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Introduction (en français)

Dans un marché de troc, les participants s’échangent des biens ou des
services sans utiliser de moyen de paiement. En général, le troc se passe
entre deux personnes, localement et immédiatement, et sans l’intervention
d’une organisation étatique. Il y a cependant une exception: les échanges
de reins sont organisés par les institutions gouvernementales et peuvent im-
pliquer beaucoup de monde. Les organes ne peuvent pas être vendus, ni
échangés d’ailleurs: dans un programme d’échange de reins, ce qui est
échangé ce sont les donneurs, pas les reins. Les acteurs du marché sont les
patients attendant une greffe de rein à cause d’une maladie rénale. Chaque
patient est associé à un proche prêt à donner un rein, mais avec qui il
est incompatible. De plus, de nouveaux reins peuvent être injectés dans le
marché grâce aux donneurs altruistes. Le rôle des programmes d’échange
de reins est de déterminer quels échanges doivent être réalisés, dans le but
d’optimiser le “bien commun”, tout en respectant les contraintes médicales,
légales, éthiques et logistiques. En d’autres termes, il doivent résoudre un
problème d’optimisation combinatoire.

L’optimisation combinatoire est une branche des mathématiques qui
étudie comment trouver un meilleur élément parmi un ensemble, fini et
discret, d’éléments. Généralement, cet ensemble ne peut pas être décrit
explicitement ; soit parce qu’il difficile de connaître les éléments qu’il con-
tient1, soit parce que ces éléments sont trop nombreux2. Il est donc plutôt
défini par une liste de contraintes que ses éléments, les solutions réal-
isables, doivent respecter. Cette définition alternative ne change pas la
structure du problème et des méthodes avancées doivent être utilisées pour
gérer l’explosion combinatoire de l’espace de recherche. Les problèmes
d’optimisation ne sont pas (seulement) des jeux abstraits pour des math-
ématiciens qui s’amusent à les résoudre. Ils apparaissent dans beaucoup
d’applications réelles rencontrées par la recherche opérationnelle : or-
donnancement, tournées de véhicules, choix d’implantation d’usines, plan-
ification de production, conception de réseau, affectation d’équipes... et

1Avez-vous déjà essayé de résoudre un sudoku ? Il n’y a qu’une seule bonne solution...
2Pour livrer 13 clients, un VRP peut emprunter plus de 6 milliards de trajets différents.
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échanges de reins !
Ces dernières années, les programmes d’échange de reins sont devenus

un sujet de recherche important pour les médecins et législateurs, mais aussi
pour les mathématiciens et informaticiens, confrontés à différentes questions
à propos de l’efficacité, de l’équité et du fonctionnement de ces programmes.
En Europe, un réseau de chercheurs de tous ces domaines travaillent ensem-
ble pour partager leurs retour d’expériences, établir des bonnes pratiques
et développer un programme transnational. Cette action est supporté par
COST (European Cooperation in Science and Technology) [32]. Pour le
grand public, ce sujet est surprenant, un peu mystérieux3, mais aussi à la
mode, puisqu’il traite des algorithmes. En 2017, la chercheuse française
Claire Mathieu a donné un cours4 sur les algorithmes au Collège de France,
un établissement d’enseignement et de recherche prestigieux et ouvert à tous,
et son exemple introductif portait justement sur les échanges de reins.

Problématique

La plupart des programmes d’échange de reins autorisent aujourd’hui les
donneurs altruistes, donc les échanges de reins ne sont pas seulement les
cycles de dons entre pairs patients-donneurs, mais aussi des chaînes de dons
initiées par ces donneurs altruistes. De plus, ils contiennent de plus en
plus de patients à mesure que la pratique se répand dans les hôpitaux. Le
plus grand programme européen enregistre actuellement 250 pairs patients-
donneurs, mais on s’attend à des milliers d’entre eux dans les prochaines an-
nées. Cette évolution des programmes d’échange de reins est bénéfique pour
les patients car elle augmente leur chance de trouver un donneur compati-
ble. D’un point de vue computationnel en revanche, cela rend le problème
d’échange de reins plus difficile à résoudre, car la structure des solutions
réalisables (les échanges de reins) devient plus complexe et leur nombre ex-
plose. Comment résoudre efficacement le problème d’échange de reins dans
ce contexte est au cœur de cette thèse, mais plusieurs autres sujets gravi-
tent autour de cette question. La modélisation du problème nous conduit à
considérer des problèmes de packing, de tournées de véhicules et de stables.
Avant tout, la résolution du problème nous amène à étudier des problèmes de
chemin élémentaire, en particulier dans le cadre de la génération de colonnes.

Contributions

Les contributions de cette thèse concernent quatre sujet différents mais con-
nexes:

3Je ne compte plus les rires gênés de mes interlocuteurs lorsqu’ils essayent de déterminer
si je suis une trafiquante d’organes.

4Disponible en ligne: https://www.college-de-france.fr/site/claire-mathieu

https://www.college-de-france.fr/site/claire-mathieu
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1. Nous proposons une nouvelle formulation pour le problème du stable
qui peut être utilisé pour modéliser le problème d’échange de reins.
C’est une formulation étendue basée sur une construction des stables
par voisinages. Nous caractérisons sont polytope et prouvons qu’il est
est meilleur (plus tight) que le polytope des cliques. La formulation
est donc idéale pour les graphes parfaits, mais nous montrons aussi
qu’elle est compacte pour les graphes sans griffe.

2. Nous concevons un algorithme de génération de colonnes pour résoudre
le problème d’échange de reins par la formulation échange (ou formu-
lation cycle). C’est une formulation exponentielle qui a été beaucoup
étudiée pour des programmes ne contenant que des cycles de dons.
La NP-difficulté du problème de pricing lorsque les chaînes de dons
sont impliquées n’a cependant été prouvée que récemment (en 2016
par Plaut et al. [104]). Nous nous concentrons donc sur l’intégration
des donneurs altruistes dans des programmes de grande taille et par-
venons à fournir un écart de moins de 0.2% entre notre solution et la
solution optimale, sur des instances de presque 800 participants. Une
partie de ce travail a été publié dans les actes de la conférence MOSIM
2018 [I].

3. Nous étudions le problème de chemin élémentaire minimum avec con-
trainte de taille et adaptons deux programmes dynamiques de la lit-
térature pour le résoudre. Ces adaptations impliquent de tirer parti
de la structure du graphe mais aussi du problème lui-même, utilisant
la contrainte de taille pour réduire l’espace de recherche. Nos expéri-
ences montrent l’intérêt de ces algorithmes pour résoudre le problème,
notamment dans une génération de colonnes.

4. Nous présentons de nouvelles stratégies pour le color coding, une
heuristique randomisée cherchant des sous-graphes, en particulier des
chemins élémentaires, dans un graphe. Au lieu d’utiliser la loi uniforme
discrète, nous proposons de nouvelles lois de probabilité qui utilisent
la structure du graph pour augmenter les chances de trouver une solu-
tion optimale. Nous prouvons que cette probabilité est effectivement
améliorée pour n’importe quel graphe et atteint 1 dans certaines cas
particuliers. En pratique, des graphes de la littérature avec plus de 300
sommets sont toujours résolus à l’optimum. Ce travail a été accepté à
la conférence ECAI 2020 [II].

Structure de la thèse

Les notions de théorie des graphes et de programmation mathématique
nécessaires à la compréhension de cette thèse sont rappelées dans le
Chapitre 1 et les notations qui y sont introduites sont valides dans tout
le manuscrit. Nous expliquons dans le Chapitre 2 le fonctionnement des
programmes d’échange de reins, ainsi que le contexte de leur création et
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de leur développement. Une revue de littérature sur les différentes ques-
tions mathématiques qui se posent dans ces programmes est ensuite présen-
tée. Finalement, ce chapitre se concentre sur le problème d’échange de
reins, en particulier sa définition mathématique et sa modélisation sous
forme de graphe. Des équivalences avec d’autres problèmes d’optimisation
connus sont aussi proposées, en particulier une réduction avec le problème
de tournées de véhicules. Dans le Chapitre 3, nous présentons une vue
d’ensemble des différents programmes linéaires en nombres entiers
pour le KEP, en particulier notre nouvelle formulation étendue problème
de stable. Le Chapitre 4 se concentre sur l’un d’entre eux, la formulation
échange et sur la conception d’un algorithme efficace de génération de
colonnes pour la résoudre. Cet algorithme est évalué et comparé avec une
formulation compacte. La résolution du problème de pricing, dont la preuve
de NP-difficulté est rappelée dans ce chapitre, nécessite de faire face à un
problème de chemin élémentaire, qui est le sujet du Chapitre 5. Nous le
définissons d’abord formellement avant de présenter un état de l’art sur les
problèmes similaires, en particulier lorsqu’ils sont imbriqués dans un schéma
de génération de colonnes pour les problèmes de tournées de véhicules. Nous
expliquons ensuite comment exploiter la structure du graphe et du problème
pour adapter les algorithmes de la littérature et rendons compte de leurs ré-
sultats expérimentaux. En particulier, nous adaptons deux programmes
dynamiques et l’un d’entre eux, le color coding est étudié dans le Chap-
titre 6. L’étude théorique de la probabilité de trouver un chemin optimal en
utilisant cette heuristique randomisée est suivie des résultats expérimentaux
sur la fréquence à laquelle cela arrive en pratique.

Chaque chapitre zoome en fait sur une sous-partie du chapitre précédent,
ce qui donne une structure en cascade à la thèse. Nous recommandons donc
fortement au lecteur de suivre le plan proposé, même si chaque chapitre
est également pensé pour être indépendant. Remarquez qu’au contraire les
cadres expérimentaux sont impactés par les résultats du chapitre d’après,
selon une intégration ascendante. En effet, les expériences d’un chapitre in-
cluent l’algorithme qui est étudié dans le chapitre suivant, mais alors seule-
ment sa meilleure configuration est prise en compte. Cette dernière est
déterminée grâce à l’évaluation expérimentale de l’algorithme, donc dans le
chapitre d’après. Le schéma 2 résume la structure de la thèse et comment
les chapitres sont liés.
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Introduction

In a barter market, participants trade goods or services without using
money or any other medium of exchange. Usually, barter takes place lo-
cally, immediately, between two people and without a state organization.
One barter market though is an exception: kidney exchanges are organized
by countries’ institutions themselves and can involve many people. Or-
gans cannot be sold, and actually cannot be exchanged either: in a kidney
exchange program, the traded “items” are the donors, not the kidneys.
Agents of the market are patients waiting for a kidney transplant because of
a renal disease. Each patient has a relative ready to donate one kidney, but
incompatible. In addition, new items can be injected in the market thanks
to altruistic donors. The role of kidney exchange programs is to find out
which exchanges should be carried out, in order to maximize the “common
good” while respecting medical, ethical, legal and logistical constraints. In
other words, they must solve a combinatorial optimization problem.

Combinatorial optimization is a mathematical field that studies how to
find an optimal object from a finite and discrete set of objects. Usually this
set cannot be explicitly described, either because it is hard to know which
objects it contains5 or because these objects are too many6. Instead, it is de-
fined by a list of constraints that the objects, called the feasible solutions,
must respect. This different definition does not change the structure of the
problem and advanced methods must be applied to deal with the combi-
natorial explosion of the search space. Combinatorial optimization prob-
lems are not (only) abstract games that mathematicians take pleasure to
solve. They appear in many real life applications faced by the operations
research: task scheduling, vehicle routing, facility locations, production
planning, network design, crew assignment... and kidney exchanges!

In recent years, kidney exchange programs have become an important
research topic for physicians and lawmakers, but also for mathematicians
and computer scientists, confronted to different questions about their effi-
ciency, fairness and functioning. In Europe, a network of researchers from

5Have you ever tried to solve a sudoku? There is only one correct solution...
6To visit 13 clients, a traveling salesman can take more than 6 billions different routes.
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all these fields are working together to share feedbacks, establish best prac-
tices and develop transnational programs in an action supported by COST
(European Cooperation in Science and Technology) [32]. For the general
public, this subject is surprising, a bit mysterious7, but also trendy, as it
comes to algorithms. In 2017, the french researcher Claire Mathieu gave
a lecture8 on algorithms at the Collège de France, a prestigious education
and research establishment open to all, and its introductory example was
precisely on kidney exchanges.

Problematic

Most of kidney exchange programs nowadays authorized altruistic donors,
so kidney exchanges are not only cycles of donations between patient-donor
pairs, but also chains of donations initiated by these altruistic donors. They
also involve more and more patients as the usage is spreading in hospitals.
The largest program in Europe currently registers 250 patient-donor pairs,
but we expect future programs to include thousands of them. This evolu-
tion is beneficial for patients as it increases their chance to find a compatible
donor. From a computational point of view however, its makes the kidney
exchange problem harder to solve as the structure of feasible solutions,
the kidney exchanges, is more complex, and their number explodes. How
to efficiently solve the kidney exchange problem in this context is the core
question of this thesis, but several other topics gravitate around this ques-
tion. Modeling the problem leads us to investigate packing problems, vehicle
routing problems and stable set problems. Above all, solving the problem
drives us to study elementary path problems, in particular in the framework
of a column generation.

Contributions

The main contributions of this thesis concern four different, but related,
topics:

1. We propose a new formulation for the stable set problem that can
be used to model the kidney exchange problem. It is an extended
formulation based on a construction of the stable set by neighborhood.
We characterize its polytope and prove it is tighter than the clique
relaxation polytope. The formulation is thus ideal for perfect graphs,
but we also show it is compact for claw-free graphs.

2. We design a column generation algorithm to solve the kidney exchange
problem with the exchange formulation (or cycle formulation). This
formulation is a large-scale model that was deeply studied for programs

7I’ve lost the count of awkward laughters from my interlocutors when they try to figure
out if I am an organ trafficker.

8Available at https://www.college-de-france.fr/site/claire-mathieu

https://www.college-de-france.fr/site/claire-mathieu
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containing only cycles of donation. However the NP-hardness of the
pricing problem when chains of donation are included was proved re-
cently (in 2016 by Plaut et al. [104]). We thus focus on integrating
altruistic donors in large size kidney exchange programs and manage
to get a gap smaller than 0.2% between our solution and the optimal,
even for instances with almost 800 participants. A part of this work
is published in the proceedings of the MOSIM 2018 conference [I].

3. We study the elementary minimum path problem with length con-
straint and adapt two dynamic programs from the literature to solve
it. These adaptations involve to take profit from the graph structure
but also from the problem itself, using the length constraint to reduce
the search space. Experiments show the benefit of these algorithms to
solve the problem, especially in a column generation scheme.

4. We introduce new strategies for the color coding, a randomized heuris-
tic finding subgraphs, in particular elementary paths, in a graph. In-
stead of using the discrete uniform distribution, we propose new proba-
bility distributions that take advantage of the graph structure in order
to increase the chance to find an optimal solution. We prove that this
probability is indeed improved for any graph and reaches 1 for some
particular cases. In practice, some graphs from the literature with
more than 300 vertices are always optimally solved. This work has
been accepted to the ECAI 2020 conference [II].

Outline

Notions of graph theory and mathematical programming which are neces-
sary for the understanding of this thesis are reminded in Chapter 1, and the
notations introduced in this chapter are valid throughout all the manuscript.
We explain in Chapter 2 the functioning of kidney exchange programs, as
well as the context of their creation and development. A literature review
on the different mathematical subjects arising in these programs is then pre-
sented. Finally, this chapter focuses on the NP-complete kidney exchange
problem, in particular its mathematical definition and graph modeling.
Equivalences with other famous optimization problems are also provided
and we propose a reduction with a vehicle routing problem. In Chapter 3
we make a survey of the different integer programming models for the
kidney exchange problem, including our new extended formulation for the
stable set problem. Chapter 4 focuses on one of them, the exchange for-
mulation, and the design of an efficient column generation algorithm to
solve it. This algorithm is evaluated and compared with a compact formu-
lation. The proof of NP-hardness of the pricing problem is also recalled in
this chapter. Solving it implies to deal with an elementary path problem,
which is the subject of Chapter 5. We first define it formally and present
the state of the art on similar problems, in particular those embedded in
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column generation schemes of vehicle routing problems. Then, we present
how to exploit the graph and problem structures to adapt algorithms from
the literature and report experiments on these algorithms. In particular, we
adapt two dynamic programs and one of them, the color coding, is studied
in Chapter 6. The theoretical study of the probability to find an optimal
path using this randomized heuristic is followed by computational results on
the frequency it happens in practice.

Each chapter actually zooms in on a subpart of the previous chapter,
such that the thesis is structured from the top down. Thus, we strongly
encourage the reader to follow the proposed plan, even if each chapter is
also written to be self-contained. Note that, on the contrary, experimental
settings are affected by results of the next chapter, following a bottom up
integration. Indeed, the experimentations of a chapter include the algorithm
studied in the next chapter, but only its best configuration is taken into
account. The latter is determined thanks to the experimental evaluation of
the algorithm, so in the next chapter. Figure 2 sums up the outline and
how chapters are linked. Complete experimental results can be found on my
webpage: https://pagesperso.g-scop.grenoble-inp.fr/~pansartl/.

https://pagesperso.g-scop.grenoble-inp.fr/~pansartl/
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Chapter 1

Operations research
prerequisites

This chapter goes over the basic knowledge in graph theory and linear
optimization used in this thesis. It also defines the notations adopted in all
our work. You can find an index of the notations and definitions at the end
of the manuscrit.

1.1 Graph theory
Directed and undirected graph. A finite simple graph G = (V,E) is an
ordered pair of a finite vertex set V and a finite edge set E. The graph can
be either undirected or directed. In the latter case, we can refer to edges also
as arcs and to the edge set as A. Given an edge e = (uv), we say that u and
v are the endpoints of e and that e is incident to u and v. This also implies
that u and v are adjacent or neighbors. When the graph is directed, we say
that u is the head and v the tail of e and that v is a successor of u while
u a predecessor of v. When the graph is undirected the edge is unordered
and e = (uv) = (vu). In this thesis, a graph refers to a finite simple graph
(directed or not). Given a graph G, we denote by V (G) its set of vertices
and by E(G) (or A(G)) its set of edges (resp. arcs). In the following, let
G = (V,E) be a graph.

Neighborhoods. The neighborhood of u ∈ V , denoted by NG(u), is
the set of neighbors of u. The closed neighborhood of u ∈ V , denoted by
NG[u], is defined as {u} ∪NG(u). δG(u) denotes the set of incident edges
to vertex u. If G is directed, NG(u) = N+

G (u) ∪N−G (u) where N+
G (u) is the

set of successors of u: N+
G (u) := {v ∈ V : (uv) ∈ A} and N−G (u) the set of its

predecessorsN−G (u) := {v ∈ V : (vu) ∈ A}. Similarly, δG(u) = δ+
G(u)∪δ−G(u)

where δ+
G(u), is the set of outgoing edges: δ+

G(u) := {e ∈ A : e = (uv)} and
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δ−G(u) the set of its incoming edges δ−G(u) := {e ∈ A : e = (vu)}. When the
context is non ambiguous, we can remove the G index.

Subgraph and induced subgraph. A subgraph of G is a graph H such
that V (H) ⊆ V and E(H) ⊆ E. Given a set U ⊆ V , the subgraph
induced by U , denoted by G[U ], is the graph on vertex set U and edge set
E[U ] having both endpoints in U , E[U ] := {(uv) ∈ E : u, v ∈ U}. For any
graph H, the graph G is said H-free if it does not contain H as an induced
subgraph.

Paths and cycles. A walk is a sequence of vertices such that each vertex is
adjacent to its neighbors in the sequence. A trail is a walk without repeated
edges. A simple path (or elementary path, or simply a path), is a trail
without repeated vertices. The length of a path is the number of edges it
contains. A circuit is a trail such that the first and the last vertices of the
sequence are the same. A cycle is a circuit without repeated vertices. It
can also be defined as a path having the same first and last vertex.

Stable set, clique, coloring. A stable set (also called independent set)
of G is a set of pairwise non adjacent vertices of V . The stability number
of G, denoted by α(G), is the maximum cardinality of a stable set of G. A
clique of G is a set of pairwise adjacent vertices of V . The clique number of
G, denoted by ω(G), is the cardinality of the largest clique of G. A proper
vertex coloring of G is a labeling of the vertices such that two adjacent
vertices do not have the same label. The minimal number needed to make
a proper vertex coloring of G is called the chromatic number and denoted
by χ(G).

Particular graphs. We denote by K1,k the complete bipartite graph, also
called a k-star, which contains one vertex adjacent to k other non-adjacent
vertices. The graph K1,3 is called a claw.

The class of perfect graphs was defined by Berge in the 1960’s in the
context of graph coloring. A graph is perfect if and only if the chromatic
number of every induced subgraph H equals the clique number of H.

Usual notations. Given a set U ⊆ V and any vector a ∈ R|V |, aU is
the restriction of a to U , that is (av)v∈U . We denote by χU ∈ {0, 1}|V | its
characteristic vector, that is χU (v) = 1⇔ v ∈ U .

Given a set S of elements, P(S) denotes the power set of S, i.e., the set
of all subsets of S.
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1.2 Quick reminders on complexity
A decision problem is a problem where a question is asked about the val-
ues of an input and can be answered only by “yes” (affirmative answer) or
“no” (negative answer). A combinatorial optimization problem aims
at finding an optimal object from a finite set of objects with respect to a
criteria. It is defined by an instance I, a set of feasible solutions F , a func-
tion m : F → R and a goal (min or max). For example, in the shortest path
problem the instance is any graph G = (V,E), the set of feasible solutions is
the set containing all paths of G from a given source s ∈ V to a destination
t ∈ V , the value m of a path is its cost and the goal is to minimize it. The
associated decision problem would ask if there exists a path between s and
t with a cost of at most M .

Several algorithms can solve a same problem, hence the need to compare
and classify them. The efficiency of an algorithm is measured by the number
of operations needed to solve any instance of size n, and commonly depicted
with the big O notation. The big O notation provides an asymptotic
bounding of an algorithm running time: we say that an algorithm runs
in O(g(n)) for a given real valued function g if and only if there exists
n0,M ∈ R+ such that the number of operations of the algorithm is bounded
by Mg(n) for any n ≥ n0.

A polynomial time algorithm has its running time bounded by a poly-
nomial in the input size n. On the contrary, the running time of an ex-
ponential time algorithm cannot be bounded by such a polynomial. A
problem is said to be belong to P if it can be solved with a polynomial
time algorithm. The complexity class NP gathers all decision problems
for which an affirmative answer can be verifiable in polynomial time. By
abusing notation, we say that an optimization problem belongs to NP if
its corresponding decision problem is in NP. A problem is NP-hard if its
solution can be transformed in polynomial time into a solution of any NP
problem. When a problem is both NP-hard and in NP, it is said to be
NP-complete. Under the hypothesis that P 6= NP, there does not exist a
polynomial time algorithm for a NP-hard problem.

1.3 Linear optimization background

1.3.1 Linear programming problem

A linear programming problem, or linear program, aims at finding a vector
that maximizes (or minimizes) a linear objective function subject to linear
constraints. These constraints are expressed by linear equality and inequal-
ity and define a polyhedron. Formally, a linear program can be written
max{cx|Ax ≤ b, x ∈ Rn} where A is a matrix Rn×m, b ∈ Rm and c is a line
vector ∈ Rn. The linear system {Ax ≤ b} defines a polyhedron P and the
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problem can be stated as max{cx|x ∈ P, x ∈ Rn}.
A feasible solution is a vector x ∈ Rn satisfying all the inequalities

{Ax ≤ b}. The polyhedron P is the set of all feasible solutions, also called
domain, and if P = ∅ the problem is infeasible. Extreme points of the poly-
hedron P are called basic (feasible) solutions and at least one of them
maximizes the objective function f(x) = cx, i.e., is an optimal solution.
The optimal solution is denoted by x∗ and the optimal value is z∗ = cx∗.
A basic solution contains m basic variables and n−m non-basic variables
whose values are set to zero. If the problem contains feasible solutions but
no optimal ones, it is unbounded.

Relaxations. The relaxation of a problem is another problem embed-
ding the original one: the set of the feasible solutions is a subset of the
relaxed problem’s domain and the relaxed objective function always gives
better (or equal) values. Formally, a relaxation of the linear program
max{cx|x ∈ P, x ∈ Rn} is another linear program max{cRx|x ∈ PR, x ∈ Rn}
such that P ⊆ PR and cRx ≥ cx, ∀x ∈ P . An optimal solution of the relaxed
problem is an upper bound for the original maximization problem.

Lagrangian relaxation. The Lagrangian relaxation of a linear pro-
gram penalizes the violation of some constraints instead of forcing solutions
to satisfy them. The domain is split into two sets of constraints and the lin-
ear program is stated as max{cx|A1x1 ≤ b1, A2x2 ≤ b2, x1 ∈ Rn1 , x2 ∈ Rn2},
where A1 ∈ Rn1×m1 , A2 ∈ Rn2×m2 , b1 ∈ Rm1 , b2 ∈ Rm2 , n1 + n2 = n and
m1 +m2 = m. The Lagrangian relaxation is obtained by moving some
constraints in the objective function with some non-negative multipliers
λ ∈ R+m2 : max{cx+ λ(b2 −A2x)|A1x ≤ b1, x ∈ Rn}.

When constraints of the second set are violated, the objective function
is penalized, while it is increased when the constraints are strictly satisfied.
This Lagrangian relaxation is usually constructed to be easily computed in
order to quickly get an upper bound on the problem.

1.3.2 Integer programming

An integer linear program, or simply integer program (IP), is a linear
program with the additional constraint that all variables must be integer:
max{cx|x ∈ P, x ∈ Zn}, where P is a polyhedron. A mixed-integer linear
program (MILP) is a linear program where some of the variables must be
integer. The linear relaxation of an integer program is the linear program
relaxing the integrality constraints z∗LP = max{cx|x ∈ P, x ∈ Rn}.

Formulations. LetX ⊆ Zn be a set of feasible solutions of a combinatorial
problem and F be an integer program F = max{cx|x ∈ Q, x ∈ Zn+p}, where
p ≥ 0. The projection of Q in the space of X is denoted by P ⊆ Rn. F is a
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formulation for X if P ∩ Zn = X. By abusing notations, we also say that
P is a formulation for X. It is an extended formulation if the variables
are in a higher dimension than X, i.e., p > 0. Many formulations exist for
a same problem, with different qualities. A formulation P ′ is tighter than
another P if P ′ ⊂ P . A formulation P is ideal for X if all the extreme
points of P are integer, i.e., P = conv(X). A valid inequality, or cut, is an
inequality πx ≤ π0 satisfied by every point of X.

In Figure 1.1, P , P ′ and P ∗ are formulations for the solution space X
(represented by filled circles). P ∗ is ideal and tighter than P ′, which is
tighter than P .

X

P

P ′

P ∗

Figure 1.1 – Formulations for the solution space X

1.4 Solving linear programming problems
Linear programming problems are solvable in polynomial time by the inte-
rior points and ellipsoid methods, but usually solved by the simplex algo-
rithm which shows very good results in practice, even though it may take an
exponential time for some special instances. On the contrary, integer linear
programs are NP-hard and solved by branch-and-bound. This algorithm
requires to solve linear relaxations of the problem in an iterative scheme.

1.4.1 Simplex and branch-and-bound

The simplex algorithm is based on the fact that at least one optimal
solution of a bounded linear programming problem is a basic solution (an
extreme point of the corresponding polyhedron). The simplex method moves
from a basic solution to another adjacent basic solution which improves
the objective function, until it reaches an optimal solution. The movement



26 | CHAPTER 1. OPERATIONS RESEARCH PREREQUISITES

between a basic solution to another is called a pivot and implies that a
basic variable is freed and “replaced” by a “better” non-basic variable which
enters the basis.

Branch-and-bound is a divide-and-conquer method that can be ap-
plied in many optimization contexts. Any optimization problem aims at
maximizing (or minimizing) an objective function over a set of possible so-
lutions: max{cx|x ∈ X}. The idea of the branch-and-bound is to divide
the solution space X into smaller spaces (branching) and then evaluate the
bounds on the objective function for each subdivision (bounding). This
branching procedure is repeated for each smaller space, creating an enumer-
ation tree. A node of the enumeration tree represents a subproblem and is
pruned if it is proven to be suboptimal. When the optimal solution of a
subproblem is found, the node is called a leaf and is not divided more. The
branch-and-bound algorithm stops when no node remains to be explored
(all of them are leaves or have been pruned), and the optimal solution of
the original problem is the best of all optimal solutions found in the leaves.

A branching rule divides the solution space X0 associated to a node
into subsets X1, ..., Xk that cover the original set X0: ∀i 6= j ∈ {0, ..., n},

Xi 6= Xj and X0 =
k⋃
i=1

Xi. Many branching rules can be adopted to
construct the enumeration tree of an integer program. An efficient
branching rule should partition (and not only cover) the solution space:
Xi ∩Xj = ∅ ∀i 6= j ∈ {1, ..., n}. The number of subsets should also be small
enough (k = O(n)) to avoid a combinatorial explosion.

The node i of the tree aims at solving max{cx|x ∈ Xi}. Actually, it
computes an upper bound UBi and a lower bound LBi. Let LB∗ be the
highest lower bound obtained overall. The branch is pruned if the subprob-
lem cannot provide a better solution than the current one (UBi < LB∗) or
if it is unfeasible. The node becomes a leaf if the optimal on Xi is found
(UBi = LB∗i ).

The standard branch-and-bound solving IP uses a branching on frac-
tional solutions and the linear relaxation to the bounding procedure. At each
node the linear relaxation of the subproblem is solved and lower bounds are
computed with heuristics. If the optimal solution x̂ of the linear relaxation
is integer the node becomes a leaf, otherwise there exists a variable xi with
a fractional value x̂i. The branching rule is to create two subproblems: one
with the restriction xi ≤ bx̂ic and the other with the restriction xi ≥ dx̂ie.

1.4.2 Large-scale problems

The efficiency of the branch-and-bound method depends on the quality of
the linear relaxation bound computed at each node. Thus, among the many
integer programming formulations existing for an optimization problem, the
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choice of the tightest one is preferable. Unfortunately, this formulation can
have an exponential number of constraints and/or variables in the input of
the problem, leading to so-called large-scale formulations (in opposition
to compact formulations). Of course, the linear relaxation is still polyno-
mially solvable in the size of the program, but the linear program itself is
exponential in the problem input size. The complete polyhedron may be
impossible to know explicitly which makes the standard methods impracti-
cal to solve the linear program. When the formulation has an exponential
number of constraints a cutting plane method is applied, while the column
generation approach is used for programs with an exponential number of
variables. These algorithms lie on the fact that an optimal solution can be
found even if the polyhedron is described only locally around it and not
completely.

The generalized cutting plane method can be used to solve any linear
program (it can even extend to convex optimization), in particular when
the number of constraints is too large to be explicitly set in the model. The
technique is iterative: it starts with a relaxation of the problem containing
a (small) subset of the numerous constraints and solves this relaxed linear
program. A separation problem checks if the obtained solution is feasible
for the original problem. If it is not, a separation oracle can find a violated
cut, i.e., a constraint which is not satisfied by the solution. This violated cut
is added to the problem and the process is repeated until an optimal solution
of the original problem is found. If the separation problem is solvable in
polynomial time, then the linear program is solvable in polynomial time.
Initially, the cutting plane method was designed by Gomory [57] to solve
integer linear programs by iteratively adding cuts to the linear relaxation
of the problem until the optimal solution is integer. The cutting plane
method can also be embedded in a branch-and-bound algorithm, adding
valid inequalities to the linear relaxation in order to strengthen the quality
of the bound. This approach is known as the branch-and-cut.

The column generation approach, depicted in figure 1.2, is based on
the fundamental property that there exists an optimal solution which is a
basic solution. In such a solution, at most m variables are non-zero (where
m is the number of constraints). Consequently, only these basic variables
are required to find an optimal solution to the problem. Thus, the linear
relaxation can be solved starting from a subset of variables – this problem
is called the restricted master problem (RMP) – and this subset grows
as new variables (i.e., new columns) are generated, until it is proven that
no more variable is needed to find an optimal solution. Generating a new
variable aims at improving the objective value of the current basis in the
simplex algorithm. Finding such a column is called the pricing problem
or slave problem. It is an optimization problem where the objective function
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is the reduced cost of the variable, i.e., the best improvement that could
be done on the master problem objective function if this variable enters the
basic solution. This reduced cost is computed using the solution value and
the dual values of the current RMP. The constraints of the pricing problem
emerge from the definition of a variable.

Yes

Solve pricing problem

Solve the restricted master problem (RMP )

No

Is reduced
cost > 0?

z∗LP

Add a column
to RMP

MILP formulation (max)

Figure 1.2 – Framework of the column generation

The goal of the pricing problem is to find the variable that maximizes
the reduced cost. If the optimal reduced cost is strictly positive, then the
variable is added to the set of variables and the process is repeated. Other-
wise, every missing variable would only lower the master problem solution,
so the optimal solution of the linear relaxation is found.

The column generation is principally applied within a branch-and-bound
in order to solve integer programs with a number of variables exponential
in the problem input. Such a technique is called branch-and-price and uses
the column generation to solve the linear relaxation at each node of the
branch-and-bound.

In the column generation framework, the number of constraints in the
restricted master problem is fixed and all dual values are exactly known. So
when both the number of variables and the number of constraints are large,
the situation gets worse. Sometimes, the structure of the integer program
allows to apply a branch-and-cut-and-price, which sequentially adds cuts
and columns. This is however possible only when the separation and pricing
problems are independent. On the contrary, if constraints are linked to
variables, then missing columns imply that their corresponding constraints
are also missing. The dual values of these constraints are unknown and the
reduced costs calculation incorrect.

In this case, if rows and columns are generated separately, the final
solution might be suboptimal or even unfeasible. Indeed, because of the
wrong reduced costs, the column generation might miss generating required
columns. Moreover, some absent columns can be linked to constraints vio-
lated by a solution. Problems with this kind of structure are referred to as
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CDR-problems (for problems with column-dependent-rows). To guar-
antee the correctness of the solution of a CDR-problem, columns and rows
must be generated simultaneously [91]. In his PhD thesis, Muter devel-
oped a general algorithm, called simultaneous column-and-row gen-
eration [91] and extended by Maher [81], which requires to solve several
pricing problems. A big difficulty is to define these subproblems for the con-
sidered master problem. Indeed, they must estimate correctly the reduced
cost of a variable to generate the required row and columns. For this reason,
the design of these pricing problems is a crucial work that might be neces-
sary for each column-dependent-row formulation. More recently, Sadykov
and Vanderbeck studied a column-and-row generation for extended formu-
lations [113].



30 | CHAPTER 1. OPERATIONS RESEARCH PREREQUISITES



Chapter 2

Kidney exchange programs:
literature review and model

Kidney exchange programs and the associated problem studied in this
thesis are described in this chapter.

2.1 Context
What is a kidney exchange program? Why is it a matter of interest? How
the literature address this subject? We introduce this thesis by answering
these questions.

2.1.1 Kidney disease and transplantation

The chronic kidney disease (CKD) causes the gradual loss of the kidney
function, until its eventual failure. In the world, around one in ten people
suffers from CKD, which was identified as the eleventh most common death
cause in 2017 [62]. The prevalence of CKD is growing in proportion and the
number of deaths resulting from the disease almost doubled since 1990 [62].
There is no cure for it, but some treatment can slow the evolution of the
disease by controlling its causes. Still, every patients will face the final stage
of the disease, referred to as the end-stage kidney disease (ESKD), and will
need a kidney replacement therapy. Two options are available: a dialysis
therapy or a kidney transplant, but the latter is preferable as it is more
efficient and has less impact on the patients quality of life [129]. However,
the shortage of donors makes this treatment rare and unable to save the
numerous patients. In 2017, 90 306 renal transplantations were conducted
worldwide while 1.2 million people died of ESKD [62, 120].

In a transplant, the kidney usually comes from a deceased donor and
patients must register to the waiting list to get one. Patients might wait
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several years and many cannot reach the moment when a compatible kidney
becomes available for them [59]. This compatibility is based on ABO and
HLA compatibilities. ABO compatibilities depend on the blood types (A,
B, O and AB) and are demonstrated in Figure 2.1. Being HLA compatible
means that the recipient blood does not contain antibodies to the Human
Leukocyte Antigens of the donor. A positive crossmatch indicates the pres-
ence of such antibodies, which would cause the immune system to attack
the transplant1.

O

A B

AB
Figure 2.1 – ABO compatibilities. A transplant is ABO compatible if there
is an arrow from the donor’s blood type to the patient’s blood type. Two
people sharing the same blood type are also compatible.

Instead of waiting endlessly, a patient can be transplanted from a living
donor, considering that a human body has two kidneys but usually needs
only one to function. In fact, living donor transplantations were the first
renal transplantations to be operated in the early 1950s and they are more
successful than deceased ones [93]. Historically, the donor and the recipient
needed to be ABO and HLA compatible, but recent research and progresses
in immunosuppressive strategies enable incompatible transplants from living
donors to be performed. These incompatible transplants are however more
costly and more risky than compatible ones [90].

2.1.2 Exchanging kidneys

The medical evidences mentioned above lead to the conclusion that the best
type of renal transplantation is from a compatible living donor.
Originally, living donations were authorized only if the patient found itself
a donor, and he was transplanted from this specified donor. Moreover, in
a lot of countries the donor must be a close relative of the patient. In this
context, it is really hard for a patient to find a willing and compatible donor
in its entourage. So when a patient finds a willing donor—we say they form
a patient-donor pair—they can decide to participate in a kidney ex-
change program, or Kidney Paired Donation (KPD). In such a program,
a patient can swap his donor with another pair: they make an exchange. In
an exchange, each recipient receives the kidney of another patient’s donor,

1more info on HLA in kidney transplant can be found at https://web.stanford.edu/
dept/HPS/transplant/html/hla.html

https://web.stanford.edu/dept/HPS/transplant/html/hla.html
https://web.stanford.edu/dept/HPS/transplant/html/hla.html
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and each donor gives one kidney to another patient. In the initial KPDs, only
cycles of donation were allowed (see Figure 2.2a and 2.2b). Nowadays,
some programs also include chains of donation in which a first altruistic
donor initiates a domino donation. The donor paired with the last patient
in the chain either donates a kidney to the waiting list or becomes a bridge
donor, considered later as an altruistic donor (see Figure 2.2c). Including
chains of donation was not an easy decision and many studies were pub-
lished to evaluate the impact of such a choice [9, 8, 11, 38, 52, 53, 87, 111].
Actually, the very idea of kidney exchanges led to several ethical discussions
in the medical field [72, 79, 107, 108, 114]. In particular, the question of
organ commerce, which is strictly forbidden in every country, was raised by
Menikoff [85, 86]. Whether to keep anonymity or not is another subject
still debated [73]. The discussion was however mainly to determine if these
programs would be efficient and fair for every patients, some of them being
disadvantaged by some allocation strategies (see Section 2.1.4).

A kidney exchange program usually works with match runs every few
weeks or months. At each run, an optimization algorithm determines a set of
exchanges that should be performed. This algorithm is designed according
to the legislative and medical framework of the KPD, which can vary a lot
depending on the countries, but three basic constraints are considered in
every cases.

First, and for obvious medical reasons, a donor can donate only one
kidney and a patient is candidate to a single transplantation. Thus, each
patient-donor pair and each altruistic donor can participate in at most one
exchange and we refer to this constraint as the physiological constraint.
Secondly, by the very definition of a patient-donor pair, a donor agrees to
give its kidney only if its paired patient receives one. This leads to the
participation constraint which actually states that the whole pair must be
included in an exchange. Finally, it is important to note that last-minute
failures can break a possible transplant. Whether it be caused by medical
complications or a donor withdrawal, a single breakdown in an exchange
cause the whole exchange to fail. Due to this failure risk, it is not an option
for a donor to donate a kidney before its paired patient receives one. This
means that all the transplants of a cycle of donation must be performed
simultaneously. As a cycle involving k pairs requires 2k surgeon teams and
rooms, this simultaneity condition introduces a length constraint on cycles
to avoid logistical difficulties. In the literature, the maximum number of
pairs to involve in a cycle is often equal to 3 or 4, even if we can find
KPDs performing long cycles, as in the Czech Republic where the successful
removing of the simultaneity constraint led to a cycle of length 7 [17]. The
failure pressure on chains of donation is far less important, as a patient
will receive a kidney before its paired donor gives one. Some programs
therefore conduct very long chains, as in the USA where a chain with 68
participants was recorded in 2014 [124]. However, the cancellation of a



34 | CHAPTER 2. LITERATURE REVIEW AND MODEL

Patient 1Donor 1

Patient 2Donor 2

(a) Cycle of donation with 2 pairs
Patient 1

Donor 1

Patient 2

Donor 2

Patient 3

Donor 3

(b) Cycle of donation with 3 pairs

Patient 1Donor 1

Patient 2Donor 2

Altruistic donor

Waiting list
Bridge donor

(c) Chain of donation

Figure 2.2 – Standard exchanges in a kidney exchange program. Chains
and cycles may include more pairs.
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transplant still means that the whole remaining patients of the chains will
not be transplanted and some programs recommend a length constraint on
chains too, in order to limit the number of affected pairs. It seems that no
consensus emerge on this topic: some countries only allow small chains (3
or 4), others do not limit their size and still others programs do not allow
chains at all. To include the most cases, we consider in our work a limit
on the number of patient-donor pairs, but it can be big. In the following,
the length constraints denote the fact that lengths of chains and cycles of
donation are limited to L and K respectively.

Besides the length constraints, other parameters of a KPD depend on
the country: the frequency of match runs, the relationship between KPD
and the waiting list, the inclusion of compatible pairs, the inclusion of in-
compatible pairs agreeing for an incompatible transplantation, the approval
for incompatible transplant in exchanges and the possibility for a patient to
have multiple donors [20]. These variants however do not affect our model
as we will discuss in Section 2.2.1. Similarly, Biro et al. [20] identified 19
optimization criteria used by European countries and their management is
also explained in Section 2.2.1.

2.1.3 Past and future of kidney exchange programs

The idea of kidney exchange was first mentioned by Rapaport in 1986 [105]
and quickly set up in South Korea in 1991 [74, 98]. This idea was promising
for this country where the public opinion is hostile on deceased transplanta-
tion. The Switzerland was the first European country to perform a kidney
exchange in 1999, but the first national kidney exchange program in Europe
was created by the Netherlands in 2004 [34]. Since then, a dozen states in
Europe have created their own KPD [17]. In the rest of the world, and to
the best of our knowledge, such programs exist only in Canada, Australia
and the USA. We refer the reader to the survey of Ellison [42] for more
details on the development of KPDs.

It is worth to note that several programs exist in the USA and that some
of them are very local as they arrange exchanges within a single hospital [42].
On the other hand, European countries try to gather their programs to con-
struct bigger pools of patient-donor pairs. These international programs
aim at increasing the chances for a patient to find a match, but involve
more complex organizations. A research group called European Network
for Collaboration on Kidney Exchange Programs (ENCKEP) gathers pol-
icy makers, clinicians, economists, social scientists and optimization experts
in order to establish a picture of practices and opportunities concerning
this topic in Europe [32]. Transnational exchanges are already practiced in
several countries and such collaborations are increasing. The first level of
cooperation authorizes foreigners to participate into a national kidney ex-
change program. Portugal, Italy and Spain are more committed together
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as each country includes the patient-donor pairs of the other countries re-
maining after a match run. Finally, the KPD Scandiatransplant merges the
pools of Denmark, Finland, Iceland, Norway, Sweden and Estonia. Since
2016, Austria and the Czech Republic have been sharing their database as
well. Cross-border exchanges are increasingly performed making the idea
of a European KPD plausible in the next few years. However, the different
legislations and variants of kidney exchange programs stand in the way of
this project. Another major obstacle is the number of patient-donor pairs
to be considered in such a program. The bigger the pool, the higher the
chance to match patients, but the harder the underlying optimization prob-
lem. Indeed, it is a hard problem that standard optimization algorithms fail
to solve when it contains several thousands of pairs. Nowadays, the largest
program in Europe involves 250 patients [18], but considering that more
than half a million Europeans [71] and even more USA citizens [115, 116]
are treated for end stage kidney disease, new efficient techniques must be
developed to handle many more candidates for kidney exchange programs.

The development of transnational KPDs should be quick and probably
will be as the chronic kidney disease is brought to the forefront by inter-
national health organizations [94]. New optimization algorithms must be
developed in a short term in order to follow this evolution. In a longer-term
vision, we can expect that 3D printed technologies will be able to get rid
of the need of donors. Kidneys are already 3D printed but they are simple
replicas which can not replace a real kidney, due to the complexity of this
organ. Actual artificial kidney transplants will not be possible before years
or even decades, making kidney exchange programs invaluable [128].

2.1.4 Mathematical topics in kidney exchange programs

A kidney exchange program is actually a barter market: agents (patients)
try to swap their item (donors) with other agents and new items (altru-
istic donors) can enter the market. The program must solve a clearing
problem deciding the exchanges to conduct. The very first KPDs used to
select “by hand” these exchanges but the growing number of participants
required decision support tools. The first mathematical model of a KPD
was proposed in 2003 by Roth et al. [111]. In this model, the matches be-
tween donors and patient were selected by an allocation algorithm using
several criteria in a hierarchical scheme. The same approach was used in
various studies and actually applied by most countries in the early years of
KPDs [21, 34, 46, 58, 64, 65, 66, 83, 112]. The major drawback of these
allocation mechanisms is that they usually enumerate and compare every
possible allocations, an operation that becomes inefficient or even impossi-
ble for big databases. Optimization algorithms are therefore needed to find
the best set of exchanges. Some of them keep the hierarchy of criteria by us-
ing lexicographic optimization [40, 55, 56, 83], but the majority gathers the
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multiple criteria in a single objective function [20, 50, 82]. In this case each
transplant is associated with a weight, or benefit, computed regarding med-
ical, logistical and ethical parameters (ages of participants, blood types,...).
The weight of a complete exchange sums the benefit of each contained trans-
plant, sometimes adjusted with parameters of the exchange (e.g., its length).
The optimization problem seeking for the set of exchanges maximizing the
total benefit is called the kidney exchange problem (KEP) and is the
core of this PhD thesis.

Mathematicians also study the fairness of kidney exchange programs,
and more specifically the trade-off between fairness and efficiency. In par-
ticular, how to construct the measure of a transplant benefit is a ma-
jor work. The very definition of fairness is also a crucial topic discussed
together with physicians. One of the first fears when the idea of KPD
emerged was to disadvantage patients with blood type O, who are already
suffering the longest waiting time due to ABO compatibilities (see Fig-
ure 2.1) [51, 80, 109, 127, 131]. The same risk arose for highly-sensitized
patients, i.e., patients with many kinds of antibodies thus having a pos-
itive crossmatch with most donors. These hard-to-match patients would
be marginalized without adaptation of KPDs as explained by Dickerson et
al. [40], based on the price of fairness defined by Bertsimas et al. and Cara-
giannis et al. [16, 25].

In the field of kidney exchange programs, some works study game the-
ory involved in this market. Ashlagi and Roth studied the rationality for
a hospital to participate in a national program without hiding information,
in particular when it could transplant them itself [10]. They designed in-
centive mechanism that was afterward improved to limit the variance of
agents’ utility by Esfandiari and Kortsarz [43]. Liu et al. provide a study
on the stability of matchings in kidney exchange programs [78].

2.2 The kidney exchange problem
The kidney exchange problem as defined in the previous section aims at
finding the best set of exchanges to conduct in a KPD and can be modeled
using standard tools of graph theory. In the following, we consider a kidney
exchange program with n participants (patient-donor pairs and altruistic
donors) for whom a priori compatibilities are known. We also assume that
for each transplant a certain level of “desirability” is provided, possibly ag-
gregating several medical parameters from both the donor and the recipient,
and that the objective of the problem is to maximize the total benefit of the
chosen transplants. Note that a special case of this problem with unitary
weight in fact maximizes the number of transplants. In general maximizing
the weight of exchanges can be conflicting with maximizing the number of
transplants. Exchanges include cycles of donation of length at most K and
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chains of donation containing at most L − 1 patient-donor pairs (hence L
agents).

2.2.1 Graph models

Compatibility graph. We model a kidney exchange program as a di-
rected graph by creating one vertex for each participant and one arc for
each possible transplant. Formally, the set P contains one vertex for each
patient-donor pairs and the set N one vertex for each altruistic donor. To
construct the compatibility graph D = (V = P ∪N,A), we add an arc
auv between u ∈ V and v ∈ P if the kidney of donor u can be transplanted
to patient v. A weight function w : A→ R+ represents the medical benefit
of each possible transplant. Note that determining the weight function is an
upstream work and that w is an input in our case. This graph is generally
quite sparse as it is rare for a patient and a donor to be compatible. Figure
2.3a shows an example of compatibility graph and differentiates altruistic
donors (orange diamonds) from pairs (red circles).

Exchanges. An exchange is a subgraph of D which represents either
a cycle of donation between pairs or a domino chain initiated by altruis-
tic donors. In the compatibility graph, exchanges are elementary cycles
of length at most K, called valid cycles and elementary paths starting by
a vertex of N and having at most L vertices, valid paths. A valid cycle
could have several symmetrical representations but they are eliminated by
restricting the first vertex of the cycle vector to have the lowest identifier.
Thus, a valid cycle c is represented by a unique vector (v1, ..., v|c|) such that
v1 < vj ∀j ∈ {2, ..., |c|}.
C is the set of all valid cycles, P the set of all valid paths and E = C ∪P

the set of all possible exchanges. We refer to the set of vertices (resp. edges)
of an exchange e as V (e) (resp. A(e)). The weight of an exchange e ∈ E is
w(e) := ∑

a∈A(e)
wa. In Figure 2.3a for example, by taking K = 3 and L = 4,

there exists 8 exchanges: two cycles (e1 = 5 − 7 − 6; e2 = 4 − 6) and six
paths (e3 = 1−3; e4 = 1−3−5; e5 = 1−3−5−7; e6 = 2−3; e7 = 2−3−5;
e8 = 2− 3− 5− 7).

The kidney exchange problem. Two models of the KEP as defined
above are equivalent. In the first one, the decision is made for each individual
transplant: max{∑wa : a ∈ A such that the length constraints, physiolog-
ical constraint and participation constraint are respected}. In the second
vision, exchanges are constructed with respect to the length constraints and
participation constraint and chosen such that the physiological constraint is
respected: max{∑we : e ∈ E such that chosen exchanges are disjoint}. This
idea to deal with exchanges rather than vertices or arcs gave us the idea to
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construct the intersection graph of exchanges. Figure 2.3 shows the optimal
solution of the KEP in our example.

1 3 4

652

7

5

1 322

4

2 6

(a) Model
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L = K = 3 Weight = 17

(b) Solution of the KEP

Figure 2.3 – Example of a compatibility graph of a kidney exchange program

Intersection graph. We define I(E) the intersection graph of exchanges
of D, as the undirected graph I(E) = (E , E) where each vertex represents
an exchange and an edge links two exchanges if they share at least one
vertex in D: E = {e1, e2 ∈ E2|e1 ∩ e2 6= ∅}. A weight function ω on the
vertices of I(E) provides the medical benefit of each exchange. Note that
the construction of this intersection graph is exponential for a given input
of the kidney exchange problem. A feasible solution of the KEP is a stable
set of I(E). The intersection graph of the exchanges previously described
is presented in Figure 2.4a, and the solution enlightened in 2.4b. In these
figures, paths are represented in orange and cycles in red.
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Figure 2.4 – Example of an intersection graph of a kidney exchange program
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Property 2.1
If L ≥ K, then the intersection graph is K1,L+1-free.

Proof. Assume I(E) contains a K1,L+1 as an induced subgraph, then an ex-
change e0 intersects L + 1 other exchanges e1, ...eL+1 that do no intersect
each other. Each exchange e1, ...eL+1 thus intersects e0 on a different ver-
tex and e0 contains at least L + 1 vertices, which is contradictory with its
definition. Note that if K ≥ L then I(E) is K1,K+1-free.

Dealing with problem variants. These models are easy to adapt for
most of the different alternative KPDs, in particular via the weight func-
tion. Compatible pairs form new vertices in the compatibility graph, and
the desirability of transplants with other patients may be more demanding.
Allowing incompatible transplants within an exchange only add arcs with
positive weight in the graph. Programs with multiple donors for a same pa-
tient construct vertices which do not represent a pair anymore, but a patient
and all its specified donors. The weight of an arc represents the benefit of
the best transplant among all the possible transplants.

Our KEP is a single objective optimization problem but it can accom-
modate multiple criteria. Most of the criteria existing in KPDs concern a
transplant data (e.g., patient age or waiting time) and can be taken into
account in the weight function. Some of them however may implement
yardsticks for complete exchanges (and not for single transplants). The
weight function on exchanges can integrate this kind of criterion and the
KEP seen at the exchange level won’t change. On the contrary, when the
KEP decisions are made on transplants, these criteria must be integrated as
constraints and may be hard to dealt with.

2.2.2 Related problems

The kidney exchange problem corresponds to standard and well-known prob-
lems described below. Of course as it is NP-complete it is equivalent to every
NP-complete problems, but three of them are more closely related.

Set packing problem. Given a set of elements S, the set packing
problem aims at finding a packing of pairwise disjoint subsets among a
family S ⊆ P(S) of subsets of these elements. The kidney exchange problem
can be modeled as a maximum-weight set packing problem in D. Elements
of the problem are the arcs of D and the family of subsets is the exchange
set S = E . These problems are equivalent as the subsets respect the length
constraints and participation constraint by construction and the physiolog-
ical constraint is satisfied with the disjunctive constraint of the set packing
problem.
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Stable set problem. Given any graph and a weight function on the
vertex set, the maximum-weight stable set problem seeks a stable set, i.e.,
a set of vertices pairwise non adjacent, of maximum weight in the graph. By
construction, any stable set of I(E) is a set of exchanges that do not share
any patient or donor. Thus, the kidney exchange problem is equivalent to a
maximum-weight stable set problem in the intersection graph I(E).

Vehicle routing problem. The goal of the vehicle routing prob-
lem is to find a set of routes to deliver a set of customers with a fleet of
vehicles that minimized the traveled distance. In the standard version the
vehicles start and end in a single depot, but the Multi Depot Vehicle Rout-
ing Problem (MDVRP) involves multiple depots and several vehicle types.
This problem is widely studied and many efficient algorithms exist to solve
it, hence our interest for it. By considering exchanges as route, both prob-
lems appear quite close. We propose a reduction from the KEP to the VRP,
detailed below. This reduction leads to many depots, which means that
algorithms dedicated to the VRP do not fit well to solve the KEP.

Formally, given a set of customers C, a set of depots ∆, a demand qv for
each customer v ∈ C, κ vehicle types, a capacity Qk for each vehicle type k,
Mdk the number of vehicles of type k at depot d ∈ ∆, ck the unit running
cost of a vehicle of type k and duv ≥ 0 the distance between u ∈ C ∪∆ and
v ∈ C ∪∆, the MDVRP seeks for a set of routes minimizing the total cost.
A route is a tour beginning and ending in the same depot and each route
is made by a single vehicle. The cost of a route is the unit running cost
multiplied by the traveled distance.

We show how to reduce an instance of KEP to an instance of MDVRP
and represent this reduction on an example in Figure 2.5. We define the set
of customers C as the set of patient-donor pairs P . The set ∆ of depots is
composed of ∆N , ∆A and ∆P , where ∆N contains a depot for each altruistic
donor, ∆A for each arc of G[P ] and ∆P for each patient-donor pair. A unit
demand is given to the customer set. Three types of vehicles are used,
with a capacity of L − 1, K and 1 respectively. Each depot of ∆N , ∆A

and ∆P contains exactly one vehicle of type 1, 2 and 3 respectively. The
unit running cost is −1 and the distance function is defined below, with an
associated “type”.

duv =



wuv if (uv) ∈ A agent-agent
wuv

2 if u ∈ ∆A or v ∈ ∆A pair-depot

0 if u ∈ ∆P or v ∈ ∆P self-depot
0 if v ∈ ∆N agent-altruist
+∞ otherwise no-match

In Figure 2.5, red circles represent donor-pairs and clients, orange dia-
monds represent altruistic donors and squares represent depots ( ∆N ∆A
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(a) KEP instance
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Figure 2.5 – Reduction from KEP to MDVRP on an example
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∆P ). Distances are written above “agent-agent” (brown) and “agent-depot”
(blue) edges. Turquoise edges are the “self-depot” edges and have a distance
of 0. “No-match” and “agent-altruist” edges are not represented. In the
MDVRP instance, numbers are the distance and the unit running cost, not
written, equals -1 on each arc.

A solution of the MDVRP visits every patient-donor pair of the program
(see Figure 2.5d). Paths of the KEP are equivalent to routes starting from
orange depots representing altruistic donors. For cycles, several depots are
possible, but only one is chosen as the actual depot of the route. Patient-
donor pairs that are not included in the corresponding KEP solution are
visited with a truck of capacity 1, leaving from the depot associated to this
vertex.

2.2.3 Solving the kidney exchange problem

Different approaches exist to find the set of exchanges maximizing the total
weight of transplants in a KPD. We already discussed in Section 2.1.4 the
allocation algorithms used at the beginning of kidney exchange programs,
but we are interested here in optimization algorithms handling the kidney
exchange problem. When it contains only cycles of length 2, the KEP can
be solved polynomially via Edmonds’ algorithm, but as soon as K > 2,
the problem is proved to be NP-complete [1, 19]. Consequently, the KEP
is often tackled with integer programs and the major ones are surveyed by
Mak-Hau [82] and detailed in Chapter 3.

In the first place, formulations used to ignore chains of donation. Roth et
al. introduced the edge formulation and the cycle formulation in 2007 [110].
Abraham et al. proved that the cycle formulation is better than the edge
formulation, with respect to the tightness of the linear relaxation [1]. The
cycle formulation however requires to compute every possible cycles which
is too long in most of the cases. Abraham et al. thus developed a column
generation approach to solve this integer program [1], which is still nowadays
the best way to solve the KEP without altruistic chains.

The cycle formulation can be equivalently applied when including chains
of donation, but we will call it the exchange formulation. In Chen et al., ev-
ery exchanges is computed beforehand [27], but this is not a viable method
when the patients pool grows. On the basis of Abraham et al. work, branch-
and-price algorithms were developed [55, 56, 67, 103] claiming to accommo-
date well altruistic donors via chains of donation. However some of these
algorithms (in [55, 56, 103]) were proven wrong by Plaut et al. [104] and
Klimentova et al. did not test their algorithm with altruistic donors [67].
Actually, Plaut et al. proved in 2016 that the pricing algorithm becomes
NP-complete in this case. Anderson et al. [7] also proposed an integer pro-
gram with exponentially many variables but did not use a column generation
approach. Their formulation, based on the traveling salesman problem, has
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an exponential number of constraints too, which are handled by a polyno-
mial separation oracle. Other proposed integer programming formulations
are compact [31, 37, 82].

Approximations are often proposed when it comes to NP-hard problems.
Still, to the best of our knowledge, only Biro et al. [19] and Jia et al. [63]
considered such algorithms for the standard KEP. Approximations are more
common when the problem is not considered to be static and deterministic.
Stochastic schemes take into account uncertainty and positive crossmatch
failures. Indeed, when the algorithm runs, it is applied on incomplete infor-
mation. Effective compatibility is tested precisely latter and agents may be
pulled out the program. The approach of Manlove and O’Malley to handle
this uncertainty is to prioritize small exchanges in a lexicographical multi-
objective algorithm [83]. The mainly studied method is however to consider
a probability of failure on each transplant [5, 39, 68, 77, 101, 132]. An alter-
native idea is to consider a KPD as a dynamic, or online, system [6, 12, 123].

2.3 Setting of the thesis
In the variety of parameters, problems and algorithms in kidney exchange
programs detailed in this chapter, choices needed to be made for this thesis.
Our decisions arise from conclusions drawn from the literature review and
might of course be discussed, but we believe they are relevant in the current
context of the kidney exchange field. The analysis of kidney exchanges
evolution reveals two major issues: the growing size of program pools and
the inclusion of altruistic donors via domino chains. Dealing with these two
parameters in the KEP is hard enough to elude the system stochasticity and
dynamism in a first time. Besides, the arrival of patients or donors may be
slow enough to maintain periodical match runs or, should it be necessary,
to increase their frequency.

The consequence of having big pools is the need to solve a large-scale
problem. We expect the natural exponential formulation (the exchange for-
mulation) to be the most likely to achieve this task in a reasonable amount
of time. Indeed, compact formulations are not advantageous compared with
exponential ones as they usually do not scale up to large instances2 and
provide poor upper bounds [82]. Moreover, among the several large-scale
formulations, including the new one we propose in Section 3.2.2, the ex-
change formulation is the simplest, an attractive feature to collaborate with
other specialists (physicians and lawmakers), and is therefore the one cho-
sen for our work. The inclusion of altruistic donors is rarely implemented

2It seems paradoxical that scaling up is a compact formulations weakness, but actually
column generation approaches are really effective on exponential formulations. It is often
simpler to use large-scale methods (see Section 1.4.2) on these exponential formulations
than on compact ones.
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in column generation works for this exchange formulation, often treated as
a natural extension of existing models. Actually, since the proof by Plaut
et al. [104] that the pricing problem is NP-hard in this situation, no com-
plete column generation algorithm was developed. We propose to effectively
handle these chains of donation, having in general a different length limit
than cycles. This brings the subject to elementary paths problems, which
is a major part of this thesis. More specifically, we consider the problem
of finding elementary paths starting from a given source, having a limited
number of vertices and maximizing the total weight of its arcs.

To sum it up, we study the static KEP with limited chains and cycles,
using integer program formulations (see Chapter 3), more specially the ex-
change formulation solved with column generation (see Chapter 4). We also
focus on the elementary minimum path problem with length constraint (see
Chapter 5 and Chapter 6). This problem is extracted and studied inde-
pendently from the KEP, even though this background, in particular the
sparsity of the KEP instances, influences our research.
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Chapter 3

Integer programming
formulations for the kidney
exchange problem

The purpose of a kidney exchange problem is to find the “best” set of
transplants in a barter market of n agents: pairs of incompatible patient-
donor and altruistic donors. In this program, only some transplants are
possible: each donor (paired or altruistic) is compatible with a small number
of patients. Moreover, each possible transplant has an estimated medical
benefit, which can be computed by physicians. The “best” set of transplant
is the one which maximizes the medical benefit. The solution must respect
three basic constraints, whose origins are detailed in Chapter 2:

• physiological constraint: each donor and each patient can participate
in at most one transplant

• participation constraint: if a donor from a pair participates in a trans-
plant, then its associated patient must receive a kidney

• length constraints: at most L (resp. K) agents participate in any
chain (resp. cycle) of donation

Several integer programming formulations were proposed to model the
KEP and this chapter makes a survey on models that take into account al-
truistic donors. Recall from Section 2.2 that the KEP can be seen either as
a packing problem in the compatibility graph D or as a stable set problem
in the intersection graph I(E). Formulations of both problems are thereby
presented in separate sections. In addition of existing models, a new ex-
tended formulation for the stable set problem having interesting properties
in our particular case is studied in Section 3.2.2.
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3.1 KEP as a packing
In the compatibility graph, the kidney exchange problem is a maximum-
weighted cardinality-constrained cycles and paths packing problem (see Sec-
tion 2.2.2). As explained in Section 2.2.1, this problem has two different
modeling. The most natural one is, given the set of all possible exchanges
E , to find the set of exchanges E∗ maximizing the total weight under the
physiological constraint: each agent must be chosen in at most one exchange.
Integer programs for this model are called exchange-based formulations.

3.1.1 Exchange-based formulations

In an exchange-based formulation each exchange is associated with one bi-
nary variable indicating if it is chosen or not in the solution. The length
constraints and participation constraint are satisfied when the exchanges are
constructed. This leads to simple models but having an exponential number
of variables, which are usually treated with column generation methods (see
Section 1.4.2).

The most studied formulation is the “cycle formulation” from Roth et
al. and Abraham et al. [1, 110]. As we include also elementary paths,
we call it the exchange formulation (EF). Recall that we consider a
unique representation of each cycle in E to exclude symmetry, so our model
is equivalent to the disaggregated cycle formulation of Klimentova et al.
[67]. A unique set of constraints (3.2) is required to model the physiological
constraint.

Model EF

∀e ∈ E , xe =
{

1 if exchange e is chosen
0 otherwise

z∗ = max
∑
e∈E

wexe (3.1)
∑
e∈E:
i∈V (e)

xe ≤ 1 ∀i ∈ V (3.2)

xe ∈ {0, 1} ∀e ∈ E (3.3)

EF is a large-scale integer program as it contains a variable for each
exchange, and the pricing problem turns out to be NP-hard due to the path
exchanges as shown by Plaut et al. [104]. This was not properly taken into
account by previous column generation schemes [56, 103] so we propose a
new framework in Chapter 4.

Some other formulations are based on a more disaggregated view of the
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problem: instead of choosing directly the exchanges, they determine one
by one each transplant of the solution. The decision variables are indexed
on the arcs and the effective exchanges to perform are deduced afterwards.
Such formulations are said to be arc-based.

3.1.2 Arc-based formulations

Initially, arc-based formulations used a binary variable for each arc of D
stating if the arc is chosen in a cycle. These variables are not sufficient
anymore with the inclusion of paths initiated by altruistic donors. The
integer program must still decide if an arc is chosen or not, but, in addition,
it has to identify in which sort of exchange it is chosen. Indeed, constraints
differ for cycles and paths, in particular length constraints. Therefore, the
variables are split into two families of binary variables: uij for the cycles
and yij for the paths.

Mak-Hau [82] presented two integer programs adding constraints from
the traveling salesman problem (TSP) in existing formulations of the KEP.
These new constraints had to permit valid paths to be constructed, in par-
ticular prevent the path variables to induce subcycles. Mak-Hau decided to
add the polynomial-sized subtour elimination constraints coming from the
compact Miller-Tucker-Zemlin (MTZ) formulation of the TSP [88]. These
constraints require a continuous variable ti representing the “time stamp”
of vertex i in a path, ∀i ∈ V . They also imply that a variable yij is defined
for every pair of vertices, not only arcs.

Recall that the compatibility graph D = (V = P ∪ N,A) is composed
by two vertex sets: one for patient-donor pairs (P ) and one for altruistic
donors (N). An arc (ij) represents the possibility to transplant the kidney
of donor i to patient j, so vertices of N have no incoming arcs.

MTZ arc formulation. The first arc-based formulation, the edge
formulation, proposed in 2007 by Roth et al. [110], was split by Mak-
Hau to integrate paths in addition to cycles. We call it the MTZ
arc formulation (MTZ-AF). It applies strong cardinality-infeasible-
cycle elimination using a set of minimal infeasible paths, defined as
Π := {π ⊆ D : π is a path of length K + 1}.

Constraints (3.5) and (3.6) are flow constraints for vertices of P modeling
the participation constraint. Constraints (3.7) and (3.8) express the physi-
ological constraint. The length constraints are decomposed into elimination
constraints (3.9) for cycles and bound constraints (3.10) for paths. There are
exponentially many elimination constraints and they require to enumerate
all the paths of length K + 1 or to use a separation oracle. Note that the
right-hand side of (3.9) is K − 1 and not K. Indeed, there is no cycle of
length K in π, ∀π ∈ Π. A valid cycle could involve K vertices of V (π), but
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Model MTZ-AF

∀i, j ∈ V 2: yij =
{

1 if arc (ij) is part of a path
0 otherwise

∀(ij) ∈ A: uij =
{

1 if arc (ij) is part of a cycle
0 otherwise

∀i ∈ V : ti = time stamp of visiting i in a path

max
∑

(ij)∈A
wijyij +

∑
(ij)∈A

wijuij (3.4)

∑
j∈N+(i)

uij −
∑

j∈P∩N−(i)
uji = 0 ∀i ∈ P (3.5)

∑
j∈N+(i)

yij −
∑

j∈N−(i)
yji = 0 ∀i ∈ P (3.6)

∑
j∈N+(i)

yij +
∑

j∈P∩N+(i)
uij ≤ 1 ∀i ∈ P (3.7)

∑
j∈N+(i)

yij ≤ 1 ∀i ∈ N (3.8)

∑
(ij)∈A(π)

uij ≤ K − 1 ∀π ∈ Π (3.9)

ti ≤ L− 1 ∀i ∈ V (3.10)
ti − tj + |P |yji + (|P |+ 2) yij ≤ |P |+ 1 ∀i, j ∈ V 2 (3.11)

ti = 0 ∀i ∈ N (3.12)
uij ∈ {0, 1} ∀(ij) ∈ A (3.13)
yij ∈ {0, 1} ∀i, j ∈ V 2 (3.14)
ti ∈ R+ ∀i ∈ V (3.15)

P
articipation

P
hysiological

Length

then at least one of its arcs would not belong to A(π). Thus, at most K − 1
arcs of π can be selected in a solution.

The MTZ constraints force a path of the solution to visit vertices in
increasing order of their time stamps. Indeed, (3.11) state that if arc (ij) is
in the solution, then tj = ti + 1. The time stamp of altruistic donors is set
to zero by (3.12) as they are either first in a path or not chosen at all.

MTZ extended arc formulation. Mak-Hau also split the extended
edge formulation of Constantino et al. [31] to construct theMTZ extended
arc formulation (MTZ-EAF). The principle is to clone D into |P | copies
and to impose that each copy contains at most one cycle in the solution.
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Thus, the u variables are also indexed by the copy of D in which the cycle
appears. Cloning the graph enables an independent treatment for each cycle.

Model MTZ-EAF

∀i, j ∈ V 2: yij =
{

1 if arc (ij) is part of a path
0 otherwise

∀(ij) ∈ A, ∀k ∈ J1; |P |K: ukij =


1 if arc (ij) is part of a cycle

in the kth copy of D
0 otherwise

∀i ∈ V : ti = time stamp of visiting i in a path

max
∑

(ij)∈A
wijyij +

|P |∑
k=1

∑
(ij)∈A

wiju
k
ij (3.16)

∑
j∈N+(i)

ukij −
∑

j∈P∩N−(i)
ukji = 0 ∀i ∈ P,∀k ∈ J1; |P |K (3.17)

∑
j∈N+(i)

yij −
∑

j∈N−(i)
yji = 0 ∀i ∈ P (3.18)

∑
j∈N+(i)

yij +
|P |∑
k=1

∑
j∈P∩N+(i)

ukij ≤ 1 ∀i ∈ P (3.19)

∑
j∈N+(i)

yij ≤ 1 ∀i ∈ N (3.20)

∑
(ij)∈A

ukij ≤ K ∀k ∈ J1; |P |K (3.21)

ti ≤ L− 1 ∀i ∈ V (3.22)∑
j∈P∩N+(i)

ukij −
∑

j∈P∩N+(i)
ukkj ≤ 0 ∀i ∈ P,∀k ∈ J1; i− 1K (3.23)

∑
j∈P∩N+(i)

ukij = 0 ∀i ∈ P,∀k ∈ Ji+ 1; |P |K (3.24)

ti − tj + |P |yji + (|P |+ 2) yij ≤ |P |+ 1 ∀i, j ∈ V 2 (3.25)
ti = 0 ∀i ∈ N (3.26)
ukij ∈ {0, 1} ∀(ij) ∈ A, ∀k ∈ J1; |P |K (3.27)
yij ∈ {0, 1} ∀i, j ∈ V 2 (3.28)
ti ∈ R+ ∀i ∈ V (3.29)

P
articipation

P
hysiological

Length

Constraints (3.17) and (3.18) are flow constraints for vertices of P mod-
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eling the participation constraint. Constraints (3.19) and (3.20) express the
physiological constraint. The length constraints are decomposed into bound
constraints (3.21) for cycles and (3.22) for paths. Constraints (3.23) and
(3.24) deal with the symmetry elimination by restricting the index k of a
cycle to be the lowest index of its vertices. More precisely, the kth cycle is
either empty or contains an arc (kj) and some arcs (ij) with i > k. Con-
straints (3.24) impose that an arc (ij) cannot belong to a cycle with an
identifier k greater than i, since i should have been the identifier of this
cycle. Together with constraints (3.23), they impose that if an arc (kj) is
not taken in the kth cycle, then this cycle contains no arcs.

The MTZ constraints force a path of the solution to visit vertices in
increasing order of their time stamps. Indeed, (3.25) state that if arc (ij) is
in the solution, then tj = ti + 1. The time stamp of altruistic donors is set
to zero by (3.26) as they are either first in a path or not chosen at all.

Position-indexed formulation HPIEF. Dickerson et al. proposed
several position-indexed formulations [37], including the purely arc-based
HPIEF. As the MTZ-EAF, it uses |P | copies of D, but it also indexes vari-
ables with positions. Let Pkij be the set of positions at which arc (ij) can be
selected in a cycle of the kth copy of D, such that the “first” vertex of this
cycle (in its unique representation) is k.

∀(ij) ∈ A,∀k ∈ J1, |P |K, Pkij =


{1} i = k

{2, ...,K − 1} i > k and j > k

{2, ...,K} j = k

(3.30)

Similarly, let Pij be the set of positions at which arc (ij) can be chosen
in a path of D. A vertex can be at the first position of a path if and only if
it represents an altruistic donor.

∀(ij) ∈ A, Pij =
{
{1} i ∈ N
{2, ..., L} i ∈ P

(3.31)

Constraints (3.33) and (3.34) are flow constraints for vertices of P mod-
eling the participation constraint. Constraints (3.35) and (3.36) express
the physiological constraint. The length constraints are integrated in the
variable definition.
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Model HPIEF

∀(ij) ∈ A, p ∈ Pij : yijp =
{

1 if arc (ij) is selected at position p in a path
0 otherwise

∀(ij) ∈ A,∀k ∈ J1; |P |K, p ∈ Pkij :

ukijp =


1 if arc (ij) is selected at position p

in a cycle of the kth copy of D
0 otherwise

max
|P |∑
k=1

∑
(ij)∈A

∑
p∈Pk

ij

wiju
k
ijp +

∑
(ij)∈A

∑
p∈Pij

wijyijp (3.32)

∑
j∈N−(i):
p∈Pk

ji

ukjip −
∑

j∈N+(i):
p+1∈Pk

ij

ukij(p+1) = 0
∀k ∈ J1; |P |K

∀i ∈ Jk + 1; |P |K
∀p ∈ J1;K − 1K

(3.33)

∑
j∈N−(i):
p∈Pji

yjip −
∑

j∈N+(i)
yij(p+1) ≥ 0

∀i ∈ P
∀p ∈ J1;L− 1K

(3.34)

|P |∑
k=1

∑
i∈N−(j)

∑
p∈Pk

ij

ukijp +
∑

i∈N−(j)

∑
p∈Pij

yijp ≤ 1 ∀j ∈ P (3.35)

∑
j∈N+(i)

yij1 ≤ 1 ∀i ∈ N (3.36)

ukijp ∈ {0, 1}
∀(ij) ∈ A

∀k ∈ J1; |P |K
∀p ∈ Pkij

(3.37)

yijp ∈ {0, 1}
∀(ij) ∈ A
∀p ∈ Pij

(3.38)

P
articipation

P
hysiological

In an arc-based formulation, constraints must manage the elimination of
possible subtours to avoid non elementary paths or cycles. Moreover, two
sets of constraints are required for the KEP, as cycles and paths must be
treated separately. We found in the literature several ways to model these
subtour elimination constraints, mainly adapted from the traveling salesman
problem. They are summed up in Table 3.1a, with the number of variables
and constraints in Table 3.1b.

Using copies of the graph avoids the strong cardinality-infeasible-cycle
elimination of model MTZ-AF, which are exponentially many, but intro-
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Cycles Paths
Formulation Subtour Symmetry Subtour
MTZ-AF Enumeration MTZ (Time stamps)
MTZ-EAF Copies Constraints MTZ (Time stamps)
HPIEF Copies Positions Positions

(a) Subtour elimination and symmetry management
Variables Constraints

MTZ-AF O
(
|V |2

)
O
(
|V |K

)
MTZ-EAF O

(
|V |3

)
O
(
|V |2

)
HPIEF O

(
|V |4

)
O
(
K|V |2

)
(b) Number of variables and constraints

Table 3.1 – Arc-based formulations review

duces numerous variables. The HPIEF formulation uses positions for cycles
to achieve symmetry elimination, replacing the additional constraints (3.23)
and (3.24) of model MTZ-EAF. To sum up, arc-based formulations require
to use subtour elimination constraints which are either weak, as the MTZ
suffering from big-M inequalities, or exponentially many. Some of them are
compact for the KEP (MTZ-EAF and HPIEF), but they still use |P | copies
of the compatibility graph and at least |A| variables for each of these copies.
On top of that, they are also complex to understand and implement. An
idea proposed in several papers is to mix the arc-based and exchange-based
formulations, with the purpose to take advantage of both.

3.1.3 Mixed formulations

We identified two mixed formulations. Both use an exchange-based approach
for cycles and an arc-based approach for paths. This is relevant as usually K
is quite small (3 or 4) and allows the computation of all the cycles beforehand
(forming the set C of all valid cycles). Thus, the following formulations use
a binary variable for each valid cycle and binary variables for arcs.

PC-TSP based formulation. Anderson et al. proposed a formulation
inspired from the prize-collecting traveling salesman problem (PC-TSP) [7]
which also uses the idea of cloning the graph. One path can be constructed
in each copy of the graph.

Constraints (3.40) and (3.41) express the physiological constraint. Con-
straints (3.42) are flow constraints for vertices of P modeling the partici-
pation constraint. The length constraints are only required for paths and
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Model PC-TSP

∀(ij) ∈ A,∀l ∈ J1; |N |K: ylij =


1 if arc (ij) is selected in a path

in the lth copy of D
0 otherwise

∀c ∈ C, xc =
{

1 if cycle c is selected
0 otherwise

max
∑
c∈C

wcxc +
∑

(ij)∈A

|N |∑
l=1

wijy
l
ij (3.39)

∑
c∈C:
i∈V (c)

xc +
∑

j∈N−(i)

|N |∑
l=1

ylji ≤ 1 ∀i ∈ P (3.40)

∑
j∈N+(i)

|N |∑
l=1

ylij ≤ 1 ∀i ∈ N (3.41)

∑
j∈N−(i)

ylji −
∑

j∈N+(i)
ylij ≥ 0 ∀i ∈ P,∀l ∈ J1; |N |K (3.42)

∑
(ij)∈A

ylij ≤ L ∀l ∈ J1; |N |K (3.43)

∑
j∈δ−(S)

ylji −
∑

j∈N−(i)
ylji ≥ 0 ∀S ⊆ P, ∀i ∈ P,∀l ∈ J1; |N |K (3.44)

ylij ∈ {0, 1} ∀(ij) ∈ A (3.45)
xc ∈ {0, 1} ∀c ∈ C (3.46)

defined by (3.43). The set of constraints (3.44) is an adaptation of cut set
inequalities of the traveling salesman problem.

Position-indexed chain-edge formulation. The PICEF formulation
[37] is a mixed version of the position-indexed formulation seen in Section
3.1.2. Recall that Pij is the set of positions at which arc (ij) can be chosen
in a path of D.

Constraints (3.48) and (3.49) express the physiological constraint. Con-
straints (3.50) are flow constraints for vertices of P modeling the participa-
tion constraint. The length constraints are only required for paths and are
integrated in the variable definition.
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Model PICEF

∀(ij) ∈ A, p ∈ Pij : yijp =
{

1 if arc (ij) is selected at position p in a path
0 otherwise

∀c ∈ C, xc =
{

1 if cycle c is selected
0 otherwise

max
∑
c∈C

wcxc +
∑

(ij)∈A

∑
p∈Pij

wijyijp (3.47)

∑
c∈C:
i∈V (c)

xc +
∑

j∈N−(i)

∑
p∈Pji

yjip ≤ 1 ∀i ∈ P (3.48)

∑
j∈N+(i)

yij1 ≤ 1 ∀i ∈ N (3.49)

∑
j∈N−(i):
p∈Pji

yjip −
∑

j∈N+(i)
yij(p+1) ≥ 0 ∀i ∈ P,∀p ∈ J1;L− 1K (3.50)

yijp ∈ {0, 1} ∀(ij) ∈ A, ∀p ∈ Pij (3.51)
xc ∈ {0, 1} ∀c ∈ C (3.52)

Mixed formulations, even though they are a bit simpler than arc based-
based formulations, suffer from the same drawbacks: scaling issues and lin-
ear relaxation weakness. Actually, according to Mak-Hau, mixed formula-
tions are weaker than the MTZ-based formulations [82]. Moreover, these
arc-based or mixed formulations often have poor linear relaxations, in par-
ticular compared to the exchange formulation. Indeed, EF dominates every
other formulation presented above (see Appendix A). The exchange formu-
lation is thus promising for the KEP, despite its exponential number of
variables. This exponentiality is due to the fact that variables are indexed
on exchanges, just like stable-set formulations.

3.2 Stable-set formulations
As explained in Section 2.2.2, any formulation of the maximum-weight stable
set problem (MWSSP) on the intersection graph I(E) can be used to solve
the kidney exchange problem. The specificities of the KEP are involved
in the construction of I(E), but not in the stable set problem which is a
standard problem. For this reason, the context of the (weighted) stable set
problem in this section in wider than the KEP and concerns any simple
undirected graph G = (V,E). We first recall key notions on this problem,
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then we present and study a new formulation.

3.2.1 Stable set polytopes

A natural formulation, called the edge formulation (SS-EF) of the MWSSP
is given below:

Model SS-EF

∀v ∈ V, yv =
{

1 if vertex v is selected in the solution
0 otherwise

z∗ = max
∑
v∈V

wvyv (3.53)

yv1 + yv2 ≤ 1 ∀(v1v2) ∈ E (3.54)
ye ∈ {0, 1} ∀v ∈ V (3.55)

Constraints (3.54) state that the endpoints of an edge cannot both belong
to the solution. In the KEP context, that means that exchanges sharing a
common agent (donor or patient) cannot be both performed. SS-EF is
known to be weak in general but is a classical and simple formulation.

The polytope defined by the linear relaxation of SS-EF is called the
fractional stable set polytope of G (FSTAB(G)). The stable set polytope
of G, denoted by STAB(G), is the convex hull of the characteristic vectors
of the stable sets of G:

STAB(G) := conv{χS : S is a stable set of G}

= {y ∈ R|V | : y =
∑

S stable
set of G

λSχ
S for some λS ≥ 0,

∀S stable set of G s.t.
∑

S stable
set of G

λS = 1}

Many valid inequalities are known and studied for STAB(G) [76], in-
cluding the clique inequalities. They state that for all clique K of G and
for all y ∈ STAB(G), y(K) := ∑

v∈K
yv ≤ 1. The clique relaxation polytope

of G, denoted by QSTAB(G), is the polytope defined by clique constraints
and non-negativity constraints:

QSTAB(G) = {y ∈ R|V | : y(K) ≤ 1, ∀ clique K of G, y ≥ 0}

Note that STAB(G) ⊆ QSTAB(G) and the equality holds for per-
fect graphs. Actually, it is a characterization of this class of graph,
due to Chvátal [30] and Padberg [96] (independently): G is perfect
⇔ QSTAB(G) = STAB(G).
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3.2.2 A new formulation for the stable set problem

Recall that if L ≥ K, then the intersection graph I(E) has the property to
be K1,L+1-free (see Section 2.2.1). The formulation proposed below, called
stable neighborhood formulation (SNF) is stronger on this class of
graph, as it will be proved after. For any vertex u ∈ V , we denote by Gu
the subgraph of G induced by N [u] and Su the set of all stable sets of Gu.

Model SNF

∀v ∈ V : yv =
{

1 if vertex v is selected in the solution
0 otherwise

∀v ∈ V,∀S ∈ Sv: xvS =
{

1 if stable set S is a subset of the solution
0 otherwise

max
∑
v∈V

yv (3.56)
∑
S∈Sv

xvS = 1 ∀v ∈ V (3.57)
∑
S∈Su
v∈S

xuS = yv ∀v ∈ V ∀u ∈ N [v] (3.58)

xvS ∈ {0, 1} ∀v ∈ V ∀S ∈ Sv (3.59)
yv ∈ {0, 1} ∀v ∈ V (3.60)

In the weighted case, let w : V → R be a weight function on vertices of
G, the objective (3.56) can be replaced by max ∑

v∈V
wvyv. Equations (3.57)

state that we must select exactly one stable set in the closed neighborhood
of any vertex and equations (3.58) impose consistency: if a vertex v is taken,
it must also be taken in the stable sets chosen by all its closed neighbors.
The idea of the formulation is to describe stable sets of G by looking at
their intersection with the neighborhood of any vertex: if S is a stable set
of G, then S ∩ N [u] is a stable set of Gu. Conversely, one can recombine
stable sets in Su into a single stable set of G if they are consistent. When
the stability number α (Gv) is not bounded (for at least one vertex v ∈ V ),
the formulation is not polynomial.

Let Q be the polyhedron associated with the SNF linear relaxation and
P be the projection of Q on the y variables:

Q := {(y, x) :
∑
S∈Sv

xvS = 1, yv =
∑
S∈Su
v∈S

xuS , 0 ≤ xvS ≤ 1, 0 ≤ yv ≤ 1,

∀v ∈ V , ∀u ∈ N [v], ∀S ∈ Sv}

P := Projy(Q) = {y ∈ R|V | : ∃x : (y, x) ∈ Q}
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Property 3.1
STAB(G) ⊆ P ⊆ QSTAB(G)

Proof. We show first that for all stable set S of G, there exists an integer
solution (y, x) ∈ Q : y = χS , and then that P ⊆ QSTAB(G). This means
that we do not miss any stable set and that no integer solution y that is not
a stable set of G can be extended to a feasible solution (y, x) ∈ Q.

The first part is trivial. Given a stable set S, we define for all v ∈ V
the stable set S′v := S ∩N [v] and construct (y, x) as: y = χS and, ∀v ∈ V ,
xvS′v = 1. By definition, (y, x) satisfies constraints (3.57) and (3.58):

For the second part, let y ∈ P . By definition, we have y ≥ 0, so we only
need to check that it satisfies clique inequalities. Let K be a clique of G and
let u∗ ∈ K:∑

v∈K
yv =

∑
v∈K

∑
S∈Su∗
v∈S

xu∗S
(a)=

∑
S∈Su∗
S∩K 6=∅

xu∗S ≤
∑

S∈Su∗

xu∗S = 1

(a) is true because K is a clique so a stable set S contains at most one
vertex from K, and thus S is counted only once in the sum. Therefore, we
have y(K) ≤ 1 for all clique K of G.

Property (3.1) proves that SNF is an extended formulation for the stable
set problem, but also that it is ideal for perfect graphs. If G is a K1,k-free
graph, then α (Gu) ≤ k for each vertex u ∈ V and there are at most O(|V |k)
stable sets Gu for each vertex u ∈ V , i.e., ∀u ∈ V |Su| = O(|V |k). In this
case, there is a polynomial number of constraints (3.58), so SNF is a com-
pact formulation for K1,k-free graphs. In particular, SNF is compact for
intersection graphs in the kidney exchange problem as they are K1,L+1-free.
Moreover, SNF is a compact ideal formulation for the stable set problem in
claw-free perfect graphs.

We showed that our formulation is not ideal in general, but tighter than
the clique relaxation. We know in fact that SNF satisfies every inequalities
that are contained inside the closed neighborhood of every vertex, but no
other inequalities.

Property 3.2
For any graph G = (V,E), y ∈ P ⇔ ∀u ∈ V : y[N [u]] ∈ STAB(Gu)

Proof. We show first that y ∈ P ⇒ ∀u ∈ V : y[N [u]] ∈ STAB(Gu), which
means that for any solution (y, x) ∈ Q, y is in the intersection of the convex
combinations of stable sets in Gu, for all u ∈ V . Then, we show that for any
point contained in the intersection of the convex combinations of stable sets
in Gu, for all u ∈ V , there exists a solution (y, x) ∈ Q.
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⇒
Let (y, x) ∈ Q. For u ∈ V :
By (3.58), we have yv = ∑

S∈Su
v∈S

xuS = ∑
S∈Su

xuSχ
S(v), ∀v ∈ N [u]. It fol-

lows that y[N [u]] = ∑
S∈Su

xuSχ
S
N [u], that is y[N [u]] is a convex combination

of stable sets of N [u] (with multipliers xuS ≥ 0 : ∑
S∈Su

xuS = 1). Hence

y[N [u]] ∈ STAB(Gu).
⇐

Let y ∈ R|V |: y[N [u]] ∈ STAB(Gu), ∀u ∈ V . By definition, we have that
∀u ∈ V : ∃λu ∈ [0, 1]|Su| such that ∑

S∈Su

λSu = 1 and y[N [u]] = ∑
S∈Su

λSuχ
S
N [u].

Taking xuS = λSu yields the result.

We already mentioned that many inequalities are studied for the stable
set problem. Their validity in the stable neighborhood formulation can be
deduced from Proposition 3.2. In particular, the odd wheel inequalities [28],
the antiweb-wheel inequalities [29] and the clique constraints (already shown
by proposition 3.1) are valid for SNF while the odd cycle inequalities [95],
rank inequalities [30], web and antiweb inequalities [121] and grille inequal-
ities [24] are not.

In the context of kidney exchange programs, recall that the stable set
problem must be solved on the intersection graph I(E) which may be im-
possible to compute integrally when dealing with large scale instances. Even
if the stable neighborhood formulation is compact for I(E), it still is expo-
nential for the KEP it aims at solving. Indeed, variables (and constraints)
of SNF are indexed on vertices of I(E), i.e., exchanges of the compatibil-
ity graph D. As explained in Section 1.4.2, a standard column generation
framework would fail to correctly solve its linear relaxation, because columns
and rows are dependent. That means a complex column-and-row generation
scheme is necessary to be able to exploit the interesting properties of SNF.

3.3 Experimental comparison
Exponential formulations solved with column generation can be very advan-
tageous over compact formulations as their linear relaxation is often tighter.
This advantage can however be limited by the pricing problem solving, es-
pecially when it is NP-hard. To evaluate the computation benefit of each
kind of formulation, we compare the exchange formulation with the model
MTZ-EAF, which is considered as the best compact formulation for the KEP
by Mak-Hau [82]. Our column generation framework solving the exchange
formulation, called CG-dyn, is described in the next chapter.
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3.3.1 Instances

Frequency (in %)
Parameter Donors Patients
Type O 34.5 65.1
Type A 45.8 20
Type B 19.7 12.4
Type AB 0 2.5
Spouse 48.97
Female 40.90
Low PRA 21.6
Medium PRA 16
High PRA 62.4

Probability of + crossmatch (%)
PRA Spousal∗ Others
Low 62.5 50
Medium 85 80
High 98.5 98

Table 3.2 – Parameters used for the KEP graph generator
∗ the probability of a negative crossmatch is reduced of 75%

The web application www.dcs.gla.ac.uk/~jamest/kidney-webapp/#/
generator provides a generator based on Saidman et al. [114]. Dickerson
et al. [40] studied kidney exchange programs to extract real data on the
demographic and proposed a set up for the different medical parameters
of the generator. We use their results, detailed in Table 3.2, to generate
realistic pools of patients and donors. Recall that a positive crossmatch
between a donor and a patient means they are incompatible. The average
density of graphs generated with this configuration is about 5%.

We created a set of benchmark instances, called KBR, made up of 27
different classes of KEP instances depending on the values of three parame-
ters: the number of pairs (|P | ∈ {50, 100, 250}), the percentage of altruistic
donors (p|N | ∈ {5, 10, 25}%) and the length limit for paths (L ∈ {4, 7, 13}).
The size limit for cycle K is always 3.

3.3.2 Exponential versus compact formulations

We run on 135 instances (5 in each class of KBR) our algorithm CG-dyn to
solve EF and the compact formulation MTZ-EAF within 2000 seconds1.

Table 3.3 shows different results depending on the size of the instances
for both algorithms. CG-dyn outperforms MTZ-EAF as soon as |P | = 250,
providing feasible solutions of excellent quality, while MTZ-EAF cannot
solve most instances of that size in the time given and provides large gaps
for these instances. In average, CG-dyn is better on medium instances but

1Complete results available on my webpage: https://pagesperso.g-scop.grenoble-
inp.fr/~pansartl/.

www.dcs.gla.ac.uk/~jamest/kidney-webapp/#/generator
www.dcs.gla.ac.uk/~jamest/kidney-webapp/#/generator
https://pagesperso.g-scop.grenoble-inp.fr/~pansartl/
https://pagesperso.g-scop.grenoble-inp.fr/~pansartl/
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# solved (# opt) Average time (s) Average gap (%)
|P | CG-dyn MTZ-EAF CG-dyn MTZ-EAF CG-dyn MTZ-EAF
50 45 (44) 45 (45) 1.6 0.41 < 0.01 0
100 45 (32) 38 (38) 10 435.1∗ 0.15 1.34
250 45 (17) 9 (9) 483.7 1714∗∗ 0.25 29.29

Table 3.3 – Number of instances for which the algorithm finishes before the
time limit, average running time and average gap between upper and lower

bound for 135 instances
∗ including the 7 instances (out of 45) reaching the time limit
∗∗ including the 36 instances (out of 45) reaching the time limit

it actually depends on the path length limit, so Table 3.4 shows results
for instances with |P | = 100 depending on L. The larger L is, the faster
MTZ-EAF. This is also true for larger instances: the 9 instances of size
250 that are solved by MTZ-EAF in the time limit all have L = 12. Even
though the compact formulation is stronger for greater L, it is not sufficient
to always get a good solution in the time allocated. The compact formulation
also proves to be quicker on very small instances (|P | = 50).

# solved (# opt) Average time (s) Average gap (%)
L CG-dyn MTZ-EAF CG-dyn MTZ-EAF CG-dyn MTZ-EAF
4 15 (10) 10 (10) 1.21 868.3∗ 0.13 2.83
7 15 (8) 13 (13) 2.17 433.5∗∗ 0.3 1.2
13 15 (14) 15 (15) 26.6 3.61 0.01 0

Table 3.4 – Number of instances for which the algorithm finishes before the
time limit, average running time and average gap between upper and lower

bound for the 15 instances with |P | = 100
∗ including the 5 instances (out of 15) reaching the time limit
∗∗ including the 2 instances (out of 15) reaching the time limit

We also compared the linear relaxations of the two models and observe
that, as expected from their theoretical comparaisons, EF is tighter than
MTZ-EAF. Table 3.5 shows the gap between the linear relaxations and the
optimal value when it is know (instances solved): z∗LR−OPT

z∗LR
, as well as the

ratio MTZ-EAF
EF . The bigger ratio for open instances suggests that the gaps

in this case may be even more distant.
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# instances Gap EF Gap MTZ-EAF Ratio
Solved 105 0.07% 5.12% 1.06
Open 30 – – 1.11

Table 3.5 – Quality of the linear relaxation

3.4 Conclusion: solving the KEP with integer pro-
gramming

Number of
Basis Formulation variables constraints Section

Arc
MTZ-AF Polynomial Exponential 3.1.2
MTZ-EAF Polynomial 3.1.2
HPIEF Polynomial 3.1.2

Exchange
EF Exponential Polynomial 3.1.1
SSF Exponential∗ 3.2
SNF Exponential∗ 3.2.2

Mixed PC-TSP Exponential Exponential 3.1.3
PICEF Exponential Polynomial 3.1.3

Table 3.6 – Overview of the main formulations for the KEP
∗ exponential for an input of the KEP, but polynomial in I(E)

We presented in this chapter several formulations from the kidney ex-
change problem literature. We also introduced a new formulation for the
stable set problem, which defines a polytope tighter than the clique relax-
ation polytope. In particular, this formulation, based on a construction of
the stable set by neighborhood, is ideal and compact for perfect andK1,k-free
graph. Table 3.6 sums up all the formulations studied in this chapter, also
detailing their size (exponential or polynomial) with respect to the input
(D;K;L;w).

As explained in Chapter 2, kidney exchange programs are expected to
significantly increase in the next few years. Compact formulations may seem
interesting to exploit, but they actually also suffer from the instance size
growth. To deal with the kidney exchange problem in this context, solvers
must use techniques recalled in Section 1.4.2. As the exchange formulation
is tighter and shows better experimental results for large graphs, we focus on
the design of a column generation framework to solve its linear relaxation,
detailed in the next chapter. Other avenues for research are not addressed
in this thesis but are promising for future work. In particular, we would like
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to develop a column-and-row generation for our new stable set formulation
SNF, which implies to identify the different pricing subproblems. Moreover,
theoretical comparisons between some formulations including paths remain
to be done.



Chapter 4

Column Generation for the
Exchange Formulation

The exchange formulation, introduced by Roth et al. and Abraham et al.
for cycles only [1, 110], is a large-scale integer linear program modeling the
kidney exchange problem (see Chapter 3, in particular Section 3.1.1). The
input is the weighted compatibility graph D and the length limits L and K.
In this graph, the exchange set E contains all exchanges (paths and cycles)
respecting the length constraints and participation constraint. A decision
variable is associated with each exchange of E and a unique set of constraints
(3.2) is required to model the physiological constraint. This formulation
grows exponentially with K and L so E is too big for a standard branch-
and-bound (see Section 1.4). This is the reason why a column generation is
applied to solve its linear relaxation EFL, presented below.

Model EFL

∀e ∈ E , xe =
{

1 if exchange e is chosen
0 otherwise

z∗LP = max
∑
e∈E

wexe (4.1)
∑
e∈E:
v∈V (e)

xe ≤ 1 ∀v ∈ V (4.2)

xe ≥ 0 ∀e ∈ E (4.3)

In the column generation algorithm, the exchanges are not computed
beforehand and E is unknown. Instead, a subset of exchanges E ′ is iteratively
constructed, by solving alternatively the restricted master problem (RMP)—
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the restriction of EFL on the set E ′—and the pricing problem. This pricing
problem decides if an exchange should be included to E ′ and relies on the
dual information provided by the master problem. The following problem
is the dual of EFL and αv are the dual variable associated with constraints
(4.2). When the RMP is solved, it computes dual values αv for each vertex
v.

Model EFL-Dual

min
∑
v∈V

αv (4.4)
∑

v∈V (e)
αv ≥ we ∀e ∈ E (4.5)

αv ≥ 0 ∀v ∈ V (4.6)

The solution of the pricing problem either augments E ′ with a new ex-
change, i.e., for which a variable is added to RMP, or proves that the optimal
solution of the current RMP is the optimal solution of EFL. In this latter
case, the algorithm stops and returns z∗LP . This pricing step is crucial in the
column generation and is discussed in the next section.

4.1 Pricing problem(s)
The pricing problem of the exchange formulation aims at finding a new ex-
change with a positive reduced cost or proving that none exists. The reduced
cost of an exchange e is given by rce = we −

∑
v∈V (e)

αv. It is important to

note that these reduced costs are in R and thus can be positive or negative.
As there are two kinds of exchanges, we can decompose this pricing problem
into two subproblems:

• The cycle pricing problem: find a cycle of length at most K of positive
reduced cost, or prove none exists

• The path pricing problem: find an elementary path of length at most
L starting by an altruistic donor and with a positive reduced cost, or
prove none exists.

To latter cast the path pricing problem as a minimization problem, we
define a new weight function associating with each arc the opposite of its
estimated reduced cost: ∀(uv) ∈ A, cuv = −wuv + αv. We also construct a
new directed graph containing an artificial source s linked to each altruistic
donor D′ = (V ∪ {s}, A′) where A′ = A ∪ {(su) ∀u ∈ N}. The function c
is extended to these new arcs: ∀u ∈ N, csv = αv. A valid path contains
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L + 1 vertices (including the source) and L arcs in D′. For an exchange e,
ce = ∑

(uv)∈A′(e)
cuv = ∑

v∈V (e)
αv − we = −rce.

In this section the “weight” of an arc (uv) (resp. an exchange e) refers
to cuv (resp. ce), and both D and D′ are weighted with this function c.
As ce = −rce, the pricing problems aim at finding exchanges of negative
weight.

4.1.1 The cycle pricing problem

Deciding whether a weighted and directed graph contains an elementary cy-
cle of negative weight and limited length can be done in polynomial time
with a Bellman-Ford algorithm. The Bellman-Ford algorithm was first de-
signed to compute shortest paths from a source to all vertices in a weighted
directed graph [15, 47, 89, 118]. If the graph contains a negative cycle, then
the algorithm returns this cycle instead of shortest paths, as they are un-
bounded. The Bellman-Ford algorithm can thus be used to detect such a
cycle instead of computing the shortest paths. To meet the pricing prob-
lem objective, some modifications are required, leading to the modified
Bellman-Ford algorithm 1, used in previous works on column generation
for the KEP [37, 102]:

• The algorithm applies |P | Bellman-Ford algorithms, all considering
a different patient-donor pair as the source in the algorithm, in fact
the “source” of a potential cycle. Actually, since a negative cycle will
necessarily visit a vertex with an outgoing negative arc, we can use
only the vertices of Ps = {u ∈ P : ∃v ∈ P |(uv) ∈ A and cuv < 0} as
sources.

• Each Bellman-Ford algorithm is limited to K steps to report only
cycles of length at most K.

Note that Algorithm 1 is not applied on D′ but on D as the source
cannot be in a cycle. We can also ignore the set N of vertices representing
altruistic donors.

4.1.2 The path pricing problem

Determining if the graph D′ contains an elementary path of negative weight,
visiting at most L arcs and starting by vertex s is an NP-complete prob-
lem. The proof, based on a reduction from the directed Hamiltonian path
problem, was recently given by Plaut et al. [104] and is quickly presented
below.

Proof of NP-completeness. Given some digraph H = (VH , AH), the
directed Hamiltonian path problem is to decide whether a Hamiltonian path,
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Algorithm 1 Modified Bellman-Ford
Input: D = (V,A) weighted with function c and K ∈ N

Ps = {u ∈ P : ∃v ∈ P |(uv) ∈ A, cuv < 0} . potential sources
Output: Either:
a negative cycle using at most K arcs in D,
or there is no such cycle in D.

for all s ∈ Ps do . initialization
for all v ∈ V do

d[v] = +∞ . table of distances from s to v
p[v] = ∅ . table of parents of each vertex v

d[s] = 0
for 1 to K do . iterations of BF limited to K

for all a = (uv) ∈ A do
if d[u] + c(u,v) < d[v] then

d[v] = d[u] + c(u,v)
p[v] = u

if d[s] < 0 then . found a negative cycle using s
e = {s} . construction of the cycle...
v = p[s]
while v != s do . ...backtracking parents chain

e = v ∪ e
v = p[v]

return e
return No positive cycle in D
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i.e., a path visiting each vertex exactly once, exists inH. Given this inputH,
we can construct an input (D′ = (V ′, A′), L, c) of the path pricing problem:
V ′ = VH ∪ {s}, A′ = AH ∪ {(sv) ∀v ∈ VH}, L = |VH | and

cuv =
{
L− 2 if u = s

− 1 if (uv) ∈ AH

This reduction is illustrated in Figure 4.1 where the fat arrow means all arcs
exist between s and the set of vertices and a waved arrow means any arc
(with any orientation) of H exists. If (v1, ..., vL) is a Hamiltonian path in
H, then (s, v1, ..., vL) is an elementary path of D′ containing |VH | ≤ L arcs
and of total weight −1. Reciprocally, given a solution p to the path pricing
problem in D′, we can write p = (s, u1, ..., ul). As cp < 0 and csu1 = L− 2
then p contains exactly L arcs to have a negative weight. Since p is an ele-
mentary path, it visits every vertices of D′ and (u1, ..., ul) is an Hamiltonian
path in H.

s

v1

L-2L-2

vL

L-2

-1-1

Figure 4.1 – Construction of the reduction from Hamiltonian path problem
to path pricing problem

The hardness of the path pricing problem is the main obstacle to over-
come when solving the KEP with altruistic donors, as the pricing problem
has to be solved a large number of times in general. Another difficulty of
this column generation framework is that two separate problems have to be
solved in the pricing step. The next section sets out how these different
problems are handled in our implementation.

4.1.3 Solving in practice.

In the pricing step, the modified Bellman-Ford is called first, since the cycle
pricing is easy to solve. If a cycle of negative weight is found, the pricing step
stops here and a new iteration of the column generation begins. Otherwise,
the path pricing problem must be solved.

This decision problem is actually handled with algorithms solving—
in heuristic, exact or relaxed manner—the associated optimization prob-
lem: the elementary minimum path problem with length con-
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straint (EMPPLC). Heuristics provide a feasible solution (giving an up-
per bound) of EMPPLC and if this solution has a negative weight, then
the path is added to the set of exchanges E ′ of RMP. Relaxations produce
lower bounds for EMPPLC, thus if the solution found by a relaxation has
a non-negative weight, then the optimality proof of z∗LP needed to end the
column generation is done. Otherwise, an exact algorithm is required
to make this proof. These lower bounds can also be used to compute up-
per bounds on the master problem solution z∗LP by duality, as detailed in
Section 4.3. In this thesis, we study four algorithms for the EMPPLC:

• a local search heuristic designed to quickly find columns.

• the heuristic called color coding [4], deeply studied in Chapter 6.

• the NG-route relaxation [13] providing lower bound for EMPPLC as
explained above, but also adding non elementary paths to speed up
the column generation convergence.

• a mixed-integer linear program which can be used to compute the final
proof of pricing optimality to end the column generation.

These algorithms are studied in Chapter 5 and combined in a column
generation scheme presented in Section 4.5. They are called only when the
modified Bellman-Ford asserted that every cycle has a positive or nil weight.
Thus, an optimal solution of EMPPLC is a path with the minimum weight
over all the exchanges, and not only overall paths. Accordingly, when
the ith pricing step solves the EMPPLC, the optimal value of the pricing is
c∗i = min

e∈E
{
∑

v∈V (e)
αiv − we}. In the same way, a relaxation of EMPPLC, with

value cri ≤ c∗i , gives a lower bound on the minimum weight of an exchange,
not only of a path.

The difficulty of the pricing step makes worthwhile the development of
strategies to speed up the column generation and the KEP solving in general.
We focus on two levers: reducing the size of the instance (Section 4.2) and
avoiding the implementation of a complete branch-and-price (Section 4.4).
Some methods detailed in these sections require to compute upper bounds
on the linear relaxation value z∗LP , an issue addressed in Section 4.3.

4.2 Filtering
Reducing the size of a KEP instance involves removing arcs and vertices.
Elements of the graph can be, and should be, removed if they are not part
of an optimal solution, i.e., they are not interesting for the problem. The
interest of an arc or a vertex is measured according to two criteria: its
feasibility and its optimality.
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4.2.1 Feasibility

A preprocessing can filter arcs and vertices based on a feasibility cri-
teria, as described in Algorithm 2. The Floyd-Warshall algorithm, or
Johnson’s for sparse graphs, is used to compute the distance function
d : V ′ × V ′ ⇒ N ∪ {+∞} where d(u, v) is the length of a shortest path, with
respect to the number of arcs, between u and v. An arc is then removed
if its tail is too far from the source (it cannot belong to a path of less than
L arcs) and too far from the head of the arc (it cannot belong to a cycle of
less than K arcs). Finally, all the isolated vertices are deleted. An example
is depicted in Figure 4.2.

Algorithm 2 Preprocessing
Input: D′ = (V ′, A′) and K,L ∈ N

Floyd-Warshall or Johnson’s algorithm → d(u, v) . distance function
for all (uv) ∈ A do . initialization

if d(s, u) ≥ L and d(v, u) ≥ K then
remove (uv) from A and A′

remove isolated vertices

1 3 4

652

7

8s

(a) Before preprocessing

1 3 4

652

7

s

(b) After preprocessing

arc (uv) d(s, u) d(v, u)
(3, 5) 2 4
(4, 3) 5 4
(4, 6) 5 1
(5, 7) 2 2
(6, 4) 4 1
(6, 5) 4 2
(7, 6) 3 2
(8, 5) 5 3
(6, 8) 4 3

(c) Table of distances.
Strikethrough lines represent arcs to

remove.

Figure 4.2 – Example of preprocessing 2 on a compatibility graph, with
L = 4 and K = 3.

This algorithm is applied as a preprocessing for any instance to remove
all the unnecessary arcs and vertices. It can be interesting to also apply it
later, and several times, in the column generation. Indeed, as discussed in
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the next section, arcs may be removed because of their suboptimality, chang-
ing the graph structure and the distances. Algorithm 2 is however quite
costly (O(|V |3) operations for Floyd-Warshall and O(|V |2log(|V |) + |V ||A|)
for Johnson’s) and thereby must not be overused.

4.2.2 Optimality

An arc can also be removed when it is proven to be suboptimal, i.e., it
cannot belong to an optimal solution. Such a proof requires to have a lower
bound and an upper bound of the solution, but also, for each arc, a bound
on the benefit of taking it in the solution. The marginal cost of an arc
measures this benefit and if it is too small regarding what is already known
about the optimal solution, the arc can be removed. Each iteration of the
column generation reports primal and dual information that can be used to
define a filtering rule detecting some of these suboptimal arcs.

Marginal cost of an arc. Informally, the marginal cost λ∗uv of an
arc (uv) is a lower bound on the decrease of the upper bound value when
including this arc in the solution. Its calculation derives from the duality
theory. Consider the linear program EFLuv imposing to take arc (uv) with
constraint (4.7):

Model EFLuv

z∗LP = max
∑
e∈E

wexe (4.1)
∑
e∈E:
v∈V (e)

xe ≤ 1 ∀v ∈ V (4.2)

∑
e∈E:

(uv)∈A(e)

xe = 1 (4.7)

xe ≥ 0 ∀e ∈ E (4.3)

Let λuv be the dual variable associated with constraint (4.7). The dual
problem of EFLuv is defined as follows:
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Model EFLuv-Dual

min
∑
v∈V

αv + λuv (4.8)
∑

v∈V (e)
αv + λuv ≥ we ∀e ∈ E : (uv) ∈ A(e) (4.9)

∑
v∈V (e)

αv ≥ we ∀e ∈ E : (uv) /∈ A(e) (4.10)

αv ≥ 0 ∀v ∈ V (4.11)
λuv ∈ R (4.12)

Solving a linear program for each arc to compute its marginal cost is
intractable, but the pricing step might provide this marginal cost, or a up-
per bound on it, without additional effort. Indeed, with the linear relax-
ation of the primal problem, we can build a dual feasible solution by setting
λ∗uv = max

e∈E
(uv)∈A(e)

{we −
∑

v∈V (e)
αv}.

Filtering rule. Assume zi and zi are lower and upper bounds of the re-
stricted master problem at the ith iteration. The marginal cost, or a upper
bound, λiuv is also known for each arc (uv). Note that we can replace con-
straint (4.7) by ∑

e∈E:
(uv)∈A(e)

xe ≥ 1, the equality being held by constraints (4.2).

This enlightens the fact that λuv ≤ 0 so taking arc (uv) actually decreases
the value of the upper bound. If this decrease is too important so that the
objective value becomes lower than the best lower bound, we know arc (uv)
is suboptimal. Formally, if zi + λiuv < zi then arc (uv) is removed since no
cycle or path using it can provide a better solution than the best known at
step i.

This filtering procedure requires to get a an upper bound on the optimal
value. The better this upper bound is, the most arcs and vertices can be
removed. Primal and dual relation offers the opportunity to compute such
bounds.

4.3 Dual bounds
An upper bound of z∗LP can be computed for free each time a lower bound of
the elementary minimum path problem with length constraint is found dur-
ing the pricing step. The construction, and proof, of this bound results from
an auxiliary linear program, called EFLβ, adding the following redundant
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constraint to EFL: ∑
e∈E

xe ≤
|V |
2 (4.13)

4.3.1 Construction

This constraint is valid for every solution of the KEP as it stipulates that
the number of exchanges is at most half of the number of agents, or, in other
words, that each exchange contains at least two agents.

Model EFLβ

z∗LP = max
∑
e∈E

wexe (4.1)
∑
e∈E:
v∈V (e)

xe ≤ 1 ∀v ∈ V (4.2)

∑
e∈E

xe ≤
|V |
2 (4.13)

xe ≥ 0 ∀e ∈ E (4.3)

Let β be the dual variable associated with constraint (4.13). The dual
problem of EFLβ is defined as follows:

Model EFLβ-Dual

min
∑
v∈V

αv + |V |2 β (4.14)
∑

v∈V (e)
αv + β ≥ we ∀e ∈ E (4.15)

αv ≥ 0 ∀v ∈ V (4.16)
β ≥ 0 (4.17)

From the weak duality theorem, we know that the value of any feasi-
ble solution (α, β) of EFLβ-Dual is an upper bound for z∗LP . Assume the
column generation is in its ith iteration. On the one hand, the restricted
master problem provides the optimal value of the current RMP z∗i

LP and
the vector of dual values αi. From the strong duality theorem, we know
that ∑

v∈V
αiv = z∗i

LP . On the other hand, if the pricing step computes an op-

timal solution of EMPPLC, it provides c∗i = min
e∈E
{
∑

v∈V (e)
αiv − we}. Assume

c∗i < 0 so that at least one improving column has been found. As a result,
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(z∗i
LP ,−c∗i) is a feasible solution of EFLβ-Dual and a dual upper bound UBi

D

on z∗LP can be computed:

UBi
D = z∗i

LP −
|V |
2 c∗i (4.18)

However as discussed in Section 4.1.3, EMPPLC is a hard problem and
the pricing step might fail to get c∗i and compute instead a lower bound
for EMPPLC: cri ≤ c∗i . This lower bound can come from any relaxation of
EMPPLC (e.g., the NG-route or the linear relaxation of the mixed-integer
program) and still allows to compute an upper bound UBi

r on z∗LP which
respects z∗ ≤ UBi

D ≤ UBi
r:

UBi
r = z∗i

LP −
|V |
2 cri (4.19)

Note that when the pricing problem ends up with c∗i = 0, this means
that no exchange is interesting to add and the column generation stops
with the optimal solution of EFL. This is clearly visible with these bounds.
Indeed, z∗i

LP is a lower bound on z∗LP as RMP is a restriction of EFL. So
when c∗i = 0, we have: z∗LP ≤ UBi

D = z∗i
LP ≤ z∗LP so z∗LP = z∗i

LP . The same
reasoning holds for cri = 0.

The upper bound can be equivalently seen as the Lagrangian relaxation
of constraint (4.13). Its quality depends on this constraint, in particular on
the value |V |2 , which could be strengthen by reasoning on feasible solutions.
The computation of this bound is important in order to perform filtering
(Section 4.2.2), but also to qualify feasible solutions found by non-exact
algorithms. Such algorithms also rely on the fact that, at the end of the
column generation, the current set of generated exchanges E ′, a fractional
solution x of value z and an upper bound UB on z∗ are returned.

4.3.2 End of the column generation

Ideally, the column generation ends with the optimality proof of the linear
relaxation and x is optimal for EFL: UB = z = z∗LP . This optimality is
however not guaranteed in two situations, but a (weaker) upper bound can
still be computed. First, if the solution contains non elementary paths then
x is the solution of a relaxed EFL. In this case, z is an upper bound anyway
but the solution is not valid: we say that a solution of the KEP (fractional
or integer) is valid if it contains only elementary exchanges. Second, if the
column generation stopped because of a limit on the running time, z and
z∗LP are incomparable. UB is then computed as explained in the previous
section.

If the solution x is optimal for EFL, but also integer and valid, i.e.,
is feasible, then it is the optimal solution of EF and the kidney exchange
problem is optimally solved: z = z∗LP = z∗. Otherwise, a feasible solution
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can be found via heuristics. In general this solution is not optimal, but
its quality can be assessed against UB. In practice the optimality is often
reached, and when it is not, the gap with the upper bound is very small (see
Section 4.6). The next section describes two of these heuristics.

4.4 Finding an integer solution
The common technique to find an integer solution of a linear program is the
branch-and-bound described in Section 1.4. Using a column generation in
this framework changes the name to branch-and-price but does not change
the principle: at each node of the search tree, the linear relaxation must be
computed. Considering that the linear relaxation of the KEP is hard to get
due to the hardness of the pricing problem, it would be opportune to solve
it only once.

4.4.1 Integer programming

The first method simply solves the integer program EF restricted on the
subset of valid exchanges found by the column generation. If E ′ contained
invalid exchanges, they are removed. This technique can however be too
costly in some cases, as it requires to solve an integer program. Contrar-
ily, the approximation presented in the next section is a polynomial-time
algorithm.

4.4.2 Iterative rounding approximation

Assume x is a valid fractional solution returned by the column generation
(non-elementary paths, if any, are removed of the solution). The algorithm 3
describes an approximation based on iterative rounding, a method developed
for many combinatorial problems by Lau, Ravi and Singh [75]. It selects
an exchange of maximum weight and keep it in the integer solution while
removing all the exchanges intersecting it.

Recall that ∀e ∈ E ′ xe ∈ [0, 1]. For any solution x, we define ∀v ∈ V ,
x(v) = ∑

e∈E ′
v∈V (e)

xe, and say that a vertex v is saturated if x(v) = 1.

An example of execution is pictured in Figure 4.3. Four exchanges are
involved in the fractional solution 4.3a: e1 = 5−7−6 (in gold); e2 = 4−6 (in
turquoise); e3 = 1− 3 (in beige) and e4 = 2− 3 (in brown). Their fractional
value does not matter for this instance1. In the first iteration 4.3b, e1 is
kept as it has a weight of 12, so e2 is removed. In the second (and last)
iteration 4.3c, the maximum exchange with a fractional value is e3, hence
the suppression of e4.

1Actually, this example is very naive as the fractional solution is worse than the integer
solution, no matter x values.
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Algorithm 3 Iterative rounding
Input: x : E ′ → [0, 1] a valid solution
Output: x : E ′ → {0, 1}
x = x
S = {e ∈ E ′ : 1 > xe > 0} . exchanges with fractional value
while S 6= ∅ do

emax = arg max
e∈S

we

xemax = 1
S = S \ {emax}
for all u ∈ V (emax) do

for all e ∈ S such that u ∈ V (e) and e 6= emax do
xe = 0
S = S \ {e}

S = saturate(x) . see Algorithm 4
return x

Algorithm 4 Saturate
Input: x ∈ E ′ → [0, 1]
Output: S: the set of exchanges with fractional value
for all x ∈ E ′ : xe > 0 do

Increase xe until one of its vertex is saturated
return S = {e ∈ E ′ : 1 > xe > 0}
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(a) Fractional solution
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(c) Integer solution

Figure 4.3 – Execution of Algorithm 3 on an example

At each loop of the iterative rounding, the value of the solution is de-
creased of at most (L− 1)wemax (assuming L ≥ K). Indeed, each exchange
weighs at most wemax and at each vertex of emax, exchanges totalizing a
value of at most 1 are removed. Thus, removed exchanges are worth at
most Lwemax but an exchange of weight wemax is kept. When the iterative
rounding algorithm 3 is applied on the optimal linear solution, it returns a
feasible solution with a guaranteed quality.

Property 4.1
Given a valid fractional solution x, Algorithm 3 returns a feasible
solution x for the KEP in polynomial time.
Moreover, assume that L ≥ K and x is the optimal solution of
EFL, this solution x has a value zapx such that: z∗

L ≤ zapx ≤ z
∗.

Proof. Let x be a valid fractional solution of EFL. The first part of the
property is due to the following statements:

• The algorithm ends: at each loop, an exchange emax and all the ex-
changes intersecting emax are removed from the set S so the loop
finishes.

• The algorithm runs in polynomial time: in the worst case, the loop
visits every exchange of the support of the linear relaxation (exchange
e such that xe > 0). Since there is a polynomial (in |V |) number of
constraints, this support has O(|V |) elements.

• The algorithm returns an integer solution: this is the condition of
ending (S = ∅ ⇔ xe = 1 or 0 ∀e ∈ E ′).

• The algorithm returns a feasible solution: in the output solution x,
each vertex v is involved in at most one exchange with value 1 and
then x(v) ≤ 1. Moreover each exchange is elementary since x is valid.

Now assume that x is the optimal solution of EFL and L ≥ K. Let us
prove that z∗

L ≤ zapx ≤ z
∗. Recall that z∗LP = ∑

e∈E ′
wexe. We denote by E

the support of solution x, i.e., E = {e ∈ E ′ : xe > 0}. Algorithm 3 returns a
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solution x of value zapx = ∑
e∈ξ

we, where ξ is the set of exchanges from the

initial solution x kept by the algorithm. For each exchange em ∈ ξ, Eem de-
notes the set of exchanges of E intersecting em: Eem := {e ∈ E : e ∩ em 6= ∅}.
∀u ∈ V (em), Eem(u) is the set of exchanges in Eem containing u. Note that
Eem = ⋃

u∈V (em)
Eem(u). As z∗LP = ∑

e∈ξ
wexe + ∑

e/∈ξ
wexe, we have:

z∗LP ≤
∑
em∈ξ

wemxem +
∑
e∈Eem

wexe


≤
∑
em∈ξ

wemxem +
∑

u∈V (em)

∑
e∈Eem (u)

wexe


Given an exchange em ∈ ξ, we have:
1. em was chosen with a maximal weight so ∀e ∈ Eem we ≤ wem

2. ∀u ∈ V (em) x(u) ≤ 1
3. em contains at most L vertices: V |(em)| ≤ L
Thus,

z∗LP ≤
∑
em∈ξ

wemxem +
∑

u∈V (em)
wem ·

∑
e∈Eem (u)

xe

 (from 1.)

≤
∑
em∈ξ

wemxem +
∑

u∈V (em)
(1− xem)wem

 (from 2.)

≤
∑
em∈ξ

(wemxem + L(1− xem)wem) (from 3.)

≤
∑
em∈ξ

(Lwemxem + L(1− xem)wem) =
∑
em∈ξ

(Lwem) = Lzapx

Finally z∗ ≤ z∗LP ≤ Lzapx and, zapx being the value of a feasible solution,
zapx ≤ z∗, hence the result z∗

L ≤ zapx ≤ z
∗.

Both proposed techniques provide a feasible solution that may be non
optimal. Its quality can be assessed against the best upper bound of the
problem. When the gap between them is strictly smaller than 1, the integer
solution is proven to be optimal. The quality of this upper bound depends
on how it is computed, as explained in Section 4.3.2.

4.5 Complete algorithm
Combining the features introduced in this chapter, we designed an algorithm
to solve the kidney exchange problem with altruistic donors. The choice of
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the methods was led by the numerous experiments conducted in a prelimi-
nary phase. In particular, many configurations of the EMPPLC algorithms
were compared and computational results can be found in Chapter 5.

IP formulation EF

Solve RMP on E ′

Modified Bellman-Ford

no cycle
cycle e

add e to E ′

solve EMPPLC and get path e

z∗LP
z

e relaxatione feasible e optimal
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D

rce > 0rce ≤ 0rce > 0rce ≤ 0
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Figure 4.4 – General column generation scheme for the KEP

4.5.1 General approach

The general column generation approach solving the KEP is depicted in
Figure 4.4. The scheme is simple: the pricing step stops as soon as an
exchange of positive reduced cost is found (even if it does not have the
best reduced cost) and the pricing problem is decomposed into two pricing
subproblems as explained in Section 4.1. When a cycle of positive reduced
cost is found with the Bellman-Ford algorithm, a new iteration of the column
generation begins. Otherwise, the path pricing problem must be solved and
this is done by considering the elementary minimum path problem with
length constraint. Depending on the algorithm applied, the solution can be
feasible, relaxed or optimal for the EMPPLC, leading to different actions to
continue the column generation. In particular, when the solution is feasible
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with a negative reduced cost, the path pricing problem must be solved again.
Indeed, no improving exchange was found and nothing can be concluded
about the state of the column generation. Of course, another algorithm
should be called to get another solution.

When the solution is optimal, or a relaxation, and its reduced cost pos-
itive, an upper bound on the linear relaxation z∗LP can be computed (see
Section 4.3). With this bound, and other dual information, arcs and ver-
tices can be filtered with the rules described in Section 4.2. At the end,
when no more columns can improve the objective value, the column gen-
eration stops. If the final solution is fractional, the integer program or the
approximation of Section 4.4 can be used to get an integer solution.

4.5.2 Our implementation

IP formulation EF

Solve RMP on E ′

Filtering

Get path e from NG-route relaxation

rce > 0

rce ≤ 0

rce > 0
rce ≤ 0

e optimal

Get path e from color coding
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MIP on E ′

x∗LP or x fractional
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z, xx∗
z + 1 > UB

e relaxation
or time limit reached

add e and
subpaths to E ′

Figure 4.5 – Our algorithm solving the kidney exchange problem: CG-dyn
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In this thesis, we consider only K = 3 and preliminary experimental
results reveal that in this case, computing cycles beforehand is more efficient.
These results, summarized in Section 4.6.1, also demonstrate that adding
all the subpaths of the EMPPLC solution speeds up the column generation.
Concretely, when the path (s, v1, ..., vl) is added to E ′, we also add the paths
(s, v1, ..., vl−1), (s, v1, ..., vl−2), and so on until (s, v1, v2).

Conclusions of Chapter 5 led us to use only the two dynamic programs
(color coding and NG-route) to solve the EMPPLC of the path pricing step.
The color coding is limited to 1 second at each iteration of the column gen-
eration. Thus, if the color coding fails to find an improving path within this
time limit, the NG-route relaxation is called. After the column generation,
the final integer solution is computed with the integer program exchange
formulation restricted on E ′ as it runs very quickly, especially compared
to the column generation running time. The complete framework of our
implementation called CG-dyn is shown in Figure 4.5.

4.6 Experimentations
We developed several sets of tests to assess the performance of the new
algorithm that we propose in this chapter. Section 4.6.1 presents the results
of a first phase, which, in order to design the best framework for the column
generation, evaluates the effect of different parameters on its performance
(e.g., adding subpaths). A second testing phase compares the performance
of our algorithm CG-dyn to a more naive column generation which only uses
the local search and the time-stage formulation to solve the EMPPLC. We
implemented this other column generation algorithm, called CG-tsf, to figure
out the importance of solving this subproblem and results are analyzed in
Section 4.6.22. These experiments were conducted on instances generated
as explained in the Section 3.3.1. In particular, the number of pairs varies
from 50 to 250, L ∈ {4, 7, 13} and K = 3.

4.6.1 Column generation configuration

A first testing phase was conducted to evaluate the interest of integrating
all the cycles beforehand or to run the Bellman-Ford algorithm during the
pricing step. The benefit of adding subpaths of an EMPPLC solution was
also demonstrated in this phase. We run, within a time limit of one hour,
our column generation framework with these two parameters varying on 27
instances: 1 in each instance class. Table 4.1 shows the average computation
time for the four possible configurations, depending on L and |P |.

2Complete results available on my webpage: https://pagesperso.g-scop.grenoble-
inp.fr/~pansartl/.

https://pagesperso.g-scop.grenoble-inp.fr/~pansartl/
https://pagesperso.g-scop.grenoble-inp.fr/~pansartl/
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L |P |

4 7 13 50 100 250 total
No subpaths + BF 4.8 18.1 830.1∗ 1.7 10.6 840.8∗ 284.4
No subpaths + no BF 1.9 11.6 884.4∗ 1.8 9.8 886.3∗ 299.3
Subpaths + BF 4.2 15.5 462.6 1.6 8.8 471.9 160.8
Subpaths + no BF 1.8 10.2 435.8 1.6 7.9 438.2 149.2

Table 4.1 – Average time (in seconds) to run the column generation on 27
instances, depending on L or |P |.

∗ one instance reached the time limit of one hour.

Adding subpaths is clearly an advantage in the column generation, a
result which is consistent with the theoretical analysis. Indeed, this strategy
may increase the execution time of the RMP in each iteration, but in our
model, the master problem is not the limiting factor of the column generation
performance. On the contrary, it strongly depends on the efficiency of the
pricing problem, and more particularly the EMPPLC. Yet, adding subpaths
can reduce the number of iterations and therefore the number of times the
EMPPLC must be solved.

Computing all the cycles before the column generation so that they form
the initial set E ′ is interesting in this setting, in particular for larger graphs.
As even larger instances are expected to be solved, we choose to generate all
the cycles, thus to not apply the Bellman-Ford algorithm, in our advanced
experiments (see Figure 4.5). These results were observed for K = 3 and
different conclusions could emerged with greater values of K.

4.6.2 Performance of the pricing step

The efficiency of dynamic programming approaches to solve the elementary
minimum path problem with length constraint was demonstrated in Chap-
ter 5. To find out if this is still the case when its embedded in a column
generation, we implemented a naive column generation called CG-tsf, which
handles the pricing step with the local search heuristic and the time-stage
formulation. Every other parameter of the column generation framework
is the same for both algorithms, in particular they generate all cycles in
the master problem and add every subpath in E ′. They are applied on 135
instances (5 in each class of KBR), each within a time limit of 2000 seconds.

Table 4.2 shows that our algorithm always finds the linear relaxation EFL
while CG-tsf reaches the time limit for 15 instances (those with |P | = 250
and L = 13). Consequently, our column generation algorithm finds the opti-
mal solution of the integer program exchange formulation for more instances.
For both algorithms, this integer solution in mostly found because the linear



84 | CHAPTER 4. THE EXCHANGE FORMULATION

CG-dyn CG-tsf
# z∗LP computed 135 120
Average gap between UB and LB 0.13 % 3.02 %
# z∗ computed (gap = 0) 93 84

Table 4.2 – Results for the two different CG schemes on 135 instances after
2000 seconds of running time

L CG-dyn CG-tsf
4 1.6 8.9
7 10 34.3
13 15.6 673.1

Table 4.3 – Average running time (in seconds), depending on L, for the 120
instances solved in the time limit

relaxation is integer (and valid), and in this case there is no need to call the
integer program after the column generation. Moreover, considering the 120
instances for which both methods find the linear relaxation in 2000 seconds,
the running time is significantly smaller for CG-dyn than CG-tsf (see Table
4.3). These results support the efficiency of the dynamic programs to solve
the path pricing problem in a column generation for the KEP.

4.6.3 Scaling up

In Section 3.3.2, we saw that the compact formulation MTZ-EAF failed to
solve instances with only 250 pairs in 2000 seconds. Our algorithm could
handle these instances in a reasonable amount of time giving solution of very
good quality. As kidney exchange programs are growing, we experiment
CG-dyn on larger instances, generated as described in Section 3.3.1, but
with different parameters. In particular, it seems reasonable to consider
that most of the altruistic donors are already included in kidney exchange
programs, unlike patients for whom such programs are very different than
the standard procedure. Thus, the proportion of altruistic donors would
probably be low in future large programs. In the end, we apply CG-dyn on
20 instances, divided in 4 classes (L ∈ {4, 7}, |P | ∈ {500, 750}, p|N | = 1%).

Results, summarized in Table 4.4, show that the quality of the solution
is still very high. Every instance was solved in less than half an hour and
in average rather quickly. We also tried to solve instances with L = 13 or
|P | = 1000, but encountered memory issues. However, our implementation
does not profit from the fact that instances are quite sparse, so a more
efficient implementation should overcome these memory errors. Moreover,
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while solving the final integer programming corresponds in average to less
than 1% of the running time on realistic instances, for these large instances
it represents more than 5%, sometimes almost 15%. It is likely that this
proportion will increase with the size of instances, making necessary the
development of new algorithms to find feasible solutions.

|P | = 500 |P | = 750
L = 4 L = 7 L = 4 L = 7

Average gap between UB and LB 0.05% 0.18% 0.06% 0.23%
Average running time (seconds) 5.6 123.6 23.1 1823.5

Table 4.4 – Results of CG-dyn on 40 large instances

4.7 Conclusion: a new column generation scheme
for the exchange formulation

In this chapter, we designed a complete column generation framework to
solve the kidney exchange problem including altruistic donors. Due to the
hardness of the pricing problem in this case, an extension of previous col-
umn generation schemes containing only cycles was not possible. Using
the study of the elementary minimum path problem with length constraint,
which is detailed in the next chapter, we proposed an algorithm showing
excellent results on realistic instances and promising for larger instances.
Indeed, we believe that the memory issues encountered for instances with
|P | = 1000 can be avoided with an implementation of the column generation
using algorithms and data structures adapted to large and sparse instances.
For example, the preprocessing step computing the distances between each
pair of vertices could be performed with a Johnson’s algorithm instead of
Floyd-Warshall. Other avenues of research can be explored in future work,
in particular the development of algorithms to get feasible solutions dur-
ing and after the column generation. Besides providing an integer solution,
working on these feasible solutions will strengthen the filtering in both ways.
Not only it will raise the best lower bound, but it will also strengthen the
valid inequality (4.13) used to compute the dual upper bound.
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Chapter 5

Solving the elementary
minimum path problem with
length constraint

Previously in this thesis, we explained why the pricing problem of the
column generation for the exchange formulation involves a path problem
that we call elementary minimum path problem with length constraint
(EMPPLC). This problem can be encountered in other domains, so this
chapter is designed to be self-contained and focuses on EMPPLC in a gen-
eral context. The formal definition of the problem, its characterization in
the literature and solving methods are presented for any directed graph
G = (V,A) with a cost function c on arcs. Experiments are however devel-
oped for a column generation framework, on instances of the KEP.

5.1 Dealing with a path problem
EMPPLC belongs to the well-known family of paths problems. It is a
special case of the elementary shortest path problem with resource con-
straints. However its specificity—the length constraint—can be exploited to
strengthen existing algorithms.

5.1.1 Definition

Let G = (V,A) be a digraph such that the set of vertices V includes a source
s. Each arc (ij) ∈ A has a cost cij . Let L be the limit on the length (number
of arcs) of a path. An (l, i)-path p = (s, i1, ..., il = i) is an elementary path
of length l starting from the source s and ending in i. We denote by A(p)
(resp. V (p)) the set of arcs (resp. vertices) of p and by cp = ∑

(ij)∈A(p)
cij its
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cost. The objective of the elementary minimum path problem with
length constraint (EMPPLC) is to find p∗ an elementary (l, i)-path of
minimum cost c∗ such that l ≤ L.

Path problems. Interest for elementary shortest path problems mainly
arose from vehicle routing applications solved by column generation. The
elementarity constraint is often relaxed to get a simpler problem, which
can be relevant in many applications as the vehicle can go twice to the
same place. In the standard case, one just wants to solve the shortest path
problem (SPP), which can be done with a Bellman-Ford algorithm. In the
presence of resource constraints, such as time windows or vehicle capacities,
the problem becomes harder. In 1988, Desrochers [36] proposed an extension
of the Bellman-Ford algorithm for the shortest path problem with resource
constraints (SPPRC). However, Feillet et al. [44] argued that relaxing the
elementarity constraint can leads to bounds of poor quality, thus proposed
to extend Desrochers’ algorithm in order to solve the NP-hard elementary
shortest path problem with resource constraints (ESPPRC). In the
ESPPRC, paths have limited resources (instead of having a maximum length
as in EMPPLC). Let R be the number of resource types and grij ≥ 0 the
consumption of resource r along the arc (ij). Each vertex i ∈ V constrains
the path to reach it with a resource consumption belonging to [ari , bri ] for
each resource r. The objective is to find a path of minimum cost c such that
every resource constraint is satisfied. By considering a single resource with
a unit consumption and by setting the bound on this resource consumption
to the length limit, ESPPRC describes EMPPLC. Formally let R = 1 and,
∀i ∈ V : ai = 0 and bi = L. In addition we set gij = 1, ∀(ij) ∈ A and observe
that EMPPLC is a special case of ESPPRC.

A small note about the kidney exchange problem. In the KEP
context and previous chapters, the elementary minimum path problem with
length constraint is applied on D′, i.e., the compatibility graph with an
extra source. The cost of arcs changes at each iteration of the column
generation and represents the opposite of the estimated reduced cost of an
arc. The elementarity constraint cannot be relaxed for a feasible solution,
but it can be relaxed in the RMP, “temporarily”, in order to speed up
the column generation. Actually, compatibility graphs are generally sparse,
unlike graphs of vehicle routing problems which are usually complete, and
relaxed solutions may be elementary anyway.

5.1.2 Exploiting the length constraint

As we look for a path of length at most L, we can use this information to
reinforce shortest path algorithms. We compute with Floyd-Warshall al-
gorithm the distance function d : V × V → N ∪ {+∞} where d(i, j) is the
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shortest path between i and j, with respect to the number of arcs. We de-
fine the extended neighborhood γ(i) of vertex i as the set of vertices that
may appear in any path starting at the source of length at most L including
i: γ(i) := {j ∈ V : d(s, i) + d(i, j) ≤ L or d(s, j) + d(j, i) ≤ L}. Note that if
i ∈ γ(j) then j ∈ γ(i). We define the extended predecessors γ−(i) of
vertex i as the sets of vertices that can reach i in a path of length at most
L: γ−(i) := {j ∈ V : d(s, j) + d(j, i) ≤ L}.

This distance function is used first to perform a preprocessing on the
graph G by removing every arc (and vertex) that is too far from the source
to be contained in a path of length L (the same as algorithm 2 in Section
4.2.1, without the condition on K). The sets of extended neighbors and
predecessors also take part in the algorithms presented in this chapter.

5.1.3 Dynamic programs

Numerous approaches solving paths problems, including Desrochers’ and
Feillet’, are based on dynamic programing and labeling algorithms following
Held and Karp results [60]. Recall that N−(i) and N+(i) are the sets of
predecessors and successors of i ∈ V. The optimal solution of EMPPLC can
be computed via the recursive function:

f∗(S, i) = min
j∈N−(i)∩S

{f∗ (S \ {i}, j) + cji} (5.1)

where f∗(S, i) is the minimal cost of a (|S| − 1, i)-path, visiting all vertices
of S and ending in i ∈ S. This dynamic program has a space complexity of
O(|V |2|V |), a time complexity of O(|A|2|V |) and does not scale up to large
instances.

Relaxations A common approach to overcome scaling issues is to relax
the problem in order to deal with a smaller search space. Relaxing a min-
imization problem aims at quickly providing lower bounds. If we relax the
constraint of elementarity, the search space is strongly reduced since the vis-
ited vertices are not remembered anymore. The problem to solve becomes
the minimum path problem with length constraint, a special case of the
shortest path problem with resource constraints and can be solved
by a dynamic program running in O(L|A|):

f∗(l, i) = min
j∈N−(i)

{f∗(l − 1, j) + cji}

where f∗(l, i) is the minimal cost of a (l, i)-path.
If, on top op that, we also relax the resource constraints, the problem

falls to the shortest path problem. When the graph contains cycles of
negative weight, the problem is unbounded. Otherwise the solution is a
shortest path using at most |V | − 1 arcs that can be found in O(|V ||A|)
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by the Bellman-Ford algorithm. It is actually based on the same recursive
formula, the length indexation being present to avoid infinite loops. In a
directed acyclic graph, one can instead uses the following recursive formula
of time complexity O(|A|):

f∗(i) = min
j∈N−(i)

{f∗ (j) + cji}

where f∗(i) is the minimal cost of a path from s to i.
In this thesis, we study a more complex relaxation due to Baldacci et

al. [13] called the NG-route relaxation. We present their algorithm and how
we reinforce it for our problem in section 5.5.

Restrictions Another, and opposite, idea to reduce the search space in
dynamic programming is to restrict the problem. More constrained problems
will provide feasible solutions and thus upper bounds. We quickly introduce
the color coding algorithm proposed by Alon et al. [4] and our contributions
in Section 5.4, but a full analysis is provided in Chapter 6.

5.1.4 Heuristic, relaxation and exact approaches

When dealing with the EMPPLC, like for any problem, the objective is
generally to find the optimal solution. Exact algorithms are designed for
this, but as EMPPLC is NP-hard, they might take a long time to get it. On
the other hand, heuristics are meant to quickly produce feasible solutions
and upper bounds, while relaxations provide lower bounds. And sometimes,
these non-exact algorithms are sufficient, in particular when the problem is
embedded in a column generation (see Section 4.1.3).

We present four algorithms to address these three goals. The linear
program of Section 5.2 can meet two of these objectives: optimality via the
integer program and lower bounds via the linear relaxation. To compute
feasible solutions, a local search heuristic is proposed in Section 5.3. We
focus however on dynamic programming approaches, as the previous section
showed how they can find any kind of solution (exact, relaxed or feasible).
Sections 5.4 and 5.5 detail the NG-route relaxation and the color coding
restriction, adapted from the literature to improve their performance for
the EMPPLC. The color coding is fully analyzed in Chapter 6.

5.2 Time-stage formulation
Wemodel the EMPPLC with the time-stage formulation (TSF), adapted
from the formulation of Fox, Gavish and Graves [48] for the traveling sales-
man problem. A dummy sink vertex t is added, as well as an arc for each
vertex to t with cost 0. G′ = (V ′ = V ∪ {t}, A′ = A ∪ {it ∀i ∈ V }).
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Model TSF

∀(ij) ∈ A′, l ∈ {1, ..., L+ 1}: ylij =
{

1 if (ij) is the lth arc in the path
0 otherwise

c∗ = min
∑

l∈{1,...,L+1}

∑
(ij)∈A′

cijy
l
ij (5.2)

s.t.
∑

j∈N+(s)
y1
sj = 1 (5.3)

∑
l∈{2,...,L+1}

∑
i∈N−(t)

ylit = 1 (5.4)

∑
i∈N−(j)

ylij =
∑

i∈N+(j)
yl+1
ji ∀j ∈ V ′,∀l ∈ {1, ..., L} (5.5)

∑
(ij)∈A′

ylij ≤ 1 ∀l ∈ {1, ..., L+ 1} (5.6)

∑
l∈{1,...,L+1}

∑
j∈N+(i)

ylij ≤ 1 ∀i ∈ V ′ (5.7)

ylij ∈ {0, 1} ∀(ij) ∈ A′, l ∈ {1, ..., L+ 1} (5.8)

Constraints (5.3) and (5.4) ensure that the first chosen arc leaves the
source and that the sink is reached. Constraints (5.5) are flow constraints
guaranteeing that if a vertex is reached by the lth arc then it is left with the
(l+ 1)th. Constraints (5.6) impose that only one arc is taken at stage l and
constraints (5.7) forbid a vertex to be taken more than once.

The integer program TSF is used to compute the optimal solutions of
the different EMPPLC instances. It is also solved within a time limit of 1
second, given the best lower and upper bounds TSF-lb and TSF-ub.

5.3 Local search heuristic
We developed a simple heuristic to quickly find feasible solutions. It is based
on local search: the algorithm moves from the current solution to a better
solution in its neighborhood. A first path is constructed with a random
search.

Neighborhood. Given p = (s, i1, ..., il) a path of length at most L starting
from s. A neighbor p′ of p is obtained by applying one of the three following
movements (see figure 5.1):
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i1 ir−1 ir it it+1 il

(a) Initial path

i1 ir−1 ir it it+1 il

j1 jm

(b) Insertion

i1 ir−1 ir it it+1 il

(c) Suppression

i1 ir−1 ir it it+1 il

j1 jm

(d) Exchange

Figure 5.1 – Movements of the local search.
Dashed arrows represent subpaths, plain arrows are edges and crossed

arrows are removed in the movement.

• insertion at position r.
Given any elementary path (j1, ..., jm) disjoint from p, if it is arc-
disjoint from p and if (ir−1j1) ∈ A, (jmir) ∈ A and l +m ≤ L then
p′ = (s, i1, ..., ir−1, j1, ...jm, ir, ..., il) is a neighbor of p.

• suppression of (ir, ..., it) ⊆ V (p).
If (ir−1it+1) ∈ A, then p′ = (s, i1, ..., ir−1, it+1, ..., il) is a neighbor of p.

• exchange of (ir, ..., it) ⊆ V (p).
Given any elementary path (j1, ..., jm), if it is arc-disjoint from
p and if (ir−1j1) ∈ A, (jmit+1) ∈ A and l − (t− r) +m ≤ L then
p′ = (s, i1, ..., ir−1, j1, ..., jm, it+1, ..., il) is a neighbor of p.

We limit the number of inserted, removed or exchanged vertices to 3.
The local search randomly browses the neighborhood of the current solution
and moves to p′ if cp′ < cp.

Termination criteria. The local search could stop when the current so-
lution has no improving neighbor and is a local minimum. As the criteria of
improvement is given by a strict inequality, no solutions will be visited twice
and the algorithm actually ends. However, as explained in Section 5.6.1, we
rather return the minimum path found in one second (solution LM) or the
first path of negative cost (solution LF). If no path of negative cost is found
in the time limit, then LF is equal to LM.

5.4 The color coding restriction
Alon et al. [4] proposed in 1995 a randomized dynamic programming algo-
rithm to find simple paths of a given length, called color coding. The idea
is to randomly color the graph and then to remember visited colors instead
of visited vertices in the dynamic program. When the available number of
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colors is smaller than the number of vertices, the search space of the dynamic
program is reduced, but the optimal path may not be found as several ver-
tices share the same color. We quickly present the original algorithm and
an overview of the improvements we propose, but our complete work on this
algorithm is detailed in Chapter 6.

5.4.1 Description of the algorithm

Given C ≥ L colors and S ⊆ V a set of vertices. A coloring of S is a tuple
c ∈ {1, ..., C}|S|. Let ci be the color of vertex i ∈ S. A graph is colored when
a color is assigned to each vertex of V . The color coding algorithm follows
two phases:

1. randomly color each vertex1 i ∈ V \ {s} with a color ci ∈ {1, 2, ..., C}
with a certain probability.

2. find a shortest colorful path from the source using at most L colors
with dynamic programing. f∗(C, i) is the minimal cost of a path from
s to i, using |C| − 1 arcs and visiting vertices of each color of C.

f∗(C, i) = min
j∈N−(i)
cj∈C\{ci}

{f∗(C \ {ci}, j) + cji} (5.9)

The memory of this dynamic program is reduced as there are C distinct
vertex identifiers instead of |V |. The space complexity is indeed O(2C |V |)
and the time complexity O(|A|2C). However its solution is only a feasible
solution of EMPPLC, without guarantee on its quality. In order to get
an optimal path p∗ by color coding, step 1 must, by chance, color p∗ with
different colors. In this case, p∗ would be colorful and be returned by step 2.
Figure 5.2 illustrates the case where the coloring does not permit to find the
optimal solution (path 1-3-5-7 of cost -4) and instead returns a solution of
cost -3.

In the initial color coding algorithm, the color of each vertex is drawn ac-
cording to a discrete uniform distribution. In this case, the probability that
path p∗ is colorful, denoted by ρ, is quite low. To reach a high probability of
finding an optimal path, steps 1 and 2 are repeated several times The prob-
ability that exactly t trials are needed to make p∗ colorful is 1− (1− ρ)t. To
guarantee a failure probability of at most ε ∈ [0, 1], the color coding steps
should be repeated at least ln(ε)

ln(1−ρ) times.
Instead of giving a fixed number of trials, our color coding implementa-

tion runs during 1 second and the best colorful path is returned, a solution
denoted by CM. We also evaluate the quality of CF, the first solution of
negative cost found by the color coding. If no path of negative cost is found,
then CF is equal to CM.

1The source is not colored as it is taken in any solution.
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1 3 4

652

7

-3

6 4
-2

3

-2 -3

1s

7

5

s
31

(a) The optimal path

1 3 4

652

7

-3

6 4
-2

3

-2 -3

1s
3

5

s

7

2

(b) The color coding solution

Figure 5.2 – Example of a color coding trial: the best colorful path is not
the optimal solution because 1 and 7 have the same color.

5.4.2 A different color coding framework

In addition to the standard color coding which colors vertices with a uniform
distribution, we propose a new strategy that aims at spreading the colors in
extended neighborhoods. To do so, it tries to make extended neighborhoods
colorful by relying on three main ideas. First, a preprocessing step (called
la ordering) applies a local search to create an ordering in which extended
neighbors are gathered. Secondly, the vertices are colored by intervals of size
C in this given order such that each interval is colorful: this is the spread
coloring strategy. Finally, the ordering is shifted so that the intervals are
made up of different extended neighbors each iteration. The whole algorithm
is denoted by lass (for la ordering + shifted-spread) while the standard
color coding is called unif. We refer the reader to Chapter 6 for every detail
on our algorithm.

5.5 The NG-route relaxation
A few years ago, Baldacci et al. [13] proposed a new relaxation of the ele-
mentary shortest path problem with resource constraints called NG-route.
The memory of a path is relaxed so that the search space of the dynamic
program is reduced. In practice, a path constructed in the NG-route relax-
ation, called an NG-path, can forget that it went through some vertices and
may visit them several times and be non elementary. However, if it turns
out that the NG-path is elementary, then it is an optimal solution of the
ESPPRC. We describe the adaptation of this algorithm for the EMPPLC
special case.

Note that solving the EMPPLC with the NG-route relaxation in a col-
umn generation scheme can lead to the introduction of non elementary
columns in the RMP. In this case, the column generation does not solve
the linear relaxation of the master problem, but a relaxation of this linear
problem. In the KEP context, the solution obtained with non-elementary
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paths is thus an upper bound on z∗LP , but it can be used similarly, for exam-
ple to assess the quality of a feasible solution. Of course if only elementary
paths were added by the NG-route relaxation, this upper bound is actu-
ally z∗LP . As compatibility graphs are rather sparse, we expect that the
elementarity will be often satisfied by NG-paths.

5.5.1 Description of the algorithm

In this relaxation, each vertex i has a “memory”, also named NG-set,
denoted by ηi ⊆ V and such that i ∈ ηi. If an NG-path goes through i,
it can remember only vertices of ηi. As it is true for each vertex, an NG-
path only remembers the vertices appearing in every NG-set. The forward
and backward dynamic programs constructing the NG-path of minimum
cost with respect to these NG-sets are described below.

Forward dynamic program Each path p = (s, i1, ..., il) is associated

with a set Π(p) =
{
ir : ir ∈

l⋂
t=r+1

ηit , r = 1, ..., l − 1
}⋃
{il} (see Figure 5.3).

A forward NG-path (Π, l, i), is a non necessarily elementary path
p = (s, i1, ..., il = i) starting from s, ending in i, using l arcs and such that
Π = Π(p). Π represents the memory of p, since no vertex of Π can be used
to extend p. p is constructed by adding i to a smaller NG-path that belongs
to the set Ψ− (Π, l, i):

Ψ− (Π, l, i) = {(Π′, l − 1, j) ng-paths s.t. :
j ∈ N−(i),Π =

(
Π′ ∩ ηi

)
∪ {i},Π′ ⊆ ηj , j ∈ Π′, i /∈ Π′ }

f∗(Π, l, i) is the minimal cost of an NG-path (Π, l, i) and can be com-
puted with the following recursive formula:

f∗(Π, l, i) = min
(Π′,l−1,j)∈Ψ−(Π,l,i)

{f∗
(
Π′, l − 1, j

)
+ cji} (5.10)

i ηi
0 {0}
1 {0, 1}
2 {0, 1, 2}
3 {0, 1, 2, 3}
4 {1, 2, 4}

i in Π (p = (0, 1, 2, 3, 4)) ?
no: 0 /∈ η1 ∩ η2 ∩ η3 ∩ η4
yes: 1 ∈ η2 ∩ η3 ∩ η4
yes: 2 ∈ η3 ∩ η4
no: 3 /∈ η4
yes: by definition

⇒ Π (p) = {1, 2, 4}

Figure 5.3 – Memory construction of a forward NG-path p = (0, 1, 2, 3, 4)
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Backward dynamic program Each backward-path p = (iL−l, ..., iL) is

associated with Π−1(p) =
{
ir : ir ∈

r−1⋂
t=L−l

ηit , r = L− l + 1, ..., L
}⋃
{iL−l}

(see Figure 5.4).
A backward NG-path (Π, l, i) is a non necessarily elementary path

p = (i = iL−l, ..., iL) starting from i, using l arcs and such that Π = Π−1(p).
An NG-path p′ = (j = iL−l+1, ..., iL) that can reach p by adding (at the
beginning) the vertex i = iL−l belongs to the set Ψ:

Ψ (Π, l, i) = {(Π′, l − 1, j) backward ng-paths s.t. :
j ∈ N+(i),Π =

(
Π′ ∩ ηi

)
∪ {i},Π′ ⊆ ηj , j ∈ Π′, i /∈ Π′ }

b∗(Π, l, i) is the minimal cost of a backward ng-path (Π, l, i) and can be
computed with the following recursive formula:

b∗(Π, l, i) = min
(Π′,l−1,j)∈Ψ(Π,l,i)

{b∗
(
Π′, l − 1, j

)
+ cij} (5.11)

i ηi
9 {9}
8 {8}
7 {7}
6 {6, 7}
5 {5, 7}

i in Π (p = (5, 6, 7, 8, 9)) ?
no: 9 /∈ η8 ∩ η7 ∩ η6 ∩ η5
no: 8 /∈ η7 ∩ η6 ∩ η5
yes: 7 ∈ η6 ∩ η5
no: 6 /∈ η5
yes: by definition

⇒ Π (p) = {5, 7}

Figure 5.4 – Memory construction of a backward NG-path p = (5, 6, 7, 8, 9)

Filtering. States of a dynamic program can be pruned if they are
proven to be suboptimal. This filtering makes dynamic programming ap-
proaches very efficient when bounds can be easily computed. Assume
we have UBp an upper bound on the EMPPLC solution value. Given
any lower bound b(l, i) on the cost of a path starting from i and us-
ing at most l arcs, we can cut off the forward dynamic program every
state (Π, l, i) such that f∗(Π, l, i) + b(L− l, i) ≥ UBp. Indeed, the best NG-
path that can be constructed from the NG-path of state (Π, l, i) costs at
least f∗(Π, l, i) + b(L− l, i). If this cost is greater than the upper bound,
this state is suboptimal. In the same way, given any lower bound f(l, i)
on the cost of a path starting from s, ending in i and using at most
l arcs, each state (Π, l, i) of the backward dynamic program such that
b∗(Π, l, i) + f(L− l, i) ≥ UBp can be removed.

When the NG-route relaxation is used during the pricing step of a column
generation algorithm, its aim is to find a path of negative cost. In this case,
zero is a natural upper bound on the best NG-path to find and UBp = 0.
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The lower bounds b and f are called completion bounds and should be
computed very fast. In the following, we explain how these bounds can be
obtained in an iterative scheme of the NG-route relaxation.

5.5.2 NG-route configurations

As for the color coding, different configurations of the dynamic program
are possible. The first type of improvement is a general technique used in
dynamic programming, while the second one is specific to the EMPPLC as
it uses the extended neighborhoods.

Decremental State-Space Relaxation. Pecin et al. [100] proposed to
use the Decremental State-Space Relaxation (DSSR) technique of Righini
and Salani’s [106]. It is an iterative algorithm in which the search space is
even more relaxed than in the pure NG-route relaxation. At each iteration
k, each vertex i is associated with a set µki that takes the role of the NG-
set ηi in the dynamic program. At the first iteration the subsets µ0

i are
empty sets. When the solution pk of iteration k is not elementary and does
not respect the chosen criterion, vertices are added to the sets µki and a
new iteration begins. There are three main possible criteria in the DSSR
NG-route algorithm.

• predefined: original NG-sets ηi are computed and the DSSR continues
until pk is either elementary or a feasible NG-path with respect to
these sets. Vertices are added to sets µki only if they belong to ηi.

• limited: the DSSR continues until pk is elementary or the sizes of sets
µki exceed a given limit.

• unlimited: the DSSR continues until pk is elementary.

Filtering in DSSR. When applying a DSSR, we can alternate the for-
ward and backward dynamic programs and use the information calculated
at a previous iteration to compute the lower bounds needed to apply the
filtering rule described above. We note f∗k (Π, l, i) and b∗k(Π, l, i) the values
of the recursive formula at iteration k and define f

k
(l, i) = min

l′≤l,Π
f∗k (Π, l, i)

and bk(l, i) = min
l′≤l,Π

b∗k(Π, l, i). Then, f
k
(l, i) (resp. bk(l, i)) can be used as

lower bounds in the next backward (resp. forward) dynamic program.

Choice of the NG-sets. Without descent or with a predefined one, NG-
sets are the heart of this algorithm since they determine the quality of the
solution as well as the computation efficiency. When ηi is empty for every
vertex, there is absolutely no constraint on the elementarity of the path and
the NG-route relaxation solves the SPPRC. When ηi = V for every vertex,
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the NG-route is not a relaxation anymore and the solution is necessarily
elementary. Any other choice requires to make a decision about the compo-
sition of these sets and usually their construction is random. We propose to
take into account the extended neighborhoods to construct NG-sets in order
to increase the chance to obtain an elementary path without increasing too
much the computation times.

It is sufficient for a vertex to “remember” in ηi only its extended prede-
cessors since they are the only vertices that can appear in a path reaching i.
However γ−(i) can still be too big to permit reasonable computation time
and here again choices have to be made. We fix therefore a limit Λ to the
size of an NG-set. When the EMPPLC is embedded in a column generation
framework, vertices are associated with a dual value which usually repre-
sents the interest for the vertex to appear in the solution. We propose to
sort according to this dual value the sets γ−(i) and to keep only the Λ first
vertices in the ng-set ηi.

5.6 Experiments

5.6.1 Protocol

Experiments are conducted to profile the different algorithms for a column
generation scheme. Algorithms configurations and instances choices are led
by this context.

Choice of the instances. Experiments are conducted on several EMP-
PLC instances generated from the pricing step of KEP instances. Pools
of patients and donors are created using an online2 Saidman-based genera-
tor [114] with realistic parameters, leading to sparse graphs. The generation
of the KBR benchmark is fully detailed in Section 3.3.1, but note that there
are 27 different classes of instances. In particular, the number of patients
varies between 50 and 250, K = 3 and L ∈ {4, 7, 13}. In this chapter, only
one KEP instance in each class is considered. The exchange formulation is
solved by column generation on these instances and EMPPLC instances are
extracted from the first, last and middle iterations of the pricing problem.
Note that the 54 instances generated from the first and middle iterations
contain a solution of negative weight while the optimal value for the 27 last
iterations is zero. The first 54 instances are grouped in E-KBR−, the 27 oth-
ers in E-KBR0. The purpose of generating instances with such a procedure
is to get dual values at different stages of the column generation.

Choice of the performance indicators. The quality of the solutions
returned by the different algorithm is evaluated using its gap to the optimal

2available at http://www.dcs.gla.ac.uk/~jamest/kidney-webapp/#/generator

http://www.dcs.gla.ac.uk/~jamest/kidney-webapp/#/generator
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solution, as well as the number of solutions that are actually optimal. How-
ever, in a column generation framework it is not important to find optimal
solution, but to find a solution with the same sign as the optimal solution.
Indeed, if a path with a negative cost is found, optimal or not, it is a new
column to add to the restricted master problem. Similarly, if a relaxation
produces a solution of positive (or zero) cost, the optimality proof of the
linear relaxation is done. Thus, we also compute the number of solutions
having the same sign than the optimal solution.

Given an EMPPLC instance, whose optimal solution OPT costs c∗, we
thereby compute three performance indicators for a solution x of value c:
• Gap to opt |c−c∗|

c∗

• Optimal found c = c∗

• Same sign
{
c∗ ≥ 0 and c ≥ 0
c∗ < 0 and c < 0

Note that the gap cannot be computed for instances of E-KBR0 as their
optimal value is 0.

Choice of the algorithm settings. In a column generation, methods
providing feasible solutions are designed to quickly find new columns to add,
i.e., find a path with a negative reduced cost. For this reason, heuristics
either stop when the first solution of negative cost is found, or run within a
small time limit. On the contrary, relaxations must find good solutions to
allow filtering and computation of good bounds. Therefore, the NG-route
relaxation is not limited in time while the color coding and local search
algorithms are set to return the first solution of negative cost and the best
solution after 1 second of running time. Note that the color coding actually
ends after at least one trial was completely executed, so the effective running
time may exceed this time limit. The integer program is used to compute
the optimal solution, but also best upper and lower bounds within 1 second.
All in all, seven solution types are reported:

• 5 upper bounds
– CF: first solution of color coding
– CM: best solution of color coding in 1 second
– LF: first solution of local search
– LM: best solution of local search in 1 second
– TSF-ub: best feasible solution of the integer program in 1 second

• 2 lower bounds
– NG: best NG-route of the instance
– TSF-lb: best lower bound of the integer program in 1 second

Note that solutions CF and LF are not reported for instances of E-KBR0

as their optimal value is 0 so no feasible solution of negative cost can be
found.
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5.6.2 Preliminary results

As the NG-route and the color coding have different configurations and a
customizable memory size, we have conducted preliminary experiments to
compare the different configurations of color coding and NG-route. The
“best” configurations are then kept for the global computational results,
reported afterward.
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(b) L = 7 (18 instances)
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(c) L = 13 (18 instances)
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Figure 5.5 – Gap between CF or CM and OPT depending on the
configuration and the number of colors, for the E-KBR− benchmark
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Color coding. We conducted experiments on the two configurations of
color coding (unif and lass) and different number of colors in order to
identify the most promising algorithm to embed in our column generation
scheme. The experimental results support the theoretical results of Chap-
ter 6 as well as our expectations. In particular, we observe that our method
lass outperforms the standard color coding algorithm.

Figures 5.5 show the gap |c−c
∗|

c∗ between the solution OPT of value c∗ and
the solutions CF and CM for the E-KBR− benchmark. The 54 instances are
grouped in three sets of 18 instances, according to the parameter L. The
first negative solution CF for the lass strategy is almost always better than
for the standard color coding unif. Its quality increases with the number of
colors and this is due to the fact that a trial of color coding is more efficient
with more colors, both for lass and unif configurations. However, an
important condition for the color coding to return good solutions is to make
many trials. As increasing C also increases the running time of one trial,
it leads to poorer solutions in the same time limit, hence the growing gap
for CM. When C is too big, the color coding can exceed the time limit (see
Figure 5.6) because an iteration runs during more than one second. In this
case the color coding actually stops after a single iteration and CF = CM.
From this analysis, the best compromise seems to run the color coding with
a lass configuration and a small number of colors (we take C = L+ 1).
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Figure 5.6 – Average and maximum color coding running times depending
on the number of colors and the configuration on E-KBR− instances

NG-route. Five versions of the NG-route are implemented and tested,
voluntarily omitting the unlimited DSSR as it provides no control on the
computation time and memory space. Table 5.1 sums up the different ver-
sion and how they construct the NG-set and which DSSR is applied, if any.
We tested different size limits for the NG-set (5 to 13), but it appears that
they make no difference on the solution quality. On the other hand, in-
creasing this size limit deteriorates the computation time, in particular for
configurations without descent. Thus, only results for a size of 5 are kept.
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NG-set creation Descent
UN Uniform None
NN Neighborhood None
L - Limited
UP Uniform Predefined
NP Neighborhood Predefined

Table 5.1 – The five versions of the NG-route relaxation

Figures 5.7 illustrate the quality of the NG-route solution for the E-KBR
benchmark. The 81 instances are grouped into three sets of 27 instances,
according to the parameter L. Figure 5.7a shows the number of instances
optimally solved by the NG-route relaxation, i.e., the number of instances
for which the NG-route returns an elementary NG-path, so the optimal

Length limit
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(a) Number of instances, out of 27, for which NG = OPT
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(b) Number of instances, out of 27, for which NG and OPT have the same sign

Figure 5.7 – Quality of the NG-route solution depending on the
configuration on E-KBR instances
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solution. Figure 5.7b shows the number of instances for which the lower
bound returned by the relaxation has the same sign than the optimal solu-
tion, a success criterion for the column generation algorithm. Both figures
demonstrate the good performance of the limited DSSR compared to other
configurations, even though all of them are quite efficient. Still, the limited
DSSR is the only configuration that always returns a solution of the same
sign than the optimal one and finds this optimal solution almost every time.
The fact that the solution of the NG-route is often the optimal solution
explains the fact that increasing the NG-set size is not interesting, as even
when they are small the solution is elementary.

5.6.3 Comparisons of EMPPLC algorithms

Four algorithms were implemented and tested on the two benchmarks
E-KBR− and E-KBR0. Recall that for E-KBR0, the gap cannot be com-
puted and that CF and LF solutions do not make sense as no feasible so-
lutions of negative weight can be found for these instances. Thus, for this
benchmark, Table 5.2 shows only the number of instances for which:

• the solution has the same sign than the optimal one
• the solution is the optimal one

for solutions CM, LM, TSF-ub, NG and TSF-lb.

Upper bounds Lower bounds

CM LM TSF-ub NG TSF-lb

# instances with
good sign 27 27 24 27 19

# instances with
optimal solution 27 26 24 27 19

Table 5.2 – Quality of solutions for the 27 E-KBR0 instances

Table 5.3 for E-KBL− is more complete as it also displays the gap with
the optimal solution for instances having a solution of the same sign than
the optimal one. This gap is therefore not computed on the same number
of instances for all the solutions.

These results illustrate the dominance of the dynamic programs to com-
pute both upper and lower bounds. The NG-route relaxation always finds
the optimal solution, except once. No time limit was given to this algorithm,
but we observe in Figure 5.4 that it actually runs very quickly. TSF pro-
vides poorer results with the same average running time, which, besides, is
bounded by the time limit. Similarly, the color coding is very powerful as it
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Upper bounds Lower bounds

CF CM LF LM TSF-ub NG TSF-lb

# instances with
good sign 54 54 41 41 51 54 40

Average gap on
such instances
(%)

17.4 7.4 75.8 25.2 15.2 0.01 0

# instances with
optimal solution 18 40 1 17 40 53 40

Table 5.3 – Quality of solutions for the 54 E-KBR− instances

finds the optimal solution for 67 instances out of 81. Even when it does not
succeed to find the optimum, the gap is the smallest among every feasible
solutions. On the contrary, the local search sometimes (for 13 instances)
fails to find a negative solution when there is one.

Most importantly, the color coding and the NG-route always return a
solution which has the same sign than the optimal solution in a small amount
of time. Thus, these algorithms are really suitable for the pricing step of a
column generation scheme.

CM∗∗ LM∗∗ TSF∗ NG

Average 1.17 1.05 0.44 0.43

Maximum 2.39 3.05 1.51 2.76

Table 5.4 – Average and maximum running times to get solutions
∗ Time limit of 1 second
∗∗ Soft time limit of 1 second (checked only between iterations)

5.7 Conclusion: solving the EMPPLC
In this thesis, the elementary minimum path problem with length constraint
has to be solved many times in the pricing step of our column generation
framework. We adapted algorithms from the literature of shortest paths
problem to better fit the specificity of our problem and designed an experi-
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mental protocol to assess their quality. The analysis of these experiments3

led our choices for the complete column generation algorithm presented in
Section 4.5. In particular, the color coding, whose performance is more eval-
uated in Chapter 6, and the NG-route relaxation turn out to be the most
promising algorithms in this context. We believe even better results can
be obtained by investigating more deeply these algorithms. In particular,
an adaptation of the different techniques proposed by Pecin et al. [99], in-
cluding memory cuts, would probably strengthen our implementation of the
NG-route relaxation.

3Complete results available on my webpage: https://pagesperso.g-scop.grenoble-
inp.fr/~pansartl/.

https://pagesperso.g-scop.grenoble-inp.fr/~pansartl/
https://pagesperso.g-scop.grenoble-inp.fr/~pansartl/
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Chapter 6

New randomized strategies
for the color coding
algorithm

The elementary minimum path problem with length constraint (EMP-
PLC) studied in Chapter 5 can be solved with color coding as briefly ex-
plained in Section 5.4. The key idea of this method is to randomly color the
vertices of the graph with C ≥ L colors, then to seek a colorful path, i.e.,
a path where all vertices have distinct colors. On the one hand, the search
for a colorful path is significantly more efficient than the search for a simple
path as there are C distinct vertex identifiers instead of |V |. On the other
hand, the random coloring might be unlucky and give the same color to at
least two vertices of any optimal path. The procedure is therefore repeated
to ensure that the path is found with a high enough probability.

This technique is actually more general as it can be applied to find any
subgraph. The first section presents the algorithm and our motivations for
the contributions proposed in the next sections.

6.1 The color coding algorithm
The color coding technique is a two-phase heuristic for optimization prob-
lems: the first phase colors the graph, while the second phase uses an algo-
rithm, usually a dynamic program, to find an optimal solution with distinct
colors. The two phases are repeated and each trial can return a feasible
solution, but many trials might be necessary to find an optimal one1. We
will not study the second phase in this chapter as it is different for every

1When considering a decision problem, the second phase only looks for a feasible solu-
tion and each trial either returns such a solution (and the algorithm stops) or no solution
at all.
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problem, and we refer the reader to Section 5.4 for details on this phase for
the EMPPLC.

6.1.1 Motivations

The second phase of the color coding algorithm misses optimal solutions if
each of them contains two vertices of the same color. Both from theoret-
ical and practical perspectives, in all prior works related to color coding,
the graph is colored according to a discrete uniform distribution: all the
colors are equally likely to be selected for each vertex. To the best of our
knowledge, only one paper addresses the choice of the coloring, and for a
derandomization purpose [69]. Yet the probability distribution used to color
the graph is an efficiency factor. Although it does not influence the runtime
complexity of the dynamic program, it can highly reduce the number of its
executions by increasing the chance for an optimal solution to be colorful.

Our key idea is to bias the coloring in the first phase to increase the
probability that an optimal solution has distinct colors and thus reduce the
number of calls to the dynamic program. To do so, we propose in Section 6.2
new random but non uniform coloring strategies, which color vertices in a
given order. This order is created by a preprocessing taking advantage of the
graph structure and presented in Section 6.3. One of the coloring strategy
provides a guaranteed improvement over the uniform coloring. When it is
associated with a new color coding framework described in Section 6.4, it
even guarantees to find an optimal solution with only C calls to the dynamic
program for orderings with a particular structural property related to the
bandwidth.

6.1.2 Literature review

The color coding approach was proposed in 1995 by Alon et al. [4]. It has
been studied in several papers in which the graph is colored either with
a discrete uniform distribution or with a derandomized procedure and no
other coloring strategy has been proposed, except by Kneis et al. [69]. This
is surprising as this algorithm is studied in various domains.

When combined with derandomization [92], color coding can be used to
design deterministic, fixed-parameter tractable (FPT) algorithms. A num-
ber of state-of-the-art FPT algorithms rely on color coding for several funda-
mental problems related to packing [70], matching [45, 70], vertex cover [69]
or L-path [4, 122]. Several randomized algorithmic frameworks [130] such as
randomized divide-and-conquer [26], the random separation technique [23]
or parallel fixed-parameter algorithms [14] are also based on color coding.

This technique has also been successfully used in practice, and in par-
ticular in the bioinformatics field (see e.g. [3, 41, 84, 117, 119]). A typ-
ical example is the detection of signaling pathways in protein interaction



6.1. THE COLOR CODING ALGORITHM | 109

networks [61]. The problem is also cast as an elementary minimum path
problem with length constraint and practical experiments regarding the im-
plementation of color coding is reported by Hüffner et al. [61]. In particular,
they analyze the best trade-off between the number of colors (which controls
the number of trials required) and the complexity of the dynamic program-
ming step (the runtime of one trial).

Another relevant study for our application is the work of Borndörfer et
al. [22] which uses the color coding to solve a path problem, encountered
as a pricing subproblem in the context of line planning in public transport.
Actually, exponential integer programming formulations based on paths are
common in the field of transport and planning. For these formulations, the
color coding turns out to be of major interest to solve the pricing prob-
lems. Surprisingly though, this algorithm has received little attention in
this context and, to the best of our knowledge, only [22] uses it in such a
situation.

6.1.3 Description of the algorithm

In the following, let G = (V,E) be a simple graph, directed or not,
and n = |V |. The color coding method is meant to find any subgraph
H = (VH , EH) with L =

∣∣VH ∣∣ in G. The set V is colored with C colors
and if by chance the vertices of H all have distinct colors then the problem
is solved.

A coloring of a subset S of vertices is a tuple c ∈ {1, ..., C}|S|. There are
C |S| colorings of S. Let ci bet the color of vertex i ∈ S. A coloring c is said
to be colorful for the subset S ⊆ V , if ci 6= cj ∀i 6= j ∈ S. A graph is colored
when a color is assigned to each vertex of V . It is a randomized procedure
and the color assigned to a vertex follows a probability distribution. Let
Ci ∈ {1, ..., C} be the random variable giving the color of vertex i. A
coloring strategy defines P (Ci = c), ∀i ∈ V and ∀c ∈ {1, ..., C}.

The standard version of the color coding algorithm draws each color
according to a discrete uniform distribution. In this case, denoted by unif,
the probability for a vertex to get a color is the same for each color and each
vertex: ∀i ∈ V , ∀c ∈ {1, ..., C}, P (Ci = c) = 1

C . The probability that H is
colorful can be easily computed and was reported by Alon et al. [4] in the
case L = C.
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Property 6.1
If the graph is colored following the unif strategy, then
P (H is colorful) = C!

(C−L)!CL

Proof. The probability that H is colorful is the probability that a col-
orful colorings was drawn among the CL possible colorings of H. As
a colorful coloring is a L-permutation of C colors, there are C!

(C−L)!
many of them. Every coloring being equally likely to happen, we have:
P (H is colorful) =

C!
(C−L)!
CL = C!

(C−L)!CL

This probability does not depend on H, nor on the structure of the graph
or the problem and the standard color coding algorithm assigns a color to
each vertex without regard to the other vertices’s colors. But if we could
identify vertices that are likely to belong together to a solution, extended
neighbors for instance, it should be more efficient to assign distinct colors
to these vertices. That is the reason why we generalize the definition of
extended neighborhood, use them to order vertices and color the graph in
this given order.

Extended neighborhoods. We define the extended neighborhood
γ(i) of vertex i as the set of vertices that may appear in a subgraph H
including i. It is a generalization of the definition given in Section 5.1.2
for the EMPPLC. In this case, γ(i) is the set of vertices that may ap-
pear in any path starting at the source of length at most L including
i: γ(i) := {j ∈ V : d(s, i) + d(i, j) ≤ L or d(s, j) + d(j, i) ≤ L}. Recall that
d(i, j) is the distance between vertices i and j.

Ordering preprocessing. An ordering, or a coloring sequence, x is a
permutation of the set {0, ..., n− 1}. ∀i ∈ V , let xi be the position of vertex
i in the ordering and Xi ∈ {0, ..., n− 1} the associated random variable.
An ordering strategy defines a probability distribution for the variable
X = (X1, ..., Xn). When the random variable X follows a discrete uniform
distribution each coloring sequence has the same probability to occur than
the others.

Coloring step. A coloring sequence x has been already drawn in the
preprocessing, i.e., Xi = xi ∀i ∈ V . We propose to make the choice of
a color for each vertex i dependent on the previously colored vertices,
η(i) = {j ∈ V : Xj < Xi}. Note that the ordering starts at position 0, so
|η(i)| = Xi, meaning that when i has to be colored, Xi vertices are already
colored. We now define a coloring strategy by P (Ci = c|Cj ∀j ∈ η(i)).
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6.2 Coloring ordered vertices
Our objective is to make an optimal solution colorful, but of course, we
cannot guarantee in general to make such a coloring in one trial. Several
trials will still be necessary to find an optimal solution, so each trial must
be different from the others and the coloring procedure randomized. Many
probability distributions can be chosen to color the graph, and our idea is
to force the colors to be equally spread in the graph.

6.2.1 Spreading colors

To spread the colors equally, the probability that a vertex takes a color
must depend on the frequency of each color taken by previously colored
vertices. The more a color is used, the less likely it will be drawn. Let F ic
denote the random variable counting the number of vertices colored with c
before i: F ic ∈ {0, ..., Xi} is such that F ic =

∣∣{j ∈ η(i)|Cj = c}
∣∣. Note that

C∑
c=1

F ic = Xi = the number of vertices already colored.
A first idea is to draw a color c with a probability inversely proportional

to the gap between its frequency and the number of previously colored ver-
tices. In this case, the probability does not depend on the other colors.

Definition 6.1
The following probability distribution defines a coloring strategy:

P
(
Ci = c|Xi = xi, F

i
c = f ic

)
=


xi − f ic
xi(C − 1) if xi 6= 0

1
C

otherwise
(6.1)

Note that
C∑
c=1

xi−f i
c

xi(C−1) = 1 so (6.1) is a well-defined probability distri-
bution. When the number of colored vertices is high, all the probabilities
are quite the same. So rather than comparing the frequency of c with the
number of colored vertices, another idea is to use the highest frequency
f imax = max

c=1,...,C
f ic.
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Definition 6.2 spread
The coloring strategy spread is defined by the probability distribu-
tion:

P
(
Ci = c|Xi = xi, F

i
1 = f i1, ..., F

i
C = f iC

)
=

f imax − f ic
C × f imax − xi

if C × f imax 6= xi

1
C

otherwise
(6.2)

Note that
C∑
c=1

f i
max−f i

c
C×f i

max−xi
= 1 so (6.2) is a well-defined probability distri-

bution. Note that if c is a most used color (there may be several most used
colors), it cannot be selected for vertex i. The second case occurs only when
all the colors are equally used: C × f imax = xi ⇔ f ic = xi

C ∀c ∈ J1;CK. In this
case, it is relevant to choose the color using a discrete uniform distribution
as no color is less used than another.

Using extended neighborhoods. When choosing a color for a vertex,
the probability distribution depends on the colors taken by all the previ-
ously colored vertices. However it does not matter that vertex i takes the
same color than a vertex which cannot belong to a solution with i. Thus, it
should be advantageous to compute color frequencies only among the previ-
ously colored extended neighbors of i. It seems yet even more advantageous
to keep the spread strategy as it is and to rather base the ordering pre-
processing on these extended neighborhoods. First, because the extended
neighborhoods do not change from a color coding trial to another, so it is
preferable to use them in the preprocessing as it is also common to every
trials. Such an ordering is presented in Section 6.3. Secondly, the spread
strategy turns out to have strong properties which prove that it is not more
costly than a uniform coloring, as it does not require to indeed compute the
color frequencies. The next section is dedicated to the study of this strategy.

6.2.2 Strategy spread: coloring by intervals

For sake of simplicity assume in this section that n = qC with q ∈ N (the
following results directly adapt when n = qC + r). The spread strategy
actually colors the ordered vertices by intervals of size C so that each in-
terval is colorful. We divide the coloring sequence J0;n− 1K into q intervals
I1, I2, ..., Iq of size C: Ii = J(i− 1)C; iC − 1K and I(Xi) denote the interval
containing the position of i, i.e., Xi ∈ Ik ⇔ I(Xi) = Ik. By slightly abusing
the notation we also write i ∈ Ik. We then observe that two vertices in
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the same interval cannot have the same color and that the coloring of two
intervals is independent.

Property 6.2
If the coloring step follows the spread strategy, then ∀i, j ∈ V
i 6= j:

P (Ci 6= Cj |Xi, Xj) =


1 if I(Xi) = I(Xj)
C − 1
C

otherwise

This means that the spread strategy simply draws for each interval I
a permutation of {1, ..., C} chosen with a uniform probability over all the
permutations.

Probability that H is colorful. Recall that we want to color G such
that VH is colorful. The probability that this event occurs is an indicator
of performance for a coloring strategy. In the unif case, P (H is colorful) is
easily computed and does not depend on an ordering. The analysis of the
spread strategy is detailed below.

From the property 6.2, we know that vertices in the same interval have
distinct colors, but in general the vertices of H are likely to be spread in
several intervals. Let VH = {v1, ..., vL} denote the L vertices of H and thus
P (H is colorful) = P (Cv1 6= ... 6= CvL).

Let Yk be the random variable counting the number of vertices of H
in the kth interval Ik. Yk is calculated from the random variables Xi as
follows: Yk =

∣∣{i ∈ VH : Xi ∈ Ik}
∣∣. Recall that q is the number of intervals

(n = qC). A realization x of the random variable X can be used to compute
y ∈ Y =

{
(y1, ..., yq) ∈ J0, LKq :

q∑
k=1

yk = L

}
. By the law of total probability,

we have:
P (Cv1 6= ... 6= CvL) =

∑
y∈Y

P (Cv1 6= ... 6= CvL , Y = y) (6.3)

and

P (Cv1 6= ... 6= CvL , Y = y) = P (Y1 = y1, ..., Yq = yq)
× P

(
Cv1 6= ... 6= CvL

∣∣Y1 = y1, ..., Yq = yq
)

(6.4)
Let y ∈ Y be a repartition of the vertices of H in the q intervals. The

first term of the product (6.4) is the probability that Y = y. With a uniform
ordering strategy, it is:

P (Y1 = y1, ..., Yq = yq) =

q∏
k=1

(C
yk

)
(n
L

)
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The second term of the product (6.4) is the probability that H is colorful
knowing the repartition is fixed to y.

P
(
Cv1 6= ... 6= CvL

∣∣Y1 = y1, ..., Yq = yq
)

=(C
y1

)
×
(C−y1

y2

)
×
(C−(y1+y2)

y3

)
× ...×

(C−(y1+...+yq−1)
yq

)
q∏

k=1

(C
yk

) (6.5)

Best and worst cases. The best case for this coloring strategy is when
all the vertices of H are in the same interval, as H is then colorful with a
probability of 1. On the contrary, the worst case for this strategy is when
all the vertices are ordered in different intervals. We denote this event S.
Namely, S := {I(Xvi) 6= I(Xvj ) ∀vi, vj ∈ VH}. We show that in this case
the spread strategy is equivalent to the unif strategy.

Property 6.3
P (Cv1 6= ... 6= CvL |S) = C!

(C−L)!CL

Proof. The event S can be defined as “exactly L intervals Ik have yk = 1”.
Using (6.3), we have:

P (Cv1 6= ... 6= CvL |S) =
(C

1
)
×
(C−1

1
)
×
(C−2

1
)
× ...×

(C−(L−1)
1

)
L∏
k=1

(C
1
)

= C!
(C − L)!CL

Thus, the new strategy always surpasses the original one. Indeed, the
chance for H to be colorful is always greater or equal in the spread case
than in the unif case. However, as n increases, S is more likely and spread
is more and more equivalent to unif. This convergence is yet slower as n
grows. Figure 6.1 shows P (S) depending on n for various L.

Property 6.4
With a uniform ordering, P (S) −→

n→+∞
1

Proof. Let U =
{

(y1, ..., yq) ∈ {0, 1}q :
q∑

k=1
yk = L

}
be the set of realizations

y such that S happens.
∣∣U ∣∣ =

(q
L

)
=
( n

C
L

)
. Every tuple (y) of U is equally
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likely to happen with probability

L∏
k=1

(C
1)

(n
L) = CL

(n
L) .

P (S) =
∑
y∈U

P (Y1 = y1, ..., Yq = yq) =
∑
y∈U

CL(n
L

) =
(
n
C

L

)
CL(n
L

)
=

n
C × ( nC − 1)× ...× ( nC − L+ 1)

L! × CL × L!
n× (n− 1)× ...× (n− L+ 1)

= n×(n− C)×...× (n− C(L− 1))
L!× CL × CL × L!

n× (n− 1)× ...× (n− L+ 1)

=
(
n− C
n− 1

)
×
(
n− 2C
n− 2

)
× ...×

(
n− C(L− 1)
n− (L− 1)

)
Each term of this product converges to 1 as n tends to +∞, so the product
converges to 1.

Property 6.5
The derivative ∂P(S)

∂n is in O
(

1
n2

)
.

Proof. P (S) =
L−1∏
i=1

(n−iC)
(n−i) =

L−1∏
i=1

(n−iC)

L−1∏
i=1

(n−i)

P (S) is the quotient of two polynomials of the same degree L−1, so the
result is a quotient with one degree less in the numerator. Thus P (S) = u

v
with u a polynomial of degree at most L − 2 and v is still a polynomial of
degree L−1. The derivative ∂P(S)

∂n is a polynomial quotient with a polynomial
of degree at most 2L − 4 as numerator and a polynomial of degree 2L − 2
as denominator. Therefore ∂P(S)

∂n is in O
(

1
n2

)
.
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Figure 6.1 – P(S) with C = L
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The spread strategy is at least as good as the unif strategy. For small
n, the improvement is significant but the gap between the two strategies
follows a decreasing function in O( 1

n2 ). As an example, let L = C = 10:
when n = 30, the probability that H is colorful increases more than fivefold,
and when n = 100 the factor is about 1.6. A major property of our coloring
strategy is that some subsets of vertices (the intervals Ik) are colorful. Thus,
if the vertices of H could be gathered in a single interval, then the spread
strategy would always make H colorful. In the next section, we propose to
order vertices by taking advantage of the graph structure to address this
goal.

6.3 Ordering vertices to benefit from coloring
phase

The spread coloring strategy is very efficient when the coloring sequence
drawn in the ordering preprocessing puts the vertices of H in the smallest
number of intervals. Even more, an ordering where the vertices of H belong
to a single interval ensures a probability of 1 that H is colorful. This ideal
ordering cannot be easily found but we can define a strategy that orders
close to each other two vertices that may belong to H. We propose a new
strategy dedicated to this purpose when H is connected.

Our first idea is to control the maximum difference between the position
of two extended neighbors, defined as ∆ = max

i∈V
j∈γ(i)

|xi − xj |. VH is contained

in a coloring subsequence of size at most ∆. To create an ordering that
minimizes ∆, we solve the following optimization problem:

∆∗ = min ∆ = max
i∈V
j∈γ(i)

|xi − xj |

xi 6= xj ∀i 6= j ∈ V
xi ∈ {0, ..., n− 1} ∀i ∈ V

(6.6)

This problem is equivalent to the graph bandwidth problem in an auxil-
iary graph G′ = (V,E′) with the same set of vertices V but which contains
an edge (ij) if i and j are extended neighbors. The graph bandwidth
problem on G′ aims at labeling the vertices of G′ with distinct integers
such that the maximum difference between the label of two adjacent ver-
tices is minimized. In our case the label of a vertex i is its position Xi and
solving the bandwidth problem provides a coloring sequence x minimizing
∆ = max

(ij)∈E′
|xi − xj | = max

i∈V
j∈γ(i)

|xi − xj |.

The optimal solution ∆∗ of (6.6) is called the bandwidth of G′, denoted
by ϕ(G′). Finding the bandwidth of a graph is an NP-hard problem [97] for
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which various algorithms exist, as the widely used Cuthill-McKee heuristic
and its reversed version [33, 54]. Many of them are heuristics but some exact
approaches are able to solve instances of reasonable size (250 nodes). We
refer the reader to [126] for a comprehensive review.

The graph bandwidth problem focuses only on the maximum differ-
ence between the positions of two extended neighbors and does not con-
trol the average difference between them. However, it could be efficient
to move the positions of two extended neighbors away from each other,
at the risk of increasing ∆, if that means many other extended neigh-
bors are contained in a smaller coloring subsequence. We thus propose
to solve a slightly different problem that minimizes the sum of all differ-
ences, that is δ = ∑

(ij)∈E′
|xi − xj | =

∑
i∈V
j∈γ(i)

|xi − xj |. This problem is known

as the (minimum) linear arrangement problem [2] that was proven to be
NP-complete [49].

δ∗ = min δ =
∑

(ij)∈E′
|xi − xj |

xi 6= xj ∀i 6= j ∈ V
xi ∈ {0, ..., n− 1} ∀i ∈ V

In this case, ∆ can be big, but in average the difference between the
positions of two extended neighbors might be small. We therefore define
an ordering strategy based on this linear assignment problem, called la
ordering, which constructs an ordering aimed at minimizing δ. We use a
simple local search approach swapping the vertices in the sequence. This
strategy gathers extended neighbors in the coloring sequence and its quality
depends on its running time as the local search is an anytime algorithm
that provides an ordering whenever it is asked. The longer it runs, the
better the ordering, i.e., the smaller δ. Note that the solution to the linear
arrangement problem does not have to be optimal, even if its quality has an
impact on the efficiency of the coloring. The running time is determined by
the user depending on the algorithm application and the time allocated to
the dynamic program of the second phase.

Even when the positions of VH are close enough, la ordering cannot
guarantee that they belong to the same interval Ik. Indeed, the size of the
position sequence of VH may be smaller than C while being split into two
intervals. In this case and with a standard color coding, the spread coloring
strategy would not find H with a probability of 1. This motivates the new
color coding technique introduced in the next section.

6.4 Shifted color coding
Given a coloring sequence x and a subgraph H, we can compute the
size ∆H of the coloring subsequence containing all the vertices of H:
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∆H := max
i∈VH
j∈γ(i)

|xi − xj |. Recall that the spread coloring strategy colors the

vertices of G by intervals of size C. However, even if ∆H is smaller than
C, the coloring subsequence of H can straddle two coloring intervals and H
can be non colorful.

We introduce a new coloring strategy, called shifted-spread (Algo-
rithm 5), making the color coding more expensive (C dynamic program
calls by trial) but stronger. It applies C times the spread coloring while
shifting the coloring sequence between each iteration. Thus, if ∆H ≤ C, at
least one coloring sequence will put the vertices of H in a single coloring in-
terval Ik and H will be colorful. As we do not know H, we cannot compute
∆H , but the algorithm guarantees that when ∆ ≤ C only one trial of the
color coding algorithm, with C calls to the dynamic program, is required to
find H.

Algorithm 5 shifted-spread

Input: #trials, tmax
if ∆ ≤ C then #trials ← 1
for 1...#trials do

apply a shifted-spread coloring:
for k : 1...C do
• color: draw Ci ∀i ∈ V using a spread coloring
• solve: apply an algorithm that finds H if colorful
• shift the ordering: x = (x1+k, ..., xn, x1, ..., xk)

Property 6.6
With a shifted-spread coloring strategy, if ∆ ≤ C then
P (H is colorful) = 1

We saw in Section 6.2 that the spread strategy gives a significant im-
provement for small n which does not scale with n. When combined with
a shifted-spread ordering strategy, this improvement now depends on ∆
rather than n. Indeed, the probability that H is colorful if G is colored with
a shifted-spread strategy is at least as good as the probability that H is
colorful in a graph with ∆ vertices colored with a spread strategy.

6.5 Experimental results
We present experimental results2 for the color coding algorithm applied to
a variant of EMPPLC: the minimum-weighted L-path problem, i.e., the

2Complete results available on my webpage: https://pagesperso.g-scop.grenoble-
inp.fr/~pansartl/.

https://pagesperso.g-scop.grenoble-inp.fr/~pansartl/
https://pagesperso.g-scop.grenoble-inp.fr/~pansartl/
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problem of finding a simple path of exactly L vertices of minimum weight
in a weighted directed graph.

6.5.1 Protocol

We want to measure how the coloring of the first phase impacts the proba-
bility to find any optimal path in the second phase. This happens each time
an optimal path is colorful at the end of the first phase and does not depend
on the second phase. As the performances of the dynamic program are not
affected by our strategies, our experiments focus only on the first phase.
Thus, we do not run the dynamic program and assume that the optimal
paths are known3, constituting the set of paths P. To assert the effective-
ness of the various coloring strategies, we only check if one path among P is
colorful. We execute 150 000 trials of each strategy and compute the num-
ber of times one of the optimal paths is colorful out of the 150 000 trials.
This frequency estimates the probability of the first phase to be successful.

Choice of the instances. We test our algorithms on two benchmarks of
graphs and with L in {10, 15, 20}.

The first benchmark is E-KB, which contains graphs coming from the
pricing step of our column generation framework solving the KEP (see
Section 5.6.1). Initial KEP instances are created using a Saidman-based
generator [114] available at http://www.dcs.gla.ac.uk/~jamest/kidney-
webapp/#/generator using realistic parameters, leading to sparse graphs
(see Section 3.3.1). The size of the graphs varies between 68 and 334 ver-
tices. Depending on the two parameters |P| and L, 18 or 21 instances are
solved.

We use another benchmark to analyze our results on different and
structured instances that can be found online for reproducibility purposes.
It is composed by graphs designed for a tree-width problem of the 2016
PACE challenge [35], available at http://bit.ly/pace16-tw-instances-
20160307. We select graphs having a size between 30 and 3300 vertices
and containing enough paths of the given length L. We decompose this
benchmark into two parts: the PACE-exact (up to 600 vertices) and the
PACE-heuristic instances which contains larger instances. Depending on
the two parameters |P| and L, 93 to 97 instances are solved.

Choice of the path set P. As none of the used strategies depends on
the weight function, any path can belong to the set P, so we draw them
randomly in the graph. Their number |P| varies in {3, 10, 50}.

3actually P is composed by random paths playing the role of optimal paths, the opti-
mality is not important here.

http://www.dcs.gla.ac.uk/~jamest/kidney-webapp/#/generator
http://www.dcs.gla.ac.uk/~jamest/kidney-webapp/#/generator
http://bit.ly/pace16-tw-instances-20160307
http://bit.ly/pace16-tw-instances-20160307
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Choice of the algorithms. We compare four strategies:
1. color coding with unif coloring (standard version)
2. color coding with spread coloring
3. color coding with la ordering and spread coloring
4. color coding with la ordering and shifted-spread coloring

The point of these experiments is mainly to establish the impact of the
spread coloring strategy and how a good ordering can affect it. Thus, even
if it is known that using more colors than L leads to a higher chance that H
is colorful, we stand in a simpler case where C = L. For the same reason,
the time limit given to the local search of the la ordering is sufficiently long
(5 minutes) to hope for a good ordering. This time limit can be adapted to
fit the need of the various applications of the color coding. Note that both
strategies 3 and 4 use the same la ordering.

6.5.2 Analysis

Coloring spread versus unif. The spread coloring (strategy 2) reveals
moderately better results than the unif coloring. The average frequency
with which a path of P is found increases from 2.26% to 3.54%. As neither
the coloring nor an ordering take profit from any structure and because of
the size of our instances, the benefit of this coloring strategy alone is quite
small. This is consistent with the analysis made in Section 6.2 for large
values of n.

la ordering versus uniform ordering. The frequencies with which at
least one path of P is colorful are denoted by fu, f3 and f4 for strategies
1, 3 and 4 respectively. They estimate the probability to find an optimal
path within one trial of the color coding. The average frequencies on a set
of instances are denoted by fu, f3 and f4. We also computed the minimum
(resp. average) number of ordering intervals I needed to cover a path of P,
denoted by #Imu (resp. #Iu) for the uniform ordering and #Imla (resp. #Ila)
for la ordering.

The gain on the frequencies estimates the gain on the probability that an
optimal path is colorful, which is, equivalently, a gain on the number of color
coding trials needed to find an optimal path. We are however interested in
the gain on the number of calls to the costly dynamic program. For the
non shifted strategy, each trial calls only one dynamic program, so g3 = f3

fu
.

On the contrary, one trial of shifted-spread calls C dynamic programs,
thus, we compute the gain of the normalized frequency normf4 = f4

C and
g4 = normf4

fu
.

Tables 6.1, 6.2 and 6.3 show the aggregated results for the bench-
marks E-KB, PACE-exact and PACE-heuristic respectively: the average
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frequency of unif coloring (fu), the average frequency and gain for la or-
dering with spread (f3 and g3 ) and the average frequency with its net
gain for shifted-spread (f4 and g4). They also display the average (over
instances) minimum number of intervals covering a path of P for each or-
dering (#Imu and #Imla ). In these tables, # denotes the number of instances
of the benchmark that were tested. We also detail individual results for
PACE-exact benchmark, L = C = 15 and |P| = 3 (chosen as examples), in
Appendix B.

The bold values in Tables 6.1, 6.2 and 6.3, enlighten the significant gain
of our methods in almost every cases, so we can expect a substantial re-
duction of the dynamic program executions to find an optimal path. This
gain sometimes reaches several orders of magnitude, in particular for the
PACE-exact benchmark (Table 6.2). Note that strategy 4 gives very high
frequencies, but the third strategy has a slightly better net gain and the
shift seems unnecessary. In one configuration (out of 9), even these high
frequencies do not compensate this shifting technique and g4 is smaller than
1. However, only shifted-spread provides the guarantee that a path is
found in one trial if ∆ ≤ C. Actually, as discussed in Section 6.3, ∆ might
big (see Figure 6.2), shifted-spread still outperforms unif, and we can
observe in Appendix B a number of instances with f4 = 1 but ∆ > C (in
Table B.2). This probability of one occurs when #Imla = 1, i.e., when our
ordering sufficiently gathered the vertices of one path of P so that one of
the shifts puts them in a single coloring interval. This happens many times
for the PACE-exact benchmark, which explains the good performance of
shifted-spread. The side effect of the normalization on values bounded
by 1 explains the important gap between g3 and g4 for this benchmark. More
generally, when #Imla is much smaller than #Imu , we observe a significant
improvement of the colorful frequency, for both strategies 3 and 4, since our
ordering clusters the vertices of the paths of P in a small number of inter-
vals. On the contrary, when #Imla and #Imu are close, our methods behave
similarly to spread alone since the ordering strategy gathers the vertices of
the paths in almost as many intervals as a uniform ordering strategy. When
this happens, the gain is attributable only to spread and remains, therefore,
rather small.

6.6 Conclusion
This chapter introduced a new framework for the color coding approach
including a preprocessing phase ordering the vertices and a new procedure
to color the graph. The coloring strategy significantly improves the prob-
ability to find a subgraph for small graphs by spreading colors uniformly.
When combined with an ordering strategy based on the graph structure, the
proposed algorithm dominates the original color coding, as it preserves the
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|P| L #
uniform ordering la ordering
unif #Imu

spread shifted-spread #Imla
fu f3 g3 f4 g4

3
10 21 0.0108 6.1 0.0278 2.6 0.1945 1.8 5.2
15 18 0.0001 7.2 0.0003 2.7 0.0051 2.6 6.3
20 18 3.7E−7 7.2 1E−5 27 0.0002 26.1 6.1

10
10 21 0.034 5.7 0.1088 3.2 0.4537 1.3 4.6
15 18 0.0004 6.5 0.0011 2.4 0.0159 2.4 5.8
20 18 6.7E−6 6.7 2.9E−5 4.3 0.0006 4.7 5.9

50
10 18 0.1571 4.8 0.2015 1.3 0.8918 0.57 4.6
15 18 0.0022 5.8 0.0053 2.4 0.0749 2.2 5.3
20 18 2.6E−5 6.1 0.0002 5.9 0.003 5.7 5.4

Table 6.1 – Results for E-KB

|P| L #
uniform ordering la ordering
unif #Imu

spread shifted-spread #Imla
fu f3 g3 f4 g4

3
10 40 0.0106 4.8 0.2419 22.8 0.6109 5.8 2
15 39 0.0001 4.8 0.0978 765.2 0.3803 198.3 2
20 39 1E−6 4.4 0.0859 83734 0.2261 11021 2.6

10
10 40 0.0336 4.4 0.4449 13.2 0.8904 2.6 1.7
15 39 0.0004 4.4 0.2435 568.7 0.5133 79.9 1.8
20 39 4.4E−6 4.2 0.1653 37184 0.3021 3399 2.3

50
10 39 0.1308 3.9 0.7907 6 0.9953 0.76 1.4
15 38 0.0019 4.2 0.4667 248.9 0.7251 25.8 1.7
20 36 1.9E−5 4.2 0.1954 10243 0.425 1114 2.1

Table 6.2 – Results for PACE-exact
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Figure 6.2 – ∆ for each instance of size < 600 with L = 10
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|P| L #
uniform ordering la ordering
unif #Imu

spread shifted-spread #Imla
fu f3 g3 f4 g4

3
10 55 0.0109 5.8 0.0187 1.7 0.1651 1.5 5
15 52 0.0001 6.3 0.0006 4.5 0.0077 4.1 5.6
20 52 1.2E−6 6.3 3.8E−5 33 0.0007 29 5.7

10
10 55 0.0355 5.3 0.0597 1.7 0.4327 1.7 4.5
15 52 0.0004 5.9 0.0019 4.3 0.0262 3.9 5.1
20 52 4.7E−6 6.1 0.0001 22.8 0.0021 22.3 5.3

50
10 55 0.1635 4.7 0.2568 1.6 0.921 0.66 4.1
15 52 0.0022 5.4 0.0089 4 0.1169 3.5 4.6
20 52 2.8E−5 5.5 0.0006 20.1 0.0111 20 4.9

Table 6.3 – Results for PACE-heuristic

improvement of the coloring strategy in graph with small ∆, a parameter
related to the bandwidth.

The complete framework also includes a shifting technique that guaran-
tees to find an optimal solution with only C calls to the dynamic program
when the ordering step ensures that ∆ is smaller than C. With or without
the shifting, a randomized color coding approach using our algorithm needs
far fewer calls to the dynamic programming step to expect the same chance
to obtain an optimal solution than in the standard version using a uniform
coloring. These algorithms were tested on realistic instances of the kidney
exchange problem, but also on graphs coming from structural problems [35].
Similar results can be expected for graphs from other domains, particularly
if the graphs are sparse. We now intend to investigate the consequences of
our strategies for derandomization purposes.
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Conclusion: contributions
and future work

Different types of problems and algorithms are addressed in this thesis,
all emerging from our study of the kidney exchange problem (KEP). Our
contributions on these topics are summed up below, together with directions
for future work.

We first surveyed the different variants of the KEP and its closely re-
lated problems, both from an applicative and mathematical point of view.
From this literature review, we observed that kidney exchange programs are
growing and that altruistic donors are more and more allowed, but difficult
to take into account. In this case, the problem is to find cycles and paths of
maximum weight, but limited length, in a graph modeling the compatibili-
ties between donors and patients. We motivated our choice to consider the
problem as static and deterministic by the difficulty to accommodate several
new parameters at the same time. We thus focused on dealing with altruistic
donors, but it would certainly be interesting to investigate how the stochas-
ticity and dynamism of kidney exchange programs could be integrated in
our models and algorithms.

We also explained how the kidney exchange problem is actually a sta-
ble set problem, for which we introduced a new extended formulation. We
proved interesting properties for this formulation: it is ideal for perfect
graphs, compact for claw-free graphs, and we know which standard inequal-
ities are contained in its polytope. Despite these results, we did not imple-
ment the formulation as it would require a complex column-and-row gener-
ation to solve the KEP. This is however the next step we aim at taking.

We detailed other integer programming formulations for the KEP in an
extensive literature review. Both from a theoretical and practical analysis,
the exchange formulation (EF) seems to be the best candidate to solve large
instances. This is confimed by the experiments we conducted, in particular
the comparison between a compact formulation and the exponential formu-
lation EF. Some polyhedral comparisons of these formulations are however
missing and we plan to fill this gap in further work.



126 | CONCLUSION: CONTRIBUTIONS AND FUTURE WORK

The exchange formulation is a large-scale model as it contains a variable
for each feasible path and cycle. To solve its linear relaxation, we thereby
developed a complete column generation framework integrating altruistic
donors. We proposed filtering techniques but also to avoid the implemen-
tation of a whole branch-and-price by computing feasible solutions of good
quality with other methods. In particular, we built an approximation based
on iterative rounding providing an integer solution with a guaranteed quality
over the optimal one. Experimental results show that our column genera-
tion indeed finds excellent solutions for realistic (up to 300 vertices) but
also larger (up to 800 vertices) instances. In average, we were able to assess
that the obtained solution weighs at least 99.88% of the optimal value. Our
column generation has however some practical limits when it comes to large
instances: memory issues and an increased running time to solve the final
integer program. We are confident in the fact that an efficient implemen-
tation, taking profit from the sparsity of graphs, would overcome some of
these limits and reach a new scale in the KEP instances that can be solved.
Moreover, our work mainly focused on the pricing problem, so we intend
to develop new ways to get feasible solutions, during and after the column
generation.

Solving this linear relaxation with column generation requires to solve
the elementary minimum path problem with length constraint, which is
NP-hard. This problem is actually the core issue of our algorithm and is
the subject of two chapters. We proposed a local search approach as well
as an integer program to solve it. More importantly, we adapted, from
the literature of elementary path problem with resource constraints, two
dynamic programs: the color coding and the NG-route relaxation. This
adaptation involves to take profit from the graph structure but also from
the problem itself, using the length constraint to reduce the search space. We
presented a computational evaluation of these algorithms and their different
configurations, showing that the dynamic programming approach is very
efficient to solve the considered problem. Indeed, the two dynamic programs
always returned a solution with the same sign than the optimal one and this
behavior is more important than finding an optimal solution in a column
generation framework. Further work can be conducted on these algorithms,
in particular to improve the filtering efficiency. We plan for example to
apply the memory cuts proposed by Pecin et al. [99].

In addition, we carried out a theoretical analysis of the different tech-
niques that we proposed for the color coding. In the original heuristic,
vertices are randomly and simultaneously colored, then a dynamic program
searches for a best solution with different colors (a colorful path), and the
procedure is repeated multiple times. The color coding can be used to solve
several problems and in particular our path problem. Its iterative aspect
makes it particularly interesting in our column generation, as feasible solu-
tions can be returned anytime. We proposed a new strategy that sequentially
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colors the vertices and aims at giving optimal paths a higher chance to be
colorful. We proved that our color coding technique indeed finds an optimal
solution with a higher probability than the original one. To do so, a pre-
processing step orders the vertices by reasoning on the graph and problem
structures to gather feasible solutions. When the preprocessed graph sat-
isfies a structural property related to the bandwidth, it guarantees that a
bounded number of different colorings makes every feasible solution colorful,
so the probability to find an optimal solution is equals to 1. In practice, the
frequency with which our algorithm finds an optimal path is very high, and
can reach 1 on instances with more than 300 vertices, even when this partic-
ular property is not satisfied. As the color coding has been studied in several
papers in a derandomized version, we intend to pursue our research on this
topic by combining our improvement with this derandomization procedure.

The results presented in this thesis led to the following research articles:

[I] Column Generation for the Kidney Exchange Problem, with
Hadrien Cambazard, Nicolas Catusse and Gautier Stauffer
Proceedings of the 12th International Conference on MOdeling, Opti-
mization and SIMlation, 2018, 149–156
https://hal.archives-ouvertes.fr/hal-01989427

[II] New randomized strategies for the color coding algorithm,
with Hadrien Cambazard and Nicolas Catusse
accepted in ECAI 2020

https://hal.archives-ouvertes.fr/hal-01989427
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Appendix A

Comparisons of formulations

Lemma A.1
EF is tighter than HPIEF
EF is tighter than PICEF

Proof. See Dickerson et al. [37]

Lemma A.2
EF is tighter than MTZ-AF

Proof. Let x be the optimal solution EFL, the linear relaxation of EF. We
show how to construct an equivalent optimal solution to the linear relaxation
of MTZ-AF.

yij = ∑
e∈E

(ij)∈A(e)
e is a path

xe and uij = ∑
e∈E

(ij)∈A(e)
e is a cycle

xe.

The physiological constraint (3.7) and (3.8) of MTZ-AF are verified due
to the equivalent constraints (3.2) in EF. By the very definition of exchanges,
flow constraints (3.5) and (3.6), as well as the length constraints (3.10) and
(3.9), are satisfied. By construction, paths and cycles of E do not induce
subtours and from constraints (3.2) we have: ∀S ⊂ V , ∑

(ij)∈A(S)
yij ≤ |S| − 1.

Thus, we can construct time stamps ti which are well-defined for MTZ-AF
as proposed by Velednitsky [125]:

Given the graph with new arc weights defined as follows: ∀(ij) ∈ A,
w′ij = (|P |+ 1)− (|P |+ 2)yij − |P |yji. We set −ti as the cost of the shortest
path from any vertex of N (altruistic donor) to i in D. MTZ constraints
(3.11) are satisfied:

− tj ≤ −ti + w′ij = −ti + (|P |+ 1)− (|P |+ 2)yij − |P |yji
⇒ti − tj + |P |yji + (|P |+ 2)yij ≤ |P |+ 1

Moreover, the shortest paths are well-defined as the graph contains no
cycle of negative weight. Let C be a cycle in D and c = |V (C)|.
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w′(C) =
∑

(ij)∈A(C)
w′ij =

∑
(ij)∈A(C)

((|P |+ 1)− (|P |+ 2)yij − |P |yji)

= c(|P |+ 1)− (|P |+ 2)
∑

(ij)∈A(C)
yij − |P |

∑
(ij)∈A(C)

yji

≥ c(|P |+ 1)− (|P |+ 2)
∑

(ij)∈A(C)
(yij + yji)

As discussed above, ∑
(ij)∈A(C)

(yij + yji) ≤ c− 1, so:

w′(C) ≥ c(|P |+ 1)− (|P |+ 2)(c− 1)
≥ |P |+ 2− c

As a cycle can include only vertices of P (pairs), we have c ≤ |P | and
w′(C) ≥ 0.

Lemma A.3
EF is tighter than MTZ-EAF

Proof. The proof is similar.

Lemma A.4
EF is tighter than PC-TSP.

Proof. Let x be the optimal solution EFL, the linear relaxation of EF. We
show how to construct an equivalent optimal solution to the linear relaxation
of MTZ-AF.

ylij = ∑
e∈E

(ij)∈A(e)
e is a path starting from vertex l

xe.

By definition the physiological constraint constraints (3.40) and (3.41)
are respected, as well as the flow constraints (3.42) and length constraints
(3.43). Moreover, by construction, paths and cycles of E do not induce
subtours so constraints (3.44) are also satisfied.
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Detailed results for color
coding

The following tables show, for E-KB and PACE-exact benchmarks, L =
C = 15 and |P| = 3, the following results:

• The frequencies with which at least one path of P is colorful for strate-
gies 1, 3 and 4: fu, f3 and f4.

• The minimum and average number of ordering intervals I needed to
cover a path of P: #Imu and #Iu for the uniform ordering, #Imla and
#Ila for la ordering.

• ∆
• n = |V |, m = |E| and d = m

n(n−1) the density of the graph G = (V,E)
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100-10-4-l12 112 731 0.059 0.0001 5.7 5 0.0004 0.0074 78 5 5
100-25-4-l12 134 834 0.047 0.0001 6 5 0.0004 0.0063 84 6 5
100-5-4-l12 106 679 0.061 0.0001 5 5 0.0007 0.0112 69 4.7 3
250-10-4-l12 279 4652 0.06 0.0001 9.7 9 0.0002 0.0029 238 10.7 8
250-25-4-l12 334 4670 0.042 0.0002 11 9 0.0001 0.0028 262 10.3 8

fir
st

100-10-4-l12 112 731 0.059 0.0002 5.7 5 0.0005 0.0068 78 5 4
100-25-4-l12 134 834 0.047 0.0001 7 7 0.0005 0.0073 84 5.3 4
100-5-4-l12 106 679 0.061 0.0001 5 5 0.0007 0.0078 69 4.3 4
250-10-4-l12 279 4652 0.06 0.0001 9.7 9 0.0002 0.0026 238 10.7 9
250-25-4-l12 334 4670 0.042 0.0002 9.7 9 0.0002 0.0029 262 9.7 8
250-5-4-l12 264 4524 0.065 0.0001 10.3 9 0.0002 0.003 230 9.3 9

m
id
dl
e

100-10-4-l12 112 731 0.059 0.0002 5.7 5 0.0004 0.0059 78 5.3 5
100-25-4-l12 134 834 0.047 0.0002 6.3 6 0.0003 0.0068 84 5.7 5
100-5-4-l12 106 679 0.061 0.0001 5 5 0.0005 0.0063 69 5 4
250-10-4-l12 279 4652 0.06 0.0001 8.7 8 0.0002 0.0026 238 11 8
250-25-4-l12 334 4670 0.042 0.0001 11.3 10 0.0002 0.0025 265 11 8
250-5-4-l12 264 4524 0.065 0.0001 9.3 9 0.0002 0.0031 230 8.7 8

Table B.1 – Results for E-KBR, L = C = 15 and |P| = 3
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uniform ordering la ordering
unif #Iu #Imu

spread shift ∆ #Ila #Imlainstance n m d fu f3 f4

ea
sy
-c
on

tik
i

cxmac-input-packet 91 284 0.035 0.0002 6 6 0.0022 0.0183 90 4 3
dhcpc-dhcpc-init 35 102 0.086 0.0001 3 3 0.1364 1 20 2 1
httpd-cfs-send-file 45 140 0.071 0.0001 3 3 0.0016 0.0219 44 3 3
ifft-ifft 173 532 0.018 0.0002 9 7 0.0009 0.0138 143 4 3
ircc-list-channel 71 222 0.045 0.0001 4.7 4 0.0265 0.0776 70 3.7 3
lpp-send-packet 117 356 0.026 0.0001 6.3 6 0.14 1 116 2.7 1
polite-announcement- 32 93 0.094 0.0001 2.3 2 0.0578 1 23 2 1send-timer
powertrace-add-stats 47 140 0.065 0.0001 3.3 3 0.0097 0.0627 46 2.7 2
powertrace-powertrace-print 324 969 0.009 0.0001 10.3 10 0.0064 1 162 2.3 1
profile-profile-episode-start 32 95 0.096 0.0001 2.7 2 1 1 29 2 1
psock-psock-generator-send 62 197 0.052 0.0001 2 3 0.0012 0.0155 61 3.7 3
rudolph1-send 31 88 0.095 0.0002 3 3 1 1 30 4 1
shell-shell-register-command 43 132 0.073 0.0001 3 3 0.0043 0.0338 42 2.7 2
shell-collect-view- 62 185 0.049 0.0001 4.7 4 0.0046 1 54 2.7 1process-thread-data
shell-rime-recv-collect 63 190 0.049 0.0001 4.3 4 0.0034 0.357 50 2 2
shell-rime-ping-recv-mesh 48 141 0.062 0.0001 3.7 3 0.1345 0.3154 47 3 2
tcpip-eventhandler 99 322 0.033 0.0001 6 5 0.0018 1 95 3.3 1
uip-neighboradd 68 209 0.046 0.0001 4.7 4 0.002 0.0247 57 3 2
uip-over-mesh-recv-data 86 261 0.036 0.0002 5.7 5 0.0195 1 43 2.3 1
webclient-senddata 109 326 0.028 0.0001 7.3 6 0.0117 0.0521 72 2.3 2
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unif #Iu #Imu

spread shift ∆ #Ila #Imlainstance n m d fu f3 f4
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devf-fd-transfer 120 377 0.026 0.0001 6.7 6 0.0038 0.0697 119 2.3 2
devio-kprintf 70 225 0.047 0.0002 5 5 0.0005 0.009 69 4.7 4
difftime-difftime 75 220 0.04 0.0001 4.7 4 0.0647 1 37 2 1
fgets-fgets 54 169 0.059 0.0002 4 4 0.0007 0.01 53 4 3
filesys-filename 46 141 0.068 0.0001 3 3 0.1343 0.3535 45 3 2
filesys-getinode 53 166 0.06 0.0001 4 4 0.0029 0.0345 52 3.3 2
filesys-i-open 130 415 0.025 0.0001 8.7 8 0.004 0.0539 129 3 2
getpass–gets 32 101 0.102 0.0001 3 3 0.0041 0.0701 31 2.7 2
malloc—insert-chunk 105 336 0.031 0.0001 6 6 0.0008 0.0182 104 4.7 4
process-getproc 33 102 0.097 0.0002 2.3 2 0.0022 0.0602 32 3 2
ran-rand 47 142 0.066 0.0001 4 4 0.0214 1 23 2 1
regexp-regcomp 119 376 0.027 0.0001 7.3 7 0.0007 0.0126 116 4 3
se-ycomp 84 275 0.039 0.0001 5.3 5 0.0009 0.0112 83 3.7 3
stat-statfix 53 154 0.056 0.0001 4 4 1 1 26 1.7 1
tty-tty-read 124 397 0.026 0.0001 6.7 6 0.0031 1 123 3 1

easy-stdlib-sincoshf 111 344 0.028 0.0002 7 6 0.0016 0.0342 98 3.3 2

ha
rd

DoubleStarSnark 31 120 0.129 0.0001 12 11 0.0004 0.0051 30 6.3 4
contiki-dhcpc-handle-dhcp 277 902 0.012 0.0001 2 2 0.0046 0.0701 270 2 2
fuzix-vfscanf-vfscanf 588 1923 0.006 0.0001 12 12 0.0007 0.0268 584 4.7 2

Table B.2 – Results for the PACE-exact benchmark, L = C = 15 and |P| = 3
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(l, i)-path, 87
H-free, 22
k-star, 22
lass, 94
la ordering, 117
shifted-spread, 118
spread, 112

arc-based formulations, 49
arcs, 21

bandwidth, 116
big O notation, 23
branch-and-bound, 26
branch-and-cut-and-price, 28
branch-and-cut, 27
branch-and-price, 28
bridge donor, 33

CG-dyn, 82
chain of donation, 33
chromatic number, 22
circuit, 22
claw, 22
clique, 22
clique inequalities, 57
clique number, 22
clique relaxation polytope, 57
closed neighborhood, 21
color coding, 92
colorful, 109
coloring, 93, 109
coloring sequence, 110
coloring strategy, 109

column generation, 27
column-dependent-rows, 29
combinatorial optimization

problem, 23
compatibility graph, 38
completion bounds, 97
cutting plane method, 27
cycle, 22
cycle of donation, 33

distance function, 71

edge, 21
endpoint, 21
head, 21
incident, 21
tail, 21

edge formulation, 57
elementary minimum path

problem with length
constraint, 69, 88

elementary path, 22
elementary shortest path problem

with resource constraints,
88

ellipsoid, 25
exchange, 38
exchange formulation, 48
exchange-based formulations, 48
exponential time, 23
extended neighborhood, 89, 110
extended predecessors, 89

formulation, 25
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compact, 27
extended, 25
ideal, 25
large-scale, 27
tighter, 25

fractional stable set polytope, 57

graph, 21
directed, 21
undirected, 21

graph bandwidth problem, 116

induced subgraph, 22
integer linear program, 24
integer programming

relaxation, 24
interior points, 25
intersection graph of exchanges,

39

kidney exchange problem, 37
kidney exchange program, 32

Lagrangian relaxation, 24
length, 22
linear programming, 23

basic solution, 24
basic variable, 24
domain, 24
feasible solution, 24
infeasible, 24
optimal solution, 24
relaxation, 24
unbounded, 24

marginal cost, 72
mixed-integer linear program, 24
modified Bellman-Ford, 67
MTZ arc formulation, 49
MTZ extended arc formulation,

50

neighborhood, 21
NG-path, 95
NG-route, 94

NG-set, 95
NP-complete, 23
NP-hard, 23

ordering, 110
ordering strategy, 110

path, 22
patient-donor pair, 32
perfect graph, 22
polynomial time, 23
pricing problem, 27
proper vertex coloring, 22

reduced cost, 28
restricted master problem, 27

saturated, 76
set packing problem, 40
shortest path problem, 88
shortest path problem with

resource constraints, 88
simple path, 22
simplex algorithm, 25
simultaneous column-and-row

generation, 29
stability number, 22
stable neighborhood formulation,

58
stable set, 22
stable set polytope, 57
stable set problem, 41
subgraph, 22

time-stage formulation, 90
trail, 22

valid, 75
valid cycles, 38
valid inequality, 25
valid paths, 38
vehicle routing problem, 41
vertex, 21

adjacent, 21
neighbor, 21
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predecessor, 21
successor, 21

waiting list, 31
walk, 22
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Index of symbols and
abbreviations

D: compatibility graph, 38
FSTAB(G): fractional stable set

polytope, 57
NG(u): neighborhood, 21
NG[u]: closed neighborhood, 21
QSTAB(G): clique relaxation

polytope, 57
STAB(G): stable set polytope,

57
α(G): stability number, 22
δG(u): incident edges set, 21
η(i): previously colored vertices,

110
γ(i): extended neighborhood, 89,

110
γ−(i): extended predecessors, 89
λ∗uv: marginal cost, 72
E : exchange set, 38
I(E): intersection graph of

exchanges, 39
P(S): power set, 22
ω(G): clique number, 22
χ(G): chromatic number, 22
ϕ(G′): bandwidth, 116
d: distance function, 71
x∗: optimal solution, 24
z∗: optimal value, 24
z∗LP : optimal linear relaxation, 24
CF: first negative solution of

color coding, 93
CM: best solution of color coding

in 1 second, 93
EF: exchange formulation, 48
EMPPLC: elementary minimum

path problem with length
constraint, 70, 88

ESPPRC: elementary shortest
path problem with
resource constraints, 88

HPIEF: hybrid position-indexed
edge formulation, 52

IP: integer (linear) program, 24
KEP: kidney exchange problem,

37
KPD: Kidney Paired Donation,

32
LF: first negative solution of local

search, 92
LM: best solution of local search

in 1 second, 92
MILP: mixed-integer linear

programming, 24
MTZ-AF: MTZ arc formulation,

49
MTZ-EAF: MTZ extended arc

formulation, 50
NP: non-deterministic polynomial

time, 23
PICEF: position-indexed

chain-edge formulation,
55

P: polynomial time, 23
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RMP: Restricted master problem,
27

SNF: stable neighborhood
formulation, 58

SPPRC: shortest path problem
with resource constraints,
88

SPP: shortest path problem, 88

SS-EF: stable set edge
formulation, 57

TSF-lb: best lower bound of TSF
in 1 second, 91

TSF-ub: best upper bound of
TSF in 1 second, 91

TSF: time-stage formulation, 90
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This thesis deals with elementary path problems and their application to the kidney
exchange problem. We focus on kidney exchange programs including altruistic donors,
which are crucial for patients with renal disease and challenging for operations research
methods. The goal of this work is to develop an efficient algorithm that can be used
to solve future instances, which are likely to involve a large number of donors and
patients. While we progress on this topic, we encounter closely related problems on
packing, vehicle routing and stable set. For this last problem, we introduce a new
extended formulation and prove it is ideal and compact for claw-free perfect graphs by
characterizing its polytope. We then concentrate on the design of a column generation
dedicated to the kidney exchange problem and confront its NP-hard pricing problem.
The specific problem that we address is the elementary path problem with length
constraint, which models the search for interesting chains of donation to add during the
pricing step. We investigate dynamic approaches, in particular the NG-route relaxation
and the color coding heuristic, and improve them by exploiting the length constraint
and sparsity of graphs. We study the color coding in a more general context, providing
a guaranteed improvement by proposing new randomized strategies. They are based on
ordering the graph before coloring it and introduce a bias in the probability distribution
to increase the probability of finding an optimal solution.
Keywords: linear programming, kidney exchange problem, elementary path
problem, column generation, color coding, NG-route, stable set problem

Cette thèse traite de problèmes de chemins élémentaires et leur application au prob-
lème d’échange de reins. Nous nous concentrons sur des programmes d’échange de reins
qui incluent des donneurs altruistes, qui sont essentiels pour les patients avec une mal-
adie rénale, mais représentent un défi pour les méthodes de recherche opérationnelle.
Notre objectif est de développer un algorithme efficace qui pourra être utilisé pour
résoudre des instances futures, qui sont susceptibles d’impliquer un grand nombre de
participants. Nous rencontrons des problèmes étroitement lié au notre : problèmes de
packing, de tournée de véhicules, de stable. Pour ce dernier, nous présentons une nou-
velle formulation étendue et prouvons qu’elle est idéale et compacte pour les graphes
parfaits sans griffe. Nous nous focalisons ensuite sur la conception d’une génération de
colonnes dédiée au problème d’échange de reins et nous attaquons à son problème de
pricing, NP-difficile. Nous abordons le problème du chemin élémentaire minimum avec
contrainte de taille, qui modélise la recherche de chaînes de dons intéressantes à ajouter
dans la phase du pricing. Nous étudions des approches dynamiques, en particulier la
relaxation NG-route et l’heuristique de color coding, et les améliorons en exploitant la
contrainte de taille et la faible densité des graphes considérés. Nous nous intéressons
ensuite au color coding dans un contexte plus général, proposant de nouvelles straté-
gies randomisées qui apportent une garantie d’amélioration. Ces stratégies s’appuient
sur un ordonnancement du graphe et introduisent un biais dans la loi de probabilité
pour augmenter les chances de trouver une solution optimale.

Mots-clefs: programmation linéaire, problème d’échange de reins, prob-
lème de chemin élémentaire, génération de colonnes, color coding, NG-
route, problème du stable
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