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Résumé

Le diagnostic médical est fortement basé sur différentes modalités d’imagerie médicale.
En conséquence, la quantité de données d’images numériques à stocker ou à transmet-
tre est considérable. Il devient nécessaire de développer des solutions de compression
efficace et peu complexe. La compression d’images médicales "intuitivement " exige
d’assurer une qualité de l’image diagnostique qui n’engendre pas de risques d’erreur.
Par ailleurs, l’échographie est l’une des modalités les plus utilisées. Cependant, elle
présente un inconvénient en terme de qualité visuelle causé par le bruit de speckle. Ce
travail vise à réduire le bruit de speckle tout en effectuant une compression avec pertes
des images échographiques. Aussi, le schéma de compression proposé a été appliqué
à une seconde modalité, l’imagerie par résonance magnétique (IRM). En effet l’IRM
est une modalité gourmande en termes de capacité de stockage. Durant cette thèse,
nous avons proposé trois contributions principales : un filtre à sorties multiples pour
la réduction du speckle des images d’échographie médicale, une mesure de la qualité
d’image pour l’imagerie médicale (échographie et IRM) et un schéma de compression
pour les images médicales.





Abstract

The medical diagnosis is strongly based on different medical imaging modalities. Con-
sequently, the amount of digital image data to be stored or transmitted is huge. Hence,
efficient and low-complexity compression becomes necessary. Medical image compres-
sion "intuitively" requires ensuring the quality of the diagnostic image while reducing
the bit rate. Regarding the modalities, ultrasound is one of the most widely used one.
However, it has a drawback of visual quality caused by the speckle noise. This work
aims to achieve speckle noise reduction together with lossy compression in ultrasound
medical images, where the losses are mainly the undesirable speckle noise. Further-
more, the proposed compression scheme is efficiently applied to Magnetic Resonance
Images(MRI).

In this thesis we propose three main contributions: a multi-output filter for speckle
reduction of medical ultrasound images, an image quality metric for medical context
(ultrasound and MRI) and a scheme of compression for medical images. We perform a
study on the usability of opinion-unaware no-reference natural image quality metrics in
the context of medical images: filtered ultrasound and compressed Magnetic Resonance
Images (MRI), as result of the study we propose a metric adapted to medical images.
Then, we propose a multi-output speckle reduction filter based on MMD (MOF-MMD),
which makes it possible to obtain three filtered images that help the radiologist’s di-
agnostic needs. Indeed, the diagnostic task is based on different characteristics of the
image. Since the end-user of the medical images is the radiologist, we believe that it is
more reasonable to evaluate the algorithm using human observers. Thus, we conduct
a subjective experiment involving three radiologists with different years of experience.
The correlations between the subjective scores and the objective metrics outputs and
the impact of the radiologists years of experience are presented and analyzed. The last
contribution consists on developing a lossy coding scheme based on the MMD applied
to ultrasound and MR Images.
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Glossary

AD: Average Difference
ADC:Analog-to-Digital Converters
ASIC: Application-Specific Integrated Circuit
BIQES: Blind Image Quality Evaluathor based on Scales
BRISQUE: The Blind/Referenceless Image Spatial QUality Evaluator
CT: Computed Tomography
DSP: Digital Signal Processors
FID: Free-Induction Decay
FoM: Pratts Figure of Merit
FPGA: Field-Programmable Gate Array
FR: Full Reference
IQA: Image Quality Assessment
JPEG: Joint Photographic Experts Group
MMD:Multiplicative Multiresolution Decomposition
MOF-MMD: Multi-Output Filter based on Multiplicative Multiresolution Decomposi-
tion
MR: Magnetic Resonance
MRI: Magnetic Resonance Imaging
MSE: Mean Square Error
NIQE:The natural image quality evaluator
NIQE-K: Natural Image Quality Evaluator based on Kurtosis
NMSE: Normlized Mean Square Error
NR: No Reference
PET: Positron Emission Tomography
PSNR: Peak Signal to Noise Ratio
RF: Radiofrequency
SAR: Syntehtic Apertur Radar
SI: Speckle Index
SNR: Signal to Noise Ratio



8 Glossaire

SPECT: Single-Photon Emission Computed Tomography
SREM: Speckle Reduction Evaluation Metric SSIM: Structural Similarity Index
measure
SSNR: Speckle-Signal to Noise Ratio
US: Ultrasound
USDSAI: Ultrasound DeSpeckling Assessment Index
VCA: Variable Controlled Amplifier



CHAPTER

1 Introduction

The medical diagnosis is strongly based on different medical imaging modalities,this
is due to medical imaging technologies development. Regarding the modalities, there
is a wide panel of imaging technologies such as: radiology which uses the X-ray, ra-
diography, magnetic resonance imaging, medical ultrasound, endoscopy and nuclear
medicine functional imaging techniques as Positron Emission Tomography (PET) and
Single-Photon Emission Computed Tomography (SPECT). Besides, the amount of dig-
ital image data to be stored or transmitted becomes very huge. Thereby, efficient and
low-complexity compression becomes necessary.

However, medical image compression "intuitively" requires maintaining the quality
of the diagnostic by using the compressed and decompressed image while reducing the
bit rate.

Ultrasound (US) is one of the most widely used medical imaging systems. It is used
in nearly all hospitals and clinics for diagnostic purposes. Since six decades ultrasonog-
raphy is visualizing internal body structures such as heart, kidney, tendons and blood
vessels and can be used also as a guide in surgical procedures.

Nevertheless, US imaging has a main drawback of visual quality caused by the
speckle noise that is inherent to ultrasound.

In this thesis, we aim to address this issue by reduction of speckle noise in join
with lossy compression in ultrasound medical images, where the losses are mainly the
undesirable speckle noise. Moreover, by conducting different tests on US, we figure
out that the proposed method in this thesis can also be applied succesully to MRI.
Therefore, we have additionaly expanded our study to MRI modality.
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1.1 Contributions

In this thesis we propose three main contributions: a multi-output filter for speckle
reduction of medical ultrasound images, an image quality metric for medical con-
text(ultrasound and MRI) and a scheme of compression for medical images. At
the begining we study a speckle reduction method for SAR images based on mul-
tiplicative multi-resolution decomposition (MMD) and we applied it to ultrasound
images[OSK14]. The obtained results are promising. However, the validation method,
even if widely used in the bibliography, is based on quality metrics with reference
dedicated to natural images.

In our first contributions, we perform a study on the usability of opinion-unaware
no-reference natural image quality metrics in the context of medical images: filtered
ultrasound and compressed MRI, as result of the study we proposed a metric adapted
to medical images [OZD+16].

Our second contribution, is a multi-output speckle reduction filter based on
multiplicative multiresolution decomposition (MOF-MMD). Indeed, as long as we are
able to assess the quality of the filtered and/or compressed images with a valid metric,
it is possible to prorpopose algorithms on medical images. The MOF-MMD permit
to obtain three filtered images that help the radiologist’s diagnostic needs. Actually,
the diagnostic task is based on different characteristics of the image texture, edges,
global aspect [OZD+17]. Since the end-user of the medical images is the radiologist,
we believe that it is more reasonable to evaluate the algorithm using human observers.
Thus, we conduct a subjective experiment involving three radiologists with different
years of experience to assess the final perceived quality of filtered in vivo abdominal
liver US images. The correlations between the subjective scores and the objective
metrics " outputs and the impact of the radiologists" years of experience on their way
of scoring be discussed are presented and analyzed [OZD+18].

The last contribution consists on developing a lossy coding scheme based on the
MMD applied to ultrasound and MR Images. The results are conclusive comparatively
to those obtained with the wavelet-based scheme with the respect of the diagnostically
need.

1.2 Organization of the dissertation

This dissertation is organized as described below.
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Chapter 2 - Medical context and backgrounds we provide in this Chapter, in-
formation about medical context. Thus, we describe expectations of medical prac-
titioners in terms of speckle reduction and lossy compression.

Chapter 3 - State of the art reviews of the literature methods regarding the stud-
ied topic. It relates non exhaustively subjective and objective quality assessment ,
speckle reduction in ultrasound images and compression in medical images meth-
ods.

Chapter 4 - An image quality assessment metric for medical images (NIQE-K)
presents an evaluation of two metrics on assessment of medical images quality
and describes a proposed metric NIQE-K more adapted to medical images more
specifically the MRI and US.

Chapter 5 - The Multi-Output Filter based on MMD describes the algorithm
based on Multiplicative Multiresolution Decomposition (MMD) dedicated to
speckle reduction on ultrasound. In this chapter the proposed method is evalu-
ated objectively and subjecively, we also provide analysis on the obtained results.

Chapter 6 -The compression scheme based on MMD presents a compression
scheme based on the MMD and motivated by the expertise obtained from the
study of the quality presented in chapiter 4.

Chapter 7 - Conclusions and Perspectives this last chapter concludes the disser-
tation and presents some perspectives for future work.





CHAPTER

2 Medical context

This chapter contains a brief presentation of the medical context of this work, the main
principles of US and MRI and some aspects treated in image processing.

2.1 Ultrasound Imaging

Introduction

The use of ultrasound has many advantages such as [Sza04] [Jen07]:

• it is safe and painless for the patient,

• it does not use ionizing radiation so it is free of radiation risk,

• it is "real time" providing the instantaneous dynamics of the anatomy.

• it is portable and compact,

• it is relatively inexpensive when compared with other imaging modalities (CT or
MRI).

Diagnostic ultrasound imaging build up non-invasively fine images of internal body
structures. The resolution attainable is higher with shorter wavelengths, as the wave-
length is inversely proportional to the frequency [LB13].

2.1.1 Generation of ultrasound images

The ultrasound is a vibration (Ultra, means that frequencies of the vibrations are
higher than the upper audible limit of human hearing) transmitted through a medium
(solid, liquid or gas) as mechanical pressure waves. Ultrasound propagates in soft tissue
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Figure 2.1: Receive beamforming in a medical ultrasound imaging system [MKAK]

(as it does in a fluid or gas) as longitudinal waves. In solids such as bone, ultrasound
can be transmitted as both longitudinal and transverse waves. The velocity of waves
depends on the density and compressibility of the medium [LB13]. As the ultrasound
waves propagate, they reflect off on any object they encounter along their propagation
path [AMD08]. The construction of images is based on the measurement of distances,
which relies on the propagation velocity [LB13].

The piezoelectric effect (found in piezoelectric material) permits to convert me-
chanical pressure (which causes alterations in their thickness) into an electrical voltage
on their surface. Conversely, the indirect piezoelectric effect is an alteration in thick-
ness of piezoelectric material when a voltage is applied to the opposite side. If the
applied electric voltage is alternating, it induces oscillations which are transmitted as
ultrasound waves into the surrounding medium. The piezoelectric material, therefore,
serves as a transducer, which converts electrical energy into mechanical energy and vice
versa [LB13].

The resulting low voltage signals are scaled using a Variable Controlled Amplifier
(VCA) before being sampled by Analog-to-Digital Converters (ADC) [AMD08]. Once
the received signals reach the beamformer, the signals are scaled and appropriately
delayed to permit a coherent summation of the signals. This new signal represents the
beamformed signal for one or more focal points along a particular specific scan line.
Figure 2.1 shows the beamforming technique used mostly in the US imaging scanners.

Various processings are carried out on the beamformed data, depending on the
imaging modes. The diffrents operations and implementaions of the signals are typically
performed by the US systems in Application-Specific Integrated Circuit (ASIC), Field-
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Programmable Gate Array (FPGA) Digital Signal Processors (DSP) or a combination
of these components [AMD08].

2.1.2 Ultrasound characteristics

Spatial resolution

Spatial resolution is defined as the ability to distinguish between two objects located
at different positions in space.

Lateral resolution Lateral resolution depends on the diameter of the ultrasound
beam. It varies in the axial direction, being best in the focus zone. As many array
transducers can be focused in only one plane, because the crystals are arranged in
a single line, lateral resolution is particularly poor perpendicular to that plane. The
lateral resolution is a function of the beam width, it is defined by the ability of the
system to separate two echoes located on the same plane, which is perpendicular to
the axis of the same beam[Dah11].

Axial resolution The axial resolution determines the ability of the probe to differ-
entiate between two targets located in the ultrasonic beam axis. It depends on the pulse
length and improves as the length of the pulse shortens[Dah11]. In ultrasonic imaging,
axial resolution is better than lateral resolution, besides showing less variation.

2.1.3 Speckle

The ultrasound image shows a granular structure called speckle making visual inter-
pretation difficult. Speckle is an undesirable property of the image as it masks small
differences in gray level [Bur78] [WSSL83a]. This kind of noise, that corrupts the im-
age in a multiplicative manner, appears due to interference phenomena between the
incident and reflected signals, and thus is inherent to ultrasound [FMYS97]. Many re-
searchers investigated the statistical proprieties of speckle noise in ultrasound images
since the seventies such as Burckhardt [Bur78] and Wagner and al [WSSL83a].

The grainy appearance of the image is due to the speckle pattern, which is typ-
ical of ultrasound images. This is due to the coherent summation of scattered ways
from the numerous small structures in the tissue [Jen07]. This speckle noise limits
the application of image processing such as segmentation, detection or even automatic
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Figure 2.2: Illustration of interference phenomena in ultrasund transducer
(Radiologykey.com/physics-of-ultrasound-2/)

diagnose appliance. This "granular" texture (speckle) also is not truly a noise in the
typical engineering sense because its texture often carries useful information about the
image being viewed [LPC+05]. In one hand, the speckle interferes with image interpre-
tation such as diagnosis and analysis such as segmentation, registration, and computer
aided detection [KLY16a], in the other hand "the local brightness of the speckle reflects
the corresponding echogenicity of the underlying scatterers, in the case ofliver ultra-
sound likely the hepatic lobules"[GG14]. Hence, the challenge is to reduce speckle while
preserving meaningful data.

Wagner [WSSL83b]:"An ultrasound B-scan image is the result of a rather compli-
cated set of physical phenomena, namely, the insonification and resulting absorption,
reflection, and coherent scattering from a tissue medium of pulsed radio frequency ul-
trasonic pressure waves, and the electronic detection of the backscattered or echo pulses
for display as an image .

Speckle modeling in ultrasound images: The knowledge of the statistical prop-
erties of speckle is important to understand and develop filters for speckle noise re-
duction. Several works propose to study physical features and statistical properties
to build a speckle noise modeling for both ultrasound and Syntehtic Apertur Radar
(SAR) imaging. A largely accepted model for the speckle imaging is given by [MT06b]:

gi,j = fi,j × ui,j + ξi,ji, j ∈ N (2.1)

where g, f, u and ξ stand for the observed envelope image, original image, multiplicative
and additive components of the speckle noise, respectively. i and j denote the axial
and lateral indices of the image samples, alternatively, they can denote the angular
and range indices for sector images.
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Figure 2.3: Clinical ultrasound image corrupted with speckle

2.1.4 Ultrasound and image processing

Medical applications involve image analysis tasks such as image segmentation, im-
age feature extraction, image registration, storage and image retrieval, in the case of
ultrasound images the specke impedes post-processing techniques. Hence, the image
despeckling is an important preprocessing task.

A large amount of research has investigated speckle reduction and improved the
quality of US images. There are two main categories of despeckling methods: com-
pounding methods and post-processing ones. The compounding speckle reduction
methods include both spatial and frequency compounding [WZX13a].

Post-processing speckle reduction techniques are widely used. These techniques de-
crease speckle after the US image is formed. In this work we proposed image processing
on ultrasound. Hence, it is interesting to highlight some aspects of ultrasound image
related to image processing.

This work aims to perform an image enhancement process, which reduces speckle
and thus helps in the interpretation of these images with a reliable diagnosis. Moreover,
we study the usaubility of quantitative quality evaluation metrics in ultrasound images
assessment. For this task we have evaluated the quality of ultrasound imaging carried
out by medical experts through subjective tests.



18 CHAPTER 2. MEDICAL CONTEXT

2.2 Magnetic Resonance Imaging

The MRI uses the quantum mechanical property of "spin". It is the atomic and sub-
atomic property of (spin) angular momentum which correspond to angular momentum
of a rotating object in classical physics. The H (hydrogen) nuclei have a non-zero spin.
It can absorb and emit electromagnetic radiation and undergo "resonance" when placed
in a magnetic field [Els]. The hydrogen is largely present in human body and biological
tissues as there are composed of water molecules, each containing two hydrogen nuclei.

Oscillating magnetic waves are applied to these atoms, which, already subjected
to a strong constant magnetic field ~B0, will enter into magnetic resonance (spin
echo) [Taq11]. This phenomenon occurs at a particular frequency the Larmor frequency
proportional to the field strength ~B0 As a result, the object’s hydrogen nuclei align with
the magnetic field. A second radiofrequency (RF) magnetic field ~B1, perpendicular to
~B0 is applied [GTC+15].

Once the RF signal is removed, the nuclei realign themselves and return to equi-
librium, they lose energy by emitting their own RF signal. The energy emitted by the
nuclei is referred to as the Free-Induction Decay (FID) (cf. Figure 2.4). It induces
a voltage that can be detected by a suitably tuned coil of wire, amplified and dis-
played. In practice, multiple RF pulses are applied to obtain multiple FIDs, which
are then averaged to improve the MRI. The signal-averaged FID can be resolved by a
Fourier transformation, into either an image MRI or a frequency spectrum, providing
biochemical information [GTC+15].

The Figure 2.5 illustrate the reconstruction process, where multiple phase-encode
steps generate an array of different Magnetic Resonance (MR) signals from a slice
through a spherical phantom. The first Fourier transformation of each of these sig-
nals provides a raw frequency projection of the object, modified by the phase shifts
transmitted by each step. It should be noted that for low order phase encodings, the
signal MR is strong. The frequency projection is close to the general shape of the object
but lacks definition of the edges. Higher-order phase encoding steps have smaller sig-
nals MR but provide more information about spatial details, such as edge locations. To
construct the final image, a second Fourier transform is performed using the data from
this intermediate step grouped into columns of the same frequency[MRIquestions.com].
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Figure 2.4: The free induction decay (Courtesy of Allen D. Elster, MRIquestions.com)

Figure 2.5: Graphic representation of MRI is frequecy and spatially encoded (Courtesy of
Allen D. Elster, MRIquestions.com)
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2.2.1 Image pocessing of MRI

The MRI offers a tool of quality for visualization of anatomical structures in vivo.
However, it has, like any imaging modality, shortcomings that degrade the quality and
rendering of acquisitions. The most harmful defects are in particular noise and drift
phenomenon. It can be very constraining to reduce noise in MRI without any significant
gain ultimately. Indeed, these defects are corrected by the eye of the specialist that
corrects image defects on its own [Cap02].

However, for the medical field, the MRI is one of the most demanding modality in
terms of storage space (with Computed Tomography (CT)). For ethical considerations
related to diagnosis, the medical data are compressed in lossles mode. This permit to
keep an identical copy of the original one. Therfore, compression algorithms are easy
to implement but with less compression rates and more computationnal time [Taq12].
Consequently, the lossy compression could be preferable.

2.2.2 Image quality constraints and lossy compression

Even if lossy image compression is not widely accepted by medical expert, lot of con-
tributions, in medical compression image context, present a lossy version of their com-
pression algorithms. To support this, ther is a study conducted by [KBB+09] that
assess the impact of irreversible compression on visual quality with sufficient scale and
rigour to stand up to scientific and clinical scrutiny. This study provides a table of
recommended compression ratios for each modality and anatomical area investigated.

Furthermore, the Canadian Association of Radiologists (CAR) proposes guidelines
that integrate the use of lossy compression in medical imaging [Can08]. The CAR argues
the use of lossy compression by citing the position of American College of Radiology
(ACR):"Data compression may be performed to facilitate transmission and storage.
The type of medical image, the modality, and the objective of the study will determine
the degree of acceptable compression. Several methods, including both reversible and
irreversible techniques (lossless and lossy are also common terms), may be used under
the direction of a qualified physician or practitioner, with minimal if any reduction
in clinical diagnostic image quality" [Can08]. Therefore, regarding the compression in
medical imaging, the major constraint is the diagnostic accuracy of the compressed im-
age. It is important to evaluate the quality of the compressed images and the reliability
of diagnosis.
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Conclusion

We have presented in this Chapter the medical context of our work. We have described
briefly the generation of the US and MRI images including some important charatiris-
tics of these studied modalities. Finally, we have presented some specific needs in terms
of image processing on the US and MRI.





CHAPTER

3 State-of-the-art:
Medical images quality
assessment,
despeckeling and
compression

Introduction

In this thesis we treate the topic of ultrasound images in three image processing fields
image quality assessment, speckle’s filtering and compression. Image quality assessment
and compression have been extended to MRI images for reasons explained previously.
The rest of the chapter reviews the state of the art in these fields in medical context.

3.1 Image quality assessment for medical images

In medical image processing, the goal is not to create visually pleasing images: a med-
ical image has a specific purpose to allow the physician to diagnose a diseas [Goo10].
The purpose of the assessment, in the case of despeckeling, is to express how well the al-
gorithm has despeckled the image while preserving the important details.Furthermore,
in compression scheme, the goal is is to express how well the used coder increases the
compression rates without compromising diagnostic quality. Besides, the image qual-
ity assessment could quantify the preservation of details in the case of despeckling or
compression process. Thereby, in some image processing methods an Image Quality
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Assessment (IQA) can be used to tune the parameters of used algorithms. In other
words, in the case of denoising based on setting thresholds, the IQA could be used
in an iterative process, where the thresholds are modified. The iterative process when
the quality reaches its maximum. Similarly, in compression scheme the quantification
coefficient or the thresholds of embedded zero trees EZW are tuned in relation with
the obtained image quality scores. For above cited reasons, image quality assessment is
needed for medical image processing. Preferentially, determining the image quality of
medical images is done by a panel of human observers: a group of experienced physi-
cians with a well-chosen protocol are asked about the quality of the image in terms
of diagnostic. This process is the more reliable, however, it is time-consuming and dif-
ficult to perform because of unavailability of medical observes, in fact the agenda of
medical experts is always overloaded and it is very difficult to find volunteer experts
for subjective test. Hence, we propose to provide an efficient IQA metric to evaluate
the post processing algorithms in medical applications. The aim is to beforehand select
algorithms to involve in the subjective tests.

Currently, to evaluate the performance of the medical despeckled images, several
quality metrics originated from natural IQA are adopted.

This section describes and reviews available objective and subjective quality as-
sessment methods used for the evaluation of medical content and in particular for the
evaluation of speckle reduction in ultrasound medical imaging

3.1.1 Subjective assessment

The subjective assessment involves human beings to obtain the perceived quality score.
The methods used to collect perceived quality scores first depends on the constraints
of availability of radiologist and second affects the accuracy and reliability of the data
collected. In fact, the subjective testing methodology impacts both the accuracy and the
reliability of the collected perceived quality scores. For the subjective quality assessment
of the medical images, various testing methods have been used through the literature.
The methodologies used to assess the perceived quality of medical content is have been
recommended by International Telecommunication Union Radiocommunication Sector
(ITU-R) [BT.00]. This section reviews protocols used to conduct subjective tests on
quality assessment for medical contents mainly for US imaging.

According to the number of stimulus (2D image or short video) presented to the
observer, the testing methods can be divided into two groups: single stimulus (SS) and
multi stimulus (MS). The observer (medical expert or physicians) scores the stimulus
using a discrete or continuous scale, typically containing five descriptors: Bad, Poor,
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Fair, Good, and Excellent quality. In SS methods, one stimulus is presented and scored.
In MS methods, two or more stimuli are presented for reference but only the stimulus
of interest is scored [LLM+18].

Absolute Categorical Rating (ACR)-Single Stimulus

The Absolute Categorical Rating (ACR) [IL08] is a SS method and it consists of consec-
utive trials in which an observer views and scores a stimulus. The stimulus is displayed
to the observer, then the display is set to a constant gray background and the observer
is immediately requested to provide an opinion score of the viewed stimulus [RPCH10].

The reference stimulus is included in the test trial evaluated by the observer. How-
ever, the observer is unaware if a stimulus is a processed or reference stimulus. The
stimuli are randomly presented and vary for each observer. The rating scale used for
ACR is discrete scoring one. Each category is labeled by the adjectives "Bad", "Poor",
"Fair", "Good", and "Excellent". A mean opinion score (MOS) is computed for each
stimulus by averaging the corresponding observer opinion scores.

Kara et al. [LLM+18] used the ACR method on 3D heart images. They study the
effects of angular resolution and light field reconstruction involving 20 observers: 8
medical experts and 12 non-experts. In [LP13], the authors investigated the effects of
blurring, gamma modification, adding noise, color saturation, and JPG compression on
animal pathology slides. The test was conducted with: 6 pathology experts, 7 pathology
students and 11 imaging experts.

Single-Stimulus Continuous-Quality Scale (SSCQS)

The Single stimulus continuous quality evaluation (SSCQS) procedure is also SS
method. It consists of consecutive trials in which an observer views and scores a stim-
ulus. The testing is similar to that of the ACR method, with a continuous rating scale.
The SSCQS method has been used by Tulu and Chatterjee in the study of impair-
ment’s effect on clinical decision capability. They investigate the effects of packet loss,
packet delay, and jitter on the transmission of ophthalmology videos in telemedicine
context [TC08].

Double-Stimulus Continuous-Quality Scale (DSCQS)

The double stimulus continuous quality scale (DSCQS) procedure is also a recommen-
dations from ITU-R for the subjective assessment of pictures [Rec02]. A test session
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comprises a number of sequences. According to the number of observer, there are two
variants. The main difference between the two variants is that the assessor is allowed
to switch between the A and B signals until the assessor has the mental measure or
the signals are shown one or more times before asking the assessor to give a measure.

The DSCQS was used to evaluate speckle reduction filter on ultrasound images
in [LPC+05] and [LMP+14]. In [HPN+10] the authors propose a methodology for
clinical evaluation of image quality using DSCQS procedure, particularly in assessing
clinical ultrasound image quality. In the other hand Loizou[LMP+14] performs a com-
parative evaluation of several despeckle filtering methods applied to ultrasound images
of the common carotid artery. The comparison was based on a quantitative and a qual-
itative evaluation. For the objective evaluation of the quality of the images the NIQE
index assessment tool is used. For the visual assessment two clinical experts: a cardio-
vascular surgeon and a neurovascular specialist were asked to judge the quality of the
despeckled images. The test was carried out according to the International Telecommu-
nication Union(ITU) recommendations which suggest the DSCQS procedure[BT.00].
Chaabouni et al.[CGL+14] studied the question of medical subjective quality assess-
ment using the DSCQS method. The subjective tests were conducted on compressed
video sequences with a panel of experts from different ages, sex and ranks (intern,
extern, resident, doctor, professor) according to the DSCQS procedure.

Razaak et al. [RMS14] choose DSCQS method to study the quality of medical
processed ultrasound videos in terms of predicting the diagnostic. They also study the
impact of the Quantization Parameter (QP) on HEVC compressed medical ultrasound
videos. According to this study the subjective scores are less sensitive with DSCQS
methodology.

Subjective assessment methodology for video quality (SAMVIQ) - Double
Stimulus

In a recent study Zhang and al.[ZWC15] compare eleven despeckle filters performances
by using full reference image quality metrics, No-reference image quality metrics and
visual evaluation of experts. They invited three experts with a different work age to
evaluate the filtered images where the observer freely views and scores a collection of
test stimuli associated with an explicitly identified reference stimulus [RPCH10].

In the SAMVIQ protocol the images are presented to the observer (assessor) such
that he can evaluate all processed versions of the image as well as against the reference.
SAMVIQ offers the possibility to visualize each image several times and re-evaluate a
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previously scored image. The explicit and the hidden are used as quality anchors that
stabilize the results and improve the consistency of the scores.

The stimuli are randomized in order to prevent the assessors from attempting to
vote in an identical way according to an established order [FK05]. A training session
is conducted by a test supervisor in order to make the assessor familiar with image
artifacts and the user interface [FK05].

3.1.2 Objective assessment

Objective image quality assessment methods use mathematical modeling for "automat-
ically" providing measures that estimate the perceived image quality. These methodes
can be classified, according to the availability or not of an original image, as Full-
Reference (FR) or No-Reference (NR) methods.

Full Reference (FR) image quality metric

A large number of Full Reference (FR)image quality metrics are used to evaluate
medical processing algorithms.

The signal to noise ratio (SNR) The Signal to Noise Ratio (SNR) is a funda-
mental parameter widely used to assess quality of image. Many authors use the SNR
in dB as a quantitative performance measure for speckle suppression in US image. As
a definition of the SNR, some authors [PPLA03] [GCS05] [KKJ+10] use the ratio of
the reference noise-free image variance σf to the noise variance σn.

SNR = σf

σn
(3.1)

Pizurika [PPLA03] uses the SNR not only as an assessment metric but also for
tunning the optimal value of the parameter’s method (the one that maximizes the
signal-to-noise ratio).

A second definition of the SNR as follows :

SNR =
∑M
x=1

∑N
y=1 f

2
xy∑M

x=1
∑N
y=1(fxy − f̂xy)2

(3.2)

is used by Gupta [GSP05] and Wang [WFC+13] to measure the despeckling perfor-
mances.
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The speckle- signal to noise ratio (Speckle-SNR) The speckle-SNR is defined
as being a ratio of the mean to the standard deviation of the speckled images [Bur78].
For a fully developed speckle (Rayleigh statistics) the speckle-SNR is known to be
approximately equal to 1.91 [WSSL83a]

The speckle-SNR is expected to increase as the amount of the speckle decrease.
[MT06a] and [GBS14] used the specifications of this metric to evaluate the performance
of their despeckling methods. It is measured in a fully formed region and expressed by

SSNR = µ

σ
(3.3)

where µ is the mean intensity value and σ is the standard deviation in the region of
fully formed speckle. A higher value of the SSNR indicates less speckle.

The Mean square error (MSE) The mean square error is defined as:

MSE = 1
MN

·
M∑
x=1

N∑
y=1

(fxy − f̂xy)2 (3.4)

where f is the original noise-free image , f̂ is the denoised image, M and N are the
width and height of the image, respectively.

Easy to calculate MSE, measures the average square differences between the original
and the denoised image. MSE is largely used to evaluate enhancement algorithm for
noise reduction of ultrasound images[LMA89] [ABT01] [LPC+05] [ZWC15].

• The root of MSE (RMSE)

RMSE =

√√√√ 1
MN

·
M∑
x=1

N∑
y=1

(fxy − f̂xy)2 (3.5)

• Signal to mean square error (SMSE)

SMSE =
∑M
x=1

∑N
y=1 fxy∑M

x=1
∑N
y=1(fxy − f̂xy)2

(3.6)

According to Achim[ABT01] the (Smse) ratio, is more adequate to evaluate the
noise suppression in case of multiplicative noise. It corresponds to the classical
SNR used for additive noise [ABT01]. [KKJ+10] and [VS08] used this criterion to
quantify the performance improvements of speckle reduction methods in medical
ultrasound images.
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• The normalized mean square error Normlized Mean Square Error (NMSE)

Defined as being the reciprocal of the SMSE, this criterion is used in the coher-
ent imaging in which the standard definition of the SNR might be inadequate
considering the multiplicative nature of speckle noise [MT06a].

The Average Difference (AD) AD is the mean difference between original and
filtered image divided by the size of the image[WZX13b]. The higher value corresponds
to dissimilar image. The AD is defined by:

AD = 1
MN

·
M∑
x=1

N∑
y=1

∣∣∣(fxy − f̂xy)∣∣∣ (3.7)

The peak signal to noise ratio (PSNR) The peak signal to noise ratio is given
by :

PSNR = 10 log10
L2

MSE
(3.8)

where L is the number of the image gray levels. The PSNR is among the widest
quantitative No-reference IQA used to assess despeckeling methods in US images. For
instance PSNR is adopted by [TC11] [AAC+12] [LPC+05] and [ZWC15]

Edge preservation measure β The edge preservation measure is defined as:

β = Γ(∆f −∆f)(∆̂f − ∆̂f)√
Γ(∆f −∆f,∆f −∆f) · Γ(∆̂f − ∆̂f, ∆̂f − ∆̂f)

(3.9)

where ∆f and ∆̂f are the high-pass filtered versions of f and f̂ , obtained with a 3× 3
pixel standard approximation of the Laplacian operator, and

Γ(f1, f2) =
M∑
x=1

N∑
y=1

f1(x, y) · f2(x, y) (3.10)

β aims to assess the ability of the despeckeling methods to preserve sharp details
of the original images that often constitute features of interest for diagnostic [ABT01]
[MT06a]. Of interst [TC11] [ABT01] [MT06a] [GCS05] [WFC+13] use β as an image
quality assessment in despeckling of ultrasound medical imaging in addition to other
metrics of noise reduction.
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coefficient of correlation ρ Sattar [SFSL97] proposed a performance evaluation
based on correlation defined as:

ρ = Γ(f − f)(f̂ − f̂)√
Γ(f − f, f − f) · Γ(f̂ − f̂ , f̂ − f̂)

(3.11)

This metric is used as a supplementary performance evaluation based on correlation
by [GCS05] [VS08]. ρ is close to unity when the despeckled image is similar to the
reference image.

Structural Similarity Index measure Some above cited metric like SNR and
PSNR are globally simple to calculate and they have a mathematical meaning but are
not correlating well with perceived quality measurement. As the human visual percep-
tion extract structural information from an image Wang [WLB04] propose an objective
metric close to human perception that assess the perceptual image quality, the Struc-
tural Similarity Index measure (SSIM) which compares local patterns of normalized
pixel intensities.

SSIM =
(2µfµf̂ + c1)(2σ

f,f̂
+ c2)

(µ2
f + µ2

f̂
+ c1)(σ2

f + σ2
f̂

+ c2) (3.12)

where µf ,µf̂ ,σf2 and σ2
f̂
are the means and variances of reference noise-free image f

and despeckled image f̂ . σ
f,f̂

is the covariance between image f and f̂ . c1 and c2 are
constants which can be changed.

This index is widely used for assessing enhanced or despeckled medical ultrasound
images [RV12] [LPC+05] [AAC+12] [ZWC15] [GBS14].

Furthermore, [KUBW+14] show that SSIM provides the closest match to the subjec-
tive assessments by the radiologists in term of quality factor performance when applied
MR Image compression.

Pratts figure of merit FoM Proposed by[Pra77] FoM measures edge pixel dis-
placement between filtered and reference noise-free image :

FoM = 1
max(Nf , Nf̂

) ·
Nf∑
i=1

1
1 + αd2 (3.13)

where Nf and N
f̂
represent the numbers of edge pixels in the edge maps of reference

and filtered images. α is a constant.d is the Euclidean distance between the ith detected
edge pixel and the nearest ideal edge pixel.
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This metric was adopted by [GBS14] [ZWC15] [FGJ11] where the ideal edge pixels
and detected edge pixels are binary maps, which are calculated from the noise-free
image and the denoised image. The authors extract the edge maps using Canny edge
detector algorithm.

Speckle Reduction Evaluation Metric (SREM) In [MRC14] a speckle reduction
evaluation metric, the SREM, is proposed. It is based on the computation of the con-
trast similarity map (CSM) and gradient similarity maps (GSM) between two images.
The overall similarity between images f(i, j) and f̂(i, j) can be calculated by :

SREM =
∑
CSM(i, j) ·∑GSM(i, j)∑

GSM(i, j) (3.14)

Ultrasound Despeckling Assessment Index (USDSAI) Tay and al.[TAH06]
defined a performance metric Q called the ultrasound despeckling assessment index
(USDSAI) as:

USDSAI =
∑
k 6=l(µCk

− µCl
)2∑K

k=1 σCk
2 (3.15)

where
µCk

= 1
|Ck|

∑
(n,m)∈Ck

f̂(n,m) (3.16)

and
σCk

2 = 1
|Ck|

∑
(n,m)∈Ck

(f̂(n,m)− µCk
)2 (3.17)

where |Ck| denotes the number of pixels in class Ck.

This modified Fisher discriminant contrast metric determines how well a despeckling
algorithm reduces variances in homogeneous classes while keeping the distinct classes
well separated and preserving edges. USDSAI seems to be helpful to [RLVSFMF+14]
and [CHKB09] for assessing their algorithms.

No Reference image quality metric

TheNo Reference (NR) metric can be further divided into two categories: Opinion-
Aware (OA) if it needs to be trained on a database of distorted images with associated
subjective opinion scores; and Opinion-Unaware (OU) if it is free of training. Several
OA NR metrics are proposed such as DIIVINE [MB11] , CBIQ [YD12] , LBIQ [TJK11],
BLIINDS [SBC12], BRISQUE [MMB12] and the newest one ILNIQE [ZZB15] which is
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an enriched form on an OU NR metric the NIQE studied in this section. Nevertheless
in medical domain, it is much more difficult to obtain collections of distorted images
with co-registered radiologists’ scores. Thus OU NR metrics are of greater interest to
us. The OU NR metrics have not been extensively studied yet, even for natural images.
In this section we present the more appropriate IQA method, already applied or that
can be applied for medical images.

Speckle Index Shibin and al. [WZX13c] use the Speckle Index (SI) to evaluate
speckle reduction filters. The SI is defined as follows:

SI = 1
MN

·
M∑
x=1

N∑
y=1

σ(x, x)
µ(x, y) (3.18)

whereσ(x, x) and µ(x, y) are the standard deviation and the mean. This metric measures
the reduction of speckle in terms of average contrast of the image. Lower value of SI
corresponds to improved image quality.

The natural image quality evaluator The The natural image quality evaluator
(NIQE) [MSB13] is a perceptual metric proposed for evaluating the quality of a natural
image. It is based on constructing a collection of features from a corpus of natural
images, and fitting them to a multivariate Gaussian (MVG) model. the NIQE is both
opinion- and distortion-unaware. It is expressed as the distance between constructed
features and features extracted from the assessed image:

NIQE =
√(

(ν1 − ν2)T
(∑

1 +∑
2

2

)
(ν1 − ν2)

)
(3.19)

where ν1, ν2 and ∑1,
∑

2 are the mean vectors and covariance matrices of the reference
image’s MVG model and the distorted image’s MVG model, respectively. It estimates
the image quality only from spatial domain. Lower value of NIQE corresponds to
better image quality. In [LMP+14] and [ZWC15] the NIQE is used to assess quality of
despeckled medical images.

BRISQUE The Blind/Referenceless Image Spatial QUality Evaluator: Natural scene
statistic-based distortion-generic (BRISQUE) [MMB12] which operates in the spatial
domain. It uses scene statistics of locally normalized luminance coefficients to quantify
the presence of distortions in the image.

BIQES The Blind Image Quality Evaluathor based on Scales (BIQES) [SW15] uses
intrinsic features of the image. It transforms the test image into a scale-space repre-
sentation, and measures the global dissimilarity with the co-occurrence histograms of
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the original and its scaled images (i.e.,the dissimilarity between the image itself and
its lower resolution versions). The first dissimilarity, called low pass error QL, is calcu-
lated by comparing low pass versions across scales with the original image. The second
dissimilarity, called high pass error QH , is computed from the variance and gradient
histograms, weighted by the contrast sensitivity function in order to make it perceptu-
ally effective. These two dissimilarities are combined together to derive the final quality
score:

BIQES = k

σ
QL + σQH (3.20)

where · denotes the mean operation, k and σ are the kurtosis and the standard
deviation of log amplitude of the image’s Fourier spectra, respectively. Lower value
of BIQES corresponds to better image quality.

3.2 Speckle reduction methods in ultrasound

The speckle noise is inherent to US images as presented previously, however this kind
of noise is also present in coherent electromagnetic wave such as radar and synthetic
aperture radar(SAR), and in acoustic images of the sea floor (sonar image). Since the
seventies, several speckle reducing filters were proposed dedicated to SAR. Hence, many
speckle reducing filters used for US images are originated from the SAR community
especially. In this chapter we will review the speckle reduction algorithms proposed for
US images

3.2.1 Adaptive filters

The adaptive filters uses the local statistics of the image, these techniques often perform
calculation of statistics in subregion of the image to estimate statistical behavior over
different pixel. Almost of these techniques assume that the speckle noise model has a
multiplicative form [LPC+05]. This category of filters is widely present in literature
such as:

Median filter [RNR84]

This basic filter based on the principle of replace the gray level of neighborhood’s center
pixel with the median gray level of the considered neighborhood.
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Lee filter

[Lee80] [Lee] Lee proposed algorithms to filter images corrupted by additive noise,
multiplicative noise and combined additive and multiplicative noise. These filters are
based on local statistics of the image and the minimum mean square error (MMSE)
criterion.

For the speckle reduction, the multiplicative LEE filter is the more appropriate.
The formulation of [YA02a] is:

ÎLee = Īs +Ks(Is − Īs)

where Īs represent the mean value of the intensity within the filter window ηs, and Ks

is the adaptive filter coefficient calculated by:

W (x, y) = 1−
(
C2
u

C2
s

)

with,
Cs = (1/|ηs|)Σ(Ip − Īs)2/(Ip − Īs)2

and C2
u = var(z′)

(z̄)2

var(z′) and (z̄)2 are the intensity variance and mean over a homogenous area of the
image, respectively

Kuan filter [KSSC85]

This filter is similar to the previous filter, it proposes a more general approach by using
the exact LLMMSE, avoiding the Taylor approximation made by Lee.

Frost filter

[FSSH82] The Frost filter as well as Lee and Kuan filters uses local statistics of the
image. It uses an exponentially damped convolution kernel that adapts to regions
containing edges by exploiting local statistics[YA02a]. The filter output expression is
given by

Îs =
∑
p∈ns

mpIp

where
mp = exp(−KC2

sds,p)/
∑

exp(−KC2
sds,p)

ds,p =
√

(i− ip)2 + (j − jp)2
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where K is the damping factor, (i, j) the grid coordinates of pixel s and (ip, jp) are
those of pixel p.

Its main advantage is inhibiting filtering process at the edges by choosing the fac-
tor K. The image is then estimated using the minimum mean-square error criterion
(MMSE). .

Lopes et al. filter [LTN90]

This filter combines the Lee and Frost filter with a preleminary step to classify the
pixels. Thus, the local image statistics are used to determine Heterogeneous Class and
Homogeneous class.

Wiener filter

This filter utilizes the second-order statistics of the Fourier decomposition, by minimiz-
ing the MSE between the estimated signal and the desired one. Wiener filtering assumes
that the noise is mainly additive with known spectral characteristics. Hence, it is not
adequate for multiplicative noise suppression such as speckle. Jain developed a homo-
morphic approach to address this issue, which by taking the logarithm of the image,
converts the multiplicative into additive noise, and applies the Wiener filter[ABT01].

SBF filter

[TAH06] The squeeze box filter (SBF), is a stochastically driven method that itera-
tively removes outliers by determining the local mean and standard deviation from an
adaptively varying window. The adaptively determined mean is used to replace the
outlying values of an ultrasound image causing homogeneous regions to be aggressively
smoothed while preservation of edges is profoundly respected. This filter method re-
duces the local variance at each pixel by squeezing the stochastically distributed pixel
values to a limiting value.

3.2.2 Anisotropic diffusion filter

Average Difference (AD) process was introduced firstly by Perona and Malik [PM90]
for filtering images while preserving significant details of the image typically edges,
lines, structures. Also called Perona‚ÄìMalik diffusion, this approach is widely present
in the literature with different extensions and improvements:
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Speckle reducing anisotropic diffusion filter

Yu and Acton [YA02b] introduce Speckle Reducing Anisotropic Diffusion filter (SRAD),
that was the first application of anisotropic diffusion filtering to speckle noise. This is
done by introducing the instantaneous coefficient of variation for an edge-sensitive
speckle reduction.

Details preserving anisotropic diffusion

An improved version of the SRAD is then proposed with the Detail Preserving
Anisotropic Diffusion (DPAD) [AL06]. This improved version of the SRAD involves
estimation of the coefficient of variation of both signal and noise based on Kuan’s
filter.

Oriented speckle reducing anisotropic diffusion

In [KWKV07] the authors extended the SRAD and DPAD methods to an Oriented
Speckle Reducing Anisotropic Diffusion (OSRAD). This method is combined with ma-
trix anisotropic diffusion, allowing different levels of filtering in the gradient and the
principal curvature directions.

Anisotropic Diffusion filter with Memory based on Speckle Statistics

In [RLVSFMF+14], an Anisotropic Diffusion filter with Memory based on Speckle
Statistics (ADMSS) was proposed. This recent method embeds a memory mechanism
that speeding-up the diffusion process in meaningless regions and adaptively preserves
relevant structures.

The anisotropic diffusion approach was firstly applied to speckle removal by Yu and
Acton in [YA02a] with the speckle reducing anisotropic diffusion filter (SRAD). An im-
proved version of the SRAD is proposed with the detail preserving anisotropic diffusion
(DPAD) [AL06]. In [KWKV07], the authors extended the SRAD and DPAD methods
to an oriented speckle reducing Anisotropic diffusion (OSRAD). More recent work pro-
poses a speckle filter based on anisotropic diffusion paradigm with a memory mechanism
that aim to preserve relevant information during the filtering process [RLVSFMF+14].
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3.2.3 Multi-scale based filters

Another approach used in speckle reducing is the multi-scale based filters. Most of
these filters use the wavelet transform [ABT01] [PPLA03] [GSP05]. The wavelet based
speckle reduction filters include three main steps : wavelet decomposition, modification
of wavelet coefficients, reconstruction of the modified wavelet coefficients "noise free
coefficient" by invert wavelet transform. Some works proposed multi-scale based speckle
reduction methods using pyramid transform [ZYKK07] [KLY16b].

Several multi-scale based methods were proposed for speckle reduction in ultrasound
imaging mainly based on Wavelet, Curvelet or Contourlet transforms. Most of these
filters use the wavelet transform, as the wavelet theory provides a powerful representa-
tion of the image and is widely used for image processing such as image compression,
segmentation and noise reduction.

The wavelet-based speckle reduction filters include three main steps: wavelet de-
composition, modification of wavelet coefficients, reconstruction of the modified wavelet
coefficients and "noise free coefficient" by invert wavelet transform. The wavelet shrink-
age denoising was first proposed by [Don95], later this thresholding method was
applied to medical imaging for speckle reduction [ABT01]. Most of the shrinkage
method used ByayesShrink proposed in [CYV00] in order to calculate an adaptive
threshold for wavelet thresholding. The authors in [PPLA03] proposed to balance
the degree of noise reduction for the preservation of relevant details. Extension of
wavelet transform are also involved in despeckling: dual tree complex wavelet transform
in [VA18] or monogenic wavelet transform [GZYY18]. Other multi-scale approaches
based on the pyramid transform were suggested to reduce speckle in US images as
in [ZYKK07, KLY16b, SiVS+18]

3.2.4 Non-local means filter

The Non-Local (NL) approach is a new paradigm that proposes to replace the local
comparison of pixels by the non-local comparison of patches [CHKB09]. Firstly in-
troduced in [BCM05], NL-means methods were used for US noise reduction with a
Bayesian formulation by Coupé et al. [CHKB09] in the Optimized Bayesian NL-means
(OBNLM) filter. The OBNLM introduces a Pearson distance to compare non-local
patches and select the most relevant, and uses it as features for denoising images.
Related hereto, [SPR+16] propose to incorporate a Gamma model in the NL-means
denoising. In [CCY+11] and [CYH+12], Yang et al. found that increasing the searching
region can lead to improved noise-suppression performance in low dose CT image pro-
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cessing. In [CZS+18], they incorporated a structure-adaptive fuzzy estimation into iter-
ative NL-means for random-valued noise estimation. It was also found that NL-means
estimation can be used to build the regularization term for medical image reconstruc-
tion [CMF+08]. The main drawbacks of these methods are the over-smoothing of the
images, and the computational complexity.

The review of the state-of-the art methods shows that: first, the speckle reduction
methods either oversmooth the ultrasound or do not reduce speckle significantly in
some regions; second, all the algorithms provide only one viewing possibility, while
doctors may have different requirements of image features in different situations. These
motivate us to propose an improved speckle filtering method without oversmoothing
effect and with multiple viewing possibilities.

3.3 Compression in medical images

Archiving medical imaging and/or their transmission for telemedicine while preserving
data integrity increase the need for an efficient method of compressing medical im-
ages. In order to preserve the data integrity and for ethical considerations related to
diagnosis, the medical data are mostly compressed in lossles mode. However, Koff et
al. [KBB+09] studied the impact of irreversible compression on visual quality with re-
spect of an accurate diagnostic. They suggest a range of compression levels that can be
applied with confidence in diagnosis. The study involves different imaging modalities
and anatomical areas. In [KUBW+14] the authors presented a work on acceptable com-
pression ratios for lossy compression of medical images. They were able to determine a
threshold level, in terms of objective quality measurement, of confidence such that the
quality of the compressed image is diagnostically acceptable. Another possibility is to
perform what is called near-lossless compression, which enables to limit the type and
amount of distortion introduced on the compressed image. Near-lossless techniques use
a quality criterion to guide the compression algorithm [AMC98].

Therefore in this section we will review non-exhaustively the methods of compres-
sion used for medical images. We will interested mainly to MRI and ultrasound modal-
ities. But first of all, we will quickly provide some tools on which the compression
algorithms are based.



3.3. COMPRESSION IN MEDICAL IMAGES 39

3.3.1 Overview of components of image compression

Image compression needs some tools; this section relates the mains components of image
compression. The use and importance of each component depends on the compression
technique. Figure 3.1 shows general scheme of lossy compression.

Original  image 

Compressed  image 

 

Decorrelation : 

Transfomation  or  Decomposition 

Quantization  

Entropy Encoding 

Figure 3.1: Lossy compression scheme

Decorrelation

Intuitively the compression means reduction of information, this occurs in the first step
of the compression process. The redundancy of information presents in the image is
used to this aim [RJ91]. Typically, there is two ways to reduce this redundancy:

• Using the property of correlation between adjacent pixels, the predictive coding
where the purpose is to predict the value of a given pixel based on knowledge of
the values of the surrounding pixels
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• Using the time/frequency property to reduce the dynamic range of the signal, the
transformation of the signal. The most widely used transforms are the Discret
Cosine Transform (DCT) and the Discret Wavelet Transform (DWT).

Quantization

This step is the main difference between the lossy and lossless compression schemes.
The quantization of the data reduce the number of output symbols. The bit rate and
the distortion is directly driven by the quantization choice. Once the output sequence
achieved, the symbols are encoded by the next step.

Entropy and entropy encoding

In the theory of information developped by Shannon [Cla48], he defines the entropy
which permits to calculate the minimum number of bits required to code a sequence
of symbols. The entropy H is defined by

H = −
∑
ν

Pν log(Pν) (3.21)

where Pn is probability distribution of the variable n (the probability that νi = ν).

The entropy encoding is a lossless compression scheme of data based on probability
occurrence of the symbols in a sequence. Hence, each symbol will be encoded to ensure
that the source encoding is the closest to its entropy. The code length associated to
a considered symbol depends on the symbol frequency or probability of occurrence.
More it is frequent, more the length is reduced. There are two main categories of
entropy encoding Variable Length Code (VLC) with the well-known Huffman and
Golomb codes, and the arithmetic coding which permits to encode an entire sequence
of symbols.

3.3.2 Lossless compression algorithms for medical images

Compression scheme based on predictive coding technique

The predictive approach is suitable for lossless compression.It is based on the difference
between the original and predicted values. Therefore, it is fully independent of the
transform-based coding, and employs a differential coding: Differential Pulse Code
Modulation (DPCM), to form the residuals which are then coded using either the
Huffman or arithmetic coding methods.
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Lossless Joint Photographic Experts Group (JPEG) The well-known JPEG
standard offers two schemes a lossless and lossy scheme. The lossless mode of JPEG
uses a predictive coding technique. The JPEG is recognized by Digital Imaging and
Communications in Medicine (DICOM) standard which is used for storing and trans-
mitting medical images. DICOM allows the integration of medical imaging devices
such as scanners, servers, network equipment and Picture Archiving and Communica-
tion Systems (PACS) from several equipment and entities. The prediction residual is
estimated from the neighboring samples previously encoded in the image [SVCK97].

Context Based, Adaptive, Lossless ImageCodec (CALIC) Proposed
by [XM96], CALIC is based on the pixel context, by selecting a predictor from previ-
ously known pixels, with an adaptive improvement of the predictions. This technique
has been studied in a medical context by [KOK+98].

The Low Complexity Lossless Compression for Images (LOCO-I) known
as JPEG-LS [WMSS00] It is based on context modeling and predictive coding
combined with an adaptation of Golomb coding. Golomb coding allows a dynamic
update of the code tables which could be more suitable for an adaptive mode. The
JPEG-LS allows a near lossless mode where the maximum absolute error can be limited.
The lossless mode of this technique, also has been studied by [KOK+98] in a medical
context.

Compression scheme based on least-squares method

In [WRA+13] the authors used the least-squares prediction with arithmetic coding for
compression of MRI and CT medical images. The artithmetic coding is parallelized in
oder to reduce the complexity.

Compression scheme based on Discret/Integer Wavelet Transform

In the JPEG 2000 compression the block DCT transformation has been replaced by the
Discrete Wavelet Transform (DWT), which is used for its reversibility that allows loss-
less coding. The implementation of the DWT, know as the lifting scheme and greatly
recognized as faster developed by [DS98] is the one used in the JPEG 2000. The other
advantage of the lifting scheme is that it permit the construction of Integer-to-integer
DWT. ZHANG et al. [ZW04] proposed an Embedded Multiple Subband Decomposi-
tion and Set Quadtree Partitioning (EMSD-SQP) based on Integer Wavelet Transform
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(IWT). The subband decomposition is multiplied and scaled according to significance,
and then the subbands are partitioned into four subsets. The EMSD-SQP was dedi-
cated to medical images and compared to state of the art methods initially proposed
for natural images. Shirsat et al. [SB13] were also inspired by lifting scheme with pre-
dictive coding to perform lossless compression. The Set Partitioning in Hierarchical
Trees (SPIHT) compression is also a widely used technique. It uses the multiresolu-
tion representation of the image: the "S" transform. This transformation is an integer
multiresolution transformation, similar to the wavelet subband decomposition. SPIHT
is commonly used for comparison method as it is the case in [KOK+98] for medical
context.

3.3.3 Lossy compression algorithms for medical images

Lossy compression in the medical context should be used with particular attention to
ethics and diagnosis, it can be used also for specific needs such as transmission. In fact,
through the literature, lossy compression for the medical image is not widely used.

One could find lossy compression for US modality combined with speckle reduction
in [GSP05]. Gupta et al. propose the following method:

• Calculate the logarithm of the image

• Decompose the corrupted image using DWT

• Estimate the threshold level of the noise using BayesShrink (cf. 3.2.3).

• Classify the subband in order to distinguishing the noisy data

• Quantize each class using adaptive quantization

• perform entropic coding

Another study in [KUBW+14] where the authors apply a lossy JPEG or JPEG2000
compression and intend to determine a SSIM and Mean Square Error (MSE) thresholds
for acceptable compression ratios without compromising diagnostic quality. Hence, a
subjective test was conducted on as set of compressed CT images presented to radiol-
ogists, who were asked to assess the quality.
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Conclusion

In this Chapter we have identify and analyze metrics for quantitatively assessing the
speckle reduction in ultrasound medical images. Through the literature related to
speckle and noise reduction in ultrasound medical imaging one could conclude that
the full-reference IQA are widely used in comparison to No-reference one. In reality a
genuine noise-free image is not available which compromises the evaluation.

In the other hand studies involving medical experts and quantitative methods sug-
gest that the new objective quality metric NIQE proposed by [MSB13] can correlate
with perceived quality by the human "medical expert". The NIQE seems to be a promis-
ing metric for IQA of ultrasound medical imaging particularly for evaluation speckle
reduction.

Furthermore, the lossy compression is not widely used for medical imaging; never-
theless, one could investigate the possibility to perform a lossy compression controlled
by an adapted quality measure which is correlated with the diagnosis performance.
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4 An image quality
assessment metric for
medical images NIQE-K

Introduction

In this chapter, we propose a new metric called Natural Image Quality Evaluator based
on Kurtosis (NIQE-K) for assessing quality of medical images. It is base on NIQE and
inspired by some BIQES features and is more adapted to medical images. The NIQE-
K combines some low level features of the image with the NIQE to assess the quality
of processed medical images. This study, based on evaluating concurrently the three
methods, first encompasses tests conducted on natural IQA database (LIVE-Release2
and CSIQ). The second experiment is conducted on an ultrasound image with noise
distortions. The last experiment includes tests on Magnetic Resonance images with
compression distortions analyzed with quality scores evaluated by radiologists.

The opinion unaware NR metrics have not been extensively studied yet, even for
natural images. In this chapter, we will focus on two state-of-the-art opinion unaware
NR metrics: the natural image quality evaluator NIQE [MSB13] and the blind image
quality evaluator based on scales BIQES [SW15]; more details about NR metrics are
given in 3.1.2. While the NIQE has been used in [ZWC15, LMP+14] for medical IQA,
its competitor BIQES has not been tested in the context of medical images.

4.1 The NIQE-K for medical images

Trough the literature (c.f 3), two metrics are more interesting for medical field the
first one is the NIQE used efficiently to asses ultrasound medical image in [LMP+14]
and [ZWC15]. The second one BIQES [SW15], has not been used for medical image
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assessment, however this metric is not trained neither with human scores nor with
pristine/distorted images.

4.1.1 Limitation of existing IQA metrics in medical images
assessment

Intuitive tests, summarized in the next section, were conducted to evaluate the NIQE. It
was noticed that when an image presents repeated local variations (high frequencies),
the NIQE generally indicates that the image is of good quality. The more the local
variations are, the better the quality is indicated by the NIQE. Thus the quality of
a corrupting image with noise could be scored as good by the NIQE as the noise
increases the local variation. This inspired us to enrich or modify the NIQE to make it
more sensitive to distortions existing in medical images, such as noise. Let us show an
illustration about limitation of NIQE. The Fig. 4.1 show an original image in 5.14(a)
and its corrupted version with noise encountered in ultrasound image, the quality score
attributed by NIQE and BIQES are indicated below each image. It should be noted
that a higher value of these scores represents a lower quality of the image. Hence, the
image corrupted with noise is noted as better quality by the both metric.

4.1.2 Formulation of NIQE-K

It was revealed in [SW15] that the Fourier spectra show remarkable change due to
different types of distortions of the same image. The local kurtosis as well as the
standard deviation of log amplitude of the Fourier spectra change significantly. The
ratio of kurtosis to standard deviation is higher for blury and noisy images.

Based on the observation of BIQES formulation, we tried frequency-domain analysis
to improve the perceptual evaluation of the NIQE. The kurtosis(k) and the standard
deviation σ of log amplitude of the image are use in that aim. Indeed, by multiplying
the ratio ( k

σ
) by the NIQE, we obtain the named metric as NIQE-K:

NIQE −K = NIQE × kurtosis (log |FFT (image)|)
σ (log |FFT (image)|) (4.1)
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(a) NIQE=2.65, BIQES=0.052

(b) NIQE=2.58, BIQES=0.048

Figure 4.1: Quality assessment comparison betwwen pristine image and noisy ver-
sion 5.14(a): original image; 4.2(b): Image corrupted with Sattar’s noise.
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4.2 Experiment and validation of niqe-k

4.2.1 Test on Live and CSIQ IQA database

The NIQE and the BIQES have showed good performances on natural IQA
databases [MSB13, SW15]. Thus we firstly compare the performances of the NIQE-
K with those of the NIQE and the BIQES on natural IQA databases. The results of
this experiment would help provide clues as to whether or not an opinion unaware NR
natural IQA metric behaves the same for medical images as for natural ones.

We compared the three metrics on two well-known databases:

1. LIVE [SWCB05]: one of the most widely used databases for IQA algorithm vali-
dation. It consists of 29 reference images with their degraded versions, using the
following distortion types: JPEG2000 (Wavelet compression), JPEG (DCT com-
pression), White Noise in the RGB components (WN), Gaussian blur in the RGB
components (GBLUR), and bit errors in JPEG2000 bitstream when transmitted
over a simulated fast-fading Rayleigh (FF) channel. Each distorted image has a
difference mean opinion score (DMOS) value.

2. CISQ [LC10]: It consists of 30 reference images and their degraded versions with
six different types of distortions: JPEG2000 compression, JPEG compression, Ad-
ditive White Gaussian Noise (AWGN), Additive Pink Gaussian noise called 1/f
noise, Gaussian blurring (Blur), and global contrast decrements (Contrast). The
DMOS of all the distorted versions of an original image is provided. Generally,
only four types of distortions are used, since most IQA methods perform poorly
in the case of Contrast and 1/f noise.

We used the Spearman’s Rank-Order Correlation Coefficient (SROCC) and the Pear-
son’s Linear Correlation Coefficient (PLCC) as evaluation measures for performance
comparison. Results on the LIVE and CSIQ databases are shown in Table 4.1 and
Table 4.2.

It is noticeable that the NIQE-K performs better than the NIQE and the BIQES for
the AWGN distortion. Concerning the 1/f noise distortion, the NIQE-K is more cor-
related with human scores than the NIQE and the BIQES. Among the various noises
known to commonly deteriorate the quality of medical images, the one introduced by
specific reconstruction technique as that of CT images has 1/f frequency character-
istic [GPL+11]. The performance of the considered metric on the 1/f noise distortion
shows thus the potential of the NIQE-K to assess the quality of medical images. In
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Table 4.1: Performance comparison in the LIVE database
NIQE BIQES NIQE-K

SROCC PLCC SROCC PLCC SROCC PLCC

JPEG 2000 0.89 0.90 0.88 0.88 0.66 0.70
JPEG 0.86 0.89 0.93 0.94 0.84 0.87
WN 0.97 0.97 0.97 0.97 0.97 0.98
GBLUR 0.93 0.94 0.90 0.92 0.85 0.91
FF 0.86 0.89 0.81 0.83 0.86 0.87

Table 4.2: Performance comparison in the CISQ database
NIQE BIQES NIQE-K

SROCC PLCC SROCC PLCC SROCC PLCC

AWGN 0.81 0.81 0.78 0.80 0.83 0.83
JPEG 0.88 0.93 0.86 0.90 0.85 0.90
JPEG 2000 0.90 0.92 0.86 0.89 0.84 0.87
1/f noise 0.29 0.34 0.25 0.26 0.55 0.56
Contrast 0.21 0.33 0.33 0.31 0.21 0.27
Blur 0.89 0.92 0.85 0.90 0.78 0.89

addition, the NIQE and the NIQE-K have the same performance on the FF distortion,
which may reflect the distortion encountered in the telemedicine. While the NIQE-K’s
performances are close to those of the NIQE and the BIQES on most remaining dis-
tortion types, they are poorer on the JPEG2000 distortion. On this point, a further
study on JPEG2000 distortion in medical context will be given in section 4.2.3.

4.2.2 Tests on simulated medical images

As a first simple step to test the three considered methods in medical context, we
considered some particular distortions present in medical images, but not present in
the above mentioned databases. We tested them on corrupting ultrasound images with
various simulated noises, as shown in Fig. 4.2. We also included the median filtering,
widely used as noise removal technique. The objective quality scores of NIQE, BIQES
and NIQE-K are calculated and shown in Table 4.3 (a higher value of these scores
represents a lower quality of the image).

From Table 4.3, we can see that the performance of the NIQE is consistent for
the filtered images, while the performance of the BIQES is consistent for the original
and the two noisy images. The NIQE-K offers a trade-off between the two metrics.
Furthermore, the NIQE ranks the original image as the last (poorest quality), which
is not logical. In this sense, the BIQE and the NIQE-K are comparable. Even if the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Quality comparison of different noisy images and their filtered versions
images 5.14(a): original one; 4.2(b): with Sattar’s noise; 4.2(c): with Speckle noise;
4.2(d): Median filtering of 5.14(a); 4.2(e): Median filtering of 4.2(b); 4.2(f): Median
filtering of 4.2(c)
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Table 4.3: Quality evaluation scores of simulated images (the rankings from best to
worst quality are given in parentheses)

Image/distortion NIQE BIQES NIQE-K
Original image 6.65 (6) 0.044 (1) 19.82 (2)

Sattar’s noise 4.61 (1) 0.047 (2) 18.08 (1)

Speckle noise 6.51 (5) 0.052 (3) 41.31 (6)

Original image + Median filter 5.54 (4) 0.060 (4) 27.74 (4)

Sattar’s noise + Median filter 5.24 (2) 0.062 (5) 26.82 (3)

Speckle noise + Median filter 5.40 (3) 0.063 (6) 29.17 (5)

NIQE-K places a noisy image before the original one, it could be explained by the
fact that an image quality (or abnormality perception) could be enhanced by adding
suitable noise under certain conditions. An example is that adding stochastic resonance
noise in spatial domain enhanced the quality of the X-ray mammogram in [RV13], or
in wavelet domain to enhance the quality of the ultrasound images [Ral08]. It chanced
that the experimental results in section 4.2.3 gave another example of medical image
quality enhancement by distortion.

4.2.3 Visual evaluation of experts

In the context of medical images, the radiologist is the end-user, thus is still the ultimate
reference for evaluating image quality. Thus in this last experiment, we will compare
the studied three metrics’ performances with those of radiologists.

Dataset from LARIS laboratory

A study was conducted by the LARIS laboratory in the University Hospital of Angers
in France, of which the test images are 162 cerebral MR images of the T2 FLAIR
sequence in Digital Imaging and Communication in Medicine (DICOM) format. These
images were compressed by JPEG 2000, the standard recommended by DICOM, at
three compression ratios: 1/1 (no compression), 1/7.5 (lossly average compression) ,
1/20 (lossly high compression). The subjective evaluation of these images was made by
radiologists with different years of experience: the first radiologist (denoted by Expert
1) is an expert in neuroradiology; the radiologist 2 and 3 (denoted by Resident 1 and 2)
are residents in radiology with respectively 4 and 5 years’ experience. The diagnostic
purpose of this study was the detection-localization of Multiple Sclerosis (MS) lesions,
while Resident 1 had theoretical knowledge about the MS and Resident 2 had analyzed
30 MS images per month for 6 months.
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Figure 4.3: Quality score (the ordinate) evaluated by each radiologist for each com-
pression ratio (the abscissa), a higher value represents a better quality here.

In this study, the question was not how well the image was pleasing, but how well the
image allowed the radiologist to diagnose the disease. The detection-localization task
performances of the radiologists were then characterized/quantified by the JAFROC
figure of merit [Cha11] to get their final quality scores ranging from 0 to 1.

Discussion

The final quality score of each radiologist for each compression ratio is shown in Fig. 4.3.
It is interesting to find that the quality appears best for the images compressed at the
compression ratio 1/7.5, and worst at the compression ratio 1/20 for all the radiologists.
This reveals that a slight compression may promote the abnormality diagnosis by a
radiologist, while a heavy compression would substantially deteriorate the radiologist’s
diagnostic performance. Other distortions (e.g. noise) may have the same effect, as
mentioned in section 4.2.2.

Fig. 4.4 shows the BIQES, NIQE and NIQE-K scores calculated for each of the test
images at three compression ratios. Since a higher value of the three metrics represents
a lower quality, we show the multiplicative inverse for the score (consequently a higher
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Figure 4.4: Objective scores of BIQES, NIQE and NIQE-K for each image (a higher
value represents a lower quality)

value represents a better quality here) in Fig. 4.5 to facilitate the comparison with
human scores in Fig. 4.3. By comparing Fig. 4.5 to Fig. 4.3, we observe that while the
BIQES does not distinguish well the qualities of images compressed at three different
ratio (i.e. similar scores for the three ratios), the NIQE and the NIQE-K do. However,
the NIQE rates the qualities of images compressed at the ratio of 1/1 much better than
those at the ratio of 1/7.5, and the NIQE-K rates the qualities of images compressed
at the two ratios almost the same. We also counted the percentage of the images rated
by the three metrics in the same way as the radiologists: 39% for the NIQE-K, 7%
for the NIQE and 28% for the BIQES. That means that on these images the objective
metrics rank the ratio 1/7.5 as the best, followed by the ratio 1/1, and the ratio 1/20
as the worst. From this point of view, the NIQE-K’s behavior is the closest to that of
radiologists.
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Figure 4.5: Objectives scores of BIQES, NIQE and NIQE-K for each compression rate
(a higher value represents a better quality), each point corresponds to an image, and
the mean of their scores are linked by a black straight line.

Conclusion

We have presented in this chapter our proposed OU NR IQA metric NIQE-K proposed
for medical image assessment. Moreover, it involved a study of the usability of 2 others
OU NR IQA metrics in the context of medical images: NIQE and BIQES. Results show
that the IQA metrics for natural images could potentially be modified and applied
for medical IQA. When the modification considers the specificities of medical images,
we can approach satisfyingly radiologists’ perception. Experiments conducted on MR
images with specific diagnostic tasks highlight a greater potential of the NIQE-K. More
analysis and experiments, over US images modalities are presented in the next chapter.
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5 The Multi-Output
Filter based on MMD

Introduction

A large number of researches were proposed in order to reduce speckle and/or improve
the quality of US images. We have presented in section 3.2 a review of post-processing
speckle reduction techniques. These techniques present some limitations such as tex-
ture over-smoothing, loss of subtle details during the filtering process or moreover edge
blurring. Some filtering methods also give artificial appearance to the enhanced im-
ages [ZWC15]. Moreover, all the speckle reduction works propose a unique viewing
possibility, while the interpretation of an US is based on multiple evaluation tasks:
general aspect, echo patten, outer contour/border and size. To address this issue, we
propose in this chapter the Multi-Output Filter based on Multiplicative Multiresolution
Decomposition (MOF-MMD) [OZD+17] [OZD+18] , which performs speckle reduction
in order to enhance the relevant structures and textures (edges, texture and the global
image) according to different diagnosis needs. The MOF-MMD permits to enhance
distinctively three outputs: edges, texture and and the global image.

5.1 Multi-Output Filter based on Multiplicative
Multiresolution Decomposition (MOF-MMD)

The proposed MOF-MMD is schematically represented in Fig. 5.1. It consists of five
steps[OZD+18]:

• Preliminary step of features-like segmentation achieved using morphological oper-
ators;

• Calculation of noise level on local window;
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Figure 5.1: MOF-MMD Diagram

• Multi-scale decomposition using MMD;

• Thresholding process according to the features;

• Reconstruction of enhanced images using MMD synthesis.

The details of each step are given below.
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5.1.1 Multiplicative multiresolution decomposition

Multiplicative decomposition

The nonlinear multiplicative decomposition is a multi-scale analysis/synthesis represen-
tation of 2D signals [SB04]. This nonlinear decomposition is suitable for multiplicative
noise reduction and has been used to reduce multiplicative noise in Synthetic Aper-
ture Radar [SB04] and medical US images [OSK14]. It uses filter banks with critical
sub-sampling and perfect reconstruction (reversible). In [SB04] the authors consider a
description of the analysis and the synthesis inputs-outputs systems with equal symbol
rates at both the input and the output. The image is decomposed into an approximate
output subband y1 and three detail images y2h, y2v and y2d characterized by horizon-
tal, vertical and diagonal directions. The desired structure is obtained by performing
a polyphase decomposition of the 2D signal (the image) [SBK13]. To avoid division by
zero, the value 1 is added to the original image to provide the input image (I). The
four poly-phase components x11; x12; x21 and x22 of the input image I of size N ×M
are defined by:

xij (n,m) = I (2 (n− 1) + i, 2 (m− 1) + j) i, j ∈ {1, 2} (5.1)

where n = 1, ..., N2 and m = 1, ..., M2
The multiplicative decomposition could be used within its undecimated version,

with an equal number of coefficients at each resolution scale. The four polyphase com-
ponents for practical implementation of this undecimated algorithm are defined by:

xij (n,m) = I (n+ i− 1,m+ j − 1) i, j ∈ {1, 2} (5.2)

where n = 1,...,N and m = 1,...,M

For (i, j) ∈ {1, 2}, the linear filter hij and fij are given by: hij (k, l) = h((2k + 1) + i, 2 (l + 1) + j)
fij (k, l) = 1

hij(k,l)
(5.3)

where h and f are bi-dimensional linear filters. The approximation y1 is given by

y1 =
2∑
i=1

2∑
j=1

hijxij. (5.4)

The nonlinear analysis filters D illustrated in Fig. 5.2, is defined by the following
equations:
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Figure 5.2: The 2D MMD analysis scheme

y2v =

 β x12
x11
, x11 ≥ x12

β
(
2− x11

x12

)
otherwise

(5.5)

y2h =

 β x21
x11
, x11 ≥ x21

β
(
2− x11

x21

)
otherwise

(5.6)

y2d =

 β x22
x11
, x11 ≥ x22

β
(
2− x11

x22

)
otherwise

(5.7)

where β is a positive scalar fixed to 0.5. The details y2h, y2v and y2d vary within the
interval [0; 1]. It should be noted that high contrasted details correspond to values far
from β, whereas, values close to β correspond to smooth regions.

Multi-resolution decomposition

Multi-resolution decomposition is based on subband decomposition using analysis filter
bank that operates at different stages of the outputs. The approximate output subband
y1 is decomposed into one or more coefficient outputs of the preceding stage. In the
subband, y1 is split into its polyphase y11, y12, y21 and y22 and then filtered. At the
first resolution j = 1:

y
(j)
11 = x11, y(j)

12 = x12, y(j)
21 = x21 and y(j)

22 = x22.
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At the highest resolution J , the original discrete image is represented by the set R
defined by

R =
(
y1

(j),
(
y2h

(j), y2v
(j), y2d

(j)
))

2≤j≤J
. (5.8)

Fig. 5.3 illustrates the undecimated multiplicative multi-resolution decomposition
for one resolution level of an US image of an agar gel phantom.

Echelle 1  

Figure 5.3: 2D MMD undecimated decomposition of US image of an agar gel phantom:
approximation image (upper left), detail images vertical, horizontal and diagonal
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MMD reconstruction

Lets D̂(J)
C,1, D̂

(j)
C,2, D̂

(j)
C,3 the three obtained MMD’s coefficients according to the above-

mentioned criteria. The thresholding process will be presented in the next section.
These coefficients are reconstructed by MMD synthesis into the enhanced images
Î1, Î2, Î3. It should be noted that the approximate component y1 is the same for the
three outputs and that D̂(J)

C,j are computed as follows:

D̂
(J)
C,1 = (y(J)

2H , y
(J)
2V , y

(J)
2D )1

D̂
(J)
C,2 = (y(J)

2H , y
(J)
2V , y

(J)
2D )2

D̂
(J)
C,3 = (y(J)

2H , y
(J)
2V , y

(J)
2D )3

Here, we will describe a reconstruction on an image Î from (y1, y
(J)
2H , y

(J)
2V , y

(J)
2D ). Let

us consider one resolution of the reconstructed signal: the nonlinear synthesis filters rij
represented on Fig. 5.4, are defined by the following equations:

r11 (y2h, y2v, y2d) = 1
1 + h12

h11
γv + h21

h11
γh + h22

h11
γd

(5.9)

r12 (y2h, y2v, y2d) = γvr11 (y2h, y2v, y2d) (5.10)

r21 (y2h, y2v, y2d) = γhr11 (y2h, y2v, y2d) (5.11)

r22 (y2h, y2v, y2d) = γdr11 (y2h, y2v, y2d) (5.12)

where

γv =


y2v

β
, y2v ≤ β

1
2−y2v/β

otherwise
(5.13)

γh =


y2h

β
, y2h ≤ β

1
2−y2h/β

otherwise
(5.14)

γd =


y2d

β
, y2d ≤ β

1
2−y2d/β

otherwise
(5.15)

According to equations (5.9)-(5.12), the nonlinear response filters rij are expressed
as a function of the nonlinear outputs y2h, y2v and y2d. The reconstructed polyphase
components x̂kl are expressed as follows:

x̂11 = f11 × y1 × r11 (y2h, y2v, y2d) (5.16)
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Figure 5.4: The 2D MMD synthesis scheme

x̂12 = f12 × y1 × γv × r11 (y2h, y2v, y2d) (5.17)

x̂21 = f21 × y1 × γh × r11 (y2h, y2v, y2d) (5.18)

x̂22 = f22 × y1 × γd × r11 (y2h, y2v, y2d) (5.19)

These equations represent the reconstructed signal as a product of a smooth com-
ponent fij × y1, and a component containing all the signal variations expressed as
localized directional ratios y2h, y2v, y2d. Then, the reconstructed image Î by MMD syn-
thesis, is obtained by subtracting the value 1 from the result of the reconstructed
polyphase components as follows:

Î (n+ i− 1,m+ j − 1) = x̂ij (n,m) i, j ∈ {1, 2} (5.20)

where n = 1,...,N and m = 1,...,M
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For the multi-resolution synthesis, the reconstructed process is iterated to produce
successive approximations based on the set R (cf. equation 5.8). The final synthesized
image is obtained at resolution j = 1.

5.1.2 Features-like segmentation by morphological operators

We proposed a speckle reduction algorithm where, the features-like segmentation en-
ables the enhancement of the different features and structures of the image. It is per-
formed using mathematical morphology.

Morphological Operators

Morphological operators are used here to segment features-like structures. Indeed,
mathematical morphology is a well established domain used for image analysis. Based
on the algebra of non-linear operators, it performs better and faster than the standard
approaches in many tasks such as pre-processing, segmentation using object shape
and object quantification [SHB07]. We will define some basic morphological operators.
Firstly, a shape parameter called structuring element, characterized by its shape and
size, is used to perform morphological techniques. Depending on the type of morpho-
logical transformation, the pixel value is set to the minimal or maximal value of the
pixels [DNB13].

Let A be the grayscal image and B the structuring element. The two fundamental
operations erosion and dilation are respectively given by :

A	 (B) = min
{

(A)p | P ∈ B
}

(5.21)

A⊕ (B) = max
{

(A)p | P ∈ B
}

(5.22)

Two other operators opening/closing are obtained by combination of erosion and dila-
tion operations. An erosion (resp. dilation) by B followed by a dilation (resp. erosion)
by B̃ , the symmetrical element of B, is called an opening (resp. closing) operation:

A • (B) = (A	B)⊕ B̃ (5.23)

A ◦ (B) = (A⊕B)	 B̃ (5.24)

where ⊕, 	, ◦ and • denote dilatation, erosion, opening and closing operators, respec-
tively.
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Features-like segmentation

As medical images generally contain more round shapes than straight lines and angles,
the disk-shaped structuring element is a more appropriate choice. An algorithm for
the efficient computation of morphological operations for gray images with a circular
structuring element has been proposed in [DNB13].

Let I be the original US image and C the circular structuring element with a radius
of eight pixels. The features-like segmentation is obtained as follows:

I(o) = I ◦ C (5.25)

I(oc) = I(o) • C (5.26)

I(e) = I(oc) 	 C (5.27)

I(d) = I(oc) ⊕ C (5.28)

S = I(d) − I(e) (5.29)

where ⊕, 	, ◦ and • denote dilatation, erosion, opening and closing operators,
respectively. S represents the contour image obtained by morphological treatment and
illustrated in Fig. 5.5(b).

5.1.3 Calculation of Noise Statistics

The MOF-MMD is sensitive to noise statistics, indeed the thresholding step depends
on the knowledge of these statistics. Therefore, we propose an automatic method to
select a homogeneous window Harea to calculate the noise. The speckle filtering frame-
work proposes an automatic estimation of the noise variance [RDM99]. In the case of
homogeneous areas Harea, where the signal component can be considered constant and
the image variation is only attributable to noise, the standard deviation of the speckle
noise is given by:

R = StdHarea

µHarea

(5.30)

where StdHarea and µHarea stand for standard deviation and mean values of Harea, re-
spectively. First, in order to avoid the black part of the ultrasound, the Harea must be
inside the contour S extracted in the previous Section 5.1.2. Second, in order to detect
Harea we use MMD’s coefficient properties (described in Section 5.1.1). In smooth re-
gions, the values of the MMD’s coefficient components are close to β. Harea corresponds
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(a) Original image

(b) Contour image

Figure 5.5: Features-like segmentation
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(a) Auomatic selection (b) Manual selection

Figure 5.6: Local window selection for calculation of Cn and T

to the one that minimized the median absolute deviation mad around β

mad = 1
n

n∑
i=1

∣∣∣y1
2(h,v,d)(i)− β

∣∣∣
i∈Harea

(5.31)

The noise level is then calculated within the selected window W = Harea. So, at
each resolution, one could estimate the normalized standard deviation Cn =

√
varW

µW
by

using the variance varW and the mean value µW of the selected window. The manual
selection of multiple windows W is possible, thanks to the quality criterion selection
(cf. Section 5.1.1). Fig. 5.6(a) and Fig. 5.6(b) depict the results of obtained areas by
using automatic and manual processes, respectively. A good agreement is obtained by
automatic calculation of noise statistics. This automation makes it possible to divide
the length of the manual selection process by at least N (number of manually selected
windows).

5.1.4 Thresholding: Multi-Output filter

The existing speckle reduction methods propose a unique enhancement for the overall
image. Sometimes a stopping criterion is applied for specific structures of the image.
Nevertheless, there is only one viewing possibility. Herein, we propose a new method
that allows to the medical observer to view multiple enhancement possibilities of the
original US image. This can respond to the specific need for a diagnosis, according to
which it is more relevant to examine edges, texture, thickness, etc.

As indicated in Section 5.1.1, in smooth regions the values of the MMD’s coefficient
components are close to β. This property helps to enhance the image while preserving
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structural details and avoiding a blurring effect. In the rest of this section, we will refer
to MMD coefficient details y2H , y2V , y2D by DC where C stands for ′H ′ horizontal, ′V ′

vertical and ′D′diagonal details.

The selection of the optimal threshold is the main limitation of the thresholding
filter. To overcome this we propose to adapt thresholding to the local context. Thus,
this is done according to the pixel intensity of the images obtained from features-like
segmentation. This allows multiple enhancement possibilities of the original US image.

In this aim, at each resolution j, the MMD’s coefficient D(j)
C is thresholded in three

ways to provide the thresholded coefficient D̂(j)
C,k with k = 1, 2, 3.

Filter first output - Sharp edge enhancement

This first output of the filter is an image with enhanced edges. It is pertinent for
measures conducted in US images such as lesion size, distance and so on. For each
pixel of the contour image, a thresholding is applied as follows:

D̂
(j)
C,1 =


β if β − βt ≤ D

(j)
C ≤ β + βt

D
(j)
C × ν − (γ × α× S) if D

(j)
C + τ ≤ β

D
(j)
C × ν + (γ × α× S) if D

(j)
C − τ ≥ β

β otherwise

(5.32)

where D(j)
C and D̂(j)

C,1 represent the MMD’s coefficients at scale j of the original noisy
image I and its thresholded version, respectively. βt is a threshold that aims to reduce
the speckle of the coefficient components in the smoothest pixels. βt is set experimen-
tally to 0.0016. τ = (T × ν × α× S), with T = Cn × j/J is the threshold calculated
from the noise level at each scale j while J represents the number of scales. α is set to
0.25 to avoid the displacement of edge pixels in the filtered images. ν and γ are given
by ν = 1√

1+Cn
2
and γ = 1 − 1√

1+Cn
2
. Notice that the thresholding is proportional to

the contour images i.e., the thicker is the edges the more it is enhanced. Fig 5.7 shows
the MOF-MMD first’s output after MMD reconstruction of 5.32

Filter second output - Texture enhancement

This second output of the filter is an image with enhanced texture. It is pertinent to
enhance texture by reducing speckle while preserving the texture pattern. Let S̄ denote
the image of pixels that belong to the original image and do not belong to the contour
S. The second output results from the following thresholding:
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Figure 5.7: MOF-MMD 1st OUTPUT

D̂
(j)
C,2 =



β if β − βt ≤ D
(j)
C ≤ β + βt

D
(j)
C × ν −

(
γ × S̄

)
if D

(j)
C + ξ ≤ β

D
(j)
C × ν +

(
γ × S̄

)
if D

(j)
C − ξ ≥ β

β otherwise

(5.33)

with ξ = T × ν × S̄t, Fig 5.8 shows the MOF-MMD second’s output after MMD
reconstruction of 5.33

Filter third output - Global image enhancement

The third output of the filter is a global enhancement of the image. Based on the
complement of the image contour (CoS), which is obtained by subtracting the pixel
value of the contour image S from the maximum pixel value of (S), Smax is as follows:

CoS = Smax − S (5.34)
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Figure 5.8: MOF-MMD 2nd OUTPUT

The MMD’s coefficients are thresholded according to the CoS image values, as
follows:

D̂
(j)
C,3 =


β if β − βt ≤ D

(j)
C ≤ β + βt

D
(j)
C × ν − (γ × CoS) ifD(j)

C − (γ × CoS) ≤ β

D
(j)
C × ν + (γ × CoS) ifD(j)

C + (γ × CoS) ≥ β

β otherwise

(5.35)

where n = 1,...,N and m = 1,...,M

Fig 5.9 shows the MOF-MMD third’s output after MMD reconstruction of 5.35

5.2 Experiment and validation of mof-mmd

In order to evaluate the performance of the proposed MOF-MMD, two kinds of tests are
conducted: quality assessment using objective metrics and qualitative visual evaluation
by medical experts. The proposed filter performance is compared with two recent and
efficient speckle reduction filters, OBNLM [CHKB09] and ADMSS [RLVSFMF+14].
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Figure 5.9: MOF-MMD 3rd OUTPUT

5.2.1 Image dataset

The original clinical US images of in vivo abdominal liver were obtained from a retro-
spective database of the University Hospital of Angers in France. The 21 experimental
images of different liver with different resolutions (1080× 810, 1024× 768 ) were cap-
tured by SuperSonic Aixplorer and the Siemens Acuson S2000 system. The images are
of granular, smooth, cirrhotic and non-cirrhotic liver. The ethical approval to use image
after anonymization was obtained from the University Hospital of Angers. The images
were registered in an external PC and processed offline.

5.2.2 Evaluation methods

The evaluation is carried out, on the 21 ultrasound images, in terms of speckle re-
duction capacity and the improvement of image quality. To quantify the speckle re-
duction achieved by different filters, the speckle’s signal-to-noise ratio (SSNR) is mea-
sured [KLY16b]. For the quality evaluation metrics, three Image Quality Assessment
(IQA) metrics were also chosen to assess the quality of the filtered images. As there
is no genuine reference image in our cases, we consider blind objective metrics. For
evaluating our proposed method, we use the two state-of-the-art no-reference metrics
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NIQE [MSB13] and BIQES [SW15], presented in 3, and our proposed blind metric
NIQE-K [OZD+16].

5.2.3 Subjective experiment

Human observer

Three radiologists with different years of experience (3 years, 7 years and more than 10
years experience) were asked to score the perceived quality of the filtered images, based
on four criteria: the image contrast, the ability to diagnose, the texture conspicuity and
the edge sharpness. The radiologists are from the affiliated Hospital of Nanjing Medical
University in China, thus they haven’t seen the test images before. The assessment was
conducted in an environment similar to the one in which radiologists practice daily.

Subjective test methodology

The test according to SAMVIQ is conducted task by task. Each task includes an explicit
reference, a hidden reference and all processed versions: MOF-MMD OUTPUT1-2-3,
ADMSS and OBNLM.

According to [KBP+17] Simple Stimulus (SS) protocols perform better than Double
Stimulus (DS) ones in terms of subject fatigue and avoidance of mistakes due to ac-
cidentally reversing scores in DS. Additionally, SAMVIQ scores with greater accuracy
compared to ACR for the same number of observers (on average 30% fewer observers
were required) and is more reliable for the perceived quality scores of the collected
data [RPCH10]. For the above cited reasons, we choose the SAMVIQ method in this
test since it provides more accurate and reliable perceived quality scores on collected
data.

Fig. 5.10 shows the graphical user interface (GUI) of the experiment. The observer
is asked to score each stimulus using a continuous rating scale from 0 to 100. The
rating scale is categorized according to the adjectives Low, Medium and High. The
observer is allowed to view a stimulus multiple times in a task and change the score,
which lengthens the duration of the test session.For our subjetcive test, the number of
reference images is limited to 12 as the subjective test, particularly with the SAMVIQ
protocol, is intrinsically time-consuming. Accordingly, evaluators are asked to evaluate
a total of 72 images on four criteria.

In the purpose avoiding observer fatigue, the test is divided into 2 sessions. In each
session, 2 criteria are evaluated by asking the following questions to assessors:
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Figure 5.10: Graphical User Interface

• Session 1

– Diagnosis: Please score how well the enhanced image helps the diagnosis.

– Contrast: Please score the contrast improvement of the enhanced image (dif-
ference between the tissue and the background).

• Session 2

– Texture conspicuity: Please score the general clarity of the texture.

– Edge sharpness: Please score the visibility of the tissue border

Representative images for each criterion with associated score are shown in Fig. 5.11
and 5.12.

The image 5.11(a) has less difference in brightness between the light and dark parts
(i.e., contrast) than image 5.11(b). On the other hands some edges are depicted in
Fig. 5.11, and are more visible inside the blues circles than inside the reds ones.

The images 5.12(a) and 5.12(b) show more clearly the difference in texture enhance-
ment. The red and blue circles represent two areas where the grain pattern is smooth
and raised, respectively.
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(a) Contrast score=16.66 Edge score=23.33 (b) Contrast score=80 Edge score=80

Figure 5.11: Illustration of evaluated contrast and edge criterion with associate sub-
jective score.

(a) Texture score=16.66 (b) Texture score=86.66

Figure 5.12: Illustration of evaluated texture criterion with associated subjective score
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5.2.4 Objective evaluation results

For objective comparison, the SSNR and the three quality metrics are calculated and
depicted with a box plot in Fig. 5.13. Considering the speckle reduction capacity shown
by the SSNR in Fig. 5.13(a), the proposed method as well as the OBNLM and ADMSS
reduce the speckle while the OBNLM filter has a slightly better performance. However,
the OBNLM filter offers a bad image quality due to the over-smoothing effect, cf.
Fig. 5.13(b)and 5.13(d).

Regarding the three outputs of the proposed method, the NIQE, NIQE-K and
BIQES indicate that they render a higher quality compared to the OBNLM and the
ADMSS. Moreover, the standard deviations of the three outputs are lower than those
of the ADMSS and OBNLM, which indicates a lower dispersion and a higher unifor-
mity of the processed images. The MOF-MMD substantially reduces the speckle while
improving the quality of the image. It provides three outputs that are useful for the
diagnosis of general aspect, echo pattern and outer border.

5.2.5 Subjective evaluation results

Table 5.6 shows the MOSs given by radiologists for five sets of processed images shown
in Fig. 5.14. For the four considered criteria (contrast, texture conspicuity, edge sharp-
ness and diagnostic) the three medical experts mostly scored the proposed method as
better. The OBNLM method has relatively lower scores due to the artificial appearance
and the oversmoothing texture which is unnatural for the radiologists. Considering the
texture conspicuity, the three radiologists find Output1 more noticeable, meaning that
the features-like segmentation based on mathematical morphology is also valuable for
texture enhancement. For contrast enhancement, according to three radiologists, the
MOF-MMD Output1 improves contrast. Considering the edge sharpness and the diag-
nostic parameters, radiologist 1 indicates a better diagnostic and sharpness of the edges
on output3, radiologist 2 scores output1 as that which best enhances the edges and
radiologist 3 finds output2 as the best one. This result suggests that the edge sharpness
coincides with the diagnostic facility and that the years of experience of the radiologist
may be an important factor for making a diagnosis. The great interest of the proposed
method is that it provides radiologists with the possibility of choosing an output as
they wish according to their experiences and needs in different circumstances.

Another observation from the subjective scoring is the difference between the initial
hypothesis and the results. In fact, the multi-output filter supposes initially output 1
for edge sharpness, output 2 for texture enhancement and output 3 for general improve-
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(a) SSNR (b) NIQE

(c) NIQE-K (d) BIQES

Figure 5.13: Box plots of SSNR and quality assessment metrics of US images and
their filtered versions: ADMSS, OBNLM, proposed OUTPUT1-3. (A higher SSNR indicates
less speckle. The lower values of metrics means higher performances)

ment of the image quality supposed to facilitate the diagnostic task. This experiment
shows that output 1, considering the scores of radiologists and all criteria (contrast,
texture conspicuity, edges sharpness and diagnostic), is generally the most adequate as
it is ranked best most often, all parameters combined. Finally, this latter finding about
output 1 suggests that the features-like segmentation by morphological operators is a
very interesting step for enhancing, and could help the application of image processing
techniques in US images.

Statistical analysis

The collected scores are further analyzed statistically with ANOVA (Analysis of Vari-
ance) using MATLAB’s ANOVA function. For each test, the perceived quality is se-
lected as the dependent variable. The image content’s, the despeckleing algorithms
and the observers are selected as independent variable. The results are summarized
in Table 5.2, and show that there is no significant difference between observers (P-
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(a) Original (b) ADMSS

(c) OBNLM (d) Proposed Output1: Edges

(e) Proposed Output2: Texture (f) Proposed Output3: Global

7

Figure 5.14: Subjective comparison of speckle reduction of liver US image
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Table 5.1: Subjective mean scores of speckle filtering methods
Radiol1 Radiol2 Radiol3

Contrast Texture Edges Diagn. Contrast Texture Edges Diagn. Contrast Texture Edges Diagn.

ADMSS 43.33 50 43.33 39.16 46.66 52.5 50.83 48.33 55.83 56.66 52.5 51.66
OBNLM 45.45 34.54 32.72 37.27 49.09 40.83 47.27 41.81 33.63 38.18 30.91 26.36
Proposed
Out-
put1

50 76.66 79.16 77.5 55.83 66.66 79.16 64.16 76.66 78.33 69.16 69.16

Proposed
Out-
put2

39.16 75.83 79.16 80.83 55 65 69.16 55.83 75.45 70 72.73 79.09

Proposed
Out-
put3

42.5 75.83 81.66 81.66 53.33 66.66 76.66 56.66 74.16 66.66 70.83 75.83

value>0.05) in scoring the image quality. Furthermore, the image content and despeck-
ling method both have a significant effect on perceived quality (P-value<0.05). The
impact of image content is probably due to the fact that the original images are dif-
ferent in terms of parenchymal tissue echogenicity (i.e., the tissue ability to bounce an
echo). A statistical T-test is further performed for pairwise comparisons with hypothesis
testing between the despeckling algorithms. The results are summarized in Table 5.3,
and indicate that the perceived quality is significantly better for the proposed method
(OUTPUT1, OUTPUT2 and OUTPUT 3). For the pairwise comparisons: OUTPUT1
vs OUTPUT2, OUTPUT2 vs OUTPUT3 and OUTPUT1 vs OUTPUT3 the difference
is not statistically significant for each case.

Table 5.2: Results of ANOVA to evaluate the effect of the observer, content and
despeckling on the perceived quality

Factor dF F P-value
Observer 2 2.25 0.106
Content 11 2.27 0.009

Despeckling algorithms 4 68.04 <0.001

Correlation analysis

In this section we briefly analyze the correlation between objective metrics and the col-
lected perceived scores. Being able to predict the perceived image quality would help to
shorten the times of the subjective tests. The two well-known correlation coefficients:
PLCC (Pearson Linear Correlation Coefficient) and SROCC (Spearman Rank Order
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Correlation Coefficient) are used as correlation metrics. PLCC requires constructing
nonlinear mapping between objective metrics and subjective scores using Logistic re-
gression [SBC05].

Table 5.3: T-Test of statistical significance for pairwise comparisons of despeckling
method. Three symbols: "1" means that the method for the row is significantly better
than the method for the column, "-1" means that it is significantly worse, and "0" means
that it is statistically indistinguishable

ADMSS OBNLM OUTPUT1 OUTPUT2 OUTPUT3
ADMSS 0 -1 1 1 1
OBNLM 1 0 1 1 1

OUTPUT1 -1 -1 0 0 0
OUTPUT2 -1 -1 0 0 0
OUTPUT3 -1 -1 0 0 0

MP = β1

(
1
2 −

1
1 + exp(β2(M − β3))

)
+ β4M + β5 (5.36)

where M and Mp are the original and the fitted objective NR-IQA scores respectively.
β1, β2, β3, β4, β5 are the regression parameters of the logistic function. The results of

Table 5.4: PLCC after nonlinear regression and SROCC between MOS and NR-IQ
metrics

PLCC SROCC
Criterion NIQE NIQEK BIQES NIQE NIQEK BIQES
Contrast 0.34 0.30 0.23 0.25 0.10 0.37
Diagnostic 0.82 0.50 0.33 0.56 0.38 0.30
Texture 0.79 0.43 0.65 0.46 0.34 0.56
Edges 0.88 0.61 0.72 0.61 0.54 0.60

correlation between the three metrics and the perceived quality of contrast, diagnostic,
texture and edges, are summarized in Table 5.5. One can conclude that the NIQE
metric is reliable to predict the perceived quality by radiologists for the diagnostic task.
Moreover, the characterization of the lesion is well predicted by the NIQE as edge and
texture perception by radiologists is highly correlated with the NIQE. However, the
contrast perceived by the radiologists is far from the one assessed by the three objective
metrics used.
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Subjective scores

the subjective evaluation was done by three radiologists, with different years of experi-
ence (3 years, 7 years and more than 10 years experience). They subjectively rated the
images based on their perceptual assessment considering four criterion: the contrast,
diagnostic, edges sharpness and texture conspicuity. The radiologists are from Nan-
jing Yike Medical University Affiliated Hospital in China. The obtained scores were
averaged across despeckling methods to yield a mean opinion scores for each image:

MOSi(criterion) = 1
S

S∑
i=1

rij(criterion) (5.37)

Where S is the total number of the subject, rij(criterrion) represents the raw score of the
i-th image given by the j-th subject considering a criterion.

5.3 Correlation between subjective and objective
scores

Fig 5.15 shows the scatter plots of MOS versus original (OR) and filtered images
ADMSS (AD),OBNLM (NLM) and three MOF-MMD (MS1, MS2, MS3) for contrast,
diagnostic, edges and texture, respectively. Comparing the MOS of the original ultra-
sound images and filtered by different methods, we see that filtering, depending on the
method used, can slightly improve the quality perceived by medical experts. Regarding
the evaluation based on the contrast criterion, MOS indicates a clear improvement
through Multi-Scale (MS) filtering. In terms of diagnostic criterion, the disparity of
MOS indicates a significant improvement for some images. However, the average of
the MOS shows that on overall images the improvement is not significant. Moreover,
the quality can be impaired by unsuitable filtering. For edges assessment criterion the
improvement is noticeable, according to the MOS, with multi-scale filtering. The MOS
depicted in Fig5.15(c) shows the last criterion considered subjectively. The texture is
slightly improved only by MS1, and deteriorated by the rest of the despeckling pro-
cesses. This is due to the fact that the pattern of speckle changes with parenchymal
texture in the presence of steatosis and fibrosis at microarchitectural levels and may
be imperceptible to the eye on a conventional ultrasound image[GG14].

Table 5.5 shows the PLCC and SROCC values respectively, between the four NR-
IQAmetrics and perceived MOS. The best-performing metric in each row is highlighted.
One can see that the NIQE metric is consistently high correlated with the subjective
scores. In particular for the assessment in term of diagnostic, texture and edges. The
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(a) Conrast (b) Diangnostic

(c) Texture (d) Edges

Figure 5.15: Scatter plots of MOS versus original and filtered images for Contrast,
Diagnostic, Texture and Edges

BRISQUE metric has also good performances when assessing the quality consider-
ing diagnostic, texture and edges. The best correlation performances are obtained for
edges quality assessment. Therefore, the NIQE and BISQUE metric are suitable in
term of perceptual quality perceived during the diagnosis. Indeed, the edges of an US
image represent a crucial part of the image and has its importance when performing a
diagnosis [RM16].

It can be observed that for the assessment of contrast the BRISQUE is slightly
correlated to the subjective scores. Nevertheless the four metrics have insufficient per-
formance to evaluate the quality of contrast as perceived by expert.

A plot with a best fitting logistic curve is shown in the Fig 5.16. It shows NIQE
and BRISQUE versus MOS of contrast, diagnostic, edges and texture respectively. One
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Table 5.5: PLCC between MOS and NR-IQ metrics after nonlinear regression
Criterion NIQE NIQEK BIQES BRISQUE
Contrast 0.34 0.30 0.23 0.37
Diagnostic 0.82 0.50 0.33 0.72
Texture 0.79 0.43 0.65 0.72
Edges 0.88 0.61 0.72 0.80

Table 5.6: SROCC between MOS and NR-IQ metrics
Criterion NIQE NIQEK BIQES BRISQUE
Contrast 0.25 0.10 0.37 0.28
Diagnostic 0.56 0.38 0.30 0.56
Texture 0.46 0.34 0.56 0.64
Edges 0.61 0.54 0.60 0.67

can observe that the majority of NIQE and BRISQUE scores are close to the adjusted
curve. That indicates that the NIQE and BRISQUE score the quality of image close to
the one perceived by medical experts. With the only exception of contrast evaluation
which is not correlated between metrics and experts.

Conclusion

In this chapter, we addressed a fully automatic multi-output filter based on multiplica-
tive multiresoution decomposition (MOF-MMD). The aim is to improve the ability of
interpreting the ultrasound image for the medical user. The MOF-MMD permits en-
hancement of the image in multiple ways, according to the structure that needs to be
viewed. We use both the specificity of the multi-scale decomposition (MMD) and the
advantage of mathematical morphology to delimit the undesirable structures. To evalu-
ate the performance of the proposed method, the SSNR and three blind quality metrics
are used to quantify the speckle reduction and quality improvement of the US image.
Moreover, a subjective evaluation is carried out according to the recommendation with
the SAMVIQ protocol. Furthermore, we analyze the recorded scores in terms of corre-
lation with the objectives metrics used in this thesis. The visual evaluation shows that
the proposed method with its various outputs is more or less valuable according to the
different years of experience of the radiologists. The correlation analysis shows that
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(a) NIQE vs MOS Conrast (b) NIQE vs MOS Diangnostic

(c) NIQE vs MOS Texture (d) NIQE vs MOS Edges

(e) BRISQUE vs MOS Conrast (f) BRISQUE vs MOS Diangnostic

(g) BRISQUE vs MOS Texture (h) BRISQUE vs MOS Edges

Figure 5.16: Scatter plots of NIQE versus MOS of Contrast, Diagnostic, Texture and
Edges
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the subjective scores are correlated to the NR-IQA NIQE metric which alternatively
allows comparison of the medical ultrasound.



CHAPTER

6 The compression
scheme based on MMD

Introduction

The compression of medical images is of great interest in the current conjuncture of
development of medical data. The great challenge is to preserve data integrity, as the
medical data and doctors opinions are very sensitive, for obvious reasons, to confidence.
In this chapter, we will propose a lossy compression method based on our previous
works and knowledge about quality assesment of medical images. Koff et al. [KBB+09]
conduct a study on irreversible compression and its impact on visual quality for ensure
accurate diagnostic. Another work on this topic presented in [KUBW+14] where the
authors present a concept of "diagnostically lossless" compression by setting a threshold
in terms of FR quality metric, will be also introduced. The proposed method is with
respect of these fulfills. However, the lack of time did not allow us to perform tests on
a consistent database. Nonetheless, the obtained preleminary results suggest that the
proposed method is valuable for medical image compression.

6.1 Compression scheme based on MMD

The proposed compression scheme is based on the Multiplicative Multiresolution De-
composition with an Embedded Zerotree coding. The aim of the proposed method is to
compress images and to improve the quality simultaneously. Generally, for ultrasound
images, by reducing speckle during compression, and for MRI by improving diagnostic
ability.

The Embedded Zerotree MMD algorithm (EZ-MMD) uses the same principle of
the Embedded Zerotree Wavelet (EZW) initially proposed by [Sha93]. The algorithm
is based on the following EZW key concepts.
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Figure 6.1: Zerotree coding of MMD’s coefficient

• Divide the image into blocks of size 16 × 16 and for each block, apply the next
steps.

• Multiplicative Multiresolution Decomposition.

• Zerotree coding which provides a compact multiresolution representation of sig-
nificance maps.

• Prediction of the absence of significant information across scales by exploiting the
self-similarity inherent in images.

• Entropy-coded successive-approximation quantization.

• Lossless data compression which is achieved via adaptive arithmetic coding.

The MMD’s coefficients are real, in order to obtain discret coefficients, a mp param-
eter is used for truncation. Figure 6.1 illustrates the zerotree coding applied to MMD’s
coefficients, and is constructed as follows [Sha93]:

• Every MMD’s coefficient at a given scale can be related to a set of coefficients at
the next finer scale of similar orientation.
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• Zerotree root (ZTR) is a low scale "zero-valued" coefficient. The magnitude of
a coefficient is less than a threshold TZ for which all the related higher-scale
coefficients ( all its descendants) are also "zero-valued".

• Specifying a ZTR allows the decoder to "track down" and zero out all the related
higher-scale coefficients.

• Isolated zero: if a coefficient has some significant descendants, and its the mag-
nitude is less than the threshold TZ, then this coefficient is labeled as isolated
zero.

• Positive significant: if a coefficient is greater than the threshold TZ at level k, and
is positive, than it is labeled as positive significant.

• Negative significant: if a coefficient is greater than the threshold TZ at level k,
and is negative, than it is labeled negative significant.

The reconstruction process involves applying the decoding followed by MMD re-
construction.

6.2 Experiment and validation of compression
scheme

6.2.1 results

We have tested the proposed compression scheme on ultrasound (c.f. 5.14) and MR
images (c.f. 4.2.3). To quantitatively evaluate the algorithm, the EZ-MMD is mainly
based on 2 parameters that can be tunned. In this section we presen,t some results with
different values of TZ and mp. Finaly, we will suggest a choice of parameter to perform
the compression and to compare the proposed method to with ones standardized in
DICOM: the JPEG compression.

For the assessment of quality, three evaluation metrics are used :

• NIQE: This metric has been widely used for quality assessments of different modal-
ities of medical images. NIQE scores are often correlated to radiologist’s opinion.

• NIQE-K: This metric detailed in chapter 4, was validated for assessing compressed
MR image [OZD+16].
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Figure 6.2: Original MR image

• SSIM: It has been demonstrated in [KUBW+14] that SSIM presents a high level
of confidence considering the quality of the compressed image is diagnostically
acceptable. Furthermore, a threshold values of 0.95 for the SSIM was defined
and juged acceptable for compressed images, i.e. the compression is considered
as "diagnostically lossless".

Ultrasound images

In this section, we present the results of EZ-MMD compression applied on US images
(Figure 6.3). The US images are of diffrent size: for our test, we croped the images
in order to obtain a size of 512 × 512. Table 6.1 shows the results for a threshol TZ
of and different mp. For a bitrate of 1.16 bpp the PSNR value reflect a near-lossless
compression. Furthermore, the SSIM, which is the closest metric to radiologists’ assess-
ments acoording to [KUBW+14], permitd to quaify the compression as "diagnostically
lossless". Also, the EZ-MMD with its two parameters TZ and mp offers several possi-
bilities of compression with low bitrate and potentially an enhancement of the quality
to the user. One could see that for mp = 100 there is a good compromise between the
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Figure 6.3: Original US image

quality and the bitrate, so we chosse this mp for testing various thresholds presented
in Table 6.2. From this table, we conclude that the proposed scheme reached its limit
of compression for TZ = 2. Indeed, for greater values of TZ, the quality of the image
is degraded: the NIQE-K increases and the SSIM reaches the limit set in [KUBW+14].

Table 6.1: EZ-MMD compression with diffrent thresholds values with TZ = 0.5 US
image with NR quality scores NIQEoriginal = 4.72 NIQE −Koriginal = 17.93

mp BPP PSNR NIQE NIQEK SSIM
1000 1.36 93.28 4.72 18 1
500 1.21 75.14 4.72 17.86 1
400 1.16 71.28 4.72 17.99 1
300 1.10 66.23 4.71 17.46 1
200 1.01 61.23 4.71 17.35 0.99
100 0.85 54.69 4.6 17.24 0.99
50 0.69 49.02 4.41 16.03 0.99
40 0.63 47.29 4.31 15.84 0.99
30 0.56 44.87 4.07 14.09 0.99
20 0.45 41.70 3.89 14.14 0.98
10 0.27 36.31 4.11 15.19 0.93
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Table 6.2: EZ-MMD compression with different thresholds values with mp = 100 US
image with NR quality scores NIQEoriginal = 4.72 NIQE −Koriginal = 17.93

TZ BPP PSNR NIQE NIQEK SSIM
0.25 1.01 61.29 4.70 17.33 0.99
0.5 0.85 54.69 4.60 17.24 0.99
1 0.68 49 4.4 16.05 0.99
2 0.5 43.33 4.12 14.91 0.98
4 0.32 37 3.98 15 0.95
5 0.15 33 5.89 22.83 0.87

The performance of the Embedded Zerotree MMD based scheme is compared to
wavelet based one and represented in Figure 6.4. The curve shows that the image
quality increases with the compression ratio and then decreases. Moreover, the quality
of the compressed image is better than the original for given bitrates. This signify that
the compression improved the quality and reduce the speckle.

MRI images

We present the results of EZ-MMD compression applied on MRI images of size 1024×
1024 (Figure 6.2). Table 6.3 shows the scores obtained for different values of threshold
withmp = 100 on compressed MRI shown in Figure 6.2 . One could see, as a preliminary
step, that the quality is acceptable for a diagnostic task. In fact, considering the quality
criterion formulated by [KUBW+14] in term of SSIM, the images are confidentially
compressed in term of diagnostic as we obtain a SSIM of 0.99 for a bitrate of 0.49 BPP.

Table 6.3: EZ-MMD compression with diffrent thresholds values with mp = 100 MR
image with NR quality scores NIQEoriginal = 8.55 NIQE −Koriginal = 12.89

Threshold TZ BPP PSNR NIQE NIQEK SSIM
0.25 0.79 54.72 8.39 12.64 0.999
0.5 0.64 50.82 8.12 12.37 0.996
0.75 0.49 43.51 7.15 11.66 0.989
1 0.49 43.51 7.15 11.66 0.989
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(a) PSNR (b) NIQE

(c) NIQE-K (d) PSNR

(e) NIQE (f) NIQE-K

Figure 6.4: Plot wavelet compression scheme VS MMD compression scheme

Comparison with JPEG compression solutions

Table 6.5 summarizes the assessment of compressed MR images using JPEG, JPEG
XR, and JPEG 2000. Notice that the result are obtained using Pixillion software. The
image is compressed with intrinsic parameter of the software. The results show that the
EZ-MMD offers an acceptable compression ratio with an improvement of the quality
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Table 6.4: EZ-MMD compression with diffrent thresholds values with mp = 10 MR
image with NR quality scores NIQEoriginal = 8.55 NIQE −Koriginal = 12.89

Threshold TZ BPP PSNR NIQE NIQEK SSIM
0.125 0.46 41.69 6.6 11.16 0.98
0.25 0.33 36.46 5.7 11.4 0.95
0.5 0.22 31.85 6.02 14.75 0.90
0.75 0.11 28 5.93 17.37 0.84
0.75 0.11 28 5.93 17.37 0.84

Table 6.5: Quality assessment of compressed MR image
Method BPP PSNR NIQE NIQEK SSIM
JPEG 1.9379 35.62 16.42 20.02 0.90

JPEGXR 0.8393 47.98 8.31 12.40 0.99
JPEG 2000 0.1391 35.47 16.42 20.02 0.90
EZ-MMD 0.4937 43.51 6.94 11.31 0.99

in term of diagnostic, with a NIQE-K of 11.31 (the lower it is, better is the quality).
Indeed, from the results presented in chapter 4, the NIQE-K is valuable for assessing
the quality of medical images in general, and for MRI in particular it is even more
correlated to expert’s opinion. Regarding the SSIM value it is 0.99 for EZ-MMD and
JPEGXR wich means that the compression is acceptable, and that the compressed
image permit a to establish a diagnosis as well as the original one. Otherwise, the
image compressed by JPEG and JPEG 2000 returns an SSIM of 0.90 which cannot be
acceptable for medical data compression.

Conclusion

In this chapter we have presented a compression scheme based on MMD for compression
of medical images. The preliminary results of tests conducted using this scheme show
that this method can be used confidently for diagnosis on medical data. However, the
tests must be extended to a database with subjective evaluation involving medical
expert or at least with model observer evaluation.
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7 Conclusion

7.1 Conclusion

In this thesis, a complete scheme to compress medical image with an efficient despeck-
ling algorithm is proposed with demonstrations of its efficiency with respect of the
diagnostic quality.

Firstly, we have investigated the image quality assessment in medical context. Ther-
fore, we have study the possible usability of state-of-the-art no-reference IQA metrics
originally designed for natural image, in the context of medical ones. We have also
proposed a modified NIQE, called NIQE-K, inspired by some BIQES features and
more adapted to medical images. Three experiments have proved the usability of the
proposed metric in medical context. One was conducted on natural IQA database
(LIVE-Release2 and CSIQ), the second on ultrasound image corrupted with noise and
the last one includes tests on Magnetic Resonance images with compression distortions
analyzed with quality scores evaluated by radiologists.

In a second time, we have proposed a Multi-Output filter based on Multi-Output
Filter based on Multiplicative Multiresolution Decomposition (MOF-MMD) for reduc-
ing the speckle present US. A multi-scale approach that enhances different features and
structures of the images previously extracted by mathematical morphology operators.
We have demonstrated, trough objective and subjective evaluation of the diagnostic
quality of the image, that the MOF-MMD effectively reduces the speckle and improves
the quality of the US images by enhancing the boundaries of lesions and reducing
the speckle in the echo texture of organs while preserving the pattern without neither
over-smoothing nor artificial appearance. Moreover, subjective tests have shown that
the MOF-MMD with its various output is more or less valuable according to different
years of experience of the radiologists.
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Finally, a compression scheme was built without compromising the diagnostic task,
furthermore the image is enhanced and its quality is potentially more appropriate for
diagnostic task.

As conclusion, in this thesis we have explored several issues related to medical
imaging.This allows us to better understand challenges in the medical field of image
processing. Furthermore, several research topics were also investigated such as objective
quality assessment, preparing and conducting subjective tests, speckle reduction and
compression of images in accordance with clinical needs.

7.2 Perspectives

7.2.1 Quality assessment

One of the main challenge in this thesis is the quality assessment of medical images.
The NIQE [MSB13] approaches often radiologists’ perception, despite it is based on
natural scene statistics. Furthermore, the main achievement of our work is an ultra-
sound database. As a perspective, we aim to adapt the NIQE to medical images by
extracting the features from own corpus of medical images and fitting them to a MVG
model, which then serves as a reference model to assess the quality of the image.

7.2.2 Filtering

In medical context

The selection of optimal threshold is the main limitation of the thresholding filter.
Hence, the thresholding may be improved particularly to adapt it to other imaging
modalities. The statistical analysis suggests that the content of the image has a signif-
icant effect on the perceived quality. It would be beneficial to study the impact of the
image content: healthy versus pathological, granular versus smooth on the diagnostic
performance. Finally, one can note that the ultrasound examination is used in real time
for a wide variety of clinical tasks. So, it would be of great interest to embed a speckle
filter into ultrasound imaging systems. Also, further improved results can be expected
by incorporating some feature learning based strategies into the proposed methods,
such as dictionary learning or deep convolution learning [LHY+17, LMZ+17, YZY+17].
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In holographic imaging

Despite the development of recently de-speckling methods, many have not yet attained
the required level of effectiveness in digital holography. As a perspective we aim to
apply our MOF-MMD to holographic imaging.

7.2.3 Compression

We have studied the lossy compression on US and MRI, however tests must be extended
to a larger database with subjective evaluation. Moreover the peoposed scheme can be
adapted to other modalities such as mammography.

Another perspective, is to apply and study the proposed method in telemdecine
application: the tele-echography.
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