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Abstract

The main goal of this dissertation is to answer one of the critical questions about dynamic

ride-sharing services: Can dynamic ride-sharing reduce congestion?

In this thesis, we propose a simulation-based optimization framework for dynamic ride-

sharing. Then using this framework, we assess the dynamic ride-sharing impact on two

different network scales to find the answer to this question. When assessing the dynamic

ride-sharing problem, two important points should be considered. First, how the ride-

sharing system serves the network demand and second, how the ride-sharing system is

impacted by the network and in particular by congestion. Then we can assess the impact

of such a service on the network. Most of the existing approaches focus on the first point,

i.e., designing the demand matching while using basic assumptions for the second point,

mainly constant travel times.

The proposed method in this thesis can outperform the existing methods in the liter-

ature. The optimization algorithm can provide high-quality solutions in a short time.

Our solution approach is designed to be exact for small samples. Then, to be able to

handle the large-scale problems, it is extended with several heuristics that keep the gen-

eral design for the solution method but significantly reduce its computation time. In the

simulation component, a "Plant Model" is applied based on the "Trip-based Macroscopic

Fundamental Diagram (MFD)" to represent the traffic dynamics reality and a "Prediction

Model" is applied based on the mean-speed to be used during the assignment process.

We perform an extensive simulation study (based on real-world traffic patterns) to assess

the influence of dynamic ride-sharing systems on traffic congestion. In the medium-scale

(Lyon 6 + Villeurbanne), the results showed that ride-sharing could not significantly im-

prove the traffic situation. High levels of market-share add additional travel distance and

travel time to the trips and lead to more traffic in the network. In large cities, the results

are entirely different from those in small and medium-sized cities. In large-scale (Lyon

city in France) simulations, the proposed dynamic ride-sharing system can significantly

improve traffic conditions, especially during peak hours. Increasing the market-share and

the number of sharing can enhance this improvement. Therefore, the proposed dynamic

ride-sharing system is a viable option, alleviating stress on existing public transport, to

reduce the network traffic in populated and large-scale cities.
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Part I

What is ride-sharing?

1



2

This part explains the motivation and background of the thesis. We explain the origin and

the concept of ride-sharing and the related terms and concepts. A discussion is developed

on the different parts of a dynamic ride-sharing problem and the interaction of such a

service with the transportation network.



Chapter 1

Introduction

1.1 Context

Today’s cities face challenges in terms of congestion, lack of space, growing population,

air quality, noise, health, and economic development. Citizens want to be mobile and

move from a to b - within and between cities - easily, cheap, smart, and clean. Expanding

infrastructure in the urban environment is almost never an option and not a sustainable

long-term solution: It is not cost-effective, there is no space, and it leads to environ-

mental issues. Meanwhile, innovation and competitiveness are crucial for the future of

transportation.

Large-scale deployment of New Mobility Services (NMS) is part of the solution in dealing

with these challenges. Mobility as a Service (MaaS), shared mobility concepts, and smart

bicycle solutions can contribute to wealthy, healthy, clean, and accessible cities.

Shared mobility has gained popularity in recent years, especially after the mini-revolution

in transportation with the launch of shared mobility services like Vélib in Paris ([132]),

Zipcar in America ([34]), Autolib in France ([82]), Car2Go in Germany ([59]) and others.

Shared-use mobility describes transportation services that are shared among users, in-

cluding public transit, taxis and limos, bike-sharing, car-sharing (round-trip, one-way,

and personal vehicle sharing), ride-sharing (carpooling, vanpooling), ride-sourcing/ride-

splitting, scooter sharing, shuttle services, neighborhood jitneys, and commercial delivery

vehicles providing flexible goods movement. These new services represent innovative re-

3
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sponses to the demand for new options and offer an opportunity to provide more mobility

choices. Each service has specific operational specifications, constraints and variants.

Among these services, ride-sharing and taxi-sharing are getting more popular, and big

companies like Uber and Lyft ([47, 77]) are becoming reputed in this background.

Ride-sharing refers to a mode of transportation in which individual travelers share a

vehicle for a trip and split travel costs.

The large travel demand for personal car transportation, together with low occupancy,

leads to traffic congestion that is an increasingly important issue in many urban areas

with rapid population and economic growth [139].

The most recent data for the average number of passengers per car (including the driver)

for the European countries is approximately 1.45 passengers per vehicle [4]. This low

occupancies together with the large demand for automobile transportation leads to traffic

congestion in many urban areas. The congestion has cost nearly 100 billion euro, or 1%

of the EU’s GDP, annually [3]. In addition, private cars are the dominant transportation

mode consuming fuel and producing carbon dioxide emissions [78, 154]. An average

European car can emit more than 120 gCo2/km [167, 61]. Therefore, a successful ride-

sharing program that increases the occupancy of vehicles may make a significant saving

on driving costs of the roadway system.

Dynamic ride-sharing (real-time ride-sharing or ad-hoc ride-sharing) refers to a system

which supports an automatic ride-matching process between participants at very short

notice or even en-route [6].

The dynamic ride-sharing problem involves two sub-problems: 1) Satisfying user requests

and managing a vehicle fleet - 2) Accurately predicting travel times to determine vehicle

availability and pickup/drop off times.

The first sub-problem corresponds to a fleet management optimization problem with mul-

tiple objectives and has recently attracted much attention.

The second sub-problem has been given less attention in the studies on the fleet man-

agement problem, but is very important for real field operations. Network congestion

can have significant impacts on the ride-sharing service. The optimization system of the
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ride-sharing service uses estimates for the predicted travel time obtained from a "predic-

tion model". When the rides are executed, a gap can exist between the estimation and

the real traffic condition. The "plant" represents the real traffic condition and it may

require dynamic adjustment of the initial assignment to fit with the conditions observed.

When simulating a dynamic ride-sharing service, it is essential to accurately distinguish

the prediction from the plant to provide a realistic service. In most research, the plant is

assimilated to the prediction model [68, 119].

Dynamic ride-sharing service is often advertised as a significant way of alleviating con-

gestion and more generally as being eco-friendly, but few results exist to support this

claim and some claims to the contrary have also been expressed [40]. Ride-sharing defi-

nitely reduces the number of cars travelling, but it can also increase travel distance. Both

phenomena must be considered to evaluate the actual impact of ride-sharing. This PhD

tackles this question, considering two sub-problems of dynamic ride-sharing, by simulating

and solving an optimal fleet management problem.

1.2 Research background and motivation

Ride-sharing originated as a general concept to carry more than two people in the car of

one of the persons who share a portion or all of their time schedules and routes [62]. How-

ever, the concept of ride-sharing evolves nowadays as a real-time and ad-hoc arrangement

of cars to combine passengers’ travels.

Dynamic ride-sharing refers to a system that supports an automatic ride-matching process

between participants on very short notice or even en-route. It is distinguished from

traditional carpooling and is focused on single, non-recurring trips that do not require

long-term commitments between people to travel together for a particular purpose. Since

ride-shares are established on-demand, a ride-sharing system is similar to other on-demand

forms of passenger transit such as taxis and dial-a-ride services like airport shuttles [62, 39].

This compelling transportation mode has been the subject of many studies during the

last years. A lot of researches has emphasized different advantages of ride-sharing for

participants (drivers and passengers) like saving travel costs, reducing travel time, mit-
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igating traffic congestion, conserving fuel, and reducing air pollution [41, 57, 129, 95].

The main mentioned advantage of this system is reducing traffic congestion. However,

there is still a lack of studies that investigate the performance of the ride-sharing system

while considering the real functioning of the transportation network, including congestion

periods.

As figure 1.1 shows, dynamic ride-sharing (as a new mobility service) acts as an interme-

diate layer. On the one hand, it serves the passenger requests, i.e., the mobility demand,

and, on the other hand, it can impact the network capacity and can be affected by the

network conditions.

Figure 1.1: Ride-sharing as an intermediate layer in transportation

Thus, to assess the ride-sharing1 system, and to investigate the impacts of service on

traffic, we need to assess both problems. First, we have to find the best way to serve the

network demand. Second, we have to assess the impact of the network condition on the

ride-sharing system performance and finally, the impact of the ride-sharing system on the

network traffic.

1.2.1 The performance of ride-sharing on the network demand

The first issue is matching the passengers and the fleet vehicles by solving a fleet manage-

ment problem. Effective and efficient optimization technology that matches drivers and

riders in real-time is one of the necessary components for a successful dynamic ride-share

1For the sake of simplicity, we will use the word ride-sharing instead of dynamic ride-sharing in this
chapter.



1.2. Research background and motivation 7

system [6]. This problem has recently attracted much attention. Most approaches at-

tempt to find the near-optimal solution to the matching problem in ride-sharing systems

by considering specific constraints like vehicle capacity and the time window, to minimize

the total additional distance [135, 143, 53] and maximize the match between vehicles and

passengers [162, 118, 68]. They usually rank the possible, feasible matches for passengers

and cars close to each other, based on the objective function and then choose the best

match for the requests. When modeling the fleet management problem, it is important to

consider the essential objectives and constraints of both passengers and providers. Much

research work on ride-sharing has tried to minimize the total distance for cars to accom-

modate the trips requested [135, 53, 143]. This leads to minimizing the provider’s costs.

Travel time is an important feature for the participants [133].

Another important part of the first problem is to maximize the matching between cars

and passengers. This is not only beneficial for the provider but also for the users, as it

reduces the number of requests that cannot be served [6]. A large number of studies have

tried to maximize the number of matches between participants [118, 68, 162]. The method

we propose for fleet management matches all the requests with vehicles, based on travel

time prediction. These matches between cars and riders are feasible only if they satisfy

the participants’ constraints. One of the most important considerations in dynamic ride-

sharing is the time constraint. Many of the systems proposed in the literature let users

choose their earliest and latest pickup times [113, 7]. Besides the constraints on travel

time, the number of passengers that are sharing a ride at the same time is crucial as it

can impact the passengers satisfaction. This parameter can also affect traffic.

In ride-sharing, the participant’s willingness to share their ride is critical. Therefore, it

is important to consider the rider’s objectives too. In the dynamic ride-sharing method

proposed by [7], the objective was to minimize the total vehicle-miles driven by all par-

ticipants. They showed that this objective is aligned with societal objectives for reducing

emissions and traffic congestion. Another important objective for the passengers is the

time that they have to wait for the ride. As [162] showed, if no match is found before

a specified time, the passenger is likely to leave the system. Previous research usually
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focused on one of these objectives at a time, but it is important to take them into account

simultaneously. We try to use an objective function that combines all these criteria.

Matching users to trips is very challenging in real-time since it must happen very quickly.

In a great deal of research, the optimal assignment is formulated as an integer linear

programming problem and then different approaches are taken to optimize the problem.

A further discussion on how we formulate this challenging problem are given in Chapter

3. The primary target of this research is not the computation time but to obtain solutions

that are close to the global optimum. In Chapter 4, first, we propose an algorithm to find

the optimal solution. However, as we are targeting problems with large instances, we face

with the curse of dimensionality. Our solution approach is designed to be exact for small

samples. It is then extended with several heuristics that keep the general design for the

solution method but significantly reduce its computation time.

1.2.2 The impact of the network on the ride-sharing system and

vice versa

The second problem is related to the interactions between the ride-sharing system and the

network capacity. This problem has been given less attention in the literature, but it is

very important for real field operations. Network congestion can have significant impacts

on the ride-sharing service. The optimization system of the ride-sharing service uses

estimates for the predicted travel time obtained from a "prediction model". When the

rides are executed, a gap can exist between the estimation and the real traffic condition.

The "plant model" represents the real traffic condition, and it may require dynamic

adjustment of the initial assignment to fit with the conditions observed. When simulating

a dynamic ride-sharing service, it is essential to accurately distinguish the prediction

model from the plant to provide a realistic service.

In most research, the plant and the prediction model are the same [68, 119]. There

is no benchmark considering traffic conditions, but a few studies have considered the

impact of traffic conditions on ride-sharing. [68] proposed an approach where the pick-

up and drop off locations for passengers are selected from a fixed set. They considered
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a randomly chosen overhead of 10-20 percent to reflect different traffic conditions when

computing the end time for a driver. Even with this consideration, they used only the

prediction model and assumed that the travel times during the assignment process stayed

the same during the execution of the vehicle schedules. In some research, only the plant

model is considered. A simulator was used to assess the dynamic ride-sharing but they

did not optimize vehicle allocation as in [113], [119] and [89]. Other works used only

static travel times in the optimization process [79, 80]. In Chapter 6, we define the plant

model in addition to the prediction model to assess the impact of traffic conditions on the

performance of the dynamic ride-sharing system for large-scale problems and see how the

dynamic ride-sharing system can impact traffic congestion.

1.3 Research questions

A large body of literature has been dedicated to assess different parts of ride-sharing

systems. From this literature review, it appears that (1) there is a lack of studies on

efficient fleet management methods that can provide fast and qualified solutions in large-

scale [130] and (2) there is very few studies to appropriately address the impact of traffic

conditions on ride-sharing system performance.

In this thesis we aim to assess the performance of the dynamic ride-sharing system inte-

grated with the current transportation network. The main research question is to assess

the reduction in network congestion that can be obtained with ride-sharing. To answer

this question, we have to consider the performance of ride-sharing on serving the passenger

requests as well as the interactions between the network capacity and the ride-sharing sys-

tem performance. Nested under general umbrella, the thesis investigates several research

questions that are associated with six chapters (figure 1.2).

• How to assess the performance of ride-sharing on the network demand?

Three chapters of this thesis are dedicated to answering this problem. We solve this

problem in a hierarchical manner by answering the following questions:

– How to model a fleet management problem, for a ride-sharing system that con-
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siders both participants main objectives and constraints, into the mathematical

problem?

In Chapter 2 we do a complete review of similar problems to find the gaps

in previous researches on the fleet management problem. Then, considering

these gaps, Chapter 3 describes the constraints and objective functions of the

fleet management problem and finally presents the integer linear mathematical

problem of the proposed ride-sharing system.

– How to find high quality and fast solution for the fleet management problem in

large-scale?

First, in Chapter 4, we propose an innovative algorithm to find the optimal

solution for the mathematical problem presented in Chapter 3. Our solution

approach is designed to be exact for small samples. Then, the method is

extended with several heuristics that keep the general design of the solution

method but significantly reduce its computation time to make it scalable for

large-scale problems.

• How to assess the impact of the network on the ride-sharing system and

vice versa?

The proposed algorithms in the first 4 chapters can answer the first question about

serving the network demand by a ride-sharing system in large-scale networks. Then

to assess the interactions of the network and the ride-sharing service, we face the

following questions:

– How to consider the real traffic dynamics?

The first section of Chapter 5 presents a "plant model" which is based on

the trip-based Macroscopic Fundamental Diagram and can represent the real

traffic situation.

– How to compute the vehicles travel time and speed during the assignment pro-

cess? A "prediction model" is presented in Chapter 5 that can be used during

the assignment process.
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– How to manage the stop locations for the ride-sharing fleet vehicles in the

network?

A "Depot management" method is proposed in the second section of Chapter

5 to answer this question.

• Can ride-sharing reduce traffic congestion?

The last question is the main research question of this thesis. In chapter 5, first, we

show the performance of the proposed algorithm, and then in chapter 6 we assess

the performance of the proposed ride-sharing system in terms of congestion and do

a sensitivity analysis on the different service parameters.
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Figure 1.2: Research objectives and contributions associated with the thesis chapters
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1.4 Methodology

The main research goal is to assess the performance of a ride-sharing system integrated

with the network. We have designed a global framework to solve the problem. Our system

has two main parts. The fleet management part deals with the matching process between

riders and assigning the optimized match of riders to the vehicles. To handle this part,

first, we use operation research methods to solve the fleet management problem and then

we exert heuristic and data science methods to solve the problem in large scale. Then

in the simulation part, we see how the optimal car schedule is realized considering the

complete dynamic traffic conditions. The main components of the system are shown in

figure 1.3.

Figure 1.3: System components

The main characteristics of the ride-sharing problem we investigate are:

• Door-to-door dynamic ride-sharing (the passenger obtains service at the exact de-

fined origin and destination).

• Passengers define the earliest pickup time and the latest arrival time. The passenger

must be picked up, transported and dropped off at the destination inside this time

window.

• All requests over the next prediction horizon (usually 20 minutes) are considered

known at the beginning of the horizon.

• Each passenger defines the maximum number of persons they are ready to share a
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trip with. We call it "number of sharers". The service has to guarantee that the

number of sharers constraint is always satisfied for all the cars.

• Service time is added to each trip to reflect the time to stop and get in and out of

the car.

• The service is provided by a limited number of vehicles that are initially all in the

central depot. Local depots are uniformly distributed over the network to represent

locations where cars can wait for further assignments. When an idle waiting car is

needed to serve a passenger, it comes from the nearest non-empty depot. Note that

the central depot can always generate new cars if necessary. When a car ends a trip

without any further short-term assignment, it goes to the nearest depot and waits

there.

1.5 Major contributions

In this section, we resume the major contributions of this dissertation. The contributions

can be classified according to the designed system main parts (In figure 1.3):

• Fleet management:

1. This thesis presents an innovative algorithm based on branch-and-bound method

to find the exact optimal solution for the fleet management problem. This al-

gorithm is able to provide all the feasible routes for the fleet vehicles. Then

the operator can choose the best route regarding to the weights of objective

functions.

2. A rolling horizon approach is defined for the dynamic ride-sharing system to

deal with the planning uncertainty. Also, An insertion heuristic method is

developed to do the re-scheduling for the vehicles that are moving in the system

at the beginning of each horizon.

3. A clustering method is developed to cluster the trips that have more potential

to be shared to solve large-scale problems. We have defined a "Shareability
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Index" based on 3 different situations of sharing the trips or serving them in

sequence. Then the clustering is done based on this index.

4. A heuristic approach called "Force the Sharing (FOSH) method" is presented

to favor sharing opportunities at the cost of slight increases in the cost function,

decreasing passenger waiting time.

• Dynamic simulation platform:

1. A "Plant Model" is applied based on "Trip-based Macroscopic Fundamental

Diagram (MFD)" to represent the traffic dynamics reality.

2. A "Prediction Model" is applied based on the mean-speed to be used during

the assignment process.

3. A depot management system is developed to locate the empty waiting cars in

the stop locations.

1.6 Thesis outline

This thesis includes four parts:

• Part 1: What is ride-sharing?

This part contains Chapter 1 (the current chapter) and Chapter 2. Chapter 1

explains the motivation and background of the thesis, the research questions, and the

contributions to answer the questions. Chapter 2 provides a comprehensive review

of the ride-sharing, the current algorithms designed for ride-sharing, the simulation

models that are used for ride-sharing in the literature, and the consideration of

dynamic traffic conditions in new mobility services and ride-sharing.

• Part 2: How to assess the performance of ride-sharing on the network demand?

Chapter 3 and 4 are dedicated to answer the question of part 2. In Chapter 3,

the mathematical formulation of the ride-sharing problem is presented. Chapter

4 introduces an optimal solution method for the mathematical problem of ride-

sharing. To show the quality of the proposed algorithm, we have compared the
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algorithm with the existing methods in this chapter. To make the optimal solution

scalable for mega cities and large-scale networks, Chapter 4, then presents a rolling

horizon method and re-scheduling and a heuristic method based on clustering. The

clustering method is compared with the current clustering methods in the literature.

A new method called "FOSH method" is presented in this chapter to favor sharing

opportunities and speed up the computations.

• Part 3: How to assess the impact of the network on the ride-sharing system and

vice versa?

In Chapter 5 we answer this question. We have implemented two models to deal

with traffic dynamics. A depot management system is developed to locate the

waiting vehicles. In this chapter we show the performance of the optimal assignment

algorithm and the heuristic methods. In chapter 6 we assess the impact of ride-

sharing on traffic conditions. Also an extensive analysis is done on the problem

parameters.

• Part 4: What are the major outcomes of this thesis?

In the last chapter, Chapter 7, we summarize the thesis and clarify the major

conclusion and outcomes of this thesis.
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Chapter 2

Literature Review

Ride-sharing was the subject of many studies undertaken in the past. In the previous

chapter, we mentioned that to assess the ride-sharing problem’s performance, we have

to assess the interactions of the ride-sharing system and the transportation network. To

evaluate this problem, we face two sub-problems: First, how to serve the network demand

and second, how to assess the interactions with the traffic dynamics. Previous studies on

this filed mainly focus on the first sub-problem, and the second sub-problem has been given

less attention in the literature, while it is very important to consider both sub-problems,

especially if an operational deployment is envisioned.

Chapter 2 does a review of the previous research on this domain, considering these two

sub-problems.

Section 2.1 reviews the ride-sharing definition and similar concepts. Section 2.2 presents

different system settings for ride-sharing. Section 2.3 discusses different algorithms and

methods being used in the literature to match the rides and riders in ride-sharing. Fi-

nally, in section 2.4, we present a literature review about considering the dynamic traffic

condition in the ride-sharing performance.

2.1 Ride-sharing definition and related terms

The growing pressure on urban transportation systems needs innovative solutions that can

increase its efficiency. In recent years, intelligent transportation systems have reshaped

19
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traditional transportation supply with the rapid introduction of new mobility services.

Among these services, ride-sharing is becoming popular [166]. In this section, we review

the definition of ride-sharing and similar concepts to it, the advantages of ride-sharing,

and a brief history of ride-sharing and its existing applications.

There have been several different ways to define the term ‘ride-sharing’ over the last

decades. In 1989, the State of Virginia in the united states has described one of the first

definitions as below:

“Ride-sharing arrangement means the transportation of persons in a motor vehicle when

such transportation is incidental to the principal purpose of the driver, which is to reach

a destination and not to transport a person for profit.” [2] After that, many scientific

publications described and analysed the early schemes of ride-sharing, such as [147, 76,

57, 36, 95]

In 2010, Agatz et al. ([5]) define the ride-sharing as a system that aims to bring together

travelers with similar itineraries and time schedules. They underline the point that to be

widely adopted, ride-sharing must be easy, safe, flexible, efficient, and economical. Also,

it must be able to compete with one of the main private cars’ preferences, which is the

immediate access to door-to-door transportation.

The definition of ride-sharing has changed over time, depending on the specific setup and

location [19]. Chan and Shaheen in a survey on the ride-sharing in North America, define

the ride-sharing as: “The grouping of travelers into common trips by car or van.” In 2013

Furuhata et al. made this definition more complete and defined the ride-sharing as: “A

mode of transportation in which individual travelers share a vehicle for a trip and split

travel costs such as gas, toll, and parking fees with others that have similar itineraries

and schedule.” [62]

Cohen and Kietzmann define a different concept of ride-sharing in [44]. They represent a

financial model of ride-sharing as “Drivers earn extra money while intermediaries earn up

to 20% of each transaction”.

Recently, Wang et al. present one of the latest definitions: “Ride-sharing is an emerging

transport mode that harnesses both private cars and taxis to combine two (groups) of
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travelers into the same vehicle if all or part of the two groups’ travels is overlapped in

space and time” [175]. It consists of sharing a car using an e-hailing application to save

costs and resources.

The important point is to distinguish ride-sharing from similar transportation modes such

as dial-a-ride, car-sharing, carpooling, ride-sourcing, etc.

In a recent study, the authors in [130] review the definitions and characteristics of different

mobility services. The dial-a-ride (DARP) provides shared trips between any origin and

destination in response to advanced passenger requests within a specific area [128, 83].

The main difference between these services and ride-sharing services is that most shared

services aim to minimize the response time to passenger requests, whereas dial-a-ride

systems aim to minimize vehicle operating cost by reducing the number of vehicles used

to serve given passenger demands [92].

Car-sharing consists of a group of individuals who share a fleet of cars with other members

[94]. In British English, the words car-sharing and lift-share are used anonymously to

ride-sharing [41]. Generally, the term carpooling is interchanged with ride-sharing, but

researchers use this term to show a transportation mode where an individual gets access

to a pool of cars for hourly or daily use for the commute to and from a shared location

like university or workplace [41, 5, 74, 158]. Ride-sourcing is another mode that performs

like traditional taxi cabs that serve one request at a time without sharing. The difference

is that ride-sourcing uses smartphone technology and dynamic matching algorithms [145,

91].

In private-car ride-sharing, the rider is both a driver and a passenger. Taxi-sharing

is a type of ride-sharing where the driver is just a professional taxi driver. Currently

ride-sharing is undergoing an expansion from the traditional private car ride-sharing to

taxi-sharing [125, 84], and in the near future to autonomous vehicle taxi-sharing [101].

2.1.1 Dynamic ride-sharing

Nowadays, transportation, like many other aspects of daily life is being transformed by

the information technology (IT) revolution [69]. The spread of mobile devices and the
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development of Global Positioning System (GPS) make it possible for all the transport

operators to adapt in real-time the transportation supply to travel demand. These new

technologies have made considerable changes in the transportation modes as well as taxis

[160, 15]. These options can make the possibility to have access to the vehicles position at

any time and perform the matching process of ride-sharing in real-time. These possibilities

has led to the development and progress of a new type of ride-sharing which is called

dynamic ride-sharing.

Dynamic ride-sharing, which is also known as real-time ride-sharing, real-time peer to peer

ride-sharing, ad hoc ride-sharing, instant ride-sharing, and dynamic carpooling [7, 66] is

a transportation mode that provides rides for single, one-way trips. In dynamic ride-

sharing, the sharing is arranged on a per-trip basis rather than for trips made regularly

[39]. Dynamic ride-sharing systems need to support arbitrary locations and travel times

to match users [158, 49, 64]

In 1994, Schweiger et al. defined the dynamic ride-sharing for the first time: "a mode

of transportation that is ready when you are. This service is multipurpose and can be

arranged either in real-time or close to it. Participants pre-qualify and are put into a

database. Upon receipt of a trip enquiry, the database is searched for others who are

traveling in the same direction at the same time. Participants can not only use this

database to arrange for carpools to and from work but also to a shopping center, medical

facility or any other trip generator" [155]. Two years later, the authors in [100] presented

the next definition: "a one-time rideshare match obtained for a oneway trip either the

same day or the evening before."

In 1997, Dailey et al. [49] defined the dynamic ride-sharing as:

"two or more people sharing a single trip, without regard to previous arrangements or

history among the individuals involved. In comparison to traditional ride-matching ser-

vices, which focus on commuters traveling to and from the same origins and destinations

on fixed schedules, a dynamic ride-sharing system must be able to match random trip re-

quests at any time. Thus, the system must be able to match potential carpoolers quickly

to respond to same-day trip requests, as well as the more traditional commute trips".
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’dynamicridesharing.org’ defines dynamic ride-sharing as "A system that facilitates the

ability of drivers and passengers to make one-time ride matches close to their departure

time, with sufficient convenience and flexibility to be used on a daily basis" [97].

Another recent definition is presented by [20]: "A single or recurring rideshare trip with

no fixed schedule, organized on a one-time basis, with matching of participants occurring

as little as a few minutes before departure or as far in advance as the evening before a

trip is scheduled to take place."

Agatz et al. [7] describes the dynamic ride-sharing as "an automated system that facil-

itates drivers and riders to share one-time trips close to their desired departure times."

They mention that the system is dynamic. It serves independent and non-recurring trips

(not like the traditional carpooling or van-pooling). The trips are prearranged (not like

casual ride-sharing, hitch-hiking and hailing a taxi) and the matching process is auto-

mated.

2.1.2 Ride-sharing history and advantages

Chan and Shaheen [41] categorize the ride-sharing evolution into 5 phases. These five

phases begin from car-sharing clubs to today’s technology-enabled ride-matching sys-

tems. For the first time, during the World War II, the U.S. government introduced the

first organized ride-sharing to save resources. [62, 41]. The second time in history was in

the 1970s during the oil crises when ride-sharing gained attention[141]. During this phase

vanpooling, casual carpooling, park-and-ride facilities, and innovative ride-matching pro-

grams used as strategies to facilitate ride-sharing.

In the 1980s and 1990s, in the third phase of ride-sharing evolution, transportation man-

agement starts focusing on solving congestion and air pollution issues. At this time, the

dynamic ride-sharing becomes more considerable because of the advances in internet-based

ride-matching programs and the facilitation of using telephones everywhere [75, 109].

However, due to low oil prices and strong economic growth, participation in ride-sharing

decreased at the beginning of the 1980s. From 1999 to 2004 ride-sharing has gained mo-

mentum with the use of technology-enabled devices and most ride-sharing systems try
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to develop this mode among travelers who had the most reliable trip schedules [67, 41].

Nowadays, modern information technology and the flexibility they have provided has

made ride-sharing more attractive than ever before. In many countries around the world,

different companies are providing ride-sharing services [99, 90].

Another considerable advancement in ride-sharing is the appearance of autonomous vehi-

cles (AV). The development of AVs can make a significant improvement in the ride-sharing

systems and, consequently, the transportation system. One of the ride-sharing obstacles

is the drivers’ limitations regarding distance, route and time window, removing these

limitations is a valuable point to make AVs appropriate for ride-sharing, besides reduc-

ing emissions, making streets safer, saving time, saving space and reducing congestion

[101]. Nowadays, a significant part of studies on this field focuses on the assessment of

autonomous vehicles sharing [55, 108, 157, 72, 33].

The sharing community has a lot of social, environmental and economic advantages [73,

99]. Andreasson [21] mentions that besides the objections like longer waiting times, loss of

privacy and risk of assaults or harassment by other passengers, ride-sharing can reduce the

fleet size, increase the system capacity and reduce the requirement for short headways.

Specifically, different studies have focused on different advantages of ride-sharing. We

mention some of the recent studies on this objective:

Lokhandwala and Cai in 2018 [117] propose an agent-based simulation model to study

the impacts of dynamic ride sharing. They show that ride-sharing combining autonomous

driving with autonomous vehicles in New York city, can potentially decrease the fleet size

by up to 59%, increase the occupancy rate from 1.2 to 3, decrease total travel distance

up to 55%, and reduce carbon emissions by 725 metric tonnes per day. A detailed anal-

ysis about the environmental benefits of ride-sharing in terms of reduced emissions and

vehicle kilometres travelled is demonstrated by [40]. Another study in Paris shows that

ride-sharing can play a key role in reducing CO2 emissions from road transport [176].

Research in Beijing shows that if implemented for the entire taxi fleet, shared taxis can

save 28.3 million gallons of gasoline and reduce 2392 tons CO emissions annually [37].

Similar researches are done in different mega-cities around the world to show the environ-
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mental benefits of ride-sharing [164, 115, 88]. Besides reducing CO2 emissions and fuel

consumption, it also saves the users’ money and time [168].

2.2 Dynamic ride-sharing system settings

Figure 2.1: Different categories of dynamic ride-sharing

Considering the history and definitions of ride-sharing, we define the dynamic ride-sharing

in this thesis as below:

The main parts of this dynamic ride-sharing system are the passenger, ride provider, and

the matching algorithm. The passenger seeks a ride to pick her/him up at the origin

point and drop her/him off at the desired destination within a time interval. The ride

provider has a fleet of vehicles (taxi, van, autonomous car, etc.) that is ready to serve
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the passengers’ requests. The matching algorithm receives the requests and the fleet

information and tries to find the best matches in short notice.

We classify this system into four categories, considering the interactions between different

fleet providers and the performance of the matching algorithm. Fleet providers can work

competitively or cooperatively. In the case of cooperative interaction, they share the fleet

information so the passenger may get the ride easier, and the benefits of ride-sharing

will be more achievable. In the competitive scenario, each provider tries to gain a higher

profit. The matching algorithm communicates with the providers directly or indirectly,

(figure 2.1). This classification can be expanded for other new mobility services as well.

Nowadays, the common dynamic ride-sharing systems are placed in the first category.

The research proposed by this dissertation considers this category. Figure 2.2 shows the

system functioning. Passengers send their requests for the ride via an application and

define their trip specifications. On the other side, the application has access to the fleet

information and can track the fleet vehicles at any time. Then the algorithm starts to

assign vehicles to the passengers’ requests and send the response to the passengers in

real-time.

The matching algorithm is a key element in the efficiency of such a system. It is possi-

ble to provide the best real-time match between vehicle and passenger in terms of time

and location, using efficient algorithms. A huge number of studies like [98, 43, 29, 153]

focused on finding such an algorithm. In section 2.3, we review the different ride-sharing

algorithms in the literature.
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Figure 2.2: Proposed dynamic ride-sharing system
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Transportation
demand

Trip Planning

Time Dependent
Real time demand
Trip hailing
Authentication System
Trip Motivation
Special passenger
Origin
Destination
Seat Demand

Trip

Max waiting time
Max Travel time
Max Detour
Max Fare
Time window
Desired pick up time
Desired arrival time
Max delay
Max number of sharing
Distance from origin to pick up
Departure time
Waiting time
Number of Sharing
Detour
Arrival time
Time for picking up and dropping off
Fare

Transportation Service

Vendors
Fixed Fleet
Time table
Fixed stops (pick up or drop off locations)
Waiting locations
Car Specifications (homogeneous/heterogeneous)
Supply type (pro/not pro)
Car capacity
Pricing scheme

Algorithm

Objective function
Dispatching
Searching
Scheduling
Monitoring
Method
Shortest path
Empty vehicle behavior
Accept/reject behavior of riders
Traffic

Application

Network Characteristics

Scale

Time
Space
Demand
Supply

Criteria

Passengers’ objectives

Waiting time
Service Time
Total travel time/distance
Trip fare
Rejected Requests
Max delay

Providers’ objectives

Total travel time/distance
Number of served requests
Number of required vehicles
Taxi stand departures
Revenue per travel distance
Average number of persons per vehicle
Vehicle emissions
Saved total travel distance percentage

Table 2.1: Transportation demand and service characteristics

The proposed system in figure 2.2 has three main parts: Transportation demand, trans-

portation service, and algorithm. Different studies on ride-sharing consider different con-
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figurations for this system. Usually, they use data from a real network to assess the

performance of the ride-sharing system, and they consider different criteria based on the

study’s goals. We extract all the related parameters and variables for these parts. Then

we can have a comprehensive review of different methods. Table 2.1 shows these items

for each box of figure 2.2. We have evaluated 15 most cited or related research proposals

on ride-sharing using this table (See Appendix A).

In dynamic ride-sharing, the system works to serve the network demand, and at the same

time, it is affected by the network. The traffic situation can impact the shared vehicle

travel times. On the other side, the system vehicles can have an impact on the congestion

(Figure 2.2). So, we can divide the dynamic ride-sharing problem into two sub-problems.

First, how to serve the network demand and manage a fleet of vehicles. Second, how to

assess the impact of network and accurately predict the travel times to determine vehicle

availability at pickup/drop off times. In the next sections, we provide state of the art on

the ride-sharing algorithms and dynamic traffic conditions in ride-sharing.

2.3 Ride-sharing algorithms

One of the most challenging facets of dynamic ride-sharing problems is the automated

matching process. Matching users to trips is very challenging in real-time since it must

happen very quickly.

The matching problem in ride-sharing corresponds to a fleet management optimization

problem with multiple objectives and constraints and has recently attracted much atten-

tion. In section 2.3.1, we first review the different objectives and constraints that have

been considered for this problem in previous studies and then in section 2.3.2 we review

the methods and algorithms to solve the problem.

2.3.1 Objectives and constraints

When modeling the fleet management problem, it is important to consider the essen-

tial objectives and constraints of both passengers and providers. In table 2.1, we have
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listed the constraints for both passengers and providers. Furthermore, the criteria for the

problem show the different objectives that can be considered in the fleet management

problem.

Objective functions Different researches focus on different objectives in the problem

related to passengers [156, 120], drivers [116, 48], providers [140, 121, 86] or the network

[30].

Different objectives of the ride-sharing problem used in the literature review are listed

in table 2.1 as criteria. We categorize the ride-sharing problem objectives into providers’

objectives and passengers’ objectives. Most approaches attempt to find the near-optimal

solution to the matching problem in ride-sharing systems by considering specific con-

straints, to minimize the total travel distance or time [135, 143, 53] and maximize the

match between vehicles and passengers [162, 118, 68]. This leads to minimizing the

provider’s costs.

Maximizing the number of serviced requests [80, 28, 161, 152] and minimizing the num-

ber of required vehicles [96, 107], saved total travel distance percentage [135] or vehicle

emissions [22] are other objectives used in the state of the art of this problem that can

yield a better performance from the system (provider) perspective.

In ride-sharing, the participant’s willingness to share their ride is critical. Therefore, it

is important to consider the rider’s objectives too. In the dynamic ride-sharing method

proposed by [7], the objective was to minimize the total vehicle-miles driven by all par-

ticipants. They showed that this objective is aligned with societal objectives for reducing

emissions and traffic congestion.

Travel time is an important feature for the passengers [133]. Another important objective

for the passengers is the time that they have to wait for the ride. Usually, the main

motivation of passengers is to reduce travel costs. However, [162] showed that, if no

match is found before a specified time, the passenger is likely to leave the system and

refuse to use shared mobility systems. Minimizing total passenger ride or waiting time

might yield better performance from the passenger perspective but not from a system-wide

perspective. Reducing the passenger waiting time can make shared services comparable
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with the other traditional taxi services. Different methods in the literature try to minimize

the passengers’ waiting time as an objective function like in [87, 96, 126].

Much of the research on dynamic ride-sharing services is focused on optimizing a single

providers’ objective. In these studies usually they consider some constraints for the prob-

lem to keep the passengers’ objectives in an acceptable level [128, 38]. There are also

studies that consider multiple-objective systems combining passengers’ and providers’ ob-

jectives. In [53], total travel distance, taxi stand departures (number of exits from all taxi

stands) and revenue per travel distance (revenue per km earned by all vehicles) are used

to demonstrate vehicle owners’ performance in terms of operation mode and costs for all

trips. Percentage of served requests, waiting time, travel time and trip fare are consid-

ered to demonstrate the passengers’ preferences. [96] combined six different objectives:

Minimizing routing cost, excess ride time, passenger waiting time, route durations, early

arrival times at pickup and delivery nodes, and number of unserved requests.

When assessing a dynamic ride-sharing problem it is important to consider both passen-

gers’ and providers’ essential objectives. In this thesis, we aggregate the different passen-

gers’ and providers’ objectives into a weighted-sum objective with different measures. We

define a weight for each of the combined objectives (Chapter 3).

Constraints A set of constraints and features should be considered for both trans-

portation demand and transportation service in the ride-sharing problem. Many studies

on ride-sharing formulate the optimal assignment problem using different vehicle rout-

ing problem (VRP) formulations. They use different constraints and features for various

types of problems. Assignment constraints, synchronization constraints, time window

constraints and capacity constraints are examples of different formulation constraints.

Assignment constraints are the very first constraints of a ride-sharing problem. A pas-

senger should be transported from the pickup point to the drop off point, and the pickup

point should be visited before the destination point. Therefore, the assignment constraints

are strict and should be respected in solving a ride-sharing problem. This process has

modeled with different methods in the literature. The authors in [163] define an interme-

diate location called meeting point for passenger picked up or dropped off. They show
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that this meeting point can lead to shorter detours. The authors in [68] present an ap-

proach to ride-sharing where the pick up/drop off locations for passengers are selected

from a fixed set. They present a scheme that chooses optimally fixed locations of Pick up

Points (PuPs) and aim to maximize the car occupancy rates and preserve user privacy

and safety. In [133] the drop off point is a common destination like university or company.

Other researches focus on serving the passengers door-to-door to make more comfort for

the sharing participants. In [135, 110, 165] passengers can define the pick-up and drop off

locations. In [53, 56, 98], the pick-up point is the current location of the passenger, and

passengers only need to define the destination.

With synchronization constraints, the system ensures that each passenger is served exactly

once by one or more vehicles [58, 54].

One of the most important considerations in dynamic ride-sharing is the time constraint.

For the ride-sharing, it is important to define a time window, especially for the cases that

both drivers and riders have a time schedule that should be matched. Much research on

ride-sharing, consider the time window in their problem constraints. They define the time

window via different strategies. In [7], the passenger defines the earliest departure time

and time flexibility that specifies the difference between the earliest departure time and the

latest arrival time. Then the latest arrival time can be computed. In [133, 173, 80, 113, 7],

the passengers define the earliest pick up time and latest arrival time. So, the passenger

should be picked up at the origin point not earlier than the defined pick up time, and

he/she should be dropped off at the destination point before the latest arrival time.

In [87], the travelers have implicit rather than explicit time constraints, and only passenger

waiting time is considered in the objective function. Also, the capacity constraint for each

vehicle is two. It means that each car can serve only two traveler requests at the same

time. Some studies try to use the vehicle’s maximum capacity [68, 53]. Besides limiting

the maximum number of passengers, some studies on van-pooling systems put a constraint

for the minimum number of passengers to form a van-pool for a shared trip [93].

Besides the constraints on vehicles’ capacity, this thesis introduces the desired maximum

number of ride-sharing for all passengers. Thus, in a given vehicle, the number of on-
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board passengers cannot exceed the lowest number of passengers willing to share for all

the on-board passengers. This parameter can also affect traffic.

2.3.2 Solving methods

Most approaches attempt to find the near-optimal solution to the matching problem in

ride-sharing systems by considering specific constraints. They usually rank the possi-

ble, feasible matches for passengers and cars close to each other, based on the objective

function and then choose the best match for the requests [162, 118, 68, 135, 143, 53].

The authors in [87] assigned the passenger to a vehicle only if the car is 20% closer to the

passenger than any idle shared car.

The ride-sharing assignment is a pickup and delivery problem with time windows (PDPTW)

[122]. [27, 138] did reviews of dynamic pickup and delivery problems, bringing up some

interesting but unsolved questions, such as optimal waiting strategies, modifications of

the objective function on a rolling basis, to name a few. It is shown that this problem is

NP-hard. Even simplified variants of the problem with a single-driver single-rider setting,

single pickup, and drop off or a single-objective function are still NP-hard [71]. In a great

deal of research, the optimal assignment is formulated as an integer linear programming

problem, and then different approaches are taken to optimize the problem [178]. There is

a vast literature on solution methods and algorithms for these problems. However, there

is still room for improvement in these methods.

Due to the complexity of the problem, the exact solution methods are introduced to solve

very small instances of the problem. The most frequently cited literature on PDPTW is

[46], where they present a mixed linear integer programming formulation of PDPTW and

a branch and cut solution for it. [148] later introduces an enhanced branch-and-cut-and-

pricing solution to further improve the solution. These exact methods are usually used to

solve static problems with deterministic data [46, 24, 65]. In the PDPTW, increasing the

number of vehicles and passengers increases the dimension of solution space and so the

computational time. The method proposed by [122] takes almost two hours to compute

a case with 50 passengers and 15 vehicles.
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To handle larger problems, the assignment problem is solved with different heuristic

methods in the literature. [35] propose an exact Branch-and-Cut algorithm for Dial-a-

Ride problem (DARP) that can outperform the state-of-the-art solver CPLEX. The exact

method is followed by a lean heuristic algorithm based on Large Neighborhood Search

(LNS) for larger instances of the problem. In another study on pick up and delivery prob-

lem for ride-sharing by [173], the exact method is proposed to solve small instances of the

problem. Then they present a Tabu search heuristic for the pick and delivery problems

for ride-sharing. They use a ratio (the objective value of the optimal solution divided by

the output objective value of the heuristic method) to compare the heuristic method with

optimal situation.

Dynamic ride-sharing problem addresses short-term matching or even en-route matching

[7, 118, 51]. This fact makes the assignment problem more complex.

In some studies, researchers try to narrow the feasible solution space to make the compu-

tations faster and be able to assign the vehicles to the requests that are coming at each

time to the system. For example,[114] present a method to tighten travelers time windows

and eliminate unnecessary variables and constraints to narrow the solution space. [85]

proposed a branch-and-bound algorithm for solving real-time ride-sharing problem. They

introduced a kinetic tree algorithm to schedule dynamic requests and adjust the routes

on-the-fly. [114] proposed a branch-and-cut algorithm to solve a realistic DARP with

multiple trips and request types and a heterogeneous fleet of vehicles.

Some researches have implemented meta-heuristic methods to solve the assignment prob-

lem [16, 18]. [81] used a genetic algorithm to find a sub-optimal solution for the ride-

matching problem, and then an insertion heuristic took care of the newly received re-

quests by modifying the solution of a genetic algorithm when possible. [92] proposed

hybrid-simulated annealing (HSA) method to dynamically assign passenger requests to

shared taxis. Masmoudi et al. (2017) propose an improved ALNS-based method, Hybrid

Bees Algorithm with Simulated Annealing (BA-SA), and with Deterministic Annealing

(BA-DA) to solve the Heterogeneous Dial-a-Ride problem (HDARP).

[7] introduced a rolling horizon approach that can provide high-quality solutions for dy-



2.3. Ride-sharing algorithms 35

namic ride-sharing systems where trip requests continuously enter the system.

Recently [130] has presented a survey of models and algorithms for optimizing shared

mobility, and they have shown that one of the most critical problems in the solution for

these systems is computation time and the quality of the results.

In this dissertation, we propose heuristic methods for the mathematical problem that

gives a high-quality optimal assignment in a few minutes. The algorithm searches for the

matches between riders only in the area feasible for each passenger. Then, the match

between two participants is possible only if their feasible area has an intersection.

2.3.3 Clustering methods

In the large-scale problems, the number of received requests at every time is a huge

number. It has been indicated in the literature that the patterns of demands and the

patterns of supplies are spatially-temporally dependent [172].

A lot of researches on this domain uses different clustering methods to consider these

dependencies. They use methods like dividing the time into several time slots or dividing

the space into several clusters, road segments, or cells [70, 50, 142, 177].

Qiang in [144] propose an algorithm to use the dataset of taxi get-off points to achieve the

clustering of taxis on urban roads and compare their method with the classical clustering

methods. However, the taxi clustering data in their study are conducted in a static

environment.

In [42] all pickup points are partitioned into several clusters and the vehicle dispatch and

ride-sharing problem is solved in each cluster. Bard and Jarrah in [26] show that for large-

scale problems, an appropriate solution is clustering the demand nodes and downsizing

the network. Some researches try to limit the feasible region with clustering methods to

speed up the computation. They usually divide the demand nodes in the network into

geographically dense clusters [136, 150].

One of the recent researches on the clustering of the trips is done by [151]. They introduce

the notion of a shareability network to quantify the spatial and temporal compatibility

of individual trips in a dynamic environment. In their method, two trips are shareable
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if they would incur a delay of no more than five minutes. Then, [169] modify the idea

to model the sharing of vehicles instead of rides and address the minimum fleet problem

in on-demanded urban mobility. In these clustering methods, the trips are clustered just

based on the situation of the origin points. But, in ride-sharing, other combinations of

trips should be considered. So, in this research, we propose the concept of "sequential

index" and "Shareability index" for the same purpose to assess the possibility of serving

two trips with the same car in sequence or sharing the trips. Our proposal employs a

method that reduces the number of required vehicles.

2.4 Dynamic traffic conditions in ride-sharing

One of the main mentioned advantages of ride-sharing is reducing congestion. Most of

the studies on this domain assess the impact of ride-sharing on the congestion, and with

statistical analysis, they show this impact [111, 112, 52].

The critical point which has not been considered is that dynamic traffic conditions in the

network can have significant impacts on the ride-sharing service as well.

The optimization system of the ride-sharing service uses estimates for the predicted travel

time obtained from a so called "prediction model". When the rides are executed, a gap

usually exists between the estimation and the real traffic condition. The so called "plant

model" represents the real traffic condition and it may require dynamic adjustment of

the initial assignment to fit with the conditions observed. When simulating a dynamic

ride-sharing service, it is essential to accurately distinguish the prediction and the plant

models to provide a realistic service.

In most research, the plant model and the prediction model are the same [179, 68, 119].

There is no benchmark considering traffic conditions, but a few studies have considered

the impact of traffic conditions on ride-sharing [134, 174]. For instance, the authors in

[68] proposed an approach where the pick-up and drop off locations for passengers are

selected from a fixed set. They considered a randomly chosen overhead of 10-20 percent

to reflect different traffic conditions when computing the end time for a driver. Even

with this consideration, the authors used only the prediction model and assumed that the
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travel times during the assignment process stayed the same during the execution of the

vehicle schedules. Other works used only static travel times in the optimization process

[80].

In some research, only the plant model is considered. For instance, in [113], [119] and [89],

the authors used a simulator to assess the dynamic ride-sharing but they did not optimize

vehicle allocation. In [55], the authors described advances in existing shared autonomous

vehicle simulations, by enabling dynamic ride-sharing. They proposed a method that fits

for passengers with similar origins, destinations and departure times. In our method, each

passenger defines their origin, destination and desired time window.

In [25], the authors develop a general economic equilibrium model at the macroscopic level

to describe the equilibrium state of a transportation system composed of solo drivers and

the e-hailing service providers. Experimental results show that when there is little in the

symmetry in the network demand, the travelled distances increase significantly with the

service usage due to the increase in deadhead miles. However, as the symmetry increases

the impact on deadhead miles significantly reduces with increased service usage. These

results are coherent with our findings, where the mobility services significantly increase the

total travel distance, and sharing is a means of combating this trend without eliminating

it.

In our method, we define the plant model in addition to the prediction model to assess

the impact of traffic conditions on the performance of the dynamic ride-sharing system

for large-scale problems and see how the dynamic ride-sharing system can impact traffic

congestion. In Chapter 5 we present a complete framework for the ride-sharing simulation

to fill the previous researches gaps.

Conclusion

In this chapter, we reviewed the researches on dynamic ride-sharing systems. From this

literature review, we can conclude that:

• There is a lack of studies on efficient fleet management methods that can provide
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fast and qualified solutions in large-scale.

• There are very few studies to address the impact of traffic appropriately on ride-

sharing system performance.

To figure out these points, in this thesis, we try to answer two main questions:

• How to assess the performance of ride-sharing on the network demand?

• How to assess the impact of the network on the ride-sharing system and vice versa?

In the following chapters, we propose simulation-based optimization frameworks for dy-

namic ride-sharing to answer these questions.



Part II

How to assess the performance of

ride-sharing on the network demand?
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The dynamic ride-sharing problem involves two sub-problem. The first sub-problem is the

fleet management problem and matching the rides to the passengers. This part formulates

the ride-sharing problem into a mathematical model in Chapter 3. In this dissertation, we

aim to approach the global optimal solution, whereas previous studies mostly focused on

optimizing local sub-problems. The search for the global solution may be computationally

expensive, but it permits answering the question of the maximum gain we can expect

from ride-sharing in the transportation system. This is a crucial point that would worth

being elaborated deeper. To approximate the global solution, in Chapter 4, we resort to

an algorithm to solve the mathematical problem. Our solution approach is designed to

be exact for small samples. Then, to be able to handle the large-scale problems, it is

extended with several heuristics that keep the general design for the solution method but

significantly reduce its computation time. The main strategy is to cluster the requests

depending on a shareability index to create smaller samples that are faster to solve.



Chapter 3

Ride-Sharing Problem Formulation

Introduction

In this chapter we present the components of the system that we have designed for dynamic

ride-sharing. The system has two main components.

1) The fleet management component that solves the assignment problem based on the

predicted travel times. The fleet management component solves a mathematical problem

to assign the vehicles to the trip requests. The mathematical formulation of this problem

is presented in this chapter. Then we explain how we solve this mathematical problem in

the next two chapters.

2) The simulation component that represents the actual evaluation of the system. The

performance of this component is explained in chapter 5.

In this chapter, section 3.2 represents the fleet management component. We express the

ride-sharing problem into a mathematical problem. The purpose of the proposed mathe-

matical formulation is to present a complete framework for the fleet management problem.

We rigorously formulate the problem considering the essential objectives and constraints

for the passengers and providers and we define the number of sharing constraints to limit

the number of shared trips. This constraint can help us to analyze the transportation

system under different sharing situations.

41



42 Chapter 3. Ride-Sharing Problem Formulation

3.1 System components

The global functioning of the system is shown in figure 3.1. In this chapter we present

the fleet management component. At the beginning of a new rolling horizon, the fleet

management components solve the optimal assignment problem based on predicted travel

times. Then, the simulation component implements this assignment over the next horizon

to determine the actual evaluation of the system and the effective pickup/drop off and

travel times for all the vehicles. The effective value of the objective function (objective

function realized) can be computed at the end of each horizon and be compared to the

optimal objective value (estimated objective function) derived from solving the assignment

problem with predicted travel times.

Figure 3.1: System components (fleet management component)

The main characteristics of the ride-sharing problem we investigate are:

1. Demand characteristics:

• Door-to-door dynamic ride-sharing (the passenger obtains a service at the exact

defined origin and destination).

• Passengers determine origin and destination.
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• Passengers define the earliest pickup time and the latest arrival time. The

passenger must be picked up, transported and dropped off at the destination

inside this time window (time schedule for each trip is shown in figure 3.2).

• Passengers determine the number of requested seats that can then be more

than one.

• All requests over the next prediction horizon (usually 20 minutes) are consid-

ered known at the beginning of the horizon.

• Each passenger defines the maximum number of persons they are ready to share

a trip with. We call it "number of sharing". The service has to guarantee that

the number of sharing constraint is always satisfied for all the cars.

• A request has an origin, a destination, a time window, a number of seats and

a number of sharing.

2. Service characteristics:

• There is a fleet of service vehicles to serve the requests dynamically.

• Service time is added to each trip to reflect the time to stop and get in and

out of the car.

• The service is provided by a limited number of vehicles that are initially all in

the central depot. Local depots are uniformly distributed over the network to

represent locations where cars can wait for further assignments. When an idle

waiting car is needed to serve a passenger, it comes from the nearest non-empty

depot. Note that the central depot can always generate new cars if necessary.

So there is no limit on the fleet size. When a car ends a trip without any

further short-term assignment, it goes to the nearest depot and waits there.

3.2 Fleet management component

Fleet management component works to assign the vehicles to the trip requests. In this

component, an algorithm computes the shortest path and then solves a constrained multi-
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Figure 3.2: Trip time schedule

objective optimization problem to minimize the total travel time and distance for vehicles

and the total travel time and total waiting time for passengers.

The constraint functions are capacity constraints, time windows constraints, assignment

constraints, and the number of sharing constraints.

A trade-off between the objectives will be found to be sent as the schedule to the feet.

Then the assigned cars leave their location or take a detour to serve the new demands.

The mathematical description of the fleet management component is provided in this

section. First, we explain the objective functions, the constraints, and the inputs and

outputs of the model, and finally, we present the mathematical model.

Note that the predicted travel times used in the fleet management correspond to the

trip length divided by the mean speed over the full network at the end of the previous

simulation period.

3.2.1 Notations and variables

At each period (rolling horizon width), the system receives n passenger requests. Every

request has a pickup point i and a drop-off point i + n. Thus, there will be 2n nodes

({1, ..., 2n}) plus nodes 0 (corresponding to the depot from where the vehicle comes) and

2n+1 (corresponding to the depot where the vehicle goes after finishing all assignments).

If vehicle k is assigned to passenger i, the decision variable yki equals 1 and if not it equals

0. If vehicle k takes the passenger from point i to j, the decision variable xki,j equals 1 and

if not it equals 0. Table 3.1 gives the list of the notations that we use for the mathematical

description of the problem.

The predicted direct travel time between every two points at each time is DTT t
ij. Other

variables in the model are computed based on DTT t
ij.
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Table 3.1: Notation

m Fleet size
n Number of passengers
M Set of vehicles, M ={1, ...,m}
N Set of passengers, N ={1, ..., n}
P Set of pick up points, P ={1, ..., n}
D Set of drop off points, D ={n+ 1, ..., 2n}
A Set of all pick up and drop off points, A = P ∪D
O Set of all the stop points, O = A ∪ {0, 2n+ 1}
TH Time horizon
orgi Origin point of passenger i ∈ N
desi Destination point of passenger i ∈ N
nshare
i Maximum number of sharers for passenger i ∈ N
di Number of seats demanded for passenger i
Cap Vehicle capacity
cki Capacity of vehicle k ∈M at point i
STi Service time for passenger i
EPi Earliest pick up time for passenger i
LPi Latest pick up time for passenger i
EDi Earliest drop off time for passenger i
LDi Latest drop off time for passenger i
P k
i The time when the vehicle k arrives at point i
TTi Total travel time for passenger i
WTi Waiting time for passenger i
WT

′
i Waiting time for passenger i when served individually

Tk Travel time for vehicle k
TDk Travel distance for vehicle k
Ntrips Number of trips
α Weight of waiting time
β Weight of passenger total travel time
γ Weight of vehicle total travel time
δ Weight of vehicle total travel distance
DTT t

i,j Direct travel time from point i to j at time t, (i, j ∈ A, t ∈ TH)
DTDi,j Direct travel distance from point i to j, (i, j ∈ A)
xki,j Decision variable equal to 1 if vehicle k takes the passenger from

point i to j and 0, otherwise
yki Decision variable equal to 1 if vehicle k is assigned to passenger i

and 0, otherwise
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3.2.2 Problem formulation

We express the fleet management problem as the following integer linear program:

min
∑
i∈P

(α.WTi + β.TTi) +
∑
k∈M

(γ.Tk + δ.TDk) (3.1)

subject to:

di ≤
∑
k∈M

cki .y
k
i , ∀i ∈ P (3.2)

∑
j∈O

xki+n,j.y
k
i (c

k
i+n + di − ckj ) = 0,∀i ∈ P ,∀k ∈M (3.3)

∑
j∈A

xki,j.y
k
i (c

k
i − di − ckj ) = 0,∀i ∈ P ,∀k ∈M (3.4)

EPi − P k
i − STi ≤ 0,∀i ∈ P , ∀k ∈M (3.5)

P k
i + STi − LDi +DTT t

i,i+n ≤ 0, ∀i ∈ P ,∀k ∈M (3.6)

EPi +DTT t
i,i+n −Dk

i+n − STi ≤ 0,∀i ∈ P , ∀k ∈M (3.7)

Dk
i+n + STi − LDi ≤ 0,∀i ∈ P , ∀k ∈M (3.8)

xki,j(P
k
i +DTT t

i,j + STi − P k
j ) ≤ 0,∀i, j ∈ A (3.9)

m∑
k=1

yki = 1,∀i ∈ P (3.10)

∑
j∈A

xki,j −
∑
j∈A

xkj,i+n = 0,∀i ∈ P ,∀k ∈M (3.11)

∑
i∈P∪{0}

xki,j −
∑

i∈D∪{2n+1}

xkj,i = 0,∀j ∈ O, ∀k ∈M (3.12)

ckj −M2.(1− xk0,j)− Cap ≤ 0,∀j ∈ P ,∀k ∈M (3.13)

ckj +M2.(1− xk0,j)− Cap ≥ 0,∀j ∈ P , ∀k ∈M (3.14)∑
j∈P

ykj .dj −
∑
j∈D

ykj .dj − nshare
i ≤M1.(1− yki ), ∀k ∈M, ∀i ∈ N (3.15)

m ≤M3 (3.16)

xki,j ∈ {0, 1}, ∀i, j ∈ O (3.17)

yki ∈ {0, 1},∀i ∈ N, k ∈M (3.18)
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The objective function and constraints of the mathematical model are described in detail

in the next sections.

3.2.3 Mathematical model objective function

In this research, we aim to optimize both providers’ and passengers’ objective functions.

According to the state-of-the-art, the most important operation objective for the service

provider is to minimize the total travel time and the total travel distance of vehicles. Also,

the passengers need to get to the destination on time and have the minimum waiting time.

So we model the problem to minimize the passenger waiting time and travel time and

vehicles’ total travel time and distance.

The total travel time for each vehicle is the summation of the direct travel time for all

the trips that are served over the time horizon by this vehicle.

Tk =
∑
i∈O

∑
j∈O

DTT t
i,j.x

k
i,j ∀k ∈M, t ∈ TH (3.19)

Also, the total travel distance for a vehicle is the summation of the direct travel distance

for all the trips that are served over the time horizon by this vehicle:

TDk =
∑
i∈O

∑
j∈O

DTDi,j.x
k
i,j ∀k ∈M (3.20)

Waiting time is the time that the passenger must wait before being picked up. When the

passenger defines the earliest pickup time, the vehicle cannot serve them before this time

or after the latest pick up time. If the car arrives at point i before EPi, it must wait to

pick up the passenger at their desired time. So, the waiting time, in this case, is zero for

the passenger. But if the car arrives after EPi, the waiting time is the difference between

the pickup time and the lower bound of the pickup time window:

WTi = P k
i − EPi ∀i ∈ P (3.21)
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The exact passenger pickup time is the time that the vehicle arrives at the passenger’s

location. This time can be computed as follows:

P k
i =

i−1∑
g=0

i+n−1∑
j=n+1

m∑
k=1

DTT t
i,j.x

k
gj.y

k
i +DTT t

i+n−1,i + STi ∀i ∈ P, t ∈ TH (3.22)

The total travel time for the passenger is defined as the sum of the service time and the

predicted travel time.

TTi = P k
i+n − P k

i + ST ∀i ∈ P (3.23)

We aggregate these four objectives into a weighted-sum objective with different measures

[96]. α, β, γ and δ are the weights for the passenger waiting time and travel time and the

vehicle travel time and travel distance respectively. The objective weights are determined

according to a prior definition of their relative importance.

Finally, the objective function of the mathematical problem would be as in Equation 3.1.

3.2.4 Mathematical model constraints

In the formulation of this problem, the main constraints are capacity constraints, time

constraints and assignment constraints. Also we consider limitations on the number of

sharing and we make sure that there is a sufficient number of vehicles in the fleet.

Capacity constraints The capacity of vehicle k when it arrives at point i is the sum-

mation of the number of passengers that are picked up at point i by this car minus the

number of passengers that are dropped off from the vehicle at this point.

cki = Cap−
i−1∑
g=1

i+n−1∑
j=1

m∑
k=1

dg.x
k
g,j.y

k
i +

i∑
g=1

i+n−1∑
j=1

m∑
k=1

dg.x
k
g,j.y

k
i ∀i ∈ P (3.24)

We define constraint 3.2 to 3.4 on capacity. The first ensures that at each pickup point,

the demand does not exceed the vehicle’s capacity at that point. The second is to be

assured that all the passengers who are picked up at the origin, will be dropped off at the
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corresponding destination. The third constraint is to ensure that the passengers who are

picked up at point i stay in the vehicle up to their destination.

Time window constraints The time window for passenger pickup and drop off can

be derived from the departure time (earliest pickup time) and arrival time (latest arrival

time) defined by the passenger. The difference between the earliest pickup time and the

earliest drop off time is the minimum time needed to go from the passenger’s origin to

their destination (direct free flow travel time):

• pickup time window: (EPi, LDi −DTT t
i,i+n)

• drop off time window: (EPi +DTT t
i,i+n, LDi)

Constraint 3.5 to 3.9 are on time. The time windows for the pickup and drop off are

ensured with constraint 3.5 to 3.8. The drop off point must be visited after the pickup

point and sufficient time must be guaranteed for service time and the travel time between

the origin and destination. This constraint is imposed by inequality 3.9.

Assignment constraints Constraint 3.10 to 3.12 are related to the assignment. Con-

straint 3.10 ensures that just one vehicle is assigned to passenger i. Constraint 3.11 guar-

antees that the same vehicle is handling a passenger pickup and drop off. Constraint 3.12

is the flow constraint, to be sure that the vehicle that enters a service node will also exit

from it.

Constraint 3.13 and 3.14 work together to guarantee that when a vehicle exits the depot,

it has no passenger on board.

Number of sharing constraint We define the number of sharing constraints to limit

the number of shared trips. For example, when the number of sharing is 0, the system

performance is like a taxi service that serves only one passenger on each trip. When we

increase the number of sharing to 1, we allow the system to serve two passengers simulta-

neously. With the number of sharing 2, the system is allowed to share the passenger’s trip

with two other passengers. This parameter can affect the traffic by changing the number

of required trips to serve the network demand.
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Constraint 3.15 ensures that the number of passengers in a car is lower than or equal to

the number of sharing that the passenger has defined

Fleet size constraint There should be enough vehicles in the network to serve all the

requests. Constraint 3.16 ensures that there is a sufficient number of vehicles in the fleet.

Decision variables The possible values of the variables xki,j and yki are given by 3.17

and 3.18.

3.2.5 Model complexity

If n is the number of ride requests and m is the number of vehicles, the number of decision

variables in the model is as follows:

• Binary variables xki,j : m.(2n+ 1).(2n+ 1) = 4m.n2 + 4.m.n+m

• Binary variables yki : m.n

So the total number of decision variables (NDV ) is:

NDV = 4mn2 + 5mn+m

It can be seen that even very small instances of this problem give a number of variables

and constraints to compute that encompasses the acceptable dimension of a linear pro-

gramming problem. For example, with four requests when there are 4 service vehicles

in the network, the number of decision variables for the problem is 350. This number

increases to 1804 for ten requests and 4 vehicles. With a small increase in the number of

vehicles and passengers, we will have a large increase in the number of variables. When

we have 1000 requests, the number of decision variables increases to more than 4 million.

Table 3.2, shows the computation time to solve small instances of the problem with

CPLEX solver. For each instance the value of M3 is set equal to the number of requests

to be sure that there are sufficient number of vehicles to serve all the requests. For 4

requests, the computation time is 0.4 seconds but it exponentially increases by increasing

the number of requests and for 7 requests the computation time is almost 5 minutes.
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Table 3.2: Solution methods comparison

Number of requests Objective function Computation time (s)
(normalized value)

4 0.54 0.40
5 0.65 5.30
6 0.74 43.50
7 1.14 287.60
8 1.24 2945.90

Conclusion

In this chapter we presented the mathematical formulation of the proposed ride-sharing

system. The purpose of the proposed formulation is to present a complete framework

for the fleet management problem. We rigorously formulate the problem considering the

essential objectives and constraints for the passengers and providers and we define the

number of sharing constraints to limit the number of shared trips.

The complexity of the optimization problem grows exponentially by small increases in the

number of requests and vehicles. Also, softening the constraints, for example, increasing

the number of sharing will increase complexity.

One of the most important problems in the solution approaches for shared mobility sys-

tems is computation time and quality of the results [130].

In the next chapters, we present a solution method with multiple steps that starts from

finding the exact solution for small instances. Furthermore, we introduce extensions that

speed up the solution method and can address bigger networks, even large-scale networks,

while assessing the difference in quality at each step. We show that the proposed heuristics

can keep the quality of solutions at an acceptable level (near-optimal solution) while

significantly decreasing the computation time. Thus, we design our solution method

based on the classical branch and bound algorithm [149] but with specific properties to

cope with a fleet management problem.



Chapter 4

Solution Method for the Dynamic

Ride-Sharing Problem

Introduction

In this thesis, we aim to approach the global optimal solution, whereas previous studies

mostly focused on optimizing local sub-problems. The search for the global solution may

be computationally expensive, but it permits answering the question of the maximum

gain we can expect from ride-sharing in the transportation system.

To approximate the global solution, we resort to an algorithm to solve an integer linear

program. However, as we are targeting problems with large instances, we still face the

curse of dimensionality. Our solution approach is designed to be exact for small samples.

It is then extended with several heuristics that keep the general design for the solution

method but significantly reduce its computation time.

The main strategy is to cluster the requests depending on a shareability index to create

smaller samples that are faster to solve. This method narrows the exploration of the space

to feasible and promising states only. As the number of assigned passengers increases for

a car, the intersection of feasible areas becomes smaller, and the algorithm can compute

the assignment of running cars. In this chapter, section 4.1 presents the optimal algorithm

to solve the assignment problem, in section 4.2, we present our test cases, and we present

52
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the heuristic method step by step in sections 4.3, 4.4 and 4.5.

4.1 Branch-and-Cut based algorithm

In chapter 3, we formulated the ride-sharing problem into an Integer Linear Programming

(ILP) model, and we showed that the problem is NP-hard. Due to the NP-hardness of the

problem, the optimal solution can be computed only for small instances of the problem.

The strategies of branch-and-bound, branch-and-cut, branch-and-price and branch-and-

cut-and-price are among the most used in solving ILP [31].

The branch-and-bound methods are based on partitioning a complete problem into sub-

problems and reducing the solution space by divide-and-conquer strategies [60]. Then the

branch-and-cut methods solve the problem using a combination of the branch-and-bound

algorithm and the cutting plane method [127]. The idea of branch-and-cut methods is to

solve a sequence of linear programming relaxations of the integer programming problem.

The cutting plane methods are used to improve the relaxation of the problem, and then

branch-and-bound methods are used with divide-and-conquer strategies to finally solve

the problem [45]. In this section we present a branch-and-cut based algorithm to exactly

solve the mathematical problem in previous chapter.

The algorithm builds a tree of routes and tries to add the feasible points to the best

branch of the tree at each step. It checks the feasibility of the points regarding the model

constraints. In the beginning, it starts from the closest non-empty depot to the origins

and adds the origin points to the branches of the tree (figure 4.1(a)). The algorithm can

add a destination point if and only if its related origin point has been added to the route

before (figure 4.1(b)). Also, it can add a new origin point if the capacity constraints

and the number of sharing constraints are satisfied (figure 4.1(c)). The time window

constraints must be checked when adding new stop points to the routes (figure 4.1(d)).

When the algorithm finds a feasible point for a route, it creates a new route by adding

this possible point and puts the newly created route in the set of paths.

Finally, the best route is the route that has the minimum objective function.

Algorithm 1 shows the optimization algorithm. Each part of the algorithm corresponds



54 Chapter 4. Solution Method for the Dynamic Ride-Sharing Problem

Figure 4.1: The assignment algorithm function

to one or multiple equations of our mathematical model (the number of the corresponding

equations is shown at each level of the algorithm).

The initial route set S contains the origin points of the requests that are not already

being assigned to a car. The algorithm builds the primary branches from the depots

nearest the origins. Then, it finds the best branch with respect to the objective function

(equation 3.1) among these primary branches. The next branches are created as extensions

of this primary branch. To add points to the primary branch, equation 3.11 of the model

must be satisfied. Then the algorithm finds a set of points that can be added to the first

branch. The feasibility of adding points to the branch is checked by other equations in

the model. Then, the algorithm creates new branches by adding the feasible points. At

each iteration, the optimal branch in terms of the objective function is selected to be the
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base branch.

Algorithm 1: Assign requests to the depot vehicles
input: New requests: direct travel times (DTT t

i,j), direct travel distances
(DTDi,j) set of vehicles (M), set of points (P,D,A), time windows (EPi, LDi),
number of seats demanded (di), number of sharing (nshare

i ), maximum detours
(SQ), vehicle capacity (Cap), weights of objective function (α, β, γ, δ)
output: Vehicle schedules
while Not all the points in A are assigned do

Create the new car m ∈M ;
Create initial routes set S from remaining origins in origin set P ;
while S is not empty do

Find the optimized route s ∈ S (in terms of objective function);
Find the set of points SP that can be added to s;
for sp ∈ SP do

if sp is feasible for time constraints on s then
Compute new vehicle capacity ;
if sp is feasible for capacity, number of sharing, detour constraints
on s then

Create new route ns by adding the point sp to the route s;
Add route ns to the routes set S;

if All sp ∈ SP are non-feasible in route s then
if number of route origins = number of route destinations then

Put route s in the results set Result;
else

Remove route s from routes set S;

Find the optimized route optimal-route ∈ Result;
Assign the optimal-route to the car m;
Remove pickup points on optimal-route from P ;
Remove m from M ;
Add m to en-route vehicles set eM ;

At the end, when it is no longer possible to add more points to a branch, if the points on

the branch satisfy equations 3.10 and 3.12 of the model, the branch can be added to the

results set. Finally, the optimal branch is selected from the set of results.

When the schedule is received, the algorithm puts the associated vehicle in the en-route

vehicles set, and as the car finishes the assigned schedule, it goes back to the nearest depot.

At each iteration of the algorithm, a large number of branches are added to the route set.

The critical point that makes our method efficient is that we remove the branches that

are not feasible with respect to three kinds of constraint (on time, capacity and number
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of sharing).

This algorithm is exact and its complexity explodes with the number of branches. This

is, for example, the case when we increase the number of sharing or requests. In this case,

we need to introduce heuristics that reduce the exploration of the feasible solution.

4.1.1 Examples of the exact method

In this section, we present an examples with four requests to show the performance of the

algorithm. Table 4.1 shows the requests. Each request has a demanded seat number, a

number of sharing, and the earliest pick-up time and latest arrival time.

Table 4.1: Example with 4 requests (configuration)

Request Travel disance demand nshare EPT LDT

1 19 1 3 8:00 8:45
2 11 2 2 8:00 8:25
3 24 2 1 8:15 9:00
4 18 2 3 8:30 9:20

The algorithm starts to create branches of routes to serve the requests. It sends a car

from the closest stop location to pick up the passengers at the origin point, and then it

continues by adding the feasible points to the branches. First, the algorithm finds feasible

branches. Figure 4.2 shows the final feasible solutions for the problem. The algorithm

can find four different solutions for the problem.

Table 4.2: Example with 4 requests (solutions)

Solution Total waiting time (s) Total travel distance (m) Number of cars

A 28 3030 4
B 51 2085 2
C 53 1785 2
D 29 2265 3

Table 4.2 shows the total passengers’ waiting time, total vehicles’ travel distance, and the

number of vehicles for these solutions. Solution A is when a car serves each passenger

separately without sharing. In this solution, the waiting time is minimum, and the pas-

sengers wait for 28 seconds to be picked up. Solution B serves passengers 1 and 4 with
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Figure 4.2: Feasible routes for the example

one car and passengers 2 and 3 with another car. It should be mentioned that in this

solution, the trips are not shared. The first car serves passenger 1, and after dropping off

this passenger, it goes to pick up passenger 4 at his destination. This solution increases

the waiting time to 51 seconds, but it can reduce the travel distance from 3,030 meters

to 2,085. Solution C serves the four requests with two cars like solution B. However,

it shares the trip for passengers 2 and 3, and it can make more significant progress in

reducing the travel distance to 1,785 meters. The waiting time with this solution is 53

seconds. Solution D increases the waiting time just 1 second compared to solution A.

It serves requests 3 and 4 with a car in sequence (without sharing) and requests 1 and

2 with two cars separately. If the weights for all the objective functions are equal, after

normalizing the objective functions, the optimal solution will be solution C.

4.2 Test cases

The main goal of this dissertation is to assess the impact of dynamic ride-sharing on

network traffic. In mega-cities and large-scale networks, the performance of ride-sharing in
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terms of reducing congestion can be different from its impact on small-scale and medium-

scale networks. To the best of our knowledge, the stream of research on ride-sharing

services focuses on situations in large cities like New York, Beijing, and San Francisco.

However, these services are increasingly popular in large cities and small and medium-

sized cities.

In this thesis, the goal is to assess dynamic ride-sharing systems’ performance in reducing

congestion in both medium and large-scale cities. So, we implement the method on two

networks. First, to assess the service in small and medium scales, we apply our method

to a realistic O-D trip matrix for Lyon’s northern half in France. Then, to assess the

impact of ride-sharing on large-scale networks, we apply the method to the whole Lyon

city network in France.

4.2.1 Lyon 6 + villeurbanne

Figure 4.3: Lyon 6e + Villeurbanne: Mapping data c©Google 2018 and the traffic network

This network has a scale of 25 km2 and has 1,883 nodes and 3,383 links. The area is

shown in figure 4.3. The origins set contains 94 points, the destinations set includes 227

points and the local depots (stop locations) set contains 237 points on the network.

The network is loaded with travelers of all ODs with a given departure time to represent

the morning peak hour (4 hours from 6:30 AM to 10:30 AM), based on the study of [102].

The number of trips during this period is 62,450. Some trips start from or end outside
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the network. Only trips wholly inside the network (11,235 trips) can be assigned to the

service depending on the market-share. Market-share is the percentage of the trips that

will be served with the service vehicles. This corresponds to 11,235 trips and defines the

maximal dimension of our optimization problem when the market-share is equal to 100%.

Figure 4.4 shows the temporal pattern of the demand for the private and service vehicles.

We have 51,215 personal trips in the network. Besides that we have 11,235 demand for

the service cars in the system. Based on the market-share, we select uniformly a part of

this demand to be served with the service vehicles. Then we serve the rest of the trips

with personal cars.
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Figure 4.4: Temporal demand pattern in Lyon6 + villeurbanne (Medium-scale)

4.2.2 Lyon

Lyon is the second-largest urban area of France with an area of 80 km2. The city is

located in the south of Paris and is close to other mega-cities in France and Switzerland

(Marseille, Grenoble, and Geneva). Figure 4.5 shows the network of the city and its

geographical position.



60 Chapter 4. Solution Method for the Dynamic Ride-Sharing Problem

Figure 4.5: Lyon city in France

Figure 4.6: Network of Lyon
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The origins/destination set contains 11,314 points and the local depots (stop locations)

set contains 2,272 points including 9 central depots on the network. Figure 4.6 shows

the links and nodes on the network. The network is loaded with travelers of all ODs

with a given departure time to represent the morning peak hour from 6 AM to 10 AM.

The number of trips during this period is 484,690. We have 279,382 personal trips in the

network and 205,308 demand for the service cars in the system.

Figure 4.7 shows the temporal pattern of the demand in Lyon network.
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Figure 4.7: Temporal demand pattern in Lyon (large-scale)

4.3 Rolling horizon method and re-scheduling

Considering all the requests over the full-time horizon can provide the global optimum

solution. However, this greatly increases the number of variables and is not reasonable

in practice. To reduce the number of variables, but also to bring the expression of the

problem more in line with common practice, we now implement a rolling horizon, generally

about 20 minutes. The requests are assumed known only over the next rolling horizon.
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Algorithm 2: Assign requests to the en-route vehicles
input: New requests
output: Vehicles re-schedules
for origin p ∈ P do

for c-schedule, the schedule of car m ∈ eM do
if Detour is possible from any of the remaining origins on c-schedule then

Build the re-schedule by adding the p after origin;
if p is feasible for time window, capacity and number of sharing
constraints on c-schedule then
if d the destination of p is feasible for time window on c-schedule
then

Create new schedule n-schedule by adding p and d to
c-schedule;

Put n-schedule to the Result set;

Find the optimized route optimal-schedule∈ Result;
Re-assign the optimal-schedule to the car m;
Remove p from P ;

Figure 4.8: Dynamic assignment

The corollary is that we have to introduce a new process to handle travelling cars that have

not yet reached their maximal occupancy because of the car or the passenger constraints.

We therefore introduce a specific algorithm to assign the new requests in priority to en-
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route vehicles. The remaining requests are handled by the first algorithm presented in

the previous section.

In dynamic ride-sharing setting, new trip request announcements arrive continuously at

arbitrary times. Therefore, the optimizer must adapt vehicle schedules multiple times

during the day. This implies that future requests are unknown during each assignment

time step. To handle the new requests and optimize the problem dynamically, a rolling-

horizon approach is implemented.

In this study, the assignment procedure rolls over a specific horizon for the announced

requests of a particular optimization step. Every TH
2

minute, we optimize the requests of

the next TH minutes. It is clear that some of the requests are re-optimized every TH
2
.

If a trip has been assigned to a vehicle which has left the depot, the algorithm does not

assign it again, but if a trip is in the schedule of a waiting vehicle, the algorithm puts it

in the set of optimizing trips in the particular horizon and re-optimizes it.

In dynamic assignment, when a car drops off a passenger, it detects the potential to

be assigned to a new request. We add a second part to the algorithm to re-assign the

potential cars. In this part, receiving a new request at each optimization time step, the

algorithm works to put the new request in the en-route vehicle schedule if possible.

The second part of the algorithm to assign requests to the en-route vehicles is shown in

algorithm 2. First, the algorithm checks the possibility of adding the origin point of the

request to the vehicle schedule. It must check the capacity of the car, the number of

sharing for all the on-board passengers after adding the new origin as well as the time

window for all the stop points. If the vehicle route remains feasible after adding the new

origin, the algorithm checks the possibility of adding the related destination point. In

this step, it must check the time window for all the points after adding the new origin

and destination points. Then, the algorithm puts all the feasible vehicles for the new

request in the Result set. Finally, it chooses the vehicle that has a minimum increase in

the objective function after adding the new request and sends the re-scheduled route to

the car.

Figure 4.8 shows an example of the dynamic ride-sharing algorithm when the number of
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sharing is one. In the first part, when the optimizer receives the requests, algorithm 2

searches to put new trips in the en-route vehicle schedule and then in the second part,

algorithm 1 starts to work and assign the optimal routes to the vehicles waiting in depots.

For example, in the figure 4.8, the optimizer has received five new requests. For request

number 2, the re-scheduling algorithm finds vehicles d and f which can serve this request,

satisfying all the constraints and, finally, vehicle f has a smaller increase in objective

function after adding request 2 to its schedule. Likewise, for request 5 and vehicle d.

Then for the remaining not-assigned trips, the main algorithm finds the best routes and

assigns them to the vehicles in the nearest depots. The optimal solution serves requests

3 and 1 in the same car and request number 4 individually.

4.4 Clustering method

The proposed algorithm creates branches of origin and destination points as mentioned

before. The algorithm must try all the different arrangements of stop points to find the

optimal assignment. Thus, the computation time increases exponentially as the number

of requests increases.

Restricting the exploration of the feasible area to the branches that are more likely to

create the optimal assignment can narrow the search of feasible solutions. To overcome this

limitation, we define a clustering method to make clusters of the requests which are more

likely to be shared. Then the algorithm is executed within each cluster independently.

4.4.1 Shareability function

To perform the clustering on the requests received by the system over each rolling horizon,

we define the "Shareability Index" (SFi,j) between request i and request j (∀i, j ∈ N).

We compute SFi,j for each pair of trips, and the function value is the difference between

the travel time when the two trips are shared and the travel time to serve each trip

individually.

Three situations exist for every two trips (figure 4.9).
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In figure 4.9(a), two trips can be shared, and the first passenger drop off is before that

of the second passenger. So, the travel time for the first passenger is the summation of

their waiting time, the travel time between the first origin and the second origin and the

travel time between the second origin and the first destination. Also, the travel time for

the second passenger is the summation of their waiting time, the travel time between the

second origin and the first destination and the travel time between the first destination

and the second destination.

In situation (b), the vehicle serves the second passenger while the first passenger is on

board. Thus, the travel time for the second passenger is the same as when served indi-

vidually and the travel time for the first passenger is the travel time of all the links from

the first stop point to the last one.

Figure 4.9: Trip situations

There is a third situation when the trips are not shared, but the vehicle can serve two pas-

sengers sequentially. This situation must be considered in the shareability index in order

to put these trips in the same group while solving the optimization problem. The travel

time for the passengers is the same as when served individually. But in this situation, the

vehicle travel time can decrease if the travel time between the first destination and the

second origin is less than the summation of the travel time between the first origin and

the closest depot and the travel time between the start depot and the second origin. This

means that the SF here is the difference between the passenger waiting times when the

trips are in sequence and the passenger waiting times when the trips are individual.

The following equations show how we compute SFi,j for each pair of trips, considering
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the three situations (i,j show the origin and the destination of the trip (rn)):

(a) : TTi + TTj = WTi +DTTorgi,orgj +WTj +DTTorgj ,desi +DTTdesi,desj ∀i, j ∈ N

SF a
i,j = TTi + TTj − (DTTorgi,desi +DTTorgj ,desj +WT

′

i +WT
′

j )

(4.1)

(b) : TTi + TTj = WTi +DTTorgi,orgj +WTj +DTTorgj ,desj +DTTdesj ,desi ∀i, j ∈ N

SF b
i,j = TTi + TTj − (DTTorgi,desi +DTTorgj ,desj +WT

′

i +WT
′

j )

(4.2)

(c) : TTi + TTj = WTi +DTTorgi,desi +WTj +DTTorgj ,desj ∀i, j ∈ N

SF c
i,j = TTi + TTj − (DTTorgi,desi +DTTorgj ,desj +WT

′

i +WT
′

j )

SF c
i,j = WTi +WTj − (WT

′

i +WT
′

j )

(4.3)

Finally, the SF value for each pair of passengers is the minimum value among three

different situations. It means that the algorithm chooses the condition that the additional

travel time is minimum for sharing each pair of trips.

SFi,j = minimum{SF a
i,j, SF

b
i,j, SF

c
i,j} (4.4)

4.4.2 Clustering based on the similarity matrix

After computing the shareability function, we have the function value for each pair of re-

quests that creates the shareability matrix. The shareability matrix is a kind of similarity

matrix for the requests received that can be used in the clustering process.

After computing the shareability function for all the pairs of requests, we do the clustering
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using the computed similarity matrix. When we make clusters based on the SF , we put

the trip requests that are more potential to be shared in the same cluster (the trips that

have lower SF ).

There are two main categories for clustering based on the similarity matrix:

1- Partitioned clustering algorithms cluster the data into k number of clusters. One of

the usual algorithms for partitioned clustering is k-means clustering. K-means clustering

is simple, fast, and flexible and is a proper method for our application.

2- Hierarchical clustering methods in which the clusters are arranged in a tree-like struc-

ture. Hierarchical clustering can be divided into Agglomerative hierarchical clustering

(AHC) and divisive clustering [159, 170].

In [144], the authors have compared the hierarchical clustering and k-means clustering for

urban taxi carpooling in a static environment. They show that compactness and separa-

tion are almost the same for hierarchical and k-means clustering for large cluster sizes. In

dynamic large-scale problems, the results would be different. Also, the computation time

becomes critical. Thus, to assess more, we implement both clustering methods on the

shareability matrix to cluster the requests. In the next chapter, we assess the different

clustering methods’ performance, considering the quality and computation time.

Multidimensional scaling and k-means clustering

K-Means method is a partitional clustering approach for decomposing the problem into

independent subsets, following the principle of finding clusters of data based on their sim-

ilarity. In the clustering procedure, the preferred number of clusters should be specified

in the algorithm before execution. Each observation (data points) will randomly be as-

signed to a cluster, and find a set of centroids for each group of observations. Afterward,

iterations will be done for optimizing the clusters.

k-means clustering takes place based on the distance between points. So we use the

multidimensional scaling method ([171]) to convert the similarity matrix into a distance

matrix which makes it possible to apply the appropriate clustering method based on the

study in [137] (we have implemented the method using the mathtoolbox in C++).
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After extracting the distance matrix, we use the modified k-means clustering method

to create the same size clusters for the data received at every assignment time step.

The modified k-means algorithm can be used to obtain clusters in preferred sizes [63].

Accordingly, we can find the best trade-off between cluster size and computation time,

considering the objective function value. We favor a uniform distribution of requests

among clusters to decrease computation times and facilitate parallel computations of

each sub-problem.

Figure 4.10: Final routes after multidimensional scaling and k-means clustering

Figure 4.10 shows a small example with five requests for the k-means clustering approach.

The similarity matrix is computed and then converted to the distance matrix. K-means

clustering puts requests 1 and 3 in one cluster and requests 2, 4, and 5 in another cluster.

Then the assignment algorithm can be solved in each cluster.

Hierarchical clustering

Hierarchical clustering offers a flexible and no-parametric approach and is an algorithm

that builds hierarchy of clusters [131].

We use the agglomerative hierarchical method, which starts with taking singleton clusters
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(that contain only one request per cluster) at the bottom level and continue merging two

clusters at a time to build a bottom-up hierarchy of the clusters [146].

Figure 4.11 shows an example to show the hierarchical clustering method. It works directly

with the similarity matrix. As the example is small, the results are the same as the k-

means clustering method.

Figure 4.11: Final routes after hierarchical clustering

4.4.3 Determining the proper clustering method

In previous sections, we showed that we can use the k-means clustering method and the

hierarchical method to cluster the requests based on the presented similarity matrix. In

our method, the quality of the clustering method and computation time is very impor-

tant. The time complexity of K-means is linear, while that of hierarchical clustering is

quadratic. On the other side, k-means clustering requires prior knowledge of k and also

mutidimensional scaling to convert the similarity matrix into the distance matrix. We

can stop at whatever number of clusters we find appropriate in hierarchical clustering by

interpreting the dendrogram. As we use the agglomerative hierarchical method, we can

have larger clusters faster with the hierarchical method.

To choose the best clustering method, we have compared both methods considering the

quality of objective function and the computation time for different sizes of problems.

Table 4.3 shows the objective function and computation time with k-means clustering and

hierarchical clustering method for different sizes of problems.
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Table 4.3: Clustering methods comparison

Method Number of requests Objective function Computation time (s)
(normalized value)

Exact
112 29.99 12966.00
1092 1924.00 288000.00

K-means clustering
112 30.96 100.10
1092 1994.18 1134.00
4482 7761.03 5340.00
11160 20773.70 20981.10

Hierarchical clustering
112 30.96 99.03
1092 1994.59 1131.10
4482 7791.90 5187.50
11160 20905.87 19950.00

In both the clustering methods, we try to have clusters with 50 requests. To have a

baseline for the comparisons, we have computed the optimal objective function for 112

and 1,092 requests.

K-means clustering and hierarchical clustering methods increase the objective function

by 3.22% for 112 requests and 3.64% and 3.66% for 1,092 requests comparing with the

optimal solution. Both the clustering methods can decrease the computation time from

216 minutes to less than 2 minutes. It shows that both clustering methods are very

effective in terms of reducing the computation time while keeping the quality of the

solution acceptable. Then by increasing the number of requests, the computation time for

both methods exponentially increases (the major part of the k-means method computation

time is dedicated to the multidimensional scaling method, which exponentially increases

by increasing the size of the problem).

K-means can give smaller objective function while hierarchical computation can result in

a lower time. For 11,160 requests, the objective function is 0.64% lower for the k-means

method, while the computation time is 5% more.

In our Lyon6 + villeurbanne test case, the maximum number of requests is 11,235. So we

can use k-means clustering for this test case to have better solutions. However, for the

Lyon network, we have more than 200,000 service requests. So the hierarchical method is
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a better solution for this network as it works directly with the similarity matrix, and it

can provide high-quality solutions.

4.5 Force the sharing method (FOSH method)

The optimizer aims to minimize the objective function, which combines both passengers’

and operators’ objectives. Therefore, the algorithm may choose a branch which has less

sharing, compared with other feasible branches in the tree built by the algorithm. We

propose the third heuristic method to force the algorithm to favor the longest possible

route, which is in favor of more sharing.

When we increase the number of passengers assigned to a vehicle, the passengers’ waiting

time and travel time increase, so we reduce the length of the trip time window to keep

the passenger’s objectives acceptable.

The algorithm finds the longest possible routes, and then it chooses the path with the

minimum objective. Algorithm 3 shows the modification in algorithm 1 to force the

sharing. Thus, the command in line 10 of the algorithm is modified, as shown below:

Algorithm 3: FOSH method
max-route-size = 0;
for feasible solution route ∈ Result do

if number of stops on route > max-route-size then
max-route-size = number of stops on route;

for feasible solution route ∈ Result do
if number of stops on route = max-route-size then

Put the route in re-Result;

Find the optimized route optimal-route ∈ Result;

When the algorithm assigns more trips to a vehicle, the number of all the trips decreases.

Thus, with the FOSH method, we expect to use fewer trips and consequently fewer service

vehicles.

Figure 4.12 shows the routes for requests 1 to 5 with and without the FOSH method when

the number of sharing is 1. Without the FOSH method, five vehicles can serve just six

passengers, but with the FOSH method, these five vehicles can serve ten passengers.



72 Chapter 4. Solution Method for the Dynamic Ride-Sharing Problem

Figure 4.12: The assigned routes for requests 1 to 5 with and without the FOSH method

With the FOSH method, the algorithm can build fewer branches at each step. Because

the number of trips on a single route is higher, it needs fewer branches to assign all the

requests to the vehicles. Therefore, this method can also decrease computation time.

The final heuristic algorithm to solve the fleet management problem is presented in figure

4.13. In the next chapter, we first show the quality of different steps of the solution

method (three heuristic methods). Then we do our analysis with the final algorithm.
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Figure 4.13: Final assignment algorithm
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Conclusion

In this chapter, we presented solution approaches to solve the dynamic ride-sharing prob-

lem. The approach is designed to be exact for small samples. It is then extended with

several heuristics that keep the general design for the solution method but significantly

reduce its computation time.

In the first heuristic method, we implement a rolling horizon approach with re-scheduling.

The exact algorithm is solved every optimization time step, and at first, tries to put

the requests in the moving cars’ schedules. In the second heuristic method, the main

strategy is to cluster the requests depending on a shareability index to create smaller

samples that are faster to solve. This method narrows the exploration of the space to

feasible and promising states only. We try both partitioned (k-means clustering) and

hierarchical (agglomerative hierarchical clustering) methods. In the last heuristic step,

we have presented the Force the Sharing (FOSH) method to favor the sharing. The final

algorithm can solve a dynamic ride-sharing problem with high quality in a short time

comparing with other methods in the literature.

In the next chapter, we show the performance of different heuristic steps.



Part III

How to assess the impact of the

network on the ride-sharing system and

vice versa?
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In the previous part, we presented the answer to the first sub-problem of dynamic ride-

sharing systems. In this part, we investigate the second sub-problem: How to assess the

impact of the network on the ride-sharing system and vice versa? To answer this question,

in chapter 5, we present a "plant model," which is based on the trip-based Macroscopic

Fundamental Diagram and can represent the real traffic situation. Then we present the

"prediction model" based on the mean speed that can be used during the assignment

process. Then, we assess the performance of the presented heuristic methods step by step

to show the solution method’s quality. In chapter 6, we analyze the impact of dynamic

ride-sharing on network congestion in medium-scale and large-scale networks.



Chapter 5

Simulation Framework

Introduction

In the previous chapters, to assess ride-sharing performance on the network demand, we

presented the formulation and solving method of the dynamic ride-sharing problem. In

this chapter, we investigate the interactions between transportation networks and dynamic

ride-sharing systems. This problem has received less attention in the literature but is

very important from the operational point of view. In fact, network congestion can have

significant impacts on the ride-sharing service.

The ride-sharing service’s optimization system uses estimates for the predicted travel time

obtained from a so-called "prediction model". When the rides are executed, a gap usually

exists between the estimation and the real traffic condition. The so-called "plant model"

represents the real traffic condition, and it may require dynamic adjustment of the initial

assignment to fit with the conditions observed. When simulating a dynamic ride-sharing

service, it is essential to accurately distinguish the prediction and the plant models to

provide a realistic assessment of the system functioning. In this chapter, we define the

prediction model and the plant model for dynamic ride-sharing.

We use real data from the Lyon network in our simulations. The prediction model is

based on the last observed travel times, while the plant model considered is a trip-based

Macroscopic Fundamental Diagram (MFD) model able to reproduce the evolution over

time of mean traffic conditions for a full road network using the MFD as a global behavioral

77
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curve [104, 124, 123]. The macroscopic fundamental diagram (MFD) provides an overall

overview of the network states [17].

We also explain the depot management method in our study.

Finally, the performance of the solution method is evaluated with our simulation-based

optimization framework. In this chapter, in section 5.1, we present the dynamic simulation

component, in section 5.2 we explain the depot management method, and in sections 5.3

and 5.4 we evaluate the performance of optimization and simulation components.

5.1 Dynamic simulation component

The dynamic ride-sharing system has two main components: 1- the fleet management

component and 2- the dynamic simulation component. In chapter 3, we evaluated the fleet

management component. In this chapter, we present our dynamic simulation component’s

performance, which is shown in green color in figure 5.1.

Figure 5.1: System components (dynamic simulation component)



5.1. Dynamic simulation component 79

5.1.1 Plant model

The plant model considers all the vehicles in the transportation network and not only the

ride-sharing vehicles. That means that we also have a baseline of personal trips composed

of: (i) trips that come from or go outside the area studied and that cannot be shared; (ii)

trips that are wholly inside the region but for which rides are not requested and personal

cars are chosen.

The market-share defines among the several trip categories how many users will request

a ride or choose their personal car. Simulating all the trips whatever their mode of

transportation mode (personal car or service car) guarantees that we can properly track

congestion during peak hours.

In this research, the trip-based MFD is used to consider individual trips while keeping a

very simple description of traffic dynamics [104, 124, 123, 106]. The general principle of

this approach is to derive the inflow and outflow curves, noting that the travel distance Li

by a car i entering at time t− T (t) when n(t) is the number of en-route vehicles at time

t and the mean speed of travelers is V (n(t)) at every time t, must satisfy the following

equation:

Li =

∫ t

t−T (t)

V (n(s))ds (5.1)

The function V (n(t)) is the speed macroscopic fundamental diagram and can be derived

from common observations for a transportation network [105]. For more details on the

functioning of trip-based MFD, readers can refer to [106, 123].

Service cars can have two situations: They are waiting in depots for new passengers,

or they are servicing the assigned passengers. In addition to the shared cars that are

circulating to serve the passengers, personal cars are making trips that are not shared in

the network.

The accumulation at each time t is the summation of the number of circulating service

vehicles and the number of personal vehicles in the system. Therefore, at each time t, the
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mean speed of travelers can be computed. Both shared trips and non-shared or personal

trips can pass the length of a time period, based on the current mean speed at that time.

The general assumption here is that personal and service vehicles have the same behaviors

when driving and have the same marginal impact on congestion.

At each time step, the simulator computes the current speed of the cars considering the

current traffic situation (the number of en-route vehicles). Then, the vehicle can cover

a distance based on the current speed at every time step. So, the situation of cars is

updated every time step, with the speed computed in the time and the remaining travel

distance to cover. The time step that we use in our plant model is 1 second. So, the state

of en-route cars is updated every second in the simulations.

Equation 5.2 shows the trip-based MFD to compute the speed in Lyon 6 + Villeurbanne

and equation 5.3 shows the function for whole Lyon network where speedt shows the speed

of vehicles at time t and acct shows the accumulation of cars at time t

speedt =


md− (mc× acct), if acct < nj, acct > nc

mf − (mb× acct)(ma× acc2t ), if nj ≤ acct ≤ nc

nj = 1850, nc = 4400

ma = 1.369e− 6,mb = 8.835e− 3,mc = 1.575e− 3,md = 13.28,mf = 21.38

(5.2)

speedt =



2.mp
nc
, if acct = 0

(mp/nc2)(acct)(2.nc−acct)
acct

, if acct ≤ nc

(mp/(nj−nc2))(nj−acct)(nj+acct−2.nc)
acct

, if acct > nc

nj = 1.3393e+ 05, nc = 5.6518e+ 04,mp = 2.8887e+ 05

(5.3)

The time and evolution of the mean speed over the full network in the network of Lyon

6 + Villeurbanne and the network of Lyon is shown in figure 5.2 and 5.3.
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Figure 5.2: Speed evolution in Lyon 6 + Villeurbanne
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Figure 5.3: Speed evolution in the whole Lyon city

5.1.2 Prediction model

To carry out travel time prediction for the optimization part, in the prediction model, the

traffic situation is predicted for the next assignment time horizon (every 10 minutes), and

we assign the passengers to the cars based on this prediction. Thus, at each time step,

the direct travel time (DTT t
i,j) from each point i to j is computed based on the current
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mean speed and the shortest path between two points for the next 10 minutes. Then the

optimization algorithm assigns all the requests for the next 10 minutes to the en-route

cars or empty waiting cars.

In the rolling horizon method (Heuristic 1), the assignment procedure rolls over a specific

horizon for the requests announced of a particular optimization step. In the current

research, the rolling horizon is 20 minutes 1, and the optimization time step is 10 minutes.

So, the requests of the next 20 minutes that have not yet been assigned are optimized

every 10 minutes. Some of the requests are re-optimized every 10 minutes. If a trip has

been assigned to a vehicle which has left the depot, the algorithm does not assign it again,

but if a trip is in the schedule of a waiting vehicle, the algorithm places it in the set of

optimized trips in the particular horizon and re-optimizes it.

Note that we stop the simulations halfway on the rolling horizon (TH
2
) and solve a new

fleet allocation problem over a new full rolling horizon (TH). This prevents the system

from being myopic to the new demand that may arrive just after the end of a simulation

period, see figure 5.4.

Figure 5.4: Rolling horizon and simulation period

We use the trips-based MFD as the dynamic simulator and the predicted speed at the

beginning of each horizon as the prediction model, which can be calibrated, to do the

1The main goal of this study is to assess the performance of dynamic ride-sharing in terms of reducing
congestion. To this purpose, it is more beneficial to have a longer optimization period to assess the system
when we can have more sharing opportunities and be close to the optimal situation. Thus, if such a system
that knows all the requests over a long horizon and is close to the optimal situation can not significantly
decrease congestion in the network, we can say with quite high confidence that a real-time ride-sharing
that matches the requests to the vehicles in real-time can not perform better
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Figure 5.5: Predicted speed and mean speed during the simulation horizon (before ε)
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Figure 5.6: Predicted speed and mean speed (after ε) in Lyon 6 + Villeurbanne

optimization. To predict the mean speed over the next time horizon [t+ TH], we use the

current mean speed at time t weighted by a proportional function, which is different for

the network loading and unloading phases. This function accounts for the speed decrease

that usually happens during the network loading (an increase of congestion) and the speed

decrease during the unloading. Figure 5.5 (Lyon 6 + Villeurbanne) and figure 5.7 (Lyon)

show the mean speed evaluation for a simulation with market-share = 100%. The results
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of the prediction with the current speed only show a lag between the prediction and actual

speed. The introduction of the correlation factor provides accurate predictions in figure

5.6 and figure 5.8. The proportional function has been set to εl = 0.995 (during the

loading) and εu = 1.010 (during he unloading) for Lyon 6 + Villeurbanne and εl = 0.993

and εu = 1.020 for Lyon.
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Figure 5.7: Predicted speed and mean speed during the simulation horizon (before ε)
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Figure 5.8: Predicted speed and mean speed (after ε) in Lyon
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5.2 Depot management

The service provider has a fleet of vehicles in a ride-sharing system to serve the service

requests. Participating service vehicles start up from a number of known locations or

depots and after serving the assigned requests, they stop at this allowed locations to wait

for the next passengers.

In our research we define two kinds of depots: local and the central depots. The central

depot in the network can feed all the local depots. Thus, there is no limitation on the

fleet size. On the one hand, distributing vehicles over the depots will decrease the waiting

time for passengers. However, on the other hand, in the peak hour, if many vehicles are

circulating in the network, the congestion will increase, and it leads to more travel time

for vehicles and passengers. We analyze the number of vehicles in depots over the network

to decide about the best distribution for the vehicles.

Figure 5.9: Central depot in Lyon 6 + Villeurbanne

To locate the cars at the beginning of the simulations, we use the historical data for the

network demand to estimate the demand distribution over the network. Then we specify

the number of cars at each location based on the demand for the depot. So if the demand

is high, we consider more cars on the depot, and if the demand is low, we put fewer
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vehicles at that location.

In Lyon 6 + Villeurbanne, we have defined 237 stop locations (all the allowed stop points in

this network) for the service vehicles (local depots) and 1 central depot that can feed these

local depots. Considering the demand distribution, at the beginning of the simulations, we

feed 14 depots with two vehicles, 114 depots with one vehicle, and put 14 empty depots.

The central depot can feed each depot when the demand is high. Also, the system sends

back the vehicles to the central depot when there exceed the required number of vehicles

for this depot.

Figure 5.9 shows the location of the central depot and some of the local depots in the

network of Lyon 6 + Villeurbanne.

In the network of Lyon city, we have defined nine central depots that are uniformly

located in the network. The number of allowed stop locations is 2,272 points on the

network. As the primary purpose of the thesis is to assess the impact of ride-sharing on

reducing congestion, we ensure that the system can always have close service vehicles to

any request, and the central depots can always feed the local depots.

5.3 Optimization component performance

In this section, we assess the performance of different steps of the solving method by

comparing them two by two.

5.3.1 Simulations’ configuration

Table 5.1 shows the primary configuration of the simulations. The computations are

carried out on a desktop with two Intel Xeon core E5-2620 processors, 64 GB RAM and

the Windows 10 operating system running C++ Visual Studio 2013.

One of the goals of this thesis is to figure out the performance of a dynamic ride-sharing

system under the optimal situation. Here we assess the different optimization steps using

the data from the network of Lyon 6 + Villeurbanne. In this case study, we fully monitor

traffic dynamics as we assess both service and personal trips in the network. In the
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Table 5.1: Simulations configuration

Parameters Values

Rolling horizon 20 min
Optimization time step 10 min
Simulation time step 1 s
Fixed time window length 6 min
Number of sharing 0, 1, 2
Market-share 1 to 100%
Car capacity 4
Number of cars in local depots 142
Number of cars in central depot 1000
Service time for each passenger 1 min

rolling horizon approach, to find the near-optimal matching for the service vehicles in the

dynamic traffic conditions, we choose a longer time step comparing with other dynamic

methods to guarantee that we can find near-optimal solutions for the matching problem.

Hence, to solve the problem dynamically, we apply the method every 10 minutes over the

requests received in the next 20 minutes, considering we have a perfect knowledge of all

requests over such a time horizon. We update the system situation every 1 second.

In chapter 3, we explained that the pick-up time window is the time interval between the

earliest pick-up time and the latest pick up time. Similarly, we can define the drop off

time window. In our simulations, This time interval is computed based on the trip length.

It has a fixed length, which is set to be 6 minutes (considering the average trip length).

Then we add 1 minute for each 1-kilometer trip. Equation 5.4 shows how we compute

the time window’s interval (TWI) for each request where FixedTW is the fixed-length

(6 minutes in the primary configurations) and DTDt
i,i+n is the trip length (direct travel

distance from passenger i origin to destination). For example, for a trip of 7 kilometers,

the waiting time is 6 + 7 = 13 minutes. The passenger i defines the earliest pick-up time

(EPi) when he/she sends the trip request to the system. Then the pick-up and drop off

time window can be defined as below (DTT t
i,i+n is the direct travel time from passeger i’s
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origin to destination at time t).

TWI = FixedTW + 1×DTDt
i,i+n (5.4)

• pickup time window: (EPi, EPi + TWI)

• drop off time window: (EPi +DTT t
i,i+n, EPi +DTT t

i,i+n + TWI)

The capacity of vehicles in the primary configurations is 4 and we do the simulations with

the number of sharing 0 (like traditional taxi services without sharing), number of sharing

1 and 2. The market-share can be from 1 percent to 100 percent of the trips.

We consider 1 minute service time for passenger pick up and drop off.

The result tables show the number of trips, the number of shared vehicles, the total

travel time and distance for the vehicles, the number of requests, the total travel time

and waiting time for all the passengers and the total travel time of personal vehicles for

different market shares and numbers of sharing.

We assume that personal trips start at the origin precisely at the departure time without

any waiting time and they end the trip at the destination. The travel time for the travelers

of personal vehicles is equal to the vehicle travel time.

5.3.2 Exact assignment algorithm over the full-time horizon

Our first test case focuses on the exact global solution. It can be obtained only if the

number of requests is low and no heuristics, including the rolling horizon, are running.

The results are provided for a market-share of 4%, i.e. a total of 430 trips with the

number of sharing 0, 1, 2 and 3. See Table 5.2. Ntrips is the number of trips to serve all

the requests, m is the number of vehicles used,
∑

k∈M Tk and
∑

k∈M TDk are total travel

time and distance for service vehicles, n is the number of passengers and
∑

i∈N TTi and∑
i∈N WTi are total travel time and waiting time for passengers.

When the number of sharing is 0, each service vehicle serves only one passenger at a time,

and the system does not share any ride. Then, with the number of sharing 1, the system
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Table 5.2: Simulation results for optimal assignment

Configuration Shared vehicles Passengers Simulation time(h)

Ntrips m
∑

k∈M Tk(h)
∑

k∈M TDk(km) n
∑

i∈N TTi(h)
∑

i∈N WTi(h)

MS : 4 %
nshare = 0 429 32 46.36 1509.3 430 39.01 2.50 0.33
nshare = 1 419 32 46.09 1499.7 430 39.18 2.69 35.81
nshare = 2 417 32 46.08 1494.9 430 39.36 2.70 224.50
nshare = 3 416 32 46.08 1494.3 430 39.60 3.07 505.11

is allowed to share a passenger ride with only one other passenger at the same time, as

in e.g. [87], and in continuation with the number of sharing 2, three passengers can be in

the same vehicle at the same time. With the number of sharing 3, the system uses all the

vehicle capacity to serve the passengers.

It is clear that sharing can significantly improve the objective function. This means that

with our proposed sharing method, the system can serve the requests with fewer vehicles

and a better objective function.

In the general case, sharing can decrease the number of vehicles needed and maybe improve

the objective function (this is our current investigation). However, with so few trips here,

the impact of sharing is very limited. What is interesting is to assess the increase of the

feasible solutions (branches in the tree) with the increase of the number of sharing and

the impacts on computation times.

When the number of sharing is 0, each vehicle serves just one passenger at a time. The

algorithm also considers the trips that can be in sequence. When the travel time from

the first destination to the second origin is shorter than the travel time between the first

destination and the closest depot to this point, the algorithm puts these two trips in

sequence. So, for example, in the first step when the algorithm is building the tree with

branches, the number of branches does not go further than the number of requests. The

results show that it takes just 0.33 hour to simulate our ride-sharing system in the morning

peak hour. Then, when we increase the number of sharing to 1, we reduce the constraint

on the number of passengers in the vehicle at the same time. Thus, the exploration space

is expanded, and the algorithm can extract more branches at each step. The simulation

time when we have an optimal system with the number of sharing 1 is 35.81 hours. When
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the number of sharing is 2, the algorithm can add any permutation of the other two trips

to the first trips. Thus, the number of branches increases exponentially and, as can be seen

the computation time for the number of sharing 2 is much longer than the computation

time for the number of sharing 0 and 1. It takes almost 224 hours to simulate the system

function with the number of sharing 2.

When the number of sharing is 3, the total travel distance is reduced by 600 meters while

the total waiting time is increased by 22 minutes. Also, the computation time is 505 hours

for the number of sharing 3.

5.3.3 Comparing the exact algorithm with the existing methods

As it is shown in section 3.2.5, increasing the number of requests will exponentially increase

the computation time of the algorithm. We have developed the algorithm in terms of

computations speed with paralleling the third main loop in the algorithm (for sp ∈ SP ).

In the algorithm, the feasible points are added to the feasible branches to extend the tree

and find all the possible routes. By paralleling the third main loop, the algorithm can

add the points to the branches in parallel simultaneously (24 points at each time). This

can enable us to solve larger problems with the exact algorithm.

To show the quality of our exact solution method, we have compared the computation

time with a CPLEX solver for the same problem. Table 5.3 shows the computation time

for different number of requests. As the problem is NP-hard, it is very expensive in terms

of time to compute the exact solution with CPLEX for more than 8 requests. Only for

4 requests, the computation time for our presented algorithm is 26 times better than

CPLEX.

[35] propose an exact Branch-and-Cut algorithm for similar problem that can outperform

the state-of-the-art solver CPLEX. The computation time of their proposed algorithm

with 40 requests is 578 seconds. Our presented algorithm can solve the problem with 40

requests in 230 seconds. Then they propose a lean heuristic algorithm based on Large

Neighborhood Search (LNS) to find near-optimal solutions. In another study on pick

up and delivery problem for ride-sharing by [173], the exact solution for the ride-sharing
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Table 5.3: Solution methods comparison

Method Number of requests Objective function Computation time (s)
(normalized value)

CPLEX
4 0.54 0.40
5 0.65 5.30
6 0.74 43.50
7 1.14 287.60
8 1.24 2945.90

Exact solution Method
4 0.54 0.02
5 0.65 0.05
6 0.74 0.08
7 1.14 0.19
8 1.24 0.25

problem takes less than 8 seconds for 9 requests. Our method can find the exact solution

for 9 requests in less than a second.

So our solution method outperforms existing solvers when determining the exact solution

for small instances. It allows us to compute the exact solution for medium-size instances,

e.g., market-share = 4%. But we can not solve larger problems without introducing

heuristics. We will explain about the performance and accuracy of our heuristics in the

next sections.

5.3.4 Heuristic 1: Rolling horizon and re-scheduling performance

The rolling horizon immediately improves computational times by reducing the explo-

ration space. Thus, the algorithm can handle the fleet assignment problem with higher

market-shares. On the other hand, the objective function will increase compared with the

optimal situation. Figure 5.10 compares the first heuristic method with the optimal sys-

tem performance when the market share is 1 percent, considering the objective function

value and the simulation time for different numbers of sharing.

To compare the objective functions of different methods, we assume a baseline. The

baseline is the objective function of the method which is expected to give the best value.

To make it clear, we set the objective function of the baseline equal to zero and then
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Figure 5.10: Comparison between the exact method and heuristic 1 (market-share = 1%)

nshare Simulation time (min)

Exact method H1

0 2.8 3.1
1 216.1 3.1
2 2382.8 3.1

Table 5.4: Simulation time for the exact method and heuristic 1

compute the percentage of objective function differences for the second method and the

reference method and plot the objective function difference percentages.

The exact method leads to lower objective function values than heuristic 1. Therefore, we

assume the exact method as the baseline and plot figure 5.10 considering the percentage

increase with heuristic 1. With the rolling horizon approach, the objective function in-

creases by only 2.68% for the number of sharing 0, 2.64% for the number of sharing 1 and

3.93% for the number of sharing 2, compared to the exact method while the simulation

time decreases by more than 89% for the number of sharing 1 and 3000% for the number

of sharing 2. The increase in the objective function is therefore negligible compared to

the improvement in the simulation time with the first heuristic approach.
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nshare Simulation time (min)

H1 H2 (cs 10) H2 (cs 20) H2 (cs 30)

0 3.2 4.5 5.1 5.4
1 98.0 5.1 9.1 18.9
2 1998.9 14.9 130.7 301.4

Table 5.5: Simulation time for heuristic 1 and heuristic 2

5.3.5 Heuristic 2: Clustering method performance

The computation time for the dynamic ride-sharing system simulation with bigger market-

shares in the optimal situation is long. In particular, it is not efficient when the number

of sharing is 2. The clustering method proposed narrows the search for feasible solutions

in the algorithm and makes it fast enough to assign requests to the shared vehicles in a

short time and respond to the passengers quickly.
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Figure 5.11: Comparing heuristic 1 and heuristic 2 when the market-share = 10%

To examine the performance of the heuristic method proposed, the simulations are com-

pared to the previous results with a market-share of 10% considering the simulation time

and the quality of the objective function for different sizes of clusters.

For a market-share of 10% the maximum number of requests at every time step is not
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more than 75, so we execute the simulations with cluster sizes of 10, 20, and 30 to have at

least 3 clusters at each optimization time step and to be sure that the clustering method

will be effective in terms of reducing the computation time.

Figure 5.11 shows the comparison for the objective function values and simulation times.

Clustering can significantly improve the computation time with a very small increase in

the objective function. This is because we carefully define the clusters by putting the

shareable trips together. Therefore, the optimization is not deteriorated, even when the

number of sharing is 1 and 2.

In figure 5.11, the reference method is heuristic 1, and the clustering method with three

different sizes of clusters is compared to the reference method. When the number of

sharing is 0, all the methods give the same solutions. When the number of sharing is 1

and 2, the objective function is 1.25% and 1.29% higher for a cluster size of 10, 0.72%

and 0.75% higher for a cluster size of 20 and 0.67% and 0.68% higher for a cluster size of

30.

It is also clear that the clustering method can significantly reduce computation time.

When the number of sharing is 1 and 2, the improvement in the assignment computation

time makes the clustering computation time negligible. This improvement is considerable

when the number of sharing is 2. The clustering method with a cluster size of 30 can

reduce the computation time when the number of sharing is 2 from 2001 seconds to 300.4

seconds while increasing the objective function with just 0.68%. The computation time

for the clustering method, when the number of sharing is 0, is equal to or greater than

the computation time without clustering. This is due to the clustering execution time.

5.3.6 Heuristic 3: Force the sharing method (FOSH method) per-

formance

With clustering we can now address large size problems and investigate higher market-

shares. Here we focus on the 40% market-share case to determine the influence of the

final FOSH heuristic.

When we favor sharing in the algorithm, the assignment gives shorter travel times and



5.3. Optimization component performance 95

distances for the vehicles and longer travel times and waiting times for the passengers.

To keep the waiting time acceptable for passengers, we set the fixed time window length

to 1 minute instead of 6 minutes in the simulations. As the time window for passenger

pickup and drop off times is restricted, the decrease in the vehicle objective becomes

dominant. Figure 5.12 shows the objective functions with and without the FOSH method

for different cluster sizes and numbers of sharing when the market-share is 40%. As the

number of requests in each time step is higher for higher market-shares, we increase the

size of the clusters to 40. We expect a better objective function for bigger cluster sizes.

Thus, here, we consider that the reference method is the clustering method (heuristic

2) with a cluster size of 40, and we compute the percentage increase of the objective

function for other methods based on this reference method. The FOSH method (heuristic

3) increases the objective function by only 0.13% when the number of sharing is 1 and

0.01% when the number of sharing is 2. The results are almost the same for the other

cluster sizes. The objective function increases up to 2.5%. Also, the results show that

cluster sizes of 30 and 40 can give very similar solutions. The difference between the

cluster size of 30 and 40 is less than 0.5% for both heuristic 2 and heuristic 3.
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Figure 5.12: Comparing the heuristic 2 and the heuristic 3 when market-share = 40%
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nshare Simulation time (min)

H2 H3

cs = 10
0 43.7 36.7
1 44.6 37.8
2 110.4 38.0
cs = 20
0 43.7 43.8
1 56.4 46.1
2 598.5 49.7
cs = 30
0 45.4 45.7
1 89.0 53.1
2 3091.3 94.3
cs = 40
0 47.0 46.9
1 138.2 61.6
2 3333.3 238.2

Table 5.6: Simulation time for heuristic 2 and heuristic 3

In the FOSH method, the algorithm assigns more trips within each branch every time.

Therefore, we expect that this method decreases the simulation time. Table 5.6 shows

the simulation time comparison for heuristic 2 and heuristic 3. Heuristic 3 significantly

improves computation time. Also, with this method a huge drop is observed when the

number of sharing is 2.

When the algorithm assigns more requests to a vehicle, the number of trips needed to serve

all the passengers’ requests decreases. Thus, with the FOSH method, we expect to use

fewer trips and consequently, fewer service vehicles. Figure 5.13 proves this assumption.

The number of shared cars is significantly lower with the FOSH method. Heuristic 2 serves

40% of the network demand via 4,257 trips with a cluster size of 30 and the number of

sharing at one while heuristic 3 serves the same number of requests via 2,407 trips (each

trip starts from a depot and ends at a depot).

As the results show, a cluster size of 30 can give a reasonable trade-off between the

computation time and the quality of the solution for this scale. Therefore, in the next

experiments, we execute the simulations with a cluster size of 30 to ensure rapidity and

also to keep the quality of the objective function at an adequate level.
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Figure 5.13: Comparing the number of trips for heuristic 2 and heuristic 3 when market-
share = 40%

5.3.7 Comparing the final algorithm with the existing methods

In this section, we show the quality of the proposed method comparing with the other

existing methods.

First, it is important to see the performance of the solution method comparing with the

optimal situation when we increase the market-share.

Method Simulation time (min)

nshare 0 nshare 1

Exact solution 54.1 4800.0
Heuristic 1 3.2 98.0
Heuristic 2 5.4 18.9
Heuristic 3 4.4 6.6

Table 5.7: Solution methods comparison (computation time for market-share = 10%)

Figure 5.14 shows the percentage of difference for all the solution method steps compared

to the optimal solution when the market-share is 10%, and the size of clusters is 30 and

Table 5.7 shows the computation time. The number of requests, in this case, is 1092, and
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Figure 5.14: Objective function difference for the solution method steps (market-share =
10%)

Table 5.8: Simulation results for heuristic methods (number of sharing = 1)

Configuration Shared vehicles Passengers Personal vehicles All vehicles

Ntrips

∑
k∈M Tk(h)

∑
k∈M TDk(km)

∑
i∈N WTi(h) Travel time (h) Travel time (h)

MS : 0% 7978.4 7978.4
MS : 10%
Exact solution 1015 117.6 3744.6 8.2 7904.1 8021.7
Heuristic 1 1041 119.5 3825.1 8.5 7907.5 8027.1
Heuristic 2 1067 120.5 3853.0 6.8 7906.5 8027.0
Heuristic 3 610 101.8 3279.4 20.2 7896.5 7998.3

the computation time for the optimal solution is 80 hours when the number of sharing

is 1. The figure shows that the final algorithm increases the objective function for 3.67%

while the computation time decreases to 6 minutes (99.9% decrease) when the number of

sharing is 1. The results prove the capability of the presented algorithm to provide fast

and qualified solutions for the dynamic ride-sharing problem. The optimization time step

is 10 minutes, so the rolling horizon method can find near-optimal solutions. Then in

heuristic 2, the shareability index can effectively find the potential sharing opportunities

and cluster the requests. Therefore, increasing the market-share will not affect the quality

of the solution methods, and the results are very close to the optimal situation.
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Table 5.8 shows the results for different solution methods when we serve 10% of the

internal trips with service cars.

The market-share = 0 is when only personal vehicles serve all the network demand. Using

service vehicles increases the travel distance for the vehicles and consequently, the travel

time. Serving 10% of the requests with service cars, increases the total travel time for

vehicles by 43.3 hours in the optimal situation. The FOSH method reduces this value to

19.9 hours by favoring the sharing but it increases the passengers’ waiting time from 8.2

hours in the optimal situation (27.0 seconds for each passenger on average) to 20.0 hours

(66.6 seconds for each passenger on average).

The heuristic method proposed here can also outperform the previous methods in the

literature. In [35] after an exact method, they propose a lean heuristic algorithm based

on Large Neighborhood Search (LNS), to find near-optimal solutions. The lower bounds

generated by their exact approaches are on average 3.68% better than the average LNS

result and the average computation time is less than 90 s for instances with up to 40

requests, while large-scale instances with up to 100 requests are solved in about 10 min on

average. Our heuristic method can solve the problem in less than 20 seconds for 40 requests

and less than a minute for 112 requests while it increases the objective function only by

3.19% percent for 112 requests. For market-share = 10% (1092requests) the heuristic

method increases the objective function for 3.67%. [173] present a Tabu search heuristic

for the pick and delivery problems for ride-sharing. They use a ratio (the objective value

of the optimal solution divided by the output objective value of the heuristic method) to

compare the heuristic method with optimal situation. For 9 requests, the ratio is 0.94 in

average. The final heuristic method proposed in this study can find optimal solution for

9 requests. Increasing the number of requests, keeps this ratio low. For market-share =

10%, this ratio is 0.96 in our method.

Different clustering methods have been implemented in the literature for large-scale prob-

lems. They usually divide the space geographically and use a spatial clustering to downsize

the problem. We have compared the Shareability clustering with such a spatial clustering

method.
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Figure 5.15: Comparing clustering methods’ objective function (market-share=50%)
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Figure 5.16: Comparing clustering methods’ computation time (market-share=50%)

For the spatial clustering, we put the two corresponding trips in the same cluster based
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on the distance between their origins. Also, we try to cluster the trips based on the time

in a temporal clustering method. For the temporal clustering, we put two trips is the

same cluster based on their departure time and their position. Finally, we compare these

methods with our proposed method to show the quality of our proposition.

Figures 5.15 and 5.16 show the comparison of different clustering methods considering

the objective function and the computation time for four different cluster sizes when the

market-share is 50%. The best objective function is provided by our k-means clustering

method when the size of the cluster is 40. So we choose this objective function value

as a base, and we compute the percentage of difference for other methods considering

this basic scenario. As it is clear, the performance of spatial clustering is not acceptable

compared to the other methods. In the best situation, the spatial clustering’s objective

function is 4% more than the k-means clustering. The temporal clustering can perform

better than spatial clustering, but it can not outperform our clustering methods. With

the cluster size of 40, the objective function for temporal clustering it is 2.02% more than

k-means clustering. The computation time increases exponentially for the shareability

clustering when the cluster size is 40. However, with the cluster size of 30, the algorithm

can give a high-quality solution in a short time.

As explained in section 4.4.3, we can do the transportation analysis for medium-scale with

the k-means method when the cluster size is 30. For large-scale, we use the hierarchical

method.

5.4 Dynamic simulation component performance

Network congestion has impacts on the dynamic ride-sharing service. When the rides are

executed, a gap can exist between the estimated travel times used by the optimization

process at the beginning of the time horizon and the travel times experienced during the

time horizon in the plant model. So, the objective function when solving the fleet allo-

cation problem at the beginning of the time horizon can be different from the objective

function experienced. Then, the current speed is updated based on the new traffic condi-

tion for the next step to take into account the impact of congestion and to minimize this
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gap.

Table 5.9 shows the estimated objective and the objective function values experienced

(normalized values) for the different methods when the market-share is 10%, and the

cluster size for heuristic 2 and 3 is 30. The objective function implemented is greater

than the estimated objective function for all the methods because of the gap between the

predicted and the real travel times. For example, when the number of sharing is 1, the

estimated objective function for heuristic 1 is 1,980, but the objective function experienced

is 2,030. The differences are small in all the scenarios showing that the prediction model

is accurate enough.

Table 5.9: Simulations results for optimal assignment

Method Estimated objective function Experienced objective function

nshare 0 nshare 1 nshare 2 nshare 0 nshare 1 nshare 2

Heuristic 1 2017 1980 1979 2063 2030 2029
Heuristic 2 2017 1994 1993 2063 2043 2039
Heuristic 3 2017 1994 1993 2063 2008 2007

Conclusion

In this chapter, we presented the simulation framework for the dynamic ride-sharing

problem. We defined the plant model to represent the real traffic conditions and the

prediction model to predict the travel time for the optimization algorithm. For the plant

model, we use the trip-based MFD, and for the prediction model, we use the mean speed.

Accordingly, we can assess the impact of network traffic on the dynamic ride-sharing

system performance.

Then we showed the performance of the proposed simulation-based optimization frame-

works. We assessed the performance of all the heuristic methods and demonstrated that

our heuristic approaches significantly improve computation time with few compromises

on optimality. Also, the proposed optimization framework can outperform the previous

methods in the literature. In the next chapter, we will evaluate the effect of a dynamic

ride-sharing system on medium-scale and large-scale networks.



Chapter 6

Transportation Analyses

Introduction

In chapter 5, we presented the simulation-based optimization frameworks for the dynamic

ride-sharing problem that enable us to assess the main goal of this dissertation. In this

chapter, we evaluate the impact of the ride-sharing system on network traffic, and we see

how it can affect congestion.

We aim to assess the impact of dynamic ride-sharing on both medium-scale and large-

scale networks. In megacities and large-scale networks, the performance of ride-sharing

in terms of reducing congestion can be different. However, these services are increasingly

popular in large cities and small and medium-sized cities. First, we assess the impact

of ride-sharing on the network of Lyon 6 + Villeurbanne as a medium-sized network in

section 6.1. Then we present the analyses in large-scale in section 6.2 by applying the

method on the network of the whole Lyon city in France.

6.1 Analysis in medium-scale

To assess the influence of the dynamic ride-sharing system on reducing traffic congestion,

we compare the traffic condition for the dynamic ride-sharing system considering different

market-shares and the numbers of sharing with the case where the market-share is zero

when only personal vehicles serve all the network demand ("No service scenario" in the

103
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figures). We perform sensitivity analysis on the fixed length of the time window, the rolling

horizon, and the depot size. The simulation’s configuration for medium-scale analysis is

explained in section 5.3.1. Table 6.1 shows the simulation results for different market-

shares and numbers of sharing. We discuss the results in detail in the next sections.

6.1.1 Market-share

We use the vehicle accumulation in the network as a measure of traffic congestion. We

compute the vehicle accumulation in the network every second in the simulations. Fig-

ure 6.1 shows the vehicle accumulation in the network every 100 seconds for different

market-shares when the number of sharing is 0. The service vehicles must travel a certain

distance from the depot to the first origin and then from the last destination to the depot.

This extra distance makes the car stay longer in the network and leads to more traffic.

Hence, when the market-share increases, the accumulation of vehicles increases.

In table 6.1, the travel time for the personal vehicles when the market-share is zero is

7,978.4 hours. Then, with a market-share of 20%, the total travel time for shared vehicles

is 251.7 hours, and the total personal vehicle travel time is 7,816.6 hours. Therefore, the

total travel time for all the vehicles in the network is 1.13 % higher than the total travel

time when there is no service vehicle in the network. Increasing the market-share will

increase this extra travel time by 2.27 % , 3.33 %, 4.37 % and 5.50 % for market-shares

of 40%, 60%, 80% and 100% .

As shown in table 6.1, sharing decreases the travel distance and the travel time for service

vehicles. Hence, the number of sharing 1 can reduce the accumulation of cars driving in

the network. Figure 6.2 shows the accumulation of all the vehicles in the network when

the number of sharing is 1 for different market-shares. The results show that sharing

can reduce traffic congestion for a given market-share. The total travel time for shared

vehicles when the market-share is 80% is 1,018.6 hours, which is for 515 vehicles that

make 8,963 trips to serve 8,978 requests when there is no sharing. But it falls to 852.4

hours with 404 vehicles via 4,880 trips for the same number of requests when the number

of sharing is 1.
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Figure 6.1: Traffic situation for the number of sharing 0 with different market-shares
(medium-scale)

However, sharing cannot improve the traffic situation significantly compared to the case

when all the trips are made with personal cars. For example, for the market-share of

20 percent and the number of sharing 1, the total travel time for all the vehicles in the

network is 8,006.4 hours, which is 0.77% better than the number of sharing 0 but still

0.35% worse than the no service scenario. The total travel time for all the vehicles in

the network is 0.56%, 0.90%, 1.19% and 1.61% longer than the no service scenario for

market-shares of 40%, 60%, 80%, and 100%.

Figures 6.3, 6.4 show the total travel time and the total travel distance for all the vehicles

in the network for the number of sharing 0 and 1 with different market-shares. It is

clear that increasing the market-share increases the total travel time and distance for the

number of sharing 0 when each passenger is served individually but then, when sharing

the trip of just two passengers with the number of sharing 1, the slope of this increasing

trend flattens considerably.
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Figure 6.2: Traffic situation for the number of sharing 1 with different market-shares
(medium-scale)

To consider the passengers’ willingness to share the ride and their satisfaction, we optimize

the passengers’ waiting time and travel time in addition to the vehicle objectives. Thus,

increasing the market-share cannot increase the passengers’ objectives so that this leads to

their dissatisfaction. As we place a strict constraint on the passenger pickup and delivery

time window, the average waiting time for each passenger is not more than 63 seconds.

For the market-share of 20% the average waiting time for each passenger is 62.8 seconds

when the number of sharing is 1, and it is 54.0 seconds for the market-share of 100%.

Also, the average travel time for passengers is 5.9 minutes when the market-share is 20%

and the number of sharing is 1, and it increases by 24 seconds for the market-share of

100%.
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Figure 6.3: Total travel time for all the cars for the number of sharing 0 and 1 with
different market-shares (medium-scale)
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Figure 6.4: Total travel distance for all the cars for the number of sharing 0 and 1 with
different market-shares (medium-scale)

6.1.2 Number of sharing

Increasing the number of sharing provides the system with greater leeway to decrease the

travel distance by reducing the distance between stop points and depots. So, with more



6.1. Analysis in medium-scale 109

sharing, we expect a better traffic situation and fewer vehicles in the network.
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Figure 6.5: Traffic situation for market-share 100% with different numbers of sharing
(medium-scale)

Figure 6.5 shows the network traffic when the market-share is 100% for the different

numbers of sharing. The results show that increasing sharing can reduce congestion, but

it still cannot compete with the no service scenario.

Figure 6.6 shows the average speed every hour in the system for different numbers of

sharing. The vehicle speed decreases using service cars without sharing. Sharing can

increase the speed, but it still cannot be higher than the speed in the no service scenario.

At the onset of congestion, with the number of sharing 2, the speed is 35.5 km/h which

is 0.16% higher than the number of sharing 1.

Figure 6.7 shows the accumulation differences with the baseline in peak hours. It is clear

that sharing can improve congestion compared with the number of sharing 0 (systems

like traditional taxis), but it is not better than the no service scenario. At the onset of

congestion, sharing can prevail over the no service scenario, especially when the number
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of sharing is 2. Then, as congestion subsides, the sharing scenarios is better than the

no service scenario. Finally, the number of sharing 2 is better than when the number of

sharing is 1. This is because the vehicles have to travel a longer distance after the peak

hour as they have more requests to serve.

Figure 6.8: Passengers’ waiting time for different sharing scenarios when the market-share
is 100% (medium-scale)

Increasing the number of sharing will increase the passengers’ travel time and waiting

time. The average waiting time for the number of sharing at 0 (when there is no sharing)

is 4 seconds. It increases to 54 seconds when the number of sharing is one and 74 seconds

when the number of sharing is two. This increase is acceptable considering the last

heuristic used to force the sharing. This means that the passenger must wait no more

than 1 minute to be picked up at the origin when the number of sharing is 1. In the first

heuristic, sometimes the algorithm can find a better assignment for the vehicles that are

waiting in the depot, and it changes the first schedule. It can increase the passengers’

waiting time. However, the waiting time will not be more than 10 minutes. Figure 6.8

shows the variation of passengers’ waiting time for different numbers of sharing when the
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market-share is 100%. For the number of sharing 0, the median for the waiting time is 0,

and 50% of passengers depart at their defined pick up time. For the number of sharing

one, the median of waiting time is still 0, and 50% of the passengers can start their trip

at their desired time. The 75th percentile is 108 seconds, and the upper adjacent is 4

minutes. For the number of sharing 2, the median increases to 22 seconds, and the upper

adjacent is 5 minutes. In section 5.3.7, we showed that the heuristic method gives an error

of 3.67% comparing with the optimal solution. The total travel time for all the vehicles in

the system is 7978.4 hours in no service scenario. We can estimate the optimal situation

considering this error. If we reduce this error from the final results, the total travel time

for the number of sharing 1 and market-share = 100% can be reduced to 8068.0, which

is still more than the no service scenario. The estimation of the heuristic error when the

number of sharing is 2 is 4.66%. The total travel time for the vehicles when the number

of sharing is 2 can be around 8022.4 hours in the optimal situation, and it is still more

than the no service scenario.

In the next sections, we analyze the time window, rolling horizon, and depot size in the

medium-scale network (Lyon 6 + Villeurbanne). We also implement the method with an

operational setting on this network to compare it with our proposed system.

6.1.3 Time window

In section 5.3.1, we explained that the time window for each request has a fixed-length,

and we set this length equal to 1 minute in the simulations. In this section, we assess the

impact of the time window on the ride-sharing system performance. Increasing the time

window leads to longer trips as the passengers can wait more for the service.

In the current configuration FixedTW is equal to 1 minute. We do the simulations for

FixedTW = 6 and FixedTW = 10 to see the effect of increasing the time window.

Table 6.2 shows the results for different time window lengths when the market-share is

100%, and the number of sharing is one. When the FixedTW is 1 minute, the system

serves the requests with 6,072 trips. When we increase the FixedTW to 6 minutes, the

number of trips decreases to 4913, and when the FixedTW is 10 minutes, the system just
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Table 6.2: Simulation results for different time window lengths

Configuration Shared vehicles Passengers

Ntrips

∑
k∈M Tk(h)

∑
k∈M TDk(km)

∑
i∈N WTi(h) AverageWTi

(min)

MS : 100% nshare = 1
FixedTW = 1 6072 1074.1 33099.4 168.6 0.9
FixedTW = 6 4913 1128.5 34959.3 448.1 2.4
FixedTW = 10 3960 1173.3 36838.2 839.5 4.5

1 6 10

Fixed length

0

5

10

15

20

25

30

35

W
a
it
in

g
 t
im

e
 o

f 
p
a
s
s
e
n
g
e
rs

 (
m

in
)

Figure 6.9: Passengers’ waiting time for different time window (market-share = 100% ,
nshare = 1)

makes 3960 trips to serve all the requests. On the other side, increasing the FixedTW

increases the travel distance and travel time of the vehicles. The total travel distance

increases by 5.6% for FixedTW = 6 and 11.3% for FixedTW = 10. Increasing the time

window will also increase the passengers’ waiting time. Figure 6.9 shows the box-plot for

the passengers’ waiting time. The average waiting time is 0.9 minute for FixedTW = 1. It

increases to 2.4 minutes and 4.5 minutes for FixedTW = 6 and FixedTW = 10. When the

fixed-length is 10 minutes, some passengers wait more than 20 minutes to get the service
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(it happens for the trips that are longer than 10 kilometers). Finally, we can see that even

increasing the time window, which should favor the sharing, cannot reduce congestion in

Lyon 6 + Villeurbanne’s network.

6.1.4 Rolling horizon

In section 5.1.2, we explained that we stop the simulations halfway on the rolling horizon

(TH
2
) and solve a new fleet allocation problem over a new full rolling horizon (TH). This

prevents the system from being myopic to the new demand that may arrive just after the

end of a simulation period.

In the current simulations’ configuration, TH is 20 minutes. It means that every 10

minutes, the system optimizes the requests over the next 20 minutes ((10,20) in table

6.3). In this section, we assess the impact of rolling horizon and optimization time step

on the system performance. We do the simulations for (5,10) and (20,40) to evaluate the

system when we have a shorter and a longer rolling horizon.

Table 6.3: Simulation results for different rolling horizon scenarios

Configuration Shared vehicles Personal vehicles

Ntrips m
∑

k∈M Tk(h)
∑

k∈M TDk(km) Travel time (h)

MS : 100% nshare = 1
(5,10) 6142 479 1074.2 33325.8 7035.1
(10,20)) 6072 477 1074.1 33099.4 7032.6
(20,40) 6049 472 1074.0 33005.7 7030.7

Table 6.3 shows the results for different rolling horizon. Increasing the rolling horizon

can increase sharing and reduce the number of trips. Nevertheless, the difference is not

very big. With TH = 10 minutes, the system serves the requests with 6142 trips. This

number decreases to 6072 for TH = 20 and 6049 for TH = 40. The total travel distance

is reduced by 0.7% when we increase the rolling horizon from 10 to 20 minutes, and it

is reduced by 0.3% when we increase the TH from 20 minutes to 40 minutes. When we

increase TH from 10 to 20, the system can find more sharing opportunities, but when

we increase it to 40 minutes, as we have time window constraint for the trips, it is not

possible to have much more sharing than 20 minutes.
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6.1.5 Depot size

Increasing the number of allowed stop locations in the network can increase the accessi-

bility of cars to the closest passengers and reduce the passengers waiting time. It can also

decrease the travel distance between the stop location and the first origin. To assess the

impact of the number of local depots and the number of vehicles waiting in these loca-

tions, we define two different scenarios. We compare them with the basic scenario where

we have 237 depots and 142 cars waiting in these depots. The first scenario increases the

number of vehicles and puts 1780 vehicles in the stop locations. In the second scenario,

we increase the number of depots to 1067 and distribute 1780 vehicles, considering the

geographical demand pattern on these locations.

Table 6.4: Simulation results for different depot management scenarios

Configuration Shared vehicles Passengers

Ntrips m
∑

k∈M Tk(h)
∑

k∈M TDk(km)
∑

i∈N WTi(h)

MS : 100% nshare = 1
Basic scenario 6072 477 1074.1 33099.4 54.04
237 depots and 1780 vehicles 6055 475 1068.2 32647.2 50.79
1067 depots and 1780 vehicles 6065 446 986.4 30118.0 52.01

Table 6.4 shows the results for different scenarios. The second scenario can improve the

total travel distance by 1.3% compared to the basic scenario recall that we increased the

number of vehicles by 1153%. In the third case, with 350% increase in the number of

allowed waiting locations for the vehicles, the total travel distance is improved by 9%.

Figure 6.10 shows the percentage of improvement for the three sharing scenario compared

to the scenario when we have just personal vehicles in the system. All the sharing scenarios

decrease the congestion in peak hour but this improvement is not significant. In the best

case, the basic scenario can improve the congestion by 4.1%. Increasing the number of

vehicles can further improve it by 0.6% and increasing the number of stop locations by 5

times can make 2.5% improvement compared to the basic scenario.
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Figure 6.10: Comparing different scenarios for depot management

6.1.6 Operational settings

The main goal of this study is to assess the performance of dynamic ride-sharing in terms

of reducing congestion. To favor the ride-sharing service, we choose a longer optimization

time step comparing with other dynamic methods to guarantee that we can find near-

optimal solutions for the matching problem. Hence, to solve the problem dynamically,

we apply the method every 10 minutes over the requests received in the next 20 minutes,

considering we have a perfect knowledge of all requests over such a time horizon. However,

one can argue that today’s real operational systems do not have this long horizon and

that they answer service requests immediately. Hence, our conclusions would be valid

only for the methods that we are using, i.e., with a rolling horizon.

To verify our conclusions in this context, we propose to mimic today’s operational settings.

To do so, we propose an insertion heuristic method that matches the passengers and

vehicles in real-time. The chosen vehicle to insert the new request in its schedule is the
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Figure 6.11: Traffic situation for market-share 100% with operational settings

one with the minimal marginal costs increase. If no existing vehicle can insert the request,

a new vehicle is dynamically created, and the request is assigned to it. In this situation,

the system has immediate response times and matches the received individual requests to

the vehicles in real-time.

Figure 6.11 shows the network traffic when the market-share is 100% for different numbers

of sharing under operational settings comparing with the no service scenario and our

proposed system when the number of sharing is 1. It is clear that the operational settings

perform worse than the near-optimal situation proposed in this thesis in terms of reducing

congestion even with the number of sharing 2.

Table 6.5 shows the results for operational system settings compared with our proposed

settings. The total travel time for service vehicles in the operational setting is 66.8 hours

more than the proposed system when the number of sharing is 1. Also, the total travel

time for personal vehicles in the network is 47.8 hours more in operational settings. It is
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clear that the proposed settings outperform the operational settings.

Table 6.5: Simulation results for operational settings

Configuration Shared vehicles Passengers Personal vehicles

Ntrips m
∑

k∈M Tk(h)
∑

k∈M TDk(km)
∑

i∈N WTi(h) Travel time (h)

MS : 100%
Proposed settings
nshare = 0 11213 578 1276.3 38434.0 12.6 7140.6
nshare = 1 6072 477 1074.1 33099.4 168.6 7032.6
nshare = 2 4993 474 1049.9 32605.2 233.3 7021.4
Operational settings
nshare = 0 11215 578 1277.9 39559.2 12.5 7141.6
nshare = 1 8243 510 1140.9 36875.9 206.4 7080.4
nshare = 2 7864 515 1140.6 36904.2 240.2 7076.3

6.2 Analysis in large-scale

In this section, we assess the impact of dynamic ride-sharing on traffic congestion in a

large-scale network, using the proposed simulation-based optimization framework. The

Lyon network area is 220% larger than the medium-scale network, and the number of

trips is 676% more. Also, there are longer trips in the large-scale test case.

In the previous section, we observed that dynamic ride-sharing can reduce the travel time

and distance and improve the traffic congestion compared to the scenario when we use

taxis in the system, and we do not share the trips. However, it can not overcome the

basic scenario where all the trips are made with personal cars. The impact of ride-sharing

would be different in large-scale as the number of trips, and the trip length is much more

than in the medium-scale, and the system has more opportunity to match the shareable

trips.

6.2.1 Simulations’ configuration in large-scale

In the rolling horizon approach, every 10 minutes, the system solves the assignment prob-

lem for the requests of the next 20 minutes. The simulation time step is 1 second, so

the state of the system is updated every second. The fixed-length of the time window

was 6 minutes for the medium-scale, and after the FOSH method to keep the passengers’
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waiting time acceptable, we reduced it to 1 minute. In large-scale as the trips are longer

than in medium-scale, we set the FixedTW equal to 6 minutes. We do the simulations for

the number of sharing 0,1 and 2 and the market-share from 0 to 100%. The capacity of

service vehicles is 4. We have defined 2,263 allowed stop locations for the service vehicles

in the system. The number of vehicles waiting on these local depots at the beginning of

the simulations is 22630. In addition to the local depots, there are nine central depots

in the network that can feed the local depots. As the main goal is to assess ride-sharing

performance on congestion, we put 9,000 service vehicles in the central depots to be sure

that the system has enough service cars. This is equivalent to not planning an upper

bound on the number of available vehicles. We have considered 1 minute as service time

for passengers pick up and drop off in the simulations.

6.2.2 Optimal size of clusters

In section 4.4.3, we showed that hierarchical clustering is an appropriate clustering method

to cluster the requests using our proposed "Shareability function" on a large-scale. We

try to have the same size clusters (to avoid too big or too small clusters) to be able to

keep the computation time low and have the opportunity for sharing in all the clusters.

In the hierarchical method, we can keep the first cluster of the desired size at the bottom

of the dendrogram to have the same size clusters [1]. The crucial point here is to find an

approximation for the size of clusters in the hierarchical method.

There are different methods in the literature to choose the optimal size of clusters. Here,

the quality of the clusters (how similar are points within a cluster) is very important.

Furthermore, we have to be sure that the clusters are separated from each others, and

the possibility of sharing two trips from two different clusters is minimum. Thus the best

way to find the optimal size of clusters is to use the Sum of Squares method (SS)[103]. It

is a clustering validation method that chooses the optimal size of clusters by minimizing

the Within-cluster Sum of Squares (WSS) (a measure of how tight each cluster is) and

maximizing the Between-cluster Sum of Squares (BSS) (a measure of how separated each

cluster is from the others). We compute the WSS and BSS for all the clusters in different



120 Chapter 6. Transportation Analyses

periods to evaluate the optimal size of clusters in different demand situations. We analyze

the size of clusters from 75 to 300.

Table 6.6: Sum of Squares method

Number Size of clusters

1 75
2 100
3 125
4 150
5 175
6 200
7 225
8 250
9 275
10 300

Figure 6.12: Sum of squares method for finding the optimal size of clusters

Figure 6.12 shows the SS method at different times of the simulations. Increasing the

size of clusters decreases the BSS. It means that more number of clusters can ensure that

the clusters are separate from each others. We have determined the cluster sizes that

minimize the WSS and maximize the BSS. At 6 and 7 AM, the cluster sizes 100 and 125

can make this trade-off between WSS and BSS. At 8 and 9 AM, the best cluster sizes are

125 and 150. Therefore, the best cluster size to do the simulations for this scale is 125.
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6.2.3 Market-share

Table 6.7 shows the results for different market-shares and numbers of sharing in the

network of Lyon (large-scale network).
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Figure 6.13: Traffic situation for the number of sharing 0 with different market-shares
(large-scale)

We mentioned that we use the vehicle accumulation in the network as a measure of traffic

congestion. Figure 6.13 shows the traffic situation in a large-scale from 6 AM to 10

AM, every 100 seconds for different market-shares when the number of sharing is zero

compared with the no service scenario (when all the trips are made by personal cars).

It is clear that increasing market-share increases the number of service vehicles in the

system. For example, with market-share = 20%, the system has to serve 41,043 requests

with the service vehicles. As we consider the "Sequential trips" in addition to the "Shared

trips", even with the number of sharing zero, the system serves this number of requests

with fewer trips. It makes 41,011 trips using 3,667 service vehicles to serve the requests.
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With market-share = 40%, the number of requests increases to 82,104, and the number

of required service vehicles is 7,261. Finally, with the market-share = 100%, the number

of requests is 205,308. The system serves this number of requests, with 17,102 vehicles in

205,124 trips. Accordingly, the increase in the accumulation plot is not very huge. The

total travel distance for all the trips increases by 0.8%, 1.5%, 2.3%, 3.0% and 3.7% for

the number of sharing 20%, 40%, 60%, 80% and 100% respectively.
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Figure 6.14: Traffic situation for the number of sharing 1 with different market-shares
(large-scale)

Sharing two passengers’ trip with the number of sharing 1 with our proposed system can

make big progress in reducing congestion in large-scale. Figure 6.14 shows this fact. With

market-share = 20%, the number of service trips decreases for 48.1%, and the system can

make these trips with 1,578 fewer cars. For all the market-shares, with the number of

sharing 1, the number of trips to serve the same number of requests is almost 50% less

than the number of sharing 0. The system serves the requests with 3,123 fewer cars with

market-share = 40%, 4,565 fewer cars with market-share = 60%, 6,016 fewer cars with
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market-share = 80% and 7,613 fewer car with market-share = 100%.

Increasing the number of sharing to 2, can make a more remarkable improvement in the

large-scale network traffic. Figure 6.15 shows the traffic situation in large-scale when the

number of sharing is 2 for different market-shares. The number of trips is reduced by

63.9% with the market-share 20%, 64.4% with the market-share 40%, 64.6% with the

market-share 60%, 64.7% with the market-share 80% and 64.8% with the market-share

100%. Also, the number of sharing 2 can decrease the needed cars for 57.5%, 58.2%,

58.9%, 59.3%, 60.1% with the market-share 20%, 40%, 60%, 80% and 100% respectively.
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Figure 6.15: Traffic situation for the number of sharing 2 with different market-shares
(large-scale)

Table 6.7 shows that sharing can significantly decrease total travel distance and total

travel time of the service vehicles and total travel time of the personal vehicles. Sharing

the trips can reduce the number of moving vehicles in the network and, consequently,

increase the vehicles’ speed. So with sharing, even personal cars can move faster and have

shorter travel times.
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Figure 6.16: Total travel time for all the cars for the number of sharing 0, 1 and 2 with
different market-shares (large-scale)

0 20 40 60 80 100

Market-share(%)

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

T
o
ta

l 
tr

a
v
e
l 
d
is

ta
n
c
e
 (

k
m

) 

10
6

Number of sharing = 0

Number of sharing = 1

Number of sharing = 2

Figure 6.17: Total travel distance for all the cars for the number of sharing 0, 1 and 2
with different market-shares (large-scale)
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Figure 6.16 and figure 6.17 shows the total travel time and distance for all the service and

personal cars in the network for different market-shares when the number of sharing is 0,

1, and 2. It is clear that with the number of sharing zero, total travel time and distance

increases with increasing the market-share. Market-share = 100% with the number of

sharing zero can increase the total travel time by 5.6% and the total travel distance by

3.7%. Then, sharing can fix this problem by reducing the total travel time by 30.0% with

the number of sharing 1 and 41.1% with the number of sharing 2 compared to the number

of sharing 0. Furthermore, the total travel distance is reduced by 25.5% with the number

of sharing 1 and 36.0% with the number of sharing 2.

6.2.4 Number of sharing
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Figure 6.18: Traffic situation for market-share 100% with different numbers of sharing
(large-scale)
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As we mentioned, increasing the number of sharing provides the system with greater

leeway to decrease the travel distance by reducing the distance between stop points and

depots. Figure 6.18 shows how increasing the number of sharing can reduce congestion in

large-scale (for market-share = 100%). The system serves 205,308 requests, with 205,124

trips using 17,102 vehicles when the number of sharing is zero. With the number of

sharing 1, the requests are served with 105,745 trips using 9,489 vehicles. The number of

sharing 2 reduces the number of trips to 72,160 using 6,826 vehicles. Finally, if we use all

the car capacity and share each trip with a maximum of 3 other passengers, the system

can serve the requests with 69,790 trips using 6,595 vehicles.
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Figure 6.19: Traffic situation at peak hour (large-scale)

This reduction in the number of trips and service cars is significantly more effective in

reducing congestion during peak hours. Figure 6.19 shows how our proposed system can

reduce traffic in the morning peak hour. The accumulation of cars at the busiest time of

the day can be reduced by 14,908 with the number of sharing 2 compared to the number



128 Chapter 6. Transportation Analyses

of sharing 0.

The difference between the number of sharing 1 and 2 is more significant than the differ-

ence between sharing 2 and 3. With the number of sharing 3, the vehicles have longer

travel distance and remain more in the system. So the increase in the vehicles’ speed with

the number of sharing 3 is not comparable with the number of sharing 1 and 2. Figure

6.20 shows the average vehicle speed every hour in the network. In the peak hour, the

average speed is 29.1 km/h for the "no service scenario" when we have just personal cars

in the system. When we have service cars in the network without sharing, the average

speed in peak hour is 28.7 km/h. The average speed increases to 31.2 km/h with the

number of sharing 1, 32.0 km/h with the number of sharing 2 and 32.1 km/h with the

number of sharing 3.
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Figure 6.20: Average vehicle speed (large-scale)

Increasing the number of sharing increases the passenger waiting time, but the waiting

time remains acceptable for passengers with different numbers of sharing. This is because



6.2. Analysis in large-scale 129

we are targeting to minimize the passengers’ waiting time as an objective function in our

proposed method. Also, in the large-scale, the accumulation of demands for the service

is very high, and we have very close origin points. So the system can share these trips

without deteriorating the passengers’ waiting time. The average waiting time for the

passengers is 16.0 seconds for the number of sharing 0. It increases to 27.4 seconds, 44.2

seconds, and 49.3 seconds for the number of sharing 1, 2, and 3.

6.2.5 Vehicle capacity

Ride-sharing allows travelers to share a ride and can include several ways of sharing a ride.

One of these ways is van-pooling. In the van-pooling, the capacity of vehicles is higher

than regular vehicles. In our evaluations, it is interesting to see the impact of different

vehicles’ capacity on network congestion.

In the current configurations, the capacity of cars is 4. In the previous section, we figured

out the impact of ride-sharing when using the full capacity of service cars with four

capacity, on the network congestion. In this section, we assess the system when we use

vehicles with 6 capacity, vans with a capacity of 10 passengers and also shuttles with

capacity of 20.

The goal is to use the full capacity of cars. Thus, for capacity = 4, the number of sharing

is 3, for capacity = 6, the number of sharing is 5, for capacity = 10, the number of sharing

is 9 and for capacity = 20, the number of sharing is 19.

In the literature, different researches on ride-sharing try to find optimal pick-up or drop

off points for the passengers to be able to maximize the car occupancy [68, 32]. The

passengers need to walk a distance usually from 400 meters to 1 kilometer to get to these

fixed points to be picked up. In our method, to make the assignment faster and to increase

the service vehicles’ occupancy, we merge two trips if both the origins and destinations of

the trips are close together such that the passenger needs to walk less than a determined

distance. To make more comfort for the passengers and reduce the walking distance, we

fix this distance to be 200 meters for capacity = 6 and 500 meters for vans and shuttles.

This merging process shares two trips in a cluster. So the size of the cluster decreases
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before the optimization component starts to work. Thus, we increase the size of clusters

when we increase the car capacity. For capacity = 6, we increase the clusters’ size to 150,

for capacity = 10, we increase the size to 200 and for capacity = 20, we increase the size

to 250.

Table 6.8: Simulation results for different vehicle’s capacity

Configuration Shared vehicles Personal vehicles

Ntrips m
∑

k∈M Tk(h)
∑

k∈M TDk(km) Travel time (h)

MS : 100%
Capacity = 4 69790 6595 19731.3 688755.0 24751.2
Capacity = 6 63304 5714 15201.5 501473.0 24576.2
Capacity = 10 46448 4253 11102.2 370030.0 24307.2
Capacity = 20 30004 2785 7253.1 244154.0 24055.2
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Figure 6.21: Traffic situation for different vehicle capacity (market-share = 100%)

Table 6.8 compares the results for different vehicles’ capacity. Increasing the capacity of

cars can significantly improve the system performance in terms of reducing the total travel
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time and distance and reducing the number of trips and needed vehicles. The total travel

time for service cars is reduced by 23.0% for capacity = 6, 43.7% for vans and 63.2% for

shuttles. Also, the total travel time for personal cars can be reduced for 175 hours, 444

hours and 696 hours for capacity = 6, van-pooling and shuttle-sharing.

Figure 6.21 shows the traffic situation for the different vehicles’ capacity compared to the

no service scenario and the number of sharing zero (when we have service cars in the

system without sharing). It is clear that increasing the vehicles’ capacity can improve

the traffic in the network. With capacity = 6, the number of trips is reduced by 9.3%

compared to the scenario when the car capacity is 4. Also using vans can reduce the

number of trips by 33.4% and the number of needed cars by 35.5%. Shuttle-sharing can

make a more significant improvement in improving the traffic situation by reducing the

number of trips by 57.0% and the number of needed vehicles by 57.8%.

6.2.6 Parking effect

In the previous simulations, we compared the different configurations of the sharing system

with a baseline, which shows a market-share of 0. A zero market-share is the case when

personal cars serve all the trips in the network. We consider that each personal trip is

precisely from the origin point to the destination point in our simulations. But when

people use their car for a trip, at their destinations, they have to drive randomly until a

free parking place is reached to park their vehicles. During peak hours, such trip-endings

increase the total number of vehicles driving and decrease the service level for other

drivers ([106]). [23] based on surveys in different European cities showed that between

4.9% and 40.3% of the total travel time in a city is dedicated to searching for parking

spaces. Therefore, in this section, to be more realistic, we define a new baseline with

a market share 0 when we consider a specific time for parking searches. We consider 5

percent of the total travel time for parking searches and increase it to 25% in peak hours.

Table 6.9, compares the results with and without considering searching for parking spaces.

Searching for parking space can increase the personal cars’ travel time in the "no service

scenario" by 12.7%. Then using the service cars to serve a part of the trips requests
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Table 6.9: Simulation results for different vehicle’s capacity

Configuration Shared vehicles Personal vehicles

Ntrips m
∑

k∈M Tk(h)
∑

k∈M TDk(km) Travel time (h)

Without Parking
No service scenario - - - - 75271.1
Number of sharing = 0 205124 17102 52208.6 1558900.0 27296.3
Number of sharing = 1 105745 9489 30075.0 952139.0 25557.1
With Parking
No service scenario - - - - 84835.6
Number of sharing = 0 205141 17683 52970.0 1558990.0 31021.9
Number of sharing = 1 105832 9687 30367.2 951469.0 28880.8

without sharing decreases the total travel time of all the cars by 1.0%. When we do not

consider the parking, sharing can improve the total travel time by 26.1%. In the parking

scenario, sharing can reduce the total travel time by 30.2%.

Conclusion

A critical question about dynamic ride-sharing services is whether they can reduce traffic

congestion. In this chapter, we implemented the proposed simulation-based optimiza-

tion framework for the dynamic ride-sharing on two different scales to find the answer to

this question. We performed an extensive simulation study (based on real-world traffic

patterns) to assess the influence of dynamic ride-sharing systems on traffic congestion.

Different situations (five different market-shares and three numbers of sharing) were in-

vestigated in terms of traffic conditions. We compared these situations with a baseline

traffic situation where all the trips are served with personal cars.

In the medium-scale (Lyon 6 + Villeurbanne) contrarily to what we expected, the re-

sults showed that ride-sharing could not make a considerable improvement to the traffic

situation. Ride-sharing can reduce congestion compared to traditional taxi services and

dial-a-ride services. However, high levels of market-share add extra travel distance and

travel time to the trips and lead to more traffic in the network. Then we observed

that ride-sharing services in large cities are completely different from those in small and

medium-sized cities. In large-scale (Lyon) simulations, the proposed dynamic ride-sharing
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system can significantly improve traffic conditions, especially during peak hours. Increas-

ing the market-share and the number of sharing can enhance this improvement. Also, we

showed that the system could perform better with bigger cars and vans. Furthermore, we

investigated the influence of personal vehicle parking space searches on the performance

of the dynamic system in terms of reducing congestion. When we considered parking

space searching by personal cars, we found that the dynamic ride-sharing system can

make bigger improvements to traffic congestion during peak hour.

In the next chapter, we summarize the critical findings of this dissertation, we draw

general conclusions and describe our future research.



Part IV

What are the major outcomes of this

thesis?
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In previous parts, we answered two main questions about dynamic ride-sharing service by

proposing simulation-based optimization frameworks for such a service. In this part, we

summarize the critical points of this dissertation, and we discuss the conclusions.



Chapter 7

Conclusion

7.1 Summary and discussions

Figure 7.1: Thesis summary

The thesis has four parts. In part 1 (chapter 1 and 2) we have defined the problem and

provided a literature review on ride-sharing. In part 2, we have answered the first impor-

tant sub-problem of the dynamic ride-sharing problem: How to assess the performance of

ride-sharing on the network demand? To answer this question, first in chapter 3, we have

expressed the ride-sharing problem into a mathematical problem. Then in chapter 4, we

136
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have presented the solution method to solve the mathematical problem. In part 3, we

have answered the second sub-problem: How to assess the impact of the network traffic

conditions on the ride-sharing system and vice versa? In chapter 5 we have presented a

simulation framework for dynamic ride-sharing that can enable us to evaluate the impact

of the network on ride-sharing. In chapter 6 using this framework, we analyze the impact

of dynamic ride-sharing on both medium-scale and large-scale networks. Finally, in part

4, we present the major outcomes of the thesis. In this chapter, we summarize the thesis

in section 7.1.1, 7.1.2 and 7.1.3. In section 7.2, we present the conclusions, and in section

7.3, we give an outlook for future directions that can improve the dynamic ride-sharing

systems.

7.1.1 Dynamic ride-sharing optimization method

We define a system for dynamic ride-sharing with two main components: the fleet man-

agement component and the simulation component.

The fleet management component solves a mathematical problem to assign the vehicles

to the trip requests. The mathematical model is rigorously formulated to minimize both

passengers’ and service providers’ objectives. According to the state-of-the-art, the most

important operation objective for the service provider is to minimize the total travel

time and the total travel distance of vehicles. Also, the passengers need to get to the

destination on time and have the minimum waiting time. The main model constraints

are capacity constraints, time constraints, and assignment constraints. Also, we have

considered limitations on the number of sharing, and we made sure that there is a sufficient

number of vehicles in the fleet. The mathematical problem is NP-hard, and even very

small instances of this problem give a number of variables and constraints to compute that

encompasses the acceptable dimension of a linear programming problem. To be able to

solve such a complex problem, we have presented a solution method with multiple steps

that starts from finding the exact solution for small instances. Furthermore, we have

introduced extensions that speed up the solution method and address bigger networks,

even large-scale networks, while assessing the difference in quality at each step. We
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showed that the proposed heuristics can keep the quality of solutions at an acceptable

level (near-optimal solution) while significantly decreasing the computation time.

In the beginning, to find the exact optimal solution to the problem, we introduced an exact

method based on the branch-and-cut concept. The method creates branches of routes and

then chooses the optimal solution among the feasible routes. Then we introduce a rolling

horizon method as the first heuristic step. The requests are assumed known only over the

next rolling horizon (20 minutes). The corollary is that we have to introduce a new process

to handle traveling cars that have not yet reached their maximal occupancy because of

the car or the passenger constraints. We, therefore, introduce a specific algorithm to

assign the new requests in priority to en-route vehicles. The exact algorithm handles the

remaining requests.

The algorithm must try all the different arrangements of stop points to find the optimal

assignment. Thus, the computation time increases exponentially as the number of requests

increases. Restricting the exploration of the feasible area to the branches that are more

likely to create the optimal assignment can narrow the search for feasible solutions. To

overcome this limitation, in the second heuristic method, we define a clustering method

to make clusters of the requests which are more likely to be shared. Then the algorithm

is executed within each cluster independently. We define a "Shareability Index" based

on three different trip situations (shareable and in sequence) to do the clustering. After

computing the shareability function, we have the function value for each pair of requests

that creates the shareability matrix. The shareability matrix is a kind of similarity matrix

for the requests received that can be used in the clustering process. After computing the

shareability function for all the pairs of requests, we do the clustering using the computed

similarity matrix. When we make clusters based on the SF, we put the trip requests

that have more potential to be shared in the same cluster. We use k-means clustering

for medium-sized problems and hierarchical clustering for large-scale problems to create

clusters based on the shareability matrix.

The optimizer works to minimize the objective function, which combines both passengers’

and operators’ objectives. Therefore, the algorithm may choose a branch with less sharing



7.1. Summary and discussions 139

than other feasible branches in the tree built by the algorithm. Thus, in the last step, We

propose the third heuristic method to force the algorithm to favor the longest possible

route, which is in favor of more sharing. The final algorithm can solve a dynamic ride-

sharing problem with high quality in a short time comparing with other methods in the

literature.

7.1.2 Dynamic ride-sharing simulation framework

The ride-sharing service’s optimization system uses estimates for the predicted travel

time obtained from a so-called "prediction model". When the fleet management plan is

executed, a gap usually exists between the estimation and the real traffic condition. The

so-called "plant model" represents the real traffic condition, and it may require dynamic

adjustment of the initial assignment to fit with the conditions observed.

In the proposed simulation component of the dynamic ride-sharing system, we accurately

distinguish the prediction and the plant models to provide a realistic service. The trip-

based MFD is used as the plant model to consider individual trips while keeping a very

simple description of traffic dynamics. To carry out travel time prediction for the opti-

mization part, the traffic situation is predicted for the next assignment time horizon in

the prediction model, and we assign the passengers to the cars based on this prediction.

Accordingly, the final simulation-based optimization frameworks can simulate a dynamic

ride-sharing problem’s performance.

Using the simulation-based optimization frameworks, in chapter 5 we have evaluated

the performance of different solution method steps, and we have demonstrated that our

heuristic approaches significantly improve computation time with few compromises on

optimality. Also, the proposed optimization framework outperforms the previous methods

in the literature.

7.1.3 Impact of dynamic ride-sharing on network congestion

In this dissertation, we aimed to assess the impact of dynamic ride-sharing on both

medium-scale and large-scale networks.
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To assess the influence of the dynamic ride-sharing system on reducing traffic congestion,

we compared the traffic condition for the dynamic ride-sharing system considering different

market-shares and the numbers of sharing with the case where the market-share is zero

when only personal vehicles serve all the network demand. We increased the market-share

from 20% to 100%. We also did the simulations with the number of sharing 0, 1, 2, and

3. The number of sharing 0 is when each car serves only one passenger request without

sharing, and the number of sharing 3 is when the system uses the full capacity of cars

(when the car capacity is 4).

First, we assessed the impact of ride-sharing on the network of Lyon 6 + Villeurbanne as

a medium-sized network:

Using the service cars in the system without sharing (when the number of sharing is 0),

increases the total travel time and total travel distance. When the market-share is 20%,

the total travel time for all the vehicles in the network is 1.13% higher than the total

travel time when there is no service vehicle in the network. Increasing the market-share

will increase this extra travel time by 2.27% , 3.33%, 4.37% and 5.50% for market-shares

of 40%, 60%, 80% and 100%. Sharing can reduce the accumulation of cars in the network

and the total travel time and distance. However, sharing cannot improve the traffic

situation significantly compared to the case when all the trips are made with personal

cars. For example, for the market-share of 20 percent and the number of sharing 1, the

total travel time for all the vehicles in the network is 8,006.4 hours, which is 0.77% better

than the number of sharing 0 but still 0.35% worse than the no service scenario. The total

travel time for all the vehicles in the network is 0.56%, 0.90%, 1.19% and 1.61% longer

than the no service scenario for market-shares of 40%, 60%, 80%, and 100%. Increasing

the number of sharing to 2 in medium-scale can not make a big progress compared to the

number of sharing 1. The speed of vehicles only increases by 0.16% fro the number of

sharing 2 compared to the number of sharing 1.

As in the optimization framework, we try to minimize the passenger’s travel time and

waiting time, the system keeps the passenger waiting time and travel time in an acceptable

level. The average waiting time for the number of sharing 0 (when there is no sharing)
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Figure 7.2: Medium-scale results

is 4 seconds. It increases to 54 seconds when the number of sharing is 1 and 74 seconds

when the number of sharing is 2. This means that the passenger must wait no more than

1 minute to be picked up at the origin when the number of sharing is 1.

We perform sensitivity analysis on the fixed length of the time window, the rolling horizon,

and the depot size in medium-scale. But still no configuration can overcome the "no

service scenario" in medium-scale.

To assess the impact of dynamic ride-sharing on traffic congestion in large-scale, we used

the simulation-based optimization framework to assess the system in the network of Lyon

city in France. The Lyon network area is 220% larger than the medium-scale network,

and the number of trips is 676% more:

The proposed system for dynamic ride-sharing performance in reducing congestion in

large-scale is terrific. It can significantly reduce traffic congestion.
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Figure 7.3: Large-scale results

Without sharing, the total travel distance for all the trips increases by 0.8%, 1.5%, 2.3%,

3.0% and 3.7% for the number of sharing 20%, 40%, 60%, 80% and 100% respectively.

Then with sharing just two passengers’ trips (number of sharing 1), the number of trips

reduces by almost 50% for all the market-shares. Increasing the number of sharing to

2 can even make a better improvement. The number of trips is reduced by 63.9% with
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the market-share 20%, 64.4% with the market-share 40%, 64.6% with the market-share

60%, 64.7% with the market-share 80% and 64.8% with the market-share 100%. Also,

the number of sharing 2 can decrease the needed cars to serve the trips for 57.5%, 58.2%,

58.9%, 59.3%, 60.1% with the market-share 20%, 40%, 60%, 80% and 100% respectively.

When the market-share is 100%, sharing can reduce the total travel time by 30.0% with

the number of sharing one and 41.1% with the number of sharing two compared to the

number of sharing 0. Furthermore, the total travel distance is reduced by 25.5% with the

number of sharing 1 and 36.0% with the number of sharing 2.

Increasing the number of sharing increases the passenger waiting time, but the waiting

time remains acceptable for passengers with different numbers of sharing. For market

-share = 100%, the average waiting time for the passengers is 16.0 seconds for the number

of sharing 0. It increases to 27.4 seconds, 44.2 seconds, and 49.3 seconds for the number

of sharing 1, 2, and 3.

We also assessed the proposed framework for van-pooling and higher car capacity (capacity

= 6 and 10) when we use the full vehicles’ capacity (number of sharing = capacity - 1):

The system can perform better with bigger cars and vans. With capacity = 6, the number

of trips is reduced by 9.3% compared to the scenario when the car capacity is 4. Also

using vans can reduce the number of trips by 33.4% and the number of needed cars by

35.5%.

Furthermore, we investigated the influence of personal vehicle parking space searches

on the performance of the dynamic system in terms of reducing congestion. When we

considered parking space searching by personal cars, we found that the dynamic ride-

sharing system can make bigger improvements to traffic congestion during peak hour.

7.2 Conclusion

The main goal of this dissertation is to answer one of the critical questions about dynamic

ride-sharing services:

Can dynamic ride-sharing reduce congestion?

To answer this question, we proposed a simulation-based optimization framework and
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then we implemented the dynamic ride-sharing framework on two different scales to find

the answer to this question. The proposed simulation-based optimization framework in

this thesis outperforms the existing methods in the literature. The optimization algorithm

can provide high-quality solutions in a short time. In the simulation component, a "Plant

Model" is applied based on the "Trip-based Macroscopic Fundamental Diagram (MFD)"

to represent the traffic dynamics reality and a "Prediction Model" is applied based on the

mean-speed to be used during the assignment process.

We performed an extensive simulation study (based on real-world traffic patterns) to

assess the influence of dynamic ride-sharing systems on traffic congestion.

In the medium-scale, the results showed that ride-sharing could not significantly improve

the traffic situation, contrarily to what we expected. Ride-sharing can reduce congestion

compared to traditional taxi services and dial-a-ride services in medium-scale.

To reduce travel times significantly during peak hours, we expect a remarkable reduction

in the number of vehicles on the road network. However, high levels of market-share add

extra travel distance and travel time to the trips and lead to more traffic in the network.

Thus, dynamic ride-sharing can not be a proper solution for reducing traffic in medium

and small-scale cities.

In large cities, the results are entirely different from those in small and medium-sized cities.

In large-scale (Lyon) simulations, the proposed dynamic ride-sharing system can signif-

icantly improve traffic conditions, especially during peak hours. Increasing the market-

share and the number of sharing can enhance this improvement. Also, in the large-scale,

the accumulation of demand for the service is very high, and we have very close origin

points. So the system has more sharing opportunities and can share these trips without

deteriorating the passengers’ waiting time.

Therefore, the proposed dynamic ride-sharing system is a viable option, alleviating stress

on existing public transport, to reduce the network traffic in populated and large-scale

cities.
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7.3 Future work

In the future we will consider the following extensions to our research:

• The proposed system for ride-sharing provides a vast opportunity to assess new

mobility services. In the future, we can use extensions of this framework to assess

other shared services such as car-sharing or bike-sharing. Also, we can evaluate the

performance of new mobility services integrated with public transportation in cities.

• In the optimization component, we can add other heuristic steps that can make the

assignment algorithm fast while keeping the quality of the solution acceptable to

implement the method on more than two million requests. In the clustering method,

a primary clustering can be added to first cluster the requests based on their geo-

graphical position, and in the next step, cluster them based on the shareability index

defined here. Also, we can put limitations on the number of branches considering

detour conditions.

• In the simulation component, for the large-scale network, we use one trip-based

MFD to represent the traffic dynamics reality. To be more realistic, we can divide

the network into different reservoirs and consider a unique MFD function inside

each reservoir.

• In the mathematical model objective function, we consider minimization of the

passengers’ waiting time and travel time to increase passengers’ satisfaction and

willingness. Another important point for the passengers is the trip fare when they

share their ride. In the future, we can define a pricing scheme for the dynamic ride-

sharing system to compute the trip cost depending on the number of passengers

sharing a trip and trip conditions.

• We may also work on different market configurations : Monopoly as here, or several

companies competing on every request. The analysis could complement the previous

point fares analysis
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Appendix A

Literature review based on transportation demand and service characteristics: We have

evaluated 15 papers using the transportation demand and service characteristics defined

in section 2.2 in chapter 2. Table A.1 shows the list of these 15 papers. Table A.2 shows

the list of characters and their numbers. Then the next tables show the characteristics

that are assumed in each paper and the explanations about them.
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Transportation
demand

Trip Planning

Time Dependent 1
Real time demand 2
Trip hailing 3
Authentication System 4
Trip Motivation 5
Special passenger 6
Origin 7
Destination 8
Seat Demand 9

Trip

Max waiting time 10
Max Travel time 11
Max Detour 12
Max Fare 13
Time window 14
Desired pick up time 15
Desired arrival time 16
Max delay 17
Max number of sharing 18
Distance from origin to pick up 19
Departure time 20
Waiting time 21
Number of Sharing 22
Detour 23
Arrival time 24
Time for picking up and dropping off 25
Fare 26

Transportation Service

Vendors 27
Fixed Fleet 28
Time table 29
Fixed stops (pick up or drop off locations) 30
Waiting locations 31
Car Specifications (homogeneous/heterogeneous) 32
Supply type (pro/not pro) 33
Car capacity 34
Pricing scheme 35

Algorithm

Objective function 36
Dispatching 37
Searching 38
Scheduling 39
Monitoring 40
Method 41
Shortest path 42
Empty vehicle behavior 43
Accept/reject behavior of riders 44
Traffic 45

Application

Network Characteristics 46

Scale

Time 47
Space 48
Demand 49
Supply 50

Criteria

Passengers’ objectives

Waiting time 51
Service Time 52
Total travel time/distance 53
Trip fare 54
Rejected Requests 55
Max delay 56

Providers’ objectives

Total travel time/distance 57
Number of served requests 58
Number of required vehicles 59
Taxi stand departures 60
Revenue per travel distance 61
Average number of persons per vehicle 62
Vehicle emissions 63
Saved total travel distance percentage 64

Table A.2: List of characteristics
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Figure A.1: Paper 1 and Paper 2
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Figure A.2: Paper 3 and Paper 4
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Figure A.3: Paper 5 and Paper 6
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Figure A.4: Paper 7 and Paper 8
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Figure A.5: Paper 9 and Paper 10
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Figure A.6: Paper 11 and Paper 12



175

Figure A.7: Paper 13, Paper 14 and Paper 15
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