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Introduction

Figure .1: A picture of the Halley comet
taken during its last apparition, in 1986.

In 1607, young german physicist Jo-
hannes Kepler made detailed observa-
tions of a comet that is known nowadays
as the Halley comet. In particular, he no-
ticed in his book "De Cometis", published
in 1619 [Kep19], that the tail of the comet
was systematically pointing in a direction
opposite to the sun. He conjectured that
“the tail of a comet is composed by a mat-
ter the Sun rays are chasing away by their
impulse out of the body of the comet”.
This hypothesis is the first known evoca-
tion of the force light can induce upon
matter. It is only in the 19th century,
with the discovery of Maxwell’s equations
[Max73], that the scientific community
reached a consensus on the existence of
this force, denominated radiation pressure.

The first laboratory experiments demonstrating radiation pressure were performed
in 1901[NH01]. The concept gained in interest in the late 1970s with the proposal
from Ashkin[Ash78] to use strongly focused laser beams to control dielectric particles.
Crucially, the proposal noticed that this force can be used to cool down the parti-
cles. Laser cooling then rapidly became a standard technique in the atomic physics
community [Ste86].

In parallel, the action of light on mechanical resonators was first theoretically[BM67]
and experimentally[BMT70] investigated by Braginski, who predicted that the damp-
ing of the resonator could be modified by radiation pressure. The apparition of extra
damping or amplification was induced by the complex feedback mechanism at play in
a Fabry-Perot resonator involving a movable mirror.

In the following decades, the interest in coupling light to mechanical resonators grew
significantly. This optomechanical coupling was first actively studied in the context
of interferometric measurements, where the position of a mirror can be inferred with
high precision by measuring the phase acquired by light upon reflection. In this case,

3
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Figure .2: Pictures of different optomechanical systems: (a) A Silicon nanobeam pat-
terned with a 1D-periodic array of holes. A defect at the center is colocalizing a
phononic and a photonic mode in a small mode volume [CASN+11]. (b) One electrode
of the capacitance of a microwave LC circuit is free to move in a drum mode [TdL+11]
(c) A silica microtoroid couples an optical whispering gallery mode to a mechanical
breathing mode of the disk [SRA+08] (d) The flexural mode of an aluminium nitride
plate is modifying the capacitance of an LC circuit [OHA+10] (e) The meter-scale
mirrors of the gravitational wave interferometers are coupled via radiation pressure to
their arm cavities

the competition between the quantum fluctuations of light and the effect of radiation
pressure gives rise to a lower limit to the sensitivity achievable by such system[Cav81].
This sensitivity limit, directly related to Heisenberg’s uncertainty principle, has been
recently reached experimentally in gravitational wave interferometers [MWG+20]. The
corresponding extreme sensitivity to relative length variations of h ∼ 10−22 has enabled
in 2015 the first detection of a gravitational wave[CC16]: a very small deformation of
space time induced by the merging of a binary black hole system.

Alternatively, the possibility to use radiation pressure to control the motion of the
mechanical resonator itself has triggered a new line of research, that has evolved over
the last 20 years into a very active field, coined quantum optomechanics. In strong
analogy with cold atom experiments, the main objective is to control the quantum state
of the mechanical system thanks to its interaction with light. A number of mechanical
systems, of various shapes and masses have been coupled to various electromagnetic
resonators, both in the optical and the microwave domain. Important results include
the first demonstration of ground state cooling in 2011 [TdL+11], the optomechanical
generation of squeezed light [SNGH+13, NTM+17], entanglement between an elec-
tromagnetic field and a mechanical resonator[PTSL13], or entanglement between two
mechanical oscillators [OKDP+18].

The motivations for these researches are numerous: from a fundamental point-
of-view, bringing a macroscopic mechanical resonator in a well-controlled quantum
state could enable to investigate potential gravity-induced decoherence mechanisms
[KPJ+08]. Some have even speculated that such a quantum-gravitational effect might
be the key to elucidate the quantum-to-classical transition [Pen14]. On the other hand,
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quantum control of mechanical resonators opens interesting perspectives for sensing
and quantum information applications. For instance, Magnetic Resonant Force Mi-
croscopy exploits the extreme sensitivity of nano-mechanical resonators to an external
force to image spins in a solid-state matrix. A sensitivity down to the single elec-
tronic spin has even been demonstrated by a pioneering experiment performed at IBM
[RBMC04]. Improving the sensitivity by another three orders of magnitude, down to
the single nuclear-spin level, would enable imaging of individual bio-molecules in-situ,
revolutionizing pathogenesis and the drug discovery process in general [SGB+95]. The
universal coupling capabilities, long-lifetime, and compactness of mechanical resonators
is also interesting for quantum information applications. For instance, mechanical res-
onators are able to store fragile quantum states in long-lived mechanical oscillations,
and could thus be used as quantum memories [CKY+18]. They have also been pro-
posed as a bridge linking together incompatible quantum systems, such as optical and
microwave photons [APP+14].

During this thesis, we have developed a new optomechanical platform, based on
a suspended silicon nitride membrane initially developed in the group of J. Harris
[ZSJ+08]. This mechanical resonator is a very popular mechanical system as it com-
bines a very high mechanical quality factor, low mass, and it can be easily function-
alized with a nano-magnet for spin-sensing applications [FMR+19]. Furthermore, it
features low optical losses and can thus easily be interfaced with an optical cavity, as
initially demonstrated in Yale [ZSJ+08]. In this work, we have been able to measure
the properties of such a mechanical system in the 10 - 300 mK range by coupling it
to a superconducting resonant cavity, and found exceptional mechanical quality (the
measured lifetime of ∼ 30 s exceeds by 2 orders of magnitude that of electromechanical
systems previously interfaced with microwave photons). Furthermore, we have used
microwave photons as a cold bath to reduce the thermal occupation of the membrane
approximately thousand-folds. These experiments are a first step towards more com-
plex manipulations of the mechanical quantum state. In particular, the choice of a
superconducting resonator, rather than an optical cavity, is guided by the ambition to
use the rich toolbox of superconducting circuit technologies as a non-Gaussian resource
to generate non-classical states. As an example, we have developed, in collaboration
with the cQED group of ENS, a single microwave photon detector that could be used
to herald non-classical states of the mechanical resonator.

This manuscript is divided in 7 chapters: In chapter I, we derive the theoretical
framework of optomechanics and introduce some useful concepts to describe our exper-
imental results. In chapter II, we describe and characterize the mechanical properties
of the suspended membranes used throughout this work. These resonators, vibrating in
the MHz range, are coupled to GHz photons by forming a mechanically compliant mi-
crowave cavity. These microwave electromechanical systems, their micro-fabrication,
and the measurement setup used for their characterization is described in chapter III.
Chapter IV is dedicated to the microwave and electromechanical characterization of
these systems. We present our cooling experiment in chapter V, along with some
proposed optimizations. Having demonstrated most of the aspects of these optimiza-
tions, we are confident that they will enable us to reach the quantum ground state
shortly. The main loss mechanism of the planar superconducting resonators employed
in this work is traceable to a bath of two-level systems [WHW+09]. In chapter VI,
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we describe an original pump-probe technique [CFI+20] to characterize the associ-
ated non-linear damping. Finally, we describe future directions of the experiments
in chapter VII. This includes a mechanical optimization by “soft-clamping” of the
membrane—-a technique that was originally introduced by the Copenhaguen group—-
the single microwave photon detector developed in collaboration with ENS, and the
possible heralding experiments enabled by this device.



Chapter I: Theory of cavity
optomechanics

In this section we derive some theoretical background from the field of optomechanics
that will be useful for understanding the results of this PhD. Although the major part
of those phenomena could have been understood using a classical formalism, we will
consistently use a quantum mechanical picture in this derivation.

I.1: A quantum harmonic oscillator
A mechanical resonator can be fully described by a set of normal modes, each of them
represented by a position operator x̂ (taken as a small excursion from an equilibrium
position, and for the sake of simplicity assumed here to be unidimensional), a mass m,
a mechanical frequency Ωm/2π, a loss rate Γm and a momentum operator p̂. In the
quantum framework, those operators do not commute, and we have [x̂, p̂] = i~. We
assume that this resonator undergoes such an elastic force that we are able to write
down its Hamiltonian in the following form:

Ĥ = p̂2

2m + mΩ2
m

2 x̂2 (I.1.1)

If now we introduce the operators [CtBF18]:

b̂
def= 1√

2

√mΩm
~

x̂+ i
1√

m~Ωm
p̂

 (I.1.2)

b̂†
def= 1√

2

√mΩm
~

x̂− i 1√
m~Ωm

p̂

 , (I.1.3)

respectively called annihilation and creation operators, we are able to rewrite the pre-
vious Hamiltonian in the form Ĥ = ~Ωm

(
b̂†b̂+ 1

2

)
, the constant part stemming from

the non commutativity of the two variables x̂ and p̂. If we consider the eigenvectors
|n〉 of the phonon number operator N̂ def= b̂†b̂, associated to the eigenvalues n ∈ N, we

7



8 Chapter I. Theory of cavity optomechanics

see that the Hamiltonian is diagonal in this basis, called the Fock basis, and that the
eigenenergies are discrete, with values : En = ~Ωm

(
n+ 1

2

)
.

The energy of the system in a Fock state |n〉 is that of a set of identical particles of
energy ~Ωm. These bosonic particles are called phonons. The actions of the previous
operators on the Fock states are:

b̂|0〉 = 0
∀n ∈ N∗, b̂|n〉 =

√
n|n− 1〉

∀n ∈ N, b̂†|n〉 =
√
n+ 1|n+ 1〉,

which explains their denomination : the creation operator creates a phonon, whereas
the annihilation operator destroys one. The non conservative characteristic of this
process translates into the fact that those are not Hermitian operators.

We can then compute the mean values of observables 〈...〉 using the formula,
valid for a system at equilibrium with a thermostat at the temperature T : 〈A〉 =
Tr(Ae−βH)
Tr(e−βH) = 1

Z

∑
n∈N
〈n|A|n〉e−βEn , where β = 1

kBT
and Z is called the partition function

of the system, Z =
∑
n∈N

e−βEn . For example,

∆x̂2 = 〈x̂2〉 = ~
2mΩm

〈
b̂2 + b̂†

2 + b̂b̂† + b̂†b̂
〉

(I.1.4)

= ~
2mΩm

〈
b̂b̂† + b̂†b̂

〉
(I.1.5)

= ~
mΩm

(〈
b̂†b̂
〉

+ 1
2

)
(I.1.6)

= ~
mΩm

(
1

e
~Ωm
kBT − 1

+ 1
2

)
, (I.1.7)

where 1

e
~ω
kBT −1

def= nB is the Bose-Einstein statistics, which yields the number of bosonic

particles at a given frequency ω/2π for a given temperature T . The constant term
~

2mΩm
, which appears in the right hand side of equation (I.1.7), is a quantum signa-

ture. It is a consequence of the Heisenberg inequalities, stating that one cannot access
a full knowledge of two conjugated variables at the same time (∆x̂∆p̂ ≥ ~/2). In the
classical case, the mechanical resonator variance of position can be computed using
the equipartition theorem, stating that 1

2mΩ2
m∆x̂2 = 1

2kBT , which gives ∆x̂2 = kBT
mΩ2

m
.

The two formulas are compared in figure I.1, where we introduced xZPF
def=
√

~
2mΩm

,
the typical motion amplitude of the mechanical resonator when emptied of all thermal
phonons. ZPF stands for Zero Point Fluctuations, and Tlim

def= ~Ωm/kB is the typical
temperature below which the quantum nature of this oscillator becomes conspicuous.
Indeed, when T � Tlim, the variance is essentially equal to x2

ZPF, regardless of the
temperature, which means that the quantum noise dominates, whereas thermodynam-
ics predicts that the noise of the harmonic oscillator can be arbitrarily low when the
temperature is decreased. On the other hand, at high temperature, i.e. when T � Tlim
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Figure I.1: Mechanical noise 〈x̂2〉/x2
ZPF at thermal equilibrium, in the quantum case

or in the classical case, versus the temperature measured in unit of Tlim
.

the two formulas give the same results, which is expected since the quantum theory
must be consistent with the classical one in the high temperature limit.

We will work with resonators whose mechanical frequencies are typically in the
MHz range, which gives Tlim ≈ 50 µK. As we can see, this range of temperature is
well below what could be achieved with regular cryogenic techniques. Nonetheless, we
will see below how we intend to achieve a low enough temperature by coupling the
mechanical degree of freedom to a microwave field acting as a “cold reservoir”.

I.2: Coupling to the environment

The model introduced in section I.1 does not include any dissipation mechanism, yet
experimentally realistic systems are open systems, able to exchange energy with their
environment. In this section we are going to derive the effect of this coupling to the
mechanical oscillator’s behavior.

I.2.a: Heisenberg-Langevin equation of a mechanical oscillator coupled to
a thermal bath

We can show [CDG+10] that the temporal evolution of the annihilation operator for
such systems is described by a quantum Langevin equation, where this energy exchange
mechanism is characterized by the loss rate Γm:

d

dt
b̂(t) = i

~
[Ĥ,b̂(t)]− Γm

2 b̂(t) +
√

Γmb̂in(t), (I.2.1)
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where b̂in(t) is an input mode coming from the environment. We can see that this
input term allows the commutator [b̂, b̂†] to stay constant and equal to one, despite the
dissipation process. The input field is a bosonic thermal field fulfilling the commutation
relation:

〈b̂†in(t)b̂in(t′)〉 = nBδ(t− t′) (I.2.2)

and
〈b̂in(t)b̂†in(t′)〉 = (nB + 1)δ(t− t′), (I.2.3)

such that the incoming power is Pin
def= ~ΩmnB. We then have:

d

dt
b̂(t) = (−iΩm − Γm/2) b̂(t) +

√
Γmb̂in(t). (I.2.4)

I.2.b: Position spectrum of a mechanical oscillator coupled to a thermal
bath

The counterparts of the formulas (I.2.2) and (I.2.3) in the frequency domain are1:

〈ˆ̃b†in(Ω)ˆ̃bin(Ω′)〉 = 2πnBδ(Ω + Ω′) (I.2.5)

and
〈ˆ̃bin(Ω)ˆ̃b†in(Ω′)〉 = 2π(nB + 1)δ(Ω + Ω′). (I.2.6)

The spectrum SÔÔ of any observable Ô can be determined by expressing its Fourier
transform as a function of input noises and by using the definition 〈Ô(Ω)Ô(Ω′)〉 def=
2πSÔÔ(Ω)δ(Ω+Ω′). For instance, taking the Fourier transform of the equation (I.2.4):

ˆ̃b(Ω) =
√

Γm
ˆ̃bin(Ω)

i(Ωm − Ω) + Γm/2
, (I.2.7)

the position operator in the Fourier space as a function of the input noises reads:

˜̂x(Ω) = xZPF(ˆ̃b(Ω) + ˆ̃b†(Ω)) (I.2.8)

=
√

ΓmxZPF

 ˆ̃bin(Ω)
i(Ωm − Ω) + Γm/2

+
ˆ̃b†in(Ω)

−i(Ωm + Ω) + Γm/2

 , (I.2.9)

from which we can compute the spectral density:

Scx̂x̂(Ω) = Γmx
2
ZPF

[
nB + 1

(Γm/2)2 + (Ωm − Ω)2 + nB
(Γm/2)2 + (Ωm + Ω)2

]
, (I.2.10)

1the Fourier transform convention used here is ˆ̃b(Ω) def=
�∞
−∞ dτ b̂(τ)eiΩτ and b̂(t) def=

1
2π

�∞
−∞ dΩˆ̃b(Ω)e−iΩt
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Note that the spectrum is asymmetric: Scx̂x̂(Ω) 6= Scx̂x̂(−Ω). We can get more insight
about this feature by introducing the Wiener Khintchine Theorem, which unravels the
link between the spectrum and the autocorrelation function Gx̂x̂(t) def= 〈x̂(t)x̂(0)〉:

Scx̂x̂(Ω) =
� ∞
−∞

dteiΩtGx̂x̂(t), (I.2.11)

As we can see, this spectrum is perfectly symmetric in the classical case. Indeed,
Scx̂x̂(−Ω) =

�∞
−∞ dte

iΩt〈x̂(0)x̂(t)〉, and in the classical case x̂(0) and x̂(t) are scalars,
thus commuting. However, in the quantum regime, this is not the case and this
asymmetry is a quantum signature that we will try to exhibit in this PhD. More quan-
titatively, this phenomenon is due to the asymmetry of the energy exchange processes
between the system and its reservoir, and the spectrum actually fulfills a detailed bal-
ance condition[CDG+10] which can be written:

Scx̂x̂(−Ω) = e−~Ω/kBTScx̂x̂(Ω). (I.2.12)

As expected, in the limit of high temperature T � ~Ωm/kB, the spectrum asymmetry
is negligible and we retrieve the classical feature. In the following, we will refer to
the symmetrized spectral density Ssx̂x̂(Ω) def= 1

2(Scx̂x̂(−Ω) + Scx̂x̂(Ω)) = 1
2S

c
x̂x̂(Ω)(1 +

e−~Ω/kBT ). Integrating this function gives:
� ∞
−∞

Ssx̂x̂(Ω)dΩ
2π = x2

ZPF

(1
2 + nB(T,Ωm)

)
, (I.2.13)

thus measuring this quantity provides the occupation number of this resonator.

I.3: Electromechanical coupling
In the previous section we described the evolution of a mechanical oscillator coupled
to its sole natural environment. It is however possible to couple this system also to
an external optical degree of freedom. The latter has numerous applications, which
includes for example cooling[TdL+11] or amplification[DRAL19], and some of them will
be covered in the last section. In this section, we will focus on the quantum mechanical
description of a mechanical oscillator coupled to both its natural environment and an
external electromagnetic degree of freedom.

I.3.a: Steady-state of an electromagnetic cavity
An electromagnetic cavity is essentially a set of boundary conditions for the electro-
magnetic field that exhibits one or several resonances (i.e. frequencies at which the
signal in the cavity will be considerably higher than the others after a Dirac-like field
perturbation). For the sake of simplicity, we will consider only one electromagnetic
mode, with a given frequency ωc/2π. As in the previous section, we introduce creation
(â†) and annihilation (â) operators for elementary excitations inside this cavity that
are now called photons [CtDRG97]. The dynamics of photons is the same than that
of phonons described in section I.1. It is given by the Hamiltonian of a harmonic
oscillator: Ĥ = ~ωc(â†â+ 1

2).
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Let us introduce the damping rate κ/2π for the mode â. Contrary to the phonon
case, here we need to consider more than one loss channel. Indeed, we will inject a
source signal inside the cavity, using a coupling port with a coupling rate κc/2π, and
there will be some internal loss mechanisms represented by an internal loss rate κ0/2π.
Those two loss rates fulfill the relation κ = κ0 + κc. The Langevin equation reads:

d

dt
â = (−iωc − κ/2)â+

√
κcâin +

√
κ0âin,0, (I.3.1)

where âin represents the input source signal, while âin,0 represents the noise coming
from the thermal environment. Since we will usually use strong sources and work
at a temperature low enough to ensure an electromagnetic thermal occupancy of 0
(throughout this work, the electromagnetic frequency considered are in the GHz range
and we operate at sub-Kelvin cryogenic temperatures), we will usually neglect this last
term.

If we assume a monochromatic source at a frequency ωl/2π, we can go to the
rotating frame, by introducing âr

def= eiωltâ, âin,r
def= eiωltâin and âin,0,r

def= eiωltâin,0,
which leaves, if we neglect the quantum noise source:

d

dt
âr = (i∆− κ/2)âr +

√
κcâin,r, (I.3.2)

where ∆ = ωl − ωc. From eq. (I.3.2) we can derive the steady state value âr by
cancelling the temporal derivative term:

âr =
√
κcâin,r

κ/2− i∆ (I.3.3)

The signal received at the output of the experiment, âout, is then found using an input-
output relation, that depends on the coupling scheme. Different coupling configurations
are presented in figure I.2.

I.3.a.i “Hanger" configuration

For example, in the so-called “hanger" geometry, this relation is the following:

âout = âin −
√
κc
2 âr =

(
1− η

1− 2i∆
κ

)
âin, (I.3.4)

where η def= κc
κ , and where the second equality used the steady state value (I.3.3), where

the coupling rate κc has been divided by two to take into account that the resonator
is as coupled to the input mode as it is to the output mode. This is a lorentzian
response which represents a circle in the complex plane, whose center is

(
1− η

2 ,0
)
and

whose radius is η
2 . In this configuration, a photon in the cavity that is scattered in

the coupling line has two equiprobable outcomes: the left and the right-propagating
modes of the coupling line. Since only the latter is being measured by the output line
of the experiment, half of the information is lost. However, this configuration allows
quite usefully to couple to several microwave cavities at once, if their frequencies are
separated by more than one cavity linewidth.
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I.3.a.ii Reflection configuration

In the reflection configuration, only one port is used for probing the system: the
transmission line is interrupted to allow some of the incoming cavity photons to be
scattered in the reflected transmission mode. The corresponding input output relation
reads:

âout = −âin +
√
κcâr =

(
−1 + 2η

1− 2i∆
κ

)
âin, (I.3.5)

which is also a lorentzian resonance, drawing a circle in the complex plane, but this
time the center would be in (−1 + η,0) and the radius is η. Contrary to the previous
case, all the scattered photons from the cavity to the transmission line are measured.
This is why the radius of the circle is twice the radius of the circle in the previous
configuration.

I.3.a.iii Transmission configuration

Finally, in the transmission configuration, the cavity is coupled to an input and an
output line, with respective couplings κc,in and κc,out, which usually verify κc,out � κc,in
in order to promote the scattering of a photon from the resonator to the output line
compared to the scattering of a photon from the resonator to the input line, where it
would not be measured. The corresponding input-output relation reads:

âout = √κc,outâr =
√
ηinηout

1− 2i∆
κ

âin, (I.3.6)

where κ = κ0 + κc,in + κc,out, ηin
def= κc,in

κ , and ηout
def= κc,out

κ . There is also a lorentzian
response, which thus draws a circle in the complex plane, whose center is (√ηinηout/2,0)
and whose radius is √ηinηout/2.

Contrary to the two previous configurations, the transmission is close to zero far
away from the resonance. This allows this configuration to be used as a bandpass
filter, with central frequency ωc/2π and bandwidth κ/2π.

I.3.b: Hamiltonian of an optomechanical cavity

An optomechanical cavity is a cavity whose frequency ωc/2π depends on the position
x̂ of a mechanical oscillator (see figure I.3). We denote by â (â†) the annihilation (cre-
ation) operator of a photon in this electromagnetic mode, and b̂ (b̂†) the annihilation
(creation) operator of a phonon in the mechanical mode. We have, restraining ourselves
to small displacements of the mechanical oscillator, the following hamiltonian:

Ĥ = ~Ωmb̂
†b̂+ ~ω0(x̂)â†â (I.3.7)

≈ ~Ωmb̂
†b̂+ ~

(
ω0(0) + ∂ω0

∂x̂
(0)x̂

)
â†â (I.3.8)

= ~ω0â
†â+ ~Ωmb̂

†b̂+ ~GxZPF (b̂+ b̂†)â†â, (I.3.9)
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Figure I.2: Three possible configurations for interacting with a cavity. The input
(output) signal is represented by âin (âout), the light blue circle represents the cavity,
and the grey rectangles represent the waveguides. For each configuration, the shape
of the resonance (i.e the reflection or transmission close to the resonance frequency)
in the complex plane is represented. For the first two configurations, the value of η is
set to 1

2 . For the last one, the two couplings are chosen arbitrarily.
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Figure I.3: Two possible schematical representations of an optomechanical cavity. (a)
In the optical domain: a Fabry-Perot cavity with an end mirror able to move with
a mechanical mode of a mechanical oscillator. (b) In the microwave domain: a LC
circuit with one electrode of the capacitor able to move with a mechanical mode of a
mechanical oscillator.

where we introduced G def= ∂ω0
∂x̂ (0), xZPF =

√
~

2mΩm
the zero-point fluctuations of the

mechanical resonator, Ωm/2π and m respectively the mechanical frequency and the
effective mass of the mechanical mode, and where we used the simplified notation
ω0(0) = ω0. Let us also introduce the one photon optomechanical coupling g0

def=
GxZPF , which corresponds to the frequency shift the cavity will undergo when the
resonator moves by its zero-point fluctuations:

Ĥ = ~Ωmb̂
†b̂+ ~ω0â

†â+ ~g0(b̂+ b̂†)â†â. (I.3.10)
The effect of such coupling is however in most cases too small to be seen when one
photon only is in the cavity. To generate a measurable interaction, we will pump
the system with a strong classical field at a frequency ωl/2π. This will displace the
electromagnetic mode close to a coherent state of amplitude α. The electromagnetic
and mechanical field operators, as well as the input field operator, can then be written:

âr ≈ α+ â1

b̂ ≈ β + b̂1

âin,r ≈ αin,c,r + âin,c,r,

where b̂1, â1 and âin,1 have zero mean value and correspond to small fluctuations
around those fields. The Langevin equations then read:

d

dt
âr =

(
i(∆c − g0(b̂+ b̂†))− κ/2

)
âr +

√
κcâin,c,r +

√
κ0âin,0,r (I.3.11)

d

dt
b̂ = (−iΩm − Γm/2) b̂− ig0â

†
râr +

√
Γmb̂in, (I.3.12)



16 Chapter I. Theory of cavity optomechanics

where ∆c
def= ωl − ωc. At zeroth order, this equation gives:

α = 1
−i (∆c − g0(β + β∗)) + κ/2

√
κcαin,c,r (I.3.13)

β = −ig0|α|2

iΩm + Γm/2
(I.3.14)

xZPF(β + β∗) corresponds here to a static shift due to the radiation pressure. We see
that the second equation can be injected back into the first one, resulting in a third
degree equation that can under certain conditions have up to three solutions. This
situation is called the electromagnetic bistability and has been observed experimentally
[DMM+83]. It arises because the intracavity intensity depends on the detuning due to
the filtering of the cavity, while the detuning depends on the intracavity intensity due
to the radiation pressure force. From now on, we will exclusively consider situations
where this equation only has a single solution, and we will deal with this static shift
by introducing a modified detuning ∆̃c

def= ∆c−g0(β+β∗). At first order we now have:

d

dt
â1 =

(
i∆̃c − κ/2

)
â1 − ig0α(b̂1 + b̂†1) +

√
κcâin,c,r +

√
κ0âin,0,r (I.3.15)

d

dt
b̂1 = (−iΩm − Γm/2) b̂1 − ig0(αâ†1 + α∗â1) +

√
Γmb̂in (I.3.16)

We see that this dynamics corresponds to the effective linear Hamiltonian, in a frame
rotating at the drive frequency:

Ĥ = −~∆â†â+ ~Ωmb̂
†b̂+ ~g0(αâ† + α∗â)(b̂+ b̂†), (I.3.17)

where we removed, as we will henceforth do for clarity, the suffixes and the accents.
The situation is thus reduced to two harmonic oscillators, linearly coupled with an
effective coupling rate g0α.

I.3.c: Equations of motion

I.3.c.i Adiabatic elimination of the optical mode

Note that in the experiments described in this manuscript, the two coupled oscillators
are evolving at different timescales. While â reaches its steady-state rapidly at a rate
κ/2π ≈ 100 kHz, b̂ decays at a rate orders of magnitude smaller Γm/2π ≈ 1 mHz.
Such a huge difference can be used to perform a so called adiabatic elimination of
the electromagnetic mode. In the following we are going to derive the mechanical
occupation by using such elimination, which is equivalent to tracing the dynamics of
the shared electromagnetic and mechanical system over the electromagnetic degree of
freedom [WRNZK07].

First, let us take the Fourier transform of equations (I.3.16) and (I.3.15) and their
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hermitian conjugates:

[
−i(Ω + ∆̃c) + κ/2

]
ˆ̃a1(Ω) = −ig0α(ˆ̃b†1(Ω) + ˆ̃b1(Ω)) +

√
κc ˆ̃ain,c(Ω) +

√
κ0 ˆ̃ain,0

(I.3.18a)[
−i(Ω− ∆̃c) + κ/2

]
ˆ̃a†1(Ω) = +ig0α

∗(ˆ̃b†1(Ω) + ˆ̃b1(Ω)) +
√
κc ˆ̃a†in,c(Ω) +

√
κ0 ˆ̃a†in,0
(I.3.18b)

[−i(Ω− Ωm) + Γm/2] ˆ̃b1(Ω) = −ig0(αˆ̃a†1(Ω) + α∗ ˆ̃a1(Ω)) +
√

Γm
ˆ̃bin(Ω) (I.3.18c)

[−i(Ω + Ωm) + Γm/2] ˆ̃b†1(Ω) = +ig0(αˆ̃a†1(Ω) + α∗ ˆ̃a1(Ω)) +
√

Γm
ˆ̃b†in(Ω). (I.3.18d)

Considering the last two equations, we realize that the operator ˆ̃b†1(Ω) is approximately
equal to ˆ̃b1(Ω) multiplied by a factor −i(Ω−Ωm)+Γm/2

−i(Ω+Ωm)+Γm/2 , which means that we can assume
ˆ̃b†1(Ω)+ ˆ̃b1(Ω) ≈

Ω≈Ωm

ˆ̃b1(Ω) and ˆ̃b†1(Ω)+ ˆ̃b1(Ω) ≈
Ω≈−Ωm

ˆ̃b†1(Ω) in equations (I.3.18a) and
(I.3.18b), in the limit of a well isolated system, with Γm � Ωm, which is the relevant
framework for this PhD. The adiabatic elimination is then performed by keeping in
mind that only the Fourier frequencies close to the natural resonator frequency ±Ωm
are relevant to the problem. In practice, we will check a posteriori that ˆ̃a1(Ω) only
takes non-negligible values when |Ω±Ωm| � Ωm, κ. This is the so called weak-coupling
regime, where the (electromagneticly-dressed) mechanical mode is still a high-Q res-
onant mode with a bandwidth well within the electromagnetic resonator bandwidth.
The corresponding condition g0α � κ,Γm has been fulfilled in all the experiments
described in this manuscript. Under this approximation, we can replace, in equations
(I.3.18a) and (I.3.18b), Ω by Ωm (−Ωm) for Ω > 0 (Ω < 0) when injecting them into
equations (I.3.18c) and (I.3.18d). We are left with:

[−i(Ω− (Ωm + δopt)) + (Γm + Γopt)/2] ˆ̃b1(Ω) =
Ω>0

sgn(Γopt)
√
|Γopt|Âopt(Ω) +

√
Γm

ˆ̃bin(Ω)

(I.3.19)

[−i(Ω + (Ωm + δopt)) + (Γm + Γopt)/2] ˆ̃b†1(Ω) =
Ω<0

sgn(Γopt)
√
|Γopt|Â†opt(Ω) +

√
Γm

ˆ̃b†in(Ω)

(I.3.20)

with sgn(x) def= 1 if x > 0 or −1 if x < 0 and:

Γopt
def= CΓmRe [A+ −A−] (I.3.21)

A±
def= 1

1− iΩm±∆̃c
κ/2

(I.3.22)

δopt
def= CΓm

2 Im [A+ −A−] (I.3.23)

Âopt(Ω) def= A+√
||A+|2 − |A−|2|

Nin(Ω)− A−√
||A+|2 − |A−|2|

N †in(Ω), (I.3.24)
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nf nmneff

Γopt Γm

Figure I.4: The mechanical oscillator (green) has a final occupation nf which results
from its coupling at a rate Γm to its natural thermal bath (red), whose occupation is
nm, and at a rate Γopt to an effective bath (blue), whose occupation is neff .

where η def= κc/κ, Nin
def= −ie−iΨα

(√
ηˆ̃ain,c +

√
1− ηˆ̃ain,0

)
, Ψα is such that α = |α|eiΨα

and finally C def= 4g2
0 |α|

2

κΓm
is the cooperativity, a dimensionless number quantifying the

ratio between the coherent optomechanical coupling rate, g0|α|, and the two loss rates,
κ/2 and Γm/2. Equations (I.3.19) and (I.3.20) describe an harmonic oscillator coupled
to two thermal baths, as described in figure I.4: the environment, with occupation nm
and at a rate Γm, and an effective bath with an occupation:

neff
def= |A−|

2(nopt + 1) + |A+|2nopt
|A+|2 − |A−|2

≈ |A−|2

|A+|2 − |A−|2
, (I.3.25)

where nopt is the occupation of the electromagnetic bath, assumed to be close to
0 in the last equality. This assumption will be consistently made in the follow-
ing. The coupling to this second bath occurs at a rate Γopt. Indeed, Âopt fulfills
[Âopt(Ω), Â†opt(Ω′)] = 2πδ(Ω + Ω′) and 〈Â†opt(Ω)Âopt(Ω′)〉 = 2πδ(Ω + Ω′)neff . Those
two parameters characterizing this electromagnetic effective bath are represented in fig-
ure I.5 for different values of ∆̃c/Ωm and κ/Ωm. Three situations are possible: neff > 0
and Γopt > 0 (for ∆̃c < 0), |neff | → +∞ and Γopt → 0 (for ∆̃c → 0), or neff < 0 and
Γopt < 0 (for ∆̃c > 0). This last situation corresponds to an electromagnetic bath
giving energy to the mechanical resonator through phonon creation, and will be more
thoroughly investigated in section I.4.c. In every situation where Γm + Γopt > 0, the
occupation nf of the mechanical oscillator reaches the equilibrium value:

nf
def= Γoptneff + ΓmnB

Γopt + Γm
. (I.3.26)
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Figure I.5: Top: reduced damping (in blue) or heating (in red) due to the optome-
chanical interaction for various reduced detunings and linewidths. Bottom: effective
bath occupation neff . Dashed lines correspond to levels logarithmically spaced around
0 (left) and -1 (right). The behavior of neff when ∆̃c → 0 is truncated in the colormap
for readability, but we have neff → +∞ for ∆̃c → 0− and neff → −∞ for ∆̃c → 0+

I.3.c.ii Position spectrum of the mechanical oscillator

To have the most accurate physical intuition of the resulting spectrum, we can decom-
pose it in three parts:

Sx̂x̂(Ω) = (Sx̂x̂(Ω))vac + (Sx̂x̂(Ω))therm + (Sx̂x̂(Ω))back , (I.3.27)

where:

(Sx̂x̂(Ω))vac
def= x2

ZPF
Γm + Γopt(

Γeff
2

)2
+ (Ω− Ωeff)2

(I.3.28)

(Sx̂x̂(Ω))therm
def= x2

ZPFΓm

 nB(
Γeff

2

)2
+ (Ω− Ωeff)2

+ nB(
Γeff

2

)2
+ (Ω + Ωeff)2

 (I.3.29)

(Sx̂x̂(Ω))back
def= x2

ZPFΓopt

 neff(
Γeff

2

)2
+ (Ω− Ωeff)2

+ neff(
Γeff

2

)2
+ (Ω + Ωeff)2

 , (I.3.30)

where Γopt, that represents an extra damping of the oscillator, and δopt, that represents
a coupling induced frequency shift, often referred to as the optical spring effect, are
taken into account with a modified mechanical frequency Ωeff

def= Ωm + δopt and a
modified loss rate Γeff

def= Γm + Γopt.
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The effect of the coupling to the two environments interacting with the resonator,
the thermal one resulting from the term proportional to ˆ̃bin in equation (I.3.19), and
the effective electromagnetic one resulting from the term proportional to Âopt in the
same equation, are splitted in two. On the first hand, an asymmetric part, due to the
commutation relations of ˆ̃b†in,

ˆ̃bin, ˆ̃ain,c, ˆ̃a†in,c, ˆ̃ain,0 and ˆ̃a†in,0, is shown in (Sx̂x̂(Ω))vac.
This part exists even without any population in the two environments, it represents the
minimum noise imposed by the Heisenberg uncertainty. As expected, the integral of
this vacuum noise gives rise to a contribution x2

zpf in the position variance, irrespective
of the relative contribution of the natural and electromagnetic environments to the total
resonator damping Γeff . This stems from the fact that both environments contribute
to the vacuum noise in proportion to their respective damping Γm and Γopt. On the
other hand, a symmetric part gives rise to (Sx̂x̂(Ω))therm for the coupling to the thermal
environment and (Sx̂x̂(Ω))back for the electromagnetic environment. The latter, which
corresponds to the quantum noise of the electromagnetic mode after being transducted
by the optomechanical interaction, could also be interpreted as the backaction of the
position measurement induced by the light. This will be described in further details
in section I.3.d.

I.3.d: electromagnetic measurement of mechanical motion

While equations (I.3.19) and (I.3.20) are describing the evolution of the mechanical os-
cillator, in most experiments we only have access to the electromagnetic part of the sys-
tem. Let us therefore derive the electromagnetic spectrum. Assuming a reflection cav-
ity configuration, we have the input-output relation: ˆ̃aout(Ω) = −ˆ̃ain,c(Ω) +√κc ˆ̃a(Ω),
from which we will compute the spectrum of one quadrature of the output spectrum,
for instance X̂opt,θ

def= e−iθ ˆ̃aout+eiθ ˆ̃a†out√
2 , with θ ∈ R. We have:

X̂opt,θ(Ω) = ξ̂θ(Ω) + Gθ(Ω)x̂(Ω), (I.3.31)

where:

ξ̂θ(Ω) def= 1√
2

{
e−iθ

[
(−1 + 2ηB+) ˆ̃ain,c + 2

√
η(1− η)B+ ˆ̃ain,0

]

+eiθ
[
(−1 + 2ηB−) ˆ̃a†in,c + 2

√
η(1− η)B− ˆ̃a†in,0

]}
(I.3.32)

xZPFGθ(Ω) def=

√
CηΓm

2
(
−ie−iθ′B+ + ieiθ

′
B−
)
, (I.3.33)

where the latter can be understood as the gain of the position measurement, and where
θ′

def= θ−Ψα and B±
def= 1

1−iΩ±∆̃c
κ/2

. The resulting electromagnetic spectrum, defined by

〈X̂opt,θ(Ω)X̂opt,θ(Ω′)〉 = 2πδ(Ω + Ω′)SX̂X̂(Ω), can be decomposed in three parts:

SX̂X̂(Ω) = Sshot(Ω) + |Gθ(Ω)|2Sx̂x̂(Ω) + Sx̂shot(Ω) (I.3.34)
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The first term corresponds to the photon shot noise which is the quantum noise of the
incoming light and reads Sshot(Ω) = 1

2 . The second term is the mechanical noise ampli-
fied by the gain |Gθ(Ω)|2. In addition, the extra cross-spectrum Sx̂shot(Ω) results from
the correlation between the shot noise and the backaction noise. The antisymmetric
part of this spectrum exactly compensates the antisymmetric part of the mechanical
spectrum, therefore ensuring that the total spectrum SX̂X̂(Ω) is symmetric in fre-
quency. Indeed, it is expected from a free space observable like X̂opt,θ to commute
with itself at any time [KMY+12]: ∀(t,t′) ∈ R2, [X̂opt,θ(t),X̂opt,θ(t′)] = 0, and therefore
to have a symmetric spectrum. It is interesting to factorize those noises by the gain
|Gθ(Ω)|2 to highlight that the optomechanical system behaves as an effective amplifier
for the mechanical motion measurement with gain |Gθ(Ω)|2, and to be able to compare
every noise contribution with the mechanical spectrum:

SX̂X̂(Ω) def= |Gθ(Ω)|2Smeas
x̂x̂ (Ω)

= |Gθ(Ω)|2 [(Sx̂x̂)shot,θ(Ω) + Ssx̂x̂(Ω) + (Ssx̂x̂)cross,θ(Ω)] (I.3.35)

where Ssx̂x̂(Ω) is the symmetrized mechanical spectrum, of which we recall the definition
Ssx̂x̂(Ω) def= 1

2 (Sx̂x̂(Ω) + Sx̂x̂(−Ω)),

(Sx̂x̂)shot,θ(Ω) def= 1
2|Gθ(Ω)|2 (I.3.36)

is the shot noise referred to the input of this effective amplifier and:

(Ssx̂x̂)cross,θ(Ω) def= 1
2

1(
Γeff

2

)2
+ (Ω− Ωeff)2

×

{(Γeff
2 + i(Ω− Ωeff)

)
B∗+e

iθ′ +B∗−e
−iθ′

B∗−e
−iθ′ −B∗+eiθ

′ + c.c
}

(I.3.37)

is the symmetrized cross spectrum referred to the input of this effective amplificator,
expressed here for Ω > 0.

I.4: Fundamental effects in cavity optomechanics
These equations are leading to quite complex behaviors in the general case. However,
only a few special cases will be relevant both for this work and for getting more
insight about what consequences the optomechanical interaction has on the mechanical
oscillator behavior.

I.4.a: Standard Quantum Limit

Let us first consider the case ∆̃c = 0. In this situation where the laser is resonant with
the cavity, small position fluctuations from the resonator has no effect to the intensity
of the field, but the modification of the resonance condition is transduced in the phase
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Figure I.6: amplitude (top) and phase (bottom) of the reflection of an optomechanical
cavity close to resonance. The effect of a small position displacement of the mechanical
resonator on the cavity frequency is shown in red, while its transduction in term of
reflection is shown in blue. As expected, at first order, all the information is transduced
into the phase quadrature.

of the electromagnetic field, as illustrated in figure I.6. It is typically the situation
used in ultrasensitive interferometric measurements, where we compare the phase of
the reflected field to a known phase reference, or to another arm of an interferometer,
in order to assess the effective length of the cavity. This is for instance the case in
gravitational wave interferometers.

We can see from (I.3.21) and (I.3.23) that at resonance, δopt = 0. In this case,

Γopt = CΓm
(
|A+|2 − |A−|2

)
→ 0. (I.4.1)

The electromagnetic bath contribution of the right hand side of eq (I.3.19) then reads:

sgn(Γopt)
√
|Γopt|Âopt(Ω) =

√
CΓm

1 + iΩm
κ/2

(
Nin(Ω)−N †in(Ω)

)
, (I.4.2)

which is commuting:
[√
|Γopt|Âopt(Ω),

√
|Γopt|Â†opt(Ω)

]
= 0. Therefore in this case

the part of the resulting mechanical spectrum due to this electromagnetic noise is
purely symmetric in frequency: this cannot be represented by a bath of bosonic modes
with an effective temperature, but by a purely classical drive. This is consistent with
the fact that Γopt → 0: there are as many phonons converted to photons than the
reciprocal phenomenon, thus the dynamics of the resonator is not changed. However,
those exchanges still gives rise to a heating mechanism. It can indeed be noted that
if we keep the notations of the previous section, the product Γoptneff maintains a
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finite value, and thus the formula (I.3.26) still holds. The heated resonator reaches an
equilibrium occupation of nf = nB + C

1+
(Ωm
κ/2

)2 . The position spectrum here reads:

Smeas
x̂x̂ (Ω) = 4x

2
ZPF
Γm

1

1 +
(

Ω−Ωm
Γm/2

)2

nB + 1/2 + C

1 +
(

Ωm
κ/2

)2

+ (Sx̂x̂)shot (Ω), (I.4.3)

where this symmetric spectrum is expressed for Ω > 0 and where we choose to extract
the phase quadrature (setting θ = π/2), since at zero detuning all the information
lies in this quadrature. In this configuration, note that the symmetric part of the
cross spectrum vanishes. Moreover, note that the backaction noise is proportional
to the light intensity, whereas the shot noise is inversely proportionnal to the light
intensity. This generates a trade-off with an optimal intensity, which is called the
Standard Quantum Limit (SQL). This intensity is such that:

CSQL = 1
4

[
1 +

(Ωm
κ/2

)2
]

(I.4.4)

The variation of the total added noise (corresponding to the shot noise and backaction
noise contributions) are shown in figure I.7 for a wide range of cooperativities around
the Standard Quantum Limit. Three insets are describing the different noise contri-
butions close to the mechanical frequency for a cooperativity below the SQL (I.7(a)),
above the SQL (I.7(c)) or exactly at the SQL (I.7(b)). In the latter, the added noise
reaches a minimum equal to the vacuum noise contribution. Currently, the shot noise
and backaction are the main noises limiting the sensitivity of gravitational wave de-
tectors [CAL+19]2.

I.4.b: Resolved sideband cooling

Let us now focus on the case ∆̃c ≈ −Ωm, in the so called resolved sideband regime, which
corresponds to Ωm � κ. In this regime the filtering of the cavity allows to completely
suppress one of the sidebands, in this case the red sideband at ω = ωl − Ωm. We can
write the expression of the Hamiltonian (I.3.17) in an interaction picture with respect
to Ĥ0

def= ~Ωmb̂
†b̂− ~∆â†â:

Ĥ = ~g0(α∗âei∆t + αâ†e−i∆t)(b̂e−iΩmt + b̂†eiΩmt). (I.4.5)

In equation (I.4.5), there are two rapidly oscillating terms that can be neglected. This
approximation is called the Rotating Wave Approximation (RWA), and corresponds to
neglecting the processes where the energy conservation does not hold. The Hamiltonian
therefore boils down to:

Ĥint = ~g0(α∗âb̂† + αâ†b̂) (I.4.6)
2In this particular case, the interesting measurement bandwidth lies far away from the mechanical

resonances of the mirrors, such that the SQL can be approached even in the presence of a large thermal
occupation
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Figure I.7: Total normalized mechanical added noise (Smeas
x̂x̂ )add(Ω)/(Sx̂x̂)vac(Ωm) for

∆̃c = 0 versus the cooperativity. On the main axis, only the backaction (green) and
shot noise (pink) are represented. The three insets represent all the noise contributions
(including vacuum (blue) and thermal noise (red) assuming one phonon occupation)
versus the frequency for a cooperativity: (a) below the SQL cooperativity, (b) exactly
at the SQL or (c) above the SQL. Below the SQL, the shot noise is dominant, whereas
above the SQL the backaction noise is dominant. Exactly at the SQL, the total added
noise reaches a minimum equals to the vacuum noise contribution. η = 1 and a
reflection cavity configuration are here assumed.
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This is a beam splitter Hamiltonian : the processes allowed correspond to a swap
between photons and phonons, while the corresponding coherent evolution is a periodic
exchange between the mechanical state and the electromagnetic state, at a frequency
|α|g0/2π. The first process, called an anti-Stokes process, corresponds to the scattering
of a photon from the pump to the electromagnetic cavity, and the annihilation of a
phonon. The reciprocal process is also possible. This interaction will be useful either
for reading the mechanical state by copying its state to the electromagnetic resonator
and reading it, or, by using the differences between the two reservoirs the system is
interacting with, to dissipate the phonons in the electromagnetic environment, leading
to an optomechanical cooling phenomenon.

Indeed, in this configuration, equation (I.3.21) reads:

Γcool ≈ 4CΓm

(Ωm
κ

)2 1
1
4 + 4

(
Ωm
κ

)2 ≈ CΓm, (I.4.7)

while equation (I.3.25) reads neff ≈ 0, which means the mechanical oscillator is coupled
to a cold bath at a rate Γopt and a hot bath at a rate Γm, leading to the equilibrium
occupation:

nf
def= ΓmnB + Γoptneff

Γm + Γopt
≈ nB

1 + C
. (I.4.8)

The cooling mechanism can be alternatively understood with the figure I.9: the pump,
with a lower energy than the electromagnetic cavity, drives the transition between the
state |0,m〉, to |1,m − 1〉, where the first number in the ket designates the number
of photons in the cavity, and the second number is the number of phonons in the
mechanical resonator. Since the decay rate κ of excitations in the electromagnetic
cavity is the dominating rate in the problem, this process efficiently evacuates thermal
phonons into the electromagnetic environment. The rate of this process is ΓmC, and
needs to be compared to the rate of entrance of new phonons from the mechanical
environment (jumps from |0,n〉 to |0,n+ 1〉), which is ΓmnB.

We see from (I.4.8) that a prerequisite for achieving ground state cooling is to reach
1 + C � nB. This means that for a typical dilution fridge able to reach 10 mK, and
for mechanical resonators with a frequency of the order of the MHz, a cooperativity of
C � 200 is required. In this configuration, the backaction noise, which is proportional
to Γoptneff , vanishes.

Since in the sideband resolved limit the upper sideband is totally suppressed (|A−|2 =
0), the effective electromagnetic environnement is purely asymmetric in frequency. In-
deed, the electromagnetic part of the right hand side of equation (I.3.19) reads:

sgn(Γopt)
√
|Γopt|Âopt(Ω) =

√
CΓmNin(Ω), (I.4.9)

which is proportional to the annihilation operator of electromagnetic input modes. The
antisymmetry of this process results from the zero electromagnetic occupation that
was assumed. Consequently, the backaction from the environment vanishes (neff → 0).
Furthermore, the cross spectrum between the output shot noise and displacement noise
(see eq.(I.3.37)) reads:
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(Ssx̂x̂)cross,θ(Ω) = −Γeff/2
1(

Γeff
2

)2
+ (Ω− Ωeff)2

(I.4.10)

As a result, the contributions of the symmetrized cross-spectrum and vacuum noise in
the total spectrum given by Eq (I.3.35) perfectly cancel each other:

SX̂X̂(Ω) = |Gθ(Ω)|2 [(Sx̂x̂)shot,θ(Ω) + (Ssx̂x̂(Ω))vac + (Ssx̂x̂(Ω))therm + (Ssx̂x̂)cross,θ(Ω)]
= |Gθ(Ω)|2 [(Sx̂x̂)shot,θ(Ω) + (Ssx̂x̂(Ω))therm] .

(I.4.11)

This spectrum is thus the sum of a constant term, the shot noise, and a lorentzian
term, the thermal noise. The shot noise level decreases as 1/C, however, at the same
time, the thermal peak has a width Γeff = Γm(1 +C), and a total area proportional to
nf = nth/(1 + C). For a given mechanical noise spectrum Sx̂x̂, it is useful to express
this area in term of a number n of mechanical phonons, according to the relation
[TDCB+09]:

n
def= Sx̂x̂(Ωm) Γeff

2x2
ZPF

. (I.4.12)

We can then apply this definition to the shot noise to define the imprecision noise in
terms of phonon number:

nimp
def=
(
x2

ZPF
CηΓm

)(
Γm(1 + C)

2x2
ZPF

)
= 1 + C

2ηC , (I.4.13)

which converges towards a finite value 1
2η . For a given environmental occupation nB,

however, the visibility of the Lorentzian peak due to thermal noise has a non-monotonic
behavior as a function of C::

V def= Stherm
x̂x̂ (Ωeff)/(Sx̂x̂)shot(Ωeff) = 4nBηC

(1 + C)2 . (I.4.14)

This non-trivial dependence results from a trade-off between the gain of our measure-
ment, that grows linearly with C, and the extra damping caused by the cooling process,
which grows as 1 + C. As a result, the visibility is maximum for a cooperativity of
one, and converges towards zero for very high or very low cooperativities. These two
quantities are plotted in figure I.8.

I.4.c: Parametric amplification
The last interesting case we will encounter is the case ∆c ≈ Ωm, in the resolved sideband
regime, where we supress the blue sideband at ω = ωl + Ωm. In this configuration the
interacting part of the Hamiltonian boils down to:

Ĥint = ~g0(α∗âb̂+ αâ†b̂†) (I.4.15)

This is a Parametric Down Conversion Hamiltonian, allowing the creation and annihi-
lation of photon-phonon pairs. The second process, called a Stokes process, corresponds
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Figure I.8: (main axis, left, pink) Total added noise (i.e. shot noise) expressed in
phonon number versus the cooperativity. (main axis, right, blue) Visibility of the peak
versus the cooperativity. Insets: Total noise (i.e. shot noise (pink) and thermal noise
(red)) normalized to the shot noise level versus the frequency close to the mechanical
frequency, for different cooperativities. All those plots are assuming a resolved sideband
cooling scheme, with ∆̃c = −Ωm, η = 1 and nB = 1.
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Figure I.9: Representation of the levels of energy for the joint mechani-
cal+electromagnetic system. Red (blue) lines correspond to states for which the elec-
tromagnetic cavity contains one (zero) photon apart from the occupation imposed by
the drive, while the thick straight arrow corresponds to the transition created by the
coherent evolution of the sideband cooling hamiltonian, and the thick undulating arrow
correponds to the rapid electromagnetic decay of the cavity
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to the scattering of a photon from the pump to the electromagnetic cavity, and the
creation of a phonon in the mechanical resonator. The coherent evolution associated
with this Hamiltonian is the exponential growth of a two-mode squeezed state. In this
configuration, equation (I.3.21) reads:

Γcool ≈ −4CΓm

(Ωm
κ

)2 1
1
4 + 4

(
Ωm
κ

)2 ≈ −CΓm. (I.4.16)

Notice a negative sign, which corresponds to a heating of the mechanical resonator at
a rate CΓm, while phonons are thermalizing to the environment at a rate Γm. We see
that if C > 1, the dynamics is unstable. Indeed, when ∆c = +Ωm, equation (I.3.17)
shows that the coherent evolution of the system still corresponds to the evolution of
two linearly coupled harmonic oscillators, but that the mechanical harmonic oscillator
now has a negative mass. This translates into a source of incoming phonons from
the electromagnetic bath at a rate CΓm, which has to be compared to the rate of
thermalization with the environment, which is Γm. When the incoming rate of phonons
exceeds the outgoing rate, the unstable dynamics appears. We will use this instability
for amplification purposes by entering this regime for short periodes of time in the
framework of this PhD.

I.4.c.i High-cooperativity limit and parametric amplification

Let us focus on the high cooperativity case, where C > 1 and the dynamics is unstable.
In such a configuration, the relevant quantum Langevin equations are in the temporal
domain, since there is no equilibrium reached. In an interaction picture with respect
to Ĥ0

def= −~∆̃câ
†â+ ~Ωmb̂

†b̂, we have:

d

dt
â = −κ/2â− ig0αb̂

† +
√
κÂin (I.4.17)

d

dt
â† = −κ/2â† + ig0α

∗b̂+
√
κÂ†in (I.4.18)

d

dt
b̂† = −Γm/2b̂† + ig0α

∗â+
√

Γmb̂
†
in (I.4.19)

d

dt
b̂ = −Γm/2b̂− ig0αâ

† +
√

Γmb̂in, (I.4.20)

where Âin
def= √ηâin,c +

√
1− ηâin,0 and η = κc/κ. The adiabatic elimination is here

performed by considering that when we are interested in the evolution of the mechanical
oscillator, the electromagnetic resonator is in its steady state, because κ � Γm, and
thus we have d

dt â ≈ 0 and d
dt â
† ≈ 0. This system can then be solved, leading to:

b̂†(t) = b̂†(0)hb(t) + (hb ~ N̂ )(t) (I.4.21)
b̂(t) = b̂(0)hb(t) + (hb ~ N̂ †)(t) (I.4.22)

where Γb
def= CΓm, hb(t)

def= e(C−1)Γmt/2, and N̂ (t) def=
√
CΓm(ie−iΨ)Âin(t) +

√
Γmb̂

†
in(t),

Ψ is such that α = |α|eiΨ and ~ is the convolution product. As expected, when the
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n̂in(t)

F̂(t)

√
Gn̂in(t) + F̂(t)

Figure I.10: Schematics of a linear phase preserving bosonic amplifier: the input signal
is amplified by a gain

√
G while some noise F̂(t) is added to the output.

condition C > 1 holds, the mechanical position operator will undergo an exponential
growth, that will be limited only by non linear behavior at very high amplitude.

In equations (I.4.21) and (I.4.22), the gain of the amplification, equals to hb(t),
comes with an added noise, (hb ~ N̂ )(t), due to both the mechanical thermal noise
due to dissipation and to the electromagnetic noise transduced by the optomechanical
interaction. This is in fact a general feature of every amplifier.

Indeed, every linear phase preserving (i.e. for which the same gain applies to
both quadratures) amplifier can be modelled as presented in figure I.10 [CDG+10]:
the input signal is amplified with a gain

√
G while some noise F̂(t) is added, leading

to an output n̂out(t)
def=
√
Gn̂in(t) + F̂(t). This extra noise ensures that the bosonic

commutation relations are not modified by the amplifier, as in the quantum Langevin
equation derivation for a lossy cavity: [n̂in(t),n̂†in(t′)] = [n̂out(t),n̂†out(t′)] = δ(t − t′).
From this condition follows: [F̂(t), F̂†(t′)] = (1−G)δ(t− t′). Note that an amplifier is
an active device bringing energy to the system. As a consequence of the great variety
of mechanisms able to provide this extra energy, there is no particular requirements for
the value of 〈F̂†(t)F̂(t′)〉, except a lower bound. Indeed, if we focus on the observables
X̂in

def= n̂in+n̂†in√
2 and X̂out

def= n̂out+n̂†out√
2 we have:

〈X̂†out(t)X̂out(t′)〉 = G〈X̂†in(t)X̂in(t′)〉+ 1
2〈F̂(t)F̂†(t′) + F̂†(t)F̂(t′)〉 (I.4.23)

≥ G〈X̂†in(t)X̂in(t′)〉+ |G− 1|
2 δ(t− t′), (I.4.24)

where the triangular identity has been used. To compare the added noise to the input
of the amplifier, it is interesting to factorize this result by the gain G. The added noise
Nadd, defined by 〈X̂†out(t)X̂out(t′)〉

def= G
[
〈X̂†in(t)X̂in(t′)〉+ N̂addδ(t− t′)

]
then fulfills:

Nadd ≥
|G− 1|

2G . (I.4.25)
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Note that Nadd is more often expressed as a noise temperature, defined by TN
def=

Nadd~ω/kB. Nadd converges towards 1
2 in the limit of very high gain G � 1. This

corresponds to the addition of half a quantum of noise.
Let us first derive the electromagnetic output fields for the blue detuned strongly

pumped optomechanical system. Injecting back equations (I.4.22) and (I.4.21) in equa-
tions (I.4.18) and (I.4.17), the electromagnetic occupation reads:

â(t) = (−ieiΨα)

√
CΓm
κ

[
b̂†(0)hb(t) + (hb ~ N̂ )(t)

]
+ 2√

κ
Âin (I.4.26)

â†(t) = (ie−iΨα)

√
CΓm
κ

[
b̂(0)hb(t) + (hb ~ N̂ †)(t)

]
+ 2√

κ
Â†in. (I.4.27)

Assuming a reflection cavity configuration:

âout = −âin,c +
√
κcâ, (I.4.28)

the output reads:

âout(t) = snoise(t) + ssig(t) (I.4.29)

â†out(t) = s†noise(t) + s†sig(t), (I.4.30)

where:

ssig(t) def= (−ieiΨα)
√
ηCΓmb̂

†(0)hb(t) (I.4.31)

snoise(t)
def= (−âin,c + 2√ηÂin)(t) + (−ieiΨα)

√
ηCΓm(hb ~ N̂ )(t) (I.4.32)

are respectively the signal and noise terms. To compute the added noise in this tran-
sient amplification scheme, an approach slightly different than the generic formalism
used above for propagating modes should be used. Indeed, the input and output of this
amplifier cannot be defined as propagating modes. As expressed by formula 1.4.31,
upon the action of the blue sideband drive, the initial mechanical field b̂†(0) is trans-
ferred onto a particular propagating mode of the output line, defined by the diverging
waveform hb(t). In practice, one can switch off the drive after a given time t, and
try to retrieve the initial mechanical field x̂(0) by applying the right temporal filtering
over the noisy outgoing signal. We hence introduce the observables:

Snoise/sig
def= 1√� t

0 h
2
b(t′)dt′

� t

0

snoise/sig + s†noise/sig√
2

(t′)hb(t′)dt′. (I.4.33)

In the limit of a hich cooperativity (C � 1), and long enough pulse duration such that
Γm(C − 1)t� 1, we find that:

Ssig ≈
√
ηeΓmCt

x̂(0)√
2xZPF

. (I.4.34)
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We are therefore observing an amplifier with a gain ηeΓmCt acting on the input signal
x̂(0)√
2xZPF

3 Let us now study the noise of Snoise, by inspecting the second moment of
Snoise:

Nnoise/sig
def= 〈S†noise/sigSnoise/sig〉 (I.4.35)

We find, in the same limit taken in equation I.4.34:

Nsig ≈ ηeΓmCt
(
nm,ini + 1

2

)
(I.4.36)

Nnoise ≈ ηeΓmCt
(
nopt + 1

2

)
, (I.4.37)

where nm,ini
def= 〈b̂†(0)b̂(0)〉 is the “useful” signal. We see that in close analogy with

the general framework of a linear phase preserving amplifier presented above, when
expressed in the relevant variables, the system could be described as an amplifier with
a gain ηeΓmCt and added noise equal to nopt + 1

2 , which reaches the lower bound estab-
lished for the propagating mode model seen above in the limit of low electromagnetic
occupancy nopt ≈ 0.

This is generally the case for a parametric amplifier using another degree of freedom
(here, an electromagnetic mode) to add energy to the system : the minimum noise that
has to be added corresponds to the vacuum noise of such additional mode.

I.4.c.ii Low cooperativity limit and sideband thermometry

In the low cooperativity limit (C < 1), the system is stable and it makes sense to
look at the resulting spectrum. Equation (I.3.25) here reads neff ≈ −1 and the cross
spectrum reads:

(Sx̂x̂)cross,θ(Ω) = Γeff
2

1(
Γeff

2

)2
+ (Ω− Ωeff)2

. (I.4.38)

In these conditions, we find that all the terms proportional to Γopt in eq (I.3.35)
compensate exactly, leaving:

SX̂X̂(Ω) = |Gθ(Ω)|2 [(Sx̂x̂)shot,θ(Ω) + (Ssx̂x̂(Ω))vac + (Ssx̂x̂(Ω))therm + (Ssx̂x̂(Ω))back + (Ssx̂x̂)cross,θ(Ω)]

= |Gθ(Ω)|2
(Sx̂x̂)shot,θ(Ω) + x2

ZPFΓm
nB + 1(

Γeff
2

)2
+ (Ω− Ωeff)2

 ,
(I.4.39)

where this expression of this symmetric spectrum holds for Ω > 0. The spectrum, as in
the case of the resolved sideband cooling, is the sum of a constant noise, the shot noise,
and a lorentzian. However, when in the former case this lorentzian was proportional to
nB, in the latter it is is proportional to nB + 1. This discrepancy allows to perform an

3note that we change the phase reference for the annihilation operator: x̂(0) = xZPF(b̂(0)(ie−iΨα )+
b̂†(0)(−ieiΨα ))
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absolute thermometry of the mechanical resonator [KMY+12, SNCH+12, SNCH+13]:
the ratio of the areas under the thermal peak measured for the two detunings is equal
to 1 + 1

nB
, independently of the experimental setup.

In this chapter, we derived the theoretical framework describing the quantum be-
havior of a mechanical oscillator, first only coupled to its natural thermal environment
(see section I.2), then to an electromagnetic degree of freedom as well (see section
I.3). In the last section, we saw how to use this external degree of freedom to cool
down or amplify the mechanical oscillator. In the next chapter, we will describe the
design, fabrication and characterization of mechanical oscillators that were made to be
coupled to microwave cavities.
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Chapter II: High stressed silicon
nitride membranes

The analysis made in chapter I can be used to assess the requirements a mechanical
resonator needs to fulfill in order to be coupled efficiently to an optical cavity. In
particular, if we restrain ourselves to the ability to reach the motional ground state,
we can focus on the lowest occupation achievable for a mechanical resonator through
resolved sideband cooling, for a high initial occupation and a high cooperativity:

nmin ≈
kBTκ

2~2G2|α|2
Γmmeff . (II.0.1)

Examining the expression II.0.1, we can already see that it scales as meffΓm . Thus,
the resonator should have a low effective mass meff , and a low relaxation rate Γm.
In addition to these requirements, working with mechanical frequencies comparable
to ∼ 1 MHz is required to escape the low frequency technical noise of electromagnetic
sources.

Various materials and geometries have been used in the optomechanical commu-
nity for realizing mechanical oscillators. In particular we can cite Silica microtoroid
[SRA+08], or Galium Arsenide microdisk [DBS+10] breathing modes, Aluminium sus-
pended wires [TDCB+09] or membranes [TdL+11], Silicon [CASN+11] or Lithium
Niobate [AAWW+19] suspended nanobeams patterned with a phononic crystal, Silica
levitating nanoparticles [DRD+20], bulk acoustic phonons in Quartz [KHK+19], Alu-
minium Nitride [OHA+10] or Sapphire [CKY+18], flexural modes of inverted conical
Gallium Arsenide nanopillars [PSL+13], vibration of acoustic modes of a superfluid
4He bubble [SKB+19], or surface acoustic waves in Quartz [MKP+17].

On the other hand, stoechiometric silicon nitride (Si3N4) drew a significant atten-
tion in the community during the past decade: as shown in figure II.1, the amount
of articles tackling the subject has been growing exponentially with time. Indeed,
nanomembranes made with the material show unprecedented quality factors, thanks
to a mechanism denoted by dissipation dilution [FEG+19]. Moreover, they are both
optically and microwave-compliant. Thus, they are good candidates to realize quantum
memories, that are coupled either to optical or microwave circuits (or both).

Silicon nitride resonators have been implemented in various geometries, from thin
square [YCS15] or round [SMB+18] membranes, frame membranes [SPMdL+16], nanos-

35
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Figure II.1: Number of articles comprising "silicon nitride" or "Si3N4" in its abstract
or title that were published per year on the website arxiv.org.

trings [FKM+12], trampolines [RMBS16], 1D [GDS15, GFE+18] or 2D [TBPS17,
RFAmca+19] phononic crystal structures or even more complex geometries [WBL+17].

In this work, we made square membranes. We developed numerous nanofabrica-
tion recipes and characterization tools to fabricate and improve their characteristics.
Subsequently, we were able to couple them to a microwave cavity and to perform
optomechanical cooling, optomechanical amplification, and some other interesting ex-
periments that will be further described in chapter III and IV.

This chapter is organized as follows. First, we will describe the mechanical modes
of a square membrane and the dissipation dilution mechanism. Then, we will present
the nanofabrication recipe of the membranes used in this work. Finally, we will present
the membrane characterization techniques we developed.

II.1: Mechanical modes of a square membrane
In this section, we derive analytical formulas for mode frequencies and shapes. Then we
compute the mode effective mass, and finally we list all the loss channels of membranes,
and explain the mechanism called dissipation dilution, which allows to reach extremely
high quality factors.

II.1.a: Mode shape and frequency
Let us consider a square membrane, of size a and thickness h, such that h� a. Let us
assume that it is strongly and uniformly stressed in the x and y directions, and that it
is clamped on all edges. The increase of potential energy due to its small out of plane
displacement w is [TYW74]:
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V = σh

2

� a/2

−a/2

� a/2

−a/2
dxdy

[(
∂w

∂x

)2
+
(
∂w

∂y

)2]
, (II.1.1)

where σ is the in plane stress. The kinetic energy reads:

K = ρh

2

� a/2

−a/2

� a/2

−a/2
ẇ2dxdy, (II.1.2)

with ρ the mass density of the membrane. Let us decompose the solution on a sinusoidal
basis :

w(x,y,t) =
∞∑
n=1

∞∑
m=1

pmn(t)χmn(x,y), (II.1.3)

where:
χmn(x,y) def= sin

(
nπ

a
(x+ a

2)
)

sin
(
mπ

a
(y + a

2)
)
. (II.1.4)

Note that this solution automatically satisfies the position boundary condition:

w(x = ±a2) = w(y = ±a2) = 0. (II.1.5)

The potential energy thus reads:

V = σhπ2

8

∞∑
n=1

∞∑
m=1

p2
mn

(
m2 + n2

)
, (II.1.6)

while the kinetic energy is:

K = ρha2

8

∞∑
n=1

∞∑
m=1

ṗ2
mn (II.1.7)

We can then derive the canonical Hamilton equations:

ρha2

4 p̈mn + σhπ2

4
(
m2 + n2

)
pmn = 0, (II.1.8)

from which the derivation of the mechanical frequencies is straightforward:

fmn = 1
2a

√
σ (m2 + n2)

ρ
(II.1.9)

The frequencies fnn are non degenerates and the modes node lines draw a rectangular
grid, with equations yi = −a

2 + i an and xj = −a
2 + j an for (i,j) in J0,nK2. The mode

amplitude reads:
w ∝ sin

(
nπ

a
(x+ a

2)
)

sin
(
nπ

a
(y + a

2)
)

(II.1.10)

On the other hand, due to the membrane symmetry, the frequencies fmn, with m 6= n
are degenerate. The mode amplitude is:

w ∝ A sin
(
nπ

a
(x+ a

2)
)

sin
(
mπ

a
(y + a

2)
)

+B sin
(
mπ

a
(x+ a

2)
)

sin
(
nπ

a
(y + a

2)
)

(II.1.11)
The frequencies and mode shapes obtained with those formulas show a remarkable
agreement with FEM simulations, as shown in figure II.2.
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Figure II.2: (a) mode shapes for the first 6 modes of a square membrane. For each
mode, the simulated mode shape is on the left, while the mode shape given by the
formulas II.1.10 and II.1.11 are on the right. (b) Frequencies of the first 20 modes
of a square membrane of width a = 1 mm, thickness h = 100 nm and internal stress
σ = 1 GPa. The simulated frequencies are presented as dots, while the straight line
correspond to the formula II.1.9

II.1.b: Mode effective mass

The definition of the effective mass is not unique, the only requirement being the
definition of the potential energy:

1
2meffω

2
nmx(t)2 = 1

2ω
2
nm

� a/2

−a/2

� a/2

−a/2
ρw(x,y,t)2hdxdy. (II.1.12)

The definition we chose to use is:

xnm(t) def= max (w(x,y,t)) . (II.1.13)

The corresponding effective mass is:

meff
def=

� a/2

−a/2

� a/2

−a/2

(
ρw(x,y,t)
xnm(t)

)2
hdxdy. (II.1.14)

With this convention, the effective mass of any mode of a square membrane is:

meff
def= m

4 , (II.1.15)

where m def=
� a/2
−a/2

� a/2
−a/2 ρhdxdy is the mass of the membrane. Note that physical

quantities such as the minimum occupation reached through resolved sideband cooling
(see eq. II.0.1) are independent on the chosen definition of the effective mass. Indeed,
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in this case it implies that a scaling of meff is compensated by a scaling of x(t)2, and
thus of G2. For instance, a square membrane with a width of 1 mm and thickness of
100 nm has an effective mass of approximately 80 ng, while for a square membrane
with a width of 300 µm it is approximately 7 ng.

II.2: Mode losses

II.2.a: Quality factor in the presence of multiple loss channels

It is possible for each mode to compute an energy loss per oscillation ∆W , which leads
to the definition of a quality factor:

Q
def= 2πW

∆W , (II.2.1)

where W is the total energy stored in the mechanical mode. Consequently, the quality
factor can be understood as the number of oscillations a mechanical oscillator can
perform before the amplitude of its oscillations fades significantly. Under multiple loss
mechanisms, the total loss per cycle can be summed up, leading to the total quality
factor:

1
Q

=
∑
i

1
Qi
, (II.2.2)

where the different (Qi) are the quality factors associated with each loss mechanisms.

II.2.b: Loss channel 1: gas damping

First of all, a mechanical oscillator can exchange some energy with the air molecules
it is in contact with. This is referred to as gas damping. In practice, this mechanism
does not play a significant role since most optomechanical experiments are performed
at very low pressure in a dedicated vacuum tank. This will be the case in this work.

II.2.c: Loss channel 2: radiation losses

The second loss mechanism is the exchange of energy between the modes of the me-
chanical resonator and its substrate. It is referred to as radiation losses, has been
investigated thoroughly and the expression of the associated quality factor for a square
membrane is [VS14]:

Qrad ≈ 1.5ξ ρS
ρ
η3 a

h

n2m2

(n2 +m2)3/2 , (II.2.3)

where ρS is the mass density of the substrate, ξ is a parameter ranging from 0 to 1 and
depending on the clamping of the substrate, and η represents the impedance mismatch
between the two mediums. It is given by:

η
def=
√
ES
σ

ρ

ρS
, (II.2.4)
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where Es is the Young modulus of the substrate. The last factor in eq.II.2.3 indicates
that the loss increases for high order modes, which have been observed experimentally
[VS14].

II.2.d: Loss channel 3: intrinsic material loss
The last loss mechanism is called internal damping, and corresponds to loss mechanisms
happening inside the bulk material. Their effect is captured by introducing a complex
part to the Young modulus of the material. Consequently, the strain ε(t) = Re(ε0ejωt)
reacts with a delay when subject to a stress σ(t) = Re(σ0e

jωt).
The associated loss, for a square membrane, reads[YPR12]:

∆W = πE sin(φ)h3

12(1− ν2)

� a/2

−a/2

� a/2

−a/2

(
∂2w

∂x2 + ∂2w

∂y2

)2

dxdy (II.2.5)

Evaluated on the mode shapes derived in section II.1, this gives the following result:

Q−1
int = π2 sin(φ)λ2(n2 +m2)

4(1− ν2) , (II.2.6)

where λ def=
√

Eh2

3σa2 is a small (of the order of 10−3 in our case) dimentionless parameter
quantifying the ratio of elastic energy versus the strain energy.

II.2.e: Dissipation dilution mechanism
However, this is a naive picture, since in fact the Ansatz solution we proposed in eq.
II.1.4 does not exactly fulfill the boundary conditions. Indeed, clamped membranes
also impose the derivative of the position to be equal to zero at the edges. Although
this does not affect the mode frequency or the general mode shape, it is not possible to
neglect it for the computation of the intrinsic losses. This problem can be addressed
by adding an exponential correction to the mode shape close to the edges[YPR12]:

χmn(x,y) = γ(m,x)γ(n,y), (II.2.7)

where:

γ(m,x) = sin
(
mπ

a
(x+ a

2)
)

+ εx,m
mλπ

2

[
e
−
|x|−a2
λa/2 − cos

(
mπ

a
(|x| − a

2)
)]

. (II.2.8)

In the last equation,

∀x < 0, εx,m = 1 (II.2.9)
∀x > 0, εx,m = (−1)m (II.2.10)

The resulting intrinsic Q factor, up to the second order in λ is:

Q−1
int = sin(φ)

1− ν2

(
λ+ π2

4 λ
2(n2 +m2)

)
. (II.2.11)
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Figure II.3: (a) Nanofabrication process for making a square membrane. (b) picture
of a fabricated membrane

Dissipation dilution consists in applying a large in-plane stress to the membrane, there-
fore reducing the parameter λ. As can be seen in equation II.2.11, this allows to reach
high quality factors. A method used for Si3N4 deposition, called Low Pressure Chem-
ical Vapor Deposition (LPCVD), allows, using the discrepancy between the thermal
expansion coefficients of silicon nitride and silicon, to deposit a strongly (∼ 1 GPa)
pre-stressed thin (down to ∼ 10nm) silicon nitride film on top of a silicon wafer. An
order of magnitude can be computed for the membranes used throughout this work,
using evaluations of φ from the literature [VS14]. It follows:

Qint ≈ 7× 106. (II.2.12)

As we will see, those values are typically on the same order of magnitude than the
values measured experimentally, which indicates that this loss mechanism plays an
important role.

Finally, note that equation II.2.11 show that for a high stressed membrane the
losses are dominated by the curvature at the edges. This observation pushed the
optomechanical community to develop the concept of soft clamping, whose purpose
is to suppress the exponential bending of the edges of the membranes using clever
geometries [TBPS17]. Among the future optimization steps of this experiment is the
incorporation of those techniques (see section VII.1).

II.3: Nanofabrication process
In this section we will describe the different fabrication steps used to make the square
membrane described in the previous section.

To make silicon nitride membranes, we start with a FZ grown high resistivity 〈100〉
4” silicon wafer with a thickness of 525 ± 25 µm, LPCVD coated on both side with
100 nm of high stress (∼ 1 GPa) stoechiometric silicon nitride (Step 1). We then cut
it into squares of 3 cm per 3 cm using a diamond saw. 9 membranes are made from
this chip, which is cut into 9 squares of 1 cm per 1 cm after step 6.
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Figure II.4: (a) Picture of the closed PTFE homemade holder used for the etching of
square membranes, with a dummy sample inside. (b) Picture of the opened holder,
with PEEK screws.

We first define a square opening using laser or optical lithography on the back side
of the sample (step 2 & 3). We proceed with a simple cleaning procedure : 10 min
into hot (50 ◦C in bain-marie) Acetone with ultrasounds, then rinse it in Isopropanol
for 20 s, then dry it with a nitrogen gun.

We then define, on the 9 samples of 1 cm per 1 cm, a square opening, alignement
marks and pre-cutting rectangles (whose purposes are to facilitate the separation of
the 9 individual samples after the KOH etching). This is done through either UV
lithography in a MJB4 by a 20 s illumination, or laser lithography in a LW405C with a
dose of 200 µC/cm2. The development is made in AZ726MIF for around 50 s followed
by DI water for 15 s, then the sample is dried using a nitrogen gun. The silicon nitride
is then removed using a Corial Reactive Ion Etching (RIE, step 4). The program is
CHF3 50 sccm, O2 6 sccm 20 mTorr 70 W plasma for 3 min 30 s.

After the leftover resist has been removed in a standard acetone cleaning (step 5),
the samples are placed in a homemade PTFE holder (see Fig. II.4) and immersed in a
30 % KOH solution maintained at 85 ◦C for ∼ 5 h 40 m (step 6). The silicon nitride
acts as a mask for the KOH etching, and the etching is anisotropically following the
cristalline axis of the silicon sample, as shown in Step 6, creating a slope with an angle
of 54,7 degrees with the horizontal plane.

After the end of the etching, the KOH is removed with a 85 ◦C DI water bath for
1 min, followed by a step by step replacement of the hot and contaminated with KOH
DI water by a clean room temperature DI water, and then the sample is further rinced
in a new clean DI water bath, followed by an isopropanol bath and a nitrogen gun
drying.

Finally, a last cleaning step is performed in a 30 min 1:3 piranha bath. The result
of a typical square membrane after those steps can be seen in figure II.3 (b).

II.4: Drum modes optical characterization

In this section we describe the optical characterization tools that we set up to measure
mechanical modes frequencies, quality factors, and shapes.
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II.4.a: Interferometric measurement

II.4.a.i Experimental setup

To measure the position of the mechanical oscillator, we perform a homodyne mea-
surement using a Michelson interferometer (see figure II.5). The optical source used
in this experiment is a fibered Mephisto Nd :Yag laser beam at 1064 nm. First, its
polarization is set using the polarizing beamsplitter (PBS) C1. Then, the PBS C2
splits the beam into a local oscillator, used as a phase reference, and a probe beam
reflecting on the sample inside a vacuum tank. A half waveplate λ1 placed before the
PBS C2 is used to tune the power ratio between the local oscillator and the total input
power. The local oscillator consists in a simple mirror M1 mounted on a piezoelectric
actuator. The latter has two purposes. The first one is aligning the interferometer:
while injecting a strong sinusoidal signal in the piezo, the amplitude of the modulation
at the output of the interferometer is a measure of the quality of the interferometer’s
alignment. The second purpose is the locking of the interferometer: to maintain the
maximum sensitivity, a feedback loop slowly actuates the piezo, therefore changing the
length of the local oscillator arm.

The probe beam is focused on the sample by means of the convergent lens L1
(f=30 mm), which stands outside the vacumm chamber, very close to the tank window.
A fraction of the probe beam reflects on the sample and goes back to the polarizing
beam splitter C2, where it is recombined with the local oscillator beam. The phase
acquired by the probe beam is compared to the local oscillator with the PBS C3 and
the two photodiodes P1 & P2, in a balanced detection scheme, where the half waveplate
λ4 is used for balancing the signals on the two photodiodes. This allows to measure the
position of the mechanical oscillator with a precision of the order of the wavelength.
The two quarter waveplate λ2 & λ3 are used to rotate the polarization by 90 degrees
over a roundtrip, such that the local oscillator beam and the probe beam are properly
recombined on one output port of the interferometer. Finally, to image the mechanical
oscillator and to aim the probe beam at a specific spot of the membrane, the mirror
M2 is transparent to visible light, and a Thorlabs CMOS camera is placed behind. In
order to provide illumination to the sample, a bright fibered halogen lamp S is used.

II.4.a.ii Output signal

We will now derive the signal resulting from this measurement. The action of a half
waveplate oriented by an angle θ with respect to one of the polarization axis of the
beam splitter is represented easily, using Jones calculus, by the matrix:

Sθ
def= −i

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
. (II.4.1)

As a consequence, if the input beam has the Jones representation
(

1
0

)
, after the first

waveplate the state is now:

− i
(

cos(2α1)
sin(2α1),

)
(II.4.2)
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Figure II.5: (a) Interferometer picture. The light path is colored in red. (b) Schematics
describing the optical elements
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where α1 is the angle formed by the axis of the waveplate with the reference axis. The
state of the beam before the output half waveplate is:

− i
(

cos(2α1)eiφ0

sin(2α1)reiφ(x)

)
, (II.4.3)

where r is the reflection of the membrane, φ0 is the phase acquired in a round trip in
the local oscillator arm, φ(x) is the phase acquired in a round trip in the sample arm,
and x is the position of the mechanical oscillator. After the second half waveplate,
whose angle is α2, the state becomes:

−
(

cos(2α2) cos(2α1)eiφ0 + sin(2α2) sin(2α1)reiφ(x)

sin(2α2) cos(2α1)eiφ0 − cos(2α2) sin(2α1)reiφ(x)

)
. (II.4.4)

The last polarizing beam splitter and the two photodiodes allows to measure the mod-
ulus squared of the two components of this last vector independently. The two electric
signals are then subtracted, leading to:

S =
[
cos(2α1)2 − r2 sin(2α1)2

]
cos(4α2) + r sin(4α1) sin(4α2) cos(φ(x)− φ0) (II.4.5)

To suppress the classical noise of the laser, the balanced detection should be tuned to
50 % of the power in each photodiode in average, i.e α2 = π/8. The fine tuning is
made by measuring the suppression of the relaxation peak of the laser. To this end,
the noise eater of the laser is intentionally turned off and the height of the peak after
subtraction is repeatedly measured while changing α2 (see figure II.6 (b)).

Then, the maximum sensitivity is reached for the same angle in the first half wave-
plate, α1 = π/8. Finally, the maximum sensitivity of the cosine curve is obtained
for 〈φ(x) − φ0〉 = π/4. The optimization of the coupling is done by sending a large
sinusoidal signal to the piezoelectric actuator of the local oscillator end mirror. The
amplitude of the induced motion should be enough to cover several fringes. By looking
at the optical signal induced by this motion, we can see what voltage at the out-
put corresponds to 〈φ(x) − φ0〉 = π/4, as well as the precise transfer function of the
interferometer. A feedback loop is then used to lock the interferometer on its peak
sensitivity.

To measure the sensitivity of the interferometer, the noise eater is turned off.
Therefore, the scaling of both the classical noise of the laser and the noise measured
far away from this peak with the input optical power can be compared (see figure
II.6 (a)). We observe a linear scaling of the noise with the input power in the region
1.5− 1.6 MHz, and a quadratic scaling of the noise with the input power in the region
of the relaxation peak of the laser. This is a signature that the balanced detection is
limited by the shot noise of the laser at this frequency.

II.4.b: Frequency measurement
The mode frequency is deduced from the spectrum of the balanced detection signal. At
the mechanical frequency, a Lorentzian peak appears (see figure II.7). The spectrum is
then compared with and without a beam block in front of the membrane to discriminate
the peaks due to a mechanical mode to the ones due to electronical noise.
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Figure II.6: (a) Measured spectrum of the output signal of the interferometer. The
large peak corresponds to classical noise due to the relaxation oscillation of the laser.
In blue: the detection is balanced and the noise eater is ON. In pink: the noise eater
is OFF. The different curves are taken for different angles of the last half waveplate.
Notice the reduction of the noise peak of the laser due to the balancing of the detection.
(b) (Blue) Scaling of the noise of the relaxation peak of the laser with the input
power together with a power law fit. The fitted exponent is ∼ 2.18. (Pink) Same
curves for the region between 1.5 and 1.6 MHz. The fitted exponent is ∼ 0.97. Inset:
representation of on typical spectrum measured with the interferometer at a given
optical input frequency. The frequency range the dots are extracted from are colored
accordingly.
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Figure II.7: Spectrum of the balanced detection signal when the interferometer is
measuring a square membrane of width 1 mm, thickness 100 nm and internal stress
∼ 1 GPa. The arrows indicate the measured modes.

II.4.c: Ringdown measurement of the quality factor

Although the quality factor can be inferred from the width of the Lorentzian peak, a
better measurement is obtained by the so-called “ringdown” technique.

II.4.c.i Principle

A strong excitation drives the resonator towards an amplitude considerably larger than
the Brownian motion amplitude. The excitation is then stopped and an amplitude de-
modulation of the signal measured by the interferometer is performed. The quadratures
X(t) and Y (t) are obtained by using the following demodulation technique: the modu-
lated signal Sin(t) has a slowly varying envelope A(t) carrying the desired information.
An internal source creates a signal S0(t) at the carrier frequency, and mixes it with
the modulated signal before filtering it with a lowpass filter whose cutoff frequency
is small compared to the carrier frequency. This provides the quadrature X(t). The
other quadrature Y (t) is obtained in parallel by applying a π/2 dephasing before the
mixing (see figure II.8).

Then we compute the amplitude A(t) def=
√
X(t)2 + Y (t)2, while the phase reads

φ(t) def= arctan(Y (t)/X(t)).
Neglecting the thermal noise, the evolution of a mechanical oscillator of mechan-

ical frequency Ωm/2π and of decay rate Γm/2π can be computed from the following
Langevin equation (see section I.2.a):

d

dt
b̂(t) = (−iΩm − Γm/2) b̂(t) (II.4.6)

d

dt
b̂†(t) = (iΩm − Γm/2) b̂†(t), (II.4.7)

which reads:
x(t) = (x(0) cos(Ωmt) + y(0) sin(Ωmt)) e−Γm/2t, (II.4.8)
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Sin(t) = A(t)eiωlt

S0(t) = eiωlt

δφ = π/2

X(t) ∝ Re(A(t))

Y (t) ∝ Im(A(t))

Figure II.8: Internal demodulation diagram of the signal analyzer, used for retriev-
ing the two quadratures X(t) and Y (t) slowly varying around a carrier at frequency
ωl/2π.(see section II.4.c.i for details).

where x(t) def= xZPF
b̂(t)+b̂†(t)√

2 and y(t) def= xZPF
b̂(t)−b̂†(t)√

2i are the two quadratures of the
mechanical oscillator position. After demodulation at a frequency Ω0/2π close to the
mechanical frequency, the resulting measured complex signal is proportional to:

X(t) + iY (t) = e−Γmt/2

2 [x(0) + iy(0)] [cos((Ω0 − Ωm)t) + i sin(Ω0 − Ωm)t)] , (II.4.9)

which is a spiral, centered on zero, whose initial state is the initial state of the me-
chanical resonator. Retrieving its amplitude decay speed allows to measure the decay
rate of the mechanical resonator. Moreover, the measurement of its dephasing rate is
a measurement of the exact mechanical frequency (see figure II.9). The latter allows
to fine tune the mechanical frequency between several measurements. Indeed, the me-
chanical frequency is dependent on the pressure and temperature, which can vary over
time. The measurement of the decay rate allows to measure the quality factor of the
resonator, which reads:

Q
def= ωm

Γm
. (II.4.10)

The measured mode was found to have quality factors in the range of the order of a
million.

II.4.c.ii Radiation pressure excitation

The strong mechanical excitation can be performed by a piezoelectric actuator [TBPS17].
Alternatively, the optomechanical coupling can be used as a driving mechanism (see
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Figure II.9: (a) Modulus of the measured signal after a ringdown versus the time,
for the fundamental mode of a square membrane with a thickness of 100nm. The
measured quality factor is 1.3 × 106. (b) Smith chart of the data. (c) Measured Q
factors of several modes of the same square membranes, versus their frequency.

section IV.1.b.ii). The scheme implemented here is based on a resonant radiation pres-
sure modulation. Each photon reflected by the membrane experiences a change of
momentum of:

δp = −2h
λ
, (II.4.11)

which leads to a force proportional to the light intensity I:

|~F | = R

∣∣∣∣d~pdt
∣∣∣∣ = R

2I
c
, (II.4.12)

where c is the speed of light in vacuum and R is the reflectivity of the membrane. As a
consequence, the modulation of the laser intensity induces a proportional mechanical
excitation of the resonator. To perform the modulation, an Acousto-Optic Modulator
(AOM) is used (see figure II.10). The latter consists in a crystal with a piezoelectric
actuator and an acoustic absorber. Bragg reflection originates from sound waves trav-
eling in the material perpendicularly to the light path. As the many diffracted orders
have different output angles, a modulation of the intensity of the RF piezoelectric
excitation leads to a modulation of the relative optical intensity between the zeroth
order and the higher order diffracted modes.

The setup used for implementing this amplitude modulation is called a “double
pass” setup [DHL+05]: the diffracted mode is reflected towards the AOM, while the
zeroth order is blocked by a pinhole (see figure II.10. The diffracted beam is thus
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scattered back in the input beam direction. Advantageously, this setup corrects the
angle beam shift induced by the AOM such that it can be coupled efficiently to an
optical fiber connected to the interferometer.

II.4.d: Mode shape measurement
To measure the mode shapes of the drum modes, the whole interferometer (see figure
II.5 (a)) is placed on a 2 axis motorized translation stage, while the vacuum tank is
fixed. The position of the laser beam on the membrane is controlled using the camera.
Then, the interferometer is moved, and the height of the various thermal peaks in
the noise spectrum, as well as the position of the laser beam, are measured again.
By repeating those operations while scanning the beam position to cover the whole
membrane, we reconstruct simultaneously the profile of the various mechanical modes.
The result is in good agreement with finite element simulations (see figure II.11).

II.5: Conclusion
In this chapter, we have described the mechanical oscillators used in this work, along
with some characterization tools. We were able to build high (Q ∼ 1 × 106) quality
factor resonators at frequencies ranging from ∼ 300 kHz to ∼ 1 MHz. At room
temperature, those resonators exhibit high (nB ∼ 12×106) mechanical occupation and
are therefore behaving as classical oscillators. In the next chapters, we will describe the
cryogenic setup used to reduce this occupation by a factor ∼ 103, and from this point
how we designed microwave resonator to reduce it further down by another similar
factor.
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Figure II.10: (a) Picture of the optical setup. The light path is highlighted in light
red. (b) Schematic of an Acousto-Optic Modulator. (c) Schematics of the amplitude
modulation setup used to excite the mechanical resonator. For readability purpose,
only the diffraction orders zero and one are represented
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Figure II.11: Experimental measurement of the first mode shapes of a square mem-
brane, together with the measured mechanical frequency.



Chapter III: Microwave
electromechanics

To probe the quantum behavior of the mechanical resonators described in the previous
section, it is required to couple them to a well controlled quantum system. Following
the theoretical framework described in chapter I, the motion of those resonators were
coupled to the microwave mode of a superconducting cavity. The design, fabrication
and characterization of such superconducting resonators was an entirely new activity
for the group in which I conducted this work. Therefore, I had to perform a careful step-
by-step design of the microwave resonator, leading to an iterative optimization process
of the sample designs, fabrication processes and low temperature characterizations.

Microwave cavities can perfectly be made as 3D cavities by machining a smooth
parallelipedic shaped cavity inside a large piece of bulk superconductor, such as alu-
minum. [YSBS15, NYA+16]. However, throughout this work we restrained ourselves
to 2D lumped cavities, where the capacitive part of the circuit is spatially separated
from its inductive part. Although those resonators are known to exhibit significantly
lower microwave quality factors, their mode shapes usually show a much higher con-
centration of electric field in a small region around the capacitive part of the circuit.
This feature allows to couple arbitrarily small mechanical resonators to the cavity with
a good efficiency. In this work, we have investigated two kinds of 2D lumped cavities,
differing by the nature of the capacitive element.

The first kind of resonator investigated consists of a Niobium meander inductor
with an interdigitated capacitor. In this design, most of the electric field is located in
the close vicinity of the interdigitated capacitor, with a strong electric field gradient
that can in principle be exploited to couple the cavity to the motion of a nearby di-
electric membrane [UWK09]. This coupling scheme doesn’t require the metallization
of the membrane, a process that we feared might jeopardize their exquisite mechan-
ical properties. The thorough characterization of this design allowed the validation
of most of the steps of the fabrication processes that are readily used for most 2D
lumped cavities, such as the deposition of a high quality superconducting thin film,
the lithography process, the cleaning recipes, etc. Also, this characterization validated
the main features of the cryogenic setup, as well as the sample box design and the
coupling scheme of the cavity to the waveguide.

53
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Moreover, this characterization lead to the identification of a major loss mecha-
nism in planar superconducting resonator which results from the coupling between the
microwave mode and defects behaving as Two Level Systems (TLS) located mostly
at material layer interfaces. In particular, we proposed and demonstrated an original
pump-probe method to extract the maximum information about the microwave cav-
ity non linear damping induced by the TLS bath [CFI+20] (This technique will be
presented in details in chapter VI of this manuscript).

Unfortunately, the experimental demonstration of optomechanical coupling was not
possible in this configuration. This was a consequence of several factors: the relative
weakness of the purely dielectric coupling, the low microwave quality factor due to the
presence of the TLS bath, and finally, as we realized at a later stage in this PhD, the
membrane/resonator separation that exceeded the nominal one.

Consequently, we investigated a second class of resonators, where a metallic coat-
ing on the membrane plays the role of a moving electrode in a planar capacitor. In
this geometry, the field doesn’t penetrate in the silicon nitride membrane, thus mit-
igating the TLS induced losses. This change of design allowed the demonstration of
optomechanical coupling. Surprisingly, we measured a remarkable improvement of
mechanical properties at low temperature, leading for some of the devices tested to a
record-high quality factors close to 300 millions (see chapter V). This clearly indicates
that the metallization of silicon nitride membrane is fully compatible with extremely
good mechanical properties.

In a first section, we will describe in details the aforementioned coupling schemes,
with a particular emphasize on the strength of the electromechanical interaction ex-
pected in each scenario. In section III.2, we will present the low temperature setup that
was developed specifically during this PhD for the characterization of these microwave-
electromechanical devices. Finally, section III.3 will be dedicated to the delicate fabri-
cation recipe employed to bring an ultrahigh-Q suspended membrane at a sub-micron
distance from a superconducting circuit.

III.1: Various electromechanical coupling schemes

To couple the microwave cavity to the mechanical resonators presented in the previous
chapter, we designed their capacitive part in such a way that their capacitance is
changed with the mechanical resonator position. This problem has been addressed
through various angles in the electromechanics community, including a parallel plate
capacitance with a mechanically compliant electrode[TdL+11, TDCB+09], or a silicon
nitride nanobeam in between two fixed electrodes of a capacitor [FKM+12]. Those two
examples belong to two families of coupling mechanisms we investigated throughout
this work: the electrostatic coupling and the gradient coupling.

III.1.a: Electrostatic and gradient force coupling

The two approaches that were initially envisionned to couple the membrane to a super-
conducting resonator are sketched in Fig III.1. In the first one, coined "gradient force
coupling", the membrane oscillates in an electric field gradient generated by nearby
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electrodes. In close analogy with a particle inside an optical tweezer, the force expe-
rienced by the membrane is due to the induced dipoles within the dielectric material,
and it is proportionnal to the gradient of the squared modulus of the electric field
[UWK09]:

~F = ε ~E~∇E, (III.1.1)

where ε is the permittivity of the dielectric. To generate a strong electric field gradient
along the direction of oscillation of the membrane, we employed a pair of interdigi-
tated electrodes with a tooth spacing that is comparable to the membrane separation.
Conversely, by moving in the close vicinity of the electrodes, the membrane modulates
the capacitance between the interdigitated electrodes. To quantitatively assess the
coupling expected in this scenario, we will derive approximate analytical expressions
of the electric field generated by the interdigitated capacitor in the next section.

In the second approach (see Fig III.1 (b)), the membrane itself is coated with a
metallic electrode, playing the role of a moving electrode in a plane - plane capacitor
configuration. In this scenario, the charges accumulated on the metallic electrodes give
rise to an electrostatic force attracting the membrane towards the circuit.

Irrespective of the details of the coupling mechanism, the electromechanical in-
teraction is fully captured by the dependence C(h) of the electrode capacitance with
respect to the membrane displacement h. Indeed, the force can be derived by consid-
ering a fictitious experiment where the charges ± q on the electrodes remain constant
such that no electrical energy is exchanged with an external circuit. In such a scenario,
an energy conservation argument can be used to derive the force from the stored elec-
trostatic energy U:

~F = −~∇(U) = −q
2

2
~∇(1/C) = V 2

2
dC

dh
, (III.1.2)

where V is the voltage across the electrodes. Unsurprisingly, we find a force propor-
tional to the square of the voltage, or equivalently, to the energy stored in the capacitor.
This quadratic force is the counterpart of radiation pressure in optomechanical systems
operating in the optical domain. In microwave electromechanical experiments such as
the ones pursued in this thesis, the capacitor is shunted by an inductor to form a LC
resonator such that the microwave resonance frequency ωc = 1/

√
LC also depends on

h via:

dωc
dh

= −ωc2
1
C

dC

dh
. (III.1.3)

In conjunction with the size of the zero-point fluctuations xzpf , this parameter, denoted
G in chapter 1 (see Eq. (I.3.9)), sets a definite value for the vacuum electromechanical
coupling rate g0 appearing in the Hamiltonian (I.3.10). This Hamiltonian description
is a compact way of describing at the same time the effect of the mechanical oscillator
on the electromagnetic degree of freedom (a position-dependent resonance frequency
shift), and the effect of the field on the mechanical resonator (a force proportional to
the energy stored in the electromagnetic cavity). In the next section, we will try to
give quantitative estimates for the value of G achievable in each coupling scenario with
our membrane geometry.
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Figure III.1: (a) interdigitated capacitor and dielectric coupling. (b) metallic pads
with a metallized membrane. The two electrodes are represented in red and blue, and
the silicon nitride in yellow.

Figure III.2: Parametrization of the interdigitated capacitor for the analytical compu-
tation of the electric field.

III.1.b: Analytic estimates of the position-dependent capacitance

In practice, several geometric parameters influence the electromechanical coupling rate
achieveable with each of the coupling schemes described above. To get a precise esti-
mate of the parameter G, the most direct approach is to perform numerical simulations
in which the membrane distance is systematically varied, and to infer the slope dωc

dh
from these discrete set of points. However, this approach can be computationally in-
tensive, and furthermore, it doesn’t provide much intuition about the scaling of G
with the various parameters. In this section, we will show that, under some reasonable
approximations, an analytical expression of G can be obtained. The validity of this
analytical expressions is finally checked by comparing the predicted frequencies ωc(h)
with the ones obtained from numerical simulations.

III.1.b.i Interdigitated capacitors

The first samples designed for this work were based on the gradient coupling scheme.
Fingers of length p and width w belonging to one electrode are separated from the
other electrode by a spacing s, this structure forming a periodic potential of half
period a = w + s in the x direction (see figure III.2). Under the assumptions of a
large number of fingers, and a finger length p very large compared to the period 2a, we
can assume that the electrostatic potential is purely periodic in the x direction, and
invariant in the z direction. Under these assumptions, it can be written as a Fourier
series, leading to the following decomposition [DO02]:

V (x,y) =
∞∑
n=1

βn sin(αnx) exp(−αn|y|), (III.1.4)
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where:
αn = (2n− 1)π

a
. (III.1.5)

The dependence along y has been chosen such that the potential fulfills the Laplace
equations in the charge-free regions y < 0 and y > 0:

∆V = 0. (III.1.6)

Moreover, the Fourier coefficients βn are constrained by the boundary conditions
imposed by the electrodes in the y = 0 plane:

for s < x < s+ w, V (x) = +V0/2 (III.1.7)
for 0 < x < s, σ(x) = 0. (III.1.8)

The first condition reflects the fact that the potential is uniform, with a value ±V0/2
in the region of the plane covered by the electrodes. The second equation imposes a
vanishing charge density σ(x) outside the electrode region. From the expression III.1.4
of the potential, we can derive the electric field:

~E(x,y) = −~∇V =
∞∑
n=1

αnβn exp(−αn|y|)
(
− cos(αnx)

sin(αnx)sgn(y)

)
, (III.1.9)

where sgn(y) is the sign of y. The discontinuity at y = 0 is due to a surface charge
density σ(x) which reads:

σ(x) = ε0
∂V

∂y
(x, y = 0+) + ε0εr,Si

∂V

∂y
(x, y = 0−) = ε0 (1 + εr,Si)

∞∑
n=1

αnβn sin(αnx),

(III.1.10)
where ε0 is the vacuum permittivity and εr,Si is the relative permittivity of the sub-
strate. Finding the right set of βn such that Eq. III.1.4 and Eq. III.1.10 fulfill the
boundary conditions III.1.7 and III.1.8 is a difficult mathematical problem, which, to
our knowledge, doesn’t have an analytical solution. However, Den Otter [DO02] pro-
posed an approximate solution by equating the potential between the electrodes to the
one created by two semi-infinite coplanar electrodes:

βn = 2V0
αna

J0

((2n− 1)πs
2a

)
, (III.1.11)

where J0 is the zero order Bessel function of the first kind.
Figure III.3 shows the excellent agreement between this ansatz and the boundary

conditions for both the potential (Fig III.3(a)) and the charge density in the y = 0
plane (Fig. III.3(b)). In principle, the capacitance can be obtained from this Ansatz
by calculating the charge-to-voltage ratio:

Csurface = 1
2V0pa

∣∣∣∣∣
� s/2+w

s/2
σ(x)pdx

∣∣∣∣∣ = ε0(1 + εr,Si)
V0a

∞∑
n=1

(−1)nβn sin
((2n− 1)πw

2a

)
,

(III.1.12)
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Figure III.3: Boundary conditions for various approximations of the interdigitated
capacitor field: The potential (a) and the charge distribution (b) are plotted in the
y = 0 plane for Den Otter’s solution (Eq. III.1.4 with coefficients given by eq. III.1.11)
and for the 1st order approximation (Eq. III.1.14) in red and blue respectively. The
surface charge density is normalized by the maximum value σ0

def= V0π
2a ε0(1+ εr,Si). Den

Otter’s solution has been calculated for s/a = 1/2, and 100 terms have been included
in the summation.
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Applying this formula for s/a = 1/2, which is close to the actual electrode geometry
used in our experiments, one finds a capacitance per unit area Csurface ≈ 0.98ε0(1 +
εr)/2a. This value is also in very good agreement with numerical simulations conducted
on a finite interdigitated electrode and presented in the next section.

Before attempting to derive the effect of a dielectric membrane on the interdigitated
capacitance, we notice that this analytical model expresses the electric field generated
by the interdigitated capacitor as a sum of evanescent components decreasing expo-
nentially along y. In particular the square magnitude of the field only depends on the
distance to the electrode plane y:

~E2 =
∞∑
n=1

α2
nV

2
n e
−2αn|y|. (III.1.13)

The typical decay length α−1
n is maximal for the first Fourier component n = 1,

for which it takes the value α−1 = a/π. Moreover, one can show that most of the
electrostatic energy is contained in this first component: for instance, with s/a =
1/2, the energy in the first order mode accounts for approximately 93% of the total
electrostatic energy. Since the electromechanical coupling results from the gradient of
the field at the membrane location, which is situated in the "far-field", at a distance
h & a from the electrodes, we will consider, for the sake of simplicity, a solution
comprising only the 1st order evanescent component:

Vfirst order(x,y) = V0
2 sin(π/ax) exp(−π/a|y|) (III.1.14)

In this approximation, one can show that the potential and the charge distribution in
the y = 0 plane have a simple sinusoidal dependence:

Vfirst order(x,y = 0) = V0
2 sin(π/ax) (III.1.15)

σfirst order(x) = πV0ε0
2a (1 + εr,Si) sin(π/ax) (III.1.16)

These expressions are only crude approximations of the real potential and charge dis-
tributions. In particular, we note that the boundary conditions Eq III.1.7 and III.1.8
are not fulfilled (see Fig. III.3(a) and III.3(b), dashed lines). However, one can inter-
pret these quantities as the main Fourier component of the charge distribution in the
electrode plane. We can thus extract a good approximation of the capacitance from
this truncated expressions by integrating the charge density over the interval [0, a]:

Csurface,first order = 1
2V0a

∣∣∣∣� a

0
σfirst order(x)dx

∣∣∣∣ = ε0(1 + εr,Si)
2a (III.1.17)

In spite of the rough approximations of the model, formula III.1.17 only deviates from
the value derived in Eq III.1.12 by ≈ 2%.

Now that we have derived a simplified analytic expression for the electric field
generated by the interdigitated capacitor, we will study the influence of the dielectric
membrane on the electrode’s capacitance. For this we will first show that the evanes-
cent wave generated by the electrodes undergoes reflection and transmission when it
encounters a dielectric interface, in close analogy with Fresnel laws for propagating
waves.
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Figure III.4: reflection of the electric field of an interdigitated capacitor on a dielectric
layer.

Reflection of an evanescent field on a dielectric interface A dielectric medium
in presence of an external electric field exhibits a polarization ~P proportional to this
field. This effect can be elegantly taken into account by introducing the displacement
field vector ~D:

~D = ε0 ~E + ~P = εr ~P . (III.1.18)

In an homogeneous dielectric medium, ~D fulfills the standard Maxwell’s equations:

~∇ · ~D = 0 (III.1.19)
~∇∧ ~D = ~0. (III.1.20)

A field ~D that derives from a potential V automatically fulfills the rotational equation
(Eq. III.1.20), and the divergence equation becomes the standard Laplace equation
III.1.6. Moreover, at the interface between vacuum and a dielectric medium, the
presence of surface charges imposes the following continuity relations:

~D1 ·~n = ~D2 ·~n (III.1.21)
~Et,1 = ~Et,2, (III.1.22)

where ~Et is the tangential component of the electric field, subscripts 1 and 2 are
referring to the two regions the interface is delimiting, and ~n is a vector normal to the
interface plane.

In other words, the field ~Ecapacitor created by the electrodes gives rise to surface
charges at the membrane surface, which in turn generates a new field ~Edielectric fulfilling
Maxwell’s equation in the presence of charges. This field also fulfills the Laplace
relation in both the dielectric and vacuum region. We can thus extend the well known
description of reflection/refraction phenomena to the case of evanescent waves relevant
here by looking for a solution of the form:

Vdielectric(y < h) = rVcapacitor(2h− y) (III.1.23)
Vdielectric(y > h) = tVcapacitor(y). (III.1.24)
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The field is thus described as a superposition of three evanescent components. The
incident field, decreasing exponentially with the electrode distance, is either reflected or
transmitted at the vacuum/dielectric interface. The transmitted field keeps decreasing
inside the dielectric material towards y > 0 while the reflected field decreases towards
y < 0. Using the boundary conditions III.1.21 and III.1.22, we can show that the
analogous of reflection and transmission coefficients r and t are given by:

r = 1− εr
1 + εr

(III.1.25)

t = 2
1 + εr

. (III.1.26)

In the same way, we can describe the reciprocal reflection/transmission coefficient from
the inside of the membrane to vacuum

r̄ = εr − 1
1 + εr

(III.1.27)

t̄ = 2εr
1 + εr

. (III.1.28)

Electrode capacitance in the presence of the dielectric membrane Thanks
to the analogy with Fresnel reflection and transmission phenomena developed above,
we are now equipped to study the effect of the membrane on the potential generated by
the electrodes. The effective reflection coefficient of the membrane can be calculated
by summing the fields reflected at the two ends of the membranes, in close analogy
with a Fabry Perot cavity:

rmembrane(τ) = r + tt̄r̄
∑
n∈N

(
r̄2 exp(−2τπ/a)

)n
(III.1.29)

= r + tt̄r̄
exp(−2τπ/a)

1 + r̄2 exp(−2τπ/a)) , (III.1.30)

with τ , the membrane thickness. Finally, the potential in the electrode plane can be
derived by taking into account the successive reflections between the silicon substrate
and the membrane:

V (x, y = 0) = V0
2 sin(π/ax) 1 + rmembrane(τ) exp(−2πh/a)

1− rSirmembrane(τ) exp(−2πh/a) . (III.1.31)

In this expression, rSi
def= 1−εr,Si

1+εr,Si
is the effective reflection coefficient between the

silicon substrate and vacuum, and h is the distance between the membrane and the
electrode plane. Eq. III.1.31 shows that the potential in the y = 0 plane is partially
screened by the reflection of the evanescent wave emitted by the electrodes. In close
analogy with the estimate derived earlier (see Eq. III.1.17), we can obtain the modified
capacitance in the presence of the membrane by calculating the ratio between the
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electrode charges (unmodified by the presence of the membrane), and the amplitude
of oscillation of the potential in the electrode plane:

Cmembrane ≈ Csurface,first order
1− rSirmembrane(τ) exp(−2πh/a)

1 + rmembrane(τ) exp(−2πh/a) , (III.1.32)

To verify the validity of this approximation, we have simulated an interdigitated
capacitor in the presence of a thin dielectric membrane located at various heights h
with the software Sonnet: a numerical electromagnetic solver using the method of
moments to efficiently solve quasi-2 dimensional problems [Rau03]. The dependence
C(h) predicted by Formula III.1.32 is compared to the result of the simulations in Fig.
III.5 (a). Except for an ≈ 0.95% global scaling, the simulations and the parameter-
free analytical model show a remarkable agreement over the whole range of membrane
heights (For the geometric parameter 2a = 1 µm chosen in the simulation, the variation
of the capacitance is mostly concentrated in the 1 nm− 1µm region).

III.1.b.ii Electrostatic coupling

The sample design used for electrostatic coupling is depicted schematically in Fig.
III.1 (b): the electrodes consists in two coplanar square pads which are separated by
a given distance ξ, and are placed below the membrane. The rectangular region of
the membrane directly facing the electrodes is metallized. To our knowledge, there
is no exact analytical solution for this electrostatic problem. However, we propose a
phenomenological description of the system by examining two limiting cases: when
the membrane/electrode distance h is large compared to the electrode width, the ca-
pacitance has a fixed non zero value C0 corresponding to the mutual capacitance of
the two coplanar electrodes, but when h � ξ, the mutual capacitance between each
electrode and the common metallic pad dominates, such that the circuit can be seen
as two plane-plane capacitors in series, each with an area A. We thus model the total
capacitance between the coplanar electrodes by

C = ε0A
2h + C0 (III.1.33)

Although approximate [GBC+16, MBK14, UWK09] or exact [GGG+96] expressions
are available in the literature for the capacitance of two coplanar microstrips, which is
a similar geometry than two coplanar pads, they are not easily mappable to the case
of squared electrodes. Consequently, we will consider C0 as an adjustable parameter of
the model, that we extract from finite element modeling. Fig. III.5 (b) represents the
capacitance C(h) obtained with the Sonnet software for such a geometry, together with
a model using formula III.1.33. C0 is set to be equal to the simulated capacitance with
the highest membrane height available. We observe an excellent agreement between
the data and the fit justifying our model.

III.1.c: Microwave electromechanical resonators
So far, we have studied two possible implementations of a mechanically compliant
capacitor. To probe and control the membrane motion in the quantum regime, our ap-
proach consists in coupling the mechanical degree of freedom to a microwave resonator
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Figure III.5: Comparison between numerical simulations and approximate analytical
formulas: (a) (dots) DC simulations using the software Sonnet of an interdigitated
capacitance with a teeth period 2a = 1 µm, teeth length p = 80 µm, and 44 teeth per
electrode (see sketch in (c)). The membrane thickness is 100 nm. (line) Model using
formula III.1.32. There are no free parameters. (b) (dots) simulations of a mechanically
compliant capacitor with two squared electrodes of width 55 µm separated by a distance
of 20 µm (see sketch in (d)). (line) Model using the formula III.1.33. The only free
parameter is the parasitic capacitance C0, which is set to be equal to the capacitance
at the largest membrane height.
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Figure III.6: (a) Simulated A1 design: a meander inductor with an interdigitated ca-
pacitor. (b) Simulated BM2 design: a meander inductor with a plane-plane capacitor.

by shunting this circuit element with an inductor. In the lumped-element approxima-
tion, where each component behaves as either a purely inductive or a purely capacitive
element, the position-dependent resonance frequency is given by

ωc,lump(h) = 1√
LC(h)

. (III.1.34)

Several experimental considerations constrain the microwave resonance frequency. On
the one hand, it should be large enough to fulfill ~ωc > kBT . This ensures that the
microwave environment is free from thermal noise. For a cryostat at 300 mK, this
corresponds to ωc/2π > 5 GHz. On the other hand, the price and availability of
microwave components increases severely with frequency. In practice, the microwave
measurement setup, described in more details in the next section, is limited to the
5-10 GHz band. Our initial estimate, was that the membrane distance from the elec-
trodes would lie in the 50 - 500 nm range. With this assumption, the value of the
capacitance in both the interdigitated and plane-plane capacitor geometries would be
a few hundreds fF. Reaching 5 GHz < ωc/2π < 10 GHz thus requires inductors of ap-
proximately 1 nH. In the initial design, this was realized with relatively small footprint
by folding several times a long niobium strip to form a meander (see Fig. III.6). The
resonator A1, represented in Fig. III.6(a), is an example of design for gradient force
coupling experiment: it comprises an interdigitated capacitor shunted by an 700-µm
meander inductor. The resonator BM2, represented in Fig. III.6(b), is an example of
design for electrostatic coupling. The inductor is ∼ 2 times longer to account for the
smaller capacitance of the coplanar pads.

The resonance frequency predicted by Eq. III.1.34 is only valid in the lumped-
element approximation, where each component behaves at all frequencies as a purely
inductive or capacitive element. In fact, extrapolating at high frequency the impedance
of the individual circuit elements based on their DC-capacitance or inductance can
lead to significantly wrong resonance frequencies. To verify the validity of the lumped-
element approximation, we have performed numerical simulations of the inductor and
capacitor separately. Each component is modeled in Sonnet as a multi-port linear
network, where port 1 and port 2 are the two electrodes of the component (see Fig.
III.8 (d) and (e)). The linear network is fully characterized by its impedance matrix
Zij(ω) which provides the link between the voltage and currents across the various
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ports in the network:
Ui =

∑
j

ZijIj . (III.1.35)

In this formula, Ui is the voltage across port i of the network, and Ij is the current
flowing into port j. By symmetry of the problem, we are looking for solutions where
the current and voltages are opposite in port 1 and port 2:

I1 = −I2
def= I (III.1.36)

U1 = −U2
def= U/2, (III.1.37)

such that the impedance of the component is defined by Zeq
def= U/I = Z11 + Z22 −

Z12−Z21. By performing Sonnet simulations of the “capacitor” and “inductor” circuit
at various frequencies, we can extract the frequency dependent impedance matrix of
each circuit element, and hence their characteristic impedance Zeq(ω).

The results for circuit BM2 and A1 are presented in Fig. III.8 and III.7 respectively.
The simulations have been performed with a very large electrode-membrane distance
of 1 mm. If each component would behave as a pure capacitor (respectively a pure
inductor), its impedance would be given by Zeq = 1

jCω (respecitvely Zeq = jLω). As
visible on Fig. III.8 (b) and III.7 (b), this is correct in a very good approximation
for the 2 capacitive elements studied in the previous section. On the other hand, the
impedance of the meander inductances departs significantly from this ideal dependence.
In particular, we observe a “self-resonance”, around ωl/2π ∼ 24 GHz for the short
meander used in resonator A1 and ωl/2π = 14 GHz for the longer meander used with
resonator BM2. This effect mainly results from the parasitic capacitance between
successive meanders, that can be modeled as an extra capacitance C0L in parallel with
the inductor. The impedance of the equivalent circuit (see Fig. III.8(d) and III.7(d))
is

Zmeander = jLω

1 + (ω/ωl)2 (III.1.38)

with:
ωl = 1/

√
LC0L. (III.1.39)

In practice, the “DC-values” C and L are extracted from the first point at frequency 0.1
GHz, and the parasitic capacitance C0L is extracted by inverting formula III.1.39. The
impedance of the equivalent circuit (Eq. III.1.38), plotted as a full line in Fig. III.8
(b) and III.7 (b), is in excellent agreement with the simulated values. For comparison,
the impedance jLω of a pure inductor has been plotted in dashed line. Even in the 5
- 10 GHz interval, this DC-extrapolated impedance is significantly different from the
simulated values, in particular for the longer meander of sample BM2.

The resonance frequency ωc of the full circuit, composed of the meander and ca-
pacitor in series, reads:

Zmeander(ωc) + Zcapacitor(ωc) = 0. (III.1.40)

To make the graphical resolution of this equation conspicuous, the values of |Zmeander(ω)|
and |Zcapacitor(ω)| in Fig. III.7(b) and III.8(b) have been superimposed in the same
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graph, with a blue color indicating a negative purely imaginary impedance, and a red
color indicating a positive purely imaginary impedance. The x-value at the intersection
between the red and the blue branches indicates the predicted resonance frequency.
For consistency, we have also performed a simulation of the full circuit, and checked
that the microwave resonance, witnessed by a sudden phase change in the waveguide
transmission, is precisely superimposed with the predicted resonance condition (see
Fig. III.7(c) and III.8(c)).

Figure III.7: RF modelization of the A1 design: the individual circuit elements rep-
resented in (d) and (e) are simulated independently with Sonnet. The simulated
impedance |Im(Zeq)| of the meander and capacitor are overlayed in (b), where red
dots indicate a positive imaginary part, and blue dots indicate a negative imaginary
part. Each element is modeled by an equivalent lumped-element circuit: a pure ca-
pacitor C for the capacitive part of the circuit (see inset of (e)), and an inductor L
in parallel with a capacitor C0L for the meander circuit (inset of (d)). The corre-
sponding impedances are represented as full lines in (b). The resonance condition
Zeq,meander + Zeq,inductor = 0 is indicated by a vertical dashed line. The consistency
between the simulation of individual circuit elements and the simulation of the full
circuit is checked by simulating the waveguide transmission S12 for the full resonator
represented in (a). The spike in the derivative of S12 plotted in (c), indicates the
resonance condition for the full resonator simulation.

Finally, we plot on Fig. III.9(e) the electromechanical coupling rate G = dωc/dh
obtained by deriving the analytical fomula III.1.34. Based on this quantitative analysis,
we discuss in the following the specificities of the different coupling schemes, and the
reasons why we think we couldn’t observe the signatures of electromechanical coupling
with gradient force coupling schemes such as that pursued with sample A1.
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Figure III.8: Same analysis as figure III.7 but for the BM2 design

III.1.d: Discussion

A crucial difference between the gradient coupling and electrostatic coupling schemes
described in the previous sections resides in the shape of the height-dependent capac-
itance C(h): on the one hand, in the electrostatic coupling scheme, C(h) varies with
an hyperbolic dependence over a large range of distances h. On the other hand, in the
gradient force coupling scheme, C(h) has a short-range exponential dependence due
to the nature of the evanescent modes generated by the interdigitated capacitors. In
practice, for a given value of h, the typical decay length of the evanescent field should
be matched by choosing a value of the interdigitated teeth period 2a ≈ 2πh.

Furthermore, the efficiency of the evanescent coupling scheme decreases strongly
when the membrane thickness is small compared to the typical decay length of the
evanescent field (as visible in Eq. III.1.29). In the particular example of A1 studied
above, the maximal value of the electromechanical coupling scheme is a factor ∼ 16
below the value obtained at the same distance with a metallized membrane (see Fig.
III.9(e)).

Unfortunately, we have realized during the course of this thesis that the mem-
brane/electrode distance was difficult to control experimentally. For instance, we have
observed that, without extra precautions, the membrane could easily end up at a dis-
tance exceeding 1 micron from the electrodes, in a region where the interdigitated
electrode is insensitive to the membrane motion. This experimental difficulty strongly
plays against the dielectric gradient scheme, and it is only when we have switched to
the electrostatic coupling scheme that we have been able to observe signatures of the
electromechanical coupling.
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Figure III.9: Membrane height-dependent frequency of A1 and BM2: resonators A1
(sketched in (a) for reference) and BM2 (sketched in (b)) are simulated for various
membrane heights. The resonance frequency extracted from the waveguide transmis-
sion are represented as dots in (c) and (d) respectively. The prediction of formula
III.1.40, with the values of L and C0L extracted from Fig. III.7 and III.8, and the
values of C(h) given by the analytical formulas III.1.32 and III.1.33 are plotted as blue
lines. The parameter G = dωc/dh obtained by deriving the later analytical expression
is plotted in pink (resp. green) for the sample A1 (resp. BM2) in (e).

III.2: Low temperature measurement setup
One of the prerequisites of most experiments performed in this work was to use “cold”
electromagnetic resonator, i.e. where the temperature is such that kBT � ~ωc, with
ωc/2π being the cavity frequency. Whereas the optical frequency range allows to
access this regime at room temperature, as explained in the previous section, the
cavity frequencies that were chosen for this work are in the microwave range, typically
between 5 to 10 GHz. At this frequency, the characteristic temperature needed for
adding one thermal photon to the cavity is:

Tlim,opt
def= ~ωc/kB ≈ 360 mK. (III.2.1)

Moreover, the use of a superconducting material for the cavity imposes to work at
temperatures significantly low in front of its critical temperature (for example for
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Figure III.10: (a) Schematics of the He3 cryostat. In light blue is the liquid Helium
Tank, in green the 1K-pot circuit, and in pink is the He3 circuit. (b) Picture of the
opened insert. (c) Picture of the closed insert. (d) Picture of the closed insert with its
exterior seal (see main text for details).

Niobium, Tc ≈ 9.2 K). In consequence, the use of a cryogenic setup is mandatory for
all the experiments carried out in this work. The measurements were performed in
two different cryogenic setups: one of them is a “wet” He3 IceOxford fridge without
dilution, the other one is a BlueFors “dry” dilution fridge with pulse tube, for the use
of which we would like to thank the group of Zaki Leghtas at LPENS. Both setups
were quite similar, and we will describe in details the He3 cryostat in this section.

III.2.a: The He3 cryostat

The use of a He3 cryostat has several advantages compared to dilution fridges. Its
relatively short cycle duration (∼ 5 h from room temperature to ∼ 330 mK) allows
to perform quick tests at low temperature, a useful feature to characterize several
samples successively. Moreover, the relative affordability of such technology makes it
available to a research group with a budget comparable to a typical french Agence
Nationale de la Recherche (ANR) grant. The He3 cryostat was bought at the same
time I arrived in the lab. Consequently, the first months of this PhD were dedicated
to the learning of the different skills necessary to work with this instrument. Indeed,
contrary to other kinds of cryogenic systems, such as modern dilution cryostats that
are fully automatized, the cooldown cycle of the He3 cryostat requires to perform a
number of manual steps that are described in section III.2.a.ii.

III.2.a.i Description of the different components

A schematic of this cryostat is represented in figure III.10 (a). It comprises three
cryogenic stages. The first one consists in a ∼ 60 L liquid He4 tank, isolated from the



70 Chapter III. Microwave electromechanics

room temperature environment by an isolation vacuum. This tank is filled with He4

gas at atmospheric pressure, so the temperature of the liquid is equal to 4.2 K.
The rest of the experiment lies in a removable compartment, which will be referred

to as the “insert” thereafter (see figure III.10 (b), (c)). It is composed of three distinct
stages of decreasing nominal temperature. The first stage, colored in red in Fig. III.10
is in thermal contact with the surrounding liquid helium bath, and it has thus a nominal
temperature of 4.2 K. It can dissipate a large heating power and it hosts the microwave
amplifiers used in our experiments.

The second stage consists in an independent helium circuit, which will be referred
to as the “1K-pot” thereafter. It is colored in green in figure III.10 and is composed of
a small (∼ 10 cL) buffer connected to the liquid He4 tank on one hand and an external
pumping line emerging atop of the insert on the other hand, with a precise needle
valve allowing to manually control the section for the connection between the buffer
and the tank. After the needle valve lies a root pump, allowing to maintain a low
pressure downstream the needle valve, while at the same time evacuating a continuous
gaseous flow of approximately 15 m3/h. This corresponds to the realization of a Joule-
Thompson expansion, which generates a cooling power in the 1K-pot corresponding to
the latent heat of vaporization of the constant helium flow through the needle valve.
In reaction, the temperature is lowered down to ∼ 1.5 K.

The third stage consists in a closed He3 circuit, colored in pink in figure III.10
(a). When not used the gas lies in a spherical exterior reservoir, linked to a small
(∼ 10 cL) buffer thermalized with the baseplate of the cryostat. It is only when the
1K-pot reaches its nominal temperature (≈ 1.5K) that the helium 3 liquefies in the
bottom stage of the cryostat. The principle of operation of the lower cryogenic stage
is simple: once most of the helium 3 is liquefied in the buffer, the pressure of the bath
is reduced to displace the working point on the vapor-liquid equilibrium curve, such
that the final temperature decreases transiently below the 1K-pot temperature1.

The cryostat remains at low temperature until all the liquid helium 3 is evaporated
in the process. Pumping of the helium 3 with an external mechanical pump would be
inconvenient given the price of such a gas (≈ 2000 euros/L), and the risks of a leak in
the external pumping circuit. Instead, a sorption pump—referred to as the “sorb” in
the following—is used. This device is based on an activated carbon which can adsorb
some gas, and whose adsorbtion rate is reduced when the temperature is increased.
The sorb is installed in loose thermal contact with the 1K-pot and it can be effectively
switched on or off thanks to a heating resistor.

Several temperature sensors have been pre-installed in the cryostat to monitor the
good operation of these various cryogenic circuits: two Allen Bradley (AB) resistors,
sensitive in the 4 - 300 K range are disposed in close thermal contact with the helium
3 “sorb” and the 1K-pot respectively. In addition, two Rhutenium-Oxyde (RuO2)
sensors, sensitive in the 10 mK - 4 K range are mounted on the helium 3 buffer
stage and 1K-pot respectively. We have also installed a home-made temperature-
controlled platform with a RuO2 sensor and a 50 Ω terminator used in DC as a heater
for precise temperature control and calibration experiments (see section III.2.b.ii).
Finally, a superconducting sensor is used to monitor the level of liquid helium in the

1Helium 3 is preferred over helium 4 because it has a lower boiling temperature (3.19 K instead of
4.2 at ambient pressure)
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Figure III.11: First step of a cooldown in the He3 cryostat. (a) Temperature versus
time. The period where the insert is inside the tank is highlighted in light red. (b)
Helium level versus time. A Helium transfer is highlighted in blue. (c) Evaporation
rate of the Helium. (d) Picture of the lowering mechanism, at the start of the insertion
of the insert. (e) Picture of the cryostat after the insertion of the insert is complete.

main reservoir, and a digital counter has been installed on the recovery line to monitor
the rate of evaporation within the bath.

In the following we will describe the main steps that are required to operate this
cryostat down to base temperature.

III.2.a.ii Cooldown procedure

Preparation of the insert The first step of a cooldown consists in closing the insert
and pumping it thoroughly. The seal between the interior part of the insert and its
exterior shield is made by a simple metal-on-metal contact on a slightly conical surface
(see figure III.10 (b)) homogeneously covered in vacuum grease. The two pieces are
manually brought into contact before starting the pumping. The sole vacuum is then
holding the insert closed. Consequently, after the pressure has been reduced down to
∼ 5 × 10−5 mbar, a leak detection is performed to check that there is no risk of a
sudden opening of the insert after having turned off the pump. Then, a small quantity
of He4 gas is introduced in the insert as an exchange gas. This exchange gas is used
to help thermalize the inner part of the insert with the surrounding helium 4 bath.

The insert is then fixed to its exterior seal (see figure III.10 (d)), which aims
at slowly inserting it in the tank without losing Helium in the room. The 1K-pot
circuit is then meticulously purged with He4 such that nothing freezes inside during
the cooldown, which might lead to an obstruction. Before inserting the insert in the
helium reservoir, the good circulation of He4 in the 1K-pot circuitry is checked by
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immersing the tip of the helium pickup in an isopropanol basin, which results in the
production of a stream of bubbles under normal operating conditions.

Insertion of the insert in the tank Let us first note that contrary to the case of
a closed cycle fridge, the tank has to be filled manually and regularly. This operation
is done by transferring Helium from a liquid helium dewar. To that end, a transfer
tube, which is isolated from the room temperature by an isolation vacuum, is inserted
in both the container and the cryostat tank. Then, a heating resistor is inserted in
the container and ∼ 5 W of electrical power is used to evaporate the Helium. The
increase of pressure then triggers the Helium transfer. If several cooling cycles are
repeated over a short period of time, for instance when several samples need to be
characterized successively, it is usually advantageous to maintain the reservoir at low-
temperature between the successive insert cooldowns by performing regular helium
transfers. In practice, thanks to the good thermal isolation and large volume of the
reservoir, the cryostat has an autonomy of approximately 5 days. Since the cooldown
of the insert leads to a significant evaporation in the bath, it is preferable to start the
procedure described below when the level of liquid helium in the bath, as indicated by
the superconducting sensor, exceeds 300 mm.

The insertion phase is performed while carefully monitoring the recovery rate,
indicative of the helium 4 evaporation in the main reservoir while the insert is dipped
inside the bath. To reduce the helium consumption during this phase, we try to
maintain this value between 2.5 and 5 L/s. After ∼ 2 h, the temperature of the
1K-pot and “sorb” Allen Bradleys should be around 4.2 K, and the Rhutinum Oxyde
sensors on the helium 3 stage and 1K-pot should be within the valid measurement range
(see Fig. III.11). A dedicated activated carbon is thermalized with the 1K-pot stage.
Consequently, most of the exchange gas is adsorb after this step. It is indeed mandatory
to reduce the thermal contact between the surrounding liquid helium bath and the
various parts of the insert (sorb, 1K-pot, He3 buffer) in order to proceed successfully
with the next step. In particular, a too large thermal contact between the sorb and the
1K-pot prevents to reach the conditions required for helium 3 condensation (see next
step). In this case, the insert can be evacuated in-place by connecting it for several
hours to a turbo-pump. The pump can be disconnected and the normal procedure can
be resumed when the residual helium 4 pressure reaches the 10−6 mbar level.

He3 condensation and cooldown to base temperature The He4 balloon in the
input of the circuit is then replaced by a primary pump, and the needle valve opening is
adjusted to admit a constant helium flow through the 1K-pot. In practice, a too small
opening of the needle valve results in the “drying” of the 1K-pot: the flow of helium
4 is too small to compensate the thermal load on the 1K-pot, such that eventually,
no more liquid remains in the 1K-pot. This situation is visible as a sudden rise of the
1K-pot temperature. On the other hand, a too large opening results in a large flow
of liquid helium through the 1K-pot, bringing its temperature close to 4 K. When the
good setting is found, the temperature quickly settles close to 1.8 K. (see figure III.12
(a)).

A current is then injected through the heating resistor of the He3 activated carbon
in order to reach a temperature > 48 K for approximately 30 minutes (see figure III.12
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Figure III.12: Evolution of the different temperatures in the last cooling steps. (a)
Activation of the 1K-pot. (b) Manual heating of the He3 activated carbon. (c) Con-
densation of the He3 leading to the baseplate temperature of ∼ 326 mK.

(b)). This provokes the desorption of the He3 from the activated carbon to the buffer.
During this step, it is crucial that the 1K-pot stays below ∼ 2.8 K, such that the He3

condensates at the contact of the buffer. After this step, the buffer is full of liquid
He3, and the system is ready to reach its base temperature. For this purpose, the sorb
temperature is decreased below 4 K to reduce the pressure of the helium 3 bath. The
temperature of the helium 3 stage immediately starts to decrease, reaching ≈ 330 mK
in approximately 2 hours (see Fig. III.12 (c)).

In this configuration, the autonomy at low temperature is a few days. Eventually,
the He3 buffer runs out of liquid and needs to be refilled. This is done by repeating the
condensation cycle. Of course, the He4 reservoir needs to be regularly refilled during
the cryostat operation.

III.2.b: Measurement setup
The microwave experiments we performed in the cryostat have certain requirements,
such as not adding noise to the system while injecting strong microwave pulses at low
temperature and reading very small signals. It is also very important for the various
DC and RF connections used to preserve the thermal isolation of the different stages of
the cryostat. In a first section, we will describe the different wiring and thermalization
techniques employed to fulfill those requirements. In a second section, we will focus
on the microwave measurement setup.

III.2.b.i Wiring and thermalization

Coaxial lines The RF signals used throughout this work are carried via semi rigid
coaxial cables in the cryostat. The choice of the material used for those lines is im-
portant, as the descent line and the output line have quite different requirements. For
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Figure III.13: (a) RF wiring used in the He3 cryostat. NA: Network Analyzer. SA:
Signal Analyzer. See main text for details. Triangles represent amplification. This
wiring corresponds to the "hanger" cavity coupling. (b) Variation of the wiring cor-
responding to the reflection cavity configuration. The part not represented stays the
same.



III.2. Low temperature measurement setup 75

the descent line, we used stainless steel cables: their low thermal conductivity ensures
a good isolation between the different cryogenic stages, while, as we will see in section
III.2.b.ii, their low electrical conductivity is used for dissipating the room temperature
Johnson Nyquist noise. For the output line, the baseplate of the cryostat has been
connected to the 4K stage by a superconducting Niobium-Titanium cable, which com-
bines the benefits of a very low RF loss and a very low thermal conductivity. Finally,
the part of the output line connecting the 4K stage to the room temperature environ-
ment is made in Beryllium Copper, as it also exhibits very low RF loss rate[SDZ+12],
and that its higher thermal conductivity is less critical for this part of the circuit.
Those cables were thermalized with the different cryogenic stages using extra copper
wires pressing the coaxial cables in contact with a copper cylinder thermalized with
the desired stage (see figure III.14 (a)).

RF component thermalization The signals going in the output line were amplified
with a High Electron Mobility Transistor (HEMT) amplifier (see section III.2.b.ii). To
thermalize it properly, a dedicated copper L-shaped piece has been designed, which
is tightly screwed to both the 4 K stage of the insert and the amplifier (see figure
III.14 (f)). We used essentially commercial RF components, which are thermalized to
their respective stages with thin copper plate (see figure III.14)(e). Finally, some 50 Ω
termination connectors had also to be thermalized properly, which by pressing them
between two thick parallel copper plates (see figure III.14(b))

Temperature measurements As explained in section III.2.a.i, the temperatures
are monitored by measuring the resistance of dedicated temperature dependent re-
sistors. This measurement is performed by a 4-wires measurement: two wires are
connected at each end of the resistor. The first pair is used for injecting a known
current, while the second pair is used for measuring the voltage. Advantageously, in
such configuration, there is no voltage drop associated with a current flowing in the
voltage measurement pair. The DC wires used for this temperature measurement are
very thin (diameter of 100 µm) copper wires, with a resistivity of ∼ 10 Ω/m. They
are protected from short circuits by a thin insulating layer. By using very long wires,
we decrease the thermal conductivity between the cryogenic stages. To make sure that
both ends of the wire are properly thermalized with the corresponding cryogenic stage,
we wrap a large number of times the wires around a copper cylinder thermalized with
the cryogenic stage. The wire is efficiently thermalized with the cylinder by coating
the roll with Varnish (see figure III.14 (c) and (d)). The DC-wires running from stage
to stage are maintained in place by small linen wires to prevent them from touching
the surface of the insert, and thus avoiding unwanted thermal bridges.

Temperature stabilized stage Some of the experiment performed requires to be
able to set the temperature at a given value instead of simply reaching the lowest
temperature possible. To that end, a small temperature stabilized stage has been
set up with a heating resistor, made with a 50 Ω termination connector, and a RuO2
temperature sensitive resistor. Consequently, this stage requires 6 wires to be operated:
4 wires for the temperature measurement, and 2 wires for the heating resistor. Those
two resistors are thermalized by pressing two thick copper plates with screws and nuts
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on their edges, similarly to the thermalization of other 50 Ω resistors (see figure III.14
(b)).

III.2.b.ii Microwave measurement setup

line and noise thermalization Any signal generated in an environment at temper-
ature T1 carries a Johnson-Nyquist noise. For a small bandwidth around the central
frequency ω, these random fluctuations are well approximated by a white noise:

〈â†(t)â(t′)〉 = δ(t− t′)nB(T1,ω), (III.2.2)

where â is the bosonic lowering operatror for the field in the transmission line, and nB =
1

e~ω/kBT−1 is the Bose-Einstein factor. Since microwave sources are located at room-
temperature, all generated signals comprise a large thermal occupation nB(T1, ω)� 1.
This noise needs to be suppressed before letting the signal interact with the low-
temperature system. This is achieved by attenuating the signal with dissipative el-
ements placed at a lower temperature T2. In close analogy with a beam-splitter in
quantum optics, the attenuator output is the sum of two terms:

âout
def=
√
Aâin +

√
1−Ab̂in (III.2.3)

where A is is the power attenuation of the dissipative element, and b̂in is a Johnson-
Nyquist noise at the temperature of the attenuator. As a result, the output occupation
reads:

Nout = AnB(T1,ω) + (1−A)nB(T2,ω), (III.2.4)

Formula III.2.4 shows that the output noise is reduced as long as the dissipative element
is at a lower temperature than the source. An estimate of the attenuation needed for a
proper thermalization between a stage at temperature T1 and a stage at temperature
T2 is A = T2/T1, in the limit of a high occupation at both temperatures and T2 � T1.
This corresponds to approximately 30 dB in the He3 cryostat, and approximately 45 dB
in the case of the dilution fridge. Note that the unused output port of this effective
beam splitter corresponds, for a purely dissipative element, to power dissipated through
Joule effect. This will set up a higher limit to the input power that can be sustained in
the cryostat: when the dissipated power overcomes the cooling power of the cryostat,
the temperature starts to rise significantly.

Instead of a purely dissipative element, a way to rise up this power limit is to
use a directional coupler, (see figure III.13 and III.14(e)): this element, equivalent to
two transmission lines evanescently coupled to each other, allows to experimentally
access the four ports of the effective beam splitter. With a 20 dB coupler, the coupling
between the two transmission line is such that 99 % of the power injected emerges in
the transmitted port of the coupler. In our setup, this port is connected to a 50 Ω
termination thermalized with a higher cryogenic stage, such that the microwave power
dissipated can be efficiently sinked away (see Fig. III.14 (b)). On the other hand, the
coupled port is connected to the experiment, such that the noise and drives from the
source are attenuated by 20 dB. Finally, the unused port of the coupler needs to be
terminated by a 50 Ω load placed at the lowest possible temperature, since it is directly
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coupled to the experimental port. The advantage of this setup is that the noise seen
by the experiment is equivalent to that obtained with a 20 dB attenuator, but the heat
generated by the 20 dB absorption of the drive is produced at a higher cryogenic stage
where the available cooling power is greater.

On top of those lumped element dissipators, the material used for the coaxial cables
in this input line is a lossy material (Stainless steel in our case), aiming at providing
approximately 20 dB of loss at cryogenic temperatures and at the range of frequencies
we are interested in (i.e. between 5 and 10 GHz).

Sample box To shield the sample from the thermal radiation from the exterior part
of the cryostat, as well as from any electromagnetic perturbation, it is required to put
it in a metallic box. In this thesis, we measured samples in aluminum or copper boxes,
both of those materials having different qualities: as a superconductor, aluminum is a
very good electromagnetic shield at low temperature, while copper exhibits a higher
thermal conductivity. In practice, we did not notice any difference between experiments
performed in different boxes. The dimensions of the box should be large enough to
contain the sample. However, such a box inevitably behaves as a microwave resonator
with a discrete number of resonant modes. Each of those modes could couple to the
modes of interest of our samples and perturb the experiment. It is therefore crucial
to design the box such that the first resonance frequency is above any experimentally
frequency of interest.

The modes of a rectangular box of width Lx, length Ly and height Lz have the
following resonance frequencies:

fmnl
def= c

2εrµr

√√√√(m
Lx

)2
+
(
n

Ly

)2

+
(
l

Lz

)2
. (III.2.5)

In this expression, m, n and l are natural integers characterizing the number of nodes
in the x, y, and z directions respectively. At least two of these parameters need to be
different from 0 to describe a non-zero electric field mode profile. The lowest frequency
box mode is thus determined by the two largest dimensions of the box. Moreover, the
formula III.2.5 is only strictly correct when the box is filled with a uniform dielectric
material of permittivity εr. In the relevant case where the box contains a silicon chip of
height hSi below a uniform vacuum layer of height hvac, the lowest resonance frequency
is approximately obtained by taking εr = (hSiεr,Si +hvac)/(hvac +hSi). It is thus useful
to chose a dimension Lz as close as possible from the other dimensions of the box to
reduce εr.

We designed our box (see figure III.15 (a) and (b)) with dimensions Lx =15 mm,
Ly = 18 mm and Lz =13 mm. Therefore, the lowest mechanical frequency of our box
is f110 ∼ 13 GHz, which is indeed above the highest microwave frequencies we intend
to use in our experiments (∼ 10 GHz).

The RF signals are carried throughout the measurement setup in SMA connectors,
while on the sample chip the waveguides are either coplanar waveguides or striplines
(see section IV.2.b). To connect those, we file the SMA connector tips from a cylin-
drical shape to a semi-cylindrical shape (see figure III.15 (c)) and we solder small
aluminum wires, called wirebounds, to the coplanar waveguide or stripline conductor
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Figure III.14: (a) Thermalization of a RF cable (b) Thermalization of the 50Ω resistor
at the end of the chimney to the 1K-pot. (c) Thermalization of a DC wire to the
1K-pot. (d) Thermalization of a DC wire to the baseplate: the wire is rolled around a
copper cylinder and coated with Varnish. (e) Thermalization of the directional coupler
to the baseplate of the cryostat. (f) Thermalization of the Hemt amplifier.
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Figure III.15: (a) Mechanical plans of the bottom part of our sample box. Dimensions
are in mm. (b) Mechanical plans of the top part of our sample box. (c) Pictures of a
filed SMA connector tip wirebounded to a stripline waveguide on a sample chip. (d)
Picture of a wirebounded optomechanical cavity in the bottom part of the sample box,
before closing the box.
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line. The soldering is performed with a dedicated “wirebounding” machine, using ul-
trasonic excitations. It is necessary to put several wirebounds in parallel to reduce the
impedance mismatch of the connection.

Amplification We have already seen that the drive signals need to be attenuated to
suppress the Johnson Nyquist noise generated at room temperature. In contrast, the
signals originating from the sample need to be amplified to overcome the noise that
is inevitably added by the measurement apparatus located at room temperature. To
this end, we use a High Electron Mobility Transistor (HEMT) commercial amplifier
from Low Noise Factory (LNF-LNC1_12A) (see a picture in Fig. III.14(f)).

As explained in section I.4.c.i, any amplification comes at the cost of added noise,
with a lower bound set by quantum mechanics and corresponding to half a quantum
of noise. HEMT amplifiers are currently the most efficient commercial microwave
amplifiers. When operated in a cryogenic environment, the LNF-LNC1_12A provides a
gainG1 of ∼ 30 dB over a large (1-12 GHz) bandwidth and exhibits a noise temperature
of approximately ∼ 4 K (or equivalently an added noise of ∼ 10 quantas). Before
being fed into the measurement apparatus, the signal is further amplified at room
temperature by a G2 = 28 dB gain amplifier ZX60-183A+. The input equivalent noise
added by a chain of two amplifiers of gain G1 and G2 and input equivalent noise N1
and N2 is given by:

Nout = N1 +N2/G1. (III.2.6)

In other words, provided the first amplifier in the chain has a sufficient gain, the
effective noise of the chain is dominated by the first amplifier noise. In practice, we
have measured an input equivalent noise for the whole amplification chain of 4.4 K,
very close to the specifications of the HEMT amplifier (see next section).

Calibration of the lines As explained in the previous paragraphs, the RF descent
line used to drive the circuit, and the readout amplification chain used to retrieve
the signals from the sample are composed of various coaxial lines, attenuators, and
amplifiers, whose properties can vary significantly between room temperature and
cryogenic conditions. It is thus hazardous to measure independently the attenuation
of the descent line and the amplification of the readout chain. However, these are very
important quantities that are needed to calibrate the amplitude of the signals at the
sample location in absolute terms.

One way of calibrating the gain G of the amplification chain in-situ is to use the
known Johnson Nyquist noise of a 50-Ohm terminator, placed in the cryostat at the
fourth port of the directional coupler, such that most of the noise generated by the
terminator reaches the amplification chain (see Fig. III.16). The terminator is placed
on the temperature controlled stage described in section III.2.b.i, and its temperature
T is varied systematically between 400 and 500 mK, a range that is easily accessible
by the temperature controlled platform.

The total noise spectral density measured by a spectrum analyzer at room temper-
ature is given by

S(ω, T ) = G~ωc(nB(T, ω) +Nadd), (III.2.7)
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where the first term is due to the Johnson-Nyquist noise of the 50-Ohm termination,
and the second term is the added noise of the measurement chain, expressed in added
photons. For a central frequency ω/2π ≈ 7 GHz, the Nyquist noise nB(T, ω) is expected
to vary from 0.76 photons, to 1.04 photons when the temperature spans the interval
[400 mK, 500 mK ]. The added noise of the amplifier (≈ 10 photons) thus strongly
dominates over the Nyquist noise. However, both of these random signals being white
noises, the total noise spectral density can be measured very precisely by integrating
the signal over a large bandwidth. In practice, the temperature is cycled up and down
with a 5 minutes thermalization time for each value, and the spectrum is averaged over
a 500 MHz bandwidth around 7 GHz. To track small drifts of the gain over the course
of the measurements, we have added a calibration tone and rescaled each spectrum to
maintain the height of this peak constant.

The average power spectral density is plotted in Fig. III.16 as a function of tem-
perature. To make sure that the measurement is not affected by a thermal lag of the
platform temperature, we plot separately the points acquired during the ramp up of
the temperature (in red) and the points acquired during the ramp down (in blue). As
expected, we observe a nearly linear dependence of the spectral density as a function
of T.

S[ω, T ] ≈ αT + β. (III.2.8)

In the regime where nB(ω, T ) ≈ kBT/~ω, the slope α and offset β of the line are
directly linked to the gain G and added noise N of the amplification chain via

G = α/kB (III.2.9)
Nadd = (kB/~ω)(β/α). (III.2.10)

In this particular experiment, we find G ∼ 1.5×106 (= 61.8 dB), and Nadd ∼ 13 =
kB×4.4 K, a value that is in very good agreement with the specification of the HEMT
amplifier.

Measuring the probe amplitude at the output of the setup allows to retrieve the
total gain of the input and output lines of the cryostat:

T def= A+G ∼ 9 dB, (III.2.11)

where A is the attenuation of the descent line. Therefore, we have:

A = T −G ∼ −52 dB. (III.2.12)

A similar calibration has been performed for the dilution fridge.

III.3: Nanofabrication of the electromechanical resonators
The electromechanical resonators described in section III.1 are composed of two distinct
elements: a superconducting circuit located on a first silicon chip, and a suspended
membrane placed in regard. As discussed in part III.1.b and III.1.c, the distance sepa-
rating the superconducting electrodes and the vibrating membrane is a crucial param-
eter as it directly impacts the electromechanical coupling rate G. The full resonator,
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Figure III.16: (a) Setup used for the calibration of the amplification and attenuation
chain in the 3He cryostat. SA, spectrum analyzer. (b) Experimental results, for
increasing and decreasing temperatures, with added fit.

Figure III.17: Schematic view of the electromechanical sample: the mechanical sam-
ple (a) and the microwave chip (c) are assembled together with a flip-chip assembly
technique. The nominal distance between the 2 chips (∼ 300 nm) is defined by the
thickness 8 metallic spacers in regards, visible on both samples.
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represented schematically in Fig. III.17, is obtained by assembling two independently
fabricated samples with a “flip-chip” technique. The fabrication of the suspended
membranes has already been described in section II.3. However, an additional met-
allization step is required before the membrane can be used in an electromechanical
resonator. This step is used to pattern a superconducting electrode on the membrane
itself. Moreover, we had to develop from scratch the microfabrication process for the
“microwave chip” hosting the rest of the superconducting circuit, and the flip-chip
assembly procedure.

As explained in the introduction of this chapter, we have first developed microwave
resonators based on interdigitated capacitors. The microwave properties of these res-
onators were first characterized in the absence of a vibrating membrane. These exper-
iments, described in section IV.1.a, have been useful to validate the microfabrication
process, the measurement setup described in III.2.b, and they have led to a new exper-
imental technique for the characterization of the TLS bath limiting the quality factor
of planar superconducting resontarors [CFI+20] (see chapter VI). However, electrome-
chanical coupling was only observed with the electrostatic coupling scenario involving
a metallized membrane.

In the following, we describe the main microfabrication steps for the development
of electromechanical resonators. In section III.3.a.i, we describe the fabrication of the
“microwave chip”, underlining the specificities of the resonators based on interdigitated
capacitors and coplanar pads. In section III.3.b, we describe the steps involved for the
metallization of the membranes. Finally, in section III.3.c, we describe the flip-chip
technique developed to bring the “microwave-chip” and the suspended membranes at
a sub-micron distance.

III.3.a: Microwave chips
The recipe for microwave resonators with interdigitated capacitors we present below
is a simple one that does not include spacers to integrate it in a flip chip assembly.
Indeed, those resonators were first used for microwave characterization purpose. In the
second section, however, we describe a recipe for microwave resonators with a coplanar
pad capacitor which includes those spacers.

III.3.a.i Interdigitated capacitors

We fabricated resonators on 3 different substrates:

• a 250 µm thick substrate of float-zone (FZ) grown (100) intrinsic silicon, with a
resistivity of more than 10 000 Ω.cm (substrate referred to as Si),

• a 500 µm thick substrate of FZ grown (100) P-doped type-n silicon, with a
resistivity of more than 10 000 Ω.cm, with 2 µm of SiO2 from thermal oxidation
(substrate referred to as Si/SiO2),

• a 650 µm thick substrate of Czochralski (CZ) grown (100) silicon, with P/boron
doping and a resistivity of 1-30 Ω cm, with 200 nm of Si3N4 deposited through
low-pressure chemical vapor deposition (substrate referred to as Si/Si3N4).
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Figure III.18: (a) Detailed recipe for the nanofabrication of interdigitated capacitors
based resonators. (b) Picture of a fabricated interdigitated resonator.

The design retained for this contained sharp features: teeth width and spacing were
made as small as ∼ 250 nm, which precludes the use of optical lithography. Instead, we
developed a recipe based on e-beam technology, using a 30 kV Raith “e-line" e-beam
machine. This recipe is decomposed as follows (see fig. III.18):

• Step 1: a 10 mm x 14 mm sample of the desired substrate is cleaned, with a
10 minute Acetone bath at 50◦C with ultrasounds, followed by a 20 s rinsing in
Isopropanol (IPA) and a drying with a nitrogen Gun

• Step 2: In a Plassys evaporator, the sample is pumped until reaching a vacuum
of approximately ∼ 5×10−10 mBar, and then 100 nm of Niobium are evaporated.

• Step 3: After a new cleaning, the sample is covered by 300 nm of PMMA. To
reach this thickness, a spin coating machine is used at at speed of 4000 rpm, and
acceleration of 4000 rpm.s−1, and a duration of 30 s, starting from the relevant
dilution of PMMA with Anisole. After the spinning, a 15 min bake at 160◦C is
performed.

• Step 4: In the e-beam machine, the sharp features, such as the teeth, are made
in a 10 µm aperture with a dose of 215 µC/cm2, while the large features, such
as the inductor and the waveguide, are made in a 120 µm aperture and a dose
of 320 µC/cm2.

• Step 5: The development is done in a MIBK 1:3 IPA solution and lasts 70 s.
After that, a rinsing is done in IPA, followed by a drying with the Nitrogen gun.

• Step 6: The Niobium is etched in a Reactive Ion Etching (RIE) Corial machine,
in a 7 mTorr and 70 W SF6 plasma for approximately 1 minute.

• Step 7: A last cleaning is done for the removal of the resist.



III.3. Nanofabrication of the electromechanical resonators 85

Note that in e-beam lithography, some electrons sent by the machine are not inter-
acting with the resist but instead are scattered by the substrate, generating secondary
electrons which are in turn interacting with the resist. In practice, this leads to an
insulated area larger than the area exposed to the primary electrons. This has to be
dealt with for sharp features by adjusting carefully the dose used and by insulating a
region smaller than desired. For example, for generating a tooth spacing of 250 nm
for teeth spacing of 250 nm, it is necessary to expose the area between the teeth on a
width of ∼ 200 nm.

The choice of a hanger configuration allowed that for each substrate, 10 resonators
have been multiplexed on the same coupling waveguide and their resonance frequency
was staggered by incrementing the capacitor’s area by steps of ≈ 2.5 %. The coupling-
limited quality factor was designed to be ≈ 2× 104.

III.3.a.ii Coplanar pads capacitors

We now describe the fabrication of microwave resonators with coplanar pads capacitors.
The recipe described here is for a resonator coupled to a stripline waveguide (see section
IV.2.b), but the fabrication steps are not significantly different from a resonator coupled
to a coplanar waveguide. A processflow is represented scematically in Fig. III.19.

The fabrication starts with 2” 〈100〉 high resistivity FZ grown single side polished
silicon wafers of thickness 270 µm. A first and important task is to remove most of
the natural silicon oxyde layer covering any bare silicon substrate, prior to a metal
deposition (Step 1). Indeed, as will be explained in section VI, in those amorphous
layers lies some defects limiting the quality factor of the microwave cavities. To fulfill
this prerequisite, a standard cleaning process routinely used in the industry is the so
called RCA cleaning process [Ker90]. The key step aiming at removing oxides is the
last one: an immersion in dilute HF. We therefore kept this step in our cleaning recipe,
which reads:

• 10 min bath in RBS with ultrasounds,

• rinsing in DI water for 1 min, then drying with nitrogen gun,

• 10 min bath in Acetone with ultrasounds, then drying with nitrogen gun,

• 10 min bath in Isopropanol with ultrasounds, then drying with nitrogen gun,

• 10 min of O2 plasma,

• 10 min in 1:1 piranha bath with ultrasounds,

• rinsing in DI water,

• 30 s in 4 % dilute HF.
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Figure III.19: (a) Nanofabrication process for making a microwave cavity. This recipe
is valid for a stripline resonator. (b) Picture of a fabricated microwave cavity.
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The wafer is then immediately pumped in a Plassys stutterer, to deposit a 100 nm
thick Niobium film at a pressure of 0.01 mbar, a power of 600 W and a time of 40 s (Step
2). Prior to the deposition, the wafer is further cleaned by a RF argon plasma inside
the vacuum chamber. Interestingly, note that we tried to replace our cleaning recipe by
a simple acetone+IPA cleaning, before the same sputtering deposition, and obtained
the same quality factors, probably limited by the quality of the metal deposition and
the argon plasma. As a consequence, we believe that the thorough and complicated
cleaning we used at first, which is used in the industry, is not relevant, and that the
argon cleaning plasma inside the sputtering chamber is enough for a proper removal
of the natural oxide silicon layer.

The wafer is then diced in 14 mm*10 mm rectangular samples: this rectangular
shape is needed for allowing to stamp a 10x10 mm membrane substrate and still being
able to wirebound this sample to our sample box. The ground plane of the stripline
is then first defined by a back evaporation of ∼ 300 nm of Aluminum (Step 3). To do
that, the metallic part of the sample is protected with a layer of thick optical resist,
and inserted upside down in an evaporator.

The smallest features of this design being larger than a few microns, there is no
need to define the patterns using e-beam lithography. Instead, the resonator design was
defined using laser lithography. The spacers, whose goal are to impose a well-defined
distance between the two chips, are defined using a lift off technique: AZ5214 resist is
spun at 4000 rpm, with an acceleration of 4000 rpm/s and a duration of 30 s, followed
by a 1 min 30 s hot plate bake at 110 ◦C (step 4) and a positive laser lithography
is performed to create the corresponding openings in the resist (step 5 and 6). The
shapes of these spacers are typically 500 mum x 500 µm squares. The sample is then
placed in an evaporator where a layer of ∼ 100 nm of aluminum is deposited (step
7). The thickness of this layer needs to be well controlled since it defines the nominal
separation between the electrodes and the membrane. The edges of the sample, which
are usually imperfectly covered with photoresist are protected by standard tape during
this evaporation step. The leftover resist is then removed in a hot acetone bath without
ultrasounds for 20 minutes (Step 8).

The resonator is then defined by a second laser lithography using the recipe de-
scribed above (steps 9 and 10). The etching recipe then starts with the etching of the
Niobium layer in the Corial RIE machine, in a SF6 plasma with a pressure of 7 mTorr
and a power of 70 W for 1 minute (Step 11). After that, a stronger program is used to
etch a few microns of silicon (Step 12) : a 100 W plasma at 80 mTorr, CHF3 (15 sccm)
+ SF6 (25 sccm) + O2(4 sccm) for 2 min 30 s. Then the same program we use for
etching the Niobium is used for 30 s, followed by another strong etch for 2 min 30 s.

The etched profile of the resonator can be seen in figure III.20. The samples are then
cleaned in a hot Acetone bath with ultrasounds for 5 minutes, rinsed in Isopropanol
for 20 s and dried with a nitrogen gun. The result can be seen in figure IV.8(b) and
IV.10(a).

III.3.b: Membrane metallization

The fabrication of mechanically compliant capacitors imposed the metallization of the
membrane. The corresponding recipe is presented in figure III.21 (a) To do so, we
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Figure III.20: Scanning Electron Microscope angle view in false color of the deep
etching of silicon. Niobium is represented in blue, and silicon in green. The etch depth
is approximately 2.5 µm, and we can see the undercut due to the isotropy of this etching
technique. A dummy sample was etched and intentionally broken perpendicularly to
the Niobium wire direction to realize this image. This breaking explains the quite
irregular shape of the Niobium film, and the level of dirt in the picture.

start from the square membranes presented in section II.3. After a thorough cleaning
(Step 1), the sample is inserted in a Plassys sputterer. 50 nm of Niobium are then
deposited (Step 2), in a 0.01 mbar 500 W plasma for 33 s. To make sure the substrate
is clean before the deposition, the sputtering is preceded by a 30 s, 50 W AC argon
plasma at 0.01 mbar. The base of the sample is then protected with a clean room
compatible blue tape in order to not break the membrane with the vacuum suck of the
spin coating machine. AZ5214 resist is then spun at 4000 rpm, with an acceleration of
4000 rpm/s and a duration of 30 s, followed by a 1 min 30 s hot plate bake at 110 ◦C
(Step 3).

The purpose of the following lithographic step is to define the metallic pad on the
membrane along with 8 metallic spacers that will be perfectly aligned in regards with
the spacers previously patterned on the microwave-chip. For this, we use a positive
laser lithography using a LW405C, at a dose of 200 µC/cm2 (Step 4). We make sure
that this lithography is perfectly aligned with the membrane by using alignment marks
that were imprinted during the etch of the square membrane openings (see section II.3).
Since these marks are located on the opposite side of the sample, we use a back camera
of the laser lithography machine, allowing for double face alignment. The lithography
is followed by the same development than before: 50 s in AZ726MIF and rinsing in DI
water, then drying using a nitrogen gun (Step 5).

The niobium is then etched in a RIE SF6 25 sccm 70 W plasma for 1 min at
7 mTorr (Step 6). The leftover resist is removed in a hot (50◦C) acetone bath without
ultrasounds for 15 minutes, followed by a rinsing in isopropanol and a nitrogen gun
drying (Step 7). A third lithography is then performed, following an identical than the
previous lithography, but the pattern left protected by the resist here corresponds to
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Figure III.21: (a) Nanofabrication process for making the metallization of a square
membrane. (b) Picture of a metallized membrane.
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a square a little bit larger than the membrane, and 8 squares slightly larger than the
spacers. This corresponds to the steps 8 to 10.

The silicon nitride is removed using the same RIE program than the first lithog-
raphy (Step 11) : CHF3 (50 sccm) + O2 (6 sccm) for a 70 W plasma at 20 mTorr for
3 min30s. Then the silicon etching program described in the previous section is used.
The leftover resist is then removed in a hot (50 ◦C) Acetone bath without ultrasound
for 10 min, followed by a rinsing in Isopropanol and a drying with a nitrogen gun
(Final step). The result can be seen in the bottom right part of figure III.21 (b).

III.3.c: Flip-chip assembly

The technique used for the stamping of the mechanical resonator to the microwave
sample is described in figure III.22. The process starts from the two samples thoroughly
cleaned: 30 min in 1:3 piranha bath in a homemade holder followed by a rinsing in DI
water, then in IPA for the membrane side, or 10 min in a 50 ◦C Acetone bath with
ultrasounds followed by a rinsing in IPA for the microwave side.

The stamping itself is made on a MJB4 mask aligner, for which we use a homemade
mask holder. The purpose of this holder is to maintain the membrane from the top by
vacuum suction, while at the same time leaving an optical access to see through the
membrane for alignment. The mask holder is thus designed to suck the membrane chip
only on its external silicon part, where the membrane is not liberated (see a schematic
of the vacuum circuit directly machined inside the holder on Fig. III.22 (b), (c), and
(d)). Furthermore, two large apertures have been machined on the sides of the holder,
such that enough space is available to manually bring epoxy glue once a satisfying
alignment has been obtained.

The first step consists in positioning the mask aligner upside down next to the
MJB4 and to bring the membrane, the liberated silicon nitride facing upwards, on top
of the trenches connected to the vacuum sucking, the latter being not connected. Then
we connect the vacuum suck, such that the membrane is safely affixed to the holder as
visible on Fig. III.22 (a) (the membrane is located on the central beam of the holder,
and a vacuum tube is visible at the bottom of the picture). The mask holder is then
carefully flipped such that the membrane faces downwards, and the former is inserted
into the MJB4 (see Fig III.22 (b)). At this point, it is possible to use the microscope
objective of the MJB4 to check carefully that the back face of the membrane sample is
clean enough. It is important to abort the procedure at this stage in case the sample
is found dirty, as dust particles on the membrane usually lead to degraded quality
factors, and even worst, they can enter in contact with the microwave chip once the
samples have been stamped.

The microwave sample, placed on a microscope glass, is then inserted below the
sucked membrane and the alignment is made, first by approaching the two samples in
the z direction close enough to be able to see the features of the two samples in the
field depth of the microscope objective, then by aligning the angle between the two
samples using straight features such as the side of the membrane, the extra membranes
used for reflectometry measurements, or straight parts of the coupling lines or the
inductive part of the sample. Then the x-y alignment is made so that the capacitive
part of the circuit matches the metallic part of the membrane. The two chips are then
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slowly approached in the z direction, with small corrections of the x-y alignment if
necessary. After contact has been made, an extra pressure is added to make sure that
the alignment will not be broken upon any contact, and rapid (5 min) Araldite epoxy
glue drops are place on at least two corners of the membrane, at the interface between
the two chips. A thin wire is used as a pencil to reach those spots. The system stays
then still for 30 min such that the glue properly dries off. The vacuum is then turned
off, and the chip assembly is then slowly lowered. Using the microscope objective, we
can see that this step is relaxing the membrane chip towards a position farther from
the microwave sample chip.

At this point, the sample can be glued to the bottom part of its sample box, using
conductive Ag glue. After the glue dried off (which takes approximately 15 minutes),
the sample is wire bounded in a dedicated machine. To protect the liberated part of
the membrane from possible projections of aluminum wire sections, an unused silicon
chunk is placed on top of the membrane chip during wirebounding. The bounding is
made between the coupling wires and the SMA connectors, whose central parts have
been filed into a flat, smooth tip. At least three bounds are made for the connection.
In the case of a coplanar waveguide microwave sample design, the ground plane is also
wirebounded to the bottom part of the sample box, with as much bounds as possible,
regularly spaced. After that, a multimeter check allows to measure the resistivity
between the central part and the ground plane, and between the two ports, if two
ports are used. For instance, a resistance in the range of at least a few kΩ is nominal,
depending on the geometry, between the central part and the ground plane. This last
check allows to spot any short circuit, and to assess the resistivity of silicon, which
should be high enough to indicate that intrinsic silicon is used. the top of the box is
then installed, and the sample is then ready for a cooldown.

Conclusion In this chapter we have presented the design and fabrication recipe of
microwave cavities that can be efficiently coupled to the mechanical resonators pre-
sented in the previous chapter. We also described in details the low temperature
measurement setup used for their measurement and characterization at low tempera-
ture. In the next chapter, we will describe the characterization techniques employed
to measure the microwave, and electromechanical properties of these samples.
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Figure III.22: Stamping technique used for assembling the mechanical oscillator and
the microwave cavities. (a): Homemade mask holder: the plastic tube used for sucking
the membrane is connected to a primary pump that is not visible in the picture. The
sample is the blue chip on the central beam of the mask holder. (b) Insertion of
the microwave sample in the MJB4 mask aligner. The homemade mask holder, in
place below the MJB4 microscope, is also visible in the picture. where the homemade
mask is maintaining the membrane. (c) Alignment of the two samples is performed
while imaging them through the membrane with the MJB4 microscope. (d) Once
the alignment is satisfying, the two samples are pressed together and several drops of
Araldite epoxy glue are applied at the corners of the membrane chip. (e) The vacuum
suck is disconnected and the mask holder can be removed once the glue has dried off.



Chapter IV: Characterization and
optimization of the
electromechanical coupling

In this chapter, we will describe how to use the low temperature measurement setup
described in the previous chapter to characterize and optimize the sample design.
In particular, we demonstrated the coupling between a microwave resonator and a
mechanical resonator with a very high quality factor (≈ 300×106) at low temperature.

IV.1: Characterization

A prerequisite to the coupling between mechanical and microwave resonators is the
characterization of the microwave cavity. In this section we explain how the microwave
resonance is characterized. The setup used for the A1 design will be shown. However,
the technique is similar for other designs (BM2, and further optimizations).

IV.1.a: Microwave cavity resonance

The characterization of the microwave resonance is performed by a Virtual Network
Analyzer (VNA): a low power probe is sent to the sample through the cryogenic setup
and the transmitted signal is demodulated at the probe frequency. The complex trans-
mission coefficient of the cavity is obtained by comparison between the input probe
and the transmission. This operation is repeated at different frequencies around the
resonator resonance frequency. Note that the resonance profile predicted by the equa-
tion (I.3.4) has a perfectly symmetric lorentzian profile. However, the experimentally
measured spectra are usually not symmetric. This is due to reflections at the ports of
the sample box and in the coupling waveguide. This phenomenon still allows to fit the
resulting lorentzian by introducing an extra phase in the formula [GSE+12]:

T def= 1 + ηeiδ

2i∆
κ − 1

. (IV.1.1)

93
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Figure IV.1: (a) Optical micrograph of the microwave cavity. (b) The dielectric
environment of the capacitor and the profile of the electric field mode profile (mag-
nitude square), which exhibits in good approximation an exponentially decaying z-
dependence. Silicon is represented in purple, niobium is represented in grey, and the
optional (SiO2 or Si3N4) amorphous dielectric layer is represented in green. (c) view
of the capacitor using electron microscopy.



IV.1. Characterization 95

5.5 6.0 6.5
Frequency (GHz)

−60

−50

−40

|T
|(

d
B

)
(a)

5.5 6.0 6.5
Frequency (GHz)

−2.5

−2.0

−1.5

−1.0

−0.5

ar
g(
T

)
(r

ad
)

(b)

0 1
Re(T )

0.0

0.5

Im
(T

)

(c)

Figure IV.2: modulus (a) and phase (b) of the measured transmission of a sample with
several resonators. Four resonances are shown. (c) Smith plot of the transmission close
to the first resonance, with a fit using equation IV.1.1. The extracted parameters are
ω0/2π = 5.74GHz, κ/2π = 574kHz. κ0 was too small with respect to κc, and could
not be measured.

This equation is a circle in the complex plane, centered on 1 − ηeiδ

2 and with a η
2

radius. Note that the extra phase does not modify the shape and the radius of the
circle. However, it slightly shifts its center (see figure IV.2 (c)). Fitting eq. IV.1.1
to the data provides the resonance frequency ω0/2π, the coupling rate between the
microwave cavity and the feedline κc/2π, and the intrinsic loss rate of the microwave
cavity κ0/2π.

Note that the value of κc/2π is determined by the geometry. For example, in a
hanger configuration, moving the resonator away from the feedline or reducing the
length of the inductor that is evanescently coupled to the feedline decreases its value.
It is possible to assess it quantitatively using Finite Element Modeling. In a first
time, to see clearly the resonance and to assess the value of κ0, it is useful to design a
resonator with a rather high value of κc. In a second time, another sample is fabricated
with κc ≈ κ0. Indeed, this configuration is the best compromise between on one hand
the minimization of κ = κc + κ0 to engineer a well isolated microwave resonator, and
on the other hand the need to retrieve a large proportion of the signal in the cavity
by maximizing η = κc/κ. More precisely, looking at equation I.3.33, we see that
the optomechanical gain |G|2 ∝ ηC ∝

(
1
κ0
η(1− η)

)2
. Therefore, the situation where

κc ≈ κ0 is maximizing the optomechanical gain.

IV.1.b: Electromechanical coupling
As explained in the previous chapter, the development of the BM2 design allowed the
measurement of optomechanical coupling. In this section, we will describe two experi-
mental characterization techniques that were used on those samples. In particular, we
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will see that the metallization of the membrane does not affect its exquisite mechanical
properties: quality factors of ∼ 300 millions were measured with such membranes.

IV.1.b.i Optomechanically induced transparency

In close analogy with atomic EIT[IH89], an interference effect between two optical
excitation pathways leads to a dramatic modification of the complex probe ampli-
tude transmission when a particular resonance condition is met (the frequency dif-
ference between the probe and the pump needs to match the mechanical resonance
frequency). In certain configurations, the pump tone can be used to switch on or
off a narrow transparency window for the probe, hence the name Optomechanicaly
Induced Transparency[WRD+10]. Moreover, as we will demonstrate it shortly, the
precise dependence of the probe transmission with pump power provides quantitative
informations about various parameters of the system: for instance, the mechanical
linewidth Γm and the pump power dependent cooperativity C.

Theroretical derivation This problem can be quantitatively addressed through the
following Langevin equations in Fourier space, where the coherent evolution is derived
from the Hamiltonian (I.4.6), and we neglected the quantum noises:

(−i(Ω + ∆̃c) + κ/2)ˆ̃a(Ω) = −ig0α
ˆ̃b(Ω) +

√
κc
2 αin (IV.1.2)

(−i(Ω− Ωm) + Γm/2)ˆ̃b(Ω) = −ig0α
∗ ˆ̃a(Ω). (IV.1.3)

In the previous equations, αin is the amplitude of the incoming coherent probe: âin
def=

αine
−iΩt, Ω def= ωprobe−ωl , with ωl the pump frequency, and α is the complex amplitude

of the intracavity pump beam. Moreover, a hanger configuration (see Fig. I.2) has
been assumed, and will be during this derivation. The solution of this system then
reads for the mechanical equation IV.1.3:

(−i(Ω− Ωeff) + Γeff/2)ˆ̃b(Ω) =
−ig0α

∗
√

κc
2 αin

−i(Ωm + ∆̃c) + κ/2
. (IV.1.4)

We recognize on the left-hand side of the equation the optomechanically induced
modified susceptibility, represented by the effective mechanical frequency Ωeff/2π and
linewidth Γeff/2π. Moreover, we see that the mechanical resonator is coherently driven
by the beatnote between the source and the probe (term proportional to α∗αin on the
right-hand side) whenever the frequency difference is sufficiently close to the mechan-
ical frequency: |Ω− Ωeff | � Γeff . Injecting back this result in (IV.1.2) we have:

(−i(Ω+∆̃c)+κ/2)ˆ̃a(Ω) =

1− g2
0|α|2[

−i(Ωm + ∆̃c) + κ/2
]

[−i(Ω− Ωeff) + Γeff/2]

√κc
2 αin.

(IV.1.5)
We see that in return, by modulating the cavity frequency at the frequency Ω, the
mechanical oscillations scatter optical photons from the pump tone at frequency ωl
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to the probe frequency ωprobe = ωl + Ω. At this frequency, we therefore observe an
interference phenomenon between the photons directly created by the probe (term
proportional to 1 in the right-hand side parenthesis) and the photons indirectly scat-
tered after a conversion to mechanical excitations (second term in the right-hand-side
parentheses). In the canonical situation described above (∆c = −Ωm, Ωeff ≈ Ωm,
Ω ∼ Ωm), the interference is destructive and the intracavity probe field amplitude is
strongly suppressed due to the presence of the second excitation pathway. The exact
consequences of this intracavity interference effect on the output field depends on the
precise coupling configuration. For instance, in the assumed hanger configuration, the
input-output relation reads: âout = âin−

√
κc
2 â. We thus obtain the complex reflection

coefficient:

t(Ω) def=
˜̂aout(Ω)
˜̂ain(Ω)

= 1− η

1− iΩ+∆̃c
κ/2

1− C

1 + C

1
1− iΩ−Ωeff

Γeff/2

 , (IV.1.6)

where ∆̃c+Ωm � κ/2 is assumed. We remind the definition of the optomechanical co-
operativity C = 4g2

0 |α|
2

κΓm
, calculated here for the pump beam amplitude α. We retrieve

the Lorentzian resonance of the cavity, of typical width κ, superimposed with a sharp
spectral feature occurring precisely at the mechanical resonance condition Ω = Ωm. In-
deed, we notice that close to this resonance condition, Eq. IV.1.6 can be approximated
by a Lorentzian of width Γeff = Γm(1 + C) and amplitude η C

1+C :

t(Ω) ≈ (1− η) + η
C

1 + C

1
1− iΩ−Ωeff

Γeff/2
for |Ω− Ωm| � κ. (IV.1.7)

This approximation holds as long as Γeff � κ, which is always the case throughout
this work.

Measurement setup The experimental setup (see figure III.13) is composed of a
microwave source used for generating the strong pump and a network analyzer used
to generate the weak probe field. The output of those two instruments is combined
by a microwave power splitter before being routed to the input of the sample box
via the descent line of the cryostat. The output signal, amplified and filtered by the
measurement line of the cryostat is then routed towards the readout port of the network
analyzer, in order to retrieve the complex amplitude transmission for the probe field.

Experimental Results A typical experimental result, obtained on sample BM2,
is shown on Fig. IV.3. On all subplots, the probe transmission is plotted with a
color corresponding to the varying pump power. The magnitude of the transmission
is plotted close to the resonance condition Ω ∼ ωl in Figure IV.3(a). We clearly
see a linewidth increase with larger pump powers. Furthermore the complex probe
transmission is plotted in a Smith chart, in the absence (Fig. IV.3(b)), or in the
presence (Fig. IV.3(c)) of a pump field. In the absence of the pump field, the probe
transmission describes a circle in the complex plane. Indeed, we have[

Re(t(Ω))−
(

1− η

2

)]2
+ [Im(t(Ω))]2 ≈

[
η

2

]2
, (IV.1.8)
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which is the equation of a circle of center
(
1− η

2 ,0
)
and of radius η

2 in the complex
plane. In the presence of the pump, the sharp OMIT feature appears in the smith
chart as a second circle of varying amplitude. Indeed, for |Ω− Ωm| � Γeff , we have:

[
Re(t(Ω))−

(
1− η + η

2
C

C + 1

)]2
+ [Im(t(Ω))]2 ≈

[
η

2
C

C + 1

]2
, (IV.1.9)

which is the equation of a circle of center
(
1− η + η

2
C
C+1 ,0

)
and of radius η

2
C
C+1 in

the complex plane. At lower power, this shape is distorted. This corresponds to
situations where the sweep time is small compared to the lifetime of a phonon inside
the mechanical resonator: the permanent regime is not reached and the shape of
the resonance is not Lorentzian anymore. In this regime, extracting informations is
quite complicated, and thus for low cooperativity we will prefer to perform ringdown
experiments as presented below. If we place ourselves in a quasi-static regime, we can
fit the Lorentzian responses, and plot the width Γ and magnitude M of the OMIT
signal as a function of pump power (see Fig. IV.4). From Eq. IV.1.6, we know that
these quantities should scale as Γ = Γm(1+C) andM = ηC/(1+C). We thus perform
a global fit to the model

Γ = Γm(1 + ξP ) (IV.1.10)
M = ηξP/(1 + ξ), (IV.1.11)

where Γm, ξ, η are fit parameters, and P is the pump power. The fit (full lines in
Fig. IV.4) matches very well with the measurements. In this particular instance, we
find (Γm/2π, −10log10(P0ξ), η) = (46 mHz, -26 dBm, 0.65). The second parameter
corresponds to the pump power required to reach a cooperativity of 1, while P0 =
1 mW.

IV.1.b.ii Microwave ringdowns

Another useful tool used for optomechanical devices is the ringdown technique. The
goal of this experiment is to probe, this time in the temporal domain, the rate of energy
decay in the mechanical oscillator, and to do so at different optomechanical coupling
rates. To this end, we need to drive the resonator with a coherent amplitude way above
the thermal noise. While the use of external piezoelectic excitation is routinely done in
other experiments [TBPS17], we chose instead to use radiation pressure from the cavity
itself. The experimental sequence is thus divided into a first excitation phase, during
which the mechanical resonator is driven out of equilibrium by a series of microwave
pulses, and a second readout phase, during which the cavity is driven on the red
sideband and the decay of the mechanical amplitude is monitored by demodulating
the outgoing microwave signal at the frequency Ωm.

Excitation phase The excitation sequence is composed of two distinct steps: in the
first one, the resonator is cooled close to a displaced vacuum state, and then starting
from this initial state, an unstable dynamics is briefly used to amplify the mechanical
quadratures way above the thermal noise (see figure IV.5).
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Figure IV.3: Optomechanically induced transparency experiments made with varying
power. Left : magnitude of the transmission, zoomed in the OMIT signal. Top-right :
magnitude of the transmission in a large scan, with the transmission of the microwave
cavity in dark red. Bottom-right : Smith chart of the data.
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natural linewidth of the mechanical resonator, as well as the power required to have a
cooperativity of one (dashed lines)
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In the first step, the source frequency is set to the red sideband (∆ = −Ωm), and
modulated at the mechanical frequency in order to generate a sideband resonant with
the cavity. In a frame rotating at the carrier frequency, the drive thus writes:

αd(t) = α+ αine
−iΩmt (IV.1.12)

This microwave drive, equivalent to the one undergone by the system during an
OMIT sequence has two effects: first, it drives the mechanical oscillator to a displaced
equilibrium amplitude

b̂prep(t) =
−4ig0α

∗√κcαin
κΓm

e−iΩmt. (IV.1.13)

Furthermore, it reduces the variance around this mean value by a factor 1
1+C , where

C = 4g
2
0 |α|

2

κΓm
is the cooperativity of the pump tone. In other words, the mechanical

resonator is “cooled” towards the displaced vacuum state b̂prep(t). In principle, this
displaced vacuum state could be used as the starting point of the readout phase, how-
ever, the maximal amplitude b̂prep(t) being limited by practical considerations (such
as the maximum microwave power that can be injected in the cryogenic setup), the
signal-to-noise ratio during the readout phase would not be sufficient to observe the
decay of the mechanical amplitude over more than a few decades.

Consequently, during the second step of the excitation, the system is briefly driven
into instability by a microwave drive on the blue electromechanical sideband. In such
configuration, the relevant quantum Langevin equations are (see section I.4.c:

d

dt
â = −κ/2â− ig0αb̂

† +
√
κâin (IV.1.14)

d

dt
b̂† = (iδ − Γm/2)b̂† + ig0α

∗â+
√

Γmb̂
†
in. (IV.1.15)

These equation are written in an interaction picture with respect to Ĥ0 = −~∆câ
†â+

~(Ωm + δ)b̂†b̂, with ∆c the pump detuning, δ a small error in the mechanical frequency
estimation, and α the intracavity pump amplitude. The adiabatic elimination is then
performed by considering that when we are interested in the evolution of the mechanical
oscillator, the optical resonator is in its steady state, because κ � Γm, and thus we
have d

dt â ≈ 0. We can then formally integrate this system to get:

b̂†(t) = b̂†(0)hb(t) + (hb ~N )(t), (IV.1.16)

where Γb
def= CΓm, hb(t)

def= eiδte(Γb−Γm)t/2, and N (t) def=
√

ΓbeiΨb âin(t) +
√

Γmb̂
†
in(t), Ψb

is such that −iα∗ = |α|eiΨb and ~ is the convolution product. We see that, when the
condition Γb > Γm, or equivalently C > 1, is fulfilled, the mechanical position operator
undergoes an exponential growth, that is only limited by non linear behavior at very
high amplitude. We exploit this regime to “amplify” the initial mechanical amplitude
b̂prep(t) by a large factor. In practice, we typically use a cooperativity C ∼ 1000 and
a duration tblue ∼ 5× 10−3/Γm, corresponding to an amplification by a factor ∼ 150.

To illustrate this experimental sequence, Fig. IV.5 (f) and (g) shows the evolution
of the mechanical amplitude during the 2 steps of the excitation sequence. The initial
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state is drawn from a random thermal distribution, and the exact dynamics is obtained
by solving the Langevin equations. Each line represents a random trajectory, such that
the variance of the mechanical amplitude can be inferred visually by looking at the
spread of the various lines. To underline the importance of the first “cooling” step, we
compare the trajectories obtained in step 2 when starting from the “cold” distribution
resulting from step 1 (blue trajectories in Fig. IV.5 (f)) and the trajectories that would
be obtained if we directly applied step 2 on a thermal distribution (red trajectories in
Fig. IV.5 (f)). The very large spread of the final excitation amplitude in the second
case would be inconvenient: some ringdown trajectories would start with a limited
initial amplitude, and some would exceed the non-linearity threshold. Furthermore,
let’s note that given the very long lifetime of our resonators, waiting for the system to
equilibrate in the absence of a cooling pulse would be very time-consuming.

Readout phase Once the resonator has been excited with an amplitude b̂(0) largely
exceeding the thermal noise, we apply a pulse on the red sideband to imprint the
decaying mechanical amplitude on the outgoing signal. A calculation similar to the
one performed above shows that during this readout phase, the mechanical amplitude
evolves according to:

b̂(t) = b̂(0)hr(t) + (hr ~N )(t), (IV.1.17)

where Γr
def= CΓm, hr(t)

def= eiδte−(Γr+Γm)t/2, and N (t) def=
√

ΓreiΨr âin(t) +
√

Γmb̂in(t),
Ψr is such that −iα∗ = |α|eiΨr and ~ is the convolution product. Furthermore, we
can derive the outgoing field amplitude by applying the input-output relation. For
instance, assuming a cavity in reflection, we have:

âout(t) = −
√
ηΓre−iΨr

[
b̂(0)hr(t) + (hr ~N )(t)

]
+ (2√η − 1)âin, (IV.1.18)

For a large amplitude b(0), the first term is dominating over the two noise terms,
at least in the beginning of the the evolution. Indeed, this exponentially decaying
amplitude is a faithful readout of the mechanical amplitude IV.1.17. For low drive
power, (Γr � Γm, or equivalently C � 1) the decay rate Γm + Γr is dominated by
the intrinsic mechanical decay Γm. In other words, the natural damping exceeds the
electromechanical damping. On the other hand, at higher drive power where Γr � Γm,
or equivalently C � 1, the total decay rate is dominated by the electromechanical
cooling rate.

Experimental setup The experimental setup is similar to the one used for the
OMIT experiments (figure III.13), except that the network analyzer is not used for
ringdowns. Instead the two tones required for the first excitation step are generated
by the microwave source: the source is set to “amplitude modulation” mode, the carrier
frequency is set to the lower electromechanical sideband, and the modulation frequency
is set to Ωm such that one of the modulation sidebands is resonant with the cavity.
During the readout phase, the microwave field amplitude is demodulated around the
frequency ωc by the signal analyzer and the slowly varying quadratures X(t) and Y (t)
are extracted in a similar way than what was explained in section II.4.c for the room
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temperature ringdowns. Let’s note that there is no well defined phase relationship
between the source and the signal analyzer, such that the phase of the demodulated
signal varies from realization to realization of the experiment. However, given the
large amplitude of the mechanical excitation, the signal-to-noise ratio is sufficient with
a single-shot realization of the experiment, and there is no need to average several
traces together.

Experimental results A typical experimental result is presented in figure IV.5.
This result was obtain on sample BM2 : the amplitude decay allows to retrieve the
loss rate, while the phase variation of the signal allows to correct the mechanical
frequency estimation. Similarly to the OMIT experiments described above, we can
then perform ringdown series, as shown in figure IV.6, where the readout power is
varied and the linewidth is extracted by fitting the different ringdowns. Fitting this
curve to the same model (Γ = Γm(1 + ξP ), where P is the input power), we are also
able to extract the intrinsic linewidth of the resonator, and the power required to have
a cooperativity of 1, and therefore the cooperativity as a function of the input source
power. In this particular instance, we find the linewidth of ∼ 2.1 mHz corresponds to
a Q-factor of ∼ 3.2× 108, a nearly two orders of magnitude improvement compared to
room temperature measurements. In agreement with other experimental observations
performed in Delft [YCS15], we have noticed a dramatic improvement between 330 mK
and 10 mK, most of the measured quality factors exceeding 50 millions (we typically
measured the first 4 mechanical modes of the membranes with this method).

Discussion While the ringdown method may seem to bring a redundant informa-
tion compared to the OMIT experiment, they are in fact complementary. In particular,
OMIT is useful to find the mechanical frequency when it is not precisely known in ad-
vance. Indeed, the amplitude of the OMIT peak is equal to one at high cooperativity,
and its linewidth is large, making it very easy to notice while sweeping a large range
of possible mechanical frequencies. Then, reducing the power of the pump gradu-
ally around the assumed mechanical frequency allows to gain more precision. At low
power, however, the use of the OMIT technique is getting more tedious: as explained
above, the probe sweep speed needs to be slower than the decay rate of the mechanical
oscillator in order to avoid a ringdown during the OMIT, which makes the fit of a
Lorentzian quite complex. Therefore, when the mechanical frequency is well inferred
by this technique, it is usually more efficient to perform ringdown measurements at
low power. Interestingly, those measurements are also able to correct the mechanical
frequency estimation, by retrieving the phase of the data. This is particularly useful
when this frequency is showing some slow and unpredictable drifts of more than one
mechanical linewidth, a situation that is more likely to happen when the mechanical
linewidth is close to its intrinsic linewidth.

We have used the characterization methods described above to characterize various
samples. Furthermore, as we gathered more information about the fabricated samples,
we have gradually improved the design and fabrication techniques. Some of these
improvements are described in the following sections.
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Figure IV.5: (top) Experimental result for a ringdown measurement, showing the
exponential decay of the amplitude demodulated noise (a), here at a power sufficiently
low to avoid any back action.(b) Argument of the amplitude demodulated noise. ((c)
(d) and (e)) Sequence used for a ringdown, in the Fourier space. (bottom line) temporal
evolution of the amplitude of the anihilation operator b̂ for several randomly drawn
initial conditions representing a thermal state. (f) : the oscillator is driven by a pump
on the red sideband, and an internally generated modulation sideband detuned from
the cavity by the mechanical frequency Ωm. We extract the amplitude of the noise at
the cavity frequency using a signal analyzer, with an AM demodulation at the pump
frequency. (g) The resonator’s motion is amplified using a blue-detuned sideband of
the same pump. (h) We set up a red detuned pump and we retrieve the exponential
decay of the two quadratures X(t) and Y(t) of the mechanical noise upconverted in
the microwave domain through the optomechanical interaction and demodulated in a
signal analyzer. On the bottom line, in red are presented the same trajectories without
performing the first step of the sequence.
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IV.2: Optimization
In this section we present the main optimization steps of the microwave cavity.

IV.2.a: From A1 to BM2

As explained in the previous chapter, following our inability to measure optomechanical
coupling with the design A1, we developed a different coupling scheme, based on
electrostatic coupling with a metallized membrane used as a moving electrode in the
capacitive part of the circuit. This design is denoted by BM2 (see figure IV.8). In this
design, a capacitive element is composed of two metallic pads brought directly below
the membrane metallic pad. The inductor consists in a meander placed far away from
the capacitor. Similarly to the design A1, the membrane motion induces a shift of the
circuit capacitance, and thus of its resonance frequency.

IV.2.b: From coplanar waveguide to stripline

The first design implementing the electrostatic coupling was coupled to a coplanar
waveguide, whose principle is presented in figure IV.7 (left): a central conductor sits
on a (silicon) dielectric insulator. Two ground planes surround it at a constant distance.
The main problem caused by this ground plane is that it needs to be very large to
be properly defined, and that it prevents from overetching silicon on a large area
(which is required, for a dust not to increase the distance between the two chips).
Furthermore, to avoid spurious modes, the two parts of the ground plane should be at
the same potential. This is usually ensured by “bridge” wirebonds [JWYY18, YBE+11,
LEBB12]. However, this solution does not work in our case, since wirebounds would
collide with the membrane chip located in the immediate proximity of the microwave
sample. As a result, the two halves of the ground plane, on either part of the waveguide
were only loosely connected with each other in the outermost part of the sample. This
led to a number of spurious “waveguide” modes, appearing as random peaks in figure
IV.9 (a) and (b). To solve this issue, we switched the coupling line from a coplanar
waveguide to a stripline (see figure IV.7). In this configuration, the ground plane is
on the back side of the chip, such that the field lies mostly in the silicon. As can be
seen in figure IV.9 (a) and (c), it suppressed all the spurious modes appearing in the
previous design.

IV.2.c: From the “hanger” configuration to the reflection configuration

The coupling between the coplanar waveguide and the resonator was first made in a
“hanger” geometry, discussed in section I.3.a.i. Although this configuration allows to
couple several resonators at different frequencies on the same line (see for instance
figure IV.2), it comes with the flaw of having an unmeasured port: half of the signal
that comes out of the resonator is scattered in the mode propagating towards the input
port, which is not measured by the output line. As a result, all this information is lost.
We modified the coupling scheme from a “hanger” configuration to a reflection config-
uration. In a reflection configuration, only one port of the sample box is wirebounded
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Figure IV.8: Photographs of the microwave sample. (a) large photo of the membrane
sample. (b) large photo of the microwave sample. (c) zoom on the metallic pad of
the membrane. (d) zoom on the microwave resonator. (e) stamped and wirebounded
sample ready for being cooled down.
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Figure IV.9: Comparizon of the large VNA scans, showing the amplitude (top) and
angle (bottom) of the reflection (after design optimization, on the right) or transmission
(before design optimization, on the left) of the sample. The angular drift is due to a
delay corresponding to the time a signal needs to travel through he whole transmission
lines. The resonance frequency is each time indicated with a black arrow. (e) Smith
chart of the data close to the resonance for a resonator before design optimization. Data
are represented by blue dots and a fit is represented in red. The extracted parameters
are ωc/2π ≈ 9.86 GHz, η ≈ 0.79, κ/2π ≈ 792 kHz, and κ0/2π ≈ 166 kHz. (f) Smith
chart of the data close to the resonance of a resonator after design optimization. Data
are represented by blue dots and a fit is represented in red. The extracted parameters
are ωc/2π ≈ 7.95 GHz, η ≈ 0.89, κ/2π ≈ 1.36 MHz, and κ0/2π ≈ 150 kHz.



IV.2. Optimization 109

to the sample and connected to the input line of the cryostat. A directional coupler
and a circulator are used for ensuring the reflected signal to follow the output line.
The corresponding reflection is given by eq.I.3.5. In this configuration, no signal is
lost. As a consequence, the radius of the circle drawn by the resonance in the complex
plane is a factor 2 larger than the one of a similar resonator in a hanger configuration
(see figure IV.9 (e) and (f)).

IV.2.d: From a meander inductor to a circular wire inductor
For debugging purposes, we temporarily designed the circuit in such a way that the res-
onance frequency approximately spans the accessible measurement range (5 to 10 GHz)
as the membrane distance varies from ∼ 100 nm, to +∞. In this way, one can expect
to observe a measurable microwave resonance over the whole range of possible mem-
brane distances. Very importantly, this allows to witness a resonance in a microwave
cavity even in the absence of a metallized moving membrane.

Moreover, we have decided to switch from a meander-shaped inductor to a large
(∼ 2 mm diameter) circular inductor. We expect this geometry to minimize the stray
capacitance for a given value of the inductance. This design, named SM4, was carefully
simulated using Sonnet, following the same protocol than for the previous designs (see
section III.1.c for further details). The circular inductor has a value L ∼ 6.1 nH, more
than a factor 2 larger than the value of the meander inductor used in BM2. On the
other hand, the parasitic capacitance C0L ∼ 53 fF, is only multiplied by a factor ∼ 1.5
compared to BM2. These values lead to a self-resonance ωl = 1/

√
LC0L ∼ 2π×8.8 GHz

(see Fig. IV.11). As desired, the resonance frequency varies in the interval [4.25 GHz
to 7.87 GHz] when the membrane distance is varied between 100 nm and +∞ (see
figure IV.12).

Conclusion
In this chapter we showed that we were able to probe the motion of the mechanical
resonators presented in chapter II by interfacing them with the microwave cavities
described in chapter III. Although the presented method imposed the metallization of
the membranes, we experimentally demonstrated exceptionally high quality factors at
low temperature (> 300 millions), which paves the way towards the use of the optical
field to cool down the mechanical resonator, which will be presented in the following
chapter.
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Figure IV.10: Photographs of the SM4 sample. (a) large photo of the microwave
sample. False blue color has been used to highlight the 8 Aluminum spacers, and false
green color has been used for highlighting the three areas that were used for distance
measurement (b) large photo of the membrane sample. False blue color has been used
to highlight the 8 Aluminum spacers positions, supposed to be at the same height as
the metallic pad of the membrane (c) zoom on the capacitive part of the microwave
circuit. (d) pictures taken after stamping, from above the chip assembly.
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Figure IV.11: Same data than for the fig. III.7, but for the SM4 design.

Figure IV.12: Membrane height dependance of the frequency of the SM4 design (the
simulated design is sketched in inset). See the caption of figure III.9 for further details.
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Chapter V: Cooling a mechanical
oscillator close to its quantum
ground state

One of the prerequisites of most quantum mechanics experiments involving harmonic
oscillators such as the mechanical oscillators presented in the previous chapters is to
operate in a regime where the occupation number of those oscillators are small com-
pared to 1. Indeed, in this regime, the predictions of quantum mechanics differ from
the classical physics. While the latter describes a mechanical oscillator’s position vari-
ance ∆x2 that evolves linearly with the temperature and therefore can be arbitrarily
small, the former stands that respecting the Heisenberg inequality imposes a minimum
position variance (see figure I.1). Consequently, reaching this regime allows to prove
to some extents the validity of quantum mechanics at low temperature. Furthermore,
this regime opens the path towards the exploitation of exquisite properties of mechan-
ical oscillators. Among them is the relatively long time this system can evolve without
interacting with any thermal phonons. For example, patterned membranes modes has
been observed exhibiting quality factors of the order of 1×109 for mechanical frequency
close to 1 MHz [CRMS20]. Thermalized with the baseplate of a typical dilution fridge
reaching temperatures of approximately 10mK, this system can live for approximately
∼ 5 s with no interactions with its environment. This incredibly long time makes
these kind of devices a good candidate for several applications, including for instance
quantum memories[SE15]. Another incredible property exhibited by mechanical oscil-
lators in this regime is its mesoscopic scale with a very large number of atoms. As
such, it represents an intermediate scale between individual atoms where quantum
mechanics is routinely observed and macroscopic objects almost exclusively governed
by classical physics, and therefore is an ideal platform for exploring the complex and
not well known decoherence mechanisms separating those two regimes. Finally, as a
large system experiencing gravity, it can be an ideal platform for studying the quantum
mechanical description of gravity[BBG+19].

The low frequency of the mechanical oscillators makes the inequality kBT < ~ω,
signature of being closed to the ground state, hard to achieve. For instance, for a
ω = 2π× 1MHz the resonator needs to be cooled down to a temperature below 50µK.

113
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Reaching such a low temperature usually requires to combine direct cryogenic tech-
niques and alternative cooling effects. Alternatively, the coupling to an external optical
degree of freedom, as described in the previous chapter, allows to benefit from the high
frequency and therefore low occupation of this optical mode to actively cool down the
mechanical oscillator. The first experimental observation of a mechanical oscillator in
its motional ground state has been performed in 2011[TdL+11].

In this chapter, we first present the sideband cooling result from the optomechanical
cavity described in the previous chapter. Then we present two optimizations that will
in principle pave the way towards reaching the motional ground state. The first is
aiming at increasing the coupling factor, and the second at improving its isolation
from the mechanical noise of the cryostat.

V.1: Resolved sideband cooling
To approach the mechanical ground state, we perform a sideband cooling experiment,
as detailed in section I.4.b. A strong detuned pump (∆c = −Ωm) is used to enhance
the anti-Stokes process in the optomechanical linearized hamiltonian, resulting in the
scattering of phonons into photons in the microwave cavity, which has a much smaller
lifetime, and ideally, an environmental occupation close to 0. If we denote nm the
mechanical occupation number, the final occupation number nm,f is given by:

nm,f = nm
1 + C

, (V.1.1)

where C is the cooperativity. The occupation number of the resonator is directly
related to the total displacement noise of the resonator, that is to say to the full area
of Smeas

x̂x̂ . The experimental difficulty is to precisely know the conversion factor between
the measured microwave spectrum and the inferred mechanical spectrum. Therefore,
the measured power has to be divided by the optomechanical gain:

Smeas
x̂x̂ /(Γmx

2
ZPF) = SX̂X̂

4
GηCΓm

, (V.1.2)

where G is the gain of the amplification chain, calibrated in section III.2.b.ii, and
where SX̂X̂ is the measured optical power spectrum. The following measurements were
conducted in the 3He fridge (see figure V.1), at ∼ 330mK, with the sample presented
in figure IV.8. The parameters are the following:

Mechanical resonator Microwave cavity
Ωm/2π 481 kHz ωc/2π 9.82 GHz
Γm/2π 83 mHz κ/2π 792 kHz

width of the membrane 1 mm ∆c/2π -481 kHz
thickness of the membrane 100 nm η 0.79

Tbase 330 mK
g0/2π 0.6 Hz

We observe the linear increase of the linewidth of the Lorentzian spectrum with the
pump power, accounting for the smaller phonon lifetime due to the optomechanical
interaction. To compute the area under those peaks, we fit the spectrum with a Voigt
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profile which corresponds to the convolution of a Gaussian function and a Lorentzian
function. Indeed the expected profile is the Lorentzian mechanical response of the
resonator monitored by a signal analyzer with a Gaussian filter of a fixed bandwidth.
Usually the bandwidth of the analyzer can be ignored but in our case the linewidth of
the mechanical resonance is small (∼ 83 mHz) compared to the resolution bandwidth
(500 mHz) of the measurement. The fitting function has 4 degrees of freedom, Ωm/2π,
Γm/2π, the height of the peak, plus a flat noise level. When the pump power is
increased from -50 dBm to 5 dBm the linewidth of the Brownian motion is increased
while the height is reduced as expected. The overall area under the peak of noise is
decreased, corresponding to a reduction of the occupation number from n ∼ 65000
(T ∼ 1.5 K) to a minimum nm,f =274 (T ∼ 5 mK). This last value is still far from the
ground state and two problems precluded us from reaching this milestone. The first one
is the relatively low value of g0. A successful technique to increase it will be described
in the previous section. The second one is that we measured a mechanical noise that
was not Brownian limited, due to mechanical vibrations from our cryostat. As a result,
the mechanical mode effective temperature at low cooperativity was still significantly
higher than the baseplate temperature (1.5 K� 330 mK). In the 3He cryostat, we
identify the cryostat mechanical vibrations as the result of 1K pot helium boiling. A
successful technique to mitigate this extra mechanical noise will be presented in section
V.2.c.

V.2: Experimental optimization

V.2.a: Phase noise of the source

We already mentioned in section III.2.b.ii that the maximum pump power we can
inject in the cryostat is limited by its cooling power. Indeed, the noise thermalization
imposes that most of the input power should be dissipated in the different cyogenic
stages. This sets a maximum power (∼ 5 dBm at the input of the cryostat) that can
be injected and as a consequence limits the cooperativity for a given device.

Another cause of limitation for the input power an experiment can use is the quality
of the microwave source. Indeed, any source carries a classical noise whose amplitude
is proportional to the input power. This noise is a measure of the discrepancy between
the signal generated and a perfect sinusoidal signal. Such spurious noise can be seen
in figure V.2, where a direct measurement of the microwave source noise is performed
with a signal analyzer. At fixed power, there is an excess of classical noise close to the
pump, but this noise reaches an asymptotic value far away from the pump. Although at
the frequency those experiments were performed the asymptotic value is not perfectly
reached, there is not that much noise reduction that can be provided by an increase
in frequency.

V.2.b: Optimization of the optomechanical coupling

The cooling factor we are able to provide to a mechanical oscillator using resolved
sideband cooling is 1 + C, C being the cooperativity. While the latter is proportional
to the optical intensity used to pump the system, several problems precludes the use
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of an infinite optical intensity (see section III.2.b.ii). Alternatively, the cooperativity
exhibits a squared dependence in another parameter, g0, that needs to be measured
and optimized.

V.2.b.i Optomechanical coupling measurement

The informations gathered by the experiments described in the previous chapter are
however not sufficient to measure g0. Indeed, the knowledge of the cooperativity
C = 4g2

0 |α|
2

κΓm
, along with the optical (mechanical) linewidths κ (Γm) is not sufficient to

unambiguously determine the values of g0 and |α|. If |α| can be determined from the
calibrated measure of the amplification gain G presented in section III.2.b.ii, this gain
can change for instance when a cable is replaced or an RF component in introduces.
Therefore, it is always useful to dispose of an indepandant measurement of g0. The
method we propose is the following: we experimentally compare the Brownian motion
of our resonator to a well known calibration tone[GSA+10] generated by a frequency
modulation of our microwave source, which is tuned on the red sideband.

Indeed, a small (amplitude δf � Ωm/2π) frequency modulation of our source at a
frequency Ωmod/2π will generate a signal:

âin(t) = âin

(
1− iπδf

Ωm

(
eiΩmodt + e−iΩmodt

))
, (V.2.1)

and we can then compute the spectrums SPP (Ω) with P def= ~ωl|âout|2 for both the mod-
ulation and the Brownian motion transducted by the optomechanical setup. Interest-
ingly, although both processes are not equivalent, we find the same proportionality con-
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stant between the output and input noise, as long as we fulfill κ� |Ωmod−Ωm| � Γm,
in the case of an amplitude demodulation of the output power with a signal analyzer:

SPP (|Ω− Ωm| � κ) ≈ P 2
inK(Ωm)F(Ω)~

{
(2πδf/Ωmod)2δ(Ω− Ωmod) (V.2.2)

+ (G/Ωm)2Ssx̂x̂(Ω)
}
, (V.2.3)

with K(Ωm) a dimentionless number depending on the the gains and attenuations
of the microwave lines as well as on the cavity parameters, Pin

def= ~ωl|âin|2, ~ the
convolution product, F the filter function of our signal analyzer, which has a centered
Gaussian profile with a known equivalent noise bandwidth ENBW , and Ssx̂x̂(Ω) is the
symmetrized spectrum of the mechanical resonator. The measured spectrum SPP (|Ω−
Ωm| � κ) then presents two peaks: the first one, due to the phase modulation is a
Gaussian of width ENBW and area Amod

def= P 2
inK(Ωm)(2πδf/Ωmod)2. The second

one, due to the Brownian motion of the mechanical resonator, has a Voigt profile,
convolution of a Lorentzian and a Gaussian for the Brownian motion of the mechanical
resonator, with an area Amech

def= P 2
inK(Ωm)g2

0×4nB/Ω2
m. Finally we have the formula:

g2
0 = Amech

Amod

π2δ2
f

nB
. (V.2.4)

While this may seem to be enough for a measurement of g0, an experimental difficulty
lies in the mechanical noise source. As explained in section V.1, the Brownian peak
we measure is not only due to the natural thermal environment of the mechanical
resonator, but mainly to another mechanical noise coming from the boiling of 4He
in the 1KPot. Luckily, we managed to temporarily shut down this noise source by
replacing the pump on the 1K pot by a balloon of 4He. While this technique worked
perfectly fine for this measurement, it cannot be routinely exported to long experiment
since after a certain amount of time (in the order of 15 minutes in our case), the
1KPot is out of liquid helium and the temperature of the cryostat rises significantly.
In particular, the sideband cooling experiment described in section V.1 cannot benefit
from this trick, since long integration times with stable parameters are needed at each
pump power. To be sure that we are indeed measuring Brownian motion in those
conditions, we varied the base temperature of our cryostat from 400 to 800 mK. At
each temperature, we stabilized the temperature using a PID, and we took in average
∼ 60 spectrums, each with 3 averages and a bandwidth of 1 Hz. We then extract g0
by performing a linear fit on the temperature dependence of the ratios of the curves
(see figure V.3). The measured value for g0 of this sample was ∼ 0.6 Hz.

V.2.b.ii Measurement of the distance between the membrane and the ca-
pacitor

When considering the design presented in section III.1.c, it appears that g0 can be
increased by reducing the distance h between the two capacitor plates. The system
developed to vary the distance h is described in the next section. In this section,
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we describe the techniques that we used to measure h. We performed two kinds of
measurements. The first one is a qualitative measurement using a microscope objective:
when the distance between the chips becomes comparable to the wavelength used for
the illumination, the color is changing. Such a measurement allows to spot places
where the two chips are stuck together, but also to see an angle between the two chips,
and to detect the presence of a dust. The second one is a quantitative measurement
using a Nanocalc thin film reflectometer. This device contains a broadband white light
source, covering wavelengths from ∼ 400 nm to ∼ 1 µm. Using an optical fiber, it sheds
light with a normal incidence on a small spot of the sample. The reflected light is is
fed back into the same fiber and then spectrally resolved by the reflectometer.

Let us consider a one-dimensional problem where a plane wave amplitude can be
decomposed in a sum of a right-propagating term E+ and a left propagating term E−:

E(z) def= E+(z) + E−(z). (V.2.5)

Two elements are modifying the values of those fields, as presented in figure V.4: the
first one is an interface between two dielectrics, of optical indices n1 and n2. Taking
the notations of the figure, we have:(

E+,1
E−,1

)
= 1
t

(
1 r
r 1

)(
E+,2
E−,2

)
, (V.2.6)

where t def= 2n2
n1+n2

and r
def= n2−n1

n1+n2
are the Fresnel coefficients. The second type of

element is the propagation in a dielectric of thickness z0 and of optical index n. We
have: (

E+,1
E−,1

)
=
(
eiknz0 0

0 e−iknz0

)(
E+,2
E−,2

)
. (V.2.7)

The problem we are interested in consists in finding the reflection coefficient of a
stack of dielectrics composed by a silicon nitride layer and a vacuum layer representing
the gap between the membrane and the silicon, and a Niobium film (see figure V.4).
Indeed, the description used here can be extended to the case of a metallic film for
which we can measure the optical constants n and k. Quantitatively, we derive the
value of R def=

∣∣∣E−,1E+,1

∣∣∣2 by setting E−,2 = 0.
This model fitted to the experimental data is shown on figure V.5, for which a

very high distance (∼ 1.9 µm) has been obtained. Note that to perform the distance
measurements, one needs to be able to see through the membrane, so the region ex-
actly under the metallic pad of the membrane cannot be measured. Furthermore, as
explained in section III.3.a.ii and as can be seen in figure III.20, a few microns of silicon
has been etched everywhere except on the resonator and coupling wires. Therefore,
a distance measurement around the membrane is possible only above the part of the
inductor wire that is below the liberated part of the membrane sample. This corre-
sponds to a very small area, and the NanoCalc device is not precise enough to resolve
such details. To circumvent this problem, we modified the two samples by adding three
auxiliary square membranes, as shown in figure IV.10(b), at positions far enough from
both the resonator and the coupling lines such that their behavior is not modified. On
the microwave sample, the areas facing the liberated part of those membranes were
not etched.
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Figure V.4: Schematics of the model used to retrieve the chips distance from the
measured reflection. (a) Interface between two dielectrics, with optical indices n1 and
n2. (b) propagation inside a dielectric of optical index n and thickness z0. (c) The
problem to solve: a Silicon nitride membrane on top of a Niobium film
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Figure V.5: Measured reflection for a wide range of wavelengths, and matching manual
fit. The extracted membrane height is approximately 1.9 µm.
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V.2.b.iii Increasing g0 with the “pushing top”

To cool the resonator as much as possible, it is necessary to reach a cooperativity
as high as possible. Even if the cooperativity is proportional to the input pump
power, the limitation presented in the previous section precludes to reach an infinite
cooperativity based solely on this parameter. It is therefore of utmost importance to
design optomechanical cavities exhibiting a large g0 value. To that end, we describe
in this subsection an original technique that we called “pushing top".

In principle, for the designs used in this thesis, the thickness of the spacers should
be proportional to the final distance between the two chips around the metallic pad of
the membrane. However, due to the bending of the chips, which is not reproducible,
the distance actually measured after a stamping is much higher (typically between
∼ 600 nm and 3 µm). The use of a Directive Reactive Ion Etching (DRIE) machine has
been reported to achieve lower values of h in a reproducible way [APP+14]. However,
the unavailability of such machine in all cleanrooms of Paris and most cleanrooms of
Paris suburban area pushed us to develop another approach: after the initial stamping
(see section III.3.c), the top of the sample box is replaced by a modified one designed
to mechanically push the membrane on the microwave sample, as represented in figure
V.6. A large hole on the top allows to look at the sample during the pushing with a
“Super Long Working Distance” microscope objective or a reflectometer to control the
distance between the chips: it is important that the two electrodes of the capacitor do
not come into contact with each other. In order to push, four copper tips, protected by
a thin (∼ 120 µm) piece of Kepton tape, are pressed against the back of the membrane
chip. A set of four setscrews (in blue in figure V.6) are there to set up a limit on
the position of the “pushing top”. A set of four other screws (in green in figure V.6),
mounted on a few turns of small springs, are here to push it.

The effect of a push on the distance between the chips is monitored using the
reflectometry technique presented in the previous section. The effect of the pushing
can be seen in figure V.7. Note that even a poor data quality can be used for extracting
an estimate of the distance.

The effect of the pushing on the optomechanical system characteristics has been
first measured by performing three cooldowns with increasing pushing strength, as
shown in figure V.8. For each three membrane height, ringdown experiments(see sec-
tion IV.1.b.ii) are performed to measure the mechanical linewidth of the membrane
at different input power. As we see, the power required for a cooperativity of 1 (i.e.
such that Γeff = 2Γm), is reduced as expected if g0 is increased when the two chips are
getting closer. Equivalently, for a given input power, the cooperativity is increased.
Note that the mechanical quality factor is not reduced due to the pushing. As sug-
gested by figure V.8, it even seem that the mechanical quality factor is increasing, but
experimentally we found that it varies quite randomly between cooldowns, probably
due to different dust contaminations or temperature cycles for instance.

A direct measurement of g0 for a sample after being pushed can be seen in figure
V.9. The protocol, described in section V.2.b.i, has been followed before and after an
increase of pushing strength. We found and increase by a factor ∼ 10 of g0/2π, which
goes from ∼ 0.6 Hz to ∼ 5.5 Hz.
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Figure V.6: (a) Picture of the pushing top (b) Picture of a closed sample box with
pushing top (c) Scheme of the pushing technique to reduce the distance between the
membrane and the microwave chip. The silicon is colored in purple, the copper in
red, the silicon nitride in yellow, the Niobium and aluminum in dark and light grey,
respectively. The epoxy glue is colored in orange. The set screws are presented in blue,
while the pushing screws are presented in green.
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Figure V.7: Effect of the pushing top on the distance between two chips, measured
using the refletometry technique described in section V.2.b.ii. Raw reflection is repre-
sented with dots, a manual fit is represented as a straight line. Left: before the push,
the measured distance is ∼ 1 µm. Right: after the push, the measured distance is
∼ 300 nm.

V.2.c: Isolation of the mechanical system

To cool down the resonator and reach the quantum ground state, we need to eliminate
or reduce all the sources of noise identified in section V.2.b.i. Otherwise, most of the
sideband cooling will only serve at removing these extra noises and we will reach the
technical limits of our setup before reaching the ground state as it was the case in the
first attempt in section V.1. For example, in the latter, the extra mechanical noise
from the 1KPot 4He boiling set up an initial occupation of ∼ 65000, which corresponds
to an effective temperature of ∼ 1.5 K. It is thus reasonable to assume that we would
benefit from a factor of ∼ 1.5/0.33 ≈ 4.5 simply by using a mechanical isolation.

V.2.c.i Principle of the mechanical isolator

To passively isolate the sample from those spurious noise sources, we thus developed a
simple mechanical isolator whose principle relies on the same idea than the attenuators
used for instance by the gravitational wave community [Col05]. A simple model for
this device consists in a unidimentional system in which the test mass to be isolated
is represented by a point mass m at coordinate x2 and is connected to a moving plate
of coordinate x1 with a spring/dissipator ensemble of stiffness k, relaxed length l0 and
dissipative coefficient α (see figure V.10). In the Fourier domain, the transfer function
expressing the amplitude of x̃2(Ω) as a function of the amplitude of x̃1(Ω) reads:
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Figure V.8: Effect of the pushing top on the ringdown measurements presented in
section IV.1.b.ii, for the SM4 sample. Three cooldowns have been made, each with a
different pushing strength. For a given input pump power, the cooperativity is much
higher each time the strength is increased. Inset: corresponding transmission of the
microwave cavity probed by a VNA. The resonance is highlighted in blue. When the
distance is reduced, the capacitance is increased and thus the frequency goes down.
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Figure V.10: Schematics of the isolator model
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H(Ω) def= x̃2(Ω)
x̃1(Ω) =

Ω2
0 + jΩΩ0

Q

Ω2
0 − Ω2 + jΩΩ0

Q

, (V.2.8)

where Ω0
def=
√

k
m is the angular resonance frequency of the system, while Q def= Ω0

∆Ω is
the quality factor of the resonator. In this last expression, ∆Ω/2π is the linewidth of
the resonance, that depends among other on the dissipative coefficient α. The result
is the sum of a second order lowpass filter with a cutoff frequency Ω0/2π and a second
order bandpass filter with a frequency Ω0/2π and a quality factor Q. Note that this
system has to fulfill Ωm � Ω0 to access the maximum attenuation at Ω ≈ Ωm, which
lies between ≈ 2π × 300 kHz and ≈ 2π × 1 MHz.

V.2.c.ii Realization and room temperature characterization of the isolator

To realize the isolator, we fixed the sample to a large copper mass suspended by three
soft and long (∼ 15 cm) springs. This configuration ensures the lowest mechanical res-
onance frequency possible. Three loose copper wires are used for the thermalization of
the lower stage, while the RF signal is transmitted from the RF lines of the cryostat to
the sample using a CryoFlex cable, which is a flexible (thus ensuring lower mechanical
conductivity) SMA connector exhibiting low thermal conductivity but low RF losses.

The isolator was first characterized in a homemade test bench at room temperature
in air, which can be seen in figure V.11 (a) and (b). The upper stage of the isolator is
suspended to a loudspeaker in order to excite it with a known frequency, amplitude and
phase. Then, a diverging laser diode, together with a lens, generates a large ∼ 1 cm
collimated beam, aligned such that a significant part is clipped by the upper stage of
the isolator. On the other side, another lens is used to collect the clipped beam and to
focus it on a photodiode. As a consequence, the resulting signal, when demodulated
at the mechanical excitation frequency, is proportional to the stage displacement am-
plitude. An identical setup is used to measure the lower stage position, and the ratio
of the two demodulated signals gives the attenuation. To stay in the linear regime
of the springs while maximizing the sensitivity of the characterization bench at each
frequency, the excitation amplitude was dynamically adjusted: when the lower stage
measured amplitude is high (i.e. near the resonance frequency of the isolator ω0/2π),
the excitation amplitude is reduced, whereas when it is low, the latter is increased.
The results are presented in figure V.11 (c), where the grey shaded area represents a
regime where the attenuation is so strong that the lower stage displacement amplitude
was hidden in noise. Together with the raw data appearing as red dots, this figure
shows a fit to the model of eq (V.2.8), showing a good agreement. The resulting reso-
nance frequency was ∼ 3 Hz, and we measured attenuations as strong as ∼ 35 dB for
Ω/2π ∼ 30 Hz.

V.2.c.iii Low temperature characterization

The characterization the isolator at low temperature in “real" conditions is performed
by cooling down a sample once with and once without the isolator. Each time we
reproduce the optomechanical coupling measurement experiment described in section
V.2.b.i, and measure at low temperature the Brownian motion peak in two conditions:
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Figure V.11: (a) Schematics of the setup: a vibrating pot is holding the whole system,
while a laser diode coupled to a photodiode is measuring the amplitude of motion of
the upper stage of the isolator, and another laser diode coupled to a photodiode is
measuring the amplitude of the lower stage of the isolator, on which the sample box is
fixed. (b) Photo of the characterization setup. (c) Measured attenuation between the
first and the second stage of the isolator. The shaded area corresponds to a regime
where the lower motion was so small that it was not possible to measure it. The dashed
blue line corresponds to a fit to the model (V.2.8).
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one with the 1KPot pump turned on, the other with the 1KPot pump turned off, the
latter being a regime where the Brownian motion overcomes any other mechanical noise
source, as already demonstrated by the measured temperature dependence in figure
V.3. The area below those peaks is directly proportional to the effective mechanical
occupation of the environment. Therefore, the ratio between the area with and without
the noise source turned on, in the regime where the Brownian motion is not dominating,
is proportional to the spurious noise occupation. Thus, the ratio of this quantity
with and without the attenuator is a measurement of the attenuation provided by the
isolator. This scheme allowed us to measure an attenuation of∼ 40 dB at ∼ 870 kHz,
which is less than expected, given that eq. (V.2.8) predicts an attenuation proportional
to Ω−2 and that we measured at room temperature an attenuation of ∼ 35dB for
Ω ∼ 30Hz. We can attribute this discrepancy to a change of mechanical properties
of the isolator parts at low temperatures, or mechanical noise transferred through the
thermalization cables or the flexible SMA cable. Even though the contribution from
cryostat vibrations in the resonator noise is still visible in the total spectrum, the more
than 33 dB reduction provided by the attenuator bring us in a regime where it is only
marginally larger than the thermal motion.

V.3: Conclusion
In this chapter, we have presented a sideband cooling experiment that brought the
mechanical resonator from an occupation of ∼ 65000 phonons to an occupation of
∼ 274 phonons. If we did not succeed in reaching the motional ground state in this
experiment, we identified, designed and demonstrated two optimization techniques that
would help us to reach this regime. The first one is the implementation of the pushing
top technique presented in section V.2.b.iii, aiming at reducing the distance between
the two chips by a mechanical pressure. The second one is the mechanical isolation of
the whole system, mitigating the mechanical noise produced by the cryostat. In the
next chapter, we will describe in details a technique we used to probe the microwave
losses induced by substrate defects behaving as Two Level Systems. Finally, in a last
chapter, we will introduce a few long term prospects this project is paving the way to,
and are currently in development.
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Figure V.12: Zoom on the thermal peak at low temperature when performing the
experiment detailed in section V.2.b.i. Bottom (Top): the sample is measured with
(without) the isolator. Red: the noise source, identified to be the 1KPot bubbling, is
turned on. Blue: the pump is replaced by a 4He balloon to suppress the extra noise.
Data are represented by dots, while Gaussian fit are represented in straight lines.



Chapter VI: Characterization of the
TLS bath with interdigitated
capacitor resonators

Owing to the very low resistivity of superconducting materials, combined with ad-
vanced electromagnetic engineering to reduce radiation losses, the dominant loss chan-
nel of microwave superconducting resonators such as the ones used in this work is
the dielectric loss due to the presence of a two-level system (TLS) bath in amor-
phous materials [WHW+09]. A salient feature of this loss mechanism is its non-linear
nature. Indeed, the damping of TLS-limited cavities was shown to depend on res-
onator occupancy, originating from thermal fluctuations [GDM+08], from resonant
excitation [LHC+09, SKW+15], or from non-degenerate resonant mode occupancy
[SBO+11, KSB+17]. The characterization of the microscopic properties of individ-
ual TLSs probed under stress [LGM+15] or DC voltage bias [SRB+16] is an active
field of research, and considerable experimental efforts have been devoted to the char-
acterization [OAB+08, KWO11, VKG+12] and mitigation [PO10, WBB+11, QMC+14,
BLA+15, CMW+18] of TLS-related losses for superconducting resonators in the single
photon regime.

In the configuration in which those cavities were operated throughout this work
however, the off-resonant microwave tone responsible for the saturation of the TLS bath
is spectrally distinct from the resonant mode subjected to the losses, simultaneously
giving rise to a shift of the resonance frequency and a modification of the population
dependence of the quality factor.

In this chapter, we present the content of the reference [CFI+20]. We propose
a scheme to probe the energy relaxation and frequency shift properties of an off-
resonantly-driven microwave cavity due to the presence of a TLS bath. A semi-classical
model that describes the modified susceptibility is derived and compared to experimen-
tal data obtained on several resonators fabricated on different substrates. Contrary to
earlier works where a pump tone was injected at resonance with specifically engineered
cavity modes [SBO+11, KSB+17], our technique is readily applicable to any kind of
resonator, which makes it a versatile approach to identify a TLS loss mechanism, and
quantify its contribution to the total resonator loss, a key capability for the design
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and optimization of high-Q cavities. Moreover, the ability to continuously scan the
pump detuning allows us to determine the average dephasing rate of the TLS bath by
relating it to a well-controlled experimental parameter.

VI.1: Pump probe characterization

Each sample is placed in the base plate of the He3 cryostat, and probed by a two-tone
excitation (see Fig. VI.1(a) and Fig. III.13): a strong pump with a fixed detuning in an
interval spanning from several linewidths below to several linewidths above the cavity
resonance, saturates the TLS bath and a weak probe is used to measure the resonance
frequency ωc/2π and damping κ/2π of the resonator (See Fig. VI.1(b)). An example
of the complex probe transmission T recorded for various pump power is represented
in Fig. VI.1(b). Fitting those transmissions to the fit formula IV.1.1 allows to separate
the contributions of the coupling waveguide κext and internal damping κint in the total
cavity linewidth κ = κint + κext.

Figure VI.2(a) shows the frequency shift ∆ωc/2π and internal damping κint/2π
measured by the probe for various pump powers and detunings ∆. Even with the
large pump detuning, we observe a decrease of the resonator losses for increasing
pump power. This effect can be attributed to the saturation of the TLS bath by the
intracavity pump tone. To deconvolve the filtering of the detuned incoming pump tone
by the cavity linewidth, the pump power is converted into intracavity photon number
n̄ via the formula n̄ = 2κext|ain|2/(κ2 + 4∆2), where |ain|2 is the incoming photon
flux in photon/s as determined by an independent calibration experiment (see section
III.2.b.ii). Furthermore, to measure the correct intrinsic damping at low power, the
probe beam was ensured to be sufficiently weak to prevent it from saturating the TLS
bath.

A noticeable feature of this pump-probe experiment is the pump-dependent fre-
quency shift observed in Fig. VI.2(a). This result is in contrast with single-tone
experiments where the interaction with the TLS bath is only affecting the resonator
damping. Moreover, the observed frequency shift has a non-monotonous behavior,
with a maximum (respectively minimum) resonator frequency observed for a given
pump power at positive (resp. negative) pump detuning ∆.

In the next section, we give a detailed theoretical description of the pump-probe
experiment, and we propose an analytical model that can be used to link the previous
experimental signatures with various properties of the bath, such as the average TLS
dephasing rate.

VI.2: Theoretical Analysis

Here, we derive analytical formulas for the frequency shift and damping induced by
an ideal bath of TLSs. These are characterized by a uniform frequency distribution
of density P0/2π (in Hz−1), a coupling g to the resonator assumed to be identical
for all TLSs in the distribution, and a damping (dephasing) rate Γ1 (Γ2). This is a
simplifying assumption since the real TLS population has some statistical variation
in these parameters (for instance, the coupling g of individual TLSs to the resonator
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Figure VI.1: (a) Experimental protocol: a strong pump field is applied with a given
detuning from a microwave cavity resonance, while a weak probe field is swept across
the cavity resonance to measure its transmission spectrum T . (b) Real (top) and
imaginary part (bottom) of the probe transmission for a pump detuning of 4 MHz at
various (pump) intracavity photon numbers.
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Figure VI.2: (a) Frequency shift and (b) damping of the resonator, versus the number
of intracavity photons. Each color corresponds to a different pump detuning ranging
from −20MHz to +20MHz (color bar). Points correspond to experimental data, while
solid lines correspond to fits by the model (Eq. (VI.2.3) and (VI.2.4)). (c) and (d) are
the ground state population distribution of the TLSs versus their frequency detuning
ωq − ωc calculated with Eq. (VI.2.1). The various curves have been calculated for
various intracavity pump photon numbers and the related points in (a) and (b) are
highlighted with the corresponding color-circles. This measurement was performed on
a Si/SiO2 sample, with ωc/2π = 7.521 GHz (see circled point in Fig. VI.4).
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depends on the value and orientation of the electric field at the TLS location). However,
by neglecting these effects, we can provide analytical formulas, which are numerically
verified in section VI.3 with a more realistic TLS bath, and found to be in good
agreement provided the fitted parameters are interpreted as averaged values over the
TLS distribution.

VI.2.a: Analytic formula for a uniform TLS bath

As the weak probe has a negligible effect on the TLS bath, the pump affects the
population imbalance 〈σz(ωq)〉 according to the saturation law for a TLS at frequency
ωq/2π

〈σz(ωq)〉 = 〈σz〉th

(
1− Γ2

2n̄/ns
(ωq − ωp)2 + Γ2

2(1 + n̄/ns)

)
, (VI.2.1)

where 〈σz〉th = − tanh (~ωq/2kBT ) ≈ −0.52 is the thermal imbalance resulting from
the Fermi-Dirac distribution at the base temperature T = 330 mK of our 3He cryostat,
Γ2 (Γ1) the TLS dephasing (energy relaxation) rate, g the coupling rate, n̄ the number
of intracavity photons, ns = Γ1Γ2/4g2 the number of photons required to saturate the
TLS transition. In turn, the population imbalance 〈σz(ωq)〉 of a single TLS induces a
shift of the complex cavity frequency [KSB+17]

δωc = g2〈σz(ωq)〉
ωq − ωc + iΓ2

. (VI.2.2)

The frequency shift and damping, as measured by the probe beam, are related to the
real and imaginary parts of δωc. The total frequency shift and damping are obtained
by integrating the contribution of individual TLS, assuming a flat spectral distribution
of density P0, uniform coupling rate g, and no interaction between individual TLSs,
leading to (see Appendix B)

∆ωc = −Γ0
2

(∆/Γ2) (n̄/ns)√
1 + n̄/ns

[
(∆/Γ2)2 +

(
1 +

√
1 + n̄/ns

)2
] , (VI.2.3)

κint = Γ0

1− n̄/ns√
1 + n̄/ns

1 +
√

1 + n̄/ns

(∆/Γ2)2 +
(
1 +

√
1 + n̄/ns

)2

 . (VI.2.4)

In these formulas, in addition to the dephasing rate Γ2, the TLS bath is described by
two characteristic parameters: Γ0 = P0g

2 |〈σz〉th|, the maximum damping produced
by the TLS bath at the temperature T , that acts as a scaling factor on the curves
∆ωc(n̄,∆) and κint(n̄,∆), and ns, that corresponds to a scaling of the curves with
respect to the axis n̄.

Eq. (VI.2.3) and (VI.2.4) agree well with the experimental observations of the
previous section. The solid lines in Fig. VI.2(a) and (b) are a simultaneous fit of the
experimental points to Eq. (VI.2.3) and (VI.2.4) with Γ0,Γ2, and ns as free parameters.
The small (∼ 5%) discrepancy between the measured damping and the fits at low
pump power is attributed to the residual saturation of the TLS bath by the probe
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tone. We also observe a residual loss at high pump power, that represents ∼ 10%
of the low power value and that is attributed to a loss mechanism unrelated to the
TLS bath. The smaller overall variation of the measured damping cannot be captured
by the model since we perform a common fit on both damping and detuning points.
We have nonetheless observed a decrease of this discrepancy as the probe power is
weakened, consistent with the hypothesis of a residual saturation of the bath by the
probe field. Since the detuning curve is not affected by these artifacts, we attribute a
90% weighting to the detuning data in the global fit, and ignore these effects in our
model for simplicity. In the following sections, we give a qualitative explanation of the
phenomena captured by our model and derive simple formulas in two limiting cases.

VI.2.b: Small detuning limit
When the pump detuning is small compared to the TLS dephasing rate (∆� Γ2), the
TLSs that are affected by the pump are the same as in a single-tone experiment. In
particular, since an equal number of TLSs are excited by the pump on either side of
the cavity, the frequency shift vanishes in this regime:

∆ωc = 0, (VI.2.5)

κint = Γ0√
1 + n̄/ns

. (VI.2.6)

Eq. (VI.2.6) is the well known power-dependent absorption of the TLS bath derived
in the context of single-tone experiments [Phi87].

VI.2.c: Large detuning limit
In the large detuning limit (∆ � Γ2), the effect of the pump field on the TLS dis-
tribution is more subtle: as the intracavity field resonates at a frequency ωp that is
significantly different from ωc, a depletion in population imbalance 〈σz(ωq)〉 occurs
for TLSs that have a frequency ωq close to ωp. More quantitatively, the width of
this Lorentzian dip is given by the generalized Rabi frequency Γ2

√
1 + n̄/ns. Conse-

quently, the frequency pull exerted by TLSs that are above the cavity frequency will
not be perfectly compensated by those that are below, resulting in a net shift of the
cavity resonance. At even larger pump power, the width of the dip in population
imbalance exceeds the pump detuning, such that the asymmetry decreases. Qualita-
tively, the maximum cavity frequency shift occurs when the pump creates a depletion
of population imbalance 〈σz(ωq)〉 of spectral width ∆. In the current limit, this occurs
when n̄ ≈ ns (∆/Γ2)2. This effect is illustrated in Fig. VI.2(c) and (d), where the
ground state population has been calculated using Eq. (VI.2.1) for two different pump
detunings, and various pump powers spreading below and above this value.

Further, we can note that Eqs. (VI.2.3) and (VI.2.4) can be approximated in the
large detuning limit by:

∆ωc = −Γ0
2

δ

δ2 + 1 (VI.2.7)

κint = Γ0
δ2

1 + δ2 (VI.2.8)
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with the dimensionless parameter δ =
√
ns/n̄∆/Γ2. Hence, in the regime ∆ � Γ2,

the curves ∆ωc(n̄,∆) are invariant under the transformation (n̄,∆) → (
√
αn̄,∆/α),

where α is an arbitrary positive number. In particular, the maximum frequency shift
and damping are independent of the pump detuning provided it greatly exceeds the
dephasing rate Γ2 of the bath and their ratio is a non-adjustable prediction of the
model:

∆ωc(δ = 1)
κint(n̄ = 0) = 1/4. (VI.2.9)

We find experimentally max(∆ωc)/max(κint) ≈ 0.23 with the data presented in Fig.
VI.2(a) and (b).

By capturing the transition between these two distinct regimes, the fit with the
full Eqs. (VI.2.3) and (VI.2.4) performs a direct comparison between the TLS bath
dephasing rate Γ2, and the known pump detuning ∆. The two-tone experiments
therefore give direct experimental access to Γ2, a parameter that is elusive to the
single-tone probing of a TLS bath.

VI.3: Effect of the non-uniform TLS distribution

VI.3.a: Monte Carlo simulations

The model derived in the previous section is based on the assumption that the bath
is composed of a large number of TLSs with identical properties. In this section,
we study numerically how a non-uniform distribution of TLS parameters affects the
previous findings. We perform a Monte Carlo simulation where we randomly pick an
ensemble of N TLSs characterized by the parameters {ωq,i, gi,Γ1,i,Γ2,i}i∈[1..N ]. The in-
dividual TLS frequencies ωq,i are drawn from a uniform distribution of density P0. The
couplings gi are chosen randomly in a uniform distribution on the intervals [0, gmax]:
this distribution would be rigorously justified for a bath of TLSs with random orien-
tations in a uniform electric field. The energy damping and dephasing rates Γ1,i and
Γ2,i are drawn from a log-normal distribution, where the standard-deviation of the
variable’s logarithm is fixed to 1/2.

The TLS spectral density P0 is not constrained by our model, we thus choose a
starting value P0/2π = 1 kHz−1 large enough to ensure that the numerical results
are insensitive to the sampling noise associated with the random realization of TLSs.
In practice, we choose 106 TLSs in a 1 GHz interval around the cavity frequency.
Moreover we choose the mean values of the probability distributions such that Γ̄0 =
|〈σz〉th|P0〈g2

i 〉, Γ̄2 = 〈Γ2,i〉, and n−1
s = 〈 4g2

i
Γ1,iΓ2,i

〉 match the values fitted with our model
on the experimental data of Fig. VI.2.

The expected frequency shift and damping are then computed on a regular grid
of pump detuning and intracavity power by summing the contribution of individual
TLSs using Eq. (VI.2.2). The resulting graph is represented in Fig. VI.3, together
with a fit using the analytic Eqs. (VI.2.3) and (VI.2.4). We observe a very good
agreement between the fits and the values calculated with the simulations; the fitted
values of Γ0,Γ2 and n−1

s match to within 15 % the average values Γ̄0, Γ̄2 and n−1
s of the

distributions sampled in the Monte Carlo simulation. This indicates that although the
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Figure VI.3: (Left) Numerical validation of the model: the points in (b) and (c) are the
frequency shifts and dampings calculated with a Monte Carlo simulation for various
pump power and detuning. The TLS frequencies are sampled from a flat distribution
of density P0/2π = 1 kHz−1. A 10 MHz fragment of the sampled TLS frequencies
is visible as a collection of blue crosses in (a), as well as a zoom on a 40 kHz-wide
region. The average values (Γ̄0, Γ̄2, n

−1
s ) of the sampled population (see legend) match

the values obtained with the experimental fit of Figure VI.2. The full lines are fits
with Eqs. (VI.2.3) and (VI.2.4) (fitted parameters are also indicated in the legend).
(Right) Random sampling effects at low TLS density: the points in (e) and (f) are the
typical Monte Carlo results for the same parameters as in (b) and (c), except for a lower
spectral density P0/2π = 1 MHz−1. In this particular realization, the reduced damping
and positive frequency shift at low pump power results from a deficit of TLSs on the
low frequency side of the cavity (see sampled TLS frequencies over a 10 MHz-fragment
in (d)).
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Eqs. (VI.2.3) and (VI.2.4) were rigorously derived with the assumption of a unique
value of g2, Γ1 and Γ2, they well describe the effect of a non-uniform TLS bath,
provided the fitted values are interpreted as average values over the TLS distribution.

VI.3.b: Effect of random sampling

Our model is insensitive to the spectral density of TLSs: the scaling (P0, g,Γ1) →
(αP0, α

−1/2g, αΓ1) with α an arbitrary positive number, leaves the parameters Γ0,Γ2, ns
unchanged. However, the smaller the density P0, the smaller the number of resonant
TLSs that will contribute to the complex frequency pull. When only a handful of
TLSs contribute to the effect, we observe the signatures of the random sampling in
the Monte Carlo simulation. Fig. VI.3 (e), (f) shows the typical shape of ∆ωc(n̄,∆)
and κint(n̄,∆) for a TLS density as low as 1 MHz−1. We observe an asymmetry in
the frequency shift of the resonator: at low pump power, the frequency shift is mainly
governed by the few TLSs that are located within a frequency difference Γ2 from the
resonator. An excess on one side of the cavity leads to a constant shift of the cavity
frequency. On the other hand, in the large pump power limit, the cavity recovers its
unshifted frequency since all the TLSs in a large frequency span around the cavity are
saturated. Depending on the particular frequencies of the TLSs close to the cavity res-
onance, the low-power shift can be either towards low or high frequency. These effects
have not been observed in our experiments, and we thus conclude that the TLS den-
sity P0/2π � 1 MHz−1. This result is consistent with other work from the literature
[BFL16], that found a typical surface density for resonant TLS of ∼ 1µm−2 (resonant
TLSs are those with a detuning |ωq,i − ωc| . Γ2, that contribute significantly to the
low-power damping effect). With this estimate, we can infer that approximately 5000
TLSs contribute to the resonator shifts, or equivalently, a frequency density P0/2π in
the kHz range.

VI.4: Measurement results
To evaluate the dispersion in the parameters estimated by our technique, we have
repeated the fit presented in Fig. VI.2 on various resonators. Out of the 10 resonators
fabricated on each of the Si/SiO2, Si/Si3N4, and Si substrates, we have observed 3, 4,
and 6 resonances respectively. We attribute the missing resonances to the presence of
short circuits in the interdigitated capacitors.

The 3 parameters (Γ0,Γ2, ns) extracted from the fit of each operative resonator
are represented as a point in the (Γ2,Γ0) and (ns,Γ0) planes in Fig. VI.4(a) and (b)
respectively. The resonators fabricated on Si/SiO2, Si/Si3N4 and Si substrates are
represented in red, green, and blue points respectively. For a given substrate, the stan-
dard deviation of each parameter is represented as an error bar on the corresponding
plot. Table VI.1 also summarizes the values extracted and the corresponding standard
deviations for the different substrate types. The large dispersion of the parameter ns,
in particular for the Si/SiO2 and Si/Si3N4 substrates, is likely due to systematic errors
in the calibration of n̄. Indeed, the determination of κext is difficult for these largely
undercoupled resonators (for some resonators, we have found a contribution of the
coupling to the waveguide as low as ∼ 3 % of the total damping). However, since this
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Figure VI.4: Fit results: each point in the scatter plots represents the result of a fit
similar to that in Fig. VI.2(a), (b). Resonators fabricated on a Si/SiO2, Si/Si3N4,
and Si substrates are represented by red, green, and blue points respectively. The
coordinates (Γ0,Γ2) and (Γ0, ns) extracted on each sample are represented in (a) and
(b) respectively. The same data-points are represented in the (P0Γ1,Γ0) plane in (c),
see text for details. The mean and standard deviation of each ensemble is represented
as thick crosses in each of the plots. The starred data point is the result of the fit
presented in Fig. VI.2(a) and (b).

effect only corresponds to a global shift of the curves ∆ωc(n̄,∆), κint(n̄,∆) towards
lower occupancies n̄, the determination of Γ0 and Γ2 is not affected by this inaccurate
calibration. The losses Γ0 are typically higher by a factor 5 with the Si/Si3N4 and
Si/SiO2 substrates as compared to Si. This indicates that most of the TLSs are in-
deed located in the amorphous layers SiO2 and Si3N4. Moreover, we find a dephasing
rate Γ2/2π in the MHz range for the 3 kinds of substrate, with a consistent variation
from 1.07± 0.13 MHz for Si substrates, 1.76± 0.013 MHz for the SiO2 substrates, and
2.02 ± 0.24 MHz for the Si3N4 layers. This points towards different TLS microscopic
nature in the various materials. Even though the TLS spectral density P0 cannot be
resolved by our technique, a normalized TLS spectral density P0Γ1 = 4Γ0ns/Γ2|〈σz〉th|
can be calculated from the fitted parameters (Γ0,Γ2, ns). Fig. VI.4(c) represents the
same experimental points as in Fig. VI.4(a) and (b) in the (P0Γ1, Γ0) plane. For
the three substrate types the normalized TLS spectral density is comprised between
∼10 and ∼ 200 TLSs per intrinsic linewidth. As for the parameter ns, the relatively
large scatter observed for the Si/Si3N4 and Si/SiO2 substrates results from the poor
determination of κext for these resonators. The lowest values are found on the Si and
Si/Si3N4 substrates and the largest values on the Si/SiO2 substrates. The low spec-
tral density of TLSs on the Si/Si3N4 (comparable to the bare Si substrate) is likely
due to the small thickness of the amorphous Si3N4 layer on these samples: the TLSs
contributing to the damping are relatively rare, but strongly coupled to the resonator
due to their proximity to the interdigitated capacitor.

The low-power internal quality factor Q(330 mK) = ωc/Γ0, and the quality factor
extrapolated at zero temperature and zero pump power Q(0 K) = Q(330 mK) |〈σz〉th|
is also presented in separate columns. The relatively low value of ∼ 104 even for the
samples fabricated on Si is likely due to the unusually small pitch of the interdigi-
tated capacitors studied here [GSE+12], along with the absence of a chemical surface
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treatment prior to metal deposition [BLA+15].

Wafer Γ0/2π (MHz) Γ2/2π (MHz) ns (ph) P0Γ1 Q(330 mK) Q(0 K)
Si/SiO2 1.1± 0.098 1.76± 0.013 22.8± 13 115± 68 6800± 400 3300± 100
Si/Si3N4 0.823± 0.16 2.02± 0.24 6.12± 6.6 23.2± 24 7400± 1300 3000± 500

Si 0.194± 0.029 1.07± 0.13 7.92± 2.2 15.7± 4 27500± 3000 10000± 900

Table VI.1: Extracted parameters of the TLS bath for the three types of substrates.
The confidence intervals are the standard deviation of the measurement clusters.

Although recent experiments conducted on state-of-the art high-Q resonators have
seen evidence of TLS-TLS interactions in the spectrum of resonator frequency fluctua-
tions [BFW+14, FI15], or on the power-dependence of the damping rate in single-tone
experiments [BFL16], we haven’t observed such signatures in our experiments. In
particular, the generalized tunneling model proposed in [FI12] predicts a logarithmic
dependence of the resonator damping as a function of n̄. The absence of such signature
in the samples fabricated on amorphous substrates such as Si/SiO2 or Si/Si3N4 is not
surprising as the density of TLSs in bulk amorphous material is too low to induce
strong coupling between neighboring TLSs [FI12]. On the other hand, the dominating
TLSs for the Si substrates are likely located at the oxide interface layers and should
thus induce the same non-trivial power-dependence of the damping rate. The discrep-
ancy between our experiment and these recent works is probably due to the lack of
chemical surface treatment prior to metal deposition in our sample processing. How-
ever, extending our simple model to the case of interacting TLSs could provide useful
insight on the physics of these complex systems. In particular, the two-tone experi-
ment demonstrated here may be useful to test some of the underlying hypotheses of
the generalized tunneling model, such as a temperature dependent dephasing rate of
the TLSs [FI12].

VI.5: Conclusion

In conclusion, we have presented an experimental method to characterize the non-linear
properties of a TLS bath—the dominant loss channel of planar superconducting res-
onators. The method has been applied to lumped-element resonators that have been
specifically optimized to confine the electric field in a small region around the sub-
strate surface. By selectively saturating a fraction of the TLSs that are resonant with
a detuned-pump field, and simultaneously measuring the cavity spectrum with a weak
probe field, we have observed clear signatures of “spectral hole burning” in the TLS
frequency distribution. The details of the evolution of the resonance frequencies and
damping as a function of the pump detuning can be used to infer physical properties
of the bath, such as its average dephasing rate Γ2. This technique requires only stan-
dard microwave equipment and it is readily applicable to a large range of microwave
resonators. Beyond their interest for the investigation of amorphous materials, the ex-
perimental signatures reported in this work can be used as a method to unambiguously
identify the precise contribution of the TLS-bath to the total resonator loss, and thus
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gives a useful insight into the design and optimization of superconducting cavities.
Furthermore, the physical situation considered here is ubiquitous in parametrically

coupled systems where a particular interaction is activated by a strong pump field
detuned with respect to the resonant mode frequency. This is notably the case in
reservoir engineering, where the mode of interest inherits a non-trivial dissipation
mechanism from the parametric coupling to an intentionally low-Q microwave mode
[Kap17]. In this regime, the coupled dynamics of the resonant mode and TLS bath
have to be carefully studied since pump photons can be scattered to the resonator via
the interaction with TLSs, leading to an effective heating process. This phenomenon
is currently under theoretical investigation [FSC+18] and its characterization, which
requires a quantum limited read-out to resolve the associated fluctuations, will be the
subject of future work.
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Although this work was not able to experimentally demonstrate the ground state
cooling of a mechanical oscillator, it succeeded in approaching this regime, as well
as proposing and experimentally demonstrating several optimization directions that
would eventually lead to this milestone. In the first section of this chapter, we present
the next optimization we developed for improving this experiment. In the second
section, we propose and successfully demonstrate a method to extract informations on
the mechanical oscillator despite the noise of the HEMT. Finally, in the third section,
we propose a possible experiment which aims at generating nonclassical state of motion.
This last experiment would require first to reach the ground state of the mechanical
oscillator beforehand, and second to dispose of a single microwave photon detector.
We here demonstrate experimental results of the characterization of such a detector,
with unprecedentedly low dark count rate.

VII.1: Patterned membranes
The experimental investigations described in the previous chapters demonstrated sev-
eral limitations inherent to the use of the square membranes presented in section II.
Among those, their relatively low frequency is a concern, as the microwave source
noise is getting higher as we work closer to the frequency of the pump. This reduces
the maximum source power that can be injected at the input of our electromechan-
ical cavity. We also believe this low frequency to be among the causes of the extra
mechanical noise we measure at low temperature. Indeed, other experiments working
at higher frequencies are not measuring such effects[TdL+11], and it is reasonable to
assume that most physical systems behave as lowpass filters for phonons. Further-
more, although the mechanical quality factors that we observed were exceptionally
high, reaching higher values is always desirable, as the lowest mechanical occupation
a sideband cooling experiment can reach scales with the mechanical loss rate. As ex-
plained in chapter II, the two main loss channels for the thin highly stressed resonators
we are using are clamping losses and intrinsic losses. To the latter is associated the
quality factor (see section II.2):

Q−1
int = sin(φ)

1− ν2

(
λ+ π2

4 λ
2(n2 +m2)

)
, (VII.1.1)
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where φ is the loss angle of the silicon nitride, ν its Poisson ratio, λ def=
√

Eh2

3σa2 , E is the
Young modulus, σ the stress, h the thickness and a the side length of the membrane.
In this expression, we see that, since λ is very small, the dominant term is the first
one, which originates from the extra bending the rigid edge clamping imposes at the
edge of the membrane.

This observation led to the development of the concept of soft-clamping [TBPS17,
RFAmca+19], aiming at having “soft” boundary conditions. The principle is as follows:
a honeycomb periodic pattern of holes is etched through a large square (∼ 3 mm)
membrane made with a thin (∼ 100 nm) pre stressed silicon nitride film. Crucially, at
the center of the membrane, some holes are displaced to create a defect and to localize
a mechanical mode. The geometrical dimensions of those structures are chosen for this
localized mode frequency to lie in the quasi-bandgap created by the periodic pattern.

This geometry has several advantages when compared to a simple square mem-
brane. First, the motion of the mode is exponentially suppressed by the quasi-bandgap
structure, making it very difficult for phonons to be scattered from the frame of the
resonator to the mechanical mode. This considerably reduces the sensitivity to clamp-
ing losses, and we hope that it will also prevent mechanical noise from the cryostat
to considerably excite the mechanical resonator. Second, this exponential suppression
of the motion produces a smoother bending than the square membrane rigid clamps,
greatly reducing the bending losses and opening the path to new quality factor regimes.
Finally, those designs allow to increase the mechanical frequency to work in the MHz
range.

In this section, we will present nanofabrication recipes we developed to make those
patterned membranes, with a geometry similar to the one used in Tsaturyan and al.
[TBPS17], as well as the mechanical characterization we performed at room tempera-
ture on those devices.

VII.1.a: Nanofabrication

The fabrication of patterned membranes follows a similar line, presented in figure
VII.2 than the fabrication of unpatterned membranes, presented in figure II.3. The
first difference is the size: while the size of unpatterned membranes is directly linked
to their mechanical frequency, leading in our case to the realization of small (1 mm
and 300 µm large) membranes to benefit from rather large mechanical frequencies, the
mechanical frequencies of patterned membranes is set by the size of the central defect
of this pattern, and the bandgap central frequency by the period of the pattern. A
large number of repetitions of the pattern between the defect and the frame of the
membrane is however favorable for a good isolation of the mechanical mode. This
leads to the realization of larger (3 mm) membranes.

In addition, the presence of holes inevitably leads to different fabrication techniques.
Along with an additional lithography (step 8 to 12), the KOH etching steps (step 13 to
15) and the metallization steps (step 16 to 18) presents strong modifications. For the
former, after several tries and errors, we converged towards the use of a commercial
KOH resistant Protek PSB coating for protecting the patterned side of the sample
during the etching, together with a simple vertical holder (see figure VII.1), ensuring
the liquid pressure on both sides of the sample to be the same during the etching, at
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Figure VII.1: Picture of the KOH etching holder used for the patterned membrane
recipe with Protek.

the cost of a small etching of the edges of the sample.
As for the metallization, we chose to use a shadow mask technique: the use of a

physical mask precludes the metal to be deposited everywhere except on the central
pad and the spacers. This technique allows to circumvent the problems arising when
performing a lithography on a surface presenting holes. Indeed, such a geometry, due
to surface tension, prevents to spin coat a homogeneous layer of optical resist, which
would exhibit edge effects. Close to a hole, the thickness will be larger than the
required thickness for a proper bake and insulation. As a result, a lithography in those
conditions is particularly tedious.

VII.1.b: Shadow mask

The fabrication of this shadow mask is presented in figure VII.4. We circumvented the
impossibility of using a DRIE machine by using KOH etching with similar techniques
than the ones used for the patterned membrane recipe: starting with the same wafers,
and after having cut them in 3 cm×3 cm samples, we open on the backside 9 square
openings that are large enough for the front pattern to be on the liberated membrane
after the KOH etching. Then, we draw the desired pattern for the deposition on the
front side of the sample. After these steps, the recipe is identical with the one for
patterned membrane: we protect the front face of the shadow mask with Protek PSB
coating, and we etch the silicon in KOH before removing the resist and proceeding to
further cleaning. This technique prevents us from depositing arbitrary metallic shape:
basically, only rectangles and rounds, perhaps ellipses, are allowed, and their sizes
could not be much smaller than a few tenth of microns. We chose a design with a
simple round pad with a diameter of 100 µm, and used the mask to define also height
square pads that would eventually be facing the aluminium spacers of the microwave
sample. The result is presented in figure VII.5 (a).
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Figure VII.2: Fabrication recipe of a metallized patterned membrane
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Figure VII.3: Scanning Electron Microscope angle view in false color of a metallized
patterned membrane made following the recipe of figure VII.2. Silicon nitride is rep-
resented in green, while Niobium is represented in blue.



148 Chapter VII. Prospects

step 1

step 2

step 3

step 4

step 5

step 6

step 7

step 8

step 9

Step 10

Step 11

Step 12

step 13

Step 14

Step 15

step 16

step 17

step 18

Silicon

Silicon Nitride

insulated resist

Figure VII.4: Fabrication recipe of a shadow mask
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The stamping of a shadow mask (step 16 of figure VII.2) is done as follows: after a
30 min 1:3 piranha bath cleaning using a homemade PTFE holder to manipulate the
samples, followed by a DI water bath and an IPA bath, the samples are dried and the
shadow mask is prepared for a spin coating with the use of a cleanroom blue tape on
its back side. Then, small droplets of optical resist are deposited at positions where
the spreading of those droplets after spin coating would not cover any holes made for
deposition. This deposition is made using a micropipette. After a spin coating at
4000 rpm, 4000 rpm/s, 30 s, the stamping is then performed in a MJB4 mask aligner,
as shown in figure VII.5, with a homemade mask holder allowing to vacuum suck the
membrane without jeopardizing the liberated part of the sample.

The mask holder allows to see through the membrane with the microscope objective
of the MJB4, thus allowing to control the alignment of the shadow mask with respect
to the membrane. Pictures of the mask and mask aligner used for a stamping, along
with more details on the process, can be found in section III.3.c. Indeed, the technique
for assembling the shadow mask and the membrane is to some degree identical to the
technique used for assembling a microwave sample and a mechanical sample.

The assembly is made with the shadow mask facing upwards while the membrane
is vacuum sucked, facing downwards during the alignment. Using the transparency of
the membrane for this step, instead of looking through the shadow mask, allows first to
benefit from the large (3 mm) membrane to align more precisely the two samples, and
second to reuse the shadow mask several times. Indeed, after the Niobium has been
sputtered, the shadow mask becomes opaque everywhere apart in the holes, making it
nearly impossible to align properly with another sample if we would try to see through
it during the alignment step. Once the alignment is made, the two chips are pressed
against each other, then a 1 min 30 s 110 ◦C bake is performed for maintaining them
together.

In the sputterer, however, the shadow mask has to face downwards towards the Nb
target, while the membrane has to be stuck on the wafer holder. To that end, the use
of metallic clamps, routinely used in such machines for maintaining wafers in place, is
prohibited: it would immediately disassemble and misalign the two chips. We found an
alternative with a carbon tape bounding: a small piece of this adhesive is placed on the
wafer holder of the sputterer, which is softly approached towards the membrane from
above it. The chip assembly is then stuck on the wafer holder. Additional aluminum
film pieces are added around the shadow mask such that they cover the parts of the
membrane that are not properly covered by the shadow mask. The wafer holder is
then placed in the sputtered, which is pumped to achieve a vacuum of ∼ 1.10−7 mbar,
then a ∼ 50 nm Nb film is deposited.

After the deposition, the extra aluminum film protecting the edges is removed, and
the sample with the shadow mask is unstuck from the wafer holder. The shadow mask
is then separated with a 15min 50◦C Acetone bath, followed by a rinsing in IPA.

VII.1.c: Characterization

If we have not yet succeed in coupling those mechanical resonators to a microwave cir-
cuit, various characterization techniques were used to assess the mechanical parameters
of the patterned membranes. We present the obtained results in this section.
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Figure VII.5: (a) Picture of the front side of a shadow mask made following the recipe
presented in figure VII.4 (b) The shadow mask after deposition of AZ5214 optical resist.
(c) Principle of stamping of a shadow mask. The shadow mask is facing upwards while
the membrane is vacuum sucked using a dedicated homemade aluminum mask holder.
The latter allows to optically see through the transparent membrane for aligning the
two samples. The AZ5214 optical resist, used for maintaining the two samples together,
is represented in green. (d) Picture of the membrane after stamping of the shadow
mask.
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VII.1.c.i Spectrum

We started by comparing finite element simulations to the measurements conducted
in the interferometer described in section II.4.a. To simulate the band structure of the
hexagonal periodic pattern, we define its unit cell (see figure VII.6(c)) from which we
can generate an infinite pattern by performing translations following the directions:

∀(i,j) ∈ Z2,~tij = i~a1 + j~a2, (VII.1.2)

where:

~a1
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. (VII.1.4)

In such a structure, all function characterizing the material properties are periodic in
space and can therefore be expanded as Fourier series. For instance, the transverse
displacement field reads:

~u(~r) =
∑
~G∈G

~u ~G(ω,~k)ei(ωt−~k ·~r− ~G ·~r). (VII.1.5)

In the above expression, G corresponds to the reciprocal lattice vectors, which is defined
by:

G = {n1~b1 + n2~b2, (n1, n2) ∈ N2}. (VII.1.6)

The reciprocal basis vectors are defined by:

~b1
def= ~a2 ∧ ~ez

~a1 · (~a2 ∧ ~ez)
(VII.1.7)

~b2
def= ~ez ∧ ~a1

~a1 · (~a2 ∧ ~ez)
. (VII.1.8)

To compute the band diagram, we impose Floquet boundary conditions at the edges
of the unit cell, which means that a displacement from one side of the unit cell to the
other will multiply the displacement field by the phase factor:

ei~r0 ·~k, (VII.1.9)

where ~r0 is the translation from one edge to the other, and ~k is a given wavevector
of the reciprocal space. For each ~k we compute the eigenfrequencies of the problem.
Scanning the value of ~k allows to access the band diagram (see figure VII.6 (b)) Using
symmetry and periodicity considerations, it is possible to show that the smallest region
of the reciprocal space we need to cover when scanning the value of ~k corresponds to
the edges of the region appearing in red in figure VII.6 (d). It is called the irreducible
Brillouin Zone. The band diagram of such a structure presents a quasi-bandgap, where
the propagation of plane waves is forbidden, apart from high phase velocity modes that
are usually not relevant experimentally. Note that for thicker structures, it is possible
to achieve a complete bandgap.
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The measurement of the spectrum is performed in the Michelson interferometer
with a balanced detection described in section II.4.a. The experimental result is pre-
sented in figure VII.6 (a), where the bandgap appears as a region with much less noise.
Crucially, in this phononic crystal, some holes are displaced in the center of the struc-
ture to localize some mechanical modes, which therefore are well isolated from their
environment.

VII.1.c.ii Ringdowns

We then performed ringdown measurements as presented in section II.4.c (see figure
VII.7) The measured Q factor was here ∼ 8.48 × 106. The increase of quality factor
compared to the square membrane case is due partly to the good isolation of the mode,
which strongly attenuates the clamping losses, and partly to the reduction of the edge
bending those localized modes exhibit compared to square membranes [TBPS17].

VII.1.c.iii Mode reconstruction

Finally, we performed mode reconstruction, as detailed in section II.4.d. The results
are presented in figure VII.8, where a good agreement with simulations is shown.

To conclude, we demonstrated the fabrication, characterization and metallization
of high quality factor patterned membranes with frequencies in the MHz range. We did
not yet succeed in coupling them to a microwave cavity, however this milestone seems
to be relatively straightforward to achieve. It would be quite interesting to measure
the sensitivity of such well isolated membranes to the mechanical noise in the cryostat.

VII.2: Parametric amplification

The optimization techniques presented in chapter V.2, together with the implemen-
tation of the patterned membranes presented in the previous section, are likely to
bridge the gap towards the ground state cooling of a mechanical oscillator. However,
even if this milestone is reached, our current experimental setup will have to over-
come a serious difficulty to prove it. Indeed, as explained in section III.2.b.ii, the
added gain of our amplification line is approximately equal to the added noise of our
first amplifier, a High Electron Mobility Transistor (HEMT), which is not quantum
limited but is exhibiting a noise temperature of ∼ 4K, or equivalently ∼ 10 noise pho-
tons. As a result, the noise of a mechanical oscillator in its motional ground state
would be blurred by a noise whose amplitude is one order of magnitude superior. Al-
though most electromechanical experiments are using parametric amplifiers such as
the JPA[DRAL19, TdL+11] or a TWPA to overcome this problem, those devices are
not commercially available and can be complicated to use. For instance, a JPA has
a small bandwidth that should match the frequency of the electromechanical cavity,
and those devices are known to exhibit saturation at lower input powers than HEMT
amplifiers.

Alternatively, we here propose a scheme to use the electromechanical cavity itself
to transiently amplify the mechanical noise above the noise level of the HEMT, as
detailed in section I.4.c. We will show how this technique can be used to measured
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Figure VII.6: (a) Measured spectrum of a patterned membrane in the interferometer
presented in section II.4.a probing the motion of the defect. The light blue shaded
area is the simulated bandgap. (b) Simulated band diagram. The light blue shaded
area is the simulated bandgap. Colored in red are the edge modes. (c) Geometry of
the simulated cell for the computation of the band structure. The unit cell defined
by VII.1.3 and VII.1.4 is the subcell inside the hexagon.(d) Irreducible Brillouin Zone
corresponding to the unit cell (in red). The two base vectors of the reciprocal space
are represented as arrows.
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Figure VII.8: (left) Experimental measurement of the mode shapes. (Right) Corre-
sponding simulated mode



VII.2. Parametric amplification 155

the thermal occupation of the mechanical oscillator. The principle is presented in
figure VII.9: a strong pump with a frequency on the blue sideband (ωd = ωc + Ωm) is
applied for a short time tb. If the intensity of this pump is strong enough to induce
a cooperativity C > 1, the mechanical motion amplitude undergoes an exponential
increase. After a time tb, this pulse is stopped, and another pulse is sent on the red
sideband (ωd = ωc − Ωm) for a time tr. After that, a time twait is spent without any
pump driving the system.

During these steps, the output signal is demodulated at the cavity frequency
(ωc/2π ∼ 9.8 GHz) in a Signal Analyzer (see section II.4.c for details) to recover
its time trace. The span and the bandwidth are adjusted such that the time trace
comprises a significant part of both the blue pulse and the red pulse. Note that if
a different cooperativity is used for the blue pulse and the red pulse, we expect the
measured traces to show a discontinuity at the transition between them (see fig. VII.9
(a)), as the output signal amplitude is proportional to the cooperativity.

The experiment is repeated a large (N = 100) number of times. Equation I.4.31
describes the shape of the time trace: the initial value x̂(0) is a random variable with a
distribution imposed by the thermal state, and is exponentially increased. Some errors
in the exact assessment of Ωm lead to a phase shift during this exponential increase.
Therefore, it is necessary to extract the exact waveform from this collection of traces.
We do that by computing the matrix:

K def=
∑
i

Mi, (VII.2.1)

where the matricesMi are defined by:

(Mi)kl
def= Ti(k)∗Ti(l), (VII.2.2)

and Ti(k) is the k-th value of the i-th trace. It can be shown [MFL13] that the waveform
we need for computing the variance is the eigenvector of the matrix K with the largest
eigenvalue. If we call this waveform W, we can plot, as in figure VII.10 (b), the scalar
product of each trace with the waveform:

Pi
def=
∑
k

W(k)Ti(k), (VII.2.3)

from which we obtain the amplitude variance Var(twait), which is proportional to the
initial mechanical occupation nm(0). The evolution of this quantity with twait is pre-
sented in figure VII.10 (c), together with an exponential fit. For twait � 1

Γm
, the initial

mechanical state correspond to a thermal state that has been amplified by the previous
blue pulse and cooled down by the following red pulse. Neglecting the microwave input
noise in the equations I.4.21 and I.4.22, the evolution of the occupation during a blue
pulse reads:

nm(t) = nm(0)eΓm(Cb−1)t + nth
Cb − 1

(
eΓm(Cb−1)t − 1

)
, (VII.2.4)

and similarly during a red pulse starting at t = tb:

nm(t) = nm(tb)e−Γm(Cr+1)(t−tb) + nth
Cr + 1

(
1− e−Γm(Cr+1)(t−tb)

)
. (VII.2.5)
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Figure VII.9: (a) Typical evolution of the measured amplitude |A|(t) over one real-
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experiment, which is in our case the noise from the HEMT amplifier.(b) Corresponding
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the resonator thermalized with the environment. (c) First part of the sequence : a
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In the previous equations, Cb (Cr) represents the cooperativity during the blue (red)
pulse. Those two quantities, along with Γm, are already known precisely from previous
ringdown serie measurements. From those equations, it is possible to compute the oc-
cupation when this cycle is reproduced for a time long enough, by solving the equation
nm(tb + tr) = nm(0). We obtain:

nm(0)
nth

= 1
1− eΓm((Cb−1)tb−(Cr+1)tr)

[ 1
Cb − 1

(
eΓm(Cb−1)tb − 1

)
e−Γm(Cr+1)tr+

1
Cr + 1

(
1− e−Γm(Cr+1)tr

) ]
(VII.2.6)

In the dataset presented in figure VII.10, this cooling factor was equal to nm(0)
nth

∼
0.142 when extracted from the blue pulse, or nm(0)

nth
∼ 0.138 when extracted from the

red pulse. This results agrees fairly well with the formula VII.2.6, which predicts
nm(0)
nth
∼ 0.146.

For twait � 1
Γm

, the mechanical state has time to thermalize with its environment,
and the variance is therefore proportional to the natural occupation of the mechanical
resonator. The variance is fitted with an exponential formula:

Var(twait) = A+B exp(−Γmtwait). (VII.2.7)

and the linewidth is retrieved. The measured value, Γm/2π ∼ 7.7mHz, is on the same
order of magnitude than the values measured more precisely using ringdown techniques
(Γm/2π ∼ 36mHz).

Note that for a higher pump power, the results obtained from the red pulse and
the blue pulse does not agree anymore (see figure VII.11). In particular, the time
trace amplitude does not agree with the theoretical predictions. Indeed, when the
cooperativity is increased, the exponential characteristic time of the time trace is
reduced as expected, but the time trace is also supposed to be proportional to the
cooperativity. In figure VII.11(a), it is clearly not the case. Although we do not
know the precise mechanism that creates those discrepancies in our case, discrepancies
between the informations gathered in the red and blue pulse have been reported in
more elaborated experiments, where two pulses are used simultaneously, one of them
on the blue sideband, the other on the red sideband [DRAL19, SYS+19]. The extra
phase noise the pump exhibits at extreme powers (see section V.2.a) may also be the
cause of such phenomenon. Finally, it could also be linked to thermal effects the high
pump powers induces on the cyostat.

To conclude, we presented in this section a technique which uses the optomechan-
ical interaction to amplify the microwave signals well above the HEMT noise limit,
and to retrieve the initial mechanical oscillator occupation. This technique might help
to provide the first electromechanical experiment in the ground state performing ther-
mometry without quantum limited amplifier such as Josephson Parametric Amplifiers
or Traveling Wave Parametric Amplifiers. In the next section, we will present an ap-
plication such a mechanical oscillator brought in its motional ground state through
sideband resolved cooling could lead to.
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Figure VII.11: (a) Same results than figure VII.10(a), for a very high red pulse power
(Pr,in = 10dBm), and blue power (Pb,in = 5dBm). twait is set to 0.(b) Variation of the
measured variance on the blue pulse and the red pulse for various pump powers.

VII.3: Generating non Gaussian states of motion

Close to its motional quantum ground state, a mechanical oscillator behavior cannot
be described by classical physics. However, the scope of quantum mechanics goes far
beyond the family of gaussian states, and being able to prepare a mechanical oscillator
exhibiting negative Wigner functions is a milestone that has drawn increasing attention
in the past years[RMT+17, SMVL19].

First, such a result would be a prerequisite in the making of a hybrid optomechani-
cal transducer that transforms microwave into optical quantum information[APP+14].
This application would benefit from the maturity of the techniques used in the cir-
cuit Quantum Electro-Dynamics (cQED) community to create and manipulate easily
quantum information along with the ability to transport quantum information at room
temperature on very long distances that exists in the optical domain.

Moreover, being able to build quantum superpositions of different mechanical states
and probing their decoherence would enable the testing of certain theories regarding
the influence of gravity on quantum mechanics[AH14].

In this section, we propose a scheme to generate single phonon Fock states in a me-
chanical resonator, based on a heralding experiment which relies on a single microwave
photons detector. We then present the principle of a single microwave photon detector
that was developed in the group of Zaki Leghtas at LPENS [LDA+20].
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Figure VII.12: The three steps of the proposed heralding scheme: (a) sideband resolved
cooling of a mechanical oscillator to its ground state. (b) Parametric down conversion
using a blue detuned drive on the optomechanical cavity. (c) Detection of a single
photon, which projects the mechanical state to the Fock state with 1 phonon.

VII.3.a: Heralding scheme
As seen in the previous chapters, an optomechanical system is a powerful tool to
manipulate the state of a mechanical oscillator. However, if some observations have
been performed of optomechanical systems operating in a nonlinear regime [BVL+16,
LLGF+17], the optomechanical Hamiltonian is a purely linear interaction in the regime
we are usually working with. This precludes the generation of non-Gaussian states with
a Gaussian state (which are the initial thermal states of the mechanical and optical
system) at the input: a nonlinear element has to be introduced.

Although we may use a non classical state at the electromagnetic input of the
system, by using for instance a single photon source —which is then the nonlinear
element— [RMT+17], the scheme we propose here is based on a very different approach,
that was pioneered in the optical domain by the group of Simon Gröblacher [RSN+16]
(see figure VII.12).

When an optomechanical system in the sideband resolved regime is pumped on its
blue sideband (ωd = ωc + Ωm), the linearized optomechanical Hamiltonian reads (see
section I.4.c):

Hint = ~g0
(
αâ†b̂† + α∗âb̂

)
, (VII.3.1)

where g0 is the optomechanical coupling rate, α the average number of photons in
the cavity due to the strong pump, and â (b̂) is the optical (mechanical) annihilation
operator. Under such interaction, a system initially in its optical and mechanical
ground state (which was previously reached by sideband cooling for instance) reaches
after a short time the state:

|Ψ〉 ≈ |0〉m ⊗ |0〉o +√p|1〉m ⊗ |1〉o + p|2〉m ⊗ |2〉o, (VII.3.2)

where p is the probability for a Stokes scattering to happen, and m (n) subscripts refer
to the mechanical (optical) mode. This state is a two mode squeezed state. However, it
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Figure VII.13: (a) Initialization of the qubit with a π/2 pulse. (b) Detection window:
the evolution of the qubit is dependant of the presence or not of a photon in the cavity.
(c) Another π/2 pulse project the qubit in a given state depending on the presence or
absence of a photon during the detection window.

is still a Gaussian state and has a positive Wigner function. Nonetheless, if we place at
the output of the electromagnetic cavity a single photon resolved detector, it is possible
to post-select (or herald) the experiments where this detector detects a photon. Indeed,
at each detection, the state of the mechanical oscillator is projected into the 1 photon
Fock state, which is a highly nonclassical sate. Crucially, this protocol, if used with a
low number of false positive detection or “dark count”, allows to circumvent the loss
inevitably present in the circuits connecting the various components of the setup.

One of the experimental difficulties of such experiment is to design a detector able to
resolve the energy of a single photon. This is particularly challenging in the microwave
domain, where the low energy of the latter precluded until recently [ILK+16, LDA+20]
to reach this milestone with a sufficiently low dark count for this proposal. In the
following subsection, we will present the results obtained by Zaki Leghtas’s group at
LPENS in succeeding to build a single photon microwave detector.

VII.3.b: Single microwave photon detector

The detection of single microwave photons has first been performed using Ramsey
interferometry in the atomic physics community [GKG+07, NRO+99], and later on in
the circuit Quantum Electro-Dynamics (cQED) community[SHS+07, BGC+18].

The principle is as follows (see figure VII.13): a qubit is set in a state:

|φ〉 = 1√
2

(|0〉+ |1〉) , (VII.3.3)

where |0〉 and |1〉 stands for the ground state and the excited state of the qubit,
respectively. This operation is done through a π/2 pulse: a microwave tone is sent a
the frequency corresponding to the level splitting of the qubit, for a time long enough
for performing a quarter of a Rabbi oscillation. Then, for a given measurement time,
small compared to the decoherence time of the qubit, we let the qubit evolve. If a single
photon appears, this evolution will differ from the case where no photon appears. For
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Figure VII.14: Schematics of the Single Photon Microwave Detector.

instance, if there is a detuning δ/2π between the qubit and the cavity frequencies, the
superposition acquires a phase, which can be tuned to π for one photon by playing on
the parameter δ.

This information is retrieved by first sending another π/2 pulse. If the qubit is still
in the state |φ〉, it will be transformed into the state |0〉. However, if the qubit has
evolved due to an interaction with a microwave photon such that it is now in the state:

|ψ〉 = 1√
2

(|0〉 − |1〉) , (VII.3.4)

it will be projected in the state |1〉. The state of the qubit is then read by measuring
its frequency. Measuring a |1〉 corresponds to a “click”. If this scheme is producing
detections of single microwave photons with high efficiencies, the fact that it encodes
the information of the presence or absence of a photon in the phase of a quantum su-
perposition makes it really sensitive to decoherence mechanisms. Consequently, when
the measurement time is longer than the T2 of the qubit, the dark count rate rises
significantly. For example, in Besse et al. [BGC+18], if the efficiency is approximately
60%, the dark count after 2µs of integration is as high as ∼ 40%. In a heralding scheme
such as the one proposed here, a low efficiency reduces the number of events with a
phononic Fock state. This only increases the time needed for acquiring some data.
However, a high dark count reduces the quality of those states, since events where the
mechanical oscillator is in fact not in a Fock state will be mixed with events where it
is.

Alternatively, the method proposed for detecting single microwave photons is here
based on a “reservoir engineering” technique to drive the system by dissipation towards
the desired state, thus avoiding decoherence effects.

The design is the following (see figure VII.14): it comprises three cavities. The first
one, called the buffer cavity, with a frequency ωb/2π ∼ 5.77 GHz, is strongly coupled
to the input line from which we want to count the microwave photons. The second
one is a transmon qubit: a microwave cavity with a nonlinear inductance which allows
to address two internal levels with their frequency difference ωq/2π ∼ 4.53GHz. The
third cavity is a waste cavity, whose frequency is ωw/2π ∼ 5.50GHz. This last cavity
is strongly coupled to a RF line we will refer to as the exhaust line. The transmon
qubit is coupled to the two other cavities, as well as a pump line. The Hamiltonian
of such system is highly nonlinear. However, in close analogy with the linearization
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Figure VII.15: Characterization of the detector (See main text for details) (a) The
amplitude bin is varied and the probability to measure the qubit in the excited state
is ploted versus the 1 minus the probability for the buffer cavity to be in the vacuum.
The slope at small amplitude is a measure of η, the efficiency, and the y value for low
amplitude is a measure of the dark count. (b) Variation of the efficiency η with the
duration of the input pulse (dots). (Straight line): model taking into account three
contributions to this efficiency. First, the orange curve corresponds to the T1 limitation
of the qubit. Second, the green curve correspond to the bandwidth limitation of the
buffer cavity. Finally, the red curve corresponds to the value predicted by equation
VII.3.8.(c) Without any photons at the input, the dark count is measured for different
detection window time td.

which is operated in optomechanics (see section I.3.b), a strong pump can be used to
“select” the right terms in this Hamiltonian by looking at small displacements around
the state of the system displaced by the pump. For instance, under a strong pump at
the frequency:

ωp = ωw + ωq − ωb, (VII.3.5)
its Hamiltonian reads[LDA+20]:

Ĥ = χb̂σ̂†ŵ† + χ∗b̂†σ̂ŵ. (VII.3.6)

In eq. VII.3.6, b̂ (ŵ) represents the annihilation operator of a photon in the buffer
(waste) cavity, σ̂† is the operator that creates an excitation in the qubit, and χ is a rate
proportional to the pump amplitude. The first term in the Hamiltonian corresponds
to the destruction of a photon in the buffer cavity together with the creation of an
excitation in the qubit and a photon in the waste cavity. This encodes the presence
of a single photon in an excitation of the qubit. The readout of the qubit is then
performed by a measurement of the frequency of the waste cavity while the pump is
turned off.

Crucially, the reverse process, corresponding to the second term of the Hamiltonian,
is never happening. Indeed, due to the strong coupling between the waste cavity and
the exhaust line, the waste cavity is almost always empty of photons. Note that this
reverse process can be manually triggered by sending a strong pulse to the exhaust line
directly, while the pump is turned on. This operation performs a reset of the system
after a readout.

It is possible to derive the irreversible dynamics of the buffer-qubit subsystem by
adiabatically eliminating the waste mode[LDA+20]. The dynamics is then described
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by a single loss operator:
L̂ = √κnlb̂σ̂†, (VII.3.7)

where κnl
def= 4 |χ|

2

κw
and κw is the coupling rate between the waste and the exhaust line.

Consequently, from the buffer-qubit subsystem perspective, photons are entering at a
rate κb, the coupling rate between the buffer and the input line, and are dissipated
to the desired output state at a rate κnl. The resulting efficiency η, defined as the
probability to have a click when there is a single photon at the input, reads, for input
photons inside the bandwidth (κnl + κb)/2π:

η = 4 κnlκw

(κnl + κw)2 . (VII.3.8)

The characterization of the system has been performed as follows (see figure VII.15):
the pump is turned on for a time tp, and a coherent field with small amplitude bin
is presented at the input line for a time tb. After this, the pump is turned off and a
readout of the qubit is performed. First, the amplitude bin is varied and the probability
to count a click is plotted versus the probability for the input state to be in the vacuum.
The slope at origin is a measure of η, and the probability of having a click with no
photon at the input is the measure of the dark count. Then, η is measured for different
time tb.

The value predicted by eq. VII.3.8 has to be corrected by two other effects. First,
for tb superior to or comparable to the T1 of the qubit, the excitation due to the click
can disappear before the readout, thus limiting the efficiency. Then, for tb smaller
than the inverse of the bandwidth of the cavity 1

κnl+κb , the input wavepacket is partly
reflected by the cavity, also reducing η. Those two effects are taken into account in
figure VII.15(b) with a remarkably good agreement with measured data. The maxi-
mum measured efficiency is η ≈ 58%, which is comparable to Ramsey interferometry
experiments.

Finally, The dark count is measured with no photon at the input line for various
times tp. The measured value saturates quickly at ≈ 1.5%, even after 40µs. At low
time, the measured value of the dark count is:

pe = 0.003 + Γdc × tp, (VII.3.9)

with a minimum value of Γdc close to ∼ 1.4(ms)−1. This value is lower by one order of
magnitude to values previously reported in the literature [ILK+16, NSH+16, BGC+18].

To conclude, in this section we described a proposal to generate mechanical Fock
state using the optomechanical cavity described in the previous chapters, previously
cooled down to the motional ground state of the mechanical resonator, and using
heralded projection based on measurements with a single photon detector. We also
demonstrated a microwave single photon detector with high efficiency and an all time
low dark count rate, which is a critical parameter in the proposed scheme. Although
some technical difficulties are still under investigation —such as the filtering of the
microwave pump between the optomechanical cavity and the single photon detector—
most of the basic elements of this proposal have been demonstrated.



Conclusion

In this work, we presented in a first chapter the theoretical framework of cavity op-
tomechanics. In a second chapter, we described the fabrication and room temperature
characterization of high quality factor mechanical resonators which are optimized for
being cooled down to their motional ground state using sideband resolved cooling.
Those resonators were highly stressed thin square membranes of Silicon Nitride. In
the third chapter, we presented the different coupling mechanisms we studied for reach-
ing this milestone. First of all, we studied microwave resonators based on interdigitated
capacitors, at the vicinity of which the purely dielectric membranes presented in the
previous chapter are dielectrically coupled. Unfortunately, we have not succeeded
in observing this coupling experimentally. Nonetheless, we used those resonators to
validate numerous fabrication and characterization recipes, and to understand an im-
portant loss mechanism of most microwave resonators, the Two Level System Losses.
This study resulted in a publication[CFI+20], which is presented in details in chapter
VI.

Then, we shifted our approach towards the use of mechanically compliant capaci-
tors. In this configuration, we observed optomechanical coupling. The characterization
techniques we performed on our systems are presented in chapter IV. In the same chap-
ter, we also described several optimizations of our design we perfomed. Although this
evolution required the metallization of the membranes, we were able to demonstrate
extremely high quality factors (Q> 300× 106) at low temperature.

In chapter V, we cooled the mechanical oscillators to an occupation of ∼ 274
phonons. Although the ground state was not reached, we identified the main limita-
tions of our system, which corresponds to a low optomechanical coupling, and extra
mechanical noise coming from the cryostat. We proposed and experimentally demon-
strated otpimizations to address those problems. The first one is a new sample box
that pushes down the membrane to the microwave resonator, resulting in an increase
of the optomechanical coupling of one order of magnitude. The second optimization is
a mechanical isolator, which mitigates the noise of the cryostat by a factor ∼ 40dB. We
believe those two optimizations might lead to the milestone of ground state cooling.

Finally, in chapter VII, we described three future directions of this project, to-
gether with preliminary data. In a first section, we proposed to implement patterned
membranes in lieu of the square membranes presented in chapter II. Indeed, those
membranes exhibit higher mechanical frequencies, which is beneficial when working
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with noisy microwave sources, as well as with the mitigation of the extra noise of
the cryostat. Furthermore, those membranes exhibits considerably larger mechanical
quality factors. We developed nanofabrication recipes and were able to characterize
those membrane at room temperature. We measured an increase of quality factor by
a factor of ∼ 6 compared with square membranes.

In a second section, we proposed and successfully demonstrate a technique which
aims at circumventing the noise of HEMT amplifier in electromechanics setup. To
this ens, the electromechanical cavity itself is used as a quantum limited amplifier, by
pumping it on the blue sideband for a short time. We experimentally demonstrated a
scheme to extract some informations on the mechanical resonator with this technique.

Finally, in the last section, we proposed a scheme to set the mechanical resonator
in a single phonon Fock state, which is highly non classical and is of high interest in
many fundamental physics experiment. This scheme requires to reach the ground state
beforehand, and is based on heralded measurements with a single photon detectors.
This kind of detector did not exist until recently in the microwave domain with low
enough dark count to operate this scheme successfully. However, Zaki Leghtas’s group
at LPENS developed such a detector[LDA+20], and its characterization is presented
in the last part of this section.
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Chapter A: MAXWELL-BLOCH
EQUATIONS IN THE PRESENCE
OF DEPHASING

The interaction of a single TLS with a cavity is described by the Jaynes-Cummings
Hamiltonian (in a frame rotating at the pump frequency ωp):

H = ~(ωp − ωc)â†â+ ~(ωp − ωq)
2 σz (I.0.1)

+ i~g(â†σ − âσ†) + i~J
(
â† − â

)
, (I.0.2)

where J = ainκext/
√

2 is supposed to be real without loss of generality (the factor
√

2
accounts for a “hanger-type” waveguide coupling). The dissipation is described by the
Lindblad equation:

dρ

dt
= − i

~
[H, ρ] + Γ↑↓(nth + 1)Dσ(ρ) + Γφ

2 Dσz(ρ) (I.0.3)

+ Γ↑↓nthDσ†(ρ) + κextDâ(ρ), (I.0.4)

with nth = 1
e~ω/kT−1 the occupation number of the TLS, κext the damping of the cavity

in the absence of TLS, Γφ the eventual TLS dephasing rate, Γ↑↓ its energy loss rate at
zero temperature, and

DA(ρ) = AρA† − 1
2(A†Aρ+ ρA†A).

Using the formulas 〈A〉 = tr(Aρ) and d
dt〈A〉 = tr

(
A d
dtρ
)
, one can compute the

Maxwell-Bloch equations

d〈â〉
dt

= (−i∆− κext
2 )〈â〉+ g〈σ〉+ J (I.0.5)

d〈σ〉
dt

= (−i(ωp − ωq)− Γ2) 〈σ〉+ g〈âσz〉 (I.0.6)

d〈σz〉
dt

= −2g(〈â†σ〉+ 〈âσ†〉)− Γ1 (〈σz〉 − 〈σz〉th) , (I.0.7)
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where we defined Γ2 = Γ↑↓
2 (1+2nth)+Γφ, Γ1 = Γ↑↓(1+2nth), 〈σz〉th = −1/(1+2nth) =

− tanh(~ω/2kBT ) and ∆ = ωp − ωc.



Chapter B: APPENDIX B: FULL
DERIVATION OF THE TWO
LEVEL SYSTEMS INDUCED
LOSSES MODEL

To transform this system ((I.0.5), (I.0.6), and (I.0.7)) into a closed set of equations, we
neglect the correlations and factorize the products 〈âσz〉 = 〈â〉〈σz〉, 〈â†σ〉 = 〈â†〉〈σ〉
and 〈âσ†〉 = 〈â〉〈σ†〉. Moreover, we decompose the mean values into semi-classical
stationary and modulated components 〈â〉 = α + δα(t)e−i∆t, 〈σ〉 = σ0 + δσ(t)e−i∆t,
〈σz〉 = σz0, and with δα(t) and δσ(t) slowly varying complex functions. The equations
for the stationary components then read:

0 = (−i∆− κext/2)α+ gσ0 + J (II.0.1)
0 = (−i(ωp − ωq)− Γ2)σ0 + gασz0 (II.0.2)
0 = −2g(α∗σ0 + ασ∗0)− Γ1(σz0 − 〈σz〉th), (II.0.3)

From Eq. (II.0.2), we get:
σ0 = gασz0

i(ωp − ωq) + Γ2
. (II.0.4)

and from Eq. (II.0.3), we obtain the population imbalance resulting from the saturation
of the transition by the pump field

σz0 = 〈σz〉th

(
1− Γ2

2n̄/ns
(ωq − ωp)2 + Γ2

2(1 + n̄/ns)

)
, (II.0.5)

where n̄ = |α|2 is the mean photon number in the cavity and n−1
s = 4g2/Γ1Γ2 the

number of photons required to saturate the TLS transition. We then solve for the
modulated parts by adiabatically eliminating the TLS dynamic (dδσ/dt = 0). From
Eq. (I.0.5), we obtain

˙δα = −κextδα/2 + gδσ, (II.0.6)
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and from Eq. (I.0.6)
δσ = gσz0δα

−i(ωc − ωq)− Γ2
. (II.0.7)

By substituting Eq. (II.0.7) into Eq. (II.0.6), we obtain

˙δα =
(
−κext/2 + g2σz0

i(ωc − ωq) + Γ2

)
δα. (II.0.8)

Hence, the complex frequency pull is given by

δω = g2σz0
(ωq − ωc) + iΓ2

. (II.0.9)

In turn, the population difference 〈σz(ωq)〉 of a single TLS induces a shift of the
complex cavity frequency [KSB+17]

δω = g2〈σz(ωq)〉
ωq − ωc + iΓ2

. (II.0.10)

We also compute the total frequency shift and damping by summing the individual
contributions of all the TLSs. If we assume a homogeneous distribution of frequencies
of the TLS, with a density P0, we have the following

δωc =
� ∞
−∞

dωq
P0
2π

g2σz0
ωq − ωc + iΓ2

(II.0.11)

=
�
〈σz〉th

(
1− Γ2

2n̄/ns
(ωq − ωp)2 + Γ2

2(1 + n̄/ns)

)
(II.0.12)

× P0g
2

(ωq − ωc) + iΓ2

dωq
2π . (II.0.13)

This integral can be interpreted as the convolution product

δωc(∆) = 〈σz〉thP0g
2× (II.0.14)[(

1− Γ2
2n̄/ns

ω2 + Γ2
2(1 + n̄/ns)

)
⊗ 1
ω + iΓ2

]
(∆). (II.0.15)

Using standard Fourier transforms and the convolution theorem, we derive the expres-
sion

δωc = −P0g
2〈σz〉th/2× (II.0.16)(

i+ n̄/ns√
1 + n̄/ns

1
∆/Γ2 + i(1 +

√
1 + n̄/ns)

)
. (II.0.17)

The real and double-imaginary parts of this expression, given by formula (VI.2.3) and
(VI.2.4), correspond to the frequency shift and damping induced by the TLS bath.
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