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Abstract

During the aircraft engine certification, various components are tested against ballistic
phenomena. The engine fan must accordingly resist bird strike and blade loss without
compromising the whole engine thrust performance. Fan blades, and particularly their
leading edge, undergo large deformation under high strain rate, non-proportional loading
paths and plastic dissipation induced self-heating. Due to their high specific mechanical
properties, Ti-6Al-4V titanium alloys are promising candidates for fan multi-component
blade leading edge. In this work, an experimental campaign has been carried out on a
cold rolled Ti-6Al-4V alloy comprising tension, compression and shear tests performed at
various temperatures and (low and high) strain rates, under monotonic and alternated
loading paths. Based on these results, a constitutive model has been developed account-
ing for the combined effects of orthotropy, strength differential, nonlinear kinematic and
isotropic hardenings, strain rate hardening as well as thermal softening. Material con-
stants have been identified using Zset software. The model has been implemented as
user material (Fortran) subroutine into the commercial finite element computation code
LS-DYNA. The performances of the numerical model have then been estimated by con-
ducting numerical simulations considering a volume element under various loading paths
as well as the specimens used for the experimental campaign.
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Résumé

Lors de la certification des moteurs d’avion, certains composants sont testés vis-à-vis de
phénomènes balistiques. La soufflante doit ainsi résister à l’ingestion d’oiseaux et à la
perte d’aubes sans compromettre les performances globales du réacteur. Les aubes de
soufflante, et particulièrement leur bord d’attaque, subissent des déformations élevées à
grande vitesse, des chargements non proportionnels et un auto-échauffement induit par
la dissipation plastique. Compte tenu de leurs bonnes propriétés mécaniques spécifiques,
les alliages de titane Ti-6Al-4V sont considérés comme des candidats prometteurs pour le
bord d’attaque d’aubes de soufflante multi-composants. Dans ce travail, une campagne
expérimentale a été menée sur un alliage de Ti-6Al-4V laminé comprenant des essais de
traction, compression et cisaillement à plusieurs températures et vitesses de déformation
(lentes et rapides), sous des trajets de chargements monotones et alternés. A partir des
résultats obtenus, un modèle constitutif a été développé rendant compte des effets com-
binés de l’orthotropie, de l’asymétrie traction-compression, des écrouissages cinématique
et isotrope non linéaires, de la vitesse et de l’adoucissement thermique. Les constantes
ont été identifiées au moyen du logiciel Zset. Le modèle a ensuite été implémenté en
tant que procédure matériau utilisateur (Fortran) dans le code de calculs commercial par
élément finis LS-DYNA. Les performances du modèle numérique ont alors été évaluées en
menant des simulations numériques sur un élément de volume soumis à différents trajets
de chargement ainsi que sur des éprouvettes utilisées pour la campagne expérimentale.
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Introduction

General context
The reduction of aircraft polluting gas emissions and fuel consumption aiming at reducing
the environmental impact and the transportation costs has been one of the main chal-
lenges in the aeronautical industry for the past few years. In order to achieve that, the
aerodynamic performance, the combustion efficiency and the aircraft weight-reduction
are addressed. Concerning the latter, the choice of structural materials becomes a critical
factor as their mechanical properties must ensure a correct functioning of the airplane
without increasing its overall weight nor compromising the safety standards.

The engine can count for an important fraction of the total weight of an aircraft.
The current structural design approach consists in assembling multicomponents parts
composed of different materials in order to optimize the overall mechanical properties-
to-weight ratios. The LEAP, for Leading Edge Aviation Propulsion, is an aircraft engine
developed in this context by Safran Aircraft Engines and General Electric. One notable
example is its fan blade architecture comprising three different materials: a carbon fiber
woven composite constitutes the main body of the blade, a titanium alloy, the leading
edge, and a structural glue the connection between the previous two materials.

During the certification of aircraft engines regarding accidental events, real scale bal-
listic tests including bird strike or fan blade loss must be passed without compromising
the engine performance. During such tests the fan blades undergo large deformation,
high strain rate, non-proportional multi-axial loading, load reversals and self-heating, po-
tentially leading to fracture. Although the experimental optimisation of the structure
vis-à-vis these conditions by real rests has for long been an option, the related costs
and time is considerable. A numerical simulation-aided design of impact-resistant fan
blades is thus preferable, but demands a reliable constitutive model to account for all
the mechanical and thermal aspects of ballistic events-induced loadings. This work fo-
cuses on a Ti-6Al-4V titanium alloy known for its high strength-to-weight ratio and good
toughness [1] and accordingly considered as a promising candidate for the leading edge of
multicomponent fan blades.
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Introduction

Figure 1: Finite Element Model of the bird strike problem.

Typical impact simulation on a fan blade leading edge

The work here described has been achieved in the context of a Convention Industrielle
de Formation par la Recherche (CIFRE) partly funded by the Association Nationale
Recherche Technologie (ANRT). It focuses mainly on the fan design vis-à-vis the bird
strike problem. Low fidelity numerical simulations are performed to analyze the behavior
of the structure and the materials involved at the macroscopic level when impacted by a
projectile (see Figure 1). The aim is to get order of magnitudes in terms of loading path,
strain and strain rate. The main materials to be considered in this simulation are the
Ti-6Al-4V alloy in the leading edge, the composite material shaping the blade, the struc-
tural glue joining both pieces and the gelatin-like projectile impacting the structure at an
approximated speed of v ' 102 m/s with the fan rotating at ω ' 4000 rpm. Regarding
the titanium alloy, object of the following study, tentative simple elasto-plastic law and
experimental hardening curves at various rates are used.

Figure 2a shows a schematic view of a fan blade used in the simulation. The leading
edge, colored in light blue, receives the impact load and protects the main piece (the
grey colored composite blade). Several scenarios can be considered with different impact
locations. The history of the equivalent plastic strain at various points located along
a line near the impact area are computed and compared in Figure 2b. The evolution
computed in the elements with the highest plastic strain and the highest plastic strain
rate are highlighted in color (the rest of the elements are plotted in grey to denote the high
variability with no correlation with the position). An important plastic strain gradient is
observed along the line following the leading edge. The maximum value is around 17 %
and is reached within a few milliseconds, which denotes a high strain rate.

Regarding the stress triaxiality ratio χ (shown in Figure 3a), a rather erratic oscillatory
behavior is found. The evolution computed in the elements with the highest plastic strain
and the highest plastic strain rate are highlighted. In most of the elements, sudden
changes of triaxiality from very negative values (down to χ ' −1) to very positive ones
( up to χ ' +1) are observed and vice versa, due to reversed bending of the blade. As
for the plastic strain rate, a wide range is visible with values reaching 5× 103 s−1 and
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(a) Fan blade post-processing
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Figure 2: Simulation and analysis of the bird strike problem. The plastic deformation
curves correspond to the elements along the red line shown in the fan blade leading edge.

more (see Figure 3b). This implies an adiabatic behavior with a probable self-heating
of the material which can alter the mechanical properties (by thermal softening). As a
rough approximation, the temperature increase can be estimated from the plastic work
dissipation to be ∆T ' 150 ◦C
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Figure 3: History of the stress triaxiality ratio χ and equivalent plastic strain rate κ̇.

Finally, the equivalent plastic strain κ is plotted vs. the stress triaxiality ratio χ in
Figure 4. A non-proportional loading is observed from these curves. Most of the changes
in the stress triaxiality occur in the elastic regime (no plastic evolution is observed).
However, a few trajectories show the evolution of the plastic strain during the stress
triaxiality reversal.

This preliminary analysis indicates the typical loading conditions that the Ti-6Al-
4V made part is expected to undergo during a ballistic phenomenon. Plastic flow up to
relatively large strain should occur in a wide range of strain rates, temperatures and stress
triaxiality ratios during the non-proportional loading. These conditions are expected to
have a strong impact on the viscoplastic behavior of the material and further fan blade.
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Figure 4: Equivalent plastic strain κ vs. stress triaxiality ratio χ in the fan blade after
the impact.

Scientific and industrial challenges
In this work, both scientific objectives and industrial requirements have to be met.

Scientific objectives
It will be shown in Chapter 2 that models taking into account some of the above-mentioned
aspects, e.g. rate, temperature and loading path-dependence, exist in the literature for
Ti-6Al-4V titanium alloys but that none takes all these aspects into account. A more
complete model has to be formulated and identified. For that purpose, a thorough ex-
perimental characterization of the mechanical behavior of a Ti-6Al-4V grade needs to
be made in representative loading conditions. The experimental campaign has to cover
the conditions seen in the above simulation: (i) a wide stress triaxiality range (negative
χ ' −1, nil χ ' 0 and positive χ ' 1), (ii) high strain rates (κ̇ ' 5× 103 s−1), (iii)
large strain (ε ' 20 % − 30 %), (iv) high temperature rise (∆T ' 150 ◦C) and (v) non
proportional loading (see Figure 4).

Since the new constitutive model will be used in complex structural simulations, a
phenomenological approach is found more suitable than a microstructure-based one. The
integration of the non-linear equations constituting the model into an industrial Finite El-
ement software will have to be finalized and the effect of the mesh size, the time increment
or the element type on the model assessed.
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Industrial requirements
The correct simulation and prediction of the bird strike onto a fan blade is aimed. The
purpose of this work is to provide with a material model able to describe the mechanical
behavior of a class of titanium alloy under complex conditions.

The LS-DYNA Finite Element commercial software is currently being used for the bird
strike problem in the partner company. Hence, the numerical model should be accordingly
coded in a subroutine that can be implemented in this software. In addition, simplicity
of the modeling is looked for so it can be easily employed in the design office.

Last, the material constitutive model must be compatible with the features of the
current Finite Element Model, i.e. explicit time integration, element type or mesh size.

General overview of the report
The present work is divided in three chapters, each one focusing on a major aspect of
the modeling of titanium alloys: experimental, constitutive and numerical. The first
chapter includes an extensive mechanical characterization as well as numerous microscopic
observations of damage and fracture mechanisms that can help to explain the overall
behavior.

In the second chapter, a constitutive model built in the irreversible thermodynamics
framework is presented. Some key aspects such as anisotropy, strain and strain rate
hardening, and thermal softening are here considered justified by experimental evidence
from the first chapter. A calibration of the material constants is done to assess the
suitability of the model for the present material.

Last, the numerical performance of the constitutive model is evaluated. An explicit
approach for the integration of the rate equations is followed. Simulations at the RVE
scale and the specimen scale are carried out to assess the capability for reproducing the
experiments.

Some conclusions about the efficiency and limitations of the model as well as some
future work are drawn at the end of this work.

PhD Thesis - Miguel Ruiz de Sotto - 5 -





CHAPTER 1 Characterization of a
Ti-6Al-4V alloy

After a characterization of its microstructure, an extensive study of the mechan-
ical behavior of the Ti-6Al-4V titanium alloy under consideration is summarized
in this chapter. Different loading conditions with various strain rates, stress tri-
axiality ratios, temperatures, loading paths including load reversals are applied on
various sample geometries cut in various directions of a cold-rolled plate, and a
large experimental database is obtained for further modeling. In addition, micro-
scopic observations are reported showing the different deformation and damage
mechanisms produced inside the material together with the type of fracture.
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1.1 Introduction

1.1 Introduction
This chapter summarizes the results of an extensive experimental campaign of charac-
terization under a wide range of strain, strain rate, stress triaxiality ratio, temperature
and loading path of the Ti-6Al-4V alloy under consideration. A general review on the
various forms of the Ti-6Al-4V alloy is briefly reported followed by the presentation of
the grade under consideration. Next, the experimental procedure, consisting of the dif-
ferent specimen geometries as well as the experimental set-ups, is shown. The low strain
rate (quasi static) tests are performed by using conventional tension-compression testing
machines and the high strain rate (dynamic) tests by means of compression and tension
split Hopkinson pressure bar (SHPB)-type set-ups. Afterwards, the main results of the
experimental characterization are presented1. First, the apparent effects of the loading
conditions on the material response are shown. Secondly, a thorough analysis of the re-
sults is done to extract the different contributions to the mechanical behavior, namely
anisotropy, strain and strain rate hardening and thermal softening. Finally, a compilation
of microscopic observations is shown aiming at explaining the deformation mechanisms,
the damage mechanisms and the features characterizing the rupture of the material.

1.2 Ti-6Al-4V alloy
This section aims at providing a dedicated literature review and presenting the current
material under consideration.

1.2.1 Elements from the literature about Ti-6Al-4V alloys
A brief review of the literature in relation with the applications of the present study
is conducted in the following. In particular, some key aspects of the micro and macro
mechanical behavior of the Ti-6Al-4V are here summarized followed by the presentation
of the material used in this work. The reader can refer to [1–3] for a more extensive review
on titanium.

1.2.1.1 Microstructure and deformation mechanisms

Ti-6Al-4V is a "quasi-α" titanium alloy containing 6 % aluminum, an α-stabilizing element,
and 4 % vanadium, a β-stabilizing element. This leads to a dual-phase microstructure,
with a large fraction of α phase, with an hexagonal close packed (HCP) crystallography,
and a smaller fraction of β phase, with a body centered cubic (BCC) crystallography.
Figure 1.1, extracted from Titanium and titanium alloys [2], shows the phase diagram of
a Ti-6Al alloy as a function of the content in vanadium. For a range of concentration
between 2 % and 16 % in vanadium content, both phases coexist for temperatures below
the so called β transus. Above this temperature, only the β phase is present.

Now, the alloying elements are not the only factor affecting the microstructure of the
material. As seen in Zheng et al. [4], different microstructures can be obtained by submit-

1For confidentiality reasons, the stress values determined in the following are normalized, viz. σ̃ =
σ/σRD0 , where σRD0 is the yield stress at 0.2 % of plastic strain along the rolling direction at room
temperature and ε̇ ' 10−3 s−1. Likewise, the force is normalized with respect to the reference stress just
mentioned and the initial cross section A of the specimen as F̃ = F/ (A · σRD0).
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Chapter 1 : Characterization of a Ti-6Al-4V alloy

Figure 1.1: Phase diagram for a Ti-6Al-V alloy. After Titanium and titanium alloys [2].

ting them to different heat treatments which have a significant effect on the mechanical
properties of the alloy, as expected. Figure 1.2 shows some examples of microstructures
that can be obtained from various quenching speeds from above or below the transus line,
among which the bimodal form considered here, consisting of relatively “soft” primary α
phase nodules within a harder β matrix containing tiny secondary α laths. It is notewor-
thy the α-colony structure also known as "macrozones" obtained from quenching from a
microsctructure composed of the so called prior β grains [5].

Both dislocation glide and mechanical twinning are activated in Ti-6Al-4V upon plas-
tic deformation, as reported by Prakash and Coghe et al [6 ; 7]. Since Taylor [8], it was
established that five independent slip systems are necessary to accommodate an homo-
geneous deformation without any crack. In HCP structures, the basal and prismatic slip
systems, as well as the 〈a〉 pyramidal slip, offer only four independent modes. In order to
obtain five independent systems, the activation of 〈c + a〉 pyramidal slip system is nec-
essary. However, twin systems have been proven to accommodate the deformation along
the 〈c〉 axis as an alternative to the 〈c+ a〉 slip [9].

Regarding the slip systems in the α phase, they can be summarized in five families,
namely the (i) basal 〈a〉, (ii) prismatic 〈a〉, (iii) pyramidal 〈a〉, (iv) first order pyramidal
〈c+a〉 and (v) second order pyramidal 〈c+a〉 with a total of 30 possible slip systems [10]
(see Figure 1.3). As seen in Mayeur and McDowell [11], based on a comparison of different
sources, at room temperature, the basal and prismatic systems have the lowest Critical
Resolved Shear Stress (CRSS) and hence they are more likely to activate. The pyramidal
〈a〉 has a comparatively higher CRSS, and the pyramidal 〈c + a〉 a much higher one, up
to 15 times the CRSS of the prismatic slip. Nonetheless, the temperature, strain rate
and the grain size [12] are also important factors in the predictability of the activated slip
systems.

Several twinning systems can theoretically operate on HCP structures, and in partic-
ular in titanium alloys as shown in Partridge [13]. Even though it becomes less likely with
an increase in the aluminum content [14], twinning (mostly of the tension {101̄2}(1̄011)
type) can still be an active deformation system (specially at high strain rates [7]). Prakash
et al. [6] go further and speculate that the scarce reports of twinning in Ti-6Al-4V may

PhD Thesis - Miguel Ruiz de Sotto - 9 -



1.2 Ti-6Al-4V alloy

Figure 1.2: Several microstructure types of a Ti-6Al-4V obtained with different heat treat-
ments: lamellar microstructure obtained with water quenching (a), air (b) and furnace (c)
cooling from above the β transus line, equiaxed structure obtained with furnace cooling
from below the transus temperature (d) and bimodal structure with water quenching (e)
and air cooling (f) from below the transus temperature. After Zheng et al. [4].

Figure 1.3: Schematic depiction of the slip systems in an HCP structure. After Hasija et
al. [10].
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(a) Yield Loci (b) Pole Figures

Figure 1.4: Yield loci and texture of a Ti-6Al-4V alloy. After Lowden and Hutchinson [15].

be due to the difficulty in distinguishing entirely twinned grains from unrotated ones.
From a macroscopic point of view, cold rolled plates of a Ti-6Al-4V titanium alloy

usually exhibit a strong texture [15 ; 16]. As reported in Lee et al. [17], primary α grains
usually tend to rotate so that their 〈0001〉 direction becomes perpendicular to the rolling
direction. Furthermore, the slip and twinning systems involved during deformation can
be related to the type of texture present in the material as done by Zaefferer for several
titanium alloys [18].

1.2.1.2 Mechanical behavior

Figure 1.4 shows the yield loci of a textured Ti-6Al-4V. In addition to the texture-induced
orthotropic behavior, a strength differential between tension and compression is observed.
This feature has been also found in other Ti-6Al-4V alloys (see [16 ; 19 ; 20]) as well as in
other HCP materials, such as high purity α-titanium [21], Magnesium [22 ; 23] or Molyb-
denum [24]. As pointed out by Lowden and Hutchinson [15], the strength differential is
generally ascribed to the different activation of 〈c + a〉{112̄2}〈112̄3〉 slip systems which
are dependent on the direction and sensitive to the hydrostatic pressure. Observations
made by Jones and Hutchinson [25] later proved a big difference in the CRSS for this slip
system as well a volume dilatation necessary to move the < c+a > dislocation, hence the
pressure dependence. Additionally, the asymmetry has also been associated to mechanical
twinning, whose activation depends on the loading direction [6 ; 26].

As seen in Figure 1.5a, extracted from Tancogne-Dejean et al. [27] for a Ti-6Al-4V alloy
made through additive layer manufacturing (ALM), an orthotropic behavior induced by
the material deposition direction can generally be observed with a significantly different
yield strength along the rolling, transverse and normal directions of the plate.

Additionnaly, Figure 1.5b, from Tuninetti et al. [19], shows that the orthotropy mea-
sured in a Ti-6Al-4V alloy ingot is combined with an important strength asymmetry
between tension and compression.

Regarding the hardening capability, three important aspects are to be considered:
strain hardening, strain rate hardening and thermal softening that can potentially ap-
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1.2 Ti-6Al-4V alloy

(a) Tancogne-Dejean et al. [27] (b) Tuninetti et al. [19]

Figure 1.5: Anisotropic behavior of Ti-6Al-4V alloys. On the left, orthotropy measured
along three different directions after additive manufacturing. On the right, orthotropy
and strength differential from a Ti-6Al-4V ingot (LD for longitudinal, TD for transverse
and ST for short transverse direction, SPS for plane strain and SSH for simple shear ).

pear. Concerning the former, the Bauschinger effect on the mechanical behavior of metals
has been extensively studied, e.g. in Zhonghua and Gu [28 ; 29] for dual-phase steel or
Helbert et al. [30] for titanium alloys. Since ballistic events on fan blades induce load re-
versals, it is crucial to take kinematic hardening into account in the constitutive modeling.

Strain rate sensitivity
The behavior of titanium alloys is strongly strain rate-dependent, see e.g. Minaar

and Zhou [31] and Longère [32] in Figure 1.6 or Tuninetti and Habraken [33]). The
mentioned works analyzed the strain rate dependence for loading rates comprising both
the quasi-static (10−3 s−1) and the dynamic regime (up to 2× 103 s−1).

(a) Minaar and Zhou [31]
Tension

(b) Longère [32]
Compression

Figure 1.6: Strain rate dependence under tension and compression on Ti-6Al-4V alloys.
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Temperature sensitivity
The strong temperature-dependence of Ti-6Al-4V titanium alloys behavior is also

well-known, see e.g. Seo et al. [34] and Longère [32] in Figure 1.7. Therefore, a ther-
mal softening function is generally considered to describe the decrease of the yield stress
with increasing temperature. In addition, due to its low heat capacity, a significant self-
heating-induced temperature rise may occur under adiabatic conditions at high loading
rates [35 ; 36]. Consequently, a competition between strain and strain rate hardening,
thermal softening and potential Dynamic Recrystalization (DRX) takes place along the
deformation process, potentially leading to material instability and further strain local-
ization under adiabatic shear banding, see e.g. Longère and Dragon [37].

(a) Seo et al. [34]
Tension

(b) Longère [32]
Compression

Figure 1.7: Temperature dependence under tension and compression on Ti-6Al-4V alloys.

Worth noting are the works of Tuninetti and Habraken [33] where the strain rate
sensitivity of a Ti-6Al-4V alloy was found to be dependent (through the material constant
related to strain rate) on temperature but not in a monotonic way (see Figure 1.8).

Figure 1.8: Variation of the isotropic hardening material constants with the temperature.
(a) P2 related to strength, (b) P3 related to strain rate sensitivity and (c) P4 related to
hardening : σy = exp (−P1ε)

√
3P2

(√
3ε̇
)P3

εP4 . After Tuninetti and Habraken [33].
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1.2 Ti-6Al-4V alloy

(a) Peirs et al. [38] (b) Longère and Dragon [37]

Figure 1.9: Rupture induced by diffused damage in hat-shaped specimens of Ti-6Al-4V
alloys.

1.2.1.3 Damage and fracture

Ductile damage usually occurs under positive stress triaxiality by void initiation, growth
and coalescence until ultimate failure. In some cases, e.g. under low stress triaxiality and
high strain rates involving adiabatic conditions, it may be preceded by shear localization.
Ductile damage and dynamic shear localization in Ti-6Al-4V have been the subject of
many works in literature for decades.

The first scenario involves the nucleation, growth and coalescence of cavities spread
throughout the material. Experiments on hat-shaped specimens involving negative stress
triaxialities have evidenced fracture by coalescence of diffuse damage (see Figures 1.9a
from [38] and 1.9b from [37]). For these cases, damage is considered to have appeared
from excessive rotation and deformation of grains submitted to shear stresses which yield
the characteristic zig-zag crack paths depicted in the Figures.

These cavities are usually nucleated on the α/β interface as well as α grain boundaries
as plastic strain incompatibilities develop [39 ; 40]. However, damage has been found to
appear within an α grain as temperature is increased [41] or in matrix-twin interfaces [42].

The second scenario often takes place in the form of adiabatic shear bands (ASBs)(see
[38 ; 43]). Under these conditions, the elevated strain rate impeding heat transfer com-
bined with the softening due to temperature contributes to the localization of high defor-
mation within a narrow band. These conditions can be generally considered a precursor
for damage and final failure. As seen in Zhang et al. [44] the appearance of ASBs is de-
pendent on the local texture that is: on the relative misorientation of neighboring grains.
In addition, they measured temperature rises of up to 150 ◦C. Furthermore, high testing
temperatures can also promote shear banding, even at low strain rates, at sufficiently large
strains [45]. In the works of Lee and Lin, failure in compression specimens was achieved
by a crack formation within a shear band, with no significant sensitivity on the loading
rate [43]. Further works from Lee and Lin showed diffuse damage in the shape of cavities
formed within the shear band after it had formed [46].
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400 µm

(a) Optical Microscopy

90 µm

(b) Atomic Force Microscopy

Figure 1.10: As received microstructure of the Ti-6Al-4V.

1.2.2 The Ti-6Al-4V under consideration
The material under consideration is provided in the form of a 16 mm-thick cold-rolled
sheet of a Ti-6Al-4V alloy. The bimodal microstructure is observable after mechanical
polishing down to 3 µm followed by electro-polishing with Struers A3 electrolyte solution
and a tension of 20V. The size of the equiaxed α phase nodules ranges from a few microns
up to 30 µm (see Figure 1.10). The more scarce β phase corresponds to the dark looking
matrix surrounding the nodules, which also comprises some secondary lamellar α.

Figure 1.11 shows an orientation map for the α phase issued from an EBSD (Electron
Back-Scatter Diffraction) analysis of the sheet. The observed zone of approximately 3 mm2

presents clearly differentiated zones with different orientations. These “macrozones” are
inherited from the orientation of the prior β grains formed during previous thermomechan-
ical treatments of the alloy [5], and it produces some scatter in the experimental results
since the scale of these zones approaches that of the specimens tested. The pole figures
associated to the observed area shows a relatively strong local anisotropy. However, they
do not correspond neither with the tendency showed in Lowden and Hutchinson [15] for
a similar alloy nor to the different textures presented by Zaefferer [18].

The Figure 1.12, 1.13 and 1.14 presents additional EBSD measurements on other sam-
ples. The presence of macrozones keep producing strong local textured zones. The pole
figures show no clear common relationship which would imply that the local anisotropy
due to these macrozones is stronger than any global texture induced by sheet rolling.

In addition to the local field maps, X-ray diffraction measurements at the specimen
scale were carried out. The pole figures from such observations reveal a weak average
global texture (Figure 1.15a) as compared with the local macrozones. Regarding the
basal plane or direction < 0001 > (first pole figure), there is a tendency towards the
transverse direction. However, a non negligible fraction of c-axes are also aligned along
the rolling direction. As for the < 101̄0 > (second pole figure), no clear pattern is
deduced from the pole figures. When compared with the study done by Lee et al. [17]
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1 mm

RD

TD

(a) Crystal orientation map

(b) Pole figures

Figure 1.11: EBSD mapping of α phase crystals orientation on a smooth flat tension
specimen before loading (i).

1 mm

RD

TD

(a) Crystal orientation map

(b) Pole figures

Figure 1.12: EBSD mapping of α phase crystals orientation on a tension specimen before
loading (ii).
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1 mm

TD

RD

(a) Crystal orientation map

(b) Pole figures

Figure 1.13: EBSD mapping of α phase crystals orientation on a tension specimen before
loading (iii).

1 mm

TD

RD

(a) Crystal orientation map

(b) Pole figures

Figure 1.14: EBSD mapping of α phase crystals orientation on a tension specimen before
loading (iv).
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(0002) (101̄0) (101̄1) (101̄2) (112̄0)

TD

RD

(a) Pole figures

(0002) (101̄0) (101̄1) (101̄2) (112̄0)

(b) Related crystallographic systems

Figure 1.15: Pole figures obtained by X-ray diffraction over large areas.

who reported an important fraction of <c> axes aligned towards the transverse direction
and the < 101̄0 > preferentially oriented along the rolling direction, the current material
does not follow this pattern. Lowden and Hutchinson also presented a strong textured
Ti-6Al-4V with the c-axis oriented along the normal and tranverse direction (depending
on the amount of rolling imposed) [15].

1.3 Experimental procedure
The specimen geometries as well as the experimental set-ups employed are here presented.

1.3.1 Test specimens
Various types of specimens have been machined along four directions: the rolling RD,
transverse TD and normal ND direction, as well as a diagonal directions DD in the RD-
TD plane pointing 45° with respect to the rolling direction as shown in Figure 1.16.

Rolling Direction

RD

DD

TD

ND

90◦

45◦

Figure 1.16: Orientations considered for the machining of the specimens.

- 18 - PhD Thesis - Miguel Ruiz de Sotto



Chapter 1 : Characterization of a Ti-6Al-4V alloy

R1mm
5mm

1.3mm

1.2mm

χ ' 0
(a) Shear

y

x

6mm
3mm

2mm

χ ' 1/3
(b) Smooth

R2mm

5mm

1.2mm

χ ' 1/2
(c) R = 2 mm

R0.5mm

5mm

1.2mm

χ ' 2/3
(d) R = 0.5 mm

R2mm

5mm

2.2mm

R0.5mm

χ ' 1
(e) R = 2x0.5 mm2

Figure 1.17: Flat specimen geometries used to cover the triaxiality range χ ∈ [0, 1]. Red
dots indicate the position of the two points for the extensometer.

The geometries of the specimens have been designed to investigate a wide range of
stress triaxiality ratio (STR) χ defined as

χ = −p
q

with p = −trace(σ)
3 & q =

√
3
2s : s (1.1)

where s is the stress deviator of the Cauchy stress tensor σ so that s = σ + pI.
In Figure 1.17 are drawn the specimens allowing for obtaining positive and nil χ, in

Figure 1.18 the specimens allowing for negative χ and in Figure 1.19 the specimens for
alternate loading. The χ indicated in Figures 1.17 and 1.18 are average values obtained
from preliminary Finite Element simulations.

The dimensions of the smooth tension specimen (χ = 1/3) are 2 mm× 3 mm× 6 mm
(thickness x width x gauge length). A shorter specimen is used for the normal direction
along which the length is limited by the sheet thickness. Its cross section remains the
same, but the gauge length is reduced to 4 mm.

Furthermore, three types of notched specimens are investigated with an increasing level
of χ achieved: two with lateral notch radii of 2 mm and 0.5 mm to provide a χ ' 1/2−2/3
and a specimen notched both in width and thickness to get a triaxiality close to 1.

Moreover, in order to get an average χ close to 0, a half-smiley type tension-induced
shear specimen geometry desgined by Roth and Mohr [47] is used. The notches are
machined with a constant radius which is suited for medium ductility materials. The two
notches are separated by a slight offset which avoids too severe tension stresses on the
border when largely deformed and favor pure shear loading in the zone of interest, as also
done with Peirs’s shear specimen [48]. An alternative technique to carry out shear tests
can be found in Thuillier and Manach [49].

In Figure 1.18, three types of compression specimens are used: cylinders with dimen-
sions of 8 mm× 7 mm (height x diameter) and hat-shaped specimens using Couque [50]
and Meyers [51] designs (χ ' −1/2 and χ ' −1/5 respectively)
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φ15.6mm

φ12.4mm

φ20mm

2.5mm

χ ' −1/2
(a) Couque [50]

8mm

φ7mm

χ ' −1/3
(b) Simple Compression

φ14.14mm

φ14.14mm

φ20mm

3mm

χ ' −1/5
(c) Meyers [51]

y

x

Figure 1.18: Axisymmetric specimen geometries used to cover the stress triaxiality range
χ ∈ [−1/2,−1/5].

8mm

φ8mm

Figure 1.19: Cylindrical specimen for alternated tension-compression uniaxial tests at
χ ' ±1/3.

In an intermediate category, a cylindrical specimen of a radius of 8 mm and a gauge
length of 8 mm is employed for cyclic tests (see Figure 1.19). These tests aim to study
the kinematic hardening and to check if the potential differences between the tension
and compression response of the material in terms of yield stress or viscosity using the
previously mentioned geometries are retrieved when a single geometry and test setup is
used for both loadings.

1.3.2 Experimental set-ups and procedures
Both the quasi-static and dynamic regimes are investigated in the experimental campaign
with the objective of capturing any viscous effect. The same strain and stress definition
are used for both types of tests when it comes to characterize the material.

The loading direction-related component of ε of the logarithmic strain tensor ε is
defined as ε = ln (1 + εN), where εN = ∆l

l0
is the nominal strain with ∆l the gauge length

elongation given by the extensometer and l0 the initial gauge length. Under the small
strain assumption tentatively adopted here, the strain ε is partitioned into elastic εe and
plastic εp contributions, i.e. ε = εe+εp, for the uniaxial tests (this assumption is discussed
later on in the following section dedicated to constitutive modeling, see section 2.3.1). The
corresponding Cauchy stress component σ is given as (F/A0) · (1 + εN), where F is the
load and A0 the initial cross-section area.
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1.3.2.1 Low Strain Rate

A series of displacement-controlled quasi-static tests are performed along different ori-
entations under tension or compression loading with strain rates ranging from |ε̇| '
10−4 s−1 to 10−1 s−1 using either an Instron electromechanical press or a MTS servohy-
draulic machine.

The load is measured by load cells of 10 kN or 100 kN depending on the size of the
specimens.

Table 1.1 summarizes the different measurement techniques used during the experi-
mental campaign.

Table 1.1: Summary of the different measurement techniques employed during the exper-
imental campaign.

Quasi-Static Dynamic
Loading T = 25 ◦C T > 25 ◦C T = 25 ◦C

Smooth Tension Marker Marker DICtracking tracking
Smooth Tension DIC DIC -(Normal Direction)

Smooth Compression Extensometer Marker Strain Gagestracking
Notched Extensometer - DIC& Shear & DIC

Hat-shaped Extensometer - -

In the case of compression tests at room temperature, an axial clip-on extensometer
with 12.5 mm gauge length and +/- 5 mm displacement range is mounted on the rigid
plates compressing the sample. Some grease is applied as lubricant on the samples surface
in order to minimize the barreling effect.

During tension tests as well as under cyclic loadings (and uniaxial compression at
high temperature) the deformation is measured by tracking marker points on the sample
surface. For the smooth specimens, four points were measured to calculate the axial as
well as the transverse strain so that the Lankford coefficient can be estimated. According
to the definition given by Hill [52], the width to thickness ratio of the strain rate is denoted
as the anisotropy ratio. By assuming an isochoric plastic deformation and assuming a
negligible elastic strain, the Lankford coefficients can be expressed as

rθ = ε̇ptransverse
ε̇pnormal

' − εtransverse
εtransverse + εaxial

(1.2)

where rθ = 1 for an isotropic material.
The notched and shear samples used a clip-on mechanical extensometer of initial gauge

length of 12 mm to measure the nominal strain.
For high temperature tests, an oven reaching temperatures of up to 350 ◦C is employed.

The temperature of the sample is controlled by a thermocouple and does not fluctuate by
more than 2 ◦C around the setpoint during the whole mechanical test.
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1.3.2.2 High Strain Rate

Split-Hopkinson pressure bar (SHPB) set-ups are used for compression and tension tests
at high strain rates of up to |ε̇| ' 1.5× 103 s−1, at room temperature (see [53–56]). For
tension tests, the load-inversion device designed by Dunand et al. [57] and extended by
Roth et al. [58] is used. In order to obtain the desired high loading rate, the tension spec-
imen is 1.2 mm× 3 mm× 10 mm (thickness x width x gauge length) and the compression
specimen is 4.7 mm× 5.4 mm (height x diameter).

According to the one-dimensional analysis of the wave propagation in compression, the
specimen strain rate and load transferred to the specimen are measured via strain gauges
glued on the input and output bars. In the case of tension dynamic tests, the force is
still measured with a strain gauge on the output bar by using a one point measurement
(see Zhou and Park [59]). The strain field in the sample is obtained by digital image
correlation (DIC), based on images captured with a Phanton v7.3 high speed camera. A
frame rate of up to 105 Hz with a resolution of 304× 64 px2 is employed to observe the
zone of interest of 10× 3 mm2 covered with speckle painting using an airbrush. The VIC-
2D software is used for DIC and the mean strain in the gauge length is measured using
a virtual extensometer following the relative displacement of two points of the speckle.
Figure 1.20 shows a schematic drawing of the experimental set-up.

Striker Input Bar Output BarSpecimen

Gauge: Strain Gauge: Force

(a) Set-up for compression

Striker

Output Bar Specimen

Gauge: Force

Load inverter

High Speed Camera

(b) Set-up for tension

Figure 1.20: Split-Hopkinson Pressure Bars (SHPB) set-ups used.
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1.4 Experimental results
In a first approximation, the uniaxial component σ measured along the loading direction
is assumed to be additively decomposed into a kinematic hardening contribution σKH ,
an isotropic hardening contribution σIH and a viscous contribution σv which a priori
depend on a finite number of parameters, namely the orientation θ, the triaxiality χ,
the temperature T , the accumulated plastic strain κ and the plastic strain rate κ̇ (in this
section, it is tentatively assumed κ ' |εp| and κ̇ ' |ε̇p| under monotonic uniaxial loading).
The stress σ accordingly reads

|σ| ' σKH (θ, χ, κ, T ) + σIH (θ, χ, T, κ) + σv (κ̇, θ, χ, κ, T ) (1.3)

where the kinematic and isotropic hardening contributions are assumed to be rate
independent. The aim is to identify each contribution.

In a first step, the dependence on the loading direction θ, loading path χ, temperature
T and strain rate κ̇ is quantified by an analysis of the total stress (σKH + σIH + σv).
For this purpose, monotonic, cyclic and relaxation loadings are employed. Secondly, the
contributions of the rate independent stress (σKH + σIH) and the viscous stress (σv) are
identified.

1.4.1 Monotonic loading
At least two samples per geometry and per direction were used for the tension and for
the compression loadings.

1.4.1.1 Effect of the loading direction θ

Examples of quasi-static uniaxial tests performed along four directions are plotted in
Figure 1.21. The highest yield stress is found along the transverse direction (which is
consistent with the high fraction of c axes of the HCP phase in this direction on the pole
figures in Fig.1.15a) followed by the rolling (along which a smaller, but non negligible
fraction of c axes are aligned) and the diagonal direction, in both tension and compression
(note the resemblance with Figure 1.5a). The normal direction (orthogonal to most c axes)
has, accordingly, the lowest yield stress. The anisotropy is visibly more accentuated under
compression loading (as also seen in Figure 1.5b).

1.4.1.2 Effect of loading sign χ = ±1/3

As shown in Figure 1.21 for all directions and Figure 1.22 for the rolling direction in
particular, a strong yield stress differential between tension and compression is observed.
According to Figure 1.22, the yield stress in compression is higher than in tension by
around 20 %. The hardening for both types of loading is strongly non linear at small
plastic strain and tends to become linear at large plastic strain. The nonlinear part is
more pronounced under compression loading while the linear part is (quasi) similar (same
slope) under tension and compression loading. Similar results were found for the other
directions (not shown here).
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Figure 1.21: Stress vs. plastic strain. Tension and compression. Influence of the direction.
|ε̇| ' 10−3 s−1 and T = 25 ◦C.
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Figure 1.22: Stress vs. plastic strain. Tension-Compression superposition. |ε̇| ' 10−3 s−1,
T = 25 ◦C, Rolling direction RD.

1.4.1.3 Effect of the strain rate κ̇

In Figure 1.23 are superimposed the results of uniaxial tension and compression tests
carried out at various loading rates ranging from quasi-static to dynamic regimes. Strain
rates of up to 103 s−1 were obtained. While the effect of the strain rate is not significant
between 10−3 s−1 and 10−2 s−1, and even masked by the scatter from one specimen to
the other, a clear shift can be noticed when going from the quasi-static to the dynamic
range. It is noteworthy that due to notably inelastic self-heating at high strain rate,
the specimen softens under adiabatic conditions. As a result, the hardening rate in the
dynamic regime is apparently lower than in the quasi-static case. Equivalent isothermal
stress-strain curves are shown later in Figure 1.41.

Figure 1.24 shows the apparent dependence of the yield stress on the plastic strain
rate. A clear strain rate hardening can be seen. On a logarithmic scale, this viscous
effect seems to follow a nonlinear trend for all the directions considered (especially in
compression). The net viscous effect is sill to be analyzed in the next Section 1.4.1.4.

1.4.1.4 Effect of temperature T

Figure 1.25 shows the results of uniaxial tension and compression tests at various tem-
peratures. While the yield stress decreases quasi-linearly as the temperature rises (see
Figure 1.26), the hardening rate does not seem to be affected by the temperature under
isothermal conditions.

The yield stress dependence on the temperature can have a strong impact on the con-
sequences of self-heating at high loading rates. Indeed, the competition between thermal
softening and strain rate hardening at high loading rates will determine the potential
instability of the material, hence the importance of accounting for the dependence of the
yield stress on temperature.
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Figure 1.23: Stress vs. plastic strain. Tension and compression. Influence of strain
rate. T = 25 ◦C, Rolling direction RD. The dots in the high strain rate tension curves
correspond to the high speed camera recording shots.
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Figure 1.24: Stress at 2 % plastic strain vs. plastic strain rate. Tension and compression.
T = 25 ◦C. Self-heating induced softening is negligible at this strain amount.
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Figure 1.25: Stress vs. plastic strain. Tension and compression. Influence of temperature.
|ε̇| ' 10−3 s−1, Rolling direction RD. Similar effects were observed for the other directions.
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Figure 1.26: Stress at 5 % plastic strain vs. temperature. Tension and compression.
|ε̇| ' 10−3 s−1.
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Figure 1.27: Force vs. nominal strain. Couque [50] and Meyers [51] hat-shaped specimens.
Influence of stress triaxiality. v = 8× 10−3 mm s, T = 25 ◦C and Normal direction ND.
Fracture of the specimens are denoted by a dot. The force is normalized with the cross-
section area of the specimen (truncated cone) for comparison purposes.

1.4.1.5 Effect of stress triaxiality ratio χ

The following tests aimed at exploring the influence of the stress triaxiality ratio on the
material response. They will provide with the experimental data used for the verification
and validation of the model. First, the tests on hat-shaped compression specimens involv-
ing negative STR where carried out using the same set-up as for the uniaxial compression
tests. Figure 1.27 shows the superimposed force vs. nominal strain curves for the Couque
(χ ' −1/2) and Meyers (χ ' −1/5) specimens. As expected, the combined effects of
shear and compression on the Couque sample produce a higher load as compared to the
Meyers geometry. For each geometry, one test was carried out until rupture (marked as
dots in Figure 1.27) and the other test was interrupted for later observations under the
microscope. It is worth noting that the Meyers hat-shaped specimen presents a brutal
rupture whereas in the Couque geometry, the final rupture is preceded by a slow decrease
in the load.

Figure 1.28a shows the force vs. nominal strain for the flat notched tension specimens
in Figure 1.17 (χ ∈ [1/2 − 1]). The resistance and the ductility are highly dependent
on the notch radii and resulting stress state, as expected. The highest force and lowest
nominal strain at fracture are observed for the double notched specimen (χ ' 1.0), while
both single notched specimens exhibit the same peak load (χ ' 1/2 − 2/3), but a lower
fracture strain for the smallest notch radius. The experimental scatter is probably due to
small deviations from the nominal specimens dimension and to the macrozones present
in the material (see Figure 1.11).

A closer analysis of the final instants on some of these tension specimens has been car-
ried out. Two measurement channels were used to record the signal from the mechanical
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extensometer: the main one at a sampling frequency of 10 Hz and a secondary one, man-
ually triggered towards the end of the test, with a sampling frequency of 1 kHz. Figure
1.28b and 1.28c shows the load vs. nominal strain curves for the simple notched specimens
of radii R = 2 mm and R = 0.5 mm. Using the low sampling frequency, damage-induced
softening would hardly be detected, but when the high frequency sampling is used, a pro-
gressive drop in the stress is observed just before final failure. The 20 MPa stress drop,
which is small compared to the average '1000 MPa flow stress, occurs within a strain
range of less than 0.1 %, which is also quite small.
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Figure 1.28: Force vs. nominal strain. Flat notched tension specimens from Figures
1.17c, 1.17d and 1.17e. Influence of stress triaxiality. v = 1.6× 10−3 mm/s, T = 25 ◦C
and Transverse direction TD. Fracture of the specimens are denoted by a dot. The force is
normalized with the cross-section area of the specimen for comparison purposes. Similar
effects were obtained for the other directions.
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Figure 1.29: Force vs. nominal strain. Shear tension flat specimen from Figure 1.17a.
Influence of stress triaxiality. v = 1.6× 10−3 mm/s, T = 25 ◦C and Transverse direction
TD. Fracture of the specimens are denoted by a dot. The force is normalized with the
cross-section area of the specimen for comparison purposes. No high frequency sampling
measurements were done for this specimen.

Figure 1.29 shows the results for the tension-induced shear specimen (depicted in Fig-
ure 1.17a). A comparatively lower load and higher nominal strain at fracture is observed
with respect to the other flat tension geometries. The experimental scatter is negligible.

1.4.2 Reversed loading
Kinematic hardening is quite common among dual-phase microstructures and can con-
tribute to an important part of their hardening. In order to quantify the respective contri-
butions of isotropic and kinematic hardening, tension-then-compression and compression-
then-tension tests are carried out. These two different sequences also allow to verify that
the strength differential deduced from separate tension and compression tests on different
sample geometries is retrieved when a unique sample geometry and test setup is used.
As an example, Figure 1.30 shows the recorded stress-strain loops during 2.5 tension-
compression cycles along the rolling direction. As the loading is reversed, a precocious
slow yield is observed. This effect might entail the presence of a strong non linear kine-
matic hardening. Furthermore, the increase in size between both cycles evidences the
contribution of isotropic hardening.

Figure 1.31 shows the stress strain curves of a tension test with consecutive unloadings.
The isotropic and kinematic components of the material hardening can be deduced from
the stress for which the stress-strain curve during unloading departs from linearity by
more than a given offset [60]. For example, with an offset of δεp = 10−4, the kinematic
hardening values were found to contribute about 30 %-60 % to the flow stress all along
the deformation process (discussed later in Section 1.4.4.2).
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Figure 1.30: Stress vs. strain. Alternating tension-compression test. |ε̇| ' 5× 10−4 s−1,
T = 25 ◦C, Rolling direction RD.
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Figure 1.31: Stress vs. strain. Consecutive loadings and unloading on a cylindrical tension
specimen. ε̇ ' 5× 10−4 s−1, T = 25 ◦C and Rolling direction RD.
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1.4.3 Multi-step relaxation loading
As deduced from tests carried out at different strain rates, a strain rate-induced overstress
is present at room temperature, see Figure 1.23. A series of stress relaxation periods are
therefore introduced during tension as well as compression tests, in order to extract the
viscous component of the flow stress. The displacement-controlled tests are interrupted
at selected strain amounts and the total deformation of the specimen remains constant.
A drop in stress is recorded due to viscous relaxation and the test is resumed when the
stress level has reached a steady state.

In Figure 1.32 are plotted the stress-strain curves obtained from the multi-step re-
laxation loading. The dotted lines are obtained by interpolation between the end-points
of the relaxation periods and represent the rate independent part of the flow stress. By
subtracting it from the total stress, the viscous component can be determined via (see
Equation 1.3)

σv = |σ| − (σKH + σIH) (1.4)
According to Figure 1.32, the viscous stress remains constant along the deformation

in tension and compression. Furthermore, no effect of anisotropy is found in terms of the
relaxed stress. Therefore, the viscous component is considered independent of the loading
direction and of the strain. This enforces the previous simplification in Equation 1.3 of
additive decomposition of the stress in a strain hardening and a viscous component.

Slight differences in viscous behavior in tension and in compression can be however
noticed. To check if these differences are significant or an artifact due to the differences in
testing devices and specimens geometries, the cylindrical specimens used for the reversed
loading are employed to measure the relaxed stress both in tension and in compression.
Figure 1.33 shows the results of a compression-tension test with two relaxation periods in
tension and compression. The viscous stress, plotted in red, does not show a significant
dependence on the loading direction.

Some works have reported a dependence of the strain rate sensitivity on temperature
(although not in a monotonic way), see e.g. Tuninetti and Habraken [33] who found that
the strain rate sensitivity is higher at T = 150 ◦C than at room temperature, but lower
at T = 400 ◦C than at room temperature. Figure 1.34 compares the results of multi-step
relaxation tests run on compression specimens at room temperature and T = 170 ◦C. As
temperature is increased, the amount of relaxed stress becomes lower. This is mainly
due to the overall decrease (by approximately 25 %) of the flow stress as temperature is
increased while a 30 % drop in relaxed stress is observed. This could imply a temperature
dependence of the strain rate sensitivity, as shown in the above mentioned publication.
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Figure 1.32: Stress vs. plastic strain. Tension and compression. Multi-step relaxation.
|ε̇| ' 5× 10−4 s−1 and T = 25 ◦C. The drop in stress as the static state is achieved is
defined as the strain rate induced overstress or viscous stress (plotted as a dashed line).
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Figure 1.33: Stress vs. strain. Compression-tension test with four relaxation periods on a
cylindrical specimen. |ε̇| ' 5× 10−4 s−1, T = 25 ◦C and Rolling direction RD. The viscous
stress is plotted in red.
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Figure 1.34: Stress vs. plastic strain. Multi-step relaxation under tension. |ε̇| '
5× 10−4 s−1 and Rolling direction RD.
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1.4.4 Analysis and discussion
By extrapolating the steady-state curves (dotted lines) in Figure 1.32, the rate indepen-
dent initial yield stress at room temperature can be estimated for each loading direction.
It can then be subtracted from the flow stress at various strain rates so as to determine
the viscous stress. Similarly, the viscous stress measured in the relaxation tests can be
used to obtain the rate independent stress σKH + σIH = σ − σv (see Equation 1.3).

In this section, the effects of anisotropy, strain hardening and temperature on the rate
independent stress are herein studied. Likewise, the viscous stress is also analyzed.

1.4.4.1 Plastic anisotropy and Strength Differential
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Figure 1.35: Yield locus in the (σRD, σTD) plane, after viscous component removal.
|ε̇| ' 10−3 s−1 and T = 25 ◦C. The loading in the normal direction is considered equivalent
to the biaxial stress state. The diagonal direction implicitly includes a shear component
not represented in the graph.

Figure 1.35 shows the yield surface in the TD-RD plane at various plastic strains with
the viscous component removed. In the case of the diagonal direction, the Cauchy stress
components with respect to the rolling and transverse axes are plotted. As for the normal
direction, the equivalent biaxial state is used: assuming that the hydrostatic pressure does
not play a role in plasticity, the stress tensor deviator for both types of loading are equal.
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Figure 1.36: Lankford coefficients vs strain. |ε̇| ' 10−3 s−1 and T = 25 ◦C.

For the sake of comparison, the von Mises yield surface passing through the yield
stress along the rolling direction (in tension) is also plotted at the corresponding plastic
strain to quantify the degree of anisotropy in Figure 1.35. According to the latter, Von
Mises criterion clearly underestimates the yield stresses in compression (the compression
under the normal direction is shown in the top right quadrant as a biaxial tension state).
As for the orthotropy, differences are more subtle. The yield stress in the transverse
direction tends to be underestimated whereas those in the normal and diagonal directions
are overestimated. As the deformation increases, the misfit with von Mises criterion grows
larger.

In addition, Figure 1.36 shows a comparison of the Lankford coefficients rθ measured
during the tension tests on smooth specimens. An important scatter is visible mainly
due to the heterogeneity of the material and to measurement errors (highly dependent
on the camera resolution as well as on the markers location). As a consequence, these
experiments will not be used for the calibration, but they will be later on employed for
verification purposes (see Section 3.4.2).

1.4.4.2 Strain Hardening

The first push-pull cycle from Figure 1.30 is reconsidered here after removing the viscous
component, to highlight the respective contributions of the isotropic and the kinematic
hardening. The compression part of the cycle has been inverted and is compared with the
tension and compression monotonic stress-strain curves. As observed in Figure 1.37, a
nonlinear kinematic hardening produces a progressive yielding during the load reversal. As
the cyclic curve goes into compression, a permanent offset with respect to the monotonic
compression appears, as a result of the Bauschinger effect.

The proportions of isotropic stress σIH and back stress σKH can be estimated from
the effective stress (as defined in Helbert et al. [30]) plotted in Figure 1.31. The current
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Figure 1.37: Strain vs. strain. Strain hardening comparison between the monotonic tests
and the load reversal test. |ε̇| ' 10−3 s−1 and T = 25 ◦C.

elastic domain is delimited by the maximum tension stress and the σreverse at the onset
of reversed plastic flow, defined with a fixed plastic offset of δεp = 10−4. The isotropic
and kinematic components are obtained as

{
σmax − σreverse = 2R

σmax = R +X
→


R = 1

2 (σmax − σreverse)

X = 1
2 (σmax + σreverse)

(1.6)

Figure 1.38 shows the evolution of the hardening components with the total strain
from the loading-unloading test presented in Figure 1.31. As the flow stress increases,
the kinematic component (initially non-negligible) rises. On the other hand, the isotropic
component tends to decrease with deformation (similar conclusions were observed in Hel-
bert et al. [30]). Overall, a mixed hardening is observed in the material with a contribution
of kinematic hardening ranging from 30 to 60 % of the flow stress. Note however, that
the exact values depend on the plastic offset used to detect reverse plasticity although
the global proportion remains almost unchanged.

In Figure 1.39 the Young’s modulus has been measured during each load/unload seg-
ment and shows a slight but consistent decrease with the cumulated plastic strain. A
similar effect (amplified by dwell periods) was observed at room temperature in Ti6242
alloy by Lefranc et al [40] who attributed it to nano-cavity nucleation at α/β interfaces.
However, this effect will be neglected due to the small overall decrease of this parameter
(less than 10 %).
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Figure 1.38: Stress vs. strain. Isotropic and kinematic contributions on specimen loaded
in push-pull. |ε̇| ' 5× 10−4 s−1, T = 25 ◦C and Rolling direction RD. The elastic domain
is determined with a deviation of δεp = 10−4 from linearity.
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Figure 1.39: Young’s modulus vs. strain. Young’s modulus evolution on a specimen
loaded in push-pull. |ε̇| ' 5× 10−4 s−1, T = 25 ◦C and Rolling direction RD.
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1.4.4.3 Strain Rate Hardening

The viscous component from the curves in Figure 1.23 is plotted versus the strain rate
in a logarithmic scale on Figure 1.40 for the tension and compression tests. The tension
tests are subject to a higher scatter due to a more oscillatory response in the dynamic
regime as well as the poor resolution in strain.

Figure 1.40 evidences the linear evolution of the viscous component with strain rate (in
the log scale). The Norton-Perzyna law is accordingly suitable to reproduce the observed
results [61 ; 62], it is expressed as

σv = Yvκ̇
1/nv (1.7)

1.4.4.4 Thermal Softening

As shown in Figure 1.25, the flow stress monotonically decreases with increasing tem-
perature. Although the evolution of the flow stress with respect to temperature seems
linear (see Figure 1.26), within the limited range of temperatures investigated, a linear
extrapolation would predict negative stress values before the melting point. A power law
is commonly used in the literature, and it ensures a positive stress until melting [32]:

σ ∝ 1− 〈 T − Tref
Tm − Tref

〉mT (1.8)

where mT is a material parameter, Tm ' 1630 ◦C the melting point and Tref = 25 ◦C
a reference temperature. The Macaulay brackets 〈x〉 = max (0, x) are used.

Under low strain rate loading the conditions are isothermal, whereas under high strain
rate loading, they are (quasi) adiabatic. As a consequence, the heat generated by plastic
dissipation is not evacuated fast enough by conduction, leading to a local temperature
rise. The material is then subject to thermal softening along the deformation process.
Self-heating is usually estimated by considering that a fraction of the plastic work rate is
converted into heat:

∆T ' β

ρc

∫
κ
σdκ (1.9)

where ρ is the mass density and c is the heat capacity of the material. β represents
the inelastic heat fraction also called Taylor-Quinney coefficient [63]. The latter is often
assumed constant with values typically ranging between 0.8 and 1. Taking β ' 0.9 and
integrating Equation 1.9 combined with the data from Figure 1.26, the drop related to
temperature softening can be deduced.

Equivalent isothermal stress-strain curves may be obtained from adiabatic stress-strain
curves by removing the self-heating induced thermal softening just calculated. By doing
so, see Figure 1.41, strain hardening is retrieved on stress-strain curves at high strain rate.
With this approach, the isothermal dynamic compression curves exhibit a similar strain
hardening as the quasi-static ones.
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Figure 1.40: Stress at 2 % of plastic strain vs. plastic strain rate. Tension and compression.
T = 25 ◦C. Self-heating softening can be negligible at this stage of deformation.
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Figure 1.41: Stress vs. plastic strain. Isothermal quasi-static and dynamic compression
curves (adiabatic and equivalent isothermal). T = 25 ◦C and Rolling direction RD.

1.5 Observations of damage and fracture mechanisms
This section gathers microscopic observations of damage mechanisms and fracture surfaces
done mainly by Optical Microscopy and Scanning Electron Microscopy (SEM).

1.5.1 Damage mechanisms
Post-mortem observations of fractured samples, as well as observations after interrupted
tests are carried out to identify the mechanisms of damage leading to the final fracture.
This section focuses only on micro-scale observations. For those observations, mechanical
polishing with sandpaper followed by electro-polishing (using Struers A3 solution and a
tension of 20V) or by ion polishing was performed on longitudinal sections of the samples.

Positive Stress Triaxiality
Figure 1.42 shows SEM post-mortem observations of smooth tension specimens broken

at different temperatures and loading rates. The presence of voids is found near the
fracture surface. They appear to nucleate mainly on interfaces between α and β phases
(see Figure 1.42a) although a few very small cavities were found within α grains. This
is consistent with the observations made by Helbert et al [39]. It is noteworthy that the
loading rate does not seem to have a direct effect on void nucleation, and that voids are
only formed near the fracture surface (Figure 1.42b). However, the void density seems to
be higher after high temperature tests for which damage is observed further away from
the fracture surface (see Figure 1.42c).
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Elongated void

Quasi-spherical void

(a) εf ' 15 %, ε̇ = 350 s−1, T = 25 ◦C
y ≡ RD

y

xz

(b) εf ' 15 %, ε̇ = 1500 s−1, T = 25 ◦C
y ≡ DD

(c) εf ' 30 %, ε̇ = 1× 10−3 s−1, T = 315 ◦C
y ≡ DD

Figure 1.42: SEM post-mortem observations of longitudinal sections of smooth tension
specimens. See the corresponding tests in Figures 1.23 and 1.25.
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The same type of observations is carried out on notched specimens, after fracture or
before. Figure 1.43 summarizes the more remarkable results. Figure 1.43a shows a broken
notched tension specimen. As in the smooth specimens, some cavities were found near the
fracture surface. However, these cavities become scarcer when one moves away from the
fracture surface, in spite of the considerably higher stress triaxiality ratio. In an attempt
to determine at what stage the cavities were formed, a test on a notched tension specimen
was interrupted just before fracture and a longitudinal section was observed 1.43b. The
observations are made approximately at the mid-length of the sample. Some cavities are
found near the free surfaces, indicating that, although it remains limited, diffuse damage
takes place before fracture under high stress triaxiality ratios.

y

x

(a) Fractured εf ' 3.8 %, ε̇ = 10−3 s−1,
T = 25 ◦C, x ≡ TD & y ≡ RD

(b) Non-broken εi ' 3.3 %, ε̇ = 10−3 s−1,
T = 25 ◦C, x ≡ TD & y ≡ RD

Figure 1.43: SEM observations of longitudinal sections of flat notched tension specimens
(R = 2 mm). See the corresponding tests in Figure 1.28a.

Figure 1.44 shows the fracture surface of a notched specimen (notch radius 2 mm).
The surface is considerably uneven showing heterogeneities of all sizes. A closer look
shows extremely dense clusters of more or less equiaxed dimples. These features suggest
the nucleation, growth, and coalescence of voids favored by a high hydrostatic pressure.
Furthermore, although no clear signs of the fracture initiation site are found, it can be
speculated to be close to the center (expected maximum stress triaxiality) considering the
large, uneven features around the middle, and the absence of directional features near the
edges.

A similar observation is performed for the notched tension specimen of radius 0.5 mm
(see Figure 1.45). For this sample, the heterogeneity of the surface seems comparatively
smaller than for the larger notch radius. However, the same type of equiaxed dimples is
retrieved. In this case, fracture seems to have been initiated near the notch tips where
the surface roughness is sensibly larger. The reason behind this might be a larger plastic
strain near there, combined with a sufficiently high stress triaxiality ratio. It can be
speculated that the maximum χ is found away from the center-line. This hypothesis will
be confirmed by the numerical simulations shown in Chapter 3.
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(a) Overall fracture surface

y

x

(b) Field width of 800 mm (c) Field width of 175 mm

Figure 1.44: SEM micrography on a flat notched specimen (R = 2 mm). εf ' 3.8 %,
ε̇ = 10−3 s−1, T = 25 ◦C, x ≡ RD & y ≡ ND. Blue ellipse: likely place of void initiation,
i.e. in the specimen center. Zoom images taken in the center. See the corresponding tests
in Figure 1.28a.
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(a) Overall fracture surface

y

x

(b) Field width of 800 mm (c) Field width of 175 mm

Figure 1.45: SEM micrography on a flat notched specimen (R = 0.5 mm). εf ' 2.5 %,
ε̇ = 10−3 s−1, T = 25 ◦C, x ≡ RD & y ≡ ND. Blue ellipse: likely place of void initiation,
i.e. from the notch tips. See the corresponding tests in Figure 1.28a.
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a Nil Stress Triaxiality
Regarding the tension-induced shear specimens, a substantial distribution of cavities

or even microcracks was observed after an interrupted test (see Figure 1.46). This was
somewhat unexpected, considering the rise of the critical equivalent plastic strain for
cavity nucleation in Ti alloys reported at low hydrostatic pressure by Helbert et al [39].

y

x

Figure 1.46: SEM observations of a longitudinal section of an interrupted flat tension-
induced shear specimen. εf ' 9 %, ε̇ = 10−3 s−1, T = 25 ◦C, x ≡ TD & y ≡ RD. See the
corresponding tests in Figure 1.29.

Figure 1.47 shows the fracture surface of a tension-induced shear specimen. The
features found are rather similar to those observed in the shear compression specimen. The
fracture surface is heterogeneous, and exhibits clusters of elongated dimples surrounded
by smooth, mated zones.
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(a) Overall surface

y

xz

(b) Field width of 800 mm (c) Field width of 175 mm

Figure 1.47: SEM observations on a tension-induced shear specimen.
εf ' 9 %, ε̇ = 10−3 s−1, T = 25 ◦C, y ≡ TD. Evidence of shear planes and dimple clusters.
See the corresponding tests in Figure 1.29.
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a Negative Stress Triaxiality

x

(a) Field Width of 500 µm (b) Field Width of 150 µm

Figure 1.48: SEM observations of the fracture surface of a compression specimen.
εf ' 17 %, ε̇ = 10−3 s−1, T = 25 ◦C, x ≡ TD. Evidence of shear planes and dimple
clusters. See the corresponding tests in Figure 1.21.

The fracture of compression specimens is sudden, precocious and localized in a 45°
band. Figure 1.48 shows a SEM observation of such a fracture surface, which exhibits
mated areas surrounding dimple clusters. In addition, the elongated shape of such dim-
ples is a clear sign of large shear strain. These micrographies show a great resemblance
with those presented in Lee and Lin [43].

Comparing all the micrographies here presented, one retrieves two different fracture
mechanisms described by many authors: a shear-driven mechanism, under negative stress
triaxialities (compression and shear loadings), and a cavity nucleation/growth and coa-
lescence mechanism, typical of high positive triaxiality ratios. These two scenarios would
entail the use of two different fracture criteria: one based on shear localization and an-
other one strongly dependent on stress triaxiality (see an example of such criterion in
Hooputra et al. [64]).

1.5.2 Final fracture
This section focuses on the macroscopic aspect of fracture, characterized by optical mi-
croscopy.

Positive Stress Triaxiality
Figure 1.49 presents the broken smooth tension specimens loaded along the rolling,

transverse and diagonal directions at low strain rate and at room temperature. Both the
front and side views are shown. For the three cases, the fracture surface is inclined into
the thickness (see side views). Indeed, for both the rolling and transverse specimens, the
fracture surface is inclined by 45°, while for the diagonal direction, it seems constituted
with two bands inclined by +- 45°.
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y

x

z≡ND

Front
View

(a) y ≡ RD (b) y ≡ TD (c) y ≡ DD

y

x

z≡ND

Side
View

(d) y ≡ RD (e) y ≡ TD (f) y ≡ DD

Figure 1.49: Broken smooth flat tension specimens. ε̇ = 10−3 s−1 and T = 25 ◦C.

The same observations were done for specimens broken at T = 315 ◦C (see Figure
1.50). At such temperature, fracture keeps taking place along a plane inclined into the
thickness. Necking is qualitatively higher than at room temperature, and the fracture
borders are considerably more deformed.

The samples broken at high loading rate are shown in Figures 1.51 and 1.52. No
major differences were observed with respect to those broken at low loading rates and
room temperature. Except for less tilted fracture at a loading rate of ε̇ ' 1500 s−1 (Figure
1.52). However, this last remark might be purely fortuitous as fracture at ε̇ ' 350 s−1

(Figure 1.52) is clearly tilted.
In Figure 1.53, a non broken specimen tested at high temperature and low loading

rate is shown. The interest in this observation is the necking which is more pronounced
in the thickness direction. This could be the reason why fracture is preferentially tilted
along that dimension.

Low magnification observations of some fracture surfaces of smooth tension specimens
are shown on Figure 1.54. Four loading conditions are compared: (i) ambient temperature
and quasi-static loading rate, (ii) high temperature and quasi-static loading rate and
(iii) ambient temperature and ε̇ ' 350 s−1 and (iv) ε̇ ' 1500 s−1. The four samples
show some global similarities, most notably the seemingly uniform appearance along the
width, as fracture seems to progress into the thickness direction. The specimen tested
at high temperature in Figure 1.54b exhibits a rougher fracture surface, suggesting that
temperature might favor diffuse damage instead of localization. For the specimens loaded
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y

x

z≡ND

Front
View

(a) y ≡ RD (b) y ≡ TD (c) y ≡ DD

y

x

z≡ND

Side
View

(d) y ≡ RD (e) y ≡ TD (f) y ≡ DD

Figure 1.50: Broken smooth flat tension specimens. ε̇ = 10−3 s−1 and T = 315 ◦C.
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y

x

z≡ND

Front
View

(a) y ≡ RD (b) y ≡ TD (c) y ≡ DD

y

x

z≡ND

Side
View

(d) y ≡ RD (e) y ≡ TD (f) y ≡ DD

Figure 1.51: Broken smooth flat tension specimens. ε̇ = 350 s−1 and T = 25 ◦C.

PhD Thesis - Miguel Ruiz de Sotto - 53 -



1.5 Observations of damage and fracture mechanisms

y

x

z≡ND

Front
View

(a) y ≡ RD (b) y ≡ TD (c) y ≡ DD

y

x

z≡ND

Side
View

(d) y ≡ RD (e) y ≡ TD (f) y ≡ DD

Figure 1.52: Broken smooth flat tension specimens. ε̇ = 1500 s−1 and T = 25 ◦C.

y

x

z≡ND

(a) Front view (b) Side view

y

x

z≡ND

Figure 1.53: Non-broken smooth flat tension specimens. ε̇ = 10−3 s−1, T = 315 ◦C and
y ≡ RD.
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(a) T ' 25 ◦C & ε̇ ' 10−3 s−1 (b) T ' 315 ◦C & ε̇ ' 10−3 s−1

y

x

(c) T ' 25 ◦C & ε̇ ' 350 s−1 (d) T ' 25 ◦C & ε̇ ' 1500 s−1

y

x

Figure 1.54: Fracture surfaces of smooth flat tension specimens along the Rolling direction
RD. x ≡ TD and y ≡ ND.

at high strain rate, the patterns are harder to interpret. Although loading at ε̇ ' 350 s−1

results in a rougher surface (see Figure 1.54c), the specimen tested at a higher rate
(ε̇ ' 1500 s−1 in Figure 1.54d) exhibits a similar fracture surface, if not smoother as the
sample tested at ambient temperature and low strain rate in Figure 1.54a. Therefore,
it is not clear whether a high loading rate favors localized damage leading to a smooth
fracture surface along a localized shear band, or a more ductile fracture resulting from
coalesced, initially diffuse damage.

Necking-related quantities of broken flat tension specimens were measured with respect
to width, thickness and cross-section area for the three directions, different loading rates
and temperatures. They are calculated as

ηw = wf − wo
wo

ηt = tf − to
to

ηA = Af − Ao
Ao

(1.10)

where wf , wo, tf , to, Af and Ao are shown in Figure 1.55.
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wo

wf

to

tf

Af

Ao

Figure 1.55: Schematic drawing of the necking in a smooth flat tension specimen.

In Figure 1.56, the main results are plotted and compared with respect to machining
direction, strain rate and temperature. The diagonal direction presents the highest neck-
ing for all loading conditions except at the highest loading rate. The thickness reduction
is more pronounced than the width reduction. Regarding loading rate, no clear tendency
is appreciated, ductility seems to drop at ε̇ ' 350 s−1 but to rise again at ε̇ ' 1500 s−1,
sometimes reaching higher values than in the quasi static regime. As for temperature,
ductility seems to be slightly higher when the temperature is increased. By order of im-
portance on ductility, it seems that the deformation direction (thickness as opposed to
width) comes first, then the loading direction followed by the temperature, and last the
loading rate for which no simple conclusion can be extracted.
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Figure 1.56: Ductility comparison of the rolling, transverse and diagonal direction of
a smooth flat tension specimen at various loading rates and temperatures. Values are
normalized with respect to the case at ε ' 10−3 s−1, T = 25 ◦C and Rolling Direction RD.
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Concerning the notched tension specimens, fracture seems to be similar: it occurs
along a plane tilted by 45° into the thickness (see Figure 1.57).

y

x

z≡ND

(a) R = 2 mm (front view) (b) R = 2 mm (side view)

y

x

z≡ND

(c) R = 0.5 mm (front view) (d) R = 0.5 mm (side view)

Figure 1.57: Notched specimens loaded to fracture. ε̇ ' 10−3 s−1, T = 25 ◦C and y ≡ TD.

a
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Nil Stress Triaxiality
Fracture in a shear specimen is somewhat different. As seen in Figure 1.58, the frac-

ture surface is flat and its plane is not tilted, neither in thickness nor in width.

y

x

z≡ND

Figure 1.58: Tension-induced shear specimen loaded to fracture. ε̇ ' 10−3 s−1, T = 25 ◦C
and x ≡ TD.

Negative Stress Triaxiality
Compression tests on hat-shaped specimens for which macro crack propagation had

began were successfully stopped. In Figure 1.59, observations in the quasi-static and
dynamic regime are shown. The macro cracks, initiated from the corners, propagated
diagonally along a seemingly straight path. However, when zooming on the crack tip,
a staircase-shaped trajectory appears, perhaps due to the coalescence of some diffuse
damage nucleated under shear as shown in Figure 1.46. This particular crack shape has
been observed in other Ti-6Al-4V alloys loaded under high strain rate conditions (see
Dorothy and Longère [65], Longère and Dragon [37] and Peirs et al. [38]).

In the Meyers geometry, deformed under shear stress close to null stress triaxiality
ratios, the crack propagation also nucleated from the corners of the specimen (see Figure
1.60). As with the other hat-shaped geometry, the crack tip seems to grow by a coalescence
of damage generated along its path.
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x

(a) u̇ = 0.5 mm/min (x50) (b) u̇ = 0.5 mm/min (x500)

x

(c) u̇ = 5× 103 mm/s (x100) (d) u̇ = 5× 103 mm/s (x500)

Figure 1.59: Couque hat-shaped specimens after partial fracture. T = 25 ◦C and x ≡ ND.
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x

(a) u̇ = 5 mm/min (x50) (b) u̇ = 5 mm/min (x500)

x

(c) u̇ = 5× 103 mm/s (x100) (d) u̇ = 5× 103 mm/s (x500)

Figure 1.60: Meyers hat-shaped specimens after partial fracture. T = 25 ◦C and x ≡ ND.
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1.6 Concluding remarks
This chapter summarized the results of an extensive experimental characterization of the
Ti-6Al-4V alloy considered for the fan blade leading edge of aircraft engines. In order
to emulate all the conditions found in a ballistic event on the engine several sample
geometries as well as various experimental set-ups were employed.

Even though the cold rolled bimodal Ti-6Al-4V investigated here exhibits strong local
texture (in the form of “macrozones”), but only a weak global texture, its mechanical
behavior is nonetheless orthotropic and a significant tension-compression strength differ-
ential is measured.

The material hardening is dependent on three variables: the plastic strain, the plastic
strain rate and the temperature, a rise of the latter promoting softening. The rate-
dependent hardening exhibits a nearly linear evolution with respect to the plastic strain
rate in logarithm scale. This viscous component does not show any anisotropy nor strain
dependence. Although an influence of temperature on viscosity was observed, it will be
neglected in subsequent modeling, because of its limited impact in the quasi-static regime,
and the lack of data in the dynamic regime. In addition, the effect of temperature on the
kinematic hardening has not been addressed in this chapter.

Load reversal tests in tension-compression showed that the rate-independent part of
the material hardening is due to isotropic and kinematic contributions. These two com-
ponents were roughly estimated to have the same importance in the hardening.

Finally, the damage and fracture mechanisms were analysed using SEM as well as
optical observations of broken or non broken specimens.

Damage, in the form of cavities, nucleated mostly at α/β interfaces was found near
the fracture surfaces. The latter were often inclined by 45° into the thickness of tension
specimens. Depending on the loading conditions, shear-driven strain localization and
damage, leading to slanted fracture with limited necking, or more diffuse, triaxiality-driven
cavities nucleation, growth and coalescence leading to fracture with more substantial
necking was observed. A higher amount of damage was detected at high temperatures
but no clear conclusions could be drawn on the influence of strain rate or the orientation.
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CHAPTER 2 Constitutive modeling

In this chapter, a constitutive model is built within the irreversible thermodynam-
ics framework at finite strain. The key aspects regarding (i) anisotropic plasticity,
(ii) isotropic and kinematic hardening laws and (iii) viscoplastic formulation are
presented to reproduce the behavior of the Ti-6Al-4V previously characterized.
Finally, a model constant calibration using the Z-set software is carried out.
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2.1 Introduction

2.1 Introduction

The extensive experimental campaign detailed in the previous section has evidenced that
the Ti-6Al-4V grade under consideration is subject to significant (i) anisotropic plasticity
which manifests through loading direction dependence, kinematic hardening and strength
differential, (ii) isotropic strain hardening, (iii) rate dependence and (iv) thermal soften-
ing. Starting from the experimental observations, a constitutive model accounting for the
above mentioned effects is built within the irreversible thermodynamics framework. More
generally, the aim of the present work is to develop a constitutive model able to describe
the behavior of metals and alloys within a wide range of strain, strain rate, temperature
and loading path. It is noted that a phenomenological approach is developed in this paper
instead of the polycrystalline formalism as proposed by e.g. Zhang et al. [12] or Mayeur
and McDowell [11].

The proposed constitutive model is calibrated using Z-set commercial software. Such
identification is divided in several stages in order to ensure a satisfactory convergence.
With these results, the applicability of the model is then discussed.

2.2 Some existing constitutive models

A dedicated review of the current strategies for building a suitable constitutive model
describing plasticity and further damage is first presented.

Preliminary considerations
There are two main approaches that can be followed when describing the transforma-

tion of a medium: the Lagrangian point of view involving material quantities and Eulerian
point of view involving spatial quantities. In the former, the quantities involved are ex-
pressed with respect to the reference configuration where as in the latter, the quantities
are expressed with respect to the current one. The Eulerian perspective is adopted here
since it is more adapted to history and path dependent mechanisms such as plasticity.

However, by following the Eulerian approach, the objectivity (frame independence) of
the rate equations must be ensured. For a second order tensor a, the rate operator �· is
used to satisfy objectivity. The symbol � represents the type of objective rate chosen.

�
a = ȧ− Ω̃ a+ a Ω̃ (2.1)

where Ω̃ is the spin involved in the rotation between the reference and the current
configurations. If there is a consensus about the need for objective rates, there is no
consesus about the spin to apply. Several approximations can thus be found in literature,
see e.g. the comparison of objective rates made by Szabo and Balla [66] for a hypo-elastic
isotropic material. Table 2.1 summarizes some of the more popular objective rates.

As explained in Schieck and Stumpf [71], the Jaumann definition can be considered a
sufficiently accurate rate under moderate elastic and plastic strains since the oscillations
start to occur at large strain.
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Table 2.1: Summary of some objective derivatives

Jaumann [67] ∇
a = ȧ− w a+ aw

Green-Naghdi [68] 4
a = ȧ− Ω a+ aΩ

Truesdell [69] ◦
a = ȧ− l a− a lT + a tr(l)

Sowerby and
Chu [70]

�
a = ȧ− Ω

E
a+ aΩ

E

2.2.1 Behavior
In this section are presented some constitutive models or parts of constitutive models
aiming at describing anisotropic plasticity, isotropic hardening and temperature and rate
dependence.

2.2.1.1 Anisotropic plasticity

In literature, anisotropic plasticity has been largely addressed from both microstructure
and phenomenological perspectives. This work is focused on the latter and a review of
some of the most notable anisotropic criteria are summarized in Table 2.2. Anisotropic
plasticity implies a loss of coaxiality between the strain rate and the stress. It thus involves
the effect of (i) orientation, (ii) strength differential and (iii) Bauschinger effect.

(a) Yield locus in case of orthotropy
after Karafillis and Boyce [72]

(b) Yield locus in case of Strength
Differential after Cazacu et al. [73]

Figure 2.1: Anisotropic yield surface criteria

Orthotropy
Hill’s criterion [74] has been widely used to model the plastic behaviour of orthotropic

materials due to its simplicity [75–77]. It consists in incorporating a fourth order tensor in
the equivalent stress in order to make the yield stress dependent on the orientation. Plas-
tic anisotropy evolving with strain has also been addressed by Baltov and Sawcsuk [78]
by defining the fourth order tensor as a polynomial decomposition of notably the strain
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invariants [79]. Karafillis and Boyce [72] proposed a linear transformation of the stress
tensor itself to induce orthotropy in plastic yielding without compromising the convexity
of the yield function [80] (see Figure 2.1a). Some examples of this strategy can be seen
in [81–85]. Moreover, a generalized version of the Karafillis and Boyce yield surface was
later proposed by Bron and Besson [86] to improve the description of plastic anisotropy.

Strength-differential
A second aspect contributing to the anisotropy of the material is the strength differen-

tial between tension and compression. To model this effect, some authors have proposed
asymmetric yield criteria including the third invariant of the stress tensor [87 ; 88]. Khan
et al. proposed a criterion that manages to independently include the orthotropy, by
means of the Hill criterion, and the asymmetry, by introducing a function depending
on the Lode parameter [20]. With this method, the strength differential is successfully
captured with only one material coefficient. Similarly, the CPB06 yield criterion [73]
can simultaneously capture the orthotropy and the strength differential by combining a
linear transformation of the stress deviator tensor and a yield function of the principal
stresses (see Figure 2.1b). The simplicity, applicability and accuracy of this last model
has made it widely used as seen in [19 ; 23 ; 33]. Furthermore, distortional models such
as the Homogeneous yield function-based Anisotropic Hardening (HAH) model [89] has
been proven useful when considering an evolving anisotropy that continuously distorts
and rotates the yield surface as it was later on successfully applied on titanium [90]. The
main concept being the addition of a so called fluctuating component in the yield crite-
rion which is function of a microstructure deviator (defining the current state in the stress
tensor space) and some evolving material coefficients. A last example worth mentioning
for the modeling of asymmetry was proposed by Longère [91] who included a definition
of a viscous stress dependent on the hydrostatic pressure (while maintaining the plastic
yield criterion pressure-independent). It is noteworthy that Longère model preserves the
coaxiality between the stress and the strain rate.

Bauschinger effect
The third and last aspect characterizing the anisotropy of the present material is the

kinematic hardening. A kinematic hardening-related internal variable was introduced in
Prager’s model to describe this effect [92]. In this approach,the backstress represents a
translation of the yield surface as plasticity occurs. Initially, Prager’s model considered
an isochoric plasticity, and therefore, the kinematic evolution would not be linked with
the first stress invariant, i.e. the hydrostatic pressure. However, later Ziegler’s model [93]
included a pressure dependent evolution of the kinematic variable by replacing the stress
deviator s for σ in the complementary laws. Nonlinear extensions for the evolution of
this variable were later on proposed by Armstrong and Frederick [94] and Chaboche [95].
Moreover, as kinematic hardening may produce transient effects and permanent softening,
mixed coupled hardening models were also proposed in the literature to predict such
effects [96–98]. Another alternative to reproduce the Bauschinger effect is through the
above mentioned yield surface distortion of the HAH model. More precisely, Barlat et
al. [89] proved that by choosing a homogeneous yield function containing the strength
asymmetry, they could additionally reproduce a kinematic response in the material with
the fluctuating component in the yield criterion. However, the notion of a kinematic
variable and its hardening is lost is such model.
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Table 2.2: Examples of anisotropic/orthotropic yield functions found in literature.
J2
(
s
)

= 1
2s : s with s = σ + 1

3pI.

Model Type Expression

Mises Isotropic σ2
eq = 3

2s : s = 3J2
(
s
)

Hill (1948) Orthotropic σ2
eq = 1

2σ : H
48

: σ

Prager-Mises Kinematic σ2
eq = 3J2

(
s−X

)
Longère et
al. [91]

Asymmetry
(Co-axial) σ2

eq = 3J2
(
s
)
, σv = Y

[
κ̇exp

(
Vap
kBT

)] 1
n

Baltov and
Sawcsuk [78]

Orthotropic
& Kinematic σ2

eq = 1
2

(
s−X

)
: A

BS
:
(
s−X

)
Karafillis and
Boyce [72]

Orthotropic
& Kinematic σ2

eq = J2

(
L
KB

:
(
σ −X

))

Cazacu et al. [73] Orthotropic σaeq = 1
ma

0

{∑3
p=1 (|Σp| − kΣp)a

}
& Asymmetry Σ = A

CPB
: s

Khan et al. [20] Orthotropic
& Asymmetry σ2

eq =
(

1
2σ : H

48
: σ
)
e−C(θ+1)

Barlat et al. [89]1 Kinematic
& Asymmetry σaeq =

[
σ̃aeq + σ̂ah

(
h : s

)]
1 Although this model does not explicitly treat orthotropy, it can successfully re-
produced a full distorted anisotropic surface.

Adopting a 2D representation, the orthotropic Hill tensor takes the form of the 6x6
matrix

H48 =



−G−H H G
H −F −H F
G F −F −G

N
L

M


(2.2)

whereas Karafillis and Boyce [72] define it as

L
KB

= CKBF



1 β1 β2
β1 α1 β3
β2 β3 α2

γ1
γ2

γ3


with



β1 = α2 − α1 − 1
2

β2 = α1 − α2 − 1
2

β3 = 1− α1 − α2

2

(2.3)

In both cases, six independent material constants are sufficient to describe orthotropic
plasticity. As for Cazacu et al. model [73] the 6x6 matrix is expressed as
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A
CPB

=



A11 A12 A13
A12 A22 A23
A13 A23 A33

A44
A55

A66


(2.4)

which a priori needs the knowledge of 9 independent material coefficients. The choice
of the approach to use is dependent on the behavior of the material.

2.2.1.2 Isotropic Hardening

For the isotropic hardening, the phenomenological Voce [99] and Swift [100] laws are
widely considered (see Table 2.3). The main difference between both is that Voce stress
saturates at large strain whereas Swift law keeps a positive hardening slope all along
the deformatin process. Some materials require a linear combination of both to ensure a
higher accuracy [47 ; 101].

Table 2.3: Isotropic yield functions

Voce [99] σy = σy0 +Q (1− exp (−bκ))
Swift [100] σy = σy0 +K (ε0 + κ)n

2.2.1.3 Temperature and strain rate hardening

The engineering-oriented Johnson-Cook constitutive model [102] is widely employed to
describe the strain rate hardening and temperature softening. Yet, it scarcely fits the ex-
perimental behavior of HCP metals and some alternatives have been proposed to improve
the agreement with experiments, see e.g. Khan et al. [103]. Cowper-Symonds’ model [104]
based on a power law is also widely used. These laws are commonly expressed in a mul-
tiplicative form of strain, strain rate and temperature contributions. Alternatively, the
strain rate stress used by Norton [61] is expressed as an additive contribution. Table 2.4
shows the corresponding yield stress and the viscous contributions. As seen in a previous
chapter, the viscous stress should not depend on strain.

Table 2.4: Viscoplastic yield functions and corresponding viscous additive component.
σ̄y (κ, κ̇, T ) = σy (κ, T ) + σv (κ, κ̇, T )

Johnson-Cook [102] σ̄y (κ, κ̇, T ) = (A+Bκ)
(
1 + Cln κ̇

κ̇0

) (
1−

(
T−T0
Tm−T0

)m)
σv (κ, κ̇, T ) = Cln κ̇

κ̇0
(A+Bκ)

(
1−

(
T−T0
Tm−T0

)m)
Cowper-Symonds [104] σ̄y (κ, κ̇, T ) = σy0 (κ, T )

(
1 +

(
κ̇
D

)n)
σv (κ, κ̇, T ) = σy0 (κ, T )

(
κ̇
D

)n
Norton [61] σ̄y (κ, κ̇, T ) = σy0 (κ, T ) + Y κ̇1/n

σv (κ̇) = Y κ̇1/n
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2.2.2 Damage and fracture
When dealing with damage and ductile fracture, one can typically distinguish two ap-
proaches: the use of a damage indicator which does not alter the material properties and
the use of a damage variable which deteriorates the material properties (see Figure 2.2).

κ

σ

κ

D

Damage Indicator
Damage Variable

κf

κf κf

Df

Figure 2.2: Damage approaches: indicator variable with no impact on the mechanical
properties and damage variable with a deterioration of the material behavior until fracture.
D is a damage-related quantity, Df its value at fracture and κf the strain at fracture.

2.2.2.1 Damage indicator (no coupling)

When a damage indicator is used, there is no coupling between it and the elasto-plastic
model. The properties of the material are not deteriorated at any instant of deformation
until final rupture, occurring at κ = κf . This indicator is generally driven by a damage
evolution law of the form

Ḋ = f (κ, κ̇) (2.5)

For example in Xue [105], the evolution law is defined as

Ḋ = mκm−1

κf
κ̇→ Df =

∫ κf

0

mκm−1

κf
dκ (2.6)

where the fracture strain κf could depend on the strain rate, the stress triaxiality or the
Lode parameter, i.e. κf (κ̇, χ, θ, . . . ). Therefore, the fracture is heavily dependent on the
loading path. For the simple case of a proportional loading and m = 1 and establishing
Df = 1, the expression reduces to a fracture locus surface κf = κf (κ̇, χ, θ, . . . ) (see
e.g. Figure 2.3a). The strain at rupture loci can be fitted experimentally as in Bao and
Wierzbicki [106] or by means of a criterion as the Hosford-Coulomb [107] (see Bai and
Wierzbicki [108] for an extensive comparison on fracture loci).

Alternatively, a recent extension from the Rice and Tracey [109] and Johnson-Cook
[110] with a Lode parameter dependence in the evolution law is done in Defaisse et al. [111]

Ḋ =
[
aexp (bχ) + c

(
1− |L|pd

)]
κ̇ (2.7)

When D reaches the critical value Df (e.g. Df = 1), the resistance of the material
suddenly drops to zero.
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(a) Papasidero et al. [112] (b) Yan et al. [113]

Figure 2.3: Some fracture locus criteria: on the left, Bao and Wierzbicki is compared with
the Hosford-Coulomb fracture locus for the initiation of fracture of a 2024 aluminum. On
the right, a fracture locus is fitted for a Q345 steel, the exponential decay is characteristic
of the Rice and Tracey and the Johnson-Cook loci.

2.2.2.2 Damage variable (coupling)

Conversely, one can consider the use of an internal variable whose evolution during load-
ing has a direct impact on the material properties. The rupture of the material ocurring
for a critical value of Df of the damage variable D (e.g. Df = 1) results in a progressive
loss of the material resistance until zero (see the solid line in Figure 2.2). The increase in
the damage variable may be related to the loss of stiffness, as done in the irreversible ther-
modynamics framework by Lemaitre [114] (elasto-damage coupling). In another way, the
reduction in the plastic yield surface may be related to void concentration in the material
(plastic-damage coupling), see eg. the Gurson [115] or the Rousselier [116] models.

(a) Lemaitre [114] (b) Longère and Dragon [117]

Figure 2.4: On the left, Lemaitre uses the Young modulus variation as a damage variable
D = 1− Ẽ

E
. On the right, Gurson coupled damage-plastic yield criteria is compared with

Longère and Dragon [117] where a backstress-induced shift allows for the evolution of
damage under zero stress triaxiality.
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2.3 Constitutive Modeling
Kinematic considerations are first specified in the context of large elastic-plastic defor-
mation. The general irreversible thermodynamics framework is then applied for phe-
nomenologically describing the consequences of the underlying conservative and dissipa-
tive mechanisms. Eventually, constitutive equations are detailed for the Ti-6Al-4V grade
under consideration.

In the present constitutive modeling, damage is not accounted for.

2.3.1 Finite strain framework
Moderately large elastic-plastic strains have been observed during the experimental cam-
paign, implying a nonlinear geometric formulation. The deformation gradient F describes
the transformation from the initial (undeformed) configuration to the current (deformed)
configuration of the particle coordinates of any point belonging to the material body.
As suggested by Lee [118 ; 119], the deformation gradient F may be multiplicativally
decomposed into an elastic contribution F e and a plastic contribution F p:

F = ∂x

∂X
= F e F p (2.8)

where X and x (X, t) represents the particle coordinates in the initial and current
configurations, respectively. In this context, F e represents the transformation between
the virtually elastically unstressed (intermediate) and current configurations, and F p the
transformation between the initial and virtually elastically unstressed (intermediate) con-
figurations.

We are here considering an intermediate configuration virtually unstressed by a pure
elastic stretching V e−1, yielding

F = V eQF p (2.9)
where Q represents an orthogonal transformation (rotation). The velocity gradient l

accordingly reads (see Longère et al. [120])

l = ∂v (x)
∂x

= Ḟ F−1 =
∇
V e V e−1 +W + V eḞ p F p−1V e−1 (2.10)

where v is the particle velocity and whereW = Q̇QT represents the rate of the orthog-
onal transformation. The decomposition of the deformation gradient l into a symmetric
part d and a skew-symmetric part w, viz. l = d+ w, yields d = [l]S = de + dp

w = [l]SS = W + we + wp
(2.11)

where 
de =

[
∇
V e V e−1

]S

we =
[
∇
V e V e−1

]SS ;


dp =

[
V eḞ p F p−1V e−1

]S
wp =

[
V eḞ p F p−1V e−1

]SS (2.12)
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yielding the following expression for the rotation rate W

W = Q̇QT = w −
(
we + wp

)
(2.13)

Moreover, the objective derivative ∇a of any second order tensor a reads

∇
a = ȧ−W a+ aW (2.14)

Under small elastic strain assumption, Equation 2.12 reduces to
 de =

∇
V e

we = 0
;


dp =

[
Ḟ p F p−1

]S
wp =

[
Ḟ p F p−1

]SS (2.15)

In addition, assuming tentatively negligible effect of the spin wp in regards with the
spin w (see the assumption of moderate plastic strain in Schieck and Stumpf [71]), Equa-
tion 2.13 reduces to

W = w (2.16)

where the assumption of negligible effects of anisotropy is also used [121].
According to the decomposition of the deformation gradient F in Equation 2.9, when

working with respect to the current configuration, it is needed to use the Zaremba-
Jaumann objective derivative. Alternatively, it is possible to work with respect to the
Q-rotated or co-rotational configuration, by means of a push forward and a pull back
rotations [122 ; 123]. The latter method is used in the following. The rate equations of
the constitutive model are consequently formulated by using time derivatives with respect
to the co-rotational frame:

ȧ
Q

= QT ∇a Q (2.17)

For example the Cauchy stress would read in the context of temperature independent
hypo-elasticity as

∇
σ = C : de → σ̇

Q
= C

Q
: ε̇e

Q
(2.18)

In the sequel, the subscript ·Q is dropped for simplicity.

2.3.2 Irreversible thermodynamics framework
Constitutive state laws and complementary laws respectively derived from the state and
dissipation potentials are expressed in this subsection.

2.3.2.1 State potential and constitutive state laws

The internal variable procedure is herein applied within the irreversible thermodynamics
framework to model the thermo-mechanical behavior of the Ti-6Al-4V grade under con-
sideration. The instantaneous state of the material is assumed to be well described via
the Helmholtz free energy Ψ whose arguments are the absolute temperature T , the elastic
strain tensor εe, the isotropic hardening variable (also called cumulated plastic strain) κ,
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and the kinematic hardening variable α. Therefore, the Helmholtz state potential can be
decomposed into four parts: a recoverable energy Ψe, a purely thermal part ΨT and two
stored energies corresponding to the isotropic and kinematic hardening contributions, ΨpI

and ΨpK , see [124]. Considering tentatively state uncoupling between the two mechanisms
of plasticity and between them and elasticity, the Helmholtz free energy Ψ is taken of the
form

Ψ
(
εe, κ, α;T

)
= Ψe

(
εe;T

)
+ ΨT (T ) + ΨpI (κ;T ) + ΨpK

(
α
)

(2.19)

where ΨpK is taken temperature independent. The specific contributions to the state
potential are defined as



ρΨe

(
εe;T

)
= 1

2ε
e : C : εe − αK (T − T0) trace(εe)

ρΨT = − ρc

2T0
∆T 2

ρΨpI (κ;T ) = h (κ) g (T )

ρΨpK

(
α
)

= 1
3Cα : α

(2.20)

where ρ is the mass density, C is the elasticity stiffness fourth order tensor, with
Cijkl = λδijδkl + µ (δikδjl + δilδjk), λ and µ being the Lamé coefficients, K the bulk
modulus, withK = λ+ 2

3µ, α the thermal dilatation coefficient, T0 the initial temperature,
and c is the specific heat. h (κ) and g (T ) are the stored energy of cold work and the
thermal softening function, respectively, and the scalar C is a kinematic hardening-related
parameter.

The thermodynamic forces derived from the state potential with respect to their con-
jugate variables are given by the constitutive state laws defined below.



σ = ρ
∂Ψ
∂εe

∣∣∣∣∣
κ,α,T

= ρ
∂Ψe

∂εe

∣∣∣∣∣
T

= C : εe − αK (T − T0) I

ρs = −ρ ∂Ψ
∂T

∣∣∣∣∣
εe,κ,α

= −ρ
 ∂Ψe

∂T

∣∣∣∣∣
εe

+ ∂ΨT

∂T
+ ∂ΨpI

∂T

∣∣∣∣∣
κ


= αKtrace

(
εe
)

+ ρc

T0
∆T − h (κ) g′ (T )

r = ρ
∂Ψ
∂κ

∣∣∣∣∣
εe,α,T

= ρ
∂ΨpI

∂κ

∣∣∣∣∣
T

= h′ (κ) g (T )

X = ρ
∂Ψ
∂α

∣∣∣∣∣
εe,κ,T

= ρ
∂ΨpK

∂α

∣∣∣∣∣
T

= 2
3Cα

(2.21)

where σ is the Cauchy stress tensor, s the entropy, r the isotropic hardening force and
X the kinematic hardening force.

Finally, the Gibbs relation reads

ρΨ̇ = σ : ε̇e + rκ̇+X : α̇− ρsṪ (2.22)
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2.3.2.2 Dissipation and complementary laws

Injecting the Gibbs relation into Clausius-Duhem inequality and using ε̇ = ε̇e + ε̇p yields
the following expression for the intrinsic dissipation

D = σ : ε̇− ρ
(
Ψ̇ + sṪ

)
= σ : ε̇p − rκ̇−X : α̇ ≥ 0

(2.23)

which involves force-related quantities A =
(
σ, r,X

)
and flux-related quantities ȧ =(

ε̇p,−κ̇,−α̇
)
. In the context of the normality rule, the dissipation may be rewritten in

the following form

D = Aȧ = Aλ̇
∂F

∂A
≥ 0 (2.24)

where F is the plastic potential meeting the required conditions of positiveness and
convexity and where λ̇ is the positive plastic multiplier. In the context of rate dependent
non-associated plasticity, λ̇ is assumed to derive from a dissipation potential Ω (f), viz.
λ̇ = ∂Ω/∂f , where f represents the yield function.

The yield function f and plastic potential F are written of the form

f
(
σ, r,X, ...

)
= σeq

(
σ,X, ...

)
− σy (r, ...) = σv (κ̇, ...) ≥ 0

F
(
σ, r,X, ...

)
= f + f̂

(
X
) (2.25)

where σeq is the transformed equivalent stress accounting for the different sources
of plastic anisotropy, σy the rate independent yield stress, σv the strain rate induced
overstress or viscous stress, and where ... represents other arguments defined later. f̂

(
X
)

is a function involving non-linearity in kinematic hardening in a non-associated plasticity
formulation.

In this work, the Perzyna approach is employed allowing the positiveness of the yield
function in Equation 2.25 [62]. An alternative method for modeling is by means of a
viscoplastic consistent formulation that includes the viscous component as a strain rate
depending isotropic hardening [125]. However, both approaches can be proven to yield
an equivalent conclusion as pointed out by Heeres et al. [126].

The normality rule accordingly yields



ε̇p = λ̇
∂F

∂σ
= λ̇

∂σeq
∂σ

= λ̇n with n = ∂σeq
∂σ

κ̇ = −λ̇∂F
∂r

= −λ̇∂f
∂r

= λ̇

α̇ = −λ̇ ∂F
∂X

= −λ̇
 ∂f

∂X
+ ∂f̂

∂X

 = λ̇m with m = −
∂σeq
∂X

+ ∂f̂

∂X


(2.26)

These laws are completed by the temperature rise coming from adiabatic self-heating
under high strain rate loading assuming negligible contributions of thermo-elastic and
thermo-plastic couplings [127]. Temperature rise is estimated from dissipation in Equation
2.23, see Longère and Dragon [128], according to

ρcṪ ' D = σ : ε̇p − rκ̇−X : α̇ ≥ 0 (2.27)
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2.3.3 Constitutive equations
Quantities introduced in the previous subsection are now specified for the material under
consideration in agreement with the experimental observations.

2.3.3.1 Transformed equivalent stress σeq

Plastic anisotropy entails a loss of coaxiality between the plastic strain rate and the stress
deviator. As the plastic strain rate is derived from the transformed equivalent stress
according to the normality rule (see Equation 2.26), the plastic anisotropy effects are
accounted for in the expression of the transformed equivalent stress. It is reminded that
in the present case plastic anisotropy manifests through (i) loading direction dependence,
(ii) kinematic hardening, and (iii) strength differential.

We are here considering the transformed equivalent stress σeq as a function of three
variables, namely the current Cauchy stress second order tensor σ, the back stress second
order tensor X, and a fourth order tensor accounting for the texture-induced orthotropy
A.

σeq = σeq

(
σ,X;A

)
(2.28)

In addition, the plastic transformation can be further considered isochoric as it is
thought that the origin comes mainly form slipping and twinning mechanisms which do
not involve a volume change in the material. Therefore, only the deviatoric part of the
stress state is supposed to play a role in the modeling of plasticity.

σ = −pI + s (2.29)

Each source of anisotropy is first studied independently of the others and then a com-
bination of the three sources is proposed.

Texture-induced initial orthotropy: X = 0
Following Karafillis and Boyce [72], we introduce the transformed stress Σ = A : σ

also denoted as the Isotropy Plasticity Equivalent (IPE) stress. The fourth order tensor
A is a linear multiplicative operator involving potential plastic orthotropy. In the case
of an isotropic material, the operator reduces to the identity tensor, viz. A = I. As a
consequence, the transformed stress reads

σeq

(
σ,X;A

)
= σeq

(
Σ, X

)
(2.30)

Table 2.5 reports two definitions of the transformed equivalent stress aiming at ac-
counting for anisotropic plasticity: (i) by incorporating the tensor A directly in the ex-
pression of the equivalent stress, as proposed by Hill [74], and (ii) by incorporating it at
the stress level, as proposed by Karafillis and Boyce [72] (see also Table 2.2).

The fourth order tensor accounting for the orthotropic behavior can be simplified as
a 6x6 matrix according to major and minor symmetries while stress second order tensors
are reduced to vectors according to Voigt or Bechterew notations.
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Table 2.5: Definitions of transformed equivalent stress in the case of orthotropic plasticity.

Hill (1948) K&B (1993)

σ2
eq = 1

2σ : A : σ
Σ = A : σ

σ2
eq = 1

2Σ : Σ

A =



A11 A12 A13
A12 A22 A23
A13 A23 A33

A44
A55

A66


(2.31)

In Hill criterion [74] one has

A11 = − (A12 + A13)
A22 = − (A12 + A23)
A33 = − (A13 + A23)

(2.32)

Accordingly, 6 independent coefficients are sufficient for the description of orthotropy
[72]. The Karafillis and Boyce [72] approach is used throughout this work. The no-
tion of a transformed stress deviator has been widely applied to many yield criteria
(see [73 ; 82 ; 83]).

Kinematic hardening-induced evolving anisotropy A = I

The approach commonly adopted when dealing with kinematic plastic hardening is to
consider the translation of the yield surface by means of the deviatoric back stress X. For
instance, the transformed equivalent stress would read

σ2
eq = 3

2
(
s−X

)
:
(
s−X

)
= 3

2 ŝ : ŝ (2.33)

where ŝ =
(
s−X

)
Strength differential-induced initial anisotropy A = I & X = 0

The strength differential between tension and compression can be assumed to be a type
of anisotropy. As mentioned in the introduction, CPB06 [73], Khan [20] and Longère [91]
propose different methods for describing this effect. In this study, the CPB06 model [73]
is chosen as it allows for a simple definition of the yield surface without resorting to the
Lode angle or a coupling with the viscous component. The CPB06 isotropic yield surface
adds a strength differential parameter k to the definition in Karafillis and Boyce [72]
resulting in the form

σeq
a = 1

m0a
{(|S1| − kS1)a + (|S2| − kS2)a + (|S3| − kS3)a} (2.34)
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where Sp are the eigenvalues of the stress tensor σ, k is the main parameter defining
the material asymmetry, a is a shape parameter of the yield surface, see Hosford [129]
and m0 is a model constant.

The Karafillis and Boyce [72] generalized yield criterion can be recovered for k = 0
(and the Mises criterion with a = 2). The CPB06 criterion in Equation 2.34 can thus be
considered as an extended distortion (without a rotation) of such surface.

Complete transformed equivalent stress A 6= I & X 6= 0
In order to couple kinematic hardening and plastic orthotropy, two approaches can

be considered, see Table 2.6. Following Baltov and Sawczuk [78], the back stress is
first subtracted from the deviatoric stress tensor and the Hill criterion is then applied.
Alternatively, Karafillis and Boyce [72] make use of their linear operator to transform the
difference between the stress tensor and the back force.

On the other hand, coupling plastic orthotropy and strength differential may be
achieved following CPB06 [73] approach. Indeed, the authors apply a linear transfor-
mation to the stress deviator: Σp is defined as the eigenvalues of the transformed tensor
Σ = A : s which replaces s in Equation 2.34, see Table 2.6. The authors initially proposed
a symmetric definition of the 6x6 matrix representation of the tensor A as in Equation
2.31, although further simplifications using a Hill-like matrix can be made to model the
orthotropy as found in Stewart and Cazacu [130].

We are here coupling kinematic hardening, plastic orthotropy and strength differential
by combining Karafillis and Boyce [72] and CPB06 [73] methods. For that purpose, we
are defining the transformed stress eigenvalues as follows, see Table 2.6.

Σ̂p = eig(Σ̂);
Σ̂ = A :

(
s−X

) (2.35)

Therefore, the complete anisotropic criterion reads

σeq
a = 1

m0a

{(
|Σ̂1| − kΣ̂1

)a
+
(
|Σ̂2| − kΣ̂2

)a
+
(
|Σ̂3| − kΣ̂3

)a}
(2.36)

The constant m0 is defined such that the equivalent stress is equal to the uniaxial
stress in tension (compression) if k > 0 (k < 0).

m0
a =

[2
3 (1− |k|)

]a
+ 2

[1
3 (1 + |k|)

]a
(2.37)

The coefficients A55 and A66 are herein assumed to be 1 due to the lack of information
for shear along the normal direction (an alternative approach is to consider A44 = A55 =
A66 as done by Tuninetti and Habraken [33]). The capabilities of such yield stress criterion
can be easily appreciated in Figure 2.5 which represents the yield surface in plane stress
conditions.
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Figure 2.5: Distorted yield surface

Table 2.6: Anisotropic criteria

B&S (1965) K&B (1993) CPB06 Present approach

ŝ = s−X

σ2
eq = 1

2 ŝ : A : ŝ

Σ̂ = A
(
σ −X

)
σ2
eq = 1

2Σ̂ : Σ̂

Σp = eig(Σ)
Σ = A : s

σeq = σeq (Σp, k)

Σ̂p = eig(Σ̂)
Σ̂ = A :

(
s−X

)
σeq = σeq

(
Σ̂p, k

)

2.3.3.2 Viscous stress σv
Regarding the rate dependent formulation, the experimental results show the existence
of a strain rate induced overstress independent of the anisotropy axes and plastic strain
and whose temperature dependence within the temperature range of interest has been
tentatively neglected. The Norton-Perzyna law is proposed to describe such behavior
[61 ; 62].

σv = Yvκ̇
1/nv (2.38)

where Yv and nv are material coefficients.
By following the approach in Perzyna [62], the potential described in Equation 2.24 is

accordingly of the form

Ω (f) = 1
nv + 1〈

f

Yv
〉nv+1 (2.39)

Indeed, by applying the normality rule, the Norton law in Equation 2.38 is retrieved

κ̇ = λ̇ = ∂Ω
∂f

= 〈 f
Yv
〉n = 〈σv

Yv
〉n (2.40)
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2.3.3.3 Rate independent yield stress σy
The radius of the elasticity domain is defined as a temperature dependent initial threshold
stress σy0 (T ) plus the stress related to the isotropic hardening r(κ, T ). Both the initial
threshold stress and isotropic hardening force are assumed to depend on temperature ac-
cording to the same thermal softening function g (T ):

σy = σy0 (T ) + r (κ, T ) = g (T )R (κ) (2.41)
Strain hardening

For the definition of the isotropic hardening, the Swift (power) law and the Voce
(exponential with saturation) law are widely used (see [47 ; 101] for a linear combination of
both). For the material under consideration, some initial constant calibration (see Figure
2.10 later) from the monotonic tests have shown that Swift law fits well the experimental
curves. On the other hand, Chun et al. [96] and Carbonnière [97] have shown that a
coupling between isotropic and kinematic hardening is well described by adding a negative
Voce-type exponential law in the expression of the strain hardening function.

Therefore, a combination of Swift and (negative) Voce expressions is herein considered
in view of coupling isotropic and kinematic hardening. The adopted forms for the strain
hardening function h′ (κ) in Equation 2.21 and radius R (κ) in Equation 2.41 read

h′ (κ) = Q0 (ε0 + κ)n − C

D
(1− exp (−Dκ))

R (κ) = R0 + h′ (κ)
(2.42)

where R0, Q0, ε0 and n are the Swift law-related positive material constants and C
and D are (negative) Voce law-related constants.

Thermal softening
As previously evidenced by the experimental campaign, the thermal softening function

g (T ) is of the form

g (T ) = 1− 〈 T − Tref
Tm − Tref

〉mT (2.43)

where Tm is the melting point and Tref and mT material constants.

2.3.3.4 Complementary laws

Following the decomposition made in Equation 2.26, the plastic strain rate is expressed
as

ε̇p = κ̇
∂σeq
∂σ

= κ̇n (2.44)

where n = ∂σeq/∂σ represents the yield direction. It can be shown that the explicit
expression for n is (see Appendix A)

n =
3∑
p=1

 1
ma

0

 |Σ̂p| − kΣ̂p

σeq

a−1 (
sgn

(
Σ̂p

)
− k

) J : A :
(
vp ⊗ vp

)
(2.45)
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where vp is the eigenvector corresponding to the eigenvalue Σ̂p. The outer product
· ⊗ · is here used and J is the fourth order tensor projecting σ onto its deviatoric plane s.
The deviator operator J is defined in the index form as

Jijkl =
[1
2 (δikδjl + δilδjk)−

1
3δijδkl

]
(2.46)

To describe nonlinear kinematic hardening, function f̂
(
X
)
in Eq 2.25 is taken of the

form (see [92])

f̂
(
X
)

= 3D
4CX : X (2.47)

The rate of the kinematic hardening variable in Equation 2.26 accordingly reads

α̇ = −κ̇
(
∂f

∂X
+ 3D

2CX
)

= κ̇m (2.48)

It can be easily shown that ∂σeq/∂X = −n. With this expression, the normal tensorm
recovers the non linear definition seen in Armstrong and Frederick [94] and Chaboche [95]:

m = n− 3D
2CX

α̇ = ε̇p −Dκ̇α
(2.49)

It is noteworthy that the material constants C and D coincide with the Voce law
constants in Equation 2.42.

Regarding the evolution of temperature, injecting the different expressions in Equa-
tions 2.44 and 2.49 into Equation 2.27 yields the following expression form for the tem-
perature rise

Ṫ = 1
ρc

(
σeq − r + 2

3CDα : α
)
κ̇ (2.50)

As mentioned previously, the temperature rise is usually estimated via the inelastic
heat fraction β, also known as the Taylor-Quinney coefficient [63], defined as the fraction
of the plastic work rate converted into heat, or

Ṫ = β

ρc
qκ̇ (2.51)

The coefficient β is often arbitrarily assumed constant with a value typically ranging
from 0.8 to 1.0 without much physical motivation to back it up [125] and despite many
experimental evidences of its dependence on strain and even strain rate and temperature
itself (see Macdougall and Harding [36]). As done in Longère [32], this coefficient may be
deduced consistently from the constitutive model. In the present case, it reads

β = D
qκ̇

=

[
σeq − r + 3D

2C

(
X : X

)]
q

(2.52)

This expression for β intrinsically accounts for potential dependence on strain, strain
rate and temperature and is used in the sequel.
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2.3.4 Summary of the constitutive equations
Rate equations of the constitutive model are summarized below.
Constitutive state laws

σ̇ = C : ε̇e − αKṪI

Ẋ = 2
3Cα̇

ṙ = h′′ (κ) g (T ) κ̇+ h′ (κ) g′ (T ) Ṫ

(2.53)

with Cijkl = λδijδkl + µ (δikδjl + δilδjk) and
h (κ) = Q0

n+ 1 (ε0 + κ)n+1 − C

D2 (Dκ+ exp (−Dκ))

g (T ) = 1− 〈 T − Tref
Tm − Tref

〉mT

(2.54)

Yield function

f
(
Σ̂, k, r

)
= σeq

(
Σ̂p, k

)
− [R0g (T ) + r (κ, T )] = σv (κ̇) ≥ 0 (2.55)

where

σaeq
(
Σ̂p, k

)
= 1
m0a

{(
|Σ̂1| − kΣ̂1

)a
+
(
|Σ̂2| − kΣ̂2

)a
+
(
|Σ̂3| − kΣ̂3

)a}
Σ̂p = eig(Σ̂)
Σ̂ = A :

(
s−X

) (2.56)

where the anisotropy matrix is as defined in Equation 2.31.
Complementary laws 

κ̇ = 〈 f
Yv
〉nv

ε̇p = κ̇n

α̇ = ε̇p −Dκ̇α

Ṫ = βq

ρc
κ̇

(2.57)

where



n =
3∑
p=1

 1
ma

0

 |Σ̂p| − kΣ̂p

σeq

a−1 (
sgn

(
Σ̂p

)
− k

) J : A :
(
vp ⊗ vp

)

β =
σeq − r + 2

3CDα : α
q

q =
√

3
2s : s

(2.58)
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with Jijkl = 1
2 (δikδjl + δilδjk)− 1

3δijδkl.
Initial conditions



εp (0) = 0
X (0) = 0
r (0) = 0
T (0) = T0

(2.59)

Material constants

Elasticity: E = 110 GPa, ν = 0.3

Anisotropy (9): a, k, A11, A22, A33, A44, A12, A23, A13, A55 = A66 = 1

Viscosity (2): Yv, nv

Hardening (6): R0, Q0, ε0, n, C,D

Temperature (2): mT , Tref , Tm ' 1600 ◦C

2.4 Material coefficients calibration
The commercial software Z-set is chosen to carry out the identification of the material
coefficients. Three stages are considered for the calibration of the material parameters:
(i) 9 coefficients for the anisotropy (using the von Mises criterion as the starting point
of the optimization, i.e. a = 2, k = 0 and Aij = Iij), (ii) 2 coefficients for the viscosity
(once the anisotropy has been identified) and finally (iii) 8 coefficients for the hardening
identification. The three-step calibration plus the post-verification is depicted in Figure
2.6.

A volume element under uniaxial tension and compression at various strain rates
along various directions is considered for the calibration in Z-set. The inverse-problem
identification of the material constants is performed using a gradient-based optimization
method [131]. In particular, the Levenberg-Marquardt algorithm [132] is employed for
the least-square minimization between the numerical and experimental results:

C
(
p
)

= 1
2

T∑
i=1

N∑
j=1

wj
(
σEXPj (ti)− σNUMj

(
p, ti

))2
(2.60)

where C is the cost function to minimize, p the set of material constants to identify
and the subscripts i and j are used to denote different times and tests respectively. For
confidentiality reason, the values of the coefficients are not given here. Regarding the
weight parameter wj, it is chosen to have a value of 1 for the tests at room temperature
and quasi-static regime and a value of 1/3 for high temperature and high strain rate
simulations.
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Representative Volume Element
Calibration

Specimen Structure
V & V

1- Anisotropy: {a, k,Aij} Quasi-static monotonic tests at ε̇ ' 10−3 s−1:
(Tens.,Comp.) x (RD, TD, DD, ND)

2- Viscosity: {Yv, nv} Quasi-static & Dynamic tests:
Comp.: (RD, TD, DD, ND) x (10−3,10−2,300,103 s−1)
Tens. QS: (RD, TD, DD, ND) x (10−3,10−2 s−1)
Tens. Dyn (300,103 s−1) used for verification

3- Hardening/Softening:
{R0, Q0, ε0, n, C,D,mT , Tref}

Quasi-static monotonic and reverse tests at ε̇ ' 10−3 s−1:
Monotonic.: (Tens.,Comp.) x (RD, TD, DD, ND)
Reverse: (RD, TD, DD)

4- Verification & Validation
Tensile notch and shear specimens at ε̇ ' 10−3 s−1:
Notch: (R2, R05, R2x05) x (RD, TD, DD)
Shear: (RD, TD, DD)

Figure 2.6: Flow chart of the 3-step calibration + verification procedure.

.mat file modified

Initial values p0i
anisotropy.py hardening.py

test 1
test 2

...
test n

Cost function
C (pi)

C (pi) < tol
Update

pi → pi + δpi
pi

Figure 2.7: Inverse identification flowchart.

2.4.1 Preliminary considerations
Figure 2.7 shows a more precise flow chart of the algorithm used to calibrate the material
coefficients. The calibration takes some initial input parameters as starting coefficients
given by the user. Two python scripts are employed to modify the material, in the form
of a text file, in terms of anisotropy matrix and hardening evolution in the optimization
loop. Several numerical simulations on a representative volume element are carried out
and compared to the experimental data. The calibration has been reached when the cost
function C

(
p
)
in Equation 2.60 converges to a minimum value. Otherwise, an update of

the material coefficients is done as an attempt to better fit the experimental data.
The representative volume element is depicted in Figure 2.8. It is a node-less material

element with one integration point. Denoted in the Z-set manual as ’rve3d’, it allows to
directly impose a total deformation on the element and to output the related stress [133].

2.4.1.1 Strain range of the experimental curves to be used

Conventionally, the uniaxial loading is only assured before the onset of necking which
involves a non-uniform triaxial stress state. The beginning of necking is identified with
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{ε, σ}

Figure 2.8: Representative Volume Element employed for the material calibration.

0   0.05 0.1 0.15 0.2 0.25

ε

0.8

0.9

1  

1.1

1.2

σ̃
(−

)

Nominal stress
True stress
Calibration until necking onset
Calibration close to σmax

Figure 2.9: Stress vs. strain. Portion of the curves used in the calibration. ε̇ ' 10−3 s−1,
T = 25 ◦C and Rolling direction RD.

a maximum nominal stress value (following the Considère instability criterion [134]) as
marked in Figure 2.9. However, by employing this method with an early necking offset,
subsequent simulations using the smooth flat tension specimen are not only unable to
reproduce a correct striction but they also yield an indefinite hardening in the nominal
stress (largely different from the experimental data). In an attempt to reduce this effect,
the limit strain of the curve employed during the calibration was extended in order to
widen the strain range. The new limit was set close to the maximum true stress. As
seen in Figure 2.9, this extra segment allowed the calibration to predict a more realistic
hardening. This method was applied for all tension tests.

2.4.1.2 Choice of the anisotropic matrix

Regarding the 6x6 matrix used to transform the stress, two definitions can be here consid-
ered. On the one hand, a 6x6 matrix, denoted here as full matrix, defined as in Equation
2.31 comprises 9 independent parameters. It is to be noted that the coefficients A55 and
A66 related to the shear along the normal direction are not calibrated and taken as one
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(see Equation 2.61). On the other hand, a reduced matrix containing only six coefficients
(Equation 2.62), as the Hill criterion does, is employed considering the additional con-
strain Ai1+Ai2+Ai3 = 1 with i = 1, 2, 3 from Equation 2.32 (see for instance, Stewart and
Cazacu [130]). The full matrix definition is chosen for the material under consideration
but the reduced form of the orthotropic matrix is here used for comparison purposes.

A
full

=



A11 A12 A13
A12 A22 A23
A13 A23 A33

A44
1

1


(7 coeff.) (2.61)

A
red

=



1− A12 − A13 A12 A13
A12 1− A12 − A23 A23
A13 A23 1− A13 − A23

A44
1

1


(4 coeff.) (2.62)

Regarding the latter definition in Equation 2.62. The calibration package in Z-set
offers several optimization algorithms accounting for constraints, however the Levenberg-
Marquardt is not one of those [135]. It is needed to enforce this constraint by using the
python script "anisotropy.py" in Figure 2.7. Before running the simulations and after the
previous iteration update, the material file is modified accordingly with this script. With
this method, only 4 anisotropy materials are calibrated for the reduced matrix.

2.4.1.3 Choice of the isotropic hardening

Before identifying the second order tensor modelling the anisotropy, one experimental
curve is employed to find a temporary simple hardening law which can help identifying
all the uniaxial experiments. Figure 2.10 shows a comparison of the Swift (power), Voce
(exponential) and extended Voce (exponential plus a linear term) applied in the present
material (see Table 2.3). The main inconvenient with the Voce law is the saturation which
clearly does not follow the behaviour of the experimental data. The Voce plus linear term
allows to better fit the results globally although greater errors are detected on the initial
yield of the material (plus indefinite hardening at larger strains). Finally, the Swift law
seems to provide the best fit of the experimental results.

2.4.1.4 Choice of the kinematic hardening

Regarding the kinematic hardening, two approaches were first tested: (i) an uncoupled
isotropic and kinematic strategy where the C in Equation 2.54 is zero and (ii) a coupled
strategy where such coefficient equals that of the kinematic hardening expression. Figure
2.11 shows the improvements made by coupling both types of hardening. By doing so,
both the initial yield and the load reversal can be well reproduced without a significant
loss of accuracy.

PhD Thesis - Miguel Ruiz de Sotto - 85 -



2.4 Material coefficients calibration
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Voce (exponential)
Voce extended
Power Law

Figure 2.10: Stress vs. strain. Isotropic hardening laws comparison with the experimental
data. ε̇ ' 10−3 s−1, T = 25 ◦C and Rolling direction RD.

-0.02 0    0.02 0.04 

ε

-1.6

-1.2

-0.8

-0.4

0   

0.4 

0.8 

1.2 

1.6 

σ̃
(−

)

Experimental

Uncoupled

Coupled

Figure 2.11: Stress vs. strain. Kinematic hardening laws comparison with the experimen-
tal data. ε̇ ' 10−3 s−1, T = 25 ◦C and Rolling direction RD.
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2.4.2 Step 1: Identification of the anisotropic plasticity related
coefficients

In this first step, see Figure 2.6, coefficient k and the A matrix components in Equation
2.61 are fitted (the value of a has been initially considered 2 and subsequent optimizations
showed no significant impact on the calibration). For that purpose, the stress-strain
tension and compression curves from the monotonic quasi-static tests run at 10−3 s−1 are
used.

A 6-substep procedure is followed in this Step 1 to identify the anisotropic plasticity
related coefficients, see Figure 2.12. During the first substeps (1 to 3), the reduced
matrix form is first considered due to the low number of coefficients involved. The first
three diagonal terms (the off-side terms are defined by the constraint above mentioned)
together with the strength differential parameter are first calibrated using the rolling
RD, transverse TD and normal ND directions and the hardening values from Figure 2.10
in the preliminary section. Afterwards, the fourth diagonal term A44, with the role of
transforming the shear stress component, is identified. A full anisotropy matrix taking
7 coefficients plus the strength differential parameter k is calibrated using the reduced
matrix results as the starter point for the calibration (substep 4). Finally, in substep 5,
the hardening coefficients are re-identified and as a last substep, the new full and reduced
matrix are again identified.

1 Reduced matrix k,A11, A22, A33

(Tens.,Comp.) x (RD, TD, ND)
1 test per direction

2 Reduced matrix k,A44

(Tens.,Comp.) x (DD)
1 test per direction

3 Reduced matrix k,A11, A22, A33, A44

(Tens.,Comp.) x (RD, TD, ND, DD)
2 tests per direction

4 Full matrix k,A11, A22, A33, A12, A23, A13, A44

(Tens.,Comp.) x (RD, TD, ND, DD)
1 test per direction

5 Full matrix R0, Q0, n, ε0

(Tens.,Comp.) x (RD, TD, ND, DD)
2 tests per direction

6a Full matrix: k,A11, A22, A33, A12, A23, A13, A44

(Tens.,Comp.) x (RD, TD, ND, DD)
2 tests per direction

6b Reduced matrix k,A11, A22, A33, A44

(Tens.,Comp.) x (RD, TD, ND, DD)
2 tests per direction

Reduced matrix
identification

Full matrix
identification

Hardening
re-identification

Figure 2.12: Anisotropic plasticity identification stages in step 1 (see Figure 2.6).
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Figure 2.13 shows the result of the last step of the calibration considering both types of
anisotropy matrices. Overall, the tension-compression differential is well captured as well
as the orthotropy for both types of loadings. Differences between both types of matrices
are mostly subtle except for the normal direction ND where the simple matrix produces
a comparatively worse performance.

0   0.1 0.2 0.3 0.4 

ε
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1.6 

σ̃
(−
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Rolling Direction
Transverse Direction
Diagonal Direction
Normal Direction
Exp.
Full Matrix
Simple Matrix

(a) Tension
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Rolling Direction
Transverse Direction
Diagonal Direction
Normal Direction
Exp.
Full Matrix
Simple Matrix

(b) Compression

Figure 2.13: Stress vs. strain. Anisotropic plasticity identification from step 1 (see Figure
2.6). ε̇ ' 10−3 s−1 and T = 25 ◦C.

The yield surface from both calibrations are plotted together with the experiment data

- 88 - PhD Thesis - Miguel Ruiz de Sotto



Chapter 2 : Constitutive modeling

in the TD-RD plane in Figure 2.14. The results are normalized with the yield stress. It can
be seen that (i) the experimental anisotropy is overall well captured using both anisotropy
strategies and (ii) no major differences are found between both surfaces except for the
normal direction, where the calibrated surfaces is worse identified as above mentioned.

-1.5 -1 -0.5 0 0.5 1 1.5

σxx/σy
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σ
y
y
/
σ
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Full Matrix

Simple Matrix

Mises

Uniaxial Exp.

Figure 2.14: Calibrated yield locus in the (TD−RD) plane from step 1 (see Figure 2.6).
ε̇ ' 10−3 s−1 and T = 25 ◦C.

2.4.3 Step 2: Identification of the viscoplasticity related coeffi-
cients

The viscosity coefficients Yv and nv from Equation 2.57 are identified in this second
step. As seen with the high strain rate tension test in Figure 1.23, the combined effect
of self-heating induced softening at high strain rate and the poor camera resolution is
responsible for a poor measurement of the hardening curves. For this reason, the viscosity
identification uses only compression stress-strain curves from monotonic quasi-static and
dynamic loading plus the tension curves in the quasi-static regime. Figure 2.15 shows
a comparison with the identified numerical viscous model with the experimental data.
Norton-Perzyna law in Equation 2.38 proves itself the right approximation to reproduce
the overstress observed in the experiments.

Moreover, the tension yield stress in the dynamic regime (at low strains, i.e. be-
fore significant self-heating induced softening) which is not used for identification is well
estimated.
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Figure 2.15: Stress at 2 % plastic strain vs. plastic strain rate. Calibration of the strain
rate dependence from step 2 (see Figure 2.6). T = 25 ◦C.
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Figure 2.16 shows the results of the calibration along the rolling direction. It can be
seen that the stress is well captured as well as its hardening for all the strain rate regimes.
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Figure 2.16: Stress vs. strain. Viscous stress comparison after calibration from step 2
(see Figure 2.6). T = 25 ◦C and Rolling direction RD.

2.4.4 Step 3: Identification of the hardening and softening re-
lated coefficients

The last part of the identification is the mixed isotropic and kinematic hardening and
thermal softening coefficients R0, K, n, C,D,mT , Tref from Equation 2.54. In order to
ensure convergence to an optimal calibration, a 4-substep procedure was followed: first
only the tension-compression along the rolling RD and transverse TD direction was used
for the calibration. Secondly, the uniaxial experimental data were later added. The reverse
loading along the diagonal direction DD and the uniaxial loading along the diagonal DD
as well as the normal ND direction were considered (see Figure 2.17) in a third stage.
Finally, the thermal softening related coefficients are calibrated.

Figure 2.18 summarizes the prediction capability of the model were both the monotonic
and the reversed loadings are well fitted at room temperature.

Finally, the thermal softening is identified by fixing all the previous material coeffi-
cients. In order not to distort the results at room temperature a higher weight is imposed
at this temperature. As shown in Equation 2.54, the thermal softening function uses
three coefficients: the melting temperature of the material Tm, a reference temperature
Tref and the exponent coefficient mT . Two approaches were used for the calibration of
the temperature effect: an identification of mT with Tref = 25 ◦C (Figure 2.19a) and
an extended calibration fitting both mT with Tref (Figure 2.19b). The results show an
overall satisfactory tendency for the tension loading with a slightly worse prediction for
the compression. By fixing Tref = 25 ◦C no major errors are induced.
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1 Hardening at room temperature R0, Q0, n, C,D
Identified : a, k,A11, A22, A33, A12, A23, A13, A44, Yv, nv, ε0

(Reverse loading) x (RD, TD) (Quasi-static)
1 test per direction

2 Hardening at room temperature R0, Q0, n, C,D
Identified : a, k,A11, A22, A33, A12, A23, A13, A44, Yv, nv, ε0

(Rev., Tens., Comp.) x (RD, TD) (Quasi-static)
1 test per direction

3 Hardening at room temperature R0, Q0, n, C,D
Identified : a, k,A11, A22, A33, A12, A23, A13, A44, Yv, nv, ε0

(Rev., Tens., Comp.) x (RD, TD, ND, DD) (Quasi-static)
2 tests per direction for the monotonic loadings

4 Thermal Softening mT , Tref

Identified : a, k,A11, A22, A33, A12, A23, A13, A44, Yv, nv, R0, Q0, n, ε0, C,D

(Tens., Comp.) x (RD) x (20 ◦C, 170 ◦C,245 ◦C, 315 ◦C) (Quasi-static)
2 tests per direction

Figure 2.17: Hardening identification stages from step 3 (see Figure 2.6).
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Figure 2.18: Stress vs. strain. Hardening calibration stages from step 3 (see Figure 2.6).
ε̇ ' 10−3 s−1, T = 25 ◦C and Rolling direction RD.
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Figure 2.19: Stress vs. strain. Calibration of the thermal softening function from step 3
(see Figure 2.6). ε̇ ' 10−3 s−1 and Rolling direction RD.

It is noteworthy that the temperature used during the experiments are greater than or
equal to the room temperature. For temperatures lower than Tref = 25 ◦C, the thermal
softening would not be defined. Under these conditions, the thermal softening function
shall be 1 for temperatures lower than the reference temperature.

2.4.5 Comments

As explained in the Preliminary Considerations section 2.4.1, two anisotropy matrices were
proposed. In Table 2.7, a comparison of the optimization error between both matrices
during the three main stages in the calibration is shown. Initially, the cost function error is
approximately 60 % higher for the reduced matrix identification. However, as the viscosity
as well as the hardening are further identified, this difference is appreciably reduced as
the errors concerning the anisotropy become less important to the accumulated error of
the complete model calibration (anisotropy+viscoplastic+hardening).

Table 2.7: Comparison of the cost function after each stage for both types of matrices.

Stage N° tests Error
Difference

Anisotropy 17 +59.63 %
Viscosity 61 +3.46 %
Hardening 20 +6.52 %

The three-step calibration strategy from Figure 2.6 has allowed the identification of
the material by small groups of coefficients minimizing the risk of initial value dependence.
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2.5 Concluding remarks
The extensive experimental campaign detailed in the previous section has evidenced that
the Ti-6Al-4V grade under consideration is subject to significant (i) anisotropic plas-
ticity which manifests through loading direction dependence, kinematic hardening and
strength differential, (ii) isotropic strain hardening, (iii) rate dependence and (iv) ther-
mal softening. The irreversible thermodynamics framework combined with a finite strain
formulation has been here employed to build a constitutive model that reproduces the
mechanical behavior observed in the previous chapter.

The plastic yielding condition is defined through a yield criterion and a plastic potential
accounting for the anisotropy of the material (non associated plasticity). This is done with
an extended definition of the equivalent stress proposed by Karafillis and Boyce [72] and
Cazacu et al. [73].

The additional complementary laws used to close the problem are the Norton vis-
coplastic law, a non-linear coupled mixed hardening and a consistent temperature evolu-
tion related to the plastic dissipation.

The model has been satisfactorily identified by using the uniaxial tension and compres-
sion experimental data, leaving the notched, tension-induced shear and hat-shaped spec-
imens for verification purposes. Due to the large quantity of material constants present
in the model, a three-step identification procedure has been carried out. The anisotropy
was first calibrated followed by the viscous component and final hardening contribution
(thermal softening included). Although the error slightly increases as new coefficients are
considered in the model, the overall performance reproduces all the experimental data.
Some deviations may be found related to the viscosity at high strain rates as well as high
temperatures.

Accounting for damage and/or localization is to be considered in future works.
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CHAPTER 3 Numerical simulation

The implementation of the numerical version of the model as a user material
subroutine in the commercial finite element code LS-DYNA is here presented.
The constitutive model previously proposed is integrated employing an explicit
time integration scheme and the elastic prediction-plastic correction method is
detailed. Simulations on Representative Volume Elements (RVE) are carried out
to compare the performance of the subroutine coded in LS-DYNA with respect to
another software (Z-set). Finite Element models of the geometries utilized during
the experimental campaign are carried out to asses the validity of the numerical
model at the scale of a structure with respect to experimental data.
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3.1 Introduction

3.1 Introduction
This section aims at showing the numerical procedure used to implement the material
constitutive equations as a user material subroutine in a commercial finite element code
(LS-DYNA). As a preamble, a few comments are done regarding the numerical strategies
available in literature. Afterwards, an explicit time integration algorithm of the consti-
tutive rate equations is proposed. A verification on two levels is then conducted: first
at the representative volume element scale, where the code performance (in LS-DYNA)
is compared to Z-set commercial software (previously used for the material constants
calibration); second, at the specimen level, where validation is made by comparing the
different experimental results with the corresponding numerical simulations. Finally, some
conclusions on the code’s applicability are drawn.

The Finite Element explicit code LS-DYNA has been chosen for the implementation
of the constitutive models as it is largely used in the industry. Explicit codes are well
suited for solving initial-boundary value problems involving high speed phenomena such
as the bird strike ingestion [136]. In addition, LS-DYNA allows for the definition of user
coded constitutive models and the coupling with other formulations such as the SPH
(Smoothed-Particle Hydrodynamics) elements.

3.2 Some comments on the numerical integration
An initial-boundary value problem (IBVP) involving spatial quantities may be written in
the condensed form:

Equilibrium Eq. M v̇ + F int (x, v, t)− F ext (x, v, t) = 0 on Ω (3.1a)

Kinematic Eq. l = ∂v (x)
∂x

on Ω (3.1b)

Constitutive Eq. ∇
σ = L

(
l
)

on Ω (3.1c)
Boundary Cond. v = vg on ∂Ωu and σ · n = T g on ∂ΩT (3.1d)
Initial Cond. X (t = 0) = X0 (3.1e)

where x is the position, v the velocity and t the time. L(·) is a generic constitutive
function, Ω the whole volume under consideration, ∂Ω its boundary. Finally, n is the
normal to the boundary, vg is a prescribed velocity field on the boundary and T g a
prescribed force on the boundary.

When complex geometries or/and loadings are involved, the solution to this problem is
obtained by numerical means. The above mentioned equations have then to be discretized
in space and in time.

3.2.1 Spatial discretization
The Finite Element method, well adapted to solve the IBVP involving structures, is
chosen here for the spatial discretization [137]. The field variables, like the displacement,
are approximated as
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u (x, t) ' ũ (x, t) = N (x) û (t) (3.2)
where the continuous displacement u is assumed to be approximated by the discrete

one ũ which is computed through interpolation of the displacements û (t) at the nodes
with an interpolation function N (x), the definition of which is dependent on the element
formulation.

The mass matrix M , the internal and external forces F int and F ext in Equation 3.1a
can be rewritten involving the previous notation as [137]

M =
∫

Ω
ρNT (x)N (x) dΩ

F int =
∫

Ω
ρBT (x) : σdΩ

F ext =
∫

Ω
ρNT (x) b̂dΩ +

∫
∂Ω
NT (x) t̂dS

(3.3)

where the operator B is built from the partial derivations of the shape functions so
that ε = B û. b̂ and t̂ are the body and surface forces at the nodes respectively.

The solution to these integrals is generally solved numerically using the Gaussian
quadrature, i.e. it is approximated by a weighted sum of the function to integrate at
specific points g as

∫ 1

−1
f (x) dx '

GP∑
g=1

wgf (xg) (3.4)

By using g-points of the Gaussian quadrature, the integration yields an exact solution
for polynomials of a degree of 2g − 1. For instance, in the case of an eight-node 3D solid
element, eight Gauss or integration points are sufficient to obtain an exact integration of
a linear shape function.

Three 3D solid element types are available in LS-DYNA (see [138]):

elform 1 Reduced integration (R), i.e. a single integration point located at the center of
the element

elform 2 Selectively reduced (S/R) integration 8-node solid element (8 integration points
but assumption of constant pressure throughout the element)

elform 3 Fully integrated (F) quadratic 8-node with nodal rotation (equivalent of a 20-
node quadratic element)

The reduced integration formulation (R) has the lowest computational cost. It is
easily subject to hourglass (spurious deformation modes) but prevents any shear locking
(stiffer numerical solution) ocurring in coarse meshes. The selectively reduced (S/R)
formulation uses eight integration nodes, implying a higher computational time. However,
with this strategy, the pressure is considered constant throughout the element avoiding
volume locking [139]. Finally, the quadratic 8-node solid element (F) considers the nodal
rotations as extra degrees of freedom [140]. This last formulation sensibly increases the
computational cost and it can be subject to volume locking near incompressible states.

In the present work, the second formulation, i.e. S/R fomulation, is used as a com-
promise between time efficiency and precision. However, a comparison of the different
formulations will be later shown.
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Input:
- Geometry
- Material
- Initial & Boundary Cond.
- Contacts
- ...

Working Conf.
t = ti

vi+1, ui+1 → li+1

User Material
∆σ = L

(
li+1

)

Convergence t = tend

New working
configuration

δu = K−1Ri+1

ti+1 = ti + ∆t

li+1

∆σ

yes

no

no

yes

Figure 3.1: Flow chart for the time integration of the equilibrium and constitutive equa-
tions (LS-DYNA).

3.2.2 Time discretization
Regarding the time discretization, the Finite Difference method is employed. Figure 3.1
shows a schematic flowchart of the algorithm used to integrate the solution at every time
increment. The algorithm comprises first, an integration of the equilibrium equation
where the velocity/displacement field, and hence, the strain rate/strain field is computed.
Secondly, the integration of the constitutive equations is done by updating the stress field
(blue box in Figure 3.1). This chapter is focused on the latter with the proposition of
an explicit user-coded material for the LS-DYNA software that takes as input the strain
field computed from the equilibrium equations and gives as output an updated stress.

3.2.2.1 Time integration of the equilibrium equations

Motivated by the Taylor series expansion, numerical schemes such as Newmark’s provide
a numerical approximation of the displacement as a function of its derivatives and second
derivatives at a given discretized time instants ti [141].


vi+1 = vi + ∆t

[
(1− γ) v̇i + γv̇i+1

]
xi+1 = xi + ∆tvi + ∆t2

[(
1− β

2

)
v̇i + βv̇i+1

] (3.5)

where ∆t is the time increment and β and γ are numerical coefficients of the algorithm.
For values β = 1/4 and γ = 1/2 the algorithm is implicit and unconditionnaly stable [141].
For β = γ = 0 an explicit expression is obtained.
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LS-DYNA uses the explicit Central Difference Scheme (CDS) defined as [138]v
i+ 1

2 = vi−
1
2 + ∆tv̇i

xi+1 = xi + ∆tvi+ 1
2

(3.6)

Contrary to implicit schemes, the central difference scheme is conditionally stable and
the time increment must satisfy the Courant–Friedrichs–Lewy condition [142].

∆t < ∆tCFL = le
c̃

(3.7)

where le is a characteristic length (typically the minimum element size) and c̃ the
maximum wave speed defined as

c̃ =

√√√√ E (1− ν)
ρ (1 + ν) (1− 2ν) (3.8)

By default, the commercial software LS-DYNA uses an explicit integration of the rate
equations although an implicit formulation is also available.

3.2.2.2 Time integration of the rate constitutive equations

Regarding the time integration of the rate constitutive equations, two aspects are worth
considering: the numerical method, i.e. explicit/implicit, and the frame indifference, i.e.
the objectivity notably.

As explained in Longere [123] there are two main methods to integrate the rate quan-
tities: by working in the current configuration or by working in a Q-rotated frame.

Global frame objective update
The time integration is directly done in the current configuration using Equation 2.14

σ̇ = ∇
σ +W σ − σW (3.9)

where the spin W has been approximated here to the skew-symmetric part of the
velocity gradient ω (see Equation 2.16). The term corresponding to the objective rate
can be directly computed from the constitutive equations (see Hughes and Winget [122]).
The time derivative has then the form

σ̇ = L
(
d
)

+ ω σ − σ ω (3.10)
After discretization of Equation 3.10, the stress update between two time increments

ti → ti+1 is composed of the sum of two components as

σi+1 = σi + ∆σPC + r∗

= σi + ∆tL
(
li
)

+
(
ω∗σ∗ − σ∗ω∗

) (3.11)

where the first term is computed by means of a prediction-correction algorithm (see
the method in Section 3.3) and the second is an objective correction. The instant ·∗ can
refer to the previous time step ti, the next one ti+1 or something in between i + α with
α ∈ [0, 1]. In the case of LS-DYNA, the known time instant ti is chosen for the objective
integration.
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Local frame objective update
In the case of a material having frame dependent properties, it can be more convenient

to work in the Q-rotated frame (see Vadillo et al. [125]). With this approach the variables
such as the stress or strain tensors are rotated before the material integration and rotated
back after the stress update with a rotation Q. With this strategy, the constitutive
equations are expressed as

σ̇
Q

= QT∇σ Q = QTL
(
l
)
Q (3.12)

For the case where ∇σ = C : d, the above equation can be rewritten as

σ̇
Q

= C
Q

: d
Q

(3.13)

where both the stress tensor, strain tensor and the tangent operator C have been
rotated to a reference configuration.

If the spin W is explicitly known but not Q, the rotation matrix is related to its spin
tensor as

Q̇ = WQ (3.14)

The integration of which can be done as [123]

Qn+1 = Kn+αQn with Q0 = I (3.15)

where the tensor K is function of the spin as

Kn+α =
[
I − 1

2ω
n+α∆t

]−1 [
I + 1

2ω
n+α∆t

]
(3.16)

where the parameter α is generally taken as 1/2 (mid-point rule).
Therefore, the stress update rotation would be composed of three steps:

Rotation to reference frame σn
Q

= QnTσ Qn, ∆ε
Q

= QnT∆εQn

and other frame-dependent variables.

Integration in the local frame σn+1
Q

= σn
Q

+ ∆σ
Q

= σn
Q

+ LQ
(
∆ε

Q

)
and

Qn+1 = Kn+αQn

Rotation to global frame σn+1 = Qn+1σn+1
Q

Qn+1T

and other frame dependent variables.

3.3 Numerical implementation
Figure 3.2 shows the flowchart of the algorithm followed in the user material proposed
here. The numerical time integration of the constitutive equations takes place in the
co-rotational frame. This means a push forward operation has been previously per-
formed [123]. The strategy used to integrate the equations is based on a two-step elastic
prediction-plastic correction algorithm [143].
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In case of elasto-plastic evolution, the method followed for the stress integration is
the predictor-corrector algorithm. The linear (elastic) stress is first calculated followed
by a (plastic) correction, if needed, by means of return algorithms aiming at ensuring the
plastic yield condition [143]. Although the elastic prediction is usually straight forward,
the plastic correction is generally a non linear problem and various strategies can be
adopted.

For instance, in the case of rate independent plasticity, the stress update from an
elastic prediction to a projected solution onto the yield surface reduces to a root-finding
problem of the type

f
(
σn+1

)
= 0 (3.17)

which can be integrated by using implicit [144], explicit [145 ; 146] or mixed schemes
[147]. A comparison of some stress integration algorithms can be seen in Safaei et al. [148].

For rate dependent problems, a consistent formulation of the type f̃ = f −σv = 0 can
be similarly solved as explained above [125]. Alternatively, the internal variable can be
directly integrated from the Perzyna formulation [62]

κ̇ = f̃
(
σn+1

)
(3.18)

In this chapter, an integration of the Perzyna approach is presented. An explicit
strategy is employed as it has been done with the equilibrium equations by LS-DYNA.

The user material main input provided by LS-DYNA is the total strain increment ∆ε
between times ti and ti+1 deduced from the equilibrium equations. In the present case,
it can be composed of four different contributions: (i) elastic ∆εe, (ii) plastic ∆εp, (iii)
strain related to temperature under isothermal conditions ∆εT

iso
, i.e. a global external

temperature, and (iv) due to the adiabatic self-heating of the material ∆εT
adia

:

∆ε = ∆εe + ∆εp + 1
3∆εTisoI + 1

3∆εTadiaI (3.19)

Furthermore, it can be split in a volumetric part (not playing a role in the viscoplastic
problem here defined) and a deviatoric part. ∆εv = trace

(
∆ε
)

= trace
(
∆εe

)
+ ∆εTiso + ∆εTadia

∆ε
dev

= ∆εe
dev

+ ∆εp
dev

(3.20)

The constitutive rate equations in Equation 2.53 in Chapter 2, can be accordingly
expressed with this volumetic/deviatoric splitting as

ṗ = −Kε̇v + 3αKṪ = K
(
ε̇T − ε̇v

)
ṡ = 2µε̇e

dev

→

∆p = K
(
∆εTiso + ∆εTadia −∆εv

)
∆s = 2µ∆εe

dev

(3.21)

where ε̇T = 3αṪ = 3α
(
Ṫiso + Ṫadia

)
and therefore, the related thermal strain incre-

ments are ∆εTiso = 3α∆Tiso and ∆εTadia = 3α∆Tadia.
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LS-DYNA input :
◦∆ε

Q
, σn

Q
, ∆t

◦ element type
User Mat. input :
◦ Material constants:
A, D, C, Yv...
◦ User variables:
Tn, κn, Xn...

∆ptr = −K
(
∆εv −∆εTiso

)

∆str = 2µ∆ε
dev

f
(
σi + ∆σtr

)
> 0

∆κ = 〈f
i+ 1

2
∆f

Yv
〉nv∆t ḟ = 0

σi+1 = σi + ∆σtr

∆α =

(
ntr − 3D

2C
Xi

)
∆κ

∆T =
1

ρc
βiσieq∆κ

∆p = ∆ptr +Kα∆TI

∆s = ∆str − 2µntr∆κ

σi+1 = σi + ∆pI + ∆s

LS-DYNA output :
◦σn+1

Q

User Mat. output :
◦ User variables:
Tn+1, κn+1, Xn+1...

yes

no

Rate Ind. Plast.

Figure 3.2: Flow chart of the time integration of the rate constitutive equations. The Q
notation is dropped within the algorithm. Note that the rate independent plasticity and
viscoplasticity formulations are allowed.

- 102 - PhD Thesis - Miguel Ruiz de Sotto



Chapter 3 : Numerical simulation

Elastic prediction: ∆εp = ∆εTadiaI = 0 and ∆εTiso = 3α
(
T i+1
iso − T iiso

)
In the scenario where such time increment is purely elastic, the plastic strain as

well as the adiabatic thermal component are zero ∆εp = 1
3∆εTadiaI = 0. However,

the isothermal strain increment is related to the increment in the external temperature
∆εTiso = 3α

(
T i+1
iso − T iiso

)
. The constitutive rate equations discretized in Equation 3.21

can be explicitly calculated and the stress can be updated as
∆p = −K∆εev = −K

(
∆εv −∆εTiso

)
∆s = 2µ∆εe

dev
= 2µ∆ε

dev

elastic−−−−−→
prediction

p
trial = pi + ∆p
strial = si + ∆s

(3.22)

The validity of the elastic increment is verified. If f
(
strial

)
< 0 from Equation 2.55,

the updated stress becomes the solution for the next increment σi+1 = σtrial.

Plastic correction ∆εp 6= 0,∆εTadia 6= 0
If the yield function is lower than zero, the increment is elastic and the constitu-

tive equations have been successfully integrated. Otherwise, the increment is elastic-
viscoplastic and a correction must be made.

Two cases are here considered in the user material: a viscoplastic formulation (where
the material constant Yv from Equation 2.57 is not zero in the user material) and rate
independent plasticity (where the input variable Yv = 0 in the user material).

The plastic correction entails a return mapping algorithm where the stress is corrected
based on an estimated plastic strain. Equation 3.21 is used to integrate the stress as a
function of the strain components as

pn+1 = pn +K
(
∆T
iso + ∆T

adia −∆εv
)

= ptrial +Kα∆T (∆κ)
sn+1 = sn + 2µ (∆ε−∆εp)

= strial − 2µn∗∆κ

(3.23)

where the notation ·∗ refers to the arbitrary instant at which the normal direction is
calculated. In the code, the normal direction will be considered at the instant after the
elastic prediction ntrial. As seen in Potts and Gens [149], the errors induced by this choice
has a negligible influence on the return mapping of the stress state.

· Rate Dependent Plasticity
The plastic correction is carried out with a direct integration of the Perzyna formula-

tion in Equation 2.57 (see [62]). The yield surface value to be used here is a first order
approximation based on its value at the time instant ti+1/2.

κ̇ = 〈 f
Yv
〉nv → ∆κ = 〈f

i+1/2

Yv
〉nv∆t = 〈

f i + 1
2∆f

Yv
〉nv∆t (3.24)

In order to integrate Equation 3.24, an approximation of the yield surface increment is
done by expanding its partial derivatives with respect to its arguments and using Equation
3.23.
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∆f = ∂f

∂σ
: ∆σ + ∂f

∂X
: ∆X + ∂f

∂κ
∆κ+ ∂f

∂T
∆T

= n : ∆strial

−

2µn : n+ g′
(
T i
)
R
(
κi
) ∂T
∂κ

∣∣∣∣∣
i

+ g
(
T i
)
R′
(
κi
)

+ n : ∂X
∂κ

∆κ0

(3.25)

where n : ∆σtrial = n : ∆strial is taken since the normal direction is deviatoric.
An initial estimation of the plastic strain increment is here defined as

∆κ0 = 〈 f
i

Yv
〉nv∆t (3.26)

The partial derivative of the temperature with respect to the plastic strain is obtained
by using the reduced heat expression in Equation 2.27.

∂T

∂κ

∣∣∣∣∣
i

= βiσivm
ρc

(3.27)

· Rate Independent Plasticity
A rate independent plasticity subroutine is also considered as an alternative to the

viscoplastic formulation when the viscous coefficient Yv is zero. The plastic multiplier is
integrated by means of the consistent condition of the yield surface as

ḟ = 0→ ∆f = ∂f

∂σ
: ∆σ + ∂f

∂X
: ∆X + ∂f

∂κ
∆κ+ ∂f

∂T
∆T

= n :
(
∆strial − 2µ∆κn

)
− n :

(2
3Cn∆κ−DX∆κ

)
−HR∆κ = 0

(3.28)

where

HR = g′
(
T i
)
R
(
κi
) ∂T
∂κ

∣∣∣∣∣
i

+ g
(
T i
)
R′
(
κi
)

(3.29)

The rate independent plastic increment can then be expressed as

∆κ = ntrial : ∆σtrial(
2µ+ 2

3C
)
ntrial : ntrial −Dntrial : X +HR

(3.30)

An important accumulated error can result from such explicit integration. In order to
reduce its effects, Halilovic et al. [145] proposed an explicit scheme that could remarkably
decrease the integration error. In addition, they later showed that the accuracy obtained
was comparable to the Backward Euler scheme with a sensibly lower computational cost
[150]. The consistency condition was replaced by a condition that ensured the yield surface
function would remain zero at the next instant.

f i + ∆f = 0 (3.31)
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In the exact problem, the value f i is zero and hence, the same condition is integrated.
As the surface value in the current instant deviates from zero, its correction would take
place at the next increment. Therefore, the plastic multiplier can be expressed as

∆κ = f i + ntrial : ∆σtrial(
2µ+ 2

3C
)
ntrial : ntrial −Dntrial : X +HR

(3.32)

where the only additional computational cost is the allocation of f i.
Once the cumulative equivalent plastic strain κ is integrated, the rest of the state

variables, i.e., the kinematic variable and the temperature can be updated. A discrete
approximation of Equations 2.48 and 2.51 as well as Equation 2.49 is considered:

∆α =
(
ntrial − 3D

2CX
i
)

∆κ

∆T = 1
ρc
βiσieq∆κ

(3.33)

Finally the update of the stress state is performed by means of a correction where the
plastic strain and thermal increment contributions are subtracted as in Equation 3.23.∆p = ∆ptrial +K∆εTv I = ∆ptrial +Kα∆TI

∆s = ∆strial − 2µ∆εp
dev

= ∆strial − 2µntrial∆κ
(3.34)

Application
Figure 3.3 shows the resulting stress integration of a representative volume element

under a constant uniaxial velocity for both rate dependent and rate independent plasticity
formulations.

Regarding the viscoplastic simulation, the first order approximation manages to de-
lay instabilities when the imposed strain increments are large (a high strain rate is im-
posed). Figure 3.3a shows a comparison between the forward Euler integration (using the
yield function at the time instant tn) and the first order approximation just described.
When compared to the Z-set implicit solution, where convergence to the exact solution
is presumed, the forward Euler shows instabilities for very high strain rates. Some slight
oscillations can be observed on the stress-strain curve as well as some larger ones when
computing the plastic strain rate. Therefore, a first-order approximation of the yield sur-
face at time tn+1/2 provides a much closer and more stable solution with respect to the
implicit one without recurring to a computationally costly implicit loop.

Another way of keeping the solution stable may consist in reducing the too large strain
increment imposed by the code by scaling it inside the user material subroutine as done
in Longère et al. [151] and Dorothy and Longère [65].

Regarding the rate independent plasticity, the advantages of the explicit scheme mo-
tivated from Halilovic et al. [145] are shown in Figure 3.3b where the accumulated error
is controlled at the expense of some oscillations in the computation of the strain rate.
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(a) Rate Dependent Plasticity
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Figure 3.3: Stress vs plastic strain. Uni-dimensional integration of the constitutive equa-
tions for an RVE with an imposed displacement. The simulation is done at a loading rate
close to the stability limits of the explicit integration.
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3.4 Verification of the model at the RVE scale
This section presents a series of simulations at the Representative Volume Element scale.
The calibration from Chapter 2) is used. First, a comparison of the implemented user ma-
terial in LS-DYNA with Z-set is done to verify the algorithm presented above. Secondly,
the Lankford coefficients are post-processed from a simulation in an RVE with the user
material as a first verification of the material model performances. Table 3.1 summarizes
the main features used for each of the two finite element codes.

Table 3.1: LS-DYNA and Z-set main features.

LS-DYNA Z-set
Equilibrium Int. Explicit Implicit (Newton-Raphson)
Constitutive Eq. User Material Included
Constitutive Int. Explicit Implicit-θ [152]

Element-type Selectively Reduced Full integrationInt.: elform 2

3.4.1 Comparison of various loadings
In a first attempt to test the validity of the coded subroutine, some simple loading cases
on a representative volume element (eight-node solid element) are considered.

Case 1: Uniaxial tension, compression and simple shear

Case 2: Uniaxial reversed loading

Case 3: Combined multi-directional loading

Case 4: Combined multi-directional loading with relaxed boundary conditions

Case 1: Uniaxial tension, compression and simple shear
The loading conditions are depicted in Figure 3.4. The tension and compression cases

considered a vertical imposed displacement along the upper face as seen in Figure 3.4a
(there were no restrictions for the remaining degrees of freedom in such face). The sym-
metry conditions on three faces were additionally imposed. As for the tension-induced
shear loading, a transverse displacement on the upper face with a constrained vertical
motion is applied (see Figure 3.4b). Likewise for this case, one symmetry plane is taken
into account. A fixed condition is set at the base of the element as well as the vertical
displacement on the upper face.

Figure 3.5 shows the comparison between the explicit integration performed by the
LS-DYNA subroutine and the implicit one by Z-set for the three loading cases above
described. Both codes yield the same result in the cases of viscoplasticity as well as rate
independent plasticity. The same isotropic and kinematic hardening constants are used
for both cases. However, the viscoplastic simulation comprises a strain rate induced over-
stress, hence the higher values in stress.
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(b) Simple shear loading

Figure 3.4: Uniaxial and simple shear loading cases on a representative volume element
(v0 = 103 mm/s).

Case 2: Uniaxial reversed loading
The kinematic hardening is also verified by imposing a tension-then-compression load-

ing on the element. The same loading conditions as in Figure 3.4a are imposed. Figure
3.6 shows no disparities between the results of both software for both plastic formulations.

Case 3: Combined multi-directional loading
A more complex type of loading is also considered to assess the kinematic and or-

thotropic properties during subsequent changes in loading directions. Three consecutive
displacements along the three main directions are sequentially imposed. The boundary
conditions remain the same as those depicted in Figure 3.4a. Additionally the remaining
degrees of freedom corresponding to the moving face are restricted. Figure 3.7 shows the
evolution of a representative volume element which can be summarized as follows

1. Imposed velocity of 103 mm s−1 for 5× 10−4 s along the x-axis with restricted motion
along the y and z-dimensions

2. Imposed velocity of 103 mm s−1 for 5× 10−4 s along the y-axis with restricted motion
along the x and y-dimensions

3. Imposed velocity of 103 mm s−1 for 5× 10−4 s along the z-axis with restricted motion
along the x and y-dimensions

The boundary conditions are defined in the material coordinates for simplicity.
Both the viscoplastic and the rate independent solutions are compared against the

implicit solution provided by Z-set. Because of the restricted degrees of freedom during
the loading, the pressure in the element rapidly increases. Since the plasticity considered
in this work is pressure-independent, the solution to such loading will be elastically dom-
inated (Figure 3.8).
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(a) Rate Dependent Plasticity.
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Figure 3.5: Stress vs. plastic strain. Tension, compression and shear. Rate dependent
and rate independent plasticity formulations. LS-DYNA (explicit) and Z-set (implicit)
comparison at κ̇ ' 800 s−1 and T = 25 ◦C.
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Figure 3.6: Stress vs. plastic strain. Tension-then-compression. LS-DYNA (explicit) and
Z-set (implicit) comparison at κ̇ ' 800 s−1 and T = 25 ◦C.
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Figure 3.7: Deptiction of a combined loading along the three dimensions with restricted
boundary conditions on the remaining degrees of freedom.
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Figure 3.8: Stress vs. plastic strain. Tension loading along x, y and z with tight boundary
conditions (see Figure 3.7). LS-DYNA (explicit) and Z-set (implicit) comparison at κ̇ '
800 s−1 and T = 25 ◦C.

Case 4: Combined multi-directional loading with relaxed boundary conditions
A last loading combining imposed displacements along several directions was also

simulated. For this case, the boundary constraints were relaxed in order to avoid an
excessive presence of the hydro-static pressure. The loading, shown in Figure 3.9, can be
summarized as follows:

1. Imposed velocity of 103 mm s−1 for 5× 10−4 s along the x-axis while allowing trans-
verse displacement on the loaded face

2. Imposed velocity of 103 mm s−1 for 5× 10−4 s along the y-axis with the x-displacement
restricted on the loaded face

3. Imposed velocity of 103 mm s−1 for 5× 10−4 s along the z-axis with the remaining
degrees of freedom restricted

The results of such simulation are plotted in Figure 3.10. The stress components in
the x as well as the y-direction are here considered. During the first stage of the loading,
σxx becomes non-zero and it accordingly evolves as plastic deformation is imposed. After-
wards, the loading along the y-direction implies a σyy component and a relaxation of σxx
due to the volume reduction provoked by the weak boundary conditions. Finally, as the
displacement along the z-direction is imposed and the motion along the other dimensions
restricted, the volume increase of the element produces a sudden increase in the stress
tensor components (through the hydro-static pressure). Such increase has been cut in
Figure 3.10 to keep the previous evolution visible.
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Figure 3.9: Deptiction of a combined loading along the three dimensions with relaxed
boundary conditions on the remaining degrees of freedom.

0  0.2 0.4 0.6

κ

0 

2 

4 

σ̃
(−

)

σxx (Viscoplasticity LS-DYNA)
σxx (Rate Indep. Plast LS-DYNA)
σyy (Viscoplasticity LS-DYNA)
σyy (Rate Indep. Plast LS-DYNA)
Implicit Z-7

Figure 3.10: Stress vs. plastic strain. Tension loading along x, y and z with relaxed
boundary conditions (see Figure 3.9). LS-DYNA (explicit) and Z-set (implicit) compari-
son at κ̇ ' 800 s−1 and T = 25 ◦C.
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Assessment
As seen from the different loading cases on an RVE, the user material subroutine has

proven to correctly integrate the constitutive equations. Despite of the high loading rate
in the element, the explicit subroutine has followed the implicit solution given by the Z-set
software.

3.4.2 Comparison of the computed and measured Lankford co-
efficients

The second part of this section consists in a comparison of the Lankford coefficients. It
is reminded that they have not been used in the calibration procedure. Two different
estimations of the Lankford coefficients were done. The first estimation of the Lankford
coefficients, rθ, was defined in Equation 1.2 as the width εtransverse to thickness εnormal
total strain ratio. Considering isochoric deformation (rough assumption since the elastic
strain is not isochoric) as measured in the experiments, they read

rθ = εtransverse
εnormal

= − εtransverse
εaxial + εtransverse

(3.35)

where εaxial is the strain measured along the loading direction.
A second definition is the width to thickness plastic strain ratio. Since the loading is

uniaxial, the plastic strain rate ratio can be considered

rpθ = ε̇ptransverse
ε̇pnormal

= εptransverse
εpnormal

= ntransverse
nnormal

(3.36)

where n is the yield surface normal.
Figure 3.11 shows the superimposition for the four directions (under tension uniaxial

loading) of the experimental measurements with the numerical simulation. It is clearly
appreciated that the experimental scatter is considerably higher than the differences with
respect to the numerical solutions. In addition, both definitions of the Lankford coeffi-
cients yield almost identical values at large strain amounts (for very small strains, the
elastic components play a bigger role, as expected).

Figure 3.12 shows a comparison of the computed evolution of the Lankford coefficients
for loadings along various directions. The orthotropy is evident being the normal direction
the one with the highest Lankford value and the rolling direction the lowest one.

PhD Thesis - Miguel Ruiz de Sotto - 113 -



3.4 Verification of the model at the RVE scale

0   0.1 0.2 

ε

1

2

3

r̃
θ
(−

)

rθ
r
p

θ

rEXP
θ

(a) Rolling Direction

0   0.1 0.2 

ε

1

2

3

r̃
θ
(−

)

rθ
r
p

θ

rEXP
θ

(b) Transverse Direction

0   0.1 0.2 

ε

1

2

3

r̃
θ
(−

)

rθ
r
p

θ

rEXP
θ

(c) Diagonal Direction

0   0.1 0.2 

ε

1

2

3

r̃
θ
(−

)

rθ
r
p

θ

rEXP
θ

(d) Normal Direction

Figure 3.11: Lankford coefficient vs. strain. Experimental vs. numerical comparison of
uniaxial tension. ε̇ ' 10−3 s−1 and T = 25 ◦C.
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Figure 3.12: Lankford coefficient vs. strain. Numerical comparison of the plastic and
total width to thickness strain ratio. ε̇ ' 10−3 s−1 and T = 25 ◦C.

3.5 Verification of the model at the specimen scale
Numerical simulations of various loading cases are presented below:

i Uniaxial tension loading

ii Triaxial tension loading (see [27 ; 77])

iii Tension-induced shear (see [27 ; 47])

iv Uniaxial compression loading

v Shear-compression loading (see [65 ; 151])

It is to be noted that the triaxial (ii), tension-induced shear (iii) and shear-compression
(v) cases were not used for the calibration of the material constants. The viscoplastic
formulation will be considered for all the simulations.

After a first comparison with the experiments, a discussion of the different finite
element models in terms of accuracy, mesh or element type is followed.

3.5.1 Experimental vs. numerical results comparison
A comparison is here made by superimposing the applied vs. computed load and the
measured vs. computed nominal strain (from an extensometer with the same gauge
length) for the different specimens. Numerical simulations are done employing LS-DYNA
with the user material subroutine presented above. Specimens are originally meshed using
8-node solid elements of an average size of 100 µm. The element-type formulation elform
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(a) Notched tension (b) Tension-induced shear (c) Shear-compression

Figure 3.13: Geometries and boundary conditions for the different configurations tested.
The green areas represent the imposed displacement (or fixture) and the red zones repre-
sent the symmetry conditions. Displacement is indicated by blue markers and the parts
where internal variables are extracted are indicated by blue lines for the tension speci-
mens. A symmetry condition is imposed at the base of the hat-shaped specimen to let it
move along that plane.

2 is chosen: 8 integration points with a reduced integration for the hydrostatic pressure.
The effect of this choice will be discussed later in Section 3.5.2.

Figure 3.13 shows a drawing with the main boundary conditions imposed for the
different specimens. In the case of quasi-static simulations, only one eighth of the tension
specimens (Figures 1.17b, 1.17c, 1.17d and 1.17e) is considered in the FEM model due to
symmetry properties (one half for the tension-induced shear specimen in Figure 1.17a).
Similarly, one eighth is also considered for the compression cylindrical specimen (see
Figure 1.18b) and one quarter for the hat-shaped geometries (Figures 1.18a and 1.18c).

However, for high strain rate loading, the symmetry property along the cross section
area is dropped for both the tension and compression type of loadings. The different
geometries are loaded by applying the machine imposed displacement corresponding to
the experimental campaign. Post-processing of these simulations would then read the
displacement at the location of the experimental extensometer as well as the internal
variables at the cross-section for analysis.

One important limitation when simulating the quasi-static (but rate dependent) con-
ditions is the time increment. In order to ensure a stable explicit integration of the
dynamic equations, a maximum time increment is imposed by the CFL condition in
Equation 3.7 [142]. The necessary time step to consider is thus the smallest from all the
elements in the mesh. In addition, the stiffer the material is and the finer its mesh, the
smaller the required time step and the longer the simulation (see Equations 3.7 and 3.8).
Therefore, as the mesh is refined the computational cost will be augmented due to (i)
an increase in the number of elements and (ii) an increased number of time increments
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Figure 3.14: Force vs. strain. Numerical and experimental comparison of notched flat
tension specimens at v = 1.6× 10−3 mm/s. T = 25 ◦C and Transverse direction TD.

inversely proportional to the mesh size.
In order to reduce the computational time of quasi-static simulations, mass-scaling is

applied to the mesh [153]. It consists in the addition of mass to the model to increase
the density and decrease the celerity defined in Equation 3.8 and therefore increase the
maximum time increment. An alternative would be to set a lower Young’s modulus but
it would considerably alter the mechanical behavior.

The mass added to the model is such that it ensures a stable integration for a given
time step imposed prior to the simulation (the step size imposed was of the order of
10−3 s for a simulation lasting '500 s). Notwithstanding, the increase in mass can imply
an important increase of the kinetic energy which should be negligible for a quasi-static
simulation. The mass-scaling is controlled with the parameter DT2MS in the control card
*CONTROL_ TIMESTEP [153].

3.5.1.1 Triaxial tension loading on notched flat specimens

The triaxial tension loading is obtained by applying a tension loading on the notched
specimens from Figures 1.17c, 1.17d and 1.17e in Chapter 1. These geometries allow for
the verification of the plastic behavior at very positive triaxialities by means of three types
of notches in the flat specimens: a single notch of 2 mm (χ ' 1/2) and 0.5 mm (χ ' 2/3)
and a double-notch of 2 mm× 5 mm (χ ' 1.0).

Figure 3.14 shows the performance of the model with respect to the experimental
curves (see Figure 1.28a). For the three notched geometries with positive triaxiality, the
force as well as the hardening up to necking is correctly predicted with only a slight
overestimation, especially for the 0.5 mm radius notch (with an estimated χ ' 2/3).
However, this disparity remains lower than the experimental scatter.
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Figure 3.15: Force vs. strain. Numerical and experimental comparison of the tension-
induced shear specimen at v = 1.6× 10−3 mm/s. T = 25 ◦C and Transverse direction
TD.

3.5.1.2 Tension-induced shear loading

The tension-induced shear loading is obtained with the specimen from Figure 1.17a in
Chapter 1. The largest fracture strain is expected for this specimen.

Figure 3.15 shows a comparison with the experimental curve. As opposed with the
notched specimen under high triaxialities, the tension-induced shear specimen simulation
matches satisfactorily the experimental curve until fracture.

3.5.1.3 Shear-compression loading

A shear-compression loading with negative triaxialities is performed with the Couque and
Meyers specimens from Figures 1.18a and 1.18c in Chapter 1 respectively.

Figure 3.16 shows the hat shaped specimens simulated at a quasi-static loading rate.
The force-displacement curves are plotted with the elastic component removed. The rea-
son is the difficulty to measure the correct stiffness on experimental compression tests.
Regarding Meyers geometry, the stress triaxiality ratio is expected to be weak and nega-
tive (χ ' −1/5). The agreement with the experimental results is relatively satisfactory
with only a slight overestimation of the force. On the other hand, the results from the
Couque geometry (χ ' −1/2) show that the simulated load is sensibly higher than the
experimental one.
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Figure 3.16: Force vs. strain. Numerical and experimental comparison of shear-
compression specimens at quasi-static loading rate v = 8× 10−3 mm/s. T = 25 ◦C and
Normal direction ND.

3.5.2 Analysis and discussion
A thorough discussion of the results regarding mass scaling, mesh dependence and dis-
parities with the experiments is presented.

3.5.2.1 Effect of mass-scaling

Table 3.2 summarizes the maximum values of kinetic energy and internal energy as well
as the mass scaling employed for the subsequent simulations. It can be verified that the
ratio between the kinetic energy (times the mass scaling) and the internal energy remains
close to zero for all the specimens tested.

Table 3.2: Maximum value of kinetic and internal energy in the LS-DYNA viscoplastic
simulations.

Specimen Kinetic Energy Internal Energy Mass Scaling Energy Ratio
(N mm) (N mm)

Flat tension 2.8× 10−12 1.5× 103 4.9× 10−9 '0 %
Compression 7.8× 10−13 1.5× 104 2.4× 10−9 '0 %
Notch N = 2 mm 2.6× 10−13 9× 102 1.7× 1012 0.05 %
Notch N = 0.5 mm 2.6× 10−13 8.8× 102 1.7× 1012 0.05 %
Double Notch 3.4× 10−13 4.3× 102 7.7× 1011 0.06 %
Shear 3.8× 10−12 2.3× 103 4.7× 108 0.05 %
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3.5.2.2 Mesh size sensitivity

Regarding the mesh size sensitivity, an initial average element size of 100 µm was initially
considered for all the simulations. The convergence in the solution with mesh density is
verified with a coarser (200 µm) and a finer mesh size (50 µm). This has been done for:

i Uniaxial tension loading

ii Triaxial tension loading

iii Tension-induced shear

The mesh size sensitivity is studied in terms of plastic strain κ, stress triaxiality ratio
χ and the Lode parameter L. The latter is defined as

L = 2σ2 − σ1 − σ3

σ1 − σ3
(3.37)

where σi are the eigenvalues sorted in descending order.
An alternative expression of the stress triaxiality ratio (in Equation 1.1) can be de-

fined with the equivalent stress. This definition would consider the orthotropy, kinematic
hardening and strength differential:

χ̃ = − p

σeq
(
A,X, k

) 6= −p
q

= χ (3.38)

Uniaxial tension specimen
Figure 3.17 shows the force-displacement curves of the smooth tension specimen for

a quasi-static loading considering three mesh densities (shown in Figure 3.19) and three
different LS-DYNA element-type formulations.

As previously mentioned in Section 3.2.1, the reduced (R) and the selectively reduced
(S/R) integration avoid shear locking problems which translates in a lower mesh depen-
dence. On the other hand, the curves using the quadratic (F) element (8-node with nodal
rotations) yield different results for each mesh due to some volume locking. As the mesh
becomes finer, the results converge towards the other element formulations. In this work,
the S/R integration element (elform 2 ) is considered as the optimal formulation. It pro-
vides with a reasonable computational cost and does not require an hourglass control
as with the R element. In addition, by considering eight integration points, the local
precision in the model is considerably higher.

Figure 3.18 shows the local spatial distribution of evolving plastic strain, stress triax-
iality and Lode parameter (as defined in Equations 1.1 and 3.37) along a line in the zone
of interest and at the nominal strain amount corresponding to the vertical line in Figure
3.17. It can be seen that, for the type of element considered (S/R) no mesh dependence
is observed as similarly seen on the force-displacement curves (Figure 3.17).

Local observations of the finite element simulations are also carried out to further
study the mesh dependence. Figure 3.19 shows one eighth of the specimen simulated for
the three mesh densities considered at an advance state of deformation. The S/R element
formulation has been used. As the mesh becomes finer, the resolution of the field measure
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Figure 3.17: Force vs. nominal total axial strain. Mesh size sensitivity comparison of a
smooth flat tension specimen at ε̇ ' 10−3 s−1 and T = 25 ◦C. Three mesh densities are
considered: 200 µm, 100 µm and 50 µm, and three element-type formulations: elform 1, 2
and 3.
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Figure 3.18: Mesh size sensitivity at the local level at the cross section of the smooth flat
tension specimen. The S/R element is chosen. The spatial measurements are taken at
ε ' 35 % (as marked in Figure 3.17 with a vertical line).
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(a) size ' 200 µm. (b) size ' 100 µm. (c) size ' 50 µm.

0.60

0.48

0.36

0.12

0.00

0.24

Figure 3.19: Plastic strain field for three mesh densities using a selectively reduced element
formulation (elform 2 ) on the smooth flat tension specimen.

is better. Apart from that, there are not great disparities among the three meshes as
accordingly seen in Figure 3.17.

As performed with the representative volume element, a comparison between the soft-
ware LS-DYNA and Z-set is also carried out for the quasi-static smooth flat tension
specimen to asses the performance of the subroutine at the structure scale. The 8-node
full integration solid element is here employed in Z-set and the quadratic element (F)
in LS-DYNA. Figure 3.20 shows the curves for both software using three different mesh
sizes. It is interesting to note the similar mesh dependence among the two codes whose
element are subject to volume locking. For the coarser mesh, the LS-DYNA quadratic
element shows a slightly closer performance towards the converged result due to the en-
riched formulation of the nodal rotations. As the mesh is refined, their mesh dependence
is quasi-similar converging to the same result as the two other element formulations (see
Figure 3.17).

A comparison of the computational time of the simulations in Figure 3.20 is summa-
rized in Table 3.3. For these simulations run in the quasi-static regime (not suited for
the LS-DYNA explicit code), the LS-DYNA simulation under-performs Z-set in terms of
computational time. However, as the mesh density becomes finer, the amount of time
to run the simulations becomes comparable for both software. This is mainly due to
the MPP parallel process available in LS-DYNA, however, this is not the object of the
chapter. In any respect, the LS-DYNA explicit code would prove a better option as the
loading rate of the mechanical problem increases.

Regarding the tests at a high loading rate, the tension specimen is simulated for two
mesh densities (using the S/R elements). Figure 3.21 shows a comparison between the
numerical output and the experimental data. Independently of the mesh size, the nu-
merical solution is very oscillatory. A smoothing of such curve by averaging every three
consecutive points, yields a similar behavior as the experimental results. Two reasons
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Figure 3.20: Force vs. strain. LS-DYNA vs. Z-set comparison of a smooth flat tension
specimen. ε̇ ' 10−3 s−1 and T = 25 ◦C. The former uses a full integrated solid element
and the latter a quadratic 8-node element (with nodal rotations).

Table 3.3: LS-DYNA (explicit, F-element, 32 MPP cores) and Z-set (implicit, Full Inte-
gration, 4 SMP cores) computational time for various mesh densities.

LS-DYNA Z-set LS-DYNA/Z-set
el ' 200 µm ' 30 min ' 6 min 5
el ' 100 µm ' 4 h ' 1.5 h 2.66
el ' 50 µm ' 8 h ' 8.5 h 0.94

could explain this numerical noise. First, the mesh might not be smooth enough involv-
ing great variations in the size of the elements (bigger ones in the specimen head and
smaller ones in the zone of interest) that could distort the propagation of waves. Sec-
ondly, these mechanical waves produced from a rapid loading keep bouncing between the
boundaries. This last effect may be fixed by including the output pressure bar so that
the wave can be mechanically transferred outside of the specimen.
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Figure 3.21: Force vs. nominal total axial strain. Mesh size sensitivity comparison of
a smooth flat tension specimen at ε̇ ' 103 s−1 and T = 25 ◦C. Two mesh densities are
considered: 100 µm and 50 µm. The oscillatory behavior is found for the two different
mesh densities.

Triaxial tension specimen
Figure 3.22 shows the results using two different mesh sizes of 50 µm and 100 µm for

the notches of R = 2 mm and R = 0.5 mm. Due to high triaxialities, the mesh is more
dependent on volume deformation as compared with the smooth specimens. However,
the strain range covered by the experimental curves shows no effect of the element size
on the global scale, i.e. the force-displacement curves. In addition, the plastic strain κ,
stress triaxiality χ and the Lode parameter L read along the width crossing the notches
converge for the mesh size considered, i.e. 100 µm.

The local field measurements in Figure 3.23 obtained at an advance stage of deforma-
tion do not show any important differences with respect to the element size either, the
finer mesh providing with a higher precision. It is interesting to note how the smaller
notched specimen have a higher amount of plastic deformation along the whole cross-
section. This characteristic will be re-discussed at the end of the chapter in the context
of the strain to fracture.
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Figure 3.22: Above: Force vs. strain. Below: Mesh size sensitivity at the local level at the
cross section of the notch flat tension specimens (S/R element). The spatial measurements
shown below are taken at ε ' 6 % and ε ' 5 % (marked on the respective Figures above
with a vertical line). v = 1.6× 10−3 mm/s and T = 25 ◦C.
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(a) R = 2 mm (Coarse). (b) R = 0.5 mm (Coarse).

(c) R = 2 mm (Fine). (d) R = 0.5 mm (Fine).

Figure 3.23: Plastic strain fields for two mesh densities using a S/R element formulation
(elform 2 ) on the notch flat tension specimens (both geometries are compared at the same
instant of imposed displacement).
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Tension-induced shear specimen
The mesh size sensitivity for the tension-induced shear specimen is shown in Figure

3.24a. Interestingly enough, as the mesh is refined, an oscillatory behavior appears similar
to the one observed in the dynamic smooth tension specimen in Figure 3.21. The reason
might again be the mesh non-homogeneity where large differences in the size and shape
of elements would produce unwanted bounding elastic waves.
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(a) Global mesh dependence.

0 1 2 3 

y(mm)

-1  

-0.5

0   

0.5 

1   

κ
,
χ
,
L

Plastic Strain

Triaxiality

Lode Paramter

el ≃ 50µm

el ≃ 100µm

el ≃ 200µm

(b) Local mesh dependence.

Figure 3.24: Left: Force vs. nominal total axial strain. Right: Mesh size sensitivity at
the local level at the cross section of the tension-induced shear specimen (S/R element).
The spatial measurements on the right are taken at ε ' 10 % (marked on the left Figure
with a vertical line). v = 1.6× 10−3 mm/s and T = 25 ◦C.

The oscillatory response from the simulation comes from very small oscillations in the
force output of the nodes belonging to the boundary condition in the head of the specimen.
However, the plastic strain κ, the stress triaxiality ratio χ and the Lode parameter L do
not present such behavior as observed in Figure 3.24b. Additionally, the predicted values
are weakly dependent on the element size, except maybe for the plastic strain, in which
a too rough mesh produces larger errors. It is assumed that an element size of 100 µm is
enough for a converged solution.

Figure 3.25 shows the local field for the three meshes considered. At an arbitrary
instant t0 (top figures), plastic flow first starts close to (but not in) the notches. However,
as time passes, such strain is concentrated in a band joining both edges. Neither the
amount of plastic deformation nor the width of such band are heavily dependent on
the element size. Although plastic strains are eventually developed at the notches, the
larger amounts of strain are localized near the center under shear loading. Therefore, by
assuming a good correlation with the experimental results from Figure 3.15, it is expected
that subsequent damage and fracture would initiate near the center as wished. However,
as stated above, the more the mesh is refined in the zone of interest, the more chaotic
the arrangement of the elements and the bigger the difference in size, which could explain
the oscillatory response on the force. Due to the large size of the tension-induced shear
specimen model, where the symmetry along the loading direction is no longer possible,
the global element size is limited. Therefore, further local refinements in the mesh would
only contribute to increase the disparity between element sizes.
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Plastic strain map κ
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Figure 3.25: Plastic strain and stress triaxiality fields for three mesh densities using a
selectively reduced element formulation (elform 2 ) on the tension-induced shear specimen.
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3.5.2.3 Discrepancies with experiments

The discrepancies observed in the triaxial tension and the shear-compression simulations
are here commented.

Triaxial tension loading
Even though the error between the numerical and experimental curves is smaller than

the experimental scatter, the triaxial simulation yields a higher force than the experimen-
tal result (see Figure 3.14). If the source of such difference was purely experimental, such
general overestimation would not exist for all the cases. Three possible reasons could be
behind this disparity: the mesh size, the specimen dimension variations and the yield
surface. Regarding the former, it has been shown in Figure 3.22 that the results are not
dependent on the mesh density for the strain range measured in the experiments.

The specimens tested may have some deviations from the nominal geometry that can
have an impact on the measured force. For instance, a lower tolerance in the notch radius
may imply samples machined with a sufficiently close but lower radii producing a higher
cross-section area which translates into a smaller nominal force.

Figure 3.26 compares two simulations for two different cross-sections (the nominal
cross section and one increased by 5 %). It can be seen that this small variation may
induce differences in the measured force similar to the current experimental-numerical
gap. Nonetheless, a 5 % variation in the cross section dimension is considerably higher
than the tolerances specified. Plus, the measurements later on made on the specimens
showed deviations from the nominal geometry of less than 1 % (including the measurement
error per se). In addition, it can be seen in the numerical results that the modification of
the cross-section would underestimate the initial yield which was otherwise well captured.
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Figure 3.26: Force vs. nominal total axial strain. Numerical and experimental comparison
of a notched flat tension specimen of R = 0.5 mm at v = 1.6× 10−3 mm/s and T = 25 ◦C.
The nominal surface used in the simulation is A0 and 1.05A0.
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The last reason for the disparity with the experiments here considered corresponds
to a potential incomplete calibration of the yield surface. Figure 3.27 shows the yield
surface under plane stresses. The initial calibration captures the eight different uniaxial
states. Moreover, the stress states simulated at the center of the notched specimens are
accordingly placed (the double notched is not shown because it does not have a plane
stress state). In addition, two arbitrary yield surfaces (in dashed lines) can be considered
by inducing slight modifications of the anisotropy coefficients. They are roughly obtained
by raw visual modification of the material parameters, one is considered to have very small
modifications from the initial calibration whereas the other one involves larger variations
in the anisotropy coefficients. These new surfaces would still match the experimental
results (the identification would not have a unique solution). The flattening induced
by these curves on the positive part of the yield surface, where the notch specimens
are placed, might allow to reduce the initial overestimation observed in the simulations.
However, these modifications would provoke big discrepancies in the normal direction
under compression.
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Figure 3.27: Yield loci for three different calibrations at T = 25 ◦C. For simplicity the
kinematic and viscous components of the stress have been subtracted and the values
have been normalized with respect to the rate independent isotropic hardening. The
normal direction under tension (compression) is represented with its equivalent biaxial
compression (tension) state since the yield criterion is pressure independent. Regarding
the diagonal direction, the tensor components with respect to the rolling and transverse
directions are accordingly plotted (the shear component is therefore not plotted).

- 130 - PhD Thesis - Miguel Ruiz de Sotto



Chapter 3 : Numerical simulation

0   2.5 5   7.5 

εN(%)

0   

0.4 

0.8 

1.2 

1.6 

F̃
(−

) Reference calibration
New calibration (1)
New calibration (2)
Experiments

(a) R = 2 mm

0   2.5 5   

εN(%)

0   

0.4 

0.8 

1.2 

1.6 

F̃
(−

)

Reference calibration
New calibration (1)
New calibration (2)
Experiments

(b) R = 0.5 mm

0   2.5 

εN(%)

0   

0.4 

0.8 

1.2 

1.6 

F̃
(−

)

Reference calibration
New calibration (1)
New calibration (2)
Experiments

(c) R = 2 mm× 0.5 mm

0   2.5 5   7.5 10  12.5 15  

εN(%)

0   

0.4 

0.8 
F̃
(−

)

Reference calibration
New calibration (1)
New calibration (2)
Experiments

(d) Tension-induced shear

Figure 3.28: Force vs. nominal total axial strain. Numerical and experimental com-
parison of the notched flat tension specimens and tension-induced shear specimen at
v = 1.6× 10−3 mm/s and T = 25 ◦C. The yield loci from Figure 3.27 is used.

Hence, with the results from Figure 3.27, it is shown that the uniaxial tests alone do not
seem sufficient for the complete identification of the surface. The notched specimens might
serve to this purpose by including their experimental curves in the calibration process.
However due to the high experimental scattering observed and the long simulation time of
these specimens, it is doubtful that an improvement worth considering would be obtained.

Figure 3.28 compares three different material calibrations corresponding each to one
of the yield surfaces depicted in Figure 3.27 for the three notch tension and the tension-
induced shear geometries. The flattening of the yield surface manages to get the wanted
effect of lowering the numerical force estimation except for the shear case, where no appar-
ent effect is visible. The yield locus sensitivity is much more apparent for the R = 0.5 mm
notched specimen where the deviations from experiments were initially larger. How-
ever, the simulated force remains still overestimated after a strong modification of the
anisotropy surface which compromise the behavior under the normal direction. This might
justify the role of hydro-static pressure on the plastic problem, not as a damage-driving
factor but as a necessary variable for the plastic criterion under high stress triaxialities.
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Figure 3.29: Force vs. nominal total axial strain. Numerical and experimental comparison
of shear-compression specimens at quasi-static loading rate v = 8× 10−3 mm/s and T =
25 ◦C. Transverse displacement is restricted at the base of the specimen in one of the
simulations.

Shear-compression loading
The simulations shown in Figure 3.16 have overestimated the experimental force mea-

surements. The mesh sensitivity have proven to be negligible for the smooth, notched
and tension-induced shear specimens and therefore it is not considered here.

Figure 3.29 shows a new comparison of the simulations with two extreme boundary
conditions. The first case considers no friction between the specimen and the machine
grips (as simulated in Figure 3.16). Since some lubricant was used during the experimental
campaign, this case is expected to be close to reality. For the second case, a simulation
assuming complete friction (no transverse displacement) with respect to the machine is
also carried out.

For the Meyers geometry there is practically no difference. However, for the Couque
geometry, the difference between both boundary conditions is more noticeable as the
compression induces an outward force. Even though the strong friction case is not realistic,
it is considered as an upper limit in our modeling. However, it is not sufficient to explain
the disparity with the experimental results. It can be concluded that the current model
can not reproduce the mechanical behavior under very negative stress triaxiality ratios.
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3.6 Complementary comments
Some final aspects aspects such as the loading paths and the self-heating induced softening
at high strain rates are here discussed.

3.6.1 Loading paths
The loading path may be described through the stress triaxiality ratio evolution that the
different specimens have undergone as plastic deformation evolves. It can provide with
an insight on how damage and subsequent fracture can occur as a function of the stress
state. Six of the above geometries are considered: the (i) flat and (ii-iv) notched and
(v) tension-induced shear specimens and the (vi) simple compression geometry. The hat-
shaped specimens have been left out of the study due to the disparity between numerical
and experimental results which should be further analyzed.

Figure 3.30 shows the different loading paths. They were extracted from simulations
with an element size of approximately 100 µm of the S/R type. Such size was assumed to
yield converged results for the range of strains considered here. The element whose loading
path has been plotted is the innermost element in the cross-section of the considered
specimens, i.e. the furthest point from the notches or edges. The choice is done assuming
the more important stress triaxiality χ values are found away from any free surface.
However, the notched geometry of radius R = 0.5 mm has a loading path from an element
close to the notches (as justified by the microscropic observations and corroborated below).
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Figure 3.30: Loading paths for the different geometries. ε̇ ' 10−3 s−1, T = 25 ◦C and
Transverse direction TD. From left to right: simple compression, tension-induced shear,
flat tension, simple notched (R = 2 mm and R = 0.5 mm) and double notched specimens.
Definitions for the stress triaxiality can be found in Equations 1.1 and 3.38.
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Figure 3.31: Loading paths for the different geometries. ε̇ ' 10−3 s−1 , T = 25 ◦C and
Transverse direction TD (stress triaxiality from Equation 1.1). From left to right: simple
compression, tension-induced shear, flat tension, simple notched (R = 2 mm and R =
0.5 mm) and double notched specimens. The dots indicate an estimate of the plastic
strain at fracture.

Depending on the definition used for the stress triaxility ratio in Equations 1.1 and
3.38, the loading paths may appreciably change (see Figure 3.30). For instance, χ̃ in
compression is slightly more negative (χ̃ < χ ' −1/3). Conversely, the tension specimens
present higher values of triaxiality. However, no big discrepancies are seen for the shear
conditions. The first definition χ (Equation 1.1) is retained for the rest of the section.

According to Figure 3.30, regarding the notched specimens, the stress triaxiality χ are
comparatively more positive than for the flat tension geometry, as expected. Both simple
notches of R = 2 mm and R = 0.5 mm yield relatively close results. On the other hand,
the double notched specimen reaches very positive triaxiality values (χ > 1) which results
in a low ductility as observed in the experiments. Surprisingly enough, after some initial
plastic deformation, the loading path becomes proportional with values close 1.2. Finally,
the tension-induced shear specimen deforms under near pure shear stress.

Additionally, Figure 3.31 displays an estimation of the points at which the different
geometries fail. In order to find those points, the experimental nominal strain at fracture
measured with the extensometer is compared with the virtual extensometer placed in the
simulation. The instant at which the specimen is supposed to fail is used to read the
plastic strain on the studied element (the innermost element with the higher triaxiality
ratio, not necessarily the most deformed element). It is recalled that the element used in
the R = 0.5 mm notched specimen is not placed in the center but close to the edges.

The fracture points show a tendency towards smaller strain to fracture whenever the
triaxiality increases in terms of absolute values. This result is appreciably different from
the known fracture yield locus obtained by Bao and Wierzbicki [106 ; 154] where the
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Figure 3.32: Plastic strain and stress triaxiality ratio vs. the lateral coordinate of the
simple notch specimens at several instants. ε̇ ' 10−3 s−1 and T = 25 ◦C and stress
triaxiality from Equation 1.1. The dots indicate the maximum value of stress triaxiality.

maximum strain to fracture is found under uniaxial tension loading with a local mini-
mum under shear loading (see Figure 2.3a in Chapter 2). Three features are highlighted
and briefly discussed: (i) consistent decrease in the strain to fracture under positive stress
triaxiality ratios, (ii) largest strain to fracture under shear loading and (iii) low strain to
fracture under negative stress triaxialities.

Positive stress triaxiality ratios
Regarding the positive stress triaxiality range, the strain to fracture decreases as the

stress triaxiality χ becomes more positive (see Figure 3.31). This result is in accord with
Rice and Tracey [109]/Johnson-Cook [110] fracture loci.

In Figure 3.32 are plotted the plastic strain and the stress triaxiality ratio along the
width of both simple notched specimens at several strain amounts (the notch being the
extremes in the graph).

Concerning the bigger notch (R = 2 mm and lower stress triaxiality χ), the maximum
values of stress triaxiality are seen at the center of the sample and it quickly decreases
near the notch edges. As for the plastic strain, it is relatively constant irrespective of the
position in the sample (especially at large strain). On the other hand, the inverse scenario
is seen for the smaller notch (R = 0.5 mm and higher stress triaxiality χ). The stress
triaxiality can be considered quasi-constant in most part of the sample (the maximum
values are found close to the edges) whereas the plastic strain is substantially higher near
the notches where it reaches up to three times the level found at the center.

It can be speculated that for the former specimen, fracture would occur at the center
where triaxiality is appreciably higher. Contrarily, the fracture of the small notched
tension specimen is likely to occur near (although not exactly at) the edges of the sample
where plastic strain and triaxiality reach the highest values. These conclusions are in good
agreement with the microscope observations done in Chapter 1, particularly in Figures
1.44 and 1.45. In these micrographs, fracture for the R = 2 mm notch seems to emanate
from the center as opposed with the R = 0.5 mm notch that seem to show a spread of
damage from the edges.
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Nil stress triaxiality ratios
The second feature worth noting is the relatively high plastic deformation at fracture

under shear with respect to the flat tension test, see Figure 3.31. It can be due to the
fact that under shear conditions, void nucleation and growth mechanisms are limited with
respect to other loadings involving higher stress triaxiality χ.

Negative stress triaxiality ratios
Last aspect to point out is the low strain to fracture for uniaxial compression, see

Figure 3.31. An early unstable fracture has been observed for the compression specimens
(see Figure 1.21 in Chapter 1). The reasons behind are thought to be entirely different as
with positive triaxialities. The broken specimens show a clear shear band that, although
filled with elongated dimples, might be explained by a localization before damage of the
material. This is in close agreement with the works of Lee and Lin [43 ; 46] where their
compression specimens also failed by development of a shear band with dimples inside.
Although they remarked a shear strain localization, they did not claim a premature failure
of their sample as it has been evidenced here. Therefore, when considering a fracture
criterion for this material, both localization and void damage are two important aspects
to take into account. Failure would thus occur when one of the two processes would take
place, the order of which is thought to be extremely dependent on the stress triaxiality
ratio.

3.6.2 Influence of the inelastic heat fraction β

The self-heating induced softening is here evaluated first on a Representative Volume
Element (see Figure 3.4a) and then on the uniaxial tension and compression specimens
at high strain rates.

Three cases are compared for three different values of the inelastic heat fraction:

β = 0 No self-heating is considered

β = 0.8 The induced self-heating is simulated using an arbitrary constant value of the
Taylor-Quinney coefficient as seen in literature

β = β (D) The induced self-heating is based on the plastic dissipation

Uniaxial tension loading on an RVE
Figure 3.33 shows the softening obtained when considering adiabatic conditions under

uniaxial tension.
The computed increase in temperature with a consistent β reaches 140 ◦C. The inelas-

tic heat fraction computed throughout the simulation starts at 0.9, slightly increases and
then finally slowly approaches the value of 0.8. The stress-strain curves for both adiabatic
curves in Figure 3.33 are relatively similar. However, it can be seen that the estimation
of temperature by both methods diverges by an amount which becomes non negligible at
large strain.

- 136 - PhD Thesis - Miguel Ruiz de Sotto



Chapter 3 : Numerical simulation

Uniaxial tension smooth specimen
Figure 3.34 shows the superimposition of experimental and computed load/strain

curves for the monotonic tension specimens. The finite element model used is equiva-
lent to that described for the notched tension specimen in Figure 3.13a. It can be verified
that the quasi-static loading is well captured until necking coherently with the results
of the identification in the previous chapter (see Figure 2.17). On the other hand the
dynamic tension tests are simulated by considering both isothermal and adiabatic condi-
tions using a consistent β. It can be observed that with the latter, the thermal softening
produces a better match with the experimental data.

Uniaxial compression specimen
Figure 3.35 shows the superimposed numerical simulations and experimental curves

regarding simple compression tests. The finite element model used is equivalent to that
described for the shear-compression specimen in Figure 3.13c. As with the hat-shape spec-
imens, the force-displacement curves are plotted with the elastic component removed. The
adiabatic conditions using a consistent β considered for the dynamic simulation prove a
better performance at capturing the temperature-dependent hardening rate. However,
the stress level is overall underestimated for both regimes. The sources for such dispar-
ities mostly resides in the calibration stage. Indeed, Figures 2.15 and 2.18 show slight
underestimations with respect to experiments.

The friction effect was not evaluated in the simple compression case since the rupture
occurs at an early state of deformation and the observations made for both broken and
non-broken specimens showed no sign of barreling.
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Figure 3.33: Uniaxial simulation on an RVE. Plastic dissipation induced self-heating at
κ̇ ' 103 s−1 and T = 25 ◦C.
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Figure 3.34: Force vs. nominal total axial strain. Numerical and experimental comparison
of a smooth flat tension specimen at T = 25 ◦C and Transverse direction. The inelastic
self-heating induced softening is compared.

0 2 4 6 8 10 12 14

|εe
N
|(%)

0  

0.4

0.8

1.2

1.6

2  

|F̃
|(
−
)

Sim. (ε̇ ≃ 10−3
s
−1) w/o heating

Sim. (ε̇ ≃ 1000s−1) w/o heating
Sim. (ε̇ ≃ 1000s−1) w/ self-heating
Experiments

Figure 3.35: Force vs. nominal total axial strain. Numerical and experimental comparison
of uniaxial compression at T = 25 ◦C and Transverse direction. The inelastic self-heating
induced softening is compared.

PhD Thesis - Miguel Ruiz de Sotto - 139 -



3.7 Concluding remarks

3.7 Concluding remarks
This chapter has focused on the numerical implications of the constitutive model previ-
ously presented: (i) the user material algorithm used, (ii) its comparison with an existing
commercial code, (iii) the model verification at the specimen scale.

Within an explicit time integration scheme, the plastic strain increment is directly
deduced from the viscoplastic Norton-Perzyna formulation. A first order scheme of the
integration has been shown to delay instabilities and reduce incremental errors. The
variables, namely the stress, the temperature and the kinematic stress are updated in a
Q-rotated frame to ensure objectivity. A verification at the RVE scale with the implicit
Z-set software shows a good agreement for various types of simple loadings.

The user material and the model performance on the different specimens show satis-
factory results. Nevertheless, some disparities have been found and should be addressed
in the future. They include (i) the slight overestimation in the notched flat tension spec-
imens, (ii) the larger one in the hat-shaped geometries and (iii) the underestimation in
uniaxial compression.

The first two deviations are thought to be explained by the yield surface employed.
It has been initially assumed that the yield locus definition is pressure independent yet
discrepancies arise for larger values of this variable (positive and negative). Regarding the
simple compression specimens, the differences with the experimental data mainly come
from the calibration stages. The anisotropy and viscosity were first fixed before identifying
the hardening of the material.

Finally, the simulations have also provided interesting results concerning the loading
paths for a future modeling of the failure of the material. A decrease in the strain to
fracture is observed as the material is tested to higher triaxialities (positive and nega-
tive). For positive triaxilities, the fracture is thought to originate from diffuse damage
mechanisms. For negative triaxialities, a localisation of strain is speculated. Therefore,
two fracture loci could be considered in further work.
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General conclusion
This work focuses on a Ti-6Al-4V titanium alloy known for its high strength-to-weight
ratio and good toughness [1] and accordingly considered as a promising candidate for the
leading edge of multicomponent fan blades.

The constitutive modeling of Ti-6Al-4V titanium alloy under consideration has been
conducted paying attention to three important aspects: (i) the experimental characteriza-
tion, (ii) the constitutive modeling and (iii) its numerical implementation and verification.

Experimental characterization
In order to emulate all the conditions found in a ballistic event on aircraft engines,

several sample geometries as well as various experimental set-ups have been employed
in an extensive experimental campaign. The latter consisted in tension, compression
and shear tests performed at various low and high strain rates and temperatures, and
under monotonic as well as alternate loading path. Three sources of anisotropy have
been found during the characterization: weak textured-induced orthotropy, kinematic
hardening and strength asymmetry. In addition, strain and strain rate isotropic hardening
and thermal softening have been evidenced and quantified. Although the strain rate
induced overstress does not exhibit any anisotropy, a temperature dependence is observed
(tentatively neglected). Regarding the temperature sensitivity, its effect is taken into
account for potential self-heating induced thermal softening that can occur under rapid
loadings.

Concerning the damage of the material, the causes of fracture are far from being clear.
While loadings performed at positive triaxiality ratios have shown evidence of diffuse dam-
age in the form of voids, early failure in the form of shear band is observed for negative
stress triaxialities.

Constitutive modeling
Amodel accounting for all this features has been accordingly proposed. Concerning the

anisotropy, it consists in a combination of the yield criteria proposed by Cazacu et al. [73]
and Karafillis and Boyce [72] to describe strength differential, and coupled orthotropy-
kinematic hardening. In addition, the isotropic hardening has been coupled with the
kinematic hardening in order to better reproduce the onset of plastic flow during load
reversal following the approach of Carbonnière et al. [97]. The Norton-Perzyna [61 ; 62]
formulation correctly predicts the flow stress dependence on the loading rate. As for the
temperature, its effect is included in the isotropic hardening with a softening function.
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Regarding self-heating under adiabatic conditions, a consistent approach based on the
plastic dissipation is used for the computation of the temperature rise.

Given the large number of parameters (strain, strain rate, temperature, loading orien-
tation, strength asymmetry, isotropic and kinematic hardening) it accounts for, this model
is expected to apply to a wide range of engineering materials without significant modifi-
cations of its structure. In particular, a change in the titanium alloy thermo-mechanical
treatment is expected to result in a change in some material constant values and not in
the model itself.

An identification of the proposed model on an RVE, using the experimental data from
uniaxial tension and compression tests at various strain rates and temperatures has been
carried out. The model shows a satisfying capability of reproducing the features observed
in the experimental campaign.

Numerical implementation
The model has been implemented as a user material subroutine in the commercial

finite element computation code LS-DYNA and its performances have been evaluated at
the structure scale considering notched and shear specimens.

The user material and the model performance on the different specimens show sat-
isfying results. The modeling of adiabatic self-heating at high speed loadings matches
accordingly the strain hardening rate observed during the dynamic tests. Nevertheless,
some disparities have been found with experiments as the stress triaxiality becomes high
(in absolute value).

Finally, the simulations have also provided interesting results concerning the loading
paths for a future modeling of the failure of the material. A decrease in the strain to frac-
ture is observed as the material is tested at higher triaxialities (positive and negative). For
positive triaxilities, the fracture is thought to originate from diffuse damage mechanisms.
However, for negative triaxialities, a localisation of strain is speculated. Therefore, two
fracture loci could be considered in further work.

Future works
Some perspectives regarding the experimental characterization, the constitutive modeling
and its numerical implementation are worth considering in the short and long term.

Experimental characterization
In the short term, the temperature characterization of the material behavior should be

extended. In the present work, the effect of high temperatures has been considered only
on the isotropic hardening; lower temperatures should also be considered, e.g. the range
(−50 ◦C-25 ◦C). Moreover, temperature sensitivity could be included in the viscous com-
ponent, after a more systematic characterization. In addition, the effect of temperature
on kinematic hardening could be studied.

Second, the diffuse damage vs. localization scenarios must be addressed. Although
both types of fracture occur in the present Ti-6Al-4V, it is necessary to discern which
one precedes which and under which conditions one scenario is favored over the other.
Real time monitoring of the strain field by DIC in tension-induced shear specimens during
quasi static tests (possibly, in a SEM to get a high imaging resolution) might provide some
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useful elements, although it would be limited to the surface. To get information concerning
the volume, in situ tests on a synchrotron beamline with computed micro-tomography or
laminography would be more appropriate.

In the long term, the present characterization of this material should be compared
with other Ti-6Al-4V microstructures induced by different thermo-mechanical processes.
This would allow to extend the knowledge on this alloy and to assess the impact of the
microstructure and forming processes on the mechanical properties.

Last, it would be interesting to run dynamic tests with temperature measurements to
assess the validity of the inelastic heat fraction based evaluation.

Constitutive modeling
In the short term, the strain rate-induced overstress must account for temperature.

Indeed by considering the extended yield stress σ̄y = σy+σv, Figure 1.34 showed a decrease
in σ̄y and σv as temperature is increased. However, only the strain rate independent yield
stress was assumed to depend on temperature σy = σy (T, ...). A formulation of the type
σ̄y (T, ...) = g (T )R (...) + g̃ (T )σv (...) could be pursued.

The disparities found in the model with respect to experiments at high stress triaxial-
ities |χ| � 1/3 should be further investigated. Assuming that such discrepancies are not
coming from experimental scatter (non negligible in the present material), an extended
calibration using notched specimens may help to fully identify the anisotropic plasticity
matrix. However, it is strongly suspected that a pressure-independent yield criterion is
insufficient. The stress triaxiality χ or the Lode parameter L might be necessary to cor-
rectly capture the anisotropic plasticity. For instance, the hydrostatic-pressure was taken
into consideration in the expression of the strain rate-induced overstress in Longere [91].

Linked with further investigation on diffuse damage and localization proposed in the
experimental characterization, the choice of a damage simulation strategy, be it through
a damage indicator or a damage variable should be done. The current work has shown no
correlation with the experimental fracture loci reported by Bao and Wierzbicki [106] nor
with the compression experiments on Ti-6Al-4V done in Longère and Dragon [37] (where
they did not obtain an early failure under compression) which suggests that no universal
fracture locus can be postulated.

Numerical implementation
Even though a mesh sensitivity and element type formulation analysis have been

carried out in the present work, the user subroutine should be tested on a wider range of
finite element formulations, such as shell formulation or unstructured meshes, due to the
constraints that might be imposed for the finite element model (for reasons unrelated to
the material but strongly connected to the bird strike problem), e.g. the imposition of a
minimum element size or the use of a certain type of elements in the simulation.

As for the spatial discretization when attempting to reproduce crack formation (ini-
tiation and propagation), alternative formulations might be needed to be used to ensure
mesh objectivity notably of the crack path, as e.g. XFEM (see Wolf et al. [155]).

In the long term, the material model should be tested on a bigger scale. First, in the
deep drawing problem for instance, where abundant examples are available in literature,
to compare the performance with existing models. Later on, it could be implemented in
the bird strike finite element model in order to assess the improvements done with the
advanced modeling developed in this work.
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APPENDIX A Constitutive
modelling details

A.1 Normal of the yield surface
This section aims to provide a detailed definition of the yield surface normal employed
when considering the CPB06 model [73]. Its main purpose being its implementation in
the user law subroutine in LS-DYNA. First, the yield surface normal for an isotropic
material will be defined. The extended definition including the orthotropy will later be
added. Finally, the second derivative of the yield surface is also shown as it is necessary
for the estimation of the tangent matrix in implicit schemes.

A.1.1 Isotropic material exhibiting a strength differential
The anisotropic CPB06 yield surface proposed by Cazacu, Plunkett and Barlat [73] has
the form

σeq
a = 1

m0a

{(
|Ŝ1| − kŜ1

)a
+
(
|Ŝ2| − kŜ2

)a
+
(
|Ŝ3| − kŜ3

)a}
(A.1)

where m0 is a constant such that the equivalent stress is equal to the uniaxial stress
in tension (compression) if k > 0 (k < 0). Ŝp are the eigenvalues of the stress state
considering the kinematic force, i.e.

Ŝp = eig(ŝ) = eig(s−X) (A.2)

k is the main parameter defining the tension/compression asymmetry and a is a shape
parameter of the yield surface as the one found in the Hosford criterion [129].

m0
a =

[2
3 (1− |k|)

]a
+ 2

[1
3 (1 + |k|)

]a
(A.3)

According to the normality rule, the yield surface normal n is defined as the derivative
of the yield function with respect to the stress tensor σ. Subsequently, it is also the
derivative of the equivalent stress with respect to the stress. The chain rule is herein
applied:

n = ∂f

∂σ
= ∂σeq

∂σ
=

3∑
p=1

∂σeq

∂Ŝp

∂Ŝp
∂ŝ

∂ŝ

∂σ
→ nij =

3∑
p=1

∂σeq

∂Ŝp

∂Ŝp
∂ŝkl

∂ŝkl
∂σij

(A.4)

The first term ∂σeq

∂Ŝp
corresponds to the derivative of the equivalent stress with respect

to the eigenvalues of the effective stress deviator s − X. The second term ∂Ŝp

∂ŝkl
is the

derivative of the eigenvalues with respect to the effective stress deviator (see Remark).
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The last term ∂ŝkl

∂σij
is the derivative of the effective stress deviator with respect to the

stress tensor.



∂σeq

∂Ŝp
=
σ1−a
eq

ma
0

(
|Ŝp| − kŜp

)a−1 (
sgn

(
Ŝp
)
− k

)
= 1
ma

0

(
|Ŝp| − kŜp

σeq

)a−1 (
sgn

(
Ŝp
)
− k

)
∂Ŝp
∂ŝkl

=vpk
vpl

= vp ⊗ vp
∂ŝkl
∂σij

=∂skl
∂σij

= ∂

∂σij

(
σkl −

1
3σppδkl

)
= 1

2 (δikδjl + δilδjk)−
1
3δijδkl = Jijkl

(A.5)
where sgn (x) = 1 if x > 0 and sgn (x) = −1 otherwise.

Remark
The derivative of the eigenvalues with respect to its tensor, i.e. ∂Ŝp

∂ŝkl
, can be calculated

from the definition of the eigenvalue problem.

ŝklvpl
= Ŝpvpk

= ŜpIklvpk
(A.6)

By differentiating the above expression and pre-multiplying by the desired eigenvector,
one has

dŝklvpl
+ ŝkldvpl

= dŜpvpk
+ Ŝpdvpk

vpk
dŝklvpl

+ vpk
ŝkldvpl

= vpk
dŜpvpk

+ vpk
Ŝpdvpk

vpk
dŝklvpl

+ Ŝp���
��:0

vpk
dvpk

= dŜp���
�:1vpk

vpk
+ Ŝp���

��:0
vpk
dvpk

vpk
dŝklvpl

= dŜp

(A.7)

where the normality of the eigenvectors yields vpk
dvpk

= 0 and vpk
vpk

= 1
Therefore, the derivative of the eigenvalues with respect to its matrix is

∂Ŝp
∂ŝkl

= vpk
vpl

(A.8)

The tensor notation of such expression takes the simple form

∂Ŝp
∂ŝ

= vp ⊗ vp = vp v
T
p (A.9)

By assembling the three terms, the normal to the yield surface in the index notation
is
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nij =
3∑
p=1

 1
ma

0

(
|Ŝp| − kŜp

σeq

)a−1 (
sgn

(
Ŝp
)
− k

) · [vpk
vpl

] · Jijkl

=
3∑
p=1

 1
ma

0

(
|Ŝp| − kŜp

σeq

)a−1 (
sgn

(
Ŝp
)
− k

) · [vpk
vpl

] ·
[1
2 (δikδjl + δilδjk)−

1
3δijδkl

]

=
3∑
p=1

 1
ma

0

(
|Ŝp| − kŜp

σeq

)a−1 (
sgn

(
Ŝp
)
− k

) · [vpi
vpj
− 1

3δij
]

(A.10)
Therefore, the intrinsic notation for the normal direction is of the form

n =
3∑
p=1

1
ma

0

(
|Ŝp| − kŜp

σeq

)a−1 (
sgn

(
Ŝp
)
− k

)(
vp ⊗ vp −

1
3I
)

(A.11)

Moreover, the fourth order projector tensor J presents major and minor symmetries.
This allows for a further simplification of the normal definition using the Voigt notation
(σT = (σxx, σyy, σzz, σxy, σyz, σxz, )). In this case, such normal will be expressed as a
6-element vector as

ni =
3∑
p=1

 1
ma

0

(
|Ŝp| − kŜp

σeq

)a−1 (
sgn

(
Ŝp
)
− k

) · Vj · Jji (A.12)

with

J =



2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

1
1

1


(A.13)

and where Vj is a 6-element vector coming from Voigt notation of the second order
tensor vpk

vpl

V =
[
vp1vp1 vp2vp2 vp3vp3 vp1vp2 vp2vp3 vp1vp3

]
(A.14)

The tensor form of such expression is therefore

n = J
3∑
p=1

1
ma

0

(
|Ŝp| − kŜp

σeq

)a−1 (
sgn

(
Ŝp
)
− k

)
V (A.15)

where the projector tensor can be taken out of the sum. This shows how the normal
definition is forced to be a deviator as long as the derivative ∂ŝ

∂σ
is considered. However,

it is not co-rotational with the stress deviator as it is the case for the von Mises yield
criterion.

A problem arises when repeated eigenvalues are present. If the matrix ŝ is real and
symmetric, it can be proven that its eigenvalues are real and the eigenvectors can form
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an orthonormal base. In more physical terms, it is possible to rotate the stress deviatoric
tensor to the principal frame composed of the eigenvectors. If all the eigenvalues are the
same value, any base is an orthogonal base and thus, an infinite number of eigenvectors
exists. Likewise, if two eigenvalues are repeated, it can be proved there is an infinite num-
ber of combinations for its two respective eigenvectors. However, it shall be proved that
the derivative of the eigenvalues will be unique for any combination of real eigenvalues.

Let an arbitrary orthonormal frame be composed of the set of vectors {v1, v2, v3}, it
can be proved that the following condition is satisfied

v1 ⊗ v1 + v2 ⊗ v2 + v3 ⊗ v3 = I (A.16)
Furthermore, the Equation A.11 can be summarized as a scalar A0, a scalar function

depending on the eigenvalues B0
(
Ŝp
)
and the eigenvector crossproduct vp ⊗ vp.

n = A0

3∑
p=1

B0
(
Ŝp
) (

vp ⊗ vp −
1
3I
)

(A.17)

with 
A0 = 1

ma
0

B0 =
(
|Ŝp| − kŜp

σeq

)a−1 (
sgn

(
Ŝp
)
− k

) (A.18)

Three cases are herein distinguished depending on the multiplicity of the eigenvalues
(1 to 3).

Multiplicity of 1
If the multiplicity of the eigenvalue is 1, the problem is well posed and the uniqueness

of the eigenvectors is satisfied.

Multiplicity of 2
For the case when one of the eigenvalues has a multiplicity of 2 (e.g the simple tension

stress state). The yield surface normal can be expressed as

n = A0B0
(
Ŝr
) 2∑
r=1

(vr ⊗ vr)−
2
3A0B0

(
Ŝr
)
I+A0B0

(
Ŝs
)

(vs ⊗ vs)−
1
3A0B0

(
Ŝs
)
I (A.19)

Where the subscript ·s stands for the single unrepeated eigenvalue. Because the mul-
tiplicity of such eigenvalue is 1, its eigenvector is unique and well defined. The quantity
corresponding to the repeated eigenvalue ∑2

r=1 (vr ⊗ vr) can, a priori, take and infinite
amount of combinations. However, by using Equation A.16 and taking into account that
the unrepeated eigenvalue has a unique eigenvector one has

2∑
r=1

vr ⊗ vr = I − vs ⊗ vs (A.20)

which is a unique quantity.
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Multiplicity of 3
However, if the eigenvalue multiplicity is 3, i.e. they are all equal, the Equation A.17

can be simplified as

n = A0B0
(
Ŝr
) 3∑
r=1

(vr ⊗ vr)− A0B0
(
Ŝr
)
I (A.21)

where the subscript ·r is used to denote a repeated eigenvalue. Therefore, any orthonor-
mal basis chosen from the infinite combination of eigenvector ensures the uniqueness of
the yield surface normal (see Equation A.16).

A.1.2 Anisotropic material exhibiting a strength differential
The extension to the anisotropic case is done by considering the stress linear transforma-
tion Σ̂ = A

(
s−X

)
= A ŝ. Hence, the equivalent stress has the following form

σeq
a = 1

m0a

{(
|Σ̂1| − kΣ̂1

)a
+
(
|Σ̂2| − kΣ̂2

)a
+
(
|Σ̂3| − kΣ̂3

)a}
(A.22)

where the eigenvalues of the transformed stress Σ̂ are now considered.
Therefore, an additional stage is considered in the chain rule derivative.

n = ∂f

∂σ
= ∂σeq

∂σ
=

3∑
p=1

∂σeq

∂Σ̂p

∂Σ̂p

∂Σ̂
∂Σ̂
∂ŝ

∂ŝ

∂σ
→ nij =

3∑
p=1

∂σeq

∂Σ̂p

∂Σ̂p

∂Σ̂mn

∂Σ̂mn

∂ŝkl

∂ŝkl
∂σij

(A.23)

where three out of the four derivatives were already computed in the isotropic case.
The new term is a fourth dimensional tensor that contains the information about the
anisotropy expressed as

∂Σ̂mn

∂ŝkl
= Amnkl (A.24)

Once again, by assembling all the terms together, one has

nij =
3∑
p=1

 1
ma

0

 |Σ̂p| − kΣ̂p

σeq

a−1 (
sgn

(
Σ̂p

)
− k

)·[vpmvpn ]·Amnkl·
[1
2 (δikδjl + δilδjk)−

1
3δijδkl

]
(A.25)

The Voigt notation can be employed as the anisotropy matrix is defined with major
and minor symmetries. Likewise, the fourth order projector tensor can also be reduced
into a 6x6. This simplifies the definition of the normal as

ni =
3∑
p=1

 1
ma

0

 |Σ̂p| − kΣ̂p

σeq

a−1 (
sgn

(
Σ̂p

)
− k

) · Vk · Akj · Jji (A.26)

where Vk is a 6-element vector coming from Voigt notation of the second order tensor
vpmvpn . The tensor form of the previous expression is
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n = J A
3∑
p=1

1
ma

0

 |Σ̂p| − kΣ̂p

σeq

a−1 (
sgn

(
Σ̂p

)
− k

)
V (A.27)

The only difference with respect to the isotropic case in Equation A.15 is the anisotropy
matrix which is pre-multiplied to the expression before the projection in the deviatoric
plane.

A.1.3 Second derivative of the yield surface function
The second derivative of the yield surface is necessary to assure a quadratic convergence in
an implicit scheme. It is also necessary for the building of the consistent tangent matrix.
The second derivative yields a fourth order tensor that can be reduced to a second order
tensor when considering the Voigt notation.

As with the yield normal calculation, the chain rule is herein employed

N = ∂2σeq(
∂σ
)2 = ∂

∂σ

(
∂σeq
∂σ

)
= ∂

∂σ

 3∑
p=1

∂σeq

∂Σ̂p

∂Σ̂p

∂Σ̂
∂Σ̂
∂ŝ

∂ŝ

∂σ

 (A.28)

The index notation is used in order to develop the previous equation

Nijkl = ∂2σeq
∂σij∂σkl

= ∂

∂σij

 3∑
p=1

∂σeq

∂Σ̂p

∂Σ̂p

∂Σ̂rs

∂Σ̂rs

∂ŝmn

∂ŝmn
∂σkl


=

3∑
p=1

∂2σeq

∂σij∂Σ̂p

∂Σ̂p

∂Σ̂rs

ArsmnJmnkl +
3∑
p=1

∂σeq

∂Σ̂p

∂2Σ̂p

∂σij∂Σ̂rs

ArsmnJmnkl

=
3∑
p=1

∂

∂Σ̂p

 3∑
q=1

∂σeq

∂Σ̂q

∂Σ̂q

∂Σ̂r̃s̃

∂Σ̂r̃s̃

∂ŝm̃ñ

∂ŝm̃ñ
∂σij

 ∂Σ̂p

∂Σ̂rs

ArsmnJmnkl

+
3∑
p=1

∂σeq

∂Σ̂p

∂

∂Σ̂rs

 ∂Σ̂p

∂Σ̂r̃s̃

∂Σ̂r̃s̃

∂ŝm̃ñ

∂ŝm̃ñ
∂σij

ArsmnJmnkl
=

3∑
p=1

3∑
q=1

∂2σeq

∂Σ̂p∂Σ̂q

∂Σ̂q

∂Σ̂r̃s̃

∂Σ̂p

∂Σ̂rs

Ar̃s̃m̃ñJm̃ñijArsmnJmnkl

+
3∑
p=1

∂σeq

∂Σ̂p

∂2Σ̂p

∂Σ̂rs∂Σ̂r̃s̃

Ar̃s̃m̃ñJm̃ñijArsmnJmnkl

(A.29)

where only the terms ∂2σeq

∂Σ̂p∂Σ̂q
and ∂2Σ̂p

∂Σ̂rs∂Σ̂r̃s̃
are unknown. The first one can be directly

derived from the results obtained in Equation A.5 using the anisotropic variables.

∂σeq

∂Σ̂p

= 1
ma

0

 |Σ̂p| − kΣ̂p

σeq

a−1 (
sgn

(
Σ̂p

)
− k

)
(A.30)

Special attention must be made concerning the eigenvalues used for the derivation.
Two cases are possible
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

p = q → ∂2σeq

∂Σ̂p∂Σ̂q

=a− 1
ma

0

 |Σ̂p| − kΣ̂p

σeq

a−2 (
sgn

(
Σ̂p

)
− k

)sgn
(
Σ̂p

)
− k

σeq
− |Σ̂p| − kΣ̂p

σ2
eq

∂σeq

∂Σ̂p


=a− 1

ma
0

(
|Σ̂p| − kΣ̂p

)a−2 (
sgn

(
Σ̂p

)
− k

)2

σa−1
eq

1−

(
|Σ̂p| − kΣ̂p

)a
ma

0σ
a
eq


p 6= q → ∂2σeq

∂Σ̂p∂Σ̂q

= 1− a
ma

0

 |Σ̂p| − kΣ̂p

σeq

a−2 |Σ̂p| − kΣ̂p

σ2
eq

∂σeq

∂Σ̂q

(sgn
(
Σ̂p

)
− k

)

= 1− a
ma

0

(
|Σ̂p| − kΣ̂p

)a−1 (
|Σ̂q| − kΣ̂q

)a−1

σ2a−1
eq

(
sgn

(
Σ̂p

)
− k

) (
sgn

(
Σ̂q

)
− k

)
(A.31)

The second term to calculate ∂2Σ̂p

∂Σ̂ij∂Σ̂kl
is the double derivative of an eigenvalue with

respect to its matrix. From the conclusions in Equation A.8, the term can be expressed
as the derivative of the eigenvectors

∂2Σ̂p

∂Σ̂ij∂Σ̂kl

= ∂

∂Σ̂kl

 ∂Σ̂p

∂Σ̂ij

 = ∂

∂Σ̂kl

(
vpi
vpj

)
(A.32)

Therefore, the derivative of an eigenvector with respect to its matrix is needed. As for-
mulated in Equation A.7, a similar procedure is followed by pre-multiplying by a different
eigenvector.

dΣ̂klvpl
+ Σ̂kldvpl

= dΣ̂pvpk
+ Σ̂pdvpk

vqk
dΣ̂klvpl

+ vqk
Σ̂kldvpl

= vqk
dΣ̂pvpk

+ vqk
Σ̂pdvpk

vqk
dΣ̂klvpl

+ Σ̂qvqk
dvpk

= dΣ̂p��
��:0vqk
vpk

+ Σ̂pvqk
dvpk

vqk
dΣ̂klvpl

=
(
Σ̂p − Σ̂q

)
vqk
dvpk

vqk
dvpk

= vqk

dΣ̂klvpl

Σ̂p − Σ̂q

(A.33)

the result is but the projection of the differential of an eigenvector with respect to
either one of the other two directions left. Considering all the eigenvectors one has

dvpi
=

q 6=p∑
q=1

vqk

dΣ̂klvpl

Σ̂p − Σ̂q

 vqi
(A.34)

It is noted that the projection of a normal eigenvector with respect to its direction is
zero. Therefore, the third order tensor derivative is as follows

dvpi

dΣ̂kl

=
q 6=p∑
q=1

(
vqk
vpl

Σ̂p − Σ̂q

)
vqi

(A.35)

By recovering the expression in Equation A.32 and introducing in it Equation A.35,
one can obtain
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∂2Σ̂p

∂Σ̂ij∂Σ̂kl

= ∂

∂Σ̂kl

(
vpi
vpj

)
= ∂vpi

∂Σ̂kl

vpj
+ vpi

∂vpj

∂Σ̂kl

=vpj

q 6=p∑
q=1

(
vqk
vpl

Σ̂p − Σ̂q

)
vqi

+ vpi

q 6=p∑
q=1

(
vqk
vpl

Σ̂p − Σ̂q

)
vqj

(A.36)

It can be verified that such vector possesses both minor and major symmetries. There-
fore, such vector can be simplified as a second order tensor.

As with the eigenvalue derivatives, a problem may arise when there is a multiplicity
higher than 1. For that case, an infinite number of eigenvector can form an orthonormal
basis. Thus, the uniqueness of the solution must be proved.

With a similar line of thought as previously shown for the normal uniqueness proof.
The decomposition of the orthonormal basis from Equation A.16 can be differentiated as

∂

∂Σ̂
(v1 ⊗ v1) + ∂

∂Σ̂
(v2 ⊗ v2) + ∂

∂Σ̂
(v3 ⊗ v3) = O (A.37)

where O is the null matrix.
Should the multiplicity of an eigenvalue be higher than one, the expressions will take

similar forms as A.21, and the sums of the derivatives of the eigenvectors will be uniquely
defined.

2∑
r=1

∂

∂Σ̂
(vr ⊗ vr) = − ∂

∂Σ̂
(vs ⊗ vs) (A.38)

where, once again, the subscript ·r and ·s stands for the repeated and unique eigen-
values respectively.

There is one last issue to solve and is the zero determinant obtained in Equation A.36
when the eigenvalues are repeated. The solution is to first identify the eigenvector with
a multiplicity of 1 and calculate its derivative. Secondly, the derivative of the remaining
eigenvectors will be half of that quantity calculated. This combination will ensure the
property in Equation A.37 and the normal calculation will be unique.

∂

∂Σ̂
(vr ⊗ vr) = −1

2
∂

∂Σ̂
(vs ⊗ vs) (A.39)

The case where the multiplicity equals to 3 can be easily computed considering all the
derivatives equal to zero.

∂

∂Σ̂
(vr ⊗ vr) = 0 for r = 1, 2, 3 (A.40)

A.1.4 Yield surface normal for the case a = 2
A particularly simple definition of the yield surface normal (and its derivative) can be
made when the shape material coefficient a = 2. For this case, the CPB06 model can be
expressed similarly as the Hill criterion.
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σeq
a = 1

m0a

{(
|Σ̂1| − kΣ̂1

)a
+
(
|Σ̂2| − kΣ̂2

)a
+
(
|Σ̂3| − kΣ̂3

)a}
= 1
m0a

3∑
p=1

(
|Σ̂p| − kΣ̂p

)a
= 1
m02

3∑
p=1

Σ̂2
p

(
1 + k2 − 2ksng

(
Σ̂p

))
= 1
m02 Σ̂αÃαβΣ̂β

(A.41)

where Ãαβ is a diagonal matrix. The tilde is used here to distinguish the matrix from
the one used to transform the stress deviator as anisotropy is included. A priori, this
matrix does not seem constant with respect to the eigenvalues. However, the derivative
∂sgn

(
Σ̂p

)
/∂Σ̂p equals zero everywhere except from the case where the eigenvalues is null.

Nonetheless, for the case of a zero eigenvalue, the whole expression would be null.

Σ̂p
App

∂Σ̂p

Σ̂p = 0 (A.42)

By expressing the eigenvalues as a matrix the result goes

σeq
2 = 1

m0a
Σ̂αβÃαβγδΣ̂γδ (A.43)

where Greek letter indices are used to remark that it is principal frame. The matrix
Ãαβγδ has a non zero element when α = β = γ = δ. Therefore, a possible way to define
it is

Ãαβγδ =
(
1 + k2 − 2ksgn

(
Σ̂α

))
δαβδαγδαδ (A.44)

Special attention must be made concerning the index notation of the eigenvalues ma-
trix/vector. If only one index is used, it is considered as an array whereas two indices
would mean that it is a matrix.

The result from A.41 is expressed with respect to the transformed tensor principal
frame. Therefore a rotation defined by the eigenvectors is made to calculate the matrix
with respect to the current frame.

Ãijkl = ÃαβγδQiαQjβQkγQlδ (A.45)

where the rotation matrix is built using the corresponding eigenvectors as columns.

Qiα = vαi
(A.46)

Note that Latin indices are used now for the expression of the matrix in the current
frame as opposed to the principal frame where Greek indices are employed.

The matrix Ãijkl controls the strength differential of the material and it is pre-
multiplied and multiplied by the transformed deviator. In order to include the full
anisotropy, the fourth-order anisotropic tensor is included in the formulation.
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σeq
2 = 1

m0a
Σ̂αβÃαβγδΣ̂γδ

= 1
m0a

Σ̂ijÃijklΣ̂kl

= 1
m0a

ŝijAijklÃklmnAmnpqŝpq

= 1
m0a

ŝijÂijklŝkl

(A.47)

where the fourth order tensor Âijkl can now fully described the anisotropy within the
material. As previously denoted, the tensor ŝij is the difference between the stress tensor
deviator sij and the kinematic force Xij (which is defined deviatoric as well).

All the fourth order tensors presented above have major and minor symmetries that
would allow for a simplification of the equivalent stress by using a matrix.

Âijkl = AijpqQpαQqβtildeAαβγδQmγQnδAmnkl → Âij = AikQ̃αkÃαβQ̃βlAlj (A.48)

The matrix Aij is defined so as to linearly transform the stress deviator in Voigt
notation.

Σ̂i = Aij ŝj (A.49)
Subsequently, the matrix Q̃αi is a 3× 6 matrix that rotates the 6-element transformed

tensor (in Voigt notation) to the 3-element principal frame, i.e. the three eigenvalues.

Σ̂α = Q̃αiΣ̂i (A.50)
This ’rotation’ matrix has the form

Q̃αi =

Q
2
11 Q2

21 Q2
31 2Q11Q21 2Q21Q31 2Q31Q11

Q2
12 Q2

22 Q2
32 2Q12Q22 2Q22Q32 2Q32Q12

Q2
13 Q2

23 Q2
33 2Q13Q23 2Q23Q33 2Q33Q13


=
[

Q.Q

2Q.Q ([2, 3, 1] , :)

]T (A.51)

The aforementioned notations allows for the expression of the yield surface as

σeq
2 = 1

m02 ŝiÂij ŝj (A.52)

The derivative is therefore straight forward

∂σeq
∂σij

= ∂σeq
∂ŝk

∂ŝk
∂ŝlm

∂ŝlm
∂σij

=
(

1
m02

Âkk̃ŝk̃
σeq

)
· Ĩklm · Jlmij

(A.53)

where Ĩklm is a third order tensor representing the transition from the deviator ŝlm
and its Voigt notation equivalent ŝk. By simplifying the normal definition expressing it
as a 6-element vector, the result yields
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ni = 1
m02

dev
(
ĨikÂkk̃ŝk̃

)
σeq

(A.54)

where dev (·) is the deviator operator in vector form. The matrix Ĩik reads

Ĩik =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1/2 0 0
0 0 0 0 1/2 0
0 0 0 0 0 1/2


(A.55)
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