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Born-analog documents contain enormous knowledge which is valuable to our society.

For the purpose of preservation and easy accessibility, several digitisation projects have converted these documents into digital texts by using optical character recognition (OCR) software. Some existing problems of OCR techniques prevent users and further processes from accessing, searching, or retrieving information on these digitised collections, and so limit the benefits of these above projects.

A notable limitation is the fact that certain meaningful structures such as chapters, sections, etc., are not available from OCRed books. Thus, it is not convenient for users to navigate or search information inside books. Another constraint is that the accuracy of modern OCR engines on historical documents substantially decreases. Erroneous OCR output considerably impacts on the performance of search engines and natural language processing systems. This thesis facilitates access to historical digitised documents by addressing such problems.

Several approaches are proposed within this thesis, aiming to reconstruct the logical book structures and to improve the quality of digitised text.

The first contribution is to rebuild the logical book structures. An ensemble method is introduced to extract tables of contents of digitised books. Experimental results show that our approach outperforms the state-of-the-art for both evaluation metrics.

The major contribution of this thesis is to provide methodologies to reduce OCR errors. Common and different features between OCR errors and human misspellings are clarified for better designing post-OCR processing. Normally, a post-processing system detects and corrects remaining errors. However, it is reasonable to treat them separately in some applications which allow to filter out, flag, or selectively reprocess such data. In this thesis, we examine different post-OCR approaches, ones based on error model and language model, and others that involve neural network models. Results reveal that the performance of our proposals is comparable to several strong baselines on English datasets of the two competitions on post-OCR text correction organised in the International Conference on Document Analysis and Recognition in 2017 and 2019. i

Historical documents contain valuable knowledge that gets enormous attention from researchers and libraries around the world. Substantial efforts have been devoted to transform such analog material into electronic text, aiming at better preservation and easier access by a much wider audience. This transformation is known as digitisation [START_REF] Pearce-Moses | A glossary of archival and records terminology[END_REF].

Some notable digitisation projects are Europeana 1 , Project Gutenberg 2 , Wikisource 3 , Google Books 4 , and so on. Europeana serves as a portal which allows to access digitised corpus of many European museums, galleries, libraries and archives. Project Gutenberg and Wikisource are non-profit crowd-sourcing projects which create freely available digital documents. Google Books is a massive commercial digitisation project that intends for an online searchable catalog of books.

The digitising process involves the efficient scanning or photographing of documents, 1 Figure 1.1: Standard steps of OCR procedure [START_REF] Taghva | OCRSpell: an interactive spelling correction system for OCR errors in text[END_REF].

page-by-page, and the conversion of the image of each page into computer-readable text.

The selection of digitisation techniques relies on several factors, such as the medium, the type of writing, the language, etc. In any case, the first step is to create digital images of documents by using scanners or digital cameras. When digital objects are available, two common approaches are manual text entry, and OCR software.

Manual text entry typically requires at least two typists to enter text into computers (known as double-keying). The typescripts are compared to highlight mismatches, next, a proofreader makes a choice to correct the transcription. Since double-keying and proofing are very labor-intensive, keying entry is often outsourced to service providers in countries with lower wages than in Europe or America, known as offshore double-keying. However, offshore outsourcing is still expensive and associated with some security issues when sharing information to the third party.

OCR software is a cost-efficient alternative of manual text entry without any security problems. This technique yields good recognition rates on modern documents, and has become one of the widely used and effective methods for the automatic conversion of printed text. Starting from images, generally, the OCR system detects and orders positions and types of all important zones in documents. Zones, then, are segmented into words which are, in turn, divided into characters. The last process classifies them into their corresponding character codes. Figure 1.1 shows the standard conversion steps of OCR procedure.

In principle, once these digitised documents are available online, multiple users can easily search, select, and make use of them simultaneously from various locations at any time. Indeed, people get their information by simply entering keywords into search engines, then the computer system will provide them a list of relevant results. If returned outputs are books, readers may expect to apply the similar behaviour of reading digital-born books by looking at hyperlinked tables of contents and navigating to their selective pages.

Nevertheless, the digitised historical documents are not error-free due to various reasons. While OCR tools are designed to process text with standard spellings and modern typefaces, spellings of historical text and typefaces in past prints may differ from the current ones. For instance, take a look at spelling variation between a text printed in 1490 and its modernised edition in 2000, 'After dyuerse werkes made translated and achieued hauyng noo werke in hande.' vs. 'After diverse works made, translated and achieved, having no work in hand' [START_REF] Piotrowski | Natural language processing for historical texts[END_REF]. Figure 1.2 illustrates the similarity of some characters that can also pose challenges to the human eye.

In addition, the physical quality of the original materials, the complicated layouts, etc., also have bad effects on performance of current OCR software. The more highly degraded the input, the higher the error rate. An example of the 18th century printed documents and its corresponding noisy OCRed text are respectively illustrated in Figures 1.3 and 1.4.

Figure 1.2: Gothic characters are frequently confused by OCR system. From left to right, the characters are: s (in its long form), f, u, n, u or n, B, V, R, N [START_REF] Furrer | Reducing OCR Errors in Gothic-Script Documents[END_REF].

Although OCR engines have been constantly improved, they still lack adequate training data of past documents that is their strict requirement to achieve similar performance on historical text. Their parameters should be adapted to each kind of document, which is not feasible when processing the large number of pages. Furthermore, previously digitised resources processed with outdated OCR software are rarely resent to the state-of-the-art digitisation pipeline, as priority is often given to the masses of newly incoming documents.

As a result, digitised historical collections still contain errors.

It is obvious that the noise induced by OCR technologies presents a serious challenge to downstream processes that attempt to make use of such data. Digital documents are indexed through their error-prone OCRed version, thus, computing systems may miss some relevant documents in their responses to user queries. Chiron et al. [START_REF] Chiron | Impact of OCR errors on the use of digital libraries: towards a better access to information[END_REF] estimated the impact of OCR errors on the use of the Gallica digital library from the National Library of France. They indicated that 7% of common search terms, which are queried at least 35 times, are potentially affected by OCR errors. Information retrieval performance remains good for relatively high error rates on long texts [START_REF] Taghva | The effects of noisy data on text retrieval[END_REF], but it drops dramatically [START_REF] Croft | An evaluation of information retrieval accuracy with simulated OCR output[END_REF][START_REF] Mittendorf | Information retrieval can cope with many errors[END_REF] on short text.

The impact of noisy OCRed text on other natural language processing (NLP) applications has been studied. Performance of named entity recognition tool, which extracts named persons, named locations, named organisations, etc., from text, considerably degrades with the rises of the error rate of OCR output [START_REF] Hamdi | An Analysis of the Performance of Named Entity Recognition over OCRed Documents[END_REF][START_REF] Miller | Named entity extraction from noisy input: speech and OCR[END_REF]. Text summarisation, which creates a summary representing the most important content of the original, suffers significant degradation on noisy input even with slight increases in the noise level of a document [START_REF] Jing | Summarization of noisy documents: a pilot study[END_REF]. OCR errors cause negative influences on topic modeling, which discovers the abstract topic occurring in a collection of documents [START_REF] Mutuvi | Evaluating the impact of OCR errors on topic modeling[END_REF], and sentiment analysis if sentiment bearing words are not recognised well.

Digitised documents are not only noisy but also unstructured. Actually, OCR technologies typically produce the full text of digitised books with only the physical structures, such as pages, paragraphs, lines, and words. The absence of logical structures (e.g., chapters, sections) makes readers impossible to navigate to their desirable sub-parts by simply clicking on the corresponding part of the hyperlinked ToC.

Furthermore, another issue of missing logical structure is that users cannot take an advantage from structured information retrieval, which is proved to increase retrieval performance [START_REF] Van Zwol | Effective use of semantic structure in XML retrieval[END_REF], to directly access to relevant parts of their information need in digital libraries. Structured information retrieval is defined as the search over structure documents 5 where a markup language like eXtensible Markup Language (XML) is used to identify document parts along with their meanings.

As a consequence, it is critically essential to improve the existing digitised historical collections for facilitating access to past documents and for further automatic processing.

This can be carried out by fixing remaining errors of OCR results (named as Post-OCR processing) as well as re-establishing logical structures (named as Table of Contents extraction) defined by book authors (e.g., chapters, sections, etc.).

Post-OCR processing is in charge of detecting and correcting erroneous OCRed tokens.

Post-OCR error detection is meant for identifying positions of incorrect tokens by using dictionaries or other NLP resources. On one hand, the error detection supports human assistants to quickly rectify errors by locating their positions, and on the other hand, it enables to filter out, flag, or selectively reprocess such data if necessary. Furthermore, the error detection produces the input of post-OCR error correction which is intended for rectifying invalid tokens by different techniques. as a book chapter, its title is the chapter title, its link is the physical page number, and its depth level is the depth at which the chapter is found in the ToC tree.

This dissertation concentrates on facilitating access to historical documents for users and further processes by rebuilding logical document structures and providing higher quality of OCRed text. Indeed, readers easily search and navigate inside documents with the help of structural information and less erroneous text. Search engines and natural language processing applications like text information extraction, text summarisation, topic modeling, sentiment analysis, part of speech tagging, etc., can yield higher performance with cleaner digitised texts.

Research problems and main contributions

Limitations of modern OCR technologies in handling historical documents lead to difficulties in reading, retrieving as well as further processes on digitised collections. In other words, they have partly reduced the benefits of digitisation projects by preventing readers from acquiring knowledge from past documents. It is necessary to minimise the influences of such problems of OCR technologies. This, as a result, is the main purpose of the thesis, which complements OCR techniques by providing logical structural information and improving quality of digitised text.

This thesis presents four key contributions which support the usage of historical documents by rebuilding logical book structures, detecting and correcting invalid OCRed tokens. These results are listed below.

1. Digitisation has constantly increased the number of historical digitised books. However, most of them are in a full text mode with some simple structural information.

More complicated logical book structures are often missing, which results in difficulties for users to search and browse inside a book. The first part of this work is to enhance OCR methods by extracting these sophisticated structures for digitised books. Such information can then be used to aid user navigation as well as to improve search performance. In Chapter 4, we introduce an ensemble approach [START_REF] Tuyet | Enhancing Table of Contents Extraction by System Aggregation[END_REF] which combines prior book structure extraction approaches based on carefully taking advantages of each method.

2. The accuracy of OCR technologies remarkably affects further processes on digital documents. Most parts of the thesis focus on post-processing approaches to improve the quality of OCRed texts. Naturally, a deep understanding of OCRed text, of course, leads to better designing post-processing approaches. Therefore, in Chapter 5, we study characteristics of OCR output and compare them to human generated misspellings [START_REF] Tuyet | Deep Statistical Analysis of OCR Errors for Effective Post-OCR Processing[END_REF]. Our analyses, thus, reveal some clues to guide post-OCR approaches.

3. Typically, a post-processing system detects and corrects remaining errors. However, in some scenarios, decoupling these tasks is a wise solution. In mass digitisation projects, source materials may vary regarding different levels of conservation, language, domains, ect. Quality of the resulting OCRed text is consequently diverse as well. In such case, people may prefer to figure out anomalous text regions, and decide further operations on such data rather than automatically rectifying OCR output. In this thesis, as a result, we consider them as two separate tasks.

Post-OCR error detection is to identify potential erroneous OCRed tokens. We present two novel error detection approaches in Chapter 6. One of them applies binary classification with several new features extracted from a list of plausible candidates for each OCRed token [START_REF] Tuyet | Post-OCR Error Detection by Generating Plausible Candidates[END_REF]. The other fine-tunes Bidirectional Encoder

Representations from Transformers (BERT) models to detect erroneous tokens.

4. Post-OCR error correction is to fix errors with a given list of error positions. Two correction approaches are proposed and reported in Chapter 7. The first one utilises an adaptive edit distance and some other important features in regression model [START_REF] Tuyet | Adaptive Edit-Distance and Regression Approach for Post-OCR Text Correction[END_REF].

The second one transforms OCRed text into corrected text based on neural machine translation models with some variations.

Method overview

In this thesis, some approaches are suggested to enrich access to historical text, which are divided into three tasks, including ToC extraction, post-OCR error detection, and post-OCR error correction.

In terms of ToC extraction, an ensemble method is designed to carefully combine some existing approaches. Since a large portion of books are integrated with physical tables of contents indicating their logical organisations, therefore, most of methods depend on the detection and the analysis on ToC areas to find out and link ToC entries with their corresponding pages. Some others process all book content to extract logical structures, without considering ToC pages. Hybrid ones handle books with or without ToC pages, which recreate book structures by analysing either the ToC areas or the full book content.

Performances of such hybrid methods are inferior to those of the method exploiting ToC areas [START_REF] Doucet | ICDAR 2011 book structure extraction competition[END_REF][START_REF] Doucet | ICDAR 2009 Book Structure Extraction Competition[END_REF][START_REF] Doucet | IC-DAR 2013 Competition on Book Structure Extraction[END_REF]. Our aggregation proposal is different from these methods, we fully combine the analysis on both ToC areas and book content over the same document.

In terms of the post-OCR error detection, two proposed approaches are implemented.

The first one employs statistical features extracted from lexicon, error channel, language model to detect errors. Each OCRed token needs to prove itself to be a correct one 1.4. Thesis outline among its replaceable candidates through a set of different features from both character and word levels. Inspired by the winner of the competition on post-OCR text correction in ICDAR2019 [START_REF] Rigaud | ICDAR 2019 Competition on Post-OCR Text Correction[END_REF], the second error detection approach exploits neural network based language model to identify incorrect OCRed tokens. BERT is well-known as deep bidirectional language model, which can be fine-tuned to create state-of-the-art models for a wide range of NLP tasks. In our case, BERT model is trained with some modifications in order to find error positions.

Regarding the post-OCR error correction, the statistical and neural machine translation based approaches are developed. The statistical one applies regression model to select the top-matching correction candidate with features related to error channel, and a statistical or neural network based language model. Machine translation (MT) system is adapted to correct errors by translating OCRed text into corrected text. Given a list of error positions or a list of detected errors, the input and output of MT system are character sequences of word ngrams related to errors of OCRed text and those of corresponding ngrams from ground truth (GT) text, respectively.

Thesis outline

This manuscript is structured as follows:

• Chapter 2 surveys the state-of-the-art work on extracting book structure information (e.g., chapter, section, etc.) and on post-OCR processing. Their advantages and disadvantages are highlighted.

• In Chapter 3, we provide an overview of datasets and measures used to evaluate our • Chapter 4 introduces an aggregation-based method to enhance ToC extraction using system submissions from the ICDAR Book structure extraction competitions (2009, 2011, and 2013). The logical structure information is very helpful for reader to search or browse inside a book.

• In Chapter 5, we study OCR process and provide a detailed comparison between OCR errors and human spelling mistakes. The deep analysis on invalid OCRed tokens is included towards developing effective post-processing approaches.

• Two error detectors are reported in detail in Chapter 6. The first approach employs different features of both character and word levels to find erroneous tokens.

The second one adjusts the well-known contextual language model and static word embeddings to detect errors.

• In Chapter 7, two correction approaches are presented. One of them explores a modified way of candidate generating and candidate scoring to select the best candidate for each error. The other one adapts machine translation technique to transform OCR errors to corrected tokens with some extra features.

• Finally, the thesis concludes in Chapter 8 and gives an outlook on future work.
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CHAPTER 2

Related work

Results of OCR technologies are missing high-level structures of document contents (e.g., chapter, section) and still erroneous. A lot of efforts are dedicated to overcome such limitations aiming at facilitating the usage of digitised historical texts. Several methods are suggested to rebuild logical book structures which not only enrich user navigation experiences but also structure digitised documents for better structure retrieval performance.

Likewise, there are a wide range of post-OCR approaches that improve the quality of OCRed text by identifying and rectifying remaining erroneous tokens. In this chapter, we give a detailed overview of multiple approaches on reconstructing high-level book structures and those on post-processing.

Table of contents extraction

Along with the development of digital libraries, several digitised historical books have been accessible via the Internet. Many approaches have been proposed to rebuild book structures, aiming to provide users a convenient way to locate or browse their content of interest. There are some challenges in dealing with extracting table of contents that is a 13 list of ToC entries each of which includes three elements: title, page number and level of the title. On one hand, the limitation of OCR technologies on historical documents causes troubles for structuring analysis, especially when some keywords like 'chapter', 'section' are wrongly recognised. On the other hand, historical books have various layout formats. Book structure extraction approaches can be classified into three types: methods based on the recognition and analysis of pages containing a table of contents, methods analysing the full content of the book and notably looking for internal titles, and hybrid methods [START_REF] Doucet | Logical Structure Extraction from Digitized Books: Benchmarking State-of-the-Art Systems[END_REF].

ToC-recognition-based type. The first approach type relies on the detection of ToC pages. Typically, approaches of this type concentrate on detecting ToC pages within a book, then extracting all ToC entries from such pages. Next, the remaining book content is only processed for identifying links between titles and pages.

The best performing approach (named as MDCS) of the three competitions belongs to this type, and was developed by Dresevic et al. [START_REF] Bodin Dresevic | Book layout analysis: TOC structure extraction engine[END_REF]. The approach recognised ToC pages and assigned each physical page with a logical page number. After that, each ToC page The Epita approach [START_REF] Lazzara | The SCRIBO module of the Olena platform: a free software framework for document image analysis[END_REF] relied on the text boxes provided in portable document format (PDF) documents. It first searched the ToC areas and then reconstructed ToC entries based on the features of text boxes: alignments, lines ending with numbers or not, etc.

Page linking was found using the difference between the page number of a page in the middle of the book and its page number written in the book.

The disadvantage of this kind of approach is that it mainly relies on ToC pages to extract ToC entries, therefore its performance can be significantly decreased in case of Book-content-based type. To overcome the problems of the first approach type, the second type focuses on the analysis of the entire book content instead of focusing on its ToC pages. The representative approach of this type (named as Greyc) was presented by Giguet et al. [START_REF] Giguet | Resurgence for the book structure extraction competition[END_REF][START_REF] Giguet | The book structure extraction competition with the resurgence software at caen university[END_REF]. They used a four-page window to search a large white-space which was considered as a strong indicator of the ending of a chapter and the beginning of a new one. After finding the relevant pages, they extracted entry titles from the third page of the sliding window.

Similarly, Déjean et al. [START_REF] Déjean | Using page breaks for book structuring[END_REF] exploited page breaks to identify book parts. The breaks associating with high-level book structures (part, chapter) create white-spaces on top of page (leading pages) or bottom of pages (trailing pages). They reported that their approach achieved very good precision and lower recall since other structures unmarked a page break are not detected.

In our point of view, approaches of this type are totally unsupervised and languageindependent. They are capable of handling documents with or without ToC as well as are not affected by erroneous ToC pages. However, they require a large memory for processing the whole document even in the case of a book with clear and exhaustive ToC areas.

Hybrid type. In out-of-copyright books, it is observed that as many as 20% books do not contain any ToC [START_REF] Doucet | Setting up a competition framework for the evaluation of structure extraction from ocr-ed books[END_REF]. It, thus, seems necessary to use approaches of the hybrid type. In particular, they enable to extract logical book structures from books with and without ToC pages.

The method of Liu et al. [START_REF] Liu | TOC structure extraction from ocr-ed books[END_REF] (named as Nankai) considered whether a book has ToC pages or not, then applied the appropriate approach. A rule-based method was designed for books with ToC pages while machine learning was used to deal with books without ToC pages.

Different from approaches applying traditional rule-based method and classical boolean logic, Gander et al. [START_REF] Gander | Rule based document understanding of historical books using a hybrid fuzzy classification system[END_REF] utilised the power of rule-based method with the flexibility of the fuzzy logic, aiming to better handle several OCR flaws as well as variations in the book structure styles. Additionally, results were carefully refined by a grammar-based method in the final step. Their method was called as Innsbruck in the competition.

Another approach (named as XRCE) [START_REF] Déjean | On tables of contents and how to recognize them[END_REF][START_REF] Déjean | XRCE participation to the 2009 book structure task[END_REF] combined a rule-based method, a supervised one and similar strong indicators Déjean et al. [START_REF] Déjean | Using page breaks for book structuring[END_REF] in order to extract the ToC entries. Four techniques were applied in their suggestion. The first and second ones used a rule-based technique to parse ToC pages and index pages. The supervised method relying on five generic properties (contiguity, textual similarity, ordering, optional elements, no self-reference) and on some document layout specificities was the core of the third method.

The last one relied on the leading and trailing page white-spaces.

This type of approach is promising in that it could properly handle all books, with or without ToC pages. However, it still underperforms the MDCS approach in all the three competitions on book structure extraction.

Conclusion.

In summary, no approach has fully combined the features from the ToC pages and those from the book content, even in the case of the hybrid methods. The latter underperforms the best ToC-recognition-based approaches according to the official results of the three ICDAR book structure extraction competitions [START_REF] Doucet | ICDAR 2009 Book Structure Extraction Competition[END_REF][START_REF] Doucet | Setting up a competition framework for the evaluation of structure extraction from ocr-ed books[END_REF][START_REF] Doucet | IC-DAR 2013 Competition on Book Structure Extraction[END_REF].

Our analysis of the submissions to the three competitions indicates that the MDCS approach always obtains the best performance on 1,653 books with ToC pages. The XRCE 

Post-OCR processing

Post-OCR processing approaches detect and correct remaining OCR errors for yielding better quality of digitised documents. The literature of post-OCR processing research has a rich family of models. They are grouped into three types: manual approach type which lets human manually review and correct OCRed texts, lexical approach type towards the comparison of source words to dictionary entries, neural network and statistical approach one that utilises information learnt from training data. The insights of each group are discussed in the following sections.

Manual approach type

ReCAPTCHA and crowd-sourcing are some key approaches of this type. CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart) are widespread security measures on the World Wide Web. Von Ahn et al. [START_REF] Von Ahn | recaptcha: Human-based character recognition via web security measures[END_REF] suggested to benefit from CAPTCHAs to digitise old printed material. They concealed crowd-sourcing effort in OCR correction behind an access system to websites. Users were shown two images; one was known to the system and used for verifying access to a website; another was unknown and its content would be determined by majority vote of contributors. Users did not know which one was known or unknown to the system. The authors reported that the reCAPTCHA system achieved a word-level accuracy of 99.1% whereas standard OCR approaches on the same set of articles obtained only 83.5%. An example of reCAPTCHA is shown in Figure 2.4. One of the first crowd-sourcing approaches was a web-based system called Trove [37]2 .

This system was developed by the National Library of Australia for crowd correction in historical Australian newspapers. The approach presented full articles to volunteers, and allowed to fix text line by line. A screenshot of the web-based Trove system [START_REF] Holley | Many hands make light work: Public collaborative OCR text correction in Australian historic newspapers[END_REF] is demonstrated in Figure 2.5. The objective of this model was to attract volunteers to donate their time for correcting erroneous tokens. This approach was developed by Chrons et al. [START_REF] Chrons | Digitalkoot: Making old archives accessible using crowdsourcing[END_REF] for rectifying OCR errors in old Finnish newspapers. An example of Digitalkoot is given in Figure 2.7. The experimental results reported that the quality of corrected text was very high with word accuracy over 99%. However, the system ignored nearby context and only allowed users to interact with single words, which raises a doubt that real-word errors cannot be corrected.

While collaborative OCR correction approaches proved their performance with high accuracy, they also have some limitations. They require the original documents which are often unavailable on some OCRed text corpus. In addition, they heavily depend on volunteer work as well.

Lexical approach type

The approaches of the lexical type typically utilise distance measures between an erroneous word and a lexicon entry to suggest candidates for correcting OCR errors.

Some researchers focus on specialised lexicons to improve the accuracy of Abbyy FineReader on historical documents. Considering the fact that spellings in historical documents are often not standardised and historical stages of a language often lack complete lexicons, some prior works aim to study the influence of the coverage of a lexicon. Then different ways are suggested to dynamically collect specialised lexicons.

Strohmaier et al. [START_REF] Christian M Strohmaier | Lexical postcorrection of OCR-results: The web as a dynamic secondary dictionary?[END_REF] argued that conventional dictionaries were short of a considerable number of tokens of a specific thematic area, which would drastically decrease performance of post-OCR processes. They suggested to exploit thematic dictionary to improve results of approaches belonging to the lexical type. They built a dynamic dictionary from collecting vocabularies of Web pages of the input domain, which obtained a higher coverage than static conventional dictionary.

Ringlstetter et al. [START_REF] Ringlstetter | Adaptive text correction with Web-crawled domain-dependent dictionaries[END_REF] emphasised that approaches of this type only achieved a high performance if dictionary was sensitive to the document domain. They refined the crawl strategy employed in the previous approach [START_REF] Christian M Strohmaier | Lexical postcorrection of OCR-results: The web as a dynamic secondary dictionary?[END_REF] to produce smaller dictionaries with high coverage. In particular, the similarity between crawled pages and the given input text was controlled based on the normalised cosine distance. Web pages with many orthographic errors were removed from dictionary construction.

Instead of building a dictionary, Bassil et al. [5] profited Google's massive indexed data for post-processing OCR output. They sent OCRed tokens to Google search engine as search queries. If the query contained errors, the search engine would suggest some replaceable words for misspellings. These suggestions were considered as corrections for OCR errors. One of competition participants (named as EFP) [START_REF] Chiron | ICDAR2017 competition on post-OCR text correction[END_REF] also explored lexicon look-up techniques and regular expressions to detect and correct errors.

Lexical approach type is easy to apply, however, it also goes together with some difficulties. Historical documents do not follow a standard spellings like modern texts and often lack complete lexicons. Moreover, the approaches of this type only concentrate on single words so that they cannot handle real-word errors which are valid lexicon items but occur in wrong context. Next, some alignment methods have been developed to align multiple OCR output sequences. Lund et al. [START_REF] William | Improving optical character recognition through efficient multiple system alignment[END_REF] introduced an efficient algorithm to align the output of multiple OCR engines and then to take advantages of the differences between them.

Neural network and statistical approach type

In the last step, several techniques were applied to choose the best sequence. Lopresti et al. [START_REF] Lopresti | Using consensus sequence voting to correct OCR errors[END_REF], Lin [START_REF] Lin | Reliable OCR solution for digital content re-mastering[END_REF], and Lund et al. [START_REF] William B Lund | Combining multiple thresholding binarization values to improve OCR output[END_REF] utilised voting policy to decide the best sequence.

Boschetti et al. [6] selected characters using Naive Bayes classifier. Some kinds of features (voting, number, dictionary, gazetteer, and spelling checker) were used in Maximum entropy classification methods to choose the best possible correction by Lund et al. [START_REF] William B Lund | Progressive alignment and discriminative error correction for multiple OCR engines[END_REF].

These approaches of this type proved their benefit with lower word error rate than the individual OCR engine. However, they limit candidate suggestions from the recognition output of OCR engines. In addition, the approaches do not consider any contextual infor-mation, thus, real-word errors are impossibly corrected. Furthermore, they require some additional efforts of multiple OCR processing and the presence of the original OCR input which are not always available in some datasets of post-OCR processing task. Collections of the two competitions on Post-OCR Text Correction [START_REF] Chiron | ICDAR2017 competition on post-OCR text correction[END_REF][START_REF] Rigaud | ICDAR 2019 Competition on Post-OCR Text Correction[END_REF] are some of typical examples.

Error model and language model

Several supervised and unsupervised approaches exploit error model and language model to deal with post-OCR processing problems.

Some approaches mainly investigate the error model and ignore context information.

Given an OCR error, CSIITJ -a competition team [START_REF] Rigaud | ICDAR 2019 Competition on Post-OCR Text Correction[END_REF] selected a list of candidates based on edit distance between the error and lexicon entries. These candidates were, then, ranked by the error model and suggested as corrections.

Kolak and Resnik [START_REF] Kolak | OCR error correction using a noisy channel model[END_REF] considered the post-processing problem as a recognition one and adapted a framework of syntactic pattern recognition to solve the problem. Parameters of their model were estimated by Levenshtein distance and IBM translation models.

Perez-Cortes et al. [START_REF] Carlos Perez-Cortes | Stochastic error-correcting parsing for OCR post-processing[END_REF] applied the extended version of the Viterbi algorithm to find the lowest cost path through a directed graph associated to the stochastic finite-state automaton and to the input string. Their experiments showed some improvements on correcting handwritten Spanish names at character level.

Extending the approach of Perez-Cortes et al. [START_REF] Carlos Perez-Cortes | Stochastic error-correcting parsing for OCR post-processing[END_REF], Llobet et al. [START_REF] Llobet | OCR post-processing using weighted finite-state transducers[END_REF] built an error model and a language model, then added one more model built from character recognition confidences called hypothesis model. Three models were compiled separately into Weighted Finite-State Transducers (WFSTs), then were composed into the final transducer. The best token was the lowest cost path of this final transducer. However, character recognition confidence is often unavailable in some digitised corpus, such as datasets of three works [START_REF] Chiron | ICDAR2017 competition on post-OCR text correction[END_REF][START_REF] Evershed | Correcting noisy OCR: Context beats confusion[END_REF][START_REF] Rigaud | ICDAR 2019 Competition on Post-OCR Text Correction[END_REF], so it is hard to implement this hypothesis model.

A competition team from Centro de Estudios de la RAE [START_REF] Chiron | ICDAR2017 competition on post-OCR text correction[END_REF][START_REF] Rigaud | ICDAR 2019 Competition on Post-OCR Text Correction[END_REF] also implemented a WFST based method (denoted as WFST-PostOCR in the first competition, RAE in the second one). The RAE team compiled probabilistic character error models into WFST.

Ngram language models and the lattice of candidates generated by the error model were used to decide the best token sequence. This approach obtained the best performance on detection task of the competition ICDAR2017, and improved the quality of OCRed text in the two competitions.

Another competition participant (called as 2-pass RNN) [START_REF] Chiron | ICDAR2017 competition on post-OCR text correction[END_REF] examined neural language model instead of statistical one. Erroneous tokens were detected based on two recurrent neural network (RNN) models. Features of character-level model were used as the input of the word-level model.

Some approaches apply the error model along with the language model to deal with both non-word and real-word errors. Tong and Evans [START_REF] Tong | A statistical approach to automatic OCR error correction in context[END_REF] implemented a context sensitive correction system. The approach took advantages of information from multiple sources, including letter ngrams, character confusion probabilities, and word-bigram probabilities.

Candidates were selected by comparing OCRed token ngrams with lexicon-entry ngrams, then ranked by the conditional probability of the token being recognised as matches. Finally, statistical language modeling was used to determine the best scoring word sequence.

Taghva et al. [START_REF] Taghva | OCRSpell: an interactive spelling correction system for OCR errors in text[END_REF] generated candidates by confusion lists, then scored them using Bayesian function on frequencies of word pairs and character ngrams. In addition, a heuristic was designed to create candidates for words containing unrecognized characters.

The ranked list of candidates was then recommended to users.

Evershed et al. [START_REF] Evershed | Correcting noisy OCR: Context beats confusion[END_REF] introduced post-processing approaches applying both error model and word language model. They carefully generated candidates at character level using the error model and at word level using word trigram and 'gap' trigram. The error model used confusion matrix and the novel reverse OCR derived estimation. Suggestions were ranked by the confusion cost from the error model, and trigram language cost. In our opinion, more clues can be employed to select the best matching candidate, for example, candidate frequency, costs related to skip-grams, or part-of-speech tagger.

Some unsupervised post-OCR approaches have been developed. Reynaert [START_REF] Reynaert | Text induced spelling correction[END_REF][START_REF] Reynaert | Corpus-Induced Corpus Clean-up[END_REF] introduced an unsupervised method to solve problems of spelling variation. The method exploited a hash table and a hash function to produce a large number for identifying words (anagrams) which have the same characters in common. The main characteristic of this hash function is that each character or character sequence of a word can be calculated separately. This feature enabled to retrieve similar words for a given word by inserting, deleting, substituting or transposing characters. The results showed that a large amount of non-word errors were detected and corrected.

Anagram hash algorithm was then applied in another unsupervised approach. Niklas [START_REF] Niklas | Unsupervised post-correction of ocr errors[END_REF] combined this hash algorithm and a new OCR adaptive method in order to search the best matching proposals for OCR erroneous tokens. The proposed method first classified characters into equivalence classes based on their similar shapes. Characters of the same class would share the same OCR-key. The key of the given word was utilised to retrieve all words which had the same key in the dictionary. In addition, context information (word bigrams) was also applied to score suggested words.

Regression model

Machine learning approaches learn from different features, which enable more robust candidate selection. These approaches explore multiple sources to generate candidates, extracted features and then rank them using a statistical model. [START_REF] Kissos | OCR error correction using character correction and feature-based word classification[END_REF] computed feature values for each input, including confusion weight, OCR confidence, frequencies (unigram frequency, related bigram frequency, term frequency in OCRed document). These features were used to decide whether the OCRed word should be replaced by its highest ranked correction-candidate. However, it should be reminded that OCR confidence is not always available in OCRed text collections, therefore that model cannot fully be implemented. Furthermore, their features were not designed to deal with segmentation errors. For example, frequency of unigram does not take run-on errors into account (e.g., there is not frequency of unigram if an error is as 'doubtfud.of', its candidate is as 'doubtfull of'). In addition, that approach did not consider an important feature employed in error correction [START_REF] Islam | Real-word spelling correction using Google Web IT 3-grams[END_REF], which is the similarity between an error and its candidate.

Kissos and Dershowitz

Mei et al. [START_REF] Mei | Statistical Learning for OCR Text Correction[END_REF] argued that the above method made use of solely ngram frequencies without knowing the characteristics of OCR errors. They identified errors relying on frequencies of word and word ngrams. A token was viewed as an error if its frequency or its ngram frequencies in the same document were less than a threshold. They suggested a sim-ilar approach with some additional features, such as similarity metrics (Levenshtein edit distance, longest common subsequence), contextual information (word ngram frequency, skip-gram frequency). However, they ignored another important feature -confusion probability which was used in several successful post-processing approaches [START_REF] Kolak | OCR error correction using a noisy channel model[END_REF][START_REF] Llobet | OCR post-processing using weighted finite-state transducers[END_REF][START_REF] Carlos Perez-Cortes | Stochastic error-correcting parsing for OCR post-processing[END_REF].

Khirbat [START_REF] Khirbat | OCR Post-Processing Text Correction using Simulated Annealing (OPTeCA)[END_REF] classified a token as being incorrect or correct by using three following features: the presence of non alpha-numeric text in the token, the occurrence of the token and its context in other places of the same document, the comparison between its word bigram frequency and a threshold. They rectified the errors by employing similar features, which were exploited in the work of Mei et al. [START_REF] Mei | Statistical Learning for OCR Text Correction[END_REF], to score candidates based on simulated annealing [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF].

Machine translation model

Along with the development of machine translation techniques, some approaches considered OCR post-processing as machine translation (MT) task, which transforms OCRed text into the corrected one in the same language.

Afli et al. [1] successfully trained statistical machine translation (SMT) system to reduce OCR errors of historical French texts. They concluded that word-level SMT systems performed slightly better than character-level systems for OCR post-correction [1], and the word-level systems outperformed language model techniques [2]. However, it should be mentioned that they had a large training set of over 60 million tokens while some datasets were much smaller.

Schulz and Kuhn [START_REF] Schulz | Multi-modular domain-tailored OCR post-correction[END_REF] presented a complex architecture named Multi-Modular Domain-Tailored (MMDT) for OCR post-correction of historical texts. This approach combined many modules from word level (e.g., original words, spell checker, compounder, word splitter, text-internal vocabulary) to sentence level (i.e., SMT) for candidate suggestion.

Then, the decision module of Moses decoder [START_REF] Koehn | Moses: Open source toolkit for statistical machine translation[END_REF] was used to rank candidates.

Following the success of translation task in post-OCR, some competition teams (Char-SMT/NMT, CLAM, CCC, UVA) employed methods of character-based machine translation to correct OCR errors.

CLAM and UVA depended on neural machine translation while Char-SMT/NMT [START_REF] Amrhein | Supervised OCR Error Detection and Correction Using Statistical and Neural Machine Translation Methods[END_REF] combined neural machine translation and statistical machine translation. Amrhein and Clematide [START_REF] Amrhein | Supervised OCR Error Detection and Correction Using Statistical and Neural Machine Translation Methods[END_REF] reported that SMT systems outperformed NMT systems in error correction, while NMT systems obtained higher performance in error detection. Their complicated ensemble models achieved the best result in the correction task of the first competition on post-OCR text correction [START_REF] Chiron | ICDAR2017 competition on post-OCR text correction[END_REF].

The Context-based Character Correction (CCC) method is the winner of the second competition [START_REF] Rigaud | ICDAR 2019 Competition on Post-OCR Text Correction[END_REF]. It fine-tuned the pretrained language model BERT [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF] with some convolutional layers and fully-connected layers to identify OCR errors. Their correction model is an attention sequence to sequence model with fine-tuning BERT.

It is obvious that participants applied various methods to detect and correct OCR errors in the first two competitions on post-OCR text correction [START_REF] Chiron | ICDAR2017 competition on post-OCR text correction[END_REF][START_REF] Rigaud | ICDAR 2019 Competition on Post-OCR Text Correction[END_REF]. Both of winners (Char-NMT/SMT, CCC) utilised character-level machine translation techniques with some additional features. Their methods outperformed most of other methods, such as approaches based on error model and language model (such as weighted-finite-statetransducer, anagram hashing) and lexical approaches.

Conclusion

After studying a wide range of post-OCR processing approaches, we offer two important conclusions below:

1. Most of the above-discussed post-processing approaches focus on the correction part rather than the detection part. Nonetheless, it does not mean that the error detection part is not important as naturally one cannot correct errors without knowing their positions. There are a few separate detection methods relying on lexicon (e.g., EFP [START_REF] Chiron | ICDAR2017 competition on post-OCR text correction[END_REF]), or on word ngram frequencies (e.g., [START_REF] Mei | Statistical Learning for OCR Text Correction[END_REF]), or on feature-based classification model (e.g., [START_REF] Khirbat | OCR Post-Processing Text Correction using Simulated Annealing (OPTeCA)[END_REF]), or on BERT model (e.g., [START_REF] Rigaud | ICDAR 2019 Competition on Post-OCR Text Correction[END_REF]). Some others usually identify incorrect tokens based on the most-matching candidates from the correction part.

If the best alternative differs from the OCRed token, then the token is erroneous and replaced by this candidate. The advantage of these approaches is to detect and correct errors at the same time, but the performance of the detection task depends on that of a more difficult task -the correction.

Neural machine translation based techniques have been the-state-of-the-art accord-

ing to the results of the competition on post-OCR text correction. Nevertheless, it should be clarified that there is no clear performance comparison between BERT and feature-based classification models on the post-OCR error detection. Similarly, we still lack obvious evaluations between MT and regression models [START_REF] Khirbat | OCR Post-Processing Text Correction using Simulated Annealing (OPTeCA)[END_REF] on post-OCR error correction.

As a consequence, we focus on BERT and feature-based classification models to locate error positions. Likewise, regression and MT models are employed to correct OCR errors.

Furthermore, by mainly exploiting natural language processing resources, our post-OCR approaches can handle different digitised documents that created by varying digitisation processes and out-of-date OCR algorithms.

In terms of the post-OCR error detection, the first approach exploits various characterlevel as well as word-level features to identify whether the OCRed token is incorrect or correct via binary classification. An OCRed token needs to prove to be a valid word via feature values computed from its plausible candidate set. This method differs from the prior work of classification model [START_REF] Khirbat | OCR Post-Processing Text Correction using Simulated Annealing (OPTeCA)[END_REF] since we explore more features of both character and word levels. In addition, feature values are computed based on the possible alternative set of each OCRed token instead of only relying on the erroneous token.

The second detection approach adapts BERT model on the named entity recognition task to identify errors. Our proposal is similar to the best-performing approach in the competition ICDAR2019, but we simplify the model with only one fully-connected layer on the top of the hidden-states output. In addition, our model applies Fasttext [START_REF] Mikolov | Advances in Pre-Training Distributed Word Representations[END_REF],

Glove [START_REF] Jeffreypennington | Glove: Global vectors for word representation[END_REF] as the initial embeddings of our model rather than using randomly numbers.

In terms of the post-OCR error correction, our first method makes use of confusion probability obtained from the noisy channel model of single or multiple edits, and context probability given by language model. Then, these two features and some essential features suggested by related works [START_REF] Kissos | OCR error correction using character correction and feature-based word classification[END_REF][START_REF] Mei | Statistical Learning for OCR Text Correction[END_REF] are used to predict the confidence of each candidate becoming a correction via regression model. Our second correction approach which applies NMT techniques on contextual input data and some additional features (e.g., our character embedding, candidate filter based on length difference) is promising to reduce OCR errors.

This chapter surveys the prior works on book structure extraction and post-processing

OCRed text, which provides a general viewpoint about what was done in the state of the art as well as the advantages and disadvantages of each method. Based on such background, we design and implement our novel approaches for aiding access to digitised document collections.

To evaluate these contributions, we need to identify adequate datasets and evaluation metrics, which are the focus of the next chapter.

CHAPTER 3

Evaluation datasets and metrics

After considering the state of the art, we will now detail the way that we evaluate our works aimed at extracting tables of contents from digitised books as well as detecting and correcting OCR errors. Evaluation metrics and datasets play a crucial role in testing the performance of proposed methods. Shared tasks are great opportunities to compare approaches in a controlled setting where all are evaluated using the same measures and the same datasets. That is the reason why we select the official metrics and datasets of two competitions to assess our proposals. This chapter introduces adequate benchmark datasets and associated metrics.

Datasets

Five datasets are applied to evaluate our approaches on table of contents extraction and post-OCR text correction. All of them are public datasets of competitions from the international conference on document analysis and recognition. In this chapter, five of them are discussed in detail.
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Table of contents extraction

The reference datasets and metrics for the extraction of tables of contents were defined in the context of the ICDAR conference's series of Book Structure Extraction competitions [START_REF] Doucet | Setting up a competition framework for the evaluation of structure extraction from ocr-ed books[END_REF]. We use the three datasets created in the context of the 2009 [START_REF] Doucet | ICDAR 2009 Book Structure Extraction Competition[END_REF], 2011 [START_REF] Doucet | ICDAR 2011 book structure extraction competition[END_REF] and 2013 [START_REF] Doucet | IC-DAR 2013 Competition on Book Structure Extraction[END_REF] Book Structure Extraction competitions. Different datasets have been annotated

and used for each of the competition, but all of them are composed of books selected from the corpus of the INEX book search track [START_REF] Kazai | Overview of the INEX 2008 Book Track[END_REF] which contains 50,239 books. This book collection is provided by Microsoft Research and the Internet Archive [START_REF] Kazai | Overview of the INEX 2009 book track[END_REF].

The three subsets preserve the diversity of the large book collection in both book genre and the observed ratio of books with and without a physical table of contents pages (80:20). Details on the three datasets of the competitions are given in Table 3.1, together with the corresponding lists of participants.

Each book of these datasets is provided in two different formats [START_REF] Doucet | ICDAR 2009 Book Structure Extraction Competition[END_REF]. Portable document format is provided to participants to give them access to original image files, while DjVu XML is provided as the output of an OCR process including OCRed text and basic structure provided in a simple markup format illustrated and described as follows: 

Post-OCR processing

As we saw in Chapter 2, post-OCR processing has been a long standing problem. However, few public evaluation benchmarks exist. The competition on Post-OCR Text Correction organised in 2017 and 2019 in the context of the ICDAR conference [START_REF] Chiron | ICDAR2017 competition on post-OCR text correction[END_REF][START_REF] Rigaud | ICDAR 2019 Competition on Post-OCR Text Correction[END_REF] therefore attracted strong interest from the community, with around 70 registrations in total. This shared task provides a good opportunity to compare techniques for the detection and correction of OCR errors. Therefore, we rely on the datasets of this competition to evaluate Open data of National Library of Finland 5 , GT4HistOCR [START_REF] Springmann | Ground Truth for training OCR engines on historical documents in German Fraktur and Early Modern Latin[END_REF] and RECEIPT [4].

Similar to the dataset of the first competition, there is no information about the OCR engines and configurations that produced the OCRed text. 80% of the dataset is given to participants as training set, while the rest is utilised for evaluation.

This thesis uses the English OCRed texts of both competitions. 

Metrics

To ease comparison with state of the art, and because our research problems are aligned with the settings of the given competitions, we apply the same evaluation metrics as those competitions did. The following sections describe each measure in detail.

2 http://www.himanis.org (accessed 2019-12-02) 3 https://www.digitisation.eu (accessed 2019-12-02) 4 https://impresso-project.ch (accessed 2019-12-02) 5 https://digi.kansalliskirjasto.fi/opendata (accessed 2019-12-02) 6 CER is computed as Levenshtein distance that is the minimum number of operations required to transform the reference text into the output.

Table of contents extraction

The key concepts used in the evaluation of ToC extraction are defined as follows [START_REF] Doucet | ICDAR 2009 Book Structure Extraction Competition[END_REF].

Atomic units that make up a ToC are considered as ToC entries. A ToC entry has three properties: title, link, and depth level. Given a ToC entry corresponding to a book chapter, title is the chapter title, link is the physical page number at which the chapter starts in the book, depth level is the depth at which the chapter is found in the ToC tree with the book as the root.

Matching titles. Two titles match if they are 'sufficiently similar', where a similarity is computed based on a modified version of the Levenshtein distance. In particular, they give different costs on modification operations involving a type of a changed character: the cost of alphanumeric modification is 10; the cost of non-alphanumeric one remains 1.

Two strings A and B are 'sufficiently similar' if their distance D is less than 20% and if the distance between their first and last five characters (or less if the string length is small) is lower than 60%. The distance D between strings A and B is computed as follows:

D(A, B) = LevenshteinDist * 10 min(length(A), length(B)) (3.1)
where LevenshteinDist is the modified Levenshtein distance, length(A) is the number of characters of strings A.

This loose definition of similarity was designed to match and consider correct both the ToC entry title that may be found in the book's ToC and the one that may be found at the corresponding page (e.g., sometimes the titles have variations such as being preceded by the word 'Chapter' or not).

Matching links. A link is correctly recognised if an entry has matching title linking to the same physical page in the ground truth.

Matching depth levels.

A depth level is correct if an entry has matching title at the same depth level in the ground truth.

Matching complete ToC entries. A ToC entry is said to be entirely correct if an entry has matching title, matching depth level, and matching link, correspondingly.

Two complementary metrics are yielded to evaluate ToC entries, including a title-based measure [START_REF] Doucet | ICDAR 2009 Book Structure Extraction Competition[END_REF] and a link-based measure [START_REF] Déjean | Reflections on the inex structure extraction competition[END_REF]. The main difference is that the former primarily matches ToC entries based on the similarity of titles, while the latter directly takes into account the quality of the links.

In the title-based measure, ToC entries are firstly assessed on whether their titles are similar to any available titles of the ground truth according to a distance measure mentioned in Equation 3.1, then the links and the depth levels are considered.

Concerning the link-based measure, first of all, ToC entries are tested based on whether they link to a page number that truly matches an existing ToC entry. After that, the similarity of the titles is computed by Equation 3.2, and the depth levels are tested.

simil(s 1 , s 2 ) = 1 - weightedLevenshtein(s 1 , s 2 ) max(weight(s 1 ), weight(s 2 )) (3.2)
where weightedLevenshtein is similar to LevenshteinDist mentioned in the Equation 3.1, and weight(s) is the sum of each character's weight in the string s (if a character is a letter or a number then its weight is 10, otherwise, its weight is 1).

After considering whether ToC entries match the ground truth or not, three common metrics including Precision, Recall, and F-measure values are computed for each property separately, and for complete entries. Each of three measures is calculated for each book and then averaged over the total number of books (macro-average). Precision, Recall, and F-measure are formulated in Equations 3.3, 3.4, and 3.5, respectively.

P recision = T P T P +

F P (3.3)
where T P is True Positive, F P is False Positive

Recall = T P T P + F N (3.4)
where F N is False Negative

F -measure = 2 * P recision * Recall P recision + Recall (3.5)

Post-OCR processing

As for post-OCR processing, we employ the same evaluation metrics used in the competition. In the error detection task, the goal is to identify tokens as being either erroneous or not. Therefore, the organisers used the three popular metrics Precision, Recall and F-measure as defined in Equations 3.3, 3.4, and 3.5, respectively.

In the correction task, this official metric is the relative improvement (impr) between the original Levenshtein distance (origDist) and the corrected distance (avgDist).

impr = origDist -avgDist origDist * 100 (3.6)
The origDist distance is calculated based on Levenshtein distance between the raw OCRed text (ocr) and its GT (gt) as below:

origDist(ocr, gt) = n i=1 LV distance(ocr i , gt i ) N (3.7)
where ocr i is an OCRed token, gt i is a GT token, n is a number of tokens, N is the total number of characters in GT, and LV distance is the Levenshtein distance.

The avgDist distance relies on Levenshtein distance between the corrected text (corr) and the corresponding GT, and the likelihood of each candidate to be the correction in case there are many candidates for one error. It is computed by the following formula:

avgDist(corr, gt) = n i=1 m j=1 w ij * LV distance(c ij , gt i ) N (3.8)
where w ij is the likelihood of candidate c ij to be a GT word gt i , m is the number of candidates of an OCRed token corresponding to gt i .

CHAPTER 4

Table of contents extraction

Digitised books inherently lack logical structure information, such as chapters, sections.

To enrich the navigation experience of users, several approaches have been proposed to extract tables of contents (ToC) from digitised books. In this chapter, we introduce and evaluate our hybrid approach designed to combine approaches focused on the identification and analysis of ToC pages, and those that build ToCs by searching for structure throughout the whole book. To do this, we present and apply an aggregation-based method to enhance ToC extraction and use as simulation of systems to be combined the output of submissions to the ICDAR Book structure extraction competitions held in 2009, 2011, and 2013.

ToC extraction approach

Most multi-page documents come with a built-in table of contents, which naturally reflects the logical structure of the entire document. Consequently, most of the prior work concentrate on recognising ToC pages and extracting ToC entries along with their corresponding page numbers within such ToC area. These approaches are incapable to work in case of books without ToC pages or with too degraded ToC areas. Some other methods process entire book content to detect ToC entries, which is typically based on leading and trailing page white-spaces. In our opinion, results extracted from ToC pages can complement those extracted from the book content and vice versa. Therefore, we suggest an aggregation method which fully combines the analyses of both ToC pages and book content.

Our ensemble method is built on the top of existing approaches. Specifically, we employ extracted ToCs from submissions of the ICDAR book structure extraction competitions in 2009 [START_REF] Doucet | ICDAR 2009 Book Structure Extraction Competition[END_REF], 2011 [START_REF] Doucet | ICDAR 2011 book structure extraction competition[END_REF], and 2013 [START_REF] Doucet | IC-DAR 2013 Competition on Book Structure Extraction[END_REF]. Each submission may be considered as a set of ToCs We aggregate ToC entries obtained from each pair of available submissions for each book in a collection by using two common set operators (i.e. union, and intersection). Our purpose is to evaluate the performance of an aggregation submission which only contains the common entities of two submissions or all the entities extracted by these submissions.

It is simple to apply set operators on primitive sets such as integers, floats or strings.

However, a ToC submission is a derived set which consists of ToCs of books. A ToC of a book has a unique bookid and a list of ToC entries, that each includes three properties (i.e. title, page number, and depth level).

For each bookid in the corpus, we propose to aggregate ToC entries of two submissions by applying each set operator to each property which belongs to a primitive set. The difficulty in choosing appropriate properties is supported by reading-behaviours of users.

When reading a book, typically, users first pay attention on the ToC to find contents and identify the corresponding pages. Hence, we consider two properties of ToC entries, title and page number, for combining submissions. Details of the set operators as well as the properties of ToC entries are introduced in the following sections.

The properties

It is not difficult to identify whether two page numbers are the same or not, but checking the matching of two entity titles is non-trivial because, in addition to possible OCR errors, the title of the same entry in the ToC page and the actual book content may slightly differ.

However, the competition organisers defined a strategy to deal with this and compare titles.

The modified Levenshtein edit distance D used in the competition on book structure extraction [START_REF] Doucet | ICDAR 2011 book structure extraction competition[END_REF] is applied to decide whether two strings A and B are similar or not. If the distance D (computed in Equation 3.1) between string A and B is lower than 20% and the distance between their first and last five characters (or less if the string is shorter) is lower than 60%, then two strings are similar.

The operators

In set theory, the intersection (AND) of set A and set B is the set which contains all elements of A that also belong to B. The mathematical formulation of set intersection is provided by Equation 4.1.

A ∩ B = {x : x ∈ A ∧ x ∈ B} (4.1)
As to the union (OR), the union of set A and set B is the set of all elements in two sets, which are in A, in B, or in both A and B. In other words, this set contains all elements of set A and some elements of set B which are different from set A. Equation 4.2 formulates the union operator as follows:

A ∪ B = {x : x ∈ A ∨ x ∈ B} (4.2)
For each bookid in the collection, we study 8 possible combinations, including AND pages, OR pages, AND titles, OR titles, AND pages AND titles, OR pages OR titles, OR pages AND titles, and OR titles AND pages. Each of them will be carefully discussed in the following two sub-sections, organising the combinations in two types, based on whether they use a single or double operators.

Before examining each combination in detail, let us take two simple example submissions shown in Figures 4. 

Single operator

In this type of combination, we only apply one set operator on one property. With the page number property, the intersection (AND pages) and the union of two submissions (OR pages) are exploited. The AND pages set only consists of ToC entries having the same pages of two submissions, while the OR pages set contains all ToC entries of the first submission and those of the second one whose pages are different from the first one.

Given our examples, the AND pages set contains two entities sharing the same page In our examples, the OR pages AND titles set is created by removing from the OR pages set the ToC entries of pages [START_REF] Khurshid | Analysis and retrieval of historical documents images[END_REF][START_REF] Koehn | Moses: Open source toolkit for statistical machine translation[END_REF][START_REF] Kukich | Spelling correction for the telecommunications network for the deaf[END_REF] since their titles are different from the ones in the AND titles set. Likewise, the OR titles AND pages set is generated by deleting from the OR titles set the ToC entries of pages [START_REF] Islam | Real-word spelling correction using Google Web IT 3-grams[END_REF][START_REF] Koehn | Moses: Open source toolkit for statistical machine translation[END_REF][START_REF] Kukich | Spelling correction for the telecommunications network for the deaf[END_REF] that are unlike those in the AND pages set. These combinations are illustrated in Figures 4.11 and 4.12.

Experimental Results

Evaluation

As mentioned in Section 3.2.1, in order to assess the quality of the results and compare our results to the methods proposed in the competition, the official and alternative metrics of the competition are used: a title-based measure [START_REF] Doucet | Setting up a competition framework for the evaluation of structure extraction from ocr-ed books[END_REF] and a link-based measure [START_REF] Déjean | Reflections on the inex structure extraction competition[END_REF]. After checking whether ToC entries match or not, three popular metrics including Precision, Recall, F-measure are used to get an overall evaluation.

Results

The global performances of our systems, computed on these three competition datasets, are presented in Tables 4 Our results show that the union operator applied to one property outperforms the sole state-of-the-art approach (MDCS) on both the title-based and the link-based evaluation measures. In terms of the link-based measure, the aggregation of two best competition approaches using OR pages always gets higher performance than the MDCS approach, with 4.0%, 9.9% and 6.6% improvements over the competition datasets from 2009, 2011, 

Conclusions

This chapter presents our aggregation approach using two set operators on two properties of ToC entries in order to combine the output of top-performing methods in book structure extraction. By combining the output of systems that are focused on the detection and analysis of ToC pages and systems that are focusing on inner book contents, it manages to perform statistically significant improvement over the state of the art in extraction of table of contents. Our experimental results indeed demonstrate that the union operator applied on ToC entries' properties performs better than the top-performing methods for both title-based and link-based evaluation.

We have now presented a way to ease information access by providing logical structure to enter and browse documents. The remainder of this dissertation will focus on the amelioration of the textual contents of documents.

CHAPTER 5

Comparison of OCR errors and human misspellings OCR errors share some common features with spelling errors, but, OCR errors have their own special characteristics as they are created by different processes than spelling errors.

Various characteristics of OCR errors on popular public datasets are analysed and compared with misspellings in order to design better post-OCR approaches. This chapter gives an overview of OCR process and the results of the analyses.

OCR process

Historical digital texts hold some special characteristics and differ from modern electronic text. Most of problems of OCRed texts involve in this conversion process, which consists of four standard steps: scanning, zoning, segmentation, and classification [START_REF] Taghva | OCRSpell: an interactive spelling correction system for OCR errors in text[END_REF].

• Scanning is the first step of digitisation process, which produces digital version of paper-based documents. The outcome of this step heavily depends on the degradation level of the original document, scanner, or a way of scanning.

• Zoning automatically orders the text regions in the documents. Zoning errors greatly affect the word order of the scanned material and produce an incoherent document.

55 Some of real-word errors of OCRed text are zoning errors. In fact, wrongly ordering one sentence might cause all correctly recognised words of that sentence to be realword errors. Zoning errors are very hard to be corrected by post-processing using NLP techniques.

• Segmentation breaks zones into words, and decomposes words into characters. Incorrect segmentation results in errors involving incorrect split and concatenation of words (e.g., 'sea' vs. 'se a', 'blue sea' vs. 'bluesea'), or those related to multiple substitutions (m characters are wrongly recognised as n characters, e.g 'main' vs.

'liiain', 'client' vs. 'dient').

• Classification process classifies characters into their corresponding ASCII characters.

OCR devices recognise characters primarily by their shapes. With some noises, it is easy to mis-recognise symbols of similar shapes. In other words, a correct character is replaced by an invalid character, e.g., 'core' vs. 'eore', 'in' vs. 'ln').

Analysed datasets

Four analysed datasets are public collections of historical documents obtained from four libraries. Two first datasets come from the first competition on post-OCR text correction [START_REF] Chiron | ICDAR2017 competition on post-OCR text correction[END_REF], including Monograph, Periodical. Their details are mentioned in Section 3.1.2.

Two others are Overproof evaluation datasets [START_REF] Evershed | Correcting noisy OCR: Context beats confusion[END_REF]. The first one (denoted as OverNLA) consists of 159 medium-length news articles with at least 85% correct lines, which are extracted from one of the longest-running titles in the National Library of Australia's

Trove newspaper archive -The Sydney Morning Herald, 1842-1954. Its corresponding GT was additionally corrected by Evershed et al. [START_REF] Evershed | Correcting noisy OCR: Context beats confusion[END_REF] after crowd sourcing corrections [START_REF] Hagon | Trove crowdsourcing behaviour[END_REF].

The second one (denoted as OverLC) contains 49 medium-length news articles randomly selected from 5 titles of the Library of Congress Chronicling America newspaper archive. The corresponding GT of OverNC was manually corrected by Evershed et al. [START_REF] Evershed | Correcting noisy OCR: Context beats confusion[END_REF].

Both of the Overproof datasets are noisier than the competition ones with totally 208 files. 

OCR errors vs. human misspellings

In the following sections, we present five main types of analyses conducted on all the datasets. Particularly, edit operation types and edit distance are considered. In addition, we concentrate not only on word lengths but also on OCRed token lengths. Moreover, positions of incorrect characters and real-word vs. non-word errors are analysed. Problems related to the wrong deletion/insertion of white spaces (word boundaries) are also examined.

Edit operations

In this section, we discuss edit operation types, standard/non-standard substitution mappings (denoted as standard/non-standard mappings), edit distance and string similarity based on LCS.

Edit operation types

In order to transform token A to token B, four basic edit operation types can be performed: deletion, insertion, substitution, and transposition [START_REF] Damerau | A technique for computer detection and correction of spelling errors[END_REF]. Prior works [START_REF] Kolak | A generative probabilistic OCR model for NLP applications[END_REF][START_REF] Mei | Statistical Learning for OCR Text Correction[END_REF][START_REF] Tong | A statistical approach to automatic OCR error correction in context[END_REF] indicated that transposition is common in misspellings but rarely occurs in OCR errors.

We then only consider the first three types. Among single edit operation types, the average percentage of substitution (51.6%) is much higher than that of two others. Furthermore, the total percentage of three single edit operation types is about 77.02%, thus higher than that of their combinations. It leads to the conclusion that post-OCR techniques can correct most of errors by just concentrating on a single modification type.

As to the combinations of edit operation types, deletion and insertion rarely occur together. In fact, the combinations of deletion and insertion have very small occurrence rate being 0.24% (del+ins) and 1% (del+ins+sub). Post-OCR approaches could then in our opinion pay less attention on the combinations in candidate generation.

Moreover, the average rate of OCR errors involving substitution, insertion, deletion is approximately 5:1:1, which is an useful information for some post-OCR approaches (e.g., [START_REF] Evershed | Correcting noisy OCR: Context beats confusion[END_REF][START_REF] Llobet | OCR post-processing using weighted finite-state transducers[END_REF][START_REF] Tuyet | Adaptive Edit-Distance and Regression Approach for Post-OCR Text Correction[END_REF]) to decide the number of substitution/insertion character candidates for each OCRed character position in candidate generation. If the rate is too small, no correct candidates can be suggested. Otherwise, many incorrect candidates are created negatively affecting the candidate ranking process.

Standard mapping

Secondly, we consider standard and non-standard mappings, which are results of wrongly zoning text regions. While misspellings often have standard mapping 1:1 (e.g., 'hear' vs. 'jear'), OCR errors contain not only standard mappings 1:1 but also nonstandard mappings, such as n:1 and 1:n (e.g., 'link' vs. 'hnk', 'link' vs. 'liiik').

The standard mapping 1:1 of our datasets is illustrated in Tables 5.2 and 5.3. In these tables, we compute the percentage of appearance frequency of each GT character being recognised as an OCRed character for each dataset. Let us call this percentage as mapping percentage. In order to make the tables compact, we only show OCRed characters whose mapping percentages are equal or more than 0.1%. Other cases whose mapping percentages are less than 0.1% are denoted as @. Because one GT character can be recognised as one or n OCRed characters, so other cases (@) include OCRed characters in 1:1 mappings and OCR errors can vary from OCR engines, layouts as well as degradation levels of documents, and etc. Therefore, some very frequent characters along with their highly possible misrecognition (e.g., 'e' vs. 'o', 'j' vs. 'i') may not occur in the large training part and only appear in the small testing part. In such cases, it is impossible to generate valid candidates for unseen error patterns of the testing part.

Non-standard mappings

Besides the standard mapping 1:1, OCR errors are also subject to more complex mappings [START_REF] Jones | Interating multiple knowledge sources in a bayesian ocr post-processor[END_REF][START_REF] Kukich | Spelling correction for the telecommunications network for the deaf[END_REF]. Different from past related work [1,[START_REF] Evershed | Correcting noisy OCR: Context beats confusion[END_REF][START_REF] Jones | Interating multiple knowledge sources in a bayesian ocr post-processor[END_REF][START_REF] Reynaert | Non-interactive OCR post-correction for giga-scale digitization projects[END_REF][START_REF] Martin | Character confusion versus focus word-based correction of spelling and OCR variants in corpora[END_REF][START_REF] Taghva | OCRSpell: an interactive spelling correction system for OCR errors in text[END_REF], our study provides The first point is 1:n mapping, in which one GT character is recognised as n OCRed characters (e.g., 'main' vs. 'rnain'). The mapping percentages of frequency of each GT character being recognised as n OCRed characters are calculated for each dataset in Tables 5.4 and 5.5. With the same compactness reason as in Tables 5.2 and 5.3, these tables only contain n OCRed characters whose mapping rates are equal or higher than 0.01%.

Tables 5.4 and 5.5 clarify 1:n mapping of @ in Tables 5.2 and 5.3.

For instance, the percentage of frequency of character 'b' in Periodical being recognised as 'li', 'ti', 'th', 'l.' are 0.19%, 0.02%, 0.02%, 0.02%, respectively. The 1:n mapping statistics indicate that there are some frequent patterns along with their average percents, such as {'b': {'li':0.05, 'h':0.03}; 'd': {'il':0.07, 'cl':0.03}; 'h': {'li':0.34, 'ii':0.06}}.

The second point is n:1 mapping, in which n GT characters are recognised as one OCRed character (e.g., 'main' vs. 'mam'). The frequency rates of n GT characters being recognised as one OCRed character are computed on four datasets showed in Tables 5.6

and 5.7. These tables only show GT character ngrams whose mapping percentages are not less than 0.01% and which appear at least 10% of maximum frequency of their ngrams.

Different from the above tables, in Tables 5.6 and 5.7, we group percentages according to OCRed characters because it is inefficient to show many GT character ngrams in the first column.

For example, in Monograph dataset, the percentage of appearance frequency of GT character bigram 'li' being recognised as 'b' is 0.03%. Based on the statistics of n:1 mappings, some common patterns with their average rates emerge, such as { 'b': {'si':0.05, 'li':0.04}; 'd': {'il':0.7, 'll':0.12}; 'h': {'li':0.16, 'ly':0.1}}.

Our observations on these mappings support a conclusion that some characters 'b', 'd', 'h', 'm', 'n' are easily recognised as 'li', {'il', 'cl'}, 'li', {'rn', 'in'}, {'ri', 'ii'}, respectively.

In opposite way, 'li', {'il', 'cl'}, 'li', {'rn', 'in'}, {'ri', 'ii'} can be recognised as 'b', 'd', 'h', 'm', 'n', respectively. These kinds of mappings also play important roles in generating and ranking candidates.

It should be noted that the statistics of these non-standard mappings are extracted from aligned OCR and their corresponding GT. Although we make a full use of OCRed text along with its corresponding GT, there are still some unavoidable noises in our statistics due to the lack of character recognition confidences from OCR engines. In case of edit distances, the survey on spelling errors [START_REF] Kukich | Techniques for automatically correcting words in text[END_REF] pointed out two main types:

Edit distances

single-error tokens (one edit distance) and multi-error tokens (higher edit distances). It is obvious that the smaller edit distance an error has, the easier the correction task is. [START_REF] Kukich | Techniques for automatically correcting words in text[END_REF]. In terms of multi-error tokens, most of them are of edit distance 2 (on average 22.57%). These statistics reveal that OCR post-processing approaches can mainly concentrate on edit distances 1 and 2 (with total 81.49% on average) at beginning steps. Relying on these statistics, the edit distance threshold can be set at 2 for removing many irrelevant candidates.

String similarity based on Longest Common Sequence (LCS)

LCS is another way to measure the similarity between two strings. Islam et al. where

M CLCS i can be M CLCS 1 , M CLCS n or M CLCS z .
The similarity of the two strings S is calculated as below:

S(w c , w e ) = α * N LCS(w c , w e ) + i∈{1,n,z} α i * N M CLCS i (w c , w e ) (5.3)
where α, α i are weights of NLCS and N M CLCS i .

We reuse the same weights suggested by Islam et al. [START_REF] Islam | Real-word spelling correction using Google Web IT 3-grams[END_REF] in our statistics. Figure 5.3 shows rates of errors on the four datasets with different threshold values of similarity S.

Our observation reveals that about 83.5% of all errors have the similarity S equal or greater than 0.125. Similar to edit distance, the threshold of LCS similarity can be used in removing many incorrect candidates for each error.

Length effects

As to length effects, we examine not only word lengths but also OCRed token lengths.

Furthermore, we suggest a novel classification by grouping errors according to word lengths and edit distances. In terms of word length, Kukich [START_REF] Kukich | Techniques for automatically correcting words in text[END_REF] found that more than 63% of the spelling errors are short-word errors. Percentages of correct/incorrect word recognition according to word lengths on our datasets are shown in Figure 5.4. According to our statistics, about 42.1%

Word length

of OCR errors are short-word errors, which is a lower value than that of misspellings with 63% on average. In addition, from the highest percentage at length 3, the percentage of incorrect word recognition decreases gradually according to the increase of GT token length. Furthermore, around 85.27% of all OCR errors occur in words of lengths from 2 to 9. In practice, post-OCR approaches have to deal with OCRed tokens instead of GT words, and lengths of OCRed tokens can differ from those of GT words, therefore we consider lengths of OCRed tokens. For example, in OCRed tokens 'scho ol' and their GT word 'school', two incorrect OCRed tokens are 'scho' of length 4, and 'ol' of length 2; these OCRed tokens come from GT word of length 6.

OCR token length

Similar to word length, the analysis of incorrect OCRed token lengths (see Figure 5.5)

suggests that incorrect OCRed tokens of length 3 are the most common one. In addition, about 80.55% of all invalid OCRed tokens are of lengths between 2 and 9.

Two-dimensional classification based on word lengths and edit distances

There are some arguments that it is more difficult to deal with short-word errors than with errors appearing in longer-length words. This is because short-word errors are more likely to yield another lexicon entry when applying character edit operations [START_REF] Thomas | Structural differences between common and rare words: Failure of equivalence assumptions for theories of word recognition[END_REF].

However, the problem does not only result from length but also from edit distance between an error and its GT word. For example, there are two errors (e.g., 'ict', 'lct') and their GT word (e.g., 'let'). The first error 'ict' requires 2 edit operations to be transformed into its GT word, which is more challenging than the second error 'lct' needing only 1 modification to be converted to its GT word. To give a clear view of such problem, we suggest a novel classification by grouping errors according to word lengths and edit distances. With run-on errors (e.g., 'blue sky' vs. 'blucsky'), we assume the sum of lengths of all words related to the errors as their word length. In our opinion, by adjusting edit distance threshold according to word length, post-OCR techniques can deal with higher rate of errors. Based on our observations, we suggest to set edit distance thresholds 2, 3, 4 for word lengths less than 4, 10, 13, respectively. On average, those settings increase the rate of errors that post-OCR techniques can process from 81.49% to 89.15%. The survey on misspellings [START_REF] Kukich | Techniques for automatically correcting words in text[END_REF] showed that there are a few errors at the 1st character. However, there is no research related to erroneous character positions in OCRed It is noticeable that on average 27.37% of all errors are last-position errors, which are even comparable with that of middle-position errors (28.69%). Moreover, our observations on four datasets indicate that erroneous characters rarely appear at the first/last position in the same error. In fact, statistics show that less than 10% of errors belong to (first + last) or (first + last + nth) combinations. Therefore, OCR post-processing can firstly focus on single positions or some combinations (first+nth, last+nth). In the next analysis we study the rate of real-word and non-word errors in OCRed text. Real-word errors are valid in dictionary but incorrect in context (e.g., 'hear' vs.

Erroneous character positions

Real-word vs. non-word errors

'bear'). The number of real-word errors vary naturally with the size of the lexicon [START_REF] James L Peterson | A note on undetected typing errors[END_REF].

Too small lexicon can ignore valid tokens as well as increase the number of false negatives.

In contrast, a too large dictionary can match invalid tokens to low-frequent lexical entries or special domain terms, potentially raising the number of false positives. In other words, the larger the lexicon is, the more real-word errors can occur.

On the other hand, non-word errors are invalid in dictionary (e.g., 'hear' vs. 'hcar').

It is obvious that non-word errors are easier to be detected and corrected than real-word errors. In addition, there are words which appear in GT but are not lexicon entries, known as out-of-vocabulary (OOV) words. Using the word frequency of COHA corpus, the rate of OOV words in our datasets is found to be about 1%.

The statistics of real-word errors and non-word errors in Figure 5.8 show that approximately 59.21% of OCR errors are real-word errors. The proportion of real-word errors in our four datasets is about 1.47 times higher than that of non-word ones. On the contrary, misspellings have an opposite trend with 67.5% non-word errors.

Our observations on the four datasets also indicate that approximately 13.77% of nonword errors involve digits, and 25.08% of real-word errors relate to punctuation. High percentage of punctuation errors is one notable feature of OCRed text. In fact, the low physical quality of old documents causes misrecognition of punctuation. Therefore, OCRed texts tend to contain more incorrect/redundant commas and dots than human-generated texts. 

Word boundary

Incorrect word boundary errors

In terms of incorrect word boundary errors, we study two popular sub-types: incorrect split/run-on error types. Incorrectly putting two or more words together creates a run-on error which is often not in the lexicon. In other words, most of run-on errors are nonword errors, and they are easy to be detected. Otherwise, correcting such errors is more complicated because it easily leads to a combinatorial explosion of the number of possible word combinations.

Wrongly splitting one word into some strings results in incorrect split errors. Both detecting and correcting such errors are challenging because some of split strings are not in the lexicon (non-word errors) and others are lexicon entries (real-word errors). It is notable that the percent of incorrect split errors is on average 2.36 times higher than that of run-on errors. In contrast, most of incorrect word boundary errors in misspellings are run-on errors with 6.5 times higher occurrence than incorrect split ones. In addition, incorrect split and run-on errors rarely appear to-gether in errors. The percentage of their combination (split + run-on) is only 6.8% on average, therefore, post-processing approaches can ignore it at first steps. 

Correct word boundary

Summary of main findings

We summarise in this section the key observations from our study. Firstly, we examine OCR errors and compare them with spelling errors in several aspects. Misspellings and OCR errors have similar trends in two cases. In particular, most of them are single-error errors (74.5% misspellings, 58.92% OCR errors), and few of them are first-position errors (11% misspellings, 12.46% OCR errors).

However, misspellings and OCR errors differ in three other aspects, including real-word vs. non-word errors, incorrect split vs. run-on errors, and short-word errors. We find that most of misspellings (67.5%) are non-word errors while most of OCR errors (59.21%) are real-word ones. Regarding the incorrect word boundary error type, the percentage of runon errors is 6.5 times higher than that of incorrect split ones in case of spelling errors.

In contrast, the proportion of incorrect split errors is on average 2.36 times greater than that of run-on errors in case of OCR errors. Moreover, while 63% of misspellings appear in short words, only 42.1% of OCR errors are short-word errors.

Secondly, besides similar aspects as in Kukich's survey, we present novel statistics (nonstandard mappings, string similarities based on LCS, OCRed token lengths, and erroneous character positions).

For non-standard mappings, our analysis reveals that some characters 'b', 'd', 'h', 'm', 'n' are easily recognised as 'li', {'il', 'cl'}, 'li', {'rn', 'in'}, {'ri', 'ii'}, respectively. In opposite way, some strings 'li', {'il', 'cl'}, 'li', {'rn', 'in'}, {'ri', 'ii'} can be recognised as 'b', 'd', 'h', 'm', 'n', respectively.

In case of string similarities based on LCS, around 83.5% of OCR errors achieve no less than 0.125 similarity S with their GT words.

As to OCRed token lengths, they show similar trend with word lengths. Particularly, incorrect OCRed tokens of length 3 are the most common, and most of erroneous OCRed tokens are of lengths from 2 to 9.

For erroneous character positions, around 27.37% errors are last-position errors, and they thus are comparable to middle-position errors (28.69%). In addition, we observe that errors rarely have erroneous characters at both the first and last position (in total 9.75% of first+last and first+last+nth).

Finally, based on the analysis on four datasets, we make some suggestions for designing post-processing approaches. Because last-position errors rarely appear together with first-position errors, post-OCR techniques can ignore their combinations (first+last, first+last+nth).

Our observations show that deletion, insertion and substitution occasionally appear together in the same word (around 22.98%); algorithms of candidate generation can then pay more attention on single modification types instead of their combinations. Moreover, the rate of the number of substitution/deletion/insertion character candidates for each character position of OCRed token can be set as 5:1:1 in generating candidates.

Edit distance is considered as an important criteria in selecting relevant candidates.

Interestingly, 81.49% of OCR errors are of edit distance 1 or 2, so with edit distance threshold 2, post-processing approaches could easily remove many irrelevant candidates.

Moreover, edit distance thresholds can be adjusted according to word lengths. With flexible settings of edit distance threshold, post-processing techniques would be able to handle about 89.15% of errors.

Conclusions

This chapter examines different aspects of OCR errors towards a better understanding of OCR errors and related challenges. Based on our observations on four datasets, we also reveal some guidelines for designing post-processing approaches. In addition, we propose a novel two-dimensional classifications, including grouping errors according to word lengths and edit distances, as well as grouping of real-word/non-word errors following word boundary types.

Our work can be viewed as an important, initial step to further analyses or towards more efficient and robust post-OCR techniques. The lessons learnt in this chapter are applied to our post-OCR processing approaches, described in details in the remainder of the manuscript.

CHAPTER 6

Post-OCR error detection

Several post-processing approaches detect and correct remaining errors to improve the quality of OCRed texts. This chapter focuses on the error detection approaches. Based on our observation in Section 2.2, there is no clear comparison between the performance of NMT models and that of classification models on post-OCR error detection. Therefore, both of them are exploited with some novel features to locate error positions. The first one explores different features from both character and word levels to classify errors (denoted as stat-detection-proposal ), while the second one applies neural network based language model to find errors (denoted as nn-detection-proposal ).

Statistical approach

This approach employs various features at both character and word levels in order to identify whether an OCRed token is correct or incorrect via binary classification. An OCRed token needs to prove to be a valid word via feature values computed from its plausible candidate set. This section gives details of this method and assesses its performance on the competition datasets. 79

System description

Since feature values of each OCRed token are computed relying on its candidate set, our approach has one more step -candidate generation before typical steps of statistical approaches. In the following section, we discuss each step in detail.

Candidate generation

In this section, we focus on generating possible candidates for each token position in OCRed documents. In order to produce candidates, we utilise information related to an OCRed token at character and word levels. We consider character level as important as word level, therefore the same number of top candidates (k = 5) are used for each level.

At character level, we implement the approach similar to the one described in Sec- For example, given the OCRed token 'the' in the phrase 'his friend comes from the north we.t', its three related trigrams include 'comes from the', 'from the north', 'the north we.t'. Regarding the left-trigram 'comes from the', we keep 'comes from' and select candidates for the OCRed token 'the'. Three trigrams with the highest frequency are 'comes from the', 'comes from a', 'comes from an'. Thus, top k alternatives {'the', 'a', 'an'} of the left-trigram are chosen for the token position.

Similarly, we get word candidates for the OCRed token position from the middletrigram and right-trigram, which are, {'the', 'up', 'a'} and the empty set, respectively.

Feature extraction

Several features are extracted at character and word levels. They can be divided into four groups: character ngram frequency, word ngram frequency, part-of-speech, and the frequency of the OCRed token in its candidate generation sets. It should be noted that due to shared characteristics between our datasets and the Corpus of Historical American English (COHA) [START_REF] Davies | The Corpus of Contemporary American English as the first reliable monitor corpus of English[END_REF], we use frequencies of ngrams and parts-of-speech (POS) of this largest corpus of historical English text. The CLAWS tagset is applied for all POS tags of this corpus.

Character ngram frequency

The index of peculiarity (or the peculiar index) of a token is recommended for detecting OCR errors [START_REF] Kukich | Techniques for automatically correcting words in text[END_REF], therefore we consider the peculiar index as a classifier feature. In our work, we reuse the formula of computing the peculiar index on frequency statistics of the historical corpus COHA.

The key idea of the peculiar index is that if strings contain non-existent or very infrequent ngrams (like 'jtg' or 'bkm'), they are detected as potential erroneous tokens.

The peculiar index (pe-index-orig) of a token is the root-mean-square of the indices of its trigrams, and is formulated as follows:

pe-index-orig(w) = x∈trilist index(x) 2 n (6.1)
where trilist is the list of trigrams of the OCRed token w, n is the size of trilist, and index(x) is the index of trigram x which is computed as follows:

index(x) = y∈bilist log(f req(y) -1) 2 -log(f req(x) -1) (6.2) 
where bilist is the list of bigrams of trigram x, f req(x) is the frequency of x.

For example, we reuse the OCR phrase 'his friend comes from the south we.t' with the OCRed token 'we.t' and its two trigrams {'we.', 'e.t'}, the peculiar index of this token is:

pe-index-orig('we.t') = index('we.') 2 + index('e.t') 2 2 (6.3)
index('we.') = log(f req('we') -1) + log(f req('e.') -

-log(f req('we.') -1)

Tokens with a higher index of peculiarity tend to be incorrect [START_REF] Morris | Computer detection of typographical errors[END_REF]. However, it is unfair to compare the index of the peculiarity of long tokens and that of short tokens.

Our analysis on the training part of our datasets suggests that long tokens tend to have a higher index of peculiarity. Therefore, we adapt the peculiar index to token length.

For each dataset, we group the indices according to the length of their corresponding tokens; for each group, the peculiar index is normalised by the highest peculiar index of that group. The adapted index of peculiarity (denoted as pe-index ) and the corresponding token length (denoted as tok-len) are used as classifier features.

By catching frequent character ngrams, the character-level features have potential to correctly recognise out-of-vocabulary (OOV) words, which are often considered as errors because they are not present in the dictionary.

Word ngram frequency

Some features related to word ngram frequency are studied, including word frequency, bigram frequencies, skip-gram frequencies, and split-word.

Word frequency : The frequency of the OCRed token w is normalised by the maximum frequency of its candidate set C, and is utilised as one feature value (denoted as word-freq).

word-freq(w) = f req(w)

max c i ∈C (f req(c i )) (6.5) 
For example, for the OCRed token w='comes', its candidates with corresponding frequencies {'comes': 300, 'cones': 100, 'comas': 200}, the feature score of w is as follows:

word-freq('comes') = 300 max(300, 100, 200) = 1 (6.6)

Bigram frequencies of the OCRed token and its neighbours: The bigram fre-quency of the OCRed token and its previous token is normalised by the maximum bigram frequency of the OCRed token's candidates and its previous token's candidates, and then is used as one feature (denoted as pre-bi-freq).

pre-bi-freq(w) = max i∈C -1 f req(i, w) max i∈C -1 ,j∈C f req(i, j) (

where C, C -1 are the candidate set of the OCRed token, and that of its previous token;

f req(i, w) is the frequency of word bigram (i, w).

For example, there are the OCRed token 'the' in the phrase 'from the north', the candidate set C -1 {'from', 'front'}, and the candidate set C {'the', 'he', 'she'}. The occurrence frequencies between 'from', 'front' and each candidate of set C are {100, 2, 1}, {105, 2, 3}. The feature score of the OCRed token 'the' is computed as follows:

pre-bi-freq('the') = max(100, 105) max(100, 105,

Similarly, the bigram frequency of the OCRed token and its next word is normalised by the maximum bigram frequency of the OCRed token's candidates and its next token's candidates, and is used as a feature (denoted as next-bi-freq).

next-bi-freq(w) = max j∈C +1 f req(w, j) max i∈C,j∈C +1 f req(i, j) (

where C, C +1 are the candidate set of the OCRed token, and that of its next token.

In addition, the product of the previous bigram frequency and the next bigram frequency (denoted as prod-bi-freq) is also considered as one feature. Totally, three features concerning word bigrams are used in classifying errors, including pre-bi-freq, next-bi-freq, and prod-bi-freq.

Skip-gram frequencies:

In order to reduce the data sparsity problem, skip-grams [START_REF] Reyes | A multidimensional approach for detecting irony in twitter[END_REF] are examined beside contiguous ngrams. Since COHA provides only 4-gram word frequencies, we focus on 2-skip-bigrams of an OCRed token and its neighbors.

Frequencies of 2-skip-bigrams of the OCRed token and three left/right words are calculated. The sum of these concurrent frequencies is normalised by the number of 2-skip-bigrams (i.e. six in our work) and frequency of the OCRed token, is then used as the skip-gram feature value. In particular, for an OCRed token w in the phrase w -3 w -2 w -1 w w +1 w +2 w +3 , the score of skip-gram feature (denoted as skip-grams) is calculated as follows:

skip-grams(w) = w i ∈L 1 f req(w i , w) + w j ∈L 2 f req(w, w j ) 6 * f req(w) (6.10)

where the list

L 1 is {w -3 , w -2 , w -1 }, the list L 2 is {w +1 , w +2 , w +3 }.
For example, for the OCRed token w = 'from' in the phrase 'his friend comes from the north we.t', the skip-gram feature is computed as follows:

skip-grams('from') = sumf req 6 * f req('from') sumf req = f req('his', 'from') + f req('friend', 'from') (

+ f req('comes', 'from') + f req('from', 'the')

+ f req('from', 'north') + f req('from', 'we.t')
Split-word feature: While run-on errors are easily found by lexical techniques, incorrect split errors are more challenging to identify. In order to deal with incorrect split errors (e.g., 'made' vs. 'ma lie'), we generate a split-word candidate list C s from the OCRed token w and its next token. For each candidate, we compute a score based on word frequency and bigram frequency, then use the highest score as a classifier feature (denoted as split-word ), as shown in Equation 6.12.

split-word(w) = max

c i ∈Cs (α * x(c i , w) + (1 -α) * y(c i , w)) (6.12) 
where w -1 is the previous word,

x(c i , w) is 1 if f req(c i ) > f req(w) else 0, y(c i , w) is 1 if f req(w -1 , c i ) > f req(w -1
, w) else 0, α is the contribution rate between word frequency and bigram frequency, which is selected by keeping all other parameters same and trying different values between 0 and 1 with a step of 0.1. Our experiments shows that α = 0.5

is the best level.

Consider, for example, the OCR phrase 'they main tain good relations', two adjacent OCRed tokens 'main', 'tain' and the previous token 'they'. The split-word candidate set C s of 'main tain' is {'maintain', 'maintan', 'niaintain'}. The OCRed token 'main' has the highest frequency in comparison to the candidates and only 'maintain' has higher bigram frequency than 'main', hence the feature score is as below:

split-word('main') = max(0.5, 0, 0) = 0.5 (6. left-POS(w) = max i∈L -2 ,j∈L -1 ,k∈L f req(i, j, k) max Lc i ∈Lc max i∈L -2 ,j∈L -1 ,k∈Lc i f req(i, j, k) (6.14) with

L c = {L c 1 , L c 2 , L c 3 }.
We Similarly, the normalised mid-POS, right-POS frequencies of OCRed token are computed. In total, there are four features scores extracted from POS, including left-POS, mid-POS, right-POS, and their product (denoted as prod-POS ).

The OCRed token frequency in its candidate generation sets

As mentioned in Section 6. The number of appearances of the OCRed token in its candidate sets is normalised by the number of candidate sets, then it is used as a feature (denoted as tok-freq).

While other features are built from individual words or word context, the tok-freq feature is designed from both of them. Therefore, we think that this combined feature can deal with non-word as well as real-word errors.

For example, the OCRed token w='the' in the phrase 'his friend comes from the north 

Error classification

If the OCRed token is an error, then its feature vector is labeled as 1, otherwise 0. Gradient Tree Boosting is one of the best performing classifiers [START_REF] Wainer | Comparison of 14 different families of classification algorithms on 115 binary datasets[END_REF], therefore we use it to train and classify OCR errors. In our experiments, we use the scikit-learn library [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF] with the maximum of 5 nodes in the tree, 800 boosting stages, and other default parameters.

Experimental results

As mentioned in Section 3.2.2, our results are evaluated by the same metrics (Precision, Recall, F-measure) and the official evaluation tool of the competition.

Results on the two competitions

We compare our proposed approach with the top six approaches of the first competition In case of non-word errors, our approach correctly detects the majority of non-word errors (96% of them on Monograph, 85% on Periodical, and 65% on Comp2019). Most of the unidentified non-word errors are erroneous tokens related to numbers.

It should be reminded that non-word errors are easier to detect than real-word errors.

Therefore, the rate of non-word and real-word errors of datasets heavily affects on detection performance. We believe that our method performs differently on three datasets partly due to this reason. In fact, the rate of Monograph is about 1.5 while that of Periodical and Comp2019 is around 0.5. Furthermore, real-word errors in Comp2019 are more difficult to handle. They are not only some single tokens but also a whole sentence which is a result of wrongly line recognition.

System description

BERT [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF] is a multi-layer bidirectional transformer encoder. It is pre-trained on unlabeled data over two different tasks, including Masked Language Model (MLM), and Next Sentence Prediction (NSP). In the MLM task, the authors [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF] obtain a bidirectional pre-trained model by randomly masking some percentages of the input tokens, and then predicting those masked tokens. The second task (NSP) enables the model to learn the relationship between two sentences.

BERT models can be modified to deal with NLP problems. Downstream tasks are firstly set with the pre-trained parameters, which are adjusted by their labelled data.

There are multiple task-specific BERT models [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF], some of them work at sentence level, others perform at token level. Error detection problem can be viewed as token classification which classifies OCRed tokens as either valid or invalid. We focus on fine-tuning BERT models at token level. Figure 6.2: Single sentence tagging tasks [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF].

We adapt the model of named entity recognition (NER) (as shown in Figure 6.2) to an error detection model. Particularly, instead of tagging tokens with NER taggers, we tag tokens with label 1 (invalid token) or 0 (valid token). Our approach is similar to the one of the winner of the 2019 competition, but we simplify the model with only one fully-connected layer on the top of the hidden-states output. In addition, it is proved that pre-trained word embedding models increase the performance of NLP tasks. Thus, instead of randomly initialising embeddings like the competition winner CCC does, we employ popular word embeddings (Fasttext, Glove) in our model. After that, these embeddings are combined with segment and position embeddings as inputs of BERT token classification model, which is a BERT model with an additional fully-connected layer. This design is simpler than the state of the art which uses both convolutional and fully-connected layers.

The outcome of this stage is labelled sub-tokens, with label 1 for invalid tokens and 0 for valid tokens. Finally, the original tokens are considered as invalid ones if at least one of their sub-tokens is labelled as invalid.

Take an OCR sequence 'we wyll go' with an error 'wyll' as an example to illustrate our approach. The input of the first step is a list of OCRed tokens tokenised by white-spaces, {'we', 'wyll', 'go'}. Applying WordPiece on each OCRed token, we have the corresponding sub-tokens and their mappings to their original tokens, {'we': 'we', 'wyll': {'w', '##yl', '##l'}, 'go': 'go'}. Next, the pre-trained word embeddings Glove or Fasttext embed the sub-tokens to be used as inputs for BERT token classification. The classifier labels each sub-token as either a valid or invalid word. The original token ('wyll') is identified as the error since its sub-tokens are classified as invalid ones ('w', '##yl', '##l').

In our experiments, we apply uncased BERT-base model with batch size as 32, learning rate of the optimizer Adam as 3e-5, maximum sequence length as 75. The model is trained with a higher number of epochs than recommended [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF] while the other hyperparameters remain unchanged.

Experimental results

Our approach is evaluated on English datasets of the competition on post-OCR text correction ICDAR2017 [START_REF] Chiron | ICDAR2017 competition on post-OCR text correction[END_REF], ICDAR2019 [START_REF] Rigaud | ICDAR 2019 Competition on Post-OCR Text Correction[END_REF] by its official evaluation metrics. Details of datasets and metrics are indicated in Section 3.

Tables 6.4 and 6.5 illustrate performances of our approach in detail. In overall, we outperform other approaches on Periodical (with 4% higher F-measure) and Comp2019

(with 1% higher F-measure) but not on Monograph.

These results are possibly explained by the rate of real-word and non-word errors in each dataset and the strengthen of our neural network approach. In fact, there are more real-word errors on two datasets (Periodical and Comp2019) than on Monograph. In addition, BERT is a contextual language model, so it is reasonable that the BERT-based model is possible to detect more real-word errors.

Percentage of correctly detected real-word errors support our assumption. Our approach is able to identify 64% of context-sensitive errors on Monograph, 63% on Periodical, 48% on Comp2019, which is much better than our stat-detection-proposal. This approach also attains higher results of correctly detected non-word errors with 95% on Periodical, 93% on Comp2019, but not on Monograph (82%). Similarly, the percentage of correctly CHAPTER 7

Post-OCR error correction

After we have presented approaches for error detection in Chapter 6, the remaining step is naturally to attempt to correct the identified errors. This chapter describes two error correction approaches: a statistical approach and an approach based on neural networks.

Statistical approach

Our statistical method makes use of confusion probability obtained from the noisy channel model of single or multiple edits, and context probability given by language model. These two features are essential ones as suggested by related work [START_REF] Kissos | OCR error correction using character correction and feature-based word classification[END_REF][START_REF] Mei | Statistical Learning for OCR Text Correction[END_REF], where they are used to predict the likelihood of each candidate to be the corrected version of an error using a regression model.

System description

Our regression approach is divided into three steps: candidate generation and weighting relying on an error model, candidate scoring using a language model and candidate ranking based on a regression model. Details of each step are discussed in the following subsections. there are some limitations in quality control of too many candidates generated by one run-on error. Therefore, this chapter only allows a punctuation and a digit be substituted by the space.

Candidate Weighting: Candidate are weighted relying on confusion matrices obtained from the training part of each dataset.

The conditional probability p(x|w) of the given source word w recognised by the OCR software as the string x (also named as confusion probability of source word and OCR string) can be estimated by the confusion probabilities of the characters in x assuming that character recognition in OCR is an independent process [START_REF] Tong | A statistical approach to automatic OCR error correction in context[END_REF].

Let x 1,i be the first i characters of OCR string x and let w 1,j be the first j characters of source string w. We define p(x 1,i |w 1,j ) to be the conditional probability that the substring w 1,j is recognised as x 1,i by the OCR process. p(x 1,i |w 1,j ) is calculated as below:

p(x 1,i |w 1,j ) = max              p(x 1,i |w 1,j-1 ) × p(del(w j )) p(x 1,i-1 |w 1,j ) × p(ins(x i )) p(x 1,i-1 |w 1,j-1 ) × p(sub(x i |w j )) (7.1) 
In typical formula, the probabilities of insertion, deletion are conditioned on the previous character [START_REF] Church | Probability scoring for spelling correction[END_REF], are computed as below:

p(del(w j )) = del[w j-1 w j ] count[w j-1 w j ] , if deletion (7.2)
where del[w j-1 w j ] is a number of times that the source characters w j-1 w j are recognised as w j-1 ; count[w j-1 w j ] is the appearance frequency of w j-1 w j .

p(ins(x

i )) = ins[w j-1 x i ] count[w j-1 ]
, if insertion (7.3) where ins[w j-1 x i ] is a number of times that w j-1 is recognised as w j-1 x i ; count[w j-1 ] is the appearance frequency of w j-1 .

The probability of substitution are calculated as follows:

p(sub(x i |w j )) = sub[x i , w j ] count[w j ]
, if substitution (7.4) where sub[x i , w j ] is a number of times that w j is recognised as x i .

Because erroneous OCRed characters frequently appear together, two or more error characters can be recognised as one different correct character, or one character can be recognised as different correct characters [START_REF] Jones | Interating multiple knowledge sources in a bayesian ocr post-processor[END_REF]. It means that the insertion, deletion can depend on the different previous character instead of the same previous one like Equations 7.2 and 7.3. For example, 'li' can be wrongly recognised as 'h', 'm' can be wrongly recognised as 'in', etc.

As a result, we propose to compute the probabilities of deletion and insertion by using the probability of substitution of many characters by one character or one character by many characters. The modified probabilities of deletion and insertion can be formulated as below:

p(del(w j )) = p(sub(x i-1 |w j-1 w j )) = sub[x i-1 , w j-1 w j ] count[w j-1 w j ] , if deletion (7.5) p(ins(x i )) = p(sub(x i-1 x i |w j-1 )) = sub[x i-1 x i , w j-1 ] count[w j-1 ] , if insertion (7.6)
For instance, the correction is 'and', and the error is 'ar.d'. In this case, the correct letter 'n' is recognised as the error characters 'r.'. It is similar to insertion error type except that it does not have the same previous character, so we cannot apply the typical formula of insertion (Equation 7.3) directly. Typical approach (denoted as typical-prob) In terms of SLM, the weight of each candidate is a sum of probabilities of three trigrams related to that candidate. For example, we have a phrase 'yield to thbse who are', and two candidates {'those', 'there'}, of the error 'thbse'. With the probability of ngram x as p(x), the SLM weight of each candidate (weight SLM ) is calculated as follows:

weight SLM ('those') = p('yield to those') + p('to those who') + p('those who are') (7.9)

weight SLM ('there') = p('yield to there') + p('to there who') + p('there who are') (7.10)

For constructing RNN-LM, we apply one of the most common type of RNN -Long Short Term Memory (LSTM) [START_REF] Hochreiter | Long short-term memory[END_REF]. The weight of each candidate is a sum of probabilities of predicting the next word related to that candidate. More specifically, LSTM needs a seed which is a context to predict a next word. The candidate can appear in the seed or be the next word.

To compare with trigram language model, we keep the total length of the seed and the next word to be three. For instance, we have the same phrase with SLM 'yield to thbse who are' with the same error candidate {'those', 'there'} of the error 'thbse', the weight of each candidate (denoted as weight LST M ) is computed as below: 

Feature extraction

Four important features used in our approach are selected and modified from a set of features of two related works [START_REF] Kissos | OCR error correction using character correction and feature-based word classification[END_REF][START_REF] Mei | Statistical Learning for OCR Text Correction[END_REF]. The first feature is 'Probability of 3-length sequences related to errors' is the modified version of context feature, suggested by both of the related works; in terms of [START_REF] Kissos | OCR error correction using character correction and feature-based word classification[END_REF], this feature is 'backward/forward bigram frequency'; in terms of [START_REF] Mei | Statistical Learning for OCR Text Correction[END_REF], this is 'exact/relax-context popularity'. The second feature is 'Probability of ngram candidate', which is the general version of 'unigram frequency' of two prior works.

Two last important features are features missing from each related work. As presented in Section 2.2.3, 'similarity feature' is an important feature used in error correction, which is ignored by [START_REF] Kissos | OCR error correction using character correction and feature-based word classification[END_REF]. Similarly, 'confusion probability' is successfully used in several postprocessing approaches, but is ignored by [START_REF] Mei | Statistical Learning for OCR Text Correction[END_REF]. As to other features, we cannot use them because of different reasons. In fact, due to lack of information from the dataset, 'word confidence' is ignored. We also remove the feature which is a part of other features, for example, 'lexicon existence', which is included in 'unigram frequency' feature. In addition, we refuse features that easily lead to bias such as 'term frequency in OCRed text'.

Let w c be a candidate, C be a set of all candidates, and w e be an OCR error. The details of each feature score are described in this section. 

Candidate ranking

A regression model is used for scoring candidates. For training and testing a regressor, if a candidate is a correction, its feature vector is labeled as 1. Otherwise, the feature vector is labeled as 0. Candidate with the highest confidence is suggested as the correction.

However, correcting run-on errors often produces irrelevant candidates which cause a big difference between corrected word and ground truth one. For example, post-processing tries to find the most suitable candidate from a dictionary for a run-on error 'whereloan', and suggests the top candidate such as 'helios' which is totally different from the GT 'where I can'. Therefore, the final filter based on the edit distance between error and its top candidate decides whether use the top candidate or keep the error.

Experimental results

In this section, we perform the comparative evaluation of our approach. As mentioned in Section 3.1.2, English datasets of the ICDAR Post-OCR text correction competitions [START_REF] Chiron | ICDAR2017 competition on post-OCR text correction[END_REF][START_REF] Rigaud | ICDAR 2019 Competition on Post-OCR Text Correction[END_REF] are used as benchmarks for the evaluation of our approaches.

Similarly, we use the percentage of improvement as the main evaluation metric. It is calculated based on the comparison of the original Levenshtein distance (between the OCR output and the GT) and the avgDistance distance (between the corrected output and the GT). The details of these metrics are described in Section 3. Firstly, let us consider the dataset Monograph. In terms of performance of step 1, as mentioned in Section 7.1.1, our approach of calculating the confusion probability con-sidered the common way in which erroneous characters appear, therefore our suggestion (modified-prob) strongly outperforms the typical approach (typical-prob) even with different techniques of step 2 (SLM or LSTM).

As to the performance of step 2, in erroneous OCR context, SLM has a comparative result to LSTM. However, if we consider the improvement percentage with one decimal value, SLM performs just slightly better (1.8% of relative increase of improvement in case of typical-prob and 2.4% in case of modified-prob on Monograph).

Regarding the performance of step 3, experimental results show that gradient boosting regression model [START_REF] Jerome H Friedman | Greedy function approximation: a gradient boosting machine[END_REF] on top of decision trees with the least square loss function outperforms other regression models.

Among 10 participants of the correction task in the Post-OCR text correction IC-DAR2017, only six teams can improve the distance with GT, and other teams almost deteriorate documents. These final results confirm the difficulty of post-processing step to deal with the noisy OCR output and the uncleaned GT.

Our best regression model (modified-prob.SLM ) obtains higher performance than 9

teams. It should be emphasised that our approach is better than the multi-modular approach of statistical machine translation approach and spelling checker (MMDT) and the neural machine translation approach applied on post-OCR problem (CLAM), with around 10% and 1% absolutely increase, respectively.

Although our result is still lower than the one of the best-performing participant (Char-SMT/NMT), it is unfair to compare our multi-modular approach with the ensemble one. While our solution uses only one best regression model to score candidates, Char-SMT/NMT trains several models of both statistical and neural machine translation, and combines the top candidates generated from such models.

If we recommend top 5 candidates for each error, the best improvement percentage of our best approach modified-prob.SLM is 41%. It should be clear that the best improvement percentage is calculated based on the original distance and the best corrected distance (the distance of the most relevant candidate among the top n candidates with the GT word).

In other words, in semi-automatic mode, our multi-modular approach can suggest correct candidates with the comparable performance with the ensemble approach of the winner.

Secondly, the dataset Periodical is taken into account. In our analyses of OCR errors (Chapter 5), we indicate that this dataset has higher percentage of real-word errors and more various mappings, which cause difficulties in generating and ranking candidates. Our post-processing approach obtains some improvements on Periodical, which only better than other statistical approaches (e.g., WFST-PostOCR, MMDT), but still much lower than the neural network based ones. These improvements confirm the mentioned-above conclusions, our modified-prob method outperforms the typical approach typical-prob and SLM is comparable to LSTM in erroneous context of OCRed text.

Lastly, concerning the dataset of the competition 2019, our correction approach does not get any improvements. It should be reminded that the second competition in 2019 is different from the one in 2017. Instead of being provided the list of error position, we have to use our list of errors. In our case, we apply the list obtained from our statistical detection approach (Section 6.1). In other words, the task is more difficult because correction results are dependent on not only correction techniques but also detection ones.

Furthermore, the dataset contains a high rate of real-word errors. More candidates should be generated at word level to handle real-word errors. In addition, among our three evaluation datasets, Comp2019 is the smallest and the one with the highest character error rate, and our regression model requires more data to predict relevant candidates.

Neural network based approach

As mentioned in Section 2.1, character-level machine translation is the current state of the art of error correction task. Regarding MT techniques, SMT consists of many small subcomponents that are tuned separately. In contrast, NMT aims at building a single neural network which maximises the translation performance. Its performance is comparable to the existing state-of-the-art phrase-based model [START_REF] Wu | Google's neural machine translation system: Bridging the gap between human and machine translation[END_REF]. Consequently, we decided to use NMT at character level to translate OCRed text into its corrected version in the same language.

System description

We utilise an open-source toolkit for neural machine translation (OpenNMT) [START_REF] Klein | OpenNMT: Open-Source Toolkit for Neural Machine Translation[END_REF] to build our models. This toolkit is easy to use with handy guidelines and performs comparably with the high-performing NMT framework Nematus [START_REF] Sennrich | Nematus: a Toolkit for Neural Machine Translation[END_REF].

For hyperparameter setting, we use most of the default values of OpenNMT, except for embedding, hidden layer size, sequence length. Input and output texts are of the same language, therefore we configure to share embeddings between the source and target side with embedding size of 160 (tested against 100). Hidden layer size is increased from 500 to 1000. We set the maximum sequence length to 70 (instead of the default one, 50) to cover longer sequences of training data.

It is the fact that most of OCRed tokens are correct. If the MT system is trained on a dataset with a large proportion of valid tokens, then it might not rectify errors. In order to reduce the negative impact of imbalanced data and deal with real-word errors, we consider erroneous OCRed tokens and some nearby tokens (which can be correct or incorrect) as input; the corresponding GT texts are provided as output of NMT models.

Particularly, given one error and its four neighbors, we generate four word 5-grams which are represented at character level and used as input sequences. By doing this, we augment data for training NMT models. In the data representation, space and '#' are viewed as character delimiters and word boundary markers, respectively. If an error is a run-on one, '$' is used as word delimiter within its target text.

It should be noted that we do not consider an input sequence with all four words on the left side of the error and no word on its right side. The reason is that we expect to tackle incorrect split errors, such as 'main tain' vs. GT word 'maintain'.

For example, given an error 'andjust' in OCR phrase 'twenty in number andjust then published in a', and its corresponding GT 'twenty in number and just then published in a', four input sequences of the error and their output ones are shown in Table 7.2.

Furthermore, Sennrich et al. concluded that linguistic features (e.g., POS tags, morphological features, etc.) yield high performance of NMT systems. However, these features are specifically designed for words rather than characters. Instead of using such linguistic features, Amrhein et al. [START_REF] Amrhein | Supervised OCR Error Detection and Correction Using Statistical and Neural Machine Translation Methods[END_REF] applied two other features in their character-level NMT mod- MT techniques apply pre-trained word embeddings to improve translation performance.

Several word embeddings are available and free to access while it is not easy to find a character embedding. McCann et al. [START_REF] Mccann | Learned in translation: Contextualized word vectors[END_REF] reported that a pre-trained encoder of a MT model increases the performance of other NLP tasks. Their contextualised word vectors are known as Context Vectors (CoVe). Broadening this idea, we extract embeddings from character-level NMT model trained with an aligned data. As mentioned in Section 5.3, more than 80% of OCR errors have an edit distance less than 3. We can apply this feature to remove some irrelevant candidates. Specifically, after getting candidates for each error from MT models, we only select candidates which have edit distance with the error lower than 3. Furthermore, the analyses also indicate that percentage of deletion and insertion errors are much lower than that of substitution errors.

While it is expensive to compute edit distance between two sequences, the length difference between candidate length and OCRed token length is simple and fast to calculate. We find that by setting the length difference threshold to 4, we obtain a performance comparable to using edit distance. The last version of our approach (denoted as Version 3) is the same as Version 2 with the addition of the length difference filter.

Experimental results

Our approach is evaluated on English datasets of the first two competitions with their evaluation metrics. Details of evaluation datasets as well as metrics are described in Sections 3.1.2 and 3.2.2. In the first competition, the organisers provided the predefined list of error positions. In contrast, the correction task of the second one is more challenging as we need not only to identify error positions but also to rectify such detected errors. In this case, we use the list of errors detected by our neural network based detection approach (Section 6.2).

Performances of our approach on the competition datasets in ICDAR2017, and IC-DAR2019 are shown in Tables 7.4 and 7.5, respectively. In general, the third version of our approach outperforms some of our counterparts as well as our statistical approaches. As to the first competition in ICDAR2017, our single model performs better than most of participants, except for the state-of-the-art approach (Char-SMT/NMT) which combines five different models of statistical MT and neural MT. The authors of the method [START_REF] Amrhein | Supervised OCR Error Detection and Correction Using Statistical and Neural Machine Translation Methods[END_REF] said that their combining system is complicated and hard to apply to new datasets. They suggested the most promising single system which works across all data sets. However, its performance is significantly lower than the ensemble model with 18% and 21% improvement [START_REF] Amrhein | Supervised OCR Error Detection and Correction Using Statistical and Neural Machine Translation Methods[END_REF].

In opposite to the complex model of the winner, our model is easy to implement with the help of the open source OpenNMT. Moreover, it should be emphasised that our improvement is much higher than the neural translation based approach (CLAM) or multi-modular statistical based approach (MMDT) [START_REF] Schulz | Multi-modular domain-tailored OCR post-correction[END_REF]. Consequently, we think that our model can be considered as one of the possible solutions to reduce OCR errors. Regarding the second competition in ICDAR2019, without the provided error list, we have to use our list of errors obtained from our neural network based error detector (Section 6.2) in order to generate corresponding input and output sequences. Our best model still underperforms than some other methods, including RAE2, RAE1 and CCC.

In our opinion, the reason is that our models are built on the limited resources of the 2019 competition which is small and contains several real-word errors involving wrong line recognition. The RAE1, RAE2 competitors and the CCC team benefit from using external materials like the Google Books Ngram Corpus. Nonetheless, there is no clear conclusion between the performance of our best model and that of RAE1&2 (called WFST-PostOCR)

as the former performed better in the first competition.

Conclusions

In this chapter, we explored two ways of correcting OCR errors. The first one employs regression model to score candidates based on features extracted from the modified method of computing confusion probability and different types of language model. Our experiments show that SLM is comparable with LSTM in terms of 3-length sequence in erroneous OCR contexts. Our best model is comparative with those of participants of the competition in ICDAR2017, even with the neural network based model. However, there is a substantial decrease when dealing with datasets with several real-word errors.

Our second approach applies NMT techniques on contextual input data and some additional features (e.g., our character embedding, candidate filter) is promising to reduce OCR errors. Experimental results show that our best model outperforms several approaches of the teams of the competition in ICDAR2017. Nonetheless, if real-word errors caused by wrong line recognition like those in the competition dataset Comp2019 are taken into consideration, the performance of our approach is limited. Future work will focus on employing additional external resources to improve our results.

CHAPTER 8

Conclusions and future work

Previous chapters described different approaches to support accessing and exploring digitised output. Logical book structures are re-established for easy navigation. The quality of OCRed text is improved by detecting and correcting erroneous tokens. This chapter provides some conclusions as well as discusses future work.

Conclusions

Some limitations of OCR techniques lead to difficulties in exploiting digitised collections.

One of them is that they typically produce textual digitised books only with physical structure information like paragraphs, pages, etc. It is not easy to navigate inside books or search information page by page, and this structure does not reflect well the semantic organisation of documents. Another problem is that the accuracy of modern OCR engines is reduced while converting old documents. Erroneous OCR output considerably impacts the way digital documents are indexed, accessed and explored. This thesis addresses these above problems by providing users with tables of contents for digitised documents and improving the quality of OCRed text.

115 Firstly, we introduce an aggregation method to enhance ToC extraction using system submissions from the first three competitions on book structure extraction. Our experimental results show that the union of two best approaches outperforms the existing approaches using both the title-based and link-based evaluation measures on the dataset of more than 2000 books. By efficiently combining the results of existing systems in an unsupervised way, we consistently outperform the state-of-the-art in book structure extraction, with statistically significant performance improvements. Our ensemble approach can work effectively providing that the outputs of relevant structure extraction are available.

Secondly, post-processing approaches are applied to improve the quality of OCRed texts. Although OCR errors share some common features with spelling errors, OCR errors have their own special characteristics. Thus, we examine different aspects of OCR errors towards a better understanding of OCR errors and related challenges. Based on our observations on four datasets we suggest some guidelines for designing post-processing approaches and apply them into our proposals.

Two high-efficient approaches are proposed on error detection task: i) error-and language-based model; ii) BERT based model. The first detection approach called statdetection-proposal identifies erroneous tokens using feature values computed from its plausible candidate set. Experimental results show that several non-word errors can be detected and two novel features (pe-index, tok-freq) are useful in classifying errors. However, the method has some limitations in detecting real-word errors. In addition, it requires to generate the plausible candidate set for each OCRed token, nonetheless, it should be noted that the set can be reused in the correction part.

The second detection approach named nn-detection-proposal classifies errors based on fine-tuning BERT models with pre-trained word embeddings. Thanks to the contextual language model BERT, this proposal is able to handle real-word errors and it is unnecessary to generate candidates for each token. Nevertheless, it is dependent on the pre-trained BERT model which needs to be trained for several hours on large datasets.

Similar to the detection part, we present two ways of correcting OCR errors. The first correction approach is to predict the relevant candidates by using regression model. It is worth noting that features extracted from the modified method of computing confusion probability and different types of language model are employed as the criterion to score the candidates. Our best model is comparative with participants of the competition in ICDAR2017. Nonetheless, there is a substantial drop in detecting errors on datasets with several real-word errors.

Our second correction proposal applies neural machine translation techniques. By considering more context, and utilising advance features of NMT, this method can rectify not only non-word but also real-word errors. Numerical results show that our best model outperforms some approaches, including other NMT based ones. However, real-word errors which are caused by wrong line recognition like those in the competition dataset Comp2019 are still problematic.

Future work

This thesis reports some supportive approaches to browse inside books and to increase the usability of digitised books. The advantages and disadvantages of each method are clarified in each chapter. Our future work will focus on eliminating such disadvantages from our next approaches.

Regarding book structure extraction problem, as more than 80% of books has physical ToC pages, it is obvious that more attention should be payed for this kind of books. Besides methods of the ToC-recognition-based type, approaches of the book-content-based kind can be applied on books with ToC as well. It is apparent that this is a double verification on extracting ToC on books with ToC, which enables to improve performance of book structure extraction.

As to error detection task, the stat-detection-proposal shows some benefits in detecting errors but it is time-consuming to generate the list of candidates. Further work can focus on speeding up the current algorithm of candidate generation. The nn-detection-proposal outperforms other approaches, but it depends on BERT models. Hence, it is interesting to design more complex models on the top of BERT models or a new neural network model which takes into account specific features of OCR errors.

Concerning error correction task, real-word errors are always a big problem especially with the stat-correction-proposal. The heart of the statistical approach is, of course, the candidate generation. Besides candidates at character level, it is reasonable to consider candidates at word level as well. More contextual features should be taken into account to deal with real-word errors.

Applying machine translation techniques to post-OCR processing is the state-of-theart approaches. We will integrate the post-filter into the NMT model. Our nn-correctionproposal can be upgraded with some modifications based on characteristics of OCR errors.

Experimental results show that our neural network based approach is comparable to other approaches, but, it has some limitations in dealing with real-word errors like wrong line recognition errors. Thus, one feasible way is to provide more contextual information to our models, such as fine-tuned BERT models or Google Books Ngrams. Besides machine translation techniques, applying sequence-to-sequence approaches or sequence generation techniques like Sequence Generative Adversarial Nets with Policy Gradient (SeqGAN) [START_REF] Yu | Seqgan: sequence generative adversarial nets with policy gradient[END_REF] is also a promising solution.

In our next step, ensemble approaches will be considered to take advantages from various detection and correction methods. Our post-OCR methods can be expanded to benefit from not only natural language processing resources but also information of OCR software. Furthermore, multi-modal learning model might be exploited to incorporate text generation and post-processing.

The post-processing approaches could be further adapted to solve other problems of string-string transformation, for example, spelling normalisation that converts historical spellings into corresponding modern word forms, post-processing on textual outputs of Automatic Speech Recognition which enables the recognition and translation of spoken language into text by computers, or on transcriptions of handwritten documents.
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Figure 1 . 3 :

 13 Figure 1.3: The oldest known document printed in Australia, a theatre playbill 1796 [46].

Figure 1 . 4 :

 14 Figure 1.4: OCRed text of the theatre playbill in Figure 1.3.

  models. All of datasets are open access, and come from two competitions of the International Conference on Document Analysis and Recognition on book structure extraction and on post-OCR text correction. Similarly, evaluation metrics are official ones of these two competitions.

Figures 2 .

 2 Figures 2.1, 2.2 and 2.3 illustrate some different ToC types such as hierarchical ToC, ToC with multiple-line entries or ToC in double-column layout.

Figure 2 . 1 :

 21 Figure 2.1: Hierarchical ToC from 'History of ethics within organized Christianity', Thomas Cuming Hall, 1910.

Figure 2 . 2 :

 22 Figure 2.2: Multiple-line ToC entries from 'A key to the birds of Australia : with their geographical distribution', Robert W. Hall, 1906.

Figure 2 . 3 :

 23 Figure 2.3: ToC in double-column layout, from 'The works of William Cowper : his life, letters, and poems', William Cowper, Thomas Shuttleworth Grimshawe, John William Cunningham, 1857.

Figure 2 . 4 :

 24 Figure 2.4: An example of reCAPTCHA [100].

Figure 2 . 5 :

 25 Figure 2.5: User interface of the Trove system [37].

Figure 2 . 6 :

 26 Figure 2.6: A book page in Kokos [12].

Figure 2 . 7 :

 27 Figure 2.7: An example of Digitalkoot [10].

[

  f i l e . . . " [ . . . ] > <PARAM name="PAGE" v a l u e = " [ . . . ] " > [ . . . ] <REGION> <PARAGRAPH > <LINE> <WORD c o o r d s = " [ . . . ] " > Moby </WORD > <WORD c o o r d s = " [ . . . ] " > Dick </WORD > <WORD c o o r d s = " [ . . . ] " > Herman </WORD > <WORD c o o r d s = " [ . . . ] " > M e l v i l l e </WORD > corresponds to a page in a digitised book. A physical page number is given as the attribute @value of the <PARAM> element. Inside a page, each paragraph is marked up. Each paragraph element includes line elements, in which each word is showed separately. Coordinates of a rectangle surrounding a word are given as attributes of word elements.

Figure 3 . 1 :

 31 Figure 3.1: A sample of training data in the 2017 competition dataset [8].

  of books each identified by bookid, with for each book a set of ToC entries defined by page number and title. An example of a ToC page and the corresponding submission are shown in Figures 4.1, and 4.2, respectively.

Figure 4 . 1 :

 41 Figure 4.1: ToC with single-line entries.

Figure 4 . 2 :

 42 Figure 4.2: Submission example of ToC in Figure 4.1.

  [START_REF] Amrhein | Supervised OCR Error Detection and Correction Using Statistical and Neural Machine Translation Methods[END_REF] 

  and 4.4 to illustrate these combinations. Assuming that submission 1 is of participant ID1 and submission 2 is of participant ID2, for the book

Figure 4 . 3 :

 43 Figure 4.3: Example submission of participant ID 1 .

Figure 4 . 4 :

 44 Figure 4.4: Example submission of participant ID 2 .
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 45 Figure 4.5: AND pages set.

Figure 4 . 6 :

 46 Figure 4.6: OR pages set.

Figure 4 . 7 :

 47 Figure 4.7: AND titles set.

Figure 4 . 8 :

 48 Figure 4.8: OR titles set.

Figure 4 . 9 :

 49 Figure 4.9: AND pages AND titles set.

Figure 4 . 10 :

 410 Figure 4.10: OR pages OR titles set.

Figure 4 . 11 :

 411 Figure 4.11: OR pages AND titles set.

Figure 4 . 12 :

 412 Figure 4.12: OR titles AND pages set.

Figure 5 .

 5 Figure 5.1 shows the percentages of single modification error types (deletion, insertion and substitution denoted as del, ins and sub, respectively) and ones of their possible combinations (del+ins, del+sub, ins+sub, del+ins+sub) in all the four datasets.

Figure 5 . 1 :

 51 Figure 5.1: Error rates based on edit operation types.

Figure 5 . 2 :

 52 Figure 5.2: Error rates based on edit distances.

  [START_REF] Islam | Real-word spelling correction using Google Web IT 3-grams[END_REF] proposed two variations of LCS, including Normalised Longest Common Subsequence (NLCS) and Normalised Maximal Consecutive Longest Common Subsequence (NMCLCS). NLCS considers lengths of two related strings w c and w e , as follows: N LCS(w c , w e ) = length(LCS(w c , w e )) 2 length(w c ) * length(w e ) (5.1)

Figure 5 . 3 :

 53 Figure 5.3: Error rates based on the LCS similarity S.

Figure 5 . 4 :

 54 Figure 5.4: Rates of correct and incorrect word recognition based on word lengths.

Figure 5 . 5 :

 55 Figure 5.5: Error rates based on OCRed token lengths.

Figure 5 . 6 :

 56 Figure 5.6: Error rates based on word lengths and edit distances.

Figure 5 . 7 :

 57 Figure 5.7: Error rates of erroneous character positions.

  text. Hence, we examine OCR errors at different character positions, including the first/last/middle position (denoted as first, last, nth, respectively), and their possible combinations (denoted as first+last, first+nth, last+nth, first+last+nth respectively). In case of run-on errors, because this error type incorrectly removes white space at the end of the first word, we decide that this error type always has one last-position error.Details of erroneous character positions of our datasets are shown inFigure 5.7. While 12.46% of OCR errors are first-position errors, spelling errors have slightly smaller percent of such errors with average 11% of all errors.
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 58 Figure 5.8: Rates of real-word vs. non-word errors.

Figure 5 . 9 :

 59 Figure 5.9: Rates of correct vs. incorrect word boundary errors.

Figure 5 . 10 :

 510 Figure 5.10: Error rates of incorrect word boundary subtypes.

Figure 5 . 11 :

 511 Figure 5.11: Error rates of correct word boundary subtypes.

  tion 7.1.1 to suggest candidates for each OCRed token. Candidates are generated from a character candidate graph and are ranked by the probabilistic character error model. For example, an OCRed token 'comes' can have its candidate set {'comes', 'cones', 'comas'}. At word level, we make a use of local context to produce candidates. Word trigrams related to an OCRed token are considered. Let us assume the phrase w -2 w -1 w w +1 w +2 . The three trigrams involving the OCRed token w are w -2 w -1 w (denoted as left-trigram), w -1 w w +1 (denoted as middle-trigram), and w w +1 w +2 (denoted as right-trigram). In case of the left-trigram, we keep w -2 , w -1 and select candidate w 0 for replacing the OCRed token w. Then, we choose top k candidates based on the trigram frequency w -2 , w -1 , w 0 . Similarly with the middle-trigram and right-trigram, top k possible candidates are chosen for the OCRed token position.

13 )

 13 Part-Of-Speech (POS) features POS is considered as the general form of ngram feature. Our work utilise POS tag in length 3 as a classifier feature. Let us assume that there are the OCRed token w in the phrase w -2 w -1 w w +1 w +2 , and its candidate set C {c 1 , c 2 , c 3 }. The tri-POSs related to the OCRed token w are pos -2 pos -1 pos, pos -1 pos pos +1 , and pos pos +1 pos +2 denoted as the left-POS /mid-POS /right-POS, respectively. We first get a list of POS tags of each token w -2 , w -1 , w, w +1 , w +2 from COHA corpus, denoted as L -2 , L -1 , L, L +1 , L +2 , respectively. OCRed token's candidates c 1 , c 2 , c 3 also have the POS lists L c 1 , L c 2 , L c 3 , respectively. As to the left-POS, all possible tri-POSs of the OCRed token and its candidates are created by combining POS tags of L -2 , L -1 and each POS list of {L, L c 1 , L c 2 , L c 3 }. The maximum frequency of the left-POS of OCRed token is computed, then normalised by the maximum frequency of tri-POSs created from L -2 , L -1 and each POS list of {L c 1 , L c 2 , L c 3 }. The normalised left-POS frequency of OCRed token is used as one feature.

1 . 1 ,

 11 there are four sources to generate error candidates: character error model, local word context (left-trigram, middle-trigram, and right-trigram).

  we.t' has the noisy channel candidate set {'the', 'she', 'he'}. The local context candidate sets include the left-trigram set {'the', 'a', 'an'}, the middle-trigram set {'the', 'up', 'a'}, and the empty right-trigram set. As a result, the feature score is that: tok-freq('the')

Figure 6 . 3 :

 63 Figure 6.3: Error detection based on BERT model.

Figure 6 .

 6 Figure 6.3 illustrates steps of our approach. OCR input is first split into OCRed tokens based on white-space. Next, we apply WordPiece[START_REF] Wu | Google's neural machine translation system: Bridging the gap between human and machine translation[END_REF] tokenisation on each token to get corresponding sub-tokens. A mapping between the original OCRed token and its subtokens is also maintained. Then, Glove or Fasttext is used to embed sub-tokens in lieu of assigning random numbers as initial embeddings.

Figure 7 . 1 :

 71 Figure 7.1: Example of character candidate graph.

weight

  LST M ('those') = p(seed = 'yield to', next-word = 'those') + p(seed = 'to those', next-word = 'who') + p(seed = 'those who', next-word = 'are')(7.11) where p(seed = x, next-word = y) is the probability of predicting next word y given the previous word x.weight LST M ('there') = p(seed = 'yield to', next-word = 'there')+ p(seed = 'to there', next-word = 'who')+ p(seed = 'there who', next-word = 'are') (7.12)Candidate Ranking based on a Regression Model (Step 3)After generating candidates and weighting them at character level and word level in two previous steps, this step reuses these features and some complementary features to predict the confidence of each candidate becoming a correction by a regression model. Then such confidence is used for candidate ranking. This step consists of two parts: feature extraction and candidate ranking.

  i n # n u m b e r # a n d j u s t # t h e n # p u b l i s h e d n u m b e r # a n d j u s t # t h e n # p u b l i s h e d # i n a n d j u s t # t h e n # p u b l i s h e d # i n # a GT text (target side) t w e n t y # i n # n u m b e r # a n d $ j u s t # t h e n i n # n u m b e r # a n d $ j u s t # t h e n # p u b l i s h e d n u m b e r # a n d $ j u s t # t h e n # p u b l i s h e d # i n a n d $ j u s t # t h e n # p u b l i s h e d # i n # a els, including the text types and the written time span. Nevertheless, both of the features are missing from Comp2019 dataset. We think that OCRed texts of Comp2019 dataset might share some common characteristics, thus, our work considers the source of this dataset as its type. In total, there are three text types in the competition datasets (monograph and periodical from Comp2017, and Comp2019), which are exploited as additional input feature (or factor) for MT model. In OpenNMT, factors can be described in the input format with the symbol '|' as the beginning of a factor. By applying factored NMT, we have more training data. Moreover, instead of training different models for each dataset, we only need to train a single model to test on our three datasets. An example of an input sequence of Monograph dataset with factored representation is shown in Table 7.3. Factored NMT model is the first version of our approach (denoted as Version 1).

Table 7 . 3 :

 73 Example of an input sequence of Monograph dataset along with the feature document source M (Monograph). OCRed text (source side) n|M u|M m|M b|M e|M r|M #|M a|M n|M d|M j|M u|M s|M t|M #|M t|M h|M e|M n|M GT text (target side) n u m b e r # a n d $ j u s t # t h e nParticularly, we align OCRed text with its corresponding GT text, then we generate input sequences from each aligned error with its contextual tokens. New character embeddings are extracted from models trained with the aligned data and shared embeddings between source and target side. It is expected that the embeddings (called as aligned embeddings) are able to put characters closer together in the vector space provided that they have similar contexts and/or shapes. The second version of our approach (called as Version 2) is similar to the first one but uses aligned embeddings.
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Table 2 .

 2 1: Detail performance scores over the ICDAR 2009 competition dataset on titlebased and link-based measures 1 .

			F-measure	
	Method	Books with ToC	Books without ToC
	Title-based Link-based Title-based Link-based
	Greyc [32]	0.07	1.5	0.13	0.5
	Noopsis [23]	10	47.7	0.87	2.8
	XRCE [17, 18]	33.17	72.4	7.81	22.6
	MDCS [26]	50.84	78.8	0.13	7.4
	Table 2.2: Detail performance scores over the ICDAR 2011 competition dataset on title-
	based and link-based measures.			
			F-measure	
	Method	Books with ToC	Books without ToC
	Title-based Link-based Title-based Link-based
	Greyc [32]	9.47	52.5	6.9	42.5
	XRCE [17, 18]	19.02	58.4	26.32	53.8
	Nankai [59]	38.85	71.6	7.93	26.9
	MDCS [26]	48.96	78.2	5.12	8.6
	approach achieves the highest performance on the 187 books without ToC pages of the
	competition datasets in ICDAR 2009 and ICDAR 2011. The Greyc approach is the best on
	the 167 books without ToC pages of the ICDAR 2013 competition dataset. Tables 2.1, 2.2
	and 2.3 illustrate the performance scores observed over the three competition datasets.
	As a consequence, we propose a novel ensemble approach which builds on previous
	works. The notable difference between our proposal and past methods is that we combine
	both types of techniques: those based on ToC pages and those based on book content. In
	other words, we benefit from both of them to construct a hyperlinked ToC. Our approach
	is implemented relying on two set operators (the union and the intersection) applied on
	two properties of ToC entries (title and page number). The full details on this contribution
	are provided in Chapter 4.				

Table 3 .

 3 1: Datasets of the three ICDAR competitions on book structure extraction.

	Dataset	Total	# Books	# Books	Participants
		books	with ToC	without ToC	
	ICDAR 2009 527	436	91	MDCS, XRCE, Noopsis, Greyc
	ICDAR 2011 513	417	96	MDCS, Nankai, XRCE, Greyc
	ICDAR 2013 967	800	167	MDCS, Nankai, Innsbruck,
					Wurzburg, Epita, Greyc

Table 3 . 2

 32 There are 813 files written in English in the dataset of the first competition. All these files are published either in periodicals or monographs, and the competition organisers divide them into two datasets: Monograph and Periodical. The dataset of the second one contains 200 files in English, which are stemming from IMPACT project. Details of our evaluation datasets are shown in Table 3.2.

	Dataset	Source	Type	Dates	CER(%) # Files # Chars
	Monograph	BL Monog monographs 1858 -1891	1	667	1.2M
		GT BnF Eng monographs 1802 -1911	2		3M
	Periodical BL Euro NP periodicals 1744 -1894	4	59	1.8M
	Comp2019	IMPACT	-	-	21.28	200	0.24M

: Description of the datasets used for post-OCR processing evaluation; CER denotes character error rate

6 

, # Files denotes a number of files, # Chars denotes a number of characters; '-' denotes no information.

  .1, 4.2, and 4.3. It should be noted that we combine ToC entries from each pair of any available submissions. These tables only report the best result of each combination for the compactness reason. Each table is horizontally split into 3 blocks of information. The first block evaluates the two best approaches (denoted as Best appr.) from the competition. The two next blocks correspond to the results obtained with the single operators (denoted as Single) and the double ones (denoted as Double) presented in Sections 4.1.2 and 4.1.2.

Table 4 .

 4 1: Performance scores over the ICDAR 2009 competition dataset.

			Method	Precision	Recall	F-measure
				Title-	Link-	Title-	Link-	Title-	Link-
				based	based	based	based	based	based
	Best	appr.	Books with ToC pages (MDCS) Books without ToC pages (XRCE)	41.33 30.28	65.90 69.20	42.83 28.36	70.30 64.80	41.51 28.47	66.40 63.80
			AND pages (MDCS-XRCE)	42.94	66.80	34.68	52.60	36.90	56.20
	Single	AND titles (MDCS-XRCE) OR pages (MDCS-XRCE)	38.51 41.01	54.20 70.20	24.38 44.63	33.70 77.50 41.70 70.40 27.40 38.00
			OR titles (MDCS-XRCE)	36.12	59.70	46.08	76.70	39.05	63.40
	Double	OR pages AND titles (MDCS-XRCE) OR titles AND pages (MDCS-XRCE) AND pages AND titles (MDCS-XRCE)	37.27 35.53 38.44	55.60 56.10 54.30	24.45 36.17 23.24	34.80 54.30 31.70	27.11 34.11 26.54	38.80 51.40 36.50
			OR pages OR titles (MDCS-XRCE)	41.75	70.70	44.59	76.20 42.11 70.10

Table 4 .

 4 2: Performance scores over the ICDAR 2011 competition dataset.

			Method	Precision	Recall	F-measure
				Title-	Link-	Title-	Link-	Title-	Link-
				based	based	based	based	based	based
	Best	appr.	Books with ToC pages (MDCS) Books without ToC pages (XRCE)	40.40 27.39	64.50 79.30	43.17 18.69	70.20 52.50	40.75 20.38	65.10 57.60
			AND pages (MDCS-Nankai)	39.72	64.10	34.14	54.40	34.96	55.60
	Single	AND titles (MDCS-Nankai) OR pages (MDCS-XRCE)	38.48 43.52	58.90 75.00	27.60 48.82	39.80 83.20 44.50 75.00 30.00 43.80
			OR titles (MDCS-XRCE)	39.55	63.50	51.86	79.60	42.25	65.00
	Double	OR pages AND titles (MDCS-Nankai) OR titles AND pages (MDCS-Nankai) AND pages AND titles (MDCS-Nankai)	36.14 35.59 37.86	56.60 56.30 58.10	27.88 35.37 25.76	41.30 55.60 36.80	29.44 33.79 28.53	44.00 52.30 41.40
			OR pages OR titles (MDCS-XRCE)	43.96	74.90	47.37	79.60 43.64 72.50

Table 4 .

 4 3: Performance scores over the ICDAR 2013 competition dataset.Significance of our results. To determine whether our results are statistically conclusive, we compute the student's t-test to compare the distributions of our best combinations to the best-performing methods over each of the three competition datasets. These detail p-values are demonstrated in Table4.4. Concerning the title-based measure, statistical significance is obtained for the 2011 datasets (p<0.001), but not for the 2009 and 2013 datasets.As described in Section 3.2.1, the title-based measure checks the similarity between titles before other properties. We think that there are more books (without printed ToC pages) having long and degraded titles in the 2009 and 2013 datasets than those in the 2011 dataset, which cause low-quality extracted titles and reduces the performance of ToC approaches that focus on the analysis of the full content. As a consequence, our aggregation approach cannot reach similar performance improvements as it does with the 2011 dataset.The official results on the title-based measure of the competition confirm our assumption. While the performance of the method based on ToC pages (MDCS) remains stable, that of the two approaches considering the entire book content in our best combination (XRCE, Innsbruck) is reduced dramatically on the 2009 and 2013 datasets (XRCE reaches only 7.81% on the 2009 dataset, and Innsbruck 8.2% on the 2013 dataset, while XRCE reaches 26.32% on the 2011 dataset).

			Method	Precision	Recall	F-measure
				Title-	Link-	Title-	Link-	Title-	Link-
				based	based	based	based	based	based
	Best	appr.	Book with ToC pages (MDCS) Book without ToC pages (Innsbruck)	42.77 33.63	64.90 75.70	45.92 32.14	71.50 68.90	43.61 31.34	66.60 67.20
			AND pages (MDCS-Nankai)	43.87	65.50	37.49	54.80	38.85	56.50
	Single	AND titles (MDCS-Nankai) OR pages (MDCS-Innsbruck)	42.12 41.97	60.50 69.50	30.12 49.69	40.30 85.40 44.07 73.20 32.94 44.50
			OR titles (MDCS-Innsbruck)	38.36	61.50	50.45	83.40	42.04	67.40
	Double	OR pages AND titles (MDCS-Nankai) OR titles AND pages (MDCS-Nankai) AND pages AND titles (MDCS-Nankai)	39.67 38.80 42.49	59.60 58.40 60.00	30.21 38.95 28.27	41.80 56.70 37.00	32.07 37.29 31.69	44.70 53.80 41.80
			OR pages OR titles (MDCS-Innsbruck)	42.86	69.70	49.42	82.40 44.53 72.20
	and 2013, respectively.						

In terms of the title-based measure, the OR pages aggregation is 3.75% higher than MDCS for the 2011 competition. With the 2009 and 2013 datasets, the OR pages OR titles aggregation achieves better results than MDCS, by 0.6% and 0.92%, respectively.

The union operator outperforms other set operators because it combines the best of two worlds, by integrating results from a) methods that are good at extracting ToC entries from books with ToC pages, and b) methods that are good over books without ToC pages. This confirms our initial hypothesis that both types of approaches are complementary. Indeed, the main F-measure improvement is due to strong recall improvement while precision remains stable.

Regarding linked-based measure, this shows clear significance over all competition subsets (p<0.001), demonstrating the added-value of our approach over the state of the art.

Table 4 . 4
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	Dataset	P-value	
		Title-based	Link-based
	2009	0.1567	1.225E-10
	2011	1.109E-05	1.835E-14
	2013	0.0018	1.159E-26

: Student's t-test over three competition datasets.

Table 5 .

 5 1: Details description of four datasets.

	Sources	Types	Years	WER Sizes Files
	Monograph monograph 1862-1911	9% 4.2M 747
	Periodical periodical 1744-1894 16% 1.8M	66
	OverNLA	news	1842-1954 25% 0.3M 159
	OverLC	news	1871-1921 27% 0.1M	49
	These OCRed documents are processed by ABBYY FineReader 1 , which is the state-of-
	the-art commercial OCR system.		

The four datasets thus include OCRed texts of past documents from popular libraries (National Library of France, British Library, National Library of Australia, Library of Congress Chronicling America). The selected documents are characterised by varying levels of degradation under independent conservation and originate from a relatively wide time range spanning from 1744 to 1954. In view of these, altogether the datasets are representative for historical OCRed texts with typical OCR errors. The details of sources, types, years, word error rates (WER) 2 , sizes and the file counts of all the four datasets are listed in Table

5

.1.
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 5 2: Percentages of standard mapping 1:1 (part 1). One GT character is substituted by one OCRed character. Only values higher than 0.1% are shown, other characters (including sequences of more than one character) are denoted as @.

	Tables 5.2 and 5.3 indicate that the characters with the highest and lowest recognition
	accuracy are 't', 'z' with 98.53% and 88%, respectively. Moreover, the statistics also reveal
	that characters sharing similar shapes are easily confused, such as 'b' vs. 'h'; 'c' vs. {'o',
	'e'}; 'e' vs. {'o', 'c'}.
	This standard mapping is used to create character confusion matrix which is one of

1:n mappings. For example, the percentages of frequency of character 'b' in Periodical being recognised as 'b', 'h' and other characters are 96.7%, 1.6% and 1.7%, respectively. the most important sources to generate and rank candidates. It is obvious that the more similar frequent error patterns between a training part and a testing part of the used datasets are, the higher the probability of the correct candidates are generated. However,

Table 5 .

 5 

		3: Percentages of standard mapping 1:1 (part 2). One GT character is substituted
	by one OCRed character. Only values higher than 0.1% are shown, other characters
	(including sequences of more than one character) are denoted as @.
	GT Char Overproof NLA	Overproof LC
	a	{a: 92.7, n: 2.1, i: 1.1, u: 1.0, o: 0.3, m: 0.2, @: 2.6}	{a: 92.8, n: 2.7, u: 0.8, i: 0.5, m: 0.3, o: 0.2, @: 2.7}
	b	{b: 96.2, h: 1.7, l: 0.5, t: 0.3, @: 1.3}	{b: 93.9, h: 1.8, l: 0.5, n: 0.4, i: 0.3,
			t: 0.3, o: 0.2, m: 0.2, @: 2.4}
	c	{c: 93.9, e: 1.7, o: 1.5, r: 0.4, t: 0.2, i: 0.2, @: 2.1}	{c: 92.2, o: 3.1, e: 1.6, u: 0.3, s: 0.3,
			n: 0.2, a: 0.2, r: 0.2, t: 0.2, @: 1.7}
	d	{d: 97.1, a: 0.4, l: 0.2, i: 0.2, @: 2.1}	{d: 96.8, l: 0.5, i: 0.3, u: 0.3, @: 2.1}
	e	{e: 86.1, o: 9.2, c: 1.6, i: 0.3, a: 0.2, @: 2.6}	{e: 80.8, o: 14.8, c: 0.9, u: 0.4, i: 0.3, r: 0.2,
			n: 0.2, @: 2.4}
	f	{f: 94.3, l: 1.5, t: 1.0, i: 0.9, @: 2.3}	{f: 94.1, l: 1.8, t: 1.4, i: 0.6, @: 2.1}
	g	{g: 93.4, c: 0.4, p: 0.4, r: 0.4, e: 0.3,	
		7}	{j: 92.7, @: 7.3}
	k	{k: 95.6, l: 1.0, i: 0.3, h: 0.2, t: 0.2, @: 2.7}	{k: 97.5, a: 0.2, i: 0.2, h: 0.2, @: 1.9}
	l	{l: 96.2, i: 0.8, @: 3.0}	{l: 96.8, i: 0.7, @: 2.5}
	m	{m: 94.3, n: 1.6, i: 0.8, r: 0.5, u: 0.2, @: 2.6}	{m: 93.9, n: 1.3, i: 1.1, u: 0.3, r: 0.2, t: 0.2, @: 3.0}
	n	{n: 96.2, u: 1.0, i: 0.4, m: 0.3, a: 0.2, @: 1.9}	{n: 92.6, u: 4.0, i: 0.8, m: 0.2, a: 0.2, @: 2.2}
	o	{o: 98.0, n: 0.2, i: 0.2, @: 1.6}	{o: 97.2, n: 0.3, u: 0.3, e: 0.3, @: 1.9}
	p	{p: 97.9, n: 0.7, i: 0.2, r: 0.2, @: 1.0}	{p: 96.8, n: 0.5, j: 0.3, o: 0.2, i: 0.2, r: 0.2, @: 1.8}
	q	{q: 97.3, a: 1.5, o: 0.9, @: 0.3}	{q: 90.7, i: 3.3, m: 2.9, @: 3.1}
	r	{r: 93.4, i: 3.3, l: 0.4, n: 0.3, t: 0.2, @: 2.4}	{r: 98.1, i: 0.2, t: 0.2, @: 1.5}
	s	{s: 91.7, a: 1.2, i: 0.5, e: 0.3, n: 0.2,	{s: 90.8, t: 0.6, i: 0.5, e: 0.5, a: 0.4, n: 0.3,
		b: 0.2, t: 0.2, @: 5.7}	f: 0.3, u: 0.2, l: 0.2, o: 0.2, h: 0.2, @: 5.8}
	t	{t: 97.7, l: 0.7, i: 0.2, @: 1.4}	{t: 98.0, l: 0.6, i: 0.2, @: 1.2}
	u	{u: 96.1, n: 1.0, i: 0.6, a: 0.3, m: 0.2, @: 1.8}	{u: 96.1, i: 0.7, a: 0.5, o: 0.2, n: 0.2, j: 0.2, @: 2.1}
	v	{v: 92.2, i: 0.8, r: 0.5, y: 0.3, n: 0.3, t: 0.2, @: 5.7}	{v: 97.7, i: 0.3, r: 0.3, m: 0.3, @: 1.4}
	w	{w: 92.8, v: 1.1, n: 0.5, y: 0.3, m: 0.2, i: 0.2, @: 4.9} {w: 98.1, v: 0.2, o: 0.2, @: 1.5}
	x	{x: 94.6, v: 0.9, i: 0.7, t: 0.6, o: 0.4,	{x: 97.1, g: 1.2, t: 0.6, @: 1.1}
		n: 0.3, s: 0.2, @: 2.3}	
	y	{y: 87.9, j: 3.4, v: 3.1, i: 0.4, r: 0.3, s: 0.2, @: 4.7}	{y: 96.9, v: 1.3, j: 0.3, f: 0.2, @: 1.3}
	z	{z: 68.7, r: 6.2, s: 1.9, b: 1.6, n: 1.6,	{z: 98.1, @: 1.9}
		m: 1.5, y: 1.5, i: 0.8, u: 0.7, l: 0.5, @: 15.0}	

s: 0.3, i: 0.3, u: 0.3, t: 0.2, f: 0.2, @: 3.8} {g: 95.2, j: 0.3, i: 0.3, c: 0.2, e: 0.2, @: 3.8} h {h: 95.1, b: 1.1, l: 0.8, i: 0.7, n: 0.2, @: 2.1} {h: 95.7, l: 1.0, i: 0.6, b: 0.5, n: 0.3, @: 1.9} i {i: 90.7, l: 3.3, m: 0.4, t: 0.3, u: 0.2, n: 0.2, @: 4.9} {i: 94.0, l: 1.6, @: 4.4} j {j: 85.0, i: 1.5, l: 0.4, t: 0.4, @: 12.
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 5 4: Percentages of non-standard mapping 1:n (part 1) Only values higher than 0.01% are shown. For each GT character, percentages shown for each dataset are parts of corresponding percents of @ in Tables 5.2 and 5.3.

	GT Char Monograph	Periodical
	b		{li: 0.19, ti: 0.02, th: 0.02, l.: 0.02}
	c		{See: 0.03, foe: 0.02}
	h	{li: 0.07}	{li: 0.78, ii: 0.23, il: 0.07, ri: 0.05, ir: 0.04}
	j		{.t: 0.08, i.: 0.08}
	k		{lc: 0.06, fc: 0.03}
	m	{rn: 0.36, ni: 0.04, in: 0.03} {in: 0.17, ra: 0.12, rn: 0.09, ni: 0.08, tn: 0.06}
	n		{r.: 0.07, ri: 0.03, ii: 0.03}
	p		{ji: 0.03}
	q	{cp: 0.03}	{tj: 0.1, .l: 0.05, ri: 0.05, -'t: 0.05}
	u		{ti: 0.04, ii: 0.02, tt: 0.02, it: 0.02}
	w		{vv: 0.03, vr: 0.02, sr: 0.02}
	x	{'∼: 0.02}	{ts: 0.03}
	z		{sa: 0.16, .i: 0.16, r.: 0.16, id: 0.16, ti: 0.16}
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	5: Percentages of non-standard mapping 1:n (part 2). Only values higher than
	0.01% are shown. For each GT character, percentages shown for each dataset are parts of
	corresponding percents of @ in Tables 5.2 and 5.3.
	GT Char Overproof NLA	Overproof NC
	a	{ii: 0.05, in: 0.03, -i: 0.02, .i: 0.02}	{ii: 0.21, it: 0.05, in: 0.05, .i: 0.05, iu: 0.03}
	b		{'h: 0.11, ili: 0.04}
	c	{t-: 0.05, e-: 0.04, le: 0.03, i': 0.02, .e: 0.02}	{Hle: 0.07, 'C: 0.02, iriw: 0.02}
	d	{il: 0.15, tl: 0.05, cl: 0.03, ri: 0.03, t4: 0.02}	{il: 0.15, cl: 0.07, rt: 0.06, tl: 0.05, nl: 0.04}
	e	{io: 0.04, lc: 0.02, ic: 0.02}	
			0.03}
	i	{vl: 0.03, ll: 0.02}	{ll: 0.04, l': 0.02, '.: 0.02}
	k	{lr: 0.12, l;: 0.12, lt: 0.08, fc: 0.06, ',: 0.04}	
	l	{ii: 0.02, uit: 0.02, ->: 0.02}	{'.: 0.05}
	m	{in: 0.37, rn: 0.29, ni: 0.13, ra: 0.09, tn: 0.08}	{in: 0.65, ni: 0.48, ro: 0.16, rn: 0.15, tn: 0.11}
	n	{ii: 0.11, ti: 0.03}	{ii: 0.12, ti: 0.11, ri: 0.08, t.: 0.06, iti: 0.03}
	o		{in: 0.03, .i: 0.02, i.: 0.02}
	p	{ii: 0.05, iv: 0.03, .i: 0.02}	{fi: 0.1, iiiti: 0.07, ii: 0.03}
	q	{.v: 0.03}	
	r	{ii: 0.02, i-: 0.02, li: 0.02, i': 0.02}	{ii: 0.04, t': 0.02}
	s	{la: 0.03, t,: 0.02, iB: 0.02}	{.-: 0.04, c-: 0.04, nl': 0.04, i': 0.04, .": 0.03}
	t		{ln: 0.03, Uo: 0.02}
	u	{ii: 0.19, ti: 0.08, li: 0.04, tii: 0.03, i.: 0.02}	{ti: 0.11, ii: 0.1, tl: 0.06, ri: 0.05, i': 0.04}
	v	{Ham: 0.09, %': 0.05, s': 0.04, «.: 0.02}	{\*: 0.24}
	w	{vv: 0.44, tv: 0.15, ir: 0.07, *v: 0.05, v»: 0.05} {st: 0.11, fiH: 0.07}
	x	{.i: 0.39}	
	y	{nj: 0.07, i,: 0.05, ij: 0.05, )*: 0.05, 'j: 0.04}	{tv: 0.04, iiv: 0.04, ino: 0.04, IV: 0.04}

{io: 0.14, iu: 0.03, no: 0.02, oo: 0.02, n;: 0.02} f {'l: 0.03, l': 0.02} {l': 0.1, l": 0.05, he: 0.02} g {iR: 0.09, a-: 0.08, tr: 0.08, fr: 0.07, er: 0.06} {i": 0.33, e:: 0.21, uu: 0.14, (;: 0.14, ..:.-: 0.13} h {li: 0.3, il: 0.06, ll: 0.05, ji: 0.02, i(.li: 0.02} {li: 0.21, di: 0.04, Ii: 0.04, 'li: 0.04, ti:
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 5 6: Percentages of non-standard mapping n:1 (part 1). n GT characters are substituted by one OCRed character. Only OCRed characters are results of n GT characters mis-recognition are listed, and only values higher than or equal 0.05% are shown. Even though this table shows n:1 mapping, the presentation is in a reverse way (1:n) in order to save space.

	OCR Char Monograph	Periodical
	a		{ste: 0.07, ur: 0.05, pe: 0.05}
	b		{li: 0.08}
	c	{pe: 0.05}	
	d	{il: 2.62, ll: 0.45} {il: 0.1, el: 0.06}
	e	{ho: 0.04}	
	h	{li: 0.28}	{li: 0.08, la: 0.06}
	i	{wa: 0.02}	
	m	{in: 0.07}	{us: 0.15, ns: 0.11, un: 0.1, in: 0.1, res: 0.08, nt: 0.08, ur: 0.05, ss: 0.05}
	n	{ri: 0.22}	{ri: 0.24, rs: 0.14, us: 0.05, wh: 0.05}
	s		{ear: 0.06}

u {ss: 0.12, as: 0.1, ta: 0.08, nde: 0.06, ie: 0.06, } w {ss: 0.19, ec: 0.05, se: 0.05} Percentages of errors based on edit distances of our datasets in Figure 5.2 show that most of OCR errors are single-error tokens with approximately 58.92% occurrences. That rate is smaller than the rate of single-error typos in misspelled words (74.5% on average)
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 5 7: Percentages of non-standard mapping n:1 (part 2). n GT characters are substituted by one OCRed character. Only OCRed characters are results of n GT characters mis-recognition are listed, and only values higher than or equal 0.05% are shown. Even though this table shows n:1 mapping, the presentation is in a reverse way (1:n) in order to save space.

	OCR Char Overproof NLA	Overproof NC
	a	{s.: 1.69, s,: 0.36, ce: 0.09, ut: 0.07}	{si: 0.55, he: 0.07}
	b	{hi: 0.07, li: 0.06, is: 0.05}	{si: 0.21}
	c	{e,: 0.47, le: 0.13, ee: 0.12, ne: 0.12}	{ess: 0.36, es: 0.25, ee: 0.18, se: 0.1}
	d	{il: 0.08}	{si: 0.24, on: 0.08}
	e	{s.: 0.12, ic: 0.07}	{can: 1.31, ic: 0.57, ac: 0.43, his: 0.27}
	f	{ta: 0.13}	
	h	{ly: 0.38, li: 0.26}	{ld: 0.12}
	i	{r.: 3.46, s.: 0.39, nce: 0.38, al: 0.05, as: 0.05}	{ta: 0.26, on: 0.05}
	j	{or: 0.05}	
	k	{ly: 0.22}	
	l	{ni: 0.26, ri: 0.19, si: 0.18, di: 0.14, r.: 0.07}	{ir: 1.02, ai: 0.6, ot: 0.21, in: 0.12, re: 0.06}
	m	{n,: 0.43, ur: 0.3, ni: 0.29, in: 0.29, ia: 0.25,	{ld: 0.55, ns: 0.42, ll: 0.21, nt: 0.11, es: 0.09,
		ns: 0.16, ai: 0.15, ree: 0.12, as: 0.07, rs: 0.05, }	ee: 0.08, on: 0.05}
	n	{ri: 1.61, ry: 0.54, ia: 0.54, am: 0.23, ma: 0.13,	{rs: 0.99, ss: 0.47, om: 0.41, as: 0.28, ar: 0.05}
		ra: 0.13, s.: 0.12, s,: 0.12, st: 0.12, ll: 0.11,	
		ti: 0.1, ay: 0.08, ar: 0.05, at: 0.05}	
	o	{e,: 0.75, ic: 0.35, ie: 0.27, nc: 0.23, ne: 0.13,	{ee: 0.32, se: 0.3, ll: 0.15, es: 0.14, en: 0.08}
		me: 0.12, es: 0.09, ive: 0.07, he: 0.07}	
	p	{ve: 0.12, s,: 0.12, ing: 0.1}	
	q	{s.: 0.27}	{ar: 0.1}
	r	{ac: 0.23, ss: 0.12, ee: 0.09}	{me: 0.21, en: 0.18}
	s	{e,: 0.14, ng: 0.07}	{tor: 1.99, an: 0.08}
	t	{ine: 0.6, e,: 0.29, one: 0.22, s.: 0.16, le: 0.13}	
	u	{is: 0.37, ri: 0.28, so: 0.27, ia: 0.25, ll: 0.25,	{ns: 0.7, na: 0.65, fo: 0.24, st: 0.2, an: 0.15,
		rs: 0.19, as: 0.19, hi: 0.16, ti: 0.13, il: 0.12,	ea: 0.14, te: 0.06, is: 0.06}
		ha: 0.11, le: 0.1, in: 0.07, ra: 0.06, st: 0.06,	
		li: 0.06, ee: 0.05, }	
	w		{ear: 1.08, se: 0.29}

  To give clearer views of OCR errors, we suggest to make a hierarchical classification based on incorrect/correct word boundary error types, and real-word /non-word error types. We firstly separate OCR errors into incorrect/correct word boundary error types.Percentages of incorrect/correct word boundary types of our four datasets are shown in Figure5.9. It is clear that all of the four datasets give a similar trend. Around 82.85% of errors are correct word boundary errors, which is much higher than that of incorrect word boundary ones.

	Secondly, in terms of incorrect word boundary error type, depending on inserting/deleting
	white spaces we classify into two main sub-types, including incorrect split/run-on error

types. In terms of correct word boundary error type, we divide into real-word /non-word error types. Finally, for incorrect split/run-on error types we continue grouping into realword /non-word error types.

  reuse the same OCR phrase to illustrate this feature, 'his friend comes from the north we.t'. The OCRed token w is 'comes', and its candidate set is {'comes', 'cones', 'comas'}. The POS lists of two previous words 'his', 'friend' are {appge, ppge}, {nn1, np1 }, respectively. The POS lists of 'comes', 'cones', 'comas' are {vvz }, {nn2 }, {nn2 }, respectively. The possible left-POS of the OCRed token 'comes' include {appge nn1 vvz, ppge nn1 vvz, appge np1 vvz, ppge np1 vvz } and their maximum frequency is 10,625.

	Similarly, the maximum frequencies of the left-POS of the candidates 'comes', 'cones',
	'comas' are 10,625; 16,425; 16,425; respectively. Consequently, the feature score is:	
	left-POS('comes') =	10, 625 16, 425	= 0.65	(6.15)

  If two characters (c 1 , c 2 ) are recognised as one character which is different from characters (c 1 , c 2 ), it is deletion. Otherwise, it is substitution.

	uses the substitution formula twice to calculate that confusion probability:	
	p('ar.d'|'and') = p(sub('a'|'a')) × p(sub('r'|'n')) × p(sub('.'|'')) × p(sub('d'|'d')) (7.7)
	Our approach (denoted as modified-prob) applies the substitution formula once:	
	p('ar.d'|'and') = p(sub('a'|'a')) × p(sub('r.'|'n')) × p(sub('d'|'d'))	(7.8)
	Our proposal also affects on creating the character confusion matrix. In particular, if
	one character (c) is recognised as two characters which are different from character (c),
	it is insertion. Candidate Scoring using Language Model (Step 2)	
	After generating and weighting candidates at character level, in the second step, we utilise
	context information to score candidates of each OCR error.	
	Similar to some approaches of the context-based type, we consider the typical statistical
	language model (SLM) to deal with this problem. Moreover, we also explore the state-
	of-the-art recurrent neural network based language model (RNN-LM) [67] to compare
	two types of language models in context of erroneous OCRed text. SLM and RNN-LM
	are trained on the same training dataset used in 'One Billion Word Language Model
	Benchmark' of Chelba et al. [7]. Each candidate is weighted according to the probability
	of trigram in SLM or that of predicting next word in RNN-LM.	

  LM is either weight SLM or weight LST M . ) is the probability of candidate w c in word ngram model.

	bility of candidate in word ngram model, and is formulated as follows:	
	candi-prob(w c , w e ) =	p(w c ) w c ∈C p(w c )	(7.14)
	where p(w c Longest common subsequence (LCS) is an alternative in qualifying the similarity
	between two strings. Two variations of LCS, including Normalised Longest Common Sub-
	sequence (NLCS) and Normalised Maximal Consecutive Longest Common Subsequence
	(NMCLCS) are proposed by Islam et al. [38].		
	Probability of ngram candidate: Candidate can be a single word or a sequence of
	multiple words, it means that candidate is word ngram. Instead of using the frequency of

Probability of 3-length sequences related to errors: This feature (denoted as relatedLM ) is the normalised weight of step 2 mentioned in Section 7.1.1, and is computed as below: relatedLM (w c , w e ) = weight LM (w c ) w c ∈C weight LM (w c ) (7.13) where weight candidate and accepting 0 value if candidate is not in the training data, we use the probability of candidate in word ngram model which already applies smoothing techniques for solving sparsity problem. This feature (denoted as candi-prob) is the normalised proba-The similarity of the two strings w c and w e (denoted as similar ) is calculated as below: similar(w c , w e ) = α * N LCS(w c , w e ) + i∈{1,n,z} α i * N M CLCS i (w c , w e ) (7.15) where N LCS and N M CLCS i are computed as in Equations 5.1, and 5.2; α = α i = 0.5 weights of N LCS and N M CLCS i , which is recommended by Islam et al. [39]. Confusion probability: This feature (denoted as conf-prob) is the normalised weight of step 1 in Section 7.1.1, and is computed as below: conf-prob(w c , w e ) = p(w c |w e ) w c ∈C p(w c |w e ) (7.16)

Table 7 .

 7 2.2.By combining two ways of calculating step 1's weight and two ways of calculating step 2's weight, we consider four approaches in total: typical-prob.SLM, modified-prob.SLM, typical-prob.LSTM, and modified-prob.LSTM. The overall performance of our approaches is shown in Table7.1.

	Approach	Monograph Periodical
	Baselines	
	Char-SMT/NMT [3]	43	37
	Single Char-SMT/NMT [3]	18	21
	CLAM [8]	29	22
	EFP [8]	13	x
	MMDT [91]	20	x
	WFST-PostOCR [8]	28	x
	stat-correction-proposal	
	typical-prob.SLM	22	3
	modified-prob.SLM	30	10
	typical-prob.LSTM	22	3
	modified-prob.LSTM	30	10

1: Overall performance, the relative improvement (%), of our statistical approaches over English datasets of the first competition ICDAR2017, 'x' denotes no improvement.

Table 7 .

 7 2: Example of input/output sequences.

	OCRed text (source side)
	t w e n t y # i n # n u m b e r # a n d j u s t # t h e n

Table 7 .

 7 4: Overall performance, the relative improvement (%), of our neural network based approaches over English datasets of the Post-OCR text correction ICDAR2017, 'x' denotes no improvement.

	Approach	Monograph Periodical
	Baselines	
	Char-SMT/NMT [3]	43	37
	Single Char-SMT/NMT [3]	18	21
	CLAM [8]	29	22
	EFP [8]	13	x
	MMDT [91]	20	x
	WFST-PostOCR [8]	28	x
	stat-correction-proposal	
	typical-prob.SLM	22	3
	modified-prob.SLM	30	10
	typical-probLSTM	22	3
	modified-prob.LSTM	30	10
	nn-correction-proposal	
	Version 1	31	19
	Version 2	32	20
	Version 3	36	27

Table 7 .

 7 5: Overall performance, the relative improvement (%), of our neural network based approaches over English datasets of the Post-OCR text correction ICDAR2019.

	Approach Comp2019
	Baselines	
	CCC [89]	11
	CLAM [89]	0.4
	CSIITJ [89]	2
	RAE1 [89]	9
	RAE2 [89]	6
	UVA [89]	0
	nn-correction-proposal
	Version 1	1
	Version 2	2
	Version 3	4

Les erreurs d'OCR que cela induit ont un impact non négligeable sur la performance des outils de recherches et sur les systèmes de traitement du langage naturel puisqu'il faut par exemple apparier des besoins bien écrits à des textes mal reconnus. Cette thèse a pour objectif de faciliter l'accès aux documents historiques numérisés en étudiant les problèmes précédemment mentionnés. En vue de faciliter l'accès aux documents historiques, plusieurs approches sont proposées, visant à reconstruire les structures logiques des ouvrages et à améliorer la qualité des textes numérisés par OCR. En ce qui concerne l'extraction de la structure logique, nous avons développé des approches de fusion combinant des méthodes préexistantes afin d'extraire la table des matières d'ouvrages numérisés. Nos expériences ont démontré que cette approche surpasse iii l'état de l'art. La contribution majeure de cette thèse fournit, quant à elle, des méthodes pour la détection et la correction des erreurs d'OCR. Les caractéristiques communes et divergentes entre les erreurs d'OCR et celles des utilisateurs sont clarifiées pour mieux concevoir les traitements post-OCR. Normalement, un système de post-traitement détecte et rectifie les erreurs résiduelles. Toutefois, il peut être préférable de gérer ces erreurs séparément grâce à des applications qui permettent de filtrer, d'étiqueter, ou de traiter sélectivement de telles données. Dans cette étude, nous examinons différentes approches post-OCR basées sur la modélisation des erreurs typiques observées, et sur des modèles de réseaux de neurones. Les résultats montrent que les performances de nos méthodes sont comparables à plusieurs méthodes de référence sur des jeux de données en anglais utilisés lors des deux premières éditions de la compétition sur la correction des textes post-OCR organisée durant les conférence ICDAR en 2017 et 2019. Mots-clés: extraction de la table des matières, extraction de la structure d'un livre, traitements post-OCR, correction des erreurs post-OCR, détection des erreurs post-OCR.

http://pergamentai.mch.mii.lt/DokPranc/indexen.en.htm (accessed on 2019-10-30)

https://nlp.stanford.edu/IR-book/html/htmledition/xml-retrieval-1.html (accessed on 2020-02-01)

Two evaluation metrics (i.e., title-based, link-based) are described in detail in Section 3.2.1.

https://help.nla.gov.au/trove/for-digitisation-partners (accessed 2019-11-01)

The project is in the collaboration between the National Library of France (department of preservation and conservation) and the L3i laboratory of the university of La Rochelle.

https://www.abbyy.com

WER is derived from the Levenshtein distance, working at word level.
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In addition, we also take into account out-of-vocabulary (OOV) words which are correct word but do not exist in a normal dictionary. On average, 38% of OOV words in our three datasets are correctly recognised.

Feature analysis

In total, our approach relies on 13 features to classify OCR errors. Three features (peindex, tok-len, word-freq) built from individual words mainly focus on detecting non-word errors. The features created from word context (bigram frequencies, skip-grams, POS tags) concentrate on identifying real-word errors. Regarding the combined feature tokfreq, it has potential to deal with both of non-word and real-word errors. The remaining feature split-word is designed to handle incorrect-split errors.

Each feature contributes differently to predict the target. The more frequently a feature is used in the split points of a decision tree, the more important that feature is. In ensemble classifier like Gradient Tree Boosting, the relative feature importance is computed by summing up the feature importances of the individual trees, then dividing by the total number of trees [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF].

As our approach detects more non-word errors than real-word ones, we believe that the features based on individual words (pe-index, tok-len, word-freq) and the combined feature tok-freq are more important than the features relying on word context. The relative importance of the features of our best model shown in Fig. 6.1 supports our assumption.

In particular, tok-freq is the most important one on Monograph (36.8%) and Periodical (52.3%) but not on Comp2019 (2.9%). The feature pe-index is the third important one on Monograph (15%) and Periodical (9.4%), but is one of two most important features on Comp2019 (21.1%).

The importance of our novel features are evaluated separately in Table 6.3. In overall, pe-index and tok-freq help to increase recall on three datasets, and precision on Periodical.

This trend can be partly explained by characteristics of these features and different rates of non-word/real-word errors of the three datasets. In fact, pe-index and tok-freq mainly detect non-word errors, and the rates of non-word/real-word in Monograph are higher than in Periodical and Comp2019 (1.5, 0.5, and 0.5, respectively). 

Neural network based approach

BERT [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF] is a well-known contextual language representation model. The pre-trained BERT model can be fine-tuned to handle a variety of down-stream tasks. In this section we investigate the application of BERT model on post-OCR processing. recognised OOV words is comparable to our stat-detection-proposal with about 61% on average on three datasets.

Conclusions

In this chapter, we present two different approaches on error detection task: 1) the first one is based on classification model, 2) the second one relies on bidirectional contextual language model. Each approach has both advantages and disadvantages.

The stat-detection-proposal examines a novel OCR error detection approach which verifies whether an OCRed token is a correct one using feature values computed from its plausible candidate set. Our stat-detection-proposal allows to detect several non-word errors. In addition, two novel features (pe-index, tok-freq) are found to play important roles in the detection of incorrect OCRed tokens.

A problem of this approach is that it is time-consuming to generate the plausible candidate set for each OCRed token. Nevertheless, the candidate set can be reused for the error correction step in statistical approaches. Another issue of this method is that its performance on real-word errors is limited although contextual features are considered.

Regarding the latter, it does not require to generate candidates for each token and it enables to detect several real-word errors. However, it does not function well without the pre-trained BERT model which was trained on large datasets using 4 Cloud Tensor Processing Units (TPUs), with totally 16 TPUs in 4 days.

Error detection approaches provide the positions of errors, which are a required input of the next step -correction. The following chapter details our post-OCR error correction approaches.

Candidate Generation and Weighting based on an error model (Step 1)

In the first step, we generate candidates based on the character candidate graph which can deal with run-on and split-word errors. Such candidates are weighted by using a modified confusion probability.

Candidate Generation:

A string can be generated from the other string by edit operations of three edition types (deletion, insertion, or substitution). Training dataset reveals that insertion and deletion caused by two adjacent characters are more common than those caused by three or more adjacent characters, therefore in this chapter, we limit to two adjacent characters.

After graph construction, Breadth First Search (BFS) with some heuristic tuned from training dataset (maximum length of candidates, minimum confusion probability) is used to deal with the complexity.

The example graph is shown in Figure 7.1. If 'ar.d' is an OCR error, all 'seed' characters 'a', 'r', '.', and 'd' are denoted as yellow nodes. High frequency substitution characters of 'a', 'r', '.', and 'd' are 'e', 'n', ',' and 'l', respectively, which are denoted as green nodes.

Two adjacent characters 'r', '.' can be combined to generate the character insertion node 'n' denoted as a red node; one 'seed' character 'd' can be divided into two characters 'il' denoted as a blue node. One possible candidate of the error 'ar.d' in Figure 7.1 is 'and' which is generated from the substitution node 'a', the insertion node 'n', and the substitution node 'd'.

By using the character candidate graph, our approach can deal with two difficult error types, which are split-word errors (for instance, 'appointed' is recognised as 'ap pointed') and run-on errors (for example, 'doubtfull of' is recognised as 'doubtfud.of'). However,