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The main goal of this dissertation is to answer one of the critical questions about dynamic ride-sharing services: Can dynamic ride-sharing reduce congestion?

In this thesis, we propose a simulation-based optimization framework for dynamic ridesharing. Then using this framework, we assess the dynamic ride-sharing impact on two different network scales to find the answer to this question. When assessing the dynamic It is my pleasure to acknowledge the roles of several individuals who were instrumental in completing my Ph.D. research.

ride-sharing problem, two important points should be considered. First, how the ridesharing system serves the network demand and second, how the ride-sharing system is impacted by the network and in particular by congestion. Then we can assess the impact of such a service on the network. Most of the existing approaches focus on the first point, i.e., designing the demand matching while using basic assumptions for the second point, mainly constant travel times.

The proposed method in this thesis can outperform the existing methods in the literature. The optimization algorithm can provide high-quality solutions in a short time.

Our solution approach is designed to be exact for small samples. Then, to be able to handle the large-scale problems, it is extended with several heuristics that keep the general design for the solution method but significantly reduce its computation time. In the simulation component, a "Plant Model" is applied based on the "Trip-based Macroscopic Fundamental Diagram (MFD)" to represent the traffic dynamics reality and a "Prediction Model" is applied based on the mean-speed to be used during the assignment process.

We perform an extensive simulation study (based on real-world traffic patterns) to assess the influence of dynamic ride-sharing systems on traffic congestion. In the medium-scale (Lyon 6 + Villeurbanne), the results showed that ride-sharing could not significantly improve the traffic situation. High levels of market-share add additional travel distance and travel time to the trips and lead to more traffic in the network. In large cities, the results are entirely different from those in small and medium-sized cities. In large-scale (Lyon city in France) simulations, the proposed dynamic ride-sharing system can significantly improve traffic conditions, especially during peak hours. Increasing the market-share and the number of sharing can enhance this improvement. Therefore, the proposed dynamic ride-sharing system is a viable option, alleviating stress on existing public transport, to reduce the network traffic in populated and large-scale cities.

i Dedication I dedicate this thesis to my mother, Nasrin, for her endless love, support and sacrifices. 

Context

Today's cities face challenges in terms of congestion, lack of space, growing population, air quality, noise, health, and economic development. Citizens want to be mobile and move from a to b -within and between cities -easily, cheap, smart, and clean. Expanding infrastructure in the urban environment is almost never an option and not a sustainable long-term solution: It is not cost-effective, there is no space, and it leads to environmental issues. Meanwhile, innovation and competitiveness are crucial for the future of transportation.

Large-scale deployment of New Mobility Services (NMS) is part of the solution in dealing with these challenges. Mobility as a Service (MaaS), shared mobility concepts, and smart bicycle solutions can contribute to wealthy, healthy, clean, and accessible cities.

Shared mobility has gained popularity in recent years, especially after the mini-revolution in transportation with the launch of shared mobility services like Vélib in Paris ( [START_REF] Nadal | Bike sharing sweeps paris off its feet[END_REF]), Zipcar in America ( [START_REF] Botsman | Beyond zipcar: Collaborative consumption[END_REF]), Autolib in France ( [START_REF] Hildermeier | Two ways of defining sustainable mobility: Autolib'and bemobility[END_REF]), Car2Go in Germany ( [START_REF] Firnkorn | What will be the environmental effects of new free-floating car-sharing systems? the case of car2go in ulm[END_REF]) and others. Shared-use mobility describes transportation services that are shared among users, including public transit, taxis and limos, bike-sharing, car-sharing (round-trip, one-way, and personal vehicle sharing), ride-sharing (carpooling, vanpooling), ride-sourcing/ridesplitting, scooter sharing, shuttle services, neighborhood jitneys, and commercial delivery vehicles providing flexible goods movement. These new services represent innovative re-sponses to the demand for new options and offer an opportunity to provide more mobility choices. Each service has specific operational specifications, constraints and variants. Among these services, ride-sharing and taxi-sharing are getting more popular, and big companies like Uber and Lyft ( [START_REF] Cramer | Disruptive change in the taxi business: The case of uber[END_REF][START_REF] Henao | Impacts of Ridesourcing-Lyft and Uber-on Transportation Including VMT, Mode Replacement, Parking, and Travel Behavior[END_REF]) are becoming reputed in this background.

Ride-sharing refers to a mode of transportation in which individual travelers share a vehicle for a trip and split travel costs.

The large travel demand for personal car transportation, together with low occupancy, leads to traffic congestion that is an increasingly important issue in many urban areas with rapid population and economic growth [START_REF] Pisarski | Commuting in America III: The third national report on commuting patterns and trends[END_REF].

The most recent data for the average number of passengers per car (including the driver) for the European countries is approximately 1.45 passengers per vehicle [START_REF]European environment agency[END_REF]. This low occupancies together with the large demand for automobile transportation leads to traffic congestion in many urban areas. The congestion has cost nearly 100 billion euro, or 1% of the EU's GDP, annually [START_REF]Mobility and transport[END_REF]. In addition, private cars are the dominant transportation mode consuming fuel and producing carbon dioxide emissions [START_REF] Hensher | Climate change, enhanced greenhouse gas emissions and passenger transport-what can we do to make a difference?[END_REF][START_REF] Schwanen | Scientific research about climate change mitigation in transport: A critical review[END_REF]. An average European car can emit more than 120 gCo2/km [START_REF] Brink | Mitigating co2 emissions from cars in the eu (regulation (ec) no. 443/2009)[END_REF][START_REF] Fontaras | Fuel consumption and co2 emissions from passenger cars in europe-laboratory versus real-world emissions[END_REF]. Therefore, a successful ridesharing program that increases the occupancy of vehicles may make a significant saving on driving costs of the roadway system. Dynamic ride-sharing (real-time ride-sharing or ad-hoc ride-sharing) refers to a system which supports an automatic ride-matching process between participants at very short notice or even en-route [START_REF] Agatz | Optimization for dynamic ride-sharing: A review[END_REF].

The dynamic ride-sharing problem involves two sub-problems: 1) Satisfying user requests and managing a vehicle fleet -2) Accurately predicting travel times to determine vehicle availability and pickup/drop off times.

The first sub-problem corresponds to a fleet management optimization problem with multiple objectives and has recently attracted much attention.

The second sub-problem has been given less attention in the studies on the fleet management problem, but is very important for real field operations. Network congestion can have significant impacts on the ride-sharing service. The optimization system of the ride-sharing service uses estimates for the predicted travel time obtained from a "prediction model". When the rides are executed, a gap can exist between the estimation and the real traffic condition. The "plant" represents the real traffic condition and it may require dynamic adjustment of the initial assignment to fit with the conditions observed.

When simulating a dynamic ride-sharing service, it is essential to accurately distinguish the prediction from the plant to provide a realistic service. In most research, the plant is assimilated to the prediction model [START_REF] Goel | Optimal pick up point selection for effective ride sharing[END_REF][START_REF] Ma | Real-time city-scale taxi ridesharing[END_REF].

Dynamic ride-sharing service is often advertised as a significant way of alleviating congestion and more generally as being eco-friendly, but few results exist to support this claim and some claims to the contrary have also been expressed [START_REF] Caulfield | Estimating the environmental benefits of ride-sharing: A case study of dublin[END_REF]. Ride-sharing definitely reduces the number of cars travelling, but it can also increase travel distance. Both phenomena must be considered to evaluate the actual impact of ride-sharing. This PhD tackles this question, considering two sub-problems of dynamic ride-sharing, by simulating and solving an optimal fleet management problem.

Research background and motivation

Ride-sharing originated as a general concept to carry more than two people in the car of one of the persons who share a portion or all of their time schedules and routes [START_REF] Furuhata | Ridesharing: The state-of-the-art and future directions[END_REF]. However, the concept of ride-sharing evolves nowadays as a real-time and ad-hoc arrangement of cars to combine passengers' travels.

Dynamic ride-sharing refers to a system that supports an automatic ride-matching process between participants on very short notice or even en-route. It is distinguished from traditional carpooling and is focused on single, non-recurring trips that do not require long-term commitments between people to travel together for a particular purpose. Since ride-shares are established on-demand, a ride-sharing system is similar to other on-demand forms of passenger transit such as taxis and dial-a-ride services like airport shuttles [START_REF] Furuhata | Ridesharing: The state-of-the-art and future directions[END_REF][START_REF] Casey | Advanced public transportation systems: The state of the art update[END_REF]. This compelling transportation mode has been the subject of many studies during the last years. A lot of researches has emphasized different advantages of ride-sharing for participants (drivers and passengers) like saving travel costs, reducing travel time, mit-igating traffic congestion, conserving fuel, and reducing air pollution [START_REF] Chan | Ridesharing in north america: Past, present, and future[END_REF][START_REF] Ferguson | The rise and fall of the american carpool: 1970-1990[END_REF][START_REF] Morency | The ambivalence of ridesharing[END_REF][START_REF] Kelly | Casual carpooling-enhanced[END_REF].

The main mentioned advantage of this system is reducing traffic congestion. However, there is still a lack of studies that investigate the performance of the ride-sharing system while considering the real functioning of the transportation network, including congestion periods.

As figure 1.1 shows, dynamic ride-sharing (as a new mobility service) acts as an intermediate layer. On the one hand, it serves the passenger requests, i.e., the mobility demand, and, on the other hand, it can impact the network capacity and can be affected by the network conditions. Thus, to assess the ride-sharing1 system, and to investigate the impacts of service on traffic, we need to assess both problems. First, we have to find the best way to serve the network demand. Second, we have to assess the impact of the network condition on the ride-sharing system performance and finally, the impact of the ride-sharing system on the network traffic.

The performance of ride-sharing on the network demand

The first issue is matching the passengers and the fleet vehicles by solving a fleet management problem. Effective and efficient optimization technology that matches drivers and riders in real-time is one of the necessary components for a successful dynamic ride-share system [START_REF] Agatz | Optimization for dynamic ride-sharing: A review[END_REF]. This problem has recently attracted much attention. Most approaches attempt to find the near-optimal solution to the matching problem in ride-sharing systems by considering specific constraints like vehicle capacity and the time window, to minimize the total additional distance [START_REF] Ota | Stars: Simulating taxi ride sharing at scale[END_REF][START_REF] Qian | Optimal assignment and incentive design in the taxi group ride problem[END_REF][START_REF] Orey | Can ride-sharing become attractive? a case study of taxi-sharing employing a simulation modelling approach[END_REF] and maximize the match between vehicles and passengers [START_REF] Stiglic | Making dynamic ride-sharing work: The impact of driver and rider flexibility[END_REF][START_REF] Ma | T-share: A large-scale dynamic taxi ridesharing service[END_REF][START_REF] Goel | Optimal pick up point selection for effective ride sharing[END_REF]. They usually rank the possible, feasible matches for passengers and cars close to each other, based on the objective function and then choose the best match for the requests. When modeling the fleet management problem, it is important to consider the essential objectives and constraints of both passengers and providers. Much research work on ride-sharing has tried to minimize the total distance for cars to accommodate the trips requested [START_REF] Ota | Stars: Simulating taxi ride sharing at scale[END_REF][START_REF] Orey | Can ride-sharing become attractive? a case study of taxi-sharing employing a simulation modelling approach[END_REF][START_REF] Qian | Optimal assignment and incentive design in the taxi group ride problem[END_REF]. This leads to minimizing the provider's costs.

Travel time is an important feature for the participants [START_REF] Naoum-Sawaya | Stochastic optimization approach for the car placement problem in ridesharing systems[END_REF].

Another important part of the first problem is to maximize the matching between cars and passengers. This is not only beneficial for the provider but also for the users, as it reduces the number of requests that cannot be served [START_REF] Agatz | Optimization for dynamic ride-sharing: A review[END_REF]. A large number of studies have tried to maximize the number of matches between participants [START_REF] Ma | T-share: A large-scale dynamic taxi ridesharing service[END_REF][START_REF] Goel | Optimal pick up point selection for effective ride sharing[END_REF][START_REF] Stiglic | Making dynamic ride-sharing work: The impact of driver and rider flexibility[END_REF]. The method we propose for fleet management matches all the requests with vehicles, based on travel time prediction. These matches between cars and riders are feasible only if they satisfy the participants' constraints. One of the most important considerations in dynamic ridesharing is the time constraint. Many of the systems proposed in the literature let users choose their earliest and latest pickup times [START_REF] Linares | A simulation framework for real-time assessment of dynamic ride sharing demand responsive transportation models[END_REF][START_REF] Agatz | Dynamic ride-sharing: A simulation study in metro atlanta[END_REF]. Besides the constraints on travel time, the number of passengers that are sharing a ride at the same time is crucial as it can impact the passengers satisfaction. This parameter can also affect traffic.

In ride-sharing, the participant's willingness to share their ride is critical. Therefore, it is important to consider the rider's objectives too. In the dynamic ride-sharing method proposed by [START_REF] Agatz | Dynamic ride-sharing: A simulation study in metro atlanta[END_REF], the objective was to minimize the total vehicle-miles driven by all participants. They showed that this objective is aligned with societal objectives for reducing emissions and traffic congestion. Another important objective for the passengers is the time that they have to wait for the ride. As [START_REF] Stiglic | Making dynamic ride-sharing work: The impact of driver and rider flexibility[END_REF] showed, if no match is found before a specified time, the passenger is likely to leave the system. Previous research usually focused on one of these objectives at a time, but it is important to take them into account simultaneously. We try to use an objective function that combines all these criteria.

Matching users to trips is very challenging in real-time since it must happen very quickly.

In a great deal of research, the optimal assignment is formulated as an integer linear programming problem and then different approaches are taken to optimize the problem.

A further discussion on how we formulate this challenging problem are given in Chapter 3. The primary target of this research is not the computation time but to obtain solutions that are close to the global optimum. In Chapter 4, first, we propose an algorithm to find the optimal solution. However, as we are targeting problems with large instances, we face with the curse of dimensionality. Our solution approach is designed to be exact for small samples. It is then extended with several heuristics that keep the general design for the solution method but significantly reduce its computation time.

The impact of the network on the ride-sharing system and vice versa

The second problem is related to the interactions between the ride-sharing system and the network capacity. This problem has been given less attention in the literature, but it is very important for real field operations. Network congestion can have significant impacts on the ride-sharing service. The optimization system of the ride-sharing service uses estimates for the predicted travel time obtained from a "prediction model". When the rides are executed, a gap can exist between the estimation and the real traffic condition.

The "plant model" represents the real traffic condition, and it may require dynamic adjustment of the initial assignment to fit with the conditions observed. When simulating a dynamic ride-sharing service, it is essential to accurately distinguish the prediction model from the plant to provide a realistic service.

In most research, the plant and the prediction model are the same [START_REF] Goel | Optimal pick up point selection for effective ride sharing[END_REF][START_REF] Ma | Real-time city-scale taxi ridesharing[END_REF]. There is no benchmark considering traffic conditions, but a few studies have considered the impact of traffic conditions on ride-sharing. [START_REF] Goel | Optimal pick up point selection for effective ride sharing[END_REF] proposed an approach where the pickup and drop off locations for passengers are selected from a fixed set. They considered a randomly chosen overhead of 10-20 percent to reflect different traffic conditions when computing the end time for a driver. Even with this consideration, they used only the prediction model and assumed that the travel times during the assignment process stayed the same during the execution of the vehicle schedules. In some research, only the plant model is considered. A simulator was used to assess the dynamic ride-sharing but they did not optimize vehicle allocation as in [START_REF] Linares | A simulation framework for real-time assessment of dynamic ride sharing demand responsive transportation models[END_REF], [START_REF] Ma | Real-time city-scale taxi ridesharing[END_REF] and [START_REF] Jia | An optimization framework for online ride-sharing markets[END_REF]. Other works used only static travel times in the optimization process [START_REF] Herbawi | Ant colony vs. genetic multiobjective route planning in dynamic multi-hop ridesharing[END_REF][START_REF] Herbawi | The ridematching problem with time windows in dynamic ridesharing: A model and a genetic algorithm[END_REF]. In Chapter 6, we define the plant model in addition to the prediction model to assess the impact of traffic conditions on the performance of the dynamic ride-sharing system for large-scale problems and see how the dynamic ride-sharing system can impact traffic congestion.

Research questions

A large body of literature has been dedicated to assess different parts of ride-sharing systems. From this literature review, it appears that (1) there is a lack of studies on efficient fleet management methods that can provide fast and qualified solutions in largescale [START_REF] Mourad | A survey of models and algorithms for optimizing shared mobility[END_REF] and [START_REF]Code of virginia[END_REF] there is very few studies to appropriately address the impact of traffic conditions on ride-sharing system performance.

In this thesis we aim to assess the performance of the dynamic ride-sharing system integrated with the current transportation network. The main research question is to assess the reduction in network congestion that can be obtained with ride-sharing. To answer this question, we have to consider the performance of ride-sharing on serving the passenger requests as well as the interactions between the network capacity and the ride-sharing system performance. Nested under general umbrella, the thesis investigates several research questions that are associated with six chapters (figure 1.2).

• How to assess the performance of ride-sharing on the network demand? Three chapters of this thesis are dedicated to answering this problem. We solve this problem in a hierarchical manner by answering the following questions:

-How to model a fleet management problem, for a ride-sharing system that con-siders both participants main objectives and constraints, into the mathematical problem?

In Chapter 2 we do a complete review of similar problems to find the gaps in previous researches on the fleet management problem. Then, considering these gaps, Chapter 3 describes the constraints and objective functions of the fleet management problem and finally presents the integer linear mathematical problem of the proposed ride-sharing system.

-How to find high quality and fast solution for the fleet management problem in large-scale?

First, in Chapter 4, we propose an innovative algorithm to find the optimal solution for the mathematical problem presented in Chapter 3. Our solution approach is designed to be exact for small samples. Then, the method is extended with several heuristics that keep the general design of the solution method but significantly reduce its computation time to make it scalable for large-scale problems.

• How to assess the impact of the network on the ride-sharing system and vice versa?

The proposed algorithms in the first 4 chapters can answer the first question about serving the network demand by a ride-sharing system in large-scale networks. Then to assess the interactions of the network and the ride-sharing service, we face the following questions:

-How to consider the real traffic dynamics?

The first section of Chapter 5 presents a "plant model" which is based on the trip-based Macroscopic Fundamental Diagram and can represent the real traffic situation.

-How to compute the vehicles travel time and speed during the assignment process? A "prediction model" is presented in Chapter 5 that can be used during the assignment process.

-How to manage the stop locations for the ride-sharing fleet vehicles in the network?

A "Depot management" method is proposed in the second section of Chapter 5 to answer this question.

• Can ride-sharing reduce traffic congestion?

The last question is the main research question of this thesis. In chapter 5, first, we show the performance of the proposed algorithm, and then in chapter 6 we assess the performance of the proposed ride-sharing system in terms of congestion and do a sensitivity analysis on the different service parameters. 

Methodology

The main research goal is to assess the performance of a ride-sharing system integrated with the network. We have designed a global framework to solve the problem. Our system has two main parts. The fleet management part deals with the matching process between riders and assigning the optimized match of riders to the vehicles. To handle this part, first, we use operation research methods to solve the fleet management problem and then we exert heuristic and data science methods to solve the problem in large scale. Then in the simulation part, we see how the optimal car schedule is realized considering the complete dynamic traffic conditions. The main components of the system are shown in figure 1.3.

Figure 1.3: System components

The main characteristics of the ride-sharing problem we investigate are:

• Door-to-door dynamic ride-sharing (the passenger obtains service at the exact defined origin and destination).

• Passengers define the earliest pickup time and the latest arrival time. The passenger must be picked up, transported and dropped off at the destination inside this time window.

• All requests over the next prediction horizon (usually 20 minutes) are considered known at the beginning of the horizon.

• Each passenger defines the maximum number of persons they are ready to share a trip with. We call it "number of sharers". The service has to guarantee that the number of sharers constraint is always satisfied for all the cars.

• Service time is added to each trip to reflect the time to stop and get in and out of the car.

• The service is provided by a limited number of vehicles that are initially all in the central depot. Local depots are uniformly distributed over the network to represent locations where cars can wait for further assignments. When an idle waiting car is needed to serve a passenger, it comes from the nearest non-empty depot. Note that the central depot can always generate new cars if necessary. When a car ends a trip without any further short-term assignment, it goes to the nearest depot and waits there.

Major contributions

In this section, we resume the major contributions of this dissertation. The contributions can be classified according to the designed system main parts (In figure 1.3):

• Fleet management:

1. This thesis presents an innovative algorithm based on branch-and-bound method to find the exact optimal solution for the fleet management problem. This algorithm is able to provide all the feasible routes for the fleet vehicles. Then the operator can choose the best route regarding to the weights of objective functions.

2.

A rolling horizon approach is defined for the dynamic ride-sharing system to deal with the planning uncertainty. Also, An insertion heuristic method is developed to do the re-scheduling for the vehicles that are moving in the system at the beginning of each horizon.

3.

A clustering method is developed to cluster the trips that have more potential to be shared to solve large-scale problems. We have defined a "Shareability 1.6. Thesis outline Index" based on 3 different situations of sharing the trips or serving them in sequence. Then the clustering is done based on this index. [START_REF]European environment agency[END_REF]. A heuristic approach called "Force the Sharing (FOSH) method" is presented to favor sharing opportunities at the cost of slight increases in the cost function, decreasing passenger waiting time.

• Dynamic simulation platform:

1. A "Plant Model" is applied based on "Trip-based Macroscopic Fundamental Diagram (MFD)" to represent the traffic dynamics reality.

A "Prediction

Model" is applied based on the mean-speed to be used during the assignment process.

3. A depot management system is developed to locate the empty waiting cars in the stop locations.

Thesis outline

This thesis includes four parts:

• Part 1: What is ride-sharing?
This part contains Chapter 1 (the current chapter) and Chapter 2. Chapter 1 explains the motivation and background of the thesis, the research questions, and the contributions to answer the questions. Chapter 2 provides a comprehensive review of the ride-sharing, the current algorithms designed for ride-sharing, the simulation models that are used for ride-sharing in the literature, and the consideration of dynamic traffic conditions in new mobility services and ride-sharing.

• Part 2: How to assess the performance of ride-sharing on the network demand? Chapter 3 and 4 are dedicated to answer the question of part 2. In Chapter 3, the mathematical formulation of the ride-sharing problem is presented. Chapter 4 introduces an optimal solution method for the mathematical problem of ridesharing. To show the quality of the proposed algorithm, we have compared the algorithm with the existing methods in this chapter. To make the optimal solution scalable for mega cities and large-scale networks, Chapter 4, then presents a rolling horizon method and re-scheduling and a heuristic method based on clustering. The clustering method is compared with the current clustering methods in the literature.

A new method called "FOSH method" is presented in this chapter to favor sharing opportunities and speed up the computations.

• Part 3: How to assess the impact of the network on the ride-sharing system and vice versa?

In Chapter 5 we answer this question. We have implemented two models to deal with traffic dynamics. A depot management system is developed to locate the waiting vehicles. In this chapter we show the performance of the optimal assignment algorithm and the heuristic methods. In chapter 6 we assess the impact of ridesharing on traffic conditions. Also an extensive analysis is done on the problem parameters.

• Part 4: What are the major outcomes of this thesis?

In the last chapter, Chapter 7, we summarize the thesis and clarify the major conclusion and outcomes of this thesis. 

Chapter 2

Literature Review

Ride-sharing was the subject of many studies undertaken in the past. In the previous chapter, we mentioned that to assess the ride-sharing problem's performance, we have to assess the interactions of the ride-sharing system and the transportation network. To evaluate this problem, we face two sub-problems: First, how to serve the network demand and second, how to assess the interactions with the traffic dynamics. Previous studies on this filed mainly focus on the first sub-problem, and the second sub-problem has been given less attention in the literature, while it is very important to consider both sub-problems, especially if an operational deployment is envisioned.

Chapter 2 does a review of the previous research on this domain, considering these two sub-problems. Section 2.1 reviews the ride-sharing definition and similar concepts. Section 2.2 presents different system settings for ride-sharing. Section 2.3 discusses different algorithms and methods being used in the literature to match the rides and riders in ride-sharing. Finally, in section 2.4, we present a literature review about considering the dynamic traffic condition in the ride-sharing performance.

Ride-sharing definition and related terms

The growing pressure on urban transportation systems needs innovative solutions that can increase its efficiency. In recent years, intelligent transportation systems have reshaped traditional transportation supply with the rapid introduction of new mobility services. Among these services, ride-sharing is becoming popular [START_REF] Tahmasseby | Dynamic real-time ridesharing: A literature review and early findings from a market demand study of a dynamic transportation trading platform for the university of calgary's main campus[END_REF]. In this section, we review the definition of ride-sharing and similar concepts to it, the advantages of ride-sharing, and a brief history of ride-sharing and its existing applications.

There have been several different ways to define the term 'ride-sharing' over the last decades. In 1989, the State of Virginia in the united states has described one of the first definitions as below: "Ride-sharing arrangement means the transportation of persons in a motor vehicle when such transportation is incidental to the principal purpose of the driver, which is to reach a destination and not to transport a person for profit." [START_REF]Code of virginia[END_REF] After that, many scientific publications described and analysed the early schemes of ride-sharing, such as [START_REF] Reno | Evaluation of Springfield instant carpooling[END_REF][START_REF] Haselkorn | Bellevue smart traveler: An integrated phone and pager system for downtown dynamic ride sharing[END_REF][START_REF] Ferguson | The rise and fall of the american carpool: 1970-1990[END_REF][START_REF] Burris | Slugging in houston-casual carpool passenger characteristics[END_REF][START_REF] Kelly | Casual carpooling-enhanced[END_REF] In 2010, Agatz et al. ( [START_REF] Agatz | Sustainable passenger transportation: Dynamic ride-sharing[END_REF]) define the ride-sharing as a system that aims to bring together travelers with similar itineraries and time schedules. They underline the point that to be widely adopted, ride-sharing must be easy, safe, flexible, efficient, and economical. Also, it must be able to compete with one of the main private cars' preferences, which is the immediate access to door-to-door transportation.

The definition of ride-sharing has changed over time, depending on the specific setup and location [START_REF] Amey | Real-time ridesharing: opportunities and challenges in using mobile phone technology to improve rideshare services[END_REF]. Chan and Shaheen in a survey on the ride-sharing in North America, define the ride-sharing as: "The grouping of travelers into common trips by car or van." In 2013 Furuhata et al. made this definition more complete and defined the ride-sharing as: "A mode of transportation in which individual travelers share a vehicle for a trip and split travel costs such as gas, toll, and parking fees with others that have similar itineraries and schedule." [START_REF] Furuhata | Ridesharing: The state-of-the-art and future directions[END_REF] Cohen and Kietzmann define a different concept of ride-sharing in [START_REF] Cohen | Ride on! mobility business models for the sharing economy[END_REF]. They represent a financial model of ride-sharing as "Drivers earn extra money while intermediaries earn up to 20% of each transaction".

Recently, Wang et al. present one of the latest definitions: "Ride-sharing is an emerging transport mode that harnesses both private cars and taxis to combine two (groups) of travelers into the same vehicle if all or part of the two groups' travels is overlapped in space and time" [START_REF] Wang | Collaborative activity-based ridesharing[END_REF]. It consists of sharing a car using an e-hailing application to save costs and resources.

The important point is to distinguish ride-sharing from similar transportation modes such as dial-a-ride, car-sharing, carpooling, ride-sourcing, etc.

In a recent study, the authors in [START_REF] Mourad | A survey of models and algorithms for optimizing shared mobility[END_REF] review the definitions and characteristics of different mobility services. The dial-a-ride (DARP) provides shared trips between any origin and destination in response to advanced passenger requests within a specific area [START_REF] Molenbruch | Typology and literature review for dial-a-ride problems[END_REF][START_REF] Ho | A survey of dial-a-ride problems: Literature review and recent developments[END_REF].

The main difference between these services and ride-sharing services is that most shared services aim to minimize the response time to passenger requests, whereas dial-a-ride systems aim to minimize vehicle operating cost by reducing the number of vehicles used to serve given passenger demands [START_REF] Jung | Dynamic shared-taxi dispatch algorithm with hybrid-simulated annealing[END_REF].

Car-sharing consists of a group of individuals who share a fleet of cars with other members [START_REF] Katzev | Car sharing: A new approach to urban transportation problems[END_REF]. In British English, the words car-sharing and lift-share are used anonymously to ride-sharing [START_REF] Chan | Ridesharing in north america: Past, present, and future[END_REF]. Generally, the term carpooling is interchanged with ride-sharing, but researchers use this term to show a transportation mode where an individual gets access to a pool of cars for hourly or daily use for the commute to and from a shared location like university or workplace [START_REF] Chan | Ridesharing in north america: Past, present, and future[END_REF][START_REF] Agatz | Sustainable passenger transportation: Dynamic ride-sharing[END_REF][START_REF] Handke | Flexible ridesharing: new opportunities and service concepts for sustainable mobility[END_REF][START_REF] Siddiqi | Dynamic ridesharing and information and communications technology: past, present and future prospects[END_REF]. Ride-sourcing is another mode that performs like traditional taxi cabs that serve one request at a time without sharing. The difference is that ride-sourcing uses smartphone technology and dynamic matching algorithms [START_REF] Rayle | Just a better taxi? a survey-based comparison of taxis, transit, and ridesourcing services in san francisco[END_REF][START_REF] Jin | Ridesourcing, the sharing economy, and the future of cities[END_REF].

In private-car ride-sharing, the rider is both a driver and a passenger. Taxi-sharing is a type of ride-sharing where the driver is just a professional taxi driver. Currently ride-sharing is undergoing an expansion from the traditional private car ride-sharing to taxi-sharing [START_REF] Martinez | An agent-based simulation model to assess the impacts of introducing a shared-taxi system: an application to lisbon (portugal)[END_REF][START_REF] Hosni | The shared-taxi problem: Formulation and solution methods[END_REF], and in the near future to autonomous vehicle taxi-sharing [START_REF] Krueger | Preferences for shared autonomous vehicles[END_REF].

Dynamic ride-sharing

Nowadays, transportation, like many other aspects of daily life is being transformed by the information technology (IT) revolution [START_REF] Golob | Impacts of information technology on personal travel and commercial vehicle operations: research challenges and opportunities[END_REF]. The spread of mobile devices and the development of Global Positioning System (GPS) make it possible for all the transport operators to adapt in real-time the transportation supply to travel demand. These new technologies have made considerable changes in the transportation modes as well as taxis [START_REF] Srinivasan | Impact of mobile phones on travel: Empirical analysis of activity chaining, ridesharing, and virtual shopping[END_REF][START_REF] Altshuler | Ride sharing and dynamic networks analysis[END_REF]. These options can make the possibility to have access to the vehicles position at any time and perform the matching process of ride-sharing in real-time. These possibilities has led to the development and progress of a new type of ride-sharing which is called dynamic ride-sharing. Dynamic ride-sharing, which is also known as real-time ride-sharing, real-time peer to peer ride-sharing, ad hoc ride-sharing, instant ride-sharing, and dynamic carpooling [START_REF] Agatz | Dynamic ride-sharing: A simulation study in metro atlanta[END_REF][START_REF] Ghoseiri | Realtime rideshare matching problem[END_REF] is a transportation mode that provides rides for single, one-way trips. In dynamic ridesharing, the sharing is arranged on a per-trip basis rather than for trips made regularly [START_REF] Casey | Advanced public transportation systems: The state of the art update[END_REF]. Dynamic ride-sharing systems need to support arbitrary locations and travel times to match users [START_REF] Siddiqi | Dynamic ridesharing and information and communications technology: past, present and future prospects[END_REF][START_REF] Dailey | Seattle smart traveler: dynamic ridematching on the world wide web[END_REF][START_REF] Gargiulo | Dynamic ride sharing service: are users ready to adopt it[END_REF] In 1994, Schweiger et al. defined the dynamic ride-sharing for the first time: "a mode of transportation that is ready when you are. This service is multipurpose and can be arranged either in real-time or close to it. Participants pre-qualify and are put into a database. Upon receipt of a trip enquiry, the database is searched for others who are traveling in the same direction at the same time. Participants can not only use this database to arrange for carpools to and from work but also to a shopping center, medical facility or any other trip generator" [START_REF] Schweiger | Advanced public transportation systems: The state of the art, update'94[END_REF]. Two years later, the authors in [START_REF] Kowshik | Evaluation of the sacramentoarea real-time rideshare matching field operational test final report[END_REF] presented the next definition: "a one-time rideshare match obtained for a oneway trip either the same day or the evening before."

In 1997, Dailey et al. [START_REF] Dailey | Seattle smart traveler: dynamic ridematching on the world wide web[END_REF] defined the dynamic ride-sharing as: "two or more people sharing a single trip, without regard to previous arrangements or history among the individuals involved. In comparison to traditional ride-matching services, which focus on commuters traveling to and from the same origins and destinations on fixed schedules, a dynamic ride-sharing system must be able to match random trip requests at any time. Thus, the system must be able to match potential carpoolers quickly to respond to same-day trip requests, as well as the more traditional commute trips". 'dynamicridesharing.org' defines dynamic ride-sharing as "A system that facilitates the ability of drivers and passengers to make one-time ride matches close to their departure time, with sufficient convenience and flexibility to be used on a daily basis" [START_REF] Kirshner | Definition of dynamic ridesharing[END_REF].

Another recent definition is presented by [START_REF] Amey | Real-time ridesharing: exploring the opportunities and challenges of designing a technology-based rideshare trial for the MIT community[END_REF]: "A single or recurring rideshare trip with no fixed schedule, organized on a one-time basis, with matching of participants occurring as little as a few minutes before departure or as far in advance as the evening before a trip is scheduled to take place." Agatz et al. [START_REF] Agatz | Dynamic ride-sharing: A simulation study in metro atlanta[END_REF] describes the dynamic ride-sharing as "an automated system that facilitates drivers and riders to share one-time trips close to their desired departure times." They mention that the system is dynamic. It serves independent and non-recurring trips (not like the traditional carpooling or van-pooling). The trips are prearranged (not like casual ride-sharing, hitch-hiking and hailing a taxi) and the matching process is automated.

Ride-sharing history and advantages

Chan and Shaheen [START_REF] Chan | Ridesharing in north america: Past, present, and future[END_REF] categorize the ride-sharing evolution into 5 phases. These five phases begin from car-sharing clubs to today's technology-enabled ride-matching systems. For the first time, during the World War II, the U.S. government introduced the first organized ride-sharing to save resources. [START_REF] Furuhata | Ridesharing: The state-of-the-art and future directions[END_REF][START_REF] Chan | Ridesharing in north america: Past, present, and future[END_REF]. The second time in history was in the 1970s during the oil crises when ride-sharing gained attention [START_REF] Pratsch | Carpool and buspool matching guide[END_REF]. During this phase vanpooling, casual carpooling, park-and-ride facilities, and innovative ride-matching programs used as strategies to facilitate ride-sharing.

In the 1980s and 1990s, in the third phase of ride-sharing evolution, transportation management starts focusing on solving congestion and air pollution issues. At this time, the dynamic ride-sharing becomes more considerable because of the advances in internet-based ride-matching programs and the facilitation of using telephones everywhere [START_REF] Haselkorn | Bellevue smart traveler: Design, demonstration, and assessment[END_REF][START_REF] Levofsky | Organized dynamic ride sharing: The potential environmental benefits and the opportunity for advancing the concept[END_REF].

However, due to low oil prices and strong economic growth, participation in ride-sharing decreased at the beginning of the 1980s. From 1999 to 2004 ride-sharing has gained momentum with the use of technology-enabled devices and most ride-sharing systems try to develop this mode among travelers who had the most reliable trip schedules [START_REF] Goel | Private personalized dynamic ride sharing[END_REF][START_REF] Chan | Ridesharing in north america: Past, present, and future[END_REF].

Nowadays, modern information technology and the flexibility they have provided has made ride-sharing more attractive than ever before. In many countries around the world, different companies are providing ride-sharing services [START_REF] Kooti | Analyzing uber's ride-sharing economy[END_REF][START_REF] Jiang | On ridesharing competition and accessibility: Evidence from uber, lyft, and taxi[END_REF].

Another considerable advancement in ride-sharing is the appearance of autonomous vehicles (AV). The development of AVs can make a significant improvement in the ride-sharing systems and, consequently, the transportation system. One of the ride-sharing obstacles is the drivers' limitations regarding distance, route and time window, removing these limitations is a valuable point to make AVs appropriate for ride-sharing, besides reducing emissions, making streets safer, saving time, saving space and reducing congestion [START_REF] Krueger | Preferences for shared autonomous vehicles[END_REF]. Nowadays, a significant part of studies on this field focuses on the assessment of autonomous vehicles sharing [START_REF] Fagnant | Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in austin, texas[END_REF][START_REF] Levin | A general framework for modeling shared autonomous vehicles with dynamic network-loading and dynamic ride-sharing application[END_REF][START_REF] Sherif | Privacypreserving ride sharing scheme for autonomous vehicles in big data era[END_REF][START_REF] Gurumurthy | Modeling americans' autonomous vehicle preferences: A focus on dynamic ride-sharing, privacy & longdistance mode choices[END_REF][START_REF] Bongiovanni | The electric autonomous dial-a-ride problem[END_REF].

The sharing community has a lot of social, environmental and economic advantages [START_REF] Hamari | The sharing economy: Why people participate in collaborative consumption[END_REF][START_REF] Kooti | Analyzing uber's ride-sharing economy[END_REF]. Andreasson [START_REF] Andréasson | Ride-sharing on prt[END_REF] mentions that besides the objections like longer waiting times, loss of privacy and risk of assaults or harassment by other passengers, ride-sharing can reduce the fleet size, increase the system capacity and reduce the requirement for short headways.

Specifically, different studies have focused on different advantages of ride-sharing. We mention some of the recent studies on this objective: Lokhandwala and Cai in 2018 [START_REF] Lokhandwala | Dynamic ride sharing using traditional taxis and shared autonomous taxis: A case study of nyc[END_REF] propose an agent-based simulation model to study the impacts of dynamic ride sharing. They show that ride-sharing combining autonomous driving with autonomous vehicles in New York city, can potentially decrease the fleet size by up to 59%, increase the occupancy rate from 1.2 to 3, decrease total travel distance up to 55%, and reduce carbon emissions by 725 metric tonnes per day. A detailed analysis about the environmental benefits of ride-sharing in terms of reduced emissions and vehicle kilometres travelled is demonstrated by [START_REF] Caulfield | Estimating the environmental benefits of ride-sharing: A case study of dublin[END_REF]. Another study in Paris shows that ride-sharing can play a key role in reducing CO2 emissions from road transport [START_REF] Yin | Appraising the environmental benefits of ride-sharing: The paris region case study[END_REF].

Research in Beijing shows that if implemented for the entire taxi fleet, shared taxis can save 28.3 million gallons of gasoline and reduce 2392 tons CO emissions annually [START_REF] Cai | Environmental benefits of taxi ride sharing in beijing[END_REF].

Similar researches are done in different mega-cities around the world to show the environ-mental benefits of ride-sharing [START_REF] Sui | Gps data in urban online ride-hailing: A comparative analysis on fuel consumption and emissions[END_REF][START_REF] Liu | A trip-specific model for fuel saving estimation and subsidy policy making of carpooling based on empirical data[END_REF][START_REF] Jacobson | Fuel saving and ridesharing in the us: Motivations, limitations, and opportunities[END_REF]. Besides reducing CO2 emissions and fuel consumption, it also saves the users' money and time [START_REF] Teubner | The economics of multi-hop ride sharing[END_REF]. The main parts of this dynamic ride-sharing system are the passenger, ride provider, and the matching algorithm. The passenger seeks a ride to pick her/him up at the origin point and drop her/him off at the desired destination within a time interval. The ride provider has a fleet of vehicles (taxi, van, autonomous car, etc.) that is ready to serve the passengers' requests. The matching algorithm receives the requests and the fleet information and tries to find the best matches in short notice. We classify this system into four categories, considering the interactions between different fleet providers and the performance of the matching algorithm. Fleet providers can work competitively or cooperatively. In the case of cooperative interaction, they share the fleet information so the passenger may get the ride easier, and the benefits of ride-sharing will be more achievable. In the competitive scenario, each provider tries to gain a higher profit. The matching algorithm communicates with the providers directly or indirectly, (figure 2.1). This classification can be expanded for other new mobility services as well.

Dynamic ride-sharing system settings

Nowadays, the common dynamic ride-sharing systems are placed in the first category.

The research proposed by this dissertation considers this category. Figure 2.2 shows the system functioning. Passengers send their requests for the ride via an application and define their trip specifications. On the other side, the application has access to the fleet information and can track the fleet vehicles at any time. Then the algorithm starts to assign vehicles to the passengers' requests and send the response to the passengers in real-time.

The matching algorithm is a key element in the efficiency of such a system. It is possible to provide the best real-time match between vehicle and passenger in terms of time and location, using efficient algorithms. A huge number of studies like [START_REF] Kleiner | A mechanism for dynamic ride sharing based on parallel auctions[END_REF][START_REF] Cici | Quantifying the potential of ride-sharing using call description records[END_REF][START_REF] Bicocchi | Investigating ride sharing opportunities through mobility data analysis[END_REF][START_REF] Schreieck | A matching algorithm for dynamic ridesharing[END_REF] focused on finding such an algorithm. In section 2.3, we review the different ride-sharing algorithms in the literature. In dynamic ride-sharing, the system works to serve the network demand, and at the same time, it is affected by the network. The traffic situation can impact the shared vehicle travel times. On the other side, the system vehicles can have an impact on the congestion (Figure 2.2). So, we can divide the dynamic ride-sharing problem into two sub-problems.

First, how to serve the network demand and manage a fleet of vehicles. Second, how to assess the impact of network and accurately predict the travel times to determine vehicle availability at pickup/drop off times. In the next sections, we provide state of the art on the ride-sharing algorithms and dynamic traffic conditions in ride-sharing.

Ride-sharing algorithms

One of the most challenging facets of dynamic ride-sharing problems is the automated matching process. Matching users to trips is very challenging in real-time since it must happen very quickly.

The matching problem in ride-sharing corresponds to a fleet management optimization problem with multiple objectives and constraints and has recently attracted much attention. In section 2.3.1, we first review the different objectives and constraints that have been considered for this problem in previous studies and then in section 2.3.2 we review the methods and algorithms to solve the problem.

Objectives and constraints

When modeling the fleet management problem, it is important to consider the essential objectives and constraints of both passengers and providers. In table 2.1, we have Chapter 2. Literature Review listed the constraints for both passengers and providers. Furthermore, the criteria for the problem show the different objectives that can be considered in the fleet management problem.

Objective functions Different researches focus on different objectives in the problem related to passengers [START_REF] Shen | Managing autonomous mobility on demand systems for better passenger experience[END_REF][START_REF] Ma | On-demand dynamic bi-/multi-modal ride-sharing using optimal passenger-vehicle assignments[END_REF], drivers [START_REF] Liu | Recommending a personalized sequence of pick-up points[END_REF][START_REF] Dai | A balanced assignment mechanism for online taxi recommendation[END_REF], providers [START_REF] Powell | Towards reducing taxicab cruising time using spatio-temporal profitability maps[END_REF][START_REF] Maciejewski | Simulation and dynamic optimization of taxi services in matsim[END_REF][START_REF] Hyland | Dynamic autonomous vehicle fleet operations: Optimization-based strategies to assign avs to immediate traveler demand requests[END_REF] or the network [START_REF] Bischoff | Simulation of city-wide replacement of private cars with autonomous taxis in berlin[END_REF].

Different objectives of the ride-sharing problem used in the literature review are listed in table 2.1 as criteria. We categorize the ride-sharing problem objectives into providers' objectives and passengers' objectives. Most approaches attempt to find the near-optimal solution to the matching problem in ride-sharing systems by considering specific constraints, to minimize the total travel distance or time [START_REF] Ota | Stars: Simulating taxi ride sharing at scale[END_REF][START_REF] Qian | Optimal assignment and incentive design in the taxi group ride problem[END_REF][START_REF] Orey | Can ride-sharing become attractive? a case study of taxi-sharing employing a simulation modelling approach[END_REF] and maximize the match between vehicles and passengers [START_REF] Stiglic | Making dynamic ride-sharing work: The impact of driver and rider flexibility[END_REF][START_REF] Ma | T-share: A large-scale dynamic taxi ridesharing service[END_REF][START_REF] Goel | Optimal pick up point selection for effective ride sharing[END_REF]. This leads to minimizing the provider's costs.

Maximizing the number of serviced requests [START_REF] Herbawi | The ridematching problem with time windows in dynamic ridesharing: A model and a genetic algorithm[END_REF][START_REF] Berbeglia | A hybrid tabu search and constraint programming algorithm for the dynamic dial-a-ride problem[END_REF][START_REF] Stiglic | The benefits of meeting points in ride-sharing systems[END_REF][START_REF] Santos | Taxi and ride sharing: A dynamic dial-aride problem with money as an incentive[END_REF] and minimizing the number of required vehicles [START_REF] Kirchler | A granular tabu search algorithm for the dial-a-ride problem[END_REF][START_REF] Lehuédé | A multi-criteria large neighbourhood search for the transportation of disabled people[END_REF], saved total travel distance percentage [START_REF] Ota | Stars: Simulating taxi ride sharing at scale[END_REF] or vehicle emissions [START_REF] Atahran | A multicriteria dial-a-ride problem with an ecological measure and heterogeneous vehicles[END_REF] are other objectives used in the state of the art of this problem that can yield a better performance from the system (provider) perspective.

In ride-sharing, the participant's willingness to share their ride is critical. Therefore, it is important to consider the rider's objectives too. In the dynamic ride-sharing method proposed by [START_REF] Agatz | Dynamic ride-sharing: A simulation study in metro atlanta[END_REF], the objective was to minimize the total vehicle-miles driven by all participants. They showed that this objective is aligned with societal objectives for reducing emissions and traffic congestion.

Travel time is an important feature for the passengers [START_REF] Naoum-Sawaya | Stochastic optimization approach for the car placement problem in ridesharing systems[END_REF]. Another important objective for the passengers is the time that they have to wait for the ride. Usually, the main motivation of passengers is to reduce travel costs. However, [START_REF] Stiglic | Making dynamic ride-sharing work: The impact of driver and rider flexibility[END_REF] showed that, if no match is found before a specified time, the passenger is likely to leave the system and refuse to use shared mobility systems. Minimizing total passenger ride or waiting time might yield better performance from the passenger perspective but not from a system-wide perspective. Reducing the passenger waiting time can make shared services comparable with the other traditional taxi services. Different methods in the literature try to minimize the passengers' waiting time as an objective function like in [START_REF] Hyland | Sharing is caring: Dynamic autonomous vehicle fleet operations under demand surges[END_REF][START_REF] Kirchler | A granular tabu search algorithm for the dial-a-ride problem[END_REF][START_REF] Masoud | Using bilateral trading to increase ridership and user permanence in ridesharing systems[END_REF].

Much of the research on dynamic ride-sharing services is focused on optimizing a single providers' objective. In these studies usually they consider some constraints for the problem to keep the passengers' objectives in an acceptable level [START_REF] Molenbruch | Typology and literature review for dial-a-ride problems[END_REF][START_REF] Calvo | A distributed geographic information system for the daily car pooling problem[END_REF]. There are also studies that consider multiple-objective systems combining passengers' and providers' objectives. In [START_REF] Orey | Can ride-sharing become attractive? a case study of taxi-sharing employing a simulation modelling approach[END_REF], total travel distance, taxi stand departures (number of exits from all taxi stands) and revenue per travel distance (revenue per km earned by all vehicles) are used to demonstrate vehicle owners' performance in terms of operation mode and costs for all trips. Percentage of served requests, waiting time, travel time and trip fare are considered to demonstrate the passengers' preferences. [START_REF] Kirchler | A granular tabu search algorithm for the dial-a-ride problem[END_REF] combined six different objectives:

Minimizing routing cost, excess ride time, passenger waiting time, route durations, early arrival times at pickup and delivery nodes, and number of unserved requests.

When assessing a dynamic ride-sharing problem it is important to consider both passengers' and providers' essential objectives. In this thesis, we aggregate the different passengers' and providers' objectives into a weighted-sum objective with different measures. We define a weight for each of the combined objectives (Chapter 3). Assignment constraints are the very first constraints of a ride-sharing problem. A passenger should be transported from the pickup point to the drop off point, and the pickup point should be visited before the destination point. Therefore, the assignment constraints are strict and should be respected in solving a ride-sharing problem. This process has modeled with different methods in the literature. The authors in [START_REF] Stiglic | Enhancing urban mobility: Integrating ride-sharing and public transit[END_REF] define an intermediate location called meeting point for passenger picked up or dropped off. They show that this meeting point can lead to shorter detours. The authors in [START_REF] Goel | Optimal pick up point selection for effective ride sharing[END_REF] present an approach to ride-sharing where the pick up/drop off locations for passengers are selected from a fixed set. They present a scheme that chooses optimally fixed locations of Pick up Points (PuPs) and aim to maximize the car occupancy rates and preserve user privacy and safety. In [START_REF] Naoum-Sawaya | Stochastic optimization approach for the car placement problem in ridesharing systems[END_REF] the drop off point is a common destination like university or company.

Constraints

Other researches focus on serving the passengers door-to-door to make more comfort for the sharing participants. In [START_REF] Ota | Stars: Simulating taxi ride sharing at scale[END_REF][START_REF] Li | The share-aride problem with stochastic travel times and stochastic delivery locations[END_REF][START_REF] Tachet | Scaling law of urban ride sharing[END_REF] passengers can define the pick-up and drop off locations. In [START_REF] Orey | Can ride-sharing become attractive? a case study of taxi-sharing employing a simulation modelling approach[END_REF][START_REF] Farin | A framework for dynamic vehicle pooling and ride-sharing system[END_REF][START_REF] Kleiner | A mechanism for dynamic ride sharing based on parallel auctions[END_REF], the pick-up point is the current location of the passenger, and passengers only need to define the destination.

With synchronization constraints, the system ensures that each passenger is served exactly once by one or more vehicles [START_REF] Fink | Column generation for vehicle routing problems with multiple synchronization constraints[END_REF][START_REF] Drexl | Synchronization in vehicle routing-a survey of vrps with multiple synchronization constraints[END_REF].

One of the most important considerations in dynamic ride-sharing is the time constraint.

For the ride-sharing, it is important to define a time window, especially for the cases that both drivers and riders have a time schedule that should be matched. Much research on ride-sharing, consider the time window in their problem constraints. They define the time window via different strategies. In [START_REF] Agatz | Dynamic ride-sharing: A simulation study in metro atlanta[END_REF], the passenger defines the earliest departure time and time flexibility that specifies the difference between the earliest departure time and the latest arrival time. Then the latest arrival time can be computed. In [START_REF] Naoum-Sawaya | Stochastic optimization approach for the car placement problem in ridesharing systems[END_REF][START_REF] Wang | Stable matching for dynamic ride-sharing systems[END_REF][START_REF] Herbawi | The ridematching problem with time windows in dynamic ridesharing: A model and a genetic algorithm[END_REF][START_REF] Linares | A simulation framework for real-time assessment of dynamic ride sharing demand responsive transportation models[END_REF][START_REF] Agatz | Dynamic ride-sharing: A simulation study in metro atlanta[END_REF],

the passengers define the earliest pick up time and latest arrival time. So, the passenger should be picked up at the origin point not earlier than the defined pick up time, and he/she should be dropped off at the destination point before the latest arrival time.

In [START_REF] Hyland | Sharing is caring: Dynamic autonomous vehicle fleet operations under demand surges[END_REF], the travelers have implicit rather than explicit time constraints, and only passenger waiting time is considered in the objective function. Also, the capacity constraint for each vehicle is two. It means that each car can serve only two traveler requests at the same time. Some studies try to use the vehicle's maximum capacity [START_REF] Goel | Optimal pick up point selection for effective ride sharing[END_REF][START_REF] Orey | Can ride-sharing become attractive? a case study of taxi-sharing employing a simulation modelling approach[END_REF]. Besides limiting the maximum number of passengers, some studies on van-pooling systems put a constraint for the minimum number of passengers to form a van-pool for a shared trip [START_REF] Kaan | The vanpool assignment problem: Optimization models and solution algorithms[END_REF].

Besides the constraints on vehicles' capacity, this thesis introduces the desired maximum number of ride-sharing for all passengers. Thus, in a given vehicle, the number of on-board passengers cannot exceed the lowest number of passengers willing to share for all the on-board passengers. This parameter can also affect traffic.

Solving methods

Most approaches attempt to find the near-optimal solution to the matching problem in ride-sharing systems by considering specific constraints. They usually rank the possible, feasible matches for passengers and cars close to each other, based on the objective function and then choose the best match for the requests [START_REF] Stiglic | Making dynamic ride-sharing work: The impact of driver and rider flexibility[END_REF][START_REF] Ma | T-share: A large-scale dynamic taxi ridesharing service[END_REF][START_REF] Goel | Optimal pick up point selection for effective ride sharing[END_REF][START_REF] Ota | Stars: Simulating taxi ride sharing at scale[END_REF][START_REF] Qian | Optimal assignment and incentive design in the taxi group ride problem[END_REF][START_REF] Orey | Can ride-sharing become attractive? a case study of taxi-sharing employing a simulation modelling approach[END_REF].

The authors in [START_REF] Hyland | Sharing is caring: Dynamic autonomous vehicle fleet operations under demand surges[END_REF] assigned the passenger to a vehicle only if the car is 20% closer to the passenger than any idle shared car.

The ride-sharing assignment is a pickup and delivery problem with time windows (PDPTW) [START_REF] Mahmoudi | Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state-space-time network representations[END_REF]. [START_REF] Berbeglia | Dynamic pickup and delivery problems[END_REF][START_REF] Pillac | A review of dynamic vehicle routing problems[END_REF] did reviews of dynamic pickup and delivery problems, bringing up some interesting but unsolved questions, such as optimal waiting strategies, modifications of the objective function on a rolling basis, to name a few. It is shown that this problem is NP-hard. Even simplified variants of the problem with a single-driver single-rider setting, single pickup, and drop off or a single-objective function are still NP-hard [START_REF] Gu | Algorithmic analysis for ridesharing of personal vehicles[END_REF]. In a great deal of research, the optimal assignment is formulated as an integer linear programming problem, and then different approaches are taken to optimize the problem [START_REF] Zargayouna | Fleet organization models for online vehicle routing problems[END_REF]. There is a vast literature on solution methods and algorithms for these problems. However, there is still room for improvement in these methods.

Due to the complexity of the problem, the exact solution methods are introduced to solve very small instances of the problem. The most frequently cited literature on PDPTW is [START_REF] Cordeau | The dial-a-ride problem: models and algorithms[END_REF], where they present a mixed linear integer programming formulation of PDPTW and a branch and cut solution for it. [START_REF] Ropke | Branch and cut and price for the pickup and delivery problem with time windows[END_REF] later introduces an enhanced branch-and-cut-andpricing solution to further improve the solution. These exact methods are usually used to solve static problems with deterministic data [START_REF] Cordeau | The dial-a-ride problem: models and algorithms[END_REF][START_REF] Baldacci | An exact method for the car pooling problem based on lagrangean column generation[END_REF][START_REF] Ghilas | Branch-andprice for the pickup and delivery problem with time windows and scheduled lines[END_REF]. In the PDPTW, increasing the number of vehicles and passengers increases the dimension of solution space and so the computational time. The method proposed by [START_REF] Mahmoudi | Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state-space-time network representations[END_REF] takes almost two hours to compute a case with 50 passengers and 15 vehicles.

To handle larger problems, the assignment problem is solved with different heuristic methods in the literature. [START_REF] Braekers | A multi-period dial-a-ride problem with driver consistency[END_REF] propose an exact Branch-and-Cut algorithm for Dial-a-Ride problem (DARP) that can outperform the state-of-the-art solver CPLEX. The exact method is followed by a lean heuristic algorithm based on Large Neighborhood Search (LNS) for larger instances of the problem. In another study on pick up and delivery problem for ride-sharing by [START_REF] Wang | Stable matching for dynamic ride-sharing systems[END_REF], the exact method is proposed to solve small instances of the problem. Then they present a Tabu search heuristic for the pick and delivery problems for ride-sharing. They use a ratio (the objective value of the optimal solution divided by the output objective value of the heuristic method) to compare the heuristic method with optimal situation. Dynamic ride-sharing problem addresses short-term matching or even en-route matching [START_REF] Agatz | Dynamic ride-sharing: A simulation study in metro atlanta[END_REF][START_REF] Ma | T-share: A large-scale dynamic taxi ridesharing service[END_REF][START_REF] Deakin | Markets for dynamic ridesharing? case of berkeley, california[END_REF]. This fact makes the assignment problem more complex.

In some studies, researchers try to narrow the feasible solution space to make the computations faster and be able to assign the vehicles to the requests that are coming at each time to the system. For example, [START_REF] Liu | A branch-and-cut algorithm for a realistic dial-aride problem[END_REF] present a method to tighten travelers time windows and eliminate unnecessary variables and constraints to narrow the solution space. [START_REF] Huang | Large scale realtime ridesharing with service guarantee on road networks[END_REF] proposed a branch-and-bound algorithm for solving real-time ride-sharing problem. They introduced a kinetic tree algorithm to schedule dynamic requests and adjust the routes on-the-fly. [START_REF] Liu | A branch-and-cut algorithm for a realistic dial-aride problem[END_REF] proposed a branch-and-cut algorithm to solve a realistic DARP with multiple trips and request types and a heterogeneous fleet of vehicles.

Some researches have implemented meta-heuristic methods to solve the assignment problem [START_REF] Ameli | Heuristic Methods for Calculating Dynamic Traffic Assignment[END_REF][START_REF] Ameli | Simulation-based dynamic traffic assignment: Meta-heuristic solution methods with parallel computing[END_REF]. [START_REF] Herbawi | A genetic and insertion heuristic algorithm for solving the dynamic ridematching problem with time windows[END_REF] used a genetic algorithm to find a sub-optimal solution for the ridematching problem, and then an insertion heuristic took care of the newly received requests by modifying the solution of a genetic algorithm when possible. [START_REF] Jung | Dynamic shared-taxi dispatch algorithm with hybrid-simulated annealing[END_REF] proposed hybrid-simulated annealing (HSA) method to dynamically assign passenger requests to [7] introduced a rolling horizon approach that can provide high-quality solutions for dy-namic ride-sharing systems where trip requests continuously enter the system.

Recently [START_REF] Mourad | A survey of models and algorithms for optimizing shared mobility[END_REF] has presented a survey of models and algorithms for optimizing shared mobility, and they have shown that one of the most critical problems in the solution for these systems is computation time and the quality of the results.

In this dissertation, we propose heuristic methods for the mathematical problem that gives a high-quality optimal assignment in a few minutes. The algorithm searches for the matches between riders only in the area feasible for each passenger. Then, the match between two participants is possible only if their feasible area has an intersection.

Clustering methods

In the large-scale problems, the number of received requests at every time is a huge number. It has been indicated in the literature that the patterns of demands and the patterns of supplies are spatially-temporally dependent [START_REF] Wang | Trajectory analysis for on-demand services: A survey focusing on spatial-temporal demand and supply patterns[END_REF].

A lot of researches on this domain uses different clustering methods to consider these dependencies. They use methods like dividing the time into several time slots or dividing the space into several clusters, road segments, or cells [START_REF] Gonzalez | Understanding individual human mobility patterns[END_REF][START_REF] Davis | Taxi demand forecasting: A hedge-based tessellation strategy for improved accuracy[END_REF][START_REF] Qi | Mining taxi pick-up hotspots based on spatial clustering[END_REF][START_REF] Yuan | T-finder: A recommender system for finding passengers and vacant taxis[END_REF].

Qiang in [START_REF] Qiang | Clustering algorithm for urban taxi carpooling vehicle based on data field energy[END_REF] propose an algorithm to use the dataset of taxi get-off points to achieve the clustering of taxis on urban roads and compare their method with the classical clustering methods. However, the taxi clustering data in their study are conducted in a static environment.

In [START_REF] Chen | Solving the first-mile ridesharing problem using autonomous vehicles[END_REF] all pickup points are partitioned into several clusters and the vehicle dispatch and ride-sharing problem is solved in each cluster. Bard and Jarrah in [START_REF] Bard | Large-scale constrained clustering for rationalizing pickup and delivery operations[END_REF] show that for largescale problems, an appropriate solution is clustering the demand nodes and downsizing the network. Some researches try to limit the feasible region with clustering methods to speed up the computation. They usually divide the demand nodes in the network into geographically dense clusters [START_REF] Özdamar | A hierarchical clustering and routing procedure for large scale disaster relief logistics planning[END_REF][START_REF] Sáez | Hybrid adaptive predictive control for the multi-vehicle dynamic pick-up and delivery problem based on genetic algorithms and fuzzy clustering[END_REF].

One of the recent researches on the clustering of the trips is done by [START_REF] Santi | Quantifying the benefits of vehicle pooling with shareability networks[END_REF]. They introduce the notion of a shareability network to quantify the spatial and temporal compatibility of individual trips in a dynamic environment. In their method, two trips are shareable if they would incur a delay of no more than five minutes. Then, [START_REF] Vazifeh | Addressing the minimum fleet problem in on-demand urban mobility[END_REF] modify the idea to model the sharing of vehicles instead of rides and address the minimum fleet problem in on-demanded urban mobility. In these clustering methods, the trips are clustered just based on the situation of the origin points. But, in ride-sharing, other combinations of trips should be considered. So, in this research, we propose the concept of "sequential index" and "Shareability index" for the same purpose to assess the possibility of serving two trips with the same car in sequence or sharing the trips. Our proposal employs a method that reduces the number of required vehicles.

Dynamic traffic conditions in ride-sharing

One of the main mentioned advantages of ride-sharing is reducing congestion. Most of the studies on this domain assess the impact of ride-sharing on the congestion, and with statistical analysis, they show this impact [START_REF] Li | Do ride-sharing services affect traffic congestion? an empirical study of uber entry[END_REF][START_REF] Li | An empirical analysis of on-demand ride sharing and traffic congestion[END_REF][START_REF] Dewan | Carpooling: a step to reduce congestion[END_REF].

The critical point which has not been considered is that dynamic traffic conditions in the network can have significant impacts on the ride-sharing service as well.

The optimization system of the ride-sharing service uses estimates for the predicted travel time obtained from a so called "prediction model". When the rides are executed, a gap usually exists between the estimation and the real traffic condition. The so called "plant model" represents the real traffic condition and it may require dynamic adjustment of the initial assignment to fit with the conditions observed. When simulating a dynamic ride-sharing service, it is essential to accurately distinguish the prediction and the plant models to provide a realistic service.

In most research, the plant model and the prediction model are the same [START_REF] Zou | A look-ahead partial routing framework for the stochastic and dynamic vehicle routing problem[END_REF][START_REF] Goel | Optimal pick up point selection for effective ride sharing[END_REF][START_REF] Ma | Real-time city-scale taxi ridesharing[END_REF].

There is no benchmark considering traffic conditions, but a few studies have considered the impact of traffic conditions on ride-sharing [START_REF] Ordóñez | Leading Developments from INFORMS Communities[END_REF][START_REF] Wang | A pickup and delivery problem for ridesharing considering congestion[END_REF]. For instance, the authors in [START_REF] Goel | Optimal pick up point selection for effective ride sharing[END_REF] proposed an approach where the pick-up and drop off locations for passengers are selected from a fixed set. They considered a randomly chosen overhead of 10-20 percent to reflect different traffic conditions when computing the end time for a driver. Even with this consideration, the authors used only the prediction model and assumed that the travel times during the assignment process stayed the same during the execution of the vehicle schedules. Other works used only static travel times in the optimization process [START_REF] Herbawi | The ridematching problem with time windows in dynamic ridesharing: A model and a genetic algorithm[END_REF].

In some research, only the plant model is considered. For instance, in [START_REF] Linares | A simulation framework for real-time assessment of dynamic ride sharing demand responsive transportation models[END_REF], [START_REF] Ma | Real-time city-scale taxi ridesharing[END_REF] and [START_REF] Jia | An optimization framework for online ride-sharing markets[END_REF],

the authors used a simulator to assess the dynamic ride-sharing but they did not optimize vehicle allocation. In [START_REF] Fagnant | Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in austin, texas[END_REF], the authors described advances in existing shared autonomous vehicle simulations, by enabling dynamic ride-sharing. They proposed a method that fits for passengers with similar origins, destinations and departure times. In our method, each passenger defines their origin, destination and desired time window.

In [START_REF] Ban | A general equilibrium model for transportation systems with e-hailing services and flow congestion[END_REF], the authors develop a general economic equilibrium model at the macroscopic level to describe the equilibrium state of a transportation system composed of solo drivers and the e-hailing service providers. Experimental results show that when there is little in the symmetry in the network demand, the travelled distances increase significantly with the service usage due to the increase in deadhead miles. However, as the symmetry increases the impact on deadhead miles significantly reduces with increased service usage. These results are coherent with our findings, where the mobility services significantly increase the total travel distance, and sharing is a means of combating this trend without eliminating it.

In our method, we define the plant model in addition to the prediction model to assess the impact of traffic conditions on the performance of the dynamic ride-sharing system for large-scale problems and see how the dynamic ride-sharing system can impact traffic congestion. In Chapter 5 we present a complete framework for the ride-sharing simulation to fill the previous researches gaps.

Conclusion

In this chapter, we reviewed the researches on dynamic ride-sharing systems. From this literature review, we can conclude that:

• There is a lack of studies on efficient fleet management methods that can provide Chapter 3

Ride-Sharing Problem Formulation

Introduction

In this chapter we present the components of the system that we have designed for dynamic ride-sharing. The system has two main components.

1) The fleet management component that solves the assignment problem based on the predicted travel times. The fleet management component solves a mathematical problem to assign the vehicles to the trip requests. The mathematical formulation of this problem is presented in this chapter. Then we explain how we solve this mathematical problem in the next two chapters.

2) The simulation component that represents the actual evaluation of the system. The performance of this component is explained in chapter 5.

In this chapter, section 3.2 represents the fleet management component. We express the ride-sharing problem into a mathematical problem. The purpose of the proposed mathematical formulation is to present a complete framework for the fleet management problem.

We rigorously formulate the problem considering the essential objectives and constraints for the passengers and providers and we define the number of sharing constraints to limit the number of shared trips. This constraint can help us to analyze the transportation system under different sharing situations.

System components

The global functioning of the system is shown in figure 3 The main characteristics of the ride-sharing problem we investigate are:

1. Demand characteristics:

• Door-to-door dynamic ride-sharing (the passenger obtains a service at the exact defined origin and destination).

• Passengers determine origin and destination.

• Passengers define the earliest pickup time and the latest arrival time. The passenger must be picked up, transported and dropped off at the destination inside this time window (time schedule for each trip is shown in figure 3.2).

• Passengers determine the number of requested seats that can then be more than one.

• All requests over the next prediction horizon (usually 20 minutes) are considered known at the beginning of the horizon.

• Each passenger defines the maximum number of persons they are ready to share a trip with. We call it "number of sharing". The service has to guarantee that the number of sharing constraint is always satisfied for all the cars.

• A request has an origin, a destination, a time window, a number of seats and a number of sharing.

Service characteristics:

• There is a fleet of service vehicles to serve the requests dynamically.

• Service time is added to each trip to reflect the time to stop and get in and out of the car.

• The service is provided by a limited number of vehicles that are initially all in the central depot. Local depots are uniformly distributed over the network to represent locations where cars can wait for further assignments. When an idle waiting car is needed to serve a passenger, it comes from the nearest non-empty depot. Note that the central depot can always generate new cars if necessary.

So there is no limit on the fleet size. When a car ends a trip without any further short-term assignment, it goes to the nearest depot and waits there.

Fleet management component

Fleet management component works to assign the vehicles to the trip requests. In this component, an algorithm computes the shortest path and then solves a constrained multi- A trade-off between the objectives will be found to be sent as the schedule to the feet.

Then the assigned cars leave their location or take a detour to serve the new demands.

The mathematical description of the fleet management component is provided in this section. First, we explain the objective functions, the constraints, and the inputs and outputs of the model, and finally, we present the mathematical model.

Note that the predicted travel times used in the fleet management correspond to the trip length divided by the mean speed over the full network at the end of the previous simulation period.

Notations and variables

At each period (rolling horizon width), the system receives n passenger requests. Every request has a pickup point i and a drop-off point i + n. Thus, there will be 2n nodes ({1, ..., 2n}) plus nodes 0 (corresponding to the depot from where the vehicle comes) and 2n + 1 (corresponding to the depot where the vehicle goes after finishing all assignments).

If vehicle k is assigned to passenger i, the decision variable y k i equals 1 and if not it equals 0. If vehicle k takes the passenger from point i to j, the decision variable x k i,j equals 1 and if not it equals 0. Table 3 Direct travel time from point i to j at time t, (i,

j ∈ A, t ∈ T H) DT D i,j Direct travel distance from point i to j, (i, j ∈ A) x k i,j
Decision variable equal to 1 if vehicle k takes the passenger from point i to j and 0, otherwise y k i Decision variable equal to 1 if vehicle k is assigned to passenger i and 0, otherwise

Problem formulation

We express the fleet management problem as the following integer linear program:

min i∈P (α.W T i + β.T T i ) + k∈M (γ.T k + δ.T D k ) (3.1)
subject to:

d i ≤ k∈M c k i .y k i , ∀i ∈ P (3.2) j∈O x k i+n,j .y k i (c k i+n + d i -c k j ) = 0, ∀i ∈ P , ∀k ∈ M (3.3) j∈A x k i,j .y k i (c k i -d i -c k j ) = 0, ∀i ∈ P , ∀k ∈ M (3.4) EP i -P k i -ST i ≤ 0, ∀i ∈ P , ∀k ∈ M (3.5) P k i + ST i -LD i + DT T t i,i+n ≤ 0, ∀i ∈ P , ∀k ∈ M (3.6) EP i + DT T t i,i+n -D k i+n -ST i ≤ 0, ∀i ∈ P , ∀k ∈ M (3.7) D k i+n + ST i -LD i ≤ 0, ∀i ∈ P , ∀k ∈ M (3.8) x k i,j (P k i + DT T t i,j + ST i -P k j ) ≤ 0, ∀i, j ∈ A (3.9) m k=1 y k i = 1, ∀i ∈ P (3.10) j∈A x k i,j - j∈A x k j,i+n = 0, ∀i ∈ P , ∀k ∈ M (3.11) i∈P ∪{0} x k i,j - i∈D∪{2n+1} x k j,i = 0, ∀j ∈ O, ∀k ∈ M (3.12) c k j -M 2.(1 -x k 0,j ) -Cap ≤ 0, ∀j ∈ P , ∀k ∈ M (3.13) c k j + M 2.(1 -x k 0,j ) -Cap ≥ 0, ∀j ∈ P , ∀k ∈ M (3.14) j∈P y k j .d j - j∈D y k j .d j -n share i ≤ M 1.(1 -y k i ), ∀k ∈ M , ∀i ∈ N (3.15) m ≤ M 3 (3.16)
x k i,j ∈ {0, 1}, ∀i, j ∈ O (3.17)

y k i ∈ {0, 1}, ∀i ∈ N , k ∈ M (3.18)
The objective function and constraints of the mathematical model are described in detail in the next sections.

Mathematical model objective function

In this research, we aim to optimize both providers' and passengers' objective functions.

According to the state-of-the-art, the most important operation objective for the service provider is to minimize the total travel time and the total travel distance of vehicles. Also, the passengers need to get to the destination on time and have the minimum waiting time.

So we model the problem to minimize the passenger waiting time and travel time and vehicles' total travel time and distance.

The total travel time for each vehicle is the summation of the direct travel time for all the trips that are served over the time horizon by this vehicle.

T k = i∈O j∈O DT T t i,j .x k i,j ∀k ∈ M, t ∈ T H (3.19)
Also, the total travel distance for a vehicle is the summation of the direct travel distance for all the trips that are served over the time horizon by this vehicle:

T D k = i∈O j∈O DT D i,j .x k i,j ∀k ∈ M (3.20)
Waiting time is the time that the passenger must wait before being picked up. When the passenger defines the earliest pickup time, the vehicle cannot serve them before this time or after the latest pick up time. If the car arrives at point i before EP i , it must wait to pick up the passenger at their desired time. So, the waiting time, in this case, is zero for the passenger. But if the car arrives after EP i , the waiting time is the difference between the pickup time and the lower bound of the pickup time window:

W T i = P k i -EP i ∀i ∈ P (3.21)
The exact passenger pickup time is the time that the vehicle arrives at the passenger's location. This time can be computed as follows:

P k i = i-1 g=0 i+n-1 j=n+1 m k=1 DT T t i,j .x k gj .y k i + DT T t i+n-1,i + ST i ∀i ∈ P, t ∈ T H (3.22)
The total travel time for the passenger is defined as the sum of the service time and the predicted travel time.

T T i = P k i+n -P k i + ST ∀i ∈ P (3.23)
We aggregate these four objectives into a weighted-sum objective with different measures [START_REF] Kirchler | A granular tabu search algorithm for the dial-a-ride problem[END_REF]. α, β, γ and δ are the weights for the passenger waiting time and travel time and the vehicle travel time and travel distance respectively. The objective weights are determined according to a prior definition of their relative importance.

Finally, the objective function of the mathematical problem would be as in Equation 3.1.

Mathematical model constraints

In the formulation of this problem, the main constraints are capacity constraints, time constraints and assignment constraints. Also we consider limitations on the number of sharing and we make sure that there is a sufficient number of vehicles in the fleet.

Capacity constraints

The capacity of vehicle k when it arrives at point i is the summation of the number of passengers that are picked up at point i by this car minus the number of passengers that are dropped off from the vehicle at this point.

c k i = Cap - i-1 g=1 i+n-1 j=1 m k=1 d g .x k g,j .y k i + i g=1 i+n-1 j=1 m k=1 d g .x k g,j .y k i ∀i ∈ P (3.24)
We define constraint 3.2 to 3.4 on capacity. The first ensures that at each pickup point, the demand does not exceed the vehicle's capacity at that point. The second is to be assured that all the passengers who are picked up at the origin, will be dropped off at the corresponding destination. The third constraint is to ensure that the passengers who are picked up at point i stay in the vehicle up to their destination.

Time window constraints

The time window for passenger pickup and drop off can be derived from the departure time (earliest pickup time) and arrival time (latest arrival time) defined by the passenger. The difference between the earliest pickup time and the earliest drop off time is the minimum time needed to go from the passenger's origin to their destination (direct free flow travel time):

• pickup time window:

(EP i , LD i -DT T t i,i+n )
• drop off time window:

(EP i + DT T t i,i+n , LD i )
Constraint 3.5 to 3.9 are on time. The time windows for the pickup and drop off are ensured with constraint 3.5 to 3.8. The drop off point must be visited after the pickup point and sufficient time must be guaranteed for service time and the travel time between the origin and destination. This constraint is imposed by inequality 3.9.

Assignment constraints Constraint 3.10 to 3.12 are related to the assignment. Constraint 3.10 ensures that just one vehicle is assigned to passenger i. Constraint 3.11 guarantees that the same vehicle is handling a passenger pickup and drop off. Constraint 3.12 is the flow constraint, to be sure that the vehicle that enters a service node will also exit from it.

Constraint 3.13 and 3.14 work together to guarantee that when a vehicle exits the depot, it has no passenger on board.

Number of sharing constraint

We define the number of sharing constraints to limit the number of shared trips. For example, when the number of sharing is 0, the system performance is like a taxi service that serves only one passenger on each trip. When we increase the number of sharing to 1, we allow the system to serve two passengers simultaneously. With the number of sharing 2, the system is allowed to share the passenger's trip with two other passengers. This parameter can affect the traffic by changing the number of required trips to serve the network demand.

Constraint 3.15 ensures that the number of passengers in a car is lower than or equal to the number of sharing that the passenger has defined Fleet size constraint There should be enough vehicles in the network to serve all the requests. Constraint 3.16 ensures that there is a sufficient number of vehicles in the fleet.

Decision variables

The possible values of the variables x k i,j and y k i are given by 3.17 

Model complexity

If n is the number of ride requests and m is the number of vehicles, the number of decision variables in the model is as follows:

• Binary variables x k i,j : m.(2n + 1).(2n + 1) = 4m.n 2 + 4.m.n + m • Binary variables y k i : m.n
So the total number of decision variables (N DV ) is:

N DV = 4mn 2 + 5mn + m
It can be seen that even very small instances of this problem give a number of variables and constraints to compute that encompasses the acceptable dimension of a linear programming problem. For example, with four requests when there are 4 service vehicles in the network, the number of decision variables for the problem is 350. This number increases to 1804 for ten requests and 4 vehicles. With a small increase in the number of vehicles and passengers, we will have a large increase in the number of variables. When we have 1000 requests, the number of decision variables increases to more than 4 million. Table 3.2, shows the computation time to solve small instances of the problem with CPLEX solver. For each instance the value of M 3 is set equal to the number of requests to be sure that there are sufficient number of vehicles to serve all the requests. For 4 requests, the computation time is 0.4 seconds but it exponentially increases by increasing the number of requests and for 7 requests the computation time is almost 5 minutes. 

Conclusion

In this chapter we presented the mathematical formulation of the proposed ride-sharing system. The purpose of the proposed formulation is to present a complete framework for the fleet management problem. We rigorously formulate the problem considering the essential objectives and constraints for the passengers and providers and we define the number of sharing constraints to limit the number of shared trips.

The complexity of the optimization problem grows exponentially by small increases in the number of requests and vehicles. Also, softening the constraints, for example, increasing the number of sharing will increase complexity.

One of the most important problems in the solution approaches for shared mobility systems is computation time and quality of the results [START_REF] Mourad | A survey of models and algorithms for optimizing shared mobility[END_REF].

In the next chapters, we present a solution method with multiple steps that starts from finding the exact solution for small instances. Furthermore, we introduce extensions that speed up the solution method and can address bigger networks, even large-scale networks, while assessing the difference in quality at each step. We show that the proposed heuristics can keep the quality of solutions at an acceptable level (near-optimal solution) while significantly decreasing the computation time. Thus, we design our solution method based on the classical branch and bound algorithm [START_REF] Ross | A branch and bound algorithm for the generalized assignment problem[END_REF] but with specific properties to cope with a fleet management problem.

Introduction

In this thesis, we aim to approach the global optimal solution, whereas previous studies mostly focused on optimizing local sub-problems. The search for the global solution may be computationally expensive, but it permits answering the question of the maximum gain we can expect from ride-sharing in the transportation system.

To approximate the global solution, we resort to an algorithm to solve an integer linear program. However, as we are targeting problems with large instances, we still face the curse of dimensionality. Our solution approach is designed to be exact for small samples.

It is then extended with several heuristics that keep the general design for the solution method but significantly reduce its computation time.

The main strategy is to cluster the requests depending on a shareability index to create smaller samples that are faster to solve. This method narrows the exploration of the space to feasible and promising states only. As the number of assigned passengers increases for a car, the intersection of feasible areas becomes smaller, and the algorithm can compute the assignment of running cars. In this chapter, section 4.1 presents the optimal algorithm to solve the assignment problem, in section 4.2, we present our test cases, and we present the heuristic method step by step in sections 4.3, 4.4 and 4.5.

Branch-and-Cut based algorithm

In chapter 3, we formulated the ride-sharing problem into an Integer Linear Programming (ILP) model, and we showed that the problem is NP-hard. Due to the NP-hardness of the problem, the optimal solution can be computed only for small instances of the problem.

The strategies of branch-and-bound, branch-and-cut, branch-and-price and branch-andcut-and-price are among the most used in solving ILP [START_REF] Blocho | Exact algorithms for solving rich vehicle routing problems[END_REF].

The branch-and-bound methods are based on partitioning a complete problem into subproblems and reducing the solution space by divide-and-conquer strategies [START_REF] Fisher | Optimal solution of vehicle routing problems using minimum k-trees[END_REF]. Then the branch-and-cut methods solve the problem using a combination of the branch-and-bound algorithm and the cutting plane method [START_REF] Mitchell | Branch-and-cut algorithms for combinatorial optimization problems[END_REF]. The idea of branch-and-cut methods is to solve a sequence of linear programming relaxations of the integer programming problem.

The cutting plane methods are used to improve the relaxation of the problem, and then branch-and-bound methods are used with divide-and-conquer strategies to finally solve the problem [START_REF] Contardo | A computational comparison of flow formulations for the capacitated location-routing problem[END_REF]. In this section we present a branch-and-cut based algorithm to exactly solve the mathematical problem in previous chapter.

The algorithm builds a tree of routes and tries to add the feasible points to the best branch of the tree at each step. It checks the feasibility of the points regarding the model constraints. In the beginning, it starts from the closest non-empty depot to the origins and adds the origin points to the branches of the tree ( When the algorithm finds a feasible point for a route, it creates a new route by adding this possible point and puts the newly created route in the set of paths.

Finally, the best route is the route that has the minimum objective function.

Algorithm 1 shows the optimization algorithm. Each part of the algorithm corresponds The initial route set S contains the origin points of the requests that are not already being assigned to a car. The algorithm builds the primary branches from the depots nearest the origins. Then, it finds the best branch with respect to the objective function (equation 3.1) among these primary branches. The next branches are created as extensions of this primary branch. To add points to the primary branch, equation 3.11 of the model must be satisfied. Then the algorithm finds a set of points that can be added to the first branch. The feasibility of adding points to the branch is checked by other equations in the model. Then, the algorithm creates new branches by adding the feasible points. At each iteration, the optimal branch in terms of the objective function is selected to be the base branch.

Algorithm 1: Assign requests to the depot vehicles input: New requests: direct travel times (DT T t i,j ), direct travel distances (DT D i,j ) set of vehicles (M ), set of points (P, D, A), time windows ( Find the optimized route optimal-route ∈ Result; Assign the optimal-route to the car m;

Remove pickup points on optimal-route from P ; Remove m from M ; Add m to en-route vehicles set eM ;

At the end, when it is no longer possible to add more points to a branch, if the points on the branch satisfy equations 3.10 and 3.12 of the model, the branch can be added to the results set. Finally, the optimal branch is selected from the set of results.

When the schedule is received, the algorithm puts the associated vehicle in the en-route vehicles set, and as the car finishes the assigned schedule, it goes back to the nearest depot.

At each iteration of the algorithm, a large number of branches are added to the route set.

The critical point that makes our method efficient is that we remove the branches that are not feasible with respect to three kinds of constraint (on time, capacity and number of sharing).

This algorithm is exact and its complexity explodes with the number of branches. This is, for example, the case when we increase the number of sharing or requests. In this case, we need to introduce heuristics that reduce the exploration of the feasible solution.

Examples of the exact method

In this section, we present an examples with four requests to show the performance of the algorithm. Table 4.1 shows the requests. Each request has a demanded seat number, a number of sharing, and the earliest pick-up time and latest arrival time. normalizing the objective functions, the optimal solution will be solution C.

Test cases

The main goal of this dissertation is to assess the impact of dynamic ride-sharing on network traffic. In mega-cities and large-scale networks, the performance of ride-sharing in terms of reducing congestion can be different from its impact on small-scale and mediumscale networks. To the best of our knowledge, the stream of research on ride-sharing services focuses on situations in large cities like New York, Beijing, and San Francisco.

However, these services are increasingly popular in large cities and small and mediumsized cities.

In this thesis, the goal is to assess dynamic ride-sharing systems' performance in reducing congestion in both medium and large-scale cities. So, we implement the method on two networks. First, to assess the service in small and medium scales, we apply our method to a realistic O-D trip matrix for Lyon's northern half in France. Then, to assess the impact of ride-sharing on large-scale networks, we apply the method to the whole Lyon city network in France. The network is loaded with travelers of all ODs with a given departure time to represent the morning peak hour (4 hours from 6:30 AM to 10:30 AM), based on the study of [START_REF] Krug | Reconstituting demand patterns of the city of lyon by using multiple gis data sources[END_REF].
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The number of trips during this period is 62,450. Some trips start from or end outside the network. Only trips wholly inside the network (11,235 trips) can be assigned to the service depending on the market-share. Market-share is the percentage of the trips that will be served with the service vehicles. This corresponds to 11,235 trips and defines the maximal dimension of our optimization problem when the market-share is equal to 100%. 

Lyon

Lyon is the second-largest urban area of France with an area of 80 km 2 . The city is located in the south of Paris and is close to other mega-cities in France and Switzerland (Marseille, Grenoble, and Geneva). 

Rolling horizon method and re-scheduling

Considering all the requests over the full-time horizon can provide the global optimum solution. However, this greatly increases the number of variables and is not reasonable in practice. To reduce the number of variables, but also to bring the expression of the problem more in line with common practice, we now implement a rolling horizon, generally about 20 minutes. The requests are assumed known only over the next rolling horizon. Find the optimized route optimal-schedule∈ Result;

Re-assign the optimal-schedule to the car m; Remove p from P ; We therefore introduce a specific algorithm to assign the new requests in priority to en-route vehicles. The remaining requests are handled by the first algorithm presented in the previous section.

In dynamic ride-sharing setting, new trip request announcements arrive continuously at arbitrary times. Therefore, the optimizer must adapt vehicle schedules multiple times during the day. This implies that future requests are unknown during each assignment time step. To handle the new requests and optimize the problem dynamically, a rollinghorizon approach is implemented.

In this study, the assignment procedure rolls over a specific horizon for the announced requests of a particular optimization step. Every T H 2 minute, we optimize the requests of the next T H minutes. It is clear that some of the requests are re-optimized every T H 2 . If a trip has been assigned to a vehicle which has left the depot, the algorithm does not assign it again, but if a trip is in the schedule of a waiting vehicle, the algorithm puts it in the set of optimizing trips in the particular horizon and re-optimizes it.

In dynamic assignment, when a car drops off a passenger, it detects the potential to be assigned to a new request. We add a second part to the algorithm to re-assign the potential cars. In this part, receiving a new request at each optimization time step, the algorithm works to put the new request in the en-route vehicle schedule if possible.

The second part of the algorithm to assign requests to the en-route vehicles is shown in algorithm 2. First, the algorithm checks the possibility of adding the origin point of the request to the vehicle schedule. It must check the capacity of the car, the number of sharing for all the on-board passengers after adding the new origin as well as the time window for all the stop points. If the vehicle route remains feasible after adding the new origin, the algorithm checks the possibility of adding the related destination point. In this step, it must check the time window for all the points after adding the new origin and destination points. Then, the algorithm puts all the feasible vehicles for the new request in the Result set. Finally, it chooses the vehicle that has a minimum increase in the objective function after adding the new request and sends the re-scheduled route to the car. Then for the remaining not-assigned trips, the main algorithm finds the best routes and assigns them to the vehicles in the nearest depots. The optimal solution serves requests 3 and 1 in the same car and request number 4 individually.

Clustering method

The proposed algorithm creates branches of origin and destination points as mentioned before. The algorithm must try all the different arrangements of stop points to find the optimal assignment. Thus, the computation time increases exponentially as the number of requests increases.

Restricting the exploration of the feasible area to the branches that are more likely to create the optimal assignment can narrow the search of feasible solutions. To overcome this limitation, we define a clustering method to make clusters of the requests which are more likely to be shared. Then the algorithm is executed within each cluster independently.

Shareability function

To perform the clustering on the requests received by the system over each rolling horizon, we define the "Shareability Index" (SF i,j ) between request i and request j (∀i, j ∈ N ).

We compute SF i,j for each pair of trips, and the function value is the difference between the travel time when the two trips are shared and the travel time to serve each trip individually.

Three situations exist for every two trips (figure 4.9).

In figure 4.9(a), two trips can be shared, and the first passenger drop off is before that of the second passenger. So, the travel time for the first passenger is the summation of their waiting time, the travel time between the first origin and the second origin and the travel time between the second origin and the first destination. Also, the travel time for the second passenger is the summation of their waiting time, the travel time between the second origin and the first destination and the travel time between the first destination and the second destination.

In situation (b), the vehicle serves the second passenger while the first passenger is on board. Thus, the travel time for the second passenger is the same as when served individually and the travel time for the first passenger is the travel time of all the links from the first stop point to the last one.

Figure 4.9: Trip situations

There is a third situation when the trips are not shared, but the vehicle can serve two passengers sequentially. This situation must be considered in the shareability index in order to put these trips in the same group while solving the optimization problem. The travel time for the passengers is the same as when served individually. But in this situation, the vehicle travel time can decrease if the travel time between the first destination and the second origin is less than the summation of the travel time between the first origin and the closest depot and the travel time between the start depot and the second origin. This means that the SF here is the difference between the passenger waiting times when the trips are in sequence and the passenger waiting times when the trips are individual.

The following equations show how we compute SF i,j for each pair of trips, considering the three situations (i,j show the origin and the destination of the trip (r n )):

(a) : T T i + T T j = W T i + DT T org i ,org j + W T j + DT T org j ,des i + DT T des i ,des j ∀i, j ∈ N SF a i,j = T T i + T T j -(DT T org i ,des i + DT T org j ,des j + W T i + W T j ) (4.1)

(b) : T T i + T T j = W T i + DT T org i ,org j + W T j + DT T org j ,des j + DT T des j ,des i ∀i, j ∈ N SF b i,j = T T i + T T j -(DT T org i ,des i + DT T org j ,des j + W T i + W T j ) (4.2) (c) : T T i + T T j = W T i + DT T org i ,des i + W T j + DT T org j ,des j ∀i, j ∈ N SF c i,j = T T i + T T j -(DT T org i ,des i + DT T org j ,des j + W T i + W T j ) SF c i,j = W T i + W T j -(W T i + W T j ) (4.3) 
Finally, the SF value for each pair of passengers is the minimum value among three different situations. It means that the algorithm chooses the condition that the additional travel time is minimum for sharing each pair of trips.

SF i,j = minimum{SF a i,j , SF b i,j , SF c i,j } (4.4)

Clustering based on the similarity matrix

After computing the shareability function, we have the function value for each pair of requests that creates the shareability matrix. The shareability matrix is a kind of similarity matrix for the requests received that can be used in the clustering process.

After computing the shareability function for all the pairs of requests, we do the clustering using the computed similarity matrix. When we make clusters based on the SF , we put the trip requests that are more potential to be shared in the same cluster (the trips that have lower SF ).

There are two main categories for clustering based on the similarity matrix:

1-Partitioned clustering algorithms cluster the data into k number of clusters. One of the usual algorithms for partitioned clustering is k-means clustering. K-means clustering is simple, fast, and flexible and is a proper method for our application.

2-Hierarchical clustering methods in which the clusters are arranged in a tree-like structure. Hierarchical clustering can be divided into Agglomerative hierarchical clustering (AHC) and divisive clustering [START_REF] Sindhu | Clustering algorithm technique[END_REF][START_REF] Vora | A survey on k-mean clustering and particle swarm optimization[END_REF].

In [START_REF] Qiang | Clustering algorithm for urban taxi carpooling vehicle based on data field energy[END_REF], the authors have compared the hierarchical clustering and k-means clustering for urban taxi carpooling in a static environment. They show that compactness and separation are almost the same for hierarchical and k-means clustering for large cluster sizes. In dynamic large-scale problems, the results would be different. Also, the computation time becomes critical. Thus, to assess more, we implement both clustering methods on the shareability matrix to cluster the requests. In the next chapter, we assess the different clustering methods' performance, considering the quality and computation time.

Multidimensional scaling and k-means clustering

K-Means method is a partitional clustering approach for decomposing the problem into independent subsets, following the principle of finding clusters of data based on their similarity. In the clustering procedure, the preferred number of clusters should be specified in the algorithm before execution. Each observation (data points) will randomly be assigned to a cluster, and find a set of centroids for each group of observations. Afterward, iterations will be done for optimizing the clusters.

k-means clustering takes place based on the distance between points. So we use the multidimensional scaling method ( [START_REF] Wang | Feature learning by multidimensional scaling and its applications in object recognition[END_REF]) to convert the similarity matrix into a distance matrix which makes it possible to apply the appropriate clustering method based on the study in [START_REF] Paea | Information architecture (ia): Using multidimensional scaling (mds) and k-means clustering algorithm for analysis of card sorting data[END_REF] (we have implemented the method using the mathtoolbox in C++).

After extracting the distance matrix, we use the modified k-means clustering method to create the same size clusters for the data received at every assignment time step.

The modified k-means algorithm can be used to obtain clusters in preferred sizes [START_REF] Ganganath | Data clustering with cluster size constraints using a modified k-means algorithm[END_REF].

Accordingly, we can find the best trade-off between cluster size and computation time, considering the objective function value. We favor a uniform distribution of requests among clusters to decrease computation times and facilitate parallel computations of each sub-problem. The similarity matrix is computed and then converted to the distance matrix. K-means clustering puts requests 1 and 3 in one cluster and requests 2, 4, and 5 in another cluster.

Then the assignment algorithm can be solved in each cluster.

Hierarchical clustering

Hierarchical clustering offers a flexible and no-parametric approach and is an algorithm that builds hierarchy of clusters [START_REF] Murtagh | A survey of recent advances in hierarchical clustering algorithms[END_REF].

We use the agglomerative hierarchical method, which starts with taking singleton clusters (that contain only one request per cluster) at the bottom level and continue merging two clusters at a time to build a bottom-up hierarchy of the clusters [START_REF] Reddy | A survey of partitional and hierarchical clustering algorithms[END_REF]. 

Determining the proper clustering method

In previous sections, we showed that we can use the k-means clustering method and the hierarchical method to cluster the requests based on the presented similarity matrix. In our method, the quality of the clustering method and computation time is very important. The time complexity of K-means is linear, while that of hierarchical clustering is quadratic. On the other side, k-means clustering requires prior knowledge of k and also mutidimensional scaling to convert the similarity matrix into the distance matrix. We can stop at whatever number of clusters we find appropriate in hierarchical clustering by interpreting the dendrogram. As we use the agglomerative hierarchical method, we can have larger clusters faster with the hierarchical method.

To choose the best clustering method, we have compared both methods considering the quality of objective function and the computation time for different sizes of problems. 

Force the sharing method (FOSH method)

The optimizer aims to minimize the objective function, which combines both passengers' and operators' objectives. Therefore, the algorithm may choose a branch which has less sharing, compared with other feasible branches in the tree built by the algorithm. We propose the third heuristic method to force the algorithm to favor the longest possible route, which is in favor of more sharing.

When we increase the number of passengers assigned to a vehicle, the passengers' waiting time and travel time increase, so we reduce the length of the trip time window to keep the passenger's objectives acceptable.

The algorithm finds the longest possible routes, and then it chooses the path with the minimum objective. Algorithm 3 shows the modification in algorithm 1 to force the sharing. Thus, the command in line 10 of the algorithm is modified, as shown below:

Algorithm 3: FOSH method max-route-size = 0; for feasible solution route ∈ Result do if number of stops on route > max-route-size then max-route-size = number of stops on route;

for feasible solution route ∈ Result do if number of stops on route = max-route-size then Put the route in re-Result;

Find the optimized route optimal-route ∈ Result;

When the algorithm assigns more trips to a vehicle, the number of all the trips decreases.

Thus, with the FOSH method, we expect to use fewer trips and consequently fewer service vehicles.

Figure 4.12 shows the routes for requests 1 to 5 with and without the FOSH method when the number of sharing is 1. Without the FOSH method, five vehicles can serve just six passengers, but with the FOSH method, these five vehicles can serve ten passengers. With the FOSH method, the algorithm can build fewer branches at each step. Because the number of trips on a single route is higher, it needs fewer branches to assign all the requests to the vehicles. Therefore, this method can also decrease computation time.

The final heuristic algorithm to solve the fleet management problem is presented in figure 4.13. In the next chapter, we first show the quality of different steps of the solution method (three heuristic methods). Then we do our analysis with the final algorithm.

Conclusion

In this chapter, we presented solution approaches to solve the dynamic ride-sharing problem. The approach is designed to be exact for small samples. It is then extended with several heuristics that keep the general design for the solution method but significantly reduce its computation time.

In the first heuristic method, we implement a rolling horizon approach with re-scheduling.

The exact algorithm is solved every optimization time step, and at first, tries to put the requests in the moving cars' schedules. In the second heuristic method, the main strategy is to cluster the requests depending on a shareability index to create smaller samples that are faster to solve. This method narrows the exploration of the space to feasible and promising states only. We try both partitioned (k-means clustering) and hierarchical (agglomerative hierarchical clustering) methods. In the last heuristic step, we have presented the Force the Sharing (FOSH) method to favor the sharing. The final algorithm can solve a dynamic ride-sharing problem with high quality in a short time comparing with other methods in the literature.

In the next chapter, we show the performance of different heuristic steps.

Part III

How to assess the impact of the network on the ride-sharing system and vice versa?

In the previous part, we presented the answer to the first sub-problem of dynamic ridesharing systems. In this part, we investigate the second sub-problem: How to assess the impact of the network on the ride-sharing system and vice versa? To answer this question, in chapter 5, we present a "plant model," which is based on the trip-based Macroscopic Fundamental Diagram and can represent the real traffic situation. Then we present the "prediction model" based on the mean speed that can be used during the assignment process. Then, we assess the performance of the presented heuristic methods step by step to show the solution method's quality. In chapter 6, we analyze the impact of dynamic ride-sharing on network congestion in medium-scale and large-scale networks.

Chapter 5

Simulation Framework

Introduction

In the previous chapters, to assess ride-sharing performance on the network demand, we presented the formulation and solving method of the dynamic ride-sharing problem. In this chapter, we investigate the interactions between transportation networks and dynamic ride-sharing systems. This problem has received less attention in the literature but is very important from the operational point of view. In fact, network congestion can have significant impacts on the ride-sharing service.

The ride-sharing service's optimization system uses estimates for the predicted travel time obtained from a so-called "prediction model". When the rides are executed, a gap usually exists between the estimation and the real traffic condition. The so-called "plant model" represents the real traffic condition, and it may require dynamic adjustment of the initial assignment to fit with the conditions observed. When simulating a dynamic ride-sharing service, it is essential to accurately distinguish the prediction and the plant models to provide a realistic assessment of the system functioning. In this chapter, we define the prediction model and the plant model for dynamic ride-sharing.

We use real data from the Lyon network in our simulations. The prediction model is based on the last observed travel times, while the plant model considered is a trip-based Macroscopic Fundamental Diagram (MFD) model able to reproduce the evolution over time of mean traffic conditions for a full road network using the MFD as a global behavioral curve [START_REF] Lamotte | The morning commute in urban areas: Insights from theory and simulation[END_REF][START_REF] Mariotte | Macroscopic urban dynamics: Analytical and numerical comparisons of existing models[END_REF][START_REF] Mariotte | Flow exchanges in multi-reservoir systems with spillbacks[END_REF]. The macroscopic fundamental diagram (MFD) provides an overall overview of the network states [START_REF] Ameli | Cross-comparison of convergence algorithms to solve trip-based dynamic traffic assignment problems[END_REF].

We also explain the depot management method in our study.

Finally, the performance of the solution method is evaluated with our simulation-based optimization framework. In this chapter, in section 5.1, we present the dynamic simulation component, in section 5.2 we explain the depot management method, and in sections 5.3 and 5.4 we evaluate the performance of optimization and simulation components.

Dynamic simulation component

The dynamic ride-sharing system has two main components: 1-the fleet management 

Plant model

The plant model considers all the vehicles in the transportation network and not only the ride-sharing vehicles. That means that we also have a baseline of personal trips composed of: (i) trips that come from or go outside the area studied and that cannot be shared; (ii) trips that are wholly inside the region but for which rides are not requested and personal cars are chosen.

The market-share defines among the several trip categories how many users will request a ride or choose their personal car. Simulating all the trips whatever their mode of transportation mode (personal car or service car) guarantees that we can properly track congestion during peak hours.

In this research, the trip-based MFD is used to consider individual trips while keeping a very simple description of traffic dynamics [START_REF] Lamotte | The morning commute in urban areas: Insights from theory and simulation[END_REF][START_REF] Mariotte | Macroscopic urban dynamics: Analytical and numerical comparisons of existing models[END_REF][START_REF] Mariotte | Flow exchanges in multi-reservoir systems with spillbacks[END_REF][START_REF] Leclercq | Dynamic macroscopic simulation of on-street parking search: A trip-based approach[END_REF]. The general principle of this approach is to derive the inflow and outflow curves, noting that the travel distance L i by a car i entering at time t -T (t) when n(t) is the number of en-route vehicles at time t and the mean speed of travelers is V (n(t)) at every time t, must satisfy the following equation:

L i = t t-T (t)
V (n(s))ds (5.1)

The function V (n(t)) is the speed macroscopic fundamental diagram and can be derived from common observations for a transportation network [START_REF] Leclercq | Macroscopic fundamental diagrams: A cross-comparison of estimation methods[END_REF]. For more details on the functioning of trip-based MFD, readers can refer to [START_REF] Leclercq | Dynamic macroscopic simulation of on-street parking search: A trip-based approach[END_REF][START_REF] Mariotte | Flow exchanges in multi-reservoir systems with spillbacks[END_REF].

Service cars can have two situations: They are waiting in depots for new passengers, or they are servicing the assigned passengers. In addition to the shared cars that are circulating to serve the passengers, personal cars are making trips that are not shared in the network.

The accumulation at each time t is the summation of the number of circulating service vehicles and the number of personal vehicles in the system. Therefore, at each time t, the mean speed of travelers can be computed. Both shared trips and non-shared or personal trips can pass the length of a time period, based on the current mean speed at that time.

The general assumption here is that personal and service vehicles have the same behaviors when driving and have the same marginal impact on congestion.

At each time step, the simulator computes the current speed of the cars considering the current traffic situation (the number of en-route vehicles). Then, the vehicle can cover a distance based on the current speed at every time step. So, the situation of cars is updated every time step, with the speed computed in the time and the remaining travel distance to cover. The time step that we use in our plant model is 1 second. So, the state of en-route cars is updated every second in the simulations. Equation 5. 

speed t =                2.mp nc , if acc t = 0 (mp/nc 2 )(acct)(2.nc-acct) acct , if acc t ≤ nc (mp/(nj-nc 2 ))(nj-acct)(nj+acct-2.nc) acct
, if acc t > nc nj = 1.3393e + 05, nc = 5.6518e + 04, mp = 2.8887e + 05

(5.

3)

The time and evolution of the mean speed over the full network in the network of Lyon 6 + Villeurbanne and the network of Lyon is shown in figure 5.2 and 5.3. 

Prediction model

To carry out travel time prediction for the optimization part, in the prediction model, the traffic situation is predicted for the next assignment time horizon (every 10 minutes), and we assign the passengers to the cars based on this prediction. Thus, at each time step, the direct travel time (DT T t i,j ) from each point i to j is computed based on the current mean speed and the shortest path between two points for the next 10 minutes. Then the optimization algorithm assigns all the requests for the next 10 minutes to the en-route cars or empty waiting cars.

In the rolling horizon method (Heuristic 1), the assignment procedure rolls over a specific horizon for the requests announced of a particular optimization step. In the current research, the rolling horizon is 20 minutes 1 , and the optimization time step is 10 minutes.

So, the requests of the next 20 minutes that have not yet been assigned are optimized every 10 minutes. Some of the requests are re-optimized every 10 minutes. If a trip has been assigned to a vehicle which has left the depot, the algorithm does not assign it again, but if a trip is in the schedule of a waiting vehicle, the algorithm places it in the set of optimized trips in the particular horizon and re-optimizes it.

Note that we stop the simulations halfway on the rolling horizon ( T H 2 ) and solve a new fleet allocation problem over a new full rolling horizon (T H). This prevents the system from being myopic to the new demand that may arrive just after the end of a simulation period, see figure 5 We use the trips-based MFD as the dynamic simulator and the predicted speed at the beginning of each horizon as the prediction model, which can be calibrated, to do the 1 The main goal of this study is to assess the performance of dynamic ride-sharing in terms of reducing congestion. To this purpose, it is more beneficial to have a longer optimization period to assess the system when we can have more sharing opportunities and be close to the optimal situation. Thus, if such a system that knows all the requests over a long horizon and is close to the optimal situation can not significantly decrease congestion in the network, we can say with quite high confidence that a real-time ride-sharing that matches the requests to the vehicles in real-time can not perform better 

Depot management

The service provider has a fleet of vehicles in a ride-sharing system to serve the service requests. Participating service vehicles start up from a number of known locations or depots and after serving the assigned requests, they stop at this allowed locations to wait for the next passengers.

In our research we define two kinds of depots: local and the central depots. The central depot in the network can feed all the local depots. Thus, there is no limitation on the fleet size. On the one hand, distributing vehicles over the depots will decrease the waiting time for passengers. However, on the other hand, in the peak hour, if many vehicles are circulating in the network, the congestion will increase, and it leads to more travel time for vehicles and passengers. We analyze the number of vehicles in depots over the network to decide about the best distribution for the vehicles. To locate the cars at the beginning of the simulations, we use the historical data for the network demand to estimate the demand distribution over the network. Then we specify the number of cars at each location based on the demand for the depot. So if the demand is high, we consider more cars on the depot, and if the demand is low, we put fewer vehicles at that location.

In Lyon 6 + Villeurbanne, we have defined 237 stop locations (all the allowed stop points in this network) for the service vehicles (local depots) and 1 central depot that can feed these local depots. Considering the demand distribution, at the beginning of the simulations, we feed 14 depots with two vehicles, 114 depots with one vehicle, and put 14 empty depots.

The central depot can feed each depot when the demand is high. Also, the system sends back the vehicles to the central depot when there exceed the required number of vehicles for this depot. In the network of Lyon city, we have defined nine central depots that are uniformly located in the network. The number of allowed stop locations is 2,272 points on the network. As the primary purpose of the thesis is to assess the impact of ride-sharing on reducing congestion, we ensure that the system can always have close service vehicles to any request, and the central depots can always feed the local depots.

Optimization component performance

In this section, we assess the performance of different steps of the solving method by comparing them two by two.

Simulations' configuration

Table 5.1 shows the primary configuration of the simulations. The computations are carried out on a desktop with two Intel Xeon core E5-2620 processors, 64 GB RAM and the Windows 10 operating system running C++ Visual Studio 2013.

One of the goals of this thesis is to figure out the performance of a dynamic ride-sharing system under the optimal situation. Here we assess the different optimization steps using the data from the network of Lyon 6 + Villeurbanne. In this case study, we fully monitor traffic dynamics as we assess both service and personal trips in the network. In the rolling horizon approach, to find the near-optimal matching for the service vehicles in the dynamic traffic conditions, we choose a longer time step comparing with other dynamic methods to guarantee that we can find near-optimal solutions for the matching problem.

Hence, to solve the problem dynamically, we apply the method every 10 minutes over the requests received in the next 20 minutes, considering we have a perfect knowledge of all requests over such a time horizon. We update the system situation every 1 second.

In chapter 3, we explained that the pick-up time window is the time interval between the earliest pick-up time and the latest pick up time. Similarly, we can define the drop off time window. In our simulations, This time interval is computed based on the trip length.

It has a fixed length, which is set to be 6 minutes (considering the average trip length).

Then we add 1 minute for each 1-kilometer trip. Equation 5.4 shows how we compute the time window's interval (T W I) for each request where F ixed T W is the fixed-length (6 minutes in the primary configurations) and DT D t i,i+n is the trip length (direct travel distance from passenger i origin to destination). For example, for a trip of 7 kilometers, the waiting time is 6 + 7 = 13 minutes. The passenger i defines the earliest pick-up time (EP i ) when he/she sends the trip request to the system. Then the pick-up and drop off time window can be defined as below (DT T t i,i+n is the direct travel time from passeger i's origin to destination at time t).

T W I = F ixed T W + 1 × DT D t i,i+n
(5.4)

• pickup time window: (EP i , EP i + T W I)

• drop off time window:

(EP i + DT T t i,i+n , EP i + DT T t i,i+n + T W I)
The capacity of vehicles in the primary configurations is 4 and we do the simulations with the number of sharing 0 (like traditional taxi services without sharing), number of sharing 1 and 2. The market-share can be from 1 percent to 100 percent of the trips.

We consider 1 minute service time for passenger pick up and drop off.

The result tables show the number of trips, the number of shared vehicles, the total travel time and distance for the vehicles, the number of requests, the total travel time and waiting time for all the passengers and the total travel time of personal vehicles for different market shares and numbers of sharing.

We assume that personal trips start at the origin precisely at the departure time without any waiting time and they end the trip at the destination. The travel time for the travelers of personal vehicles is equal to the vehicle travel time.

Exact assignment algorithm over the full-time horizon

Our first test case focuses on the exact global solution. It can be obtained only if the number of requests is low and no heuristics, including the rolling horizon, are running.

The results are provided for a market-share of 4%, i.e. a total of 430 trips with the number of sharing 0, 1, 2 and 3. See Table 5.2. N trips is the number of trips to serve all the requests, m is the number of vehicles used, k∈M T k and k∈M T D k are total travel time and distance for service vehicles, n is the number of passengers and i∈N T T i and i∈N W T i are total travel time and waiting time for passengers. When the number of sharing is 0, each service vehicle serves only one passenger at a time, and the system does not share any ride. Then, with the number of sharing 1, the system is allowed to share a passenger ride with only one other passenger at the same time, as in e.g. [START_REF] Hyland | Sharing is caring: Dynamic autonomous vehicle fleet operations under demand surges[END_REF], and in continuation with the number of sharing 2, three passengers can be in the same vehicle at the same time. With the number of sharing 3, the system uses all the vehicle capacity to serve the passengers.

It is clear that sharing can significantly improve the objective function. This means that with our proposed sharing method, the system can serve the requests with fewer vehicles and a better objective function.

In the general case, sharing can decrease the number of vehicles needed and maybe improve the objective function (this is our current investigation). However, with so few trips here, the impact of sharing is very limited. What is interesting is to assess the increase of the feasible solutions (branches in the tree) with the increase of the number of sharing and the impacts on computation times.

When the number of sharing is 0, each vehicle serves just one passenger at a time. The algorithm also considers the trips that can be in sequence. When the travel time from the first destination to the second origin is shorter than the travel time between the first destination and the closest depot to this point, the algorithm puts these two trips in sequence. So, for example, in the first step when the algorithm is building the tree with branches, the number of branches does not go further than the number of requests. The results show that it takes just 0.33 hour to simulate our ride-sharing system in the morning peak hour. Then, when we increase the number of sharing to 1, we reduce the constraint on the number of passengers in the vehicle at the same time. Thus, the exploration space is expanded, and the algorithm can extract more branches at each step. The simulation time when we have an optimal system with the number of sharing 1 is 35.81 hours. When the number of sharing is 2, the algorithm can add any permutation of the other two trips to the first trips. Thus, the number of branches increases exponentially and, as can be seen the computation time for the number of sharing 2 is much longer than the computation time for the number of sharing 0 and 1. It takes almost 224 hours to simulate the system function with the number of sharing 2.

When the number of sharing is 3, the total travel distance is reduced by 600 meters while the total waiting time is increased by 22 minutes. Also, the computation time is 505 hours for the number of sharing 3.

Comparing the exact algorithm with the existing methods

As it is shown in section 3.2.5, increasing the number of requests will exponentially increase the computation time of the algorithm. We have developed the algorithm in terms of computations speed with paralleling the third main loop in the algorithm (for sp ∈ SP ).

In the algorithm, the feasible points are added to the feasible branches to extend the tree and find all the possible routes. By paralleling the third main loop, the algorithm can add the points to the branches in parallel simultaneously (24 points at each time). This can enable us to solve larger problems with the exact algorithm.

To show the quality of our exact solution method, we have compared the computation time with a CPLEX solver for the same problem. Table 5.3 shows the computation time for different number of requests. As the problem is NP-hard, it is very expensive in terms of time to compute the exact solution with CPLEX for more than 8 requests. Only for 4 requests, the computation time for our presented algorithm is 26 times better than CPLEX.

[35] propose an exact Branch-and-Cut algorithm for similar problem that can outperform the state-of-the-art solver CPLEX. The computation time of their proposed algorithm with 40 requests is 578 seconds. Our presented algorithm can solve the problem with 40 requests in 230 seconds. Then they propose a lean heuristic algorithm based on Large Neighborhood Search (LNS) to find near-optimal solutions. In another study on pick up and delivery problem for ride-sharing by [START_REF] Wang | Stable matching for dynamic ride-sharing systems[END_REF], the exact solution for the ride-sharing So our solution method outperforms existing solvers when determining the exact solution for small instances. It allows us to compute the exact solution for medium-size instances, e.g., market-share = 4%. But we can not solve larger problems without introducing heuristics. We will explain about the performance and accuracy of our heuristics in the next sections.

Heuristic 1: Rolling horizon and re-scheduling performance

The rolling horizon immediately improves computational times by reducing the exploration space. Thus, the algorithm can handle the fleet assignment problem with higher market-shares. On the other hand, the objective function will increase compared with the optimal situation. Figure 5.10 compares the first heuristic method with the optimal system performance when the market share is 1 percent, considering the objective function value and the simulation time for different numbers of sharing.

To compare the objective functions of different methods, we assume a baseline. The baseline is the objective function of the method which is expected to give the best value.

To make it clear, we set the objective function of the baseline equal to zero and then Table 5.4: Simulation time for the exact method and heuristic 1 compute the percentage of objective function differences for the second method and the reference method and plot the objective function difference percentages.

The exact method leads to lower objective function values than heuristic 1. Therefore, we assume the exact method as the baseline and plot figure 5.10 considering the percentage increase with heuristic 1. With the rolling horizon approach, the objective function increases by only 2.68% for the number of sharing 0, 2.64% for the number of sharing 1 and 3.93% for the number of sharing 2, compared to the exact method while the simulation time decreases by more than 89% for the number of sharing 1 and 3000% for the number of sharing 2. The increase in the objective function is therefore negligible compared to the improvement in the simulation time with the first heuristic approach. 

Heuristic 2: Clustering method performance

The computation time for the dynamic ride-sharing system simulation with bigger marketshares in the optimal situation is long. In particular, it is not efficient when the number of sharing is 2. The clustering method proposed narrows the search for feasible solutions in the algorithm and makes it fast enough to assign requests to the shared vehicles in a short time and respond to the passengers quickly. To examine the performance of the heuristic method proposed, the simulations are compared to the previous results with a market-share of 10% considering the simulation time and the quality of the objective function for different sizes of clusters.

For a market-share of 10% the maximum number of requests at every time step is not more than 75, so we execute the simulations with cluster sizes of 10, 20, and 30 to have at least 3 clusters at each optimization time step and to be sure that the clustering method will be effective in terms of reducing the computation time. Clustering can significantly improve the computation time with a very small increase in the objective function. This is because we carefully define the clusters by putting the shareable trips together. Therefore, the optimization is not deteriorated, even when the number of sharing is 1 and 2.

In figure 5.11, the reference method is heuristic 1, and the clustering method with three different sizes of clusters is compared to the reference method. When the number of sharing is 0, all the methods give the same solutions. When the number of sharing is 1 and 2, the objective function is 1.25% and 1.29% higher for a cluster size of 10, 0.72% and 0.75% higher for a cluster size of 20 and 0.67% and 0.68% higher for a cluster size of 30.

It is also clear that the clustering method can significantly reduce computation time.

When the number of sharing is 1 and 2, the improvement in the assignment computation time makes the clustering computation time negligible. This improvement is considerable when the number of sharing is 2. The clustering method with a cluster size of 30 can reduce the computation time when the number of sharing is 2 from 2001 seconds to 300.4 seconds while increasing the objective function with just 0.68%. The computation time for the clustering method, when the number of sharing is 0, is equal to or greater than the computation time without clustering. This is due to the clustering execution time.

Heuristic 3: Force the sharing method (FOSH method) performance

With clustering we can now address large size problems and investigate higher marketshares. Here we focus on the 40% market-share case to determine the influence of the final FOSH heuristic.

When we favor sharing in the algorithm, the assignment gives shorter travel times and distances for the vehicles and longer travel times and waiting times for the passengers.

To keep the waiting time acceptable for passengers, we set the fixed time window length to 1 minute instead of 6 minutes in the simulations. As the time window for passenger pickup and drop off times is restricted, the decrease in the vehicle objective becomes dominant. Figure 5.12 shows the objective functions with and without the FOSH method for different cluster sizes and numbers of sharing when the market-share is 40%. As the number of requests in each time step is higher for higher market-shares, we increase the size of the clusters to 40. We expect a better objective function for bigger cluster sizes.

Thus, here, we consider that the reference method is the clustering method (heuristic 2) with a cluster size of 40, and we compute the percentage increase of the objective function for other methods based on this reference method. The FOSH method (heuristic 3) increases the objective function by only 0.13% when the number of sharing is 1 and 0.01% when the number of sharing is 2. The results are almost the same for the other cluster sizes. The objective function increases up to 2.5%. Also, the results show that cluster sizes of 30 and 40 can give very similar solutions. The difference between the cluster size of 30 and 40 is less than 0.5% for both heuristic 2 and heuristic 3. In the FOSH method, the algorithm assigns more trips within each branch every time.

Therefore, we expect that this method decreases the simulation time. Table 5.6 shows the simulation time comparison for heuristic 2 and heuristic 3. Heuristic 3 significantly improves computation time. Also, with this method a huge drop is observed when the number of sharing is 2.

When the algorithm assigns more requests to a vehicle, the number of trips needed to serve all the passengers' requests decreases. Thus, with the FOSH method, we expect to use fewer trips and consequently, fewer service vehicles. Figure 5.13 proves this assumption.

The number of shared cars is significantly lower with the FOSH method. Heuristic 2 serves 40% of the network demand via 4,257 trips with a cluster size of 30 and the number of sharing at one while heuristic 3 serves the same number of requests via 2,407 trips (each trip starts from a depot and ends at a depot).

As the results show, a cluster size of 30 can give a reasonable trade-off between the computation time and the quality of the solution for this scale. Therefore, in the next experiments, we execute the simulations with a cluster size of 30 to ensure rapidity and also to keep the quality of the objective function at an adequate level. 

Comparing the final algorithm with the existing methods

In this section, we show the quality of the proposed method comparing with the other existing methods.

First, it is important to see the performance of the solution method comparing with the optimal situation when we increase the market-share. the computation time for the optimal solution is 80 hours when the number of sharing is 1. The figure shows that the final algorithm increases the objective function for 3.67%

while the computation time decreases to 6 minutes (99.9% decrease) when the number of sharing is 1. The results prove the capability of the presented algorithm to provide fast and qualified solutions for the dynamic ride-sharing problem. The optimization time step is 10 minutes, so the rolling horizon method can find near-optimal solutions. Then in heuristic 2, the shareability index can effectively find the potential sharing opportunities and cluster the requests. Therefore, increasing the market-share will not affect the quality of the solution methods, and the results are very close to the optimal situation. Table 5.8 shows the results for different solution methods when we serve 10% of the internal trips with service cars.

The market-share = 0 is when only personal vehicles serve all the network demand. Using service vehicles increases the travel distance for the vehicles and consequently, the travel time. Serving 10% of the requests with service cars, increases the total travel time for vehicles by 43.3 hours in the optimal situation. The FOSH method reduces this value to 19.9 hours by favoring the sharing but it increases the passengers' waiting time from 8.2 hours in the optimal situation (27.0 seconds for each passenger on average) to 20.0 hours (66.6 seconds for each passenger on average).

The heuristic method proposed here can also outperform the previous methods in the literature. In [START_REF] Braekers | A multi-period dial-a-ride problem with driver consistency[END_REF] after an exact method, they propose a lean heuristic algorithm based on Large Neighborhood Search (LNS), to find near-optimal solutions. The lower bounds generated by their exact approaches are on average 3.68% better than the average LNS result and the average computation time is less than 90 s for instances with up to 40 requests, while large-scale instances with up to 100 requests are solved in about 10 min on average. Our heuristic method can solve the problem in less than 20 seconds for 40 requests and less than a minute for 112 requests while it increases the objective function only by 3.19% percent for 112 requests. For market-share = 10% (1092requests) the heuristic method increases the objective function for 3.67%. [START_REF] Wang | Stable matching for dynamic ride-sharing systems[END_REF] present a Tabu search heuristic for the pick and delivery problems for ride-sharing. They use a ratio (the objective value of the optimal solution divided by the output objective value of the heuristic method) to compare the heuristic method with optimal situation. For 9 requests, the ratio is 0.94 in average. The final heuristic method proposed in this study can find optimal solution for 9 requests. Increasing the number of requests, keeps this ratio low. For market-share = 10%, this ratio is 0.96 in our method.

Different clustering methods have been implemented in the literature for large-scale problems. They usually divide the space geographically and use a spatial clustering to downsize the problem. We have compared the Shareability clustering with such a spatial clustering method. For the spatial clustering, we put the two corresponding trips in the same cluster based on the distance between their origins. Also, we try to cluster the trips based on the time in a temporal clustering method. For the temporal clustering, we put two trips is the same cluster based on their departure time and their position. Finally, we compare these methods with our proposed method to show the quality of our proposition. As explained in section 4.4.3, we can do the transportation analysis for medium-scale with the k-means method when the cluster size is 30. For large-scale, we use the hierarchical method.

Dynamic simulation component performance

Network congestion has impacts on the dynamic ride-sharing service. When the rides are executed, a gap can exist between the estimated travel times used by the optimization process at the beginning of the time horizon and the travel times experienced during the time horizon in the plant model. So, the objective function when solving the fleet allocation problem at the beginning of the time horizon can be different from the objective function experienced. Then, the current speed is updated based on the new traffic condition for the next step to take into account the impact of congestion and to minimize this gap. Table 5.9 shows the estimated objective and the objective function values experienced (normalized values) for the different methods when the market-share is 10%, and the cluster size for heuristic 2 and 3 is 30. The objective function implemented is greater than the estimated objective function for all the methods because of the gap between the predicted and the real travel times. For example, when the number of sharing is 1, the estimated objective function for heuristic 1 is 1,980, but the objective function experienced is 2,030. The differences are small in all the scenarios showing that the prediction model is accurate enough. figures). We perform sensitivity analysis on the fixed length of the time window, the rolling horizon, and the depot size. The simulation's configuration for medium-scale analysis is explained in section 5.3.1. Table 6.1 shows the simulation results for different marketshares and numbers of sharing. We discuss the results in detail in the next sections.

Market-share

We use the vehicle accumulation in the network as a measure of traffic congestion. We compute the vehicle accumulation in the network every second in the simulations. This extra distance makes the car stay longer in the network and leads to more traffic.

Hence, when the market-share increases, the accumulation of vehicles increases.

In table 6.1, the travel time for the personal vehicles when the market-share is zero is 7,978.4 hours. Then, with a market-share of 20%, the total travel time for shared vehicles is 251.7 hours, and the total personal vehicle travel time is 7,816.6 hours. Therefore, the total travel time for all the vehicles in the network is 1.13 % higher than the total travel time when there is no service vehicle in the network. Increasing the market-share will increase this extra travel time by 2.27 % , 3.33 %, 4.37 % and 5.50 % for market-shares of 40%, 60%, 80% and 100% .

As shown in table 6.1, sharing decreases the travel distance and the travel time for service vehicles. Hence, the number of sharing 1 can reduce the accumulation of cars driving in the network. Figure 6.2 shows the accumulation of all the vehicles in the network when the number of sharing is 1 for different market-shares. The results show that sharing can reduce traffic congestion for a given market-share. The total travel time for shared vehicles when the market-share is 80% is 1,018.6 hours, which is for 515 vehicles that make 8,963 trips to serve 8,978 requests when there is no sharing. But it falls to 852.4 hours with 404 vehicles via 4,880 trips for the same number of requests when the number of sharing is 1. However, sharing cannot improve the traffic situation significantly compared to the case when all the trips are made with personal cars. For example, for the market-share of 20 percent and the number of sharing 1, the total travel time for all the vehicles in the network is 8,006.4 hours, which is 0.77% better than the number of sharing 0 but still 0.35% worse than the no service scenario. The total travel time for all the vehicles in the network is 0.56%, 0.90%, 1.19% and 1.61% longer than the no service scenario for market-shares of 40%, 60%, 80%, and 100%. To consider the passengers' willingness to share the ride and their satisfaction, we optimize the passengers' waiting time and travel time in addition to the vehicle objectives. Thus, increasing the market-share cannot increase the passengers' objectives so that this leads to their dissatisfaction. As we place a strict constraint on the passenger pickup and delivery time window, the average waiting time for each passenger is not more than 63 seconds.

For the market-share of 20% the average waiting time for each passenger is 62.8 seconds when the number of sharing is 1, and it is 54.0 seconds for the market-share of 100%. Also, the average travel time for passengers is 5.9 minutes when the market-share is 20%

and the number of sharing is 1, and it increases by 24 seconds for the market-share of 100%. Market-share (%) 

Number of sharing

Increasing the number of sharing provides the system with greater leeway to decrease the travel distance by reducing the distance between stop points and depots. So, with more sharing, we expect a better traffic situation and fewer vehicles in the network. increase the speed, but it still cannot be higher than the speed in the no service scenario.

At the onset of congestion, with the number of sharing 2, the speed is 35.5 km/h which is 0.16% higher than the number of sharing 1.

Figure 6.7 shows the accumulation differences with the baseline in peak hours. It is clear that sharing can improve congestion compared with the number of sharing 0 (systems like traditional taxis), but it is not better than the no service scenario. At the onset of congestion, sharing can prevail over the no service scenario, especially when the number of sharing is 2. Then, as congestion subsides, the sharing scenarios is better than the no service scenario. Finally, the number of sharing 2 is better than when the number of sharing is 1. This is because the vehicles have to travel a longer distance after the peak hour as they have more requests to serve. when the number of sharing is two. This increase is acceptable considering the last heuristic used to force the sharing. This means that the passenger must wait no more than 1 minute to be picked up at the origin when the number of sharing is 1. In the first heuristic, sometimes the algorithm can find a better assignment for the vehicles that are waiting in the depot, and it changes the first schedule. It can increase the passengers' waiting time. However, the waiting time will not be more than 10 minutes. Figure 6.8
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shows the variation of passengers' waiting time for different numbers of sharing when the market-share is 100%. For the number of sharing 0, the median for the waiting time is 0, and 50% of passengers depart at their defined pick up time. For the number of sharing one, the median of waiting time is still 0, and 50% of the passengers can start their trip at their desired time. The 75th percentile is 108 seconds, and the upper adjacent is 4 minutes. For the number of sharing 2, the median increases to 22 seconds, and the upper adjacent is 5 minutes. In section 5.3.7, we showed that the heuristic method gives an error of 3.67% comparing with the optimal solution. The total travel time for all the vehicles in the system is 7978.4 hours in no service scenario. We can estimate the optimal situation considering this error. If we reduce this error from the final results, the total travel time for the number of sharing 1 and market-share = 100% can be reduced to 8068.0, which is still more than the no service scenario. The estimation of the heuristic error when the number of sharing is 2 is 4.66%. The total travel time for the vehicles when the number of sharing is 2 can be around 8022.4 hours in the optimal situation, and it is still more than the no service scenario.

In the next sections, we analyze the time window, rolling horizon, and depot size in the medium-scale network (Lyon 6 + Villeurbanne). We also implement the method with an operational setting on this network to compare it with our proposed system.

Time window

In section 5.3.1, we explained that the time window for each request has a fixed-length, and we set this length equal to 1 minute in the simulations. In this section, we assess the impact of the time window on the ride-sharing system performance. Increasing the time window leads to longer trips as the passengers can wait more for the service.

In the current configuration F ixed T W is equal to 1 minute. We do the simulations for F ixed T W = 6 and F ixed T W = 10 to see the effect of increasing the time window. Table 6.2 shows the results for different time window lengths when the market-share is 100%, and the number of sharing is one. When the F ixed T W is 1 minute, the system serves the requests with 6,072 trips. When we increase the F ixed T W to 6 minutes, the number of trips decreases to 4913, and when the F ixed T W is 10 minutes, the system just (it happens for the trips that are longer than 10 kilometers). Finally, we can see that even increasing the time window, which should favor the sharing, cannot reduce congestion in Lyon 6 + Villeurbanne's network.

Rolling horizon

In section 5.1.2, we explained that we stop the simulations halfway on the rolling horizon ( T H 2 ) and solve a new fleet allocation problem over a new full rolling horizon (T H). This prevents the system from being myopic to the new demand that may arrive just after the end of a simulation period.

In the current simulations' configuration, T H is 20 minutes. It means that every 10 minutes, the system optimizes the requests over the next 20 minutes ((10,20) in table 6.3). In this section, we assess the impact of rolling horizon and optimization time step on the system performance. We do the simulations for [START_REF] Agatz | Sustainable passenger transportation: Dynamic ride-sharing[END_REF][START_REF] Alisoltani | Optimal fleet management for real-time ride-sharing service considering network congestion[END_REF] and [START_REF] Amey | Real-time ridesharing: exploring the opportunities and challenges of designing a technology-based rideshare trial for the MIT community[END_REF][START_REF] Caulfield | Estimating the environmental benefits of ride-sharing: A case study of dublin[END_REF] to evaluate the system when we have a shorter and a longer rolling horizon. 6.4 shows the results for different scenarios. The second scenario can improve the total travel distance by 1.3% compared to the basic scenario recall that we increased the number of vehicles by 1153%. In the third case, with 350% increase in the number of allowed waiting locations for the vehicles, the total travel distance is improved by 9%.

Figure 6.10 shows the percentage of improvement for the three sharing scenario compared to the scenario when we have just personal vehicles in the system. All the sharing scenarios decrease the congestion in peak hour but this improvement is not significant. In the best case, the basic scenario can improve the congestion by 4.1%. Increasing the number of vehicles can further improve it by 0.6% and increasing the number of stop locations by 5 times can make 2.5% improvement compared to the basic scenario. 

Operational settings

The main goal of this study is to assess the performance of dynamic ride-sharing in terms of reducing congestion. To favor the ride-sharing service, we choose a longer optimization time step comparing with other dynamic methods to guarantee that we can find nearoptimal solutions for the matching problem. Hence, to solve the problem dynamically, we apply the method every 10 minutes over the requests received in the next 20 minutes, considering we have a perfect knowledge of all requests over such a time horizon. However, one can argue that today's real operational systems do not have this long horizon and that they answer service requests immediately. Hence, our conclusions would be valid only for the methods that we are using, i.e., with a rolling horizon.

To verify our conclusions in this context, we propose to mimic today's operational settings.

To do so, we propose an insertion heuristic method that matches the passengers and vehicles in real-time. The chosen vehicle to insert the new request in its schedule is the Figure 6.11 shows the network traffic when the market-share is 100% for different numbers of sharing under operational settings comparing with the no service scenario and our proposed system when the number of sharing is 1. It is clear that the operational settings perform worse than the near-optimal situation proposed in this thesis in terms of reducing congestion even with the number of sharing 2. Table 6.5 shows the results for operational system settings compared with our proposed settings. The total travel time for service vehicles in the operational setting is 66.8 hours more than the proposed system when the number of sharing is 1. Also, the total travel time for personal vehicles in the network is 47.8 hours more in operational settings. It is clear that the proposed settings outperform the operational settings. 

Analysis in large-scale

In this section, we assess the impact of dynamic ride-sharing on traffic congestion in a large-scale network, using the proposed simulation-based optimization framework. The Lyon network area is 220% larger than the medium-scale network, and the number of trips is 676% more. Also, there are longer trips in the large-scale test case.

In the previous section, we observed that dynamic ride-sharing can reduce the travel time and distance and improve the traffic congestion compared to the scenario when we use taxis in the system, and we do not share the trips. However, it can not overcome the basic scenario where all the trips are made with personal cars. The impact of ride-sharing would be different in large-scale as the number of trips, and the trip length is much more than in the medium-scale, and the system has more opportunity to match the shareable trips.

Simulations' configuration in large-scale

In the rolling horizon approach, every 10 minutes, the system solves the assignment problem for the requests of the next 20 minutes. The simulation time step is 1 second, so the state of the system is updated every second. The fixed-length of the time window was 6 minutes for the medium-scale, and after the FOSH method to keep the passengers'

waiting time acceptable, we reduced it to 1 minute. In large-scale as the trips are longer than in medium-scale, we set the F ixed T W equal to 6 minutes. We do the simulations for the number of sharing 0,1 and 2 and the market-share from 0 to 100%. The capacity of service vehicles is 4. We have defined 2,263 allowed stop locations for the service vehicles in the system. The number of vehicles waiting on these local depots at the beginning of the simulations is 22630. In addition to the local depots, there are nine central depots in the network that can feed the local depots. As the main goal is to assess ride-sharing performance on congestion, we put 9,000 service vehicles in the central depots to be sure that the system has enough service cars. This is equivalent to not planning an upper bound on the number of available vehicles. We have considered 1 minute as service time for passengers pick up and drop off in the simulations.

Optimal size of clusters

In section 4.4.3, we showed that hierarchical clustering is an appropriate clustering method to cluster the requests using our proposed "Shareability function" on a large-scale. We try to have the same size clusters (to avoid too big or too small clusters) to be able to keep the computation time low and have the opportunity for sharing in all the clusters.

In the hierarchical method, we can keep the first cluster of the desired size at the bottom of the dendrogram to have the same size clusters [START_REF]Clustering into same size clusters[END_REF]. The crucial point here is to find an approximation for the size of clusters in the hierarchical method.

There are different methods in the literature to choose the optimal size of clusters. Here, the quality of the clusters (how similar are points within a cluster) is very important.

Furthermore, we have to be sure that the clusters are separated from each others, and the possibility of sharing two trips from two different clusters is minimum. Thus the best way to find the optimal size of clusters is to use the Sum of Squares method (SS) [START_REF] Krzanowski | A criterion for determining the number of groups in a data set using sum-of-squares clustering[END_REF]. It is a clustering validation method that chooses the optimal size of clusters by minimizing the Within-cluster Sum of Squares (WSS) (a measure of how tight each cluster is) and maximizing the Between-cluster Sum of Squares (BSS) (a measure of how separated each cluster is from the others). We compute the WSS and BSS for all the clusters in different periods to evaluate the optimal size of clusters in different demand situations. We analyze the size of clusters from 75 to 300. Figure 6.12: Sum of squares method for finding the optimal size of clusters Figure 6.12 shows the SS method at different times of the simulations. Increasing the size of clusters decreases the BSS. It means that more number of clusters can ensure that the clusters are separate from each others. We have determined the cluster sizes that minimize the WSS and maximize the BSS. At 6 and 7 AM, the cluster sizes 100 and 125 can make this trade-off between WSS and BSS. At 8 and 9 AM, the best cluster sizes are .17: Total travel distance for all the cars for the number of sharing 0, 1 and 2 with different market-shares (large-scale) Figure 6.16 and figure 6.17 shows the total travel time and distance for all the service and personal cars in the network for different market-shares when the number of sharing is 0, 1, and 2. It is clear that with the number of sharing zero, total travel time and distance increases with increasing the market-share. Market-share = 100% with the number of sharing zero can increase the total travel time by 5.6% and the total travel distance by 3.7%. Then, sharing can fix this problem by reducing the total travel time by 30.0% with the number of sharing 1 and 41.1% with the number of sharing 2 compared to the number of sharing 0. Furthermore, the total travel distance is reduced by 25.5% with the number of sharing 1 and 36.0% with the number of sharing 2. As we mentioned, increasing the number of sharing provides the system with greater leeway to decrease the travel distance by reducing the distance between stop points and depots. Figure 6.18 shows how increasing the number of sharing can reduce congestion in large-scale (for market-share = 100%). The system serves 205,308 requests, with 205,124 trips using 17,102 vehicles when the number of sharing is zero. With the number of sharing 1, the requests are served with 105,745 trips using 9,489 vehicles. The number of sharing 2 reduces the number of trips to 72,160 using 6,826 vehicles. Finally, if we use all the car capacity and share each trip with a maximum of 3 other passengers, the system can serve the requests with 69,790 trips using 6,595 vehicles. The difference between the number of sharing 1 and 2 is more significant than the difference between sharing 2 and 3. With the number of sharing 3, the vehicles have longer travel distance and remain more in the system. So the increase in the vehicles' speed with the number of sharing 3 is not comparable with the number of sharing 1 and 2. Figure 6.20 shows the average vehicle speed every hour in the network. In the peak hour, the average speed is 29.1 km/h for the "no service scenario" when we have just personal cars Increasing the number of sharing increases the passenger waiting time, but the waiting time remains acceptable for passengers with different numbers of sharing. This is because time and distance and reducing the number of trips and needed vehicles. The total travel time for service cars is reduced by 23.0% for capacity = 6, 43.7% for vans and 63.2% for shuttles. Also, the total travel time for personal cars can be reduced for 175 hours, 444 hours and 696 hours for capacity = 6, van-pooling and shuttle-sharing. Figure 6.21 shows the traffic situation for the different vehicles' capacity compared to the no service scenario and the number of sharing zero (when we have service cars in the system without sharing). It is clear that increasing the vehicles' capacity can improve the traffic in the network. With capacity = 6, the number of trips is reduced by 9.3% compared to the scenario when the car capacity is 4. Also using vans can reduce the number of trips by 33.4% and the number of needed cars by 35.5%. Shuttle-sharing can make a more significant improvement in improving the traffic situation by reducing the number of trips by 57.0% and the number of needed vehicles by 57.8%.

Number of sharing

Parking effect

In the previous simulations, we compared the different configurations of the sharing system with a baseline, which shows a market-share of 0. A zero market-share is the case when personal cars serve all the trips in the network. We consider that each personal trip is precisely from the origin point to the destination point in our simulations. But when people use their car for a trip, at their destinations, they have to drive randomly until a free parking place is reached to park their vehicles. During peak hours, such trip-endings increase the total number of vehicles driving and decrease the service level for other drivers ( [START_REF] Leclercq | Dynamic macroscopic simulation of on-street parking search: A trip-based approach[END_REF]). [START_REF] Axhausen | Effectiveness of the parking guidance information system in frankfurt am main[END_REF] based on surveys in different European cities showed that between 4.9% and 40.3% of the total travel time in a city is dedicated to searching for parking spaces. Therefore, in this section, to be more realistic, we define a new baseline with a market share 0 when we consider a specific time for parking searches. We consider 5 percent of the total travel time for parking searches and increase it to 25% in peak hours. Table 6.9, compares the results with and without considering searching for parking spaces.

Searching for parking space can increase the personal cars' travel time in the "no service scenario" by 12.7%. Then using the service cars to serve a part of the trips requests 

Conclusion

A critical question about dynamic ride-sharing services is whether they can reduce traffic congestion. In this chapter, we implemented the proposed simulation-based optimization framework for the dynamic ride-sharing on two different scales to find the answer to this question. We performed an extensive simulation study (based on real-world traffic patterns) to assess the influence of dynamic ride-sharing systems on traffic congestion.

Different situations (five different market-shares and three numbers of sharing) were investigated in terms of traffic conditions. We compared these situations with a baseline traffic situation where all the trips are served with personal cars.

In the medium-scale (Lyon 6 + Villeurbanne) contrarily to what we expected, the results showed that ride-sharing could not make a considerable improvement to the traffic situation. Ride-sharing can reduce congestion compared to traditional taxi services and dial-a-ride services. However, high levels of market-share add extra travel distance and travel time to the trips and lead to more traffic in the network. Then we observed that ride-sharing services in large cities are completely different from those in small and medium-sized cities. In large-scale (Lyon) simulations, the proposed dynamic ride-sharing system can significantly improve traffic conditions, especially during peak hours. Increasing the market-share and the number of sharing can enhance this improvement. Also, we showed that the system could perform better with bigger cars and vans. Furthermore, we investigated the influence of personal vehicle parking space searches on the performance of the dynamic system in terms of reducing congestion. When we considered parking space searching by personal cars, we found that the dynamic ride-sharing system can make bigger improvements to traffic congestion during peak hour.

In the next chapter, we summarize the critical findings of this dissertation, we draw general conclusions and describe our future research.

Part IV

What are the major outcomes of this thesis?

In previous parts, we answered two main questions about dynamic ride-sharing service by proposing simulation-based optimization frameworks for such a service. In this part, we summarize the critical points of this dissertation, and we discuss the conclusions. have presented the solution method to solve the mathematical problem. In part 3, we have answered the second sub-problem: How to assess the impact of the network traffic conditions on the ride-sharing system and vice versa? In chapter 5 we have presented a simulation framework for dynamic ride-sharing that can enable us to evaluate the impact of the network on ride-sharing. In chapter 6 using this framework, we analyze the impact of dynamic ride-sharing on both medium-scale and large-scale networks. Finally, in part 4, we present the major outcomes of the thesis. In this chapter, we summarize the thesis in section 7.1.1, 7.1.2 and 7.1.3. In section 7.2, we present the conclusions, and in section 7.3, we give an outlook for future directions that can improve the dynamic ride-sharing systems.

Dynamic ride-sharing optimization method

We define a system for dynamic ride-sharing with two main components: the fleet management component and the simulation component.

The fleet management component solves a mathematical problem to assign the vehicles to the trip requests. The mathematical model is rigorously formulated to minimize both passengers' and service providers' objectives. According to the state-of-the-art, the most important operation objective for the service provider is to minimize the total travel time and the total travel distance of vehicles. Also, the passengers need to get to the destination on time and have the minimum waiting time. The main model constraints are capacity constraints, time constraints, and assignment constraints. Also, we have considered limitations on the number of sharing, and we made sure that there is a sufficient number of vehicles in the fleet. The mathematical problem is NP-hard, and even very small instances of this problem give a number of variables and constraints to compute that encompasses the acceptable dimension of a linear programming problem. To be able to solve such a complex problem, we have presented a solution method with multiple steps that starts from finding the exact solution for small instances. Furthermore, we have introduced extensions that speed up the solution method and address bigger networks, even large-scale networks, while assessing the difference in quality at each step. We showed that the proposed heuristics can keep the quality of solutions at an acceptable level (near-optimal solution) while significantly decreasing the computation time.

In the beginning, to find the exact optimal solution to the problem, we introduced an exact method based on the branch-and-cut concept. The method creates branches of routes and then chooses the optimal solution among the feasible routes. Then we introduce a rolling horizon method as the first heuristic step. The requests are assumed known only over the next rolling horizon (20 minutes). The corollary is that we have to introduce a new process to handle traveling cars that have not yet reached their maximal occupancy because of the car or the passenger constraints. We, therefore, introduce a specific algorithm to assign the new requests in priority to en-route vehicles. The exact algorithm handles the remaining requests.

The algorithm must try all the different arrangements of stop points to find the optimal assignment. Thus, the computation time increases exponentially as the number of requests increases. Restricting the exploration of the feasible area to the branches that are more likely to create the optimal assignment can narrow the search for feasible solutions. To overcome this limitation, in the second heuristic method, we define a clustering method to make clusters of the requests which are more likely to be shared. Then the algorithm is executed within each cluster independently. We define a "Shareability Index" based on three different trip situations (shareable and in sequence) to do the clustering. After computing the shareability function, we have the function value for each pair of requests that creates the shareability matrix. The shareability matrix is a kind of similarity matrix for the requests received that can be used in the clustering process. After computing the shareability function for all the pairs of requests, we do the clustering using the computed similarity matrix. When we make clusters based on the SF, we put the trip requests that have more potential to be shared in the same cluster. We use k-means clustering for medium-sized problems and hierarchical clustering for large-scale problems to create clusters based on the shareability matrix.

The optimizer works to minimize the objective function, which combines both passengers' and operators' objectives. Therefore, the algorithm may choose a branch with less sharing

To assess the influence of the dynamic ride-sharing system on reducing traffic congestion, we compared the traffic condition for the dynamic ride-sharing system considering different market-shares and the numbers of sharing with the case where the market-share is zero when only personal vehicles serve all the network demand. We increased the market-share from 20% to 100%. We also did the simulations with the number of sharing 0, 1, 2, and 3. The number of sharing 0 is when each car serves only one passenger request without sharing, and the number of sharing 3 is when the system uses the full capacity of cars (when the car capacity is 4).

First, we assessed the impact of ride-sharing on the network of Lyon 6 + Villeurbanne as a medium-sized network:

Using the service cars in the system without sharing (when the number of sharing is 0), increases the total travel time and total travel distance. When the market-share is 20%, the total travel time for all the vehicles in the network is 1.13% higher than the total travel time when there is no service vehicle in the network. Increasing the market-share will increase this extra travel time by 2.27% , 3.33%, 4.37% and 5.50% for market-shares of 40%, 60%, 80% and 100%. Sharing can reduce the accumulation of cars in the network and the total travel time and distance. However, sharing cannot improve the traffic situation significantly compared to the case when all the trips are made with personal cars. For example, for the market-share of 20 percent and the number of sharing 1, the total travel time for all the vehicles in the network is 8,006.4 hours, which is 0.77% better than the number of sharing 0 but still 0.35% worse than the no service scenario. The total travel time for all the vehicles in the network is 0.56%, 0.90%, 1.19% and 1.61% longer than the no service scenario for market-shares of 40%, 60%, 80%, and 100%. Increasing the number of sharing to 2 in medium-scale can not make a big progress compared to the number of sharing 1. The speed of vehicles only increases by 0.16% fro the number of sharing 2 compared to the number of sharing 1.

As in the optimization framework, we try to minimize the passenger's travel time and waiting time, the system keeps the passenger waiting time and travel time in an acceptable level. The average waiting time for the number of sharing 0 (when there is no sharing) when the number of sharing is 2. This means that the passenger must wait no more than 1 minute to be picked up at the origin when the number of sharing is 1.

We perform sensitivity analysis on the fixed length of the time window, the rolling horizon, and the depot size in medium-scale. But still no configuration can overcome the "no service scenario" in medium-scale.

To assess the impact of dynamic ride-sharing on traffic congestion in large-scale, we used the simulation-based optimization framework to assess the system in the network of Lyon city in France. The Lyon network area is 220% larger than the medium-scale network, and the number of trips is 676% more:

The proposed system for dynamic ride-sharing performance in reducing congestion in large-scale is terrific. It can significantly reduce traffic congestion. Without sharing, the total travel distance for all the trips increases by 0.8%, 1.5%, 2.3%, 3.0% and 3.7% for the number of sharing 20%, 40%, 60%, 80% and 100% respectively.

Then with sharing just two passengers' trips (number of sharing 1), the number of trips reduces by almost 50% for all the market-shares. Increasing the number of sharing to 2 can even make a better improvement. The number of trips is reduced by 63.9% with the market-share 20%, 64.4% with the market-share 40%, 64.6% with the market-share 60%, 64.7% with the market-share 80% and 64.8% with the market-share 100%. Also, the number of sharing 2 can decrease the needed cars to serve the trips for 57.5%, 58.2%, 58.9%, 59.3%, 60.1% with the market-share 20%, 40%, 60%, 80% and 100% respectively.

When the market-share is 100%, sharing can reduce the total travel time by 30.0% with the number of sharing one and 41.1% with the number of sharing two compared to the number of sharing 0. Furthermore, the total travel distance is reduced by 25.5% with the number of sharing 1 and 36.0% with the number of sharing 2.

Increasing the number of sharing increases the passenger waiting time, but the waiting time remains acceptable for passengers with different numbers of sharing. For market -share = 100%, the average waiting time for the passengers is 16.0 seconds for the number of sharing 0. It increases to 27.4 seconds, 44.2 seconds, and 49.3 seconds for the number of sharing 1, 2, and 3.

We also assessed the proposed framework for van-pooling and higher car capacity (capacity = 6 and 10) when we use the full vehicles' capacity (number of sharing = capacity -1):

The system can perform better with bigger cars and vans. With capacity = 6, the number of trips is reduced by 9.3% compared to the scenario when the car capacity is 4. Also using vans can reduce the number of trips by 33.4% and the number of needed cars by 35.5%.

Furthermore, we investigated the influence of personal vehicle parking space searches on the performance of the dynamic system in terms of reducing congestion. When we considered parking space searching by personal cars, we found that the dynamic ridesharing system can make bigger improvements to traffic congestion during peak hour.

Conclusion

The main goal of this dissertation is to answer one of the critical questions about dynamic ride-sharing services:

Can dynamic ride-sharing reduce congestion?

To answer this question, we proposed a simulation-based optimization framework and

Future work

In the future we will consider the following extensions to our research:

• The proposed system for ride-sharing provides a vast opportunity to assess new mobility services. In the future, we can use extensions of this framework to assess other shared services such as car-sharing or bike-sharing. Also, we can evaluate the performance of new mobility services integrated with public transportation in cities.

• In the optimization component, we can add other heuristic steps that can make the assignment algorithm fast while keeping the quality of the solution acceptable to implement the method on more than two million requests. In the clustering method, a primary clustering can be added to first cluster the requests based on their geographical position, and in the next step, cluster them based on the shareability index defined here. Also, we can put limitations on the number of branches considering detour conditions.

• In the simulation component, for the large-scale network, we use one trip-based MFD to represent the traffic dynamics reality. To be more realistic, we can divide the network into different reservoirs and consider a unique MFD function inside each reservoir.

• In the mathematical model objective function, we consider minimization of the passengers' waiting time and travel time to increase passengers' satisfaction and willingness. Another important point for the passengers is the trip fare when they share their ride. In the future, we can define a pricing scheme for the dynamic ridesharing system to compute the trip cost depending on the number of passengers sharing a trip and trip conditions.

• We may also work on different market configurations : Monopoly as here, or several companies competing on every request. The analysis could complement the previous point fares analysis 
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 21 Figure 2.1: Different categories of dynamic ride-sharing
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 22 Figure 2.2: Proposed dynamic ride-sharing system

  A set of constraints and features should be considered for both transportation demand and transportation service in the ride-sharing problem. Many studies on ride-sharing formulate the optimal assignment problem using different vehicle routing problem (VRP) formulations. They use different constraints and features for various types of problems. Assignment constraints, synchronization constraints, time window constraints and capacity constraints are examples of different formulation constraints.

  shared taxis. Masmoudi et al. (2017) propose an improved ALNS-based method, Hybrid Bees Algorithm with Simulated Annealing (BA-SA), and with Deterministic Annealing (BA-DA) to solve the Heterogeneous Dial-a-Ride problem (HDARP).

. 1 .

 1 In this chapter we present the fleet management component. At the beginning of a new rolling horizon, the fleet management components solve the optimal assignment problem based on predicted travel times. Then, the simulation component implements this assignment over the next horizon to determine the actual evaluation of the system and the effective pickup/drop off and travel times for all the vehicles. The effective value of the objective function (objective function realized) can be computed at the end of each horizon and be compared to the optimal objective value (estimated objective function) derived from solving the assignment problem with predicted travel times.
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 31 Figure 3.1: System components (fleet management component)
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 32 Figure 3.2: Trip time schedule

  figure 4.1(a)). The algorithm can add a destination point if and only if its related origin point has been added to the route before (figure 4.1(b)). Also, it can add a new origin point if the capacity constraints and the number of sharing constraints are satisfied (figure 4.1(c)). The time window constraints must be checked when adding new stop points to the routes (figure 4.1(d)).
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 41 Figure 4.1: The assignment algorithm function
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 42 Figure 4.2: Feasible routes for the example
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 43 Figure 4.3: Lyon 6e + Villeurbanne: Mapping data c Google 2018 and the traffic network
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 4 Figure 4.4 shows the temporal pattern of the demand for the private and service vehicles.We have 51,215 personal trips in the network. Besides that we have 11,235 demand for the service cars in the system. Based on the market-share, we select uniformly a part of this demand to be served with the service vehicles. Then we serve the rest of the trips with personal cars.
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 44 Figure 4.4: Temporal demand pattern in Lyon6 + villeurbanne (Medium-scale)

  Figure 4.5 shows the network of the city and its geographical position.
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 4546 Figure 4.5: Lyon city in France
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 447 Figure 4.7 shows the temporal pattern of the demand in Lyon network.

Algorithm 2 :

 2 Assign requests to the en-route vehicles input: New requests output: Vehicles re-schedules for origin p ∈ P do for c-schedule, the schedule of car m ∈ eM do if Detour is possible from any of the remaining origins on c-schedule then Build the re-schedule by adding the p after origin; if p is feasible for time window, capacity and number of sharing constraints on c-schedule then if d the destination of p is feasible for time window on c-schedule then Create new schedule n-schedule by adding p and d to c-schedule; Put n-schedule to the Result set;
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 48 Figure 4.8: Dynamic assignment
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 4 Figure 4.8 shows an example of the dynamic ride-sharing algorithm when the number of
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 410 Figure 4.10: Final routes after multidimensional scaling and k-means clustering

Figure 4 .

 4 Figure 4.11 shows an example to show the hierarchical clustering method. It works directly with the similarity matrix. As the example is small, the results are the same as the kmeans clustering method.
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 411 Figure 4.11: Final routes after hierarchical clustering
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 412 Figure 4.12: The assigned routes for requests 1 to 5 with and without the FOSH method

component and 2 -

 2 the dynamic simulation component. In chapter 3, we evaluated the fleet management component. In this chapter, we present our dynamic simulation component's performance, which is shown in green color in figure 5.1.
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 5253 Figure 5.2: Speed evolution in Lyon 6 + Villeurbanne
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 54 Figure 5.4: Rolling horizon and simulation period
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 5556 Figure 5.5: Predicted speed and mean speed during the simulation horizon (before )

Figure 5 . 5 (

 55 Lyon 6 + Villeurbanne) and figure 5.7 (Lyon) show the mean speed evaluation for a simulation with market-share = 100%. The results of the prediction with the current speed only show a lag between the prediction and actual speed. The introduction of the correlation factor provides accurate predictions in figure 5.6 and figure 5.8. The proportional function has been set to l = 0.995 (during the loading) and u = 1.010 (during he unloading) for Lyon 6 + Villeurbanne and l = 0.993 and u = 1.020 for Lyon.
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 5758 Figure 5.7: Predicted speed and mean speed during the simulation horizon (before )
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 59 Figure 5.9: Central depot in Lyon 6 + Villeurbanne

Figure 5 .

 5 Figure 5.9 shows the location of the central depot and some of the local depots in the network of Lyon 6 + Villeurbanne.
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 510 Figure 5.10: Comparison between the exact method and heuristic 1 (market-share = 1%)
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 511 Figure 5.11: Comparing heuristic 1 and heuristic 2 when the market-share = 10%

Figure 5 .

 5 Figure 5.11 shows the comparison for the objective function values and simulation times.
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 40512 Figure 5.12: Comparing the heuristic 2 and the heuristic 3 when market-share = 40%

  size = 10 H2: Cluster size = 20 H2: Cluster size = 30 H2: Cluster size = 40 H3: Cluster size = 10 H3: Cluster size = 20 H3: Cluster size = 30 H3: Cluster size = 40
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 513 Figure 5.13: Comparing the number of trips for heuristic 2 and heuristic 3 when marketshare = 40%
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 575514 Figure 5.14 shows the percentage of difference for all the solution method steps compared to the optimal solution when the market-share is 10%, and the size of clusters is 30 and Table5.7 shows the computation time. The number of requests, in this case, is 1092, and
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 515516 Figure 5.15: Comparing clustering methods' objective function (market-share=50%)
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 5 Figures 5.15 and 5.16 show the comparison of different clustering methods considering the objective function and the computation time for four different cluster sizes when the market-share is 50%. The best objective function is provided by our k-means clustering method when the size of the cluster is 40. So we choose this objective function value as a base, and we compute the percentage of difference for other methods considering this basic scenario. As it is clear, the performance of spatial clustering is not acceptable compared to the other methods. In the best situation, the spatial clustering's objective function is 4% more than the k-means clustering. The temporal clustering can perform better than spatial clustering, but it can not outperform our clustering methods. With the cluster size of 40, the objective function for temporal clustering it is 2.02% more than k-means clustering. The computation time increases exponentially for the shareability clustering when the cluster size is 40. However, with the cluster size of 30, the algorithm can give a high-quality solution in a short time.
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 6 .1 shows the vehicle accumulation in the network every 100 seconds for different market-shares when the number of sharing is 0. The service vehicles must travel a certain distance from the depot to the first origin and then from the last destination to the depot.
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 61 Figure 6.1: Traffic situation for the number of sharing 0 with different market-shares (medium-scale)
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 6364 Figures 6.3, 6.4 show the total travel time and the total travel distance for all the vehicles in the network for the number of sharing 0 and 1 with different market-shares. It is clear that increasing the market-share increases the total travel time and distance for the number of sharing 0 when each passenger is served individually but then, when sharing the trip of just two passengers with the number of sharing 1, the slope of this increasing trend flattens considerably.
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 62 Figure 6.2: Traffic situation for the number of sharing 1 with different market-shares (medium-scale)

1 Figure 6 . 3 :

 163 Figure 6.3: Total travel time for all the cars for the number of sharing 0 and 1 with different market-shares (medium-scale)
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 64 Figure 6.4: Total travel distance for all the cars for the number of sharing 0 and 1 with different market-shares (medium-scale)
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 26565 Figure 6.5: Traffic situation for market-share 100% with different numbers of sharing (medium-scale)
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 6 Figure 6.6 shows the average speed every hour in the system for different numbers of sharing. The vehicle speed decreases using service cars without sharing. Sharing can
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 66267 Figure 6.6: Average vehicle speed (medium-scale)
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 68 Figure 6.8: Passengers' waiting time for different sharing scenarios when the market-share is 100% (medium-scale)
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 69 Figure 6.9: Passengers' waiting time for different time window (market-share = 100% , nshare = 1)
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 15 Depot sizeIncreasing the number of allowed stop locations in the network can increase the accessibility of cars to the closest passengers and reduce the passengers waiting time. It can also decrease the travel distance between the stop location and the first origin. To assess the impact of the number of local depots and the number of vehicles waiting in these locations, we define two different scenarios. We compare them with the basic scenario where we have 237 depots and 142 cars waiting in these depots. The first scenario increases the number of vehicles and puts 1780 vehicles in the stop locations. In the second scenario, we increase the number of depots to 1067 and distribute 1780 vehicles, considering the geographical demand pattern on these locations.
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 610 Figure 6.10: Comparing different scenarios for depot management
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 2611 Figure 6.11: Traffic situation for market-share 100% with operational settings
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 100615 Figure 6.15: Traffic situation for the number of sharing 2 with different market-shares (large-scale)
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 6166 Figure 6.16: Total travel time for all the cars for the number of sharing 0, 1 and 2 with different market-shares (large-scale)
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 3618 Figure 6.18: Traffic situation for market-share 100% with different numbers of sharing (large-scale)
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 620 Figure 6.20: Average vehicle speed (large-scale)
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	.1: Transportation demand and service characteristics
	The proposed system in figure 2.2 has three main parts: Transportation demand, trans-
	portation service, and algorithm. Different studies on ride-sharing consider different con-

Table 3 .

 3 .1 gives the list of the notations that we use for the mathematical description of the problem.

	1: Notation

The predicted direct travel time between every two points at each time is DT T t ij . Other variables in the model are computed based on DT T t ij .

Table 3 .

 3 2: Solution methods comparison

	Number of requests Objective function Computation time (s)
			(normalized value)
	4	0.54	0.40
	5	0.65	5.30
	6	0.74	43.50
	7	1.14	287.60
	8	1.24	2945.90

  EP i , LD i ), number of seats demanded (d i ), number of sharing (n share i ), maximum detours (SQ), vehicle capacity (Cap), weights of objective function (α, β, γ, δ) output: Vehicle schedules while Not all the points in A are assigned do Create the new car m ∈ M ; Create initial routes set S from remaining origins in origin set P ; while S is not empty do Find the optimized route s ∈ S (in terms of objective function); Find the set of points SP that can be added to s; for sp ∈ SP do if sp is feasible for time constraints on s then Compute new vehicle capacity ; if sp is feasible for capacity, number of sharing, detour constraints on s then Create new route ns by adding the point sp to the route s; Add route ns to the routes set S;

if All sp ∈ SP are non-feasible in route s then if number of route origins = number of route destinations then Put route s in the results set Result; else Remove route s from routes set S;

Table 4 .

 4 

			1: Example with 4 requests (configuration)
		Request Travel disance demand nshare EPT LDT
		1	19	1	3	8:00 8:45
		2	11	2	2	8:00 8:25
		3	24	2	1	8:15 9:00
		4	18	2	3	8:30 9:20
			Table 4.2: Example with 4 requests (solutions)
	Solution Total waiting time (s) Total travel distance (m) Number of cars
	A	28		3030		4
	B	51		2085		2
	C	53		1785		2
	D	29		2265		3

The algorithm starts to create branches of routes to serve the requests. It sends a car from the closest stop location to pick up the passengers at the origin point, and then it continues by adding the feasible points to the branches. First, the algorithm finds feasible branches. Figure

4

.2 shows the final feasible solutions for the problem. The algorithm can find four different solutions for the problem.

Table 4 .

 4 2 shows the total passengers' waiting time, total vehicles' travel distance, and the number of vehicles for these solutions. Solution A is when a car serves each passenger

separately without sharing. In this solution, the waiting time is minimum, and the passengers wait for 28 seconds to be picked up. Solution B serves passengers 1 and 4 with

Table 4 .

 4 

	Table 4.3: Clustering methods comparison
	Method	Number of requests Objective function Computation time (s)
		(normalized value)
	Exact		
		112	29.99	12966.00
		1092	1924.00	288000.00
	K-means clustering		
		112	30.96	100.10
		1092	1994.18	1134.00
		4482	7761.03	5340.00
		11160	20773.70	20981.10
	Hierarchical clustering		
		112	30.96	99.03
		1092	1994.59	1131.10
		4482	7791.90	5187.50
		11160	20905.87	19950.00
	In both the clustering methods, we try to have clusters with 50 requests. To have a
	baseline for the comparisons, we have computed the optimal objective function for 112
	and 1,092 requests.		
	K-means clustering and hierarchical clustering methods increase the objective function
	by 3.22% for 112 requests and 3.64% and 3.66% for 1,092 requests comparing with the
	optimal solution. Both the clustering methods can decrease the computation time from
	216 minutes to less than 2 minutes. It shows that both clustering methods are very
	effective in terms of reducing the computation time while keeping the quality of the
	solution acceptable. Then by increasing the number of requests, the computation time for
	both methods exponentially increases (the major part of the k-means method computation
	time is dedicated to the multidimensional scaling method, which exponentially increases
	by increasing the size of the problem).	
	K-means can give smaller objective function while hierarchical computation can result in
	a lower time. For 11,160 requests, the objective function is 0.64% lower for the k-means
	method, while the computation time is 5% more.	
	In our Lyon6 + villeurbanne test case, the maximum number of requests is 11,235. So we

[START_REF]Mobility and transport[END_REF] 

shows the objective function and computation time with k-means clustering and hierarchical clustering method for different sizes of problems. can use k-means clustering for this test case to have better solutions. However, for the Lyon network, we have more than 200,000 service requests. So the hierarchical method is a better solution for this network as it works directly with the similarity matrix, and it can provide high-quality solutions.

  2 shows the trip-based MFD to compute the speed in Lyon 6 + Villeurbanne and equation 5.3 shows the function for whole Lyon network where speed t shows the speed of vehicles at time t and acc t shows the accumulation of cars at time t

		
	speed t =	  
		  

md -(mc × acc t ), if acc t < nj, acc t > nc mf -(mb × acc t )(ma × acc 2 t ), if nj ≤ acc t ≤ nc nj = 1850, nc = 4400 ma = 1.369e -6, mb = 8.835e -3, mc = 1.575e -3, md = 13.28, mf = 21.38 (5.2)

Table 5 .

 5 1: Simulations configuration

	Parameters	Values
	Rolling horizon	20 min
	Optimization time step	10 min
	Simulation time step	1 s
	Fixed time window length	6 min
	Number of sharing	0, 1, 2
	Market-share	1 to 100%
	Car capacity	4
	Number of cars in local depots	142
	Number of cars in central depot	1000
	Service time for each passenger	1 min

Table 5 .

 5 2: Simulation results for optimal assignment

	Configuration		Shared vehicles			Passengers		Simulation time(h)
		N trips m	k∈M T k (h)	k∈M T D k (km)	n	i∈N T T i (h)	i∈N W T i (h)	
	MS : 4 %							
	nshare = 0	429 32	46.36	1509.3	430	39.01	2.50	0.33
	nshare = 1	419 32	46.09	1499.7	430	39.18	2.69	35.81
	nshare = 2	417 32	46.08	1494.9	430	39.36	2.70	224.50
	nshare = 3	416 32	46.08	1494.3	430	39.60	3.07	505.11

Table 5 .

 5 3: Solution methods comparison

	Method	Number of requests Objective function Computation time (s)
			(normalized value)
	CPLEX		
		4	0.54	0.40
		5	0.65	5.30
		6	0.74	43.50
		7	1.14	287.60
		8	1.24	2945.90
	Exact solution Method		
		4	0.54	0.02
		5	0.65	0.05
		6	0.74	0.08
		7	1.14	0.19
		8	1.24	0.25
	problem takes less than 8 seconds for 9 requests. Our method can find the exact solution
	for 9 requests in less than a second.	

Table 5 .

 5 6: Simulation time for heuristic 2 and heuristic 3

	nshare	Simulation time (min)
		H2	H3
	cs = 10		
	0	43.7	36.7
	1	44.6	37.8
	2	110.4	38.0
	cs = 20		
	0	43.7	43.8
	1	56.4	46.1
	2	598.5	49.7
	cs = 30		
	0	45.4	45.7
	1	89.0	53.1
	2	3091.3	94.3
	cs = 40		
	0	47.0	46.9
	1	138.2	61.6
	2	3333.3	238.2

Table 5 .

 5 8: Simulation results for heuristic methods (number of sharing = 1)

	Configuration		Shared vehicles		Passengers	Personal vehicles	All vehicles
		N trips	k∈M T k (h)				
	MS : 0%					7978.4	7978.4
	MS : 10%						
	Exact solution 1015	117.6	3744.6	8.2	7904.1	8021.7
	Heuristic 1	1041	119.5	3825.1	8.5	7907.5	8027.1
	Heuristic 2	1067	120.5	3853.0	6.8	7906.5	8027.0
	Heuristic 3	610	101.8	3279.4	20.2	7896.5	7998.3

k∈M T D k (km) i∈N W T i (h) Travel time (h) Travel time (h)

Table 5 .

 5 9: Simulations results for optimal assignment

	Method	Estimated objective function Experienced objective function
		nshare 0 nshare 1 nshare 2 nshare 0 nshare 1 nshare 2

Table 6 .

 6 1: Simulations results

	Personal vehicles All vehicles	i (h) Travel time (h) Total travel time (h) Total travel distance (km)	7978.4 7978.4 268481.0		7816.6 8068.3 269698.3	7797.1 8006.4 268481.8		7657.8 8159.5 270750.6	7603.5 8022.8 268533.8		7489.6 8244.4 271770.0	7417.9 8050.2 268533.8		7308.3 8326.9 272887.6	7220.6 8073.0 268533.9		7140.6 8416.9 273891.0	7032.6 8106.8 268556.4
		i∈N W T	-		7.5	39.0		9.9	71.9		11.1	104.0		12.5	133.5		12.6	168.6
	Passengers	i∈N T T i (h)	-		204.0	218.7		415.7	450.7		632.2	687.1		856.3	937.5		1078.6	1183.7
		n	-		2236	2236		4482	4482		6732	6732		8978	8978		11235	11235
		k∈M T D k (km)	-		7893.3	6676.8		15452.6	13235.8		23016.0	19779.8		30867.6	26513.9		38434.0	33099.4
	Shared vehicles	k∈M T k (h)	-		251.7	209.3		501.7	419.3		754.7	632.3		1018.6	852.4		1276.3	1074.1
		N trips m	--		2235 158	1239 116		4482 307	2455 218		6731 422	3672 303		8963 515	4880 404		11213 578	6072 477
	Configuration		MS : 0%	MS : 20%	nshare = 0	nshare = 1	MS : 40%	nshare = 0	nshare = 1	MS : 60%	nshare = 0	nshare = 1	MS : 80%	nshare = 0	nshare = 1	MS : 100%	nshare = 0	nshare = 1	nshare = 2

Table 6 .

 6 2: Simulation results for different time window lengths

	Configuration			Shared vehicles		Passengers
		N trips	k∈M T k (h)	k∈M T D k (km)	i∈N W T i (h) Average W T i (min)
	MS : 100% nshare = 1					
	F ixed T W = 1	6072	1074.1	33099.4	168.6	0.9
	F ixed T W = 6	4913	1128.5	34959.3	448.1	2.4

Table 6 .

 6 3: Simulation results for different rolling horizon scenarios

	Configuration		Shared vehicles		Personal vehicles
		N trips m	k∈M T k (h)	k∈M T D k (km) Travel time (h)
	MS : 100% nshare = 1				
	(5,10)	6142 479	1074.2	33325.8	7035.1
	(10,20))	6072 477	1074.1	33099.4	7032.6
	(20,40)	6049 472	1074.0	33005.7	7030.7

Table 6 .

 6 [START_REF]Mobility and transport[END_REF] shows the results for different rolling horizon. Increasing the rolling horizon can increase sharing and reduce the number of trips. Nevertheless, the difference is not very big. With T H = 10 minutes, the system serves the requests with 6142 trips. This number decreases to 6072 for T H = 20 and 6049 for T H = 40. The total travel distance is reduced by 0.7% when we increase the rolling horizon from 10 to 20 minutes, and it is reduced by 0.3% when we increase the T H from 20 minutes to 40 minutes. When we increase T H from 10 to 20, the system can find more sharing opportunities, but when we increase it to 40 minutes, as we have time window constraint for the trips, it is not possible to have much more sharing than 20 minutes.

Table 6 .

 6 4: Simulation results for different depot management scenarios

	Configuration		Shared vehicles		Passengers
		N trips m			
	MS : 100% nshare = 1				
	Basic scenario	6072 477	1074.1	33099.4	54.04
	237 depots and 1780 vehicles	6055 475	1068.2	32647.2	50.79
	1067 depots and 1780 vehicles 6065 446	986.4	30118.0	52.01
	Table				

k∈M T k (h) k∈M T D k (km) i∈N W T i (h)

Table 6 .

 6 5: Simulation results for operational settings

	Configuration		Shared vehicles		Passengers	Personal vehicles
		N trips m	k∈M T k (h)	k∈M T D k (km)	i∈N W T i (h) Travel time (h)
	MS : 100%					
	Proposed settings					
	nshare = 0	11213 578	1276.3	38434.0	12.6	7140.6
	nshare = 1	6072 477	1074.1	33099.4	168.6	7032.6
	nshare = 2	4993 474	1049.9	32605.2	233.3	7021.4
	Operational settings					
	nshare = 0	11215 578	1277.9	39559.2	12.5	7141.6
	nshare = 1	8243 510	1140.9	36875.9	206.4	7080.4
	nshare = 2	7864 515	1140.6	36904.2	240.2	7076.3

Table 6 .

 6 6: Sum of Squares method

	Number Size of clusters
	1	75
	2	100
	3	125
	4	150
	5	175
	6	200
	7	225
	8	250
	9	275
	10	300

Table 6 .

 6 7: Simulations results Travel time (h) Total travel time (h) Total travel distance (km)Increasing the number of sharing to 2, can make a more remarkable improvement in the large-scale network traffic. Figure6.15 shows the traffic situation in large-scale when the number of sharing is 2 for different market-shares. The number of trips is reduced by

			2290280.0		2308249.0	2184489.0	2135026.0		2325345.0	2080095.0	1980667.0		2342399.0	1976467.0	1825464.0		2359100.0	1873220.0	1674998.0		2375940.0	1769179.0	1520987.0	1505795.0
	All vehicles																						
			75271.1		76143.2	71060.3	69084.5		76987.9	67025.0	63180.1		77829.7	63126.6	57466.6		78660.6	59346.8	52128.9		79504.9	55632.1	46839.3	44482.5
	Personal vehicles		75271.1		65770.0	64850.3	64505.3		56176.4	54648.1	54088.3		46520.6	44670.3	44007.2		36951.7	35037.5	34383.1		27296.3	25557.1	24982.4	24751.2
			-		265.7	346.9	498.4		449.3	661.7	974.8		615.7	970.5	1476.1		765.0	1269.0	1990.3		913.2	1564.4	2519.0	2812.4
	Passengers		-		9439.9	9726.4	9894.5		19052.3	19406.1	19763.1		28740.8	28921.7	29316.1		38358.1	38110.8	38577.8		48068.1	47182.2	47596.1	49595.8
			-		41043	41043	41043		82104	82104	82104		123166	123166	123166		164227	164227	164227		205308	205308	205308	205308
			-		312739.0	188979.0	139516.0		625745.0	380495.0	281067.0		939129.0	573197.0	422194.0		1248210.0	762330.0	564108.0		1558900.0	952139.0	703947.0	688755.0
	Shared vehicles	k∈M T k (h)	-		10373.2	6210.1	4579.2		20811.6	12377.0	9091.8		31309.2	18456.4	13459.4		41708.9	24309.3	17745.97		52208.6	30075.0	21856.8	19731.3
		N trips m	--		41011 3667	21285 2089	14809 1559		82021 7261	42374 4138	29236 3034		123053 10632	63566 6067	43610 4368		164079 13740	84686 7724	57968 5597		205124 17102	105745 9489	72160 6826	69790 6595
	Configuration		MS : 0%	MS : 20%	nshare = 0	nshare = 1	nshare = 2	MS : 40%	nshare = 0	nshare = 1	nshare = 2	MS : 60%	nshare = 0	nshare = 1	nshare = 2	MS : 80%	nshare = 0	nshare = 1	nshare = 2	MS : 100%	nshare = 0	nshare = 1	nshare = 2	nshare = 3

k∈M T D k (km) n i∈N T T i (h) i∈N W T i (h)

  in the system. When we have service cars in the network without sharing, the average speed in peak hour is 28.7 km/h. The average speed increases to 31.2 km/h with the number of sharing 1, 32.0 km/h with the number of sharing 2 and 32.1 km/h with the number of sharing 3.

Table 6 .

 6 9: Simulation results for different vehicle's capacity the total travel time of all the cars by 1.0%. When we do not consider the parking, sharing can improve the total travel time by 26.1%. In the parking scenario, sharing can reduce the total travel time by 30.2%.

	Configuration			Shared vehicles		Personal vehicles
	N trips	m	k∈M T k (h)	k∈M T D k (km) Travel time (h)
	Without Parking					
	No service scenario	-	-	-	-	75271.1
	Number of sharing = 0 205124 17102	52208.6	1558900.0	27296.3
	Number of sharing = 1 105745 9489	30075.0	952139.0	25557.1
	With Parking					
	No service scenario	-	-	-	-	84835.6
	Number of sharing = 0 205141 17683	52970.0	1558990.0	31021.9
	Number of sharing = 1 105832 9687	30367.2	951469.0	28880.8
	without sharing decreases					

For the sake of simplicity, we will use the word ride-sharing instead of dynamic ride-sharing in this chapter.

The dynamic ride-sharing problem involves two sub-problem. The first sub-problem is the fleet management problem and matching the rides to the passengers. This part formulates the ride-sharing problem into a mathematical model in Chapter 3. In this dissertation, we aim to approach the global optimal solution, whereas previous studies mostly focused on optimizing local sub-problems. The search for the global solution may be computationally expensive, but it permits answering the question of the maximum gain we can expect from ride-sharing in the transportation system. This is a crucial point that would worth being elaborated deeper. To approximate the global solution, in Chapter 4, we resort to an algorithm to solve the mathematical problem. Our solution approach is designed to be exact for small samples. Then, to be able to handle the large-scale problems, it is extended with several heuristics that keep the general design for the solution method but significantly reduce its computation time. The main strategy is to cluster the requests depending on a shareability index to create smaller samples that are faster to solve.

Figure 4.13: Final assignment algorithm

Figure A.1: Paper 1 and Paper 2

Figure A.3: Paper 5 and Paper 6

Figure A.5: Paper 9 and Paper 10
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fast and qualified solutions in large-scale.

• There are very few studies to address the impact of traffic appropriately on ridesharing system performance.

To figure out these points, in this thesis, we try to answer two main questions:

• How to assess the performance of ride-sharing on the network demand?

• How to assess the impact of the network on the ride-sharing system and vice versa?

In the following chapters, we propose simulation-based optimization frameworks for dynamic ride-sharing to answer these questions.

Part II How to assess the performance of ride-sharing on the network demand?

Conclusion

In this chapter, we presented the simulation framework for the dynamic ride-sharing problem. We defined the plant model to represent the real traffic conditions and the prediction model to predict the travel time for the optimization algorithm. For the plant model, we use the trip-based MFD, and for the prediction model, we use the mean speed.

Accordingly, we can assess the impact of network traffic on the dynamic ride-sharing system performance.

Then we showed the performance of the proposed simulation-based optimization frameworks. We assessed the performance of all the heuristic methods and demonstrated that our heuristic approaches significantly improve computation time with few compromises on optimality. Also, the proposed optimization framework can outperform the previous methods in the literature. In the next chapter, we will evaluate the effect of a dynamic ride-sharing system on medium-scale and large-scale networks.

Chapter 6 Transportation Analyses

Introduction

In chapter 5, we presented the simulation-based optimization frameworks for the dynamic ride-sharing problem that enable us to assess the main goal of this dissertation. In this chapter, we evaluate the impact of the ride-sharing system on network traffic, and we see how it can affect congestion. We aim to assess the impact of dynamic ride-sharing on both medium-scale and largescale networks. In megacities and large-scale networks, the performance of ride-sharing in terms of reducing congestion can be different. However, these services are increasingly popular in large cities and small and medium-sized cities. First, we assess the impact of ride-sharing on the network of Lyon 6 + Villeurbanne as a medium-sized network in section 6.1. Then we present the analyses in large-scale in section 6.2 by applying the method on the network of the whole Lyon city in France.

Analysis in medium-scale

To assess the influence of the dynamic ride-sharing system on reducing traffic congestion, we compare the traffic condition for the dynamic ride-sharing system considering different market-shares and the numbers of sharing with the case where the market-share is zero when only personal vehicles serve all the network demand ("No service scenario" in the 6.2.3 Market-share We mentioned that we use the vehicle accumulation in the network as a measure of traffic congestion. Figure 6.13 shows the traffic situation in a large-scale from 6 AM to 10 AM, every 100 seconds for different market-shares when the number of sharing is zero compared with the no service scenario (when all the trips are made by personal cars).

It is clear that increasing market-share increases the number of service vehicles in the system. For example, with market-share = 20%, the system has to serve 41,043 requests with the service vehicles. As we consider the "Sequential trips" in addition to the "Shared trips", even with the number of sharing zero, the system serves this number of requests with fewer trips. It makes 41,011 trips using 3,667 service vehicles to serve the requests. Sharing two passengers' trip with the number of sharing 1 with our proposed system can make big progress in reducing congestion in large-scale. Figure 6.14 shows this fact. With market-share = 20%, the number of service trips decreases for 48.1%, and the system can make these trips with 1,578 fewer cars. For all the market-shares, with the number of sharing 1, the number of trips to serve the same number of requests is almost 50% less than the number of sharing 0. The system serves the requests with 3,123 fewer cars with market-share = 40%, 4,565 fewer cars with market-share = 60%, 6,016 fewer cars with we are targeting to minimize the passengers' waiting time as an objective function in our proposed method. Also, in the large-scale, the accumulation of demands for the service is very high, and we have very close origin points. So the system can share these trips without deteriorating the passengers' waiting time. The average waiting time for the passengers is 16.0 seconds for the number of sharing 0. It increases to 27.4 seconds, 44.2 seconds, and 49.3 seconds for the number of sharing 1, 2, and 3.

Vehicle capacity

Ride-sharing allows travelers to share a ride and can include several ways of sharing a ride.

One of these ways is van-pooling. In the van-pooling, the capacity of vehicles is higher than regular vehicles. In our evaluations, it is interesting to see the impact of different vehicles' capacity on network congestion.

In the current configurations, the capacity of cars is 4. In the previous section, we figured out the impact of ride-sharing when using the full capacity of service cars with four capacity, on the network congestion. In this section, we assess the system when we use vehicles with 6 capacity, vans with a capacity of 10 passengers and also shuttles with capacity of 20.

The goal is to use the full capacity of cars. Thus, for capacity = 4, the number of sharing is 3, for capacity = 6, the number of sharing is 5, for capacity = 10, the number of sharing is 9 and for capacity = 20, the number of sharing is 19.

In the literature, different researches on ride-sharing try to find optimal pick-up or drop off points for the passengers to be able to maximize the car occupancy [START_REF] Goel | Optimal pick up point selection for effective ride sharing[END_REF][START_REF] Boffey | Multiobjective covering and routing problems[END_REF]. The passengers need to walk a distance usually from 400 meters to 1 kilometer to get to these fixed points to be picked up. In our method, to make the assignment faster and to increase the service vehicles' occupancy, we merge two trips if both the origins and destinations of the trips are close together such that the passenger needs to walk less than a determined distance. To make more comfort for the passengers and reduce the walking distance, we fix this distance to be 200 meters for capacity = 6 and 500 meters for vans and shuttles.

This merging process shares two trips in a cluster. So the size of the cluster decreases 

Dynamic ride-sharing simulation framework

The ride-sharing service's optimization system uses estimates for the predicted travel time obtained from a so-called "prediction model". When the fleet management plan is executed, a gap usually exists between the estimation and the real traffic condition. The so-called "plant model" represents the real traffic condition, and it may require dynamic adjustment of the initial assignment to fit with the conditions observed.

In the proposed simulation component of the dynamic ride-sharing system, we accurately distinguish the prediction and the plant models to provide a realistic service. The tripbased MFD is used as the plant model to consider individual trips while keeping a very simple description of traffic dynamics. To carry out travel time prediction for the optimization part, the traffic situation is predicted for the next assignment time horizon in the prediction model, and we assign the passengers to the cars based on this prediction.

Accordingly, the final simulation-based optimization frameworks can simulate a dynamic ride-sharing problem's performance.

Using the simulation-based optimization frameworks, in chapter 5 we have evaluated the performance of different solution method steps, and we have demonstrated that our heuristic approaches significantly improve computation time with few compromises on optimality. Also, the proposed optimization framework outperforms the previous methods in the literature.

Impact of dynamic ride-sharing on network congestion

In this dissertation, we aimed to assess the impact of dynamic ride-sharing on both medium-scale and large-scale networks.

then we implemented the dynamic ride-sharing framework on two different scales to find the answer to this question. The proposed simulation-based optimization framework in this thesis outperforms the existing methods in the literature. The optimization algorithm can provide high-quality solutions in a short time. In the simulation component, a "Plant Model" is applied based on the "Trip-based Macroscopic Fundamental Diagram (MFD)"

to represent the traffic dynamics reality and a "Prediction Model" is applied based on the mean-speed to be used during the assignment process.

We performed an extensive simulation study (based on real-world traffic patterns) to assess the influence of dynamic ride-sharing systems on traffic congestion.

In the medium-scale, the results showed that ride-sharing could not significantly improve the traffic situation, contrarily to what we expected. Ride-sharing can reduce congestion compared to traditional taxi services and dial-a-ride services in medium-scale.

To reduce travel times significantly during peak hours, we expect a remarkable reduction in the number of vehicles on the road network. However, high levels of market-share add extra travel distance and travel time to the trips and lead to more traffic in the network.

Thus, dynamic ride-sharing can not be a proper solution for reducing traffic in medium and small-scale cities.

In large cities, the results are entirely different from those in small and medium-sized cities.

In large-scale (Lyon) simulations, the proposed dynamic ride-sharing system can significantly improve traffic conditions, especially during peak hours. Increasing the marketshare and the number of sharing can enhance this improvement. Also, in the large-scale, the accumulation of demand for the service is very high, and we have very close origin points. So the system has more sharing opportunities and can share these trips without deteriorating the passengers' waiting time.

Therefore, the proposed dynamic ride-sharing system is a viable option, alleviating stress on existing public transport, to reduce the network traffic in populated and large-scale cities.

Appendix A

Literature review based on transportation demand and service characteristics: We have evaluated 15 papers using the transportation demand and service characteristics defined in section 2.2 in chapter 2. Table A.1 shows the list of these 15 papers. Table A.2 shows the list of characters and their numbers. Then the next tables show the characteristics that are assumed in each paper and the explanations about them.