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Summary
The advent of new brain imaging techniques such as resting-state functional MRI (fMRI), has
led to the need for new approaches to recover brain functional activations without a prior
knowledge on the experimental paradigm, as it was the case for task-fMRI. Conventional
methods, i.e. the general linear model, requires the knowledge of the task paradigm to
estimate the contribution of each voxel’s time course to the given task. To overcome this
limitation, approaches to deconvolve the blood-oxygen-level-dependent (BOLD) response
and recover the underlying neural activations without necessity of prior information has
been proposed. Supposing the brain activates in constant blocks, first we propose a temporal
regularized deconvolution technique which uses an exponential operator, whose shape and
performance can be adjusted, into a least absolute shrinkage and selection operator (LASSO)
model solved via the Least-Angle Regression (LARS) algorithm. We reduced the number
of parameters to be set by the user, when compared with the state of the art. Second, we
introduce a paradigm-free regularization algorithm that applies on the 4-D fMRI image,
acting simultaneously in the 3-D space and the 1-D time dimensions. The approach is
based on the idea that large image variations should be preserved as they occur during
an activation, whereas small variations should be smoothed to remove noise. It allows to
smooth the whole fMRI image with an anisotropic regularization, thus blindly recovering
the location of the brain activations in space and their timing and duration. Both approaches
were tested on phantom and real data and were demonstrated to improve the results
obtained in the state of the art.

Keywords: BOLD, Deconvolution, Edge detection, Functional MRI, Hemodynamic
Response Function, Image Regularization, Paradigm Free, Partial Diferential Equations,
Resting-state
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Resumé
L’avènement de nouvelles techniques d’imagerie du cerveau comme l’IRM fonctionnelle
(IRMf) au repos a conduit à la nécessité de nouvelles méthodes pour récupérer les activations
fonctionnelles du cerveau sans connaissance du paradigme expérimental, comme dans
l’IRMf basée sur tâche. Les méthodes conventionnelles, par example le modèle linéaire
général, nécessitent la connaissance de la tâche pour pouvoir estimer la contribution du
signal de chaque voxel à la tâche donnée. Pour surmonter ces limitations, des méthodes de
déconvolution de la réponse dépendant du niveau d’oxygène dans le sang et de récupération
des activations neurales sans avoir besoin d’informations préalables ont été proposées. Dans
cette thèse, nous proposons d’abord une technique de déconvolution avec une regularisation
temporelle qui utilise un opérateur exponentiel, dont la forme et la performance peuvent
être ajustées. Avec cette méthode, nous avons réduit le nombre de paramètres à régler
par l’utilisateur, par rapport à l’état de l’art. Ensuite, nous avons introduit un algorithme
de régularisation qui s’applique à l’image IRMf 4-D, agissant simultanément dans les
dimensions spatiale et temporelle. La méthode est basée sur l’idée que les grandes variations
de l’image doivent être préservées car elles se produisent lors d’une activation et les petites
variations doivent être lissées pour éliminer le bruit. Elle permet de lisser l’image IRMf avec
une régularisation anisotrope, récupérant ainsi aveuglément la localisation des activations
cérébrales et leur durée. Les deux méthodes ont été testées sur des données synthetiques et
réelles et ont démontré une amélioration des résultats de l’état de l’art.

Mot-clés: IRMf - Activation Cérébrale - Reconstruction Régularisée – Regularisation
Anisotropique
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(ûPF− f MRI). Each row corresponds to a different peak-SNR (pSNR): ' 0 dB, -
6.51 dB, from the top to the bottom. (b) Reconstructed time series obtained
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Introduction

Context

With the innovation introduced with the advent of neuroimaging techniques, new insights
into the understanding of the functioning of the human brain have been possible. The
human brain is the most interesting, fascinating as well as mysterious organ of the human
body. It is where the mind and the intelligence, the soul and the personality, the thoughts
and the behaviour as well as the functions that regulates and allows the movement of the
entire human body are created and directed. Nonetheless, the brain does this starting from
its basic component, the neuron, in a scale of microns and moreover it does it via simple
electrical signals. Furthermore, the understanding of the brain becomes crucial to treat the
neurodegenerative diseases due to the increased life expectancy of the population in the
world. The ultimate goal of the neuroimaging community is to decode these signals and
understand how the brain works and is organized while it is working, in a living human
being, in other words in vivo.
Nowadays, there are several imaging modalities available and they can be classified into
two main categories: the structural and functional neuroimaging modalities. (i) Magnetic
Resonance Imaging (MRI) is a unique tool that provides anatomical images of the brain
tissues. (ii) Functional MRI (fMRI) allows to obtain information about the brain function
and how the different regions of the brain interact and integrate by exploiting a natural
endogenous contrast of the properties of the blood oxygenation. (iii) Diffusion MRI (dMRI)
instead allows the study of the white matter (WM) fiber bundles, hence the tracts connecting
one brain region to another. (iv) Near-infrared spectroscopy (NIRS) gives information
about regional oxygenation and blood flux via near-infrared region of the electromagnetic
spectrum. (v) Magneto-and Electro-encephalography (MEG/EEG) perform measurements
of the brain electro-magnetic activity. (vi) Computed Tomography (CT) allows 3-D scannings
of the brain using x-rays. (vii) Position Emission Tomography (PET) gives information about
the metabolic activity of the brain.
Neuroimaging modalities give indirect and degraded measures of the brain activity
or structure, meaning that the acquired signals are corrupted by noise, and have to
be interpreted using sophisticated analysis methods which allow to extract meaningful
information.

Problem

The problem we are addressing in this thesis is the recovery of brain functional activations
from fMRI data. Traditional techniques for measuring the brain function are based on
experimental paradigms, where the subject is asked to perform a task in order to measure
the difference between the rest condition, representing a baseline, and the task condition.
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fMRI data analysis methods, i.e. the general linear model (GLM), require the knowledge of
the task paradigm to be able to estimate the contribution of each brain region to the given
task. Nevertheless, an experimental setup is not suitable for those patients whose conditions
do not allow them to perform tasks. Interestingly, the development of new techniques in the
field of fMRI, i.e. the resting-state fMRI (rs-fMRI), provide signals that may give insights
into the brain function in the absence of stimuli, when the subject is at rest, and is not
required to perform any task. This has emphasized the need to recover the underlying neural
activations from fMRI signals in the absence of an experimental paradigm. Therefore new
techniques that are able to uncover the information hidden in the signal, avoiding the need
for additional priors on the activations, are necessary.

Contributions and List of Publications

In this thesis we present two main contributions with a major goal: recovering the brain
activation starting from the acquired fMRI data without a priori information on the timing
and the duration of the underlying activation.

First Contribution. fMRI Deconvolution via Temporal Regularization
using a LASSO model and the LARS algorithm

The fMRI inverse problem is in general ill-posed and the acquisitions and the forward
operator, in this case the hemodynamic response function (HRF), are not sufficient to recover
a unique solution. The solution is indeed highly sensitive to small perturbations in the
data. In the first contribution of this thesis, we solve the inverse problem thus recovering
voxel-wise brain functional activations from the blood-oxygen-level-dependent (BOLD)
signal. To do this, we propose a temporal regularized deconvolution technique which
uses an exponential operator, whose shape and performance can be adjusted by tuning a
parameter α, into a least absolute shrinkage and selection operator (LASSO) model. We
solved the problem via the Least-Angle Regression (LARS) algorithm that computes the
entire solution path for all possible lambdas. Therefore we had just to reasonably choose the
optimal regularization parameter, hence the optimal solution, among all those outputted
by the algorithm. This approach was tested and validated both on phantom and real
data. Compared with the temporal regularized deconvolution implemented in the Total
Activation (TA) approach proposed by Karahanoğlu and colleagues [6] we avoided the need
of defining a priori the regularization parameter and we reduced the computation time.

Second Contribution. A Paradigm Free Regularization Approach to
Recover Brain Activation from fMRI Data

A natural extension of the first contribution is to include also the spatial prior into the
regularization problem to achieve a solution that is more accurate. In fact, fMRI images have
a high spatial resolution, and the information recovered between voxels that are neighbours
to each other can be exploited.
State-of-the-art techniques, in particular the TA approach [6], consider the problems of
spatial and temporal regularization as decoupled tasks, thus doubling the number of
parameters to be set and requiring the solver to alternate between the constraints. In this
thesis we propose a paradigm-free regularization algorithm based on partial differential
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equations named PF-fMRI (Paradigm-Free fMRI) that applies on the 4-D fMRI image, acting
simultaneously in the 3-D space and the 1-D time dimensions. The PF-fMRI is based
on the idea that large image variations should be preserved as they occur during brain
activation, whereas small variations should be smoothed to remove noise. Starting from this
principle, using the PF-fMRI allows us to smooth the whole fMRI image with an anisotropic
regularization, thus recovering the location of the brain activations in space and their timing
and duration. The PF-fMRI is validated both on synthetic and on real task-fMRI data, that
provided us with an experimental paradigm as ground truth to be able to assess the quality
of the results. We compared the PF-fMRI with state-of-the-art techniques and finally applied
it to rs-fMRI data as a proof of concept.

List of Pubblications

Journal Papers

• I. Costantini, S. Deslauriers-Gauthier, and R. Deriche, A Paradigm Free Regularization
Approach to Recover Brain Activation from Functional MRI Data. Manuscript in
preparation.

• S. Deslauriers-Gauthier, I. Costantini and R. Deriche, Non-invasive inference of
information flow using diffusion MRI, functional MRI, and MEG, Journal of Neural
Engineering. Manuscript submitted for publication.

Participation in Conferences

• I. Costantini, S. Deslauriers-Gauthier, and R. Deriche, A Paradigm Free Regularization
Approach to Recover Brain Activations: Validation on Task fMRI, International Society for
Magnetic Resonance in Medicine, ISMRM 2020, Sydney, Australia. (Oral Presentation)

• I. Costantini, S. Deslauriers-Gauthier, and R. Deriche, Deconvolution of fMRI Data using
a Paradigm Free Iterative Approach based on Partial Differential Equations, Organization for
Human Brain Mapping Annual Meeting, OHBM 2019, Rome, Italy.

• I. Costantini, S. Deslauriers-Gauthier, and R. Deriche, Novel 4-D Algorithm for
Functional MRI Image Regularization using Partial Differential Equations, International
Society for Magnetic Resonance in Medicine, ISMRM 2019, Montreal, Canada. (Power
Pitch)

• I. Costantini, P. Filipiak, K. Maksymenko, S. Deslauriers-Gauthier, and R. Deriche,
Temporal Regularized Deconvolution of fMRI Data using a LASSO Model and the LARS
Algorithm, C@UCA, June 2018, Frejus, France.

• I. Costantini, P. Filipiak, K. Maksymenko, S. Deslauriers-Gauthier, and R. Deriche,
fMRI Deconvolution via Temporal Regularization using a LASSO model and the LARS
algorithm, 40th International Conference of the IEEE Engineering in Medicine and
Biology Society, EMBC 2018, Honolulu, Hawaii.

• I. Costantini, P. Filipiak, K. Maksymenko, R. Deriche, and S. Deslauriers-Gauthier,
Deconvolution of fMRI BOLD signal in time-domain using an exponential operator and Lasso
optimization, Workshop Computational Brain Connectivity Mapping, November 2017,
Juan Les Pins, France.
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Collaboration with other authors

• M. Frigo, I. Costantini, R. Deriche, and S. Deslauriers-Gauthier, (2018, September).
Resolving the crossing/kissing fiber ambiguity using Functionally Informed COMMIT.
In International Conference on Medical Image Computing and Computer-Assisted
Intervention (pp. 335-343). Springer, Cham. (Appendix C).

• M. Frigo, GG. Diez, I. Costantini, A. Daducci, D. Wassermann, R. Deriche, and
S. Deslauriers-Gauthier, Reducing false positive connection in tract function filtering,
Organization for Human Brain Mapping, OHMB 2018, Singapore.

Other experiences

• Workshop: Multi-Scale Imaging of the White Matter Neuroanatomy, May 2019,
Montreal, Canada.

• Workshop: MOMI 2019 - Le Monde des Mathématiques Industrielles, Feb. 2019,
INRIA Sophia Antipolis, France.

• Workshop: The Virtual Brain, 26 Feb 2018, Berlin, Germany.

• CoBCoM 2017, Computational Brain Connectivity Mapping, Winter School Workshop,
20-24 Nov 2017, Juan Les Pins, France.

• MOMI 2017 - Le Monde des Mathématiques Industrielles, Feb. 2017, INRIA Sophia
Antipolis, France.

• ISMRM Workshop on Breaking the Barriers of Diffusion MRI, 11-16 Sept 2016, Lisbon,
Portugal.

• Summer School on Brain Connectomics, 19-22 Sept, University of Verona, Italy.

• Conference: Joint Annual Meeting ISMRM-ESMRMB 2018, Paris, France.

• Member of the commettee in charge of the organization of the PhD Seminars and
the workshop Le Monde des Mathématiques Industrielles (MOMI) at Inria Sophia-
Antipolis, France.

Software Contributions

The second contribution of this thesis has been entirely implemented in a Python package,
called Paradigm-Free Functional MRI (PF-fMRI), that is available in a GitLab repository
dedicated to the Computational Brain Connectivity Mapping (CoBCoM ERC AdG project).
In the package we implemented all the steps we describe in Chapter 4. It simply requires the
acquired and preprocessed fMRI image and returns as output the regularized 4-D data.

Overview of the Thesis

Chapter 1. From Neurons to BOLD-contrast imaging

This chapter introduces the neurophysiological bases of the brain function and structure,
starting with a description of neurons, as the fundamental elements of the brain. Starting
from a description at a cellular level, we gradually arrived at describing what is the brain
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anatomy and its function. In this chapter we also introduce the neuroimaging modalities
and the MRI technique, starting from its basic principles. In this framework, we provide
a focus on fMRI to have a comprehensive knowledge of the signal we are measuring and
analyzing in the following chapters of this thesis.

Chapter 2. fMRI Data Analysis

This chapter gives an overview of the state of the art concerning the methods for fMRI data
analysis. We starts from a classical approach, the GLM which requires a priori information
to recover the brain activations. We then introduce the data-driven approaches as a set
of methods that aims at grouping together voxels whose signals have a certain type of
similarity into networks or clusters. After that, we introduce a group of state-of-the-art
approaches based on deconvolution techniques, that do not require a priori information
on the brain activation they uncover. We then discuss the limitations of the current state of
the art which delineates the context and the reasons that lead to the new techniques that we
propose in this thesis.

Chapter 3. fMRI Deconvolution via Temporal Regularization using a
LASSO model and the LARS algorithm

This chapter introduce our first main contribution. We started from giving an overview
of regularization approaches, then we introduce our temporal regularized deconvolution
approach to recover brain activity. To do this, we used a LASSO model and the LARS
algorithm that interestingly gives as output all possible regularization parameters and their
associate solutions. To validate our approach we tested it on phantom and real task-fMRI
data to have a ground truth to which to refer to assess the results. We compare our approach
with a state-of-the-art technique and discuss the results.
As for the phantom data, in this chapter we also describe how we simulate the synthetic
fMRI images. The novelty we introduced in the data simulation, that we employed for the
validation of the method described in Chapter 3, is that in addition to a random Gaussian
noise, we added a block type noise to simulate the fMRI measurements, which takes into
accounts head motions and/or false neural activations.

In Appendix A we report the design of the proposed so-called α-filter, that implements the
accumulation function we employed in our model.

Chapter 4. A Paradigm Free Regularization Approach to Recover Brain
Activation from fMRI Data

In this chapter we describe our second main contribution, where we aimed at exploiting
both the temporal and spatial features of the fMRI data structure. To do this, we aimed at
uncovering the brain activations treating the entire 4-D fMRI image as a whole. Therefore,
starting from the idea that the brain activates in constant blocks we propose an approach
that keeps big image variations because they represent neural activations and smooth small
variations to reduce the signal degeneration due to noise. This novel approach, the Paradigm
Free fMRI (PF-fMRI), acts via the 4-D image structure tensor and uses partial differential
equations (PDEs) to iteratively and anisotropically regularize the whole 4-D fMRI image.
To validate our approach, we applied it both on synthetic data and on real task-fMRI data
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from 51 subjects. We finally successfully compare our results with several state-of-the-art
techniques.
We applied the PF-fMRI on task-fMRI data to have a ground truth to be able to assess the
results, even if the final aim is the application to rs-fMRI data, to which we also applied
the PF-fMRI as a proof of concept. The proposed approach was also applied in a work that
aimed at inferring the information flow in the WM of the brain and at recovering cortical
activity using a multi-modal approach based on fMRI, dMRI, and MEG, without a manual
selection of the WM connections of interest as reported in Appendix B.

Chapter 5. Concluding Remarks and Open Problems

This last chapter contains a discussion and a conclusion summarizing the main contributions
of this dissertation and the improvements achieved compared to the state of the art. We also
discuss the current limitations of the proposed methods and the main perspectives for future
works and clinical applications.
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Chapter 1

From Neurons to BOLD-contrast
imaging

The brain is an astonishing less than 1.5 kg organ that regulates all body functions, defines
the essence of the human mind and soul and interprets information from the outside world
[18]. Intelligence, creativity, emotion, and memory are a few of the many things governed
by the brain. The brain uses electrical signals, to process and examine all the information it
receives. Even though these signals are virtually identical in all nerve cells, they do not at
all look like what they appear to produce in the practical life of the human being. In fact, by
means of these signals, the brain gets information by the human five senses - sight, smell,
touch, taste, and hearing - and assembles the messages in a way that has meaning for us,
and can store that information in our memory. The brain controls our thoughts, memory and
speech, movements, and the vital function of many organs within our body. To understand
how this is done, it is therefore an essential task to decode these signals and the way they
are organized and processed by the brain.
In this chapter we provide an introduction to the brain, giving a comprehensive overview
of its biological composition, its anatomy and, because in this thesis we are interested in
the recovery of the brain functional activations, a zoom on the brain function and open
challenges. After, we describe the neuroimaging modality we are interested in, the fMRI
technique, starting from the basic principles of the MRI until we reach the BOLD contrast
imaging. We conclude with a a description of the two main fMRI imaging techniques:
task- and rs-fMRI. The aim of this chapter is to give an understanding of the signal we are
measuring and the type of information this signal provides.

1.1 Brain Biology, Anatomy and Physiology

In this section we introduce the brain and the terminology used in the discipline of
neurology. There are three sections which cover: the cellular structure of the brain, its
anatomy, and its function. The contents reported in this section are mainly based on the
books referenced here: [18, 2, 19].

1.1.1 Brain Cellular Structure

The human brain is one of the largest and most complex organs in our body; it is
composed by approximately 86 billion neurons, which constitute the brain’s fundamental
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units, or building blocks. Neurons are nerve cells within the nervous system that transmit
information to other nerve cells, thus allowing the exchange and "communication" within
each others by means of a combination of electrical and chemical signals [20]. Most neurons
have a cell body, an axon and dendrites (Figure 1.1). The cell body is the place where
the metabolic activity of a neuron take place and the neurotransmitters are synthesized.
The dendrites are the cell body projections, covered by dendritic spines, with a receptive
role. The axon is a nerve fiber which constitutes a projection of the neuron, where the
conduction of electrical impulses, i.e. the action potentials, from the body cell to the pre-
synaptic terminal, take place. These electrical signals are propagated along the axons, by
means of its coating sheath, known as myelin.
Key concepts for the comprehension of the brain function are the so-called synapses. A
synapse is a tiny gap across which neurons transmit their energy from the pre-synaptic
neuron to the post-synaptic neuron thus "talking" to each other. The process through which a
cell collects and aggregates all the incoming input signals that then transmit to other neurons
is called integration.
Different types of neurons, which are tailored to the job they perform, constitute the central
nervous system, that controls most functions of the body and the mind. Signals from sensory
receptors over the body feed along the spinal cord to the brain, and signals are sent from the
brain to execute a task, for example, muscles contraction. A failure of these complex system
may cause a malfunctioning of the entire human body mechanism, leading to medical
diseases. Neuro-degenerative diseases have been impacting the health of human beings
because of the increased life expectancy. For example in the Parkinson’s disease where there
is a deficiency of the neurotransmitter dopamine. Therefore it is crucial to study the brain’s
function and have a better understanding of it to be able to reduce the impact of neuro-
degenerative diseases.

1.1.2 Human Brain Anatomy

The brain is composed by three main parts: the cerebrum, the cerebellum and the brainstem.
The cerebrum is the largest and uppermost portion of the brain, accounting for the two-
thirds of the total weight of the brain and is divided into a right and a left hemisphere. It
performs higher functions such as thinking, speech, reasoning, emotions, learning, and fine
control of voluntary movements as well as interpreting touch, vision and hearing. In most
cases, the left hemisphere is functionally dominant and accounts for language and speech
control. The right hemisphere instead is involved in the interpretation of visual and spatial
information. The cerebellum is positioned underneath the cerebrum and is responsible of
coordination of movements and balance. The brainstem is located between the spinal cord
and the rest of the brain, thus playing as a transfer center. It performs basic automatic
functions such as controlling breathing, heart rate, temperature of the body, sleep, digestion,
sneezing, coughing and swallowing. Going more into depth on the cerebrum: it appears as
an ensemble of folds, aslo known as gyri, and grooves between folds, also called sulci. The
cerebral cortex consists of a thin strip of brain cells, or gray matter (GM), representing the
outermost surface of the cerebral hemispheres, and an inner core of myelinated nerve fibres
(axons) constituting the WM. Nerve fibres in the WM connect functional areas of the cerebral
cortex. The GM of the cerebral cortex contains sensory, motor and important association
areas and its usually is divided into four lobes, delineated by major surface folds [21]. The
lobes are: the frontal lobe, the parietal lobe, the temporal lobe and the occipital lobe; the
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FIGURE 1.1: Neurons structure and process of synaptic transmission. The
figure shows how the neurons are composed and connected to each other.
The cell body contains the nucleus and cytoplasm. The axon extends from the
cell body and gives rise to small branches before ending at nerve terminals.
Dendrites extend from the neuron cell body and carry the information
between neurons. Synapses are the points where the "communications"

between neurons take place. Figure taken from [1]
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limbic lobe can be considered as a fifth lobe. The frontal lobe is the most anterior and the
largest lobe of the human brain; the parietal lobe is located between the frontal and the
occipital lobes, above the temporal one. The limbic lobe is constituted by structures on the
medial surface which surround the corpus callosum. In order to describe the brain lobes, it
is necessary to define conventions and to point out that the brain surface can be observed
from different points of view as illustrated in Figure 1.2: from the front (frontal or anterior
view), from a side (lateral view), from the back (occipital or posterior view) and from the
middle (medial view). The brain lobes are exhaustively illustrated in Figure 1.3. On the
dorsolateral surface, from point 1 to point 2 in Figure 1.3.A, the line of separation between
the frontal lobe and the parietal lobe is the central sulcus. The lateral sulcus, from point 2 to
point 3, is the division line between the frontal lobe and the temporal lobe; it also partially
separates the temporal lobe from the parietal lobe, from point 2 to point 4. An arbitrary line
that goes from the dorsal tip of the parieto-occipital sulcus and the preoccipital notch, from
point 5 to point 6, separates the occipital lobe from the parietal and temporal lobes. Another
arbitrary line, which runs from the anterior edge of the occipital lobe to the posterior tip of
the lateral sulcus, from point 7 to point 4, is dividing the ventral surface and the posterior
parietal lobe. On the medial surface of the brain, as illustrated in Figure 1.3.B, from point 8
to point 9, the anterior, posterior and dorsal borders of the limbic lobe are demarcated by the
cingulate, olfactory, parieto-occipital and subparietal sulci. The ventral borders of the limbic
lobe are instead separated by the rhinal and the collateral sulci, from point 8 to point 10. The
frontal lobe is segregated from the parietal one via the line extending from point 1 to point 11,
that extends from the central sulcus and reaches the cingulate sulcus. The parieto-occipital
sulcus delimits the separation of the parietal from the occipital lobe, from point 5 to point
12. Finally, from point 6 to point 8, an arbitrary line running from the preoccipital notch to
the lower tip of the parieto-occipital sulcus, separates the occipital and the temporal lobes.
As for the two hemispheres, they are connected via a thick band of WM, i.e. the corpus
callosum, which allows integration of sensory input and functional responses from both
sides of the body. Other cerebral structures include the hypothalamus, that regulates the
metabolism and preserves the homeostasis, and the thalamus, that constitutes the principal
sensory relay center. The brain structures are surrounded by ventricles, which are spaces
filled with the cerebrospinal fluid (CSF). The role of the CSF is to supply the brain cells
with nutrients and to provide mechanical support and absorb eventual shocks. Finally, the
brain is surrounded by a layer of tissue called the meninges and above these the skull, that
encloses and protects the brain from injuries.

1.1.3 Human Brain Function

The concept of brain function generally refers to the brain’s ability to perform a cognitive
or physiological task [22]. A brain functionality is achieved by the cooperation of
multiple neurons adjacent to each other as well as by the association of neurons which are
instead segregated in space and located in different brain regions. The brain function is
increasingly regarded as the result of widely interconnected neurons arranged both laterally
and hierarchically within the cerebral cortex and deep brain nuclei. This architecture
essentially allows continuous input, integration and output of several multi-modal sensory
and physiological flows simultaneously.
As it emerged already from the previous lines, there exists in fact two main concepts of
brain function: the specialization and the integration. From a macro-scale point of view,
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FIGURE 1.2: Conventional terminology which indicates the different
orientations representing the different brain views: in surface (A), section (B)
and connectional anatomy (C). Surface neuroanatomy is the one describing
the appearance of grooves (sulci) and folds (convolutions or gyri) of the brain.
Sectional neuroanatomy illustrates the cortical and subcortical structures and
their relationship, commonly described along the axial, coronal and sagittal
plane. The connectional neuroanatomy desribes the connecting fiber tracts’
origin, paths and terminations. Figure taken from Catani and Thiebaut de

Schotten [2].
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FIGURE 1.3: Brain lobes of a dorsolateral (A) and medial (B) surface of the left
cerebral hemisphere. Solid lines show the main sulci dividing the lobes, while
dashed lines represent arbitrary lines of separations which are following a
sulcus. The gyri of each lobe are also illustrated. Figure taken from Catani

and Thiebaut de Schotten [2].

the different anatomical lobes are responsible for the execution of different functions and
this is what is defined as functional specialization. In fact, the frontal lobe contains control
centers for motor functions, problem solving, speech and judgment as well as personality,
behaviour and emotions, concentration, intelligence and self-awareness [23, 21]. The parietal
lobe is involved in somatic sensations, such as touch, pain and temperature, as well as spatial
and visual perceptions, interpretations and processing of language, visual, hearing, motor,
sensory and memory stimuli [24]. The temporal lobe is responsible for auditory reception
and processing, and memory [25]. The occipital lobe controls the visual acquisitions and
processing and the limbic lobe governs the smell, taste, and emotions.
The brain specialization has been found already two centuries ago, when the physician
Gall claimed that the brain is the seat of the mind and that the mind is made of different
mental faculties residing in different specific brain regions [26, 27]. After that, in the
second half of the 19th century, several scientists, e.g. Brodmann and Broca, worked in
the localization of brain regions related to precise functions and by the early 20th century,
it was commonly proved and accepted by the scientific community that sensory and motor
functions are located in specialized cerebral areas [28, 29]. Nonetheless, evidences showed
that the brain is much more complex than this and indeed there was already a debate on
the fact that the brain is not only specifically organized. Among those who were sustaining
this idea there was for example Lashley, who was not able to find located cortical areas
responsible for memory and cognition [30, 31, 28]. Besides the functionally specialized
regions responsible for sensory and motor functions, there are evidences that the cortical
regions which activates for some functions appear also when performing other high-level
cognitive functions integrating with other brain regions, for example for language [32].
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Modern neuroscientists challenge the exclusive idea of the brain as being just functionally
specialized and recognize that a single region participates in multiple and diverse functions
[33]. When we talk about functional integration we refer to the brain as a whole, meaning
that different brain regions cooperate together and process information to achieve a certain
function. Brain areas, i.e. neurons, are indeed connected at different degrees via the WM
fiber bundles, that allows the propagation of the information from a region to another.
The comprehension of the brain function gives rise to two complementary objectives: on
one hand, understanding how the brain anatomical structures and dynamics control its
functions; on the other hand, comprehend how actions and behaviours produce functional
brain subdivisions [22]. We can then assert that the brain is difficult to study not only because
of its inherent complexity - the billions of neurons, the hundreds or thousands of types of
neurons, the trillions of connections - but also because it works at a number of different
scales, both in the physical sense and in the time domain. To capture and understand the
brain’s electrical activity at these scales, it is crucial to collect information about the brain
as a whole and nowadays no single technology is extensively enough. In fact researchers
are limited in the sort of approaches they can use to study human brain activity, because
they suffer from a lack of detail. Nevertheless, even if we are still far away from the full
understanding of how the brain implements given functions, the study of brain dynamics
using different neuroimaging data analysis techniques give hints on how these functions
may be explained.

1.2 Introduction to NeuroImaging

Comprehending the nature of the human brain, the biological basis of learning, memory,
behavior, perception and consciousness has been described by Eric Kandel as the "ultimate
challenge" of biological sciences [34]. In recent decades there has been a continuous
development of neuroimaging techniques, increasingly used in scientific research and in
clinical practice. Standard neuroimaging techniques provide non-invasive access not only
to the anatomy of the human brain but also to its physiology, its functional architecture
and its dynamics. Functional neuroimaging techniques provide an excellent opportunity
for investigating the human brain in vivo [35]. In particular, modalities such as positron
emission tomography (PET), single photon emission computed tomography (SPECT),
functional magnetic resonance imaging (fMRI), and magneto-encephalography (M/EEG)
led to a new era in the study of the brain functioning.
EEG measures brain electrical activity via electrodes set on the scalp; MEG records the
magnetic field by means of sensors placed above the head. Both EEG and MEG have high
temporal resolution, on the order of milliseconds; nonetheless their spatial resolution, on
the order of centimeters, is low. Over EEG, MEG has the advantage of showing a better
signal localisation, however it is expensive and it is limited in the detection of deeper
brain structures events. PET gives measures of metabolic processes, while fMRI measures
increased neural activities reflected in the changes of blood oxygenation. fMRI has the
advantage of having a high spatial resolution, on the order of a few millimeters, even if it
has low temporal resolution, between hundreds of milliseconds and seconds. Compared
with older techniques, such as the single- or multi-units recordings used to investigate
the neurons’ physiology, the activity recorded with M/EEG, PET and fMRI, also known
as functional neuroimaging modalities, have the advantage of being non-invasive, hence
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exploitable for the investigation of brain functions in the living human beings. Furthermore,
they allow a whole-brain reconstruction, rather than the image of a small brain portion
and this is crucial when the aim is investigating the functional integration of different
brain areas. However, because these techniques outputs just indirect measures of brain
activity – e.g. the ratio of the blood oxygenation, firing rates or membrane potentials
– there is a gap between what is actually measured and how these measures reflect the
brain functioning architecture and mechanism. In other words what is observed is an
example of dynamics, from which functional brain activity should be inferred. This is the
context where neuroscientists, computer scientists, mathematicians, psychologists as well
as neurologists are needed, by developing mathematical models, experimental designs and
interpreting data to make evidences. Besides, distinguishing between bare dynamic and
authentic function is an extremely non-trivial task, but of fundamental importance when
comparing experimental observations and interpreting their meaning [22]. For this reason,
it is important to provide more and more precise techniques for the recovery of the brain
functional activations.

1.3 Fundamentals of MRI

To date, Magnetic Resonance Imaging is the most diffused technique based on Nuclear
Magnetic Resonance (NMR) for medical imaging. The NMR was discovered by Isidor Isaac
Rabi, who received the Nobel Prize in Physics in 1944. In the late 1940s and early 1950s, Felix
Bloch at Stanford [36, 37] and Edward Purcell at the Massachusetts Institute of Technology,
independently developed the NMR spectroscopy, an analytical chemistry technique that
examines the structure of molecules. The technique has rapidly evolved since then. As
for MRI, the first acquisition realized using this technique was done in 1976 by Damadian
et al. [38], but the technique was approved for clinical use almost ten years later [39]. In
2003 the Nobel Prize in Physiology or Medicine was awarded jointly to the two scientists
Paul Lauterbur and Peter Mansfield, who played key roles in the development of MRI.
Regarding brain imaging, MRI was then mainly used to diagnose neurological disorders
such as atrophies related to epilepsy, cancerous tumors, or Alzheimer disease [40]. Only in
the early 90’s, MRI started to be used to study brain function [41].

Magnetization

Most of the atoms constituting the human body, such as the human brain, are characterized
by having nuclear magnetic resonance properties since they behave like very small magnets
and rotate – spin – around their axes. If a constant magnetic field is applied to these
atoms, they start precessing around axes parallel to the magnetic field thus maintaining a
gyroscopic motion with different angles and frequencies. When they are magnetized, after
a few seconds, protons reach equilibrium and spin around their own axis, all aligned along
the same direction and around the principal axis of the magnetic field, also known as B0.
They can assume a state parallel or anti-parallel to the magnetic field. These states are also
referred to as a low energy state, in the case of the parallel one and a high energy state for
the anti-parallel. The difference of the numbers of atoms in parallel and anti-parallel state
is usually summarized by a vector that represents the sum of the magnetic momenta of all
atoms, i.e. the net magnetization. This is a steady state, with static condition where there are
no changes. The number of protons aligned to B0 depends on the strength of the magnetic
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Gray Matter White Matter

T1 1331 msec 832 msec
T2 110 msec 79.6 msec

TABLE 1.1: T1 and T2 relaxation times for brain tissues, gray matter and white
matter, at 3 Tesla [14].

field, which is measured in Tesla (T); this translate into the fact that MRI scanners with higher
strength provides images with better signal-to-noise ratios (SNRs).

Excitation

When a small magnetic field, perpendicular to B0 is introduced in the system, this causes
spins to move away from their principal direction. This process is known as excitation, and it
consists in using a radio-frequency (RF) pulse at the resonance frequency of the magnetized
atoms that induces the magnetization to oscillate between the value they had at equilibrium
and its opposite one. In practice the spinning protons are pushed out of the alignment of the
static magnetic field B0. For example, when a 90 degree RF pulse is emitted, the spins are
pushed away from B0 of 90 degrees.

Relaxation

When this RF pulse is interrupted, spins will follow the already described precession to
reach again the equilibrium and move from a high energy state to a low energy one and spin
along the principal axis of B0.
There are two aspects of this precession that we can measure: one is the longitudinal
relaxation and the other is the transverse relaxation (Figure 1.4). The longitudinal relaxation,
also known as T1 relaxation, is the process by which the net magnetization returns to its
original alignment parallel to B0. So, from Figure 1.4, if we consider B0 aligned to the z-axis,
starting at 0 from the xy plane, T1 is the time for the z-component of the magnetization M
to reach the 63% of its maximum value. The transverse relaxation is the process by which
the transverse component of the magnetization, Mxy, decays. The transverse relaxation is
also referred to as T2, that is the time required for the transverse magnetization to fall to
approximately 37% of its initial value. The T2 physically describes the decay of the atoms’
phase coherence due to magnetic interactions between the nuclei of the system. If local
inhomogeneities in the magnetic field are considered in the phase decay, this leads to the
T∗2 relaxation. T∗2 relaxation refers to an exponential decrease in Mxy following the initial
excitation pulse as a function of time T∗2 . So, at the beginning this is a large vector, while
it decreases as the spin relaxes and realigns to the static field B0, essentially inversely to T1.
These relaxations, that comprehensively can be defined as the time that the spins take to
recover after being disturbed from equilibrium by a RF pulse, generate a current that can
be measured by means of a receiver coil positioned in the MRI scanner. These relaxations
are the most commonly used contrasts and represent the MR signal. According to their
compositions, different types of biological tissues, and in particular in the case of our interest
WM, GM and CSF, have very different but consistent T1 and T2 relaxation times, also when
varying the strength of the magnetic field, from 1.5 T to 3 T for example. In Table 1.1 the
typical values of T1 and T2 relaxation times for brain tissues are reported.

The frequency that is needed to excite the protons is known as Larmor frequency
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FIGURE 1.4: Longitudinal and transverse relaxation. T1 corresponds to the
time in which the longitudinal component regain a value which is the 37%
lower of its equilibrium value; T2 corresponds to the time in which the
transverse component is reduced to the 37% of it. Figure taken from Pizzolato

[3].

ω0 = γB0 (1.1)

where ω0 is the Larmor frequency in MHz, γ is the gyromagnetic ratio in MHz/T and B0

is the strength of the static magnetic field in T. ω0 is hence defined by the gyromagnetic
ratio which is inherent to the considered tissue, since different particles have specific and
well known gyromagnetic ratios, and the strength of the magnetic field. In the case of MRI,
because the human body is mostly composed by water, the targets are the hydrogen nuclei,
which have γ = 42.58.
In order to introduce spatial specificity and therefore locate and image and the different parts
of a tissue, each portion of tissue has to experience a unique magnetic field. To do this, linear
gradients in the magnetic field are applied in the three orthogonal directions: x, y and z. By
choosing the strength of the gradients properly, a one-to-one correspondence can be defined
between a spatial volume and the MR signal it generates. An example of T1-weighted and
T2-weighted MRI images are reported in Figure 1.5.

1.3.1 The Echo Planar Imaging (EPI) Sequence

The most common imaging sequence for MRI acquisitions, and in particular fMRI, is the
echo planar imaging (EPI), a fast method introduced by Mansfield in 1977 [42] that allows
to acquire plane-by-plane and in few seconds the whole raw data representing a brain
volume, namely the Fourier transform in the k-space [43]. The time required for recording
all the lines of the k-space corresponds to the repetition time (TR). In single-shot EPI, all the
spatial-encoding data of an image can be obtained after a single RF excitation. As for the
conventional spin-echo sequence (SE), a SE EPI sequence starts with 90° and 180° RF pulses.
The initial k-space position is set by means of a Gx and a Gy gradient pulse and by the phase
inversion of the 180° RF pulse. Then, the high values of the frequency encoding gradient
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T1-weighted T2-weighted

FIGURE 1.5: Examples of MRI brain scans in the axial plane: T1-weighted
(left) and T2-weighted images (right).

Gx cause gradient echoes (GE) and allow to rapidly sweep kx direction. Each GE is also
differently phase encoded by blips of gradient Gy [44]. The EPI sequence is illustrated in
Figure 1.6.
The time required for the acquisition of the whole plane (kx, ky) after each RF pulse is
about 100 ms. This technique allows to freeze the dynamics of physiological processes,
which contribute to motion artifacts in slower MRI methods, leading to a significantly higher
temporal stability.

1.4 Basic Principles of Functional MRI

fMRI is a widespread and powerful imaging technique for investigating the brain’s
functionality in vivo. It provides metabolic information to be integrated to the anatomical
information given by the conventional MRI technique. In the XIX century, it was noticed
that there was a mechanism through which the blood supply in any cerebral tissue area
varies in accordance with chemical changes related to a functional activation [45]. The
principle behind this mechanism is nowadays successfully used in several neuroimaging
modalities, including fMRI, that are based on hemodynamic responses to neuronal activity
[46]. fMRI is an imaging technique able to record the effects of altered cerebral electric
activity and it can be made sensitive to regional blood perfusion changes, to blood volume
and to blood oxygenation as consequence of the neuronal activity [47].
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FIGURE 1.6: Echo Planar Imaging (EPI) Sequence – (A) EPI sequence
with phase-encoding along y direction using blipped gradient pulses. (B)
Trajectory of the EPI sequence in the k-space. The different colors of the

trajectories refer to the gradients Gx and Gy.

1.4.1 The Blood Oxygenation Level Dependent (BOLD) Contrast Imaging

BOLD contrast imaging is one of the most commonly used methods to obtain information
about brain functionality. As mentioned before, the neural activity is not directly measured
by the BOLD signal, which instead relies on a cascade of physiological events linking
synaptic activity to the generation of the MRI signal [4]. The BOLD contrast is based on
MR images sensitive to oxygenation changes in the hemoglobin [48]. If the hemoglobin
is bound with the oxygen (oxyhemoglobin), it is diamagnetic with negligible effects
on the magnetic field; conversely, the deoxygenated hemoglobin (deoxyhemoglobin) is
paramagnetic [5], introducing a magnetic distortion on the scale of capillaries and venules,
and a inhomogeneity of the magnetic field at the voxel scale, leading to a decreased BOLD
signal [48, 49] (Figure 1.7). One expects that the deoxyhemoglobin ratio would increase
and that the BOLD signal would decrease due to oxygen consumption following neuronal
activity; however, the vascular effect causes overcompensation of oxygen, which leads to
an increase in the BOLD signal [50]. The above effect depends on the degree of regional
activation in the GM: due to auto regulation mechanisms, the regional blood flow increases
according to the level of neural activity; the augmented oxygenated blood largely exceeds
the local metabolic uptake thus augmenting the saturation level of capillaries and venous
compartment, as well; the decreased inhomogeneity ultimately results in increased BOLD
signal by T2* weighted sequences. It is interesting to notice that the brain weights 2% of
total body weight but it receives about 15% of the cardiac output [21].
In fMRI, the oxy- and the deoxyhemoglobin are used as endogenous contrast agents.
According to the percentages of each within each voxel, representing a small part of the
brain, it is implied how the MR signal will behave in BOLD image: areas where the
oxyhemoglobin is highly concentrated give a higher signal – a brighter image – than areas
where the oxyhemoglobin is poorly concentrated [5].
The time course of the BOLD signal after a short neural activation is known as hemodynamic
response function (HRF, 1.8) and is approximately modeled as the impulse response of
a linear dynamic system [51]. The initial part of the HRF reveals a transient increase in
deoxyhemoglobin concentration, highlighted by an initial dip [52]. Then, an increase in
the oxy/deoxyhemoglobin ratio occurs, leading to a consequent increase in the MR signal,
proportionally to the underlying neural activity [53]. This signal increase can reach a plateau
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FIGURE 1.7: Schematic illustration of the generation of the blood-oxygen-
level-dependent (BOLD) signal. Figure adapted from Iannetti and Wise [4].

if the stimulus is maintained for a sufficient time [54] and it is of a few percentage parts,
typically in the order of 0.5 - 3% at 1.5 T. After the cessation of the stimulus, the MR
signal returns to the baseline, and eventually underpasses it. This last event is named the
“undershoot effect” [55]. An example of a fMRI acquisition is showed in Figure 1.9.

1.4.2 Sources of Noise in fMRI Images

The BOLD variations observed in fMRI images are not always due to pure neural activation,
because fMRI images are often very noisy images. There exist multiple sources of noise.
fMRI images may be corrupted by fluctuations registered as a consequence of physiological
noise due to cardiac and respiratory cycles. Head motions during the scans may lead to
changes in voxel intensity much greater than the BOLD activation response [56]. Thermal
noise due to eddy currents and heating provoked by the motion of electrons in the subject
and in the scanner [57, 58] is another source of noise. Furthermore there is a variability of
the evoked hemodynamic response across subjects and within the same subject acquired in
different scanning sessions [59]. If the motion artifacts and low frequency drifts are removed
via an appropriate data preprocessing, the residual errors can be assumed as white noise
[60, 61].

1.4.3 Standard Minimal Preprocessing of fMRI Data

A broad and variate set of preprocessing pipelines are provided in the literature and
implemented in multiple available toolboxes. Nonetheless, the standard preprocessing steps
of fMRI data included in a standard pipeline are enumerated below.

• Realignment of the functional volumes of a subject for head motion correction.

• Removal of non-brain tissues from images of the whole head.
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FIGURE 1.8: Hemodynamic response function (HRF) to a stimulus with a
short duration, illustrated with the red bar. The peak related to the blood-
oxygen-level-dependent (BOLD) effect starts to increase after approximately
3 s from the stimulus starting point. Figure taken from Amaro and Burker

[5].

t

FIGURE 1.9: Example of functional MRI (fMRI) brain scans. Each image
represent a scan of fMRI data, consecutively acquired in time (t). The images
are represented, from left to right, in their sagittal, coronal and axial planes.
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• Spatial smoothing via a Gaussian kernel to reduce the spatial variability and increase
the SNR.

• High-pass temporal filtering to remove low frequency drifts.

• Registration of the functional images to the anatomical image.

• Coregistration of functional images to a standard space, e.g. the Montreal Neurological
Institute (MNI) to allow comparison between subjects and group studies.

1.5 fMRI Techniques: Task and Resting-State fMRI

fMRI studies can be divided according to two acquisition approaches: task-dependent and
task-independent. In standard task-dependent fMRI acquisition, fMRI aims at examining
the brain function by detecting metabolic/hemodynamic responses consequent to brain
activity and, consequently, at identifying areas of increased or decreased neuronal activity
[62, 63] while subjects perform motor, sensory, cognitive or emotion-provoking tasks [33].
An experimental task of interest is presented alternately with a control task and the BOLD
signal during the experimental task is compared to the one measured during the control task.
However, the difference between baseline and task-related activation, in terms of changes
observed in the BOLD contrast, accounts for about 1-5% of the total signal [64] and statistics
over repeated activations (either block-design or event-related) are necessary to provide
response images as statistical parametric maps. On the other hand, the task-independent
approach allows to study the brain function by analyzing the signal fluctuations depending
on the level of blood oxygenation (i.e., BOLD again) when the subject does not perform
any particular task. This practice is also known as Resting State fMRI (rs-fMRI) and poses
challenging data analysis problems since no external reference is given and features attain
to the internal functional connectivity are blindly extracted.
This practice is based on the idea that the regions typically modulated by stimuli or tasks
(e.g., verbal, physical, visual, auditory, etc.) display vigorous and persistent functional
activity, even when patient is asked to keep their eyes closed and to relax [65]. This
activity is detected as spontaneous low-frequency (< 0.1 Hz) BOLD signal fluctuations and
inter-regional correlations of these fluctuations can be estimated as measures of functional
connectivity [66]. Functional connectivity is defined as the temporal dependency between
spatially remote neurophysiological events [67] and is used to describe the relationship
between neural activation patterns related to anatomically separate brain regions, reflecting
their level of communication [8]. The coherent activity of functionally related brain areas
can be captured as temporally correlated fluctuations in BOLD signal during rs-fMRI
acquisitions.
The first rs-fMRI study, conducted by Biswal and colleagues in 1995 [68], examined the
correlation between the time course of the signal in a seed region of interest (ROI), placed
in the motor area, with the signal of all other brain voxels. The result showed that, at rest,
the left and right hemispheres of the primary motor network are not silent, but show a high
temporal correlation between their rs-fMRI BOLD time courses. This result suggested that
at rest there is an ongoing information exchange and an ongoing functional connectivity
between these regions [69, 70, 71, 72]. When fMRI studies started to examine the possibility
of measuring functional connectivity between brain regions as the level of co-activation
of spontaneous fMRI time series recorded during rest [69, 71, 72], it was found that, at
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rest, the brain is organized into networks related to the functions of vision, hearing, motor
planning and attention [73, 10, 74, 75]. These networks showed surprisingly consistent
patterns of activation, though not identical, very similar to those of task-induced activation
and deactivation [76, 77, 75] and are called Resting State Networks (RSNs). The RSNs
showed high reproducibility [74] and moderate/high reliability [78, 79, 80]. This suggests
that rs-fMRI allows an exhaustive study of the intrinsic functional architecture of the human
brain connectome [81]. The analysis of the rs-fMRI data can be used to study a wide range
of neurological and psychiatric disorders, for example Alzheimer’s disease [82], dementia
with Lewy bodies [83], frontotemporal dementia [84], epilepsy [85], Parkinson’s disease
[86], stroke [87], depression [88], schizophrenia [89], the obsessive-compulsive disorder
[90], attention-deficit/hyperactivity disorder [91], Tourette’s syndrome [92], autism [93], and
others.
More recently, dynamics of rs-fMRI provided a new insights onto the organizational
principles of brain function: from studies of dynamic functional connectivity [94] to the
study of different spatio-temporal structures of functional components that dynamically
assemble the RSNs [7].
The task-independent approach is very useful especially when subjects are children or
patients with disabling pathologies. Compared to task-fMRI, rs-fMRI also allows to study
the activity of more brain networks and more functions in a single acquisition. The
disadvantages of the rs-fMRI, compared to the standard task-activation fMRI, are the
absence of a priori hypothesis on the underlying activation and of externally triggered
temporal references.
Exploratory and methodological research is still active and no standard method for the study
of the brain activity has been established, so far. There is a broad range of methods with
their respective pros and cons, fostering efforts to optimize the currently available methods.
Increasing evidences suggest that coherent intrinsic brain activity is an important feature of
healthy brain functioning and a translation to clinical neurology would have a deep impact
[95].

1.6 Conclusion

In this chapter we presented the brain giving its cellular composition, its anatomy, and its
function. We pointed out the complexity of the brain that poses open challenges for the
understanding of the brain functionality because the brain regions are specialized as well as
integrated at different scales. In this chapter we also introduced the neurogimaging and the
principles of MRI as well as fMRI, presenting the BOLD signal and fMRI data. We finally
introduced the two typologies of fMRI experiments: task and rs-fMRI and we highlight
the necessity of new methodologies to investigate the whole-brain fMRI data, especially in
absence of a priori knowledge on the experimental paradigm.
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Chapter 2

fMRI Data Analysis

There exist multiple goals in the analysis of fMRI data; among them, there are the localization
of cortical areas activated by a certain task, the determination of brain functional networks
- i.e. group of brain regions which activates or deactivates together - and the identification
of biomarkers for a better understanding of neurological and psychological diseases. The
choice of the method for the analysis of fMRI data depends strictly on the goal of the
study. There are two main categories of approaches: (i) confirmatory approaches, i.e. the
GLM, that aims at testing a hypothesis on the data from the experimental paradigm, and
(ii) exploratory or data-driven approaches that are intended to uncover the underlying and
unknown data structures. In the next section we discuss the state of the art concerning
both the confirmatory and exploratory approaches currently adopted for fMRI studies. We
will start by explaining the signal recovery methods, such as the general linear model
that requires a priori knowledge on the experimental paradigm and the deconvolution
approaches that instead does not. After that we will illustrate and discuss the connectivity-
oriented approaches, such as the voxel/seed-based mothod, the ICA and the clustering
methods.

2.1 The General Linear Model

The most widespread approach, for the characterization and localization of brain areas
which are activated during a certain task, relies on approaches based on the GLM, adapted
by Friston and colleagues in 1998 in the context of fMRI data analyses [57].
The GLM approach treats the data as a linear combination of several model predictors, or
regressors, defined as explanatory variables corresponding to some experimental effects [96],
and the error, which is given by the acquired noise and artifacts. The shape of the model
functions are known and given by the experimental paradigm while their amplitudes are
unknown, therefore they have to be estimated. A GLM needs a priori assumption on the task
parameters and timing of events, as well as assumptions about neural and hemodynamic
responses.
In practice, the GLM aims at modeling at each voxel the observed time series Y as a linear
combination of explanatory variables plus an error term. Supposing that we have a fMRI
time series observed in a voxel v at time t
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FIGURE 2.1: The approach of the general linear model (GLM). Each time
series of fMRI data (Y) is a linear combination of regressors, composed both of
task-related regressors (green) and nuisance regressors (light green) weighted
by β, and the error ε. The goal of the GLM is to minimize the error thus

estimating the parameters weights β.
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where xtl and βl are the explanatory variables at time t and their corresponding weights,
respectively, for l = 1, . . . , L. For t = 1, . . . , N time points, the above equation can be
rewritten as follows:
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In matrix notation this corresponds to the following linear model (Figure 2.1)

yv = Xvβv + εv (2.2)

where for the voxel v, yv is a the column of observations of lenght N, β is a column vector
of lenght L representing the weights and the vector ε, of lenght N, the noise. Xv is a N × L
matrix of regressors: the so-called design matrix. The design matrix can contain covariates,
such as age or subject motion [58] or systemic drifts [60] or cardiac and respiratory effects
and temporal derivatives of the HRF, as well as variables that reflect the experimental design.
The GLM approach also include the HRF in the method, meaning that the task paradigm is
convolved with the HRF and then included in the design matrix. The vector β contains the
unknown weights, or parameters. Only some of the parameters in the vector β will be of
interest, meaning that they are the effect of some condition or task. Typically, in fMRI these
conditions consists of repeated blocks of different tasks over time. The others, which are
referred to as confounding factors will be of no interest for the data because due to non-
experimental sources of variability.

Solving the problem corresponds to estimate the parameter weights β that minimize the
error ε. This is done via generalized least squares as follows
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β̂ = argmin
β

(y− Xβ)TΣ−1(y− Xβ) (2.3)

where

β̂ = (XTΣ−1X)−1XTΣ−1y (2.4)

that necessitates an estimation of the unknown covariance matrix of the errors Σ. Assuming
an identity matrix for the covariance, Σ = I, the solution of (2.3) is

β̂ = (XTX)−1XTy (2.5)

Once the weights are estimated, t-tests may be used to verify the hypothesis and in fact,
the GLM has been proposed in association to the generation of Statistical Parametric Maps
(SPMs) [57]. SPMs are defined as statistical processes which generates spatial maps about
regional specific effects of a task.
It is worth again to emphasize that this approach can be used for task-fMRI data, where the
stimulus paradigm is given. On the other hand, the GLM approach is not applicable in the
analysis of rs-fMRI, when no a priori information on the timing of the activation is given,
or in the study of neural activations which cannot be modeled with predefined stimulus
functions, as for example in the case of epileptic crisis [6].

2.2 Deconvolution of the fMRI BOLD Signal

Deconvolution approaches have been developed to address the problem of studying and
uncovering brain activations hidden below fMRI time series at the voxel level.
The base problem of deconvolution, that is widely used in signal and image processing, is
to reverse the effect of a convolution, that explain the acquired data. For example, given the
convolution

y = h ∗ x (2.6)

where y is the acquired data, x is a signal that we aim at recovering and h is the transfer
function of an operator, the deconvolution is usually performed via the Fourier Transform on
the acquired signal y and the transfer function h. The problem, in absence of noise, becomes

X = Y/H (2.7)

where Y, X and H are the Fourier Transforms of y, x and h respectively. Finally, by applying
the inverse Fourier Trasnform on X the deconvolved signal x will be estimated.
fMRI deconvolution was firstly introduced by Glover in 1999 [51], who investigated the
performance of Wiener deconvolution for deblurring the fMRI response to consecutives
finger tapping episodes to reduce image distortions. The above-mentioned approach
resulted in smooth recovered activation [6] and was limited by the fact that it required the
independent measurement of the noise spectral density [97]. Gitelman and colleagues [97]
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developed an approach based on linear deconvolution and attempted the explanation of
brain responses located in one area, as consequence of the interplay with another area as
effects of psycho-physiological interactions.
Furthermore, dynamical filter methods, such as Kalman and Bayesian filtering, and Local
Linearization filters have been developed and applied to fMRI [98, 99, 100]. However,
because these approaches are based on non-linear models in continuous time, they are
limited by the high computational cost compared with linear models, therefore they are
convenient just for the analysis of predefined ROIs [6].
Few years later, researchers started to make assumptions on the underlying signals, from a
spatial and a temporal point of view, thus adding priors in convex optimization problems.
L1-norm regularization approaches have been developed to exploit sparse temporal features
of the hidden neural activation. This was done by means of the majorization-minimization
of a cost function to find an optimal solution to the inverse problem [101]. In addition,
Caballero Gaudes et al. developed firstly a ridge-regression regularization by minimizing
both the variance and the power of the residuals [102] and secondly a sparse regression [103]
by imposing just few coefficients having significantly non-zero amplitudes, assuming short
neuronal activation. Also temporal regularized optimization problems based on wavelets
were explored [16].
Recently, a spatio-temporal regularized deconvolution of fMRI BOLD signal was proposed
by Karahanoğlu and colleagues [6]. In this work, a variational approach, called Total
Activation (TA), has been proposed to reconstruct the signals related to the whole brain
activation in a voxel-wise framework by imposing informative priors on the signal of
interest. They imposed the following two priors, that led to a spatio-temporal regularized
deconvolution problem. Supposing the activation is block-type and is called "activity-
inducing" signal, in one regularization term they exploited the sparsity of the innovation
signal, i.e. the derivative of the activity-inducing signal, in the temporal dimension (Figure
2.2). As a second regularization term, because fMRI data presents different kinds of spatial
correlations, they used a mixed norm on the spatial dimension. They indeed supposed
spatial coherence inside a brain region, favoring smooth patterns of activity inside the
region, though brusque changes were assumed to happen across different brain regions.

Later, Farouj et al. [13] proposed another spatio-temporal regularization approach for fMRI
data and overcame the necessity of using a predefined brain atlas. The regularization
proposed in this work [13] is expressed as

x̂ = argmin
x

1
2
‖y− x‖2

2 +RT (x) +RS (x) (2.8)

where y is the fMRI noisy data, RT and RS are the temporal and spatial regularization,
respectively.

More into details, in the problem expressed in (2.8) Farouj and colleagues [13] implemented
a generalized total variation (TV) for the temporal regularization and a GM-driven TV-based
spatial regularization. The temporal regularization is a total variation norm of a 1-D signal
in the temporal dimension, which is defined as the l1-norm of the derivative of the above-
mentioned signal. Minimizing l1-norms also means favoring the sparse solutions, therefore
a TV regularization aims at recovering signals which are piecewise-constant because their
derivatives are sparse. A generalized TV, as proposed by Karahanoğlu and colleagues in
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FIGURE 2.2: fMRI signal model. From left, us(i, t) is the spike train
(innovation signal) which induces the activation for each voxel i. us(i, t) is
the derivative of u(i, t) which represents the activation and it is assumed
to be a block-type signal. h(t) is the hemodynamic response function, that
convolved with the activity-inducing signal u(i, t) gives the activity-related
signal x(i, t). y(i, t) represents the measuref fMRI signals for each voxel i,
which is obtained by adding noise to the activity-related signal. (Figure

adapted from Karahanoğlu et al. [6]).

2011 [104] introduced an additional linear differential operator in the l1-norm that accounts
for the presence of the linear system modelling the hemodynamic response. The spatial
regularization instead is implemented as a TV limited to the voxels that can be activated,
i.e. those belonging to the GM, and it does not require a predefined division of brain
regions, e.g. via atlases. To solve the optimization problem, they used a generalized forward-
backward proximal (GFB) splitting algorithm [105] that provides a weighted average of the
two solutions obtained by solving one regularization at the time. In this partiular case,
each regularization problem was choosen to be solved using the Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [106]. The solution estimated using a GFB algorithm for
iteration k would than be expressed as follows:

Algorithm 1 GFB splitting algorithm for solving the problem in 2.8

Input: corrupted fMRI data y, (ωT , ωS) ∈ [0, 1]2 with ωT + ωS = 1

Output: Estimate x̂

1: for k = 1 : kMAX do

2: xk
T = argmin

x

1
2‖y− x‖2

2 +RT (x)

3: xk
S = argmin

x

1
2‖y− x‖2

2 +RS (x)

4: xk = ωTxk
T + ωSxk

S

5: end for

6: x̂ = xkMAX

where k is the number of the current iteration and kMAX is the maximum number of
iterations. ωT is the weight given to the temporal regularization and xk

T is the solution of
the temporal regularization for iteration k, whereas ωS is the weight given to the spatial
regularization and xk

S is the solution of the spatial regularization for iteration k. Solving
one regularization at the time also means that the regularization parameters lambdas has
to be differently set for both problems. In this case the parameter lambda for the temporal
regularization was tuned as the median absolute deviation of fine-scale 3th order Daubechies
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FIGURE 2.3: 13 innovative-driven co-activation patterns (iCAPs) ordered
with respect to their occurrence during a resting-state fMRI acquisition. The
iCAP 1 contains auditory regions; the iCAP 2 includes regions of the fronto-
parietal attention network; the iCAP 3 as well as the iCAP 4 cover the
primary and secondary visual areas; the iCAPs 5 reveals the precuneus,
the posterior cingulate cortex and the thalamus; the iCAP 6 represents the
visuospatial/dorsal attention network; the iCAP 7 covers the motor network
and the medial fromtal gyrus; the iCAP 8 corresponds to posterior part of
the DMN; the iCAP 9 includes the anterior executive network; the iCAP 10
shows again a posterior part of the DMN; the iCAP 11 reveals the anterior
salience network; the iCAP 12 is composed by the combination of different
regions which are located in the limbic and the subcortical area, superior and
middle temporal and occipital gyrus; the iCAP 13 contains the frontal gyrus,
the anterior cingulate cortex and caudate. Figure adapted from Karahanoğlu

and Van De Ville [7].

wavelet coefficient for each voxel while the lambda for the spatial regularization was
empirically set. As for the weights, ωT was set to 0.75 and ωS to 0.25, thus giving a higher
weight to the temporal regularization with respect to the spatial one.
This approach was exploited to recover transients in rs-fMRI BOLD activitions (positive
spikes) and de-activations (negative spikes). To do this, in the work proposed by
Karahanoğlu and Van De Ville in 2015 [7], the recovered innovation signals (Figure 2.2) of
the whole brain undergo a temporal clustering that allows to find the so-called innovative-
driven co-activation patterns (iCAPs), which are consistent and well localized spatial maps
of transients during rest (Figure 2.3). This new approach provides new insights into the
study of the brain dynamic organization, revealing the dynamics of the well known RSNs,
in terms of networks which segregate and aggregate over time.



2.3. Voxel/Seed-based Methods 35

FIGURE 2.4: Seed-based method – To examine the time series and extract
meaningful information from fMRI data, i.e. the functional connectivity level
between a seed voxel and another brain voxel i, the correlation between
the two time series showed on the bottom right of the figure are computed.
Highly correlated time courses reflect a high level of functional connectivity.
To map all the functional connections of the seed and obtain the map showed
at the bottom left of the figure, a voxel-wise correlation between the seed
voxel’s time series and all the other brain voxels is calculated. The outcome
is a map that shows which areas show a high level of functional connectivity

with the selected seed [8]. Figure taken from Hu and Zeng [9].

2.3 Voxel/Seed-based Methods

The primary voxel-based (or seed-based) method was introduced by Biswal et al. (1995)
[68]. This method evaluates the similarity (e.g., the temporal cross-correlation) between
a reference signal taken as seed and the time series of each brain voxel, or the average
of the signals contained in specific ROIs [68, 107, 108]. The outcome is a map of the
brain regions significantly correlated with the selected seed, or a quantitative assessment
of the correlation strength within a specific ROI [109] (Figure 2.4). Typically, the seeds are
selected using anatomical images as reference [107, 110, 108, 111], or they are based on the
location of activity during a task [68, 112, 113, 114, 115], or on standardized coordinates
space [116]. However, the volume of anatomical regions can vary between individuals [117],
with aging [118] and in presence of neurological disease [119], and functional boundaries
of brain regions may not be well defined. Hence, the seed time series can be affected by
undesired signal, or functionally relevant voxels may be excluded. Even if this method is
a powerful and effective tool for the identification and characterization of the resting state,
the obtained networks depend on the arbitrary choice of the seed [120]. Furthermore, this
technique allows only the evaluation of the connectivity between the brain and the seed and
considers one seed at a time. However, in absence of an a priori hypothesis, as in rs-fMRI
case, it is more advisable to simultaneously detect and characterize brain activations in a
comprehensive manner, rather than one at a time.

2.4 Data-driven Approaches

Data-driven methods have been proposed to analyse images obtained in resting-state
conditions, when no information about the occurrence of the activation is available.
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After the first acquisitions of rs-fMRI time courses, which before were considered as
background noise [6], it was shown that there was an ongoing information exchange
between cortical regions [68, 69, 71, 70, 113]. Indeed it was found that, at rest, the brain
is organized into networks related to the different functions, such as: visual and auditory
function, motor planning and attention [10, 74, 75]. These networks showed consistent
patterns of activation very similar, though not identical, to those of task-induced activation
and deactivation [75, 77]; they are called Resting State Networks (RSNs). The RSNs showed
high reproducibility [74] and from moderate to high reliability [78, 79, 80]. This suggests
that rs-fMRI allows an exhaustive study of the intrinsic functional architecture of the human
brain connectome [81].
Data-driven approaches include blind source separation approaches such as the
independent component analysis (ICA) [121, 122, 123], the principal component analysis
(PCA) [124, 125], the Temporal Clustering Analysis [126, 127], and clustering methods
[128, 129, 130, 131].
These methods are useful if the aim is grouping together voxels showing the same spatial
or temporal features; in particular the spatial ICA [132] is the approach the most commonly
used in rs-fMRI data analysis.

The Principal Component Analysis

The PCA, also known as Karhunen-Loeve Transform [133], is a statistical technique that
linearly transforms a dataset into a smaller and uncorrelated set of variables that captures
most of the variance in the original data. Usually, only few directions are considered to be
of interest and are taken as a new coordinate system to reveal the underlying structure of
the data. The resulting set of uncorrelated variables is more informative than the larger set
of correlated variables. The PCA is often used as a pre-processing step to prepare data for
subsequent analyses, such as clustering analysis and the ICA [134].

The Independent Component Analysis

The ICA was developed by Bell and Sejnowski in 1995 [135]. It is a powerful explorative
analysis technique that allows to express a set of random variables as linear combination
of statistically independent latent components. In the context of blind source separation
problems [136], the ICA tries to discover hidden and statistically independent source signals
only from the measured observations [137]. In the context of fMRI, the ICA consists of two
different approaches: the spatial-ICA and the temporal-ICA. Spatial-ICA was the first ICA
approach to be applied to fMRI data [138]; the temporal-ICA was used for the first time in
1999, in a study conducted by Biswal and Ulmer [139]. The description reported below has
as main reference the one proposed by Calhoun and colleagues in 2001 [132].

Spatial-ICA – X is an N × M matrix, where N is the number of time points and M is the
number of voxels. The "signals" are the M spatial voxels, ordered into a 1-D vector, and
there are thus N different instances of these signals (whereas temporal-ICA would consider
as signals the N individual time courses of which there are M instances).
The spatial-ICA decomposition is

Cs = ŴsX (2.9)
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FIGURE 2.5: Matrix representation of the spatial indepenedent component
analysis (spatial-ICA). In spatial-ICA, the algorithm try to estimate spatially

independent components with related time series.

where Ŵs is the N×N estimated linear mixing matrix found using ICA, and Cs is an N×M
matrix that contains the N independent components. We can write

X = Ŵ−1
s Cs (2.10)

where Ŵs the spatially independent components (spatial maps) are in the rows of Cs

and the associated spatially independent time series are located in the columns of Ŵ−1
s

(Figure 2.5). The sources Cs are estimated by iteratively optimizing the unmixing matrix
Ŵ−1

s , so that Cs contains mutually independent rows, using the information-maximization
(Infomax) algorithm [135]. Infomax algorithm [135] is one of the most popular neural
network-based approaches. It uses a global measure of minimizing the mutual information
of the components Csi by maximizing the entropy of the output of a network [140].

Temporal-ICA – X is a M× N matrix, corresponding to the transpose of the X matrix used
for spatial-ICA. The temporal-ICA decomposition is

Ct = ŴtX (2.11)

where Ŵt is the M×M estimated linear mixing matrix found using ICA, and Ct is an M×N
matrix with the M independent components. We can then write

X = Ŵ−1
t Ct (2.12)

where the temporally independent time courses are found in the rows of Ct and the
associated temporally independent maps (images) are found in the columns of Ŵ−1

t .
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Temporal-ICA is typically much more computationally demanding than spatial-ICA for
fMRI applications because of a higher spatial than temporal dimension and can grow
quickly beyond practical feasibility. Recent studies on task-related events showed that
spatial-ICA and temporal-ICA provide similar results [141]. However, spatial-ICA has
dominated the functional imaging literature so far, as mentioned above.

Probabilistic-ICA – An extension of spatial-ICA is the probabilistic-ICA model, which
assumes that the p-dimensional vectors of observations (time series) are generated from a
set of q < p (i.e., there are fewer source processes than observations in time) statistically
independent non-Gaussian sources (spatial maps) via a linear mixing process corrupted by
additive Gaussian noise, η(t)

xi = Asi + µ + ηi (2.13)

where xi expresses the individual measurements at voxel location i, si denotes the non-
Gaussian source signal contained in the data and ηi denotes the Gaussian noise. The
covariance of the noise is allowed to be voxel dependent to comply with the various noise
covariances observed in different tissue types [142]. The vector µ defines the mean of the
observations xi and the matrix A, with dimensions p× q, is assumed to be non-degenerate,
i.e. of rank q. Solving the blind separation problem requires finding a linear transformation
matrix W such that

ŝ = Wx (2.14)

provides a good approximation of the true source signal s [121, 143]. A problem of this
approach is the correct choice of the number of components to extract. Dimensional
underestimates may discard valuable information and result in sub-optimal signal
extraction. Overestimates, however, results in a large number of spurious components
and will over fit the data, harming later inference and increasing computational costs.
Nevertheless, a study by Abou-Elseoud et al. (2010) [144] demonstrated that an optimal
detection of components needs a model order within the range between 20 and 80. The final
outcome is a set of independent components, some of which are clearly related to the signals
of interest for rs-fMRI study, the so-called RSNs (Figure 2.6), while some are related to other
physiological processes (e.g. respiration, etc) or to imaging artifacts (e.g. motion, ghosting,
slice dropout, noise, etc).

Clustering approaches

Clustering methods attempt to group voxels that show a high level of similarity in their
BOLD time courses into sub-groups. For example, hierarchical clustering builds a treelike
structure of all the data-points [129, 128], while in k-means [130] and c-means [131] clustering
algorithms, all voxels are assigned to one of several clusters on the basis of their distances
from the cluster centers, which, in turn, are calculated from an average of their members.
The iterations to update memberships and cluster centers continue until convergence is
achieved.
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FIGURE 2.6: Different probabilistic independent component analysis
(probabilisti-ICA)-estimated resting state outputs. Estimated from a group
of 10 subjects, the eight spatial maps, coregistered and superimposed to the
Montreal Neurological Institute (MNI) template, shows the sagittal, coronal
and axial views of different components associated with low-frequency
resting-state patterns. R: right; L: left. Figure adapted from Beckmann and

colleagues [10].
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2.5 Conclusion

In this chapter we proposed a state-of-the-art review of the main approaches used to study
the fMRI data. The confirmatory approaches, i.e. the GLM, need a priori assumptions
on the activations they are estimating. The exploratory approaches (i.e. data-driven
methods) aims at blindly extract some features hidden in the data or, as in the case of
deconvolution approaches, at recover the underlying neural activation without knowledge
on the experimental paradigm.

2.5.1 Limitations of the Current State of the Art

The approaches described in this chapter present several limitations. The GLM is conceived
for the recovery of voxel-wise time series of fMRI data when the experimental paradigm is
given. It is then limited to the application to task-fMRI data, where the subject is asked to
perform a motor or cognitive task at known time and for given duration.
As for the data-driven approaches, i.e. the ICA and clustering approaches, they do not
require any prior knowledge on the experimental paradigm, therefore they are largely used
for the analysis of rs-fMRI images. Regardless, these methods are useful if the aim is
grouping together voxels showing the same spatial or temporal features those voxels are
grouped together according to some sort of similarity, in the time or in the space domains.
They allow to recover networks, i.e. the RSNs or clusters, but they cannot be used if the
goal is identifying activations at the voxel level. Furthermore, they are also limited by the
necessity of choosing a priori the number of components or clusters and by the interpretation
of the results [102] and they do not consider including any hemodynamic effect. In fact, the
aforementioned methods cannot be used if the goal is identifying how and when the voxel’s
signals are activated or deactivated.
Deconvolution approaches are nowadays powerful methods to blindly recover voxel-wise
fMRI activations, and they have been recently applied to rs-fMRI images. Despite the fact
that they do not require any prior on the underlying activations, they have to handle the
problem of space and time in the same optimization problem. In fact, these approaches
split the optimization problem into two decoupled spatial and temporal regularization. In
practice, this results in doubling the number of parameters to be set and requires the solver
to alternate between the constraints. The two problems, i.e. one with a spatial constrain
and another with a temporal constrain, are indeed solved separately. Meanwhile they are
inserted in a general forward-backward splitting algorithms, and the results associated to
the two regularizations are then iteratively summed-up according to user-defined weights.
In the next chapters we propose the two main contributions of this thesis, where we aim at
the blind estimation of the neural activation without necessary assumptions on it.
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Chapter 3

fMRI Deconvolution via Temporal
Regularization using a LASSO
model and the LARS algorithm

The analysis of fMRI images represents a challenge for the researchers in the field because
they are asked to deal with fMRI time courses that actually constitute the neural signal
convolved with a HRF [97]. Nonetheless, the interactions we want to investigate in the brain
are expressed at a neural level, rather than at the level of hemodynamic responses. This
leads to the need of recovering the neural signal that allows to model the interplay between
brain regions. This is the framework where deconvolution approaches are required. In
fact, given the BOLD signals, deconvolution-based methods allow an approximation of the
underlying activations given a model of the HRF.
Neverthless, fMRI measurements are corrupted by noise and therefore the addressed
inverse problem, commonly present in signal and image processing, is typically ill-posed,
because small perturbations in the data may give big changes in the solution. For this
reason, additional assumptions are necessary in order to solve the inverse problem.

In this chapter we will describe our first main contribution. We developed a temporal
regularized deconvolution of the fMRI BOLD signals that aims at the paradigm-free recovery
of brain activations at the neural level, namely without the necessity of a priori informations
on the experimental paradigm, as it was for the GLM approach. For completeness, we will
start by describing the regularization approach, in particular the LASSO model that we used.
We will explain how we solved the inverse problem and how we validated our approach on
phantom and on real task-fMRI data. We will finally compare it with the TA approach [6, 13]
already presented in Section 2.2.

3.1 Introduction to Inverse Problems and Regularization

Approaches

In this section we will give an overview of the tools we used to define the forward model we
are facing in this thesis and the approach we implemented to subsequently solve the inverse
problem.
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3.1.1 The Forward Model

The observation model that we propose in this thesis, relating the parameters of the model
to the observations is the following linear mapping

y = Ax + ε (3.1)

where y is the discrete acquired fMRI signal of length N, obtained starting from an unknown
input signal x, of length N, that goes through some process A, of size N × N, also known
as the observation model and makes the link between the observed data and the predicted
data. ε is the noise that corrupts the observed data during the considered process and it is
typically modeled as an additive noise.
The goal of this work is solving the inverse problem by recovering the original signal x from
the noisy measurements y.

3.1.2 The Regularization Approach

The inverse problem we are addressing in this work is to find the original signal x from Eq.
(3.1) starting from the acquired noisy measurements y and the operator A.
A problem is considered well-posed if a solution exists, if this solution is unique and if the
solution is stable, which means that small changes in the measurements cause small changes
in the solution. Because of the presence of the operator A, if A has small eigenvalues,
small perturbations on the data y may give big changes in the estimated solution x̂ and
the problems in Eq. (3.1) is ill-posed.
The fundamental solution of the inverse problem we are dealing with is given by minimizing
the data fitting error, also known as least squares solution, given by

x̂ = argmin
x
‖y−Ax‖2

2. (3.2)

Because the above minimization formulation has a solution that strongly depends on the
operator A, additional constraints are introduced into the formulation to reduce the set of
solutions and find a unique solution. The idea consists on finding two functionals: a data
fidelity term, F (x), that measures the distance between y and Ax, and a regularization term,
R(x), that favours appropriate minimizers penalizing potential solutions with undesired
structures [145]. The regularized problem is then defined as

x̂ = argmin
x
F (x) +R(x). (3.3)

The problem in Eq. (3.3) can then be written as

x̂ = argmin
x
‖y−Ax‖2

2 + λR(x) (3.4)

where: ‖y − Ax‖2
2 is the fidelity term, R(x) is a penalization (or regularization) term that

encodes some constraints on x, which lead to desirable properties of the solutions, and λ

is the regularization parameter that controls the impact of each term into the optimization
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process: i.e. the higher the λ the more the solution is regularized, the lower the λ the more
the solution is given only by the contribution of the fidelity term.
There exists a wide range of methods which propose different choices for the regularization
termR(x) to encode different a priori hypotheses on the signal x.
Many studies on signal and image processing have been focused on optimization problems
based on regularization approaches to exploit some features of the desired solution and
to keep the computational costs acceptable. The most common approach is based on
the regularization of the Euclidean norm, also known as Tikhonov regularization or ridge
regression [146] that is formulated as follows:

x̂ = argmin
x
‖y−Ax‖2

2 + λ‖Fx‖2
2 (3.5)

where λ is again the regularization parameter and F is a linear mapping. This problem has
a unique solution that is obtained by deriving the expression in Eq. (3.5), since both the
fidelity term and the regularization term are quadratic and differentiable. The minimization
then is: x̂ = (ATA + λFTF)−1ATy. This approach aims at minimizing the energy using a
l2-norm thus yielding to smooth solutions.
Because in this work we hypothesized that the brain activates in blocks of constant activity,
we will now focus on sparsity-pursuing methods, that indeed allow to represent the signal
with least amount of elements.
The highest sparsity can be achieved via a l0-(quasi)norm, that promotes solutions with only
few large coefficients as in

x̂ = argmin
x
‖y−Ax‖2

2 + λ‖x‖0. (3.6)

Nonetheless, the regularization problem is not convex and hence costly in terms of
computation.
The l1-norm in Eq. (3.7), which has been introduced as a convex approximation of the l0-
(quasi)norm, is instead computationally feasible.

x̂ = argmin
x
‖y−Ax‖2

2 + λ‖x‖1 (3.7)

where ‖x‖1 = ∑i |xi|. This approach is also known as Least Absolute Shrinkage and
Selection Operator or LASSO regression [147].
The introduction of sparsity-pursuing regularization methods introduces non-quadratic
functions, therefore differentiability is not always assured. Several methods exist to solve
the problem in Eq. (3.7). The Least Angle Regression (LARS) [12] is an algorithm that
outputs the solution for all lambdas. The whole path of LASSO solutions is generated
for "practically the cost of one least square calculation on the data" [12]. Other approaches
such as proximal gradient descent (Iterative Shrinkage Thresholding Algorithm (ISTA) [148]
and the Fast Iterative Shrinkage Thresholding Algorithm (FISTA)[106]), unlike LARS, can be
used for LASSO generalizations as for example the case of TV-norm regularized problem

x̂ = argmin
x
‖y− x‖2

2 + λ‖∆Dx‖1 (3.8)
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where ∆Dx = x(tn)− x(tn−1) is the finite difference operator. The TV-norm regularization
promotes piece-wise constant signals [6].
In the context of fMRI, this idea has been generalized, thus leading to the generalized TV
(gTV) for fMRI data in the work proposed by Karahanoğlu and colleagues in 2015 [104]. The
problem then can be reformulated as

x̂ = argmin
x
‖y− x‖2

2 + λ‖∆Lx‖1 (3.9)

where ‖∆Lx‖1 = ∆D∆Lh accounts for a differential operator ∆D and an additional linear
operator ∆Lh representing the hemodynamic inverse filter [104]. The fundamental idea is
to explore sparseness in a transformed domain, which in the case of fMRI is given by the
presence of the BOLD signal that is accounted for via the convolution between the HRF and
the signal representing the activation.

3.2 fMRI Image Structure

In the previous section we provided a state-of-the-art review of regularization approaches
and optimization algorithms to have an overview of the tools we used in our work. In the
next paragraphs we will describe our first main contribution. To do this, we initially give a
representation of the fMRI data that we will be employing later on. fMRI scans produce a
set of 3-D images recorded over time, therefore a fMRI image is represented as a 4-D data
with a spatial resolution, given by the size of the voxels in the acquired brain volume and a
temporal resolution, that is directly related to the TR. The TR is the time between two given
successive RF pulses and it corresponds in fMRI to the time necessary to collect one entire
brain volume. Thus fMRI images have two main complementary information: one given by
the 3-D spatial dimension, and the other given by the 1-D temporal dimension, that is given
because each fMRI volume is acquired several times to have access to the dynamic of the
brain activity over time. An illustration of the 4-D fMRI data is showed in Figure 3.1.

3.2.1 The Hemodynamic Response Function

The BOLD model employed in this work comes from the one proposed by Friston and
colleagues [15]. It combines the Balloon/Windkessel model [149, 55, 150] with a model of
how the neural activations trigger changes in blood flow.
The model is made of a non-linear state-space system composed by 4 state variables (Eq.
3.10) and the observed BOLD signal y(t) = λ(v, q, E0) (Eq. 3.11).

The system mentioned above is the following:



τ0v̇ = fin − v1/α

τ0q̇ = fin
1− (1− E0)

1/ fin

E0
v

1−α
α q

ḟin = s

ṡ = εu− s
τs
− fin − 1

τf

(3.10)
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FIGURE 3.1: Representation of the 4-D functional MRI (fMRI) data. A fMRI
image is composed by a set of 3-D volumes recorded over time, thus leading

to a 4-D structure. TR = repetition time. Figure adapted from [11].
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The observed BOLD signal is

y(t) = λ(v, q, E0) = V0(k1(1− q) + k2(1−
q
v
) + k3(1− v)). (3.11)

The constants and the variabels appearing in the hemodynamic model are summurized in
Table 3.1 and 3.2.

Variable Definition

u Stimulus

s Flow inducing signal

fin Blood flow

v Normalized venous volume

q Normalized deoxyhemoglobin voxel content

TABLE 3.1: Variables involved in the hemodynamic model [15, 16].

The first equation in (3.10) represents the rate of the volume change; the second
equation represents the change in the deoxyhemoglobin which reflects the amount of
deoxyhemoglobin arriving at a venous compartement and the amount exiting from it; the
third equation links the synaptic activity and the regional cerebral blood flow; the fourth one
describes the signal as generated by the neural activity and other neurogenic and diffusive
signal subcomponents [15].

Symbol Definition Mean value over voxels

ε Neuronal efficacy 0.54

τs Signal decay 1.54 s

τf Autoregulation 2.46 s

τ0 Transit time 0.98 s

α Balloon stiffness 0.33

E0 Oxygen extraction fraction 0.34

V0 Resting blood volume fraction 1

k1 BOLD constant 1 7E0

k2 BOLD constant 2 2

k3 BOLD constant 3 2E0 − 0.2

TABLE 3.2: Constants involved in the hemodynamic model [15, 16].

As proposed by Khalidov and colleagues [16], to be able to use the hemodynamic model for
linear convolution, it is linearized and considered as time-invariant. The system in (3.10) was
linearized around the resting point: {x1, x2, x3, x4 = 0, 0, 0, 0} [16] by defining the following
variables
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

x1 = s

x2 = 1− fin

x3 = 1− v

x4 = 1− q

(3.12)

Therefore the system in (3.10) becomes



ẋ1 = εu−
1
τs

x1 +
1
τf

x2

ẋ2 = −x1

ẋ3 =
1
τ0

(
x2 −

x3

α

)
ẋ4 = cx2 −

1− α

ατ0
x3 −

1
τ0

x4

(3.13)

where

c =
1 + (1− E0) ln(1− E0)/E0

τ0

This linearization led to the definition of the hemodynamic response function (HFR) whose
Fourier transform is

H(ω) = K
(jω− z)

(jω− p1)(jω− p2)(jω− p3)(jω− p4)
(3.14)

where

z = −
(k1 + k2)

(1− α

ατ0
−

c
α

)
−

k3 − k2

τ0

−(k1 + k2)cτ0 − k3 + k2

p1 = −
1
τ0

p2 = −
1

ατ0

p3,4 = −
1

2τs

(
1± j

√√√√4τ2
s

τf
− 1
)

K =
V0ε

τ0
− (k1 + k2)cτ0 − k3 + k2
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From now on, when we refer to the operator H we refer to the circulant matrix for the
hemodynamic response (h(t)) of size N × N where N is the length of a fMRI time series.

3.3 The Forward Model of fMRI Data

As already proposed in the state of the art [6, 13], in this work we modeled the fMRI time
series supposing blocks of neural activations. We name the neural activation u(t) and we
refer to it as activity-inducing signal, out of previous works [6, 13]. The activity-inducing
signal u(t) is modeled as a piece-wise constant function. The activity-related signal x(t) is
the convolution between the HRF and the activity-inducing signal

x(t) = u(t) ∗ h(t) (3.15)

where ∗ is the operator of the convolution, h(t) is the HRF, and u(t) is the activity-inducing
signal. The acquired fMRI time course is given by the activity-related signal corrupted with
noise due to artifactual sources such as cardiac rate and respiratory fluctuations, movements
in the scanner, and thermal noise [61, 60]. The noisy fMRI time courses were therefore
modelled as

y(t) = x(t) + εa = u(t) ∗ h(t) + εa (3.16)

where εa is the additive random Gaussian noise with zero mean and standard deviation σa.

3.4 L1-norm Temporal Regularized Deconvolution of the

fMRI BOLD Signal

In this section we will introduce the first contribution of this thesis, where we develop a
temporal-regularized deconvolution of fMRI time series.
In this contribution, the goal we are addressing is the paradigm-free recovery of the fMRI
brain activation supposing the brain activates in constant blocks. To do this we propose
a deconvolution technique that has the advantage of not requiring necessary and a priori
information on the timing and duration of the underling activation, in contrast with the
confirmatory approach discussed in the background.

3.4.1 Definition of LASSO Optimization Problem

In our first contribution, we introduce a regularized formulation in a minimization of a
cost function; the problem is therefore composed by a data fitting term and a regularization
term. We solved the inverse problem thus reconstructing the activity-inducing signal u(t),
that refers to the neural activation, using a deconvolution technique in absence of external
references represented by the stimulation paradigm.
To do this, we started from the idea proposed by Karahanoğlu and colleagues (2013) [6] and
lately revisited by Farouj et al. (2017) [13] who recover the brain activation exploiting the



3.4. L1-norm Temporal Regularized Deconvolution of the fMRI BOLD Signal 53

fact that the derivative of a piece-wise constant signal, i.e. the brain activation, is a sparse
signal (see Section 2.2 for more details). This signal is named innovation signal s(t).
We implemented the deconvolution exploiting the sparsity of the innovation signal s(t) [13],
and we built the following LASSO model with a l1-norm regularization on the temporal
dimension of the fMRI data

ŝ = argmin
s

{
1

2N
||y−As||22 + λ||s||1

}
(3.17)

where

• y is the acquired and noisy fMRI signal;

• ŝ is the recovered innovation signal of length N, that is expected to be sparse because
it is the derivative of a piece-wise constant activity;

• N is the length of the acquired and noisy fMRI signal;

• s is the innovation signal of size N;

• A in As = HIαs is a linear operator where H is the N × N circulant matrix for the
hemodynamic response and Iα is the N × N circulant matrix for the α-filter that is
explained in the next paragraph. A is the resulting operator of size N × N;

• λ is the regularization parameter;

• || · ||2 indicates a l2-norm;

• || · ||1 indicates a l1-norm.

All the signals and operators we are naming in this section are illustrated in Figure 3.2.

Starting from the estimated optimal solution ŝ(t), the activity-inducing signal, û(t), in other
words the recovered neural activation, was hence obtained by the convolution of ŝ(t) with
the Heaviside function H(t)

û(t) = H(t) ∗ ŝ(t) (3.18)

where û(t) and ŝ(t) represent the recovered activity-inducing signals and innovation signals
respectively.

3.4.2 The α-Filter Design

To exploit the sparsity of the innovation signal s(t), and to obtain the activity-inducing
signal u(t) starting from s(t), we implemented the operator Iα that refers to an exponential
accumulation function, normalized by the factor S, whose z-transform is

Iα(z) = S
[ e−αz−1

(1− e−αz−1)2
1

(1− z−1)2 −
e−αz

(1− e−αz)2

1

(1− z)2

]
(3.19)

where
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FIGURE 3.2: From top left, following the black lines connecting the different
plots, s(t) is the spike train (innovation signal) which induces the activations.
Iα is the exponential accumulation function that leads from s(t) to the
activity-inducing signal u(t), which is piece-wise constant. H represents the
hemodynamic response function, x(t) is the activity-related signal, εa is the

additive noise and y(t) is the simulated acquired fMRI time course.
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time
FIGURE 3.3: Impulse response of the accumulation function Iα. The plot
shows how the accumulator changes increasing α, e.g. from 0.2 (green) to 1

(blue).

S = −
(1− e−α)3

2e−α(1 + e−α)
. (3.20)

The α-filter design is extensively represented in Appendix A. The interesting point of this
filter is that the shape of Iα (Figure 3.3) depends on the parameter α. Hence, for large
α, typically greater than 1.5, according to the level of noise, the operator works as a finite
difference ∆t.

We choose to design the α-filter, and not to use an operator implementing a finite difference,
∆t, as in [13, 6] because we expect it to further smooth the noise still present on the data,
for example, in the presence of blocks of spurious and false activation, given for example
by artifacts that has not been removed during the preprocessing [151]. It must be stressed
that the activity-inducing signal u(t), showed in Figure 3.2, is represented as a piece-wise
constant function as it was previously proposed in literature by Karahanoglu et al. (2013)
[6]. The effect of Iα could smooth the activity-inducing signal u(t), but this happens only
for small values of the parameter α (typically less than 0.75). Whereas, for big values of α

(typically greater than 1.5), the filter described by the function Iα(t) corresponds to a sharp
accumulation function, therefore u(t) corresponds exactly to a piece-wise constant signal.
For great values of α, the function Iα(t) is a sharp accumulation function, that, if reverted,
corresponds to a finite difference operator. Therefore, the innovation signal s(t) results to
be a sparse signal. The parameter α plays a role such that the appropriate filter smooths the
noise while it keeps the solution as close as possible to a piece-wise constant signal. (Please
pay attention to Appendix A in the thesis, where we clearly show that the derivative filter
operator converges thanks to its normalization factor to a simple difference operator for α
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FIGURE 3.4: L-curve. The graph represents for one time series of one
voxel the plot of the two quantities, one related to the norm of the solution
(abscissa) and the other related to the residuals (ordinate), i.e. (||ŝ||1, ||y −
Aŝ||22), paramtrized by the regularization parameter λ. Each black dot in the
curve is related to each λ outputted by the Least Angle Regression (LARS)
algorithm [12]. The red dot represents the optimal solution as the nearest to

(0, 0) ∈ R2.

large (typically greater than 1.5), i.e [ f (n + 1)− f (n− 1)]/2).

3.4.3 Solution of the LASSO problem using the LARS Algorithm and L-
Curve

To solve the optimization objective introduced in Eq. (3.17), we minimized the objective
function using the LARS algorithm [12], that outputs at once all lambdas of interest and their
associated solutions. Practically all regularization methods for computing stable solutions
to inverse problems involve a trade-off between the how much the solution is regularized
and the how much it fits the original data. The various regularization approaches aims at
finding a optimal measure of these quantities, and the optimal trade-off between them. If
too much weight is given to the regularization, the solution will not fit the data properly
and the residuals ||y−As||22 (3.17) will be too large. On the contrary, if the regularization
is insufficient then the fit will be good but the solution will be dominated by data errors
and ||s||1 (3.17) will be too big [152]. Therefore, given the important roles of the weights
assigned to the two norms presented in Eq. (3.17), one related to the solution and one to
the residuals, and given that the LARS algorithm outputted all the solutions associated to
all the important lambdas, we plot for each lambda the two quantities (||y−Aŝ||22, ||ŝ||1) in
the so-called L-curve [152]. We choose as optimal λ the one associated with the closest point
to the origin of the Cartesian axes in the L-curve. Finally, the solution ŝ corresponds the one
associated to the optimal λ. An exemplification of L-curve for one voxel is shown in Figure
3.4.
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3.4.4 Leave-one-out Cross-Validation

We compared results using the L-curve with the ones obtained using a cross validation
approach. Given a time series of N time points, we implemented a Leave-one-out cross
validation (LOO-CV) [153] as shown in Algorithm 2. The LOO-CV was implemented such
that for a time series y(t), composed by N time points, the i-th sample y[i] was removed, thus
resulting in a new time course y′(t) composed by N − 1 time points. The LARS algorithm
was applied to solve the new objective function

ŝ′(t) = argmin
s′

{
1

2(N − 1)
||y′(t)−A′s′(t)||22 + λ′||s′(t)||1

}
(3.21)

where A′ represents the operator A, after removing the i-th row from it. Because LARS gives
a set of solutions associated to a set of lambdas, for each of these solutions, the removed
sample of the original time series y(t) was estimated starting from the new solution ŝ′(t)

yr[i] = A[i, :] · ŝ′. (3.22)

After that for each lambda, meaning for each solution, the squared errors between the
original time sample y[i] and the estimated one yr[i] were computed. This process was
repeated N times, ones for each time sample removed. Because LARS gives a new set
of lambdas (λ) for each i-th removed sample, the errors were then interpolated to have
error values associated to an array of fixed lambdas in the range [0, 0.2]. All the procedure
indicated above was repeated V times, for each simulated fMRI time series, and the errors
related to each fixed lambdas were averaged across the V repetitions of the simulated
corrupted fMRI time courses. The optimal λ was then chosen as the one corresponding to the
least mean squared error. Finally, the LARS algorithm was run on the original optimization
problem and the solution

ŝ = argmin
s

{
1

2N
||y−As||22 + λOPT ||s||1

}
(3.23)

was the one corresponding to the lambda the closest to the optimal one previously
computed.
To test the difference between the lambda selection methods that we considered, i.e. the L-
curve and the LOO-CV, we simulated fMRI acquired time series corrupted with different
amount of noise and we tested different alphas for the α-filter. In the next section we
will describe how we simulated the fMRI data to test and validate the above-mentioned
approaches.
As for the accumulation function Iα(t) (see Section 3.4.2), as it was previously explained,
it has a shape and therefore a performance that can be adjusted by tuning the parameter
α. This parameter applies such that: the lower the α the smoother the function Iα(t); the
higher the α the sharper the function Iα(t). The choice of the parameter α would play a role
on the signal sparsity. The accumulation function Iα(t) has been proposed here because it
allows smoothing the noise, nevertheless a too small α would impact on the sparsity of the
resulting activation. For this reason, a trade-off between the value of α and the sparsity of
the resulting signal is necessary. The parameter α was indeed chosen such that it does not
impact considerably on the sparsity of the resulting innovation signal s(t).
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Algorithm 2 Leave-one-out cross-validation (LOO-CV)
Input: V fMRI corrupted time series y of length N.

Output: Regularization parameter λOPT that provides the optimal solution ŝ for the problem

in Eq. (3.17).

1: for v = 1 : V do

2: for i = 1 : N do

3: Computation of the vector y′(i) by removing the i-th element (y[i]) from y.

4: Computation of the operator A(i)′ by removing the i-th row from A.

5: Application of LARS to solve the new objective function

ŝ′λ′(i) = argmin
s′

{
1

2(N − 1)
||y′(i)−A′(i)s′(i)||22 + λ′(i)||s′(i)||1

}

gives L solutions ŝ′λ′(i) for each λ′ ∈ Λ′L(i)) where Λ′L(i) is the set of L λ′.

6: for l = 1 : L do

7: Computation of the removed sample yr(i, l)

yr(i, l)λ′ = A[i, :]ŝ′λ′(i, l)

8: Computation of the squared errors for each λ′ ∈ ΛL

ε′λ′(i, l) = (yr(i, l)λ′ − y[i])2

9: end for

10: Given the set of ε′λ′(i, l) obtained for for each λ′ ∈ Λ′L(i), interpolation of ε′λ′(i, l)

and sampling of the obtained interpolant at the values contained in ΛF

εv
I (i) = interp(ε′(i, l), λ′L(i, l))(ΛF)

where ΛF is an array of fixed lambdas in the range [0, 0.2]. Given the fact that LARS

outputs different lambdas for each i, the interpolation allows to have the errors as a

function of ΛF.

11: end for

12:

µv(ε
v
I (i)) : ΛF ∈ R+

13: end for

14:

λ∗ = argmin
λ∈ΛF

µv(ε
v
I (i))(λ)

15: Given ΛN from LARS applied to solve

ŝ = argmin
s

{
1

2N
||y−As||22 + λOPT ||s||1

}
16: The optimal solution ŝ is the one associated with

λOPT = argmin
λ∈ΛN

(|λ− λ∗|)
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3.5 Simulation of fMRI Time-Courses

To reproduce the acquired fMRI signals we simulated the activity-inducing signal as a boxcar
function

u(t) = H(t− a)− H(t− b) (3.24)

where H(t) is the Heaviside step function.
We corrupted them with block-type noise, εb, to simulate false activations related to
motion artifacts [151] and added noise to u(t) representing the random intrinsic electrical
fluctuations within neuronal networks. These fluctuations are not associated with a response
to internal or external stimuli. This noise aims at modelling the synaptic noise that refers to
the constant bombardment of synaptic activity in neurons. To do this, we corrupted the
activity-inducing signal u(t) with an additive random Gaussian noise with zero mean and
standard deviation σm that we called "model noise" εm, yielding

un(t) = x(t) + εb + εm. (3.25)

We simulated the activity-related signal x(t), consequent to the neural activation as the
convolution of the activity-inducing signal with the HRF h(t) [16]:

x(t) = un(t) ∗ h(t). (3.26)

Real time series acquired using the fMRI technique are corrupted by different kinds of noise
and artifacts given by mechanisms which are not reflecting any neurophisiological function,
such as the heart rate and the respiratory fluctuations, motion artifacts, thermal noise and
scanner drifts [60]. For this reason we added noise to x(t) thus simulating the acquired fMRI
signals

y(t) = x(t) + εa = un(t) ∗ h(t) + εa (3.27)

where εa is the additive random Gaussian noise with zero mean and standard deviation σa.
A scheme representing the generation of the phantom fMRI time series is shown in Figure
3.5.
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time [s] time [s]
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time [s]

FIGURE 3.5: fMRI signal simulation. u(t) is the activity-inducing signal, a
block of constant activation represented with a piece-wise constant signal.
εb is the block type noise and εm the model noise which were consecutively
added to the activity-inducing signal u(t) thus leading to un(t) before the
convolution with the hemodynamic response functionH. x(t) is the activity-
related signal, εa is the additive gaussian noise and y(t) is the simulated

acquired fMRI time course.
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3.6 L-curve vs Cross-Validation

In this section we will test our approach in order to assess the performance of L-curve and
compare the results with the ones obtained using the LOO-CV approach, both adopted for
the selection of the most appropriate regularization parameter λ for solving the problem in
(3.17).

3.6.1 Methods

We tested the difference on the solution to the optimization problem in (3.17) with the two
different approaches for the selection of the regularization parameter λ: L-curve and LOO-
CV.
To do this, as explained in section 3.5, we simulated fMRI time series of 100 s with a TR
of 1 s. We set the activation with an onset at 20 s and the offset at 40 s, for a duration of
20 s. The amplitude of the activation was set to 1. We randomly added up to 10 blocks of
false activations (εb), with a maximum amplitude of 0.7, a minimum duration of 3 s and
a maximum of 7 s. We set 10 experiments in which the data were corrupted by different
amounts of noise (εm and εa) as shown in Table 3.3. For each experiment, the time courses
corrupted with random noise were simulated 100 times to have a sample for statistical
analysis. In Table 3.3 we also report the peak-SNR (pSNR) for each experiment averaged
across the 100 repetitions of the considered experiment. The pSNRm and pSNRa for each
repetition were computed as follows

pSNRm = 10 log10
max(u)2

Var[un − u]
(3.28)

and

pSNRa = 10 log10
max(x)2

Var[y− x]
(3.29)

where u, un, y and x are the ground truth and the noisy activity inducing signal, the synthetic
acquired fMRI time course and the activity-related signal, respectively. As shown in Table
3.3, we tested the data either with and without adding model noise.

In order to assess the effect of the α-filter, we tested different values for α =

(0.3, 0.4, 0.5, 0.75, 1, 2, 3).
To compare the results, for each experiment we computed the roots of the mean squared
errors (RMSE) and its related standard deviations (STD) between the ground truth,
simulated as a piece-wise constant activation u(t), and the recovered activity-inducing
signal û(t) averaged across the 100 repetitions.

3.6.2 Results

Results are shown in Figure 3.6 and 3.7. They show that the RMSEs obtained using the L-
curve (in red) are lower than the ones obtained using the LOO-CV-based approach. This
highlights the fact that the solution to (3.17) using the L-curve-based approach is closer to
the ground truth if compared with the ones obtained using the LOO-CV-based approach.
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Experiment σεm pSNRm[dB] σεa pSNRa[dB]

1 0.1 ' 20 0.1 ' 28

2 0.3 ' 11 0.3 ' 19

3 0.5 ' 6 0.5 ' 15

4 0.7 ' 3 0.7 ' 14

5 0.9 ' 1 0.9 ' 13

6 0 → ∞ 0.1 ' 28

7 0 → ∞ 0.3 ' 18

8 0 → ∞ 0.5 ' 14

9 0 → ∞ 0.7 ' 11

10 0 → ∞ 0.9 ' 8

TABLE 3.3: Experiments set for testing the L-curve and the LOO-CV to
compare the two approaches for the selection of optimal lambda. The first
column indicates the experiment number, the second column the standard
deviation (σεm ) of the gaussian random noise added as model noise, the third
column represents the peak signal to noise ration (pSNRm) computed as in
(3.28) in dB. The fourth column reports the σεa for the additive gaussian noise

and the fifth column the pSNRa estimated as in (3.29) expressed in dB.

Results also highlight that the solution obtained using the LOO-CV (in light blue) is much
more sensitive to model noise, i.e. εm from experiment 1 to 5 (Figure 3.6), with respect
the solutions obtained with the L-curve. However, Figure 3.7 shows that the LOO-CV-based
approach gives lower errors if only εa is added to the data, compared with the cases where εm

and εa (Figure 3.6) were both added to the simulated data. These trends are also shown in the
exemplifying time series plotted in Figure 3.8 and 3.9. In particular, the plots in Figure 3.8,
where both εm and εa were added to simulate the acquired time series (in green), show that
the recovered activations using L-curve (in dotted red) are less sensitive to noise, compared
to the ones recovered using LOO-CV (in light blue). The plots in Figure 3.9, show instead
good results for the LOO-CV-based approach, nevertheless the L-curve assures a solution
with a amplitude closer to the ground truth than those obtained with the LOO-CV. As for
the effects of the α-parameter, globally it emerges, from Figure 3.6 and 3.7, and Figure 3.8 and
3.9, that the error is higher and more disperse for little α and it decreases while increasing
α for both approaches. It is also shown that globally at a α of 0.75 the error stabilizes to a
certain value, meaning that a sharper α-filter would not significantly change the results.
Both Figure 3.6 and 3.7 refer to synthetic data. For the approach involving the combination of
the LARS algorithm and L-curve (red curves) and the one involving LARS and the LOO-CV
(blue curves), we observe as expected that the errors and its standard deviation decreases
while decreasing the noise. We also observe that if we increase the value of α involved in
the α-filter the errors decrease. This happens because, for very small α the α-filter gives a
smooth effect that is then encountered in the error, therefore the errors for low α are greater
with respect to smaller α, that instead favors sharper solutions. Given that the ground
truth is supposed to be a piece-wise constant function, the α-filter with higher values for
α gives a solution that is closer to the ground truth. Nevertheless, as mentioned before, at
a value of α = 0.75 the error stabilizes and the compromise between the noise reduction
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and the sparsity of the solution is found. If we observe Figure 3.8 and 3.9, the resulting
û(t) obtained using the LARS algorithm combined with the L-curve (in red) presents very
sharp transitions and follows the ground truth with a very small error, this suggests that
the recovered innovation signal ŝ(t) is sparse and corresponds to the onset and offset of the
underlying simulated activation.
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FIGURE 3.6: Each plot shows the root mean square errors (RMSE) and the
roots of standard deviations computed between the ground truth activation
and the estimated one using the Least Angle Regression (LARS) combined
with the L-curve (in red) and with the leave-one-out cross-validation (LOO-
CV, in light blue). Each plot refer to a different experiment, as reported
in Table 3.3. For each experiment, the RMSE were averaged across 100
repetitions of the simulated time series. The errors (in y-axes) are plotted with
respect to the α value (in x-axes) used for the α-filter. In the 5 experiments, we
added block-type noise (εb) for false activations, and both εm and εa to the
data, increasing it from experiment 1 to 5. The plots show that the LOO-CV-
bases approach is more sensitive to noise while increasing it and results are
more disperse if compared with the L-curve-based ones. In all experiments
the results obtained with L-curve show errors that are significantly lower
than those given by the LOO-CV. With respect to the parameter α, results
obtained via the LOO-CV are improved by increasing it, instead the ones

obtained with L-curve are more stable with respect to it.
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FIGURE 3.7: Each plot in the figure show the root mean square errors (RMSE)
and the roots of standard deviations computed between the ground truth
activation and the estimated one using the Least Angle Regression combined
with the L-curve (in red) and with the leave-one-out cross-validation (LOO-
CV, in light blue). Each plot refer to a different experiment, as reported
in Table 3.3. For each experiment, the RMSE were averaged across 100
repetitions of the simulated time series. The RMSE (in y-axes) are plotted
with respect to the α value (in x-axes) used for the α-filter. In experiments
from 6 to 10, we increasingly added εa to the synthetic times series. The plots
show that the LOO-CV-based approach is less sensitive to noise if compared
to experiments 1 to 5 in Figure 3.6, but still more sensitive to noise while
if compared with the L-curve-based ones. In all experiments the results
obtained with L-curve show errors that are significantly lower than the ones
obtained with the LOO-CV for α values lower than 0.5. For α > 0.75 results

are similar.
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FIGURE 3.8: The graphs in the plots show examples of the recovered
activation using the mixed Least Angle Regression (LARS)-L-curve approach
(in red) and the mixed LARS and leave-one-out cross-validation (LOO-CV)
(in light blue) superimposed on the ground truth activation in black and
the noisy synthetic fMRI time series (in green). Each row shows a different
experiment, meaning different noises applied to the ground truth activation
and each columns refer to a specific α used in the α-filter. In experiments
1, 3 and 5 the added noise was coming from different sources: block-type
noise (εb) to simulate false-activations, model noise εm and additive noise εa.
The standard deviations of εm and εa increases from experiment 1 to 5. The
plots show that the recovered activations using the L-curve-based approach
are much closer to the ground truth compared with LOO-CV. The L-curve-
based approach shows results that are closer to the ground truth in terms
of amplitude for bigger alphas. For α = 0.75, 3, results are similar, while in

contrast with those given by α = 0.3.
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FIGURE 3.9: The graphs in the plots report examples of the recovered
activation using the mixed Least Angle Regression (LARS)-L-curve approach
(in red) and the mixed LARS and leave-one-out cross-validation (LOO-CV)
(in light blue) superimposed on the ground truth activation in black and
the noisy synthetic fMRI time series (in green). Each row shows a different
experiment (see Table 3.3), meaning that different amount of noises were
applied to the ground truth activation Each columns refer to a specific α
used in the α-filter. In experiments 6 and 10 time series are corrupted with
εa with increasing standard deviation. The different amount of noise are
described in Table 3.3. The recovered activations using the L-curve-based
approach are closer to the ground truth compared with LOO-CV. The L-
curve-based approach shows results that are closer to the ground truth in

terms of amplitude for greater alphas α = 0.75, 3, in contrast with α = 0.3.
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FIGURE 3.10: 3-D activation map obtained from an auditory task
superimposed on the standard Montreal Neurological Institute (MNI) brain.
The three images, from left to right, represent the axial, the sagittal and the

coronal view. Voxels’ intensity is ranged between 0 and 3.
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FIGURE 3.11: Piece-wise constant activity-inducing signals simulated for
validation. The activation on the left, A, is composed by four blocks of
activations with different durations, as proposed by Farouj et al. [13]. The
activation on the right, B, is made of a single long block of simulated activity.

3.7 Validation on Phantom fMRI Images

In this paragrah we validate our approach on the phantom fMRI data and we compare it
with the state-of-the-art approach proposed by Karahanoglu and colleagues [6], namely the
TA. Given the results illustrated in the previous section, from now on when we refer to
our approach we intend the one given by the combination of the LARS algorithm and the
L-curve.

3.7.1 Methods

To simulate a 4-D fMRI image, similarly to the work proposed by Farouj and colleagues [13],
we scaled a 3-D activation map computed with the Functional Magnetic Resonance Imaging
of the Brain (FMRIB) Software Library (FSL) simulation tool Possum (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/POSSUM/UserGuide) in the range [0, 3], with a resolution of 2× 2× 2
mm3 (Figure 3.10).
We multiplied this activation map by two different block-type signals of 200 s, u(t): the
first one, A, with 4 onsets; the second one, B, with one long onset (Figure 3.11). The
resulting phantom image is then made of "activated" voxels and background voxels where
the activation was set to 0.

Starting from this two activation paradigms, we simulated the time series for each brain
voxel as described already in Section 3.5. All the voxels were corrupted by noise: the

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/POSSUM/UserGuide
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/POSSUM/UserGuide
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Experiment σεm σεa pSNR[dB] A pSNR[dB] B

1 0.1 0.1 ' 5.17 ' 7.64

2 0.3 0.3 ' 4.96 ' 6.84

3 0.6 0.6 ' 4 ' 5.94

4 1 1 ' 3.14 ' 3.29

5 0 1 ' 3.98 ' 5.12

TABLE 3.4: Experiments set for testing our temporal regularized
deconvolution on phantom fMRI image. The first column indicates the
experiment number. The second and third columns report the standard
deviation of the model noise (σεm ) and the additive gaussian noise (σεa),
respectively. The fourth and fifth columns show the pSNR computed as in

(3.30), expressed in dB, for activations A and B.

background ones and the "active" ones. The goal is to see if the approach that we propose
is able to distinguish between an activated and not activated voxel and to assess how much
the recovered activations are close to the ground truth.

We set up five experiments with different standard deviations for the added noises εm and
εa as shown in Table 3.4. We compute the pSNR as the maximum pSNR computed across
the voxels belonging to the activation map showed in Figure 3.10, that is

pSNR = max
(

10 log10
max(u)2

Var[y− u]

)
. (3.30)

To evaluate the results obtained with the procedure described above, we computed the roots
of the mean square errors (MSEs) and standard deviation (STDs) between u(t) and û(t)
averaged among the voxels belonging to the GM masked activation. On the light of the
results discussed in the previous chapter, the results we show here are related to α = 0.75
employed in the α-filter. We compared our results with those obtained with the temporal
regularization implemented in the Total Activation (TA) toolbox [6]. For the moment,
because we proposed a temporal regularized deconvolution approach, we disregarded the
spatial regularization and considered only the temporal regularization implemented in the
TA approach in order to allow a comparison between the two approaches.

3.7.2 Results

In Figure 3.12 we show that using our approach we are able to clearly discern between a
voxel that is activated (light blue box) and a voxel that instead is not (yellow box).

Table 3.5 shows that the roots of MSEs ± STDs change for different pSNRs and that they
are significantly lower than the ones obtained using TA. Figure 3.13 shows examples of
the reconstructed activity inducing signal using our approach (ûL−curve(t)) and the TA
approach(ûTA(t)).

The value of lambda used in the TA for the temporal regularization, tuned for each voxel
as the median absolute deviation of fine-scale 3rd order Daubechies wavelet coefficients,
has been found to be greater than the one that we propose here using our approach,
that combines the LARS algorithm with the L-curve. If too much weight is given to the
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FIGURE 3.12: Reconstructed activity-inducing signal û(t) obtained with our
approach (red) superimposed on the ground truth (u(t), black) and simulated
fMRI signal (y(t), green). The plots in the blue square are taken from
exemplificative voxels and are related to activation A with pSNR = 5.17 dB;
the ones in the yellow square are related to activation B with SNR = 5.12
dB. Vertically, for both A and B, the plots show that our approach is able to

discern between an activation and a non-activation.

TABLE 3.5: Summary of rooted MSEs and STDs obtained for phantom fMRI
data.

Activation A B
Experiment 1 2 3 4 5 1 2 3 4 5
pSNR [dB] 5.17 4.96 4 3.14 3.98 7.64 6.84 5.94 3.29 5.12

OUR (α = 0.75) rMSE 0.11* 0.15 0.22 0.18 0.34 0.05* 0.1* 0.19 0.31 0.14*
rSTD 0.13* 0.14 0.16 0.2 0.15 0.05* 0.07* 0.11 0.17 0.08*

TA rMSE 0.25 0.26 0.29 0.36 0.3 0.19 0.2 0.24 0.32 0.25
rSTD 0.31 0.31 0.32 0.33 0.33 0.23 0.24 0.24 0.27 0.26
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FIGURE 3.13: Reconstructed activity-inducing signal û(t) obtained with our
approach (red) and the total activation (TA, blue) superimposed on the
ground truth activation (black) and simulated fMRI signal (green). The plot
on the top is related to activation A with pSNR = 5.17 dB. The plot on the

bottom is related to activation B with pSNR = 5.12 dB.
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regularization, the solution does not fit the data properly, therefore the residuals will be too
large. The solution will be indeed far from the original data, and as in this case the amplitude
of the recovered activity-inducing signal obtained using the TA is lower than the one of the
original data. It has been shown in literature that the total variation denoising, formulated
as l1-norm penalty term, tends to underestimate the amplitude of the signal. This is indeed
a limitation of the l1-norm regularization. A large value of the regularization parameter
lambda, as it is the case for the TA, makes the l1-norm solution sparser, but it reduces the
coefficient amplitudes [154]. As for the TA approach, that in this thesis was used as provided
in the TA toolbox, it implements a temporal regularization that aims at minimizing the total
variation of the signal. It must be stressed that all the parameters were not set by the user, but
for the thesis we run the TA approach implemented in the TA toolbox and all the parameters
were set by the tool itself and not by the user.
Regarding Table 3.5 and Figure 3.13, if we would compute the Pearson correlation
coefficients between the ground truth u(t) and the recovered activation û(t) using the TA
and using our approach results would be similar. Nevertheless, if we are looking for a voxel
that is active/not-active at a certain time and for example we would apply a threshold to
define when a voxel is activated/deactivated, using our approach would allow to use a
higher threshold and this would allow to not to encounter spurious and false activations
with lower amplitudes.

3.8 Application on Real task-fMRI Data

In this section we validate our approach on real task-fMRI data and we compare our results
with the TA. The reason why we choose to use task-fMRI data, even if the final goal is the
application to rs-fMRI data is because in this way we have a ground truth to which to refer
to in order to assess the performance of our approach.

3.8.1 Methods

We used the preprocessed task-fMRI image of subject 100307 taken from the Human
Connectome Project (HCP) database [155]. The data were acquired using a 3T SIEMENS
MAGNETOM Connectome Syngo MR D11 scanner, using a multi-band accelerated EPI
sequence ( Acquisition Time = 204.48 s; TR = 720 ms; Echo Time (TE) = 33,10 ms; flip
angle (FA) = 52°; 72 slices; Field of View (FOV) = 208 mm × 180 mm; 2 mm isotropic
resolution; 284 volumes)1. The data underwent a minimal pre-processing pipeline [156]
which includes: correction of gradient-non linearity-induced distortions; registration of
each image frame to the signal-band reference image to achieve motion correction; phase-
encoding distortion correction; EPI image distortion correction; registration of the fMRI
volumes to the structural data; coregistration of the fMRI data to the MNI space; masking
and fMRI image intensity normalization to the 4-D whole global mean of 103. Furthermore,
as additional pre-processing steps, each voxels’ time series were then detrended to remove
linear trends and finally normalized to 0 mean and unit standard deviation.
The task involves, for known timing and duration, the movement of the tongue, as shown
in Table 3.6.
Task-fMRI data provided us with a ground truth that allowed us to assess the quality of

1https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_
Appendix_I.pdf

https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Appendix_I.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Appendix_I.pdf
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Task Starting time End time

Tongue 41.264 s 53.264 s
101.639 s 113.639 s

TABLE 3.6: Tongue task paradigm of HCP data. Note that the time for
activation is expressed in seconds and the repetition time for the HCP data is

0.72s.

results. The ground truth is given by the onset, offset and duration of the task. The
reconstructed û(t) were averaged in a ROI of 6× 6× 6 mm3 centered in the Brodmann Area
4p (MNI coordinates: 62, -14, 30) [157].

3.8.2 Results

Results on real task-fMRI data are showed in Figure 3.14. They show that, given the real
task-fMRI data (in green), with our approach (in red) we were able to clearly recover the
brain activations, supposingly happening during the gray areas, compared with the ones
recovered using TA (in blue). As we showed for the simulated data, in Figure 3.8, 3.9, 3.12
and 3.13 using our approach allows a deconvolution of the BOLD signal from fMRI data,
thus our approach allows to recover the simulated block-type activation. As for real data,
in Figure 3.14, given that the task performance is subject-dependent, this could explain why
the results are subject to a certain variability, meaning that the recovered activation û(t) is
longer than the task duration. Moreover, we can observe in the figure that the recovered
solution using our approach (in red) follows the variance of the real task-fMRI time course
in green and retrace an activation that is underlined below it.

3.9 Discussion and Contributions of this Chapter

In this chapter we introduced our first main contribution. Initially inspired by the work
proposed by Karahanoğlu et al. in 2013 [6], we proposed an approach to solve an
optimization problem with the purpose of recovering the brain functional activation in time,
supposing the brain activates for a period of time and finally deactivates.
To solve the inverse problem, we proposed a combined approach that involves the use of the
LARS algorithm and the L-curve. As a first point, the LARS algorithm outputs at once all
important lambdas and their associated solution. Given the set of lambdas, we proposed two
approaches for choosing the optimal one: the L-curve and the LOO-CV. Results showed that
the L-curve allows a faster and better estimation of the appropriate regularization parameter
lambda for the given data, compared with the LOO-CV. In fact the LOO-CV gives still a
piece-wise constant solution but it is more sensitive to noise thus leading to the recovery of
false activations. The L-curve instead, in almost all the test we performed in this thesis, is
much less sensitive to noise and is able to select a solution that is very close to the ground
truth, both in terms of amplitude and activation’s onset and offset. From the computational
side, using the LOO-CV requires to run several times the LARS algorithm to solve the
optimization problem and to select the optimal lambda, whereas the combination between
the LARS algorithm and the L-curve has to be run just once, therefore it is less costly.
In the experiments we showed in this chapter, the use of different α parameters affected
mostly the LOO-CV-based approach than the L-curve-based one.
Our approach applies both on synthetic data, giving as output a curve that is very close
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y(t)

u*_L-curve(t)_L-curve (t)
u*_L-curve(t)_TA (t)

[TR]
FIGURE 3.14: The plot shows the û(t) obtained with the Human Connectome
Project (HCP) data. Results obtained using our approach (red) and the
TA (blue) superimposed on the real fMRI signals (green) were all averaged
within the region of interest located in the Broadmann Area 4p. In the x-axes
the time is expressed in TRs and the gray areas represent the duration of the

tongue movements.
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to the ground truth, even for very noisy data, corrupted with several kind of added noise,
i.e. the block-type noise, the model and the additive noise. Furthermore, the comparison
with the TA approach showed that we can obtain results that are closer to the ground truth,
with a decreased computation time and without the need of defining lambda a priori. The
lambda chosen in the TA approach has revealed to be greater than those obtained using our
approach, this means the recovered solution obtained with the TA is too far from the data.
Results on real fMRI data highlighted a variability if we compare the task duration with the
recovered activation. Therefore, it would be interesting to see results on an extended set of
data, to observe if this pattern is confirmed or if it is due to the subject performance, and to
better elucidate and confirm the validity of our approach.
In conclusion, our findings show that the joint use of the LARS algorithm and the L-curve for
solving our optimization problem allowed us to choose the optimal lambda and its associate
solution among all those outputted at once by the algorithm. In this way, we avoided a need
of defining lambdas a priori, allowing to improve the state of the art and therefore brain
dynamics recovery for future clinical application.
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Chapter 4

A Paradigm Free Regularization
Approach to Recover Brain
Activation from fMRI Data

A natural step forward, subsequent to the approach proposed in Chapter 3, was to introduce
into the optimization problem, already presenting a temporal regularization, also the spatial
information. fMRI data has indeed an excellent spatial resolution if compared to other
brain imaging techniques. For this reason here we propose an innovative approach to
regularize the entire brain fMRI image, that takes into account both the spatial and temporal
dimensions contained in the 4-D fMRI data structure.

4.1 Spatio-Temporal Deconvolution of the fMRI BOLD

Response

By supposing the brain activates in constant blocks, Karahanoğlu and colleagues [6],
later revisited by Farouj et al. [13], developed a deconvolution approach which involves
both spatial and temporal regularization called TA. However, these approaches split the
optimization problem into two decoupled spatial and temporal regularizations. This
increases the number of parameters to be set to 4, i.e. two regularization parameters and
two weights in the context of the forward-backward splitting algorithm used to solve the
optimization problem. This requires the solver to alternate between the constraints as
explained in Section 2.2.
To overcome these limitations, starting from the idea that large image variations should
be preserved as they occur during brain activation, whereas small variations should be
smoothed to remove noise, in this chapter we propose a novel approach, based on partial
differential equations (PDEs), named Paradigm-Free fMRI (PF-fMRI). The PF-fMRI applies a
diffusion process whose diffusivity is steered by derivatives of the evolving image, in order
to smooth the fMRI image and to simultaneously enhance important features such as spatial
edges and temporal functional activations.
Let us start before with a physical background of diffusion processes.
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4.2 Introduction to the Diffusion Process

In the book Anisotropic diffusion in image processing [158], Weickert described the diffusion
in physics as a process that aims at maintaining the equilibrium between concentration
variations without creating new mass, or destroying it as expressed in Fick’s law

j = −D · ∇c (4.1)

where∇c is the concentration gradient, j is the flux induced to compensate for this gradient
and D is the diffusion tensor that describes the relation between ∇c and j. The case where j
and ∇c are parallel is called isotropic, whereas if they are not parallel is called anisotropic.
The continuity equation allows us to write the observation that diffusion does not create or
destroy mass

∂c
∂t

= −divj (4.2)

where t denotes the time. So, if we combine the two equations (4.1) and (4.2) we finally
obtain the diffusion equation

∂c
∂t

= div(D∇c) (4.3)

that appears in many physical transport processes, for example, in the context of heat
transfer where it is called heat equation. Eq. (4.3) can be linked and exploited in image
processing if we consider the gray values of an image at a certain location as a concentration.
If the diffusion tensor is a function of the differential structure of the image that evolves with
time, this leads to non-linear diffusion filters.

4.3 Image Regularization with Partial Differential Equations

Regularization methods have been enriched by the use of non-linear PDEs in several context
for the last 30 years. Firstly applied to physics and fluid mechanics, it has been showed that
non-linear PDEs allow smoothing the data while preserving large global features, such as
discontinuities of the signal [159], which can be found, for example, in image contours and
corners [160].
In their pioneering work presented in 1990, Perona and Malik [161] were the first to
exploit the link between image regularization and anisotropic diffusion. They employed
anisotropic diffusion PDEs for the restoration of noisy and blurred digital data to overcome
the limitations associated to linear filtering approaches [162]. This approach is rooted on
the isotropic diffusion equation, i.e. heat flow, which has subsequently been extended to
other theoretical contributions. Among them there are the anisotropic smoothing [158, 163]
and the PDEs-based gradient descent used to solve energy functionals minimizations
[164, 165, 166, 167, 168]. To date, PDEs-based regularization algorithm has been applied to
2-D scalar images [169, 170, 161, 158] and vector-valued images [162]. Interestingly, inspired
by the physics of fluids, many authors assimilated the process of image regularization
with the diffusion of chemical concentrations and propose to apply the diffusion PDE
[159, 160, 158, 162, 171]
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∂I
∂t

= div(D∇I) (4.4)

where I is the input image, ∇ is the gradient operator, t is the time, div(·) is the divergence
and

D = λ1uuT + λ2vvT (4.5)

is the diffusion tensor of the image I., also called structure tensor [159, 172, 173].
The diffusion tensor D, which is a symmetric and positive definite matrix, has λ1 and λ2

as positive eigenvalues and u, v as corresponding orthogonal eigenvectors that drive the
regularization process; the amount of diffusion in the directions u and v will be weighted by
λ1 and λ2.
Furthermore, PDEs smooth the image at each step with a notion of scale-space [161, 170, 174];
this means that, at each iteration, the image is smoothed and fine-scale properties, such as
noise in the case of our interest, are gradually suppressed. At the same time, besides the
regularization term, a fidelity term prevents the solution to be too far from the input data.
Using this approach actually means performing minimization of image variations as well as
an image deconvolution.

4.4 The PF-fMRI: Theory

For the sake of simplicity the approach will be firstly explained in 3-D and then it will be
generalized to a 4-D problem.
Let us define a scalar-valued image as a function I : Ω ⊂ R3, where Ω is the domain of
the image. Let us now define a structure tensor, also called diffusion tensor, D as a 3× 3
symmetric and positive-definite matrix.

D = ∇I∇IT =

 I2
x Ix Iy Ix Iz

Iy Ix I2
y Iy Iz

Iz Ix Iz Iy I2
z

 (4.6)

where ∇I is the gradient of the image I, while Ix, Iy and Iz are the partial derivatives of
I with respect to x, y and z, respectively. By definition, D has three positive eigenvalues
(λ1 ≥ λ2 ≥ λ3 ≥ 0) and their associate three orthogonal eigenvectors (θ1, θ2 and θ3) explain
the distribution and orientation of the gradient∇I = (Ix, Iy, Iz) of I in a given neighborhood:

D = λ1θ1θT
1 + λ2θ2θT

2 + λ3θ3θT
3 . (4.7)

A structure tensor allows to distinguish between an anisotropic and a isotropic diffusion. If
λ1 >> λ2, λ3 it means that the gradient has a principal orientation (in this case θ1) and the
diffusion is anisotropic and can be represented with an ellipsoid (Figure 4.1). Whereas, if
λ1 ≈ λ2 ≈ λ3 it means that the gradient is not oriented in a main direction and θ1, θ2 and θ3

are eigenvectors of D with equal weight, i.e. isotropic diffusion that can be represented with
a sphere.
A isotropic structure tensor could be then written as a weighted identity matrix Id
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λ1θ1 
λ2θ2 

λ3θ3 

FIGURE 4.1: Ellipsoidal representation of the 3-D diffusion tensor.

D = βId =

β 0 0
0 β 0
0 0 β

 (4.8)

and does not have a privileged orientation. We generalized these tools in a 4-D case, which
is the one of fMRI data (see Section 3.2), so from now on the function I : Ω ⊂ R4, where Ω is
the domain of the 4-D image. Let us define a scalar-valued image as a function I : Ω ⊂ R4,
where Ω is the domain of the 4-D (3-D space× 1-D time) image and let us assume Neumann
boundary conditions on δΩ, specifying the values in which the derivative of the solution is
applied within the boundary of the domain. Let us now define a structure tensor, also called
diffusion tensor, D as a 4× 4 symmetric and positive-definite matrix. By definition, D has
four positive eigenvalues (λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0) and their associate four orthogonal
eigenvectors (θ1, θ2, θ3 and θ4) explain the distribution and orientation of the gradient
∇I = (Ix, Iy, Iz, It) of the image I in a given neighborhood.
Inspired by the physical process of diffusion, we link the diffusion to fMRI image
regularization and we propose the PF-fMRI for the enhancement of coherent structures
found in fMRI data. The PF-fMRI that we propose in this thesis recovers brain activations
and smooths small image variations while preserving large variations via a regularization
that applies on the 4-D image, acting simultaneously in the 3-D space and the 1-D time
dimensions. To do this, we propose a regularization process based on a gradient descent
computed with PDEs, such that

∂I
∂t

= (1− λR)
HT(I0 −HI)
‖I0‖2

+ λR
div(D̃∇I)

‖div(D̃0∇I0)‖2
(4.9)

where the term on the left, ∂I/∂t, is the regularization flow, the first term on the right is the
data fitting term, and the second term on the right minimizes image variations. λR ∈ [0, 1]
is the user-defined regularization parameter that represents a trade-off between the data
fidelity term and the regularization term. Starting from the initial image I0, while increasing
the scale variable t, the restored image I becomes more and more simplified, with respect to
the image at small t. At the same time, no new structures are introduced in the image [167].
Going more into the details of the data fidelity term
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F (I) = HT(I0 −HI)
‖I0‖2

(4.10)

I0 and I are the original and the regularized image respectively, ‖I0‖2 in the denominator
is the normalization factor, H is the HRF [16] operator (see Section 3.2.1) and HT is its
transpose. The multiplication of HT with (I0 −HI) corresponds to correlation and can be
implemented via convolution with the time-reversed HRF. Note that the products with the
HRF, which corresponds to a convolution with the time-reversed HRF, were computed only
along the time dimension. The regularization term is defined as

R(I) = div(D̃∇I)
‖div(D̃0∇I0)‖2

. (4.11)

where ‖div(D̃0∇I0)‖ is the normalization term and D̃ is the regularization tensor, distinct
from the structure tensor D. In order to elucidate the regularization term, let us start by the
definition of the operator

D =
∇I∇IT

‖∇I‖2 ∗ G (4.12)

that is the 4-D structure tensor of I smoothed by the gaussian kernel G with standard
deviation σG, via the convolution operator ∗. The matrix D being the diffusion tensor of
the image I, its eigendecomposition gives a set of eigenvalues and eigenvectors such that,
if the gradient in one direction is large, the eigenvalue associated to that direction is large,
whereas the eigenvalues associated to the other three directions are relatively small. Since
we are processing fMRI images with the aim of saving activations and contours that occur
concomitant to a large gradient in a certain direction, we aim at reversing the diffusion
process, therefore at reversing the effect of D into D̃ to enhance and at the same time
simplify coherent structures of the fMRI image. We computed the operator D̃ starting from
the operator D in Eq. (4.12). After computing D, we defined the directions of the image
variations by an eigendecomposition of D such that

D = QΛQT (4.13)

where Q contains the orthogonal eigenvectors (θ1, θ2, θ3, θ4) of D and Λ contains their
associated eigenvalues (λ1 ≥ λ2 ≥ λ3 ≥ λ4). We then recomputed the matrix

D̃ = QΛ̃QT (4.14)

such that for each voxel the highest eigenvalue

λ̃1 = exp

(
−

λ2
1

max(Λ)2
1

2σ2
D

)
(4.15)

was set according to a gaussian function with standard deviation σD, such that if λ1 is big,
the current voxel may be located on a edge or activation and the diffusion tensor D̃ is steered
to be anisotropic, by setting λ̃1 � λ̃2, λ̃3, λ̃4. Since we aim at performing a smoothing
only along the other three directions to smooth preferably along the coherence directions,
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the three eigenvalues λ2 ≈ λ3 ≈ λ4 are indeed set to 1, therefore λ̃2 = λ̃3 = λ̃4 = 1.
Whereas, if λ1 is small, the diffusion will be isotropic in the four directions because λ̃1 ≈ 1
and λ̃2 = λ̃3 = λ̃4 = 1. Using the function in Eq. (4.15) corresponds to reassigning to each
voxel different eigenvalues constituting the matrix Λ̃, before recomputing the operator D̃
as in Eq. (4.14). In fact, if λ1/max(Λ) is the highest eigenvalue λ̃1 of the considered voxel
will tend to zero. This steers the geometrical regularization to be anisotropic, because the
smoothing will apply equally in the remaining three directions but it will be negligible in
the perpendicular to the detected contour. Otherwise, if λ1/max(Λ) is small, the greatest
eigenvalue λ̃1 will tend to 1 and this leads to an isotropic regularization almost in all the
four directions (x, y, z, t). In both cases indeed λ̃2, λ̃3, λ̃4 are set to 1.
This procedure is applied for each voxel of the entire 4-D image such that at each iteration
the image I computed in Eq. (4.9) is gradually removed from the image obtained at the
previous iteration. In this way, supposing the brain activates in constant blocks, we were
able to smooth the image simultaneously in space and time. Furthermore we were able to
keep large image variations occurring during a brain activation or a spatial edge, whereas
small variations, corresponding to noise, were smoothed and gradually removed, while
conserving and enhancing coherent structures of the fMRI image.
In the following sessions we will explain how we tested and validated the PF-fMRI on
phantom and real fMRI data.

4.5 Simulation of a Whole Brain fMRI Image

Similarly to what we did in Section 3.5, to simulate the whole brain fMRI image, we modeled
the activity-inducing signal as a boxcar function u(t) for each voxel v.
We added noise to u(t) representing the random intrinsic electrical fluctuations within
neuronal networks. To do this, we corrupted the activity-inducing signal u(t) with an
additive random Gaussian noise with zero mean and standard deviation σm that we called
"model noise" εm

un(v, t) = u(v, t) + εm.

We modeled the activity-related signal x(t), consequent to the brain activation as the
convolution of the activity-inducing signal with the HRF, h(t) [16]:

x(v, t) = un(v, t) ∗ h(t).

We finally added noise to x(t) to model heart rate, respiratory fluctuations, motion artifacts,
thermal noise and scanner drifts [60], thus obtaining the acquired fMRI signals

y(v, t) = x(v, t) + εa = un(v, t) ∗ h(t) + εa

where εa is the additive random Gaussian noise with zero mean and and standard deviation
σa.
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FIGURE 4.2: Ground truth for the functional MRI (fMRI) simulated data: (a)
activation map. (b) Simulated activation u(t), with a repetition time (TR) of 1

s.

4.6 Validation on phantom fMRI data

In this section we will test and validate the PF-fMRI approach on simulated fMRI images
corrupted with different amount of noise.

4.6.1 Methods

As a proof of concept, to test and validate the PF-fMRI, we scaled a 3-D activation map
computed with FSL Possum in the range [0,3], with a 2-mm isotropic resolution (Figure
4.2.a).

We multiplied it by a piece-wise constant signal u(t) of 100 s, with one onset of 40 s, from 20 s
to 60 s (Figure 4.2.b). After that, the image was corrupted with model noise and subsequently
each time course was convolved with the HRF [16]. Finally we added gaussian noise thus
simulating the fMRI time-courses y(t). The TR was set to 1 s.
We tested the PF-fMRI approach on several simulated images obtained by adding different
amount of noise for each experiment.
We regularized the whole image using our approach as showed in Section 4.4, and we
recovered the voxel-wise activity-inducing signals û(t). Finally, to evaluate the results, we
computed the root of the MSE and STD as well as the Pearson correlation (r) and its STD
between u(t) and û(t) averaged among the voxels belonging to the GM. We compared our
results with those obtained using the spatio-temporal deconvolution proposed by Farouj et
al. [13], implemented in the TA toolbox 1.

4.6.2 Results

Figure 4.3 shows examples of recovered spatial maps (Figure 4.3.a) and time series (Figure
4.3.b) using the PF-fMRI (ûPF− f MRI) and the TA (ûTA). Both approaches do not require
any prior knowledge of the paradigm timing or duration. The regularized spatial maps in
Figure 4.3.a in the axial plane show how the denoised fMRI image recovered using the PF-
fMRI (ûPF− f MRI) is closer to the ground truth (u) in terms of signal amplitude with respect

1https://miplab.epfl.ch/index.php/software/total-activation

https://miplab.epfl.ch/index.php/software/total-activation
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to the ones obtained using the TA approach ûTA. This is verified for different pSNRs, i.e. 6.54
dB, 5.99 dB, 5.9 dB and 3.93 dB. As for the time courses, in Figure 4.3.b, we show examples
of time series and the amplitudes of the signals recovered using the PF-fMRI were closer
to the ground truth if compared with the ones obtained using TA. We also show smoothed
recovered activity-inducing signals for very noisy simulated fMRI time series, nevertheless
we obtained smoother solutions also for less noisy images if compared to TA. A zoom of
Figure 4.3 is shown in Figure 4.4.
Figure 4.5 shows how the roots of MSEs± STDs computed between the simulated activation
u(t) and the recovered activity-inducing signals û(t) change for different pSNRs. We show
lower errors with lower standard deviations than the ones obtained using TA.
Figure 4.6 shows that the activation recovered with the PF-fMRI is more correlated with the
ground truth (r ≈ 1), for different pSNRs. Whereas the results obtained with TA are more
sensitive to noise and show better performances for less noisy data.

To better investigate the performance of the PF-fMRI, additional tests were executed given
the shape of the red curve in Figure 4.6, that are almost constant and close to 1 with a variance
that is very low and constant. We would expect a trend where the correlation increases with
the pSNR and the variance instead decreases with the pSNR, as it is the case for TA. In Figure
4.7 we report experiments for more corrupted images where we applied the PF-fMRI. In the
top row results, we applied the PF-fMRI on the simulated fMRI image y, after corrupting
the ground truth image u both with model noise (εm) and additive noise (εa) with a standard
deviation of 2, the resulting pSNR was ' 0 dB; in the bottom row, we applied the PF-fMRI
after corrupting the ground truth image u both with model noise (εm) and additive noise (εa)
with a standard deviation of 5, leading to a negative pSNR (pSNR = -6.51 dB). Note that,
because images were too noisy, the colorbar between the spatial maps in panel (a) and the
time series in panel (b) are mismatching; otherwise we would not have been able to visualize
the spatial maps. Figure 4.8 shows the roots of MSEs, and relative standard deviations,
between the ground truth u(t) and the recovered signals ûPF− f MRI(t) averaged across the
voxels belonging to the GM, for all the experiments that we run in the thesis, represented in
Figure 4.6, and the two additional ones that we show in Figure 4.7. Figure 4.9 reports the
Pearson correlation coefficients (r) between the ground truth u(t) and the recovered signals
ûPF− f MRI(t) averaged across the voxels belonging to the GM.

On the light of results emerged with these experiments, we show that for very noisy data
our results become more sensitive to noise. On one hand, we observe that the values of the
MSEs are higher for very noisy data, and stabilize at a pSNR ' 0 dB. On the other hand, as
expected, the Pearson correlation coefficients become lower for very noisy data, and increase
with the pSNR whereas the standard deviations decrease with the pSNRs. In conclusion,
we show the expected two trends: the errors decreases while the pSNR increase and the
Pearson correlations increase with the pSNR. Nonetheless, if we compare these results to
those of Figure 4.5 and 4.6, and in particular observing the values of the errors computed on
the results obtained using the TA approach, that we run using the provided toolbox without
setting any parameter, we observe that the errors obtained using the PF-fMRI on very noisy
data are still lower than the ones obtained using the TA. As for the Pearson correlation
coefficients, we observe that the values obtained using the PF-fMRI are still greater than the
ones observed with the TA for very corrupted acquired images. In this regard, the parameter
λR is adjusted with respect to noise, and this compensate for the presence of it.
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FIGURE 4.3: (a) From left to right: spatial maps of the simulated functional
MRI (fMRI) image y, ground truth activation u, recovered activation using
the Total Activation (TA) approach (ûTA) and our approach (ûPF− f MRI). Each
row corresponds to a a different peak-SNR (pSNR): 6.54 dB, 5.99 dB, 5.9
dB, 3.93 dB from the top to the bottom. (b) Reconstructed time series û(t)
obtained with our approach ûPF− f MRI(t) (red) and the TA approach ûTA(t)
(blue) superimposed on the ground truth activation u(t) (black) and fMRI

signal y(t) (green). A zoom of the plot is shown in Figure 4.4.
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Ground truth: uNoisy fMRI: y
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FIGURE 4.4: The plot is a zoom of Figure 4.3 representative of a trend that we
found in all the four experiment showed in Figure 4.3. From top left: spatial
maps of a slice of the simulated functional MRI (fMRI) image y, ground truth
activation u, recovered activation maps obtained using the Total Activation
(TA) approach (ûTA) and the PF-fMRI (ûPF− f MRI). The map obtained using
TA (ûTA) had lower amplitude compared with the ground truth, nonetheless
the scale between the values were kept. The map obtained using PF-fMRI
(ûPF− f MRI) showed amplitude comparable to the ground truth, the scale
between the values were kept. The time series on the bottom shows that
the recovered signal ûPF− f MRI(t) (red) was closer to the ground truth u(t)

(black) compared to ûTA(t) (blue).
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PF-fMRI
TA

FIGURE 4.5: The graph shows, for different peak-SNRs, the roots of the mean
square errors (MSE) and standard deviation (STD) between u(t) and û(t)

averaged among the voxels belonging to the gray matter.

TA
PF-fMRI

FIGURE 4.6: The graph shows, for different peak-SNRs (pSNRs), the Pearson
correlation coefficient computed between u(t) and û(t) and averaged among
the voxels belonging to the gray matter and their standard deviation.
(µr: mean correlation coefficient; σr: standard deviation of the correlation

coefficients.)
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FIGURE 4.7: (a) From left to right: spatial maps of the simulated functional
MRI (fMRI) image y, ground truth activation u, recovered activation using
our approach (ûPF− f MRI). Each row corresponds to a different peak-SNR
(pSNR): ' 0 dB, - 6.51 dB, from the top to the bottom. (b) Reconstructed time
series obtained with our approach ûPF− f MRI(t) (red) superimposed on the
ground truth activation u(t) (black) and the original fMRI signal y(t) (green).
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FIGURE 4.8: The graph shows, for different peak-SNRs (pSNR), the roots of
the mean square errors (MSEs) and standard deviation (STD) between the
ground truth signal u(t) and the recovered signals ûPF− f MRI(t) averaged
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FIGURE 4.9: The graph shows, for different peak-SNRs (pSNRs), the Pearson
correlation coefficient computed between the ground truth signal u(t) and
the recovered activation ûPF− f MRI(t) averaged over the voxels belonging
to the gray matter and their standard deviation. (µr: mean correlation

coefficient; σr: standard deviation)
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4.7 Validation on real fMRI data

In this section we will test and validate the PF-fMRI approach on real data. Even if the PF-
fMRI is conceived to be applied to rs-fMRI data, where no experimental paradigm is given,
we firstly used task-fMRI images to be able to have a ground truth, i.e. the timing of the
tasks, to which to refer to test the validity of our approach. We also applied the PF-fMRI on
real rs-fMRI data as a proof of concept.

4.7.1 Methods

Validation on task-fMRI Data

The study was conducted on the motor task-fMRI data from 51 subjects from the HCP
dataset [155]. The data acquisition parameters and preprocessing steps are reported in
Section 3.8.1.
The task involves, for known timing and duration, the movement of the left foot and left
hand, the right foot and right hand and the tongue; all the tasks were following a visual cue
of 3 s, and their timing and durations are shown in Table 4.1. The tasks starting points were
considered equal for each subject and inter-subjects differences of the order of milliseconds
were neglected.

Task Starting time End time

Right hand 11.009 s 23.009 s
131.894 s 143.894 s

Left foot 26.136 s 38.136 s
116.766 s 128.766 s

Tongue 41.264 s 53.264 s
101.639 s 113.639 s

Right foot 56.391 s 68.391 s
177.142 s 189.142 s

Left hand 71.518 s 83.518 s
162.518 s 174.518 s

TABLE 4.1: Motor task paradigm of HCP data. The time is expressed in
seconds and the repetition time for the HCP data is 0.72s.

After applying the PF-fMRI on the whole brain images of each subject, we obtained the
reconstructed activity-inducing signals û(t), without prior knowledge on the onset times of
the evoked stimuli. The regularization parameter λR was set experimentally to 0.9997, σG

was set to 1, sigmaD was set to 0.2 and we computed up to 40 iterations.
To highlight the ability of the PF-fMRI to recover brain activations without knowledge of the
experimental paradigm, we qualitatively compared brain regions recovered using the PF-
fMRI to those recovered using the GLM as implemented in the FSL library. To estimate the
results given by the PF-fMRI, we computed the voxel-wise correlation maps, by estimating
the Pearson correlation coefficient (r) between the recovered activations and the 5 tasks
(Table 4.1). The tasks, i.e. the tongue, the right and left hand, the right and left foot,
were simulated as a piece-wise constant signal with unit amplitude when the subject is
performing the task and zeros elsewhere. As for the GLM, we included all the 5 tasks (Table
4.1) in a design matrix and we estimated the regressor weights using FSL. Results showing
differences and similarities of both approaches were qualitatively assessed.
Subsequently, we quantitatively compared the results obtained using the PF-fMRI with the
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ones given by the TA approach. To do this, we firstly defined 4 ROIs located in brain
regions which are involved in the 5 considered tasks. The ROI related to the tongue was
bilater whereas for the hands and the feet we defined two separate ROIs: one for the left
side and one the right side of the brain. To do this, we started by defining the ROIs from
the work proposed by Roux and colleagues in 2018 [17], who mapped the somatosensory
homunculus MNI coordinates using the electrostimulation. For each coordinate center, we
built a spherical 3 mm-radius ROI and we grouped the multiple ROIs related to each task
into a unique ROI. Coordinates’ centers are shown in Table 4.2.

Task ROI location MNI center coordinates [mm]

Right \left hand Thumb ±46.6; -22.8; 56.2
Index finger ±43.3; -26.8; 59.9

Middle finger ±40.8; -28.6; 62
Ring finger ±37.5; -29.7; 64.8
Little finger ±35.2; -30.9; 66.3

Tongue Base ±61.4; -11.1; 23.3
Middle ±60.7; -11.4; 30

Tip ±59.2; -11; 36
Right \left foot – ±4; -41; 64

TABLE 4.2: MNI coordinates centers of the brain areas found to respond to
the somatosensory stimulation. The coordinates, adapted by Roux et al. [17]

are expressed in MNI standard space.

After we had defined the ROIs, similarly to the previous comparison between the PF-fMRI
method and the GLM, we computed the whole-brain voxel-wise correlation maps between
the time course related to each task and the recovered activity-inducing signals û(t)
obtained using the PF-fMRI and the TA approaches. After that, for each subject we firstly
computed the average of the Pearson correlation coefficients (r) inside GM-masked ROIs,
and then we calculated the mean and the standard deviation of these averaged correlation
values among the 51 subjects belonging to the sample data.
Furthermore, in order to prove that the PF-fMRI is able to differentiate between a region
that is activated and one that is not, the time courses û(t) of one representative subject
(100307), were averaged in two ROIs of 6× 6× 6 mm3: one which is expected to be active
during the task, and one located in a brain area that is not involved in the task. We selected
the task related to the tongue, and we chose one ROI centered in the Brodmann Area (BA)
4p (rBA4p; MNI coordinates: 62, -14, 30) which is activated during a tongue motor task, and
another centered in the primary auditory cortex (TE1.2; MNI coordinates: 56, 4, 10) [157],
that is not involved in the tongue movement. After that, Pearson correlation coefficients (r)
were firstly computed between the tongue activation and the recovered û(t) for each voxel,
and secondly averaged among the voxels belonging to the two GM-masked ROIs. The
tongue activation was again simulated as a piece-wise constant signal with unit amplitude
when the subject is performing the task and zeros elsewhere. We compared results obtained
using the PF-fMRI with those obtained using the TA toolbox.

Application on Resting-State fMRI Data

Finally, as a proof of concept, we applied the PF-fMRI on the rs-fMRI image of subject 100307
from the HCP database. Data were acquired with a SIEMENS MAGNETOM Connectome
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Syngo MR D11 using a gradient-echo EPI sequence (TR = 720 ms; TE = 33.1 ms; FA = 52°;
FOV = 208× 180 mm; slice thickness 2.0 mm; number of slices = 72; 2.0 mm isotropic voxels).
The subject was asked to lay in the scanner without thinking about anything in particular.
The number of acquired frames were 1200 and the duration of the acquisition was 14:33
min. In the case of rs-fMRI data, the task paradigm is unavailable since the subject does
not perform any task in the scanner. The data underwent the same minimal preprocessing
of the task fMRI data as proposed in the HCP pipeline [156]. Besides this, time series were
detrended to remove linear drifts and normalized to zero mean and unit standard deviation.
After applying the PF-fMRI on the whole rs-fMRI image, we chose a set of a-priori ROIs
representing the Default Mode Network (DMN). To do this we used as reference the BAs
corresponding to each anatomical area of the DMN, as specified by Buckner and colleagues
(2008) [65]. The medial prefrontal cortex (mPFC; MNI coordinates: 0, 54, -9) was positioned
in BA 10. The posterior cingulate cortex (PCC; MNI coordinates: 0, -53, 26) was placed in in
BA 29/30. The left inferior parietal lobule (lIPL; MNI coordinates: -51, -57, 27) and the right
inferior parietal lobule (rIPL; MNI coordinates: 51, -63, 30) were placed in BA 39/40. The left
lateral temporal cortex (lLTC; MNI coordinates: -58, -18, -14) and the right lateral temporal
cortex (rLTC; MNI coordinates: 58, -18, -14) were located in BA 21. We merged together
the six ROIs into a unique network, we masked it with the GM mask and we computed the
average of the recovered time series obtained using the PF-fMRI to obtain a recovered signal
for the DMN.

4.7.2 Results

As for the real data analyses, and specifically the comparison between the PF-fMRI approach
and the GLM, we showed that the correlation maps related to each task computed with the
PF-fMRI approach were well overlapped to the values of the regressors coefficients obtained
using the GLM one as shown for one illustrative subject (100307) in Figure 4.10. The GLM
shows results which follows the GM, while activations found with the PF-fMRI, which were
performed across the whole brain, and not masked with the GM mask, cover also voxels
belonging to the WM. Interestingly, the found activations overlap the areas found to be active
in the motor Homunculus brain [175].
The comparison with the GLM was proposed in this thesis because one of the aim of the
thesis was to find an alternative to the GLM, if the user wants to analyze data where the
experimental paradigm is not available, as it is the case, for example, for resting-state fMRI
data. The GLM aims at modelling at each voxel the observed fMRI time series as a linear
combination of explanatory variables (or regressors) plus an error term. The beta maps
obtained with the toolbox FSL tell how much each brain voxel contributed to the given task,
when solving a GLM. In other words, the beta maps tell how much the time series of that
voxel fits the given task, given all the tasks that the subject performed as regressors. Even if
the estimation of the beta maps passes through a convolution with the HRF, that is applied
to match the input function, i.e. the stimulus waveform, and the output fMRI data function,
the GLM with FSL takes as input the tasks time courses, and the aim is to give a measure of
"similarity" between the given task and the voxel’s time course.

Quantitative comparison between the activity-inducing signal recovered using the PF-fMRI
approach and the TA are shown in Figure 4.11. Results show that the mean Pearson
correlations values estimated for each ROI across the data sample, increase while increasing
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PF-fMRI

FIGURE 4.10: Qualitative comparison between the General Linear Model
(GLM) and our approach (PF-fMRI). On the left column, in a blue-lightblue
color-map, superimposed to the standard Montreal Neurological Institute
(MNI) brain, the β-regressors map obtained using the GLM implemented in
the FMRIB Software Library (FSL) tool. On the right column, in a red-yellow
color-map, the whole-brain voxel-wise correlation maps obtained using the
PF-fMRI superimposed to the standard MNI brain. The Pearson correlation
was computed voxel-wise among the whole brain, between the reconstructed
activity inducing signals û(t) and the five motor tasks simulated as piece-
wise constant signals with ones in the time points where the subject is
executing a task and zeros elsewhere. The values r of the correlations are
indicated by the color-bars. Each row corresponds to a specific motor task,
from top to bottom: the tongue, the right and left hand, and the right and left

foot. A: anterior; P: posterior; S:superior; I: inferior; R: right; L: left.
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PF-fMRI
TA

FIGURE 4.11: Barplots of the mean (µr) ± standard deviations (σr) of
the Pearson correlation coefficients (r) computed on the sample data of 51
subjects in 5 ROIs related to the tasks of the left and right hand, the tongue
end the left and right foot. For each task, the bars in red represents the
results using the PF-fMRI for an increasing number of iterations (from 1 to
40). The blue bar represents the results obtained with the Total Activation
(TA) approach. The black lines are the standard deviations (σr). (lHAND: left

hand; rHAND: right hand; lFOOT: left foot; rFOOT: right foot.

the number of iteration, until it converges after 25 iterations for the hands, 5 iterations for
the feet and about 35 iterations for the tongue. Moreover, starting from the first iteration, we
show higher correlation values compared to the ones obtained using the TA method.

In particular for the comparison between the PF-fMRI and the TA, Figure 4.12 shows the
reconstructed signal û(t) and the correlations values given by the PF-fMRI and the TA for
a single subject. We show a clear difference between the correlation values estimated in the
area involved in the task and the one which is not involved. In fact, we showed a higher
correlation between the tongue activation (Figure 4.12.b) and the recovered activation û(t)
in the ROI rBA4p, which we expect to be involved in the motor task, while a low correlation
is shown with the recovered signal in the ROI rTE12 which is not involved in the task.
Whereas, the TA approach was not able to clearly distinguish between an active and a not
active region since it showed low correlation values for both ROIs (Figure 4.12.a and 4.12.c).
As for the ranges in the colorbars, in Figure 4.10 and 4.12 they are referred to a single subject
of the HCP database, while Figure 4.11 is related to the sample of 51 subjects. This is the
reason why the standard deviation in Figure 4.10 is greater than those observed in Figure
4.12. Moreover, the ROIs used for Figure 4.10 are not the same ones used for Figure 4.12,
therefore results are not directly comparable.

Finally, as for the resting-state data analysis, Figure 4.13 shows, for iterations 5, 15 and 45
the recovered activations obtained using the PF-fMRI algorithm. Results shows how using
the PF-fMRI we obtained a time courses which is related to the activity of the DMN and how
these activation become clearer with increasing the number of iterations.
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FIGURE 4.12: a) Reconstructed signals û(t) obtained with our approach (PF-
fMRI, red) and the total activation tool (TA, blue) superimposed on the real
acquired fMRI signals (green). The ground truth in this case corresponds to
the task (black), simulated as piece-wise constant signals with ones where
the subject was asked to perform the task and zeros elsewhere. The plot on
the top is related to the region of interest (ROI) located on the Brodmann
Area 4p (rBA4p), the plot on the bottom is associated to the ROI positioned
on the primary auditory cortex (rTE1.2). All the signals were averaged
across the voxels belonging to the gray-matter (GM)-masked ROIs. The grey
areas represent the occurrence and the duration of the tongue movements.
b) Simulated tongue activation. c) Mean Pearson correlation coefficients
(µ) and their associated standard deviations (σ) computed between the
tongue activation and the recovered signals û(t) averaged across the voxels
belonging to the GM-masked ROIs (rBA4p on the left, rTE1.2 on the right).
The blue curves are related to the TA approach, while the red one to the PF-

fMRI approach. TR: repetition time.
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FIGURE 4.13: Each row in the figure shows for different iterations of the
PF-fMRI approach, specifically the 5th, the 15th and the 45th iterations, the
reconstructed signals (in red) obtained with our approach superimposed on
the real resting state fMRI signals (in green). The activity-inducing signals
û(t) recovered via the PF-fMRI were averaged in a ROI located on the default

mode network and masked using the gray matter mask.
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4.8 Discussion and Contributions of this Chapter

In this chapter we introduced our second main contribution, an innovative approach that
aims at the recovery of brain functional activations, in space and in time, without the
necessity of a priori knowledge of the paradigm, namely the PF-fMRI. The PF-fMRI is
conceived to be exploited in cases where the subject is not able to perform a task, for example
because affected by some neurological disease.
The approach proposed in this chapter was demonstrated to be successfully able to recover
and locate the fMRI activations via a geometric regularization. The interesting point is that
this is done on the whole 4-D fMRI image, meaning that we had to solve a unique problem,
coupling the space and the time dimensions. Other approaches have been proposed so far to
analyse fMRI data. Among them: (i) the GLM, that fit a linear model to the fMRI time series,
but it assumes prior knowledge of the tasks occurrences [57]; (ii) deconvolution methods,
which are used to uncover the brain activations from the BOLD response without prior
information on the underlying activity [102, 103, 6, 13]. In particular, the deconvolution
approach proposed in the TA splits the optimization problem into a spatial and temporal
regularization problems, meaning that the user has to specify two regularization parameters
(i.e. λS and λT) and the two weights used for the forward-backward splitting algorithm
(i.e. ωS and ωT) in order to have a solution which is given by a weighted sum of the two
separates regularization processes.
In contrast to these, the PF-fMRI overcomes several limitations found in the previous
literature. When comparing the regions recovered using the GLM and PF-fMRI, we noted
overall very good agreement between the two methods. It should again be emphasized
that, while the GLM requires knowledge of the experimental paradigm, PF-fMRI does not.
These results highlight that PF-fMRI can be used to recover brain activity in the absence
of an experimental paradigm, such as rs-fMRI. When comparing correlation maps obtained
for PF-fMRI and TA, correlation values obtained with PF-fMRI were significantly higher
than those obtained with the TA suggesting an improved recovery of brain activity. We
also demostrated that the PF-fMRI can be used for different purposes, e.g., to recover the
brain activations and their location in a task experimental paradigm as well as in a rs-fMRI
study, where the subject is asked not to perform any task while lying in the MRI scanner.
In particular, our recovered signals from rs-fMRI data could be further employed in the
approach proposed by Karahanoğlu and Van De Ville [7] to investigate the dynamics of
resting-state networks and reveal transients in spontaneous brain activity, as described in
Section 2.2.

4.9 Publications Arising from this Contribution

• I. Costantini, S. Deslauriers-Gauthier, and R. Deriche, A Paradigm Free Regularization
Approach to Recover Brain Activation from Functional MRI Data. Manuscript in
preparation.

• I. Costantini, S. Deslauriers-Gauthier, and R. Deriche, A Paradigm Free Regularization
Approach to Recover Brain Activations: Validation on Task fMRI, International Society
for Magnetic Resonance in Medicine, ISMRM 2020, Sydney, Australia. (Oral
Presentation).
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• S. Deslauriers-Gauthier, I. Costantini and R. Deriche, Non-invasive inference of
information flow using diffusion MRI, functional MRI, and MEG, Journal of Neural
Engineering. Manuscript submitted for publication.

• I. Costantini, S. Deslauriers-Gauthier, and R. Deriche, Deconvolution of fMRI Data using
a Paradigm Free Iterative Approach based on Partial Differential Equations, Organization for
Human Brain Mapping Annual Meeting, OHBM 2019, Rome, Italy.

• I. Costantini, S. Deslauriers-Gauthier, and R. Deriche, Novel 4-D Algorithm for
Functional MRI Image Regularization using Partial Differential Equations, International
Society for Magnetic Resonance in Medicine, ISMRM 2019, Montreal, Canada. (Power
Pitch)

4.10 Application of the PF-fMRI Approach

The PF-fMRI approach described in this chapter has been applied also in a different context
as reported in the following paper:
S. Deslauriers-Gauthier, I. Costantini and R. Deriche, Non-invasive inference of information flow
using diffusion MRI, functional MRI, and MEG, Journal of Neural Engineering. Manuscript
submitted for publication.
This work has as objective to infer information flow in the WM of the brain and recover
cortical activity using fMRI, dMRI, and MEG without a manual selection of the WM
connections of interest. A description of the paper is reported in Appendix C.

4.11 Software Contribution

In the context of our second contribution, we created a Python package, called Paradigm-
Free Functional MRI (PF-fMRI), that implements all we had described in this chapter.
The Python package is available in a GitLab repository dedicated to the Computation
Brain Connectivity Mapping (CoBCom) Project. The package is easy to use because it
simply requires the acquired noisy or preprocessed fMRI image and returns as output the
regularized 4-D fMRI data.
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Chapter 5

Concluding Remarks and Open
Problems

In this dissertation, we have proposed two main contributions:

1. A novel fMRI deconvolution approach via Temporal Regularization using a LASSO
model and the LARS algorithm to recover brain functional activations without
necessity of a priori information of the timing and the duration of the underlying
activation.

2. A paradigm-free regularization algorithm based on PDEs named PF-fMRI that applies
on the 4-D fMRI image, acting simoultaneously in the 3-D space and the 1-D time
dimension.

In what follows, we discuss the main achievements of both contributions and we explore the
potential future research directions, and identify possible extensions of our method.

1. fMRI Deconvolution via Temporal Regularization using a LASSO
model and the LARS algorithm

In our first main contribution, we provided a temporal regularized deconvolution approach
to deconvolve the BOLD response given the fMRI noisy time-courses, thus recovering the
brain functional activations. This was done without the necessity of a priori information on
the experimental paradigm, as it was for the GLM approach.
To solve the inverse problem, we proposed an approach that combines the use of the LARS
algorithm and the L-curve. As a first point, the LARS algorithm gives as output all important
lambdas and their associated solutions. Secondly, the combined approach of LARS and L-
curve allowed us to choose the optimal regularization parameter lambda and its associated
solution among all those outputted by the algorithm. In this way we overcame the need of
choosing lambda a priori.
Our approach was tested and validated both on synthetic data and on real task-fMRI data,
that provided us of a ground truth to which to refer in order to assess the goodness of
results. The comparison with the state-of-the-art approach, namely the TA, showed that
we can obtain results which are closer to the ground truth, with a decreased computation
time and without the need of defining lambda a priori. Our results suggests that using our
approach improves the brain dynamics recovery for future clinical application.
Nevertheless, the LARS algorithm proposed in this contribution, is limited by the fact that it
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cannot handle a whole fMRI image, made of almost a million of voxels because the problem
becomes too heavy in terms of computation.

2. A Paradigm-Free Regularization Approach to Recover Brain Activations
from fMRI Data

In the second contribution, as a natural extension of the previous one and to overcome its
limitations, we aimed at regularize the whole fMRI image exploiting both the temporal
and the spatial information contained in the image itself. Therefore, we proposed and
described an innovative method to analyse fMRI images thus recovering the location and
the occurrence in time of the functional brain activations.
The proposed approach, namely the PF-fMRI, aims at geometrically regularize the fMRI
image such that: it saves and highlights big variations of the image as they are present at the
occurrence of a brain activation or in the presence of a spatial edge with respect to little image
variations, which instead are removed to reduce noise. To do this, we used the PDEs in a
iterative algorithm and exploited the 4-D image structure tensor, that defines the directions
of the gradient in the neighborhood of a voxel and directs towards an anisotropic or isotropic
regularization. This gradient contains all the four principal directions of the image, which
are: the 3-D space and the time direction, which suggests that the whole 4-D fMRI image
was smoothed contemporaneously in space and time at once.
The PF-fMRI was tested and validated both on phantom and real task-fMRI data. In fact,
even if the PF-fMRI is conceived to be applied to rs-fMRI data, where no experimental
paradigm is given, we firstly used task-fMRI images to be able to have a ground truth
to which to refer to assess the performances of our approach. When compared to the
state-of-the-art approaches, the PF-fMRI showed a very good agreement with the results
obtained using the GLM methods, a widespread and well-known approach that instead
requires a priori information on the task paradigm. This confirmed that the PF-fMRI can
be successfully applied to uncover brain activations, in the absence of a known and given
experimental paradigm, such as in the case of rs-fMRI data. We also showed significantly
better results when the PF-fMRI was compared to the TA, meaning that we improved the
recovery of brain functional activitions. It must be stressed again, that the PF-fMRI is in
contrast with the deconvolution approaches, namely the TA, because it treats the image as
a whole. The deconvolution approaches instead uses to split the problem into a spatial and
temporal regularization problems, meaning that the user has to specify two regularization
parameters (i.e. lambdas) and two weights used to have a unique solution which is given by
a weighted sum of the results given by the two separates regularization processes. Finally, as
a proof of concept, we applied the PF-fMRI on rs-fMRI data, while the subject is not exposed
to stimuli and is asked not to perform any task or not to think about anything in particular
during the MRI acquisition. This represents a powerful tool in the case the subject is not able
to perform tasks because of a neurological disease.
The PF-fMRI is proposed in a Python package available in a GitLab repository dedicated
to the Computation Brain Connectivity Mapping (CoBCom) Project. The package was made
easy to use, because it requires the fMRI measurements and returns as output the regularized
4-D fMRI data. Nonetheless, at the same time it was made such that it is possible for the user
to easily navigate into it and manipulate the code for further improvements.
The PF-fMRI has also already been applied in a multi-modal approach that aims at inferring
the information flow in the white matter without a manual selection of the connections of
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interest. The fMRI recovered activations using the PF-fMRI were used to locate active brain
regions to be used as priors on cortical regions, to filter structural connections (Appendix B).

Future Perspectives and Open Problems

In this dissertation we proposed and validated two approaches to deconvolve the fMRI
images and recover the brain activity from fMRI signals without prior knowledge. The first
one exploited the information contained in the temporal structure of the fMRI data; the
second one, as a logic extension of the first one, exploited all the fMRI image, that contains
both a temporal and a spatial information.
Our findings show that both contributions improved the state-of-the-art approaches. In
particular, the PF-fMRI have marked a step forward in the recovery of brain activation
because it treats the fMRI image as a whole. Indeed, the PF-fMRI enabled us to solve
a unique problem, coupling the spatial and the temporal dimension and to recover brain
activation overlapping the ones obtained with the GLM and improving those obtained with
the TA. Furthermore, in contrast with the ICA approach, both proposed methods allow a
voxel-wise recovery of brain activations and incorporate the hemodynamic model.
Nevertheless, there are aspects of our method that may need further research. For example,
the PF-fMRI is limited by the fact that it does not give a very sharp piece-wise solution
representing the activity-inducing signal, as output, and this could be due to the choice of
the regularization parameter.
The PF-fMRI could be exploited in the analysis of fMRI images, since it provides regularized
time-courses as well as in more complex investigations. For example, because it provides
a voxel-wise map of recovered brain activations, it could be used to explore the dynamics
of resting-state networks as well as to investigate possible WM fMRI activations, that is an
emerging debated topic on the neuroimaging field.
Future works could include into the solution of the problem the dMRI data. The streamlines
would define a more complex neighborhood, not only given by surrounding voxels, but also
by voxels which are segregated in space but structurally connected.
In conclusion, in this dissertation we opened a new channel for the analysis of rs-fMRI
data, to improve the recovery of brain activations and their dynamics and to be used for
the investigation in future clinical application.
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Appendix A

α-Filter Design

In this appendix we report the design of the α-filter employed in the first contribution
described in Section 3.4.2 of this dissertation.
To do this we initially defined an antisymmetric function with exponential decay

h(n) = Sne−α|n| (A.1)

where S is a normalization factor and α is a parameter that defines the shape, i.e. sharper or
smoother, of the exponential function illustrated in Figure A.1.
Note that h(n) represents the derivative filter for optimal edge detection [176] that can be
adapted by tuning only one parameter, i.e. α, such that if α� 0 the filter corresponds to the
classical definition of a discrete derivative

f (n) =
f (n + 1)− f (n− 1)

2
. (A.2)

Otherwise, for smaller α the filter can be exploited in the way that it detects edges while
smoothing noise.

In order to define the transfer function of the filter we want to design, we start by defining
the convolution between two functions as

y(k) = (h ∗ x)(k)

=
+∞

∑
n=−∞

h(n)x(k− n)

=
0

∑
n=−∞

h(n)x(k− n) +
+∞

∑
n=0

h(n)x(k− n)− h(0)x(k)

= y−(k) + y+(k)− h(0)x(k).

(A.3)

Let us focus only on the causal part of the filter because the anti-causal part follows a similar
procedure. If n > 0

y+(k) =
+∞

∑
n=0

h(n)x(k− n). (A.4)
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FIGURE A.1: Function h(n) defined in Eq. (A.1), for S = −1 and α = 1.

Let us now define the property of geometric series

+∞

∑
k=0

krk =
r

(1− r)2 (A.5)

for r < 1.

The z-transform of Eq. (A.4) is

Y(z) =
+∞

∑
n=0

h(n)z−nX(z) (A.6)

therefore

H(z) = Y(z)/X(z)

=
+∞

∑
n=0

Sne−αnz−n

= S
+∞

∑
n=0

n(e−αz−1)n

(A.7)

that, for the property in Eq. (A.5), it corresponds to

H(z) = S
e−αz−1(

1− e−αz−1
)2. (A.8)
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In order now to design an exponential accumulation operator once computed the z-
transformed H(z), we define the accumulation property of the z-transform

n

∑
k=−∞

x(k) =
1

(1− z−1)
X(z). (A.9)

Proof of Eq. (A.9). The accumulation of a discrete time signal x(n)

n

∑
k=−∞

x(k)

can be written as the convolution of a unit step sequence u(n)

u(n) =

1 for n ≥ 0

0 for n < 0

with x(n). This convolution is

(x ∗ u)(n) =
+∞

∑
k=−∞

x(k)u(n− k)

=
n

∑
k=−∞

x(k)

The z-transform of a convolution is

Z{x(n) ∗ u(n)} = Z{x(n)} · Z{u(n)}

therefore

Z
{ n

∑
k=−∞

x(k)
}

= X(z) ·
z

(z− 1)

=
1

1− z−1 · X(z).

We accumulated H(z) twice and we obtained the transfer function

Iα+(z) = S
e−αz−1

(1− e−αz−1)2

1

(1− z−1)

1

(1− z−1)

= S
e−αz−1

(1− e−αz−1)2

1

(1− z−1)2.

(A.10)

The anticausal part of the filter is then derived from Iα+(z) as
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Iα−(z) = −S
e−αz

(1− e−αz)2

1

(1− z)2. (A.11)

The transfer function in z-domain of the exponential accumulation function results as

Iα(z) = Iα+(z) + Iα−(z)

= S
[ e−αz−1

(1− e−αz−1)2
1

(1− z−1)2 −
e−αz

(1− e−αz)2

1

(1− z)2

]
.

(A.12)

Let us now define the normalization factor S such that if

Iα(n) =
n

∑
k=−∞

g(k) (A.13)

we want to normalize such that

Iα(∞) =
+∞

∑
k=−∞

g(k)

= 1

(A.14)

where, given h(n) in Eq. (A.1),

g(n) =
n

∑
k=−∞

Ske−α|k| (A.15)

as represented in Figure A.2. The function Iα(n) is illustrated in Figure A.3.

In order to compute the normalization factor S that satisfies Eq. (A.14), let us first define the
properties of geometric series

n

∑
k=1

krk−1 =
1− rn+1

(1− r)2 −
(n + 1)rn

1− r
(A.16)

∞

∑
k=0

ark =
a

(1− r)
(A.17)

and the change of variable

r = e−α. (A.18)

Then, for n > 0

g(n) =
0

∑
m=−∞

Sme−α|m| +
n

∑
m=1

Sme−α|m|. (A.19)
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FIGURE A.2: Function g(n) defined in Eq. (A.15), for S = −1 and α = 1.
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FIGURE A.3: Function Iα(n) defined in Eq. (A.13), for S = −1 and α = 1.
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If we apply the change of variable defined in Eq. (A.18)

g(n) =
0

∑
m=−∞

Smr|m| +
n

∑
m=1

Smr|m|. (A.20)

Now, for the property in Eq. (A.5) we can write

g(n) = −
Sr

(1− r)2 +
n

∑
m=1

Smrm

= − Sr
(1− r)2 +

r
r

n

∑
m=1

Smrm

= − Sr
(1− r)2 + Sr

n

∑
m=1

mrm−1.

(A.21)

For the property in Eq. (A.16)

g(n) = − Sr
(1− r)2 + Sr

[1− rn+1

(1− r)2 −
(n + 1)rn

1− r

]

= Sr
[ − rn+1

(1− r)2 −
(n + 1)rn

1− r

]
.

(A.22)

Let us now define

ga(n) =
− Sr2rn

(1− r)2 (A.23)

and

gb(n) = −Sr
(n + 1)rn

1− r
(A.24)

with

g(n) = ga(n) + gb(n). (A.25)

Given that we want to satisfy Eq. (A.14) to find the factor S that normalizes the function
Iα(n), let us now focus on the function g(n) of which a zoom is shown in Figure A.4. Because

−1

∑
n=−∞

g(n) =
+∞

∑
n=0

g(n) (A.26)

if we compute
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FIGURE A.4: Function g(n) defined in Eq. (A.15), for S = −1 and α =

1. The plot shows that
−1
∑

n=−∞
g(n) is equal to

+∞
∑

n=0
g(n). This means that,

if we compute
+∞
∑

n=−∞
g(n) =

−1
∑

n=−∞
g(n) +

+∞
∑

n=0
g(n) this is equivalent to

+∞
∑

n=−∞
g(n) = 2

+∞
∑

n=0
g(n).
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+∞

∑
n=−∞

g(n) =
−1

∑
n=−∞

g(n) +
+∞

∑
n=0

g(n) (A.27)

this is equivalent to

+∞

∑
n=−∞

g(n) = 2
+∞

∑
n=0

g(n). (A.28)

This allows us to compute the normalization factor S using only the positive part of g(n).
Note that the value at g(0) is accounted for just once and this is justified in Eq. (A.27).
We can therefore normalize the filter, such that Eq. (A.14) is satisfied, by imposing

2
∞

∑
n=0

g(n) = 1 (A.29)

that, as stated in Eq. (A.25), we can rewrite as

∞

∑
n=0

ga(n) +
∞

∑
n=0

gb(n) =
1
2

. (A.30)

For Eq. (A.23) and (A.24) the previous equation is equal to

− Sr2

(1− r)2

∞

∑
n=0

rn −
Sr

1− r

∞

∑
n=0

(n + 1)rn =
1
2
. (A.31)

For the property in Eq. (A.17) the first term on the left of Eq. (A.31)

− Sr2

(1− r)2

∞

∑
n=0

rn =
− Sr2

(1− r)2

1
(1− r)

. (A.32)

For properties Eq. (A.5) the second term on the left of Eq. (A.31)

−
Sr

1− r

∞
∑

n=0
(n + 1)rn = −

S
1− r

∞
∑

n=0
(n + 1)rn+1

−
S

(1− r)
r

(1− r)2 =
− Sr

(1− r)3.

(A.33)

The solution to Eq. (A.30) is therefore

− Sr2

(1− r)2

1
(1− r)

−
Sr

(1− r)3 =
1
2

(A.34)

and, for the change of variable defined in Eq. (A.18), the normalization factor is
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S = −
(1− r)3

2(r2 + r)

= −
(1− e−α)3

2(e2α + e−α)

= −
(1− e−α)3

2e−α(1 + e−α)
.

(A.35)

Finally, the normalized function Iα(n), for several values of α is illustrated in Figure A.5.
In conclusion, to estimate in a robust way the first derivative of a function f (n), one have to
convolve the function f (n) with the following derivative filter

h(n) = Sne−α|n| (A.36)

with S given by Eq. (A.35).

Note that for large values for α, all the coefficients of this filter become equal to zero unless

h(1) = −h(−1) = −
1
2

(A.37)

which leads to Eq. (A.2) when convolving this filter with the function f (n), i.e the filter
acts as the finite difference operator usually applied for a discrete derivative. Using this
normalized and optimal derivative filter, with small values of α, allows to better estimate in
a robust way the first derivative of a noisy signal.
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FIGURE A.5: The plot shows for different values of α the function Iα(n)
defined in Eq. (A.13), normalized by the factor S defined in Eq. (A.35). The
graphs show that for greater values of α, the filter is sharper, whereas if α is

smaller, the filter has a smoother shape.
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Appendix B

Application of the PF-fMRI
Approach

Non–invasive inference of information flow using diffusion

MRI, functional MRI, and MEG

Samuel Deslauriers-Gauthier, Isa Costantini, and Rachid Deriche

Inria Sophia Antipolis-Mééditerranée, Université Côte d’Azur

The objective of this work is to infer information flow in the WM of the brain and recover
cortical activity using a multimodal approach based on fMRI, dMRI, and MEG without a
manual selection of the WM connections of interest. The fMRI data was exploited because
of its good spatial resolution. In this work, the PF-fMRI approach allowed us to uncover
brain activations without using a predefined knowledge on the experimental paradigm,
thus finding and locating the active regions. The found active regions showed in Figure
B.1 where then used as priors on cortical regions, to filter the structural connections. This
was done such that only those connections reaching regions with a fMRI activation higher
than a certain threshold were kept. Results show that the proposed method is able to identify
connections associated with the a sensory–motor task, without requiring prior knowledge
of the experimental paradigm. This would allow, for example, to use the same processing
pipeline proposed in this work in the case of rs-fMRI. The fMRI priors obtained for the right
hand movement task are illustrated in Figure B.1 along with the cortical parcellation. After
thresholding, the regions selected to filter connections include the visual areas (pericalcarine,
lateral occipital, cuneus) and the sensory–motor areas (postcentral) as expected from a
visually guided motor task.
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FIGURE B.1: Illustration of the Desikan–Killiany atlas (A), functional MRI
priors (B), and thresholded functional MRI priors with activation above 0.83
(C). The remaining regions are those used to select connections introduced

into the proposed Bayesian network which are illustrated in D.
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Appendix C

Contributions outside the scope of
this thesis

Resolving the crossing/kissing fiber ambiguity using

Functionally Informed COMMIT

Matteo Frigo, Isa Costantini, Rachid Deriche, and Samuel Deslauriers-Gauthier.

In International Conference on Medical Image Computing and Computer-Assisted
Intervention (pp. 335-343). Springer, Cham. (2018, September).

This work is related to tractography, an ill-posed problem that aims at reconstructing the
WM fiber tracts from dMRI data. Tractography have been shown to generate a significant
number of false positive connections between brain regions [177]. This is due to the fact
that whenever two bundles of axons are organized in a crossing or kissing configuration,
in-vivo tractography is not able to distinguish their actual trajectories from diffusion data.
This implies the presence of many spurious entries in the structural connectome obtained
from a tractogram. In the context of tractography optimization or tractogram filtering,
what we propose in this work is to overtake the purely structural-based approach and
consider both structural and functional information in the formulation of the tractography
optimization problem. We do this by showing that the injection of functional priors
coming from rs-fMRI gives an effective answer to the false positives issue. The functional
information is exploited in the form of static functional connectivity and it plays the role
of promoting the involvement of bundles that connect highly correlated cortical regions in
the fitting of the dMRI signal. We encapsulate all of this within the Convex Optimization
Modeling for Microstructure Informed Tractography (COMMIT) framework [178], which
provides a flexible tool for defining a convex optimization problem that, for a given
tractogram, simultaneously (i) promotes sparsity among the bundles, (ii) takes into account
the considered functional information and (iii) selects the streamlines that are sufficient to
explain the dMRI signal. We call this novel framework Functionally Informed COMMIT
(FIC).
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