
HAL Id: tel-03058306
https://hal.science/tel-03058306v1

Submitted on 22 Jan 2021 (v1), last revised 20 Apr 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security of Modes of Operation and other provably
secure cryptographic schemes

Ferdinand Sibleyras

To cite this version:
Ferdinand Sibleyras. Security of Modes of Operation and other provably secure cryptographic schemes.
Computer Science [cs]. Sorbonne Université, 2020. English. �NNT : �. �tel-03058306v1�

https://hal.science/tel-03058306v1
https://hal.archives-ouvertes.fr

Sorbonne Université
École Doctorale Informatique, Télécommunications et Électronique

ED130, Paris

Inria de Paris / Équipe-projet COSMIQ

Security of Modes of Operation and other
provably secure cryptographic schemes

Thèse de doctorat d’informatique

présentée par

Ferdinand Sibleyras

et soutenue publiquement le 23 octobre 2020

devant un jury composé de :
Anne Canteaut Inria Directrice
Gaëtan Leurent Inria Directeur
Henri Gilbert ANSSI Crypto Lab Rapporteur
Bart Preneel KU Leuven Rapporteur
Raphaël Bost DGA Examinateur
Tetsu Iwata Nagoya University Examinateur
Antoine Joux CISPA Helmholtz Center Examinateur
Damien Vergnaud Sorbonne Université Examinateur

Financée à parts égales
par la Direction Générale
de l’Armement (DGA) et
Inria.

Équipe-projet
COSMIQ,

Inria de Paris,
2 rue Simone Iff,

75012 Paris.

Remerciements

Une thèse commence habituellement par des remerciements où l’humour
vient maladroitement cacher l’émotion qui accompagne la fin. Malheureuse-
ment, je ne suis pas drôle. Je dédie donc ces remerciements :

À tous ceux qui ont rendu possible cette aventure. Cela com-
mence avec Gaëtan Leurent pour un stage de master qui s’est si bien
déroulé qu’il semblait évident de continuer à travailler ensemble en thèse.
Et plus tôt encore avec Anne Canteaut, au MPRI, qui a diffusé cette
offre de stage et est ensuite devenue ma directrice de thèse. Merci, donc,
Anne et Gaëtan pour cet encadrement de qualité. J’ai particulièrement
apprécié votre disponibilité et votre réactivité, que ce soit pour signer des
documents ou bien pour travailler.

Merci aussi à ceux qui sont là pour la fin : à Henri Gilbert et Bart
Preneel qui ont accepté de prendre de leur temps pour rapporter ce
manuscrit, et à Raphaël Bost, Tetsu Iwata, Antoine Joux et Damien
Vergnaud qui complètent le jury afin de valider le travail accompli. Je
n’oublie pas non plus Damien Vergnaud et Brice Minaud qui ont assuré
mon comité de suivi le long de la thèse.

À tous mes collègues. J’ai eu la chance de faire partie d’une excellente
équipe de recherche, l’équipe SECRET devenue COSMIQ. Les occasions
de se retrouver étaient nombreuses et toujours appréciées : les conférences,
les workshops, les groupes de travail mais aussi la cantine de Bercy, les
mots fléchés, le baby-foot... Je remercie donc tous les membres passés
et présents de l’équipe que j’ai eu la chance de rencontrer en citant pêle-
mêle et forcément avec des oublis : Anne, André (dit le Sage), Pascale,
Gaëtan, Christelle, Anthony, María, Léo, Nicolas, Jean-Pierre, Christina,
Xavier, Rémi, Kevin, Daniel, Thomas, Antonio, Antoine, Matthieu, Vivien,
Rocco, Andrea, André (dit le Jeune), Clémence, Valentin, Mathilde,

i

Augustin, Clara, Nicolas (ou David), Pierre, Kaushik, Julia, Yann, Virginie,
Sébastien, etc, etc.

Mais j’ai aussi eu l’occasion de rencontrer beaucoup d’autres chercheurs
que je ne pourrais tous citer. Je mentionnerai tout de même mes coauteurs :
Mridul, Donghoon, Nilanjan, Avijit, Bart et Somitra. Un remerciement
particulier à Mridul Nandi, deux fois coauteurs, pour m’avoir également
invité en Inde au workshop ASK qui s’est avéré fructueux.

À toute l’équipe NTT Secure Platform Laboratories. Je remercie
chaleureusement Yu Sasaki de m’avoir invité à Tokyo. Un grand merci
aussi à Kouji Wakasa et Damien Vergnaud pour avoir rendu cela possible.
J’y ai passé un bon moment en compagnie de nombreuses personnes dont
Yu, Mehdi, Akinori, Alexandre, Miguel, Thomas, etc.

Mon passage à NTT fut plus court que prévu mais je compte bien
saisir l’opportunité d’y retourner pour un post-doctorat.

À toute ma famille. D’abord à mes parents Gérald et Pome qui m’ont
toujours encouragé pendant mes longues études, à Sylvie aussi et à mes
frères et sœurs Léon, Marius, Louise et Alfred. Une pensée aussi pour mes
grands-parents et en particulier à Renate qui aurait adoré me voir docteur.
Mais aussi je dois absolument remercier Tomomi qui fait maintenant partie
de ma famille et qui accepte de me suivre entre la France et le Japon. Tu
es aussi celle qui a assisté à l’écriture d’une grande partie de ce manuscrit
pendant que nous étions confinés à Paris ce qui, malheureusement, n’a
pas trompé ton ennui.

En particulier, pour ces trois dernières années, je remercie encore ma
mère, d’abord, puis ma femme avec qui j’ai vécu et qui m’ont directement
soutenu sans jamais vraiment comprendre ce que je pouvais bien faire de
mes journées.

À tous mes amis. Je pense d’abord à Baptiste avec qui j’ai étudié
du collège à l’université et qui aurait dû continuer à faire de la cryp-
tographie [VN17]. Je souhaite aussi remercier Thomas Baignères qui m’a
d’abord orienté vers l’EPFL puis vers le MPRI et enfin vers Inria ; ce sont
peut-être, après mon mariage, les meilleurs choix que j’ai faits de ma vie.

Et puis il y a tous les autres qui m’ont permis, de temps en temps,
de changer d’air, de m’amuser, de penser à autres choses. Cela peut être
par des jeux, des bars ou simplement en gardant contact. Je pense bien

sûr aux KRT, au groupe FRESHROOM. Je pourrais mentionner Romain,
Joris, Olivier, Benoît, Pierre, Fabien, Maxime, Ilhan, Natsuki, Quentin,
Mathieu... mais je préfère m’arrêter rapidement plutôt que d’espérer
naïvement n’oublier personne.

Enfin, je souhaite une bonne lecture aux plus téméraires qui s’aventureront
au-delà de ces lignes.

Contents

Contents 1

Survol des Contributions 5

Publications 25

On Provably Secure Schemes 27

1 Modern Cryptography 31
1.1 Cryptography from Antiquity to Today 31
1.2 Modern Symmetric Cryptography 33

1.2.1 Security of Block Ciphers 35
1.2.2 The Need for Modes of Operation 38
1.2.3 Random Functions and Permutations 40

I Modes of Operation 43

2 Introduction to Modes of Operation 45
2.1 Modes for Encryption . 45

2.1.1 Security Game . 46
2.1.2 An Insecure Mode 48
2.1.3 Legacy Modes for Encryption 49
2.1.4 The Counter Mode 53

2.2 Modes for Authentication 56
2.2.1 Security Game . 57
2.2.2 CBC-MAC . 58
2.2.3 The Wegman-Carter Construction 61

2.3 Modes for Authenticated Encryption 64

1

2.3.1 AE Security Game 64
2.3.2 Generic Construction for Authenticated Encryption 66
2.3.3 Concrete Examples 67
2.3.4 Tweakable Block Cipher and Permutation based

Modes . 70
2.4 On the Security of Modes of Operation 75

2.4.1 Quest for Concrete Security 75
2.4.2 Quest for Practical Security 77
2.4.3 Quest for Robust Security 80

3 Algorithms for Generic Attacks 85
3.1 Collisions . 85

3.1.1 Complexity . 86
3.1.2 Cryptanalysis . 90

3.2 Generalized Birthday . 93
3.2.1 Wagner’s Algorithm 94
3.2.2 A Hard Case: the 3-XOR Problem 96

4 The Missing Difference Problem 101
4.1 The Algorithmic Challenge 102

4.1.1 From CTR to Missing Difference 102
4.1.2 Previous Works . 104

4.2 The Known-Prefix Sieving 105
4.2.1 The Algorithm . 106
4.2.2 Complexity Analysis 107
4.2.3 Simulations . 109

4.3 The Fast-Convolution Sieving 110
4.3.1 The Algorithm . 111
4.3.2 Complexity Analysis 112
4.3.3 Simulations . 115

4.4 Application . 116
4.4.1 Plaintext Recovery of the Counter Mode 119
4.4.2 Partial Key Recovery of GMAC and Poly1305 125

4.5 Conclusion . 128

5 Beyond-Birthday-Bound Secure MAC 131
5.1 Double-block Hash-then-Sum MACs 133

5.1.1 Generic Design . 133
5.1.2 Generic Attack . 135

5.2 Application to concrete MACs 137
5.2.1 Attacking SUM-ECBC 138
5.2.2 Attacking GCM-SIV2 143
5.2.3 Attacking PMAC+ 145
5.2.4 Attacking LightMAC+ 148
5.2.5 Attacking 3kf9 . 149
5.2.6 Attacking and Breaking 1kf9 155
5.2.7 Attacking 1kPMAC+ 157

5.3 Conclusion . 159
5.3.1 Proof is hard . 159
5.3.2 Open Questions . 159

6 Release of Unverified Plaintext security of ANYDAE 161
6.1 RUP (In)Security of SUNDAE 162

6.1.1 RUP Security Notions 162
6.1.2 RUP Attack on SUNDAE 163

6.2 RUP Security of ANYDAE 168
6.2.1 AERUP Generalized Notion of Security 168
6.2.2 ANYDAE Mode of Operation 172
6.2.3 MONDAE and TUESDAE Mode of Operation 176

6.3 Proving AERUP Security of ANYDAE 181
6.3.1 H-Coefficient Technique and Proof Strategy 181
6.3.2 Oracles Definition for AERUP Security 182
6.3.3 Analysis of Bad Transcripts 185
6.3.4 Analysis of Good Transcripts 189
6.3.5 AERUP Security of ANYDAE 191

II Idealized Designs 193

7 Introduction to Idealized Designs 195
7.1 Building Block Ciphers . 195

7.1.1 Feistel Network . 195
7.1.2 Even-Mansour Construction 198
7.1.3 FX Construction 203

7.2 Other Designs . 205
7.2.1 Building Hash Function 206
7.2.2 Building Tweakable Block Ciphers 209

8 Low-Memory Attack on 2-round Even-Mansour 213
8.1 Previous Results . 215
8.2 Security Reductions . 221

8.2.1 Taking care of Linear Key Schedules 221
8.2.2 From a Key Recovery to a 3-XOR Problem 222
8.2.3 Permuting Oracle Calls 224

8.3 2EM Cryptanalysis . 225
8.3.1 Direct Applications 226
8.3.2 Using Black-box 3-XOR Algorithms 228
8.3.3 Using Very Low Data 230

8.4 Going Further . 234
8.4.1 Extending to More than 2 Rounds 234
8.4.2 Conclusion . 236

9 Generic Attack on the Iterated Tweakable FX Construc-
tion 239
9.1 The Generic Tweakable FX Model 242

9.1.1 Notations . 242
9.1.2 Results . 244

9.2 Cryptanalysis of 2-Round Tweakable FX 247
9.2.1 Algorithm . 247
9.2.2 Analysis . 249

9.3 Cryptanalysis of Iterated Tweakable FX 251
9.3.1 Generic Algorithm 251
9.3.2 Analysis . 251

9.4 Remarks and Conclusion 254

General Conclusion 257

Bibliography 261

Survol des Contributions

Que ce soit pour des transactions commerciales ou bien simplement pour
échanger des messages, la sécurité de nos infrastructures numériques repose
essentiellement sur de la cryptographie. D’une part, la cryptographie
asymétrique, dite à clé publique, est capable de résoudre des problèmes
complexes tels que le partage de clé via un canal public ou encore la
signature numérique. D’autre part, la cryptographie symétrique, dite à
clé privée, est de plus en plus sollicitée afin de chiffrer efficacement une
masse de donnée chaque jour croissante.

Cette thèse traite de cryptographie symétrique et a comme sujet prin-
cipal l’étude des modes d’opération ou, plus largement, des constructions
dont la sécurité peut être formellement prouvée.

Chiffrement par bloc. De nos jours, une grande partie de la cryp-
tographie symétrique repose sur les chiffrements par bloc tels que l’AES
(Advanced Encryption Standard). Un chiffrement par bloc est défini
comme une famille de permutations indexée par une clé. Un chiffrement
par bloc E de taille n bits et admettant une clé de taille κ bits est donc une
application E : {0, 1}κ × {0, 1}n → {0, 1}n. Typiquement, un chiffrement
par bloc sûr est une permutation pseudo-aléatoire (PRP), cela signifie
qu’une permutation prise aléatoirement parmi cette famille (en prenant
une clé aléatoire) est indistinguable d’une permutation prise aléatoirement
parmi toutes les permutations possibles.

Définition 1 (Distingueur PRP). Soit P l’ensemble de toutes les per-
mutations de n bits vers n bits et Af(·) → 1 l’événement “A renvoie 1
après interaction avec f”. L’avantage de A dans le distingueur PRP d’un
chiffrement par bloc E est :

Advprp
E (A) = Pr(AEk(·) → 1)−Pr(Ap(·) → 1) ,

5

6 Survol des Contributions

avec k $←−− {0, 1}κ, p $←−− P et les choix aléatoires de A.
La sécurité PRP de E est l’avantage maximal parmi tous les adversaires

A limités à t opérations et σ appels à l’oracle, notée Advprp
E (t).

En fait, il est toujours possible d’énumérer toutes les clés pour vérifier
si la permutation provient du chiffrement par bloc ou bien si elle a été tirée
aléatoirement. Ceci est une attaque par recherche exhaustive sur la clé et
s’applique à n’importe quelle PRP avec un coût de t = O(2κ) opérations
et quelques appels à l’oracle pour un avantage Ω(1). Un chiffrement par
bloc est donc considéré sûr après σ appels si la recherche exhaustive est
considérée trop coûteuse pour être utilisée en pratique et si aucune autre
attaque n’est connue.

m0

Ek

IV

c0

m1

Ek

c1

m2

Ek

c2

Schéma 1: Diagramme du mode de chiffrement Cipher Block Chaining
(CBC) qui chiffre un message m = m0 ‖ m1 ‖ . . . à partir d’une clé k et
d’une valeur initiale IV comme c0 = Ek(m0 ⊕ IV) et ci = Ek(mi ⊕ ci−1).

Les modes d’opération. Un s décrit la façon dont des primitives telles
que les chiffrements par bloc, les chiffrements par bloc paramétrables ou en-
core les permutations peuvent être enchaînés dans un but cryptographique
précis. Il s’agit là, par exemple, de chiffrer afin de garantir le secret,
d’authentifier afin de garantir l’authenticité d’un message voire les deux
en même temps. Les modes d’opération sont classés selon leurs buts ;
respectivement les modes de chiffrement, les modes d’authentification et
les modes de chiffrement authentifié. La représentation en diagramme
comme celle du mode CBC en Schéma 1 est souvent utilisée pour décrire
un mode, et le déchiffrement associé est le plus souvent évident.

7

Typiquement, la sécurité des modes d’opération est formellement
décrite comme l’avantage maximum d’un jeu de type distingueur. Par
exemple, nous utiliserons la notion d’indistinguabilité du chiffré d’une
suite aléatoire avec messages choisis (IND$-CPA) pour évaluer la sécurité
d’un mode de chiffrement, voir Définition 2.

Définition 2 (Distingueur IND$-CPA). Soit un mode de chiffrement qui
chiffre un message m avec une valeur initial IV et une clé k comme
c = EncIVk (m) et une fonction $ qui à partir de IV et m renvoie une suite
aléatoire de la même taille que le chiffré correspondant. L’avantage d’un
adversaire A pour l’indistinguabilité du chiffré d’une suite aléatoire avec
messages choisis est :

AdvIND$-CPA
· (A) = Pr(AEnc·k(·) → 1)−Pr(A$(·,·) → 1) ,

la sécurité IND$-CPA d’un tel mode est définit comme l’avantage maximum
parmi tous les adversaires A, notée AdvIND$-CPA.

La sécurité des modes d’opération peut ainsi être étudiée formellement
en faisant l’hypothèse d’une primitive sûre. En effet, avec l’hypothèse que
le chiffrement par bloc est une bonne PRP, il est possible de formellement
étudier certains modes en remplaçant le chiffrement par bloc par une
permutation parfaitement aléatoire.

Attaques Génériques. Puisqu’il est possible de prouver la sécurité des
modes, il est aussi possible de monter des attaques génériques sur ceux-ci
qui ne dépendent pas de la primitive utilisée. Une attaque peut directement
décrire un adversaire avec un grand avantage pour un distingueur. Par
exemple, il existe un adversaire IND-CPA contre le mode CBC avec une
complexité de σ = O(2n/2) blocs de chiffré. Il suffit pour cela d’attendre
une collision de deux blocs de chiffré :

ci = cj

Ek(mi ⊕ ci−1) = Ek(mj ⊕ cj−1)
mi ⊕mj = ci−1 ⊕ cj−1

puis de vérifier que le XOR des blocs de message est égal au XOR des
précédents blocs de chiffré ce qui est toujours le cas en CBC et très peu
probable pour une suite aléatoire. Or une collision sur n bits arrive en

8 Survol des Contributions

moyenne après O(2n/2) valeurs selon le paradoxe des anniversaires ; c’est
pourquoi O(2n/2) est aussi appelée la borne des anniversaires.

Au delà d’un simple distingueur, une attaque peut aussi se mettre
dans des modèles plus réalistes et considérer la complexité en calcul dont
les preuves ne parlent pas.

Organisation. Ce chapitre est un court abrégé en langue française des
différentes contributions de cette thèse. Il sera suivi des introductions
de l’état de l’art aux Chapitres 1, 2, 3 et 7 ainsi que des explications
détaillées des contributions aux Chapitres 4, 5, 6, 8 et 9. Ces contributions
correspondent respectivement à cinq articles publiés dans des conférences
internationales avec comité de lecture et actes [LS18], [LNS18], [Cha+19b],
[LS19] et [Sib20] (voir Page 25) et sont résumées ci-dessous dans cet ordre.

Le Problème de la Différence Manquante et
ses Applications au Mode Compteur

N ‖ 0

Ek

m0

c0

m1

c1

Ek

N ‖ 1

m2

c2

Ek

N ‖ 2

m3

c3

b·c|m3|

Ek

N ‖ 3

Schéma 2: Diagramme du mode compteur (CTR) qui produit les blocs
de chiffrés ci à partir des blocs de messages mi, d’un nonce N , d’un
chiffrement par bloc E et d’une clé k tel que ci = Ek(N ‖ i) ⊕mi. La
valeur Ek(N ‖ i) est appelée un bloc de suite chiffrante.

Notre première contribution s’intéresse au mode compteur (CTR, voir
Schéma 2), un mode de chiffrement largement employé, notamment via le
chiffrement authentifié GCM, et reconnu pour son efficacité et sa simplicité.
Le mode CTR bénéficie d’une preuve de sécurité jusqu’à la borne des

9

anniversaires, soit jusqu’à O(2n/2) blocs de message avec n la taille du
chiffrement par bloc utilisé. À partir de cette borne, une attaque de type
distingueur est possible simplement en observant l’absence de collision
parmi les blocs de suite chiffrante. En revanche, et au contraire de modes
tels que CBC, ce distingueur ne semble presque rien révéler sur le message
qui a été chiffré.

De nouveaux algorithmes. Ainsi, nous étudions les attaques qui ex-
traient de l’information sur un message chiffré selon le mode CTR. Pour
ce faire nous définissons un problème algorithmique, le problème de la
différence manquante (Définition 3).

Définition 3 (Problème de la Différence Manquante). Soit deux ensembles
A et B et un ensemble d’aide S tous inclus dans {0, 1}n. Trouvez une
valeur S ∈ S telle que :

∀(a, b) ∈ A× B, S 6= a⊕ b .

Nous proposons deux algorithmes pour résoudre efficacement ce prob-
lème dans deux cas différents : lorsque S = {0}z×{0, 1}n−z, le crible à pré-
fixe connu requiert O

(
(n− z) · 2n−z +

√
n− z · 2n/2

)
opérations; lorsque

S = {0, 1}n, le crible par convolution rapide requiert O(n·22n/3) opérations
grâce à la transformée rapide de Walsh-Hadamard.

Cryptanalyse. Ensuite, nous montrons comment la résolution du prob-
lème de la différence manquante permet d’extraire de l’information à
partir d’un chiffré selon le mode CTR avec une complexité proche de la
borne des anniversaires. Pour ce faire, remarquons d’abord que si l’on
connaît le message qui a été chiffré alors nous pouvons en déduire le bloc
de suite chiffrante qui a été utilisé en calculant Ek(N ‖ i) = ci ⊕mi pour
de nombreux i ; notons A l’ensemble de tous les blocs de suite chiffrante
observés. D’autre part, nous imaginons avoir accès à de nombreux chiffre-
ments d’un bloc de secret S, c’est à dire à cj = Ek(N ‖ j)⊕mj pour de
nombreux j 6= i ; notons B l’ensemble de tous les blocs de chiffré de S.
Enfin, appelons S l’ensemble des valeurs possibles de S qui matérialise
ainsi notre connaissance à priori sur le secret. Ainsi, résoudre le problème
de la différence manquante avec les ensembles A, B et l’ensemble d’aide S
revient à retrouver le secret S pour peu que la solution soit unique.

10 Survol des Contributions

N

Ek

b·cs

MAC(N, m)

...

`m`m2m1

H H H H

Schéma 3: Diagramme du MAC de Galois GMAC pour un message de `
blocs, une clé de hachage H et une clé de chiffrement par bloc k.

Plus concrètement, nous supposons avoir accès à de multiples chiffrés
avec deux types de préfixes connus, H1 etH2, de longueurs respectives d’un
bloc et demi et d’un bloc (3n/2 et n bits) et auxquels est systématiquement
concaténé le même secret S de longueur arbitraire. Ceci est inspiré de
scénarios d’attaques réalistes où les préfixes seraient des requêtes banales
tandis que S serait un code d’authentification.

Comme H1 est de longueur d’un bloc et demi, les premiers n/2 bits
de S sont chiffrés dans le même bloc que les derniers n/2 bits du préfixe
connu H1. Nous pouvons donc utiliser l’algorithme du crible à préfixe
connu avec z = n/2 pour récupérer un demi-bloc de secret S. Ensuite,
comme H2 est de taille n, alors le premier bloc de S sera chiffré par un
seul bloc de suite chiffrante parmi les chiffrés de H2 ‖ S. Sachant qu’un
demi-bloc de S est maintenant connu, nous pouvons encore utiliser le
crible à préfixe connu. Finalement, le secret S est intégralement récupéré
en répétant un algorithme de complexité O

(
n/2 · 2n/2

)
.

L’algorithme du crible par convolution rapide a une complexité plus
élevée, mais ne demande pas de connaître à priori d’information sur
S (le crible à préfixe connu requiert 2n calculs lorsque z = 0). On
peut aussi l’utiliser pour attaquer des modes d’authentification (MACs)
qui suivent une construction de type Wegman-Carter-Shoup tels que
GMAC (Schéma 3) et Poly1305. En effet, il est possible de récupérer
la clé du hachage polynomial en résolvant le problème de la différence
manquante. Par exemple, GMAC authentifie un message M de taille d’un
bloc par MAC(N,M) = M ·H2 ⊕H ⊕ Ek(N) avec N un nonce et donc

11

Ek(N) ne se répète jamais. L’idée est de fixer deux messages M1 et M2
d’une taille d’un bloc, de retrouver la différence M1 · H2 ⊕M2 · H2 6=
MAC(Ni,M1)⊕MAC(Nj ,M2) pour tout i 6= j, puis de résoudre l’équation
en H pour récupérer la clé de hachage. Ainsi, à l’aide du crible par
convolution nous montrons une attaque de type forge universelle sur ce
genre de MACs utilisant une fonction de hachage polynomiale avec un
complexité de Õ(22n/3) requêtes, mémoire et opérations. En particulier,
cela constitue la première attaque dans ces conditions (nonces respectés
et tag non tronqué) sur ces modes en moins de 2n opérations.

Ceci est un travail commun avec Gaëtan Leurent [LS18].

Attaques Génériques sur les Constructions
Double-block Hash-then-Sum MACs
En seconde contribution, nous nous intéressons à la sécurité de plusieurs
constructions MACs de type Double-block Hash-then-Sum bénéficiant d’une
preuve de sécurité au delà de la borne des anniversaires. Ces constructions
utilisent un chiffrement par bloc et possèdent un état interne de la taille
de deux blocs (c’est à dire de taille 2n bits). Concrètement, nous étudions
SUM-ECBC, PMAC+, 3kf9, GCM-SIV2, et des variantes (LightMAC+, 1kPMAC+).
Au moment de la publication de ces résultats, ces MACs avaient une preuve
de sécurité jusqu’à 22n/3 courtes requêtes mais aucune attaque n’avait été
décrite en moins de 2n requêtes. Notre attaque requiert O(23n/4) courtes
requêtes. Cela s’est avéré optimal : une nouvelle preuve de sécurité
améliorée par Kim, Lee et Lee [KLL20] pour les modes SUM-ECBC, PMAC+,
LightMAC+ et 3kf9 montre qu’il est impossible d’attaquer ces modes en
moins de O(23n/4) courtes requêtes sans exploiter de particularité du
chiffrement par bloc.

Nous montrons aussi une attaque à la borne des anniversaires contre
1kf9. 1kf9 avait été retiré pour cause de problème dans sa preuve, mais
cette attaque montre qu’une preuve au delà de cette borne est impossible.

Le Tableau 1 résume la complexité de nos attaques par rapport aux
preuves.

Stratégie Générique. Les constructions étudiées sont des MACs de la
forme MAC(m) = E(Σ(m))⊕E′(Θ(m)) avec deux parties de n bits Σ(m)

12 Survol des Contributions

Tableau
1:

R
ésum

é
de

la
sécurité

des
BBB

M
ACs

étudiés
etde

la
com

plexité
de

nos
attaques.

q
estle

nom
bre

de
tags,

`
m

la
taille

m
axim

um
d’un

m
essage

signé,
σ
le

nom
bre

totald’appels
au

chiffrem
ent

par
bloc.

La
borne

inférieure
et

les
com

plexités
des

attaques
sont

pour
des

m
essages

courts
(`
m

=
O

(1)).
“U

”
signifie

forge
universelle

et
“E”

signifie
forge

existentielle.

M
ode

Bornes
venant

des
preuves

A
ttaque

(contribution)
Avantage

Tags
Tags

Tem
ps

Type

SUM-ECBC
[Yas10]

O
(
q 4
`
m

3

2 3
n

)
[K

LL20]
Ω

(2 3
n
/4)
O

(2 3
n
/4)

Õ
(2 3

n
/2)

U
O

(2 6
n
/7)

Õ
(2 6

n
/7)

U
GCM-SIV2

[IM
16]

O
(
q 3
`
m

2

2 2
n

)
Ω

(2 2
n
/3)
O

(2 3
n
/4)

Õ
(2 3

n
/2)

U
O

(2 6
n
/7)

Õ
(2 6

n
/7)

U

PMAC+
[Yas11]

O
(
q 4
`
m

2

2 3
n

+
q
`
m

2

2
n

)
[K

LL20]
Ω

(2 3
n
/4)
O

(2 3
n
/4)

Õ
(2 3

n
/2)

E
LightMAC+

[N
ai17]

O
(
q 4

2 3
n)

[K
LL20]

Ω
(2 3

n
/4)
O

(2 3
n
/4)

Õ
(2 3

n
/2)

E
1kPMAC+

[D
at+

17]
O
(
σ2
n

+
q
σ

2

2 2
n)

Ω
(2 2

n
/3)
O

(2 3
n
/4)

Õ
(2 3

n
/2)

E

3kf9
[Zha+

12]
O
(
q 4
`
m

6

2 3
n

)
[K

LL20]
Ω

(2 3
n
/4)
O

(
4 √
n
·2 3

n
/4)
Õ

(2 5
n
/4)

U
1kf9

[D
at+

15]
O
(
q
`
m

2

2
n

+
q 3
`
m

4

2 2
n

+
q 4
`
m

4

2 3
n

+
q 4
`
m

6

2 4
n

)
Ω

(2 2
n
/3)
O

(2
n
/2)

Õ
(2
n
/2)

U

13

m1

E1

m1

E3

m2

E1

m2

E3

m`m−1

E1

...

m`m−1

E3

...

m`m

E1

m`m

E3

E2

E4

MAC(m)

Σ

Θ

Schéma 4: Diagramme du mode SUM-ECBC avec `m blocs de message.

et Θ(m) (Double-bloc Hash-then-Sum). Voir le diagramme de SUM-ECBC
(Schéma 4) pour un exemple. Notre cryptanalyse recherche des quadruplets
de messages avec 4 collisions deux à deux sur une moitié de l’état interne.
Cela signifie que nous cherchons un quadruplet de messages (X,Y, Z, T)
tel qu’il satisfasse la relation R :

R(X,Y, Z, T) :=

Σ(X) = Σ(Y)
Θ(Y) = Θ(Z)
Σ(Z) = Σ(T)
Θ(T) = Θ(X)

qui implique la relation :

R(X,Y, Z, T) =⇒ MAC(X)⊕MAC(Y)⊕MAC(Z)⊕MAC(T) = 0.

La forme des messages X,Y, Z, T est ensuite choisie de façon à ce
que cette relation R soit non-seulement possible mais surtout forme une
relation linéaire de rang trois, c’est à dire que :
[
Σ(X) = Σ(Y) et Θ(Y) = Θ(Z) et Σ(Z) = Σ(T)

]
=⇒ Θ(T) = Θ(X).

14 Survol des Contributions

Ainsi, en moyenne un quadruplet parmi 23n pris au hasard va satisfaire R.
Réunir 23n quadruplets requiert 23n/4 différentes valeurs des messages X,
Y , Z et T ce qui nous donne une complexité de O(23n/4) en nombre de
requêtes pour cette attaque.

En effet, à partir d’un quadruplet respectant R il est toujours facile
de construire des forges en construisant d’autres messages X ′, Y ′, Z ′, T ′
dont on peut prévoir qu’ils respecteront R et, ainsi, prévoir MAC(X ′) =
MAC(Y ′)⊕MAC(Z ′)⊕MAC(T ′).

Complexité de Calcul. Concrètement, nous construisons un filtre en
exploitant entre autre la relation sur les MACs pour chercher un quadruplet
en résolvant un problème algorithmique de type 4-XOR (Définition 4).

Définition 4 (Problème du 4-XOR). Soit 4 listes L0, L1, L2 et L3.
Trouvez un quadruplet (e0, e1, e2, e3) ∈ L0 × L1 × L2 × L3 tel que e0 ⊕
e1 ⊕ e2 ⊕ e3 = 0.

Afin de garder une complexité en requête optimale avec des listes de
taille 23n/4, le meilleur algorithme connu requiert O(23n/4) de mémoire
et O(23n/2) calculs. La complexité de calcul dépasse donc les 2n même si
d’un point de vue de la théorie de l’information ces MACs ne sont plus
sûrs au-delà de O(23n/4) tags de courts messages.

Néanmoins, nous parvenons à exploiter une propriété des quadruplets
des modes SUM-ECBC et GCM-SIV2 pour obtenir une variante de l’attaque
avec une complexité de calcul et de requête Õ(26n/7). Ceci est la première
attaque en moins de 2n calculs contre un MAC déterministe de type
Double-bloc Hash-then-Sum.

Ceci est un travail commun avec Mridul Nandi et Gaëtan Leurent [LNS18].

Déchiffrements non-Vérifiés : Preuve de
Sécurité Unifiée et Application à ANYDAE
Déchifrements non-vérifiés. Un chiffrement authentifié permet typ-
iquement d’assurer la confidentialité et l’authenticité des messages échangés.
Quand un chiffrement n’est pas valide, le déchiffrement ne renvoie rien
(ou bien renvoie ⊥). En pratique, il n’est pas toujours évident de cacher le
déchiffrement jusqu’à ce que le tag soit vérifié, en particulier dans certains

15

modes qui nécessite de déchiffrer le message pour en vérifier l’authenticité.
Si l’attaquant à accès au résultat du déchiffrement avant qu’il soit vérifié,
la confidentialité et l’authenticité de futurs chiffrés pourraient être com-
promises. La notion de sécurité en présence de telles fuites, sécurité RUP,
a été formalisée par Andreeva et al. [And+14]. Nous proposons un modèle
unifié avec celle du chiffrement authentifié classique et adapté aux modes
déterministes que nous appellons AERUP, et nous prouvons son équiv-
alence avec l’ensemble des notions classiques de sécurité du chiffrement
authentifié couplées à celles de RUP.

Application. Nous décrivons ensuite le chiffrement authentifié ANYDAE
(Schéma 5) inspiré de SUNDAE de Banik et al. [Ban+18]. ANYDAE est un
mode déterministe à bas coût utilisant un chiffrement par bloc et des
fonctions de traitement.

EK ρ1

δ1
B2B1

EK ρ1

δ2
B3

EK ρ1

δ3

...

B`

EK T

T ρ2 EK

M1

C1

ρ3 EK

M2

C2

... ρ3 EK

b·c|Mm|
Mm

Cm

Schéma 5: Diagramme du mode de chiffrement authentifié ANYDAE où
les données A et M sont d’abord utilisées dans une fonction de formattage
pour calculer

(
B[1 . . . `], δ[1 . . . `− 1]

)← Fmt(A,M).

Nous prouvons le Théorème 1, à savoir que ANYDAE est résistant aux
fuites de déchiffrements non-vérifiés et est, de fait, AERUP. Une simple
attaque prouve en revanche que SUNDAE n’offre aucune protection dans ce
scénario.

Définition 5. Soit ε > 0, n ∈ N et une function ρ : {0, 1}n×T → {0, 1}n
pour un ensemble non-vide T .

16 Survol des Contributions

• ρ(X, t) est dit ε-quasi uniforme si pour tout t ∈ T et tout Y ∈ {0, 1}n,

Pr
(
X

$←−− {0, 1}n : ρ(X, t) = Y
) ≤ ε .

• ρ(X, t) est dit ε-quasi XOR-universelle (ε-AXU) si pour tout t et
t′ ∈ T distincts et tout Y ∈ {0, 1}n,

Pr
(
X

$←−− {0, 1}n : ρ(X, t)⊕ ρ(X, t′) = Y
) ≤ ε .

Théorème 1 (Sécurité AERUP d’ANYDAE). Soit ANYDAE avec les functions
de formattage et de traitement Fmt, ρ1, ρ2, ρ3 et utilisant le chiffrement
par bloc E : {0, 1}κ × {0, 1}n → {0, 1}n.
Nous notons F1 l’ensemble des valeurs possible du premier bloc en sortie
de Fmt. Si

1. Fmt est injective et qu’aucune image de Fmt n’est le préfixe d’une
autre image de Fmt;

2. ρ1 est ε1-AXU et γ1-quasi uniforme;

3. ρ2 est γ2-quasi uniforme;

4. ρ3 est γ3-quasi uniforme;

5. |F1 ∩ Im(ρ2)| = 0 et |F1 ∩ Im(ρ3)| = Ω,

alors

AdvAERUP
ANYDAE (σ, qv, t) ≤ AdvPRP

E (σ, t′) +
(
σ

2

)(1
2n + max{ε1, γ1, γ2, γ3}

)

+ Ωσ · γ3 + qv
2n ,

pour tout adversaire limité à σ utilisations du chiffrement par bloc, qv
appels à l’oracle de vérification et opérant respectivement en temps t et
t′ ' t.

Enfin, nous proposons deux instances concrètes de ANYDAE : MONDAE
et TUESDAE qui réunissent toutes les conditions nécessaires à la notion de
sécurité robuste AERUP et rivalisent avec SUNDAE en termes d’efficacité
et d’optimalité. En particulier, MONDAE montre que le simple ajout d’une
function fix1, qui fixe le bit de poids faible à 1, à SUNDAE permet d’obtenir

17

x P1 P2 Ek(x)

k k k

Schéma 6: Diagramme de deux tours de construction Even-Mansour
(2EM) avec clé unique k et deux permutations indépendentes P1 et P2.
Ainsi, Ek(x) = k ⊕ P1(k ⊕ P2(k ⊕ x)).

un mode plus robuste, alors que TUESDAY vise à optimiser le nombre
d’utilisation du chiffrement par bloc par rapport à la longueur des messages
en entrée.

Ceci est un travail commun initié au huitième Asian Workshop on Sym-
metric Key Cryptography avec Donghoon Chang, Nilanjan Datta, Avijit
Dutta, Bart Mennink, Mridul Nandi et Somitra Sanadhya [Cha+19b].

Cryptanalyse Efficiente en Mémoire de Deux
Tours d’Even-Mansour via le Problème du 3-
XOR
Even-Mansour. La construction d’Even-Mansour itérée est une façon
élégante de construire un chiffrement par bloc à partir de permutations
publiques. C’est aussi une façon d’abstraire les constructions de type
Substitution-Permutation utilisées entre autres par l’AES. Dans ce travail,
nous nous concentrons sur deux tours d’Even-Mansour avec une seule clé
(Schéma 6) qui est la construction la plus simple offrant des garanties de
sécurité au delà de la borne des anniversaires. En effet, il existe une preuve
de sécurité jusqu’à 22n/3 évaluations des permutations et du chiffrement.
En revanche, les meilleurs attaques connues ont une complexité en temps
d’environ 2n/n opérations.

Définition 6 (Problème du 3-XOR). Soit trois fonctions f0, f1, f2 à
valeurs dans {0, 1}w pour un w ∈ N. Trouvez trois entrées (x0, x1, x2)
telles que f0(x0)⊕ f1(x1)⊕ f2(x2) = 0.

Cryptanalyse. Afin d’obtenir de nouvelle cryptanalyse de cette con-
struction, nous faisons le lien avec le problème du 3-XOR (Définition 6)

18 Survol des Contributions

Tableau
2:

C
om

paraison
des

com
plexités

asym
ptotiques

des
attaques

contre
2EM

.
“D

onnées”
est

le
nom

bre
de

chiffrem
ents,et

“R
equêtes”

est
le

nom
bre

de
calculs

des
perm

utations
publiques

P
i .

0
<
λ
<

1;log
n
≤
β
≪

n;K
P

:M
essage

connu;C
P

:M
essage

choisi.

R
ef

D
onnées

R
equêtes

Tem
ps

M
ém

oire
Stratégie

[N
W

W
14]K

P
2
nln

n
/
n

2
nln

n
/n

2
nln

n
/n

2
nln

n
/n

M
ulti-collisions

[D
in+

13]
C
P

2
n √

ln
n
/
n

2
n √

ln
n
/n

2
n √

ln
n
/n

2
n √

ln
n
/n

D
iff.

m
-c

(clés
indep.)

[D
in+

13]
K
P

2
λ
n

2
nln

n
/n

2
nln

n
/n

2
nln

n
/n

M
ulti-collisions

[D
in+

16]
C
P

2
n
/
λ
n

2
n
/λ
n

2
n
/λ
n

2
λ
n

A
lgèbre

lineaire
[IS17]

C
P

2
nln

n
/
n

2
nln

n
/n

2
nln

n
/n

2
nln

n
/n

M
itM

C
P

2
λ
n

2
nln

n
/n

2
nln

n
/n

2
nln

n
/n

M
itM

C
P

2
n
β
/
n

2
n
/2
β

2
n
β
/n

2
n
/2
β

M
itM

S.8.3.1
K
P
n

2
n
/ √

n
2
n
/ √

n
2
n
/ √

n
3-X

O
R

[Jou09]
S.8.3.2

K
P

2
d

2
n−

d
/2

2
n
/n

2
n−

d
/2

3-X
O
R

[BD
F18]

S.8.3.2
K
P

2
d

2
n−

d
/2

2
nln

2
n
/n

2
2
n−

d
/2

3-X
O
R

[BD
P08]

S.8.3.3
K
P
λ
n

2
n
/λ
n

2
n
/λ
n

2
λ
n

Peu
de

données

19

avec des éléments de taille w = 2n. Le 3-XOR est un problème algo-
rithmique bien connu qui, pour être résolu, nécessite au minimum 2w/3
requêtes mais dont les meilleurs algorithmes demandent 2w/2/w opéra-
tions. Cela correspond à l’état de l’art pour la cryptanalyse de 2 tours
d’Even-Mansour.

Concrètement, il est facile de voir que résoudre le problème du 3-XOR
avec les fonctions :

f0(x) := x ‖ x⊕ E(x)
f1(y) := y ⊕ P1(y) ‖ y
f2(z) := z ‖ P2(z)

est équivalent à récupérer la clé k car pour une solution x, y, z nous avons
avec bonne probabilité k = x ⊕ y. Grâce à ce lien, nous décrivons de
nouvelles attaques sur 2 tours d’Even-Mansour. Nous parvenons ainsi à
décrire la première cryptanalyse où le nombre de chiffrés et de mémoire
requis sont significativement en dessous de 2n. D’un point de vue pratique,
les attaques demandant près de 2n de mémoire et/ou blocs de chiffrés ont
peu de chance de rivaliser avec une simple recherche exhaustive de la clé.

Grâce à cette réduction, n’importe quel algorithme pour le 3-XOR peut
être utilisé pour attaquer 2EM. Cela signifie qu’une future amélioration
des algorithmes pour résoudre le 3-XOR améliorera directement l’état
de l’art de la cryptanalyse de 2EM. De plus, en utilisant une variante
pour le 3-XOR d’un algorithme pour le 3-SUM de Baran, Demaine et
Pǎtraşcu [BDP08], nous obtenons un algorithme avec une complexité
asymptotique en calcul de O(2n ln2 n/n2), asymptotiquement meilleur que
O(2n/n), mais peu performant pour des valeurs pratiques.

En exploitant la forme particulière de notre instance de 3XOR, nous
proposons un autre algorithme qui requiert très peu de données et est
efficient en mémoire. Pour une constante 0 < λ < 1, cet algorithme utilise
seulement λn paires de message/chiffré et 2λn mémoire. Par exemple, en
prenant n = 64 et λ = 1/2 la mémoire reste tout à fait raisonnable et nous
gagnons un facteur 32 par rapport à la recherche exhaustive.

Une comparaison asymptotique de nos résultats et d’autres cryptanal-
yses est donnée au Tableau 1.

Ceci est un travail commun avec Gaëtan Leurent [LS19].

20 Survol des Contributions

Attaques Génériques sur les Constructions
FX Itérées Paramétrables
Notre dernière contribution s’intéresse à une construction générique pour
construire des chiffrements par bloc paramétrables à partir de chiffrements
par bloc classiques. Alors qu’un chiffrement par bloc classique de taille
n avec une clé, sécrète, de taille κ est une application E : {0, 1}κ ×
{0, 1}n → {0, 1}n, un chiffrement par bloc paramétrable admet en plus
un paramètre (tweak), public, de taille τ et est donc une application
Ẽ : {0, 1}κ × {0, 1}τ × {0, 1}n → {0, 1}n. La sécurité des chiffrements par
bloc paramétrables a été formalisée par Liskov, Rivest et Wagner [LRW11].

Notre construction générique généralise une technique fréquement
employé pour ce genre de construction : d’abord la taille de la clé est aug-
mentée via une construction FX, puis la clé maître est mixée avec la valeur
du paramètre pour produire les sous-clés nécessaires. La construction peut
naturellement se répéter en série.

La construction générique. Décrivons formellement la construction
FX paramétrable itérée. Soit E1,2,...,r(u, ·) r chiffrements par bloc admet-
tant une clé u de κ bits avec une entrée et sortie de n bits. Soit k la clé
maître du chiffrement par bloc paramétrable de taille κ̃ bits, t le paramètre
de longueur arbitraire. Enfin, soit γi(k, t) la sous-clé de taille κ de Ei pour
1 ≤ i ≤ r et λi(k, t) la sous clé de taille n pour 0 ≤ i ≤ r. Pour toute
paire d’entrée message/paramètre (m, t), la sortie Ẽk(t,m) = c de r tours
de construction FX paramétrable est définie comme :

s0 := m⊕ λ0(k, t)
si := Ei(γi(k, t), si−1)⊕ λi(k, t) , pour 1 ≤ i ≤ r
c := sr .

Voir le Schéma 7 de la construction pour r = 2 tours.

Cryptanalyse. Notre résultat sur deux tours est une attaque théorique
possible lorsque κ ≤ 2n en complexité, toutes requêtes confondues, de :

Q = O
(

2
2
3 (n+κ) · 3

√
κ̃/n

)
.

Sous l’hypothèse raisonnable que κ̃ = O(n) alors Q = Õ(2 2
3 (n+κ)).

21

m E1 E2 Ẽk(t,m)

γ1(k, t) γ2(k, t)
λ0(k, t) λ1(k, t) λ2(k, t)

Schéma 7: Diagramme de deux tours de la construction FX paramétrable
Ẽk(t,m) = E2

(
γ2(k, t), E1

(
γ1(k, t),m⊕ λ0(k, t)

)⊕ λ1(k, t)
)⊕ λ2(k, t).

Plusieurs constructions dans la littérature suivent ce paradigme sur
deux tours pour construire des chiffrements paramétrables et notamment
la construction récente XHX2 par Lee et Lee [LL18] qui est un cas particulier
de notre généralisation où λ1(k, t) = λ0(k, t)⊕ λ2(k, t). [LL18] prouve que
la sécurité de XHX2 est min{2 2

3 (n+κ), 2n+κ/2}. En particulier, la sécurité
est de 2 2

3 (n+κ) lorsque κ ≤ 2n ce qui correspond à la complexité de notre
cryptanalyse. Ainsi, notre attaque prouve l’optimalité de leur preuve, et
inversement.

Ensuite, nous généralisons cette attaque pour un nombre arbitraire
de tours de cette construction et nous obtenons une attaque sur r tours
lorsque κ ≤ rn en :

Q = O
(

2
r
r+1 (n+κ) · r+1

√
κ̃/n

)

Encore une fois, si on suppose raisonnablement que κ̃ = O(n) alors
Q = O(2

r
r+1 (n+κ)).

Le Tableau 3 montre plusieurs constructions en comparant la meilleure
attaque connue avec notre attaque générique. Le principe de notre at-
taque générique ressemble à l’attaque sur la construction classique FX de
Gaži [Gaž13] et prouve qu’une complexité totale de requête plus basse que
O(2 r−1

r
n+κ) est atteignable lorsque κ > r/n dans le cas d’une construction

paramétrable. Néanmoins l’idée reste la même : nous collectons suff-
isamment de données pour pouvoir reconstruire les valeurs intermédiaires
qu’aurait prit l’état interne avec chaque valeur possible de clé maître.
Ainsi, nous pouvons vérifier si le résultat que l’on a reconstruit correspond
au résultat obtenu en appelant directement l’oracle de chiffrement. Si ce
n’est pas le cas, alors la valeur choisit ne correspond pas à celle de la clé
maître.

22 Survol des Contributions

Tableau 3: Comparaison des bornes asymptotiques connus et de notre
attaque sur divers constructions.

Ref Construction r Preuve Attaque connue Attaque générique

[LRW11] LRW2 1 2n/2 2n/2 2 1
2 (n+κ)

[Men15] F̃ [1] 1 2 2
3n 2n 2n (as κ = n)

[Men16] XPX 1 2n/2 2n/2 2n/2 (as κ = 0)
[Jha+17] XHX 1 2 1

2 (n+κ) 2 1
2 (n+κ) 2 1

2 (n+κ)

[Jha+17] GXHX 1 2 1
2 (n+κ) 2 1

2 (n+κ) 2 1
2 (n+κ)

[Men15] F̃ [2] 1 2n 2n N.A.

[LRW11] LRW1 2 2n/2 2n/2 2 2
3 (n+κ)

[LST12] CLRW2 2 22n/3 23n/4 2 2
3 (n+κ)

[LL18] XHX2 2 2 2
3 (n+κ) 2n/2+κ 2 2

3 (n+κ)

Telle qu’elle est décrite, cette attaque demande autant de calculs
qu’une recherche exhaustive, c’est à dire O(2κ̃). Le but de cette attaque
n’est donc pas d’être pratique mais plutôt de répondre aux preuves. En
particulier, en restant à ce niveau de généralité qui englobe de nombreuses
constructions, cette attaque répond à la question suivante : en utilisant
la stratégie des constructions FX itérées paramétrables pour construire
un chiffrement par bloc paramétrable, quel niveau de sécurité peut-on
espérer atteindre ? En effet, pour toute construction à r tours, notre
attaque montre qu’aucune preuve ne pourra garantir une sécurité au-delà
de O(2

r
r+1 (n+κ)) requêtes avec κ ≤ rn.

Ceci est un travail personnel [Sib20].

Conclusion
Cette thèse aura ainsi exploré et contribué à de nombreux sujets concernant
la sécurité des constructions cryptographiques symmétriques formellement
prouvables. Nous avons décrit des attaques considérant la complexité total
de temps et de mémoire (sur le mode CTR, GMAC, 2EM, SUM-ECBC, etc)
ainsi que des attaques plus théoriques qui ne regardent que la complexité
en requêtes et répondent ainsi aux preuves (sur les Double-bloc Hash-then-

Sum MACs et les constructions FX itérées paramétrables). Nous avons
également étudié des notions de sécurité plus robustes, sécurité RUP, en
dérivant la preuve de sécurité du chiffrement authentifié ANYDAE.

De nombreuses constructions cryptographiques, techniques de preuves
et problèmes algorithmiques étudiés tout au long de cette thèse sont
abordés plus en détail dans ce manuscrit.

Publications

[LS18] Gaëtan Leurent and Ferdinand Sibleyras. “The Missing Differ-
ence Problem, and Its Applications to Counter Mode Encryp-
tion”. In: EUROCRYPT 2018, Part II. Ed. by Jesper Buus
Nielsen and Vincent Rijmen. Vol. 10821. LNCS. Springer,
Heidelberg, Apr. 2018, pp. 745–770 (cit. on pp. 8, 11, 28, 63,
101).

[LNS18] Gaëtan Leurent, Mridul Nandi, and Ferdinand Sibleyras.
“Generic Attacks Against Beyond-Birthday-Bound MACs”. In:
CRYPTO 2018, Part I. Ed. by Hovav Shacham and Alexandra
Boldyreva. Vol. 10991. LNCS. Springer, Heidelberg, Aug.
2018, pp. 306–336 (cit. on pp. 8, 14, 28, 76, 131, 257).

[Cha+19a] Donghoon Chang, Nilanjan Datta, Avijit Dutta, Bart Men-
nink, Mridul Nandi, Somitra Sanadhya, and Ferdinand Sib-
leyras. “Release of Unverified Plaintext: Tight Unified Model
and Application to ANYDAE”. In: IACR Trans. Symm. Cryp-
tol. 2019.4 (2019), pp. 119–146. issn: 2519-173X (cit. on pp. 8,
17, 28, 161).

[LS19] Gaëtan Leurent and Ferdinand Sibleyras. “Low-Memory
Attacks Against Two-Round Even-Mansour Using the 3-
XOR Problem”. In: CRYPTO 2019, Part II. Ed. by Alexan-
dra Boldyreva and Daniele Micciancio. Vol. 11693. LNCS.
Springer, Heidelberg, Aug. 2019, pp. 210–235 (cit. on pp. 8,
19, 28, 98, 213).

[Sib20] Ferdinand Sibleyras. “Generic Attack on Iterated Tweakable
FX Constructions”. In: CT-RSA 2020. Ed. by Stanislaw
Jarecki. Vol. 12006. LNCS. Springer, Heidelberg, Feb. 2020,
pp. 1–14 (cit. on pp. 8, 22, 28, 239).

25

On Provably Secure Schemes

In symmetric cryptography, provably secure schemes are constructions
that can be proven secure under some assumptions. They all rely on some
lower-level cryptographic function that we call a primitive and typically
come with a proof that reduces their security to the primitive’s security
under some conditions.

Though the proof and cryptanalysis techniques are somewhat similar,
we classify provable secure schemes into two parts. Part I is about modes
of operation which describe ways to use an actual primitive to achieve a
concrete cryptographic goal such as encryption or authentication. Part
II is about idealized designs which describe how to build new primitives
upon existing primitives. Examples of what we call idealized designs
are the Even-Mansour construction that builds a block cipher from a
permutation, and the FX construction that builds a block cipher with a
stronger resistance to generic attacks from another block cipher.

As the name suggests, provably secure schemes allow for formal proofs
to be made. However, most of this manuscript focuses on the cryptanalysis
of such schemes, but we nevertheless introduce proofs techniques and apply
them in Chapter 6. Cryptanalysis can be seen as the dual of proofs: while
proofs state sufficient conditions that make a scheme secure, cryptanalysis
states necessary conditions for its security.

Organisation. The chapters are organized as follows. A general intro-
duction to cryptography is given in Chapter 1 along with some useful
results and a motivation for the study of modes of operation. Chapter 2
and Chapter 7 present the state of the art regarding modes of operations
and idealized designs to introduce Part I and II, respectively. Chapter 3
pursues the presentation of the state of the art and details generic attacks
on various modes of operation. Although it belongs to Part I, algorithmic

27

28 On Provably Secure Schemes

techniques introduced in Chapter 3 will remain relevant in Part II when
talking about cryptanalysis of idealized designs.

The remaining chapters correspond to the contributions of a publication
each. In Part I, Chapters 4, 5, and 6 describe the contributions of [LS18],
[LNS18], and [Cha+19a], respectively. And, in Part II, Chapters 8 and 9
describe the contributions of [LS19] and [Sib20], respectively. See the list
of publications on page 25.

Notations

{0, 1}n : The set of all n-bit words.
0n : The n-bit all 0 word.

S × T : The Cartesian product of sets S and T .
a ∧ b : Bitwise AND.
a⊕ b : Bitwise exclusive-or, XOR.
a ‖ b : Concatenation of a and b.

a
?= b : Test for equality of a and b.
|a| : The bit length of a.
a[i] : The bit i of a.
a[i:j] : The bits i to j − 1 of a.
bacs : The s most significant bits of a.
daes : The s least significant bits of a.

Pr(x) : Probability of event x happening.
Im(f) : The image set of function f .
O : The big O notation, or Bachmann-Landau notation,

for asymptotic behavior.
Õ : The soft O notation ignoring log factors.

$←−− S : Uniformly randomly drawn from the set S.
log(·)/ ln(·) : the base 2 logarithm / the natural logarithm, respectively.

Ek(m) : Block cipher E with key k and message m.
Ẽtk(m) : Tweakable block cipher Ẽ with key k, tweak t, message m.

EncIVk (m) : Encryption of a message m under the key k
and (optional) initial value IV .

DecIVk (m) : Decryption of a message m under the key k
and (optional) initial value IV .

29

Chapter1Modern Cryptography

1.1 Cryptography from Antiquity to Today
Though cryptography is now a computer science field, the need for secure
communication largely predates the Internet and the rise of information
theory. Interestingly, the earliest evidences of cryptography may not have
had the goal of hiding information but were mainly used to give a sense
of mystery. Examples of such use are to be found in the Egyptian tomb
of Khnumhotep II, 1900 BC, where some new hieroglyph-like symbols
replace the usual ones, or again in the Old Testament where some words
are written in Atbash which reverses the Hebrew alphabet (in the Latin
alphabet ‘a’ would become ‘z’, ‘b’ would become ‘y’ and so on).

Domination of Cryptanalysis. Following early ideas, most encryption
schemes used were some kind of substitution cipher where each letter is
replaced by another letter or symbol. However, those ciphers were routinely
broken by cryptanalysts using frequency analysis. The idea is that the
most frequently used letter heavily depends on the language and hence
corresponds with good probability to the most frequent symbol in the
ciphertext.

The earliest known description of cryptanalysis by frequency analysis
dates back to the 9th century by Al-Kindi [Al-ry]. It has later been redis-
covered in Europe and, by the 15th century, it became very usual among
ambassadors to encrypt important messages while employing cryptana-
lysts to break other’s communications. Overall, cryptanalysts were able
to break through most ciphers with a certain success despite innovative
counter-measures such as adding useless symbols or employing poor or-
thography. From the 14th to early 20th centuries, cryptanalysts routinely
overcame most ciphers by adapting the frequency analysis technique.

31

32 Chapter 1. Modern Cryptography

Many people would still rely on encryption to hide from curious eyes
or, more dangerously, to get a false sense of security. This was the fall of
Mary, Queen of Scots, who held confidence throughout her trial in 1586
that her letters couldn’t have been deciphered. She believed no one could
prove that she approved of the Babington Plot to assassinate the Queen
of England Elizabeth I [Sin00]. Her trust relied on her multiple ciphers
where additional symbols were used for both useless distractions (Nulles)
and common words. Figure 1.1 shows one of Mary’s cipher which employs
many tricks to deter cryptanalysis by frequency analysis. Nevertheless,
all of her letters were systematically brought to the cryptanalyst Thomas
Phelippes which had no trouble understanding their contents. Moreover,
in order to know who were involved in the Babington Plot, Phelippes
imitated Mary’s writing and asked in a post-scriptum for all the plotters’
name in Mary’s behalf by coding it properly. This is a great example of a
forgery attack where the secrecy of the cipher wrongly authenticates the
author. Following her trial, Mary was executed the next year in 1587.

Figure 1.1: One of more than 100 ciphers used by Mary Queen of Scots
and seized in her apartment in 1586. Collection of The National Archives
(UK) [Que86].

1.2. Modern Symmetric Cryptography 33

Cryptography during the First World War. In the early 20th
century the need for secure communications became more critical than
ever. Every army during World War I made extensive use of a new
technology: wireless telecommunications. This allowed for faster and more
reliable communications than ever, especially at sea, but it also allowed
the enemy to easily wiretap any signal sent and intercept the ciphertext.

Interestingly, no notable encryption scheme came out of World War
I. Cryptanalysts kept breaking new ciphers as quickly as they came out.
Messages of critical importance were routinely decrypted in matter of
hours. The most notorious example is probably the invitation by the
German Foreign Minister sent to Mexico asking to form an alliance and
declare war on the USA. This message, though carefully encrypted, was
mostly deciphered within a day by British Intelligence’s cryptanalysts
Montgomery and de Grey [Sin00]. In the end, this message is what finally
convinced the USA to go to war.

1.2 Modern Symmetric Cryptography
Perfect Encryption. The early 20th century also saw the development
of the science of information theory. As information started to be thought
of at a bit level, a simple and elegant idea for encryption surfaced: the
One-Time-Pad. The idea is to randomly flip, or not, each bit of the
message. To do this is easy: produce a random key k of the same length
of the message m and XOR each bit of the message with each bit of the
key to produce the ciphertext c as c = m⊕ k. Indeed, at a bit level, if the
ith bit of key is 1 then the ith bit of message is flipped in the ciphertext;
otherwise it is not flipped. Given a random key, this is equivalent to
independently flip each bit with probability 1/2.

In 1919, Vernam deposed a patent for an encryption scheme relying
on the XOR operation, thus the One-Time-Pad is also sometimes called
the Vernam’s cipher.

There is, of course, a heavy drawback: the two parties need to share a
key which is at least as long as the message sent, and the key cannot ever
be reused again. However, the benefit is just as huge: in 1949 Shannon
published a proof for the unconditional security of such a system [Sha49]
given a perfectly random key.

Unconditional or perfect security has a precise meaning here that
knowing the ciphertext does not change our a priori knowledge of the

34 Chapter 1. Modern Cryptography

message content or, equivalently, that the ciphertext is independent from
the message. Formally speaking, let M = m the event “the message is m”
and C = c the event “the ciphertext is c”, then perfect security means
that the following holds:

∀` ∈ N, ∀m, c ∈ {0, 1}` : Pr(M = m|C = c) = Pr(M = m) ,

for any adversary with no knowledge of the key.
Notice that this condition does not ensure that the scheme is sound.

Indeed, sending a truly random ciphertext might be secure, but the receiver
might not be able to recover the message from the ciphertext. However,
this is very easy with the One-Time-Pad when knowing the key as we
know what are the flipped bits. We simply need to compute m = c⊕ k.

Asymmetric Cryptography. Two major breakthroughs will give rise
to modern cryptography as we know it. The first one solves the issue of
key distribution. Indeed, sharing a secret key value is far from trivial. It
was traditionally done by hand: cryptographic keys would be physically
brought to the front line or loaded in a ship before departure. However, in
1976, Diffie and Hellman [DH76] published a key exchange algorithm that
solves this issue and is now known as the Diffie-Hellman key exchange.
Given an authenticated but public channel, two parties can now share
pieces of information and securely derive a common secret key. This secret
key can subsequently be used to enable private communication over the
channel.

The second major breakthrough came shortly after, and public-key
cryptography was invented. In 1977, Rivest, Shamir and Adleman de-
scribed the RSA cryptosystem [RSA78], the first asymmetric encryption
scheme using both a public key and a secret key. Using RSA, one can use
its private key to make a signature over a document which can be verified
by anyone using the corresponding public key. Conversely, anyone can use
one’s public key to encrypt a message which can only be deciphered using
the corresponding secret key. The keys for encryption and decryption are
not the same anymore, and one of them, the public key, can be safely
broadcasted. This is called public-key cryptography, or asymmetric-key
cryptography.

On the other hand, private-key cryptography, or symmetric-key cryp-
tography, assumes that the communicating parties already share a common
and secret key. In practice, symmetric cryptography is much faster than

1.2. Modern Symmetric Cryptography 35

its asymmetric counterpart. Most communications are actually encrypted
via symmetric encryption using a key that was either shared via a Diffie-
Hellman key exchange or encrypted with a public-key cryptosystem like
RSA. Far from replacing symmetric cryptography, asymmetric cryptogra-
phy allowed everyone to authenticate themselves and safely share secret
keys over the Internet. Nowadays, a massive amount of data is encrypted
daily using the combination of asymmetric and symmetric cryptographic
schemes in a way that is almost oblivious to the users.

Practical Cryptography. Modern symmetric cryptography uses many
types of building blocks or primitives, but the most prominent ones are
surely stream ciphers and block ciphers. Stream ciphers can take a key
of limited size and produce a key stream of arbitrary size which is then
XORed with the message. It can be seen as a practical way of applying
the One-Time-Pad but with a pseudo-random key generated by a smaller
master key.

On the other hand, block ciphers can be used in multiple ways and
are the most common primitive for modes of operation.

Concretely, we define a permutation as a bijective function P :
{0, 1}n → {0, 1}n and a block cipher as a family of permutations indexed
by a secret key. An n-bit block cipher E with a κ-bit key is therefore an
application E : {0, 1}κ × {0, 1}n → {0, 1}n. When one knows the key, one
knows how to transform any n-bit value into an n-bit codeword. Cryp-
tographers often refer to those n-bit values as words and the transition
table as a dictionary. In some sense, given a key, a block cipher provides
a compact way of describing a dictionary that enciphers every n-bit words
just like we used to transform letters back in early cryptography.

1.2.1 Security of Block Ciphers
Informally, a block cipher is considered secure if, when given a random
key, its outputs look like the output of a random permutation. We talk
about pseudo-random permutations (PRP) as the randomness in block
ciphers really comes from the key while the rest is deterministic.

PRP Security. The security of a block cipher is formally defined using
a security game. The game is a distinguisher: a hypothetical adversary
A is given a black-box access to a function f , also called an oracle, and

36 Chapter 1. Modern Cryptography

must distinguish between the ideal and real worlds. In the real world, the
function is the block cipher f(·) = Ek(·) with a random key k $←−− {0, 1}κ,
that is a random permutation from the family defined by the block cipher
E. In the ideal world, the function is a random permutation.

Definition 1.1 (PRP Security). Let P be the set of all n-bit to n-bit
permutations and let Af(·) → 1 the event “A outputs 1 when interacting
with the function f”. The PRP security game advantage of an adversary
A for a block cipher E is defined as:

Advprp
E (A) = Pr(AEk(·) → 1)−Pr(Ap(·) → 1) ,

with the randomness of k $←−− {0, 1}κ, p $←−− P and A.
Then, the PRP security is Advprp

E (t), that is the maximum advantage
over all adversaries A running in time t.

A Ek(·)

A p

Real World
Ideal World

Figure 1.2: Distinguishing game for the prp security of a block cipher E
where p is a random permutation and k a random key value.

A low advantage bound makes for a good PRP security as it means
that any algorithm or adversary A will behave the same whether it uses a
pseudo-random permutation from the block cipher E or a truly random
permutation. In the case where the adversary has access to both f and its
inverse f−1, we talk about the strong pseudo-random permutation security
or sPRP security.

Definition 1.2 (sPRP Security). The sPRP security game advantage of
an adversary for a block cipher E is defined as:

Advsprp
E (A) = Pr(AEk(·),E−1

k
(·) → 1)−Pr(Ap(·),p−1(·) → 1) .

1.2. Modern Symmetric Cryptography 37

with the randomness of k $←−− {0, 1}κ, p $←−− P and A.
Then, the sPRP security is Advsprp

E (t), that is the maximum advantage
over all adversaries A running in time t.

Pseudo-Random Functions. A random permutation is a permutation
taken at random among all n-bit to n-bit permutations. Similarly, we
define a random function as a function taken at random among all functions
and a PRF as a family of functions indexed by a key. Therefore, we also
define the prf security game that measures how close is a keyed construction
from a truly random function.

Definition 1.3 (PRF Security). Let F be the set of all X → Y functions
and let Af(·) → 1 the event “A outputs 1 when interacting with the
function f”. The PRF security game advantage of an adversary for a
construction G : K ×X ← Y is defined as:

Advprf
G (A) = Pr(AGk(·) → 1)−Pr(Af(·) → 1) ,

with the randomness of a parameter k $←−− K, f $←−− F and A.
Then, the PRF security is Advprf

G (t), that is the maximum advantage
over all adversaries A running in time t.

The PRP/PRF Switching Lemma. Consider a random n-bit to
n-bit function. The set of all n-bit to n-bit functions surely includes
permutations, but it is easy to see that the set of all permutations is
a relatively small subset. In other words, such a random function is
extremely unlikely to be a permutation as n grows. The fundamental
difference between a PRF and a PRP is that a permutation is bijective,
that is every different input maps to a different output, while a PRF has
collisions with overwhelming probability for large n. We can compare a
PRP with a PRF by looking at the PRP advantage of a PRF or vice-versa:

Lemma 1.1 (PRP/PRF Switching Lemma). Let n ≥ 1 an integer and A
an adversary performing at most σ oracle queries. Then

Pr(Af(·) → 1)−Pr(Ap(·) → 1) ≤ σ(σ − 1)
2n+1

with f a function uniformly drawn from the set of all n-bit to n-bit functions
and p a permutation uniformly drawn from the set of all n-bit to n-bit
permutations.

38 Chapter 1. Modern Cryptography

This is the PRP/PRF Switching Lemma 1.1 that was first proved
by Bellare and Rogaway [BR06]. It implies that a PRF and a PRP
are indistinguishable up to σ � 2n/2 computations. Indeed, after 2n/2
computations we expect to observe a repetition in the output of a pseudo-
random function which cannot happen for a pseudo-random permutation.

It is critical to limit the power of the adversary to t time or operations
even though it makes formal proof difficult. Indeed, an all-powerful A can
always brute-force the key and see whether the permutation belong to
the family defined by E or not. Enumerating all the keys requires O(2κ)
operations giving a substantial advantage.

In practice, sustained cryptanalysis efforts allow us to conjecture that
there are no better attacks than brute-force to win the PRP or sPRP
security game. The AES block cipher [AES], for one, has earned a great
deal of trust, and it is now routinely conjectured that the advantage is
Advsprp

AES(t) ≤ 2t−128 with a 128-bit key size.
This conjecture means that any adversary limited to a realistic compu-

tation time has only a low advantage in the PRP and sPRP security game.
But what is a realistic computation time? Let us make a comparison: the
blockchain community is a good example of people going to great lengths
to compute some cryptographic functions over and over again. In March
2020 they reached a rate of 120 quintillions hash per second [BCC], that
makes for around 267 computations every second. This is huge. Never-
theless, at this rate and according to the AES conjuncture, it would still
take about 73 billions years to reach 2128 computations and break a single
instance of AES or, alternatively, one billion years to reach a 1/73 PRP
advantage.

1.2.2 The Need for Modes of Operation
A good block cipher along with a random secret key thus defines a codebook
or a dictionary from any n-bit words to another n-bit words that looks
random enough for any adversary. However, messages are of arbitrary size
while a block cipher has a typical size of n = 64 or 128 bits. Modes of
operation allow us to deal with those arbitrary long messages.

A mode of operations is a description of how to treat any messages using
a secure primitive such as a block cipher. Typically, the message is first split
into n-bit blocks and padded if necessary such that m = m1 ‖m2 ‖ ... ‖m`.
It is then processed according to the mode’s specifications. We like to

1.2. Modern Symmetric Cryptography 39

represent a mode of operation with a diagram like the one for CBC on
Figure 1.3 that produces a ciphertext c from a message m and, optionally,
an initial value IV.

m0

Ek

IV

c0

m1

Ek

c1

m2

Ek

c2

Figure 1.3: Diagram of the Cipher Block Chaining mode of operation
(CBC) where c0 = Ek(m0 ⊕ IV) and ci = Ek(mi ⊕ ci−1).

One could be tempted to use a block cipher just like one used sub-
stitution ciphers in earlier times. Simply split and pad the message into
n-bit blocks and independently pass them through the block cipher to get
the ciphertext as ci = Ek(mi). This is the Electronic Code Book mode
(ECB), and we show in Section 2.1.2 how it actually fails to provide any
satisfying level of security.

From Assumptions to Proofs. A mode of operation usually comes
with a formal proof of security. A formal proof is possible with the
assumption that the underlying primitive is secure. A secure mode using a
block cipher typically assumes a bound on the PRP or sPRP advantage of
Definition 1.1. Concretely, modes of operation can be proven secure after
replacing the block cipher by a random permutation. If an adversary can
break a given construction when instanced with a block cipher but not
when instanced with a random permutation, this would be a distinguisher
for the sprp security game and break the sPRP security assumption.

In practice, there are many proofs that start by replacing the block
cipher by a random function instead of a random permutation. This
includes the proof of ANYDAE shown in Chapter 6. The idea is to first replace

40 Chapter 1. Modern Cryptography

• • • • • • •f(·) f(·) f(·) f(·) f(·) f(·)

f(·)

O(2n/2) values

• • • • • • • • • •p(·) p(·) p(·) p(·) p(·) p(·) p(·) p(·) p(·)

p(·)

O(2n) values

Figure 1.4: Iterating a random function f(·) versus iterating a random
permutation p(·).

the block cipher by a random permutation (PRP security assumption)
and then apply the PRP/PRF Switching Lemma 1.1.

1.2.3 Random Functions and Permutations
Here we wish to give some insights on the difference in behavior of random
functions and random permutations which will be useful throughout this
manuscript. Unlike a permutation, a random function can be defined
with arbitrary input length though in this Section we limit ourselves to
n-bit-input functions. The behavior we expect from random permutations
is the same as the behavior we expect from secure PRPs and the same
can be said for random functions and PRFs.

Iterating Behavior. While random permutations and random func-
tions are indistinguishable up to 2n/2 computations, their respective ex-
pected behavior diverges afterwards. This is especially true when iterating
over and over the function as x→ f(x)→ f(f(x))→

A random function is expected to reach a collision after about 2n/2
computations which makes the sequence starts looping over previously seen

1.2. Modern Symmetric Cryptography 41

values. As the image set {0, 1}n is finite, any permutation will also have
to cycle through previously seen values. However, since a permutation
has no collision, it will necessarily loop back to the starting value. In
fact, we know the order of magnitude of the length of such cycles. For
a random function, it is O(2n/2) as it corresponds to the first collision.
This comes from the birthday paradox, see Section 3.1.1 for more details.
For a random permutation, it is O(2n). Indeed, knowing that a random
permutation was iterated σ times without closing a cycle, the probability
of going back to the starting value in the next iteration is only 1/(2n − σ),
thus it most probably won’t loop until σ is of order of magnitude O(2n).
We illustrate the difference in behavior in Figure 1.4.

Why Permutations? At first glance, the reason why we wish for a block
cipher to define a family of permutations is so that it is invertible. However,
we see in Chapter 2 that many modes actually allow for decryption without
the use of the inverse. This is an appreciated feature as it lowers the
implementation cost. Some of the most widely used modes, including
the Counter mode shown in Section 2.1.4, actually benefits from a better
security when used with a PRF instead of a PRP.

The reason may instead be that PRPs are easier to build. We present
a few design strategies for building block ciphers in Chapter 7. Such
iterative strategies can’t be applied to build a pseudo-random function as
composing PRFs is a delicate thing to do.

For instance, composing two random permutations p1 and p2 as p(·) =
p1(p2(·)) is perfectly fine: it is akin to shuffling a deck twice instead of
once. Hence, it provides for another random permutation that is absolutely
equivalent to being randomly drawn from the set of all permutations.
When composing the same random permutation as p(·) = p1(p1(·)), the
conclusion is less obvious. If we consider the iterating behavior of such p
against p1, all the loops of even size will be halved so that p will contain
an unexpected number of loops of odd size. Nevertheless, Minaud and
Seurin [MS15] proved that such a p is indistinguishable from a truly random
permutation up to Ω(2n) computations, meaning that the difference in
behavior (the sPRP advantage) is mostly negligible.

On the other hand, composing twice a random function like f(·) =
f1(f1(·)) is only behaving like a true random function up to O(2n/2)
computations. The intuition is that composing makes a collision more
likely to happen and the iterating behavior (Figure 1.4) will be shorter in

42 Chapter 1. Modern Cryptography

expectation for every loop. Concretely, the first collision happens after√
π
4 2n/2 computations instead of

√
π
2 2n/2 [CL14]. This leads to a prf

security game distinguisher running in O(2n/2). This distinguisher even
works when composing different random functions like f(·) = f1(f2(·)).
Those results show how subtle it is to deal with random functions while
hoping to preserve the expected behavior.

PartIModes of Operation

43

Chapter2Introduction to Modes of
Operation

Modes of operation describe how we can use some primitive to achieve
a concrete cryptographic goal. The primitive can be a permutation, a
hash function, a block cipher, a tweakable block cipher, etc. Typically,
this primitive is assumed to be secure which allows for the security to
be proven information theoretically. The modes of operation are thus
naturally classified according to their goals.

In this chapter we successively introduce modes that aim at encrypting
messages in Section 2.1, authenticating messages in Section 2.2 and both
encrypting and authenticating in Section 2.3. Finally, we conclude by
dwelling deeper on various security notions of modes of operation with
Section 2.4 that will motivate the contributions shown in later Chapters.
Most of the presented modes will rely on the use of block ciphers as
it is to date the most widely deployed type of primitive thanks to the
standardization and popularity of the DES followed by the AES. However,
there are also modes relying on public permutations and others relying on
tweakable block ciphers. We give example of such in Section 2.3.4.

2.1 Modes for Encryption
Privacy or confidentiality is the cryptographic goal of an encryption. We
want to hide all information about the message, also called plaintext, into
a ciphertext.

They are now many modes for encryption but not all of them are
standardized and much less in use. In this section we’ll introduce some
of the most well-known modes and comment on their merits with a focus
on the security profile. Not only must an encryption hide the message
content but it must also allow the recipient to recover the message knowing
the key. Such a mode therefore takes a secret key k, a message m and,

45

46 Chapter 2. Introduction to Modes of Operation

sometimes, an initial value IV as input and outputs a ciphertext c that
will be sent along with the IV . Thus, c = EncIVk (m). A decryption
algorithm, m = DecIVk (c), is also necessary for completeness but is most
of the time obvious given the specification of the encryption.

2.1.1 Security Game
Indistinguishability from Random Bits. To assess the security of
a mode of operation doing encryption we imagine the following security
game. As for any distinguishing game, the adversary has a black box
access to a function, we call it an oracle, and must distinguish between two
worlds, the real and the ideal worlds. In the real world, a key k is chosen at
random and the adversary has access to the encryption of any message m
under a possibly chosen IV and gets the proper corresponding ciphertext:
EncIVk (m). In the ideal world, whatever the adversary requests he will
get a random bit string of corresponding size, that is the random function
$(IV,m) $←−− {0, 1}|EncIV0 (m)|.

A Enc·
k(·)

A $(·, ·)

Real World
Ideal World

Figure 2.1: Distinguishing game for the IND$-CPA security of an encryp-
tion mode where k is a random key value and $(·, ·) is a random function.

The attacker advantage for the indistinguishability from random bits
against Chosen Plaintext Attack, IND$-CPA, of a mode of operation is
defined as:

AdvIND$-CPA
· (A) = Pr(AEnc·k(·) → 1)−Pr(A$(·,·) → 1) , (2.1)

the IND$-CPA security of a mode is understood as the highest advantage
against all attacker A, that is AdvIND$-CPA. Because (IV,m) query repe-
titions would lead to a trivial distinguisher, this game has some variants
for restricting the adversary. If there is no IV , A cannot repeat queries;

2.1. Modes for Encryption 47

the notion is deterministic IND$-CPA like in Section 2.1.2. If the IV is
random, A is not allowed to choose it and the IV is instead randomly
drawn before each encryption; we’ll call this notion IND$-CPA-rIV as
used in Section 2.1.3. At last, if the IV is a nonce, usually denoted N ,
A can freely choose the IV but can’t repeat twice the same value even
for two different messages; we’ll call this notion IND$-CPA-N as used in
Section 2.1.4.

An IND$-CPA secure mode means that any adversary cannot distinguish
the ciphertext from a random bit string uncorrelated with the plaintext.
The advantage really measures how close we are from perfect security of
the ideal world where every ciphertext is equally likely and independent
of the message.

Other Security Notions. There exists other security notions. For
example there is the indistinguishability notion that asks the attacker to
distinguish the encryption of the input message against the encryption of
a random message; or the left-or-right notion where the attacker inputs
two messages m0 and m1 and receives the encryption of only one of them
before guessing which message was encrypted.

The main point is that the discussed IND$-CPA notion is one of the
strongest security notion and implies the other ones. In particular, IND$-
CPA implies the indistinguishability and the left-or-right security notions.

On Chosen Ciphertext Attack. In this section we won’t consider
security under Chosen Ciphertext Attack (CCA) where the adversary can
freely choose the ciphertext as well as the plaintext. IND-CCA notions are
common in public key cryptography but translate poorly in the symmetric
setting. This is particularly true for encryption modes whose aim is not
to provide security against malleability of the ciphertext. We discuss later
ways protect the integrity of the message. In some sense, CCA security
will be achieved by the AE notion shown in Section 2.3.1

Assumptions. To allow for a proof of a mode of operation, we need the
assumption that the underlying primitive is secure. For instance modes
of operation using a block cipher E will be proven by first assuming E is
either PRP or sPRP secure and then replacing the block cipher by a truly
random permutation. Consider the CBC mode of Section 2.1.3 and let p

48 Chapter 2. Introduction to Modes of Operation

be a truly random permutation, then:

AdvIND$-CPA
CBC−E (t) ≤ Advprp

E (t) + AdvIND$-CPA
CBC−p .

Therefore, we can give a bound of AdvIND$-CPA
CBC−E (t) by independently bound-

ing the PRP security of E and proving the security of the mode instanced
with a random permutation. While the primitive has a computational
security depending on the running time t, the security of modes using a
perfect primitive are typically proven in the information theoretic setting
and thus does not depend on t. Instead, it will depend on the size and
number of queries made.

Leakage. It is harder for an adversary to recover any unknown bit of
information on an encrypted message than to win the IND$-CPA security
game. This IND$-CPA notion thus captures the leakage of any kind of bit
of information.

The only leakage allowed here is the message length. A ciphertext
necessarily leaks a maximum message length so avoiding this kind of
leakage is beyond the goal of such modes of operation.

2.1.2 An Insecure Mode

m0

Ek

c0 c1

Ek

m1

c2

Ek

m2

c3

Ek

m3

c4

Ek

m4

Figure 2.2: Electronic Code Book mode (ECB) where ci = Ek(mi).

The Electronic Codebook mode of operation (ECB) is one of the earliest
mode of operation as well as one of the simplest. We give its diagram in
Figure 2.2. Though it has been standardized as early as 1980 by the FIPS81
document of the NIST for use along with the DES block cipher [FIPS81],
it is also a good example of how to NOT use a block cipher.

2.1. Modes for Encryption 49

Algorithm 2.1 IND$-CPA distinguisher for ECB mode for encryption.
1: input: f is either encryption or random.
2: output: 1 if f(·) = Enck(·), 0 otherwise.
3: procedure ECBDistinguisher(f(·))
4: Take any m ∈ {0, 1}n.
5: c0 ‖ c1 ← f(m ‖m)
6: return c0

?= c1 . return 1 if true, 0 otherwise.

Distinguisher. We can easily show that ECB is not IND$-CPA secure
by describing a distinguisher that only needs a single query: the attacker
A requests a 2-block message with two identical blocks m ‖m, gets the
encryption c0 ‖ c1 and simply check whether c0

?= c1 which will happen
every time with ECB but is very unlikely in the random case. We explicitly
describe such an adversary in Algorithm 2.1.

The advantage of such an adversary A that implements Algorithm 2.1
can be easily computed: Pr(AEnck(·) → 1) = 1 by construction of ECB
mode and Pr(A$(·) → 1) = 2−n since there is a 1

2n chance that equality of
the cipher occurs randomly. Thus, there exists an A that has an advantage
AdvIND$-CPA

ECB (A) = 1− 2−n after a single query and a single comparison.
Independently of the cipher used, the ECB mode therefore offers no

security guarantees after a single encryption.

In Practice. The ECB mode is well known to spectacularly fail at en-
crypting raw images. Images have a lot of redundancy thus the input
will often repeat and recognizable patterns will be preserved through
encryption.

ECB is still largely supported mainly for legacy reasons but, surprisingly,
we sometimes also see new products implementing it. For example, a
report from Marczak and Scott-Railton analyzing the web meeting service
Zoom showed that the AES128 block cipher is used in ECB mode [MS20].
A later white paper by the company itself confirmed the use of ECB though
it claims to use the AES256 block cipher [Zoo20].

2.1.3 Legacy Modes for Encryption
Among the earliest modes of operation we can cite the Cipher Block
Chaining mode (CBC), but also the Output Feedback mode (OFB) and the

50 Chapter 2. Introduction to Modes of Operation

Cipher Feedback mode (CFB). They were standardized early with the
ECB mode in the FIPS81 document [FIPS81] to be used with the DES
block cipher. Thus, they are largely deployed and still supported by many
systems.

m0

Ek

IV

c0

m1

Ek

c1

m2

Ek

c2

Figure 2.3: Cipher Block Chaining mode (CBC) where c0 = Ek(m0⊕ IV)
and ci = Ek(mi ⊕ ci−1).

Cipher Block Chaining. The CBC mode (Figure 2.3) is probably the
most popular encryption mode out of the 4 early standardized modes. The
security of CBC was first proved in 1997 by Bellare et al. [Bel+97], nearly
17 years after its standardization. They used the left-or-right notion of
security, and their result also holds for the IND$-CPA-rIV notion of security
according to Rogaway [Rog11]. We won’t go into the details of the proof
but we give its statement:

AdvIND$-CPA-rIV
CBC−E ≤ Advprp

E + σ2/2n, (2.2)

with σ the number of calls to the block cipher which corresponds to σn
bits of processed plaintext.

Output Feedback. The OFB mode (Figure 2.4) can be seen as a stream
cipher built with a block cipher. It produces a key stream by applying
iteratively the block cipher and then simply XORs the key stream with
the plaintext to produce the ciphertext. OFB possesses some advantages
over CBC: the decryption is the same as the encryption, it only uses the
block cipher in the forward direction, and padding of the message to a

2.1. Modes for Encryption 51

IV

Ek

m0

c0

Ek

m1

c1

Ek

m2

c2

Ek

b·c|m3|

m3

c3

Figure 2.4: Output Feedback mode (OFB) where where c0 = Ek(IV)⊕m0
and ci = Ek(mi−i ⊕ ci−1)⊕mi.

length multiple of n is not needed as one can truncate the unnecessary
bits of key stream.

The proof of security of OFB is a direct corollary of the security of
CBC. Indeed, the key stream can be seen as the CBC encryption of an all
zero 0σn message. As long as CBC is IND$-CPA-rIV, the encryption of any
message is undistinguishable from a random string. Simply XORing a
random string to the message to produce the ciphertext is perfectly secure
as it is a One-Time-Pad. Thus,

AdvIND$-CPA-rIV
OFB−E ≤ Advprp

E + σ2/2n, (2.3)

where σ is the number of block cipher calls.

Cipher Feedback. The CFB mode (Figure 2.5) can be seen as a self-
synchronizing stream cipher. The message is split into blocks of r bits,
and we only use the r most significant bits of the output of the block
cipher while throwing out the rest. A proof of security was shown by
Alkassar et al. [Alk+02] with the same bound as the CBC. Again their
result can easily be translated into the IND$-CPA-rIV notion of security:

AdvIND$-CPA-rIV
CFB−E ≤ Advprp

E + σ2/2n, (2.4)

with σ the number of block cipher calls (processing σr bits of message).
An advantage of CFB over CBC is the use of the block cipher exclusively

in the forward direction and the absence of padding. However, when r < n
the CFB mode requires more computations for the same message length.

52 Chapter 2. Introduction to Modes of Operation

IV

Ek

b·cr

m0

c0

<<r

Ek

b·cr

m1

c1

<<r

Ek

b·cr

m2

c2

<<r

Ek

b·c|m3|

m3

c3

Figure 2.5: Cipher Feedback mode (CFB) where S0 = IV , c0 =
bEk(S0)cr ⊕mi and Si = Si−1

[0:(n−r)] ‖ ci−1, ci = bEk(Si)cr ⊕mi.

Random IV. The security of modes CBC, OFB and CFB can only be
proven secure for random IVs. Concretely, the security game of Section 2.1.1
does not allow the adversary to choose the IV for encryption. Instead, the
IV value is sampled randomly by the real world oracle and is returned to
the attacker along with the ciphertext. There are indeed easy distinguishers
if we let the attacker choose the next IV value to be used.

This can be considered as a weakening of the concept of the IND$-CPA
security. In practice, this makes those modes more prone to implementation
errors and implicitly requires additional works to properly produce random
values.

Matching Distinguishers. All these modes have a matching distin-
guisher based on collision searching. In every of those modes an attacker
can detect a collision in the outputs of a block cipher and thus deduce
a collision in the inputs. For example, with the CBC mode, when one
detects ci = cj for some i 6= j, the equality in input can be verified as
ci−1⊕mi

?= cj−1⊕mj . Since this equality won’t hold with great probability
in the ideal world, this makes for a distinguisher.

The probability for a random collision goes up with σ and is roughly
σ2/2n. This is the birthday paradox, and the implied 2n/2 security bound
is the birthday bound. Notice that the security upper bound also grows
like σ2/2n. This is a matching distinguisher showing the proof is tight.

2.1. Modes for Encryption 53

Since the attacker can choose the message, a random collision is
unavoidable for CBC and CFB. For the OFB mode, the situation is slightly
different: one avoids collision by encrypting its messages as a single very
long message. It suffices to use a single IV and chain the permutation.
This ensures that the only possible collision is when the internal state
goes back to the initial IV. We’ve seen in Section 1.2.3 that the expected
number of blocks before the internal state goes back to the starting value
(initial IV) is in the order of O(2n), much greater than 2n/2.

However, even in that case, there is a matching distinguisher as one
can detect the absence of collision. In the ideal world the values mi ⊕ ci
are completely random, thus collisions are bound to happen after 2n/2
block encryptions. The absence of such collision when σ approaches the
birthday bound is sufficient to build a matching distinguisher. Therefore,
the OFB mode used in this way shares the same distinguisher as the CTR
mode shown in Section 2.1.4 and even shares the more advanced plaintext
recovery attack of Chapter 4.

Conclusion. Those three legacy modes of encryption have the great
advantage of being secure, especially compared with the ECB mode. Among
those, the popularity of CBC was probably due the vague protection against
tampering of the message. If one changes a bit of the ciphertext, it will
make a whole block of plaintext looks like garbage after decryption. But
it will still predictably change another block of plaintext which may be
problematic.

Drawbacks of the CBC mode therefore include this fake sense of protec-
tion but, more importantly, the need for random IVs as well as the need
for a good padding scheme of the message to a multiple of a block size
or some ciphertext stealing. While the CBC mode seems easy, it is just as
easy to get it wrong. On the other hand, the Counter mode of encryption
(Section 2.1.4) solves those issues while keeping it simple.

2.1.4 The Counter Mode
At the time of this writing the Counter mode (CTR) is arguably the most
deployed and used standard for encrypting data, in particular for TLS
secured connections. The idea of the Counter mode is due to Diffie and
Hellman [DH79] as early as the legacy modes of Section 2.1.3, but its
standardization is more recen. The NIST started recommending the CTR
in 2001 [Dwo01], and it is mostly used along with the AES block cipher.

54 Chapter 2. Introduction to Modes of Operation

N ‖ 0

Ek

m0

c0

m1

c1

Ek

N ‖ 1

m2

c2

Ek

N ‖ 2

m3

c3

b·c|m3|

Ek

N ‖ 3

Figure 2.6: Diagram of the counter mode (CTR) where ci = Ek(N‖i)⊕mi.

The CTR mode (Figure 2.6) can be seen as a stream cipher built upon
a block cipher. It uses a nonce N as an IV to initialize a counter that
goes as input of the block cipher. The message is encrypted with a
simple XOR of the output with the plaintext to produce the ciphertext as
ci = mi ⊕ Ek(N ‖ i).

Thus, the block cipher is only used in the forward direction, and
decryption is the same as encryption. It also doesn’t require any padding
as it can simply cut the key stream to the exact message size. The CTR
mode is also highly parallelizable.

Security Proof. Not only is the CTR mode provably secure, but its
proof is actually quite simple. The proof is mainly about bounding the
advantage an adversary has in distinguishing E from a random function,
that is bounding the value Advprf

E (t). Then we simply need to realize that
the CTR mode used with a random function is perfectly secure: as the
counter ensures the input is never repeated, the output is always a “fresh”
random value and perfectly masks the plaintext like a One-Time-Pad
would do.

2.1. Modes for Encryption 55

The proof unfolds:

AdvIND$-CPA-N
CTR−E ≤ Advprf

E + AdvIND$-CPA-N
CTR−prf

≤ Advprf
E As AdvIND$-CPA-N

CTR−prf = 0.
≤ Advprp

E + Advprf
prp As E is a block cipher.

≤ Advprp
E + σ(σ − 1)/2n+1 Apply Lemma 1.1.

(2.5)

AdvIND$-CPA-N
CTR−E ≤ Advprp

E + σ2

2n+1 ,

with σ the number of block cipher calls, that is the number of encrypted
blocks of message.

The step 2.5 uses the PRP/PRF switching lemma (Lemma 1.1) to
bound Advprf

prp.

Matching Distinguisher. A matching distinguisher directly comes
from the fact that a block cipher is a pseudo-random permutation and
not a pseudo-random function. As the input never repeats, every block of
key stream will be different and no collision is ever possible in the mi ⊕ ci
using the CTR mode. On the other hand, in the ideal world, a completely
random cipher will end up giving an n-bit collision at the birthday bound,
that is after about 2n/2 blocks.

Thus, after about 2n/2 blocks a distinguisher can discriminate with
good probability between the ideal and real worlds by looking at the
presence or absence of collision between blocks, respectively. In fact, the
upper-bound of the security proof and the lower-bound of this distinguisher
both grow at the same rate that is roughly σ2/2n. Therefore this is a
matching distinguisher.

Nonce-based Encryption. Per definition, a nonce never repeats. If
the inputs of the block cipher repeat a single time, the security of the CTR
mode completely collapses as it will reuse the same key stream twice. In
our description of the CTR these inputs are described as N ‖ i which avoids
any repetition. However, any sound way of incrementing the input would
be secure. In practice, N is often a message counter.

For the IND$-CPA-N security, the adversary can choose the IV himself
but it is strictly forbidden to use the same IV twice. This is an improvement

56 Chapter 2. Introduction to Modes of Operation

over random IVs based encryption that couldn’t allow the adversary to
freely choose this value.

Nonce-based encryption like the CTR mode is therefore more robust
and less prone to implementation errors. However, one still has to be
careful of not repeating the nonces which still makes room for devastating
attacks.

Conclusion. The Counter mode is probably the best choice for encryp-
tion among the ones presented so far. It achieves a stronger notion of
security with an easy proof while keeping the specification simple. Being
nonce-based, it may be less prone to implementation errors though one
still have to carefully avoid any repetitions.

The late adoption of the CTR mode may be due to its high malleability.
Flipping a bit of the ciphertext will predictably flip the corresponding bit of
the plaintext. While avoiding malleability is not the goal of an encryption
scheme, it is true that CTR must be combined with an authentication mode
of operation in order to avoid tampering of the ciphertext.

2.2 Modes for Authentication
The goal of authentication modes of operation is to avoid any undetected
tampering of the message. Concretely, an authentication mode outputs an
authentication code, also called a tag or a MAC, that is sent along with the
message. Cryptographers routinely use the word MAC to describe both
the authentication mode and its output, the tag. The message can again
be of arbitrary size while the output of a MAC is of fixed size, say s bits,
meaning that MAC(m) ∈ {0, 1}s. The message itself is not encrypted.

They are few situations where one needs authentication without en-
cryption but it happens. For example, the Network Time Protocol (NTP)
is a protocol to synchronize several distant clocks as precisely as possible
which only requires authentication [Leu15]. While the timing is not a
secret, it must be authentic as it may be critical to detect replay attacks
or to assess the validity of certificates. Authentication-only usually makes
much more sense than encryption without authentication. Moreover, a
good understanding of authentication modes of operation allows us to
build authenticated encryption modes in the next Section 2.3.

2.2. Modes for Authentication 57

2.2.1 Security Game
Existential Unforgeability. To attack an authentication mode of op-
eration, the adversary has to build a forgery. A forgery is defined as a
valid message and tag pair that was produced without using the key. Any
message will do as long as the tag is correct, that is an existential forgery.
As we assume the adversary can choose the message and adapt from the
answer, we define the notion of Existential Unforgeability under Adaptive
Chosen-Message Attack, we’ll call it EUF-ACMA or simply EUF security.

In the EUF security game, a key k is first randomly chosen and the
adversary is given access to two oracles:, a MAC generation and a MAC
verification. The MAC generation takes any message m and returns
MACk(m). The MAC verification asks for a pair (m,T) ∈ {0, 1}∗ ×
{0, 1}s and outputs V (m,T) = > or ⊥ whether the MAC is valid or not,
respectively. So, we define the EUF security advantage for an authentication
scheme MAC as:

AdvEUF
MAC(A) = Pr(AMACk(·),Vk(·,·) forges) , (2.6)

with the randomness of k and A. Forging in this context means finding
(m,T) such that Vk(m,T) = > for an m never queried before.

In the case of a nonce-based MAC, the adversary can choose a nonce
when querying for a tag T = MACk(N,m) but cannot repeat it for two
different queries. However, it can repeat the nonces for verification queries
Vk(N,m, T), we’ll call this notion EUF-N:

AdvEUF-N
MAC (A) = Pr(AMACk(·,·),Vk(·,·,·) forges) . (2.7)

Provable Security. In order to be able to prove anything about such
statement, one must again assume the underlying primitive to be se-
cure. Block cipher-based authentication modes typically assume the PRP
security of the block cipher.

Then, when dealing with provable security, we want to look at the
number of queries to the MAC generation oracle, qt, the number of queries
to the MAC verification oracle, qv and the query length, q`. For instance,
an attacker can always randomly guess the MAC of a given message with
an advantage of qv/2s. It is a kind of brute-force attack that is generic
for any authentication mode. A typical proof statement will give an
upper-bound of the advantage growing in function of q`, qt and qv.

58 Chapter 2. Introduction to Modes of Operation

PRFs are good MACs. The EUF security notion does a good job at
capturing the security of an authentication mode but it may often be
simpler to compare the authentication mode to a pseudo-random function.

Remember the PRF security Definition 1.3. We apply it with the
construction being the MAC function that takes as input any message
m ∈ {0, 1}∗ and outputs an s-bit value that is:

Advprf
MAC(A) = Pr(AMACk(·) → 1)−Pr(Af(·) → 1) , (2.8)

where k $←−− {0, 1}κ and f $←−− F where F is the set of all {0, 1}∗ → {0, 1}s
functions.

While a MAC that is a good PRF is EUF secure, the converse is
not true: a MAC could for example leak some information about the
message and still be hard to forge, but it would immediately miss the
PRF requirement. On the other hand, a non-generic attack on the EUF
security directly translate into an attack on the PRF property of the
studied authentication mode. More precisely, Bellare, Goldreich, and
Mityagin [BGM04] showed that:

AdvEUF
MAC(t) ≤ Advprf

MAC(t+ qt + qv) + qv
2s

with qt and qv the number of tagging and verification queries, respectively.
We recognize qv/2s, the probability of success of randomly guessing the
correct tag. Indeed, even a perfect PRF would be subject to this generic
attack.

Proofs for deterministic MAC therefore often tend to use this PRF
specification, as it will be the case in Chapter 6, while cryptanalysis often
looks at the EUF security game as in Chapter 5. On the other hand,
nonce-based MACs like the Wegman-Carter in Section 2.2.3 cannot be
described as PRFs.

2.2.2 CBC-MAC
One way to build an authentication mode of operation is to adapt the CBC
mode to produce a tag or a MAC. As the tag must depend on the whole
message and must be of length s ≤ n, the only value of interest is the last
output of a CBC style encryption.

CBC-MAC variants shown here are all secure as PRFs with birthday-
bound provable security.

2.2. Modes for Authentication 59

m0

Ek

m1

Ek

m2

Ek

m3

Ek

b·cs

MAC(m)

Figure 2.7: Raw CBC-MAC. Outputs the last block of a CBC encryption.

Raw CBC-MAC. A raw CBC-MAC authentication mode is shown in Fig-
ure 2.7: it simply truncates the last output of the block cipher to an s-bit
tag.

Used as it is CBC-MAC is clearly insecure. There is an easy forgery
attack assuming s = n: first query the tag T1 = MAC(m1) for some
message m1, then query T2 = MAC(T1 ⊕ |m2). By construction, T2 is a
valid tag for the message m1 ‖m2.

Notice that the attacker can freely choose messages m1 and m2 before
interacting with the oracles. Therefore, this attack is stronger than an
existential forgery attack. We call it a universal forgery attack. Note that
we can’t deduce the security of CBC-MAC from the IND$-CPA security of
CBC encryption as CBC-MAC is deterministic and doesn’t use any IV.

However, the mode can actually be made secure by adding the require-
ment that the processed messages be all prefix-free.

Definition 2.1 (Prefix-free Formatting). A formatting function Fmt is
prefix-free if and only if no output is the prefix of another output, that is
for any two messages m, m′ with Fmt(m) and Fmt(m′) of lengths ` and `′
respectively and ` < `′ we have Fmt(m) 6= bFmt(m′)c`.

Some padding schemes can act like prefix-free formatting functions
(Definition 2.1) by encoding the length of the message in the first block.
Another way to do it is to restrict the messages to a fixed length, but that
defeats the point of dealing with arbitrary size messages.

Encrypt-last-block CBC-MAC. Alternatively, one can improve the secu-
rity to deal with any messages by encrypting the output of a raw CBC-MAC

60 Chapter 2. Introduction to Modes of Operation

m0

Ek1

m1

Ek1

m2

Ek1

m3

Ek1 Ek2

b·cs

MAC(m)

Figure 2.8: Encrypt-last-block Cipher Block Chaining Authentication
mode (ECBC).

under a second key. This is the ECBC construction shown in Figure 2.8.
At the price of an additional block cipher call, ECBC can be proven secure
without requiring prefix-free formatting. A classic 10∗ padding is enough:
append the message with a 1 and add as many 0 as needed to get to a
length multiple of n.

m0

Ek0

m1

Ek0

m2

Ek0

m3

pad

Ek0

b·cs

MAC(m)

|m3| < n ? k1 : k2

Figure 2.9: Cipher-based MAC Authentication mode (CMAC).

CMAC. One can do even better with CMAC, Figure 2.9. CMAC uses three
different keys, k0 for the block cipher, k1 when padding is required and
k2 when it is not. Simply masking the last input with a key is enough
to guarantee security and avoids the need for an additional block cipher
computation. Avoiding this kind of additional computation is especially

2.2. Modes for Authentication 61

good for short messages. Moreover, the use of two different keys allows
CMAC to optimally deal with messages of length multiple of n. A 10∗
padding would append a full block to such a message, but with CMAC it is
only used when necessary.

Macthing Forgery Attacks. Matching attacks can be shown for all
CBC-MAC modes. In fact, a generic forgery attack by Preneel and van
Oorschot [Pv95] implies a matching birthday-bound cryptanalysis against
all iterated deterministic MAC with an n-bit internal state. We detail this
generic attack in Section 3.1.2.

2.2.3 The Wegman-Carter Construction
The idea of Wegman and Carter [WC81] is to use a keyed almost XOR-
universal (AXU) hash function h along with a pseudo-random function F .
The Wegman-Carter MAC is MAC(m) = hk′(m)⊕ Fk(N) with the secret
keys k and k′ and a nonce N .

This construction benefits from strong security guarantees as it is
as strong as the PRF and the universal hash function employed. Let a
construction WC− h, F using a δ-almost XOR-universal hash function h
(Definition 2.2) and a family of functions F then:

AdvEUF-N
WC−h,F (t) ≤ Advprf

F (t+ qt + qv) + qvδ + 2−n ,

against nonce-respecting adversaries with qv the number of verification
queries.

Definition 2.2. Let δ > 0 and a function h : K × T → Y for non-empty
binary string sets K, T ,Y.
h(k, t) is said to be δ-almost XOR-universal (AXU) if for any distinct t
and t′ ∈ T and any y ∈ Y,

Pr
(
k

$←−− K : h(k, t)⊕ h(k, t′) = y
) ≤ δ .

Wegman-Carter-Shoup. In practice, we like to use block ciphers as
it is often the most readily available primitive. Block ciphers are pseudo-
random permutations, but the PRP/PRF switch (Lemma 1.1) tells us that

62 Chapter 2. Introduction to Modes of Operation

N

Ek

b·cτ

MAC(m)

hk′m

Figure 2.10: The Wegman-Carter-Shoup construction.

a pseudo-random permutation actually behaves like a pseudo-random func-
tion up to the birthday bound. The Wegman-Carte-Shoup construction
exploits that fact and uses a block cipher E for the function F (Figure 2.10)
to compute MAC(m) = hk′(m)⊕ Ek(N).

The drawback is that the provable security falls down to the birthday
bound. One can easily see that by using the PRP/PRF switch Lemma 1.1
and get the bound:

AdvEUF-N
WC−h,E(t) ≤ Advprp

E (t+ qt + qv) + (qt + qv)(qt + qv − 1)
2n+1 + qvδ+ 2−n ,

since (qt + qv) is the number of block cipher calls.
However, there’s been a few works trying to prove that the security

still holds as we get near the 2n/2 bound. Shoup [Sho96] first showed that
as long as qt <

√
1/δ, then:

AdvEUF-N
WC−h,E(t) ≤ Advprp

E (t+ qt + qv) + 2qvδ .

Later, Bernstein [Ber05a] again improved the bound showing that one
could go slightly beyond

√
1/δ authenticated messages and still have some

good security property. GMAC and Poly1305 are good examples of deployed
authentication modes following this strategy.

Galois MAC. A popular example is GMAC authentication mode that fol-
lows the Wegman-Carter-Shoup construction with the Galois Hash (GHASH)
AXU secure hash function. Concretely, the GHASH function evaluates a
Galois Field polynomial, whose coefficients are the message blocks and

2.2. Modes for Authentication 63

N

Ek

b·cs

MAC(m)

...

`m`m2m1

H H H H

Figure 2.11: The Galois/counter Message Authentication Code GMAC
construction for an `-block message with an hash key H and a block cipher
key k.

block length, at a secret value H that is the hash key. For example, a
3-block message is processed as GHASH(m) = m1H4⊕m2H3⊕m3H2⊕3H.

An advantage of the GMAC construction is the possibility of computing
the hash in parallel as well as sequentially. As a drawback, we note the need
to implement Galois Field arithmetics to perform quick multiplications.

Matching Attack. In the nonce respecting model and untruncated tag
(s = n), a forgery attack on GMAC in the information theoretic setting by
Preneel and Luykx [LP18] matches the latest bound by Bernstein [Ber05a].
Independently, and at the same time, Leurent and I [LS18] also found
a similar forgery attack but with a greater focus on time and memory
complexity which gives the first attack in this setting in time complexity
less than O(2n).

The main idea of these forgeries is to solve to recover a difference
hk′(m) ⊕ hk′(m′) and deduce the hash key k′ by solving the equation.
Therefore, this approach works for all Wegman-Carter-Shoup constructions
with h a polynomial hashing function. This includes GMAC and Poly1305.
We give details on Chapter 4 for this attack and notably introduce the
missing difference problem to recover the difference hk′(m)⊕ hk′(m′).

64 Chapter 2. Introduction to Modes of Operation

2.3 Modes for Authenticated Encryption
Whenever a secure communication is needed, both privacy and authenticity
are required. Hence, authenticated encryption schemes are what we usually
aim for: those modes satisfy both encryption and authentication security
requirements.

The reason why we often study encryption and authentication sepa-
rately is because they are generic constructions that can combine a secure
encryption with a secure authentication to build a secure AE mode.

Typically, an AE encryption (AEnc(m)) takes a message m as in-
put and returns both a ciphertext c and a tag T . The AE decryption
(ADec(c, T)) takes the ciphertext and tag as inputs and outputs m if the
tag is correct, ⊥ otherwise.

Authenticated Encryption with Associated Data, or AEAD mode,
simply adds as input some associated data that is a message we wish to
authenticate but not to encrypt. It is, most of the time, trivial to deal
with associated data in an AE scheme to build an AEAD scheme.

2.3.1 AE Security Game
AE Security. The security we aim for an authenticated encryption mode
of operation is roughly the addition of the IND$-CPA and EUF notions in
the sense that the mode must satisfy both games.

The IND$-CPA game in this context considers the MAC as being part of
the ciphertext, while the EUF game can query for ciphertext and considers
as a forgery any successful decryption that was not the result of a previous
encryption query. We’ll call those notions IND$-CPA-AE and EUF-AE
respectively:

AdvIND$-CPA-AE
· (A) = Pr(AAEnck(·) → 1)−Pr(A$(·) → 1) (2.9)
AdvEUF-AE

· (A) = Pr(AAEnck(·),ADeck(·,·)forges.) (2.10)

Thus, the AE security advantage can be defined as:

AdvAE
· ≤ AdvIND$-CPA-AE

· + AdvEUF-AE
· (2.11)

Unifying the Security Games. To prove the AE security of a scheme,
we can give two proofs: a proof for each game. However, there is a way

2.3. Modes for Authenticated Encryption 65

to define a single game that allows us to prove the AE security in one
go. Let AEnck(·) and ADeck(·, ·) be the authenticated encryption and
decryption oracles respectively. Let $(·) be a random function that returns
a random bit string of length |AEnck(·)| and ⊥(·, ·) be a function that
always returns ⊥. Then, the AE unified security game is:

AdvAE
· (A) = Pr(AAEnck(·),ADeck(·,·) → 1)−Pr(A$(·),⊥(·,·) → 1) ,

(2.12)

with the randomness of k, A and $(·). Of course, the attacker cannot
pass a previously queried ciphertext and tag to the verification oracle. For
nonce-based modes the attacker is also required to never repeat the nonce
in any encryption query, but he can repeat it for decryption ones.

A AEnck(·) ADeck(·, ·)

A $(·) ⊥(·, ·)

Real World
Ideal World

Figure 2.12: Distinguishing game for the AE security of an authenticated
encryption mode where k is a random key value, $(·) is a random function
and ⊥(·, ·) returns ⊥ on all inputs.

Game Reduction. Let us formally show that this AE security game is
indeed the combination of IND$-CPA-AE and EUF-AE notions.

First, we show that breaking IND$-CPA-AE breaks AE or, equivalently:

AdvIND$-CPA-AE
· ≤ AdvAE

·

Indeed, for any IND$-CPA-AE adversary A1, there exists an AE adversary
A2 with the same complexity with AdvIND$-CPA-AE

· (A1) ≤ AdvAE
· (A2).

A2 simply runs A1 and answers its queries with the encryption oracle,
that is AEnck(·) or $(·), and outputs the same conclusion.

Moreover, breaking EUF-AE breaks AE or, equivalently:

AdvEUF-AE
· ≤ AdvAE

·

66 Chapter 2. Introduction to Modes of Operation

Indeed, for any EUF-AE adversary A1 there exists an AE adversary A2
with the same complexity with AdvEUF-AE

· (A1) ≤ AdvAE
· (A2). A2 runs

A1 answering with its oracles (AEnck(·), ADeck(·, ·)) or ($(·), ⊥(·, ·)). If
the decryption query doesn’t output ⊥, then it is a forgery and A2 outputs
1. Thus, in the real world, the probability of outputting 1 is the same as
the EUF-AE advantage of A1. If the decryption always output ⊥, then
A2 outputs 0, and the probability of outputting 1 is 0 in the ideal world.
Therefore, the advantage of A1 and A2 are the same in their respective
game.

Finally, breaking AE either breaks IND$-CPA-AE or EUF-AE or, equiv-
alently:

AdvAE
· ≤ AdvIND$-CPA-AE

· + AdvEUF-AE
·

For any AE adversary A1, we build an EUF-AE adversary A2 and an IND$-
CPA-AE adversary A3. A2 forwards all A1 queries, while A3 forwards A1
encryption queries but answers ⊥ at all its decryption queries then mimics
decision. Let F be the forgery event, that is “ADeck(·, ·) does not answer
⊥ on some query”, then:

AdvAE
· (A1) =Pr(AAEnck(·),ADeck(·,·)

1 → 1)−Pr(A$(·),⊥(·,·)
1 → 1)

AdvAE
· (A1) =Pr(F)Pr(AAEnck(·),ADeck(·,·)

1 → 1|F)

+ (1−Pr(F))Pr(AAEnck(·),ADeck(·,·)
1 → 1|¬F)

−Pr(A$(·),⊥(·,·)
1 → 1)

AdvAE
· (A1) ≤AdvEUF-AE

· (A2)

+ Pr(AAEnck(·),⊥(·,·)
1 → 1)−Pr(A$(·),⊥(·,·)

1 → 1)
AdvAE

· (A1) ≤AdvEUF-AE
· (A2) + AdvIND$-CPA-AE

· (A3)

This result seamlessly applies whether we have random IVs, AE-rIV, or
nonces, AE-N.

2.3.2 Generic Construction for Authenticated En-
cryption

Both encryption and authentication schemes are rarely used by themselves
as we rather combine them to get secure Authenticated Encryption AE
modes. There are multiple ways to combine them:

• Encrypt-then-MAC (EtM), that is Enc(m) ‖MAC(Enc(m));

2.3. Modes for Authenticated Encryption 67

• Encrypt-and-MAC (E&M), that is Enc(m) ‖MAC(m);

• MAC-then-Encrypt (MtE), that is Enc
(
m ‖MAC(m)

)
.

m Enck1(·) MACk2(·) MAC(c) || c
c

Figure 2.13: Encrypt-then-MAC generic Authenticated Encryption con-
struction.

Encrypt-then-MAC. Bellare and Namprempre [BN00] showed that
the only generically proven secure scheme is the Encrypt-then-Mac con-
struction (Figure 2.13) with two independent keys for encryption and
authentication each. The other constructions can be used, and are actu-
ally used, but they require a careful examination or even a new proof to
guarantee their security.

Associated Data. Given a good AE scheme, adding in associated data
to make for an AEAD mode is often trivial. In the case of EtM, one can
simply compute c = Enck1(m) then authenticate and send the associated
data a as a ‖ c ‖MACk2(a ‖ c).

2.3.3 Concrete Examples
Widely deployed through the TLS protocol, the AEAD modes of operation
GCM and CCM are securing a significant part of the web traffic.

Galois/Counter Mode. The GCM mode is a design by McGrew and
Viega [MV04]. It is a combination of the Counter mode for encryption
and Galois MAC for authentication. It basically follows the Encrypt-
then-MAC construction with the important difference that the keys are
not independent. The master key k is used to derive the hash key H
as H = Ek(0) and to derive the key stream both for encryption and
Wegman-Carter-Shoup authentication.

McGrew and Viega [MV04] also proposed a proof of the AE security
of GCM. However, flaws in their proof was later shown by Iwata, Ohashi

68 Chapter 2. Introduction to Modes of Operation

N ‖ 0

Ek

b·cs

MAC

......

`a ‖ `mc`mc1a`aa1

H H H H H

Ek

N ‖ 1

m1

Ek

N ‖ `m

m`m

...

Figure 2.14: The Galois/Counter Mode GCM AEAD scheme for an `a-
block authenticated data a1‖ ...‖a`a and an `m-block message m1‖ ...‖m`m

with a block cipher key k and an hash key H = Ek(0).

and Minematsu [IOM12] who repaired it and gave the following bounds
when the nonce is restricted to 96 bits:

AdvIND$-CPA-N
GCM−E (t) ≤ Advprp

E (t) +
1
2(σ + qe + 1)2

2n

AdvEUF-N
GCM−E(t) ≤ Advprp

E (t) +
1
2(σ + qe + qv + 1)2

2n + qv(q` + 1)
2s

for adversaries running in time t with σ the number of block cipher calls,
qe and qd the number of encryption and verification queries respectively
and q` the maximum block size of a ‖ c over all queries.

In both bounds the first term is dominated by quadratic terms over
2n, so this confirms the birthday bound security that is security up to
O(2n/2) processed blocks.

The term qv(q` + 1)/2s shows a security degradation as we shorten the
tag length s and allows for longer messages to be processed. This loss is
stronger than the expected qv/2s from generic tag guessing. Moreover,
Ferguson [Fer05a] showed that this term is no artifact: there is a forgery
attack using a single encryption of a message of length 2s/2+1 blocks

2.3. Modes for Authenticated Encryption 69

N ‖ 0

Ek

b·cs

MAC

EkEk...EkEk

b`b`−1b2b1

c`m

Ek

N ‖ `m

m`m

...

c2

Ek

N ‖ 2

m2

c1

Ek

N ‖ 1

m1

Figure 2.15: The CCM AEAD scheme `m-block message m, a block cipher
key k and b0 ‖ b1 ‖ ... ‖ b` = Fmt(N, a,m).

followed by 2s/2 expected short verification queries. This can be a problem
for short tags, however, for untruncated tags s = n, the first birthday-
bound term clearly dominates.

CCM. The CCM mode, Counter with CBC-MAC (Figure 2.15), is an AEAD
mode by Whiting, Housle, and Ferguson that has also been standardized
by the NIST [Dwo04]. It is thought as a combination of the CTR mode
with a raw CBC-MAC in an MAC-then-Encrypt fashion. The particularity
of the scheme is that it only uses a single key, the same key for encryption
and authentication.

As shown in Figure 2.15, CCM seems simple but all its complexity
might actually be hidden in the format function Fmt(N, a,m). The NIST
document [Dwo04] imposes some restrictions on this function derived from
the security proof of CCM. First, Fmt(N, a,m) must be prefix-free as per
Definition 2.1. This is not surprising considering it’s using raw CBC-MAC
for authentication. Moreover, the first block of output b1 must uniquely
determine the nonce N and must be distinct from all other input blocks
during the CTR encryption. This, again, is not hard to do, but it imposes
some restrictions on the nonce and counter size as they must fully enter
into the n-bit state while ensuring domain separation. For instance, the

70 Chapter 2. Introduction to Modes of Operation

counter function used in practice forces the first 5 bits of the input to be
0 and encode b1 such that its first 5 bits can’t be 0.

Given those properties for the format function, the security of CCM has
been proven by Jonsson [Jon03] who showed:

AdvIND$-CPA-N
CCM−E ≤ Advprp

E (t) + σ2

2n , (2.13)

AdvEUF-N
CCM−E ≤ Advprp

E (t) + σ2

2n + qv
2s , (2.14)

with σ the number of block cipher calls, qv the number of verification
queries and t the running time of the attackers. Thus, we can directly
deduce the AE security of CCM:

AdvAE-N
CCM−E ≤ Advprp

E + 2σ2

2n + qv
2s . (2.15)

Notice that the value σ depends on the specification of the format function
and is at least twice the block lengths of all encrypted plaintext. Hence,
CCM benefits from strong security guarantees up to birthday bound and
truncating the tag to s bits induce a loss of security as expected by generic
tag guessing that succeeds with probability qv/2s.

With respect to GCM, CCM is probably easier to implement as it reuse
the same block cipher without the need for Galois field arithmetics but
it surely is less efficient. One of the reason is that using CBC-MAC for
authentication is inherently sequential and must be done from scratch for
every nonce.

2.3.4 Tweakable Block Cipher and Permutation
based Modes

In this section we’ll give AEAD modes that aren’t directly built on a block
cipher. We will show the OCB mode abstraction built on a tweakable block
cipher and the sponge duplex built on a permutation.

Permutation and Tweakable Block Cipher. An n-bit permutation
is simply a bijection P : {0, 1}n → {0, 1}n. As it is deterministic and
keyless, the security definition of a cryptographically secure permutation
is a bit tricky to define. Informally speaking, a secure permutation is
expected to behave just like a random permutation. However, there is no

2.3. Modes for Authenticated Encryption 71

security game that can formally define such a security notion. We call
distinguisher any test that makes the permutation behaves differently from
a random one although the compact and deterministic description of any
practical permutations is, in itself, a distinguisher. In practice, the AES
with the key set to 0 can be considered a good, albeit relatively small,
permutation.

On the other hand, proofs of permutation based modes are still possi-
ble: they replace the public permutation by a random permutation only
accessible through an additional oracle. We call this the ideal permutation
setting. Concretely, the AE advantage of a scheme based on a public
permutation P0 is defined as:

AdvAE
· (A) = Pr(AAEnck(·),ADeck(·,·),P (·),P−1(·) → 1)

−Pr(A$(·),⊥(·,·),P (·),P−1(·) → 1) ,

where AEnck and ADeck use P instead of P0 with a random key k and
a random permutation P . As P0 does not appear in the game the studied
construction is not, strictly speaking, the true construction. Nevertheless,
a low AE advantage is still a good indicator that the construction is secure.

Real World
Ideal World

A AEnck(·) ADeck(·, ·)

A $(·) ⊥(·, ·)

p(·) p−1(·)

Figure 2.16: Distinguishing game for the AE security of an authenticated
encryption mode based on a public permutation where p is a random
permutation, k is a random key value, $(·) a random function and ⊥(·, ·)
returns ⊥ on all inputs.

We remind that a block cipher is defined to be a family of n-bit
permutations indexed by a κ-bit key k that is an application E : {0, 1}κ×

72 Chapter 2. Introduction to Modes of Operation

{0, 1}n → {0, 1}n. Then, we define a tweakable block cipher as a family
of n-bit permutations indexed by both a κ-bit key k, meant to be secret,
and a τ -bit tweak t, meant to be public, that is an application Ẽ :
{0, 1}κ × {0, 1}τ × {0, 1}n → {0, 1}n. Ideally, a tweakable block cipher
behave like independent PRPs for each different tweak.

a1 a2 a3 a4

Ẽk Ẽk Ẽk Ẽk0 ‖ 2 0 ‖ 22 0 ‖ 24 0 ‖ 28

m1

Ẽk

c1

m2

Ẽk

c2

m3

Ẽk

c3

N ‖ 2 N ‖ 22 N ‖ 23

⊕`m
1 mi

Ẽk

b·cs

MAC

N ‖ 23 ⊕ 1

Ta

Figure 2.17: The abstracted OCB mode with authenticated data a of
block length `a = 4 and message m of block length `m = 3. Formula⊕`m

1 mi represents the checksum of all blocks of message and sequential
doubling are done inside a Galois Field of proper size. The ciphertext is
computed as ci = Ẽ

N‖2i−1

k (mi).

The OCB mode. The first version of OCB was developed by Rogaway
with Bellare, Black and Krovetz [Rog+01] as an AE scheme before going
through multiple evolutions OCB1, OCB2 up to the current OCB3 AEAD
mode of operation patented by Krovetz and Rogaway in RFC 7253 [KR14].
Plain OCB usually refers to the latest version which is currently OCB3.

2.3. Modes for Authenticated Encryption 73

As it is described by the RFC, the OCB AEAD mode is based on a
classical block cipher, but its security actually relies on an abstraction
suggested by Liskov, Rivest and Wagner [LRW02]. Indeed, the OCB mode
can be thought to be built upon a tweakable block cipher, this is the
abstraction we study in this section. Of course the actual OCB mode
specifies how to implement a tweakable block cipher based on a secure
block cipher. We’ll talk about this kind of construction in Chapter 7.

The security of OCB relies on the nonce ensuring that each tweak is
used only once except for computing Ta for authenticating associated
data, Figure 2.17. One can see the sequential doubling N ‖ 2i−1 as
some sort of counter that guarantees non repetition. At this level of
abstraction the OCB mode is fully secure that is as secure as the underlying
tweakable block cipher or generic tag guessing. The security of the actual
OCB mode falls down to birthday bound only because the underlying
implementation of the tweakable block cipher is secure up to birthday
bound. However, one should still be careful when using this kind of hybrid
arguments. Indeed, Inoue and Minematsu [IM18] found an easy attack on
the second version of OCB, OCB2, using a handful of queries by exploiting
the relations between the tweak values used. With the help of Iwata and
Poettering [Ino+19] this attack soon developed into a full break of the
authenticity and confidentiality of the mode.

Overall the OCB mode is quite efficient. Galois field operations are
light: doubling is done with a 1-bit shift followed by a conditional XOR.
We say OCB is rate-1 (one block cipher call and one negligible doubling
per processed block) while other AEAD schemes are rate-2 (GCM needs
one block cipher call and one Galois Field multiplication while CCM needs
two block cipher calls per processed block). Moreover, it is possible
to precompute the value Ta as, in practice, associated data are often
static to encode public information like IP addresses. It also deals nicely
with padding by handling the last block differently (this is not shown in
Figure 2.17) hence only padding when necessary. On the downside we
note the need to implement the inverse of the tweakable block cipher for
decryption which may not be ideal especially in hardware.

AEAD from Sponge. The sponge construction has gained popularity
as a way to build hash functions with Keccak by Bertoni, Daemen, Peeters
and Van Assche who won the SHA-3 NIST competition and thus became
known as the SHA-3 standard [Dwo15]. The same authors also showed

74 Chapter 2. Introduction to Modes of Operation

P P P P

a1 a2 a3

1

N

k

ú

○

P P P

m1
c1

m2
c2

m3
c3

ú

○

2

MAC

�

Figure 2.18: Diagram of a variant of SpongeWrap for AEAD mode
processing blocks of size α bits with an n-bit permutation P and a capacity
β = n−α bits. The state is initialized by the key k and a nonce N before
absorbing three blocks of AD a and three blocks of message m. The output
is c1 ‖ c2 ‖ c3 ‖MAC.

the duplex construction that outputs a random key stream for encryption
while absorbing the message for authentication [Ber+12]. They called it
SpongeWrap of which we show a variant in Figure 2.18 that makes for an
AEAD mode of operation based on a public permutation.

The security of the SpongeWrap can be directly deduced from the
security of the sponge construction for a hash. The n-bit state is separated
into two parts: the α-bit rate and the β-bit capacity such that n = α+ β.
The rate α influences the efficiency of the scheme, message will be absorbed
and encrypted by block of α bits. On the other hand the capacity β
influences the security of the scheme.

Indeed, the sponge construction for a hash function enjoys a provable
collision-resistance security up to the birthday bound of the capacity.
That is up to 2β/2 computations of the permutation P and so does the
AEAD mode variant of SpongeWrap for the nonce based AE-N security
notion. Notice that the MAC can be expanded to any size by iterating
the permutation and concatenating many r-bit blocks of the rate part just

2.4. On the Security of Modes of Operation 75

like one would expand the hash output of SHA-3.

2.4 On the Security of Modes of Operation
In the previous sections we’ve introduced some modes of operation with
their security notions that provide provable guarantees that we can trust.
Here we present some advanced notions and open questions that explore
the various security profiles of modes of operation and will motivate the
contributions of this thesis.

2.4.1 Quest for Concrete Security
Advantage lower and upper-bounds. Since proofs give an upper-
bound on the adversary advantage, we can deduce safe parameters’ bounds
that guarantee security. Typical parameters include the length and number
of messages that we can process before rekeying. However, proofs can
get better and modes of operation really benefit from improved proofs as
they can run with improved parameters. The only way we can know that
there is no way one can get a better proof is when there is a matching
cryptanalysis for the considered security game. Hence, the security profile
of a mode shall not be complete without a proper distinguisher that gives
a lower-bound matching the upper-bound of the proof.

The Sponge’s Case. All modes we’ve seen so far have a matching
distinguisher except one: the SpongeWrap using the duplex construction
for AEAD. There are so far no distinguisher matching the 2β/2 bound,
the generic attack on the hash function cannot work in this setting. An
improved proof would definitely improve the mode’s parameters. For
example, having the rate and capacity size set to n/2 bits would improve
the efficiency of the scheme, but it would set the provable security down
to 2n/4 queries as it stands.

In fact, Chakraborti, Datta, Nandi and Yasuda presented another
sponge-based mode Beetle [Cha+18] that mainly adds a small feedback
function in the rate part, and they are able to improve the proof up to
2min(β−log(α),n/2,α) calls. This would allow for a larger rate α without
lowering the provable security guarantees. In the absence of a matching
distinguisher, and at the time of this writing, the true security of the
original SpongeWrap construction is still an open question.

76 Chapter 2. Introduction to Modes of Operation

N ‖ 0 ‖ 0 N ‖ 0 ‖ 1 N ‖ 0 ‖ 2 N ‖ 0 ‖ 3 N ‖ 1 ‖ 0 N ‖ 1 ‖ 1

Ek Ek Ek Ek Ek Ek

c1

m1

c2

m2

c3

m3

c4

m4

b·c|m4|

Figure 2.19: The CENC beyond birthday-bound secure mode for en-
cryption for ω = 3. Let i = kω + j with 1 ≤ j ≤ ω then we have
ci = Ek(N ||k ‖ 0)⊕ Ek(N ‖ k ‖ j)⊕mi.

Beyond-Birthday-Bound modes. Going further, many new designs
try to achieve beyond-birthday-bound security at a minimal cost. For
instance the CENC mode for encryption (Figure 2.19) is a beyond-birthday-
bound IND$-CPA-N secure encryption for the cost of 1 + 1/ω cipher calls
per block of plaintext with ω the size of the frame. It has first been
proposed by Iwata [Iwa06] with a proof showing security up to O(22n/3/ω)
block cipher calls. Iwata, Mennink and Vizár [IMV16] later improved
the bound up to O(2n//ω) calls which matches an obvious distinguisher:
repetitions inside windows of ω blocks cannot happen in CENC but happen
with probability ω(ω− 1)/2n in the random case. Thus, after σ encrypted
blocks we have σ/ω windows hence a collision probability of σ(ω − 1)/2n
which is Ω(1) when σ is O(2nω).

We’ve also seen that the Wegman-Carter construction can be made
beyond birthday-bound secure when used with a good pseudo random
function. For instance using the CENC mode to build a seemingly random
key stream would build an EUF-N secure beyond birthday bound MAC.
There are also recent works trying to build a deterministic EUF secure
beyond birthday bound MAC. Such modes that follow the double-block
hash-then-sum strategy like SUM-ECBC [Yas10] or PMAC+ [Yas11] came with
a proof of security up to O(22n/3) short tags. In Chapter 5, as a contribu-
tion of this thesis and in collaboration with Leurent and Nandi [LNS18],
we show a generic attack on those modes using O(23n/4) tags effectively
reducing the cryptanalysis/proof gap. Later Kim, Lee and Lee [KLL20]

2.4. On the Security of Modes of Operation 77

actually improved the proof to O(23n/4) tags, matching our distinguisher
and finally closing the gap.

Proof and Cryptanalysis. Thus, proofs and cryptanalysis are needed
to concretely assess the theoretical security of a scheme. A proof can benefit
from better parameters thanks to a better proof and only cryptanalysis
tells us where we have hope to improve the security bound.

Cryptanalysis can also disprove a result. Doing proof is hard as it
needs to exhaustively treat everything that could go wrong and bound its
probability. It is not rare for a cryptanalysis to refute a proof showing
that its upper-bound on the attacker advantage is wrong. It was the case
of our distinguisher for double-block hash-then-sum MACs that refuted a
now retired proof for LightMAC+ [Nai18].

2.4.2 Quest for Practical Security
Limits of Information Theoretic Thinking. Security game with
corresponding proofs and distinguishers for modes of operation are usually
defined in the information theoretic setting. This means that we assume an
attacker with unlimited computing power, but limited number of queries,
attacking a scheme using a perfect primitive. The reason is that there is
no proof techniques that can formally bound a limited adversary. We have
to assume a limited adversary to conjecture the security of primitives but,
again, it’s only conjectures though back up by experience and analysis of
generic attacks.

In practice, though, the real world is not information theoretic and
no attacker has unlimited computing power. Optimizing the time and
memory complexity of attacks is of interest. Moreover, distinguishers
can range from recovering a single bit of information, which might not
be threatening depending on the context, to a devastating key recovery
revealing all previous and future plaintext. Forgery attacks can also range
from finding the tag for a single seemingly random plaintext to a full
control of the plaintext we want to sign, the latter is called a universal
forgery attack.

As we already said, the information theoretic world allows for great
proofs to be made and cryptanalysis in this setting is just as important to
concretely assess the security of a mode. With this we can come up with
parameter bounds where we can fully trust the security of the studied
scheme. However, we also need to ask ourselves what happens after we

78 Chapter 2. Introduction to Modes of Operation

reach the said bound and think about cryptanalysis is more realistic,
practical models.

Practical vs Theoretical gaps. They are quite many schemes that
still have a gap between the information theoretic complexity of their
attack and the actual time and memory needed to perform them. The
Wegman-Carte-Shoup with polynomial AXU hash functions, like GMAC
or Poly1305, is a good example. Using the techniques developed for the
missing difference in Chapter 4.1 we could describe a partial key recovery
attack on those schemes running in O(22n/3) time and memory which is
the first cryptanalysis with a running time lower than 2n but still leave a
gap with the information theoretic attack of complexity 2n/2.

Other examples include the double-block hash-then-sum constructions
of Chapter 5 where the proposed forgeries, even though some are universal
forgeries, still require Õ(23n/2) operations. That’s the reason why we also
give an attack that is not optimal in queries, it uses O(26n/7) queries, but
runs in Õ(26n/7) time, less than 2n, though this is not generic and only
applicable to the SUM-ECBC and GCM-SIV2 MAC constructions.

Notice that the exact same phenomenon arises for provable ideal
designs. In Chapter 8 we’ll look at the 2-round Even-Mansour block cipher
construction. This construction has an information theoretic proof holding
up to 22n/3 queries, but no actual distinguisher runs in less than 2n/n
time. The analysis we propose greatly reduces the memory and online
query complexity while gaining some insights on why a faster cryptanalysis
might be really hard to achieve.

The Beastly Attack Setting. The Beastly attack setting is a frame-
work inspired by the BEAST attack of Duong and Rizzo [DR11] allowing
for practical chosen plaintext attacks. The Beastly attack model is an
example of a practical chosen plaintext attack: it assumes a malicious
webpage that runs some JavaScript code on the target’s computer. The
malicious code can then send requests to another domain like a social
network. The target’s computer will naturally encrypt and send those
requests with all the personal authentication token required. These are
called cross-origin requests and are an intended feature for Cross-origin
resource sharing (CORS). Even though the code can choose the content of
the requests made, it is impossible to manipulate the answer. Thus, the
security should be ensured by using a strong encryption key that is never

2.4. On the Security of Modes of Operation 79

manipulated outside the transport layer in the TLS protocol. The model
furthermore assume that the adversary can observe queries going in and
out of the target’s computer. This is a typical assumption in cryptography
and can be done in practice by listening to communications in a public
Wi-Fi or wiretapping on a router.

This setting has notably been used by Bhargavan and Leurent [BL16]
to mount a practical plaintext recovery attack over HTTPS secured web
connection using CBC mode for encryption along with the 3DES block
cipher. Their attack named Sweet32 can recover a web authentication
token to successfully log onto an account without knowing its password.
It essentially takes advantage of the relatively small state size of 3DES,
that is n = 64 bits, for a birthday bound attack. In fact, they noticed that
many implementations did not put a limit on the number of processed
blocks of plaintext before rekeying. Sweet32 led to a change in the NIST
standardization of the CBC mode so that early rekeying far away from
the birthday bound is enforced unambiguously. This example shows that
there are practical Chosen Plaintext Attacks with direct consequences.

In Chapter 4 we ask ourselves what could be a practical attack on
the CTR mode. We’ve seen in Section 2.1.4 that there is a matching
distinguisher on the CTR mode that looks for collisions in the key stream
blocks. However, looking for collisions won’t help to recover block of
plaintext for a good reason: key stream collision won’t happen with the
CTR mode. Therefore, we define the missing difference problem upon the
resolution of which we can recover some encrypted plaintext, and then
we show how to solve it in query, time and memory complexity close
to birthday bound that is Õ(2n/2). For that we place ourselves in the
Chosen-Prefix Secret-Suffix attack model by Hoang et al. [Hoa+15] where
the attacker can choose a message M and get the encryption Enc(M ‖ S)
for some fixed secret S. Notice that the Chosen-Prefix Secret-Suffix attack
model is a simplified model in the Beastly attack setting where a secret
authentication token is often appended right after the chosen request
content. Hence, as a contribution of this thesis, we show how an attack on
the CTR mode would work in a practical setting though we also observed
that the CTR mode, unlike CBC, is mostly used along with the AES block
cipher whose relatively large internal state, n = 128 bits, makes a birthday
bound attack too costly to perform.

80 Chapter 2. Introduction to Modes of Operation

2.4.3 Quest for Robust Security
A Need for Robustness. Previously in Section 2.1.4 we’ve argued that
nonce based security left less room for implementation errors compared
to random IV based security. This is what robust security is about:
strengthening our security definition to prevent or at least mitigate misuses
of the mode. For example, the GCM mode is secure under the relatively
robust nonce based security notion, but it is also true that a single
nonce reuse leads to a leak of the hash key thus compromising all future
authentication. Informally speaking, a more robust mode of operation is
harder to get it wrong. Looking at implementation errors is outside the
scope of this work, but they are the source of many practical attacks on
cryptography.

With regard to provable security, a more robust security notion assume
a more powerful attacker and a more robust mode is secure under a more
robust notion. In that sense, a deterministic notion is more robust than
its nonce-based version: the user has no additional IV or counter to deal
with, the only allowed leaks are the equality of the messages. Also, a
nonce-based notion is more robust than its random IV based version: an
attacker can choose any nonce value for an IV while he has not control on
the IV in the random IV version.

Notice though that robustness in practice depends on many more fac-
tors including human factors. For instance a blog entry by Matthew Green
titled “Why I hate CBC-MAC” [Gre13] provides some high-level insights on
the lack of robustness of raw CBC-MAC mode of authentication. Indeed,
although raw CBC-MAC should be a fine and provable deterministic secure
MAC, the need for prefix-free formatting, the lack of proper standardiza-
tion and its similarity to CBC encryption with only subtle, but critical,
differences makes it seemingly easy to get wrong.

Using Synthetic IV. In order to gain more robustness, Rogaway and
Shrimpton [RS06] proposed a construction to combine an IND$-CPA-rIV
secure mode for encryption with a prf into a deterministic AE secure
AEAD mode of operation. This is the synthetic IV construction or SIV.
Figure 2.20 shows the SIV construction for encryption. It is basically a
MAC-and-Encrypt construction where the MAC is required to be a secure
prf and the tag is also interpreted as an IV for encryption. Thus, the IV
is then used both for decryption and authentication in the SIV decryption,
Figure 2.21. Let MOD be an IND$-CPA-rIV secure mode for encryption, F a

2.4. On the Security of Modes of Operation 81

m Fk1(·) IV

Enc·
k2(·) c

Figure 2.20: The SIV construction parametrized by two independent
key k1 and k2 for a prf secure function F and an IND$-CPA-rIV secure
encryption Enc respectively. It takes a message m as input and outputs
IV ‖ c = Fk1(m) ‖EncFk1 (m)

k2
(m).

c Dec·
k2(·)

IV

m Fk1(·) · ?= ·

⊥

m

False

True

Figure 2.21: The SIV decryption parametrized by two independent key
k1 and k2. It takes IV and c as inputs and outputs m = DecIVk2 (c) if the
ciphertext is valid, ⊥ otherwise.

prf secure keyed function and SIV(MOD, F) be the SIV construction using
MOD and F . Then, Rogaway and Shrimpton proved that:

AdvAE
SIV(MOD,F) ≤ AdvIND$-CPA-rIV

MOD + Advprf
F + q/2n (2.16)

with q the total number of queries and for adversaries with about the same
running time t. The original work also included associated data, but it is
fairly easy to add to our diagrams in Figures 2.20 and 2.21: simply add
the associated data as input to F to produce the IV and encrypt with
this.

The main motivation for the SIV construction was to gain robustness
against nonce misuse. Indeed, the counter mode is secure with a nonce
but also with a random IV as a collision is not expected to happen before
the birthday bound. From a deterministic AE secure scheme it is possible
to enforce in the specification that it needs a nonce: simply to add it to,
for example, the last block of associated data. This way you can ensure
the messages will be all different thus randomizing the ciphertext. On
the other hand, the leakage in case of nonce repetition is minimal as

82 Chapter 2. Introduction to Modes of Operation

any difference, whether in the plaintext or in the associated data, will be
enough to prevent any leakage of information.

Following this work robust versions of commonly used AEAD modes
were designed. We can cite GCM-SIV by Gueron and Lindell [GL15] followed
by a different mode AES-GCM-SIV by Gueron, Langley and Lindell [GLL17]
or again CCM-SIV by Kresmer and Zeh [KZ19].

Release of Unverified Plaintext. AEAD modes of operation are
expected to decrypt and reveal the plaintext only after it has been properly
authenticated. Some modes of operation can be severely compromised if the
implementation releases the plaintext before completing the authentication.
However, many schemes require that we decrypt beforehand to be able to
authenticate. This includes paradigms such as MAC-then-Encrypt and
MAC-and-Encrypt (and thus the SIV construction), the duplex and OCB
constructions. In that context, an implementation has two choices: either
keep the decrypted message in a secure memory before it’s passed to the
application layer or not storing anything but decrypt the message again
after it’s been verified. Both solutions come with constraints not welcomed
in restricted environment where cryptography is costly. A third solution
is to start using the message and roll back if the tag isn’t verified at the
end. This is more convenient but obviously insecure !

For this reason we ask ourselves what kind of security can we achieve
under release of unverified plaintext, that is RUP security. To answer
this question Andreeva et al.[And+14] proposed the notion of plaintext
awareness (PA) security that deals with privacy in this setting and the
notion of integrity under release of unverified plaintext (INT-RUP) for
authenticity.

We formally describe the PA and INT-RUP security game in Sec-
tion 6.1.1. Moreover, we also show the INT-RUP insecurity of SUNDAE,
a deterministic AEAD mode by Banik et al.[Ban+18], by describing a
forgery attack in this setting.

Unified notion. In Chapter 6 we’ll propose a new notion, AERUP, that
captures the RUP security we aim at for AEAD schemes. Basically an
AERUP secure scheme is also AE, PA and INT-RUP secure. In Section 2.3.1
we’ve argued that unified notions like AE security allowed for proving
security of a scheme with a single proof instead of one proof per security
notion. Thus, we illustrate this by proving that a small change in SUNDAE

2.4. On the Security of Modes of Operation 83

can make it AERUP secure. We prove the security of a generic scheme,
named ANYDAE, in one single proof.

Chapter3Algorithms for Generic
Attacks

This chapter is dedicated to generic attacks techniques and algorithms.
Though this lays in the Modes of Operation part, similar techniques will
be used in the second part about Idealized Designs.

3.1 Collisions
When exploring the cryptanalysis of modes of operation, looking for colli-
sions is one of the most, if not the most, frequent approach. Distinguishers
of CBC, OFB, CFB, CTR and all CBC-MAC variants rely on looking for such a
collision.

Definition 3.1 generically summarizes the collision problem. Though
in cryptanalysis we often use the collision problem with a unique function
as in Definition 3.2, it is handled the same way as the generic one.

Definition 3.1 (Collision problem with Two Functions). Given two n-bit
functions f0, f1, find two inputs (x0, x1) such that f0(x0) = f1(x1).

Definition 3.2 (Collision problem with a Single Function). Given an n-bit
function f , find two inputs (x0, x1) : x0 6= x1 such that f(x0) = f(x1).

Definition 3.3 (Collision problem with lists). Given two lists of n-bit
values L0, L1, find a couple (e0, e1) ∈ L0 × L1 such that e0 = e1.

Moreover, we only discuss the random collision problem where the
functions simply output a random value at a fresh input. This is the
behavior we expect for cryptographically secure pseudo-random functions.
The idea is that the attack can only get better if the underlying PRF has
a bias.

85

86 Chapter 3. Algorithms for Generic Attacks

3.1.1 Complexity
The Birthday Paradox. In a 30 people classroom, there is more than
70% chance of having two persons with the same birthday. More of a
counterintuitive fact than a true paradox, the birthday problem answers
this question: How many data do we need to collect before there is a
collision? The birthday paradox, or birthday problem, states that we need
about O(

√
N) random values among N possibilities before two of them

collide with high probability. More precisely, among N possible values the
collision probability grows with the number of data, d, as 1− N !

(N−d)!·Nd .

This can be approximated to 1− e− d·(d−1)
2·N for large N and d.

Thus, after collecting d = 2n/2 n-bit values (N = 2n), the probability
of a collision is about 40%. This is why we say birthday bound secure
schemes are secure up to 2n/2 block cipher calls, but one must actually
be careful to stay sufficiently away from that bound. For instance taking
n = 64 bits, after 230 blocks of data the probability of collision is still
around 3%, too high to properly guarantee security (3 out of 100 such
encryptions are expected to be insecure). Hence, a birthday bound secure
scheme needs to be rekeyed way before birthday bound to make sure
collisions won’t happen.

Nevertheless, when using a 128-bit block cipher, and thus n = 128 bits
values, the birthday bound is far enough so that rekeying won’t be needed.
Indeed, while 232 64-bit blocks amount to 32 GiB of data, 264 128-bit
blocks makes for 256 exbibytes that is unlikely to be processed under a
single key. To give a comparison, the company Cisco estimated that the
2016 global IP traffic summed up to 83.3 exbibytes per month [Sys17].

The main point is that when we talk about birthday bound complexity,
the constant hidden in the O(2n/2) notation is often actually smaller than 1
as illustrated by Luykx and Paterson [LP16] who derived concrete security
limits from the proofs statements for various AE modes.

Sorting. There are multiple algorithms to find collisions but most of
the time, as we gather values in a list, we require some sort of sorting as in
Algorithm 3.1. It is well known that we can sort N values in O(N logN)
time and O(N) memory. However, in our case, we can take advantage
of the randomness of our values to reduce the time complexity to O(N)
using a radix sort or a hash table.

3.1. Collisions 87

Algorithm 3.1 Collision in Lists
1: input: L0, L1 ⊂ {0, 1}n .
2: output: (i, j) : L0[i] = L1[j] .
3: procedure Collision(L0, L1)
4: Sort(L0) . Sort with any order.
5: Sort(L1)
6: (i, j)← (0, 0)
7: while i < |L0| and j < |L1| do
8: if L0[i] == L1[j] then
9: return (i, j) . Collision found.
10: else if L0[i] < L1[j] then . Assuming ascending values.
11: i← i+ 1
12: else if L0[i] > L1[j] then
13: j ← j + 1
14: return ∅ . No Collision.

Algorithm 3.2 Collision in Functions
1: input: f0, f1 : {0, 1}n → {0, 1}n .
2: output: (x0, x1) ∈ X0 ×X1 : f0(x0) = f1(x1) .
3: procedure CollisionFun(f0(·), f1(·),X0,X1)
4: L0 ← {(x, f0(x)) : x ∈ X0}
5: L1 ← {(x, f1(x)) : x ∈ X1}
6: . Comparison on the second-hand value only.
7: ((x0, f(x0), (x1, f(x1))← Collision(L0, L1)
8: return (x0, x1)

Collision with lists. When the values are stored in sorted lists the
complexity of looking for a collision is simply the complexity of going
through the lists once. The complexity of Algorithm 3.1 is therefore the
complexity of sorting, that is O(|L0|+ |L1|).

In the case where we need to find multiple collision, say c collisions,
then the complexity becomes O(|L0|+ |L1|+ c). Algorithm 3.1 is describes
a birthday bound matching distinguisher that makes d = O(2n/2) queries
and thus runs in time and memory O(2n/2).

Memoryless Collision. The collision problem with functions, Defini-
tions 3.1 and 3.2, can be solved the same way by building one or two lists

88 Chapter 3. Algorithms for Generic Attacks

• • • • • • •f(·) f(·) f(·) f(·) f(·) f(·)

f(·)

µ λ

Figure 3.1: Behavior of an iterated random function f with path of
length µ and cycle of length λ.

and looking for collision as in Algorithm 3.2. However, when using func-
tions we are free to manage memory as we wish since we can recompute
any value whenever we need it.

Therefore, we can look for a collision using only a negligible amount
of memory with ideas from Pollard’s rho and Floyd’s cycle detection
algorithms. The idea of such techniques (Algorithm 3.3) is to exploit the
iterating behavior of random functions and detect when it enters a cycle,
see Figure 3.1. So let µ be the distance travelled before entering a cycle of
length λ, we need to find the moment where the function enters the cycle
as this is where lies the collision, that is after µ iterations.

The Algorithm 3.3 uses two pointers, one goes a twice the speed of the
other such that the distance separating them is always equal to the distance
travelled. After µ steps both pointers are in the cycle and after at most λ
additional steps the faster pointer necessarily reach the slower one (the
faster pointer loops twice while the slow one loops only once). Moreover,
when both pointers collide it means they are necessarily separated by a
distance that is a multiple of the cycle length λ thus the total travelled
distance (total number of steps) is a multiple of λ. After the pointers
collide once, one of them is sent back to the starting point, afterwards
they both pursue forward one step at a time. Therefore, after µ steps
one of the pointer has travelled a distance of exactly µ and the other has
travelled a distance of µ plus a multiple of λ, and they will collide at the
collision point we were looking for.

The number of steps in Algorithm 3.3 is at most 2µ+λ so its complexity
depends on the expected values of µ and λ. An asymptotic analysis by
Flajolet and Odlyzko [FO90] shows that in expectation µ and λ are

√
π
8 2n/2.

This provides for an interesting trade-off as it still runs in time and query
O(2n/2) but can use a negligible amount of memory. Those techniques are

3.1. Collisions 89

Algorithm 3.3 Memoryless Collision with Pollard’s Rho / Floyd’s cycle
detection.
1: input: f : {0, 1}n → {0, 1}n .
2: output: (x, y) : f(x) = f(y), x 6= y .
3: procedure Collision(f)
4: a← 0 . Choose any arbitrary starting point.
5: x← f(a)
6: y ← f(f(a))
7: while x 6= y do
8: x← f(x)
9: y ← f(f(y))

10: x← a
11: while f(x) 6= f(y) do
12: x← f(x)
13: y ← f(y)
14: return (x, y)

extensively used in cryptanalysis. In public key cryptography they can also
be used for generically computing discrete logarithm. In symmetric key
cryptography one can use them to find collisions in hash functions. There
are a few variants of this strategy and notably a parallelizable version by
van Oorschot and Wiener [vW99]. When applicable it is probably the best
generic attack for finding collisions.

However, this algorithm and its variants don’t fit quite well in the
context of modes of operation. Indeed, it assumes that we can forget and
later query again previous values. Generally this is not something the
security games allows, either because the IV is random or because we can’t
repeat nonces nor repeat messages, exception made for the prf security
notion of some deterministic MAC.

Of course, it is possible if we record all queries, but we loose the
memory efficient appeal of the technique. This is why Algorithm 3.1 is
overall a better description of a birthday bound matching distinguisher
for modes of operation.

On Complexity Trade-offs. For the same cryptanalysis, different tech-
niques can provide a variety of trade-offs between the data, time and mem-

90 Chapter 3. Algorithms for Generic Attacks

ory complexities. There is no objective way to compare those trade-offs.
Whether is it a chosen plaintext attack (CPA) or a known plaintext attack
(KPA), a low data complexity will make the attack easier to set up as one
would need to capture less ciphertext. A low time and memory complexity
will make the attack run faster and/or require less hardware.

Even comparing time/memory trade-offs is tricky. One could be
tempted to simply add the time and memory complexity, but you could
also multiply them arguing that a memory cell could be replaced by
a computing cell performing multiple operations. We won’t provide a
definitive answer but simply state that 2 · 2n/2 time with small memory is
certainly better than 2n/2 time and memory which is certainly better than
2n time with small memory. This question has some importance when
comparing new attacks with the generic brute-force attack: it is usually
easy to recover a κ-bit key with a handful of queries, 2κ computations and
negligible memory.

3.1.2 Cryptanalysis
Plaintext Recovery. We saw in Chapter 2 that many distinguishers
were based on looking for a collision. In the case of CBC, CFB and OFB a
collision can lead to a stronger attack, namely a plaintext recovery attack.
These attacks usually assume that some secret information is encrypted
among other known plaintext. The complexity of looking for such collisions
is discussed in Section 3.1 along with Algorithm 3.1.

CBC mode encrypts data as ci = Ek(mi ⊕ ci−1) so we’ll look for a
collision in the ci’s:

ci = cj , i 6= j

Ek(mi ⊕ ci−1) = Ek(mj ⊕ cj−1)
mi ⊕ ci−1 = mj ⊕ cj−1

mi ⊕mj = ci−1 ⊕ cj−1

and we recover the XOR of two plaintext blocks. For instance when one
of the block is known and the other is secret, we recover a full block of
secret information.

CFB mode encrypts data as Si = Si−1
[0:(n−r)]‖ci−1 and ci = bEk(Si)cr⊕mi.

Thus, we look for a collision in the Si’s. Since we know the IV and the

3.1. Collisions 91

ciphertext it is easy to reconstruct Si and to detect collisions.

Si = Sj , i 6= j

bEk(Si)cr = bEk(Sj)cr
mi ⊕ ci = mj ⊕ cj
mi ⊕mj = ci ⊕ cj

Again we recover the XOR of two plaintext blocks which is likely to leak
secret information.

OFB mode encrypts data as ci = Ek(mi−i ⊕ ci−1)⊕mi so we’ll look for
collisions in mi ⊕ ci’s for known blocks mi.

mi ⊕ ci = mj ⊕ cj , i 6= j

Ek(mi ⊕ ci) = Ek(mj ⊕ cj)
mi+1 ⊕ ci+1 = mj+1 ⊕ cj+1

mi+1 ⊕mj+1 = ci+1 ⊕ cj+1

Thus we get the XOR of two plaintext blocks. Notice that in this case
we can iterate the reasoning to deduce mi+2 ⊕mj+2 = ci+2 ⊕ cj+2, etc.
This is to be expected from OFB that works like a stream cipher: once
the internal state collides the key stream output will be identical going
forward.

Collision Free modes. As for the counter mode, looking for a collision
works for a distinguisher, but it does not seem to leak any information
of the plaintext as, by construction, there cannot be a collision on the
key stream. This explains a folklore belief that the CTR mode does not
leak anything useful about the plaintext even as we get to the birthday
bound. However, we actually show in Chapter 4 a plaintext recovery
attack running in data, time and memory complexity close to the birthday
bound just like the other attack seen above.

To do that, we define the missing difference problem that is more
suited to perform plaintext recovery on the CTR mode and devise efficient
algorithms to solve it. The OFB mode processing one very long message
also has the same property that collision won’t happen, thus it can be
attacked the very same way as CTR using the missing difference problem.

Length Extension Forgeries. In Section 2.2.2 we saw multiple vari-
ants of CBC-MAC all provably secure up to birthday bound. Here we explain

92 Chapter 3. Algorithms for Generic Attacks

a matching generic forgery attack on all those variants in O(2n/2) queries
that looks for a collision in the internal n-bit state of the CBC style chain.

In fact, Preneel and van Oorschot [Pv95] showed that this generic
attack is not limited to CBC-MAC variants. It is generic to all iterated and
deterministic authentication modes with an n-bit internal state.

Definition 3.4 (Collision Extension Property). Given a mode for authen-
tication MAC with internal state Σ. Let Σ(m) the internal state after
having processed m. We define the collision extension property as:

Σ(m) = Σ(m′) ⇐⇒ Σ(m ‖ x) = Σ(m′ ‖ x)

for any messages m, m′ and x of arbitrary size.

The idea is that since Σ is the internal state we have Σ(m) = Σ(m′)
implies MAC(m) = MAC(m′). Once we detect an internal state collision
in Σ we can use the collision extension property (Definition 3.4) to forge a
tag with any suffix message we want: simply ask one to get a forgery for
the other.

The collision extension property applies for most of iterated MAC
constructions. It assumes the messages are processed left to right (more
of a notation convention than anything) and so a collision in the internal
state will propagate as we feed in exact same blocks of message. However,
the collision extension property is inapplicable in a notable case: prefix-
free formatting. Indeed, in that case one cannot simply add more blocks
without modifying the previous ones. Schemes like raw CBC-MAC rely on
that property to guarantee security in the first place and usually does so
by prepending a block encoding the length of the message. To get around
that limitation we can use what I’d called the collision zero extension
property (Definition 3.5) that is implied by the previous collision extension
property.

Definition 3.5 (Collision Zero Extension Property). Given a mode for
authentication with internal state Σ. Let Σ(m) the internal state after
having processed m. We define the collision zero extension property as:

Σ(m ‖ 0|x|) = Σ(m′ ‖ 0|x|) ⇐⇒ Σ(m ‖ x) = Σ(m′ ‖ x)

for any messages m, m′ of arbitrary size and x of fixed arbitrary size.

3.2. Generalized Birthday 93

Thus, for any deterministic iterated MAC, if there is an internal state
collision after processing separatelym andm′, then it will have the collision
zero extension property.

To detect that the internal state collide the obvious way is to look for
a collision in the tag. However, if two tags collide, it does not necessarily
mean that their internal states collided: the processing function can be
random and the tag can be truncated. In that case we can again use
the collision zero extension property to arbitrarily increase the chance of
having an internal state collision. Simply look for collisions in

(
MAC(m ‖

0) ‖MAC(m ‖ 1) ‖MAC(m ‖ 2) ‖ ...) for different m.
Therefore, this attack is truly generic to all iterated, deterministic n-bit

internal state MAC functions, whether it uses a block cipher or not, and in
particular apply to all CBC-MAC variants we’ve seen. A natural conclusion
is that to achieve beyond-birthday-bound security one must either build a
randomized mode, see Wegman-Carter of Section 2.2.3, or increase the
internal state size, see double-block hash-then-sum of Chapter 5.

3.2 Generalized Birthday
Wagner [Wag02] proposed a generalization of the birthday problem, see
Definition 3.6. The collision or birthday problem can be seen as a 2-XOR
problem. As we’ll see, the efficient resolution of these problems can lead
to new cryptanalysis for different modes of operation.

Definition 3.6 (k-XOR problem). Given k functions f0, f1, ..., fk−1, find
k inputs (x0, x1, ..., xk−1) such that f0(x0)⊕ f1(x1)⊕ ...⊕ fk−1(xk−1) = 0.

In the following section we consider the random k-XOR problem where
all the functions output a random w-bit value on a fresh input.

Data Complexity. A lower-bound on the complexity of the random
k-XOR problem is given by the expected number of queries that must
be made before a solution exists. Roughly speaking after d queries the
number of k-tuples will grow like dk with each tuple having a 2−w chance
of being a solution. Thus, we need at least d = O(2w/k) queries to hope
for a solution.

This corresponds to d = O(2w/2) for the collision problem.

94 Chapter 3. Algorithms for Generic Attacks

Definition 3.7 (k-XOR problem with lists). Given k lists L0, L1, ..., Lk−1,
find a k-tuple (e0, e1, ..., ek−1) ∈ L0 × L1 × ...× Lk−1 such that e0 ⊕ e1 ⊕
...⊕ ek−1 = 0.

Simple Algorithm. A simple way to solve the k-XOR is to query only
one value of every function except 2 of them, and solve the collision
problem over those 2 functions. This approach runs in O(2w/2) queries
and time. We can solve using Algorithm 3.1 or Pollard’s rho techniques.

This approach may not be possible when given lists as in Definition 3.7.
However, we can still decrease the number of lists by merging them until we
get to the 2-XOR problem. To do this we build L01 = {(e0 ⊕ e1, (e0, e1)) :
(e0, e1) ∈ L0×L1}, we’ll note L01 = L0 ./ L1. We record the couple (e0, e1)
only to reconstruct the solution at the end. Of course |L01| = |L0| · |L1|.

3.2.1 Wagner’s Algorithm
Generic Algorithm. In his work Wagner [Wag02] proposed a generic
algorithm to solve the k-XOR problem. We saw that it is simple to reduce
the number of functions or lists to get to the 2-XOR problem either by
merging or considering a single query. What Wagner proposed is to reduce
the number of lists to the first power of 2. That is reducing the k-XOR to
the 2blog(k)c-XOR. Then, he proposed an algorithm for k that is a power
of 2 running in time O(k · 2w/(1+log k)).

Algorithm 3.4 Wagner’s Algorithm for k-XOR
1: input: Li ⊂ {0, 1}w, |Li| = 2w/(1+log k) .
2: output: (0, (e1, e2, ..., ek) ∈ L1×L2× ...×Lk) : e1⊕ e2⊕ ...⊕ ek = 0 .
3: procedure kXORlist(L1, L2, ..., Lk, n)
4: if k ?= 2 then
5: return Collision(L0, L1) . Collision on the first element.
6: else
7: `← w/(1 + log k)
8: for i = 1 to k/2 do
9: Li,(i+k/2) ← Li ./` Li+k/2

10: return kXORlist(L1,k/2+1, L2,k/2+2, ..., Lk/2,k, w − `)

3.2. Generalized Birthday 95

L1 L2 L3 L4

./α`

Lα12

./α`

Lα34

./∞

for α ∈ {0, 1}` do
Lα12 ← L1 ./α` L2
Lα34 ← L3 ./α` L4
L← Lα12 ./∞ Lα34
if L 6= ∅ then

(0, (x, y), (z, t))← L[0]
return (x, y, z, t)

return ⊥
Figure 3.2: Memory efficient algorithm for 4-XOR with lists of size 2w/4.

Wagner’s Algorithm. Let us explain the idea of Algorithm 3.4. The
trick is to merge lists in a way so that they won’t grow in size. To do
this we have to keep only a portion of the merged values so the idea
of Wagner [Wag02] is to only keep values that starts with ` zeroes for
lists of size 2`. Concretely we build L01 = {(e0 ⊕ e1, (e0, e1)) : (e0, e1) ∈
L0 × L1, be0c` ⊕ be1c` = 0}, we note this as L01 = L0 ./` L1. Indeed, the
expected size of L01 is |L0| · |L1|/2` = 2`. Notice that L0 ./` L1 can be
efficiently computed with Algorithm 3.1 looking for all collisions on ` bits.

We need to check that Algorithm 3.4 is consistent when it transforms
a k-XOR instance into a k/2-XOR one. First, it is obvious to see that it
produces k/2 lists with elements that are trivially mapped to {0, 1}w−`
since they all start by ` zeroes. Then, when replacing n by w − `, the
lists of the k/2 instance are required to be of size 2(w−`)/(1+log(k/2)) =
2(w−w/(1+log k))/ log k = 2w/(1+log k) which is consistent with the fact that
the lists are expected to stay the same size. When k = 2, the lists are of
size 2w/2 so there will be a collision with good probability.

Therefore, this algorithm has a time and memory complexity of O(k ·
2n/(1+log k)) or, when we fix k to a constant, simply O(2w/(1+log k)). This
will reduce the complexity below the 2w/2 birthday bound as k grows large,
but the complexity decreases slowly. In particular, for all k the complexity
is O(k · 2w/(1+blog kc)) so that we only see a change of complexity every
power of 2.

Memory Efficient Algorithm. Wagner’s algorithm provides a good
time complexity but it has two drawbacks: it is not efficient in terms
of queries and it only finds a single solution. A low memory algorithm
was first described by Chose, Joux and Mitton [CJM02] and shares some

96 Chapter 3. Algorithms for Generic Attacks

Algorithm Data Time Memory Remarks
Wagner [Wag02] 2w/3 2w/3 2w/3 Particular solution
Memory Efficient [CJM02] 2w/4 2w/2 2w/4 Optimal data
Nikolic and Sasaki [NS15] 23w/8 23w/8 2w/4 Unique function

Table 3.1: Various asymptotic complexity trade-offs for solving 4-XOR.

ideas with Wagner’s algorithm. For k = 4 the algorithm essentially repeat
Wagner’s algorithm for every `-bit value α, and merge on α (and not
only on zero) as shown in Figure 3.2. Concretely, the lists are merged as
L0 ./α` L1 = {(e0 ⊕ e1, (e0, e1)) : (e0, e1) ∈ L0 × L1, be0c` ⊕ be1c` = α}.

This algorithm can find all solutions as it keeps running. Therefore, if
we’re looking for a single solution, we need just the minimal number of
queries to ensure such a solution exists in the random 4-XOR which implies
` = w/4. The complexity becomes O(2w/4) queries, O(2w/4) memory and
O(2w/2) time.

In the general case where lists are of size ` and there are 2p expected
solutions (due to some structure), this algorithm finds a solution in time
O(22`−p) with O(2`) queries and memory.

Definition 3.8 (k-XOR problem with unique function). Given a function
f , find k distinct inputs (x0, x1, ..., xk−1) such that f(x0)⊕ f(x1)⊕ ...⊕
f(xk−1) = 0.

Exploiting Functions. Nikolic and Sasaki [NS15] showed that inter-
esting trade-offs are achievable for a version of the 4-XOR with a unique
function and distinct inputs as in Definition 3.8. They make a smart use
of Hellman’s tables to find a 4-XOR solution in O(2t) time and queries
for O(2w−2t) memory for n/3 < t < n/2.

A particular point in this trade-off is when memory is O(2w/4), as much
as the memory efficient algorithm, then the time complexity is O(23w/8)
that is lower than the birthday bound but with also O(23w/8) queries.

In Table 3.1 we show how the different approaches for 4-XOR compare.

3.2.2 A Hard Case: the 3-XOR Problem
The complexity of Wagner’s algorithm for 3-XOR is the same as for
collision, that is birthday bound. Wagner [Wag02] left a better 3-XOR
algorithm as an open question.

3.2. Generalized Birthday 97

Since then, the best algorithms have had a hard time going below the
birthday bound. The best ones achieve O(2w/2/

√
w) time and memory.

There are two main techniques to achieve this, one based on multi-collision
and the other on linear algebra. We present each of these techniques and
discuss the combination of them.

Definition 3.9 (3-XOR problem with lists). Given three lists L0, L1, L2 ⊂
{0, 1}w, find three elements (e0, e1, e2) ∈ L0×L1×L2 such that e0⊕ e1⊕
e2 = 0.

Multi-collisions. As a first way of solving the 3-XOR problem faster
than Wagner’s algorithm Nikolic and Sasaki [NS15] proposed a multi-
collision based approach. Their algorithm works in time and memory
O(2w/2/

√
w/ ln(w)

)
.

The algorithm is as follows. First, compute many outputs of f0 and
look for the most frequent w/2-bit prefix α appearing using any multi-
collision search algorithm. Store all the values with this fixed prefix in a
list L0. Then, evaluate f1 and f2 with 2w/2/

√
|L0| different inputs each,

and store the results in lists L1 and L2 respectively. Look in L1 and L2 for
all pairs with a difference α in the first w/2 bits (this is a simple collision
problem). In expectation, there will be 2w/2/|L0| such pairs, and there is
a high probability that one of them sums to a value in L0. According to
their analysis, the optimal attack uses around 2w/2/w evaluations of f0,
resulting in a multi-collision of size Θ(w/ ln(w)). Therefore, this algorithm
solves the 3-XOR problem with complexity O(2w/2/

√
w/ ln(w)

)
.

Linear Algebra. A second approach, introduced by Joux [Jou09],
exploits linear algebra and reaches a slightly better complexity of
O(2w/2/

√
w). This attack uses just w/2 evaluations of f0 stored in

a list L0, and 2w/2/
√
w/2 evaluations of f1 and f2 to build the lists L1

and L2. The goal is again to get values with a common prefix, but the
trick is to use Gaussian reduction to find a non-singular matrix M such
that the elements of L0 ·M start with w/2 zeroes.1 Then, we focus on a
modified 3-XOR instance:

L′0 = L0 ·M L′1 = L1 ·M L′2 = L2 ·M.

1For instance, we write L0 as a block matrix
[
A B

]
with two w/2×w/2 sub-matrices.

If B is non-singular, we can use M =
[

I 0
B−1A B−1

]

98 Chapter 3. Algorithms for Generic Attacks

The new instance has the same solutions (L′0[h] ⊕ L′1[i] ⊕ L′2[j] = 0 ⇔
L0[h]⊕ L1[i]⊕ L2[j] = 0), but the elements of L′0 start with w/2 zeroes.
Therefore, as in the previous attack, we can efficiently find a solution by
looking for a partial collision on w/2 bits in L′1 and L′2.

Bouillaguet, Delaplace and Fouque [BDF18] later generalized this
approach to deal with more balanced lists size: given three lists with
|L0| · |L1| · |L2| = 2w, they solve the 3-XOR problem with complexity
O(|L0| · (|L1|+ |L2|)/w). In particular, with three lists of size 2w/3 this
gives a time complexity of O(22w/3/w).

In addition, this algorithm can be combined with the clamping trick of
Bernstein to reduce the memory: the attacker first filters the outputs of
the function fi to keep only values that start with w/4 zero bits, and solves
a shorter 3-XOR instance on 3w/4 bits. If we filter and store 2w/2 random
outputs, the resulting lists still have 2w/4 elements which is sufficient to
expect a solution. This gives an algorithm with time O(2w/2) and memory
only O(2w/3). Arguably, this is more practical than algorithms using
O(2w/2/w) memory.

BDP Algorithm. Even before these two approaches, an algorithm
proposed by Baran, Demaine and Pǎtraşcu [BDP08] for the 3-SUM problem
(using modular additions instead of XORs) worked with the asymptotic
complexity ofO(2w/2 · ln2(w)/w2). This algorithm has been adapted to the
3-XOR problem by Bouillaguet et al. [BDF18] with the same complexity.
This is the best known asymptotic complexity for the 3-XOR problem.

Generally, the BDP algorithm has an asymptotic speed-up of w2

ln2(w)
compared to Wagner’s algorithm which makes for an asymptotic time
complexity of O(|L0| · (|L1|+ |L2|) · ln2(w)/w2). However, as it relies
on heavy precomputations, the algorithm is highly impracticable for all
realistic values of w.

Combining Approaches. Since the multi-collision and the linear alge-
bra approaches seem to follow a similar strategy it is natural to wonder how
one can combine them into a better algorithm. Bouillaguet et al. [BDF18]
write that It seems very hard to combine these two improvements in a new
algorithm. We concurred with this analysis in [LS19].

However, the formulation may be a bit misleading: it is not hard to
combine the two approaches but it may simply be useless. Indeed, both
approach can be generalized by the following one:

3.2. Generalized Birthday 99

1. Find a w/2-dimension affine subspace that contains |L0| outputs of
f0 and store them in L0.

2. Consider now the modified 3-XOR instance with modified coordi-
nates: the first coordinates define the found w/2-dimension linear
subspace and the rest simply span to the whole w dimensions. Notice
that all elements of L0 now end by w/2 bits set to 0 as they belong
to the linear subspace.

3. Take f1 and f2 to look for a partial collision on w/2 bits and verify
if it yields a solution.

Step 1 is the crucial step here. Then, the complexity will be led by Step 3
that is O(2w/2/

√
|L0|). The multi-collision approach solves Step 1 by fixing

a priori a linear subspace, and looking for a constant that corrects the w/2-
bit multi-collision to zero. On the other hand the linear algebra approach
takes the first w/2 elements and directly deduce the corresponding w/2
dimension linear subspace (or w/2 + 1 elements in an affine subspace).

The question now is how big can be |L0|. First, we assume we make 2w/2
queries as doing more queries would increase the total complexity. That
is why the w/2-dimension affine subspace containing the most elements
is unlikely to contain more than w elements. The intuition is that the
number of element in a fixed w/2-dimension affine subspace is only 1
in expectation (each element is included with probability 2−w/2) with a
variance of 1−1/2−w/2. The multi-collision technique looks at 2w/2 different
subspaces and the maximum expected number of elements is Θ(w/ ln(w)).
On the other hand, using linear algebra allows us to easily find a subspace
containing w/2 elements. There probably are some heuristic approaches
looking at about 2w/2 different subspaces spanned by w/2 elements, but
the maximum expected number of elements found is w/2 + Θ(w/ ln(w)),
it only adds up. Notice that all interesting subspaces can be spanned by
w/2 elements.

The point is that, even if we look at all spanned subspaces, the
maximum expected L0 is of order O(w). Therefore, the total complexity
of the combined strategy is bound to be O(2w/2/

√
w).

Chapter4The Missing Difference
Problem

Contributions brought forward in this chapter were published in Euro-
crypt 2018 and are a joint work of Leurent and I [LS18].

Introduction
A Folklore Belief. While the information theoretic security of the
counter mode (CTR) is well understood, one can wonder about its practical
security. As we saw in Section 2.1, the CTR allows for a distinguisher at
the birthday bound as the blocks of key stream never repeat. However,
the lack of collisions does not seem to leak any useful information when
actually using the CTR mode to encrypt secret data. It may therefore be
believed that the CTR mode doesn’t really leak any information even at
birthday bound.

In fact, we can find in the literature the folklore belief that the leakage
of the CTR mode is not as bad as the leakage of the CBC mode. For instance,
we can quote Ferguson, Schneier and Kohno [FSK11, Section 4.8.2] in the
context of a 128-bit block cipher who wrote:

CTR leaks very little data. [...] It would be reasonable to limit
the cipher mode to 260 blocks, which allows you to encrypt 264

bytes but restricts the leakage to a small fraction of a bit.
When using CBC mode, you should be a bit more restrictive.
[...] We suggest limiting CBC encryption to 232 blocks or so.

Our contributions. As a first contribution of this thesis, we devise a
plaintext recovery attack on the CTR mode beyond the simple distinguisher.
We show a plaintext recovery attack in the Known-Suffix / Secret-Prefix
model where a secret piece of information is repeatedly encrypted after

101

102 Chapter 4. The Missing Difference Problem

some known plaintext block. This situation is common with web cookies
and is in line with other attacks against HTTPS [DR11; AlF+13; BL16].
Our cryptanalysis further assumes we can control the position of the secret
data and this results in an efficient message recovery running in complexity
Õ(2n/2) in data, time and memory.

To do that we first follow the strategy of McGrew [McG12] and define
the missing difference problem (Definition 4.1) upon the resolution of which
plaintext recovery on CTR is possible. To efficiently solve this problem we
give two new algorithms:

1. An algorithm with Õ(2n/2) data and memory complexities and
Õ(2n/2 + 2dim〈S〉), time complexity where we look for a secret value
in S that is (a subset of) a linear subspace of {0, 1}n. In particular,
when S is a linear subspace of dimension n/2, we reach a time
and query complexity of Õ(2n/2), while the searching algorithm of
McGrew has a time and query complexity of Õ(23n/4).

2. An algorithm with data, time and memory complexities Õ(22n/3)
for any arbitrary S. In particular, for S = {0, 1}n, the best previous
algorithm had a time complexity of Õ(2n).

While the first algorithm we proposed is fit to attack the CTR mode,
the second algorithm allows us to do a partial key recovery attack of some
Wegman-Carter-Shoup MAC schemes using polynomial hash like GMAC
and Poly1305 running in time, query and memory Õ(22n/3). This is the
first partial key recovery leading to a universal forgery on those schemes
running in time less than O(2n).

4.1 The Algorithmic Challenge
4.1.1 From CTR to Missing Difference
The Counter Mode. The CTR mode for encryption (Figure 4.1) was
proposed as early as 1979 by Diffie and Hellman [DH79]. Nowadays it
is largely used notably in TLS via the popular AEAD mode GCM. We
introduced the CTR mode and its matching distinguisher in Section 2.1.4.

In this Chapter, and to simplify the notations, we denote the ith block
of key stream produced by a fresh nonce and the key k as ai. Thus, we
have the relation ci = ai ⊕mi. Notice that it is easy to recover the value
ai when knowing the plaintext mi and the ciphertext ci.

4.1. The Algorithmic Challenge 103

N ‖ 0

Ek

a0

m0

c0

m1

c1

Ek

a1

N ‖ 1

m2

c2

Ek

a2

N ‖ 2

m3

c3

b·c|m3|

Ek

a3

N ‖ 3

Figure 4.1: Diagram of the counter mode (CTR) where ai = Ek(N ‖ i)
and ci = ai ⊕mi.

Plaintext Recovery Strategy. So we know the value ai for many i.
Furthermore, we assume that a secret value S is repeatedly encrypted as
bj = aj ⊕ S for many j. The distinguisher for CTR exploits the fact that
the key stream never repeats which means that:

∀i 6= j : ai 6= aj

⇒ ai ⊕ aj ⊕ S 6= S

⇒ ai ⊕ bj 6= S.

Therefore, the strategy is to collect enough ai and bj , store them in
lists and use the inequality ai ⊕ bj 6= S to recover S.

The Missing Difference Problem. Formally let us denote as A ⊆
{0, 1}n the set of observed key stream blocks ai, B ⊆ {0, 1}n the set of
observed encryptions bj and S ⊆ {0, 1}n the set of possible values of the
secret which models the a priori known information about S. The missing
difference problem is then defined as:

Definition 4.1 (Missing Difference Problem). Given two sets A and B,
and a hint S, find the value S ∈ S such that:

∀(a, b) ∈ A× B, S 6= a⊕ b .

Alternatively the attacker can be given access to the sets A and B
though some functions f and g as in Definition 4.2. This variant allows
the attacker to actively optimize the size of the sets in the same way as
we defined the problem of collision with function in Section 3.1.

104 Chapter 4. The Missing Difference Problem

Definition 4.2 (Missing Difference Problem with Functions). Given two
functions f, g : X → {0, 1}n, and a hint S, find the value S ∈ S such that:

∀(x, y), S 6= f(x)⊕ g(y) .

It is clear that solving this problem is sufficient to recover some secret
data S which makes for a plaintext recovery attack. The Known-Suffix /
Secret-Prefix model is adapted to collect values and build the set A and
B but before we show the details of the attack we need efficient way of
solving the missing difference problem.

4.1.2 Previous Works
Data Complexity Lower Bound. To recover the secret S, it must be
completely determined by the fact that ∀(a, b) ∈ A × B, S 6= a⊕ b. We
can use the coupon collector’s problem to estimate the number of such
value we need. Concretely, the coupon collector’s problem predicts that
N out of N different coupons are found after N ·HN ' N lnN uniformly
random trials where HN is the N th harmonic number.

In our case there are |S| − 1 values to eliminate, therefore we need to
collect at least O(|S| ln |S|) differences that fall into the set S. Since we
can reasonably assume that the differences a⊕ b are uniformly distributed
over {0, 1}n\S (we have to exclude S), they will fall in the set S with
probability (|S| − 1)/(2n − 1). Thus, the number of different a⊕ b values
|A × B| has to be in the order of Ω(2n ln |S|).

Hence, one of the sets must be of size at least Ω(2n/2
√

ln |S|) which is
a lower bound on the data and time complexity for this strategy. Notice
that this is quite efficient as the IND$-CPA proof of the CTR mode implies
that the data complexity must be at least Ω(2n/2) before a single bit of
information can be leaked.

Simple Sieving. As explained by McGrew [McG12], an obvious way to
solve the missing difference problem is to compute and record all values
a⊕ b in a sieve until only one value is left. This value will thus have to be
the secret S. We call it the simple sieving algorithm, Algorithm 4.1. It
is efficient in terms of data with a complexity O(2n/2

√
ln |S|) but takes

time O(2n ln |S|) and memory |S| to store the sieve.

4.2. The Known-Prefix Sieving 105

Algorithm 4.1 Simple sieving algorithm
1: input: A,B,S ⊆ {0, 1}n .
2: output: {s ∈ S | ∀(a, b) ∈ A× B, a⊕ b 6= s} .
3: procedure SimpleSieve(A,B,S)
4: for a in A do
5: for b in B do
6: Remove (a⊕ b) from S;
7: return S

Searching Algorithm. Moreover, McGrew [McG12] noticed that the
simple sieving is actually wasting a lot of computation by computing
values that fall outside the search space S, especially when S is small.

To solve this issue he proposed an algorithm that tests and eliminates
values of S by directly looping over its values. This is the searching
algorithm, Algorithm 4.2. The searching algorithm builds the set B for
quick membership testing (like a hash table) and then loops over S and A
values. In fact, for all s ∈ S it tests whether ∃a ∈ A such that s⊕ a ∈ B.
If it exists, then s is removed from the search space S, if it doesn’t exist
then s is a solution. Therefore, its time complexity is O(|B|+ |A| · |S|).

In the case where the attacker freely chooses the size of the sets, like in
Definition 4.2, then the time complexity is optimized when |B| = |A| · |S|.
In addition, we know that |B| · |A| = Ω(2n ln |S|) for the algorithm
to be successful. Therefore, the total optimized time complexity is
O(2n/2

√
|S| ln(|S|)) which is also the data complexity.

This algorithm is designed to be efficient when S is small. Indeed, it
is almost optimal for small |S| since its time and data complexities tend
to the theoretical lower bound Õ(2n/2).

4.2 The Known-Prefix Sieving
The Simple Sieving Algorithm 4.1 has a huge time complexity and the
Searching Algorithm 4.2 is only efficient for very small S.

We present a first algorithm, the Known-Prefix Sieving, that remains
optimal for relatively large searching space S given that it is included in
an n/2 dimension affine space. The algorithm can easily be iterated over
multiple affine subspaces to search for larger S increasing only the time
but remaining optimal in data complexity.

106 Chapter 4. The Missing Difference Problem

Algorithm 4.2 Searching algorithm
1: input: A,B,S ⊆ {0, 1}n .
2: output: {s ∈ S | ∀(a, b) ∈ A× B, a⊕ b 6= s} .
3: procedure Searching(A,B,S)
4: Store B so that operation ∈ is efficient.
5: for s in S do
6: for a in A do
7: if (s⊕ a) ∈ B then
8: Remove s from S;
9: return S

4.2.1 The Algorithm
The Affine Searching Space. To apply the Known Prefix Sieving
Algorithm the search space S needs to be in an affine subspace of dimension
n/2 or less. Let’s assume S is an n − z dimension affine subspace for
some n/2 ≤ z < n. Let φ be a bijective affine function mapping S unto
{0}z × {0, 1}n−z then for all n-bit values a, b:

S 6= a⊕ b⇔ φ(S) 6= φ(a⊕ b), as φ is a bijection.
⇔ φ(S) 6= φ(a)⊕ φ(b)⊕ φ(0), as φ is affine

The missing difference problem is then rewritten with the transformed
sets A′,B′,S ′ as follows:

S ′ := {0}z × {0, 1}n−z
A′ := {φ(a) | a ∈ A}
B′ := {φ(b)⊕ φ(0) | b ∈ B}

which corresponds to the case where the secret S is known to start with z
zeroes.

The Known Prefix Sieving described in Algorithm 4.3 assumes that
the secret S starts with z zeroes but it is indeed applicable to all affine
search spaces after the above transformation.

Description. The known prefix sieving (Algorithm 4.3) solves the issue
of useless computation (that is a⊕ b falling outside S) by first looking a
partial collision on z bits. Thus, the algorithm looks for all z-bit partial

4.2. The Known-Prefix Sieving 107

Algorithm 4.3 Known prefix sieving algorithm
1: input: A,B ⊂ {0, 1}n, z < n, S ⊆ {0}z × {0, 1}n−z .
2: output: {s ∈ S | ∀(a, b) ∈ A× B, a⊕ b 6= s} .
3: procedure PrefixSieve(A,B, S)
4: hB ← Empty hash table.
5: for b in B do
6: hB[b[0...(z−1)]]

∪← {b[z...(n−1)]}
7:
8: for a in A do
9: va ← a[z...(n−1)]
10: for vb in hB[a[0...(z−1)]] do
11: Remove 0 ‖ (va ⊕ vb) from S;
12: return S

collision between A and B and then removes the resulting XOR from
the searching space. To do that it uses of a hash table indexed by the z
first bits for quick access to all values that partially collide with a given
element.

Notice that this gives another way of looking for collisions. Sorting
the two lists and simultaneously going through them, like we saw with
Algorithm 3.1, to find all partial collisions would also work with the same
complexity.

4.2.2 Complexity Analysis
Data, Time and Memory. If there is a solution, then Algorithm 4.3
will find it.

The time complexity is the size of the lists, that is the data complexity,
plus the number of collisions found. For a search space of size 2n−z, we
need about ln(2n−z) · 2n−z = ln 2 · (n − z) · 2n−z collisions following the
coupon collector analysis. Hence, the time complexity is O(|A| + |B| +
ln 2 · (n− z) · 2n−z).

Finally, the memory stores the lists of n-bit values and keeps track of
the sieve so its complexity is O(n · (|A|+ |B|) + 2n−z).

When the sets A and B are balanced, the data complexity will be

108 Chapter 4. The Missing Difference Problem

optimal and the overall complexities for S = {0}z × {0, 1}n−z are:

O
(√

n− z · 2n/2
)

queries
O
(
2n−z + n

√
n− z · 2n/2

)
bits of memory (sieve & lists)

O
(
(n− z) · 2n−z +

√
n− z · 2n/2

)
operations (collisions & lists)

as n/2 ≤ z all those complexities are Õ(2n/2).

Iterating for larger search space. Notice that the complexity analysis
given above also holds for larger S, in particular for z < n/2. However,
this would lead to unnecessary use of memory. When S is larger and/or
doesn’t fit into an n/2 dimensional subspace the idea is to split S into
multiple subspaces of smaller dimensions and look trough them with the
known prefix sieving Algorithm 4.3.

By doing so, the data complexity will remain optimum and the time
complexity will be multiplied by the number of iterations. Concretely,
for a large search space |S| = 2s splittable into 2s−n/2 linear subspaces of
dimension n/2, the data, time and memory complexities are O(

√
s2n/2),

O(n/2 · 2s) and O(n
√
s2n/2) respectively.

Comparisons. The known prefix algorithm thus works very well with
S in an n/2 dimensions subspace. With z = n/2 the complexities are
Õ(2n/2) while the searching Algorithm 4.2 requires Õ(23n/4) computations.
For small S, as small as |S| = 2, then the two algorithms perform similarly.

For large S though we mainly observe a gain in memory. In particular,
when S = {0, 1}n (when we have no prior information on the secret), the
known prefix sieving requires Õ(2n) time but Õ(2n/2) data and memory
while the simple sieving Algorithm 4.1 requires O(2n) memory for the
sieve.

Lower Bound on Success Probability. In addition to this analysis
in expectation we now derive a lower bound to the probability of success
of the sieving when z = n/2, depending on the query complexity. So let
the number of couples (a, b) be |A| · |B| =: α2n for some α. In expectation,
we should get α2n/2n/2 = α2n/2 partial collisions. More precisely, the
Chernoff bound gives us a lower bound for the probability of finding at

4.2. The Known-Prefix Sieving 109

least (1− δ)α2n/2 collisions:

Pr ≥ 1−
(

e−δ

(1− δ)(1−δ)

)α2n/2

for any δ > 0.
Every partial collision is assimilated to a draw in the coupon collector

problem. A formula in [RP95] for the tail of coupon collector problem
probability distribution allows us to estimate the chance of success after
obtaining β · 2n/2 partial collisions:

Pr ≥ 1− 2−β/ ln(2)+n/2

which is positive whenever β ≥ n/2 · ln(2).
Therefore, we bound the probability of success when collecting |A| ·

|B| = α2n pairs as the probability of obtaining at least (1−δ)α2n/2 partial
collisions multiplied by the probability of success after sieving (1− δ)α2n/2
values:

Pr ≥
(

1−
(

e−δ

(1− δ)(1−δ)

)α2n/2)
·
(

1− 2−(1−δ)·α/ ln(2)+n/2
)

In particular, with two lists of size
√
n/2 · 2n/2 (i.e. α = n/2), we get

Pr ≥ 0.99 as long as n ≥ 32 (using δ = 2−8). This theoretical lower bound
is compared with actual simulations for n = 64 bits in Figure 4.2

4.2.3 Simulations
The Setting. Simulations have been run with a block size n = 64 bits,
and a secret S of size n/2 = 32 bits. Encryption is done using the block
cipher Tiny Encryption Algorithm (TEA [WN95]) in CTR mode. We
create many lists: multiple key stream outputs lists ai ∈ A, and single
encryptions list bj = aj ⊕ (0 ‖ S) ∈ B. After computing and sorting a list
B with 232 elements, we iteratively produce, sort and sieve several lists A
containing 232 elements each, until the secret S is the only one remaining
in the sieve.

Results. One simulation runs in around 20 minutes over 36 cores, as
every step is trivially parallelizable: encryption, sorting and sieving. We

110 Chapter 4. The Missing Difference Problem

20 21 22 23 24 25 26 27 28 29 30 31
0

0.2

0.4

0.6

0.8

1

Number of iterations

Pr
(s

uc
ce

ss
)

Theoretical lower bound with δ = 2−16

Observed among 3700 simulations.

Figure 4.2: Probability of success of the known prefix sieving knowing
232 encryptions of a 32-bit secret against the number of chunks of 232 key
stream blocks of size n = 64 bits used.

ran 3700 simulations and tracked how many lists of 2n/2 = 232 key stream
outputs were needed before a single value was left in the sieve. The coupon
collector problem predicts that one needs on average n/2·ln(2)·2n/2 partial
collisions which will be obtained after n/2 · ln(2) ' 22.18 < 23 rounds in
expectation. And indeed, the simulations showed a 64.5% probability of
success after 23 iterations.

Figure 4.2 shows the convergence between the theoretical lower bound
of Section 4.2.2 and the success probability of the simulations. We also
noticed that the discrepancy in the number of rounds required is largely
due to the last few candidates remaining in the sieve. If we decided that
the attack is successful whenever we are left with less than 1000 potential
candidates for the secret, then the algorithm would successfully finish after
16 rounds. In fact, after 16 rounds, the number of candidates left varies
from 419 to 560 in all the simulations we have run.

4.3 The Fast-Convolution Sieving
In the case of arbitrary S and no prior information on S, all algorithms
seen so far fail to solve the missing difference problem in time less than

4.3. The Fast-Convolution Sieving 111

O(2n).
In this section we show how to solve this particular case of the missing

difference problem in time Õ(22n/3) with the fast-convolution sieving at
the cost of a greater data complexity.

4.3.1 The Algorithm
Increasing the Data Complexity. At a high level, the idea of the
algorithm is to increase the discrepancy between S and the other values.
We do that by increasing the required number of draws a⊕ b so that every
value appears multiple times except for the secret S.

In fact, we only consider truncated values. Concretely, we look at
the values ba ⊕ bcm and see which one appears the less. Hopefully the
truncated values bScm will appear fewer times than the other values since
S is unreachable. This allows us to recover the truncated value of S, and
we can recover the rest via the known prefix sieving.

Description. Concretely, for m < n bits we define a list of counters for
a multi-set X as:

∀i ∈ {0, 1}m : CX [i] =
∣∣{x ∈ X : bxcm = i

}∣∣.

The fast-convolution sieving algorithm (Algorithm 4.6) starts by building
lists of counters CA an CB for the corresponding sets A and B with t
the number of truncated bits (that is m = n − t). Then, the goal is to
compute CA⊕B efficiently from CA and CB, where A⊕ B is the multi-set
{a⊕ b : (a, b) ∈ A× B}.

We observe that:

CA⊕B[i] = |{(a, b) ∈ A× B : ba⊕ bcm = i}|
=
∑

a∈A
|{b ∈ B : ba⊕ bcm = i}|

=
∑

a∈A
|{b ∈ B : bbcm = i⊕ bacm}|

=
∑

a∈A
CB[i⊕ bacm]

=
∑

j∈{0,1}n−t
CA[j]CB[i⊕ j]

112 Chapter 4. The Missing Difference Problem

This is a discrete convolution. In fact, this kind of convolution is efficiently
computed with the Fast Walsh-Hadamard Transform (Algorithm 4.4) and
this convolution is computed using in Algorithm 4.5 which works the same
way we compute circular convolution using the Fast Fourier Transform.

The best guest for bScm is the position of the smallest counter.

Optimisations. In order to increase the success rate of the algorithm,
one can test several candidates for bScm (using the lowest remaining
counters), and use the known-prefix sieving to detect whether the candidate
is correct.

Another option is to run multiple independent runs of the algorithm
with different choices of the n/3 truncated bits. This would avoid some
bad cases we have observed in simulations, where the right counter grows
abnormally high and gets hidden in all the other counters.

4.3.2 Complexity Analysis
Data, Time and Memory. A balanced trade-off between the com-
plexity and the success probability is achieved when m = 2n/3 (that is
t = n/3). With this parameter the fast-convolution sieving requires:

O(
√
n · 22n/3) queries

O(n · 22n/3) bits of memory (counters)
O(n · 22n/3) computations (fast Walsh-Hadamard)

See the detailed proof below. Thus, each complexity is of order Õ(22n/3).
Moreover, our simulations (Section 4.3.3) show that the constant hidden
in the O notation is small: using lists of size

√
n · 22n/3, the lowest counter

corresponds to bScm in at least 70% of our experiments.

Proof of success probability. Consider, without loss of generality and
for blocks of size n, that we possess |A| = |B| = α · 22n/3 blocks of key
stream and the same number of blocks of encrypted secret S with α a
function of n. So in this setting we have |A|·|B| = α2 ·24n/3 different (a⊕b)
values possible between the two lists, that we consider as independent
and uniformly distributed over {0, 1}n\S. Furthermore, we take t = n/3,
that is, the fast-convolution algorithm considers the 2n/3 most significant
bits. Using the fast convolution (Algorithm 4.5) we compute CA⊕B and
we hope that the counter for bSc2n/3, the good counter, will be lower than

4.3. The Fast-Convolution Sieving 113

Algorithm 4.4 Fast Walsh-Hadamard Transform
1: input: |CA| = 2m .
2: output: The Walsh-Hadamard transform of CA .
3: procedure FWHT(CA)
4: for d = m downto 0 do
5: for i = 0 to 2m−d do
6: for j = 0 to 2d−1 do
7: CA[i · 2d + j]← CA[i · 2d + j] + CA[i · 2d + j + 2d−1]
8: CA[i·2d+j+2d−1]← CA[i·2d+j]−2·CA[i·2d+j+2d−1]
9: return CA

Algorithm 4.5 Fast convolution
1: input: |CA| = |CB| = 2n−t .
2: output: CA⊕B .
3: procedure FastConvolution(CA, CB)
4: FWHT(CA); FWHT(CB);
5: for c = 0 to 2n−t do
6: CA⊕B[c]← CA[c] · CB[c]
7: FWHT(CA⊕B);
8: return CA⊕B

Algorithm 4.6 Sieving with fast convolution
1: input: : A,B ⊂ {0, 1}n, t ≤ n .
2: output: : S s.t. ∀(a, b) ∈ A× B, a⊕ b 6= S .
3: procedure FastConvSieve(A,B, t)
4: CA, CB, CA⊕B ← arrays of 2n−t integers initialized to 0;
5: for a in A do
6: Increment CA[bacn−t]
7: for b in B do
8: Increment CB[bbcn−t]

9: CA⊕B ← FastConvolution(CA, CB)
10: u← argminiCA⊕B[i] . Success if S0..(n−t−1) = u.
11: return u⊕PrefixSieve(A,B ⊕ {u ‖ 0t}, {0}n−t × {0, 1}t)

114 Chapter 4. The Missing Difference Problem

all the other counters, the bad counters. We want to find the value α such
that the algorithm succeeds with probability Ω(1).

Let Xc
i represents the fact that the ith value truncates to c, so that

Xc
i follows a Bernoulli distribution and any counter can be written as

Xc = ∑α224n/3
i=1 Xc

i . Now we have to discriminate between the distributions
of the good and bad counters:

(Good) c = bSc2n/3: Pr(XbSc2n/3
i = 1) = (2n/3 − 1)/(2n − 1)

=⇒ E[XbSc2n/3] = (25n/3α2 − 24n/3α2)/(2n − 1)

(Bad) c 6= bSc2n/3: Pr(Xc
i = 1) = (2n/3)/(2n − 1)

=⇒ E[Xc] = (25n/3α2)/(2n − 1)

Now we are interested in the probability that a bad counter gets a
value above E[XbSc2n/3] as a measure of how distinct the distributions are.
Using Chernov Bound we get for all c 6= bSc2n/3 that:

Pr(Xc ≥ E[XbSc2n/3]) = 1−Pr(Xc < E[XbSc2n/3])
= 1−Pr(Xc < (1− 2−n/3)25n/3α2/(2n − 1))
= 1−Pr(Xc < (1− 2−n/3)E[Xc])

≥ 1− e−((2−n/3)2·25n/3α2)/(2(2n−1))

≥ 1− e−α2/2

And to compute the probability that no bad counter gets below
E[XbSc2n/3] we assume their independence, which is wrong, but we will
come back later to discuss this assumption.

Pr(∀c 6= bSc2n/3 : Xc ≥ E[XbSc2n/3]) =
∏

c 6=bSc2n/3

(
1−Pr(Xc < E[XbSc2n/3])

)

≥
(
1− e−α2/2

)22n/3

.

To conclude, we need to find an α = α(n) such that this probability
remains greater than some positive value as n grows. This is clearly
achieved with α = O(

√
n) as for example taking α = 2

√
n√

3·log2(e)
' 0.96

√
n

we get:

4.3. The Fast-Convolution Sieving 115

Pr(∀c 6= bSc2n/3 : Xc ≥ E[XbSc2n/3]) ≥ (1− e−α2/2)22n/3

≥ (1− 2−2n/3)22n/3

≥ 0.25, ∀n ≥ 3/2

Therefore, we bound the probability of success by the events
“XbSc2n/3 < E[XbSc2n/3]”, probability ' 1/2, and “∀c 6= bSc2n/3 : Xc ≥
E[XbSc2n/3]”, probability at least 1/4. And we indeed have a proba-
bility of at least 1/8 of having a successful algorithm. Hence, when
|A × B| = O(n · 24n/3) the algorithm has probability Ω(1) of succeeding.

Notice that when the list are balanced we have |A| = |B| = O(
√
n·22n/3)

but the proof only requires that |A| · |B| = n · 24n/3. This allows for a
range of trade-offs for the lists size.

Regarding the independence of the counters, this is obviously wrong as
they are bound by the relation ∑cX

c = α224n/3. However, this relation
becomes looser and looser as n grows so the approximation obtained
should still be correct asymptotically. Moreover, the covariances implied
are negative meaning that knowing one draw is big makes the other draws
smaller in expectation to compensate. Small negative covariances will make
the distribution look more evenly distributed in the sense that we can’t
observe too many extreme events in a particular direction which is good
for the success rate of the algorithm. So the assumption of independence
may be a conservative one for this complexity analysis and the expected
behavior closely matches the one observed in our simulations.

4.3.3 Simulations
Estimating Success Probability. We ran simulations for block sizes
n = 12, 24, 32 and 48 bits, so that we can estimate the success probability
for this algorithm. We first create two lists of same size, one of raw key
stream outputs and the other of CTR encryptions of an n-bit secret S.
Then, we run Algorithm 4.5 counting over m = 2n/3 bits (unless specified
otherwise) to get a list of counters for each possible XOR output on those
m bits. The expected behavior of the attack would be to look for a solution
whose m first bits correspond to the position of the lowest counter and
test this hypothesis with the known prefix sieving Algorithm 4.3. If it
returns a unique value, this is S, and we are done. If it returns an empty
set, we test with the position of the second lowest counter, etc. As we

116 Chapter 4. The Missing Difference Problem

know the number of key candidates that would be required to recover S,
we compute over many simulations an estimation of the probability of
success after a given number of candidates.

Settings. For block sizes of 12 and 24 bits, we simulated a random
permutation simply by shuffling a range into a list. For bigger sizes of 32
and 48 we used the lightweight cipher Simon designed by the NSA [Bea+15]
with a random key as that is one of the rare block ciphers that can act
on 48-bit blocks. We could quickly gather 10 000 runs for each setting
except for the heavier 48-bit blocks simulation where we gathered 756
runs. Indeed, for n = 48 bits, one simulation took us 40 minutes over 10
cores (each step is highly parallelizable), and 64 gibibytes of RAM for the
counter lists.

Observations. In general, we observe in Figure 4.6 that the algorithm
has a good chance of success with the first few candidates when using the
suggested parameters. Moreover, the sensibility with respect to the data
complexity (Figure 4.4) and to the number of bits counted over (Figure 4.5)
is fairly high. These results back up our complexity analysis and are a
good indication that no big constant is ignored by the O() notation.

On the speed at which the probability increases we realized that,
despite the log scale on the x axis, the curves take a straight (Figure 4.3)
or concave shape (Figure 4.5 4.6). That means that the probability
of success with the next key candidate decreases very quickly with the
number of key candidates already tested and proved wrong. For example,
for n = 48 bits (Figure 4.6) over 756 trials, the right key candidate was in
the 2048 lowest counters in 98.1% of the time, but the worst case found
was at rank 1 313 576. These “very bad” cases push the mean rank of
the right key candidate to 2287 and its sample variance to 2 336 937 008.
This shows that the analysis made in Section 4.3.2 wouldn’t be improved
significantly if we defined the algorithm’s success by the right counter
being among the lowest instead of strictly the lowest one.

4.4 Application
With those new approaches to solving the missing difference problem we
now describe two applications: a cryptanalysis of the CTR mode using
the known prefix sieving in Section 4.4.1 and a cryptanalysis of some

4.4. Application 117

20 22 24 26 28 210
0

0.2

0.4

0.6

0.8

1

Number of key candidates

Pr
(s

uc
ce

ss
)

n = 12 bits
n = 24 bits

Figure 4.3: Results for lists size of 3 · 22n/3

20 22 24 26 28 210
0

0.2

0.4

0.6

0.8

1

Number of key candidates

Pr
(s

uc
ce

ss
)

' 4.9 · 22n/3 data
3 · 22n/3 data

Figure 4.4: Results for n = 24 bits

118 Chapter 4. The Missing Difference Problem

20 22 24 26 28 210
0

0.2

0.4

0.6

0.8

1

Number of key candidates

Pr
(s

uc
ce

ss
)

counting over 22 bits
counting over 21 bits

Figure 4.5: Results for n = 32 bits;
√
n22n/3 ' 5.66 · 22n/3 data

20 22 24 26 28 210
0

0.2

0.4

0.6

0.8

1

Number of key candidates

Pr
(s

uc
ce

ss
)

n = 12
n = 24
n = 48

Figure 4.6: Results for
√
n22n/3 data; counting over 2n/3 bits

4.4. Application 119

Wegman-Carter-Shoup constructions using the fast convolution sieving in
Section 4.4.2.

4.4.1 Plaintext Recovery of the Counter Mode
Direct Application. There are many settings where unknown plaintext
will naturally lie in some known affine subspace, and the known prefix
sieving algorithm can be used directly. For instance a credit card number
(or any number) could be encoded in 16 bytes of ASCII before getting
encrypted. Because in ASCII the encoding of any digit starts by 0x3
(0x30 to 0x39), we know half of the bits of the plaintext, and we can use
the known-prefix sieving with z = n/2. Other examples are information
encoded by uuencode that uses ASCII values 0x20 to 0x5F (corresponding
to two known bits) or HTML authentication cookies that are typically
encoded to some subset of ASCII numbers and letters1.

Chosen-Prefix Secret-Suffix. We saw in Section 2.4.2 the Beastly
attack model which is a practical way to set up a plaintext recovery attack.
Concretely we show an attack on the CTR mode in the Chosen-Prefix
Secret-Suffix model [Hoa+15] where we can choose the length of a known
head H and get the encryption of Enc(H ‖ S).

For the attack to work we need to control the way S is split among
blocks. However, and unlike the direct application, we do not assume
anything on S. It is fit to recover some authentication token with no
apparent structure.

This is truly a block splitting attack: the attacker starts with a header
length so that a small chunk of the secret message is encrypted together
with known information, and he recovers this secret chunk. Then, he
changes the length of the header to recover a second chunk of the message,
using the fact that the first chunk is now known. Eventually, the full
secret is recovered iteratively.

In our case, the easiest choice is to recover chunks of n/2 bits of
secret one by one, using the known-prefix sieving Algorithm 4.3 with
z = n/2. We illustrate this attack in Figure 4.7, assuming a two-block
secret S = S1 ‖ S2 ‖ S3 ‖ S4, and a protocol that lets the adversary query
an encryption of the secret with an arbitrary chosen prefix:

1For example, wikipedia.org encodes cookies with lower case letters and digits,
this corresponds to two known bits.

120 Chapter 4. The Missing Difference Problem

Queries Q1 with half-block header H1 S1 S2 S3 S4

Queries Q2 with full-block header H1 H2 S1 S2 S3 S4

Reuse Q1 with known S1, S2 H1 S1 S2 S3 S4

Reuse Q2 with known S1, S2, S3 H1 H2 S1 S2 S3 S4

Figure 4.7: Example of an attack on two blocks secret S = S1‖S2‖S3‖S4.
Each step performs the known prefix sieving algorithm. Known information
in blue, unknown information in red, attacked information in yellow.

1. The attacker makes two kinds of queries

• Q1 with a known half-block header H1 (Enc([H1 ‖ S1] ‖ [S2 ‖
S3] ‖ [S4]));

• Q2 with a known full-block header H1 ‖H2 (Enc([H1 ‖H2] ‖
[S1 ‖ S2] ‖ [S3 ‖ S4])).

2. He first recovers S1 using the known-prefix sieving with the first block
of each type of query. More precisely, he uses A = {Enc(H1 ‖H2)}
and B = {Enc(H1 ‖ S1)}, so that the missing difference is 0 ‖ (S1 ⊕
H2).

3. When S1 is known, he can again use known prefix sieving to re-
cover S2, with the first and second blocks of Q2 queries: A =
{Enc(H1 ‖H2)} and B = {Enc(S1 ‖ S2)}, so that the missing dif-
ference is (S1 ⊕H1) ‖ (S2 ⊕H2). To improve the success rate of this
step, he can also consider the first block of Q1 queries as known key
stream.

4. When S2 is known, another round of known prefix sieving reveals
S3, for instance with A = {Enc(H1 ‖H2)} and B = {Enc(S2 ‖ S3)},
the missing difference is (S2 ⊕H1) ‖ (S3 ⊕H2).

5. Finally, S4 is recovered with a last round of known prefix sieving
using A = {Enc(H1 ‖H2)} and B = {Enc(S3 ‖ S4)}, with missing
difference is (S3 ⊕H1) ‖ (S4 ⊕H2).

4.4. Application 121

This gives an algorithm with query complexity of O(
√
n2n/2) to recover

repeated encryption of a secret over multiple blocks in the Chosen-Prefix
Secret-Suffix model. In Section 4.2.3, we analyzed the constants in the O
notation and run experiments with n = 64 using locally encrypted data.
In particular, we have a success probability higher than 80% using two
lists of 5× 232 queries with n = 64.

Generally, we show that for n ≥ 32 the success probability of this
attack is at least 99% with lists of size

√
n/2 ·2n/2. With a one block secret,

an optimal attack uses two lists of
√
n/2 · 2n/2 two-block queries: queries

[H1‖S1]‖ [S2] with a half-block header, and queries [H1‖H2]‖ [S1‖S2] with
a full-block header. This translates to a data complexity of 4

√
n/2 · 2n/2

blocks. For comparison, an attack against the CBC mode requires on
average 2 · 2n/2 blocks of data in the ideal case.

Smaller Splitting. Alternatively, an attacker could recover the secret
bit by bit. This leads to a less realistic attack in practice, and we can
show that the complexity is similar. For this variant, McGrew’s searching
algorithm could also be used instead of our known-prefix sieving algorithm
(because in this scenario, we have |S| = 2). Overall, we find that the best
strategy is still to split the secret and recover n/2 bits at a time: smaller
chunks make the attack less practicable with no gain of complexity, while
bigger ones would increase the time complexity.

Let us show the complexity of such an attack to recover a block of
secret, taking into account the n steps necessary for this attack. For
simplicity, we consider a setting where one query returns a block of key
stream and the encryption of 0 ‖ si with an unknown bit si. We are
interested in the query complexity for recovering n bits of secret one bit at
a time; that is we need to know the first bit to ask for the second one, etc.
Clearly this can be done in O(n · 2n/2) queries by repeating n times the
attack on one bit. However, we need fewer and fewer queries to uncover
the next bit as we go forward and accumulate blocks of key stream.

Let:

Ui ←The expected number of encryption of 0 ‖ si to recover si.
Ki ←The expected number of raw key stream outputs to recover si.

From the definition of a query, the above description and because each
time we find a bit of secret we can deduce a range of key stream blocks

122 Chapter 4. The Missing Difference Problem

for the next step we have the relations:

K1 = U1 (4.1)
Ki+1 = Ki + Ui + Ui+1 for i ≥ 1 (4.2)

Ki · Ui = 2n (in expectation) (4.3)

We consider the following proposition:

Pi : Ui = 2n/2(
√
i−
√
i− 1),

and, using (4.2), when Pk true for all k ≤ i we have:

Ki = 2
i−1∑

k=1
Uk + Ui = 2n/2(

√
i+
√
i− 1).

Moreover, (4.1) and (4.3) imply K1 = U1 = 2n/2 so P1 is true. Now
suppose Pk true for all k ≤ i, let’s prove it holds for Pi+1:

Ki+1 · Ui+1 = 2n by (4.3)
=⇒ U2

i+1 + (Ki + Ui) · Ui+1 − 2n = 0 by (4.2)
=⇒ U2

i+1 + 2n/2 · 2
√
i · Ui+1 − 2n = 0 by Pi

=⇒ Ui+1 = 2n/2(
√
i+ 1−

√
i) as Ui+1 ≥ 0

=⇒ Pi+1 is true.

Now that we have a closed form for Ui we can deduce the expected
number of queries needed to recover n bits of secret by summing over as∑n
i=1 Ui = 2n/2

√
n.

Therefore, the query complexity is really O(
√
n · 2n/2) ignoring a

constant depending on the length of a query. Notice that this complexity
is the same as when sieving S as a whole showing that we don’t increase
the query complexity by more than a constant with this strategy.

About Rekeying. As for many modes of operation, the common wis-
dom to counter this kind of attacks asks for rekeying before the birthday
bound, that is before 2n/2 blocks. However, rekeying too close to the
birthday bound may not be enough. For example let’s consider an imple-
mentation of a CTR based mode of operation that rekeys every 2n/2 blocks.
Using the same model as previously for a one-block secret, an optimal

4.4. Application 123

attack uses queries [H1 ‖ S1] ‖ [S2] with a half-block header, and queries
[H1 ‖H2] ‖ [S1 ‖ S2] with a full-block header, where rekeying occurs after
2n/2−2 queries of each type. To recover S1, we use the known prefix sieving
algorithm as previously, but we can only use relations between ciphertext
blocks encrypted with the same key. In each session of 2n/2 blocks, we
consider 2n−4 pairs of ciphertext blocks; on average there are 2n/2−4 pairs
with the correct prefix used for sieving. Since we need n/2 · 2n/2 draws
to reduce the sieve to a single element with high probability, we use 8n
sessions, that is 8n · 2n/2 blocks of data in total. The same data can be
reused to recover S2 when S1 is known. This should be compared with
the previous data complexity of 4

√
n/2 · 2n/2 in the absence of rekeying.

However, rekeying every 2n/2−16 blocks makes the data complexity
goes up to 235n sessions or n · 219+n/2 blocks to recover the secret block.
Notice that the security gain of rekeying is comparable with CBC where
rekeying every 2n/2−16 blocks forces an increase of the data complexity
from 2 · 2n/2 to 218 · 2n/2 blocks.

The CTR Mode in Communication Protocols. The CTR mode is
widely used in internet protocols, in particular as part of the GCM authen-
ticated encryption mode [MV04], with the AES block cipher. For instance,
Mozilla telemetry data show that more than 97% of HTTPS connections
from Firefox nightly 92 use AES-GCM2. While attacks against modes with
a 128-bit block cipher are not practical yet, it is important to limit the
amount of data processed with a given key, in order to keep the probability
of a successful attack negligible, following the guidelines of Luykx and
Paterson [LP16].

Surprisingly, there are also real protocols that use 64-bit block ciphers
with the CTR mode (or variants of the CTR mode), as shown below. Attacks
against those protocols would be (close to) practical, assuming a scenario
where an attacker can generate the encryption of numerous messages with
some fixed secret.

SSH. Cipher-suites based on the CTR mode were added to SSHv2 in
2006 [BKN06]. In particular, 3DES-CTR is one of the recommended ciphers,
but actual usage of 3DES-CTR seems to be rather low [Alb+16]. In practice,
3DES-CTR is optionally supported by the Dropbear server, but it is not
implemented in OpenSSH. According to a scan of the full IPv4 space by

2https://mzl.la/32PT4x9, accessed September 22, 2020

https://mzl.la/32PT4x9

124 Chapter 4. The Missing Difference Problem

i

Ek′

0

Ek

mi,0

ci,0

1

Ek

mi,1

ci,1

2

Ek

mi,2

ci,2

Figure 4.8: f8 mode (i is a message counter)

Censys.io3, around 7.15% of SSH servers support 3DES-CTR, but actual
usage is hard to estimate because it depends on client configuration.

The SSH specification requires to rekey after 1 GB of data, but an
attack is still possible, although the complexity increases.

3G telephony. The main encryption algorithm in UMTS telephony is
based on the 64-bit block cipher Kasumi. The mode of operation, denoted
as f8, is represented in Figure 4.8. While this mode in not the CTR mode
and was designed to avoid its weaknesses, our attack can be applied to the
first block of ciphertext. Indeed, the first block of message i is encrypted
as ci,0 = mi,0 ⊕ Ek(Ek′(i)), where the value Ek(Ek′(i)) is unique for all
the messages encrypted with a given key.

There is a maximum of 232 messages encrypted with a given key in
3G, but this only has a small effect on the complexity of attacks.

Because of the low usage of 3DES-CTR in SSH, and the difficulty of
mounting an attack against 3G telephony in practice, we did not attempt
to demonstrate the attack in practice. However, the setting and complexity
of our attacks are comparable to the Sweet32 attack on the CBC mode
with 64-bit ciphers [BL16].

3https://web.archive.org/web/20200620131835/https://censys.io/ipv4/
report?field=22.ssh.v2.support.client_to_server.ciphers&max_buckets=, scan
performed over 18 400 820 servers on June 20, 2020

https://web.archive.org/web/20200620131835/https://censys.io/ipv4/report?field=22.ssh.v2.support.client_to_server.ciphers&max_buckets=
https://web.archive.org/web/20200620131835/https://censys.io/ipv4/report?field=22.ssh.v2.support.client_to_server.ciphers&max_buckets=

4.4. Application 125

4.4.2 Partial Key Recovery of GMAC and Poly1305
Because the fast convolution algorithm requires no prior information on
S, it can be adapted to other modes of operation based on CTR and
particularly to Wegman-Carter-Shoup type of modes for authentication,
see Section 2.2.3. Wegman-Carter-Shoup MACs use a keyed permutation
E and a keyed universal hash function h, with k1 and k2 two private keys.
The input is a message m and a nonce N , and the MAC is defined as:

MAC(N,m) = hk1(m) + Ek2(N) .

Again, the construction requires that all block cipher inputs are different.
To apply our attack, we use two fixed messages m and m′, and we capture
many values MAC(N,m) in a list A and values MAC(N ′,m′) in a list B,
all using unique nonces. Then, we solve the missing difference problem to
recover hk1(M)−hk1(M ′) as we know that ∀N 6= N ′ : Ek2(N)−Ek2(N ′) 6=
0. When the hash is a polynomial based AXU function, it is often sufficient
to know this difference and the two messages m and m′ to recover the
key k1. We give two examples with GMAC and Poly1305 algorithms. In
addition, we show a simple forgery attack on Wegman-Carter-Shoup with
a deterministic hash function applicable on the authentication part of the
CWC mode of operation.

Galois/Counter Mode. GCM is an AEAD mode with associated data,
combining the CTR mode for encryption and a Wegman-Carter MAC based
on polynomial evaluation in a Galois field for authentication. When used
with an empty message, GCM only performs authentication and it reduces
to GMAC. In our attack, we use an empty message with one block of
authenticated data a, so that the tag is computed as:

MAC(N, a) = a ·H2 ⊕H ⊕ Ek(N),

with H = Ek(0) the hash key and (·) the multiplication in a Galois
Field defined by a public polynomial. So, for two different blocks of
authenticated data a and a′ we collect O(

√
n·22n/3) MACs and perform the

fast convolution algorithm to recover a ·H2⊕H⊕a′ ·H2⊕H = (a⊕a′) ·H2.
We know a⊕ a′ and the field is known, so we invert that value and recover
H2 then compute the square root and recover the hash key H.

In a concurrent work (published at the same venue) Luykx and Pre-
neel [LP18] described a similar attack on GMAC in the information theo-
retic setting to match the best known proof [Ber05a]. Their approach

126 Chapter 4. The Missing Difference Problem

directly sieves out the wrong key candidates. That is for any known
couple of 1-block messages m,m′ they solve the inequality MAC(N,m)⊕
MAC(N ′,m′) 6= m ·H2 ⊕m′ ·H2 to eliminate a candidate of H.

The advantage of this version is that we don’t need to manipulate the
values to force the repetition of the authenticated messages. In particular,
GCM authenticates the ciphertext which is known but isn’t expected to be
repeated.

On the other hand this cryptanalysis still requires O(2n) time and
memory in the computational model making it hardly practical and it is
unclear how to apply our ideas to efficiently sieve in this context. Moreover,
it can’t be applied to modes such as CWC unlike our approach based on
the missing difference.

Comparison with other cryptanalysis of GMAC. There are other
known attacks against GCM and GMAC, but none of them seems to allow
universal forgery with just 22n/3 blocks of data and 22n/3 computations.
In particular, Handschuh and Preneel [HP08] gave a weak-key attack, that
can also be used to recover the hash key without weak key assumptions,
using roughly 2n/2 messages of 2n/2 blocks. Later work extended these
weak key properties [Saa12; PC15], but an attack still requires about 2n
blocks in total when no assumptions are made about the key. We also
note that these attacks require access to a verification oracle, while our
attack only uses a MAC oracle.

Other attacks use specific options of the GCM specifications to reach
a lower complexity, but cannot be applied with standard-length IV, and
tag: Ferguson [Fer05b] showed an attack when the tag is truncated, and
Joux [Jou06] gave an attack based on non-default IV lengths.

Poly1305. Poly1305 [Ber05b] is a MAC scheme following the Wegman-
Carter-Shoup construction, using polynomial evaluation modulo the prime
number 2130 − 5. It uses a keyed 128-bit permutation (usually AES), and
the hash function key, r, has 106 secret bits (22 bits of the key are set to
0, including in particular the 4 most significant ones). The message blocks
are first padded to 129-bit values ci. Then, the MAC of a q-block message
m with nonce N is defined as:

T (m,N) = (((c1r
q+c2r

q−1+...+cqr) mod 2130−5)+Ek(N)) mod 2128.

4.4. Application 127

With the same strategy as above, using two different messages m and m′
we recover the missing difference

(((c1− c′1)rq + (c2− c′2)rq−1 + ...+ (cq − c′q)r) mod 2130− 5) mod 2128.

Moreover, we chose m and m′ such that ci − c′i = 0 and cq − c′q = 1; since
by design, r < 2124 the value recovered is simply the hash key r.

Notice that Poly1305 doesn’t use the XOR operation but a modular
addition, and we have to adapt our algorithms to this case. Luckily,
the fast convolution algorithm can easily be tweaked. First, we keep
the 2n/3 least significant bits to avoid issues the carry, something the
XOR operation doesn’t have. Moreover, when the lists of counters are up,
we need to compute their cyclic convolution, which is done with a fast
convolution algorithm based on the fast Fourier transform (instead of fast
Walsh-Hadamard). Finally, we verify the value suggested by the lowest
counter by running the known prefix algorithm looking for collisions on
the least significant bits and sieving the modular subtraction of the most
significant bits. This adaptation has similar complexities and proofs than
the one described earlier. Moreover, in the case of Poly1305, one can
further adapt the algorithms to take into account the fact that 22 bits of
the key r are fixed at 0 effectively reducing the dimensions of S.

Simple Forgery on CWC. The CWC mode was designed by Kohno, Viega
and Whiting [KVW04], shown in Figure 4.9. It follows the Wegman-
Carter-Shoup construction with a twist: it encrypts the output of the
hash function before masking it with a fresh nonce. This makes exploiting
the property of the hash function to recover the key impossible. However,
by solving the missing difference problem we can recover the value ∆ =
Ek(CWC-HASHH(a)) ⊕ Ek(CWC-HASHH(a′)) for fixed authenticated data a
and a′. This is enough to make a forgery; for a fresh nonce N get
the tag MAC(N, a) then deduce the tag for a′ that is MAC(N, a′) =
MAC(N, a)⊕∆.

This attack works as soon as the hash function used is deterministic.
Indeed, the forgery exploits the fact that the difference in the output of
the hash remains unchanged across multiple nonces.

128 Chapter 4. The Missing Difference Problem

N ‖ 0

Ek

MAC

EkCWC-HASHH

c2c1a2a1

Ek

N ‖ 1

m1

Ek

N ‖ 2

m2

Figure 4.9: The CWC mode of operation for an 2-block message m1 ‖m2
and authenticated data a1 ‖ a2 with a block cipher key k and an hash key
H = Ek(11 ‖ 0∗).

4.5 Conclusion
Attacks Summary. We have given efficient algorithms for the missing
difference problem in two practically relevant cases: with an arbitrary
missing difference, and when the missing difference is known to be in some
low-dimension vector space. These algorithms lead to a message-recovery
attack against the CTR mode with complexity Õ(2n/2), and a univer-
sal forgery attack against some Carter-Wegman MACs with complexity
Õ(22n/3).

In particular, we show that plaintext recovery attacks against the
CTR mode and the CBC mode can be mounted with roughly the same
requirements and the same complexity. This goes against the folklore
assumption that the security loss of the CTR mode with large amounts of
data is slower than of the CBC mode.

Mitigation. Therefore, the CTR mode with 64-bit block ciphers should
be considered unsafe (unless strict data limits are in place). As a counter-
measure, we recommend to use larger block sizes, and to rekey well before
2n/2 blocks of data. Concrete guidelines for 128-bit block ciphers have

4.5. Conclusion 129

been given by Luykx and Paterson [LP16]. Alternatively, if the use of
small block is required, we suggest using a mode with provable security
beyond the birthday bound, such as CENC [Iwa06; IMV16].

Chapter5Beyond-Birthday-Bound
Secure MAC

Contributions brought forward in this chapter were published in Crypto
2018 and are a joint work of Leurent, Nandi and I [LNS18].

Introduction
In the quest for Beyond-Birthday-Bound Security many proposals for
deterministic authentication schemes follow the Double-block Hash-then-
Sum strategy explained in Section 5.1. They originally enjoyed a security
proof up to O(22n/3) and there were no known theoretical attack faster
than the generic 2n brute-force.

Our contributions. In this chapter we present a generic cryptanalysis
for the Double-block Hash-then-Sum construction, Section 5.1.2. Then,
we concretely show an attack on the authentication modes SUM-ECBC,
GCM-SIV2, PMAC+, LightMAC+, 3kf9 and 1kPMAC+ in data complexity
O(23n/4).

Although they were all originally shown secure up to O(22n/3) short
queries, Kim, Lee and Lee [KLL20] later proved that our cryptanalysis
are actually optimal for modes SUM-ECBC, PMAC+, LightMAC+ and 3kf9 by
providing a tight bound matching our attack in data complexity O(23n/4)
for short queries.

Most of the attacks shown are information theoretic as they have a
time complexity greater than 2n, but we show a variant for SUM-ECBC and
GCM-SIV2 that runs in data and time complexity O(26n/7).

We also show a birthday bound attack on 1kf9 [Dat+15] that was
already withdrawn due to a flaw in its proof. This attack shows that the
scheme actually doesn’t offer beyond birthday bound security. Our generic
attack also invalidates an improved proof for LightMAC+ by Naito [Nai18].

131

132 Chapter 5. Beyond-Birthday-Bound Secure MAC

M
ode

Provable
security

bounds
A
ttacks

(this
work)

A
dvantage

Q
ueries

Q
ueries

T
im

e
Type

SUM-ECBC
[Yas10]

O
(
q 4
`
m

3

2 3
n

)
[K

LL20]
Ω

(2 3
n
/4)
O

(2 3
n
/4)

Õ
(2 3

n
/2)

U
O

(2 6
n
/7)

Õ
(2 6

n
/7)

U
GCM-SIV2

[IM
16]

O
(
q 3
`
m

2

2 2
n

)
Ω

(2 2
n
/3)
O

(2 3
n
/4)

Õ
(2 3

n
/2)

U
O

(2 6
n
/7)

Õ
(2 6

n
/7)

U

PMAC+
[Yas11]

O
(
q 4
`
m

2

2 3
n

+
q
`
m

2

2
n

)
[K

LL20]
Ω

(2 3
n
/4)
O

(2 3
n
/4)

Õ
(2 3

n
/2)

E
LightMAC+

[N
ai17]

O
(
q 4

2 3
n)

[K
LL20]

Ω
(2 3

n
/4)
O

(2 3
n
/4)

Õ
(2 3

n
/2)

E
1kPMAC+

[D
at+

17]
O
(
σ2
n

+
q
σ

2

2 2
n)

Ω
(2 2

n
/3)
O

(2 3
n
/4)

Õ
(2 3

n
/2)

E

3kf9
[Zha+

12]
O
(
q 4
`
m

6

2 3
n

)
[K

LL20]
Ω

(2 3
n
/4)
O

(
4 √
n
·2 3

n
/4)
Õ

(2 5
n
/4)

U
1kf9

[D
at+

15]
O
(
q
`
m

2

2
n

+
q 3
`
m

4

2 2
n

+
q 4
`
m

4

2 3
n

+
q 4
`
m

6

2 4
n

)
Ω

(2 2
n
/3)
O

(2
n
/2)

Õ
(2
n
/2)

U

Table
5.1:

Sum
m
ary

ofthe
security

for
studied

m
odes

and
our

m
ain

results.
q
is

the
num

ber
ofqueries,

`
m

is
the

m
axim

um
size

ofa
query,

σ
is

the
totalnum

ber
ofprocessed

blocks.
T
he

expected
lower

bound
and

attack
com

plexity
is

in
num

ber
ofconstantlength

queries
(`
m

=
O

(1)).
W
e
use

“U
”
for

universalforgeries,and
“E”

for
existentialforgeries.

5.1. Double-block Hash-then-Sum MACs 133

5.1 Double-block Hash-then-Sum MACs
The Challenge. We can distinguish three types of modes for authenti-
cation: deterministic, nonce-based and probabilistic. Nonce-based MACs,
like Wegman-Carter MACs [WC81], require to maintain a state to provide
for a unique value, a nonce, and probabilistic MACs, like RMAC [JJV02]
and EHtM [Min10], require some entropy to provide for a random value,
a salt. On the other hand, deterministic MACs, like CBC-MAC [FIPS113;
BKR00] and its variants, are the easiest to use in practice which explains
their popularity.

However, a deterministic MAC scheme with beyond-birthday-bound
security is far from trivial to build. In fact, we saw in Section 3.1.2 a generic
attack by Preneel and van Oorschot [Pv95] that works on all deterministic
iterated MACs using internal state collisions. Therefore, a deterministic
MAC with an n-bit state cannot reach beyond birthday-bound security.

All the proofs mentioned in this chapter deal with the prf security notion
(Definition 1.3) meaning that all Double-block Hash-then-Sum MACs we
introduce are secure as PRFs. Although our attacks are described as
forgery attacks, they can also be seen as distinguishers in the prf security
game.

5.1.1 Generic Design
Increasing the State Size. To bypass the limitation of iterated deter-
ministic MACs, one has to increase the internal state size of the mode.
Double-block Hash-then-Sum MACs double it from n to 2n so that the
generic attack of [Pv95] runs in O(2n) complexity which is no better than
a random guessing of the tag.

More precisely the internal state is divided into two n-bit parts that
we denote Σ and Θ, and the final MAC is computed as:

MAC(M) = E
(
Σ(M)

)⊕ E′(Θ(M)
)
,

where E and E′ denote a block cipher with potentially different keys. The
functions Σ and Θ are typically two n-bit almost-xor universal (AXU,
Definition 2.2) hash functions computed on the message, hence the name
Double-block Hash-then-Sum MAC.

Yasuda [Yas10] was the first to propose and prove a construction
following this design strategy with SUM-ECBC. The SUM-ECBC MAC came

134 Chapter 5. Beyond-Birthday-Bound Secure MAC

with a proof guaranteeing security up to O(22n/3) short queries which
indeed is beyond the birthday bound.

A Prolific Research Topic. Following that there have been several
works on the topic of building deterministic MACs secure beyond the
birthday bound. Yasuda himself proposed PMAC+ [Yas11] which is a BBB
MAC achieving rate 1 meaning that it uses a single block cipher call per
block of message while SUM-ECBC is only rate 1/2 (two block cipher calls
per message block).

Later works proposed designs optimizing various aspects. We will
study 3kf9 [Zha+12] that removes the needs for Galois Field doubling,
1kPMAC+ [Dat+17] and 1kf9 [Dat+15] that only use a single secret key,
LightMAC+ [Nai17] and the authentication part of GCM-SIV2 [IM16]. All
of them came with a proof of security up to O(22n/3) short queries.

Working on Better Proofs. There has been work to unify and improve
the initial proofs. Datta, Dutta, Nandi and Paul [Dat+18] unified the
design strategy under the Double-block Hash-then-Sum paradigm and
proposed an improved proof mostly improving the security bound for long
queries. In particular, the security bound for short queries was still at
O(22n/3) until Kim, Lee and Lee [KLL20] later proved that the Double-
block Hash-then-Sum paradigm is secure up to O(23n/4) short queries.
However, the bound of [KLL20] does not always dominate the one of
[Dat+18] notably for long queries.

Nevertheless, the proofs are quite technical and require attention. For
instance 1kf9 was withdrawn due to an issue with its proof, and we
provide in Section 5.3.1 a birthday bound attack showing that the proof
cannot be repaired. The original proof of 3kf9 was shown to be flawed
and repaired by [Dat+18]. Finally, an improved proof for LightMAC+
by Naito [Nai18] showed an advantage upper-bound that should make
any attack using O(23n/4) short queries and a single verification query
impossible. Therefore, the existence of our attack contradicts the proof
and, when contacted, the author recognized that there was a flaw in its
proof.

5.1. Double-block Hash-then-Sum MACs 135

5.1.2 Generic Attack
We present a generic strategy that leads to a cryptanalysis on all known
Double-block Hash-then-Sum authentication modes in data complexity
O(23n/4) given an iterated and deterministic construction of the hash
functions.

4-way Relation. Remember that a Double-block Hash-then-Sum MAC
is composed of two n-bit AXU hash Σ(·) and Θ(·) and is computed as:

MAC(M) = E
(
Σ(M)

)⊕ E′(Θ(M)
)
.

Our generic strategy to mount forgery attacks consists in looking for
a quadruple of messages (X,Y, Z, T) such that pairs of values collide for
one half of the state. More precisely, we look for quadruples satisfying a
relation R(X,Y, Z, T) defined as:

R(X,Y, Z, T) :=

Σ(X) = Σ(Y)
Θ(Y) = Θ(Z)
Σ(Z) = Σ(T)
Θ(T) = Θ(X)

which directly implies that:

R(X,Y, Z, T) =⇒ MAC(X)⊕MAC(Y)⊕MAC(Z)⊕MAC(T) = 0.
(5.1)

Constructing Messages. We build two-block messages using two dif-
ferent injection functions φ and ψ. The generic strategy consists in adding
two distinct prefixes and letting the suffix free as for example:

φ(i) = 0 ‖ i ψ(i) = 1 ‖ i
X = φ(x) = 0 ‖ x Y = ψ(y) = 1 ‖ y
Z = φ(z) = 0 ‖ z T = ψ(t) = 1 ‖ t .

It is important to interleave the injection functions so that all pairs of
messages that need to collide on a state part, that are (X,Y), (Y, Z), (Z, T)
and (T,X) always involve both φ and ψ. Hence, a collision can occur in
Σ or Θ when the second block cancels the difference induced by the first
block.

136 Chapter 5. Beyond-Birthday-Bound Secure MAC

Reducing the Linear System. What makes this attack possible is
the fact that the messages X,Y, Z, T are constructed in such a way that
the relation R is implied by a linear system of rank three. Concretely we
design the attack such that:
[
Σ(X) = Σ(Y) and Θ(Y) = Θ(Z) and Σ(Z) = Σ(T)

]⇒ Θ(T) = Θ(X).

Therefore, taken randomly, at least one quadruple out of 23n is expected
to satisfy R Notice that 23n quadruples can be built with 4 · 23n/4 queries
thus we can find a quadruple (X,Y, Z, T) satisfying R with an O(23n/4)
data complexity.

This part of the attack is the least generic in the sense that one has to
look at the construction to verify that indeed good quadruples appear more
often than expected. However, every MAC considered has this property.

Building a Forgery. In the very same way that the generic attack
of Preneel and van Oorschot [Pv95] exploited the Collision Extension
Property (Definition 3.4) we can define the 4-way Collision Extension
Property as:

Definition 5.1 (4-way Collision Extension Property). We consider a
MAC following the Double-block Hash-then-Sum paradigm. Let Σ(m)
and Θ(m) be the two n-bit internal state after having processed m. We
define the 4-way collision extension property as:

R(X,Y, Z, T) =⇒ R(X ‖ s, Y ‖ s, Z ‖ s, T ‖ s)

for any messages X,Y, Z, T and any suffix s where:

R(X,Y, Z, T) :=

Σ(X) = Σ(Y)
Θ(Y) = Θ(Z)
Σ(Z) = Σ(T)
Θ(T) = Θ(X)

Thus, with a proper quadruple (X,Y, Z, T) satisfying R we deduce a
related quadruple (X ‖ s, Y ‖ s, Z ‖ s, T ‖ s) also satisfying R. Hence, we
predict that MAC(X ‖ s) = MAC(Y ‖ s)⊕MAC(Z ‖ s)⊕MAC(T ‖ s) so
that asking for the tag of three of them allows us to forge a valid tag for
the fourth one.

5.2. Application to concrete MACs 137

This 4-way Collision Extension Property really applies when the two
part Σ and Θ are independently built as deterministic iterated functions
just like in the case of MACs. More precisely, when appending a block
s, the value Σ(m ‖ s) (resp. Θ(m ‖ s)) must only depends on Σ(m) and
s (resp. Θ(m) and s). For instance this is the case for MACs SUM-ECBC,
GCM-SIV2 and PMAC+ but not for 3kf9. We thus adapt or improve our
attack for every considered modes in their respective sections.

Detecting Quadruple. As we look for a good quadruple, the relation
MAC(X)⊕MAC(Y)⊕MAC(Z)⊕MAC(T) = 0 in itself is too weak because
we expect one quadruple out of 2n to satisfy it randomly. However, we
can usually amplify the filtering using related quadruples that satisfy
R simultaneously, for instance exploiting the 4-way collision extension,
Definition 5.1. Amplifying to a 3n bit filter will be sufficient as, then, only
a single quadruple is expected to satisfy it randomly.

Therefore, in most of our attacks, detecting a quadruple is done by
solving an instance of the 4-XOR problem with word size w = 3n. In the
optic of an information theoretic attack that matches the proof, the data
complexity is the most important, if not the only important, parameter
to optimize. We saw multiple algorithms for the 4-XOR problem in
Section 3.2.1, but only the memory efficient algorithm [CJM02] is suitable
as it is also data efficient. Indeed, Wagner’s algorithm [Wag02] as well as
Nikolic and Sasaki’s algorithm [NS15] would need 2w/3 queries or more
which in our case makes for a 2n data complexity, no better than random
tag guessing.

This is why our attack has a data, time and memory complexities
of O(23n/4),O(23n/2) and O(23n/4) respectively. However, variants of
our attack exploiting the actual structure of the MAC to get a time
complexity below 2n are possible at least for SUM-ECBC and GCM-SIV2
where we describe an attack using O(26n/7) data, time and memory.

5.2 Application to concrete MACs
In this section we go through authentication modes SUM-ECBC, GCM-SIV2,
PMAC+, LightMAC+, 3kf9 and 1kPMAC+. We give details on how to apply
our generic strategy of Section 5.1.2 to build a forgery attack.

138 Chapter 5. Beyond-Birthday-Bound Secure MAC

m1

E1

m1

E3

m2

E1

m2

E3

m`m−1

E1

...

m`m−1

E3

...

m`m

E1

m`m

E3

E2

E4

MAC(m)

Σ

Θ

Figure 5.1: Diagram for SUM-ECBC with a `m−block message.

5.2.1 Attacking SUM-ECBC
SUM-ECBC was designed by Yasuda in 2010 [Yas10], inspired by MAC
constructions summing two CBC-MACs in the ISO 9797-1 standard. The
scheme uses a block cipher keyed with four independent keys, denoted as
E1, E2, E3, E4. The message m is first padded with 10∗ padding, and
divided into n-bit blocks. In the following we ignore the padding and
consider the padded message as the input: this makes our description
easier, and any padded message whose last block is non-zero can be “un-
padded” to generate a valid input message. The construction is defined as
follows (see also Figure 5.1):

Σ(m) = σ`m σ0 = 0 σi = E1(σi−1 ⊕mi)
Θ(m) = θ`m θ0 = 0 θi = E3(θi−1 ⊕mi)

MAC(m) = E2(Σ(m))⊕ E4(Θ(m))

Mounting the Attack. Following the framework of Section 5.1.2, we
consider quadruple of messages built with two message injection functions:

φ(i) = 0 ‖ i ψ(i) = 1 ‖ i

5.2. Application to concrete MACs 139

In particular, we have

MAC(φ(i)) = E2
(
E1
(
i⊕ E1(0)

)
︸ ︷︷ ︸

Σ0(i)

)
⊕ E4

(
E3
(
i⊕ E3(0)

)
︸ ︷︷ ︸

Θ0(i)

)

MAC(ψ(i)) = E2
(
E1
(
i⊕ E1(1)

)
︸ ︷︷ ︸

Σ1(i)

)
⊕ E4

(
E3
(
i⊕ E3(1)

)
︸ ︷︷ ︸

Θ1(i)

)

Next, we build quadruples of messages X,Y, Z, T with

X = φ(x) Y = ψ(y) Z = φ(z) T = ψ(t),

and we look for a quadruple with partial state collisions for the underlying
pairs, that is a quadruple following the relation:

R(x, y, z, t) :=

Σ0(x) = Σ1(y)
Σ0(z) = Σ1(t)
Θ0(z) = Θ1(y)
Θ0(x) = Θ1(t).

We have

R(x, y, z, t)⇔

x⊕ E1(0) = y ⊕ E1(1)
z ⊕ E3(0) = y ⊕ E3(1)
z ⊕ E1(0) = t⊕ E1(1)
x⊕ E3(0) = t⊕ E3(1)

⇔

x⊕ y ⊕ z ⊕ t = 0
x⊕ y = E1(0)⊕ E1(1)
x⊕ t = E3(0)⊕ E3(1)

As promised in Section 5.1.2, R defines a 3n-bit relation. We can easily
observe when x ⊕ y ⊕ z ⊕ t = 0, and we can also detect the relation on
the sum of the MACs following Equation (5.1):

R(x, y, z, t)⇒ MAC(φ(x))⊕MAC(ψ(y))⊕MAC(φ(z))⊕MAC(ψ(t)) = 0

Moreover, we observe that R(x, y, z, t) is satisfied if and only if R(x ⊕
c, y ⊕ c, z ⊕ c, t⊕ c) is satisfied for any constant c. We use this relation to
build several related quadruples that satisfy R simultaneously:

R(x, y, z, t) ⇐⇒ ∀c, R(x⊕ c, y ⊕ c, z ⊕ c, t⊕ c) (5.2)

This leads to an attack with O(23n/4) queries: we consider four sets
X ,Y,Z, T of 23n/4 values, and we look for a quadruple (x, y, z, t) ∈ X ×

140 Chapter 5. Beyond-Birthday-Bound Secure MAC

Y × Z × T with:

x⊕ y ⊕ z ⊕ t = 0
MAC(φ(x))⊕MAC(ψ(y))⊕MAC(φ(z))⊕MAC(ψ(t)) = 0
MAC(φ(x⊕ 1))⊕MAC(ψ(y ⊕ 1))⊕MAC(φ(z ⊕ 1))⊕MAC(ψ(t⊕ 1)) = 0.

(5.3)

Because we need a fair distribution of values x⊕ y and x⊕ t to find the
good quadruple, we build the sets as:

X = {x ∈ {0, 1}n : x[0:n/4] = 0} Y = {x ∈ {0, 1}n : x[n/4:n/2] = 0}
Z = {x ∈ {0, 1}n : x[n/2:3n/4] = 0} T = {x ∈ {0, 1}n : x[3n/4:n] = 0}

With this construction, there is exactly one quadruple (x, y, z, t) ∈ X ×
Y × Z × T that satisfies R, given by:

x = v1|w2|u3|0 y = w1|v2|0|u4 z = u1|0|v3|w4 t = 0|u2|w3|v4,

where:

E1(0)⊕ E1(1) =: u1|u2|u3|u4

E3(0)⊕ E3(1) =: v1|v2|v3|v4

E1(0)⊕ E1(1)⊕ E3(0)⊕ E3(1) =: w1|w2|w3|w4.

We expect on average one random quadruple satisfying (5.3) (with 23n

potential quadruples, and a 3n-bit filtering), in addition to the quadruple
satisfying R. The correct quadruple can easily be checked with a few extra
queries.

Concretely, we solve the generalized birthday algorithms with the
memory efficient algorithm of Section 3.2.1 in order to optimize the query
complexity of the attack. We consider four lists:

L1 = {x ‖MAC(φ(x)) ‖MAC(φ(x⊕ 1)) : x ∈ X}
L2 = {y ‖MAC(ψ(y)) ‖MAC(ψ(y ⊕ 1)) : y ∈ Y}
L3 = {z ‖MAC(φ(z)) ‖MAC(φ(z ⊕ 1)) : z ∈ Z}
L4 = {t ‖MAC(ψ(t)) ‖MAC(ψ(t ⊕ 1)) : t ∈ T }

Notice that we can build those lists with 5·23n/4 queries as, by construction,
for any element i of Y,Z, T the element (i⊕ 1) also belongs to Y,Z, T ,
respectively.

We solve the 4-XOR problem to find: (x, y, z, t) ∈ X ×Y ×Z ×T such
that L1[x]⊕ L2[y]⊕ L3[z]⊕ L4[t] = 0 with Õ(23n/2) operations, using a

5.2. Application to concrete MACs 141

memory of size O(23n/4). After finding a collision, we verify that it is not
a false positive by testing the relation for another value c. As there are
on average O(1) random quadruples, the attack is indeed using a total of
5 · 23n/4 +O(1) = O(23n/4) queries.

Universal Forgeries. This attack can be extended to a universal forgery.
Indeed, the fixed prefix 0 and 1 can be replaced by v and v ⊕ 1 for any
block v, and when we identify a right quadruple (x, y, z, t) we deduce
the values ∆1 = E1(v) ⊕ E1(v ⊕ 1) and ∆3 = E3(v) ⊕ E3(v ⊕ 1). For
the end of the message we can use the 4-way collision extension property
(Definition 5.1) which implies that: if (x, y, z, t) is a right quadruple, then
MAC(v‖x‖s)⊕MAC(v⊕1‖y‖s)⊕MAC(v‖z‖s)⊕MAC(v⊕1‖t‖s) = 0
for any suffix s.

Therefore, if we want to forge a MAC for any message m of size `m ≥ 2
blocks we parse it as m = v ‖ w ‖ s (where s has zero, one, or several
blocks) and perform the attack to recover ∆1 and ∆3. Then, we can forge
using the previous relation, and Equation (5.2):

MAC(v ‖ w ‖ s) = MAC(v ⊕ 1 ‖ w ⊕∆1 ‖ s)⊕MAC(v ‖ w ⊕∆3 ‖ s)
⊕MAC(v ⊕ 1 ‖ w ⊕∆1 ⊕∆3 ‖ s)

Optimizing the time complexity. Equation (5.2) can also be used
to reduce the time complexity below 2n, at the cost of more oracle queries.
Indeed, if we consider a subset C of {0, 1}n, we have:

R(x, y, z, t)⇔ ∀c ∈ C,R(x⊕ c, y ⊕ c, z ⊕ c, t⊕ c)
⇒ ∀c ∈ C, MAC(φ(x⊕ c))⊕MAC(ψ(y ⊕ c))

⊕MAC(φ(z ⊕ c))⊕MAC(ψ(t⊕ c)) = 0
⇒⊕

c∈CMAC(φ(x⊕ c))⊕⊕c∈CMAC(ψ(y ⊕ c))
⊕⊕c∈CMAC(φ(z ⊕ c))⊕⊕c∈CMAC(ψ(t⊕ c)) = 0

(5.4)

If we select C as a linear subspace, the last expression does not depend
on the full values (x, y, z, t) but only on their projection onto the space
orthogonal to C. Concretely, we use C = {x : x[3n/7:n] = 0} = {x : x <
23n/7}, so that the value ⊕c∈CMAC(φ(x⊕ c)) is independent of bits 0 to
3n/7− 1 of x.

142 Chapter 5. Beyond-Birthday-Bound Secure MAC

Therefore, we consider the rewritten MAC function

MAC′(v ‖ w) = ⊕
c∈CMAC(v ‖ w ⊕ c),

the following message injections, with a 4n/7-bit input

φ′(i) = 0 ‖ i|0 ψ′(i) = 1 ‖ i|0,

and a reduced relation over 4n/7-bit values:

R′(x, y, z, t) :=

x⊕ y = (E1(0)⊕ E1(1))[3n/7:n]
y ⊕ z = (E3(0)⊕ E3(1))[3n/7:n]
z ⊕ t = (E1(0)⊕ E1(1))[3n/7:n]
t⊕ x = (E3(0)⊕ E3(1))[3n/7:n]

⇔

x⊕ y ⊕ z ⊕ t = 0
x⊕ y = (E1(0)⊕ E1(1))[3n/7:n]
x⊕ t = (E3(0)⊕ E3(1))[3n/7:n]

Thanks to Equation 5.4, we still have:

R′(x, y, z, t) =⇒
MAC′(φ′(x))⊕MAC′(ψ′(y))⊕MAC′(φ′(z))⊕MAC′(ψ′(t)) = 0

Since the relation R′ is now only a 12n/7-bit condition, we can use shorter
lists than before, with just 23n/7 elements. We can also increase the
filtering using the same trick as previously, considering the following lists:

L′1 = {x ‖MAC′(φ′(x)) ‖MAC′(φ′(x⊕ 1)) : x∈{0, 1}4n/7, x[0:n/7] = 0}
L′2 = {y ‖MAC′(ψ′(y)) ‖MAC′(ψ′(y ⊕ 1)) : y∈{0, 1}4n/7, y[n/7:2n/7] = 0}
L′3 = {z ‖MAC′(φ′(z)) ‖MAC′(φ′(z ⊕ 1)) : z∈{0, 1}4n/7, z[2n/7:3n/7] = 0}
L′4 = {t ‖MAC′(ψ′(t)) ‖MAC′(ψ′(t ⊕ 1)) : t∈{0, 1}4n/7, t[3n/7:4n/7] = 0}

Finally, using the memory efficient algorithm of Section 3.2.1 with
` = 3n/7 and p = 0, we can locate a right quadruple using Õ(26n/7)
queries, Õ(26n/7) operations, and O(23n/7) memory. This recovers only
4n/7 bits of E1(0)⊕ E1(1) and E3(0)⊕ E3(1), but we can easily recover
the remaining bits, either by brute force, or by repeating the attack with
a different set C.

5.2. Application to concrete MACs 143

m1 m2 ... m`m `m N

...

...

H1

H2

H1

H2

H1

H2

H1

H2

E1

E3

E2

E4

Σ

Θ

MAC1(m)

MAC2(m)

Figure 5.2: Diagram for authentication in GCM-SIV2 using GHASH with a
`m-block message, a nonce N , hash keys H1 and H2.

5.2.2 Attacking GCM-SIV2
GCM-SIV2 is an authenticated encryption mode designed by Iwata and
Minematsu [IM16] as a double-block hash-then-sum version of GCM-SIV
(in the following, we consider GCM-SIV2 with the Galois hash, GHASH, as
the underlying universal hash function). For simplicity, we focus on the
authentication part of GCM-SIV2, using inputs with a non-empty associated
data, and an empty message. In this case, GCM-SIV2 becomes a nonce-
based MAC with a 2n-bit output. The messagem (considered as associated
data for the mode) is zero-padded, divided into n-bit blocks, and the length
is appended in an extra block. Then, the construction is defined as follows,
with multiplication done in a finite field (see also Figure 5.2):

Σ(N,m) = N ⊕ `m ·H1 ⊕
⊕`m
i=1mi ·H`m+2−i

1

Θ(N,m) = N ⊕ `m ·H2 ⊕
⊕`m
i=1mi ·H`m+2−i

2

MAC(N,m) = E1(Σ(m))⊕ E2(Θ(m))
∥∥∥ E3(Σ(m))⊕ E4(Θ(m))

Mounting the Attack. The structure of the authentication part of
GCM-SIV2 is essentially the same as the structure of SUM-ECBC, where the
block cipher calls E1 and E3 are replaced by multiplication by H1 and H2.
The finalization function has a 2n-bit output MAC1,MAC2, but quadruples
following R will collide on both outputs. Thus, we can essentially repeat
the SUM-ECBC attack, but there is an important difference: GCM-SIV2 is a

144 Chapter 5. Beyond-Birthday-Bound Secure MAC

nonce-based MAC, rather than a deterministic one. Therefore, all queries
must include a nonce N , and we should not query two different messages
with the same nonce. We adapt the previous attack using message injection
functions that output both a nonce and a message, so that we use two
fixed messages, 0 and 1, with variable nonces:

φ(i) = (i, 0) ψ(i) = (i, 1)

MAC(φ(i)) = MAC(i, 0)

= E1
(
i⊕H1︸ ︷︷ ︸
Σ0(i)

)⊕ E2
(
i⊕H2︸ ︷︷ ︸
Θ0(i)

) ∥∥∥ E3
(
Σ0(i)

)⊕ E4
(
Θ0(i)

)

MAC(ψ(i)) = MAC(i, 1)

= E1
(
i⊕H1 ⊕H2

1︸ ︷︷ ︸
Σ1(i)

)⊕ E2
(
i⊕H2 ⊕H2

2︸ ︷︷ ︸
Θ1(i)

) ∥∥∥ E3
(
Σ1(i)

)⊕ E4
(
Θ1(i)

)
.

We consider quadruples of nonce/messages X,Y, Z, T with
X = φ(x) Y = ψ(y) Z = φ(z) T = ψ(t),

and we have the same kind of relations as in the previous attack:

R(x, y, z, t) :=

Σ0(x) = Σ1(y)
Σ0(z) = Σ1(t)
Θ0(z) = Θ1(y)
Θ0(x) = Θ1(t).

⇔

x⊕ y ⊕ z ⊕ t = 0
x⊕ y = H2

1
x⊕ t = H2

2

=⇒ MAC(φ(x))⊕MAC(ψ(y))⊕MAC(φ(z))⊕MAC(ψ(t)) = 0 .
Since the MAC output is 2n-bit long, we can directly build an attack with
O(23n/4) queries: we consider four distinct sets X ,Y,Z, T of 23n/4 values,
and we look for a quadruple (x, y, z, t) ∈ X × Y × Z × T , such that
{
x⊕ y ⊕ z ⊕ t = 0
MAC(φ(x))⊕MAC(ψ(y))⊕MAC(φ(z))⊕MAC(ψ(t)) = 0

(5.5)

we expect to find one good quadruple that respects R along with O(1)
quadruples that randomly satisfy the observable filter (5.5). This leads to
an attack with O(23n/4) queries and time Õ(23n/2). Since we recover H1
and H2 (from H2

1 = x⊕ y and H2
2 = x⊕ t), we can do universal forgeries.

In addition, we can also easily adapt the attack with O(26n/7) queries and
time Õ(26n/7).

5.2. Application to concrete MACs 145

m1

2 · ∆0

22 · ∆1

E1

Ẽ1

0

0

2`m−1

m2

22 · ∆0

24 · ∆1

E1

Ẽ2

2`m−2

...

...

...

m`m

2`m · ∆0

22`m · ∆1

E1

Ẽ`m

20

E2

E3

Σ

Θ

MAC(m)

Figure 5.3: Diagram for PMAC+ with a `m-block message where ∆0 =
E1(0) and ∆1 = E1(1).

5.2.3 Attacking PMAC+
PMAC+ was designed by Yasuda in 2011 [Yas11] based on PMAC [BR02]
but with a larger internal state. The scheme internally uses a tweakable
block cipher construction inspired by the XE construction [Rog04], that we
denote as Ẽi. The attack works independently of the construction, meaning
that it works even if Ẽi is a true tweakable block cipher. The message m
is first padded with 10∗ padding, and divided into n-bit blocks, but for
simplicity we ignore the padding in our description. The construction is
shown in Figure 5.31:

Σ(m) = ⊕`m
i=1 Ẽi(mi) Ẽi(x) = E1(x⊕ 2i �∆0 ⊕ 22i �∆1)

Θ(m) = ⊕`m
i=1 2`m−i � Ẽi(mi) ∆0 = E1(0) ∆1 = E1(1)

MAC(M) = E2(Σ(m))⊕ E3(Θ(m))
1The algorithm and the figure given in [Yas11] differ in the coefficients used to

compute Θ. We use the algorithmic description because it matches later PMAC+ variants,
but the attack can easily be adapted to the other case.

146 Chapter 5. Beyond-Birthday-Bound Secure MAC

Mounting the Attack. As in the previous attack, we use message
injection functions with two different prefixes, but we include an extra
block u to define related quadruples:

φu(i) = u ‖ 0 ‖ i ψu(i) = u ‖ 1 ‖ i

MAC(φu(i)) = MAC(u ‖ 0 ‖ i)
= E2

(
Ẽ1(u)⊕ Ẽ2(0)⊕ Ẽ3(i)︸ ︷︷ ︸

Σu,0(i)

)
⊕ E3

(
4Ẽ1(u)⊕ 2Ẽ2(0)⊕ Ẽ3(i)︸ ︷︷ ︸

Θu,0(i)

)

MAC(ψu(i)) = MAC(u ‖ 1 ‖ i)
= E2

(
Ẽ1(u)⊕ Ẽ2(1)⊕ Ẽ3(i)︸ ︷︷ ︸

Σu,1(i)

)
⊕ E3

(
4Ẽ1(u)⊕ 2Ẽ2(1)⊕ Ẽ3(i)︸ ︷︷ ︸

Θu,1(i)

)
.

Next, we build quadruples of messages X,Y, Z, T with

X = φu(x) Y = ψu(y) Z = φu(z) T = ψu(t),

and we look for a quadruple with partial state collisions for the underlying
pairs, that is a quadruple following the relation:

R(x, y, z, t) :=

Σu,0(x) = Σu,1(y)
Σu,0(z) = Σu,1(t)
Θu,0(z) = Θu,1(y)
Θu,0(x) = Θu,1(t).

We have

R(x, y, z, t)⇔

Ẽ3(x)⊕ Ẽ2(0) = Ẽ3(y)⊕ Ẽ2(1)
Ẽ3(z)⊕ Ẽ2(0) = Ẽ3(t)⊕ Ẽ2(1)
Ẽ3(y)⊕ 2Ẽ2(1) = Ẽ3(z)⊕ 2Ẽ2(0)
Ẽ3(t)⊕ 2Ẽ2(1) = Ẽ3(x)⊕ 2Ẽ2(0)

⇔

Ẽ3(x)⊕ Ẽ3(y)⊕ Ẽ3(z)⊕ Ẽ3(t) = 0
Ẽ3(x)⊕ Ẽ3(y) = Ẽ2(0)⊕ Ẽ2(1)
Ẽ3(t)⊕ Ẽ3(x) = 2Ẽ2(0)⊕ 2Ẽ2(1)

Again, R defines a 3n−bit relation, and we can detect it through the sum
of the MACs following Equation (5.1):

R(x, y, z, t)⇒ MAC(φu(x))⊕MAC(ψu(y))⊕MAC(φu(z))⊕MAC(ψu(t)) = 0

5.2. Application to concrete MACs 147

In addition, the relation R is independent of the value u, so that we can
easily build several quadruples that satisfy R simultaneously. This leads to
an attack with O(23n/4) queries: we consider four sets X ,Y,Z, T of 23n/4

random values, and we look for a quadruple (x, y, z, t) ∈ X × Y × Z × T ,
such that

∀u ∈ {0, 1, 2},
MAC(φu(x))⊕MAC(ψu(y))⊕MAC(φu(z))⊕MAC(ψu(t)) = 0 .

We expect on average one random quadruple (with 23n potential quadru-
ples, and a 3n-bit filtering), and one quadruple satisfying R (also a 3n-bit
condition). The correct quadruple can easily be checked with a few extra
queries.

In practice, we use the memory efficient algorithm of Section 3.2.1 in
order to optimize the complexity of the attack. We consider four lists:

L1 = {MAC(φ0(x)) ‖MAC(φ1(x)) ‖MAC(φ2(x)) : x ∈ X}
L2 = {MAC(ψ0(y)) ‖MAC(ψ1(y)) ‖MAC(ψ2(y)) : y ∈ Y}
L3 = {MAC(φ0(z)) ‖MAC(φ1(z)) ‖MAC(φ2(z)) : z ∈ Z}
L4 = {MAC(ψ0(t)) ‖MAC(ψ1(t)) ‖MAC(ψ2(t)) : t ∈ T }

and we look for a quadruple (x, y, z, t) ∈ X ×Y ×Z ×T such that L1[x]⊕
L2[y]⊕L3[z]⊕L4[t] = 0. This can be done with Õ(23n/2) operations, using
a memory of size O(23n/4). Finally, once a quadruple (x, y, z, t) satisfying
R(x, y, z, t) has been detected, it can be used to generate forgeries. Indeed,
we can predict the MAC of a new message by making three new queries
using Equation (5.1):

∀u, MAC(φu(x)) = MAC(ψu(y))⊕MAC(ψu(z))⊕MAC(φu(t))

Time-Query Trade-offs. As opposed to the SUM-ECBC attack, we don’t
have an analogue to Equation (5.2) that can be used to reduce the time
complexity. However, the time complexity of the algorithm can be slightly
reduced when using more than O(23n/4) queries. If we consider sets
X ,Y,Z, T of size 2` with 3n/4 < ` < n, the resulting 4-XOR is slightly
easier, because there are 24t−3n expected solutions. Using the memory
efficient algorithm, this can be solved in time Õ(23n−2`), using a memory
of size O(2`).

148 Chapter 5. Beyond-Birthday-Bound Secure MAC

0|m1

(1)z|0

E1

0

0

2`m−1

Ẽ1

0|m2

(2)z|0

E1

2`m−2

Ẽ2

...

...

...

0|m`m

(`m)z|0

E1

Ẽ`m

E2

E3

Σ

Θ

MAC(m)

Figure 5.4: Diagram for LightMAC+ with (n−z)-bit blocks of a `m-block
message where (v)z is the value v written over z bits.

5.2.4 Attacking LightMAC+
LightMAC+ was designed by Naito [Nai17] using ideas from PMAC+ and
LightMAC. If we consider LightMAC+ as based on a tweakable block cipher
Ẽ, it follows the same structure as PMAC+ (see Figure 5.4), but Ẽ takes a
message block smaller than n bits:

Σ(m) = ⊕`m
i=1 Ẽi(mi) Ẽi(x) = E1(i|x)

Θ(m) = ⊕`m
i=1 2`m−i � Ẽi(mi)

MAC(m) = E2(Σ(m))⊕ E3(Θ(m))

Mounting the Attack. Since our attack on PMAC+ is independent of the
way the tweakable block cipher is built, the same attack will be applicable
to LightMAC+. The only difference from our point of view is that the
message blocks are shorter than the block-size. As long as one message
block is big enough to fit 23n/4 different values, our attack will succeed.

This attack violates an improved security proof by Naito [Nai18], with
a security bound of O(q2

t qv/22n) (with qt MAC queries and qv verification
queries). Indeed, our attack reaches a constant success probability with
qt = O(23n/4) and qv = 1. We have shared our attack with the author of
the proof, and he agreed that his proof was flawed.

5.2. Application to concrete MACs 149

m1

E1

m2

E1

m`m−1

E1

...

...

m`m

E1

E3

E2
Σ

Θ

MAC(m)

Figure 5.5: Diagram for 3kf9 with a `m−block message.

5.2.5 Attacking 3kf9

Our third attack is applicable to 3kf9 [Zha+12] and similar constructions.
We have a universal forgery attack with O(23n/4) queries and Õ(25n/4)
operations using memory O(2n), with a possible time-memory trade-off.

3kf9 [Zha+12], designed by Xhang, Wu, Sui and Wang, is a three-key
variant of the f9 mode used in 3G telephony. While the original f9 does
not have security beyond the birthday bound [KM03], 3kf9 is secure up
to 23n/4 queries [KLL20]. We describe 3kf9 in Figure 5.5:

Σ(m) = σ`m σ0 = 0 σi = E1(σi−1 ⊕mi)
Θ(m) = ⊕`m

i=1 σi

MAC(m) = E2(Σ(m))⊕ E3(Θ(m))

Mounting the Attack. Our attack follows the same structure as the
previous attacks. We start with messages of the form:

φ(i) = 0 ‖ i ψ(i) = 1 ‖ i,

150 Chapter 5. Beyond-Birthday-Bound Secure MAC

and the corresponding MACs:

MAC(φ(i)) = E2
(
E1
(
x⊕ E1(0)

)
︸ ︷︷ ︸

Σ0(x)

)
⊕ E3

(
E1
(
x⊕ E1(0)

)⊕ E1
(
0
)

︸ ︷︷ ︸
Θ0(x)

)

MAC(ψ(i)) = E2
(
E1
(
x⊕ E1(1)

)
︸ ︷︷ ︸

Σ1(x)

)
⊕ E3

(
E1
(
x⊕ E1(1)

)⊕ E1
(
1
)

︸ ︷︷ ︸
Θ1(x)

)
.

We use quadruples of messages X,Y, Z, T with

X = φ(x) Y = ψ(y) Z = φ(z) T = ψ(t),

and we look for a quadruple with partial state collisions for the underlying
pairs, that is a quadruple following the relation:

R(x, y, z, t) :=

Σ0(x) = Σ1(y)
Σ0(z) = Σ1(t)
Θ0(z) = Θ1(y)
Θ0(x) = Θ1(t).

⇔

x⊕ E1(0) = y ⊕ E1(1)
z ⊕ E1(0) = t⊕ E1(1)
E1(z ⊕ E1(0))⊕ E1(0) = E1(y ⊕ E1(1))⊕ E1(1)
E1(x⊕ E1(0))⊕ E1(0) = E1(t⊕ E1(1))⊕ E1(1)

⇔

x⊕ y ⊕ z ⊕ t = 0
x⊕ y = E1(0)⊕ E1(1)
E1(x⊕ E1(0))⊕ E1(t⊕ E1(1)) = E1(0)⊕ E1(1)

=⇒ MAC(φ(x))⊕MAC(ψ(y))⊕MAC(φ(z))⊕MAC(ψ(t)) = 0.

As in the previous attacks, R defines a 3n-bit relation. Moreover, we can
easily observe when x⊕y⊕z⊕t = 0, and the relation x⊕y = E1(0)⊕E1(1)
can be verified across several quadruples. We don’t have related quadruples
satisfying R simultaneously as in the previous attacks, but we can use
those properties to detect right quadruples. This leads to an attack with
Õ(23n/4) queries: we consider four sets X ,Y,Z, T of 4√n× 23n/4 random
values, and we look for quadruples (x, y, z, t) ∈ X ×Y ×Z ×T , such that:
{
x⊕ y ⊕ z ⊕ t = 0
MAC(φ(x))⊕MAC(ψ(y))⊕MAC(φ(z))⊕MAC(ψ(t)) = 0.

(5.6)

5.2. Application to concrete MACs 151

Since this is a 2n-bit condition, we expect on average n · 2n quadruples
(x, y, z, t) satisfying (5.6). In order to filter out the right ones, we look
at the value x⊕ y for all these quadruples. While the wrong quadruples
should have a random x⊕ y, the right ones have x⊕ y = E1(0)⊕ E1(1).
Therefore, with high probability, the most frequent value for x⊕ y is equal
to E1(0)⊕ E1(1), and quadruples satisfying this extra relation are right
quadruples with probability 1/2. More precisely, we expect on average n
wrong quadruples for each value of x ⊕ y, and n right quadruples with
x⊕ y = E1(0)⊕ E1(1).

Success Probability. We want to prove the claim that one will need
O(n · 2n) quadruples in order to find a right quadruple for 3kf9. We say
the attack finishes when we recover the target value T = E(0)⊕ E(1).

Assuming each quadruple found respects R with probability 1/2n,
we fill a list of counters with every suspected values of T ; a random
quadruples gives two random values and a right one gives one value equal
to T and one random value. Therefore, we sum up the distribution of an
observable value v as:

v

$←− {0, 1}n with probability 1− 1/2n+1

←− T with probability 1/2n+1

Let N be the number of observed values, and Xc
i represents the

indicator that the ith value equals c (following a Bernoulli distribution),
so that the counter corresponding to c is Xc = ∑N

i=1X
c
i . Now we have

to discriminate between the distributions of Xc with c 6= T , and the
distribution of XT :

Pr(XT
i = 1) = Pr(x = T) = (1− 1/2n+1)/2n + 1/2n+1

= (3/2− 1/2n+1)/2n

=⇒ E[XT] = N(3/2− 1/2n+1)/2n

Pr(Xc
i = 1) = Pr(x = c) = (1− 1/2n+1)/2n

=⇒ E[Xc] = N(1− 1/2n+1)/2n

=⇒ E[XT] ≥ 3/2 ·E[Xc]

We use the Chernoff bound to get a lower bound on the probability

152 Chapter 5. Beyond-Birthday-Bound Secure MAC

that a given counter is higher than the average value of XT :

Pr(Xc ≥ E[XT]) ≤ Pr(Xc ≥ 3/2 ·E[Xc])
≤ e−N(1−1/2n+1)/2n+1

and assuming the counters are independent:

Pr(Xc < E[XT]) ≥ 1− e−N(1−1/2n+1)/2n+1

Pr(∀c 6= T : Xc < E[XT]) ≥ (1− e−N(1−1/2n+1)/2n+1)2n

This expression will asymptotically converge to a strictly positive constant
when e−N(1−1/2n+1)/2n+1 = Θ2−n. Therefore, we use

N ' n ln(2) · 2n+1

(1− 1/2n+1) = O(n · 2n).

Since we observe 2 values per quadruples, this makes O(n · 2n) quadruples.
Moreover, the event ’XT ≥ E[XT]’ has a probability close to 0.5, therefore
after O(n · 2n) quadruples, we indeed have a Ω(1) probability that XT

is greater than all the other counters, which allows to recover the value
T . Performing the attack with probability Ω(1) thus requires O(n · 2n)
quadruples.

To get to this result some assumptions have been made, like the
independence of the counters, but they all tend to be either conservative
or asymptotically true.

Optimizing the time complexity. While the memory efficient algo-
rithm of Section 3.2.1 would take time Õ(23n/2) with Õ(23n/4) queries, we
can reduce the time complexity using sets X ,Y,Z, T with some structure.
More precisely, we use:

X = Z =
{
x ∈ {0, 1}n : x[0:n/4] = 0

}

Y = T =
{
x ∈ {0, 1}n : x[n/4:n/2] = 0

}

so that quadruples can be written as

x =: x3|x2|x1|0 ∈ X y =: y3|y2|0|y0 ∈ Y
z =: z3|z2|z1|0 ∈ Z t =: t3|t2|0|t0 ∈ T .

5.2. Application to concrete MACs 153

In particular, right quadruples satisfy x⊕ y ⊕ z ⊕ t = 0, therefore x1 = z1,
y0 = t0, and x3|x2⊕z3|z2 = y3|y2⊕ t3|t2. We use these properties to adapt
the 4-XOR algorithm and locate the quadruples efficiently. First, we guess
the n/2-bit value α3|α2 := x3|x2 ⊕ z3|z2 = y3|y2 ⊕ t3t3. Then, for each
x = x3|x2|x1|0, there is a single candidate z = (x3 ⊕ α3)|(x2 ⊕ α2)|x1|0
that could be part of a right quadruple. Similarly, every y = y3|y2|0|y0
can be paired with a single t = (y3 ⊕ α3)|(y2 ⊕ α2)|0|y0. Therefore, we
consider the two following lists:

L1 :=
{MAC(φ(x3|x2|x1|0))⊕MAC((x3 ⊕ α3)|(x2 ⊕ α2)|x1|0) : x3|x2|x1|0 ∈ X}
L2 :=
{MAC(φ(y3|y2|0|y0))⊕MAC((y3 ⊕ α3)|(y2 ⊕ α2)|0|y0) : y3|y2|0|y0 ∈ Y}

After sorting the lists, we look for matches, and the corresponding quadru-
ples x, y, z, t are exactly the quadruples satisfying

x⊕ y ⊕ z ⊕ t = 0
(x⊕ z)[n/2:n] = α3|α2

MAC(φ(x))⊕MAC(ψ(y))⊕MAC(φ(z))⊕MAC(ψ(t)) = 0.
(5.7)

More precisely, a match L1[x] = L2[y] suggests z = x ⊕ α3|α2|0|0 and
t = y ⊕ α3|α2|0|0, but there are four corresponding quadruples: (x, y, z, t),
(z, y, x, t), (x, t, z, y), (z, t, x, y), and two candidate values for E1(0)⊕E1(1):
x⊕ y and x⊕ y ⊕ α3|α2|0|0.

We need Õ(23n/4) operations to generate those quadruples. We re-
peat this 2n/2 times to exhaust all n/2-bit values α3|α2 and generate all
quadruples satisfying (5.6). Finally, we use an array to count the number
of occurrences of each possible value of x⊕ y. Each counter receives on
average two values, but the counter corresponding to E1(0)⊕ E1(1) will
receive three values on average. After repeating all the operations O(n)
times, with some arbitrary constants in place of the zero bits, the highest
counter corresponds to E1(0)⊕E1(1) with high probability, as we’ll detail
later. This gives an attack with Õ(23n/4) queries, Õ(25n/4) operations,
and O(2n) memory2.

2We can actually reduce the polynomial factors by fixing only (n− log2(n))/4 bits
to zero, in order to have sets of size 4√n · 23n/4.

154 Chapter 5. Beyond-Birthday-Bound Secure MAC

Time-Memory Trade-offs. We can reduce the memory usage if we
store only a subset of the counters, and repeat the whole algorithm until
the whole set has been covered. Concretely, we store only the counters
with a fixed value for bits [0 : n/8] and [n/4 : 3n/8] of x⊕ y. Because of
the way the lists L1 and L2 are constructed, we have actually fixed n/8
bits of y0 and x1, and we can reduce the lists to size 25n/8. Therefore,
we evaluate 23n/4 counters in time Õ(2n/2 · 25n/8), using only O(23n/4)
memory. We repeat iteratively over the full counter set, so we need time
Õ(2n/4 · 2n/2 · 25n/8) = Õ(211n/8). Generally, we have a time-memory
trade-off with time Õ(25n/4+t/2) and memory O(2n−t) for 0 < t < n/4.

Forgeries. Once we found a quadruple (x, y, z, t) that respects the rela-
tion R(x, y, z, t), we know that after processing the messages φ(x) = 0 ‖ x
and ψ(t) = 1 ‖ t there is no difference in the Θ part of the states
(Θ0(x) = Θ1(t)). Moreover, we have Θ0(x) = Σ0(x)⊕ E1(0) and Θ1(t) =
Σ1(x)⊕E1(1); this implies that there is a difference E1(0)⊕E1(1) = x⊕y
in the Σ part of the state. Therefore, we can build a full state collision with
message 0 ‖ x ‖ 0 and 1 ‖ t ‖ x⊕ y. In particular, the following relation can
be used to create forgeries with an arbitrary message m (of any length):

MAC(0 ‖ x ‖ 0 ‖m) = MAC(1 ‖ t ‖ x⊕ y ‖m).

Universal Forgeries. We can even forge the tag of an arbitrary message
of length at least (2n + 2) blocks with complexity only n + 1 times the
complexity of the simple forgery attack. The technique is more advanced
and inspired by the multi-collision attack described by Joux [Jou04] (see
Section 7.2.1). For ease of notation we’ll show how to forge the signature
for a message starting with 2n+ 2 blocks of zero, but this can be trivially
adapted for any message.

First, we find a quadruple (x1, y1, z1, t1) as before. Then, we consider
messages 0 ‖ 0 and 1 ‖ x1 ⊕ y1. Since x1 ⊕ y1 = E1(0) ⊕ E1(1), we have
Σ(0 ‖ 0) = Σ(1 ‖ x1 ⊕ y1), as the Σ part of the state collides. Moreover,
we know the difference in the Θ part: Θ(0 ‖ 0)⊕Θ(1 ‖ x1 ⊕ y1) = x1 ⊕ y1.

Generally, at step i we use message injection functions

φi(x) = 0 ‖ 0 ‖ . . . ‖ 0︸ ︷︷ ︸
×2(i−1)

‖ 0 ‖ x ψi(x) = 0 ‖ 0 ‖ . . . ‖ 0︸ ︷︷ ︸
×2(i−1)

‖ 1 ‖ x,

5.2. Application to concrete MACs 155

0

E

m1

E

m`m−1

E

...

...

m`m

E

Σ′

Θ′

2

fix0

fix1

E

E

MAC(m)

Σ

Θ

Figure 5.6: Diagram for 1kf9 with a `m−block message.

to look for a quadruple of messages

Xi = φi(xi) Yi = ψi(yi) Zi = φi(zi) Ti = ψi(ti).

When a right quadruple (xi, yi, zi, ti) has been identified, we can deduce
that the MACs for 0 ‖ 0 ‖ . . . ‖ 0 ‖ 0 ‖ 0 and 0 ‖ 0 ‖ . . . ‖ 0 ‖ 1 ‖ xi ⊕ yi will
match on the Σ branch and differ by xi ⊕ yi in their Θ branch.

After several iterations, we have actually built a multi-collision: all the
messages h1 ‖ h2 ‖ . . . ‖ hn ‖ hn+1 with hi ∈ {(1 ‖ xi ⊕ yi), (0 ‖ 0)} collide
on the Σ branch. In addition, we also know the difference in the Θ branch
for those messages: it is equal to ⊕{i : hi 6=0‖0}(xi ⊕ yi).

After at most n+1 steps, we can find a nonempty subset I ⊆ [1 : n+1]
such that⊕i∈I(xi⊕yi) = 0 by simple linear algebra3. This gives a collision
on the full state, using messages m0 = 0 ‖ 0 ‖ . . . ‖ 0 (with 2(n+ 1) blocks)
and h = h1 ‖ h2 ‖ . . . ‖ hn ‖ hn+1 with hi = 1 ‖ xi ⊕ yi if i ∈ I, hi = 0 ‖ 0
otherwise. Since the full state collides, we have for any message m (of any
length):

MAC(h ‖m) = MAC(m0 ‖m).

5.2.6 Attacking and Breaking 1kf9
1kf9 is a tentative to build a single keyed version of 3kf9. It uses fixb
function that fixes the least significant bit to b and leave the rest untouched.

3We construct the kernel of the linear function λi 7→
⊕

i
λi(xi ⊕ yi)

156 Chapter 5. Beyond-Birthday-Bound Secure MAC

This ensures domain separation, that is for all message m we have Σ(m) 6=
Θ(m). We describe 1kf9 in Figure 5.6:

Σ(m) = fix0(2 · σ`m) σ0 = E(0) σi = E(σi−1 ⊕mi)
Θ(m) = fix1(2 ·⊕`m

i=0 σi)
MAC(m) = E(Σ(m))⊕ E(Θ(m))

However, 1kf9 was withdrawn to do a mistake in the proof leaving its
true security as an open question. The attack on 3kf9 we describe in
Section 5.2.5 is applicable but one can do better here. In fact, we answer
the open question of 3kf9 security by showing a birthday-bound attack.
This mode thus fails to guarantee security beyond the birthday bound
despite its double-block hash-then-sum approach.

Attack on 1kf9. In order to mount a birthday bound attack on 1kf9,
we use pairs of messages instead of quadruples. More precisely, instead of
looking for a quadruple with pairwise collisions in Σ and Θ, we look for a
pair of message X,Y colliding on Σ′, and with a difference in Θ′ that will
be absorbed by the fix1 function. Therefore, we define the relation R as:

R(X,Y) :=
{
Σ′(X) = Σ′(Y)
2Θ′(X) = 2Θ′(Y)⊕ 1

⇒ MAC(X) = MAC(Y).

We build the messages with different postfixes, parametrized by u:

X = φu(x) = x ‖ u Y = ψu(y) = y ‖ u⊕ d,
where d is the inverse of 2 in the finite field. With this construction, we
have

Σ′(φu(x)) = E
(
u⊕ E(x⊕ E(0))

)

Θ′(φu(x)) = E
(
u⊕ E(x⊕ E(0))

)⊕ E(x⊕ E(0)
)⊕ E(0)

Σ′(ψu(y)) = E
(
u⊕ d⊕ E(y ⊕ E(0))

)

Θ′(ψu(y)) = E
(
u⊕ d⊕ E(y ⊕ E(0))

)⊕ E(y ⊕ E(0)
)⊕ E(0)

In particular, we observe

E(x⊕ E(0))⊕ E(y ⊕ E(0)) = d⇔ Σ′(φu(x)) = Σ′(ψu(y))
⇒ Θ′(φu(x))⊕Θ′(ψu(y)) = d

⇒ MAC(φu(x)) = MAC(ψu(y)). (5.8)

5.2. Application to concrete MACs 157

From this observation, we construct a birthday attack against 1kf9. We
build two lists:

L0 =
{

MAC(φ0(x)) : x < 2n/2
}

L1 =
{

MAC(ψ0(y)) : y < 2n/2
}
,

and we look for a match between the lists. We expect on average one pair
to match randomly, and one pair to match because of (5.8). Moreover,
when we have a collision candidate L0[x], L1[y], we can verify whether it
is a right pair by comparing MAC(x ‖ 1) and MAC(y ‖ d⊕ 1).

Therefore, we find a pair satisfying R(X,Y) with complexity 2n/2, and
this leads to simple forgeries using (5.8). This contradicts the security
proof of 1kf9 given in [Dat+15]. Note that this attack is still valid if
we use different multiplications for the two branches in the finalization
function.

5.2.7 Attacking 1kPMAC+

The 1kPMAC+ mode also uses the fixb function that fixes the least sig-
nificant bit to b and leave the rest untouched. 1kPMAC+ is essentially a
single-key variant of PMAC+, as shown in Figure 5.7.

Σ′(m) = ⊕`m
i=1 Ẽi(mi) Σ(m) = fix0(Σ′(m))

Θ′(m) = ⊕`m
i=1 2`m+1−i � Ẽi(mi) Θ(m) = fix1(Θ′(m))

MAC(m) = E(Σ(m))⊕ E(Θ(m))

Mounting the Attack. Since the fix functions used in the finalization
have collisions, we can build a variant of the attacks from Section 5.2.3
using differences in Σ′ and/or Θ′ that are absorbed by the fix functions.
More precisely, we use the following relation R on quadruple of messages:

R(X,Y, Z, T) :=

Σ′(X) = Σ(Y)′ ⊕ 1
Θ′(Y) = Θ(Z)′ ⊕ 1
Σ′(Z) = Σ(T)′ ⊕ 1
Θ′(T) = Θ(X)′ ⊕ 1

⇒ MAC(X)⊕MAC(Y)⊕MAC(Z)⊕MAC(T) = 0.

158 Chapter 5. Beyond-Birthday-Bound Secure MAC

m1

∆1

∆2

E

Ẽ1

0

0

2`m

m2

2 · ∆1

22 · ∆2

E

Ẽ2

2`m−1

...

...

...

m`m

2`m−1 · ∆1

22`m−2 · ∆2

E

Ẽ`m

2

fix0

fix1

E

E

Σ′

Θ′

Σ

Θ

MAC(m)

Figure 5.7: Diagram for 1kPMAC+ with a `m-block message where ∆1 =
E(1) and ∆2 = E(2).

We can find quadruple of messages satisfying R using a single message
injection function:

φu(i) = u ‖ i
X = φu(x) = u ‖ x Y = φu(y) = u ‖ y
Z = φu(z) = u ‖ z T = φu(t) = u ‖ t

Indeed, we have

MAC(φu(i)) = E
(
fix0

(
Ẽ1(u)⊕ Ẽ2(x)︸ ︷︷ ︸

Σ′u(i)

))⊕E
(
fix1

(
4Ẽ1(u)⊕ 2Ẽ2(x)︸ ︷︷ ︸

Θ′u(i)

))

5.3. Conclusion 159

We observe that:

R(x, y, z, t)⇔

Ẽ2(x) = Ẽ2(y)⊕ 1
Ẽ2(z) = Ẽ2(t)⊕ 1
2Ẽ2(x) = 2Ẽ2(z)⊕ 1
2Ẽ2(y) = 2Ẽ2(t)⊕ 1

⇔

Ẽ2(x)⊕ Ẽ2(y)⊕ Ẽ2(z)⊕ Ẽ2(t) = 0
Ẽ2(x) = Ẽ2(y)⊕ 1
Ẽ2(x) = Ẽ2(z)⊕ d

Therefore, R defines a 3n−bit relation that is independent of the value u.
This can be used for attacks in the same way as in the previous sections,
using a single list

L =
{

MAC(φ0(x)) ‖MAC(φ1(x)) ‖MAC(φ2(x)) : x < 23n/4
}

We can find a quadruple of four distinct values (x, y, z, t) such that L[x]⊕
L[y]⊕ L[z]⊕ L[t] = 0 with Õ(23n/2) operations, using a memory of size
O(23n/4), and this easily leads to forgeries.

5.3 Conclusion
5.3.1 Proof is hard
Flawed proof. We saw that the recent proof of [Nai18] for LightMAC+
was directly invalidated by our attack.

Here we show how the security of withdrawn mode 1kf9 (Figure 5.6)
is actually capped at O(2n/2) by giving a birthday bound attack. The
proof was already known to be wrong, but this cryptanalysis shows that
it is not possible to fix in order to get beyond-birthday-bound security.

5.3.2 Open Questions
Cryptanalysis and Proofs. The cryptanalysis techniques introduced
in this chapter show how to attack Double-block Hash-then-Sum MACs
in O(23n/4) short queries. In particular, we show that this attack applies
to SUM-ECBC, the authentication part of GCM-SIV2, PMAC+, LightMAC+,
1kPMAC+ and 3kf9.

160 Chapter 5. Beyond-Birthday-Bound Secure MAC

After the publication of this result, new proofs [KLL20] for the Double-
block Hash-then-Sum construction showed that the attack is actually
optimal in terms of short queries for SUM-ECBC, PMAC+, LightMAC+ and
3kf9. This is a great example of why we need to work on both better
proofs and better cryptanalysis to better understand the security of certain
modes of operation.

This leaves a gap for modes GCM-SIV2 and 1kPMAC+. For instance the
proof cannot be directly applied to 1kPMAC+ due to the relation between
the two parts of the internal state. For GCM-SIV2 the issue is the relation
between the two n-bit parts of the MAC, but we note that the proof of
[KLL20] at least applies to both n-bit parts taken independently.

Other Attacks. Information theoretically, our attack shows that the
bound of [KLL20] is optimal in terms of the number of queries. However,
in the proof, the length of the queries is also an important parameter. An
open question is to ask whether there are attacks exploiting long queries
to further reduce the total number of queries and, by doing so, eventually
match the best bound implied by the proof either given by [Dat+18] or
[KLL20].

We also reduce the time complexity in the cases of SUM-ECBC and
GCM-SIV2. However, there remain modes where we don’t have an attack
with a time complexity below 2n. Further optimizing the attacks in terms
of time and memory complexities while keeping a data complexity below
2n is left as an open question.

Chapter6Release of Unverified
Plaintext security of ANYDAE

Contributions brought forward in this chapter were published in ToSC
Volume 2019, Issue 4 and are a joint work of Chang, Datta, Dutta,
Mennink, Nandi, Sanadhya and I [Cha+19a]. It is a follow-up on the
group discussion initiated in the Asian Symmetric Key Workshop, 2018.

Introduction
A secure authenticated encryption mode of operation is expected to provide
both authenticity and confidentiality of the message which corresponds
to the EUF (Section 2.2.1) and IND$-CPA (Section 2.1.1) security notions
respectively. In Section 2.4.3 we’ve argued that there are subtle differences
between achieving these notions in the random IV, nonce and deterministic
model. Indeed, all are somehow equivalent as long as one respects the
requirements of the model, but the fewer requirements the easiest it is to
implement correctly and, thus, we say the mode is more robust. There
are also advanced security notions aiming for a better robustness, and
we’ve introduced the security under release of unverified plaintext or RUP
security.

In this Chapter we’ll show how the deterministic authenticated encryp-
tion mode SUNDAE [Ban+18] can be made more robust with only a slight,
inexpensive modification. We’ll see that the new construction MONDAE
achieves authenticity and confidentiality in the RUP setting (INT-RUP and
PA1 respectively). To do that, we introduce the AERUP security notion
that is equivalent to the combination AE, PA1 and INT-RUP. Much like AE
is equivalent to EUF-AE and IND$-CPA-AE combined, the AERUP notion
will allow us to prove both conventional and RUP security within a single
proof.

161

162 Chapter 6. Release of Unverified Plaintext security of ANYDAE

In fact, we prove the AERUP security of a generic mode ANYDAE and
give two instantiations: MONDAE, that is SUNDAE with a twist, and TUESDAE,
that optimizes the rate. The AERUP security of MONDAE and TUESDAE are
directly implied by the one of ANYDAE.

6.1 RUP (In)Security of SUNDAE

6.1.1 RUP Security Notions
We’ve touched briefly on security under release of unverified plaintext in
Section 2.4.3. Here we formally define the PA and the INT-RUP security
notions first introduced by Andreeva et al. [And+14].

The concept applies to the context of authenticated encryption and
it introduces a leakage function acting as a decryption oracle, Deck, in
addition to the usual encryption oracle AEnck and verification oracle Vk.
Informally, the function Deck outputs the decryption of the ciphertext
without checking its validity (so it never outputs ⊥). Therefore, it has the
same interface as Vk even though the associated data or the tag may be
ignored depending on the mode. One may think of Deck as the decryption
function of encryption-only modes but used in authenticated encryption
context. It is often clear what the definition of Deck is from the definition
of AEnck.

Plaintext Awareness. To prove security under plaintext awareness we
define a distinguishing game between the real and ideal worlds with two
oracles. In the real world, the attacker has access to the authenticated
encryption AEnck(·) which takes a message as input and to the decryption
oracle Deck(·, ·) which takes a tag and ciphertext as inputs and outputs
the resulting plaintext regardless of the validity of the tag. In the ideal
world, the attacker has still access to AEnck(·) and the decryption oracle
is replaced by a simulator Sim(·, ·). The mode is said to be PA secure
if there exists a simulator that is undistinguishable from the decryption
oracle. This simulator cannot query AEnck(·) nor does he know the key.
In other words the simulator could have been run by the adversary himself
(with an independent source of randomness). This effectively captures the
fact that future encryptions are not impacted by the adversary having
access to a decryption oracle.

6.1. RUP (In)Security of SUNDAE 163

Concretely, the advantage of an adversary A for PA security of an
authenticated encryption mode is defined as:

AdvPA
· (A) = Pr(AAEnck(·),Deck(·,·) → 1)−Pr(AAEnck(·),Sim(·,·) → 1)

(6.1)

with randomness of k, Sim and A. Then, the PA security is the maximum
advantage over all A using the best efficient simulator that is

AdvPA
· = min

Sim
max
A

AdvPA
· (A) .

In particular, the description of the simulator is left to the prover so that
if he can upper-bound the advantage with a particular simulator, then
this upper-bound is valid for the best efficient simulator.

Depending on the power of the simulator there are two distinct PA
notions. If the simulator can record the attacker queries to AEnc(·) and
their outputs, we call this PA1; if it can’t, we call this PA2. In this work
we will mostly use the PA1 notion.

Authenticity under RUP. Similarly, having access to a decryption
oracle shouldn’t compromise the authenticity of the messages. The INT-
RUP security notion is similar to the existential unforgeability (EUF)
notion but with a stronger adversary that can decrypt any ciphertext.

In the INT-RUP security game the adversary must do a forgery while
having access to AEnck, Deck and the usual verification oracle Vk:

AdvINT-RUP
· (A) = Pr(AAEnck(·),Deck(·,·),Vk(·,·) forges) (6.2)

with the randomness of k and A. The definition of forgery remains the
same: Vk has to output > for a (c, T) pairs that was not the result of an
earlier query to AEnck(·) (in the presence of associated data, it means
that there is no m such that (c, T) was the result of an earlier (a,m)
query).

6.1.2 RUP Attack on SUNDAE
SUNDAE (Figure 6.1) is a lightweight authenticated encryption mode of
operation proposed by Banik et al. [Ban+18] with provable and tight
birthday bound security.

164 Chapter 6. Release of Unverified Plaintext security of ANYDAE

It is a combination of a variant of CBC-MAC, close to mode GCBC1 [Nan09],
for the authentication and the OFB mode for the encryption. SUNDAE
combines them in a synthetic IV manner meaning that the tag produced
is also used as an IV for encryption with the OFB mode. Hence, it is a
deterministic AE mode secure up to O(2n/2) processed data which is tight
since both the authentication and the encryption parts allow for an attack
at birthday bound.

It has multiple good features making it fit for lightweight encryption.
Indeed, SUNDAE is deterministic (no stateful counter nor source of random-
ness needed), it has an n-bit internal state and only uses a single secret
key, and it computes the block cipher in the forward direction exclusively.
Galois Field multiplications are limited to doubling which is fast. In the
case of static associated data, SUNDAE doesn’t necessarily reprocess them
every time: one can remember the internal state value after processing
the associated data and directly start from that point for future messages.
A diagram and a formal algorithmic description of SUNDAE are given in
Figure 6.1 and Algorithm 6.1 respectively where the padding function
padn(·) is an optional 10∗ padding to n-bit as:

padn(X) =
{
X ‖ 10n−|X|−1 , if |X| < n

X , otherwise

Although this mode is quite recent, it has been chosen as an AEAD
mode for multiple submissions to the NIST Lightweight Cryptography
Standardization Process including SIV-Rijndael256 [Bao+19a], SIV-TEM-
PHOTON [Bao+19b], ESTATE [Cha+19a], SUNDAE-GIFT [Ban+19],
and TRIFLE [Dat+19].

On the other hand, the authors of SUNDAE [Ban+18] claim that the
mode “provides maximal robustness to a lack of proper randomness or
secure state” while at the same time warning that “unverified plaintext
from the decryption algorithm should not be released”. This is somewhat
contradictory as RUP security notions actually deal with robustness to a
lack of secure state. Moreover, the synthetic IV construction of SUNDAE
clearly forces the receiver to decrypt the message before verifying the
validity of the tag as shown in Algorithm 6.1. This is what motivates our
analysis of its security under release of unverified plaintext, especially in
the context of lightweight cryptography.

6.1. RUP (In)Security of SUNDAE 165

11
0n
−

2
E

k

a
1

E
k

a
2

pa
d

|a
2|

<
n

?
2

:4

E
k

m
1

E
k

m
2

pa
d

|m
2|

<
n

?
2

:4

E
k M

A
C

E
k

c 1

m
1

E
k b·c
|m

2|
m

2

c 2

F
ig
ur
e
6.
1:

SU
ND

AE
au

th
en
tic

at
ed

en
cr
yp

tio
n
m
od

e
of

op
er
at
io
ns

wi
th

tw
o
bl
oc
ks

of
as
so
cia

te
d
da

ta
a

=
a

1
‖a

2
an

d
m
es
sa
ge
m

=
m

1
‖m

2.

166 Chapter 6. Release of Unverified Plaintext security of ANYDAE

Algorithm 6.1 Authenticated Encryption, Decryption and Verification
algorithms for SUNDAE oracles. padn is an optional 10∗ padding.
Algorithm MAC(a,m)

1. b1 ← |a| > 0 ? 1 : 0

2. b2 ← |m| > 0 ? 1 : 0

3. T ← Ek(b1 ‖ b2 ‖ 0n−2)

4. if |a| > 0 then

5. a1 ‖ a2 ‖ . . . ‖ a`a
n←−− a

6. for i = 1 to `a − 1

7. T ← Ek(T ⊕ ai)
8. X ← |a`a | < n ? 2 : 4

9. T ← Ek
(
X · (T ⊕ padn(a`a)

))

10. if |m| > 0 then

11. m1 ‖m2 ‖ . . . ‖m`m
n←−− m

12. for i = 1 to `m − 1

13. T ← Ek(T ⊕mi)

14. X ← |m`m | < n ? 2 : 4

15. T ← Ek
(
X · (T ⊕ padn(m`m)

))

16. return T

AEnck(a,m):

1. T ← MAC(a,m)

2. c← OFB(T,m)

3. return (T, c)
Deck(a, c, T):

1. m← OFB(T, c)

2. return m

Vk(a, c, T):

1. m← OFB(T, c)

2. T ′ ← MAC(a,m)

3. return T ′ ?= T ?> : ⊥

Algorithm OFB(T,m)

1. m1 ‖m2 ‖ . . . ‖m`m
n←−− m

2. Z0 ← T

3. for i = 1 to m

4. Zi ← Ek(Zi−1)

5. ci ← bZic|mi| ⊕mi

6. return c1 ‖ c2 ‖ . . . ‖ c`m

6.1. RUP (In)Security of SUNDAE 167

RUP Attack on SUNDAE. While the mode is provably AE secure, an
easy forgery attack shows that SUNDAE is actually not INT-RUP secure.
Concretely, there exists an INT-RUP adversary A such that:

AdvINT-RUP
SUNDAE (A) = 1

where A makes 1 encryption query, 3 decryption queries and 1 verification
query. The proof is simply the description of the attack.

Proof. We show a simple universal forgery attack for arbitrary associated
data a = a1 ‖ a2 ‖ . . . ‖ a`a and message m = m1 ‖m2 ‖ . . . ‖m`m with
`a ≥ 2 and `m ≥ 1 where ε is the empty string:

1. Deck(ε, T 1, c1
1) with T 1 = 110n−2. Get m1

1;

2. Deck(ε, T 2, c2
1) with T 2 = m1

1 ⊕ c1
1 ⊕ a1. Get m2

1;

3. Deck(ε, T 3, c3
1) with T 3 = m1

1 ⊕ c1
1 ⊕ a′1 for some a′1 6= a1. Get m3

1;

4. Let ∆ := m2
1 ⊕ c2

1 ⊕m3
1 ⊕ c3

1;

5. AEnck(a′1 ‖ a2 ⊕ ∆ ‖ a3 ‖ · · · ‖ a`a ,m). Get the tag T and
ciphertext c;

6. Vk(a, c, T) is a valid forgery for the data a and message m.

In the attack, c1
1, c2

1, and c3
1 may take any n-bit value.

This attack exploits the fact that a Deck query is a direct query to the
underlying block cipher Ek. The tag generation process of SUNDAE can be
reconstructed step by step by an attacker. In the first step we recover the
value Ek(110n−2) = m1

1 ⊕ c1
1. The second and third queries are necessary

to compute ∆ which is the internal state difference after the second block
cipher call between processing a1 and a′1. Therefore, processing a′1 ‖a2⊕∆
or processing a1 ‖a2 will result in the same internal state meaning that this
is a full internal state collision. Hence, the following states and outputs
will be the same whenever the rest of the processed data and message are
equal leading to an easy forgery.

The strategy is easily adapted when the target a or m is empty: simply
adapt to the proper starting value b1 ‖ b2 ‖ 0n−2 instead of 110n−2 and
perform the same trick with the first two processed blocks. The case of
a single block of data or message is also trivial: fully simulate the tag
generation process with only 2 Deck queries.

168 Chapter 6. Release of Unverified Plaintext security of ANYDAE

This universal forgery attack is not in contradiction with the security
claims of SUNDAE but the lack of security under the release of unverified
plaintext is something to be aware of especially when using it in constrained
environment.

6.2 RUP Security of ANYDAE
We showed in Section 6.1.2 that SUNDAE is not INT-RUP secure. In
this section we show the condition that actually makes the mode more
robust. The resulting generic mode is called ANYDAE. This preserves
the lightweightness as well as the integrity and confidentiality security
guarantees. We first introduce the AERUP security notion that ANYDAE
satisfies. Then, we detail the generically defined ANYDAE mode of operation
and two of its variants: MONDAE that only marginally differs from SUNDAE
and TUESDAE that optimizes the rate of the mode.

6.2.1 AERUP Generalized Notion of Security

A AEnck(·) Deck(·, ·) Vk(·, ·)

A $(·) Sim(·, ·) ⊥(·, ·)

Real World
Ideal World

Figure 6.2: Distinguishing game for the AERUP security of an authenti-
cated encryption mode where k is a random key value, $(·) is a random
function, Sim(·, ·) is an efficient simulator with no access to $(·) and ⊥(·, ·)
returns ⊥ on every input.

The proof of ANYDAE is done using a security game for the new notion
of AERUP security that we define as:

Definition 6.1 (AERUP advantage). Let Sim be a simulator. The AERUP
security of an authenticated encryption scheme against an adversary A is

6.2. RUP Security of ANYDAE 169

defined as:

AdvAERUP
· (A) = Pr(AAEnck(·),Deck(·,·),Vk(·,·) → 1)

−Pr(A$(·),Sim(·,·),⊥(·,·) → 1) , (6.3)

with the randomness of k $←−− {0, 1}κ, $ a random function, and the
random choices of Sim and A. The simulator Sim has no access to the
first oracle, but it has access to the query history of A. The adversary is
not allowed to relay an earlier response from the first oracle to the third
oracle.

Then, the AERUP advantage AdvAERUP
· is the maximum advantage

over all A under the best efficient simulator. In other words, the AERUP
advantage is AdvAERUP

· = minSim maxAAdvAERUP
· (A) .

This will allow us to prove the robustness of ANYDAE in a single go.

Proving the Equivalence. Let us prove that AERUP is equivalent to
AE, PA1 and INT-RUP security combined. We showed in Section 2.3.1 the
equivalence of AE security with IND$-CPA-AE and EUF-AE combined. So
now we proceed the same way with AERUP.

First, we prove that breaking AE breaks AERUP or, equivalently:

AdvAE
· ≤ AdvAERUP

·

Indeed, for any AE adversary A1 there exists an AERUP adversary A2
with the same complexity with AdvAE

· (A1) ≤ AdvAERUP
· (A2) for any

Sim. A2 simply runs A1 and answer all its queries with the first and
third oracles and output the same conclusion. Indeed, the AERUP security
game (Definition 6.1) falls back to the AE security game when ignoring
the second oracle.

Now we wish to prove that breaking PA1 breaks AERUP. In fact,
we’ll show that breaking PA1 breaks either AERUP or IND$-CPA-AE or,
equivalently:

AdvPA1
· ≤ AdvAERUP

· + AdvIND$-CPA-AE
·

Let A1 be a PA1 adversary under some efficient simulator Sim, we define
an AERUP adversary A2 that forwards A1 queries (without querying its

170 Chapter 6. Release of Unverified Plaintext security of ANYDAE

third oracle), and an IND$-CPA-AE adversary A3 with the same query
complexity that is capable of simulating the simulator (as the simulator is
efficient) and the ⊥ oracle. Then:

AdvPA1
· (A1) =Pr(AAEnck(·),Deck(·,·)

1 → 1)−Pr(AAEnck(·),Sim(·,·)
1 → 1)

= Pr(AAEnck(·),Deck(·,·),Vk(·,·)
2 → 1)−Pr(AAEnck(·),Sim(·,·),⊥(·,·)

2 → 1)

= Pr(AAEnck(·),Deck(·,·),Vk(·,·)
2 → 1)−Pr(A$(·),Sim(·,·),⊥(·,·)

2 → 1)

+ Pr(A$(·),Sim(·,·),⊥(·,·)
2 → 1)−Pr(AAEnck(·),Sim(·,·),⊥(·,·)

2 → 1)

= AdvAERUP
· (A2) + Pr(A$(·)

3 → 1)−Pr(AAEnck(·)
3 → 1)

AdvPA1
· (A1) =AdvAERUP

· (A2) + AdvIND$-CPA-AE
· (A3)

Notice that AdvIND$-CPA-AE
· ≤ AdvAE

· ≤ AdvAERUP
· therefore we’ve

indeed proven that AdvPA1
· ≤ 2AdvAERUP

· meaning that breaking PA1
breaks AERUP with a significant advantage up to a factor 2.

Here we show that breaking INT-RUP breaks AERUP or, equivalently:

AdvINT-RUP
· ≤ AdvAERUP

·

Indeed, for any INT-RUP adversaryA1 there exists an AERUP adversaryA2
with the same complexity such that AdvINT-RUP

· (A1) = AdvAERUP
· (A2).

A2 runs A1 answering all its queries with its corresponding oracles as
both games have the same interface. If the verification oracle answers
something else than ⊥ then A1 has forged and A2 answers 1; otherwise
it answers 0. The probability of A1 forging is thus the probability of A2
outputting 1. In the ideal world, both probability are thus 0. In the real
world, both probability are the INT-RUP advantage of A1. Therefore, we
have AdvINT-RUP

· (A1) = AdvAERUP
· (A2).

Finally we show that breaking AERUP breaks either INT-RUP, PA1 or
AE or, equivalently:

AdvAERUP
· ≤ AdvINT-RUP

· + AdvPA1
· + AdvAE

·

In fact, we show that AdvAERUP
· ≤ AdvINT-RUP

· +AdvPA1
· +AdvIND$ -CPA-AE

·
which implies what we wish to prove as AdvIND$ -CPA-AE

· ≤ AdvAE
· .

Indeed, for any AERUP adversary A1 with some efficient simulator
Sim we define an INT-RUP adversary A2 with the same query complexity

6.2. RUP Security of ANYDAE 171

that runs A1 and forwards its queries with its corresponding oracles hoping
to forge that way. Moreover, we define a PA1 adversary A3 that runs A1
and forwards its queries to its first and second oracle while simulating
the third oracle as a ⊥ oracle; then it also forwards the output. Finally,
we have an IND$-CPA-AE adversary A4 that runs A1 and forwards its
queries to its first oracle while simulating the second and third oracles
as the efficient simulator Sim and the ⊥ oracle respectively; then it also
forwards the output. Following this, we have:

AdvAERUP
· (A1) =Pr(AAEnck(·),Deck(·,·),Vk(·,·)

1 → 1)

−Pr(A$(·),Sim(·,·),⊥(·,·)
1 → 1)

AdvAERUP
· (A1) =Pr(AAEnck(·),Deck(·,·),Vk

1 → 1)

−Pr(AAEnck(·),Deck(·,·),⊥(·,·)
1 → 1)

+ Pr(AAEnck(·),Deck(·,·),⊥(·,·)
1 → 1)

−Pr(AAEnck(·),Sim(·,·),⊥(·,·)
1 → 1)

+ Pr(AAEnck(·),Sim(·,·),⊥(·,·)
1 → 1)

−Pr(A$(·),Sim(·,·),⊥(·,·)
1 → 1)

AdvAERUP
· (A1) ≤Pr(AAEnck(·),Deck(·,·),Vk(·,·)

2 forges)

+ Pr(AAEnck(·),Deck(·,·)
3 → 1)

−Pr(AAEnck(·),Sim(·,·)
3 → 1)

+ Pr(AAEnck(·)
4 → 1)−Pr(A$(·)

4 → 1)
AdvAERUP

· (A1) ≤AdvINT-RUP
· (A2) + AdvPA1

· (A3) + AdvIND$ -CPA-AE
· (A4)

Comparison with other security notions. We’ve just seen that the
AERUP security notion is equivalent to the combination of INT-RUP, PA1
and AE security. In the literature there has been a few other notions
summarizing a robust security definition.

For instance, Hoang et al. [HKR15] introduced the notion of robust
authenticated encryption, RAE security. RAE deals with the nonce misuse
case by introducing a parameter limiting the number of nonce reuse allowed.
It also generalizes the authenticity goal of an authenticated encryption
scheme with a ciphertext expansion parameter λ instead of a separate tag.

172 Chapter 6. Release of Unverified Plaintext security of ANYDAE

Moreover, they also considered security under decryption leakage with the
RAEsim security notion. The simulator for RAEsim has no access to the
query history of the attacker therefore it is stronger than the PA1 notion.
AERUP can be seen as a variant of RAEsim where the simulator records
the interactions with the encryption oracle. In particular, RAEsim security
implies AERUP security but is not equivalent.

Another example is the alternative notion of RUP security, RUPAE, by
Ashur et al. [ADL17]. RUPAE combines the PA1 and INT-RUP notions for
nonce-based schemes and imposes that the ideal model decryption oracle
is simply a random function. For comparison, AERUP is not relying on a
nonce, but the simulator cannot be reduced to a random function.

RAEsim and RUPAE are therefore stronger notions than AERUP. How-
ever, the goal of the AERUP security notion is not to describe a more robust
security notion. Indeed, we showed that it is equivalent to the combination
of already known security notions and thus cannot be stronger. On the
other hand, the AERUP security game will allow us to prove the security
of ANYDAE in a single go while stronger security notions wouldn’t be a fit.
Ultimately, concise and short proofs increase the trust we have in them.

6.2.2 ANYDAE Mode of Operation
Remember that the INT-RUP attack on SUNDAE (Section 6.1.2) directly
query the block cipher through the decryption oracle to reconstruct the
internal state in the authentication part. There are various solutions to
counter this problem by adjusting the way the tag T is generated or the
way T is used to generate the key stream.

Solutions like masking or transforming T through a block cipher are
undesirable: it would increase the state size (for the mask) or implementa-
tion size (to make use of the block cipher inverse). So we rather focus on
the way the tag is used to generate the key stream. ANYDAE is a generalized
construction solving this issue and just concrete enough to allow for an
AERUP security proof to be made.

Specification. ANYDAE is, just like SUNDAE, an AEAD scheme built on
top of a block cipher E and parametrized by a single key k. In addition,
it uses a formatting function Fmt to parse the data and mixing functions
ρ1, ρ2, ρ3 to process the state. Concretely, let T be a (possibly empty)
finite set. Then Fmt : {0, 1}∗ → ({0, 1}n)` × T `−1 for any ` > 0 is a
formatting function that takes an arbitrarily long bit string and generates

6.2. RUP Security of ANYDAE 173

Ek ρ1

δ1
b2b1

Ek ρ1

δ2
b3

Ek ρ1

δ3

...

b`

Ek T

T ρ2 Ek

m1

c1

ρ3 Ek

m2

c2

... ρ3 Ek

b·c|m`m |
m`m

c`m

Figure 6.3: ANYDAE authenticated encryption mode of operations with
formatting function preprocessing (b, δ)← Fmt(a,m).

a sequence of n-bit blocks along with a sequence of elements of T of
the same length minus one. Furthermore, the domain of the three state
processing functions are:

ρ1 : {0, 1}n × T → {0, 1}n , ρ2 : {0, 1}n → {0, 1}n , ρ3 : {0, 1}n → {0, 1}n .

ANYDAE is defined as in the diagram of Figure 6.3 and its oracles
are formally described in Algorithm 6.2. By construction, it has many
similarities with SUNDAE namely it has an n-bit state, is length preserving
and only requires a single key.

Before we state the security of ANYDAE, we remind the definition of
almost XOR-universal (AXU) and almost uniform functions:

Definition 6.2. Let ε > 0, n ∈ N and a function ρ : {0, 1}n×T → {0, 1}n
for a non-empty set T .

• ρ(X, t) is said to be ε-almost uniform if for any t ∈ T and any
Y ∈ {0, 1}n,

Pr
(
X

$←−− {0, 1}n : ρ(X, t) = Y
) ≤ ε .

174 Chapter 6. Release of Unverified Plaintext security of ANYDAE

Algorithm 6.2 Authenticated Encryption, Decryption and Verification
algorithms for ANYDAE oracles.
Algorithm MAC(a,m)

1.
(
b1‖. . .‖b`, δ1‖. . .‖δ`−1

)← Fmt(a,m)

2. X1 ← b1

3. for i = 1 to `− 1

4. Yi ← Ek(Xi)

5. Xi+1 ← ρ1(Yi, δi)⊕ bi+1

6. T ← Ek(X`)

7. return T

AEnck(a,m)

1. T ← MAC(a,m)

2. c← OFB(T,m)

3. return (T, c)

Algorithm OFB(T,m)

1. m1 ‖ . . . ‖m`m
n←−− m

2. U1 ← ρ2(T)

3. for i = 1 to m

4. Vi ← Ek(Ui)

5. ci ← bVic|mi| ⊕mi

6. Ui+1 ← ρ3(Vi)

7. return c1 ‖ . . . ‖ c`m

Deck(a, c, T)

1. m← OFB(T, c)

2. return m

Vk(a, c, T)

1. m← OFB(T, c)

2. T ′ ← MAC(a,m)

3. return T ′ ?= T ? > : ⊥

6.2. RUP Security of ANYDAE 175

• ρ(X, t) is said to be ε-almost XOR-universal (ε-AXU) if for any
distinct t and t′ ∈ T and any Y ∈ {0, 1}n,

Pr
(
X

$←−− {0, 1}n : ρ(X, t)⊕ ρ(X, t′) = Y
) ≤ ε .

Based on Definition 6.2, we obtain the following corollary:

Corollary 6.1. Let ε > 0, n ∈ N and a finite set T . Consider an ε-
almost uniform function ρ : {0, 1}n×T → {0, 1}n. Then, for any t, t′ ∈ T ,
Y ∈ {0, 1}n we have

Pr((X,X ′) $←−− {0, 1}n × {0, 1}n : ρ(X, t)⊕ ρ(X ′, t′) = Y) ≤ ε .

Then, the AERUP security of ANYDAE is stated in Theorem 6.1:

Theorem 6.1 (AERUP security of ANYDAE). We consider ANYDAE with
formatting and processing functions Fmt, ρ1, ρ2, ρ3 and based on the block
cipher E : {0, 1}κ × {0, 1}n → {0, 1}n.
Denote by F1 the set of first block outputs of Fmt. If

1. Fmt is injective and prefix-free; 1

2. ρ1 is ε1-AXU and γ1-uniform;

3. ρ2 is γ2-uniform;

4. ρ3 is γ3-uniform;

5. |F1 ∩ Im(ρ2)| = 0 and |F1 ∩ Im(ρ3)| = Ω,

then

AdvAERUP
ANYDAE (σ, qv, t) ≤ AdvPRP

E (σ, t′) +
(
σ

2

)(1
2n + max{ε1, γ1, γ2, γ3}

)

+ Ωσ · γ3 + qv
2n ,

against adversaries limited to σ total block cipher calls, qv verification
queries and running in time t and t′ ≈ t respectively.

The proof details are given in Section 6.3.
1For Fmt, prefix-freeness means that for any two elements(

b1 ‖ . . . ‖ b`, δ1 ‖ . . . ‖ δ`−1
)
,
(
b′1 ‖ . . . ‖ b′`′ , δ′1 ‖ . . . ‖ δ′`′−1

)
∈ Im(Fmt) with ` < `′,(

b1 ‖ . . . ‖ b`, δ1 ‖ . . . ‖ δ`−1
)
6=
(
b′1 ‖ . . . ‖ b′`, δ′1 ‖ . . . ‖ δ′`−1

)
.

176 Chapter 6. Release of Unverified Plaintext security of ANYDAE

6.2.3 MONDAE and TUESDAE Mode of Operation
By choosing the parameters of ANYDAE, we propose two AERUP secure
modes: MONDAE and TUESDAE.

The MONDAE Robust Authenticated Encryption. With MONDAE we
propose a minimal fix of SUNDAE to achieve AERUP security. The format-
ting function and processing functions ρ1 and ρ3 are kept as in SUNDAE,
the only difference is to introduce the fix1 as ρ2. Concretely, in MONDAE
ρ2 fixes the least significant bit to 1 and leave the rest untouched. This
ensures that one cannot reconstruct the internal state of the authentication
part as the starting value is always set to 0 (control bits are the most
significant ones).

Furthermore, MONDAE is a specific instantiation of ANYDAE with:

ρ1(S,X) = X · S , ρ2(S) = fix1(S) = bScn−1 ‖ 1 , ρ3(S) = S ,

and the formatting function of SUNDAE described in Algorithm 6.3.
The AERUP security of MONDAE is a direct corollary of the security

statement of ANYDAE, Theorem 6.1. We simply have to note that ε1 = γ1 =
γ3 = 1/2n, γ2 = 2/2n, and Ω = 4 (since F1 = {0n, 10n−1, 010n−2, 110n−2}
and Im(ρ3) = {0, 1}n). Hence:

Corollary 6.2 (AERUP security of MONDAE). Let be the authenticated
encryption scheme MONDAE based on a block cipher E. Then

AdvAERUP
MONDAE (σ, qv, t) ≤ AdvPRP

E (σ, t′) + 1.5σ2

2n + 2.5σ
2n + qv

2n ,

against adversaries limited to σ total block cipher calls, qv verification
queries and running in time t and t′ ≈ t respectively.

The TUESDAE Mode of Operation. The goal of TUESDAE is to optimize
the functions of ANYDAE so that the number of block cipher calls becomes
optimal for most inputs. Indeed, for `a blocks of associated data and `m
block of message with `a + `m > 1 then one encryption using TUESDAE use
exactly `a + 2`m block cipher calls. Moreover, when (`a, `m) is (1, 0) or
(0, 1) and the total length is less than n − 4 bits then TUESDAE requires
a single block cipher call for authentication (and another to encrypt in
the latter case). Notice that, as we need to distinguish between the cases
of associated data and message, and between full and partial block, it is

6.2. RUP Security of ANYDAE 177

11
0n
−

2
E

k

a
1

E
k

a
2

pa
d

|a
2|

<
n

?
2

:4

E
k

m
1

E
k

m
2

pa
d

|m
2|

<
n

?
2

:4

E
k M

A
Cfi

x 1
E

k

c 1

m
1

E
k b·c
|m

2|
m

2

c 2

F
ig
ur
e
6.
4:

MO
ND

AE
au

th
en
tic

at
ed

en
cr
yp

tio
n
m
od

e
of

op
er
at
io
ns

wi
th

tw
o
bl
oc
ks

of
as
so
cia

te
d
da

ta
a

=
a

1
‖a

2
an

d
m
es
sa
ge
m

=
m

1
‖m

2.

178 Chapter 6. Release of Unverified Plaintext security of ANYDAE

Algorithm 6.3 The formatting function Fmt used in SUNDAE and MONDAE
with δ ∈ {1, 2, 4} multiplied is a characteristic 2 Galois field. padn is an
optional 10∗ padding.

Function Fmt(a,m)

1. r1 ← |a| > 0 ? 1 : 0

2. r2 ← |m| > 0 ? 1 : 0

3. `← `a + `m + 1

4. b1 ← r1 ‖ r2 ‖ 0n−2

5. for i = 2 to `a
6. δi−1 ← 1

7. bi ← ai−1

8. δ`a ← |a`a | < n ? 2 : 4
9. b`a+1 ← δ`a · padn(a`a)

10. for i = 2 to m

11. δ`a+i−1 ← 1

12. b`a+i ← mi−1

13. δ`−1 ← |m`m | < n ? 2 : 4

14. b` ← δ`−1 · padn(m`m)

15. return
(
b1 ‖ . . . ‖ b`, δ1 ‖ . . . ‖ δ`−1

)

6.2. RUP Security of ANYDAE 179

impossible for any ANYDAE instantiation to have a single block cipher call
for a single full data block. Also, the choice of ρ1 requires that n− 1 be a
prime number therefore it is most well suited to be built on n = 128-bit
block cipher.

TUESDAE is an instantiation of ANYDAE with the formatting function
Fmt of Algorithm 6.4 and:

ρ1(S,X) = bSc1 ‖ (dSen−1 ≫ X) , ρ2(S) = fix10(S) , ρ3(S) = fix10(S) ,

where X ∈ {0, 1}5, ≫ is the circular shift function and fix10 is the fix
function that puts the two least significant bits to 10 and leaves the rest
untouched.

It is easy to verify that TUESDAE’s Fmt is prefix-free: the three rightmost
bits of b1 are 000 in case A, 100 in case B, and ∗ ∗ 1 in cases C, D,
and E. For the last three cases, difference is in δ1: it equals ∗011∗ for
case C, either of {00 ∗ 0∗, 01 ∗ ∗∗, 100 ∗ ∗} for case D, and either of
{1010∗, 110 ∗ ∗, 111 ∗ ∗, 0001∗} for case E. Here, for case E, distinction is
made using emptyi ‖ finalD[i+1] ‖ fullD[i+1].

Moreover, in every case db1e2 6= 10 which directly implies that F1 ∩
Im(ρ3)| = 0, and the almost XOR-universal property of ρ1 was shown by
Contini and Yin [CY99] who proved that if |S| is prime and t ≤ |S|, S ≫ t
is (2|S|−1)−1-AXU. Therefore, the security of TUESDAE is a corollary of the
security of ANYDAE (Theorem 6.1) with ε1 = γ2 = γ3 = 4/2n whenever
n− 1 is prime, γ1 = 1/2n, and Ω = 0.

Corollary 6.3 (AERUP security of TUESDAE). Let be the authenticated
encryption scheme TUESDAE based on an n-bit block cipher E with n− 1
prime. Then

AdvAERUP
TUESDAE(σ, qv, t) ≤ AdvPRP

E (σ, t′) + 2.5σ2

2n + qv
2n ,

against adversaries limited to σ total block cipher calls, qv verification
queries and running in time t and t′ ≈ t respectively.

This result only applies when n− 1 is prime, but the choice of ρ1 is not
absolute; any good almost XOR-universal function will suit. In particular,
Corollary 6.3 holds for popular n = 128-bit block ciphers such as the AES.
Notice that using a smaller block cipher is not recommended anyway due
to the inherent birthday-bound security of the ANYDAE construction.

180 Chapter 6. Release of Unverified Plaintext security of ANYDAE

Algorithm 6.4 The formatting function Fmt of TUESDAE where δi ∈
{0, 1}5 with control bits type, that indicates whether the current block
is associated data (type = 0) or message (type = 1), full, that indicates
whether X is n-bit (fullX = 1) or less (fullX = 0), and final, that indicates
whether X is the last of its type (finalX = 1) or not (finalX = 0). bin(`)i
is the binary encoding of the integer ` on i bits. padn is an optional 10∗
padding.
Function Fmt(a,m)

1. D n←−− a ‖m
2. if `a = `m = 0 then

3. b1 ← 0n

4. return b1 . Case A

5. if `a + `m = 1 and |D| ≤ n − 5
then

6. b1 ← padn−4(D1) ‖ type ‖ 100

7. return b1 . Case B

8. b1 ← fix1(padn(D1))

9. r ← bpadn(D1)c1
10. if `a + `m = 1 and |D| ≥ n − 4

then

11. δ1 ← fullD1 ‖ 011 ‖ r
12. b2 ← 0∗ ‖ type ‖ 010

13. return (b1 ‖ b2, δ1) . Case C

14. if `a + `m = 2 then

15. δ1 ← bin(`a)2 ‖ fullm`m ‖ fulla`a ‖ r
16. b2 ← padn(D2)

17. return (b1 ‖ b2, δ1) . Case D

18. if `a + `m > 2 then

19. if `a < 3 then

20. δ1 ← bin(`a + 5)3 ‖ fulla`a ‖ r
21. else

22. δ1 ← 0001 ‖ b
23. `← `a + `m

24. for i = 2 to `

25. bi ← padn(Di)

26. for i = 2 to `− 1

27. δ[i]← 00‖emptyi ‖finalDi+1 ‖ fullDi+1

28. return (b1 ‖ . . . ‖ b`, δ1 ‖ . . . ‖ δ`−1)

. Case E

6.3. Proving AERUP Security of ANYDAE 181

6.3 Proving AERUP Security of ANYDAE
In this Section we take up the task of proving Theorem 6.1. Thanks to the
generalized AERUP security notion, this will only require a single proof.

6.3.1 H-Coefficient Technique and Proof Strategy
The broad idea of this proof follows a widely used strategy: we first replace
the block cipher by a random function and use Patarin’s H-Coefficient
Technique to bound the adversary advantage in the information theoretic
setting.

Patarin’s H-Coefficient Technique. Consider a computationally un-
bounded deterministic adaptive adversary A for a distinguishing game
between a real and an ideal world. As usual, A must output a decision
bit at the end of its interaction with its oracles. We call τ the transcript
all queries-responses made by A to its oracles. The transcript may also
contain additional information revealed to A at the end of its interactions
but before its decision. Indeed, additional information can only give
more distinguishing power to the attacker and thus the derived advantage
upper-bound will stand.

Let Xre and Xid be random variables denoting the transcript in the
real and ideal worlds respectively. Therefore, Pr(Xre = τ) is the proba-
bility that the transcript τ is realized in the real world and Pr(Xid = τ)
the probability that the transcript τ is realized in the ideal world. We
say a transcript τ is attainable if Pr(Xid = τ) 6= 0. The set of attain-
able transcript is noted Θ and the main theorem of the H-coefficient
technique [Pat09; CS14] is as follows.

Theorem 6.2 (H-coefficient technique). Let A be a fixed computationally
unbounded deterministic adversary that has access to either the real world
oracle Ore or the ideal world oracle Oid. Let Θ = ΘgtΘb be some partition
of the set of all attainable transcripts into good and bad transcripts.
Suppose there exists εratio ≥ 0 such that for any τ ∈ Θg,

Pr(Xre = τ)
Pr(Xid = τ) ≥ 1− εratio ,

and there exists εbad ≥ 0 such that Pr(Xid ∈ Θb) ≤ εbad. Then,

Pr(AOre → 1)−Pr(AOid → 1) ≤ εratio + εbad . (6.4)

182 Chapter 6. Release of Unverified Plaintext security of ANYDAE

Notice that the best strategy (or one of the best) of a computationally
unbounded adversary is necessarily deterministic so the upper-bound
on the advantage of deterministic adversaries given by the H-Coefficient
technique also applies to probabilistic adversaries.

Security Game. We consider any adversary A in the AERUP security
game, Definition 6.1. As it is common in security proofs of birthday-
bound secure schemes we first use the PRP/PRF switch (Lemma 1.1)
and consider the ANYDAE construction instantiated by a random function
instead of a block cipher.

Concretely, we have:

AdvAERUP
ANYDAE−E(A) ≤ AdvPRP

E (B) + σ(σ − 1)
2n+1 + AdvAERUP

ANYDAE−f (A)

where f is an n to n bit random function and σ is the number of block
cipher calls (which depends on the query complexity, the queries length
and the Fmt specification). To upper-bound AdvAERUP

ANYDAE−f (A) we use the H-
coefficient technique for any adversary A making qe, qd and qv encryption,
decryptions and verification queries respectively.

6.3.2 Oracles Definition for AERUP Security
First, a few notations:
Let (ai+,mi+) be the ith encryption query (1 ≤ i ≤ qe) where the asso-
ciated data ai+ and the message mi+ are of block lengths `i+a and `i+m
respectively.
Let (ai−, ci−, T i−) be the ith decryption query (1 ≤ i ≤ qd) where the
associated data ai− and the ciphertext ci− are of block lengths `i−a and
`i−c respectively.
Let (ai?, ci?, T i?) be the ith verification query (1 ≤ i ≤ qv) where the
associated data ai? and the ciphertext ci? are of block lengths `i?a and `i?c
respectively. We assume a non-trivial, non-repeating A so that all queries
are distinct and no (ai?, ci?, T i?) is an answer of an earlier encryption
query.
Let (i, ∗) be the ith message of type ∗ ∈ {+,−, ?}, we note (j,~) ≺ (i, ∗)
the fact that the jth message of type ~ was queried before the ith message
of type ∗.
Let Bi∗ = (bi∗1 ‖ ... ‖ bi∗`i∗

b
, δi∗1 ‖ ... ‖ δi∗`i∗

b
−1)← Fmt(ai∗,mi∗) for ∗ ∈ {+, ?} as

6.3. Proving AERUP Security of ANYDAE 183

the formatting function is not used in decryption queries.
We say Bi∗ and Bj~ have a common prefix of size p if and only if
(bi∗1 ‖ ... ‖ bi∗p , δi∗1 ‖ ... ‖ δi∗p−1) = (bj~1 ‖ ... ‖ bj~p , δj~1 ‖ ... ‖ δj~p−1).
We assume that A is non repeating and Fmt is prefix-free so having
Bi∗ = Bj~ is impossible except for some (i, ?) ≺ (j,+) (a verification
followed by an encryption query of the same message). We call Q the set
of all such ((i, ?), (j,+)). Otherwise, as Fmt is a public function, the values
of Bi∗ can be considered as under the control of the adversary but for two
different queries (i, ∗) 6= (j,~) with ((i, ∗), (j,~)) /∈ Q we necessarily have
p < min(`i∗b , `

j~
b).

Now let us define the oracles for both the real and ideal worlds. In
particular, we are free to define any simulator Sim we like to get a proper
upper-bound as long as it only accesses the query history and do not
directly query the other oracles.

Real World Oracles. At the start of the game the real world oracles
draw a random n to n bits function f . The encryption, decryption and
verification oracles are AEnc(·, ·), Dec(·, ·, ·) and V (·, ·, ·) as described for
ANYDAE in Algorithm 6.2 where Ek is replaced by f . At the end of the
interaction, the real world oracles reveals all intermediate values to the
attacker as supplementary information to be included in the transcript. In
Algorithm 6.2 those values are noted Yi and Xi in the authentication part
(MAC), and Vi and Ui in the encryption part (OFB). They correspond to
all inputs/outputs of f .

Ideal World Oracles. Following the AERUP security game, the ideal
world consists of three oracles ($(·, ·),Sim(·, ·, ·),⊥(·, ·, ·)). ⊥(·, ·, ·) simply
returns ⊥ on all (ai?, ci?, T i?) inputs. As the simulator has access to the
query history to the $ oracle, we denote an initially empty table L that
the simulator will use to store (U, V)-tuples.

The encryption oracle $(·, ·) is a random function that answers any
query by a random ciphertext of corresponding length and a random tag.
As we consider non repeating attacker, the $ oracle randomly samples new
values (T i+, ci+) for every query (ai+,mi+) as:

ci+ = ci+1 ‖ . . . ‖ ci+`i+m
$←−− {0, 1}|mi+| ,

T i+
$←−− {0, 1}n .

184 Chapter 6. Release of Unverified Plaintext security of ANYDAE

Then, as the simulator observes the query (ai+,mi+) and its response
(T i+, ci+) it stores in table L new (U i+, V i+) tuples as:

(
U i+k , V i+

k

)←
{(
ρ2(T i+) , mi+

1 ⊕ ci+1
)
, for k = 1 ,

(
ρ3(V i+

k−1) , mi+
k ⊕ ci+k

)
, for k = 2, . . . , `i+m .

In case of a collision where U i+k ∈ L, the simulator will override the old
V i+
k value. This event anyway provokes a bad transcript, and so we bound

its probability in Section 6.3.3.
Finally, the ideal world decryption oracle is a simulator Sim(·, ·, ·)

which takes (ai−, ci−, T i−) = (ai−1 ‖ . . . , ‖ai−`ai− , c
i−
1 ‖ . . . , ‖ci−`i−c , T

i−) as
queries and answers with mi− = mi−

1 ‖ . . . ‖mi−
`i−c

computed by:

1. k ← 1

2. U i−1 ← ρ2(T i−)

3. while U i−k ∈ L do

4. V i−
k ← L(U i−k)

5. mi−
k ← V i−

k ⊕ ci−k
6. U i−k ← ρ3(V i−

k)

7. k ← k + 1

8. for j = k to `i−c

9. mi−
j

$←−− {0, 1}n

10. V i−
j ← mi−

j ⊕ ci−j

11. U i−j ← ρ3(V i−
j−1)

12. add (U i−j , V i−
j) to L

13. returnmi−
1 ‖. . .‖mi−

`i−c

Once the adversary finishes its interactions with the oracles, additional
information is revealed to him before the decision. Just like in the real
world, he will be given internal values (X,Y) and (U, V). For encryption
and decryption queries, the (U, V) values have already been defined as
stored in the table L. For verification queries (ai?, ci?, T i?), the corre-
sponding (U, V) values are defined in the same way the simulator does
for decryption queries (ai−, ci−, T i−) and so does the underlying message
mi?.

Notice that the (X,Y) values only exist for encryption and verification
queries as the tag is not verified in decryption queries. To sample those
(X,Y) values we first compute Bi∗ ← Fmt(ai∗,mi∗) for ∗ ∈ {+, ?}. For
encryption queries, we first set Y i+

`i+
b

= T i+. Then, we go in reverse
chronological order for all queries (i, ∗) (∗ ∈ {+, ?}) and look for the

6.3. Proving AERUP Security of ANYDAE 185

later query (j,~) (~ ∈ {+, ?}) with (i, ∗) ≺ (j,~) such that Bi∗ has the
longest common prefix with Bj~. If (i, ∗) is a verification query such that
((i, ?), (j,+)) ∈ Q (the longest common prefix query is necessarily be the
corresponding (j,+)), we set Y i?

k = Y j+
k for all 1 ≤ k ≤ `i?b . Otherwise,

let p < `i∗b the length of the longest common prefix between Bi∗ and Bj~.
We set Y i∗

k = Y j~
k for 1 ≤ k ≤ p and randomly sample Y i∗

k
$←−− {0, 1}n

for p + 1 ≤ k ≤ `i?b for verification queries and for p + 1 ≤ k ≤ `i+b − 1
for encryption queries where we additionally set Y i+

`i+
b

= T i+. Finally,
the corresponding X values are computed as Xi∗

1 ← bi∗1 and Xi∗
k ←

ρ1(Y i∗
k−1, δ

i∗
k−1)⊕ bi∗k for 2 ≤ k ≤ `i∗b .

Attainable Transcripts. We’ve defined all values that are either ex-
changed during the interactions or revealed afterward. A transcript of the
attack τ = (τe, τd, τv) is thus written as:

τe = {(ai+,mi+, ci+, T i+, Xi+, Y i+, U i+, V i+) : 1 ≤ i ≤ qe} ,
τd = {(ai−,mi−, ci−, T i−, U i−, V i−) : 1 ≤ i ≤ qd} ,
τv = {(ai?,mi?, ci?, T i?, Xi?, Y i?, U i?, V i?,>/⊥) : 1 ≤ i ≤ qv} .

A transcript is said to be attainable (with respect to A) if the probability
to realize this transcript in the ideal world is not zero. For instance, the
verification queries in the ideal world only answers ⊥ so the last value of
all elements of τv must be ⊥ whenever τ = (τe, τd, τv)is attainable.

Following the H-coefficient technique (Theorem 6.2), we call Θ the
set of all attainable transcripts and Xre and Xid the random variables
following the probability distributions of the transcript τ induced by the
real and ideal worlds respectively.

6.3.3 Analysis of Bad Transcripts
Definition of Bad Transcripts. A bad transcript happens when a
bad event occurs so let us define what a bad event is. We distinguish four

186 Chapter 6. Release of Unverified Plaintext security of ANYDAE

types of bad events: CollXX,CollXU, CollUU and Forge defined as:

CollXX : ∃(j,~) � (i, ∗), k, k′with (k 6= k′ or Bi∗ and Bj~ do not have
a common prefix of size k

)

such that Xi∗
k′ = Xj~

k ,

CollXU : ∃(j,~), (i, ∗), k, k′ such that U i∗k′ = Xj~
k ,

CollUU : ∃(j,~) � (i, ∗), k, k′with
(
∗ = + or U i∗1 6= U j~k−k′+1

)

such that U i∗k′ = U j~k ,

Forge : ∃i such that Y i?
`i?
b

= T i? .

In other words, CollXX denotes an accidental collision between two inputs
to f in the authentication part excluding trivial collisions due to common
prefix. CollXU denotes an accidental collision between an input to f in
the authentication part and one in the encryption part. CollUU denotes
an accidental collision between two inputs to f in the encryption part
excluding trivial collisions due to a decryption or verification query starting
with a previously known value. And Forge corresponds to the event that
the last output of f in the authentication part of a verification query
actually corresponds to the given tag value.

Again following the H-coefficient technique (Theorem 6.2), we note Θb
the set of all bad attainable transcripts.

Probability of Bad Transcripts. In order to bound the probability
of a bad transcript Pr(Xid ∈ Θb), we bound the probability of every bad
events to occur in the ideal world and prove Lemma 6.1:

Lemma 6.1. Let Xid and Θb be as defined as above. Then,

Pr(Xid ∈ Θb) ≤
(
σ

2

)
·max{ε1, γ1, γ2, γ3}+ Ωσ · γ3 + qv

2n .

Let us bound the probability of CollXX. Remember that Xi∗
1 = bi∗1 and

Xi∗
k′ = ρ1(Y i∗

k′−1, δ
i∗
k′−1)⊕ bi∗k′ for k′ 6= 1 and for Y values randomly sampled

after the adversary interactions. We consider the following cases:

(i) k = k′ = 1. The event is a contradiction as we require bi∗1 6= bj~1 .
The event is set with probability 0;

6.3. Proving AERUP Security of ANYDAE 187

(ii) k = 1, k′ 6= 1. The event implies that ρ1(Y i∗
k′−1, δ

i∗
k′−1) = bj~1 ⊕ bi∗k′ . As

ρ1 is γ1-uniform, the probability of this event is at most γ1;

(iii) k 6= 1, k′ = 1. The event implies that ρ1(Y j~
k−1, δ

j~
k−1) = bi∗1 ⊕ bj~k . As

ρ1 is γ1-uniform, the probability of this event is at most γ1;

(iv) k 6= 1, k′ 6= 1. The event implies that

ρ1(Y i∗
k′−1, δ

i∗
k′−1)⊕ ρ1(Y j~

k−1, δ
j~
k−1) = bi∗k′ ⊕ bj~k .

To bound the above event, we split it into two different subcases:

Case (a): When k = k′ and Bi∗ and Bj~ have a common prefix of
size k − 1 (but not k). This implies that Y i∗

k−1 = Y j~
k−1. Now there

are two different subcases. If δi∗k−1 = δj~k−1, then bi∗k 6= bj~k and the
probability of the above event is zero. Otherwise, the above event
boils down to

ρ1(Y i∗
k−1, δ

i∗
k−1)⊕ ρ1(Y j~

k−1, δ
j~
k−1) = bi∗k ⊕ bj~k .

This event is bounded by the ε1-AXU property of ρ1, where the
probability is calculated over the random sampling of Y j∗

k−1 as (j,~) ≺
(i, ∗).

Case (b): Otherwise, Y i∗
k−1 and Y j~

k−1 are independent and the above
event is bounded by the uniform probability γ1 of the ρ1 function
that directly follows from Corollary 6.1.

Combining all the four cases, we obtain

Pr(CollXX occurs) ≤
(

#X
2

)
·max{ε1, γ1} .

where #X is the number of X values in the transcript.

Let us bound the probability of CollXU. We consider the following
cases:

(i) k = k′ = 1. We have |F1 ∩ Im(ρ2)| = 0, and hence, the probability
of CollXU occurring is 0;

188 Chapter 6. Release of Unverified Plaintext security of ANYDAE

(ii) k′ 6= 1, k = 1. The event implies that ρ3(ci∗k′ ⊕ mi∗
k′) = bj~1 where

bj~1 can be adaptively chosen. Thus, we suppose that it happens
whenever ρ3(ci∗k′ ⊕mi∗

k′) ∈ F1. As |F1 ∩ Im(ρ3)| = Ω, and as ρ3 is
γ3-uniform, the probability of this event is at most Ω#U · γ3, where
we have already summed over all possible query choices;

(iii) k′ = 1, k 6= 1. The event implies that ρ1(Y j~
k−1, δ

j~
k−1) = U i∗1 ⊕ bj~k . As

ρ1 is γ1-uniform, the probability of this event is at most γ1;

(iv) k 6= 1, k′ 6= 1. The event implies ρ3(ci∗k′⊕mi∗
k′) = ρ1(Y j~

k−1, δ
j~
k−1)⊕ bj~k .

If (j,~) ≺ (i, ∗), we bound this event by γ3 due to the random
sampling of ci∗k′ or mi∗

k′ and ρ3 being γ3-uniform. Otherwise, we
bound the event by γ1 as ρ1 is γ1-uniform.

For the third case, we have already summed over all possible occurrences
of the case. The second and fourth case together occur at most #X ·#U
times. We therefore obtain

Pr(CollXU occurs) ≤ (#X ·#U) ·max{γ1, γ3}+ Ω#U · γ3 .

where #U is the number of U values in the transcript.

Let us bound the probability of CollUU. We consider the following
cases:

(i) k′ = 1.

a) ∗ 6= +. The event is a contradiction as we require U i∗1 6= U j~k .
The event is set with probability 0;

b) ∗ = +. The event implies ρ2(T i+) = U j~k for some previous re-
quest (j,~) and some k. Since T i+ is always sampled uniformly
at random and ρ2 is γ2-uniform, the probability of this event is
at most γ2;

(ii) k′ 6= 1.

a) ∗ 6= +. The event implies U i∗1 6= U j~k−k′+1. This implies that
there is an index h ≤ k′ where the sequence merges, that is
U i∗k′−h−1 6= U j~k−h−1 and U i∗k′−h = U j~k−h. If U i∗k′−h−1 ∈ L, the event
already happened before and this was already a bad transcript.
Else, if U i∗k′−h−1 /∈ L, the event occurs when ρ3(V i∗

k′−h−1) = U j~k−h
with V i∗

k′−h−1 sampled uniformly at random. As ρ3 is γ3-uniform,
the probability of this event is at most γ3;

6.3. Proving AERUP Security of ANYDAE 189

b) ∗ = +. The event implies ρ3(V i+
k′−1) = U j~k for some previ-

ous request (j,~) and some k. Since ci+k′−1 is always sampled
uniformly at random, so is V i+

k′−1. As ρ3 is γ3-uniform, the
probability of this event is at most γ3.

We obtain

Pr(CollUU) ≤
(

#U
2

)
·max{γ2, γ3} .

As for the probability of the event Forge, it is trivially bounded by 2−n
for every verification query as the value T i? is always chosen before the
sampling of Y i?

`i?c
. Indeed, Y i?

`i?c
is either uniformly sampled after interactions

with the oracles or, if there is a (j,+) such that ((i, ?), (j,+)) ∈ Q, it is
set to T j+ sampled at a later query (i, ?) ≺ (j,+). Thus, we obtain

Pr(Forge) ≤ qv
2n .

Summing over everything we get:

PrXid ∈ Θb ≤((
#X

2

)
+ (#X ·#U) +

(
#U

2

))
·max{ε1, γ1, γ2, γ3}+Ω#U ·γ3 + qv

2n .

The real world equivalent of #X is the number of inputs to f in the
authentication part and #U the number of inputs to f in the encryption
part, so we let #X + #U = σ the total number of calls to f . Moreover,
we have

(
#X

2

)
+ (#X ·#U) +

(
#U

2

)
=
(

#X + #U
2

)
=
(
σ

2

)
,

and we use #U ≤ σ to get to the formula of Lemma 6.1.

6.3.4 Analysis of Good Transcripts
Since we’ve defined the set of bad transcript Θb we define the set of good
transcript as Θg = Θ\Θb. We show that for any good transcript τ ∈ Θg
the probability of it happening is the same in the real and ideal worlds as
stated in Lemma 6.2:

190 Chapter 6. Release of Unverified Plaintext security of ANYDAE

Lemma 6.2. Let Xre, Xid, and Θg be as defined as above. For any good
transcript τ = (τe, τv, τd) ∈ Θg,

Pr(Xre = τ)
Pr(Xid = τ) = 1 .

Probability in the Ideal World. Let τ = (τe, τv, τd) be a good tran-
script. We note se the number of distinctX values among {X1+, . . . , Xqe+}
and sv the number of distinct X values among {X1?, . . . , Xqv?}. Thus,
there are se + sv values Y sampled after interaction.

For the encryption part, let Ce the number of ciphertext blocks ran-
domly sampled during encryption queries, Md the number of message
blocks randomly sampled by the simulator during interaction and Mv for
the ones sampled by the verification oracle after interaction. So we have:

Pr(Xid = τ) =
(1

2n
)Ce
·
(1

2n
)se+sv

·
(1

2n
)Md+Mv

.

Probability in the Real World. In the real world, the equivalent of
a random sampling is to compute the random function f on a fresh input
to get a uniformly distributed output. Therefore, all unique X values and
U values are a unique input to the function f and thus also incurs a 1/2n
probability of observing the corresponding output.

For instance the fact that all {U1+, . . . , U qe+} are unique also means
that all Ce block of ciphertext are uniformly distributed. Moreover, it
is clear that the decryption and verification oracles will compute f on
Md + Mv fresh inputs to reconstruct the plaintext. Finally, since there
are se + sv distinct X values in the transcript the corresponding Y values
will also be uniformly distributed, so we have:

Pr(Xre = τ) =
(1

2n
)Ce
·
(1

2n
)se+sv

·
(1

2n
)Md+Mv

.

Therefore, we can directly conclude that the two probabilities are
equals which prove Lemma 6.2.

6.3. Proving AERUP Security of ANYDAE 191

6.3.5 AERUP Security of ANYDAE
We apply the H-coefficient technique (Theorem 6.2) with εratio = 0 follow-
ing Lemma 6.2 and εbad as the bound in Lemma 6.1 to get the bound:

AdvAERUP
ANYDAE−f (A) ≤ Pr(Xid ∈ Θb) ≤

(
σ

2

)
·max{ε1, γ1, γ2, γ3}+Ωσ·γ3+ qv

2n .

Putting it together with the bound obtained with the PRP/PRF switch
(Lemma 1.1), that is:

AdvAERUP
ANYDAE−E(A) ≤ AdvPRP

E (B) +
(
σ

2

)
· 1

2n + AdvAERUP
ANYDAE−f (A)

and taking the maximum over all adversaries A and B making queries
with at most σ calls to the underlying block cipher, qv verification queries
(for A) and running in time t and t′ ≈ t respectively, we obtain the AERUP
security bound of Theorem 6.1.

Conclusion. We’ve thus proved the robustness of ANYDAE in the AERUP
security model. With a single proof we showed that the deterministic
AEAD mode ANYDAE is AE, PA1 and INT-RUP secure. Moreover, ANYDAE
is described quite generically following the requirement of the proof. There
are multiple possible instances of ANYDAE whose security is directly implied
by its proof, and we’ve shown two of them: MONDAE that only slightly
modifies SUNDAE to achieve AERUP security and TUESDAE that aim at
being optimal in the number of block cipher queries for most inputs.

PartIIIdealized Designs

193

Chapter7Introduction to Idealized
Designs

Idealized designs introduced in this chapter build new primitives upon
existing primitives. Just like modes of operation, they rely on the security
of an underlying cryptographic primitive. Therefore, the techniques we’ve
seen for modes such as security games, proofs and even cryptanalysis will
remain relevant when talking about idealized designs.

Idealizing existing constructions are introduced to provide a formal
analysis of pre-existing designs strategy. For instance the DES block cipher
follows the older Feistel Network strategy and, later, this strategy was
idealized and formally studied by Luby and Rackoff [LR88] (Section 7.1.1).
The FX construction (Section 7.1.3) was introduced by [KR96] to formally
analyze DESX, the iterated Even-Mansour construction (Section 7.1.2)
allowed [Bog+12] to formally analyze key-alternating ciphers that is the
design strategy of the AES and tweakable block ciphers (Section 2.3.4)
were formalized by [LRW11] with the goal of simplifying the analysis of
the OCB mode.

7.1 Building Block Ciphers

7.1.1 Feistel Network
A Feistel network builds a block cipher using a family of pseudo-random
functions. Let Fki(·) be a family of n to n bits functions indexed by a
key and k = k1 ‖ . . . ‖ kr. The 2n-bit input message is first split into two
n bit half to initialize the internal state s0

L ‖ s0
R = mL ‖mR. A round is

defined as siL ‖ siR = si−1
R ‖ si−1

L ⊕ Fki(si−1
R) and the output after r rounds

is Ek(m) = cL ‖ cR = srL ‖ srR.

195

196 Chapter 7. Introduction to Idealized Designs

mL mR

cL cR

s1
L s1

R

s2
L s2

R

Fk1

Fk2

Fk3

Figure 7.1: A 3-round Feistel network with input m = mL ‖mR and
output c = cL ‖ cR.

As it is always invertible regardless of the underlying functions, a
Feistel network define a family of a 2n-bit permutations which is, indeed,
a block cipher. To see this, we simply need to write the inverse round
function: si−1

L ‖ si−1
R = siR ⊕ Fki(siL) ‖ siL.

Provable Security. This construction was first studied by Luby and
Rackoff [LR88] as an idealization of the design strategy of the DES block
cipher [DES77]. When all Fki functions are replaced by independent and
random functions, they showed that 3 rounds (Figure 7.1) are sufficient to
be prp secure (Definition 1.1) and 4 rounds to be sprp secure (Definition 1.2)
both up to 2n/2 queries.

That bound can be interpreted as a birthday bound on the Fki functions
and there are matching distinguishers for 3 and 4 rounds of the respective
types exploiting collisions. Let us show a prp distinguisher on 3 rounds of
Feistel:

1. For a fixed mL, query Ek(m) to find a collision mR⊕ cL = m′R⊕ c′L;

7.1. Building Block Ciphers 197

2. Take m′L 6= mL and query c?L ‖ c?R = Ek(m′L ‖mR) and c◦L ‖ c◦R =
Ek(m′L ‖m′R);

3. Check that the collision still holds: if mR ⊕ c?L
?= m′R ⊕ c◦L return 1

else 0;

The first step is the most costly one as it looks for an n-bit collision. Its
data and time complexity are thus the birthday bound O(2n/2). The idea
of the attack is to look for a collision in s1

R = mL⊕Fk1(mR) (see Figure 7.1).
Indeed, we have cL = mR ⊕ Fk2(mL ⊕ Fk1(mR)) so whenever there are
two inputs mR and m′R such that we have a collision Fk1(mR) = Fk1(m′R),
we will observe, for a fixed mL, that cL ⊕mR = c′L ⊕m′R. This relation is
independent of the value mL so it should still hold with a different one.
Notice that it is also possible to observe cL ⊕ mR = c′L ⊕ m′R because
of a collision in Fk2 for two different values of s1

R; in which case Step 3
will fail. However, the probability of success is already constant Ω(1) and
can be arbitrarily improved by repeating the attack. As we only queried
the construction in the forward direction, it is indeed a birthday bound
distinguisher on the prp security of the 3 rounds construction.

Interestingly, the security of the 3 rounds Feistel breaks when we allow
the adversary to query in the inverse direction. This makes it very easy
to provoke a collision in the s1

R internal state value. Let us describe the
sprp distinguisher given in [LR88] using only 3 queries:

1. Query Ek(m) for some m = mR ‖mL. Get c = cL ‖ cR;

2. Query Ek(mL ⊕ δ ‖mR) for some δ 6= 0. Get c′ = c′L ‖ c′R;

3. Query the inverse E−1
k (cL ‖ cR ⊕ δ). Get m′ = m′L ‖m′R;

4. If mR ⊕ c′L
?= m′R ⊕ cL return 1 else 0;

Indeed, with a 3-round Feistel network we observe that mR⊕c′L = m′R⊕cL
which is unlikely to happen with a truly random permutation. The attack
exploits the fact that, for a given mR, any difference in mL propagates to
s1
R and, in the inverse direction, for a given cR any difference to cL also
propagates backward to s1

R. In the first query Ek(m), the internal state
value s1

R is unknown, but in the second and third queries we know that
it will become s′1R = s1

R ⊕ δ and, hence, be equal. We observe that this
indeed happens as mR ⊕ c′L = Fk2(s′1R) = m′R ⊕ cL.

198 Chapter 7. Introduction to Idealized Designs

7.1.2 Even-Mansour Construction
Even and Mansour [EM93] proposed an idealized design that builds a block
cipher using a public permutation as Ek(x) = P (x⊕k1)⊕k2 parametrized
by a 2n-bit key k = k1 ‖ k2. They proved its security and it later became
known as the Even-Mansour construction.

Their security analysis is equivalent to the sprp notion and thus satisfies
the sPRP security game (Definition 1.2) but with a random permutation.
Concretely, consider the Even-Mansour construction Ek(x) = P0(x⊕k1)⊕
k2 with a public permutation P0. The sprp advantage of Ek(·) is:

Advsprp
E (A) = Pr(AEk(·),E−1

k
(·),P (·),P−1(·) → 1)

−Pr(Ap(·),p−1(·),P (·),P−1(·) → 1) .

where P0(·) is replaced by P (·) in Ek(·), k $←−− {0, 1}2n, P and p indepen-
dently and uniformly drawn among all n to n bits permutations.

Real World
Ideal World

A Ek(·) E−1
k (·)

A p(·) p−1(·)

P (·) P −1(·)

Figure 7.2: Distinguishing game for the sprp security of a block cipher
E based on a public permutation where P and p are independent random
permutations, k is a random key value.

Notice that the public permutation P0 does not appear in the game and
is replaced by a truly random permutation. As discussed in Section 2.3.4,
this is impossible to formally define the security notion for a public
permutation. Nevertheless, a low sprp advantage is a good indicator that
the construction is secure given a “good enough” public permutation. In
other words, this formalization captures the advantage of all attacker A
that don’t exploit any particular property of P0.

7.1. Building Block Ciphers 199

x P y

k k

Figure 7.3: Single key Even-Mansour scheme y = k ⊕ P (k ⊕ x).

So, let D be the number of query to the keyed construction and Q be
the number of query to the public permutation, then the main result of
[EM93] is that Advsprp

E (A) ≤ O(D ·Q/2n). In particular, any attack with
an Ω(1) success probability requires D ·Q ≥ Ω(2n). As P is public, query
to its oracle are actually offline computations while query to Ek are online
data. Therefore, the result is often stated as D · T ≥ Ω(2n) with T the
time complexity. This is also birthday-bound security as D = T = 2n/2 is
enough to have D · T = 2n and there are matching attacks within those
parameters.

A single-key version of the Even-Mansour construction (Figure 7.3) has
also been proposed by Dunkelman, Keller and Shamir [DKS12], defined as
Ek(x) = P (x⊕ k)⊕ k. They showed that the security remained the same
even with this simplification. The single-key Even-Mansour construction
is probably the simplest way to securely build a block cipher from a public
permutation.

Cryptanalysis. There are multiple matching cryptanalyses of the Even-
Mansour scheme in chosen plaintext [Dae93] and known plaintext [DKS15]
that work for both the single key and the original versions. The main idea
of those attacks is to exploit the fact that a difference ∆ in the input of the
construction will propagate to the input of the permutation. Concretely,
by construction we have for any n-bit values x, y,∆:

x⊕ y = k1 =⇒ Ek(x)⊕ Ek(x⊕∆) = P (y)⊕ P (y ⊕∆) (7.1)

and the converse holds true with good probability. Therefore, if we
randomly find x, y and ∆ such that Ek(x)⊕Ek(x⊕∆) = P (y)⊕P (y⊕∆),
it is most likely the case that x⊕ y = k1 and Ek(x)⊕ P (y) = k2.

The slide attack of Daemen [Dae93] works by fixing a value for ∆ and
looking for a collision satisfying (7.1). See Algorithm 7.1.

200 Chapter 7. Introduction to Idealized Designs

Algorithm 7.1 Slide attack [Dae93] on Even-Mansour.
1: input: E(x) = k2 ⊕ P (k1 ⊕ x) .
2: output: (k1, k2) .
3: procedure SlideAttack(E(·), P (·))
4: ∆← δ . For any δ 6= 0.
5: f(x)← E(x)⊕ E(x⊕∆)
6: g(y)← P (y)⊕ P (y ⊕∆)
7: Let X and Y such that {x⊕ y : (x, y) ∈ X × Y} = {0, 1}n
8: (x, y)← CollisionFun(f(·), g(·),X ,Y)
9: return (x⊕ y,E(x)⊕ P (y))

The Step 8 of Algorithm 7.1 is about finding a collision and thus works
in data and time complexity O(2n/2). More precisely, this attack works
as soon as there exists x, y such that x ⊕ y = k1 to provoke Equation
(7.1) which how we define the sets X and Y in Step 7. Therefore, after
querying D = |X | different values x (it is easy to choose X such that
∀x ∈ X : x ⊕∆ ∈ X), the attack requires |Y| = Q/2 = 2n/D different
values y. Hence, we indeed have D ·Q = 2n+1 for a sure success and, if
D ≤ Q, D ·T = 2n+1 as well. Notice that while we don’t need to choose x,
we need to query x⊕∆ for a fixed ∆ so this is indeed a chosen plaintext
attack.

The slidex attack [DKS15], however, works with known plaintexts and
the same trade-off complexity. The trick is to rewrite ∆ as k1 ⊕∆ since it
is an arbitrary value and Equation (7.1) becomes:

x⊕ y = k1 =⇒ Ek(x)⊕ P (x⊕∆) = Ek(y ⊕∆)⊕ P (y) (7.2)

The slidex attack is shown in Algorithm 7.2. It is a known plaintext
attack where the set X is known but imposed. The data complexity is
simply D = |X |. The attack builds Γ lists of size D so the total number
of queries to the permutation done in Step 3.1 is Q = D · Γ. The expected
number of collisions is Γ · D(D−1)

2n+1 = Q(D−1)
2n+1 so we have a good probability

of success with D ·Q = 2n+1 and, when D ≤ Q, D · T = 2n+1.

In [DKS15] they notice that for a fixed ∆ in Equation (7.2) we can
look for a collision in f(x) = Ek(x) ⊕ P (x ⊕ ∆) using Algorithm 3.3
for memoryless collision search. The slide attack can also be done in

7.1. Building Block Ciphers 201

Algorithm 7.2 Slidex attack [DKS15] on Even-Mansour.
1: input: E(x) = k2 ⊕ P (k1 ⊕ x) .
2: output: (k1, k2) .
3: procedure SlidexAttack(E(·), P (·))
4: L← {(x,E(x)) : x ∈ X} . For an obersvable set X of size D.
5: for all ∆ ∈ {∆1, ...,∆Γ} do . Arbitrary values ∆ 6= 0.
6: (x, y)← Collision({E(x)⊕ P (x⊕∆) : x ∈ X})
7: if (x, y) 6= ∅ then
8: return (x⊕ y ⊕∆, Ek(x)⊕ P (y ⊕∆))
9: return ∅

x P1 P2 Ek(x)

k k k

Figure 7.4: Single key two-round Even-Mansour scheme (2EM) with two
independent permutations Ek(x) = k ⊕ P1(k ⊕ P2(k ⊕ x)).

a memoryless manner to look for a collision. The complexity is still in
O(2n/2) and this shows that the memory cannot be lower bounded in the
way the time complexity is bounded by Q. These memoryless versions
of the cryptanalysis are adaptively chosen plaintext attacks as not only
do we need to choose the values of the queries, but they depend on the
previous query.

Iterating Even-Mansour. Bogdanov et al. [Bog+12] proposed to gen-
eralize the simple Even-Mansour scheme by iterating it over multiple
rounds. An r-round Even-Mansour scheme is based on r public permu-
tations. First, a key is directly added to the input s0 = x ⊕ k0 and a
round is defined as si = Pi(si−1) ⊕ ki, the output after r rounds is sr.
This is an idealization of the design strategy of key alternating ciphers
which interleaves key additions with known (and, in practice, simple)
permutations. This design strategy is notably used in the AES [AES].

The iterated construction was first proven to be secure beyond the
birthday bound and up to O(22n/3) queries for r ≥ 2 [Bog+12], and
later improved to O(2nr/(r+1)) queries [LPS12; CS14] or, more generally,
D · Qr ≥ O(2rn). The proof holds even when a single key is reused at

202 Chapter 7. Introduction to Idealized Designs

every rounds like illustrated in Figure 7.4.
There is also a known information theoretic key recovery by Bog-

danov et al.[Bog+12] that matches the best provable bound for all r.
Algorithm 7.3 describes the attack on r-round Even-Mansour interleaving
n-bit keys k1 ‖ . . . ‖ kr+1 with permutations P1 ‖ . . . ‖ Pr. It works by

Algorithm 7.3 Generic attack [Bog+12] on r-round Even-Mansour.
1: input: E(·) is Even-Mansour with key k1 ‖ . . . ‖ kr+1 .
2: output: k1 ‖ . . . ‖ kr+1 .
3: procedure AttackrEM(E(·), P1(·), . . . , Pr(·))
4: L← {(x,E(x)) : x ∈ X} . For an obersvable set X of size D.
5: for i = 1 to r do
6: Li = {(x, Pi(x)) : x ∈ Xi} . For a random set Xi of size Q.

7: for all k ∈ {0, 1}(r+1)n do
8: k1 ‖ . . . ‖ kr+1 ← k
9: b← False . Control whether we could reconstruct a path.

10: for all x ∈ X do
11: s← x
12: for i = 1 to r do
13: if (s⊕ ki) ∈ Xi then
14: s← Pi(s⊕ ki) . Value from Li.
15: else
16: Go to next x (Step 10)
17: if (s⊕ kr+1) 6= E(x) then . Value from L.
18: Go to next k (Step 7)
19: else
20: b← True . Path successfully reconstructed.
21: if b then
22: return k
23: return ∅

guessing the key and reconstructing the internal state part (the value s in
Algorithm 7.3) in order to test whether it is consistent with the queries
made to the keyed construction. All the wrong key guesses will thus be
discarded given that we have enough data to build a few paths for all
guesses. To build a path we start from D possible values and proceed to
keep values that belong to a set of size Q after a key addition. We iterate

7.1. Building Block Ciphers 203

x Ek y

k1 k2

Figure 7.5: The FX construction E′k′(x) = k2⊕Ek(k1⊕x) with a 2n+κ-
bit key k′ = k ‖ k1 ‖ k2.

this for every round, and, in expectation, we can build D ·Qr/2rn paths.
Therefore, we need a data-query complexity trade-off of D ·Qr = Ω(2rn).
The balanced case requires D = Q = Ω(2nr/(r+1)) matching the proof of
[LPS12; CS14].

However, this attack requires a much larger number of computations
than Q. For two and three rounds the best attacks run in T = 2n/n
and for r ≥ 4 there’s no known attack with less that 2n computations
even in the single key variant. The gap between the information theoretic
complexity and the computational complexity is arguably the largest
for r = 2 rounds. Indeed, for two rounds an attack is possible with
D = Q = 22n/3 but the best attack uses T = 2n/n computations. In
Chapter 8 we devise new attacks on the 2-round Even-Mansour with a
single key (Figure 7.4) by linking it to the 3-XOR problem (Section 3.2.2).
Our approach optimizes both the data D and the memory while keeping
T = 2n/n. The link to the 3-XOR problem might give some insight on
why such a gap exists. In particular, reducing the time complexity of
solving the 3-XOR problem would reduce the time complexity of our two
rounds Even-Mansour cryptanalysis.

7.1.3 FX Construction
The FX construction (Figure 7.5) builds a block cipher E′ with a 2n+κ-bit
key based on another secure block cipher E with a κ-bit key as E′k′(x) =
k2 ⊕ Ek(k1 ⊕ x). It has been first studied Killian and Rogaway [KR96] to
analyze the DESX construction, a suggested solution by Rivest (according
to [KR96]) that aimed at increasing the security of the DES [DES77]
block cipher against brute-force attacks. Indeed, a generic brute-force key
recovery attack requires T = O(2κ) computations and [KR96] proved that
the FX construction increases the complexity of the generic cryptanalysis
to T = O(2κ+n/D) when the attacker has access to D input/output
pairs. In the case of DES, it has κ = 56 and n = 64 so this makes a

204 Chapter 7. Introduction to Idealized Designs

substantial difference. The FX construction has since be notably used in
PRINCE [Bor+12] and PRIDE [Alb+14].

To prove such a security result, we need to use a stronger assumption
than the sprp security of the underlying block cipher E. Indeed, Advprp

E (t)
necessarily tends to 1 as t tends to 2κ since this is the complexity of an
exhaustive key search. The assumption used here is called the ideal cipher
model. In the ideal cipher model, the actual block cipher is replaced by a
family of independently and uniformly drawn random permutations. In
particular, the actual block cipher is implicitly required to resist crypt-
analysis such as related key attacks where a relation between two keys
implies a relation between the two induced permutations. On the other
hand, the lack of randomness makes it impossible to formally define such a
security notion within a distinguishing game hence the actual block cipher
is altogether ignored for the proof. Notice that we couldn’t formally define
the security of a public permutation for the same subtle reasons.

Algorithm 7.4 Key recovery on FX construction.
1: input: E′(x) = k2 ⊕ Ek(k1 ⊕ x) .
2: output: (k, k1, k2) .
3: procedure AttackFX(E′(·), E·(·))
4: L← {(x,E(x)) : x ∈ X} . For an obersvable set X of size D.

5: for all k ∈ {0, 1}κ do
6: (k1, k2)← SlidexAttack(E′(·), Ek(·)) . Provide the set L.
7: if (k1, k2) 6= ∅ then
8: return (k, k1, k2)
9: return ∅

Cryptanalysis. There is a simple matching key recovery working with
known plaintexts given in Algorithm 7.4. The attack exploits the fact
that once the right key k is guessed, the FX construction is reduced to an
Even-Mansour scheme as shown in Section 7.1.2. Step 6 will always reuse
the initially observed values and, in addition, will require Q = O(2n/D)
computations to perform the slidex attack for each guess of k. Therefore,
the total time complexity is indeed T = O(2κ ·Q) = O(2κ+n/D) matching
the lower bound of [KR96].

7.2. Other Designs 205

Algorithm 7.5 Key recovery on r-round FX construction [Gaž13].
1: input: E′ is r rounds FX with k1, k2, ..., kr+1 and Ek?1 , Ek?2 , ..., Ek?r .
2: output: (k1 ‖ . . . ‖ kr+1, k?1 ‖ . . . ‖ k?r) .
3: procedure AttackrFX(E′(·), E·(·))
4: L← {(x,E(x)) : x ∈ {0, 1}n} . Query the whole codebook.
5: for all i ∈ {0, 1}κ do
6: Li ← {(x,Ei(x)) : x ∈ Xi} . For a random set Xi of size Q/2κ.

7: for all k? ∈ {0, 1}rκ do
8: k?1 ‖ k?2 ‖ . . . ‖ k?r ← k?

9: k ← AttackrEM(E′(·), Ek?1 (·), . . . , Ek?r (·))
. Provide the sets L,Lk?1 , . . . , Lk?r .

10: if k 6= ∅ then
11: return (k, k?)
12: return ∅

Iterating FX. We can iterate r rounds of the FX construction to
build a block cipher with a (r + 1)n + rκ-bit key upon a κ-bit block
cipher (or r different block ciphers which is equivalent in the ideal cipher
model). The best information theoretic key recovery on r-round iterated
FX construction is due to Gaži [Gaž13] and makes Q = O(2 r−1

r
n+κ)

queries. Algorithm 7.5 gives the attack on an r-round iterated FX E′k(x)
interleaving k1, k2, ..., kr+1 n-bit keys with Ek?1 , Ek?2 , ..., Ek?r block ciphers.
All the queries are done beforehand so that Step 9 does not make any
additional query. To optimize the complexity the attack queries the
construction for all possible inputs so D = 2n. Algorithm 7.5 succeeds if
the sets Li are sufficiently big so that Algorithm 7.3 succeeds for the right
guess of k?. The required trade-off is thus D · (Q/2κ)r = O(2rn). Since
we have D = 2n, this implies a query complexity of Q = O(2 r−1

r
n+κ).

7.2 Other Designs
Block ciphers are not the only idealized designs that are provable schemes.
In this section we’ll show how one can build hash functions and tweakable
block ciphers based on standard block ciphers or public permutations.

206 Chapter 7. Introduction to Idealized Designs

0

m1

f

m2

f

m3

f

m4

f

|m|

f H(m)

Figure 7.6: Merkle-Damgård construction with a compression function
f .

7.2.1 Building Hash Function
Ideally, a hash function is a public function that produces a random
looking output (of fixed or arbitrary length) from an arbitrary long input.
However, a hash is not a PRF since it is a keyless construction. In practice,
the security requirement of a hash depends on the usage. One typical usage
is to guarantee the integrity of large volume of data by only comparing
a relatively short hash value, for that we need our hash function to be
collision resistant.

Merkle-Damgård construction. A collision resistant hash function
can be built by iterating a compression function f with fixed sized input
and output α and β respectively with α > β. This is the Merkle-Damgård
construction as shown in Figure 7.6 that outputs a β-bit hash value. Given
a padding scheme that appends the bit length of the input, Merkle and
Damgård [Mer79; Dam90] independently proved that finding a collision
on the hash construction H(m) is as hard as finding a collision on the
underlying compression function f(x1, x2). In other word, the Merkle-
Damgård construction is collision resistant as long as f is collision resistant.

Interestingly, Joux [Jou04] showed that finding a multi-collision (find-
ing multiple inputs matching the same output) on the Merkle-Damgård
construction is much easier than in the generic case independently of
the compression function f . Indeed, [Jou04] exhibits a 2u multi-collision
attack on Merkle-Damgård for the complexity of looking for u collisions
in f . We explicitly describe the attack in Algorithm 7.6. For instance, a
generic 4-collision algorithm on a β-bit output requires at least Ω(23β/4)
data, but on Merkle-Damgård it can always be done in Ω(2β/2) data that
is the cost of looking for 2 collisions.

7.2. Other Designs 207

Nevertheless, it is a widely spread construction notably used in the
hash functions MD5, SHA-1 and SHA-2.

Algorithm 7.6 Multi-collision attack on Merkle-Damgård [Jou04].
1: input: f is a α to β-bit function for the MD construction H.
2: output: M of size 2u such that H(p ‖mi) = H(p ‖mj)∀mi,mj ∈M.
3: procedure MultiCollisionMD(f(·, ·), p, u)
4: p1 ‖ . . . ‖ p` ← p
5: s← 0
6: for i = 1 to ` do
7: s← f(s, pi) . Internal state after processing p.
8: for i = 1 to u do
9: (mi

0,m
i
1)← Collision(f(s, ·))

10: s← f(s,mi
0)

11: return {m1
b1
‖m2

b2
‖ . . . ‖mu

bu
: (b1, b2, . . . , bu) ∈ {0, 1}u}

x1 E·

x2

f(x1, x2)

Figure 7.7: Davies-Meyer compression function f(x1, x2) = Ex2(x1)⊕x1.

Davies-Meyer. With the Merkle-Damgård construction, the problem
of building a collision resistant hash function is reduced to building a
collision resistant compression function. It turns out that one can build
such a function with a block cipher as f(x1, x2) = Ex2(x1) ⊕ x1. This
is the Davies-Meyer compression function. Winternitz [Win83] proposed
this construction while attributing the idea to Davies who denied it and
attributed the idea to Meyer (According to [PGV94]). Later, Winternitz
himself proved the construction secure as a collision resistant one-way
compression function under the ideal cipher model [Win84]. The provable
security is optimum meaning that if the cipher is an ideal cipher, then
there is no collision attack on the Davies-Meyer construction faster than
the generic birthday bound attack. Note that there are other secure

208 Chapter 7. Introduction to Idealized Designs

compression functions based on block ciphers that are notably discussed
in [PGV94], but the Davies-Meyer construction is the most popular one.

A block cipher can thus serve as a basis to build a collision resistant hash
function in addition to authenticated encryption modes. This is especially
interesting in restricted environments: one only needs to implement a good
block cipher to have access to many cryptographically secure constructions.
On the downside, the Davies-Meyer construction requires to remember
the input value in order to XOR it with the output which increases the
internal state size.

P P P P

m1 m2 m3

0

0

ú

○

P P P

H1 H2 H3

ú

○

H4

�

Figure 7.8: The sponge construction for an arbitrary long hash based
on a public permutation P . The diagram shows H(m1 ‖ m2 ‖ m3) =
H1 ‖H2 ‖H3 ‖H4.

Sponge construction. We’ve shown in Section 2.3.4 how to build an
authenticated encryption schemes out of a public permutation with the
SpongeWrap mode. In fact, the security of such a mode is implied by
the security of the sponge construction for a hash function as shown in
Figure 7.8 (each r-bit block of key stream is seen as the output of a
different hash from a random permutation). One particular aspect of a
sponge based hash function is that the output is also of arbitrary length:
it is easy to keep unrolling the construction to output as many bits as we
want. The construction is based on an n to n bit permutation P separated

7.2. Other Designs 209

into an α-bit rate (or outer-part) and a β-bit capacity (or inner-part).
Bertoni, Daemen, Peeters and Van Assche [Gui+11] proved that a sponge
construction instantiated with a random permutation is behaving like a
random function as long as there is no collision in the capacity part. This
means that there are no better attack than generic attacks up to O(2β/2)
computations of P that is not exploiting some property of P . Indeed, the
proof replaces P by a random permutation.

The sponge construction therefore offers another way of building a
variety of provably secure cryptographic functions from a single secure
primitive. At the time of this writing, the sponge construction is mainly
used for hashing as the SHA-3 standard [Dwo15] is a sponge using a
Keccak-f permutation. However, we’ve lately seen many proposals for
authenticated encryption schemes relying on the sponge construction,
notably as part of the NIST lightweight competition and the CAESAR
competition.

7.2.2 Building Tweakable Block Ciphers
Tweakable block ciphers have been formalized by Liskov, Rivest and
Wagner [LRW11] as a family of permutation indexed by both a secret key
and a public tweak that is an application Ẽ : {0, 1}κ×{0, 1}τ ×{0, 1}n →
{0, 1}n. Since it is a keyed construction, its security notion can be made
into a distinguishing game. We define the p̃rp and s̃prp security advantage
for a tweakable block cipher Ẽk(t, x) in an analogous way to the prp and
sprp notions for block ciphers, that is:

Advp̃rp
Ẽ

(A) = Pr(AẼk(·,·) → 1)−Pr(Ap(·,·) → 1) ,

and

Advs̃prp
Ẽ

(A) = Pr(AẼk(·,·),Ẽ−1
k

(·,·) → 1)−Pr(Ap(·,·),p−1(·,·) → 1)

with k $←−− {0, 1}κ and p(t, ·) an independent random n to n-bit permuta-
tion for all t ∈ {0, 1}τ .

Liskov et al. [LRW11] proposed two constructions of tweakable block
ciphers from block ciphers, known as LRW1 and LRW2 and described as
Ẽk(t,m) = Ek(t ⊕ Ek(m)) and Ẽk(t,m) = Ek(m ⊕ h(t)) ⊕ h(t) respec-
tively with the requirement that h be an almost XOR-universal function
(Definition 9.1). Those constructions are proven p̃rp and s̃prp secure up

210 Chapter 7. Introduction to Idealized Designs

to the birthday bound assuming an underlying prp and sprp secure block
cipher respectively. There are simple matching attacks with complexity
O(2n/2) at the first collision.

x Ek1 y

t · k2 t · k2

Figure 7.9: The Xor-Encrypt-Xor (XEX) tweakable block cipher with a
key k = k1 ‖ k2, a tweak t and where y = Ẽtk(x) = Ek1(x⊕ t · k2)⊕ t · k2
with t · k2 a Galois field multiplication.

x Ek1 y

t · k2

Figure 7.10: The Xor-Encrypt (XE) tweakable block cipher with a key
k = k1 ‖ k2, a tweak t and where y = Ẽtk(x) = Ek1(x⊕ t · k2) with t · k2 a
Galois field multiplication.

XEX and XE constructions. The original motivation of [LRW11]
was to simplify the proof of the mode OCB. In Section 2.3.4, the OCB mode
is shown as a mode relying on a tweakable block cipher while the full
specification of OCB [KR14] relies on the XEX and XE construction to
build a tweakable block cipher out of a standard block cipher as shown in
Figure 7.9 and 7.10 respectively.

The exact way the XEX and XE constructions are used in OCB is
extensively analyzed in [Rog04] and so is the security as OCB uses both
constructions with the same key k1 and derive the secret value k2 from
the nonce. However, the proof of security for XEX and XE, as shown
in Figures 7.9 and 7.10 respectively, is derived from [LRW11]. Indeed,
XEX is an instantiation of LRW2 with the AXU function h(t) = t · k2
where multiplication is done in a Galois Field. Therefore, the proof of
[LRW11] applies showing that XEX is s̃prp secure up to the birthday
bound assuming a sprp secure E. It is also easy to adapt the proof to
show the p̃rp security of the XE construction assuming a prp secure E.

7.2. Other Designs 211

x P Ẽk(t, m)

(t11 · k) ⊕ (t12 · ∆) (t21 · k) ⊕ (t22 · ∆)

Figure 7.11: The XPX construction with key k and a secret value ∆ =
P (k). The tweak is t = t11 ‖ t12 ‖ t21 ‖ t22 and is multiplied in a Galois
Field.

The XEX constructions is also notably used for disk encryption within
the XTS mode of operation [Dwo10].

m E Ẽk(t, m)

E

2 · k

t

t ⊕ k

Figure 7.12: The F̃ [2] construction. Multiplications are done in a Galois
Field.

Other Constructions. There are several other constructions of tweak-
able block ciphers. For instance the XPX construction by Mennink [Men16]
(Figure 7.12) that reaches a birthday bound O(2n/2) security by building
a tweakable block cipher based on a public permutation. There are also
constructions where the tweak influences the key of the block cipher. Those
constructions need to be proven secure in the ideal cipher model. This
is the case of the F̃ [2] construction by Mennink [Men15] (Figure 7.12)
that reaches a O(2n) s̃prp security. There is also the XHX construction by
Jha, List, Minematsu, Mishra and Nandi [Jha+17] (Figure 7.13) who is
s̃prp-secure up to O(2(n+κ)/2) queries. This is interesting as it shows that
security beyond 2n is achievable in the ideal cipher setting.

Exploring in that direction, Lee and Lee proposed to iterate two
independent XHX with the XHX2 construction [LL18] (Figure 7.14). They
proved that it is s̃prp secure up to min{2 2

3 (n+κ), 2n+κ/2} queries and left

212 Chapter 7. Introduction to Idealized Designs

m E Ẽk(t,m)

λ(k, t)

γ(k, t)

Figure 7.13: The XHX construction with a master key k, an almost
universal function γ(·, ·) and an almost XOR-universal λ(·, ·).

m E E Ẽk(t,m)

λ0(k, t) λ1(k, t)

γ1(k, t) γ2(k, t)

Figure 7.14: The XHX2 construction is the cascade of two independent XHX
with almost universal functions γ1(·, ·), γ2(·, ·) and almost XOR-universal
functions λ0(·, ·), λ1(·, ·).

the tightness of the bound as an open question. In Chapter 9 we present
a cryptanalysis of XHX2 running in O(2 2

3 (n+κ)) showing the tightness the
bound of Lee and Lee for κ ≤ 2n. In fact, we generalize this design strategy
by interpreting it as follows: First, expand the key space with an r-round
iterated FX construction (seen in Section 7.1.3), and then compute the
subkey by blending the master key with the tweak. Each subkeys become a
function of the tweak and the master key, and we call the resulting scheme
the iterated tweakable FX construction. Therefore, we also generalize
the cryptanalysis to attack r rounds of the generic iterated tweakable FX
construction with a query complexity of O(2

r
r+1 (n+κ)).

Chapter8Low-Memory Attack on
2-round Even-Mansour

Contributions brought forward in this chapter were published in Crypto
2019 and are a joint work of Leurent and I [LS19].

Introduction
We’ve seen in Section 7.1.2 that iterated Even-Mansour is an idealization
of the SPN strategy to build block ciphers notably used for the AES.
Although tight bounds for information theoretic is now known for all
r-round iterated Even-Mansour, attacks in the computational setting may
not match this bound. The gap is arguably the largest for the 2-round
version. Indeed, while there is a tight information security proof and
a matching attack in O(22n/3) queries, the best attacks on single keyed
2-round Even-Mansour have a time complexity of O(2n/n). Even worse,
the best strategies also have either the data or the memory complexity
in the order of O(2n/n) making them hardly better than a brute-force
attack that has negligible data and memory usages.

In this chapter we show how to use algorithms solving the 3-XOR
problem seen in Section 3.2.2 in order to perform novel cryptanalyses
of 2-round Even-Mansour. Those cryptanalyses reduce for the first time
both the data and memory usages to way below 2n while keeping a time
complexity of O(2n/n). In addition, we find the same kind of gap we
explored in Section 3.2.2 hinting that it may be really hard to get a
better time complexity. More precisely, we show a reduction that implies
that an improved 3-XOR algorithm would lead to an improved 2-round
Even-Mansour attack.

Our results. The main contributions of the chapter are key-recovery
attacks on single key 2-round Even-Mansour (2EM). Those attacks are

213

214 Chapter 8. Low-Memory Attack on 2-round Even-Mansour

given in Section 8.3 and their complexities are summarized in Tables 8.1
and 8.2. These are the first attacks on 2EM to significantly reduce
simultaneously the data and the memory complexities below 2n. In
Section 8.3.2 we show how to use a 3-XOR solver in a black-box manner
to attack 2EM and propose some instantiations of the solver with known
3-XOR algorithms seen in Section 3.2.2. In particular, when using the
generalized approach by Bouillaguet, Delaplace and Fouque [BDF18], this
shows that we can achieve the best computational time complexity known
so far, that is O(2n/n), while using just as much data and queries as the
best known distinguisher which is optimal in the balanced case (22n/3 calls
to E,P1 and P2) with a memory usage not exceeding the number of queries.
We can also use the Baran, Demaine and Pǎtraşcu [BDP08] algorithm to
further improve the asymptotic time complexity to O(2n ln2 n/n2) which
beats the best one known so far. Unfortunately, this 3-XOR algorithm
is impractical for realistic block sizes, notably for n ≤ 106. Our last
attack shown in Section 8.3.3 exploits the specific properties of the 3-XOR
problem derived from 2EM to improve those generic results. This results
in a very low data attack, λn online queries, with low memory, 2λn, for
some λ < 1 while keeping a competitive asymptotic time complexity of
O(2n/λn).

We also present some security reduction in Section 8.2 notably showing
that adding a linear key schedule does not protect against generic attacks.
This effectively extends the scope of our attacks in particular showing
they can also be applied to various variants. Then, we exhibit a symmetry
in the Even-Mansour construction that shows how, in the sprp security
game, an attacker can always swap the number of queries he is making
to E, P1 and P2 to optimize on the most available resources. This result
implicitly extends our and previous attacks to adapt to many data and
query complexity profiles.

Lastly, we generalize our approach in Section 8.4.1 to show that a
single key r-round Even-Mansour scheme can be rewritten as a structured
(r + 1)-XOR problem with words of size rn. Interestingly, both the single
key r-round Even-Mansour and the (r + 1)-XOR problem with words
of size rn have a simple information theoretic solver using 2

r·n
r+1 queries

though solving these uses more computations than a brute-force solution
for r ≥ 4.

8.1. Previous Results 215

x P1 P2 Ek(x)

k k k

Figure 8.1: Single key two-round Even-Mansour scheme (2EM) with two
independent permutations Ek(x) = k ⊕ P1(k ⊕ P2(k ⊕ x)).

8.1 Previous Results
There are two kinds of single-key 2-round Even-Mansour schemes with a
security proof, one with two independent permutations (EMIP) and one
with a single permutation and a fixed linear orthomorphism (that is a
linear operation such that x 7→ π(x) and x 7→ x⊕π(x) are invertible) such
as a doubling in a GF(2n) Galois Field (EMSP):

EMIP : Ek(x) = P2
(
P1(x⊕ k)⊕ k)⊕ k

EMSP : Ek(x) = P
(
P (x⊕ k)⊕ π(k)

)⊕ k, π a linear orthomorphism.

In this chapter we’ll focus on the EMIP variant as we’ll see in Section 8.2.1
that any attack on EMIP is easily translated to an attack on EMSP. We
refer to single key 2-round Even-Mansour EMIP as simply 2EM.

Multi-collision based Cryptanalysis. The first non-trivial attack
against 2EM was proposed by Nikolic, Wang, and Wu [NWW14] using
multi-collisions. They consider the function φ : u 7→ P1(u)⊕u and evaluate
it on many points to find a value v that occurs multiple times (say ν
times). Then, for each known plaintext pair

(
x,E(x)

)
they assume that

φ(x ⊕ k) = v implying that P1(x ⊕ k) ⊕ k = x ⊕ v and thus they guess
k

?= P2(x⊕ v)⊕E(x). Since φ(·) has at least ν/2n chances to be equal to
v, the expected complexity is 2n/ν.

Following the asymptotic analysis of [NS15], the algorithm is optimal
when ν = θ(n/ lnn). Indeed, a value v repeating θ(n/ lnn) times is
expected to be found after evaluating φ(·) about 2n/n times so that the
total complexity of this attack is 2n · lnn/n which is asymptotically smaller
than 2n.

Dinur, Dunkelman, Keller and Shamir [Din+13] later improved this
attack reducing its data complexity. Their variant looks for Nv different
values vi appearing at least ν times each for a smaller value of ν. Thus,

216 Chapter 8. Low-Memory Attack on 2-round Even-Mansour

they make Nv guesses of the key for each known plaintext pair
(
x,E(x)

)

which reduce the data complexity to 2n/(Nv · ν). They computed that
after evaluating the function on µ2n points then Nv = 2nµνe−ν/ν! multi-
collisions should be found. In particular, setting µ = 1/n and ν =
o(n/ lnn), an upper bound on the data complexity is given by 2n/Nv ≤
n2ν = e2ν lnn which is 2o(n). The time complexity remains at 2n/ν.

Dinur et al. also proposed attacks against the variant construction with
3 independent keys, using multi-collisions to find differential properties
of the random permutation. However, this attack only reaches time
complexity O(2n/

√
n/ lnn).

Overall, multi-collisions attacks require large pre-processing to locate
such a ν-collision that is only expected after 2n(ν−1)/ν evaluations of φ(·).
Moreover, the best known multi-collision algorithm requires 2n(ν−2)/ν

memory [JL09]. Therefore, those techniques intrinsically require time and
memory close to 2n (asymptotically, we need to have ν approaching infinity
in order to gain a non-constant advantage over brute-force attacks).

Other Approaches. In the journal version of their paper, Dinur et al.
show an interesting side-result on EMIP. They describe an alternative
attack with low memory using linear algebra [Din+16, Section 4.2]. In
this attack, they evaluate φ : u 7→ P1(u)⊕ u on a small set of λn values
(0 < λ < 1/3), and they look for linear relations that are satisfied by all
φ(u) in the set: L(φ(u)) = 0 with n − λn equations. Then, for a given
plaintext pair

(
x,E(x)

)
, if x⊕ k is in the set, this implies linear relations

on z = k ⊕ P1(x ⊕ k), the input of P2: L(z) = L(x). Finally, using
structures for x and z, a match can be identified using linear relations on
the key (following from the assumption that x ⊕ k is in the set), using
k = P2(z) ⊕ E(x). The full details of the attack are given in [Din+16].
This attack only requires a memory of size 2λn to store the structures, but
it requires 2n/λn chosen plaintext pairs. In fact, our low data memory
attack can be seen as an improved version of their attack. We comment
on the similarities and improvements at the end of Section 8.3.3.

Another approach by Isobe and Shibutani [IS17] introduced Meet-in-
the-Middle techniques to attack the 2-round Even-Mansour construction.
The basic variant of their attack uses a function f depending on a bits
of the key kf (with a in the order of lnn), and a function g depending
on the remaining n − a bits kg. Furthermore, they use a starting point
such that a output bits of f are actually independent of the key kf . This

8.1. Previous Results 217

allows them to do the matching over P2 using just kg. The attack works
with chosen plaintexts and has a time and data complexity of 2n−a.

Actually, the function f is equivalent to looking for partial multi-
collisions in φ(·) while imposing a structure on the inputs: they fix n− a
bits of u and hope that a outputs bits of φ(u) will be independent of the
remaining a bits of u. The parameter a must satisfy a·(2a−1) ≤ n−a, and
Isobe and Shibutani [IS17] only give concrete parameters for some values
of n. Asymptotically, the maximal value of a can be found by solving
a·(2a−1) = n−a; since a≪ n and 1 ≪ 2a, we have a ≈W (n ln 2)/ ln 2 ≈
logn − log logn, using the Lambert W function (remember that ln and
log are the natural and base 2 logarithms, respectively).

They also describe a low data-complexity variant of the attack where
the starting point is dynamically chosen so that a+ d bits of the plaintext
are fixed. This reduces the data complexity to 2n−d−a, while the time
complexity is still 2n−a. The parameters are more constrained and must
satisfy a·2a+d ≤ n−a. If we want to achieve a data complexity of 2λn for a
constant 0 < λ < 1, we can set d = n−λn, and a = log λ+logn− log logn.
This gives a time complexity of 2n logn/λn.

Finally, they give a time-optimized attack where b = a+ c output bits
of f are independent of kf (instead of just a). This reduces the number
of queries and memory needed for the matching to 2n−b, but the attack
still requires 2n−a memory accesses and chosen plaintext. The parameters
must satisfy b · 2a + b − a ≤ n − b, but the authors only give concrete
values for some choices of n, and no asymptotic analysis. However, we can
observe that we must have b · 2a ≤ n; in particular, if we want an attack
with an advantage that is not asymptotically bounded, we need to have
a approaching infinity and therefore b/n approaching zero (this attack
cannot reduce the memory to 2λn with λ < 1). In particular, the optimal
parameters satisfy b · 2a + b− a = n− b, with b≪ n and a≪ 2a, hence
b · 2a ≈ n. Therefore, we have a complexity of roughly 2n−b in queries and
memory, and b2n/n in time and data, with logn ≤ b≪ n.

All those attacks are summarized in Tables 8.1 and 8.2. We point out
that the complexity reported in [IS17] are lower than listed here, because
the authors assume that a memory access to a large table is significantly
cheaper than the evaluation of the public permutations Pi. Given that a
public permutation can obviously be implemented with a table lookup if
memory is fast and cheap, we assume that a memory access to a table of
size roughly 2n cannot be faster than the evaluation of the Pi permutations.

218 Chapter 8. Low-Memory Attack on 2-round Even-Mansour

R
ef

D
ata

Q
ueries

T
im

e
M
em

ory
C
om

m
ent

[N
W

W
14]K

P
2
nln

n
/
n

2
nln

n
/n

2
nln

n
/n

2
nln

n
/n

M
ulti-collisions

[D
in+

13]
C
P

2
n √

ln
n
/
n

2
n √

ln
n
/n

2
n √

ln
n
/n

2
n √

ln
n
/n

D
iff.

m
-c

(indep.
keys)

[D
in+

13]
K
P

2
λ
n

2
nln

n
/n

2
nln

n
/n

2
nln

n
/n

M
ulti-collisions

[D
in+

16]
C
P

2
n
/
λ
n

2
n
/λ
n

2
n
/λ
n

2
λ
n

Linear
algebra

[IS17]
C
P

2
nln

n
/
n

2
nln

n
/n

2
nln

n
/n

2
nln

n
/n

M
itM

C
P

2
λ
n

2
nln

n
/n

2
nln

n
/n

2
nln

n
/n

M
itM

C
P

2
n
β
/
n

2
n
/2
β

2
n
β
/n

2
n
/2
β

M
itM

S.8.3.1
K
P
n

2
n
/ √

n
2
n
/ √

n
2
n
/ √

n
3X

O
R

[Jou09]
S.8.3.2

K
P

2
d

2
n−

d
/2

2
n
/n

2
n−

d
/2

3X
O
R

[BD
F18]

S.8.3.2
K
P

2
d

2
n−

d
/2

2
nln

2
n
/n

2
2
n−

d
/2

3X
O
R

[BD
P08]

S.8.3.3
K
P
λ
n

2
n
/λ
n

2
n
/λ
n

2
λ
n

Low
D
ata

Filter

Table
8.1:

C
om

parison
ofattacks

against
2EM

.
A
sym

ptotic
com

plexity,up
to

constants.
“D

ata”
denotes

encryption
queries,w

hile
“Q

ueries”
denotes

calls
to

the
public

perm
utations

P
i .

0
<
λ
<

1;log
n
≤
β
≪

n;K
P:K

now
n
plaintext;C

P:C
hosen

plaintext.

8.1. Previous Results 219

R
ef

D
at
a

Q
ue

rie
s
T
im

e
M
em

or
y
C
om

m
en
t

[N
W

W
14

]K
P

258
.7

260
.5

260
.9

260
M
ul
ti-

co
lli
sio

ns
[D

in
+
13

]
K
P

245
260

.7
260

.7
260

M
ul
ti-

co
lli
sio

ns
[D

in
+
16

]
C
P

260
259

260
.6

216
Li
ne

ar
al
ge
br
a

[IS
17

]
C
P

260
260

261
.3

260
M
itM

C
P

28
262

262
.6

262
M
itM

C
P

261
257

261
.7

258
M
itM

Se
c.

8.
3.
1

K
P

26
261

262
261

3X
O
R

Se
c.

8.
3.
2

K
P

242
243

258
242

C
la
m
pi
ng

+
3X

O
R

[B
D
F1

8]
,b

al
.
ca
se

K
P

212
258

259
258

op
tim

.
da

ta
Se

c.
8.
3.
2

C
P

235
257

258
.6

235
op

tim
.
m
em

or
y
&

sw
ap

E
↔
P

1
Se

c.
8.
3.
2

K
P

242
243

N
.A

.
N
.A

.
C
la
m
pi
ng

+
3X

O
R

[B
D
P0

8]
,b

al
.
ca
se

Se
c.

8.
3.
3

K
P

25
259

260
232

Lo
w

D
at
a
Fi
lte

r
λ

=
1/

2
K
P

24
260

261
216

λ
=

1/
4

Ta
bl
e
8.
2:

C
om

pa
ris

on
of

at
ta
ck
s
ag

ai
ns
t
2E

M
w
ith

n
=

64
.
T
he

co
m
pl
ex
ity

un
it

is
on

e
ev
al
ua

tio
n
of

th
e

ci
ph

er
;w

e
as
su
m
e
th
at

co
m
pu

tin
g
P

1
or
P

2
co
st
s

1 /
2,
an

d
th
at

a
m
em

or
y
ac
ce
ss

to
a
la
rg
e
ta
bl
e
al
so

co
st
s

1 /
2.

T
he

tim
e
co
m
pl
ex
ity

al
so

in
cl
ud

es
th
e
tim

e
ne

ce
ss
ar
y
to

ge
ne

ra
te

th
e
da

ta
.

220 Chapter 8. Low-Memory Attack on 2-round Even-Mansour

Practical considerations. In the computational setting, the data and
memory complexity are important considerations. In particular, an attack
with time complexity 2n/n is unlikely to be more efficient than a brute-
force attack if it requires in addition almost 2n data, or almost 2n memory.
As mentioned above, some previous attacks can reduce the data complexity
to 2λn for an arbitrary λ > 0, and the attack from [Din+16, Section 4.2]
can reduce the memory to 2λn, but so far none of them can simultaneously
reduce the data and memory complexity below 2λn for λ < 1.

Besides, multi-collision based attacks can use a sequential memory
(such as a hard drive) and sort values to locate collisions whereas the Meet-
in-the-Middle attacks require random access memory, with Θ(2n lnn/n)
accesses to a table of size Θ(2n lnn/n).

On the other hand, the linear algebra techniques we use in our attacks
will require algorithmic tricks very close to what was done by Bouillaguet,
Delaplace and Fouque [BDF18] for the 3-XOR problem. In particular, the
values we deal with are sufficiently random to be sorted linearly and the
right matrix multiplication LM in a GF(2) field for an exponentially long
matrix L can be computed with a number of operations linear in the size
of L. Many constant time optimizations are therefore omitted in this work
which justifies that performing indepently a right multiplication, sorting
and merging two big lists L1 and L2 take time and space O(|L1|+ |L2|).
This is consistent with previous cryptanalysis on 2EM.

For the cost of queries to the oracles E, P1 and P2 we mainly follow
the convention established by Dinur et al. [Din+16] which states that an
online query to E costs 1 unit of computation implying that P1 and P2
cost 1/2. The main advantage is that it makes it easy to compare with
the brute-force solution whose complexity is O(2n) computations. The
disadvantage is that it makes it hard to combine with the computations
used for simple operations: an evaluation of a cryptographically secure
permutation should cost more than a XOR operation.

We give concrete complexity values for n = 64 in Table 8.2 with
the assumption that a combination of some linear time operations does
not exceed the cost of computing a permutation that is 1/2 time unit.
Concretely, iteratively right multiplying, sorting and merging two lists L1,
L2 costs |L1|/2 + |L2|/2. We believe this makes an honest comparison
with previous works though they may use other assumptions.

8.2. Security Reductions 221

x P1 P2 E(x)

γ0(k) γ1(k) γ2(k)

Figure 8.2: Linear key-schedule 2-round Even-Mansour.

8.2 Security Reductions
We start with some general observations about the security of iterated
Even-Mansour schemes. In particular, we show that we can focus on the
EMIP construction without loss of generality, how to reduce the security
of this construction to an instance of the 3-XOR problem, and how to
reorder the oracles to achieve many trade-offs.

Some previous works already implicitly took advantage of such reduc-
tions. For example Isobe and Shibutani [IS17] realised that their recent
attack on EMIP is also applicable to EMSP and Dinur et al. [Din+16]
realised that they could reorder the oracles for their cryptanalysis of re-
duced round LED. We formally show here that these tricks are in fact real
security reductions and do not depend on the approach used.

8.2.1 Taking care of Linear Key Schedules
Several variants of single key 2-round Even-Masour were studied in the
literature. The most general form uses two independent permutations and
a fixed key schedule (see Figure 8.2):

Ek(x) = P2
(
P1(x⊕ γ0(k))⊕ γ1(k)

)⊕ γ2(k).

Following the analysis of [Che+14], the construction is secure when the key
schedules γi(·) are public linear bijective n to n bits functions. Actually,
when the γi(·)’s are such a public linear bijective functions, the security of
this construction reduce to the single key EMIP construction without any
key schedule.

The main trick is to rewrite the addition of the subkey γi(k) as the
application of the inverse γ−1

i (·), the addition of k and the application of
the forward γi(·):

x⊕ γi(k) = γi
(
γ−1
i (x⊕ γi(k))

)

= γi
(
γ−1
i (x)⊕ k)

222 Chapter 8. Low-Memory Attack on 2-round Even-Mansour

x γ−1
0 γ0 P1 γ−1

1 γ1 P2 γ−1
2 γ2 E(x)

k k k

P ′1 P ′2γ−1
0 (x) γ−1

2
(
E(x)

)

= E′
(
γ−1

0 (x)
)

k k k

Figure 8.3: Reduction of linear key schedule 2EM to EMIP.

which works thanks to γi(·) being linear. Then, we define E′, P ′1, P ′2 as
follows:

P ′1(x) = γ−1
1
(
P1(γ0(x))

)

P ′2(x) = γ−1
2
(
P2(γ1(x))

)

E′(x) = γ−1
2
(
E(γ0(x))

)

Thanks to the previous relation, E′, P ′1, P ′2 is actually an instance of EMIP
with the same key k (see Figure 8.3):

E′(x) = P ′2
(
P ′1(x⊕ k)⊕ k)⊕ k.

Therefore, any attack against EMIP can be used on E′, P ′1, P ′2, and break
the initial construction with a linear key schedule. In particular, a key-
recovery attack against EMIP will recover the key of the more general
scheme of 2EM.

In the following we only consider the EMIP variant without a key
schedule, but thanks to this reduction our attacks can be applied to many
other 2EM variants, including the EMSP construction of [Che+14].

8.2.2 From a Key Recovery to a 3-XOR Problem
Instead of directly focusing on a key-recovery attack, we focus on locating
a triplet of values x, y, z such that the encryption of x is evaluated with
permutation call P1(y) and P2(z). Formally, we say that x, y, z is a right
triplet when y = x⊕ k and z = P1(y)⊕ k. A right triplet corresponds to a
sequence of intermediate values in the Even-Mansour encryption, as shown

8.2. Security Reductions 223

x y P1 P1(y) z P2 P2(z) E(x)

k k k

Figure 8.4: A right (x, y, z) triplet forms a path of EMIP style 2-round
Even-Mansour.

in Figure 8.4:
(
x, y = x⊕k, P1(y), z = P1(y)⊕k, P2(z), E(x) = P2(z)⊕k);

we call this sequence a path.
Since the permutations P1 and P2 are public, it is easy to compute a

path given the key. Recovering the key from a path is also easy (we have
k = x ⊕ y), but it is hard to identify a right triplet corresponding to a
path without the key. By definition, a triplet is right when it follows the
relation R defined as:

R(x, y, z) :=

x⊕ y = k

P1(y)⊕ z = k

P2(z)⊕ E(x) = k

(8.1)

⇒
{
x⊕ y = P1(y)⊕ z
x⊕ y = P2(z)⊕ E(x)

(8.2)

Notice that we can’t directly observe (8.1) since we don’t know k, but we
can easily verify the implied relation (8.2).

We claim that if one takes a random triplet and observes that it respects
(8.2), then it is a right triplet with good probability. Indeed, there are
2n possible paths (one for every possible input x) implying as many right
triplets and 23n possible triplet combinations; thus a random triplet will
be right with probability 2−2n. Since (8.2) is a 2n-bit relation, a random
but false triplet respects (8.2) also with probability 2−2n. Therefore, we
can expect roughly as many right triplets than false triplets that respect
(8.2), implying that the first one we find is right with probability Ω(1).

So from now on and for simplicity we focus on filtering and recovering
a triplet that simply respects (8.2). This means that our algorithms fails
to recover the key on some instances, but they have a constant (non-
zero) probability of success. In order to improve the success probability
arbitrarily close to one, it is easy to test the triplets and continue the
attack until we find a right triplet (alternatively, the whole attack can just
be repeated).

224 Chapter 8. Low-Memory Attack on 2-round Even-Mansour

In order to look for a triplet, the condition (8.2) is rewritten as:
{(
x

)⊕ (y ⊕ P1(y)
)⊕ (z)

= 0
(
x⊕ E(x)

)⊕ (y)⊕ (P2(z)
)

= 0

Therefore, finding a triplet satisfying (8.2) is equivalent to solving an
instance of the 3-XOR problem with the functions defined as:

f0(x) := x ‖ x⊕ E(x) (8.3)
f1(y) := y ⊕ P1(y) ‖ y
f2(z) := z ‖ P2(z)

Notice that the number of evaluations of f0(x) is the data complexity D
as it requires to query the keyed construction. Conversely, the sum of the
number of evaluations of f1(y) and f2(z) is the query complexity Q which
can be seen as offline computations in the computational setting.

8.2.3 Permuting Oracle Calls
In the random 3-XOR problem the three functions behave essentially in
the same way; if one has a distinguisher using a few evaluations f0 and
lots of evaluations of f1 and f2, then the same distinguisher can aritraryly
decide to use lots of queries to f0 and f1 and use fewer f2 queries (just by
permuting the functions). In our case, a natural choice is to minimize the
number of evaluations of f0 in order to optimize for the data complexity.
This ensures that we have D ≤ Q. While this is easy to do with a 3-XOR
approach, it is not obvious whether this can be done in general for a 2EM
key recovery. Nevertheless, this is indeed the case: in the sprp security
distinguisher, an attacker is free to permute the functions Ek, P1 and P2
and, doing so, minimize the amount of online queries.

Consider an EMIP instance Ek(x) = k ⊕ P2(k ⊕ P1(k ⊕ x)) of 2EM
based on P1, P2 in the sprp security game, so that we have forward oracle
access to Ek, P1, P2, and backward oracle access E−1, P−1

1 , P−1
2 . We use

a black-box distinguisher A that distinguishes the construction Ek[P1, P2]
from a third independent random permutation P :

Advsprp
2EM(A) = Pr(AEk,E−1

k
,P1,P

−1
1 ,P2,P

−1
2 → 1)

−Pr(AP,P−1,P1,P
−1
1 ,P2,P

−1
2 → 1)

8.3. 2EM Cryptanalysis 225

where P , P1, P2 are independent random permutations, Ek answer query
x with k ⊕ P2(k ⊕ P1(k ⊕ x)), and k $←−− {0, 1}n.
We assume AEk,E−1

k
,P1,P

−1
1 ,P2,P

−1
2 uses α calls to Ek/E−1

k (online queries),
β calls to P1/P−1

1 and γ calls to P2/P−1
2 and outputs its bit decision.

The trick is that we can rewrite the 2EM instance Ek, P1, P2, by
permuting the oracles. For instance, we know that P1(x) = k ⊕ P−1

2 (k ⊕
Ek(k ⊕ x)) (directly from the definition of Ek), which gives the following
2EM instance parametrized by the same secret key k:

E′k = P1 P ′1 = Ek P ′2 = P−1
2 .

Therefore, we can use the same distinguisher but permuting the oracles
as AP1,P

−1
1 ,Ek,E

−1
k
,P−1

2 ,P2 using β online queries with the same advantage
that is:

Advsprp
2EM(A) = Pr(AP1,P

−1
1 ,Ek,E

−1
k
,P−1

2 ,P2 → 1)

−Pr(AP1,P
−1
1 ,P,P−1,P−1

2 ,P2 → 1)

as Ek and P−1
2 will behave exactly like independent random permutations

and P1 like the keyed construction with the random key k. Similarly,
we can write P2(x) = k ⊕Ek(k ⊕ P−1

1 (k ⊕ x)); therefore, we can use the
distinguisher as AP2,P

−1
2 ,P−1

1 ,P1,Ek,E
−1
k with the same advantage using γ

online queries.
It is easy to see that the result also applies for key recovery attacks.

8.3 2EM Cryptanalysis
Following the security reductions shown in Section 8.2, we focus on crypt-
analysis of the EMIP variant of 2EM by looking for a triplet that is a
solution to the 3-XOR problem with functions f0, f1, f2 as described in
Equation (8.3).

3-XOR Algorithms. Let us first recall the different known techniques
to solve the 3-XOR problem for w-bit words we’ve seen in Section 3.2.2.
There are three main techniques, the one using multi-collisions by Nikolic
and Sasaki [NS15] running in time and memory O(2w/2/

√
w/ ln(w)

)
and

performing as many queries to all three functions. The techniques ex-
ploiting linear algebra by Joux [Jou09] that reaches a time and memory

226 Chapter 8. Low-Memory Attack on 2-round Even-Mansour

complexity of O(2w/2/
√
w) and as many queries to f1 and f2 but with only

w/2 evaluations of f0. The generalization of this technique by Bouillaguet,
Delaplace and Fouque [BDF18] builds lists L0, L1, L2 from the respective
functions so that |L0| · |L1| · |L2| = 2w and solves the 3-XOR problem
with a time complexity of O(|L0| · (|L1| + |L2|)/w). The last algorithm
comes from Baran, Demaine and Pǎtraşcu [BDP08] initially for the 3-SUM
problem and it was adapted to the 3-XOR by Bouillaguet et al. [BDF18].
It has an asymptotic time complexity of O(2w/2 · ln2(w)/w2) but relies on
heavy precomputations making it impracticable for most w.

Notations. The ith element of a list L is denoted as L[i], a list L of
w-bit words is often seen as a |L|×w matrix with bit coefficients in GF(2)
where the w bits of the element L[i] form the ith row. Moreover, 0a×b is
the a× b zero GF(2) matrix and Ia is the a× a identity GF(2) matrix.

8.3.1 Direct Applications
We start to describe a key recovery algorithm by directly using the linear
algebra techniques of Joux [Jou09]. In our case, w = 2n so the attack has
a time and memory complexity of O(2n/

√
n).

See Algorithm 8.1 for a description of the attack. Step 7 implicitly
requires that L0 contains n linearly independent 2n-bit rows which is true
with very high probability. As we only need to observe n input/output
pairs of the keyed construction, this is a known plaintext attack with a
data complexity of only D = n.

The complexity analysis follows the one by Joux [Jou09] and so we have
a constant probability of success with a query complexity Q = 2n/

√
n

which is also the memory complexity. As we assume that looking for
partial collision also costs Q operation, the total time complexity is T =
2Q = 2 · 2n/√n. Computations of the permutations in Steps 4 and 5 can
be done as precomputations.

Using Multi-collisions. If, instead, we use the multi-collision based
approach of [NS15] to solve the 3-XOR problem with w = 2n, we get a
cryptanalysis of 2EM running in time and memory 2n/

√
n/ ln(n). In fact,

with a simple optimization to the algorithm we can get to a complexity of
2n · lnn/n as the attack will be equivalent to the one of [NWW14].

8.3. 2EM Cryptanalysis 227

Algorithm 8.1 Key recovery on 2EM using linear algebra [Jou09].
1: input: E,P1, P2 is EMIP.
2: output: the key k.
3: procedure AttackEMJoux(E(·), P1(·), P2(·))
4: L1 ← {(y ⊕ P1(y)) ‖ y : y ∈ Y} . For a random set Y of size Q.
5: L2 ← {z ‖ P2(z) : z ∈ Z} . For a random set Z of size Q.
6: L0 ← {x ‖ x⊕ E(x) : x ∈ X} . For an obersvable set X of size n.

. See sets Li as |Li| × 2n matrices in GF(2).
7: Find M s.t. L0M = [0n×n ‖ In].a
8: L′0 ← L0M
9: L′1 ← L1M

10: L′2 ← L2M
11: for all (i, j) s.t. bL′1[i]cn = bL′2[j]cn do . n-bit partial collisions.
12: if L′1[i]⊕ L′2[j] ∈ L′0 then
13: Let h such that L′1[i]⊕ L′2[j] = L′0[h].
14: return bL0[h]cn ⊕ dL1[i]en . Corresponds to x⊕ y.
15: return ∅ . No solution found.

aWe write L0 =
[
A B

]
. If B is non-singular, we can use M =

[
I 0

B−1A B−1

]

Indeed, looking for an n-bit partial multi-collision in f1(y) = y⊕P1(y)‖
y is the same as looking for a multi-collision in φ(u) = u ⊕ P1(u) (it is
impossible to have a multi-collision on the input y). We expect to find
a value v = y ⊕ P1(y) appearing for n/ lnn different values y. However,
in our case, for every observed f0(x) = x ‖ x ⊕ E(x) we can compute
f2(x⊕ v) = x⊕ v ‖ P2(x⊕ v) by setting z = x⊕ v which ensures that the
triplet match on the first part.

Choosing z is something we cannot do in the random 3-XOR but is
possible in our case. As a result, for every plaintext/ciphertext pairs
observed we can build n/ lnn triplets that sum to 0 on the first n-bit
half and one of them is a solution with probability n/ lnn/2n. Hence,
we expect a data and query complexity of 2n · lnn/n. Interestingly, the
strategy and the complexity correspond to [NWW14] even though they
didn’t use the 3-XOR problem to describe their attack.

228 Chapter 8. Low-Memory Attack on 2-round Even-Mansour

Algorithm 8.2 Key recovery on 2EM using multicollision techniques for
3-XOR [NS15] equivalent to [NWW14].
1: input: E,P1, P2 is EMIP.
2: output: the key k.
3: procedure AttackEMJoux(E(·), P1(·), P2(·))
4: v ← argmaxv |{y : y ⊕ P1(y) = v}| . Any multi-collision algorithm.
5: L1 ← {v ‖ y : y ⊕ P1(y) = v}

6: L0 ← {x ‖ x⊕ E(x) : x ∈ X} . For an obersvable set X of size n.
7: for all e0 ∈ L0 do
8: e2 ← x⊕ v ‖ P2(x⊕ v) . Fix z = x⊕ v.
9: if e0 ⊕ e2 ∈ L1 then

10: e1 ← e0 ⊕ e2
11: return be0cn ⊕ de1en . Corresponds to x⊕ y.
12: return ∅ . No solution found.

8.3.2 Using Black-box 3-XOR Algorithms
As seen with the multi-collision attack, the 3-XOR problem (Equation 8.3)
we wish to solve is strictly easier than a random 3-XOR problem as we
can arbitrarily choose part of the values. Typically, the inputs to the
permutations y and z are under our control and, in a chosen plaintext
attack, also x. Thus, a variant of the clamping trick of Bernstein [Ber07]
can be used to simplify the 3-XOR instance before using generic 3-XOR
solvers.

Let us assume a known plaintext attack so that we can’t choose the x
values. We first align the values we can control, so we equivalently rewrite
the Equation 8.3 as:

f0(x) := x ‖ x⊕ E(x) (8.4)
f1(y) := y ⊕ P1(y) ‖ y
f2(z′) := P−1

2 (z′) ‖ z′

As we set the data complexity D = 2d, we require at least D · Q2 = 2n
to have a solution and the query complexity is Q = 2n−d/2. We force
the equality by choosing y and z′ such that they end by d/2 zeros and,
additionally, filter the known plaintext/ciphertext pairs to keep them only
if (x⊕E(x)) also ends by d/2 zeros. This is a d/2-bit filter on 2d elements,
so we expect L0 to contain 2d/2 elements.

8.3. 2EM Cryptanalysis 229

This works as a clamping strategy and effectively reduces the bit size
of the elements from 2n to 2n− d/2. We then apply any 3-XOR solver
we like on the lists L0, L1, L2 with word’s size w = 2n − d/2 and lists
size 2d/2, 2n−d/2, 2n−d/2 respectively (notice that the lists size multiply to
22n−d/2 = 2w as expected). We describe this in Algorithm 8.3. There is
no obvious way to further clamp down the data using chosen plaintext or
even chosen ciphertext.

Algorithm 8.3 Key recovery on 2EM using black-box solver.
1: input: E,P1, P2 is EMIP, data complexity is 2d and Solver3XOR

is a 3-XOR solver.
2: output: the key k.
3: procedure ClampSolveEM(E(·), P1(·), P2(·), d,Solver3XOR)
4: L1 ← {(u ‖ 0d/2 ⊕ P1(u ‖ 0d/2)) ‖ u : u ∈ {0, 1}n−d/2}
5: L2 ← {P−1

2 (u ‖ 0d/2) ‖ u : u ∈ {0, 1}n−d/2}
6: Let X be an observable set of size 2d.
7: L0 ← ∅
8: for all x ∈ X do
9: if dx⊕ E(x)ed/2 ?= 0 then

10: L0 ← L0 ∪ {x ‖ bx⊕ E(x)cn−d/2}
11: (e0, e1, e2)← Solver3XOR(L0, L1, L2)

. Black-box 3XOR solver with w = 2n− d/2.
12: return be0cn ⊕ (de1en−d/2 ‖ 0d/2) . Corresponds to x⊕ y.

Using Known Solvers. For instance let us use the algorithm of Bouil-
laguet, Delaplace and Fouque [BDF18] using linear algebra to solve the
3-XOR with list of arbitrary sizes in O(|L0| · (|L1| + |L2|)/w) using no
more memory than the lists require. In our case this yields a time com-
plexity of O(2n/(2n − d/2)) matching the best known cryptanalysis of
2EM. The memory needed to store L1 and L2 is O(2n−d/2), and the total
time complexity stays O(2n/n) for all values of D as long as the lists size
does not exceed O(2n/n), that is as long as D ≥ n2. Therefore, a data
optimized attack in this setting can set the data complexity to as low as
D = n2.

In the balanced case D = Q = 22n/3, the attack is optimal in the
information theoretic model [Che+14] and both the data and the memory
are significantly below 2n while having a time complexity competitive

230 Chapter 8. Low-Memory Attack on 2-round Even-Mansour

with the best known cryptanalysis. Notice also that evaluations of the
cipher and permutations do not dominate the time complexity. Thus, the
attack becomes even more competitive if we assume an evaluation of a
permutation is much more costly than n-bit words operations and memory
access to big lists as it was done in previous works [IS17].

To optimize the memory complexity, we need to choose a fairly high
value d. The data complexity D = 2d may become problematic, so we
simply swap the number of query to E with the number of offline query
to P1 as shown in Section 8.2.3. This effectively swaps f0 and f1. Thus,
we can have a data and memory complexity of 2n−d/2, a query complexity
Q = 2n−d/2−1 + 2d−1 while the time is still O(2n/n). As we need data
with special values of x, this becomes a chosen plaintext attack. Examples
of concrete trade-offs for n = 64 using [BDF18] algorithm are given in
Table 8.2.

Another interesting solver using arbitrary sized lists is the BDP Algo-
rithm [BDP08] which runs in O

(
|L0| · (|L1|+ |L2|) · ln2(w)/w2

)
and has

an asymptotic memory of the size of the lists. In our case, this yields the
best asymptotic complexity known so far T = O(2n · ln2(n)/n2). However,
this approach is hardly relevant for any realistic size of n. Indeed, following
the analysis of [BDF18] the complexity of the BDP algorithm is domi-
nated by |L0|.|L1|/m2 where m ' n/(112 ln(n)). Therefore, we expect
this approach to be competitive when m2 > n that implies n > 2.75× 106,
an absurdly big state size.

8.3.3 Using Very Low Data
The previous algorithm can reach a low data complexity for a small
parameter d and a relatively low memory complexity close to 2n/2 for large
d. Having both the data and memory complexity close to 2n/2 requires a
chosen plaintext attack.

In this section we show a cryptanalysis with an online or data com-
plexity D < n and a memory complexity of 2D possibly below 2n/2.
Concretely, it uses a fraction 0 < λ < 1 of n that is D = λn known
plaintext/ciphertext pairs along with 2λn memory and a time and query
complexity T = Q = O(2n/λn). Notice that we have D · T = 2n and
D · T 2 = O(22n/λn) which makes for a better trade-off than the best
information theoretic attack known so far for low values of D. In fact, it is

8.3. 2EM Cryptanalysis 231

information theoretically optimal since it matches the D ·T ≥ 2n bound of
the original Even-Mansour scheme which obviously applies for two rounds.

Algorithm 8.4 Key recovery on 2EM for low data.
1: input: E,P1, P2 is EMIP, data complexity is λn with 0 < λ ≤

W (2n ln 2)
n ln 2 .

2: output: the key k.
3: procedure LowDataEM(E(·), P1(·), P2(·), λ)
4: L0 ← {x ‖ x⊕E(x) : x ∈ X} . For an obersvable set X of size λn.

5: [A︸︷︷︸
n

‖ B︸︷︷︸
n−λn
‖ C︸︷︷︸

λn

]← L0 . See L0 as three concatenated λn-line

matrices.
6: Ms ←

[
I 0

C−1B C−1

]

7: M−1
s ←

[
I 0
B C

]

8: M ←

I 0 0
0 I 0

C−1A C−1B C−1

9: L′0 ← L0M . Notice that L′0 = [0︸︷︷︸
n

‖ 0︸︷︷︸
n−λn
‖ I︸︷︷︸

λn

].

10: for all α ∈ {0, 1}n−λn do
11: V ← {[α ‖ u] ·M−1

s : u ∈ {0, 1}λn}
12: L1 ← {v ⊕ P1

(
v
) ‖ v : v ∈ V}

13: L2 ← {P−1
2 (v) ‖ v : v ∈ V}

14: L′1 ← L1M
15: L′2 ← L2M . Note that e[n:2n−λn] = α ∀e ∈ L′1 ∪ L′2.
16: for all (i, j) s.t. bL′1[i]cn = bL′2[j]cn do . n-bit partial

collisions.
17: if L′1[i]⊕ L′2[j] ∈ L′0 then
18: Let h such that L′1[i]⊕ L′2[j] = L′0[h].
19: return bL0[h]cn ⊕ dL1[i]en . Corresponds to x⊕ y.

We describe the attack in Algorithm 8.4. The broad strategy is again
to look for a solution of the 3-XOR problem with functions as defined in
Equation (8.4). However, since we have very few data we perform Gaussian
elimination on L0 to get words starting with 2n− λn zeros. In fact, we

232 Chapter 8. Low-Memory Attack on 2-round Even-Mansour

define a small n× n transformation matrix Ms that only deals with the
right-hand side of L0. Decompose L0 as L0 = [A︸︷︷︸

n

‖ B︸︷︷︸
n−λn
‖ C︸︷︷︸

λn

] then the

small transformation matrix is such that [B ‖ C]Ms = [0λn×(n−λn) ‖ Iλn].
And the big 2n×n transformation matrix M deals with the whole L0 and
is defined as:

M =

I 0(
Ms

[
0
A

])
Ms

After we fix an (n− λn)-bit value α, the small transformation matrix
is used to compute the y and z′ values for L1 and L2. In Steps 12 and
13 of Algorithm 8.4 we choose y and z′ to be of the form [α ‖ u] ·M−1

s

for a fixed α and all λn-bit values u. That way, when applying M to get
the transformed problem, the right-hand side values of L′1 and L′2 revert
to the form [α ‖ u]. Let h1(u) = [α ‖ u]M−1

s ⊕ P1([α ‖ u]M−1
s)⊕ uA and

h2(u) = P−1
2 ([α ‖ u]M−1

s)⊕ uA, the three transformed lists are thus:

L′0 = [0λn×n ‖ 0λn×n−λn ‖ Iλn]
L′1 = {h1(u) ‖ α ‖ u : ∀u ∈ {0, 1}λn}
L′2 = {h2(u) ‖ α ‖ u : ∀u ∈ {0, 1}λn}

This forces an (n−λn)-bit collision at the beginning of the right-hand side
where the fixed α values will always sum up to match the corresponding
zeros in L′0.

Complexity Analysis. In Step 4 we require D = λn known plain-
text/ciphertext pairs with makes for the data complexity. To build Ms

we implicitly assume that the matrix C is invertible which is true with
constant probability for a random square matrix.

In each loop a new value for α is chosen and new lists L1, L2 of size 2λn
are built. A solution exists if one pair among the 22λn pairs XORs to one
of the λn values of L0. As the lists are built so that it forces an (n−λn)-bit
collision, a pair will match a value in L0 with probability λn · 2−(n+λn).
Thus, each loop yields a solution with probability 22λn · λn · 2−(n+λn).
Therefore, Algorithm 8.4 has a constant probability of success after 2n−λn

λn
iterations.

The memory complexity is dominated by storing the lists L1 and L2
of size 2λn. As the algorithm loops over values of α those lists are reused
so that the total memory complexity is indeed O(2λn).

8.3. 2EM Cryptanalysis 233

The expected query complexity is simply 2λn times the expected
number of loops that is

Q = 2λn · 2n−λn
λn

= 2n
λn

.

The time complexity is essentially the query complexity. Indeed,
computations of the matrices Ms and M are polynomial in n and so
negligible while building the lists L1 and L2, computing L′1 and L′2 and
looking for collisions are linear in the number of elements so it takes O(2λn)
time per loop. Therefore, T = O(2n

λn).
The reasoning to derive the query and time complexity implicitly

assumes that one needs at least one loop to finish the algorithm as it
makes no sense to finish after half-a-round. Therefore, those trade-offs
depending on λ are constraints by:

2n−λn
λn

≥ 1⇔ λ ≤ W (2n ln 2)
n ln 2 = 1− ln(n ln 2)

n ln 2 + o(1)

using the Lambert W function.

Discussion. Algorithm 8.4 thus describes a known plaintext attack
using only λn pairs and O(2λn) memory while being on par with the time
complexity of the best known cryptanalysis of 2EM.

In the information theoretic setting, the best distinguisher by Gaži has
a trade-off DQ2 = 22n [Gaž13]. Our attack has a trade-off DQ2 = 22n/λn
thus being the best distinguisher as well as the best key recovery for very
low data D. In fact, the proof of security of 2EM by Chen et al. [Che+14]
says nothing for low data range D ≤ 2n/4. The best proof of security of
2EM in this case is inherited from the original Even-Mansour proof which
state D · T ≥ 2n. Therefore, Algorithm 8.4, where D · T = 2n, shows the
tightness of the original proof for low data range 1 ≤ D ≤ W (2n ln 2)

ln 2 '
n− ln(n ln 2)

ln 2 .

Overall, this cryptanalysis can be seen as an advanced version of the
attack by Dinur et al.using linear algebra [Din+16, Section 4.2]. However,
there are three main differences that make this attack an improvement
over the previous one. First, we use the symmetry between E,P1, P2 (as
shown in Section 8.2.3) to reduce the data complexity from 2n/λn to
λn. Then, the use of the big transformation matrix M , that essentially

234 Chapter 8. Low-Memory Attack on 2-round Even-Mansour

x0 x1 P1 P1(x1) x2 P2 P2(x2) ... xr Pr Pr(xr) E(x0)

k k k

Figure 8.5: A right (x0, x1, ..., xr) tuple forms a path of r-round Even-
Mansour.

performs a Gaussian elimination over the whole 2n-bit words of L0, makes
the attack works with known plaintexts while Dinur et al. required chosen
plaintexts (even after applying the symmetry trick). Finally, the resulting
n-bit filter of Step 16 allows for a larger acceptable range of λ than their
attack that required λ < 1/3 to limit the number of partial collisions.

8.4 Going Further

8.4.1 Extending to More than 2 Rounds
The idea of the attack can also be used for longer iteration of Even-
Mansour. In general, a single key r-round Even-Mansour key recovery
attack can be done by solving a particular r+ 1-XOR problem with words
of size rn. While generic solvers won’t be of much help as soon as r ≥ 4,
this elegantly rewrites the known generic distinguisher on rEM shown in
Section 7.1.2, Algorithm 7.3.

Generic Reduction. We follow the same reasoning as in Section 8.2.2
and apply it to r-round Even-Mansour (Figure 8.5) so that we look for an
(r + 1)-tuple (x0, x1, . . . , xr) satisfying the relation R:

R(x0, x1, x2, ..., xr) :=

x0 ⊕ x1 = k

Pi(xi)⊕ xi+1 = k, 1 ≤ i ≤ r − 1
Pr(xr)⊕ E(x0) = k

(8.5)

=⇒

x0 ⊕ x1 = P1(x1)⊕ x2

Pi(xi)⊕ xi+1 = Pi+1(xi+1)⊕ xi+2, 1 ≤ i ≤ r − 2
Pr−1(xr−1)⊕ xr = Pr(xr)⊕ E(x0)

(8.6)

8.4. Going Further 235

Again, while R cannot be observed it is easy to verify the implied relation
(8.6) which forms an rn-bit filter. Such a filter is enough so that a randomly
(r + 1)-tuple satisfying (8.6) also satisfies R with good probability.

From the filter (8.6) we define r + 1 functions whose words are the
concatenation of r entries of bit-size n:

f0(x0)[hn−n:hn] :=

x0 , h = 1
0 , 2 ≤ h ≤ r − 1
E(x0) , h = r

f1(x1)[hn−n:hn] :=

x1 ⊕ P1(x1) , h = 1
P1(x1) , h = 2
0 , h ≥ 3

fi(xi)[hn−n:hn]
2≤i≤r−1

:=

0 , h ≤ i− 2
xi , h = i− 1
xi ⊕ Pi(xi) , h = i

Pi(xi) , h = i+ 1
0 , h ≥ i+ 2

fr(xr)[hn−n:hn] :=

0 , h ≤ r − 2
xr , h = r − 1
xr ⊕ Pr(xr) , h = r

An example in lists form for r = 5 is given in Table 8.3. This indeed
defines an (r + 1)-XOR problem with rn-bit words even though it is way
more structured than a purely random (r + 1)-XOR problem. Upon its
resolution we make a key guess k ?= x0 ⊕ x1 that succeeds with high
probability.

Generic Solvers. Generic algorithms for the k-XOR problem can typ-
ically be applied to this structured variant to perform a key recovery
attack. The generic query lower-bound seen in Section 3.2 for the random
(r + 1)-XOR problem with words of size w = rn is O(2

rn
r+1). Interestingly

this exactly coincides with the lower bound on the queries for the single
key r-round Even-Mansour scheme proved in [Bog+12]. Generic solvers re-
quiring D = Q = O(2

rn
r+1) are thus optimal with respect to the data/query

complexity trade-off. This results in a distinguisher quite similar to the

236 Chapter 8. Low-Memory Attack on 2-round Even-Mansour

Lists’ construction for a cryptanalysis using the 6-XOR problem.

L0 3 { x0 . . . E(x0)}
L1 3 { x1 ⊕ P1(x1) P1(x1) . . . }

L2 3 { x2 x2 ⊕ P2(x2) P2(x2) . . }

L3 3 { . x3 x3 ⊕ P3(x3) P3(x3) . }

L4 3 { . . x4 x4 ⊕ P4(x4) P4(x4)}
L5 3 { . . . x5 x5 ⊕ P5(x5)}

Table 8.3: Cryptanalysis of 5EM.

one shown in Section 7.1.2, Algorithm 7.3 but, instead of looking for
contradictory paths, it directly looks for a correct path implying a right
tuple and guesses the key.

In the computational setting, Wagner’s algorithm [Wag02] can be
applied to our case with a time complexity of T = O(r · 2

rn
blog(r+1)c+1

)
. For

r = 2 and 3 rounds this becomes O(2n) and in the case of 2EM we could
use more recent techniques to get slightly below O(2n). In the case of
3EM, Dinur et al. [Din+16] described a cryptanalysis with a complexity
of O(2n · lnn

n) using multicollisions and while it is fairly straightforward
to rewrite the same attack in the 4-XOR context it is also non-trivial to
improve this.

On the other hand, the time complexity of the generic solver becomes
significantly higher than 2n for r ≥ 4 while there is no known cryptanalysis
with a time complexity below the 2n brute-force attack. However, as the
number of rounds grows the lists get a strong structure as illustrated in
Table 8.3 with many bits fixed to 0. This opens the question of a dedicated
algorithm with competitive computational time/memory trade-off for
r ≥ 4.

8.4.2 Conclusion
Iterated Even-Mansour schemes are an idealization of SPN networks and
understanding their security is important because many block ciphers,

8.4. Going Further 237

including the AES, are based on this design. In this chapter we focused on
the two-round construction linking it to the 3-XOR problem. Using linear
algebra techniques initially developed for the random 3-XOR problem we
devised novel and competitive key recovery attacks with a particularly
competitive data and memory complexity. In particular, we give the first
attacks where both the data and memory complexity are below O(2n−ε)
for ε > 0, while achieving the best known time complexity of O(2n/n).
Previous attacks with a similar time complexity required either a very large
memory or very large data, making them unlikely to be useful in practice.
We also give an attack that improves the asymptotic time complexity
to O(2n · ln2(n)/n2), although it is not applicable for practical values of
n. Additionally, our low data attack Algorithm 8.4 reaches a trade-off
DT = 2n for small D beating the best known distinguisher and proving
the optimality of the original lower bound given for the single round.

As Algorithm 8.3 is a black-box construction using a 3-XOR solver,
future improvements of the random 3-XOR algorithms will further improve
our cryptanalysis. Note that the converse may not hold: it is not trivial
to derive an improved computational lower bound for 2EM assuming the
3-XOR algorithms cannot be improved.

We also extend this approach to link the r-round Even-Mansour with
the (r+ 1)-XOR problem with a particular structure. However, additional
work is required to deduce competitive key-recovery attacks exploiting the
particular structure.

Chapter9Generic Attack on the
Iterated Tweakable FX

Construction
Contributions brought forward in this chapter were published in CT-RSA
2020 as a sole author [Sib20]. It is a follow-up on the group discussion
initiated in the Asian Symmetric Key Workshop, November 2018.

Introduction
Since they were formalized by Liskov, Rivest and Wagner [LRW11], tweak-
able block ciphers have received a great deal of attention from the scientific
community. However, regular block ciphers such as the DES [DES77] and
the AES [AES] benefit from a longer history of research and their security
is arguably better understood.

Therefore, we naturally ask ourselves how can we build a tweakable
block cipher out of a regular block cipher.

We saw in Section 7.2.2 that simple constructions such as LRW2 and,
by extension, XEX effectively achieve this at a relatively small cost (one
block cipher call, one Galois field multiplication and two XOR operations).
There is though a cost in security. Indeed, even when the underlying block
cipher is assumed to be sprp-secure up to O(2n) queries, the resulting
LRW2 / XEX construction is only s̃prp-secure up to O(2n/2) queries, that
is secure up to the birthday bound.

Therefore, subsequent works aimed at improving this bound and in
particular some works started mixing the tweak with the master key
to derive the effective key for the block cipher. For instance the F̃ [2]
construction by Mennink [Men15] achieves O(2n) s̃prp-security assuming
an ideal underlying block cipher, at the cost of two block cipher calls
and a few XORs as Ẽtk(m) = E2k(t) ⊕ Et⊕k(m ⊕ E2k(t)). And the XHX
construction by Jha, List, Minematsu, Mishra and Nandi [Jha+17] which

239

240 Chapter 9. Generic Attack on Iterated Tweakable FX

m E Ẽk(t,m)

γ(k, t)
λ0(k, t) λ1(k, t)

Figure 9.1: GXHX construction with master key k, an AU function γ(·, ·)
and two independent AXU functions λ0(·, ·), λ1(·, ·). GXHX coincides with
the single round Tweakable FX construction.

achieves O(2(n+κ)/2) s̃prp-security with κ the key size of the block cipher.
The XHX proof is assuming an ideal cipher E, a uniform and almost XOR-
universal function λ(·, ·) and a uniform and almost universal function
γ(·, ·) (we recall all definitions in Definition 9.1) and is computed as
Ẽtk(m) = λ(k, t)⊕ Eγ(k,t)(m⊕ λ(k, t)).

Definition 9.1. Let δ > 0 and a function λ : K × T → Y for non-empty
sets K, T ,Y.

• λ(k, t) is said to be δ-almost uniform if for any t ∈ T and any y ∈ Y ,

Pr
(
k ←$ K : λ(k, t) = y

) ≤ δ .

• λ(k, t) is said to be δ-almost universal (δ-AU) if for any distinct t
and t′ ∈ T ,

Pr
(
k ←$ K : λ(k, t) = λ(k, t′)

) ≤ δ .

• λ(k, t) is said to be δ-almost XOR-universal (δ-AXU) if for any
distinct t and t′ ∈ T and any y ∈ Y,

Pr
(
k ←$ K : λ(k, t)⊕ λ(k, t′) = y

) ≤ δ .

Interestingly, the XHX provable bound shows that we can achieve a
security growing in κ and, in particular, achieve a security above 2n in
the ideal cipher setting. Notice that it is impossible prove beyond 2n
security by only assuming an sprp-secure block cipher. There is a matching
attack on XHX that looks for distinct tweaks t, t′ such that Ẽtk(m) = Ẽt

′
k (m)

which happens as soon as both λ(k, t) = λ(k, t′) and γ(k, t) = γ(k, t′).

241

This is effectively an (n+ κ)-bit collision and thus is expected to require
O(2(n+κ)/2) queries, matching the proof.

This attack can be adapted to the generalized version of XHX, GXHX
(Figure 9.1), where λ(k, t) is replaced by two independent AXU functions
λ0(k, t) and λ1(k, t) as Ẽtk(m) = λ0(k, t) ⊕ Eγ(k,t)(m ⊕ λ1(k, t)). Simply
look for two distinct tweak t, t′ such that Ẽtk(m)⊕ Ẽtk(m⊕ 1) = Ẽt

′
k (m)⊕

Ẽt
′
k (m ⊕ 1) which is independent of λ1(k, ·) and thus happens as soon

as λ0(k, t) = λ0(k, t′) and γ(k, t) = γ(k, t′). GXHX has the same provable
security bound as XHX. However, using Galois Field multiplication as
subkey functions can prevent the attack: it is impossible to find two
different tweaks such that k0 · t = k0 · t′. Nevertheless, the attack on
single FX turns out to have the same complexity as our generic attack on
iterated FX for a single round. Hence, it is always possible to attack GXHX
in O(2(n+κ)/2) queries.

m E E Ẽk(t,m)

λ0(k, t) λ1(k, t)

γ1(k, t) γ2(k, t)

Figure 9.2: The XHX2 construction is the iteration of two independent
XHX with AU functions γ1(·, ·), γ2(·, ·) and AXU functions λ0(·, ·), λ1(·, ·).

Later, Lee and Lee analyzed XHX2 (Figure 9.2), the iteration of two inde-
pendent XHX, and showed that it is s̃prp secure up to min{2 2

3 (n+κ), 2n+κ/2}
queries [LL18]. The tightness of the bound was left as an open question,
and we’ll show that our generic attack for two rounds actually matches
this bound.

This shows that we can improve the security bound by iterating.
Therefore, we ask ourselves what security can be achieved by iterating
this strategy even further.

242 Chapter 9. Generic Attack on Iterated Tweakable FX

9.1 The Generic Tweakable FX Model
The generic iterated tweakable FX model hopes to capture the most
generic strategy to build tweakable block ciphers from block ciphers in
order to give a lower-bound on its security advantage.

9.1.1 Notations
Security in the Ideal Cipher Model. First, let us define the s̃prp
security game we will use. In Section 7.2.2 we’ve seen the definition of
s̃prp, but the fact that we are in the ideal cipher setting also reflects onto
the distinguishing game. Concretely, a distinguishing game in the ideal
cipher setting captures the fact that the attacker can directly query the
underlying block cipher under any key which should behave like a family
of independent and random permutations.

Consider a tweakable block cipher Ẽk(t, ·) defining a family of n to
n-bit permutations indexed by a κ̃-bit master key k and a τ -bit tweak t,
that is Ẽ : {0, 1}κ̃ × {0, 1}τ × {0, 1}n → {0, 1}n. Furthermore, consider
that Ẽk(t, ·) is a construction based on a block cipher E(u, ·) defining a
family of n to n-bit permutations indexed by a κ-bit subkey u, that is
E : {0, 1}κ × {0, 1}n → {0, 1}n. Then, we define the s̃prp advantage of Ẽ
in the ideal cipher model as:

Advs̃prp(A) = Pr(AẼk(·,·),Ẽ−1
k

(·,·),P (·,·),P−1(·,·) → 1)
−Pr(Ap(·,·),p−1(·,·),P (·,·),P−1(·,·) → 1)

where Ẽ is based on the public family of permutations P (·, ·) instead of
E(·, ·), k $←−− {0, 1}κ̃, p(t, ·) and P (u, ·) are independent and random n to
n-bit permutations for all t ∈ {0, 1}τ and u ∈ {0, 1}κ.

When multiple block ciphers are used, the number of oracles simply
increases accordingly to allow the attacker to query each one of them indi-
vidually. This is similar to how we handle security games of schemes based
on a public permutation, in particular for the Even-Mansour construction
studied in Chapter 8.

However, in this chapter we don’t directly consider the s̃prp advantage
of the iterated tweakable FX construction. Instead, we’ll build a key
recovery attack on Ẽk(·, ·) using known plaintexts only. Notice that such
a key recovery is an s̃prp distinguisher as well as a p̃rp distinguisher (no

9.1. The Generic Tweakable FX Model 243

Real World
Ideal World

A Ẽk(·, ·) Ẽ−1
k (·, ·)

A p(·, ·) p−1(·, ·)

P (·, ·) P −1(·, ·)

Figure 9.3: Distinguishing game in the ideal cipher setting for the s̃prp
security of a tweakable block cipher Ẽ where P and p are independent
families of independent random permutations (P (t, ·) and p(t, ·) are two
independent random permutations for all t) and k is a random key value.

m E1 E2 ... Er Ẽk(t,m)

γ1(k, t) γ2(k, t) γr(k, t)
λ0(k, t) λ1(k, t) λ2(k, t) λr(k, t)

Figure 9.4: r-Round Tweakable FX.

backward queries). Following this, queries to the underlying block cipher
E(·, ·) are offline queries (they are computations) and make up for the
query complexity, while queries to Ẽk(·, ·) are online queries and make up
for the data complexity.

The Generic Construction. We first describe a most generic construc-
tion that captures many constructions of tweakable block ciphers. The
design strategy of most tweakable block cipher constructions can be seen
as a two-step process: first, expand the key space and, then, derive all
subkeys from the tweak and the master key. Expanding the key space
is usually done by the FX construction that can be iterated r times to
allow for alternating r+ 1 n-bit subkeys and r block cipher’s κ-bit subkeys
(Section 7.1.3). Therefore, we formally define the generic r-round tweak-
able FX construction shown in Figure 9.4 as follows. Let E1,2,...,r(u, ·) be

244 Chapter 9. Generic Attack on Iterated Tweakable FX

r block ciphers with κ-bit key u and n-bit input and output. Let k be
the κ̃-bit master key of the tweakable block cipher construction and t be
a tweak of arbitrary length. Let γi(k, t) be the subkey for the ith block
cipher of length κ-bit for 1 ≤ i ≤ r and λi(k, t) the n-bit subkey to be
XORed in the state for 0 ≤ i ≤ r. For every plaintext/tweak input (m, t)
the output Ẽk(t,m) = c is defined as:

s0 := m⊕ λ0(k, t)
si := Ei(γi(k, t), si−1)⊕ λi(k, t) , for 1 ≤ i ≤ r
c := sr .

For example the r = 2-round tweakable FX construction Ẽk(t,m) is
described as:

Ẽk(t,m) = E2
(
γ2(k, t), E1

(
γ1(k, t),m⊕ λ0(k, t)

)⊕ λ1(k, t)
)⊕ λ2(k, t)

A description of previous constructions within this generic framework is
given in Table 9.1.

9.1.2 Results
In this chapter we ask ourselves what is the best security bound attainable
when using the iterated FX framework to build tweakable block ciphers
from regular block ciphers. To do this, we improve on the attack by
Gaži [Gaž13] (Algorithm 7.5 of Section 7.1.3) on regular iterated FX
construction to apply it in the tweakable setting.

Most proposed schemes can be rewritten within this framework and
most single round constructions have well understood security with tight
bounds and matching attacks. On the other hand, we don’t know of any
constructions involving more than 2 rounds of tweakable FX. This is why
we first focus on r = 2 in Section 9.2 and describe an information theoretic
key recovery when κ ≤ 2n with offline and online query complexity of:

Q = O(2
2
3 (n+κ) · 3

√
κ̃/n) .

Note that Q = O(2 2
3 (n+κ)) under the reasonable assumption that the size

of the master secret key is linear with respect to the state size, that is,
κ̃ = O(n).

In particular, the XHX2 construction by Lee and Lee [LL18] is included
in the 2-round tweakable FX framework where λ1(k, t) = λ0(k, t)⊕λ2(k, t).

9.1. The Generic Tweakable FX Model 245

R
ef

Sc
he

m
e
r
Su

bk
ey

fu
nc

tio
ns

[L
RW

11
]L

RW
2

1
λ

0(
k
,t

)=
λ

1(
k
,t

)
a
un

ifo
rm

an
d
A
X
U

fu
nc

tio
n.

γ
1(
k
,t

)=
k

[M
en

15
]
F̃

[1
]

1
λ

0(
k
,t

)=
λ

1(
k
,t

)=
t
·k

γ
1(
k
,t

)=
t
⊕
k

[M
en

15
]
F̃

[2
]

1
λ

0(
k
,t

)=
λ

1(
k
,t

)=
E

1(
2
·k
,t

)
γ

1(
k
,t

)=
t
⊕
k

[M
en

16
]

XP
X

1
κ

=
0
so
E

1(
·,m

)=
P

(m
)

t
=
t 1

1
‖t

12
‖t

21
‖t

22
λ

0(
k
,t

)=
t 1

1k
⊕
t 1

2P
(k

)
λ

1(
k
,t

)=
t 2

1k
⊕
t 2

2P
(k

)
[J
ha

+
17

]X
HX

1
γ

1(
k
,t

)
a
un

ifo
rm

an
d
A
U

fu
nc

tio
n.

λ
0(
k
,t

)=
λ

1(
k
,t

)
a
un

ifo
rm

an
d
A
X
U

fu
nc

tio
n.

[L
RW

11
]L

RW
1

2
λ

0(
k
,t

)=
λ

2(
k
,t

)=
0

λ
1(
k
,t

)=
t

γ
1(
k
,t

)=
γ

2(
k
,t

)=
k

[L
ST

12
]

CL
RW

2
2
λ

0(
k
,t

)
an

d
λ

2(
k
,t

)
tw

o
un

ifo
rm

an
d
A
X
U

fu
nc

tio
ns
.

λ
1(
k
,t

)=
λ

0(
k
,t

)⊕
λ

2(
k
,t

)
γ

1(
k
,t

)=
γ

2(
k
,t

)=
k

[L
L1

8]
XH

X2
2
γ

1(
k
,t

)
an

d
γ

2(
k
,t

)
tw

o
un

ifo
rm

an
d
A
U

fu
nc

tio
ns
.

λ
0(
k
,t

)
an

d
λ

2(
k
,t

)
tw

o
un

ifo
rm

an
d
A
X
U

fu
nc

tio
ns
.

λ
1(
k
,t

)=
λ

0(
k
,t

)⊕
λ

2(
k
,t

)

Ta
bl
e
9.
1:

So
m
e
pr
ev
io
us
ly

pr
op

os
ed

sc
he

m
es

an
d
de

sc
rip

tio
n
of

ho
w

it
fit
s
in

ou
r
ite

ra
te
d
tw

ea
ka

bl
e
FX

ge
ne

ric
fra

m
ew

or
k.

M
ul
tip

lic
at
io
ns

(·)
ar
e
ov
er

a
ch
ar
ac
te
ris

tic
2
fin

ite
fie

ld
.

246 Chapter 9. Generic Attack on Iterated Tweakable FX

Their provable security bound is 2 2
3 (n+κ) whenever κ ≤ 2n which matches

our attack. Therefore, this attack proves the tightness of their bound and,
conversely, their bound proves the optimality of the attack.

Even if we don’t know of any construction matching 3 or more rounds
of the iterated tweakable FX framework, there seem to be additional
security to be gained from iterating further. In Section 9.3 we extend the
attack to any number of rounds of the iterated tweakable FX construction.
The result is an information theoretic key recovery on r rounds when
κ ≤ rn with offline and online query complexity of:

Q = O(2
r
r+1 (n+κ) · r+1

√
κ̃/n) .

Again, note that Q = O(2
r
r+1 (n+κ)) under the assumption that κ̃ = O(n).

We compare our generic attack with previously known attacks in
Table 9.2.

Ref Scheme r Proof Known Attack Our Generic Attack

[LRW11] LRW2 1 2n/2 2n/2 2 1
2 (n+κ)

[Men15] F̃ [1] 1 2 2
3n 2n 2n (as κ = n)

[Men16] XPX 1 2n/2 2n/2 2n/2 (as κ = 0)
[Jha+17] XHX 1 2 1

2 (n+κ) 2 1
2 (n+κ) 2 1

2 (n+κ)

[Jha+17] GXHX 1 2 1
2 (n+κ) 2 1

2 (n+κ) 2 1
2 (n+κ)

[Men15] F̃ [2] 1 2n 2n N.A.

[LRW11] LRW1 2 2n/2 2n/2 2 2
3 (n+κ)

[LST12] CLRW2 2 22n/3 23n/4 2 2
3 (n+κ)

[LL18] XHX2 2 2 2
3 (n+κ) 2n/2+κ 2 2

3 (n+κ)

Table 9.2: Some previously proposed schemes with their known asymp-
totic bounds.

9.2. Cryptanalysis of 2-Round Tweakable FX 247

m E1 E2 Ẽk(t,m)

γ1(k, t) γ2(k, t)
λ0(k, t) λ1(k, t) λ2(k, t)

Figure 9.5: 2-Round Tweakable FX.

9.2 Cryptanalysis of 2-Round Tweakable
FX

In this section we give an algorithm to extract the master key of a 2-
round tweakable FX construction (Algorithm 9.1). Then, we analyze its
probability of success by deriving the required total query complexity.

9.2.1 Algorithm
The cryptanalysis shown in Algorithm 9.1 is a key recovery attack following
the idea of the original cryptanalysis by Gaži [Gaž13]: we want just enough
data to construct contradictory paths for each wrong key. First, we do a
large amount of offline computations under all possible κ-bit key for the
block ciphers. Input values are the sets S1 and S2 which can be chosen
randomly and the input/output pairs under the key j are stored in Lj,1
and Lj,2 for E1(j, ·) and E2(j, ·) respectively. In Step 12 we store all known
tweak/plaintext/ciphertext triples in L0. We don’t need to choose the
set S0 of inputs to the tweakable block cipher as the attack works in the
known plaintext setting. Finally, we can test all the κ-bit values that are
potential master keys k only using the stored values by reconstructing the
paths round by round.

Indeed, sets A and B reconstruct the paths under the current key guess.
For completeness, we provide Algorithm 9.2 to show how to construct
the sets A and B. To construct A is to apply Algorithm 9.2 with A =
MergeSet(S0,Lγ1(k,t),1, λ0(k, t)). For every guess of k, the goal is to check
every known tweak/message pairs, compute the input to the first block
cipher m⊕ λ0(k, t) and see in set Lγ1(k,t),1 whether we already know its
output. If we know it, we record the guessed internal state. Then, starting
from the many guessed states (under the guessed key), we do the same with
B and record, if possible, the internal state after the second block cipher call.

248 Chapter 9. Generic Attack on Iterated Tweakable FX

Algorithm 9.1 Cryptanalysis of 2-round tweakable FX construction.
1: input: Ẽ is tweakable FX with given block ciphers and subkeys,
κ ≤ 2n.

2: output: k : the master key of Ẽ.
3: procedure 2KeyRecovery(κ̃, n, κ, Ẽ, E1, E2, γ1, γ2, λ0, λ1, λ2)
4: ν ← κ̃/n

5: Q← 2 2
3 (n+κ) · 3√ν . Constants derived in Section 9.2.2

6: Randomly sample S1 ⊂ {0, 1}n with |S1| = Q/2κ = 2 2n−κ
3 3√ν .

7: Randomly sample S2 ⊂ {0, 1}n with |S2| = Q/2κ = 2 2n−κ
3 3√ν .

8: for all j ∈ {0, 1}κ do
9: Lj,1 ←

{(
m,E1(j,m)

)
: m ∈ S1

}

10: Lj,2 ←
{(
m,E2(j,m)

)
: m ∈ S2

}
. Offline Queries Sets

11: Let S0 ⊂ {0, 1}∗×{0, 1}n with |S0| = Q be a known tweak/message
set.

12: L0 ←
{(
t,m, Ẽ(t,m)

)
: (t,m) ∈ S0

}
. Online Queries Set

13: for all k ∈ {0, 1}κ̃ do
14: A ← {(

t,m, a
)

: (t,m) ∈ S0, (m⊕ λ0(k, t), a) ∈ Lγ1(k,t),1
}

15: B ← {(
t,m, b

)
: (t,m, a) ∈ A, (a⊕ λ1(k, t), b) ∈ Lγ2(k,t),2

}
. by

Algorithm 9.2
16: if |B| ≥ ν and ∀(t,m, b) ∈ B : (t,m, b⊕ λ2(k, t)) ∈ L0 then
17: return k
18: return ⊥ . No proper key in the set

Algorithm 9.2 Set construction.
1: input: S1 ⊂ X × {0, 1}n, S2 ⊂ {0, 1}n × {0, 1}n, ` ∈ {0, 1}n .
2: output: {(e, s3

)
: (e, s1) ∈ S1, (s1 ⊕ `, s3) ∈ S2} .

3: procedure MergeSet(S1,S2, `)
4: S3 ← ∅
5: for all (e, s1) ∈ S1 do
6: if ∃s3 : (s1 ⊕ `, s3) ∈ S2 then
7: S3 ← S3 ∪ {(e, s3)}
8: return S3

9.2. Cryptanalysis of 2-Round Tweakable FX 249

At last, the condition ∀(t,m, b) ∈ B : (t,m, b⊕ γ5(k, t)) ∈ L0 is checking
whether the path is consistent with the known tweak/plaintext/ciphertext
triples. The additional condition |B| ≥ ν is simply here to ensure a good
reduction.

The constants ν and Q are derived in Section 9.2.2, and the algorithm
already ensures that the total query complexity is of magnitude Q. Indeed,
once we construct the sets Lj,i and L0 we will have all the necessary
queries to perform the attack. Since |Lj,i| = |Si| = Q/2κ and there are
2κ different possible subkeys, the total number of queries to E1(·, ·) and
E2(·, ·) is Q. The set L0 records the online queries so that |L0| = |S0| = Q.

9.2.2 Analysis
The Query Complexity. To derive the constant Q used in Algo-
rithm 9.1 we focus on what happens when we guess the correct master
key k. In particular, we look at the test of Step 16 and wish to avoid false
negative that would reject it even though it is the correct key. Concretely,
we need to ensure that |B| ≥ ν happens with good probability as the
second constraint is satisfied by construction when the guess is correct.

First, let’s look at the construction of A in Step 14:

A ← {(
t,m, a

)
: (t,m) ∈ S0, (m⊕ λ0(k, t), a) ∈ Lγ1(k,t),1

}

Remember that there are Q values (t,m) ∈ S0, and, as S1 is chosen
randomly and independently, there is a |S1|/2n probability that (m ⊕
λ0(k, t)) ∈ S1 for each (t,m) observed meaning that there exists an a
such that (m⊕ λ0(k, t), a) ∈ Lγ1(k,t),1. Therefore, in expectation, we have
|A| = Q2/2n+κ.

We do the same reasoning for B in Step 15:

B ← {(
t,m, b

)
: (t,m, a) ∈ A, (a⊕ λ1(k, t), b) ∈ Lγ2(k,t),2

}

to find that in expectation |B| = Q3/22n+2κ.
With some regularity assumptions, if |B| = ν in expectation then

|B| ≥ ν with constant probability. Therefore, we can derive the constant
Q in terms of ν as:

Q3/22n+2κ = ν =⇒ Q = 2
2
3 (n+κ) · 3√ν

250 Chapter 9. Generic Attack on Iterated Tweakable FX

The Number of Paths. Let us now derive the constant ν so that
Step 16 doesn’t result in a false positive. In other words, the test must
fail for all the wrong guesses of k with good probability.

First, notice that Q = 2 2
3 (n+κ) · 3√ν implies that |B| = ν in expectation

for all guesses of k, good or wrong. If |B| < ν, the test fails as it
should. If |B| ≥ ν, we need to look at the second condition, that is:
∀(t,m, b) ∈ B : (t,m, b⊕ λ3(k, t)) ∈ L0. When the key guess k is wrong,
for a given (t,m, b) ∈ B we have (b ⊕ λ3(k, t)) = Ẽ(t,m) with a 2−n
probability. Since |B| ≥ ν, the second condition is satisfied with probability
at most (2−n)ν = 2−ν·n. We need the test to fail for all the wrong guesses
and there are 2κ̃ − 1 such wrong guesses. Therefore, all the tests fail with
constant probability when:

2κ̃ · 2−ν·n ≤ 1 =⇒ κ̃− ν · n ≤ 0 =⇒ ν ≥ κ̃/n ,

thus we take ν = κ̃/n.

Constraints. For this attack to be coherent we need to make sure that
all quantities are well-defined. In particular, we require:

1 ≤ |Si|
⇐⇒ 1 ≤ 2

2
3n−

1
3κ · 3√ν

⇐⇒ κ ≤ 2n+ log(ν)

which limits the block cipher key size κ to a multiple of the state size n.
In practice, block ciphers rarely admit a key larger than 2n so this is not
a strong limitation.

We also require that all master key / tweak combinations (k, t) induce
a different sequence of subkeys. We didn’t put any requirement on the
functions λi(k, t) and γi(k, t) and they may even not depend on k or t,
but we nevertheless require that changing one of them induces another
permutation for our attack to work. Concretely:

∀k ∈ {0, 1}κ̃ ∀(t,m) ∈ S0 ∀(t′,m′) ∈ S0 :
t 6= t′ =⇒ ∃i : γi(k, t) 6= γi(k, t′) OR λi(k, t) 6= λi(k, t′) .

This condition mostly ensures that the construction behaves like a tweak-
able block cipher. Indeed, if this condition is not fulfilled, there is an

9.3. Cryptanalysis of Iterated Tweakable FX 251

m E1 E2 ... Er Ẽk(t,m)

γ1(k, t) γ2(k, t) γr(k, t)
λ0(k, t) λ1(k, t) λ2(k, t) λr(k, t)

Figure 9.6: r-Round Tweakable FX.

even easier distinguisher: if two tweaks induce the same subkeys, then the
permutation is also the same which is a near zero probability event for a
family of random permutation, and hence it is an p̃rp distinguisher.

9.3 Cryptanalysis of Iterated Tweakable FX
We now generalize the attack of Section 9.2 to attack an arbitrary number
of rounds r ≥ 1 of the iterated tweakable FX construction (Figure 9.6).

9.3.1 Generic Algorithm
The attack is described in Algorithm 9.3. The strategy is the same, we
start by doing all the necessary offline queries (Step 10) and online queries
(Step 12) before reconstructing paths round by round for all guesses of
k (Step 16) to finally check whether the obtained ciphertext is consistent
with the known values (Step 17).

9.3.2 Analysis
The Query Complexity. We first derive the constant Q used in Algo-
rithm 9.3 in the same way as we did for the 2-round version. We focus
on what happens when we guess the correct master key k. In Step 17 we
want to avoid getting a false negative meaning that we need to ensure
that |B| ≥ ν happens with good probability. Again, the second condition
is always fulfilled when the guess is correct.

First, the set A1 is built in Step 14 as:

A1 ←
{(
t,m, a

)
: (t,m) ∈ S0, (m⊕ λ0(k, t), a) ∈ Lγ1(k,t),1

}
.

There are Q values (t,m) ∈ S0 and S1 is chosen randomly and indepen-
dently, there is a |S1|/2n probability that ∃a : (m⊕ λ0(k, t), a) ∈ Lγ1(k,t),1

252 Chapter 9. Generic Attack on Iterated Tweakable FX

Algorithm 9.3 Cryptanalysis of r-round tweakable FX construction.
1: input: Ẽ is tweakable FX with given block ciphers and subkeys,
κ ≤ rn.

2: output: k, the master key of Ẽ.
3: procedure rKeyRecovery(κ̃, n, κ, Ẽ, E1, ..., Er, γ1, ..., γr, λ0, ..., λr)
4: ν ← κ̃/n

5: Q← 2
r
r+1 (n+κ) · r+1√ν

6: for all i ∈ {1, ..., r} do
7: Randomly sample Si ⊂ {0, 1}n with |Si| = Q/2κ = 2

rn−κ
r+1 r+1√ν .

8: for all j ∈ {0, 1}κ do
9: for all i ∈ {1, ..., r} do
10: Lj,i ←

{(
m,Ei(j,m)

)
: m ∈ Si

}
. Offline Queries Sets

11: Let S0 ⊂ {0, 1}∗ × {0, 1}n with |S0| = Q be an observable
tweak/message set.

12: L0 ←
{(
t,m, Ẽ(t,m)

)
: (t,m) ∈ S0

}
. Online Queries Set

13: for all k ∈ {0, 1}κ̃ do
14: A1 ←

{(
t,m, a

)
: (t,m) ∈ S0, (m⊕ λ0(k, t), a) ∈ Lγ1(k,t),1

}

15: for all i ∈ {2, ..., r} do
16: Ai ←

{(
t,m, a

)
: (t,m, ā) ∈ Ai−1, (ā ⊕ λi−1(k, t), a) ∈

Lγi(k,t),i
}

. by Algorithm 9.2
17: if |Ar| ≥ ν and ∀(t,m, a) ∈ Ar : (t,m, a⊕λr(k, t)) ∈ L0 then

18: return k
19: return ⊥ . No proper key in the set

9.3. Cryptanalysis of Iterated Tweakable FX 253

for all observed tweak/message pairs (t,m). Therefore, in expectation, we
have |A1| = Q2/2n+κ.

Moreover, it is easy to show by induction that |Ai| = Qi+1/2i(n+κ) in
expectation as it is true for |A1| and, in expectation and following Step 16,
|Ai+1| = |Ai| · |Si+1|/2n. Thus, we get |Ar| = Qr+1/2r(n+κ).

Under some regularity assumptions, if in expectation we set |Ar| = ν
then |Ar| ≥ ν with constant probability. We deduce the value of Q
depending on ν as:

Qr+1/2r(n+κ) = ν =⇒ Q = 2
r
r+1 (n+κ) · r+1√ν

The Number of Paths. Again, let us derive the constant ν to avoid
all false positives in Step 17 of Algorithm 9.3.

If |Ar| < ν, the test fails as it should. If |Ar| ≥ ν, the second condition
is satisfied with probability (2−n)ν = 2−ν·n. There are 2κ̃−1 wrong guesses
so all the tests should fail at least with constant probability when:

2κ̃ · 2−ν·n ≤ 1 =⇒ κ̃− ν · n ≤ 0 =⇒ ν ≥ κ̃/n

thus we take ν = κ̃/n.

Constraints. At last, we check the coherence of our values so that:

1 ≤ |Si|
⇐⇒ κ ≤ rn+ log(ν)

which limits κ to a multiple of the state size n.
And the condition on the induced subkeys is:

∀k ∈ {0, 1}κ̃ ∀(t,m) ∈ S0 ∀(t′,m′) ∈ S0 :
t 6= t′ =⇒ ∃i : γi(k, t) 6= γi(k, t′) OR λi(k, t) 6= λi(k, t′)

Note that this condition prevents the known matching attack on XHX.
Indeed, as for XHX r = 1 and λ0 = λ1, a collision on the full subkeys is
expected after trying O(2(n+κ)/2) different tweaks. However, our attack
works with the same complexity even when we can’t observe a lot of tweaks.
It also works on the generalized setting GXHX that doesn’t enforce λ0 = λ1.

254 Chapter 9. Generic Attack on Iterated Tweakable FX

In fact, for r = 1 and κ ≤ n our attack is equivalent to the generic
attack on the FX construction (Algorithm 7.4). Indeed, when k ≤ n the
online query complexity is less than 2n, so we don’t take full advantage of
the tweakable setting.

9.4 Remarks and Conclusion
Comparison with Attacks on FX. Our attack on iterated tweakable
FX is closely related to the attack on regular iterated FX by Gaži [Gaž13]
with two main differences. First, in the tweakable case, the number of
online queries is unbounded (it is bounded by 2n in [Gaž13]), so we better
balance out the queries to obtain a lower query complexity. Moreover, our
attack shows that the tweak space does not matter: we don’t even need to
choose the tweak for this to work. Indeed, to generically apply the regular
FX attack we would need to fix a tweak and perform all of our query, but
our analysis shows that this is not required.

The query complexity of the regular FX attack is O(2 r−1
r
n+κ) offline

and 2n online queries. When κ ≤ n
r though, the offline query complexity

fall below the online query complexity so it is actually easy to rebalance
the query complexity to O(2

r
r+1 (n+κ)) in the same way as our attack.

So the total query complexity of the original attack by Gaži [Gaž13] is
O(2 r−1

r
n+κ) or O(2

r
r+1 (n+κ)) when κ ≤ n

r . Notice that for a single round
this matches the complexity of our attack, that is O(2

r
r+1 (n+κ)) when

κ ≤ n.

Using Tweakable Block Ciphers. If, instead of regular block ciphers,
we use tweakable block ciphers, then it is not trivial to adapt this attack.
Indeed, the cryptanalysis exploits the fact that the master key and the
tweak must be blended before computation and not separately plugged in
a tweakable block cipher. Such a construction of a tweakable block cipher
based on another tweakable block cipher could be used to increase the
security and/or the size of the tweak, in the same way that the original
FX construction builds a stronger block cipher from another block cipher.
On the cryptanalytic side, it is always possible to fix a single tweak and
perform an attack on regular iterated FX.

9.4. Remarks and Conclusion 255

Weaker Constructions. The attack described is generic given any
reasonable key schedule represented by the λ and γ functions. However,
they are particular cases where better attacks are possible. In particular,
the cascaded LRW2 construction is a 2-round tweakable FX construction
where the key in the block cipher does not vary with the tweaks (γ1 and
γ2 don’t depend on t). This construction permits an attack in O(2 3n

4) as
shown by Mennink [Men18] using only two different tweaks which beats
our generic attack as soon as κ > n

8 .

Tweak-rekeying. In fact, our generic attack being a key recovery attack,
it necessarily requires at least 2κ calls to the underlying block cipher. As
soon as κ ≥ n, this implies a complexity above 2n. Mennink [Men17]
showed that provable 2n security is unattainable in the standard block
cipher model where one only assumes the block cipher to be a good pseudo-
random permutation. Therefore, our generic attack can only hope to be
tight for schemes that are proven secure with an ideal cipher and use
tweak-rekeying.

Towards Simplicity. The attack on generic 2-round tweakable FX is
also tight since Lee and Lee could prove with XHX2 [LL18] that we can reach
this level of security even when λ1(k, t) = λ0(k, t) ⊕ λ2(k, t) with some
conditions on those functions. Moreover, the previously known matching
attack on XHX [Jha+17] exploited the fact that λ0(k, t) = λ1(k, t) but our
generic attack shows that it cannot be made more secure without this
simplification. Another way to say it is that enforcing λ0(k, t) = λ1(k, t)
does not affect the provable security bound.

Using the iterated tweakable FX framework, one can therefore wonder
how much can we simplify the subkey functions while maintaining an
optimal provable security with respect to the generic security upper bound
shown in this work.

General Conclusion

This manuscript introduced many provably secure cryptographic construc-
tions along with the contributions made during my thesis. In this general
conclusion I wish to insist on a few points that link most of my works as
well as give orientations for future research topics.

Proofs and Cryptanalysis. Even though the techniques used can be
quite different, proofs and cryptanalysis fundamentally complete each
others. The intuition of cryptanalysis often gives insight on its dual proof.

While this manuscript clearly focuses on cryptanalysis, techniques for
proofs are introduced in Chapter 6 to show the robustness guarantee of
the authenticated encryption mode MONDAE which is derived from SUNDAE.
However, the intuition for the design of MONDAE clearly comes from the
simple RUP attack shown in Section 6.1.2. Indeed, MONDAE was first
thought as a quick fix to avoid this simple attack and, as we couldn’t come
up with anything else, we derived a proof to formally show its AERUP
security. Hence, even simple attacks can give the necessary insights to
build stronger provably secure designs.

Another good example is shown in Chapter 5 about Double-block
Hash-then-Sum MACs. The attacks described are using O(23n/4) tag
queries for small messages and a single verification query [LNS18]. At
the time of publication, this result was not known to be information
theoretically optimal, but about a year and a half later Kim, Lee and
Lee [KLL20] improved the best proof guaranteeing security up to Ω(23n/4)
short queries, matching our result for many constructions. We finally
have a tight bound on the security of SUM-ECBC, about 10 years after
it’s been proposed by Yasuda [Yas10]. The timing of the proof quickly
following after the cryptanalysis is not a coincidence and, in a private
communication, one author of [KLL20] wrote that our attack inspired
them to improve the proof to this tight bound. Hence, it is clear that the

257

258 General Conclusion

intuition behind one cryptanalysis actually helps to improve designs and
build better proofs. Combining proof and analysis can reduce the gap and
lead to tight proofs.

From Information Theoretic to Computational Security. There
are many examples of substantial gaps between the best information
theoretic proof and the best time complexity cryptanalysis even when
the proof is tight in the IT model. In particular, this happened with the
cryptanalysis of Poly1305 and GMAC in Chapter 4 (Ω(2n/2) vs O(22n/3)),
with the cryptanalysis on 2-round Even-Mansour scheme in Chapter 8
(Ω(22n/3) vs O(2n/n)), and with the generic attack on Double-block Hash-
then-Sum in Chapter 5 (Ω(23n/4) vs O(2n)).

In fact, the best attack on those cited cases solves some algorithmic
problem that is a particular instance of the missing difference, the 3-XOR
and the 4-XOR, respectively. While it might be possible to speed up those
attacks, it may well be impossible to reach a lower time complexity. To
prove such an impossibility would provide a computational security bound
that potentially goes beyond the information theoretic one to match the
best known time complexity.

Having computational security in cryptography is not a new thing;
this is what is basic prp assumption for block cipher is about. This is also
the basis of all public key schemes that relies on security reduction to a
conjectured hard problem such as the discrete logarithm or learning with
error. Moreover, the relatively recent fine-grained complexity theory aims
at categorizing and relating algorithmic problems with polynomial time
complexity solvers. Typically, it is now fairly common to assume that
random 3-SUM, and also random 3-XOR, requires a quadratic (relative to
the lists size and ignoring log factors) amount of computations to solve.

How can we link the security of the mentioned symmetric key construc-
tions to a group of problem in the fine-grained complexity theory remains
an open question, but it is a promising way to accurately characterize
their practical security.

Ideal Primitives against Practice. We’ve seen many schemes proved
with ideal primitives, be it ideal ciphers with the tweakable FX construction
in Chapter 9 or ideal permutations with the iterated Even-Mansour in
Chapter 8. The proof for those schemes ignores the actual primitive and
randomly draws one at the start of the security game. In practice, those

259

primitives need to be publicly described and efficiently computable which
creates a gap between what is proven and what is used. Even worse, Black
proposed a hash construction that is provably secure in the ideal cipher
model but insecure for any instantiation [Bla06].

Black’s construction is a rather unnatural proof of concept as it exploits
the compact representation of any instantiation, but it nevertheless means
that there is necessarily a gap between the practical primitive and its
ideal counterpart. However, there has been no natural scheme that can
be proven in the ideal setting but hard to instantiate. Quite the contrary,
some schemes seem to be secure even when using relatively weak primitives.
For instance, consider the combination of Merkle-Damgård with Davies-
Meyer we’ve seen in Section 7.2.1: Winternitz [Win84] showed that some
amount of weak keys and a complementation property (typical of the DES
block cipher) posed no lethal threat for the security of the hash scheme.
This is also especially true for authenticated encryption schemes using a
sponge-like construction as most properties found on various permutations
are not exploitable to build an attack on the final mode.

Overall, proving security under an ideal primitive is a good indication
that the construction is sound and secure, but it hardly tells what is
required from the primitive’s instantiation. Since a gap necessarily exists
between the ideal version and the practical version, designers may tend
to increase it in order to gain efficiency. This makes the proof of security
less and less relevant. In fact, proofs in the ideal setting fail to reduce the
security to a well-defined but strictly easier cryptanalytic problem on the
primitive in the same way as it is done with the classical PRP notion for
block ciphers.

Bibliography

[ADL17] Tomer Ashur, Orr Dunkelman, and Atul Luykx. “Boosting
Authenticated Encryption Robustness with Minimal Modifi-
cations”. In: CRYPTO 2017, Part III. Ed. by Jonathan Katz
and Hovav Shacham. Vol. 10403. LNCS. Springer, Heidelberg,
Aug. 2017, pp. 3–33 (cit. on p. 172).

[AES] Advanced Encryption Standard (AES). National Institute
of Standards and Technology (NIST), FIPS PUB 197, U.S.
Department of Commerce. Nov. 2001 (cit. on pp. 38, 201,
239).

[Al-ry] Al-Kindi. A Manuscript on Deciphering Cryptographic Mes-
sages. 9th century (cit. on p. 31).

[Alb+14] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun,
Gregor Leander, Christof Paar, and Tolga Yalçin. “Block
Ciphers - Focus on the Linear Layer (feat. PRIDE)”. In:
CRYPTO 2014, Part I. Ed. by Juan A. Garay and Rosario
Gennaro. Vol. 8616. LNCS. Springer, Heidelberg, Aug. 2014,
pp. 57–76 (cit. on p. 204).

[Alb+16] Martin R. Albrecht, Jean Paul Degabriele, Torben Brandt
Hansen, and Kenneth G. Paterson. “A Surfeit of SSH Cipher
Suites”. In: ACM CCS 2016. Ed. by Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi. ACM Press, Oct. 2016, pp. 1480–1491 (cit. on
p. 123).

[AlF+13] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Pater-
son, Bertram Poettering, and Jacob C. N. Schuldt. “On the
Security of RC4 in TLS”. In: USENIX Security 2013. Ed. by
Samuel T. King. USENIX Association, 2013, pp. 305–320.
isbn: 978-1-931971-03-4 (cit. on p. 102).

261

262 Bibliography

[Alk+02] Ammar Alkassar, Alexander Geraldy, Birgit Pfitzmann,
and Ahmad-Reza Sadeghi. “Optimized Self-Synchronizing
Mode of Operation”. In: FSE 2001. Ed. by Mitsuru Matsui.
Vol. 2355. LNCS. Springer, Heidelberg, Apr. 2002, pp. 78–91
(cit. on p. 51).

[And+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Men-
nink, Nicky Mouha, and Kan Yasuda. “How to Securely
Release Unverified Plaintext in Authenticated Encryption”.
In: ASIACRYPT 2014, Part I. Ed. by Palash Sarkar and
Tetsu Iwata. Vol. 8873. LNCS. Springer, Heidelberg, Dec.
2014, pp. 105–125 (cit. on pp. 15, 82, 162).

[Ban+18] Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and El-
mar Tischhauser. “SUNDAE: Small Universal Deterministic
Authenticated Encryption for the Internet of Things”. In:
IACR Trans. Symm. Cryptol. 2018.3 (2018), pp. 1–35. issn:
2519-173X (cit. on pp. 15, 82, 161, 163, 164).

[Ban+19] Subhadeep Banik, Andrey Bogdanov, Thomas Peyrin, Yu
Sasaki, Siang Meng Sim, Elmar Tischhauser, and Yosuke
Todo. SUNDAE-GIFT v1.0. Submission to NIST Lightweight
Cryptography Standardization Process. Mar. 2019 (cit. on
p. 164).

[Bao+19a] Zhenzhen Bao, Jian Guo, Tetsu Iwata, and Ling Song. SIV-
Rijndael256 Authenticated Encryption and Hash Family. Sub-
mission to NIST Lightweight Cryptography Standardization
Process. Feb. 2019 (cit. on p. 164).

[Bao+19b] Zhenzhen Bao, Jian Guo, Tetsu Iwata, and Ling Song. SIV-
TEM-PHOTON Authenticated Encryption and Hash Family.
Submission to NIST Lightweight Cryptography Standardiza-
tion Process. Feb. 2019 (cit. on p. 164).

[BCC] The estimated number of terahashes per second the bitcoin net-
work is performing in the last 24 hours. Blockchain Company.
https://www.blockchain.com/en/charts/hash- rate
(cit. on p. 38).

[BDF18] Charles Bouillaguet, Claire Delaplace, and Pierre-Alain
Fouque. “Revisiting and Improving Algorithms for the 3XOR
Problem”. In: IACR Trans. Symm. Cryptol. 2018.1 (2018),

https://www.blockchain.com/en/charts/hash-rate

Bibliography 263

pp. 254–276. issn: 2519-173X (cit. on pp. 18, 98, 214, 218–220,
226, 229, 230).

[BDP08] Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. “Sub-
quadratic Algorithms for 3SUM”. In: Algorithmica 50.4 (Apr.
2008), pp. 584–596. issn: 1432-0541 (cit. on pp. 18, 19, 98,
214, 218, 219, 226, 230).

[Bea+15] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-
Clark, Bryan Weeks, and Louis Wingers. SIMON and
SPECK: Block Ciphers for the Internet of Things. Cryptol-
ogy ePrint Archive, Report 2015/585. http://eprint.iacr.
org/2015/585. 2015 (cit. on p. 116).

[Bel+97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway.
“A Concrete Security Treatment of Symmetric Encryption”.
In: 38th FOCS. IEEE Computer Society Press, Oct. 1997,
pp. 394–403 (cit. on p. 50).

[Ber+12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. “Duplexing the Sponge: Single-Pass Authenticated
Encryption and Other Applications”. In: SAC 2011. Ed. by
Ali Miri and Serge Vaudenay. Vol. 7118. LNCS. Springer,
Heidelberg, Aug. 2012, pp. 320–337 (cit. on p. 74).

[Ber05a] Daniel J. Bernstein. “Stronger Security Bounds for Wegman-
Carter-Shoup Authenticators”. In: EUROCRYPT 2005. Ed.
by Ronald Cramer. Vol. 3494. LNCS. Springer, Heidelberg,
May 2005, pp. 164–180 (cit. on pp. 62, 63, 125).

[Ber05b] Daniel J. Bernstein. “The Poly1305-AES Message Authen-
tication Code”. In: FSE 2005. Ed. by Henri Gilbert and
Helena Handschuh. Vol. 3557. LNCS. Springer, Heidelberg,
Feb. 2005, pp. 32–49 (cit. on p. 126).

[Ber07] Daniel J Bernstein. “Better price-performance ratios for gen-
eralized birthday attacks”. In: Workshop Record of SHARCS.
Vol. 7. 2007, p. 160 (cit. on p. 228).

[BGM04] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The
Power of Verification Queries in Message Authentication and
Authenticated Encryption. Cryptology ePrint Archive, Report
2004/309. http://eprint.iacr.org/2004/309. 2004 (cit.
on p. 58).

http://eprint.iacr.org/2015/585
http://eprint.iacr.org/2015/585
http://eprint.iacr.org/2004/309

264 Bibliography

[BKN06] M. Bellare, T. Kohno, and C. Namprempre. The Secure Shell
(SSH) Transport Layer Encryption Modes. IETF RFC 4344.
2006 (cit. on p. 123).

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. “The Security
of the Cipher Block Chaining Message Authentication Code”.
In: Journal of Computer and System Sciences 61.3 (2000),
pp. 362–399 (cit. on p. 133).

[BL16] Karthikeyan Bhargavan and Gaëtan Leurent. “On the Prac-
tical (In-)Security of 64-bit Block Ciphers: Collision Attacks
on HTTP over TLS and OpenVPN”. In: ACM CCS 2016.
Ed. by Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi. ACM Press,
Oct. 2016, pp. 456–467 (cit. on pp. 79, 102, 124).

[Bla06] John Black. “The Ideal-Cipher Model, Revisited: An Unin-
stantiable Blockcipher-Based Hash Function”. In: FSE 2006.
Ed. by Matthew J. B. Robshaw. Vol. 4047. LNCS. Springer,
Heidelberg, Mar. 2006, pp. 328–340 (cit. on p. 259).

[BN00] Mihir Bellare and Chanathip Namprempre. “Authenticated
Encryption: Relations among notions and analysis of the
generic composition paradigm”. In: ASIACRYPT 2000. Ed.
by Tatsuaki Okamoto. Vol. 1976. LNCS. Springer, Heidelberg,
Dec. 2000, pp. 531–545 (cit. on p. 67).

[Bog+12] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander,
François-Xavier Standaert, John P. Steinberger, and El-
mar Tischhauser. “Key-Alternating Ciphers in a Provable
Setting: Encryption Using a Small Number of Public Per-
mutations - (Extended Abstract)”. In: EUROCRYPT 2012.
Ed. by David Pointcheval and Thomas Johansson. Vol. 7237.
LNCS. Springer, Heidelberg, Apr. 2012, pp. 45–62 (cit. on
pp. 195, 201, 202, 235).

[Bor+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge
Kavun, Miroslav Knežević, Lars R. Knudsen, Gregor Leander,
Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter
Rombouts, Søren S. Thomsen, and Tolga Yalçin. “PRINCE -
A Low-Latency Block Cipher for Pervasive Computing Appli-
cations - Extended Abstract”. In: ASIACRYPT 2012. Ed. by

Bibliography 265

Xiaoyun Wang and Kazue Sako. Vol. 7658. LNCS. Springer,
Heidelberg, Dec. 2012, pp. 208–225 (cit. on p. 204).

[BR02] John Black and Phillip Rogaway. “A Block-Cipher Mode
of Operation for Parallelizable Message Authentication”. In:
EUROCRYPT 2002. Ed. by Lars R. Knudsen. Vol. 2332.
LNCS. Springer, Heidelberg, Apr. 2002, pp. 384–397 (cit. on
p. 145).

[BR06] Mihir Bellare and Phillip Rogaway. “The Security of Triple
Encryption and a Framework for Code-Based Game-Playing
Proofs”. In: EUROCRYPT 2006. Ed. by Serge Vaudenay.
Vol. 4004. LNCS. Springer, Heidelberg, May 2006, pp. 409–
426 (cit. on p. 38).

[Cha+18] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Ya-
suda. “Beetle Family of Lightweight and Secure Authenticated
Encryption Ciphers”. In: IACR TCHES 2018.2 (2018). https:
//tches.iacr.org/index.php/TCHES/article/view/881,
pp. 218–241. issn: 2569-2925 (cit. on p. 75).

[Cha+19a] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc
Mancillas Lopez, Mridul Nandi, and Yu Sasaki. ESTATE.
Submission to NIST Lightweight Cryptography Standardiza-
tion Process. Mar. 2019 (cit. on p. 164).

[Cha+19b] Donghoon Chang, Nilanjan Datta, Avijit Dutta, Bart Men-
nink, Mridul Nandi, Somitra Sanadhya, and Ferdinand Sib-
leyras. “Release of Unverified Plaintext: Tight Unified Model
and Application to ANYDAE”. In: IACR Trans. Symm. Cryp-
tol. 2019.4 (2019), pp. 119–146. issn: 2519-173X (cit. on pp. 8,
17, 28, 161).

[Che+14] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin,
and John P. Steinberger. “Minimizing the Two-Round Even-
Mansour Cipher”. In: CRYPTO 2014, Part I. Ed. by Juan
A. Garay and Rosario Gennaro. Vol. 8616. LNCS. Springer,
Heidelberg, Aug. 2014, pp. 39–56 (cit. on pp. 221, 222, 229,
233).

[CJM02] Philippe Chose, Antoine Joux, and Michel Mitton. “Fast
Correlation Attacks: An Algorithmic Point of View”. In:
EUROCRYPT 2002. Ed. by Lars R. Knudsen. Vol. 2332.

https://tches.iacr.org/index.php/TCHES/article/view/881
https://tches.iacr.org/index.php/TCHES/article/view/881

266 Bibliography

LNCS. Springer, Heidelberg, Apr. 2002, pp. 209–221 (cit. on
pp. 95, 96, 137).

[CL14] Anne Canteaut and Gaëtan Leurent. “Distinguishing and
Key-recovery Attacks against Wheesht”. working paper or
preprint. Mar. 2014 (cit. on p. 42).

[CS14] Shan Chen and John P. Steinberger. “Tight Security Bounds
for Key-Alternating Ciphers”. In: EUROCRYPT 2014. Ed.
by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441. LNCS.
Springer, Heidelberg, May 2014, pp. 327–350 (cit. on pp. 181,
201, 203).

[CY99] Scott Contini and Yiqun Lisa Yin. On Differential Properties
of Data-Dependent Rotations and Their Use in MARch and
RC6. 1999 (cit. on p. 179).

[Dae93] Joan Daemen. “Limitations of the Even-Mansour Construc-
tion (Rump Session)”. In: ASIACRYPT’91. Ed. by Hideki
Imai, Ronald L. Rivest, and Tsutomu Matsumoto. Vol. 739.
LNCS. Springer, Heidelberg, Nov. 1993, pp. 495–498 (cit. on
pp. 199, 200).

[Dam90] Ivan Damgård. “A Design Principle for Hash Functions”.
In: CRYPTO’89. Ed. by Gilles Brassard. Vol. 435. LNCS.
Springer, Heidelberg, Aug. 1990, pp. 416–427 (cit. on p. 206).

[Dat+15] Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul,
and Liting Zhang. Building Single-Key Beyond Birthday
Bound Message Authentication Code. Cryptology ePrint
Archive, Report 2015/958. http://eprint.iacr.org/2015/
958. 2015 (cit. on pp. 12, 131, 132, 134, 157).

[Dat+17] Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul,
and Liting Zhang. “Single Key Variant of PMAC_Plus”. In:
IACR Trans. Symm. Cryptol. 2017.4 (2017), pp. 268–305.
issn: 2519-173X (cit. on pp. 12, 132, 134).

[Dat+18] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Goutam
Paul. “Double-block Hash-then-Sum: A Paradigm for Con-
structing BBB Secure PRF”. In: IACR Trans. Symm. Cryptol.
2018.3 (2018), pp. 36–92. issn: 2519-173X (cit. on pp. 134,
160).

http://eprint.iacr.org/2015/958
http://eprint.iacr.org/2015/958

Bibliography 267

[Dat+19] Nilanjan Datta, Ashrujit Ghoshal, Debdeep Mukhopadhyay,
Sikhar Patranabis, Stjepan Picek, and Rajat Sadhukhan.
TRIFLE. Submission to NIST Lightweight Cryptography
Standardization Process. Mar. 2019 (cit. on p. 164).

[DES77] Data Encryption Standard. National Bureau of Standards,
NBS FIPS PUB 46, U.S. Department of Commerce. Jan.
1977 (cit. on pp. 196, 203, 239).

[DH76] Whitfield Diffie and Martin E. Hellman. “New Directions
in Cryptography”. In: IEEE Transactions on Information
Theory 22.6 (1976), pp. 644–654 (cit. on p. 34).

[DH79] Whitfield Diffie and Martin E Hellman. “Privacy and authen-
tication: An introduction to cryptography”. In: Proceedings
of the IEEE 67.3 (1979), pp. 397–427 (cit. on pp. 53, 102).

[Din+13] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir.
“Key Recovery Attacks on 3-round Even-Mansour, 8-step
LED-128, and Full AES2”. In: ASIACRYPT 2013, Part I.
Ed. by Kazue Sako and Palash Sarkar. Vol. 8269. LNCS.
Springer, Heidelberg, Dec. 2013, pp. 337–356 (cit. on pp. 18,
215, 218, 219).

[Din+16] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir.
“Key Recovery Attacks on Iterated Even-Mansour Encryption
Schemes”. In: Journal of Cryptology 29.4 (Oct. 2016), pp. 697–
728 (cit. on pp. 18, 216, 218–221, 233, 236).

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. “Mini-
malism in Cryptography: The Even-Mansour Scheme Revis-
ited”. In: EUROCRYPT 2012. Ed. by David Pointcheval and
Thomas Johansson. Vol. 7237. LNCS. Springer, Heidelberg,
Apr. 2012, pp. 336–354 (cit. on p. 199).

[DKS15] Orr Dunkelman, Nathan Keller, and Adi Shamir. “Slidex At-
tacks on the Even-Mansour Encryption Scheme”. In: Journal
of Cryptology 28.1 (Jan. 2015), pp. 1–28 (cit. on pp. 199–201).

[DR11] Thai Duong and Juliano Rizzo. “Here Come The ⊕ Ninjas”.
In: (2011) (cit. on pp. 78, 102).

[Dwo01] Morris Dworkin. Recommendation for Block Cipher Modes
of Operation. Tech. rep. NIST Special Publication 800-38A,
Dec. 2001 (cit. on p. 53).

268 Bibliography

[Dwo04] Morris Dworkin. Recommendation for Block Cipher Modes
of Operation. Tech. rep. NIST Special Publication 800-38C,
May 2004 (cit. on p. 69).

[Dwo10] Morris Dworkin. Recommendation for Block Cipher Modes of
Operation: the XTS-AES Mode for Condidentiality on Storage
Devices. Tech. rep. NIST Special Publication 800-38E, Jan.
2010 (cit. on p. 211).

[Dwo15] Morris Dworkin. SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions. Tech. rep. NIST Federal
Inf. Process. Stds. (NIST FIPS) - 202, Aug. 2015 (cit. on
pp. 73, 209).

[EM93] Shimon Even and Yishay Mansour. “A Construction of a
Cipher From a Single Pseudorandom Permutation”. In: ASI-
ACRYPT’91. Ed. by Hideki Imai, Ronald L. Rivest, and
Tsutomu Matsumoto. Vol. 739. LNCS. Springer, Heidelberg,
Nov. 1993, pp. 210–224 (cit. on pp. 198, 199).

[Fer05a] Niels Ferguson. Authentication weaknesses in GCM. Com-
ment to NIST. http : / / csrc . nist . gov / groups / ST /
toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.
pdf. 2005 (cit. on p. 68).

[Fer05b] Niels Ferguson. Authentication weaknesses in GCM. Com-
ment to NIST. http : / / csrc . nist . gov / groups / ST /
toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.
pdf. 2005 (cit. on p. 126).

[FIPS113] Computer Data Authentication. National Bureau of Stan-
dards, NIST FIPS PUB 113, U.S. Department of Commerce.
1985 (cit. on p. 133).

[FIPS81] DES Modes of Operation. National Institute of Standards
and Technology (NIST), FIPS PUB 81, U.S. Department of
Commerce. Dec. 1980 (cit. on pp. 48, 50).

[FO90] Philippe Flajolet and Andrew M. Odlyzko. “Random Map-
ping Statistics”. In: EUROCRYPT’89. Ed. by Jean-Jacques
Quisquater and Joos Vandewalle. Vol. 434. LNCS. Springer,
Heidelberg, Apr. 1990, pp. 329–354 (cit. on p. 88).

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf

Bibliography 269

[FSK11] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryp-
tography engineering: design principles and practical applica-
tions. John Wiley & Sons, 2011 (cit. on p. 101).

[Gaž13] Peter Gaži. “Plain versus Randomized Cascading-Based Key-
Length Extension for Block Ciphers”. In: CRYPTO 2013,
Part I. Ed. by Ran Canetti and Juan A. Garay. Vol. 8042.
LNCS. Springer, Heidelberg, Aug. 2013, pp. 551–570 (cit. on
pp. 21, 205, 233, 244, 247, 254).

[GL15] Shay Gueron and Yehuda Lindell. “GCM-SIV: Full Nonce
Misuse-Resistant Authenticated Encryption at Under One
Cycle per Byte”. In: ACM CCS 2015. Ed. by Indrajit Ray,
Ninghui Li, and Christopher Kruegel. ACM Press, Oct. 2015,
pp. 109–119 (cit. on p. 82).

[GLL17] Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-
SIV: Specification and Analysis. Cryptology ePrint Archive,
Report 2017/168. http://eprint.iacr.org/2017/168.
2017 (cit. on p. 82).

[Gre13] Matthew Green. Why I hate CBC-MAC. Johns Hopkins Uni-
versity, https://blog.cryptographyengineering.com/
2013/02/15/why- i- hate- cbc- mac/. Feb. 2013 (cit. on
p. 80).

[Gui+11] Bertoni Guido, Daemen Joan, P Michaël, and VA Gilles.
Cryptographic sponge functions. 2011 (cit. on p. 209).

[HKR15] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. “Ro-
bust Authenticated-Encryption AEZ and the Problem That
It Solves”. In: EUROCRYPT 2015, Part I. Ed. by Elisa-
beth Oswald and Marc Fischlin. Vol. 9056. LNCS. Springer,
Heidelberg, Apr. 2015, pp. 15–44 (cit. on p. 171).

[Hoa+15] Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway,
and Damian Vizár. “Online Authenticated-Encryption and
its Nonce-Reuse Misuse-Resistance”. In: CRYPTO 2015,
Part I. Ed. by Rosario Gennaro and Matthew J. B. Robshaw.
Vol. 9215. LNCS. Springer, Heidelberg, Aug. 2015, pp. 493–
517 (cit. on pp. 79, 119).

http://eprint.iacr.org/2017/168
https://blog.cryptographyengineering.com/2013/02/15/why-i-hate-cbc-mac/
https://blog.cryptographyengineering.com/2013/02/15/why-i-hate-cbc-mac/

270 Bibliography

[HP08] Helena Handschuh and Bart Preneel. “Key-Recovery Attacks
on Universal Hash Function Based MAC Algorithms”. In:
CRYPTO 2008. Ed. by David Wagner. Vol. 5157. LNCS.
Springer, Heidelberg, Aug. 2008, pp. 144–161 (cit. on p. 126).

[IM16] Tetsu Iwata and Kazuhiko Minematsu. “Stronger Security
Variants of GCM-SIV”. In: IACR Trans. Symm. Cryptol.
2016.1 (2016). http://tosc.iacr.org/index.php/ToSC/
article/view/539, pp. 134–157. issn: 2519-173X (cit. on
pp. 12, 132, 134, 143).

[IM18] Akiko Inoue and Kazuhiko Minematsu. Cryptanalysis of
OCB2. Cryptology ePrint Archive, Report 2018/1040. https:
//eprint.iacr.org/2018/1040. 2018 (cit. on p. 73).

[IMV16] Tetsu Iwata, Bart Mennink, and Damian Vizár. CENC is Op-
timally Secure. Cryptology ePrint Archive, Report 2016/1087.
http://eprint.iacr.org/2016/1087. 2016 (cit. on pp. 76,
129).

[Ino+19] Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu, and Bertram
Poettering. “Cryptanalysis of OCB2: Attacks on Authenticity
and Confidentiality”. In: CRYPTO 2019, Part I. Ed. by
Alexandra Boldyreva and Daniele Micciancio. Vol. 11692.
LNCS. Springer, Heidelberg, Aug. 2019, pp. 3–31 (cit. on
p. 73).

[IOM12] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu.
“Breaking and Repairing GCM Security Proofs”. In: CRYPTO
2012. Ed. by Reihaneh Safavi-Naini and Ran Canetti.
Vol. 7417. LNCS. Springer, Heidelberg, Aug. 2012, pp. 31–49
(cit. on p. 68).

[IS17] Takanori Isobe and Kyoji Shibutani. “New Key Recovery
Attacks on Minimal Two-Round Even-Mansour Ciphers”.
In: ASIACRYPT 2017, Part I. Ed. by Tsuyoshi Takagi and
Thomas Peyrin. Vol. 10624. LNCS. Springer, Heidelberg, Dec.
2017, pp. 244–263 (cit. on pp. 18, 216–219, 221, 230).

[Iwa06] Tetsu Iwata. “New Blockcipher Modes of Operation with
Beyond the Birthday Bound Security”. In: FSE 2006. Ed.
by Matthew J. B. Robshaw. Vol. 4047. LNCS. Springer,
Heidelberg, Mar. 2006, pp. 310–327 (cit. on pp. 76, 129).

http://tosc.iacr.org/index.php/ToSC/article/view/539
http://tosc.iacr.org/index.php/ToSC/article/view/539
https://eprint.iacr.org/2018/1040
https://eprint.iacr.org/2018/1040
http://eprint.iacr.org/2016/1087

Bibliography 271

[Jha+17] Ashwin Jha, Eik List, Kazuhiko Minematsu, Sweta Mishra,
and Mridul Nandi. “XHX - A Framework for Optimally
Secure Tweakable Block Ciphers from Classical Block Ciphers
and Universal Hashing”. In: LATINCRYPT 2017. Ed. by
Tanja Lange and Orr Dunkelman. Vol. 11368. LNCS. Springer,
Heidelberg, Sept. 2017, pp. 207–227 (cit. on pp. 22, 211, 239,
245, 246, 255).

[JJV02] Éliane Jaulmes, Antoine Joux, and Frédéric Valette. “On the
Security of Randomized CBC-MAC Beyond the Birthday
Paradox Limit: A New Construction”. In: FSE 2002. Ed. by
Joan Daemen and Vincent Rijmen. Vol. 2365. LNCS. Springer,
Heidelberg, Feb. 2002, pp. 237–251 (cit. on p. 133).

[JL09] Antoine Joux and Stefan Lucks. “Improved Generic Algo-
rithms for 3-Collisions”. In: ASIACRYPT 2009. Ed. by Mit-
suru Matsui. Vol. 5912. LNCS. Springer, Heidelberg, Dec.
2009, pp. 347–363 (cit. on p. 216).

[Jon03] Jakob Jonsson. “On the Security of CTR + CBC-MAC”.
In: SAC 2002. Ed. by Kaisa Nyberg and Howard M. Heys.
Vol. 2595. LNCS. Springer, Heidelberg, Aug. 2003, pp. 76–93
(cit. on p. 70).

[Jou04] Antoine Joux. “Multicollisions in Iterated Hash Functions.
Application to Cascaded Constructions”. In: CRYPTO 2004.
Ed. by Matthew Franklin. Vol. 3152. LNCS. Springer, Hei-
delberg, Aug. 2004, pp. 306–316 (cit. on pp. 154, 206, 207).

[Jou06] Antoine Joux. Authentication failures in NIST version of
GCM. Comment to NIST. http://csrc.nist.gov/groups/
ST/toolkit/BCM/documents/comments/800-38_Series-
Drafts/GCM/Joux_comments.pdf. 2006 (cit. on p. 126).

[Jou09] Antoine Joux. Algorithmic Cryptanalysis. 1st. Chapman &
Hall/CRC, 2009. isbn: 1420070029, 9781420070026 (cit. on
pp. 18, 97, 218, 225–227).

[KLL20] Seongkwang Kim, ByeongHak Lee, and Jooyoung Lee. “Tight
Security Bounds for Double-Block Hash-then-Sum MACs”.
In: EUROCRYPT 2020, Part I. Ed. by Anne Canteaut and
Yuval Ishai. Vol. 12105. LNCS. Springer, Heidelberg, May
2020, pp. 435–465 (cit. on pp. 11, 12, 76, 131, 132, 134, 149,
160, 257).

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf

272 Bibliography

[KM03] Lars R Knudsen and Chris J Mitchell. “Analysis of 3gpp-MAC
and two-key 3gpp-MAC”. In: Discrete Applied Mathematics
128.1 (2003). International Workshop on Coding and Cryp-
tography (WCC2001)., pp. 181–191. issn: 0166-218X (cit. on
p. 149).

[KR14] T. Krovetz and P. Rogaway. The OCB Authenticated-
Encryption Algorithm. RFC 7253, DOI 10.17487/RFC7253,
https://www.rfc-editor.org/info/rfc7253. May 2014
(cit. on pp. 72, 210).

[KR96] Joe Kilian and Phillip Rogaway. “How to Protect DES
Against Exhaustive Key Search”. In: CRYPTO’96. Ed. by
Neal Koblitz. Vol. 1109. LNCS. Springer, Heidelberg, Aug.
1996, pp. 252–267 (cit. on pp. 195, 203, 204).

[KVW04] Tadayoshi Kohno, John Viega, and Doug Whiting. “CWC: A
High-Performance Conventional Authenticated Encryption
Mode”. In: FSE 2004. Ed. by Bimal K. Roy and Willi Meier.
Vol. 3017. LNCS. Springer, Heidelberg, Feb. 2004, pp. 408–
426 (cit. on p. 127).

[KZ19] Patrick Kresmer and Alexander Zeh. CCM-SIV: Single-PRF
Nonce-Misuse-Resistant Authenticated Encryption. Cryptol-
ogy ePrint Archive, Report 2019/892. https : / / eprint .
iacr.org/2019/892. 2019 (cit. on p. 82).

[Leu15] Gaëtan Leurent. Generic Attacks against MAC algorithms.
SAC 2015, Invited Talk. Aug. 2015 (cit. on p. 56).

[LL18] ByeongHak Lee and Jooyoung Lee. “Tweakable Block Ci-
phers Secure Beyond the Birthday Bound in the Ideal Cipher
Model”. In: ASIACRYPT 2018, Part I. Ed. by Thomas Peyrin
and Steven Galbraith. Vol. 11272. LNCS. Springer, Heidel-
berg, Dec. 2018, pp. 305–335 (cit. on pp. 21, 22, 211, 241,
244–246, 255).

[LNS18] Gaëtan Leurent, Mridul Nandi, and Ferdinand Sibleyras.
“Generic Attacks Against Beyond-Birthday-Bound MACs”. In:
CRYPTO 2018, Part I. Ed. by Hovav Shacham and Alexandra
Boldyreva. Vol. 10991. LNCS. Springer, Heidelberg, Aug.
2018, pp. 306–336 (cit. on pp. 8, 14, 28, 76, 131, 257).

https://www.rfc-editor.org/info/rfc7253
https://eprint.iacr.org/2019/892
https://eprint.iacr.org/2019/892

Bibliography 273

[LP16] Atul Luykx and Kenneth G. Paterson. Limits on Authenti-
cated Encryption Use in TLS. http://www.isg.rhul.ac.
uk/~kp/TLS-AEbounds.pdf. Mar. 2016 (cit. on pp. 86, 123,
129).

[LP18] Atul Luykx and Bart Preneel. “Optimal Forgeries Against
Polynomial-Based MACs and GCM”. In: EUROCRYPT 2018,
Part I. Ed. by Jesper Buus Nielsen and Vincent Rijmen.
Vol. 10820. LNCS. Springer, Heidelberg, Apr. 2018, pp. 445–
467 (cit. on pp. 63, 125).

[LPS12] Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. “An
Asymptotically Tight Security Analysis of the Iterated Even-
Mansour Cipher”. In: ASIACRYPT 2012. Ed. by Xiaoyun
Wang and Kazue Sako. Vol. 7658. LNCS. Springer, Heidelberg,
Dec. 2012, pp. 278–295 (cit. on pp. 201, 203).

[LR88] Michael Luby and Charles Rackoff. “How to construct pseu-
dorandom permutations from pseudorandom functions”. In:
SIAM Journal on Computing 17.2 (1988) (cit. on pp. 195–
197).

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. “Tweak-
able Block Ciphers”. In: CRYPTO 2002. Ed. by Moti Yung.
Vol. 2442. LNCS. Springer, Heidelberg, Aug. 2002, pp. 31–46
(cit. on p. 73).

[LRW11] Moses Liskov, Ronald L. Rivest, and David Wagner. “Tweak-
able Block Ciphers”. In: Journal of Cryptology 24.3 (July
2011), pp. 588–613 (cit. on pp. 20, 22, 195, 209, 210, 239, 245,
246).

[LS18] Gaëtan Leurent and Ferdinand Sibleyras. “The Missing Differ-
ence Problem, and Its Applications to Counter Mode Encryp-
tion”. In: EUROCRYPT 2018, Part II. Ed. by Jesper Buus
Nielsen and Vincent Rijmen. Vol. 10821. LNCS. Springer,
Heidelberg, Apr. 2018, pp. 745–770 (cit. on pp. 8, 11, 28, 63,
101).

[LS19] Gaëtan Leurent and Ferdinand Sibleyras. “Low-Memory
Attacks Against Two-Round Even-Mansour Using the 3-
XOR Problem”. In: CRYPTO 2019, Part II. Ed. by Alexan-
dra Boldyreva and Daniele Micciancio. Vol. 11693. LNCS.

http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf

274 Bibliography

Springer, Heidelberg, Aug. 2019, pp. 210–235 (cit. on pp. 8,
19, 28, 98, 213).

[LST12] Will Landecker, Thomas Shrimpton, and R. Seth Terashima.
“Tweakable Blockciphers with Beyond Birthday-Bound Secu-
rity”. In: CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and
Ran Canetti. Vol. 7417. LNCS. Springer, Heidelberg, Aug.
2012, pp. 14–30 (cit. on pp. 22, 245, 246).

[McG12] David McGrew. Impossible plaintext cryptanalysis and
probable-plaintext collision attacks of 64-bit block cipher
modes. Cryptology ePrint Archive, Report 2012/623. http:
//eprint.iacr.org/2012/623. 2012 (cit. on pp. 102, 104,
105).

[Men15] Bart Mennink. “Optimally Secure Tweakable Blockciphers”.
In: FSE 2015. Ed. by Gregor Leander. Vol. 9054. LNCS.
Springer, Heidelberg, Mar. 2015, pp. 428–448 (cit. on pp. 22,
211, 239, 245, 246).

[Men16] Bart Mennink. “XPX: Generalized Tweakable Even-Mansour
with Improved Security Guarantees”. In: CRYPTO 2016,
Part I. Ed. by Matthew Robshaw and Jonathan Katz.
Vol. 9814. LNCS. Springer, Heidelberg, Aug. 2016, pp. 64–94
(cit. on pp. 22, 211, 245, 246).

[Men17] Bart Mennink. “Insuperability of the Standard Versus
Ideal Model Gap for Tweakable Blockcipher Security”. In:
CRYPTO 2017, Part II. Ed. by Jonathan Katz and Hovav
Shacham. Vol. 10402. LNCS. Springer, Heidelberg, Aug. 2017,
pp. 708–732 (cit. on p. 255).

[Men18] Bart Mennink. “Towards Tight Security of Cascaded LRW2”.
In: TCC 2018, Part II. Ed. by Amos Beimel and Stefan
Dziembowski. Vol. 11240. LNCS. Springer, Heidelberg, Nov.
2018, pp. 192–222 (cit. on p. 255).

[Mer79] Ralph Merkle. Secrecy, Authentication, and public key system.
Tech. rep. Stanford University, June 1979 (cit. on p. 206).

[Min10] Kazuhiko Minematsu. “How to Thwart Birthday Attacks
against MACs via Small Randomness”. In: FSE 2010. Ed. by
Seokhie Hong and Tetsu Iwata. Vol. 6147. LNCS. Springer,
Heidelberg, Feb. 2010, pp. 230–249 (cit. on p. 133).

http://eprint.iacr.org/2012/623
http://eprint.iacr.org/2012/623

Bibliography 275

[MS15] Brice Minaud and Yannick Seurin. “The Iterated Random
Permutation Problem with Applications to Cascade Encryp-
tion”. In: CRYPTO 2015, Part I. Ed. by Rosario Gennaro
and Matthew J. B. Robshaw. Vol. 9215. LNCS. Springer,
Heidelberg, Aug. 2015, pp. 351–367 (cit. on p. 41).

[MS20] Bill Marczak and John Scott-Railton. Move Fast and Roll
Your Own Crypto. Tech. rep. Citizen Lab, Munk School of
Global Affairs & Public Policy, Apr. 2020 (cit. on p. 49).

[MV04] David A. McGrew and John Viega. “The Security and Per-
formance of the Galois/Counter Mode (GCM) of Operation”.
In: INDOCRYPT 2004. Ed. by Anne Canteaut and Kapalee
Viswanathan. Vol. 3348. LNCS. Springer, Heidelberg, Dec.
2004, pp. 343–355 (cit. on pp. 67, 123).

[Nai17] Yusuke Naito. “Blockcipher-Based MACs: Beyond the Birth-
day Bound Without Message Length”. In: ASIACRYPT 2017,
Part III. Ed. by Tsuyoshi Takagi and Thomas Peyrin.
Vol. 10626. LNCS. Springer, Heidelberg, Dec. 2017, pp. 446–
470 (cit. on pp. 12, 132, 134, 148).

[Nai18] Yusuke Naito. “Improved Security Bound of LightMAC_Plus
and Its Single-Key Variant”. In: CT-RSA 2018. Ed. by Nigel
P. Smart. Vol. 10808. LNCS. Springer, Heidelberg, Apr. 2018,
pp. 300–318 (cit. on pp. 77, 131, 134, 148, 159).

[Nan09] Mridul Nandi. “Fast and Secure CBC-Type MAC Algo-
rithms”. In: FSE 2009. Ed. by Orr Dunkelman. Vol. 5665.
LNCS. Springer, Heidelberg, Feb. 2009, pp. 375–393 (cit. on
p. 164).

[NS15] Ivica Nikolic and Yu Sasaki. “Refinements of the k-tree Al-
gorithm for the Generalized Birthday Problem”. In: ASI-
ACRYPT 2015, Part II. Ed. by Tetsu Iwata and Jung Hee
Cheon. Vol. 9453. LNCS. Springer, Heidelberg, Nov. 2015,
pp. 683–703 (cit. on pp. 96, 97, 137, 215, 225, 226, 228).

[NWW14] Ivica Nikolic, Lei Wang, and Shuang Wu. “Cryptanalysis of
Round-Reduced LED”. In: FSE 2013. Ed. by Shiho Moriai.
Vol. 8424. LNCS. Springer, Heidelberg, Mar. 2014, pp. 112–
129 (cit. on pp. 18, 215, 218, 219, 226–228).

276 Bibliography

[Pat09] Jacques Patarin. “The “Coefficients H” Technique (Invited
Talk)”. In: SAC 2008. Ed. by Roberto Maria Avanzi, Liam
Keliher, and Francesco Sica. Vol. 5381. LNCS. Springer, Hei-
delberg, Aug. 2009, pp. 328–345 (cit. on p. 181).

[PC15] Gordon Procter and Carlos Cid. “On Weak Keys and Forgery
Attacks Against Polynomial-Based MAC Schemes”. In: Jour-
nal of Cryptology 28.4 (Oct. 2015), pp. 769–795 (cit. on
p. 126).

[PGV94] Bart Preneel, René Govaerts, and Joos Vandewalle. “Hash
Functions Based on Block Ciphers: A Synthetic Approach”.
In: CRYPTO’93. Ed. by Douglas R. Stinson. Vol. 773. LNCS.
Springer, Heidelberg, Aug. 1994, pp. 368–378 (cit. on pp. 207,
208).

[Pv95] Bart Preneel and Paul C. van Oorschot. “MDx-MAC and
Building Fast MACs from Hash Functions”. In: CRYPTO’95.
Ed. by Don Coppersmith. Vol. 963. LNCS. Springer, Heidel-
berg, Aug. 1995, pp. 1–14 (cit. on pp. 61, 92, 133, 136).

[Que86] Mary Queen of Scots. Page of ciphers used by Mary Queen of
Scots, c.1586 (SP 53/22 f.1). The National Archives (United
Kingdom). 1586 (cit. on p. 32).

[Rog+01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz.
“OCB: A Block-Cipher Mode of Operation for Efficient Au-
thenticated Encryption”. In: ACM CCS 2001. Ed. by Michael
K. Reiter and Pierangela Samarati. ACM Press, Nov. 2001,
pp. 196–205 (cit. on p. 72).

[Rog04] Phillip Rogaway. “Efficient Instantiations of Tweakable Block-
ciphers and Refinements to Modes OCB and PMAC”. In:
ASIACRYPT 2004. Ed. by Pil Joong Lee. Vol. 3329. LNCS.
Springer, Heidelberg, Dec. 2004, pp. 16–31 (cit. on pp. 145,
210).

[Rog11] Phillip Rogaway. Evaluation of Some Blockcipher Modes of
Operation. Tech. rep. University of California, Davis, Feb.
2011 (cit. on p. 50).

[RP95] Motwani Rajeev and Raghavan Prabhakar. Randomized Al-
gorithms. Cambridge University Press, 1995 (cit. on p. 109).

Bibliography 277

[RS06] Phillip Rogaway and Thomas Shrimpton. “A Provable-
Security Treatment of the Key-Wrap Problem”. In: EURO-
CRYPT 2006. Ed. by Serge Vaudenay. Vol. 4004. LNCS.
Springer, Heidelberg, May 2006, pp. 373–390 (cit. on p. 80).

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman.
“A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems”. In: Communications of the Association for
Computing Machinery 21.2 (1978), pp. 120–126 (cit. on p. 34).

[Saa12] Markku-Juhani Olavi Saarinen. “Cycling Attacks on GCM,
GHASH and Other Polynomial MACs and Hashes”. In:
FSE 2012. Ed. by Anne Canteaut. Vol. 7549. LNCS. Springer,
Heidelberg, Mar. 2012, pp. 216–225 (cit. on p. 126).

[Sha49] Claude E. Shannon. “Communication theory of secrecy
systems”. In: Bell Systems Technical Journal 28.4 (1949),
pp. 656–715 (cit. on p. 33).

[Sho96] Victor Shoup. “On Fast and Provably Secure Message Au-
thentication Based on Universal Hashing”. In: CRYPTO’96.
Ed. by Neal Koblitz. Vol. 1109. LNCS. Springer, Heidelberg,
Aug. 1996, pp. 313–328 (cit. on p. 62).

[Sib20] Ferdinand Sibleyras. “Generic Attack on Iterated Tweakable
FX Constructions”. In: CT-RSA 2020. Ed. by Stanislaw
Jarecki. Vol. 12006. LNCS. Springer, Heidelberg, Feb. 2020,
pp. 1–14 (cit. on pp. 8, 22, 28, 239).

[Sin00] Simon Singh. The Code Book: The Science of Secrecy from
Ancient Egypt to Quantum Cryptography. Anchor Books,
2000. isbn: 9780385495325 (cit. on pp. 32, 33).

[Sys17] Cisco Systems. Cisco Visual Networking Index Predicts Global
Annual IP Traffic to Exceed Three Zettabytes by 2021. Tech.
rep. June 2017 (cit. on p. 86).

[VN17] Baptiste Vinh Mau and Koji Nuida. “Correction of a Secure
Comparison Protocol for Encrypted Integers in IEEE WIFS
2012 (Short Paper)”. In: IWSEC 17. Ed. by Satoshi Obana
and Koji Chida. Vol. 10418. LNCS. Springer, Heidelberg,
Aug. 2017, pp. 181–191 (cit. on p. ii).

[vW99] Paul C. van Oorschot and Michael J. Wiener. “Parallel Colli-
sion Search with Cryptanalytic Applications”. In: Journal of
Cryptology 12.1 (Jan. 1999), pp. 1–28 (cit. on p. 89).

[Wag02] David Wagner. “A Generalized Birthday Problem”. In:
CRYPTO 2002. Ed. by Moti Yung. Vol. 2442. LNCS. Springer,
Heidelberg, Aug. 2002, pp. 288–303 (cit. on pp. 93–96, 137,
236).

[WC81] Mark N. Wegman and Larry Carter. “New Hash Functions
and Their Use in Authentication and Set Equality”. In: Jour-
nal of Computer and System Sciences 22 (1981), pp. 265–279
(cit. on pp. 61, 133).

[Win83] Robert S. Winternitz. “Producing a One-Way Hash Function
from DES”. In: CRYPTO’83. Ed. by David Chaum. Plenum
Press, New York, USA, 1983, pp. 203–207 (cit. on p. 207).

[Win84] Robert S. Winternitz. “A Secure One-Way Hash Function
Built from DES”. In: 1984 IEEE Symposium on Security and
Privacy (1984), pp. 88–88 (cit. on pp. 207, 259).

[WN95] David J. Wheeler and Roger M. Needham. “TEA, a Tiny
Encryption Algorithm”. In: FSE’94. Ed. by Bart Preneel.
Vol. 1008. LNCS. Springer, Heidelberg, Dec. 1995, pp. 363–
366 (cit. on p. 109).

[Yas10] Kan Yasuda. “The Sum of CBC MACs Is a Secure PRF”.
In: CT-RSA 2010. Ed. by Josef Pieprzyk. Vol. 5985. LNCS.
Springer, Heidelberg, Mar. 2010, pp. 366–381 (cit. on pp. 12,
76, 132, 133, 138, 257).

[Yas11] Kan Yasuda. “A New Variant of PMAC: Beyond the Birth-
day Bound”. In: CRYPTO 2011. Ed. by Phillip Rogaway.
Vol. 6841. LNCS. Springer, Heidelberg, Aug. 2011, pp. 596–
609 (cit. on pp. 12, 76, 132, 134, 145).

[Zha+12] Liting Zhang, Wenling Wu, Han Sui, and Peng Wang. “3kf9:
Enhancing 3GPP-MAC beyond the Birthday Bound”. In:
ASIACRYPT 2012. Ed. by Xiaoyun Wang and Kazue Sako.
Vol. 7658. LNCS. Springer, Heidelberg, Dec. 2012, pp. 296–
312 (cit. on pp. 12, 132, 134, 149).

[Zoo20] Inc. Zoom Video Communications. White Paper: Zoom En-
cryption. Tech. rep. Apr. 2020 (cit. on p. 49).

	Contents
	Survol des Contributions
	Publications
	On Provably Secure Schemes
	Modern Cryptography
	Cryptography from Antiquity to Today
	Modern Symmetric Cryptography
	Security of Block Ciphers
	The Need for Modes of Operation
	Random Functions and Permutations

	Modes of Operation
	Introduction to Modes of Operation
	Modes for Encryption
	Security Game
	An Insecure Mode
	Legacy Modes for Encryption
	The Counter Mode

	Modes for Authentication
	Security Game
	CBC-MAC
	The Wegman-Carter Construction

	Modes for Authenticated Encryption
	AE Security Game
	Generic Construction for Authenticated Encryption
	Concrete Examples
	Tweakable Block Cipher and Permutation based Modes

	On the Security of Modes of Operation
	Quest for Concrete Security
	Quest for Practical Security
	Quest for Robust Security

	Algorithms for Generic Attacks
	Collisions
	Complexity
	Cryptanalysis

	Generalized Birthday
	Wagner's Algorithm
	A Hard Case: the 3-XOR Problem

	The Missing Difference Problem
	The Algorithmic Challenge
	From CTR to Missing Difference
	Previous Works

	The Known-Prefix Sieving
	The Algorithm
	Complexity Analysis
	Simulations

	The Fast-Convolution Sieving
	The Algorithm
	Complexity Analysis
	Simulations

	Application
	Plaintext Recovery of the Counter Mode
	Partial Key Recovery of GMAC and Poly1305

	Conclusion

	Beyond-Birthday-Bound Secure MAC
	Double-block Hash-then-Sum MACs
	Generic Design
	Generic Attack

	Application to concrete MACs
	Attacking SUM-ECBC
	Attacking GCM-SIV2
	Attacking PMAC+
	Attacking LightMAC+
	Attacking 3kf9
	Attacking and Breaking 1kf9
	Attacking 1kPMAC+

	Conclusion
	Proof is hard
	Open Questions

	Release of Unverified Plaintext security of ANYDAE
	RUP (In)Security of SUNDAE
	RUP Security Notions
	RUP Attack on SUNDAE

	RUP Security of ANYDAE
	AERUP Generalized Notion of Security
	ANYDAE Mode of Operation
	MONDAE and TUESDAE Mode of Operation

	Proving AERUP Security of ANYDAE
	H-Coefficient Technique and Proof Strategy
	Oracles Definition for AERUP Security
	Analysis of Bad Transcripts
	Analysis of Good Transcripts
	AERUP Security of ANYDAE

	Idealized Designs
	Introduction to Idealized Designs
	Building Block Ciphers
	Feistel Network
	Even-Mansour Construction
	FX Construction

	Other Designs
	Building Hash Function
	Building Tweakable Block Ciphers

	Low-Memory Attack on 2-round Even-Mansour
	Previous Results
	Security Reductions
	Taking care of Linear Key Schedules
	From a Key Recovery to a 3-XOR Problem
	Permuting Oracle Calls

	2EM Cryptanalysis
	Direct Applications
	Using Black-box 3-XOR Algorithms
	Using Very Low Data

	Going Further
	Extending to More than 2 Rounds
	Conclusion

	Generic Attack on the Iterated Tweakable FX Construction
	The Generic Tweakable FX Model
	Notations
	Results

	Cryptanalysis of 2-Round Tweakable FX
	Algorithm
	Analysis

	Cryptanalysis of Iterated Tweakable FX
	Generic Algorithm
	Analysis

	Remarks and Conclusion

	General Conclusion
	Bibliography

