(
2Tγ +

?
T lnT

)
. Indeed, for any round t, we have

E
[
`np(Yt,pt ´ ct

) ˇ
ˇFt´1

]
= E

[
`
(
Yt,pt ´ ct

)
|Ft´1

]
+ E

[
γdt,pt |Ft´1

]
,

with γdt,pt a random approximation error. Under the assumption on the boudedness of
this error, γdt,pt is bounded by γ, and so is its expectation. Then, by denoting by RT (`

np)

the regret associated with the loss function `np and by RT (`) the one associated with the
polynomial approximation of `np, we obtain

RT (`
np) =

T
ÿ

t=1

E
[
`np(Yt,pt ´ ct

)
|Ft´1

]
´

T
ÿ

t=1

min
pPP

E
[
`np(Yt,p ´ ct

)
|Ft´1

]
ď

T
ÿ

t=1

E
[
`
(
Yt,pt ´ ct

)
|Ft´1

]
+ γ ´

T
ÿ

t=1

min
pPP

E
[
`
(
Yt,p ´ ct

)
|Ft´1

]
+ γ

ď 2γT +RT (`) .

Since we can control RT (`), we can also control RT (`
np). Moreover, if the approximation

is good enough to ensure an approximation error of order O(T´α), we can still obtain a
sub-linear regret bound. We point out that to obtain such an approximation, especially
if the loss function has irregularities, the degree q of the interpolation polynomial may be
high. This leads to very large constants, proportional to Cq, within the regret bound.

4.2 Unknown variance or covariance matrix

If the covariance matrix Σ or the variance σ2 is unknown, it is still possible to obtain
some regret bound. As in Section 3 of Chapter 4, we can use the first τ rounds of the
algorithm to estimate these quantities. By keeping the notations of the above section,
we consider the function f defined in Assumption 6. This function may depend on the
unknown variance σ2 (for Model G2) or covariance matrix Σ (for Model G1), which are,
from now on, unknown. By using the estimation of Σ or σ2 computed at round τ + 1, we
consider an estimator of the function f obtained by replacing Σ or σ2 by its estimator in
the definition of f . Let us denote it by pfτ . Assumption 7 below states some guarantee on
the estimator fτ .

Assumption 7 – Estimation of the variance or covariance matrix. For any round t, no
matter how the environment picks the vectors xt and pt and the target ct, the conditional
expectation of the losses may be written with a function f : [C,C] ˆ P Ñ [´L,L] such
that

E
[
`(Yt,pt , ct) |Ft´1

]
= f(dt,pt , pt) with dt,pt = ϕ(xt, pt)

Tθ ´ ct .

For τ ě 1 initial explorations rounds, with pfτ the estimator of f , computed at round τ+1,
there exists a real number α ą 0, such that with probability at least 1´ δ/2, the estimator
satisfies for any d P [´C,C],

ˇ

ˇ pfτ (d, p) ´ f(d, p)
ˇ

ˇ ď ν, with ν = O(τ´α) . (5.10)

This assumption actually held in Chapter 4, see Example 5 below for further details.
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From now on, for any round t and any allocation of price levels p P P, we will consider
this new estimation of the expected loss

r`t,p = pf
(
pdt,p, p

)
.

In this new definition, estimators of the distance dt,p but also of the function f , in which
the estimation of the variance or covariance matrix is involved, come into play. If the
event (5.10) holds, for any round t ě τ + 1 and any vector p P P, the following deviation
bound on the expected loss estimation holds:

|`t,p ´ r`t,p| =
ˇ

ˇf(dt,p) ´ pf(pdt,p, p)
ˇ

ˇ =
ˇ

ˇf(dt,p) ´ f(pdt,p, p) + f(pdt,p, p) ´ pf(pdt,p, p)
ˇ

ˇ

ď
ˇ

ˇf(dt,p) ´ f(pdt,p, p)
ˇ

ˇ+
ˇ

ˇf(pdt,p, p) ´ pf(pdt,p, p)
ˇ

ˇ

ď M
ˇ

ˇϕ(xt, p)
Tθ ´

[
ϕ(xt, p)

T
pθt´1

]
C

ˇ

ˇ+ ν .

Then, we consider the new optimistic algorithm which picks, for t ě τ +1, the price levels

pt P argmin
pPP

!

r`t,p ´ αt,p

)

, with αt,p = at,p + ν . (5.11)

The first τ vectors p1, . . . , pτ are chosen to provide the estimator of Σ or σ2.

Theorem 8. Fix a risk level δ P (0, 1) and a time horizon T ě 1. Assume that As-
sumption 7 holds. With probability at least 1 ´ δ, the regret associated with the optimistic
algorithm (5.11) with an initial exploration of length τ = O

(
T 1/(1+α)

)
is controlled by a

sub-linear regret bound of order

O
(

max
(
T 1/(1+α),

?
T
))
,

up to poly-logarithmic terms.

Proof of Theorem 8. We can redo the same analysis on the regret by replacing p`t,p and
at,p by r`t,p and αt,p, respectively. Indeed, for any t ě τ +1, if both events (5.6) and (5.10)
hold (that is if pθt´1 and pf estimate correctly θ and f , respectively), we get, for any p P P,

@p P P, | `t,p ´ r`t,p | ď αt,p .

Next, by choosing pt according to the optimistic algorithm (5.11), we obtain

`t,pt ´ min
pPP

`t,p ď 2αt,pt .

Therefore, under event (5.10) and if for all t ě τ + 1, events (5.6) also hold, by bounding
the first τ instantaneous regrets by 2L (expected losses are all bounded by L), we obtain

RT =
T
ÿ

t=1

`t,pt ´ min
pPP

`t,p ď 2Lτ +
T
ÿ

t=τ+1

αt,pt

ď 2Lτ + Tν +
T
ÿ

t=τ+1

at,pt .

We already showed that the sum
řT

t=τ+1 at,pt is of order O
(?
T lnT

)
. By taking τ of order

T 1/(1+α) we obtain a bound of order O
(

max(T 1/(1+α),
?
T
)
, up to poly-logarithmic terms.
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It only remains to deal with the probability that at least one of the events (5.6) does
not hold (which is bounded by δ/2, see the end of the proof of Proposition 2) or that the
event

D d P [´C,C] and p P P
ˇ

ˇ

ˇ

ˇ pfτ (d, p) ´ f(d, p)
ˇ

ˇ ď ν ,

does not hold (which is bounded by δ/2 by Assumption 7). Finally, at least on the previ-
ous events does not hold with probability at most δ.

Example 5: The case of the quadratic loss function. We highlight that we can recover
the regret bound we had in Section 3 of Chapter 4. Indeed, with the quadratic loss, we
get that for all p P P,

f(d, p) = d2 + pTΣp .

By using the estimation pΣτ of the covariance matrix provided in Section 3.3.2 of Chapter 4,
after τ first rounds, we define the following estimator of f for any d P [´C,C] and any
p P P,

pf(d, p) = d2 + pT
pΣτp .

In Lemma 5 page 116, we proved that with probability at least 1 ´ δ/2, this estimator
ensures

ˇ

ˇ pf(d, p) ´ f(d, p)
ˇ

ˇ = |pT
(
pΣτ ´ Σ

)
p| ď ντ (δ/2), with ντ = O(τ´1/2) .

Therefore, Assumption 7 holds with α = 1/2 and we obtain a regret bound of order

O
(

max
(?
T , T

1
1+1/2

))
= O

(
T 2/3

)
,

as claimed in Chapter 4.

4.3 Non-Gaussian noises

We point out that, for the polynomial loss functions, we used the Gaussian assumption on
the noises only to compute the moments E

[
ekt |Ft´1

]
(see Section 2.3). As soon as the law

of the noises is such that we can compute the functions f(d, p) for d P [´C,C] and p P P,
we can control the regret.

4.4 Time-dependent loss functions

Finally, in all this chapter, we consider, at each round t, the loss function `. But we could
very well imagine a loss function that changes from moment to moment. We will see in the
applications of Section 5 that these functions can depend in particular on the electricity
market, which varies over time. Therefore we could introduce a time dependence and
consider the loss functions `t. Such changes have no impact on the regret bound as long as
we can find some constants M (which is the Lipschitz-constant of functions f( ¨ , p), with
p P P) and L (which bounds the expected losses) that work for all the losses considered
between t = 1 and t = T .
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5 A practical application: cost of an over or under produc-
tion of electricity

This section briefly presents how the grid manager RTE (Réseau de Transport d’Élec-
tricité) maintains the balance between the load of France and the amount of electricity
generated by the French providers. We will not go into detail on the mechanisms of the
electricity market and we will focus on positive spot electricity prices (as electricity cannot
be stored, when a too large amount has been generated, spot price of the electricity may
become negative).

Electricity providers like EDF inject the electricity from power plants into one end of
the grid, while their customers consume it at the other end, at home or at work. Each
provider has to manage its own balance. To maintain the system security and the electric-
ity quality, the grid manager is in charge of the global balance. In France, RTE manages
both the transport of the electricity (through high-voltage lines) and the balance of the
French power system. Every half-hour, it penalizes the electricity providers which im-
balance the grid. The amounts of these penalties are calculated to incite the electricity
providers to correct their imbalances and reflect the price of the actions operated by the
grid manager to re-balance the power system (see the RTE website1). If the global amount
of electricity generated by the providers is greater than the French consumption, the trend
in the power system is said to be “upward”. Then, RTE may, for example, ask the owners
of hydraulic dams to pump the water and refill dams in order to consume the surplus of
electricity or sell it to grid managers of border countries. If there is not enough electricity,
the trend is “downward”. Consequently, RTE has to buy electricity from border countries
or on the capacity market (namely, from producers of powers plants that can be turned
on very quickly) and inject it on the grid; it may also pay big companies to stop consuming.

From now on, for a half-hour t, we denote by P up
t and P down

t the cost, per kWh, paid by
RTE to re-balance the power system, depending on whether the trend is upward or down-
ward, respectively. We consider an electricity provider and we denote by ct the amount of
electricity it generates at the half-hour t. We assume that ct is known at the half-hour t´1,
which makes sense since the production is generally scheduled. In the case of intermittent
energies, like solar or wind power, we could replace ct by power generation forecasts. This
amount of electricity defines the consumption target. At t´ 1, the electricity provider has
also chosen the price allocations pt for its customers, then its observes their consumption
Yt,pt . If Yt,pt is higher than ct, RTE bills the consumed electricity overage, while if ct is
higher than Yt,pt , RTE buys the produced electricity overage. The costs associated de-
pends on the trend of the power system and are detailed in Table 5.1. The coefficient k
is a penalty (around 5%) imposed by RTE. In each case, the electricity provider has no
interest in being imbalanced. Indeed, in case of a positive imbalance, that is Yt,pt ă ct,
RTE buys its excess of electricity at very low tariffs; the provider has thus missed an
opportunity to sell it to its own customers (or to other providers), at a much higher price.
On the contrary, for a negative imbalance, that is Yt,pt ą ct, RTE bills the excess of elec-
tricity consumed by the provider’s customers at much higher prices than the market. If

1https://www.services-rte.com/en/learn-more-about-our-services/
becoming-a-balance-responsible-party.html
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the electricity provider is in the trend of the power system, namely if it contributes to the
global imbalance, the losses suffered are even higher.

Power system
Electricity trend
provider imbalance

(ct ą Yt,pt) +P down
t (1 ´ k) ˆ

ˇ

ˇYt,pt ´ ct
ˇ

ˇ +P up
t (1 ´ k) ˆ

ˇ

ˇYt,pt ´ ct
ˇ

ˇ

(ct ă Yt,pt) ´P down
t (1 + k) ˆ

ˇ

ˇYt,pt ´ ct
ˇ

ˇ ´P up
t (1 + k) ˆ

ˇ

ˇYt,pt ´ ct
ˇ

ˇ

Table 5.1 – Financial regularizations imposed, at an half-hour t, by electricity network manager
to the electricity provider, depending on the trend of the power system (down on the left, up on
the right) and on the imbalance of the electricity provider (positive at the top, negative at the
bottom), which produces an amount ct of electricity and whom customers consume Yt,pt

.

Therefore, in all the imbalanced situations, the electricity provider suffers a financial
loss. This loss is proportional to |Yt,pt ´ct|; the difference between the amount of electricity
it generates on the grid ct and the amount of electricity its customers consume Yt,pt . The
proportional coefficients P up

t and P down
t depend on the cost suffered by the grid manager to

re-balance the power system; and it is higher when the electricity provider accentuates the
imbalance (when both balances are on the same side), than when the provider “helps” the
grid manager (when both balances are on opposite sides). We denote by τ these coefficients
and super-script them with + or ´ depending on whether the provider balance is positive,
namely for an over-production ct ą Yt,pt , or negative, namely for an over-consumption
ct ă Yt,pt ; and by up or down depending on whether the trend is upward or downward,
respectively. With these notations, at each half-hour t, the electricity provider suffers a
financial loss:

`t(Yt,pt , ct) =

(
τup´

t

ˇ

ˇYt,pt ´ ct
ˇ

ˇ1tctăYt,ptu + τup+

t

ˇ

ˇYt,pt ´ ct
ˇ

ˇ1tctąYt,ptu

)
1tTrend = upu+(

τdown´

t

ˇ

ˇYt,pt ´ ct
ˇ

ˇ1tctăYt,ptu + τdown+

t

ˇ

ˇYt,pt ´ ct
ˇ

ˇ1tctąYt,ptu

)
1tTrend = downu . (5.12)

We note that if the provider could have sold the electricity at the prices P up
t or P down

t

(depending on the trend), the coefficients τup´

t and τup+

t are equal to kP up
t and τdown´

t

and τdown+

t are equal to kP down
t . When the trend and the prices of re-balancing are known

in advance (namely at the half-hour t ´ 1), the loss suffered at t is made of two pieces
of positive linear functions and is null when the consumption equals the target. Thus, it
may be written as:

`t(Yt,pt , ct) = τ+t
ˇ

ˇYt,pt ´ ct
ˇ

ˇ1tctąYt,ptu + τ´
t

ˇ

ˇYt,pt ´ ct
ˇ

ˇ1tctăYt,ptu .

By considering Model 2G, for any p P P, with the calculations presented in Section 4 for
the case of the pin-ball loss, it is possible to compute the expected loss:

`t,p = E
[
`t(Yt,p, ct)|Ft´1

]
,
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Figure 5.1 – Illustration of an approximation of a piece-wise linear loss function with a 12-degree
Lagrange polynomial on [´2, 2]. The approximation is close to the loss function between -2 and 2.
Outside this interval, the points chosen for the Lagrange interpolation are too far apart to provide
a fair approximation. The increase in the number of points leads to an increase in the polynomial
degree.

and consequently to apply Theorem 7. For Model 2, we do not know any closed form of the
expected loss but we can still consider a polynomial approximation and apply the results
of Section 3. Figure 5.1 gives an illustration of such an approximation. Therefore, no mat-
ter the model we consider, we can apply an optimistic algorithm and obtain regret bounds.

The main drawback of this modeling is that, in reality, the trend of the electrical system
is not deterministic. By predicting it, we could obtain probabilistic regret bounds (namely,
that are true under the events “the prediction of the trend at t is correct”). We could also
weight the loss function with the forecasts of the trend and consider:

`t(Yt,pt , ct) =

(
τup´

t

ˇ

ˇYt,pt ´ ct
ˇ

ˇ1tctăYt,ptu +

τup+

t

ˇ

ˇYt,pt ´ ct
ˇ

ˇ1tctąYt,ptu

)
P
(
Trend = down

)
+(

τdown´

t

ˇ

ˇYt,pt ´ ct
ˇ

ˇ1tctăYt,ptu +

τdown+

t

ˇ

ˇYt,pt ´ ct
ˇ

ˇ1tctąYt,ptu

)(
1 ´ P

(
Trend = down

))
.

We highlight that this loss is not the conditional expectation on the loss defined in Equa-
tion (5.12) because the trend and Yt,pt are not independant. Finally, we also not that the
coefficients τup´

t , τup+

t , etc. are not known in advance and must also be estimated; which
further complicates the problem.

These examples show that it makes sense to look at non-quadratic losses, and that it
is possible to link the loss functions considered in the bandit algorithm with the true
losses suffered by the electricity provider. Indeed, with the piece-wise linear loss func-
tions introduced above, we modeled the financial penalties imposed by the grid manager.
We highlight that our example is just a simplification of the real production-consumption
management processes. By considering a modeling of the production costs and by in-
tegrating some mechanisms of the electricity market, the loss functions would certainly
become more complex.
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Appendix

Expression of E[ekt,pt |Ft´1] for Model 1G

The noise term et,pt is pT
t εt =

řK
j=1 pt,jεt,j . Applying the multinomial theorem, we get

ekt,pt =
(
pt,1εt,1 + pt,2εt,2 + ¨ ¨ ¨ + pt,Kεt,K

)k
=

ÿ

m1+m2+¨¨¨+mK=k

(
k

m1,m2, . . . ,mK

) K
ź

j=1

(pt,jεt,j)
mj

with the multinomial coefficient
(

k

m1,m2, . . . ,mK

)
=

k!

m1!m2! . . .mK !
.

As the vector pt is Ft´1-measurable and the vector εt is independent on Ft´1, we obtain

E
[
ekt,pt

ˇ

ˇFt´1

]
=

ÿ

m1+m2+¨¨¨+mK=k

(
k

m1,m2, . . . ,mK

)( K
ź

j=1

p
mj

t,j

)
E
[ K
ź

j=1

ε
mj

t,j

]
.

Isserlis’ theorem states that if (X1, X2, . . . , Xk) is a zero-mean multivariate normal random
vector, then

E
[
X1X2 . . . Xk

]
=

ÿ

γPΓk

ź

ti,juPγ

Cov
(
Xi, Xi1

)
, (5.13)

where Γk denotes all the pairings of t1, . . . , ku, namely, all distinct ways of partitioning
t1, . . . , ku into pairs ti, i1u. Note that if k is odd, Γk is empty and thus E

[
X1X2 . . . Xk

]
= 0.

We consider the k-dimensional zero-mean multivariate normal random vector(
εt,1, . . . , εt,1
loooooomoooooon

m1 times

, εt,2, . . . .,
loooomoooon

m2 times ...

. . . . . . , εt,K
looomooon

mK times

)

and the vector im associated with this re-indexation

im =
(
1, . . . , 1
looomooon

m1 times

, 2, . . . . . . .,
looooomooooon

m2 times ...

. . . . . . . . , K
looomooon

mK times

)
.

We denote by im(i) the ith integer of vector im. By applying Equation 5.13, we obtain
that, for all integers m1 +m2 + ¨ ¨ ¨ +mK = k,

E
[ K
ź

j=1

ε
mj

t,j

]
= E

[ k
ź

j=1

εt,im(j)

]
=

"

0 if k is odd
ř

γPΓk

ś

ti,i1uPγ σim(i)im(i1) if k is even ,

where σim(i)im(i1) is the coefficient (im(i), im(i1)) of the covariance matrix Σ. Therefore, if
k is odd, E

[
(pT

t εt)
k
ˇ

ˇFt´1

]
= 0; and otherwise

E
[
ekt,pt |Ft´1

]
= E

[(
pT
t εt
)k ˇ

ˇFt´1

]
=

ÿ

m1+m2+¨¨¨+mK=k

(
k

m1,m2, . . . ,mK

)( K
ź

j=1

p
mj

t,j

)(
ÿ

γPΓk

ź

ti,i1uPγ

σim(i)im(i1)

)
,

(5.14)

where the vector of index im depends on the integers m1, . . . ,mK .
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6
Online hierarchical
forecasting

We study the forecasting of the power consumptions of a population of
households and of subpopulations thereof. These subpopulations are built
according to location, to exogenous information and/or to profiles we
determined from historical households consumption time series. Thus, we
aim to forecast the electricity consumption time series at several levels
of households aggregation. These time series are linked through some
summation constraints which induce a hierarchy. Our approach consists in
three steps: feature generation, aggregation and projection. Firstly (feature
generation step), we build, for each considering group for households, a
benchmark forecast (called features), using random forests or generalized
additive models. Secondly (aggregation step), aggregation algorithms, run
in parallel, aggregate these forecasts and provide new predictions. Finally
(projection step), we use the summation constraints induced by the time
series underlying hierarchy to re-conciliate the forecasts by projecting them
in a well-chosen linear subspace. We provide some theoretical guaranties on
the average prediction error of this methodology, through the minimization
of a quantity called regret. We also test our approach on households
power consumption data collected in Great Britain by multiple energy
providers in the “Energy Demand Research Project” context. We build
and compare various population segmentations for the evaluation of our
approach performance.

This chapter was written in collaboration with Malo Huard and is currently
submitted for journal publication; it is available as arXiv preprint number
2003.00585.

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

2.1 Modeling of the hierarchical relationships 169
2.2 A three-step forecast 172
2.3 Forecast assessment – form of the theoretical guaranties achieved 174

2.3.1 Class of comparison 175
2.3.2 Aim: regret minimization 175

2.4 Technical discussion: why we require the same features at each node. 176
3 Main theoretical result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
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4 On one operational constraint: half-hourly predictions with one-day-delayed
observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5 Generation of the features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.1 Auto-regressive model 180
5.2 General additive model 180
5.3 Random forests 181

6 Aggregation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.1 Standardization 183
6.2 Linear aggregation: sequential non-linear ridge regression 185
6.3 Convex aggregation 186
6.4 A scheme to extend the class of comparison from the simplex to an

L1-ball 189
7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.1 The underlying real data set 193
7.2 Clustering of the households 193

7.2.1 Random clustering 194
7.2.2 Segmentation based on qualitative household variables 194
7.2.3 Clustering based on non-negative matrix factorization and

k-means method 194
7.2.4 Comparison of clusterings 196

7.3 Experiment design 198
7.4 Results 202

7.4.1 Impact of the benchmark forecasting methods and of the
aggregation algorithms 203

7.4.2 Impact of the clustering 205

1 Introduction

New opportunities come with the recent deployment of smart grids and the installation of
meters: they record consumption quasi instantaneously in households. From these records,
time series of demand are obtained at various levels of aggregation, such as consumption
profiles and regions. For privacy reasons, household records may not be used directly.
Moreover, consumption at individual level is erratic and unpredictable. This is why we
focus on household aggregations. For demand management, it is useful to predict the
global consumption. Furthermore, to dispatch correctly the electricity into the grid, fore-
casting demand at a regional level is also an important goal. Finally, a good estimation
of the consumption of some groups of consumers (with the same profile) may be helpful
for the electricity provider which may adapt its offer to perform effective demand side
management. Thus, forecasts at various aggregated levels (entire population, geographi-
cal areas, groups of same consumption profiles) are useful for an efficient management of
consumption.

In this work, we consider a large population that we first split into sub-groups thanks to
some clustering methods. We consider the aggregated power consumption of each cluster
and also the aggregated power consumption of higher aggregation levels (larger regions,
entire population, etc.). Then, we build at each aggregation level, and independently,
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benchmark forecasts (called features) using random forests or generalized additive mod-
els. Noticing that these time series may be correlated (the consumption of a given region
may be close to the one of a neighboring region) and connected to each other through
summation constraints (the global consumption is the sum of the region consumptions,
e.g.), the problem considered falls under the umbrella of hierarchical time series forecast-
ing. Using these hierarchical relationships may improve the benchmark forecasts that
were generated. Our approach consists in combining two methods: feature aggregation
and projection in a constrained space. Our aim is to improve forecasts both at the global
and at the local levels.

‹ Literature discussion for clustering methods. Different clustering approaches were al-
ready proposed in the literature to segment consumers according to their energy consump-
tion behavior. Generally, they relied on the construction of individual features from the
average/total consumption and demographic factors. With the recent smart meter deploy-
ment, individual consumption records at higher temporal resolutions are now available and
allow to consider energy consumption time series in consumers segmentation. Therefore,
more complex features may be extracted and used to cluster consumers with classical al-
gorithms. Among others, Chicco et al. compared the results obtained by using various un-
supervised clustering algorithms (i.e., modified follow-the-leader, hierarchical clustering,
k-means, fuzzy k-means) to group together customers with similar consumption behavior
(see Chicco et al., 2006); Le Ray and Pinson proposed an adaptive and recursive clustering
method that creates typical load profiles updated with newly collected data see( Le Ray
and Pinson, 2019); Rodrigues et al. described an online hierarchical clustering algorithm,
which was applied to cluster energy consumption time series in a load forecasting task
(see Rodrigues et al., 2008); Fidalgo et al. described a clustering approach based on sim-
ulated annealing that tries to reconcile billing processes that use 15 min meter data and
monthly total consumption and derive typical profiles for consumers classes (see Fidalgo
et al., 2012); Sun et al. proposed a copula-based mixture model clustering algorithm that
captures complex dependency structures present in energy consumption profiles and de-
tects outliers (see Sun et al., 2017).

‹ Literature discussion for hierarchical forecasting. Traditionally two types of methods
have been used for hierarchical forecasting: bottom-up and top-down approaches. In the
bottom-up approaches (see Dunn et al., 1976) forecasts are constructed for lower-level
quantities and are then summed up to obtain forecasts at the upper levels. In contrast,
top-down approaches (see Gross and Sohl, 1990) work by forecasting aggregated quanti-
ties and then by determining dis-aggregate proportions to compute lower level predictions.
Shlifer and Wolff [1979] compare these two families of methods and conclude that bottom-
up approaches work better. The problem of hierarchical forecasting for energy demand
was first explored in the GEFCom 2017 forecasting competition, even if none of the top
six teams took advantage of the hierarchy information, the different contributions are
presented in Hong et al. [2019]. Since then, there has been growing interest in research
into hierarchical probabilistic load forecasting. Recently, it has indeed proven success-
ful for load forecasting to improve the global consumption prediction error (see among
others Auder et al., 2018). Other approaches (neither bottom-up nor top-down) were
recently introduced. For example, Wickramasuriya et al. [2019] forecast all nodes in the
hierarchy and reconcile (i.e. impose the respect of hierarchical constraints) them by pro-
jection. Their general MinT (for Minimum Trace) approach attempts to capture some
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cross-sectional information between times series via the covariance matrix of the errors of
the base forecasts. It includes both oblique and orthogonal projections (this is discussed
from a geometric perspective in Panagiotelis et al., 2020). Moreover, Van Erven and
Cugliari [2015] introduce a game-theoretically optimal reconciliation method to improve
a given set of forecasts. Firstly, one comes up with some forecasts for the time series
without worrying about hierarchical constraints and then a reconciliation procedure is
used to make the forecasts aggregate consistent. This generalizes the previous orthogonal
projection to other possible projections in the constrained space (which ensures that the
forecasts satisfy the hierarchy). Most work on hierarchical forecasting concentrates on
the mean, but some recent work has addressed probabilistic forecasting including that of
Ben Taieb et al. [2017], Ben Taieb et al. [2020] and Panagiotelis et al. [2020].

‹ Literature discussion for aggregation Methods. Aggregation methods (also called ensem-
ble methods) for individual sequences forecasting originate from theoretical works by Vovk
[1990], Cover [1991] and Littlestone and Warmuth [1994]; their distinguishing feature with
respect to classical ensemble methods is that they do not rely on any stochastic modeling
of the observations and thus, are able to combine forecasts independently of their gener-
ating process. They have been proved to be very effective to predict time series (see for
instance Mallet et al., 2009 and Devaine et al., 2013) and those methods were used to
win forecasting competitions (see Gaillard et al., 2016). This aggregation approach has
recently been extended to the hierarchical setting by Goehry et al. [2019]; they used a
bottom-up forecasting approach which consists in aggregating the consumption forecasts
of small customers clusters.

In this chapter, we combine the reconciliation approach based on orthogonal projection
with some aggregation algorithm to propose a three stage meta-algorithm which is as fol-
lows:

1. Generate base forecasts for all times series in the hierarchy,
2. Apply, for each series, an aggregation algorithm that finds an optimal linear combi-

nation of the base forecasts
3. Project the combination forecasts onto a coherent subspace to ensure the final fore-

casts satisfy the hierarchical constraints.
The second step here provides the innovation (Steps 1 and 3 on their own are equiva-
lent to the Ordinary Least Squares version of the MinT algorithm – see Wickramasuriya
et al., 2019). By including an aggregation algorithm between these steps, much more of
the cross-sectional information is able to be captured, thus improving the forecasts. A
theoretical result is provided for the regret bound of the meta-algorithm. We then illus-
trate the proposed methods using smart meter data collected in Great Britain by multiple
energy providers (see Schellong, 2011 and ?). ‘Energy Demand Research Project’ data
gathers multiple households power consumption data. We use the polynomially weighted
average forecaster with multiple learning rates (ML-Pol, see Gaillard, 2015) aggregation
algorithm and consider two population segmentations: a spatial segmentation based on
the location of the households and a behavioral one based on household consumption pro-
files. We evaluate the performance of four strategies for the forecasting of the electricity
consumption time series at the several aggregation levels: features, aggregated features,
projected features and finally aggregated and projected features.

Notation. In this chapter, vectors will be in bold type and unless stated otherwise, they

168



O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

are column vectors, while matrices will be in bold underlined. Moreover, we denote the
inner product of two vectors x and y of the same size by x ¨ y = xTy.

2 Methodology

We consider a set of time series
 

(yg
t )tą0, g P G

(

connected to each other by some summa-
tion constraints: a few of them are equal to the sum of several others – see further for a
definition of G. To forecast these time series, a set of features is generated. At any time
step t, we want to forecast the vector of the values of the |G| times series at t, denoted
by yt

∆
= (yg

t )gPG . We propose a three-step method to obtain relevant forecasts from these
features.

2.1 Modeling of the hierarchical relationships

The relationships between the time series induce a hierarchy which should be exploited to
improve forecasts. These summation constraints may be represented by one or more trees,
the value at each node being equal to the sum of the ones at its leaves. Let us denote
by G the set of the tree’s nodes and |G| its cardinality. There are as many summation
constraints as there are nodes with leaves. Subsequently, we will introduce a matrix K to
encode these relationships. Each line of K is related to one of the summation constraints
with ´1 at the associated node and 1 at its leaves. Thus, for any time step t, the vector
of the values of the |G| times series at t, denoted by yt, is in the kernel of K. Details
on and examples of K are provided below. Example 6 treats a single summation con-
straint. Examples 7 and 8 present more complex relationships between the time series,
considering a hierarchy with two levels and two different partitions of the same time se-
ries, respectively. Finally, Example 9 combines the two previous cases. In our experiments
of Section 7, the underlying hierarchies will be of the form of the ones of Examples 6 and 9.

Remark 20. The existing hierarchical forecasting literature (e.g., Wickramasuriya et al.,
2019) uses the first rows of a “summing matrix” to encode the aggregation constraints
with each row corresponding to one of the series, and each column corresponding to the
leaves of the hierarchy. We propose here an alternative way of encoding the aggregation
constraints using the matrix K which is possibly a more parsimonious approach.

Example 6: Two-level Hierarchy. The simplest approach consists in considering a single
equation connecting the time series. Here, ytot stands for the one which is the sum of
the N others which are denoted by y1, . . . , yN . The underlying hierarchy is represented in
Figure 6.1 by a tree with a single root directly connected to N leaves. For any time step
t, the time series satisfy ytot

t = y1t + y2t + ¨ ¨ ¨ + yNt and the vector yt =
(
ytot
t , y1t , . . . , y

N
t

)T

respects the hierarchy if and only if Kyt = 0 with K =
(

´ 1, 1, 1, . . . , 1
)
.

ytot

y1 y2 … yN

Figure 6.1 – Representation of a two-level hierarchy.
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In Section 7, we consider the power consumption of a population of households which
are distributed in N regions. This setting will correspond to the present example.

Example 7: Three-level Hierarchy.

ytot

y1 ¨

y11 y12 … y1M1

y2 ¨

y2 1 … y2M2

… yN ¨

yN 1 yN 2 … yNMN

Figure 6.2 – Representation of a three-level hierarchy.

A few leaves of the tree of Example 6 may be broken down into new time series and so
on. Figure 6.2 represents a complete three-level hierarchy ( although we could consider any
multilevel hierarchy) leading to the following summation equations, for each time step t,

ytot
t = y1 ¨

t + y2 ¨
t + ¨ ¨ ¨ + yN ¨

t (1)
yi ¨
t = yi 1t + yi 2t + ¨ ¨ ¨ + yiMi

t , @ i = 1, . . . , N. (2i)

We order the time series in lexicographical order:

yt = (ytot
t , y1 ¨

t , y
2 ¨
t , . . . , y

N ¨
t , y11t , y

12
t , . . . , y

1M1
t , y21t , . . . , y

NMN
t ),

and define the constraint matrix K below; each line of K corresponds to one of the con-
straints mentioned above, either (1) or one of the N constraints (2i) in a way that Kyt = 0
if and only if yt respects the hierarchy.

K =




-1

N
hkkkkkikkkkkj

1 ¨ ¨ ¨ 1 Ð (1)

-1
M1

hkkkkkikkkkkj

1 ¨ ¨ ¨ 1. . . . . . Ð (2i)

-1
MN

hkkkkkikkkkkj

1 ¨ ¨ ¨ 1

This hierarchy corresponds to the concrete example above where, for 1 ď n ď N , the n
region would be further divided into M1, . . . ,Mn municipalities.

Example 8: Two Hierarchies of the Same Time Series. It is also possible to consider
two partitions of the same time series ytot

t . For example, in our experiments of Section 7,
in addition to the geographical clustering, we introduce a segmentation of the households
based on their profiles. Indeed, they are distributed in N1 regions but also in N2 groups
depending on their consumption habits. These two different partitions induce the following
two equations

ytot
t = y1 ¨

t + y2 ¨
t + ¨ ¨ ¨ + yN1 ¨

t

ytot
t = y¨ 1

t + y¨ 2
t + ¨ ¨ ¨ + y¨N2

t ,
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and the two trees associated with these constraints which share the same root and are
represented on Figure 6.3.

ytot

y1 ¨ y2 ¨ … yN1 ¨

= ytot

y ¨ 1 y ¨ 2 … y ¨N2

Figure 6.3 – Representation of two two-level hierarchies.

For any time step t, the vector of times series yt = (ytot
t , y1 ¨

t , y
2 ¨
t , . . . , y

N1 ¨
t , y¨ 1

t , y
¨ 2
t , . . . , y

¨ n2
t )

satisfies the above equations if and only if Kyt = 0 with

K =

 -1
N1

hkkkkkikkkkkj

1 ¨ ¨ ¨ 1

-1
N2

hkkkkkikkkkkj

1 ¨ ¨ ¨ 1
.

The equality of the roots of the two trees is always satisfied in this model. Indeed there is
a single time series ytot

t to forecast and there are therefore only two summation constraints
to take into account.

Example 9: Two Crossed Hierarchies. Considering two partitions, the time series

ytot

y1 ¨

y11 y12 … y1N2

y2 ¨

y21 y22 … y2N2

… yN1 ¨

yN11 yN12 … yN1N2

= ytot

y ¨ 1

y11 y21 … yN1 1

y ¨ 2

y12 y22 … yN1 2

… y ¨N2

y1N2 y2N2 … yN1 N2

Figure 6.4 – Representation of two crossed hierarchies.

can be represented with two three-level trees sharing the same root and leaves. Only the
intermediate levels differs according to which partition is firstly taking into account. The
leaves of the trees form a N1 ˆ N2-matrix

(
yi j
)
1ďiďN1, 1ďjďN2

. An intermediate node of
the first tree yi ¨ is the sum of the line i while a node y¨j of the second tree is the sum of
the column j. Whether we sum rows or columns first, the sum of all coefficients is ytot

t .
In the experiments of Section 7, one partition refers to a geographic distribution of the
households while the other classifies them according to their consumption behaviors. The
first tree considers breaks down consumption firstly by the N1 regions and then by the
N2 household profiles. The second one divides the households according to their habits
before splitting them geographically. Both trees are represented in Figure 6.4. For any
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time step t, the time series satisfy the 2 +N1 +N2 equations

ytot
t = y1 ¨

t + y2 ¨
t + ¨ ¨ ¨ + yN1 ¨

t (1)
yi ¨
t = yi 1t + yi 2t + ¨ ¨ ¨ + yiN2

t , @ i = 1, . . . , N1 (2i)
ytot
t = y¨ 1

t + y¨ 2
t + ¨ ¨ ¨ + y¨N2

t (3)

y¨ j
t = y1 jt + y2 jt + ¨ ¨ ¨ + yN1 j

t , @ j = 1, . . . , N2. (4j)

Equations (1) and (3) refer to the first level of the trees while the N1 +N2 Equations (2i)
and (4j) refer to second levels. At a time step t, by ordering the time series in the vector
as

yt = (ytot
t , y1 ¨

t , . . . , y
N1 ¨
t , y¨ 1

t , . . . , y
¨N1
t , y1 1t , y1 2t , . . . , yN1N2

t ),

it may be seen that they respect the hierarchy if and only if Kyt = 0 with

K =





-1
N1

hkkkkkikkkkkj

1 ¨ ¨ ¨ 1 Ð (1)

-1
N2

hkkkkkikkkkkj

1 ¨ ¨ ¨ 1
. . . . . . Ð (2i)

-1
N2

hkkkkkikkkkkj

1 ¨ ¨ ¨ 1

-1
N2

hkkkkkikkkkkj

1 ¨ ¨ ¨ 1 Ð (3)
-1 1 1

. . . . . . ¨ ¨ ¨
. . . Ð (4j)

-1 1 1

.

2.2 A three-step forecast

Step 1: For each node g P G, at each time step t, thanks to an historical data set of the g
time series and to some exogenous variables proper to the node g, a forecaster makes the
prediction xg

t . These |G| benchmark forecasts are then collected into the feature vector
xt

∆
=
(
xg
t

)
gPG . We propose to use the knowledge of all of the features, namely the |G| bench-

mark forecasts, and of the summation constraints to improve these |G| predictions. Step 2:
For each node g and each time step t, we form our prediction pyg

t by linearly combining the
components of the feature vector xt thanks to a so-called aggregation algorithm (a copy
Ag of an aggregation algorithm A is run separately for each node g). That is, we use all
|G| benchmark forecasts to predict yg

t , not only xg
t . We explain below why this is a good

idea – the main reason is given by correlations between time series. The forecasts thus
obtained are then gathered into a vector ŷt

∆
=
(
pyg
t

)
gPG . Step 3: Finally, a re-conciliation

step will update the forecast vector so that it is in the kernel K. Let us denote by ỹt the
final vector of forecasts. We detail below each step of our procedure.

Generation
of features

Forecasters

|G| aggregations
in parallel

A

Projection

K

Historical data
Exogeneous variables

xt ŷt ỹt

172



O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

‹ First Step: Generation of features. At a fixed node g P G, for any time step t, a fore-
casting method, which may depend on g, predicts xg

t with the historical data and the
exogenous variables of the node g. The forecasting methods we use in the experiments of
Section 7 are described in Section 5 and include non linear sequential ridge regression, fully
adaptive Bernstein online aggregation and polynomially weighted average forecaster with
multiple learning rates. These benchmark forecasts are henceforth called features and are
gathered in xt =

(
xg
t

)
gPG . This feature vector is used in the aggregation step that comes

next to predict again each time series; we discuss below and in Subsection 2.4 why we do
so (the main reasons being that it is a good idea because of the correlations between the
times series and also because it eases the description of our method). We focus here on |G|

benchmark forecasts – one for each of the nodes; however, we could also have considered
several predictions per nodes.

‹ Second Step: Aggregation. The above features are generated independently with different
exogenous variables and possibly different methods. Yet, the observations

(
yg
t

)
gPG may be

correlated. For example, considering load forecasting, the consumptions associated with
two nearby regions can be strongly similar. Furthermore, the observations are related
though the summations constraints (although we disregard these equations here). This is
why linearly combining the features may refine some forecasts – this is exactly what this
step does. Formally, an aggregation algorithm outputs at each round a vector of weights
ûg
t and returns the forecast pyg

t
∆
= ûg

t ¨ xt. It does so based on the information available,
that is, the feature vector xt and past data. We consider an aggregation algorithm A
(see Section 6) and form a copy Ag for each node g, which we feed with an input param-
eter vector sg

0. These predictions are then gathered into the vector ŷt = (yg
t )gPG . This

algorithm aims for the best linear combination of features and there are theoretical per-
formance guaranties associated with these aggregation algorithms, see Section 6 for details.

Instead of this approach based on benchmark forecasting and aggregation node by node,
we could have considered a meta-model to directly predict the time series vector

(
yg
t

)
gPG

at each round t (with a common forecaster and therefore without any aggregation step).
Once this global forecast would have been obtained, we would have gone straight to the
projection stage. In such a model, the number of variables to be taken into account (the
historical data of the time series but also the exogenous variables specific to each node)
would have been considerable and getting relevant forecasts would have not been an easy
task. But actually, a practical choice motivated our method for the most. Indeed, the
forecasters may be black boxes proper to each node and the exogenous variables of a node
g may be unknown at a node g1. In our experiments, we followed this three-step approach.
However, our method totally operates if, for each node g and at each time step t, an
external expert provides the forecast xg

t . How these features have been obtained is no
longer an issue and the aim is to improve these benchmark forecasts with aggregation and
reconciliation steps. Thus, at each time step t, only the features are reveal at time t and
by skipping the generation of features step, we go straight to the aggregation step.

‹ Third Step: Projection. As the |G| executions of Algorithm A are run in parallel and
independently, the obtained forecast vector ŷt does not necessary respect hierarchical con-
straints. To correct that, we consider the orthogonal projection of ŷt onto the kernel of
K, which we denote by ΠK(ŷt). This updated forecast ỹt

∆
= ΠK(ŷt) fulfills the hierarchical

constraints.
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To sum up, at each round t, we first generate benchmark forecasts – also called fea-
tures – xt. These predictions are then aggregated to form a new vector of forecast ŷt,
which is itself updated in the projection step in ỹt. This procedure is stated in Meta-
algorithm 7. Moreover, we can also directly project the features, skipping the aggregation
step; this leads to the forecasts ΠK(xt) – they are identical to the OLS version of the
MinT algorithm proposed in Wickramasuriya et al. [2019]. Thus, we get four forecasts
(xt, ΠK(xt), ŷt and ỹt) for each node and each round. The performance of our strategies
is measured in mean squared error. In Section 7, we compare these four methods in the
scope of power consumption forecasting.

Protocol 7 Aggregation and projection of features with summation constraints
Input

Set of nodes G and constraint matrix K
Feature generation technique, see Section 5
Aggregation algorithm A taking parameter vector s0, see Section 6

Compute the orthogonal projection matrix ΠK =
(
I|G| ´ KT(KKT)

-1K
)

for g P G do
Create a copy of A denoted by Ag and run with sg

0 = s0
end for
for t = 1, . . . do

Generate features xt

for g P G do
Ag outputs ug

t

end for
Collect forecasts: ŷt = (pyg

t )
T
gPG , where pyg

t = ug
t ¨ xt

Project forecasts: ỹt = ΠK(ŷt)
for g P G do
Ag observes yg

t

end for
Suffer a prediction error 1

|G|

ř

gPG
(
yg
t ´ ryg

t

)2
end for
aim

Minimize the average prediction error

rLT =
1

T

T
ÿ

t=1

1

|G|

›

›yt ´ ỹt

›

›

2
=

1

T |G|

T
ÿ

t=1

ÿ

gPG

(
yg
t ´ ryg

t

)2
.

2.3 Forecast assessment – form of the theoretical guaranties achieved

Our forecasts are linear combinations of the features and are evaluated by the average
prediction error

rLT
∆
=

1

T

T
ÿ

t=1

1

|G|

ÿ

gPG

(
yg
t ´ ryg

t

)2
. (6.1)
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We want to compare our method to constant linear combinations of features. For example,
recalling that, for g P G, xg

t is the benchmark prediction of yg
t , using δg ∆

= 1ti=gu (the
standard basis vector that points in the g direction) as weights should be a good first
choice to define a constant linear combination (for any g P G, this strategy provides
δg ¨ xt = xg

t as forecast for yg
t ). Thus, the matrix

(
δg)

gPG defines a constant benchmark
strategy and its cumulative prediction error is

LT

((
δg)

gPG

)
∆
=

1

T

T
ÿ

t=1

1

|G|

ÿ

gPG

(
yg
t ´ xg

t

)2
.

As soon as the features (xg
t )gPG are well-chosen, this quantity is small. But, these bench-

mark predictions do not satisfy the summation constraints a priori and it won’t be fair to
compare our forecasts (which do respect to hierarchy – projection step ensures it) to these
benchmark forecasts – or any other constant linear combinations of features. Thus, we
introduce, in paragraph 2.3.1, the set C which contains all the constant strategies which
satisfy the hierarchical constraints and we also detail how a such strategy can be repre-
sented by a |G| ˆ |G|-matrix U P C. In paragraph 2.3.2, we decompose, for any U P C,
the average prediction error into an approximation error LT (U) – the average prediction
error of U – and a sequential estimation error ET (U). To achieve almost as well as the
best constant combination of features, we want to obtain some guarantee of the form:

rLT ď inf
UPC

!

LT (U) + ET (U)
)

, where ET (U) = O
( 1

?
T

)
. (6.2)

Indeed, if ET (U) ÝÑ
TÑ+8

0, the average prediction error of our strategy tends to LT (U) –

and classical convergence rate are in 1?
T

(see sections 2.3.2 and 6). We will explain how
this aim is equivalent to minimizing the quantity called regret that we define below.

2.3.1 Class of comparison

We consider here a constant strategy, namely |G| linear combinations of the features. More
formally, let us denote by ug a constant weight vector which provides, for any time step
t, the forecast ug ¨ xt for the time series yg

t . By batching these |G| vectors into a matrix
U ∆

= (ug)gPG P M|G|, predictions satisfy the constraints for a time step t if UTxt P Ker(K).
For it to be true for any t (except for a few particular case – for instance if all features
vector are null), this requires that the image of UT is in the kernel of K. We introduce the
following set of matrices, for which associated forecasts necessarily satisfy the hierarchical
constraints

C ∆
=

!

U =
(
u1

ˇ

ˇ . . .
ˇ

ˇu|G|
) ˇ
ˇ Im

(
UT
)

Ă Ker
(
K
))
.

Note that, for any matrix U P M|G|, by definition of the orthogonal projection ΠK, the
forecast vector ΠKUTxt satisfies the hierarchical relationships so the set C contains the
matrix UΠT

K. This implies that the set C is not empty. To compare our methods to any
constant strategy U P C, we now introduce the common notion of regret.

2.3.2 Aim: regret minimization

We want to compare the average prediction error rLT to LT (U), where U P C so the forecasts
associated with U satisfy the hierarchical constraints – otherwise, the two strategies would
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not be comparable because our predictions do respect the hierarchy. Good algorithms
should ensure that rLT is not too far from the best LT (U). We thus define, for any U =
(ug)gPG P C, the cumulative prediction error of the associated constant linear combinations
of features by

LT (U)
∆
=

1

T

T
ÿ

t=1

1

|G|

ÿ

gPG

(
yg
t ´ ug ¨ xt

)2
=

1

T |G|

T
ÿ

t=1

›

›yt ´ UTxt

›

›

2
.

In order to obtain a theoretical guarantee of the form of Equation (6.2), we decompose
the average prediction error as

rLT = LT (U) +
RT (U)

T |G|
, (6.3)

where, the quantity RT (U), commonly called regret is defined as the difference between
the cumulative prediction error of our method and the one for weights U:

RT (U)
∆
= T |G| ˆ

(
rLT ´ LT (U)

)
=

T
ÿ

t=1

›

›yt ´ ỹt

›

›

2
´

T
ÿ

t=1

›

›yt ´ UTxt

›

›

2
.

In the light of Equation (6.3), the average prediction error rLT we attempt to minimize
breaks down into an approximation error LT (U) (the best prediction error we can hope
for) and a sequential estimation error (dependent of how quickly the model estimate U),
proportional to the regret RT (U). As stated before, the aim for algorithms is that rLT is as
close as possible to minUPC LT (U) (with C the class of comparison defined above), which
is equivalent to maxUPC RT (U) being small. This point of view is very common for online
forecasting methods (see, among others, Devaine et al., 2013 and Mallet et al., 2009),
and for an algorithm to be useful, maxUPC RT (U) need to be sub-linear in T (otherwise
the error remains constant – or even worst: it increases with time). Typical theoretical
guaranties provide bounds of order

?
T (see for example, Deswarte et al., 2019 and Amat

et al., 2018).

2.4 Technical discussion: why we require the same features at each node.

In this section, we explain why we consider the same features vector for each nodes. A
priori, we could have a different set of features at each node xg

t , created with methods
specific to this node. Also the size of feature vector dg associated with the node g could
vary. Prediction of a time series yg

t associated to a dg-vector ug is pyg
t = ug ¨ xg

t . Therefore,
a global constant strategy is a set

 

u1, . . . , u|G|
(

Ă Rd1ˆ¨¨¨ˆd|G| . First it is a little less
practical because unlike the previous setting, the vectors u1, . . . , u|G| and x1, . . . , x|G| are
of different sizes, so it is less easy to use matrix notations. Moreover, it becomes tricky to
specify the class of constant strategies to compare to. As said before, the forecast vector
ŷt = (pyg

t )gPG satisfies the summation constraints if and only if it is in the kernel of K.
Thus, the following set, which contains the constant strategies fulfilling the hierarchical
constraints for all t ą 0,

"(
u1, . . . , u|G|

)
P Rd1ˆ¨¨¨ˆd|G|

ˇ

ˇ

ˇ
@t ą 0,

(
u1 ¨ x1

t , . . . , u|G| ¨ x|G|

t

)T
P Ker

(
K
)*
,

is not explicitly defined and may be empty because of the number of constraints on
(u1, . . . , u|G|) P Rd1ˆ¨¨¨ˆd|G| which increases at each time step. If there is no restrictions on
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the feature vectors, these constraints could be linearly independent, leading to an empty
set. Indeed, if we consider that the times series are connected by K summations relation-
ships, at each time step t, the d1 + ¨ ¨ ¨ + d|G| coefficients of vectors u1, . . . , u|G| are linked
by K equations. As features are proper to each node, theses constraints have no reason
to be dependent, so as soon as T ˆK ą d1+ ¨ ¨ ¨+ d|G|, the above set may likely be empty.
Because of that, it is not clear how to define the regret in this setting. For this reason, we
decided to use the same features vectors xt for all nodes of G; which has also the benefit
of allowing a simpler presentation.

3 Main theoretical result

From now on, let us introduce the following notation concerning the regret bound of
Algorithm A.

Notation 1. We assume that, for any g P G with the initialization parameter vector sg
0,

Algorithm Ag ensures, for T ą 0 and for any ug P R|G|, any x1:T = x1, . . . xT and any
yg
1:T = yg

1, . . . , y
g
T ,

Rg
T (u

g)
∆
=

T
ÿ

t=1

(
yg
t ´ pyg

t

)2
´

T
ÿ

t=1

(
yg
t ´ ug ¨ xt

)2
ď B(x1:T , y

g
1:T , s

g
0,u

g), (6.4)

where B(. . . ) is some regret bound obtained on the aggregation algorithm regret and which
may depend on features x1:T , observations yg

1:T , the vector of weights ug and on the
algorithm parameters sg

0.

Details and examples of these regret bounds are provided in Section 6 that describes
the aggregation algorithms considered in the experiments of Section 7. As getting a linear
bound is trivial (by using the common assumption that prediction errors are bounded),
these bounds have to be sub-linear to be of interest. Referring to the average prediction
error decomposition of Equation (6.3), the sub-linearity ensures that the sequential esti-
mation error Rg

T (ug)/T tends to 0. This notation makes it possible to establish a bound
of the cumulative regret.

Theorem 9. Under Notation 1, for any matrix U P C and any T ě 1,

RT (U) =
T
ÿ

t=1

›

›yt ´ ỹt

›

›

2
´

T
ÿ

t=1

›

›yt ´ UTxt

›

›

2
ď

ÿ

gPG
B
(
x1:T , y

g
1:T , s

g
0,u

g).
The regret RT (U) is not just the sum over all the nodes of the regrets Rg

T (ug) of Equa-
tion (6.4). Indeed, we do not evaluate here the forecasts ŷt but those obtained after the
projection step: ỹt. The projection step provides a diminishing of the square prediction
error and we just have to sum Equation (6.4) on all nodes to get the bound.

Proof. This regret bound results from two main arguments: Pythagorean theorem, on
the one hand, and Notation 1, on the other hand. For any t ě 1, as yt P Ker(K), the
Pythagorean theorem ensures

›

›yt ´ ỹt

›

›

2
=

›

›yt ´ ΠK(ŷt)
›

›

2
ď

›

›yt ´ ŷt

›

›

2
. (6.5)
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Let us fix a matrix U =
(
u1| . . . | u|G|

)
P C. Firstly, the application of Pythagorean theorem

ensures that the projection step reduces regret. Rewriting the regret as a sum over the
nodes, we then use Notation 1 independently for each node of G to conclude the proof.

RT (U) =
T
ÿ

t=1

›

›yt ´ ỹt

›

›

2
´

T
ÿ

t=1

›

›yt ´ UTxt

›

›

2

(6.5)
ď

T
ÿ

t=1

›

›yt ´ ŷt

›

›

2
´

T
ÿ

t=1

›

›yt ´ UTxt

›

›

2

=
ÿ

gPG

T
ÿ

t=1

(
yg
t ´ pyg

t

)2
´

ÿ

gPG

T
ÿ

t=1

(
yg
t ´ ug ¨ xt

)2
=

ÿ

gPG
Rg

T

(
ug)

(6.4)
ď

ÿ

gPG
B
(
x1:T , y

g
1:T , s

g
0,u

g).

Note that similar results, also based on Pythagorean theorem, have been obtained in
Panagiotelis et al. [2020] (see Theorem 3.1).

Remark 21. For an initialization parameter vector sg
0, and a subset D Ă R|G|, some

aggregation algorithms provide a uniform regret bound of the following form:

Rg
T (D)

∆
=

T
ÿ

t=1

(
yg
t ´ pyg

t

)2
´ min

ugPD

T
ÿ

t=1

(
yg
t ´ ug ¨ xt

)2
ď B

(
xg
1:T , y

g
1:T , s

g
0

)
.

In this case, let us introduce, for any subset B Ă M|G|, the subset B|D
∆
=

 

U P B | @g P

G, ug P D
(

. Then, we bound the cumulative regret RT (D) defined just below with

RT (D)
∆
= max

UPC|D
RT (U).

With the same previous arguments we get the uniform regret bound

RT (D) =
T
ÿ

t=1

›

›yt ´ ỹt

›

›

2
´ min

UPC|D

T
ÿ

t=1

›

›yt ´ UTx
›

›

2
ď

ÿ

gPG
B
(
xg
1:T , y

g
1:T , s

g
0

)
.

4 On one operational constraint: half-hourly predictions
with one-day-delayed observations

In this section, we highlight the differences between the previous theoretical setting and the
practical setting of our experiments and how these changes affect the regret bound. In Sec-
tion 7, we aim to forecast power consumptions at half-hourly intervals. Meta-algorithm 7
makes the implicit assumption that historical time series values are available and to fore-
cast at a time step t, we can use y1:t´1. We thus assume that very recent past observations,
up to half an hour ago, would be available – and it is not realistic at all. Indeed, there is
some operational constraints on the power network and on meters that make it difficult to
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instantly access the data: it is common to obtain load records with a delay of a few hours
or even a few days. Although this delay is becoming shorter with the deployment of smart
meters and the evolution of grids, we cannot consider we have access to the consumption
of the previous half-hour. To take into account these operational constraints and to carry
out experiments under practical conditions, we make the classic assumption that we have
access to consumptions with a delay of 24 hours (see among others Fan and Hyndman,
2012 and Gaillard et al., 2016). As now, only past observations y1:t´H are available at a
time step t, with H = 48, we adapt the previous method a bit.

As we will see in Section 5, the half-hour of the day is a crucial variable for power con-
sumption forecasting and to obtain relevant forecasts, we will consider the consumption
of the previous day at the same half-hour (but never the one of the previous half-hour).
Thus the delay in the access to consumption observation is not an issue for feature gen-
eration. But it becomes especially problematic for online learning (in our experiments,
features are generated offline with models trained on historical data). Indeed, in the ag-
gregation step of our method, we assume to observe, for each node g and at each time
step t, the consumption yg

t´1 – that is not possible anymore. To deal with this issue we
initially considered two solutions. In our first approach, for any g P G, the time series (yg

t )
is divided into H time series with daily time steps. Then, H aggregations are done in
parallel and, as t´ 1 now refers to the previous day, there is no more delay issue. The H
series are then collected to reconstruct a time series at half-hour time step. For a constant
strategy ug, the regret of the global aggregation Rg

T (ug) is simply the sum of the H regrets
– that refer to the H aggregation run in parallel on the H daily time series – denoted by(
Rgh

T/H(ug)
)
1ďhďH

, so we have

Rg
T (u

g) =
H
ÿ

h=1

Rgh
T/H(ug).

If we consider an aggregation algorithm that ensures a bound of the form of Notation 1
where the bound B depends only on the horizon time – namely, R ď B for all h – the
regret associated with the half-hourly time series (yg

t ) satisfies:

Rg
T (u

g) ď H ˆB(T/H).

Joulani et al. [2013] provide an overview of work on online learning under delayed feedback
and for our framework, which refers to full information setting with general feedback. The
bound above matches their results. In a second approach, we “ignore” the delay in a
sense that we apply the aggregation algorithms as if the delayed observations yt´H were
yt. Thus, in Meta-algorithm 7, at each node g and any time step t, instead of outputting
the forecast yg

t = ug
t ¨ xt, algorithm Ag outputs yg

t = ug
t´H ¨ xt. For simplicity of notation,

the aggregation algorithms of Section 6 are presented in their original version, namely
assuming that observations at t´ 1 are available at a time step t. Such adaptations have
already been tested: Algorithm 15 of Gaillard [2015] gives a delayed version of Algorithm 7
that we also use in Section 7. After testing both approaches, we kept the second one,
which achieves a much better performance. Our choice was also supported by Chapter 9
of Gaillard [2015] experiments, which drew similar conclusions.
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5 Generation of the features

Here we describe the forecasting methods we use in the experiments of Section 7 to gen-
erate the benchmark predictions that will be used as features in the sequel. We recall
(see Section 2) that throughout this work, we consider that, at each node g P G and for
any time step t, a forecaster provides a benchmark prediction xg

t based on historical data
of the time series (yg

t )gPG and on exogenous variables relative to the node g. These |G|

forecasters independently generate the |G| forecasts (xg
t ) in parallel and the set of features

xt is made up of the above |G| benchmark predictions. Forecasts can be the output of any
predictive model. In the experiments of Section 7, we consider three forecasting methods,
that are described in the following Subsections 5.1, 5.2 and 5.3.

Notation. Subsections 5.1 and 5.2 present parametric methods. For any parameter a of
the model, we will denote by pa its estimation (no matter the method we use).

5.1 Auto-regressive model

A simple approach consists in considering an auto-regressive model. Let us fix g P G and
assume that, to predict the time series (yg

t )tą0, we have access to historical observations.
For a time step t, the model specifies that the output variable yg

t depends linearly on its
own previous values. In Section 7, we consider the power consumption at half-hourly inter-
vals. For a time step t, to forecast the time series yg

t we assume to have access to the power
consumption at D-1 and D-7, which correspond to yg

t´H and yg
t´7ˆH , respectively. We pre-

dict the consumption half-hour by half-hour thanks to linear models taking as explanatory
variables its values at D-1 and D-7. We assume that these H auto-regressive models have
the same coefficients. Thus, for this modeling, the power consumption associated with the
node g equals

yg
t = ag

1y
g
t´H + ag

7y
g
t´7ˆH + noise .

For each g P G, we estimate the coefficients ag
1 and ag

7 using ordinary least squares regres-
sion on a training data set. Therefore, at a new round t, we predict

xg
t = pag

1y
g
t´H + pag

7y
g
t´7ˆH .

5.2 General additive model

Generalized additive models are effective semi-parametric approaches to forecast electric-
ity consumption (see Chapter 3). They model the power demand as a sum of independent
exogenous (possibly non-linear) variable effects. We describe this model using the specifi-
cation we chose in our experiments. In Section 7, for a node g P G, we take into account
some local meteorological variables at the half-hour time step: the temperature τg and
the smoothed temperature τ̄g, the visibility νg, and the humidity υg. For round t, we also
introduce calendar variables: the day of the week dt (equal to 1 for Monday, 2 for Tuesday,
etc.), the half-hour of the day ht P t1, ..., Hu and the position in the year πt P [0, 1], which
takes linear values between πt = 0 on January 1st at 00:00 and πt = 1 on December the
31st at 23:59. As the effect of the half-hour ht is crucial to forecast load, it is often more
efficient to consider a model per half-hour (see Fan and Hyndman, 2012 and Goude et al.,
2014). The global model is then the sum of H daily models, one for each half-hour of the
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day. More precisely, we consider the following additive model for the load, which breaks
down time by half hours:

yg
t =

H
ÿ

h=1

1ht=h

[
ag
hy

g
t´7ˆH + sg

1,h

(
yg
t´H

)
+ sg

τ,h(τ
g
t ) + sg

τ̄ ,h(τ̄
g
t ) + sg

ν,h(ν
g
t )

+ sg
υ,h(υ

g
t ) +

7
ÿ

d=1

wg
d,h1dt=d + sg

π,h(πt)
]
+ noise.

The sg
1,h, sg

τ,h, sg
τ̄ ,h, sg

ν,h, sg
υ,h and sg

π,h functions catch the effect of the consumption lag, the
meteorological variables and of the yearly seasonality. They are cubic splines: C2-smooth
functions made up of sections of cubic polynomials joined together at points of a grid. The
coefficients ag

h and wg
d,h model the influence of the consumption at D-7 and of the day of the

week. Indeed, we consider a linear effect for the consumption at D-7 (it achieved a better
performance than a spline effect in our experiments) and as the day of the week takes only
7 values, we write its effect as a sum of indicator functions, and thus 7 coefficients wg

d,h

are considered. As we consider a model per half-hour, all the coefficients and splines are
indexed by h. To estimate each model, we use the Penalized Iterative Re-Weighted Least
Square (P-IRLS) method Wood, 2006, implemented in the mgcv R-package (see Wood,
2020), on a training data set. At any node g P G, for a new round t, we then output the
forecast

xg
t =

H
ÿ

h=1

1ht=h

[
pag
hy

g
t´7ˆH + psg

1,h

(
yg
t´H

)
+ psg

τ,h(τ
g
t ) + psg

τ̄ ,h(τ̄
g
t ) + psg

ν,h(ν
g
t )

+ psg
υ,h(υ

g
t ) +

7
ÿ

d=1

ŵd,h1dt=d + psg
π,h(πt)

]
.

5.3 Random forests

Random forests form a powerful learning method for classification and regression that
constructs a collection of decision trees from training data and output, for each new data
point, the mean prediction of the individual trees. Introduced by Breiman [2001], theses
approaches operate well on many applications. Recent work demonstrates their efficiency
in forecasting power consumption (see, among others Goehry et al., 2019 and Fan and
Hyndman, 2012). A random forest is made up of a set

(
T g
k

)
1ďkďK

of decision trees grown
in the following way (see Breiman et al., 1984 for further details). For each k = 1, . . . ,K,
we first randomly draw, with replacement, n points from the training data set and start
at the root, that contains all the points of the sub-sample. At each node N with more
than m data points, V variables are randomly selected among the exogenous variables.
Given a variable v P V and a threshold s, each point of the node N is assigned to the
left daughter node NL if its value in v is lower than s or to the right daughter node NR

otherwise. Considering only these V variables, the best split – given by a pair (v, s) of
variable and an associated threshold – to separate the points into two set NL and NR is
determined by minimizing the variance criterion indicated below. For any node N let us
define the variance Var(N ) by

Var(N )
∆
=

1

|N |

ÿ

iPN

(
yg
i ´ ȳg

N
)2
, with ȳg

N
∆
=

1

|N |

ÿ

iPN
yg
i .
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Each node N is split in the two daughter nodes N ‹

R and N ‹

L (determined by the choice of
v and s) minimizing the following criterion(

N ‹

R,N
‹

L

)
P argmin

NR,NL

|NR|

n
Var

(
NR

)
+

|NL|

n
Var

(
NL

)
. (6.6)

Thus, we create a binary test to split the points of the node. When all the leaves contain
fewer than m points, we associate with each leaf the mean of its data points. For a
new point, we look at the values of its variables. For each k = 1, . . . ,K, we browse the
tree T g

k and predict the value of the corresponding leaf. The K resulting forecasts are
then averaged out. Algorithm 4 describes the above procedure and is implemented in the
ranger R-package. In the experiments of Section 7, we take n equal to the number of

Algorithm 4 Random Forest for Regression
Parameters

Number of trees K
Sample size n
Minimal node size m
Number of variables to possibly split at in each node V

for k = 1, . . . ,K do
Draw a sample (with replacement) of size n from training data
Construct the tree Tk starting at the root with all the n data points
while a leaf contains more than m data points do

for each leaf of more than m data points do
Select V variables
Split the node into two nodes using the variance criterion (6.6) among the chosen
variables

end for
end while

end for
Output

(
T g
k

)
1ďkďK

Prediction at a new data point
Mean of the K forecasts output by the trees

(
T g
k

)
1ďkďK

data points in the training set, m = 5 and K = 500 (default parameters of ranger). The
number V has been optimized by grid search; what we obtained is that, for each node,
we keep two-thirds of the variables to split it (these variables are the same as the ones
described in the previous section). With

(
Tk
)
1ďkďK

, the trees constructed by Algorithm 4
run on a training data set, the forecast of any node g P G, at a new round t, is then

xg
t =

1

K

K
ÿ

k=1

T g
k

(
yg
t´7ˆH , y

g
t´H , τ

g
t , τ̄

g
t , ν

g
t , υ

g
t , πt, dt, ht

)
.

6 Aggregation algorithms
This section describes the three aggregation algorithms we use in the experiments of
Section 7. At a time step t, for a node g P G, a copy Ag of an aggregation algorithm A
takes the feature vector xt (generated with one of methods of the previous section) as an
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input and outputs the forecast pyg
t = ug

t ¨ xt. Therefore, to forecast the node g, we use xt,
which contains the predictions of all the nodes (including that of the considering node).
We remind that the features

(
xg
t

)
gPG are generated independently with possibly different

exogenous variables but that the observations
(
yg
t

)
gPG may be strongly correlated. This

is why we consider aggregation to refine some forecasts by combining the features. Our
experiments demonstrate that this aggregation step improves the forecasts. Subsection 6.1
presents a trick to empirically standardize the features and the observations first. On the
one hand, this preprocessing justifies boundedness assumptions (see Assumption 8) on
observations and features, that ensure some theoretical guaranties of the form requested
by Notation 1. On the other hand, this preprocessing simplifies hyper-parameters search
(for the aggregation step) as we can choose the same for every series since they have similar
statistics (scale and variance). Following Subsections 6.2 and 6.3 introduce the aggregation
algorithms and some technical tricks implemented in the experiments of Section 7.

6.1 Standardization

In empirical machine learning, it is known that standardizing observations and features
may significantly improve results, and sequential learning is no exception (see Gaillard
et al., 2019). In addition, standardization makes the calibration of the parameters of the
algorithm common to all the nodes, namely for each algorithm Ag, we choose the hyper-
parameters sg

0 = s̆0. We can do so, because thanks to the preprocessing below, features
and observations will be of the same order. Let us fix g P G and t ą 0. We consider the
following transformations, relying on statistics Sg and Ĕ computed on T0 historical time
steps:

yg
t Ñ y̆g

t
∆
=

yg
t ´ xg

t

Sg Observations tranform

xt Ñ x̆t
∆
= Ĕxt Features transform

with Sg = max
1´T0ďtď0

|yg
t ´ xg

t | and Ĕ ∆
=

(
1

T0

0
ÿ

t=1´T0

xt xT
t

)´1/2

.

We thus assume that the Gram matrix 1
T0

ř0
t=1´T0

xtxT
t is invertible, which is a reasonable

assumption as soon as T0 is large enough – otherwise, we could use the pseudo-inverse
of the Gram matrix. Our standardization process differs from the usual methods (see
details below) but it provides the theoretical guaranties set out below. Furthermore, it
makes sense for the following reasons. Fixing g P G, when features and observations are
bounded, Sg is an estimation of a bound on yg

t ´ xg
t . The re-scaling of (yg

t ´ xg
t ) by Sg

should provide transformed observations lying in [´1, 1] or a some neighboring range. It
also reduces and homogenizes the variances for all the nodes. A simple example may illus-
trate this variance reduction. For deterministic features, the variance of non-transformed
observations satisfy Var

(
yg
t

)
= Var

(
yg
t ´ xg

t

)
. The variance of standardized observations

is then divided by
(
Sg)2 and we have Var

(
y̆g
t

)
= Var

(
yg
t

)
/
(
Sg)2. For T0 large enough, the

variance of transformed observations should be less than 1. Indeed, with high probability,
the maximum of the absolute values of the random variable (yg

t ´ xg
t ) on t = 1 ´ T0, . . . , 0

(which is Sg), is higher than its standard deviation
a

Var(yg
t ) and thus (Sg)2 ą Var

(
yg
t

)
.

Moreover, the expectation of (yg
t ´ xg

t ) should be close to 0 as soon as the features are
correctly generated. Indeed, the more the benchmark forecast are relevant, the more the
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observations are re-centered. Concerning the features, our standardization is classic in the
case of centered features. The matrix Ĕ2 would then be an estimation of the inverse of the
co-variance matrix of vectors xt, and the multiplication of the features by Ĕ would provide
transformed features whose co-variance matrix is close to the identity matrix. Here, we do
not recenter observations and features with some empirical mean as it is classically done
(this would be unconvenient for our regret analysis). Anyway, Subsection 7.3 provides
some experimental results which confirm that our preprocessing standardizes reasonably
well observations and features. Moreover, we tested classical standardization (with re-
centering) on features and obtained results similar to those presented in Section 7 (but,
as hinted at above, no theoretical guaranties would be associated with this classical stan-
dardization).

We run Algorithm Ag on transformed features and observations with the initialization
parameter vector s̆0 (which does not depend on g) and obtain a standardized prediction
at node g, denoted by ȳg

t . Then, we transform this output to get the (non-standardized)
forecast

pyg
t

∆
= Sgȳg

t + xg
t .

For any vector ŭg P R|G|, we introduce the standardized regret associated with transformed
observations and features, denoted by R̆g

T (ŭg) as:

R̆g
T (ŭ

g)
∆
=

T
ÿ

t=1

(
y̆g
t ´ ȳg

t

)2
´

T
ÿ

t=1

(
y̆g
t ´ ŭg ¨ x̆t

)2
=

T
ÿ

t=1

(
yg
t ´ xg

t

Sg ´
pyg
t ´ xg

t

Sg

)2

´

T
ÿ

t=1

(
yg
t ´ xg

t

Sg ´ ŭg ¨
(
Ĕxt

))2

=
1(
Sg
)2 T

ÿ

t=1

(
yg
t ´ pyg

t

)2
´

1(
Sg
)2 T

ÿ

t=1

(
yg
t ´

(
xg
t + Sg(Ĕŭg) ¨ xt

)
looooooooooomooooooooooon

ug¨xt

)2

.

In the equations above, we define ug ∆
= δg + SgĔŭg) where δg ∆

= (1ti=gu)iPG denotes the
standard basis vector that points in the g direction. Equivalently, ŭg = Ĕ´1

(ug ´ δg)/Sg,
so there is a bijective correspondence between the vectors ug and ŭg. Therefore, by noticing
that xg

t = δg ¨ xt, the regret associated with original features and observations is related
to the regret of transformed data by the following equation:

R̆g
T (ŭ

g) =
1(
Sg
)2 T

ÿ

t=1

(
yg
t ´ pyg

t

)2
´

1(
Sg
)2 T

ÿ

t=1

(
yg
t ´ ug ¨ xt

)2
=
Rg

T (ug)(
Sg
)2 .

Furthermore, as for any ŭ P R|G|, Notation 1 ensures

R̆g
T (ŭ

g) =
T
ÿ

t=1

(
y̆g
t ´ ȳg

t

)2
´

T
ÿ

t=1

(
y̆g
t ´ ŭgTx̆t

)2
ď B

(
x̆1:T , y̆

g
1:T , s̆0, ŭ

g) ,
Combining the two previous equations yields the following proposition.

Proposition 3. For any g P G and any ug P R|G|, if Notation 1 holds for Algorithm Ag run
on transformed observations and features y̆g

1:T and x̆1:T , with the initialization parameter
vector s̆0, we have, for T ą 0,

Rg
T

(
ug) ď

(
Sg)2 B

(
x̆1:T , y̆

g
1:T , s̆0, ŭ

g) where ŭg = Ĕ´1
(ug ´ δg)/Sg.

184



O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

Throughout the section, without loss of generality and to simplify the notation, we now
replace the features and observations with the standardized ones. Thus, we will write yg

t

for y̆g
t , xt for x̆t and so on. Moreover, we make the following assumption on the bounded-

ness of features and observations.

Assumption 8 – Boundedness assumptions. For any t ą 0 and any g P G we assume
that there is a constant C ą 0 such that

|yg
t | ď C and |xg

t | ď C.

Some boundedness assumptions on features and observations are frequently required to es-
tablish theoretical guaranties. Here, the constant is common to all the nodes. Practically,
this assumption makes sense because of the previous transformations. As explained above,
it centers and normalizes observations and features. Subsection 7.3 presents statistics on
features and observation before and after standardization and indicates possible values of
the constant C.

In the two next subsections, we introduce the aggregation algorithms we implemented
in Section 7. We recall that, for any g P G, at a round t, the algorithm Ag provides
a weight vector ug

t and thus forecasts yg
t with ug

t ¨ xt. In Subsection 6.2, we consider a
linear aggregation algorithm: there is no restriction on the computed weight vectors. In
Subsection 6.3, the two algorithms output convex combinations of features: the weight
vectors are in the |G|-simplex denoted by ∆|G|. However, there is no reason to consider
such a restriction and this is why the last paragraph of the subsection presents a trick
to extend the previous algorithms to output linear combinations of features for which the
weight vectors are in a L1-ball. Thus, there are no longer restrictions on the sum or the
sign of the weights.

6.2 Linear aggregation: sequential non-linear ridge regression

The first aggregation algorithm that we consider is the sequential non-linear ridge regres-
sion of Vovk [2001] and Azoury and Warmuth [2001]. So, for any g P G, Algorithm Ag

refers here to Algorithm 5 run with regularization parameter s0 = λ. For any time step
t ě 2, this algorithm, chooses vectors ug

t as follow:

ug
t P argmin

ugPRd

t´1
ÿ

s=1

(
yg
s ´ ug ¨ xs

)2
+
(
ug ¨ xt

)2
+ λ}ug}2. (6.7)

The solution of this minimization problem is given by:

ug
t =

(
λ
(
1ti=ju

)
(i,j)PG2 +

t
ÿ

s=1

xsxT
s

):
t´1
ÿ

s=1

yg
sxs,

where A: denotes the pseudo-inverse of the matrix A. Algorithm 5 provides a sequential
implementation of the solution of this convex minimization problem. The above non-linear
ridge regression is a penalized ordinary least-squares regression. Since the features may
be strongly correlated, the least squares estimator, ug

t P argminugPRd

řt´1
s=1

(
yg
s ´ ug ¨ xs

)2,
could lead to very large prediction if a new features vector belongs to an eigenspace of the
empirical gram matrix associated to a small value. The regularization term λ}ug}2 ensures
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Algorithm 5 Non-Linear Sequential Ridge Regression
aim

Predict the time series
(
yg
t

)
1ďtďT

parameter Regularization parameter λ ą 0
initialization A0 = λ

(
1ti=ju

)
(i,j)PG2 and b0 = (0, . . . , 0)T

for t = 1, . . . , T do
Update matrix At = At´1 + xtxT

t

Compute the vector ug
t = A´1

t bt´1

Output prediction pyg
t = ug

t ¨ xt

Update vector bt = bt´1 + yg
t xt

end for

that eigenvalues of the empirical gram matrix are not too small. We then add the regular-
ization term

(
ug ¨xt

)2 which is the last term of the cumulative prediction error (yg
t ´ug ¨xt

)2
where we have replaced unknown yg

t by our best guess 0. It is known to improve the regret
bound (see Vovk, 2001 and Gaillard et al., 2019). In our case (standardized targets), it
particularly makes sense because it biases predictions towards 0; which, because of the
standardization, biases aggregated predictions towards benchmark predictions.

Under Assumption 8, for any vector ug P R|G|, with the algorithm Ag set to the non-
linear ridge regression (6.7) run with regularization parameter λ, Theorem 11.8 of the
monograph Prediction, Learning, and Games by Cesa-Bianchi and Lugosi [2006] or The-
orem 2 of Gaillard et al. [2019] provide the following theoretical guaranties:

Rg
T (u

g) ď λ}ug}2 + |G|C2 ln
(
1 +

C2T

λ

)
.

So, for any U =
(
u1| . . . |u|G|

)
P C, as

›

›U
›

›

2

F
=

ř

gPG }ug}2, Theorem 9 ensures

RT (U) =
ÿ

gPG
Rg

T (u
g) ď λ

›

›U
›

›

2

F
+ |G|2C2 ln

(
1 +

C2T

λ

)
= O

(
|G|2 lnT

)
.

That is, since the sequential non-linear ridge regression provides a logarithmic regret
bound, Meta-algorithm 7 achieves a bound of the same order.

6.3 Convex aggregation

We focus here on uniform bounds and use notation introduced in Remark 21. The follow-
ing two algorithms were initially designed to compete against the best feature. Namely,
for a node g P G, the Bernstein online aggregation (BOA, see Wintenberger, 2017) and
polynomially weighted average forecaster with multiple learning rates (ML-Pol, see Gail-
lard, 2015) provide some bound on the difference between the cumulative prediction error
Lg
T

∆
=

řT
t=1

(
yg
t ´pyg

t

)2 of the strategy and miniPG
řT

t=1

(
yg
t ´ xit

)2. At each time step t, both
strategies compute weight vector ug

t =
(
ug i
t

)
iPG based on historical data. These vectors are

in the |G|-simplex, which we denote by ∆|G|. For each feature i P G, the weight ug i
t is, for

BOA, an exponential function of a regularized cumulative prediction error of the feature xit
and, for ML-Pol, a polynomial function of the cumulative prediction error of xit. However,
by using gradients of prediction errors instead of the original prediction errors the average
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error of these algorithms may come close to minugP∆|G|

1
T

řT
t=1

(
yg
t ´ ug¨xt

)2. This “gradient
trick” (see Cesa-Bianchi and Lugosi, 2006, Section 2.5) is presented in the next paragraph
and is already integrated in the statements of the algorithms below. Moreover, for both
algorithms, the computed weight vectors are in ∆|G|. As we do not necessarily want to
impose such a restriction, we use another trick, introduced by Kivinen and Warmuth
[1997] and presented in the last paragraph. It extends the class of comparison from the
|G|-simplex to an L1-ball of radius α denoted by Bα

∆
=

 

ug P R|G|
ˇ

ˇ }u}1 =
ř

iPG |ug i| ď α
(

.
The aim is then to come close to the cumulative error minugPBα

řT
t=1

(
yg
t ´ ug ¨ xt

)2.
‹ Gradient Trick: from the best feature to the best convex combination of features. We
consider an aggregation algorithm that takes as input, at any time step t+1, the previous
prediction errors of each feature (yg

t ´ xit)
2, for any i P G, and that of the forecast outputs

at t: (yg
t ´ pyg

t )
2. Although this trick generalizes to various prediction errors, we focus here

to its application in our case, namely the quadratic prediction error. We assume that the
algorithm provides a bound on the quantity (see notation of Remark 21)

Rg
T

(
δ|G|

) ∆
=

T
ÿ

t=1

(yg
t ´ pyg

t )
2 ´ min

iPG

T
ÿ

t=1

(yg
t ´ xit)

2 .

where δ|G|
∆
=

 

(δi)iPG
(

is the set of canonical basis vectors (so we have δi ¨ xt = xit). The
gradient trick consists in giving, instead of the prediction errors (yg

t ´ pyg
t )

2 and (yg
t ´ xit)

2,
for any i P G, the pseudo prediction errors functions defined below as input to algorithm
Ag. This will provide a bound on the pseudo regret denoted by rRg

T

(
δ|G|

)
. We will prove

that the same bound is achieved for the minimum of Rg
T (ug) taken over ug P ∆|G| (and

not only δ|G|), namely Rg
T

(
∆|G|

)
. We detail here how the trick works and gives:

Rg
T

(
∆|G|

)
ď rRg

T

(
δ|G|

)
.

Let us fix a vector ug =
(
ug i
)
iPG P ∆|G|, we have for each t = 1, . . . , T(

yg
t ´ pyg

t

)2
´
(
yg
t ´ ug ¨ xt

)2
=
(
2yg

t ´ pyg
t ´ ug ¨ xt

)(
ug ¨ xt ´ pyg

t

)
= 2
(
pyg
t ´ yg

t

)(
pyg
t ´ ug ¨ xt

)
´
(
pyg
t ´ ug ¨ xt

)2
ď 2
(
pyg
t ´ yg

t

)(
pyg
t ´ ug ¨ xt

)
. (6.8)

By plugging this equation into the definition of the regret, we obtain

Rg
T

(
ug) ∆

=
T
ÿ

t=1

(yg
t ´ pyg

t )
2 ´

T
ÿ

t=1

(yg
t ´ ug ¨ xt)

2

(6.8)
ď

T
ÿ

t=1

2
(
pyg
t ´ yg

t

)(
pyg
t ´ ug ¨ xt

)
=

T
ÿ

t=1

2
(
pyg
t ´ yg

t

)
pyg
t ´

T
ÿ

t=1

ÿ

iPG
ug i2

(
pyg
t ´ yg

t

)
xit.

As ug belongs to the |G|-simplex (so @i P G, ug i ě 0 and
ř

iPG u
g i = 1), we get:

ÿ

iPG
ug ixit ě min

jPG
xjt

ÿ

iPG
ug i = min

jPG
xjt

Therefore, for any vector ug P ∆|G|, the regret Rg
T

(
ug) is bounded by

Rg
T

(
ug) ď

T
ÿ

t=1

2
(
pyg
t ´ yg

t

)
pyg
t ´ min

jPG

T
ÿ

t=1

2
(
pyg
t ´ yg

t

)
xjt

∆
= rRg

T

(
δ|G|

)
.
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Thus, we now give the pseudo prediction errors associated with each feature 2
(
pyg
t ´ yg

t

)
xit,

with i P G, and with the output forecast 2
(
pyg
t ´ yg

t

)
pyg
t as input to algorithm Ag. It

provides a bound on the pseudo regret defined above rRg
T

(
δ|G|

)
; and we get the same

bound on Rg
T

(
∆|G|

)
. As a final note, we emphasize that Assumption 8 allows to establish

that pseudo prediction errors 2(pyg
t ´yg

t )x
i
t are bounded by 4C2. Indeed, for any (g, i) P G2,

they ensure |yg
t | ď C and |xit| ď C. In addition, as ug

t P ∆G , the output forecasts pyg
t = ug

t ¨xt

are also bounded by:

|pyg
t | =

ˇ

ˇ

ˇ

ˇ

ÿ

jPG
ug j
t xjt

ˇ

ˇ

ˇ

ˇ

ď
ÿ

jPG
ug j
t

ˇ

ˇxjt
ˇ

ˇ ď
ÿ

jPG
ug j
t C = C.

Hence, for any i P G, the pseudo prediction error associated with feature i satisfies
ˇ

ˇ2
(
pyg
t ´ yg

t

)
xit
ˇ

ˇ ď 4C2. (6.9)

‹ Bernstein Online Aggregation. Wintenberger [2017] introduces an aggregation procedure

Algorithm 6 Fully adaptive Bernstein Online Aggregation (BOA) with gradient trick
aim

Predict the time series
(
yg
t

)
1ďtďT

parameter Bound on pseudo prediction errors E:
for any t = 1, . . . , T and any i P G, |2(pyg

t ´ yg
t )x

i
t| ď E

initialization
ug
1 = (1/|G|, . . . , 1/|G|)
pyg
1 = ug

1 ¨ x1

For i P G, rRg i
0 = 0

For i P G, ηg i
0 = 0

for t = 1, . . . , T ´ 1 do
For each i P G, update the cumulative quantity rQg i for feature i

rQg i
t = rQg i

t´1 + rr g i
t

(
1 + ηg i

t´1rr
g i
t

)
where rr g i

t
∆
= 2(pyg

t ´ yg
t )(py

g
t ´ xit)

For each i P G, compute the learning rate

ηg i
t = min

#

1

2E
,

d

log |G|
řt

s=1

(
rr g i
t

)2
+

Compute the weight vector ug
t+1 = (ug i

t+1)iPG defined as

ug i
t+1 =

exp
(
ηg i
t

rQg i
t

)
ř

jPG exp
(
ηg j
t

rQg j
t

)
Output prediction pyg

t+1 = ug
t+1 ¨ xt+1 =

ř

iPG u
g i
t+1x

i
t+1

end for

called Bernstein Online Aggregation for which weights are exponential function of the
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cumulative prediction errors. Algorithm 6 describes this strategy combined with this
gradient trick. Let us fix a node g P G and set Ag to Algorithm 6 which takes as input the
bound E on pseudo prediction errors (E = 4C2 is a suitable choice):

@t = 1, . . . , T, @i P G, 2(pyg
t ´ yg

t )x
i
t ď E.

Theorem 3.4 of Wintenberger, 2017 ensures that

Rg
T (∆|G|) ď

?
T + 1E

(
a

2 ln |G|
?
2 ´ 1

+
ln(1 + 2´1 lnT )

a

ln |G|

)
+ E

(
2 ln |G| + 2 ln(1 + 2´1 lnT ) + 1

)
À O

(?
T ln lnT

)
. (6.10)

Thanks to Equation (6.9), we replace E by 4C2 in Equation (6.10) and we get, for each
node g P G, an upper bound on Rg

T (∆|G|). By applying Theorem 9, we obtain the following
uniform regret bound:

RT (∆|G|) À O
(

|G|
?
T ln lnT

)
,

which is of order
?
T (up to poly-logarithmic terms).

‹ Polynomially Weighted Average Forecaster. Gaillard et al. [2014] consider an aggregation
method based on weights that are polynomial functions of the cumulative prediction errors.
We use this procedure combined with the gradient trick and present it in Algorithm 7.
In this description, (x)+ denotes the vector of non-negative parts of the components of x.
With the same notation as in the previous paragraph, for any node g P G, Theorem 5 of
Gaillard et al. [2014] provides the following regret bound:

Rg
T (∆|G|) ď E

b

|G|(T + 1)
(
1 + ln(1 + T )

)
. (6.11)

With E ď 4C2 and by applying Theorem 9, we obtain an upper bound on the uniform
regret RT (∆|G|), which is also of order

?
T (up to poly-logarithmic terms):

RT (∆|G|) ď 4C2|G|

b

|G|(T + 1)
(
1 + ln(1 + T )

)
À O

(
|G|3/2

?
T lnT

)
.

6.4 A scheme to extend the class of comparison from the simplex to an
L1-ball

For the previous two algorithms, we obtained an upper bound on Rg
T (∆|G|). However, there

is no reason for the best linear combination of features to be convex. Algorithm 8 presents
a trick introduced by Kivinen and Warmuth [1997] which extends the class of comparison
from the |G|-simplex to an L1-ball of radius α ą 0 denoted by Bα and provides a bound
on Rg

T (Bα). Let us fix a node g P G. The trick consists in transforming, at each round t,
the feature vector xt into the 2|G|-vector x̄t = (αxt| ´ αxt), where | is the concatenation
operator between vectors. The algorithm Ag is then run with these new features and it
outputs the weight vector ūg

t P ∆2|G|. Finally, a |G|-vector ug
t P Bα is computed from ūg

t

to provide the forecast ug
t ¨ xt = ūg

t ¨ x̄t. We will actually see that we may associate any
|G|-vector u P Bα with a vector ū P ∆2|G| such as ū ¨ x̄t = u ¨ xt; the trick actually defines

189



O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

O
n
li
n
e
H
ie
ra
rc
h
ic
al

F
or
ec
as
ti
n
g

Algorithm 7 Polynomially weighted average forecaster with Multiple Learning rates
(ML-Pol) and gradient trick

aim
Predict the time series

(
yg
t

)
1ďtďT

parameter Bound on pseudo prediction errors E:
for any t = 1, . . . , T and any i P G, |2(pyg

t ´ yg
t )x

i
t| ď E

initialization
ug
1 = (1/|G|, . . . , 1/|G|)
pyg
1 = ug

1 ¨ x1

For i P G, rRg i
0 = 0

For i P G, ηg i
0 = 0

for t = 1, . . . , T ´ 1 do
For each i P G, update the cumulative pseudo-regret of feature i

rRg i
t = rRg i

t´1 + rr g i
t where rr g i

t
∆
= 2(pyg

t ´ yg
t )(py

g
t ´ xit)

For each i P G, compute the learning rate

ηg i
t =

(
E +

t
ÿ

s=1

(
rr g i
t

)2)´1

Compute the weight vector ug
t+1 = (ug i

t+1)iPG defined as

ug i
t+1 =

ηg i
t

(
rRg i
t )+

ř

jPG η
g j
t ( rRg j

t

)
+

Output prediction pyg
t+1 = ug

t+1 ¨ xt+1 =
ř

iPG u
g i
t+1x

i
t+1

end for

a surjection from ∆2|G| to Bα. Thus, to compete against the best linear combination of
features in Bα, it is enough to compete against the best convex combination of features
x̄t in a lifted space (which we may achieve, thanks to algorithm Ag). We now give all the
details on how this trick works and indicate its impact on the stated regret bounds. The
following lemma introduces the surjection from ∆2|G| to Bα, which is used in Algorithm 8.

Lemma 10. For any real α ą 0, the following function ψ is a surjection from ∆2|G| to
Bα:

ψ :
∆2|G| ÝÑ Bα

ū =
(
ū+ | ū´

)
ÞÝÑ α(ū+ ´ ū´),

where the vector ū P ∆2|G| is decomposed in the two |G|-vectors ū+ and ū´, which correspond
to the |G| first and the |G| last coefficients of ū, respectively.

By running Algorithm Ag with transformed features x̄t
∆
=
(
αxt | ´ αxt

)
and parameter

sg
0 (which provides weight vectors ūg

t ), we get the bound

Rg
T (∆2|G|)

∆
=

T
ÿ

t=1

(
yg
t ´ ūg

t ¨ x̄t

)2
´ min

ūgP∆2|G|

T
ÿ

t=1

(
yg
t ´ ūg ¨ x̄t

)2
ď B(x̄1:T , y

g
1:T , s

g
0, ū

g).
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For any time step t = 1, . . . , T , and for any ūg P ∆2|G|, we obtain the equality of the two
scalar products ūg ¨ x̄t and ψ(ug) ¨ xt:

ūg ¨ x̄t =
(
ūg+ | ūg´

)
¨
(
αxt | ´ αxt

)
= α

(
ūg+ ´ ūg´

)
¨ xt = ψ(ūg) ¨ xt .

Lemma 10 implies that for any ug P Bα, there is at least one vector ūg P ∆2|G| such that
ψ(ūg) = ug and we get the equality:

min
ugPBα

T
ÿ

t=1

(
yg
t ´ ug ¨ xt

)2
= min

ūgP∆2|G|

T
ÿ

t=1

(
yg
t ´ ψ(ūg) ¨ xt

)2
= min

ūgP∆2|G|

T
ÿ

t=1

(
yg
t ´ ūg ¨ x̄t

)2
.

So with, for any time step t = 1, . . . , T , ug
t

∆
= ψ(ūg

t ), we obtain

Rg
T (Bα)

∆
=

T
ÿ

t=1

(
yg
t ´ ug

t ¨ xt

)2
´ min

ugPBα

T
ÿ

t=1

(
yg
t ´ ug ¨ xt

)2
= Rg

T (∆2|G|) .

This equality provides a bound on Rg
T (Bα) when predictions are pyg

t = ψ´1(ūg
t ) ¨xt = ug

t ¨xt.
With this trick, the previous bounds (6.10) and (6.11) are still true by replacing |G| (the
dimension of the features xt) by 2|G| (the dimension of the new features x̄t) and the bound
E (previously equals to 4C2) by 2α(α + 1)C2 (the bound on the new pseudo prediction
errors are calculated below):

RT (Bα) ď |G|

(
2α (α+ 1)C2

?
T + 1

(a
2 ln |G|

?
2 ´ 1

+
ln(1 + 2´1 lnT )

a

ln |G|

)

+ 2α (α+ 1)C2
(
2 ln |G| + 2 ln(1 + 2´1 lnT ) + 1

))
for BOA

ď 2α (α+ 1)C2 |G|

b

|G|(T + 1)
(
1 + ln(1 + T )

)
for ML-Poly.

The complete online algorithm leading to these bounds is summarized in Algorithm 8.

‹ Bound on new pseudo prediction errors. Since Assumption 8 holds, the transformed
features x̄g

t are bounded by αC. Moreover, ūg
t P ∆2|G| implies

›

›ūg
t

›

›

1
= 1, so we get

ˇ

ˇ

pyg
t

ˇ

ˇ =
ˇ

ˇūg
t ¨ x̄t

ˇ

ˇ ď
›

›ūg
t

›

›

1

›

›x̄t

›

›

8
= αC .

Moreover, as the observations are still bounded by C, we have |yg
t ´ pyg

t | ď |yg
t | + |pyg

t | ď(
α+ 1

)
C and we obtain a bound on the pseudo prediction errors:

ˇ

ˇr`gt (x̄t)
ˇ

ˇ =
›

›2
(
pyg
t ´ yg

t

)
x̄t

›

›

8
ď 2α(1 + α)C2 .

Proof of Lemma 10. Denoting respectively by (u)+ and (u)´ the non-negative and non-
positive parts of any vector u and by 1|G| the vector of size |G| of which all coordinates
are 1, we introduce the inverse function ψ´1:

ψ´1 :

Bα ÝÑ ∆2|G|

u ÞÝÑ 1
α

(
α´}u}1
2|G|

1|G| + (u)+
ˇ

ˇ

ˇ

ˇ

α´}u}1
2|G|

1|G| + (u)´

)
.
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Algorithm 8 Scheme for on-line linear regression.
input Algorithm Ag and bound on the weight vectors α ą 0
for t = 1, . . . , T do

Get the feature vector xt and denote

x̄t
∆
=
(
αxt | ´ αxt

)
P R2|G|

Run algorithm Ag on node g with x̄t and get the weight vector ūg
t =

(
ūg+
t | ūg´

t

)
Output the weight vector ug

t = α
(
ūg+
t ´ ūg´

t

)
and predicts pyg

t = ug
t ¨ xt

end for

First we will show that function images are in the right sets, meaning that for any u P Bα,
ψ´1(u) P ∆2|G| and for any ū P ∆2|G|, ψ(ū) P Bα. Secondly, we obtain the surjectivity of
ψ by proving that for any u P Bα, ψ(ψ

´1(u)) = u.

‹ Proof that for any u P Bα, ψ´1(u) P ∆2|G|. We set u P Bα. By definition for any i P G,
(ui)˘ ě 0 and as u P Bα, (α ´ }u}1)/(2|G|) ě 0. So, all the coefficients of ψ´1(u) are
non-negative. Since

ř

iPG (u
i)+ + (ui)´ =

ř

iPG |ui| = }u}1, the sum of the coefficients of
the vector ψ´1(u) equals 1:

ÿ

iPG

(
ψ´1(u)

)i+
+
(
ψ´1(u)

)i´
=

1

α

ÿ

iPG

((
ui
)
+
+
(
ui
)

´
+
α ´ }u}1

|G|

)
=

1

α

(
}u}1+α´}u}1

)
= 1.

and thus ū = ψ´1(u) P ∆2|G|.

‹ Proof that for any ū P ∆2|G|, ψ(ū) P Bα. With ū =
(
ū+ | ū´

)
P ∆2|G|, using that all the

coefficients of ū are non-negative and that their sum equals 1 that is
›

›ū
›

›

1
= 1, we get

}ψ(ū)}1
∆
=

›

›αū+ ´ αū´
›

›

1
ď α

›

›ū+
›

›

1
+ α

›

›ū´
›

›

1
= α

›

›ū
›

›

1
= α.

‹ Proof that for any u P Bα, ψ
(
ψ´1(u)

)
= u.

ψ
(
ψ´1(u)

)
=
α ´ }u}1

2|G|
1|G| + (u)+ ´

α ´ }u}1

2|G|
1|G| ´ (u)´ = u .

7 Experiments
Our application relies on electricity consumption data of a large number of households to
which we have added meteorological data (see Subsection 7.1). Non-temporal information
(sociological type, region, type of heating fuel and type of electricity contract) on the
households is also provided. From these temporal and non-temporal data, we dispatch the
households into clusters thanks to the methods presented in Subsection 7.2. We describe
the experiments and analyze the results in Subsections 7.3 and 7.4.
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7.1 The underlying real data set

The project “Energy Demand Research Project1”, managed by Ofgem on behalf of the UK
Government, was launched in late 2007 across Great Britain (see Raw and Ross, 2011 and
Schellong, 2011). Power consumptions of approximately 18,000 households with smart-
type meters were collected at half-hourly intervals for about two years. We detail below
how we select only the consumption of 1,545 households over the period from April 20,
2009 to July 31, 2010 – Ben Taieb et al. [2017], who used the same data, performed simil-
iar pre-processing in their experiments. Four non-temporal variables are associated with
each household: the Region (the initial data set provides the level-4 NUTS2 codes but we
consider larger subdivisions – from 150,000 to 800,000 inhabitants – and associate each
household with its level-3 code), the Acorn category value (an integer between 1 and 6 as-
sociated with an United Kingdom’s population demographic type – this segmentation was
developed by the company CACI Limited), the type of heating fuel (“electricity” or “elec-
tricity and gas”) and the contract type (“Standard” or “Time of Use tariff” for households
containing an electricity meter with a dynamic time of use tariff) for each household. In
a first data cleaning step, we removed households with more than 5 missing consumption
records over the period April 20, 2009 to July 31, 2010 (around 1, 600 households are thus
kept) – the remaining missing consumption data points are imputed by a linear interpo-
lation. Among the various clusterings of the households we consider in our experiments,
three of them rely on three qualitative variables: “Region”, “Tariff” and “Fuel + Tariff”
(which is based on both the heating fuel type and the contract type). If one of the values
of these qualitative variables had fewer than 20 occurrences, we have removed from the
data set the households associated with that value. The final data set then contains the
electrical consumption records of the 1,545 remaining households. From now on, we will
denote by I the set of households and by (yi,t)1´T0ďtďT the time series of the half-hourly
power consumption of the i P I household. Finally, we added the temperature, visibility
and humidity for each region from the NOAA3 data: we selected a weather station (with
records available over the considered period) in each region and linearly interpolated the
meteorological data to get H measurements per day (compared to 8 initially). Table 6.1
sums up the available variables of our data set and gives their range.

7.2 Clustering of the households

We present, in Paragraphs 7.2.1 to 7.2.3, three methods to cluster the households and we
compare them in the last paragraph of this subsection. After choosing a segmentation (or
two crossed segmentations), we only consider, for each cluster, the aggregated consumption
of its households. Thus, for any subset g Ă I, we compute the time series yg

t
∆
=

ř

iPg yi t
that we want to forecast and once clusterings are chosen, we never consider individual
power consumption.

1https://www.ofgem.gov.uk/gas/retail-market/metering/transition-smart-meters/energy-demand-
research-project

2Nomenclature des Unités Territoriales Statistiques (nomenclature of territorial units for statistics)
3National Oceanic and Atmospheric Administration, https://www.noaa.gov/
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Variable Description Range / Value

Acorn Acorn category value From 1 to 6
Region UK NUTS of level 3 UK- H23, -J33, -L15, -L16, -L21, -M21, or -M27
Fuel Type of heating fuel Electricity (E) or Electricity and Gas (EG)
Tariff Contract type Standard (Std) or Time of Use tariff (ToU)
Temperature Air temperature From ´200 to 300

Visibility Air visibility From 0 to 10 (integer)
Humidity Air humidity percentage From 0% to 100%
Date Current time From April 20, 2009 to July 31, 2010 (half-hourly)
Consumption Power consumption From 0.001 to 900 kWh
Fuel + Tariff Cross of Fuel and Tariff variables “E - Std”, “EG - Std”, “E - ToU” or “EG - ToU”
Half-hour Half-hour of the day From 1 to H (integer)
Day Day of the week From 1 (Monday) to 7 (Sunday) (integer)
Position in the year Linear values From 0 (Jan 1, 00:00) to 1 (Dec 31, 23:59)
Smoothed temperature Smoothed air temperature From ´200 to 300

Table 6.1 – Summary of the variables provided and created for each household of the data
set.

7.2.1 Random clustering

We first consider the simplest way to cluster households: the segmentation is built ran-
domly. In the experiments of Subsection 7.4, the number of clusters varies from 4 to 64. As
an example here, we consider 4 clusters and we randomly assign a number between 1 and
4 to each household and obtain the weekly profiles plotted in Figure 6.5. In the following,
we will call “Random (G)”, a segmentation of G clusters built randomly. Naturally, the
curves are almost identical and the clusters are therefore rather similar.

7.2.2 Segmentation based on qualitative household variables

The second approach consists in grouping households according to the provided non-
temporal information. We consider the natural segmentations “Region”, “Acorn” and
“Fuel + Tariff” based on the corresponding qualitative variables and we plot the weekly
profile of each cluster on Figures 6.6, 6.7 and 6.8. Regions have an impact on the consump-
tion profile: the evening consumption peak time varies by location. Moreover, consumption
of the Wales regions (UKL15, UKL16 and UKL21) is lower than that of the other regions
(see Figure 6.6). In the Acorn classification, the lower the value, the richer the household,
thus Figure 6.7 shows that wealthiest households consume the most (as expected). Fi-
nally, the type of heating fuel does not seem to have a significant impact on the weekly
consumption profile (although we have observed that when the heating is partly gas, the
consumption is slightly lower and in winter, it is less sensitive to the temperature drops).
Similarly, it seems that the type of contract does not influence the consumption profiles.
Peak consumption in the evening is however less important for a dynamic time of fuse
tariff than for the standard tariff. It should be noted that since time slots of prices may
change from day to day, it is difficult to quantify here the impact of the tariff, as we are
only showing average consumption profiles.

7.2.3 Clustering based on non-negative matrix factorization and k-means
method

The last method relies on an historical individual time series of household power consump-
tion (April 20, 2009 to April 20, 2010). We propose a method to extract from these time
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series a low number – denoted by r – of combined household characteristics and to use
them to build relevant clusterings. The diagram below sums up the steps of the procedure
described here quickly. We then further detail them one by one. The |I| historical times
series

(
yi t
)
1´T0ďtď0

are firstly re-scaled and gathered into a matrix Y0 P M|I|ˆT0
. We

then reduce the dimension of data with a non-negative matrix factorization (NMF): we
approximate Y0 by xW pH, where xW and pH are |I| ˆ r and r ˆ T0-non-negative matrices,
respectively. As soon as this approximation is good enough, line i of the matrix xW is
sufficient to reconstruct the historical time series of household i (with the knowledge of
matrix pH - which is not used for the clustering). Thus, we assign, to each household,
r characteristics: the lines of xW. After a re-scaling step – to give the same importance
to each of those characteristics – we get the r-vectors (wi)iPI . With this low-dimension
representation of households in Rr, we use k-means clustering algorithm in Rr to provide
the G clusters C1, . . . , CG and we write “NMF (G)” for such a clustering.

Re-scaling and
gathering time

series in a matrix

Low rank ap-
proximation

(NMF): Y0 « xW pHHistorical time series

!(
yi t

)
1´T0ďtď0

| i P I
)

Y0 P M|I|ˆT0

Extracting and
re-scaling char-

acteristic vectors

xW P M|I|ˆr
k-means clustering

!

wi P Rr
| i P I

)

C1, . . . , CG

G clusters

‹ Re-scaling and Gathering Time Series in a Matrix. For T0 ą 0, we consider the
|I| ˆ T0 - matrix Y0 which contains the re-scaled historical power consumption time
series: for any i P I and any 1 ´ T0 ď t ď 0,

(Y0)i,t
∆
=
yi,t
ȳi
, with ȳi

∆
=

1

T0

0
ÿ

t=1´T0

yi,t.

‹ Low Rank Approximation. Since we are interested in power consumption, all the co-
efficients of Y0 are non-negative - we will write Y0 ě 0 and say that this matrix is
non-negative. To reduce dimension of non-negative matrices, Paatero and Tapper [1994]
and Lee and Seung [1999] propose a factorization method whose distinguishing feature
is the use of non-negativity constraints. Let us fix some integer r ! min(|I|, T0), which
will ensure a reduction of the dimension (we chose r = 10 in the experiments of the next
subsection). The non-negative matrix factorization (NMF) approximates matrix Y0 by
Y0 « W‹H‹, where W‹ and H‹ are |I| ˆ r and r ˆ T0 non-negative matrices. They are
computed by solving:(

W‹, H‹
)

P argmin
W,H ě 0

›

›Y0 ´ WH
›

›

2

F
= argmin

W,H ě 0

ÿ

i,t

(
yi,t ´

(
WH

)
i,t

)2
.

We use the function NMF of the Python-library sklearn.decomposition to approach a
local minimum with a coordinate descent solver and denote by xW the approximation of
W‹. Thanks to the NMF, for any i P I, r characteristics (the ith line of matrix xW) are
thus computed.
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0.10 kWh

0.20 kWh

0.30 kWh

0.40 kWh

Sun. Mon. Tue. Wed. Thu. Fri. Sat.

Random  1 − 392 customers

Random  2 − 392 customers

Random  3 − 364 customers

Random  4 − 397 customers

Figure 6.5 – Mean consumption per week and per cluster, with households randomly assigned to
an integer from 1 to 4.

‹ Extracting and Re-scaling Characteristic Vectors. To give the same impact to each of
these characteristics, we re-scale the columns of xW and define, for each household i, the
vector

wi =

(
xWi 1

ř

jPI
xWj 1

, . . . ,
xWi r

ř

jPI
xWj r

)
.

‹ k-Means Clustering. The k-means algorithm (introduced by MacQueen et al. [1967]) is
then used on these r- vectors to cluster the households into a fixed number G of groups
(which varies from 4 to 64 in our experiments). We recall below how this algorithm works.
With tC1, . . . , CGu a G-clustering of set I, for any 1 ď ` ď G, we define the center w̄` and
the variance Var(C`) of cluster C` by

w̄`
∆
=

1

|C`|

ÿ

iPC`

wi and Var(C`)
∆
=

1

C`

ÿ

iPC`

}wi ´ w̄`}
2.

In k-means clustering, each household belongs to the cluster with the nearest center. The
best set of clusters, denoted by

 

C‹
1 , . . . , C

‹
G

(

– namely the best set of centers – is obtained
by minimizing the following criterion:

 

C‹
1 , . . . , C

‹
G

(

P argmin
tC1,...,CGu

G
ÿ

`=1

ÿ

wPC`

›

›w ´ w̄`

›

›

2
= argmin

tC1,...,CGu

G
ÿ

`=1

|C`|Var(C`).

In practice, we use KMeans function of the Python-library sklearn.cluster to compute
clusters.

‹ Description and Analysis of “NMF (4)”. For G = 4, weekly profiles are plotted in
Figure 6.9. This clustering seems to detect consumption behaviors much more specific
than any of the previous ones. Indeed, Clusters 3 and 4 present a peak of consumption
early in the morning on working days, while the consumption of Cluster 2– which includes
the largest number of households – remains almost flat throughout the morning. Moreover,
the evening peak for Cluster 4 arrives earlier than for the other clusters. Finally, the
consumption of Cluster 1 is generally the highest, while that of Cluster 2 is the lowest.

7.2.4 Comparison of clusterings

To measure similarity between the clusterings above, we calculate the adjusted rand index
(ARI) – see Rand [1971] – for each segmentation pair and report the values thus obtained
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0.10 kWh

0.20 kWh

0.30 kWh

0.40 kWh

Sun. Mon. Tue. Wed. Thu. Fri. Sat.

UKJ23 − 194 customers

UKJ33 − 373 customers

UKL15 − 54 customers

UKL16 − 111 customers

UKL21 − 131 customers

UKM21 − 409 customers

UKM27 − 273 customers

Figure 6.6 – Mean consumption per week and per region (UK NUTS of level 3).

0.10 kWh

0.20 kWh

0.30 kWh

0.40 kWh

Sun. Mon. Tue. Wed. Thu. Fri. Sat.

Acorn 1 − 618 customers

Acorn 2 − 94 customers

Acorn 3 − 374 customers

Acorn 4 − 196 customers

Acorn 5 − 263 customers

Figure 6.7 – Mean consumption per week and per Acorn category value (from 1 to 5).

0.10 kWh

0.20 kWh

0.30 kWh

0.40 kWh

Sun. Mon. Tue. Wed. Thu. Fri. Sat.

EG − Std − 300 customers

EG − ToU − 549 customers

 E   − Std − 243 customers

 E   − ToU − 453 customers

Figure 6.8 – Mean consumption per week for the households clustered according “Fuel + Tariff”.

0.10 kWh

0.20 kWh

0.30 kWh

0.40 kWh

Sun. Mon. Tue. Wed. Thu. Fri. Sat.

Cluster  1 − 174 customers

Cluster  2 − 807 customers

Cluster  3 − 252 customers

Cluster  4 − 312 customers

Figure 6.9 – Mean consumption per week and per cluster, with each household assigned to one
of the four groups according to the NMF and k-means procedure (“NMF (4)” clustering).

in Table 6.2. We denote by
(
n
k

)
= the binomial coefficient n!/k!(n ´ k)!. Given a set elements

I and two partitions to compare, for example the segmentation “Region” tR1, . . . RNu and
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Region NMF (4) Acorn Fuel + Tariff

Random (4) -0.000 0.000 0.003 -0.000
Fuel + Tariff 0.016 -0.001 0.004
Acorn 0.043 0.018
NMF (4) 0.011

Table 6.2 – ARI (Adjusted Rand index) for each segmentation pair.

another clustering tC1, . . . CGu, the ARI is defined by

ARI
∆
=

G
ÿ

`=1

N
ÿ

n=1

(
|C` XRn|

2

)
´

[
G
ÿ

`=1

(
|C`|

2

) N
ÿ

n=1

(
|Rn|

2

)]
/

(
|I|

2

)
1

2

[
G
ÿ

`=1

(
|C`|

2

)
+

N
ÿ

n=1

(
|Rn|

2

)
´

G
ÿ

`=1

(
|C`|

2

) N
ÿ

n=1

(
|Rn|

2

)]
/

(
|I|

2

) .

ARI lies in [´1, 1] by construction, it is equal to 0 for a random matching between clusters
of the two considered segmentations and to 1 for a perfect alignment. Similarity between
our different household partitions is very low, only “Region” is slightly correlated with
all other clusterings, and “NMF (4)” with “ACORN”. But these correlations remain low
and the clustering “NMF (4)” therefore seems to extract, from historical time series, some
households information that are not contained in other clusterings. Its use should improve
forecasts – this will be confirmed by the experiments below.

7.3 Experiment design

Thanks to the above methods, we established several partitions of the household set I. As
explained below, choosing one or two of them amounts to considering a two-level hierarchy
(Example 6) or two crossed hierarchies (Example 9). We also detail the corresponding set
of node G. We then describe how we build meteorological data for each node g P G and
generate corresponding features. Finally, we focus on standardization and online calibra-
tion of aggregation hyper-parameters. We have divided the data set into training data:
one-year of historical data (from April 20, 2009 to April 19, 2010) – used for NMF clus-
terings, feature generation method training, and standardization – and testing data. As
aggregation algorithms start from scratch, they work poorly during the first rounds. We
therefore withdraw the first 10 days of testing data from the performance evaluation pe-
riod. So, April 20, 2010 to April 30, 2010 is left for initializing aggregation algorithms and
the hyper-parameters calibration and our methods are then tested during the last three
months (from May 1, 2010 to July 31, 2010). We summarize in Table 6.3 the range of
dates for each step of the procedure.

‹ Underlying Hierarchy. As detailed in Section 2, we aim to forecast a set of power
consumption time series

 

(yg
t )tą0, g P G

(

connected to each other by some summation
constraints. These constraints are represented by one (or more) tree(s) and G denotes the
set of its (or their) nodes. We refer to Example 6 if we consider a single segmentation
and to Example 9 for two crossed clusterings. We detail below the set G, which will
contain some subsets of households set I, for these two configurations. We recall that we
denote the average power consumption of a group of households g Ă I by yg

t
∆
=

ř

iPg yi,t.
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Start date End date
NMF Clusterings
Feature Generation Model Training
Features and Observations Standardization

April 20, 2009 April 19, 2010

Initialization of the Aggregation April 20, 2010 April 30, 2010
Model Evaluation May 1, 2010 July 31, 2010

Table 6.3 – Date range for the steps of the proposed method

Considering a single clustering (C1, . . . CN ) of I, we want to forecast the consumption of
each cluster C`, and also the global consumption (namely, the one for g = I). Thus, we set
G = tC`u1ď`ďN Y tIu and the associated time series respect the hierarchy of Figure 6.1 –
where ytot refers to the time series associated with I and y1, y2, . . . , yN with the ones of
clusters C1, C2, . . . CN . We now consider two partitions. The first one R1, . . . RN refers to
segmentation “Region” and the second one, C1, . . . CG to any other clustering. We would
like to forecast the global consumption (g = I), the consumption associated with each
region (g = Rn, for n = 1, . . . , N) and with each cluster (g = C`, for ` = 1, . . . , G) but also
the power consumption of cluster C1 in region R1 (g = C1 X R1), of cluster C1 in region
R2 (g = C1 XR2), and so on. Thus,we consider the set of nodes

G = tC` XRnu1ď`ďG, 1ďnďN Y tC`u1ď`ďG Y tRnu1ďnďN Y tIu.

The hierarchy associated with such crossed segmentations is represented in Figure 6.4
(with N1 = G and N2 = N) – where the global consumption, associated with I, is de-
noted by ytot, the one of cluster C` by y` ¨, the one of region Rn, by y¨n and where y` n
refers to the local consumption of C` XRn.

‹ Meteorological Data of any Set of Households. Methods presented in Section 5 for fea-
ture creation implicitly assume that meteorological data are available. We recall that we
collected meteorological data for each of the N regions. Thus when g P G refers to one of
these regions, we can directly apply the feature generation methods. However, if node g
groups households from different regions, these data are not directly available and one may
even wonder what they should correspond to. We take convex combinations of regional
meteorological data, in proportions corresponding to the locations of the households. More
precisely, for each meteorological variable (temperature, visibility or humidity), we built
the meteorological variable of g as a convex combination of the N meteorological variables
of the N regions. The weight associated with region n corresponds to the proportion of
this region in g, in terms of contribution to the consumption – this contribution is deter-
mined from historical data.

‹ Feature Creation. For each node g, we now have access to calendar and meteorolog-
ical data. Considering an exponential smoothed temperature – that models the ther-
mal inertia of buildings – is likely to improve forecasts (see among others, Taylor, 2003
and Goude et al., 2014), so we create the a-exponential smoothing of the temperature
τ̄g
t

∆
= aτ̄g

t´1 + (1 ´ a)τg
t , where a P [0, 1]. As in Chapter 3, to tune a, we performed

an exhaustive grid search (by testing many values on the prediction models described
in Section 4) and set a = 0.999. We then apply methods of Section 5 using available
explanatory variables to generate features xt. Each model (auto-regressive model, gener-
alized additive model or random forest) is trained on a year of historical data (from April
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200 kWh

300 kWh

400 kWh

Jul 29 Jul 30 Jul 31 Aug 01

−10 kWh

−5 kWh

0 kWh

5 kWh

10 kWh

Jul 19 Jul 26

Auto Regressive Model

Random Forest

Generalized Additive Model

Observations

Figure 6.10 – Left picture: benchmark forecasts (auto-regressive model, generalized additive
model, random forest) and observations of global consumption (g = I) at half-hour intervals on
the last three days of the test period. Right picture: corresponding daily average signed errors on
the last week of the test period.
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Figure 6.11 – Distribution over the test period of daily mean squared error of global consumption
benchmark forecasts (auto-regressive model, generalized additive model, random forest). Left
picture: original boxplots; Right picture: boxplots trimmed at 500 kWh2.

20, 2009 to April 20, 2010). Then, forecasts are computed on the period April 20, 2010 to
July 31, 2010. On the left of Figure 6.10, we represent these benchmark predictions and
the observations for the global consumption (namely g = I) over the last three days of the
test period. On the right, we plot daily signed errors, 1

H

řt+H
s=t

(
yg
s ´ xg

s

)
, for g = I over

the last week of the test period. Finally, daily mean squared errors, 1
H

řt+H
s=t

(
yg
s ´ xg

s

)2,
are computed for each test period day and represented by box-plots on Figure 6.11. The
generalized additive model seems to perform the best (and the auto-regressive model the
worst), this will be confirmed by the numerical results of the next subsection.

‹ Observations and Features Standardization. Once above features computed, they are
standardized using the protocol presented in Subsection 6.1. We assess the quality of the
standardization for one given configuration, namely “Region + NMF (16)”, with features
generated by the general additive model (this configuration, which refers to the two crossed
clusterings “Region” and “NMF (16)”, reaches the lower predictions errors – see Table 6.8).
As there are 7 regions, the set G consists of 16 ˆ 7+ 16+ 7+ 1 = 136 nodes, but only 129
are non-empty. For both standardized and non-standardized observations and features,
we compute, for each node g P G, the empirical mean and empirical standard deviation
over the test period. The distributions are plotted in Figures 6.12 and 6.13, respectively.
Since the abscissa for non-standardized data is in logarithmic scale, the mean and standard
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0.1 kWh 1 kWh 10 kWh 100 kWh −0.10 kWh −0.05 kWh 0.00 kWh 0.05 kWh 0.10 kWh

features

observations

Figure 6.12 – Distribution of empirical means per cluster, for non-standardized and standardized
observations and features.

0.1 kWh 1 kWh 10 kWh 100 kWh 0.50 kWh 1.00 kWh

features

observations

Figure 6.13 – Distribution of empirical standard deviations per cluster, for non-standardized
(left) and standardized (right) observations and features.

deviation of data differ a lot from a node to another. For example, the right-hand point is
the global consumption (g = I), while points on the left correspond to the consumptions
of small clusters. Thus, standardization centers data and decreases standard deviations of
observations, as desired. In addition, standard deviations of features are close to 1. Fig-
ure 6.14 represents correlation matrices of the |G|-vectors (xt)1ďtďT and (x̆t)1ďtďT , that
contain the non-standardized and standardized features over the test period. This shows
that our standardization process is centering, re-scaling and de-correlating features. Fi-
nally, Table 6.4 gathers numerical values of the average, over g P G, of empirical means and
standard deviations (these values are indicated by dashed vertical lines on Figures 6.12
and 6.13). We also compute the maximum of the absolute value of features and obser-
vations – “Bound” column of the table. This gives an empirical approximation of the
boundedness constant C – see Assumption 8.

Mean Bound Standard deviation
Observations 9.53 570.02 3.65
Features 9.54 570.87 3.53
Standardized observations -0.003 1.27 0.12
Standardized features 0.04 18.9 0.98

Table 6.4 – Mean, and maximum of absolute value and standard deviation of observations and
features before and after standardization
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Figure 6.14 – Correlation matrix of non-standardized (left) and standardized (right) feature
vectors.

‹ Calibration of Hyper-Parameters. Once features and observations are standardized,
we choose one of the algorithms presented in Section 6 and run it, on the |G| nodes, in
parallel with the same hyper-parameter. For the sequential non-linear ridge regression
(NL-Ridge), we have to choose the regularization parameter λ (see Equation 6.7) and for
BOA and ML-Pol algorithms, we need to set α, the radius of the L1-ball (see Algorithm 8).
Henceforth, we denote by η this hyper-parameter (which is equal to λ for NL-Ridge and
to α for BOA and ML-Pol). We optimize the choice of η by grid search, which is simply
an exhaustive search in a specified finite subset G of the hyper-parameter space. This
optimization is performed sequentially. Indeed, for any node g and any time step t ą H,
we run |G| algorithms in parallel and we chose the one – denoted by ηt – which minimizes
the average prediction error on past available data. Thus, with pyg

s(η) the output, at a time
step s, of algorithm Ag run with η, we choose the parameter ηt as follows:

ηt P argmin
ηPG

1

t´H

t´H
ÿ

s=1

1

|G|

ÿ

gPG

(
yg
s ´ pyg

s(η)
)2
.

In our experiments, to reduce the computational burden, we setG =
 

4i | i = ´5,´4, . . . , 5
(

,
so (only) 11 aggregations are run in parallel. At each new day, we check that we never
reach the bounds 4´5 and 45. This kind of online calibration has shown good performance
in load forecasting (see, for example, Devaine et al., 2013).

7.4 Results

In this subsection, we compare the four forecasting strategies detailed below by evaluating
them on the testing period (May 1, 2010 to July 31, 2010), for each forecasting method of
Section 5, for each aggregation algorithm of Section 6 and for various households cluster-
ings. To do so, we introduce some prediction error defined below as well as a confidence
bound on this error. We recall that we aim to forecast, at each time step t, a vector of
time series yt = (yg

t )gPG . The first strategy, that we call “Benchmark”, consists simply in
providing the features xt as forecasts. The second one considers only the projection step
and thus skips the aggregation step (we will refer to it as the “Projection” strategy), the
associated forecasts are thus the projected features ΠK(xt). To measure the impact of the
aggregation step, without projection, we also evaluate the forecasts ŷt (which do not nec-
essary satisfy the hierarchical constraints) – this strategy is called “Aggregation”. Finally,
the strategy “Aggregation + Projection” provides the predictions ỹt = ΠK(ŷt). To allow
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for an evaluation of the accuracy of the prediction of some time series only, we define the
prediction error ET (Λ), for some subset of nodes Λ Ă G. In the results below, this subset
can be equal to G (to evaluate the strategies on all the nodes), to the singleton tIu (to
focus on the global consumption – namely the consumption of all the households), or to
the set of leaves of the tree associated with the considered segmentation(s), denoted by G0

(to evaluate the performance of local forecasts only). Note that ET (G) will correspond to
rLT ˆ |G| for the “Aggregation + Projection” strategy (see Equation 7.4). We now define,
for any subset Λ Ă G, the prediction error ET (Λ). First of all, for a node g P Λ and a time
step t, let us denote by εg

t the instantaneous squared error. It corresponds to (yg
t ´ xg

t )
2

for the “Benchmark” strategy, to
(
yg
t ´ (ΠK(xt))

g)2 for “Projection”, to (yg
t ´ pyg

t )
2 for

“Aggregation”, and to (yg
t ´ ryg

t )
2 for the “Aggregation + Projection” strategy. We then

consider the average (over time) squared error (which is accumulated over Λ):

ET (Λ)
∆
=

ÿ

gPΛ

1

T

T
ÿ

t=1

εg
t .

We associate with this error a confidence bound and present our results (see Tables 6.5– 6.8)
in the form:

ET (Λ) ˘
σT (Λ)

?
T

, where σT (Λ)
2 =

1

T

T
ÿ

t=1

ÿ

gPΛ

(
εg
t ´ ET (Λ)

)2
. (6.12)

We choose the quantity σT (Λ)/
?
T as it is reminiscent of the error margin provided by

asymptotic confidence intervals on the mean of independent and identically distributed
random variables. In the next paragraph, we consider the “Region + NMF(16)” configu-
ration and, for each of the three benchmark forecasting methods of Section 5 and for each
of the three aggregation algorithms presented in Section 6, we compute these errors and
confidence bounds for the four above foresting strategies. Finally, in the last paragraph, we
set the benchmark forecasting method (generalized additive model) and the aggregation
algorithm (ML-Pol) to test various households clusterings.

7.4.1 Impact of the benchmark forecasting methods and of the aggrega-
tion algorithms

We consider here the two crossed hierarchies “Region + NMF (16)” and we vary the
benchmark forecasting approaches and the aggregation algorithms. Indeed we compute
forecasts for the three methods of Section 5 – auto-regressive model, generalized additive
model and random forest – and for the three algorithms of Section 6 – NL-Ridge and
BOA and ML-Pol. Table 6.5 sums up ET (G) ˘ σT (G)/

?
T , where G refers to the set of

nodes associated with “Region + NMF (16)”. Regarding forecasting methods, the general
additive model provides the best benchmark predictions and the auto-regressive model,
which is the most naive method, does not perform well. This was actually already illus-
trated in Figures 6.10 and 6.11. Moreover, as the theory guarantees, projection (with or
without an aggregation step) always improves the forecasts. The projection step without
aggregation leads to a decrease of prediction error of around 1% for the general additive
and auto-regressive models and of 5% for random forest. Note that for parametric (or
semi-parametric) methods, the model is assumed to be the same at all nodes. Forecasts
are thus closely linked and seem to almost already satisfy the hierarchical constraints.
On the contrary, for random forest methods, the forecasts seem less correlated and thus
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NL-Ridge ML-Pol BOA
General Additive Model

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Benchmark 455.5 ˘ 1.1
Projection 450.7 ˘ 1.1

Aggregation 407.6 ˘ 1.1 397.9 ˘ 1.0 406.0 ˘ 1.0
Aggregation + Projection 405.9 ˘ 1.1 396.0 ˘ 1.0 403.5 ˘ 1.0

Random Forest
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Benchmark 528.1 ˘ 1.0
Projection 500.8 ˘ 1.0

Aggregation 459.3 ˘ 1.0 467.3 ˘ 1.0 470.9 ˘ 1.0
Aggregation + Projection 451.1 ˘ 1.0 464.0 ˘ 1.0 468.1 ˘ 1.0

Auto-Regressive Model
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Benchmark 736.4 ˘ 1.6
Projection 734.3 ˘ 1.6

Aggregation 690.7 ˘ 1.6 690.1 ˘ 1.6 698.2 ˘ 1.6
Aggregation + Projection 689.8 ˘ 1.6 687.3 ˘ 1.6 693.1 ˘ 1.6

Table 6.5 – ET (G)˘σT (G)/
?
T (see Equation 6.12) where G refers to the set of nodes associated

with “Region + NMF (16)” clustering, for the three benchmark forecasting methods of Section 5
(General Additive Model, Random Forest and Auto-Regressive Model), for the three aggregation
algorithms of Section 6 (NL-Ridge, ML-Pol and BOA) and for the four strategies defined in Sub-
section 7.4 (“Benchmark”, “Projection”, “Aggregation” and “Aggregation + Projection”). ET (G)
corresponds to L̃T ˆ |G| for the “Aggregation + Projection” strategy. For strategies “Benchmark”
and “Projection”, the forecasts do not depend on the chosen aggregation algorithm, so the errors
and the confidence bounds are the same for the three algorithms. The dark gray area corresponds
to the best prediction error of the table and the light gray area to the best one, for a given
benchmark forecasting method.

projection improves significantly the predictions. We point out that Wickramasuriya et al.
[2019] also noted that reconciliation can improve poorly specified models, thus providing
some insurance against model misspecification. The impact of aggregation step is notable:
the prediction error decreases by about 10% for NL-Ridge and BOA and by about 15% for
ML-Pol. Finally, our global strategy always gives the best forecasts, which, in addition,
satisfy the hierarchical constraints.

Even though theoretical guarantees (see Theorem 9) are only ensured for errors summed
over all nodes, we investigate the impact of our methods on global consumption predic-
tions and on most local predictions (i.e., predictions at leaves). Thus, Tables 6.6 and 6.7
contain ET

(
tIu
)

˘ σT (tIu)/
?
T and ET (G0)˘ σT (G0)/

?
T (where G0 is the set of leaves),

respectively. By denoting by R1, . . . , RN , the N regions and by C1, . . . C16, the 16 clus-
ters provided by “NMF (16)”, we have, in this “Region + NMF (16)” configuration,
G0

∆
=

 

C` X Rn

(

1ď`ď16, 1ďnďN
. Concerning global consumption, a mere projection im-

proves the forecasts, except in the case of auto-regressive model and, in all cases, our
strategy “Aggregation + Projection” outperforms the three strategies “Benchmark”, “Ag-
gregation” and “Projection”. The prediction error associated with G0 also decreases thanks
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NL-Ridge ML-Pol BOA
General Additive Model

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Benchmark 205.8 ˘ 9.3
Projection 200.8 ˘ 9.2

Aggregation 179.2 ˘ 8.9 172.0 ˘ 8.6 178.8 ˘ 8.8
Aggregation + Projection 177.6 ˘ 8.8 170.3 ˘ 8.5 176.3 ˘ 8.7

Random Forest
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Benchmark 231.4 ˘ 8.6
Projection 228.8 ˘ 8.2

Aggregation 207.1 ˘ 8.4 214.8 ˘ 8.4 218.7 ˘ 8.3
Aggregation + Projection 206.4 ˘ 8.2 212.4 ˘ 8.1 216.8 ˘ 8.2

Auto-Regressive Model
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Benchmark 380.3 ˘ 13.4
Projection 380.4 ˘ 13.4

Aggregation 368.6˘ 13.5 370.8˘ 13.6 376.1˘ 13.6
Aggregation + Projection 368.2˘ 13.4 369.4˘ 13.5 373.6˘ 13.5

Table 6.6 – ET (tIu)˘σT (tIu)/
?
T (see Equation 6.12) for “Region + NMF (16)” clustering, for

the three benchmark forecasting methods of Section 5 (General Additive Model, Random Forest
and Auto-Regressive Model), for the three aggregation algorithms of Section 6 (NL-Ridge, ML-
Pol and BOA) and for the four strategies defined in Subsection 7.4 (“Benchmark”, “Projection”,
“Aggregation” and “Aggregation + Projection”). The prediction error ET (tIu) corresponds to the
mean squared error (over the testing period) of the global consumption. For strategies “Bench-
mark” and “Projection”, the forecasts do not depend on the chosen aggregation algorithm, so the
errors and the confidence bounds are the same for the three algorithms. The dark gray area corre-
sponds to the best prediction error of the table and the light gray area to the best one, for a given
benchmark forecasting method.

to our procedure. Therefore, our method improves the forecasting of both global and local
power consumptions. Finally, Figure 6.15 represents the global power consumption on the
three last day of the testing period and the daily average signed error on the last week
for the four forecasts obtained with features generated with general additive model and
aggregated with ML-Pol algorithm. The distributions of the daily mean squared errors
for these strategies are represented in Figure 6.16. We draw the same conclusions for the
daily prediction errors as for the average error on the entire test period (three months):
aggregation greatly improves the forecasts, projection does too, but to a lesser extent. The
box plots show that the variance of the error also decreases after the aggregation step.

7.4.2 Impact of the clustering

We now assess the impact of household segmentation on the quality of our predictions.
In view of the foregoing, we set the aggregation algorithm to ML-Pol and the benchmark
forecasting method to the general additive model. As clusters change from a segmentation
to another, the associated sets of nodes G also change. Errors related to G or G0 can there-
fore not be compared from a segmentation to another. We thus focus here on the global
consumption (namely, we compute errors related to tIu). We compare our methods to a
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NL-Ridge ML-Pol BOA
General Additive Model

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Benchmark 66.3 ˘ 0.1
Projection 66.3 ˘ 0.1

Aggregation 61.6 ˘ 0.1 61.2 ˘ 0.1 61.0 ˘ 0.1
Aggregation + Projection 61.5 ˘ 0.1 61.1 ˘ 0.1 61.0 ˘ 0.1

Random Forest
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Benchmark 78.7 ˘ 0.1
Projection 68.9 ˘ 0.1

Aggregation 66.8 ˘ 0.1 65.7 ˘ 0.1 64.8 ˘ 0.1
Aggregation + Projection 63.9 ˘ 0.1 65.7 ˘ 0.1 64.8 ˘ 0.1

Auto-Regressive Model
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Benchmark 84.4 ˘ 0.1
Projection 84.3 ˘ 0.1

Aggregation 73.8 ˘ 0.1 72.8 ˘ 0.1 73.2 ˘ 0.1
Aggregation + Projection 73.8 ˘ 0.1 72.0 ˘ 0.1 72.0 ˘ 0.1

Table 6.7 – ET (G0)˘σT (G0)/
?
T (see Equation 6.12) where G0 refers to the set of leaves associated

with “Region + NMF (16)” clustering, for the three benchmark forecasting methods of Section 5
(General Additive Model, Random Forest and Auto-Regressive Model), for the three aggregation
algorithms of Section 6 (NL-Ridge, ML-Pol and BOA) and for the four strategies defined in Sub-
section 7.4 (“Benchmark”, “Projection”, “Aggregation” and “Aggregation + Projection”). ET (G0)
corresponds to a prediction errors associated with local consumptions forecasts. For strategies
“Benchmark” and “Projection”, the forecasts do not depend on the chosen aggregation algorithm,
so the errors and the confidence bounds are the same for the three algorithms. The dark gray area
corresponds to the best prediction error of the table and the light gray area to the best one, for a
given benchmark forecasting method.

naive bottom-up strategy: at each time step t, we forecast the global consumption y
tIu

t

with the sum of local consumptions
ř

gPG0
xg
t – instead of the benchmark predictions xtIu

t .
Table 6.8 contains the prediction errors and the confidence bounds for the five strategies
and for several household segmentations. For the “Bottom-up” strategy, the geographical
clustering “Region” provides the lowest prediction error, that are much better than the
one of benchmark forecasts. While when a single clustering based on household profiles
or generated randomly is considered, the benchmark forecasts xtIu

t are more relevant –
in terms of mean squared error. Thus, taking into account regional consumptions, which
depend on local meteorological variables, improves prediction. In the same way, projection
significantly improves the forecasts when the regions are taken into account. Moreover,
for a fixed number of clusters – for example, we compare “Fuel+Tariff”, “Random (4)
and“NMF (4)” – the aggregation step seems more efficient when clusters present different
consumption profiles (see Figures 6.5 - 6.9). Indeed, aggregation provides much better
performance for “NMF (4)” than for “Random (4)”. As we had anticipated, contrary
to “NMF” and “Region”, clusterings “Acorn” and “Fuel + Tariff”, that do not seem to
detect consumption profiles, perform as well as “Random”. When the number of clusters
becomes too large, the performance of the strategy stagnates or even decreases. Typically
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Benchmark

Projection

Aggregation

Aggregation + Projection

Observation

Figure 6.15 – Left picture: forecasts associated with the four strategies defined in Subsection 7.4
(“Benchmark”, “Projection”, “Agregation” and “Aggregation + Projection”), with benchmark
forecasts generated with the generalized additive model and aggregated with ML-Pol algorithm
in the “Region + NMF(16)” configuration, and observations of global consumption (g = I) at
half-hour intervals on the last three days of the test period. Right picture: corresponding daily
average signed errors on the last week of the test period.
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Figure 6.16 – Distribution over the test period of daily mean squared error of global consumption
for the four strategies defined in Subsection 7.4 (“Benchmark”, “Projection”, “Agregation” and
“Aggregation + Projection”), with benchmark forecasts generated with the generalized additive
model and aggregated with ML-Pol algorithm in the “Region + NMF(16)” configuration. Left
picture: original boxplots. Right picture: boxplots trimmed at 220 kWh2.

for “Random” or “NMF”, a number of clusters equals to 32 or 64 does not seem to improve
the results compared to smaller numbers 4, 8 or 16. Another result is that aggregation and
projection are robust to large number of clusters. Indeed, the performance are good for a
sufficiently large number of clusters but does not decrease too much with the number of
clusters – either for “ Random” or “NMF” clusterings. Finally, our strategy “Aggregation
+ Projection” always outperforms the other four (“Bottom-up”, “Benchmark”, “Projec-
tion” and “Aggregation”) and the “Region + NMF (16)” clustering reaches the lowest
prediction error.
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Clustering Benchmark Bottom-up Projection Aggregation Aggregation
+ Projection

Region 205.8 ˘ 9.3 189.9 ˘ 8.3 201.3 ˘ 9.1 187.8 ˘ 8.4 186.7 ˘ 8.4

Region + Acorn — 194.2 ˘ 8.4 200.8 ˘ 9.2 182.5 ˘ 8.3 181.2 ˘ 8.3
Acorn — 205.7 ˘ 9.5 205.0 ˘ 9.3 203.3 ˘ 9.3 202.9 ˘ 9.3

Region + Fuel + Tariff — 199.1 ˘ 8.7 201.2 ˘ 9.2 185.4 ˘ 8.6 184.1 ˘ 8.6
Fuel + Tariff — 207.1 ˘ 9.7 205.5 ˘ 9.4 201.5 ˘ 9.4 201.4 ˘ 9.5

Region + Random (4) — 198.4 ˘ 8.7 201.3 ˘ 9.2 186.1 ˘ 8.6 184.6 ˘ 8.6
Random (4) — 208.0 ˘ 9.7 205.7 ˘ 9.4 199.5 ˘ 9.4 199.7 ˘ 9.4

Region + Random (8) — 202.3 ˘ 8.7 201.3 ˘ 9.2 182.4 ˘ 8.7 181.0 ˘ 8.7
Random (8) — 212.9 ˘ 9.8 205.7 ˘ 9.3 194.4 ˘ 9.1 194.4 ˘ 9.1

Region + Random (16) — 205.1 ˘ 8.7 201.3 ˘ 9.2 180.5 ˘ 8.7 178.8 ˘ 8.7
Random (16) — 218.4 ˘ 10.0 205.7 ˘ 9.3 188.6 ˘ 8.7 188.5 ˘ 8.7

Region + Random (32) — 205.3 ˘ 8.5 201.2 ˘ 9.2 180.4 ˘ 8.8 178.9 ˘ 8.7
Random (32) — 222.9 ˘ 10.1 205.6 ˘ 9.3 189.6 ˘ 8.7 189.5 ˘ 8.7

Random (64) — 222.9 ˘ 9.8 205.6 ˘ 9.3 185.7 ˘ 8.8 185.5 ˘ 8.8

Region + NMF (4) — 196.0 ˘ 8.6 200.8 ˘ 9.2 187.4 ˘ 9.1 185.5 ˘ 8.9
NMF (4) — 205.7 ˘ 9.5 205.0 ˘ 9.3 197.0 ˘ 8.8 196.8 ˘ 8.9

Region + NMF (8) — 197.2 ˘ 8.5 200.7 ˘ 9.2 176.4 ˘ 8.9 174.1 ˘ 8.8
NMF (8) — 206.7 ˘ 9.6 205.0 ˘ 9.3 186.1 ˘ 8.9 185.7 ˘ 8.9

Region + NMF (16) — 201.0 ˘ 8.5 200.8 ˘ 9.2 172.0 ˘ 8.6 170.3 ˘ 8.5
NMF (16) — 208.4 ˘ 9.6 205.2 ˘ 9.3 179.3 ˘ 8.4 179.3 ˘ 8.4

Region + NMF (32) — 204.1 ˘ 8.5 201.0 ˘ 9.1 173.2 ˘ 8.7 171.5 ˘ 8.6
NMF (32) — 211.1 ˘ 9.6 205.4 ˘ 9.3 179.7 ˘ 8.8 179.5 ˘ 8.8

NMF (64) — 214.9 ˘ 9.4 205.6 ˘ 9.3 181.9 ˘ 8.6 181.7 ˘ 8.6

Table 6.8 – ET (tIu) ˘ σT (tIu)/
?
T (see Equation 6.12) for the fives strategies defined in Sub-

section 7.4 (“Benchmark”, “Bottom-up, “Projection”, “Aggregation” and “Aggregation + Projec-
tion”), with benchmark predictions (xtIu

t that are the same for all clusterings) made with General
Additive Models and aggregated with ML-Pol algorithm, for many segmentations (defined in Sub-
section 7.2). The prediction error ET (tIu) corresponds to the mean squared error (over the testing
period) of the global consumption. The dark gray area corresponds to the best prediction error of
the table and the light gray area to the best one, for a given strategy.
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7
Simulating tariff impact in
power consumption profiles
with conditional variational
autoencoders

The implementation of efficient demand response programs for household
electricity consumption would benefit from data-driven methods capable of
simulating the impact of different tariffs schemes. This chapter proposes a
method based on conditional variational autoencoders (CVAE) to generate,
from an electricity tariff profile combined with weather and calendar
variables, daily consumption profiles of consumers segmented in different
clusters. First, a large set of consumers is gathered into clusters according
to their consumption behavior and price-responsiveness. The clustering
method is based on a causality model that measures the effect of a specific
tariff on the consumption level. Then, daily electrical energy consumption
profiles are generated for each cluster with CVAE. This non-parametric
approach is compared to a semi-parametric data generator based on
generalized additive models. The main contribution from this new method
is the capacity to reproduce rebound and side effects in the generated
consumption profiles. Indeed, the application of a special electricity tariff
over a time window may also affect consumption outside this time window.
Another contribution is that the proposed clustering approach is capturing
the reaction to a tariff change.

This chapter was written in collaboration with Ricardo J. Bessa and was
accepted for publication in IEEE Access (a peer-reviewed open-access journal
published by the Institute of Electrical and Electronics Engineers-IEEE).

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
2 Data set description and preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
3 Clustering of household consumers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

3.1 Causality model 215
3.2 Clustering method 217
3.3 Evaluation of the household clustering 218
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4 Power consumption profile generation with conditional variational autoen-
coder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.1 Conditional variational autoencoder 221

4.1.1 Description 221
4.1.2 Implementation details 224

4.2 Hyper-parameters calibration 225
4.2.1 Methodology 225
4.2.2 Results 225

4.3 Conditional variables choice 226
4.4 Simulator creation 226

5 Semi-parametric generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6 Evaluation of the data generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.1 Evaluation metrics 229
6.2 Numerical results 230
6.3 Impact of the tariff 233

1 Introduction

A power consumption data simulator may be very useful to study the business models
of different demand response (DR) models Karlsen et al. [2020] and to conduct an ex-
ante assessment of the DR algorithms that set tariff profiles (i.e., ensure that they induce
the right behavior from consumers), such as contextual bandit algorithms presented in
Chapter 4. We recall that electricity demand response policies aim at modifying cus-
tomers’ energy consumption behavior (see Siano, 2014 for an overview) to enable higher
integration levels of renewable energy sources. Most of these DR schemes rely on changes
in electricity prices, which can take the form of seasonal tariffs, super-peak time-of-use,
real-time pricing, critical peak pricing, etc. Dutta and Mitra [2017]. Chapter 4 proposed
online learning algorithms to optimize these price incentives, considering an homogeneous
population of customers. However, the responsiveness to a tariff change may change from
a consumer to another. By clustering consumers according to their tariff responsiveness,
an electricity supplier can send different signals depending on the cluster to which they
belong, and further improve DR management. For instance, for a given temperature, day
of the week, etc., the electricity supplier defines an hourly electricity tariff profile to send
to some consumers clusters.

The data simulator should be able to randomly generate energy consumption profiles for
different combinations of exogenous variables and tariff profiles, with consumers clustered
according to their tariff responsiveness. The present chapter proposes a novel method,
based on conditional variational autoencoders (CVAE), which aims to randomly simulate
daily power consumption profiles conditioned by a specific electricity tariff combined with
weather and calendar variables.

The remainder of this chapter is organized as follows. The next subsection conducts a
literature review of for the forecasting of consumers reactions to demand response policies
and data generation methods applied in the energy domain, the data set used through-
out the rest of the chapter is also presented. A clustering method is first provided in
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Section 3. Then, the CVAE approach used to generate energy consumption profiles is
presented and discussed in Section 4. In order to evaluate the proposed method, Section 5
introduces a benchmark data generator based on semi-parametric models often used for
energy consumption forecasting. Section 6 presents a comparison of the two generators
and simulations that illustrate the interest of our approach.

The reproducibility of this research was ensured by applying the methodology to the
open data set “SmartMeter Energy Consumption Data in London Households” from UK
Power Networks presented in Chapter 3, where price incentives were sent to users via their
smart meters, and by making the CVAE codes available in a GitHub repository1.

‹ Literature discussion for consumers reactions to demand response policies forecasting.
Recent research developed mathematical and statistical models for modeling price respon-
siveness from domestic consumers. For example, Ganesan et al. applied a causality model
to the Low Carbon London data set in order to rank consumers according to their re-
sponsiveness to tariff changes, and outperformed correlation-based metrics (see Ganesan
et al., 2019 for further details). Saez-Gallego and Morales applied inverse optimization
to improve the accuracy of load forecasting when aggregating a pool of price-responsive
consumers and considering the effect of calendar and weather variables (see Saez-Gallego
and Morales, 2017); Le Ray et.al. applied a clinical testing approach (based on a test and
a control group) to assess whether or not loads of households participating in the EcoGrid
EU DR program are price-responsive (see Le Ray et al., 2016); Mohajeryami et al. pro-
posed an economic model to explain the consumption shift between peak and off-peak
hours that maximizes customer’s utility function (see Mohajeryami et al., 2016). These
works are closely linked to the forecast of consumers reactions to DR policies, but, to our
knowledge, were never combined with clustering techniques for consumer segmentation or
used to simulate daily consumption profiles according to their price-responsiveness. We
refer to the introduction of Chapter 6 for the literature review on clustering methods that
do not include information about the elasticity of consumers to tariff changes.
‹ Data generation methods The generation of energy consumption profiles for households
is not new and it was already covered by different authors in the literature. Capasso et
al. proposed a bottom-up approach based on the aggregation of individual appliance con-
sumption in order to produce a household consumption profile (see Capasso et al., 1994). A
Monte Carlo simulation model was proposed to combine behavioral data (home activities,
availability at home from each member, etc.) and engineering functions (appliance mode
of operation, technological penetration, etc.) with associated probability distributions.
Park et al. proposed a platform, exploiting SystemC language for event-driven simula-
tion, which simulates the behavior of individual appliances and smart plugs (see Park
et al., 2010). Both works did not considered weather-dependent appliances (e.g., heating,
ventilating and air conditioning - HVAC) or the effect of price signals. Physically-based
models for appliances (including HVAC) are also proposed in (see Muratori et al., 2013),
combined with heterogeneous Markov chain for activity patterns, to simulate households
energy consumption. A similar approach was followed in Richardson et al. [2010], but
using individual appliance consumption data. A set of physical models for appliances are
proposed in López et al. [2019], implemented in MATLAB Simulink, and can simulate

1github.com/MargauxBregere/power_consumption_simulator

213

github.com/MargauxBregere/power_consumption_simulator


L
oa
d
D
at
a
G
en
er
at
io
n

L
oa
d
D
at
a
G
en
er
at
io
n

L
oa
d
D
at
a
G
en
er
at
io
n

L
oa
d
D
at
a
G
en
er
at
io
n

L
oa
d
D
at
a
G
en
er
at
io
n

L
oa
d
D
at
a
G
en
er
at
io
n

optimal on/off decisions of household appliances. Gottwalt et al. described a simulation
engine for households with two modules: first bottom-up approach that generates con-
sumption data for each appliance by combining statistical data about appliance use and
resident presence at home; and second optimization of appliances schedule in order to find
the optimal load shift according to time-based tariffs (see Gottwalt et al., 2011). Iwafune
et al. proposed a Markov chain Monte Carlo method for simulating electric vehicle driving
behaviors, which enables an evaluation of the DR potential when combined with domestic
photovoltaic panels (see Iwafune et al., 2020). The aforementioned methodologies assume
that information about individual appliances (usage patterns, energy consumption, etc.)
and behavioral data is available, instead of just using the total household consumption col-
lected by the smart meter. One exception is Li et al. [2019], which describes a methodology
based on an elasticity coefficient (approximated by a Gaussian distribution) to estimate
indices that characterize the impact of real-time prices in the consumption pattern, such
as proportion of maximum load decrease, proportion of peak-valley difference of load de-
crease, etc. The method consisted in an empirical rule-based calculation of transferred
consumption between periods, which was only applied to aggregated consumption of an
electric power system and not to households.

2 Data set description and preprocessing

As a case-study for this chapter, we consider the open data set, published by UK Power
Networks and containing energy consumption (in kWh per half-hour) of around 5 000
households throughout 2013. The data preprocessing is fully described in Section 2 of
Chapter 3. We recall that our data set contains the power consumption records, at half-
hourly intervals of 1 007 households subjected to a dynamic Time of Use (ToU) and 1
007 non-ToU customers who were on a flat rate tariff; we refer to them as Standard (Std)
customers. We denote by IToU the set of ToU households and by IStd the set of Std ones;
for each household i P IToU Y IStd, for any day t of year 2013, we get the H-dimensional
power consumption vector Y 1

t (i), . . . , Y
H
t (i), with H = 48 the number of consumption

readings per day. For each household, we also compute the average energy consumption,
its minimum, and its maximum as well as the half-hour of the daily peak and of the
daily trough, for the hot months (from April to September) and for the cold months (the
others). The data set also contains half-hourly tariff and temperature profiles denoted
by p1t , . . . , pHt and τ1t , . . . , τ

H
t , respectively. For any day t, we also consider the smoothed

temperature τ̄t – that models the thermal inertia of buildings – and two calendar variables:
the type of day wt that takes 0 on weekends and 1 on working days; and the position in
the year πt which increases linearly from 0 (on January, 1.) to 1 (on December, 31.).
Therefore, the data set (presented in Table 7.2) contains, for each of the 2 014 households
(half Std, half ToU), T = 365 observations of the energy consumption, tariff, and tem-
peratures profiles, the smoothed temperature, the type of day, and the position in the year.

This data set is split in two sub-sets: a training set which contains about 75% of
the original data – days are randomly sampled from those of 2013 – and a testing set
made of the remaining data points. A perfect design of the experiments would require
four data sets but the size of the original data led us to exclude this possibility. As the
household clustering is a prior knowledge for the creation of the data generators (we create
a generator per cluster), the entire data is used to cluster the clients. The (non-parametric
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and semi-parametric) data generators are optimized on the training set. The testing set
is used to calibrate CVAE-based data generators and to choose the best combination of
exogenous variables to give in input. Moreover, the best CVAE among several executions
of the training process (CVAEs may converges to local minima) is selected thanks to this
testing set. Finally, it also permits to compare the two approaches, non-parametric and
semi-parametric, in the experiments of Section 6. To simplify notation, we re-indent the
observations of the original data set: observations from 1 to T0 = 273 form the training
set, and the ones from T0 + 1 to T = 365 form the testing set. The dataset division and
use is summarized in Table 7.1.

Training Set Testing Set
Households clustering X X
Semi-parametric model training X
CVAE model training X
CVAE hyper-parameters calibration X
CVAE conditional variables choice X
CVAE model selection X
Numerical experiments X

Table 7.1 – Summary of the use of the two data sets: the training set (75% of the original data)
and the testing set (remaining data). The clustering of the households is detailed in Section 3.
The training process for the CVAE-based generator is explained in Section 4; the calibration of
the hyper-parameters and the selection of the best CVAE are detailed in the subsections 4.2, 4.3
and 4.4, respectively. The training process for the semi-parametric generator is in Section 5. Both
data generators are compared in the experiments of Section 6.

3 Clustering of household consumers

3.1 Causality model

To measure the impact of the tariff on the energy consumption, a causality model similar
to the one proposed by Ganesan et al. (see Ganesan et al., 2019) is considered. The finite
set of available tariff is denoted by P = tLow, High, Normalu and its cardinal by |P|. For
each household and each tariff, a daily profile of the mean and the standard deviation
of its energy consumption will be computed. For an household i, at an half-hour h, the
random variable Y h(i) refers to the individual energy consumption of household i. It de-
pends on the chosen tariff p P P but also on the exogenous variables gathered in a vector
xh = (τht , τ̄t, wt, πt).

Here, the aim is to estimate, for each tariff p and for each half-hour h, the expectation
and the standard deviation of the random variable Y h(i) |P = p. Thanks to T observations
Y h
t (i), xht , and pht , with t P t1, . . . , T u, of energy consumption, tariffs, and exogenous

variables, respectively, a model that gives, for the tariff p and the exogenous variables
xh, a forecast of the expected consumption at h when tariff p is picked, is trained. In
the original model, the authors used kernel regression and then an approach based on
bootstrapping to provide an estimation of the standard deviation (see Ganesan et al.,
2019 for further details). In this work, for any exogenous variable xht and tariff pht , the
random energy consumption Y h

t (i) is assumed to be Gaussian of mean µi(x
h
t , p

h
t ) and
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Variable Notation
Daily energy consumption profile at half-hourly intervals Y 1

t (i), . . . , Y
H
t (i)

Daily tariff profile (for ToU consumers) at half-hourly intervals p1t , . . . , p
H
t

Daily London air temperature profile at half-hourly intervals τ1t , . . . , τ
H
t

Smooth temperature (computed from past temperatures) τ̄t
Type of day (1 from Monday to Friday, 0 for week-ends) wt

Position in the year (0 on January, 1. and 1 on December, 31.) πt

Table 7.2 – Summary of the variables provided and created for each household i of the data set.

standard deviation σi(x
h
t , p

h
t ) and that theses mean and standard deviation depend on

additive smooth predictors. They are estimated with generalized additive models (GAM),
see Section 3 of Chapter 3 for further details. To do so, we train a model that gives, for the
tariff p and the exogenous variables xh, a forecast of the expected consumption at h when
tariff p is selected and a forecast of the standard deviation of this consumption. For any
exogenous variable xht and tariff pht , the random energy consumption Y h

t (i), of household
i at the half hour h of the day t, is assumed Gaussian of mean µi(x

h
t , p

h
t ) and standard

deviation σi(x
h
t , p

h
t ). Moreover, we assume that these mean and standard deviation:

µi,h(xht , p
h
t ) = E

[
Y h
t (i)

]
and σi,h(xht , p

h
t ) =

b

Var
[
Y h
t (i)

]
,

depend on additive smooth predictors. Here, GAMs are used to estimate conjointly, for
any half-hour h of a day t and any tariff p P P, both µi,h(xht , p) and σi,h(xht , p). These
approximations are denoted by pµi, h(xht , p) and pσi,h(p, xht ), respectively. For each half-hour
h, we set the same underlying models:

µi,h(xht , p
h
t ) = si,hτ (τht ) + ξi,hL 1pht =Low + ξi,hN 1pht =Normal + ξhH1pht =High

and σi,h(xht , p
h
t ) = γi,hL 1pht =Low + γi,hN 1pht =Normal + γhH1pht =High . (7.1)

where si,hτ , the function catching the effect of the temperature, is approximated by a cubic
spline. The mgcv R-package (see Wood, 2020) permits to estimate the coordinates of
the spline in its basis and all the coefficients ξi,hL , ξi,hN , ξi,hH , γi,hL , γi,hN , and γi,hH defined in
Equation (7.1), which catch tariff effect. We highlight that models fitted on variances
are linear. Both models (on mean and standard deviation) are estimated simultaneously,
by setting the model family parameter of the gam function to the Gaussian location-scale
model family. Once the function and coefficients have been estimated (we write ps i,h for
the estimation of si,h and so on), for any tariff p, the estimations pµi,h(xht , p) and pσi,h(p, xht )
are computed:

pµi,h(xht , p) = ps i,hτ (τht ) +
pξi,hL 1p=Low + pξi,hN 1p=Normal + pξhH1p=High

and pσi,h(p, xht ) = pγi,hL 1p=Low + pγi,hN 1p=Normal + pγhH1p=High .

Therefore, for any tariff p, the trained model provides these estimations, that are denoted
by pµi(x

h
t , p) and pσi(p, x

h
t ). Then, an approximation of the impact of a tariff change is

computed with the two following quantities:

E
[
Y h(i) |P = p

]
«

1

T

T
ÿ

t=1

pµi
(
xht , p

)
and

b

Var
[
Y h(i) |P = p

]
«

1

T

T
ÿ

t=1

pσi
(
xht , p

)
. (7.2)
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For simplicity of notation, these approximations associated with an household i P IToU Y

IStd, are denoted by µhi (p) and σhi (p), respectively. Vectors µ1i (p), . . . , µHi (p) will be used
to cluster the consumers whereas vectors σ1i (p), . . . , σHi (p) will not be used until later, in
Section 5 for the creation of the benchmark data generator. Actually, they will not be
directly useful, but a similar approach will be applied to compute the standard deviation
per tariff of the energy consumption of a consumer cluster, namely by replacing household
i by a group of households.

3.2 Clustering method

The proposed method used to cluster the households according to their consumption pro-
file is very similar to the one described in Section 7.2.3 of Chapter 6 – the main differences
are the use of consumption profiles instead of consumption historical time series and of
k-mediod algorithm instead of k-means algorithm. In this section, I will refer indifferently
to IToU or to IStd. For any household, i P I, the causality model described in the previous
section provides, for each tariff p P P, a daily energy consumption profile, namely H mean
energy consumption µ1i (p), . . . , µ

H
i (p). As the focus is more on the shape of the profiles,

rather than on the amount of consumed electricity, the profiles of an household i are first
re-scaled with its average consumption associated with a base tariff, namely Normal tariff.

Then, these profiles are concatenated in a matrix M P M|I|ˆH|P| that gathers all the
households. The dimension of M is reduced with a non-negative matrix factorization
(NMF): with r a small integer, M is approximated by W H, where W and H are |I| ˆ r
and r ˆ H|P|-non-negative matrices, respectively. As soon as this approximation is good
enough, line i of the matrix W is sufficient to reconstruct household i profiles (with the
knowledge of matrix H - which is not used for the clustering). Thus, for each household i,
from the H|P|-vector (µ1i (p), . . . , µ

H
i (p))pPP , r features are extracted: line i of W. With

this low dimension representation of households in Rr, k-medoids clustering algorithm
provides the G clusters C1, . . . , CG, using KMedoid function implemented in the Python-
library sklearn_extra. The diagram below sums up the steps of the procedure described
here in a summarized way and detailed below.

Re-scaling and
gathering profiles

Low rank approx-
imation (NMF):

M « W H

Consumption
profiles

M k-medoid
clustering

W C1, . . . , CG

G clusters

‹ Scaling and gathering profiles. For an household i P I, for all p P P, the daily expected
consumption profile µ1i (p), . . . , µHi (p) is considered. We assume that there is a base tariff
p0 P P that corresponds to a signal of no incentive, namely Normal tariff. We consider
the quantity µ̄i = 1

H

řH
h=1 µ

h
i (p0) that is an approximation of the average daily expected

consumption of household i under no DR program. Then, all the profiles of household
i are rescaled by this quantity and, for each tariff p P P, the daily consumption profiles
under tariff p of all the households i P I are gathered in a matrix M(p) P M|I|ˆH . Finally,
the matrix M P M|I|ˆH|P| is created by binding by column matrices M(p), so

Mi,h(p) =
µhi (p)

µ̄i
and M =

(
M
(
1
) ˇ
ˇ

ˇ
. . .

ˇ

ˇ

ˇ
M
(
P
))

.

‹ Low rank approximation. The dimension of the non-negative matrix of profiles M is
reduced with a non-negative matrix factorization (NMF) – Section 7.2.3 of Chapter 6.
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The integer r ! min(|I|,H|P|) that will ensure the dimension reduction is fixed (we chose
r = 5 in our case study). The NMF approximates M with WH, where W and H are
non-negative matrices of size |I| ˆ r and r ˆ H|P|, respectively. Function NMF of the
Python-library sklearn.decomposition allows to approximate W and H with a coordi-
nate descent solver. For simplicity of notation, W is confounded with its approximation.
Thus, for any household i P I, we get r features, namely the ith line of matrix W, that we
denote by Wi ¨ in the following.

‹ k-medoid clustering. Now, the vectors Wi ¨ allow to cluster households in G clusters. In
k-means clustering, the center of a given cluster is simply the average between the points of
this cluster. Since it can be influenced by extreme value, k-means algorithm is sensitive to
outliers. Conversely, k-medoid algorithm chooses data points to represent clusters, which
makes it more robust and favors a clustering where clusters have sizes of the same order.
This algorithm was introduce by Kaufman and Rousseeuw [1987] with the L1-norm. Here,
we use it with the Euclidean distance and the best clustering C‹

1 , . . . , C
‹
G is the one that

minimizes the following criteria:

!

C‹
1 , . . . , C

‹
G

)

P argmin
tC1,...,CGu

G
ÿ

`=1

ÿ

iPC`

›

›Wi ¨ ´ WC` ¨

›

›

2 with C` P argmin
iPC`

ÿ

jPC`

›

›Wi ¨ ´ Wj ¨

›

›

2
,

where } ¨ } is the Euclidean norm. The clusters are computed by using KMedoid function
implemented in the Python-library sklearn_extra.

3.3 Evaluation of the household clustering

Three different clustering approaches of the households of IToU and of IStd, with G = 4
clusters, are compared. The first one is a random clustering: an integer between 0 and
G´ 1 is randomly assigned to each household. The second one relies on classical features
used to define an households profile: the minimum, maximum, and average consumption
in winter and in summer, the peek-hour, and the off-hour (average instant of maximum
and minimum consumption). From these rescaled features, k-medoid algorithm is used
to cluster the households. The third approach is the one proposed in this chapter and
described in the previous section. For a cluster C`, and for any day t and half-hour h, we
will, from now on, consider the average energy consumption Y h

t (C`) = 1/|C`|
ř

iPC`
Y h
t (i),

where Y h
t (i) is the power consumption record associated with household i.

Figures 7.1 and 7.2 depict, for the three clustering approaches applied on ToU house-
holds, the weekly profile of the average power consumption of each cluster Y h

t (C`) (Fig-
ure 7.1) and the normalized power consumption (Figure 7.2), namely the weekly profile
of Y h

t (C`)/
(

1
TH

řT
s=1

řH
j=1 Y

j
s (C`)

)
. Classical features allow to discriminate households

depending on the amount of electricity they consume but does not really catch daily or
weekly behavior. Conversely, profile types clearly come off with the proposed method.

The Calinski-Harabasz index, (see Caliński and Harabasz, 1974) is a variance ratio
criterion, that evaluate the relevance of the clustering. By denoting Y (i) the vector that
contains some of the consumption records associated with household i, and by Y (C`)
the one with the average consumption records of cluster C` and by Y (I) the average
consumption records of all households, the score SCH is defined as the ratio of inter-clusters
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Cluster 0 − 248 households 
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Cluster 2 − 242 households 

Cluster 3 − 253 households 

0.10 kWh

0.20 kWh

0.30 kWh

0.40 kWh

0.50 kWh

Sun. Mon. Tue. Wed. Thu. Fri. Sat.

Cluster 0 − 255 households 

Cluster 1 − 247 households 

Cluster 2 − 249 households 

Cluster 3 − 256 households 

0.10 kWh

0.20 kWh

0.30 kWh

0.40 kWh

0.50 kWh
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Cluster 0 − 325 households 

Cluster 1 − 295 households 

Cluster 2 − 229 households 

Cluster 3 − 158 households 

Figure 7.1 – Daily profile of ToU cluster power consumption for a random clustering (top), for a
clustering based on “classical features” (middle), and the clustering method proposed in Section 3
(bottom).

variances and intra-cluster variances:

SCH =

(
|I| ´G

)
Var(C1, . . . , CG)(

G´ 1
)
řG

`=1 Var(C`)
with

Var(C1, . . . , CG) =
K
ÿ

`=1

›

›Y (C`) ´ Y (I)
›

›

2 and Var(C`) =
1

|C`|

ÿ

iPC`

›

›Y (i) ´ Y (C`)
›

›

2
. (7.3)

where Var(C`) is the intra-cluster variance of C` and Var(C1, . . . , CG) is the inter-clusters
variance. To compute this score, three different vectors Y are considered. First, all the
records of the data set are taking into account, namely the records of the entire year 2013;
therefore, in Equation (7.3), the vector Y (i) is equal to

(
Y 1
1 (i), Y

2
1 (i), . . . , Y

H
T (i)

)
. Then

we look at the normalized energy consumption records, so

Y (i) =
(
Y 1
1 (i), Y

2
1 (i), . . . , Y

H
T (i)

)
/

(
1

TH

T
ÿ

t=1

H
ÿ

h=1

Y h
t (i)

)
.

Finally the normalized records associated with the sending of incentive signals are se-
lected: only the normalized records associated with tariff Low or High are kept and the
others are removed. The results are presented in Table 7.3, where we observe a higher
score on non-normalized records for the “classical features” clustering, which is totally
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Cluster 3 − 253 households 
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Cluster 3 − 256 households 

0.50

1.00

1.50

Sun. Mon. Tue. Wed. Thu. Fri. Sat.
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Cluster 3 − 158 households 

Figure 7.2 – Daily profile of ToU cluster normalized power consumption for a random clustering
(top), for a clustering based on “classical features” (middle), and the clustering method proposed
in Section 3 (bottom).

coherent with the curves of Figure 7.1. The proposed clustering method seems efficient
for catching households behavior. Indeed it gets the higher score for normalized records
and Figure 7.2 shows different shape of the power consumption profiles. Moreover, the
score is even higher when we select only records associated with special tariff and this
increase is more important for ToU consumers that for Std ones. This presumes that the
clustering is not only catching a global behavior but also the reaction to a tariff change.
It is important to mention that since we want to simulate energy consumption of quite
large sub-groups of households (between one and five hundreds households), we did not
investigated the optimal number of clusters G (i.e., it was fixed to 4).

In the following sections we present the two data-driven methods that simulate energy
consumption profiles associated with the clusters of IToU obtained with the method de-
scribed above. For both approaches, we will train a data generator per cluster. So from
now on and for simplicity of notation, a record Y h

t will refer to Y h
t (C`), where C` designs

any clusters of set IToU .
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Rd ToU F ToU NMF ToU Rd Std F Std NMF Std
Non-normalized 4 627 40 764 13 432 5 014 5 088 12 971
Normalized 4 950 6 870 14 088 4 834 4 741 14 934
Special tariff - N 5 151 7 033 16 070 4 904 4 694 15 460

Table 7.3 – Calinski-Harabasz score for a random clustering (“Rd”), for a clustering based on
classical features (“F”), and the clustering method proposed in Section 3 (“NMF”) computed for
different consumption record series: all non-normalized records (“Non-rescaled”), all normalized
records (“Rescaled”), and normalized records associated with tariff Low and High (“Special tar-
iff - N”).

4 Power consumption profile generation with conditional
variational autoencoder

The training set made of the T0 observations (Y1, X1), (Y2, X2), . . . , (YT0 , XT0) is consid-
ered. For a day t, Yt = (Y 1

t , . . . , Y
H
t ) is the H-dimension vector which corresponds to the

daily profile of the half-hour energy consumption of a household cluster. The vector Xt

gathers calendar, weather, and tariff information of day t, which will be detailed further.

4.1 Conditional variational autoencoder

4.1.1 Description

The proposed method to generate energy consumption profiles uses the conditional version
of variational autoencoders (VAE), which are generative models introduced by Kingma
and Welling in 2013 (see Kingma and Welling, 2014 for further details). Autoencoders were
mostly used for dimensionality reduction or feature learning (see, among others Rumelhart
et al., 1986 and Hinton and Zemel, 1994). They consist of two neural networks: an
“encoder” E and a “decoder” D. An autoencoder learns a low dimension representation
of a set of H-dimension data points by training both networks at the same time. Indeed,
the encoder transforms the H-dimension vectors into d-dimension vectors (with d ! H)
and the decoder tries to rebuild initial vectors from the encoder outputs. Considering
Z = E(Y ) as the d-dimension output of the encoder for the H-dimensional input Y
and D(Z) as the H-dimension output of the decoder for the d-dimension input Z, the
autoencoder is trained to minimize the following “reconstruction loss”

LAE =
1

T0

T0
ÿ

t=1

›

›Yt ´ pYt
›

›

2
=

1

T0

T0
ÿ

t=1

›

›Yt ´ D
(
E(Yt)

)›
›

2
,

where } ¨ } is the Euclidean norm. Therefore, a data point Y can be represented in a
d-dimension latent space by E(Y ).

In the autoencoder framework, there is no constraint on this latent space and the only
guarantee is that the representation Z = E(Y ) can be decoded in the original signal
D(Z) « Y . Moreover, we have no idea what the decoded variable D(Z) would look like
for a value of Z R tE(Y1), . . . ,E(YT0)u. Thus, there is no guarantee on the shape of the
latent space. Without regularization term, for any d ě 1, by increasing the number of
neurons in both the encoder and the decoder networks, we can create an autoencoder
with enough degrees of freedom to fully overfit the data: for example, we could imagine
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an autoencoder that encodes the first observation with 1, the second with 2 etc., and thus
projects our data in the a one-dimensional space t1, . . . , T0u. This points out the need
for a regularization term. In VAEs, the introduction of a penalty on the latent space
implicitly makes the strong assumption that the distribution of data points E(Y ) is close
to a given prior distribution. This prior is often set to the standard normal distribution,
which we also do in our experiments. From now on, the encoder encodes the distribution of
Z|Y , which is wanted close to N (0, Id). We consider that Z |Y „ N (µ(Y ),Σ(Y )), where
µ(Y ) and Σ(Y ) are the encoder outputs. The outputs pYt of the decoder are now D(Zt),
where the random variable Zt is sampled from a d-multivariate Gaussian of mean µ(Yt)
and covariance matrix Σ(Yt), which are the encoder outputs. With DKL(P ||Q) as the
Kullback-Leibler divergence from Q to P , the VAE is trained by minimizing the following
loss

LVAE(η) =
1

T0

T0
ÿ

t=1

›

›Yt ´ pYt
›

›

2
+ η

1

T0

T0
ÿ

t=1

DKL

(
N
(
µ(Yt),Σ(Yt)

) ˇ
ˇ

ˇ

ˇN (0, Id)

)
. (7.4)

The first term corresponds to the reconstruction error and the second one is a regular-
ization penalty on the latent space. The coefficient η balances these two terms. The
calculations below are an adaptation of the ones proposed by Kingma and Welling [2014]
to our case-study. They show how, under some assumptions on the existence of a repre-
sentation of the data in a d-dimensional latent space, minimizing this loss corresponds to
conjointly maximizing the likelihood of the observations with the density induced by the
data generation process and minimizing an approximation error in the latent space.

The generation of the data is assumed to follow a two-steps process: firstly, a variable
Z was sampled from a standard Gaussian and then, Y was sampled from the distribution
pθ‹( ¨ |Z). The decoder, parametrized by θ, can model this process: with Z „ N

(
0, Id

)
as input, it generates the variable Y , conditionally to Z, by sampling it from pθ( ¨ |Z),
which is an approximation of the true distribution pθ‹( ¨ |Z). In our generation process,
we will denote by qY (Z) the approximation made by the encoder of the density of Z |Y .
The variational autoencoder is trained in a way that qY is the Gaussian of mean µ(Y )
and covariance matrix Σ(Y ), where µ(Y ) and Σ(Y ) are the outputs of the encoder for the
input Y . For Y P RH , by using Bayes’ theorem and the variables Z sampled from the
encoder distribution qY , the log-marginal likelihood pθ(Y ) satisfies

log pθ(Y ) = EZ„qY

[
log pθ(Y )

]
= EZ„qY

[
log pθ(Y |Z) pθ(Z)

pθ(Z|Y )

]
= EZ„qY

[
log qY (Z)

pθ(Z|Y )
+ log pθ(Z)

qY (Z)
+ log pθ(Y |Z)

]
= DKL

(
qY (Z) || pθ(Z|Y )

)
´ DKL

(
qY (Z) || pθ(Z)

)
+ EZ„qY

[
log pθ(Y |Z)

]
.

The first term corresponds to the error made by approximating the distribution pθ( ¨ |Y )
with qY . Thus to conjointly maximizing the log-likelihood and minimizing this approxi-
mation error, the loss

DKL
(
qY (Z) || p(Z)

)
´ EZ„q

Y

[
log pθ(Y |Z)

]
, (7.5)

has to be minimized. The two parts of the equation above are known as the regularization
term and the reconstruction term, respectively. We recall that qY is the Gaussian distri-
bution of mean µ(Y ) and of covariance matrix Σ(Y ) and that we assume Z „ N

(
0, Id

)
, so
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the regularization term is the Kullback–Leibler divergence between N
(
µ(Y ),Σ(Y )

)
and

a standard d-multidimensional normal distribution. Moreover, we highlight that if the
decoder samples Y |Z from a distribution of the exponential family,

pθ(Y |Z) = a(Y )b(Z) exp
(
η(Z)T (Y )

)
,

with θ gathering the functions a, b, η, and T . Then, the second term is explicit. But,
for a given Z, the decoder outputs a unique vector D(Z) = pY , so inferring the previous
distribution is a tough task. Nevertheless, assuming that Y |Z is a multivariate Gaussian
of mean D(Z) and with a known covariance matrix σ2Id, a very simple expression of the
regularization term is obtained:

´ log pθ(Y |Z) =
1

2σ2
›

›Y ´ D(Z)
›

›

2

2
´ log

(
2πH/2σ

)
.

Therefore, the loss defined in Equation (7.5) can be re-written:

1

2σ2
›

›Y ´ pY
›

›

2

2
+ DKL

(
N
(
µ(Y ),Σ(Y )

)
||N (0, Id)

)
.

Under all the assumptions above, and given the independent observations Y1, . . . YT0 , to
obtain the generative process that best models the real one, we will thus consider the loss

LVAE(η) =
1

T0

T0
ÿ

t=1

(
›

›Yt ´ pYt
›

›

2
+ ηDKL

(
N
(
µ(Yi),Σ(Yi)

) ˇ
ˇ

ˇ

ˇN (0, Id)
))

.

We recall that the vectors pYt are the outputs of the decoder D(Zt), where the random
variable is sampled from a d-multivariate Gaussian of mean µ(Yt) and covariance matrix
Σ(Yt). This loss is conjointly maximizing the log-likelihood of the observation with the
data generation process distribution: log pθ(Y1, . . . Yt) =

řT0
t=1 log pθ(Yt) and minimizing

the approximation error
řT0

t=1 DKL
(
qYt(Z) || pθ(Z|Yt)

)
. It is important to underline that

the previous calculations are still valid when all the distributions are conditioned by ex-
ogenous variables.

Finally, conditional variational autoencoders (CVAE) – see Kingma et al. [2014] – are
an extension of VAE where a vector of exogenous variables X is given as input to both
the decoder and the encoder. Adding this conditional information may improve the recon-
struction. Figure 7.3 depicts a scheme of the CVAE architecture used in the experiments.
The encoder takes as input a daily energy consumption profile Y (so namely a H-vector
gathering the half-hourly records of energy consumption) and an exogenous vectors X
(with calendar, weather, and tariffs information) and outputs the d-dimension vectors µ
and logΣ (it is usual to consider a log-transformation, see Marot et al. [2019]). The vec-
tor logΣ is also of dimension d. Indeed, only the diagonal of the covariance matrix Σ is
encoded since both approaches (diagonal and full-matrix) were tested and there was no
major difference on the reconstruction loss (obviously the regularization term is higher for
a full covariance matrix). Since considering a full-matrix (which is symmetric) increases
the dimension of encoders outputs (from 2d to d(d+1)/2) and the CVAE converges slower,
we decided to keep a diagonal matrix to encode the covariance matrix Σ. The random
variable Z is then sampled and given to the decoder as well as the vector of exogenous
variables X. Finally, the decoder outputs pY .
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Figure 7.3 – Diagram of a conditional variational autoencoder.

Once the CVAE is trained, the decoder is isolated and used to generate data. For any
day s, it is enough to sample a random variables Zs „ N (0, Id) in the latent space and give
it as input to the decoder, combined with a vector of exogenous variables Xs (that could
be taken from the original data set or eventually created). Then, the decoder generates a
H-vector pYs that corresponds to a new randomly generated daily consumption profile, for
the day s and the contextual variables Xs.

4.1.2 Implementation details

The CVAE were implemented by using the software libraries Tensorflow and Keras in
Python programming language. The architecture of a CVAE is defined by the latent
dimension d as well as the number of layers and units in encoder and decoder neural
networks. We use dense layers which are deeply connected neural network layers. Once
the architecture of the CVAEs is set, hyperparameters are chosen: the neural activation
functions, the initialization method for neural weights and the parameter η, defined in
Equation (7.4), that balances the two terms of the loss. The choice of the architecture
and hyper-parameters calibration is detailed in Section 4.2.

In order to optimize a CVAE, so namely to compute weights and bias for each neural
of both the encoder and the decoder, the loss is minimized by using the Adam optimizer
(see Kingma and Ba, 2015), an extension of stochastic gradient descent method, which
is commonly used in deep learning and already implemented in Keras. Note that the
learning rate of this optimizer is also an hyper-parameter to set before training CVAEs.

Finally, the energy consumption records are rescaled to get values between 0 and 1 by
computing the maximum Ymax and minimum Ymin of the energy consumption observed on
the train period. The generated value are re-scaled to get coherent profile, mostly between
Ymin and Ymax.

We recall that the data described in section 7.1 was divided into two data sets: the
training set contains 75% for the observations (sampled randomly from the complete data
set) and is used to train the CVAE (see Table 7.1); the testing set, made with the remaining
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daily observations, is used to calibrate hyper-parameters (see Section 4.2). Finally, as
CVAE may converge into local minima, many CVAE are trained and the testing set is
also used to select the best one (see Section 4.4).

4.2 Hyper-parameters calibration

The process described below will be applied for each of the cluster defined in Section 3,
for which a half-hourly energy consumption profile for each day of 2013 is available.

4.2.1 Methodology

To perform CVAEs hyperparameter calibration we opt for a grid search approach that is
simply an exhaustive searching through a manually specified subset of the hyperparameter
space. This optimization is guided by the performance metric detailed below, which is
simply an evaluation on a held-out validation set. For each set of parameters, namely for
each point of the grid, we train a CVAE and test it according to the procedure described
below. Once the CVAEs have converged, (we stop the convergence process when the loss
is not decreasing any more), we compute the mean squared error (which corresponds to
the reconstruction loss) on the testing set made of the observations YT0+1, . . . , YT :

MSE =
1

T ´ T0

T
ÿ

t=T0+1

›

›Yt ´ pYt
›

›

2

where pYt = D(Zt) with Zt „ N
(
µ(Yt),Σ(Yt)

)
.

The architecture and hyperparameters of the CVAE hat reaches to lowest MSE are kept.

4.2.2 Results

We tested different values from 1 to 20 for the latent dimension d and reached a final value
of 4, which is coherent with the results in Marot et al. [2019] for the daily energy con-
sumption in France. Moreover, we also performed a principal component analysis (PCA)
on the consumption data and found that 4 components were enough to explain more 80%
of the variance in the data. We tested CVAEs with one or two hidden layers of 10, 15, 20
or 25 units per layer and concluded that an architecture with a hidden layer of at least
15 neurons performed much better than smaller architectures. We continued to increase
the number of layers or the number of neurons per layer, but without improvement in the
MSE. Moreover, the number of iterations necessary before convergence increased. So we
decided to keep a single hidden layer of 15 units for both the encoder and the decoder.

Concerning the activation function of the neurons; rectified linear unit (ReLU), linear,
and sigmoid functions were tested and there was no doubt that the best performance was
obtained with a ReLU activation function.

For the initialization of the network weights, we compared various Keras initializers
(Glorot uniform, HE normal, Lecun normal, Zeros, Ones) and a manual initialization with
PCA (as described in Miranda et al., 2014). Classical results were observed. Indeed, when
all the weights are initialized with the same weight (ones or zeros), the CVAE converges to
a local minimum (all units perform the same calculations). For all the other initializers, we
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observed appreciatively the same speed of convergence (a bit faster with the PCA initializa-
tion, but it requires upstream calculations) and all converged to the same minimum. Thus,
we noticed it does not have a strong impact on the result and therefore the Glorot uniform
initializer was selected – it is the default initialization for dense layers. For a new layer
of Nout neurons connected to an input layer of Nin neurons, it draws the NoutNin weights
from a uniform distribution within

[
´

a

2/(Nin +Nout),
a

2/(Nin +Nout)
]

(see Glorot
and Bengio, 2010 for further details).

For the regularization parameter η that balances the two terms (reconstruction and
regularization) in the loss function, various strategies to tune its value already exist. For
example, Higgins et al. [2017] showed that a constant η ą 1 may outperform classical VAE
(defined with η = 1). Moreover, Liang et al. [2018] and Bowman et al. [2016] considered
a moving parameter that gradually increases from 0 to 1 across iterations, linearly and
according to a sigmoid, respectively. We tried the three approaches and opted for a
constant regularization parameter equal to 10. Finally, we tested various learning rates
for Adam optimizer but did not notice major variations in the performance, so we set it
to 10´3.

4.3 Conditional variables choice

We tried various combinations of the exogenous variables described in Table 7.2 and se-
lected the one with the lowest MSE on the testing set. For a day t, the conditional vector
Xt gathers the variables described below.

Without loss of generality, prices are categorical variables (Low, Normal or High), so, for
an day t and an half-hour h, the prices pht are encoded into two binary variables 1pht =Low,

and 1pht =High (if these two variables are null in the same time, the tariff is Normal). The
position in the year πt P [0, 1] and the binary variable wt for the type of day are also
considered.

Taking into account the half-hourly temperature τ1t , . . . , τHt significantly improves the
MSE on the testing set, but the dimension of the conditional variables vector is then quite
high. We tried to reduce the dimension of the temperature profile and obtained better
results. A PCA was performed on the vectors made of all temperatures at day t (half-
hourly records and smoothed temperature). Three components were enough to explain
98% of the variance. Therefore, we only keep the three components provided by the PCA
and re-scale them between 0 and 1 to provide the variables rτ1t , rτ

2
t , rτ

3
t . Then, they are

considered as conditional variables (the daily temperature profiles (τ1t , . . . , τ
H
t ) are not

taking into account anymore).

Therefore, for a day t, the vector of conditional variables Xt is made of the binary vari-
ables wt, 1p1t=Low, . . . , 1pHt =Low, and 1p1t=High, . . . , 1pHt =High and of the continuous variables
rτ1t , rτ

2
t , rτ

3
t , and πt that lie in [0, 1].

4.4 Simulator creation

Finally, we emphasize that CVAEs may converge into local minima. To avoid it, each
CVAE is trained 50 times and the one with the lowest MSE on testing set is selected.
For each of the cluster presented in Section 3, we thus get a CVAE that takes as inputs
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the daily energy consumption profile Yt = (Y 1
t . . . , Y

H
t ) of the considered cluster (which is

rescaled during the training process) and the conditional vector Xt described above. Then,
the decoder is isolated and enables the generation of new data. Indeed, for a new vector
Xt1 at a day t1, which can either be created or extracted from the data test, we sample a
vector Zt1 „ N (0, Id) and give these two vectors as inputs of the decoder, which outputs
a daily energy consumption profile. The quality of the generated data is evaluated in two
situations. First, samples for the conditional vectors XT0+1, . . . , XT associated with the
training set are generated. Thus, we will measure the ability of the data generators to
forecast energy consumption (we will see that we can deduce a foretasted density from
the generated samples). Secondly, we will create new vectors Xt for which we modify the
variables 1pht =Low, and 1pht =High in order to measure the impact of tariff changes. These
results are presented in Section 6 and compare them with data generated according to a
semi-parametric data generator presented below.

5 Semi-parametric generator

The following semi-parametric method based on generalized additive models (GAM), see
Section 3 of Chapter 3, is proposed to generate new daily consumption profile data. GAMs
model electricity consumption as a sum of independent exogenous variable effects. Here,
we assume that there exists a class of functions F , such that, for a given half-hour h and
a time instance t, with xht a vector of exogenous variables and pht the tariff, the energy
consumption expectation satisfies

E[Y h
t ] = fh(xht , p

h
t ), fh P F . (7.6)

After estimating the functions fh (we detail further the set F and how GAMs may ap-
proximate these functions), we could compute the residuals and try to fit a model on
them. They are centered, but a time dependence is observed, so adding a independent
white noise to each forecast – as it has been done in the experiments of Chapter 4 – will
not provide realistic profiles. Considering probabilistic forecasts of the energy consump-
tion faces the same issues: the aim is to simulate trajectories. A better approach could
consider multivariate probabilistic forecasts (which estimate the density of the consump-
tion profile), but to our knowledge, GAMs do not provide such predictions. Therefore,
we limit ourselves to more basic models. The simplest one could consists in fitting an
autoregressive–moving-average (ARMA) process on the residuals. But residual variance
depends, among others, on the tariff and on the half-hour. Thus, a profile generated with
an ARMA process will, for example, present a too high variance during the night and a
too low variance on peak-hours. The residuals are considered day by day (so the time
dependence from a day to another is ignored – note that this is also the case with the
CVAE-based model). we are aware that ignoring the day-to-day time dependence could be
problematic as there are almost always long-term serial correlations present in the resid-
uals from these models. Once generated, these noise trajectories will be added to the
expected consumption forecast. Considering the daily residuals vector as multidimensional
Gaussian and estimated its covariance matrix makes the generation of new samples very
easy. But, with such a model, the tariff-dependence is lost. We propose an approach based
on a conjoint estimation of both mean and variation of the energy consumption. Then,
we tried to used Gaussian copula to create trajectories, applying the methods proposed
in Pinson et al. [2009] for renewable energy scenarios (or trajectories) generation. We
faced an important problem: as soon as the function fh is not very well-estimated, the
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residuals variance comes, in majority, from the estimation error. More precisely, a bad
estimation of the expected consumption leads to an increase of the estimated standard
deviation.

As the focus is on generating realistic a profile (and not necessary on having the best
forecast in expectation), the standard deviation used to simulate data must reflect the
variability observed in energy consumption data. Thanks to the causality model of Sec-
tion 3.1, that is now fitted on cluster consumptions (and not on individual ones), we can
estimate the standard deviation of the noise as a function of the tariff and the half-hour h.
We recall that we denote by σh(p) the approximation of the standard

a

Var[Y h(i) |P = p]
deviation associated with the half-hour h and the tariff p – see Equation (7.2). It is used to
normalize the residuals, which should then be centered and of variance 1 (but not indepen-
dent). Finally, we consider the standardized residual vectors and compute an estimation
of their correlation matrix Σ. We can now generate new data points this way:Y

1
t
...
Y H
t

 =

 f1
(
x1t , p

1
)

...
fH
(
xHt , p

H
)
+

(
σ1(p1), . . . , σH(pH)

)T
Et where Et „ N (0,Σ) . (7.7)

Functions (fh)1ďhďH are estimated with GAMs and the exogenous vector xht gathers the
temperature of the time instance at the considerate half-hour τht , the smoothed temper-
ature τ̄t, the position in the year πt, the binary variable wt, which is equal to 1 if the
day considered is a working day and 0 otherwise. For each half-hour h, we set the same
underlying GAM:

fh(xht , p
h
t ) = shτ (τ

h
t ) + shτ̄ (τ̄t) + shπ(πt) + αhwt + ξhLow1pht =low + ξhhigh1pht =High . (7.8)

Therefore, F is the set of functions that can be written this way. The shτ , shτ̄ , and shπ
functions are catching the effect of the temperatures and of the yearly seasonality. They
are approximated by cubic splines. The mgcv R-package allows to estimate the coordinates
of the splines in their basis and the coefficients αh, ξhLow, and ξhHigh that catch day of the
week and tariff effects. The estimation of the matrix Σ, which is used to generate profiles
with correlations between temporal intervals of the same day, is computed as follows. If the
model defined by Equation (7.7) was true, residuals Y h

t ´ fh(xht , p
h
t ) should be Gaussian

of mean 0 and standard deviation σh(pht ). Thus the vector of standardized residuals
et = (eht )1ďhďH is considered, where

eht =
Y h
t ´ fh(xht , p

h
t )

σh(pht )
.

Assuming the model above, the covariance matrix Σ of vectors e1, . . . , eT0 should have
1 on the diagonals and all other coefficients between ´1 and 1. To deal with our im-
perfect modeling and avoid again the problem of high standard deviation coming from
the estimation error, Σ is approximated by the empirical correlation matrix of vectors
e1, . . . , eT0 . From the T0 observations e1, . . . , eT0 , which are assumed independent, of the
H-dimensional random vector e = (e1, . . . , eH), the coefficients of the H ˆ H-correlation
matrix Σ are defined by

Σi,j =
cov(ei, ej)

a

Var(ei)Var(ej)
, where cov(ei, ej) = E(eiej) ´ E(ei)E(ej) .
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We point out that in the case of random variables e1, . . . , eH of standard deviation 1
(we assume it in the semi-parametric simulator described in Section 5), covariance and
correlation matrices are equal. In there, Σi,j is estimated by replacing covariances and
variances of random variables ei and ej by the their empirical estimations:

cov(ei, ej) «
1

T0 ´ 1

T0
ÿ

t=1

(
eit ´ ē i

)(
ejt ´ ē j

)
and Var(ei) «

1

T0 ´ 1

T0
ÿ

t=1

(
eit ´ ē i

)2
, with ē i =

1

T0

T0
ÿ

t=1

eit .

Therefore, this estimation of the correlation matrix Σ makes it possible to model the
correlations between the consumption profiles of two half-hours of the same day, whereas
keeping a variance of the residuals that varies according to the half-hour and the price.

Remark 22. We could also have modeled these correlations by fitting an ARIMA model on
the residuals; such an approach would have taken into account day-to-day time dependence.
But on the data, it was quite difficult to estimate a significant ARIMA model. Moreover,
we were not comfortable with a possible too high divergence of the residuals: after many
rounds of simulation, the process may be very far from 0.

6 Evaluation of the data generators

6.1 Evaluation metrics

By generating lots of energy consumption profiles from the simulators, an estimation of
their densities can be obtained. Therefore, we use some proper scoring scores from proba-
bilistic forecast evaluation to assess the quality of our generators. The three scores detailed
below allow to evaluate the data generated on the testing period and compare both gen-
erators. For a day t of the testing set, from the vector of exogenous variables Xt, both
generators output H-random vectors that are assumed to be drawn from an underlying
distribution pFt. These distributions approximate the true and unknown H-dimensional
distributions Ft from which the observation (Y 1

t , . . . , Y
H
t ) is actually drawn. We generate

N = 200 samples pY
(1)
t , . . . , pY

(N)
t for each generator. From these H-random vectors, we

can approximate the three scores described below, that measure the adequacy between
the observation vectors Yt and the distributions pFt.

First of all, for a distribution F , and a vector of observation y, the root mean squared
error is considered: RMSE (F, y) =

›

›E[Y ] ´ y
›

›, where Y is a random vectors distributed
according to F . The first score is thus the RMSE between the expectation of the distri-
bution pFt (which we approximate with empirical mean of the generated samples) and the
observation Yt:

RMSE ( pFt, Yt) «

›

›

›

1

N

N
ÿ

i=1

pY
(i)
t ´ Yt

›

›

›
.

Here, the expectation of the distribution pFt is actually seen as a forecast of the energy
consumption Yt. But to evaluate the quality of pFt, a criterion including the variance and
shape of the densities is necessary.
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The two other scores are proper scoring rules used to evaluate weather ensembles or
temporal trajectories generated by a statistical method (e.g., copula model). The energy
score, introduced in Gneiting and Raftery [2007], generalizes the univariate continuous
ranked probability score (CRPS) and is defined as

EN (F, y) = E
[
›

›Y ´ y
›

›

]
´

1

2
E
[
›

›Y ´ Y 1
›

›

]
,

where Y and Y 1 are two independent random vectors that are distributed according
to F . This score is approximated by splitting the generated samples in two groups
pY
(1)
t , . . . , pY

(N/2)
t and pY

(N/2+1)
t , . . . , pY

(N)
t :

EN ( pFt, Yt) «
2

N

N/2
ÿ

i=1

›

›

›

pY
(i)
t ´ Yt

›

›

›
´

1

N

N/2
ÿ

n=1

›

›

›

pY
(i)
t ´ pY

(N/2+i)
t

›

›

›
.

Scheuerer and Hamill have shown that the ability of energy score to detect correctly corre-
lations between the components of the multivariate distribution was limited (see Scheuerer
and Hamill, 2015 for further details). To remedy, they introduced the variogram score of
order p:

VGp(F, y) =
H
ÿ

h,h1=1

(
ˇ

ˇyh ´ yh
1 ˇ
ˇ

p
´ E

[
ˇ

ˇY h ´ Y h1 ˇ
ˇ

p
])2

, (7.9)

where Y is a random vectors distributed according to F . On simulated data, they com-
pared the performance of different scores (including the energy score) with the variogram
scores for various p. This score is approximated with:

VGp( pFt, Yt) «

H
ÿ

h,h1=1

(
ˇ

ˇY h
t ´ Y h1

t

ˇ

ˇ

p
´

1

N

N
ÿ

i=1

ˇ

ˇ

ˇ

ˇ

(
pY
(i)
t

)h
´

(
pY
(i)
t

)h1
ˇ

ˇ

ˇ

ˇ

p
)2

.

We emphasize that for all the scores above, the smaller the value, the better the forecast.

6.2 Numerical results

For each cluster and each day t of the testing set, we compute, for both generators (CVAE-
based and GAM-based) the three scores (thanks to the 200 generated samples). Results are
represented by boxplots in Figure 7.4. Moreover, for the first three days of the testing set
(that are actually the first three days of 2013), 20 samples generated by the simulators for
the 4 clusters, their empirical means (computed on all the samples) and the corresponding
observations Yt are plotted in Figure 7.5.

It is quite difficult to discriminate significantly both generators from these scores, but
some conclusions may still be drawn. First, RMSE bloxplots and plots suggest that GAM-
based generators work better than those that use CAVE when it comes to generating the
average value of the original data (which is approximated by the empirical mean of the
samples). However, the energy score is slightly lower for the non-parametric approach
(namely for CVAE-based simulator) than for the semi-parametric one (GAM-based simu-
lator). Thus, the method that consists in adding a noise term to a forecast in expectation
may have some limits whereas CVAEs seem to catch correctly the distributions of daily
energy consumption.
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Figure 7.4 – Boxplots. From left to right Root Mean Squared Error (RMSE), Energy Score and
variogram for p = 0.5 evaluated for each day of the data test set.

Experiments of Scheuerer and Hamill [2015] highlight that, when the estimation of the
average value of the original data is incorrect (namely when the expectation of F differs
from the expectation of y in Equation (7.9)), variogram scores increase. Moreover, a too
low or a too high variance – when the variance of F differs from the one of y – also increases
variogram. Given the variogram scores and the plots, we conclude that CVAE-based gen-
erators face an estimation of expected energy consumption worst than the semi-parametric
generator but provide also samples with a too low variance (since the observations are not
close to any of the generated data). Conversely, GAM-based generators provide sample
with a correct variance: each of the observations is close to, at least, one of the generated
data. But the trajectories are very erratic (whereas ones generated with CVAE-based
generators are quite smooth); this also leads to a quite high variagram score.

Moreover, in the CVAE approach, consumption values from an half-hour to another
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Figure 7.5 – Left: data generated with the CVAE-based generator. Right: data generated with
the GAM-based generator. Blue lines: for every cluster over the first three days of the testing set,
20 energy consumption profiles and empirical mean profile, calculated on 2 200 samples (in bold),
obtained by giving, to the two simulators, the exogenous variables observed over this period. Black
line: real observed profiles.
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are very correlated, when in the semi-parametric one, consumption profiles are more er-
ratic. Observations suggest that the real variances and correlations lie somewhere in
between. The semi-parametric method is very sensitive to the standard deviation σh(p)
estimations. Thus, over-estimating these variances, provide, for sure, very different sam-
ples, which may be also very erratic. Concerning CVAE-based generator, the variance of
the samples could manually be increased by generating the decoder inputs according to
N (0, σ2Id) with σ ą 1.

Finally, we emphasize that in the semi-parametric approach, the variance depends only
on the tariff and on the half-hour, whereas in the CVAE, all exogenous variables are taking
into account. Moreover, the next section presents some strong advantages of the CVAE
generator.

6.3 Impact of the tariff

In these last experiments, for a day t of the testing set, three different conditional vectors
XNormal

t , XLow
t and XHigh

t are considered. The tariff is Normal for all the day long for
XNormal

t . For the vector XLow
t , Low tariff applies from 4:30 to 9:30 a.m., and Normal one

otherwise, finally, tariff is Normal expect from 7:30 to 10 p.m. where it is High for XHigh
t .

For all other components, namely for the calendar and weather variables, XNormal
t , XLow

t ,
and XHigh

t are equal to Xt. Still for the first three days of the testing set, 20 samples
generated by the generators for the 4 clusters and their empirical means (computed with
all the sample) are plotted in Figure 7.6.

For both data generators, an increase of the consumption when tariff Low is applied
and a decrease when the tariff is High are observed. For the GAM-based generator, the
effect of the tariff is very interpretable, it is actually measured by coefficients ξhLow and
ξhHigh of equation (7.8). This model makes actually this assumption that the tariff effect
only depends on the half-hour. Moreover, matrix Σ models the correlations between the
energy consumption at two half hours of the same day; this implicitly assumes that these
correlations do not change according to the applied tariff profile. Conversely, CVAE-based
generator does not have this assumption and the effect of a tariff may differ from a day to
another.

Moreover, two effects that cannot be modeled by the semi-parametric approach are ob-
served. First, the fall of the energy consumption occurs a little bit before the effective
establishment of a special tariff High and continues a little after it is stopped. Thus, the
effect of the High tariff exceeds the time window in which the special tariff is actually ap-
plied. This is called a side effect. Secondly, in comparison to a day of Normal tariff, when
tariff Low is applied in the morning, there is a drop of the consumption in the afternoon
and evening. Similarly, we observe a little increase of the consumption in the afternoon
when the tariff is High during the evening. Therefore, the fall or rise in consumption
shifts to another time of the day when a special tariff is applied over a time window. This
is called a rebound effect. These side and rebound effects are well known behaviors of
consumers and it is very valuable that the generator detects them.

The main drawback of this non-parametric generator is the generation of non-intuitive
consumption profiles when the input is a tariff profile never observed in the training set,
like an entire day of High tariff for example. This shows that the method has a limited gen-
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Figure 7.6 – Left: data generated with the CVAE-based generator. Right: data generated with
the GAM-based generator. Black lines: for every cluster on the first three days of the testing set,
20 energy consumption profiles and empirical mean profile, computed over 200 samples (in bold),
obtained by giving, to the two simulators, a Normal tariff for every half-hour and the weather and
calendar variables observed over this period. Blue lines: same plots but with a High tariff in the
evening and Normal tariff otherwise. Yellow lines: same plots but with a Low tariff in the early
morning and Normal tariff otherwise.
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eralization capacity. Enlarging the data set, especially the variety of price signals, would
eliminate this limitation. To deal with the lack of variability in the sent tariff profile of
the original data set, we could also imagine an online data generator: when a new tariff
profile is sent, the observed consumption is integrated in the training set and the data
generator is updated. The use of transfer learning methods could also improve the realism
of the generated data. This machine learning field focuses on storing knowledge gained
while solving one problem and applying it to a different but related problem. Therefore,
by combining data sets of consumer responsiveness to various DR programs (i.e. by com-
bining diverse knowledge of electricity demand in the face of tariff changes), a data set
with a higher variability in the sent tariff profiles may be obtained. On the other hand,
for a full day of tariff High, the semi-parametric model generates samples with an energy
consumption below the typical one for each half-hour, which is unrealistic since electricity
uses cannot be delayed indefinitely.

Figure 7.6 shows that tariff-responsiveness vary from a cluster to another, i.e., rebound
or side effects are not always observed and the amount of electricity over or under consumed
also depends on the considered cluster. These results fully illustrate the motivation behind
the use of the causality model to cluster consumers.
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8
Contextual bandits for
personalized demand side
management

This synthesis chapter generalizes the theoretical results of Chapter 4 to
provide a contextual-bandit approach for personalized demand side man-
agement. The previous assumption of a homogeneous population is dropped
and, by clustering of non-homogenous population into several homogenous
groups (by the method of Chapter 6), a protocol for personalized demand
side management, which can take into account many operational constraints,
is set out. The performance of our strategies is measured in quadratic losses
through a regret criterion and we offer T 2/3 upper bound on this regret (up
to poly-logarithmic terms). Experiments, using the data simulator provided
in Chapter 7 to test the proposed strategies, conclude the chapter.

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
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1 Introduction
This chapter aims to manage the power consumption of some household clusters, by per-
sonalizing the tariff send according to the cluster behaviors. In Chapter 4, we proposed
a contextual-bandit approach for the demand side management of an homogeneous pop-
ulation by offering price incentives. We recall that a target mean consumption was set
at each round and that the mean consumption was modeled with a generalized additive
model that took into account many covariates: some contextual variables such as the tem-
perature, weather, and so on, as well as the distribution of prices sent. The performance
of our strategies was measured in quadratic losses through a regret criterion.

As in Chapter 6, we now consider not only the aggregated power consumption of some
clusters, but also the aggregated power consumption of higher aggregation levels (larger
regions, entire population, etc.). The electricity consumption of each cluster is modeled
a different generalized additive model and for some of the aggregation levels, we will set
target consumptions. We still consider quadratic losses. We then proposed an algorithm
to perform the management of this non-homogeneous population. This approach, com-
pared to the one of Chapter 4, comes with two main refinements. First, the sent of the
tariff are personalized: the population is not anymore homogeneous and the tariff chosen
by the electricity provider for a sub-population depends on both its consumption behavior
and its responsiveness to tariff changes. Second, global (namely for the entire population)
and local (for a sub-population) target consumptions can be considered which is valuable
to deal with the integration of decentralized and intermittent energies.

In Section 2 we provide a modeling of this management system. Then, an optimistic
algorithm, adapted from the one provided in Chapter 4 is stated and its regret is analyzed
in Section 3; we therefore show how to control the cumulative loss through a T 2/3 regret
bound with respect to the best constant price allocation. Finally, experiments on the Low
Carbon London data set are presented in Section 4. They rely on the clustering approach
described in Chapter 7, which divides correctly the households of the Low Carbon London
project according to their responsiveness to a tariff profile. The results are obtained
for data simulated with the CVAE-based data generator also presented in this previous
chapter, this gives an idea of the robustness of the proposed solution, initially built for
data generated by generalized additives models.

2 Setting and model

2.1 Consumption modeling

We consider a large population of households of some electricity provider, constituted
of G homogeneous sub-populations; the households have been previously gathered into
G clusters according to their location, consumption behavior and price-responsiveness,
for example by using methods introduced in Chapters 6 and 7. To manage demand the
electricity provider sends some incentives signals to its customers. We assume that K ě 2
price levels (tariffs) are available.

Remark 23. There is no reason to consider that the same tariffs are proposed to each
cluster, in particular if several types of contracts are offered, with different degrees of tariff
flexibility, and if the segmentation of the households is based on contract type: we could
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consider K1 tariffs for the cluster 1, K2 for the cluster 2 and so on. For the ease of
notation and with no loss of generality (by setting K = maxiK

i), we consider the same
number K of tariffs for every cluster. We point out that, pricing options can however be
very different from one cluster to another.

To model the power consumption of each of the clusters, we consider Model 1 intro-
duced in Chapter 4. Therefore, at each round t, the power consumption of a cluster
i P t1, . . . , Gu depends on the electricity prices and on some exogenous factors (temper-
ature, wind, season, day of the week, etc.), which form a context vector xit P X i (where
X i is some parametric space). Moreover, at round t, the electricity provider sends the
tariff k to a share pit,k of the households of cluster i; we denote by pit the convex vector
(pit,1, . . . , p

i
t,K). As cluster i is rather homogeneous, it is unimportant to know to which

specific household a given signal was sent; only the global proportion pit,k matter. The
power consumption of cluster i, for the prices level pit, is denoted by Y i

t,pit
and is assumed

to be of the form:
Y i
t,pit

= ϕi(xit, p
i)Tθi + noise(i) ,

where the mapping function ϕi : X i ˆP i Ñ Rdi is known and a parameter vector θi P Rdi

has to be estimated.

Remark 24. The i-dependence in the context vector can be due to the location of the
clusters: the power consumptions of clusters from different regions are affected by different
weather variables, so xit could contain local weather information. Moreover some of the
exogenous variables may be relevant for some of the clusters and useless for the others.

We may set some restrictions on the convex combinations pit = (pit,1, . . . , p
i
t,K) that can

be picked: we denote by P i the set of legible allocations of price levels. Finally, for two
clusters i and j, we assume that conditionally to the contextual vectors xit and xjt and
conditionally to the tariffs picked pit and pjt , the power consumption of clusters i and j are
independent. As in Model 1, the noise term in the power consumption depends on the
price vector. Therefore, the previous assumption can be written informally

Cov
(

noise(i) , noise(j) | pi, pj
)
= 0 .

We highlight that, at a round t, price levels pit and pjt may be correlated because the elec-
tricity provider manages both clusters in the same time. This modeling of the G power
consumptions is stated with full rigor in Model 4 below.

Model 4: G independent (conditionally to contextual variables) submodels. For a given
cluster i, when the electricity provider picks the convex vector pi P P i, the consumption of
the cluster obtained at round t equals

Y i
t,pi = ϕi(xit, p

i)Tθi + (pi)Tεit .

The noise vectors εi1, εi2, . . . are ρi–sub-Gaussian1 i.i.d. K-dimensional random variables
with E[εi1] = (0, . . . , 0)T. Moreover, for any clusters i ‰ j, and tariffs k, k1 P t1, . . . ,Ku,
cov(εit,k, ε

j
t,k1) = 0. We denote by Σi = Var(εi1) their covariance matrix.

1 A d–dimensional random vector ε is ρ–sub-Gaussian if for all ν P Rd, one has E
[
eν

Tε
]

ď eρ
2}ν}2/2.
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2.2 Targets and loss function

In Chapter 4, we focused on the management of the global consumption. Indeed, we
aimed to influence the power consumption of the entire population of customers, which
was homogeneous. The present work is a generalization of the previous one: with G = 1,
we recover previous results related with Model 1.

We now observe the consumption of G homogeneous clusters and can send “personal-
ized” (namely, cluster-depending) signals: at any round t, we can choose pit ‰ pjt for two
clusters i and j. In that follows, we will denote by pt the matrix which contains the price
vectors (p1t , . . . , p

G
t ):

pt
∆
=

(
p1t

ˇ

ˇ

ˇ
p1t

ˇ

ˇ

ˇ
. . . ,

ˇ

ˇ

ˇ
pGt

)
,

and by P = P1 ˆ ¨ ¨ ¨ ˆ PK Ă ∆G
K , the set of legible allocations of price levels pt. We still

aim to manage the global power consumption, see Example 10 below.

Example 10: Global consumption management. To manage demand response, for each
round t, the electricity provider sets a global consumption target ct to reach. It chooses
the K ˆ G-matrix pt P P in order to influence the global consumption of its customers,
and observes the resulting power consumption Yt,pt

=
řG

i=1 Y
i
t,pit

. As in Chapter 4, the
aim is to control the global power consumption Yt,pt

. The main difference comes from
the segmentation: the algorithm is supposed to find flexible clusters to better manage
demand. We still measure the discrepancy between the observed consumption Yt,pt

and
the target ct via a quadratic loss:

(
Yt,pt

´ ct

)2
=

(( G
ÿ

i=1

Y i
t,pit

)
´ ct

)2

.

To deal with this global management, we could directly apply the algorithm of Chapter 4,
considering, at each round t, the unique observation Yt,pt

. But, in such a situation, we
will have to estimate the power consumption associated with each set of p1t , . . . , pGt . De-
pending on how electricity consumptions and tariffs are liked (namely, depending on the
underlying generalized additive model), we may pay a KG (the dimension of P) factor in
the regret bound. Using the observations of Y 1

t,pt
, . . . , Y G

t,pt
, we will see below that we can

reach a K2G´1G factor, which is better.

Electrical girds may be subjected to geographical constraints and the provider could
wish a more local management of the demand. For example, we could imagine that two
clusters i and j are in two different regions and that many wind farms are present in the
region of cluster i, while there is none in the region of cluster j. Even if the network con-
nects the two clusters, in windy weather, the electricity provider could want to encourage
cluster i to consume “locally” by sending low prices, while maintaining normal prices for
cluster j; this will minimize energy loss. To do so, it has to consider local consumption
targets, see Example 11 below.

Example 11: Local consumptions management. The electricity provider aims to manage
the clusters locally: each cluster may correspond to a region which has its own electricity
production, its own grid and its own weather. It sets some local targets cit for each cluster
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i at each round t. Then, it chooses the matrix pt and observes the G local consumptions.
Here, the clusters’ targets, tariffs and consumptions (conditionally to the exogenous vari-
ables) are completely independent, as if the G electrical grids associated with them are
disjoint by design. In such a situation, the global loss is simply the sum of the local
quadratic losses:

G
ÿ

i=1

(
Y i
t,pit

´ cit

)2
.

This particular example may be handled with G algorithms executed independently and in
parallel (using the algorithm proposed in Chapter 4. By a union bound and by summing
the regrets, we will pay a G factor in the regret bound, which is better than the bound we
reach below. The interest of our approach is to manage targets common to certain groups.

We may combine the two previous examples and consider a consumption management
both global and local. In a even more general modeling, we assign targets to some
aggregations at variable levels of the clusters. More precisely, for a subset of clusters
g P P(t1, . . . , Gu), we introduce, at round t, the subtarget cg

t . For example, with this
approach, we may introduce a global target ctot

t ; two locals targets for clusters 1 and 2
denoted by c1t and c2t , respectively; and a subtarget for clusters 2 and 3 denoted by c23t ;
and consider the losses:(( G

ÿ

i=1

Y i
t,pit

)
´ ctot

t

)2

+
(
Y 1
t,p2t

´ c1t

)1
+
(
Y 2
t,p2t

´ c2t

)2
+

((
Y 2
t,p2t

+ Y 3
t,p3t

)
´ c23t

)2

.

As it is more crucial to reach some of these subtargets than other, we also introduce some
importance weights κg

t to be considered in the global loss. Therefore, at each round t,
the electricity provider fixe a set of subtargets (cg

t )gPGt , where Gt is a set of partitions of
t1, . . . , Gu. For example, Gt =

 

t1, . . . , Gu
(

refers to the global consumption management
of Example 10 and Gt =

 

t1u, . . . , tGu
(

to the local management presented in Example 11.
In addition to the subtargets, weights κg

t are given: the higher κg
t , the closer to cg

t should
the consumption associated with g be. Then, the provider chooses the matrix pt to
minimize the instantaneous loss

`t
∆
=

ÿ

gPGt

κg
t

(
Y g
t,p ´ cg

t

)2
=

ÿ

gPGt

κg
t

(
ÿ

iPg
Y i
t,pit

´ cg
t

)2
,

where
ÿ

iPg
Y i
t,pit

is the power consumption associated with partition g .

Then, it observes the G consumptions Y i
t,pit

, for i = 1, . . . , G. With no loss of generality,
we normalized the weights κg

t P [0, 1] for all g P Gt and t ě 1. This online protocol is stated
in Protocol 8.

Notation. We generally refer to a cluster with the superscript i P t1, . . . , Gu and to a
subset of cluster with the superscript g P P (t1, . . . , Gu). Furthermore, we denote by G
some set of partitions of t1, . . . , Gu.

Remark 25. For a partition g P P (t1, . . . , Gu), we will not need to assume the consistency
of the local targets cit with respect to a possible global target cg

t , i.e., we do not require
ř

iPg c
i
t = cg

t .
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Protocol 8 Target Tracking for Contextual Bandits with Subtargets
Input

Parametric context sets X 1, . . . ,XG

Set of legible matrices of tariff allocations P = P1 ˆ . . . ,ˆPG

Bounds on mean consumptions C1, . . . , CG

Transfer functions ϕi : X i ˆ P i Ñ Rdi , for i = 1, . . . , G
Unknown parameters

Transfer parameters θi P Rdi , for i = 1, . . . , G
Covariance matrices Σi of size K ˆK, for i = 1, . . . , G

for t = 1, 2, . . . do
Observe some context (xit)i=1,...,G and some set of partitions Gt of t1, . . . , Gu

for g P Gt do
Observe some subtarget cg

t P [0, Cg] and some weight κg
t P [0, 1]

end for
for i = 1, 2, . . . , G do

Choose an allocation of price levels pit P P
Observe a resulting mean consumption

Y i
t,pt = ϕi(xit, p

i
t)

Tθi + (pit)
Tεit

end for
Suffer a loss

ÿ

gPGt

κg
t

(
ÿ

iPg
Y i
t,pit

´ cit

)2
end for

2.3 Expression of the regret

At a round t, for each cluster i, it may be seen, by induction, that the contextual vectors
xit and tariffs pit, as well as the subtarget cg

t , for any g P Gt, are Ft´1–measurable, where

Ft´1 = σ
(
ε11, . . . , ε

G
1 , ε

1
2, . . . , ε

G
2 , . . . , ε

G
t´1

)
.

Therefore, under Model 1, for any g P Gt

E
[(
Y g
t,pt

´ cg
t

)2 ˇ
ˇFt´1

]
= E

[(
ÿ

iPg
Y i
t,pit

´ cg
t

)2 ˇ
ˇFt´1

]
= E

[(
ÿ

iPg
ϕi(xit, p

i
t)

Tθi + (pit)
Tεit ´ cg

t

)2 ˇ
ˇFt´1

]
(Model 4)

=
(
ÿ

iPg
ϕi(xit, p

i
t)

Tθi ´ cg
t

)2
+ E

[(
ÿ

iPg
(pit)

Tεit

)2 ˇ
ˇFt´1

]
+ E

[
2
(
ÿ

iPg
ϕi(xit, p

i
t)

Tθi ´ cg
t

)(
ÿ

iPg
(pit)

Tεit

)
ˇ

ˇFt´1

]
.

In Model 1 we assume that, for all (i, j) P t1, . . . , Gu2 with i ‰ j, the vectors εit and εjt
are independent. Furthermore, the expectations of vectors εit are null and all pit, xit and cg

t

are Ft´1-measurable, so we get

E
[(
Y g
t,pt

´ cg
t

)2 ˇ
ˇFt´1

]
=
(
ÿ

iPg
ϕi(xit, p

i
t)

Tθi ´ cg
t

)2
+
ÿ

iPg
(pit)

TΣipit.
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In that follows, we aim to minimize the sum of conditionally expected losses, which equals,
by summing previous equality over time and clusters,

T
ÿ

t=1

E
[
`t
ˇ

ˇFt´1

]
=

T
ÿ

t=1

ÿ

gPGt

κg
t

((
ÿ

iPg
ϕn(xit, p

i
t)

Tθi ´ cg
t

)2
+
ÿ

iPg
(pit)

TΣipit

)
.

For any matrix p = (pi)iPt1,...,Gu, we introduce the notation `t,p for the instantaneous
conditionally expected loss:

`t,p
∆
=

ÿ

gPGt

κg
t

((
ÿ

iPg
ϕi(xit, p

i)Tθi ´ cg
t

)2
+
ÿ

iPg
(pi)TΣipi

)
. (8.1)

To ensure the minimization of the sum of losses either in expectation or with high probabil-
ity, as in Section 3.1 in Chapter 4, we compare, at each round t, our choices pt = (pit)i=1,...,G

to the choices of the best possible strategy, namely the ones which minimize the sum of
conditionally expected losses. Therefore, we introduce the (conditional) regret

R̄T
∆
=

T
ÿ

t=1

(
`t,pt

´ min
pPP

`t,p

)
=

T
ÿ

t=1

ÿ

gPGt

κg
t

((
ÿ

iPg
ϕi(xit, p

i
t)

Tθi ´ cg
t

)2
+
ÿ

iPg
(pit)

TΣipit

)

´

T
ÿ

t=1

min
(p1,...,pG)PP

ÿ

gPGt

κg
t

((
ÿ

iPg
ϕi(xit, p

i
t)

Tθi ´ cg
t

)2
+
ÿ

iPg
(pit)

TΣipit

)
.

3 A regret bound for subtarget tracking
In this section we control the regret defined above by using arguments similar to the ones
developed in Section 3 in Chapter 4. Section 3.1 presents the optimistic bandit algorithm
we consider for the tracking of subtargets. The regret bound is stated in Section 3.2 and
proved in Section 3.3.

As in Chapter 4, we make some assumption on the boundedness of the expected con-
sumption: for each cluster i P t1, . . . , Gu, it is assumed to be always bounded between 0
and a known maximal value Ci. The following assumption, linked to the knowledge of Ci,
indicates some normalization of the modelings.

Assumption 9 – Boundedness assumption. For any round t, and any value of the
context vector xit, we make the assumption that

}ϕi}8 ď 1, }θi}8 ď Ci, and @pi P P i, ϕi(xit, p
i)Tθi P [0, Ci] .

Moreover, we assume that the coefficients of the matrix Σi are bounded, which entails

@pi P P i, (pi)TΣipi ď Γi,

where the bound Γi is also known. Finally, for any g P Gt, we denote by Cg =
ř

iPgC
i a

bound on the consumption Y g
t associated with the partition g and assume that, for any
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round t, if a subtarget cg
t is provided for Y g

t , then it is in [0, Cg].

A consequence of all these boundedness assumptions is that Lg = (Cg)2+
ř

iPg Γ
i upper-

bounds the (conditionally) expected losses associated with the partition g: for any round
t, for all values of the context vectors xit with i P g, for any p P P ,(

ÿ

iPg
ϕi(xit, p

i)Tθi ´ cg
t

)2
+
ÿ

iPg
(pi)TΣipi ď Lg so, `t,p ď L

∆
=

ÿ

gPGt

κg
tL

g . (8.2)

We assume, for any i P t1, . . . , Gu, that both the transfer function ϕi and the bounds
(Ci ą 0 and Γi ą 0) are known; consequently, for any partition g, Cg and Lg are also
known. We recall that [x]C = mintmaxtx, 0u, Cu is the clipped part C of a real number x
(clipping between 0 and C).

3.1 Optimistic algorithm

As for previous optimistic algorithms (see Chapters 4 and 5), the key is to estimate, for
each p P P , the instantaneous conditionally expected loss `t,p and to provide a deviation
bound αt,p for this estimator denoted by p`t,p.

Given all the transfer functions ϕi, the definition of `t,p (see Equation 8.1) suggests to
first estimate the parameter vectors θi and the correlation matrices Σi and secondly to
combine them and compute the estimator p`t,p. For each cluster i, we modeled its power
consumption exactly as the homogeneous consumers population of Chapter 4 (only the
underlying models differ from one cluster to another, through the mapping functions ϕi,
the parameters θi and the covariance matrix Σi). Therefore we define the estimations pθit
and pΣi

τ exactly as we did for the estimations pθt and pΣτ of Chapter 4. At a round t, we
introduce the estimators pθit of the di-vectors θi (see Section 3.3.1 of Chapter 4), for each
i P t1, . . . Gu:

pθit
∆
= (V i

t )
´1

t
ÿ

s=1

Y i
s,pis

ϕi(xis, p
i
s) , where V i

t
∆
= λiIdi +

t
ÿ

s=1

ϕi(xis, p
i
s)ϕ

i(xis, p
i
s)

T .

After τ ě 1 exploration rounds, exactly as we did with a single homogeneous population
in Section 3.3.2 of Chapter 4, we estimate the G covariance matrices Σi, for i = 1, . . . , G.
Here, for τ ą 0, these G estimators pΣi

τ are computed in parallel, independently and
cluster by cluster. Then, for t ě τ + 1, we can estimate the instantaneous expected loss
`t,p associated with the choices p = (pi)iPt1,...,Gu by:

p`t,p
∆
=

ÿ

gPGt

κg
t

(([
ÿ

iPg
ϕi(xit, p

i)T
pθit´1

]
Cg

´ cg
t

)2

+
ÿ

iPg
(pi)T

pΣi
τp

i

)
.

With αt,p deviation bounds, to be set by the analysis, the optimistic algorithm picks, for
t ě τ + 1,

pt P argmin
p PP

 

p`t,p ´ αt,p

(

. (8.3)

For the first τ rounds, vectors pt are picked deterministically, in order to get the deviation
bounds on the estimators pΣi

τ (see Section 3.3.2 of Chapter 4).
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3.2 Statement of the regret bound

Theorem 10 below states a generalization of Theorem 4 of Chapter 4, which is proved in
the next section.

Theorem 10. Fix a risk level δ P (0, 1) and a time horizon T . Assume that Assumption 9
hold. The optimistic algorithm (8.3) with an initial exploration of length τ = O(T 2/3)
rounds satisfies

R̄T = O

(
T 2/3 ln2

(
T

δ

)c
ln 1

δ

)
,

with probability at least 1 ´ δ.
Remark 26. The dependence of the regret bound on the number of clusters G is at most
of order 2G´1G (see Lemma 11 below).

The initial exploration, namely the first τ rounds, offers a good estimation of the G
matrices Σi, for i = 1, . . . , G. From then on, the vectors θi are estimated online and the
optimistic algorithm performs a good exploration-exploitation trade-off.
Remark 27. If the matrices Σi are known and no initial exploration needs to be performed,
the regret bound is in O

(a
T lnT ln(T/δ)

)
.

We emphasize that if each cluster was considered independently of the others (namely if
there was just a target per cluster and Gt =

 

t1u, . . . , tGu
(

, see Example 11) we could run
the algorithm introduced in Chapter 4 on each cluster. Then, Theorem 4 of Chapter 4,
taking δ = δ1/G, would guarantee a bound for each local regret with probability at least
1´δ1/G. With a union bound, as the G algorithms would be run in parallel, independently
and cluster by cluster, we would obtain a regret bound with probability at least 1 ´ δ1

by summing the local regrets. The main improvement here comes from the links between
the clusters induced by the subtargets cg

t , when g is not a singleton: all the vectors of p
are linked (they cannot be chosen independently of each other if we want that the sum
of the consumptions Y i

t,pit
, for i P g to be as close as possible to the target cg

t ) and some
adaptation of the results is needed.

3.3 Analysis of the regret

The analysis of the regret is similar to the one provided in Section 3 and uses some results
already proved in this previous chapter. For each round t ě τ+1, for each partition g P Gt,
the key is to provide a deviation bound on the instantaneous regret related to partition
g. This bound will come from the deviation inequalities obtained, for each i P g, on pθit
and pΣi

τ (provided in Sections 3.3.1 and 3.3.2, respectively). Then, by summing over g P Gt

we will obtain that the instantaneous regrets `t,pt
´ minp PPN `t,pt

are bounded, with high
probability, by 2αt,pt

: this is Proposition 4 below. Next, Lemma 11 shows how to control
the sum over t ě τ + 1 of these deviations bounds αt,pt

. Finally, it will only remain to
deal with the first τ rounds to conclude the proof of Theorem 10.

Proposition 4. For a risk level δ P (0, 1) and an exploration budget τ ě 2, the optimistic
algorithm (8.3) ensures, with probability at least 1 ´ δ,

T
ÿ

t=τ+1

`t,pt
´

T
ÿ

t=τ+1

min
p PPN

`t,pt
ď 2

T
ÿ

t=τ+1

αt,pt
, (8.4)
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with, for p P P,

αt,p
∆
=

ÿ

gPGt

κg
t

[
min

!

Lg, 2Cg
ÿ

iPg
Bi

t(δ/Gt2)
›

›(V i
t´1)

´1/2ϕi(xit, p
i)
›

›

)

+
ÿ

iPg
Gi

τ (δ/2G)

]
. (8.5)

The quantities Bi
t(δ/Gt2) and Gi

τ (δ/2G) are defined in Equations (8.6) and (8.8) below,
respectively.

Before proving Proposition 4, we recall the deviations inequalities obtained in 4. As the
power consumption of each cluster i is modeled exactly as the homogeneous consumers
population of Chapter 4, Lemmas 4 and 5, written them with a superscript i, hold for the
estimations pθit and pΣi

τ , respectively.

‹ Deviation inequalities on pθit and pΣi
τ used in the proof of Proposition 4. For a given

i P t1, . . . Gu, no matter how the provider picks pit, we have, for all t ě 1 and all δ P (0, 1)
the two high probability deviation bounds below. Lemma 4 proved in Section 3.3.1 of
Chapter 4 states that, with probability at least 1 ´ δ,

›

›(V i
t )

1/2
(
pθit ´ θ

)›
› ď Bi

t(δ)
∆
=

?
λidiCi + ρi

c

2 ln 1

δ
+ di ln

(
1 +

t

λi

)
. (8.6)

Moreover, a straightforward application of Lemma 5 (see Section 3.3.2 of Chapter 4)
ensures that the estimator pΣi

τ satisfies, with probability at least 1 ´ δ,

sup
piPPi

ˇ

ˇ

ˇ
(pi)T

(
pΣi
τ ´ Σi

)
pi
ˇ

ˇ

ˇ
ď Gi

τ (δ) = O
(

1
?
τ

ln2(τ/δ)
a

ln(1/δ)
)
, (8.7)

where

Gi
τ (δ)

∆
= (K + 8)

?
τ

τ0

(
Bi

τ (δ/3)
(
Ci + ρi + ln 6τ

δ

)
+
(ρi
2
+ ln 6τ

δ

)2c
2 ln 3K2

δ
+ 2

c

exp(2ρi)δ
6

)
(8.8)

with τ0 = t2τ/(K(K + 1))u . This application of Lemma 5 is possible because the set P i

is included in the simplex ∆K .

Proof of Proposition 4. Foremost, in Step 1, we prove that, if for all i P t1, . . . , Gu and for
any t ą τ ě 2, the inequalities

}(V i
t´1)

1/2(pθit´1 ´ θi)} ď Bi
t(δ/Gt2) and }pΣi

τ ´ Σi}8 ď Gi
τ (δ/2G) (8.9)

hold then, for any p P P , | `t,p ´ p`t,p | ď αt,p. This induces a bound on the instantaneous
regret: this is Step 2. In Step 3, we show that the 2G inequalities above hold for all
t ě τ + 1 (so all the instantaneous regrets are bounded) with probability at least 1 ´ δ,
and we conclude the proof. This is done by a union bound over each time step but also
over each cluster. This is why, in comparison to Chapter 4, a factor 1/G appears in the
bounds Bi

t(δ/Gt2) and Gi
τ (δ/2G) used to define αt,p – see Equation (8.5). By taking G = 1,

we recover the definition of αt,p introduced in Chapter 4.
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‹ Step 1: Good estimation of the losses. For an round t ě τ , we assume that for all
i P 1, . . . , G, the estimators pθit´1 and pΣi

τ satisfy inequalities (8.9). We show below how we
can then get a confidence bound on the losses. With p P P , the difference between the
expected loss `t,p and its estimation p`t,p is equal to

`t,p´p`t,p =
ÿ

gPGt

κg

[(
ÿ

iPg
ϕi(xit, p

i)Tθi ´ cg
t

)2

+
ÿ

iPg
(pi)TΣipi

´

([
ÿ

iPg
ϕi(xit, p

i)T
pθit´1

]
Cg

´ cg
t

)2

´
ÿ

iPg
(pi)T

pΣi
τp

i

]

=
ÿ

gPGt

κg

[(
ÿ

iPg
ϕi(xit, p

i)Tθi ´ cg
t

)2

´

([
ÿ

iPg
ϕi(xit, p

i)T
pθit´1

]
Cg

´ cg
t

)2

+
ÿ

iPg

(
(pi)TΣipi ´ (pi)T

pΣi
τp

i
)]

. (8.10)

We will bound
ˇ

ˇ`t,p ´ p`t,p
ˇ

ˇ by bounding each term of the sum over the partitions g P Gt.
For each partition, we bound separately the two terms of the expression above: the first
one deals with the estimations of θi and the second with the estimations of Σi. For any
partition g P Gt, we first have
ˇ

ˇ

ˇ

ˇ

ˇ

(
ÿ

iPg
ϕi(xit, p

i)Tθi ´ cg
t

)2

´

([
ÿ

iPg
ϕi(xit, p

i)T
pθit´1

]
Cg

´ cg
t

)2
ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

(
ÿ

iPg
ϕi(xit, p

i)Tθi ´

[
ÿ

iPg
ϕi(xit, p

i)T
pθit´1

]
Cg

)

ˆ

(
ÿ

iPg
ϕi(xit, p

i)Tθi +
[
ÿ

iPg
ϕi(xit, p

i)T
pθit´1

]
Cg

´ 2cg
t

)ˇ
ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ÿ

iPg
ϕi(xit, p

i)Tθi ´
ÿ

iPg
ϕi(xit, p

i)T
pθit´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPg
ϕi(xit, p

i)Tθi +
[
ÿ

iPg
ϕi(xit, p

i)T
pθit´1

]
Cg

´ 2cg
t

ˇ

ˇ

ˇ

ˇ

.

We could remove the clipping in the first term of the last inequality because all i P g,
ϕi(xit, p

i)Tθi is non-negative. We now assume that for any i P 1, . . . , G, the estimator pθit´1

satisfies the inequality (8.6). Then, for any partition g P Gt, using that
ř

iPg ϕ
i(xit, p

i)Tθi,[
ř

iPg ϕ
i(xit, p

i)T
pθit´1

]
Cg and cg

t are bounded between 0 and Cg, we get

ˇ

ˇ

ˇ

ˇ

ˇ

(
ÿ

iPg
ϕi(xit, p

i)Tθi ´ cg
t

)2

´

([
ÿ

iPg
ϕi(xit, p

i)T
pθit´1

]
Cg

´ cg
t

)2
ˇ

ˇ

ˇ

ˇ

ˇ

ď 2Cg
ÿ

iPg

ˇ

ˇ

ˇ
ϕi(xit, p

i)T
(
θi ´ pθit´1

)ˇ
ˇ

ˇ

ď 2Cg
ÿ

iPg

ˇ

ˇ

ˇ
ϕi(xit, p

i)T(V i
t´1)

´1/2(V i
t´1)

1/2
(
θi ´ pθit´1

)ˇ
ˇ

ˇ

ď 2Cg
ÿ

iPg
Bi

t(δ/Gt2)
›

›(V i
t´1)

´1/2ϕi(xit, p
i)
›

› .
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The last inequality is obtain using Equation (8.9) for all i P g. We deal with the second
part of the sum over the partitions g P Gt – see Equation (8.10) – by using the upper
bounds of Equation (8.7)

ˇ

ˇ

ˇ

ˇ

ÿ

iPg

(
(pi)TΣipi ´ (pi)T

pΣi
τp

i
)ˇ
ˇ

ˇ

ˇ

ď
ÿ

iPg
Gi

τ (δ/2G) .

Combining and summing over g P Gt the two inequalities above, we get
ˇ

ˇ

ˇ
`t,p ´ p`t,p

ˇ

ˇ

ˇ
ď

ÿ

gPGt

κg
[
2Cg

ÿ

iPg
Bi

t(δ/Gt2)
›

›(V i
t´1)

´1/2ϕi(xit, p
i)
›

›+
ÿ

iPg
Gi

τ (δ/2G)

]
.

Finally, Assumption 9 and the definition of clipping ensure that(ÿ
iPg
ϕi(xit, p

i)Tθi ´ cg
t

)2
+
ÿ

iPg
(pi)TΣipi and

([ÿ
iPg
ϕi(xit, p

i)T
pθit´1

]
Cg ´ cg

t

)2
+
ÿ

iPg
(pi)TΣipi

are in [0, Lg], for any g P Gt – see Equation (8.2). Therefore, we get that for any p P P,
ˇ

ˇ

ˇ
`t,p ´ p`t,p

ˇ

ˇ

ˇ
ď

ÿ

gPGt

κg
t

[
min

!

Lg, 2Cg
ÿ

iPg
Bi

t(δ/Gt2)
›

›(V i
t´1)

´1/2ϕi(xit, p
i)
›

›

)

+
ÿ

iPg
Gi

τ (δ/2G)

]
∆
= αt,p . (8.11)

‹ Step 2: Resulting bound on the instantaneous regrets. As in the proof of Theorem 4 of
Chapter 4, thanks to the optimistic algorithm (8.3), a deviation inequality on the losses
ensures a boundedness of the instantaneous regrets. Indeed, with p‹

t an optimal matrix
to be used at round t, the vectors pt played by the optimistic algorithm satisfy:

p`t,pt
´ αt,pt

ď p`t,p‹
t

´ αt,p‹
t
, where by definition, p‹

t
∆
= argmin

pPP
`t,p .

If inequalities (8.9) hold, Equation (8.11) also holds; and with p = pt and p = p‹
t , we get

`t,pt
ď p`t,pt

+ αt,pt
and ´ `t,p‹

t
ď ´p`t,p‹

t
+ αt,p‹

t
.

By combining these three inequalities, we thus obtain

`t,pt
´ `t,p‹

t
ď p`t,pt

´ p`t,p‹
t
+ αt,pt

+ αt,p‹
t

ď 2αt,pt
.

Finally, by summing over t, we get Equation (8.4).

‹ Step 3: Special cases. We conclude the proof by dealing with the time steps when at
least one of the events (8.9) does not hold. For a given t ą τ and for i P t1, . . . , Gu,
Equations (8.6) and (8.7) ensure that

P
(

}(V i
t´1)

1/2(pθit´1 ´ θi)} ě Bi
t(δ/Gt2)

)
ď

δ

Gt2
and P

(
}pΣi

τ ´ Σi}8 ě Gi
τ (δ/2G)

)
ď

δ

2G
.

Thus, by union bound, at least one of the events (8.9) does not hold for some t ą τ and
some i P t1, . . . , Gu, with probability smaller than

G
ÿ

i=1

ÿ

těτ+1

δ

Gt2
+

G
ÿ

i=1

δ

2G
ď δ

ż 8

2

1

t2
dt+ δ

2
= δ .
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Exactly as in the analysis of the regret stated in Chapter 4, we are now left with
proving the following lemma to conclude the analysis. This result is based on Lemma 7 of
Chapter 4.

Lemma 11. By denoting by G the set of the partitions of t1, . . . , Gu, no matter how the
environment and provider pick the (xit)iPt1,...Gu and pt,

T
ÿ

t=τ+1

αt,pt
ď

ÿ

gPG

ÿ

iPg

(
c(

2CgBi
T (

δ/T 2G)
)2

+
(Lg)2

2

c

diT ln λ
i + T

λi
+ TGi

τ (δ/2G)

)

ď O
(
2G´1Gˆ

(
a

T lnT ln(T/Gδ) + T
?
τ

ln2(τ/Gδ)
a

ln(1/Gδ)
))

.

Proof of Lemma 11. For any set g P Gt, Lemma 12, proved at the end of the section, states
that for any f : g Ñ R+, min

 

L,
ř

iPg f(i)
(

ď
ř

iPg mintL, f(i)u. Considering the function

f : g Ñ R+

i ÞÑ Bi
t(δ/Gt2)

›

›(V i
t´1)

´1/2ϕi(xit, p
i
t)
›

› ,

we obtain that, for any round t ě τ + 1,

min
!

Lg, 2Cg
ÿ

iPg
Bi

t(δ/Gt2)
›

›(V i
t´1)

´1/2ϕi(xit, p
i
t)
›

›

)

ď
ÿ

iPg
min

!

Lg, 2CgBi
t(δ/Gt2)

›

›(V i
t´1)

´1/2ϕi(xit, p
i
t)
›

›

)

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

∆
= ai

t,pit

(Lg,Cg)

.

Therefore, by summing over g P Gt, we get the bound

αt,pt
ď

ÿ

gPGt

κg
t

ÿ

iPg

(
ait,pit

(Lg, Cg) +Gi
τ (δ/2G)

)
.

Now, we artificially enlarge the sum over g P Gt into a sum over g P G ∆
= P(t1, . . . , Gu).

This rough upperbound can easily be improved if the partition sets Gt are known in
advance, by setting G =

Ť

tPt1,...,T u Gt. As we assume all κg
t lie in [0, 1], we obtain

αt,pt
ď

ÿ

gPG

ÿ

iPg

(
ait,pit

(Lg, Cg) +Gi
τ (δ/2G)

)
.

We recall the result stated by Lemma 7 in Chapter 4: for a given i P t1, . . . Gu, no matter
how the environment and provider pick the xit and pit,

T
ÿ

t=τ+1

min
!

Lg,2C Bi
t´1(δt

´2/G)
›

›(V i
t´1)

´1/2ϕi
(
xit, p

i
t

)›
›

)

ď

c(
2CBi

T (
δ/T 2G)

)2
+

(Lg)2

2

c

diT ln λ
i + T

λi
= O

(a
T lnT ln(T/Gδ)

)
.
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By summing over t, we conclude the proof:
T
ÿ

t=τ+1

αt,pt
ď

ÿ

gPG

ÿ

iPg

T
ÿ

t=τ+1

(
ait,pit

(Lg, Cg) +Gi
τ (δ/2G)

)
ď

ÿ

gPG

ÿ

iPg

(
c(

2CgBi
T (

δ/T 2G)
)2

+
(Lg)2

2

c

diT ln λ
i + T

λi
+ TGi

τ (δ/2G)

)

= O
(
ÿ

gPG

ÿ

iPg

(
a

T lnT ln(T/Gδ) + T
?
τ

ln2(τ/Gδ)
a

ln(1/Gδ)
))

.

As the sum of the cardinals of all the partitions of t1, . . . , Gu equals to G2G´1 (see
Lemma 13 below) we obtain the dependency on G.

To conclude the proof of Theorem 10, it only remains to bound the instantaneous
expected regret

(
`t,pt

´ minpPP `t,p

)
by L =

ř

gPG L
g for the first τ rounds. Thus, using

Proposition 3 and Lemma 11, we get

R̄T ď τ
ÿ

gPG
Lg +

T
ÿ

t=τ+1

αt,pt

= O
(
τL+ 2G´1G

(
a

T lnT ln(T/Gδ) + T
?
τ

ln2(τ/Gδ)
a

ln(1/Gδ)
))

.

Picking τ of order T 2/3 ensures the result claimed in Theorem 10.

We now state and prove the two tricks we used in the proof of Lemma 11.

Lemma 12 (Proof of Lemma 12). Given a finite set g, a function f : g Ñ R+ and a
constant L ě 0, we have

min
 

L,
ÿ

iPg
f(i)

(

ď
ÿ

iPg
mintL, f(i)u.

Proof. This lemma only relies on the subadditivity of the function mintL, ¨ u, having the
nonnegative real numbers as domain. Therefore, we just have to show that

@u, v P R+ mintL, u+ vu ď mintL, uu + mintL, vu ,

to conclude the proof. Let 0 ď u ď v be two nonnegative real numbers. If L ě u+ v, the
inequality above is an equality. Otherwise, we distinguish the two following cases:

• if L ě v, then mintL, uu + mintL, vu = u+ v ě L = mintL, u+ vu;

• else, L ă v and mintL, uu + mintL, vu = mintL, uu + L ě L = mintL, u+ vu.

Lemma 13. With an integer G ě 1, the sum of the cardinals of all the partitions of
t1, . . . , Gu is equal to G2G´1, so

ÿ

gPP(t1,...,Gu)

ÿ

iPg
1 = G2G´1 .
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Proof of Lemma 13. For any integer g P t1, . . . , G u, we have

g

(
G

g

)
= g

G!

(G´ g)!g!
= G

(G´ 1)!(
(G´ 1) ´ (g ´ 1)

)
!(g ´ 1)!

= G

(
G´ 1

g

)
.

As there are
(
G
g

)
partitions of t1, . . . , Gu of cardinal g, by using the equation above and

the binomial theorem, we obtain

ÿ

gPP(t1,...,Gu)

|g| =
G
ÿ

g=1

g

(
G

g

)
= G

G´1
ÿ

g=1

(
G´ 1

g

)
= G2G´1 .

4 Application to the Low Carbon London data set
This section provides an illustration of the algorithm presented above. We consider the
Low Carbon London data set presented in Chapter 3 and the data generator based on
conditional variational auto-encoders (CVAE) built in Chapter 7. The data are not any-
more simulated with generalized additive models and we will thus be able to assess the
robustness of our solutions. The algorithm implemented takes into account rebound and
side effects, namely, a round t refers to a day and the algorithm choices a daily tariff profile
(that is H = 48 price allocations) instead of a single price allocation (when t refereed to
half-hour time steps). To do so, we adapt algorithm (8.3). In our experiments of person-
alized daily demand side management, we consider some restrictions on the set of price
allocations P and strong assumptions on the underlying electricity consumption model.
This is detailed in Subsection 4.1 below. Results are presented in Subsection 4.2 and in
Subsection 4.3, we discuss several points that may improve this experiment.

4.1 Experiment design

We recall that the Low Carbon London data set is made of electricity consumption records
(in kWh) at half hourly intervals of a thousand customers subjected to dynamic tariffs,
through 2013. Here, we consider G = 4 sub-populations that were obtained with the
procedure described in Chapter 7: for each household and each tariff (among Low, Normal
and Low), a daily consumption profile is built from the individual consumption time
series (using a causality model) and thanks to a dimension reduction technique (non-
negative matrix factorization), these profiles are reduced into a few features that are used
to cluster the households (using k-medoid algorithm). Once these clusters have been
set, using the data generator described in Chapter 7, a full information data set can
be obtained. We swiftly recall and illustrate the generation of electricity consumption
data in the next paragraph, then we set some targets electricity consumption and some
operational constraints. At the end of the section, we focus on the assumptions we made
on the electricity consumption modeling and how we adapted the algorithm accordingly.

4.1.1 Data generator

The daily electricity consumption profiles are generated with the CVAE-based data sim-
ulator of Chapter 7. Given exogenous weather, calendar and tariff variables, it outputs
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0.10 kWh

0.20 kWh

0.30 kWh

0.40 kWh

Jan 01 Jan 02 Jan 03 Jan 04

0.10 kWh

0.20 kWh

0.30 kWh

0.40 kWh

0.50 kWh

Jan 01 Jan 02 Jan 03 Jan 04

0.20 kWh

0.25 kWh

0.30 kWh

0.35 kWh

Jan 01 Jan 02 Jan 03 Jan 04

0.10 kWh

0.20 kWh

0.30 kWh

0.40 kWh

Jan 01 Jan 02 Jan 03 Jan 04

Figure 8.1 – 20 simulated electricity consumption (in kWh), for the first three days of 2013, for
Normal tariff days and for the four household clusters (from cluster 1 at the top to cluster 4 at the
bottom).

254



P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

Tariff profil  1
Tariff profil  2
Tariff profil  3
Tariff profil  4
Tariff profil  5
Tariff profil  6
Tariff profil  7
Tariff profil  8
Tariff profil  9
Tariff profil 10
Tariff profil 11
Tariff profil 12
Tariff profil 13

00:00 04:00 08:00 12:00 16:00 20:00

High        Low        Normal        

Figure 8.2 – Representation of the 13 daily electricity price profiles available: tariffs (High in
navy, Low in green and Normal in blue) according the half-hour of the day.

random profiles. In Figure 8.1, 20 simulated profiles are plotted for the four household
clusters. These electricity consumption records were generated for three days of “non-
demand side management”: Normal tariff was sent every half hour.

4.1.2 Targets and operational constraints

Restriction of the set of price allocations. In all this experiment, we assume that,
for a given cluster i, the electricity provider must send the same tariff profile to all the
households, namely, at each half-hour, the price allocation pi is a Dirac mass. From now
on, we denote by j(i) the tariff sent to cluster i. We highlight that for each half-hour,
the electricity provider may choose among K = 3 tariffs, and that it can give different
tariff profiles to each of the G = 4 groups. Therefore, there exist (KH)G = 3192 « 4.1091

possible configurations which makes the implementation of our algorithm tough – even if
some of these configuration are totally inconceivable (e.g., a profile that changes from Low
to High tariff and vice versa at every half hour). We emphasized in Chapter 7 that the
CVAE-based data simulator generates non-intuitive consumption profiles when the input
is a tariff profile never observed in the training set. Fortunately, the tariff profiles sent to
households which took part in the Low Carbon Low project were especially designed to
test the potentiality of demand side management strategies (see the report Schofield et al.,
2014 for further details). For all these reasons, we restrict the number of tariff profiles and
consider only the ones that have been sent at least twice (so for which we have two days of
electricity consumption records) during the Low Carbon London experiment. The 13 tariff
profiles obtained are represented in Figure 8.2. Let us number them with J = 1, 2, . . . J̄
and J̄ = 13. These profiles are associated with H-vectors made of the tariffs (among Low,
High and Normal) associated with each half-hour of the day. With this notation, for a
day t and for each cluster i, the electricity provider chooses a profile Jt(i), that is, it picks

pt =
(
Jt(1), . . . , Jt(G)

)
P P where P =

!

1, . . . , J̄
)G

.

The cardinal of the set of price allocations is then J̄G = 134 and our application fits into
the discrete bandit framework. Throughout this experiment, we also force the electricity
provider to pick same tariff profiles for both clusters 1 and 2 (this decision is arbitrary).
Therefore, we merge these two clusters (we will consider a unique model, namely a unique
parameter vector, to estimate the sum of the two electricity consumptions). This will
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Figure 8.3 – Expected average consumption in kWh (computed over 1,000 simulations) depending
on the tariff profile sent for each cluster (from cluster 1 at the top to cluster 4 at the bottom) for
the first three days of 2013.
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thus reduce the dimension of P : at each day t, the electricity provider has now to choose
among 133 = 2, 197 configurations. Once these J̄ tariff profiles have been selected, for
each cluster i, for each J(i) = 1, . . . , J̄ , and each day t of 2013, by keeping the weather
variables observed in the Low Carbon London data set, we simulated the H-dimensional
consumption profile Y i

t,J(i). In Figure 8.3, we plotted, for each cluster, the expected av-
erage power consumption (computed over 1,000 simulations) associated with each tariff
profile.

Standardization of the electricity consumptions. For a cluster i and a day t, the
vector Y i

t,J(i) is the electricity consumption profile of cluster i receiving profile J(i), aver-
aged over the households which are in the cluster. In all what follows, for simplicity, we
assume that each cluster is made of the same number N of households. Therefore, it is
enough to consider consumptions of the form

Y g
t =

ÿ

iPg
Y i
t,J(i) ,

and by multiplying all the consumptions by N , we can get the non-averaged consumptions.

Creation of the targets. We recall that, as turning on and off power plants is not
instantaneous and requires scheduling, electricity providers generally want to smooth as
much as possible the demand curve. Therefore, we build a smooth global target for the
global consumption

Y Tot
t =

G
ÿ

i=1

Y i
t .

The ideal would be to obtain a curve close to a constant curve but which remains realistic,
i.e. which is attainable (or almost attainable) so it can be approached by applying one
of the available tariff profiles. To do so, we compute the mean consumption c̄tot of the
entire households population over the year 2013. Then, for each day t, we look at the
13 expected average global electricity consumption profiles (computed over 1,000 simula-
tions) associated with the configurations for which the entire population received the same
tariff profile. For each half-hour h, we thus obtained a minimal and a maximal average
consumption, denoted by Y h

t,min and Y h
t,max, respectively. Then, we clipped the target c̄tot

between these two values. To obtain a realistic and rather flat target, we smooth it using
the R-function loess; that is

ctot,h
t = loess

(
min

!

max
 

c̄tot, Y h
t,min

(

, Y h
t,max

)

)
.

On the top of Figure 8.4 , we represent, for the first three days of 2013, the minimal
and maximal average consumptions, denoted by Y h

t,min and Y h
t,max, in blue and navy,

respectively. In red dashed line, we plot the quantities used to computed the target:
mint max tc̄tot, Y h

t,minu , Y h
t,maxu. Finally the target consumption is in red solid line.

We also emphasize that demand side management strategies are developed to deal with
intermittent and decentralized energies, like solar or wind power. To test the viability of
our solution in such a situation, we may consider that one of the clusters (we arbitrary
pick cluster 4 in our experiments) is located near a solar farm, and that between 10 a.m.
and 5 p.m., this farm provides some electricity that has to be be consumed. To do so, it is
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Figure 8.4 – Target consumption (red solid lines), and non-smoothed target before smoothing (red
dashed lines) and minimal and a maximal average consumptions (blue and navy lines, respectively)
for the global electricity consumption (at the top) and for cluster 4 (at the bottom) for the first
three days of 2013.

enough to set the local target c4,ht to a high value (namely, at Y 4,h
t,max, the maximal average

consumption of cluster 4 for the day t and the half-hour h) between 10 a.m. and 5 p.m.;
and to the mean (over the tariff profiles) expected value otherwise. We also smooth the
local target c4,ht with the loess-function. This target is represented at the bottom of Fig-
ure 8.4 in red solid line. The red dashed line is the non-smoothed target and the minimal
and a maximal average consumptions for cluster 4 are in blue and navy, respectively.

We highlight that contrary to the experiences of Chapter 3, these targets are not neces-
sarily attainable. On the one hand because the smoothing introduces half-hours for which
the target is higher than the maximum expected consumption or lower than the minimum
expected consumption; and on the other hand, because sending of Dirac masses makes the
notion of attainability obsolete. Indeed, by considering, for example, a global consumption
target, as the global electricity consumption is Y tot =

řG
i=1 Y

i
t,J(i), the targets which are

attainable (in the way it was defined in Chapter 4) are that quantities

E
[ G
ÿ

i=1

Y i
t,J(i)

]
, for

(
J(1), . . . , J(G)

)
P GJ̄ .

Practically, this values are unknown. Moreover, as soon as we consider several targets,
the attainability assumption becomes even more complex. This assumption was useful in
Section 4 of Chapter 4 to obtain a reduction of the order of magnitude of the regret bound
to a poly-logarithmic rate; but the regret bound stated in Section 3 does not required any
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attainability assumption.

4.1.3 Assumptions and optimistic algorithm

We recall that the algorithm stated in Equation (8.3) picks tariff allocations by solving:

pt P argmin
p PP

!

p`t,p ´ αt,p

)

.

Computationally, this minimization problem may be difficult to solve. We explain below
the assumptions we made on the electricity consumption and how we practically adapted
this algorithm.

Covariance matrices. We highlight that if, at a day t and a half-hour h, all price
allocations pi, which are sent to clusters i, are Dirac masses in j(i), the expected loss
becomes

`t,p =
ÿ

gPGt

κg
t

((
ÿ

iPg
ϕi(xit, p

i)Tθi ´ cg
t

)2
+
ÿ

iPg
(pi)TΣipi

)
=

ÿ

gPGt

κg
t

((
ÿ

iPg
ϕi(xit, p

i)Tθi ´ cg
t

)2
+
ÿ

iPg
Σi
j(i)j(i)

)
,

without any h-indexation (for the ease of notation). By making the strong assumption
that all tariffs have the same variance, namely that, for any j, Σi

jj = σ2, we get that

`t,p =
ÿ

gPGt

κg
t

((
ÿ

iPg
ϕi(xit, p

i)Tθi ´ cg
t

)2
+ |g|σ2

)
.

Thus, when we look at the instantaneous regrets `t,pt
´ minpPP `t,p, the terms

ř

gPGt
κg
t |g|σ2

cancel each other out. Moreover, as

argmin
p PP

 

p`t,p ´ αt,p

(

= argmin
p PP

!

p`t,p ´ αt,p ´
ÿ

gPGt

κg
t |g|σ2

)

,

there is no need to estimate σ2 and it is enough to estimate
ÿ

gPGt

κg
t

((
ÿ

iPg
ϕi(xit, p

i)Tθi ´ cg
t

)2)
.

Underlying additive models. We recall that the available tariff profiles are numbered
from 1 to J̄ = 13. For a day t and a half-hour h, the exogenous variables τht , τ̄ht , πht and
wt refer to the temperature, the smoothed temperature, the position in the year and the
type of day, respectively (see Section 2 of Chapter 3 for further details on these variables).
For each i = 1, . . . , G, we consider that the power consumption of cluster i receiving tariff
profile J can be modeled with:

Y i,h
t,J = si,hτ (τht ) + si,hτ̄ (τ̄ht ) + si,hπ (πht ) +

6
ÿ

w=0

ζhw1twt=wu + ξi,hJ + noise

= f i,h(xt) + ξi,hJ + noise , (8.12)
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where the functions si,hτ , sτ̄ and si,hπ are cubic splines; ξi,hJ is this effect of profile J at
the half-hour h; and the noises are centered, Gaussian, and of variance σ2. Therefore, we
consider that the effect of the tariff profile J does not depend on the exogenous variables
τht , τ̄ht , etc.; but only on the half-hour h and on the cluster i. Moreover, we assume that
the functions f i,h are known. In the experiments, we used a year of power consump-
tion data, simulated only for “non-demand side management” days (namely, with a tariff
which was always equal to Normal), and estimated these functions using the mgcv-function
(see Wood, 2020).

Expected losses. For a day t, the loss suffered by the electricity provider is the sum of
the losses suffered at each half-hour (we refer to the Section 6 of Chapter 4 for further
details). Therefore, for each day t and any (p1, . . . , pG), we need to estimate

H
ÿ

h=1

ÿ

gPGt

κg
t

((
ÿ

iPg
ϕi,h(xit, p

i)Tθi,h ´ cg,h
t

)2)
.

We recall that in our experiments, price allocations pi are Dirac masses and that for each
day t, the electricity provider picks, for each cluster i, a profile among t1, . . . , J̄u; therefore,
p is from now on a set of profiles tJ(1), . . . , J(G)u – when p is picked, each cluster i
receives profile J(i). If the electricity provider chooses the profiles p = tJ(1), . . . , J(G)u,
by replacing the local expected electricity consumptions ϕi(xit, p

i)Tθi by f i,h(xt) + ξi,hJ in
the above expression, we have to estimate

H
ÿ

h=1

ÿ

gPGt

κg
t

(
ÿ

iPg
f i,h(xt) + ξi,hJ(i) ´ cg,h

t

)2
.

We highlight that we could have weighed the half-hourly losses. To estimate these losses,
it is enough to estimate the tariff effects ξi,hJ(i). We emphasize that there are J̄ ˆH ˆG =

13 ˆ 48 ˆ 4 = 2, 496 of them (but as clusters 1 and 2 received the same tariff profiles and
as there is no local target on these clusters, we can consider them as a single cluster and
therefore, there are 13 ˆ 48 ˆ 3 = 1, 872 coefficients to estimate). As the set P is finite
and because the effects of the tariffs do not depend on the contextual variables, we are
almost as in a classical multi-armed bandit problem (and not any more in a linear bandit
setting); there is thus no need to consider Ridge regression to estimate the tariff effects
coefficients ξi,hJ(i) (that form the parameter vectors θi). As in classical bandit, this can be
done by taking the empirical mean, and for a cluster i, a tariff profile J and a half-hour
h, we consider the estimators:

pξi,hJ,t =
1

N i
J,t

t
ÿ

s=1

(
Y i,h
s ´ f i,h(xs)

)
1tJs(i)=Ju, with N i

J,t =
t
ÿ

s=1

1tJs(i)=Ju ,

where Js(i) is the tariff profile sent to cluster i at day s and N i
J,t the number of times profile

J has been picked for cluster i. Then, for each set of tariff profiles p = (J(1), . . . , J(G)),
we consider the expected losses

r`t,p =
H
ÿ

h=1

ÿ

gPGt

κg
t

(
ÿ

iPg
f i,h(xt) + pξi,hJ(i),t´1 ´ cg,h

t

)2
.
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Exploration term. It only remains to adapt the exploration terms αt,p defined in Propo-
sition 4. As we did not take into account the variance terms, αt,p only depends on how
well the coefficients ξi,hJ(i) have been estimated. Moreover, as we estimated these coefficients
with empirical means (as in the classical UCB algorithm) we also considered exploration
terms of the form of the ones of the UCB algorithm (see Chapter 2 for further details)
and for each p = (J(1), . . . , J(G)) we define

rαt,p =
H
ÿ

h=1

ÿ

gPGt

2σCgκg
t

ÿ

iPg

d

8 ln t
N i

J(i),t´1

=
ÿ

gPGt

2HσCgκg
t

ÿ

iPg

d

8 ln t
N i

J(i),t´1

.

The standard deviation σ is set to 2.10´3 after estimating it on the simulated data. This
value is quite low, and this is due to CVAEs, which produce samples with low variability
(see Section 6 of Chapter 7). However, we kept the value to favor exploitation (the
confidence levels provided by theoretical results often lead to high exploration terms –
we tried different values and this ones gives a correct trade-off between exploration and
exploitation).

Remark 28. We highlight that these confidence terms are not so far from the one of
Proposition 4. For the ease for notation, we do not index the variables by the half-hour
and we recall that we had

αt,p
∆
=

ÿ

gPGt

κg
t

[
min

!

Lg, 2Cg
ÿ

iPg
Bi

t(δ/Gt2)
›

›(V i
t´1)

´1/2ϕi(xit, p
i)
›

›

)

+
ÿ

iPg
Gi

τ (δ/2G)

]

with V i
t

∆
= λiIdi +

t
ÿ

s=1

ϕi(xis, p
i
s)ϕ

i(xis, p
i
s)

T ,

As we do not take into account the variance term,
ř

iPgG
i
τ (δ/2G) can be considered null.

Moreover, in our experiment setting, the parameter θi is made of the coefficients ξiJ (so
d(i) = J̄) and the mapping function is simply ϕi(xi, pi) = (1tJ(i)=Ju)J=1,...,J̄ . Therefore
the matrix V i

t is diagonal, and we have

t
ÿ

s=1

pis(p
i
s)

T =
t
ÿ

s=1

(
1tJ(i)s=Ju

)
J=1,...,J̄

(
1tJ(i)s=Ju

)T

J=1,...,J̄

N
i
1,t 0 . . .

0
. . . 0

. . . 0 N i
J̄,t

 .
With λ = 0, for a tariff profile J , we get that

›

›

›
(V i

t´1)
´1/2

(
1tJ(i)=Ju

)
J=1,...,J̄

›

›

›
=

1
b

N i
J,t

.

Finally we recall that Bi
t(δ/Gt2) is of order ρ ln t, where ρ is the sub-Gaussian coefficient

of the noise (which is equal to σ is our experiments). We point out that we can not take
λ = 0 in Bi

t(δ/Gt2) definition. Finally, we highlight that Bi
t(δ/Gt2) also depends on δ but

that we consider an algorithm very similar to the UCB algorithm (and thus which does not
depend on any risk level).

Optimistic algorithm. After J̄ = 13 initial exploration round (Jt(i) = t for all clusters),
at a day t, the algorithm of the experiment picks the tariff profile

pt =
(
Jt(1), . . . , Jt(G)

)
P argmin

pPP

!

r`t,p ´ rαt,p

)

.

261



P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

00:00

04:00

08:00

12:00

16:00

20:00

1 2 3 4 5 6 7 8 9 . . . . . . 500 Best

00:00

04:00

08:00

12:00

16:00

20:00

1 2 3 4 5 6 7 8 9 . . . . . . 500 Best

00:00

04:00

08:00

12:00

16:00

20:00

1 2 3 4 5 6 7 8 9 . . . . . . 500 Best

00:00

04:00

08:00

12:00

16:00

20:00

1 2 3 4 5 6 7 8 9 . . . . . . 500 Best

High        Low        Normal        

Figure 8.5 – Tariff profiles picked for each cluster (from cluster 1 at the top to cluster 4 at the
bottom) for the 50 first (left) and 50 last (right) iterations of the algorithm, with κtot = 1/3 and
κ4 = 1.

4.2 Results

We consider two experiments: in the first one, to see if the algorithm is both learning
and optimizing the tariff effects, we set the targets and exogenous variables to the ones of
January, 1st (that is, except the tariff picked, all variables are constant), while in the second
experiments, targets and exogenous variables vary across 2013. For both experiments, we
consider the targets of Figure 8.4 and, by denoting by κtot and κ4 the weights associated
with the global electricity consumption and the one of cluster 4, respectively, we compare
the results for κtot = 1/3 and κ4 = 1; and for κtot = 1 and κ4 = 0, thus, for the second
configuration, only a global target is considered. We run the algorithm for T = 500
iterations for the first experiment and for T =1,500 for the second one (after 365, 730,
1, 095 etc. iterations, we start again the year 2013, with the same weather variables).

4.2.1 Constant exogenous variables

For both configurations, that is for κtot = 1/3 and κ4 = 1 and for κtot = 1 and κ4 = 0,
we represent in Figures 8.5 and 8.6, respectively, the tariff profiles sent for the 50 first
and the 50 last iterations to each cluster (as we impose it, clusters 1 and 2 received the
same profiles); on the far right of the figures, the best tariff (in expectation) profile is
also plotted. First, and fortunately, by looking at the far right of the figures, we can see
that the best strategy (namely the one which consist in picking, for each day, the “best”
profiles) varies depending on whether we consider a local target or not: the best tariff

262



P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

P
er
so
n
al
iz
ed

M
an
ag
em

en
t

00:00

04:00

08:00

12:00

16:00

20:00

1 2 3 4 5 6 7 8 9 . . . . . . 500 Best

00:00

04:00

08:00

12:00

16:00

20:00

1 2 3 4 5 6 7 8 9 . . . . . . 500 Best

00:00

04:00

08:00

12:00

16:00

20:00

1 2 3 4 5 6 7 8 9 . . . . . . 500 Best

00:00

04:00

08:00

12:00

16:00

20:00

1 2 3 4 5 6 7 8 9 . . . . . . 500 Best

High        Low        Normal        

Figure 8.6 – Tariff profiles picked for each cluster (from cluster 1 at the top to cluster 4 at the
bottom) for the 50 first (left) and 50 last (right) iterations of the algorithm, with κtot = 1 and
κ4 = 0.

profile to pick has changed for cluster 4, as well as for all the others. Let us focus on
cluster 4. When a local target is imposed on it, the best tariff profile to pick is profile 7
(see Figure 8.2). Figure 8.5 shows that at the beginning of the algorithm, after the 13
initial exploration rounds, the algorithm is still exploring, while at the end it picks many
times profile 7, but also profiles 8 and 4. We highlight that when we look at the expected
electricity consumption of cluster 4, for profiles 8 and 7, the curves are very closed together
(see Figure 8.1). But even after 450 iterations, the algorithm is still exploring: each tariff
profile has been picked at least once between the iterations 450 and 500. For the second
configuration, when κtot = 1 and κ4 = 0, the algorithm seems to converge more quickly
and at the end of the execution, it hesitates between few profiles. These differences in
the speed of “convergence” may be explained by looking at the expected losses and ex-
ploration terms formulas: both depend linearly on the coefficients κg but the differences
between the expected consumptions and the targets are generally lower for a single cluster
than for the global household population (and in both cases lower than 1), raising them
to the power of two accentuates this differences that are not enough compensated by the
coefficients κg. As smaller expected losses favor exploration, the convergence of the first
configuration is slower.

In Figures 8.7 and 8.8, we plotted, for cluster 4 and for the global household population,
the target and the average consumption over the 25 first (on the left of the figure) and
over the 25 last (on the right) iterations associated with the tariff picked in blue. The
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Figure 8.7 – Average, over the 25 first (on the left of the figure) and over the 25 last (on the
right) iterations, consumption (in kWh) for tariffs profile picked by the algorithm (in blue), target
(in red) and consumption for tariffs profile for the best tariff to play for κtot = 1/3 and κ4 = 1,
for cluster 4 (on the top) and for the global households population (on the bottom).

consumption associated with best profile to pick is also plotted in navy (“best” according
to our modeling). Over the iterations, the algorithm approaches the targets and reach
the best strategies (the two blue curves overlap). In Figure 8.7, the consumption of
cluster 4 seems closer to the target than the best strategy: the best profile to choose is not
necessarily the one associated with the consumption closest to the target because of the
term relative to ctot

t in the loss. The algorithm has to find the right compromise between
the two targets and the observation of consumptions close to the target at the beginning
of the execution of the algorithm is probably due to chance. To support these results, the
instantaneous regrets are plotted in 8.9. We highlight that to compute this quantities we
had to estimate the effects ξi,hJ , and we did it using 1,000 samples of power consumption
records provided by the CVAE-based generator. The instantaneous regret is very high
at the beginning of the execution (during the exploration rounds) and then it totally
vanishes and oscillates between very low values. The algorithm seems to discriminate
strongly some of the tariff profiles configurations. For others, the difference between the
associated expected losses are not so important and it is difficult to choose between them.
To make a comparison with classical bandits, the situation may be similar to a multi-armed
bandit problem with sub-optimal arms gaps which are either very large or very small (we
recall that the gap of an arm is the differences between the expected reward of the optimal
arm and the one of the considered arm). We point out that, by cleverly allocating the
tariff profiles to the clusters, the algorithm can continue to explore the various profiles, it
just never picks some allocations which lead to large expected losses (e.g., profiles leading
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Figure 8.8 – Average, over the 25 first (on the left of the figure) and over the 25 last (on the
right) iterations, consumption (in kWh) for tariffs profile picked by the algorithm (in blue), target
(in red) and consumption for tariffs profile for the best tariff to play for κtot = 1 and κ4 = 0, for
cluster 4 (on the top) and for the global households population (on the bottom).
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Figure 8.9 – Instantaneous regrets (in kWh2) for the configuration κtot = 1/3 and κ4 = 1 (blue,
to the left) and for κtot = 1 and κ4 = 0 (navy, to the right).

to high evening consumption peaks for all clusters).

To be sure that the algorithm is learning thought the iterations, in Table 8.1, we com-
puted the root average expected losses

g
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e
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t2 ´ t1 + 1
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ÿ

t=t1

`t,p ,
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Figure 8.10 – Target consumption (in red) and observed electricity consumption (in kWh) for
the tariff profiles picked by the algorithm (in blue) and for the best tariff profiles to pick (in navy)
for κtot = 1/3 and κ4 = 1 and for the cluster 4 (on the top) and the global household population
(on the bottom) for the iterations 14 to 16, namely just after the initial exploration rounds, (on
the left); and for the iterations 379 to 381, namely after a year of learning, (on the right).

for the 100 iterations just after the exploration rounds and for the 100 last ones, and
observe a slight improvement in the results.

Root average expected loss (in kWh) Start End
κtot = 1/3 and κ4 = 1 0.36 0.31
κtot = 1 and κ4 = 0 0.65 0.62

Table 8.1 – Root average expected loss (in kWh), computed over the 100 iterations (“Start”)
after initial exploration rounds, namely iterations from 14 to 114; and over the last 100 iterations
(“End”), namely iterations from 400 to 500.

4.2.2 Non-constant exogenous variables

For this second experiment, we consider that weather and calendar variables are changing
from an iteration to another. In Figures 8.10 and 8.11, we plotted, the consumption (in
blue) observed for the tariff profiles picked by the algorithm and the consumption asso-
ciated with the “best” strategy (in navy) from January 14. to 17., after the explorations
rounds (that is, at the beginning of the execution) and after a year of learning – so we
compare consumptions associated with the same exogenous and calendar variables. It
seems clear (even it is only over three iterations) that the algorithm can learn: after a
year of learning, it chooses correctly (according to our modeling) the tariff profiles and
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Figure 8.11 – Target consumption (in red) and observed electricity consumption (in kWh) for the
tariff profiles picked by the algorithm (in blue) and for the best tariff profiles to picked (in navy)
for κtot = 1 and κ4 = 0 and for the cluster 4 (on the top) and the global household population
(on the bottom) for the iterations 14 to 16, namely just after the initial exploration rounds, (on
the left); and for the iterations 379 to 381, namely after a year of learning, (on the right).
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Figure 8.12 – Instantaneous regrets (in kWh2) for the configuration κtot = 1/3 and κ4 = 1 (blue,
to the left) and for κtot = 1 and κ4 = 0 (navy, to the right).

both navy and blue curves overlap. The root average expected losses computed just after
the exploration rounds and after a year of learning provided in Table 8.2 confirm these
results.

In Figure 8.12, we plot the instantaneous regret and obtain surprising results: after a
hundred iterations, the regret decreases rapidly towards 0, but it increases again around
the iteration 300, before decreasing again. This process repeats each 365 iterations and
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Root average expected loss (in kWh) Start End
κtot = 1/3 and κ4 = 1 3.31 2.71
κtot = 1 and κ4 = 0 5.86 4.64

Table 8.2 – Root average expected loss (in kWh), computed over the 100 iterations (“Start”) after
initial exploration rounds, namely iterations from 14 to 114; and after a year of learning (“End”),
namely iterations from 379 to 479.

Root average loss (in kWh) Start End
κtot = 1/3 and κ4 = 1 1.28 0.98
κtot = 1 and κ4 = 0 2.20 1.68

Table 8.3 – Root average loss (in kWh), computed over the 100 iterations(“Start”) after initial
exploration rounds, namely iterations from 14 to 114; and after a year of learning (“End”), namely
iterations from 379 to 479.
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Figure 8.13 – Instantaneous losses (in kWh2) for the configuration κtot = 1/3 and κ4 = 1 (blue,
to the left) and for κtot = 1 and κ4 = 0 (navy, to the right).

an annual pattern appears (that is why we plot the regret over 1,500 iterations). This
rebound may be explained by a seasonal effect. It seems that it always appears in winter
and that it is a little less important from year to year. The variance of consumption, high
in winter, could explain this phenomenon. Moreover, we recall that the instantaneous
regret is the difference between the expected loss (given a model) and the best possible
expected loss (given the same model). Here, the expected losses are approximated: it is
clear that the power consumption profiles generated by the CVAE-based generator do not
satisfy the model of Equation 8.12. These results on the instantaneous regret suggest that
for some iterations (in winter), the estimations of the tariff effects ξi,hJ are not satisfying;
but it is not so surprising since the observations do not follow the model. To see if our
algorithm is still robust, we compute the average (over 100 iterations) true loss (namely
the losses suffered by the electricity provider):

g

f

f

e

1

t2 ´ t1 + 1

t2
ÿ

t=t1
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ÿ

h=1

ÿ

gPGt
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t
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ÿ
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t ´ cg,h

t

)2
.

Results are in Table 8.3. Moreover, the instantaneous (true) losses are plotted in Fig-
ure 8.13. They decrease throughout the iterations, which suggests that our algorithm will
be somewhat robust to observations that do not follow the model of Equation 8.12. But in
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the same way as for instantaneous regrets, we observe higher losses in winter than for the
rest of the year. We should also note that the target changes every day and that the latter
can be more difficult to reach for certain days (in winter) than for others – and therefore
be linked to high losses.

4.3 Perspectives

These experiments show that the algorithm quickly finds the best strategy (among the
2,197 configurations) and performs a personalized demand side management whether the
exogenous variables are constant or not: the regrets and true losses are decreasing thought
the iterations. It can do it on data that have been simulated with a data-driven approach
and do not satisfy any generalize additive model
a priori. This argues for the robustness of our strategies. We also emphasize that the
algorithm is able to find the best trade-off when several targets are given (with possibly
different weights). However, these results are subject to improvement and open up many
perspectives.

First, we highlight that we could have introduced some weights in the losses to give
some importance to half-hours of the evening, that generally come with a peak in the
electricity consumption and which are therefore crucial in demand side management.

We recall that there is no doubt on the efficiency of generalized additive models to model
and forecast the electricity power consumption. In the experiments presented above, we
consider a very basic model. Even if the results are promising, it is clear that under a
changing environment we have to consider a better model and therefore to adapt the al-
gorithm. Results should then be considerably improved. But such a modeling comes with
computational difficulties: the dimension of the coefficients to estimate will increase, as
well as the exploration terms. It is possible that an adaptation of the balance between
exploration and exploitation is then necessary. We also point out that we completely
dropped the variance matrices in these experiments, while they play an important role in
the electricity consumption modeling.

Finally, a significant improvement would be to enlarge the set of price allocations. We
highlight that other data sets would enrich these experiments: other tariff profiles could
be considered. We also would like to be able to split the clusters and send different tariff
profiles to each sub-cluster (as in the theory). Therefore, we could attain, in expectation,
the targets (as in Chapter 4). However, by enlarging the set of possible price allocations,
the minimization problem may then have several solutions (different ways of splitting the
clusters can lead to the same expected loss) and that it is not trivial to solve it – because
it is not convex.

These results are therefore encouraging and offer many ways of improvement. Challenges
will be technical, because of the implementation of algorithms and models, as well as
theoretical, with the resolution of minimization problems.
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Résumé : L'électricité se stockant difficilement à 
grande échelle, l'équilibre entre la production et la 
consommation doit être rigoureusement maintenu. 
Une gestion par anticipation de la demande se 
complexifie avec l'intégration au mix de production 
des énergies renouvelables intermittentes. 
Parallèlement, le déploiement des compteurs 
communicants permet d'envisager un pilotage 
dynamique de la consommation électrique. Plus 
concrètement, l'envoi de signaux - tels que des 
changements du prix de l'électricité - permettrait 
d'inciter les usagers à moduler leur consommation 
afin qu'elle s'ajuste au mieux à la production 
d'électricité. Les algorithmes choisissant ces signaux 
devront apprendre la réaction des consommateurs 
face aux envois tout en les optimisant (compromis 
exploration-exploitation). Notre approche, fondée 
sur la théorie des bandits, a permis de formaliser ce 
problème d'apprentissage séquentiel et de proposer 

un premier algorithme pour piloter la demande 
électrique d'une population homogène de 
consommateurs. Une borne supérieure d'ordre 
T!/# a été obtenue sur le regret de cet algorithme. 
Des expériences réalisées sur des données de 
consommation de foyers soumis à des 
changements dynamiques du prix de l'électricité 
illustrent ce résultat théorique. Un jeu de données 
en « information complète » étant nécessaire pour 
tester un algorithme de bandits, un simulateur de 
données de consommation fondé sur les auto-
encodeurs variationnels a ensuite été construit. 
Afin de s'affranchir de l'hypothèse d'homogénéité 
de la population, une approche pour segmenter les 
foyers en fonction de leurs habitudes de 
consommation est aussi proposée. Ces différents 
travaux sont finalement combinés pour proposer et 
tester des algorithmes de bandits pour un pilotage 
personnalisé de la consommation électrique. 

 

 

Title: Stochastic Bandit Algorithms for Demand Side Management 

Keywords: stochastic bandit, online learning, demand response, load forecasting, conditional variational 
auto-encoder, clustering 

Abstract: As electricity is hard to store, the balance 
between production and consumption must be 
strictly maintained. With the integration of 
intermittent renewable energies into the production 
mix, the management of the balance becomes 
complex. At the same time, the deployment of smart 
meters suggests demand response. More precisely, 
sending signals - such as changes in the price of 
electricity - would encourage users to modulate their 
consumption according to the production of 
electricity. The algorithms used to choose these 
signals have to learn consumer reactions and, in the 
same time, to optimize them (exploration-
exploration trade-off). Our approach is based on 
bandit theory and formalizes this sequential learning  

problem. We propose a first algorithm to control 
the electrical demand of a homogeneous 
population of consumers and offer T!/# upper 
bound on its regret. Experiments on a real data set 
in which price incentives were offered illustrate 
these theoretical results. As a “full information” 
dataset is required to test bandit algorithms, a 
consumption data generator based on variational 
autoencoders is built. In order to drop the 
assumption of the population homogeneity, we 
propose an approach to cluster households 
according to their consumption profile. These 
different works are finally combined to propose 
and test a bandit algorithm for personalized 
demand side management.  
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