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Thèse de doctorat de l’université de Lyon
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Abstract

Over the past century, cities around the world have experienced rapid growth in their popula-
tions. As a consequence, the capacity of their transport networks has been exceeded, causing
traffic congestion problems that are associated to economic losses, high levels of air pollution
and the emission of greenhouse gases. It is in this context that it is important to implement
traffic regulation strategies to mitigate congestion. Traffic simulators are essential tools for
developing and testing such strategies. The traffic conditions in the transport network are con-
sequence of the travellers’ choices at any given time, but at the same time, the traffic conditions
on the network influence the decisions of the travellers. This relationship between travellers’
decisions and network traffic is the main idea in traffic assignment, which traffic simulators use
to produce network traffic patterns. It is in this sense that understanding and approximating
the behaviour of travellers is indispensable to forecast the states of a transportation network,
which could help design regulations to alleviate congestion.

The objective of this thesis is to find route choice models that scale-up at network level, i.e.,
models that predict the choices of travellers over the diversity of situations found in a transport
network. The approach in this thesis to investigate travellers’ behaviour in transportation
networks is through computer-based experiments at large scale, for which a platform named
the Mobility Decision Game (MDG), has been developed. The MDG permits to observe the
choices of the participants on a diverse set of scenarios (OD pairs and routes) with varying
traffic conditions and travel time information. In this thesis, the experiments focus on the
route choices of uni-modal car trips that are based on the map of the city of Lyon, France. To
attain the objective of this thesis, firstly a methodology to find OD pairs that are representative
of the whole network is proposed. The representative OD pairs are then used in route choice
experiments to obtain data to estimate choice models that generalise to the various OD pair
configurations in the network. Secondly, the choices of participants in the experiments are
analysed from the rational and boundedly rational behaviour perspectives in order to establish
the principle that best describe their choices. Finally, the choice models are assessed in terms of
their predictive accuracy. This thesis is part of a European ERC project entitled MAGnUM:
Multiscale and Multimodal Traffic Modeling Approach for Sustainable Management of Urban
Mobility.
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Résumé

Au cours du siècle dernier, les villes du monde entier ont connu une croissance rapide de leur
population. En conséquence, la capacité de leurs réseaux de transport a été dépassée, entrâınant
des problèmes de congestion du trafic qui sont à leur tour associés à des pertes économiques,
à des niveaux élevés de pollution atmosphérique et à l’émission de gaz à effet de serre. C’est
dans ce contexte qu’il est important de mettre en œuvre des stratégies de régulation du trafic
pour atténuer les encombrements. Les simulateurs de trafic sont essentiels au développement
et au test de telles stratégies. Les conditions de circulation dans le réseau de transport sont la
conséquence des choix des voyageurs à un moment donné, mais en même temps, les conditions
de circulation sur le réseau influencent les décisions des voyageurs. Cette relation entre les
décisions des voyageurs et le trafic réseau est l’idée principale de l’attribution du trafic, que les
simulateurs de trafic utilisent pour produire des modèles de trafic réseau. C’est en ce sens que
la compréhension et l’approximation du comportement des voyageurs sont indispensables pour
prévoir les états d’un réseau de transport, ce qui pourrait aider à concevoir des réglementations
pour réduire la congestion.

Lorsqu’ils voyagent dans une ville, les voyageurs sont confrontés à plusieurs décisions con-
cernant (i) l’activité à entreprendre, (ii) la destination du voyage, (iii) le mode de transport,
(iv) l’heure de départ et (v) l’itinéraire. Ces décisions individuelles façonnent les états du trafic
dans le réseau de transport à un moment donné. Cependant, en même temps que les états du
réseau sont la conséquence des choix des voyageurs, les caractéristiques et les états de trafic du
réseau influencent les décisions des voyageurs. On pourrait penser, par exemple, aux voyageurs
qui adaptent leur heure de départ et leurs choix d’itinéraire en anticipant des embouteillages
sur la route habituelle. Cette relation bidirectionnelle entre le comportement des voyageurs
et la dynamique du trafic est l’idée centrale des problèmes d’affectation du trafic et elle est
étudiée sous deux angles différents. Le premier est lié au problème d’affectation du trafic, dans
lequel les modèles de trafic au niveau du réseau sont obtenus à la suite des interactions entre
les choix de tous les voyageurs dans le réseau de transport, sur la base d’hypothèses générales
sur l’équilibre du réseau. Le second est lié aux choix des voyageurs, avec un accent particulier
sur l’identification et la classification des facteurs qui influencent leurs choix.

La motivation de cette thèse est d’obtenir des modèles de choix à la fois cohérents avec
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le comportement observé des voyageurs et généralisant bien au niveau du réseau à grande
échelle. En d’autres termes, des modèles qui font des prédictions précises dans toutes les paires
origine-destination (OD) dans un réseau de transport urbain, mais qui sont estimés avec des
observations sur un nombre limité de paires OD. L’idée générale est de mettre en œuvre, à
l’avenir, ces modèles de choix dans des algorithmes d’affectation dynamique du trafic, et ainsi
d’obtenir des schémas de trafic simulés dans une perspective comportementale. Les modèles
de choix sont déduits des données collectées par des expériences informatiques réalisées sur
une plateforme informatique Mobility Decision Game (MDG). Cependant, comme les choix des
voyageurs ne peuvent pas être observés dans un si grand nombre de paires de OD et d’itinéraires
que l’on trouve dans un réseau urbain, une méthodologie pour collecter les observations des
choix des voyageurs par des expériences informatiques est d’abord nécessaire. Les modèles
estimés avec des données provenant de cette méthodologie devraient pouvoir évoluer, d’un
petit ensemble de paires de OD observables, jusqu’au niveau du réseau complet. D’une manière
générale, les objectifs de cette thèse sont :

1. Framework for the estimation of choice models at full-scale network level.
Concerne la conception d’expériences, l’expérimentation et la généralisation des choix
observés au réseau grandeur nature. Celui-ci comprend l’échantillon d’un petit ensem-
ble de paires OD et d’itinéraires du réseau routier de la ville de Lyon en France, sur
lesquels se déroulent les expériences d’itinéraires et d’heures de départ. L’échantillon
doit être représentatif du réseau routier, et les choix observés sur ces paires OD et ces
itinéraires doivent se généraliser au niveau du réseau à grande échelle. En d’autres ter-
mes, les modèles de choix estimés avec des données sur les petites paires et itinéraires OD
représentatifs doivent approximer avec une bonne précision les choix dans l’ensemble du
réseau.

2. Spécification et sélection d’un modèle de choix. Il s’agit de trouver, sur la base des
résultats de l’analyse quantitative des résultats des expériences sur les MDG, un modèle
de choix d’itinéraire et d’heure de départ qui fait des prédictions précises. L’impact des
attributs des paires OD et des itinéraires, les informations de temps de trajet fournies aux
participants, ainsi que l’hétérogénéité des préférences des voyageurs sont pris en compte
par les modèles.

Afin d’estimer et de tester différents modèles de choix, le comportement des voyageurs doit
être observé. L’approche de cette thèse pour étudier le comportement des voyageurs dans les
réseaux de transport passe par des expériences informatiques à grande échelle, pour lesquelles
une plateforme nommée Mobility Decision Game (MDG) a été développée. Contrairement
à d’autres expériences préférence déclaré, le MDG permet d’observer les choix d’un grand
nombre de participants dans différentes situations (voir Fig. 1), ce qui est essentiel pour inférer



des modèles de choix au niveau du réseau à grande échelle. Le MDG est un jeu informatique
basé sur le Web conçu pour confronter les participants à des problèmes de décision concernant
l’heure de départ et les choix d’itinéraire pour effectuer un voyage. Les problèmes de décision
sont placés sous différents scénarios hypothétiques, comprenant des paires OD reliées par trois
itinéraires alternatifs avec des attributs contrastés et des conditions de trafic variables. Les
scénarios se produisent dans un environnement simulé dynamiquement du réseau réel de la
ville de Lyon, en France, dans lequel les conditions de circulation sont générées en temps réel
par un seul simulateur microscopique dynamique. Au cours d’une expérience MDG, plusieurs
paires de OD sont attribuées aux participants, ce qui permet d’observer les choix des mêmes
participants dans différentes paires de OD. En outre, certains des participants peuvent recevoir
des informations sur la circulation sous forme de temps de trajet.

Figure 1: Deux paires OD jointes par trois voies pour l’expérience MDG. Les expériences con-
sistent à choisir un itinéraire sur trois pour effectuer un voyage. Les conditions de circulation et
les attributs d’itinéraire variables permettent d’observer les choix des voyageurs dans différentes
situations sur la ville de Lyon en France.

Le modèle adopté dans cette thèse pour prédire les choix des voyageurs est le modèle mixed
logit (McFadden, 1984, McFadden and Train, 2000), qui appartient au cadre de maximisa-
tion de l’utilité aléatoire (Mcfadden, 1972). Ce cadre suppose que les individus obtiennent
un certain niveau d’utilité de chaque alternative dans une situation de choix, et qu’ils choisis-
sent l’alternative avec l’utilité maximale, c’est-à-dire que les individus sont des maximiseurs
d’utilité. Dans les modèles de maximisation d’utilité aléatoires, l’utilité obtenue à partir d’une
alternative est liée aux attributs de l’alternative et du décideur. En conséquence, les choix
des décideurs s’expliquent par des variables mesurables et qui dépendent de la paire OD et



de la situation (itinéraires et conditions de trafic). De plus, le nombre d’hypothèses sur les
paramètres du modèle est petit, et celles-ci peuvent être facilement déduites des données, ob-
tenant des représentations succinctes de l’utilité et des probabilités de choix. Par conséquent,
les modèles de maximisation de l’utilité aléatoire sont bien adaptés pour la prédiction des choix
des voyageurs sur un réseau à grande échelle. Une sélection rigoureuse des scénarios sur lesquels
évoluent les expériences des MDG permet d’estimer des modèles de choix qui se généralisent
bien au niveau du réseau à grande échelle, et de tester et sélectionner la spécification du modèle
qui représente le mieux les choix des participants aux expériences.

Plan de la thèse

Cette thèse comprend quatre études sur le comportement des voyageurs. Ces études sont
toutes basées sur les données obtenues par des expériences informatisées de parcours et d’heures
de départ, réalisées avec la plateforme Mobility Decision Game. Le deuxième chapitre de la
thèse présente cette plateforme. Par la suite, les quatre études sont présentées, organisées en
deux parties : la première consacrée au comportement de choix d’itinéraire et la seconde au
comportement de choix d’itinéraire commun et d’heure de départ. Une brève description des
chapitres de la thèse est donnée ci-dessous.

Chapitre 2. Ce chapitre présente le MDG, une plate-forme informatique (développée par le
laboratoire LICIT) pour étudier le comportement des voyageurs dans les réseaux de trans-
port à grande échelle. Le MDG est un jeu informatique basé sur le Web conçu pour con-
fronter les participants à une variété de problèmes de décision concernant le mode, l’heure
de départ et les choix d’itinéraire pour effectuer un voyage. Les problèmes de décision
sont placés sous différents scénarios hypothétiques, c’est-à-dire des paires OD jointes par
trois itinéraires alternatifs qui contrastent dans leurs attributs et avec des temps de tra-
jet variables. Cela permet d’étudier les déterminants des décisions des participants dans
différentes circonstances.

Part I: Choix d’itinéraire

Chapitre 3. Ce chapitre présente une brève revue de la littérature sur le comportement des
voyageurs. L’objectif est de fournir une classification grossière des lignes de recherche
sur les études qui se trouvent dans la littérature, en mentionnant certains des aspects
du comportement des voyageurs qui ont été largement étudiés. Ensuite, une revue de la
littérature sur les modèles de choix discrets est donnée. L’accent est mis sur la dérivation
et l’estimation du modèle logit mixte, qui est l’approche de modélisation choisie dans
cette thèse.



Chapitre 4. Dans un réseau à grande échelle, les voyages sont effectués dans des milliers de
paires origine-destination (OD) reliées par plusieurs itinéraires, résultant en un grand
nombre d’alternatives aux caractéristiques diverses qui influencent le comportement de
choix d’itinéraire des voyageurs. Par conséquent, pour prédire avec précision les choix
des utilisateurs à l’échelle du réseau, un modèle de choix d’itinéraire doit être évolutif
pour s’adapter à toutes les configurations possibles qui peuvent être rencontrées. Dans ce
chapitre, une nouvelle méthodologie pour obtenir un tel modèle est proposée. L’idée prin-
cipale est d’utiliser partitionnement de données pour obtenir un petit ensemble de paires
et d’itinéraires OD représentatifs qui peuvent être étudiés en détail par des expériences de
choix d’itinéraire informatique pour recueillir des observations sur le comportement des
voyageurs. Les résultats sont ensuite mis à l’échelle vers toutes les autres paires OD du
réseau. Il a été constaté que 9 configurations de paires OD sont suffisantes pour représenter
le réseau de Lyon, en France, composé de 96 096 paires OD et 559 423 itinéraires. Les
observations, recueillies sur ces neuf configurations de paires OD représentatives, ont été
utilisées pour estimer trois modèles logit mixtes. La précision prédictive des trois modèles
a été testée par rapport à la précision prédictive des mêmes modèles (avec la même
spécification), mais estimée sur des configurations de paires OD sélectionnées au hasard.
Les résultats obtenus montrent que les modèles estimés avec les paires OD représentatives
sont supérieurs en précision prédictive, suggérant ainsi l’extension à l’ensemble du réseau
des choix des participants sur les configurations de paires OD représentatives, et validant
la méthodologie de cette étude.

Chapitre 5. Des études empiriques récentes ont révélé que les choix d’itinéraire des voyageurs
s’écartent de la rationalité parfaite, en montrant que les déplacements urbains ne suivent
pas nécessairement les itinéraires les plus courts (Papinski et al., 2009, Thomas and Tutert,
2010, Zhu and Levinson, 2015, Hadjidimitriou et al., 2015, Yildirimoglu and Kahraman,
2018b). Cependant, il n’y a pas de consensus sur la mesure dans laquelle le comportement
de choix d’itinéraire des voyageurs s’écarte de l’hypothèse rationnelle parfaite. L’objectif
de cette étude est de contribuer à la compréhension de la façon dont les voyageurs traitent
le temps de trajet lorsqu’ils font des choix d’itinéraire et de quantifier dans quelle mesure
les utilisateurs sont des minimiseurs de temps de trajet stricts ou si une rationalité limitée
est observée. La question de savoir si les voyageurs évaluent les différences de temps de
voyage en termes absolus ou relatifs est également abordée, et l’hétérogénéité du com-
portement de choix d’itinéraire des voyageurs a été étudiée. Les résultats des expériences
informatiques de choix d’itinéraire, axés sur les choix d’itinéraire dans diverses paires
OD et conditions de trafic, sont analysés. Il a été constaté que les voyageurs évaluent
les différences relatives plutôt qu’absolues dans le temps de trajet. Dans 60,5% des voy-



ages, les participants ont choisi l’itinéraire le plus rapide, mais ce pourcentage est de 80%
lorsque le temps de trajet des alternatives est au moins 30% supérieur à l’itinéraire le plus
rapide. Seulement 10% des individus ont choisi l’itinéraire le plus rapide dans tous les
voyages, confirmant l’hypothèse de rationalité limitée. Les participants présentaient des
bandes d’indifférence hétérogènes en termes de temps de trajet : au moins 70% d’entre
eux ne considéreraient pas les itinéraires avec des temps de trajet 1,5 fois plus lents que
l’alternative la plus rapide ; le participant moyen était indifférent aux différences de temps
de voyage relatives inférieures à 31%.

Chapitre 6. Dans ce chapitre, un modèle de choix qui prend en compte le comportement
rationnel limité dans la génération des ensembles de choix des individus pour le choix
de l’itinéraire est développé (modèle BRCS). Dans le BRCS, la distribution des bandes
d’indifférence est déduite de manière endogène en estimant conjointement la génération
d’ensembles de choix et les choix de route. Le modèle est proposé comme alternative
au modèle logit mixte (MXL) dans le Chapitre 5, où les bandes d’indifférence estimées
individuellement sont estimées de manière exogène et entrent ainsi dans le modèle en
tant que variables indépendantes. Le modèle BRCS est comparé, en termes de précision
prédictive, au modèle MXL en utilisant des données synthétiques et réelles, obtenues à par-
tir des expériences avec la plate-forme MDG. Les résultats montrent que le modèle BRCS
est capable d’inférer la distribution des bandes d’indifférence pour les données générées
synthétiques. De plus, pour ces données, le BRCS montre une précision prédictive plus
élevée que le modèle MXL. Dans le cas des données sur les MDG, le modèle BRCS présente
une précision prédictive plus élevée que le MXL et le MXL avec des bandes d’indifférence
estimées de manière exogène du Chapitre 5.

Conclusions de la partie I: sélection du modèle de choix d’itinéraire. En conclusion de
la partie choix de l’itinéraire de la thèse, la précision prédictive est évaluée pour différentes
spécifications du modèle MXL, ainsi que du modèle BRCS.

Part II: Choix d’itinéraire et d’heure de départ

Chapitre 7. Dans un réseau unimodal (trajets en voiture), l’itinéraire et l’heure de départ
sont deux des principales décisions que les voyageurs prennent pour faire un voyage. Au
niveau agrégé, cela implique que les modèles de trafic dans le réseau unimodal s’expliquent
principalement par la somme de ces deux choix individuels. Dans ce chapitre, le com-
portement de choix de l’itinéraire et de l’heure de départ des voyageurs est étudié. À
cette fin, une expérience qui considère les deux décisions simultanément a été réalisée à
l’aide de la plate-forme MDG. L’objectif est de comprendre quelles variables influencent



les choix conjoints d’itinéraire et d’heure de départ des voyageurs, et de tester la perti-
nence du modèle MXL pour expliquer et prédire ces choix. Le modèle conjoint proposé ici
introduit des corrélations dépendantes du temps dans la spécification d’un modèle MXL.
Il est important de mentionner qu’il s’agit d’une enquête en cours et que les résultats ne
sont ni définitifs ni complets.

Contributions

Méthodologie pour l’estimation des modèles de choix d’itinéraire au niveau du
réseau à grande échelle. Une méthodologie, basée sur le partitionnement de données, est
proposée pour déterminer un sous-ensemble optimal de paires OD sur lesquelles les expériences
de choix sont effectuées. Un centröıde de cluster, étant l’élément qui minimise la distance
euclidienne à tous les éléments de cluster, peut être sélectionné pour représenter son groupe,
et l’ensemble de tous les centröıdes de cluster comme représentatifs de l’ensemble du réseau.
Les paires OD obtenues avec cette méthodologie ont trois propriétés qui les rendent adaptées
aux expériences de choix de route. Premièrement, ils couvrent une grande variabilité des paires
OD et des routes du réseau, c’est-à-dire qu’ils sont représentatifs du réseau à grande échelle.
Deuxièmement, la variance de leurs attributs est élevée, ce qui permet d’identifier l’influence
de chaque attribut dans les choix des participants. Troisièmement, le nombre de configurations
OD est petit, ce qui permet de collecter suffisamment de données dans chaque paire OD. Les
première et deuxième propriétés impliquent qu’un modèle de choix estimé avec des données sur
les paires OD représentatives se généralisera bien au reste des paires OD dans le réseau, dans le
sens que les choix dans n’importe quelle paire OD dans le réseau sont prédits avec précision. La
troisième propriété implique une estimation robuste des paramètres du modèle, c’est-à-dire des
erreurs d’estimation plus petites. Les modèles estimés avec les paires OD représentatives ont
montré une précision prédictive plus élevée que les modèles estimés avec différents ensembles
de paires OD.

Résultats du comportement de choix d’itinéraire des voyageurs. La première con-
statation principale est que les voyageurs évaluent les différences relatives plutôt qu’absolues
dans le temps de trajet. Cela signifie qu’une différence de 5 minutes dans le temps de trajet pèse
différemment pour des trajets de 10 et 30 minutes. Ce résultat a des implications pratiques
pour l’estimation des modèles de choix d’itinéraire, et donc dans l’affectation du trafic, où
l’expression du temps de trajet en termes relatifs pourrait accrôıtre le réalisme des prévisions.
Une deuxième constatation est qu’au niveau individuel, un petit pourcentage des participants
(10%) a toujours choisi la voie la plus rapide, ces participants peuvent être considérés comme
parfaitement rationnels. Le comportement des autres participants peut être mieux expliqué



par une rationalité limitée. À cet égard, il a été constaté que les participants sont hétérogènes
par rapport à leur bande d’indifférence, et qu’au moins 70% d’entre eux ne considéreraient pas
les itinéraires avec des différences de temps de trajet 1,5 fois plus lent que l’alternative la plus
rapide. Le participant moyen n’a pas considéré les itinéraires avec des différences de temps de
trajet 1,3 fois plus lents que l’alternative la plus rapide.

Modèle de choix d’itinéraire pour un comportement rationnellement limité. Un
modèle de choix d’itinéraire rationnellement limité a été proposé: le modèle de rationalité limité
pour la génération d’ensemble de choix (BRCS). Cette modèle considère (i) un processus de
génération d’un ensemble de choix rationnel limité dans lequel les itinéraires alternatifs avec des
différences de temps de trajet au-dessus d’un certain seuil (bande d’indifférence) sont supprimés
des alternatives disponibles, et (ii) un processus de choix rationnel pour les alternatives dans
l’ensemble de choix généré. L’ensemble de choix et le choix de route sont tous deux estimés
conjointement, ce qui permet au BRCS d’inférer implicitement la distribution de la bande
d’indifférence de la population latente. Le processus de génération d’ensembles de choix suppose
une distribution paramétrique pour les bandes d’indifférence. La capacité du modèle à déduire
la distribution des bandes d’indifférence a été testée à l’aide de données synthétiques et réelles.
Dans les deux cas, le modèle a donné une précision prédictive supérieure au modèle logit mixte
classique.

Données sur l’itinéraire des voyageurs et le comportement de choix de l’heure de
départ. Une dernière contribution concerne les données sur les choix des voyageurs collectées
pour l’élaboration de cette thèse. Les données proviennent de 16 expériences, dont 9 ont été
utilisées dans l’élaboration de cette thèse, totalisant 7 510 choix effectués par 717 participants
différents sur 41 paires de DO. Les données seront accessibles au public.

Cette thèse fait partie d’un projet européen ERC intitulé MAGnUM: Approche de modélisation
du trafic multi-échelle et multimodale pour la gestion durable de la mobilité urbaine.
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1 Introduction

During the last century, the world’s population has witnessed an unprecedented process of
urbanisation. In 1950, 30% of the world’s population lived in cities, by 2018 they are home to
half of the people worldwide and this percentage is projected to increase by 68% by the year 2050
(U.N., 2019). Notwithstanding the benefits that cities represent for their inhabitants, such as
access to labour, health, education and other services, there are drawbacks that present serious
challenges for their future viability. Traffic congestion is amongst them. Traffic congestion is
the cause of monetary losses as well as the emission of pollutants that are, in turn, the cause
of premature death amongst their inhabitants and a major contributor to the warming of our
planet. It is in this context that strategies that help reduce congestion become relevant. To test
the feasibility of different traffic reduction strategies, researchers and network managers rely on
traffic simulation. In traffic simulation, travellers are assumed to follow a behavioural model
that determines their travel choices, these choices are then considered altogether during a period
of time in order to produce the traffic patterns in the networks. This allows to anticipate the
impact of traffic control strategies under different scenarios: demand levels, network topology
and traffic facilities. It is in this sense that understanding and approximating the behaviour
of travellers is indispensable to forecast the states of a transportation network, in both normal
and hypothetical scenarios.

The experimental studies on travellers’ behaviour usually focus on the particular determi-
nants of travellers’ choices, and thus consider limited environments in their experiments: few
OD pairs and routes and traffic conditions. As a consequence, the choice models derived from
data coming from these experiments play a more interpretative than predictive role: their pur-
pose is to understand the role of different traits that influence travellers’ behaviour, rather
than predicting their choices across the different situations found in the road network. In this
thesis, choice models are studied from the predictive perspective. The objective is to formulate
models capable of predicting the route choices at a full-scale urban network level, which is
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necessary for simulators to realistically represent the traffic conditions. For this purpose, the
behaviour of travellers is studied through computer-based experiments. The experiments in
this thesis comprise a large variety of situations (OD pairs, routes and traffic conditions) that
resemble those that travellers find when travelling in an urban environment. This variety of
situations must be taken into account in order to obtain choice models capable of scaling-up at
the network level.

1.1 Background and motivation

When travelling in a city, travellers face several decisions regarding the (i) activity to engage,
(ii) the destination of the trip, (iii) the mode of transportation, (iv) the departure time, and
(v) the route to complete the trip. These individual decisions altogether shape the traffic states
in the transportation network at a given time. However, at the same time that the states of
the network are the consequence of travellers’ choices, the characteristics and traffic states of
the network influence travellers’ decisions. One might think, for example, of travellers adapting
their departure time and route choices anticipating congestion on the usual road. This bidi-
rectional relationship between travellers’ behaviour and traffic dynamics is the central idea in
network loading problems, and it is studied from two different perspectives. The first is related
to the traffic assignment problem, in which the traffic patterns at network-level are obtained as
the result of the interactions between the choices of all travellers in the transportation network,
based on general assumptions about network equilibrium. The second is related to the choices
of the individual travellers, with particular emphasis on the identification and classification of
the factors that influence their choices.

In traffic assignment, the demand from all origins to all destinations is assigned to the roads
in the network by assuming a general behavioural principle governing the choices of travellers.
The first and simpler of such principles is the well-known Wardrop’s first principle or user
equilibrium (UE) (Wardrop, 1952), defined as the state of the network in which no user may
lower his transportation cost through unilateral action. UE assumes that all users in the network
are utility maximisers (or cost minimisers) and thus the traffic patterns in the network are the
result of all travellers minimising their travel cost simultaneously. Since then, considering other
models of behaviour for the travellers, alternative definitions of network equilibrium have been
proposed, such as stochastic user equilibrium (SUE) (Daganzo and Sheffi, 1977), which is based
on random utility theory, and boundedly rational user equilibrium (BRUE) (Mahmassani and
Chang, 1987), based on the bounded rationality hypothesis. In traffic assignment, the emphasis
is placed on how the various behavioural principles derive in different traffic patterns, and on
the methods to solve the network loading problem to determine static or dynamic traffic states
at large scale. The choice models that dictate the individual behaviour of the travellers are,
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in this case, considered as simplified mathematical abstractions that permit to compute the
assignment under the different behavioural principles. Moreover, since the aim is to derive the
full path flow distributions at the network level, little attention is paid to the fine calibration
of the individual user behaviour.

Studies, from the perspective of the individual behaviour of travellers are mainly concerned
with the specific factors that influence their choices. Travellers’ behaviour is a process which
involves psychological and cognitive mechanisms through which travellers perceive and evaluate
the states of the network, and then make decisions accordingly (Bovy and Stern, 1990, Ben-
Akiva et al., 1999). Although this definition may appear simple, there are many factors,
associated to both the traveller and the environment, that intervene in this process, making it a
complex problem. These factors are heterogeneous (as heterogeneous as individuals can be), and
they interact in ways that are not easily observable to produce the choices. In the route choice
context, studies have been made to understand the learning process of travellers (Iida et al.,
1992, Bogers, 2005, Selten et al., 2007) and its relationship to the formation of habit, familiarity
and the exploration of the alternative routes (Srinivasan and Mahmassani, 2000, Prato et al.,
2012, Kaplan and Prato, 2012). The reliability of the travel time in alternative routes has been
found to play a major role in route choice. Travellers (or the great majority of them) exhibit risk-
aversion, and thus they prefer slower reliable routes rather than fast unreliable ones (Abdel-Aty
et al., 1997, Avineri and Prashker, 2005, Ben-Elia and Shiftan, 2010). However, risk aversion
is heterogeneous amongst travellers, and between trip purposes (Ramos, 2015), and depends
on the value of time of the travellers (de Palma and Picard, 2005). Another line of research
largely treated in literature is the effect of travel information on the route choices, with special
interest on the impact of information on the travel time minimisation behaviour (Bonsall, 1992,
Ben-Elia and Shiftan, 2010, Adler and McNally, 1994, Abdel-Aty et al., 1997) and its effects on
the social cost (Mahmassani and Jayakrishnan, 1991, Ben-Akiva et al., 1992, Rapoport et al.,
2014a, Ben-Elia and Avineri, 2015). Studies about variables other than travel time that explain
the choices of travellers can be found in Bovy and Stern (1990), Ramming (2002). The above-
mentioned studies are predominantly based on laboratory-like experiments, where participants’
choices are observed on simple scenarios (two or three routes in few OD pair configurations)
that do not cover the multiplicity of situations that are found in a city-scale transportation
network. These simplifications are made in order to guarantee the internal validity of the
experiments. For example, if the objective is to measure the impact of travel time reliability
in the route choices of travellers, then it suffices to present choice problems to the participants
with only two alternative routes; the shape and attributes of the routes are irrelevant. This is
justified because including more routes in the experiment or showing extra information on the
alternatives render the analysis of the results more complicated, as the effect of the variable
being investigated is confounded with the effect of the rest of the attributes of the alternatives.
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Since the objective of these studies is to understand the determinants of travellers’ behaviour,
the choice models in these works play a mainly interpretative role. At full-scale network level,
the choices of travellers are made over thousands of OD pair configurations that consist of short
and long trips as well as routes that differ in their attributes. In the case concerning this thesis,
the city of Lyon in France, the network has 19,967 links and 19,697 nodes. Therefore, these
choice models may not generalise well to the amount of situations that are found in an urban
network, in the sense that their predictions may not be accurate in OD pairs with different
enough characteristics.

The motivation of this thesis is to obtain choice models that are both consistent with the
observed behaviour of travellers, and that generalise well at full-scale network level. In other
words, models that make accurate predictions in all OD pairs in an urban transportation
network, but that are estimated with observations on a limited number of OD pairs. The
general idea is to implement, in the future, these choice models in dynamic traffic assignment
algorithms, and thus obtain traffic patterns simulated from a behavioural perspective. To at-
tain consistency with travellers’ behaviour, the choice models are inferred from data collected
through computer-based experiments. However, since the choices of travellers cannot be ob-
served in such a large number of OD pairs and routes that are found in an urban network,
first a methodology to collect observations of the choices of travellers through computer-based
experiments is required. Models estimated with data coming from this methodology should be
able to scale-up, from a small set of observable OD pairs, to the full-network level. Broadly
speaking, the objectives of this thesis are (i) building a methodology that allows to estimate
choice models over a full-scale road network, and (ii) selecting an appropriate model specifica-
tion to be applied to a large-scale network, taking into account different aspects of travellers
behaviour.

1.2 Research approach

In order to estimate and test different choice models, the behaviour of travellers need to be
observed. There are two recognised methods to collect data on travellers’ behaviour: stated
preference (SP), in which subjects are faced with hypothetical choice situations, and revealed
preferences (RP), that are based on direct observation of the choices of travellers in real-world
situations or based on surveys asking for actual travel behaviour. In the route choice context,
an example of a SP experiment might be a survey in which the respondents are faced with
choosing the route that they would, given different attributes and congestion scenarios in the
alternative routes. If the same route experiment were based on the RP method, then the actual
route choices of travellers would be observed (through GPS, for example), or asked via a survey.
Examples of studies about travellers’ behaviour based on SP data are Iida et al. (1992), Adler
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and McNally (1994), Mahmassani and Liu (1999), Ben-Elia and Avineri (2015); and examples
based on RP data are Bierlaire and Frejinger (2008), Ramos et al. (2012), Zhu and Levinson
(2015), Yildirimoglu and Kahraman (2018b). The SP and RP methods have advantages and
disadvantages (Kroes and Sheldon, 1988, Bovy and Stern, 1990, Train, 2003). On the one hand,
SP suffers from external validity of the responses, understood as the discrepancy between the
stated responses and the actual behaviour of the respondents in real-life situations. The lack
of external validity is caused by respondents stating intentions or opinions and not their actual
behaviour, which is explained by the absence of context in the experiment (e.g. change in
traffic conditions due to bad weather) or by the inadequacy of the incentives given to the
participants. On the other hand, the main disadvantages of the RP method are the lack of
awareness of the alternatives considered by the decision-makers and the lack of variability in the
scenarios in which the choices are made. The lack of awareness on the alternatives implies that
the researcher does not have information on the alternatives against which the decision-makers
evaluate their choices, inevitably introducing a new source of uncertainty and reducing the
internal validity of the experiments. The advent of the information technologies has facilitated
new forms to carry out behavioural experiments, notably, computer-based experiments, that
belong to the SP type. Although the computer-based SP experiments also suffer from the lack
of validity of traditional SP methods, they possess some characteristics that could attenuate
this issue. First, computer-based experiments permit to define more complex scenarios that
resemble real-life situations, and to present them to the participants in a more realistic and
intuitive way, providing more context to the situations in which the choices are made (Chen and
Mahmassani, 1993, Koutsopoulos et al., 1994, 1995). For example, by showing the alternative
routes over a map of the city. Second, by presenting the choice situations in a more intuitive
way, the cognitive burden of the participants is eased, allowing to increase the amount of choices
that can be collected from each individual thus reducing the costs of the experiments. Third,
the computer-based SP experiments make it possible to introduce consequences, in the form of
a score (score design), to the choices of the participants, allowing participants to earn points
as if it were a game. This could enhance the engagement of participants, although the design
of the score may also influence the respondents’ strategies (Bogers et al., 2005).

The approach in this thesis to investigate travellers’ behaviour in transportation networks is
through computer-based experiments at large scale, for which a platform named the Mobility
Decision Game (MDG) has been developed. Contrary to other SP experiments, the MDG
allows to observe the choices of a large number of participants under different situations (see
Fig. 1.1), which is essential for inferring choice models at full-scale network level. The MDG
is a web-based computer game designed to confront the participants in the experiments with
decision problems regarding the departure time and the route choices to complete a trip. The
decision problems are placed under different hypothetical scenarios, comprising of OD pairs
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joined by three alternative routes with contrasting attributes and varying traffic conditions.
The scenarios occur in a dynamically simulated environment of the real network of the city of
Lyon, France, in which the traffic conditions are generated in real-time by a single dynamic
microscopic simulator. During a MDG experiment, multiple OD pairs are assigned to the
participants, allowing to observe the choices of the same participants in different OD pairs.
Furthermore, some of the participants may receive traffic information in the form of travel
time.

Figure 1.1: Two OD pairs joined by three routes for the MDG experiment. The experiments
consist in choosing one out of three alternative routes to complete a trip. The varying traffic
conditions and route attributes allow to observe the choices of travellers in different situations
over the city of Lyon in France.

The model adopted in this thesis to predict the choices of travellers is the mixed logit
model (McFadden, 1984, McFadden and Train, 2000), which belongs to the random utility
maximisation framework (Mcfadden, 1972). This framework assumes that individuals obtain
a certain level of utility from each alternative in a choice situation, and that they choose the
alternative with the maximum utility, i.e., individuals are utility maximisers. In random utility
maximisation models, the utility obtained from an alternative is related to the attributes of both
the alternative and the decision-maker. As a consequence, the choices of the decision-makers
are, to some extent, explained by variables that can be measured and that depend on the OD
pair and on the situation (OD pair and traffic conditions). Moreover, the number of assumptions
about the parameters of the model is small, and these can be easily inferred from the data,
obtaining succinct representations of the utility and the choice probabilities. Therefore, random
utility maximisation models are well-suited for the prediction of travellers’ choices at full-scale
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network. A careful selection of the scenarios over which the MDG experiments evolve, permits to
estimate choice models that generalise well to the full-scale network level, and to test and select
the model specification that best represent the choices of the participants in the experiments.

1.3 Research objectives and questions

The objective of this thesis is to propose and estimate choice models that predict accurately
the choices of travellers over the diversity of situations found in a transport network. To attain
this objective, empirical evidence on travellers behaviour is collected through computer-based
SP experiments that permit to observe the choices of the participants on a diverse set of
scenarios (OD pairs and routes) with varying traffic conditions and travel time information.
The experiments focus on the route choices of uni-modal car trips that are based on the map of
the city of Lyon, France. The number of scenarios on which the choices of the participants can
be observed through the MDG is still limited, compared to the entire set of situations found on
a full-scale network. Therefore, the scenarios used for the experiments need to be determined
in order to represent the diversity of scenarios found on the entire network. This leads to
the first specific objective of this thesis, the estimation of choice models at full-scale network
level, which deals with the design of the choice experiments with the MDG. The second specific
objective of the thesis, the choice model selection, concerns the finding of route and departure
time models based on the collected empirical evidence. The specific objectives are stated in a
succinct manner below, together with the research questions that need to be answered for their
achievement.

Framework for the estimation of choice models at full-scale network level. Concerns
the design of experiments, the experimentation and the generalisation of the observed choices
to the full-scale network. This comprises the sample of a small set of OD pairs and routes of the
road network of the city of Lyon in France, over which the route and departure time experiments
are held. The sample must be representative of the road network at route attribute level, and
the observed choices over these OD pairs and routes must generalise at full-scale network level.
In other words, choice models estimated with data on the small representative OD pairs and
routes must approximate with good accuracy the choices in the entire network.

– Is it possible to represent the OD pairs and routes in a network with a small set of OD
pairs?

– Are choices in the representative OD pair set also representative of the choices in other
OD pairs?
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Choice model selection. Regards the finding of an appropriate route and departure time
choice model based on the findings of the quantitative analysis of the results of the MDG exper-
iments. The impact of the attributes of the OD pairs and routes, the travel time information
provided to the participants, as well as the heterogeneity of the preferences of the travellers are
accounted for by the models. Boundedly rational behaviour is considered in the development
of the models.

– What is the impact of the travel time information and route attributes on the choices of
travellers?

– Are travellers’ choices best explained from a perfect rational or boundedly rational paradigm?

1.4 Contributions

Methodology for the estimation of route choice models at full-scale network level.
A methodology, based on the cluster analysis, is proposed to determine an optimal subset of
OD pairs over which the choice experiments are carried out. A cluster centroid, being the
element that minimises the Euclidean distance to all the cluster elements, can be selected
to represent its group, and the set of all the cluster centroids as representative of the whole
network. The OD pairs obtained with this methodology have three properties that make them
suitable for the route choice experiments. First, they cover a large variability of the OD pairs
and routes of the network, i.e., they are representative of the full-scale network. Second, the
variance of their attributes is high, allowing to identify the influence of each attribute in the
choices of the participants. Third, the number of OD configurations is small, which allows
to collect enough data in each OD pair. The first and second properties imply that a choice
model estimated with data over the representative OD pairs will generalise well to the rest of
the OD pairs in the network, in the sense that the choices in any OD pair in the network are
accurately predicted. The third property implies a robust estimation of the model parameters,
i.e., smaller estimation errors. The models estimated with the representative OD pairs showed
a higher predictive accuracy than models estimated with different sets of OD pairs.

Travellers’ route choice behaviour findings. The first main finding is that travellers
evaluate relative rather than absolute differences in travel time. This means that a 5 minute
difference in travel time weights differently for trips of 10 and 30 minutes. This result has
practical implications for the estimation of route choice models, and thus in traffic assignment,
where expressing the travel time in relative terms could increase the realism of the predictions.
A second finding is that at individual level, a small percentage of the participants (10%) chose
always the fastest route, these participants can be considered as perfect rational. The behaviour
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of the rest of the participants can be better explained by bounded rationality. In this regard,
it was found that the participants are heterogeneous with respect to their indifference band,
and that at least 70% of them would not consider routes with travel time differences 1.5 times
slower than the fastest alternative. The average participant did not consider routes with travel
time differences 1.3 times slower than the fastest alternative.

Route choice model for boundedly rational behaviour. A boundedly rational route
choice model was proposed: the bounded rational choice set generation mixed logit model
(BRCS), which considers (i) a bounded rational choice set generation process in which the
alternative routes with travel time differences above a certain threshold (indifference band) are
removed from the available alternatives, and (ii) a rational choice process for the alternatives
in the generated choice set. Both the choice set and the route choice are jointly estimated,
allowing for the BRCS to implicitly infer the latent population’s indifference band distribution.
The choice set generation process assumes a parametric distribution for the indifference bands.
The ability of the model to infer the distribution of the indifference bands was tested using
synthetic and real data. In both cases the model resulted superior in predictive accuracy than
the classical mixed logit model.

Data on travellers’ route and departure time choice behaviour. A fourth contribution
is the data on travellers choices collected for the elaboration of this thesis. The data comes from
16 experiments, from which 9 were used in the elaboration of this thesis, totalling 7,510 choices
made by 717 different participants over 41 OD pairs. The data will be publicly available.

1.5 Thesis outline

This thesis comprises four studies about travellers’ behaviour. These studies are all based
on the data obtained through computer-based route and departure time experiments, carried
out with the Mobility Decision Game platform. The second chapter in the thesis introduces
this platform. Thereafter, the four studies are presented, organised into two parts: the first
dedicated to route choice behaviour and the second to joint route and departure time choice
behaviour. A short description of the thesis’ chapters is given below, followed by a diagram
explaining the relationship between them (Fig. 1.2).

Chapter 2. Presentation of the mobility decision game (MDG), the computer-based SP ex-
perimental tool used to collect data on travellers’ behaviour at large scale. This chapter
has as a secondary objective to document the functionalities of the tool.

Part I: Route choice behaviour
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Chapter 3. Review of the literature on route choice and random utility models. The selection
of the mixed logit model (MXL) as the modelling approach for the route choice behaviour
of travellers in this thesis is justified in this chapter.

Chapter 4. This chapter is concerned with the experimental design for the MDG, specifically,
the methodology to select the OD pairs for the route choice experiments in the MDG.
The selected OD pairs need to be representative of those found in the road network, such
that the choices collected over them generalise at full-scale network level.

Chapter 5. The factors that influence the route choices of travellers are analysed in this
chapter. In particular, the effect that travel time information and the road attributes
that can be observed over the road map of the city are studied. The bounded rationality
of participants with respect to travel time information is assessed, giving estimates on
the size and the heterogeneity of the indifference band.

Chapter 6. Based on the findings of Chapter 5, a model for route choice that assumes bound-
edly rational behaviour is introduced: the bounded rational choice set (BRCS) model.
The model considers a bounded rational choice set formation process and a rational choice
process. The predictive accuracy of the model is tested against that of the mixed logit
model using synthetic and real data.

Conclusions of part I: route choice model selection. As a conclusion of the route choice
part of the thesis, the predictive accuracy is assessed for different specifications of the MXL
model, as well as the BRCS model.

Part II: Route and departure time choice behaviour

Chapter 7. This chapter presents the first results of an investigation on simultaneous route
and departure time choice behaviour. A quantitative analysis of the results of the exper-
iments is done. A model is proposed for joint route and departure time choice where the
alternatives are correlated in time. This chapter is still an investigation in progress.

Chapter 8. This chapter concludes the thesis and provides future research perspectives.

1.6 List of publications

Peer-reviewed journal articles

• González Ramı́rez, H., Leclercq, L., Chiabaut, N., Becarie, C., Krug J. (2019). Unrav-
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2 Mobility decision game

This chapter introduces the mobility decision game (MDG), a computer platform (developed by
the LICIT laboratory) to investigate travellers’ behaviour in transportation networks at large-
scale. The MDG is a web-based computer game designed to confront the participants with a
variety of decision problems regarding the mode, the departure time and the route choices to
complete a trip1. The decision problems are placed under different hypothetical scenarios, i.e.,
OD pairs joined by three alternative routes that contrast in their attributes and with varying
travel times. This allows to investigate the determinants of the participants’ decisions under
different circumstances.

2.1 Motivation

There are two recognised methods to collect data on travellers’ behaviour: stated preference
(SP), in which subjects are faced with hypothetical choice situations, and revealed preferences
(RP), that are based on direct observation of the choices of travellers in real-world situations
or based on surveys asking for actual travel behaviour. In the route choice context, an example
of a SP experiment might be a survey in which the respondents are faced with choosing the
route that they would use, given different attributes and congestion scenarios in the alternative
routes. If the same route experiment were based on the RP method, then the actual route
choices of travellers would be observed (through GPS, for example), or asked via a survey.

The SP and RP methods have advantages and disadvantages (Kroes and Sheldon, 1988,
Bovy and Stern, 1990, Ben-Akiva et al., 1992, Earnhart, 2002, Train, 2003). In the case of SP,
the most important aspect impacting the reliability of the data is the validity of the responses,
understood as the discrepancy between the stated responses and the actual behaviour of the

1Even though the MDG is intended for experiments regarding the three choices, the studies in this thesis
concern only the route and departure time choices; the mode choice is not studied.
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respondents in real-life situations. This discrepancy introduces biases in the data that might
lead to wrong predictions or interpretations. The lack of validity is caused by respondents
stating intentions or opinions and not their actual behaviour, which is explained by the absence
of context in the experiment (e.g. change in traffic conditions due to bad weather) or by the
inadequacy of the incentives given to the participants. An example of this discrepancy can
be found in Ramos et al. (2012), where the authors observe that participants in a combined
RP and SP route choice experiment stated their preference for reliable routes, but that they
barely chose it as shown by the RP data. The lack of validity is not an issue for the RP
method, as choices are observed in the context in which they actually evolve, i.e., there are
no hypothetical situations that need to be described. The main disadvantages of the RP
method, with respect to the SP method, are (i) the lack of awareness of the alternatives and
the values that the variables describing the alternatives take at the moment of the decision,
and (ii) the lack of variability in the scenarios in which the choices are made, caused by the
limited situations in which the choices may occur. In the route choice problem, (i) implies
that the researcher does not have information on the alternative routes that are considered by
the traveller to complete a trip and, more important, the traffic conditions at the moment of
the choice are not known with certainty. Therefore, introducing a new source of uncertainty.
For example, in the GPS-based route choice experiments in Frejinger and Bierlaire (2007),
Frejinger et al. (2009), Zhu and Levinson (2015), Yildirimoglu and Kahraman (2018b), de
Moraes Ramos et al. (2020), the alternative routes joining each OD pair in the network had to
be generated, and their travel times inferred from the data. The implications of (ii) are that the
route choices may be observed under the same traffic conditions, causing multicolinearity in the
attributes that describe the alternatives (Ben-Akiva et al., 1992, Train, 2003). Following the
example of route choice, a low variability of the travel times on the alternative routes during the
experiment will make the effect of this variable indistinguishable. Considering the advantages
and disadvantages of both methods, the SP method can be regarded as a controlled laboratory
experiment that, nonetheless, introduces some biases in the data, and the SP method can be
regarded as observations in real-life situations which, on the other hand, are difficult to control.

The advent of the information technologies has facilitated new forms to carry out be-
havioural experiments, notably, computer-based experiments, that belong to the SP type.
Although the computer-based SP experiments also suffer from the lack of validity of tradi-
tional SP methods, they possess some characteristics that could attenuate this issue. First,
computer-based experiments permit to define more complex scenarios that resemble real-life
situations, and to present them to the participants in a more realistic and intuitive way, pro-
viding more context to the situations in which the choices are made (Chen and Mahmassani,
1993, Koutsopoulos et al., 1994, 1995). For example, by showing the alternative routes over
a map of the city. Second, by presenting the choice situations in a more intuitive way, the
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cognitive burden of the participants is eased, allowing to increase the amount of choices that
can be collected from each individual thus reducing the costs of the experiments. Third, the
computer-based SP experiments make it possible to introduce consequences, in the form of a
score, to the choices of the participants, letting participants earn points as if it were a game.
This could enhance the engagement of participants, although the design of the score may also
influence the respondents’ strategies.

In view of the aforementioned advantages and disadvantages of both SP and RP methods,
the decision to use one method over the other (or using both) responds to the purpose of the
study and availability of data. On the one hand, if the interest is the study of mobility patterns
without regarding the causes of travellers’ choices or the characteristics of the individuals, then
RP may be a better choice. Examples of this kind of studies are Brockmann et al. (2006),
González et al. (2008), Song et al. (2010), Tachet et al. (2017), which study general mathe-
matical patterns of human mobility by using GPS or cell phone data. When the number of
observations is large enough to infer the conditions of the environment and cost is not a limita-
tion, then RP technique would also be more adequate. The studies of Zhu and Levinson (2015),
Yildirimoglu and Kahraman (2018b) are examples in which the high density of observations
allows to estimate the travel times in the network. On the other hand, if the interest is the
study of the determinants of travellers’ choices, then SP may be more adequate. Examples of
SP in the route choice context found in literature, including computer-based experiments, are
the studies on the learning process of travellers of Iida et al. (1992), Bogers (2005), Selten et al.
(2007), the impact of advanced travel information systems (ATIS) in travellers route choices
in Adler and McNally (1994), Lotan (1997), Mahmassani and Liu (1999), Ben-Elia and Shif-
tan (2010), Ben-Elia and Avineri (2015), Abdel-Aty et al. (1997), Srinivasan and Mahmassani
(2000), and the effect of travel time variability and risk attitudes of travellers in De Moraes
Ramos et al. (2013), Avineri and Prashker (2005), de Palma and Picard (2005), to mention
some.

2.2 Definition of the MDG

In an experiment with the MDG, participants are confronted with decision problems under
different scenarios. A decision problem consists in travelling from an origin to a destination,
for which the participants are required to make several choices related to the departure time,
the mode of transportation, and the route choice. A scenario is the environment in which the
decision problems are placed, notably: the transportation network, the OD pairs and routes
where the decisions are made, and the traffic conditions that determine the travel times on
each of the alternatives. The MDG platform is in charge of both creating the scenarios and
presenting the decision problems to the participants. To generate the scenarios in which the
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choices are made, the MDG interacts in real-time with a single dynamic microscopic simulator.
In the MDG, the participants access simultaneously to the experiment through a dedicated
web interface, showing the map of an urban network (see Fig. 2.1). During a MDG session,
multiple OD pairs are assigned to the participants, allowing to observe the choices of the same
participants in different OD pairs. Furthermore, some of the participants may receive traffic
information in the form of travel time estimates or congestion maps. Thus, the MDG permits
to investigate the determinants of the participants’ decisions under different transportation and
traffic information conditions.

Figure 2.1: MDG interface. An OD pair and three alternative routes are shown over a section
of the Lyon network in the MDG. The left menu allows participants to choose the mode of
transportation, the departure time and the route choice.

2.2.1 Scenarios

Scenarios in the MDG are defined as the environment or the conditions in which the decision
problems faced by the participants happen. They consist in an urban road network, its traffic
conditions, and the OD pairs and routes where participants’ choices are made. Therefore,
a scenario can be defined more precisely as the road traffic conditions that the participants
face when making a trip between a specific OD pair in a specific urban network. An important
characteristic of the MDG is its ability to present participants with several and diverse scenarios.
The scenarios in the experiments can be configured to study different aspects of travellers’
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behaviour.

Network description. The network description is the map representation of the road net-
work of an urban area. This representation allows the participants in the experiments to observe
some of the characteristics of the proposed routes, such as the functional class, depicted as the
width of the links; and the number of intersections. Other characteristics of the network are
depicted using different colours, as parks (green) and water bodies (blue). Two road networks,
based on the real road network of the city of Lyon, were used in the experiments: Lyon-full
network, the complete road network inside the peripheral ring, and the Lyon-36V network, a
subnetwork of the former that includes a segment of the peripheral ring. The former network
is composed of 3,663 links, whereas the second of 19,967 links (see Fig. 2.2). The trips’ origins
and destinations come from the zoning defined by the National Institute of Statistics and Eco-
nomic Studies (INSEE) (Institut national de la statistique et des études économiques, 2018),
and the major entry/exit points to the network. The zones are the geostatistic units used for
the trip demand estimations and represent the origins and destinations of the trips generated or
terminated inside the network. The entry and exit points represent the origins and destinations
of the demand coming or going outside the network. In the Lyon-full network, there are 285
zones, 29 entry points and 28 exit points. The total number of origins is 313 and of destinations
310 (this quantity does not correspond exactly to the sum of zones plus entries/exits as there
are zones that may have no outgoing or incoming trips), giving a total number of 96,096 OD
pairs (see Fig. 2.2). The routes joining the origins to the destinations are derived with the A∗

algorithm looking for the k-shortest paths in free-flow travel time. The routes in a random
sample of 100 OD pairs were compared to those obtained in Google Maps R©, finding a good
match between them. The total number of routes in the network, obtained with this algorithm,
is 559,423, with an average number of 5.82 routes per OD pair. The network of Lyon-36V is
composed of 71 zones, 14 entry points and 13 exit points (see Fig. 2.2). The total number of
origins and destinations are, respectively, 85 and 84, giving a total number of 9,494 OD pairs.
The total number of routes defined for this network is 40,938, with an average of 4.3 routes per
OD pair. The characteristics of the road networks are summarised in Table 2.1.

Table 2.1: Characteristics of the Lyon-full and Lyon-V36 road networks.

Network No. links No. zones No. entries No. exits No. ODs No. routes No. routes/OD

Lyon-full 19,967 285 29 28 96,096 559,423 5.8
Lyon-V36 3,663 71 14 13 9,494 40,938 4.3

Traffic conditions. The traffic conditions in the network are dynamically generated by a mi-
croscopic traffic simulator, based on the LWR traffic model (Leclercq, 2007, Laval and Leclercq,
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Figure 2.2: Lyon-full and Lyon-V36 OD pairs. The zones are depicted in different colours with
their centroids in blue. The entry/exit points to the network are depicted with yellow points.

2008, 2010). The simulator generates and handles all the trips that populate the transportation
network. The choices of the participants are considered as updated trip specifications by the
microscopic simulator. This alters the traffic conditions in the network. To produce different
traffic patterns in the network, the global demand (network level) as well as the local demand
(OD pair and alternative level) are predefined. The demand, both global and local, can change
over the simulated time periods, so the traffic conditions in the network vary throughout the
experiment. The global demand is given by the trip rate (number of trips generated per second)
in the whole network. These trips are then distributed locally amongst all the OD pairs in the
network following the OD matrix, which contains the share of the global trips in each OD pair.
The distribution of the travel demand has been built upon the estimation of the real dynamic
OD matrix (Krug et al., 2019) with adequate modifications to increase the diversity of travel
time configurations for the OD pairs where decisions of participants are made. It corresponds
to the travel distribution during the morning rush hour. Finally, the local trips are assigned
to each of the routes connecting the OD pairs. In the experiments, the global demand and the
assignment in the playable OD pairs are designed to be time-dependent, with the objective to
obtain different traffic conditions on the same OD pairs (see Fig. 2.3 and Fig. 2.4). This allows
observe the change in route choice behaviour when the fastest alternative route is switched.
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Figure 2.3: Typical global demand profiles in the MDG experiments. The global demand has
an impact in the whole network traffic conditions. During the warm up period the network is
populated in order to arrive to the desire traffic conditions. The cool down period allows the
started trips to finalise.

Figure 2.4: Typical trip assignment profiles in the MDG experiments. The local demand is
distributed among the alternative routes to change their traffic conditions. On the left, the
assignment profile with constant trip distribution. On the right, the trip distribution on the
alternatives change to produce congestion in one of the three alternatives.

19



CHAPTER 2. MOBILITY DECISION GAME

Playable OD pairs and alternative routes. The set of OD pairs with three connecting
routes in which the decision problems are posed to participants, i.e., the origins and destinations
of the trips that the participants are asked to complete. These OD pairs are predefined in the
experiments. Three routes are proposed to the participants to complete a trip between an
OD pair in a decision problem; these routes constitute the choice set for the participants’
route choice. The playable OD pairs and alternative routes can be a subset of the OD pairs
and routes in the network, or can be manually defined. The limitation to three alternative
routes in the route choice problems (coming from technical limitations of the MDG) does not
restrict the scope of the experiments or diminishes the quality of the results for two reasons.
First, choice sets with many alternatives may be burdensome for participants as they may
have trouble identifying the differences between the routes. Second, the low variability between
routes attributes due to the small number of alternatives in the choice set is compensated by
the presence of many OD pairs.

2.2.2 Decision problem

A decision problem in the MDG consists in completing a trip on a particular OD pair, with
a given purpose and an objective arrival time. Participants are required to make a series
of choices regarding the mode of transportation, the departure time, and the route. Once a
trip is started, participants may also change the initially chosen route. The consequences of
participants’ choices are translated as a score, obtained after finishing a trip, that depends on
whether the mission was completed near the objective arrival time. More formally, a decision
problem in the MDG is composed of three components that are compulsory for the definition
and description of the problem, and one nonessential (optional) component. The three essential
components are: the statement of the problem, the choices of the respondents, and the score;
the nonessential component is the travel time information that is provided to the participants
as a support for their choices. It is worth mentioning that travel time information is of high
importance to study the influence of travel time on the choices of participants. The four
components and their description are listed below; they are also depicted in the flow chart
presented in Fig. 2.5.

Statement of the problem. The problem faced by the participants is to complete a trip on
time on a given OD pair. To this end, the following pieces of information are made available
to the participants.

• Objective arrival time. It is the target arrival time of the trip; participants are required to
complete the trip before the objective arrival time. The objective arrival time is computed
by the MDG, depending on (i) the time at which the decision problem is presented to the
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Figure 2.5: Flow chart of a MDG experiment (left) and decision problems (right).

participant, (ii) the travel time of that trip in the original microscopic simulation used by
the MDG, and (iii) an added margin with the purpose of giving more time to participants
to arrive on time. If we denote the arrival time of trip k in the simulation without humans
(unmodified by the players’ choices) as tak, then the objective arrival time, informed to
the participant who selected that trip, is given by tok = tak + δ, where δ is a (predefined)
constant.

• Purpose of the trip. Induces participants to value their time and their losses (late arrivals)
and to change their behaviour accordingly. The purposes can be, for example, “going to
work”, “going shopping” or “catching a train”.

Participants’ choices. Given the statement of the problem, the participants make one or
more choices to complete the trip. The choices that are allowed to the participants depend
on the objectives of the experiment. In some experiments, the choices can be limited to route
choice, whereas in other experiments the departure time and route choices might be considered
together. The choices that the participants can make in the MDG are:

• Planning phase. Choices faced by the participants before starting a trip (pre-trip choices).
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– Departure time choice. Participants can change the departure time of the trip to
select earlier or later departures to accomplish the objectives of the trip.

– Mode of transportation choice. Participants can choose between public and private
transportation modes to complete the trips.

– Route choice. Refers to the initial route choice of the participants. Depending on
the mode choice, different alternative routes are presented to the participants. From
these alternatives they are required to choose one.

• En-route phase. Choices faced by the participants once the trip is started.

– Rerouting. The participants can change the current route when they consider the
proposed alternatives are better.

Score. At the end of each trip, participants receive a numerical score that depends on the
difference between the objective arrival time of the trip (informed in the statement of the
problem) and the actual arrival time. The score is designed in order to capture the attention of
participants in the experiments. However, as noted by Bogers et al. (2005), providing a score
may influence the choices of participants, deviating their choices from what they would actually
choose in a real situation towards a score maximising behaviour. The score is produced by a
score function, a piece-wise linear function that can be customised to (i) penalise only late
arrivals, or (ii) penalise arrivals outside an interval centered at the objective arrival time. To
formally define the score functions, let t∗k and tarrk be the objective and observed arrival time of
trip k. Then, the score function, score1(tarr, t∗k), that penalises only late arrivals is given by

score1(tarrk , t∗k) =

S tarrk ≤ t∗k

0 otherwise ,
(2.1)

and the score function, score2(tarr, t∗k), that penalises arrivals outside the interval [t∗k−h1, t
∗
k+h1]

is given by

score2(tarrk , t∗k) =



0 tarrk < t∗k − h2

S
h2−h1

(tarrk − (t∗k − h2)) t∗k − h2 ≤ tarrk < t∗k − h1

S t∗k − h1 ≤ tarrk < t∗k + h1

− S
h2−h1

(tarrk − (t∗k + h2)) t∗k + h1 ≤ tarrk < t∗k + h2

0 t∗k + h2 ≤ tarrk .

(2.2)

The plots of these score functions can be seen in Fig 2.6.
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Figure 2.6: Shapes of the score function. Plots of the two score functions score1 (left) and
score2 (right).

Traffic information. Extra information that can be provided to some or all the participants
in order to study the influence that it might have in the choices of the participants.

• Messages. Are messages that can be sent to groups of participants with information that
may influence their choices. This option was not used for the experiments in this thesis.

• Travel time information. It is the estimate of the travel time in the alternative routes.
Travel time information allows the study of the influence of travel time on the choices of
participants. Depending on whether the information is consulted during the trip planning
phase or whether it is consulted when the trip is in the en-route phase, the estimates of
the travel time correspond to historical information or real-time information, respectively.
The historical information comes from a trip simulation with the same setting used in
the experiment, while the real-time information comes from the simulation running in
the experiment. The historical information is needed in the planning phase, since it is
not possible to easily estimate the travel times for future trips. In both cases, the travel
time information is obtained as the average travel time during a period of time on the
alternative routes. The average travel time is computed at link level by measuring the
average speed of the vehicles crossing the link during a period of time. Then, the travel
time information on the alternative routes is the sum of the average travel times in the
links that conform the routes. The travel time that is shown to the participants during
the planning phase, is obtained for the currently selected departure time period. For
example, if the currently selected departure time is set to 8:03, then the estimated travel
time information corresponds to the average travel time of the trips following the same
route that departed between 8:00 and 8:10; if the departure travel time is currently 8:16,
then the information shown is that of the period between 8:11 and 8:20. The real-time
travel time information is only shown at the points where the participants can re-route,
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and it corresponds to the average travel times on the alternative routes during the last time
period. In both cases, the travel time information given to the participants is uncertain
and no information on the distribution is provided.

• Congestion maps. Colours indicating the congestion state of the links in the network
(green, orange, red). They are produced using the average speeds in the links. As for
travel time information, the congestion maps in the planning phase come from historical
information, and in the en-route phase from real-time information. This option was not
used for the experiments in this thesis.

2.3 MDG gameplay

From the point of view of the participants, an experiment with the MDG consists in playing
missions, which correspond to trips from an origin to a destination with a given purpose and
an objective arrival time. When a player selects a mission, the target arrival time of the trip
is displayed. Then, the player chooses the mode of transportation, the departure time and,
finally, the route to complete the trip. Once the trip has started, the participants can re-route
at predefined points. A mission is finished when the destination is reached before the target
arrival time or when the target arrival time is not accomplished. A score, which is determined
by a score function and depends on whether the objective of the mission is accomplished, is
earned and informed after each mission. After a mission is finished, the participants may play
another one. The actions that the participants can perform during a MDG session and their
description are listed below; they are depicted in Fig. 2.7 and Fig. 2.8 with the corresponding
MDG interface.

1. Select mission. A mission corresponds to a trip with a purpose, such as going to work or
to the train station, and an objective arrival time. The origin and the destination of the
trip are placed on the map interface, and the objective is given to the participant.

2. Choice of departure time. The players can adjust their desired departure time to earlier
or later time.

3. Mode choice. The participants can choose several modes to complete their trip. An
estimated cost for each mode is given to the travellers.

4. Route choice. The participant chooses one of the three alternative routes that are pro-
posed in the MDG interface.

5. Reroute. Participants can change route once the trip has already started in predefined
choice points. New alternatives are proposed to the player, and, in the case they are
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receiving traffic information, the travel time estimate is shown along the proposed alter-
natives.

When travel time information is available to the participant, it is updated according to the
choices that are being explored (mode of transportation, route and departure time), i.e., before
the choices are made.

2.3.1 Interface

The interface of the MDG consists in the full map of a real road and public transport network,
such as Lyon, and the control panels with which the participants interact with the game. Also,
messages shown on the screen are part of the MDG interface. The elements of the MDG
interface are described below.

1. Log-in and registration screen.

2. Main interface. Composed of the map of the road and public transport network of the
city, displayed on the whole screen.

3. Mission menu. It is located at the bottom-right of the main interface and allows the
participants to select the mission they want to play.

4. Choice menu. Once a mission is selected, the choice menu appears on the left of the main
interface. All the choices pertaining the departure time, the mode, and the route choice
are made using this panel.

5. Messages. The objective of the missions and the score after a trip is finished are presented
to the participant in the form of messages placed at the centre of the screen.

6. Traffic information. The traffic information is presented as number near the origin of the
trip (or the reroute point) or and as a congestion map.

2.4 Experimental design

The design of an experiment is led by the particular behavioural traits that are being investi-
gated. This is achieved by the adequate definition of the decision problems and scenarios in
the MDG. The scenarios for the route choice experiments were selected based on the variables
that influence the route choices of travellers (Bovy and Stern, 1990). These variables, however,
are based on real-world choices where decisions are the result of both navigational and map-
reading tasks. Since the choices in the MDG are limited to map-reading tasks, many of these

25



CHAPTER 2. MOBILITY DECISION GAME

Figure 2.7: MDG gameplay with interface description. The flow chart of the experiment is
presented alongside its interface.
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Figure 2.8: MDG gameplay with interface description. The flow chart of the decision problem
is presented alongside its interface.
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variables are irrelevant for the design of the experiments because they cannot be experienced
by the participants. For example, the road surface, the lighting and the weather. The variables
relevant for the design of the scenarios in the MDG experiments are listed below.

• EDISTod - Euclidean distance from origin to destination.

• LENj - Length of the route j in kilometres.

• DIRj - Directness of the route j, the directness is defined as DIRj = EDISTod/LENj.

• TNRj - Number of turns per kilometre in route j.

• INTj - Number of intersections per kilometre in route j.

• FRWj - Freeway composition of the route j, defined as the percentage of the route length
that is composed of freeway segments.

• ITTjs - Informed travel time in the route j in choice problem s.

The OD pairs and routes were selected so that the values of the above-mentioned attributes
show a significant variation across routes, while the routes remain plausible alternatives. This
was achieved by defining short and long OD pairs from and to the cardinal directions and using
the route planning of Google Maps R© to obtain three candidate alternative routes. Some of the
alternative routes were modified with the purpose of obtaining more variation in the attributes,
for example by forcing one of the alternatives to use the ring road, or to have many turns.
This was done by placing intermediate points in the planned routes. The traffic conditions in
the selected OD pairs were obtained by modifying the local travel demand and by modifying
the assignment of the trips in the three routes. As in the selection of the playable OD pairs,
the local demands and the assignments were chosen such that the travel times, and hence the
travel time information between the routes vary, both between the alternative routes and the
period of the simulation. For example, in some OD pairs the demand was configured such that
the ring-road alternative was the fastest during all the experiment, while in other OD pairs or
experiments it was the fastest in some periods but not in others. Since the MDG in its actual
state does not permit to study the learning behaviour of participants, travel time information
acts as a proxy for the travel times on the alternative routes. The reaction of participants to
the travel time is therefore studied through travel time information.

In total, 41 playable OD pairs were defined for the MDG experiments, 15 OD pairs in the
Lyon-V36 network and 26 OD pairs in the Lyon-full network.2 The values of the attributes of

2Nine of the OD pairs in the Lyon-full network were obtained following a different methodology, described
in Chapter 4.
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these OD pairs and routes are summarised in Fig. 2.9, where they are compared to the values
of the attributes of all the OD pairs and routes in the network. The attributes of the 41 OD
pairs and routes are included in appendix 2.A, and their maps in appendix 2.B.

Figure 2.9: Summary of the attributes of the OD pairs and routes. Distributions of the at-
tributes experienced by the travellers in the OD pairs and three alternative routes defined for
the MDG experiments.

2.4.1 List of experiments with the MDG

The data on route choice behaviour comes from 9 MDG experiments carried out between
February 2018 and May 2019. The participants in the experiments were mainly students
at the University of Lyon attending the courses of traffic theory, staff from the IFSTTAR
(French Institute of Science and Technology for Transport, Development and Networks) and
other universities, who received an invitation by e-mail to remotely join the experiments via a
web browser. All participants signed an informed consent form (see appendix 2.C) describing
the objectives of the study, the data collection and processing, and the confidentiality rules.
Participants could opt out of the experiment at any time. No personal data were mandatory to
participate in the experiment, as people had the opportunity to identify themselves by a login
of their choice. Finally, all data were fully anonymised and processed as such. At the beginning
of the experiment, the participants were briefed about the objective of the experiment and the
interface of the experimental platform; for the participants that joined the experiments via web,
a document with the instructions was shared. The summary of the experiments is presented in
Table 2.2.
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Table 2.2: Summary of the MDG experiments.

No. Date Purpose Public Network No. OD Participants No. choices

1 12/04/2017 RC Univ. Lyon Lyon-V36 3 201 743
2 12/04/2017 RC Univ. Lyon Lyon-V36 2 15 199
3 12/04/2017 RC Univ. Lyon Lyon-V36 2 25 362
4∗ 15/02/2018 RC IFSTTAR/Other. Univs. Lyon-V36 15 76 2,591
5∗ 26/04/2018 RC IFSTTAR/Other. Univs. Lyon-full 15 53 216
6∗ 02/05/2018 RC Univ. Lyon Lyon-full 15 193 1,186
7∗ 22/06/2018 RC Univ. Lyon Lyon-V36 10 108 940
8 04/09/2018 RR/DT General(hEART Conf.) Lyon-V36 3 67 175
9 10/10/2018 DT Univ. Lyon Lyon-V36 2 11 147
10 13/10/2018 TP General (Fête de la Science) Lyon-V36 3 <10 22
11 08/11/2018 MC/RC General (TUBA) Lyon-full 5 <10 96
12∗ 20/11/2018 RC IFSTTAR Lyon-full 12 27 166
13∗ 04/12/2018 RC Other. Univs. Lyon-full 12 19 337
14∗ 25/01/2019 RC Univ. Lyon Lyon-full 9 25 243
15∗ 01/02/2019 RC Univ. Lyon Lyon-full 9 17 185
16∗ 10/05/2019 RC/DT Univ. Lyon Lyon-full 5 199 1,646

CODE: RC=route choice, DT=departure time choice, MC=mode choice, TP=trip purpose,
RR=reroute

NOTE: Data used in this thesis come from the experiments marked with ∗.
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2.A Attributes of the OD pairs

Table 2.3: Attributes of OD pairs and routes in Lyon-V36 network. Attributes experienced by
participants in the MDG experiments.

Map-reading variables Travel time info.

OD Route EDIST LEN DIR TNR INT FRW min max mean s.d.

R1 5.20 6.40 0.80 0.31 10.11 0.04 12.80 35.90 18.50 5.20
O01D01 R2 5.20 7.00 0.74 0.72 10.01 0.03 15.70 20.90 18.00 1.50

R3 5.20 8.40 0.62 0.12 4.18 0.57 10.20 19.60 12.40 2.00

R1 4.70 5.90 0.78 0.51 9.96 0.04 11.80 30.30 16.90 4.30
O02D01 R2 4.70 6.10 0.76 0.33 9.82 0.04 13.40 17.20 15.10 1.30

R3 4.70 8.90 0.52 0.00 5.05 0.54 11.30 20.00 13.60 1.70

R1 2.40 3.70 0.60 0.81 11.82 0.00 7.10 9.30 7.90 0.60
O03D03 R2 2.40 3.80 0.58 1.05 10.81 0.00 6.70 12.90 9.30 1.80

R3 2.40 3.80 0.58 0.78 10.65 0.00 7.50 29.30 11.90 4.70

R1 3.60 4.50 0.76 0.67 9.21 0.00 10.80 16.00 13.20 1.30
O04D03 R2 3.60 4.70 0.72 1.07 8.16 0.00 7.70 10.10 9.30 0.70

R3 3.60 5.10 0.66 0.39 5.29 0.31 9.00 11.30 10.10 0.70

R1 4.40 5.90 0.54 0.85 8.62 0.03 11.60 23.20 16.40 3.20
O05D04 R2 4.40 6.30 0.51 0.00 3.18 0.75 5.10 6.10 5.60 0.30

R3 4.40 6.60 0.49 0.61 9.84 0.03 10.40 15.10 11.80 1.30

R1 5.20 5.90 0.86 0.17 9.22 0.04 12.30 15.40 13.80 0.80
O06D05 R2 5.20 6.80 0.74 0.88 10.13 0.04 14.60 35.30 20.40 5.00

R3 5.20 9.60 0.53 0.21 5.43 0.50 15.50 24.30 17.80 2.10

R1 3.50 5.50 0.60 0.91 8.60 0.03 12.40 31.40 17.30 4.50
O07D06 R2 3.50 6.40 0.52 0.79 3.62 0.77 6.00 6.60 6.30 0.20

R3 3.50 6.40 0.51 1.25 9.19 0.03 9.30 11.40 10.00 0.60

R1 2.90 3.30 0.69 0.60 3.59 0.28 3.40 4.00 3.50 0.10
O08D07 R2 2.90 3.40 0.68 1.17 10.27 0.00 5.80 6.70 6.20 0.30

R3 2.90 4.00 0.59 1.52 8.59 0.00 6.30 7.10 6.60 0.20

R1 3.10 4.00 0.78 0.75 8.48 0.05 7.50 16.90 9.40 2.20
O09D08 R2 3.10 4.30 0.73 0.70 8.38 0.05 9.50 12.50 10.80 0.90

R3 3.10 5.10 0.62 0.20 9.41 0.38 10.00 11.40 10.90 0.40

R1 3.10 4.90 0.59 2.02 8.49 0.04 7.40 9.40 8.00 0.60
O10D02 R2 3.10 5.20 0.56 0.58 8.14 0.04 9.80 14.40 11.70 1.20

R3 3.10 5.40 0.54 0.93 8.96 0.04 9.30 11.10 10.20 0.50

R1 2.70 3.80 0.66 1.84 11.30 0.00 8.20 11.10 9.50 0.90
O11D11 R2 2.70 4.00 0.63 2.01 9.80 0.00 9.10 11.80 10.20 0.80

R3 2.70 4.70 0.53 0.85 8.07 0.00 8.20 9.00 8.60 0.10

R1 2.70 3.90 0.59 0.77 7.48 0.00 7.80 9.10 8.40 0.30
O12D12 R2 2.70 4.20 0.54 1.91 9.56 0.00 8.00 9.40 8.50 0.40

R3 2.70 4.60 0.50 1.09 9.81 0.00 8.50 10.60 9.50 0.50

R1 3.20 3.90 0.74 0.78 9.84 0.00 9.70 12.70 11.40 0.80
O13D13 R2 3.20 4.30 0.66 2.09 11.62 0.00 8.60 13.50 9.60 0.80

R3 3.20 5.00 0.57 1.41 9.23 0.00 11.00 13.60 12.40 0.70

R1 2.80 3.40 0.62 2.36 10.02 0.00 6.30 9.80 7.70 1.30
O14D14 R2 2.80 3.80 0.55 1.57 9.92 0.00 6.30 11.70 8.00 1.20

R3 2.80 4.00 0.52 0.99 10.88 0.00 7.90 10.80 9.10 0.70

R1 4.10 4.60 0.84 0.87 10.93 0.00 9.80 25.00 13.20 3.10
O15D15 R2 4.10 5.40 0.71 0.74 9.94 0.00 12.70 36.00 16.60 5.30

R3 4.10 6.20 0.63 0.49 11.85 0.00 13.40 15.10 14.10 0.50
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Table 2.4: Attributes of OD pairs and routes in Lyon-full network. Attributes experienced by
participants in the MDG experiments.

Map-reading variables Travel time info.

OD Route EDIST LEN DIR TNR INT FRW min max mean s.d.

R1 10.70 13.70 0.78 0.15 5.57 0.79 16.30 18.10 16.40 0.30
O16D16 R2 10.70 18.90 0.56 0.16 3.02 0.78 16.20 18.30 17.20 0.70

R3 10.70 21.00 0.51 0.14 2.58 0.73 22.30 27.70 23.80 1.40

R1 10.50 14.80 0.70 0.41 8.58 0.27 27.60 32.80 28.90 1.00
O17D17 R2 10.50 15.20 0.68 0.00 3.55 0.75 15.80 17.60 16.50 0.40

R3 10.50 19.30 0.54 0.26 3.42 0.81 18.30 21.00 19.50 0.80

R1 6.40 7.90 0.78 0.66 9.79 0.00 19.70 24.00 21.60 1.30
O19D19 R2 6.40 8.50 0.71 1.21 10.19 0.00 20.80 24.70 22.40 1.00

R3 6.40 10.80 0.57 1.14 9.84 0.27 25.10 31.20 27.40 1.60

R1 6.10 9.00 0.67 0.57 12.18 0.25 17.00 21.40 18.10 1.00
O20D20 R2 6.10 10.10 0.60 0.61 9.90 0.02 23.30 27.30 25.00 1.00

R3 6.10 15.70 0.38 0.19 4.64 0.65 17.80 19.10 18.60 0.30

R1 4.10 5.00 0.76 1.05 10.20 0.00 12.90 15.70 14.40 0.90
O21D21 R2 4.10 5.40 0.70 0.97 11.42 0.25 13.80 17.90 16.10 1.20

R3 4.10 6.40 0.60 0.81 10.94 0.00 12.90 17.00 14.60 1.10

R1 8.20 10.20 0.80 0.40 9.60 0.18 19.70 31.90 22.00 3.20
O22D22 R2 8.20 11.20 0.73 0.73 9.12 0.00 27.30 43.60 30.40 3.00

R3 8.20 17.60 0.46 0.46 4.70 0.45 22.60 29.70 25.60 2.20

R1 6.40 8.40 0.78 1.10 9.29 0.66 13.30 18.20 14.60 1.20
O23D23 R2 6.40 10.10 0.65 1.32 9.52 0.03 19.80 22.20 20.50 0.70

R3 6.40 10.50 0.62 1.07 7.68 0.00 23.70 26.30 24.00 0.50

R1 9.20 14.20 0.62 1.29 8.95 0.00 32.10 42.60 34.20 2.20
O24D24 R2 9.20 14.60 0.60 0.56 8.49 0.24 27.80 39.60 31.70 3.10

R3 9.20 17.10 0.52 0.53 5.97 0.37 27.30 51.40 33.60 6.50

R1 5.90 6.70 0.83 0.93 8.68 0.00 15.10 17.30 16.10 0.50
O25D25 R2 5.90 8.10 0.69 1.15 9.18 0.00 16.30 19.60 18.50 1.30

R3 5.90 10.70 0.52 0.57 3.84 0.56 13.20 15.50 14.40 0.70

R1 7.20 8.90 0.80 0.46 12.09 0.10 20.60 33.60 23.50 2.40
O26D26 R2 7.20 12.60 0.57 0.49 8.67 0.50 19.90 25.80 22.00 1.40

R3 7.20 14.20 0.51 0.07 4.30 0.56 15.80 20.60 17.20 0.90

R1 5.60 8.20 0.67 0.63 6.99 0.35 12.50 16.70 14.70 1.30
O27D27 R2 5.60 9.40 0.58 1.09 8.62 0.00 19.50 23.50 21.20 1.10

R3 5.60 9.40 0.58 0.54 9.33 0.27 18.10 20.20 19.30 0.70

R1 10.70 13.00 0.82 0.08 6.86 0.21 18.30 21.90 19.20 0.80
O28D28 R2 10.70 17.40 0.61 0.87 8.77 0.15 38.00 57.10 38.90 2.30

R3 10.70 17.70 0.60 0.29 5.47 0.29 30.90 40.20 32.20 1.30

R1 5.80 8.10 0.72 0.38 7.15 0.00 14.20 18.30 15.60 0.90
O29D29 R2 5.80 8.60 0.68 0.96 7.12 0.00 17.70 22.20 19.50 1.00

R3 5.80 9.00 0.65 0.23 2.44 0.80 9.10 11.30 10.00 0.60

R1 8.00 10.50 0.75 0.68 8.74 0.32 20.40 22.30 21.00 0.40
O30D30 R2 8.00 10.80 0.73 1.42 12.09 0.00 25.60 33.80 28.50 2.00

R3 8.00 12.90 0.61 0.87 6.99 0.14 26.10 30.50 27.70 1.10

R1 6.30 8.40 0.70 0.86 9.42 0.25 15.20 22.00 18.00 2.50
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Continuation of Table 2.4...

Map-reading variables Travel time info.

OD Route EDIST LEN DIR TNR INT FRW min max mean s.d.

CC1 R2 6.30 8.70 0.68 1.19 11.21 0.09 17.10 21.40 19.00 1.20
R3 6.30 10.30 0.57 0.79 8.03 0.35 19.90 22.70 21.40 1.00

R1 2.20 3.30 0.66 1.96 10.90 0.00 8.10 9.60 9.10 0.30
CC2 R2 2.20 3.60 0.60 2.08 8.59 0.00 8.60 9.90 9.40 0.40

R3 2.20 3.90 0.56 1.39 11.68 0.00 8.90 10.50 10.00 0.40

R1 6.80 9.90 0.66 0.72 10.67 0.29 19.10 34.10 26.30 4.30
CC3 R2 6.80 10.30 0.64 0.70 9.02 0.14 23.00 31.40 26.10 2.10

R3 6.80 11.10 0.59 0.65 9.28 0.13 22.80 28.10 24.80 1.30

R1 4.80 6.50 0.71 1.13 10.67 0.00 12.50 13.40 13.00 0.30
CC4 R2 4.80 7.10 0.65 1.17 10.31 0.00 16.00 17.70 16.90 0.60

R3 4.80 10.10 0.46 0.41 6.92 0.32 18.00 20.50 19.40 0.80

R1 6.60 9.90 0.67 0.73 11.33 0.07 24.10 34.60 28.40 3.20
CC5 R2 6.60 12.30 0.54 0.66 9.03 0.35 22.90 32.80 25.80 2.30

R3 6.60 15.70 0.42 0.77 5.14 0.50 22.50 26.70 24.40 1.20

R1 7.90 10.00 0.69 0.31 7.86 0.24 16.00 20.00 18.10 1.30
CC6 R2 7.90 13.30 0.52 0.31 6.48 0.32 20.00 26.90 23.10 1.10

R3 7.90 14.50 0.47 0.35 7.64 0.49 22.00 27.80 24.40 1.40

R1 3.80 5.40 0.68 1.16 11.43 0.15 14.50 17.80 15.90 0.70
CC7 R2 3.80 8.00 0.46 0.78 5.91 0.33 10.20 21.90 14.20 3.50

R3 3.80 9.50 0.39 0.65 6.97 0.52 13.20 16.20 14.40 0.90

R1 3.30 4.30 0.75 0.74 11.12 0.00 10.40 16.10 13.00 1.70
CC8 R2 3.30 4.80 0.67 1.31 9.92 0.00 8.70 16.50 12.40 2.70

R3 3.30 5.60 0.58 1.32 9.72 0.00 12.10 14.30 13.20 0.60

R1 3.00 5.20 0.55 1.43 11.06 0.00 11.60 14.30 12.50 0.80
CC9 R2 3.00 5.80 0.49 0.90 8.95 0.12 12.10 14.90 13.30 0.80

R3 3.00 6.90 0.42 1.06 9.18 0.29 11.80 15.10 12.90 0.70

R1 2.50 3.30 0.68 1.97 9.70 0.00 7.10 7.80 7.40 0.10
CR2 R2 2.50 3.80 0.59 1.97 9.73 0.00 6.80 7.30 7.10 0.20

R3 2.50 4.70 0.48 2.49 10.07 0.00 8.40 9.10 8.60 0.30

R1 4.80 8.80 0.52 1.52 10.09 0.00 21.10 23.10 21.90 0.60
CR7 R2 4.80 9.40 0.49 0.65 8.07 0.00 20.40 22.70 21.20 0.70

R3 4.80 15.90 0.29 0.77 4.65 0.49 21.50 26.90 22.60 1.40

R1 3.60 5.70 0.51 1.09 6.26 0.19 11.30 12.40 11.80 0.30
CR9 R2 3.60 6.40 0.46 1.14 9.86 0.00 12.50 13.60 13.10 0.40

R3 3.60 7.40 0.39 1.11 7.65 0.00 16.80 20.90 17.70 1.10
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2.B Maps of the OD pairs

Figure 2.10: Maps of the playable OD pairs and routes in Lyon-V36 network.
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Figure 2.11: Maps of the playable OD pairs and routes in Lyon-full network.
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Figure 2.11: Maps of the playable OD pairs and routes in Lyon-full network.
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2.C Consent form for the experiments’ participants

	
	

INSTITUT FRANÇAIS 

DES SCIENCES 

ET TECHNOLOGIES 

DES TRANSPORTS, 

DE L'AMÉNAGEMENT 

ET DES RÉSEAUX 

INFORMED CONSENT FORM 

 
 

 
 
From Mrs, Mr Ludovic Leclercq, Principal Investigator (PI). 
PI’s Address:  
COSYS – LICIT / ENTPE, Rue Maurice Audin, 69518 Vaulx-en-Velin Cedex, France. 
 
I have been invited to get involved into an IFSTTAR research study regarding a mobility simulation game based on 
traffic simulation in urban network. I have been free to accept or refuse. 
 
I declare to be an adult with respect to the legislation of my country and to be at least 18 years of age. 
 
I have received and I have understood following information: 
The study concerns a real-time traffic simulator. I will play the role of a virtual agent described with agent 
characteristics (Socio-Professional Characteristics, Age interval, Gender). I will be assigned one or several 
mission(s) standing, for each mission, in moving from one origin area to one destination area, within a given time 
interval and others specific constraints (fuel consumption, pollution, etc.). I may be suggested to achieve secondary 
objectives. Before starting, I may be allowed to select my route and transportation mode and the departure time of 
my travel. During the displacement, I will be allowed to adjust some settings, depending on my knowledge of the 
traffic state. Information related to my choices and their consequences on global traffic will be recorded and studied. 
PI may invite me to several game sessions, and I will be free to participate. All these tasks will be carried on through 
a laptop, tablet or smartphone-based Internet application. The collected information will be post-treated, in order to 
evaluate the impact of user choices (regarding route choice, departure time and mode) on traffic dynamics at urban 
scale. The laboratory members involved in the study constitute data recipients. 
 
I consent voluntarily to participate to this research.  
 
I have well-informed that: 
The information collected from this research project will be kept confidential. Personal information collected during 
the research will be only accessible to the PI and two core members of the research project. As acted in the law 
no78-17 of 6 January 1978 on Data Processing, Data Files and Individual Liberties, I have rights of access and of 
rectification with regard to the processing of personal data, that is applicable by asking PI Prof. Leclercq L., whom 
address is mentioned above. 
 
My consent does not free researchers from their responsibilities. I keep all the rights with respect to the law. I know 
that I am entitled the object to the processing of my personal data, on legitimate grounds. At last, I am informed that 
this study is funded by the European commission, within the ERC-2014-CoG MAGnUM, ref 646592 (a Multiscale 
and Multimodal Traffic Modelling Approach for Sustainable Management of Urban Mobility), lead by Prof. Ludovic 
Leclercq. 
 

 
Date ……………………… 
 

Name, Firstname 
 
………………………………….. 

  
 
Signature (read and approved) 
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DES SCIENCES 
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DES TRANSPORTS, 
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From Mrs, Mr Ludovic Leclercq, Principal Investigator (PI). 
PI’s Address:  
COSYS – LICIT / ENTPE, Rue Maurice Audin, 69518 Vaulx-en-Velin Cedex, France. 
 
I have been invited to get involved into an IFSTTAR research study regarding a mobility simulation game based on 
traffic simulation in urban network. I have been free to accept or refuse. 
 
I declare to be an adult with respect to the legislation of my country and to be at least 18 years of age. 
 
I have received and I have understood following information: 
The study concerns a real-time traffic simulator. I will play the role of a virtual agent described with agent 
characteristics (Socio-Professional Characteristics, Age interval, Gender). I will be assigned one or several 
mission(s) standing, for each mission, in moving from one origin area to one destination area, within a given time 
interval and others specific constraints (fuel consumption, pollution, etc.). I may be suggested to achieve secondary 
objectives. Before starting, I may be allowed to select my route and transportation mode and the departure time of 
my travel. During the displacement, I will be allowed to adjust some settings, depending on my knowledge of the 
traffic state. Information related to my choices and their consequences on global traffic will be recorded and studied. 
PI may invite me to several game sessions, and I will be free to participate. All these tasks will be carried on through 
a laptop, tablet or smartphone-based Internet application. The collected information will be post-treated, in order to 
evaluate the impact of user choices (regarding route choice, departure time and mode) on traffic dynamics at urban 
scale. The laboratory members involved in the study constitute data recipients. 
 
I consent voluntarily to participate to this research.  
 
I have well-informed that: 
The information collected from this research project will be kept confidential. Personal information collected during 
the research will be only accessible to the PI and two core members of the research project. As acted in the law 
no78-17 of 6 January 1978 on Data Processing, Data Files and Individual Liberties, I have rights of access and of 
rectification with regard to the processing of personal data, that is applicable by asking PI Prof. Leclercq L., whom 
address is mentioned above. 
 
My consent does not free researchers from their responsibilities. I keep all the rights with respect to the law. I know 
that I am entitled the object to the processing of my personal data, on legitimate grounds. At last, I am informed that 
this study is funded by the European commission, within the ERC-2014-CoG MAGnUM, ref 646592 (a Multiscale 
and Multimodal Traffic Modelling Approach for Sustainable Management of Urban Mobility), lead by Prof. Ludovic 
Leclercq. 
 

 
Date ……………………… 
 

Name, Firstname 
 
………………………………….. 

  
 
Signature (read and approved) 

 
  

 

Figure 2.12: Consent form signed by the participants.
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Part I

Route choice behaviour
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3 Literature review on route
choice behaviour

This chapter presents, first, a short review of the literature on travellers’ behaviour. The
objective is to provide a coarse classification of the lines of research on studies that are found in
the literature, mentioning some of the aspects of travellers’ behaviour that have been extensively
investigated. Then, a review of the literature on discrete choice models is given. The emphasis
is placed on the derivation and estimation of the mixed logit model, which is the modelling
approach chosen in this thesis.

3.1 Review of route choice studies

The study of travellers’ behaviour can be divided in three non-exclusive categories: (i) the
theoretical studies about the general laws describing human mobility, (ii) the empirical studies
that try to prove or disprove a theory, and (iii) the studies about the factors that influence
the mobility choices of travellers. To the first category belong the works of Brockmann et al.
(2006), González et al. (2008), Song et al. (2010), Peng et al. (2012), Wang et al. (2012), Zhao
et al. (2015) and Tachet et al. (2017) who describe the patterns of human mobility by physical
or mathematical models, or the work of Marchetti (1994) that investigates these patterns from
an anthropological point of view. To the second category belong the research of Iida et al.
(1992), Bekhor et al. (2006), Selten et al. (2007), Papinski et al. (2009), Thomas and Tutert
(2010) and Zhu and Levinson (2015) who try to see if travellers follow the shortest-time paths
in their trips, or the work of Yildirimoglu and Kahraman (2018b) in which the authors try to
determine if the UE hypothesis holds in road networks. The studies in the first two categories
are mainly concerned with observation of the actual choices of travellers at large scale and
thus the specific factors or determinants that influence the individual travel behaviour are, in
general, unimportant. The third category is related to the factors, associated either to the
traveller or the environment, that have an effect on the choices of the travellers.
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Travellers’ behaviour is a process which involves psychological and cognitive mechanisms
through which travellers perceive the states of the network, and then make decisions accordingly
(Bovy and Stern, 1990, Ben-Akiva et al., 1999). Although this definition may appear simple,
there are many factors that intervene in this process, making it a complex problem. The
determinants of travellers’ behaviour are associated to both the traveller and the environment
in which the trip is made. In the case of the traveller, the cognitive capacities, such as memory
and spatial navigation skills, and risk attitudes have influence in the perception and thus the
travel behaviour. In the case of the environmental factors, variables such as the travel time,
travel time reliability, the attributes of the routes and purpose of the trip have an effect on the
choices of the travellers. These factors are heterogeneous (as heterogeneous as individuals can
be), and they interact in ways that are not easily observable to produce the choices. Therefore,
the vast amount of studies on the aspects of travel behaviour that can be found in literature is
not surprising.

Learning, familiarity and habit. Learning is an iterative process in which the outcomes
experienced in previous trips, as well as the external information, build up travellers’ subjective
knowledge or perceptions on which they base their choices. However, as pointed by Bogers et al.
(2005), Bogers (2005), the travellers’ ability to learn from the past experiences is influenced
by their memory and skills to process information; and the travellers’ perceptions are altered
by their risk attitudes. The type of information that travellers obtain can be classified into
(i) experiential, (ii) descriptive and prospective (Ben-Elia and Avineri, 2015). The former is
when the travellers’ only source of information is their past experience; the latter refers to the
information obtained from external sources. The two types of information are not mutually ex-
clusive, for example, commute travellers are experienced in their daily trips and they may also
consult traffic information to support their choices. Bogers (2005) performed a computer-based
SP experiment, finding that memory helps in constituting more accurate beliefs and that trav-
ellers’ choices rely more on the latest information. This observation is also made by Iida et al.
(1992). The learning process involves exploring the different alternatives and/or consulting
external travel information. Nonetheless, from a psychological point of view, acquiring infor-
mation, either by experience or external information, is cognitively costly. Hence, to reduce
the cognitive burden, travellers form habits. This explains why inexperienced travellers tend to
explore different alternatives in order to gain knowledge on the states of the network, and when
a satisfactory route is found they stick to it, behaviour observed in the route choice experiments
by Adler and McNally (1994), Lotan (1997), Selten et al. (2007), Ben-Elia and Shiftan (2010),
Vreeswijk et al. (2014), De Moraes Ramos et al. (2013). The cognitive skills and risk attitudes
that explain, to some extent, the choices of travellers are not observable characteristics. How-
ever, they are expressed in other aspects of the behaviour that can be measured, in other words,
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they are latent variables. Taking this into account, Prato et al. (2012) and Kaplan and Prato
(2012) propose a route choice model and perform experiments, finding that latent constructs
for mnemonic, spatial and time saving abilities have a positive correlation with the preferences
of individuals, suggesting that individuals with these characteristics tend to search better al-
ternatives and tend to remember them. On the other hand, latent constructs of familiarity
and habit have negative correlation, which suggests that individuals with these characteristics
do not tend to search for better alternatives, even if their current choice is suboptimal. This
observation is regarded as one of the main causes that support boundedly rational choices in
travellers, as noted by Mahmassani and Chang (1987). Through a computer-based SP experi-
ment, Srinivasan and Mahmassani (2000) conclude that increasing congestion may change the
habitual route choice of travellers and that, when external information is available, the habit
decreases.

Travel time reliability and risk aversion. From the external factors affecting the learning
process, travel time reliability has been found to play a mayor role. In a SP study recording
choices in two routes, Abdel-Aty et al. (1997) notice that the higher the travel time variation in
the fastest but uncertain route, the less the travellers are willing to choose it. In other words,
travellers exhibit risk aversion. The authors also observed that the larger the mean travel time
difference between the two routes, the more people choose the fastest but uncertain. This
implies that travellers recognise mean travel times and their variability, and that they try to
minimise their travel times, while maintaining the variation is acceptable. A risk averse attitude
towards travel time was also found in a study by Avineri and Prashker (2005), but adding that
when the variance of the slow route is increased, participants chose it more. This last behaviour
is in accordance with Ben-Elia and Shiftan (2010). Another observation in Avineri and Prashker
(2005) is that, the higher the variance in travel time is, the lower is the traveller’s sensitivity
to travel time differences and the slower the rate of learning. A preference for reliable routes
was explicitly stated by participants in Bogers (2005), Ramos (2015), however, in the latter
study, GPS-based data showed that the chosen routes were actually amongst the least reliable.
The above are general conclusions and describe the average behaviour, however risk aversion is
heterogeneous amongst travellers, and between trip purposes. Risk-aversion and the preference
for reliable routes depends on the value of time of the travellers, as pointed out by de Palma
and Picard (2005), who noticed that the surveyed individuals in a SP and RP experiment were
grouped in risk-averse and risk-neutral travellers (66% of their sample) and risk-seekers (33%
of their sample), and that these numbers where related to the socioeconomic factors of the
individuals. In Bogers (2005), De Moraes Ramos et al. (2013) it was found, as expected, that
the proportion of participants who chose the reliable option is higher when the purpose of the
trip is important. In a SP experiment, Bogers et al. (2006) also found that participants are risk-
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averse, adding that high variance in travel time has a larger effect on the choices of participants
than extreme low frequency events. An extended review on the travel time variability and the
risk attitudes of travellers is given in Taylor (2013).

Travel time information. The rapid development of information technologies in the last two
decades has significantly increased the availability of travel time information, which travellers
can incorporate in their decision process. The uncertainty of travellers on the traffic conditions
of the network can be alleviated by the incorporation of external traffic information into their
decision-making process, thus improving their choices Bonsall (1992). In a computer-based
SP experiment, Ben-Elia and Shiftan (2010) found that participants who received real-time
information showed higher levels of travel time minimisation compared to those who received
no information, and that the information reduced their exploration rate. This suggests that
information contributed to expediting learning, as suggested in Bogers (2005). Moreover, the
authors observed that the information encouraged risk-seeking behaviour in the participants;
result aligned with those in Abdel-Aty et al. (1997) and De Moraes Ramos et al. (2013). Ramos
(2015) observed that travellers comply more to pre-trip than to en-route information, and that
they use the information to plan their routes more than their departure times; behaviour also
found in Mahmassani and Liu (1999). A travel time minimisation behaviour is also noticed in
Adler and McNally (1994), Lotan (1997), Abdel-Aty et al. (1997), Srinivasan and Mahmassani
(2000), Selten et al. (2007) and De Moraes Ramos et al. (2013). Nonetheless, the minimisation
behaviour in the presence of information is attenuated by familiarity and habit, as pointed out
by Lotan (1997), Liu and Mahmassani (1998) and De Moraes Ramos et al. (2013), who found
that familiar travellers tend to consult less information. This result seems reasonable, since the
travel time uncertainty is lower for familiar travellers, reducing the need to consult information.
Obtaining and evaluating information (either experiential or descriptive or prospective) on a
daily basis is cognitively costly, implying that habitual choices take more importance. However,
the former can be more cognitively costly to obtain as it requires travellers to repeatedly explore
the alternative routes and to remember the outcomes. This explains why travellers rely more
on recent experiences when no information is available and, when information is available,
travellers base their choices on both short and long-term experiences (Ben-Elia and Shiftan,
2010). A consequence of the travel time minimisation behaviour in the presence of travel time
information is a deterioration of the network performance (Mahmassani and Jayakrishnan,
1991, Ben-Akiva and De Palma, 1991, Rapoport et al., 2014b, Ben-Elia and Avineri, 2015).
This follows since travellers decisions are closer to be based on perfect information, thus moving
the system towards the UE. However, there is current research on how information systems can
also be used in order to move travellers’ behaviour towards the system optimum, thus reducing
the social and environmental costs (van Essen et al., 2016, Vreeswijk et al., 2015). A complete
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review on the response of travellers to travel information can be consulted in Ben-Elia and
Avineri (2015).

3.2 Random utility models

The quantitative models of human choice behaviour have their origins in Expected Utility
Theory. Proposed first by Bernoulli (1954), and later endowed with an axiomatic basis by
Neumann and Morgenstern (1944), EUT allows an ordering of preferences over alternatives
with uncertain outcomes. Consider an individual, labeled by i, facing a choice problem over
a set of J alternatives, indexed by j = 1, 2, ..., J . For each alternative j, denote as Ωj the set
of (uncertain) outcomes if the alternative j were chosen. Since the outcomes Ωj are uncertain,
we assign to them a probability distribution, Pr(ω). EUT assumes that the decision-maker i
evaluates the possible outcomes Ωj resulting of choosing the alternative j via an utility function,
ui : Ωj → R. Thus, the expected utility that decision-maker obtains from choosing alternative
j is given by

E [ui(Ωj)] =
∫
ui(ω)Pr(ω)dω.

If the decision-maker satisfy the preference axioms of EUT, which are often referred to as
axioms of rational choice, then he/she will prefer alternative j over alternative k if and only
if E [ui(Ωj)] > E [ui(Ωk)]. In other words, EUT assumes that decision-makers will choose the
alternatives that maximise their expected utility.

A generalisation of the EUT model was proposed by Savage (1954), by letting the probability
Pr(ω) to represent the subjective beliefs of the decision-makers, rather than objective verifiable
information. Thus, enabling the model to consider situations in which the decision-makers have
incomplete information about the process generating the (objective) outcomes. In this case, the
decision-makers are also considered rational, because they are maximising their utility based
on their subjective beliefs. Although, from an individual perspective the EUT constitutes a
well defined framework for individual decision making, it has some limitations when the choices
are studied by an external observer. This is because neither the utilities that individuals get
form the outcomes, ui, nor the subjective probabilities that they assign to them, Pr(ω), can be
easily observed by a bystander. The uncertainty that the external observer has on the utility of
individuals led to the development of the random utility theory, based on the work of Thurstone
(1927), Luce (1959) and Marschak (1959), and in the later development of the discrete choice
Random Utility Maximisation (RUM) models by Mcfadden (1972). As in EUT, in RUM models
it is assumed that individuals obtain a certain level of utility from each alternative in a choice
situation, and that they choose the alternative with the maximum utility, i.e., individuals are
utility maximisers. However, in contrast to the Expected Utility Theory, in RUM models the
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utilities cannot be directly observed by a bystander; what can be observed by the bystander
are the actual choices, and the attributes of both the alternatives and the decision-makers.

To formally derive the RUM models, let a decision-maker, labelled i (i ∈ I), face a choice
amongst Ji alternatives. The set of the alternatives is known as the choice set, and it must
meet three requirements. First, the alternatives must be mutually exclusive, meaning that
the decision-maker only chooses one alternative from the choice set. Second, the choice set
is exhaustive, this is, the decision-maker necessarily chooses one of the alternatives. Three,
the number of alternatives must be finite. Let the alternatives in the choice set be labelled
by j = 1, . . . , Ji. The decision-maker i obtains a level of utility from each alternative j,
this utility is denoted by Uij. Finally, it is assumed that the decision-maker i chooses the
alternative that maximises her utility, i.e., the decision-maker chooses j if Uij > Uik for all
k 6= j, k, j ∈ Ji. However, contrary to EUT, in the RUM models the utilities Uij are not
observed by the bystander. Therefore, from a bystanders’ point of view, the utility that an
individual i obtains from alternative j, is a random variable, written as

Uij = V (xij;β) + εij, (3.1)

where xij is a vector of explanatory variables describing individual i and alternative j; β is a
vector of unknown coefficients; Vij = V (xij;β) is a function of the explanatory variables xij

and the coefficients β; and εij is a random disturbance for i and j, with E[εij] = 0 for all i ∈ I
and j ∈ Ji.

The random variable εij captures the unobserved factors that affect the utility, but that
are not present in Vij. Note that if no random term εij were included in Eq. (3.1), then the
utility that two different individuals, i and i′, get from an alternative j would be equal if
xij = xi′j. Nonetheless, this assumption is unrealistic. First, because not all the characteristics
of individuals influencing their choices can be objectively measured; and second, because it
would be expected that two different individuals present variations on the utilities that they
get from the same alternative. Therefore, the function V is referred to as the systematic part
of the utility, as it captures the expected utility that an individual with characteristics xij gets
from an alternative j, i.e.,

E[Uij] = V (xij;β) ,

and the random variable εij is known as the idiosyncratic term, as it reflects the deviations
of different individuals from the expected utility due to unobserved (measured) attributes or
idiosyncrasy.

To determine the utilities it is necessary to estimate the coefficients in the vector β that
better fit the observations. This is a latent regression problem, since the utilities Uij cannot
be directly observed: they are random variables. What can be observed, however, are the
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measurable characteristics of the individuals and alternatives, xij and the actual choices yij,
the later variable being binary and taking the value yij = 1 when individual i chose alternative
j, and yij = 0 otherwise. Since individuals are assumed to be utility maximisers, then the
(observed) chosen alternative is the one that maximizes the utility, i.e.,

yij =

 1, Uik < Uij ∀ k 6= j

0, otherwise.

This relationship relates the unobserved utilities to the actual choices of the individuals. Nev-
ertheless, since the utilities are random variables, the relationship is given through the proba-
bilities

Pr(yij = 1) = Pr(Uik < Uij ∀ k 6= j)

= Pr(εik − εij < Vij − Vik ∀ k 6= j).
(3.2)

In words, the above expression is read as the probability that individual i chooses alternative j
is equal to the probability of i obtaining the highest utility from j.

The expression in Eq. (3.2) is the general form of the additive RUM models, and it corre-
sponds to the cumulative distribution of the joint distribution of εij for all j = 1, . . . , Ji. The
RUM models are specified by defining both, the form of the systematic part of the utility, Vij,
and the distribution function of the disturbances εij. Usually, the systematic part of the utility
is specified to be linear in the parameters β, i.e., V (xij;β) = xij

Tβ. In this case, the estimation
of β is a convex non-linear optimisation problem, which is computationally efficient to solve.
The interpretation of the coefficients βp is the change in the expected utility by a unit change
in the attribute xijp. In terms of behaviour, the coefficient βp is referred to as the taste or
preference of the decision-maker with respect to the attribute xijp.

The assumption over the distribution of the random variables εij gives rise to different ran-
dom utility models and, hence, to the different forms of the probabilities. The multinomial
logi (MNL) model, result of the works of Luce (1959), Marschak (1959) and Mcfadden (1972),
is obtained by assuming that the disturbances εij are independent and identically distributed
(i.i.d.) extreme value random variables. The MNL model has the advantage of having a closed
form for the probabilities Pr(yij = 1) in Eq. (3.2). However, the i.i.d. assumption of the
disturbances εij implies that the unobserved factors are uncorrelated for the different alterna-
tives; assumption that, while convenient in some situations, it can be restrictive in others. The
generalized extreme value models (GEV), credited to Williams (1977) and Mcfadden (1978),
were developed to overcome this drawback. The GEV model considers correlations between
the unobserved part of the utilities, maintaining the close form of Pr(yij = 1). The probit
model (Thurstone, 1927, Marschak, 1959, Daganzo, 1979, Sheffi et al., 1982), obtained by as-
suming that the vector ε = (εi1, εi2, . . . , εiJ)T is multivariate normally distributed NJ(0,Σ),
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also allows for the alternatives to be correlated. Nevertheless, it lacks of a closed form for the
probabilities Pr(yij = 1), which makes the probit model computational expensive to estimate.
More recently, the mixed logit model (MXL) has been introduced and developed thanks to the
work of McFadden (1984), McFadden and Train (2000) and Ben-Akiva et al. (2001), Walker
and Ben-Akiva (2002). This model is based on the MNL model, considering the coefficients β
as random variables, allowing for the utilities to be correlated. Furthermore, the MXL model
is a general model, as it can approximate any discrete choice model (Train, 2003). The models
used in this work are of this last type.

3.2.1 Multinomial logit model

The simplest random utility model is the multinomial logit (MNL) model. In the MNL model,
the disturbances εij in Eq. (3.1) are assumed independent and identically distributed extreme
value random variables for all i ∈ I and j ∈ Ji. The extreme value distribution is also
known as the Gumbel distribution, in honor of the mathematician and political activist Emil
Julius Gumbel, who established the extreme value theory (Gumbel, 1954) that deals with the
probability of extreme events, such as the river floods. The shape of the Gumbel distribution
has no particular behavioural interpretation in the context of discrete choice models. However,
its mathematical properties relate the logit formula, that possess desirable behavioural features
and can easily infer the probabilities from observed choices (Luce, 1959), to the random utility
maximization hypothesis (Marschak, 1959). To be more specific, the choice probabilities follow
the logit formula if and only if the random disturbances of a random utility model are i.i.d.
Gumbel random variables. The implication is credited to Marschak (1959), while the converse
to Mcfadden (1972), who also proposed a model in which the utilities of alternatives depended
on their measured attributes. His works in discrete choice, awarded him the Nobel Prize in
Economics in the year 2000.

To derive the probability Pr(yij = 1), first note that, conditioning on εij, the expression in
Eq. (3.2), can be written as

Pr(yij = 1) =
∫
Pr(εik < Vij − Vik + εij ∀ k 6= j | εij = u)Pr(εij = u)du

=
∫
Pr(εik < Vij − Vik + u ∀ k 6= j)Pr(εij = u)du

=
∫ ∏

k 6=j
Pr(εik < Vij − Vik + u)Pr(εij = u)du ,

(3.3)

where the last equality is because the random variables εik are assumed independent. The
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density and cumulative probability functions of a Gumbel random variable, ε, are, respectively,

fε(u) = e−ue−e
−u

Fε(u) = e−e
(−u)

.

By substituting the density and cumulative probability functions in Eq. (3.3), and factorising
for e−e−u ,

Pr(yij = 1) =
∫
e−u

∏
k 6=j

e−e
−u[e−(Vij−Vik)+1]du

=
∫
e−ue−e

−u
∑

k 6=j [e
−(Vij−Vik)+1]du

= 1∑
k 6=j[e−(Vij−Vik) + 1] .

(3.4)

The last inequality is obtained by noting that d
du

[
e−αe

−u
]

= αe−ue−αe
−u , and integrating for all

the values of u. Finally, by multiplying and dividing Eq. (3.4) by eV ij, the standard expression
for the probabilities in the MNL model are obtained,

Pr(yij = 1) = eVij∑J
k=1 e

Vik
. (3.5)

The simplicity of the MNL model, resulting from the closed form of the choice probabilities
(Eq. (3.5)), makes it the most used discrete choice model, and the starting point in the devel-
opment of more complex models. Moreover, the log-likelihood of the MNL model is globally
concave for linear-in-parameters utility, and thus it is computationally efficient to solve for the
parameters β. Moreover, in spite of its simplicity, the MNL model allows to represent sys-
tematic taste variations between individuals, and the dynamics of repeated choice through a
correct specification of the functions Vij. However, the MNL model exhibits the independence
of irrelevant alternatives (IIA) property, which may not be suitable in some choice situations.
Furthermore, as a result of the i.i.d. assumption of the unobserved factors εij, the MNL model
is not able to represent random taste variation of individuals, nor their correlation in repeated
choice situations. These limitations, and their implications in route choice context, are elabo-
rated in the next sections.

3.2.1.1 Independence from irrelevant alternatives (IIA)

This property states that the preference between two alternatives j and k is independent from
the rest of the alternatives in the choice set. This property can be easily observed for the MNL
model by taking the ratio

Pr(yij = 1)
Pr(yik = 1) = eVij

eVik
. (3.6)
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As the proportion in this expression does not depend on the rest of the alternatives, the IIA
property implies that the introduction of a new alternative k′ in the choice set does not change
the relative preference between j and k. Moreover, changes in the attributes of the alternative
k′ do not affect the preferences either. In other words, the alternative k′ is irrelevant for the
preference between two other alternatives.

The IIA property has undesirable consequences in the context of route choice. To illustrate
this, consider the problem of route choice between two different routes j and k, k being a route
crossing through the inner city, and j being a freeway in the peripheral with Pr(yj = 1) = 2/3
and /Pr(yk = 1) = 1/3, i.e., Pr(yj = 1)/Pr(yk = 1) = 2. If a third route, k′, is now
included as an alternative, such that its attributes are very similar to the alternative k, then
Pr(yk = 1)/Pr(yk′ = 1) ≈ 1. However, since the probabilities of the three routes must sum
one, now Pr(yj = 1) ≈ 1/2 and Pr(yk = 1) ≈ Pr(yk′ = 1) ≈ 1/4. This situation is unrealistic,
as the preference for the peripheral route k would be expected to remain unchanged, while the
preference for the inner city route split into the two alternatives. In fact, the probability of
choice of the two first alternatives decreases by the same proportion when k′ is available. A
common situation in which this occurs is when routes are highly overlapping, this is illustrated
in Fig (3.1).

Figure 3.1: Independence of irrelevant alternatives. The inclusion of a new route k′, similar to
one of the routes already present in the choice set, will cause the same proportional decrease
in the choice probabilities of j and k.

Extensions to the MNL model have been proposed to overcome the problems that the
IIA may cause in some situations. The nested logit, and then the generalised extreme value
model (Ben-Akiva, 1973, Williams, 1977, Mcfadden, 1978, Vovsha, 1997, Bekhor, 2016) is a
relaxation of the MNL model that divides the choice set into a hierarchy of nests, such that
the alternatives are correlated within the nests, but uncorrelated between nests. This implies
that the IIA property holds for the alternatives in a nest, but not for alternatives in different
nests. The C-logit (Cascetta et al., 1996) and the path-size logit (Ben-Akiva and Bierlaire,
1999, Ramming, 2002) were proposed to account for the overlapping of alternative routes by
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specifying the amount of overlapping in the systematic part of the utility of a MNL model. An
approach to capture the correlation between roads in large networks is proposed by Frejinger
and Bierlaire (2007), Frejinger (2008) and Bierlaire and Frejinger (2008).

3.2.1.2 Taste variation between individuals

In MNL models, the taste of the decision-makers with respect to the different attributes are
represented by the coefficients β, which are fixed for all decision-makers i. Nevertheless, this
assumption may not be adequate in situations where variations in the tastes of different indi-
viduals is suspected. To exemplify this, consider the route choice problem in which the travel
time in route j, TTj, is part of the explanatory variables. The utility that individual i gets
from the alternative route j is specified as

Uij = xij
Tβ + βTTTTj + εij . (3.7)

The coefficient βTT is negative as higher travel times reduce the utility that a traveller gets
from an alternative. In this case, the taste for the travel time βTT is fixed and equal for all
decision-makers. However, this may not be true, as the taste for the travel time depends on
the value of time of each individual: the disutility caused by the travel time in a route is higher
for travellers with higher value of time. Denote the value of time of individual i as V OTi. The
taste variation can be then represented through the systematic part of the utility, i.e.,

Uij = xij
Tβ + βi,TTTTj + εij

βi,TT = γV OTi ,

where γ is a negative coefficient. In this last expression the value of βi,TT varies as a linear
function of the value of time. Therefore, the above model can be written as

Uij = xij
Tβ + γ(V OTiTTj) + εij . (3.8)

Note that in this last expression the unobserved part of the utility is given by the disturbances
εij, which are i.i.d. Gumbel random variables, and thus the model is a MNL model.

In Eq. (3.8) the variable taste variation is specified as part of the systematic part of the
utility through its relationship with another variable, V OTi. However, what happens if the value
of time of the travellers is unknown? In this case, it makes sense to consider the coefficients
βi,TT as random variables. Let βTT be the mean of the distribution of the coefficients βi,TT .
Then, βi,TT = βTT + υi, where the values υi are i.i.d. with E[υi] = 0. With this assumption,
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the utilities are specified as

Uij = xij
Tβ + βi,TTTTj + εij

= xij
Tβ + βTTTTj + (υiTTj + εij) .

(3.9)

In this last expression, the unobserved part of the utility is ε∗ij = υiTTj + εij. Note that for
the decision-maker i and two alternatives j and k, cov(ε∗ij, ε∗ik) = TTj · TTkvar(υi). Thus, the
i.i.d. assumption of the unobserved part of the utility is violated, and the model is no longer a
MNL model. In the context of this work, no data from the attributes of the individuals that
participated in route choice experiment was collected, thus making it more adequate to treat
the variation on the preferences of the individuals as random variables.

3.2.1.3 Panel data

Panel data or repeated choice is when the choices of the same individuals are observed in several
choice situations. In this case, the utility that decision-maker i gets from an alternative j in
choice situation s, with s = 1, . . . , Si, is given by

Uijs = V (xijs;β) + εijs ,

where β is fixed for all decision-makers, and the disturbances εijs are i.i.d. Gumbel random
variables. These assumptions are necessary to guarantee that the model is a MNL model.
Nonetheless, the utilities that a decision-maker gets from the same alternative in two different
choice situations s and s′ are not correlated, and therefore, neither are the choice probabilities.
This may be unrealistic, as choices from the same individuals are expected to be correlated to
some extend.

As in the case for heterogeneous taste, treated in the previous section, some aspects of the
repeated choices of individuals can be captured through the specification of the systematic part
of the utility. When dynamics in the choices are taken into account, it is possible, for example,
to introduce lagged independent variables xij(s−1), or lagged dependent variables yij(s−1) to
account for the past attributes or past choices of the decision-makers. However, introducing
variables or functions of variables in the systematic part of the utility may be difficult when
the temporal aspect of the choices is not relevant, and when the choice sets in the different
choice situations are not the same. This is the case in route choice, when the observations are
the choices of the same individuals on different OD pairs. In this problem, it would be difficult
to explicitly specify a relationship between the choices in the different OD pairs as part of the
systematic part of the utility.
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3.2.2 Mixed logit model

In order to overcome the limitations of the MNL model, it has been extended to the more
flexible mixed logit model (MXL), developed after the works of McFadden (1984), McFadden
and Train (2000) and Walker and Ben-Akiva (2002). In the MXL model, the coefficients β
are considered random variables, while maintaining the independent and identically Gumbel
distributed assumption for the unobserved idiosyncratic errors εij. Therefore, conditioning on
β, the probabilities have the same closed form as in Eq. (3.5),

Pr(yij = 1 |β) = eV (xij;β)∑J
k=1 e

V (xik;β) . (3.10)

Since Pr(yij = 1 |β) is a function of the random vector β, the conditional probability in this
last expression is a random variable. Thus, to obtain the (unconditional) choice probability,
the expression in Eq. (3.10) has to be integrated over all the possible values of β, i.e.,

Pr(yij = 1) =
∫

Ω(β)
Pr(yij = 1 |β = u)Pr(β = u)du

=
∫

Ω(β)

eV (xij;u)∑J
k=1 e

V (xik;u)fβ(u;θ)du ,
(3.11)

where fβ(·;θ) is the probability density function of β parametrised by θ. This last expression
is the general form of the MXL models.

Independence from irrelevant alternatives (IIA). Note that in the case of the MXL
model, the ratio between the choice probabilities in Eq. (3.6) depends on the attributes of all
the alternatives, and thus the IIA property does not hold. Moreover, the MXL model permits
to specify the change in the choice probabilities as a result of a new alternative being included
in the choice set, or as a result of the change of the attributes of an irrelevant alternative. This
is done trough the correlation structure of the random coefficients β. In contrast to the MNL
model, in the MXL model the utilities that an individual i gets from two alternatives, j and k,
are correlated. If the systematic part of the utility is assumed to be linear in the coefficients,
i.e., Vij = xij

Tβ, then the correlation is given by Cov(Uij, Uik) = xij
TΣβxik, where Σβ is the

covariance matrix of the random coefficients β.

Taste variation. Since in MXL model the coefficients β are considered random variables,
they can capture the taste variation between individuals. To make this fact explicit, consider
βi the vector of coefficients associated to individual i, then, the utility is written as

Uij = xij
Tβi + εij .
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If the coefficients βi were observed by the bystander, then the probability that individual i
chooses alternative j is given by the conditional probability Pr(yij = 1 |βi), which is a MNL
model, as it can be seen in Eq. (3.10). However, the coefficients βi are not known, and thus
they need to be integrated out to obtain the unconditional probability

Pr(yij = 1) =
∫

Ω(β)
Pr(yij = 1 |β = βi)Pr(β = βi)dβi , (3.12)

which is equivalent to the formulation of the MXL model in Eq. (3.11).

If the coefficients βi are assumed to be identically distributed between individuals, then
the probability distribution fβ(· ;θ) can be interpreted as the distribution of the tastes or
preferences in the population. In this sense, a larger variance of fβ(· ;θ) means that the
tastes of the population are highly heterogeneous. However, in some cases the assumption
that the coefficients are identically distributed may be restrictive. In this case, more complex
representations of the utility can be obtained by letting the parameters of the distribution
fβ(· ;θ) vary according to the observed values on the individuals, i.e., θi = g(zi), where zi is
a vector of observed values on the individual i. To illustrate this, remember the example in
section 3.2.1.2, but now considering the random coefficient βi,TT = βTTV OTi +

√
1/V OTiυi.

The mean and variance of βi,TT are then E[βi,TT ] = βTTV OTi and V ar(βi,TT ) = (1/V OTi)σ2
υ.

In this specification, the dissutility caused by higher travel times is larger for travellers with
higher value of time (as long as βTT < 0), but also the variance diminishes, capturing the fact
that travellers with higher value of time are less heterogeneous.

Panel data. In the MXL models, when the decisions of individuals are observed in several
choice situations, the utility is written as

Uijs = xijs
Tβi + εijs ,

where s = 1, . . . , Si indexes the choice situation in which the observation is made; the distur-
bances εijs are i.i.d. Gumbel random variables; and βi is a vector of random coefficients. In its
simplest form, the coefficients are allowed to vary over individuals, but to be constant over choice
situations, i.e., βi. In other words, the tastes or preferences of individuals vary between individ-
uals but they remain constant for the same individual in different choice situations. Under this
hypothesis, the choices of a same individual are correlated, as Cov(Uijs, Uiks′) = xijs

TΣxijs′ .

To obtain the expression of the choice probability, let js represent an alternative in choice
situation s. Note that, since the random errors εijs are i.i.d., the conditional probabilities
Pr(yijss = 1 |β = βi) are independent for s = 1, . . . , Si. Therefore, the joint conditional
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probability of observing the sequence of choices j1, j2, . . . , jSi from individual i is given by

Pr(yijss = 1, s = 1, . . . , Si |β = βi) =
Si∏
s=1

Pr(yijss = 1 |β = βi) ,

and the joint unconditional probability is obtained integrating over βi,

Pr(yijss = 1, s = 1, . . . , Si) =
∫

Ω(β)

Si∏
s=1

eV (xijss;βi)∑J
k=1 e

V (xiks;βi)
fβ(βi;θ)dβi .

3.2.3 Joint random utility models

Joint RUM models arise in situations in which decisions of the same individuals are observed
in several related choice problems, and correlation among their decisions is suspected. This is
the case of surveys, where the answers of individuals to different questions may be correlated;
or in route choice, with decisions of travellers in different OD pairs. Joint estimation of RUM
models is not new in literature. It has its origins in the work of Ashford and Sowden (1970)
with the introduction of the multivariate probit model (MPM); a generalisation of the probit
model that permits the joint estimation of several binary response regressions, accounting for
the correlations that may exist between them. In their work, though not related to choice
behaviour modelling, Ashford and Sowden (1970) estimate a MPM to simultaneously model
the binary response of various physiological systems to a given stimuli. The problem that the
authors address with the MPM is the relation that may exist between the different systems;
relation that would be neglected if the responses were estimated independently. Regarding the
modelling of choices, the MPM has been used in situations when the decision-makers can choose
more than one alternative in a choice set, but the choices are suspected to be related. Golob and
Regan (2002) estimate a MPM to understand the adoption of information technologies in the
trucking industry, where the alternative technologies could be competing or complementary, and
thus present correlation patterns. In the transportation context, Srinivasan and Mahmassani
(2000) used a probit model jointly estimated for two groups of participants to study the inertia
and compliance to travel time information. In these studies, the problem pertains the modelling
of binary response subproblems that are correlated. Thus, is reasonable the choice of a MPM
as a modelling approach, as the correlations can be captured by the error structure of the
probit model. However, in situations where the responses are discrete instead of binary, the
correlations within and between subproblems need to be estimated, problem that can easily
grow intractable with the number of alternatives in the choice sets.

A special case in joint RUM models is when the choice problems share part of their variables.
In this situation, the coefficients of the shared variables in the model can be assumed to be equal

55



CHAPTER 3. LITERATURE REVIEW ON ROUTE CHOICE BEHAVIOUR

across the choice problems. This problem is encountered when combining revealed preference
(RP) and stated preference (SP) data into a single model, with the objective to exploit the
advantages of each type of data, while mitigating their weaknesses. The techniques to jointly
estimate models combining SP and RP data were first developed by Ben-Akiva and Morikawa
(1990), who used them to estimate a MNL model to study the transportation mode switching
of travellers. Other related works can be found in Bradley and Daly (1991), Adamowicz et al.
(1998, 1994), Hensher and Bradley (1993), Earnhart (2002). When combining SP and RP data,
two MNL models are estimated, one for RP and the other for SP data,

URP
ij = xij

Tβ + zTijγ + εRPij

USP
ij = xij

Tβ +wT
ijη + εSPij .

(3.13)

Since some of the dependent variables are measured in both SP and RP data, their coefficients
are set to be equal in the joint model. Thus, the available SP data participates in the estimation
of the coefficients of the RP model, and vice versa. In this case, special care has to be taken
with differences in the scale parameters (variance of the unobserved part of the utility εRPij

and εSPij ) associated to the two data collection techniques; consideration that can be neglected
when data comes from one source. Note that when the joint model shares all of its variables
(zij = wij), then it consists of one representation of the utility, given by the variables and their
respective coefficients. The joint estimation of MNL models has been extended to the more
flexible MXL models (McFadden and Train, 2000, Bhat and Castelar, 2002, Brownstone et al.,
2000). Hence, enabling for taste variation between individuals and panel data structures. The
only difference with the model in Eq. (3.13) is that now the coefficients are random and they
are indexed by individual, i.e., βi.

In path-based route choice, each OD pair can be considered to be an independent problem,
as they do not share the alternatives between them: one route is only possible from one origin
to one destination. This implies that there is one route choice model for each OD pair od. If
the OD pairs are described by the same attributes, the coefficients can be assumed to be equal
for all the OD pairs, resulting in one representation of the utility for each od, i.e.,

U od
ijs = (xodijs)Tβodi + εodijs , (3.14)

where the tastes vary across individuals and OD pairs. However, it makes sense to assume that
the tastes of an individual i are the same regardless of the OD pair, i.e., βodi = βi. Moreover,
if the data comes from the same experimentation technique, there is no reason to consider the
scale parameter to be different between OD pairs. Therefore, the joint model in Eq. (3.14) can
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be treated as the panel data MXL model, given by

Uijs = xijs
Tβi + εijs , (3.15)

where each choice situation s represents a choice situation t in a particular OD pair s = (od, t),
and each alternative j belongs to the choice set of the OD pair od.

Model in Eq. (3.15) is the model used in this work. It is justified because participants in the
route choice experiments make choices over different OD pairs. The assumptions made with
this model are:

• tastes or preferences of individuals vary in the population;

• preferences towards the route attributes are the same, regardless of the OD pair and
choice situation;

• the scale parameter is constant throughout the OD pairs.

3.2.4 Estimation of random utility models

The problem of estimating a random utility model consists in finding the values for the coeffi-
cients β that better explain the data. Given the observed data {yij,xij | ∀j} in a single choice
situation and the unknown coefficients β, the likelihood is given by

L(β | D) =
∏
i

∏
j

[Pr(yij = 1|xij;β)]yij , (3.16)

where D = {yij,xij | ∀i, j} is the set of observed choices and attributes. The standard method
to find an estimator β̂ is by maximum likelihood estimation, which can be done analytically
when the likelihood has a closed form, such as in the MNL model. However, this is not the
case for the MXL model, where the coefficients β are random, and thus need to be integrated
out.

For the case of the MXL model the parameters that are estimated are θ, i.e., the parameters
defining the shape of the distribution of the coefficients β. The likelihood function for the panel
data MXL model is given by

L(θ | D) =
∏
∀i

∫
Ω(β)

Si∏
s=1

eV (xijss;βi)∑J
k=1 e

V (xiks;βi)
fβ(βi;θ)dβi , (3.17)

where now D = {yijs,xijs | ∀i, j, s} is the set of observed choices and attributes. Obtaining the
maximum likelihood estimator θ̂ requires to solve the multiple integral in Eq. (3.17). Neverthe-
less, since the integral has no closed form, it needs to be numerically approximated, which could
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present convergence problems and be computationally expensive. An alternative approach is to
regard the MXL model as a Bayesian hierarchical model, which has the advantage of avoiding
the numerical multiple integration in Eq. (3.17) (Train, 2001, Huber and Train, 2001, Train,
2003, Regier et al., 2009, Balcombe et al., 2009).

Mixed logit as a hierarchical Bayesian model The mixed logit can be framed as a
hierarchical Bayesian model (Train, 2001, 2003). Denote by yis a vector representing the
observed choice of individual i in choice situation s. The elements of yis take the value yisj = 1
when alternative j was chosen, and yisj = 0 otherwise; as there is one and only one chosen
alternative in each situation s, ∑j yisj = 1. For ease of exposition, the vectors yis will be
assumed to be of length J for all i and s, though it may not be necessarily the case. The
vector yis can be regarded as a realization of a categorical distribution (the multidimensional
generalization of the Bernoulli distribution) with parameter pis, a vector which elements pisj,
j = 1, . . . , J are the probabilities of choosing each of the alternatives. Naturally, ∑j pisj = 1.
The observed attributes of the individuals and the alternatives are represented in the vector,
xijs, and the probabilities of choosing the alternatives depend on these attributes and the
coefficients βi. The coefficients βi are random variables with probability density function
fβ(· |θ), where θ are the parameters of the distribution. The hierarchical Bayesian model can
be written, for each individual i, as

yis|βi ∼ Cat(pis(βi)) ∀s

pisj = p(yisj = 1 |xisj,βi) ∀j, s

βi ∼ fβ(· ; θ)

θ ∼ fθ(· ; ρ).

(3.18)

Note that the parameter θ is treated as a random variable. In Bayesian procedures, the
unknown parameters are treated as random variables to make explicit the uncertainty about
its true value, its distribution, fθ(· ; ρ), is called the prior.

In words, the model in Eq. (3.18) is explained as follows. Suppose that the values of
the parameters θ are known. These parameters are referred to as population parameters, as
they determine the shape of the distribution of the tastes of the individuals in a population,
fβ(· ; θ). For each individual i, a coefficient βi is drawn from this distribution. Then, the
probability of choice for each alternative j in each choice situation s is computed conditional
on βi. Observe that in the MXL model the conditional probability is given by the MNL model
formula. Finally, for each situation s a vector of choices yis is drawn from the categorical
distribution with parameters given by the probabilities pis. This is a natural way of framing
the MXL model, and it is given by the joint probability of the unknown parameters θ, the
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unknown coefficients βi for all i, and the observations D = {yis,xijs | ∀i, j, s},

Pr(D,θ, {βi | ∀i}) = Pr(D |θ, {βi | ∀i})Pr({βi | ∀i} |θ)Pr(θ) . (3.19)

Bayesian estimation Inference in the Bayesian context refers to obtaining the joint distribu-
tion of the unobserved parameters that best fits the data (Barber, 2011). Since the coefficients
βi in the case of the MXL model are not observed (they are latent variables), they can be
treated as parameters of the full model in Eq. (3.19). Therefore, by the Bayes’ theorem,

Pr(θ, {βi | ∀i} |D) ∝ Pr(D |θ, {βi | ∀i})Pr({βi | ∀i} |θ)Pr(θ) . (3.20)

To estimate the joint distribution of the parameters, first, the prior distribution, representing
the researchers’ beliefs over the values of the parameters θ, is defined. The prior is Pr(θ) =
fθ(θ;ρ), and when no information about prior is available, the values of the hyperparameters,
ρ, can be chosen to be weakly-informative (high variances) to reflect the uncertainty over the
real value of θ. Then, the prior is updated through the likelihood function to obtain the
posterior distribution of the unknown parameters Pr(θ, {βi | ∀i} |D). The likelihood function
is given by

L(θ, {βi | ∀i} |D) = Pr(D |θ, {βi | ∀i})Pr({βi | ∀i} |θ)

=
∏
∀i

Si∏
s=1

eV (xijss;βi)∑J
k=1 e

V (xiks;βi)
fβ(βi |θ) .

(3.21)

Note that by considering the coefficients βi as parameters in a hierarchical Bayesian model,
the model is simplified as there is no longer need to solve the multiple integral in Eq. (3.17).
Still, the joint posterior distribution in Eq. (3.20) has no closed form. However, samples from
the joint posterior distribution can be obtained using the Gibbs sampling method (Levin and
Peres, 2017).

3.2.5 Choice models in this thesis

The MXL model is the model chosen in this thesis to analyse the responses of participants in the
MDG experiments. Even though discrete choice models have been criticised due to their utility
maximisation assumption (Simon, 1957, Kahneman and Tversky, 1979), which has been found
to be violated in some situations, they provide a parsimonious yet effective framework to analyse
and predict the choices of individuals. The usefulness of the discrete choice models comes from
their simplicity and their ability to explain and predict the choices of decision-makers within
an acceptable error. The use of the MXL model in this thesis is justified below.

Discrete choice models, including the MXL model, can easily incorporate the attributes as
explanatory variables of the choices. This enables to efficiently estimate the coefficients related
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to these variables, and their interpretation is straightforward: the tastes or presences of indi-
viduals for the different attributes. In the specific case of the MXL model, the coefficients are
considered as random variables, meaning that the individuals’ tastes vary in the population.
This assumption is realistic, since individuals are heterogeneous. In addition, random coeffi-
cients allow errors due to unobserved factors to be assigned in a finer way (to each variable),
compared to the general error in the MNL model; an important property, considering that in
this thesis no data were collected on the characteristics of individuals. Moreover, the MXL
model is easily adapted to situations in which the individual make repeated choices, i.e., panel
data, as is the case in the MDG experiments. Another reason for the preference of the MXL
model in this work is its flexibility, in the sense that it can estimate the implicit correlation
between the coefficients, and it allows to explicitly specify the correlation structure in the data.
The former enables to capture and interpret certain aspects of the behaviour of individuals, the
latter enables to respect the structure of a phenomena. In this thesis, a structure is specified
in order to correlate the utilities in a joint departure time and route choice model. A Bayesian
approach is used in this thesis to estimate the MXL models. The reason is because the MXL
model can be regarded as a hierarchical Bayesian model. Therefore, complex models can be
straightforward specified into a Markov chain Monte Carlo algorithm to obtain samples of the
posterior distributions of the parameters. In other words, there is no need to code an optimiser
for a specific problem.
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4 Approximating travellers’ route
choices at full-scale urban

network level

In a city-scale network, trips are made in thousands of origin-destination (OD) pairs connected
by multiple routes, resulting in a large number of alternatives with diverse characteristics that
influence the route choice behaviour of the travellers. As a consequence, to accurately predict
user choices at full network scale, a route choice model should be scalable to suit all possible
configurations that may be encountered. In this chapter, a new methodology to obtain such
a model is proposed. The main idea is to use clustering analysis to obtain a small set of
representative OD pairs and routes that can be investigated in detail through computer route
choice experiments to collect observations on travellers behaviour. The results are then scaled-
up to all other OD pairs in the network.

It was found that 9 OD pair configurations are sufficient to represent the network of Lyon,
France, composed of 96,096 OD pairs and 559,423 routes. The observations, collected over these
nine representative OD pair configurations, were used to estimate three mixed logit models.
The predictive accuracy of the three models was tested against the predictive accuracy of the
same models (with the same specification), but estimated over randomly selected OD pair
configurations. The obtained results show that the models estimated with the representative
OD pairs are superior in predictive accuracy, thus suggesting the scaling-up to the entire network
of the choices of the participants over the representative OD pair configurations, and validating
the methodology in this study.

This chapter is published as the journal article: González Ramı́rez, H., Leclercq, L., Chiabaut, N.,
Becarie, C., Krug J. (2019). Unravelling travellers’ route choice behaviour at full-scale urban network
by focusing on representative OD pairs in computer experiments. PLOS ONE 14(11): e0225069.
https://doi.org/10.1371/journal.pone.0225069
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CHAPTER 4. APPROXIMATING TRAVELLERS’ ROUTE CHOICES AT URBAN NETWORK LEVEL

4.1 Motivation

Urban congestion occurs when traffic demand locally exceeds the network capacity. The local
demand is the combination of the global travel demand between the different origins and des-
tinations and the travellers’ route choices, which define how many trips are made at the same
place in a given time window. Thus, at a city-scale level, i.e., considering all the OD pairs and
links in the network, route choice is a key determinant of urban transportation network perfor-
mance. Route choice behaviour has been extensively studied in the transportation literature
from two main but different angles. The first, related to human factors and mainly founded
in discrete choice models (Manski and McFadden, 1981, Train, 2003, Walker and Ben-Akiva,
2002), is focused on the identification of the determinants of travellers’ individual choices. This
line of research is based on investigating travellers’ behaviour through experiments that consist
in either observing their choices in the field (revealed preference) or asking them what would be
their choices in hypothetical scenarios (stated preference). The second line of research, tackles
the problem at full-scale and aims to solve the network loading problem to determine static
or dynamic traffic states over all the network links. In this case, the interactions between the
demand and the route choices on all the OD pairs in the network are considered altogether
to define general principles that determine the network equilibrium. This is, for example, the
case of the deterministic network equilibrium principle (Wardrop, 1952), that states that the
travellers are selfish optimisers who only try to minimise their travel costs when choosing a
route amongst all the alternatives; at the equilibrium, all the used routes that connect an OD
pair have the same minimal cost.

Theoretically, the study of route choice from an individual and network level are consistent.
Various approaches have been proposed to join the individual behaviour and network level.
This is specially investigated using the RP method, since it allows to observe the behaviour
of travellers over different network facilities and circumstances (Baillon and Cominetti, 2008,
Fosgerau et al., 2013, Zimmermann and Frejinger, 2019). However, RP methods lack of pre-
cise information about the travel times (or the traffic conditions) on the network when choices
are made (see Section 2.1). This difficulty is one of the main reasons why SP methods have
been broadly used to study and estimate the route choices of travellers. When considering
SP methods, there is a lack of connection between the study of route choice at an individ-
ual and network level (Yildirimoglu and Kahraman, 2018b). The reason is that, on the one
hand, SP studies of route choice behaviour are focused in specific determinants of travellers’
route choice and, therefore, are based on simple scenarios (two or three routes in few OD pair
configurations) that do not cover the multiplicity of situations that are found in a city-scale
transportation network. In these experiments, particular attention has been paid to the study
of how travellers learn from experience (Iida et al., 1992, Bogers, 2005, Selten et al., 2007), the
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impact of advanced travel information systems (ATIS) (Adler and McNally, 1994, Lotan, 1997,
Mahmassani and Liu, 1999, Ben-Elia and Shiftan, 2010, Ben-Elia and Avineri, 2015, Abdel-Aty
et al., 1997, Srinivasan and Mahmassani, 2000), and the effect of travel time variability and
risk attitudes in the travellers choices (De Moraes Ramos et al., 2013, Avineri and Prashker,
2005, de Palma and Picard, 2005). On the other hand, in the network loading problem, repre-
sentations have been designed as simplified mathematical abstractions that permit to calculate
the network loading under different behavioural principles, such as the deterministic user equi-
librium (Wardrop, 1952), stochastic user equilibrium (Sheffi, 1985) or bounded rational user
equilibrium (Mahmassani and Chang, 1987). These representations often assume that the only
variable influencing travellers’ route choice behaviour is the travel time, ignoring other local
factors, related to the network OD configuration, that have been recognised to influence route
choice behaviour (Bovy and Stern, 1990, Ramming, 2002, Bekhor et al., 2006, Papinski et al.,
2009, Zhu and Levinson, 2015). One of the main reasons for the gap between research in SP
studies of individual route choice behaviour and network loading is the lack of observations at
large scale over a sufficient number of OD configurations, that would allow discrete choice mod-
els to scale-up at the network level and thus enable the design of network equilibrium founded
in a more user-oriented approach. As mentioned above, this is not the case for RP studies, that
have in turn other difficulties. The ambition of this study is to fulfil this gap by the selection of
OD pairs that are representative of the OD configurations that are found in a transportation
network, and then use these OD pairs in computer experiments to collect data on travellers’
route choice behaviour.

In a city-scale network, trips are made in thousands of OD pairs connected by several routes
(in the case concerning this study, the city of Lyon in France, the network has 96,096 OD pairs
and 559,423 routes), resulting in a large number of diverse routes, consequence of the topology
of the network. For example, the route alternatives connecting an OD pair located in the cen-
tral part of a city are likely to have short length, a high number of intersections and turns, but
are unlikely to include segments of freeways. In contrast, the routes connecting an OD pair
that traverses the city are longer and are more likely to include routes with fewer number of
intersections and segments of freeways. From the point of view of the design of experiments,
this implies that the number of scenarios must be reduced to a small but representative set of
scenarios, such that the choices of travellers in any scenario found in the network can be ap-
proximated by a choice model estimated with this small set. More specifically, a representative
set of OD pairs and routes is such that, for any randomly sampled OD pair in the network it
is possible to find an OD pair in the representative set with similar attributes. Thus, assum-
ing that the choices of travellers are similar for similar situations, an estimated model on the
representative OD pairs could adequately reproduce the choices in the rest of the OD pairs.
The question addressed in this work is: how to find a set of OD pairs and routes, such that
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it is representative of the OD configurations and route attributes found in the network, while
being small enough so that a sufficient number of observations on route choices can be collected
through computer route choice experiments?

The solution proposed in this work is based on k-means clustering (Hastie et al., 2009) of
the full set of OD pairs and routes in the network. In cluster analysis, the observations, in this
case OD pairs and connecting routes routes, are grouped in clusters characterised for having
elements that are similar among themselves, but dissimilar to the elements in the other clusters.
In the problem pertaining this chapter, the elements in a cluster will show similar orientation,
length, % of freeway, directness and number of turns, and thus a cluster Ci will be, for example,
composed mainly of OD pairs of short length in the central part of the city, with direct routes
and low % of freeway composition, whereas another cluster Cj will be composed of OD pairs
representing long trips traversing the city, with some non-direct routes composed mainly of
freeways. Assuming that there are k clusters, the elements of a cluster can be regarded as
belonging to a same class of OD pair configurations, and the whole network as being composed
of elements of k different classes. Therefore, the OD pairs and routes in the network can be
represented by elements in the k clusters. A natural choice to represent the elements in a
cluster is the mean element in the cluster (cluster centroid), as it is the point with minimum
Euclidean distance to all the elements in the cluster. Thus, the cluster centroids are chosen
as representative of the clusters’ elements, and the k clusters’ centroids as representative of
the OD pairs and routes in the whole network. These OD pairs and routes are then used
in computer experiments to collect data on travellers route choice behaviour. Note that the
set of representative OD pairs and routes found with k-means is a sample of the attributes of
the network, so the question that arises here is if a model estimated over this representative
set can adequately reproduce the choices in the rest of the OD pairs in the network. To
answer this question, three discrete choice models are estimated with the observations over the
representative set. The discrete choice model used in this work is a joint mixed logit model
(MXL), which under certain conditions, as is the case in this study, is equivalent to the panel
data formulation of MXL models (Train, 2003, McFadden and Train, 2000, Bhat and Castelar,
2002, Brownstone et al., 2000). The predictive accuracy of these models is compared with the
predictive accuracy of the same models, but estimated with randomly chosen sets of OD pair
configurations in a sort of cross validation procedure.

The results of the above methodology are that the models estimated with the observations
over the representative OD pair configurations are better in predicting the route choices on
unseen OD pairs, i.e., on OD pairs not used for the estimation process. On the one hand,
these results demonstrate how a careful selection of OD pairs for experiments on route choice
behaviour can improve the results of a choice model in a broader set of OD pairs and, on
the other hand, that cluster analysis can be used to find these OD pair configurations. These
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findings have direct implications for urban traffic simulators, which solve the network loading
problem to determine the time-evolving traffic states in the network. The scalable route choice
model proposed in this paper can be implemented in such simulators without adding signif-
icantly computational complexity, compared to the usual simple equilibrium rule, e.g., user
equilibrium. Furthermore, the use of clustering techniques to find the most relevant OD pairs
and routes in the network, provides an efficient method to calibrate route choice models that
can be easily replicated in any urban transportation network.

4.2 Materials and Methods

4.2.1 Obtaining representative OD pairs and routes

The road network used in this study is the Lyon-full network, described in Section 2.2.1.
The network has 285 zones, 29 entry points and 28 exit points, giving a total number of
96,096 OD pairs (see Fig 2.2). The total number of routes in the network is 559,423, with an
average number of 5.82 routes per OD pair. The selected route features in this study are the
informed travel time, the length, directness, number of turns per kilometre and the percentage
of freeway in the route composition. These features were selected as they are variables relevant
in travellers’ route choice behaviour (Bovy and Stern, 1990, Ramming, 2002, Bekhor et al.,
2006, Papinski et al., 2009, Zhu and Levinson, 2015), and because they are the attributes
that participants can observe in the computer route choice experiments. An OD pair and
three routes connecting the origin and destination, defined as OD-routes, are characterised by
the variables describing the origin and the destination (latitude, longitude and the Euclidean
distance between them), and the variables describing the three routes connecting them (the
length of the route, the number of turns per kilometre, the directness of the route, and the
percentage of freeway in the route). An OD-routes is then defined by 17 variables: 5 OD pair
specific and 12 describing the routes (4 for each route). An OD-routes is represented as a vector
in which the attributes of the three routes appear ordered by length, from shortest to longest.
A depiction of the OD-routes objects is shown in Fig 4.1.

For the clustering of the OD pairs and routes, and thus the route choice experiments,
the short routes (less than 1.5 km) and highly overlapping routes belonging to the same OD
pair (sharing more than 70% of their links) were not considered. The reason is that very
short trips lack of real alternatives: usually there is an unique route to travel from origin to
destination. The highly overlapping routes are removed from the analysis because, from a route
choice experiment perspective, the similarity between the routes may cause participants not to
consider some routes as real alternatives and, furthermore, highly overlapping routes lack of
the variability required for a choice model to capture the impact of each route attribute in the
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Figure 4.1: OD-routes vector. The vector is composed of the attributes of the OD pair and the
three routes connecting the origin and destination, with length(Route 1) ≤ length(Route 2) ≤
length(Route 3).

choices. After removal of the very short trips and the high overlapping routes, the OD-routes
are obtained by considering all the possible combinations of three routes from the set of routes
joining that particular OD pair. For example, if there are 5 routes joining an OD pair, then
the total number of OD-routes that are obtained is

(
5
3

)
= 10. The total number of OD-routes

in the network is 624,490.
Before clustering, the data was normalised so that all the variables describing the OD-

routes have the same weight in determining the dissimilarity between observations; this step is
necessary when the range of the variables are not comparable, as is the case in the OD-routes
where the directness of the routes takes values in the interval (0, 1), but the length of the routes
takes values in the interval (0, 35). The OD-routes are clustered using k-means with Euclidean
distance, determining the optimal number of clusters, k∗, using the elbow method (Hastie et al.,
2009). The idea behind the elbow method is to select the optimal number of clusters k∗, so that
the mean dissimilarity of the elements in the clusters does not decrease significantly with the
k∗+ 1 clustering. The measure of dissimilarity of the elements in a cluster is the within-cluster
sum of squares (WCSS), i.e., the sum of the square distance between the elements in a cluster.
One of the OD-routes among the 1% nearest to the theoretical cluster centroid is selected as the
cluster centroid. This is done because the theoretical centroid, i.e., the mean of the variables
of the elements in the clusters, may not be part of the data.

4.2.2 Route choice experiments

The route choice experiments for this study were carried out using the mobility decision game,
described at full extent in Chapter 2. The data on route choice behaviour in this chapter comes
from six route choice experiments carried out between February 2018 and February 2019 over the
Lyon-full network. The participants in the experiments were students at the University of Lyon
taking part to the courses of traffic theory (66%), staff from the IFSTTAR (French Institute
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of Science and Technology for Transport, Development and Networks) and other universities,
who received an invitation by e-mail to remotely join the experiments via a web browser (34%).
The participants were instructed to choose the route that they consider the best to complete
a trip on time. Three of the six experiments were specifically implemented for the purpose of
this work, so they were configured to obtain observations in the 9 representative OD pairs. The
rest of the experiments were implemented for previous studies, so they were configured over 21
OD pairs different from the 9 representative set; data coming from these experiments was used
to validate the methodology in this work. Throughout the six experiments, 3,334 choices of
483 participants were recorded, from which 802 choices of 73 participants were made over the
nine representative OD pairs. In the experiments, the participants were confronted to several
route choice problems in the different OD pairs, the task of the participants was to choose one
of the three alternative routes to complete the trip before a given time.

4.2.3 Route choice model

Joint random utility maximisation (RUM) models arise in situations in which decisions of the
same individuals are observed in several related choice problems, and correlation among their
decisions is suspected. A special case in joint RUM models is when the choice problems share
part of their variables. In this situation, the coefficients of the shared variables in the model
can be assumed to be equal across the choice problems. When the choice problems share all of
their variables, then the joint RUM model consists of an unique representation of the utility,
given by the variables and their respective coefficients, which is equivalent to a panel data
RUM (see Section 3.2.3 for more details). In this study, several models are estimated, one for
each OD pair. However, as the OD pairs are described by the same variables, the coefficients
can be assumed to be equal for all the OD pairs. Therefore, the utility of the joint model is
reduced to a single representation, and the model can be estimated as a panel data model. The
joint model for route choice, used in this study, is based on the mixed multinomial logit model
(MXL) for panel data, introduced in Section 3.2.2.

Three panel data mixed logit models are estimated using the observations collected in the
route choice experiments. Five variables are used in the specification of the models. Four of
these variables correspond to the variables used in the selection of the representative OD-routes
for the route choice experiments, which will help to test if the choices in the representative OD-
routes (cluster centroids) can approximate the choices in other OD-routes. The fifth variable is
the estimated travel time that the participants received during the experiments. These variables
are known to influence the route choice behaviour of travellers and that can be observed by the
participants in the computer route choice experiments.

Let the individuals and alternatives be indexed by i and j, respectively. Since participants
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were allowed to repeat decisions in the same OD pair, the choice situation, indexed by s,
represents the pair (od, t), where od is the OD pair in which the decision was made and t

indexes the moment of the choice. The explanatory variables considered in the model are

• LENj, the length (in km) of the route j;

• DIRj, the directness of the route j, defined as the length of j divided by the Euclidean
distance between origin and destination;

• TNRj, the number of turns per kilometre in the route j;

• FRWj, the percentage of freeway that composes the route j;

• INFi, binary variable indicating if participant i received information; and

• ITTjs, the informed travel time in the route j in OD pair and moment s, the variable is
normalised by OD pair by dividing the informed travel time by the free flow travel time
in the fastest of the three routes. The normalization is done in order to make travel times
amongst the different OD pairs comparable.

The specifications of the three models M1, M2 and M3 are

Uijs = βi1FRWj + βi2DIRj + βi3TNRj + βi4LENj + βi5ITTjsINFi + εijs , (M1)

Uijs = βi1FRWj + βi2DIRj + βi3TNRj + βi4LENj + βi5ITTjsINFi (M2)

+ βi6ITTjsLENjINFi + εijs

Uijs = βi1FRWj + βi2DIRj + βi3TNRj + βi4LENj + βi5ITTjsINFi (M3)

+ β6ITTjsLENjINFi + εijs .

In models M1 and M2, the coefficients βip for p = 1, .., 6 are independent and normally dis-
tributed, i.e., βip ∼ N(bp, σ2

p). In model M3, the coefficient β6 is fixed for all individuals (not
random), and the coefficients βip are correlated for p = 1, .., 4, i.e., βi ∼ N4(b,Σ), but indepen-
dent from βi5 ∼ N(b5, σ

2
5). Model M1 is the simplest MXL model considering the five variables.

In models M2 and M3 the interactions between the route length and the travel time information
are taken into account, allowing for the preference towards the length of the route to change
depending on the informed travel time. In model M3 the correlations between the coefficients
βip for p = 1, .., 4 are also estimated. In MXL models, the parameters that are estimated are
the means and variances (covariances) of the coefficients’ distributions, b̂p, σ̂ and Σ̂.

In this work, Bayesian inference is used to estimate the choice models (see Section 3.2.4). In
Bayesian methods, the parameters of the model (b and Σ) are assumed to be random variables
rather than fixed values. Inference, in this context, refers to obtaining the joint distribution of
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the parameters that best fits the data. To estimate the joint distribution of the parameters, first,
a prior distribution, h, representing the researchers’ beliefs over the values of the parameter,
is defined. Then, when data becomes available, the prior is updated through the likelihood
function to obtain the posterior distribution, H. As a result of the Bayes’ theorem, the posterior
distribution is proportional to the prior multiplied by the likelihood. In the general case, the
posterior distribution H of the parameters is

H(b,Σ, βi, ∀i|Y,X) ∝
[
N∏
i=1

Si∏
s=1

∏
j∈C(s)

Pr(yijs = 1|xijs; βi)φn(βi|b,Σ)
]
h(b,Σ), (4.1)

where X represents the alternative and individuals’ attributes; Y the observed choices and φn

is the multivariate normal density function of the random coefficients parametrised by b (mean)
and Σ (covariance matrix). The expression in brackets is the likelihood of the observed choices
and h is the joint prior distribution of the model’s parameters. The joint priors, h, for the
three MXL models estimated in this work, M1, M2 and M3 (see the Results section for the
specification of the models), are, respectively,

h(bp, σ2
p, p = 1, ..., 5) =

5∏
i=1

φ(bi|µ0, σ
2
0)fIG(σ2

i |r0, λ0)

h(bp, σ2
p, p = 1, ..., 6) =

6∏
i=1

φ(bi|µ0, σ
2
0)fIG(σ2

i |r0, λ0)

h(bp,Σ, σ2
p, p = 5, ..., 6) = φ4(bi=1,...,4|µ0,Σ0)fIW (Σ|I0, k0)

∗ φ(b5|µ0, σ
2
0)fIG(σ2

5|r0, λ0)φ(β6|µ0, σ
2
0)

where φ is the density function of the normal distribution, φn of the n-variate normal dis-
tribution, fIG the density of the inverse-Gamma distribution and fIW of the inverse-Wishart
distribution. The inverse-Gamma is the conjugate prior for the variance of the normal distri-
bution, and the inverse-Wishart its generalisation for the multivariate case.

The right hand side in Eq. (4.1) has no closed form, however samples from the joint posterior
distribution H can be obtained using the Gibbs sampling method (Levin and Peres, 2017). In
this study, the Gibbs sampler software JAGS(Plummer, 2003) and the R(R Core Team, 2018)
package rjags were used to obtain 10000 samples of the posterior distribution H after a burn-in
period of 20000 samples. The values of the hyperparameters µ0, σ2

0, r0, λ0, Σ0, I0 and k0, which
define the priors, were chosen to be weakly-informative (very high variances). In other words,
it is assumed high uncertainty on the real values of the parameters that are being estimated.
They are shown in Table 4.1.
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Table 4.1: Hyperparameters of the prior distribution h.

Hyperparameter Description

µ0 = 0 ; σ0 = 10, 000 Prior guesses of the mean and variance of the b parameter
r0 = 0.001 ; λ = 0.001 Prior guesses of the shape and rate of the σ parameter
Σ0ii = 10, 000, Σ0ij = 0 for i 6= j Prior guess of the covariance of the b parameter
I0ii = 4, I0ij = 0, i 6= j ; k0 = 4 (1/k0)I0 is the prior guess of the covariance Σ

4.3 Results

4.3.1 Clustering

To determine the optimal number of clusters, k-means algorithm, with k = 1, ..., 30, was per-
formed over the 624,490 OD-routes in the network. The mean within-cluster sum of squares
(WCSS) is plotted against the number of clusters k in Fig 4.2. In the results, the optimal
number of clusters is not clear, according to the elbow method: big improvements happen for
the first values of k (k ≤ 4); for values 5 ≤ k ≤ 9 the improvement is mediocre; and for k ≥ 10
the improvements are rather small. In terms of the purpose of this chapter, choosing a small
number of k has the risk of sub-representing the OD-routes in the network and, more impor-
tant, a small number of OD-routes in the route choice experiments implies that the variability
in the route attributes is also small, posing a problem in estimating a route choice model (over-
fitting). In this sense, choosing high values of k is preferable, even if some of the clusters are
similar. However, the needed number of observations in the route choice experiment increases
with the number of OD-routes, implying higher costs in the organisation of the experiments,
not to mention the difficulties to recruit participants. In view of these limitations, the number
of clusters is set to k = 9. The clustering results are presented in Table 4.2 and the centroids
are depicted in the map shown in Fig 4.3.

Table 4.2: Summary of the cluster analysis results.

Cluster 1 2 3 4 5 6 7 8 9 Total

No. obs 62,479 86,004 60,063 63,101 44,130 49,956 53,036 119,557 86,164 624,490
WCSS 564,188 578,003 569,158 527,322 464,730 491,656 535,509 759,205 663,009 5,152,782
Variance 9.03 6.72 9.48 8.36 10.5 9.84 10.1 6.35 7.69 15.38

With k = 9, the variability of the full set of OD-routes is reduced in 46.4%. If well, this
reduction may not be big in terms of clustering analysis, it can be seen (Fig 4.4) that the
road attributes of the cluster centroids cover likely values to be observed in the network. To
be more specific, 83% of the values of the attributes of the OD-routes in the network lie in
the range of the centroids: 83% for the Euclidean distance and the directness, 89% for the
freeway composition, 85% for the number of turns per kilometre and 90% for the route length.
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Figure 4.2: Determining the number of clusters k. The sum of squared errors for k-means
clustering of the 624,490 OD-routes with k = 1, . . . , 30. After k = 9 the decrease in the mean
WCSS is marginal.

Furthermore, the resulting p-values of the two-sample Kolmogorov-Smirnov test (Fig 4.4) are
high: p − value > 0.1 for the five variables, suggesting that there is not enough statistical
evidence (with a significance level of α = 0.1) to reject the null hypothesis that the values of
the attributes of the centroids and the full network come from the same distribution. This
implies that a random selected OD pair or route in the network is likely to have attributes
similar to one of the nine OD-routes used in the route choice experiments. In this sense, the
nine cluster centroids can be regarded as representative of the network.

A further characterisation of the nine clusters, based on their elements’ attributes (see
appendix 4.A), is proposed as follows:

Clust. C1: Medium-range direct trips going from south to north, with routes having small
number of turns per kilometre and some freeway segments.

Clust. C2: Short non direct trips mainly in the central part of the network, with routes having
a lot of turns per kilometre and no freeway segments.

Clust. C3: Medium-range direct trips going from north to south, with routes having small
number of turns per kilometre and some freeway segments.
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Figure 4.3: Representative OD-routes. Maps of the nine cluster centroids used in the MDG
experiments.

Clust. C4: Medium-range direct trips mostly in the central part of the network, with routes
having average number of turns per kilometre and with the longest route highly composed
of freeway segments.

Clust. C5: Long trips going from east to west, with routes having a small number of turns
and with large portions of freeway.
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Figure 4.4: Cluster centroids as representative OD-routes. The distribution of the attributes of
the selected OD pairs are similar to that of the whole network. The p-values of the Kolmogorov-
Smirnov, presented in red in the top of each panel, indicate the lack of statistical evidence (with
a confidence level of 0.90) to reject the hypothesis that the two distributions are the same.

Clust. C6: Long trips going from west to east, with routes having a small number of turns
and with large portions of freeway.

Clust. C7: Medium-range non direct trips in the central part of the network, with routes with
average number of turns per kilometre and high portions of freeway.

Clust. C8: Short direct trips mainly in the central part of the network with routes with low
number of turns per kilometre (among short trips) and no freeway segments.

Clust. C9: Short non direct trips mainly in the central part of the network, with routes with
low number of turns per kilometre (among short trips) and some freeway segments.

4.3.2 Experiment results

Three route choice experiment sessions were carried out using the nine OD pairs and routes
obtained from the clustering analysis of the network. In total, 73 individuals participated in
the three sessions, from these participants, 56 (77%) received estimates of the travel times in
each route. Participants recorded a total number of 802 choices in the nine defined OD-routes,
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with an average number of 11 choices per participant, and an average number of 89 choices
in each OD-routes. The choices of the participants are presented in Fig 4.5, where it can be
immediately noticed that travel time information changes the behaviour of the participants.

Figure 4.5: Route choice distribution in the nine cluster centroids. The choices of the informed
participants are different from those of the uninformed participants.

4.3.3 Route choice model estimation

The estimated parameters for the three models are shown in Table 4.3; more detailed result of
the posterior distribution of the parameters can be found in appendix 4.B, and the details of
the computational effort for the estimation process in appendix 4.C.

The estimated parameters b̂p represent the mean preferences in the population. The positive
sign of the estimates b̂1 and b̂2 in the three models is interpreted as the average traveller prefers
routes with high composition of freeways, and direct routes. On the contrary, the negative signs
of b̂3 and b̂5 mean that the average traveller avoids routes with many turns and higher travel
times. These results are in line with the findings in (Papinski et al., 2009), and provide more
evidence in favour of travel time as the most important variable in route choice. Note that
in the three models b̂3 ≈ 0, but with large standard deviations σ̂3, meaning that (i) the sign
is positive for a large number of participants (near half), and that (ii) even when the mean
of the coefficient is close to zero, this variable is still important for a large percentage of the
participants, specially in model M3, where Pr(|βi3| > 1) = 0.42. The case for the length of the
route is different. The standard deviation, σ̂4 is small for models M1 and M2, implying that the
length of the route is not important for the majority of the participants, Pr(|βi4| < 0.2) = 0.93
and Pr(|βi4| < 0.2) = 0.81, respectively. However, for model M3 the length of the route
becomes more important, Pr(|βi4| < 0.2) = 0.29, suggesting correlation between these two
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Table 4.3: Estimates of the MXL models’ coefficients for the nine representative OD pairs.
Mean (standard error) of the sampled posterior distributions of the parameters of the MXL
models.

Coefficient M1 M2 M3

b̂1 (FRWj) 1.96 (0.85) 2.01 (0.74) 2.11 (0.80)
b̂2 (DIRj) 4.61 (1.65) 4.00 (2.10) 4.56 (1.87)
b̂3 (TNRj) -0.15 (0.26) -0.14 (0.26) -0.20 (0.30)
b̂4 (LENj) 0.01 (0.12) -0.11 (0.13) -0.14 (0.16)
b̂5 (ITTjs) -3.86 (0.85) -4.58 (1.01) -5.28 (1.24)
b̂6 (ITTjs ∗ LENj) - 0.08 (0.06) 0.13 (0.10)
σ̂1 (FRWj) 0.61 (0.61) 0.58 (0.62) 2.33 (1.15)
σ̂2 (DIRj) 1.10 (1.00) 0.88 (0.98) 3.00 (2.66)
σ̂3 (TNRj) 0.72 (0.39) 0.76 (0.40) 1.24 (0.29)
σ̂4 (LENjs) 0.11 (0.05) 0.10 (0.06) 0.51 (0.13)
σ̂5 (ITTjs) 4.62 (0.87) 4.64 (0.90) 4.72 (0.91)
σ̂6 (ITTjs ∗ LENj) - 0.07 (0.04) -
σ̂12 (FRWj-DIRj) - - 1.96 (8.73)
σ̂13 (FRWj-TNRj) - - 1.21 (1.60)
σ̂14 (FRWj-LENjs) - - -0.36 (0.65)
σ̂23 (DIRj-TNRj) - - 0.63 (2.28)
σ̂24 (DIRj-LENjs) - - 0.83 (2.06)
σ̂34 (TNRj-LENjs) - - 0.00 (0.19)

variables. Finally, note that in models M2 and M3 the mean preference for the length of the
routes can be written as (b4 +b6ITTjsINFi), with b4 < 0 and b6 > 0, meaning that the informed
travel time diminishes the preference for shorter routes.

4.3.4 Choices on representative OD-routes

Until now, the discussion on the representativeness of the nine selected OD-routes (the cluster
centroids) has been in terms of the route attributes. In this section, the representativeness
of the OD-routes is assessed in terms of how well a choice model, estimated using the cluster
centroids, can be generalised to the entire road network or, in other words, how well it scales-up
the travellers’ choices to other OD pairs in the network. The hypothesis is that if the choices
in the nine cluster centroids are representative of the choices in the entire network, then the
predictive accuracy of a model, estimated with observations in the nine cluster centroids, should
be higher than the predictive accuracy of models (with the same specification) estimated with
observations in random sets of OD-routes. To this end, data collected in other route choice
experiments carried out with the MDG platform is used. The data consists of route choice
observations in 21 OD-routes, defined with a different methodology for previous experiments,
and not comprising the representative OD pairs.
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The methodology to validate the representative OD-routes is based on bootstrapping for
model validation: at each step, a random part of the data is left-out of the estimation process,
and then used to measure the predictive accuracy of the model. However, in this case, the
predictive accuracy of the models obtained at each iteration is compared to the predictive
accuracy of the model estimated with the nine cluster centroids. The predictive accuracy of
model M for a given OD-routes od is defined as the discrepancy between the observed and the
predicted choice distributions, given by

err(M, od) =
3∑
j=1

max(0, obsj − predj) , (4.2)

where obsj and predj are the observed and predicted choice proportions (probabilities) for
route j. Note that the error measure, err(M, od) has a direct interpretation in terms of traffic
assignment: the percentage of trips that are wrongly distributed amongst the three alternative
routes. Let C be the set of choice observations in the 9 cluster centroids and T the set of
observations in the 21 test OD-routes. Denote by M∗ the model (it can be either M1, M2
or M3) estimated with observations on the nine cluster centroids, C. Then, at iteration r

(r = 1, ..., 40),

1. sample all observations from 9 randomly selected OD-routes in (C∪T ), define the sampled
observations as Tr;

2. estimate the model Mr (M1, M2 or M3) with the observations in Tr;

3. obtain the mean prediction errors of models M∗ and Mr for all out-of-sample OD-routes,
i.e., for all od ∈ (C ∪ T )− Tr,

MPEr(M∗) =
∑

od∈(C∪T )−Tr
wod · err(M∗, od)

MPEr(Mr) =
∑

od∈(C∪T )−Tr
wod · err(Mr, od) ,

where the weight wod is the percentage of OD-routes in the cluster to which od belongs,
multiplied by the inverse of the number of OD-routes in (C ∪ T ) that belong to that
cluster. The weighting is done to adjust for the probability of observing an OD-routes
in the network like od. This follows since some clusters are over-represented in T , as the
OD-routes in T were not randomly selected from the network, but they were selected
following a different methodology in previous studies.

The MPEr(M∗) is compared to the MPEr(Mr), r = 1, . . . , 40 for the three model specifica-
tions. In Fig 4.6, MPEr(M∗) is plotted against MPEr(Mr), with blue dots when MPEr(M∗) ≤

76



4.3. RESULTS

MPEr(Mr), and red otherwise. The models estimated with the clusters’ centroids performed
better in predicting the choices of travellers than most of the models estimated with randomly
selected OD-routes. To be more specific, MPEr(M∗) ≤ MPEr(Mr) in 35 out of 40 cases (87.5%)
for models M1 and M2, and in 31 cases (77.5%) for model M3. Furthermore, in the cases when
the model estimated with the centroids performed worst, i.e., MPEr(M∗) ≤ MPEr(Mr), the
errors were close to those of the models estimated with randomly selected OD-routes. Define
the improvement of M∗ with respect to Mr as αr = (MPEr(Mr) −MPEr(M∗))/MPEr(Mr).
Then, the mean improvements, ᾱ, are 14% for model M1, 14.5% for model M2 and 9.9% for
model M3. In 20% of the test cases, αr is at least 26%, 25% and 22% for models M1, M2 and
M3, respectively; and αr reaches 52%, 48% and 43% in the worst case scenarios. This result
highlights the importance of a careful selection of OD pairs in route choice model estimation.
As the MPE represents the percentage of trips that are not assigned to the right route, and since
the total number of trips at a city level can be very high, about 1 million in the Lyon Metropolis
during one day, even low αr values may have an impact on how the traffic is distributed on the
network.

Figure 4.6: Mean predictive errors. The MPEs of model M∗ are smaller than the MPEs of
models Mr in the majority of the cases (blue dots). Furthermore, in the cases where the MPEs
of models M∗ are bigger (red dots), the differences are small (close to identity line).

If the MPE is analysed by whether or not the participants received travel time information
(Fig 4.7), it can be seen that the models M∗ are better than the models Mr for the uninformed
participants than for the informed ones. For models M1 and M3, MPEr(M∗) ≤ MPEr(Mr)
in 97.5% of the cases, and for model M2 in 95%; and when the participants were informed,
MPEr(M∗) ≤ MPEr(Mr) in 65% for model M1, 77.5% for model M2 and 67.5% for M3. In
the case of the uninformed participants the values of ᾱ are 20%, 14% and 15%, respectively
for models M1, M2 and M3. The high performance of the models M∗ for the uninformed
participants implies that the models are capable of approximating the choices of this group
in a variety of scenarios, i.e., the models estimated with the nine centroids generalise well to
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other OD-routes for this group. Moreover, considering that the informed travel time was not
part of the variables used in the clustering of the OD-routes (% of freeway, directness, no. of
turn per kilometre, distance), this result suggests that the choices in the cluster centroids are
representative of the choices in the entire network, thus validating the methodology proposed
in this chapter.

Figure 4.7: Mean predictive errors by information group. The models estimated with the cluster
centroids are clearly better in predicting the choices for the uninformed participants.

The predictive errors of the representative models, M∗, and the test models, Mr, can be
disaggregated by OD-routes. In the results, shown in Fig 4.8, it is clear that the magnitude
and the variance of the predictive errors depend on the OD-routes where the choices are being
predicted. The choices in some OD-routes are difficult to predict, regardless of the training set
used to estimate the models. Furthermore, there is no clear pattern indicating that these errors
are associated with the road characteristics of the OD-routes: two OD-routes belonging to the
same cluster, i.e., having similar route attributes, may have a low and a high prediction error.
Such is the case of OD-routes c3 od2 and c3 od3, both belonging to cluster C3, but with errors
below 0.1 for the former and above 0.2 for the later. Similar cases can be found in cluster C5

and C8. An important observation is that the models estimated with the cluster centroids M∗

are not as accurate in predicting the choices in individual OD-routes as the models Mr, for
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some values of r. In fact, their prediction errors are amongst the lowest 25% in only 8 out of 21
test OD-routes for models M1 and M3, and in 6 for model M2. However, at the same time, the
individual errors are almost never amongst the highest 75%: in 0 OD-routes for model M1, in 2
for model M2, and in 1 for M3. Moreover, when the individual errors are averaged to obtain the
MPE (as in the previous analysis), the models M∗ outperform the models Mr for the majority
of values of r. This result implies that a model Mr0 having low prediction errors for some
OD-routes has also high prediction errors in other OD-routes, and therefore its mean predictive
accuracy is reduced. In this sense, the models estimated with the cluster centroids, M∗, are
preferred, as they will show a relative better global prediction accuracy without incurring in
large errors in individual OD-routes.

The models estimated with the representative OD-routes, M∗, are compared in terms of
their prediction errors over the 21 validation OD-routes. The error distributions of the three
models, depicted in Fig 4.9, show that, practically, there is no difference in the predictive
accuracy. This means that the interaction between the informed travel time and length of the
route in models M2 and M3 does not improve the predictive accuracy; nor considering the
correlations in model M3 does.

4.4 Conclusions and discussion

In this study, it was demonstrated that the choices of participants in a route choice experiment
over a small but representative set of OD configurations can be scaled-up to the entire network.
To obtain the set of representative OD configurations, a new methodology based on k-means
cluster analysis is proposed. First, the OD configurations in the network, i.e., the OD pairs and
three connecting routes, are represented in vector form according to the attributes of the OD
pairs and routes. Then, these OD configurations are clustered in order to obtain a partition of
the road network and the cluster centroids selected as representative of the entire network. The
main hypothesis is that the choices of travellers over the entire network can be approximated
with route choice models estimated using data collected for the representative set. The obtained
results point in this direction. These results were obtained estimating the models over choice
sets with three alternative routes and it is left as future work to see if the results generalise to
larges choice sets. This may pose two difficulties. The first related to the definition of the OD-
routes vector, as the number of alternative routes vary across OD pairs. The second difficulty
is related to experimentation and the high cognitive burden of presenting participants with a
large number of alternatives.

In the current study, for the city of Lyon in France, 9 OD pairs and their connecting
routes were used as representative of 624,490 OD configurations (OD pairs connected by three
alternative routes). These nine representative OD configurations cover around 83% of the values
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Figure 4.8: Distributions of the predictive errors the 21 validation OD-routes. The level and
the variability of the errors amongst the different OD-routes imply that the choices in some
OD-routes are difficult to predict, regardless of the training set used to estimate the models.

of the attributes of the OD-routes in the network. The predictions of the models estimated with
the representative set were superior in most of the test cases (87.5% and 77.5% in the general
case). For the uninformed participants, whose decisions were based on the same attributes used
in the clustering, the predictions are better in at least 95% of the test cases. By estimating the
route choice model with the cluster centroids, the mean prediction errors are reduced by up to
14.5% for model M1 (similar results are observed for models M2 and M3). The reduction of the
prediction error is more than 22% for the 20% of the test cases, and it goes up to 51% in the
worst case. This demonstrates that a careful selection of the OD configurations significantly
improves the prediction accuracy. Another significant finding, is that the models estimated with
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Figure 4.9: Distributions of the prediction errors of the models M∗ on the 21 validation OD-
routes. There are no significant differences between the error distributions.

the representative OD configurations are more robust than the ones obtained from the models
with random OD configurations. The models estimated with the representative set never show
extreme errors for individual OD pairs, contrary to the models estimated with random sets
of OD configurations. This implies that the models estimated with the representative set will
show a relative better global prediction accuracy without incurring in large errors on individual
OD-routes. This result is important when predicting the trip distribution over the network,
as high errors in individual OD pairs may have significant impact in local traffic conditions,
causing spreading. The last finding is that estimating the models with the representative OD
pairs leads to an average prediction error of 12.7%. This value can be considered quite low
when considering the scale of the city, the heterogeneity of OD configurations, and the actual
performance of user equilibrium approaches.

From the clustering analysis in this study, it is clear that there are OD pairs in the network
that are not well represented by the representative set of nine OD configurations. Therefore, it
cannot be claimed that the choices in these non-represented OD pairs can be well approximated
by the set of nine OD pairs found in this study. However, these non-represented OD pairs are
those with attributes not covered by the representative set, which are no more than 17% of the
OD configurations in the network. Note that this result does not hinder the usefulness of the
proposed methodology, as it can be extended by either using other clustering techniques that
allow taking into account for these atypical OD configurations or by including more clusters in
the representative set.
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4.A Cluster characterisation

Figure 4.10: Origin-destination zones in each cluster. The clusters show differentiated geograph-
ical patterns. For example, clusters 1,3,5 and 6 represent trips that originate and terminate in
the limits of the network and, thus, represent longer trips.
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Figure 4.11: Attributes of the routes in the clusters. The attributes of the routes show differ-
entiated attributes between the clusters.
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4.B MXL models’ estimates

Table 4.4: Complete estimates of the MXL models’ coefficients. Mean, standard deviation and
some quantiles of the sampled posterior distributions of the parameters of the MXL models.

M1
Coefficient mean s.d. q. 2.5% q. 25% q. 50% q. 75% q. 97.5%

b̂1 (FRWj) 1.96 0.85 0.44 1.31 1.92 2.67 3.47
b̂2 (DIRj) 4.61 1.65 1.22 3.56 4.64 5.73 7.55
b̂3 (TNRj) -0.15 0.26 -0.65 -0.33 -0.15 0.02 0.36
b̂4 (LENj) 0.01 0.12 -0.26 -0.07 0.02 0.09 0.22
b̂5 (ITTjs) -3.86 0.85 -5.61 -4.42 -3.85 -3.29 -2.23
σ̂1 (FRWj) 0.61 0.61 0.04 0.15 0.38 0.88 2.19
σ̂2 (DIRj) 1.10 1.00 0.04 0.20 0.85 1.75 3.43
σ̂3 (TNRj) 0.72 0.39 0.05 0.43 0.74 1.00 1.46
σ̂4 (ITTjs) 0.11 0.05 0.03 0.07 0.10 0.14 0.23
σ̂5 (ITTjs) 4.62 0.87 3.12 4.00 4.55 5.15 6.52

M2
Coefficient mean s.d. q. 2.5% q. 25% q. 50% q. 75% q. 97.5%

b̂1 (FRWj) 2.01 0.74 0.69 1.47 1.96 2.57 3.41
b̂2 (DIRj) 4.00 2.10 0.74 2.34 3.85 5.80 7.81
b̂3 (TNRj) -0.14 0.26 -0.64 -0.32 -0.15 0.03 0.35
b̂4 (LENj) -0.11 0.13 -0.32 -0.21 -0.12 -0.01 0.13
b̂5 (ITTjs) -4.58 1.01 -6.60 -5.25 -4.57 -3.91 -2.64
b̂6 (ITTjs ∗ LENj) 0.08 0.06 -0.04 0.04 0.08 0.12 0.21
σ̂1 (FRWj) 0.58 0.62 0.03 0.11 0.31 0.91 2.15
σ̂2 (DIRj) 0.88 0.98 0.03 0.11 0.44 1.41 3.41
σ̂3 (TNRj) 0.76 0.40 0.05 0.48 0.79 1.05 1.50
σ̂4 (ITTjs) 0.10 0.06 0.03 0.06 0.09 0.13 0.23
σ̂5 (ITTjs) 4.64 0.90 3.11 4.01 4.57 5.19 6.62
σ̂6 (ITTjs ∗ LENj) 0.07 0.04 0.02 0.04 0.07 0.10 0.17

M3
Coefficient mean s.d. q. 2.5% q. 25% q. 50% q. 75% q. 97.5%

b̂1 (FRWj) 2.11 0.80 0.61 1.56 2.10 2.63 3.75
b̂2 (DIRj) 4.56 1.87 0.92 3.31 4.58 5.88 8.19
b̂3 (TNRj) -0.20 0.30 -0.81 -0.40 -0.20 0.01 0.38
b̂4 (LENj) -0.14 0.16 -0.46 -0.25 -0.14 -0.03 0.17
b̂5 (ITTjs) -5.28 1.24 -7.76 -6.10 -5.26 -4.43 -2.87
b̂6 (ITTjs ∗ LENj) 0.13 0.10 -0.06 0.06 0.12 0.20 0.33
σ̂1 (FRWj) 2.33 1.15 0.83 1.39 2.04 3.10 4.91
σ̂2 (DIRj) 3.00 2.66 0.79 1.25 1.95 3.43 10.57
σ̂3 (TNRj) 1.24 0.29 0.76 1.04 1.22 1.43 1.91
σ̂4 (ITTjs) 0.51 0.13 0.37 0.44 0.48 0.55 0.85
σ̂5 (ITTjs) 4.72 0.91 3.11 4.08 4.66 5.29 6.66
ˆσ12 (FRWj-DIRj) 1.96 8.73 -14.89 -0.84 0.51 3.68 25.0
ˆσ13 (FRWj-TNRj) 1.21 1.60 -0.85 0.15 0.79 1.85 5.48
ˆσ14 (FRWj-ITTjs) -0.36 0.65 -2.21 -0.53 -0.19 -0.02 0.58
ˆσ23 (DIRj-TNRj) 0.63 2.28 -2.96 -0.39 0.30 1.22 6.41
ˆσ24 (DIRj-ITTjs) 0.83 2.06 -0.35 -0.01 0.15 0.58 7.09
ˆσ34 (TNRj-ITTjs) 0.00 0.19 -0.45 -0.10 0.01 0.11 0.38
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4.C Computational effort

Table 4.5: Execution time (in seconds) to draw 30,000 samples of the posterior distribution of
the parameters. Estimation for the 9 cluster centroids which are composed of 802 route choices.

Model user system elapsed

M1 347.983 0.549 350.600
M2 452.597 0.959 458.878
M3 372.546 1.014 376.076

Table 4.6: Hardware and software specifications.

Hardware

Model Name iMac
Processor Name Intel Core i5
Processor Speed 3.2 GHz
Number of Processors 1
Total Number of Cores 4
L2 Cache (per Core) 256 KB
L3 Cache 6 MB
Memory 16 GB

Software

Operating System macOS 10.14.2 (18C54)
R version R version 3.5.1 (2018-07-02)
JAGS version 4.3.0
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5 Travel time and bounded
rationality in travellers’ route

choice behaviour

Recent empirical studies have found that travellers route choices deviate from perfect rational-
ity, by showing that urban trips do not necessarily follow the shortest-time routes (Papinski
et al., 2009, Thomas and Tutert, 2010, Zhu and Levinson, 2015, Hadjidimitriou et al., 2015,
Yildirimoglu and Kahraman, 2018b). However, there is no consensus on how much the trav-
ellers’ route choice behaviour deviates from the perfect rational assumption. The objective of
this study is to contribute to the understanding on how travellers process travel time when
making route choices, and to quantify to what extent users are strict travel time minimisers
or if bounded rationality is observed. The question of whether travellers evaluate travel time
differences in absolute or relative terms is also addressed, and the heterogeneity in the route
choice behaviour of travellers investigated. The results of route choice computer experiments,
focused on the route choices in diverse OD pairs and traffic conditions, are analysed. In total,
496 participants recorded 5,535 route choices over 41 OD pairs. It was found that travellers
evaluate relative rather than absolute differences in travel time. In 60.5% of the trips partici-
pants chose the fastest route, but this percentage is 80% when the travel time of the alternatives
is at least 30% higher than the fastest route. Only 10% of the individuals chose the fastest
route in all trips, confirming the hypothesis of bounded rationality. The participants exhibited
heterogeneous travel time indifference bands: at least 70% of them would not consider routes
with travel times 1.5 times slower than the fastest alternative; the average participant was
indifferent to relative travel time differences of less than 31%.

This chapter is a journal article currently under review: González Ramı́rez, H., Leclercq, L., Chiabaut,
N., Becarie, C., Krug J. (2019). Travel time and bounded rationality in travellers’ route choice
behaviour: a computer route choice experiment. Manuscript submitted for publication to Travel
Behaviour and Society.
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5.1 Motivation

Travel time is often considered the most important variable in explaining the route choice be-
haviour of travellers (Bovy and Stern, 1990). From an individual point of view, routes with
longer travel times result in higher opportunity costs, i.e., less time that the traveller could allo-
cate into other activities (value of time), thus, decreasing the likelihood of being chosen. When
studying traffic assignment, it is traditionally assumed that travellers are perfectly rational, in
the sense that they know the travel times in all the alternative routes (perfect information)
and they will always choose the one with the minimum travel time. As a consequence of this
hypothesis, the traffic states in a transportation network must fulfil the User Equilibrium (UE)
condition, originally stated by Wardrop (1952): “the journey times in all routes actually used
are equal and less than those that would be experienced by a single vehicle on any unused
route”. By relaxing the perfect information assumption (but not the rationality of users), Sheffi
(1985) defined the Stochastic User Equilibrium (SUE). At the individual level, SUE means that
users are still strict optimisers, i.e., they choose the minimum travel time alternative, but they
have no perfect information from the travel times in the system. However, recent empirical
studies have shown that travellers do not necessarily choose the minimum travel time route. In
the study of Zhu and Levinson (2015), GPS itineraries were collected from 143 residents of the
Minneapolis-St. Paul metropolitan area (United States) during a period of 13 weeks, finding
that 40% of the trips followed the strict shortest-time path. More important, in almost 90% of
the trips travellers chose routes no more than 5 minutes longer than the shortest time route,
meaning that users may not be strict optimisers, but consider travel time as a key decision
input. In a related study, Yildirimoglu and Kahraman (2018a,b) use GPS trajectories of taxi
trips in the city of Shenzhen, China, to compare the actual paths followed to those implied
by UE. The results show that 38.2% of the taxi trips followed the shortest-time path. Similar
results can also be found in the work of Bekhor et al. (2006), who by analysing data of 188
participants in a survey consisting of the description of their habitual route to work, found
that 37% chose a route that overlaps in 90% with the shortest-time alternative, or in the work
of Papinski et al. (2009), who examined the GPS traces and survey answers of 31 individuals
residing in Ontario, Canada. In the survey, approximately 50% of the individuals stated that
minimising travel is the most important factor in their route choices. These values, however,
differ considerably from the results reported in other studies. Hadjidimitriou et al. (2015) anal-
yse the GPS coordinates of 89 travellers in the province of Reggio Emilia, Italy, concluding that
only 25% of the trips matched the shortest path route (considering a match to be the routes
that overlap at least in 80% with the shortest route). The authors found that travellers selected
routes on average 1.3 longer than the shortest path. By analysing the data from an experiment
in Virginia, United States, involving 20 participants who completed trips on 5 OD pairs over a
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period of 20 days, Vreeswijk et al. (2014) found that in 74% of the cases the average shortest
time route was chosen. However, this percentage varies from 63% to 90% depending on the OD
pair. Thomas and Tutert (2010) used license plate observations in the Dutch city of Enschede
to conclude that 75% of the trips followed the shortest time paths.

The fact that travellers do not necessarily choose the fastest route is explained, on the
one hand, by the presence of other route attributes that make some alternatives more desirable
than others. For example, distance, the number of intersections, traffic lights, complexity of the
paths, the percentage of freeway, aesthetics (Bovy and Stern, 1990, Ramming, 2002, Bekhor
et al., 2006, Papinski et al., 2009) and travel time reliability (Avineri and Prashker, 2005,
Abdel-Aty et al., 1997, Mahmassani and Liu, 1999). On the other hand, sub-optimal choices of
travellers are explained by limitations in travel time perception and cognitive biases that cause
deviations from perfect rationality (see Di and Liu (2016) for a review on cognitive biases in
route choice behaviour). The cognitive limitations of human reasoning are the cornerstone of
bounded rationality. Under bounded rationality, decision-makers search a solution until a sat-
isfactory (not necessarily optimal) alternative is found, thus departing from perfect rationality.
This idea was introduced by Simon (1957) as an alternative model of decision-making process
that departs from the classical utility maximisation assumption of expected utility or random
utility models (Manski and McFadden, 1981, Train, 2003, Walker and Ben-Akiva, 2002). In the
context of traffic, bounded rationality was first discussed in Mahmassani and Chang (1987) who
introduced the notion of “indifference band” and studied network equilibrium under bounded
rationality assumption (BRUE). The idea of indifference band is that travellers are only willing
to switch their usual route when time savings are above a threshold. Or, to put it another
way, a decision-maker is indifferent to the travel time of the alternatives when their difference
is under a threshold (indifference band). The set of alternatives under this condition are called
satisficing, a term coined by Simon (1957) to refer to alternatives that both satisfy and suf-
fice. By modifying a random utility model to include this threshold, Watling et al. (2018)
propose a bounded choice model and formulate the bounded stochastic equilibrium (Bounded
SUE). Bounded rationality could therefore explain why travellers do not necessarily choose the
shortest-time routes, but close alternatives that may have other appealing features while being
considered equivalent from strict travel time point of view.

In the above-cited studies, there is no consensus on the number of travellers that follow
the shortest time route, nor the size of the indifference band: the percentage of travellers that
chose the fastest route ranges from 25% to 75%. Moreover, five of the six studies are revealed
preference (RP), i.e., those based in GPS traces and license plate observations. While RP
methods are not affected by validity issues, they have the disadvantage of low control of the
experimental environment, meaning that the diversity of explored situations may be limited.
In the context of route choice, the list of alternatives and, more important, the related travel
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times are not known, making it necessary to infer them. This could introduce some errors in
the estimates of the proportion of route choices for the shortest time route. Additionally, in
some of the experiments the number of participants is small (20 and 31) and thus the estimates
may not generalise to the segment of the population under study. The objective of this study
is to contribute to understanding how travellers process travel time when making route choices
and to quantify to what extent users are strict travel time minimisers or if bounded rationality
explains better the observed choices. Also, a Mixed Logit Model (MXL) (McFadden, 1984,
McFadden and Train, 2000, Walker and Ben-Akiva, 2002), estimated considering only satisficing
alternatives, is compared to the estimates of an unrestricted MXL model to assess the impact
that the indifference bands may have on the route choice probabilities. The question of whether
travellers evaluate travel time differences in absolute or relative terms is addressed. Does a
difference of 5 minutes weigh equally in a 10-minute trip as in a 30-minute trip? The answer
to this question is necessary in determining the indifference band. To this purpose, the results
of several stated preference route choice computer experiments, carried out using a dedicated
simulation game platform, are analysed.

Computer-based experiments have been largely used to study the route choices of travellers,
with particular attention to the study of how travellers learn from experience (Bogers, 2005,
Selten et al., 2007), the impact of advanced travel information systems (ATIS) (Adler and
McNally, 1994, Mahmassani and Liu, 1999, Ben-Elia and Shiftan, 2010, Abdel-Aty et al., 1997,
Srinivasan and Mahmassani, 2000, Bifulco et al., 2014), the effect of travel time variability and
risk attitudes on the travellers choices (De Moraes Ramos et al., 2013, Avineri and Prashker,
2005, Bogers et al., 2006), and the impact of human choices on network performance (Iida
et al., 1992, Tawfik et al., 2010), to mention some. In this chapter, experiments focus on
travellers’ route choices considering travel time information. Participants made choices over
41 OD pairs in the network of the city of Lyon, France, joined by three alternative routes
and presented over a map representation of the city. The OD pairs and routes were selected
such that the values of their physical attributes (length, directness, number of intersections,
number of turns and freeway composition) show a significant variation, while the routes remain
plausible alternatives. Furthermore, the traffic conditions in the network, and thus the travel
times in the routes, varied between and within the different experiments. The variability of the
route attributes and travel times make it possible to study their joint effect on participants’
choices. In total, 496 participants recorded 5,535 route choices. From the total number of
participants, 71% received travel time estimates in the three alternative routes, eliminating the
travel time perception bias from the analysis, and providing a common ground to study the
(bounded) rationality in route choice behaviour in the presence of travel time information.

The rest of the chapter is organised as follows. In Section 5.2, the route choice experimental
tool, the Mobility Decision Game (MDG) is described. The methodology to estimate the perfect
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and bounded rationality, as well as the size of the indifference band is introduced in Section 5.3.
The specification of a Mixed Logit Model (MXL) that only accounts for satisficing routes is also
presented in this section. In Section 5.4, the results are discussed. First, a global analysis on
the travel time minimisation behaviour of travellers is done, including the heterogeneity of the
travel time minimisation behaviour by OD pair and by participant. Second, the effect of the
absolute (time) and relative (percentage) travel time differences in the travel time minimisation
behaviour of travellers is studied. Third, the bounded rationality in the route choice behaviour
is analysed, and the heterogeneity of the indifference band is addressed: the distribution of the
indifference bands in the population is estimated. Finally, the results of the MXL model are
analysed to study the effect of the indifference bands on the probability of route choice. This
also permits to test the influence of the route attributes on the choices of the participants. A
summary of the important results and the main conclusions are presented in Section 5.5.

5.2 Computer route choice experiments

The data on route choice behaviour in this chapter comes from 6 route choice experiments
carried out between February 2018 and February 2019. In total, 496 individuals participated
in the experiments. The participants were students from the University of Lyon taking part in
the courses of traffic theory (66%), staff from the IFSTTAR (French Institute of Science and
Technology for Transport, Development and Networks) and other universities, who received
an invitation by e-mail to remotely join the experiments via a web browser (34%). The great
majority of the participants, 80%, are from the city of Lyon, 10% from other cities in France,
and 10% from other countries. All participants have signed, before the experiments begin, an
informed consent form describing the objectives of the study, the data collection and processing,
and the confidentiality rules. Participants could opt out of the experiment at any time. No
personal data were mandatory to participate to the experiments as people had the opportunity
to identify themselves by a login of their choice. Finally, all data were fully anonymised and
processed as such. At the beginning of the experiments, the participants were briefed about
the objective of the experiment and the interface of the experimental platform; for the partici-
pants that joined the experiments via web, a document with the instructions was shared. The
participants were instructed to choose the route that they consider to be the best to complete
a trip on time.

From the 496 participants, 353 (71%) received traffic information as estimates of the travel
time in the alternative routes. The participants recorded a total number of 5,535 choices
amongst three alternative routes in the 41 OD pairs (Fig 5.1). It is important to mention that
not all of the 41 OD pairs were available in each experiment in order to guarantee a sufficient
number of observations in each one: the maximum number of OD pairs in a single experiment
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was 15. The distribution of the number of choices per participant is presented in Fig. 5.2(a),
where it can be seen that participants recorded a different number of choices; the average is
11.2. These choices are distributed over an average of 5.41 OD pairs, meaning that participants
repeated, on average, 2 choices in the same OD pair (Fig. 5.2(b)). The variation on the number
of choices per participant is explained by the duration of the experiments and the availability
of the players: some experiments were carried out in sessions of 30 minutes while others in
sessions of 1 hour and participants could opt out of the experiment at any moment.

Figure 5.1: Choice distributions for the 41 OD pairs in the MDG experiments.

It is worth mentioning that, even when participants made repeated choices, learning is not
observed. The learning process was limited by the design of the experiments, where participants
make several simultaneous choices (up to 10), i.e., they do not have to wait until a trip is
completed to make the next choice. Furthermore, the OD pairs in the MDG are not presented
in any particular order, so participants make choices in other OD pairs before encountering a
repetition. As a result, participants might have trouble memorising the travel time information
provided in their past choices. This, along with the low number of repetitions in the same OD
pair (2 on average) prevented participants from learning. To see this in a quantitative manner,
the trend of the percentage of times that the fastest route is chosen is analysed against the
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Figure 5.2: The distributions of (a) the number of choices per participant and (b) the number
of choices per participant per OD pair. This later plot shows that participants barely made
more than 2 choices in the same OD pair.

ordered choice number. Let F (t) be the percentage of times that the fastest route is chosen in
choice number t, then if there is a learning process, one would expect that F (t+ 1)−F (t) > 0,
i.e., a positive trend in the series. The regression F (t+ 1)−F (t) = φ+ ε is estimated, and the
hypothesis test H0 : φ ≤ 0 is performed. The analysis is done for the participants that received
travel time information, as the rest of the chapter concerns mainly this group. Note that since
the number of choices per participant vary (Fig. 5.2(a)), the values F (t) are obtained with
different number of observations: F (1) is estimated with the first choice of participants and
thus all participants contribute to its computation; F (20) is estimated with the 20-th choice
of participants, but there are only around 10% of participants that made at least 20 choices.
Therefore the observations need to be weighted in the regression. The result of the regression
is φ̂ = 0.0066 with a standard error of 0.0136. The test for H0 : φ ≤ 0 (p-value = 0.3146)
suggests that there is not enough evidence to reject the null hypothesis with a high significance
level (significance 0.1). Hence, no learning process is suspected. The differences F (t+1)−F (t)
are presented in Fig. 5.3 along with φ̂.

5.3 Methodology

5.3.1 Travel time minimisation behaviour

To study to what extent the participants in the experiments are travel time minimisers, the
minimisation rate, defined as the proportion of times that the fastest route informed to par-
ticipants was chosen is computed. When travel time is the only variable that travellers take
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Figure 5.3: Differences in the proportion of choices for the fastest route F (t + 1) − F (t). If
F (t+ 1)− F (t) = 0, then there is no clear trend in the data.

into account when making a route choice, then the minimisation rate can be interpreted as
the proportion of perfect rational choices, assuming a perfect information scenario. This is
the case in this study, where the participants received travel time information on each of the
alternative routes. Denote as F(k) the proportion of times that the k-th fastest route informed
to participants route was chosen, then F(1) is the minimisation rate. Although the proportions
F(k) are defined for the general case, i.e., for choice problems with more than 3 alternative
routes, in this study k = 1, 2, 3. The proportions F(k), can be computed globally, at OD pair
level, at route level, and at participant level. Computed at global level, F(k) allows to make
general conclusions about the travel time minimisation behaviour and how this relates to the
differences in travel time between the alternative routes. At OD pair and route level, F(k)

allows to investigate if the minimisation behaviour is influenced by the characteristics of the
routes, other than travel time. Finally, heterogeneity in participants choices can be observed
by computing F(k) at participant level. The quantities F(k) can be formally defined in terms of
probability. In this chapter, the terms probability and proportion are used interchangeably.

Let Rod be the set of alternative routes belonging to the OD pair od with J alternative routes.
Define C as a random variable taking the value C = j (j = 1, 2, . . . , J), if the route rj ∈ Rod is
chosen, and I(k) as the random variable taking the value I(k) = j (j = 1, 2, . . . , J), when route
rj ∈ Rod is informed to participants to be the k-th fastest route. Then, the probability that
the route rj is chosen, given that it was the k-th fastest amongst the J alternatives in the OD
pair od, is given by

F j,od
(k) = Pr(C = j | I(k) = j, OD = od). (5.1)

At OD pair level, the proportion of times that the k-th fastest route was chosen, F od
(k), is obtained
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by integrating the expression in Eq (5.1) over all the routes rj ∈ Rod, i.e.,

F od
(k) =

∑
j | rj∈Rod

Pr(C = j | I(k) = j, OD = od)× Pr(I(k) = j |OD = od)

=
∑

j | rj∈Rod

Pr(C = j, I(k) = j |OD = od)

= Pr(C = I(k) |OD = od).

(5.2)

Likewise, the global proportion of times that the k-th fastest route was chosen, F(k), is obtained
by integrating the expression in Eq (5.2) over all OD pairs, this is

F(k) =
∑
od

Pr(C = I(k) |OD = od)× Pr(OD = od)

= Pr(C = I(k)).
(5.3)

The proportions F(k) by individual i are obtained in a similar fashion by conditioning by indi-
vidual instead of the OD pairs, i.e., F i

(k) = Pr(C = I(k) | i).

5.3.2 Travel time boundedly rational behaviour

Remember that under boundedly rational behaviour, a traveller is indifferent to the travel
time of the alternatives when their difference is under a threshold (indifference band). The
set of alternatives under this condition are called satisficing. Analogous to the perfect rational
behaviour, the proportion of times that participants chose a satisficing route is computed. Note
that the above definition does not mean that the traveller is indifferent to the satisficing routes,
in the sense that she or he will choose any of them with the same probability. Rather, the
definition means that the effect of travel time is negligible among the satisficing routes. This
last interpretation allows for other attributes to play a role in the choices of travellers. Thus,
under boundedly rational behaviour, travellers do not necessarily choose the shortest travel
time route, but a satisficing route. The indifference band in this study is defined relative to
the fastest route.

Let ITT(j) and ITT(k) be the travel time information in the j-th and k-th fastest routes in
a choice problem, such that ITT(j) ≤ ITT(k). The difference in travel time information can
be computed in absolute (time) or relative (percentage) terms as ∆ITTj,k = ITT(k) − ITT(j),
and %∆ITTj,k = (ITT(k) − ITT(j))/ITT(j), respectively. For ease of exposition, in the rest
of this section, the differences in the travel time information will be denoted as ∆ITTj,k to
refer to either the absolute or the relative difference. Contrary to the minimisation rate, where
each choice problem has a minimum travel time route, in bounded rationality a choice problem
may have one, two or more satisficing routes. This implies that for some choice problems the
probability of choosing the fastest route needs to be estimated, for other choice problems the
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probability of choosing the fastest or second fastest, and so on. These probabilities can be
written as the conditional probability of choosing a satisficing route, given that there are n
satisficing routes. Formally, for a given indifference band IB(α) = [0, α], define the set Sn(α)
as the set of choice problems with exactly n satisficing alternative routes. If there are N

alternative routes in the choice problems, these sets are

S1(α) = {choice problem |∆ITT1,2 > α}

S2(α) = {choice problem |∆ITT1,2 ≤ α ∧∆ITT1,j > α ∀ j > 2}

. . .

Sn(α) = {choice problem |∆ITT1,n ≤ α ∧∆ITT1,j > α ∀ j > n}

. . .

SN(α) = {choice problem |∆ITT1,N ≤ α} .

(5.4)

Using the same notation as in the previous section, the conditional probabilities of choosing a
satisficing route, given that there are n satisficing routes, are then

Pr(satisficing|Sn(α)) = Pr(C ∈
n⋃
k=1
{I(k)} |Sn(α))

=
n∑
k=1

Pr(C = I(k) |Sn(α)) ,
(5.5)

where the last equality is because the events C = I(j) and C = I(k) are disjoint for j 6= k.
Finally, the total probability of choosing a satisficing route can be obtained as

Pr(satisficing|α) =
N∑
n=1

Pr(satisficing|Sn(α))× Pr(Sn(α)).

The probabilities Pr(satisficing|Sn(α)) and Pr(satisficing|α) are also estimated for subsam-
ples of the data to create some variation. In total, 141 subsamples are obtained: 41 by removing
one OD pair at a time, and 100 by randomly selecting 70% of the observations with repetition.
This sampling strategy (bootstrap) allows to observe the effect that heterogeneous participants
and route attributes may have on the estimates of the probabilities.

Note that Pr(satisficing|S1(α)) is the proportion of times that the fastest route is chosen,
given that the difference in the travel time information between the fastest and the rest of the al-
ternatives is more than α. Since S1(α) is equivalent to the case when only one route is satisficing
(the fastest route), Pr(satisficing|S1(α)) can also be interpreted as the proportion of perfect ra-
tional choices. The analysis in Section 5.4.2 is based on the probabilities Pr(satisficing|S1(α))
for different values of α, with special interest in comparing the results between the subsets
S1 when defined in terms of absolute or relative time differences. In Section 5.4.3, the per-
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fect rationality behaviour is relaxed by considering the cases in which more than one route is
satisficing.

5.3.3 Estimation of indifference band by participant

Until now, the bounded rationality has been studied for hypothetical values of α. Moreover, the
values of α have been considered to be equal for all the travellers. However, this assumption
does not hold (see Section 5.4.4), meaning that travellers are heterogeneous with respect to
their indifference bands. To estimate the indifference band of individual i, the travel time
differences of the routes chosen by i are considered. Formally, let Ci,m represent the chosen
route by individual in choice problem m, then by assuming that all the participants always
choose a satisficing route, the indifference band of each individual i can be estimated as

α̂i
max = max{∆ITT1,k |Ci,m = k, ∀m} .

Nevertheless, this definition is restrictive, in the sense that not all information on the travel time
differences of the chosen routes is used. For example, a participant that chose a route k with
∆ITT1,k = 2 and the fastest route in the choice problems m = 2, . . . ,Mi will have α̂imax = 2,
without considering that ∆ITT1,k′ = 0 in for all k′ 6= k. Therefore, two other estimators
for αi are considered in this study: the 95 percentile and the median of the distribution of
∆ITT1,k |Ci,m = k, with m = 1, . . . ,Mi. Respectively,

Pr(∆ITT1,k < α̂i
95 |Ci,m = k, ∀m) = 0.95

Pr(∆ITT1,k < α̂i
50 |Ci,m = k, ∀m) = 0.50 .

5.3.4 A MXL model for route choice conditioned on the indifference
band

The previous sections introduced a methodology to compute the probability of choosing a
satisficing route as a function of the indifference band. That methodology allows to make
general conclusions about the perfect and bounded rational behaviour of travellers, and assumes
no route choice model. Nevertheless, the probability of choosing a specific route is not known.
To fill-in this gap, a discrete choice model, specifically, a Mixed Logit Model (MXL) for panel
data is estimated. The model is specified considering the indifference band αi as an input. αi
is exogenous to the model, and it determines which routes are part of the satisficing set. The
routes that do not belong to the satisficing set have a probability equal to zero of being chosen.

Let yij = 1 be the event of of individual i choosing route j (yij = 0 otherwise) and αi be its
exogenous determined indifference band. For ease of exposition, the subscript for the repeated
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choices of individuals is eliminated from the notation. Then, the conditional probability of
choosing the alternative j can be written as

Pr(yij = 1 | βi, αi, xi·) =


exp(xTijβi)∑

k∈S(αi)
exp(xT

ik
βi)
, %∆ITT1,j ≤ αi

0, otherwise ,
(5.6)

where xi· is the vector of observed attributes of the individual i and routes in the choice
problem, βi is the vector of coefficients specific to the individual, and Sn(αi) is the set of
satisficing routes for the indifference band αi. The probability in Eq. (5.6) is conditioned by
the vector of coefficients βi, which represents the preferences or tastes of individual i for the
the different attributes xij. MXL models assume that these preferences are drawn from a
probability distribution representing the taste heterogeneity between the individuals. Here, it
is assumed that βi ∼ N (β̄,Σ), allowing correlation between preferences. The unconditional
choice probability is given by the multiple integral

Pr(yij = 1 |αi, xi·; β̄,Σ) =
∫

Ωβ
Pr(Ci = j | β, αi, xij)× Pr(β | β̄,Σ)dβ , (5.7)

where β̄ and Σ are the parameters defining the distribution of individuals’ preferences which
need to be estimated.

The above model is a two step process: (1) the individual i conforms the set Sn(αi) by
discarding the not satisficing alternatives from a larger set and, then, (ii) he/she chooses an
alternative from Sn(αi). In the interpretation given here, the first step regards a boundedly
rational process, and the second a rational process since the probability in Eq. (5.6) is given by
a MXL model. Note that for a perfect rational traveller αi = 0, which implies that the fastest
route is always chosen. It is important to mention that, contrary to random utility models
where all the alternatives have a nonzero probability, in Eq. (5.6) it is possible to assign a zero
probability to an alternative in the data that was actually chosen. In other words, if the chosen
alternative results to be outside of the indifference band, then it will not be considered in the
satisficing set, which violates one of the assumptions of RUMs: the chosen alternative must be
part of the chosen set. To avoid this issue, the estimator of the indifference band used as an
input is α̂imax, which guarantees that all the chosen routes in the data belong to the satisficing
set. The variables that enter the model are

• FRWj: the % of freeway that composes the routes;

• DIRj: the directness of the trip, defined as the euclidean distance divided by the length
of the route;

• TRNj: the number of turns per kilometre;
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• INTj: the number of intersections per kilometre;

• %∆ITTi,(1,j): relative travel time difference between route j and the fastest route; the
subindex i indicates that is participant i who received the information.

To estimate the MXL model in this study a Bayesian approach was adopted. In Bayesian
inference, a posterior distribution for the parameters β̄ and Σ is obtained after updating the
prior distribution through the likelihood function using the Bayes theorem (see Gelman et al.
(2014) for details on Bayesian methods or Train (2001) for Bayesian methods applied to choice
modelling). This contrasts with maximum likelihood estimation methods, where point estimates
for the parameters are found. The posterior probability distribution, denoted as Prpost(β̄,Σ), has
no closed form. However, the Bayesian methods, such as Markov Chain Monte Carlo and Gibbs
samplers (Levin and Peres, 2017), allow to obtain samples from this distribution. Estimating
the model in equation (5.7) with Bayesian methods has the advantage of providing the means
to predict the choices of individuals for which the indifference band has not been observed. To
see this, let x̃i· be the measurable attributes of a new individual and the alternatives in a future
choice problem. The posterior predictive choice probability for the model in expression (5.7) is
given by

Prpred(ỹij = 1 | x̃i·) =
∫
Pr(yij = 1 |αi, xi·; β̄,Σ)× Prpost(β̄,Σ)d(β̄,Σ)

≈ 1
S

S∑
s=1

Pr(yij = 1 |αi, xi·; (β̄,Σ)s)

= 1
S

S∑
s=1

∫
Ωβ
Pr(yij = 1 | β, αi, xij)× Pr(β | (β̄,Σ)s)dβ

≈ 1
S

S∑
s=1

1
I

I∑
i=1

Pr(yij = 1 | βsi , αi, xij) ,

(5.8)

where (β̄,Σ)s is a sample from the posterior Prpost(β̄,Σ), and βsi a sample from Pr(β | (β̄,Σ)s).
The samples βsi , for all s, are samples of the posterior distribution of the parameters estimated
for the individual i. These samples are readily available after model estimation, the reason
is that in Bayesian inference for MXL models the individual coefficients βi are considered as
parameters of the model in order to avoid the integral in expression (5.7), which may cause
numerical instabilities and an increase in computational effort (Train, 2001). Note that in the
last equality in expression 5.8 the indifference bands αi are treated as individual-specific pa-
rameters, and that they are being integrated (along with the coefficients βi) across individuals.
The posterior predictive, Prpred(ỹij = 1 | x̃i·), is therefore the average of the predicted choices
of the individuals in the training set, where each individual has its own indifference band.

The log pointwise predictive density (lppd), a measure of goodness-of-fit of a model, is the
Bayesian analogous of the log-likelihood, and it is obtained by considering the joint posterior
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predictive probability. Let D be a set of observations (they can be future or observed choices).
Then, assuming independent observations, the lppd is given by

lppd = logPrpred(D)

= log
∏
i

∏
k

[Prpred(yik = 1 |xi·)]yik

=
∑
i

∑
k

[yik × logPrpred(yik = 1 |xi·)] ,

(5.9)

where (yik, xi·) are observed and they can be in or out-of-sample. When the elements in D are
the same used to fit the model, then lppd is a measure of goodness-of-fit. When the elements
in D are out-of-sample observations, then lppd is a measure of predictive error. Although the
lppd does not give an absolute scale to evaluate a model, it can be compared between different
models, and therefore used for model selection. Higher values of lppd are desirable. Observe
that only the actual chosen alternatives (yik = 1) contribute in the computation of the lppd.
In some applications, however, it is of interest to evaluate the aggregated predicted probability
for each alternative, i.e.,

P̄ rpred(j) = 1
I

I∑
i=1

Prpred(yij = 1 |xi·) . (5.10)

This is the case in route choice, in which the aggregated choice probability represents the
predicted usage of the routes. Therefore, second way to test the model’s performance is to
measure the discrepancy between the observed and predicted choice distributions. The following
measure is proposed to measure this discrepancy

err(Probs, P̄ rpred) =
J∑
j=1

max(0, P robs(j)− P̄ rpred(j)) , (5.11)

where J is the number of alternatives. Fig. 5.4 shows an example of how err is computed.
An advantage of this definition is that the error is in probability units, for example, err = 0.1
means that 10% of the choices will be erroneous on average. Note that in this study there
are 41 OD pairs, therefore err needs to be computed separately for each OD pair and then
averaged to obtain the global error.
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Figure 5.4: Example of the computation of err for a given OD pair. In this case,
err(Probs, P̄ rpred) = 0.10.

5.4 Results

5.4.1 Perfect rationality

The distribution of the choices of the participants amongst the fastest, second fastest and slow
routes is presented in Table 5.1. In the results of the route choice experiments, there is a clear
difference between the choices of participants who receive travel time information (informed
participants) and those who did not. The difference between the informed participants and
those who did not received information is confirmed by a χ2 test, rejecting the null hypothesis
(with a significance level of α =0.001) that the observed distributions are the same. It is
worth mentioning that participants were told that the travel time information are estimates,
and that they do not have any other means of learning the travel time on the alternative
routes. Therefore, it can be concluded that information has an impact on the choices of the
participants, and that the most preferred routes (in the case of no information) differ from
those with information, meaning that travel time information is not necessarily aligned to
the preferred route attributes. The most notable difference between these distributions is for
F(1), thus, it can be concluded that travel time information causes a minimisation behaviour
in participants. It is interesting to note that F(1) > F(2) > F(3) in the not informed case,
suggesting that participants are somehow minimising the travel time by choosing the routes
with the characteristics that they believe lead to smaller travel times. A second observation
is that informed participants preferred slower routes in nearly 40% of the cases, meaning that
they are not necessarily strict travel time minimisers. Could this behaviour be explained by
bounded rationality? Are there factors other than travel time influencing the choices of the
participants? These questions will be further investigated.
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Table 5.1: Global percentage of times that the fastest, second fastest and third fastest routes
were chosen.

Travel time info. F(1) F(2) F(3)

No 0.460 0.328 0.212
Yes 0.605 0.236 0.159

χ2 = 106, df = 2, p-value < 2.2e-16

The minimisation rate in each of the OD pairs, F od
(1), is presented in Fig 5.5(a), where it can

be seen that F od
(1) shows a high variability, with values of F od

(1) ranging between 0.27 and 0.92.
In the case of the three OD pairs with the largest minimisation rates, the alternative with the
high composition of freeway was almost always the fastest according to the information given
to participants. On the contrary, in the OD pair with the lowest minimisation rate, either
the alternative with high composition of freeway was not the fastest, or the three alternative
routes were similar in their attributes. This can be observed in 2.A and 2.B; a formal analysis
is presented in Section 5.4.5. The (weighted) mean of F od

(1) is equal to the global minimisation
rate, i.e., F(1) = 0.605, with a standard deviation of 0.16. The distribution of the minimisation
rate at participant level is included in Fig 5.5(b), where it can be seen that the travel time
given to participants does not have the same effect on all individuals. The group of perfect
rational participants, who chose the fastest route in all of the choice problems, is relatively
small, representing only 9.5% of the total number of participants. Moreover, the minimisation
rate of participants is highly heterogeneous, showing a more or less even distribution between
minimisation rates of 0.20 and 1.0. The mean of the minimisation rate by participant is 0.58,
with a standard deviation of 0.24. This clearly highlights that the great majority of travellers
do not make perfect rational decisions in all the choice problems they face, even when travel
time estimates are available, thus suggesting a boundedly rational behaviour in route choice.
As it will be shown later in this chapter, the variability in F(1) comes, primarily, from the travel
time information in the alternative routes, and secondly, from the route attributes that make
a route more attractive to the travellers.

5.4.2 Perfect rationality and differences in the travel time informa-
tion

Travellers are not necessarily travel time minimisers, but how does the difference in travel
time information in competing routes influence the behaviour of travellers? Do travellers value
absolute or relative differences in travel time? The distributions of the absolute differences
in travel time information between the two fastest routes, ∆ITT , and the relative differences
%∆ITT are shown in Fig 5.6.
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Figure 5.5: (a) minimisation rates per OD pair, and (b) distribution of the minimisation rates
of participants.

Figure 5.6: Kernel density estimation of the distribution of (a) the absolute (seconds) and (b)
the relative differences in travel time.

The proportion of times that the k-th fastest route was chosen in each route choice problem,
F(k), is obtained for the subsets S1(α), defined in Eq. (5.4), with α being the 20-quantiles of
the distributions. Remember that the sets S1(α) are those in which the difference between the
fastest and second fastest route is at least α. The minimisation rate, F(1), and the proportions
F(2) and F(3), estimated for the different subsets S1(α), are shown in Fig 5.7, where it can
be noticed that, in general, the larger the difference in travel time information, the larger the
minimisation rate for both ∆ITT1,2 and %∆ITT1,2. This result is not surprising; travel time
is recognised as the most important variable in route choice. However, there are important
differences between the minimisation rate when considering ∆ITT1,2 or %∆ITT1,2. The first
difference is that in the case of ∆ITT1,2, the maximum minimisation rate is barely above 0.75,
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whereas for %∆ITT1,2 it can reach values little higher than 0.90. The second difference is that
for ∆ITT1,2 the minimisation rate does not show an increasing trend, having a high decrease in
F(1) for large values of ∆ITT1,2. This behaviour can hardly be explained, as one would expect
that larger differences in travel time information would induce larger minimisation behaviour:
why would I choose the fastest route when it is 2 minutes faster, but not when it is 8 minutes
faster? This is not the case %∆ITT1,2, where F(1) shows an increasing trend.

Figure 5.7: Proportion of times the fastest, F(1), second fastest, F(2) and slowest, F(3) routes are
chosen, computed for the subsets S(p) for (a) the absolute difference in travel time information,
and (b) the relative difference in travel time information. Note that the number of observations
to compute the values F(1) decreases with increasing α. In order to maintain the comparability
between the proportions between the two definitions, the cut points were determined by the
20-quantiles of each distributions (Figure 5.6), that is why they are not equally distanced in
the plots. This assures that the number of observations to compute the proportions are the
same for the absolute and relative cases.

To formalise the above findings, two logistic regressions are fitted to the data. In both
regressions, the response variable Y is binary, taking the value Yi = 1 if the participant chose
the fastest route according to the given information; the regressors are ∆ITT1,2 or %∆ITT1,2.
The results of the logistic regressions are presented in Table 5.2, and their predictions for F(1)

for the subsets S1(α) are plotted along the observed values of F(1) in Fig 5.8. In both cases,
the regressors are different from zero, with a significance level of 0.001, however, the Akaike
information criterion (AIC) is smaller when using %∆ITT1,2 as a regressor, meaning a better
fit with this explanatory variable. This result is confirmed by the Hosmer and Lemeshow
goodness of fit test (Hosmer and Lemesbow, 1980). The null hypothesis H0 of this test is that
the observed proportions are similar to the predicted proportions in different subsets of the
data. H0 is rejected for ∆ITT1,2, but not for %∆ITT1,2, suggesting a good fit of the regression
with %∆ITT1,2.

The above results show that the relative differences in travel time information, %∆ITT1,2,
explain better the minimisation behaviour of the participants, and therefore their route choice
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Table 5.2: Summary of the logistic regressions with dependent variable Y = 1 when the fastest
route was chosen, and regressors ∆ITT1,2 or %∆ITT1,2. The Hosmer and Lemeshow (H&L)
goodness of fit test is included in the table.

Absolute difference Relative difference

Coefficient Estimate (s.e.) z statistic Pr(> |z|) Estimate (s.e.) z statistic Pr(> |z|)

intercept -0.0305 (0.0517) -0.59 0.555 -0.1556 (0.0484) -3.218 0.0013
∆ITT1,2 0.0033 (0.0003) 11.02 < 2e− 16
%∆ITT1,2 2.4528 (0.1629) 15.058 < 2e− 16

Deviance=4,774.9 AIC=4,778.9 Deviance=4,614.395 AIC=4,618.4
H &L GOF χ2=79.802, df=18, p-value=9.282e-10 χ2=25.444, df=18, p-value=0.1132

Figure 5.8: Minimisation rate, F(1), computed for the subsets S1(α) for (a) the absolute differ-
ence in travel time information, and (b) the relative difference in travel time information. The
red lines are the predictions of the logistic models.

behaviour. This suggests that travellers evaluate the travel time in a problem-wise manner,
i.e., relative to the travel time in the competing alternatives, and not as an absolute difference
in time units.

5.4.3 Bounded rationality in route choice

In the previous section, the analysis was based on subsets S1(α), i.e., the perfect rational
behaviour. In this section, the bounded rationality of travellers is studied, so the cases when
two or more routes are satisficing are analysed. First, the probability of choosing a satisficing
route is estimated for different values of α for the case of choice problems with three alternative
routes. Then, lower and upper bounds are derived for the general case when there are more
than three alternative routes. In view of the above results, the analyses in this section are
restricted to the relative differences %∆ITT . As in the previous section, α is given by the
20-quantiles of the distribution of the travel time differences %∆ITT1,2.

105



CHAPTER 5. TRAVEL TIME AND BOUNDED RATIONALITY IN TRAVELLERS’ ROUTE CHOICE

The probability of choosing a satisficing route for the different values of α, Pr(satisficing|α),
is shown in Fig 5.9(a), along with the conditional probabilities Pr(satisficing|Sn(α)), n =
1, 2, 3. The fraction of the data that each set Sn(α) represents, i.e., Pr(Sn(α)), is presented
in Fig 5.9(b). In this last figure, it can be seen that the fraction of the choice problems in
which there is only one satisficing route, Pr(S1(α)), decreases with α, while the fraction of
problems with three satisficing routes, Pr(S3(α)), increases. This behaviour is expected, as
larger indifference bands imply more satisficing alternatives. In Fig 5.9(a), it can be observed
that, in general, the probability of choosing a satisficing route Pr(satisficing|Sn(α)) increases
with α, and that Pr(satisficing|S2(α)) ≥ Pr(satisficing|S1(α)). These trends have a different
cause. In the first case, the satisficing alternatives become more desirable as a consequence of
a larger difference in the travel time information between the fastest route (which is always
satisficing) and the not satisficing routes, i.e, larger values of α. In the second case, the trend
is explained because, for the same value of α, the number of satisficing routes is larger in
S2(α) than in S1(α), thus making it more likely to choose one. These two observations can
be generalised to the case of choice problems with more than three alternative routes. In the
first case, by arguing that the travel time has a negative effect on the choices of travellers, i.e.,
the larger the travel time differences between the routes the more likely the faster routes are
chosen. In the second case, by arguing that more satisficing alternatives imply necessarily less
non-satisficing routes, so the probability of choosing a satisficing route is higher for larger values
of n. Furthermore, more satisficing routes means a greater diversity of the route attributes,
giving travellers more options from where to choose.

Figure 5.9: (a) Conditional, Pr(satisficing|Sn(α)), and unconditional, Pr(satisficing |α), prob-
ability of choosing a satisficing route as a function of α. (b) Probability of observing Sn(α) in
the data, i.e, the fraction of observations with n = 1, 2, 3 satisficing routes for different values
of α. These probabilities, computed for the bootstrap subsamples, are also included in the
figures with lighter colours. The values α where the probabilities are computed correspond to
the 20-quantiles of the relative travel time difference distribution (Figure 5.6(b)).
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The probability Pr(satisficing|α) shown in Fig 5.9(a), was estimated for choice problems
with three alternative routes, but how would it look in the general case, i.e., for more than three
alternatives? To answer this question, first note that since there are only three alternative routes
in the choice problems, the probability Pr(satisficing|S3(α)) = 1 for all α. Assuming that the
probabilities Pr(satisficing|Sn(α)) and their weights Pr(Sn(α)) (n = 1 and n = 2) in the general
case can be estimated from the case of three alternatives, then the total probability estimated
here, P̂ r(satisficing|α), overestimates the real total probability that would be observed in the
presence of more than three alternative routes. Therefore, P̂ r(satisficing|α) can be considered
as an upper bound for this real probability. To see this,

Pr(satisficing|α) =
N∑
n=1

Pr(satisficing|Sn(α))× Pr(Sn(α))

≤
2∑

n=1
Pr(satisficing|Sn(α))× Pr(Sn(α)) +

N∑
n=3

Pr(Sn(α))

=
2∑

n=1
Pr(satisficing|Sn(α))× Pr(Sn(α)) + (1−

2∑
n=1

Pr(Sn(α)))

≈
2∑

n=1
P̂ r(satisficing|Sn(α))× P̂ r(Sn(α)) + P̂ r(S3(α)) ,

(5.12)

where the inequality is obtained by making Pr(satisficing|Sn(α)) = 1 for all n ≥ 3, and the
equality since ∑N

n=1 Pr(Sn(α)) = 1 (they are disjoint events). To obtain a lower bound, recall
from the previous analysis that it can be assumed that Pr(satisficing|Sn+1(α)) ≥ Pr(satisficing|Sn(α))
for all n. Thus,

Pr(satisficing|α) =
N∑
n=1

Pr(satisficing|Sn(α))× Pr(Sn(α))

≥
2∑

n=1
Pr(satisficing|Sn(α))× Pr(Sn(α))

+ Pr(satisficing|S2(α))
N∑
n=3

Pr(Sn(α))

≈
2∑

n=1
P̂ r(satisficing|Sn(α))× P̂ r(Sn(α))

+ P̂ r(satisficing|S2(α))P̂ r(S3(α)).

(5.13)

The lower and upper bounds for the probability in the general case are shown in Fig 5.10, along
with the estimated conditional probabilities P̂ r(satisficing|Sn(α)). The results show that the
estimates of the proportion of boundedly rational choices are higher than the estimates for
the perfect rational choices, and that the difference is higher for α < 0.35. For α = 0.35, the
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estimated proportion of rational choices is 82%, whereas for boundedly rational choices it is
between 84% and 92%.

Figure 5.10: Total probability of choosing a satisficing route for the general case (grey area).
Perfect rationality is represented by the red line.

In Fig. 5.9(a), it can be seen that the estimates for the bootstrap subsamples do not differ
considerably from the estimate considering all data, specially for the unconditional probability
Pr(satisficing|α). This implies that, at aggregated level, the heterogeneity of participants and
route attributes have little impact on the probability of choosing a satisficing route. As in the
previous section, a logistic regression is fitted to the data to obtain a mathematical expression
for the upper and lower bounds in the general case. The regression is fitted to the bootstrap
subsamples to produce some variation. The results of the models are summarised in Table 5.3,
where it can be seen that, for both cases, the regressor α is statistically significant (significance
level 0.001), and that the Hosmer and Lemeshow goodness of fit test do not reject the null
hypothesis that the observed and predicted probabilities are the same. Therefore, the upper
and lower bounds for the probability of choosing a satisficing route, given the size of the
indifference band α can be approximated by the logistic functions

Pr(satisficing |α)upper = e0.49+5.23α

1 + e0.49+5.23α

Pr(satisficing |α)lower = e0.61+2.85α

1 + e0.61+2.85α .

These bounds are shown in Fig. 5.11 along with the observed values of the bootstrap subsamples.

The conditional probabilities Pr(satisficing|Sn(α)) can be decomposed as the sum of the
more simple probabilities Pr(C = I(k) |Sn(α)), i.e., the sum of the probabilities of choosing the
k-th fastest route, given that there are n satisficing routes (see Eq. (5.5)). This decomposition
is shown in Fig. 5.12, where it can be seen that the probability of choosing the fastest route is
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Table 5.3: Summary of the logistic regressions to approximate the upper and lower bands for
Pr(satisficing|Sn(α)) in the general case. The Hosmer and Lemeshow (H&L) goodness of fit
test is included in the table.

Upper bound Lower bound

Coefficient Estimate (s.e.) z statistic Pr(> |z|) Estimate (s.e.) z statistic Pr(> |z|)

intercept 0.4943 (0.0676) 7.313 2.62e-13 0.6122 (0.0620) 9.872 < 2e-16
α 5.2326 (0.3962) 13.206 < 2e-16 2.8531 (0.2690) 10.606 < 2e-16

Deviance=2.0312 AIC=1367.2 Deviance=6.4038 AIC=1578.5
H &L GOF χ2=1.1096, df = 8, p-value = 0.9975 χ2=4.6106, df = 8, p-value = 0.7983

Figure 5.11: Predicted upper and lower bounds for the probability of choosing a satisficing
route. The 95% prediction error interval is represented with a dashed line.

higher, no matter the value of α, i.e., P̂ r(C = I(1) |Sn(α)) > P̂r(C = I(2) |Sn(α)) for all values
of α. As expected, the preference for the fastest route amongst the satisficing routes increases
with increasing values of α, however, it is interesting to note that the preference for the fastest
route is much higher even for small values of α. This means that informing a route to be the
fastest has already an effect on the preferences of the participants, regardless of the difference
in the travel time with the rest of the alternatives. This effect is specially important in the case
of the perfect rational travellers (9.5% in this study), who will always choose the fastest route.
The probability of choosing the fastest route is approximately 29% higher in the case of S2(α)
and 116% higher in the case S3(α).

5.4.4 Heterogeneity of the indifference band

Participants are heterogeneous in their indifference bands. This can be observed in Fig. 5.10,
where P̂ r(satisficing|α) < 1, contradicting the boundedly rational hypothesis that travellers
choose satisficing routes. To put it another way, if participants were all boundedly rational
with the same indifference band given by α∗, then P̂ r(satisficing|α) = 1 for all the values of
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Figure 5.12: Probabilities of choosing the k-th fastest route amongst the n satisficing routes
for (a) n = 2 and (b) n = 3.

α ≥ α∗. This is clearly not the case, unless a large (and therefore not meaningful) value of α∗

is considered. In this section, the heterogeneity of the indifference bands is analysed. To this
purpose, the estimators for the indifference band at individual level, αi, defined in Section 5.3.3,
are computed.

The distribution of the estimators α̂imax, α̂i95 and α̂i50 are presented in Fig. 5.13. It can be
observed that for the estimators α̂imax and α̂i95 the proportion of perfectly rational participants,
as it was found in Section 5.4.1, is 9.5% (α̂i = 0). Furthermore, there is a group of participants
with large indifference band, αi > 1, meaning that they will still consider routes twice slower
than the fastest route. The percentage of participants with these large indifference bands is 5%
and 2% for α̂imax and α̂i95, respectively. It is likely that these participants were not engaged in
the experiments, as it is difficult to believe that a traveller is willing to choose a route twice as
slow as the fastest alternative. For these two estimators, a large heterogeneity is observed, with
values more or less uniformly distributed in the interval (0.15, 0.5]; in both cases, around half
of the observations lie in this interval. However, the distribution of α̂i95 accumulates around
30% of the observations in the interval [0, 0.15], whereas the distribution of α̂i95 accumulates
around 20% in the same interval. This explains the difference of 0.08 percentage points in the
means of the distributions. In contrast, the distribution of the estimators α̂i50 tells a completely
different story, showing low heterogeneity with around 80% of the observations having a very
small indifference band: α̂i50 ≤ 0.10. Moreover, with this definition, the proportion of perfect
rational participants would be 55%, which is high compared to the observed proportion of
perfectly rational participants (9.5%). Considering that α̂imax is a restrictive estimator, very
sensitive to outliers, and that α̂i50 overestimates the perfect rationality, the estimator α̂i95 may
be a good selection. This latter estimator is conservative, in the sense that it will include the
great majority of the routes choices within the indifference band, but being less sensitive to
outliers.
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Figure 5.13: Distributions of the indifference band by participant estimated using (a) the
maximum of the travel time differences of the routes chosen by the participants, (b) the 95
percentile, and (c) the 50 median. The cumulative distributions are included in (d).

To see the consequences of using the distinct estimators of αi, the proportion of satisficing
choices in the data set are computed assuming that the participants are heterogeneous and that
their indifference bands are given by the three estimators. These proportions are presented in
Table 5.4. As expected, when the estimators are defined as α̂imax, the probability of choosing a
satisficing route is 100%, since α̂imax was defined so all the observed choices are satisficing. By
relaxing this condition, and defining the estimator as α̂i95, the observed probability of choosing
a satisficing route is 89.9%, and 66.8% for the estimator α̂i50. These proportions are similar to
those obtained by assuming that participants are homogeneous with α equal to the means of
the distributions. Note that the homogeneous case is equivalent to evaluating ᾱi in Fig. 5.10.
For α̂imax and α̂i95, this implies that by assuming homogeneity and an indifference band equal
to the mean, it is possible to know with high probability (92.7 and 88.9%) which routes are
travel time satisficing. However, a smaller indifference band is preferred, as it may reduce the
number of alternative routes that are considered.

Table 5.4: Observed proportion of satisficing choices, (i) given different estimators for the
individual indifference bands, αi, and (ii) assuming homogeneity for the indifference band, ᾱi.

α̂i
max α̂i

95 α̂i
50

heterogeneous αi 100% 89.9% 66.8%
homogeneous α = ᾱ 92.7% 88.9% 69.1 %
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5.4.5 Estimating the MXL model for route conditioned on the in-
difference band

In this section, the route choice probability is obtained by estimating the route choice model
presented in section 5.3.4. Name this model Model 1. The results are presented alongside the
estimates of a second unrestricted MXL model (Model 0 ) that considers no indifference band.
That is, in Model 0 the three alternative routes are always considered by the decision maker
and have a probability of being chosen greater than zero. The purpose of including Model 0 in
the analysis is to investigate how considering the indifference bands change user route choice
behaviour. The models are compared in terms of their goodness-of-fit and predictive accuracy
for out-of-sample observations at the end of this section. Both models were estimated using
only the participants that received travel time information (353 participants and 3,664 choices).
It is worth mentioning that, in order to facilitate the interpretation and comparison between the
two models, the informed travel time variable is considered in the specification of Model 1 for
the alternatives inside the indifference band. The Gibbs sampler software JAGS (Plummer,
2003) and the R (R Core Team, 2018) package rjags were used to obtain samples from the
posterior distribution of the parameters βi, β̄ and Σ. The values of the hyperparameters, which
define the priors of β̄ and Σ, were chosen to be weakly-informative (very high variances). In
other words, it is assumed high uncertainty on the real values of the parameters that are being
estimated. The estimates for models Model 0 and Model 1 are presented in Table 5.5; the
complete summary of the estimates is included in 5.A.

Comparing the two models, it can be seen that there is a large difference in the distribution
of the coefficients β%∆ITT , and that this difference is explained by a change in their mean
values ˆ̄β%∆ITT rather than a change in their variance: Model 1 exhibits a mean closer to zero.
Note that the distributions of the rest of the attributes do not vary considerably (Fig. 5.14).
Model 0 has a negative mean preference for travel time information ˆ̄βM0

%∆ITT < 0, meaning that
the average traveller finds longer travel times undesirable. At individual level i, the preferences
for %∆ITT show a high heterogeneity, as it can be deduced from the estimated standard
deviation (σ̂%∆ITT = 4.138). The proportion of participants with a negative preference for
%∆ITT is Pr(βM0

%∆ITT < 0) = 0.21, i.e., four in five participants prefer shorter time routes.
Moving on to Model 1. The estimates show a positive mean preference for the travel time
information, ˆ̄βM1

%∆ITT > 0, result that may appear counter intuitive, as it is interpreted as
the mean participant choosing longer routes. However, contrary to Model 0 where 4/5 of
participants show a preference for shorter routes, in Model 1 Pr(βM1

%∆ITT < 0) = 0.46, i.e.,
there is no clear trend in the preferences for the travel time information. In words, it is
equally likely to find an individual preferring shorter time routes than longer ones within the
indifference band. This finding is in accordance with the bounded rational model assumption in
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Table 5.5: Estimates for the mean and the covariance (standard deviation and correlation) of
the parameters of the two MXL models Model 0 and Model 1 estimated for the participants
that received travel time information. lppd is the log pointwise predictive density, an estimate
of the predictive accuracy of the model: a higher value (compared to another model) means a
better fit. WAIC (Watanabe-Akaike Information Criterion) penalises the lppd with the model
complexity: a smaller value (compared to another model) means that the model represents a
better alternative balancing goodness-of-fit and complexity. err is the discrepancy between the
observed and predicted choice distributions.

Model 0 Model 1

Parameter mean s. error mean s. error
ˆ̄βFRW 0.862 0.313 0.622 0.340
ˆ̄βDIR 1.377 0.640 1.863 0.753
ˆ̄βTRN 0.012 0.108 0.061 0.132
ˆ̄βINT -0.044 0.029 -0.076 0.032
ˆ̄β%∆ITT -3.285 0.356 0.366 0.373
σ̂2
FRW 2.840 (1.685) 2.253 3.596 (1.896) 1.842
σ̂2
DIR 17.889 (4.230) 11.229 25.970 (5.096) 9.383
σ̂2
TRN 0.505 (0.711) 0.185 0.464 (0.681) 0.178
σ̂2
INT 0.052 (0.228) 0.011 0.058 (0.240) 0.014
σ̂2

%∆ITT 17.121 (4.138) 3.230 10.867 (3.297) 2.575
σ̂FRW,DIR 4.660 (0.654) 4.628 7.470 ( 0.773) 3.564
σ̂FRW,TRN 0.389 (0.324) 0.478 0.543 ( 0.420) 0.451
σ̂FRW,INT 0.011 (0.028) 0.092 -0.031 (-0.069) 0.093
σ̂FRW,%∆ITT 0.116 (0.017) 1.843 0.882 ( 0.141) 1.596
σ̂DIR,TRN 1.175 ( 0.391) 1.025 1.622 ( 0.467) 1.057
σ̂DIR,INT -0.340 (-0.352) 0.227 -0.486 (-0.397) 0.274
σ̂DIR,%∆ITT 9.290 ( 0.531) 3.853 8.525 ( 0.507) 3.696
σ̂TRN,INT -0.029 (-0.180) 0.032 -0.025 (-0.151) 0.035
σ̂TRN,%∆ITT -0.530 (-0.180) 0.530 0.021 ( 0.009) 0.543
σ̂INT,%∆ITT -0.336 (-0.356) 0.160 -0.382 (-0.482) 0.150

lppd -3307.05 -3334.77
WAIC = −2lppd+ 2pwaic 6,632.27 (pwaic=9.08) 6,688.20 (pwaic=9.33)
err 0.110% 0.104

this chapter: travellers are indifferent to travel time when choosing a route from the satisficing
set. Furthermore, the physical attributes play, on average, a larger role in the choices of
travellers in Model 1 compare to Model 0. To see this, observe that there is no meaningful
change in the distributions of the physical attributes between the models. Then, since the
values of β%∆ITT are closer to zero in Model 1, the importance of the travel time information
relative to the rest of the attributes x, measured as | ˆ̄β%∆ITT/

ˆ̄βx|, decreases significantly. As in
Model 0, the distribution of these coefficients show a high variance and, as a consequence, the
coefficients β%∆ITT may take large values. Nonetheless, the impact of this coefficient on the
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choice probabilities is lower than in the unrestricted model, as it multiplies smaller values of
%∆ITT1,j in the utility; routes with large differences would not be satisficing.

Figure 5.14: Distributions of the random coefficients β ∼ N ( ˆ̄β, Σ̂) for models Model 0 and
Model 1. The probability of a coefficient being greater than zero in shown at the top of the
plot.

Continuing with the interpretation of the rest of the variables. A decrease in the mean
preferences for FRW and INT can be noticed. In the case of FRW , the decrease places the
average closer to zero, meaning that it becomes less important in the route choice. In the case
of INT , the decrease makes it more important, meaning that within the indifference band a
participant is less willing to choose a route with more intersections. It is important to mention
that even though the coefficient seems small, this variable usually takes values INT > 5, making
it an important variable defining the choice probabilities (see Fig. 2.9). This last variable is
even more important than FRW . This is not the case for TRN , with coefficients near zero
and taking values usually TRN < 2. The directness, DIR, is the most important attribute
influencing the decisions of travellers in Model 1, but not in Model 0 where %∆ITT dominates.
It is interesting to note that DIR and %∆ITT are highly correlated (corr = 0.5) and that the
correlation is positive. This implies that travellers who prefer direct routes are likely to prefer
longer routes. This is true for both estimated models, suggesting that there may be two groups
of travellers: one taking decisions mainly based on the travel time, and the other based on the
directness or length of the trip.

Model 0 and Model 1 are now evaluated in terms of their goodness-of-fit and their predictive
accuracy. The goodness-of-fit is assessed by computing the lppd (expression (5.9)) and the
discrepancy between the observed and predicted choice distributions err (expression (5.11))
using all the available observations. The estimation results in Table 5.5 show that the MXL
model, Model 0, has a higher lppd than the boundedly rational model Model 1 (lppdM0 = -3,307
vs lppdM1 = -3,335), meaning that, under lppd, the former model fits better the observations.
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The Watanabe-Akaike Information Criterion (WAIC), the Bayesian analogous of the Akaike
Information Criterion (AIC) that penalises the goodness-of-fit by the complexity of the models,
is smaller for Model 0. As it can be seen in Table 5.5, the factor that penalises for the complexity
of the models, pwaic, is similar in both cases, meaning that the difference in WAIC between the
two models is only explained by the lppd. This is not surprising, since both models estimate
the same number of parameters: αmaxi in the case of Model 1 enters as a variable, it is not a
parameter estimated by the model. If model selection were based on the WAIC, then Model 0
should be selected. However, in terms of the discrepancy between the observed and predicted
choice distributions measured by the error err, the results are the opposite. The error err
is computed OD pair wise and then averaged considering the weight of each OD pair in the
observations. The results, respectively for Model 0 and Model 1 are 11.0% and 10.4%, meaning
that in this case Model 1 fits better the observed route choice distributions. For completeness
of the results, both lppd and err, aggregated per OD pair and weighted by the number of
observations in each OD pair are presented in Fig. 5.15, where it can be seen that models’
performance is OD pair dependent and that no model is systematically superior to the other.

Figure 5.15: Goodness-of-fit of models Model 0 and Model 1 evaluated by OD pair considering
(a) the lppd and (b) err measures. The average is represented by the dashed lines, it is obtained
considering the weight of each OD pair in the data set.

To complete this analysis, the predictive accuracy of the models is obtained for out-of-sample
observations to assess how the models generalise to unobserved choices. For this purpose,
bootstrapping is performed with 10 iterations. At each iteration, 1/3 of the observations are
removed from the training set, the models are estimated with the training set and the lppd and
err are computed for the out-of-sample observations. Bootstrap validation is used (instead of
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cross-validation) to leave out a sufficient number of observations that permit to compute the
choice distributions of the 41 OD pairs. The results are summarised in Fig. 5.16. The results
throw the same conclusions as in the above analysis: in terms of the lppd, Model 0 performs
slightly better in predicting new choices: the average lppd values across the ten iterations are

¯lppdM0 = -1,101.65 and ¯lppdM1 = -1,116.49, but in terms of err the results are the opposite
with errM0 = 12.65% and errM1 = 12.54%. The lppd is a measure related to the probability
of observing the data, whereas err is a measure of discrepancy between the overall observed
and predicted choice distributions. The opposite conclusions are explained because only the
posterior predictive probability of the actual chosen alternatives contribute to the calculation
of the lppd, while in the err the posterior predictive probabilities of the forgone alternatives
are also taken into account. The error err is interpreted as the percentage of trips that are
erroneously assigned (on average) on a given OD pair. Thus, from a route choice point of view,
err is more informative as it is related to the collective behaviour of travellers (distribution of
choices over the OD pair alternative routes). This is of crucial importance in estimating the
network loading. As a final conclusion, it can be said that both models have a similar predictive
accuracy. However, Model 1 is more in accordance than Model 0 with the findings in the
descriptive analysis in this chapter, where bounded rational behaviour is observed. Moreover,
the difference in predictive accuracy between the models could be larger in favour on Model 1
in cases with many alternatives per OD pair. In this case, some of the alternatives may be
not satisficing for all individuals, and thus Model 1 would assign a probability of being chosen
equal to zero, unlike Model 0 which assigns always positive probability to all alternatives.

Figure 5.16: Out-of-sample (a) log pointwise predictive density (lppd) and (b) discrepancy
between the observed and predicted choice distributions (err) for each iteration of the bootstrap
validation.
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5.5 Conclusions and discussion

In this work, the travel time minimisation behaviour and bounded rationality of travellers
in route choice was studied through computer route choice experiments. In the experiments,
participants made several route choices on 41 OD pairs presented over the road map of the city of
Lyon. The choices of the participants were solely based on the travel time estimates (in minutes)
and the map representation of the routes. It was found that, although participants received
travel time estimates in the alternative routes, in 60.5% of the route choices participants chose
the minimum travel time information route. This result lies within the range of those found in
other studies (between 25% and 75%). However, it is important to take into consideration that
the analysis presented here is based on route choices where participants received travel time
information. Therefore, suggesting that in real-world situations, where travellers may not have
travel time estimates on the forgone alternatives, the choices for the fastest route cannot be
more than 60.5%. The percentage of choices for the fastest route was found to be OD pair and
player dependant. According to the estimates of the MXL models, this dependency is explained
by the heterogeneity of the preference of participants for the different route attributes, together
with the variation of attributes between OD pairs. Apart from the travel time information,
the directness of the routes resulted to be an important factor influencing the route choice of
travellers.

The first main finding in this study is that travellers evaluate relative rather than absolute
differences in travel time, at least for the ranges in travel time in the experiments. This means
that a 5 minute difference in travel time weights different for trips of 10 and 30 minutes. In
the first case, the difference represents an increment of travel time of 50% with respect to
the alternative, whilst in the second case the difference is of 15%. Therefore, the 5 minute
difference in the first case weighs more in favour of the fastest alternative. This implies that
travellers minimise their travel time with respect to a reference point, given in this case by
the travel time in the fastest route, and that the reference point is context-dependent, since
it is evaluated in each route choice problem. This result has practical implications for the
estimation of route choice models, and thus in traffic assignment, where expressing the travel
time in relative terms could increase the realism of the predictions. For example, the travel times
of the routes in each OD pair could be expressed as the percentage increase in travel time with
respect to the minimum free flow travel time in that OD pair, or they can be transformed with
the natural logarithm, as in the case of the Path Size Logit model (Ben-Akiva and Bierlaire,
1999), which also accounts for route overlapping. At individual level, a small percentage of
the participants (10%) chose always the fastest route, these participants can be considered
as perfect rational according to the definition given here. The behaviour of the rest of the
participants can be better explained by bounded rationality. In this regard, it was found that
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the participants are heterogeneous with respect to their indifference band, and that at least
70% of them would not consider routes with travel time differences 1.5 times slower than the
fastest alternative. The mean indifference band can be estimated as 31.3%, meaning that the
average participant did not consider routes with travel time differences 1.3 times slower than the
fastest alternative. This value coincides with the average additional travel time in the choices
observed in Hadjidimitriou et al. (2015). If travellers are assumed to be homogeneous with
an indifference band equal to the mean, it is possible to know with high probability (88.9%)
which routes are travel time satisficing. An interesting finding is that amongst the satisficing
routes, the minimum travel time route was always preferred, even for small relative differences
in travel time. This suggests that just the fact of informing a route to be the fastest increases its
probability to be chosen. In this chapter the increase was of around 10 percentage points with
respect to the second fastest route. A MXL model was estimated considering the heterogeneous
indifference bands that define the satisficing alternatives for each participant (Model 1 ). This
model was compared to the estimates of the classical MXL model that takes into account all
the alternatives (Model 0 ). The results show that, as expected, travel time information losses
explanatory importance in the first model, while the rest of the variables maintain their same
level. Thus, amongst the satisficing alternatives, participants put more stress on the physical
route attributes rather than on travel time information for their route choices. These models
were compared in terms of their predictive accuracy for out-of-sample observations, resulting in
similar predictive accuracy. When measured in terms of erroneously assigned trips for a given
OD pair, the errors are around 12.6%. However, Model 1 is more in accordance than Model 0
with the bounded rational behaviour observed in the descriptive analysis in this chapter. This
result is promising, considering that in Model 1 the definition of the exogenous indifference
band is αmaxi is restrictive. A bounded rational model that considers more flexible definitions
for the indifference band could improve the performance. This would require to investigate
more complex models capable of inferring the indifference bands endogenously. Moreover,
Model 1 could be more advantageous in choice situations with many alternatives, in which
some alternatives will not be satisficing for all individuals and thus they will have probability
equal to zero of being chosen. These questions are left as the subject of future investigation.

The findings in this chapter may have practical implications that are left for future work. In
traffic simulation, the estimates for the indifference band can be used to reduce the search space
of choice set generation by discarding routes with travel time differences (with respect to the
shortest time route) above α; or used as exogenous inputs in bounded rational models as the
one proposed in Watling et al. (2018). In these cases, the impact of considering homogeneous
versus heterogeneous indifference bands could be assessed to determine the trade-offs between
the simplicity of the former and the realism of the later. Apart from these two practical
applications, the estimates of the indifference band can shed some light on the boundaries in
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which the users’ route choices could be influenced, with the objective of directing them towards
the social optimum (van Essen et al. (2016) provides a complete review on this subject).
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5.A Detailed results of the models estimates

Table 5.6: Results Model 0. Statistics on the posterior distribution for the mean and covariance
matrix.

Statistic∗

Parameter Mean s.d. qt.2.5% qt.25% qt.50% qt.75% qt.97.5% R̂∗∗

β̂FRW 0.862 0.313 0.242 0.658 0.869 1.065 1.485 1.026
β̂DIR 1.377 0.640 0.018 0.969 1.414 1.838 2.502 1.042
β̂TRN 0.012 0.108 -0.204 -0.059 0.014 0.086 0.218 1.021
β̂INT -0.044 0.029 -0.099 -0.063 -0.045 -0.024 0.011 1.007
β̂%∆ITT -3.285 0.356 -4.010 -3.512 -3.276 -3.045 -2.604 1.018
σ̂2
FRW 2.840 2.253 0.258 0.896 2.261 4.285 8.010 1.123
σ̂2
DIR 17.889 11.229 2.304 9.003 16.272 24.554 44.478 1.165
σ̂2
TRN 0.505 0.185 0.218 0.371 0.475 0.615 0.935 1.042
σ̂2
INT 0.052 0.011 0.034 0.044 0.051 0.059 0.077 1.008
σ̂2

%∆ITT 17.121 3.230 11.608 14.842 16.833 19.134 24.192 1.001
σ̂FRW,DIR 4.660 4.628 -1.565 0.599 3.936 7.758 14.893 1.122
σ̂FRW,TRN 0.389 0.478 -0.379 0.039 0.298 0.714 1.460 1.091
σ̂FRW,INT 0.011 0.092 -0.173 -0.045 0.015 0.069 0.191 1.022
σ̂FRW,%∆ITT 0.116 1.843 -3.147 -1.187 0.016 1.284 3.987 1.035
σ̂DIR,TRN 1.175 1.025 -0.309 0.363 1.011 1.840 3.468 1.081
σ̂DIR,INT -0.340 0.227 -0.886 -0.465 -0.304 -0.178 0.014 1.004
σ̂DIR,%∆ITT 9.290 3.853 2.868 6.492 8.991 11.662 17.941 1.008
σ̂TRN,INT -0.029 0.032 -0.099 -0.048 -0.027 -0.007 0.028 1.007
σ̂TRN,%∆ITT -0.530 0.530 -1.582 -0.880 -0.535 -0.172 0.479 1.001
σ̂INT,%∆ITT -0.336 0.160 -0.675 -0.438 -0.328 -0.223 -0.042 1.005

lppd = -3307.05; WAIC∗∗∗ =6,632.27 (pwaic=9.08)
∗ Statistics based on 3,000 out of 80,000 samples (40,000 burn-in period) and saving 1/40 samples (thinning).
∗∗ Potential Scale Reduction. When the MCMC chains converge, it takes values close to 1.
∗∗∗ WAIC is an estimate of expected predictive error (lower WAIC is better).
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Table 5.7: Results Model 1. Statistics on the posterior distribution for the mean and covariance
matrix.

Statistic∗

Parameter Mean s.d. qt.2.5% qt.25% qt.50% qt.75% qt.97.5% R̂

β̂FRW 0.622 0.340 -0.053 0.393 0.625 0.853 1.281 1.010
β̂DIR 1.863 0.753 0.387 1.331 1.868 2.395 3.311 1.001
β̂TRN 0.061 0.132 -0.197 -0.030 0.062 0.152 0.311 1.012
β̂INT -0.076 0.032 -0.139 -0.098 -0.076 -0.053 -0.014 1.006
β̂%∆ITT 0.366 0.373 -0.378 0.117 0.360 0.626 1.097 1.001
σ̂2
FRW 3.596 1.842 0.669 2.247 3.381 4.671 7.766 1.039
σ̂2
DIR 25.970 9.383 10.586 19.601 24.665 31.469 47.839 1.010
σ̂2
TRN 0.464 0.178 0.188 0.329 0.440 0.570 0.861 1.005
σ̂2
INT 0.058 0.014 0.035 0.048 0.056 0.066 0.089 1.001
σ̂2

%∆ITT 10.867 2.575 6.357 9.056 10.690 12.499 16.354 1.004
σ̂FRW,DIR 7.470 3.564 1.634 4.831 7.176 9.757 15.380 1.039
σ̂FRW,TRN 0.543 0.451 -0.224 0.237 0.490 0.813 1.525 1.028
σ̂FRW,INT -0.031 0.093 -0.219 -0.091 -0.033 0.031 0.154 1.019
σ̂FRW,%∆ITT 0.882 1.596 -2.146 -0.141 0.874 1.831 4.347 1.011
σ̂DIR,TRN 1.622 1.057 -0.256 0.932 1.521 2.218 3.909 1.026
σ̂DIR,INT -0.486 0.274 -1.075 -0.653 -0.465 -0.292 -0.017 1.002
σ̂DIR,%∆ITT 8.525 3.696 1.888 5.925 8.295 10.930 15.974 1.003
σ̂TRN,INT -0.025 0.035 -0.096 -0.047 -0.024 -0.002 0.043 1.009
σ̂TRN,%∆ITT 0.021 0.543 -1.059 -0.333 0.034 0.393 1.069 1.024
σ̂INT,%∆ITT -0.382 0.150 -0.715 -0.477 -0.370 -0.276 -0.121 1.003

lppd = -3334.77; WAIC∗∗∗ =6,688.20 (pwaic=9.33)
∗ Statistics based on 3,000 out of 80,000 samples (40,000 burn-in period) and saving 1/40 samples (thinning).
∗∗ Potential Scale Reduction. When the MCMC chains converge, it takes values close to 1.
∗∗∗ WAIC is an estimate of expected predictive error (lower WAIC is better).
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6 Bounded rational choice set
generation MXL model for

route choice

In this chapter, a choice model that considers bounded rational behaviour in the individuals’
choice set generation for route choice is developed (BRCS model). In the BRCS, the distribution
of the indifference bands is inferred endogenously by jointly estimating the choice set generation
and route choices. The model is proposed as an alternative to the MXL model in Chapter 5,
where the individually estimated indifference bands are exogenously estimated and thus enter
the model as independent variables. The BRCS model is compared, in terms of predictive
accuracy, to the MXL model using synthetic and real data, obtained from the experiments
with the MDG platform. The results show that the BRCS model is capable of inferring the
distribution of the indifference bands for the synthetic generated data. Moreover, for this data,
the BRCS shows higher predictive accuracy than the MXL model. In the case of the MDG
data, the BRCS model exhibits higher predictive accuracy than both the MXL and the MXL
with exogenously estimated indifference bands of Chapter 5.

6.1 Motivation

The model for bounded rationality adopted in this thesis assumes that decision-makers are
indifferent to the travel times of the alternatives when they are below a threshold (indifference
band), and that the thresholds are user-specific. The indifference band is defined to be relative
to the travel time of the fastest route, which can be expressed as travellers only consider
routes with increments in travel time (with respect to the fastest route) below a threshold. This
user-specific threshold is given as a percentage increment in travel time: some travellers may
not consider routes that are 10% slower than the fastest route, while for other travellers this
threshold may be 30% or 0%. This latter value corresponds to the perfect rational individuals,
i.e., individuals who chose always the fastest route. In Chapter 5, a MXL model conditional
on the estimated individual indifference bands was introduced. In that model, the exogenously
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estimated indifference bands for each individual, αi, entered the route choice model as an
independent variable, allowing to study their impact on the choice probabilities. However, the
estimation methods developed in Chapter 5 may suffer from some issues related to the latent
nature of the indifference band. Furthermore, the estimators α̂i that can be used as exogenous
variables in the conditional MXL model are limited. To avoid these issues, in this chapter a
route choice model based on the MXL model that jointly considers the latent indifference bands
is proposed.

The indifference band influences the choices of travellers by determining the choice set
under consideration. Nonetheless, they are latent constructs that cannot be directly observed.
What can be observed are the choices of individuals in different situations. Based on the
repeated route choices of participants in the MDG platform, in Section 5.3.3 three estimators
were proposed. The estimator α̂maxi is the maximum travel time difference of a chosen route
amongst all the choice problems faced by individual i; α̂95

i the 95th percentile; and α̂50
i the

median. However, the choice problems that participants face in the MDG cover only a limited
number of situations (travel time differences) that may introduce biases to the estimates. For
example, the estimated indifference band of a participant that faces three choice problems with
all travel time differences below 5% will be at most 5%. A similar problem happens when all
the travel time differences are large and, as a consequence, the participant chooses always the
fastest route. In this case, the estimated indifference band would be 0%. In both examples, the
indifference band is underestimated, as the estimators are inferred from partial observations. A
third case is when an outlier is present in the data, that could be caused by a wrong manipulation
of the participant in the MDG or because the participant was testing the tool. In this case, a
chosen route with a large travel time difference may cause the estimator to overestimate the
real value of the indifference band. These three cases are illustrated in Figure 6.1. In addition,
not all of the proposed estimators can be used as inputs in a discrete choice model. The reason
is that, except for α̂maxi the rest of the estimators violate the assumption in discrete choice
models that the actual chosen alternative is part of the choice set. This is, for estimators
α̂i < α̂maxi the actual chosen alternative may be assigned a choice probability equal to zero,
making it impossible to estimate the model. Therefore, the estimator of the indifference band
used as input in the choice model must never discard the actual chosen alternatives from the
choice sets; the only estimators that guarantee this are those with values greater than or equal
to α̂maxi . This issue is detailed in Section 5.3.4.

The bounded rational route choice model proposed in this chapter is a two-step process
in which (1) decision-makers conform their own choice set by discarding not satisficing routes
from the available alternatives, and then (2) they choose one of the satisficing alternatives.
The first step pertains a bounded rational process, discarding the alternatives with travel times
above a threshold (indifference band). The second step here is rational, since a MXL model
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Figure 6.1: Issues in the individual estimation of the indifference bands α. The cases represent
three choice problems, each with three alternative routes, faced by an individual.

is proposed to model the choice probability for the satisficing routes. The model is called
bounded rational choice set generation mixed logit model (BRCS). This model is based on the
ideas of probabilistic choice set model generation (Manski, 1977, Ben-akiva, 1987, Horowitz and
Louviere, 1995, Haab and Hicks, 1997, Swait, 2001), in which the choice sets are endogenous to
the choice model and they are decision-maker dependent. These models assume that the choice
set that decision-makers consider are limited to a subset from all the available alternatives, but
that the subset is not available to the researcher, i.e., it is a latent construct. Thus, a probability
is assigned to every possible subset, and this probability is estimated jointly in the model. Also,
since the travel time gives an ordering of the alternatives (from fastest to slower), the number
of possible considered subsets according to the boundedly rational assumption is at most equal
to the number of alternatives. By estimating the distribution of the indifference bands in the
population, jointly with a MXL model for the satisficing routes, the BRCS model overcomes
the issues in the individually estimated indifference bands. In the BRCS model the choices of
all participants are considered together, thus the unobserved travel time differences for some
individuals are inferred from the observed differences for other individuals. Moreover, in the
BRCS model the probability of choosing an alternative depends on both the characteristics of
the alternative and the probability that it belongs to the choice sets, which in this case are
always greater than zero. Therefore, the BRCS model does not present the estimation issues of
the conditional MXL model. In this chapter, the BRCS model’s ability to infer the indifference
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band, as well as its prediction accuracy are tested using both synthetic and real data.
The rest of this chapter is organised as follows. The BRCS model is developed in Section 6.2.

Then, the methodology to generate the synthetic data, and the methodology to assess the
prediction accuracy of the model are presented in Section 6.3. The BRCS model’s ability to
infer the distribution of the indifference bands, as well as the prediction accuracy over the
synthetic and real data are included in the results in Section 6.4. Finally, the last section of
this chapter comprises the discussion and conclusions.

6.2 Bounded rational choice set generation model

According to the bounded rationality assumption, a traveller αi considers only routes with
travel time differences (with respect to the fastest route), that are below αi. This problem
is equivalent to the problem of heterogeneous choice sets in discrete choice models, in which
individuals consider a subset of all the possible alternatives. Moreover, this subset is not
observed by the bystander and, thus, it needs to be estimated endogenously. Let R be the set
of all the possible alternatives, indexed by j, in a choice problem faced by a decision-maker i,
and define Si ⊆ R as the choice set considered by i. Si is the set of satisficing alternatives, i.e.,
Pr(yij = 1 |Si) = 0 ∀j /∈ Si. Since the subset Si is latent, it is considered a random variable
and thus the probability that individual i chooses alternative j is given by

Pr(yij = 1) =
∑

S∈P(R)
Pr(yij = 1 |S)Pr(S) , (6.1)

where P(R) is the power set of R, i.e., the set with all the possible subsets of R; Pr(yij = 1 |S) is
a discrete choice model; and Pr(S) expresses the uncertainty on the actual choice set considered
by the individual. The model in this section is formulated as a special case of the above model.

Consider the case in which an individual conform his/her choice set by including only the
alternatives j in which the attribute zj is under a threshold αi, i.e., i considers j if and only if
zj ≤ αi. Without loss of generality, it can be assumed that the alternatives are ordered with
respect to z, i.e., z1 < z2 < · · · < zJ , where J = |R|. Then, the only elements S ∈ P(R)
that have non-zero probability of occurring are {1}, {1, 2}, . . . , {1, . . . , J}. Denote the set Sk =
{1, 2, . . . , k}. Since αi is unobserved by the bystander, then it can be considered as a continuous
random variable, which implies that

Pr(Sk) = Pr({1, 2, . . . , k})

= Pr(zk′ ≤ α ∀k′ ≤ k and zl > α ∀l > k)

= Pr(zk ≤ α < zk+1) .
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Noting that the probability of choosing a route not belonging to the choice set is zero, i.e.,
Pr(yij = 1 |Sk) = 0 for all k < j, then expression (6.1) can be written as

Pr(yij = 1 |θα) =
J∑
k=j

Pr(yij = 1 |Sk)Pr(Sk)

=
J−1∑
k=j
{Pr(yij = 1 |Sk)Pr(zk ≤ α < zk+1)}+ Pr(yij = 1 |SJ)Pr(zJ ≤ α)

=
J−1∑
k=j

{
Pr(yij = 1 |Sk)

∫ zk+1

zk

fα(u;θα)du
}

+ Pr(yij = 1 |SJ)
∫ ∞
zJ

fα(u;θα)du ,

where fα(· ; θα) is the probability density function of α, and θα its set of parameters. If it is
assumed that Pr(yij = 1 |Sk) is given by a MXL model, then the probability that individual i
chooses route j, conditioned on the parameters βi and the vector of attributes xij is given by

Pr(yij = 1 |βi,θα; xik ∀ k) =
J−1∑
k=j

{
eV (xij;βi)∑k

m=1 e
V (xim;βi)

∫ zk+1

zk

fα(u;θα)du
}

+ eV (xij;βi)∑J
m=1 e

V (xim;βi)

∫ ∞
zJ

fα(u;θα)du .
(6.2)

Note that if the cumulative distribution function of α, Fα(z;θα) =
∫ z
−∞ fα(u;θα)du, has a closed

form, then the probabilities Pr(yij = 1 |βi,θα; xik ∀ k) will also have a closed form.

The model in Eq. (6.1) is a two-step process: (1) the individual conforms the set Si by
discarding the non satisficing alternatives from a larger set and, then, (ii) he/she chooses an
alternative from Si. This process differs from other interpretations of bounded rationality,
where individuals look for a satisficing alternative, and once found, they choose it. Note that
in the interpretation given here, the first step pertains a boundedly rational process, and the
second a rational process since Pr(yij = 1 |Si) is a RUM. The model in expression (6.2) can be
then named bounded rational choice set mixed logit model, or BRCS model for short.

It can be shown that the BRCS model can be obtained by integrating out α from the
conditional probability, Pr(yij = 1 |βi;αi,xik ∀k), defined in Section 5.3.4. To see this, the
conditional probability is first rewritten as

Pr(yij = 1 |βi, αi; xik ∀k) =


e
V (xij;βi)∑

m|zm≤αi
eV (xim;βi) , zj ≤ αi

0, otherwise

= eV (xij;βi)1(zj ≤ αi)∑J
m=1 e

V (xim;βi)1(zm ≤ αi)
,

where 1(zm ≤ ·) is the indicator function. Then, by the law of total probability and noting
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that the conditional probability is different to zero when α > zj,

Pr(yij = 1 |βi,θα; xik ∀k) =
∫ ∞
zj

Pr(yij = 1 |βi, u; xik ∀k)fα(u;θα)du

=
∫ ∞
zj

eV (xij;βi)∑J
m=1 e

V (xim;βi)1(zm ≤ u)
fα(u;θα)du

=
J−1∑
k=j

{∫ zk+1

zk

eV (xij;βi)∑k
m=1 e

V (xim;βi)
fα(u;θα)du

}

+
∫ ∞
zJ

eV (xij;βi)∑J
m=1 e

V (xim;βi)
fα(u;θα)du ,

(6.3)

which is equal to expression (6.2). The last equality in the above expression is due to the
additive property of integrals, and because when zk ≤ u ≤ zk+1, the maximum value that m
can take is k, and thus 1(zm ≤ u) = 1.

The model in expression (6.2) is now illustrated for the case of three alternatives, which
is the case for the route choice experiments in this thesis. According to the bounded rational
model assumed here, travellers do not consider in their choice set the routes with travel time
difference (with respect to the shortest route) above α. Thus, zij = (TTij − TTi(1))/TTi(1),
where TTij is the travel time in route j when the problem is faced by individual i, and TTi(1)

is the shortest time route. For ease of notation, define Vij = V (xij;βi). Then, the choice
probabilities for each of the three routes is given by

Pr(yi1 = 1) = Pr(0 < α < z2) + Pr(z2 ≤ α < z3) eVi1
eVi1+eVi2 + Pr(z3 ≤ α) eVi1

eVi1+eVi2+eVi3

Pr(yi2 = 1) = Pr(z2 ≤ α < z3) eVi2
eVi1+eVi2 + Pr(z3 ≤ α) eVi2

eVi1+eVi2+eVi3

Pr(yi3 = 1) = Pr(z3 ≤ α) eVi3
eVi1+eVi2+eVi3 .

(6.4)

In this case, the distribution of the values of α is interpreted as the distribution of indifference
bands amongst the decision-makers.

6.2.1 Estimation

The estimation of the BRCS model requires to find plausible values for the parameters θβ and
θα that determine the shapes of the distributions of the random coefficients βi in the MXL
model, and the indifference bands α. Following the same notation as in Section 3.2.2, the BRCS
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can be written as the following hierarchical Bayesian model. For each individual i,

yis|βi,θα ∼ Cat(pis(βi,θα)) ∀s

pisj = Pr(yij = 1 |βi,θα; xik ∀k) ∀ j, s

βi ∼ fβ(· ; θβ)

θα ∼ fθα(· ; κ)

θβ ∼ fθβ(· ; ρ) ,

(6.5)

where fθα and fθβ are, respectively, the priors of the parameters’ θα and θβ. The hierarchy
is given by the coefficients βi, which can be considered as individual-specific parameters. The
parameters in θα are global, in the sense that it is shared by all individuals; they define the
distribution of the indifference bands α in the population.

To estimate the MXL model in this study a Bayesian approach was adopted (see Train
(2001)), relying on the Gibbs sampling method (Levin and Peres, 2017). The Gibbs sampler
software JAGS (Plummer, 2003) and the R (R Core Team, 2018) package rjags were used
to obtain samples from the posterior distribution of the parameters µ and Σ. The values of
the hyperparameters κ and ρ, which define the priors, were chosen to be weakly-informative
(very high variances). In other words, high uncertainty is assumed on the real values of the
parameters that are being estimated.

6.3 Methodology

6.3.1 Synthetic data generation

The BRCS model is first tested for synthetic data, generated following the bounded rational
choice set generation model. The test has two objectives: first, to see if the model is capable
of finding the distribution of α and, second, to see the impact of different distributions of
α in the models estimates and predictions. The results are compared with the results of a
MXL model that considers no indifference band. The synthetic data comprises 100 fictional
decision-makers, each facing 10 choices between three alternatives. The choices are based on
two independent variables: zij, compared by the decision-maker against its own indifference
band, αi, to determine the choice sets in each problem; and xij, which enters the systematic
part of the utility V (xij; βi). The values of the variables z and x are simulated from normal
distributions with different means and variances. The process to generate the data is shown in
Algorithm 1, which is based on the data generating process in expression (6.5).

Six data sets were generated considering values of α coming from six different parametri-
sations of the Weibull distribution. This distribution is the power transformation of the expo-
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Algorithm 1: Pseudo-code for the generation of the synthetic data set with boundedly
rational choices.

Input: Parameters of the distributions of the indifference bands α, k and λ.
Output: Realisations, yi,c, of the bounded rational choice set MXL model.
for individual i do

βx,i ∼ N (3, 1)
αi ∼Weibull(k, λ);
for choice c do

xi,c,1 ∼ N (3, 4) ; xi,c,2 ∼ N (4, 4) ; xi,c,3 ∼ N (4, 1)
zi,c,1 ∼ N (20, 16) ; zi,c,2 ∼ N (25, 16) ; zi,c,3 ∼ N (35, 64)
zi,c,j ← zi,c,j/min(zi,c,1, zi,c,2, zi,c,3) , j = 1, 2, 3
S ← {j | zi,c,j ≤ αi ∀ j}
Pj ← 0
for j ∈ S do

Pj ← exp(βx,ixi,c,j)
end
Pj ← Pj/

∑3
k=1 Pk , ∀j

yi,c ← Cat(P )
end

end
∗ The second parameter in the normal distribution is the variance.

nential distribution, it takes non-negative values and has two parameters: the shape parameter
k > 0 and the rate parameter λ > 0; the exponential distribution is the special case when
k = 1. The Weibull distribution was chosen for its flexibility (it can take several shapes),
because it has a closed form, and because for certain parameters it accumulates values close
to zero rapidly. The six probability density functions used to generate the data are shown in
Figure 6.2. Three of the six distributions correspond to the exponential distribution (k = 1).
The density, f , and cumulative, F , functions of the Weibull distribution are

w(t; k, λ) = kλtk−1e−λt
k

W (t; k, λ) = 1− e−λtk .
(6.6)

with t ≥ 0.

The distributions of the generated choices over the three alternatives are shown in Figure 6.3.
Observe that the number of choices for the alternative R1 generally increases when the values
of α are distributed closer to zero, i.e., when the parameter λ increases for the exponentially
distributed α (k = 1), or when k decreases. For small values for αi decision-makers discard
more alternatives from the choice set, thus giving more probability to R1 to be chosen.

130



6.3. METHODOLOGY

Figure 6.2: Weibull probability density functions used to generate the data with (a) three
different rate parameters and k = 1 (exponential distribution), and (b) three different shape
parameters and same rate λ = 1. Note in this last plot how when k < 1 the values are
accumulated closer to zero.

Figure 6.3: Choice distributions for the synthetic data.

6.3.2 Prediction accuracy

Cross-validation is used to compare the MXL and BRCS models in terms of prediction accuracy.
In this study, cross-validation is performed by randomly removing one third of the observations
from the data set at each iteration. The removed observations conform the test set and the
remaining observations the training set. The models are estimated for the training set and
they are used to predict the responses in the test set. This process is repeated ten times. The
prediction error is defined as the absolute mismatch between the observed and the predicted
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choice probabilities, given by

err(P, P̂ ) =
3∑
j=1

max(0, Pj − P̂j) , (6.7)

where Pj and P̂j are the observed and predicted probabilities of choosing alternative j. This
error function is a metric.

Seeing that the MXL and BRCS models have a hierarchical structure in which each decision-
maker makes several choices, two cross-validation schemes are proposed:

- CV1, at each iteration, randomly remove 1/3 of the choices from the data set;

- CV2, at each iteration, randomly remove 1/3 of the decision-makers from the data set.

The schema CV1 is performed on both the synthetic and the MDG experiments’ data sets;
schema CV2 is performed only on the synthetic data sets. The reason is because in the synthetic
data sets there is a sufficient number of choices per individual (10 choices), so it is likely that in
each iteration the same individuals will remain in both the training and test sets under CV1,
in which 30% of the choices are removed. Since the value of α is per individual and not per
choice, then the latter schema entails greater uncertainty.

6.4 Results

6.4.1 Synthetic data

The BRCS model is fitted to the six simulated data sets. For the exponentially distributed
α, the shape parameter of the distribution w(t; k, λ) is fixed to k = 1; and for the Weibull
distributed α, the rate parameter is fixed to λ = 1. This is, only one parameter is estimated.
The specification of the MXL part of the model is

Vij = βx,ixij , (6.8)

with βx,i ∼ N (βx, σ2
x). This is, the variable zij does not enter the specification of the MXL part

of the model. First, the fit of the BRCS model is analysed for the six generated data sets, with
particular attention to the estimated distribution for the values of α. Then, the BRCS model
is compared, in terms of predictive accuracy, to the MXL model given by

Vij = βx,ixij + βy,izij , (6.9)

with βx,i ∼ N (βx, σ2
x) and βy,i ∼ N (βy, σ2

y).
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The estimation results of both models for the six data sets are presented in Table 6.1.
The results show that the BRCS estimates for the parameters k and λ are close to their real
values, suggesting that the BRCS can be used to make inference about the indifference bands
of decision-makers. This can be best seen in Figure 6.4, where the simulated and theoretical
values of α are compared against the estimated distribution. The estimates for the βz coefficient
in the MXL models show a clear pattern: the higher the value of λ in the exponential case or
the smaller the value of k in the Weibull case, the smaller the coefficients βz are and the larger
their variance σ̂z. This is explained because higher values of λ or smaller values of k entail
values of α closer to zero, thus leaving out more alternatives from the choice set and making
this variable more important in the choice probabilities. The higher variances are explained
because the MXL model tries to compensate for higher values of α.

Table 6.1: Estimation results for synthetic data. The real values of the coefficients β is shown
in parenthesis.

Exponentially distributed α (k = 1.0) Weibull distributed α (λ = 1.0)

Params. λ = 0.5 λ = 1.0 λ = 3.0 k = 0.25 k = 0.5 k = 2.0

Coeff. BRCS MXL BRCS MXL BRCS MXL BRCS MXL BRCS MXL BRCS MXL

β̂x (=3) 3.022 2.206 3.549 1.681 3.228 1.060 3.181 1.932 3.665 1.510 2.518 1.704
β̂z - -3.576 - -5.641 - -12.990 - -9.450 - -11.287 - -4.681
σ̂x (=1) 1.603 1.305 1.970 1.074 1.007 0.678 2.957 1.780 3.134 1.303 1.254 0.754
σ̂z - 3.595 - 5.234 - 8.039 - 11.233 - 11.168 - 2.866
λ̂ 0.539 - 0.972 - 2.866 - - - - - - -
k̂ - - - - - - 0.571 - 0.592 - 2.332 -

In the results, it is clear that the estimates of the coefficients β̂x differ more between the
BRCS and MXL models, but less for the BRCS model fitted to the different data sets. Fur-
thermore, the estimates β̂x of the BRCS model are closer to their real values, compared to
the estimates of the MXL model. As a consequence, the MXL model may lead to erroneous
conclusions in the interpretation of the coefficients. In the example here, the β̂x in the MXL
model underestimates the effect that x has on the choices. However, it can be seen that the
estimates for the standard deviations are large compared to the real values in the case of the
BRCS model. This may be due to some problem of identification between the variances of βx
and the indifference band. Further research need to be done in order to identify the cause of
larger variances.

The prediction error for each iteration in the two cross-validation schemes is presented in
Figure 6.5, and the aggregated results in Table 6.2. The mean prediction errors for the BRCS
model are 2.6% and 4.1% for CV1 and CV2, respectively; for the MXL model these errors
are of 5.6% and 8.2%, in the same order. The results show that for both schemes, the BRCS
model outperforms the MXL model: the BRCS model performed better than the MXL model
in 85% of the test cases for the schema CV1, and in 82% in CV2. The results are confirmed
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Figure 6.4: Observed vs estimated distributions for the values of α. The histogram depicts the
distribution of the observed values, the blue line the theoretical distribution used to obtain the
simulated values, and the red line is the estimated distribution.

by the paired Wilcoxon signed-rank test (Wilcoxon, 1945), which rejects the null hypothesis
H0: the prediction error for the MXL model is smaller than for the BRCS model for both the
CV1 and CV2 schemes with p-values < 9.662e−10 and 1.267e−09, respectively. These results
are expected since the data was generated following a boundedly rational model. However,
there are some patterns that are worth describing as they illustrate the effect that the values
of α have in the models performance. The first is that when the distribution of α accumulates
values closer to zero (small values for k), the MXL model predictions get worse. This is more
evident in the CV2 case, in which in some test cases the predictions of the MXL model are
considerably higher (more than 15%). On the contrary, when the values of α tend to be larger,
the accuracy of the two models becomes similar. This is explained because larger values of
α imply that fewer alternatives are removed from the choice sets and thus the effect of z on
the choice probabilities diminishes. A second pattern is that the prediction errors of both
models are higher in CV2 than in CV1, an expected outcome, since less information about the
distribution of α is contained in the training sets in CV2. This result suggests that observing
a few choices of many individuals has a larger positive effect on the prediction accuracy of the
models, compared to observing many choices from a small number of individuals. As a final
thought in this section, it can be said that when a bounded rational process is suspected, then
the BRCS model will both reduce the prediction error and entail to the correct interpretation
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of the coefficients.

Figure 6.5: Comparison of the prediction error of the MXL model against the BRCS model for
the (a) CV1 and (b) CV2 schemes. Each point represents the error of each of the 60 test sets
(10 for each of the 6 generated data sets). The dotted lines are the average for each model.

Table 6.2: Prediction error for each of the six synthetic data sets. The Wilcoxon test is the
one-tailed test with H0: the prediction error for the MXL model is smaller than for the BRCS
model.

CV1 CV2

BRCS MXL BRCS MXL

Data set Mean s.d. Mean s.d. Mean s.d. Mean s.d.

k = 1.0, λ = 0.5 0.0231 0.0137 0.0482 0.0124 0.0413 0.0275 0.0671 0.0185
k = 1.0, λ = 1.0 0.0208 0.0082 0.0507 0.0141 0.0390 0.0173 0.0811 0.0195
k = 1.0, λ = 3.0 0.0200 0.0097 0.0415 0.0135 0.0306 0.0242 0.0544 0.0234
k = 0.25, λ = 1.0 0.0383 0.0132 0.0900 0.0119 0.0574 0.0414 0.127 0.0559
k = 0.5, λ = 1.0 0.0254 0.0200 0.0758 0.0180 0.0446 0.0170 0.111 0.0445
k = 2.0, λ = 1.0 0.0273 0.0142 0.0307 0.0173 0.0327 0.0147 0.0520 0.0290
Total 0.0258 0.0145 0.0562 0.0249 0.0409 0.0258 0.0822 0.0437
Wilcoxon test V = 99, p-value = 9.662e-10 V = 105, p-value = 1.267e-09

6.4.2 Route choice experiments

The BRCS model is fitted to the data obtained in the route choice experiments carried out with
the MDG. The data is the same as the one used in Chapter 5, considering exclusively partici-
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pants who received travel time information. This is 3,664 choices from 353 participants. The re-
sults of the fitted model are compared to the results of the conditional, Pr(yij = 1 |βi;αi,xik ∀k)
and the MXL models in Section 5.4.5. The variables contemplated in the systematic utilities
of the three models are

• FRWj: the % of freeway that composes the routes;

• DIRj: the directness of the trip, defined as the Euclidean distance divided by the length
of the route;

• TRNj: the number of turns per kilometre;

• INTj: the number of intersections per kilometre;

• ITTij/ITTi(1): relative travel time difference between route j and the fastest route.

Analogous to the analysis of the synthetic data, the model specification in the BRCS does not
include the variable that determines the satisficing sets, given, in this case, by the relative travel
time information zij = (ITTij − ITTi(1))/ITTi(1). The BRCS model is estimated for Weibull
distributed indifference bands α. The reason is that this distribution allows for values close to
zero, which may better capture the indifference band of the perfect rational participants, i.e.,
the participants who always chose the fastest route. The model’s estimates are presented in
Table 6.3. For the sake of completeness, the estimates for the MXL and the conditional model,
Pr(yij = 1 |βi;αi,xik ∀k) of Section 5.4.5 are also included in the table.

The estimation results show that, apart from β̂%∆ITT , the estimated values for the mean of
the coefficients are similar in the three models. The travel time information does not enter the
BRCS model and it is small (in absolute value) in the conditional MXL, which means that the
role played by the other four route attributes in the participants’ choices is greater in these two
models than in the MXL model. This is the expected behaviour in a bounded rational model,
where within the indifference band the travel time information does not influence the choices
of travellers and thus the rest of the attributes have a higher relevance. Suggesting, therefore,
that the BRCS model is capable of inferring the distribution of the indifference bands. In
this case, the indifference bands follow a Weibull distribution with shape parameter k̂ = 0.736
and scale parameter λ̂ = 1.032, which has a mean value of 1.159 and accumulates 10% and
50% of its values at 0.045 and 0.583, respectively. Hence, according to the estimated BRCS
model, 10% of the decision-makers do not consider routes with travel times 4.5% higher than
in the shortest-time route, and that half of decision-makers do not consider travel times 58%
higher. The mean decision-maker will still consider routes twice longer than the shortest-time
route, nonetheless, this interpretation may be misleading since the Weibull distribution with
0 < k < 1 is heavy-tailed, moving its mean value to the right of the distribution (in this
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Table 6.3: Estimation results of the BRCS, the MXL and the conditional model. The standard
deviations and the correlation coefficients are shown in parenthesis.

BRCS MXL Cond. MXL

Coefficient mean s.error mean s.error mean s.error

β̂FRW 0.824 0.337 0.862 0.313 0.622 0.340
β̂DIR 1.571 0.681 1.377 0.640 1.863 0.753
β̂TRN 0.032 0.122 0.012 0.108 0.061 0.132
β̂INT -0.054 0.035 -0.044 0.029 -0.076 0.032
β̂%∆ITT - - -3.285 0.356 0.366 0.373
σ̂2
FRW 4.258 (2.064) 2.255 2.840 (1.685) 2.253 3.596 (1.896) 1.842
σ̂2
DIR 26.505 (5.148) 10.585 17.889 (4.230) 11.229 25.970 (5.096) 9.383
σ̂2
TRN 0.551 (0.742) 0.264 0.505 (0.711) 0.185 0.464 (0.681) 0.178
σ̂2
INT 0.085 (0.291) 0.021 0.052 (0.228) 0.011 0.058 (0.240) 0.014
σ̂2

%∆ITT - - 17.121 (4.138) 3.230 10.867 (3.297) 2.575
σ̂FRW,DIR 9.518 (0.896) 4.261 4.660 (0.654) 4.628 7.470 ( 0.773) 3.564
σ̂FRW,TRN 0.994 (0.649) 0.602 0.389 (0.324) 0.478 0.543 ( 0.420) 0.451
σ̂FRW,INT -0.259 (-0.432) 0.131 0.011 (0.028) 0.092 -0.031 (-0.069) 0.093
σ̂FRW,%∆ITT - - - 0.116 (0.017) 1.843 0.882 ( 0.141) 1.596
σ̂DIR,TRN 2.376 (0.622) 1.323 1.175 ( 0.391) 1.025 1.622 ( 0.467) 1.057
σ̂DIR,INT -0.773 (-0.517) 0.377 -0.340 (-0.352) 0.227 -0.486 (-0.397) 0.274
σ̂DIR,%∆ITT - - - 9.290 ( 0.531) 3.853 8.525 ( 0.507) 3.696
σ̂TRN,INT -0.107 (-0.496) 0.058 -0.029 (-0.180) 0.032 -0.025 (-0.151) 0.035
σ̂TRN,%∆ITT - - -0.530 (-0.180) 0.530 0.021 ( 0.009) 0.543
σ̂INT,%∆ITT - - -0.336 (-0.356) 0.160 -0.382 (-0.482) 0.150
k 0.736 0.075 - - - -
λ 1.032 0.110 - - - -
Deviance 6,165 37.280 5,679 56.951 5,066 41.598
DIC 6,848.8 7,205.0 5,919.8

case 32% of the values of the distribution lie to the right side of the mean). The density and
cumulative probability functions are shown in Figure 6.6.

The distributions of the indifference bands obtained here are now compared to those in
Section 5.4.4. In that section, various definitions were used to compute the individual indiffer-
ence bands: α̂maxi , α̂95

i and α̂50
i (see Section 5.3.3 for the methodology). The distributions of

these estimators are presented in Figure 6.7 along with the distribution found with the BRCS
model. For ease of exposition, in the following analysis the indifference bands for the BRCS
model (Weibull distributed) are denoted as αBRCS. The first difference to be noticed is that the
distributions of the individually estimated indifference bands accumulate values more rapidly
than αBRCS. This is explained, on the one hand, because α̂i = 0 in approximately 10% of
the individuals for α̂maxi and α̂95

i ; a behaviour that cannot be observed in the Weibull case,
as it is a continuous distribution. On the other hand, the slower accumulation rate of αBRCS

is explained because of its heavy-tail. As a result, αBRCS appears to be underestimating the
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Figure 6.6: Estimated (a) density and (b) cumulative probability distributions for the indiffer-
ence bands in the BRCS model.

number of perfect rational decision-makers, while overestimating the number of large indiffer-
ence bands. The indifference band is a latent value that cannot be directly observed in the
data, there is no ground truth with which to compare these estimates in order to determine
which better approximates the real indifference bands. However, since the prediction errors of
the BRCS model are systematically smaller than the Cond. MXL and MXL models, it can be
said that the former explains better the observed choices. As exposed in the motivation to this
study, the advantage of estimating the indifference bands individually is that they are directly
inferred from each individual’s choices and no parametric shape for its distribution is assumed,
the downside of this approach is that the information is only partially observed, which may
derive in biased estimates. Furthermore, not all the estimators of the individual indifference
bands can be used as exogenous inputs to a discrete choice model. The reason is that in dis-
crete choice models it is necessary for the actual choice to be part of the choice set, and the
estimators α̂i such that α̂i ≥ α̂maxi are the only ones that guarantee the actual observed choices
to be part of the choice sets in all decision problems (see Section 5.3.4). None of these problems
are present in the BRCS approach, in which alternatives are never assigned a zero probability,
and information from all decision-makers is taken into account to estimate the distribution of
α. This last point is important when data is partially observed, since it takes into account
information from the choices of all individuals to make inference for the individuals that are
observed only in situations with small (or high) travel time differences. The disadvantage of
the BRCS approach is that it is parametric, in the sense that a distribution family is assumed
for the values of α.

The prediction accuracy of the three models is now analysed. As mentioned before, only
the CV1 scheme is used to determine the training and test sets at each iteration. Since the
number of choices per decision-maker is small (see Figure 5.2), CV1 guarantees the removal
of decision-makers from the training sets: on average, 25 decision-makers, representing 7% of

138



6.4. RESULTS

Figure 6.7: Distributions of the individually estimated indifference bands (a) α̂maxi , (b) α̂95
i and

(c) α̂50
i ; and the Weibull distribution inferred by the BRCS model (red line). (d) the cumulative

probability distributions.

the individuals are removed from the training set in each iteration. Contrary to the synthetic
data case, were the generated data corresponded to a unique OD pair, the data here comprises
the choices over 41 OD pairs. Therefore, the prediction errors can be aggregated both at CV
iteration level and at OD pair level. In the former, the errors in the 41 OD pairs are averaged for
each CV iteration, while in the later the errors in each OD pair are averaged across iteration.
The results are presented in Figure 6.8. It can be seen that the BRCS model’s errors per
iteration are smaller in the great majority of the cases, but the same is not true when the
aggregation is at OD level. The average errors are 0.146, 0.150 and 0.155 respectively for the
BRCS, the MXL and the Cond. MXL models. The paired Wilcoxon signed-rank test (one
tail) confirms these results. At CV iteration level, the test rejects the null hypothesis H0: the
prediction error for the MXL (or Cond. MXL) model is smaller than for the BRCS model
with p-value 0.006836 (0.01367). However, when aggregating the errors by OD pair, the test
does not reject the null hypotheses in either case, with p-value of 0.2243 for the test between
the MXL and the BRCS models, and p-value of 0.1674 for the test between the Cond. MXL
and the BRCS models. The higher prediction accuracy of the BRCS model when aggregating
by iteration, but not by OD pair, can only be explained by a compensatory behaviour: large
prediction errors in some OD pairs are compensated with low prediction errors in other OD
pairs. Hence, it can be concluded that at network level, i.e., averaging the error of the 41 OD
pairs, the BRCS model performs better than the other two options in predicting the choices of
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travellers, but at OD level this model represents no gain.

Figure 6.8: Comparison of the prediction error of the BRCS model against both the prediction
errors of the MXL and cond. MXL models. (a) aggregated by CV iteration and (b) aggregated
by OD pair.

6.5 Conclusions and discussion

In this chapter, a model for boundedly rational route choice model was proposed: the bounded
rational choice set generation mixed logit model (BRCS). The model considers (i) a bounded
rational choice set generation process in which the alternative routes with travel time differences
above a certain threshold (indifference band) are removed from the available alternatives, and
(ii) a rational choice process for the alternatives in the generated choice set. Both the choice
set and the route choice are jointly estimated, allowing for the BRCS to implicitly infer the
latent population’s indifference band distribution. The choice set generation process assumes
a parametric distribution for the indifference bands. This distribution can take any form, but
in this work, Weibull distributed indifference bands were assumed. The ability of the model to
infer the distribution of the indifference bands was tested using synthetic data. The prediction
accuracy of the BRCS model was tested against the predictions of the MXL model and the
MXL model conditional on exogenously estimated indifference bands using real data, coming
from a series of computer route choice experiments carried out with the MDG.

The results of the estimation for the synthetic data show that the BRCS model is capable
of inferring the mean parameters of the underlying distribution of the indifference bands. This
result is specially evident when the indifference bands are highly discriminative, i.e., when
they are small (close to zero) and thus they discard more alternatives from the choice sets. In
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such cases, the BRCS model was capable of inferring the real parameters of the choice model,
contrary to the MXL model (mispecified model). This suggests that when a bounded rational
process generates the data, the interpretation of the coefficients of the MXL model may be
misleading.

For the real data, the BRCS model was compared to both the MXL and the conditional
MXL model of Chapter 5. The estimated coefficients for the route attributes (other than the
travel time) are similar for the three models. However, these attributes play a larger role in
the BRCS and the conditional MXL model than in the MXL model. The estimated (Weibull)
distribution for the indifference bands has a 10th percentile value of 4.5% and a median value
of 58%. This means that 10% of the participants did not consider routes with travel times
4.5% higher than the shortest-time route, and half of them did not consider routes with travel
times 58% slower. These estimates are higher than those obtained by individually estimating
the indifference bands of the participants. The prediction accuracy of the BRCS model showed
slightly better results than both the MXL and conditional models, suggesting, on the one hand,
the existence of a boundedly rational process in the collected route choice data and, on the other
hand, that the estimates of the indifference band distribution of the BRCS adjust better to the
real distribution than the individually estimated α̂maxi . Even though the prediction accuracy
gains of the BRCS model are moderate compared to the MXL model, they are systematic.
Moreover, the method is able to capture the boundedly rational behaviour of travellers, and
thus deserves further investigation. For example, by testing different family of distributions for
the indifference bands, including mixed distributions that are capable of capturing indifference
bands equal to zero (perfect rational decision-makers). The choice of the underlying distribution
of the indifference band may improve significantly the prediction accuracy of the model.
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Conclusions of part I: route
choice model selection

Part I of this thesis is composed of three research chapters concerned with the study of trav-
ellers’ route choice behaviour through computer experiments. In Chapter 4, a methodology
to perform route choice experiments was proposed. The methodology is about determining a
suitable subset of OD pairs and routes to use in the route choice experiments, such that the
responses of participants with respect to predefined routes and attributes in this subset can
be generalised to all situations in the network. For the city of Lyon in France, 9 OD pairs
and their three connecting routes were used as representative of 624,490 OD configurations.
These nine representative OD configurations cover around 83% of the values of the attributes
of the OD-routes in the network. In Chapter 5, the influence that travel time information
has on the route choices of travellers was investigated, from the perfect rational and bounded
rational perspectives. It was found that travellers minimise travel time with respect to a ref-
erence point, given in this case by the travel time in the fastest route, and that the reference
point is context-dependent, since it is evaluated in each route choice problem. On that chapter,
evidence was found that points to a bounded rational behaviour in route choice: only a small
percentage of participants (10%) chose always the fastest route, and the average participant
did not consider routes with travel time differences 1.3 times slower than the fastest alterna-
tive. Heterogeneity in the indifference bands was observed. In Chapter 6, these findings are
translated into a discrete choice model (BRCS) that considers (i) a bounded rational choice set
generation process in which the alternative routes with travel time differences above a certain
threshold (indifference band) are removed from the available alternatives, and (ii) a rational
choice process for the alternatives in the generated choice set. The BRCS model resulted supe-
rior in predicting the choices of travellers in simulated and real data. An important limitation
in the study of route choice in this thesis is that, in its current state, the MDG does not allow
to study the learning process of travellers. This was discussed in Section 5.2. Therefore, the
study of route choice in this thesis relies heavily on the travel time information given to the
participants (close to the perfect information scenario). Travel time information is used as a
proxy to study how travellers react to the travel time in the different routes. However, in real-
life settings travellers base their choices on the perceptions they construct from both experience
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and information. In this sense, travel time uncertainty and variability, as well as the accuracy
of the information have an important role on their choices. This is an important limitation,
since the interpretation needs to be done considering the travel time information and not the
perceived information.

As a closing section of part I of this thesis, model selection is carried out by putting into
practice the lessons learned from the previous chapters. The objective is to find the route choice
model that better predicts the choices of the participants, while maintaining its representative-
ness to the whole network. In order to guarantee this, the models are estimated with a balanced
version of the data, obtained by considering (i) the importance of each cluster to the network,
and (ii) the importance of each OD pair in a given cluster. The original data set comprises of
5,535 choices from 496 participants in 41 OD pairs; the balanced data set comprises of 8,384
choices by the same number of participants in the same 41 OD pairs. The details on how the
balanced data set was obtained are presented at the end of this section. All models were esti-
mated considering the participants who received and did not receive information on the travel
time. As in the previous chapters, the explanatory variables that enter the models are:

• DIRj, the directness of the route j, defined as the length of j divided by the euclidean
distance between origin and destination;

• TNRj, the number of turns per kilometre in the route j;

• FRWj, the percentage of freeway that composes the route j;

• INFi, binary variable indicating if participant i received information;

• ITTjs, the informed travel time in the route j in OD pair and moment s, the variable is
normalised by dividing the informed travel time between the minimum informed travel
time in the choice situation s;

• INFi, binary variable that indicates if participant i received the travel time information;

• FASTjs, binary variable indicating if route j is the fastest in situation s.

For ease of exposition, denote the alternative specific variables (those indexed only by j) by
the vector xj. From the six models that are tested, four are MXL models with different specifi-
cations of the systematic part of the utility and correlation structures. The fifth and the sixth
models are the MXL-Cond. and BRCS models introduced in Chapter 6. The former considers
an exogeneously estimated indifference band in order to constitute the choice set, the latter
estimates the distribution of the indifference bands endogenously. The models’ specifications
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are given by:

MXL-1: Vijs = xj
Tβi + βi,ITT · ITTjs · INFi βi,p ∼ N (βp, σ2

p)

MXL-2: Vijs = xj
Tβi + βi,ITT · ITTjs · INFi βi ∼ N (β,Σβ)

MXL-3: Vijs = xj
Tβi + (βi,ITT · ITTjs + βi,FAST · FASTjs) · INFi βi ∼ N (β,Σβ)

MXL-4: Vijs = xj
T (βi + γ · INFi) + βi,ITT · ITTjs · INFi βi ∼ N (β,Σβ)

MXL-Cond.: Vijs = xj
Tβi + βi,ITT · ITTjs · INFi βi ∼ N (β,Σβ)

BRCS: Vijs = xj
Tβi βi ∼ N (β,Σβ) .

Note that all models, except for the MXL-1 model, consider the correlations between the
coefficients βi. Model MXL-3 introduces a binary variable indicating the fastest route in each
choice problem. Model, MXL-4 introduces the coefficients γ, which are estimated for all the
participants (they are not indexed by i). The coefficients γ allow the mean preferences for the
attributes to be different between the uninformed and the informed participants: the preferences
for the not informed participants are given by βi, whereas for the informed participants are
given by βi + γ. The estimated parameters for these models are included in Table 6.4. As it
was discussed in Section 6.4.1, the deviance of the models (a measure of goodness-of-fit) and
the deviance information criterion (DIC) are not useful for model selection for these models.
Therefore, model selection needs to be based on the predictive accuracy for out-of-sample
observations. The prediction accuracy is assessed with 10 iterations of bootstrapping without
replacement. At each iteration, two-thirds of the observations are sampled and used as training
set; the predictions of the models are tested on the remaining one-third of the observations.
The mean prediction error of the 10 iterations is computed for each model; the results are
shown in Figure 6.9.

The first pattern to be noticed is that all models show a higher accuracy in predicting the
choices of the participants who received travel time information, with a mean prediction error
difference between the groups of around 5%. This result is explained because travel time in-
formation is a more important variable in the choices of travellers and, thus, it has a higher
explanatory power. Even though the models’ specification for the travellers that received no
information is the same in all the models (i.e., xj

Tβi), the predictive error for the travellers
without information vary across them. This is explained because the both the choices of the
informed and the not informed travellers contribute to the estimates of the parameters of βi.
For the not informed participants, the models that show the highest accuracy are the MXL-4
and MXL-Cond. models. In the case of the MXL-4 model, the improvement is because the
coefficients of the route specific variables (% of freeway, directness, no. of turns and inter-
sections per kilometre) are treated differently for the informed and not informed participants.
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Figure 6.9: Mean and standard deviation of the prediction error for the six route choice models.

In the case of the MXL-Cond. model, the higher accuracy for the participants who did not
receive information could be explained by the smaller role of travel time (coefficient smaller in
magnitude) within the alternatives that are considered in the choice set. The BRCS model,
which considers a bounded rational behaviour, is the one with the highest prediction accuracy,
which is mainly explained by the predictions for the participants that received information. For
the participants who did not receive information, this model has the average accuracy. The
MXL-3 model has the second highest overall accuracy, which as in the BRCS case, it is due to
a smaller error for the informed participants. Nonetheless, the MXL-3 model also shows the
larger error for the not informed participants, evidencing a compromise in accuracy between
the two groups. The specification of the MXL-3 model includes a variable that indicates when
a route was the fastest. Therefore, supporting the finding discussed in the conclusion of Chap-
ter 5: the fact of informing a route to be the fastest increases its probability to be chosen. The
mean accuracy of the best model obtained here, the BRCS model, is 15.54%. Since this error
measure has a direct interpretation, it means that the BRCS model will assign correctly around
85% of the trips in the network. The above observations can be summarised as:

• there is a bounded rational behaviour in the choice set generation process of travellers;

• no matter the travel time difference between the routes, there is an effect of informing
that a route is the fastest;

• the preferences of travellers between the route attributes and the travel time are corre-
lated;
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• receiving travel time information changes the preferences of travellers for the physical
attributes of the routes;

• the best route choice model in this thesis, the BRCS model, will assign correctly around
85% of the trips in the network.

Methodology for balancing the data

For the model selection, the data collected in all the MDG experiments is combined. However,
the number of observations in each OD pair varies significantly. This implies that if the ob-
servations are all taken equally into account, then the estimated choice models will be biased
towards the OD pairs with more elements. To avoid this issue, the observations need to be
weighted. To this purpose, there are two aspects that need to be taken into account when
weighting the observations:

1. The importance of each cluster to the network. The clusters obtained in Section 4
differ in the number of elements that they contain. In order to estimate a model that
approximates well the route choices in a randomly selected OD pair in the whole network,
then each cluster is weighted according to its number of elements. The weight of the
cluster k in the data set is

w′k = Nk∑9
l=1Nl

,

where Na is the number of elements in cluster a.

2. The importance of each OD pair in a cluster. The most important OD pair in a
cluster, in terms of its representativeness, is its centroid. The importance of the rest of
the OD pairs in the data set can then be considered as a function of their distance to the
centroid. Define the importance of an OD pair od as its similarity with the centroid of
the cluster that contains it. That is,

sk,od =

 1− dist(od,c∗)
maxa∈ODk{dist(a,c∗)} , od, c∗ ∈ ODk

0, otherwise ,

where c∗ is the centroid of cluster k and ODk the set of OD pairs in cluster k. The weight
of the importance of an OD pair is obtained by normalising for the different number of
OD pairs that are found in the data set, i.e.,

w′′k,od = sk,od∑
a∈ODk sk,a

.
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Considering the above points, the total weight that an OD pair in the data set must have is
therefore given by

wk,od = w′k × w′′k,od . (6.10)

Note that ∑k

∑
odwk,od = 1, since ∑od∈ODk w

′′
k,od = 1 and clearly ∑k w

′
k = 1.

In this thesis, the inference method to estimate the choice models is bayesian. To be
specific, a Gibbs sampler is used to sample the posterior distribution of the model’s parameters.
Contrary to maximum likelihood estimation, where the weights enter the model by multiplying
the contribution of each observation to the likelihood, in bayesian methods there is no easy way
to weight the observations. The solution in this case is to resample the data so that the number
of choices in each OD attain the necessary number of observations, given by the weights. The
actual number of observations in the different OD pairs and the number needed to respect
the weights wk,od are presented in Fig. 6.10 (the weights are multiplied by N , the number of
choices in the data set). It can be seen that some OD pairs, in particular those of the Lyon-36V
network, are over represented in the data set, while other OD pairs are sub represented. This
implies that there are cases in which it is necessary to resample the observations, while in other
cases it is necessary to remove them. However, with this strategy many observations would
be lost. On the other hand, it is possible to find a number of observations for the resampled
data set N∗, such that no original observations are lost. The problem with this strategy is that
the number of resampled observations needs to be high for certain OD pairs. Moreover, since
the observations are made by participants, this later strategy would lead to some participants
with many repetitions. From this analysis, it can be concluded that a good data set size N∗

would be such that reduces the amount of lost information, but without creating many new
observations. The size of the data set used to resample and remove observations is N∗ = 1.5N .
The effect of choosing this number is also shown in Fig. 6.10. It is worth mentioning that the
observations that were removed are from the repetitions of participants within the same OD
pair, and that no participant were completely removed from any of the OD pairs.
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Figure 6.10: Number of observations in the data set. The actual number of observations (N in
total) in each OD pair is compared against the weighted number of observations considering N
and 1.5N observations in the resampled data set.
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Route and departure time choice
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7 Route and departure time
choice behaviour

Considering an uni-modal network of car trips, route and departure time are two of the main
decisions that travellers make to complete a trip. At an aggregated level, this implies that
the traffic patterns in the uni-modal network are mainly explained by the sum of these two
individual choices. In this chapter, the route and departure time choice behaviour of travellers is
investigated. To this purpose, an experiment that considers both decisions simultaneously was
carried out using the MDG platform. The objective is to understand which variables influence
the joint route and departure time choices of travellers, and to test the appropriateness of the
MXL model to explain and predict these choices. The joint model proposed here introduces
time-dependent correlations in the specification of a MXL model. It is important to mention
that this is an investigation in progress, and that the results are not definitive nor complete.

7.1 Motivation

There are two difficulties that arise when considering the joint route and departure time choices.
The first is related to the dependency that the route and departure time choices have on the
travel time, which does not allow to decompose the joint route and departure time choice prob-
ability in the product of two simpler probabilities. This can be formally argued treating the
dependencies of these variables as a probabilistic graphical model (Barber, 2011). Let DT ,
TT and R be random variables denoting, respectively, the departure time choice, the travel
time, and the route choice. The dependency structure between these variables is given by
DT → TT ← R or, in other words, the travel time depends on both the route and departure
time choices. The above structure is known as the v-shape in probabilistic graphical models
and implies that if the route and departure time choices are known, then the travel time is
(theoretically) fully determined. This assumption makes sense since travel time is the result
of both departure time and route choices. Modelling the choices of travellers (from a RUM
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perspective), is to find an expression for the choice probability Pr(R,DT |TT ), where TT is
the known (or independent) variable. However, the v-shape dependency structure between the
variables imply that if TT is given, then R and DT are dependent. As a consequence, the joint
probability Pr(R,DT |TT ) cannot be decomposed as the product Pr(R |TT )Pr(DT |TT ).
Therefore, the joint route and departure time choices must be necessarily considered simulta-
neously. The second difficulty comes from the continuous nature of time which, by definition,
cannot be the outcome of discrete choice models. This point is discussed below.

Two major approaches are found in literature to model departure time choices, depending
on whether departure time is treated as a continuous or discrete variable. To the first category
belong, for example, the works of Bhat and Steed (2002), Nurul Habib et al. (2009), Habib
(2013), who propose to model the continuous departure time using hazard models. Hazard
models belong to a branch of statistics, survival analysis, in which the expected time duration
until an event occurs (in this case the trip departure) is analysed (Hougaard, 1999). Hazard
models are appealing for their simplicity and because they can be stated as a regression problem,
allowing for the inclusion of independent variables to explain the time of departure. Moreover,
a large literature on these models exists, coming mainly from actuarial sciences, and hence the
methods to estimate hazard models and their properties are well-known. Nonetheless, hazard
models lack of a behavioural basis, thus preventing their interpretation from a behavioural angle.
This shortcoming is not present when travel time is discretised and modelled as the outcome of
a discrete choice model. However, this latter approach has also some drawbacks, consequence
of the discretisation of the continuous departure time. There is a natural correlation between
the alternatives that are close in time, thus, it makes sense to consider the choice probability of
an alternative route j in time interval t to be correlated with the choice probability of j in time
t − 1. These correlations can be modelled in discrete choice models. Small (1987) developed
the Ordered Generalised Extreme Value (OGEV) model that considers correlations between
ordered alternatives (such as time intervals), in which alternatives that are close in time have a
strong correlation and the correlation diminishes with more distant alternatives. Bhat (1998)
used an OGEV model to analyse the travel time and mode choices in urban shopping trips.
Complex correlation structures can be also specified in the more general mixed logit model.
Bajwa et al. (2009) and de Jong et al. (2003) used a mixed logit model to study the mode and
departure time choices. Notwithstanding the capability of the MXL model to specify complex
correlation structures, there are still some issues related to the discretisation of the departure
time, as pointed out by Bhat (1998). Notably, the selection of the time interval size and the
correlations of departure times close to the boundaries of the intervals.

As exposed above, there is a trade-off between the behavioural justification when considering
a continuous departure time model and the biases introduced when discretising this variable.
The approach followed in this chapter is to model the joint route and departure time as a discrete
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choice, using a MXL model, thus, maintaining its behavioural interpretability. For this purpose,
the departure time is discretised in intervals of five minutes. Different correlation structures
are tested in order to see the effect that they have in the predicted choices. The data used in
this chapter comes from computer experiments using the MDG platform, designed to observe
both the route and departure time choices of participants. 1,145 choices of 177 participants
were recorded over five OD pairs connected by three alternative routes. In the experiments, all
participants received travel time information on the three alternatives routes, but contrary to
the route choice experiments, the information changes depending on the departure time of the
trip.

7.2 Methodology

7.2.1 Route and departure time experiment

The experiment consists on decision problems in which the participants made decisions on
both the route and the departure time to complete a home-work trip. The experiments are
placed on a simulated environment of the Lyon-full network from 6:45 to 9:00 hours, recording
the choices of participants on 5 OD pairs connected by three routes: CC1, CC2, CC5, CC7,
and CC8 (see appendix 2.A and appendix 2.B). At the beginning of each choice problem, the
objective arrival time is informed to the participants. The experiments are similar to those of
route choice, with the difference that the travel time information of each route changes with
the selected departure time, i.e., the travel time information depends on both the departure
time period and the route. Thus, a choice problem in the experiment requires participants to
test different departure times to see the travel time information in the different routes. Once
a desired departure time and route are found, the participant makes the choice. As in the
route choice experiments, the choices are mainly based on the travel time information. In this
experiment, all participants received travel time information for the three alternative routes.
After a trip is finished, participants received a score which depends on the arrival time. The
score follows a trapezoid shape (see Figure 2.6) that penalises early and late arrivals. The
experiment was configured such that if no change on the departure time is made, then the trip
will be late for more than 10 minutes, forcing participants to choose a departure time if they
want to achieve the objective. This was done in order to discriminate not engaged participants:
participants who did not changed the departure time from its initial value are not taken into
account. For the experiments, 177 students of the University of Lyon were recruited. In total,
1,145 choices were collected, making it an an average of 6.5 choices per participant.
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7.2.2 Definition of the variables related to the time for travel

Intervals of size of 5 minutes are considered in the discretisation of the departure time. As a
result, each alternative in a choice problem corresponds to a departure time interval [t1, t2] and
a route j, i.e., it corresponds to the pair s = (j, [t1, t2]). The departure time choice enables
travellers to choose how early they desire to arrive to their destination. Therefore, the expected
earliness (lateness) of the trips can be considered as an explanatory variable of their choices.
Define DTs, AT∗s and ETTs as the departure time, the objective arrival time and the expected
travel time of the trip s. The variable ETT here is equivalent to the travel time information
(ITT) in the previous chapters. The expected time at arrival is given by ETAs = DTs + ETTs.
This latter value represents the time at which participants intend to arrive to the destination.
The expected lateness, ELATEs, can be then obtained as the difference between the objective
and the expected arrival time, i.e., ELATEs = ETAs−AT∗s, thus ELATEs > 0 are the expected
late arrivals and ELATEs < 0 the expected early arrivals. Since late arrivals have worse
consequences than early arrivals (see Figure 7.3), it makes sense to consider them separately,
i.e.,

ELATE−s = max(AT∗s − ETAs, 0)

ELATE+
s = max(ETAs − AT∗s, 0) .

A last variable, the allocated time for travel, ALTs, is defined as the time that a traveller spends
in travel plus the time that he/she has to wait before the objective arrival time in the case of
an early arrival, i.e.,

ALTs = ETTs + ELATE−s .

Note that when the trip is expected to arrive late, ETAs > AT∗s then ALTs = ETTs. The
variables defined above are represented in Figure 7.1 for a better understanding.

In the experiments, the route and departure time choices were observed in 5 OD pairs
that differ in the magnitude of the ETT. This implies that the variables defined above need
to be normalised before estimating a discrete choice model, otherwise the estimates would be
biased towards the OD pairs with higher magnitude of ETT. In the previous chapters, the
normalisation was done by dividing the informed travel time by the informed travel time in the
fastest route. In the same manner, the normalisation for the ETT here is done considering the
minimum ETT for all the alternatives in a choice problem, i.e,

NETTs = ETTs

mins(ETTs)
.

The ELATE− and ELATE+ are normalised so that they represent the percentage of the trip
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Figure 7.1: Representation of the variables ETT, ELATE− and ELATE+ for two trips, s and
s′, with expected arrival time before and after the objective arrival time, respectively.

that is expected to arrive early or late, i.e,

NELATE−s = ELATE−s
ALTs

NELATE+
s = ELATE+

s

ALTs

.

Note that the normalisation of ETTs is done relative to the choice problem, which allows it to
be comparable between choice problems and between OD pairs. The normalisation of ELATE−

and ELATE+ is done relative to the alternative s.

7.2.3 Joint route and departure time model

The joint route and departure choice model considered here is a MXL model with lagged
errors. To include the lagged errors, it is convenient to represent the MXL model as an error
components (EC) model. The alternatives are given by the pair (j, t), where j represents the
route, and t the departure time interval. That is, (j, t) represents an alternative in the discrete
choice model. The utility that individual i obtains from an alternative can be written as

Ui,(j,t) = xi,(j,t)
Tβi + νi,(j,t) +

h∑
l=1

θlνi,(j,t−l) + εi,(j,t) (7.1)

where xi,(j,t) is the vector of explanatory variables, βi are the random coefficients indexed by
individual i and εi,(j,t) is the unobserved part of the utility. νi,(j,t) are the lagged errors and they
are independent and identically distributed N (0, 1); these errors are also independent of εi,(j,t).
The parameters θl account for the amount of correlation between neighbouring time intervals
and they need to be estimated. To derive the covariance of the model in expression (7.1), let
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ηi,(j,t) = νi,(j,t) +∑h
l=1 θlνi,(j,t−l) + εi,(j,t). Then,

Cov(Ui,(j,t), Ui,(k,t′)) = xi,(j,t)
TΣβxi,(k,t′) + Cov(ηi,(j,t), ηi,(k,t′)) , (7.2)

where Σβ is the covariance matrix of the random coefficients βi. The second term in the right
hand side of equation (7.2) is given by

Cov(ηi,(j,t), ηi,(k,t′)) =



1 +∑h
l=1 θ

2
l + σ2

ε if k = j , t′ = t

θ1 +∑h
l=2 θlθl−1 if k = j , t′ = t− 1 or t′ = t+ 1

θ2 +∑h
l=3 θlθl−2 if k = j , t′ = t− 2 or t′ = t+ 2

...

θh−1 + θhθ1 if k = j , t′ = t− (h+ 1) or t′ = t+ (h+ 1)
...

θh if k = j , t′ = t− h or t′ = t+ h

0 otherwise.

Note that the alternatives in the model in expression (7.1) have two sources of correlation:
the first given by the covariance of the random coefficients βi, i.e., Σβ and the second given
by the lagged errors ν. Thus, the correlation explained by the term xi,(j,t)

TΣβxi,(k,t′) in equa-
tion (7.2) could be confounded with the correlation induced by Cov(ηi,(j,t), ηi,(k,t′)). Therefore,
to observe the effect of the lagged errors, in this chapter the coefficients βi are considered to
be equal across all participants, i.e., βi = β. With this assumption,

Cov(Ui,(j,t), Ui,(k,t′)) = Cov(ηi,(j,t), ηi,(k,t′)) . (7.3)

7.3 Results

7.3.1 Exploratory analysis

The route choice distribution is shown in Fig. 7.2, where it can be seen a strong relationship
between the preferred route and the proportion of times that the routes were informed to be
the fastest. Considering the 5 OD pairs, the percentage of choices that were for the fastest
route is 57%, for the second fastest 24% and 19% for slow route. These percentages are similar
to those found in Chapter 5 (60%, 24% and 16%). This means that participants are, in general,
minimising their travel time when selecting a route, but that there is still a large number of
choices that are suboptimal in the sense that they are not minimising travel time. Suboptimal
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behaviour is specially noted in OD pairs CC5 and CC8, where the percentage of times the
fastest route was chosen is small. As argued in Chapter 5, this behaviour is likely due to
boundedly rational behaviour, and it depends on both the relative differences in travel time.

Figure 7.2: Route choice distribution. The percentage of choices for each of the three routes
in the five OD pairs. The left plot represents the total percentage of choices for the fastest,
second fastest and slowest routes. The colour indicates the percentage of the times that the
route was the fastest informed route.

The choices of the participants are based mainly on the travel time estimates given for
the different routes and departure times. A natural question that arises here is if participants
minimise the difference between the estimated arrival time and the objective arrival time. To
see this, the distribution of ELATE is shown in Fig. 7.3, where it can be seen that the mode of
the distribution is placed to the left side of the origin, around -2.5 minutes. This means that
the most frequent departure time choices are such that participants intend to arrive to their
destination just before the objective arrival time. Moreover, for almost half of the choices ETA
is in the interval [−5, 5]. As expected, the ELATE distribution is asymmetrical, accumulating
more observations before the objective arrival time: 80% of the trips were planned to arrive
before the objective arrival time. This is explained because participants regard late arrivals
to have more negative consequences than early arrivals. These results reveal that, globally,
participants are optimising the ETA, in the sense that they minimise the expected travel time,
ETT, at the same time that they try to minimise the risk of late arrivals ELATE+. These
patterns are observed on the five OD pairs.

The variability in the ELATE distribution may be explained by the heterogeneity of the
risk profiles of participants. To obtain the risk profile of the participants, the distribution
of ELATE is obtained at participant level. In order to approximate the distributions only
participants with more than 4 recorded choices are taken into account in this analysis. These
distributions are shown in Fig. 7.4, where it can be seen that the participants are heterogeneous
in their ETA choice. Participants are categorised according to their risk profile depending on
the 75th percentile of their ELATE distribution. Risk-averse participants are those whose 75th
percentile of ELATE is less than 5 minutes, that is, participants who planned at least 75% of
their trips to arrive more than 5 minutes before the objective arrival time. The risk-neutral are
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Figure 7.3: Expected lateness distribution. The mode of the distribution is placed just before
ELATE = 0 and has a long negative tail. This means, on the one hand, that participants
consider that late arrivals have worst consequences than early arrivals. On the other hand,
they try to minimise the early arrivals.

defined as those participants with 75% of their trips arriving between 0 and 5 minutes before the
objective arrival time, and the risk-prone are those who arrive late in at least 25% of the trips.
Note that this last group has mean expected arrival times close to the objective arrival time.
With this definition, the percentage of risk-averse, risk-neutral and risk-prone participants is
24%, 42% and 34%, respectively.

7.3.2 Route and departure time model estimates

Two variants of the model in expression (7.1) are estimated. In both models, the systematic
part of the utility is given by

Vi,(j,t) = β1 · NETTi,(j,t) + β2 · NELATE−i,(j,t) + β3 · NELATE+
i,(j,t) ,

and the correlation structures by

η1
i,(j,t) = θ1νi,(j,t−1) + νi,(j,t) + εi,(j,t) (RDT1)

η2
i,(j,t) = θ2νi,(j,t−2) + θ1νi,(j,t−1) + νi,(j,t) + εi,(j,t) . (RDT2)

Model RDT1 considers a lag of h = 1, whereas model RDT2 a lag h = 2. The estimated models
are compared to that of the MNL model in order to determine if including lagged errors improves
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Figure 7.4: Distribution of ELATE per participant. The distributions are ordered by the 75th
percentile of the distribution.

the quality of the joint route and departure time models. The estimates of the three models
are included in Table 7.1, where it can be seen that the estimated parameter β̂1 < 0, meaning
that participants prefer shorter routes in time. The variables NELATE− and NELATE+ are
the percentage of the allocated time for travel that early or late arrivals represent. Since these
variables are expressed in the same units, then the magnitude of their estimated coefficients can
be compared directly. Both parameters have negative sign, meaning that there is a disutility
associated with early and late arrivals. However, β̂3/β̂2 > 2, which implies that for the average
participants late arrivals are twice less desirable than early arrivals. In the case of the estimated
travel time. These results considered altogether suggest that participants make choices in order
to minimise their travel time, while avoiding late arrivals. The same conclusion was found in
the interpretation of the results in the exploratory analysis.

The goodness of fit of the three models is assessed with the training error. This is, the pre-
diction error for the same data that was used to fit the models. The training error is compared
for the marginal probabilities for the route and departure time choices, i.e, Pr(R) and Pr(DT ).
To obtain the training error for the route choices, the methodology of the previous chapters,
where the observed and predicted route choice distributions were compared, is replicated (see
Section 6.3.2 for more details). Note that this methodology requires to compute the observed
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Table 7.1: Estimates of the mean parameters of the three joint route and departure time models.

MNL RDT1 RDT2

Parameter mean s.e. mean s.e. mean s.e.

β̂1 -1.700 0.105 -1.839 0.119 -1.767 0.123
β̂2 -3.768 0.184 -4.079 0.218 -3.823 0.258
β̂3 -7.751 0.372 -8.231 0.409 -8.575 0.444
θ̂1 - - -0.311 0.454 0.047 0.307
θ̂2 - - - - -1.068 0.169

Deviance 6295.502 2.355 5183.121 180.100 4665.145 174.639
DIC 6298.300 - 21113.100 - 19855.800 -

choice distribution, which is possible when the alternatives are the same for a sufficient number
of choice problems. The case of the departure time is different. The reason is that in the MDG
experiment the choice problems happen at any time between 6:45 and 9:00 in the morning.
Thus, the departure time periods vary for different choice problems. For example, one choice
problem may have 10 departure time intervals of length five minutes from 7:00 to 7:50, while a
second choice problem from 7:30 to 8:20. In a strict sense, the alternatives of these two choice
problems are not the same, even for the same OD pair. Therefore, it is not possible to obtain
the observed distribution for the departure time choices (nor for the joint route and departure
time choice). In order to measure the error of the models in time, the absolute difference be-
tween the departure time of the different alternatives and the actual observed departure time is
used as an error measure. This error is then weighted by the choice probability predicted by the
model. Formally, for a given choice problem let DT(j,t) be the departure time of the alternative
route j in the time interval t, DT ∗ the actual departure time choice, and Pr(DT = t) the
marginal departure time probability given by the fitted model. Then, the prediction error for
a choice problem is given by

errDT = (1/3)
3∑
j=1

∑
t

|DT(j,t) −DT ∗| · Pr(DT = t). (7.4)

The errors errDT , obtained for each choice problem, are then averaged to obtain the average
error of the model ¯errDT . The errors for both the route and departure time marginals are
shown in Table 7.2. Compared to the MNL model, there is an improvement in the fit of both
the route and departure time marginals. Model RDT1 has the smallest error for the departure
time choice, but model RDT2 has the smallest error for the route choice. Even though the
improvements are small, this suggests that considering the correlations between consecutive
intervals could increase the accuracy of the models. The error incurred by a model can be also
assessed by comparing the difference between the observed and predicted ELATE. This is done
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by replacing DT by ELATE in equation (7.4); denote this error by errELATE and the average
error for all choice situations as ¯errELATE. The difference between errDT and errELATE is that
the first measures the error in departure time, while the second is a measure of the error at
arrival time. The error ¯errELATE is also included in Table 7.2. The results show the same
patterns as in ¯errDT , with models RDT1 and RDT2 having smaller errors than the MNL
model. An interesting result is that ¯errELATE < ¯errDT , implying that the three models are
more accurate for this variable than for the departure time. Therefore, suggesting that they
are minimising the error with respect to the objective arrival time, and not with respect to the
departure time.

Table 7.2: Training error of the estimated joint route and departure time models.

Route choice (%) ¯errDT (mins.) ¯errELATE (mins.)

OD pair MNL RDT1 RDT2 MNL RDT1 RDT2 MNL RDT1 RDT2

All 12.0 11.9 11.8 9.92 9.79 9.83 9.59 9.43 9.48
CC1 26.6 26.3 26.3 10.70 10.55 10.61 11.00 10.80 10.80
CC2 9.7 10.7 10.3 9.49 9.42 9.44 8.95 8.81 8.89
CC5 16.3 16.1 16.0 9.87 9.70 9.73 10.30 10.10 10.10
CC7 3.2 2.9 2.6 10.58 10.48 10.51 8.87 8.70 8.78
CC8 4.1 3.5 3.7 8.95 8.81 8.88 8.78 8.62 8.70

7.4 Conclusions

This chapter presented the results of a first effort to model the joint route and departure
time choices of travellers. The data comes from an experiment, conducted with the MDG
platform, in which participants were faced with simultaneous route and departure time choice
problems. The exploratory analysis shows that participants chose routes in order to minimise
their expected travel time, at the same time that they avoid early and late arrivals. The
preferences for early and late arrivals are, as expected, asymmetrical: late arrivals are considered
to have worse consequences than early arrivals. This result is confirmed by the estimated joint
choice models. Participants exhibit heterogeneous risk profiles. On the one hand, risk-averse
participants (24%) planned their trips to arrive at least 5 minutes before the objective arrival,
and on the other hand, risk-prone participants (34%) planned their trips to arrive close to the
objective arrival time and often late. The fit of the two models that account for correlation
between time periods was compared against the fit of the MNL model. The specifications of
the models studied here are simple: only three explanatory variables enter the model, and the
coefficients are considered fixed in the population. The results show a slightly improvement of
the models that consider correlated departure time intervals. The improvement is observed for
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both the departure time and route choice marginals. Therefore, suggesting that considering
correlated time intervals improves the fit of the models, and thus their predictive accuracy.
Nevertheless, the significance of the results in this chapter need to be tested. Even though the
results presented here are partial, they are promising and should be further investigated. As
future work, more complex specifications could be tested, for example, by including random
coefficients that account for the repeated choices of participants and taste variation. Also,
the sensibility of the models to the size of the departure time intervals should be assessed,
to determine the impact of the subjective discretisation of the departure time intervals in the
quality of the models. Another line of research could be adapting the BRCS model, introduced
in Chapter 6, to include lagged errors.
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General conclusions and
research perspectives

In this thesis, the choice behaviour of travellers was empirically studied through in-laboratory
computer experiments. The objective was to propose and estimate choice models that predict
the choices of travellers at large-scale urban network level, for subsequent implementation in
traffic simulators. To attain this objective, the models need to generalise the choices of travellers
to the large variety of situations that are found in an urban network, maintaining, at the same
time, their consistency with the actual behaviour of travellers. The models adopted to predict
the choices of travellers come from the the mixed logit model family. The data to estimate
the models comes from several in-laboratory computer experiments that comprise the choices
of unimodal car trips. The experiments were carried out using the Mobility Decision Game
(MDG), an internally developed platform that allows to observe the choices of participants in
a variety of hypothetical scenarios in an urban transportation network. The majority of this
thesis focused on travellers’ route choices, Part I is dedicated to this subject. Part II contains
only one chapter, devoted to the simultaneous route and departure time choices. The main
results obtained in this thesis are summarised below, and some research perspectives are given
at the end of this chapter.

In a city-scale network, trips are made in thousands of OD pairs connected by a large
number of diverse routes. In the case concerning this thesis, the city of Lyon in France, the
network has more than 96,096 OD pairs and more than 559,423 routes. From the point of
view of the design of experiments, this implies that the number of scenarios must be reduced
to a small set in which the choices of participants can be observed through experimentation.
Furthermore, this small set must be representative of the scenarios found in the whole network,
in the sense that the choices of travellers in any scenario can be predicted by a choice model
estimated with the representative set. In Chapter 4, a methodology based on cluster analysis
was proposed in order to find the representative set of OD configurations. In cluster analysis,
elements are assigned to groups whose elements are similar between themselves, but dissimilar
to the elements in the other groups. The mean element of each cluster (the centroid) can be
selected to represent its group, and the set of all the cluster centroids to represent the whole
network. This implies that a choice model estimated with data obtained for the representative
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OD pairs will generalise to the rest of the OD pairs in the network. Moreover, the centroids are
dissimilar from each other, allowing to identify the influence of each attribute in the choices of
the participants. For the city of Lyon in France, 9 OD pairs and their three connecting routes
were used as representative of 624,490 OD configurations. The routes of the nine representative
OD configurations cover around 83% of the values of the attributes of the routes in the network.
It was found that the models estimated with the representative set of OD and routes have,
in general, higher predictive accuracy. On average, the accuracy is increased in around 2.5
percentage points. Moreover, the models estimated with the representative set showed no
extreme errors for individual OD pairs. This implies that the models estimated with the
representative set will show a relative better global prediction accuracy without incurring in
large errors on individual OD-routes. These results demonstrate that the accuracy of a choice
model for the whole network can be improved by estimating the choice models on representative
OD pairs, and that the representative OD pairs and routes can be obtained with cluster analysis.

Chapter 5 and Chapter 6 are concerned with finding the route choice model that best
predicts the choices of travellers. To this purpose, the influence that the travel time information
and the route attributes have on the choices of travellers is first studied. The first main finding
is that travellers evaluate relative rather than absolute differences in travel time. This means
that a 5-minute difference in travel time weights differently for trips of 10 and 30 minutes. In
the first case, the difference represents an increment of travel time of 50% with respect to the
alternative, whilst in the second case the difference is of 15%. In traffic assignment, travellers
are often treated as perfect rational with respect to travel time, assuming that their choices
are such that they minimise their travel time. However, recent studies have shown that this is
not the case. The results in Chapter 5 point in this direction, finding that participants chose
the fastest route in 60% of the cases, and that only 10% of them chose always the fastest
route. Thus, suggesting that the choices of travellers with respect to this variable are best
explained by boundedly rational behaviour. In this regard, it was found that the participants
have heterogeneous indifference bands, and that at least 70% of them would not consider routes
1.5 times slower than the fastest alternative. An estimate for the mean indifference band in
the population is 31.3%, meaning that the average participant did not consider routes with
travel time differences 1.3 times slower than the fastest alternative. These findings are the
motivation of the bounded rational choice set generation mixed logit model (BRCS), developed
in Chapter 6. This model contemplates (i) a boundedly rational behaviour to generate the
choice set, discarding the alternatives with travel times above a threshold, and then (ii) a
rational behaviour to choose one alternative from the choice set. The BRCS model jointly
estimates the choice set and the route choice, allowing for the BRCS to implicitly infer the
latent population’s indifference band distribution. In terms of predictive accuracy, the BRCS
model was superior to all the MXL model specifications tested in this thesis, as it is shown in
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the conclusions of Part I.
Finally, Chapter 7 presents partial results of a first effort to simultaneously model the route

and departure time choices of participants in a MDG experiment. The approach was to account
for the stimuli of the participants’ choices in a single representation of the utility. The response
departure time was discretised in intervals of five minutes and correlation between consecutive
intervals considered. The results are promising. Compared to a MNL model without time-
correlated alternatives (reference model), the proposed model shows slightly better fit for both
the route and departure time. The models that were tested are simple and further research
must be done to improve the quality of the models. Possible lines of investigation are mentioned
below.

Research perspectives

The work in this thesis can be further extended in four directions: experimentation, models,
validation, and implementation.

Experimentation. The empirical data collected in this thesis encompasses the choices of the
participants who are mainly staff and students from the university. Hence, it is not representa-
tive of the whole population. The data could be complemented by performing new experiments
for other segments of the population. The new experiments should be carried out using the
nine representative OD pairs in order to guarantee the generalisation of the choice models to
the whole network. Choice models estimated with the new data could be modified to treat
differently the segments of the population. This could improve the choice models in terms of
representativeness not only of the network, but the population. In its current development
state, the MDG does not allow to study certain aspects of travellers’ behaviour, particularly,
learning from experience and the reaction to travel time information uncertainty. The learning
behaviour cannot be observed due to the long duration between the beginning and the end
of a trip (more than 10 minutes), which prevents to present choice problems sequentially to
the participants and thus to observe how the consequences of the previous trip influence the
current choice. Learning could be studied with the MDG by reducing the duration of the trips
and observing the repeated choices over a same OD pair with unknown and variable traffic
conditions. Thus, allowing to estimate the learning rate as a function of travel time variability
and the influence of travel time uncertainty in their choices. The reaction of travellers to travel
time information uncertainty could be studied by providing to the participants the distribution
of the travel times over the alternative routes, instead of a point estimate.
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Models. The route choice models in this thesis could be improved by defining more complex
specifications of the systematic part of the utility. In particular, the overlapping of the alter-
natives. Even though the mixed logit models account for the correlations between alternatives,
making this correlation explicit for overlapping routes could improve the predictions and the
interpretation of the models. Regarding the BRCS model proposed in Chapter 6, different
forms of the distribution of the indifference bands could be tested. Specially, a mixture of
distributions (zero-inflated model) could help the model to better detect travellers that behave
rationally. The BRCS model in this thesis was estimated considering only three alternative
routes in the choice set. The questions on how the model can be estimated considering a large
number of alternatives and if the model is still capable of finding the underlying distribution
of the indifference bands can be addressed using synthetic data. In the last research chapter,
the first results of an investigation of the simultaneous route and departure time choices were
presented. A future step in this direction could be to consider separate utility functions for
the route and departure time choices. This would require to enter different variables in each of
the utilities, and to estimate the probabilities jointly. The BRCS model could be used for the
probability of route choice, while a time-correlated MXL model for the departure time.

Validation. The MDG experiments belong to the SP methods. Thus, as discussed in the
introduction to this thesis, it suffers from external validity issues that are not present in the
RP methods. Alternative RP data sources, such as GPS traces, could be used as ground truth
to compare the predictions of the estimated choice models. Therefore, obtaining a measure
of the discrepancy between the two data sources. This discrepancy is an estimator of the real
predictive error. Moreover, the data sources from the SP and RP methods could be merged to
estimate choice models. An interesting question that could be addressed is if the choice models
estimated here adapt well to other urban networks.

Implementation. The purpose of the choice models obtained in this thesis is their future
implementation in traffic assignment algorithms at large-scale, specially in dynamic traffic as-
signment. The simulations based on these algorithms can be used to test different traffic control
strategies and transport network planning. The implementation can be done considering the
mean behaviour found for the participants (the mean of the random coefficients estimated in
this work), or by simulating the individuals’ coefficients based on their distribution. The choice
models can be implemented in two ways: (i) a unique model for all the network, and (ii) one
model per group of OD pairs. The models estimated in this thesis are of the first kind. How-
ever, the choice models could be estimated for each cluster of OD pairs, and implemented in
the traffic assignment algorithms per cluster. The implementation should take into account the
heterogeneity and the correlation of travellers’ preferences, captured in the estimated models
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by the joint distribution of the coefficients. The findings in Chapter 5, related to size and
heterogeneity of the indifference bands could be used to reduce the number of alternatives
considered by the travellers. Sensibility analysis of this parameter could help determine the
trade-off between the efficiency of the assignment algorithm and the incurred error. The traffic
assignment could also be validated against observed traffic states coming, for example, from
GPS traces.
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