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RÉSUMÉ

Dans les années récentes, grâce à la capacité de capturer spatialement le front d’onde

des signaux entrants, les réseaux de capteurs ont été largement utilisés dans de nombreuses

applications, telles que le radar, l’astronomie, le sonar et le système de communication

sans fil. En tant qu’une base fondamentale des réseaux de capteurs, les techniques de trai-

tement d’antennes permettent l’estimation des paramètres du signal, tels que la fréquence,

la puissance et l’emplacement des sources, par l’observation perturbée par le bruit et les

interférences, ce qui soutient grandement le développement de systèmes de réseau de cap-

teurs.

La direction d’arrivée (DOA), qui est définie par les angles d’incidence des signaux

entrants, est l’un des paramètres des signaux sources les plus significatifs, et l’estimation

de DOA est considérée comme un problème crucial dans le radar, sonar et autres systèmes

où des réseaux de capteurs sont impliqués. Pendant ces dernières décennies, l’estimation

de DOA a été bien étudiée sur la base de réseaux linéaires uniformes (ULAs), dont les cap-

teurs sont uniformément répartis en ligne droite avec un espacement inter-élément égale à

une demi-longueur d’onde des signaux entrants pour éviter les ambiguïtés. De nombreux

algorithmes ont été proposés pour l’estimation de DOA, y compris des méthodes basées

sur la formation de voies comme la formation de voies conventionnelle et Capon, et les

méthodes à haute résolution basées sur un sous-espace comme MUSIC et ESPRIT. Cepen-

dant, pour la configuration ULA, la longueur du réseau est limitée par son petit espacement

inter-éléments, ce qui entraîne des performances d’estimation insatisfaisantes. Par ailleurs,

seulement jusqu’à M − 1 sources peuvent être détectées aves M capteurs. Par conséquent,

un nombre important de capteurs est nécessaire lorsque le nombre de signaux entrants est

grand, ce qui est irréaliste et difficile à réaliser pour les applications pratiques.

Récemment, les configurations de réseaux lacunaires ont attiré beaucoup d’attention.

Étant supérieurs aux ULAs traditionnels, les réseaux lacunaires, avec des capteurs localisés

non uniformément, peuvent fournir un réseau de capteurs de longueur importante avec

moins de capteurs, améliorant ainsi les performances d’estimation. En effet, en exploitant la

difference coarray obtenue par l’observation du réseau de capteurs physiques, un long ULA
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Résumé

virtuel avec l’espacement de demi-longueur d’onde ULA peut être obtenu. Avec beaucoup

plus des éléments virtuels que le nombre d’éléments de capteurs physiques, l’ULA virtuel

peut être utilisé pour effectuer l’estimation de DOA, et beaucoup plus de sources peuvent

être détectées.

Parmi les configurations de réseaux lacunaires, les réseaux linéaires coprimes (CLAs)

ont été considérés comme les plus prometteurs grâce à la solution analytique des posi-

tions des capteurs et grâce à la réduction du couplage entre les capteurs. La recherche

existante pour l’estimation de DOA avec CLAs évolue vers deux orientations, qui sont les

méthodes basées sur le difference coarray et les méthodes basées sur les sous-réseaux. Les

premières exploitent le CLA du point de vue des difference coarrays, en essayant d’aug-

menter le nombre maximum de sources détectables ; les dernières traitent le CLA comme

deux sous-réseaux linéaires uniformes avec grande distance inter-capteurs, essayant d’ob-

tenir une estimation de DOA avec haute précision et d’éliminer les ambiguïtés causées par

le grand espacement inter-éléments. Cependant, pour les méthodes basées sur le difference

coarray, le nombre d’éléments virtuels effectifs dans le difference coarray est limité par

l’existence de trous, de sorte que le nombre de signaux détectables n’est pas aussi élevé

que prévu ; pour les méthodes basées sur les sous-réseaux, à cause du grand espacement

inter-éléments de chaque sous-réseau, certains problèmes ont été ignorés par les études

existantes, affaiblissant leur robustesse et limitant le développement des réseaux coprimes

dans des applications réelles.

Dans cette thèse, nous nous concentrons sur l’estimation de DOA par des méthodes

basées sur le difference coarray et des méthodes basées sur les sous-réseaux, en essayant

d’augmenter le nombre de sources détectables et d’améliorer la robustesse. Le travail prin-

cipal est résumé comme suit.

1. Pour fournir les bases théoriques de toute la thèse, nous introduisons tout d’abord les

bases des techniques de traitement d’antenne, y compris le modèle mathématique des

signaux reçus par un réseau de capteurs, plusieurs configurations de réseaux de cap-

teurs uniformes traditionnels, et certains algorithmes d’estimation de DOA conven-

tionnels. Ensuite, l’estimation de DOA avec CLAs est présentée, impliquant les deux

orientations de recherche, , notamment, les méthodes basées sur le difference coarray

et les méthodes basées sur les sous-réseaux, avec leurs modèles de signaux reçus, les

principes d’estimation de DOA et les principaux défis de recherche.
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2. Du point de vue des méthodes basées sur le difference coarray, pour augmenter le

nombre d’éléments virtuels effectifs dans le difference coarray ainsi que le nombre

de sources détectables, les CLAs basés sur d’une plate-forme mobile ont été étudiés,

et il a été montré que le nombre de sources détectables peut être augmenté en déca-

lant le CLA d’une demi-longueur d’onde des signaux. Dans cette thèse, le difference

coarray du CLA après le mouvement est analysé, et une configuration de CLAs amé-

liorée pour la plate-forme mobile est proposée. En redéfinissant judicieusement les

positions des capteurs, le mouvement du CLA peut être exploité plus efficacement,

de sorte que beaucoup plus de signaux entrants peuvent être détectés avec le même

nombre de capteurs physiques et la même longueur de mouvement de réseau.

3. La structure des difference coarrays des CLA a été bien étudiée, mais les réseaux

planaires coprimes (CPAs) sont plus pertinentes pour les applications pratiques que

les CLAs. Cependant, contrairement aux CLAs, les travaux de recherche sur les

difference coarrays des CPAs n’ont pas été aussi développés. Afin d’apporter une

meilleure compréhension des CPAs et de faciliter la recherche future dans ce do-

maine, dans cette thèse, les CPAs sont étudiés du point de vue des difference co-

arrays. Plusieurs propriétés des difference coarrays des CPAs sont dérivées, sur la

base desquelles une méthode efficace est proposée pour augmenter le nombre d’élé-

ments virtuels effectifs dans les difference coarrays ainsi que le nombre de signaux

détectables.

4. Du point de vue des méthodes basées sur les sous-réseaux, plusieurs problèmes po-

tentiels associés à cette classe de méthodes sont discutés, et nous montrons que les

méthodes existantes ne peuvent pas fonctionner correctement lorsque les signaux

provenant de certaines directions particulières ou souffrent d’une faible précision

d’estimation et d’une grande complexité de calcul. Dans cette thèse, une méthode

fiable et efficace d’estimation de DOA est proposée, dans laquelle le modèle de

système avec des sous-réseaux uniformes avec grand espacement inter-éléments est

transformé en ULAs virtuels traditionnels avec espacement de demi-longueur d’onde,

et les vrais DOA sont traités comme leurs angles équivalents associés aux ULAs

virtuels pour éviter les problèmes potentiels. Par rapport à d’autres méthodes exis-

tantes basées sur des sous-réseaux, la méthode proposée est capable d’obtenir une

meilleure performance d’estimation dans toutes les situations, en termes de précision
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et de complexité.

5. Dans les méthodes basées sur les sous-réseaux, le traitement séparé des deux sous-

réseaux pose des problèmes tels que le faible nombre de sources détectables et des

performances d’estimation sous-optimales. Pour résoudre ces problèmes, une confi-

guration de réseaux de capteurs nommée réseau linéair coprime déplié (UCLA) est

proposée, et il a été admis que les ambiguïtés provoquées par le grand espacement

inter-éléments peuvent être supprimées automatiquement grâce à la propriété de co-

prime, et aucun autre processus n’est nécessaire pour les éliminer. Cependant, ce

n’est pas toujours vrai. Il y aurait encore des ambiguïtés lorsque les signaux provien-

draient des directions particulières. Dans cette thèse, la raison du problème d’ambi-

guïté ignorée est mise en évidence, et une méthode d’estimation de DOA modifiée

avec l’élimination de l’ambiguïté est proposée, par laquelle le problème d’ambiguïté

peut être résolu avec succès.

L’efficacité de toutes les propositions de cette thèse est soutenue par des résultats des

simulations et par la publication de trois articles dans des revues [ii—iv], et quelques sug-

gestions des recherches futures dans ce domaine sont fournies à la fin de cette thèse.
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ABSTRACT

In recent years, being able to spatially capture the wavefront of incoming signals, sen-

sor arrays, composed of multiple sensor elements, have been widely applied in practical

applications, such as radar, astronomy, sonar and wireless communication system. As a

critical basis of sensor arrays, array signal processing technique focuses on the estimation

of signal parameters, such as frequency, power and source location, from the observation

contaminated by noise and interference, greatly supporting the development of sensor array

systems.

Direction of arrival (DOA), defined by the incident angles of incoming signals, is one of

the most significant array signal parameters, and DOA estimation has been considered as a

crucial issue in radar, sonar and other systems where sensor arrays are involved. In the last

decades, DOA estimation has been well studied based on uniform linear arrays (ULAs), of

which the sensor elements are uniformly distributed in a straight line with inter-element

spacing equaling to a half-wavelength of incoming signals to avoid ambiguities. Many

algorithms have been proposed for DOA estimation, including beamforming based methods

like classical beamforming method and Capon method, and high resolution subspace based

methods like MUSIC and ESPRIT. However, for ULA configuration, the array aperture is

limited by its small inter-element spacing, resulting in unsatisfying estimation performance.

On the other hand, only up to M − 1 sources can be detected with M sensor elements,

therefore numerous sensor elements will be required when the number of incoming signals

is large, which is unrealistic and hard to be accomplished in terms of practical applications.

Recently, sparse array configurations have attracted lots of attention. Being superior

to traditional ULAs, sparse arrays, with sparsely located sensor elements, can achieve a

larger array aperture with fewer sensors, improving estimation performance. Besides, by

exploiting the difference coarray obtained from the observation of the physical sensor array,

a long virtual half-wavelength spacing ULA can be obtained. With more distinct lags than

the number of physical sensor elements, the virtual ULA can be used to perform the DOA

estimation, and much more sources can be detected.

Among sparse array configurations, coprime linear arrays (CLAs) have been conside-
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red as the most promising one thanks to their closed-formed expressions of sensor loca-

tions and limited mutual coupling effect. The existing research for DOA estimation with

CLAs develops towards two orientations, which are difference coarray-based methods and

subarray-based methods. The former exploits the CLA from the perspective of difference

coarrays, trying to increase the maximum number of detectable sources ; the latter treats

the CLA as two sparse uniform linear subarrays with large array aperture, trying to ob-

tain high precision DOA estimation and eliminating the ambiguities caused by the large

inter-element spacing. However, for the difference coarray-based methods, the number of

effective lags in the difference coarray is limited by the existence of holes, such that the

number of detectable signals is not as high as expected ; for the subarray-based methods,

because of the large inter-element spacing of each subarray, some problems have been

ignored by the existing studies, weakening their robustness and limiting the development

of coprime arrays in real applications.

In this dissertation, we focus on the DOA estimation with coprime arrays from the

perspectives of both the difference coarray-based methods and subarray-based methods,

trying to increase the number of detectable sources and enhance the robustness. The main

work is summarized as follows.

1. To provide the theoretical foundation for the whole dissertation, firstly, we introduce

the basic of array signal processing techniques, including the mathematical model

of received signals of sensor arrays, several traditional uniform sensor array confi-

gurations, and some conventional DOA estimation algorithms. Then, the DOA esti-

mation with CLAs is presented, involving the two research orientations of difference

coarray-based methods and subarray-based methods respectively, with their corres-

ponding received signal models, DOA estimation principles, and main research chal-

lenges.

2. From the perspective of difference coarray-based methods, to increase the number of

effective lags in the difference coarray as well as the number of detectable sources,

moving platform based CLAs have been studied, and it has been shown that the

number of detectable sources can be increased by shifting the CLA a half wavelength

of incoming signals. In this thesis, the resulting difference coarray of the CLA after

array motion is analyzed, and an improved CLA configuration for moving platform

is proposed. By judiciously redesigning the sensor element positions, the shift of the
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CLA can be exploited more efficiently, such that much more incoming signals can be

detected with the same number of physical sensor elements and the same length of

array motion.

3. The difference coarray structure of CLAs has been well studied, whereas coprime

planar arrays (CPAs) are more relevant to practical applications compared with CLAs.

However, unlike CLAs, the research of the difference coarrays of CPAs is not such

developed that the high number of detected signals offered by the coprime geometry

has not been fully exploited. In order to offer a better understanding of CPAs and

facilitate the future research in this field, in this dissertation, CPAs are investigated

from the perspective of difference coarrays. Several properties of the difference coar-

rays of CPAs are derived, based on which an efficient method is proposed to further

increase the number of effective lags in the difference coarray as well as the number

of detectable signals of CPAs.

4. From the perspective of subarray-based methods, several potential problems associa-

ted with such class of methods are discussed, and we show that the existing methods

cannot work correctly when the signals coming from some particular directions or

suffer from low estimation accuracy and high computational complexity. In this the-

sis, a reliable and efficient DOA estimation method is proposed, in which the sys-

tem model with large inter-element spacing uniform subarrays is mapped into virtual

traditional half-wavelength spacing ULAs, and the true DOAs are treated as their

equivalent angles associated with the virtual ULAs to avoid the potential problems.

Compared with other existing subarray-based methods, the proposed method is able

to achieve better estimation performance in all situations, in terms of accuracy and

complexity.

5. In subarray-based methods, separately handling the two subarrays causes problems

such as the small number of detectable sources and sub-optimal estimation perfor-

mance. To address this issue, a sensor array configuration named unfolded coprime

linear array (UCLA) is proposed, and it has been admitted that the ambiguities cau-

sed by the large inter-element spacing can be suppressed automatically thanks to

the coprime property, and no further process is required to eliminate the ambigui-

ties. However, it is not always true. There would still exist ambiguities when the

signals impinge from particular directions. In this thesis, the principle of the igno-
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red ambiguity problem is investigated, and a modified DOA estimation method with

ambiguity-eliminating is proposed, by which such ambiguity problem can be suc-

cessfully solved.

The efficiency of all propositions in this dissertation are supported by adequate simula-

tion results and three published journal articles [ii—iv], and some suggestions of the future

research in this domain are provided at the end of this dissertation.
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INTRODUCTION

Research Background and Motivation

In the last decades, sensor arrays have been widespreadly used in communications,
biomedical engineering, remote sensing and other applications [1–10]. Being superior to
single sensor systems, sensor arrays, composed of multiple sensor elements, can spatially
capture the wavefront of incoming signals and extract the information of interest from
the observation in the presence of noise and interference. Supporting the development of
sensor array systems, array signal processing techniques focus on the estimation of signal
parameters, such as frequency, power and source location, by exploiting the temporal and
spatial characteristics of the signal received by regularly distributed sensor elements, and
have become an active research topic in the field of wireless signal processing [11–15].

Direction of arrival (DOA), defined by the incident angles of signals impinging on a
array of sensors, is one of the most significant array signal parameters, and DOA estima-
tion is an important research branch of array signal processing techniques, playing a crucial
role in many fields of real applications [11]. In multiple-input and multiple-output (MIMO)
radar systems, an excellent bearing resolution is highly demanded, and a radar with an ef-
fective DOA estimation capacity can detect and track targets accurately [16, 17]. In sonar
systems, because of the complexity of underwater environment, a robust DOA estimation
is a critical issue for ships navigation [18, 19]. In wireless communication systems, in or-
der to improve the signal transmission efficiency, adaptive beamforming technique, which
is able to focalize the transmission energy to the wanted users and efficiently eliminate
interferences, has been proved as a promising technology to increase the channel capa-
city [20, 21]. DOA estimation is highly required by the adaptive beamforming technique,
providing signal direction information for the latter, such that the antenna array can capture
the signals impinging from certain directions to obtain useful information and minimize
the interference from others [22–24].

Motivated by the obvious importance, a variety of algorithms have been proposed for
DOA estimation. Classical beamforming (CBF) method steers the main beam to all pos-
sible directions and calculates the corresponding output powers, and the source directions
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are determined when the power gets maximal [11]. Taking the presence of other sources
or interferences into consideration, based on the classical beamforming method, Capon
method keeps the gain for the signal coming from the current searching direction and mi-
nimizes the power contributed by the interfering signals from other directions and additive
noise, and the DOAs can be determined by the directions giving the maximal output po-
wers [25]. Although the principle and implementation of the two methods are simple, they
suffer from low resolution and lack of robustness. Subspace based methods have attracted
lots of attention for several years thanks to their high resolution and accurate estimation
performance [26]. Among the most popular algorithms within subspace based methods are
the method of multiple signal classification (MUSIC) [27] and the method of estimation
of signal parameters via rotational invariance techniques (ESPRIT) [28]. By exploiting the
orthogonality between the signal and noise subspaces, and the rotational invariance pro-
perty of the directional matrices of sensor arrays, both the methods can achieve a DOA
estimation with satisfactory accuracy. However, the current research is mostly limited in
the scene of uniform linear arrays (ULAs) [29,30], where the inter-element spacing equals
to a half-wavelength of incoming signals to maintain the Vandermonde structure of the
directional matrices of sensor arrays to avoid ambiguities, such that the estimation perfor-
mance is constrained by the limited array aperture. On the other hand, ULAs based MUSIC
or ESPRIT can resolve up to N − 1 sources with N sensor elements [27, 28], and a high
number of degrees of freedom (DOFs), determining the number of detectable sources, is
highly required in various applications [31–33].

Sparse array configurations such as minimum redundancy arrays (MRAs) [34, 35] and
nested arrays [36–38] have been proposed and drawn lots of attention in recent years.
Compared with conventional ULAs, sparse arrays, with larger inter-element spacing, can
achieve larger array aperture with the same number of sensor elements. In addition, by
exploiting difference coarrays obtained from the covariance matrix of received signals, a
long virtual half-wavelength spacing ULA can be generated and used to perform the DOA
estimation, such that more sources than the number of physical sensor elements can be
detected. However, MRAs do not have closed-form expressions of the array geometries
such that the design and performance analysis of MRAs are complicated [39]. Besides,
with several sensors densely distributed in the physical configurations, nested arrays face
the problems of mutual coupling and lack of robustness [40–42] in practical applications.
Recently, the configuration of coprime linear arrays (CLAs) has been developed [43–45].
Unlike the MRAs, CLAs have closed-form expressions of the sensor locations such that it
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is easy to be constructed. Furthermore, because most of the sensor elements are distributed
sparsely, the mutual coupling effect becomes not significant in coprime array systems. Al-
though since there exist holes in the difference coarray of the CLAs and only the consecu-
tive part can be directly used by subspace based methods, the number of detectable sources
are not as high as the MRAs and nested arrays, the CLAs reach a balance point among
different performance needs, being promising to the real applications.

There exist two main research orientations for the DOA estimation with CLAs, which
are difference coarray-based methods and subarray-based methods. The difference coarray-
based methods try to increase the number of the consecutive segments in the difference co-
array such that the effective DOFs can be greatly increased [33, 44, 46–55]. The subarray-
based methods treat the coprime linear array as two sparse uniform linear subarrays with
large inter-element spacing ; from each of them, high precision but ambiguous DOA esti-
mation can be obtained, and the ambiguities are eliminated according to the coprime pro-
perty [56–64].

Main Contributions

In this thesis, we focus on the DOA estimation with coprime arrays from the perspec-
tives of both the difference coarray-based methods and subarray-based methods. The main
contributions are summarized as follows.

• For the difference coarray-based methods
Moving platform based CLAs have been studied, and it is shown that by shif-

ting a CLA a half wavelength, the majority or all holes in the original difference
coarray can be filled, generating a difference coarray with more consecutive lags
and increasing the effective DOFs [65–68]. After analyzing the final difference co-
array resulted from the array motion, an improved CLA configuration for moving
platform is proposed [i]. By judiciously redesigning the sensor element positions,
a difference coarray with more consecutive lags has been obtained after the same
length of array motion, such that much higher DOFs are obtained.

Compared with linear arrays, two dimensional (2D) planar arrays are more re-
levant to real applications, especially in massive MIMO systems [69–72]. However,
coprime planar arrays (CPAs) have not been well studied from the perspective of dif-
ference coarray to exploit the high DOFs offered by the coprime geometry [73–78].
To offer a better understanding of CPAs and facilitate the future research in this
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field, the structure of the difference coarrays of CPAs is investigated [ii]. Closed-
form expressions of the exact hole locations are derived, and a holes-filling method
is proposed, such that the most critical holes in the difference coarray can be filled,
generating a difference coarray with more consecutive lags and higher effective
DOFs.
• For the subarray-based methods

Although the principle of subarray-based methods is simple, the existing me-
thods suffer from the insufficient reliability and high computational complexity
[58–60]. Based on the discussion of the potential problems associated with such me-
thods, an efficient DOA estimation method is proposed [iii]. Compared with other
existing methods, the proposed method is able to work correctly in all situations
with better estimation performance in terms of accuracy and complexity.

To tackle the problems of subarray-based methods such as insufficient DOFs
and sub-optimal estimation performance, an array geometry named unfolded co-
prime linear array (UCLA) is proposed, enjoying the advantages of full DOFs and
better estimation performance [79–83]. However, an ambiguity problem has been
ignored by the existing works. The problem is discussed in the thesis, and an appro-
priate solution is proposed [iv], by which such problem can be solved successfully
and efficiently.

Thesis Organization

The organization of the thesis is as follows.

Chapter 1 introduces the basic theory of array signal processing, which is used throu-
ghout the thesis, including the signal model and several conventional sensor array geo-
metries. Besides, some popular DOA estimation methods including beamforming based
methods and subspace based methods are also presented in this chapter.

Chapter 2 provides an overview of the DOA estimation with CLAs from the perspec-
tives of both the difference coarray-based methods and subarray-based methods. For the
difference coarray-based methods, we present the concept of difference coarray and the
coarray based MUSIC method ; for the subarray-based methods, three potential problems
including ambiguities, pair matching errors and grating angles problem are discussed.

Chapter 3 discusses the moving platform based CLAs. The difference coarray resulted
from the array motion is analyzed, and the improved array configuration with higher DOFs
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is presented. Simulation results are provided to show the performance.
Chapter 4 explores the 2D CPAs from the perspective of difference coarray. The charac-

teristics of the difference coarray of CPA configuration are deduced, and the closed-form
expressions of the holes locations are provided with a detailed proof. Then, the proposed
holes-filling method is introduced, of which the effectiveness is illustrated by simulation
results.

Chapter 5 considers the DOA estimation with CLAs in the subarray-based methods
perspective. Taking the potential existence of the grating angles problem into consideration,
an equivalent signal model is constructed, based on which, the proposed efficient DOA
estimation method is presented with simulations results.

Chapter 6 analyzes the DOA estimation with UCLAs. The ignored ambiguity problem
is discussed with mathematical proof and specific examples, and the proposed methods
of determining the existence of the problem and eliminating the ambiguity are presented.
Simulation results are given to show the efficiency.

Chapter 7 concludes the thesis by highlighting the main contributions and discusses the
possibilities of the future work on this subject.
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CHAPITRE 1

BASIC OF ARRAY SIGNAL PROCESSING

This chapter presents the basic of array signal processing techniques, providing the
foundation of the whole thesis. The chapter is composed of three parts. The first part pre-
sents the mathematical model of received signals for DOA estimation, and the second part
introduces the geometries of several traditional uniform sensor arrays. Based on the former
two parts, the third part discusses some conventional DOA estimation algorithms with the
corresponding simulation results.

1.1 Received Signal Model

As shown in FIGURE 1.1, consider that a sensor array consists of M isotropic sensor
elements located at positions pm = (xm, ym, zm)T , withm = 0, 1, · · · ,M−1. An incoming
signal impinges on the array from the direction (θ, ϕ), with θ and ϕ denoting the elevation
angle and azimuth angle respectively. For simplicity, the incoming signal is supposed to be
far-field such that it could be regarded as a plane wave.

incoming signal

FIGURE 1.1 – Signal receiving model
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Let s(t) be the signal observed at the origin of the coordinate system, then the received
signals at the sensor array can be given as

x (t) =


s (t− τ0)
s (t− τ1)

...
s (t− τM−1)

 (1.1)

where s(t − τm) denotes the signal received by the sensor element located at position pm,
with τm the time delay of the received signal at that sensor element with respect to the
signal observed by the origin of the coordinate system, which can be expressed as

τm = dTpm
c

(1.2)

where c is the velocity of propagation and d the unit directional vector with

d = −


sin θ cosϕ
sin θ sinϕ

cos θ

 (1.3)

In most of the practical applications, the signals are often modulated, such that the
signal observed at the origin of the coordinate can be written as

s (t) = m (t) ej2πf0t (1.4)

where m(t) is the modulation message or the complex envelop of s(t), and f0 is the carrier
frequency.

Then the received signal vector can be written as

x (t) =


s (t− τ0)
s (t− τ1)

...
s (t− τM−1)

 =


m (t− τ0) e−j2πf0τ0

m (t− τ1) e−j2πf0τ1

...
m (t− τM−1) e−j2πf0τM−1

 e
j2πf0t (1.5)

In many cases of interest, the bandwidth of the complex envelop m(t) is narrowband

28



1.1. Received Signal Model

and is much smaller than the carrier frequency, which means

m (t) ' m (t− τ0) ' m (t− τ1) ' · · · ' m (t− τM−1) (1.6)

and the received signal vector can be re-written as

x (t) =


s (t− τ0)
s (t− τ1)

...
s (t− τM−1)

 = m (t) ej2πf0t


e−j2πf0τ0

e−j2πf0τ1

...
e−j2πf0τM−1

 = s (t) a (θ, ϕ) (1.7)

with

a (θ, ϕ) =


e−j2πf0τ0

e−j2πf0τ1

...
e−j2πf0τM−1

 (1.8)

which is called the array directional vector or the array manifold vector.

In general, the number of source signals is more than one and there exists noise in the
propagation environment. Supposing that the number of incoming signals is K, the signal
received by the sensor array can be given as

x (t) =


e−j2πf0τ1,0 · · · e−j2πf0τK,0

e−j2πf0τ1,1 · · · e−j2πf0τK,1

... . . . ...
e−j2πf0τ1,M−1 · · · e−j2πf0τK,M−1




s1 (t)
s2 (t)

...
sK (t)

+


n0 (t)
n1 (t)

...
nM−1 (t)

 (1.9)

where sk(t) stands for the signal transmitted by the kth source and observed at the origin
of the coordinate system with k = 1, 2, · · · , K, and nm(t) denotes the noise collected by
the sensor element located at position pm. τk,m represents the time delay of the observation
of sk(t) at the sensor element at pm with respect to the observation at the origin of the
coordinate system.

In the form of matrix, Equation (1.9) becomes

x (t) = As (t) + n (t) (1.10)
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where
A =

[
a (θ1, ϕ1) a (θ2, ϕ2) · · · a (θK , ϕK)

]
(1.11)

denotes the directional matrix of the sensor array, with a (θk, ϕk) the directional vector
associated with the kth source, and

s (t) =
[
s1 (t) s2 (t) · · · sK (t)

]T
(1.12)

denotes the incoming signal vector, and

n (t) =
[
n0 (t) n1 (t) · · · nM−1 (t)

]T
(1.13)

denotes the noise vector. In general, the noise is assumed to be Gaussian white temporally
and spatially, which means

E
{
n (t) nH (t)

}
=


σ2

σ2

. . .

σ2

 (1.14)

with σ2 the power of the noise, and independent from the source signals.

According to the above analysis, the model of the signals observed by the sensor array
consists of the directional matrix A, the incoming signal vector s (t), and the noise vector
n (t). Containing the information of directions of arrivals, the directional matrix A is the
most important component of the received signal model and the basic element of DOA
estimation. For a given sensor array, the corresponding directional matrix A is determined
by the array geometry, and in the following, several traditional uniform array geometries
will be introduced.

1.2 Traditional sensor array geometries

1.2.1 Uniform linear array

A uniform linear array (ULA) consists of several sensor elements linearly located with
a uniform inter-element spacing. FIGURE 1.2 shows a ULA with M sensors located along
the X-axis with an inter-element spacing equaling to d. For the purpose of mathematical
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simplicity, the first element of the array is set as the origin of the coordinate system.

incoming signal

FIGURE 1.2 – Uniform linear array

The positions of the sensor elements can be written as

pm = (md, 0, 0)T m = 0, 1, 2, ...,M − 1 (1.15)

Suppose that an incoming signal impinges on the ULA from direction θ, and according
to Equation (1.2), the delay of the received signal at the sensor element located at pm with
respect to the signal observed at the origin of the coordinate system can be expressed as

τm = −md sin θ
c

(1.16)

Therefore the directional vector associated with the incoming signal is given by

aULA (θ) =


1

ej2πf0
d sin θ
c

...

ej2πf0
(M−1)d sin θ

c

 (1.17)

For K source signals coming from {θ1, θ2, · · · , θK}, the signal received by the ULA is

xULA (t) = AULAs (t) + n (t) (1.18)

with the following directional matrix of the ULA

AULA =
[
aULA (θ1) aULA (θ2) · · · aULA (θK)

]
(1.19)
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In general, the inter-element spacing d of ULAs is set as d = λ
2 , where λ is the wave-

length of incoming signals, to avoid the aliasing of the exponential function. Then AULA

can be re-written as

AULA =


1 1 · · · 1

ejπ sin θ1 ejπ sin θ2 · · · ejπ sin θK

...
... . . . ...

ej(M−1)π sin θ1 ej(M−1)π sin θ2 · · · ej(M−1)π sin θK

 (1.20)

1.2.2 Uniform planar array

A uniform planar array (UPA) consists of several parallel ULAs. Being able to resolve
both the elevation and azimuth angles, UPAs are more relevant to real applications. Besides,
containing much more sensor elements, UPAs have a bright prospect in massive MIMO
systems. FIGURE 1.3 shows a UPA lying in the X − Z plane, with M sensor elements
in each column and N sensor elements in each row. The inter-element spacing between
adjacent elements is d, and the element in the first column and the first row is set as the
origin of the coordinate system.

incoming signal

FIGURE 1.3 – Uniform planar array
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The position of the sensor elements can be given by

pn,m = (nd, 0,md)T (1.21)

with n = 0, 1, 2, ..., N − 1 and m = 0, 1, 2, ...,M − 1.

Suppose that an incoming signal impinges on the UPA from direction (θ, ϕ), with θ and
ϕ denoting the elevation and azimuth angles respectively. For the ULA lying along Z-axis,
the time delay of the received signal at the sensor element located at p0,m with respect to
the received signal at the origin of the coordinate system can be expressed as

τ0,m = −md cos θ
c

(1.22)

and the directional vector of the ULA associated with the incoming signal is

aULA,Z (θ, ϕ) =


1

ej2πf0
d cos θ
c

...

ej2πf0
(M−1)d cos θ

c

 (1.23)

For the ULA lying along X-axis, the time delay of the received signal at the sensor
element located at pn,0 with respect to the received signal at the origin of the coordinate
system can be expressed as

τn,0 = −nd sin θ cosϕ
c

(1.24)

and the directional vector of the ULA associated with the incoming signal is

aULA,X (θ, ϕ) =


1

ej2πf0
d sin θ cosϕ

c

...

ej2πf0
(N−1)d sin θ cosϕ

c

 (1.25)

Then the directional vector of the UPA associated with the incoming signal can be given
by

aUPA (θ, ϕ) = aULA,X (θ, ϕ)⊗ aULA,Z (θ, ϕ) (1.26)

For K source singals coming from
{
(θ1, ϕ1) (θ2, ϕ2) · · · (θK , ϕK)

}
, the signal re-
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ceived by the UPA can be written as

xUPA (t) = AUPAs (t) + n (t) (1.27)

with the directional matrix of the UPA

AUPA =
[
aUPA (θ1, ϕ1) aUPA (θ2, ϕ2) · · · aUPA (θK , ϕK)

]
(1.28)

Setting the inter-element spacing d as λ
2 , AUPA can be re-written as

AUPA =



1 · · · 1
ejπ cos θ1 · · · ejπ cos θK

... . . . ...
ej(M−1)π cos θ1 · · · ej(M−1)π cos θK

ejπ sin θ1 cosϕ1 · · · ejπ sin θK cosϕK

ejπ(sin θ1 cosϕ1+cos θ1) · · · ejπ(sin θK cosϕK+cos θK)

... . . . ...
ejπ(sin θ1 cosϕ1+(M−1) cos θ1) · · · ejπ(sin θK cosϕK+(M−1) cos θK)

... . . . ...
ej(N−1)π sin θ1 cosϕ1 · · · ej(N−1)π sin θK cosϕK

ejπ((N−1) sin θ1 cosϕ1+cos θ1) · · · ejπ((N−1) sin θK cosϕK+cos θK)

... . . . ...
ejπ((N−1) sin θ1 cosϕ1+(M−1) cos θ1) · · · ejπ((N−1) sin θK cosϕK+(M−1) cos θK)


(1.29)

1.3 Conventional DOA estimation algorithms

In this section, several conventional DOA estimation methods, including beamforming
based methods like classical beamforming method and Capon method, and the subspace
based methods like MUSIC and ESPRIT, are introduced with their corresponding numeri-
cal simulations. The geometry of ULAs in FIGURE 1.2 and the received signal model in
Equation (1.18) are used for simplicity.
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1.3. Conventional DOA estimation algorithms

1.3.1 Classical beamforming method

Classical beamforming (CBF) method [11] is a basic array signal processing technique
for signal source localization. The main idea behind the classical beamforming method is
to steer the main beam of the sensor array to all the possible wave coming directions with
appropriate weighting vectors. For each direction in the search range, the power of the
array response is calculated, and the steering directions with maximum powers determine
the DOA estimations.

By multiplying the weighting vector to the received signal, the response of the array is
given by

y (t) = wHx (t) (1.30)

where the weighting vector w is set as the following equation for a particular steering
direction θc

w = a (θc)
M

(1.31)

Then the power of the output is calculated by

PCBF (θc) = 1
L

L∑
t=1
|y (t)|2

= 1
L

L∑
t=1

wHx (t) xH (t)w

= aH (θc) R̂a (θc)
M2

(1.32)

where R̂ denotes the estimate of the covariance matrix of received signals with

R̂ = 1
L

L∑
t=1

x (t) xH (t) (1.33)

and L is the number of snapshots.

The DOA estimation performance of the classical beamforming method is shown in FI-
GURE 1.4, in which two uncorrelated, far-field and narrowband incoming signal are assu-
med to impinge on a ULA with 10 sensor elements from directions {10◦, 30◦}. The number
of snapshots and the signal to noise ratio (SNR) are set to 200 and 10dB respectively.
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FIGURE 1.4 – DOA estimation by classical beamforming method

1.3.2 Capon method

The classical beamforming method shows disappointing estimation performance when
other sources exist expect for the desired one, especially when they are located closer than
the width of a beam. Taking the presence of other sources into account, Capon method [25]
is proposed to solve this problem.

The principle of the Capon method is to minimize the power contributed by the signals
coming from other directions and noise than the current searching one θc by

min
w

P (θc)

subject to wHa (θc) = 1
(1.34)

of which the solution is

w = R̂−1a (θc)
aH (θc) R̂−1a (θc)

(1.35)

Then the power of the output is given by

PCapon (θc) = 1
aH (θc) R̂−1a (θc)

(1.36)

With the same simulation conditions as FIGURE 1.4, the DOA estimation performance
of the Capon method is shown in FIGURE 1.5.
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FIGURE 1.5 – DOA estimation by Capon method

1.3.3 Multiple signal classification method

Based on the eigenvalue decomposition of the covariance matrix of received signals,
subspace based methods are very popular in the domain of DOA estimation because of
their high resolution. Among them, multiple signal classification (MUSIC) method [27] is
the most representative one which exploits the orthogonality between the signal and noise
subspaces.

The covariance matrix of received signals can be given by

R = ARsAH + σ2IM
= Ry + σ2IM

(1.37)

where Rs denotes the covariance matrix of the source signals, given by

Rs = E{s(t)sH(t)} (1.38)

and Ry denotes the covariance matrix of received signals only contributed by the source
signals, and it is clear that rank (Ry) = K.

In general, the covariance matrix of received signals R is full rank with rank (R) = M .
Therefore among the M eigenvalues of R, K of them are larger than the other (M −K),
which are equal to the noise power σ2.
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Then R can be written as in the terms of its eigenvalues and eigenvectors as

R = UΛUH (1.39)

where U =
[
u1 u2 · · · uM

]
denotes the matrix of eigenvectors associated with Λ =

diag
{
λ1 λ2 · · · λM

}
the matrix of eigenvalues, which are sorted in decreasing order as

λ1 > λ2 > · · · > λK > λK+1 = λK+2 = · · · = λM = σ2 (1.40)

We define

Λs = diag
{
λ1 λ2 · · · λK

}
(1.41)

Λn = diag
{
λK+1 λK+2 · · · λM

}
(1.42)

Us =
[
u1 u2 · · · uK

]
(1.43)

Un =
[
uK+1 uK+2 · · · uM

]
(1.44)

Then R can be rewritten by

R = UsΛsUH
s + UnΛnUH

n (1.45)

The eigenvectors associated with the smallest eigenvalues Un span the noise subspace
and are orthogonal to the actual source directional vectors. Therefore, for each direction in
the searching range, project the corresponding directional vector on Un, and the estimation
of the DOAs is determined when the projection is zero.

For the current searching direction θc, the corresponding pseudo-spectrum of MUSIC
is expressed by

PMUSIC (θc) = 1
‖UH

n a (θc)‖2 = 1
aH (θc) UnUH

n a (θc)
(1.46)

and the DOAs can be found by peak-searching of PMUSIC (θc).

With the same simulation conditions introduced above, the DOA estimation perfor-
mance of the MUSIC method is shown in FIGURE 1.6, which is significantly better than
the beamforming-based methods.
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FIGURE 1.6 – DOA estimation by MUSIC method

1.3.4 Estimation of signal parameter via rotational invariance tech-
nique

Estimation of signal parameter via rotational invariance technique (ESPRIT) [28] is
another efficient subspace based DOA estimation method. By exploiting the rotational in-
variance property of the directional matrix, high resolution and accurate estimation perfor-
mance can be achieved without the step of spectral peak searching.

Recall the eigenvalue decomposition of the covariance matrix of received signals

R = UsΛsUH
s + UnΛnUH

n (1.47)

the K eigenvectors associated with the K bigger eigenvalues and the source directional
vectors span the same signal subspace. Then there is

A = UsT (1.48)

where T is a nonsingular matrix.

Define A1 and A2 as the first and last (M −1) rows of the directional matrix A respec-
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tively

A1 =


1 1 · · · 1

ejπ sin θ1 ejπ sin θ2 · · · ejπ sin θK

...
... . . . ...

ej(M−2)π sin θ1 ej(M−2)π sin θ2 · · · ej(M−2)π sin θK

 (1.49)

A2 =


ejπ sin θ1 ejπ sin θ2 · · · ejπ sin θK

ej2π sin θ1 ej2π sin θ2 · · · ej2π sin θK

...
... . . . ...

ej(M−1)π sin θ1 ej(M−1)π sin θ2 · · · ej(M−1)π sin θK

 (1.50)

We have
A2 = A1Φ (1.51)

with
Φ = diag

{
ejπ sin θ1 ejπ sin θ2 · · · ejπ sin θK

}
(1.52)

Similarly, define Us1 and Us2 as the first and last (M − 1) rows of Us. Then according
to Equation (1.48), there are

A1 = Us1T (1.53)

A2 = Us2T (1.54)

Then it can be deduced that

A2 = A1Φ = Us1TΦ = Us2T (1.55)

and
Us2 = Us1TΦT−1 = Us1∆ (1.56)

with
∆ = TΦT−1 = U+

s1Us2 =
(
UH
s1Us1

)−1
UH
s1Us2 (1.57)

where (·)+ denotes the pseudo-inverse operation, and the diagonal matrix Φ is composed
of the eigenvalues of the matrix ∆.
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1.4. Conclusion

Therefore, after the eigenvalues decomposition of ∆, the DOAs can be obtained by

θk = arcsin
(

angle (Φ (k, k))
π

)
(1.58)

Without the spectrum, the DOA estimation performance of the ESPRIT method is
shown in FIGURE 1.7 with the results of 20 independent simulations with the same si-
mulation conditions introduced above.
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FIGURE 1.7 – DOA estimation by ESPRTI method

1.4 Conclusion

In this chapter, the basic of array signal processing techniques including the received si-
gnal model and several conventional algorithms for DOA estimation is introduced based on
uniform arrays. However, the inter-element spacing of ULAs is limited to half-wavelength
of incoming signals to avoid aliasing, therefore the estimation performance is constrained
by the small array aperture. On the other hand, although the methods of MUSIC and ES-
PRIT can achieve high resolution and accurate estimation performance, based on ULAs,
they can only resolve up to M − 1 sources with M sensor elements due to the limited
system DOFs. In the next chapter, the geometry of coprime arrays is introduced, which
exhibits larger aperture length and higher DOFs.
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CHAPITRE 2

DOA ESTIMATION WITH COPRIME

LINEAR ARRAYS

Being superior to the conventional half-wavelength spaced ULAs, coprime linear arrays
(CLAs), exhibiting higher DOFs and larger aperture length, have been considered as a pro-
mising array configuration. In this chapter, the prototype of CLAs structure is introduced
and the DOA estimation with CLAs is presented, involving the two research orientations
of difference coarray-based methods and subarray-based methods respectively. For the dif-
ference coarray-based methods, the difference coarray, of which the observation can be
obtained from the covariance matrix of received signals, exhibits more distinct lags than
the number of physical sensor elements, offering much higher DOFs, and then the MUSIC
method with the spatial smoothing technique is implemented in the coarray domain to per-
form the DOA estimation. For the subarray-based methods, a CLA is treated as two ULAs
with large aperture length and inter-element spacing. With the simplified system model,
DOA estimation is performed on the two subarrays individually. The ambiguities caused
by the large inter-element spacing are eliminated by the coprime property.

2.1 Prototype of coprime linear arrays

As illustrated in FIGURE 2.1, a prototype of CLAs consists of two sparse ULAs, having
N and M sensor elements, with inter-element spacing d1 = Md and d2 = Nd respectively,
where M and N are two coprime integers, and d = λ

2 . Without loss of generality, it is
assumed that M < N . The position of the uth sensor element is given as pud with u =
1, 2, · · · , L, where L denotes the total number of sensor elements, and because the first
sensor is shared by the two subarrays and set as the reference point, there areL = M+N−1
and p1 = 0.
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coprime linear array

subarray 1

subarray 2

� +� − 1

1 2 �

1 2 �

1 2

FIGURE 2.1 – Prototype coprime linear array

Suppose that K uncorrelated, far-field and narrowband signals impinge on the CLA
from directions {θ1, θ2, · · · , θK} respectively. The signal vector received at the CLA can
be expressed as

x (t) =
K∑
k=1

a (θk) sk (t) + n (t)

= As (t) + n (t)
(2.1)

where
A =

[
a (θ1) a (θ2) · · · a (θK)

]
(2.2)

denotes the directional matrix of the CLA with

a (θk) =
[
1 ejp2π sin θk · · · ejpN+M−1π sin θk

]T
(2.3)

denoting the directional vector associated with the incoming signal from θk.

s (t) =
[
s1 (t) s2 (t) · · · sK (t)

]T
(2.4)

is the incoming signal vector with sk(t) the signal coming from θk and received at the
reference sensor. n (t) is the white Gaussian noise vector with zero-mean and covariance
matrix σ2IM+N−1, and it is assumed to be independent from the incoming signals.

From the perspective of subarrays, the signal vectors received by the two sparse uniform
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subarrays can be given by

x1 (t) =
K∑
k=1

a1 (θk) sk (t) + n1 (t) = A1s (t) + n1 (t) (2.5)

x2 (t) =
K∑
k=1

a2 (θk) sk (t) + n2 (t) = A2s (t) + n2 (t) (2.6)

where

A1 =
[
a1 (θ1) a1 (θ2) · · · a1 (θK)

]
(2.7)

A2 =
[
a2 (θ1) a2 (θ2) · · · a2 (θK)

]
(2.8)

are the directional matrices of the two subarrays respectively, with the corresponding di-
rectional vectors associated with the incoming signal from θk denoted by

a1 (θk) =
[
1 ejMπ sin θk · · · ej(N−1)Mπ sin θk

]T
(2.9)

a2 (θk) =
[
1 ejNπ sin θk · · · ej(M−1)Nπ sin θk

]T
(2.10)

n1 (t) and n2 (t) denote the white Gaussian noise vectors observed by the two subarrays
with dimensions of (N × 1) and (M × 1) respectively.

2.2 Difference coarray-based methods

2.2.1 Difference coarray

Difference coarray is a virtual array usually applied in the difference coarray-based
methods instead of the original physical array to obtain higher DOFs with fewer sensor
elements. Taking d as unit, the sensor element positions of a CLA can be given as

P =
{
p1 p2 · · · pL

}
(2.11)

and the difference coarray of the CLA is defined as

D = {pu − pv | pu, pv ∈ P} (2.12)

45



Chapitre 2 – DOA Estimation with Coprime Linear Arrays

of which the elements are known as lags which are generated by all pairs of sensor elements
in the CLA.

Based on the coprimality of M and N , it has been shown that the difference coarray
D consists of at least MN distinct lags located in the range [− (N − 1)M, (N − 1)M ]
[44,46], which is more than the number of sensor elements in the physical CLA, and can be
exploited to achieve higher DOFs. The positions in the range [− (N − 1)M, (N − 1)M ]
but not being an element of D are known as holes. The first hole locates at± (M +N), and
D exhibits a consecutive ULA segment without holes in the range [(−M −N + 1), (M +
N − 1)] [51]. FIGURE 2.2 shows a CLA with N = 5 and M = 4, and the corresponding
difference coarray is shown in Figure 2.3, with blue dots and red rhombuses representing
the lags and holes respectively.

0 4 5 8 10 12 1516

FIGURE 2.2 – Coprime linear array with N = 5 and M = 4

-15 -10 -5 0 5 10 15

FIGURE 2.3 – Difference coarray with N = 5 and M = 4

The observation of the difference coarray can be obtained from the covariance matrix
of the received signals, which is calculated by

R = E
{
x (t) xH (t)

}
= ARsAH + σ2IM+N−1 (2.13)

where
Rs = E

{
s (t) sH (t)

}
= diag

{
σ2

1 σ2
2 · · · σ2

K

}
(2.14)
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is the covariance matrix of the incoming signals with σ2
k denoting the power of the signals

coming from θk.

Then Equation (2.13) can be re-written as

R =
K∑
k=1

σ2
ka (θk) aH (θk) + σ2IM+N−1 (2.15)

where R is an L×Lmatrix, of which the element at the uth row and vth column has the form
of
∑K
k=1 σ

2
ke
jπ(pu−pv) sin θk . The difference coarray elements (pu − pv) appear in the expo-

nents of the correlation terms, which behave like the signals observed by the corresponding
lags in the difference coarray, and can be used to perform DOA estimation.

By vectorizing R, we can get

z = vec (R) = Bp + σ2Ĩ (2.16)

where
B =

[
a∗ (θ1)⊗ a (θ1) a∗ (θ2)⊗ a (θ2) · · · a∗ (θK)⊗ a (θK)

]
(2.17)

p =
[
σ2

1 σ2
2 · · · σ2

K

]T
(2.18)

and
Ĩ =

[
eT1 eT2 · · · eTL

]T
(2.19)

with eu a column vector with dimension (L × 1), of which the uth element is ‘1’ and the
others are ‘0’.

Let BD denote the distinct rows of B, and zD and ĨD denote the corresponding rows of
z and Ĩ respectively, then there is

zD = BDp + σ2ĨD (2.20)

Compared with Equation (2.1), it can be seen that BD behaves like the directional matrix
of an array whose sensor locations are given by the lags in the difference coarray, and zD can
be regarded as the signal vector received by such an array. p and σ2ĨD denote the equivalent
source signal and noise vectors respectively. Then zD can be seen as the signal received by
the difference coarray and can be applied to perform DOA estimation instead of the signal
received by the physical CLA. The conversion from R to zD is shown in FIGURE 2.4
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vectorize

extract

FIGURE 2.4 – The conversion from R to zD

in which zmD can be calculated by

zmD = 1
w (m)

∑
pu−pv=m

Ru,v (2.21)

with m ∈ D, and w(m) is the weight function, which is defined by the number of sensor
pairs generating the lag m as

w (m) = |{(pu, pv) | pu − pv = m}| (2.22)

Note that due to the existence of holes in the difference coarray, the superscript m is
not continuous in the range [−(N − 1)M, (N − 1)M ].

2.2.2 MUSIC with spatial smoothing technique

Since the difference coarray of a CLA has more lags than the number of sensor elements
in the physical array, the signal model in Equation (2.20) is applied to substitute Equation
(2.1) in DOA estimation to achieve higher DOFs. However, because the equivalent source
signal vector p is just a single snapshot, the covariance matrix built by zD is rank deficient,
and in this case high resolution subspace based DOA estiamtion methods, such as MUSIC,
fail to yield reliable estimation results. The problem is similar to handling fully coherent
source signals, and spatial smoothing technique [44,84–86] should be applied to restore the
rank of the covariance matrix.

Because the spatial smoothing technique works only for a set of consecutive lags such
that every smoothing subarray has similar directional vector, we focus on the consecutive
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part of D, which is defined by U and

U =
{
(−M −N + 1) · · · 0 · · · (M +N − 1)

}
(2.23)

Extract the rows of zD corresponding to the consecutive part of the difference coarray
U, which can be expressed by

zU = BUp + σ2ĨU (2.24)

where BU denotes the directional matrix of the ULA segment in the difference coarray,
which can be given by

BU =
[
bU (θ1) bU (θ2) · · · bU (θK)

]
(2.25)

with the corresponding directional vector

bU (θk) =
[
ej(−M−N+1)π sin θk · · · 1 · · · ej(M+N−1)π sin θk

]T
(2.26)

And ĨU is a (2M + 2N − 1)× 1 vector with all ‘0’ except a ‘1’ at the (M +N)th position.

Then the ULA segments of the difference coarray are divided into M +N overlapping
subarrays, denoted by Ui, which contains M +N lags located at

{x | x = −i+ n} (2.27)

where i denotes the index of the subarrays with i = 1, 2, · · · ,M + N , and n denotes the
index of the lags in each subarray with n = 1, 2, · · · ,M +N .

The equivalent signal vector received by the ith subarray corresponds to the (M +N +
1− i)th to (2M + 2N − i)th rows of zU, which is denoted as

zU,i = BU,ip + σ2ĨU,i (2.28)

where BU,i is a (M+N)×K matrix consisting of the (M+N+1−i)th to (2M+2N−i)th

rows of BU, and ĨU,i is a (M +N)× 1 vector with all ‘0’ except a ‘1’ at the ith position.

Then we define
Ri = zU,izHU,i (2.29)
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and taking the average of Ri over all i, we can get

Rss = 1
M +N

M+N∑
i=1

Ri (2.30)

Rss is known as the spatially smoothed covariance matrix which is full-rank, such that
MUSIC algorithm can be directly performed on it.

However, it can be noticed that although the difference coarray exhibits more distinct
lags than the number of sensor elements in the physical CLA, offering higher DOFs, these
lags are not consecutive because of the existence of holes, and only the consecutive part
can be directly applied in rank restoration and DOA estimation, the effective DOFs, which
roughly equal to the half number of the consecutive lags, is not as high as expected. For
example, the difference coarray shown in FIGURE 2.3 has 27 distinct lags but only conse-
cutive in the range [−8, 8]. After spatial smoothing, a spatially smoothed covariance matrix
with dimension 9×9 is obtained, and since at least one eigenvector spanning the noise sub-
space is needed such that MUSIC algorithm can be performed, merely 8 effective DOFs
can be obtained. To overcome this problem, many methods have been proposed to increase
the number of the consecutive lags in the difference coarray, among which the extended
coprime linear array [51] is the most popular configuration, which is introduced in the
following.

2.2.3 Extended coprime linear arrays

The configuration of extended coprime linear arrays (ECLAs) is shown in FIGURE 2.5.
Being different from the prototype CLA shown in FIGURE 2.1, an ECLA has lM sensor
elements in the second subarray, where l is an integer and l ≥ 2. Then the total number of
the sensor elements is L = lM +N − 1.

The characteristics of the difference coarray of the ECLAs including the number of
DOFs and the holes positions have been well studied in [51]. Based on the coprime property
of M and N , three general rules can be summarized as follows.

1) The difference coarray D is located in the range [(−lMN +N), (lMN −N)].

2) The difference coarray exhibits a consecutive part U located in the range [(−(l−1)MN−
M + 1), ((l − 1)MN +M − 1)].

3) In the range [(−lMN+N), (−(l−1)MN−M)] and [((l−1)MN+M), (lMN−N)],
the position is a hole if it is in the form of −(k− 1)MN − aM − bN or (k− 1)MN +
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aM + bN , where a ≥ 1 and b ≥ 0.

ECLA

subarray 1

subarray 2

1 �2

1 2 � ��� − 1 � + 1

1 2 �� + � − 1

FIGURE 2.5 – Structure of extended coprime linear array

FIGURE 2.6 shows an ECLA with N = 5, M = 4 and l = 2. The corresponding
difference coarray is shown in FIGURE 2.7. Compared with the difference coarray of the
prototype CLA shown in FIGURE 2.3, it can be seen that by adding few sensor elements
to a subarray, the number of consecutive lags in the difference coarray is significantly in-
creased from 17 to 47. After spatial smoothing, a rank restored covariance matrix with di-
mension 24× 24 is obtained, such that up to 23 effective DOFs can be achieved. FIGURE
2.8 depicts the MUISC spectrum of the ECLA with 17 sources uniformly distributed from
−64◦ to 64◦, where the number of snapshots is 2000 and SNR = 10dB.

0 4 8 12 165 10 15 20 25 30 35

FIGURE 2.6 – Extended coprime linear array with N = 5, M = 4 and l = 2

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35

FIGURE 2.7 – Difference coarray with N = 5, M = 4 and l = 2
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FIGURE 2.8 – MUSIC spectrum of ECLA

Besides, based on the knowledge of the holes positions in the difference coarray, there
are some other methods proposed aiming to fill the holes, lengthening the consecutive ULA
in the difference coarray and increasing the effective DOFs [47, 49, 87, 88].

2.3 Subarray-based methods

2.3.1 DOA estimation and ambiguity elimination

In the subarray-based methods, instead of exploiting the difference coarray, the CLA
is treated as two sparse ULAs and DOA estimation is performed on the two subarrays
separately with the signal model shown by Equations (2.5) and (2.6).

Taking MUSIC for example. From the signals observed by the two subarrays x1 (t) and
x2 (t), two corresponding covariance matrices can be estimated by

R̂1 = 1
L

L∑
t=1

x1 (t) xH1 (t) (2.31)

R̂2 = 1
L

L∑
t=1

x2 (t) xH2 (t) (2.32)
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2.3. Subarray-based methods

Applying eigenvalue decomposition on the two covariance matrices yields

R̂1 = Us,1Λs,1UH
s,1 + Un,1Λn,1UH

n,1 (2.33)

R̂2 = Us,2Λs,2UH
s,2 + Un,2Λn,2UH

n,2 (2.34)

where Us,1 and Us,2 contain the eigenvectors of R̂1 and R̂2 respectively spanning the si-
gnal subspace, with the corresponding eigenvalues contained in the two diagonal matrices
Λs,1 and Λs,2. Similarly, the Un,1 and Un,2 contain the eigenvectors of R̂1 and R̂2 respecti-
vely spanning the noise subspace, with the corresponding eigenvalues contained in the two
diagonal matrices Λn,1 and Λn,2.

Because of the orthogonality between the signal subspace and the noise subspace, the
DOA estimation can be realized by searching for the peaks of the following MUSIC spec-
trum in the range (−90◦, 90◦)

PMUSIC,1 (θ) = 1
aH1 (θ) Un,1UH

n,1a1 (θ) (2.35)

PMUSIC,2 (θ) = 1
aH2 (θ) Un,2UH

n,2a2 (θ) (2.36)

Noticing that because the adjacent sensor elements in each subarrays are spaced an
integer number, M or N , times of half-wavelength, for a given impinging angle θk and its
exponential ejMπ sin θk or ejNπ sin θk , there exist other angles in the range (−90◦, 90◦) having
the same exponential value and sharing identical directional vector with θk. Such angles are
denoted ambiguous angles and also exhibit peaks in the MUSIC spectrum.

Taking the 1st subarray with N sensor elements and inter-element spacing M λ
2 for

example, for an impinging signal coming from θk, several candidate angles showing peaks
θcand1,k can be found in the MUSIC spectrum, satisfying the following relationship

sin θk − sin θcand1,k = 2P
M

(2.37)

where P in an integer. When P = 0, the candidate angle θcand1,k is the true DOA. Otherwise,
θcand1,k corresponds to an ambiguity of the spectrum.

For any θk and θcand1,k in the range (−90◦, 90◦), there is

∣∣∣sin θk − sin θcand1,k

∣∣∣ =
∣∣∣∣2PM

∣∣∣∣ < 2 (2.38)
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Chapitre 2 – DOA Estimation with Coprime Linear Arrays

Except ‘0’, P has another 2(M−1) possible values in the range [−M +1,−1]∪ [1,M−1]
corresponding to ambiguities. Considering that θk and θcand1,k are interchangeable, there exist
M − 1 ambiguous angles besides the real DOA. Therefore totally M peaks can be found
in the spectrum obtained by the subarray associated with an incoming signal. One of them
locates at the true DOA and the other M − 1 are ambiguities.

Similarly, for the 2nd subarray with M sensor elements and inter-element spacing N λ
2 ,

for the impinging signal coming from θk, the candidate angles exhibiting peaks θcand2,k satis-
fies the relationship

sin θk − sin θcand2,k = 2Q
N

(2.39)

where Q is an integer, and when Q = 0, the candidate angle θcand2,k is the true DOA. Other-
wise, θcand2,k corresponds to an ambiguity.

For any θk and θcand2,k in the range (−90◦, 90◦), there is

∣∣∣sin θk − sin θcand2,k

∣∣∣ =
∣∣∣∣2QN

∣∣∣∣ < 2 (2.40)

Except ‘0’, Q has another 2(N − 1) possible values in the range [−N + 1,−1]∪ [1, N − 1]
corresponding to ambiguities. Considering that θk and θcand2,k are interchangeable, there exist
N − 1 ambiguous angles besides the real DOA. Therefore totally N peaks can be found
in the spectrum obtained by the subarray associated with an incoming signal. One of them
locates at the true DOA and the other N − 1 are ambiguities.

According to Equations (2.37) and (2.39), there is a relationship between the candidate
angles obtained from the two spectrums, shown by

sin θcand1,k − sin θcand2,k = 2
(
Q

N
− P

M

)
(2.41)

It can be seen that due to the coprimality between M and N , there is θcand1,k = θcand2,k = θk

when and only when P = Q = 0. For other P 6= 0 and Q 6= 0, the corresponding
candidate angles obtained from the two spectrums always exhibit θcand1,k 6= θcand2,k . Therefore,
there exists and uniquely exists an overlapped peak in the spectrums of the two subarrays,
which determines the real estimate of DOA [56].

In practical applications with finite number of samples and the existence of noise, we
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2.3. Subarray-based methods

can search for the closest peaks in the MUSIC spectrums of the two subarrays, i.e.,

min
θcand,m1,k ,θcand,n2,k

∣∣∣θcand,m1,k − θcand,n2,k

∣∣∣ (2.42)

where m = 1, 2, · · · ,M and n = 1, 2, · · · , N denote the indexes of the candidate angles.
Then the DOA estimation of the coprime array can be obtained by

θ̂k =
θcand,m1,k + θcand,n2,k

2 (2.43)

The DOA estimation performance of the coprime subarrays is shown in FIGURE 2.9,
in which an incoming signal is assumed to impinge on a CLA with N = 7 and M = 5
from direction θ = 10◦. The number of snapshots is set to 200 with SNR = 10dB. It can
be seen that there exist M = 5 peaks in the spectrum of the 1st subarray with N = 7 sensor
elements, andN = 7 peaks in the spectrum of the 2nd subarray withM = 5 sensor elements
respectively. The true DOA is determined by the overlapped peaks in the two spectrums.
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FIGURE 2.9 – MUSIC spectrums of coprime subarrays with N = 7 and M = 5

2.3.2 Pair matching errors

There exist some potential problems in the subarray-based methods, and the problem of
pair matching errors [58, 59] is one of them which we may meet in the step of overlapped
peaks searching. Thanks to the coprime property, only one pair of common angles showing
overlapped peaks can be found in the two spectrums associated with one incoming signal,
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Chapitre 2 – DOA Estimation with Coprime Linear Arrays

and other angles showing peaks can be eliminated as ambiguities. However, in the situa-
tions of multiple incoming signals, besides the common angle pairs in the two spectrums
associated with common incoming signals, there may also exist common angle pairs in
the two spectrums associated with different incoming signals, resulting in more overlapped
peaks than the number of sources, and consequently pair matching errors occur.

Suppose that there are two signals impinging on a CLA from θ1 and θ2 respectively. In
the spectrum of the 1st subarray, we can find two ambiguous angles θamb1,1 and θamb1,2 associated
with θ1 and θ2 respectively, satisfying

sin θ1 − sin θamb1,1 = 2P1

M
(2.44)

sin θ2 − sin θamb1,2 = 2P2

M
(2.45)

where P1 and P2 are two non-zero integers in the range [−M + 1,−1] ∪ [1,M − 1]. In
the spectrum of the 2nd subarray, we can also find two ambiguous angles θamb2,1 and θamb2,2

associated with θ1 and θ2 respectively, satisfying

sin θ1 − sin θamb2,1 = 2Q1

N
(2.46)

sin θ2 − sin θamb2,2 = 2Q2

N
(2.47)

where Q1 and Q2 are two non-zero integers in the range [−N + 1,−1] ∪ [1, N − 1].
It can be seen that for different impinging angles θ1 6= θ2, we may have the following

relationships

sin θ1 − sin θ2 = 2Q1

N
− 2P2

M
(2.48)

or
sin θ1 − sin θ2 = 2P1

M
− 2Q2

N
(2.49)

With subtraction Equation (2.46)-Equation (2.45) and Equation (2.48), we can deduce
that

sin θamb1,2 = sin θamb2,1 (2.50)

and with subtraction Equation (2.44)-Equation (2.47) and Equation (2.49), we can deduce
that

sin θamb1,1 = sin θamb2,2 (2.51)

exhibiting other overlapped peaks or pair matching errors in the two spectrums.
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2.3. Subarray-based methods

FIGURE 2.10 shows the DOA estimation simulation with coprime subarrays when pair
matching errors exist, in which there are N = 7 and M = 5 sensor elements placed
in the two coprime subarrays, and two signals impinging from θ1 = 10.00◦ and θ2 =
39.11◦ respectively. The number of snapshots is set to 200 and SNR = 10dB. It can be
seen that besides the two real DOAs, there exist two other common angles, −13.09◦ and
−75.75◦, exhibiting overlapped peaks but associated with different sources. To be more
clear, a diagram illustrating the generation of pair matching errors in such situation is given
in FIGURE 2.11.
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FIGURE 2.10 – MUSIC spectrums of coprime subarrays in pair matching errors situation
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FIGURE 2.11 – Diagram of the generation of pair matching errors
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2.3.3 Grating angles problem

Grating angles problem [60] is another problem of the subarray-based methods, which
has been ignored by most of the open literature. In the situation of multiple incoming si-
gnals, because of the large inter-element spacing of the two subarrays, some signals may
impinge from a set of angles which share an identical directional vector for one subarray.
Consequently, the directional matrix of this subarray will be rank deficient, resulting in
difficulties for the subsequent steps like noise subspace extraction and peak searching.

To provide a better understanding, let’s consider a CLA with N = 7 and M = 5
senor elements in the two subarrays and three source signals impinging from θ1 = 10.00◦,
θ2 = 27.35◦ and θ3 = 35.01◦ respectively. It can be seen that ejMπ sin θ1 ≈ ejMπ sin θ3 and
ejNπ sin θ1 ≈ ejNπ sin θ2 . Then θ1 and θ3 are grating angles to each other for the 1st subarray
because they have the same directional vector. For the same reason, θ1 and θ2 are grating
angles to each other for the 2nd subarray. Then the directional matrices of the two subarrays
are rank deficient, setting up a barrier to the DOA estimation.

For the CLA with N = 7 and M = 5, the grating angles problem also occurs in
many other situations. As an example with three incoming signals, when {θ1, θ2, θ3} =
{20.00◦, 38.88◦, 47.90◦}, {θ1, θ2, θ3} = {30.00◦, 51.79◦, 64.16◦} and many other confi-
gurations, the phenomenon occurs. It is a real problem which cannot be ignored in real
applications.

2.4 Conclusion

In this chapter, the configuration of CLAs is introduced. The two research orientations
of DOA estimation with CLAs, namely difference coarray-based methods and subarray-
based methods are discussed. The former exploits the difference coarray and tries to in-
crease the number of consecutive lags in the virtual half-wavelength ULA such that the
DOFs can be greatly increased. The latter treats the CLA as two sparse ULAs with large
array aperture, and from each of them, high-precision but ambiguous DOA estimation is
obtained, and then the ambiguities are eliminated according to the coprime property. In the
following chapters, we focus on both the research directions. For the difference coarray-
based methods, moving platform based CLAs are studied, and an improved configuration
with much higher DOFs is proposed. Besides, to be more relevant to real applications, two
dimensional coprime planar arrays are investigated. For the subarray-based methods, an ef-
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ficient DOA estimation method is proposed, which can overcome the pair matching errors
and grating angles problem successfully, achieving a reliable estimation performance.

59





CHAPITRE 3

MOVING PLATFORM BASED COPRIME

LINEAR ARRAY CONFIGURATION

In the previous chapter, we have introduced the configuration of CLAs, as well as the
two research orientations of DOA estimation in this domain. For the difference coarray-
based methods, exhibiting more distinct lags, the difference coarray is usually applied for
DOA estimation instead of the physical CLA to exploit higher DOFs. However, because
of the existence of holes in the difference coarray and only the consecutive lags can be di-
rectly used to implement DOA estimation by high-resolution subspace based methods like
MUSIC or ESPRIT, the achievable effective DOFs are not as high as expected. To solve
this problem, many methods and configurations have been proposed to fill the holes and
lengthen the consecutive part of the difference coarray. In [46], CLAs are generalized with
two operations, by which two improved CLA configurations, namely coprime arrays with
compressed inter-element spacing (CACIS) and coprime arrays with displaced subarrays
(CADiS), are proposed. The CACIS configuration can be considered as a special case and
forms a subset of the ECLAs introduced in Section 2.2.3, and CADiS can achieve a dif-
ference coarray with a much longer consecutive part by selecting appropriate parameters.
In [47], the holes in the difference coarray are interpolated by nuclear norm minimiza-
tion [89], allowing to use the remaining elements of the difference coarray and increase the
number of detectable signals. In [51], an additional complementary subarray is added into
an ECLA, resulting in a complete difference coarray without holes.

The above mentioned methods consider the CLAs based on fixed platform, and moving
platform based CLAs have been studied in recent years [65–68]. It is shown that by shif-
ting the CLA a half wavelength of incoming signals, where the source positions, incoming
directions and signal temporal properties can be assumed to be constant, the majority or all
holes in the difference coarray can be filled, generating then a difference coarray with more
consecutive lags and increasing the effective DOFs. In this chapter, the moving platform
base CLA configuration is introduced, and the resulting difference coarray is analyzed.
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Chapitre 3 – Moving Platform based Coprime Linear Array Configuration

Then an improved CLA configuration for moving platform is proposed. By judiciously de-
signing the sensor element positions, a difference coarray with much more consecutive lags
and a higher effective DOFs can be obtained with the same number of sensors and the same
length of array motion.

3.1 Signal model of moving coprime linear arrays

Consider a CLA composed of two subarrays having N and M sensor elements, with
inter-element spacing Md and Nd respectively, where N and M are two coprime integers
and d = λ

2 . Without loss of generality, it is assumed that M < N . The sensor elements
are located at positions {p1d, p2d, · · · , pLd}, where L is the total number of sensors, and
because the first sensor is shared by the two subarrays and set as the reference point, there
are L = M + N − 1 and p1 = 0. The CLA is based on a platform moving along the
array direction with a constant velocity v, and the DOAs of sources and signal temporal
properties are assumed to be constant for a small array motion. FIGURE 3.1 shows the
situation where N = 5 and M = 4.

original CLA: 

shifted CLA: 

array motion

�

subarray 1 subarray 2

FIGURE 3.1 – Moving platform based CLA with N = 5 and M = 4

Suppose that there are K uncorrelated, far-field and narrowband signals impinging on
the CLA from directions {θ1, θ2, · · · , θK} respectively, with −90◦ < θk < 90◦ and 1 ≤
k ≤ K. The observation of the CLA, at time t, can be expressed as

x (t) = AΦs (t) + n (t) (3.1)

where
A =

[
a (θ1) a (θ2) · · · a (θK)

]
(3.2)
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is the directional matrix of the CLA, with

a (θk) =
[
1 ej2π

p2d
λ

sin θk · · · ej2π
pLd

λ
sin θk

]T
(3.3)

denoting the directional vector associated with the signal coming from θk. The movement
of the array is indicated by

Φ = diag
[
ej2π

vt
λ

sin θ1 ej2π
vt
λ

sin θ2 · · · ej2π
vt
λ

sin θK
]

(3.4)

and
s (t) =

[
s1 (t) s2 (t) · · · sK (t)

]T
(3.5)

represents the incoming signal vector with sk(t) the source signal coming from θk and
received at the reference sensor. n(t), the white Gaussian noise vector with zero-mean and
covariance matrix σ2IL with σ2 the noise power, is supposed to be independent from the
source signals.

At time t+ τ , the observation of the CLA becomes

x (t+ τ) = BΦs (t+ τ) + n (t+ τ) (3.6)

where
B =

[
b (θ1) b (θ2) · · · b (θK)

]
(3.7)

and
b (θk) =

[
ej2π

vτ
λ

sin θk ej2π
vτ+p2d

λ
sin θk · · · ej2π

vτ+pLd
λ

sin θk
]T

(3.8)

denote the updated directional matrix and vector respectively. By setting vτ = d = λ
2 , there

is
b (θk) =

[
ej2π

d
λ

sin θk ej2π
d+p2d
λ

sin θk · · · ej2π
d+pLd
λ

sin θk
]T

(3.9)

For narrowband signals with carrier frequency f , there is

sk (t+ τ) = ej2πfτsk (t) (3.10)

and Equation (3.6) can be re-written as

x (t+ τ) = ej2πfτBΦs (t) + n (t+ τ) (3.11)
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Then using the phase factor compensating technique described in [90], we can get

x̃ (t+ τ) = e−j2πfτx (t+ τ) = BΦs (t) + ñ (t+ τ) (3.12)

where
ñ (t+ τ) = e−j2πfτn (t+ τ) (3.13)

and by combining Equations (3.1) and (3.12), we can obtain the following equation

y (t) =
 x (t)

x̃ (t+ τ)

 = Asss (t) +
 n (t)

ñ (t+ τ)

 (3.14)

which can be regarded as the observation of the synthetic array composed of the original
CLA and the shifted CLA after moving for a unit inter-element spacing d. As =

[
AT ,BT

]T
stands for the directional matrix of the synthetic array, and ss (t) = Φs (t) is the equivalent
incoming signal vector impinging on the synthetic array.

3.2 Difference coarray analysis

In this section, the difference coarray and the DOFs of the synthetic array are discussed.
Taking d as unit, the sensor element positions of the original CLA and the shifted CLA can
be given by

Po = P1 ∪ P2 (3.15)

Ps = P1′ ∪ P2′ (3.16)

where

P1 = {Mn | 0 ≤ n ≤ N − 1} (3.17)

P2 = {Nm | 0 ≤ m ≤M − 1} (3.18)

P1′ = {Mn+ 1 | 0 ≤ n ≤ N − 1} (3.19)

P2′ = {Nm+ 1 | 0 ≤ m ≤M − 1} (3.20)

denote the positions of the sensor elements in each subarray, with subscripts 1 and 2 refer to
the 1st and 2nd subarrays of the original CLA, and subscripts 1′ and 2′ refer to the 1st and 2nd

subarrays of the shifted CLA respectively. And then the sensor positions of the synthetic
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3.2. Difference coarray analysis

array can be expressed by
Psyn = Po ∪ Ps (3.21)

Based on the definition of the difference coarray shown in Equation (2.12), the diffe-
rence coarray of the synthetic array is composed of the self-lags and cross-lags between all
the subarrays of the original CLA and the shifted CLA. The set of self-lags is defined by

Duu = {p− q | p, q ∈ Pu} (3.22)

and the set of cross-lags is defined by

Duv = D+
uv ∪ D−uv (3.23)

with

D+
uv = {p− q | p ∈ Pu, q ∈ Pv} (3.24)

D−uv = {q − p | p ∈ Pu, q ∈ Pv} (3.25)

where u, v ∈ {1, 2, 1′, 2′} and u 6= v.

Because the sets of self-lags contain only the integer multiples of M or N , and the two
subarrays of the original CLA or the shifted CLA share the first sensor, the self-lags can
be considered as the cross-lags between every sensor of one subarray and the first sensor
of the other subarray. Thus the self-lags form subsets of the cross-lags and do not affect
the resulting difference coarray. Then the difference coarray of the synthetic array can be
expressed as

D = D12 ∪ D11′ ∪ D12′ ∪ D21′ ∪ D22′ ∪ D1′2′ (3.26)

with

D12 = {Mn−Nm} ∪ {Nm−Mn} (3.27)

D11′ = {Mn−Mn′ − 1} ∪ {Mn′ −Mn+ 1} (3.28)

D12′ = {Mn−Nm′ − 1} ∪ {Nm′ −Mn+ 1} (3.29)

D21′ = {Nm−Mn′ − 1} ∪ {Mn′ −Nm+ 1} (3.30)

D22′ = {Nm−Nm′ − 1} ∪ {Nm′ −Nm+ 1} (3.31)

D1′2′ = {Mn′ −Nm′} ∪ {Nm′ −Mn′} (3.32)
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Chapitre 3 – Moving Platform based Coprime Linear Array Configuration

where m, n, m′ and n′ are four integers with 0 ≤ m,m′ ≤M − 1 and 0 ≤ n, n′ ≤ N − 1.

From Equations (3.27) and (3.32), it can be seen that D12 and D1′2′ contain the same
elements.

Then according to Equations (3.28) to (3.31), there are

D11′ ∪ D22′ = {M (n− n′)− 1} ∪ {M (n′ − n) + 1}∪

{N (m−m′)− 1} ∪ {N (m′ −m) + 1}
(3.33)

D12′ ∪ D21′ = {Mn−Nm′ − 1} ∪ {Nm−Mn′ − 1}∪

{Nm′ −Mn+ 1} ∪ {Mn′ −Nm+ 1}
(3.34)

When m = m′ = 0, Equation (3.34) can be re-written as

D12′ ∪ D21′ = {Mn− 1} ∪ {−Mn′ − 1} ∪ {−Mn+ 1} ∪ {Mn′ + 1} (3.35)

Because 0 ≤ n, n′ ≤ N − 1, there are

{Mn− 1} ∪ {−Mn′ − 1} = {M (n− n′)− 1} (3.36)

{−Mn+ 1} ∪ {Mn′ + 1} = {M (n′ − n) + 1} (3.37)

and Equation (3.35) can be written as

D12′ ∪ D21′ = {M (n− n′)− 1} ∪ {M (n′ − n) + 1} (3.38)

Similarly, when n = n′ = 0, Equation (3.34) can be re-written as

D12′ ∪ D21′ = {−Nm′ − 1} ∪ {Nm− 1} ∪ {Nm′ + 1} ∪ {−Nm+ 1} (3.39)

and because 0 ≤ m,m′ ≤M − 1, there are

{−Nm′ − 1} ∪ {Nm− 1} = {N (m−m′)− 1} (3.40)

{Nm′ + 1} ∪ {−Nm+ 1} = {N (m′ −m) + 1} (3.41)

and then Equation (3.35) can be written as

D12′ ∪ D21′ = {N (m−m′)− 1} ∪ {N (m′ −m) + 1} (3.42)
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Based on Equations (3.33), (3.38) and (3.42), it can be seen that D11′ ∪ D22′ forms a
subset of D12′ ∪D21′ , and the difference coarray of the CLA after motion can be simplified
as

D = D12 ∪ D12′ ∪ D21′ (3.43)

According to Equations (3.29) and (3.30), it is easy to see that by exchanging the com-
binations of the subsets, D12′ ∪ D21′ can be transferred to D′12′ ∪ D′21′ , where

D′12′ = {Mn−Nm′ − 1} ∪ {Nm−Mn′ − 1} (3.44)

D′21′ = {Mn′ −Nm+ 1} ∪ {Nm′ −Mn+ 1} (3.45)

According to the values of m, n, m′ and n′, D′12′ and D′21′ are equivalent to DL
12 and DR

12

respectively, with

DL
12 = {Mn−Nm− 1} ∪ {Nm−Mn− 1} (3.46)

DR
12 = {Mn−Nm+ 1} ∪ {Nm−Mn+ 1} (3.47)

which can be regarded as the difference coarray of the original CLA shifting one lag to the
left and one lag to the right respectively.

Therefore the final difference coarray of the CLA after array motion can be given by

D = D12 ∪ DL
12 ∪ DR

12 (3.48)

which can be regarded as the union of the difference coarray of the original CLA and its two
shifted versions. Consequently, the neighboring holes of each lag in the difference coarray
of the original CLA can be filled due to the array motion, lengthening the consecutive part
and increasing the effective DOFs [65, 66].

Consider the moving platform based CLA shown in FIGURE 3.1, FIGURE 3.2 and
FIGURE 3.3 show the difference coarrays of the CLA before and after motion respectively.
It can be seen that thanks to the array motion, the holes are filled by their neighboring lags,
resulting in a hole-free difference coarray, and also two additional lags are obtained at the
two ends of the difference coarray.
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-15 -10 -5 0 5 10 15

FIGURE 3.2 – Difference coarray of the CLA with N = 5 and M = 4 before array motion

-15 -10 -5 0 5 10 15

FIGURE 3.3 – Difference coarray of the CLA with N = 5 and M = 4 after array motion

Meanwhile, since the difference coarray of the original CLA shifts to the left or right
for only one lag, if there are three or more consecutive holes in the difference coarray of the
original CLA, only the holes having neighboring lags can be filled, and the others would
be remained unfilled because such holes do not have lags at their neighboring positions.
Consider a moving platform based CLA with N = 6 and M = 5, the difference coarrays
of the CLA before and after array motion are shown in FIGURE 3.4 and FIGURE 3.5
respectively. It can be seen that there are two symmetric sets of three consecutive holes in
the difference coarray of the original CLA {x | x = ±21,±22,±23}, leaving two holes
unfilled in the difference coarray of the synthetic array {x | x = ±22} after array motion.

-25 -20 -15 -10 -5 0 5 10 15 20 25

FIGURE 3.4 – Difference coarray of the CLA with N = 6 and M = 5 before array motion

-25 -20 -15 -10 -5 0 5 10 15 20 25

FIGURE 3.5 – Difference coarray of the CLA with N = 6 and M = 5 after array motion

Even if the resulting difference coarray of the synthetic array after motion is not always
complete, the number of consecutive lags increases significantly with array motion, which
is at most 2M(N − 1) + 3 when the resulting difference coarray after motion is hole-free.
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However, it can be noticed that only the lags which are neighbors of holes (e.g. {x | x =
±8,±10,±12,±15} in FIGURE 3.2) are used to fill the holes, For the consecutive lags
without neighboring holes (e.g. {x | −7 ≤ x ≤ 7} in FIGURE 3.2), the shifts of them
generate lags which already exist in the difference coarray of the original CLA before array
motion. Without generating new lags, such lags do not contribute to the increase of the
DOFs by array motion.

In the next section, an improved configuration of moving platform based CLA is pro-
posed, in which all the lags can be utilized to fill holes by array motion, such that more
consecutive lags as well as higher effective DOFs can be obtained.

3.3 Improved coprime linear arrays for moving platform

3.3.1 Improved array configuration

Assume that M can be expressed as a product of two positive integers l and M ′ as

M = lM ′ (3.49)

where 2 ≤ l ≤ M . It is easy to see that M ′ and N are also coprime because M and
N do not have common factors expect ‘1’. We compress the inter-element spacing of the
subarray with N sensor elements from Md to M ′d, then the resulting CLA turns out a
CACIS in [46] with sensor numbers of the two subarrays N and M respectively with the
compression factor l, or an ECLA of a prototype CLA with sensor numbers of the two
subarrays N and M ′. According to the discussion in Section 2.2.3, the difference coarray
of the resulting CLA has a consecutive part with 2MN − 2M

l
(N − 1)− 1 lags in the range

of [−MN + M
l

(N − 1) + 1,MN − M
l

(N − 1) − 1]. Consider the CLA with N = 5 and
M = 4 shown in FIGURE 3.1, by choosing l = 2, the resulting CLA configuration and the
corresponding difference coarray after the inter-element spacing compression are shown in
FIGURE 3.6 and FIGURE 3.7 respectively.

In order to use the lags in the consecutive part without neighboring holes by array
motion, we lengthen the inter-element spacing of both the subarrays three times, from M ′d

andNd to 3M ′d and 3Nd respectively. For the CLA shown in FIGURE 3.6, the redesigned
CLA with lengthened inter-element spacing is shown in FIGURE 3.8.
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subarray 1

subarray 2

Md
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FIGURE 3.6 – Inter-element spacing compression of CLA with N = 5, M = 4 and l = 2

-15 -10 -5 0 5 10 15

FIGURE 3.7 – Difference coarray of the inter-element spacing compressed CLA with N =
5, M = 4 and l = 2

subarray 1

subarray 2

redesigned CLA

FIGURE 3.8 – Redesigned CLA with N = 5, M = 4 and l = 2

Consequently, according to the definition of the difference coarray shown in Equation
(2.12), the positions of the lags in the new difference coarray are also enlarged three times,
such that in the range of [−3MN+ 3M

l
(N − 1)+3, 3MN− 3M

l
(N − 1)−3], lags are uni-

formly distributed, and every two adjacent lags are exactly separated by two holes, which
are generated by the lengthening of the inter-element spacing. Then for the lags in such
range, the shifts of them with one lag to the left and one lag to the right generate new lags
which do not exist in the difference coarray before array motion, filling their neighboring
holes and generating a longer consecutive part. For the redesigned CLA shown in FIGURE
3.8, the corresponding difference coarrays before and after array motion are shown in FI-
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3.3. Improved coprime linear arrays for moving platform

GURE 3.9 and FIGURE 3.10 respectively. It can be seen that compared with the difference
coarray associated with the original CLA configuration after array motion shown in FI-
GURE 3.3, by judiciously designing the sensor positions, a difference coarray with more
consecutive lags can be obtained with the same number of sensors and the same length of
array motion.

-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45

FIGURE 3.9 – Difference coarray of the redesigned CLA with N = 5, M = 4 and l = 2
before array motion

-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45

FIGURE 3.10 – Difference coarray of the redesigned CLA with N = 5, M = 4 and l = 2
after array motion

3.3.2 DOFs comparison

For the original moving platform based CLA configuration, we can obtain a difference
coarray with at most 2M(N − 1) + 3 consecutive lags after array motion. For the pro-
posed configuration, although the final differencce coarray after array motion is not com-
plete, it has a longer consecutive part in the range of [−3MN + 3M

l
(N − 1) + 2, 3MN −

3M
l

(N − 1) − 2] with totally 6MN − 6M
l

(N − 1) − 3 consecutive lags, which gets the
minimum when l = 2, being always larger than the number of the consecutive lags in the
difference coarray of the original CLA configuration even when the latter is hole-free. The-
refore, the proposed CLA configuration can significantly increase the effective DOFs with
the same number of sensor elements and the same length of array motion. Table 3.1 shows
the comparison of the numbers of the consecutive lags in the final difference coarrays of
the original and proposed CLA configurations with different values of M and N .
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TABLE 3.1 – Numbers of consecutive lags comparison

original

CLA

configuration

(M,N) consecutive lags numbers

(4, 5) 35

(5, 6) 43

(4, 7) 51

(5, 8) 73

proposed

CLA

configuration

(M,N) l consecutive lags numbers

(4, 5)
2 69

4 93

(5, 6) 5 147

(4, 7)
2 93

4 129

(5, 8) 5 195

To show the benefit of the proposed moving platform based CLA configuration in terms
of DOFs increasing, the MUSIC method is applied to perform DOA estimation on an ori-
ginal CLA with N = 5 and M = 4 shown in FIGURE 3.1, and a redesigned CLA with
the same number of sensors and l = 2 shown in FIGURE 3.8 respectively. For the origi-
nal CLA configuration, a difference coarray with 35 consecutive lags is obtained after the
array motion with a length of λ

2 . After the step of spatial smoothing, which is introduced
in Section 2.2.2, a rank restored covariance matrix with dimension of 18× 18 is obtained,
and since at least one eigenvector spanning the noise subspace is needed such that MUSIC
algorithm can be performed, up to 17 signals can be detected. FIGURE 3.11 depicts the
DOA estimation result of the original configuration with 17 sources uniformly distributed
from −56◦ to 56◦, where SNR and the number of snapshots are 10dB and 2000 respecti-
vely. For the proposed CLA configuration, a difference coarray with 69 consecutive lags is
obtained after the array motion with the same length, therefore a rank restored covariance
matrix with dimension 35× 35 is obtained, and up to 34 signals can be detected. With the
same simulation conditions, FIGURE 3.12 depicts the DOA estimation result of the propo-
sed configuration with 25 sources uniformly distributed from−60◦ to 60◦. And the original
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3.3. Improved coprime linear arrays for moving platform

CLA configuration cannot work in such situation because the number of sources exceeds
the number of DOFs.
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FIGURE 3.11 – MUSIC spectrum of the original CLA configuration
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FIGURE 3.12 – MUSIC spectrum of the proposed CLA configuration
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3.4 Conclusion

In this chapter, moving platform based CLA configuration is discussed. It is shown that
due to such array motion, the resulting difference coarray can be regarded as the union
of the difference coarray of the original CLA and its two shifted versions with one lag to
the left and one lag to the right respectively, such that neighboring holes of each lag can
be filled, generating then a difference coarray with more consecutive lags and increasing
the effective DOFs. However, only the lags which are the neighbors of holes are utilized
to fill the holes, but for the lags in the consecutive part without neighboring holes, the
shifts of them generate lags already existing in the difference coarray of the original CLA,
contributing negligibly to the resulting difference coarray and the DOFs. To address this
issue, an improved CLA configuration for moving platform is proposed in this chapter. By
judiciously designing the sensor element positions, a lengthened difference coarray with
controlled hole positions is obtained, such that all lags can be utilized to fill the holes by
array motion. Compared with the original CLAs, the proposed configuration can achieve a
difference coarray with much more consecutive lags and higher DOFs with the same num-
ber of sensors and the same length of array motion. Contrary to [91], which discusses nested
arrays, our proposition is dedicated to CLAs, being more suitable for practical applications
because of the limited mutual coupling effect property.
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CHAPITRE 4

DIFFERENCE COARRAY OF COPRIME

PLANAR ARRAYS

CLAs have drawn lots of attention thanks to their high DOFs. However, since there are
holes existing in the difference coarray, the effective DOFs are not as high as expected.
The strategic point in filling the holes and increasing the effective DOFs is to find the exact
expressions of the hole locations. Lots of effort have been made to address this issue, filling
the holes in the difference coarray and increasing the DOFs.

Compared with one dimensional (1D) linear arrays, two dimensional (2D) planar ar-
rays are more relevant to real applications. There are many research studies developed for
2D coprime planar arrays (CPAs). In [73] and [74], a CPA is treated as two uniform pla-
nar subarrays, which simplifies the system model, but leads to a significant loss of DOFs.
In [75], the CPA geometry is generalized, resulting in higher DOFs than [73] and [74]
with the same number of sensor elements. However, it also deals with the subarrays and
the significant advantage in terms of DOFs is sacrificed. In order to exploit the high DOFs
offered by the coprime geometry, the difference coarrays should be applied instead of the
physical arrays. However, due to the existence of holes, the consecutiveness of the diffe-
rence coarray of CPAs is highly limited, which significantly reduces the number of effective
DOFs. Unfortunately, no closed-form expressions for the hole locations in the difference
coarrays of CPAs have been found in the open literature, which rises the major challenge
in holes-filling and DOFs-increasing for CPAs.

Compared with other existing 2D sparse array configurations [92–95], CPAs are more
attractive because of their limited mutual coupling effect property. To offer a better un-
derstanding of CPAs and facilitate the future research in this field, in this chapter, CPAs
are investigated from the perspective of difference coarrays. Closed-form expressions of
the exact hole locations are derived, based on which an efficient method is proposed to fill
the most critical holes, such that a difference coarray with more consecutive lags can be
generated and higher effective DOFs can be obtained.
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Chapitre 4 – Difference Coarray of Coprime Planar Arrays

4.1 System model of coprime planar arrays

4.1.1 Signal model

A conventional CPA consists of two uniform sparse square subarrays. The 1st subarray
hasN×N sensor elements with inter-element spacingMd, and the 2nd subarray hasM×M
sensor elements with inter-element spacing Nd, where M , N are two coprime integers and
d = λ

2 . The locations of the sensor elements of the CPA can be expressed as :

P = P1 ∪ P2 (4.1)

with

P1 = {(n1Md, n2Md) | 0 ≤ n1, n2 ≤ N − 1} (4.2)

P2 = {(m1Nd,m2Nd) | 0 ≤ m1,m2 ≤M − 1} (4.3)

denoting the sensor element locations of the two subarrays respectively. Without loss of
generality, it is assumed that M < N . FIGURE 4.1 shows a CPA located in X − Z plane
with N = 5 and M = 3. The sensor located at (0, 0) is shared by the two subarrays and set
as the reference point. The total number of sensor elements L = N2 +M2 − 1.
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subarray 1

subarray 2

FIGURE 4.1 – Coprime planar array with N = 5 and M = 3
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4.1. System model of coprime planar arrays

Suppose that there are K uncorrelated, far-field and narrowband signals impinging on
the CPA from directions {(θ1, ϕ1) , (θ2, ϕ2) , · · · , (θK , ϕK)}, with θk and ϕk denoting the
elevation and azimuth angles respectively of the kth source and 1 ≤ k ≤ K. The signal
observed at the sensor element located at pu, where pu = (pu,xd, pu,zd) ∈ P, can be
expressed by

xu(t) =
K∑
k=1

au (θk, ϕk) sk (t) + nu (t) (4.4)

where sk(t) denotes the impinging signal coming from (θk, ϕk) and received at the refe-
rence point, and nu(t) denotes the noise received at the sensor and it is assumed to be Gaus-
sian white and independent from the source signals. au (θk, ϕk) = ejπ(pu,x sin θk cosϕk+pu,z cosϕk)

represents the phase shift between the sensor elements located at pu and the reference point
associated with sk(t). Then the signal vector received by the CPA can be written as

x (t) =
[
x1(t) x2(t) · · · xL(t)

]T
(4.5)

4.1.2 2D difference coarray

Similar with the definition given in Equation (2.12), the difference coarray of a CPA is
defined as

D = {pu − pv | pu,pv ∈ P} (4.6)

of which the elements are generated by all pairs of sensor elements in the CPA, and the
observation of all the lags can be obtained from the covariance matrix of the signal received
by the physical array.

The difference coarray of the CPA shown in FIGURE 4.1 is depicted in FIGURE 4.2,
where the lags and holes are represented by blue dots and red rhombuses respectively as
the previous chapters. It can be seen that the difference coarray exhibits a virtual planar
array with much more distinct lags than the number of physical sensors in the CPA, pos-
sessing much higher DOFs. However, because of the necessity of the rank restoration for
the implementation of DOA estimation with high-resolution subspace based methods, only
the consecutive part in the difference coarray can be applied directly, and due to the exis-
tence of holes, the consecutiveness of the difference coarray is limited, and the achievable
effective DOFs for subspace based DOA estimation methods like MUSIC are not as high
as expected.
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FIGURE 4.2 – Difference coarray of the CPA with N = 5 and M = 3

4.2 Holes locations in 2D difference coarray

According to the definition of the difference coarray shown in Equation (4.6), the dif-
ference coarray D of a CPA can be rewritten as

D = D+
12 ∪ D−12 ∪ D11 ∪ D22 (4.7)

where D+
12 and D−12 denote the cross difference coarrays of the two subarrays with

D+
12 = {pu − pv | pu ∈ P1,pv ∈ P2} (4.8)

D−12 = {pv − pu | pu ∈ P1,pv ∈ P2} (4.9)

and D11 and D22 denote the self difference coarrays of the two subarrays with

D11 = {pu − pv | pu,pv ∈ P1} (4.10)

D22 = {pu − pv | pu,pv ∈ P2} (4.11)
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4.2. Holes locations in 2D difference coarray

We first discuss the characteristics of the cross difference coarray D+
12. Taking d as the

unit, D+
12 can be expressed as

D+
12 ={(n1M −m1N, n2M −m2N) |

0 ≤ n1, n2 ≤ N − 1, 0 ≤ m1,m2 ≤M − 1}
(4.12)

According to the values of n1, n2, m1 and m2, it is easy to see that D+
12 is located in the

range of {(x, z) | − (M − 1)N ≤ x, z ≤ (N − 1)M}.
In the following, the locations of the holes in D+

12 will be provided with detailed proof.
Four general rules can be summarized as :

1) In {(x, z) | 0 ≤ x ≤ (N − 1)M,− (M − 1)N ≤ z ≤ (N − 1)M}, the position (x, z)
would be a hole for any z in such range if x = aM + bN with a ≥ 0, b ≥ 1 ;

2) In {(x, z) | − (M − 1)N ≤ x ≤ 0,− (M − 1)N ≤ z ≤ (N − 1)M}, the position (x, z)
would be a hole for any z in such range if x = aM + bN with a ≤ −1, b ≤ 0 ;

3) In {(x, z) | − (M − 1)N ≤ x ≤ (N − 1)M, 0 ≤ z ≤ (N − 1)M}, the position (x, z)
would be a hole for any x in such range if z = aM + bN with a ≥ 0, b ≥ 1 ;

4) In {(x, z) | − (M − 1)N ≤ x ≤ (N − 1)M,− (M − 1)N ≤ z ≤ 0}, the position (x, y)
would be a hole for any x in such range if z = aM + bN with a ≤ −1, b ≤ 0.

The proof of rule 1) is given in the following.
Based on [51], for any integer I in the range of [0, (N − 1)M ], we can always find two

integers a0 and b0, such that
I = a0M + b0N (4.13)

Let b′ = b0 mod M , and there is

b0 = tM + b′ (4.14)

where t is a non-negative integer and b′ ∈ [0,M − 1]. Then we can get

I = a′M + b′N (4.15)

with a′ = a0 + tN , b′ = b0 − tM , and d−b′ N
M
e ≤ a′ ≤ N − 1− d−b′ N

M
e.

Then according to Equation (4.12), it can be seen that to prove rule 1), it is sufficient and
necessary to prove that for any I ∈ [0, (N − 1)M ] and in the form of I = a′M + b′N with
a′ ≥ 0 and b′ ≥ 1, there never exist n1 andm1, with 0 ≤ n1 ≤ N−1 and 0 ≤ m1 ≤M−1,
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satisfying
n1M −m1N = I = a′M + b′N (4.16)

and for any I ∈ [0, (N − 1)M ] and out of the form of I = a′M + b′N with a′ ≥ 0 and
b′ ≥ 1, there always exist n1 and m1, with 0 ≤ n1 ≤ N − 1 and 0 ≤ m1 ≤ M − 1,
satisfying the above equation.

According to the values range of a′ and b′, the problem can be split into three cases :

i) 0 ≤ a′ ≤ N − 1, b′ = 0 ;

ii) dN
M
e −N ≤ a′ < 0, 0 < b′ ≤M − 1 ;

iii) 0 ≤ a′ ≤ N − 1, 0 < b′ ≤M − 1.

For i), Equation (4.16) can be written as

(n1 − a′)M = m1N (4.17)

Since 0 ≤ a′ ≤ N − 1

b′ = 0
(4.18)

and 0 ≤ n1 ≤ N − 1

0 ≤ m1 ≤M − 1
(4.19)

for any a′ in this case, there always exist n1 = a′ and m1 = 0 satisfying Equation (4.17).
Therefore, the positions corresponding to such a′ and b′ are not holes.

For ii), noticing that m1 + b′ ≥ 1, Equation (4.16) can be written as

N

M
= n1 − a′

m1 + b′
(4.20)

Since d
N
M
e −N ≤ a′ < 0

0 < b′ ≤M − 1
(4.21)

and 0 ≤ n1 ≤ N − 1

0 ≤ m1 ≤M − 1
(4.22)
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for any a′ and b′ in this case, there always exist n1 and m1, exhibiting

n1 − a′ = N

m1 + b′ = M
(4.23)

and satisfying Equation (4.20). Therefore, the positions corresponding to such a′ and b′ are
not holes.

For iii), similar with ii), Equation (4.16) can be written as Equation (4.20). Considering
that M and N are two coprime integers, (n1− a′) and (m1 + b′) should exactly equal to N
and M respectively. Since 0 ≤ a′ ≤ N − 1

0 ≤ n1 ≤ N − 1
(4.24)

for any a′ in this case, we cannot find n1 such that n1 − a′ = N . Therefore, the positions
corresponding to such a′ and b′ are holes.

The proof of rule 1) ends, and the proof of the other three is similar and omitted here.

Then, we focus on the characteristics of the other cross difference coarray D−12, which
can be expressed as

D−12 ={(m1N − n1M,m2N − n2M) |

0 ≤ n1, n2 ≤ N − 1, 0 ≤ m1,m2 ≤M − 1}
(4.25)

and it is easy to see that D−12 is located in the range of {(x, z) | −(N − 1)M ≤ x, z ≤
(M − 1)N}, and four similar general rules of the holes in D−12 can be obtained as follows :

5) In {(x, z) | 0 ≤ x ≤ (M − 1)N,−(N − 1)M ≤ z ≤ (M − 1)N}, the position (x, z)
would be a hole for any z in such range if x = aM + bN with a ≥ 1, b ≥ 0 ;

6) In {(x, z) | −(N − 1)M ≤ x ≤ 0,−(N − 1)M ≤ z ≤ (M − 1)N}, the position
(x, z) would be a hole for any z in such range if x = aM + bN with a ≤ 0, b ≤ −1 ;

7) In {(x, z) | −(N − 1)M ≤ x ≤ (M − 1)N, 0 ≤ z ≤ (M − 1)N}, the position (x, z)
would be a hole for any x in such range if z = aM + bN with a ≥ 1, b ≥ 0 ;

8) In {(x, z) | −(N − 1)M ≤ x ≤ (M − 1)N,−(N − 1)M ≤ z ≤ 0}, the position
(x, z) would be a hole for any x in such range if z = aM + bN with a ≤ 0, b ≤ −1.

FIGURE 4.3 and FIGURE 4.4 depict the cross difference coarrays D+
12 and D−12 of the

CPA shown in FIGURE 4.1 respectively, supporting the above analysis.
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FIGURE 4.3 – Cross difference coarray D+
12 of the CPA with N = 5 and M = 3
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FIGURE 4.4 – Cross difference coarray D−12 of the CPA with N = 5 and M = 3
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4.2. Holes locations in 2D difference coarray

Consider the two self difference coarrays D11 and D22, which according to Equations
(4.10) and (4.11) can be expressed as

D11 ={(n11M − n12M,n21M − n22M) |

0 ≤ n11, n12, n21, n22 ≤ N − 1}
(4.26)

D22 ={(m11N −m12N,m21N −m22N) |

≤ m11,m12,m21,m22 ≤M − 1}
(4.27)

and be deduced as

D11 = {(aM, bM) | −(N − 1) ≤ a, b ≤ (N − 1)} (4.28)

D22 = {(aN, bN) | −(M − 1) ≤ a, b ≤ (M − 1)} (4.29)

The lags in the self difference coarrays D11 and D22 of the CPA shown in FIGURE 4.1
are depicted in FIGURE 4.5 and FIGURE 4.6 respectively.
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FIGURE 4.5 – Self difference coarray D11 of the CPA with N = 5 and M = 3
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FIGURE 4.6 – Self difference coarray D22 of the CPA with N = 5 and M = 3

According to Equation (4.7), some holes in the cross difference coarrays D+
12 and D−12

are filled by the lags in the self difference coarrays D11 and D22 ; and with rules 1) — 8),
the precise expressions of the holes locations in the difference coarray D in the 1st quadrant
H1 and 2nd quadrant H2 can be obtained as

H1 = H11 ∪H12 ∪H13 ∪H14 (4.30)

H2 = H21 ∪H22 (4.31)

with

H11 = {(x, z) |x = aM + bN, a ≥ 1, b ≥ 1,

0 ≤ x, z ≤ (N − 1)M}
(4.32)

H12 = {(x, z) |x = aN, z = bM, a ≥ 1, b ≥ 1,

0 ≤ x, z ≤ (N − 1)M}
(4.33)
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H13 = {(x, z) |x = aM, z = bN, a ≥ 1, b ≥ 1,

0 ≤ x, z ≤ (N − 1)M}
(4.34)

H14 = {(x, z) |z = aM + bN, a ≥ 1, b ≥ 1,

0 ≤ x, z ≤ (N − 1)M}
(4.35)

and

H21 = {(x, z) |x = aM + bN, a ≤ −1, b ≤ −1,

− (N − 1)M ≤ x ≤ 0, 0 ≤ z ≤ (N − 1)M}
(4.36)

H22 = {(x, z) |z = aM + bN, a ≥ 1, b ≥ 1,

− (N − 1)M ≤ x ≤ 0, 0 ≤ z ≤ (N − 1)M}
(4.37)

According to the definition of D, the holes locations in the 3rd and 4th quadrants are
centrosymmetric to those in the 1st and 2nd quadrants. FIGURE 4.2 illustrates the analysis.

4.3 Holes-filling method

Based on the above analysis of the holes locations in the difference coarray, it can be
seen that there exist some critical holes in the 1st and 3rd quadrants, which sparsely locate
inside the range of {(x, z) | −(M+N) < x, z < (M+N)} and break the consecutiveness
of the difference coarray in such range. For the critical holes in the 1st quadrant, which
belong to H12 and H13, we propose a holes-filling method, by which such holes can be
filled by adding few additional sensor elements, and because of the centrosymmetry of the
difference coarray, the critical holes in the 3rd quadrant will also be filled as long as the
critical holes in the 1st quadrant are filled.

We first focus on the elements of H12, which is given in Equation (4.33). Considering
the assumption M < N , the most critical holes in the range {(x, z) | −(M +N) < x, z <

(M +N)} and belonging to H12 can be expressed as

H′12 =
{

(N, kM) | 1 ≤ k ≤ K,K = bN
M
c+ 1

}
(4.38)

And such holes can be filled by adding an additional sensor element at position (N,KM).
The proof is given in the following by two steps.

a) The position (N,KM) is not occupied by the sensor elements originally existing in
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the CPA, which can be proved by contradiction :

If there exists a sensor element originally located at the position (N,KM), a lag
would be generated by such sensor and the sensor located at (0, 0), and would be
found at the position (N,KM) in the difference coarray, which contradicts the above
analysis of the holes locations given in Equation (4.33). The step a) is proved.

b) The holes H′12 can be filled by the lags generated by the additional sensor element
located (N,KM) and the sensor elements originally existing in the CPA and located
at (0, tM), where 0 ≤ t ≤ K − 1.

According to the sensor elements positions shown in Equation (4.2), there is

t ≤ K − 1 < bN
M
c < N

M
< N − 1 (4.39)

Therefore there is a sensor element originally existing in the CPA and located at the
position (0, tM). The lags generated by such sensor element and the added sensor
element located at (N,KM) can be expressed as

C = {(N, gM) | g = K − t} (4.40)

It is easy to see that C = H′12, which means that the holes in H′12 can be filled by the
lags in C, and the step b) is then proved.

From the above two steps, it has been proved that the critical holes in the range {(x, z) |
−(M +N) < x, z < (M +N)} and belonging to H12 can be filled by adding an additional
sensor element at the position (N,KM). Then, for the critical holes in the range {(x, z) |
−(M +N) < x, z < (M +N)} and belonging to H13, which can be described as

H′13 =
{

(kM,N) | 1 ≤ k ≤ K,K = bN
M
c+ 1

}
(4.41)

they can be filled by adding another additional sensor element at position (KM,N). The
proof is similar as above and omitted here.

For the CPA shown in FIGURE 4.1 where N = 5 and M = 3, with the correspon-
ding difference coarray shown in FIGURE 4.2, the most critical holes inside the range of
{(x, z) | −8 < x, z < 8} can be filled by adding two additional sensor elements at the
positions (5, 6) and (6, 5). The CPA with the added sensor elements is shown in FIGURE
4.7 and the corresponding difference coarray with the filled holes is shown in FIGURE 4.8.
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FIGURE 4.7 – Coprime planar array N = 5 and M = 3 with additional sensor elements

X
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Z

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

FIGURE 4.8 – Difference coarray of the CPA N = 5 and M = 3 after holes-filling
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Thanks to the proposed holes-filling method, by judiciously adding two additional sen-
sor elements, the critical holes inside the range {(x, z) | −(M + N) < x, z < (M + N)}
are filled, resulting in a difference coarray part containing the most consecutive lags located
at {(x, z) | −(M +N − 1) < x, z < (M +N − 1)}, with the total number of consecutive
lags being (2M + 2N − 1)2. Compared with the difference coarray of the original CPA
configuration, although the difference coarray of the CPA with the holes-filling method is
not hole-free, it exhibits a much larger consecutive part with much more consecutive lags,
greatly increasing the effective DOFs of the CPA.

4.4 Conclusion

In this chapter, 2D CPAs are studied from the perspective of difference coarray. Closed-
form expressions of the holes locations are deduced with detailed proof, offering a better
understanding of CPAs and facilitating the future research is this field. Then based on the
knowledge of the holes locations, a holes-filling method is proposed. By judiciously adding
two additional sensor elements, the most critical holes which highly threaten the consecu-
tiveness of the difference coarray can be filled. Consequently, the consecutive part of the
difference coarray can be enlarged, which significantly increases the effective DOFs of the
array.
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CHAPITRE 5

AN EFFICIENT DOA ESTIMATION

METHOD FOR COPRIME LINEAR

SUBARRAYS

In the previous chapters, coprime arrays are investigated from the perspective of dif-
ference coarray-based methods, which try to increase the number of consecutive lags in
a virtual half-wavelength spacing uniform coarray to increase the effective DOFs. In this
chapter, we focus on the subarray-based methods, where a CLA is treated as two sparse uni-
form linear subarrays. From each of them, high-precision but ambiguous DOA estimation
is obtained, and the ambiguities caused by the large inter-element spacing are eliminated
according to the coprime property. Compared with difference coarray-based methods, sepa-
rately dealing with two uniform linear subarrays, the subarray-based methods sacrifice the
DOFs, but they simplify the system model and can directly and efficiently exploit the uni-
form property of each subarrays. Consequently, the DOA estimation can be accomplished
with low-complexity methods, which is more practical in some real applications.

Many DOA estimation methods have been proposed in this research orientation. A
MUSIC-based method is proposed in [56]. By dividing a CLA into two sparse ULAs,
and finding the common peaks of their MUSIC-spectrums, the DOAs can be uniquely ob-
tained and the ambiguities caused by the large inter-element spacing can be eliminated
based on the coprime property. But the complexity caused by the step of peak-searching is
high. Another method is proposed in [57], which can reduce the computational complexity
by limiting the peak-searching region. However, since it also involves the step of peak-
searching, the computational burden is still heavy. Besides, the methods in [56] and [57]
suffer from the problem of pair matching errors when the number of incoming signals is
greater than one. A low complexity method based on ESPRIT is proposed in [58]. Without
spectral searching, the complexity is significantly reduced. The matching errors are elimi-
nated by beamforming-based techniques, and true DOAs are estimated uniquely. Similarly,
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another method for fixing the pair matching errors problem is proposed in [59]. Based on
Root-MUSIC [96, 97], it has low complexity. By exploiting the relationship between the
directional matrices of the two subarrays, the pair matching of the estimated angles can
be achieved automatically, and the ambiguities can be mitigated one by one. However,
the grating angles problem is not considered. Because of the large inter-element spacing,
some signals may impinge from a set of grating angles which share an identical directional
vector for one subarray. Consequently, the directional matrix of this subarray will be rank
deficient, it is then a challenge to find the true DOAs for all the above mentioned methods.
The grating angles problem is firstly discussed in [60], where a joint singular value decom-
position (JSVD) [98] based method is proposed. Thanks to the JSVD algorithm, the grating
angles can be differentiated and the pair matching can be accomplished. Nevertheless, since
a "beamforming-like“ method with spectral searching is involved, the performance of this
method is limited by the length of searching step and high complexity.

In this chapter, an efficient DOA estimation method is proposed. For each subarray,
the true DOAs are mapped into equivalent DOAs corresponding to a virtual traditional
half-wavelength spacing ULA. From the perspective of accuracy and efficiency, after es-
timating the number of the equivalent signals, the ESPRIT method is performed and two
sets of equivalent DOAs can be estimated from the two subarrays respectively. Then the as-
sociated equivalent signals can be recovered. By analyzing the cross-correlations between
the equivalent signals recovered from the two subarrays, the pair matching of the equiva-
lent DOAs is accomplished. Consequently, based on the relationship between a DOA and
its equivalent DOAs, two sets of candidate DOAs are recovered for each pair of matched
equivalent angles, and the corresponding true DOA is uniquely determined by finding the
common element. Compared with other existing methods, the proposed method is able to
achieve a better estimation performance in all situations, in terms of accuracy and com-
plexity. Simulation results are provided to show the performance of the proposed method.

5.1 Mapped system model

Firstly, let’s recall the signal model of coprime subarrays. Consider a CLA composed of
two sparse uniform linear subarrays, havingM1 andM2 sensor elements with inter-element
spacing d1 = M2

λ
2 and d2 = M1

λ
2 respectively. Suppose that there are K uncorrelated,

far-field and narrowband signals impinging on the CLA from directions {θ1, θ2, · · · , θK}
respectively, with −90◦ < θk < 90◦ and 1 ≤ k ≤ K, where K is supposed to be known
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and K < min{M1,M2}. The signal received by the ith subarray can be expressed as

xi (t) =
K∑
k=1

ai (θk) sk (t) + ni (t) = Ais (t) + ni (t) (5.1)

where
Ai =

[
ai (θ1) ai (θ2) · · · ai (θK)

]
(5.2)

denotes the directional matrix of the ith subarray with

ai (θk) =
[
1 ejMĩπ sin θk · · · ej(Mi−1)Mĩπ sin θk

]T
(5.3)

where i, ĩ ∈ {1, 2} and i 6= ĩ ;

s (t) =
[
s1 (t) s2 (t) · · · sK (t)

]T
(5.4)

denotes the source signals vector with sk(t) the signal transmitted by the kth source and
received at the reference sensor element shared by the two subarrays. ni (t), which is as-
sumed to be independent from the source signals, is a white Gaussian noise vector with
zero-mean and covariance matrix σ2IMi

, with σ2 the noise power.

To offer a better understanding of the signal model of the coprime subarrays as well as
the potential problems in DOA estimation introduced in Section 2.3, a mapped system mo-
del based on traditional half-wavelength spacing ULAs is introduced. Due to the property
of the sinusoid function, for the signal coming from θk and impinging on the ith subarray,
there exists a unique angle denoted as θmapi,k with −90◦ < θmapi,k < 90◦, satisfying

sin θmapi,k = Mĩ sin θk + 2ni,k (5.5)

where ni,k is an integer with −Mĩ+1
2 < ni,k <

Mĩ−1
2 .

Because of the property of the complex exponential function, the directional vector
associated with this signal in Equation (5.3) can be re-written as

amapi

(
θmapi,k

)
=
[
1 ejπ sin θmap

i,k · · · ej(Mi−1)π sin θmap
i,k

]T
(5.6)

Therefore, it can be considered that the signal with the true DOA θk impinging on the ith

subarray is mapped into a virtual signal with the mapped DOA θmapi,k impinging on a virtual
half-wavelength spacing ULA with Mi sensor elements. The mapped system model of the
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ith subarray is shown in FIGURE 5.1.

virtual ULA

subarray
thi

FIGURE 5.1 – Mapped system model

Accordingly, for multiple incoming signals, the received signal model of the ith subar-
ray can be regarded as K signals coming from K mapped DOAs {θmapi,1 , θmapi,2 , · · · , θmapi,K }
impinging on a virtual half-wavelength spacing ULA with Mi sensor elements. Equation
(5.1) can then be re-written as

xi (t) =
K∑
k=1

amapi

(
θmapi,k

)
sk (t) + ni (t) = Amap

i s (t) + ni (t) (5.7)

where
Amap
i =

[
amapi

(
θmapi,1

)
amapi

(
θmapi,2

)
· · · amapi

(
θmapi,K

)]
(5.8)

denotes the mapped directional matrix of the ith subarray, and the set of the K mapped
DOAs associated with the K true DOAs is defined as Θmap

i = {θmapi,1 , θmapi,2 , · · · , θmapi,K }.
To address the potential problems in DOA estimation with coprime subarrays introdu-

ced in Section 2.3, instead of the original system, the DOA estimation will be implemented
on the traditional half-wavelength spacing ULAs based mapped system. For the signal co-
ming from θk and impinging on the ith subarray, its mapped DOA θmapi,k rather than the true
DOA θk can be directly obtained from the mapped system. According to Equation (5.5),
each mapped DOA θmapi,k corresponds to Mĩ candidate angles, and the mth candidate angle
θcand,mi,k can be recovered by

θcand,mi,k = arc sin
(

1
Mĩ

(
sin θmapi,k − 2nmi,k

))
(5.9)
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with nmi,k the value of ni,k associated with themth candidate angle θcand,mi,k . One of the candi-
date angles recovered by Equation (5.9) is the true DOA θk, and the others are ambiguities.
According to Section 2.3, the true DOA θk can be uniquely determined by finding the com-
mon angle in the two sets of candidates angles recovered from the mapped angles θmap1,k and
θmap2,k , which are obtained from the two subarrays respectively.

Considering the pair matching errors introduced in Section 2.3.2 from the perspective
of the equivalent system model, the problem occurs when there exist other common angles
in the candidate angles recovered from the mapped DOAs of difference sources in different
subarrays. Therefore, the mapped DOAs estimated from the two subarrays associated with
a common source should be pair matched, such that for each of the K pairs of matched
DOAs, two sets of candidate angles can be recovered, and the associated true DOA can be
obtained by finding the common element among them without pair matching errors.

And considering the grating angles problem introduced in Section 2.3.3 from the pers-
pective of the equivalent system model, the problem occurs when some signals come from
a set of distinct angles belonging to a common candidate angles set and sharing a common
mapped DOA. Consequently, their associated directional vectors will be identical and the
directional matrix of this subarray will be rank deficient. It will result in difficulties for the
subsequent steps like DOA estimation and ambiguities elimination.

5.2 Proposed DOA estimation method

Considering the grating angles problem or the rank deficiency of the directional ma-
trices, in this section, an equivalent system model is introduced. Then an efficient DOA
estimation method is proposed, which remains robust in any situations with higher accu-
racy and lower complexity.

5.2.1 Equivalent system model

When some signals come from a set of angles, which are grating angles to each other
for one subarray, the mapped DOAs of them are the same, or in other word, these signals
seem to come from a “same” direction to the virtual half-wavelength spacing ULA. In this
situation, the received signal model of the ith subarray can be regraded as Ki equivalent
signals seqvi,l (t) coming fromKi different equivalent DOAs θeqvi,l impinging on a virtual half-
wavelength spacing ULA, with 1 ≤ Ki ≤ K and 1 ≤ l ≤ Ki. The set of the Ki equivalent
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DOAs of the Ki equivalent signals is defined as Θeqv
i with Θeqv

i =
{
θeqvi,1 , θ

eqv
i,2 , · · · , θ

eqv
i,Ki

}
.

Note that Θeqv
i ⊆ Θmap

i , and without grating angles problem, we haveKi = K and Θeqv
i =

Θmap
i , and the equivalent system model is identical to the mapped system model introduced

in Section 5.1. In practice, the number of equivalent signals Ki can be estimated by Akaike
Information Criterion (AIC) or Minimum Description Length (MDL) method [99–101].
When the grating angles problem occurs, some of the equivalent signals seqvi,l (t) should be
a combination of some original signals sk(t), as shown in FIGURE 5.2.

virtual ULA

subarray
thi

FIGURE 5.2 – Equivalent system model when grating angles problem occurs

Based on the equivalent system model, the signals observed at the ith subarray can be
re-written as

xi (t) =
Ki∑
l=1

amapi

(
θeqvi,l

)
seqvi,l (t) + ni (t) = Aeqv

i seqvi (t) + ni (t) (5.10)

where
Aeqv
i =

[
amapi

(
θeqvi,1

)
amapi

(
θeqvi,2

)
· · · amapi

(
θeqvi,Ki

)]
(5.11)

denotes the equivalent directional matrix, and

seqvi (t) =
[
seqvi,1 (t) seqvi,2 (t) · · · seqvi,Ki (t)

]T
(5.12)

denotes the equivalent source signal vector of the ith subarray.
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5.2.2 DOA estimation

After estimating the number of the equivalent source signals Ki, the ESPRIT method
introduced in Section 1.3.4 can be performed on the signals received by the two subarrays,
and two sets of equivalent DOAs can be obtained from them respectively, denoted as

Θ̂eqv
1 =

{
θ̂eqv1,1 , θ̂

eqv
1,2 , · · · , θ̂

eqv
1,K1

}
(5.13)

Θ̂eqv
2 =

{
θ̂eqv2,1 , θ̂

eqv
2,2 , · · · , θ̂

eqv
2,K2

}
(5.14)

To achieve the pair matching of the equivalent DOAs, the equivalent source signals
vector of the two subarrays seqv1 (t) and seqv2 (t) should be recovered, and the pair matching
of the equivalent DOAs can be achieved by exploring the cross-correlations between their
associated equivalent signals.

Based on the equivalent DOAs estimated previously, an estimated equivalent directional
matrix can be constructed for each subarray as follows

Âeqv
i =

[
amapi

(
θ̂eqvi,1

)
amapi

(
θ̂eqvi,2

)
· · · amapi

(
θ̂eqvi,Ki

)]
(5.15)

with the estimated mapped directional vector

amapi

(
θ̂eqvi,l

)
=
[
1 ejπ sin θ̂eqv

i,l · · · ej(Mi−1)π sin θ̂eqv
i,l

]T
(5.16)

Then the equivalent source signals of the ith subarray can be recovered by

ŝeqvi (t) =
(
Âeqv
i

)+
xi (t) (5.17)

where
ŝeqvi (t) =

[
ŝeqvi,1 (t) ŝeqvi,2 (t) · · · ŝeqvi,Ki (t)

]T
(5.18)

of which the elements denote the equivalent signals respect to the Ki equivalent DOAs.

In order to study the cross-correlations between the equivalent source signals of the two
subarrays got by Equation (5.17), K1 ×K2 cross-correlations can be estimated by

r̂p,q = 1
J

J∑
t=1

ŝeqv1,p (t)
(
ŝeqv2,q (t)

)∗
(5.19)

where 1 ≤ p ≤ K1, 1 ≤ q ≤ K2 and J is the number of snapshots.

95



Chapitre 5 – An Efficient DOA Estimation Method for Coprime Linear Subarrays

Since an equivalent signal may be a combination of some original signals, if a com-
mon original signal is contained in two equivalent signals of the two subarrays ŝeqv1,p (t) and
ŝeqv2,q (t), the modulus of the cross-correlation between them |r̂p,q| would be a large value.
Otherwise, it would be a small value. One the other hand, it has been proved in [79] that
thanks to the coprimality between M1 and M2, for two distinct DOAs having the same
directional vector for one subarray, their directional vectors for the other subarray are ne-
cessarily different. In other words, two distinct DOAs with same mapped DOA for one sub-
array have necessarily different mapped DOAs for the other one. Therefore, in the K1×K2

cross-correlations, there exist K cross-correlations with large modulus corresponding to
the K original sources. By finding the K cross-correlations with largest modulus, the K
pairs of matched equivalent DOAs can be found. Similarly to Equation (5.9), for each pair
of matched equivalent DOAs, two sets of candidate DOAs can be recovered as follows

Θ̂cand
1,k =

{
θ̂cand,11,k θ̂cand,21,k · · · θ̂cand,M2

1,k

}
(5.20)

Θ̂cand
2,k =

{
θ̂cand,12,k θ̂cand,22,k · · · θ̂cand,M1

2,k

}
(5.21)

by

θ̂cand,mi,k = arc sin
(

1
Mĩ

(
sin θ̂eqvi,k − 2nmi,k

))
(5.22)

and the estimation of the true DOA θ̂k can be determined by finding the common angle
among them.

As a matter of illustration of this principle, the processing flow charts of the propo-
sed method for a normal situation and a grating angles problem situation are depicted in
FIGURE 5.3 and FIGURE 5.4 respectively, where “L” stands for a large value and “S”
stands for a small value. It is assumed that three signals impinge on a coprime linear array
from {θ1, θ2, θ3} ; in the grating angles problem situation shown in FIGURE 5.4, θ1 and θ3

are grating angles for the 1st subarray, and θ1 and θ2 are grating angles for the 2nd subarray.
It can be seen that thanks to the equivalent system model, the proposed method can over-
come the rank deficiency caused by the grating angles problem, and the estimation results
can be pair matched automatically. Finally, two sets of candidate DOAs can be recovered
from each pair of matched equivalent DOAs, and the common element among them can be
found to obtain the estimation of the true DOAs. The main steps of the proposed method
can be summarized in TABLE 5.1.
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FIGURE 5.3 – Processing flow chart for a normal situation
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FIGURE 5.4 – Processing flow chart for a grating angles problem situation
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TABLE 5.1 – Main steps of the proposed method

step 1
Estimate the numbers of the equivalent source signals received by the
two subarrays K1 and K2.

step 2
Perform the ESPRIT method to estimate the two sets of the equivalent
DOAs Θ̂eqv

1 and Θ̂eqv
2 from the signals received by the two subarrays

x1 (t) and x2 (t) respectively.

step 3
Construct the two equivalent directional matrices of the two subarrays
Âeqv

1 and Âeqv
2 with the two sets of estimated equivalent DOAs Θ̂eqv

1
and Θ̂eqv

2 respectively (Equation (5.15)).

step 4
Recover the equivalent source signals ŝeqv1 (t) and ŝeqv2 (t) impinging on
the two subarrays (Equation (5.17)).

step 5
Calculate the cross-correlations between ŝeqv1 (t) and ŝeqv2 (t) (Equation
(5.19)), and achieve the pair matching of the estimated equivalent DOAs
by finding the K cross-correlations with the largest modulus.

step 6

For each of the K pairs of the matched equivalent DOAs, generate two
sets of candidate DOAs Θ̂cand

1,k and Θ̂cand
1,k (Equation (5.22)). The es-

timate of the true DOA θ̂k (k = 1, 2, · · · , K) is given by the unique
common angle among them.

5.3 Simulation and analysis

To assess the performance of the proposed method, firstly, the proposed method is com-
pared with Zhou’s method in [56] in a pair matching errors situation. Then in a grating
angles problem situation, it is compared with the Sun’s method in [58] and Zhang’s me-
thod in [59], which solve the pair matching errors. Finally, in order to assess the accuracy
and complexity performance of the proposed method, it is compared with Yang’s method
in [60], which also considers the pair matching errors and grating angles problem.

5.3.1 Reliability comparison

To show the superiority of the proposed method in pair matching errors situations,
consider the situation mentioned Section 2.3.2, where a CLA is composed of two coprime
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subarrays with the numbers of sensor elementsM1 = 7,M2 = 5, and two incoming signals
impinging on the CLA from θ1 = 10.00◦ and θ2 = 39.11◦ respectively. The reliability
comparison of the proposed method and Zhou’s method is shown in FIGURE 5.5 with 10
independent simulation runs, in which the SNR is 0dB and the number of snapshots is 200.
It can be seen that because Zhou’s method only finds out the common peaks in the MUSIC
spectrums obtained from the two subarrays without pair matching, the estimation results
may be ambiguous. In contrast, thanks to the equivalent system model, the proposed me-
thod can achieve the pair matching of the equivalent DOAs associated with the same source
in different subarrays by analyzing the cross-correlations between the equivalent signals,
and the performance remains remarkable and stable.

theta
-80 -60 -40 -20 0 20 40 60 80

N
um

be
r 

of
 S

im
ul

at
io

ns

0
1
2
3
4
5
6
7
8
9

10
11

Zhou's method
True DOAs

theta
-80 -60 -40 -20 0 20 40 60 80

N
um

be
r 

of
 S

im
ul

at
io

ns

0
1
2
3
4
5
6
7
8
9

10
11

Proposed method
True DOAs

FIGURE 5.5 – Reliability comparison in the pair matching errors situation

To emphasize the superiority of the proposed method in grating angles problem situa-
tions, consider the situation mentioned Section 2.3.3, where a CLA is composed of two
coprime subarrays with the numbers of sensor elements M1 = 7, M2 = 5, and three in-
coming signals impinging on the CLA from θ1 = 10.00◦, θ2 = 27.35◦ and θ3 = 35.01◦

respectively. The reliability comparison of the proposed method with Sun’s method in [58]
and Zhang’s method in [59] is shown in FIGURE 5.6 with 10 independent simulation runs,
in which the SNR is 0dB and the number of snapshots is 200. It is obvious that although
the two existing methods can overcome the pair matching errors with beamforming-based
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methods and the relationship between the directional matrices of the two subarrays, they
ignore the fact that the directional matrices would be rank deficient due to the grating angles
problem, and their performance cannot remain stable. In contrast, thanks to the equivalent
system model, the equivalent directional matrices are full rank, and the correctly matched
equivalent DOA pairs can be found by studying the cross-correlations between the equiva-
lent signals. Thus it can work correctly in such situations.
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FIGURE 5.6 – Reliability comparison in the grating angles problem situation

5.3.2 Accuracy comparison

To assess the DOA estimation performance of the proposed method, the root mean
square error (RMSE) is used as performance measurement, which is defined as

RMSE =

√√√√√ 1
KQ

K∑
k=1

Q∑
q=1

(
θ̂q,k − θk

)2
(5.23)
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with K the number of incoming signals, Q the number of Monte Carlo trials, and θ̂q,k the
estimate of the true DOA θk at the qth Monte Carlo trial. Q = 500 is used, and a CLA with
M1 = 7 and M2 = 5 is considered. The Cramér-Rao lower bound (CRB) for this CLA
geometry is also given as a benchmark [102–104].

The RMSE performance of the proposed method and Yang’s method in [60] is com-
pared in a normal situation, where two signals are assumed to impinge on the CLA from
θ1 = 10.00◦ and θ2 = 40.00◦, and a grating angles problem situation, where three signal
are assumed to impinge on the CLA from θ1 = 10.00◦, θ2 = 27.35◦ and θ3 = 35.01◦,
versus SNR (snapshots number is 200) and snapshots number (SNR is 10dB). FIGURE
5.7 — FIGURE 5.10 illustrate the obtained results. Because the peak-searching in Yang’s
method is performed in the sine domain, the searching step is chosen as 0.001 to obtain a
precise estimation. It can be seen that both methods can achieve a remarkable performance
in grating angles problem situations, but since a “beamforming-like” method is utilized, the
accuracy of the method in [60] is limited. On the contrary, based on the ESPRIT method,
the proposed method can achieve a better estimation result, and its RMSE curves are closer
to the CRB.
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FIGURE 5.7 – RMSE comparison versus SNR in the normal situation
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FIGURE 5.8 – RMSE comparison versus snapshots number in the normal situation
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FIGURE 5.9 – RMSE comparison versus SNR in the grating angles problem situation
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FIGURE 5.10 – RMSE comparison versus snapshots number in the grating angles problem
situation

5.3.3 Complexity comparison

According to TABLE 5.1, the proposed method requires the covariance matrices esti-
mation, eigenvalue decomposition of the covariance matrices, equivalent signals recovery
and cross-correlation computation. The resulted complexity is given by

O
((
M2

1 +M2
2

)
J +M3

1 +M3
2 + 5K2 (M1 +M2) + 6K3 + (M1 +M2)KJ +K2J

)
(5.24)

And for Yang’s method in [60], it requires the cross-covariance matrix estimation, singular
value decomposition of the cross-covariance matrix and peak-searching with the order of
complexity given as

O
(
M1M2J + 4M1M

2
2 +M3

2 + 3M1K
2 + 2K3 + 2M1K

M2 × sch

)
(5.25)

where J is the number of snapshots and sch is the searching step length. The complexity
comparison versus total number of sensors (M1 +M2 − 1) is given in FIGURE 5.11, with
K = 2, J = 200, and the grating angles problem is assumed to be not existing. The sear-
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ching step length is set as 0.0001 to achieve a similar RMSE performance between the two
algorithms. It can be observed that without peak-searching, the proposed method has lo-
wer computational complexity. When grating angles problem exists, some K in Equation
(5.24) will be replaced by K1 or K2 with K1, K2 < K, and the corresponding computatio-
nal complexity will be lower than Equation (5.24). Therefore, with the proposed method,
the DOA estimation can be accomplished more efficiently.
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FIGURE 5.11 – Complexity comparison versus sensors number

For the other compared methods in [56, 58, 59], their practicability is limited by the
pair matching errors or grating angles problem. Therefore, their performance in terms of
accuracy and complexity is less significant in the case of real applications.

5.4 Conclusion

In this chapter, an efficient DOA estimation method with coprime linear subarrays is
proposed. Considering the rank deficiency of the directional matrices caused by the grating
angles problem, a traditional half-wavelength spacing ULA based equivalent system model
is introduced, where the true DOAs are mapped into their corresponding equivalent DOAs
and the equivalent directional matrices are full rank. After the estimation of the equivalent
DOAs, the corresponding equivalent signals can be recovered from the received signals,
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5.4. Conclusion

the pair matching of the equivalent DOAs can then be achieved by analyzing the cross-
correlations between the equivalent signals. Compared with other existing research works,
the proposed method remains robust in any situations with a better estimation performance
in terms of accuracy and complexity.
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CHAPITRE 6

DOA ESTIMATION WITH UNFOLDED

COPRIME LINEAR ARRAYS

In the previous chapter, the DOA estimation with coprime linear subarrays is discussed.
It is shown that by considering a CLA as two sparse ULAs and performing DOA estimation
on both of them separately, high-precision but ambiguous DOA estimation can be obtained,
and the ambiguities caused by the large inter-element spacing can be eliminated according
to the coprime property. Besides, methods have been proposed to successfully solve the po-
tential problems like pair matching errors and grating angles problem. However, separately
handling the two subarrays causes the following problems :

i) the final DOFs are determined by the smallest DOFs of the two subarrays, which are
much less than the total number of sensor elements ;

ii) only the self information of the two subarrays is utilized, which results in a sub-optimal
estimation performance ;

iii) further processes are required to eliminate the ambiguities caused by the large inter-
element spacing, leading to computational burden in practical applications.

To tackle these problems, an antenna geometry named unfolded coprime linear array
(UCLA) is proposed in [79]. By unfolding the two subarrays of a general CLA in two
opposite directions, the array aperture can be extended. Furthermore, instead of treating the
two subarrays separately, the MUSIC method is performed with the received signal of the
whole array. This technique, having been extended to the scenarios of noncircular signals
in [81] and 2D DOA estimation in [82,83], enjoys the advantages that both self and mutual
information can be exploited and full DOFs can be obtained. Besides, it has been admitted
that the ambiguities caused by the large inter-element spacing can be suppressed thanks to
the coprime property. However, it is not always true. When there are two different DOAs
having the same directional vectors with the directional vector of a given DOA for the two
subarrays respectively, there would still be ambiguous angles of which the corresponding
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directional vectors can be represented as linear combinations of the directional vectors
of true DOAs. As a consequence, the directional vectors of these ambiguous angles are
also orthogonal to the noise subspace, which means that some peaks associated with these
ambiguous angles will also be found in the MUSIC spectrum.

In this chapter, the DOA estimation with UCLAs is introduced. For the ignored ambi-
guity problem, the principle of its generation is investigated and a modified DOA estima-
tion method with ambiguity-eliminating is proposed. Firstly, a decision variable is defined
to determine the existence of the ambiguity problem. Then all the angles associated with the
highest spectral peaks, including the true DOAs and the ambiguous angles, are selected out
and the Classical Beamforming (CBF) approach is utilized to distinguish them. Simulation
results are provided to show the efficiency of the proposed method.

6.1 System model and DOA estimation

A UCLA consists of two sparse ULAs arranged along two opposite directions, having
M1 and M2 sensor elements with inter-element spacing d1 = M2

λ
2 and d2 = M1

λ
2 , respec-

tively, where M1 and M2 are two coprime integers. FIGURE 6.1 shows the case of M1 = 7
and M2 = 5. The element shared by the two subarrasy is set as the reference point, and the
total number of sensor elements is N = M1 +M2 − 1.

subarray 1subarray 2

FIGURE 6.1 – Unfolded coprime linear array with M1 = 7 and M2 = 5

Assume that there are K (K is supposed to be known and K < N ) uncorrelated, far-
field and narrowband source signals coming from directions {θ1, θ2, · · · , θK}, with−90◦ <
θk < 90◦ and 1 ≤ k ≤ K, respectively. The received signal of the UCLA can be presented
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6.1. System model and DOA estimation

as
x (t) = As (t) + n (t) (6.1)

where
A =

[
a (θ1) a (θ2) · · · a (θK)

]
(6.2)

denotes the directional matrix and

a (θk) =
[
aT1 (θk) aT2 (θk)

]T
(6.3)

denotes the directional vector of the UCLA, with

a1 (θk) =
[
1 ejM2π sin θk · · · ej(M1−1)M2π sin θk

]T
(6.4)

a2 (θk) =
[
e−j(M2−1)M1π sin θk e−j(M2−2)M1π sin θk · · · e−jM1π sin θk

]T
(6.5)

the directional vectors of the two subarrays respectively ;

s (t) =
[
s1 (t) s2 (t) · · · sK (t)

]T
(6.6)

denotes the source signal vector with sk(t) the signal transmitted by the signal coming from
θk and received at the reference sensor, and n (t) is the white Gaussian noise vector with
zero-mean and covariance matrix σ2IN , and supposed to be independent from the source
signals.

Instead of estimating the DOAs with the two subarrays separately, the MUSIC method
is performed on the whole array, and the covariance matrix of the received signal can be
estimated with L snapshots by

R̂ = 1
L

L∑
t=1

x (t) xH (t) =
R̂11 R̂12

R̂21 R̂22

 (6.7)

where R̂11 and R̂22 are the auto-covariance matrices and R̂12 and R̂21 are the cross-
covariance matrices of the signals received by the two subarrays respectively. It can be
seen that except the self-information of the two subarrays R̂11 and R̂22, which is only used
in subarrays-based methods, the mutual information R̂12 and R̂21 is also used by UCLAs,
contributing to the improvement of the estimation performance.
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The eigenvalue decomposition of the covariance matrix R̂ can be written as

R̂ = UsΛsUH
s + UnΛnUH

n (6.8)

where Us and Un are composed by the eigenvectors spanning the signal subspace and noise
subspace respectively, and Λs and Λn are the eigenvalue matrices corresponding to Us and
Un respectively. The pseudo-spectrum of MUSIC can be represented by

PMUSIC(θ) = 1
aH (θ) UnUH

n a (θ) (6.9)

Then according to the orthogonality between signal and noise subspaces, the DOAs can
be determined by peak-searching of PMUSIC(θ) over (−90◦, 90◦). Specifically, unlike the
spectrums of the subarrays, for a given DOA, only the spectral peak related to the real DOA
estimate arise without ambiguities, of which the proof is given in the following.

Suppose that for a given DOA θk, except its real estimate θ̂k, there exists another esti-
mate, denoted as θ̂ambk 6= θ̂k, presenting an ambiguous peak in the MUSIC spectrum, which
means that the ambiguous estimate θ̂k has the same directional vector for the UCLA with
the real estimate θk. Then we have

a
(
θ̂k
)

= a
(
θ̂ambk

)
(6.10)

and according to Equations (6.3) — (6.5), there are

a1
(
θ̂k
)

= a1
(
θ̂ambk

)
(6.11)

a2
(
θ̂k
)

= a2
(
θ̂ambk

)
(6.12)

and

M2π sin θ̂k = M2π sin θ̂ambk + 2k1π (6.13)

M1π sin θ̂k = M1π sin θ̂ambk + 2k2π (6.14)

where k1 and k2 are two non-zero with k1 ∈ [−M2 + 1,−1] ∪ [1,M2 − 1] and k2 ∈
[−M1 + 1,−1] ∪ [1,M1 − 1] respectively.
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6.1. System model and DOA estimation

Then it can be deduced that

sin θ̂k − sin θ̂ambk = 2k1

M2
(6.15)

sin θ̂k − sin θ̂ambk = 2k2

M1
(6.16)

and
2k1

M2
= 2k2

M1
(6.17)

Due to the coprime property between M1 and M2, we cannot find such k1 and k2 satis-
fying Equation (6.17). Therefore, except θ̂k, there is no θ̂ambk satisfying Equation (6.10) and
exhibiting a peak in the MUSIC spectrum. FIGURE 6.2 depicts the DOA estimation result
of the situation where an incoming signal impinges on a UCLA with the sensor element
numbers of the two subarrays M1 = 7 and M2 = 5 from direction θ = 10◦. The number
of snapshots is set to 200 with SNR = 10dB. Compared with the traditional CLA with
subarrays-based methods, of which the DOA estimation result is shown in FIGURE 2.9,
it can be seen that the ambiguities caused by the large inter-element spacing are suppres-
sed thanks to the coprime property, then the following step to eliminate the ambiguities by
searching for the overlapped peaks is no more needed.
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FIGURE 6.2 – DOA estimation result of the UCLA with M1 = 7 and M2 = 5

Although it has been admitted that for a single incoming signal, no ambiguities exist in
the MUSIC spectrum of the whole UCLA, it is not always true for the scene of multiple
incoming signals. When there are two different DOAs having the same directional vectors
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with the directional vector of a given DOA for the two subarrays respectively, there would
still be ambiguous angles, of which the proof is given in the following section.

6.2 Ambiguity problem

Because of the large inter-element spacing of each subarray, for a given DOA with its
associated directional vector, there exist several other angles having the same directional
vector for either subarray. Consider that there are three distinct DOAs θ1, θ2 and θ3, of
which the directional vectors satisfy that

a1 (θ1) = a1 (θ3) (6.18)

a2 (θ1) = a2 (θ2) (6.19)

Then the relationship between θ1, θ2 and θ3 can be written as

M2π sin θ1 = M2π sin θ3 + 2k1π (6.20)

M1π sin θ1 = M1π sin θ2 + 2k2π (6.21)

where k1 and k2 are two non-zero integers with k1 ∈ [−M2 + 1,−1] ∪ [1,M2 − 1] and
k2 ∈ [−M1 + 1,−1] ∪ [1,M1 − 1] respectively.

From Equations (6.20) and (6.21), it can be deduced that

sin θ2 − sin θ3 = 2k1

M2
− 2k2

M1
(6.22)

which can be re-written as

sin θ2 + 2
M2

(−k1) = sin θ3 + 2
M1

(−k2) (6.23)

Defining the term sin θ4 and expressing Equation (6.23) in the two following equations
as

sin θ4 = sin θ2 + 2
M2

(−k1) (6.24)

sin θ4 = sin θ3 + 2
M1

(−k2) (6.25)
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then it comes that

M2π sin θ4 = M2π sin θ2 + 2 (−k1) π (6.26)

M1π sin θ4 = M1π sin θ3 + 2 (−k2) π (6.27)

Then the following equations are obtained

a1 (θ4) = a1 (θ2) (6.28)

a2 (θ4) = a2 (θ3) (6.29)

and according to Equations (6.18), (6.19) and Equations (6.28) and (6.29), there is the
relationship between the directional vectors of θ1, θ2, θ3 and θ4 as

 a1 (θ1)
a2 (θ1)

−
 a1 (θ2)

a2 (θ2)

−
 a1 (θ3)

a2 (θ3)

+
 a1 (θ4)

a2 (θ4)

 = 0 (6.30)

It can be seen that the directional vector of θ4 can be represented as a linear combination
of the directional vectors of the other three angles, and when there are three signals coming
from any three of the four angles, the directional vector of the remaining one would lie in
the signal subspace and be also orthogonal to the noise subspace, resulting in an ambiguous
peak in the MUSIC spectrum. Generally, for an arbitrary number of incoming signals (at
least three), if the DOAs of three of them meet the conditions given by Equations (6.18)
and (6.19), then the ambiguity problem occurs.

Consider a UCLA with M1 = 7, M2 = 5, and three incoming signals impinge on
the UCLA from θ1 = 10.00◦, θ2 = 27.35◦ and θ3 = 35.01◦ respectively, satisfying
Equations (6.18) and (6.19). The simulation result is shown in FIGURE 6.3, in which
SNR = 10dB and the number of snapshots is 200. It is clear that apart from the three
correct estimates, there is another angle θ4 = 59.25◦, satisfying Equations (6.28) — (6.30)
and giving an ambiguous peak in the MUSIC spectrum. For such UCLA configuration,
the ambiguity problem also occurs in the cases of {θ1, θ2, θ3} = {20.00◦, 38.88◦, 47.90◦},
{30.00◦, 12.37◦, 64.16◦} and others satisfying Equations (6.18) and (6.19), which is a real
problem in the applications of UCLAs.
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FIGURE 6.3 – Ambiguity problem of UCLAs

6.3 Proposed ambiguity-eliminating method

In order to solve the ambiguity problem, we propose an eliminating method. Firstly, it
is required to determine if the problem exists or not. The MUSIC spectrum is expected to
exhibit K high peaks associated with the K true DOAs. However, when some ambiguous
peaks exist, more than K high peaks will be found. Suppose that there are totally Q peaks
in the MUSIC spectrum, of which the locations and amplitudes are denoted as (θ̂p, yp) with
p = 1, 2, · · · , Q. Sorting yp in descending order, we have

y1 > y2 > · · · > yQ (6.31)

Define a decision variable as

D (n) = yn − yn+1

yn+1
(6.32)

where n = 1, 2, · · · , Q−1. It can be noticed that when both yn and yn+1 are two amplitudes
of high peaks or low peaks, the decision variable D(n) is small. If yn is the amplitude of
a high peak and yn+1 is the amplitude of a low peak, the decision variable D(n) becomes
much larger. Thus the number of high peaks can be decided by

J = arg max
n

D (n) (6.33)
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and when J > K, the ambiguity problem is considered as existing.

To distinguish the true DOAs and the ambiguous angles, the Classical Beamforming
(CBF) approach can be utilized. The J angles associated with the J highest peaks θ̂q with
q = 1, 2, ·, J are selected out as candidate DOAs, then J candidate directional vectors can
be constructed with these candidate DOAs by

a
(
θ̂q
)

=
 a1

(
θ̂q
)

a2
(
θ̂q
)  (6.34)

Then according to Section 1.3.1, the CBF powers of the J candidate directional vectors can
be calculated by

PCBF,q =
aH

(
θ̂q
)

R̂a
(
θ̂q
)

N2 (6.35)

Signals come from the true DOAs and there is no physical signal coming from ambi-
guous angles. Therefore the CBF power at the true DOAs is greater than that at the ambi-
guous angles. By finding the K greatest results in Equation (6.35), the true DOAs can be
obtained.

6.4 Simulations and analysis

6.4.1 Reliability comparison

To illustrate the effectiveness of the proposed ambiguity-eliminating method, consider
the ambiguity problem case of which the simulation result is shown in FIGURE 6.3. Select
out the locations and amplitudes of all the peaks in the MUSIC spectrum and calculate the
decision variable D(n) with Equation (6.32). The obtained results are shown in TABLE
6.1. According to the maximum of D(n), there are J = 4 peaks obviously higher than
the others, corresponding to the three true DOAs and one ambiguous angle. Select out
the J = 4 candidate angles and calculate their corresponding CBF powers PCBF,q with
Equation (6.35). The obtained results are shown in TABLE 6.2. It is clear that the CBF
powers at the three true DOAs are greater than that at the ambiguous angle. Therefore, the
true DOAs can be distinguished among the candidate angles, and the ambiguity problem is
solved successfully.
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TABLE 6.1 – Decision variable

n 1 2 3 4 5 6− 29

D(n) 0.8098 0.2572 0.4372 833.58 0.0046 <0.3

TABLE 6.2 – CBF powers and test results

θ̂q 10.00◦ 35.02◦ 27.36◦ 59.31◦

PCBF,q 1.4465 1.2200 1.1740 0.4997

true or ambiguous true true true ambiguous

The ambiguity problem does not affect the estimation accuracy, but invalidates the es-
timation by introducing non-existing DOAs. The proposed method can achieve the same
estimation performance as the existing method when there is no ambiguity problem, and is
still robust and reliable when the problem occurs. To reveal the reliability of the proposed
ambiguity-eliminating method in ambiguity problem cases, the comparison of the propo-
sed method and the original method in [79] is shown in Figure 6.4, with 20 independent
simulations, in which SNR is 10dB and the number of snapshots is 200. The three estima-
ted angles with the highest peak amplitudes and the greatest CBF powers are chosen as the
final estimation results for the original method in [79] and the proposed method respecti-
vely. It can be seen that the estimation results of the original method are ambiguous and the
unsolved ambiguity problem reduces the rate of success of DOA estimation. In contrast,
the proposed ambiguity-eliminating method can solve the ambiguity problem successfully,
and the performance remains stable and remarkable.

6.4.2 Complexity comparison

According to the principle of the proposed ambiguity-eliminating method, the compu-
tational complexity will be different, depending on the existence of the ambiguity problem.
When the ambiguity problem does not exist, the computational complexity of the proposed
method is

O
(
N2L+N3 + TN (N −K)

)
(6.36)
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FIGURE 6.4 – Reliability comparison

which is the same as the original method in [79], where T is the number of spectral peak-
searching. When the problem exists, the computational complexity of the proposed method
turns out to be

O
(
N2L+N3 + TN (N −K) + JN2

)
(6.37)

which slightly exceeds that of the original method.

6.5 Conclusion

In this chapter, the DOA estimation with UCLAs is discussed and an ignored ambiguity
problem is investigated. We show that there would be ambiguous peaks in the MUSIC
spectrum when there are two different DOAs having the same directional vectors with
the directional vector of a given DOA for the two subarrays respectively. To address this
issue, an ambiguity-eliminating method is proposed. Firstly, a decision variable is defined
to determine the existence of the problem, and then the true DOAs are distinguished based
on the CBF technique. Simulation results show that the proposed method can successfully
solve the ambiguity problem with a slight additional computational complexity burden,
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achieving a wider range of applications.
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CHAPITRE 7

CONCLUSION AND PERSPECTIVES

7.1 Conclusion of contributions

In this thesis, the DOA estimation with coprime arrays is considered. Both the two
research orientations, which are difference-coarray based methods and subarray-based me-
thods, are investigated, and array configurations and DOA estimation methods are improved
for better performance in terms of DOFs and reliability. The main contribution are summa-
rized as follows.

For difference-coarray based methods, moving platforms based CLAs with their cor-
responding difference coarrays are studied, and the problem that the lags in the consecutive
difference coarray part contribute negligibly to the increase of the DOFs after array motion
is pointed out. To address this issue, an improved CLA configuration for moving plat-
form is proposed. By judiciously redesigning the sensor element positions, the lags in the
consecutive part of the original difference coarray can be used to fill holes after array mo-
tion, lengthening the consecutive part of the difference coarray and increasing the effective
DOFs.

Then, to be more relevant to real applications, the structure of the difference coarrays of
2D CPAs is investigated. Closed-form expressions of the exact hole locations are deduced,
offering a better understanding of CPAs and providing a basis for the future research in this
domain. Besides, a holes-filling method is proposed, by which the most critical holes can
be filled, such that a difference coarray with more consecutive lags can be generated and
higher effective DOFs can be obtained.

For subarray-based methods, the existing problems associated with this class of me-
thods, including ambiguity, pair matching errors and grating angles problem, are discussed.
Considering the possible rank deficiency of the directional matrices, an equivalent system
model is introduced, and a reliable and efficient DOA estimation method is proposed, which
can work correctly in all situations and has a better performance in terms of estimation ac-
curacy and computational complexity.
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Finally, for the UCLAs which enjoy the advantages of full DOFs and better estimation
performance compared to CLAs with subarrays based methods, the ambiguity problem
ignored by the existing works is revealed, and an appropriate fixing method is proposed, by
which such problem can be solved successfully and efficiently.

7.2 Perspectives of future work

For the future work, the following lists several suggestions based on the proposition
presented in the thesis.

For the moving platform based CLAs, the CLAs are assumed to be air-borne, vehicle-
attached or ship-based, which is proposed for practical applications. Considering that the
motion of the platform is controllable and not necessarily along the array direction, mo-
ving the CLA in another direction to generate a 2D difference coarray aiming to solve 2D
DOA estimation problems is more relevant and efficient to practical applications, and is
recommended to investigate in the future.

For the CPAs with the proposed holes-filling method, although the effective DOFs can
be significantly increased, the resulting difference coarray is not complete, and there still
exist unfilled holes. With the knowledge of the deduced hole locations, the filling of such
remaining holes would be one of the future research orientations.

For the CLAs with subarray-based methods, the proposed DOA estimation and ambiguity-
solving methods assume the sources to be far-field, narrowband and uncorrelated, which
may not be valid in practical situations. Hence, the improvement of such theory for more
general assumptions would be another topic of the future research.
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Résumé: L'estimation de la direction d'arrivée 
(DOA) des sources avec les réseaux coprimes a été 
beaucoup étudiée grâce à leurs degrés de liberté 
(DOFs) élévés et leurs meilleures performances 
d'estimation. La recherche existante dans ce 
domaine évolue vers deux orientations, qui sont les 
méthodes basées sur le difference coarray, qui 
tentent d'augmenter les DOFs effectifs, et les 
méthodes basées sur les sous-réseaux, qui tentent 
d'obtenir une estimation de DOA avec haute 
précision et faible complexité. Dans cette thèse, les 
deux orientations de recherche sont toutes les deux 
investies. Du point de vue des méthodes basées sur 
le difference coarray, les réseaux linéaires 
coprimes basés sur une plate-forme mobile sont 
étudiés, et les positions des capteurs sont 
judicieusement  redéfinies,  de  sorte  que les DOFs  

effectifs sont considérablement augmentés. 
Ensuite, la structure des difference coarrays des 
réseaux planaires coprimes est explorée, et les 
expressions des emplacements des trous dans les 
difference coarrays sont déduites, fournissant une 
base pour la recherche future. Du point de vue des 
méthodes basées sur les sous-réseaux, les 
problèmes potentiels associés à cette classe de 
méthodes sont mis en évidence, et une méthode 
d'estimation de DOA fiable et efficace est 
proposée. En outre, la configuration des réseaux 
linéaires coprimes dépliés est étudiée. Un 
problème d'ambiguïté ignoré par la recherche 
existante est discuté, et une méthode de levée des 
ambiguités est proposée, par laquelle le problème 
peut être résolu efficacement. 
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Abstract : Direction of arrival (DOA) estimation 
with coprime arrays has been investigated a lot 
thanks to the higher degrees of freedom (DOFs) 
and better estimation performance. The existing 
research in this domain develops towards two 
orientations, which are difference coarray-based 
methods, trying to increase the effective DOFs, 
and subarray-based methods, aiming to obtain high 
precision DOA estimation with low complexity. In 
this dissertation, the two research orientations are 
both investigated. From the perspective of 
difference coarray-based methods, moving 
platform based coprime linear arrays are 
investigated, and the sensor element positions are 
judiciously   redesigned,  such  that   the   effective  

DOFs are significantly increased. Then the 
structure of the difference coarrays of coprime 
planar arrays is explored, and closed-form 
expressions of the hole locations in the difference 
coarrays are deduced, providing a basis for the 
future research. From the perspective of subarray-
based methods, the potential problems associated 
with this class of methods are discussed, and a 
reliable and efficient DOA estimation method is 
proposed. Besides, the configuration of unfolded 
coprime linear arrays is investigated. An 
ambiguity problem ignored by the existing 
research is discussed, and an ambiguity-
eliminating method is proposed, by which the 
problem can be solved efficiently. 
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