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RÉSUMÉ

Dans les années récentes, grâce à la capacité de capturer spatialement le front d'onde des signaux entrants, les réseaux de capteurs ont été largement utilisés dans de nombreuses applications, telles que le radar, l'astronomie, le sonar et le système de communication sans fil. En tant qu'une base fondamentale des réseaux de capteurs, les techniques de traitement d'antennes permettent l'estimation des paramètres du signal, tels que la fréquence, la puissance et l'emplacement des sources, par l'observation perturbée par le bruit et les interférences, ce qui soutient grandement le développement de systèmes de réseau de capteurs.

La direction d'arrivée (DOA), qui est définie par les angles d'incidence des signaux entrants, est l'un des paramètres des signaux sources les plus significatifs, et l'estimation de DOA est considérée comme un problème crucial dans le radar, sonar et autres systèmes où des réseaux de capteurs sont impliqués. Pendant ces dernières décennies, l'estimation de DOA a été bien étudiée sur la base de réseaux linéaires uniformes (ULAs), dont les capteurs sont uniformément répartis en ligne droite avec un espacement inter-élément égale à une demi-longueur d'onde des signaux entrants pour éviter les ambiguïtés. De nombreux algorithmes ont été proposés pour l'estimation de DOA, y compris des méthodes basées sur la formation de voies comme la formation de voies conventionnelle et Capon, et les méthodes à haute résolution basées sur un sous-espace comme MUSIC et ESPRIT. Cependant, pour la configuration ULA, la longueur du réseau est limitée par son petit espacement inter-éléments, ce qui entraîne des performances d'estimation insatisfaisantes. Par ailleurs, seulement jusqu'à M -1 sources peuvent être détectées aves M capteurs. Par conséquent, un nombre important de capteurs est nécessaire lorsque le nombre de signaux entrants est grand, ce qui est irréaliste et difficile à réaliser pour les applications pratiques.

Récemment, les configurations de réseaux lacunaires ont attiré beaucoup d'attention.

Étant supérieurs aux ULAs traditionnels, les réseaux lacunaires, avec des capteurs localisés non uniformément, peuvent fournir un réseau de capteurs de longueur importante avec moins de capteurs, améliorant ainsi les performances d'estimation. En effet, en exploitant la difference coarray obtenue par l'observation du réseau de capteurs physiques, un long ULA virtuel avec l'espacement de demi-longueur d'onde ULA peut être obtenu. Avec beaucoup plus des éléments virtuels que le nombre d'éléments de capteurs physiques, l'ULA virtuel peut être utilisé pour effectuer l'estimation de DOA, et beaucoup plus de sources peuvent être détectées.

Parmi les configurations de réseaux lacunaires, les réseaux linéaires coprimes (CLAs) ont été considérés comme les plus prometteurs grâce à la solution analytique des positions des capteurs et grâce à la réduction du couplage entre les capteurs. La recherche existante pour l'estimation de DOA avec CLAs évolue vers deux orientations, qui sont les méthodes basées sur le difference coarray et les méthodes basées sur les sous-réseaux. Les premières exploitent le CLA du point de vue des difference coarrays, en essayant d'augmenter le nombre maximum de sources détectables ; les dernières traitent le CLA comme deux sous-réseaux linéaires uniformes avec grande distance inter-capteurs, essayant d'obtenir une estimation de DOA avec haute précision et d'éliminer les ambiguïtés causées par le grand espacement inter-éléments. Cependant, pour les méthodes basées sur le difference coarray, le nombre d'éléments virtuels effectifs dans le difference coarray est limité par l'existence de trous, de sorte que le nombre de signaux détectables n'est pas aussi élevé que prévu ; pour les méthodes basées sur les sous-réseaux, à cause du grand espacement inter-éléments de chaque sous-réseau, certains problèmes ont été ignorés par les études existantes, affaiblissant leur robustesse et limitant le développement des réseaux coprimes dans des applications réelles.

Dans cette thèse, nous nous concentrons sur l'estimation de DOA par des méthodes basées sur le difference coarray et des méthodes basées sur les sous-réseaux, en essayant d'augmenter le nombre de sources détectables et d'améliorer la robustesse. Le travail principal est résumé comme suit.

1. Pour fournir les bases théoriques de toute la thèse, nous introduisons tout d'abord les bases des techniques de traitement d'antenne, y compris le modèle mathématique des signaux reçus par un réseau de capteurs, plusieurs configurations de réseaux de capteurs uniformes traditionnels, et certains algorithmes d'estimation de DOA conventionnels. Ensuite, l'estimation de DOA avec CLAs est présentée, impliquant les deux orientations de recherche, , notamment, les méthodes basées sur le difference coarray et les méthodes basées sur les sous-réseaux, avec leurs modèles de signaux reçus, les principes d'estimation de DOA et les principaux défis de recherche. L'efficacité de toutes les propositions de cette thèse est soutenue par des résultats des simulations et par la publication de trois articles dans des revues [ii-iv], et quelques suggestions des recherches futures dans ce domaine sont fournies à la fin de cette thèse. red as the most promising one thanks to their closed-formed expressions of sensor locations and limited mutual coupling effect. The existing research for DOA estimation with CLAs develops towards two orientations, which are difference coarray-based methods and subarray-based methods. The former exploits the CLA from the perspective of difference coarrays, trying to increase the maximum number of detectable sources ; the latter treats the CLA as two sparse uniform linear subarrays with large array aperture, trying to obtain high precision DOA estimation and eliminating the ambiguities caused by the large inter-element spacing. However, for the difference coarray-based methods, the number of effective lags in the difference coarray is limited by the existence of holes, such that the number of detectable signals is not as high as expected ; for the subarray-based methods, because of the large inter-element spacing of each subarray, some problems have been ignored by the existing studies, weakening their robustness and limiting the development of coprime arrays in real applications.

In this dissertation, we focus on the DOA estimation with coprime arrays from the perspectives of both the difference coarray-based methods and subarray-based methods, trying to increase the number of detectable sources and enhance the robustness. The main work is summarized as follows.

1. To provide the theoretical foundation for the whole dissertation, firstly, we introduce the basic of array signal processing techniques, including the mathematical model of received signals of sensor arrays, several traditional uniform sensor array configurations, and some conventional DOA estimation algorithms. Then, the DOA estimation with CLAs is presented, involving the two research orientations of difference coarray-based methods and subarray-based methods respectively, with their corresponding received signal models, DOA estimation principles, and main research challenges.

2. From the perspective of difference coarray-based methods, to increase the number of effective lags in the difference coarray as well as the number of detectable sources, moving platform based CLAs have been studied, and it has been shown that the number of detectable sources can be increased by shifting the CLA a half wavelength of incoming signals. In this thesis, the resulting difference coarray of the CLA after array motion is analyzed, and an improved CLA configuration for moving platform is proposed. By judiciously redesigning the sensor element positions, the shift of the LIST OF PUBLICATIONS i. X. Yang, Y. Wang, and P. Chargé, "Improved coprime linear array configuration for moving platform in DOA estimation," IEEE Communication letters, 2020 (Early access).
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INTRODUCTION Research Background and Motivation

In the last decades, sensor arrays have been widespreadly used in communications, biomedical engineering, remote sensing and other applications [START_REF] Andrews | What will 5G be ?[END_REF][START_REF] Lu | An overview of massive MIMO : Benefits and challenges[END_REF][3][4][5][6][START_REF] Tarchi | MIMO radar and ground-based SAR imaging systems : Equivalent approaches for remote sensing[END_REF][START_REF] Wang | Applications of MIMO technique for aerospace remote sensing[END_REF][START_REF] Williams | Sound source reconstructions using a microphone array[END_REF][START_REF] Bracewell | Radio astronomy techniques[END_REF]. Being superior to single sensor systems, sensor arrays, composed of multiple sensor elements, can spatially capture the wavefront of incoming signals and extract the information of interest from the observation in the presence of noise and interference. Supporting the development of sensor array systems, array signal processing techniques focus on the estimation of signal parameters, such as frequency, power and source location, by exploiting the temporal and spatial characteristics of the signal received by regularly distributed sensor elements, and have become an active research topic in the field of wireless signal processing [START_REF] Krim | Two decades of array signal processing research : the parametric approach[END_REF][START_REF] Heath | An overview of signal processing techniques for millimeter wave MIMO systems[END_REF][START_REF] Swindlehurst | Maximum likelihood methods in radar array signal processing[END_REF][START_REF] Benesty | Microphone array signal processing[END_REF][START_REF] Haykin | Radar array processing[END_REF]. Direction of arrival (DOA), defined by the incident angles of signals impinging on a array of sensors, is one of the most significant array signal parameters, and DOA estimation is an important research branch of array signal processing techniques, playing a crucial role in many fields of real applications [START_REF] Krim | Two decades of array signal processing research : the parametric approach[END_REF]. In multiple-input and multiple-output (MIMO) radar systems, an excellent bearing resolution is highly demanded, and a radar with an effective DOA estimation capacity can detect and track targets accurately [START_REF] Jin | Joint DOD and DOA estimation for bistatic MIMO radar[END_REF][START_REF] Bencheikh | Joint DOD-DOA estimation using combined ESPRIT-MUSIC approach in MIMO radar[END_REF]. In sonar systems, because of the complexity of underwater environment, a robust DOA estimation is a critical issue for ships navigation [START_REF] Rajagopal | Generalised algorithm for DOA estimation in a passive sonar[END_REF][START_REF] Li | DOA estimation for underwater wideband weak targets based on coherent signal subspace and compressed sensing[END_REF]. In wireless communication systems, in order to improve the signal transmission efficiency, adaptive beamforming technique, which is able to focalize the transmission energy to the wanted users and efficiently eliminate interferences, has been proved as a promising technology to increase the channel capacity [START_REF] Cox | Robust adaptive beamforming[END_REF][START_REF] Roh | Millimeter-wave beamforming as an enabling technology for 5G cellular communications : Theoretical feasibility and prototype results[END_REF]. DOA estimation is highly required by the adaptive beamforming technique, providing signal direction information for the latter, such that the antenna array can capture the signals impinging from certain directions to obtain useful information and minimize the interference from others [START_REF] Godara | Application of antenna arrays to mobile communications. II. beamforming and direction-of-arrival considerations[END_REF][START_REF] Lavate | Performance analysis of MUSIC and ES-PRIT DOA estimation algorithms for adaptive array smart antenna in mobile communication[END_REF][START_REF] Chiang | DOA estimation in the asynchronous DS-CDMA system[END_REF].

Motivated by the obvious importance, a variety of algorithms have been proposed for DOA estimation. Classical beamforming (CBF) method steers the main beam to all possible directions and calculates the corresponding output powers, and the source directions are determined when the power gets maximal [START_REF] Krim | Two decades of array signal processing research : the parametric approach[END_REF]. Taking the presence of other sources or interferences into consideration, based on the classical beamforming method, Capon method keeps the gain for the signal coming from the current searching direction and minimizes the power contributed by the interfering signals from other directions and additive noise, and the DOAs can be determined by the directions giving the maximal output powers [START_REF] Capon | High-resolution frequency-wavenumber spectrum analysis[END_REF]. Although the principle and implementation of the two methods are simple, they suffer from low resolution and lack of robustness. Subspace based methods have attracted lots of attention for several years thanks to their high resolution and accurate estimation performance [START_REF] Bienvenu | Optimality of high resolution array processing using the eigensystem approach[END_REF]. Among the most popular algorithms within subspace based methods are the method of multiple signal classification (MUSIC) [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF] and the method of estimation of signal parameters via rotational invariance techniques (ESPRIT) [START_REF] Roy | Esprit-estimation of signal parameters via rotational invariance techniques[END_REF]. By exploiting the orthogonality between the signal and noise subspaces, and the rotational invariance property of the directional matrices of sensor arrays, both the methods can achieve a DOA estimation with satisfactory accuracy. However, the current research is mostly limited in the scene of uniform linear arrays (ULAs) [START_REF] Johnson | Array signal processing : concepts and techniques[END_REF][START_REF] Van Trees | Optimum array processing : Part IV of detection, estimation, and modulation theory[END_REF], where the inter-element spacing equals to a half-wavelength of incoming signals to maintain the Vandermonde structure of the directional matrices of sensor arrays to avoid ambiguities, such that the estimation performance is constrained by the limited array aperture. On the other hand, ULAs based MUSIC or ESPRIT can resolve up to N -1 sources with N sensor elements [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF][START_REF] Roy | Esprit-estimation of signal parameters via rotational invariance techniques[END_REF], and a high number of degrees of freedom (DOFs), determining the number of detectable sources, is highly required in various applications [START_REF] Yao | Degree-of-freedom strengthened cascade array for DOD-DOA estimation in MIMO array systems[END_REF][START_REF] Yangg | A new array geometry for DOA estimation with enhanced degrees of freedom[END_REF][START_REF] Shi | Generalized co-prime MIMO radar for DOA estimation with enhanced degrees of freedom[END_REF].

Sparse array configurations such as minimum redundancy arrays (MRAs) [START_REF] Moffet | Minimum-redundancy linear arrays[END_REF][START_REF] Chen | Minimum redundancy MIMO radars[END_REF] and nested arrays [START_REF] Pal | Nested arrays : A novel approach to array processing with enhanced degrees of freedom[END_REF][START_REF] Pal | Nested arrays in two dimensions, part II : Application in two dimensional array processing[END_REF][START_REF] Liu | High order super nested arrays[END_REF] have been proposed and drawn lots of attention in recent years. Compared with conventional ULAs, sparse arrays, with larger inter-element spacing, can achieve larger array aperture with the same number of sensor elements. In addition, by exploiting difference coarrays obtained from the covariance matrix of received signals, a long virtual half-wavelength spacing ULA can be generated and used to perform the DOA estimation, such that more sources than the number of physical sensor elements can be detected. However, MRAs do not have closed-form expressions of the array geometries such that the design and performance analysis of MRAs are complicated [START_REF] Ruf | Numerical annealing of low-redundancy linear arrays[END_REF]. Besides, with several sensors densely distributed in the physical configurations, nested arrays face the problems of mutual coupling and lack of robustness [START_REF] Friedlander | Direction finding in the presence of mutual coupling[END_REF][START_REF] Gupta | Effect of mutual coupling on the performance of adaptive arrays[END_REF][START_REF] Singh | Mutual coupling in phased arrays : A review[END_REF] in practical applications. Recently, the configuration of coprime linear arrays (CLAs) has been developed [START_REF] Vaidyanathan | Sparse sensing with co-prime samplers and arrays[END_REF][START_REF] Pal | Coprime sampling and the MUSIC algorithm[END_REF][START_REF] Vaidyanathan | Theory of sparse coprime sensing in multiple dimensions[END_REF]. Unlike the MRAs, CLAs have closed-form expressions of the sensor locations such that it is easy to be constructed. Furthermore, because most of the sensor elements are distributed sparsely, the mutual coupling effect becomes not significant in coprime array systems. Although since there exist holes in the difference coarray of the CLAs and only the consecutive part can be directly used by subspace based methods, the number of detectable sources are not as high as the MRAs and nested arrays, the CLAs reach a balance point among different performance needs, being promising to the real applications.

There exist two main research orientations for the DOA estimation with CLAs, which are difference coarray-based methods and subarray-based methods. The difference coarraybased methods try to increase the number of the consecutive segments in the difference coarray such that the effective DOFs can be greatly increased [START_REF] Shi | Generalized co-prime MIMO radar for DOA estimation with enhanced degrees of freedom[END_REF][START_REF] Pal | Coprime sampling and the MUSIC algorithm[END_REF][START_REF] Qin | Generalized coprime array configurations for direction-of-arrival estimation[END_REF][START_REF] Liu | Coprime coarray interpolation for DOA estimation via nuclear norm minimization[END_REF][START_REF] Zhou | Direction-of-arrival estimation for coprime array via virtual array interpolation[END_REF][START_REF] Boudaher | Direction-of-arrival estimation using multi-frequency co-prime arrays[END_REF][START_REF] Zhou | Direction-of-arrival estimation with coarray ESPRIT for coprime array[END_REF][START_REF] Wang | Hole identification and filling in k-times extended co-prime arrays for highly efficient DOA estimation[END_REF][START_REF] Raza | Thinned coprime arrays for DOA estimation[END_REF][START_REF] Zhou | Compressive sensing-based coprime array direction-of-arrival estimation[END_REF][START_REF] Shi | Source estimation using coprime array : A sparse reconstruction perspective[END_REF][START_REF] Shen | Extension of co-prime arrays based on the fourth-order difference co-array concept[END_REF]. The subarraybased methods treat the coprime linear array as two sparse uniform linear subarrays with large inter-element spacing ; from each of them, high precision but ambiguous DOA estimation can be obtained, and the ambiguities are eliminated according to the coprime property [START_REF] Zhou | DECOM : DOA estimation with combined MUSIC for coprime array[END_REF][START_REF] Sun | Partial spectral search-based DOA estimation method for co-prime linear arrays[END_REF][START_REF] Sun | A low-complexity ESPRIT-based DOA estimation method for co-prime linear arrays[END_REF][START_REF] Zhang | Improved DOA estimation algorithm for co-prime linear arrays using root-MUSIC algorithm[END_REF][START_REF] Yang | A fast and robust DOA estimation method based on JSVD for co-prime array[END_REF][START_REF] Weng | A search-free DOA estimation algorithm for coprime arrays[END_REF][START_REF] Li | DOA estimation based on combined unitary ESPRIT for coprime MIMO radar[END_REF][START_REF] Hu | 2d-doa estimation for co-prime l-shaped arrays with propagator method[END_REF][START_REF] Li | DOA estimation based on real-valued cross correlation matrix of coprime arrays[END_REF].

Main Contributions

In this thesis, we focus on the DOA estimation with coprime arrays from the perspectives of both the difference coarray-based methods and subarray-based methods. The main contributions are summarized as follows.

• For the difference coarray-based methods Moving platform based CLAs have been studied, and it is shown that by shifting a CLA a half wavelength, the majority or all holes in the original difference coarray can be filled, generating a difference coarray with more consecutive lags and increasing the effective DOFs [START_REF] Qin | DOA estimation exploiting sparse array motions[END_REF][START_REF] Qin | Analysis of coprime arrays on moving platform[END_REF][START_REF] Elbir | Two-dimensional DOA estimation via shifted sparse arrays with higher degrees of freedom[END_REF][START_REF] Li | A novel moving sparse array geometry with increased degrees of freedom[END_REF]. After analyzing the final difference coarray resulted from the array motion, an improved CLA configuration for moving platform is proposed [i]. By judiciously redesigning the sensor element positions, a difference coarray with more consecutive lags has been obtained after the same length of array motion, such that much higher DOFs are obtained.

Compared with linear arrays, two dimensional (2D) planar arrays are more relevant to real applications, especially in massive MIMO systems [START_REF] Yang | A new low complexity DOA estimation algorithm for massive MIMO systems[END_REF][START_REF] Heidenreich | Joint 2-D DOA estimation and phase calibration for uniform rectangular arrays[END_REF][START_REF] Zheng | Efficient beamspacebased algorithm for two-dimensional DOA estimation of incoherently distributed sources in massive MIMO systems[END_REF][START_REF] Wu | Direction finding and mutual coupling estimation for uniform rectangular arrays[END_REF]. However, coprime planar arrays (CPAs) have not been well studied from the perspective of difference coarray to exploit the high DOFs offered by the coprime geometry [START_REF] Wu | Two-dimensional direction-of-arrival estimation for co-prime planar arrays : A partial spectral search approach[END_REF][START_REF] Zhang | Two-dimensional direction of arrival estimation for coprime planar arrays via polynomial root finding technique[END_REF][START_REF] Zheng | Generalized coprime planar array geometry for 2-D DOA estimation[END_REF][START_REF] Xu | Two-dimensional direction-of-arrival fast estimation of multiple signals with matrix completion theory in coprime planar array[END_REF][START_REF] Wang | Improved 2D coprime array structure with the difference and sum coarray concept[END_REF][START_REF] Xu | Direction-of-arrival estimation for both uncorrelated and coherent signals in coprime array[END_REF]. To offer a better understanding of CPAs and facilitate the future research in this field, the structure of the difference coarrays of CPAs is investigated [ii]. Closedform expressions of the exact hole locations are derived, and a holes-filling method is proposed, such that the most critical holes in the difference coarray can be filled, generating a difference coarray with more consecutive lags and higher effective DOFs.

• For the subarray-based methods Although the principle of subarray-based methods is simple, the existing methods suffer from the insufficient reliability and high computational complexity [START_REF] Sun | A low-complexity ESPRIT-based DOA estimation method for co-prime linear arrays[END_REF][START_REF] Zhang | Improved DOA estimation algorithm for co-prime linear arrays using root-MUSIC algorithm[END_REF][START_REF] Yang | A fast and robust DOA estimation method based on JSVD for co-prime array[END_REF]. Based on the discussion of the potential problems associated with such methods, an efficient DOA estimation method is proposed [iii]. Compared with other existing methods, the proposed method is able to work correctly in all situations with better estimation performance in terms of accuracy and complexity.

To tackle the problems of subarray-based methods such as insufficient DOFs and sub-optimal estimation performance, an array geometry named unfolded coprime linear array (UCLA) is proposed, enjoying the advantages of full DOFs and better estimation performance [START_REF] Zheng | DOA estimation for coprime linear arrays : An ambiguity-free method involving full DOFs[END_REF][START_REF] Li | Direction of arrival estimation of quasi-stationary signals using unfolded coprime array[END_REF][START_REF] Zhai | DOA estimation of noncircular signals for unfolded coprime linear array : Identifiability, DOF and algorithm (may 2018[END_REF][START_REF] Gong | Unfolded coprime L-shaped arrays for twodimensional direction of arrival estimation[END_REF][START_REF] Li | Two-dimensional off-grid DOA estimation using unfolded parallel coprime array[END_REF]. However, an ambiguity problem has been ignored by the existing works. The problem is discussed in the thesis, and an appropriate solution is proposed [iv], by which such problem can be solved successfully and efficiently.

Thesis Organization

The organization of the thesis is as follows.

Chapter 1 introduces the basic theory of array signal processing, which is used throughout the thesis, including the signal model and several conventional sensor array geometries. Besides, some popular DOA estimation methods including beamforming based methods and subspace based methods are also presented in this chapter.

Chapter 2 provides an overview of the DOA estimation with CLAs from the perspectives of both the difference coarray-based methods and subarray-based methods. For the difference coarray-based methods, we present the concept of difference coarray and the coarray based MUSIC method ; for the subarray-based methods, three potential problems including ambiguities, pair matching errors and grating angles problem are discussed.

Chapter 3 discusses the moving platform based CLAs. The difference coarray resulted from the array motion is analyzed, and the improved array configuration with higher DOFs is presented. Simulation results are provided to show the performance.

Chapter 4 explores the 2D CPAs from the perspective of difference coarray. The characteristics of the difference coarray of CPA configuration are deduced, and the closed-form expressions of the holes locations are provided with a detailed proof. Then, the proposed holes-filling method is introduced, of which the effectiveness is illustrated by simulation results.

Chapter 5 considers the DOA estimation with CLAs in the subarray-based methods perspective. Taking the potential existence of the grating angles problem into consideration, an equivalent signal model is constructed, based on which, the proposed efficient DOA estimation method is presented with simulations results.

Chapter 6 analyzes the DOA estimation with UCLAs. The ignored ambiguity problem is discussed with mathematical proof and specific examples, and the proposed methods of determining the existence of the problem and eliminating the ambiguity are presented. Simulation results are given to show the efficiency.

Chapter 7 concludes the thesis by highlighting the main contributions and discusses the possibilities of the future work on this subject. CHAPITRE 1

BASIC OF ARRAY SIGNAL PROCESSING

This chapter presents the basic of array signal processing techniques, providing the foundation of the whole thesis. The chapter is composed of three parts. The first part presents the mathematical model of received signals for DOA estimation, and the second part introduces the geometries of several traditional uniform sensor arrays. Based on the former two parts, the third part discusses some conventional DOA estimation algorithms with the corresponding simulation results.

Received Signal Model

As shown in FIGURE 1.1, consider that a sensor array consists of M isotropic sensor elements located at positions p m = (x m , y m , z m ) T , with m = 0, 1, • • • , M -1. An incoming signal impinges on the array from the direction (θ, ϕ), with θ and ϕ denoting the elevation angle and azimuth angle respectively. For simplicity, the incoming signal is supposed to be far-field such that it could be regarded as a plane wave. Let s(t) be the signal observed at the origin of the coordinate system, then the received signals at the sensor array can be given as

x (t) =         s (t -τ 0 ) s (t -τ 1 )
. . .

s (t -τ M -1 )         (1.1)
where s(t -τ m ) denotes the signal received by the sensor element located at position p m , with τ m the time delay of the received signal at that sensor element with respect to the signal observed by the origin of the coordinate system, which can be expressed as

τ m = d T p m c (1.2)
where c is the velocity of propagation and d the unit directional vector with

d = -      sin θ cos ϕ sin θ sin ϕ cos θ      (1.3) 
In most of the practical applications, the signals are often modulated, such that the signal observed at the origin of the coordinate can be written as

s (t) = m (t) e j2πf 0 t (1.4)
where m(t) is the modulation message or the complex envelop of s(t), and f 0 is the carrier frequency.

Then the received signal vector can be written as

x (t) =         s (t -τ 0 ) s (t -τ 1 ) . . . s (t -τ M -1 )         =         m (t -τ 0 ) e -j2πf 0 τ 0 m (t -τ 1 ) e -j2πf 0 τ 1 . . . m (t -τ M -1 ) e -j2πf 0 τ M -1         e j2πf 0 t (1.5)
In many cases of interest, the bandwidth of the complex envelop m(t) is narrowband
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and is much smaller than the carrier frequency, which means

m (t) m (t -τ 0 ) m (t -τ 1 ) • • • m (t -τ M -1 ) (1.6)
and the received signal vector can be re-written as

x (t) =         s (t -τ 0 ) s (t -τ 1 ) . . . s (t -τ M -1 )         = m (t) e j2πf 0 t         e -j2πf 0 τ 0 e -j2πf 0 τ 1 . . . e -j2πf 0 τ M -1         = s (t) a (θ, ϕ) (1.7) with a (θ, ϕ) =         e -j2πf 0 τ 0 e -j2πf 0 τ 1 . . . e -j2πf 0 τ M -1         (1.8)
which is called the array directional vector or the array manifold vector.

In general, the number of source signals is more than one and there exists noise in the propagation environment. Supposing that the number of incoming signals is K, the signal received by the sensor array can be given as

x (t) =         e -j2πf 0 τ 1,0 • • • e -j2πf 0 τ K,0 e -j2πf 0 τ 1,1 • • • e -j2πf 0 τ K,1 . . . . . . . . . e -j2πf 0 τ 1,M -1 • • • e -j2πf 0 τ K,M -1                 s 1 (t) s 2 (t) . . . s K (t)         +         n 0 (t) n 1 (t) . . . n M -1 (t)         (1.9)
where s k (t) stands for the signal transmitted by the k th source and observed at the origin of the coordinate system with k = 1, 2, • • • , K, and n m (t) denotes the noise collected by the sensor element located at position p m . τ k,m represents the time delay of the observation of s k (t) at the sensor element at p m with respect to the observation at the origin of the coordinate system.

In the form of matrix, Equation (1.9) becomes

x (t) = As (t) + n (t) (1.10) 
where

A = a (θ 1 , ϕ 1 ) a (θ 2 , ϕ 2 ) • • • a (θ K , ϕ K ) (1.11)
denotes the directional matrix of the sensor array, with a (θ k , ϕ k ) the directional vector associated with the k th source, and

s (t) = s 1 (t) s 2 (t) • • • s K (t) T (1.12)
denotes the incoming signal vector, and

n (t) = n 0 (t) n 1 (t) • • • n M -1 (t) T (1.13)
denotes the noise vector. In general, the noise is assumed to be Gaussian white temporally and spatially, which means

E n (t) n H (t) =         σ 2 σ 2 . . . σ 2         (1.14)
with σ 2 the power of the noise, and independent from the source signals.

According to the above analysis, the model of the signals observed by the sensor array consists of the directional matrix A, the incoming signal vector s (t), and the noise vector n (t). Containing the information of directions of arrivals, the directional matrix A is the most important component of the received signal model and the basic element of DOA estimation. For a given sensor array, the corresponding directional matrix A is determined by the array geometry, and in the following, several traditional uniform array geometries will be introduced.

Traditional sensor array geometries 1.2.1 Uniform linear array

A uniform linear array (ULA) consists of several sensor elements linearly located with a uniform inter-element spacing. FIGURE 1.2 shows a ULA with M sensors located along the X-axis with an inter-element spacing equaling to d. For the purpose of mathematical 1.2. Traditional sensor array geometries simplicity, the first element of the array is set as the origin of the coordinate system. incoming signal

FIGURE 1.2 -Uniform linear array

The positions of the sensor elements can be written as

p m = (md, 0, 0) T m = 0, 1, 2, ..., M -1 (1.15) 
Suppose that an incoming signal impinges on the ULA from direction θ, and according to Equation (1.2), the delay of the received signal at the sensor element located at p m with respect to the signal observed at the origin of the coordinate system can be expressed as

τ m = - md sin θ c (1.16)
Therefore the directional vector associated with the incoming signal is given by

a U LA (θ) =         1 e j2πf 0 d sin θ c . . . e j2πf 0 (M -1)d sin θ c        
(1.17)

For K source signals coming from {θ 1 , θ 2 , • • • , θ K }, the signal received by the ULA is x U LA (t) = A U LA s (t) + n (t) (1.18)
with the following directional matrix of the ULA

A U LA = a U LA (θ 1 ) a U LA (θ 2 ) • • • a U LA (θ K ) (1.19)
In general, the inter-element spacing d of ULAs is set as d = λ 2 , where λ is the wavelength of incoming signals, to avoid the aliasing of the exponential function. Then A U LA can be re-written as

A U LA =         1 1 • • • 1 e jπ sin θ 1 e jπ sin θ 2 • • • e jπ sin θ K . . . . . . . . . . . . e j(M -1)π sin θ 1 e j(M -1)π sin θ 2 • • • e j(M -1)π sin θ K        
(1.20)

Uniform planar array

A uniform planar array (UPA) consists of several parallel ULAs. Being able to resolve both the elevation and azimuth angles, UPAs are more relevant to real applications. Besides, containing much more sensor elements, UPAs have a bright prospect in massive MIMO systems. FIGURE 1.3 shows a UPA lying in the X -Z plane, with M sensor elements in each column and N sensor elements in each row. The inter-element spacing between adjacent elements is d, and the element in the first column and the first row is set as the origin of the coordinate system.

incoming signal

FIGURE 1.3 -Uniform planar array

The position of the sensor elements can be given by p n,m = (nd, 0, md) T (1.21)

with n = 0, 1, 2, ..., N -1 and m = 0, 1, 2, ..., M -1.

Suppose that an incoming signal impinges on the UPA from direction (θ, ϕ), with θ and ϕ denoting the elevation and azimuth angles respectively. For the ULA lying along Z-axis, the time delay of the received signal at the sensor element located at p 0,m with respect to the received signal at the origin of the coordinate system can be expressed as

τ 0,m = - md cos θ c (1.22)
and the directional vector of the ULA associated with the incoming signal is

a U LA,Z (θ, ϕ) =         1 e j2πf 0 d cos θ c . . . e j2πf 0 (M -1)d cos θ c         (1.23) 
For the ULA lying along X-axis, the time delay of the received signal at the sensor element located at p n,0 with respect to the received signal at the origin of the coordinate system can be expressed as

τ n,0 = - nd sin θ cos ϕ c (1.24)
and the directional vector of the ULA associated with the incoming signal is

a U LA,X (θ, ϕ) =         1 e j2πf 0 d sin θ cos ϕ c . . . e j2πf 0 (N -1)d sin θ cos ϕ c         (1.25)
Then the directional vector of the UPA associated with the incoming signal can be given by a

U P A (θ, ϕ) = a U LA,X (θ, ϕ) ⊗ a U LA,Z (θ, ϕ) (1.26)
For K source singals coming from (θ 1 , ϕ 1 ) (θ 2 , ϕ 2 ) • • • (θ K , ϕ K ) , the signal re-ceived by the UPA can be written as

x U P A (t) = A U P A s (t) + n (t) (1.27)
with the directional matrix of the UPA

A U P A = a U P A (θ 1 , ϕ 1 ) a U P A (θ 2 , ϕ 2 ) • • • a U P A (θ K , ϕ K ) (1.28)
Setting the inter-element spacing d as λ 2 , A U P A can be re-written as

A U P A =                                     1 • • • 1 e jπ cos θ 1 • • • e jπ cos θ K . . . . . . . . . e j(M -1)π cos θ 1 • • • e j(M -1)π cos θ K e jπ sin θ 1 cos ϕ 1 • • • e jπ sin θ K cos ϕ K e jπ(sin θ 1 cos ϕ 1 +cos θ 1 ) • • • e jπ(sin θ K cos ϕ K +cos θ K ) . . . . . . . . . e jπ(sin θ 1 cos ϕ 1 +(M -1) cos θ 1 ) • • • e jπ(sin θ K cos ϕ K +(M -1) cos θ K ) . . . . . . . . . e j(N -1)π sin θ 1 cos ϕ 1 • • • e j(N -1)π sin θ K cos ϕ K e jπ((N -1) sin θ 1 cos ϕ 1 +cos θ 1 ) • • • e jπ((N -1) sin θ K cos ϕ K +cos θ K ) . . . . . . . . . e jπ((N -1) sin θ 1 cos ϕ 1 +(M -1) cos θ 1 ) • • • e jπ((N -1) sin θ K cos ϕ K +(M -1) cos θ K )                                     (1.29)

Conventional DOA estimation algorithms

In this section, several conventional DOA estimation methods, including beamforming based methods like classical beamforming method and Capon method, and the subspace based methods like MUSIC and ESPRIT, are introduced with their corresponding numerical simulations. The geometry of ULAs in FIGURE 1.2 and the received signal model in Equation (1.18) are used for simplicity.

Classical beamforming method

Classical beamforming (CBF) method [START_REF] Krim | Two decades of array signal processing research : the parametric approach[END_REF] is a basic array signal processing technique for signal source localization. The main idea behind the classical beamforming method is to steer the main beam of the sensor array to all the possible wave coming directions with appropriate weighting vectors. For each direction in the search range, the power of the array response is calculated, and the steering directions with maximum powers determine the DOA estimations.

By multiplying the weighting vector to the received signal, the response of the array is given by

y (t) = w H x (t) (1.30)
where the weighting vector w is set as the following equation for a particular steering direction

θ c w = a (θ c ) M (1.31)
Then the power of the output is calculated by

P CBF (θ c ) = 1 L L t=1 |y (t)| 2 = 1 L L t=1 w H x (t) x H (t)w = a H (θ c ) Ra (θ c ) M 2 (1.32)
where R denotes the estimate of the covariance matrix of received signals with

R = 1 L L t=1 x (t) x H (t) (1.33)
and L is the number of snapshots.

The DOA estimation performance of the classical beamforming method is shown in FI-GURE 1.4, in which two uncorrelated, far-field and narrowband incoming signal are assumed to impinge on a ULA with 10 sensor elements from directions {10 • , 30 • }. The number of snapshots and the signal to noise ratio (SNR) are set to 200 and 10dB respectively. 

Capon method

The classical beamforming method shows disappointing estimation performance when other sources exist expect for the desired one, especially when they are located closer than the width of a beam. Taking the presence of other sources into account, Capon method [START_REF] Capon | High-resolution frequency-wavenumber spectrum analysis[END_REF] is proposed to solve this problem.

The principle of the Capon method is to minimize the power contributed by the signals coming from other directions and noise than the current searching one θ c by

min w P (θ c ) subject to w H a (θ c ) = 1 (1.34)
of which the solution is

w = R-1 a (θ c ) a H (θ c ) R-1 a (θ c ) (1.35)
Then the power of the output is given by

P Capon (θ c ) = 1 a H (θ c ) R-1 a (θ c ) (1.36)
With the same simulation conditions as FIGURE 1.4, the DOA estimation performance of the Capon method is shown in FIGURE 1.5. 

Multiple signal classification method

Based on the eigenvalue decomposition of the covariance matrix of received signals, subspace based methods are very popular in the domain of DOA estimation because of their high resolution. Among them, multiple signal classification (MUSIC) method [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF] is the most representative one which exploits the orthogonality between the signal and noise subspaces.

The covariance matrix of received signals can be given by

R = AR s A H + σ 2 I M = R y + σ 2 I M (1.37)
where R s denotes the covariance matrix of the source signals, given by

R s = E{s(t)s H (t)} (1.38)
and R y denotes the covariance matrix of received signals only contributed by the source signals, and it is clear that rank (R y ) = K.

In general, the covariance matrix of received signals R is full rank with rank (R) = M . Therefore among the M eigenvalues of R, K of them are larger than the other (M -K), which are equal to the noise power σ 2 .

Then R can be written as in the terms of its eigenvalues and eigenvectors as

R = UΛU H (1.39)
where

U = u 1 u 2 • • • u M denotes the matrix of eigenvectors associated with Λ = diag λ 1 λ 2 • • • λ M the
matrix of eigenvalues, which are sorted in decreasing order as

λ 1 λ 2 • • • λ K λ K+1 = λ K+2 = • • • = λ M = σ 2 (1.40)
We define

Λ s = diag λ 1 λ 2 • • • λ K (1.41) Λ n = diag λ K+1 λ K+2 • • • λ M (1.42) U s = u 1 u 2 • • • u K (1.43) U n = u K+1 u K+2 • • • u M (1.44)
Then R can be rewritten by

R = U s Λ s U H s + U n Λ n U H n (1.45)
The eigenvectors associated with the smallest eigenvalues U n span the noise subspace and are orthogonal to the actual source directional vectors. Therefore, for each direction in the searching range, project the corresponding directional vector on U n , and the estimation of the DOAs is determined when the projection is zero.

For the current searching direction θ c , the corresponding pseudo-spectrum of MUSIC is expressed by

P M U SIC (θ c ) = 1 U H n a (θ c ) 2 = 1 a H (θ c ) U n U H n a (θ c ) (1.46)
and the DOAs can be found by peak-searching of P M U SIC (θ c ).

With the same simulation conditions introduced above, the DOA estimation performance of the MUSIC method is shown in FIGURE 1.6, which is significantly better than the beamforming-based methods. Estimation of signal parameter via rotational invariance technique (ESPRIT) [START_REF] Roy | Esprit-estimation of signal parameters via rotational invariance techniques[END_REF] is another efficient subspace based DOA estimation method. By exploiting the rotational invariance property of the directional matrix, high resolution and accurate estimation performance can be achieved without the step of spectral peak searching.

Recall the eigenvalue decomposition of the covariance matrix of received signals

R = U s Λ s U H s + U n Λ n U H n (1.47)
the K eigenvectors associated with the K bigger eigenvalues and the source directional vectors span the same signal subspace. Then there is

A = U s T (1.48)
where T is a nonsingular matrix.

Define A 1 and A 2 as the first and last (M -1) rows of the directional matrix A respec-tively

A 1 =         1 1 • • • 1 e jπ sin θ 1 e jπ sin θ 2 • • • e jπ sin θ K . . . . . . . . . . . . e j(M -2)π sin θ 1 e j(M -2)π sin θ 2 • • • e j(M -2)π sin θ K        
(1.49)

A 2 =         e jπ sin θ 1 e jπ sin θ 2 • • • e jπ sin θ K e j2π sin θ 1 e j2π sin θ 2 • • • e j2π sin θ K . . . . . . . . . . . . e j(M -1)π sin θ 1 e j(M -1)π sin θ 2 • • • e j(M -1)π sin θ K         (1.50)
We have

A 2 = A 1 Φ (1.51) with Φ = diag e jπ sin θ 1 e jπ sin θ 2 • • • e jπ sin θ K (1.52)
Similarly, define U s1 and U s2 as the first and last (M -1) rows of U s . Then according to Equation (1.48), there are

A 1 = U s1 T (1.53) A 2 = U s2 T (1.54)
Then it can be deduced that

A 2 = A 1 Φ = U s1 TΦ = U s2 T (1.55)
and

U s2 = U s1 TΦT -1 = U s1 ∆ (1.56) with ∆ = TΦT -1 = U + s1 U s2 = U H s1 U s1 -1 U H s1 U s2 (1.57)
where (•) + denotes the pseudo-inverse operation, and the diagonal matrix Φ is composed of the eigenvalues of the matrix ∆.

Therefore, after the eigenvalues decomposition of ∆, the DOAs can be obtained by

θ k = arcsin angle (Φ (k, k)) π (1.58)
Without the spectrum, the DOA estimation performance of the ESPRIT method is shown in FIGURE 1.7 with the results of 20 independent simulations with the same simulation conditions introduced above. 

Conclusion

In this chapter, the basic of array signal processing techniques including the received signal model and several conventional algorithms for DOA estimation is introduced based on uniform arrays. However, the inter-element spacing of ULAs is limited to half-wavelength of incoming signals to avoid aliasing, therefore the estimation performance is constrained by the small array aperture. On the other hand, although the methods of MUSIC and ES-PRIT can achieve high resolution and accurate estimation performance, based on ULAs, they can only resolve up to M -1 sources with M sensor elements due to the limited system DOFs. In the next chapter, the geometry of coprime arrays is introduced, which exhibits larger aperture length and higher DOFs. CHAPITRE 2

DOA ESTIMATION WITH COPRIME LINEAR ARRAYS

Being superior to the conventional half-wavelength spaced ULAs, coprime linear arrays (CLAs), exhibiting higher DOFs and larger aperture length, have been considered as a promising array configuration. In this chapter, the prototype of CLAs structure is introduced and the DOA estimation with CLAs is presented, involving the two research orientations of difference coarray-based methods and subarray-based methods respectively. For the difference coarray-based methods, the difference coarray, of which the observation can be obtained from the covariance matrix of received signals, exhibits more distinct lags than the number of physical sensor elements, offering much higher DOFs, and then the MUSIC method with the spatial smoothing technique is implemented in the coarray domain to perform the DOA estimation. For the subarray-based methods, a CLA is treated as two ULAs with large aperture length and inter-element spacing. With the simplified system model, DOA estimation is performed on the two subarrays individually. The ambiguities caused by the large inter-element spacing are eliminated by the coprime property.

Prototype of coprime linear arrays

As illustrated in 

FIGURE 2.1 -Prototype coprime linear array

Suppose that K uncorrelated, far-field and narrowband signals impinge on the CLA from directions {θ 1 , θ 2 , • • • , θ K } respectively. The signal vector received at the CLA can be expressed as

x (t) = K k=1 a (θ k ) s k (t) + n (t) = As (t) + n (t) (2.1)
where

A = a (θ 1 ) a (θ 2 ) • • • a (θ K ) (2.2)
denotes the directional matrix of the CLA with

a (θ k ) = 1 e jp 2 π sin θ k • • • e jp N +M -1 π sin θ k T (2.3)
denoting the directional vector associated with the incoming signal from θ k .

s (t) = s 1 (t) s 2 (t) • • • s K (t) T (2.4)
is the incoming signal vector with s k (t) the signal coming from θ k and received at the reference sensor. n (t) is the white Gaussian noise vector with zero-mean and covariance matrix σ 2 I M +N -1 , and it is assumed to be independent from the incoming signals.

From the perspective of subarrays, the signal vectors received by the two sparse uniform subarrays can be given by

x 1 (t) = K k=1 a 1 (θ k ) s k (t) + n 1 (t) = A 1 s (t) + n 1 (t) (2.5) x 2 (t) = K k=1 a 2 (θ k ) s k (t) + n 2 (t) = A 2 s (t) + n 2 (t) (2.6) 
where

A 1 = a 1 (θ 1 ) a 1 (θ 2 ) • • • a 1 (θ K ) (2.7
)

A 2 = a 2 (θ 1 ) a 2 (θ 2 ) • • • a 2 (θ K ) (2.8)
are the directional matrices of the two subarrays respectively, with the corresponding directional vectors associated with the incoming signal from θ k denoted by

a 1 (θ k ) = 1 e jM π sin θ k • • • e j(N -1)M π sin θ k T (2.9) a 2 (θ k ) = 1 e jN π sin θ k • • • e j(M -1)N π sin θ k T (2.10
)

n 1 (t)
and n 2 (t) denote the white Gaussian noise vectors observed by the two subarrays with dimensions of (N × 1) and (M × 1) respectively.

Difference coarray-based methods

Difference coarray

Difference coarray is a virtual array usually applied in the difference coarray-based methods instead of the original physical array to obtain higher DOFs with fewer sensor elements. Taking d as unit, the sensor element positions of a CLA can be given as

P = p 1 p 2 • • • p L (2.11)
and the difference coarray of the CLA is defined as

D = {p u -p v | p u , p v ∈ P} (2.12)
of which the elements are known as lags which are generated by all pairs of sensor elements in the CLA.

Based on the coprimality of M and N , it has been shown that the difference coarray The observation of the difference coarray can be obtained from the covariance matrix of the received signals, which is calculated by

D
R = E x (t) x H (t) = AR s A H + σ 2 I M +N -1 (2.13)
where

R s = E s (t) s H (t) = diag σ 2 1 σ 2 2 • • • σ 2 K (2.14)
is the covariance matrix of the incoming signals with σ 2 k denoting the power of the signals coming from θ k .

Then Equation (2.13) can be re-written as

R = K k=1 σ 2 k a (θ k ) a H (θ k ) + σ 2 I M +N -1 (2.15)
where R is an L×L matrix, of which the element at the u th row and v th column has the form of K k=1 σ 2 k e jπ(pu-pv) sin θ k . The difference coarray elements (p u -p v ) appear in the exponents of the correlation terms, which behave like the signals observed by the corresponding lags in the difference coarray, and can be used to perform DOA estimation.

By vectorizing R, we can get

z = vec (R) = Bp + σ 2 Ĩ (2.16)
where with e u a column vector with dimension (L × 1), of which the u th element is '1' and the others are '0'.

B = a * (θ 1 ) ⊗ a (θ 1 ) a * (θ 2 ) ⊗ a (θ 2 ) • • • a * (θ K ) ⊗ a (θ K ) (2.17) p = σ 2 1 σ 2 2 • • • σ 2 K T (2.
Let B D denote the distinct rows of B, and z D and ĨD denote the corresponding rows of z and Ĩ respectively, then there is

z D = B D p + σ 2 ĨD (2.20)
Compared with Equation (2.1), it can be seen that B D behaves like the directional matrix of an array whose sensor locations are given by the lags in the difference coarray, and z D can be regarded as the signal vector received by such an array. p and σ 2 ĨD denote the equivalent source signal and noise vectors respectively. Then z D can be seen as the signal received by the difference coarray and can be applied to perform DOA estimation instead of the signal received by the physical CLA. 

z m D = 1 w (m) pu-pv=m R u,v (2.21)
with m ∈ D, and w(m) is the weight function, which is defined by the number of sensor pairs generating the lag m as

w (m) = |{(p u , p v ) | p u -p v = m}| (2.22)
Note that due to the existence of holes in the difference coarray, the superscript m is not continuous in the range [-(N -1)M, (N -1)M ].

MUSIC with spatial smoothing technique

Since the difference coarray of a CLA has more lags than the number of sensor elements in the physical array, the signal model in Equation (2.20) is applied to substitute Equation (2.1) in DOA estimation to achieve higher DOFs. However, because the equivalent source signal vector p is just a single snapshot, the covariance matrix built by z D is rank deficient, and in this case high resolution subspace based DOA estiamtion methods, such as MUSIC, fail to yield reliable estimation results. The problem is similar to handling fully coherent source signals, and spatial smoothing technique [START_REF] Pal | Coprime sampling and the MUSIC algorithm[END_REF][START_REF] Shan | On spatial smoothing for direction-of-arrival estimation of coherent signals[END_REF][START_REF] Du | Improved spatial smoothing techniques for DOA estimation of coherent signals[END_REF][START_REF] Liu | Remarks on the spatial smoothing step in coarray MUSIC[END_REF] should be applied to restore the rank of the covariance matrix.

Because the spatial smoothing technique works only for a set of consecutive lags such that every smoothing subarray has similar directional vector, we focus on the consecutive part of D, which is defined by U and

U = (-M -N + 1) • • • 0 • • • (M + N -1) (2.23)
Extract the rows of z D corresponding to the consecutive part of the difference coarray U, which can be expressed by

z U = B U p + σ 2 ĨU (2.24)
where B U denotes the directional matrix of the ULA segment in the difference coarray, which can be given by

B U = b U (θ 1 ) b U (θ 2 ) • • • b U (θ K ) (2.25)
with the corresponding directional vector

b U (θ k ) = e j(-M -N +1)π sin θ k • • • 1 • • • e j(M +N -1)π sin θ k T (2.26)
And ĨU is a (2M + 2N -1) × 1 vector with all '0' except a '1' at the (M + N ) th position.

Then the ULA segments of the difference coarray are divided into M + N overlapping subarrays, denoted by U i , which contains M + N lags located at

{x | x = -i + n} (2.27)
where i denotes the index of the subarrays with i = 1, 2, • • • , M + N , and n denotes the index of the lags in each subarray with n = 1, 2,

• • • , M + N .
The equivalent signal vector received by the i th subarray corresponds to the

(M + N + 1 -i) th to (2M + 2N -i) th rows of z U , which is denoted as z U,i = B U,i p + σ 2 ĨU,i (2.28) 
where B U,i is a (M +N )×K matrix consisting of the (M +N +1-i) th to (2M +2N -i) th rows of B U , and ĨU,i is a (M + N ) × 1 vector with all '0' except a '1' at the i th position.

Then we define

R i = z U,i z H U,i (2.29) 
and taking the average of R i over all i, we can get

R ss = 1 M + N M +N i=1 R i (2.30)
R ss is known as the spatially smoothed covariance matrix which is full-rank, such that MUSIC algorithm can be directly performed on it.

However, it can be noticed that although the difference coarray exhibits more distinct lags than the number of sensor elements in the physical CLA, offering higher DOFs, these lags are not consecutive because of the existence of holes, and only the consecutive part can be directly applied in rank restoration and DOA estimation, the effective DOFs, which roughly equal to the half number of the consecutive lags, is not as high as expected. For example, the difference coarray shown in FIGURE 2.3 has 27 distinct lags but only consecutive in the range [-8, 8]. After spatial smoothing, a spatially smoothed covariance matrix with dimension 9 × 9 is obtained, and since at least one eigenvector spanning the noise subspace is needed such that MUSIC algorithm can be performed, merely 8 effective DOFs can be obtained. To overcome this problem, many methods have been proposed to increase the number of the consecutive lags in the difference coarray, among which the extended coprime linear array [START_REF] Wang | Hole identification and filling in k-times extended co-prime arrays for highly efficient DOA estimation[END_REF] is the most popular configuration, which is introduced in the following.

Extended coprime linear arrays

The configuration of extended coprime linear arrays (ECLAs) is shown in FIGURE 2.5. Being different from the prototype CLA shown in FIGURE 2.1, an ECLA has lM sensor elements in the second subarray, where l is an integer and l ≥ 2. Then the total number of the sensor elements is

L = lM + N -1.
The characteristics of the difference coarray of the ECLAs including the number of DOFs and the holes positions have been well studied in [START_REF] Wang | Hole identification and filling in k-times extended co-prime arrays for highly efficient DOA estimation[END_REF]. Based on the coprime property of M and N , three general rules can be summarized as follows.

1) The difference coarray D is located in the range [(-lM N + N ), (lM N -N )].

2) The difference coarray exhibits a consecutive part U located in the range

[(-(l-1)M N - M + 1), ((l -1)M N + M -1)].
3) In the range Besides, based on the knowledge of the holes positions in the difference coarray, there are some other methods proposed aiming to fill the holes, lengthening the consecutive ULA in the difference coarray and increasing the effective DOFs [START_REF] Liu | Coprime coarray interpolation for DOA estimation via nuclear norm minimization[END_REF][START_REF] Boudaher | Direction-of-arrival estimation using multi-frequency co-prime arrays[END_REF][START_REF] Xie | Enhance degrees of freedom for coprime array using optspace algorithm[END_REF][START_REF] Zheng | Padded coprime arrays for improved DOA estimation : Exploiting hole representation and filling strategies[END_REF].

[(-lM N +N ), (-(l -1)M N -M )] and [((l -1)M N +M ), (lM N -N )], the position is a hole if it is in the form of -(k -1)M N -aM -bN or (k -1)M N + aM + bN ,

Subarray-based methods

DOA estimation and ambiguity elimination

In the subarray-based methods, instead of exploiting the difference coarray, the CLA is treated as two sparse ULAs and DOA estimation is performed on the two subarrays separately with the signal model shown by Equations (2.5) and (2.6).

Taking MUSIC for example. From the signals observed by the two subarrays x 1 (t) and x 2 (t), two corresponding covariance matrices can be estimated by

R1 = 1 L L t=1 x 1 (t) x H 1 (t) (2.31) R2 = 1 L L t=1 x 2 (t) x H 2 (t) (2.32)
Applying eigenvalue decomposition on the two covariance matrices yields

R1 = U s,1 Λ s,1 U H s,1 + U n,1 Λ n,1 U H n,1 (2.33) R2 = U s,2 Λ s,2 U H s,2 + U n,2 Λ n,2 U H n,2
(2.34)

where U s,1 and U s,2 contain the eigenvectors of R1 and R2 respectively spanning the signal subspace, with the corresponding eigenvalues contained in the two diagonal matrices Λ s,1 and Λ s,2 . Similarly, the U n,1 and U n,2 contain the eigenvectors of R1 and R2 respectively spanning the noise subspace, with the corresponding eigenvalues contained in the two diagonal matrices Λ n,1 and Λ n,2 .

Because of the orthogonality between the signal subspace and the noise subspace, the DOA estimation can be realized by searching for the peaks of the following MUSIC spectrum in the range (-90 • , 90 • )

P M U SIC,1 (θ) = 1 a H 1 (θ) U n,1 U H n,1 a 1 (θ) (2.35) 
P M U SIC,2 (θ) = 1 a H 2 (θ) U n,2 U H n,2 a 2 (θ) (2.36) 
Noticing that because the adjacent sensor elements in each subarrays are spaced an integer number, M or N , times of half-wavelength, for a given impinging angle θ k and its exponential e jM π sin θ k or e jN π sin θ k , there exist other angles in the range (-90 • , 90 • ) having the same exponential value and sharing identical directional vector with θ k . Such angles are denoted ambiguous angles and also exhibit peaks in the MUSIC spectrum.

Taking the 1 st subarray with N sensor elements and inter-element spacing M λ 2 for example, for an impinging signal coming from θ k , several candidate angles showing peaks θ cand 1,k can be found in the MUSIC spectrum, satisfying the following relationship

sin θ k -sin θ cand 1,k = 2P M (2.37)
where P in an integer. When P = 0, the candidate angle θ cand 1,k is the true DOA. Otherwise, θ cand 1,k corresponds to an ambiguity of the spectrum. For any θ k and θ cand 1,k in the range (-90 • , 90 • ), there is

sin θ k -sin θ cand 1,k = 2P M < 2 (2.38) Except '0', P has another 2(M -1) possible values in the range [-M + 1, -1] ∪ [1, M -1]
corresponding to ambiguities. Considering that θ k and θ cand 1,k are interchangeable, there exist M -1 ambiguous angles besides the real DOA. Therefore totally M peaks can be found in the spectrum obtained by the subarray associated with an incoming signal. One of them locates at the true DOA and the other M -1 are ambiguities.

Similarly, for the 2 nd subarray with M sensor elements and inter-element spacing N λ 2 , for the impinging signal coming from θ k , the candidate angles exhibiting peaks θ cand 2,k satisfies the relationship

sin θ k -sin θ cand 2,k = 2Q N (2.39)
where Q is an integer, and when Q = 0, the candidate angle θ cand 2,k is the true DOA. Otherwise, θ cand 2,k corresponds to an ambiguity.

For any θ k and θ cand 2,k in the range (-90 • , 90 • ), there is

sin θ k -sin θ cand 2,k = 2Q N < 2 (2.40) 
Except '0', Q has another 2(N -1) possible values in the range

[-N + 1, -1] ∪ [1, N -1]
corresponding to ambiguities. Considering that θ k and θ cand 2,k are interchangeable, there exist N -1 ambiguous angles besides the real DOA. Therefore totally N peaks can be found in the spectrum obtained by the subarray associated with an incoming signal. One of them locates at the true DOA and the other N -1 are ambiguities.

According to Equations (2.37) and (2.39), there is a relationship between the candidate angles obtained from the two spectrums, shown by

sin θ cand 1,k -sin θ cand 2,k = 2 Q N - P M (2.41)
It can be seen that due to the coprimality between M and N , there is θ cand 1,k = θ cand 2,k = θ k when and only when P = Q = 0. For other P = 0 and Q = 0, the corresponding candidate angles obtained from the two spectrums always exhibit θ cand 1,k = θ cand 2,k . Therefore, there exists and uniquely exists an overlapped peak in the spectrums of the two subarrays, which determines the real estimate of DOA [START_REF] Zhou | DECOM : DOA estimation with combined MUSIC for coprime array[END_REF].

In practical applications with finite number of samples and the existence of noise, we can search for the closest peaks in the MUSIC spectrums of the two subarrays, i.e., min 

θ cand,m 1,k ,θ cand,n 2,k θ cand,m 1,k -θ cand,n 2,k (2.
+ θ cand,n 2,k 2 (2.43)
The DOA estimation performance of the coprime subarrays is shown in FIGURE 2.9, in which an incoming signal is assumed to impinge on a CLA with N = 7 and M = 5 from direction θ = 10 • . The number of snapshots is set to 200 with SNR = 10dB. It can be seen that there exist M = 5 peaks in the spectrum of the 1 st subarray with N = 7 sensor elements, and N = 7 peaks in the spectrum of the 2 nd subarray with M = 5 sensor elements respectively. The true DOA is determined by the overlapped peaks in the two spectrums. 

Pair matching errors

There exist some potential problems in the subarray-based methods, and the problem of pair matching errors [START_REF] Sun | A low-complexity ESPRIT-based DOA estimation method for co-prime linear arrays[END_REF][START_REF] Zhang | Improved DOA estimation algorithm for co-prime linear arrays using root-MUSIC algorithm[END_REF] is one of them which we may meet in the step of overlapped peaks searching. Thanks to the coprime property, only one pair of common angles showing overlapped peaks can be found in the two spectrums associated with one incoming signal, and other angles showing peaks can be eliminated as ambiguities. However, in the situations of multiple incoming signals, besides the common angle pairs in the two spectrums associated with common incoming signals, there may also exist common angle pairs in the two spectrums associated with different incoming signals, resulting in more overlapped peaks than the number of sources, and consequently pair matching errors occur.

Suppose that there are two signals impinging on a CLA from θ 1 and θ 2 respectively. In the spectrum of the 1 st subarray, we can find two ambiguous angles θ amb 1,1 and θ amb 1,2 associated with θ 1 and θ 2 respectively, satisfying

sin θ 1 -sin θ amb 1,1 = 2P 1 M (2.44) sin θ 2 -sin θ amb 1,2 = 2P 2 M (2.45)
where P 1 and P 2 are two non-zero integers in the range

[-M + 1, -1] ∪ [1, M -1].
In the spectrum of the 2 nd subarray, we can also find two ambiguous angles θ amb 2,1 and θ amb 2,2 associated with θ 1 and θ 2 respectively, satisfying

sin θ 1 -sin θ amb 2,1 = 2Q 1 N (2.46) sin θ 2 -sin θ amb 2,2 = 2Q 2 N (2.47)
where Q 1 and Q 2 are two non-zero integers in the range

[-N + 1, -1] ∪ [1, N -1].
It can be seen that for different impinging angles θ 1 = θ 2 , we may have the following relationships 

sin θ 1 -sin θ 2 = 2Q 1 N - 2P 2 M (2.48) or sin θ 1 -sin θ 2 = 2P 1 M - 2Q 2 N ( 2 
exhibiting other overlapped peaks or pair matching errors in the two spectrums. 

Grating angles problem

Grating angles problem [START_REF] Yang | A fast and robust DOA estimation method based on JSVD for co-prime array[END_REF] is another problem of the subarray-based methods, which has been ignored by most of the open literature. In the situation of multiple incoming signals, because of the large inter-element spacing of the two subarrays, some signals may impinge from a set of angles which share an identical directional vector for one subarray. Consequently, the directional matrix of this subarray will be rank deficient, resulting in difficulties for the subsequent steps like noise subspace extraction and peak searching.

To provide a better understanding, let's consider a CLA with N = 7 and M = 5 senor elements in the two subarrays and three source signals impinging from θ 1 = 10.00 • , θ 2 = 27.35 • and θ 3 = 35.01 • respectively. It can be seen that e jM π sin θ 1 ≈ e jM π sin θ 3 and e jN π sin θ 1 ≈ e jN π sin θ 2 . Then θ 1 and θ 3 are grating angles to each other for the 1 st subarray because they have the same directional vector. For the same reason, θ 1 and θ 2 are grating angles to each other for the 2 nd subarray. Then the directional matrices of the two subarrays are rank deficient, setting up a barrier to the DOA estimation.

For the CLA with N = 7 and M = 5, the grating angles problem also occurs in many other situations. As an example with three incoming signals, when {θ 1 , θ 2 , θ 3 } = {20.00 

Conclusion

In this chapter, the configuration of CLAs is introduced. The two research orientations of DOA estimation with CLAs, namely difference coarray-based methods and subarraybased methods are discussed. The former exploits the difference coarray and tries to increase the number of consecutive lags in the virtual half-wavelength ULA such that the DOFs can be greatly increased. The latter treats the CLA as two sparse ULAs with large array aperture, and from each of them, high-precision but ambiguous DOA estimation is obtained, and then the ambiguities are eliminated according to the coprime property. In the following chapters, we focus on both the research directions. For the difference coarraybased methods, moving platform based CLAs are studied, and an improved configuration with much higher DOFs is proposed. Besides, to be more relevant to real applications, two dimensional coprime planar arrays are investigated. For the subarray-based methods, an ef-ficient DOA estimation method is proposed, which can overcome the pair matching errors and grating angles problem successfully, achieving a reliable estimation performance.

CHAPITRE 3

MOVING PLATFORM BASED COPRIME LINEAR ARRAY CONFIGURATION

In the previous chapter, we have introduced the configuration of CLAs, as well as the two research orientations of DOA estimation in this domain. For the difference coarraybased methods, exhibiting more distinct lags, the difference coarray is usually applied for DOA estimation instead of the physical CLA to exploit higher DOFs. However, because of the existence of holes in the difference coarray and only the consecutive lags can be directly used to implement DOA estimation by high-resolution subspace based methods like MUSIC or ESPRIT, the achievable effective DOFs are not as high as expected. To solve this problem, many methods and configurations have been proposed to fill the holes and lengthen the consecutive part of the difference coarray. In [START_REF] Qin | Generalized coprime array configurations for direction-of-arrival estimation[END_REF], CLAs are generalized with two operations, by which two improved CLA configurations, namely coprime arrays with compressed inter-element spacing (CACIS) and coprime arrays with displaced subarrays (CADiS), are proposed. The CACIS configuration can be considered as a special case and forms a subset of the ECLAs introduced in Section 2.2.3, and CADiS can achieve a difference coarray with a much longer consecutive part by selecting appropriate parameters. In [START_REF] Liu | Coprime coarray interpolation for DOA estimation via nuclear norm minimization[END_REF], the holes in the difference coarray are interpolated by nuclear norm minimization [START_REF] Recht | Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[END_REF], allowing to use the remaining elements of the difference coarray and increase the number of detectable signals. In [START_REF] Wang | Hole identification and filling in k-times extended co-prime arrays for highly efficient DOA estimation[END_REF], an additional complementary subarray is added into an ECLA, resulting in a complete difference coarray without holes.

The above mentioned methods consider the CLAs based on fixed platform, and moving platform based CLAs have been studied in recent years [START_REF] Qin | DOA estimation exploiting sparse array motions[END_REF][START_REF] Qin | Analysis of coprime arrays on moving platform[END_REF][START_REF] Elbir | Two-dimensional DOA estimation via shifted sparse arrays with higher degrees of freedom[END_REF][START_REF] Li | A novel moving sparse array geometry with increased degrees of freedom[END_REF]. It is shown that by shifting the CLA a half wavelength of incoming signals, where the source positions, incoming directions and signal temporal properties can be assumed to be constant, the majority or all holes in the difference coarray can be filled, generating then a difference coarray with more consecutive lags and increasing the effective DOFs. In this chapter, the moving platform base CLA configuration is introduced, and the resulting difference coarray is analyzed.

Then an improved CLA configuration for moving platform is proposed. By judiciously designing the sensor element positions, a difference coarray with much more consecutive lags and a higher effective DOFs can be obtained with the same number of sensors and the same length of array motion. Suppose that there are K uncorrelated, far-field and narrowband signals impinging on the CLA from directions

Signal model of moving coprime linear arrays

{θ 1 , θ 2 , • • • , θ K } respectively, with -90 • < θ k < 90 • and 1 ≤ k ≤ K.
The observation of the CLA, at time t, can be expressed as

x (t) = AΦs (t) + n (t) (3.1)
where

A = a (θ 1 ) a (θ 2 ) • • • a (θ K ) (3.2)

Signal model of moving coprime linear arrays

is the directional matrix of the CLA, with

a (θ k ) = 1 e j2π p 2 d λ sin θ k • • • e j2π p L d λ sin θ k T (3.3)
denoting the directional vector associated with the signal coming from θ k . The movement of the array is indicated by

Φ = diag e j2π vt λ sin θ 1 e j2π vt λ sin θ 2 • • • e j2π vt λ sin θ K (3.4)
and

s (t) = s 1 (t) s 2 (t) • • • s K (t) T (3.5)
represents the incoming signal vector with s k (t) the source signal coming from θ k and received at the reference sensor. n(t), the white Gaussian noise vector with zero-mean and covariance matrix σ 2 I L with σ 2 the noise power, is supposed to be independent from the source signals.

At time t + τ , the observation of the CLA becomes

x (t + τ ) = BΦs (t + τ ) + n (t + τ ) (3.6) 
where

B = b (θ 1 ) b (θ 2 ) • • • b (θ K ) (3.7) and b (θ k ) = e j2π vτ λ sin θ k e j2π vτ +p 2 d λ sin θ k • • • e j2π vτ +p L d λ sin θ k T (3.8)
denote the updated directional matrix and vector respectively. By setting vτ

= d = λ 2 , there is b (θ k ) = e j2π d λ sin θ k e j2π d+p 2 d λ sin θ k • • • e j2π d+p L d λ sin θ k T (3.9)
For narrowband signals with carrier frequency f , there is

s k (t + τ ) = e j2πf τ s k (t) (3.10)
and Equation (3.6) can be re-written as

x (t + τ ) = e j2πf τ BΦs (t) + n (t + τ ) (3.11)
Then using the phase factor compensating technique described in [START_REF] Stergiopoulos | Extended towed array processing by an overlap correlator[END_REF], we can get

x (t + τ ) = e -j2πf τ x (t + τ ) = BΦs (t) + ñ (t + τ ) (3.12) 
where

ñ (t + τ ) = e -j2πf τ n (t + τ ) (3.13)
and by combining Equations (3.1) and (3.12), we can obtain the following equation

y (t) =   x (t) x (t + τ )   = A s s s (t) +   n (t) ñ (t + τ )   (3.14)
which can be regarded as the observation of the synthetic array composed of the original CLA and the shifted CLA after moving for a unit inter-element spacing d. A s = A T , B T T stands for the directional matrix of the synthetic array, and s s (t) = Φs (t) is the equivalent incoming signal vector impinging on the synthetic array.

Difference coarray analysis

In this section, the difference coarray and the DOFs of the synthetic array are discussed. Taking d as unit, the sensor element positions of the original CLA and the shifted CLA can be given by

P o = P 1 ∪ P 2
(3.15)

P s = P 1 ∪ P 2 (3.16) 
where

P 1 = {M n | 0 ≤ n ≤ N -1} (3.17) 
P 2 = {N m | 0 ≤ m ≤ M -1} (3.18) 
P 1 = {M n + 1 | 0 ≤ n ≤ N -1} (3.19) 
P 2 = {N m + 1 | 0 ≤ m ≤ M -1} (3.20)
denote the positions of the sensor elements in each subarray, with subscripts 1 and 2 refer to the 1 st and 2 nd subarrays of the original CLA, and subscripts 1 and 2 refer to the 1 st and 2 nd subarrays of the shifted CLA respectively. And then the sensor positions of the synthetic array can be expressed by

P syn = P o ∪ P s (3.21)
Based on the definition of the difference coarray shown in Equation (2.12), the difference coarray of the synthetic array is composed of the self-lags and cross-lags between all the subarrays of the original CLA and the shifted CLA. The set of self-lags is defined by

D uu = {p -q | p, q ∈ P u } (3.22)
and the set of cross-lags is defined by

D uv = D + uv ∪ D - uv (3.23)
with

D + uv = {p -q | p ∈ P u , q ∈ P v } (3.24) 
D - uv = {q -p | p ∈ P u , q ∈ P v } (3.25) 
where u, v ∈ {1, 2, 1 , 2 } and u = v.

Because the sets of self-lags contain only the integer multiples of M or N , and the two subarrays of the original CLA or the shifted CLA share the first sensor, the self-lags can be considered as the cross-lags between every sensor of one subarray and the first sensor of the other subarray. Thus the self-lags form subsets of the cross-lags and do not affect the resulting difference coarray. Then the difference coarray of the synthetic array can be expressed as

D = D 12 ∪ D 11 ∪ D 12 ∪ D 21 ∪ D 22 ∪ D 1 2 (3.26) 
with

D 12 = {M n -N m} ∪ {N m -M n} (3.27) D 11 = {M n -M n -1} ∪ {M n -M n + 1} (3.28) D 12 = {M n -N m -1} ∪ {N m -M n + 1} (3.29) D 21 = {N m -M n -1} ∪ {M n -N m + 1} (3.30) D 22 = {N m -N m -1} ∪ {N m -N m + 1} (3.31) D 1 2 = {M n -N m } ∪ {N m -M n } (3.32)
where m, n, m and n are four integers with 0 ≤ m, m ≤ M -1 and 0 ≤ n, n ≤ N -1.

From Equations (3.27) and (3.32), it can be seen that D 12 and D 1 2 contain the same elements.

Then according to Equations (3.28) to (3.31), there are

D 11 ∪ D 22 = {M (n -n ) -1} ∪ {M (n -n) + 1} ∪ {N (m -m ) -1} ∪ {N (m -m) + 1} (3.33) D 12 ∪ D 21 = {M n -N m -1} ∪ {N m -M n -1} ∪ {N m -M n + 1} ∪ {M n -N m + 1} (3.34)
When m = m = 0, Equation (3.34) can be re-written as

D 12 ∪ D 21 = {M n -1} ∪ {-M n -1} ∪ {-M n + 1} ∪ {M n + 1} (3.35) Because 0 ≤ n, n ≤ N -1, there are {M n -1} ∪ {-M n -1} = {M (n -n ) -1} (3.36) 
{-M n + 1} ∪ {M n + 1} = {M (n -n) + 1} (3.37)
and Equation (3.35) can be written as

D 12 ∪ D 21 = {M (n -n ) -1} ∪ {M (n -n) + 1} (3.38) 
Similarly, when n = n = 0, Equation (3.34) can be re-written as

D 12 ∪ D 21 = {-N m -1} ∪ {N m -1} ∪ {N m + 1} ∪ {-N m + 1} (3.39)
and because 0 ≤ m, m ≤ M -1, there are 

{-N m -1} ∪ {N m -1} = {N (m -m ) -1} ( 
D 12 = {M n -N m -1} ∪ {N m -M n -1} (3.44) 
D 21 = {M n -N m + 1} ∪ {N m -M n + 1} ( 
D L 12 = {M n -N m -1} ∪ {N m -M n -1} (3.46) 
D R 12 = {M n -N m + 1} ∪ {N m -M n + 1} (3.47) 
which can be regarded as the difference coarray of the original CLA shifting one lag to the left and one lag to the right respectively.

Therefore the final difference coarray of the CLA after array motion can be given by

D = D 12 ∪ D L 12 ∪ D R 12 (3.48)
which can be regarded as the union of the difference coarray of the original CLA and its two shifted versions. Consequently, the neighboring holes of each lag in the difference coarray of the original CLA can be filled due to the array motion, lengthening the consecutive part and increasing the effective DOFs [START_REF] Qin | DOA estimation exploiting sparse array motions[END_REF][START_REF] Qin | Analysis of coprime arrays on moving platform[END_REF].

Consider the moving platform based CLA shown in FIGURE 3.1, FIGURE 3.2 and FIGURE 3.3 show the difference coarrays of the CLA before and after motion respectively. It can be seen that thanks to the array motion, the holes are filled by their neighboring lags, resulting in a hole-free difference coarray, and also two additional lags are obtained at the two ends of the difference coarray. Even if the resulting difference coarray of the synthetic array after motion is not always complete, the number of consecutive lags increases significantly with array motion, which is at most 2M (N -1) + 3 when the resulting difference coarray after motion is hole-free.

However, it can be noticed that only the lags which are neighbors of holes (e.g. {x | x = ±8, ±10, ±12, ±15} in FIGURE 3.2) are used to fill the holes, For the consecutive lags without neighboring holes (e.g. {x | -7 ≤ x ≤ 7} in FIGURE 3.2), the shifts of them generate lags which already exist in the difference coarray of the original CLA before array motion. Without generating new lags, such lags do not contribute to the increase of the DOFs by array motion.

In the next section, an improved configuration of moving platform based CLA is proposed, in which all the lags can be utilized to fill holes by array motion, such that more consecutive lags as well as higher effective DOFs can be obtained.

Improved coprime linear arrays for moving platform 3.3.1 Improved array configuration

Assume that M can be expressed as a product of two positive integers l and M as

M = lM (3.49)
where 2 ≤ l ≤ M . It is easy to see that M and N are also coprime because M and N do not have common factors expect '1'. We compress the inter-element spacing of the subarray with N sensor elements from M d to M d, then the resulting CLA turns out a CACIS in [START_REF] Qin | Generalized coprime array configurations for direction-of-arrival estimation[END_REF] with sensor numbers of the two subarrays N and M respectively with the compression factor l, or an ECLA of a prototype CLA with sensor numbers of the two subarrays N and M . According to the discussion in Section 2.2.3, the difference coarray of the resulting CLA has a consecutive part with Consequently, according to the definition of the difference coarray shown in Equation (2.12), the positions of the lags in the new difference coarray are also enlarged three times, such that in the range of [-3M N + 3M l (N -1)+3, 3M N -3M l (N -1)-3], lags are uniformly distributed, and every two adjacent lags are exactly separated by two holes, which are generated by the lengthening of the inter-element spacing. Then for the lags in such range, the shifts of them with one lag to the left and one lag to the right generate new lags which do not exist in the difference coarray before array motion, filling their neighboring holes and generating a longer consecutive part. For the redesigned CLA shown in FIGURE 3.8, the corresponding difference coarrays before and after array motion are shown in FI-GURE 3.9 and FIGURE 3.10 respectively. It can be seen that compared with the difference coarray associated with the original CLA configuration after array motion shown in FI-GURE 3.3, by judiciously designing the sensor positions, a difference coarray with more consecutive lags can be obtained with the same number of sensors and the same length of array motion. 

2M N -2 M l (N -1) -1 lags in the range of [-M N + M l (N -1) + 1, M N -M l (N - 

DOFs comparison

For the original moving platform based CLA configuration, we can obtain a difference coarray with at most 2M (N -1) + 3 consecutive lags after array motion. For the proposed configuration, although the final differencce coarray after array motion is not complete, it has a longer consecutive part in the range of

[-3M N + 3M l (N -1) + 2, 3M N - 3M l (N -1) -2]
with totally 6M N -6M l (N -1) -3 consecutive lags, which gets the minimum when l = 2, being always larger than the number of the consecutive lags in the difference coarray of the original CLA configuration even when the latter is hole-free. Therefore, the proposed CLA configuration can significantly increase the effective DOFs with the same number of sensor elements and the same length of array motion. Table 3.1 shows the comparison of the numbers of the consecutive lags in the final difference coarrays of the original and proposed CLA configurations with different values of M and N . To show the benefit of the proposed moving platform based CLA configuration in terms of DOFs increasing, the MUSIC method is applied to perform DOA estimation on an original CLA with N = 5 and M = 4 shown in FIGURE 3.1, and a redesigned CLA with the same number of sensors and l = 2 shown in FIGURE 3.8 respectively. For the original CLA configuration, a difference coarray with 35 consecutive lags is obtained after the array motion with a length of λ 2 . After the step of spatial smoothing, which is introduced in Section 2.2.2, a rank restored covariance matrix with dimension of 18 × 18 is obtained, and since at least one eigenvector spanning the noise subspace is needed such that MUSIC algorithm can be performed, up to 17 signals can be detected. 

Conclusion

In this chapter, moving platform based CLA configuration is discussed. It is shown that due to such array motion, the resulting difference coarray can be regarded as the union of the difference coarray of the original CLA and its two shifted versions with one lag to the left and one lag to the right respectively, such that neighboring holes of each lag can be filled, generating then a difference coarray with more consecutive lags and increasing the effective DOFs. However, only the lags which are the neighbors of holes are utilized to fill the holes, but for the lags in the consecutive part without neighboring holes, the shifts of them generate lags already existing in the difference coarray of the original CLA, contributing negligibly to the resulting difference coarray and the DOFs. To address this issue, an improved CLA configuration for moving platform is proposed in this chapter. By judiciously designing the sensor element positions, a lengthened difference coarray with controlled hole positions is obtained, such that all lags can be utilized to fill the holes by array motion. Compared with the original CLAs, the proposed configuration can achieve a difference coarray with much more consecutive lags and higher DOFs with the same number of sensors and the same length of array motion. Contrary to [START_REF] Qin | DOA estimation exploiting moving dilated nested arrays[END_REF], which discusses nested arrays, our proposition is dedicated to CLAs, being more suitable for practical applications because of the limited mutual coupling effect property. CHAPITRE 4

DIFFERENCE COARRAY OF COPRIME PLANAR ARRAYS

CLAs have drawn lots of attention thanks to their high DOFs. However, since there are holes existing in the difference coarray, the effective DOFs are not as high as expected. The strategic point in filling the holes and increasing the effective DOFs is to find the exact expressions of the hole locations. Lots of effort have been made to address this issue, filling the holes in the difference coarray and increasing the DOFs.

Compared with one dimensional (1D) linear arrays, two dimensional (2D) planar arrays are more relevant to real applications. There are many research studies developed for 2D coprime planar arrays (CPAs). In [START_REF] Wu | Two-dimensional direction-of-arrival estimation for co-prime planar arrays : A partial spectral search approach[END_REF] and [START_REF] Zhang | Two-dimensional direction of arrival estimation for coprime planar arrays via polynomial root finding technique[END_REF], a CPA is treated as two uniform planar subarrays, which simplifies the system model, but leads to a significant loss of DOFs. In [START_REF] Zheng | Generalized coprime planar array geometry for 2-D DOA estimation[END_REF], the CPA geometry is generalized, resulting in higher DOFs than [START_REF] Wu | Two-dimensional direction-of-arrival estimation for co-prime planar arrays : A partial spectral search approach[END_REF] and [START_REF] Zhang | Two-dimensional direction of arrival estimation for coprime planar arrays via polynomial root finding technique[END_REF] with the same number of sensor elements. However, it also deals with the subarrays and the significant advantage in terms of DOFs is sacrificed. In order to exploit the high DOFs offered by the coprime geometry, the difference coarrays should be applied instead of the physical arrays. However, due to the existence of holes, the consecutiveness of the difference coarray of CPAs is highly limited, which significantly reduces the number of effective DOFs. Unfortunately, no closed-form expressions for the hole locations in the difference coarrays of CPAs have been found in the open literature, which rises the major challenge in holes-filling and DOFs-increasing for CPAs.

Compared with other existing 2D sparse array configurations [START_REF] Greene | Sparse array performance[END_REF][START_REF] Pal | Nested arrays in two dimensions, part I : Geometrical considerations[END_REF][START_REF] Liu | Hourglass arrays and other novel 2-D sparse arrays with reduced mutual coupling[END_REF][START_REF] Liu | Two-dimensional sparse arrays with hole-free coarray and reduced mutual coupling[END_REF], CPAs are more attractive because of their limited mutual coupling effect property. To offer a better understanding of CPAs and facilitate the future research in this field, in this chapter, CPAs are investigated from the perspective of difference coarrays. Closed-form expressions of the exact hole locations are derived, based on which an efficient method is proposed to fill the most critical holes, such that a difference coarray with more consecutive lags can be generated and higher effective DOFs can be obtained. 2 . The locations of the sensor elements of the CPA can be expressed as :

P = P 1 ∪ P 2 (4.1)
with

P 1 = {(n 1 M d, n 2 M d) | 0 ≤ n 1 , n 2 ≤ N -1} (4.
2)

P 2 = {(m 1 N d, m 2 N d) | 0 ≤ m 1 , m 2 ≤ M -1} (4.3) 
denoting the sensor element locations of the two subarrays respectively. Without loss of generality, it is assumed that M < N . Suppose that there are K uncorrelated, far-field and narrowband signals impinging on the CPA from directions {(θ 1 , ϕ 1 ) , (θ 2 , ϕ 2 ) , • • • , (θ K , ϕ K )}, with θ k and ϕ k denoting the elevation and azimuth angles respectively of the k th source and 1 ≤ k ≤ K. The signal observed at the sensor element located at p u , where p u = (p u,x d, p u,z d) ∈ P, can be expressed by

x u (t) = K k=1 a u (θ k , ϕ k ) s k (t) + n u (t) (4.4)
where s k (t) denotes the impinging signal coming from (θ k , ϕ k ) and received at the reference point, and n u (t) denotes the noise received at the sensor and it is assumed to be Gaussian white and independent from the source signals. a u (θ k , ϕ k ) = e jπ(pu,x sin θ k cos ϕ k +pu,z cos ϕ k ) represents the phase shift between the sensor elements located at p u and the reference point associated with s k (t). Then the signal vector received by the CPA can be written as

x (t) = x 1 (t) x 2 (t) • • • x L (t) T (4.5)

2D difference coarray

Similar with the definition given in Equation (2.12), the difference coarray of a CPA is defined as

D = {p u -p v | p u , p v ∈ P} (4.6)
of which the elements are generated by all pairs of sensor elements in the CPA, and the observation of all the lags can be obtained from the covariance matrix of the signal received by the physical array.

The difference coarray of the CPA shown in FIGURE 4.1 is depicted in FIGURE 4.2, where the lags and holes are represented by blue dots and red rhombuses respectively as the previous chapters. It can be seen that the difference coarray exhibits a virtual planar array with much more distinct lags than the number of physical sensors in the CPA, possessing much higher DOFs. However, because of the necessity of the rank restoration for the implementation of DOA estimation with high-resolution subspace based methods, only the consecutive part in the difference coarray can be applied directly, and due to the existence of holes, the consecutiveness of the difference coarray is limited, and the achievable effective DOFs for subspace based DOA estimation methods like MUSIC are not as high as expected. 

Holes locations in 2D difference coarray

According to the definition of the difference coarray shown in Equation (4.6), the difference coarray D of a CPA can be rewritten as

D = D + 12 ∪ D - 12 ∪ D 11 ∪ D 22 (4.7)
where D + 12 and D - 12 denote the cross difference coarrays of the two subarrays with

D + 12 = {p u -p v | p u ∈ P 1 , p v ∈ P 2 } (4.8) D - 12 = {p v -p u | p u ∈ P 1 , p v ∈ P 2 } (4.9)
and D 11 and D 22 denote the self difference coarrays of the two subarrays with According to the values range of a and b , the problem can be split into three cases :

D 11 = {p u -p v | p u , p v ∈ P 1 } (4.10) D 22 = {p u -p v | p u , p v ∈ P 2 } (4.11) satisfying n 1 M -m 1 N = I = a M + b N (4.
i) 0 ≤ a ≤ N -1, b = 0 ; ii) N M -N ≤ a < 0, 0 < b ≤ M -1 ; iii) 0 ≤ a ≤ N -1, 0 < b ≤ M -1.
For i), Equation (4.16) can be written as

(n 1 -a )M = m 1 N (4.17) Since      0 ≤ a ≤ N -1 b = 0 (4.18)
and

     0 ≤ n 1 ≤ N -1 0 ≤ m 1 ≤ M -1 (4.19)
for any a in this case, there always exist n 1 = a and m 1 = 0 satisfying Equation (4.17). Therefore, the positions corresponding to such a and b are not holes.

For ii), noticing that m 1 + b ≥ 1, Equation (4.16) can be written as are filled by the lags in the self difference coarrays D 11 and D 22 ; and with rules 1) -8), the precise expressions of the holes locations in the difference coarray D in the 1 st quadrant H 1 and 2 nd quadrant H 2 can be obtained as

N M = n 1 -a m 1 + b (4.20) Since      N M -N ≤ a < 0 0 < b ≤ M -1 (4.21) and      0 ≤ n 1 ≤ N -1 0 ≤ m 1 ≤ M -1 (4.
H 1 = H 11 ∪ H 12 ∪ H 13 ∪ H 14 (4.30) H 2 = H 21 ∪ H 22 (4.31)
with

H 11 = {(x, z) |x = aM + bN, a ≥ 1, b ≥ 1, 0 ≤ x, z ≤ (N -1)M } (4.32) H 12 = {(x, z) |x = aN, z = bM, a ≥ 1, b ≥ 1, 0 ≤ x, z ≤ (N -1)M } (4.33) H 13 = {(x, z) |x = aM, z = bN, a ≥ 1, b ≥ 1, 0 ≤ x, z ≤ (N -1)M } (4.34) H 14 = {(x, z) |z = aM + bN, a ≥ 1, b ≥ 1, 0 ≤ x, z ≤ (N -1)M } (4.35)
and

H 21 = {(x, z) |x = aM + bN, a ≤ -1, b ≤ -1, -(N -1)M ≤ x ≤ 0, 0 ≤ z ≤ (N -1)M } (4. 36 
)
H 22 = {(x, z) |z = aM + bN, a ≥ 1, b ≥ 1, -(N -1)M ≤ x ≤ 0, 0 ≤ z ≤ (N -1)M } (4.37)
According to the definition of D, the holes locations in the 3 rd and 4 th quadrants are centrosymmetric to those in the 1 st and 2 nd quadrants. FIGURE 4.2 illustrates the analysis.

Holes-filling method

Based on the above analysis of the holes locations in the difference coarray, it can be seen that there exist some critical holes in the 1 st and 3 rd quadrants, which sparsely locate inside the range of {(x, z) | -(M + N ) < x, z < (M + N )} and break the consecutiveness of the difference coarray in such range. For the critical holes in the 1 st quadrant, which belong to H 12 and H 13 , we propose a holes-filling method, by which such holes can be filled by adding few additional sensor elements, and because of the centrosymmetry of the difference coarray, the critical holes in the 3 rd quadrant will also be filled as long as the critical holes in the 1 st quadrant are filled.

We first focus on the elements of H 12 , which is given in Equation (4.33). Considering the assumption M < N , the most critical holes in the range {(x, z) | -(M + N ) < x, z < (M + N )} and belonging to H 12 can be expressed as

H 12 = (N, kM ) | 1 ≤ k ≤ K, K = N M + 1 (4.38) 
And such holes can be filled by adding an additional sensor element at position (N, KM ).

The proof is given in the following by two steps.

a) The position (N, KM ) is not occupied by the sensor elements originally existing in the CPA, which can be proved by contradiction :

If there exists a sensor element originally located at the position (N, KM ), a lag would be generated by such sensor and the sensor located at (0, 0), and would be found at the position (N, KM ) in the difference coarray, which contradicts the above analysis of the holes locations given in Equation (4.33). The step a) is proved.

b) The holes H 12 can be filled by the lags generated by the additional sensor element located (N, KM ) and the sensor elements originally existing in the CPA and located at (0, tM ), where 0 ≤ t ≤ K -1.

According to the sensor elements positions shown in Equation (4.2), there is

t ≤ K -1 < N M < N M < N -1 (4.39)
Therefore there is a sensor element originally existing in the CPA and located at the position (0, tM ). The lags generated by such sensor element and the added sensor element located at (N, KM ) can be expressed as

C = {(N, gM ) | g = K -t} (4.40) 
It is easy to see that C = H 12 , which means that the holes in H 12 can be filled by the lags in C, and the step b) is then proved.

From the above two steps, it has been proved that the critical holes in the range {(x, z) | -(M + N ) < x, z < (M + N )} and belonging to H 12 can be filled by adding an additional sensor element at the position (N, KM ). Then, for the critical holes in the range {(x, z) | -(M + N ) < x, z < (M + N )} and belonging to H 13 , which can be described as

H 13 = (kM, N ) | 1 ≤ k ≤ K, K = N M + 1 (4.41) 
they can be filled by adding another additional sensor element at position (KM, N ). The proof is similar as above and omitted here.

For the CPA shown in FIGURE 4.1 where N = 5 and M = 3, with the corresponding difference coarray shown in FIGURE 4.2, the most critical holes inside the range of {(x, z) | -8 < x, z < 8} can be filled by adding two additional sensor elements at the positions (5,6) and (6,5). The CPA with the added sensor elements is shown in FIGURE 4.7 and the corresponding difference coarray with the filled holes is shown in FIGURE 4.8. Thanks to the proposed holes-filling method, by judiciously adding two additional sensor elements, the critical holes inside the range {(x, z) | -(M + N ) < x, z < (M + N )} are filled, resulting in a difference coarray part containing the most consecutive lags located at {(x, z) | -(M + N -1) < x, z < (M + N -1)}, with the total number of consecutive lags being (2M + 2N -1) 2 . Compared with the difference coarray of the original CPA configuration, although the difference coarray of the CPA with the holes-filling method is not hole-free, it exhibits a much larger consecutive part with much more consecutive lags, greatly increasing the effective DOFs of the CPA.

Conclusion

In this chapter, 2D CPAs are studied from the perspective of difference coarray. Closedform expressions of the holes locations are deduced with detailed proof, offering a better understanding of CPAs and facilitating the future research is this field. Then based on the knowledge of the holes locations, a holes-filling method is proposed. By judiciously adding two additional sensor elements, the most critical holes which highly threaten the consecutiveness of the difference coarray can be filled. Consequently, the consecutive part of the difference coarray can be enlarged, which significantly increases the effective DOFs of the array.

CHAPITRE 5

AN EFFICIENT DOA ESTIMATION METHOD FOR COPRIME LINEAR SUBARRAYS

In the previous chapters, coprime arrays are investigated from the perspective of difference coarray-based methods, which try to increase the number of consecutive lags in a virtual half-wavelength spacing uniform coarray to increase the effective DOFs. In this chapter, we focus on the subarray-based methods, where a CLA is treated as two sparse uniform linear subarrays. From each of them, high-precision but ambiguous DOA estimation is obtained, and the ambiguities caused by the large inter-element spacing are eliminated according to the coprime property. Compared with difference coarray-based methods, separately dealing with two uniform linear subarrays, the subarray-based methods sacrifice the DOFs, but they simplify the system model and can directly and efficiently exploit the uniform property of each subarrays. Consequently, the DOA estimation can be accomplished with low-complexity methods, which is more practical in some real applications.

Many DOA estimation methods have been proposed in this research orientation. A MUSIC-based method is proposed in [START_REF] Zhou | DECOM : DOA estimation with combined MUSIC for coprime array[END_REF]. By dividing a CLA into two sparse ULAs, and finding the common peaks of their MUSIC-spectrums, the DOAs can be uniquely obtained and the ambiguities caused by the large inter-element spacing can be eliminated based on the coprime property. But the complexity caused by the step of peak-searching is high. Another method is proposed in [START_REF] Sun | Partial spectral search-based DOA estimation method for co-prime linear arrays[END_REF], which can reduce the computational complexity by limiting the peak-searching region. However, since it also involves the step of peaksearching, the computational burden is still heavy. Besides, the methods in [START_REF] Zhou | DECOM : DOA estimation with combined MUSIC for coprime array[END_REF] and [START_REF] Sun | Partial spectral search-based DOA estimation method for co-prime linear arrays[END_REF] suffer from the problem of pair matching errors when the number of incoming signals is greater than one. A low complexity method based on ESPRIT is proposed in [START_REF] Sun | A low-complexity ESPRIT-based DOA estimation method for co-prime linear arrays[END_REF]. Without spectral searching, the complexity is significantly reduced. The matching errors are eliminated by beamforming-based techniques, and true DOAs are estimated uniquely. Similarly, another method for fixing the pair matching errors problem is proposed in [START_REF] Zhang | Improved DOA estimation algorithm for co-prime linear arrays using root-MUSIC algorithm[END_REF]. Based on Root-MUSIC [START_REF] Barabell | Improving the resolution performance of eigenstructure-based direction-finding algorithms[END_REF][START_REF] Rao | Performance analysis of root-MUSIC[END_REF], it has low complexity. By exploiting the relationship between the directional matrices of the two subarrays, the pair matching of the estimated angles can be achieved automatically, and the ambiguities can be mitigated one by one. However, the grating angles problem is not considered. Because of the large inter-element spacing, some signals may impinge from a set of grating angles which share an identical directional vector for one subarray. Consequently, the directional matrix of this subarray will be rank deficient, it is then a challenge to find the true DOAs for all the above mentioned methods. The grating angles problem is firstly discussed in [START_REF] Yang | A fast and robust DOA estimation method based on JSVD for co-prime array[END_REF], where a joint singular value decomposition (JSVD) [START_REF] Gu | Joint SVD of two cross-correlation matrices to achieve automatic pairing in 2-D angle estimation problems[END_REF] based method is proposed. Thanks to the JSVD algorithm, the grating angles can be differentiated and the pair matching can be accomplished. Nevertheless, since a "beamforming-like" method with spectral searching is involved, the performance of this method is limited by the length of searching step and high complexity.

In this chapter, an efficient DOA estimation method is proposed. For each subarray, the true DOAs are mapped into equivalent DOAs corresponding to a virtual traditional half-wavelength spacing ULA. From the perspective of accuracy and efficiency, after estimating the number of the equivalent signals, the ESPRIT method is performed and two sets of equivalent DOAs can be estimated from the two subarrays respectively. Then the associated equivalent signals can be recovered. By analyzing the cross-correlations between the equivalent signals recovered from the two subarrays, the pair matching of the equivalent DOAs is accomplished. Consequently, based on the relationship between a DOA and its equivalent DOAs, two sets of candidate DOAs are recovered for each pair of matched equivalent angles, and the corresponding true DOA is uniquely determined by finding the common element. Compared with other existing methods, the proposed method is able to achieve a better estimation performance in all situations, in terms of accuracy and complexity. Simulation results are provided to show the performance of the proposed method. 

Mapped system model

, θ 2 , • • • , θ K } respectively, with -90 • < θ k < 90 • and 1 ≤ k ≤ K,
where K is supposed to be known 5.1. Mapped system model and K < min{M 1 , M 2 }. The signal received by the i th subarray can be expressed as

x i (t) = K k=1 a i (θ k ) s k (t) + n i (t) = A i s (t) + n i (t) (5.1) 
where

A i = a i (θ 1 ) a i (θ 2 ) • • • a i (θ K ) (5.2) 
denotes the directional matrix of the i th subarray with

a i (θ k ) = 1 e jM ĩπ sin θ k • • • e j(M i -1)M ĩπ sin θ k T (5.3)
where i, ĩ ∈ {1, 2} and i = ĩ ;

s (t) = s 1 (t) s 2 (t) • • • s K (t) T (5.4)
denotes the source signals vector with s k (t) the signal transmitted by the k th source and received at the reference sensor element shared by the two subarrays. n i (t), which is assumed to be independent from the source signals, is a white Gaussian noise vector with zero-mean and covariance matrix σ 2 I M i , with σ 2 the noise power.

To offer a better understanding of the signal model of the coprime subarrays as well as the potential problems in DOA estimation introduced in Section 2.3, a mapped system model based on traditional half-wavelength spacing ULAs is introduced. Due to the property of the sinusoid function, for the signal coming from θ k and impinging on the i th subarray, there exists a unique angle denoted as θ map i,k with -90

• < θ map i,k < 90 • , satisfying sin θ map i,k = M ĩ sin θ k + 2n i,k (5.5) 
where n i,k is an integer with -

M ĩ+1 2 < n i,k < M ĩ-1
2 . Because of the property of the complex exponential function, the directional vector associated with this signal in Equation (5.3) can be re-written as

a map i θ map i,k = 1 e jπ sin θ map i,k • • • e j(M i -1)π sin θ map i,k T (5.6)
Therefore, it can be considered that the signal with the true DOA θ k impinging on the i th subarray is mapped into a virtual signal with the mapped DOA θ map i,k impinging on a virtual half-wavelength spacing ULA with M i sensor elements. The mapped system model of the

i th subarray is shown in FIGURE 5.1. virtual ULA subarray th i FIGURE 5.1 -Mapped system model
Accordingly, for multiple incoming signals, the received signal model of the i th subarray can be regarded as K signals coming from K mapped DOAs {θ map i,1 , θ map i,2 , • • • , θ map i,K } impinging on a virtual half-wavelength spacing ULA with M i sensor elements. Equation (5.1) can then be re-written as

x i (t) = K k=1 a map i θ map i,k s k (t) + n i (t) = A map i s (t) + n i (t) (5.7) 
where

A map i = a map i θ map i,1 a map i θ map i,2 • • • a map i θ map i,K (5.8) 
denotes the mapped directional matrix of the i th subarray, and the set of the K mapped DOAs associated with the K true DOAs is defined as

Θ map i = {θ map i,1 , θ map i,2 , • • • , θ map i,K }.
To address the potential problems in DOA estimation with coprime subarrays introduced in Section 2.3, instead of the original system, the DOA estimation will be implemented on the traditional half-wavelength spacing ULAs based mapped system. For the signal coming from θ k and impinging on the i th subarray, its mapped DOA θ map i,k rather than the true DOA θ k can be directly obtained from the mapped system. According to Equation (5.5), each mapped DOA θ map i,k corresponds to M ĩ candidate angles, and the m th candidate angle θ cand,m i,k can be recovered by

θ cand,m i,k = arc sin 1 M ĩ sin θ map i,k -2n m i,k (5.9) 
with n m i,k the value of n i,k associated with the m th candidate angle θ cand,m i,k

. One of the candidate angles recovered by Equation (5.9) is the true DOA θ k , and the others are ambiguities. According to Section 2.3, the true DOA θ k can be uniquely determined by finding the common angle in the two sets of candidates angles recovered from the mapped angles θ map 1,k and θ map 2,k , which are obtained from the two subarrays respectively. Considering the pair matching errors introduced in Section 2.3.2 from the perspective of the equivalent system model, the problem occurs when there exist other common angles in the candidate angles recovered from the mapped DOAs of difference sources in different subarrays. Therefore, the mapped DOAs estimated from the two subarrays associated with a common source should be pair matched, such that for each of the K pairs of matched DOAs, two sets of candidate angles can be recovered, and the associated true DOA can be obtained by finding the common element among them without pair matching errors.

And considering the grating angles problem introduced in Section 2.3.3 from the perspective of the equivalent system model, the problem occurs when some signals come from a set of distinct angles belonging to a common candidate angles set and sharing a common mapped DOA. Consequently, their associated directional vectors will be identical and the directional matrix of this subarray will be rank deficient. It will result in difficulties for the subsequent steps like DOA estimation and ambiguities elimination.

Proposed DOA estimation method

Considering the grating angles problem or the rank deficiency of the directional matrices, in this section, an equivalent system model is introduced. Then an efficient DOA estimation method is proposed, which remains robust in any situations with higher accuracy and lower complexity.

Equivalent system model

When some signals come from a set of angles, which are grating angles to each other for one subarray, the mapped DOAs of them are the same, or in other word, these signals seem to come from a "same" direction to the virtual half-wavelength spacing ULA. In this situation, the received signal model of the i th subarray can be regraded as K i equivalent signals s eqv i,l (t) coming from K i different equivalent DOAs θ eqv i,l impinging on a virtual halfwavelength spacing ULA, with 1 ≤ K i ≤ K and 1 ≤ l ≤ K i . The set of the K i equivalent DOAs of the K i equivalent signals is defined as

Θ eqv i with Θ eqv i = θ eqv i,1 , θ eqv i,2 , • • • , θ eqv i,K i . Note that Θ eqv i ⊆ Θ map i
, and without grating angles problem, we have K i = K and Θ eqv i = Θ map i , and the equivalent system model is identical to the mapped system model introduced in Section 5.1. In practice, the number of equivalent signals K i can be estimated by Akaike Information Criterion (AIC) or Minimum Description Length (MDL) method [START_REF] Akaikei | Information theory and an extension of maximum likelihood principle[END_REF][START_REF] Rissanen | A universal prior for integers and estimation by minimum description length[END_REF][START_REF] Wax | Detection of signals by information theoretic criteria[END_REF] Based on the equivalent system model, the signals observed at the i th subarray can be re-written as

x i (t) = K i l=1 a map i θ eqv i,l s eqv i,l (t) + n i (t) = A eqv i s eqv i (t) + n i (t) (5.10) 
where

A eqv i = a map i θ eqv i,1 a map i θ eqv i,2 • • • a map i θ eqv i,K i (5.11)
denotes the equivalent directional matrix, and

s eqv i (t) = s eqv i,1 (t) s eqv i,2 (t) • • • s eqv i,K i (t) T (5.12)
denotes the equivalent source signal vector of the i th subarray.

DOA estimation

After estimating the number of the equivalent source signals K i , the ESPRIT method introduced in Section 1.3.4 can be performed on the signals received by the two subarrays, and two sets of equivalent DOAs can be obtained from them respectively, denoted as

Θeqv 1 = θeqv 1,1 , θeqv 1,2 , • • • , θeqv 1,K 1 (5.13) Θeqv 2 = θeqv 2,1 , θeqv 2,2 , • • • , θeqv 2,K 2 (5.14)
To achieve the pair matching of the equivalent DOAs, the equivalent source signals vector of the two subarrays s eqv 1 (t) and s eqv 2 (t) should be recovered, and the pair matching of the equivalent DOAs can be achieved by exploring the cross-correlations between their associated equivalent signals.

Based on the equivalent DOAs estimated previously, an estimated equivalent directional matrix can be constructed for each subarray as follows where ŝeqv

Âeqv i = a map i θeqv i,1 a map i θeqv i,2 • • • a map i θeqv i,K i (5.
i (t) = ŝeqv i,1 (t) ŝeqv i,2 (t) • • • ŝeqv i,K i (t) T (5.18)
of which the elements denote the equivalent signals respect to the K i equivalent DOAs.

In order to study the cross-correlations between the equivalent source signals of the two subarrays got by Equation (5.17), K 1 × K 2 cross-correlations can be estimated by rp,q = 1 J J t=1 ŝeqv 1,p (t) ŝeqv 2,q (t) * (5.19) where 1 ≤ p ≤ K 1 , 1 ≤ q ≤ K 2 and J is the number of snapshots.

Since an equivalent signal may be a combination of some original signals, if a common original signal is contained in two equivalent signals of the two subarrays ŝeqv 1,p (t) and ŝeqv 2,q (t), the modulus of the cross-correlation between them |r p,q | would be a large value. Otherwise, it would be a small value. One the other hand, it has been proved in [START_REF] Zheng | DOA estimation for coprime linear arrays : An ambiguity-free method involving full DOFs[END_REF] that thanks to the coprimality between M 1 and M 2 , for two distinct DOAs having the same directional vector for one subarray, their directional vectors for the other subarray are necessarily different. In other words, two distinct DOAs with same mapped DOA for one subarray have necessarily different mapped DOAs for the other one. Therefore, in the K 1 × K 2 cross-correlations, there exist K cross-correlations with large modulus corresponding to the K original sources. By finding the K cross-correlations with largest modulus, the K pairs of matched equivalent DOAs can be found. Similarly to Equation (5.9), for each pair of matched equivalent DOAs, two sets of candidate DOAs can be recovered as follows

Θcand 1,k = θcand,1 1,k θcand,2 1,k • • • θcand,M 2 1,k 
(5.20) As a matter of illustration of this principle, the processing flow charts of the proposed method for a normal situation and a grating angles problem situation are depicted in FIGURE 5.3 and FIGURE 5.4 respectively, where "L" stands for a large value and "S" stands for a small value. It is assumed that three signals impinge on a coprime linear array from {θ 1 , θ 2 , θ 3 } ; in the grating angles problem situation shown in FIGURE 5.4, θ 1 and θ 3 are grating angles for the 1 st subarray, and θ 1 and θ 2 are grating angles for the 2 nd subarray. It can be seen that thanks to the equivalent system model, the proposed method can overcome the rank deficiency caused by the grating angles problem, and the estimation results can be pair matched automatically. Finally, two sets of candidate DOAs can be recovered from each pair of matched equivalent DOAs, and the common element among them can be found to obtain the estimation of the true DOAs. The main steps of the proposed method can be summarized in TABLE 5.1. 

Θcand 2,k = θcand,1 2,k θcand,2 2,k • • • θcand,M 1 2,k (5.21) 

Simulation and analysis

To assess the performance of the proposed method, firstly, the proposed method is compared with Zhou's method in [START_REF] Zhou | DECOM : DOA estimation with combined MUSIC for coprime array[END_REF] in a pair matching errors situation. Then in a grating angles problem situation, it is compared with the Sun's method in [START_REF] Sun | A low-complexity ESPRIT-based DOA estimation method for co-prime linear arrays[END_REF] and Zhang's method in [START_REF] Zhang | Improved DOA estimation algorithm for co-prime linear arrays using root-MUSIC algorithm[END_REF], which solve the pair matching errors. Finally, in order to assess the accuracy and complexity performance of the proposed method, it is compared with Yang's method in [START_REF] Yang | A fast and robust DOA estimation method based on JSVD for co-prime array[END_REF], which also considers the pair matching errors and grating angles problem.

Reliability comparison

To show the superiority of the proposed method in pair matching errors situations, consider the situation mentioned Section 2.3.2, where a CLA is composed of two coprime subarrays with the numbers of sensor elements M 1 = 7, M 2 = 5, and two incoming signals impinging on the CLA from θ 1 = 10.00 • and θ 2 = 39.11 • respectively. The reliability comparison of the proposed method and Zhou's method is shown in FIGURE 5.5 with 10 independent simulation runs, in which the SNR is 0dB and the number of snapshots is 200. It can be seen that because Zhou's method only finds out the common peaks in the MUSIC spectrums obtained from the two subarrays without pair matching, the estimation results may be ambiguous. In contrast, thanks to the equivalent system model, the proposed method can achieve the pair matching of the equivalent DOAs associated with the same source in different subarrays by analyzing the cross-correlations between the equivalent signals, and the performance remains remarkable and stable. To emphasize the superiority of the proposed method in grating angles problem situations, consider the situation mentioned Section 2.3.3, where a CLA is composed of two coprime subarrays with the numbers of sensor elements M 1 = 7, M 2 = 5, and three incoming signals impinging on the CLA from θ 1 = 10.00 • , θ 2 = 27.35 • and θ 3 = 35.01 • respectively. The reliability comparison of the proposed method with Sun's method in [START_REF] Sun | A low-complexity ESPRIT-based DOA estimation method for co-prime linear arrays[END_REF] and Zhang's method in [START_REF] Zhang | Improved DOA estimation algorithm for co-prime linear arrays using root-MUSIC algorithm[END_REF] is shown in FIGURE 5.6 with 10 independent simulation runs, in which the SNR is 0dB and the number of snapshots is 200. It is obvious that although the two existing methods can overcome the pair matching errors with beamforming-based methods and the relationship between the directional matrices of the two subarrays, they ignore the fact that the directional matrices would be rank deficient due to the grating angles problem, and their performance cannot remain stable. In contrast, thanks to the equivalent system model, the equivalent directional matrices are full rank, and the correctly matched equivalent DOA pairs can be found by studying the cross-correlations between the equivalent signals. 

Accuracy comparison

To assess the DOA estimation performance of the proposed method, the root mean square error (RMSE) is used as performance measurement, which is defined as

RMSE = 1 KQ K k=1 Q q=1 θq,k -θ k 2 (5.23)
with K the number of incoming signals, Q the number of Monte Carlo trials, and θq,k the estimate of the true DOA θ k at the q th Monte Carlo trial. Q = 500 is used, and a CLA with M 1 = 7 and M 2 = 5 is considered. The Cramér-Rao lower bound (CRB) for this CLA geometry is also given as a benchmark [START_REF] Stoica | MUSIC, maximum likelihood, and Cramer-Rao bound[END_REF][START_REF] Stoica | Performance study of conditional and unconditional direction-of-arrival estimation[END_REF][START_REF] Stoica | The stochastic CRB for array processing : A textbook derivation[END_REF].

The RMSE performance of the proposed method and Yang's method in [START_REF] Yang | A fast and robust DOA estimation method based on JSVD for co-prime array[END_REF] is compared in a normal situation, where two signals are assumed to impinge on the CLA from θ 1 = 10.00 • and θ 2 = 40.00 • , and a grating angles problem situation, where three signal are assumed to impinge on the CLA from θ 1 = 10.00 5.10 illustrate the obtained results. Because the peak-searching in Yang's method is performed in the sine domain, the searching step is chosen as 0.001 to obtain a precise estimation. It can be seen that both methods can achieve a remarkable performance in grating angles problem situations, but since a "beamforming-like" method is utilized, the accuracy of the method in [START_REF] Yang | A fast and robust DOA estimation method based on JSVD for co-prime array[END_REF] is limited. On the contrary, based on the ESPRIT method, the proposed method can achieve a better estimation result, and its RMSE curves are closer to the CRB. 

Complexity comparison

According to TABLE 5.1, the proposed method requires the covariance matrices estimation, eigenvalue decomposition of the covariance matrices, equivalent signals recovery and cross-correlation computation. The resulted complexity is given by

O M 2 1 + M 2 2 J + M 3 1 + M 3 2 + 5K 2 (M 1 + M 2 ) + 6K 3 + (M 1 + M 2 ) KJ + K 2 J
(5.24) And for Yang's method in [START_REF] Yang | A fast and robust DOA estimation method based on JSVD for co-prime array[END_REF], it requires the cross-covariance matrix estimation, singular value decomposition of the cross-covariance matrix and peak-searching with the order of complexity given as

O M 1 M 2 J + 4M 1 M 2 2 + M 3 2 + 3M 1 K 2 + 2K 3 + 2M 1 K M 2 × sch (5.25)
where J is the number of snapshots and sch is the searching step length. The complexity comparison versus total number of sensors (M 1 + M 2 -1) is given in FIGURE 5.11, with K = 2, J = 200, and the grating angles problem is assumed to be not existing. The sear-ching step length is set as 0.0001 to achieve a similar RMSE performance between the two algorithms. It can be observed that without peak-searching, the proposed method has lower computational complexity. When grating angles problem exists, some K in Equation (5.24) will be replaced by K 1 or K 2 with K 1 , K 2 < K, and the corresponding computational complexity will be lower than Equation (5.24). Therefore, with the proposed method, the DOA estimation can be accomplished more efficiently. For the other compared methods in [START_REF] Zhou | DECOM : DOA estimation with combined MUSIC for coprime array[END_REF][START_REF] Sun | A low-complexity ESPRIT-based DOA estimation method for co-prime linear arrays[END_REF][START_REF] Zhang | Improved DOA estimation algorithm for co-prime linear arrays using root-MUSIC algorithm[END_REF], their practicability is limited by the pair matching errors or grating angles problem. Therefore, their performance in terms of accuracy and complexity is less significant in the case of real applications.

Number of Sensors

Conclusion

In this chapter, an efficient DOA estimation method with coprime linear subarrays is proposed. Considering the rank deficiency of the directional matrices caused by the grating angles problem, a traditional half-wavelength spacing ULA based equivalent system model is introduced, where the true DOAs are mapped into their corresponding equivalent DOAs and the equivalent directional matrices are full rank. After the estimation of the equivalent DOAs, the corresponding equivalent signals can be recovered from the received signals, the pair matching of the equivalent DOAs can then be achieved by analyzing the crosscorrelations between the equivalent signals. Compared with other existing research works, the proposed method remains robust in any situations with a better estimation performance in terms of accuracy and complexity. CHAPITRE 6

DOA ESTIMATION WITH UNFOLDED COPRIME LINEAR ARRAYS

In the previous chapter, the DOA estimation with coprime linear subarrays is discussed. It is shown that by considering a CLA as two sparse ULAs and performing DOA estimation on both of them separately, high-precision but ambiguous DOA estimation can be obtained, and the ambiguities caused by the large inter-element spacing can be eliminated according to the coprime property. Besides, methods have been proposed to successfully solve the potential problems like pair matching errors and grating angles problem. However, separately handling the two subarrays causes the following problems : i) the final DOFs are determined by the smallest DOFs of the two subarrays, which are much less than the total number of sensor elements ;

ii) only the self information of the two subarrays is utilized, which results in a sub-optimal estimation performance ;

iii) further processes are required to eliminate the ambiguities caused by the large interelement spacing, leading to computational burden in practical applications.

To tackle these problems, an antenna geometry named unfolded coprime linear array (UCLA) is proposed in [START_REF] Zheng | DOA estimation for coprime linear arrays : An ambiguity-free method involving full DOFs[END_REF]. By unfolding the two subarrays of a general CLA in two opposite directions, the array aperture can be extended. Furthermore, instead of treating the two subarrays separately, the MUSIC method is performed with the received signal of the whole array. This technique, having been extended to the scenarios of noncircular signals in [START_REF] Zhai | DOA estimation of noncircular signals for unfolded coprime linear array : Identifiability, DOF and algorithm (may 2018[END_REF] and 2D DOA estimation in [START_REF] Gong | Unfolded coprime L-shaped arrays for twodimensional direction of arrival estimation[END_REF][START_REF] Li | Two-dimensional off-grid DOA estimation using unfolded parallel coprime array[END_REF], enjoys the advantages that both self and mutual information can be exploited and full DOFs can be obtained. Besides, it has been admitted that the ambiguities caused by the large inter-element spacing can be suppressed thanks to the coprime property. However, it is not always true. When there are two different DOAs having the same directional vectors with the directional vector of a given DOA for the two subarrays respectively, there would still be ambiguous angles of which the corresponding directional vectors can be represented as linear combinations of the directional vectors of true DOAs. As a consequence, the directional vectors of these ambiguous angles are also orthogonal to the noise subspace, which means that some peaks associated with these ambiguous angles will also be found in the MUSIC spectrum.

In this chapter, the DOA estimation with UCLAs is introduced. For the ignored ambiguity problem, the principle of its generation is investigated and a modified DOA estimation method with ambiguity-eliminating is proposed. Firstly, a decision variable is defined to determine the existence of the ambiguity problem. Then all the angles associated with the highest spectral peaks, including the true DOAs and the ambiguous angles, are selected out and the Classical Beamforming (CBF) approach is utilized to distinguish them. Simulation results are provided to show the efficiency of the proposed method. where

System model and DOA estimation

A = a (θ 1 ) a (θ 2 ) • • • a (θ K ) (6.2)
denotes the directional matrix and

a (θ k ) = a T 1 (θ k ) a T 2 (θ k ) T (6.3)
denotes the directional vector of the UCLA, with

a 1 (θ k ) = 1 e jM 2 π sin θ k • • • e j(M 1 -1)M 2 π sin θ k T (6.4) a 2 (θ k ) = e -j(M 2 -1)M 1 π sin θ k e -j(M 2 -2)M 1 π sin θ k • • • e -jM 1 π sin θ k T (6.5)
the directional vectors of the two subarrays respectively ;

s (t) = s 1 (t) s 2 (t) • • • s K (t) T (6.6)
denotes the source signal vector with s k (t) the signal transmitted by the signal coming from θ k and received at the reference sensor, and n (t) is the white Gaussian noise vector with zero-mean and covariance matrix σ 2 I N , and supposed to be independent from the source signals.

Instead of estimating the DOAs with the two subarrays separately, the MUSIC method is performed on the whole array, and the covariance matrix of the received signal can be estimated with L snapshots by

R = 1 L L t=1 x (t) x H (t) =   R11 R12 R21 R22   (6.7)
where R11 and R22 are the auto-covariance matrices and R12 and R21 are the crosscovariance matrices of the signals received by the two subarrays respectively. It can be seen that except the self-information of the two subarrays R11 and R22 , which is only used in subarrays-based methods, the mutual information R12 and R21 is also used by UCLAs, contributing to the improvement of the estimation performance.

The eigenvalue decomposition of the covariance matrix R can be written as

R = U s Λ s U H s + U n Λ n U H n (6.8)
where U s and U n are composed by the eigenvectors spanning the signal subspace and noise subspace respectively, and Λ s and Λ n are the eigenvalue matrices corresponding to U s and U n respectively. The pseudo-spectrum of MUSIC can be represented by

P M U SIC (θ) = 1 a H (θ) U n U H n a (θ) (6.9) 
Then according to the orthogonality between signal and noise subspaces, the DOAs can be determined by peak-searching of P M U SIC (θ) over (-90 • , 90 • ). Specifically, unlike the spectrums of the subarrays, for a given DOA, only the spectral peak related to the real DOA estimate arise without ambiguities, of which the proof is given in the following.

Suppose that for a given DOA θ k , except its real estimate θk , there exists another estimate, denoted as θamb k = θk , presenting an ambiguous peak in the MUSIC spectrum, which means that the ambiguous estimate θk has the same directional vector for the UCLA with the real estimate θ k . Then we have a θk = a θamb k (6.10) and according to Equations (6.3) -(6.5), there are

a 1 θk = a 1 θamb k (6.11) a 2 θk = a 2 θamb k (6.12)
and

M 2 π sin θk = M 2 π sin θamb k + 2k 1 π (6.13) M 1 π sin θk = M 1 π sin θamb k + 2k 2 π (6.14)
where k 1 and k 2 are two non-zero with

k 1 ∈ [-M 2 + 1, -1] ∪ [1, M 2 -1] and k 2 ∈ [-M 1 + 1, -1] ∪ [1, M 1 -1] respectively.
Then it can be deduced that

sin θk -sin θamb k = 2k 1 M 2 (6.15) sin θk -sin θamb k = 2k 2 M 1 (6.16) and 2k 1 M 2 = 2k 2 M 1 (6.17)
Due to the coprime property between M 1 and M 2 , we cannot find such k 1 and k 2 satisfying Equation (6.17). Therefore, except θk , there is no θamb k satisfying Equation (6.10) and exhibiting a peak in the MUSIC spectrum. FIGURE 6.2 depicts the DOA estimation result of the situation where an incoming signal impinges on a UCLA with the sensor element numbers of the two subarrays M 1 = 7 and M 2 = 5 from direction θ = 10 • . The number of snapshots is set to 200 with SNR = 10dB. Compared with the traditional CLA with subarrays-based methods, of which the DOA estimation result is shown in FIGURE 2.9, it can be seen that the ambiguities caused by the large inter-element spacing are suppressed thanks to the coprime property, then the following step to eliminate the ambiguities by searching for the overlapped peaks is no more needed. Although it has been admitted that for a single incoming signal, no ambiguities exist in the MUSIC spectrum of the whole UCLA, it is not always true for the scene of multiple incoming signals. When there are two different DOAs having the same directional vectors with the directional vector of a given DOA for the two subarrays respectively, there would still be ambiguous angles, of which the proof is given in the following section.

Ambiguity problem

Because of the large inter-element spacing of each subarray, for a given DOA with its associated directional vector, there exist several other angles having the same directional vector for either subarray. Consider that there are three distinct DOAs θ 1 , θ 2 and θ 3 , of which the directional vectors satisfy that a 1 (θ 1 ) = a 1 (θ 3 ) (6.18)

a 2 (θ 1 ) = a 2 (θ 2 ) (6.19)
Then the relationship between θ 1 , θ 2 and θ 3 can be written as From Equations (6.20) It can be seen that the directional vector of θ 4 can be represented as a linear combination of the directional vectors of the other three angles, and when there are three signals coming from any three of the four angles, the directional vector of the remaining one would lie in the signal subspace and be also orthogonal to the noise subspace, resulting in an ambiguous peak in the MUSIC spectrum. Generally, for an arbitrary number of incoming signals (at least three), if the DOAs of three of them meet the conditions given by Equations (6.18) and (6.19), then the ambiguity problem occurs.

Consider a UCLA with M 1 = 7, M 2 = 5, and three incoming signals impinge on the UCLA from θ 1 = 10.00 • , θ 2 = 27.35 • and θ 3 = 35.01 • respectively, satisfying Equations (6.18) and (6.19). The simulation result is shown in FIGURE 6.3, in which SNR = 10dB and the number of snapshots is 200. It is clear that apart from the three correct estimates, there is another angle θ 4 = 59.25 • , satisfying Equations (6.28) -(6.30) and giving an ambiguous peak in the MUSIC spectrum. For such UCLA configuration, the ambiguity problem also occurs in the cases of {θ 1 , θ 2 , θ 3 } = {20.00 

Proposed ambiguity-eliminating method

In order to solve the ambiguity problem, we propose an eliminating method. Firstly, it is required to determine if the problem exists or not. The MUSIC spectrum is expected to exhibit K high peaks associated with the K true DOAs. However, when some ambiguous peaks exist, more than K high peaks will be found. Suppose that there are totally Q peaks in the MUSIC spectrum, of which the locations and amplitudes are denoted as ( θp , y p ) with p = 1, 2, • • • , Q. Sorting y p in descending order, we have

y 1 > y 2 > • • • > y Q (6.31)
Define a decision variable as D (n) = y n -y n+1 y n+1 (6.32) where n = 1, 2, • • • , Q-1. It can be noticed that when both y n and y n+1 are two amplitudes of high peaks or low peaks, the decision variable D(n) is small. If y n is the amplitude of a high peak and y n+1 is the amplitude of a low peak, the decision variable D(n) becomes much larger. Thus the number of high peaks can be decided by

J = arg max n D (n) (6.33)
and when J > K, the ambiguity problem is considered as existing.

To distinguish the true DOAs and the ambiguous angles, the Classical Beamforming (CBF) approach can be utilized. The J angles associated with the J highest peaks θq with q = 1, 2, •, J are selected out as candidate DOAs, then J candidate directional vectors can be constructed with these candidate DOAs by a θq = Signals come from the true DOAs and there is no physical signal coming from ambiguous angles. Therefore the CBF power at the true DOAs is greater than that at the ambiguous angles. By finding the K greatest results in Equation (6.35), the true DOAs can be obtained.

Simulations and analysis 6.4.1 Reliability comparison

To illustrate the effectiveness of the proposed ambiguity-eliminating method, consider the ambiguity problem case of which the simulation result is shown in FIGURE 6.3. Select out the locations and amplitudes of all the peaks in the MUSIC spectrum and calculate the decision variable D(n) with Equation (6.32). The obtained results are shown in TABLE 6.1. According to the maximum of D(n), there are J = 4 peaks obviously higher than the others, corresponding to the three true DOAs and one ambiguous angle. Select out the J = 4 candidate angles and calculate their corresponding CBF powers P CBF,q with Equation (6.35). The obtained results are shown in TABLE 6.2. It is clear that the CBF powers at the three true DOAs are greater than that at the ambiguous angle. Therefore, the true DOAs can be distinguished among the candidate angles, and the ambiguity problem is solved successfully. The ambiguity problem does not affect the estimation accuracy, but invalidates the estimation by introducing non-existing DOAs. The proposed method can achieve the same estimation performance as the existing method when there is no ambiguity problem, and is still robust and reliable when the problem occurs. To reveal the reliability of the proposed ambiguity-eliminating method in ambiguity problem cases, the comparison of the proposed method and the original method in [START_REF] Zheng | DOA estimation for coprime linear arrays : An ambiguity-free method involving full DOFs[END_REF] is shown in Figure 6.4, with 20 independent simulations, in which SNR is 10dB and the number of snapshots is 200. The three estimated angles with the highest peak amplitudes and the greatest CBF powers are chosen as the final estimation results for the original method in [START_REF] Zheng | DOA estimation for coprime linear arrays : An ambiguity-free method involving full DOFs[END_REF] and the proposed method respectively. It can be seen that the estimation results of the original method are ambiguous and the unsolved ambiguity problem reduces the rate of success of DOA estimation. In contrast, the proposed ambiguity-eliminating method can solve the ambiguity problem successfully, and the performance remains stable and remarkable.

Complexity comparison

According to the principle of the proposed ambiguity-eliminating method, the computational complexity will be different, depending on the existence of the ambiguity problem. When the ambiguity problem does not exist, the computational complexity of the proposed method is O N 2 L + N 3 + T N (N -K) (6.36) which is the same as the original method in [START_REF] Zheng | DOA estimation for coprime linear arrays : An ambiguity-free method involving full DOFs[END_REF], where T is the number of spectral peaksearching. When the problem exists, the computational complexity of the proposed method turns out to be O N 2 L + N 3 + T N (N -K) + JN 2 (6.37)

which slightly exceeds that of the original method.

Conclusion

In this chapter, the DOA estimation with UCLAs is discussed and an ignored ambiguity problem is investigated. We show that there would be ambiguous peaks in the MUSIC spectrum when there are two different DOAs having the same directional vectors with the directional vector of a given DOA for the two subarrays respectively. To address this issue, an ambiguity-eliminating method is proposed. Firstly, a decision variable is defined to determine the existence of the problem, and then the true DOAs are distinguished based on the CBF technique. Simulation results show that the proposed method can successfully solve the ambiguity problem with a slight additional computational complexity burden, achieving a wider range of applications.

CHAPITRE 7

CONCLUSION AND PERSPECTIVES

Conclusion of contributions

In this thesis, the DOA estimation with coprime arrays is considered. Both the two research orientations, which are difference-coarray based methods and subarray-based methods, are investigated, and array configurations and DOA estimation methods are improved for better performance in terms of DOFs and reliability. The main contribution are summarized as follows.

For difference-coarray based methods, moving platforms based CLAs with their corresponding difference coarrays are studied, and the problem that the lags in the consecutive difference coarray part contribute negligibly to the increase of the DOFs after array motion is pointed out. To address this issue, an improved CLA configuration for moving platform is proposed. By judiciously redesigning the sensor element positions, the lags in the consecutive part of the original difference coarray can be used to fill holes after array motion, lengthening the consecutive part of the difference coarray and increasing the effective DOFs.

Then, to be more relevant to real applications, the structure of the difference coarrays of 2D CPAs is investigated. Closed-form expressions of the exact hole locations are deduced, offering a better understanding of CPAs and providing a basis for the future research in this domain. Besides, a holes-filling method is proposed, by which the most critical holes can be filled, such that a difference coarray with more consecutive lags can be generated and higher effective DOFs can be obtained.

For subarray-based methods, the existing problems associated with this class of methods, including ambiguity, pair matching errors and grating angles problem, are discussed. Considering the possible rank deficiency of the directional matrices, an equivalent system model is introduced, and a reliable and efficient DOA estimation method is proposed, which can work correctly in all situations and has a better performance in terms of estimation accuracy and computational complexity. Finally, for the UCLAs which enjoy the advantages of full DOFs and better estimation performance compared to CLAs with subarrays based methods, the ambiguity problem ignored by the existing works is revealed, and an appropriate fixing method is proposed, by which such problem can be solved successfully and efficiently.

Perspectives of future work

For the future work, the following lists several suggestions based on the proposition presented in the thesis.

For the moving platform based CLAs, the CLAs are assumed to be air-borne, vehicleattached or ship-based, which is proposed for practical applications. Considering that the motion of the platform is controllable and not necessarily along the array direction, moving the CLA in another direction to generate a 2D difference coarray aiming to solve 2D DOA estimation problems is more relevant and efficient to practical applications, and is recommended to investigate in the future.

For the CPAs with the proposed holes-filling method, although the effective DOFs can be significantly increased, the resulting difference coarray is not complete, and there still exist unfilled holes. With the knowledge of the deduced hole locations, the filling of such remaining holes would be one of the future research orientations.

For the CLAs with subarray-based methods, the proposed DOA estimation and ambiguitysolving methods assume the sources to be far-field, narrowband and uncorrelated, which may not be valid in practical situations. Hence, the improvement of such theory for more general assumptions would be another topic of the future research.

2 . 4 .

 24 Du point de vue des méthodes basées sur le difference coarray, pour augmenter le nombre d'éléments virtuels effectifs dans le difference coarray ainsi que le nombre de sources détectables, les CLAs basés sur d'une plate-forme mobile ont été étudiés, et il a été montré que le nombre de sources détectables peut être augmenté en décalant le CLA d'une demi-longueur d'onde des signaux. Dans cette thèse, le difference coarray du CLA après le mouvement est analysé, et une configuration de CLAs améliorée pour la plate-forme mobile est proposée. En redéfinissant judicieusement les positions des capteurs, le mouvement du CLA peut être exploité plus efficacement, de sorte que beaucoup plus de signaux entrants peuvent être détectés avec le même nombre de capteurs physiques et la même longueur de mouvement de réseau. 3. La structure des difference coarrays des CLA a été bien étudiée, mais les réseaux planaires coprimes (CPAs) sont plus pertinentes pour les applications pratiques que les CLAs. Cependant, contrairement aux CLAs, les travaux de recherche sur les difference coarrays des CPAs n'ont pas été aussi développés. Afin d'apporter une meilleure compréhension des CPAs et de faciliter la recherche future dans ce domaine, dans cette thèse, les CPAs sont étudiés du point de vue des difference coarrays. Plusieurs propriétés des difference coarrays des CPAs sont dérivées, sur la base desquelles une méthode efficace est proposée pour augmenter le nombre d'éléments virtuels effectifs dans les difference coarrays ainsi que le nombre de signaux détectables. Du point de vue des méthodes basées sur les sous-réseaux, plusieurs problèmes potentiels associés à cette classe de méthodes sont discutés, et nous montrons que les méthodes existantes ne peuvent pas fonctionner correctement lorsque les signaux provenant de certaines directions particulières ou souffrent d'une faible précision d'estimation et d'une grande complexité de calcul. Dans cette thèse, une méthode fiable et efficace d'estimation de DOA est proposée, dans laquelle le modèle de système avec des sous-réseaux uniformes avec grand espacement inter-éléments est transformé en ULAs virtuels traditionnels avec espacement de demi-longueur d'onde, et les vrais DOA sont traités comme leurs angles équivalents associés aux ULAs virtuels pour éviter les problèmes potentiels. Par rapport à d'autres méthodes existantes basées sur des sous-réseaux, la méthode proposée est capable d'obtenir une meilleure performance d'estimation dans toutes les situations, en termes de précision Résumé et de complexité. 5. Dans les méthodes basées sur les sous-réseaux, le traitement séparé des deux sousréseaux pose des problèmes tels que le faible nombre de sources détectables et des performances d'estimation sous-optimales. Pour résoudre ces problèmes, une configuration de réseaux de capteurs nommée réseau linéair coprime déplié (UCLA) est proposée, et il a été admis que les ambiguïtés provoquées par le grand espacement inter-éléments peuvent être supprimées automatiquement grâce à la propriété de coprime, et aucun autre processus n'est nécessaire pour les éliminer. Cependant, ce n'est pas toujours vrai. Il y aurait encore des ambiguïtés lorsque les signaux proviendraient des directions particulières. Dans cette thèse, la raison du problème d'ambiguïté ignorée est mise en évidence, et une méthode d'estimation de DOA modifiée avec l'élimination de l'ambiguïté est proposée, par laquelle le problème d'ambiguïté peut être résolu avec succès.
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 11 FIGURE 1.1 -Signal receiving model
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 14 FIGURE 1.4 -DOA estimation by classical beamforming method
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 15 FIGURE 1.5 -DOA estimation by Capon method
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 16 FIGURE 1.6 -DOA estimation by MUSIC method
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 17 FIGURE 1.7 -DOA estimation by ESPRTI method

  FIGURE 2.1, a prototype of CLAs consists of two sparse ULAs, having N and M sensor elements, with inter-element spacing d 1 = M d and d 2 = N d respectively, where M and N are two coprime integers, and d = λ 2 . Without loss of generality, it is assumed that M < N . The position of the u th sensor element is given as p u d with u = 1, 2, • • • , L, where L denotes the total number of sensor elements, and because the first sensor is shared by the two subarrays and set as the reference point, there are L = M +N -1 and p 1 = 0.
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 2223 FIGURE 2.2 -Coprime linear array with N = 5 and M = 4
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 262728 FIGURE 2.6 -Extended coprime linear array with N = 5, M = 4 and l = 2

  42) where m = 1, 2, • • • , M and n = 1, 2, • • • , N denote the indexes of the candidate angles. Then the DOA estimation of the coprime array can be obtained by θk = θ cand,m 1,k
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 29 FIGURE 2.9 -MUSIC spectrums of coprime subarrays with N = 7 and M = 5
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 2210 FIGURE 2.10 shows the DOA estimation simulation with coprime subarrays when pair matching errors exist, in which there are N = 7 and M = 5 sensor elements placed in the two coprime subarrays, and two signals impinging from θ 1 = 10.00 • and θ 2 = 39.11 • respectively. The number of snapshots is set to 200 and SNR = 10dB. It can be seen that besides the two real DOAs, there exist two other common angles, -13.09 • and -75.75 • , exhibiting overlapped peaks but associated with different sources. To be more clear, a diagram illustrating the generation of pair matching errors in such situation is given in FIGURE 2.11.
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 211 FIGURE 2.11 -Diagram of the generation of pair matching errors
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 231 FIGURE 3.1 -Moving platform based CLA with N = 5 and M = 4

3 . 40 )

 340 {N m + 1} ∪ {-N m + 1} = {N (m -m) + 1} (3.41) and then Equation (3.35) can be written as D 12 ∪ D 21 = {N (m -m ) -1} ∪ {N (m -m) + 1} (3.42) Based on Equations (3.33), (3.38) and (3.42), it can be seen that D 11 ∪ D 22 forms a subset of D 12 ∪ D 21 , and the difference coarray of the CLA after motion can be simplified as D = D 12 ∪ D 12 ∪ D 21 (3.43) According to Equations (3.29) and (3.30), it is easy to see that by exchanging the combinations of the subsets, D 12 ∪ D 21 can be transferred to D 12 ∪ D 21 , where

3 . 45 )

 345 According to the values of m, n, m and n , D 12 and D 21 are equivalent to D L 12 and D R 12 respectively, with
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 3233 FIGURE 3.2 -Difference coarray of the CLA with N = 5 and M = 4 before array motion
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 3435 FIGURE 3.4 -Difference coarray of the CLA with N = 6 and M = 5 before array motion

1 )

 1 -1]. Consider the CLA with N = 5 and M = 4 shown in FIGURE 3.1, by choosing l = 2, the resulting CLA configuration and the corresponding difference coarray after the inter-element spacing compression are shown in FIGURE 3.6 and FIGURE 3.7 respectively.In order to use the lags in the consecutive part without neighboring holes by array motion, we lengthen the inter-element spacing of both the subarrays three times, from M d and N d to 3M d and 3N d respectively. For the CLA shown in FIGURE3.6, the redesigned CLA with lengthened inter-element spacing is shown inFIGURE 3.8. 
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 363738 FIGURE 3.6 -Inter-element spacing compression of CLA with N = 5, M = 4 and l = 2
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 39310 FIGURE 3.9 -Difference coarray of the redesigned CLA with N = 5, M = 4 and l = 2 before array motion
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 3311312 FIGURE 3.11 -MUSIC spectrum of the original CLA configuration

4. 1

 1 System model of coprime planar arrays 4.1.1 Signal model A conventional CPA consists of two uniform sparse square subarrays. The 1 st subarray has N ×N sensor elements with inter-element spacing M d, and the 2 nd subarray has M ×M sensor elements with inter-element spacing N d, where M , N are two coprime integers and d = λ
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 4241 FIGURE 4.1 -Coprime planar array with N = 5 and M = 3

12 FIGURE 4 . 2 -

 1242 FIGURE 4.2 -Difference coarray of the CPA with N = 5 and M = 3

  [START_REF] Jin | Joint DOD and DOA estimation for bistatic MIMO radar[END_REF] and for any I ∈ [0, (N -1)M ] and out of the form of I = a M + b N with a ≥ 0 and b ≥ 1, there always exist n 1 and m 1 , with 0 ≤ n 1 ≤ N -1 and 0 ≤ m 1 ≤ M -1, satisfying the above equation.
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 124331244 FIGURE 4.3 -Cross difference coarray D + 12 of the CPA with N = 5 and M = 3

82 4. 2 . 12 FIGURE 4 . 5 - 3 X 12 FIGURE 4 . 6 -

 822124531246 FIGURE 4.5 -Self difference coarray D 11 of the CPA with N = 5 and M = 3
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 471248 FIGURE 4.7 -Coprime planar array N = 5 and M = 3 with additional sensor elements

Firstly 2 λ 2 and d 2 = M 1 λ 2

 2212 , let's recall the signal model of coprime subarrays. Consider a CLA composed of two sparse uniform linear subarrays, having M 1 and M 2 sensor elements with inter-element spacing d 1 = M respectively. Suppose that there are K uncorrelated, far-field and narrowband signals impinging on the CLA from directions {θ 1

= 1 e

 1 jπ sin θeqv i,l • • • e j(M i -1)π sin θeqv i,l T (5.16) Then the equivalent source signals of the i th subarray can be recovered by ŝeqv i (t) = Âeqv i + x i (t)(5.17

  )

  of the true DOA θk can be determined by finding the common angle among them.
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 5312354 FIGURE 5.3 -Processing flow chart for a normal situation

step 6 For

 6 each of the K pairs of the matched equivalent DOAs, generate two sets of candidate DOAs Θcand 1,k and Θcand 1,k (Equation (5.22)). The estimate of the true DOA θk (k = 1, 2, • • • , K) is given by the unique common angle among them.

  theta
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 55 FIGURE 5.5 -Reliability comparison in the pair matching errors situation
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 56 FIGURE 5.6 -Reliability comparison in the grating angles problem situation

A 2 λ 2 and d 2 = M 1 λ 2

 2212 UCLA consists of two sparse ULAs arranged along two opposite directions, having M 1 and M 2 sensor elements with inter-element spacing d 1 = M , respectively, where M 1 and M 2 are two coprime integers. FIGURE6.1 shows the case of M 1 = 7 and M 2 = 5. The element shared by the two subarrasy is set as the reference point, and the total number of sensor elements is N = M 1 + M 2 -1.

subarray 1 subarray 2 FIGURE 6 . 1 -

 261 FIGURE 6.1 -Unfolded coprime linear array with M 1 = 7 and M 2 = 5
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 62 FIGURE 6.2 -DOA estimation result of the UCLA with M 1 = 7 and M 2 = 5

M 2 π

 2 sin θ 1 = M 2 π sin θ 3 + 2k 1 π (6.20) M 1 π sin θ 1 = M 1 π sin θ 2 + 2k 2 π (6.21)where k 1 and k 2 are two non-zero integers withk 1 ∈ [-M 2 + 1, -1] ∪ [1, M 2 -1] and k 2 ∈ [-M 1 + 1, -1] ∪ [1, M 1 -1] respectively.

  a 1 (θ 1 ) a 2 (θ 1 )

 1121 
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 63 FIGURE 6.3 -Ambiguity problem of UCLAs

  Section 1.3.1, the CBF powers of the J candidate directional vectors can be calculated by P CBF,q = a H θq Ra θq N 2 (6.35)

  FIGURE 6.4 -Reliability comparison

  where a ≥ 1 and b ≥ 0. The corresponding difference coarray is shown in FIGURE 2.7. Compared with the difference coarray of the prototype CLA shown in FIGURE2.3, it can be seen that by adding few sensor elements to a subarray, the number of consecutive lags in the difference coarray is significantly increased from 17 to 47. After spatial smoothing, a rank restored covariance matrix with dimension 24 × 24 is obtained, such that up to 23 effective DOFs can be achieved. FIGURE 2.8 depicts the MUISC spectrum of the ECLA with 17 sources uniformly distributed from -64 • to 64 • , where the number of snapshots is 2000 and SNR = 10dB.
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FIGURE 2.5 -Structure of extended coprime linear array FIGURE 2.6 shows an ECLA with N = 5, M = 4 and l = 2.

  • , 38.88 • , 47.90 • }, {θ 1 , θ 2 , θ 3 } = {30.00 • , 51.79 • , 64.16 • } and many other configurations, the phenomenon occurs. It is a real problem which cannot be ignored in real applications.

TABLE 3 .

 3 

	1 -Numbers of consecutive lags comparison
		(M, N )		consecutive lags numbers
	original	(4, 5)		35
	CLA	(5, 6)		43
	configuration	(4, 7)		51
		(5, 8)		73
		(M, N ) l consecutive lags numbers
		(4, 5)	2	69
	proposed		4	93
	CLA	(5, 6) 5	147
	configuration	(4, 7)	2	93
			4	129
		(5, 8) 5	195

  . When the grating angles problem occurs, some of the equivalent signals s eqv i,l (t) should be a combination of some original signals s k (t), as shown in FIGURE 5.2.

	i	th	subarray
	virtual ULA
	FIGURE 5.2 -Equivalent system model when grating angles problem occurs

TABLE 5 .

 5 ), and achieve the pair matching of the estimated equivalent DOAs by finding the K cross-correlations with the largest modulus.

			1 -Main steps of the proposed method
	step 1	Estimate the numbers of the equivalent source signals received by the two subarrays K 1 and K 2 .
		Perform the ESPRIT method to estimate the two sets of the equivalent
	step 2	DOAs Θeqv 1	and Θeqv 2	from the signals received by the two subarrays
		x 1 (t) and x 2 (t) respectively.
		Construct the two equivalent directional matrices of the two subarrays
	step 3	Âeqv 1 and Θeqv and Âeqv 2 2 respectively (Equation (5.15)). with the two sets of estimated equivalent DOAs Θeqv 1
	step 4	Recover the equivalent source signals ŝeqv 1 (t) and ŝeqv 2 (t) impinging on the two subarrays (Equation (5.17)).
		Calculate the cross-correlations between ŝeqv 1 (t) and ŝeqv 2 (t) (Equation
	step 5	(5.19)		

  Thus it can work correctly in such situations.

	Number of Simulations	0 1 2 3 4 5 6 7 11 10 9 8	-80	-60 Sun's method -40 True DOAs	-20	0	20	40	60
	Number of Simulations	0 1 2 3 4 5 6 7 11 10 9 8	-80	-60 Zhang's method -40 True DOAs	-20	theta 0	20	40	60
	Number of Simulations	0 1 2 3 4 5 6 7 11 10 9 8	-80	-60 Proposed method -40 True DOAs	-20	theta 0	20	40	60
						theta			

  • , θ 2 = 27.35 • and θ 3 = 35.01 • , versus SNR (snapshots number is 200) and snapshots number (SNR is 10dB). FIGURE 5.7 -FIGURE

  and (6.21), it can be deduced that Defining the term sin θ 4 and expressing Equation (6.23) in the two following equations asM 2 π sin θ 4 = M 2 π sin θ 2 + 2 (-k 1 ) π (6.26) M 1 π sin θ 4 = M 1 π sin θ 3 + 2 (-k 2 ) π (6.27)Then the following equations are obtaineda 1 (θ 4 ) = a 1 (θ 2 ) (6.28) a 2 (θ 4 ) = a 2 (θ 3 ) (6.29)and according to Equations (6.18),(6.19) and Equations (6.28) and (6.29), there is the relationship between the directional vectors of θ 1 , θ 2 , θ 3 and θ 4 as

							6.2. Ambiguity problem
	then it comes that					
	sin θ 2 -sin θ 3 =	2k 1 M 2	-	2k 2 M 1	(6.22)
	which can be re-written as					
	sin θ 2 +	2 M 2	(-k 1 ) = sin θ 3 +	2 M 1	(-k 2 )	(6.23)
	sin θ 4 = sin θ 2 +	2 M 2	(-k 1 )	(6.24)
	sin θ 4 = sin θ 3 +	2 M 1	(-k 2 )	(6.25)

  • , 38.88 • , 47.90 • }, {30.00 • , 12.37 • , 64.16 • } and others satisfying Equations (6.18) and (6.19), which is a real problem in the applications of UCLAs.

TABLE 6 .
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	1 -Decision variable

1.2. Traditional sensor array geometries

LIST OF TABLES

We first discuss the characteristics of the cross difference coarray D + 12 . Taking d as the unit, D + 12 can be expressed as

According to the values of n 1 , n 2 , m 1 and m 2 , it is easy to see that

In the following, the locations of the holes in D + 12 will be provided with detailed proof. Four general rules can be summarized as :

would be a hole for any z in such range if

, the position (x, y) would be a hole for any x in such range if z = aM + bN with a ≤ -1, b ≤ 0.

The proof of rule 1) is given in the following.

Based on [START_REF] Wang | Hole identification and filling in k-times extended co-prime arrays for highly efficient DOA estimation[END_REF], for any integer I in the range of [0, (N -1)M ], we can always find two integers a 0 and b 0 , such that

Let b = b 0 mod M , and there is

where t is a non-negative integer and b ∈ [0, M -1]. Then we can get

Then according to Equation (4.12), it can be seen that to prove rule 1), it is sufficient and necessary to prove that for any I ∈ [0, (N -1)M ] and in the form of I = a M + b N with a ≥ 0 and b ≥ 1, there never exist n 1 and m 1 , with 0

for any a and b in this case, there always exist n 1 and m 1 , exhibiting

and satisfying Equation (4.20). Therefore, the positions corresponding to such a and b are not holes.

For iii), similar with ii), Equation (4.16) can be written as Equation (4.20). Considering that M and N are two coprime integers, (n 1 -a ) and (m 1 + b ) should exactly equal to N and M respectively. Since

for any a in this case, we cannot find n 1 such that n 1 -a = N . Therefore, the positions corresponding to such a and b are holes.

The proof of rule 1) ends, and the proof of the other three is similar and omitted here.

Then, we focus on the characteristics of the other cross difference coarray D - 12 , which can be expressed as

and it is easy to see that D - 12 is located in the range of {(x, z) | -(N -1)M ≤ x, z ≤ (M -1)N }, and four similar general rules of the holes in D - 12 can be obtained as follows :

would be a hole for any z in such range if From the perspective of subarraybased methods, the potential problems associated with this class of methods are discussed, and a reliable and efficient DOA estimation method is proposed. Besides, the configuration of unfolded coprime linear arrays is investigated. An ambiguity problem ignored by the existing research is discussed, and an ambiguityeliminating method is proposed, by which the problem can be solved efficiently.