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Abstract

Social robots like Pepper are already found "in the wild". Their behaviors must be
adapted for each use case by experts. Enabling the general public to teach new
behaviors to robots may lead to better adaptation at lesser cost. In this thesis,
we study a cognitive system and a set of robotic behaviors allowing home users of
Pepper robots to teach new behaviors as a composition of existing behaviors, using
solely the spoken language.

Homes are open worlds and are unpredictable. In open scenarios, a home social
robot should learn about its environment. The purpose of such a robot is not
restricted to learning new behaviors or about the environment: it should provide
entertainment or utility, and therefore support rich scenarios. We demonstrate the
teaching of behaviors in these unique conditions: the teaching is achieved by the
spoken language on Pepper robots deployed in homes, with no extra device and
using its standard system, in a rich and open scenario.

Using automatic speech transcription and natural language processing, our sys-
tem recognizes unpredicted teachings of new behaviors, and a explicit requests to
perform them. The new behaviors may invoke existing behaviors parametrized
with objects learned in other contexts, and may be defined as parametric. Through
experiments of growing complexity, we show conflicts between behaviors in rich
scenarios, and propose a solution based on symbolic task planning and priorization
rules to resolve them.

The results rely on qualitative and quantitative analysis and highlight the lim-
itations of our solution, but also the new applications it enables.
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Behavior Model A behavior model is a formalism to represent behaviors. For ex-
ample, describing behaviors as lists of elementary action is a behavior model.
Describing them as interpolated trajectory curves is another behavior model.
16, 31–35, 55, 58, 77, 91, 102, 139, 142

Behaviorism [...] a systematic approach to understanding the behavior of humans
and other animals. It assumes that all behaviors are either reflexes produced
by a response to certain stimuli in the environment, or a consequence of
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together with the individual’s current motivational state and controlling stim-
uli.

— [Wikipedia contributors, 2019a] xiii, 5, 19

Cognitive System A system that can autonomously collect information from its
environment and act back on it through actions. A cognitive system imple-
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35, 46, 47, 77, 137, 142

Cognitivism An approach to understanding the behavior of humans and other
animals that include a model of how they think. In opposition to behaviorism,
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are not simply the reinforcement of existing abilities. 5, 30, 137

Composability Composability is a system design principle that deals with the
inter-relationships of components. A highly composable system provides com-
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specific user requirements.
— [Wikipedia contributors, 2019b] 4, 12, 32, 35, 38
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lent aggregations. 9, 10, 55
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ix, x, xv, 10, 27, 46–49, 59, 65, 76, 84, 105, 122, 133–136, 138
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each other. xi, xx, 6, 9, 11, 16, 18, 26, 44
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class members). — [Gruber, 2009] 5, 84
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Pepper A medium humanoid robot designed for social interaction, manufactured
by SoftBank Robotics Europe. xiv, 2, 10, 29, 46, 75, 138
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PR-2 A large humanoid multi-purpose robot, manufactured by Willow Garage.
138

Pragmatic Viewed as a relation between the context and the meaning of a speech
act. 9, 11, 12, 17–19, 25, 26, 29, 42, 100

Pragmatic Frame A pragmatic frame is a negotiated interaction protocol tar-
geted to achieve a joint goal that involves (1) a surface layer, textly, an ob-
servable coordinated sequence of pragmatic behaviors in the form of words
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— [Rohlfing et al., 2016] xi, xii, 16–19, 21–23, 25, 29, 31, 61, 77, 95, 126, 127

Procedural Knowledge The knowledge of how to achieve a certain process, ac-
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knowledge. 5, 10, 11
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robots running 2.9.x versions of NAOqi. 76, 77, 84, 89, 97, 107, 121, 123, 124,
135
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something they would not be able to accomplish independently [Greenfield,
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— [Chernova & Thomaz, 2014, p.7] 6, 17–19, 127

Self-Demonstratino A demonstration that is performed by the same agent it is
addressed to, e.g.: performing a choregraphy to rehearse it. 22, 24, 34, 35

Semantic Viewed as a relation between a signifier and its meaning. 9–11, 18, 19,
22, 26, 28, 29, 42
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natural language. For example the phrases “leaving the room” and “going
out of the room” may describe a same semantic frame go, with the same slot
provenance set to “the room”. 11, 12, 18, 29, 31, 51, 56, 58, 62, 77, 90, 94

Semantic Structure Often encountered in machine translation, a symbolic repre-
sentation of a piece of natural language that abstracts away language-specific
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execution of a task. xiii, 7, 35, 37

Speaking Floor In spoken interaction, the abstract direction of attention shared
between participants, that support the verbal communication. The alternance
of ownership of the floor is called the speech turn. 17, 26, 60, 100

Speech Act An action that is performed by the means of an utterance. xiv, 26,
30, 89, 142

Speech Recognition Process of recognizing a linguistic or semantic symbol from
a natural language utterance. xi, xii, 6, 10, 11, 70–73, 77, 78

Speech Recognizer A software component providing speech recognition. 26, 27,
49, 59, 69, 71, 74, 78, 108, 115, 116
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tionally offered to speak, and is meant to be listened to by other participants.
xvi, 60
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3–7, 10, 11, 13, 16, 21–24, 26, 32, 34, 36–44, 46, 48, 64, 69, 70, 74, 77, 109,
116, 120–122, 138
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9–11, 35, 38, 55, 56, 128

Task Plan An arrangement of tasks in parallel or in sequence. It is a symbolic
form of procedural knowledge. xvi, 7, 9–11, 16, 23, 46, 55, 58, 77, 80

Teaching Behaviors The act of explicitly teaching a behavior of any kind, includ-
ing in the form of a task plan, and regardless the modality of communication
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Theory of Mind Theory of mind is the ability to attribute mental states – beliefs,
intents, desires, emotions, knowledge, etc. – to oneself, and to others, and to
understand that others have beliefs, desires, intentions, and perspectives that
are different from one’s own. — [Wikipedia contributors, 2019c] 8, 125, 126
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32, 33, 37, 38, 68, 92
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2 Introduction

1.1 Motivations
Adapting Social Robots in the Wild

Social robots are already present in the wild. They can be found in shops [Boom,
2015], tourism activities [Reese, 2016, del Duchetto et al., 2019], care facilities
[Satariano et al., 2018, Khosla & Chu, 2013], homes [Richardson, 2017, Reyes,
2016], schools [Gray, 2016, Reddy, 2019], or even in religious services [Peh & Foster,
2017, Löffler et al., 2019].

A significant part of them are Pepper robots, made by SoftBank Robotics Eu-
rope (SBRE): as of May 2018, 12,000 units have sold in the world [Olson, 2018]. In
this section we share various challenges that SBRE faces using Pepper in the wild,
i.e. in real conditions.

1.1.1 Real Software Applications for Social Robots

The use cases of such robots range so widely that it is not currently possible for
a single robot to cover all of them. Instead, a selection of software applications is
deployed on each robot depending on its use cases, e.g. introducing itself to people,
playing games, taking surveys, informing about cars, wines, locations...

Most applications are tailored to specific use cases. For example, there may be
an application for the robot to present shop items, and another to give directions:
both applications would certainly be structured differently. Even between two ap-
plications for presenting shop items, e.g. cars vs. wine, there may be differences on
the structure of the information and in the context of interaction.

Applications rely on Human-Robot Interaction (HRI) features provided by Pep-
per out of the box: dialogue management, speech recognition and synthesis (with
a high-quality voice and accompanied with body language) detection and engage-
ment with humans (looking at them, but not to insistently), and safe full-body
animations and locomotion, provided through an agreeable design.

On the other hand, these features remain relatively low-level, so Pepper “does
nothing” unless applications are installed on it.

1.1.2 Development of Applications for Social Robots

Application development on robots has been established and simplified with time.
Pepper’s ecosystem includes the graphical programming and animation tool Chore-
graphe, the Android Studio plug-in Pepper SDK, and Content Management Systems
(CMS) like Pepper for Biz or P4S.

These solutions reduced the cost of application development, but still require a
specialist to develop them. Non-specialist business Pepper owners still rarely inter-
vene in the applications or the contents of their robot. It remains impractical for
them to adapt a robot using classical computer interfaces like desktop applications
or web pages. This is a missed opportunity to adapt Pepper better to their needs.
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The difficulty of application development on Pepper also affected private indi-
viduals who purchased Pepper. Since the ecosystem of application development
for private use has not taken off, it remained difficult for owners to find applica-
tions that would augment Pepper’s behavior. Overall, Pepper’s behavior stagnated.
Their owners have become bored by the lack of content, and frustrated by the lack
of understanding of the robot: it would not even try to do what the users ask for,
and would not remember or learn anything from past interactions.

This situation could be eased if the users could directly teach Pepper what they
wanted. Through user interaction, the robot could learn new abilities, accumulate
knowledge, and become adapted to its actual use case.

1.1.3 Adapting Social Robots in Real Conditions

SBRE have been working on generic solutions to let the users produce behavioral
contents directly through interaction. Two prototype applications, Pepper Play and
later Do This Do That, allowed users to make the robot perform specific actions
on certain events, the way it is done with popular web tools like IFTTT1. IFTTT
stands for “if this then that” and is a simple programming interface that allows
pre-programmed functions to be scheduled on particular web events. The proto-
types allowed users to define robotic behaviors and schedule them in reaction to
robotic events. They worked and demonstrated that with a combination of spoken
language and touchscreen interaction, the Pepper’s behavior could be customized.
They deployed them to a set of robots lent to some employees, so that they can
test new general public applications from their home. This test program is called
Pepper@Home.

Confidential results from Pepper@Home highlight that being able to adapt the
behavior of the robot made the robot more interesting and more unique. The
behaviors invented were usually social, complementing the overall interaction with
the robot. However, Pepper Play and Do This Do That did not solve the issue of
a robot that was not able to reuse information that it had been told. The same
problem occurred with any other application that was deployed to Pepper@Home:
while an application enabled Pepper to understand something, the information
would not be reusable to adapt its general behavior. It did not scale up.

Overcoming the challenge of adapting the behavior of Pepper in that way would
be a disruptive change, making the behavior of social robots satisfactory for private
individuals. It could also make it easier for professional owners to adapt their robots
in the field, without the need for a third-party, or an additional computer interface2.

Employees who work with a robot may also benefit from adapting it. They
could tell the robot what it should do to help them, rather than having no say
on the robot’s behavior. Thus they may see it more like a partner than like a
competitor in the labor market. Caregivers could get more help from robots by
providing specific instructions for situations that were unforeseen when the robot

1https://ifttt.com/.
2In addition to the robot itself, which is a computer interface

https://ifttt.com/
https://ifttt.com/
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was initially deployed. The list of new usages goes on, as the full potential of social
robots like Pepper is finally realized.

1.1.4 Challenges of Adapting Social Robots in Real Conditions

Why would adapting the behavior of a social behavior be so difficult? In previous
works of research [Lauria et al., 2001] and on prototypes at SBRE, it was already
demonstrated that new behaviors can be taught using spoken language. This is
what we call teaching behaviors using spoken language. In practice it has been
done by describing the desired behavior just once to the robot. This zero-shot
learning ability is especially convenient for the users, who otherwise would quickly
give up. In addition, it usually requires less computing power than more recent
machine learning approaches.

But what is learned is not reusable. A behavior is reusable if it can occur
in different contexts, with different parameters, of same or different natures. For
example, given a behavior for greeting Alice, it is more reusable if the robot can also
greet Bob. It is even more reusable if it can greet anyone else: i.e. if the behavior
is parametrizable. If the robot can also greet a dog, a statue, or anything else, the
behavior is more generalized, and its parametrization is more flexible, making it
more reusable.

The greeting behavior is also made more reusable if the robot can discuss about
it: name it, perform it on demand, articulate it with other information, or detail it.
Providing details on a known behavior and the reasons why it is performed leads
to explainability. Explainability is a recommendation for ethical robots [Chatila
et al., 2017], and were officially adopted by the OECD [OECD, 2019] and the
G20 members [G20, 2019]. [Rudin, 2019] urges the community to use intrinsically
explainable models. It could become a requirement for social robots in the future.

To demonstrate reusability, a robot should understand what is the greeting be-
havior, that it can apply to any human, but also to other agents, or representations
of it, or any other objects. To be able to generalize this behavior – given that it
can be generalized – the robot should also be able to identify humans, agents, or
objects. And the users should be able to teach who the agents are and what the
objects are. If the greeting behavior involves locomotion, the robot should also be
able to be taught about locations in space. To communicate using spoken language
about this, the robot should be able to articulate all these notions together. We
call this knowledge interoperability.

Another dimension of reusability consists in reusing a taught behavior in another
behavior. For example, given a behavior for greeting people, the robot could be
taught to welcome people home by greeting them and then by inviting them to
hang their coat. We call this composability.

Research continually makes progress about teaching behaviors, but the scenarios
of experiments are often closed (see subsection 2.5.3): what is taught is usually
reused in the same context, or cannot be relied on for later teachings. Often, robots
are not designed to learn or do anything else than what is required to demonstrate
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the teaching. For instance, [Mohseni-Kabir et al., 2019] demonstrates a complex
teaching scenario and a powerful learning algorithm, but only for the specific task
of changing a tire. Whereas HRI at home is an open scenario, and social robots in
such environments are expected to have other purposes, and learn other things to
fulfill them. The expected interaction is richer than what the current state of the
art provides, and the learned behaviors integrate well that rich interaction.

Therefore it appears that we could make the research progress by achieving
the teaching of behaviors using spoken language in more open scenarios and with
richer interactions, on a system that can also be taught about its environment. The
knowledge, including the procedural knowledge within behaviors, should remain
reusable for the applications providing the teaching behaviors. That is the result
this thesis aims for.

1.2 Positioning in the Research Landscape

Teaching behaviors using spoken language to robots has been covered in several
complementary research fields. In this section we describe the research landscape
from which originates our literature, we detail the notions involved and then position
this thesis.

We start first with Artificial Intelligence (AI), because it provides the fundamen-
tal notions. Then we look at Interactive Task Learning (ITL), and then Learning
from Demonstration (LfD), because they deal with interactive teaching of behav-
iors. Both are part of Interactive Robot Learning (IRL), and involve Human-Robot
Interaction (HRI). Our research overlaps all these fields.

1.2.1 Artificial Intelligence

AI is a field of computer sciences focusing on automating decision-making. It may
involve the observation of the world3, its understanding, the production of reusable
knowledge, and a mean of action back to the world.

An entity capable of such decision-making is an artificial agent. The notion of
agents is shared with philosophy, grammar, psychology and economics, and refers
to a subject capable of action. Selecting the adequate action for a given situation
is called a planning problem, and AI provides solutions for that.

Because AI seeks to implement artificial agents, it must describe them from the
inside. In psychology, this is said to be a cognitivist point of view, – as opposed
to the behaviorist point of view, that describes agents only from the behavior they
exhibit. It is probably for this reason that the software systems implementing agents
are called cognitive systems.

Some cognitive systems come with an ontology that structures the symbolic
knowledge maintained by the system, so that it is interoperable with its various
components, or across systems [Waibel et al., 2011].

3Regardless it is a virtual or the real world.
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AI also borrows the notion of tasks from computer sciences: a process that can
be scheduled for execution. From a cognitive point of view, an artificial agent can
perform tasks it knows. When a task is performed, it may be seen from a behavioral
point of view as acting. The difference consists in the fact that an action refers to
the observed behavior of the agent, whereas a task is a potential that could be
performed.

1.2.2 Interactive Task Learning

ITL is a sub-field of AI dedicated to allow artificial agents to learn new tasks through
interaction with another agent. Usually, this other agent is human, has a role of
teacher or oracle and communicates with written natural language.

Teaching new tasks is indeed a way to teach new behaviors to an artificial agent,
such as robots, and therefore ITL provides a significant part of our literature.

According to [Laird et al., 2017], early researchers in ITL managed to teach
tasks to artificial agents using natural language and with early forms of machine
learning. [Simon, 1977, Simon & Hayes, 1976] would be the first attempt, on a
Tower of Hanoi puzzle. They associated predefined natural language instructions
to actions regarding the puzzle. Later, [Crangle & Suppes, 1994] would be the first
to achieve ITL on robots.

Since then speech recognition has matured, allowing such teaching with spoken
language. ITL used this and started to be applied on robotics, so well that now it
meets fields that were once independent.

1.2.3 Learning from Demonstration

LfD is a field of research that focused on making robots able to learn from teacher’s
demonstrations. It sees the learner robot as an individual who learns from its
experience, rather than a machine to be programmed. This approach is inspired
by developmental psychology, which studies how infants learn with almost no prior
knowledge.

[Chernova & Thomaz, 2014] review the research works made in LfD, and describe
the teaching process as a looping pipeline (Figure 1.1). The teacher would scaffold
the teaching interaction, demonstrate the desired outcome (a behavior or a target
situation), that the learner observes, and analyzes. In return it would practice what
it would have learned, so that the human could tell if it is properly acquired. If
not, the human would restart the demonstration. We further develop this process
in Section 2.1.

LfD distinguish the use spoken language, from the demonstrations [Chernova &
Thomaz, 2014, p.40], but supports its role in the learning interaction, for scaffolding,
or as a form of critique, or as side instructions. We included works of LfD in our
literature when they exhibited spoken language, but it appeared that LfD does not
encompass the case when spoken language instructions are provided alone, without
a demonstration. It appears that for [Chernova & Thomaz, 2014], an instruction
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Figure 1.1: Adaptation of “A simplified illustration of the Learning from Demon-
stration pipeline.“

— [Chernova & Thomaz, 2014, p.3]

alone is not a demonstration.
Acquiring meaning, in any form including language, is called grounding [Harnad,

1990]. Meaning never comes alone, it is always grounded on something otherwise
meaningful. Associating demonstrations to spoken language is an effective way
of grounding and allows the robot to learn both what is demonstrated and the
language associated to it. From this point of view, if the teacher meant to teach
the language, e.g. by miming a known activity and uttering a phrase symbolizing
it, the demonstration would be the utterance, not the mime.

About behavior learning, [Chernova & Thomaz, 2014] distinguish low-level skill
learning from high-level task learning. How to recognize an object, how to reach it,
or how to keep the equilibrium while doing so, are skills. Learning them involves
learning the right parameters to control live dynamics properly. Whereas tasks
ignore the details of the dynamics, and instead are a symbolic representation of
the possible behaviors of the robot4 Then they can be composed into task plans,
potentially hierarchical. This notion of tasks is also compatible with ITL, making
the exchanges easier between the two fields.

1.2.4 Interactive Robot Learning

What brings together ITL and LfD is that they study how robots can be taught new
behaviors. But as noted before, behaviors involve knowledge of the environment,
and therefore social robots should be able to be taught other things.

The recent field of Interactive Robot Learning (IRL) covers the general ques-
tion of how to teach a robot anything. The challenges of IRL are about finding
appropriate algorithms to learn from few interactions with inexperienced users, and
designing Human-Robot Interaction (HRI) allowing the robot and the users to un-
derstand each other [Broekens & Chetouani, 2019]. The work presented in this
thesis is a contribution to IRL.

IRL is also a sub-field of Interactive Machine Learning (IML), which involves
the use of any kind of Human-Machine Interaction (HMI), not only robots, and
therefore encompasses LfD and ITL. In HMI (as well as in HRI) not only the
computer system is studied, but also the human using it, the user. This is stressed
in [Amershi et al., 2014], a review of IML, that could be well applied to IRL.

4This distinction resembles [Harnad, 1990]’s distinction between connectionist and symbolic
knowledge.
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The review states that since the system learns from its users, it cannot be studied
in isolation. Machine learning often relies on an ideal source of information, but
users are not ideal sources of information. Therefore it is important to include
the users in the study, in order to design the learner system and the interaction
techniques properly.

However our state of the art (in chapter 2) shows that when it comes to IRL,
there is an evident lack of real-condition experiments.

1.2.5 Human-Robot Interaction

We end our tour of the research landscape with HRI, the specialization of HMI
in robotics. Instead of relying on mice, keyboards, touch inputs and audio visual
outputs, HRI relies on:

• A physical embodiment that users can see and touch. See subsection 2.5.1 of
the state of the art.

• Seeing and locating the user to observe his or her behavior, social cues includ-
ing those of his or her engagement. See subsection 3.1.1.

• Identifying the user. See subsection 5.5.4.

• Recognizing and producing speech. See section 2.3.

• Reasoning and making decisions about a non-deterministic environment.

Robots are better suited than avatars for embodying virtual agents. According
to [Fridin & Belokopytov, 2014], users are naturally more engaged with a virtual
agent embodied in a robot, than the same agent represented by an avatar.

Moreover, robots share the same physical space as their users, making them
able to learn things from a point of view that computer cannot have. Our research
relies a lot on HRI, so it is important to capture the spirit of the field.

According to [Breazeal, 2004], HRI differs from Human-Computer Interaction
(HCI) (both are part of HMI) not only because robots replace computers, but also
because robots are seen as agents that have have their own goals. Therefore HRI
does not only study the performance of the human, but also the performance of the
robot, both as part of the human-robot system.

So the goal of the robot should be known, and can be compared to the outcome
of the interaction. In turn, this favors certain implementation details of the artificial
agent, further developed in section 2.4.

Ultimately, a robot could understand its user’s goals, and more naturally col-
laborate to reach them. This would imply that the robot establishes a theory of
mind for its user, and that this is part its knowledge of the environment [Scassellati,
2002].

The theory of mind allows perspective taking, but perspective taking can occur
without theory of mind. The problem of perspective taking is involved in the
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correspondence problem of LfD [Chernova & Thomaz, 2014, p.17], that could be
summarized by the following question: how can what other individuals exhibit be
applied on the learner?

Perspective taking is in fact essential for understanding a teaching. It requires a
knowledge of the environment, the users, and the ongoing interaction. This consti-
tutes a pragmatic context that is precious to understand properly the semantics in
the Natural Language Interaction (NLI). But the pragmatics of the interaction are
still tailored by researchers for their purpose. It is often part of the prior knowledge,
rather than being automatically analyzed, which makes the robotic behaviors rigid.

1.2.6 Positioning

The problem of making effective teaching behaviors is well covered by IRL, and is
detailed by ITL and LfD. Using the notions of tasks and task plans, it is possible
to model behaviors that can be reused, by composition.

Providing a rich behavior to the robot in a home context would be interesting
for HRI. In real conditions, scenarios are also more open, so achieving consistency
and robustness may rely on good knowledge of the state of the art of AI and NLI.

1.3 Definitions

This section defines the most important terms in our research. Definitions are also
recalled in the complete glossary.

Action A process through which an agent alters its environment, including itself.

Agent An individual capable of performing actions.

Behavior A behavior is the observable action of an agent given a situation.

Cognitive system A system that can autonomously collect information from its
environment and act back on it through actions. A cognitive system imple-
ments an agent, but an agent could be implemented otherwise.

Composition Organization exhibiting the composite pattern: a composite entity
(e.g. a task) aggregates other equivalent entities, and may be part of equiva-
lent aggregations.

Instruction A natural language phrase that describes an action to perform.

Natural language A language commonly used by humans to communicate with
each other.

Open scenario A scenario in which the situations were not predicted, nor the
outcome specifically intended.

Pragmatic Viewed as a relation between the context and the meaning of a speech
act.
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Procedural knowledge The knowledge of how to achieve a certain process, action
or task. It may or may not be represented in the form of symbolic knowledge.

Semantic Viewed as a relation between a signifier and its meaning.

Speech recognition Process of recognizing a linguistic or semantic symbol from
a natural language utterance.

Spoken language A natural language as pronounced or heard by a human.

Task A symbolic representation of a process, as seen by an artificial agent.

Task plan An arrangement of tasks in parallel or in sequence. It is a symbolic
form of procedural knowledge.

Teaching behaviors The act of explicitly teaching a behavior of any kind, includ-
ing in the form of a task plan, and regardless the modality of communication
or demonstration.

User An individual using or interacting with a tool designed for his or her purpose.

Zero-shot learning A property of a machine learning algorithm when it is able
to produce a correct output without the need for a single practice.

1.4 Objective
Teaching Behaviors using Spoken Language in Real Condi-
tions

We have chosen a straightforward approach for teaching new behaviors: users com-
pose new behaviors (see composition) out of existing ones into a task plan, using
instructions in spoken language. The system reuses the knowledge on objects and
locations provided by other applications, implementing domain-specific teaching
interactions.

We put these learning capabilities together in a social robot, and deployed it
in real conditions, in homes, for the first time in the scientific community. SBRE
allowed us to use the Pepper@Home program to achieve this. In return, we were
constrained to use Pepper robots, use its default software, NAOqi5, and refrain
from using additional external devices. But our research also benefits from these
constraints, by preventing us from relying on assets that are not actually available
in real conditions.

5As opposed to using ROS, an open-source alternative often favored in the scientific community.
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Nonetheless, we plan to demonstrate that our system is able to overcome chal-
lenges such as:

• supporting the openness of the home scenario: users may teach Pepper unan-
ticipated tasks, To achieve this, we rely on the semantics of the natural lan-
guage, use algorithms capable of zero-shot learning learning, and which do
not prevent explainability.

• supporting a rich set of behaviors: basic interaction, and the teaching objects
and locations. The basic interaction would represent the variety of usages of
Pepper.

• maintaining the consistency of a shared knowledge base, handling procedural
knowledge as well as knowledge about objects and locations, in a reusable
manner.

• merging behaviors provided by separate applications, so that they contribute
to one another. We present a cognitive system to coordinate them, to ensure
the overall consistency of Pepper’s behavior, while preserving its richness. The
system uses planning and applies interaction rules inspired by pragmatics.

1.5 Contributions

1.5.1 A State of the Art

Our first contribution is the collection and the review of the state of the art on
the teaching of behaviors using spoken language. Chapter 2 first presents it in
comparison to how humans teach behaviors to each other. We highlight that the
teaching interaction between humans and robots is still too simple in terms of
pragmatics.

Then we review how semantics are usually extracted from spoken language us-
ing speech recognition and Natural Language Understanding (NLU), how cognitive
system usually implement NLI and how behavioral knowledge is usually managed
in such systems. We finish with a review of experimental setups to highlight the
lack of rich and open scenarios, but also the lack of well-shared evaluation methods.

1.5.2 A Proof-of-Concept in Homes

Chapter 3 describes our first experiments demonstrating the teaching of behaviors
using spoken language. We detail how the first versions of our cognitive system
and the learning algorithms that support teachings of simplistic task plan in real
conditions: in homes.

Using a grammar-free speech recognizer and NLU, we extract a semantic struc-
ture that we use to understand the taught contents. Every task, pre-existing or
learned, is associated to a semantic frame, so that it can be reused in further teach-
ings.



12 Introduction

We hypothesize that this technology is sufficient for supporting this teaching in
real conditions. We deploy this teachable system in the homes of some users for
the first time, allowing a user-centered study. We identify the main caveats of the
interaction, including the lack of support for parametrized behaviors.

1.5.3 Teaching behaviors in Rich Scenarios in Homes

Chapter 4 presents new behaviors developed to support the learning of entities of
the world, more precisely: places and points of interests. Such behaviors allows
robots to produce interoperable and reusable knowledge in open scenarios, such as
homes. We adapt the interaction for teaching behaviors to take advantage of this
knowledge, and support parametrized behaviors.

It results in a richer set of behaviors, that conflict more directly with each
other. Our hypothesis is that the conflicts can be solved, by using an ontology to
describe the world, a goal-oriented description of possible actions, and a set of rules
to prioritize goals. An effort was made to make a cognitive system that is domain-
independent, and that may remain extensible, and support multimodal interactions
in the future.

We introduce the notions of communication acts (a kind of event) and semantic
templates (natural language formats representing semantic frames) along with our
ontology. These notions are used by the goal-selection rules to resolve goal conflicts
between behaviors. It appears that since the tasks the robot performs involve HRI,
the associated rules define the pragmatics of the interaction.

We test our system in homes, with the Pepper@Home population, to prove
that our system works. We also look for possible improvements of the teaching
mechanism and of the overall user interaction, in comparison with our previous
experiments.

Chapter 5 concludes this thesis, and discusses the outcomes of this work, as well
as some perspectives we envisioned.

1.6 Conclusion

In this first chapter of this thesis, we draw the big picture in which our research takes
place. This work is motivated by the need to adapt the behavior of social robots,
like Pepper, in real conditions. Despite earlier trials, there are still challenges such
as ensuring the interoperability with the software applications already found on the
robots, and the composability of the taught behaviors.

There are also research challenges in the field of IRL, which combines ITL or
LfD with HRI: there are no prior publication on teaching behaviors to robots in
real conditions. In addition, we plan to tackle issues that were not tackled before
in this context, such as: supporting an open scenario, in which the robot already
has other purposes than the tasks to teach, ensuring the behaviors can reuse the
knowledge they produce, and resolving the conflicts between these behaviors.
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In next chapter, we provide a detailed state of the art of the teaching of behaviors
using spoken language. It should provide the reader the tools to understand the
rest of this thesis, as well as it should justify our novelty claims.
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In previous chapter, we explained how we plan to achieve the teaching of behav-
iors using spoken language: users provide instructions to interactively build task
plans the robot can execute. But is this approach suitable for human users? And
how have roboticists approached teaching behaviors using spoken language? In this
chapter, we answer these questions by presenting the state of the art on teaching
behaviors using spoken language.

We collected every publication exhibiting users teaching behaviors to a robot
using the spoken language1. This collection is further mentioned as “our literature”,
and consists of 20 publications. They are analyzed throughout this chapter, which
ends with a summary in table 2.3.

First, in section 2.1, we justify that using instructions is suitable by looking how
humans teach each other behaviors using the spoken language.

Then, until the end of the chapter, we detail how roboticists have achieved
teaching behaviors using spoken language. The goal is to analyze the possible
technical choices, to justify the ones made in our research, which are presented in
next chapters. In each section, we focus on a particular domain.

In section 2.2 we focus on HRI, the form of the interaction, and the form of the
instructions. We highlight the need (and the lack) of richer interaction patterns,
which we implement in chapter 4. We present the notion of pragmatic frames, and
use it to assess the richness of interaction.

In section 2.3, we look at NLI techniques, and evaluate their pros and cons,
especially for the potential openness of the interaction. We explain how dialogue
systems integrate cognitive systems, and constrain their extensibility.

In section 2.4, we review the behavior models used in the literature, and evaluate
whether they are compatible with our form of teaching, and with the need to mix
behaviors from separate applications.

Finally, in section 2.5, we review the experiments presented by the literature,
to support the novelty of teaching behaviors in real conditions. We found the
robots are usually not sufficient to perform the experiments. Additional devices,
like microphones, are required. This, in addition to the lack of openness in the
experimental scenarios, puts a curb on real-condition experiments. And then we
review some evaluation methods that are later used in this thesis.

Let us start this chapter by presenting the natural foundations of the teaching
interaction.

2.1 How Humans Teach Behaviors to Humans

Humans routinely teach behaviors to each other, by interacting with each other in
many ways. For example we can tell each other how to behave, through explanation,
dissuasion, or storytelling. We teach a lot of behaviors also by demonstration, where

1We initially collected a larger set of publications exhibiting teaching behaviors using natural
language, i.e. not necessarily in the spoken form. Then we narrowed down the study to the spoken
form, but we kept some references to that larger literature when useful.
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the learners try to imitate the behavior they observe. But behaviors can also be
induced more subtly, or even emerge naturally.

A teaching consists in an explicit act of communication, which should induce,
in some way or another, some knowledge transfer to the learner. This is called
transfer learning. To teach a behavior is specific because the knowledge to transfer
is something that the learner can perform, or exhibit2.

2.1.1 Common Characteristics of Teaching Interactions

[Chernova & Thomaz, 2014], chapters 2 & 3 present how teachers scaffold the
learning process of the learner, direct its attention and rely on it to provide demon-
strations. In other words, teachers select the form of interaction and its content to
help the learner.

In that manner, teachers appear to drive the teaching. But in fact, learners
understand that teachers mean to help, and in turn take advantage of it: they can
drive the teachers’ attention on other matters, and interfere in the turn taking.
This is called a mixed-initiative interaction, and a good learner would exhibit such
initiative.

Judicious initiative involves a form of meta-cognition: the learner must have
a model of the interaction, and strategies to act on it: managing the speaking
floor, asking questions, paying attention to something, etc. [Chernova & Thomaz,
2014, p.11]. A good learner would be capable of learning these strategies through
interaction (meta-learning).

Learning these strategies is still difficult to achieve in robotics. The current
research is usually focused on achieving certain tasks, given some predefined situ-
ation. Chernova & Thomaz invite us to research beyond, and make robots able to
recognize and set up the teaching interaction by itself. This is inspiring, and it is
possible that our attempt at supporting rich scenarios may lead towards this.

That would require a model of the pragmatics of the interaction, and a form of
meta-interaction to drive the interaction. On this matter, we have been interested
by [Rohlfing et al., 2016], who introduce the notion of pragmatic frame, an element
of interaction pattern that can be subject to negotiation between participants:

A pragmatic frame is a negotiated interaction protocol targeted to
achieve a joint goal that involves (1) a surface layer, namely, an observ-
able coordinated sequence of pragmatic behaviors in the form of words
and actions, (2) a deep structure underlying these behaviors that targets
the achievement of one or several joint goals, and (3) a nested cognitive
layer that specifies which cognitive operations the frame triggers as it
unfolds.

[...]

2But it is also true for any teaching that its success can only be assessed by a behavior change
of the learner. Therefore any successful teaching results in a behavior change.
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What we call pragmatic frames are also known as “interactional
formats” [Bruner, 1983], p.120, or “frames” [Fillmore, 1985], p. 111;
[Tomasello, 2003], p. 25. — [Rohlfing et al., 2016]

[Bruner, 1983] is in fact a study of the emergence of the use of language in
infants. Before acquiring language, infants learn to reproduce interactional be-
haviors. Interaction appear to be organized as a sequence of situations, following
proto-grammatical rules. The templates of situations are what Bruner calls “inter-
actional formats”.

Infants learn very early to use interactional formats to recognize or build mean-
ing, and perform learning on the outcome, the “slot”. In practice the formats are
reinforced interaction after interaction, until meanings build up, and the slot can be
understood. It is the interactional format that conveys meaning in the beginning,
that is to say it is not carried by the context rather than a symbolic expression.
The meaning is conveyed through pragmatics.

At the same time, learning and using these formats demonstrate a successful
teaching of behaviors, by reinforcement. This concurs with the general theory
from [Sperber & Wilson, 1987], which states that reinforcement takes place in any
teaching.

On the other hand, Fillmore’s frames have rather been used in the field of
semantics. We develop the use of semantic frames in subsection 2.3.2. The latter is
of greater importance in our specific case, because we expect the human teacher to
provide instructions to the robot. This is also why we focus on how humans provide
instructions to each other in next subsection.

2.1.2 Explicit Teaching of Behaviors using Instructions

It is commonplace that humans provide instructions to each other, e.g. to teach
recipes or how to do new things. An instruction describes a behavior explicitly, so
it can be communicated precisely, and thus achieve the teaching.

Teaching with instructions obeys to the same rules as any other kind of teaching.
Namely:

• the teacher must scaffold the interaction with the learner to ensure a good
understanding;

• the learner may take initiatives to clarify whatever was not understood yet;

• the teaching interaction is prepared using pragmatic frame negotiation, in-
volving meta-cognition.

In many cases, the behavior can be understood directly from the natural lan-
guage content of the instructions, with less or no contextual information. Under-
standing such instructions is therefore more a matter of understanding the semantics
than the pragmatics.
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This makes them easier to be written down. For example the website wikiHow
[wikiHow Incorporation, b] regroups instructions to learn “how to do anything”.

Providing instructions is indeed a straightforward approach for humans to teach
behaviors to each other. We review how it was applied to teach behaviors to robots
in subsection 2.2.2.

Nonetheless, there is part of pragmatics and room for reinforcement learning,
even when providing instructions.

The book [Bernard-Opitz, 2017] provides a salient example of reinforcement
learning on top of instructions. It is dedicated to the education of children with
an Autistic Spectrum Disease (ASD), using a behaviorist approach. It presents
situations that a child can encounter, several possible behavioral responses, and
their consequences.

The teacher is meant to be very explicit on the behavior he or she wants the child
to learn, but it is through repetition that the child finally acquires the behavior.
This book is also among the rare ones explicitly about “teaching behaviors” to
humans3.

As a conclusion of this section, it is natural to teach behaviors using instructions.
The learner can leverage semantics to understand them, and requires less contextual
information. However pragmatics remain essential to setup the teaching interaction,
and scaffold it. This, in turn, involves a form of meta-cognition. We highlighted
the theory of pragmatic frame negotiation as a possible path of research.

2.2 How Humans Teach Behaviors to Robots

In the previous section, we borrowed the interaction point of view. We keep this
point of view in this section, when we look at how humans teach behaviors to
robots. This point of view corresponds to the domain of HRI, which we introduced
in subsection 1.2.5.

We start this section by detailing the theoretical specificities of IRL in terms of
HRI, so that to have the right tools to review the literature next.

2.2.1 Theoretical Specificities

[Chernova & Thomaz, 2014], chapter 3, provides a piece of state of the art on the
teaching of behaviors, and a frame of reference for designing social learner robots.
It consists in questions to ask ourselves when designing HRI. We summarize it as
follows:

Social interaction. Which social cues and actions are used? What does it inform
the teacher and the learner of? Which cues do users prefer?

Motivation for learning. What motivates the learning of the robot? Does it
induce any initiative?

3As opposed to “teaching doing something” or “teaching how to do something”. Does the phrase
“teaching behaviors” have any implication to the learner’s free will?
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Transparency. How does the teacher know about the robot’s understanding? How
does it help the learning and the teaching interaction? What form of commu-
nication seem the most efficient?

Question asking. Should the robot ask questions when it lacks information, and
how? What kind of answer a user can provide, and how to understand the
answer?

Scaffolding. How can a robot leverage the proposed scaffolding? How to break
down deep teachings into simpler ones?

Directing attention. How is the attention drawn and understood by both par-
ties? How is it used to help the teaching or the questions?

Online vs. batch learning. When does the learning actually occur? How does
the learning system’s constraints impact the interaction?

Each question is intended to drive the designer towards a more human-like and
effective interaction.

When a user agrees to teach a robot learner, their goals concur: both want
the user to communicate the knowledge to the robot. At this point, a robot relies
almost completely on the user. This is why what [Amershi et al., 2014] reminds us
is important: in such interaction, the design should focus on effectively getting the
user at ease to communicate the knowledge.

To summarize, they highlight that:

• Users are people, not oracles [...]
• People tend to give more positive than negative feedback to learners

[...]
• People want to demonstrate how learners should behave [...]
• People naturally want to provide more than just data labels [...]
• People value transparency in learning systems [...]
• Transparency can help people provide better labels [...]

— [Amershi et al., 2014]

It seems to go without saying that users are people, or humans. But in fact
we had to wait for [Cakmak & Takayama, 2014] to read a solid evaluation on
the effect of instructions provided to human teachers in the context of IRL, i.e.
an evaluation centered on users. They found that showing videos of examples of
interaction is more effective than a manual, or than an interactive tutorial with
the robot. An interactive tutorial leads to failures, due to the high uncertainty
of understanding the user properly, and should therefore be avoided. Whereas a
manual can complement video tutorials without risking additional failures.
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Experimenter
/ programmer

actions

Teaching user
actions

Robot learner
actions

Robot
learning

Frame 1
1. Start 2. Input Learning
3. End

Frame 2
1. Start

2. Perform
3. End

Table 2.1: “Basic common pragmatic frames for the category: passive learning.“
— [Vollmer et al., 2016]

The robot should be transparent about its state, and give feedback about any
change, or about an absence of change. When something goes wrong or is misun-
derstood, it is important to give hints to the user, so that he or she can work around
the problem. All along, the vocabulary must be chosen carefully.

These conclusions corroborate the assumption used in [Peltason & Wrede, 2012],
that the tutor must be continuously informed about the learner’s internal state. It
contributes to the regular patterns that can be observed in tutoring interactions.
The survey [Vollmer et al., 2016] on the LfD literature identifies these patterns
explicitly, and represent them as pragmatic frames. This survey reveals that the
current experiments do not offer the flexibility the natural interactions usually ex-
hibit.

In a simple case of passive learning, where the teacher demonstrates and the
learner tries to imitate, the pragmatic frames were presented as quoted in table 2.1.

In the current state of the art, when a robot learner is tested through an exper-
iment, the pragmatic frames are predefined, and cannot change dynamically as it
was subject to negotiation. As a consequence, the learner has difficulties to repair
the interaction, or to understand that the goal of the teacher shifted.

Reviews like [Amershi et al., 2014, Chernova & Thomaz, 2014, Vollmer et al.,
2016] propose many guidelines, or questions HRI designers should ask themselves.
However, the publications we reviewed rarely follow guidelines or answer questions
explicitly. In fact, there is no official frame of reference for HRI.

So for the next review of HRI for teaching behaviors using the spoken language,
we designed our own frame of reference. It consists in a set of questions referring to
the state of the art presented so far, and highlighting the contributions of this thesis:
the robots are in real conditions and are used for other purposes than following
orders and being taught behaviors; and the teaching is done using instructions.
Our questions are:
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How did the user and the robot engage in interaction? This question high-
lights the preset contextual information that both the robot and the user
should know. It should also highlight any form of negotiation of interaction,
which may be an expression of meta-cognition.

Which pragmatic frames are involved? Knowing the interaction patterns in-
volved allows us to spot whether another study tries to achieve the same form
of teaching as us. But also, if there are several pragmatic frames supported
by a studied system, it would be interesting to know how the switch of frames
occurred. This could be essential to supporting rich scenarios.

What do instructions look like? The term of “instruction” includes a lot of
linguistic forms. Knowing the form adopted by a study tells us about the how
semantics are leveraged to make the instructions meaningful.

Which prior knowledge is required? In addition to the information preset to
put the robot and the user into situation, there is prior knowledge for the
user (instructions the user may have received) or for the robot (hard-coded
in its program). Highlighting them often reveals the limits of teachability of
a system.

How is HRI impacted? The previous questions highlighted several points that
impact the HRI. This last question intends to draw an overview of the HRI
with a given system.

In the next subsection, we ask these questions to each of the publications where
a teacher provides spoken language instructions to the robot.

2.2.2 Teaching Behaviors to Robots using Spoken Language In-
structions

All the publications we collected about teaching behaviors using spoken language
exhibit HRI4. But the spoken language did not always consist in instructions.

For instance, in [Mohseni-Kabir et al., 2017, Mohseni-Kabir et al., 2019], the
teacher describes the task while demonstrating it. In [Salvi et al., 2012] is similar,
but the robot performs a self-demonstration: it replays a recorded sequence of
actions and learns from that situation.

But in the rest of the section, we focus only on the publications that exhibited
direct instructions, that is to say: [Lauria et al., 2001, Rybski et al., 2007, Rybski
et al., 2008, Weitzenfeld & Dominey, 2009, Lallée et al., 2010, Lallée et al., 2012,
Forbes et al., 2015, Gemignani et al., 2015, Sorce et al., 2015, Forbes et al., 2015,
Petit & Demiris, 2016].

4Whereas publications about using natural language often avoided HRI.
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How did the user and the robot engage in interaction? None of the exper-
iments situated the teaching within a broader usage context. The human teacher
is artificially put in interaction with the robot5, and the robot knows in advance
it should keep its attention focused on the teacher. Most of the time, the teacher
wears a microphone to talk to the robot. We develop this point further in 2.5.2.

However, we found some publications proposing a way to start a new teaching
explicitly – which may imply that the robot would be doing something else other-
wise. In [Rybski et al., 2008] they introduce the teaching with, for example, “Let
me show you what to do when I say dinner is ready”.

Other publications proposed that, but within a larger context where the inter-
action has several modes [Lallée et al., 2012, Petit & Demiris, 2016]. In [Cakmak &
Takayama, 2014, Sorce et al., 2015] it appears more explicitly that some instructions
can be used to switch modes6.

Finally, in [Scheutz et al., 2017, Scheutz et al., 2018], the user can actively ask
to start a new teaching, from within an ongoing teaching, when an action or an
object involved is not known.

Which pragmatic frames are involved? The most common modality of learn-
ing is passive, involving the pragmatic frames described in table 2.1. The other
interaction patterns we highlight here are described in detail in [Vollmer et al.,
2016].

In [Lallée et al., 2010, Sorce et al., 2015], the robot systematically asks confir-
mation to ensure the speech recognition was correct, which is a simplified form of
mixed-initiative interaction. Active learning also appears in [Mohseni-Kabir et al.,
2017], where the robot asks questions to check that some actions can be regrouped,
and in [Scheutz et al., 2017], because the robot identifies the missing objects and
tasks autonomously, and ask to be taught about them.

There are also occurrences of exploration learning with user refinements in [Nico-
lescu & Mataric, 2003, Salvi et al., 2012, Grizou et al., 2013, Grizou et al., 2014, Gri-
zou, 2014, Petit & Demiris, 2016]. The robot perform tasks autonomously, and the
teacher tries to correct the robot.

Finally [Sorce et al., 2015] shows an inverted interaction where the robot explains
back the behavior with the natural language, which is unique in this bibliography.

What do instructions look like? [Lauria et al., 2001] is the earliest demonstra-
tion of teaching behaviors using spoken language instructions. Dialogue 2.1 shows
the illustrative example of teaching interaction they chose in their publication.

This form of instruction, in the imperative mood, is typical. Such instructions
can be sequenced, and naturally form a task plan. This form of instructions is widely
spread, we can find them in: [Rybski et al., 2007, Rybski et al., 2008, Weitzenfeld
& Dominey, 2009, Lallée et al., 2010, Lallée et al., 2012, Cakmak & Takayama,

5This is also highlighted by [Anzalone et al., 2015] on other HRI works.
6This ability to switch modes may be seen as a primitive way to negotiate pragmatic frames.
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user: Go to the library.
robot: How do I go to the library?
user: Go to the post office, go straight ahead, the library is on your left.

Dialogue 2.1: Illustrative example of teaching interaction.
— [Lauria et al., 2001]

2014, Forbes et al., 2015, Gemignani et al., 2015, Sorce et al., 2015, Petit & Demiris,
2016, Scheutz et al., 2017, Scheutz et al., 2018]

In general, instructions describe parametrized actions. For instance “take the
cup” describe an action “to take” parametrized by the object “the cup”. But in
[Forbes et al., 2015], they managed to mention objects with phrases like “the tallest
object”, hence demonstrating an extra degree of freedom in the form of instruction.
In [Gemignani et al., 2015], the user can explicitly teach a parametric behavior,
allowing the robot to understand many new instructions with a single teaching.

Instructions can also be simpler, like “come”, “here”, “go” [Nicolescu & Mataric,
2003]. This is enough to direct an exploration behavior, that serves as a self-
demonstration, and genuinely accelerates the learning. In [Grizou et al., 2013,
Grizou et al., 2014, Grizou, 2014], the instructions can take any form, since the
robot learns the instruction (in their case it is either “right”(.*)“wrong”) together
with the task to perform.

What prior knowledge is required? Prior knowledge may include procedu-
ral knowledge, knowledge of the environment (objects, people), knowledge of the
language, and knowledge about interaction state.

In most of the publications, primitive actions are predefined and hard-coded.
However in [Lallée et al., 2012, Cakmak & Takayama, 2014, Petit & Demiris, 2016,
Scheutz et al., 2017, Scheutz et al., 2018] users can teach new actions from scratch.
This reduces the need for prior procedural knowledge, but relies on knowing in
advance how to map instructions and demonstrations to the movement primitives
of the robot. This is called the correspondence problem [Chernova & Thomaz, 2014,
p. 17], and it is solved a priori in these experiments.

Also the words chosen to label these actions must be part of a predefined dictio-
nary. In [Lallée et al., 2012, Scheutz et al., 2017, Scheutz et al., 2018] it is possible
to learn new objects, and their names, reducing the need for prior knowledge of
the environment. In [Scheutz et al., 2017], however, the name of the learned object
does not need to be predefined.

[Grizou et al., 2013, Grizou, 2014, Grizou et al., 2014] reach an extreme where
nothing is known about the language, and it is the prior knowledge on the task
structure that allows the meaning of the language to emerge. [Najar, 2017] demon-
strate the same feature, using gestural signs instead of spoken language. Indeed,
the interaction is always well constrained, and scaffolds the learning of the robot.

From the users’ point of view, there is very little they can do without being



2.2. How Humans Teach Behaviors to Robots 25

properly instructed before the experiments. In most of the experiments, it is a
professional of the laboratory that interacts with the robot, and he or she knows
exactly what to do. [Cakmak & Takayama, 2014] studies the impact on that prior
knowledge, and reveals that the instructions provided to the user has an impact
on the quality of the teaching. [Sorce et al., 2015] made the effort of having naive
participants in its experiments, though.

How is HRI impacted? In many works where robots understood instructions
in the imperative mood7, the HRI was often reduced to a dialogue, i.e. to NLI.

However in [Lallée et al., 2012], it was combined with a mean to demonstrate
some behaviors, by performing them in front of the robot, or with a mean to teach
objects.

Because the robot must be put in a “teaching mode”, and because of how it is
presented in the literature, entering the teaching resembles entering a distinct piece
of user interface. The transition may not seem natural, but it is at least explicit. It
also resembles the use of explicit cues to switch pragmatic frames between humans.
This is meta-interaction and [Cakmak & Takayama, 2014, Sorce et al., 2015] exhibit
a simple form of it.

In the literature around the use of instructions, we did not find examples where
a robot would follow instructions and within the same framework, accept feedback
during performance. At best [Gemignani et al., 2015] proposed a way to correct
existing behaviors. But there is no application of interaction repair.

However, because teaching behaviors – tasks or skills – involve the teaching
of other things in the environment, several publications took advantage of it. In
addition to behaviors, [Scheutz et al., 2017] learned objects, words and affordances,
[Grizou et al., 2013] learned words and deeper meanings, [Petit & Demiris, 2016]
learned words and limbs, [Nicolescu & Mataric, 2003] learned trajectories in space.

In theory these forms of interaction could be multiplied, but it would require a
system to support more flexible interaction, like the system presented by [Peltason
& Wrede, 2010], focused on describing interaction patterns.

2.2.3 Conclusions on How Humans Teach Robots

We reviewed the literature from the point of view of HRI. We have seen how user
engage in interaction, the pragmatics of the interaction, how instructions are pro-
vided, what prior knowledge – for the user and the robot –, and the impact on HRI.
We found that most often the interaction is simplified: there is always only one
user, who enters the teaching immediately, must know everything he or she should
do beforehand and has little freedom in the interaction. Nonetheless we highlighted
some publications exhibiting ways to control the interaction, an effort to work with
naive users, repairing the teachings, or learning about the environment.

We distinguished the publications using instructions from the others, and re-
ported this distinction in table 2.3. And we have reviewed the forms of instructions

7As in grammatical mood, used to conjugate of the verb.
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these publications supported, and found that instructions are not always used to
describe a behavior.

In the next section we go into technical details about how to process natural
language in interactive context.

2.3 Natural Language Interaction

Dialogue systems provide Natural Language Interaction (NLI) to artificial systems.
They are also used in robots to support HRI through Natural language (NL). NLI
shares with HRI the notion of the speaking floor and the notion of actions, through
speech acts [Austin, 1962, Searle, 1965]. Dialogue acts are a type of speech acts
influencing the dialogue itself, and that can be classified using DAMSL [Allen &
Core, 1997].

The understanding and recognition of dialogue acts provide the dimension of
the pragmatics spoken language conveys. Information is indeed conveyed by the
patterns of dialogues, as well as from the intonations, as observed in [Bruner, 1983].
But most of the time we need to understand the words and their semantics to be
able to recognize dialogue acts.

In this section we go into the details of Natural Language Processing (NLP).
We explain how to understand natural language (NLU) using a rather semantic
approach, and then generate of a natural language response (NLG).

In the context of robotics, NLU can effectively ground the Natural language
(NL) to the knowledge a robot may already have, and vice versa. Despite the
ongoing research on NLP, and there is not yet a general-purpose solution to achieve
this grounding. When applied to spoken language, there is also a strong limitation
on speech recognizers: they cannot recognize every utterance with ideal precision,
and often require to be tuned to recognize certain utterances only.

Roboticists must therefore tailor solutions explicitly for their user cases, and
decide how to associate NL to effects on the robotic system. In particular, they
may need to tune the speech recognizer. This tuning can be done following two
different paradigms, that are decisive for the rest of NLI:

• The speech recognizer is tuned to match a grammar or a set of possible ut-
terances. Possible utterances must therefore be known a priori, and are in-
trinsically understood by construction.

• The speech recognizer transcribes speech. It may be tuned, but all the possible
utterances are not known in advance, so NLU is required to understand the
utterance.

The choice of paradigm is often imposed by the technology of the speech recog-
nizer used. In the rest of this section, we study how the two approaches work, and
their impact on NLI.
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2.3.1 Tuning Speech Recognition a Priori

Some speech recognizers can be tuned using transcriptions of the utterances to
recognize, e.g.: “NAO”, “Hello”, “Look at me”. It limits the computational cost of
the speech recognition, and makes it suitable for embedded systems.

It also simplifies the process of NLU because by construction, each phrase is
associated to a specific meaning, intent, reaction or function, e.g.: “NAO” is the
name the robot, by saying “Hello” the user means to greet, or “Look at me” is a
request for a specific action.

It scales up with the use of grammars, such as Context-Free Grammar (CFG).
We call this approach “generative”. In NAOqi, the dialogue contents can be written
using the QiChat [Houssin, 2014] language. It is derived from ChatScript [Wilcox,
2011] and can express rich dialogues using patterned expressions.

Listing 2.1: QiChat example
concept:(greetings) [hi hello "hey there"]
concept:(tea) [green black] tea
concept:(hotdrink) [coffee ~tea]

u:(~greetings) ~greetings
u:(do you have _~hotdrink) yes, I have $1
u:(I want to drink something) do you want ~tea?

Listing 2.1 declares speech inputs within u:(...) statements. These inputs are
developed according to the language’s rules, into the list of possible inputs shown
in listing 2.2.

Listing 2.2: Developed list of matching inputs.
hi
hello
hey there
do you have coffee
do you have green tea
do you have black tea
I want to drink something

In the publications exhibiting the teaching of behaviors to robots, it is difficult
to identify when a CFG is used, because this is an implementation detail. However
[Lauria et al., 2001, Nicolescu & Mataric, 2003, Rybski et al., 2007, Rybski et al.,
2008, Lallée et al., 2010, Lallée et al., 2012, Sorce et al., 2015, Mohseni-Kabir et al.,
2017] may potentially have used it: CFG-based speech recognizers are easier to
use for small and fixed sets of words. Some of the publications mention the use of
speech recognizers like CMU Sphinx-4 [Lamere et al., 2003] or IBM ViaVoice [Dyer,
1997], which support CFG.

Extensions and generalizations of CFG exists, namely the probabilistic CFG
(PCFG) and the Combinatory Categorial Grammar (CCG). PCFG was not encoun-
tered in our literature, however CCG are used in [Scheutz et al., 2017]: a grammar
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of possible utterances described in the standard JSpeech Grammar format. CCG
is backed by powerful mathematical models to associate linguistic patterns to se-
mantics, and then to functions [Moortgat, 2011].

But it is also possible to use machine learning directly on the sound signal
using Hidden Markov Model (HMM), Recurrent Neural Network (RNN) or similar
techniques, and associate it to the desired symbolic output. This is done in [Petit &
Demiris, 2016, Scheutz et al., 2017, Forbes et al., 2015, Grizou et al., 2013, Grizou
et al., 2014, Grizou, 2014].

The use of “Acoustic DP-Ngrams” in [Scheutz et al., 2017] is particularly in-
teresting because it allows the one-shot learning of a new word that their classical
CCG-based technique cannot predict.

Thus, there are a lot of things that can be done using SRs tuned a priori. But as
the dialogue topics grow open, speech recognition models grow too, to a point that
they are destined to become general-purpose, defeating their need of pre-tuning.

2.3.2 Performing Natural Language Understanding a Posteriori

SRs with very large models can be used without prior tuning. They are said to
recognize the “free speech”, and are often called Speech-To-Text (STT) engines. It
usually requires a lot of computing power (typically in the case of RNN). Companies
like Nuance, Google, Microsoft or Amazon provide online services for that8.

Instead of matching expected inputs, they output a transcription of the recog-
nized speech. So NLU must be performed a posteriori on the textual transcription,
to produce a semantic represenation. This approach was used in [Gemignani et al.,
2015, Cakmak & Takayama, 2014].

NLU techniques are numerous, but it is common to encounter the following
intermediary results:

• Part-of-speech (POS) tags, representing the grammatical nature of words.
The Penn TreeBank specification of POS [Santorini, 1990] is historic, but is
specific to the English language. A universal specification exists (i.e. cross-
language) [Petrov et al., 2012].

• Dependencies, representing grammatical relations, usually presented in the
format defined by Stanford [De Marneffe & Manning, 2008], or and then
generalized [De Marneffe et al., 2014].

• Named entities, classified as location, time, ordinal, persons. . . Introduced
by [Grishman & Sundheim, 1996].

• Coreferences, to resolve the target of pronouns. Introduced in [Crystal, 2008].

Stanford’s CoreNLP, presented by [Manning et al., 2014], provides tools to pro-
duce these results from texts. RNN are typically appropriate to this task. Some

8It is also possible to perform STT in embedded devices with using software like Nuance VoCon
Hybrid Speech Recognition, or on desktop using Mozilla DeepSpeech.
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models, like DRAGNN [Kong et al., 2017], are freely available. Some online STT
providers (namely Microsoft or Google), also provide these results directly from
voice recordings, along with the transcription.

Pepper and NAO robots provide STT, and perform NLU to evaluate the emo-
tional state and the engagement strength of the users. We reuse these algorithms
called “semantic analysis” and detail them in 3.2.

Semantic models can be found in machine translation [Dorr et al., 1999], and
consist in representing the natural language stripped from the actual words, lemmas
or lexicons. They are related to the semantic models presented in [Moortgat, 2011].

[Fillmore, 1985] introduce semantic frames, a generic semantic model a the origin
of [Baker et al., 1998]’s FrameNet. Semantic frames consists in a symbolic entity
representing a situation, often an action, with parameters, called “slots”. Slots can
be filled by various sorts of semantic entities.

FrameNet was constituted from a corpus of texts, and is not directly intended to
be usable for pragmatics. But the convergence proposed by [Rohlfing et al., 2016]
with pragmatic frames may be useful to design algorithms reasoning on both on
semantics and pragmatics, and therefore on the interaction and dialogue patterns.
This path remains rather unexplored in IRL.

2.3.3 Natural Language Generation

Natural Language Generation (NLG) and Text-To-Speech (TTS) are used in HRI to
produce utterances, and thus talk to the users. In an analogy with NLU and speech
recognition, we assume that speech could be directly produced from a semantic and
pragmatic representation. But TTS technologies are mature enough to produce
utterances that users can understand. This is probably why, in our literature,
systems always rely on third-party TTS. We do the same in our research, so in this
subsection, we only focus NLG.

NLG has a key role for the explainability of social robots, which is currently
a hot issue. To explain a decision made by a robot, the system must not only
identify symbolically the reasons of its behavior, but also translate these symbols
into natural language. [Perera & Nand, 2017] review the recent NLG techniques
and classifies them by the following aspects:

1. ArchitectureHow components are organized and how the data flows between
them.

2. Content Determination How to select the information to convey.

3. Document Structuring How to group, order, relate information to make it
relevant and efficient.

4. Lexicalization How sentences and words are chosen to convey the meanings.

5. Referring Expression Generation How entities are referred to, using iden-
tifying words.
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6. Aggregation How sentences are articulated with each other, including how
words may refer to each other, so that the language remains fluid and avoids
redundancies.

7. Realization How the text output is technically produced from the interme-
diate results.

In our research, the most problematic aspects are the architecture and the con-
tent determination, because they depend on the rest of the cognitive system. For
instance, when [Perera & Nand, 2017] highlight the use of planners to generate
sequences of sentences, there is a parallel to draw with planners used with certain
behavior models (see section 2.4).

On the aspect of content determination, it appears that contents depend on the
decision-making process and on the knowledge gathered by the cognitive system.
[Perera et al., 2017] illustrate well this relationship on a simpler case of question-
answering (QA). They use dependencies (see subsection 2.3.2) to identify question
structures and symbols. They translate this information into semantic web queries,
and translate back the results into natural language. In this example content is
determined by a symbolic knowledge base online, and by hard-coded correspondence
between the question and answer structures.

There are in fact various ways to produce texts, including ways that do not
provide ways to control the contents in detail. For instance [Durrett et al., 2016]
achieve summarization of news articles connectionist machine learning. In that
case, the content is determined by the raw input content, and by the model trained
with the system – there is is no programmable input. Nonetheless it is possible to
support programmable input with a connectionist NLG model; [Wen et al., 2015]
demonstrate this with an Long Short-Term Memory (LSTM).

2.3.4 Application in Cognitive Systems

Autonomous robots are usually designed from a cognitivist point of view. The
software system assessing the robot’s situation, and taking decisions for it is said
"cognitive", thus drawing an analogy between artificial and biological agents.

In every publication on teaching behaviors using spoken language, cognitive sys-
tems include a distinct dialogue system. This remains true in the broader literature
on teaching behaviors using natural language.

Usually, the dialogue system drives the interaction, triggers learning of new
behaviors, and the production of behaviors. Dialogues are therefore designed ac-
cording to these behaviors. This approach is limited: if behaviors involved spoken
language, they would interfere with the dialogue system, and it is unclear where
speech acts fit in this model. This limitation is problematic for social behaviors,
which should also participate to drive the interaction.

So the very idea of separating the dialogue system from the rest of the cognitive
system is counterproductive to support the learning of social behaviors. Indeed, the
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publications in our literature do not intend to demonstrate a solution to extend the
NLI through the teaching of new behaviors, so they did not study that limitation.

The support of NLI often lead to using a symbolic representations of behav-
iors. We found some exceptions in [Salvi et al., 2012, Grizou et al., 2013, Grizou
et al., 2014, Grizou, 2014]. They use Bayesian Networks or Markov Decision Pro-
cess (MDP) to associate spoken language to behaviors in a black-box manner. In
these configurations, the NLU is associated to behaviors using a more connectionist
approach.

2.3.5 Conclusions on Natural Language Interaction

We reviewed the principles of NLU on which NLI rely, and that we use in chapter
3.

We highlighted the role of speech recognition, and how technical choices around
this technology may have an impact on how the cognitive system can reuse the
information.

Ideally, to keep the learning as open as possible, NLU should be performed
directly on the audio input, but there is currently no immediate solution to extract
a grammatical representation of an utterance, without having transcribed it to text
(at least partially). Performing NLU on transcriptions may be enough to support
the learning of unexpected objects or actions, but may lead to lower accuracy.

Extracting grammatical dependencies and a building a semantic model (like
semantic frames) is common practice for NLU, and brings a good abstraction for
learning behaviors. We also highlighted that in theory, there could be a way to
make semantic frames and pragmatic frames converge.

Our review on NLG gives another perspective on what is a dialogue. For spe-
cialists of that field, this is planning problem: a text is to be built up automatically,
so that it conveys a goal meaning. This is analogous to cognitive systems finding
an action to perform a task satisfying a goal.

Finally we highlighted the interdependence between the dialogues and the task
execution in the case of socially capable robots. It appears that separating the
dialogue system from the rest of the cognitive system is counterproductive.

In the next section, we focus on the behavior models and their related learning
techniques.

2.4 Behavior Models and Learning Techniques

A behavior model is a formalism to represent behaviors. For example, describ-
ing behaviors as lists of elementary action is a behavior model. Describing them
as interpolated trajectory curves is another behavior model. Learning techniques
and behavior models depend strongly on each other: on one hand the learning
techniques must be chosen carefully to produce behaviors expressed in the given
behavior model, on the other hand the behavior model must be chosen carefully to
be learnable with existing techniques.



32 State of the Art on Teaching Behaviors using Spoken Language

In subsection 2.3.4, we state that social robots should learn social behaviors.
Learned behaviors participate with the dialogues, which cannot be considered sepa-
rate anymore. The behavior model for the learned behaviors must be interoperable
– if not identical – with the dialogue model. Since the dialogue usually drives the
decisions of the robot, such behavior model is coupled with the cognitive system’s
decision-making engine. In these conditions, the behavior model may be a keystone
of the cognitive system.

In this section, we review the behavior models and the learning techniques
used in the literature on teaching behaviors using spoken language. In this review,
we evaluate the behavior models according to our objectives (see section 1.4) by
checking whether each model:

• is compatible with zero-shot learning,

• allows taught behaviors to be reused in next teachings (i.e. achieving com-
posability),

• supports some interoperability with other sources of knowledge in their host
system,

• can work in open scenarios,

• can run on a Pepper or a similar robot, or be run on a remote service on the
Internet.

We produced a summary of this review in table 2.2.

2.4.1 Review of Behavior Models and Learning Techniques

The first models found in our literature are procedural models: they make explicit
when to perform each action. We first review these models, before reviewing alter-
native models. The history of teaching of behaviors using spoken language starts
with [Lauria et al., 2001]. In their experiment, a fixed dialogue structure drives
the interaction, and associates instructions to actions as prior knowledge. Each
action is then associated to a Python function. The teaching is started by giving an
unknown instruction, like “go to the library”. Once the teaching is started, every
instruction provided is saved, as a sequence, and a Python function is generated
from it. The function can be recalled by the dialogue system when the user says the
new instruction. Note that the new instruction may have been put in the dialogue
structure in advance to enable speech recognition (see subsection 2.3.1), and that
therefore this technique may not be suitable for open scenarios.

This technique of associating the dialogue structure to the possible actions of
the robot is so common that it has been generalized by [Peltason & Wrede, 2010].
They propose the Pamini framework for expliciting these associations, and generate
the HRI behavior automatically. This framework has not been used to achieve
this dialogue / action association in our literature, in [Rybski et al., 2007, Rybski
et al., 2008, Weitzenfeld & Dominey, 2009, Lallée et al., 2010, Lallée et al., 2012,
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Gemignani et al., 2015, Sorce et al., 2015, Forbes et al., 2015, Petit & Demiris,
2016, Scheutz et al., 2017, Scheutz et al., 2018]. In all these publications, the
teaching was performed using instructions, and the behavior models were exclusively
procedural:

• Behavior Networks used in [Rybski et al., 2007, Rybski et al., 2008], it is a
graph representing a sequence of actions, with possible conditional branching
based on the outcome of an action.

• Percept-Response used in [Weitzenfeld & Dominey, 2009], directly asso-
ciates a perception event to a task or a task sequence.

• Shared Plans used in [Lallée et al., 2010, Lallée et al., 2012, Sorce et al.,
2015], are sequences of actions involving several agents (the user and the
robot), with possible synchronization points between agents.

• Task Description Language A simple language to describe tasks presented
only in [Gemignani et al., 2015], allowing sequences and conditionals. It can
be translated into Petri Network Plan (PNP).

• Sequences of Actions The simplest model to imagine, used in [Forbes et al.,
2015, Petit & Demiris, 2016] to represent the highest-level actions.

• Action Script Another language to describe tasks, found in DIARC [Scher-
merhorn et al., 2006], and used in [Scheutz et al., 2017, Scheutz et al., 2018].

With these models, behaviors can be directly produced from a list of instructions,
allowing a quick and zero-shot learning. It also makes them all suitable to run in
embedded computers.

Some of these models supported some sort of interoperability with the knowledge
of the robot. [Lallée et al., 2010] support the teaching of objects, and their reuse
in the teaching of behaviors. [Lallée et al., 2012] goes beyond by formalizing the
object and procedural knowledge, and supporting the exchange of knowledge across
robots through a SVN server. [Scheutz et al., 2017] show a robot also learning
new words, referring to actions or objects, and affordances of objects. Since there
are several mechanisms at work, it is possible that they exchange knowledge with
each other. They do not demonstrate it, but [Frasca et al., 2018] work with the
same behavior model, and emphasize interoperability, at least in simulation. In
the rest of the literature – exhibiting non-procedural models – only [Forbes et al.,
2015] demonstrated some form of interoperability: the actions accept any object
as parameter, and the object can be retrieved dynamically from the current beliefs
on the world, instead of being encoded within the action. This exception tends to
show that procedural models promote interoperability9.

9Could that be explained by the fact that they are symbolic models, and that symbolic knowl-
edge is a mature technology?
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These models also potentially allow composition, but it was demonstrated only
in [Rybski et al., 2007, Rybski et al., 2008, Lallée et al., 2012, Petit & Demiris,
2016, Scheutz et al., 2018]. In [Petit & Demiris, 2016], composition is not achieved
by the high-level action model, but by the stacking of this model on top of another
model better suited to learn action primitives.

To learn action primitives, [Petit & Demiris, 2016] use statistics of the effect
of the commands sent to limbs, gathered during a phase of motor babbling. Sim-
ilar models are found in the other publications – which do not interpret directly
the behavior from spoken language instructions, but instead from a demonstration.
[Grizou et al., 2013, Grizou et al., 2014, Grizou, 2014] shows a higher-level task
babbling, that would be guided by unlabeled utterances. This form of teaching is
called “shaping” [Chernova & Thomaz, 2014, p.22], [Najar, 2017]. This interactive
game trains an MDP. Similar abilities were demonstrated with MTRNN in [Yamada
et al., 2016, Antunes et al., 2018], with written words with no predefined seman-
tics. The robot jointly learns the action and the instruction. The model directly
associates the joint commands to the heard speech. This is very powerful but does
not run well embedded platforms, nor in open scenarios.

The question of supporting open scenarios seems to divide these models. Pro-
cedural models are symbolic and domain-independent, and therefore are suitable
for open scenarios. Whereas when a state space needs to be defined, or when the
reinforcement of the model is expansive, it prevents an application in open scenar-
ios. For instance [Forbes et al., 2015] use a probabilistic model (in addition to the
sequence model of actions) to discriminate the parameters of the actions, and at the
same time, learn the phrases referring to them. It seems that the algorithms used
could run on embedded computers, but the state space used in the model must a
priori include the objects of the world. This is true for all solutions based on a fixed
state space. Whereas in [Nicolescu & Mataric, 2003] the teaching relies on demon-
strations instead of instructions. Therefore it appears suitable for open scenarios:
it uses a one-shot learning technique that can run embedded, and produce behavior
networks, like [Rybski et al., 2007, Rybski et al., 2008]. It is the same for [Cakmak
& Takayama, 2014], who rely on self-demonstrations, where the robot records its
joint states, as the user moves its arms.

[Salvi et al., 2012] present a singular behavior model. They learn affordances of
objects instead of procedures. The notion of affordance was introduced by [Gibson,
1977], and is used in robotics to represent the use of an object, and how to use
it. Affordance is learned from repeated trials using a BN. And since they include
words in the input, they intrinsically associate an action to a word, and vice versa.

The last model we encountered in our literature was presented by [Mohseni-
Kabir et al., 2017, Mohseni-Kabir et al., 2019]: Hierarchical Task Network (HTN).
In comparison to the other symbolic behavior models we have reviewed, HTN may
be the most powerful: it describes hierarchical action sequences, supporting condi-
tional and intermediate goals. That makes it also suitable for automatic planning,
using HATP [Alili et al., 2009]. This planning ability is meant to help teamwork
between humans and robots [Lemaignan et al., 2017]. But in these experiments,
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the robot relies on a lot of high-quality data to recognize the task being performed
by the user. It is not currently suitable for embedded computing, and for open
scenarios that may involve numerous classes.

See table 2.2 for a summary. stands for “number of learning shots”,
stands for “supports composition”, stands for “interoperability”, stands for
“compatible with open scenarios”, stands for “can run on embedded computer”,
We also looked in our literature for demonstrations of the explainability of the
models, but found none.

2.4.2 Choosing a Behavior Model

Our review shows that the choice of behavior model has a tangible impact on the
learning algorithms, on the content of the interaction, and also on the cognitive
system. However, according to our criteria, our review did not reveal any champion
model. There is no widespread behavior model either, despite the prevalence of
procedural models.

To choose our behavior model, the first thing to consider may be whether teach-
ing targets low-level skills or high-level tasks. Learning both is demonstrated in
[Mohseni-Kabir et al., 2019], but it requires too much data, and a tight scaffolding.

For a robot like Pepper in real conditions, learning low-level skill from external
demonstrations is difficult: the robot does not capture accurate 3D data, nor has
a powerful GPU for feature extraction. Self-demonstrations are however possible,
and were demonstrated in Pepper Play, an internal prototype at SBRE. Something
like what [Cakmak & Takayama, 2014] demonstrated would be possible.

Given good speech recognition abilities, teaching high-level tasks from instruc-
tions appears to provide more possibilities, and has been demonstrated for a while
[Lauria et al., 2001]. Similar symbolic models appear better suited for embedded
computing and open scenarios. They can also support composability [Rybski et al.,
2007], and interoperability [Lallée et al., 2012].

However we identified another model, HTN, that is symbolic and hierarchical
(supporting composability), but is not restricted to procedural behaviors. In combi-
nation with a planner, like HATP [Alili et al., 2009]10, it is possible to automatically
deduce a task plan from the definition of a final state, like it is done in [Forbes et al.,
2015, Grizou et al., 2014]. This goal-oriented approach has also been identified in
[Beetz et al., 2010].

But why would a goal-oriented approach be important, if task plans are already
properly defined by the user? Fixed plans assume a perfect predictability of the
outcome given an initial situation. But the world is only partially observable, so
it can be considered non-deterministic from the performer’s point of view. Goal-
oriented behaviors support the re-evaluation of the task plans, or at least of the
current task, when the world state changes. This makes them more:

10In addition, HATP support synchronization with the behaviors of other agents. That makes
of it a good extension of [Lallée et al., 2012]’s shared plans.
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Publication

[Lauria et al., 2001] 0 ? No ? Yes

[Nicolescu & Mataric, 2003] 1 No No ? Yes

[Rybski et al., 2007] 0 Yes No ? Yes

[Rybski et al., 2008] 0 ? No ? Yes

[Weitzenfeld & Dominey,
2009] 0 No No No No

[Lallée et al., 2010] 0 ? Yes ? Yes

[Lallée et al., 2012] 0 Yes Yes ? Yes

[Salvi et al., 2012] >1 No No No No

[Grizou et al., 2013] >1 No No No Yes

[Cakmak & Takayama, 2014] 1 No No ? Yes

[Grizou et al., 2014] >1 No No No Yes

[Grizou, 2014] >1 No No No Yes

[Forbes et al., 2015] 0 No Yes No Yes

[Gemignani et al., 2015] 0 ? No ? Yes

[Sorce et al., 2015] 0 ? No ? Yes

[Petit & Demiris, 2016] 0 Yes No ? Yes

[Mohseni-Kabir et al., 2017] 1 ? No No ?

[Scheutz et al., 2017] 1 ? ? No No

[Scheutz et al., 2018] 1 Yes ? No No

[Mohseni-Kabir et al., 2019] 1 ? No No No

Table 2.2: Some properties exhibited by the behavior models and learning tech-
niques used in the teaching of behaviors using spoken language.
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Robust They have an opportunity to avoid failures by compensating unexpected
state changes.

Efficient They may skip tasks that do not contribute to reaching the desired tasks.

Reusable By expliciting their goals and effects, behaviors or their sub-tasks may
be reused to participate for other goals.

The evaluation of the current task, or of the current task plan, is traditionally
performed using symbolic planners. The dominant model family for planning is
STRIPS [Fikes & Nilsson, 1971]. In the International Planning Competition, they
use the Planning Domain Description Language (PDDL) to describe STRIPS prob-
lems. It was also used in [She et al., 2014], that supported the teaching of behaviors
using non-spoken natural language. HTN is a long-standing alternative to PDDL,
and HATP is a STRIPS planner.

In our literature, this goal-oriented approach was rather solved using MDP
[Grizou et al., 2013, Grizou et al., 2014, Grizou, 2014, Forbes et al., 2015] applied
to low-level skills. Indeed, MDP is capable of providing a task to perform, given an
initial state, a goal state, and a reward function. MDP is commonly used to solve
probabilistic planning problems, but requires training by reinforcement. It is also
applicable to learn low-level skills.

Bringing together low-level skills and high-level tasks is a hot topic [Maestre,
2018, Gottstein, 2017, Mohseni-Kabir et al., 2019, Yamada et al., 2016, Xu et al.,
2018]. It would allow primitive actions not to be predefined in robots. This kind
of approach has also lead to novel cognitive architectures [Chatila et al., 2018].
Learning skills with minimal prior knowledge is in fact a great challenge in the
robotics community [Chernova & Thomaz, 2014, p.50]. The work of [Xu et al., 2018]
on Neural Task Programming is an impressive step towards that. They combine
a hierarchical state machine with neural networks (an LSTM for the sequence of
actions and a CNN for the parameters) to learn a large variety of behaviors with
few teachings.

2.4.3 Conclusions on Behavior Models

This section reviews which behavior models are used to teach behaviors using spo-
ken language. Table 2.2 summarizes that some behavior models support hierarchical
composition of behaviors, interoperability with shared knowledge, zero-shot learn-
ing, running on embedded computers, support open scenarios, but none demon-
strated supporting all of these constraints together.

A large part of the behavior models are symbolic, and are bootstrapped with
pre-defined associations between tasks and natural language. Few of them rely on
a goal-oriented approach. The goal-oriented approach would result in more robust,
efficient and reusable behaviors. This approach is not incompatible with hierarchi-
cal symbolic behavior models, and is usually implemented using STRIPS planners.
But in our literature, it was only encountered for learning low-level skills, rather
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than high-level tasks. The encountered models do not satisfy all the properties we
are looking for: zero-shot learning on embedded computers, composability, inter-
operability, and compatibility with open scenarios.

In the next section, we focus more on the question of open scenarios, in a review
of the experimental conditions found in our literature.

2.5 Experimental Setups and Evaluation

From the beginning (2.2), we highlighted the need for HRI research to be grounded
on situations as real as possible. With Pepper@Home we aim for observing HRI
at home, in people’s everyday life. More generally, the product Pepper targets a
large variety of public places. Many of these situations forbid the installation of
extraneous devices in the environment. Ideally, the robot should work stand-alone,
as a turn-key product.

This constraint makes many findings from our literature difficult to apply. In this
section we stress this with a review of the experimental setups, the experimental
protocols and the evaluation methods, used for teaching behaviors using spoken
language.

We demonstrate whether (and why) many experiments cannot be directly re-
played in real conditions, by checking whether the evaluation methods are trans-
posable, whether extraneous elements are needed, whether the participants can be
put in the same conditions in the wild, and whether the interaction scenarios were
open11. We intend to justify the novelty of our approach, and our choices in terms
of evaluation methods, to the light of the state of the art.

2.5.1 Robotic Embodiment

Like in the rest of this chapter, we focus on the literature presented in table 2.3. We
are looking for robotic embodiments that may be compatible with experiments in
real conditions, to help identifying the experiments that could be most probably be
transposed in real conditions. It is a way to evaluate the novelty of our approach,
here on the spectrum of the robotic embodiment.

The literature presents a good variety of robots. We identified 11 different robots
in the 20 publications exhibiting the teaching of behaviors using spoken language.

However, the sensors were often external to the robot. Typically, the micro-
phone: only [Lauria et al., 2001] – surprisingly the oldest experiment – used the
on-board microphones of the robots to perform speech recognition. We investigate
further this finding in subsection 2.5.2.

For vision too, many robots were extended with external sensors: depth sensors,
motion capture devices, and sometimes an additional computer to perform heavy
computation. These extensions are not often viable for a robot deployed in real
conditions.

11The question of richness was studied in subsection 2.2.2
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The list of experiments The following publications do not involve external sen-
sors, apart from the microphone: [Nicolescu & Mataric, 2003, Rybski et al., 2007,
Rybski et al., 2008, Lallée et al., 2010, Lallée et al., 2012, Cakmak & Takayama,
2014, Forbes et al., 2015, Gemignani et al., 2015, Scheutz et al., 2017, Scheutz et al.,
2018].

In theory, all of these experiments could be run in real conditions. But it is
possible that the technical details of the robotic embodiment make it difficult.

It is possible that handmade robots like the ones shown in [Rybski et al., 2007,
Rybski et al., 2008, Forbes et al., 2015, Gemignani et al., 2015], or even iCubs
from [Lallée et al., 2012, Petit & Demiris, 2016] are not enough encased to face the
general public.

It is also possible that big robots like HRP-2 (in [Lallée et al., 2010]), or PR-2
(in [Cakmak & Takayama, 2014, Forbes et al., 2015, Mohseni-Kabir et al., 2017,
Mohseni-Kabir et al., 2019, Scheutz et al., 2017, Scheutz et al., 2018]) are too
expansive to risk regular deployments in the wild.

And when cheaper robots are used, like NAO in [Sorce et al., 2015]12 or AIBO
in [Weitzenfeld & Dominey, 2009], they are extended with external sensors.

Anyway, the fact that cheaper robots are not used for teaching behaviors using
spoken language certainly denotes there is a technical challenge in using them.

Therefore, not only demonstrating such teaching in real conditions is novel, but
also using cheaper robots to do so may constitute a contribution.

2.5.2 Use of Microphones

In the previous review, we identified that only [Lauria et al., 2001] used microphones
embedded in the robot. In the other studies, there was an external microphone
provided to the participant, often in the form of a headset13.

In [Gemignani et al., 2015, Forbes et al., 2015], the speech recognition had to be
started using a push button. This is not suitable for social robots in real conditions.

However it is understandable that if a study does not require to be performed in
real conditions, it is not required to respect this constraint, which adds risks for the
study’s success: indeed, speech recognition requires good audio quality to perform
well. Also, with good audio input, it is possible to one-shot-train a recognizer for
unknown words, like it was done in [Scheutz et al., 2017].

Indeed, working with poor-quality audio signals is a challenge, but it is more
important than what it may seem. We humans do not have perfect audio perception
neither. We compensate the noise with heuristics, and resolve phonetic ambiguities
based on the categories of phonemes we learned from our past experience [Kuhl
et al., 1992]. This is called “categorical perception” [Harnad, 1990]. According to

12NAO is also found in the literature on the teaching with the natural language in [Yamada
et al., 2016]

13It was often difficult to assess how audio capture was performed. It seems so common in the
community that the papers do not state it. It was sometimes in the illustrations and the side media
that the information leaked.
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[Oudeyer, 2013], these are in fact cultural phenomenons. Therefore we tend to have
a perceptual bias on what we are told, influenced by higher-level reasoning. This
higher-level reasoning is related to how we manage dialogue-based interactions. A
social robot should in theory be capable of such reasoning, and reusing its conversa-
tional expertise to improve its speech recognition. Taking up this challenge would
also demonstrate the advancement of the conversational skills of the robot.

2.5.3 Openness of Experimental Scenarios

The scenario includes the script which must be followed by participants in an ex-
periment, as well as what the behavior experimenters expect from the robot. When
the script does not strictly impose a behavior to the participant, the participant has
some choices in his or her interaction with the robot. The more choices participants
are free to have, the more open the scenario is.

On the other hand, the stricter the script, the more predictable the participants
are, and the simpler the robot’s behavior is. It is also easier to prove technical
achievements scientifically with strictly-controlled experiments.

In the literature on teaching behaviors using spoken language, there was in fact
little room for initiatives of the participants. There was always a fixed number
of tasks to teach. Despite the tasks being more or less diverse, and despite the
apparent flexibility of the tested systems, there was no test against unexpected
teachings. For this reason we conclude that most of the experimental scenarios are
closed.

In [Lauria et al., 2001] and [Forbes et al., 2015], there was not enough details
to conclude for sure. But we cannot assume it was open unless it was proven to be,
so we also ruled them out.

However we found open scenarios in the broader literature about teaching be-
haviors using natural language, in [Tenorth et al., 2010] and [Nyga, 2017]. They
worked on a large set of instructions provided from [wikiHow Incorporation, a]
or [wikiHow Incorporation, b]. These online databases gather articles describing
in natural language how to do things, written by humans desiring to share their
know-how. Because of this, the human authors did not receive instructions specifi-
cally for these experiments. [Tenorth et al., 2010] selected 64 articles to teach their
system, but then [Nyga, 2017] selected 8,400 of them. By design their system have
a predisposition to support open scenarios, in which many teaching contents are
possible.

Scenarios can also be made more open if the cognitive system can react properly
to the wide variety of interactions found in real conditions. This variety of behaviors
is what we call the “richness”. It remains a challenge to demonstrate a cognitive
system that supports a rich set of behaviors in real conditions.
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2.5.4 Evaluation

The evaluation methods depend strongly on what is meant to be demonstrated.
There was a significant part of the literature on teaching behaviors with spoken
language that only focused in demonstrating that the system did what it was
programmed for: [Lauria et al., 2001, Nicolescu & Mataric, 2003, Rybski et al.,
2007, Rybski et al., 2008, Lallée et al., 2010, Lallée et al., 2012, Petit & Demiris,
2016, Mohseni-Kabir et al., 2017, Scheutz et al., 2018]. This is a straightforward
and qualitative way to demonstrate that a model works. It is usually good to boot-
strap new systems, but it does not provide comparative results against other similar
models.

In theory, qualitative methods could be used to compare experiments, in order
to assess progress or distinguish features, but we found none in that literature.
Nonetheless we identified quantitative methods, especially when the research fo-
cused on machine learning algorithms, in [Salvi et al., 2012, Grizou et al., 2013, Gri-
zou, 2014, Grizou et al., 2014, Petit & Demiris, 2016]14. However the performance
criteria was often based on the convergence of the algorithm, instead of on the ac-
tual behavior of the robot. We found that [Yamada et al., 2016]15 did better by
evaluating the similarity of the output behavior with a test one.

But the evaluations on the interaction are probably the most interesting to
evaluate the teaching of social robots. [Cakmak & Takayama, 2014] did the most
thorough study, with a large population, balanced in age and gender, to evaluate the
success of the interaction in different conditions (the instructions provided to the
participants). They used NASA-TLX [Hart & Staveland, 1988] that measures the
ease for performing a task, the teaching in this case. NASA-TLX is recommended
by [Chernova & Thomaz, 2014], and can compare to the System Usability Scale
(SUS) [Brooke, 1986], but differs because it focuses on performing a task, whereas
SUS provide a coarser-grain evaluation of the usability of a solution.

[Weitzenfeld & Dominey, 2009] introduce an objective measure of the teaching
quality: the average training time. [Gemignani et al., 2015] also provide objective
measures, that include the number of words, error rates, time of teaching, and
difference between the taught behavior and the one intended to teach:

• The minimum number of instructions required to teach a specific
task (Min).

• The average number of instructions not recognized by the auto-
matic speech recognition (Err) In this measure, only the instruc-
tions that the ASR could not process were considered.

• The average number of instructions misrecognized (Mis) by the
natural language understanding.

14[Petit & Demiris, 2016] present both a qualitative evaluation that the system works, and
quantitative evaluations on the performance of the machine learning algorithms.

15This publication is not part of our literature because their uses written words for input.
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• The average number of corrections needed to modify a wrongly
learned task (Cor).

• The average time in seconds needed to teach a specific task when
no errors or misrecognitions were encountered (AT no Err).

• The average time in seconds needed to teach a specific task when
errors or misrecognitions were encountered (AT w Err).

— [Gemignani et al., 2015]

[Forbes et al., 2015] also provided objective measures of the number of words re-
quired for the teaching, and of the time the teaching takes. [Sorce et al., 2015] did
also provide a measure of the time for teaching.

As a conclusion there is a recommendation to use NASA-TLX, given that the
scenario allows it, for subjective evaluation of the teaching interaction. There is no
recommendation for objective measures, but it is common to measure the time for
teaching, and the number of words required. Given that two experiments show the
teaching of the same behaviors, it could be possible to compare them. But in the
current state, experiments are too different to compare.

2.6 Conclusion

To conclude this review chapter, let us recapitulate the take-aways.
Humans naturally use instructions to teach behaviors to each other. This is a

form of transfer learning, and it relies mostly on semantics of the natural language.
Pragmatics play a major role by scaffolding the teaching, and depend on the

form of interaction. In the literature on teaching robots using the natural language,
we distinguished a group of studies that involved spoken language, because they
exhibit HRI. We found that the forms of interaction are usually rigid, and that
there was a lot of prior pragmatic knowledge. Ideally, the teaching should be able
to occur in the middle of other kind of interactions to be used in realistic conditions.

We reviewed the techniques that make NLI possible, with a focus on the speech
recognition. We learned that to support an open scenario, we would need a grammar-
free recognizer, and perform NLU on transcriptions of the speech.

The cognitive systems of the literature always distinguished NLI from the pro-
cedural knowledge, whereas social robots should be capable of being taught new
sequences of NLI. We stressed the need for cognitive systems to become more ex-
tensible and to allow interoperability between extensions.

We highlighted that symbolic behavior models were suitable in the long run,
and that making them hierarchical and goal-oriented eased the reusability of the
behaviors. It remains possible to use a connectionist approach to refine the symbolic
behaviors in the future.

We studied the experimental setups, and found that no experiment was really
transposable to real conditions. The need to use a separate microphone is the major
cause for this, but the use of expansive robots or extraneous devices also caused this.
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For now, there are no experiment demonstrating the support for open scenarios, like
the wild. Finally, we summarized the evaluation methods, and highlighted some
that we could reuse in our research.

The next chapter describes our first experiments, that already go beyond the
state of the art: we support the teaching of behaviors using spoken language in
real conditions, with nothing other than Pepper robots, in an open scenario, with a
cognitive system theoretically capable of being extended. It relies on grammar-free
speech recognition to build hierarchical symbolic tasks, and is evaluated subjectively
and objectively against the users and the taught behaviors.

Table 2.3 was compiled to summarize the features found in the state of the art,
and compare them to our two publications, [Paléologue et al., 2017, Paléologue
et al., 2018]. “Spoken”(.*)“Spoken Language”, “Compos.”(.*)“Behavior Composi-
tion” and “Open”(.*)“Open Scenario”.
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Publication Spoken Compos. Open HRI

[Crangle & Suppes, 1994] No No No No

[Huffman & Laird, 1995] No Yes No No

[Lauria et al., 2001] Yes No Yes No

[Nicolescu & Mataric, 2003] Yes No No Yes

[Rybski et al., 2007] Yes Yes No Yes

[Rybski et al., 2008] Yes No No Yes

[Weitzenfeld & Dominey, 2009] Yes No No Yes

[Arie et al., 2010] Yes No No Yes

[Lallée et al., 2010] Yes No No Yes

[Tenorth et al., 2010] No Yes No No

[Lallée et al., 2012] Yes No No Yes

[Mohan et al., 2012] No No No No

[Salvi et al., 2012] Yes No No Yes

[Mohan et al., 2013] No No No No

[Grizou et al., 2013] [Grizou
et al., 2014] [Grizou, 2014] Yes No No Yes

[Cakmak & Takayama, 2014] Yes No No Yes

[She et al., 2014] No Yes No No

[Mohan & Laird, 2014] No No No No

[Forbes et al., 2015] Yes No No No

[Gemignani et al., 2015] Yes No No Yes

[Sorce et al., 2015] Yes No No Yes

[Petit & Demiris, 2016] Yes Yes No Yes

[Yamada et al., 2016] No No No Yes

[Mohseni-Kabir et al., 2017]
[Mohseni-Kabir et al., 2019] Yes Yes No Yes

[Nyga, 2017] No Yes Yes No

[Paléologue et al., 2017] No Yes Yes Yes

[Saponaro et al., 2017] No No No Yes

[Scheutz et al., 2017] Yes ? No ?

[Suddrey et al., 2017] No No No No

[Scheutz et al., 2018] Yes Yes No ?

[Paléologue et al., 2018] Yes Yes Yes Yes

Table 2.3: Publications exhibiting teaching behaviors to robots using natural lan-
guage. They may not necessarily exhibit HRI or spoken language. [Paléologue
et al., 2018] is the first to meet all the studied characteristics.
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In this thesis, we demonstrate Pepper robots that can be taught new behaviors
by users, in open scenarios. This ability is supported by a novel cognitive sys-
tem, that is able to support a rich set of robotic behaviors, provided by separate
applications1.

In this chapter, we introduce that cognitive system, and demonstrate that we
reach the following objectives:

• Supporting the teaching of new behaviors, by composition of task plans using
spoken language.

• Supporting an open scenario, where unanticipated behaviors may be taught.

• Deploy it to Pepper@Home users, using software based on NAOqi.

• Merging a small amount of behaviors together, using simple rules of pragmat-
ics.

We take advantage of what chapter 2 taught us about the state of the art:

• Natural language instructions are a natural and straightforward way to trans-
fer behavior knowledge.

• Semantic models are good to represent natural language instructions.

• There exist pragmatic models to represent the interaction, and they can be
leveraged to disambiguate the purpose of the interaction.

• A proper combination of SR and NLU enables the support of unanticipated
phrases.

• NLI should be provided by the same kind of behaviors that can be taught to
the system. Dialogue management should not be done by a separate system.

• No other experiment demonstrates an open teaching in real conditions, with
no extra device other than the robot.

We build a cognitive system to run experiments of growing complexity: from
a preliminary experiment focused on the teaching, and with no automatic speech
recognition to an experiment in Pepper@Home, where robots have some richer
behavior, and run without the help of the experimenter.

The first sections of this chapter are ordered approximately according to the
flow of information displayed in figure 3.1. Section 3.1 details how engagement
is achieved with human users. Then section 3.2 details the semantic analysis of
the natural language input for NLU, and the challenges we faced switching to to
spoken language. We also detail there how NLG is performed, Section 3.3 details
the logic of the teaching interaction used in the experiments. Then, in section 3.4,
we focus on the decision-making component of the cognitive system, with the intent
of supporting behaviors provided by external applications.

1See section 1.4 for details on our objectives
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Figure 3.1: Overall information flow within the cognitive system. NAOqi is the
interface with the environment, see annex 5.5.6. STT, NLU, NLG and TTS are
introduced in section 2.3. Behaviors implementations produce the reasoning of
the system: they react processed inputs (events and semantic expressions) may
exchange data with databases (semantic memory and symbolic knowledge) and
produce NAOqi actions in response, that may be run if selected.
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Finally, the last section focuses on the experiments we performed, and evaluates
whether the system is effectively capable of:

• Being taught new behaviors using the spoken language.

• Accepting behavior labels that are not known a priori.

• Reusing formerly taught behaviors in newly taught behaviors.

This is achieved on a stand-alone Pepper robot at home, with no additional external
microphones, and in a cognitive system that exhibits other behaviors than the
teaching interaction itself. These experiments were also an opportunity to learn
details on the NLI side of HRI, like how people naturally split the instructions for
the robot to understand them.

3.1 Extraction of Social Cues with Pepper

In subsection 1.1.1 we mentioned that Pepper provided features for the detection
of humans, and for engaging with them. In this chapter, we rely solely on these
built-in features to extract social cues. In this section, we detail which features we
use, and the kind of social inputs our system receives.

3.1.1 Awareness of Humans

Pepper can see the humans going around it. As soon as an object appears to stand
out from the background, Pepper tries to assess if it can be a human by checking
its size, its shape, and by trying to find a face in its upper part.

When Pepper is confident about seeing a human, a human Qi Object (see annex
5.5.6 about NAOqi) is published, and provides access to the following data:

• The 3D location and orientation of the face of the human.

• A 2D picture of the human’s face.

• An estimation of his or her gender.

• An age estimation.

• Whether he or she is smiling.

• An estimation of his or her mood and excitement.

• Some indication on where the human’s attention is drawn to.

• The human’s apparent engagement intent.
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This last information on engagement is important to establish a dialogue with
humans, and is developed in subsection 3.1.2.

By default, Pepper automatically looks at the humans around. This behavior
always runs in the background, unless a conflicting action performed (for instance,
looking at some object). It makes the robot seem aware of them, but also invites
humans to engage with it.

3.1.2 Engagement Assessment

When a human draws his or her attention back to Pepper, the engagement is ef-
fective. It is assessed by the robot by combining the dynamic of the displacement
of the human (going towards the robot) with the direction of his or her attention
(towards the robot). [Anzalone et al., 2015] offer a good overview of the techniques
used to perform this assessment.

When the engagement is effective, the speech recognizer is configured to focus
especially on the human’s direction, so that to maximize its accuracy. At the same
time, Pepper tries to maintain the engagement by maintaining the eye contact (but
not too much to avoid gaze aversion), and by orienting its body towards the user.

Disengagement is assessed by body and head movements away from the robot,
but also by spotting formal engagement closures, like the utterance of “good bye”.
The disengagement evaluation is the outcome of [Youssef et al., 2019]’s work.

In this chapter, we rely completely on these features to assess whether a human
is engaged, and express engagement back to him or her. But we do not try to
distinguish humans.

In this section we detailed some social cues that we use to engage with users.
The features are provided by NAOqi and are used as is in our research.

3.2 Natural Language Understanding from Speech-to-
Text Output

The robotic system has to perform NLU on the user’s instructions and teachings.
Since the scenario must remain open, it cannot rely solely on the tuning of the
speech recognizer. Instead we choose to use STT, and perform NLU on the text
result, as explained in 2.3.2. This section presents the tools we use to perform NLU.
The semantic expression, the semantic memory, the NLU and the NLG algorithms
are provided by Jocelyn Martin, software engineer at SoftBank Robotics Europe
(SBRE).

3.2.1 Understanding the Natural Language

The NLU algorithms use dictionaries: for the English language, we use the DELA
dictionary from [Klarsfeld & Mc Carthy Hammani, 1991]; for the French language,
we use the one from [Courtois, 1990]; They were downloaded the website of the Lab-
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oratoire d’Informatique Gaspard-Monge2, and modified when useful for the NLU.
They are made accessible by a component named Linguistic Database.

The NLU consists in several operations:

1. First, we chunk the input phrase into a list of words. We use the Linguis-
tic Database to identify groups of words that are exceptionally meaningful
together.

E.g.: ”greet her” chunk−→ (”greet”, ”her”)

2. Then, all potential PoS tags are listed for each chunk, ordered by descending
probability. Using arbitrary language-specific rules based on N-grams, we rule
out impossible combinations. Potential PoS tags may be re-ordered too.

E.g.: (”greet”, ”her”) P oS_tag−→ (”greet”VB, ”her”PRP )

3. The dependencies are computed between chunks using N-grams. Only the
most probable PoS tag of each chunk is considered. If the computed dependen-
cies appear impossible, related PoS tags are eliminated, and the dependencies
are computed again.

E.g.: (”greet”VB, ”her”PRP ) dependencies−→ (”greet”VB
root,0, ”her”PRP

dobj,−1)

4. Named entities are resolved into semantic symbols. Times, places, agents and
arbitrary concepts can be identified.

E.g.:

(”greet”VB
root,0,”her”PRP

dobj,−1) semantic−→ (me, her, greet),
Agent(me, self) ∧
Agent(her, undetermined) ∧Word(”her”PRP , her) ∧
Statement(greet) ∧Word(”greet”VB, greet) ∧
Time(present, greet) ∧Request(action, greet) ∧
Subject(me, greet) ∧Object(her, greet) ∧

In figure 3.2 the semantic information is presented in an arbitrary textual
form we use in development.

5. Coreferences, expressed by pronouns or implicit, are detected, resolved and
developed if the context allows it.

E.g.: without a previous input, we add coreference(her, unknown_direction).
With the previous input “here is Alice”, we replace agent(her, undetermined)
with agent(her, alice), word(”Alice”NNP , alice).

2https://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargeme-
nt.html.

https://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html
https://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargeme-nt.html
https://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html
https://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargeme-nt.html
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3.2.2 Semantic Expressions

All the results are represented together into a single object, called “semantic ex-
pression”3. The semantic expressions can be of one these types:

• Grounded on:

– a statement associating subject, verb and complements of time, place,
object, manner, etc...

– a noun, such as “a banana” or “the Eiffel Tower”.
– an agent, like “Alice”.
– a time indication, like “14:00”.
– a location indication, like “in Paris”.
– a symbolic notion, like an agreement
– a resource, interpretable by a program.

• Enumeration, with potential conjunctions like “and”, “or”, “then”, etc.

• Conditionals, using conjunctions like “if”, “then”, “else” or “when”.

• Feedback, like “yes” or “okay”.

• Coreferences, like “it”, “him”, or an implicit relation to another statement.

• Comparatives, like in “Paul is taller than Jack”.

In figure 3.2, we illustrate the work of NLU on the sentence “say that your job
is to help me”. The root expression is grounded by a statement. The statement
is centered on the verb “to say”, at the imperative form. The statement holds
for the object complement, an expression interpreted from the text “your job is
to help me”. It is grounded by a statement, centered on the verb “to be”, at the
present form. The subject is an expression grounded on the noun “job”, which is
owned by the recipient of the message. The object is another expression grounded
a statement, centered on the verb “to help” at the infinitive form. The object of
this statement is an expression grounded on the agent who produced the sentence.
Note that statements are adequate to express semantic frames.

By design, semantic analysis does not require pre-configuration. It accepts
a large variety of grammatical structures, using any word from the dictionaries.
Therefore it is able to support open scenarios, where the input texts cannot be
pre-determined.

The semantic expression is a form of semantic structure, can actually be used for
machine translation. It can also be stored in a specialized memory, called “semantic
memory”.

3In [Paléologue et al., 2017], where this was first presented, we mentioned a “semantic knowl-
edge”. The semantic knowledge was a wrapper around semantic expressions, that allowed them to
be stored in and retrieved from the semantic memory (see subsection 3.2.3) This wrapper is not
technically useful anymore, so we do not mention it anymore.
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Figure 3.2: Intermediate and final results of the NLU. Final result is a semantic
expression. Adapted from [Paléologue et al., 2017], figure 2.
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3.2.3 Semantic Memory: a Language-Oriented Database

The semantic memory is a database of semantic expressions. From this point of
view, the use of the term “semantic” seem superfluous, because usual databases can
already store semantic symbols. Let us recall that semantic expressions are in fact a
representation of grammatical dependencies, augmented with semantic information.
What makes a difference with other symbolic structures is in fact its grounding on
linguistics.

Therefore, manipulating semantic expressions consists as much in grammatical
manipulations as in symbolic manipulations. A database capable of storing, retriev-
ing and querying such data would therefore be characterized more by its affinity
with language, than with its affinity with symbols.

The semantic memory is such a database: it leverages the language-oriented
structure of semantic expressions to perform queries. It is a language-oriented
database.

The storage consists in an enumeration of every semantic expression put in
it. As much as possible, semantic expressions are developed before storage. For
example the equivalent to “Alice likes pandas and Bob” would be stored as “Alice
likes pandas” and “Alice likes Bob”.

Each expression corresponds to a pointer in storage. If requested with an equiv-
alent expression to “Alice likes pandas”, the semantic memory returns that pointer.
This is how the direct retrieval of information is done.

Queries can be expressed using semantic expressions. If the semantic expres-
sion represents a question, the semantic memory should be able to respond with a
semantic expression representing a valid natural language answer.

It supports some usual forms of questions:

• Yes / No, e.g.: “Does Alice like Pandas?” produces “Yes”.

• What, e.g.: “What does Alice like?” produces “Alice likes pandas and Bob”.

• Who, e.g.: “Who likes Bob?” produces “Alice likes Bob”.

• When, e.g.: “When does Alice sleep?” produces “Alice sleeps at midnight”.

• Where, e.g.: “Where does Alice eat?” produces “Alice eats at the canteen”.

• Why, e.g.: “Why does Alice smile?” produces “Alice smiles because she is
happy”.

Thus, the semantic memory has the power of expressing arbitrary facts, without
requiring an actual semantic representation of them. It is a powerful tool for writing
more open dialogues, but also to let end users teach things to the robot.

Nonetheless, semantic information is carried to the semantic memory. This
allows inference, so that to support the following dialogue:

Human (H): Alice likes pandas.
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H: I am Alice.
H: What do I like?
Robot (R): You like pandas.

It is also notable that using a semantic representation within the language-
oriented information has an intrinsic effect of perspective taking.

For example the inputs “Your job is to help me” and then “What is your job?”
should produce “My job is to help you.”

3.2.4 Natural Language Generation from Semantic Expressions

In the previous sub-section, we referred to semantic expressions using their textual
equivalent. In fact, a semantic expression can be translated back to natural language
in various ways. The NLG algorithms we use for this are described in this sub-
section, using the classification we reported in 2.3.3:

Architecture The algorithms are arranged as a pipeline, from the input (a seman-
tic expression), to the output phrase.

Content Determination The content is determined by the reasoning algorithms
that decide the behavior of the robot. The NLG algorithms are not involved
in this part.

Document Structuring This is also mostly the reasoning algorithms’ responsi-
bility. The NLG algorithms are not meant to significantly alter the meaning
of the input semantic expression.

Lexicalization There is a specific algorithm for each type of semantic expression.
For enumerations for example, it consists in translating each sub-expression,
separated by commas. Between the penultimate and the last sub-expression,
the link word is used instead of the comma, e.g. “and”, “or”, “then”...
For statements, we take the verb (identified by its lemma) and conjugate it
with the person deduced from the subject. Then, from the verb’s lemma, we
look up for the right conjugated form. For each type of complement, and
according to the verb’s grammatical constraints, we select the preposition
before expressing the complement.
Using the dictionaries, we also apply language and word-specific rules. E.g.
the negation of “can” is “cannot”, and not “can not”.

Referring Expression Generation Semantic entities like agents may be resolved
to find a word or a phrase that identify them, from the semantic memory.
Whereas places are stored directly in the semantic expressions. Time infor-
mation is re-expressed using specific rules.

Aggregation The semantic expression is respected, so no extraneous aggregation
is performed by the NLG.
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Realization The NLG algorithms are hard-coded and called recursively on the
content.

Thus, anything that can be expressed with semantic expressions can be trans-
lated to natural language. However, the generated phrases may sometimes be im-
perfect, or not idiomatic. We assume the impact on the understanding should
remain negligible.

It is also possible to generate a phrase in a different language. With the help
of an additional dictionary of translations, we can use the NLG for the other lan-
guage, and produce understandable phrases. This achieves a form of translation by
semantic transfer, according to [Dorr et al., 1999]’s classification. It is not a pow-
erful translator, and it will not be evaluated, but it potentially allows the content
of the semantic memory to remain useful even when the language changes.

In this section we detailed the algorithms we use to perform NLU and NLG.
We use a custom data structure to manipulate natural language phrases. Some
semantic information is extracted from the phrases, such as entities and semantic
frames. This information can be collected in a custom database, specialized for
language-oriented information.

3.3 Interaction for Teaching Behaviors

In this section we explain how we use our NLU to build the interaction for teaching
behaviors. We detail our behavior model and explain why we think it is sufficient.

As announced in section 1.2.6, behaviors can be modeled as task plans, and be
reused by composition. To do so, behaviors must be viewed as tasks, to be reusable
in other task plans. We use this model for taught behaviors.

In this chapter, task plans are simple sequences of tasks. Since tasks can be
made of task plans, this is a hierarchical model that resembles the behavior networks
used in [Rybski et al., 2007, Rybski et al., 2008]4. However we have no support for
conditional branching.

A “task teaching” is the natural language description of a task and of its asso-
ciated task plans.

3.3.1 Extracting Task Teachings

In subsection 2.1.2, we show that instructions are a straightforward way of teaching.
We choose this approach because it is feasible without the need of advanced sensors
required to observe a human’s behavior.

Instructions describe tasks, so that they can be performed. For example “say
hello” is an instruction. They can be put in context of a larger task, for example
“to make a diabolo, put syrup, and then put sparkling water”. A parent task “to
make a diabolo” is decomposed into two instructions “put syrup” and “put sparkling
water”.

4We identified this model in subsection 2.4.1
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We call “task label” the expression declaring the parent task. We call “task
description” the set of instructions defining the task. We call “task teaching” the
proposition associating a label to a description. A task can be described without
a label, but in our work, we choose to make sure taught tasks can be reused in
other tasks to teach. For this reason, we do not support task descriptions alone,
dissociated from a label.

The semantic expressions introduced in 3.2.2 can represent task teachings. In-
terpreted altogether, the teaching is unambiguous. However in the experiment pre-
sented in subsection 3.5.3, we demonstrated how users would split their teachings
into several utterances.

But when the instructions of the task descriptions are taken separately, they
can be confused with direct orders, because they are expressed in the imperative
form. The context is required for disambiguation. In order to avoid the confusion
in practice, we only support instructions expressed in the infinitive form. To remain
linguistically correct, the form of the task teaching changed to: “to make a diabolo
is to put syrup and then to put sparkling water“. Figure 3.3 shows the full semantic
expression extracted for that example.

A teaching can be identified by the verb “to be” at the present tense, associating
a task label and a task description. A task label is a statement in the infinitive
form. A task description is an enumeration of statements in the infinitive form. A
statement in the infinitive form is called a “task declaration”. It is associated to a
semantic frame5.

Task declarations can constitute a task label, or be part of a task description.
Task descriptions made of a single task declaration are supported, but cannot be
distinguished from the task label in a teaching. We call these corner cases “task
aliases”.

We do not detail how conditional or event-based instructions should be handled.
They can be added later and enrich the task description.

3.3.2 Formal Model of Taught Behaviors

Behaviors taught this way are task plans. A task corresponds to anything that can
be executed6 by the robot. The functional content of a task may be hard-coded.
Such a task is called “primitive”7. Or its functional content can be taught, for
instance through the interaction we propose in previous subsection 3.3.1.

Task descriptions are the expression of tasks in natural language. Their content
– a verb and optional complements – correspond to a semantic frame [Fillmore,
1985]8. We consider that a task t can be associated to a semantic frame s. This

5By construction, any verbal statement corresponds to a semantic frame. Hence a “task decla-
ration” also corresponds to a semantic frame.

6In our work, tasks are moreover visibly performed by the robot, i.e. they are actions.
7Primitive tasks should not be confused with action primitives. A primitive task can be im-

plemented with an action primitive, but can also be implemented by a combination of high-level
tasks.

8Semantic frames were introduced in previous chapter, in subsection 2.3.2.
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statement:
word(be, verb) time(present)
concept(verb_equal_be, 4)
concept(verb_equal_mean, 3)
subject:

statement:
word(make, verb) concept(verb_action, 4)

object:
word(diabolo, noun) ref(indefinite)
quantity(nb, 1) type(thing)

object:
listType(then)

-> statement:
word(put, verb)
object:

word(syrup, noun) ref(definite)
quantity(nb, 1) type(thing)
concept(concrete_*, 4)

-> statement:
word(put, verb)
object:

word(water, noun) ref(definite)
type(thing) concept(liquid_*, 4)

specifier:
word(sparkling, adjective)
type(modifier)
concept(sentiment_positive_*, 3)

Figure 3.3: Semantic expression for a sample task teaching: “to make a diabolo is
to put syrup and then to put sparkling water“.
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association is represented using the predicate Express(s, t). The set of all possible
tasks and semantic frames are respectively T and S.

Our teaching interaction is based on a set of known tasks Tknown ⊂ T, n ∈
N, |Tknown| = n. Each task is associated to a semantic frame: ∀t ∈ Tknown,∃s ∈
S,Express(s, t).

Learning a task tlearned from a sequence of known tasks consists in updating
Tknown as follows:

∀k ∈ N, ∃t0, ..., tk ∈ Tknown

tlearned = (t0, ..., tk), ∃s ∈ S,Express(s, tlearned)

T i+1
known = T i

known + tlearned

In other words, we define a new task tlearned as a tuple (t0, ..., tk) of known tasks,
and expressed by a semantic frame s ∈ S, and put it in Tknown. Here, this tuple
defines the task plan.

To bootstrap the system, we define a set of primitive tasks Tprimitive,
T 0

known = Tprimitive, |Tprimitive| = npri

∀t ∈ Tprimitive,∃s ∈ S,Express(s, t)
The set of learned tasks Tlearned contributes to the set of primitive tasks to constitute
the set of known tasks, Tknown = Tprimitive ∪ Tlearned.

The space of possible plans to learn must be large enough so that teachings are
not deterministically limited. This is a precondition for supporting open scenarios.
Given the length of task plan 1 < k < kmax

9, and the number of primitive tasks npri,
there are initially nk

pri possible plans. In total, that makes: |T 0
learnable| =

∑kmax
k=2 nk

pri.
In practice, we do not expect task plans made of more than 5 tasks.
Given 10 primitive tasks, the initial number of learnable tasks would be:

|T i0
learnable| =

5∑
k=1

10k = 111100

.
When a task composition tlearned is learned, it does not add up to npri, but to

n. However, the task is composed of k sub-tasks, and can be used as a shortcut
to express longer task plans. It seems that the number of learnable tasks usually
grows when a task composition is learned10. The teacher may not be limited by
the size of the space of learnable tasks, and does not limit the application of the
behavior model to closed scenarios.

As a conclusion, our hierarchical task model allows a quick exploration of all
the possible tasks a robot could do. We assume that the limitations of the model
may rather consist in:

• the difficulty of defining semantic frames for each task,

• the inadequacy between the known tasks and the tasks users want to teach,
9The length of a task plan may be limited by the patience required to teach it to the robot.

10This could be demonstrated with a simulation on a large random draw of behaviors.
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• the absence of complex articulations between tasks, such as concurrency or
conditionals,

• the lack of support for parameters.

The 3 first limitations do not actually concern our research, and are therefore ac-
ceptable. The last limitation impacts the interoperability between behaviors, and
is addressed in chapter 4.

3.3.3 Interaction Scenario and Patterns for Teaching

Our objectives, announced in section 1.4, include supporting the openness of the
home scenario, and the richness of behaviors expected of social robots. Pep-
per@Home is a program organized by SBRE, that lends Pepper robots to employees,
in exchange of participating to some experiments. Deploying our system to Pep-
per@Home robots is part of our objectives.

Pepper@Home robots have basic behaviors implemented:

• Pepper’s standard behavior presented in subsection 1.1.1.

• The engagement behavior presented in subsection 3.1.1.

• General-purpose dialogues including greetings, self-introduction, telling jokes,
singing songs, performing dances, and chit chat on various subjects like sports
or politics. It is brought by a chatbot written by Yufo Fukuda, distributed
through an application called ABC.

• Miscellaneous behaviors found in other applications, such as a Sport Coach
or a game where Pepper imitates animals.

Applications are implemented for NAOqi OS 2.9, which lets the Android system
running on the tablet drive the robot11. Certain Android components can be put
in the foreground (a.k.a. taking the focus) and take control of the screen and of the
robot. These components are called Activities, and drive the interaction phases in
NAOqi OS 2.9.x.

When ABC runs – or more precisely when its dialogue activity takes the focus
– the robot listens to the engaged human, and may react according to the script
of a chatbot, whose features are described above. The behaviors provided by the
other applications are not available from ABC, and vice versa. For us, ABC is a
good starting point for open and rich interaction scenarios, so we have chosen to
extend it for our research purpose. (see subsection 3.5.4).

ABC displays blue light indicators to express it is listening to the human. When
the robot detects the end of an utterance (based on a timeout after speech is not
heard anymore) the listening pauses (along with the feedback), the speech recognizer

11Applications like “Do This Do That” or “Pepper Play” mentioned in subsection 1.1.3 were
made for NAOqi OS 2.5, and are not compatible with NAOqi OS 2.9.
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provides textual results, letting the dialogue engine provide a reaction, after which
the listening resumes. This mechanism fulfills a role of speech turn.

As seen in subsection 2.3.4, providing a separate dialogue system creates con-
straints on the cognitive system: dialogue contents are privileged in comparison
to other behavioral contents, and behaviors are preferably driven in a turn-based
manner, as responses to the human’s input.

To avoid such distinction between dialogues and the other behaviors, we removed
the forced speech turn mechanism: the robot never pauses listening, and may be
interrupted at any moment. However the speaking floor can still be assessed: when
the human finishes talking, a dialogue-based behavior can assume the speaking
floor is given to the robot, and gives it back to the human when its response was
produced.

We expect the teaching of tasks to be possible at any moment during this
activity, without compromising the existing activities.

We assume the users may already know how to interact with the robot, before
he or she is expected to teach the robot. Users are not expected to be naive. It is
noteworthy that some of them are experienced with the robot.

But we do not assume they should guess how to teach the robot. It is useful to
teach the users how to teach the robot, and this has been taken advantage of.

We require the users to utter task teachings like explained in subsection 3.3.1.
For each utterance contributing to a task teaching, the robot acknowledges, so
that the user can go on with the task description or labeling. When the teaching
is complete, the robot recalls the whole task. Dialogue 3.1 displays an example
teaching, with a task description first, followed by the task label.

Human (H): To move forward.
Robot (R): Ok.
H: And to say welcome.
R: Ok.
H: Is to welcome.
R: Ok, to welcome is to move forward and to say welcome.

Dialogue 3.1: Example dialogue for teaching a task plan, terminated by the labeling
of the task plan.

We assume that starting and stopping a teaching may not be explicit, because
the system may become able to learn tasks during other activities, even though we
do not demonstrate such ability in this research. And because of the structure of
task teachings, it appeared feasible to recognize it in a context-free manner.

However, if the teaching starts with the task label and ends with a task descrip-
tion, like in 3.2, some ambiguity arises: the task description is an enumeration, and
humans do not necessarily end an enumeration with the word “and” coordinating
the elements. In that case, the robot should ask explicitly whether the teaching is
complete, by saying “is that all?”.
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Human (H): To welcome.
Robot (R): Ok.
H: Is to move forward.
R: Is that all?
H: And to say welcome.
R: Is that all?
H: Yes.
R: Ok, to welcome is to move forward and to say welcome.

Dialogue 3.2: Example dialogue for teaching a task plan, started by the labeling
of the task plan.

User Robot

1. Input 2. Learning
3. Confirm

Table 3.1: Usual pragmatic frame involved in our teaching of tasks.

Once a task is learned, it is available to execute when ordered to, using the
imperative form of the task label. It is also immediately reusable for new teachings.
There is no way of correcting the task, but the task can be replaced with a new
one.

Tables 3.1 and 3.2 describe the interaction patterns involved in the teaching,
expressed using the formalization from [Vollmer et al., 2016].

The scenario and the forms of interaction are not especially rich, however it is
designed to be open: taught behaviors and tasks in plans can be referred to using
any verb existing in the dictionaries.

In this section we detailed how task compositions can be taught. Using the
semantic analysis on carefully designed instructions, the robot can build a struc-
ture representing a task composition, recursively. Then we detailed the interaction
pattern we designed for such task teachings.

User Robot

1. Input 2. Learning
3. Input query

4. Input 5. Confirm

Table 3.2: Pragmatic frame for asking whether the task description is complete.
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3.4 Selecting Interactive Behaviors for Teaching Tasks

By design of the interaction, the teaching behavior may enter in conflict with the
other behaviors of the robot, including the behaviors taught by users. The cognitive
system should therefore be able to decide which behavior is best to perform. We
call this task selection.

In this section, we describe how we implemented this mechanism in our first
set of experiments. We propose two simplistic solutions, that were sufficient in our
simple scenario.

Task selection require that tasks are collected prior to be executed. That is
to say that the components implementing the behaviors must not directly send
commands to the robot, but instead should wrap them in a task, and suggest them
to the task selector. A component autonomously suggesting tasks to perform is
called a “behavior”.

3.4.1 Using a Static Behavior Priority List

Our first cognitive system supporting task selection was presented in [Paléologue
et al., 2017], along with figure 3.4. It shows our semantic analysis pipeline (see 3.2)
and a reasoning block made of a list of reasoners, in the form of boxes with deep
blue background. They attempt to understand the input a posteriori, and therefore
do not affect each other (as they would if they attempted to configure the SR a
priori).

Each reasoner accepts a semantic expression for input, and may respond with
another semantic expression. Since semantic expressions can be interpreted (see
subsection 3.2.4), responses are regarded as task suggestions, and reasoners are
regarded as behaviors. This equivalence between tasks and semantic expressions
allows the “Introspect Behavior” component to describe in natural language any
tasks the system has learned: taught behaviors are explainable by construction.

The task selection relies solely on the order in which behaviors are triggered.
We loop over the list of behaviors and check for a response for one after the other, If
a behavior responds, the next behaviors are not solicited. The last behavior, “Tell
if not understood”, always responds that the input was not understood. We often
mention it as the fallback behavior.

Taught behaviors are triggered by the “Obey Order” behavior, and therefore
are always of higher priority than the other behaviors of the system. In case of
conflict, if two taught behaviors are associated to the same semantic frame, the
most recently taught behavior is triggered in priority.

In the experiments detailed in subsection 3.5.2, we did not encounter any issue
related to these technical choices. However we predict that in richer scenarios,
conflicts may arise, including between taught behaviors. We expect that for these
richer scenarios, we may need a more advanced model for task selection.

Indeed, this model does not respect the constraint of independence between
behaviors. For instance the “Tell if not understood” behavior is adequate only after
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Figure 3.4: Overview of the software architecture with behaviors ordered by pri-
ority.

— [Paléologue et al., 2017]

the other behaviors were triggered. If it was put on top of the priority list, it would
make the robot respond that it does not understand, even if the next behaviors
provide responses based on some understanding.

Finally, triggering behaviors one after the other supposes restricting their reac-
tion to a certain form of input. In terms of software architecture, it is better let
behaviors decide by themselves what they react to, and therefore desolidarize the
flow of suggestions from the flow of semantic expressions.

3.4.2 Using Independent Action Suggestions and Interaction Rules

[Paléologue et al., 2018] propose several changes in the cognitive system. The
reactions are not produced in a push mode: the behaviors are not called directly
anymore. Instead, they subscribe to knowledge events – this is called a pull mode
– and produce tasks in reaction. Therefore behaviors react separately, whereas in
[Paléologue et al., 2017] the behaviors were only triggered if the previous ones did
not respond positively. This difference is illustrated in figures 3.4 and 3.5: in the
former, the prompt action centralizes the events and triggers behaviors according
to its priority list, whereas in the latter, each behavior implementation receives
knowledge events, with no intermediary.

The tasks are not represented by semantic expressions anymore. Instead, each
task encapsulate an arbitrary piece of program. When a task is started, the orig-
inating behavior is informed, and may execute this piece of program. Figure 3.5
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Figure 3.5: Overview of the software architecture with behaviors suggesting tasks
in reaction.

— [Paléologue et al., 2018]

illustrates this with a state change information propagated from the task execution
component to the behavior implementations.

Knowledge events are changes in a triple store12. These events may represent
spoken language inputs. semantic analysis happens inside each behavior13, and are
omitted in figure 3.5. Behaviors may produce tasks in response, and suggest them
to the task selection, instead of performing them immediately.

The task selection consists in taking the first response suggested, for each speech
input received. All other responses are ignored. Therefore speech inputs remain a
privileged form of input, and action suggestions are meant to be responses to the
last speech input. The main improvement is that behaviors can be designed more
independently.

For instance the fallback behavior had to be adapted. It tracks what was heard
and said by the robot, and if nothing is responded to some speech input within
tenths of second, the behavior suggests a task uttering “sorry, I don’t understand”.
This rule applies at the interaction level, and is generic enough to not be restricted
on a certain topic of discussion.

This cognitive system is first used in the experiment presented in 3.5.3. Because
there is no constraint in the organization of the behaviors, external behaviors can
be accepted more easily. Namely, the chatbot used in Pepper@Home (see subsec-

12Triple stores are databases storing information in the form of RDF triples [RDF Working
Group, 2014].

13The results of semantic analysis are cached so that it is not performed several times on the
same input.
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tion 3.3.3) can integrate the system as a separate behavior. This was done in the
experiment presented in 3.5.4.

We propose an extension of the rule-based task selection in next chapter 4.4. In
the next section, we describe how we put these task selection models in practice in
experiments, and the results we produced.

This concludes this section on the novel architecture we propose to manage
the task selection in a cognitive system that lets independent components, called
behaviors, suggest any task at any time. Several task selection schemes are possible,
and have been tested in experiments described in next section.

3.5 Proof-of-concepts and Experiment in Homes

In this section, we describe the experiments we held to gradually demonstrate the
capabilities of our cognitive systems in the field.

For every experiment, we put together a Pepper with the latest software version
(at the time), some NAOqi packages providing the service called “SemanticAgent”.
The protocols, the binaries and the data analysis are available on GitLab14.

Participants were always employees of SoftBank Robotics Europe (SBRE). They
know how to interact with Pepper robots, are professionally involved in the exper-
iments, and live in Paris area, France. Therefore we refrain from generalizing our
results to the rest of the population15.

For evaluation purpose, [Paléologue et al., 2017] propose a set of objective mea-
sures adapted from [Gemignani et al., 2015]16:

• The number of utterances (or instructions) provided by the users (IC ).

• The average rate of instructions misrecognized (Mis%).

• The average time in seconds needed to teach a task, including the time lost
with misrecognized instructions or any other error (AT w Err).

• The average normalized edit distance (MED) between the decomposition in
natural language done by the robot and the expected one.

• The percentage of behaviors that were successfully taught, among the total
number of behaviors attempted to be taught (TS%).

• The percentage of users who managed to teach behaviors (UTS%).

• The percentage of users who managed to teach composite behaviors (UTSC%).

In addition, [Paléologue et al., 2017] introduce subjective measures:
14https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments
15It is not excluded that Pepper robots and their applications could be targeted to a population

that is fluent with technology, or have similar professional stakes at play when interacting with
Pepper. Like for computers, people may have to learn how to use robots.

16Original measurements from [Gemignani et al., 2015] can be found in subsection 2.5.4

https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments
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• How successful the teaching felt. This is the Experienced Teaching Success
(ETS).

• How easy the interaction felt. This is the Experienced Interaction Ease (EIE).

We use these measures to produce measurements in our experiments, in order
to evaluate the performance of our system.

3.5.1 Preliminary Experiment

In a first attempt, we put together a version of the SemanticAgent with:

• a fake STT input, injectable using Choregraphe’s dialogue widget,

• a simplified semantic analysis, that only supported full teachings in one ut-
terance.

• a simple task selection a described in 3.4.1,

• the 4 behaviors described in [Paléologue et al., 2017], subsection 3.2,

• an Android activity providing feedback on what is said or heard.

We solicited 3 SBRE employees that knew how to interact with the robot, but
who were new to the experiment. We gave them instructions sheets themed by
domain of application, among:

• Home

• Healthcare

• Business

The participants have 10 minutes to invent and teach as many behaviors as they
can. See the protocol for more details online17.

The experiment immediately showed flaws in the semantic analysis. These flaws
prevented the experiment to be held to the end. Also, we collected some feedback
on how to improve the instruction sheets.

However it served as the first proof-of-concept that an open scenario could be
supported by our system: we did not impose the behaviors to teach. Instead,
participants had to imagine behaviors themselves.

3.5.2 Simple Task Composition with Manual Transcription

We setup a version of the SemanticAgent similar to the one used in 3.5.1, with some
fixes in the semantic analysis. We provided an updated set of instruction sheets, as
shown in 3.6.

17https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-
ee/master/1%20-%20Preliminary.

https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tree/master/1%20-%20Preliminary
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-ee/master/1%20-%20Preliminary
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tree/master/1%20-%20Preliminary
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-ee/master/1%20-%20Preliminary
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Measure Home Care Business All

IC 96 130 110 336

Mis% 32.82% 43.04% 21.57% 32.48%

At w Err 104.36 s 130.39 s 82.81 s 105.85 s

MED 0.04 0.21 0.11 0.12

TS% 53.64% 40.28% 80.95% 58.29%

UTS% 100% 100% 100% 100%

UTSC% 0 % 66,67% 66,67% 44,44%

ETS 2 / 5 4 / 5 3 / 5 3 / 5

EIE 2 / 5 2 / 5 3 / 5 2 / 5

Table 3.3: Measurements on the transcripts per theme, on the experiment presented
in [Paléologue et al., 2017].

9 SBRE employees participated in the experiment. They did not know how to
teach tasks yet, even though they may know how to interact with the robot. The
full protocol and the collected data can be found online18. Table 3.3 summarizes
the collected data.

The conclusions published in [Paléologue et al., 2017] are that the system sup-
ported the teaching of unexpected composite tasks, given a perfect STT. The con-
straints of reusability of behaviors within other behaviors, of zero-shot learning open
scenario were respected.

The publication includes a user-centered open study highlighting the caveats of
the interaction, such as the lack of support for more varied input, for more varied
teachings, for parameters in behaviors, and errors in the semantic analysis.

In terms of system design, we mixed the task execution with the dialogue sys-
tem by accepting executable chunks in the dialogue responses. But the dialogue
system still drives the cognitive system, that did not exhibit autonomous behavior.
Conflicts between behaviors were therefore avoided.

[Paléologue et al., 2017] also mention the domain-independence of the algorithms
used. We assume that domains correspond to themes. Table 3.4 counts how well
NLU performed on the user utterances, by theme. Using a χ2 independence test it
appears that we cannot conclude whether the NLU result is independent from the
theme.

18https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-
ee/master/2%20-%20Transcribed.

https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tree/master/2%20-%20Transcribed
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-ee/master/2%20-%20Transcribed
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tree/master/2%20-%20Transcribed
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-ee/master/2%20-%20Transcribed
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Theme G S U All

Business 67 16 5 88

Care 60 45 11 116

Home 52 21 7 80

All 179 82 23 284

Table 3.4: Contingency of NLU results by theme, for teaching behaviors with
perfect STT. G stands for successful understanding, S for semantic analysis error,
U for not understood by the behavior. Independence test produces χ2 = 13.4 and
p = 0.146, which is inconclusive.

3.5.3 Simple Task Composition with Automatic Speech Recogni-
tion

A new version of the SemanticAgent was put together with:

• a real STT input, using Nuance’s service (available in Pepper robots) and a
Microsoft online service as a fallback,

• a flexible semantic analysis that also allowed teachings to be split in several
utterances,

• a task selector accepting independent action suggestions, with hard-coded
rules, as described in 3.4.2,

• the 4 tasks described in [Paléologue et al., 2018].

• the same Android activity providing feedback on what is said or heard.

Switching from textual language to spoken language involves a difficult chal-
lenge. Speech recognizers automatically stop capturing audio when a pause is de-
tected. In the case of teaching behaviors, people often pause between instructions,
to check if the robot understands them.

The teachings are therefore split into several utterances. The system must be
able to understand them in the context of the larger teaching. It has consequences
on the NLU, that are detailed in subsection 3.3.1. It also has consequences on the
interaction; they are detailed in subsection 3.3.3.

In this experiment, the following hypotheses are made:

1. Pepper’s default speech recognizer provides exploitable results for our teaching
algorithm based on NLU19 and semantic analysis.

2. Users are all able to perform a teaching, given a short set of instructions.
19[Paléologue et al., 2018] rather mentions NLP, but NLU was meant.
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Table 3.5: Measurements on the transcripts per theme (a.k.a. domain) on the
experiment presented in [Paléologue et al., 2018]. The measure Mis% includes the
speech recognition errors, when the text produced differed from the utterance. At
the time it was considered different from Err, defined in [Gemignani et al., 2015] as
the absence of recognition.

3. Users may naturally attempt to teach tasks in several sentences, and cut their
sentences before or after “is to” and between steps of enumerations.

4. Users may naturally attempt to describe tasks first, and then label them, e.g.:
“to raise the right arm and to say hello is to greet”.

5. Robotic algorithms written independently can be run in competition without
conflict if: they can recognize the context they are relevant with, they suggest
reactions of the robot instead of executing them, an algorithm selects the most
appropriate reaction.

Hypotheses #1, #2 and #5 refer to our objectives. Hypotheses #3 and #4
were inspired by previous works like [Lallée et al., 2012, Gemignani et al., 2015]. In
these studies, the users are forced to split down the teachings in similar ways.

We run the experiment on a new sample of 9 SBRE employees, who did not
practice the teaching before, but who knew how to address the robot, but with
varying levels of English. The full protocol and the collected data can be found
online20. Table 3.5 summarizes the collected data.

Hypotheses #1, #2 and #3 were verified. Hypothesis #4 and #5 were not
verified, though not invalidated. Numbers show a high rate of misrecognition of the
spoken language. Indeed, the speech recognition is imperfect, and introducing it
added a new source of errors. But there are other impactful factors:

• the English level of participants,

• the accent of participants,

• the utterances to recognize are unusual for off-the-shelf STT engines,

• the misunderstanding of who owns the speech floor,
20https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-

ee/master/3%20-%20Automatic.

https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tree/master/3%20-%20Automatic
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-ee/master/3%20-%20Automatic
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tree/master/3%20-%20Automatic
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-ee/master/3%20-%20Automatic
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Table 3.6: Comparison of the error measurements between the experiments pre-
sented in [Paléologue et al., 2018]. N-1 is [Paléologue et al., 2017], N is [Paléologue
et al., 2018]. MisA% is the rate of misrecognition error due to the speech recog-
nition. MisS% is the rate of misrecognition error due to the semantic analysis.
MisU% is the rate of misrecognition error due to the proper exploitation of the
semantic structure.

Experiment Mis ¬Mis All

[Paléologue et al., 2017] 105 179 284

[Paléologue et al., 2018] 236 193 429

All 341 372 713

Table 3.7: Contingency of misrecognized (Mis) user utterances by experiment.
[Paléologue et al., 2017] is the previous experiment, described in subsection 3.5.2.
Independence test produces χ2 = 22.3 and p = 1.76 × 10−4. Misrecognition rate
has increased in experiment ]3.

• the cumulation of errors between interdependent utterances.

[Paléologue et al., 2018] present a comparative table highlighting the differences
with the previous experiment. It is reported in table 3.6.

To corroborate the increase of misrecognition rates, we perform the statistical
analysis reported in table 3.7. It shows that the misrecognition rate is significantly
higher in this experiment than in previous experiment.

However there was an effort done to mitigate that increase, by improving the
NLU. To show whether that effort was fruitful, we perform the statistical analysis
found in table 3.8. For this analysis, we have to omit the utterances that were
not well recognized by the speech recognizer, to compare with previous experiment
where the speech recognizer was perfect. The result is inconclusive.

The publication also stated that we could not conclude on domain-independence.
However, by looking at how well NLU performed by theme, it is possible to draw
some conclusion. Assuming that domains correspond to themes, the analysis shown
in table 3.9 demonstrates that the two variables are not independent.

Finally, we compare our results with [Gemignani et al., 2015] in tables 3.10,
3.11 and 3.12. We need to adapt the data to achieve this comparison. We get the
number of speech recognition errors Err, corrections Cor and misunderstandings
Mis by multiplying the published averages with the number of users, 5. We get the
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Experiment Mis(S+U) ¬Mis(S+U) All

[Paléologue et al., 2017] 105 179 284

[Paléologue et al., 2018] 85 193 278

All 190 372 562

Table 3.8: Contingency of user utterances misrecognized by NLU, by experiment.
[Paléologue et al., 2017] is the previous experiment, described in subsection 3.5.2.
Independence test produces χ2 = 2.57 and p = 0.632, which is inconclusive.

Theme G A S U All

Business 45 43 6 4 98

Care 73 59 13 5 150

Home 75 49 22 35 181

All 193 151 41 44 429

Table 3.9: Contingency of NLU results by theme, for teaching behaviors with real
STT. G stands for successful understanding, A stands for speech recognition error,
S for semantic analysis error, U for not understood by the behavior. Independence
test produces χ2 = 35.0 and p = 4.65 × 10−4. NLU results are not independent
from the theme.
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Experiment IC Err% Mis% At w Err

[Paléologue et al., 2018] 480 34 % 21 % 111 s

[Gemignani et al., 2015] 163 7.98 % 4.29 % 62.4 s

Table 3.10: Result comparisons between [Paléologue et al., 2018] and [Gemignani
et al., 2015].

Experiment Err ¬Err All

[Paléologue et al., 2018] 163 317 480

[Gemignani et al., 2015] 13 150 163

All 176 467 643

Table 3.11: Contingency of speech recognition errors by experiment. Independence
test produces χ2 = 41.1 and p = 2.30× 10−8.

number of instructions IC by summing these numbers with the minimum number
of instructions.

[Gemignani et al., 2015]’s Err is comparable with [Paléologue et al., 2018]’s
MisA because both characterize the speech recognition errors. [Gemignani et al.,
2015]’s Mis corresponds to the union of [Paléologue et al., 2018]’s MisS and MisU.
Therefore the use of the measure Mis in [Paléologue et al., 2018] is misleading.
Therefore we use the following definitions of specific measures:

• The number of instructions misrecognized due to automatic speech recognition
(Err), and the corresponding rate (Err%).

• The number of instructions misrecognized due to the natural language under-
standing (Mis), and the corresponding rate (Mis%).

Measures like Corr, At no Err, MED or TS% are not relevant in either of the two
publications, so they are ignored in this comparison.

Speech recognition accuracy appears lower in [Paléologue et al., 2018]. This is
demonstrated significant in 3.11, with p = 2.30× 10−8. The NLU accuracy appears
lower too, but the difference was not demonstrated significant in 3.12. Note that
NLU can only occur on instructions that were well recognized by speech recognition.
We cannot conclude either on teaching speed because we only have access to timing
averages from [Gemignani et al., 2015].

Speech recognition accuracy differences may be explained by various factors:

• Users talk through an external, push-to-talk microphone they hold. See sub-
section 2.5.2.
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Experiment Mis ¬Mis All

[Paléologue et al., 2018] 29 288 317

[Gemignani et al., 2015] 7 143 150

All 36 431 467

Table 3.12: Contingency of NLU by experiment. Independence test produces
χ2 = 2.87 and p = 0.579.

• The task to teach are pre-defined, so the speech recognizer can be pre-configured.
See subsections 2.5.3 and 2.3.1.

• They used Microsoft Speech Platform, which could offer better performance
than Pepper’s Nuance speech recognizer.

Our problem forbids us to apply these simplifications. Our experiment shows that
despite these constraints (no pre-defined behavior, no extra device such as held mi-
crophone) it is possible to teach composite behaviors using solely spoken language.
Supporting an open scenario, and avoiding the use of a microphone, makes our
experiment novel, and proves the feasibility of this approach.

Our approach also includes a design of the cognitive system that does not dis-
tinguish dialogue from the other tasks (see subsection 3.4.2). This is also novel,
and involved a simple rule to resolve conflict between the normal responses and the
fallback ones. It should be tested in more depth in richer scenarios, where the robot
is expected to exhibit autonomous behaviors. This is what we do in chapter 4.

Before this, in next subsection, we deploy and test the current system in condi-
tions close to real ones: in homes.

3.5.4 Task Composition in Home Conditions

Our objective is to test in real conditions the system demonstrated earlier in con-
trolled conditions. We put together our software in Pepper@Home robots with:

• a real STT input (Nuance and then Microsoft as a fallback),

• a flexible semantic analysis that also allowed teachings to be split in several
utterances,

• a task selector accepting independent action suggestions, with hard-coded
rules, as described in 3.4.2,

• the 4 behaviors described in [Paléologue et al., 2018].

• a general purpose chatting behavior,
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• an Android application named DEF, forked from and resembling ABC, men-
tioned in subsection 3.3.3, providing feedback on what was said, and on what
could be said. It provides an additional activity called “Teaching Experiment”.

We ask 5 participants from Pepper@Home to run the Teaching Experiment ac-
tivity, and follow the steps. We recall these steps in the protocol of the experiment,
published online21. They were not allowed to switch app during the experiment.
Therefore they could not access to the miscellaneous behaviors found in other ap-
plications (animal game, sport coach, etc...). The experiment can be done in French
or in English so that to rule out the language from the source of errors. Participants
were asked to perform a teaching session with the robot: one phase of 10 minutes of
teaching, one phase of interaction with the baseline behaviors only, and one phase
of teaching with the baseline behaviors activated. However, due to technical prob-
lems in the DEF application, we did not manage to make sure a single full session
could be completed. Nonetheless, in this subsection we detail the key points of the
experiment.

Pepper@Home applications are usually evaluated using the System Usability
Scale (SUS)[Brooke, 1986]. SUS produces a score from a set of 10 subjective ques-
tions on a Likert scale. We use it to evaluate the usability of the system for each
session, so that we can evaluate whether combining the baseline behaviors and the
teaching has an impact on the interaction.

When teaching is involved, we also collect the information required to produce
the measurements specified in previous experiments, for further comparison:

• The dialogue history during the experiment, with timestamps.

• The taught behaviors as understood by the robot, in natural language.

• Audio-visual recordings, to check whether users effectively talked to the robot,
and what they actually said.

Collecting this data remotely is also a challenge. Even though Pepper@Home users
formally agreed that personal data can be collected and processed to improve the
robot’s software, we must be respectful of their privacy by:

• Collecting only the required data.

• Transmitting it online without sharing it with third-parties.

• Processing and publishing only anonymized data.

SBRE hosts an online service to manage fleets of Pepper robots, called the Ap-
plication Distribution Engine (ADE). The Pepper@Home fleet is managed using
this tool: we can set up to which system version the robots should update to, and

21https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-
ee/master/3%20-%20Automatic.

https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tree/master/3%20-%20Automatic
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-ee/master/3%20-%20Automatic
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tree/master/3%20-%20Automatic
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-ee/master/3%20-%20Automatic
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which NAOqi applications they should get. Once the participants trigger the up-
dates, the robot retrieves and installs the selected software. On the other hand, the
distribution of DEF, the Android application orchestrating the experiment, was less
automated: a temporary download link was provided by e-mail to participants, so
that they could download it from Pepper’s Android system, and install it manually.

Through the ADE, we distribute the SemanticAgent, providing the teaching
behaviors to the robot, through a custom Qi SDK Chat action22. We also distribute
the Multimodal Recorder (MTT), an internal tool at SBRE, developed by Robin
Beilvert, designed to record raw inputs of the robot on demand.

When DEF starts a phase of the experiment, it configures and starts SemanticA-
gent’s chat action, as well as MTT, and stops them right at the end of the phase,
ensuring that only the experimental phase is recorded. The recordings are left in a
folder specific to our experiment, so that it is easily found by the service in charge
of uploading them online. The recordings are deleted from the robot once they are
uploaded. At the end of each phase, participants must fill in a questionnaire found
directly in DEF. DEF collects the questionnaire replies, the the dialogue history and
the learned behavior from the SemanticAgent, and uploads them online as soon as
possible, before deleting them.

The upload destination is a WebDAV server owned by SBRE, and that solely
supports authenticated PUT requests on its public endpoint. The upload is en-
crypted end-to-end, and the uploaded data can only be retrieved from SBRE’s
network, by the experimenter and the system administrator. Each has a different
private key, in his unique possession. The data collection worked normally for this
experiment, but the trials did not complete, resulting in incomplete data.

The collected data nonetheless show successful teachings, including composite
ones. Despite the apparently high rate of misrecognition, the system seemed usable.
The participants, who are home users of the robot, could discuss in the way they
are used to with the robot, while also teaching behavior composition. This success
is nuanced by the lack of comparable objective and subjective measurements to
perform statistical analysis.

Finally, it is important to note how behaviors have conflicted during these exper-
iments. Pepper’s standard behavior was always going on, including the engagement
behavior, and was only interrupted when a physical action was requested to the
robot: for instance asking the robot to turn around or to look away naturally
interrupted the engagement, which was resumed as soon as possible.

General-purpose dialogues conflicted with the obey behavior: both responded
to orders like “raise the left arm”. It appeared that the behavior whose implementa-
tion responded the fastest was the one to be selected. Since the obey behavior was
running in the same process as the SemanticAgent, and that the general-purpose di-
alogue implied network communication to take place, the obey behavior was always
privileged. This is a lucky coincidence that underlines the need for more advanced

22https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/ref-
erence/chat.html.

https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/reference/chat.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/ref-erence/chat.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/reference/chat.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/ref-erence/chat.html
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rules for task selection in richer scenarios.
Another conflict has been identified in the collected data. The following piece

dialogue is an extract exhibiting it:

Human (H): Être un porte-manteau c’est garder le bras levé.
Robot (R): Ok.
R: Je me sers surtout des mains pour exprimer mes émotions.

This piece of dialogue shows a double response of the robot to a teaching. It says
“to be a coat hanger is to keep the arm raised”. This is a valid teaching, but it is
not seen as a task association. Instead, it is seen as a single task, as part of a longer
teaching. But at the same time, the base dialogue has programmed reactions on
some keywords of the input. Both responses managed to be performed, revealing
an unhandled conflict.

This concludes this section dedicated on experiments. We reviewed how we
set up experiments of gradual difficulty, in order to reach our objective: having
robots being taught behaviors in real conditions, in homes. We identified that
our technical choices lead to a rate of speech recognition errors higher than in
[Gemignani et al., 2015]. This may be an obstacle in the teaching interaction.
This rate was proven dependent on the theme, between home, business and health
care, despite the cognitive system being designed in a domain-independent manner.
We also learned that participants use various ways to introduce the teachings, and
expect more feedback from the robot. They also expect the behaviors to support
parameters, or achieve a specific goal. All of this should be considered to improve
the teaching of behaviors.

3.6 Conclusion

In this chapter, we presented our approach to achieve the teaching of behavior
composition using spoken language on Pepper robots deployed in homes. Using
NLU after STT, we extract a semantic structure that can be used to describe task
plans. We formalized our behavior model and its ties with semantic frames. The
interaction was modeled too, using pragmatic frames.

We presented a novel cognitive system that does not distinguish the dialogue
responses from the other behavioral responses. This constraint simplified the col-
laboration of components designed independently from each other: their interface
with the rest of the system consists in suggesting tasks, instead of trying to execute
them directly. In return, we need to select the task to perform. This design inspired
the new Chatbot API of the Qi SDK23. Chatbots support a simple form of task
selection. Using a simple and explainable rule to handle the fallback responses was
enough for our scenarios because the general behavior of the robot was simple. We
expect to need more rules to support richer behaviors, in a richer scenario.

23https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/ref-
erence/chatbot.html.

https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/reference/chatbot.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/ref-erence/chatbot.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/reference/chatbot.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/ref-erence/chatbot.html
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The system was then demonstrated in controlled environments, and then in
homes, with no external microphones, in an open scenarios, where the behaviors to
teach were not predefined. The teaching interaction had to support teachings split
down in several utterances, cut before or after “is to” (associating a label to a task
plan) and between steps of enumerations (describing the task plan). However the
speech recognizer has had difficulties with these conditions, leading to a significantly
higher speech recognition error rate than in a comparable teaching experiment by
[Gemignani et al., 2015]. To achieve comparison, we needed to clarify the use of
certain measures, also avoiding potential misinterpretations.

In next chapter, we push our system further. We adapt it to support parametric
tasks, in the same kind of conditions: at home, in an open scenario, on a robot that
is designed to a richer set of interactions.
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In previous chapters we established a system capable of providing a piece of
HRI, through which users could teach behaviors to robots. They would proceed
by composing task plans from known tasks, hard-coded or learned. The compo-
sition is therefore hierarchical, but remained limited to tasks with no parameters.
It was integrated with some baseline behavior, and demonstrated the possibility of
putting together separate behaviors. To achieve this, we implemented the behaviors
as independent components: each would decide independently whether they should
respond to a given situation. In return, they must not perform the responses them-
selves, but instead suggest tasks to the cognitive system, that would select the right
one independently.

In this chapter we rely on the same system, but integrate the teaching with a
richer set of behaviors. One of our main challenges is to resolve potential conflicts
between them, so that they remain functional when put together. Another challenge
is to allow them to contribute to each other. For instance if a new skill is provided
by some behavior implementation, it should be usable in taught behaviors too.
There is therefore a question of interoperability involved.

In previous experiments, we identified a limitation on parametric behaviors:
most of actions encountered apply on other entities. In other words, tasks often
required parameters. For instance, the robot could “say hello”, but not “say hello
to Alice”. The robot could “greet”, but not “greet someone”. Worse, there are
actions that are pointless without parameters, like “go to the kitchen”. Supporting
parameters involves maintaining some knowledge on entities of the environment,
and having a way to learn them.

For an open environment, entity knowledge cannot be predefined. Therefore a
robot must be able to learn about these entities. We propose to let users teach
these entities to the robot themselves. These teaching behaviors participate with
the richness of behaviors.

We detail the set of new behaviors we introduce in section 4.1. Then in section
4.2 we detail how these new behaviors share the entity and procedural knowledge
with the rest of the system. This allows the teaching of parametrized behaviors
described in section 4.3. In section 4.4 we describe how all behaviors provide task
suggestions, and how task selection is achieved: this is where conflicts are actually
solved, using a rule system. Finally in section 4.5 we hold an experiment to validate
our system.

4.1 Proposed Behaviors for a Richer Interaction

For 3 years, the Pepper@Home program have collected feedback on apps deployed
at participants’ homes. Participants often highlighted the lack of understanding of:

• Space: it is limited to SLAM [Durrant-Whyte & Bailey, 2006], obstacle avoid-
ance and going to the charging station on demand.

• Objects: the robot has no notion of object, cannot locate them, and refer to
them.
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• People: it is limited to localizing faces.

The example of space is interesting: using SLAM allows the robot to navigate, but
the users have no way to talk about the spatial environment with the robot. If the
robot was able to put words on the objects and the locations of its environment
it can recognize, it could be referred to by users. If the robot accepts instructions
applying to objects and locations, the user may be able to leverage this knowledge,
and share with the robot a common understanding of objects and locations.

In this section we focus on the behaviors we developed to allow this knowledge
of objects and locations to be produced and leveraged1. The detection and the
segmentation of objects is not available on Pepper. To simplify, we only identify
what we call “points of interests”. A point of interest is an area in space being
of higher visual salience, and distinguishable from the background. Each point of
interest is considered a physical object.

The proposed behaviors allow the robot to, respectively:

• Discover a point of interest.

• Present a discovered point of interest and be told a label for it and for the
location is was seen from.

• Point at a point of interest, by a hand gesture.

• Locate a point of interest, by going back to it.

• Visit a location.

Each behavior is described in a separate subsection, in a systematic manner, by
mentioning:

1. The desired effect of the behavior.

2. The decomposition of the actions it consists in.

3. The knowledge produced (or destroyed).

4. The conditions for being triggered autonomously.

These behaviors are provided by a stand-alone Android application for Pep-
per, Pepper Explore, developed by Shin Watanabe, employee of SoftBank Robotics
Europe (SBRE). The application communicates with our system in the terms de-
scribed in section 4.2, and thus provides new behaviors to the robot. We consider
the total behavior of the robot significantly richer with this set of behaviors, because
it provides new cases of conflicts with the behaviors presented in previous chapter,
in subsection 3.3.3: labeling things is highly contextual, and must be brought au-
tonomously to the user. The labels can then be reused when teaching behaviors, to
produce parametrized behaviors, raising questions of interoperability.

1It was initially planned to also include behaviors designed for learning people through greetings,
and let users reuse this knowledge. It may be done in future works, but it has already influenced
the ontology and the rules presented in this chapter.
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4.1.1 Discover a Point of Interest

This behavior consists in exploring the surroundings, in order to discover new points
of interest. It performs the following sequence of actions:

• Localize and map the immediate surroundings using Pepper’s standard navi-
gation API2.

• Look at a random directions to capture 2D and 3D pictures.

• Analyze pictures to identify a salient point of interest, and estimate its po-
sition: we use BRISK [Leutenegger et al., 2011] on the 2D image to identify
keypoints. The keypoints are clustered using k-means, for 10 clusters. From
the centroid of keypoints of the most dense cluster, we compute a fixed-size
Region of Interest (ROI). Using k-means on the depth map and for 2 clus-
ters, we distinguish the foreground data and compute its centroid. This 3D
location is remembered as the estimated location of the point of interest.

• Go to that location. The robot cannot physically reach it, so it stops as close
as possible to it.

• Look at it and capture 2D and 3D pictures.

• Compare the former pictures with the newer pictures: we use BRISK and
k-means to produce 10 clusters, and compare them with a brute-force BRISK
matching, to find the most similar cluster. If the matching score is above a
certain threshold, the point of interest is confirmed.

• Go back to the initial location.

• Look back to the initial direction.

When the behavior finishes successfully, the robot has stored a 2D picture rep-
resenting the point of interest, the 3D transform of the robot in the world when the
picture was taken, and the timestamp of the picture.

When in the context of our system, this behavior may suggest a task to perform
the exploration autonomously. This happens only when the robot is idle, i.e. when
no human seem having engaged with the robot for a while. We call this state
“idling”, and say the exploration is an “idle task”. Thus, the exploration behavior
takes advantage of the absence of moving obstacles to maximize its success. The
robot explores autonomously every 15 minutes, and does not explore if it has 3 new
points of interest (or more) in mind. As a result, the robot appears curious of its
environment, but not too much, to avoid making it appear too excited or harassing.

2https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/movement/localiz-
ation_library.html

https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/movement/localization_library.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/movement/localiz-ation_library.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/movement/localization_library.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/movement/localiz-ation_library.html
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4.1.2 Label a Point of Interest and a Location

When a new point of interest is identified, the robot needs to label it to be able to
relate to it with a human. This is achieved by asking directly a human about it.

The labeling behavior consists in a dialogue in which:

• The robot shows the picture on its tablet, and asks whether the picture is
interesting. If the human refutes this, the point of interest is forgotten, and
the behavior stops there.

• Otherwise, the robot asks what it is, and captures the response, e.g. “a
bottle”.

• Then, the robot asks for where it was seen, and captures the response, e.g.
“on the table”.

As a result, natural language labels have been captured: one is to associate with
the point of interest, the other is to associate with the location it was seen from.
These labels may be reused to look up back the picture and the transform of the
point of interest and of the location.

This behavior is suggested autonomously when a human comes around and there
is at least one unlabeled point of interest.

4.1.3 Point at a Point of Interest

This behavior makes the robot point at the desired point of interest.
The procedure is as follows:

• Look at the remembered location of the point of interest. The robot may
rotate to achieve this.

• Raise the arm in the same direction as the robot looks.

• Open the hand.

This behavior requires the point of interest to have been labeled previously
with Pepper Explore. It should be triggered when the user requests it, as a direct
instruction, or as part of a behavior composition.

4.1.4 Locate a Point of Interest

This behavior makes the robot confirm and show the location of a point of interest.
It consists in going back to where the point of interest was discovered, and look
again at the point of interest. If the robot recognizes the point of interest, it says
that it is here. Otherwise, it plays a “sad” animation, hence expressing the failure
for potential human observers.

This behavior requires the point of interest to have been labeled previously with
Pepper Explore. It should be triggered only when the user requests it.
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4.1.5 Visit a Location

This behavior makes the go back to the specified location. The location is resolved
and directly used with a Qi SDK GoTo action3. This requires the location to have
been labeled previously with Pepper Explore. It should be triggered when the user
requests it.

In this section we reviewed the behaviors we designed to enrich the behavior of
the robots in Pepper@Home. These behaviors can produce knowledge on points of
interest and locations surrounding the robot. Through dialogue with human users,
it can learn their labels. This potentially allows users to order the robot to point
at or locate points of interest, or to visit locations, hence creating a teaching and
exploration loop that resembles [Nicolescu & Mataric, 2003], and creating a fertile
ground for further learning. To allow the system to execute these behaviors on
direct orders and in new behaviors, Pepper Explore must be put in relation with
our system.

In next section (4.2) we describe how this interoperability with our system is
achieved. The adaptation required to accept point of interest and locations as
parameters of behaviors is discussed in section 4.3. Finally, the conditions for
triggering these new behaviors may lead to new conflicts that the task selection
must cope with. This is discussed in section 4.4.

4.2 Proposed Ontology for Interoperability

As shown earlier in figures 3.1 and 3.5, the behaviors are implemented as inde-
pendent components of the cognitive system. They are interfaced with the system
through:

• The API of NAOqi, the underlying robotic middleware, to sense or prepare
commands.

• A knowledge base, acting like a shared database. When the state of the
world changes, it produces events. Other components can subscribe to these
changes, and publish back processed information.

• Task suggestions: when a behavior implementation believes some action must
be taken, it suggests a task, that may be selected and performed.

See subsection 3.4.2 for more details on our cognitive system. The knowledge base
is symbolic, and is meant to represent the world semantically. For the knowledge
to be actually interoperable between behavior implementations, we must first agree
on an ontology4.

3https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/movement/referen-
ce/goto.html

4A set of representational primitives with which to model a domain of knowledge or discourse.
The representational primitives are typically classes (or sets), attributes (or properties), and rela-

https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/movement/reference/goto.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/movement/referen-ce/goto.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/movement/reference/goto.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/movement/referen-ce/goto.html
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In this section, we summarize this ontology. The full ontology is published
online5. Each category is represented with an Internationalized Resource Identifier
(IRI), under the common root qiknowledge://.

Most categories are borrowed from the DOLCE ontology [Gangemi et al., 2002].
The aim of the DOLCE ontology is to be able to categorize everything in the world,
including from a robot’s perspective [Borgo et al., 2016]. An effort was made to
keep this ontology smaller and simpler than the current IEEE standards (SUMO
or CORA). It is currently being standardized by the IEEE.

Figure 4.1 summarizes the place of our categories in the DOLCE ontology. Then
in the rest of the section, we describe how we share tasks that could be reused by
other behaviors, such as the teaching of behaviors, or the obedience of the robot.

4.2.1 Social Agents

We define the category “Social Agent”, represented by the Internationalized Re-
source Identifier (IRI) qiknowledge://agent/social_agent. This category is bor-
rowed from the DOLCE ontology. It is an agentive social object – it is a social
object that has an intentionality. For example, a society, a community, a cartoon
character or an author. Humans and fictional characters are social agents. Here
we consider that since social robots impersonate characters, we also consider them,
in our interpretation of this ontology, as social agents. The robot is represented
here as the social agent “self”, or more precisely the IRI qiknowledge://agent/
social_agent#self. It is currently the only social agent known to the system.

This could be extended to represent the people the robot meets. When the robot
meets someone, he or she is represented programmatically by a “Human” object6.
This object corresponds to an agentive physical object, which can be located in
space, whereas his or her identity would be a social agent.

4.2.2 Physical Objects

We borrow the category of “Physical Object” from the DOLCE ontology [Gangemi
et al., 2002]. It corresponds to physical embodiments: a bottle, a house, a human in
the flesh. It opposes to social objects: a law, a character, a company; and to abstract
entities: a district, an historical fact. The IRI of this category is qiknowledge://
object/object.

The exploration behavior presented in subsection 4.1.1 produces physical object
entities when it encounters points of interest in the world. It assumes that points
of interest are always carried by physical objects. When a point of interest is given
a name, expressed by a phrase, we associate it to the physical object entity with

tionships (or relations among class members).
— [Gruber, 2009]

5https://gitlab.com/victor.paleologue/teaching-robots-behaviors-ontology.
6https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/perception/refer-

ence/human.html

https://gitlab.com/victor.paleologue/teaching-robots-behaviors-ontology
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-ontology
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/perception/reference/human.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/perception/refer-ence/human.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/perception/reference/human.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/perception/refer-ence/human.html
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Figure 4.1: Extract of the taxonomy of the DOLCE basic categories presented
in [Gangemi et al., 2002]. Entity is the root of the taxonomy. We borrowed the
categories: Social Agent, Physical Object, Space Region and Event.
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the predicate “label” of the RDF Schema, from the W3C standard7. In practice
the label is a localized string, and is meant to be human-readable. Entities of any
category can be associated to any number of such labels.

The exploration behavior also associates these physical objects with locations.
We discuss locations in next subsection.

4.2.3 Locations, Areas and Maps

The exploration behavior presented in subsection 4.1.1 computes the locations of
points of interest. This location is computed relative to the origin of the map in
which the robot localizes itself. It consists in a transform, specifying the coordinates
of a point in the map. This is represented using the category “Transform in Map”,
with the IRI qiknowledge://location/transform_in_map.

The exploration behavior also remembers the position of the robot when it came
closer to the point of interest. This is also a location expressed as a transform in the
map. The behavior for labeling the location ask a name for this location. However,
this label is not as precise as a transform relative to a map: It is rather referring to
some arbitrary area, corresponding to DOLCE’s “Space Region” category. We call
this an “Area”, and represent it with the IRI qiknowledge://location/area. Areas
can be labeled using the “label” predicate of the RDF Schema, like for physical
objects.

DOLCE’s specification suggests that the location can be a property of an object.
But this is not sufficient to reason on objects that may move in time. For such cases,
it is important to distinguish the location of an object from the location in which it
has been seen in at a given time. The former is seen from an “endurantist” point of
view: the location is intrinsic of the object. The latter is seen from a “perdurantist”
point of view: the location is attributed to the event of seeing the object. The next
subsection describe the ontology to describe events.

4.2.4 Events

The “Event” category represents occurrences of a situation. They are represented
with the IRI qiknowledge://event/event. Events may be associated to a time.

When the exploration behavior sees an object, it produces two events. One
event associates the object with a picture and the location of the robot at the time
of occurrence. The other event associates the object with a location. When the
user tells the robot the name of the location of the object, it is associated to the
location of the second event8. Figure 4.2 sums up the knowledge produced by the
exploration behavior.

Events are also relevant to express utterances occurring during dialogues. We
detail these specific events in next subsection.

7https://www.w3.org/TR/rdf-schema/
8It cannot be associated to the location from which the picture was taken, since there is certainty

that that location is in the same area as the object.

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
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Figure 4.2: Template of knowledge graph produced by the exploration behavior
when discovering an object. White nodes are resources, green nodes are localized
strings, red nodes are datetime data, grey nodes are resources private to that ap-
plication. Figure by Shin Watanabe, employee of SBRE.
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Figure 4.3: Template of knowledge graph produced by dialogues. Communication
act event:x was addressed to the robot (agent:self). The robot performs the
communication act event:y, as a response to event:x.

4.2.5 Communicative Acts

When a user says something to the robot, he or she performs an action directed
to the robot. Speech acts exhibit this ambivalence between speech and action,
but accounts only to one side of it: uttering something can be a form of action.
The other side of this ambivalence is that any form of action may communicate
information like an utterance does. Sign language is a trivial example. It is also
common to consider that most of the communication is non-verbal.

Therefore we adopt the notion of “Communicative Acts”: a specific form of event
that represents an attempt at communicating an information, whichever the form
it takes. It is represented with the IRI qiknowledge://event/communication_act.
This notion allows us to consider events like finger-pointing or expressing excite-
ment explicitly within the same framework as dialogues. It complements the efforts
we made in previous chapter to avoid a distinction between dialogues and other
behaviors.

A communicative act is performed by a social agent and is addressed to an-
other social agent. It can be responded to with any form of act, but for now we
consider that all responses are communicative acts. These relations are represented
respectively with the following predicates: qiknowledge://event/act_performed_by,
qiknowledge://event/communication_addressee, qiknowledge://event/responds_to
.

4.2.6 Actions

“Actions” are software objects provided from the Qi SDK, and are detailed more in
annex 5.5.6. They represent potential actions the robot can perform: they encap-
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sulate procedural knowledge. The action is performed by the robot when its “run”
method is called. Actions may also accept parameters in the form of properties,
that can be set before the action is run. Action objects can be carried around over
the network, so they can be shared even between Pepper Explore and our cognitive
system. When a behavior implementation suggests a task, it shares an action object
with our system, which may select it and run it.

For the “obey order” and “compose behavior” behaviors to be able to reuse
these actions, they must always be shared with the system, and be associated with
natural language. To do so we introduce a new object type called “Action Factory”.
An action factory can create a new action on demand, through its “makeAction”
method, so that it can be parametrized for a specific purpose, or for a specific
context. It also provides the association with natural language, in the form of
“semantic templates”, presented in next subsection.

4.2.7 Semantic Templates

Inspired by the model of semantic frames, a “semantic template” associates a situ-
ation, or an action, to natural language. It has therefore the same purpose as the
task labels used in subsection 3.3.3. It is also based on a human-readable localized
string, but adds placeholders for the complements it defines. Placeholders carry
coded information, associating a slot name with a code identifying the role of the
slot in the sentence. For instance, the semantic template “to visit <object:target>”
associates the verb “to visit” with a location complement. The codes are provided
by the semantic analysis library presented in subsection 3.2, and is an internal tool
at SBRE. It includes the following roles:

Object The target of the verb, which is often the object complement.

Receiver The indirect target of the verb, usually an indirect object complement.

Location A location complement.

Time A time complement, locating the statement in time.

Duration A time complement, describing the statement duration.

Cause The cause of the statement.

Manner A manner complement.

The semantic analysis can extract semantic structures from semantic templates.
For statements, it consists in an expression centered on the root verb, with child ex-
pressions. Each child expression has a distinct role in the statement. The template
presented earlier, “to visit <object:target>”, corresponds to the following semantic
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structure:

”visit < object : target > ” semantic−→ (me, target, visit),
Agent(me, self) ∧
Slot(”target”, target) ∧
Statement(visit) ∧Word(”visit”VB, visit) ∧
Time(present, visit) ∧Request(action, visit) ∧
Subject(me, visit) ∧Object(target, visit) ∧

This semantic structure can then be used to compare the template with other
phrases. We use these comparison capabilities in subsection 4.3.1, to parametrize
behaviors.

4.2.8 Conclusion on Sharing Knowledge and Behaviors

In this section we specified an ontology to allow the sharing of knowledge across
the system, and an interface to parametrize actions. Given the behaviors proposed
in section 4.1, it is theoretically possible for the robot to perform actions on unpre-
dicted entities, and support an open scenario.

Moreover, since symbolic knowledge systems are domain-independent, it is pos-
sible to extend our ontology to new domains in the future. Finally, most of the
notions of in our taxonomy are independent from interaction modalities. It could
in theory support multimodal interaction.

In next section, we study how to adapt the teaching of behaviors to leverage
the parametrization of tasks, and the entity knowledge, to produce parametrized
behaviors.

4.3 Teaching Parametrized Behaviors

In this section, we describe how we extend the behavior-teaching interaction pre-
sented in 3.3 to support parameters. We first focus on how we leverage the semantic
analysis to understand parameters. Then we describe how we adapted our behav-
ior model to support parameters. Finally we review what the teaching interaction
looks like in these conditions, to explain how conflicts emerge.

4.3.1 Extracting Parametrized Task Teachings

Semantic templates seem to provide enough information to identify task declarations
(see subsection 3.3.1) and their parameters. In this subsection we describe how to
achieve this.

Given the example semantic template shown in subsection 4.2.7: a semantic
template “visit <object:target>”. It is possible to compare it with the input phrase
“visit the kitchen”, and identify that “the kitchen” corresponds to the slot named
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“target”. This input phrase corresponds to the following semantic structure:

”visit the kitchen” semantic−→ (me, kitchen, visit),
Agent(me, self) ∧
Word(”kitchen”NN , kitchen) ∧
Reference(DEFINITE, kitchen) ∧
Statement(visit) ∧Word(”visit”VB, visit) ∧
Time(present, visit) ∧Request(action, visit) ∧
Subject(me, visit) ∧Object(kitchen, visit) ∧

To compare it with the template, we first check that both are statements, and
that their root verb has the same lemma, “visit”. Then, we check every child: the in-
put phrase matches the template if it provides all the roles declared in the template.
In our example (“visit <object:target>”), the template tells us that the object of the
statement should fill in the slot target. In the input phrase, the object is kitchen, de-
fined byWord(”kitchen”NN , kitchen) ∧Reference(DEFINITE, kitchen). There-
fore, we have target = kitchen.

This semantic representation should correspond to an entity known by the robot.
In subsections 4.2.3 and 4.2.3, we specify how object and spatial entities are repre-
sented in the knowledge. They may be associated with a natural language label. We
continuously gather all the labels of the knowledge perform our NLU on them, to
produce a semantic expression. Therefore, input slot values can be compared with
existing entities in the knowledge. For instance, we may find a semantic expression
equivalent to kitchen, and retrieve its corresponding resource node.

At this stage, we can tell which action corresponds to an instruction, and to
with which parameter it should be applied. The mechanism we use is equivalent
to the one presented in [Perera et al., 2015]: they propose frames with slots, and
can identify frames and slot values from some natural language instruction. Their
frames are analogous to our combination of our semantic templates. And they also
use a knowledge base to look up entities labeled with natural language.

To execute the identified action, first we create a new action object from its
registered factory (see subsection 4.2.6). Then we set the corresponding properties
of the new action with the parameters we identified, in the form of knowledge
resource nodes. The name of the slots must match the name of the corresponding
property for us to be able to transmit the parameters.

This parametrization mechanism does not compromise the extraction of task
teachings we present in previous chapter, subsection 3.3.1. We still define a task
teaching as the association of a task label with a task description. A task label
consists in an infinitive statement, and the task description consists in an enumer-
ation of infinitive statements. The learning of behaviors is still a zero-shot learning
process, consisting in remembering this association of statements. It should be ag-
nostic of the content of the statements. Therefore if a task description now includes
statements corresponding to parametrized actions, the learning of behaviors accepts
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it, with no change in its implementation.
In opposition, teaching a parametric task requires a change in the learning of

behaviors: users have to express the existence of a slot in the task label, and how
it relates to the tasks of the description. We expect the following example to be
usable: “to greet someone is to look at him and to say hello”. In this teaching,
the task label “to greet someone” includes the formulation “someone”, that ex-
presses the indetermination of the social agent. Then, the word “him” in the task
declaration “to look at him” is a coreference to that “someone”. Given there is a se-
mantic template “to look at <looked:object>”, we can build the template “to greet
<someone:object>”, and bind the slot someone to the slot looked of the sub-task.

Our NLU tool recognizes indeterminate clauses and coreferences, so it allows
us to achieve this extraction. We update our task teaching extraction to perform
this extraction, and therefore support the teaching of parametric behaviors. As a
consequence, we must update our formal model. This is the purpose of the next
subsection.

4.3.2 Formal Model for Parametric Behaviors

In this subsection, we extend the formal model presented in 3.3.2 to support para-
metric tasks. The goal of this formalization is to clarify our model of behaviors,
and lay it down in terms that ease its comparison with other models. But we do
not take advantage of this formalization in this thesis.

A parametrized task is just a task t ∈ T . A parametric task is a task tp ∈
Tp, Tp ⊂ T . It is not fully defined, and therefore cannot be performed without
earlier parametrization. Our model in terms that can be compared with existing
works in the future

Given the set of all possible entities in the world O. Parametrization is the
combination of a task tp with a tuple of e ∈ E, denoted (e0, ..., ek), k ∈ N, to
produce a new task t. In other words, parametrization is the application de-
fined as fp : tp, (e0, ..., ek) −→ t ∈ T . For instance, given kitchen ∈ E, visit ∈
Tp,∃visit_kitchen ∈ T, visit_kitchen /∈ Tp, fp(visit, kitchen) = visit_kitchen.
visit_kitchen is a distinct non-parametric task, produced by the parametrization
of the task visit with the entity kitchen.

However, given a tp, fp is not defined for every tuple (e0, .., ek). The set of all
possible tuples is denoted E . Each parametric task has a fixed number of parame-
ters, and for certain parameters, only accept a subset of E. The set of acceptable
tuples to fully define a parametric task t is denoted Et. The set of all acceptable
tuples for all parametric task is denoted ETp .

We define the arrival space of the function p as the set of parametrized tasks
Tparametrized such as: ∀x ∈ Et, ∀tp ∈ Tp, fp(tp, x) = t, t ∈ Tfp . The number of
possible fully parametrized tasks is computed with: |Tparametrized| = |Tp| × |ETp |.
Whenever a parametric task or a new entity is learned, it produces multiple possible
parametrized tasks. The number of new tasks grows learning after learning, at the
condition that new entities elearned are compatible with existing parametric tasks
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tp, or that new parametric tasks tp,learned are compatible with existing entities e.
Learning an entity consists in defining a new, stand-alone elearned, E

i+1 = Ei +
elearned. Similarly, learning a task was described in subsection 3.3.2 as updating
T i+1

known = T i
known + tlearned, and defining tlearned as a sequence of known tasks: ∀k ∈

N,∃t0, ..., tk ∈ Tknown, tlearned = (t0, ..., tk). This is not sufficient anymore, because
it is not applicable to parametric tasks: there is no expression of the required
parameters, nor of the parametrization of sub-tasks. like previously, is not sufficient
anymore. Formally, it is not applicable if tlearned ∈ Tp, or if {t0, ..., tk} ∩ Tp 6= ∅.

Instead, the learned task must be potentially parametric, and its parameters
must bind all sub-tasks’ parameters. This binding can be formalized as a function
dispatching the parameters to the sub-tasks: k ∈ N, t ∈ (t0, ..., tk), x ∈ Etlearned

, d :
t, x −→ y, y ∈ Et. Therefore we define learned tasks as tlearned = (t0, ..., tk, d). They
mechanically inherit Etlearned

from the sub-tasks. Subsection 4.3.1 explains how we
deduce this dispatching function from the natural language.

In subsection 3.3.2 we also defined the association of a task with a semantic
frame as s ∈ S,Express(tlearned, s), where S is the set of all possible semantic
frames. This association is still valid, but we consider it not relevant enough,
since tasks are now associated with semantic templates, instead of semantic frames.
While each semantic template corresponds to a semantic frame, a semantic frame
may correspond to several semantic templates: “to go to <someplace:location>” and
“to walk to <someone:object>” are two distinct semantic templates corresponding
to the same semantic frame about moving from one place to another9.

Therefore we cannot assume anymore that a semantic frame corresponds to
a single task. Depending on the complements used, a natural language phrase
may match different semantic templates, and therefore different tasks, for the same
semantic frame.

Note that two semantic templates with the same lemma for their root verb may
correspond to different semantic frames. For instance “to go to the Eiffel Tower”
vs. “to go mad”. The role of the complements may dramatically alter the meaning
of the statement. Similarly, the categories of the entities expected as parameters
are significant to identify a semantic frame. For instance, to visit a place is not to
be interpreted exactly equivalent to visiting someone. The latter is ambivalent, and
also corresponds to meeting someone. Therefore the association with a semantic
frame is really specific to the considered semantic template, that should be as
detailed as necessary.

4.3.3 Interaction Patterns for Parametric Behaviors

A priori we consider that the teaching interaction patterns remain similar as in
subsection 3.3.3. Due to the new behaviors introduced to support parametric be-
haviors, we predict that conflicts may emerge.

9Berkeley’s FrameNet calls this frame “motion”, see https://framenet2.icsi.berkeley.edu/
fnReports/data/frameIndex.xml?frame=Motion.

https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Motion
https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Motion
https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Motion
https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Motion
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User Robot

1. Ask
2. Answer 3. Confirm

Table 4.1: Usual pragmatic frame involved when asking if an object is interesting,
its label, or the label of a location.

First, the teaching instructions require a higher cognitive load for the users.
We describe them in subsection 4.3.1. Not only do they have to think about a
verb, but also they have to articulate the parameters properly. It may lead to users
making pauses during the speech: [Jou & Harris, 1992] show that the pauses in
speech production are increased when the speaker’s attention is divided. Pauses in
speech are also used to measure the cognitive load [Gorovoy et al., 2010, Khawaja,
2010]. For example, they might cut their sentences between the verb and the
complement. They may also do these pauses as an interactive way to make sure the
robot understands the teaching. These considerations about pausing are specific to
spoken interaction, and do not appear when working solely on transcriptions.

Then, with the behaviors presented in section 4.1, the forms of interaction should
be richer. It is visible at the level of the pragmatic frames. In addition to the frames
found in tables 3.1 and 3.2 in previous chapter, the robot should exhibit the frame
shown in table 4.1.

Finally, and regardless of the pragmatic frames, the behaviors for asking about
points of interest or locations expect replies like “yes”, “the bottle of oil” or “in
the kitchen”. These utterances are hardly understood outside of their context. It
is possible that the fallback behavior expressing the misunderstanding of the robot
gets triggered, or the baseline dialogue behavior, instead of the asking behavior.
In previous experiment, we encountered this kind of conflict, see subsection 3.5.4.
This kind of conflict could be solved by taking advantage of this notion of context,
and let the behavior implementations share their intentions or goals, so that the
task selection can solve such conflicts.

In the next section we explain how conflicts are solved by the task selection,
using rules that can apply to the behaviors’ goals. These rules are then tested in
Pepper robots at home, in section 4.5.

4.4 Rule-Based Task Selection

In section 3.4 we introduced an example interaction rule that could serve action
selection in a system where different behaviors are designed independently. In this
section, we explain how we scaled up the task selection: we annotate tasks with
goals, and then use a rule-based system to select them: a planner.

Rule-based decision-making is a typical problem of AI. It produces explainable
results, and therefore supports meta-cognition: the ability to reason about the
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interaction itself. According to [Chernova & Thomaz, 2014, p.11], the best learners
are capable of using this form of meta-cognition at their advantage. See our state of
the art, in subsection 2.1.1, for more details. This section then describes the rules
we developed for our research.

In this section we support the benefits of a goal-oriented approach, and develop
how it leads to solving planning problems.

Then this section describes our improved cognitive system integrating the plan-
ning system. We detail the changes in how actions are suggested, but also how
action factories are shared with the system. We face and solve the challenge of
putting together task suggestions that have competing goals, thanks to a rule sys-
tem.

Finally, we focus on the rules we defined, and determine what information be-
haviors must share for the planning system to apply the rules.

4.4.1 Goal-Oriented Approach and Planning

The task selection component (see figure 3.5) should select which task is suitable
for the current situation. It is allowed to know the state of the world, through the
shared knowledge base. It may know of the entities defined in section 4.2, but also
of all possible actions, and of the currently suggested tasks.

As explained in section 3.4, behaviors are the components responsible for know-
ing whether the conditions demand performing a task. They suggest tasks only
when it is relevant for them10, with no knowledge of each other: they are designed
independently.

Conflict arises when several behaviors suggest tasks at the same time11. The
task selector must decide which one best suits the situation, or in which order to
perform them. This cannot happen without extra information about the suggested
tasks: why they should run, or what they try to achieve.

In AI, these two pieces of information can be formalized under the same notion
of goals: using logic, the reason why something should be done can always be
expressed as a goal state of the world. The state of the world can then be changed
by performing an action, which has an effect on this state. The goal-oriented
approach implies to select the right action to perform given a current state, a goal
state, and the effects of the actions. This kind of problem is well researched in the
field of AI, and produces explainable solutions. Note however that the explanation
is limited, if the reason why goals were set cannot be explained.

To apply this in our system, behavior implementations should mention the goals
of the tasks they suggest, and all their effects. This can be achieved for any task
suggestion, including hard-coded ones. By default, if a task suggestion does not

10We view behaviors as independent agents that take decisions for themselves. Nonetheless, they
are arbitrary programs, that do not require to be “intelligent”.

11Exact simultaneity never really happens. There are always some race conditions that may
bring one suggestion before the other. But this state is ephemeral and does not allow anything to
visibly happen on the robot.
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specify its action’s goals and effects, a self-fulfilling goal / action pair is generated:
the action’s effect is to acknowledge the performing of the action, and the goal is
to acknowledge the performing of the action. Task suggestions have therefore a
dual role: we distinguish the goal suggestion, from the announcement of a potential
action, similar to an action factory. Then, when a goal can be fulfilled by an action,
this action is selected and scheduled for execution: it becomes a task, that has been
accepted by the system.

The problem of finding the right action(s) to fulfill a goal can be solved by
symbolic planners. Symbolic planners are sometimes found at the core of some
cognitive systems used for teaching behaviors (see sections 2.4 and 2.4). They are
also found for scheduling HRI tasks, like in [Petrick & Foster, 2016, Sonenberg et al.,
2016]. They seem adequate to implement a goal-oriented and rule-based system for
task selection.

In subsection 2.4.2, we review some planning solutions, and their corresponding
behavior models: Hierarchical Task Network (HTN), Planning Domain Description
Language (PDDL), or direct applications of Markov Decision Process (MDP). We
choose to work with the Planning Domain Description Language (PDDL) because
of its potential support of durative actions [Fox & Long, 2003]12, preferences and
metrics [Gerevini & Long, 2005] so that to weigh in priorities. We choose the planner
called fast-downward13 because it is actively maintained and has been for several
years. However we consider there are potentially better-suited planners presented
in [Baier & McIlraith, 2008], a study on planners supporting preferences.

Using a planner may also facilitate the support for goal-oriented task teachings,
that we observed in the experiment described in subsection 3.5.2. It means that
the user may implicitly describe a complex sequence of actions, by describing a goal
state. Moreover, the sequence of actions may be adapted depending on the current
state of the world, skipping unnecessary tasks in a plan.

To produce plans, a planner needs the description of all the possible actions and
of their parameters, the knowledge of an initial situation, and a target situation,
the goals. We defined in section 4.2 a specification to share parametric actions, and
ways to share some knowledge on the current state of the world.

In next subsection, we describe how we collected tasks, knowledge and action
factories for the planner-based task selector.

4.4.2 Building Problems from Task Suggestions

The notion of actions found on Pepper with the Qi SDK integrate an action-centered
paradigm14 that we try to respect as much as possible in our research. Indeed, we
try to apply our research in a way that is intrinsically compatible with Pepper. On
the other hand, the Qi SDK helps us to share actions across components of the

12A durative action not only produce effects as a result of completing the actions, but also while
the action is running.

13http://www.fast-downward.org/
14This action-centered paradigm is shared with ROS.

http://www.fast-downward.org/
http://www.fast-downward.org/
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(define (domain exploration)
(:requirements :strips :typing)
(:types qiknowledge_location_area)
(:constants visit_event - event)
(:predicates (occurred ?e - event))
(:action visit

:parameters (?area_to_visit - qiknowledge_location_area)
:precondition ()
:effect (occurred visit_event)))

Figure 4.4: PDDL description of the “visit” action.

system, thanks to a mechanism of “remote objects”, explained in annex 5.5.6.
We propose a component named “Action Pool” to gather actions shared by

behaviors. When behaviors register themselves in the system, their action factories
and their task suggestions are gathered together in the Action Pool.

Action factories provide some semantic templates (see subsection 4.2.7) and a
PDDL description of the action’s preconditions, parameters and effects. To be
valid, this PDDL content must describe a full domain, declaring types, predicates,
and possibly constants. Figure 4.4 shows an example PDDL description of the
action factory for the action “to visit”. Note that it has a self-fulfilling effect,
and that it accepts a parameter. The name of the parameter corresponds to a
property exposed by the action “to visit”. The type of the parameter is specified as
qiknowledge_location_area. It is a direct translation of the corresponding IRI of
the category of the accepted entity: an area15 (qiknowledge://location/area). The
Action Pool associates the action factory with the PDDL action, and then merges
the PDDL description with all the other PDDL descriptions already gathered.

Task suggestions however, do not provide semantic templates, and provide a
richer PDDL description. Not only they describe an action within its domain, but
they must also explicit their goal, and its accompanying PDDL problem. The goal
description includes a partial view of the world (the known entities and their current
state), and declares what state should be reached. The Action Pool associates each
task suggestion with their PDDL action, and merges all the PDDL descriptions
together (including the action factory’s).

Our problem of supporting competing, if not conflicting, behaviors finally man-
ifests in the technical challenge of merging the PDDL goals: if goals conflict, plan-
ning is impossible. This is called an oversubscription problem, and is usually solved
using partial satisfaction planning. We propose to use rules to select the most im-
portant goals to satisfy. This approach is inspired by the work of [Wilensky, 1981]
on meta-planning.

A priori all goals are relevant, and there should be no direct consideration of
which behavior suggested it. The system should try to satisfy as many goals as

15See subsection 4.2.3.
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template <typename T>
struct SetPriorityComparer
{

std::vector<T> priorityList;
bool operator()(const std::set<T>& lhs, const std::set<T>& rhs)
{

for (const auto& priority: priorityList)
{

if (lhs.count(priority) > rhs.count(priority)) return true;
if (lhs.count(priority) < rhs.count(priority)) return false;

}
if (lhs.size() > rhs.size()) return true;
if (lhs.size() < rhs.size()) return false;
return lhs < rhs;

}
};

Figure 4.5: C++ code for sorting all possible combinations of suggested goals, with
respect to an ordered list of priorities.

possible, and at best, satisfy all of them. Therefore the first goal the system should
try to achieve is the and-combination of all the goals. More formally, given the set
of goals G = {g0, g1, ..., gk}, k ∈ N, we try to satisfy the goal ∧

G = g0∧g1∧ ...∧gk.
Then, and-combinations of all subsets of the goals can be tried, from the largest to
the smallest. The set of all possible goal combinations is:

G =
∧

Gsub∈P(G)
Gsub

Then, we order G by descending number of involved goals, and arbitrarily if equal.
For example, given 3 goals a, b and c, we would try to plan for the following sequence
of goal combinations: (a ∧ b ∧ c, a ∧ b, a ∧ c, b ∧ c, a, b, c). There are more efficient
ways to compute partial satisfaction solutions, but it appeared that this solution
was sufficient in our case.

A goal can be prioritized by starting the planning attempts with the subsets
containing that goal. A list of goals of decreasing priority can be define with a
similar algorithm. We compute G and then order it according to a priority list,
computed by the application of rules on the current set of goals G. It consists in a
k-arrangement of G, ordered by decreasing priority. Figure 4.5 details the sorting
algorithm we wrote. This ordering maximizes the chances to find a plan respecting
the goal prioritization rules. Nonetheless, the system remains domain-independent:
it is agnostic to the details of the rules.

Finally, it appears that rules are defined prior to the goals, and that the goal
selection can only be useful if the goals are described within a specified ontology.
In section 4.2, we specified one to support the contents of our experiment. Action
factories must respect this ontology if they want to be used by the system. Tasks
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suggestions, and their goals, must respect it too to be selected by the rules, but
also to benefit from potential goal satisfaction maximization. This consists of an
additional incentive to respect the interoperability of the system16.

In next section we describe the various rules we designed for our experiment.

4.4.3 Rules for HRI Tasks

By putting our system together with the behaviors enumerated in section 4.1, we
faced the challenge of defining the rules properly, and the goals accordingly. To-
gether, rules and goals strongly impact the HRI. The rules we propose here were
designed with as least a priori as possible on the content of the behaviors. As a
consequence they focus mostly on considerations of pragmatics, defining in more
general terms how the interaction should unroll.

4.4.3.1 Responding to Communicative Acts

Our first rule is designed to implement the respect of the speaking floor. In the
previous chapter – in subsection 3.4.2 – we explained how we avoided having the
dialogue management dictating the rhythm of the interaction, and reconstructed
the speaking floor by selecting only the first response received. In this chapter, we
express this rule explicitly, so that it integrates into our system, which is domain-
independent.

The previous implementation of this rule relied on the knowledge of task sug-
gestions, which is not accessible anymore from PDDL domains. Instead, we make
explicit the input communicative acts (see 4.2.5). They appear in the PDDL
domain as a constant, for instance input - qiknowledge_event_communication_act
17. The actions producing a response to them make explicit that intent, through
their effect. For instance, when action plans to produce a response declared as
response - qiknowledge_event_communication_act, its effect would state: (and (
qiknowledge_event_responds_to response input)(was_responded_to input)). Note
that the predicate
(qiknowledge_event_responds_to

?input - qiknowledge_event_communication_act
?response - qiknowledge_event_communication_act)

directly corresponds to the predicates defined in our ontology.
As a precondition, dialogue response actions also state they are not worth be-

ing performed if the input communicative act was already responded to: (not (
was_responded_to input)). This alone allows the planner to select one and only
one task to respond to the user’s input. The rule identifies these responses, so that
they can benefit from prioritization.

16In software development, the price of complexity is high, and must be balanced by strong
incentives, if not necessities.

17There has been a confusion in the implementation, which mentions communication acts instead
of communicative acts.
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4.4.3.2 Avoid Misunderstood Input Acts

In this context, replying that the robot did not understand is an application of the
response rule described in 4.4.3.1. But replying only as a fallback, when no other
response was found, requires an additional rule.

A lack of response means that no behavior is considered relevant to respond to
it. Note that a communicative act may be responded to by any form of act, and
does not necessarily involve a speech.

It can be assumed that a behavior refraining from providing a task suggestion
in response did not find anything it is designed to process, and does not know what
to do about it. In that case, such behavior would have not recognized, or in other
words, not understood, the input communicative act.

Otherwise, if the behavior had understood the input, but did not provide any
feedback, it could confuse the users: in human interaction, we expect a minimal
response to express good understanding in a discussion. Such response may include
staying purposefully still and silent. It is nonetheless an active task, that should be
suggested, as a response to the input communicative act.

Therefore we assume it is safe to consider that if a behavior had something to
do about an input communicative act, it would suggest a task responding to it.
And therefore, it is safe to assume that if the “not understood” fallback task is
performed, the communicative act has effectively misunderstood.

The predicate to express this is defined as follows: (was_misunderstood ?c -
qiknowledge_event_communication_act). We declare the “not understood” task has
for effect to declare the input communicative act as misunderstood. We add a rule
that produces an additional goal, stating that the input communicative act should
not be misunderstood.

4.4.3.3 Staying in Context

The behaviors implementations for the basic dialogue, the teaching of behaviors and
for the labeling of points of interest and locations, all expect to take several speech
turns to achieve their purpose. It is important that when a teaching is started, the
associated behavior keeps some priority. For instance, if a behavior autonomously
decides to perform some task during a teaching, we would prefer that the teaching
finishes before allowing these other tasks to be performed.

We introduce a notion of behavior context to achieve that distinction between
the tasks. Behavior contexts are entities of type context. An action can depend on
this context, or lead the context to change, by using the predicate (in_context ?c
context). We add a rule privileging the actions that do not change this context,
so that the interaction tries to preserve its continuity. It is similar to a notion of
topics, and to a rule to avoid responses off-topic.

In the current implementation, we automatically attribute a context to every
task suggestion: their parent behavior. Hence the task selection favors tasks sug-
gested by the same behavior that suggested the latest task successfully performed.
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For instance, if a behavior “Greet people” suggested an action “Say hi”, we would
encounter an action action_say_hi, with for effect (in_context greet_people).

4.4.4 Conclusion on Rule-Based Task Selection

The proposed rule system should support the teaching of parametric behaviors in a
rich scenario of interaction, implemented by behaviors implemented independently.
It uses a planner to perform a large part of its symbolic, domain-independent rea-
soning. The rule system allows a selection of goals to be satisfied in priority. That
selection is dynamic, and relies solely on the state of the world, and not on prior
knowledge of the behaviors. In the next and final section, we set up an experiment
to demonstrate the system, and check whether its promises were kept.

4.5 Experiment

In this section we describe our experimental protocol, the deployment of the exper-
iment in Pepper@Home, the data collection and our results.

In the previous experiment, in subsection 3.5.4, we intended to demonstrate that
a teaching interaction in an open scenario was possible, but with a simplified model
of behaviors. We deployed it in real conditions, and for the first time faced the
challenge of having the teaching behavior compete with the pre-existing behavior
of the robot.

In this chapter, we describe a behavior model that would accept parameters,
and may be more suitable for real-world instructions. We shall test whether it is
better accepted, and whether it remains usable despite the complications, using the
same measures as in previous experiment.

To support parameters in an open scenario, we need to allow the teaching of
entities in the world. The behaviors proposed in section 4.1 enable the open learn-
ing of objects and locations. Adding these behaviors to the system produces new
conflicts that our rules should solve automatically. This experiment should reveal
whether other conflicts were left unhandled.

The experiment is held with Pepper@Home users, who live with the robots,
with as little intervention from the experimenter as possible. It supports French
and English, so that to rule out foreign language proficiency from the source of
errors.

The full details of the experiment are online18.

4.5.1 Experimental Protocol

11 participants interact with a robot according to various scenarios, each tested in
a different phase:

1. The robot explores its surroundings and looks for points of interest.
18https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-

ee/master/5%20-%20Rich%20Interaction.

https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tree/master/5%20-%20Rich%20Interaction
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-ee/master/5%20-%20Rich%20Interaction
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tree/master/5%20-%20Rich%20Interaction
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-ee/master/5%20-%20Rich%20Interaction
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Figure 4.6: Screenshot of the phase 2.a). It runs a regular chat, and displays
recommendations about what the users can say to the robot.

2.a) A.k.a. “Regular”, a regular chat interaction, with the default content that
served as a baseline of previous experiment.

2.b) A.k.a. “Teaching”, the teaching interaction alone, supporting parameters.

3. A.k.a. “Mixed”, the mix of all the behaviors: regular chat, behavior teaching,
exploration and teaching of points of interest.

In phase 1, the participants are obliged to let the robot run the behavior for
teaching points of interest. Prior to the interaction, they have been told that they
would have to let the robot explore, and accept to give their names to the robot.
Once the robot knows one person and one point of interest, the phase 1 can finish,
and participants can jump to the rest of the experiment. They jump to either phase
2.a) or 2.b), according to a random choice, and then jump to the other phase 2.

In 2.a), participants get accustomed to the baseline chat contents. It looks like
the ABC application, and with different colors. See figure 4.6. They discuss for a
short period of time with the robot, and then are asked to reply to a questionnaire
evaluating the usability of the chat on the System Usability Scale (SUS) [Brooke,
1986]. This scale is based on 10 questions, replied to on a Likert scale, from which a
system usability score can be computed. This score is used to peform comparisons,
and is not meaningful by itself.

In 2.b), participants learn to teach behaviors to the robot. Given written in-
structions on the tablet (see figure 4.7), they are told formulate behavior teachings,
including composite and parametric ones. They are given 10 minutes to teach
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Figure 4.7: Instructions presented to participants in the phase 2.b), to explain how
to teach behaviors to the robot.

as many behaviors as they can. We collect all the utterances and the effectively
taught behaviors to compute the measures that were used in previous experiments
(see section 3.5). We also record the audio to be able to identify speech recognition
issues.

In phase 3., the participants are asked to perform some teachings again, this
time on a configuration that has all the behaviors active. The screen (figure 4.8)
shows both the teaching instructions and the recommendations from the regular
chat. We collect the data to perform the same measures as in the two previous
phases. The controlled experiment finishes in this phase.

In the last questionnaire presented to the users, we add the following additional
survey:

• I feel more connected with the robot now.

• I think it is more worth interacting with the robot now.

• I find the robot entertaining.

• I find the robot more entertaining than before.

• I find the robot useful.

• I find the robot more useful than before.

• What behavior(s) did you refrain to teach?
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Figure 4.8: Instructions presented to participants in the phase 3, to explain how
to teach behaviors to the robot, while letting baseline chat suggestions visible.

• What behavior(s) would you have liked the robot to know already?

• Any other comment about the behavior teaching interaction?

Replies are expected on the Likert scale, between “strongly disagree” and “strongly
agree”, to the exceptions of the three last questions, that expect free text answers.
Question order is always randomized.

4.5.2 Deployment in Pepper@Home

This experiment targets Pepper@Home users, owning a Pepper 1.8a robot. They
are provided installation instructions to bring together all the required components
for the experiment.

Prior to our experiment, the NAOqi system was updated to the version 2.9.3.114.
We compiled all our NAOqi packages against corresponding toolchain. When trig-
gering the automatic update of the NAOqi applications, we install:

• Version 1.3.7 of the semantic package, providing the right version of the Se-
manticAgent, implementing our system, and the tool to upload the recordings.

• Version 2.0.0 of the multimodal recorder package, providing the recording
tools.

• Version 1.3.3 of the action planning package, providing the ActionPlanning
service, producing plans out of PDDL descriptions.
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Then, when triggering the automatic update of the tablet applications, we in-
stall:

• Pepper Explore version 1.5, the autonomous exploration application, that
works stand-alone, but also registers a behavior in the SemanticAgent.

• DEF, version 2.1.6, providing the updated experimental protocol.

Participants are asked not to try the experiment before all these updates are
deployed on their robots. Data collection as soon as possible, and sends the data
on a server owned by SBRE, accessible only to the system administrator and the
experimenters. The relevant details of this setup are already presented in previous
experiment, in subsection 3.5.4.

4.5.3 Results and Analysis

The majority of the participants succeeded in teaching new behaviors to the robot,
in real conditions, but not all of them. In this subsection we analyze further the
collected data, as well quantitative as qualitative.

We first focus on the impact of mixing the regular chat with the teaching of
behaviors. Then we evaluate the performance of the teaching observed in this
experiment, between the two teaching phases. Qualitative data leads us to high-
lighting transparency issues, and provide feedback on the regular chat, as well as
on the exploration behavior. Feedback concur to question the understanding of the
interaction by the robot. Finally, we share what the participants said they wanted
the robot knew, and what they wanted to teach the robot.

The measurements were produced so that to be comparable with previous ex-
periments. In section 3.5, we define an initial set of measures, that we refine as
the analysis goes on. We capitalize on these refinements, and introduce a new re-
finement about At w Err : it has been interpreted as the time between teaching
successes, whereas it is not applicable to the phase 3 (“mixed”): people can do
different things than than teaching behaviors. Instead, we must take into account
when new teachings are started, and evaluate the time to achieve a teaching rela-
tive to its start19 When comparing with the At w Err of previous experiments, we
recompute it accordingly.

In previous chapter we highlight that the MED measure on reformulations is
not adequate to compare the behaviors that the users intended to teach with the
behaviors the robot actually learned. We propose instead to measure the MED on
the sequence of tasks, denoted LRt. We end up with the following grid of measures
to express the results:

• The number of utterances (or instructions) provided by the users (IC ).
19Given that we track the start of new teachings, we also get to know when teachings are

abandoned. Further evaluation of this is possible.
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• The number of instructions misrecognized due to automatic speech recognition
(Err), and the corresponding rate (Err%).

• The number of instructions misrecognized due to the natural language under-
standing (Mis), and the corresponding rate (Mis%).

• The average time between the beginning of the teaching of a task, and its
successful achievement, including the time lost due to any kind of error (AT
w Err).

• The percentage of behaviors that were successfully taught, among the total
number of behaviors attempted to be taught (TS%).

• The Levenshtein ratio between the behaviors intended to be taught and the
behaviors actually learned (LRt).

• The percentage of users who managed to teach behaviors (UTS%).

• The percentage of users who managed to teach composite behaviors (UTSC%).

And as subjective measures:

• How successful the teaching felt. It is the Experienced Teaching Success
(ETS).

• How easy the interaction felt. It is the Experienced Interaction Ease (EIE).

• The system usability score (SU ).

Table 4.2 summarizes these measures on the collected data.

Effect of Mixing on the Regular Chat

Our cognitive system, its goal-oriented task selector, its rule system and our pro-
posed rules and behaviors have been mixed with the regular chat, initially provided
by the app ABC. That challenging integration has been achieved, without relying
on a centralized dialogue system, as most of other cognitive systems do. This could
not have been possible if this regular chat content was not provided as Qi SDK
Chatbot 20.

However, the regular chat appears to be affected by being mixed with the other
behaviors. Indeed, conflicts may have occurred. There have been instructions that
triggered both the regular chat and the obey behavior, e.g. “Regarde à gauche”
(look to the left). It appears that the regular chat also provides some basic actions.
The conflict was properly solved by the rule for staying in context (subsection
4.4.3.3). There were few exceptions where conflicts did not appear solved, but the
technical analysis supports that this is a bug, due to a race condition: one behavior

20https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/ref-
erence/chatbot.html.

https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/reference/chatbot.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/ref-erence/chatbot.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/reference/chatbot.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/ref-erence/chatbot.html
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Measure Regular Teaching Mixed All

IC 128 382 315 915

Err% 21.1 % 43.2 % 32.4 % 34.2 %

Mis% 27.5 % 28.5 % 42.2 % 33.0 %

At w Err N / A 23.0 s 26.2 s 24.0 s

TS% N / A 39.0 % 25.8 % 34.4 %

LRt N / A 54.8 % 66.7 % 58.4 %

UTS% N / A 70.0 % 33.3 % 72.7 %

UTSC% N / A 40.0 % 11.1 % 45.5 %

ETS N / A 1.5 / 5 1.7 / 5 1.6 / 5

EIE N / A 1.9 / 5 2.1 / 5 2.0 / 5

SU 26.9 17.9 17.9 21.3

Table 4.2: Measurements on the collected transcripts, grouped by phase.

Phase Mis ¬Mis All

Regular 60 158 218

Mixed 133 182 315

All 193 340 533

Table 4.3: Contingency of NLU errors between the the “Regular” and the “Mixed”
phases. Independence test produces χ2 = 12.1 and p = 1.70× 10−2.

suggests a task faster than the other; it is selected, run, but before completion, the
other behavior suggests another task, that has a higher priority, due to the rules.
The first task is canceled, and the second is run. However, due to technical reasons,
the cancellation is not taken into account fast enough, so the robot had the time to
utter its response fully. The conflict was resolved, but too late, so the participants
sometimes, but rarely, encountered it.

There is another important source of change: the speech recognizer is pre-
configured in ABC’s regular chat, and this pre-configuration is lost when it is mixed
with the teaching, because of constraints of integration. It should have a negative
impact on Err%. We check this with statistical analysis, but fail to confirm this
change is significant (χ2 = 8.17, p = 0.0854 > 0.05). However, the negative impact
on Mis% is significant, as shown in table 4.3, (χ2 = 12.1, p = 1.70 × 10−2). It can
be explained by NLU errors inherent to the teaching of behaviors.
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This change also impacted the SU negatively. This change is significative (t =
2.87, p = 1.42 × 10−2). We did not achieve a seamless integration of the teaching
with the chat. We believe the lower speech recognition accuracy is one of the causes:
the more errors, the lower usability score (monotonic relationship). We verify this
using a Spearman correlation between SU and Err% (r = −0.671, p = 8.55× 10−3)
and confirm this correlation.

Teaching Success

The teaching behavior allowed the majority of the participants to achieve a teach-
ing within 10 minutes (UTS%=70.0%), when explicitly requested to do so in the
teaching phase. In the mixed phase, it is normal that fewer participants succeeded
in teaching behavior, because they were not explicitly requested to do so. Instead,
they could simply chat with the robot if they found it was more comfortable.

However, the rate of successful teachings TS% appears different in the different
phases. But given our data, this change is not proven significant: t = 1.46, p = 0.162
between the teaching and the mixed phase and t = 0.896, p = 0.383 between the
teaching experiment using spoken language and the teaching phase of the current
experiment.

At a glance, it appears that many “successfully” taught behaviors are not re-
ally what the users meant to teach. Interestingly, half of users happened to teach
composite behaviors (UTSC%=45.5%), demonstrating the reusability of the taught
behaviors. This success however is to be mitigated: the LRt of 58.4% tells us that of
all the procedural knowledge produced by the teaching, less than a half corresponds
to what participants intended to teach.

Some participants highlighted that they failed to teach some behaviors because
of recurrent speech recognition errors. Moreover, they failed to test the taught be-
haviors, because of the speech recognition errors as well. For example, in French,
the example provided in the teaching phases included the verb “recevoir” (greet).
At the imperative mood, “reçois”, it is homophone to the 3rd person conjugation
“reçoit”. Knowing this limitations, some behaviors were refrained to be taught, be-
cause participants could predict they may be hard to understand at the imperative
mood. These participants also tried to work around this issue by using indirect
speech, like “j’aimerais que tu reçoives” (I would like you to greet). It appears
that supporting a variety of indirect speech may allow users to work around the
ambiguities of the spoken language.

Some participants visibly tried to close the teaching by themselves, by saying
“c’est tout” (that’s all), which mirrors the robot’s utterance “c’est tout?” (is that
all?). The teaching interaction can be easily improved by supporting this form of
control on the teaching.

Transparency Issues

Teaching should be an iterative process where the subject gets refined, as it is
exchanged back and forth between the protagonists. Here the participants often
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failed to ask the robot to perform the behaviors while they were teaching them.
When they managed to ask the robot to perform a task, the robot would start it
with no feedback, so well that the user did not even know it provided a well-formed
order to the robot. This is a transparency issue.

Four participants complained of transparency issues. For instance, it is hard
to understand when the robot is trying to learn from our instructions, or if it is
waiting to execute instructions, or something else. They feel like there are modes,
but cannot grasp them. Because of that, they cannot work around the limitations or
the misunderstandings of the robot. Often, when the robot believed the instruction
could fit in a recipe the user seemed to teach, the robot said “okay”, with no
other detail. Users could not tell what was the robot okay with, and could not
correct the misunderstanding. By recalling what the robot is okay with, this kind
of misunderstandings can be corrected.

This bug, where “okay” is responded indefinitely, shows that the task selection
is vulnerable to behaviors abusing one of the system’s rule. It could be improved by
providing few exceptional rules to leave locked interaction patterns21, associated to
some meta-interaction behaviors. In other words, we should be able to talk about
the ongoing interaction with the robot.

Most participants assume the responsibility of the good understanding of the
robot. They know they are more intelligent than the robot, and accept that the
robot cannot guess what they mean. They would provide some feedback saying
that they could have achieved the teaching if something was different.

One participant suggested adding some feedback to distinguish the label from
the recipe.

Comments About the Regular Chat

The regular chat from ABC had not been scientifically tested yet. This experiment
is an opportunity to do so, and collect feedback about it. Two participants said
they appreciated to be guided by suggestions in the phases that included the regular
chat. It gave them incentives to talk to the robot, at the cost of their imagination.
Two participants highlighted that the suggestions were out of context, so they were
not understood or were irrelevant. Participants would prefer having an overall un-
derstanding of what the robot actually knows about, and what it can do, expressed
in a more synthetic manner.

One participant also complained about the inconsistency of the contents. For
instance, there had been an issue with the robot proposing to sing songs, whereas
they were technically disabled in the application. In addition to this issue, the robot
would pretend to understand something, but be incapable of recollecting it. It is
a form of contradiction, and it is regularly tracked down by dialogue writers. The
more the dialogue content is refined, the fewer contradictions remain. However, the

21We find an analogy between these locked interaction patterns, and dead pieces of Petri net-
works.
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ability to recollect requires a deeper understanding of the social interaction, and
the ability to build knowledge related to past conversations with users.

Some participants also complained about the quality of the speech recognition
in the regular phase. So despite a higher accuracy of the speech recognition in that
phase, it still appears problematic.

Feedback on the Exploration Behavior

The exploration behavior regularly failed because of light conditions in homes. Pep-
per is a robot designed for businesses, which are often brighter than homes. There-
fore the localization action was sometimes not well suited for home. It was worked
around by adding light sources in the room of the robot, or by switching rooms the
robot.

When it worked, the robot found objects that were often interesting. These
objects have been successfully reused in a teaching in only few occasions, although
most participants attempted to reuse them. Interoperability has therefore been
demonstrated, despite difficult interaction conditions. But only two participants
managed to ask the robot to perform actions on them. Usually, they failed because
of speech recognition, and of the transparency of the teaching interaction. When
they succeeded, they did not understand that the robot was relocalizing itself before
trying to reach the target object: the robot provided no feedback about its current
activity, nor acknowledged the order was well understood.

In the mixed phase, the exploration behavior is triggered autonomously. It hap-
pened when the robot lost the user after a while, which should not have happened
during the experiment. When this happened, the participants had no idea of what
was going on, and hardly failed to repair the interaction.

Engagement and Issues Reading the Room

The robot is not really aware of who it is talking to. Worse, it disengaged from
3 participants, to look somewhere else around. This betrays the robot’s lack of
understanding of the people surrounding it: it does not really feel the presence of
people, nor is able to recognize them. As a result, users cannot build a relationship
by interacting with the robot.

The robot pretends it knows about the user, and this is quickly confounded by
the user, who end up finding the robot’s behavior deceptive. Instead, if the robot
were honest and explicit about its difficulties to understand people, it may give
an opportunity for users to repair the engagement. That would require a feature
allowing users to draw the attention of the robot.

Thanks to the video recordings, we are able to see the context in which the
experiment was held. People usually have their family around, but they try not to
disturb the experiment. Sometimes the users do other things during the experiment:
they take care of their children, they assist people, comment the interaction with
them, or take notes. They are quickly tempted to switch activity, so that performing
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the experiment is a genuine effort. Interestingly, in the mixed phase the robot
exhibited autonomous behaviors, and happened to ask a participant if an object
found was interesting. When this happened, the participant’s attention has been
drawn back to the robot. But the robot does not realize that: it cannot read the
room, and for now has no way to know whether it can draw the user’s attention for
a teaching, or if it should stay around silently.

What Users Feel and Want

We compute the following statistics expressing specific perceptions about the robot:

• I feel more connected with the robot now: µ = 2.00, σ = 1.26

• I think it is more worth interacting with the robot now: µ = 2.67, σ = 0.816

• I find the robot entertaining: µ = 2.50, σ = 1.22

• I find the robot more entertaining than before: µ = 2.67, σ = 1.21

• I find the robot useful: µ = 2.33, σ = 0.816

• I find the robot more useful than before: µ = 2.67, σ = 1.51

People appear to find the robot slightly more useful, slightly more entertain-
ing. It is overall slightly more worth interacting with the robot, with these new
features. Participants suggested the following behaviors to be already present in
future versions:

• Discuss about the robot’s behaviors: show them, explain them, forget them,
correct them.

• Greetings behaviors: welcoming, saying hi, reply to a smile.

• Look for something on the Internet: a definition, a date, the name of someone.

• Give the weather.

• Talk about food.

• Play music.

• Dance.

They expect to be able to reuse these behaviors to teach new behaviors. Here
are the behaviors they refrained to teach:

• Check some general information on the Internet and do something about it,
e.g. to tell the weather, check the outside temperature and say it.

• Greeting the baby of the family.

• “Not safe for work” behaviors. They require privacy guarantees to do so.
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Experiment IC Err% Mis% At w Err TS%

Teaching 236 44.2 % 43.0 % 23.0 s 34.4 %

[Paléologue et al., 2018] 480 33.8 % 20.4 % 28.7 s 46.4 %

[Gemignani et al., 2015] 163 7.98 % 4.29 % 62.4 s 100 %

Table 4.4: Result comparisons between [Paléologue et al., 2018] and [Gemignani
et al., 2015].

Comparison with Previous Experiments

Using the updated measure definitions presented at the beginning of this subsection,
we proceed to a comparative analysis of these results with the ones of previous ex-
periments. Therefore some measurements, like At w Err, take different values than
presented in previous chapter, in subsection 3.5.3. We can compare the teaching
phase, which is dedicated to the teaching, with the experiment held in [Paléologue
et al., 2018] and [Gemignani et al., 2015]: the user’s only task is to teach behaviors,
therefore the instructions are targeted to teaching. IC and the error rates Err% and
Mis% therefore relates to these instructions, and not to other unrelated dialogues.

In table 4.4, we recall these measurements together, and add TS% to support
why At w Err appears to be shorter in our experiments than in [Gemignani et al.,
2015]’s: it could be due to the fact that our teaching does not support correction,
and that the users are allowed to abandon their current teaching. Users actually
abandon teachings regularly: 34.4 % of the teachings have been abandoned in this
experiment. In [Gemignani et al., 2015], users do not have this liberty, so the
teachings are necessarily successful.

What about the raise of Err% and Mis% between our previous experiment
and this experiment? We do not have enough data to conclude whether these
changes are significant. As we can see, it is difficult to perform comparisons between
experiments without more data. However, these results allow other comparisons to
be performed. We have published the annotated transcriptions and their analysis
online22.

In theory, all of these objective measures depend on what is being taught to the
robot. Because we are in open scenarios, we cannot fix the bias in a certain way,
to make sure to know what we are comparing. Ideally, we should be able to study
these biases a posteriori, by looking at the actual contents of what was taught, and
draw more accurate conclusions on this data. Without this, we cannot be sure of
which detail makes the significant difference between given works, even with the
same measures. There must be a better set of measures: either targeting a more
specific performance indicator, on fixed tasks, but a larger variety of them, and

22https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-
ee/master/5%20-%20Rich%20Interaction.

https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tree/master/5%20-%20Rich%20Interaction
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-ee/master/5%20-%20Rich%20Interaction
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tree/master/5%20-%20Rich%20Interaction
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-experiments/tr-ee/master/5%20-%20Rich%20Interaction
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Session TS% Teaching Attempts

5b594253-7113-4ed5-adaa-bade188e0c9b 0.00% 1

a1560a8d-c1e7-4435-b176-0df6db8556c7 0.00% 6

a7fdd8f6-261e-43f4-ac53-a1f1c223a5e1 0.00% 10

bbf36ca1-957d-493b-a8d3-609be0cb2bc4 25.0% 4

3018b80c-88c6-4d12-b38a-006e03ff2640 28.6% 14

583e730c-d2c3-4604-ad08-e81fe94625e9 28.6% 14

09177fb2-73d1-4830-9db0-bad63d45cf59 33.3% 3

ec3785d2-fd18-4296-90a1-e92e680952ae 45.5% 11

96ff7c2b-0f73-48d1-9c29-e02140931cca 50.0% 6

37740586-ea11-4f56-829e-5b79b7e37372 53.3% 15

361df488-80d8-4677-8a65-a9745cc650f8 71.4% 7

Table 4.5: Rate of successfully taught behaviors (TS%) over attempted teachings,
by session.

applicable to social robots – [Gemignani et al., 2015]’s pick and place tasks are not
suitable for Pepper – or relating to the structure of behaviors, measuring on the
performance of changing producing and modifying these structures.

Moreover, the Mis% measure is for now a general measure. In our configuration,
where behaviors interpret the input independently, we should rather distinguish the
interpretation errors of each behavior. There would be a Mis% measure for each
behavior. We also encountered cases where the behavior could not be performed.
For the user, it made no difference with a case of misinterpretation. Behavior
failures should also be taken into account, and so should be the erroneous conflict
management from the task selector.

User-Centered Study

In this experiment, we managed to have users participating to several phases of
teaching, and of interaction. Each recorded session corresponds to a user, that
we can therefore characterize. For instance we identify that some users were more
proficient than others to achieve the teaching. Table 4.5 presents the TS% indicator
for each session, and therefore for each user.

It appears that some users managed to become proficient in teaching behaviors,
whereas some never succeeded a teaching.
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4.5.4 Conclusion on the Experiment

We set up an experiment adapted from the one presented in previous chapter, in
subsection 3.5.4. It consists in distributing the software presented in this section to
robots in homes, as part of the Pepper@Home project. 11 participants performed
the experiment divided several phases. We collect the data for 3 of these phases,
exhibiting different behaviors:

Regular The regular chat from ABC, serving as a baseline content of what a robot
at home is currently capable of doing.

Teaching Our teaching behaviors, like presented in previous experiments, but with
the support for parametric behaviors.

Mixed The mix of the regular chat, the teaching behaviors, and the exploration
behaviors presented in this chapter.

From this data we compute a summary of the performance of the teachings.
We demonstrate that the change of the configuration of the speech recognizer has
a negative impact on the speech recognition error rate Err%. In turn Err% has a
significant impact on SU, measuring the system usability.

We identify various caveats in the teaching interaction: lack of transparency
and feedback, lack of control, lack of fallback to play around speech recognition
errors, lack of some predefined behaviors. Some of these issues have been identified
since the first experiment in controlled conditions. There is potentially a lot of
performance to gain by fixing these issues. This is a favorable cue, that suggests
that the teaching interaction can become much more usable in the future.

We have not tapped from this potential since that first experiment. As a result,
the teaching interaction remained similar between the first experiments and this
experiment. Therefore we have been capable of attempting comparisons between
these experiments, but due to insufficient data, we could not draw conclusions. We
chose these measures to allow comparisons with some previous works. Now we
question them and suggest that future work should focus on teaching specific tasks,
or on detailing what operations the teachings produces on the behavior knowledge,
and on evaluating the performance on these operations.

Most importantly, we demonstrated empirically that our system was capable of:

• Producing behaviors that are reused, including in other behaviors.

• Producing interoperable knowledge about entities that can be reused in be-
havior teachings.

• Not processing dialogues in dedicated, centralized dialogue system.

• Support unexpected behaviors and objects from an open scenario.

• Evolving in unknown real homes.
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• Exhibit a richer variety of behaviors, and resolve conflicts between indepen-
dently designed behaviors.

As much as possible, we respected the HRI recommendation to draw conclusions
on empirical data, collected about users in their real environment.

4.6 Conclusion

In this chapter, we explained how we extended the cognitive system presented in the
previous chapter. We added behaviors capable of producing knowledge on physical
objects and spatial regions surrounding the robot. It is implemented as a separate
application, Pepper Explore, running in the Android system of the tablet, whereas
our system is installed directly in the robot.

We defined an ontology based on DOLCE [Gangemi et al., 2002] to exchange
knowledge between behaviors, and with the system. We defined a novel interface
to share procedural knowledge with our system: action factories, associated with
parameter specifications and semantic templates, to express these actions in natural
language.

The new behaviors include spoken interaction with humans to label the discov-
ered entities. This interaction conflicts with the other behavior with the robot. In
this chapter we explain that a goal-oriented approach may resolve these conflicts.
We set up a symbolic planner, and combine it with a rule system to promote cer-
tain goals, in order to resolve the conflicts. We implement 3 rules: responding to
communicative acts, avoid misunderstanding communicative acts and staying in
context.

This is integrated in our cognitive system, and deployed on Pepper@Home
robots, for an experiment. We compare the user experience using System Usability
Scale (SUS) [Brooke, 1986] between the baseline dialogue of the robot, the teaching
of behaviors, and the mix of all behaviors. Thanks to quantitative analysis, we
determine that the usability of the baseline dialogue is significantly reduced by the
mixing with the other behaviors. It appears it is rather due to the difference of
configuration of the speech recognizer than to the rise of conflicts.

Most users (72.7 %) managed to perform the teaching. This is a real step
forward for research:

• The robot can be taught new behaviors by composition of known behaviors
using the spoken language only.

• The robot has other purposes than being taught behaviors.

• Behaviors are developed independently, and compete with each other, causing
conflicts that can be resolved using an explainable rule-based system.

• Behaviors can exchange their knowledge of the world, and their procedural
knowledge with each other: they are interoperable.
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• Thanks to interoperability, the number of possible actions of the robot is
multiplied every time a new entity or a new behavior is learned.

• The behaviors and the system are suitable for open scenarios, for which ob-
jects, places, and behaviors cannot be programmed in advance.

• The above has been demonstrated in homes of people living with a Pepper
robot; in other words, in real conditions.

However, thanks to qualitative observations, we identify various caveats in the
teaching interaction: lack of transparency and feedback, lack of control, lack of
fallback to play around speech recognition errors, lack of some predefined behaviors.

To conclude this thesis, next chapter discusses how these issues may be tackled
in the future, and the numerous perspectives this system, and our research, offer.
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In this conclusion chapter, we recapitulate the objectives this thesis fulfills, and
summarize some take-aways.

Then we discuss our model and our cognitive system one last time, to present
a possible generalization. This is the subject of section 5.2. It appears it pro-
vides an interesting ontology, that may lead to new behavioral, and event learning
capabilities.

In section 5.3, we tackle the question of interaction repair. Our results in previ-
ous chapter show that a significant part of the interaction with the robot fails. We
draw some perspectives about how to reduce interaction failure, and it leads us to a
possible generalization on the content of the behaviors, and additional opportunities
for the robot to learn.

There is indeed a lot to learn from the various errors the robot makes, including
from interaction failures. Section 5.4 describes our approach to apply this on a
robot, based on our proposed generalization.

Then we propose new behaviors to implement in the future to confront our
theories, but also, more pragmatically, to improve the experience with Pepper.
We predict they would raise some new challenges, related to interesting research
subjects.

5.1 Conclusions and Take-Aways

This thesis demonstrates empirically the teaching of new behaviors to a robot using
spoken language, with a unique set of constraints:

• The new behaviors are unpredictable: the scenario was open, and the experi-
ment participants have the freedom to invent the behaviors to teach.

• The robot not only can be taught behaviors, but it also has a rich set of
the preexisting behaviors of a general-purpose robot, and competing with the
teaching.

• The behaviors are implemented by separate applications, but nonetheless con-
tributed to the cognitive system with new actions reusable in the teaching, and
knowledge on entities of the world that could be leveraged by these actions.

• The interactions are achieved on an off-the-shelf robot, Pepper, with no ex-
traneous device, in real conditions, close to the wild.

The teaching of behaviors using spoken language is demonstrated with a population
of 11 experienced users, living with a Pepper robot at home. The teaching of
behaviors is supported by a novel cognitive system that is developed to run on
standard Pepper robots. The other behaviors are developed as releasable Pepper
applications. All binaries are available on direct request to victor (at) paleologue
(dot) fr. The cognitive system features:
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• An interface to gather behaviors and action factories from separate appli-
cations. Behaviors may suggest tasks to perform immediately, while action
factories provide actions on demand.

• An interface to annotate actions with natural language, and thus reuse them
in instructions.

• A knowledge base and an ontology to share entities between applications,
allowing other behaviors or actions to reuse them as parameters.

• A goal-oriented task planner that selects which task suggestions are most
suitable to the current state of the world, and the given goals.

• A rule system to prioritize certain goals, and guarantee that the robot: replies
to users, prefer relevant responses, and avoid switching subjects.

• By design, no distinction between dialogue-based behaviors and the other
behaviors. For the system, speaking is an action like any other.

The fact that behaviors are implemented by separate applications that suggest tasks
to perform instead of performing them directly stands out as a novelty. It inspired
the Chatbot API that is already found in the Qi SDK1. It allows a goal-oriented
approach to be experimented by SoftBank Robotics Europe (SBRE) teams, on
Pepper robots. The behaviors deployed with the system supports:

• The obedience of the robot: it would perform the behaviors it is instructed
to.

• The teaching of new behaviors to the robot, by composition of existing be-
haviors, using the spoken language.

• The introspection of known behaviors, that the robot describes in spoken
language.

• The fallback to a generic answer, where the robot says that it did not under-
stand.

• A baseline dialogue to present the robot, talk about various arbitrary subjects
to entertain the user.

• An exploration behavior, that makes the robot discover objects in its envi-
ronment, remembering some of their visual features and their location.

• A labeling behavior, taking the initiative to ask the user about a discovered
object, and about its location. These objects can then be localized and pointed
at on demand, and the locations can be visited.

1https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/ref-
erence/chatbot.html

https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/reference/chatbot.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/ref-erence/chatbot.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/reference/chatbot.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch4_api/conversation/ref-erence/chatbot.html
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The behaviors for obeying, teaching new behaviors and introspecting behaviors have
already been integrated in NAOqi, but not yet exposed to the public.

This thesis is presented as a contribution to Interactive Robot Learning (IRL),
at a cross-roads between Artificial Intelligence (AI), Interactive Task Learning (ITL)
and Human-Robot Interaction (HRI). Besides the demonstration of a teaching of
behaviors using spoken language with unique constraints, and in unique conditions,
this thesis contributes by:

• Establishing an updated state of the art on teaching behaviors to robots using
the spoken language.

• Demonstrating that our teaching of behaviors using the spoken language was
not domain-independent, despite being designed in a domain-independent
manner: it could be due to speech recognition, or to a bias in our Natural
Language Understanding (NLU).

• Demonstrating that users naturally split down their teaching of behaviors
into several utterances. They cut their sentences before or after “is to” and
between steps of enumerations.

• Pepper’s speech recognition error rate is dramatically increased if the speech
recognizer is not pre-configured.

• Refining some existing measures, by applying them to more realistic scenarios,
showing their maturity and their limits.

• Identifying unsupported forms of interaction: introductions, indirect speech,
etc...

• Identifying unsupported forms of teachings: by providing instructions in the
imperative form, asking the robot if it knows how to do something...

This thesis has been an opportunity to build an advanced system that moved
beyond the state of the art. There has been a lot to gain by applying the constant
progress of research in robotics and in AI on a standard Pepper robot. For the
scientific community, because SBRE provided its expertise to develop maintainable
software for Pepper, and an opportunity to deploy the experiments in homes. For
SBRE, because the integration of the system is already well advanced, and may be
reused in future commercial products.

We introduced this thesis with the expression of SBRE’s need to allow users to
adapt their robot’s behaviors according to their needs, without requiring the help of
an expert developer. We believe that the outcome of this work effectively opens the
door to such adaptation, and that the software we produced can be refined to be
truly usable, even for home users. Moreover, we show that teaching behaviors also
implies teaching about objects, places, or people, and understanding and applying
intelligible rules. All of these features contribute to build the confidence that the
robot can understand the world it is thrown into, and that we, users, are in control.
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And this is, above all, what the general public expect from robots they may share
their lives with.

5.2 Generalization on Behaviors

5.2.1 Generalization of Implementation

In the software implementation, we factorized behaviors, tasks and actions under
a single class, “Action”. This was seen as a generalization of the Qi SDK Actions
described in annex 5.5.6.

We consider this class to correspond to a potential procedure, that can be
parametrized through public properties, and run on demand by calling the “run”
method. It appeared to implement well the actions shared through the action fac-
tories described in subsection 4.2.6.

The same class also implemented the task suggestions well: they can be run, but
not parametrized, because their host behavior implementation did it in advance.
Because of this “run” method, the same class also can also serve to implement
behaviors, which are also a procedure, but also exposing task or goal suggestions.
This generalized implementation suggests a broader generalization is possible.

5.2.2 Behaviors Everywhere

From a psychological point of view, anything an agent visibly does is a behavior.
In this subsection, we try to apply this in our cognitive system. The behavior
implementations, that suggest tasks to perform, remain unchanged. But the tasks
are not limited to actions anymore, and may provide behaviors which, if they are
selected, may be run. Behaviors may therefore be running, or not. Here we will
say that a behavior is “active” or “inactive”. On the other hand, action factories
may also be able to provide behaviors instead of actions, so we will call them here
“behavior factories”.

This model may support the following use case. The robot knows how to wish
a happy birthday to someone. There is a “to wish a happy birthday to someone”
behavior factory. Alice tells the robot to wish a happy birthday to Bob when the
robot meets him. This is done through a “programming” behavior and results in the
production of a new behavior, “wish a happy birthday to Bob when I meet him”, and
the suggestion of a goal leading to its selection and therefore activation. When the
robot meets Bob, this behavior reacts by producing the behavior “to wish a happy
birthday to Bob”, and suggesting a goal leading to its selection. The next day,
Alice tells the robot to stop wishing a happy birthday to Bob: the “programming”
behavior stops to suggest the associated goal, the behavior “wish a happy to Bob
when I meet him” is deactivated, and may not produce new behaviors and goals.
This generalized model naturally allows our new use case. Figure 5.1 recapitulates
this model in action.
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Figure 5.1: Unified model omitting the distinction between behaviors and actions.
Active behaviors (blue boxes) may react by creating new behaviors, and goal sugges-
tions. Goal suggestions are prioritized using the rule system. The action selection
produces the tasks to perform: a selection of behaviors to activate for next iteration.

This raises again the question of the difference between actions and behaviors.
We published an answer in the repository of the ontology we provided in previous
chapter2: a behavior is the unit of behavioral knowledge, but its implementation is
independent. An implementation may directly actuates the robot when run, like Qi
SDK Actions do, or instead suggest tasks or goals to the system, like our current
behavior implementations do. The transition to the new model requires to split
the production of behaviors (behavior factories) from the suggestion of goals (goal
sources).

It also allows another use case: the user tells the robot to never communicate
with this friend anymore. Given that the birthday behavior describes in the PDDL
that it will produce a communicative act addressed to the friend, and that there is
a behavior that can suggest the goal of avoiding a communication with the friend,
it is possible for the task selection to rule out the birthday behavior. This is the
basis of the In short, accepting behaviors in the task selection system allows a more
powerful control of these behaviors.

5.2.3 Reasoning on Behaviors

In previous subsection we described a generalized ontology for addressing behaviors.
That ontology can be expressed in the knowledge of the robot, and therefore can

2https://gitlab.com/victor.paleologue/teaching-robots-behaviors-ontology

https://gitlab.com/victor.paleologue/teaching-robots-behaviors-ontology
https://gitlab.com/victor.paleologue/teaching-robots-behaviors-ontology
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be articulated with the rest of the ontology, presented in 4.2. It would correspond
in DOLCE [Gangemi et al., 2002] to a sub-category of “process”. A behavior can
be performed and be applied with specific parameters. An instance of performing
a behavior is an event3 and is performed by a social agent4. We call it “behavioral
event”, but see it as what is usually called an “activity”. A communicative act5

is a particular type of behavioral event, and was designed to be compatible with
this generalized ontology. Note that with this ontology, we are able to avoid the
distinction of dialogue-based behaviors.

We have all the means to reason on the activity of an agent, regardless of it
being the robot, or a user. Moreover, with the teaching of behaviors, we brought
meaning to the behaviors, that are grounded on both the instructions and their
implementation.

The state of the world and the goals remain related to behaviors thanks to
the PDDL annotation of behaviors with effects, and the suggestion of goals. One
the one hand, behaviors can be deduced from the goals set in the system, and the
observed state of the world. On the other hand, goals could be deduced from the
past activities. One approach consists in looking for the effects of an agent’s activity
on the state of the world. Another approach consists in recognizing the activity, for
example from visual observation [Sung et al., 2012], and deduce the goal from the
past experience of the robot. Deducing the goals or intentions of agents is in fact
a way to build a theory of mind for the robot [Scassellati, 2002]. And this model
depends on the behaviors the robot knows, and their effects or goals.

Reasoning on past activities may also allow a robot to recognize which behavior
leads to achieving a goal. In theory, a robot could set itself arbitrary goals, and try
to achieve them, to reinforce this knowledge. This is a form of intrinsic motivation,
driving the robot to explore its ability to reach goals that were never attempted
before. It compares to [Baranes & Oudeyer, 2010]’s autonomous exploration of
the sensorimotor space, but differs because the tasks to attempt would be much
higher-level in our system. This could be called “behavior babbling”. We believe
however that the symbolic model may not reliable, because any extraction task
may fail. Therefore such autonomous learning by the robot may certainly need
to be corrected by human intervention. The next section develops the importance
of understanding the human inputs, and how to improve that understanding by
supporting the repair of interaction.

5.3 Interaction Repair and Meta-Interaction

Our two experiments in homes, respectively analyzed in subsections 3.5.4 and 4.5.3,
showed a dramatic amount misrecognition errors, due to the speech recognition,
or due to the NLU. There are technical solutions to reduce the error rate, but a

3See subsection 4.2.4.
4See subsection 4.2.1.
5See subsection 4.2.5.
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cognitive system should not expect the understanding to be perfect. Even humans
fail to understand one another, and must compensate this with specific behaviors.

5.3.1 Interaction Repair

Humans can compensate these errors through a form of meta-interaction: they can
discuss about previous piece of interaction, identify what went wrong, and suggest
a correction. This is called interaction repair, and is missing from our current
behaviors.

Typically, in our experiments, we observed participants say things like “Non
j’ai pas dit épointer” (no, I did not say to blunt), hence trying to correct a past
misunderstanding. Participants also missed some feedback from the robot to let
them know what it really understood. Every behavior should be refined to make
explicit how they understand what is told to them, and to support corrections on
that understanding. For instance, the composition of new behaviors should make
the robot recall each piece of behavior it understands, and allow users to correct
them, like it is done in [Lallée et al., 2010]. Using semantic templates introduced
in subsection 4.2.7, we could also identify incomplete instructions, warn the user
about it, and look for completion or correction. Proper error handling was explored
successfully in [She et al., 2015]. It is also applicable to ambiguous instructions.

Interaction repair is an additional complexity to add to the behaviors pre-
programmed in the robot. To keep the development of such complexity affordable,
it may be useful to develop a framework generalizing these pieces of interaction.
[Peltason & Wrede, 2010] is an attempt to do so, and provides a general approach
on collecting the target information to close a piece of dialogue. There is therefore
an incentive to find generalized models to describe interaction patterns, like we at-
tempted to do by describing the pragmatic frames involved in the interaction we
designed.

This generalization may potentially go beyond the interactive case. For instance,
the exploration behavior described in subsection 4.1.1 also include some expressive
cues: as a side effect of looking around for the object, surrounding users can feel
the robot is busy, and trying to look for something. Moreover, when a point of
interest is discovered, the robot triggers an animation expressing its satisfaction6.
Surrounding users may feel this satisfaction, and understand well what the robot
is into. This gives us the intuition that pragmatics are involved even if there is no
knowledge of surrounding users.

Our intuition is that the pragmatics can be expressed as a form of generic gram-
mar of interaction for extracting or sharing information, that may be applied with
non-agentive entities7. Based on this hypothesis, we identify a recurring pragmatic
frame in the exploration behavior, shown in table 5.1. It may also be found in
dialogues as well as in various forms active observation behaviors.

6Note that humans also perform this kind of expressive gestures when they are alone
7Note that the theory of mind [Scassellati, 2002] includes adopting the intentional stance for

non-agentive objects. See also [Pérez-Osorio & Wykowska, 2019] for the intentional stance.
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World Perception Robot

1. Probe
2. Result 3. Confirm

Table 5.1: Recurring pragmatic frame for a robot exploring. The robot probes by
looking somewhere for points of interest. The result is provided by the perception
system, and then the algorithm confirms by switching the behavior of the robot.

However, generalizing on the interaction patterns within behaviors does not
apply to the correction of the task selection itself, that plays a major role on what
the robot does.

5.3.2 Interaction for Defining Goals and Rules

It is still only an hypothesis that the rules used for task selection are explainable. It
should be demonstrated empirically, thanks to a behaviors capable of discussing past
task selections, and existing rules. This also implies to put words on all the involved
entities, predicates, and rules. This could be done using semantic templates.

Then, if a robot is able to discuss about how its decisions were taken, and that
the semantic analysis still supports open scenarios, we are close to being able to
define new rules. A user must be able to name a rule, and state which goal the rule
is meant to favor. Then, the user must be able to order the priority of this rule.
This seems very powerful, but we predict that in practice, it is hardly applicable.
The priorities of certain goals are highly contextual, and are sometimes too hard to
express in simple words. Reinforcement learning techniques may be more suitable to
learn these priorities, and may not systematically compromise their explainability,
as demonstrated in [Keneni et al., 2019].

Nonetheless, a user can set explicit goals to the robot, which gives the robot a
sense of purpose: what it is meant to do, or learn to do. And meta-interaction can
be leveraged to learn autonomously, and better.

5.3.3 Meta-Interaction for Learning to Achieve Goals

[Bruner, 1983] shows that infants manage to learn the language thanks to a shared
agreement on the interaction formats (or patterns) with their teacher. Their teacher
is aware of these patterns, and respect them to help the infant learner to identify
well the thing to learn. This is called scaffolding and was introduced in subsection
2.1.1. Infants are able to recognize the interaction patterns, or formats, propose
them (by trying to apply them), reason on them (e.g. by evaluating their match)
and negotiate them, by agreeing or refusing to adopt them. By doing so they build
an abstract model of their situation, that serves as a solid matrix for interaction.
Through ritualized interaction, they build up their other skills.



128 Conclusions and Perspectives

A behavior specialized in meta-interaction, i.e. in discussing what the inter-
action is about, and what it should lead to, could reproduce this negotiation of
interaction formats. The users could then announce the interaction format, e.g.:
“I am going to teach you a move”. This piece of meta-interaction should lead to
having some behaviors promoted as a consequence. Here, a behavior for learning
moves interactively would be granted a temporary priority, as if there was a tempo-
rary rule about it. Meta-interaction would therefore allow users to refine the task
selection policies, and thus negotiate the interaction formats.

Using a specific behavior, the robot may correlate sequences of behaviors with
observed effects. For instance, being taught a move leads to the creation of a
new behavior in the pool. The robot may initiate certain interactions to test such
hypotheses: either by trying to reproduce the sequence of interactive behaviors, or
by asking the user about these behaviors. In both cases the robot can train a policy
capable of determining a sequence of behaviors to produce these effects, and thus
learn how to reach arbitrary goals.

Once the robot has determined the effects of a behavior, it can tell whether a
behavior was successfully performed or not. This is explored further in next section,
in subsection 5.4.3.

5.4 Detecting Mistakes and Learning from Them

In previous section we described how behavior implementing a meta-interaction can
lead to improving the task selection policy. This can be generalized to other forms
of knowledge.

5.4.1 Detecting, Repairing and Learning from User’s Mistakes

The simplest mistakes to detect are those who can be deduced from the inconsis-
tency of the user input with the knowledge of the robot. For instance, if the user
asks the robot to point at a flower pot, but the robot does not know any flower
pot, the robot can deduce that some flower pot exists, but it does not know what
it is. It can therefore respond to ask about the flower pot. If the user wants to be
helpful, he or she may show or explain what is a flower pot. This kind of teaching
situation is ideal: the user and the robot are focused on sharing the understanding
of a particular object in space.

Another example consists in trying to correct incomplete or ambiguous instruc-
tions. It is straightforward to ask to the user for correction. It appears that certain
ambiguities are recurrent, and can be solved probabilistically [Nyga, 2017]. But by
looking for user validation when probabilities are low, or when risk is high, is a good
complement. Moreover, it produces data from a real situation, that the instruction
interpretation algorithm can train itself on.

As we can see, by reacting properly on user mistakes can lead a robot to improve
its skills or knowledge. It is also applicable to mistakes the robot makes.
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5.4.2 Adapting from Robot’s Mistakes and User Corrections

If an ongoing behavior was to be interrupted by the user, the robot should ideally
try to understand why. The user may tell what is wrong, and this correction can
only be interpreted in the context of the behavior. This is a case of interaction
repair, and we propose that all behaviors try to implement that. With the hope
that some framework can be used to simplify the implementation of interaction
repair, we can also hope to find a systematic approach to learn from these repairs.

For instance, if during an exploration, a robot went to some place that is dis-
turbing, it should be possible to ask to the robot not to go there. This can be shared
in the knowledge, so that other behaviors may know that this place is special. It
can also be used to build an adaptable policy to understand what area exactly is
forbidden, or in which situation it is preferable to avoid it. The repair interaction
provides a source of validation of any behavior that implements it.

Speech recognition too can be trained this way. So long that the robot mis-
understands the users, and that the users can correct such misunderstandings, it
gathers a data set to train a complementary model to the speech recognition (on
a remote server, or when the robot is idle). In the long run, this approach may
solve the speech recognition issues (such as the mistranscription of homophones),
as the robot gets accustomed to its users speech. Therefore meta-interaction and
interaction repair can be leveraged from any behavior, to learn from the robot or
the user’s mistakes.

5.4.3 Autonomously Making Mistakes for Learning

The robot may also learn from autonomous behaviors. Given that the robot knows
the effects of behavior, either because it has been hard-coded in the behavior or
because it has been deduced from experience (see subsection 5.3.3), it may discrim-
inate whether a behavior has been performed successfully. Then if a behavior has
a high rate of success, it can be used as an oracle to train other algorithms.

For instance, if a “look at” action existed, it would have for effect that the target
remains visible. The robot can be programmed to decide autonomously to look at
a certain point in space, located using a reliable, but unknown algorithm. It can
learn visual cues, and train itself to remember what its visual field looks like. Then,
it can move its arm around, and discover the effects of doing so in its field of view.
This can be tried with various backgrounds, until the robot can predict the effect
of its arm position in its field of view. It can then use this to correct its vision by
estimating what the world should look like without its arms in the way.

Given a history of past activities, the robot can recognize the behaviors that
increased its knowledge of the world, and the quality of this knowledge. It can try
to autonomously perform them (using an intrinsic motivation), and refine its skill
for finding new and reliable information. This would not only improve the growth
of the knowledge of the robot, but also make the robot look curious about its world:
physical, abstract and social.
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Applied to the physical world, this kind of approach reveals affordances, and
can lead to robots learning how to perform physical tasks autonomously, like in
[Maestre, 2018]. Applied to the abstract world of knowledge, it can lead to discover
new action / knowledge affordances: some knowledge can be used as a parameter of
some actions, and this has a predictable effect on the knowledge. This is applicable
to the social world too, and may reveal social affordances, that otherwise remain
latent in behavior implementations.

5.5 Next Behaviors and Potential Challenges

In the previous sections, we enumerated the many perspectives the pursuit of our
research may lead to, sometimes in the long term. In this section, we look at
the short term perspectives in practical terms. It consists in behaviors, rules and
evaluations methods, that have become affordable thanks to our work.

5.5.1 Correcting Behavior Compositions

Adding interaction repair in the teaching behavior seems to be inevitable to make
it really usable. It would consist in being more transparent on what the robot
understands during the teaching, and let the users tell the robot when it is wrong.
Also, having the robot detect some cases where the input is strange or uncertain,
and take the initiative to ask for user correction, could be useful.

The challenge would be to prove that these measures actually improves the
success rate of the learning.

5.5.2 Teaching Animation Actions

It seems possible to integrate an adaptation of [Chernova & Thomaz, 2014]’s teach-
ing of movements on Pepper robots, at home. This is a form of Learning from
Demonstration (LfD) based on the observation of the position of the joints of the
robot, as the human teacher moves the robot’s limbs. The robot could therefore
learn some primitive behaviors from scratch.

The challenge would reside in the fact that there are several behaviors capable of
learning behaviors: one through composition, and this one, through demonstration.
It is an opportunity to start working on meta-interaction, since the robot will need
to disambiguate which teaching behavior should take over the robot.

5.5.3 Autonomous Recharge

In Pepper@Home, the robot is delivered with a recharge station. It would be use-
ful if the robot could enter and leave the station on command, or autonomously
depending on time, battery level, and human presence. This would be an opportu-
nity to discuss event-drive behaviors like "when your battery is lower than 10%, go
charge to your station".
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This could be a good use case for applying our generalized model on behaviors.
The challenge consists in making this novel model work in realistic conditions.

5.5.4 Human Greetings and Identification

This behavior responds to greetings utterances by greeting back to the user. It tries
to track which user is engaged with the robot when it happens, to try to remember
that greeting interaction, and not greeting the same user anew. To achieve this the
robot must be able to recognize the human.

It requires face recognition to be available on Pepper. We identified that the
system proposed by [Irfan et al., 2018] demonstrated an improvement over Pepper’s
default face recognition. New users engaging with the robot would be learned as
they are greeted back, and are asked their name. Known users are greeted with
their name.

The behavior would produce some knowledge associating encounters, persons
and names. Our system should be able to access this knowledge, and understand
it according to our shared ontology, described in section 4.2. It would also provide
some action factories to leverage this knowledge, and thus multiply the behavioral
capabilities of Pepper.

We predict that this behavior would conflict with the behavior asking labels for
discovered objects. This would require the introduction of new rules about engaging
with users: a behavior which purpose is to acknowledge the engagement is available,
it is preferred. The refinement of this rule could be challenging.

5.5.5 Hush Rule

The robot could be temporarily forbidden to perform communicative acts. This use
case was encountered regularly in Pepper@Home, and would be easy to implement
using our rule system.

The “hush” rule would come along a behavior, capable of discussing with the
user whether to turn on and off the rule. When this rule is active, the actions
producing communicative acts are ruled out from the task planning solutions, hence
preventing communicative acts to be performed.

The challenge would consist in making the rule system extensible, and to develop
a first behavior to discuss a rule. We can also predict that some exceptions to the
rule may be difficult to support. For instance, it is not clear how the robot can ask
for a confirmation to stop being hushed, if it is hushed. Also, how to set the priority
right, if there were behaviors producing emergency behaviors, that must absolutely
warn the surrounding users.

5.5.6 Behavior Modification Evaluation

We mention in the analysis of the results of previous experiment, in subsection
4.5.4, that the measures we used were perhaps not the best. For instance, they



132 Conclusions and Perspectives

would not be applicable to evaluate the performance for modifying a behavior (for
correcting it).

The capacity to reason on behaviors explained in subsection 5.2.3 can also be
extended to the benefit of the scientist. By defining a precise ontology of how be-
haviors are articulated in compositions, or solicited autonomously by the robot, we
would be able to identify the various operations applied when modifying behaviors.

This set of operations can be used to determine quantities of steps to achieve
the modification of some procedural knowledge. This is what measures LRt, used
in section 4.5.3. We can therefore estimate a quantity of procedural knowledge a
behavior represents, and distances from a given behavior to another.

The performance of teaching can then be assessed as the speed or the effective-
ness of the system to bridge these distances as it is being taught by users. On the
other hand, we can still empirically assess the productivity, and the satisfaction of
users when they produce or modify behaviors.

Finally, it can also be used as a basis to assess the complexity of the behav-
iors a robot knows, and therefore use it as an an intrinsic motivation to drive an
autonomous learning of behaviors.



Annex A: NAOqi

In this annex, we present NAOqi and the NAOqi framework. The notions involved
in NAOqi should be well understood to understand the technical details of the
software produced for this thesis.

NAOqi is the software driving robots created by SoftBank Robotics Europe
(SBRE): NAO, Pepper and Romeo. It is to distinguish from NAOqi OS, the
GNU/Linux operating system installed on SBRE robots, which includes NAOqi.

NAOqi runs federates a number of services capable of operating SBRE robots.
The services are usually deployed on the robot in the form of NAOqi packages.
Each service provides some API. NAOqi serves them on the local area network
using libQi.

LibQi is an open source (BSD-3) library providing a base framework to create
services that can communicate with one another in-process, between-processes, or
on the network. Services can exchange structured data and perform remote proce-
dure calls (RPC) with one another. Service interfaces can be specified formally, so
that typed helpers can be generated for client applications.

The NAOqi framework is the combination of the libQi framework, the API
provided by the services, typed helpers for NAOqi services, and some task-specific
utilities.

Architecture

NAOqi relies on a core service, the service directory, listing all the other services it
serves. It is analogous to the “master” in ROS, and provides the main endpoint to
contact NAOqi services.

The other services are provided by daemons running on the robot, and are
registered to the service directory, but communicate directly with the gateway, the
unified endpoint for remote clients. Remote clients connect to this endpoint and
can access the registered services without knowing whether they are provided by
different processes. This is a micro-service architecture, as found in cloud services.

When a client performs an RPC, the RPC message goes through the gateway,
then to the service. When the procedure is done, the service replies to the RPC
with a result message to the gateway, and then back to the client. For instance in
2.5.x, to make the robot say something, the client would call the method “say" on
the service "ALTextToSpeech”, provided by the daemon “audio”. The call returns
some time after the phrase was uttered. See figure 2.

RPC is also used between services, but since nothing forbids several services
to be provided by the same daemon, network communication can often be avoided
inside NAOqi.
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Figure 2: Communication of a RPC from a remote client to a NAOqi service.
Black boxes right under the NAOqi box are daemons. Black boxes emerging from
daemons are services. Blue lines represent the registration links. Green arrows
represent the RPC calls and their response propagated on the network. Green
dotted boxes represent a proxy to a remote object. Here a client gets the service
“ALTextToSpeech” provided by the daemon “audio” using a “service” RPC. Then
calls “say” on the service.
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Objects and Actions

LibQi provides a particular notion of objects that makes it unique. A Qi Object
is sort of pointer to an arbitrary object, shared between a service and its clients,
through the network. When a client accesses a service, it retrieves a Qi Object
pointing to it. That object on the client’s side acts like a proxy to the real object:
the service hosted in a daemon running on the robot. When a call is attempted on
it, it is forwarded to the service using an RPC.

It is in fact the Qi Object mechanism that provides the callable interfaces to
the services. Interfaces can include:

• methods to call, with arguments

• signals, providing an observable interface

• properties, exposing data, that may be mutable and observable

But a Qi Object is also a type that can be transferred through RPC, so that a
service may return, or accept, other Qi Objects in a RPC.

The notion of Action introduced in software version 2.9.x leverages fully that
notion of object. See the getting started page of the Qi SDK8. In 2.9.x, to make
a robot say something, the client should rather call the method “makeSay" on the
service "Conversation” provided by the daemon “dialog”, to retrieve a “Say” action,
that is a Qi Object. That object has a method “run” to effectively make the robot
utter the desired phrase. See figure 3.

When the method of a Qi Object is called, the RPC message is transmitted
to the service that provided the Qi Object, and the execution will take place the
service’s process.

This mechanism also allows clients to provide Qi Objects to NAOqi services.
This is leveraged in this thesis to extend the system with new behaviors and new
actions.

Sensor Access and Hardware Control

NAOqi services implement the drivers required to communicate with the hardware
of the robot. Sensor data is analyzed by the services, which may translate them
into higher-level signals or property, or use it to implement the basic autonomy of
the robot.

Remote clients can drive the robot’s behavior by running the actions exposed
by the services’ API. NAOqi is the main interface between client applications and
the robot’s environment.

8https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch2_principles/action_ge-
tting_started.html

https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch2_principles/action_getting_started.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch2_principles/action_ge-tting_started.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch2_principles/action_getting_started.html
https://qisdk.softbankrobotics.com/sdk/doc/pepper-sdk/ch2_principles/action_ge-tting_started.html
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Figure 3: Communication of a RPC from a remote client to a Qi Object provided
by NAOqi service. Black boxes right under the NAOqi box are daemons. Black
boxes emerging from daemons are services. Blue lines represent the registration
links. Green arrows represent the RPC calls and their response propagated on
the network. Green boxes represent a non-service Qi Object. Green dotted boxes
represent a proxy to a remote object. Here a client gets the service “Conversation”
provided by the daemon “dialog” using a “service” RPC. Then calls “makeSay" on
the service to get a "Say” object. Then calls “run" on the "Say” object.



Annex B: Review of Cognitive
Systems

The software implementation of a piece of HRI is only a part of the software driving
the overall behavior of a robot, the cognitive system. In this section, we make a
state of the art on cognitive systems used for teaching behaviors, in order to justify
the need for a novel one.

A cognitive system may constrain the roles of its components, and therefore can
prevent certain features to be implemented. It is important to design the cognitive
system so that it is adequate for the purpose of the robot. In our research, we face
particular challenges.

First, the robots should be provided a rich set of interactive behaviors from
separate applications. Therefore the cognitive system driving the overall interaction
should be modular. Behaviors may know about each other, and may conflict with
each other, for example if they produce different reactions to the same situation.
Thus there is a need for an interoperable interface to make it possible to solve
potential conflicts.

Then, the system must accept new interactive behaviors created on-the-fly, when
users teach them to the robot. That is to say the system’s modularity should also be
dynamic. The taught behaviors may also be interactive, and therefore may conflict
with the rest of the behaviors, so the conflict management should be dynamic.

In this section we show that some of these challenges have been overcome in prior
research by existing cognitive systems. But there is no existing solution for our set
of challenges. First we clarify what a cognitive architecture is in subsection 5.5.6.
Then in subsection 5.5.6, we review the cognitive systems used in our literature,
to look for solutions for our challenges. Finally in subsection 5.5.6 we pinpoint the
key design choices and their impact on the robot’s behavior. It should justify the
solutions we propose in the rest of this thesis or at least give keys to compare them.

What Makes a System “Cognitive”

As introduced in subsection 1.2.1, the term of “cognitive system” is an analogy
to the cognitivist view of biological agents. Indeed in robotics, since we design the
software that drives the behavior of the robot – an artificial being with its own goals,
see subsection 1.2.5 – there is an incentive to adopt this view. Thus the robotic
system, and essentially its software parts, is considered a “cognitive system”9.

9Indeed, cognitive systems are not necessarily robotic.
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Figure 4: The canonical architecture of a cognitive system.

A cognitive being is able to perceive its environment, process what its senses
provide into information, reason on that information with the use of cognitive func-
tions, using past experience and genotypic assets, and act back on the environment.
Figure 4 illustrates this. Environment should be taken in a a very broad sense, that
can include the physical body of the being.

In practice, the extraction and actuation components are provided by frame-
works or middleware for robotics, like NAOqi (found on Pepper and NAO), ROS
(found on PR-2) or YARP (found on iCub). They translate the perception and
the action into software objects that can be exchanged through their Application
Programming Interface (API).

Since using Pepper is part of our objectives (see section 1.4), we will use the
NAOqi framework, that we present in annex 5.5.6.

Frameworks are somewhat equivalent to one another, so what really differentiate
cognitive systems is rather the roles of the software components involved in the
reasoning of the system, and the organization of these components. This is what
we will focus on in next subsection.

Review of Cognitive Systems

In this review, we display the diversity of cognitive systems encountered in our
literature. We group them according to the similarity of their features, and highlight
their potential modularity and interoperability.

For the first attempt at teaching behaviors to robots using spoken language,
[Lauria et al., 2001] introduces the Instruction-Based Learning (IBL) architecture.
Its engine is directly driven by the speech recognizer. As a reaction, it may call
the TTS or order the execution of behavioral processes: either to learn some task
plan, or to execute an existing one. A knowledge base shares the known task plans
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between the dialogue manager (in charge of interaction) and the robot manager
(in charge of the execution of plans). [Weitzenfeld & Dominey, 2009] present a
similar system, but with a question system to retrieve information from the robot’s
knowledge of the world (excluding the procedural knowledge).

But not all publications share details of the cognitive system they use. Among
them, [Nicolescu & Mataric, 2003, Rybski et al., 2007, Rybski et al., 2008, Cakmak
& Takayama, 2014] exhibit no specific feature suggesting major differences with
[Lauria et al., 2001]. They probably had the dialogue system driving the execution
of tasks in a straightforward manner: taught behaviors are saved in the database,
and associated to pre-defined dialogue inputs. However the behavior models, the
world and knowledge representations differ. These differences are explored in 2.4.

[Lallée et al., 2010] do not detail their cognitive architecture neither. However
[Lallée et al., 2012] continue their work, and present the CHRIS architecture. It is
made of modules of “scene perception”, “motor command”(.*)“knowledge base” and
“supervision & planning”. Scene perception contributes to the knowledge, but also
directly to the motor command, to provide a feedback loop. This is an interesting
refinement, that could support, within the same system, an ability to learn high-
level task plans, as well as low-level skills.

The supervision & planning module communicates with the knowledge base,
reasons on the events, and in return requests motor commands or produces speech.
Thanks to a proper specification of the knowledge, including the procedural one,
they manage the exchange the knowledge via the Internet, and run the same be-
haviors on different robots. However the system remains driven by the dialogue,
and the robot is not taught behaviors interfering with its overall behavior.

[Salvi et al., 2012] present an architecture centered on a Bayesian Network (BN).
The reasoning component is therefore a sort of black-box. [Grizou et al., 2013,
Grizou, 2014, Grizou et al., 2014] use a similar black-box approach, but with a
Markov Decision Process (MDP). These architectures support a connectionist form
of knowledge, in opposition to the symbolic forms of knowledge we encounter in the
other publications.

There are other cases of black-box reasoners in the literature on teaching behav-
iors using non-spoken natural language: [Arie et al., 2010, Yamada et al., 2016, An-
tunes et al., 2018] use neural networks, [Saponaro et al., 2017] put together an HMM
after a BN. The system’s architecture is made simpler and more homogeneous with
this black-box approach. But in the current state of the art, it constrains much the
richness of the interaction, and is difficult to extend.

But the most common practice is to have a dialogue system designed with a
symbolic approach. The dialogue system activates the learning and executing pro-
cesses. The executing process is setup to execute one behavior at a time, according
to instructions.

[Gemignani et al., 2015] has a dialogue interface that would produce plans that
are then translated to Petri Network Plan (PNP), that are then interpreted by the
system. The system binds events and data to a state of the world that can trigger
transitions, and nodes to actions to perform, continuously.
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These algorithms on the other hand can potentially be based on a less symbolic
approach. For instance [Forbes et al., 2015] uses a state-based dialogue system
to drive the robot into the learning phases, provided by a PbD system. But the
PbD system relies on state goals, and produces probabilistic estimators to find the
actions required to reach them. The overall logic is similar to what is used in
[Mohseni-Kabir et al., 2017, Mohseni-Kabir et al., 2019], but not enough details
were presented for a more thorough comparison.

[Petit & Demiris, 2016] is driven by a layer of 3 YARP modules, involved gradu-
ally at each 3 stages of their experiment. Overall, the auto-biographical information
is gathered continually, and stored in a database. Modules use this database for
the learning, the speech recognition for the verbal interaction, and send commands
to the motors for the exploration. The switch between stages appear procedurally
managed. If it is made in an interoperable manner, this stage-switching ability may
be a step towards supporting interactive behaviors provided by separate applica-
tions.

[Scheutz et al., 2017, Scheutz et al., 2018] used an architecture called DIARC,
and presented it in details. Like [Forbes et al., 2015], the dialogue system may
feed the execution system with new goals. But according to [Schermerhorn et al.,
2006], competing goals are supported. The most important one can be selected
autonomously, before the right actions are found to fulfill it.

Other architectures are worth mentioning from the literature on teaching behav-
iors using the natural language. For instance the SOAR architecture [Laird et al.,
1987, Laird, 2012]. This architecture accepts several “problem space computational
model (PSCM)” operators [Newell, 1990, Yost, 1993]: given states and operators to
alter states, a goal can be reached using various defined paths. When the situation
is undecidable, sub-problems with sub-goals are invoked, hence producing a hierar-
chical behavior. Embodied in a robot, states can be evaluated from the perception
of the environment, and operators can act on the environment. [Huffman & Laird,
1995] implements a variant called Instructo-Soar. It juxtaposes a dialogue sys-
tem with SOAR, and can produce new PSCM operators from instructions. That is
to say that what is taught to the robot integrates the rest of the behaviors. It is a
highly-modular architecture.

Later [Mohan et al., 2012] reuses SOAR for its visual-spatial capabilities and
adds a decision-making engine on top of it, with a parallel system for interacting
with the instructor. It is very probable that [Mohan & Laird, 2014] uses the same
system. However we did not retain these works in our literature, because the
interaction with the system is always done using the written form of the language.

[Nyga, 2017] was also excluded for this reason. However the cognitive system
they use is also worth mentioning: CRAM [Beetz et al., 2010]. This architecture
revolves around a knowledge base and a reasoner. When the system has a goal set
(using natural language instructions), the reasoner constructs a plan to reach it.
Every step of the plan is goal-oriented, and relies on bindings between the sensors
and a symbolic representation of the environment, using “computable predicates”.
A computable predicate associates an arbitrary function to a predicate to evaluate
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in the knowledge base, driven by an OWL ontology defined by KnowRob [Tenorth
& Beetz, 2013].

The use of an ontology defined properly makes a significant difference. It enables
a greater interoperability, and also a greater reusability of the knowledge. As a
result, they are able to share this knowledge across robots [Beetz et al., 2015],
including simulated ones.

With this review we displayed the diversity of cognitive systems found in our
literature, and some extraneous related works. It appears that no cognitive system
dominates the literature. The observed diversity of approaches could be explained
by the diversity of requirements for each study, such as the learning technique, the
interaction scenario, or the reuse of existing solutions. Some requirements lead to
specific design choices, that we will highlight in next subsection.

Key Design Choices for Cognitive Systems

Designing (or choosing) the right cognitive system is a valuable know-how for re-
search in robotics. In this subsection we detail what we expect from the cognitive
system, and the consequences it may have.

The most prominent one is the choice between symbolic and connectionist knowl-
edge [Harnad, 1990]. Using a connectionist knowledge simplifies the architecture,
which does not really need to provide functions like planning, explicit data storage,
or a pool of actions. In return, it is not as flexible as the symbolic knowledge, which
enforces an abstraction to make symbols more reusable.

Planning is also a matter of choice. Several systems merely execute actions
procedurally as the interactive program goes on. This is straightforward, and even
helps jumping from one form of interaction to another. But it is limiting the
reusability of the actions, because the interactive program must cover all possible
cases. The introduction of goals does not directly solve this, but already bring
interoperability to the actions. Generic planning solutions, on the other hand,
require situational knowledge to be expressed symbolically.

Expressing the world in terms of symbols appeared frequently in this review. It
enabled the robots to learn very directly from the provided instructions, that can
be represented using semantic symbols. Symbols are usually more expressive for
the humans designing the systems. For this reason it is convenient to use symbols
to represent the goal of a robot. It also supports the need for HRI to study the
satisfaction of the robot’s goals.

The use of symbols does not prevent some components to be written using a
connectionist approach. In [Beetz et al., 2010], the “computable predicates” are
bridges to the sensible world, for which connectionist approaches work best. These
techniques announce promising hybrid architectures [Harmelen et al., 2019].

In terms of modularity, we found that many “modules” were so specific to their
cognitive system that we cannot a priori trust that they could be replaced by a
component from another system. The ways modules communicate with each other
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betray inter-dependencies between them. Indeed, no study in IRL actually tried to
test the effective modularity of a system.

In previous subsection (5.5.6), we highlighted that it is common practice to sep-
arate the dialogue system from the rest. Spoken responses are executed differently
from other actions or processes. In theory, uttering something is an action like any
other. It is a physical action, that indeed have observable effects in the environment
(even more through speech acts, see section 2.3).

So the separation seems unjustified. In practice, it may be easier to conceptu-
alize and implement an interactive system that way: spoken interaction is on one
side, and intelligent behaviors or learning processes are on the other side. But for
a social robot, the behaviors to learn are part of the interactive system, so the sep-
aration is in fact counter-productive: the dialogue system itself is made of taught
behaviors.

Moreover, this design choice complicates the cognitive systems. It adds up to
the list of components, and adds constraints to the planning system. And when
the system would be learning social actions that include speech, there would be two
learning components to maintain and coordinate.

Conclusions on Cognitive Systems

Our review of cognitive systems showed how their architecture and the knowledge
models depend on each other. It should be helpful to understand the review of
behavior models found in next section.

We also concluded that the current state of the art neither achieves the kind of
modularity we expect for a robot that should support multiple applications. Nor
the current dialogue management systems are designed to support the teaching of
social behaviors.
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