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Notations

To facilitate the understanding of this document, the mathematical notations that
will be used are listed hereinafter. All of these will be introduced throughout the
chapters. Vectors, matrices and vectorial functions will be represented in bold
while intervals will be denoted by brackets [ ]. The blackboard bold convention is
used to represent other classical sets, e.g. X, Y.

Modelisation

x : state vector, x ∈ Rn

: (or an arbitrary variable)
p : 2D position vector, p = (x1, x2)ᵀ
u : input vector, u ∈ Rm

f : evolution function, f : Rn × Rm → Rn

: (or an arbitrary function)
z : vector of observations, z ∈ Rp

g : observation function, g : Rn → Rp

h : drifting function (clock problem, Chapter 5)
: configuration function (SLAM method, Chapter 7)

τ : drifting time reference
φ, θ, ψ : roll, pitch, yaw (heading)

Intervals and sets

∅ : empty set
IR : set of all intervals of R
IRn : set of all boxes of Rn

[x] : interval [x−, x+], [x] ∈ IR
x− : lower bound of the interval [x]
x+ : upper bound of the interval [x]
x∗ : actual (unknown) value enclosed by [x]
[x] : box or interval-vector, [x] ∈ IRn

[f ] : inclusion function of f
[f ]∗ : minimal inclusion function of f⊔ : squared union, envelope of the following terms
Lf : constraint related to a function f
Cf : contractor related to Lf

[X] : box enclosing the set X
∂X : boundary of the set X
#E : cardinality (number of items) of the set E
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Trajectories and tubes

t : time variable
(·) : (dot) system independent variable
a(·) : trajectory, R→ R
a(t) : evaluation of a(·) at t
ȧ(·) : derivative of a(·)

[a](·) : tube of trajectories, R→ IR
[a](t) : interval value of [a](·) at t
∅(·) : empty tube
p(·) : horizontal robot trajectory, R→ R2

C d
dt

: differential tube contractor
Ceval : evaluation tube contractor
Ct1,t2 : inter-temporal evaluation tube contractor
Cp⇒z : inter-temporal implication tube contractor

d : thickness function, diagonal of a slice, d : IR2 → R
δ : time discretization of a tube

Loops

t : t-pair defining a loop, also denoted by (t1, t2)
T∗ : set of all t
T : set of feasible t in a bounded-error context
Ti : compact and connected subset of T
Ω : outer approximation of T made of subpavings

Ωi : compact and connected subset of Ω
N : Newton test
T : topological degree test
λ : number of loops along a trajectory p(·)

Other notations

ε : precision of a SIVIA algorithm
deg (f ,Ω) : topological degree of f over Ω

Jf : Jacobian matrix of f
det ([J]) : enclosure of interval matrix’s determinant
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Chapter 1. Introduction

1.1 Underwater challenges

«On peut braver les lois humaines,
mais non résister aux lois naturelles.»

“We may brave human laws, but we cannot resist natural ones.”

Twenty Thousand Leagues Under the Sea, Jules Verne

1.1.1 In the vastness of the unknown

95%. This striking figure, stated1 by the American National Oceanic and Atmo-
spheric Administration (NOAA) tells how little we know about oceans: about
95% of this underwater realm remains unseen by human eyes. And yet, it covers
two-thirds of the Earth’s surface. It is even said that we best know the Moon’s
surface than our oceans’ depths. Nevertheless, marine technologies have changed
dramatically since the last hundred years, allowing ways to explore the bodies of
water that would have been unimaginable before.

Figure 1.1: The HMS Challenger, a British corvette that took part in the first
global marine research expedition: the Challenger Expedition, 1872–1876. Painting
by William Frederick Mitchell.

1http://www.noaa.gov/oceans-coasts
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1.1. Underwater challenges

One could say that the underwater exploration started with the Challenger
Expedition (1872, Figure 1.1), by probing the depths from the surface with lead
lines. The Challenger Deep, deepest known point on Earth2, has been discovered
during this expedition. And yet, it was not until the start of the sixties that this
spot has been visited by humans, during the dive of the manned submersible Trieste,
Figure 1.2. And ever since, the place has been reached by very few expeditions,
mainly unmanned descents.

Figure 1.2: Trieste, a Swiss-designed and Italian-built deep-diving research
bathyscaphe. It was able to reach any point of Earth’s abysses such as the
Mariana Trench in 1960. Photo: U.S. Naval Historical Center.

The dive of the Trieste revealed the capacity to build vehicles able to resist
colossal pressures. However, the costs of this endeavor is huge compared to
the range of the explored area: only few square meters around the submersible.
And if exploration techniques have evolved considerably over the years, the ratio
exploration/cost or exploration/time remains a major impediment in the discovery
of our oceans.

2Challenger Deep: depth estimated at 10916m in situ by submersibles.
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Chapter 1. Introduction

1.1.2 Hostile environments

Withstand the high pressures of the column water, corrosive salinity, unpredictable
currents, etc., is one thing. However, perceive the environment is another matter.
Figure 1.3 provides an example of poor visibility that can be encountered under
the surface. Strong opacities in shallow waters, or lack of light in the deepest
ones, make it difficult to gather information from cameras. Other conventional
means of exploration or communication suffer from strong attenuations of their
electromagnetic waves through the water column.

(a) An orange buoy dimly visible at 3m. (b) Unstructured environments.

(c) A lost wireless router. (d) Sea life, leading to outliers.

Figure 1.3: In the shallow waters of La Spezia (Italy) during the SAUC-E competi-
tions in the NATO Centre for Maritime Research and Experimentation (CMRE,
formerly NURC), 2013–2014. These are images taken by the ENSTA Bretagne’s au-
tonomous robot Vici. Design algorithms to automatically analyze these observations
remains a challenging task.
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1.1. Underwater challenges

Underwater acoustics

Underwater acoustics is about the only technology left with sufficient performances
to increase the range of visibility. A telling experiment is the Heard Island test
performed in 1991 [Munk et al., 1994] and planned in order to test the emission
of a man-made acoustic signal throughout the world’s oceans. A special phase
modulated signal of 57Hz, emitted from an island located in the southern Indian
Ocean, has been received by sixteen sites around the world, some of them based on
both coasts of North America. This experiment demonstrated that great distances
are reachable by acoustics.

Considering an estimation of the sound celerity profile along the propagation,
an acoustic wave is even well suited to perceive distances between the emitter
and any obstacle in the environment. In practice, ranges of a few dozen meters
are affordable to maintain precision at reasonable energy cost. However, one
should note that an acoustic signal rarely propagates in straight line. This impacts
distances’ estimations and may even generate blind zones3. Underwater acoustics
remains nonetheless the most suited approach for wide explorations, but the related
solutions are far from being straightforward.

A needle in a haystack

The work on this thesis started on the very same day as the beginning of the
underwater search for the lost MH370 aircraft operated by Malaysia Airlines,
that presumably disappeared in the southern Indian Ocean in 2014. Despite a
tremendous deployment of maritime means, making this multinational search effort
the largest and most expensive in aviation history, the aircraft remains unfindable.
From October 2014 to January 2017, an overall survey of 120000km2 of the seafloor
was performed, with unsuccessful results. Given the vast areas involved, this search
sadly reveals the difficulty we still have to explore the extent of the seabed.

The unfruitful research allowed nonetheless to improve the knowledge we had
on this part of the oceans, providing a level of details rarely reached before in
the deep environment [Picard et al., 2017]. Figure 1.4 illustrates a comparison
between the previous mapping of the seabed, that had an average spatial resolution

3In the Atlantic Ocean for instance, due to the physical properties of the environment, two
vehicles on the same layer of water and separated by 60 meters may not be able to perceive each
other.
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Chapter 1. Introduction

of about 5km2, and the new Digital Elevation Model (DEM) obtained with a
resolution of less than 0.01km2. During the search, the vessels equipped with
acoustic means such as side-scan sonars or multibeam echosounders were not able
to scan the entire extent of the search area. Indeed, the seabed parts with the
most complex and challenging topography were only reachable by Autonomous
Underwater Vehicles (AUVs), equipped with similar technology and specifically
designed for high resolution survey operations in remote deep water locations.
These vehicles lend a helping robotic hand in such exploration efforts.

(a) Overview of the survey. (b) Zoomed area.

Figure 1.4: Extract from the bathymetric survey conducted during the search
for MH370 aircraft off the west coast of Australia. Gray areas correspond to the
bathymetry indirectly estimated using satellite-derived gravity data. In contrast,
colored data have been acquired by marine means, highlighting the need to un-
dertake surveys in situ for higher precisions. c Copyright 2014, Commonwealth of
Australia.
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1.1. Underwater challenges

1.1.3 Autonomous Underwater Vehicles

Because of difficulties due to complex environments and vast areas still uncovered,
the use of autonomous vehicles appears to be a durable solution to face these
conditions and push the boundaries of the oceans knowledge. Indeed, even with
efficient methods such as underwater acoustics, the footprint of marine sensors
is still modest in view of the extent of what has to be explored. Multiply the
number of vessels equipped with sensors costs a lot, due to the involvement of
crews. On top of that, surface vehicles are not sufficient to provide details of deep
waters. Marine robots [Creuze, 2014] are an attractive alternative to increase the
exploration means at reasonable costs.

Furthermore, a global supervision of an underwater robot performing an explo-
ration task is rarely affordable due to the opacities of the environment mentioned
before. The low-rate of underwater communications and the latency during the
propagation of messages require the robot a full degree of autonomy. For these
reasons, new marine robots are designed to make unsupervised decisions in order
to achieve a given task. They can be involved in several marine applications such
as hydrography, oceanography, climate change monitoring, military operations in
mine hunting [Toumelin and Lemaire, 2001], wrecks search [L’Hour and Creuze,
2016], to name but a few.

As they sail underwater without receiving orders from the surface, they have
to sense their environment and act accordingly. AUVs are then equipped with
sensors such as sonars or cameras. In addition, they estimate their own position
by themselves [Leonard et al., 1998], which is a complicated task as always in
the underwater world. The localization problem will be presented in Section 1.2
and is the main motivation of this thesis. The contributions of this work will
be presented through actual experiments involving two AUVs4, Redermor and
Daurade, introduced hereinafter.

4The main characters of this document will be drawn by the following as reference to the
MOOS-IvP middleware [Benjamin et al., 2010] from which this symbol comes from. MOOS-IvP
is a set of open source modules for providing autonomy on robotic platforms, in particular
autonomous marine vehicles. This framework has been used during this work as basis of actual
experiments.
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Chapter 1. Introduction

The Redermor AUV

The Redermor5 AUV, pictured in Figure 1.5, was an experimental robot designed
during the Franco-British collaborative project Remote Mine Hunting System. Built
during the nineties at DGA Techniques Navales Brest (formerly GESMA), it served
as platform for several studies [Quidu et al., 2007]. The main characteristics of the
vehicle are summarized in Table 1.1, [Toumelin and Lemaire, 2001].

Figure 1.5: The Redermor AUV before a sea trial. The thrusters’ layout allows
it to circumnavigate a point such as a mine to identify, its front looking sonar
providing different viewing angles of the target. Photo: DGA-TN Brest.

Table 1.1: Redermor ’s main characteristics.

weight : 3400kg
length : 6.40m
speed : up to 10 knots (5.14m/s)

max depth : 200m

During a mission, the position of the robot is provided by an Inertial Navigation
System (INS) coupled with a Doppler Velocity Log (DVL) sensing robot’s speed.
The positioning error is estimated at some meters per hour. It is difficult to provide
the reader with accurate figures about this error as it is related to the pattern
followed by the vehicle, its altitude or its speed6.

5Redermor means rider of the seas in the Breton language.
6The DVL accuracy depends among other things on its distance from the seabed and the

sensed velocity. For a 1200kHz Teledyne DVL, the errors are given as: ±0.3cm/s at 1m/s,
±0.4cm/s at 3m/s, ±0.5cm/s at 5m/s.
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1.1. Underwater challenges

The Daurade AUV

Redermor is today retired and left its place to the new Daurade AUV, see Figure 1.6.
This vehicle has been built by the ECA group and performed many experiments
since 2005 on the shores of France. It is still used today by DGA-TN Brest, in
collaboration with the Service Hydrographique et Océanographique de la Marine
(SHOM) for survey purposes or mine hunting applications. Its main characteristics
are given in Table 1.2.

Figure 1.6: Daurade AUV managed by the crew of the Aventurière II, during an
experiment in the Rade de Brest, October 2015. Photo: S. Rohou.

Table 1.2: Daurade’s main characteristics.

weight : 1010kg
length : 5m
speed : up to 8 knots (4.11m/s)

max depth : 300m
autonomy : 10h at 4 knots, 2h at 8 knots

sonar coverage range : 150m

It is equipped with an INS Phins from iXblue, connected to a DVL7 as for the
Redermor. Its positioning accuracy is 3m/h at 2 knots, or 0.1% of the traveled
distance, based upon a hybridization INS/DVL. On the other hand, 20 meters of
positioning error are obtained after 5 minutes of navigation in pure inertial mode.

7The vehicle is configurable with either a 300kHz or a 1200kHz Workhorse Teledyne RDI DVL.
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Chapter 1. Introduction

Redermor and Daurade are heavy vehicles with high costs of handling and
maintenance. Furthermore, the embedded navigation systems cannot be easily
changed, which is a limitation when it comes to try new algorithms for autonomous
navigation. This motivated the design of smaller and cheaper units.

The Toutatis AUVs project

A new class of autonomous underwater vehicles has been designed during this
PhD thesis. The class term refers to a group of several units of the same type.
The Toutatis8 project, as Team Of Underwater roboTs for Autonomous Tasks of
Inspection and Survey, was aimed at applying the tools presented in this document
in realistic scenarios. The project has been paused and will be resumed later.

Figures 1.7 picture some modeling views of the vehicles. The units are modular
in order to fit with the mission requirements. The aluminium cage protects the tube,
the sensors and the thrusters. It is also convenient to arrange devices everywhere
on the frame without difficulty. In addition, the cage is useful to carry, transport
and store the vehicles; then it will be possible to stow all AUVs on top of each
other in a reduced place. Finally, landing on the seabed will not present any risk.

Being powered by six thrusters, the AUVs will be omni-directional which
is of interest to orient sensors according to the needs. The vehicles should be
equipped with cameras, sonars, echosounders, an acoustic modem, a low-cost
Inertial Measurement Unit (IMU), a DVL and a pressure sensor.

If it appears clear that AUVs have the potential to revolutionize the means of
exploring our oceans, several challenges still remain before considering their active
use, the primary of which is the localization problem.

8Toutatis is a Celtic god in ancient Gaul and Britain culture. It was seen as the tribe’s leader:
this name illustrates the future behaviour of these robots: they will act as members of a team,
based on communication and collaboration.
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1.2. The localization problem

(a) One unit.

(b) A stack of modular vehicles.

Figure 1.7: An overview of the Toutatis AUVs project.

1.2 The localization problem

A robot localization is the process of estimating the vehicle’s position in a given
reference frame. This is a key point of mobile robotics as it conditions the success of
other processes such as sensing, actuation, manipulation or mapping. In the latter
case, a poor positioning estimation will directly lead to datasets acquisitions with
meaningless spatial distribution. On top of that, a good localization is mandatory
to ensure the safety of the vehicle: for instance when moving in the vicinity of
some offshore construction or during the recovery procedure.

In the case of autonomous vehicles, the localization process has to be embedded.
Indeed, as soon as a robot dives under the surface, it does not receive electromagnetic
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Chapter 1. Introduction

waves anymore. Global Navigation Satellite Systems (GNSSs)9, well used in
terrestrial and aerial applications, cannot be considered in the underwater case.
This raises an important amount of work in the community of underwater robotics,
in order to investigate new localization techniques. It has led to the design of
dedicated sensors and algorithms.

This thesis is a contribution to the localization problem. The current section
formalizes the problem and briefly presents already existing positioning approaches
in order to place our work with respect to the state of the art and see its main added
values. Our motivation being the exploration of wide and unknown underwater
areas, we will only consider the generic case of long range navigations without any
prior knowledge10 on the environment.

1.2.1 State equations

The localization algorithms make use of data collected by a set of sensors that
we can divide into two categories: proprioceptive measurements and exteroceptive
ones. The first one gathers information related to the robot’s state, such as
its acceleration, heading, speed, while the second is related to the environment:
temperature, distance from a beacon, camera images, etc.

Mathematics provide a way to convert the world into equations. For the
localization problem, the following state equations are generally used:

{
ẋ(t) = f (x(t),u(t)) ,
z(t) = g (x(t)) .

(1.1a)
(1.1b)

Here, x ∈ Rn depicts the state of the robot: position, heading, speed, etc.
We then speak about state estimation as the localization problem amounts to
estimating x based on these equations and both proprioceptive and exteroceptive
measurements.

9At the time of writing, GPS, GLONASS and Galileo are available terrestrial positioning
systems respectively handled by the United States, Russia and the European Union.

10Otherwise, when a given initial map of the environment is available, a process of data
matching between robot data and the map leads to map-based navigation approaches [Tuohy
et al., 1996, Tyrén, 1982].
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1.2. The localization problem

Equation (1.1a) is differential and depicts the state evolution. f : Rn×Rm → Rn

is called evolution function. The input vector u ∈ Rm represents the control applied
on x. Measurements are depicted by a vector z ∈ Rp related to x through the
observation function g : Rn → Rp, Equation (1.1b). We emphasize that in practice,
both functions f and g may be uncertain or non-linear. These constraints will be
carefully taken into account in this document.

For instance, an underwater robot may be described as x = (x1, x2, x3, ψ, ϑ)ᵀ
where x1, x2, x3 are respectively the east, north and vertical positions of the robot,
ψ its heading and ϑ its speed. An onboard pressure sensor will easily provide pro-
prioceptive data about the vertical position of the robot11. However, the estimation
of the horizontal location (x1, x2) is a lot more challenging. We summarize in the
next sections several useful localization methods [Leonard et al., 1998]. Note that
in this document, the horizontal position will sometimes be denoted p = (x1, x2)ᵀ
to simplify the reading.

1.2.2 Dead-reckoning drawbacks

Proprioceptive approach

The simplest way to localize one-self is dead-reckoning. From successive proprio-
ceptive measurements, a system will estimate its own evolution, step by step. A
blind walker would proceed in the same manner by counting its footsteps and then
roughly estimating its move. This is the most common localization approach in
mobile robotics, as it only requires inner sensors and runs in most environments.

An embedded IMU will provide information on linear accelerations and rotation
speeds of the system. Coupled with a magnetometer, the system will also be able to
assess its Euler angles: the bank φ, the elevation θ and the heading ψ. The terms
roll φ, pitch θ, yaw ψ are usually employed to depict these orientations. Then, a
dedicated unit called Inertial Navigation System (INS) will provide an estimate
of the robot’s state based on these measurements and some algorithms such as a
Kalman filter [Kalman, 1960].

External references are not involved in this process. However, in the field of
underwater robotics, it is important to mention DVLs that provide information

11The estimated depth depends on pressure and water salinity. In the oceans, each 10 meters
of depth adds another 1.025 bar to the surface pressure.
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about the vehicle speed. From the emission of acoustic beams, the device will
measure velocities within the water column using the Doppler effect. When the
beams reach the bottom, measured velocities can be used to compute displacements
relative to the seabed. Today, DVLs are well hybridized with marine INSs, which
greatly improve performances regarding pure inertial navigations.

Drifting effects

From a known initial position p0, an INS will filter the measurements and estimate
the successive poses of the robot. This is achieved by integrating the motion
data in time, sometimes twice in the case of acceleration measurements, which
mathematically leads to quadratic errors. For instance, a position estimated by
means of biased acceleration measurements ab(t) = a∗(t) + b is expressed by

pb(t) =
∫∫ t

t0
ab(τ)dτ + p0. (1.2)

The bias b is cumulated over time in such a way that the position error is:

e(t) ≈ b
t2

2 . (1.3)

This effect is pictured in Figure 1.8. Unfortunately the drift cannot be bounded and
is even substantial when using second order measurements such as accelerations.

The errors can have various causes: noise from sensors, wrong calibrations of
the units, a misalignment between the magnetometer and the IMU, etc. In the case
of underwater robotics, one must also consider the impact of ocean currents on
the vehicle which adds another velocity component poorly sensed by these sensors.
Furthermore, without mentioning power consumptions, the cost of an accurate
INS may be too excessive for small AUVs. An essential link between an INS and
conventional exteroceptive sensors such as sonars has to be contemplated [Dillon,
2016].

Therefore, dead-reckoning methods are not suited for underwater long range
navigations. The AUV will have to surface on a regular basis in order to fix
its positioning estimation thanks to GNSS signals. This entails risks related to
discretion, safety, or even collision with surface vehicles. Furthermore, when AUVs
have to operate in very deep waters – as for the MH370 aircraft search – the process
of surfacing takes time and energy. Finally, other applications such as exploring
ice-covered oceans or karst environments [Lasbouygues et al., 2014] will necessarily
require other approaches to perform a long-term localization.
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1.2. The localization problem

p(t) =?

p0

actual trajectory

estimation

Figure 1.8: Illustration of drifting state estimations with a dead-reckoning method.
From a known initial position p0, a dead-reckoning method will integrate speed
and inertial measurements which lead to cumulative errors with time. Successive
actual positions are plotted in blue • and four arbitrary estimations are drawn in
gray •.

1.2.3 Underwater acoustic positioning systems

This introduction is not aimed at providing a comprehensive list of dead-reckoning
alternatives, but the two following acoustic techniques are widespread enough to
be referenced. They will be mentioned afterwards in this document, as part of
simulated examples or as a basis of actual datasets.

Basics

Acoustic positioning systems stand on the measurement of signals’ time of flight.
Distances between an emitter and a receiver (or an obstacle reflecting the wave)
can then be computed assuming a good estimation of the sound velocity profile
through the water column12. The Heard Island experiment demonstrated that
great distances can be reached by acoustics, and even assessed if the sound celerity

12The sound celerity profile mainly depends on pressure, salinity and temperature: parameters
not always well known and that have to be measured in situ. In salt water, the sound travels at
about 1500m/s.
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profile is sufficiently known along the propagation. However, estimations get
complicated in the vicinity of interfaces of two different media, namely water/seabed
or water/surface, due to the reflection of waves and multipath interferences. Robust
filters have to be used in order to overcome these outliers [Vaganay et al., 1996].

Positioning systems involve acoustic beacons in different configurations, two of
which are presented hereinafter. The reader interested in this topic can refer to the
literature for additional information [Jensen et al., 2011, Milne, 1983].

Long baseline acoustic positioning systems

A Long BaseLine (LBL) system is made of an array of acoustic transponders
deployed on the seabed and precisely geolocalized. The vehicle is also equipped
with a transponder in order to trigger the emission of signals from the beacons and
receive the feedback. Figure 1.9 illustrates a typical LBL installation.

buoy

transponder

receiver

x1

x2

x3

Figure 1.9: A LBL navigation system made of four hydrophones. The vehicle
receives range-only signals and then estimates its position.

A received signal is range-only as it consists in a wave emission that propagates
spherically from the emitter. The bearing information (direction-of-arrival data) is
not assessed with a single beacon. The position of the vehicle is then estimated at
the intersection of the spheres centered on the beacons, each of which with a radius
measured from the sound time of flight. The transponder installation can be up to
few kilometers wide while providing a positioning accuracy of a few meters.
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1.2. The localization problem

Of course the deployment of such installation may be expensive, not to mention
the duration of the calibration phase that can involve a complete crew. Furthermore,
the installation is not suited for wide explorations of several tens or hundreds of
kilometers.

Ultra-short baselines

A more mobile approach is the Ultra-Short BaseLine (USBL): a concentrated array
of transceivers mounted on the very same device [Pennec, 2010], see for instance the
system pictured in Figure 1.10a that has been used during some of the experiments
presented in this document.

The device includes a set of acoustic transceivers providing both range and
bearing measurements between the USBL and the receiver unit embedded in
the vehicle, Figure 1.10b. In this approach, the calibration is made once by the
manufacturer, allowing a straightforward use of the device. Furthermore, it can
be settled under a boat localized with an accurate GNSS13. The combination of
these two positioning systems enables the estimation of vehicle’s absolute positions
with an accuracy of one meter or below. However, due to the proximity of the
transceivers, the angular accuracy may not be sufficiently good to localize a distant
vehicle. In addition, the transceivers will usually be located near the surface,
suffering from several outliers as pictured in Figure 1.11.

In practice, these devices are well suited for local underwater operations such
as docking procedures or when a boat has to monitor an AUV. They cannot be
considered as a standalone solution for pure autonomous navigation.

Towards dynamical positioning systems

Recent years have witnessed a new approach for underwater localization involving
groups of vehicles and collaborative positioning. Range-only beacons or USBL can
be mounted on AUVs in order to follow the exploration progress.

Autonomous vehicles can make use of acoustics to communicate low-rate data
and exchange information such as state estimations. Then, new algorithms [Bahr

13Some devices such as the GAPS, Figure 1.10a, also include a fiber-optic INS to take into
consideration the attitude of the boat whatever the ocean surface conditions.
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(a) USBL mounted on the mission boat. This device is made of four transceivers.

(b) The receiver unit is embedded on top of the AUV among other sensors.

Figure 1.10: A USBL transceiver GAPS from iXblue used during sea experiments
with the Daurade AUV. The device is mounted under the boat and provides an
estimation of the actual AUV trajectory. Photos: S. Rohou.
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Figure 1.11: An overview of 2D positioning results obtained with a USBL system
during an experiment involving the Daurade AUV. Non-filtered acoustic data are
pictured by dots • while the filtered trajectory, obtained with a Kalman filter
and proprioceptive measurements, is plotted with a continuous line •. Numerous
outliers and low ping frequency are the main drawbacks of such system. Note that
only a part of the received signals are pictured on this figure, other points are
serious outliers located out of the survey area.
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et al., 2009, Paull et al., 2014, Seddik, 2015] are employed to perform a decentralized
localization of the group items. In this context, AUVs may even play specific roles in
order to diversify the data obtained by the group. Namely, some items can stay at
the surface to benefit from GNSS signals and assist the deeper vehicles that localize
themselves and explore the seabed. In the same approach, a reconfigurable LBL
has also been studied in [Matsuda et al., 2012, Matsuda et al., 2015], introducing
the concept of alternating landmark navigation: a technique for which USBLs lay
on the seabed as fixed points or explore while being localized by the motionless
vehicles. This can be seen as a step by step approach where each step is performed
by a vehicle laid on the seabed.

While these works achieve promising results, they also raise other difficulties
such as the saturation of the acoustic channel, as messages are broadcasted in the
same environment.

1.2.4 SLAM: a standalone solution

Another approach for robot localization has received large attention since the early
stages in this field [Smith et al., 1990]. The Simultaneous Localization And Mapping
(SLAM)14, is an approach that ties together the problem of state estimation and
the one of mapping an unknown environment.

A chicken and egg problem

We have seen that a dead-reckoning localization necessary leads to uncertain
positioning estimations with time. A robot exploring its surroundings will associate
these uncertainties to the observed features, assigning their location with some
error. However, a scene of the environment may be seen several times during the
exploration, which leads to an inter-temporal measurement which could benefit
both localization and mapping procedures. Indeed, a robot that recognizes a part of
the environment will deduce to be close to a previous position. This is highlighted
by the example presented in Figure 1.12.

Hence, these methods consider that positioning and mapping errors are closely
related: a concurrent resolution may apply [Leonard and Durrant-Whyte, 1991].

14In the literature, SLAM is sometimes referenced as CML: Concurrent Mapping and Localiza-
tion.
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seamark

Localization of the
seamark by the robot

Localization of the robot
based on the previous

estimation of the seamark
p(t1) p(t2)

p0

Figure 1.12: A simple SLAM illustration presenting robot’s positions at two different
times t1 and t2. In pure dead-reckoning, the left part of the image would depict
a precise estimation of the robot’s trajectory while the positioning uncertainties
would be strong on the right one. Considering a SLAM approach, a robot coming
back to a previous place and perceiving again an object, such as a seamark, will be
able to refine its state estimation.

A significant amount of work has been completed around this topic, still subject to
further research [Newman and Leonard, 2003, Lemaire et al., 2007].

Loop closure

The key point of SLAM methods is to detect that a place has been previously
visited. This problem is known in the literature as loop closure.

It may be difficult for a robot to detect a closure, due to poor estimations
on both its position and map-matchings. Worse still, two different objects of
same shape may be considered as unique by algorithms standing on too uncertain
positioning estimations. Figure 1.13 highlights the case of two identical objects
and uncertain trajectory estimates.
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seamark A seamark B

actual trajectory

p0

Figure 1.13: A robot flying over two different but same-looking seamarks. The
actual trajectory is plotted in blue • while several dead-reckoning estimations
are drawn in gray •. All the trajectories are consistent with the observations. A
well-known map would not prevent from wrong detections.

This problem is not fully resolved yet. One of the contributions of this thesis is
to provide a test to prove that a robot performed a looped trajectory, considering
uncertainties from a set of proprioceptive measurements. This work will be presented
in Chapter 6 and illustrated in the underwater case through actual experiments
involving the previously introduced AUVs. The tool is well suited to prevent from
false loop detections in similar environments. It has also other uses such as the
reduction of the computational burden of SLAM algorithms.

Computational burden

The complexity of SLAM algorithms quickly increases with the exploration of wide
environments, as it implies lots of loop closures to identify among a dense set of
data. To this day, the execution of SLAM programs in 3D environments is often
not affordable for classical embedded systems powering the robots. A part of the
community hence focuses on light-weight solutions, sometimes at the expense of
the loss of data associations.

Algorithms involving proprioceptive measurements only are now able to detect
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loops without going into a costly analysis of observation datasets [Aubry et al.,
2013]. This approach significantly reduces the complexity of SLAM algorithms.

Homogeneous environments

Another challenging issue is the identification of points of interest. Aside from the
problem of confusable similar scenes, it is relatively straightforward to recognize
artificial objects in terrestrial environments, exploiting high definition cameras
and clear visibility of the scenes. A set of ready-to-use image processing libraries
already provides efficient results for such applications.

However, points of interest are less identifiable in natural environments. It
then requires raw-data approaches that do not stand on the identification of
objects. Dealing with underwater environments, globally homogeneous in shape
and observable with poor visibility, the only SLAM methods left to the roboticist
are raw-data approaches. This thesis provides an original method considering these
constraints.
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1.3 PhD thesis context

“The necessary knowledge is that of what to observe.”

Complete Tales & Poems, Edgar Allan Poe

What characterizes the underwater case is the paucity of relevant information.
This thesis focuses on a new localization approach in such poor environments. The
presented method can be characterized as a raw-data SLAM approach, but we
propose a temporal resolution – which differs from usual methods – by considering
time as a standard variable to be estimated. This concept raises new opportunities
for state estimation, under-exploited so far.

However, such temporal resolution is not straightforward and requires a set of
theoretical tools in order to achieve the main purpose of localization. This thesis
is thus not only a contribution in the field of mobile robotics; it also provides
new perspectives in the areas of constraint programming and set-membership
approaches.

This section briefly presents the proposed localization method and highlights the
intermediate steps investigated during this work, providing the reader an overview
of the document structure.

1.3.1 New localization approach in very poor environments

Assumptions

By very poor, we mean environments that do not present land/sea marks or
any visible object that could be used as reference. A wide seabed area without
recognizable objects such as anchors or wrecks corresponds to such poor environment.
By going further, we will even assume that the observation function g is unknown
due to too much uncertainties about the environment. Furthermore, we will only
consider a static environment which does not evolve during the exploration mission
in a non-deterministic manner. Any measurably change of it must be formally
known, for instance based on physical models.
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Inter-temporal approach

Standing on the static environment assumption, a robot coming back to a previous
position p = x1,2 must sense the same observation z as the first time. Formally,

p(t1) = p(t2) =⇒ z(t1) = z(t2). (1.4)

We propose the following generic formalism:

ẋ(t) = f (x(t),u(t)) ,
((((((((z(t) = g (x(t)),
h (x(t1)) = h (x(t2))︸ ︷︷ ︸

same state configurations

=⇒ z(t1) = z(t2)︸ ︷︷ ︸
same observations

,

(1.5a)
(1.5b)
(1.5c)

introducing the configuration function h : Rn → Rn′ that depicts a singular
configuration of a state. When same configurations are encountered twice at times
t1 and t2, then x(t1) and x(t2) present a singular relation leading to identical
measurements. In this document, we will only focus on the positioning components
p = (x1, x2)ᵀ of the state vector, but Equation (1.5c) allows wider applications15.
We emphasize that the observation function g is not involved in this formalism.

Our illustrations will stand on scalar bathymetric measurements acquired from
a single beam echosounder measuring the altitude of the AUV over the seafloor.
Figure 1.14 provides a synthesis image of an underwater robot crossing back a
previous position. Here, the robot is regulated at constant depth and senses its
altitude with a sonar. We will see that other kind of observations can be considered,
such as the passive electric sense.

Equation (1.5c) provides a new relation between robot states and observations,
as the function g did. The difference is, however, that it links information that can
be temporally very distant, even if an analytical expression between x and z is not
at hand. According to the resolution method employed to solve the problem, the
time references t1 and t2 could also present uncertainties.

To keep things simple, errors are not represented in Equations (1.5). It is a
simple formalism and each resolution method – such as a Bayesian approach or a
set-membership estimation – will model the uncertainties in its own way.

15For instance, the method should also apply in environments presenting symmetry properties.
This has been the object of a study Robot localization in an unknown but symmetric environment
during this thesis, not detailed in this document.
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Figure 1.14: A Toutatis AUV exploring its surroundings with a single beam
echosounder. This view presents two instants of the mission, before and after
performing a loop. The localization approach defended in this document is based
on the constraint raised during the trajectory crossing, where observations should
be identical despite their temporal distancing.

1.3.2 Estimation methods

The localization problem modeled by the System (1.5) involves differential equations
and functions that can be non-linear. Furthermore, uncertainties have to be
propagated over the evolution of the system. As inter-temporal measurements will
be the core of the issue, the effects of these propagations over the time intervals
must be assessable.

Exact resolution methods cannot apply for this problem as it does not present
analytical solutions. Estimation approaches have to be considered. This section
presents our motivation for set-membership methods.
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Probabilistic approaches

These usual methods compute a unique estimated solution with uncertainties
qualified by means of covariance matrices [Papoulis and Pillai, 2002]. When dealing
with linear equations and uncertainties that are Gaussian-distributed, it has been
shown that the well-known Kalman filter [Kalman, 1960] is optimal. Extensions to
the non-linear case have been studied afterwards, performing linearizations when
necessary. However, this might be a source of estimation errors and it becomes
difficult to qualify such uncertainty.

On the other hand, stochastic approaches have received a large attention from
the community of automatic and control, providing significant results in the non-
linear case [Thrun et al., 2005]. These methods randomly sweep across feasible
inputs or parameters and generate a set of probable trajectories: samples. To
increase the chances to have one estimation among the samples that is close to
the actual solution, a lot of computations have to be attempted. Their probability
is evaluated and further samples are then generated in the probable areas based
on these likelihoods, allowing a convergence of the algorithm towards a relevant
estimation.

However, these random-based computations may badly behave in case of strong
non-linearities or few available observations. The risk is to assign a high likelihood
to a wrong solution and let the algorithm converge to it. In our localization context,
it is essential to address the problem with an estimation method robust to a lack
of data and non-redundant information. Probabilistic methods do not seem suited
for this purpose.

Set-membership methods

We will pay a specific attention to set-membership approaches that have proved
their worth to deal with non-linearities and substantial uncertainties.

“I think it is much more interesting to live not knowing than
to have answers which might be wrong. I have approximate

answers and possible beliefs and different degrees of certainty
about different things, but I am not absolutely sure of anything

and there are many things I do not know anything about. ”

Richard Feynman, BBC Horizon, 1981
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The approach effectively does differ from probabilistic methods in regards of
the nature of the estimated solution. Probabilistic methods compute a punctual
potential solution – for instance a vector – while in set-membership ones, it is
the set of all feasible solutions that is evaluated, and thus an infinity of potential
solutions. Another main distinction lies in the way things are computed: with
set-membership methods, estimations are not randomly performed. Computations
are deterministic: given a set of parameters or inputs, algorithms will always output
the same result.

These methods stand on reliable computations over bounds defining ranges
of possibilities. Operations are guaranteed not to lose any solution. The main
counterpart is that any unlikely solution will be kept in the resulting set if it is
consistent with the system’s equations. As a result, algorithms provide pessimistic
outcomes and sometimes even meaningless results depending on the situation: “I
am not absolutely sure of anything”.

The maximum distance between the unknown actual solution and any point
in the output set is computable and defines the quality of the approximation: it
is the worst case error if any point in the set is taken as solution. Therefore, in
contrast to the above-mentioned approach, these methods are well suited to reliably
propagate uncertainties over the operations.

Conclusion

The problem we are dealing with presents only few observations, especially non-
redundant. Capitalize upon them is the key and an accurate resolution method
is necessary to never diverge from this information. This is the reason why a
set-membership approach is considered in this document. Furthermore, in our un-
derwater applications, uncertainties are strong and non-linearities omnipresent, due
to range-only observations: these are situations easily managed by this approach.

In addition, using set-membership methods will provide guaranteed outcomes,
which can be of main interest for the safety of robotic systems [Goubault et al.,
2014, Monnet et al., 2016].

Last, but not least, this SLAM problem will be solved in a temporal way, by
comparing observations that are temporally distant and considering time references
as complete variables. It seems that only a strict and reliable approach can suit.
However, set-membership methods do not provide the necessary theoretical tools
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yet. One of the purposes of this thesis is to extend the methods in order to deal
with temporal relations, and apply the proposed tools on our localization problem.

To achieve this resolution, a constraint based approach will be applied. The
work motivated by our robotic problem will lead to contributions in the communities
of constraint programming and robotics. The theoretical contributions related to
the constraints field are briefly motivated in the following section.

1.3.3 Constraint programming approach
over dynamical systems

We have seen that the aim of set-membership approaches is to define a reliable set
of feasible solutions. This strategy goes well with constraint propagation techniques:
another area widely explored since the 1980’s by a part of the artificial intelligence
community [Cleary, 1987, Sam-Haroud and Faltings, 1996]. In particular, we will
concentrate on continuous constraints and propose tools to implement new ones in
a differential context.

Constraint programming

The constraint programming aims at solving a complex problem by defining it
in the form of elementary facts and rules among variables: so-called constraints.
A constraint is understood as the expression of any relation that binds variables,
which are known to belong to some domains. In our context, constraints may be
equalities between physical values as well as non-linear equations, inequalities, or
quantified parameters. For instance, the programmer addressing the problem of
Equations (1.5), page 25, will list a set of mathematical constraints and will then
build a solver. Uncertainties and spaces of solutions are specified either by other
constraints or by restricting the domains of the variables. Hence, this approach is
in perfect accordance with set-membership methods, benefiting from their reliable
operations to apply constraints over sets of values.

In this approach, instead of thinking about how he can solve a problem, the
developer will focus on what is the problem, thus leaving the computer to the
question of the how. Indeed, each elementary constraint will then be implemented
as a black box that does not require any configuration. Constraints can also be
easily combined in order to increase in complexity, while preserving simplicity.
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Therefore, the strength of this declarative paradigm lies in its simpleness, as
it allows one to describe a problem with elementary facts that do not require the
knowledge of resolution tools coming with specific parameters to choose. The
second asset is its genericity: a situation is seen from a high-level point of view
and this abstraction enables the resolution of a wide range of problems. The
Prolog language [Benhamou and Touräıvane, 1995] appears to be the best known
illustration of a general-purpose logic programming method. However, the main
drawback of these languages may be their lack of efficiency: the simplicity of the
modeling step comes at the expense of a lack of control on the resolution process.
Improving the efficiency of such solver by a set of parameters to configure will
always compromise simplicity and adaptability.

A major effort from the community has been undertaken around this concept,
providing an extensive constraint store. However, the approach must be extended
to dynamical systems in order to deal with problems such as state estimations
encountered in robotics.

Extension to dynamical systems

There is a need to enrich the constraint store with new tools to manage differential
equations such as ẋ(t) = f (x(t),u(t)). The objective is to adapt the constraint
programming approach to dynamical systems and propose a resolution in the
temporal space. Further constraints such as inter-temporal equations should also
be considered, in order to address relations such as p(t1) = p(t2) =⇒ z(t1) = z(t2).
Naturally, this effort has to be done while maintaining the assets of set-membership
methods and constraint programming, namely: guaranteed results, non-linearities
control and simplicity.

Some attempts in this direction have been proposed, but they do not provide
the level of simplicity and genericity we may be looking for when dealing with
concrete applications: non-analytical models, asynchronous observations, unknown
initial conditions, inter-temporal measurements, backward refinements, to name
but a few.

This thesis goes a step further and proposes a reliable constraint programming
approach over dynamical systems, illustrated with concrete applications. The
approach defended in this document consists in considering trajectories as variables
and apply differential constraints on them. Ultimately, a set of heterogeneous
tools will be available, merging classical continuous constraints together with
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differential ones. The domains of feasible solutions will be represented by means of
tubes: an interval object that recently appeared in this community [Le Bars et al.,
2012, Bethencourt and Jaulin, 2014], see Figure 1.15.

x1

x2

p0

one extreme case

tube of trajectories

Figure 1.15: First illustration of a tube of robot trajectories: the building block of
the contributions presented in this document. The bounds of the tube are worst-
case trajectories; this representation allows the enclosure of an actual trajectory in
a representable set of dynamical solutions.
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1.3.4 Thesis outlines and contributions

Towards a reliable raw-data SLAM method

In this thesis, the variables of interest are both time references and trajectories. By
adopting a set-membership approach, time variables will be handled by means of
intervals introduced in Chapter 2 while trajectories will lie within tubes presented in
Chapter 3. The aim will be to reduce these sets using proprioceptive measurements
and raw-data observations such as bathymetric sensing. This will be achieved by
means of two new reliable operators: contractors on tubes and intervals presented
in the second part of this manuscript: Chapters 4 and 5.

The third part of the thesis will focus on Equation (1.5c), page 25, in the
context of 2D looped trajectories:

h(x(t1)) = h(x(t2))︸ ︷︷ ︸
p(t1) = p(t2)

=⇒ z(t1) = z(t2). (1.6)

The reliable assessment of p(t1) = p(t2) is not straightforward in an uncertain
context. Figure 1.16 illustrates the issue with wrong estimations and doubtful
loops. We then need a tool to verify that a trajectory crosses itself at some point,
whatever the uncertainties describing it. This problem is addressed in Chapter 6.
Ultimately, the new SLAM method will be discussed in Chapter 7 with concrete
applications.

We claim that all the algorithms and computations presented in this document
are guaranteed not to lose solutions, from a mathematical point of view. More
precisely, we will see that we do not have to consider an infinitely small integration
timestep for the resolution of differential equations to make this statement.

Document structure

The contributions fields are twofold: we will develop theoretical tools related to the
constraint programming approach and then propose a new localization method for
mobile robots, standing on these tools. Each of the intermediate steps investigated
during this work will be the subject of a chapter. The overall document structure
is reminded hereinafter.
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doubtful loop

undeniable loop

undeniable loop

Figure 1.16: Loop detections based on uncertain state estimations. The actual
trajectory involves two loops while the four estimations may present between two
and four crossings. Methods to identify doubtful loops from undeniable cases have
to be studied.
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Part I Interval tools

Chapter 2 Its purpose is to make the reader familiar with the set-membership
tools that are used later in the manuscript. A simple static range-only localization
example will be used as common thread of this chapter, illustrating the concepts
of interval analysis, constraints, contractors and set-inversion.

Chapter 3 It introduces the notion of tubes with their related properties, al-
gebraic contractors and implementation choices. The previous static example is
extended to the dynamical context with a reliable dead-reckoning estimation.

Part II Constraints-related contributions

Chapter 4 Our first contribution focuses on the primary differential constraint
ẋ(·) = v(·). We propose a new tube contractor C d

dt
with proofs and algorithms. This

first step will allow to deal with complete state estimations based on asynchronous
observations.

Chapter 5 This second theoretical contribution will complement the first one,
focusing on the evaluation constraint z = y(t). The efficiency of the new contractor
Ceval will be illustrated on two examples: the dynamic localization of a mobile robot
and the correction of a drifting clock.

Part III Robotics-related contributions

Chapter 6 Our third contribution is an appropriate test to prove that a robot
performed a loop whatever the uncertainties in its evolution. Our approach stands
on the topological degree theory applied through interval functions evaluated from
tubes. Convincing results have been obtained during actual AUVs experiments.

Chapter 7 The culmination of this thesis is an original reliable raw-data SLAM
method. The constraint-based resolution we propose is new and achieved based on
each of the previous contributions. We show the interest of the approach through
actual experiments involving the Daurade AUV. This temporal process is a first
step towards new opportunities of localization, under-exploited so far.

Chapter 8 will finally conclude this thesis and discuss perspectives.
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Part I

Interval tools

Our choice is to address robotics problems with set-
membership methods. In this part, we introduce a set of
already existing tools standing on interval analysis, illustrated
over several simple examples of dead-reckoning and range-only
state estimation. Each notion developed in this part will then
be applied in the following chapters.

Chapter 2 introduces the concepts of interval analysis,
constraint programming, contractors and set-inversion.
Chapter 3 extends the approach to temporal systems by
providing the notion of tubes with their related properties,
algebraic contractors and implementation choices.
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2.1 Introduction

A state estimation problem can be dealt with set-membership approaches, where
both the uncertainties on the model and the measurements errors are known.
By known, we mean that an unknown actual value is guaranteed to lie within
bounds that delineate the uncertainties, thus defining a solution set [Walter and
Piet-Lahanier, 1988, Cerone, 1996, Veres and Norton, 1996, Maksarov and Norton,
1996].

The estimation then consists in reducing this set of feasible values by means of
operators, where other approaches would have minimized an error criterion. The
computations are not performed in a probabilistic way but based on deterministic
operations on the bounds of the set. This approach is significantly different from
usual methods: here, we do not assume a probability distribution in the calculations.
Furthermore, the bounding property of such approach is guaranteed even if the
system is non-linear. This quality is of particular importance in mobile robotics
where several problems present non-linearities, the case of a range-only localization
being one of them [Caiti et al., 2005].

Range-only state estimation

A telling example of set-membership state estimation is the localization of a mobile
robot among beacons. This kind of application has already been appropriately
presented in [Drevelle, 2011] to introduce set-membership methods. We will use
it as a guiding thread of this document, firstly in this chapter in a static context
without considering temporal evolutions: the pose of the robot is estimated with
synchronous measurements. The same example will be extended to dynamical
state estimation in Chapters 3, 4 and 5 based on differential state equations and
asynchronous measurements, sometimes obtained with time uncertainties.

A robot R is described by its state x = (x1, x2)ᵀ depicting its 2D location.
The robot evolves among a set of beacons Bk located at (xk1, xk2) and sending
synchronously acoustic signals, as illustrated by Figure 2.1. The distances ρk from
the Bk will be used to localize R. The following observation function is used to
this end:

ρk = gk (x) =
√(

x1 − xk1
)2

+
(
x2 − xk2

)2
. (2.1)
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The robot is located on one of the intersections of the ranges circles. When
at least three beacons are used, the intersection is generally a single point: the
horizontal localization is done without ambiguity.

Wrappers

Now, considering uncertainties on the measurements, the circles become thick and
the intersection then results in a set that can be of any shape, as pictured in
Figure 2.1.
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Figure 2.1: Range-only robot localization among three beacons pictured by red
boxes •. The position of R in (0, 0) is unknown. The state estimation is performed
based on uncertain measurements displayed by rings •. Several kinds of solution
sets are shown in Figure 2.2.

The solution set may even be made of several connected subsets or include holes.
Figure 2.2 illustrates different methods to represent a set, namely zonotopes or
polyhedral enclosures [Combastel, 2005, Walter and Piet-Lahanier, 1989], ellipsoids
[Rokityanskiy and Veres, 2005], intervals or subpavings [Jaulin and Walter, 1993a].
These latter two have been proven to be efficient when dealing with non-linear
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systems or complex solution shapes. The current chapter presents their theoretical
basis that will be used then throughout this document. Section 2.2 focuses on
interval analysis and Section 2.3 presents tools named contractors that aim at
reliably reducing bounds of interval sets. Subpavings (Figure 2.2d) are introduced in
Section 2.4 for set-inversion, before discussions about implementation and concrete
use of intervals in Section 2.5.

x1

x2

(a) Polyhedral enclosure.
x1

x2

(b) Ellipsoidal enclosure.

x1

x2

(c) Interval enclosure.
x1

x2

(d) Paving enclosure.

Figure 2.2: Reliable set-membership approaches to enclose the set of feasible
positions of R based on uncertain beacons measurements.
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2.2 Interval analysis

2.2.1 Once upon a time

From the beginning of mathematics, the consideration of irrational numbers has
raised the question of their decimal representation. Intervals appear to be a natural
solution to provide an accurate approximation of a number with two bounds. For
instance, Archimede calculated a reliable enclosure of π: 223

71 < π < 22
7 .

However, the spirit of interval analysis appeared recently with the advent of
numerical computations, shining a new light on intervals. Using computers, real
numbers of infinite precision are implemented by floating point values of finite
precision. An approximation of the numbers is then made and can lead to increasing
errors during the computations1.

The following illustration has been given in [Rump, 1988]. Let us compute

f(x, y) = 1335
4 y6 + x2

(
11x2y2 − y6 − 121y4 − 2

)
+ 5.5y8 + x

2y (2.2)

with x = 77617.0 and y = 33096.0 that are exactly computer representable numbers.
Almost same results are obtained using single, double and extended precisions: the
first seven figures are equal.

single precision: f = 1.172603 . . .
double precision: f = 1.1726039400531 . . .

extended precision: f = 1.172603940053178 . . .

The exact value2 f ∗ = −0.8273960599468214
3 shows how wrong the computations

are, despite similar results among several levels of precision.

Using bounds to represent a value is of interest for computer representation,
since these limits can be floating point numbers of finite precision while ensuring a
guaranteed numerical representation of a real number such as π. The counterpart
is pessimism, because this arithmetic handles ranges of possibilities in place of

1Note that these errors may vary from one computer to another.
2This value has been computed by a reliable algorithm so that the displayed figures are

guaranteed and the sixteenth known to yield between 3 and 4.

41



Chapter 2. Static set-membership state estimation

unique values. Hence, the evaluation of Equation (2.2) using interval arithmetic
provides a large enclosure of the actual f ∗, but guaranteed to contain it.

This modern need opened a new thread in mathematics. The first main book on
this topic, [Moore, 1966], brought a tremendous impetus to interval analysis, putting
intervals into new perspective: the uncertainties regarding floating point precision
can be extended to physical uncertainties. This is of high interest for robotic
applications dealing with measurements errors and unknown environments. We will
show in this document that intervals can even be used to represent strong temporal
uncertainties. Additionally, interval analysis is appropriate to compute a search
space and lends itself for many robotic applications such as forward kinematics
[Merlet, 2004], trajectory planning [Piazzi and Visioli, 1997] or workspace analysis
[Chablat et al., 2002], to name but a few.

This thesis will not focus on floating point precision but strong physical un-
certainties. And because all the computations are standing on rigorous interval
analysis, we ensure the presented outcomes are numerically guaranteed. In this
context, results can be used for proof purposes.

2.2.2 Intervals

Elementary notions about intervals are given in the following sections, all of them
being used in the next chapters. For more information on interval analysis and its
applications, the reader may refer to [Jaulin et al., 2001].

Basics

An interval [x] is a closed and connected subset of R. The set of all intervals is
denoted IR. An interval [x] is delimited by a lower bound x− and an upper one x+

that can be infinite3:

[x] = [x−, x+] =
{
x ∈ R | x− 6 x 6 x+

}
. (2.3)

When x− = x+, the interval [x] is said degenerate. In the following computations,
any real number can be considered as a degenerate interval for the sake of generality.

3In this document, we will sometimes use the notation lb ([x]) = x− (respectively ub ([x]) = x+)
to denote the lower (upper) bound of [x].
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The same apply for the empty set ∅. In the problems we are dealing with, ∅ will
depict an absence of solution.

The following are interval examples:

— [2, 3],

— [5] = {5},

— [−∞,∞],

— [0,∞],

— ∅.

In this document, an actual but unknown value to be approximated will be
denoted by a star: x∗. Its estimation is expressed by [x], the width of which depicts
the uncertainty on x∗:

width ([x]) = x+ − x−. (2.4)

When some applications have to deal with a scalar value, the center of [x] can
be considered to represent an evaluation of the unknown x∗. The relevance of such
choice will be discussed for tubes in Chapter 3, Section 3.5.2.

mid ([x]) = x− + x+

2 . (2.5)

Set operations on intervals

The intersection of two intervals is an interval:

[x] ∩ [y] = {z ∈ R | z ∈ [x] and z ∈ [y]} . (2.6)

However, the union of two intervals may not be an interval:

[x] ∪ [y] = {z ∈ R | z ∈ [x] or z ∈ [y]} . (2.7)

The interval union is computed as the interval hull of [x] ∪ [y] so that the result of
the union is a connected subset of R. In this document, this union is denoted by
[x] t [y] and defined as

[x] t [y] = [[x] ∪ [y]] . (2.8)
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Chapter 2. Static set-membership state estimation

Some specific cases are listed below:

[x] t∅ = [x], (2.9)
[x] ∩∅ = ∅, (2.10)
[x] t [−∞,∞] = [−∞,∞] , (2.11)
[x] ∩ [−∞,∞] = [x] . (2.12)

Interval computations

Interval analysis is based on the extension of all classical real arithmetic operators.
Consider two intervals [x] and [y] and an operator � ∈ {+,−, ·, /}. We define
[x] � [y] as the smallest interval containing all feasible values for x � y, assuming
that x ∈ [x] and y ∈ [y], [Moore and Yang, 1959]:

[x] � [y] = [{x � y ∈ R | x ∈ [x], y ∈ [y]}] , (2.13)
[x] �∅ = ∅. (2.14)

Dealing with closed intervals, most of the operations can rely on their bounds.
It is for instance the case of addition, difference, union, etc.:

[x] + [y] =
[
x− + y−, x+ + y+

]
, (2.15)

[x]− [y] =
[
x− − y+, x+ − y−

]
, (2.16)

[x] t [y] =
[
min

(
x−, y−

)
,max

(
x+, y+

)]
, (2.17)

[x] ∩ [y] =
[
max

(
x−, y−

)
,min

(
x+, y+

)]
if max

{
x−, y−

}
6 min

{
x+, y+

}
,

= ∅ otherwise. (2.18)

However, computing some operations is sometimes not as straightforward. Take
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2.2. Interval analysis

for instance the case of the division:

1/[y] =



∅ if [y] = [0, 0]
[1/y+, 1/y−] if 0 /∈ [y]
[1/y+,∞] if y− = 0 and y+ > 0
[−∞, 1/y−] if y− < 0 and y+ = 0
[−∞,∞] if y− < 0 and y+ > 0

, (2.19)

[x] / [y] = [x] · (1/ [y]) . (2.20)

This arithmetic extension also includes the adaptation of elementary functions
such as cos, exp, tan. Sometimes the image of an interval [x] through a function f
is not an interval, as it is the case for discontinuous functions. Then, the interval
evaluation of f([x]), denoted [f ]([x]), is the smallest interval containing all the
images of all defined inputs through the function:

[f ]([x]) = [{f(x) | x ∈ [x]}] . (2.21)

When f is monotonic, [f ]([x]) can be evaluated directly from its bounds:

[exp]([x]) =
[
exp(x−), exp(x+)

]
. (2.22)

Otherwise, other expressions or algorithms have to be used [Bouron, 2002]. The
cosine function is a typical example of a non-monotonic function:

[cos] ([0, 2π]) = [−1, 1] 6= [cos(0), cos(2π)]︸ ︷︷ ︸
[1,1]

. (2.23)

Generalization

One may consider to extend the notion of intervals of real numbers to other sets,
such as intervals of functions, sets [Desrochers and Jaulin, 2017], booleans or even
graphs [Jaulin, 2015b]. Besides, the main contribution of this thesis is to provide
tools to deal with intervals of trajectories, that will be introduced in Chapter 3.
The following section focuses on intervals of vectors.
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Chapter 2. Static set-membership state estimation

Interval vectors

A Cartesian product of n intervals defines a box – also called interval vector –
belonging to the set IRn. As for vectors x, boxes will be represented in bold: [x].

[x] = [x1]× · · · × [xn],
= [x−1 , x+

1 ]× · · · × [x−n , x+
n ],

= ([x1], . . . , [xn])ᵀ .
(2.24)

An interval vector [x] of IRn is an axis-aligned box, closed and connected subset
of Rn. The i-th component [xi] is therefore the projection of [x] onto the i-th axis,
as depicted in Figure 2.3. The empty set of Rn is (∅× · · · ×∅)ᵀ.

[x]

[x2]

[x1]

x∗

Figure 2.3: An interval vector [x] ∈ IR2, its components [xi] being projections onto
axes.

Most operations on intervals are easily scalable to boxes by performing compu-
tations on each component. For instance, a box [x] is defined by its bounds such
that

x− =
(
x−1 , . . . , x

−
n

)ᵀ
, x+ =

(
x+

1 , . . . , x
+
n

)ᵀ
. (2.25)

These extensions also apply to matrices of intervals, for which each component
is an interval, as for boxes.
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2.2. Interval analysis

2.2.3 Inclusion functions

Definition

Considering a n-dimensional box [x] as input, a function f : Rn → Rm will output
a set which is not necessarily a box, as pictured in Figure 2.4 with an image made
of non-connected subsets and a hole. Obtaining an accurate representation of the
output set is often a complicated task, sometimes achieved with a computational
burden of particular concern.

Instead, we use an inclusion function [f ] : IRn → IRm to enclose the image of [x]
by f in a box such that ∀[x] ∈ IRn, f([x]) ⊂ [f ]([x]). Hence, a reliable enclosure of
the image set can be evaluated reasonably quickly. Furthermore, inclusion functions
can stand on analytical expressions or even algorithms based on datasets.

x1

x2

y1

y2

[x]

f

[f ]

[f ]∗

Figure 2.4: Inclusion functions: the image of a box [x] in green • is an arbitrary set
f([x]), pictured in yellow •, that can be approximated with the inclusion function
[f ]. The minimal inclusion function [f ]∗ provides the smallest enclosure of f([x]).
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Properties

An inclusion function is thin if the image of any degenerate interval vector [x] = x
is also punctual: [f ] (x) = {f (x)}.

[f ] is said inclusion monotonic if:

[x] ⊂ [y] =⇒ [f ] ([x]) ⊂ [f ] ([y]) . (2.26)

An infinity of inclusion functions exist for a given f but only one of them will
be minimal and denoted [f ]∗. [f ] is minimal if ∀[x], [f ] ([x]) is the smallest box
containing f ([x]). Figure 2.4 illustrates this notion. Any non-minimal inclusion
function is said pessimistic.

Natural inclusion functions

When f is a function made of a finite suite of elementary functions such as
sin, tan,

√
(·), min, . . . and operators +, −, ∗, /, then the simplest method to

obtain an inclusion function of it is to replace the variables x1, x2, . . . by their
interval representation [x1], [x2], . . . and the functions and operators by their interval
counterpart: [sin], [tan], etc. The obtained [f ] is then said natural inclusion function
of f .

[f ] is inclusion monotonic and thin. In addition, it is convergent if made of
continuous functions and operators. However, a natural inclusion function may
not be minimal due to dependencies between the variables and some wrapping
effect, discussed in the next Section 2.2.4. [f ] will be minimal if each variable only
appears once in its expression and if only continuous functions and operators are
involved in its expression.

Let us come back to the range-only beacon localization example and compute
the natural inclusion of the distance function g:

g : R2 → R,(
x1
x2

)
7→

√(
x1 − xk1

)2
+
(
x2 − xk2

)2
.

(2.27)
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2.2. Interval analysis

Replacing items by their interval counterpart, [g] is given by:

[g] : IR2 → IR,(
[x1]
[x2]

)
7→

√(
[x1]− xk1

)2
+
(
[x2]− xk2

)2
.

(2.28)

As functions
√
·, (·)2 and operators +, − are continuous on their definition

domain and variables x1, x2 appear only once, the natural inclusion function [g] is
minimal.

2.2.4 Pessimism and wrapping effect

We have seen that properties of basic operations on intervals may differ from their
equivalent in R, sometimes inducing unwanted pessimism. This section briefly
presents two causes of over-estimation. Although this effect does not impact the
reliability of the results, it may lead to meaningless outcomes when intervals are
too wide. In most cases, it becomes important to think about how to overcome
such pessimism.

Dependencies between the variables

In interval analysis, different analytical expressions of a same function often lead to
significantly different performances. As an example, consider the difference between
two non-degenerate intervals:

[x]− [x] = [{a− b | a ∈ [x], b ∈ [x]}] = [x− − x+, x+ − x−]. (2.29)

The result is far from being thin. This issue appears when an expression involves a
variable several times. Figure 2.5 provides another telling example [Ceberio and
Granvilliers, 2002].

Dependencies between the variables may be dealt analytically, for instance by
representing systems of equations into unique directed acyclic graphs [Schichl and
Neumaier, 2005] or by exploiting and deleting common sub-expressions [Araya
et al., 2008]. To this day however, no general method has been adopted in existing
solvers.
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x
0.1

1.0 1.1

y1, y2y1 : x 7→ x2(−3 + x(1 + 2x2))
y2 : x 7→ 2x5 + x3 − 3x2

evaluation of y1

evaluation of y2

Figure 2.5: Comparison of different interval evaluations of a same function y1 = y2.
Properties of interval arithmetic sometimes lead to computed intervals that can
be much larger than the exact range. This dependency problem can be overcome
by rewriting expressions and using different factorization schemes. This example
shows a classical interval evaluation and its counterpart pictured in blue •, using a
factorization based on Horner’s rule [Ceberio and Granvilliers, 2002].

Wrapping effect

Intervals and interval-vectors are axis-aligned items. Therefore, any set that is not
a box made of boundaries aligned with axes will suffer from a pessimistic enclosure
representation: a so-called wrapping effect.

This over-enclosure may quickly increase when a set is successively evaluated
by a composition of functions, each of which inducing its own wrapping effect.
A well-known illustration has been given in [Moore, 1966], presenting a suite of
rotations of a box, depicted in Figure 2.6.

This effect can be overcome by dividing the solution space into a set of non-
overlapping boxes, see Section 2.4.1, at the expense of longer computation times
and increased memory space.
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Figure 2.6: The wrapping effect revealed through several boxes rotations. A blue
box • is submitted to a suite of rotating angles resulting in a 3π

2 global rotation. Red
boxes • depict interval enclosures, green ones • are the results of rotated enclosures.
The rotation is performed in four steps in the first case, six in the second one.
This highlights how the effect increases with successive computations. Note that a
rotation performed in one or three steps would have provided the minimal enclosure
of the final blue box since each intermediate evaluation is axis-aligned.
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2.3 Constraints propagation

In parallel with the emergence of interval analysis, the artificial intelligence com-
munity has developed new approaches based on constraint propagations [Bessiere,
2006]. These methods are used for systems solving involving discrete or continuous
variables of real numbers [Benhamou and Older, 1997, Van Hentenryck et al., 1998]
and go well with the use of intervals defining the domains of these variables.

In our applications, a state estimation problem will be depicted by a Constraint
Network (CN) and solved by using contractors that are tools to reduce the domains
of the network’s variables.

2.3.1 Constraint networks

Presentation

A mathematical problem can be presented by means of a CN involving variables
{x1, . . . , xn} that must satisfy a set of rules or facts, called constraints and de-
noted {L1, . . . ,Lm}, over domains defining a non-empty range of feasible values
{X1, . . . ,Xn} [Mackworth, 1977].

The variables xi can be symbols, real numbers [Araya et al., 2012] or vectors
of Rn. As presented in the introduction of this chapter, domains can be intervals,
boxes, polytopes, etc. Finally, there are very few restrictions on the forms of
the constraints, that can be non-linear equations between the variables, such as
x3 = cos (x1 + exp(x2)), inequalities or even quantified parameters [Goldsztejn,
2006].

The estimation then consists in computing the smallest variables’ domain while
satisfying the defined constraints4. Figure 2.7 provides a simple view of this
approach.

4We also often speak about Constraint Satisfaction Problems (CSPs) formulated as H :
(f (x) = 0,x ∈ [x]) and for which the resolution consists in computing the best approximation
of x. However, a set-membership state estimation is not formalized by such H and it is more
appropriate to speak about CNs to depict the constraints of our applications.
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2.3. Constraints propagation

Decomposition

Problems involving complex equations can be broken down into a set of primitive
constraints. Here, primitive means that the constraints cannot be decomposed
anymore. For instance, in our range-only localization problem, the observation
constraint Lgk

that stands on Equation (2.1), page 38, can be decomposed into:

Lgk
: ρk =

√(
x1 − xk1

)2
+
(
x2 − xk2

)2
⇐⇒



a = x1 − xk1,
b = x2 − xk2,
c = a2,
d = b2,
e = c+ d,
ρk =

√
e.

(2.30)

where a, b, . . . , e are intermediate variables used for ease of decomposition. This
constitutes a network made of the L−, L+, L(·)2 , and L√· elementary constraints.

Propagation

When working with finite domains, a propagation technique [Waltz, 1972] can be
used to simplify a problem. The process is run several times up to a fixed point
reached when domains Xi cannot be reduced anymore. Interval analysis can be
efficiently used for this purpose, taking advantage of interval arithmetic and its
capacity to preserve any feasible solution.

x∗
X

(a) Initial unconstrained X. (b) X considering L1. (c) X considering both L1, L2.

Figure 2.7: In this theoretical view, a domain X depicted in yellow • is known to
enclose a solution x∗ pictured by a red dot • and consistent with two constraints
L1 and L2. The estimation of x∗ consists in reducing X while satisfying L1 and L2.
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Furthermore, using monotonous operators in iterative resolution processes, the
constraints can be applied in any order [Apt, 1999]. The sequence can only impact
the computation time, as it could be more interesting to apply one constraint before
another.

The approach adopted in this document is to apply a given constraint on a box
[x] ∈ IRn by means of a contractor C.

2.3.2 Contractors

Formally, a contractor CL associated to the constraint L is an operator IRn → IRn

that returns a box CL ([x]) ⊆ [x] without removing any vector consistent with L.
We will use the following definition, adapted from [Chabert and Jaulin, 2009]:

Definition 2.1
A contractor is a mapping CL from IRn to IRn such that

(i) ∀[x] ∈ IRn, CL([x]) ⊆ [x], (contraction)

(ii)
(
L(x)

x ∈ [x]

)
=⇒ x ∈ CL([x]). (consistency)

Figure 2.8 gives a simple illustration of contractions.

Property (i) states that a box can only be reduced when submitted to a
contractor, while the second one justifies that a solution consistent with L cannot

x∗

[x]

(a) Initial box [x]. (b) C1 ([x]). (c) C2
(
C1 ([x])

)
.

Figure 2.8: Application of the constraints L1 and L2 of Figure 2.7 by means of
respective contractors C1 and C2. On this theoretical example, the domain X is
now a subset of a box [x], easily representable and contractible.
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be removed. Therefore, contractors can be applied on boxes as many times as
necessary without risking losing a solution or being more pessimistic.

In practice, these operators are usually given by polynomial-time algorithms.
Constructing a store of contractors such as C+, Csin, Cexp associated to primitive
equations such as z = x+ y, y = sin(x), y = exp(x) has been the subject of much
work, see for instance [Jaulin et al., 2001, Chabert and Jaulin, 2009, Desrochers
and Jaulin, 2016]. A significant part of interval analysis algorithms can also be
wrapped into these contractors, as illustrated below.

Examples

Let us consider the constraint L+ (a, x, y) : a = x+ y. The related contractor C+ is
defined as

 [a]
[x]
[y]

 C+7−→

 [a] ∩ ([x] + [y])
[x] ∩ ([a]− [y])
[y] ∩ ([a]− [x])

 . (2.31)

In this way, information on either [a], [x] or [y] can be propagated to the other
intervals. For instance, C+

(
[4, 5], [0, 3], [−2, 2]

)
will produce

(
[4, 5], [2, 3], [1, 2]

)
. As

another example, let us write the contractor Cexp for the non-linear constraint
Lexp (a, b) : a = exp (b):

(
[a]
[b]

)
Cexp7−−→

(
[a] ∩ exp ([b])
[b] ∩ log ([a])

)
. (2.32)

Properties considered in this document

The minimal contractor is obtained when a box [x] is contracted to be the smallest
box containing the solution set.

A contractor is said monotonous if

[x] ⊆ [y] =⇒ C([x]) ⊆ C([y]). (2.33)
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Contractor programming

If the implementation of an elementary constraint such as L+ can be trivial, things
are further complicated when facing complex ones. The propagation is then often
affordable from a low-level point of view, but assuming a good knowledge of the used
library. Furthermore, the developed solver will be dedicated to this composition
and hardly scalable for non-advised users.

The concept of contractor programming introduced in [Chabert and Jaulin,
2009] carries the approach a step further, proposing a formalism where a contractor
IRn → IRn can also be interpreted as subset of Rn. This allows one to consider all
the standard operations on sets on contractors such as:

(C1 ∩ C2)([x]) := C1([x]) ∩ C2([x]) (intersection)
(C1 ∪ C2)([x]) := C1([x]) t C2([x]) (union)
(C1 ◦ C2)([x]) := C1

(
C2([x])

)
(composition)

C∞1 := C1 ◦ C1 ◦ C1 ◦ . . . (iterated composition)

(2.34)

Using this formalism allows simple combinations of primitive contractors. Com-
bining these operators leads to a complex one that still provides reliable results,
thus allowing one to deal with a wide range of problems.

The direct outcomes of such framework are genericity and simplicity: the user
now focuses on the what instead of the how to build a solver, which is the essence
of declarative programming. The energy is spent programming a solver based
on mathematical constraints by combining contractors, rather than configuring a
dedicated algorithm.

The contractor programming concept has triggered the development of several
successful applications [Gning and Bonnifait, 2006, Alexandre dit Sandretto et al.,
2014, Jaulin, 2011], thus demonstrating its efficiency. Very recent works proposed
to extend this concept to dynamical systems, outlining good news in this line of
research. The two first contributions of this thesis are to provide new contractors
related to differential equations, opening doors to the estimation of dynamical
systems such as those encountered in mobile robotics.

56



2.3. Constraints propagation

2.3.3 Application to static range-only robot localization

We will perform a concrete non-linear state estimation using the afore mentioned
tools.

Problem statement

The robot R is located between three beacons Bk, k ∈ {1, 2, 3}. Respective
synchronous range measurements are ρ∗k. However, these values are not known and
we shall assume the following bounded measurements:

Table 2.1: Beacons’ positions and respective measurements

(xk1, xk2) ρ∗k [ρk]
B1 (−0.5, 4.0) 4.03 [3.63, 4.43]
B2 (−2.5,−2.5) 3.53 [3.13, 3.93]
B3 (2.5,−0.5) 2.55 [2.15, 2.95]

The observation constraint that links a measurement ρk to the state x of R is
reminded:

Lgk
(x, ρk) : ρk =

√(
x1 − xk1

)2
+
(
x2 − xk2

)2
. (2.35)

The problem is synthesized with the following CN:

CN:



Variables: x, ρ1, ρ2, ρ3

Constraints:

1. Lg1 (x, ρ1)

2. Lg2 (x, ρ2)

3. Lg3 (x, ρ3)

Domains: [x], [ρ1], [ρ2], [ρ3]

(2.36)

The domains are intervals initialized with the bounded values provided in
Table 2.1. Robot’s position is considered unknown: [x] = [−∞,∞]2.
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Chapter 2. Static set-membership state estimation

State estimation

Each constraint Lgk
is implemented with a combination of primitive contractors,

based on the decomposition detailed in Equation (2.30). Three contractors Cgk
are

built this way and applied on the domains:

1. Cg1 ([x], [ρ1]): contraction from B1’s measurement, Figures 2.9a, 2.9d.

2. Cg2 ([x], [ρ2]): contraction from B2’s measurement, Figures 2.9b, 2.9e.

3. Cg3 ([x], [ρ3]): contraction from B3’s measurement, Figure 2.9c.

Each contractor will reduce the domain [x], which may raise new contraction
possibilities for the other constraints. It becomes interesting to call again the other
contractors in order to take benefit from any contraction. An iterative resolution
process is then used, where the contractors are called till a fixed point has been
reached. By fixed point we mean that none of the domains [x] and [ρk] has been
contracted during a complete iteration. Figure 2.9 provides the synoptic of this state
estimation. In this example, constraints have been propagated over 7 iterations in
less than 0.01 second.
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(a) Contraction from B1’s measurement.
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(b) Contraction from B2’s measurement.
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(c) Contraction from B3’s measurement.
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(d) Contraction from B1’s measurement.
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(e) Contraction from B2’s measurement.
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(f) Fixed-point result.

Figure 2.9: Set-membership localization with range-only measurements. Beacons
pictured by red boxes • emit signals received by the robot R drawn in yellow •.
The figures illustrate successive contractions of the position box of R from each
range-only bounded measurement depicted by rings •.
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2.4 Set-inversion via interval analysis

When the solution set is made of holes or several non-connected subsets, its enclosure
may suffer from a strong pessimism: the so-called wrapping-effect presented in
Section 2.2.4. A refinement can be obtained by dividing the solution space and
test for each subdivision whether it encloses a part of the solution set or not. The
result constitutes a new kind of wrapper, called subpaving. It will be particularly
useful for set-inversion problems, presented in this section.

2.4.1 Subpaving

A thinner estimation of a set X ⊂ Rn enclosed by a box [x] ∈ IRn can be made
with a union of non-overlapping boxes [x](i) included in [x]. This set of boxes is
called subpaving.

A subpaving K of [x] covering completely [x] such that

[x] =
⋃

[b]∈K
[b] (2.37)

is called paving of [x] and can be made of a collection of several subpavings.

If a thinner approximation of X is affordable with a subpaving, we might
also expect a qualification of such approximation. This can be done using two
subpavings denoted X− and X+ such that

X− ⊂ X ⊂ X+. (2.38)

Figure 2.10 illustrates so-called inner and outer approximations of a set X with
subpavings, respectively denoted X− and X+. An inner approximation gathers
boxes that contain only solutions while an outer approximation is made of boxes in
which a solution may be. The precision of the computation is given by the width of
the set [X−,X+] enclosing the boundary ∂X of the solution set. A thinner splitting
of boxes will increase this precision, at the expense of longer computation times
and raising memory space.
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X− X+ X+

Figure 2.10: Inner and outer approximation of a set X (hatched part) with two
subpavings X− and X+ represented respectively by green • and the union of green
and yellow boxes ••. In any case, the boundary ∂X must remain enclosed within
the visible yellow boxes.

2.4.2 SIVIA algorithm for set-inversion

Let us consider the computation of the reciprocal image X ⊂ Rn such that X =
f−1 (Y) where Y ⊂ Rm is the image set of X by a possibly non-linear function
f : Rn → Rm. This operation is called set-inversion and is formalized as the
characterization of:

X = {x ∈ Rn | f(x) ∈ Y} = f−1 (Y) . (2.39)

A SIVIA5 algorithm [Jaulin and Walter, 1993b] can be used to approximate X
from any Y ⊂ Rm and any function f admitting an inclusion function [f ] : IRn →
IRm. The approximation is made by bracketing X between two subpavings X−
and X+. Starting from an initial box [x](0) ∈ IRn, SIVIA will apply inclusion
tests to decide whether it belongs to X+, both X− and X+, or none. In case of
undecidability, the strategy is to bisect the box and apply again the tests on the
sub-boxes.

A recursive version of SIVIA is given in Algorithm 1 in which four cases are
encountered:

1. [f ]([x]) ∩ Y = ∅: [x] does not belong to X;

2. [f ]([x]) ⊂ Y: any vector in [x] is solution, so [x] belongs to X and is stored
in both X− and X+;

5Set-Inversion via Interval Analysis (SIVIA)
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3. [f ]([x]) has a non-empty intersection with Y while not being a subset of Y.
It is an undetermined case where [x] may contain a solution. Therefore,

(a) if width([x]) < ε, then the box is considered small enough regarding the
expected precision of the algorithm. The process stops here by storing
[x] into X+;

(b) otherwise, a bisection of [x] is performed, for instance along its largest
dimension, and new tests are applied on each resulting box.

These cases are illustrated in Figure 2.11. Such inversion is easily affordable as it
only stands on the inclusion of f : its inverse is not required.

Algorithm 1 SIVIA(in: [f ], [x], Y, ε – inout: X−, X+)

1: if [f ]([x]) ∩ Y 6= ∅ then
2: if [f ]([x]) ⊂ Y then
3: X+ ← X+ ∪ [x] . outer set
4: X− ← X− ∪ [x] . inner set
5: else if width([x]) < ε then
6: X+ ← X+ ∪ [x] . outer set only
7: else
8: bisect([x]) into [x](1) and [x](2)

9: SIVIA([f ], [x](1),Y, ε,X−,X+)
10: SIVIA([f ], [x](2),Y, ε,X−,X+)
11: end if
12: end if

The precision ε of the approximation, materialized by the width of the interval
[X−,X+], is the only parameter to set with this algorithm. The thinner the interval
[X−,X+], the better the approximation of the inversion. In any case the true
solution set X remains enclosed within these bounds. Figure 2.12 provides an
illustration of subpavings computed by SIVIA, in various accuracy levels.

Several optimizations can be done. For instance, the SIVIA algorithm is easily
parallelizable when several evaluations of [f ]([x]) can be done simultaneously. In
addition the paving of the solution space can be built as a binary tree, each node of
which corresponding to a bisection of a box [x]. This regular representation speeds
up the access to solution boxes.
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x1

x2

y1

y2

Y = f(X)

[f ]([x])[x]

(a) [f ] ([x]) ∩ Y = ∅ =⇒ f ([x]) ∩ Y = ∅. The box [x] does not belong to
the outer set X+ and so to the inner one X−.

x1

x2

y1

y2

Y = f(X)

[f ]([x])
[x]

(b) [f ] ([x]) ⊂ Y =⇒ f ([x]) ⊂ Y. The box [x] belongs to both the inner
and outer sets, respectively X− and X+.

x1

x2

y1

y2

Y = f(X)

[f ]([x])[x]

(c) Indefinite case. [x] is either subdivided or placed in the outer set X+.

Figure 2.11: Inclusion tests for set-inversion. The chosen color code is kept in the
remainder of this document: green • for inner solution sets, yellow • for boxes
belonging to outer sets only and blue • for no-solution sets.
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Figure 2.12: Subpavings computed by a SIVIA algorithm in various accuracy levels.
The boundary ∂X of the true solution set is plotted by a black line. Inner and
outer sets are respectively drawn by green • and both yellow and green boxes ••.
The part proven to not contain solutions is represented in blue •. This approach
enables the estimation of sets of any shape such as this triskelion [Le Gallo, 2016].
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2.4.3 Illustration involving contractions

Coming back to the range-only problem, we will now voluntarily consider two
beacons instead of three in order to deal with an ambiguous solution set. The
robot stays located at (0, 0).

Table 2.2: Beacons’ positions and respective measurements

(xk1, xk2) ρ∗k [ρk]
B1 (8.0, 5.0) 9.43 [9.03, 9.83]
B2 (7.0, 2.2) 7.34 [6.94, 7.74]

SIVIA will provide a thinner approximation of the solution set while the only use
of contractors would enclose it by a single box. Nonetheless, the algorithm can be
coupled with contractors in order to decrease the time complexity, or equivalently
the space complexity, by reducing the boxes to be evaluated in the subpavings.
Figure 2.13 provides a comparison between a classical SIVIA algorithm for this
range-only problem (Table 2.2) and its combination with the contractors presented
in Section 2.3.3 on page 58. This coupling is simply done by contracting [x] before
its bisection in the inconclusive inclusion test, see line 8 of Algorithm 1. The
counter-part of this approach is that the paving is no more regular.

2.4.4 Kernel characterization of an interval function

The kernel characterization of a function is elementary and can be encountered in
many problems under the form f(x) = 0, x ∈ [x]. The kernel ker f of a function
f : Rn → Rn is a subset of the domain of f defined as

ker f = {x ∈ Rn | f(x) = 0} = f−1(0). (2.40)

When f is known to be bounded by an interval-valued function [f ], then the
characterization of ker[f ] can be done with a SIVIA algorithm. This has been the
object of [Aubry et al., 2014] with definitions and examples. For the sake of being
self-contained, we will briefly remind these concepts that will be used afterward in
this document.
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(a) Classical SIVIA algorithm: 306 boxes.
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(b) SIVIA coupled with contractors: 112 boxes.

Figure 2.13: Range-only problem with two beacons. The solution set is complex
and its enclosure by a box would present too much pessimism. The use of SIVIA
then becomes relevant on this problem. The figures provide a comparison between
a classical algorithm and its adaptation including a contraction process.

The kernel of an interval function [f ] is defined by

ker[f ] =
⋃

f∈[f ]
ker f = {x ∈ [x] | 0 ∈ [f ](x)} . (2.41)

and is illustrated by Figure 2.14.

ker[f ] is a set X that can be approximated by two subpavings X− and X+.
Therefore, the kernel of the actual but unknown function f∗ can be evaluated by
ker f∗ ⊂ X+. In the following, we will denote f−(x) and f+(x) the upper and lower
bounds of [f ](x), see Figure 2.15. We have:

∀x, [f ](x) =
[
f−(x), f+(x)

]
. (2.42)

We will further assume the following two convergent inclusion functions [f⊂]
and [f⊃] illustrated by Figure 2.16 and defined by:

[f⊂] ([x]) =
[
ub
(
f−([x])

)
, lb

(
f+([x])

)]
, (2.43)

[f⊃] ([x]) =
[
lb
(
f−([x])

)
, ub

(
f+([x])

)]
. (2.44)
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⊂ ker[f ] ⊂ ker[f ] ⊂ ker[f ] ⊂ ker[f ]

0 x

[f ]

f ∗

Figure 2.14: The kernel of an interval function [f ].

[a] [b]

x

[f ]

[f+]([a])

[f−]([a])

[f−]([b])

Figure 2.15: Bounds on an interval function [f ].

These definitions allow the following inclusion tests:

0 ∈ [f⊂]([x]) =⇒ [x] ⊂ X, (2.45)
0 6∈ [f⊃]([x]) =⇒ [x] ∩ X = ∅. (2.46)

Then, the approximation of ker[f ] = X can be made based on these tests, as
presented in Algorithm 2.
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[a] [b]

x

[f ]

[f⊃]([a])

[f⊂]([b])

Figure 2.16: Inclusion functions [f⊂] and [f⊃].

Algorithm 2 kernelSIVIA (in : [f ] , [x] , ε, inout : X−,X+)

1: if 0 ∈ [f⊃]([x]) then
2: if 0 ∈ [f⊂]([x]) then
3: X+ ← X+ ∪ [x] . outer set
4: X− ← X− ∪ [x] . inner set
5: else if width([x]) < ε then
6: X+ ← X+ ∪ [x] . outer set only
7: else
8: bisect([x]) into [x](1) and [x](2)

9: kernelSIVIA([f ], [x](1), ε,X−,X+)
10: kernelSIVIA([f ], [x](2), ε,X−,X+)
11: end if
12: end if
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2.5 Discussions

Today, the use of interval methods remains marginal in the communities of mobile
robotics and automatic control: Bayesian approaches are clearly much more common
in these fields. The reason is mainly due to the fact that research on the interval
topic is new, though promising. In addition, set-membership methods work on sets
while most applications expect scalar results, often assessed by some probabilities
that are hardly verifiable. It is mainly a matter of how one can appropriately use
one method or another according to the context. By going further, the approaches
could be combined in order to keep the best of each world, but this is a topic
in which only few work has been done [Abdallah et al., 2008, Neuland et al.,
2014, De Freitas et al., 2016].

This section aims at providing some answers to recurring questions on this
approach.

2.5.1 From sensors to reliable results

When dealing with real situations, speaking about guaranteed approaches is all
based on inputs of our algorithms: the data-sets. The transition from theoretical
computations to real values is a significant matter and has to be done rigorously in
order to ensure further guaranteed outcomes.

In practice, a measurement error is often modeled by a Gaussian distribution
which has an infinite support. Therefore, setting bounds around this measurement
already constitutes a theoretical risk of loosing the actual value. A choice has to
be made at this step, considering such risk. After that, however, any algorithm
standing on interval methods is ensured to not increase this risk.

Figure 2.17 presents the interval evaluation of a measurement µ assumed to
follow a Gaussian distribution, so that we consider the real value enclosed within
the interval [x], centered on µ, with a 95% confidence rate. Datasheets usually give
sensors specifications such as the standard deviation σ. The bounded value [x] can
then be inflated according to this dispersion value.
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0.683

0.954
µ− 2σ µ− σ µ

x− x+

v

Figure 2.17: An interval [x] = [x−, x+] computed from a Gaussian distribution to
guarantee a 95% confidence rate over a measurement µ: [x] = [µ− 2σ, µ+ 2σ].

2.5.2 Numerical libraries

As stated in Section 2.2.1, page 41, the computer representation of a real number –
or an interval defined by real bounds – can also induce errors. Indeed, the nearest
floating point number is usually used by machines to represent a real x ∈ R. The
exact value of x will be lost if it does not exist among the computer numbers. As
we have seen when introducing interval analysis, a rigorous containment of x will
be assessed using an interval defined by representable bounds. Throughout the
calculations, these bounds must be reliably represented, thus preventing from any
loss of value. This procedure is called outward rounding, see Figure 2.18, and has
to be executed for any arithmetic operation on intervals.

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

[x] ⊂ [1.0, 1.7]

[x] 6⊂ [1.1, 1.7]

[x] = [1.07, 1.68]
An interval [x] not implemented

Automatic representation of [x]
(nearest float. point: no reliability)

Outward rounding of [x]
(reliable implementation)

Floating point numbers

Figure 2.18: Outward rounding of an interval defined by non-representable bounds.
Black dots • represent floating point numbers depending on the computer precision.
Its reliable approximation, represented in blue •, encloses the initial range of values.
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Several numerical libraries have been created to this end. For instance, compu-
tations presented in this document stand on the GAOL6 and filib++7 [Nehmeier
and von Gudenberg, 2011] libraries that ensure numerical computations such as
outward rounding.

Besides and at a higher level of abstraction, we use IBEX 8 [Chabert, 2017]: a
C++ library for constraint processing over real numbers. It provides a set of tools
from the contractor programming paradigm presented in this chapter.

Finally, the contributions presented in this document come together with a
dedicated open-source library called Tubex9, the aim of which is to implement
constraints over sets of trajectories. This will be discussed from Chapter 3.

2.5.3 Reliable tool for proof purposes

Once any source of error is reliably handled, the following results are both com-
putationally and mathematically guaranteed not to lose solutions. The outcomes
of these algorithms can therefore be used for verified computing and so for proof
purposes, see for instance: [Tucker, 1999, Goldsztejn et al., 2011].

This asset of set-membership methods will be highlighted in Chapter 6 in which
we provide an original method to prove loops along an uncertain robot trajectory.

2.6 Conclusion

Interval analysis provides a reliable way to deal with uncertainties over real numbers.
In this chapter, it has been shown the simplicity to address non-linear problems
without having to perform any linearization nor approximation, as we do for usual
methods such as the Kalman filter. Furthermore, intervals stand as a reliable
solution to deal with poor datasets in which any data is of interest. Chapter 7 will
highlight this point by providing a new localization method in poor environments,
where other approaches would badly behave. Finally, the reliability of the results

6http://frederic.goualard.net/#research-software
7http://www2.math.uni-wuppertal.de/˜xsc/software/filib.html
8http://www.ibex-lib.org
9http://www.simon-rohou.fr/research/tubex-lib
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gives to this method a significant role for the development of new mathematical
proofs.

In addition, when coupled with constraint propagation approaches, interval
analysis allows one to deal with a wide range of problems in the most simple
way. The definition of a set of constraints and their application by contractors on
intervals and boxes have proved their worth and still gather the communities of
constraint programming and set-membership tools. There is still a lot of lines of
research to explore in this field, for instance in order to overcome wrapping effects,
propose new elementary contractors or even to reliably address problems with
respect to outliers outside measurements errors [Norton and Veres, 1993, Pronzato
and Walter, 1996, Carbonnel et al., 2014].

The next chapter extends these interval concepts to continuous time dynamical
systems. Our goal is to be able to deal with a wider class of problems such as
differential equations and inter-temporal measurements. This will be the contri-
butions of the next chapters, still with a solving process achieved by a contractor
programming approach.
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3.1 Towards dynamic state estimation

3.1.1 Overall motivations

The example of the range-only robot localization presented in Chapter 2 was only
a static state estimation problem. In practice, state observations are asynchronous
and the system evolves between each measurement. Taking into account all this
information distributed over time can be challenging, especially when dealing with
non-linearities and strong uncertainties. Figure 3.1 illustrates an extension of the
range-only problem we were considering until now.
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Figure 3.1: Motivating example of range-only localization with few asynchronous
measurements. Emitting beacons, drawn by red boxes •, send some range signals
pictured by gray lines • and received by the robot at uncertain times along its
trajectory, plotted in blue •. This application is challenging as it involves differential
equations, non-linearities and uncertainties that are both spatial and temporal.

Therefore, we have to soundly deal with state estimations by considering both
evolution and observation state equations:

{
ẋ(t) = f (x(t),u(t)) ,
zi = g (x(ti)) .

(3.1a)
(3.1b)
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3.1. Towards dynamic state estimation

We emphasize that any uncertainty has to be considered, for instance on the
initial state x0, on the evolution model depicted by the function f and even on the
measurements times ti.

About state evolutions...

The first Equation (3.1a) is an Ordinary Differential Equation (ODE). The resolu-
tion of these equations remains an open question as they do not have analytical
solutions, apart from some special cases such as in linear contexts. Of course,
several numerical methods exist to afford approximations of the solutions [Hairer
et al., 1993]. In particular, a considerable work has been done to solve the so-called
Initial Value Problem (IVP) that consists in estimating the temporal evolution of a
system, based on a given initial condition. Knowing the initial state x0 of a robot,
in which state will it be at time t?

Well-known methods exist such as the Kalman filter [Kalman, 1960], Particle
Filters (PFs) [Montemerlo et al., 2003] or even new approaches such as Box
Particle Filters (BPFs) [Abdallah et al., 2008, Gning et al., 2013, De Freitas et al.,
2016]. Unfortunately, these methods show limits when facing non-linearities and/or
uncertainties. PF-based methods may provide better estimations in non-linear
cases but at the cost of considerable computations as they generate random systems
from the knowledge of the initial condition. In any case, though, the provided
outcomes are not guaranteed; this can be a significant limitation for systems safety.

...constrained by any uncertain observation

The situation is further complicated when the initial conditions are not known.
Such case is typically encountered in the kidnapped robot problem for which a robot
is carried to an unknown location. It then has to perform a full localization –
which does not correspond to an IVP problem – based on a set of asynchronous
observations and its own evolution since its kidnapping.

The problem becomes even much more complex when these observations are
both spatially and temporally uncertain: the robot may deal with measurements
where neither the value of the output zi nor the acquisition date ti are known
exactly.
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3.1.2 The approach defended in this thesis

Our strategy is to extend the constraint programming approach to differential
constraint networks. We will consider trajectories as variables and implement
contractors to reduce their domains, based on constraints that can be algebraic or
differential. This extended approach has already been the subject of some recent
work [Le Bars et al., 2012, Bethencourt and Jaulin, 2014]. The current chapter aims
at introducing these new tools and see how algebraic constraints can be applied
on sets of trajectories. This material will be sufficient to address a dead-reckoning
problem for purposes of illustration.

The next Chapter 4 will then focus on differential contractors to completely
address state estimations with asynchronous observations. Chapter 5 will finally
focus on state observations with time uncertainties, providing another elementary
contractor to constraint trajectories at a given time.

3.2 Tubes

Sets of trajectories will be approximated by means of tubes.

3.2.1 Definitions

Trajectories and dot notation

We will apply constraints to univariate function variables depicting so-called trajec-
tories, without considering multi-variable cases since our applications only evolve
with time. Hence, t is the independent evolution variable and the image vector is
the trajectory value representing a state, an observation, etc.

In this manuscript, the notation (·) is used in order to clearly distinguish a
whole trajectory x(·) : R → Rn from a local evaluation: x(t) ∈ Rn. Indeed, in
Chapters 5 and 7, time will not only be an independent variable but also a classical
variable to be estimated.
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Envelope of trajectories

A tube is defined over a domain [t0, tf ] as an envelope of trajectories x(·) : R→ Rn.
The concept appeared in [Kurzhanski and Filippova, 1993, Filippova et al., 1996] in
the context of ellipsoidal estimations. We speak about an envelope as it may exist
trajectories enclosed in the tube that are not solutions of our problem. Besides,
tubes can also be employed to handle other signals such as discontinuous functions.
We speak about a tube as a finite superset of a function graph.

In this document, we will use the definition given in [Le Bars et al., 2012,
Bethencourt and Jaulin, 2014] where a tube [x](·) : R→ IRn is an interval of two
trajectories [x−(·),x+(·)] such that ∀t ∈ [t0, tf ], x−(t) 6 x+(t). We also consider
empty tubes that depict an absence of solutions, denoted ∅(·).

A trajectory x(·) belongs to the tube [x] (·) if ∀t ∈ [t0, tf ], x (t) ∈ [x] (t).
Figure 3.2 illustrates a one-dimensional tube enclosing a trajectory x∗(·). Note
that for the sake of simplified notations, the tubes mentioned in this chapter may
be one-dimensional, without loss of generality as the methods are readily scalable
to the vector case. In addition, we assume that all the tubes involved in a given
resolution process share the same domain [t0, tf ].

t

[x]

t0

tf

[x]([t1])

[t1]

[x](t2)

t2

x
∗ (·)

x+(·)

x−(·)

Figure 3.2: A one-dimensional tube [x](·), interval of two functions [x−(·), x+(·)],
enclosing a random signal x∗(·).
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3.2.2 Tube analysis

Evaluations

Definition 3.1
The interval evaluation of a tube [x](·) over a bounded domain [t] is given by
[Bethencourt and Jaulin, 2014]:

[x]([t]) =
[
{x(t) | x(·) ∈ [x](·), t ∈ [t]}

]
, (3.2)

=
⊔
t∈[t]

[x](t). (3.3)

[x]([t]) is then the smallest box enclosing all solutions for x(t) such that x(·) ∈
[x](·), t ∈ [t]. See for instance [x]([t1]) on Figure 3.2.

Definition 3.2
The tube inversion, denoted [x]−1([y]), is defined by:

[x]−1([y]) =
⊔
y∈[y]
{t | y ∈ [x](t)} , (3.4)

and is illustrated by Figure 3.3. The result is the interval enclosing all preimages
(fibers) of [y] under [x](·). Solution subsets are easily assessed through binary search
algorithms, not detailed here.

Arithmetics

Consider two tubes [x](·) and [y](·) and an operator � ∈ {+,−, ·, /}. We define
[x](·) � [y](·) as the smallest tube (with respect to inclusion) containing all feasible
values for x(·) � y(·), assuming that x(·) ∈ [x](·) and y(·) ∈ [y](·):

[x](·) � [y](·) =
[
{x(·) � y(·) ∈ R | x(·) ∈ [x](·), y(·) ∈ [y](·)}

]
. (3.5)

This definition is an extension to trajectories of the interval arithmetic presented
in Section 2.2.2 from page 42 onwards. If f is an elementary function such as
sin, cos, . . . , we define f ([x](·)) as the smallest tube containing all feasible values:

f ([x](·)) =
[
{f (x(·)) | x(·) ∈ [x](·)}

]
. (3.6)
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[t1] [t2] [t3] [t4]

[x]−1([y])

t

[x]

[y]

Figure 3.3: Tube inversion as defined in Equation (3.4). [t1], [t2], [t3], [t4] are
preimage subsets enclosed within the inversion result [x]−1([y]).

Integral

The integral of a tube is defined from t1 to t2 as the smallest interval containing all
feasible integrals:∫ t2

t1
[x](τ)dτ =

{∫ t2

t1
x(τ)dτ | x(·) ∈ [x](·)

}
. (3.7)

From the monotonicity of the integral operator, we can deduce:∫ t2

t1
[x](τ)dτ =

[ ∫ t2

t1
x−(τ)dτ,

∫ t2

t1
x+(τ)dτ

]
, (3.8)

bearing in mind that x−(·) and x+(·) are the lower and upper bounds of tube
[x](·) = [x−(·), x+(·)]. The computed integral is an interval with lower and upper
bounds shown on Figures 3.4. For efficiency purposes, the interval primitive of a
tube defined by

∫ ·
0[x](τ)dτ can be computed once, from a primitive tube.

The integral can also be computed between bounded bounds [t1], [t2] by

∫ [t2]

[t1]
[x](τ)dτ =

[
lb
(
y−([t2])− y−([t1])

)
, ub

(
y+([t2])− y+([t1])

) ]
, (3.9)

where [y](·) =
∫ ·
t0

[x](τ)dτ is the interval primitive of [x](·) and y−(·), y+(·) are the
corresponding bounds. The proof is provided in [Aubry et al., 2013, Sec. 3.3].
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t

[x]

t1
t2

∫ t2

t1
x−(τ)dτx−(t)

(a) hatched part depicts the lower bound of
∫ t2

t1

[x](τ)dτ

t

[x]

t1
t2

x+(t)
∫ t2

t1
x+(τ)dτ

(b) hatched part depicts the upper bound of
∫ t2

t1

[x](τ)dτ

Figure 3.4: Lower and upper bounds of the integral of a tube.
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Examples

Figures 3.5a–3.5b present two scalar tubes [x](·) and [y](·). The tube arithmetic
makes it possible to compute any algebraic operation from these tubes, as illustrated
by Figures 3.5c–3.5f.

3.2.3 Contractors

Definitions

The contractors presented in Section 2.3.2, page 54, can also be extended to sets
of trajectories, thus allowing constraints over time such as a(·) = x(·) + y(·) or
b(·) = sin (x(·)). A tube contractor has been defined in [Bethencourt and Jaulin,
2014] and is recalled here.

Definition 3.3
A contractor CL applied on a tube [x](·) aims at removing infeasible trajectories
according to a given constraint L so that:

(i) ∀t ∈ [t0, tf ], CL
(
[x](t)

)
⊆ [x](t) (contraction)

(ii)
(
L
(
x(·)

)
x(·) ∈ [x](·)

)
=⇒ x(·) ∈ CL

(
[x](·)

)
(consistency)

For instance, the minimal contractor C+ associated with the constraint a(·) =
x(·) + y(·), is:

 [a] (·)
[x] (·)
[y] (·)

 7→


[a] (·) ∩
(

[x] (·) + [y] (·)
)

[x] (·) ∩
(

[a] (·)− [y] (·)
)

[y] (·) ∩
(

[a] (·)− [x] (·)
)
 . (3.10)

In this way, information on either [a](·), [x](·) or [y](·) can be propagated to the
other tubes. Note that in practice, for algebraic contractors, the real counterpart
of the constraint is applied on the trajectories for each t of their domain.

81



Chapter 3. Constraints over sets of trajectories

0 t

[x](·)

(a) Tube [x](t) = t2 + [e] where [e] ∈ IR is
an arbitrary interval corresponding to tube’s
constant thickness.

0

t

[y](·)

(b) Tube [y](·) = − cos(·) + h(·) · [e] where
h : R→ R is an arbitrary function depicting
a thickness changeover.

0

t

[a](·)

(c) Tube [a](·) = [x](·) + [y](·)

0

t

[b](·)

(d) Tube [b](·) = sin
(
[x](·)

)

0
t

[c](·)

(e) Tube [c](·) =
∫ ·

0[x](τ)dτ
0

t

[d](·)

(f) Tube [d](·) = |[y](·)|.

Figure 3.5: Tube arithmetics. Tubes [a](·), [b](·), [c](·), [d](·) are results obtained
from algebraic operations on [x](·) and [y](·). Note that the vertical scales of these
figures vary for full display.
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Example

In order to illustrate constraints propagations on tubes, let us consider the following
CN:

CN:



Variables: x(·), y(·), w(·), a(·), p(·), q(·)
Constraints:

1. a(·) = x(·) + y(·)

2. p(·) = arctan
(
y(·)

)
3. q(·) = 2 sin

(
a(·)
2

)
+
√

2p(·)

4. y(t1) ∈ [i]

5. ẏ(·) ∈ [w](·)

Domains: [x](·), [y](·), [w](·), [a](·), [p](·), [q](·)

(3.11)

Constraints (1)–(3) are algebraic relations valid for any t. Conversely, Con-
straint (4) corresponds to a local constraint applied on the trajectory y(·). Local is
understood as related to the instant t1. The propagation of Constraint (4) over the
domain is then affordable with a differential contractor related to Constraint (5)
and involving the tube [y](·) and the set [w](·) of the feasible derivatives. This is
the subject of Chapter 4 and [Rohou et al., 2017].

Figure 3.6 illustrates a propagation of these constraints from an observation
(t1, [i]) on y(·). The contraction will reduce the envelope [y](·) in order to keep all
the trajectories going through [i] at t1. Related variables are contracted based on
the above CN1.

3.3 Implementation

This section gives details about the choices we made while developing an open-source
library for tube programming.

1Note that in this example, t1 and i could be variables of the CN. Here we do not try to
estimate them but the tools presented in Chapter 5 will allow it.
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0

t

[y](·)

y(t1) ∈ [i]

(a) Envelope of y(·), contracted by means of a local measurement [i] ∈ IR at time t1. The
observation is then propagated by using a differential contractor presented in Chapter 4.

0
t

[x](·)

(b) x(·).

0

t

[a](·)

(c) a(·) = x(·) + y(·).

0

t

[p](·)

(d) p(·) = arctan
(
y(·)
)
.

0

t

[q](·)

(e) q(·) = 2 sin
(
a(·)

2

)
+
√

2p(·).

Figure 3.6: Illustration of tubes contractions. Light gray areas represent the
envelope of trajectories before contraction. Considering an improvement of the y(·)
approximation, tubes [a](·), [p](·), [q](·) related to [y](·) by algebraic constraints can
then be contracted. The final sets of solutions, obtained after applying contractors,
are pictured in dark gray.
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3.3.1 Data structure

Slices representation

There can be several ways to implement a tube. A computer representation based
on a set of boxes that sample the tube over time has been mentioned in [Le Bars
et al., 2012, Bethencourt and Jaulin, 2014, Rohou et al., 2017]. Our choice is to
build a tube with a set of boxes representing slices of identical width, as depicted
in Figure 3.7.

t

[x]

t0
tfx

∗ (·)

δ

Figure 3.7: A tube [x](·) represented by a set of δ-width slices. This implementation
can be used to enclose signals such as x∗(·).

More precisely, a n-dimensional tube [x](·) with a sampling time δ > 0 is
implemented as a box-valued function which is constant for all t inside intervals
[kδ, kδ+δ], k ∈ N. The box [kδ, kδ+δ]× [x] (tk), with tk ∈ [kδ, kδ+δ], is called the
kth slice of the tube [x](·) and is denoted by [x](k), 2. The resulting approximation
of a tube encloses [x−(·),x+(·)] inside an interval of step functions [x−(·),x+(·)]
such that:

∀t ∈ [t0, tf ], x−(t) 6 x−(t) 6 x+(t) 6 x+(t). (3.12)

This implementation then takes rigorously into account floating point precision
when building a tube, thanks to reliable numerical libraries such as those presented
in Section 2.5.2, page 70. Further computations involving [x](·) will be based on

2When tk belongs to the common boundary of two slices [x](k− 1) and [x](k), the value [x](tk)
is [x](k − 1) ∩ [x](k).
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its slices, thus giving an outer approximation of the solution set. For instance, the
lower bound of the integral of a tube, defined in Equation (3.8), is simply computed
as the signed area of the region in the tx-plane that is bounded by the graph of
x−(t) and the t-axis, as pictured in Figure 3.8. The lower slice width δ, the higher
the precision of the approximation.

t

[x]

t0
tf

∫ b

a
x−(τ)dτx−(t)

Figure 3.8: Outer approximation of the lower bound of
∫ b
a [x](τ)dτ .

One should note that other kinds of implementations can be considered, such
as a clever time discretization with non-constant slices width, allowing precise
computations when required and an optimized representation in case of non-evolving
trajectories. In this thesis however, it was decided to use a constant slice width
implementation in order to keep further developments simple. On top of that, many
concrete applications such as robotics are based on sensors that output values on
a regular basis. The study of a custom time discretization will be the subject of
future work. For instance, polynomial functions could also be used instead of slices,
in order to better meet the trajectories enclosure. This technique remains to be
studied.

Binary tree

A special attention can be paid to the data structure representing this list of slices.
For now, our choice is to use a binary tree of height h in which each node is a
synthesis of its children: the union box of the children slices. Hence, the root node
summarizes the whole tube: [t0, tf ]× [x] ([t0, tf ]). This structure allows recursive
functions, fast access to the slices and quick evaluations. For instance, the test
∀t ∈ [t0, tf ], [x](t) ⊂ R+ can be checked without any access to the leaves: the
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information being already summarized in the root node. Figure 3.9 pictures such
implementation.

Note that further information can be synthesized in this structure, such as
derivatives over sub-domains that will speed up the evaluation of

∫ [t2]
[t1] [x](τ)dτ .

3.3.2 Build a tube from real datasets

The proposed sliced representation is a straightforward solution to take into account
not only analytical expressions but also datasets: any envelope of trajectories is
affordable considering sufficiently accurate slice-width δ. Hence, a tube can be
built to represent sensors’ outputs such as altitude measurements obtained from a
sonar.

In practice, off-the-shelf sensors provide data on a regular basis. However, the
missing values between two pulses are unknown, which affects the reliability of our
data representation. For instance, considering altitude measurements, we cannot
ensure the sensing of any asperity in the ground: there may be non-assessable holes
or peaks due to a too low sensor frequency fe.

Since a tube is a time-continuous representation of trajectories, one may nat-
urally come to the question: what about the guaranteed representation along a
complete slice? We may tend towards a fine approximation of a trajectory if δ � 1

fe
,

but the assessment cannot be considered as guaranteed.

There are two solutions to perform a reliable enclosure:

1. benefit from the continuous derivative of the signal – if available – which
can be a tube itself such as [ẋ](·), depicting uncertainties too. In this case
a reliable representation is affordable since the evolution of the trajectory
between two measurements can be bounded;

2. use guaranteed sensors that output reliable values [x] valid during an interval
of time [t] corresponding to a complete slice domain. Unfortunately, to our
knowledge, such sensors do not exist yet.

We have seen in Section 2.5.1, page 69, how to build an interval enclosing a
measurement with a 95% confidence rate. It is, however, difficult to evaluate such
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α

t

[x]

t0

α

t

[x]

t0

α

t

[x]

t0
tf

Figure 3.9: A tube implemented by means of a binary tree. Blue boxes are nodes
from three non-consecutive levels of data abstraction. The root node (upper figure)
summarizes by itself the whole range of feasible values covered by the trajectories,
which is of interest for fast evaluations such as ∀t ∈ [t0, tf ],∀x(·) ∈ [x](·), x(t) < α.
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confidence with a tube made of these bounded measurements. A steady study on
this topic would be welcomed.

For now, our choice is to build a tube from data by computing a piecewise
linear interpolation xPL(·) between the measurements. We then define the k-th
slice of [x](·) : R→ IRn as a box:

[x](k) 7→ [tk, tk+1]×
[−2σ, 2σ]n +

tk+1⋃
t=tk

xPL(t)
 . (3.13)

The sampling time δ of the tube is set so that each slice gathers a sufficiently robust
amount of data.

t

[x](·)

Figure 3.10: Illustration of Equation (3.13). The gray part • is the final tube built
from a linear interpolation plotted in red •. Yellow boxes • represent the minimal
envelope of xPL(·) considering σ = 0.

3.3.3 Tubex, dedicated tube library

An optimized tube class has been implemented during this thesis and is available on
http://simon-rohou.fr/research/tubex-lib. Most of the source code of the simulated
examples presented in this document are provided in this library. The proposed
framework is compatible with the contractor programming library IBEX 3, dedicated

3http://www.ibex-lib.org
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to constraints over real numbers [Chabert, 2017]. Tubex uses VIBes4 [Drevelle and
Nicola, 2014] for visualizations.

3.4 Application: dead-reckoning of a mobile robot

The material presented in this chapter is sufficient to address a dead-reckoning
problem5 based on the following evolution equation:

ẋ(·) = f (x(·),u(·)) . (3.14)

Its differential aspect will be the main matter of the next chapter. For the moment,
the resolution will be done as a simple integration of the derivatives over time,
from t0.

3.4.1 Test case

We propose the following reproducible example in order to encourage future com-
parisons and criticism of the approach defended in this document. The example
will gradually become more complex in the next chapters, justifying the need for
new resolution tools.

A robot R is described by its state x = (x1, x2, ψ, ϑ)ᵀ where (x1, x2) depicts its
location, ψ its heading and ϑ its speed. The state evolution is modeled as:

ẋ1
ẋ2
ψ̇

ϑ̇

 f7−→


ϑ cos(ψ)
ϑ sin(ψ)
u1
u2

 . (3.15)

The state x(t) is submitted to the input u(t), bounded-valued. We propose this
analytical expression to encourage comparisons, but any formula or dataset could
be used.

u(t) ∈
 −9/20 cos

(
t/5
)

1/10 + sin
(
t/4
) + 1

1000

(
[−1, 1]
[−1, 1]

)
. (3.16)

4http://enstabretagnerobotics.github.io/VIBES
5In the literature, this problem is also known as simulation.
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3.4. Application: dead-reckoning of a mobile robot

In addition, the initial state x0 depicting the robot at t0 is assumed to be
bounded such that

x0 ∈


[−1, 1]
[−1, 1]

π/2 + [−0.01, 0.01]
[−0.01, 0.01]

 . (3.17)

The simulation will be run from t0 = 0 to tf = 64.

3.4.2 Constraint Network

As for the example presented in Section 2.3.3, we will write the following CN
depicting the problem.

CN:



Variables: x(·), v(·), u(·), x0

Constraints:

1. v1(·) = x4(·) · cos(x3(·))

2. v2(·) = x4(·) · sin(x3(·))

3. v3(·) = u1(·)

4. v4(·) = u2(·)

5. x(·) =
∫ ·
t0

v(τ)dτ + x0

Domains: [x](·), [v](·), [u](·), [x0]

(3.18)

The components of v(·) are intermediate variables. Their domains are the
corresponding tubes [v1](·), [v2](·), etc. Note that the variable x0 cannot be
refined in this process. If we prefer to let x0 appear among the variables for
ease of understanding, another way would be to add further constraints such that
x1(t0) ∈ [−1, 1].
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3.4.3 Resolution

Tubes [x](·) and [v](·) are initialized to [−∞,∞] ∀t ∈ [t0, tf ], contrary to [u](·)
expressed by means of tube analysis from Equation (3.16); the same for the box
[x0] and Equation (3.17).

The above constraints are not primitive: some of them can be broken down
such as

v1(·) = x4(·) · cos (x3(·))⇐⇒
{

a(·) = cos (x3(·)) ,
v1(·) = x4(·) · a(·) . (3.19)

The estimation is run by applying contractors for each primitive constraint. The
considered contractors are trivial, such as C+ presented in Equation (3.10), on
page 81. The integral constraint is run by intersecting [x](·) with the primitive of
the tube [v](·), see Equation (3.8), page 79. Again, we emphasize that the order of
the constraints does not impact the result of the approximation.

Figure 3.11 shows the projection of the tubes [x1](·)× [x2](·) after the resolution.
Figure 3.12 depicts the amount of uncertainty resulting from the guaranteed
enclosure of the actual state. As expected in dead-reckoning methods, the error
is quadratic. Results are obtained in 1.51 second on a conventional computer,
in 3 iteration steps, with a slice width δ = 0.005. The final position vector
p(tf ) = (x1(tf ), x2(tf ))ᵀ is approximated as:

p(tf ) ∈ [26.63, 50.06]× [38.58, 67.37]. (3.20)

3.5 Discussions

This section discusses some limits and perspectives of this approach.

3.5.1 Limits

Tubes do not appear as a straightforward solution to consider hybrid constraints
such as: if x < 1, then ẋ = 1, else: x+ = 0. These constraints implies discontinuities
that may be difficult to properly handle with tubes. Other approaches, see for
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Figure 3.11: Simulation of a mobile robot from state inputs and bounded initial
conditions. The initial position (0, 0) is only known to belong to the red box •. The
true poses of the robot are plotted in white over the estimated tubes [x1](·)× [x2](·)
projected in blue •.

instance the Acumen6 library [Taha et al., 2015, Duracz, 2016], provide appropriate
tools to address this class of conditional constraints, where they often fail to
propagate information over the trajectories domain in a backward way. Both
methods could be coupled to take advantage of each approach.

3.5.2 Extract the most probable trajectory from a tube

We have seen in Chapter 2 that when working with set-membership methods, it
is difficult to state probability distributions over the sets. This also applies with
tubes, which is among the main drawbacks of the approach especially when it
comes to compare with usual approaches that deal with what we call degenerate
solutions in our field. Hence, it is often not relevant to consider a given trajectory
in the tube (e.g. the center of the tube) and perform a comparison with the actual
value. Any trajectory is a good candidate for such comparison.

6http://www.acumen-language.org
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[d](·)

Figure 3.12: Thicknesses of the position estimation [x1](·) × [x2](·). We de-
fine d : IR2 → R the diagonal of a position box [x1] × [x2]: d([x]) =√(

x+
1 − x−1

)2
+
(
x+

2 − x−2
)2

. This depicts in the worst case the error between
the unknown truth and any trajectory within the position tube. The initial
non-zero uncertainty

√
8 is due to the bounded initial state, see the red box in

Figure 3.11.

A convincing example is the following. Let us consider a mobile robot that has
to move from a point A to a point B while avoiding an obstacle. It then has two
optimized solutions to reach its destination: leaving the object to the left or to the
right, see Figure 3.13. The center of the tube is surely not a solution to consider in
this example.

We must keep in mind that a central trajectory (e.g. the center of the tube)
may not be compliant with the constraints defining this tube. Our approach only
allows one to guarantee a space where the actual solution cannot be. This remark
is closely linked to the use of tubes for path planning algorithms.

3.5.3 Application to path planning

If a tube does not only contain feasible trajectories, it is however a proof that
trajectories outside the tube are not compliant with the considered constraints.
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x1

x2

Figure 3.13: Top view of a mobile robot avoiding an obstacle •. Blue lines • are
feasible trajectories that let the object to the left or to the right. The corresponding
tube is depicted in gray •.

Hence, tubes can be used to reject a path.

Our approach could then reduce the computational burden of path-planning
algorithms, preventing from wrong path proposals especially in case of strong
uncertainties or non-linearities [Pruski and Rohmer, 1997]. But it must be coupled
with other tools to eventually extract a feasible trajectory from the tube.

Further, tubes are well suited to guarantee collision avoidance algorithms. Many
applications such as the estimation of collisions [Serra et al., 2015] between an
asteroid and a mobile satellite could be dealt by means of tubes.

3.6 Conclusion

When dealing with dynamical systems, we often face differential equations and
non-linearities, which make solving computations difficult. Several tools exist for
this purpose but most of them badly behave in case of strong non-linearities or
uncertainties. In this chapter, we introduced a recent framework for which the
variables of interest are trajectories submitted to both algebraic and differential
equations. The philosophy is the same as the one presented in Chapter 2: formalize
a problem by defining a constraint network and then apply these constraints to
sets of trajectories.

However, we were only able to solve a differential equation from its initial
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value (so-called IVP). Further tools have to be investigated to completely deal
with differential systems, taking into account observations on trajectories at any
time and propagating this information over the whole domain. This has been the
object of [Le Bars et al., 2012, Bethencourt and Jaulin, 2014] but the proposed
contractors were not rigorously designed, thus compromising the reliability of the
results. The next Chapter 4 aims at providing a reliable contractor to deal with
differential equations.
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Part II

Constraints-related contributions

In order to fully expand the contractor programming approach
to dynamical systems, new constraints have to be studied.
The purpose of this second part is to focus on two elementary
constraints related to differential equations. The proposed
contractors will then be applied in Part III for specific robotic
problems involving time uncertainties.

Our contributions are twofold. In Chapter 4 we pro-
pose a new tube contractor to temporally propagate an
information in both forward and backward ways, considering
a differential constraint ẋ(·) = v(·). Another contractor
is provided in Chapter 5 to evaluate a tube based on the
constraint z = y(t), which leads to time uncertainties
considerations.
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4.1 Introduction

As mentioned in Chapter 2, interval-based methods effortlessly handle non-linear
situations while ensuring guaranteed results. We have seen that we can also deal
with trajectories by means of tubes presented in Chapter 3. However, it remains to
address the differential problem.

4.1.1 The differential problem

Actually, the robotic example provided in Section 3.4 from page 90 onwards does not
represent the range of state estimation problems we usually encounter, especially in
mobile robotics. Indeed, a convincing approach must be able to assess observations
along time while ensuring the evolution of the state. And sometimes, as for
the kidnapped robot problem, the situation is even more complicated as initial
conditions are not known. Hence, there is a need to fully deal with Ordinary
Differential Equations (ODEs) in the most generic way.

Formally, we consider the problem of guaranteed integration of dynamical
systems (see e.g. [Konečný et al., 2016]) of the form

ẋ (·) = f (x (·) ,u(·)) . (4.1)

One of the main motivations of guaranteed integration methods is to develop
reliable cyber-physical systems such as Acumen1 [Taha et al., 2015] for dynamical
systems simulation and verification.

4.1.2 Attempts with set-membership methods

Our problem corresponds to the area of interval integration [Moore, 1979, Berz,
1996]. Set-membership methods allow the computation of reliable bounds of sets
containing the solutions for the differential equation, according to the model f
or its inclusion, an initial condition x0 or uncertain parameters [Räıssi et al.,
2004]. Furthermore, the same methods provide a way to prove the absence of
solution when the computed set is empty. This approach differs from usual

1http://www.acumen-language.org
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resolution techniques such as Euler, Taylor or Runge-Kutta methods, with which
only punctual approximations of solutions are computed.

The guaranteed resolution of ODEs has gathered a part of the community of
numerical analysis around the so-called Initial Value Problem (IVP).

Initial Value Problem

This problem consists in computing the solution of an ODE, supposed unique,
over time from the knowledge of an initial condition. A guaranteed enclosure of
this solution can be obtained by bounding all uncertainties, including those due
to time discretization. Hence, the precision of the algorithms will only affect the
accuracy of the enclosure, and not its reliability. More precisely, from an initial
box [x](t0) representing a bounded initial state at time t = t0, the guaranteed
integration provides a set of techniques to compute a box-valued function [x](·)
(or tube) containing all feasible solutions of the ODE. There exist several methods
based on the interval extensions of usual resolution techniques such as the Euler
one [Moore, 1979].

A strong effort from this community has then triggered the development of
several efficient libraries for interval integration, such as Vnode2 [Nedialkov and
Jackson, 2000], Cosy [Revol et al., 2005], DynIBEX 3 [Alexandre dit Sandretto
and Chapoutot, 2016] or CAPD4 [Wilczak et al., 2017]. These libraries are used
in robotics and automatic control to verify dynamical properties of non-linear
systems [Ramdani and Nedialkov, 2011] or to compute reachable sets [Collins and
Goldsztejn, 2008, Goubault et al., 2014]. They are also used by mathematicians to
prove conjectures [Tucker, 1999, Goldsztejn et al., 2011].

These methods may present drawbacks such as large computation times or
pessimistic enclosures, which may limit their use for specific problems of validation
and system safety. Efforts are continuing to overcome these limitations, providing
now tight enclosures of solutions of a wide class of ODEs [Nedialkov et al., 1999].
Nevertheless, these techniques may be difficult to configure and do not provide
the level of genericity we are looking for our applications: the pure IVP does
not represent by itself the diversity of state estimation problems. This limitation
motivated new constraint-based approaches.

2http://www.cas.mcmaster.ca/˜nedialk/Software/VNODE/doc/webpage/main.htm
3http://perso.ensta-paristech.fr/˜chapoutot/dynibex/
4http://capd.ii.uj.edu.pl
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Chapter 4. Trajectories under differential constraints

Constraint-based approaches

In this context, there is a natural desire to expand the constraint programming
paradigm to completely deal with ODEs, with the aim of benefiting from the
simplicity and genericity aspects of this approach.

The concept appeared in [Deville et al., 1998, Janssen et al., 2001, Janssen
et al., 2002] with encouraging results on the IVP. The proposed method is based
on successive integration stages for which a two-step process is run: a predictor
stage to compute an enclosure of the solution at a given time and a corrector one
to reduce it. This approach stands on constraint techniques to perform these steps
but it does not allow temporal constraints. Therefore, the level of genericity we
are looking for cannot be reached with this approach.

One should also mention the work of [Hickey, 2000], providing a new language
to consider constraints over variables of R and functions. The so-called Analytic
Constraint Logic Programming (ACLP) appeared as a new approach to solve ODEs
beyond the restrictive IVP, thus addressing more generic problems. The associated
language is elegant and clear which demonstrates that complex problems can be
solved with a simple syntax. However, the related solver was aimed at enclosing real
functions evaluations x(t) and was restricted to analytical functions. We still need
to approximate complete trajectories, deal with actual datasets and constraint our
problem with a wide range of temporal relations such as uncertain time evaluations.

A further contribution in this direction is the one of [Cruz and Barahona, 2003],
introducing the concept of Constraint Satisfaction Differential Problem (CSDP) by
representing an ODE linked with additional related information. Contrary to the
approach of [Hickey, 2000], this new framework computes a solution set of feasible
trajectories. The ODE is then restricted with constraints involving real variables,
such as the Maximum Restriction presented in the paper. Nevertheless, the method
seems less generic or more complex to use: the variable representing the ODE –
what we call a trajectory – is not considered at the very same level as other vector
or trajectory variables involved in a problem. Furthermore, the consideration of
temporal constraints such as time uncertainties, delays, inter-temporalities, etc.,
still seems unaffordable with the presented tools.

In this chapter, we will stay focused on the constraint paradigm and propose a
contractor-programming approach to deal with ODEs.

102



4.1. Introduction

4.1.3 Contribution of this thesis

A contractor-based approach

We will expand the contractor programming concept presented in Section 2.3.2,
page 56, without loss of expressivity. The decomposition of any ODE will involve
an elementary differential constraint denoted L d

dt
. This chapter provides the related

contractor C d
dt

to apply the constraint on tubes. We will see that a wide range of
ODEs can be dealt with this contractor approach by combining both this differential
operator and any algebraic one.

Furthermore, unlike most of other approaches, we will see that our method
does not stand on the Picard-Lindelöf theorem: the assessed trajectories are not
necessarily Lipschitz continuous in our framework.

Towards a guarantee that was not met before

A first step has been made in this very approach in [Le Bars et al., 2012] and
[Bethencourt and Jaulin, 2014]. The introduced contractors provided the expected
level of genericity, but the definitions and algorithms were only based on sliced
tubes and the results were not guaranteed with respect to this time discretization.

More precisely, it was implicitly assumed that the floating points were dense
enough to represent all real numbers and that the sampling time was infinitely
small. The guarantee with respect to time discretization cannot be obtained without
taking into account time uncertainties, as we do in this document.

To understand our statement of non-guarantee, let us take a tube [x](·) with a
sampling time δ such that

[x](k0) = [1, 5], [x](k1) = [−1, 1] , [x](k2) = [1, 2] . (4.2)

Using the integral as defined in [Le Bars et al., 2012, Section II], we obtain that if
t1 ∈ [0, δ], t2 ∈ [2δ, 3δ], then:

∫ t2
t1

[x](τ)dτ = δ · [1, 5] + δ · [−1, 1] + δ · [1, 2] = δ · [1, 8].
This is not correct since we may have t1 = δ and t2 = 2δ and thus

∫ t2
t1
x(τ)dτ could

be equal to −δ. From [Aubry et al., 2013], we know that the correct result should
be

∫ t2
t1
x(τ)dτ ∈

∫ [2δ,3δ]
[0,δ] [x](τ)dτ = [−δ, 8δ]. In practice, the discretization error has

not much influence on the final result if δ is sufficiently small, but it is difficult to
quantify such error.
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Chapter 4. Trajectories under differential constraints

In this chapter, we provide discretization-free and guaranteed definitions of a
new contractor for differential constraints. This work has been the subject of a
collaborative study between Luc Jaulin, Lyudmila Mihaylova, Fabrice Le Bars,
Sandor M. Veres and the author, which led to the publication of [Rohou et al.,
2017].

4.2 Differential contractor for L d
dt

: ẋ(·) = v(·)

This section provides a new contractor to apply a differential constraint, the canonic
expression of which being denoted by L d

dt
.

4.2.1 Definition and proof

We consider the following elementary relation:

L d
dt

:



Variables: x(·), v(·)
Constraints:

1. ẋ(·) = v(·)

Domains: [x](·), [v](·)

(4.3)

The related trajectories are one-dimensional functions but an extension to the
multidimensional case is trivial. The variable v(·) depicts the derivative5 of x(·).
The knowledge of both x(·) and v(·) is respectively given by the tubes [x](·) and
[v](·). A new contractor denoted C d

dt
will aim at reducing these tubes based on the

differential constraint, without losing any solution. It will imply contractions that
can be propagated along the whole domain of the tubes, in both a forward and a
backward way6.

5The notation v(·) recalls the velocity of a robot: the derivative of its position x(·).
6The reader familiar with constraint propagation techniques will note that these for-

ward/backward terms are not those of this literature. Here, we only speak about temporal
propagations.
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4.2. Differential contractor for L d
dt

: ẋ(·) = v(·)

Proposition 4.1
The operator C d

dt
is a contractor for the constraint L d

dt
and is defined by:


tf⋂

t1=t0
[x](t)

[v](t)


C d

dt7−−−→


tf⋂

t1=t0

(
[x](t1) +

∫ t

t1
[v](τ)dτ

)
[v](t)

 , (4.4)

where [t0, tf ] is the definition domain of both [x](·) and [v](·).

Proof of Proposition 4.1

To be a contractor, C d
dt

needs to satisfy both the contraction and the consistency
properties, given in Definition 3.3, page 81.

— Contraction property.

– proof for [x](·): after contraction, [x](t) is calculated as

[x](t) =
tf⋂

t1=t0

(
[x](t1) +

∫ t

t1
[v](τ)dτ

)
.

If we only focus on t1 = t, then [x](t) is shown to be a subset of(
[x](t) +

∫ t
t [v](τ)dτ

)
= ([x](t) + 0). Therefore, ∀t ∈ [t0, tf ], [x](t) is

at least contracted by itself, thus certifying the contraction property;
– as for [v](·), the demonstration is trivial: the tube is only contracted

by itself.

— Consistency property.
The goal is to prove that a solution cannot be lost.

– proof for [x](·): we have to prove that for two trajectories x(·) ∈ [x](·)
and v(·) ∈ [v](·) such that ẋ(·) = v(·), we have:

∀t ∈ [t0, tf ], x(t) ∈
tf⋂

t1=t0

(
[x](t1) +

∫ t

t1
[v](τ)dτ

)
. (4.5)
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Chapter 4. Trajectories under differential constraints

Consider a generic constraint Lf : a = f(a,b), a ∈ [a], b ∈ [b].
Hence, a ∈ [a]∩ f([a], [b]). When combining several constraints Lfi

,

then a ∈ [a] ∩
(⋂

i

fi([a], [b])
)

.

Now, from ẋ(·) = v(·), let us take:

ft1
(
x(·), v(·)

)
= x(t) = x(t1) +

∫ t

t1
v(τ)dτ. (4.6)

Then,

x(t) ∈ [x](t) ∩
 tf⋂
t1=t0

ft1
(
[x](·), [v](·)

)
= [x](t) ∩

 tf⋂
t1=t0

(
[x](t1) +

∫ t

t1
[v](τ)dτ

)
=

tf⋂
t1=t0

(
[x](t1) +

∫ t

t1
[v](τ)dτ

)
.

(4.7)

– proof for [v](·): trivial. �

This contractor is useful to reach a consistency state between a tube of trajec-
tories and its envelope of derivatives. Two examples are provided in Figures 4.1
and 4.2. More practically, when an observation constraints the set [x](·) at a
given time t, then C d

dt
can be used to smooth the tube [x](·): a propagation of the

differential constraint is expected in both forward (from t to tf) and backward
(from t to t0) ways. This will be discussed in Section 4.3.

Note that a single application of C d
dt

is sufficient to reach a consistency state
over the domains; an iterative method would not provide thinner results. One
would think that C d

dt
is minimal but this hypothesis remains to be studied. An

algorithm for C d
dt

will be provided in Section 4.2.3.
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(a) Case of [v](t) = [−∞,∞] ∀t. No contraction.

0 1 2 3 4 5 6 7 8 9 10

0

5

10

t

[x](·)

(b) Case of [v](t) = [0,∞] ∀t, equivalent to an increasing constraint.
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(c) Case of [v](t) = [0, 1] ∀t.
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(d) Case of [v](t) = [−∞, 0] ∀t, equivalent to a decreasing constraint,
and resulting in a contraction to the empty set since the tube does not
contain monotonically decreasing trajectories.

Figure 4.1: An arbitrary tube is contracted by C d
dt

to the envelope of trajectories
x(·) that meet the constraint ẋ(·) = v(·). The dark gray part is the tube after the
contraction step. Several cases are illustrated with different derivative tubes. They
are defined as constant for ease of understanding, but any set of derivatives could
be considered.
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(a) An arbitrary tube [x](·) contracted by C d
dt

.
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t
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(b) An arbitrary tube [v](·) enclosing the set of feasible derivatives.

Figure 4.2: Another example of a consistency state reached with C d
dt

over a set of
trajectories and their feasible derivatives. Only [x](·) is contracted. We will prove
in Section 4.2.2 that [v](·) cannot be contracted when [x](·) is not a degenerate
tube. Note that all the feasible derivatives in [v](·) are negative over [0, 1] and
so the contraction of [x](·) preserves decreasing trajectories over this part of the
domain. Similarly, [v](·) is positive over [2, 3] which corresponds to increasing
trajectories kept in [x](·) after contraction.
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4.2. Differential contractor for L d
dt

: ẋ(·) = v(·)

Conditions on the variables x(·) and v(·)

Contrary to other usual interval methods that solve the IVP, we do not need the
Picard-Lindelöf theorem7 to perform the approximation of x(·) from its derivative.
Indeed, the guarantee of the existence of a solution is not mandatory for our
contractor, that will only remove infeasible trajectories from the domains. The
contraction process may even result in an empty set for [x](·) for an ill-posed
problem.

Therefore, we emphasize that the variables are not necessarily Lipschitz continu-
ous in this framework, contrary to other approaches standing on the Picard-Lindelöf
theorem.

4.2.2 Contraction of the derivative

One should note that the tube [x](·) may be contracted while the estimation of
the derivative signal, represented by [v](·), will remain the same. Indeed, the
evolution of any trajectory in [x](·) cannot be known, except for degenerate tubes
without thickness. The derivative ẋ(·) ∈ [v](·) could then be of any arbitrary value.
Therefore, no information from [x](·) can be propagated back to [v](·). This is
formalized and proved hereinafter.
Lemma 4.1
Consider the constraint ẋ(·) = v(·) and two tubes [x](·), [v](·) such that there
exists c(·) differentiable and ε > 0 with c(·) + [−ε, ε] ⊂ [x](·). Then for all (v1, t1),
there exists a trajectory x(·) ∈ [x](·) such that ẋ(t1) = v1. As a consequence, no
contraction can be expected for [v](·) except in the cases of empty or degenerate
tubes, where [x](·) has no uncertainty for some consecutive times.

Proof of Lemma 4.1
The function

a(t) = t

1 + t2
(4.8)

is inside the interval [−1, 1] and ȧ(0) = 1. Therefore, the function

b(t) = εa

(
β

ε
(t− t1)

)
(4.9)

7Also known as Picard’s existence theorem or Cauchy–Lipschitz theorem.
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Chapter 4. Trajectories under differential constraints

is bounded by [−ε, ε] and

ḃ(t1) = ε
β

ε
ȧ(0) = β. (4.10)

We have

x (·) = c (·) + b (·) ∈ [x] (·) . (4.11)

Thus,

ẋ (t1) = ċ (t1) + ḃ (t1) = ċ (t1) + β, (4.12)

which is equal to v1 if we choose β = v1 − ċ(t1). As a consequence, for all (v1, t1),
there exists a consistent trajectory that belongs to [x](·). �

4.2.3 Implementation

The definition of C d
dt

given in Equation (4.4) has no relation with the computer
representation of the tubes [x](·) and [v](·). This section provides a way to
practically apply this contractor on implemented tubes as presented in Section 3.3.1
at page 85.

We will break down the implementation into two contractors C→d
dt

and C←d
dt

so
that C d

dt
= C→d

dt

◦ C←d
dt

.

Forward contractor C→d
dt

When solving an ordinary differential equation numerically such as ẋ(·) = v(·), a
recurrence relation is typically encountered:

x(t+ dt) ≈ x(t) + dt · v(t), (4.13)

where dt ∈ R is the resolution time step.

The corresponding contractor would be transparently obtained with bounded
values and intersections:

[x](t+ dt) := [x](t+ dt) ∩
(
[x](t) + dt · [v](t)

)
. (4.14)
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4.2. Differential contractor for L d
dt

: ẋ(·) = v(·)

However, this definition does not take into account the evolutions of v(·) during
a time step. Using the chosen representation of a tube built with a set of slices of
width δ, our time step dt now corresponds to δ. The feasible values of v(·) along a
time interval [kδ, kδ + δ], k ∈ N, is then given by [v]([kδ, kδ + δ]).

It remains to enclose any value of x(·) along the same interval [kδ, kδ + δ]:

[x]([kδ, kδ + δ]) := [x]([kδ, kδ + δ]) ∩
kδ+δ⊔
t=kδ

(
[x](kδ) + (t− kδ) · [v]([kδ, kδ + δ])

)
,

:= [x]([kδ, kδ + δ]) ∩
(

[x](kδ) + [v]([kδ, kδ + δ]) ·
kδ+δ⊔
t=kδ

(t− kδ)
)
,

:= [x]([kδ, kδ + δ]) ∩
(
[x](kδ) + [0, δ] · [v]([kδ, kδ + δ])

)
.

(4.15)

Which is equivalent to:

[x](k + 1) := [x](k + 1) ∩
(
[x](k) ∩ [x](k + 1) + [0, δ] · [v](k + 1)

)
, (4.16)

where [x](k) is the kth slice of the tube.

Algorithm 3 performs this forward propagation.

Backward contractor C←d
dt

The same method is applied in backwards for the (k − 1)th slice:

[x](k − 1) := [x](k − 1) ∩
(
[x](k) ∩ [x](k − 1)− [0, δ] · [v](k − 1)

)
. (4.17)

Which trivially leads to Algorithm 4.

Forward/backward contractor C d
dt

The simple combination of the above algorithms is provided in Algorithm 5.

A step-by-step example of a forward/backward propagation is given in Figure 4.3,
with an arbitrary tube [v](·), an uninitialized tube [x](·) and conditions x(0) = 0,
x(5) = 4. The variable [xfront] used in the algorithms is depicted by blue thick
lines in the figure.
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Algorithm 3 C→d
dt

(in : [x0], [v](·), inout : [x](·))

1: var [xfront]← [x0]
2: var [xold]
3: for k = 0 to k do
4: [xold]← [x](k)
5: [x](k)← [xold] ∩ ([xfront] + [0, δ] · [v](k))
6: if k 6= k then
7: [xfront]← [xold] ∩ ([xfront] + δ · [v](k)) ∩ [x](k + 1)
8: end if
9: end for

Algorithm 4 C←d
dt

(in : [xf ], [v](·), inout : [x](·))

1: var [xfront]← [xf ]
2: var [xold]
3: for k = k to 0 do
4: [xold]← [x](k)
5: [x](k)← [xold] ∩ ([xfront]− [0, δ] · [v](k))
6: if k 6= 1 then
7: [xfront]← [xold] ∩ ([xfront]− δ · [v](k)) ∩ [x](k − 1)
8: end if
9: end for

Algorithm 5 C d
dt

(in : [x0], [xf ], [v](·), inout : [x](·))

1: C→d
dt

([x0], [v](·), [x](·))
2: C←d

dt

([xf ], [v](·), [x](·))
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(a) Derivative tube [v](·) used to contract
[x](·). The actual trajectory x∗(·) is plotted
in orange •.

0

1

2

3

4

1 2 3 4 5 t

[x]

(b) First step of forward integration contractor:
first slice k1 is contracted from [−∞,∞] to
[0, 2] with the condition x(0) = 0.
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(c) End of forward contractions. The mini-
mal envelope of solutions compliant with [v](·)
is pictured in blue •. Slices representation –
outer approximation – is depicted in gray •.
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(d) First step of backward integration contrac-
tor, with the last condition x(5) = 4. A re-
duced envelope, pictured in dark blue •, is
computed from t = 5 to t = 0.
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(e) End of backward processing.
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(f) Tube [x](·) is contracted to optimally en-
close the thin envelope pictured in dark blue.

Figure 4.3: A step-by-step illustration of the C d
dt

’s implementation. The contraction
will propagate conditions x(0) = 0 and x(5) = 4 over [x](·) initialized to [−∞,∞]∀t.
Curved lines picture feasible trajectories ẋ∗(·) • and x∗(·) • that remain respectively
enclosed within [v](·) and [x](·) after the contraction process.
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4.3 Contractor-based approach
for state estimation

A state estimation problem involving state constraints can be cast into a constraint
network for which four types of uncertainty propagations are encountered:

1. the forward propagation;

2. the backward propagation;

3. the correction;

4. the state constraints.

In the literature, (1) is known as the prediction, (1)+(2) the integration, (3) the
correction, (1)+(3) the filter and (1)+(2)+(3) the smoother. Section 4.2 provided
a tool for (1)+(2), i.e., the forward/backward integration. In the current section,
we will show that the approach can also be extended to all types of constraints,
namely (1)+(2)+(3)+(4), which is of high interest for robotic applications. The
limits of the approach will be discussed after the methodology details.

4.3.1 Constraint network of state equations

We focus on the resolution of problems depicted by Equation (3.1) recalled below:

{
ẋ(·) = f (x(·),u(·)) ,
zi = g (x(ti)) .

(4.18a)
(4.18b)

We emphasize that in the current chapter, uncertainties on any of the variables
x(·), u(·), zi, and the functions f and g are assessed, except for the observation
times ti that must be perfectly known. Uncertainties on these values will be the
subject of Chapter 5.

All the solving process will be achieved by a contractor programming approach,
making use of the new operator C d

dt
. The above state equations are broken down

into a set of primitive constraints, introducing variables v(·), y(·) for ease of
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4.3. Contractor-based approach for state estimation

decomposition:

CN:



Variables: x(·), v(·), u(·), y(·), zi
Constraints:

1. vj(·) = fj
(
x(·),u(·)

)
, j ∈ {1 . . . n}

2. ẋj(·) = vj(·)⇐⇒ L d
dt

(
xj(·), vj(·)

)
3. y(·) = g

(
x(·)

)
4. zi = y(ti)

Domains: [x](·), [v](·), [u](·), [y](·), [zi]

(4.19)

Stage (4.19):(4) is a so-called evaluation constraint on the trajectory y(·). We
will consider a contractor Ceval to implement it. For now and to keep things simple,
we will use the following definition while keeping in mind that it is not generic as
it does not consider ti as a variable to be estimated.(

[zi]
[y](ti)

)
Ceval7−−−→

(
[zi] ∩ [y](ti)
[zi] ∩ [y](ti)

)
. (4.20)

Figure 4.4 gives an illustration of Ceval coupled with C d
dt

in order to smooth a
tube from a given observation. Steps (4.19):(1) and (4.19):(3) of CN (4.19) are
implemented by related primitive contractors on tubes such as C+ defined in page 81.
One is therefore well advised to use compositions of tube contractors, denoted
here by Cf and Cg, to address complex functions f and g if necessary. Finally,
the differential contractor C d

dt
will deal with the constraint (4.19):(2). To sum up,

CN (4.19) involves the following contractors8:

— Cfj

(
[vj](·), [x](·), [u](·)

)
, j ∈ {1 . . . n}

— C d
dt

(
[xj](·), [vj](·)

)
— Cg

(
[y](·), [x](·)

)
— Ceval

(
[zi], [y](ti)

)
8A filter or a smoother procedure is respectively obtained by using C→d

dt

or C d
dt

.
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t

[x](·)

t

[v](·)

(a) Initial tubes [x](·) and [v](·). Consistent state.

t

[x](·)

x(t1) ∈ [i]

t

[v](·)

(b) Contraction with Ceval from a bounded observation of x(·) at t1. Non consistent state.

t

[x](·)

x(t1) ∈ [i]

t

[v](·)

(c) Application of C d
dt

resulting in a forward/backward temporal propagation of the observation.
Consistent state.

Figure 4.4: An arbitrary tube [x](·) together with its derivative [v](·). The use of C d
dt

is presented in three steps: (a) initial tubes; (b) a given constraint x(t1) ∈ [i] is raised
and applied thanks to Ceval; (c) results of the differential constraint propagation.
Contracted tubes are depicted in dark gray while the previous envelope (before
contraction) is shown in light gray. It is noteworthy that only [x](·) has been
contracted by C d

dt
(as explained in Section 4.2.2, page 109).
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4.3. Contractor-based approach for state estimation

4.3.2 Fixed-point propagations

Set-membership state estimation then consists in an iterative process, each stage
of which is calling these contractors. The process can be stopped when the tubes
are not contracted anymore. We remind that the above contractors can be called
in any order due to their monotonicity [Apt, 1999]. In this approach based on
constraint propagations, the order can only impact the computation time: it could
be more interesting to apply a contractor before another in order to perform the
strongest contractions as soon as possible. However, this is highly specific to the
considered problem.

In several robotic applications such as ẋ(·) = f(x(·),u(·)), constraints networks
form causal kinematic chains. For instance, motors generate an acceleration of
the wheels rotation, driving the vehicle forwards, creating a displacement. Let us
consider the following system depicting a simple mobile robot:

ẋ1(·) = cos(x3(·)),
ẋ2(·) = sin(x3(·)),
ẋ3(·) = u(·).

(4.21)

The propagation of information from the inputs u(·) toward the states x(·) is
depicted in Figure 4.5 where two linear chains are clearly visible. In such cases, the
resolution is achievable in one single iteration with a smart order of contractors.
Furthermore, we will show in Section 4.4 that our method appears to be efficient
and competitive compared with other libraries.

∫
cos

sin

∫

∫
u(·)

x3(·)

x3(·)

ẋ1(·)

ẋ2(·)

x1(·)

x2(·)

Figure 4.5: Causal kinematic chains associated to Equations (4.21).

Other cases may involve cyclic networks of constraints. This can be the case
of systems such as ẋ(·) = f(x(·)). The theoretical problem of ẋ = − sin(x) is a
case in point. In this configuration, see Figure 4.6, an iterative resolution has to be
processed until a fixed point is reached.
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sin
∫

x0−
a(·) b(·)

x(·)

Figure 4.6: Circuit associated with the IVP defined by (x0, ẋ = − sin(x)). The
equation can be broken down into the constraints a(·) = sin(x(·)), ḃ(·) = a(·),
x(·) = x0 − b(·).

Our method is scalable, being able to deal with problems such as ẋ(·) =
f(x(·),u(·)) or ẋ(·) = f(x(·)), but may provide pessimistic results in some cases.
This is discussed in the following section with the example of ẋ = − sin(x).

4.3.3 Theoretical example of interest ẋ = − sin(x)

In order to understand the limits of our approach, let us consider an unfavorable
case study. The reader mainly interested in state estimation may skip this section
and go directly to the applicative part at page 121.

IVP

We propose the following IVP:{
ẋ = − sin(x),
x0 = 1. (4.22)

Applying the constraint programming approach, a decomposition is performed:


a(·) = sin(x),
b(·) =

∫
0 a(τ)dτ,

x(·) = x0 − b(·).
(4.23)

We build the three associated contractors and we call them up to the fixed
point, as illustrated in Figure 4.7 for the domain [0, 10]. Initial tubes are set to
[−∞,∞]∀t.
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Figure 4.7: Inefficient resolution of the ẋ = − sin(x) problem. Successive contrac-
tions of the tube [x](·) are pictured: first five computations and final result when
reaching a fixed point. Light gray areas represent the tube’s parts that have been
contracted during the contraction steps.
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Divergence

Even if the propagation takes place, the obtained envelope is poor and the fixed
point is reached even before the contraction of the tube over its complete domain.
The same problem solved with the CAPD library [Wilczak et al., 2017], which can
be considered as one of the most efficient libraries in this field, yields significantly
better results with the following enclosure obtained in less than 1 second:

x(10) ∈ [4.96041893247 · 10−5, 4.96041893264 · 10−5]. (4.24)

This is not surprising since CAPD is typically devoted to this kind of problem,
where the information given on the initial state has to propagate forwards in time
with the complete assessment of the analytical expression of the problem.

The principal justification for such bounds divergence, obtained with our ap-
proach, is the wrapping effect. Indeed, we first break down the IVP into some
constraints involving the three trajectories x(·), a(·) and b(·). All the information
about these variables is stored within tubes, that are pessimistic enclosures due to
there sliced implementation. The contractors guarantee the reliable propagation
from one slice to another, so they also propagate the wrapping effect in time,
leading to a dramatic pessimism at some point, as pictured in the last iteration of
Figure 4.7.

Overcome unwanted pessimism

A future work may consider to merge several approaches such as CAPD or DynIBEX
[Alexandre dit Sandretto and Chapoutot, 2016] into our framework, in order to
limit such divergence. Hence, the IVP could be dealt with a contractor-based
strategy while taking advantage of the efficiency of dedicated libraries.

Another track to investigate is a smarter discretization of tubes: a slice width
to be set according to the evolution of the trajectory along the slice, thus locally
optimizing the wrapping.

Finally, a complementary strategy is the strangle method [Jaulin, 2002]. In the
presented IVP, the approach consists in assuming x(10) ∈ [a, b], contracting the
[x](·) at 10 based on this assumption, and propagating it backwards towards 0. The
contraction may result in an empty set, which would prove that the actual x∗(·)
does not reach [a, b] at 10. Therefore, the tube can then be surely contracted by
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removing from the envelope the trajectories going through 10× [a, b]. The process
can be automated to perform several assumptions at a given time. At the end, a
strangulation would have been performed at time 10 without providing external
constraints to the problem.

This method enables thinner results equivalent to those obtained with CAPD,
but at the cost of heavy computation times and without a guarantee of success.
Indeed, the backward propagation may be too pessimistic as well, thus enclosing
the initial value for each assumption. Also, random strangulations over the domain
may be tried. The approach deserves further study.

4.4 Robotic applications

In this section, we provide reproducible examples involving mobile robots. It
ends with a state estimation performed on an actual dataset obtained during an
experiment with the Daurade AUV.

4.4.1 Causal kinematic chain

We will come back to the causal situation mentioned in Section 4.3.2 and apply our
approach on a simple example. A comparison with the CAPD library will show
that our method can be considered as competitive, at least for robotic applications.

Let us consider a wheeled robot R with a constant velocity ϑ [Dubins, 1957]
and described by the Equations (4.21) adapted below:

ẋ1(t) = ϑ cos(x3(t)),
ẋ2(t) = ϑ sin(x3(t)),
ẋ3(t) = u(t).

(4.25)

We assume that ϑ = 10 and that the initial state x0 belongs to the box:

x0 ∈ [x0] = [−1, 1]× [−1, 1]× [−6/5π − 0.02,−6/5π + 0.02]. (4.26)

In order to compare with the CAPD library, u(·) is bounded by the following
Equation (4.27). Note that when dealing with actual experiments, these analytical
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expressions are not always at hand, which is a strong limitation for classical methods.
With tubes, however, any dataset can be considered.

u(t) ∈ [u](t) = − cos
(
t+ 33

5

)
︸ ︷︷ ︸

u∗(t)

+[−0.02, 0.02]. (4.27)

Our state estimation method yields the tubes projected on Figure 4.8. Naturally,
this dead-reckoning estimation becomes more pessimistic with time: without
exteroceptive measurements, the robot progressively gets lost. The figure shows
that our approach is more accurate than CAPD on this example.

-10 0 10 20 30 40 50 60 70 80 90

-20

-10

0

10

20

x1

x2

[x0]

CAPD result

Figure 4.8: Interval simulation of the robot R. The white line represents the true
poses of the robot, considering the actual and unknown input u∗(·), while the tubes
[x1](·)× [x2](·) are projected in blue •. The green box • is the projection of the
last slice [x](tf ) obtained for tf = 14. By comparison, the final box computed with
CAPD is represented in red •. Computation time is less than 0.1s on a conventional
computer.

To illustrate the fact that our method is more general and flexible than existing
guaranteed integration approaches, consider now a situation where the final state
x(14) is known to belong to the box [xf ] = [53.9, 55.9]× [6.9, 8.9]× [−2.36,−2.32].
Adding this information to the constraint network, the contractor C d

dt
will also

perform a backward propagation. The result is illustrated by Figure 4.9.

122



4.4. Robotic applications

-10 0 10 20 30 40 50 60 70

-15

-10

-5

0

5

10

15

20

25

x1

x2

[x0]

[xf ]

Figure 4.9: Simulation as presented in Figure 4.8. This time, the initial and final
states are almost known while uncertainties are maximal in the middle of the
mission.

4.4.2 Higher order differential constraints

Another brief example is the following: a 2D robot trajectory expressed as a
Lissajous curve:

x(t) = 5
(

2 cos(t)
sin(2t)

)
. (4.28)

Equation (4.28) describes the actual but unknown trajectory. To illustrate our
approach, we generate differential equations satisfied by x(t). The initial condition
is known to belong to a box [x0]. The associated constraint network is the following.
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CN:



Variables: x(·), ẋ(·), ẍ(·)
Constraints:

1. ẍ1(t) ∈ −10 cos(t) + [−0.001, 0.001]

2. ẍ2 = −0.4 · ẋ1 · ẍ1

3. ẋ(0) =
(

0
10

)
, x(0) ∈

(
[9.8, 10.2]
[−0.2, 0.2]

)

Domains: [x](·), [ẋ](·), [ẍ](·)

(4.29)

The contractor based approach provides the envelope of trajectories pictured
in Figure 4.10. It shows the ease-of-use of differential constraints that are usually
encountered in mobile robotics where x is the position of a robot, ẋ its speed and
ẍ its acceleration.
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[x0]

Figure 4.10: A robot following a Lissajous curve. The white line is the unknown
truth given by Equation (4.28). The blue shape • is the envelope of trajectories
computed from CN (4.29). We emphasize that further constraints such as x2(t) =
x2(t+ π) or x(π/2) = x(3π/2) could be easily added to the CN.
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4.4.3 Kidnapped robot problem

The last simulated example is an extension of the illustration provided in Section 3.4
from page 90 onwards. We were considering the simulation of a mobile robot from
the knowledge of the system’s input u(·) and a known initial condition x0. Our
goal is to remove this last constraint, assuming the robot has been kidnapped and
placed somewhere else in an unknown state. We shall now consider the unique
measurement:

x1(37) ∈ [59.25, 61.25], x2(37) ∈ [36.16, 38.16]. (4.30)

Figure 4.11 depicts the forward/backward propagation from the measurement
at t = 37. Figure 4.12 represents the accuracy of the estimation, highlighting that
state observations are easily applicable at any time without any integration from
known initial conditions.
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Figure 4.11: State estimation of a mobile robot without prior knowledge on its
initial position. A single measurement, pictured by a red box •, is assessed. The
actual trajectory plotted in white remains enclosed within the estimated envelope
of trajectories drawn in blue •.

125



Chapter 4. Trajectories under differential constraints

0 5 10 15 20 25 30 35 40 45 50 55 600

5

10

15

20

25

t

[d](·)

Figure 4.12: Thicknesses of the position estimation [x1](·)× [x2](·) as defined for
Figure 3.12, page 94. The graph reveals the propagation of an observation at t = 37
in both backward and forward ways.

4.4.4 Actual experiment with the Daurade AUV

The changeover from analytical simulations towards actual datasets is straightfor-
ward when using tubes, since all the knowledge on trajectories is implemented as
representable sets.

Let us consider a real experiment with the Daurade AUV, based on a classical
kinematic model for an underwater robot [Fossen, 1994, Jaulin, 2015a]:{

ṗ = R(ψ, θ, ϕ) · vr,
v̇r = ar − ωr ∧ vr,

(4.31)

where R(ψ, θ, ϕ) is the Euler matrix given by: cos θ cosψ − cosϕ sinψ + sin θ cosψ sinϕ sinψ sinϕ+ sin θ cosψ cosϕ
cos θ sinψ cosψ cosϕ+ sin θ sinψ sinϕ − cosψ sinϕ+ sin θ cosϕ sinψ
− sin θ cos θ sinϕ cos θ cosϕ

 .
(4.32)

In these equations, the vector p = (px, py, pz)ᵀ gives the coordinates of the center
of the robot expressed in the absolute inertial coordinate system R0, as well as the
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three Euler angles (ψ, θ, ϕ). The robot’s speed vector vr and acceleration vector
ar are expressed in its own coordinate system R1. The vector ωr = (ωx, ωy, ωz)ᵀ
corresponds to the rotation vector of the robot relative to R0 expressed in R1. It
is indeed conventional to express ar, ωr in the coordinate system of the robot since
these quantities are generally measured by the robot itself via an IMU attached on
it.

Now, from the inertial unit, we collect measurements for ar, ωr, ψ, θ, ϕ. In
addition, Daurade is equipped with a DVL providing measurements about its
speed vector vr. Some bounded errors are established from the datasheets of these
sensors, as presented in Section 2.5.1, page 69. From these data we then create
initial tubes, see Section 3.3.2, page 87. With tube arithmetic and tube integration,
we finally compute the speeds [ṗ](·) and positions [p](·) of the robot as expressed
by Equation (4.31). One of their components is plotted in Figures 4.13 and 4.14.
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Figure 4.13: Daurade’s tube [ṗ2](·) computed to represent the velocity along y in
R0. Because this tube comes from measurements without any integration process,
its thickness remains almost constant.

An overview of the mission is pictured by Figure 4.15 where the first dead
reckoning computation is depicted in light gray. A state estimation is then performed
with the help of two trajectory measurements coming from a USBL positioning
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Figure 4.14: Daurade’s tube [p2](·) computed as the primitive of [ṗ2](·). This
tube becomes thicker depicting cumulative uncertainties due to the dead-reckoning
method. Observations pictured in Figure 4.15 are not represented here.

system. This led to the contraction of [p](·) over the whole mission duration, by
using the contractor C d

dt
.
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Figure 4.15: Mission map after 45 minutes, Daurade explored a 25 hectares
area. The white line is Daurade’s trajectory filtered by a USBL and an INS
(see Section 1.2.3, page 17). Gray background • and blue shapes • respectively
correspond to the tubes [p1](·)×[p2](·) projected on the world frame before and after
the consideration of positioning measurements, pictured by red boxes •. Indeed,
the only use of inertial data and velocity measurements provided by the DVL
leads to a strong drift at the end of the mission. Here, thanks to two observations
obtained from the USBL at t1 = 13min and t2 = 33min, the drift is reduced over
the whole mission.
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4.5 Conclusion

In this chapter as in [Rohou et al., 2017], we have proposed a new method for
guaranteed integration of state equations. The contribution is to provide a reliable
framework to enclose the solutions of differential equations within tubes. We then
apply a constraint programming approach in order to reduce the sets of trajectories.
This is achieved by means of a new contractor C d

dt
, the definition and proof of

which being introduced for the first time in this document.

Its use is shown to be simple and more general than existing approaches dealing
with guaranteed integration. Indeed, the developed framework allows one to
deal with non-linear equations or differential inclusions built from datasets, while
considering observations of the states of interest. Furthermore, the variables do
not have to be Lipschitz continuous, which differs from other methods. In addition,
the method appears even more competitive on some robotic applications expressed
as ẋ(·) = f(x(·),u(·)).

Prospects

A strong amount of work still remains in order to compare the current approach
with already existing tools. It is indeed necessary to clearly state the limits in each
case regarding criteria of accuracy, genericity, computation-time, etc. Hence, the
contractor-based approach we propose should be applied on well-known benchmarks
from the IVP community. Further ones could be suggested in the field of robotics,
thus expanding the IVP to a wider range of applications and challenges.

Furthermore, our framework could process a user-friendly solver for ODEs and
practical applications. In this context, the choice of applying C d

dt
, or any other

contractor relying on standard IVP libraries, could be automated in order to keep
the best of each world.

Finally, we emphasize that optimized results could be obtained when dealing
with higher order differential equations such as ẍ(·) = v(·). Indeed, we have seen
that to solve this problem, a decomposition into primitive constraints has to be
done: ẋ(·) = a(·) and ȧ(·) = v(·). Hence, the contractor C d

dt
will be applied twice.

The drawback is the wrapping effect appearing between the calls. Contractors
considering n derivatives should be investigated.
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5.1 Introduction

5.1.1 Contribution of this thesis

The main purpose of the second part of this thesis is to study new tools to soundly
deal with state equations:

{
ẋ(t) = f(x(t),u(t)),
zi = g(x(ti)).

(5.1a)
(5.1b)

In Chapter 4, we have seen how to achieve this resolution, assuming a precise
knowledge on the measurement times ti ∈ R. We are now able to compute the
envelope of feasible state trajectories by using tubes as domains and the contractor
programming approach expanded to trajectories and enriched with C d

dt
and Ceval.

We remind that:

— Ceval([zi], [y](ti)) contracts the tube [y](·) at time ti while keeping the set of
trajectories going through [zi] at this instant;

— C d
dt

([x](·), [v](·)) smooths the tube [x](·) in order to conserve trajectories
compliant with the set of feasible derivatives enclosed in [v](·).

Ceval and C d
dt

can be used together to propagate an observation over the whole
domain of a trajectory.

This chapter deals with uncertain measurement times: now, the ti are known to
belong to some interval [ti]. In this context, neither the value of the output zi nor
the acquisition date ti are known exactly. Hence, the problem becomes much more
complex as the uncertainties related to the ti are difficult to propagate through the
differential equation.

Some attempts of using interval analysis have been proposed in [Le Bars et al.,
2012, Bethencourt and Jaulin, 2013], but we have seen that the corresponding
observers cannot be considered as guaranteed. Other works, often referred as
Out Of Sequence Measurement (OOSM) [Choi et al., 2009], state problems of
time delay uncertainties, which can be somehow related to our problem. However,
the considered time uncertainties are tight, of the same order of magnitude as
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computational time step, and treated by means of covariance matrices which do
not provide guaranteed results.

In contrast, we propose a new reliable tool to deal with strong temporal
uncertainties. The contractor Ceval, firstly defined in Equation (4.20) at page 115,
will be extended to the most generic case, assuming uncertainties on the trajectory
and both the measurement value and its time reference. This work has been the
subject of a collaborative study between Luc Jaulin, Lyudmila Mihaylova, Fabrice
Le Bars, Sandor M. Veres and the author, which led to the publication of [Rohou
et al., 2018b].

5.1.2 Motivations to deal with time uncertainties

Dealing with strong time uncertainties may appear to be irrelevant or specific to
special cases. Indeed, most applications involve precise measurement dates and
classical state estimation methods mainly focus on resolutions in the state and
observation spaces, considering spatial rather than temporal uncertainties on the
variables. However, some problems could be easily considered by dealing with time
uncertainties. Indeed, some practical situations can be formulated in a different
way.

As an illustration, let us consider an underwater robot R performing an ex-
ploration task using a side-scan sonar. Assume that a localization of the robot
is based on the perception of a wreck for which the highest point w is precisely
geolocalized. As pictured in Figure 5.1, the wreck image W(t) obtained by the
sonar may be distorted, stretched and would be highly noisy in practice, depending
on the robot navigation [Le Bars et al., 2012]. It is a difficult problem for image
processing algorithms to detect the highest point w in W to be used as reference for
localization. However, the problem can be dealt with in a temporal way, based on
the time interval [t] during which the robot has seen the wreck. This observation is
related to a strong temporal uncertainty: up to several seconds or minutes. Then
the state estimation amounts to a range-only problem for which

∃t ∈ [t], ∃ρ ∈ [ρ] | ρ = g (x(t)) (5.2)

with g : Rn → R the distance function between R and the known point w.

This practical situation has been encountered by the Daurade AUV during
the exploration of the Rade de Brest (France). Daurade overflew the wreck of the
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g(x(t))

t
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W(t)

[t]× [ρ]

w

Figure 5.1: A robot R perceiving a plane wreck with a side scan sonar. The
observation function g(x) represents the distance between R and a point of interest
w on the plane, pictured by a white dot and seen at times t1 = ta, t2, t3. The
sonar image W(t) is overlaid on the graph. Although w has been seen three times,
the ti remain uncertain but known to belong to [t]. Some other robot states are
illustrated at times ta, tb, tc.

Swansea boat (see Figure 5.2a), for which the highest point has been precisely
geolocalized by divers. The sonar images provided by the robot are distorted and
strongly noised. The reader will be convinced that the image processing step,
required to detect the point of interest for localization, is a highly complicated task:
see Figure 5.2b. Considering the problem from a temporal point of view would
allow a simpler resolution and guaranteed results. It is indeed easier to segment the
wreck image from the seabed and thus to obtain a reliable envelope of the wreck.
This way, we ensure to enclose the point of interest within a measurement box
[t]× [ρ], where [t] is the time interval during which the robot has seen the wreck.

This example shows how a classic robotic application can be related to strong
time uncertainties. The current chapter is a first step towards new state estimation
approaches that will focus on both the time and the state spaces. It proposes a
theoretical basis to deal with the former in the most generic way and is illustrated
by reproducible examples in order to highlight the interest and simplicity of the
method and encourage further comparisons. Finally, the developed tools will be
used in Chapter 7 for a new reliable SLAM method.

134



5.1. Introduction

(a) The Swansea boat, during the First World War. Unknown copyright.

(b) The Swansea wreck perceived with a side scan sonar. The ship’s funnel and superstructures
cause wide shadowed areas which are the darkest parts of the sonar image. Copyrights: SHOM,
DGA-TN Brest, Michel Legris.

Figure 5.2: Performing a so-called wreck-based localization is not an easy task.
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5.2 Generic contractor for
trajectory evaluation

This section provides a new contractor to apply an evaluation constraint Leval to
a trajectory. We recall that the dot notation y(·) is used to represent the whole
trajectory, contrary to y(t) which is the evaluation of the trajectory y(·) at time t.

5.2.1 Tube contractor for the constraint Leval : z = y(t)

We consider the following elementary constraint

Leval :



Variables: t, z, y(·)
Constraints:

1. z = y(t)

Domains: [t], [z], [y](·)

(5.3)

Expressed by means of quantifiers, Leval amounts to:

Leval :
{
∃t ∈ [t],∃z ∈ [z],∃y(·) ∈ [y](·) | z = y(t)

}
. (5.4)

The related contractor will aim at intersecting the tube by the envelope of all
trajectories compliant with the bounded observation. In other words, [y](·) will
be contracted by the tube of all y(·) ∈ [y](·) going through the box [t] × [z], as
shown in Figure 5.3. Some trajectories may partially cross the box at some point
over [t]: the contractor must take into account the feasible propagations during the
intersection process. To this end, the knowledge of the derivative ẏ(·) is required to
depict the evolution of y(·) over [t]. In order to define the contractor in the most
generic way, the derivative ẏ(·) will be also bounded within a tube denoted [w](·),
thus allowing the [y](·) contraction even if the derivative signal is uncertain.
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[z′]

[t′]

[t]× [z]

t
t0

[y]

m

Figure 5.3: Observation on a tube [y](·). A given measurement m ∈ R2, pictured by
a black dot •, is known to belong to the blue box [t]× [z] •. The tube is contracted
by means of Ceval; the contracted part is depicted in light gray. Meanwhile, the
bounded observation itself is contracted to [t′]× [z′] with [t′] ⊆ [t] and [z′] ⊆ [z].
This is illustrated by the red box •. The dark line is an example of a compliant
trajectory. The derivative ẏ(·), not represented here, is also enclosed within a tube.

The constraint Leval then amounts to the following CN:

Leval :



Variables: t, z, y(·), w(·)
Constraints:

1. z = y(t)

2. ẏ(·) = w(·)

Domains: [t], [z], [y](·), [w](·)

(5.5)
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Proposition 5.1
A contractor Ceval ([t], [z], [y](·), [w](·)) applying Leval on intervals and tubes is de-
fined by:


[t]
[z]

[y] (·)
⊔
t1∈[t]

(∫ ·
t1

)
[w] (·)


Ceval7−−−−→


[t] ∩ [y]−1([z])
[z] ∩ [y]([t])

[y](·) ∩
⊔
t1∈[t]

(
([y](t1) ∩ [z]) +

∫ ·
t1

[w](τ)dτ
)

[w] (·)

 . (5.6)

Proof of Proposition 5.1

To be a contractor, Ceval needs to satisfy both the contraction and the com-
pleteness properties, given in Definition 3.3, page 81.

— Contraction property.
The contraction property is trivial as any variable is at least contracted
by itself.

— Consistency property.
It remains to prove that for two real numbers t ∈ [t], z ∈ [z] and two
signals y(·) ∈ [y](·) and w(·) ∈ [w](·) such that z = y(t), ẏ(·) = w(·), we
always have:


t ∈ [y]−1([z]) (i)
z ∈ [y]([t]) (ii)

y(·) ∈
⊔
t1∈[t]

(
([y](t1) ∩ [z]) +

∫ ·
t1

[w](τ)dτ
)

(iii)

 . (5.7)

Notation used hereafter:
Considering a generic constraint Lf : b = f(a), a ∈ [a], b ∈ [b],
the set B of all vectors b consistent with Lf is [b] ∩ ⋃a∈[a] f(a). The
closed and connected set enclosing B and representable with intervals is⊔

b∈B = [b]∩⊔a∈[a] f(a) where the symbol ⊔ depicts the smallest envelope
containing the following terms.
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5.2. Generic contractor for trajectory evaluation

Proof of Equation (5.7):

(i) the set T ⊂ R of all t consistent with Leval is:

T = [t] ∩
(⋃

y(·)∈[y](·)
⋃
z∈[z] y

−1(z)
)

⊂ [t] ∩
(⊔

y(·)∈[y](·)
⊔
z∈[z] y

−1(z)
)

⊂ [t] ∩ [y]−1([z]).
(5.8)

An illustration of the evaluation of [y]−1([z]) has been given in
Figure 3.3, page 79.

(ii) the set Z ⊂ R of all z consistent with Leval is:

Z = [z] ∩
(⋃

y(·)∈[y](·)
⋃
t∈[t] y(t)

)
⊂ [z] ∩

(⊔
y(·)∈[y](·)

⊔
t∈[t] y(t)

)
⊂ [z] ∩ [y] ([t]) .

(5.9)

(iii) the value of y(t) from t1 is given by

y(t) = y1 +
∫ t

t1
w(τ)dτ , with y1 = y(t1). (5.10)

The set Y ⊂ R of all y(t) consistent with Leval is:

Y = ⋃
t1∈[t]

⋃
w(·)∈[w](·)

⋃
y1∈[y](t1)∩[z]

(
y1 +

∫ t

t1
w(τ)dτ

)
= ⋃

t1∈[t]

(⋃
y1∈[y](t1)∩[z]

(
y1 + ⋃

w(·)∈[w](·)

∫ t

t1
w(τ)dτ

))
= ⋃

t1∈[t]

((⋃
y1∈[y](t1)∩[z] y1

)
+
∫ t

t1
[w](τ)dτ

)
= ⋃

t1∈[t]

(
([y](t1) ∩ [z]) +

∫ t

t1
[w](τ)dτ

)
⊂ ⊔

t1∈[t]

(
([y](t1) ∩ [z]) +

∫ t

t1
[w](τ)dτ

)
.

(5.11)

�

One should note that the tube [y](·) and both [t] and [z] may be contracted
while the estimation of the derivative signal, represented by [w](·), will remain the
same. This derives directly from Lemma 4.1 proved in Chapter 4, page 109.
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Chapter 5. Trajectories under evaluation constraints

Domain of contraction

Ceval will propagate the constraint as much as possible over time in a forward and
backward way. Contractions may cover the whole tube domain [t0, tf ] or only a part
of it, depending on the amount of uncertainties accumulated during the propagation.
For instance in Figure 5.3, the contraction does not reach t0 in backwards.

Multi-dimensions

Extension to multi-dimensional problems z = y(t), z ∈ Rn, y(·) ∈ R→ Rn amounts
to applying Leval for each component zj = yj(t), j ∈ {1 . . . n}.

Inconsistency

Some inconsistency is met when the domains are not compliant with the constraint.

Lemma 5.1
If the Leval constraint cannot be met over the domains [t], [z], [y](·), [w](·),
then Ceval will perform a contraction to the empty set for [t], [z] and [y](·).

Proof of Lemma 5.1

We recall Equations (2.14) and (2.9) from interval arithmetic:

1. [x] + ∅ = ∅,

2. [x] t∅ = [x].

A non-consistent constraint Leval is equivalent to:

∀t ∈ [t], ∀z ∈ [z],∀y(·) ∈ [y](·), z 6= y(t). (5.12)
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5.2. Generic contractor for trajectory evaluation

Then we prove for each term:

— [t] 7→ [t] ∩ [y]−1 ([z]) = ∅;

— [z] 7→ [z] ∩ [y]([t]) = ∅;

— [y](·) 7→ [y](·) ∩
⊔
t1∈[t]

([y](t1) ∩ [z])︸ ︷︷ ︸
∅

+
∫ ·
t1

[w](τ)dτ


= [y](·) ∩

⊔
t1∈[t]

(∅) = ∅.
�

Ceval can be used as a minimal exclusion test in order to prove that the constraint
cannot apply over inconsistent domains. This can be useful for set-inversion as
presented in Section 2.4, page 60. However, the minimality property of Ceval has
not been studied yet.

Continuum of solutions over [t]

The contractor also applies when several evaluations are bounded within the same
([t], [z]), since the union of feasible trajectories through any t ∈ [t] is kept after
contraction. As an illustration, Figure 5.1 (see page 134) presents a case of three
unknown evaluations of a plane wreck, indistinguishable but enclosed within one
bounded measurement ([t], [ρ]).

Set of evaluations

When dealing with p ∈ N evaluations, a single application of Ceval for each ([ti], [zi]),
i ∈ {1 . . . p}, may not provide optimal results. Indeed, Ceval propagates an evaluation
along the whole domain of [y](·) which may lead to new possible contractions. It is
preferable to use an iterative method that applies all contractors indefinitely until
they become ineffective on [y](·) and the ([ti], [zi])’s:( p⋂

i=1
Ceval ([ti], [zi], [y](·), [w](·))

)∞
. (5.13)

The ∞ symbol specifies an iterative application of the operators up to the fixed
point. Figure 5.4 illustrates such case with a two steps iterative process.
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t

[y]

t

[y]

Figure 5.4: Combined Ceval contractions on a theoretical example involving a given
tube [y](·) and some measurements. The light gray part is the set of trajectories
that have been removed after contractions. Blue boxes • represent the initial
measurements [ti] × [zi]. Gray boxes picture intermediate contractions of these
observations, obtained from the knowledge provided by the tube. Finally, red
boxes • depict the contracted measurements [t∗i ]× [z∗i ] once a fixed point has been
reached.

5.2.2 Implementation

Open source library

Providing the algorithm for Ceval here would take too much room. We will not detail
this part in order to keep things simple and from a higher level of abstraction. The
reader interested by implementation details can have a look at the Tubex library1

developed during this thesis. The C++ source code of Ceval is freely available.

Compliance between discretization and observations

From an implementation point of view, contracting a tube at a given scalar t is
trivial when considering an infinite number of slices, i.e. when δ → 0. However,

1http://www.simon-rohou.fr/research/tubex-lib
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5.2. Generic contractor for trajectory evaluation

the computer representation of tubes compels us to consider some discretization
leading to the use of thick slices: [tk]× [yk], k ∈ N, see Figure 5.5. In this context,
the contraction of a tube at a known time t must be done without losing solutions
for the considered signal to represent.

To our knowledge, there was no existing method performing this kind of
contraction before. As far as we know, the contractions based on observations
[yj](tj) associated to a known date tj ∈ R were not achieved in a guaranteed way,
thus compromising the reliability of results. It is therefore fundamental to use
such contractor when applying evaluation constraints on tubes, even without time
uncertainties. Practically, Ceval can be used to this end by considering that the
known t now belongs to [tk], the domain of the slice containing t.

t
t1 t2

δ

y∗(·)

[y1](t1)

[y2](t2)

[y]

Figure 5.5: A sliced tube wrongly contracted. [y](·) is made of thick slices and
encloses a signal y∗(·). Two bounded measurements [yj] ∈ IR are made at known
dates tj ∈ R. The tube is wrongly contracted at t1 and t2. Fortunately the signal
is not lost with the [y2](t2) contraction, contrary to the one of [y1](t1). A clean
contraction has to be done from the knowledge of the feasible derivatives. This is
achievable with Ceval.
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5.2.3 Application to state estimation

We have now all the material to fully deal with Equations (5.1) while considering
uncertainties on any of the variables, including time. Coming back to CN (4.19),
page 115, we are now able to reformulate it as:

CN:



Variables: x(·), v(·), u(·), y(·), w(·), zi, ti
Constraints:

1. vj(·) = fj(x(·),u(·)), j ∈ {1 . . . n}

2. ẋj(·) = vj(·)⇔ L d
dt

(
x(·), v(·)

)
3. y(·) = g(x(·))

4. zi = y(ti)⇔
{
zi = y(ti)
ẏ(·) = w(·) ⇔ Leval

(
ti, zi, y(·), w(·)

)
5. w(·) = ġ(x(·))

Domains: [x](·), [v](·), [u](·), [y](·), [w](·), [zi], [ti]

(5.14)

We thus introduce the variable w(·) into the network and consider the ti as variables
with interval domains. w(·) is constrained by the derivative of the observation
function g, which can be estimated even in case of uncertainties on the model.

As before, each constraint is then implemented by related primitive contractors
and domains are reduced while keeping solutions compliant with the state equations.
The differential contractor C d

dt
introduced in Chapter 4 and the evaluation contractor

Ceval are respectively used for the above steps (2) and (4). Algebraic constraints
(1), (3), (5) are implemented with a composition of algebraic contractors on tubes.

State estimation then consists in the following contractors calls:

1. Cfj
([vj](·), [x](·), [u](·))

2. C d
dt

([xj](·), [vj](·)), j ∈ {1 . . . n}

3. Cg ([y](·), [x](·))

4. Ceval ([ti], [zi], [y](·), [w](·))

5. Cġ ([w](·), [x](·))
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5.3. Robotic applications

5.3 Robotic applications

The simplicity of the method allows us to deal with a wide range of state estimation
problems, including time uncertainties. This section proposes two reproducible
examples to illustrate the approach. The following simulations are based on
analytical expressions and simple data in order to encourage future comparisons
with the method provided in this document.

5.3.1 Range-only robot localization with low-cost beacons

We are now able to address the problem presented in the introduction of Chapter 3,
page 74. See the following Figure 5.6. For ease of reading, we recall the equations
already introduced in Section 3.4. The simulation will be run from t0 = 0 to
tf = 64.
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-20

-10

0

10

20

30

40

50

60

x1

x2

Figure 5.6: Map of the range-only localization problem based on few asynchronous
measurements. Emitting beacons, drawn by red boxes •, send some range signals
pictured by gray lines and received by the robot at uncertain times along its
trajectory, plotted in blue •. This application is challenging as it involves differential
equations, non-linearities and uncertainties that are both spatial and temporal.
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Chapter 5. Trajectories under evaluation constraints

Test case

A robot R is described by its state x = (x1, x2, x3 = ψ, x4 = ϑ)ᵀ where (x1, x2)
depicts its location, ψ its heading and ϑ its speed. The system is modeled by the
following evolution function:

ẋ1
ẋ2

ẋ3 = ψ̇

ẋ4 = ϑ̇

 f7−→


ϑ cos(ψ)
ϑ sin(ψ)
u1
u2

 . (5.15)

The state x(t) is submitted to the input u(t) whose value is bounded as:

u(t) ∈ [u](t) =
(
−9/20 cos (t/5)
1/10 + sin (t/4)

)
+ 1

1000

(
[−1, 1]
[−1, 1]

)
. (5.16)

Eventually, we change the initial condition to remove the knowledge on the
initial position. The condition x0 depicting the robot at t0 is now assumed to be
bounded such that

x0 ∈


[−∞,∞]
[−∞,∞]

π/2 + [−0.01, 0.01]
[−0.01, 0.01]

 . (5.17)

The robot moves amongst low-cost beacons bk, k ∈ {α, β, γ}, thus implying
drifting clocks (strong temporal uncertainties) and measurement errors. These
emitters have a maximum signal range ρmax = 20m and send bounded signals
zi ∈ [zi] on a regular basis with time uncertainties: ti ∈ [ti]. The observation
function gk – Equation (5.1b) – related to a beacon bk is a distance function
between R and the beacon. The problem will highlight the use of Ceval based on a
set of fleeting bounded measurements, see Table 5.2.
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5.3. Robotic applications

Table 5.1: Beacons’ locations.

k bk

α (30, 20)

β (80,−5)

γ (125, 20)

Table 5.2: List of measurements ([ti], [zi]).

i k [ti] [zi]

1 β [14.75, 15.55] [11.69, 12.69]

2 α [20.80, 21.60] [15.40, 16.40]

3 α [23.80, 24.60] [10.62, 11.62]

4 α [26.80, 27.60] [11.05, 12.05]

5 α [29.80, 30.60] [11.87, 12.87]

6 α [32.80, 33.60] [15.31, 16.31]

7 γ [44.35, 45.15] [13.65, 14.65]

8 γ [47.35, 48.15] [13.32, 14.32]

9 γ [50.35, 51.15] [12.03, 13.03]

10 γ [53.35, 54.15] [15.98, 16.98]

11 β [56.75, 57.55] [17.45, 18.45]
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Chapter 5. Trajectories under evaluation constraints

Resolution

The problem amounts to CN (5.18). The constraints form a network partially
pictured in Figure 5.7. Tubes are initialized to [−∞,∞] ∀t except for [u](·), set
according to Equation (5.16). Furthermore in order to apply Ceval, an estimation of
the feasible derivatives of [yk](·), represented by a tube [wk](·), has to be computed.
This is easily done analytically by deriving the distance function gk.

CN:



Variables: x(·), v(·), u(·), {(ti, zi)}, {yk(·)}, {wk(·)}
Constraints:

1. Evolution function:

— v(·) = f (x(·),u(·))
— ẋ(·) = v(·)
— x3(0) ∈ π/2 + [−0.01, 0.01]
— x4(0) ∈ [−0.01, 0.01]

2. Observation function:

— yk(·) =
√

(x1(·)− bk,1)2 + (x2(·)− bk,2)2

— wk(·) = (x1(·)− bk,1) · v1(·) + (x2(·)− bk,2) · v2(·)√
(x1(·)− bk,1)2 + (x2(·)− bk,2)2

— ẏk(·) = wk(·)

3. Measurements:

— zi = yk(ti)

Domains: [x](·), [v](·), [u](·), {([ti], [zi])}, {[yk](·)}, {[wk](·)}

(5.18)

The process involving contractors is then executed. The fixed point is reached
over 52 iterations in 2 minutes, but the main contractions are already obtained
before the sixth iteration, as pictured in Figure 5.8: the position domain is slightly
reduced during the next steps. A projection of the computed results is pictured in
Figure 5.9. This example shows how the constraint satisfaction approach behaves:
in an iterative way and without a necessary knowledge on the initial conditions. At
the end, the true state trajectory x∗(·) is guaranteed to lie within the tube [x](·).
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x(·)v(·) yα(·)

yβ(·)

yα(·)

(z2, t2)

(z1, t1)

(z3, t3)

1)

2)

2)

2)

3)

3)

3)

Evolution Observations

Figure 5.7: Constraint network detailing the relations of the first three mea-
surements of Table 5.2. Arrows indicate the possible directions of information
propagation. For ease of understanding, derivatives wk(·) are not represented here.
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Figure 5.8: Thicknesses of the position estimation [x1](·) × [x2](·) as defined for
Figure 3.12, page 94. Uncertain measurements’ times [ti] are projected in light
gray. The fixed point has been reached after 52 iterations while almost final results
were already obtained during the first steps.
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(a) Overview of the simulation.
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(b) Zoom on Beacon bα.
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(c) Zoom on Beacon bβ .

Figure 5.9: State estimation of a mobile robot amongst a set of low-cost beacons.
The initial position (0, 0) is not known. Beacons, pictured by red boxes •, are
sending signals till a range limit depicted by circles. Time uncertainties [ti] are
projected along the robot path with dark thick lines. The true poses of the robot
are pictured by the white line, enclosed within the estimated tubes [x1](·)× [x2](·)
projected in blue • and gray •. The pessimism induced by time uncertainties is
represented in light gray. In other words, the blue part depicts a state estimation
assuming a precise knowledge on the ti’s. In each case, these tubes are the results
obtained after an iterative call of the contractors up to the fixed point.
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We emphasize that results could be improved by bisecting the state space, for
instance with the SIVIA algorithm presented in Section 2.4.2 at page 61. Indeed,
several states x(ti) ∈ [x](ti) may lead to the same observation zi = g(x(ti)) since
the function g is not injective. Then, bisections along [x1](·) or [x2](·) can help to
consider independently several states consistent with the observation, and reject
them if not consistent with the other constraints.

Analytical reformulation

One should note that the following constraint (from CN (5.18))

wk = (x1 − bk,1) · v1 + (x2 − bk,2) · v2√
(x1 − bk,1)2 + (x2 − bk,2)2

(5.19)

will not apply in case of a null denominator. Its interval evaluation will be [−∞,∞]
which cannot lead to a contraction. This situation is typically met at the beginning
of the resolution when [x1] and [x2] are unbounded:

[x] = [−∞,∞] =⇒ bk,1 ∈ [x1],
⇐⇒ 0 ∈ [x1]− bk,1,
⇐⇒ 0 ∈ ([x1]− bk,1)2 ,
. . .

⇐⇒ 0 ∈
√(

([x1]− bk,1)2 + ([x2]− bk,2)2
)
.

(5.20)

Then the resolution cannot start since the tube [wk](·) will stay unbounded too,
preventing from any contraction of [yk](·) and so [x](·). Indeed, a contraction cannot
be expected from both C d

dt
and Ceval in case of unknown derivatives. A solution

consists in a reformulation of Constraint (5.19) so that the interval evaluation of
its denominator cannot contain zero. A possible formula is the following:

wk = sign(x1 − bk,1)√√√√1 +
(
x2 − bk,2
x1 − bk,1

)2
· v1 + sign(x2 − bk,2)√√√√1 +

(
x1 − bk,1
x2 − bk,2

)2
· v2. (5.21)
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If both [x1] and [x2] are unbounded, then the interval evaluation of wk will be

wk ∈
sign([−∞,∞])√√√√1 +

(
[−∞,∞]
[−∞,∞]

)2
· [v1] + sign([−∞,∞])√√√√1 +

(
[−∞,∞]
[−∞,∞]

)2
· [v2],

∈ [−1, 1]√
1 + [0,∞]

· [v1] + [−1, 1]√
1 + [0,∞]

· [v2],

∈ [−1, 1]
[1,∞] · [v1] + [−1, 1]

[1,∞] · [v2],

∈ [−1, 1] · [v1] + [−1, 1] · [v2].

(5.22)

At first, [v1] and [v2] are set to [−∞,∞] but their contraction will be based
on other variables and constraints. Once bounded values will be set for [v], then
the contractions for [wk] will start. We emphasize that the inclusion function of
Equation (5.22) is not minimal but its purpose is to sufficiently reduce the domain
of [wk] in order to trigger the evaluation of related variables and enable the iterative
resolution. Hence, both Constraints (5.19) and (5.22) can be considered in the
same time.
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5.3.2 Reliable correction of a drifting clock

A complementary illustration of this work is the situation of a drifting clock: an
isolated clock that does not run at the same rate as a reference clock. This problem
amounts to increasing time uncertainties that can be reduced using a collaborative
method.

Test case

An underwater system, lying on the seabed at (0, 0,−10), is equipped with a
low-cost drifting clock. Absolute time reference is represented by t while the time
value τ provided by the underwater clock is drifting2 such that:

τ = h(t) = 0.045t2 + 0.98t. (5.23)

This quadratic drift is represented in Figure 5.13. However, this information
is not known: the problem consists in estimating this function. Instead, we shall
assume the following bounded derivative of h(·), that could be obtained from the
clock datasheet:

ḣ(t) ∈ [0.08, 0.12] · t+ [0.97, 1.08]. (5.24)

The problem is constrained thanks to a localized robot B evolving at the surface
and a set of measured distances zi ∈ R between the robot and the underwater
clock, see Figures 5.10, 5.11 and Table 5.3.

The boat’s trajectory x(·) : R → R2 is preprogrammed, forming a kind of
ephemeris for the clock. In astronomy, an ephemeris provides the positions of
astronomical objects in the sky at a given time. Here, the boat is employed in the
same way as stars have been used for celestial navigation on Earth. This way, the
beacon already knows where the robot must be at time t. Conversely, detecting the
location of B provides a temporal information to be compared with the embedded
time value. Hence, the boat can be used by the underwater clock to correct this
temporal drift.

2In this academic example, in order to keep things simple, we consider that the clock perfectly
matches the absolute time reference at t = 0: h(0) = 0. But any unknown offset could be assumed
with our resolution method.
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Autonomous boat B
Absolute reference time: t

Location: (x1, x2, 0)

Underwater drifting clock

Local reference time: τ

Location: (0, 0,−10)

zi

Figure 5.10: Illustrating the problem of a drifting clock corrected by ephemerides
provided by an autonomous boat B. The beacon holding the clock receives distance
measurements from the boat once in a while.
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x(10.0)

(0,0)

actual B’s
trajectory x∗(·)

Figure 5.11: Top view of B’s trajectory around the underwater beacon, depicted in
red •. The tube [x](·), projected in gray •, gathers the feasible positions of B.
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Table 5.3: List of measurements (τi, [zi]).

i τi [zi]

1 1.57 [152.47, 156.47]

2 3.34 [34.67, 38.67]

3 5.32 [102.38, 106.38]

4 7.50 [184.45, 188.45]

i τi [zi]

5 9.88 [167.09, 171.09]

6 12.46 [60.03, 64.03]

7 15.25 [78.76, 82.76]

8 18.24 [175.88, 179.88]

However, the boat may not precisely respect the defined schedule. The ephemeris
thus consists in a tube [x](·) taking into account the possible errors of the boat’s
locations, see Figure 5.11. The velocity v(·) of B is also bounded:

x(·) ∈
(

[70, 90]
[10, 30]

)
+ 100

(
cos(·)
sin(·)

)
, (5.25)

v(·) ∈
(

[−0.1, 0.1]
[−0.1, 0.1]

)
+ 100

(
− sin(·)
cos(·)

)
. (5.26)

Resolution

The problem amounts to the following CN (5.27). Function y(·) now depicts the
prevision of the distances separating the boat from the beacon. Each measurement
is referenced by τi that are temporal drifting values given by the underwater
clock. The estimation of h(·), depicting the drift and bounded within a tube [h](·),
will provide a reliable enclosure of the reference time ti corresponding to each τi:
ti ∈ [h]−1(τi).

The measurements values zi are now referenced by ([ti], [zi]) and will then be
constrained by y(·) through Leval. In particular, the estimation [ti] will be refined.
Another Leval will constrain the h(·) trajectory, based on the temporal pairs ([ti], τi).
To this end, the derivative of h(·), denoted φ(·) and bounded by Equation (5.24),
will be considered too.
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CN:



Variables: {(ti, zi)}, x(·), v(·), h(·), φ(·), y(·), w(·)
Constraints:

1. Ephemerides (i.e. boat’s locations):

— ẋ(·) = v(·)

2. Beacon-boat distance function:

— y(·) =
√
x1(·)2 + x2(·)2 + (−10)2

— wk(·) =
(
x1(·) · v1(·) + x2(·) · v2(·)

)
/y(·)

— ẏk(·) = wk(·)

3. Drifting time function:

— ḣ(·) = φ(·)
— h(0) = 0

4. Measurements:

— zi = y(ti)
— τi = h(ti)

Domains: {([ti], [zi])}, [x](·), [v](·), [h](·), [φ](·), [y](·), [w](·)

(5.27)

As before, contractors are called on tubes in place of constraints on trajec-
tories. Tubes [x](·), [v](·), [φ](·) are respectively initialized according to Equa-
tions (5.25), (5.26) and (5.24). This time, the contractor of interest Ceval will be
called twice, see Constraints (4) of the above CN (5.27).

Tube inversions on [h](·) provide the corresponding enclosures [ti] = [h]−1(τi)
of absolute reference times ti, see Figure 5.13. The [ti] are then used to read the
ephemeris and are contracted by:

(
[ti], [zi], [y](·), [w](·)

) Ceval7−−−→
(
[ti], [zi], [y](·), [w](·)

)
. (5.28)
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The contracted [ti] can then be used to reduce the tube [h](·) using the same
contractor:(

[ti], τi, [h](·), [φ](·)
) Ceval7−−−→

(
[ti], τi, [h](·), [φ](·)

)
. (5.29)

An iterative resolution process is executed up to a fixed point. Indeed, the first
contraction of [h](·) – Equation (5.29) – raises new constraints for the contraction
of the [ti], Equation (5.28). In this example, constraints have been propagated over
5 steps of computation in less than 2 seconds.

Finally, the contracted tube [h](·) reflects the clock drift correction, see Fig-
ure 5.13. We emphasize that the real drift h(t), unknown of the resolution, remains
enclosed in its final envelope [h](t),∀t.
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Figure 5.12: Tube [y](·) representing the reliable prevision of the distances between
the boat and the beacon (so-called ephemeris). [y](·) is submitted to a set of
measurements pictured by blue boxes •, before their final contraction in red •.
This demonstrates the contraction of strong time uncertainties by Ceval thanks to
the knowledge provided by the tube itself.
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Figure 5.13: Tube [h](·) representing the clock drift. For a given time τi, [h]−1(τi)
provides an enclosure [ti] of the time reference ti. When [ti] is contracted by means
of ephemeris [y](·) and Ceval (see Figure 5.12), the information can be propagated
back to [h](·). The tube’s contracted part is pictured in light gray while the real
drift expressed by Equation (5.23) is plotted in blue •.
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5.4 Conclusion

This chapter and [Rohou et al., 2018b] provide an original method to deal with
time uncertainties in non-linear and differential systems. As for Chapters 3 and 4,
a contractor programming approach is applied over trajectories. This chapter
focuses on the elementary constraint of a trajectory evaluation, allowing to deal
with uncertainties on any of the variables such as time. This is achieved by means
of a new contractor Ceval.

From a practical standpoint, this new contractor allows one to consider state
estimation problems from a temporal point of view, where the time t becomes
an unknown variable to be estimated. This novel approach, here introduced over
simple examples of mobile robotics, opens the way to further applications in which
the consideration of time uncertainties is relevant. This will be the cornerstone
of the following Part III, presenting robotic contributions related to temporal
uncertainties.

Prospects

Future work will concentrate on the wreck-based localization problem presented
in the beginning of this chapter. Ceval could provide a reliable way to deal with
sonar images presenting noise and distortions, in the most simple way. A reciprocal
approach would consist in reducing the uncertainties in the perception of the wreck,
assuming an accurate positioning of the robot obtained by other means. This
approach could simplify the understanding of sonar acquisitions by automatically
and reliably removing inconsistent parts of the images such as shadowed areas, see
Figure 5.2b, page 135.

Another field to investigate is the automatic reformulation of analytical expres-
sions in case of unbounded results. This chapter gave at page 151 a typical example
of a substantial pessimism that has been overcome by a simple reformulation of
the problem. The integration of analytical solvers in the resolution process would
be of interest.
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Part III

Robotics-related contributions

The ultimate application of this thesis is a new reliable SLAM
method suited for long-term missions in poor environments.
The resolution of this localization problem requires a set of
elementary tools that have been developed in Part II. Chap-
ter 7 aims at applying the new contractors on inter-temporal
constraints of interest for the SLAM.

However, in order to soundly solve the problem, we
still need to study a last constraint. This will be related to
the development of another tool to prove loops along robot
trajectories. Chapter 6 is our third contribution, in which
we combine the topological theory together with interval
analysis and tubes. The result is a new loop existence test
that will be directly applied in the last chapter for underwater
applications.
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Chapter 6. Looped trajectories: from detections to proofs

6.1 Introduction

6.1.1 The difference between detection and verification

In this chapter we present a reliable method to detect and verify the existence of
loops along the uncertain trajectory of a robot, based on proprioceptive measure-
ments only, using a bounded-error approach. In a reliable context, a distinction
has to be made between the detection and the verification of a loop. Considering a
set of feasible trajectories, some of them may cross themselves at some point; this
will lead to a detection. In addition, when we verify that all the feasible trajectories
are looped, then we can speak about a loop proof since a loop occurs whatever the
considered uncertainties. Figure 6.1 provides an illustration of this distinction.

p1

p2

Detectable
loop

Detectable and
verifiable loop

Figure 6.1: Only one loop can be verified in this set of trajectories, while at least
two feasible loops are detected. Indeed, there exist trajectories that loop only once.

Section 6.2 focuses on loop detections, presenting the concepts introduced
in [Aubry et al., 2013]. Our contribution is the object of Section 6.3 in which we
propose a complementary tool for verification purposes. Such problem is not trivial,
even in two-dimensional contexts. Our approach is to rely on the topological degree
theory [Fonseca and Gangbo, 1995] to verify zeros in uncertain contexts. This
study has been the object of a collaboration between Peter Franek, Clément Aubry,
Luc Jaulin and the author, which led to the submission of [Rohou et al., 2018a].
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6.1.2 Proprioceptive vs. exteroceptive measurements

A loop can be detected based on exteroceptive measurements, i.e. the perception of
the outside, from scenes comparisons [Angeli et al., 2008, Cummins and Newman,
2008, Stachniss et al., 2004, Clemente et al., 2007]. However, it can be difficult
to detect the closure due to poor estimations on both the robot’s position and
map-matchings. The problem appears even more challenging when dealing with
homogeneous environments without any point of interest to rely on. This is typically
the case one can encounter in underwater exploration with wide homogeneous
seafloors. Such situation will unfortunately lead to a few detections of confident
loop closures or, in the worst cases, to false detections that could lead to a wrong
localization and mapping.

Besides exteroceptive measurements, it has been shown in [Aubry et al., 2013]
that loops can be detected based on proprioceptive measurements only, namely:
velocity vectors and inertial values knowing the kinematic of the robot. This
approach has the advantage to be applicable regardless of the nature of the
environment to explore. Of course, one should note that in this very case, the loop
detections cannot improve by themselves the localization, as the approach will not
bring new information or constraints to the problem.

However, this method is of high interest if combined with classical SLAM
techniques that merge both proprioceptive and exteroceptive measurements, in
order to decrease the computing burden of usual scenes recognitions. Indeed, the
complexity of SLAM algorithms quickly increases with the exploration of wide
environments, as it implies lots of loop closures to be identified among a dense set
of data.

6.1.3 The two-dimensional case

Formally, a robot that performed a loop is a robot that came back to a previous
position p(t). We will focus on the detection of loops along two-dimensional
trajectories: p(t) ∈ R2.

This choice is not a limitation made to keep things simple, but a practical
requirement. Indeed, it is not possible to physically verify p(t1) = p(t2) in higher
dimensional spaces. A robot will never reach again the very same 3D atomic
position, in contrast with two-dimensional cases. Furthermore, the amount of
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uncertainties we have to deal with will always be too large to verify this. Therefore,
it is not possible to prove three-dimensional loops, nor to verify that a robot came
back to a previous pose, including both position and orientation, for the same
reason.

Verify a two-dimensional loop is still interesting for many 3D applications. For
instance, as pictured in Figure 1.14 (page 26), an underwater robot can apply a
raw-data SLAM method using a sonar for exteroceptive measurements. In this
configuration, the SLAM can be reduced to a 2D problem by merging vertical
measurements, namely: depth from a pressure sensor and altitude from the sonar.
Map-matching will then be achievable over each 2D crossing, as pictured in the
figure with projections on the seafloor.

6.2 Proprioceptive loop detections

This section details how loops can be detected based on proprioceptive measure-
ments only.

6.2.1 Formalization

In [Aubry et al., 2013], a loop is defined by a t-pair (t1, t2) such that p(t1) = p(t2),
t1 6= t2, where p(t) is the two-dimensional position of the robot at t. The loop
detection consists in computing the set T∗ of all loops:

T∗ =
{

(t1, t2) ∈ [t0, tf ]2 | p(t1) = p(t2), t1 < t2
}
, (6.1)

Graphically, we represent the loop set T∗ in a so-called t-plane. An example of
T∗ = {(ta, tb), (tc, tf ), (td, te)} is provided in Figure 6.2.

We consider a mobile robot moving on a horizontal plane. Its trajectory is
made of several 2D positions defined by

p(t) =
∫ t

t0
v(τ)dτ + p0, (6.2)

where v(t) ∈ R2 is the velocity vector expressed in the environment reference frame.
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t1

p2

p1

p(ta) = p(tb)

p(tc) = p(tf )

p(td) = p(te)

t2

t1
ta

tb

tc td

te

tf

Figure 6.2: A robot performing three loops: its own trajectory has been crossed
three times. A temporal representation provided by the t-plane (right-hand side)
is used to picture the loops by t-pairs (ta, tb), (tc, tf), (td, te). The diagonal line
corresponds to the no-delay line for which t1 = t2.

Then, the loop set T∗ is

T∗ =
{

(t1, t2) ∈ [t0, tf ]2 |
∫ t2

t1
v(τ)dτ = 0, t1 < t2

}
, (6.3)

which means that for any (t1, t2) ∈ T∗, robot’s move from t1 vanishes at t2.
Therefore, any loop can be detected based on these velocity measurements.

6.2.2 Loop detections in a bounded-error context

In practice, trajectories are estimated by noisy measurements which leads to spatial
uncertainties. Hence, from Equation (6.3), the set of t-pairs cannot be computed
exactly. In what follows, we assume that the actual values of the velocity v∗(·)
are unknown, but guaranteed to lie in the known tube [v](·). The loop detection
problem then amounts to computing the set T containing all feasible loops according
to the given uncertainties:

T =
{

(t1, t2) | ∃v(·) ∈ [v](·),
∫ t2

t1
v(τ)dτ = 0

}
, (6.4)
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or equivalently:
T = {(t1, t2) | 0 ∈ [f ](t1, t2)} , (6.5)

with [f ] : IR2 → IR2 an inter-temporal inclusion function defined by

[f ] ([t1], [t2]) =
∫ [t2]

[t1]
[v](τ)dτ. (6.6)

The evaluation of [f ] relies on Equation (3.9) given in page 79.

Hence, T is a reliable enclosure of T∗ so that for each t-pair in T, there exist
values in the set of measurements that lead to the detection of a feasible loop.
Therefore, the following relation is guaranteed:

T∗ ⊆ T ⊆ [t0, tf ]2. (6.7)

6.2.3 Approximation of the solution set T

Estimating T is a typical problem of set inversion. Section 2.4 (page 60) presented
SIVIA: a set-membership algorithm able to approximate a solution set with sub-
pavings. In our context, T will be approximated by proprioLoopSIVIA provided
in Algorithm 6 in a recursive form. Two inclusion tests are designed to decide
whether a t-box [t] – enclosure of a t-pair – belongs completely or not to T. In case
of undecidability, the box is either bisected or kept in the outer approximation set.

Test: [t] outside the solution set
A t-box [t] is not a subset of T if ∀t ∈ [t],∀v(·) ∈ [v](·),

∫ t2

t1
v(τ)dτ 6= 0, and thus:{

0 6∈
∫ [t2]

[t1]
[v](τ)dτ

}
=⇒ [t] ∩ T = ∅. (6.8)

Furthermore, the t1 < t2 condition of Equation (6.1) is not verified when [t1]− [t2] ⊂
R+, which is another criterion for rejecting [t].

Finally, in the case of [t1] ∩ [t2] 6= ∅, we will not be able to reject [t] since
∃ta ∈ [t1],∃ta ∈ [t2] in such a way that

∫ ta

ta
[v](τ)dτ = 0. Now, if we prove that

the function p(t) (Equation (6.2)) is injective inside
[
t−1 , t

+
2

]
, then ¬∃(t1, t2) ∈

([t1], [t2]) | p(t1) = p(t2). This can be verified by the following injectivity test:{
0 6∈ [v]

([
t−1 , t

+
2

])}
=⇒ [t] ∩ T = ∅. (6.9)
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Test: [t] subset of the solution set
[t] is a subset of T if ∀t ∈ [t],∃v(·) ∈ [v](·) |

∫ t2

t1
v(τ)dτ = 0, which can be

reformulated from the intermediate value theorem as{∫ [t2]

[t1]
v−(τ)dτ 6 0 6

∫ [t2]

[t1]
v+(τ)dτ

}
=⇒ [t] ⊂ T. (6.10)

where v−(·) and v+(·) are the bounds of the velocity tube (see for instance Figure 3.2,
page 77) and

∫ [t2]

[t1]
v−(τ)dτ =

{∫ t2

t1
v−(τ)dτ | t1 ∈ [t1], t2 ∈ [t2]

}
. (6.11)

In addition, [t] will belong to T only if the t1 < t2 condition is also met: [t1]− [t2] ⊂
R−.

The proof of these tests has been given in [Aubry et al., 2013, Sec. 4.1]. The
following Algorithm 6 applies them in a SIVIA. Note that depending on the number
of loops and the amount of uncertainties, the approximation of T may consist of
several connected components1 denoted Ti, see Figures 6.3 and 6.4.

This example has been computed in less than one second on a conventional
computer. The evaluation of Equation (6.6) is optimized thanks to the new
data structure of tubes proposed in this thesis and presented in Section 3.3.1,
page 86. Local integrals are precomputed for each node of the tree, preventing
from evaluations over each slice of the tube.

Furthermore, an optimized paving structure has been designed based on a
binary tree in order to speed up the accesses to the [t]i boxes. This will be required
to prove the existence of loops in these detection sets.

1In topology, the term connected set refers to a component that cannot be made of two disjoint
non-empty subsets.
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Algorithm 6 proprioLoopSIVIA (in : [v](·), [t], ε, inout : T−,T+)

1: if [t1]− [t2] ⊂ R+ or 0 6∈
∫ [t2]

[t1]
[v](τ)dτ or 0 6∈ [v]

([
t−1 , t

+
2

])
then

. outside the solution set, [t] ∩ T = ∅

. the algorithm stops here

2: else if [t1]− [t2] ⊂ R− and
∫ [t2]

[t1]
v−(τ)dτ 6 0 6

∫ [t2]

[t1]
v+(τ)dτ then

3: T+ ← T+ ∪ [t] . outer approximation set
4: T− ← T− ∪ [t] . inner approximation set

5: else if width([x]) < ε then
6: T+ ← T+ ∪ [t] . outer approximation set only

7: else . if we cannot conclude for the moment
8: bisect([t]) into [t](1) and [t](2)

9: proprioLoopSIVIA([v](·), [t](1), ε,T−,T+)
10: proprioLoopSIVIA([v](·), [t](2), ε,T−,T+)
11: end if

p1

p2

t1

t2

Figure 6.3: Loops detections in a bounded-error context. The approximation of T
with Algorithm 6 is presented on the right-hand side and let appear three connected
subsets detailed in Figure 6.4.
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t1

t2

t1

t2

t1

t2

Figure 6.4: Zoom on the components of T shown in Figure 6.3. Black dots represent
actual loops as pictured in Figure 6.2.

6.3 Proving loops in detection sets

Figure 6.5 illustrates numerical approximations of T on new examples of trajectories.
As it can be seen, the detection of a potential loop is not a proof of its existence.
For instance, Figures 6.5b–6.5c are two identical cases regarding the uncertainties:
the detection T pictured in the t-plane is the same while the actual trajectory may
let appear one loop, two loops, or none.

6.3.1 Formalism: zero verification

The only way to prove the existence of at least one loop in a given subset Ti is
to verify that ∀f ∈ [f ],∃(t1, t2) ∈ Ti such that f(t1, t2) = 0, which is equivalent to
verifying a zero of an unknown function2 f∗ ∈ [f ] on Ti. This can be shown using
the Newton test N from [Moore, 1979]. Our contribution is to propose a new test
T based on topological degree that outperforms the previous method in most cases
of ambiguous trajectories, i.e. non-robust zeros. This will be presented in this
section.

We want to isolate and verify (prove the existence of) zeros of f∗. It immediately
follows from the definition that if 0 /∈ [f ]([t]) for some box [t], then f∗ has no zero
on [t]. It is, however, harder to verify the existence of zero inside a region. If
0 ∈ [f ]([t]), we cannot disprove f∗(t) = 0 for some t, but it is also not obvious how
to prove the existence of such t.

2The unknown function f∗ : R2 → R2, defined as f∗ =
∫ t2
t1

v∗(τ)dτ , cannot be evaluated as we
do not know the actual velocity v∗(·) of the robot.
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(a) Loop detection over an undeniable looped trajectory.

p1
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t1

t2

(b) Loop detection over a doubtful looped trajectory. In this case the actual trajectory is made
of two loops approximated within the same detection. Black dots represent actual t∗ solutions.

p1

p2

t1

t2

(c) Loop detection over a doubtful looped trajectory. In this case the actual trajectory never
crosses itself despite a loop detection.

Figure 6.5: Doubtful and undeniable loops in a set-membership context.
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6.3.2 Topological degree for zero verification

A powerful tool for verifying zeros is the topological degree, denoted by deg(f∗,Ω).
It is a unique integer assigned to f∗ and a compact set3 Ω ⊂ Rn where f∗(t) 6= 0
for all t ∈ ∂Ω. In this definition, ∂Ω represents the boundary of the set Ω.

The topological degree satisfies certain properties, see [Fonseca and Gangbo,
1995, O’Regan et al., 2006, Furi et al., 2010] for detailed expositions. For our
purposes, the most important property is that

deg(f∗,Ω) 6= 0 =⇒ ∃t ∈ Ω | f∗(t) = 0. (6.12)

Recent advances in computational topology generated many algorithms for
computing the topological degree. Besides, it can be computed in case where
only an inclusion function [f ] of f∗ is given. It was argued in [Franek et al., 2016,
Sec. 9] that the degree test is in many cases more powerful than more classical
verification tools including interval Newton, Miranda’s or Borsuk’s tests. The
reader interested in this line of research may refer to [Moore, 1977, Moore and
Kioustelidis, 1980, Borsuk, 1933] for definitions and explanations.

Our application for detecting loops deals with the two-dimensional case: Ω ⊂ R2

for the reason that loops are defined by couples of times. Then the degree has a
particularly nice geometric interpretation: it is the winding number of the curve
∂Ω f∗7→ R2 \ {0} around 0, see Figure 6.6. If [f ] is given, then the winding number
can be computed by a number of elementary methods, the algorithm of [Franek
and Ratschan, 2014] being one of them.

The following statement is a reformulation of [Franek and Ratschan, 2014,
Theorem 2.9] adapted to our notation.

Theorem 6.1
Let Ω be a union of finitely many non-overlapping boxes in IRn:

Ω =
l⋃

j=1
[t]j, (6.13)

3In some references such as [Fonseca and Gangbo, 1995], Ω is assumed to be open and bounded,
which corresponds to considering the interior of our Ω. The requirement f∗(t) 6= 0,∀t ∈ ∂Ω is
unchanged.
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t1

t2

Ωi ∂Ωif∗

deg = 0 deg = 1 deg = 2 deg = 3

Figure 6.6: Computation of the degree of f∗ on Ωi. The illustration shows several
positive degree cases.

and assume that its boundary ∂Ω is a union of finitely many boxes4

∂Ω =
p⋃

k=1
[b]k. (6.14)

If 0 /∈ [f ]([b]k) for all k = 1, . . . , p, then the degree deg(f∗,Ω) is uniquely determined
and its computation can be done from the evaluations of [f ]([b]k).

Under the assumptions of the theorem, it immediately follows that deg(g,Ω) =
deg(f∗,Ω) for any g ∈ [f ], because [f ] is also an inclusion function for g in such
case.

Let Ω1, . . . ,Ωl be connected components of the union of such boxes [t]j with
potential zeros. On each Ωi, if its boundary is covered by boxes [b]k such that
0 /∈ [f ]([b]k) for each k, we can compute deg(f∗,Ωi). Whenever this degree is
nonzero, we verified the existence of at least one t ∈ Ωi such that f∗(t) = 0. We
emphasize that the function f∗ was unknown and we only worked with its inclusion
function [f ].

In the above paragraph, we never used derivatives of f∗. Using additional
information on derivatives, we can also count the number of solutions. Namely, if Ω
is connected and deg(f∗,Ω) = ` and we further know that the Jacobian matrix Jf∗ is
non-singular everywhere on Ω, then f∗ has exactly |`| zeros in Ω. This immediately

4We also consider degenerate boxes. In this case, [b]’s are boxes in IRn of topological dimension
n− 1.
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follows from the definition of the degree given, for example, in [Milnor, 1997, p.
27]. In particular, if the degree is ±1, then non-singularity immediately implies
that there is a unique zero of f∗ in Ω.

6.3.3 Loop existence test

The topological degree theory will be used for proving the existence of loops. This
section provides the proposed existence test with an explicit algorithm.

From topological degree to loops proofs

Let us consider a given domain T in which we want to find zeros of f∗ corresponding
to actual loops. The inclusion function [f ] assumed in Section 6.3.2 is given by
Equation (6.6), page 168.

With Algorithm 6, T is firstly numerically approximated by two subpavings.
The outer approximation T+ has the properties required for Ω. Indeed, an outer
approximation set has no solution on its boundaries. Consequently, the set Ω will
be T+, that is: a finite union of boxes denoted by [t]j. The following relation is
then guaranteed:

T∗ ⊂ T ⊂
(⋃

i

Ωi

)
⊂ [t0, tf ]2. (6.15)

Figure 6.7 gives an illustration of such reliable approximation with corresponding
notations.

Each of these subpavings Ωi constitutes a potential loop detection: there exists
at least one trajectory with a v(·) ∈ [v](·) that looped for one t-pair belonging to Ωi.
However, the trajectory related to the actual but unknown v∗(·) may have never
looped in reality despite the detection, as pictured by Figure 6.5. As a consequence,
proving a loop amounts to verifying a zero of f∗ : t 7→

∫ t2
t1

v∗(τ)dτ in Ωi using the
known inclusion function given by Equation (6.6).

By using the topological degree in this context, the consequent of the implication
given in Equation (6.12) is a proof of a loop existence. The algorithm for numerical
verification of deg(f∗,Ωi) 6= 0 is provided hereinafter.
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T1 Ω1

Ω2 T2

[t]1 [t]2

[b]3
[b]1

t1

t2

Figure 6.7: Approximation of a set T = T1 ∪T2 with sets of non-overlapping boxes.
In this chapter, only the outer approximations Ωi will be assessed. The color code
used in this figure is the one introduced at page 63.

Implementation

This section shows how to apply a simple version of the topological degree algorithm
for the special case of a connected two-dimensional region Ωi that consists of 2D
boxes. The following algorithms are an adaptation of [Franek and Ratschan, 2014]
for this special case.

Assume that Ωi ⊂ R2 is a union of finitely many boxes and the boundary ∂Ωi is
a topological circle5. Furthermore, let a1 . . . , ap be points in ∂Ωi and [b]1, . . . , [b]p
be edges covering the boundary ∂Ωi, such that ∂[b]i = {ai+1, ai} for i < p and
∂[bp] = {a1, ap}. We endow each [b]i with an orientation such that ai+1 is an
end-point of [b]i and ai is the starting-point of [b]i for i < p and, similarly, a1 is the
end-point of [b]p and ap the starting-point of [b]p. We define the oriented boundary
of [b]i to be ai+1 − ai for i < p and the oriented boundary of [b]p to be a1 − ap,
where we introduce oriented vertices ±aj as formal symbols. This structure of
oriented edges and oriented vertices can easily be represented in a computer.

Further, assume that an interval function [f ] is given such that 0 /∈ [f ]([b]i) for

5Hence, we shall assume that the set Ωi is strictly included in [t0, tf ]2 so that a closed boundary
∂Ωi can be assessed.
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all i. This means that either the first or the second coordinate of the box [f ]([b]i)
has a constant sign, + or −. We assign to the oriented box [b]i the pair (ci, si)
where ci ∈ {1, 2} and si ∈ {+,−} in such a way that the ci-th coordinate of [f ]([b]i)
has a constant sign si. For example, (2,−) indicates that the second coordinate of
[f ]([b]i) is negative: in particular f ∗2 is negative on [b]i. Such choice (ci, si) is not
necessarily unique, but any choice will give us a correct result at the end.

The degree deg(f∗,Ωi) can be computed using the following algorithms. The
existence test T is then a direct conclusion on the computed degree. One should
note that, at this step, Algorithm 7 is not able to reject the feasibility of a loop. In
case of a non-zero degree, it will prove a loop existence. Otherwise, the “∅” output
will reflect a non-conclusive test.

Algorithm 7 existenceTestT (in : Ωi, [f ]− out : true|∅)

1: [b]1 . . . [b]p ← getContour (Ωi)
2: if 2dTopoDegree ([b]1 . . . [b]p, [f ]) 6= 0 then . see Algorithm 8
3: return true
4: else
5: return ∅ . not able to conclude about existence
6: end if

An illustration of Algorithm 8 is given in Figure 6.8. Here the algorithm returns
zero, because the if-conditions are satisfied only for the edge [b]1 where d will
change from 0 to −1, and then in edge [b]4 where d will be changed from −1 to 0.

If our representation of Ωi comes from the previous SIVIA algorithm, we can
assume that the getContour function (in Algorithm 7) is available and has linear
time-complexity. A naive implementation of Algorithm 8 has quadratic complexity.
Its input [b]1, . . . [b]p can be ordered and oriented in ∼ p2 steps so that the end-
point of [b]j (resp. [b]p) coincides with the starting-point of [b]j+1 (resp. [b]1).
The rest then amounts to finding the signs (cj, sj) in one pass over all j and adding
1 (resp. −1) to a global variable whenever (cj, sj) = (1,+) and the next (resp.
previous) sign is (2,+). A better implementation in O(p) is possible if we can
access additional information, such as the boundary orientation of [b]j induced
from ∂Ωi.
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Algorithm 8 2dTopoDegree (in : [b]1 . . . [b]p, [f ]− out : d)

1: d← 0
2: for i = 1 to p do
3: (ci, si)← tagEdge ([b]i, [f ])
4: end for
5: c0 ← cp, s0 ← sp, cp+1 ← c1, sp+1 ← s1

6: for i = 1 to p do
7: if (ci, si) = (1,+) then
8: if (ci+1, si+1) = (2,+) then
9: d← d+ 1

10: end if
11: if (ci−1, si−1) = (2,+) then
12: d← d− 1
13: end if
14: end if
15: end for
16: return d

Algorithm 9 tagEdge (in : [b], [f ]− out : (c, s))

1: if 0 6∈ [f1]([b]) then
2: if [f1]([b]) ⊂ R+, return (1,+)
3: else, return (1,−)
4: else if 0 6∈ [f2]([b]) then
5: if [f2]([b]) ⊂ R+, return (2,+)
6: else, return (2,−)
7: else
8: return ∅ . note: this case should not happen
9: end if
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[b]7
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+0
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Figure 6.8: Illustration of the degree algorithm. The selected edges in this case are
[b]1, [b]2, [b]4 but only [b]1 results in an addition by −1 and [b]4 in an addition
of +1. The overall degree is 1− 1 + 5× 0 = 0 in this case.

6.3.4 Reliable number of loops

Aside from proving the existence of a loop, it may be interesting to count the number
of solutions. This can be done using additional information on the derivatives. If
Ωi is a compact set as defined in Section 6.3.2 and if the Jacobian matrix Jf∗ is
non-singular everywhere on Ωi, then the absolute value of the degree is the exact
number of solutions for f∗ = 0 in Ωi.

The Jacobian matrix Jf∗ of the unknown f∗ can be approximated by [Jf ]:

[Jf ] ([t]) =


∂[f1]
∂[t1]

∂[f1]
∂[t2]

∂[f2]
∂[t1]

∂[f2]
∂[t2]

 . (6.16)

From Leibniz’s integral rule,

∂

∂b

(∫ b

a
f(x)dx

)
= f(b) ,

∂

∂a

(∫ b

a
f(x)dx

)
= −f(a). (6.17)
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Hence, we compute [Jf ] ([t]) as:

[Jf ] ([t]) =


∂[f1]
∂[t1]

∂[f1]
∂[t2]

∂[f2]
∂[t1]

∂[f2]
∂[t2]

 =
−[v1]([t1]) [v1]([t2])

−[v2]([t1]) [v2]([t2])

 , (6.18)

where [v](·) is the tube containing the unknown velocity v∗(·) of the robot.

Proving the non-singularity of the Jacobian matrix amounts to verifying that
its determinant is non-zero. Using the inclusion function from Equation (6.18),
this is equivalent to verifying:

0 6∈ det ([Jf ]) = −[v1]([t1]) · [v2]([t2]) + [v1]([t2]) · [v2]([t1]). (6.19)

Algorithm 10 provided hereinafter returns the exact number of loops in a set Ωi

when the zeros are robust enough. Otherwise, nothing can be concluded regarding
the uncertainties of the information.

Algorithm 10 loopsNumber (in : Ωi, [f ], [Jf ]− out : `)

1: [t]1 . . . [t]j ← getBoxes (Ωi)
2: for k = 1 to j do
3: if 0 ∈ det ([Jf ] ([t]k)) then
4: return ∅
5: end if
6: end for
7: [b]1 . . . [b]p ← getContour (Ωi)
8: `← 2dTopoDegree ([b]1 . . . [b]p, [f ])
9: return |`|

Remark 6.1
The algorithm used to compute the set Ωi may provide wide boxes [t]k that will
result in an over-approximation of the [Jf ] ([t]k). A bisection of the [t]k may be
applied when 0 ∈ det ([Jf ] ([t]k)) in order to deal with smaller boxes, thus reducing
the pessimism of the Jacobian evaluation and increasing the chances to disprove
0 ∈ det ([Jf ] ([t]k)), see Figure 6.9. If the determinant approximation still contains
0 beyond a given precision ζ, then the algorithm should stop being not able to
conclude. In the example of Figure 6.9, we used ζ = ε/10 where ε is the precision of
the SIVIA algorithm used to approximate T.
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t1

t2

t1

t2

Figure 6.9: Auto-refinement of the approximation of loop sets for Jacobian evalua-
tion purposes. Red boxes • are bisections performed on the fly in order to increase
the chances to disprove 0 ∈ det ([Jf ] ([t]k)). Nevertheless, for one case detailed on
the right-hand side, the algorithm stopped without being able to conclude about
the non-singularity of the Jacobian matrix everywhere on this Ωi.

6.4 Applications

The efficiency of the proposed test is demonstrated over two experiments involving
actual underwater robots. The underwater case is challenging as robots do not
benefit from GNSS fixes except at the very beginning of the mission. Hence, dead-
reckoning methods usually apply for state estimation, leading to strong cumulative
errors. Loops will be proven in this context.

Our method for loop detection is reliable under the assumption f∗([t]) ⊆ [f ]([t]).
This inclusion immediately follows from the assumption v∗(·) ⊆ [v](·) but in fact,
the former inclusion is much more robust with respect to random velocity errors
than the latter.6 A quantitative analysis of error probabilities is a work in progress.

6The real displacement
∫ tb
ta

v∗(τ) dτ could lie outside [f ](ta, tb) only if the velocity errors would
cumulate in one direction. More precisely, the projection of vPL(·)− v∗(·) into one particular
direction would have to be at least 2σ in average, over the whole time interval [ta, tb]. Under
fairly general assumptions on the distribution of the velocity errors, such probability decreases
exponentially with (tb − ta).
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6.4.1 The Redermor mission

This first application involves the Redermor AUV, see Figure 6.10. This test case
has already been the subject of [Aubry et al., 2013, Sec. 6], in which the existence
of 14 loops had been proved by using the test N relying on the Newton operator.
Our goal is to compare these results with the topological degree test T we propose
in this chapter.

Figure 6.10: The Redermor AUV before a sea trial.

A two hours experimental mission has been done in the Douarnenez bay in
Brittany (France). A top view of the area covered by the robot is pictured in Fig-
ure 6.12. Redermor performed 28 loops, 20m deep. The set-membership approach
provides the enclosure of v∗(·), see Figure 6.11, and then the approximation of
T pictured in the t-plane of Figure 6.13. A total of 25 complete loop-detection
sets have been computed on this test-case, the other solutions being partial. By
complete detections we mean loop detection sets Ωi strictly included in the t-plane.
Further comments on this application will only stand on these detections and the
related actual loops.

In both Figures 6.12 and 6.13, the result of the degree test is displayed in orange
when it proves the existence of a loop and in black when nothing can be concluded.
This latter case means the robot’s uncertainties are too large to demonstrate that
a loop has been performed or not. In this example, there is only one situation for
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Figure 6.11: Tube [v1](·) enclosing the east velocity.

which nothing can be concluded. If we have a look at Figure 6.12, we can see this
inconclusive case, black painted above the robot’s trajectory. Figure 6.14 provides
another view of it. Looking at the reliable envelope of feasible positions pictured
in gray, it could have been a loop. We know it is not the case in reality: actual
trajectories are not crossing. Here, the test does not reject the feasibility of a loop,
it is simply not able to conclude.

We define the actual number of loops λ∗ over a mission by:

λ∗ = #
{
t | f∗(t) = 0, t1 < t2

}
, (6.20)

where # denotes the cardinality of the following set. This application gives a
comparison between the tests T and N . Corresponding computations provide the
following results:

λN = 14 λT = 24 λ∗ = 24

The white line in Figure 6.12 shows that the actual trajectory involves λ∗ = 24
loops7. On this application, no other test than the topological degree would provide
better results.

7Without considering the four loops in the components Ωi that intersect the boundary of
[t0, tf ]2.
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Figure 6.12: Map of the Redermor experiment. Orange • and black • lines are the
projections of the results given by the topological degree test T . This test case
highlights one inconclusive result of T .
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Figure 6.13: t-plane corresponding to Redermor experiment and computed with a
SIVIA algorithm. There exist four partial detections Ωi on t-plane’s edges that will
not be considered here since the ∂Ωi are not totally defined. They enclose feasible
loops (ta, tb) performed at the very beginning of the mission (ta ' t0) or at the end
(tb ' tf ). In this experiment, we used ε = (tf − t0)/2000.
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Figure 6.14: Independent projection of the non-conclusive case. Let us consider
the loop-box [t−1 , t+1 ]× [t−2 , t+2 ] enclosing the corresponding Ωi approximation. The
actual trajectory over both [t−1 , t+1 ] and [t−2 , t+2 ] is plotted in blue •. Its bounded
approximation is pictured in dark gray for the first part and light gray then. Note
that we do not represent the amount of uncertainties gathered before t−1 : p(t−1 ) is
centered in (0, 0) in this independent view. However, the amount of uncertainties
over [t−2 , t+2 ] is such that other crossing trajectories would have been possible given
the assumed uncertainties, see e.g. the red one •. This shows the impossibility to
both disprove this loop detection and conclude about a loop existence.
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6.4.2 The Daurade mission

We provide a complementary example involving the Daurade AUV. A similar
mission has been performed without surfacing during 1h40. Figure 6.15 presents
the corresponding trajectory together with its estimation and the test results.
Figures 6.16 and 6.17 provide views of the t-plane.

For this test case, 116 subpavings Ωi have been computed. The test T proved
the existence of loops in 114 of them. The uniqueness was also verified for each
proof. The set of computations has been performed in less than one second on a
conventional computer, which also demonstrates the relevancy of our approach for
real applications.

The actual trajectory involved λ∗ = 118 loops8 while we proved λT = 114 of
them. For two loop detection sets, the algorithm did not conclude due to strong
uncertainties. One of these cases is highlighted in Figure 6.18.

The next section is a discussion about the optimality of our approach. The
conclusion is that in this Daurade experiment, no more loops would have been
proved by other means than the topological degree.

6.4.3 Optimality of the approach

In this section, we extend the aforementioned practical demonstration by a theo-
retical discussion of the degree test and its strength.

First of all, in a situation where the interval Newton test N is strong enough to
detect a (unique) solution of f∗(x) = 0 in a connected region Ω, then the Jacobian
matrix Jf∗ is necessarily everywhere non-singular in Ω and the degree is either +1 or
−1. However, the degree test does not use derivatives and can succeed even in cases
where derivatives are either not at hand, or when the Jacobian matrix is potentially
singular. For loop detection, this includes situations where the self-crossing is close
to parallel. Figures 6.19 illustrate such situation with ambiguous crossings.

Similarly, the degree test can be shown to be more powerful than other interval-
based verification tests, such as Mirranda’s or Borsuk’s test, due to the following
result [Franek et al., 2016, Thm 6]:

8See footnote7 at page 183.
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Whenever a function f∗ has a robust zero (one that cannot be removed by
arbitrary small perturbations), then it can be detected by the degree test, assuming
that we have a sufficient subdivision and sufficiently precise interval-measurements.

One could still argue that such arbitrary precise interval approximations are
practically not at hand. Here we state another variant of the optimality of the
degree, which is adapted to the setting of our problem:

Proposition. Let Ω, [f ], [t]j, [b]k be as in Theorem 6.1 and assume further
that the degree deg(f∗,Ω) = 0 and that the interior of Ω is connected. Then there
exists a function g ∈ [f ] such that

— 0 /∈ g(Ω);

— g([t]j) ⊆ [f ]([t]j) for all j, and

— g([b]k) ⊆ [f ]([b]k) for all k.

In other words, whenever we detect a zero degree on some set Ω with connected
interior, then it is still possible that f∗ has no zero: indeed, the unknown function
f∗ may be the function g from the theorem.

If we subdivided our domain more and obtained more data, our region Ω could
split into more components — for example, Ω1 with a degree 1, and Ω2 with a
degree −1. Each Ωi would then provably contain a zero. However, based only
on the above interval evaluations, we cannot conclude the existence of a zero. In
particular, for a given set of data, if we cannot conclude a zero based on the degree
test then no other test (such as Newton) would conclude it either.

The proof of the last proposition is elementary9, but requires some necessary
definitions from topology, so we omit it here in order to keep this chapter readable
for a wide audience. Our main message is to underline the usefulness of the degree
test for zero detection of functions with bounded uncertainty, and its relevancy for
loop closure proofs.

9The main idea is to define the function g to be equal to f∗ on ∂Ω and, in a small enough
ε-neighborhood of the boundary, to extend it to a positive scalar multiple of f∗ such that its norm
is small enough for any x that is ε-far from the boundary. This map takes {x : dist(x, ∂Ω) = ε}
into a sphere of small diameter, and due to the fact that the degree is zero, can be extended to a
function g : Ω→ Rn that it is still small farther from the boundary, and avoids zero.
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Figure 6.15: Map of the Daurade experiment. The topological test was not able to
conclude for two loop detections involving a total of four actual loops. Figure 6.18
details one of these cases.
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Figure 6.16: t-plane of the Daurade experiment. The blue box • is detailed in
Figure 6.17. In this experiment, we used ε = (tf − t0)/2000.
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Figure 6.17: Zoom on t-plane of Figure 6.16, presenting eight clusters Ωi corre-
sponding to loop detection sets. Two of them, black painted, are non-conclusive
cases with the topological degree test.
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Figure 6.18: Independent projection of one of the two non-conclusive detection
cases, as for the Redermor mission, see Figure 6.14. Contrary to the previous
experiment, an actual loop plotted in blue • has been performed, twice. However,
the red • trajectory reminds that a non-crossing case is still feasible.
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(b) This case is a typical situation where the Newton test would hardly succeed. However, the
degree test T is able to prove the existence of at least one loop in this situation, which is the
expected result.

Figure 6.19: Ambiguous looped trajectories with maps and corresponding t-planes.
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6.5 Conclusion

This chapter and [Rohou et al., 2018a] have presented a new method to prove
the existence of loops in robot trajectories. The proposed algorithm allows one
to verify that a robot crossed its own trajectory at some point. In this approach,
conclusions can be taken considering proprioceptive measurements only and no
scene observation. This is helpful to solve SLAM problems as it proves a previously-
visited location to be recognized.

This topic has already been the subject of previous work but the offered existence
test, relying on the Newton operator, did not give satisfactory results in some cases
of undeniable looped trajectories. This was due to the use of Jacobian matrices
not always invertible. Our contribution is to propose a new test relying on the
topological degree theory. The algorithm behaves better as it does not use the
information of the derivatives. Besides the loop existence proof, the same tool can
provide the exact number of reliable loops performed by the robot, better than
the Newton test did. The efficiency of the new method has been demonstrated on
actual experiments involving the AUVs Redermor and Daurade.

Prospects

The discussion about the optimality of our approach suggests that the most efficient
method has been studied for this problem of proprioceptive loop verification in
a bounded-error context. Future work will consist in applying this new tool in
classical SLAM algorithms and, in particular, those based on set-membership
methods. This is the object of the next chapter.

Furthermore, complementary information could be coupled in the test such
as second derivatives. This would allow the consideration of accelerations, not
assessed here, or other kind of information such as the rotation of the axle of a
wheeled robot.

Finally, this problem of loop detection/verification takes place in an Euclidean
space while concrete problems may require to take into account non-planar surfaces.
For instance, AUVs may explore wide areas up to several square kilometers, which
necessarily leads to georeferencing problems due to the rounded shape of the
Earth. Hence, new tools of loop detections on sphere or complex surfaces would be
welcome.
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Chapter 7. A reliable temporal approach for the SLAM problem

7.1 Introduction

7.1.1 Motivations

Research on SLAM topics is relatively recent [Smith et al., 1990] and gathers
today a wide part of the robotic community. Several research issues have triggered
the development of numerous SLAM solutions, mainly based on probabilistic
approaches. The literature on this topic is wide and several books and papers
have been written to capture the full picture of the various investigated methods,
see for instance [Durrant-Whyte and Bailey, 2006, Bailey and Durrant-Whyte,
2006, Thrun and Leonard, 2008].

In SLAM, the noise coming from measurements is usually handled in a proba-
bilistic way while only few attention has been paid to set-membership solutions [Yu
et al., 2016, Di Marco et al., 2001, Jaulin, 2011]. The latter have the advantage
to provide a reliable quality assessment of the localization and mapping, which
might be expected for safety or military applications. In the underwater case, for
instance, a public service in hydrography and maritime cartography will have to
elaborate accurate maps for navigation purposes. One can easily understand the
issues related to inaccurate maps and thus the need to comply with standards for
hydrographic surveys, see for instance Table 7.1.

Table 7.1: Extract of standards for hydrographic surveys established by the Interna-
tional Hydrographic Organization [IHO, 2008]. Data must be qualified with a 95%
confidence level. The vertical uncertainty is computed as ±

√
a2 + (b× depth)2.

Special order Order 1a

Total horizontal uncertainty 2m 5m + 5% of depth

Total vertical uncertainty
a = 0.25m

b = 0.0075

a = 0.5m

b = 0.013

Full seafloor search required required

AUVs involved in surveys will have to precisely estimate these uncertainties.
In addition, for practical reasons mentioned in the introduction of this document,
AUVs might have to survey without surfacing and thus a SLAM method could be
considered.
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Experiments involving Daurade have been undertaken by the SHOM and DGA-
TN Brest for this purpose. It has been shown that the robot is able to maintain
the special order (see Table 7.1) up to 45 minutes and then the order 1a during
a few hours, using a dead-reckoning method. However, a SLAM approach would
be welcomed to hold the special order for a longer period. Figure 7.1 depicts a
boustrophedon, a typical pattern used for hydrographic surveys when covering a
given area with parallel rails1. In this example, the trajectory presents numerous
loops that could be used in a SLAM method.

Figure 7.1: Illustration of a hydrographic survey with an AUV equipped with a
multibeam echosounder. The red line • depicts the current sonar sensing while gray
areas are parts of the seabed already explored. The vehicle follows a pattern called
boustrophedon with a deliberate overlapping of rails. When planning this experiment,
the operator opted for an overall crossing before performing the standard pattern.
This allows easier recognitions of previously sensed areas, and thus localization
refinements.

While this application highlights the need for methods providing guaranteed
outputs, the same tools also present another way to deal with SLAM problems. We

1The term boustrophedon is used as an analogy with bi-directional texts, mostly encountered
in ancient manuscripts, for which every other line of writing is flipped, with reversed letters.
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have seen in this thesis the relevancy of interval methods for constraint programming
and the consideration of time uncertainties. Using a set-membership approach
rather than usual probabilistic techniques, one could perfectly model a SLAM
problem with a set of constraints involving robot’s states and observations. Even
in case of unstructured environments or poor datasets, the approach still ensures
these constraints to be fulfilled at any time during the process, thus avoiding wrong
localization and mappings.

7.1.2 SLAM formalism

In the literature, most SLAM problems are formalized by means of probabilistic
models. To keep things independent from the resolution method, we will rather
consider the following equations:

{
ẋ(t) = f(x(t),u(t)),
z(t) = g(m,x(t)),

(7.1a)
(7.1b)

introducing the vector m as the map of the environment. We recall that the input
u(t) and the observation z(t) are measurements provided by sensors.

Once the SLAM process starts, the surroundings are poorly known and so
the Equation (7.1b) provides a first estimation of the map m from the quite
accurate knowledge of the state x(t). Then the robot progressively gets lost and
an approximation of x(t) becomes possible thanks to the accumulated knowledge
on m. This can be seen as a classical state estimation problem if we expand x by
X = (x,m)ᵀ, the map becoming a component of the state.

This formalism represents a wide part of SLAM topics. However, it does not
allow one to deal with uncertain observation functions g. As an example, let us
consider the range-only SLAM problem [Newman and Leonard, 2003] that involves
a distance observation function:

g : Rn → R
X 7→

√
(x1 −m1)2 + (x2 −m2)2.

(7.2)

The position (m1,m2)ᵀ of an emitting beacon can be estimated together with
the state (x1, x2)ᵀ of the robot. But when dealing with environments presenting
unknown physical properties, the analytical expression of g is not at hand. In the
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underwater case for instance, it is difficult to predict the path traveled by the sound
between the beacon and the vehicle2.

All is not lost and we may possibly state some mathematical properties of g
such as its monotonicity or particular symmetry features, still without being able
to assess its formula. From this poor knowledge, we can deduce some relations
among a set of observations. For instance, in the range-only example, g can be
assumed as strictly increasing. This assumption will allow us to compare several
measurements z(t1), z(t2) made at different times and then establish relations
between the corresponding states x(t1), x(t2).

We propose to introduce a so-called configuration function, denoted h : Rn →
Rn′ , the expression of which being defined according to the assumptions on g.
Hence, h becomes the function expressing the monotonicity, the symmetry, etc. In
the range-only case, h would depict a spherical symmetry centered on the beacon
position.

In the following new formalism, g disappears and an implication is introduced:

{
ẋ(t) = f(x(t),u(t)),
h(x(t1)) = h(x(t2)) =⇒ z(t1) = z(t2).

(7.3a)
(7.3b)

The originality of our formalism lies in the implication (7.3b) which stands on
inter-temporal measurements. In other words, when two states meet an equivalent
configuration, then the related measurements should be identical. In the range-only
example, if two positions are located on the same sphere centered on the beacon’s
location, then the range measurements should be the same.

Note that in practice, the reciprocal implication will be useful: if the measure-
ments are not identical, then we can deduce that the states are not in the same
configuration expressed by h.

2Its analytical expression would depend in particular on the temperature, the depth and the
salinity along the path
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7.1.3 Inter-temporalities

Usual resolution techniques are not comfortable with inter-temporal relations.
Instead, they rather break down the problem into the following equations:

h(x(t1)) = h(x(t2)) ⇐⇒
{

h1(x(t1),m) = 0
h2(x(t2),m) = 0 , (7.4)

employing the vector m as the map of the environment. Hence, the temporal
problem is transformed into a spatial one and the state estimation now amounts to
approximating the new state vector X = (x,m)ᵀ.

Conversely, our approach consists in fully addressing Equation (7.3b) without
performing a decomposition such as Equation (7.4). We will see that the resolution
does not rely on the estimation of a vector m and only focuses on the times of interest.
However, we will still speak about SLAM since we apply the philosophy of exploring
the surroundings while performing a localization refined by the observations. In
our approach, the map is the time and any localization or mapping process will be
related to the approximation of time references. This can be somehow related to
Graph-SLAM methods [Thrun and Montemerlo, 2006] although they do not deal
with time uncertainties. Indeed, when assessing both continuous measurements and
noise on the observations, the uncertainties can be propagated to temporal variables.
Suitable tools become necessary to handle the resolution. To our knowledge, such
estimation of time values in a SLAM method is new.

To sum up, our approach applies when the observation function g is completely
unknown. In this context, a single measurement z(t1) is not exploitable as it cannot
be used to estimate x(t1) and reciprocally, a prediction of the observation from the
knowledge of x(t1) is not achievable. The key point is the correlation that can be
made between two identical measurements. The best illustration of this approach
is the Borda’s weighing technique.

Borda’s double weighing method

This old technique is used to precisely estimate a weight whatever the precision of
a balance scale. In this example, the balance represents an unknown environment
because we admit an uncertainty on the identical length of its arms, see Figure 7.2.

Thus, when the equilibrium is reached, the mass to be estimated in the right
pan may not be the same as the mass of reference m0 in the left one. Borda’s
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m0 x(t1)

(t1)

θ

m0 x(t2)

(t2)

θ

Figure 7.2: A flawed Roberval balance with arms of unknown length: an inter-
temporal measurement is made at times t1 and t2 in order to precisely estimate
x(t1) thanks to a well known mass x(t2).

method consists in removing the thing x(t1) to be weighted from the first pan and
reaching again the equilibrium with a well-known weight x(t2). This last mass
will give the true weight we want to estimate, even if we are using a false balance:
x(t1) = x(t2).

Using our formalism3,

h(x(t1)) = h(x(t2)) =⇒ z(t1) = z(t2)
h : (x(t)) 7→ x(t)
g : (x) 7→ ?

(7.5)

In this example, the definition of h is the identity function. The observation
function g could depict the angle θ of the pointer as a function of the mass x.
However, its expression is not at hand since we do not know the length of each
arm. Nevertheless, a measurement z can be made looking at the pointer.

Here the environment is unknown but constant so that the observation function
is time-independent. A single measurement does not give us any information about
the weight we want to estimate. However, a couple of measurements made at
different times cancels the errors of the balance thereby dispelling any uncertainty
about the estimation. We have established an inter-temporal measurement for a
state estimation. Our SLAM approach is similar.

3In this example, if we consider reasonable masses, the implication is actually an equivalence.
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What to observe?

Any kind of observation is welcome, under the assumption that this information does
not evolve during the mission in a non-predictable manner. Hence, many properties
of the environment can be used such as radioactivity, magnetism, luminosity,
temperature or, in our case, bathymetric measurements. It remains to define the
function h according to the considered observations.

For instance, the temperature only depends on the 3D position of the sensor
while bathymetric values are related to 2D positions. In this latter case, the
configuration function is simply defined as

x1
x2
x3
...
xn


h7−−→

(
x1
x2

)
, (7.6)

with (x1, x2)ᵀ the horizontal position of the robot and x3 its altitude. The other
components of x ∈ Rn may represent orientations or speeds, but this definition
shows that only the horizontal position matters in this example.

Future research will focus on electrolocation [Boyer et al., 2015, Lebastard et al.,
2013, Morel et al., 2016] based on the sensing of electric fields distortions. In this
case, h must be defined according to the pose of the robot, including its orientation.
We believe the approach could allow a localization even without the knowledge of
accurate electric models.

7.2 Temporal SLAM method

7.2.1 General assumptions

We consider the following requirements:

— for now, we do not deal with outliers: any bounded measurement is guaranteed
to contain the actual value. The management of outliers will be the subject
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of future work based on already existing tools [Jaulin, 2009, Drevelle and
Bonnifait, 2009, Carbonnel et al., 2014];

— any change on the environment is assumed to be predictable: the surroundings
may be static or may change according to some physical models with bounded
uncertainties. For instance, in the case of underwater exploration, one could
use tide models;

— we assume that there is sufficient spatial variations in the measurements to
allow a localization. Indeed, an almost constant set of measurements will
not be useful for the state estimation. In any case though, the reliability of
the method will not be affected. We emphasize that the approach does not
require the identification of points of interest: the environment may be poor
without remarkable land/sea marks that could be used as reference.

7.2.2 Temporal resolution

We will solve this problem using a constraint propagation approach.

Constraint network

Our problem can be formulated with a CN:

CN:



Variables: x(·), z(·), u(·)
Constraints:

1. Evolution constraint:

— ẋ(t) = f(x(t),u(t))

2. Inter-temporal constraint:

— h(x(t1)) = h(x(t2)) =⇒ z(t1) = z(t2)

Domains: [x](·), [z](·), [u](·)

(7.7)

We recall that x(·) is the set of states to be approximated and that z(·) and
u(·) are observation and input measurements. The configuration function h is
defined according to the investigated problem. A complete example will be given
in Section 7.3.
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Decomposition of the inter-temporal constraint

It is important to break down the problem as much as possible. Here, the inter-
temporal relation can be decomposed into:


p(t1) = h(x(t1)),
p(t2) = h(x(t2)),
p(t1) = p(t2) =⇒ z(t1) = z(t2).

(7.8a)
(7.8b)
(7.8c)

These equations cannot be further simplified and a new elementary constraint,
denoted Lp⇒z, has to be addressed:

Lp⇒z
(
p(·),w(·), z(·)

)
:
{

p(t1) = p(t2) =⇒ z(t1) = z(t2)
ṗ(·) = w(·) (7.9)

The values t1 and t2 are internal variables that cover the whole domain [t0, tf ] of
the trajectories. The presence of the derivative of p(·), denoted w(·), is explained
by the time uncertainties this constraint will raise. Its values are given analytically
or from measurements.

This leads us to the new CN:

CN:



Variables: x(·), v(·), p(·), w(·), z(·), u(·)
Constraints:

1. Evolution constraint:

— v(·) = f(x(·),u(·))

— L d
dt

(
x(·),v(·)

)
2. Inter-temporal constraint:

— p(·) = h(x(·))

— w(·) = dh
dx(·) · v(·) (expression of the derivative of p(·))

— Lp⇒z
(
p(·),w(·), z(·)

)
Domains: [x](·), [v](·), [p](·), [w](·), [z](·), [u](·)

(7.10)
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7.2.3 Lp⇒z: inter-temporal implication constraint

Dealing with Lp⇒z is the main academic contribution of this chapter. To our
knowledge, this is the first time an approach is proposed to solve such inter-
temporal constraint. The aim of Lp⇒z is to remove trajectories not consistent with
Equation (7.9).

Without using a set-membership method, this constraint is laborious to solve. A
naive approach would be to test each feasible p(·) and eliminate those for which no
t ∈ [t0, tf ]2 can lead to one possible z(·) such that p(t1) = p(t2) =⇒ z(t1) = z(t2).
Figure 7.3 pictures this approach in a robotic context with three estimations of p(·)
and one well-known z(·). One can easily understand that in case of uncertainties
on both p(·) and z(·), this resolution becomes expensive in terms of calculations.

By using a set-membership approach, however, we can rely on the bounds of
the related sets [p](·) and [z](·). We introduce in this section intermediate variables
that will only appear inside the decomposition of Lp⇒z. The next section will focus
on the corresponding operator Cp⇒z built from the tools presented in Chapters 5
and 6.

Decomposition

First, we focus on each part of the implication:

p(t1) = p(t2)︸ ︷︷ ︸
1

=⇒ z(t1) = z(t2)︸ ︷︷ ︸
2

. (7.11)

The key point consists in considering t1, t2 as classical variables to be estimated
inside the constraint. These t-pairs belong to two sets defined either by the cause 1
or the effect 2 :

1 T∗p =
{

(t1, t2) ∈ [t0, tf ]2 | p(t1) = p(t2) , t1 < t2
}
, (7.12)

2 T∗z =
{

(t1, t2) ∈ [t0, tf ]2 | z(t1) = z(t2) , t1 < t2
}
. (7.13)
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Figure 7.3: Physical interpretation of the Lp⇒z constraint: a robot coming back
to a previous position p ∈ R2 should sense the same observation z ∈ R. A wrong
estimation p̂(·) (plotted in gray •) of the actual p∗(·) (in blue •) may be rejected if
the constraint Lp⇒z

(
p̂(·), ˆ̇p(·), z(·)

)
is not fulfilled; it is the case for the second and

third estimations as we obtain z(t1) 6= z(t2). However, the last instance shows a
case of false alarm with a wrong estimation p̂(·) 6= p∗(·) that meets the constraint.
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In our robotic illustration, T∗p depicts the set of t-pairs leading to two identical
configurations of the states x(t1) and x(t2). We recall that these configurations
are described by the function h. For instance, in the case of a bathymetric-based
localization, only the horizontal position matters (see Equation (7.6), page 202)
and so T∗p becomes what we called a loop set in Chapter 6. Subfigure 7.5a gives an
example of T∗p, obtained with proprioceptive measurements only (velocities).

In the same way, T∗z gathers all the inter-temporal keys corresponding to identical
measurements. As an illustration, let us consider the set of measurements pictured
in Figure 7.4. These values could correspond to bathymetric measurements. The
corresponding set T∗z is pictured in blue • in Subfigure 7.5b.

Furthermore, we can state from the implication 1 =⇒ 2 that

T∗p ⊂ T∗z. (7.14)

T∗p is a subset of T∗z as it can be seen in Subfigure 7.5b.

Related constraint network

Lp⇒z :



Variables: p(·), w(·), z(·)
Internal variables: T∗p, T∗z
Constraints:

1. T∗p = {(t1, t2) | p(t1) = p(t2)}

2. T∗z = {(t1, t2) | z(t1) = z(t2)}

3. T∗p ⊂ T∗z

4. ṗ(·) = w(·)

Domains: [p](·), [w](·), [z](·), Tp, Tz

(7.15)

Note that this CN involves heterogeneous variables: trajectories and sets. We
will employ the tools developed in this thesis to reduce their domains: trajectories
are enclosed by tubes and sets will be approximated by subpavings.
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t

z(·)

Figure 7.4: A theoretical example of scalar measurements z(·) sensed by a robot.
The temporal set T∗z is defined according to z(·).

t2

t1
ta

tb

tc td

te

tf

(a) t-set T∗p.

t2

t1
ta

tb

tc td

te

tf

(b) t-set T∗p on top of T∗z.

Figure 7.5: Illustration of t-sets T∗p and T∗z (see also the Figure 6.2 on page 167).
Subfigure 7.5b highlights Equation (7.14).

7.2.4 The Cp⇒z contractor

The contractor related to Lp⇒z is not trivial. Besides, we cannot provide a
mathematical definition of it as we did for C d

dt
or Ceval. Here, several intermediate

steps are necessary before the actual contraction.
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Initial approximation of Tp and Tz

The first step is to compute the domains Tp and Tz based on the Constraints (1)
and (2) of CN (7.15).

Let us define the interval functions:

[fp] ([t1], [t2]) = [p]([t1])− [p]([t2]), (7.16)
[fz] ([t1], [t2]) = [z]([t1])− [z]([t2]). (7.17)

The estimation of Tp and Tz respectively amounts to computing the kernel of [fp]
and [fz]. The kernel characterization of an interval function has already been the
subject of Section 2.4.4 at page 65. Hence, the results of the over-approximation
of ker

(
[fp]

)
will be a subpaving enclosing Tp. The same for ker

(
[fz]
)
. Figure 7.6

provides an illustration of these characterizations.

t1

t2

(a) Approximation of Tp.
t1

t2

(b) Approximation of Tz.

Figure 7.6: Approximation of the enclosure of t-sets presented in Figure 7.5 with
SIVIA algorithms.
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The sub-constraint T∗p ⊂ T∗z

We then focus on the relation between p(·) and z(·) which is at the core of
Lp⇒z. We remind that the sub-constraint T∗p ⊂ T∗z is related to the implication
p(t1) = p(t2) =⇒ z(t1) = z(t2).

In a set-membership approach, only the reciprocal implication is assessed:

z(t1) 6= z(t2) =⇒ p(t1) 6= p(t2), (7.18)

which is trivially applicable by intersecting the previously defined sets Tp and Tz,
see Figure 7.7. The information is kept in Tp:

Tp := Tp ∩ Tz. (7.19)

t1

t2

(a) Approximation of a component (Tp)i.
t1

t2

(b) Contraction of (Tp)i thanks to Tz.

Figure 7.7: Contraction of a t-set from the Lp⇒z constraint.
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From the temporal space to the trajectories’ one

Now that the t-sets are estimated and contracted, it remains to propagate this
temporal information to the tube [p](·). The constraint of interest is T∗p =
{(t1, t2) | p(t1) = p(t2)} that will now be considered in a backward way4, propagat-
ing information from the domain Tp to [p](·).

Tp can be made of several connected subsets (Tp)i such as in Figure 6.4,
page 171. For each (Tp)i, a contraction of [p](·) is affordable only if we can state
that:

∃t ∈ (Tp)i | p(t1) = p(t2), (7.20)

which is not necessarily the case due to the enclosure of p(·) in [p](·). This statement
is equivalent to prove that:

∃t ∈ (Tp)i | fp (t1, t2) = 0. (7.21)

Verifying Equation (7.21) can be done using a zero verification test such as the
one presented in Chapter 6. In this way, if we prove that ∀fp ∈ [fp],∃t ∈ (Tp)i |
fp (t1, t2) = 0, then the statement of Equation (7.20) is true and so we can proceed
to a contraction of [p](·).

We have seen that the connected subsets (Tp)i are implemented by means of
subpavings Ωi made of t-boxes [t]j. One should note that the verification of zeros
of f∗p in Ωi has to be done before the intersection of Ωi by Tz (Equation (7.19)).
Indeed, we have seen at page 173 that one requirement for the topological degree
test is that ∀t ∈ ∂Ωi, f∗p(t) 6= 0. This is no longer the case if the boundary of Ωi is
reduced after its intersection by Tz.

We propose the contractor CΩ to apply Equation (7.20) on Ωi and [p](·):

CΩ
(
Ωi, [p](·), [w](·)

)
=
⋃
j

Ct1,t2
(
[t1]j, [t2]j, [p](·), [w](·)

)
, (7.22)

where Ct1,t2 is a new generic inter-temporal contractor that handles tubes and boxes.
The union is justified by the fact that we do not know which [t]j ⊂ Ωi surely
contains an actual solution t∗. We were only able to state that Ωi is an enclosure
of at least one t∗.

4Here, the term backward does not refer to a temporal way but to a constraint propagation
from one set back to another.
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New inter-temporal contractor Ct1,t2

Let us focus on the elementary constraint Lt1,t2
(
t1, t2,p(·),w(·)

)
equivalent to:

Lt1,t2 :



Variables: t1, t2, p(·), w(·)
Constraints:

— p(t1) = p(t2)

— ṗ(·) = w(·)

Domains: [t1], [t2], [p](·), [w](·)
(7.23)

Lt1,t2 is not a primitive constraint as it amounts to a composition of two Leval,
which justifies the use of the derivative w(·) in this CN:

p(t1) = p(t2)⇐⇒


a = p(t1)
b = p(t2)
a = b

⇐⇒


Leval (t1,b,p(·),w(·))
Leval (t2, a,p(·),w(·))
a = b

(7.24)

We propose an implementation of the related contractor Ct1,t2 in Algorithm 11.
Figure 7.8 depicts its application with inter-temporal contractions of an arbitrary
tube. The contractor CΩ is a simple extension of Ct1,t2 that performs the contraction
based on a subpaving Ω instead of a single box [t]. The following Algorithm 12 is
related to Equation (7.22).
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Algorithm 11 Ct1,t2 (in : [w](·), inout : [t1], [t2], [p](·))

1: do

2: [t′1](·)← [t1](·)
3: [t′2](·)← [t2](·)
4: [p′](·)← [p](·)

5: [a]← [p]([t1])
6: Ceval ([t2], [a], [p](·), [w](·))
7: [b]← [p]([t2])
8: Ceval ([t1], [b], [p](·), [w](·))

9: while [t1] 6= [t′1] or [t2] 6= [t′2] or [p](·) 6= [p′](·)

Algorithm 12 CΩ (in : Ω, [w](·), inout : [p](·))

1: [p′](·)← [p](·)
2: [p](·)← ∅(·)

3: [t]1 . . . [t]j ← getBoxes (Ω)

4: for k = 1 to j do
5: [p′′](·)← [p′](·)
6: Ct1,t2 ([t1]k, [t2]k, [p′′](·), [w](·))
7: [p](·)← [p](·) ∪ [p′′](·)
8: end for
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t

[p](·)

[t1] [t2]

[p]([t1])

(a) Overview of the variables’ domains.

t

[p](·)

[t2]

[p]([t1])

feasible trajectory

(b) Zoom on the origin of the propagation with three hypothetical trajectories. Any p(·) going
through the boxes [t2]× [p]([t1]) and [t1]× [p]([t2]) is kept in the contracted tube.

Figure 7.8: Inter-temporal contractions using Ct1,t2 . A tube [p](·) is contracted
to the envelope of trajectories p(·) consistent with an inter-temporal constraint
p(t1) = p(t2) involving time uncertainties. Such contraction necessarily relies on
the derivative of p(·), not represented.
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The contractor Cp⇒z

Now we have all the material to design the contractor applying the inter-temporal
implicative constraint Lp⇒z : p(t1) = p(t2) =⇒ z(t1) = z(t2). The following
Algorithm 13 summarizes the development of Cp⇒z

(
[p](·), [w](·), [z](·), ε

)
. The

value ε ∈ R is a parameter defining the accuracy of internal approximations.

Algorithm 13 Cp⇒z (in : [w](·), [z](·), ε, inout : [p](·))

1: j ← 0 . iteration identifier
2: [t]← [t0, tf ]2

. defining inter-temporal inclusion functions:
3: define [fp] ([a1], [a2]) = [p]([a1])− [p]([a2])
4: define [fz] ([a1], [a2]) = [z]([a1])− [z]([a2])

5: do

6: j ← j + 1
7: [p′](·)← [p](·)
8: T−p ← ∅, T+

p ← ∅
9: T−z ← ∅, T+

z ← ∅

10:
(
T−p ,T+

p

)
← kernelSIVIA ([fp], [t], ε) . 1

11: (T−z ,T+
z )← kernelSIVIA ([fz], [t], ε) . 2

12: {Ω1, . . . ,Ωk} ← extractSubpavings
(
T+

p

)
13: for i = 1 to k do
14: if existenceTestT (Ωi, [fp]) then . zero verification
15: Ωi ← Ωi ∩ T+

z . fusion: implication 1 =⇒ 2

16: CΩ (Ωi, [p](·), [w](·)) . inter-temporal contraction
17: end if
18: end for

19: while [p](·) 6= [p′](·)
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Some details are provided below:

Lines 3–4: we define inter-temporal inclusion functions in order to approximate
the t-sets Tp and Tz based on kernel characterizations, see Equations (7.16)–(7.17);

Line 7: a copy of the tube [p](·) is performed in order to detect a fixed point
later on (line 19) in this iterative process. Note that this operation can be costly
in terms of time and memory. The implementation of CΩ could return a boolean
testifying whether a contraction on [p](·) has been made or not;

Lines 10–11: the kernelSIVIA function is provided in Algorithm 2, page 68.
Its output is an enclosure of Tp with two subpavings

(
T−p ,T+

p

)
. The same for Tz.

Note that for our application, only outer sets are being used. See also Figure 7.6;

Line 12: the extractSubpavings algorithm consists in detecting the list of closed
and connected subsets in T+

p . This algorithm is not detailed in this document;

Line 14: for a given subset Ωi of the outer approximation of Tp, we verify the
existence of a zero of f∗p. See Algorithm 7 detailed in page 177;

Line 15: in case of a zero verification, we apply Equation (7.19) by performing
the intersection of two subpavings. See Figure 7.7;

Line 16: once the t-set has been refined, a contraction of [p](·) is achieved by
CΩ, see Algorithm 12, page 213.

The overall process is repeated indefinitely until no more contractions are
performed on [p](·). Indeed, among the variables’ domains [p](·), [w](·), [z](·), only
[p](·) can be contracted. This is due firstly because of the implication constraint,
since the propagation cannot reach z(·). In addition, the derivative w(·) cannot be
constrained as discussed in Section 4.2.2, page 109.
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7.2. Temporal SLAM method

The implementation of this algorithm can be multi-threaded from line 13 to 18:
each subset Ωi can be verified and contracted independently. The contraction of
[p](·) from Ωi will however require some mutual exclusions. It should be noted
that the only parameter to be set is ε, a scalar value depicting the precision of
the approximation of t-sets. In practice5, ε is related to the tubes’ timestep δ.

t1

t2

[t1]

[t2]

Figure 7.9: Minimal envelope [b] of Ωi.

Remark 7.1
A faster implementation of
Cp⇒z is possible with the follow-
ing instructions provided in Al-
gorithm 14.

By considering a contracted
envelope [b] = [Ωi] ∈ IR2 of the
Ωi instead of each t-box of the
subpaving (see Figure 7.9), the
computations related to Ct1,t2
are reduced to only one by Ωi

set. The counterpart is that we
will obtain less precise results
due to the wrapping effect of
[b] ⊇ Ωi.

Algorithm 14 Cfast
p⇒z (in : [w](·), [z](·), ε, inout : [p](·))

. . .

for i = 1 to k do
if existenceTestT (Ωi, [fp]) then . zero verification

Ωi ← Ωi ∩ T+
z . fusion: implication 1 =⇒ 2

[b]← [Ωi] . boxed envelope of Ωi

Ct1,t2 ([b1], [b2], [p](·), [w](·)) . inter-temporal contraction
end if

end for
. . .

5Note that it is not relevant to use ε < δ since bisections of subpavings (in a bi-temporal
space) will not provide more accurate information.
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7.2.5 Temporal SLAM algorithm

We are now able to address our SLAM problem defined in CN (7.10), page 204.
Each constraint will be implemented by the corresponding contractor. We recall
the variables involved in the problem:

— x(·): states of the robot;

— u(·): inputs of the system;

— z(·): observation measurements.

Intermediate variables are defined for resolution purposes:

— v(·): state evolutions (derivative of x(·)) that can be measured;

— p(·): state configurations, p(·) = h(x(·));

— w(·): derivative of p(·).

In the following, we will focus on a SLAM involving measurements z(·) that only
depends on 2D positions, as it is the case for bathymetric sensing, see Figure 7.10.
In this context, the configuration function h is defined by



x1
x2
x3
...
xn


h7−−→

(
x1
x2

)
(7.25)

and vanishes in case of a 2D loop.

h will be used to compute the trajectory p(·) from x(·). The derivative w(·) is
also necessary for the constraint Lp⇒z (p(·),w(·), z(·)). Note that in our context,
w(·) can be computed using the same function h:

w(·) = dh
dx(·) · v(·) = h(v(·)). (7.26)
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Figure 7.10: In the bathymetric SLAM application, the sensing will be the same
for any depth and orientation of the robot. Since the bathymetry only depends
on 2D positions, we can state that two different measurements necessarily mean
two different positions. Such configuration is expressed by the function h of
Equation (7.25).

The constraint network related to this SLAM is:

SLAM :



Variables: x(·), v(·), p(·), w(·), z(·), u(·)
Constraints:

1. Evolution constraint:

— v(t) = f(x(t),u(t))

— L d
dt

(
x(·),v(·)

)
2. Inter-temporal constraint:

— p(·) = h(x(·))
— w(·) = h(v(·))

— Lp⇒z
(
p(·),w(·), z(·)

)
Domains: [x](·), [v](·), [p](·), [w](·), [z](·), [u](·)

(7.27)

219



Chapter 7. A reliable temporal approach for the SLAM problem

In addition, we will overwrite the inter-temporal inclusion function [fp]([t1], [t2]) =
[p]([t2]) − [p]([t1]) that will be used for the Cp⇒z contractor. This will allow a
thinner approximation of the kernel of fp:

[fp]([t1], [t2]) =
(

[p]([t2])− [p]([t1])
)
∩
(∫ [t2]

[t1]
[w](τ)dτ

)
. (7.28)

This formulation allows us to detect more loops in a non-dead-reckoning context,
taking advantage of external constraints on both the position trajectories enclosed
by [p](·) and the velocities bounded by [w](·). In practice, the characterization
of ker

(
[fp]

)
is achieved using the kernelSIVIA algorithm (page 68) coupled with

proprioLoopSIVIA (page 170) that will estimate loop sets based on bounded
velocities [v](·) only6. The results of these algorithms are subpavings that can
be intersected to obtain the approximation of Tp = ker

(
[fp]

)
. See for instance

Figure 7.6a, page 209.

We propose the following Algorithm 15 for the localization method, in which
each constraint of CN (7.27) is applied by related contractors. We underline that the
contractors Cf and Ch are trivially built from a composition of algebraic operators
based on the expressions of f and h.

Algorithm 15 temporalSLAM (in : [v](·), [u](·), [z](·), ε, inout : [x](·))

1: Cf ([v](·), [x](·), [u](·)) . evolution function
2: C d

dt
([x](·), [v](·)) . reaching a consistency state between [x](·) and [v](·)

3: Ch ([p](·), [x](·)) . new tube from the configuration function
4: Ch ([w](·), [v](·)) . corresponding derivative
5: Cp⇒z([p](·), [w](·), [z](·), ε) . inter-temporal resolution
6: Ch ([p](·), [x](·)) . state contraction

Remark 7.2
A faster version of this algorithm is obtained using the Cfast

p⇒z contractor provided
in Algorithm 14. It will be referenced as fastTemporalSLAM and illustrated in the
following section.

6Note that we could also take into account second derivative information, if available.
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7.3 Underwater application: bathymetric SLAM

The proposed method will be illustrated over two underwater experiments involving
the Daurade AUV. We will call this problem bathymetric SLAM since the localization
will be achieved based on altitude measurements obtained by acoustic means.

7.3.1 Context

Echosounders

Bathymetric SLAM has been the object of several studies [Barkby et al., 2009,
Palomer et al., 2016], all of them presenting probabilistic approaches. They
also mostly rely on multibeam echosounders that are expensive sonars providing a
scanline of vertical points for each sensor pulse7. Figure 7.1, page 197, illustrates the
footprint of this kind of sonar. A large amount of work has been undertaken with the
aim of efficiently performing map-matchings over each data overlapping [Chailloux
et al., 2011, Leblond et al., 2005].

However, multibeam sonars can be absent from vehicles due to their cost or
the kind of mission to perform. Then the use of single beam echosounders has to
be considered for SLAM, which has been the subject of very few studies [Barkby,
2011, Bichucher et al., 2015]. The problem is indeed challenging since overlaps are
sparse. Therefore, because of the paucity of relevant information, we will deal with
a one-dimensional observation vector: z ∈ R.

Obtaining the altitude from a DVL sensor

Taking this line of thought further, we will also assume the altitude measurements
will be provided by a DVL instead of a conventional single beam echosounder.
This assumption has the advantage to be applicable on almost all AUVs equipped
for long-range navigations. Indeed, the very same sensor is able to deliver both
speed and altitude measurements, that are the necessary values for our localization
method. In addition, using the same sensor for these measurements simplifies lever
arms computations.

7For instance, a multibeam echosounder may provide data from 120 beams over 120 degrees.
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However, the altitude information obtained from a DVL is extremely filtered.
The sensing consists in the emission of four beams that may cover a wide area of
the seafloor in case of high altitudes. Figure 7.11 gives an illustration of the range
of the DVL lobes. Consequently, the higher the altitude of the robot, the more the
data is filtered. Furthermore, it is difficult to estimate the measurements errors in
this context: the datasheets rarely give reliable standard deviations about altitude
measurements.

(a) Altitude of the DVL: 5m. (b) Altitude of the DVL: 15m.

Figure 7.11: Footprint of the DVL beams according to the altitude (top view).
Ellipses represent DVL lobes from which an altitude can be approximated. Hence,
the higher the altitude of the robot, the more the data is filtered. Source: Daurade
technical datasheet.

In the following sections, we will consider altitude measurements zalt obtained
from the DVL, keeping in mind that a single beam echosounder would provide more
accurate results. Technical issues with Daurade’s embedded sonars prevented us
from using precise measurements. We plan to perform new experiments with more
accurate sounders for which standard deviations are provided by manufacturers.

For now, we have no choice but to use an arbitrary standard deviation on the
measurements zalt. Therefore, the experimental results presented in this chapter
will not necessarily be relevant for assessing the reliability of our method for
the guaranteed localization of Daurade with a DVL. However, this test case is
still interesting to understand the basis of our SLAM, its iterative resolution and
computation times.
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Time-dependent measurements

The vertical position of the robot changes along the mission. The altitude observa-
tion has to be added to the depth zdepth obtained with an accurate pressure sensor.
Additionally, it is important to take into account the rises and falls of sea levels
along the mission. This is easily achievable with tide models that can be coupled
with oceanographic observations for higher precisions. In our application, we will
use a sinusoidal model:

ztide = ma · sin2
(
π/2×∆t
Du

)
, (7.29)

with:

— ztide, the height variation from a given reference z0;

— ma, the tidal range;

— ∆t, the elapsed time since the chosen time reference;

— Du, the duration of the tide.

These values are available in classical tide charts. Note that the tide reference
z0 will have no impact in the resolution method, as it was the case for the m0 mass
in the Borda’s example, page 201.

The final observation is expressed as

z = zalt + zdepth + ztide, (7.30)

with respective standard deviations. This observation is vertically invariant as it
only depends on the horizontal position of the robot: the heading of the AUV does
not impact the measurement8 and we will further assume the pitch θ and roll φ
angles are almost null9.

Proprioceptive measurements

The robot is described by a state vector x where (x1, x2)ᵀ is the horizontal position
and x3 the depth. To keep things simple, we will use the model introduced in

8Assuming the coverage of the DVL lobes is independent of the sensor’s horizontal orientation.
9Which is a realistic assumption since Daurade is accurately regulated during the survey.

Furthermore, sin(θ) ' sin(φ) ' sin(0) ' 0 will have a little impact on the altitude measurement.
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Section 4.4.4, page 126, without inertial hybridization: ẋ1
ẋ2
ẋ3

 = R(ψ, θ, ϕ) · vr, (7.31)

where R(ψ, θ, ϕ) is the Euler matrix given by Equation (4.32) at page 126 and
vr ∈ R3 is the velocity vector provided by the DVL and expressed in the robot’s
coordinate system.

Hybridization models applied by INSs can also be considered and should be
more accurate as they rely on inertial measurements too. However, the precise
characterization of positioning errors is not always at hand, or defined by error
models that may be questionable in a guaranteed context.

Assumption on the space

The space is assumed to be Euclidean, which is a rather realistic hypothesis
when dealing with exploration areas up to a few hundred meters wide. In wider
environments, the curvature of the Earth must be integrated in the equations in
order to maintain the reliability of the outputs. This only impacts evolution and
inter-temporal equations: the resolution method will remain the same.

7.3.2 Daurade’s underwater mission, 20th October 2015

The experiments presented in this chapter took place in the Rade de Brest (France),
see Figure 7.12. The first trial we present has been performed the 20th of October
2015 and was dedicated to this thesis.

Daurade surveyed a 25 hectares seabed area without surfacing during 1h40. The
trajectory planned by the operators of the mission boat Aventurière II involved a
classical boustrophedon after an overall crossing of the area, see Figure 7.16.

This application has already been presented in Section 6.4.2, page 187, where
the existence of 114 loops had been proven. This time, we will use the model of
Equation (7.31) and apply the temporal SLAM method on this dataset, coupled
with bathymetric measurements pictured in Figure 7.14.
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Figure 7.12: Location of the mission area (Polygone de Rascas) in the Rade de
Brest. WGS84: 48◦ 18’ 07.20” N, 4◦ 24’ 19.68” W. Credits: SHOM.

Figure 7.13: Daurade before the experiment, on the working deck of the Aven-
turière II, the 20th October 2015. Photo: S. Rohou.
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Figure 7.14: Bounded observations [z](·) representing bathymetric measurements
obtained from the DVL, a pressure sensor and tide models. The tube is built
without any filtering process on the data provided by the sensors.

As a first step, the fastTemporalSLAM algorithm is applied, calling the Cfast
p⇒z

operator up to a fixed point in 5 iterations during 16 minutes. Table 7.2 and
Figure 7.17 summarize each iteration. We can note that this iterative resolution
lets appear successively new loop detections as well as new loop proofs, which raises
new constraints for the following stages.

The main contractions on [p](·) are performed on the first iteration with a
drift reduced in 259 seconds by 63% for the last slice [p](tf ). Therefore, one could
use the fastTemporalSLAM method without an iterative resolution process, if fast
computations prevail on accurate results.

After reaching the fixed point, we then apply the full temporalSLAM algorithm
in order to refine the results. The best outcomes are obtained after 143 minutes with
a 77% drift reduction. We underline that this algorithm has been multithreaded
and that computations have been performed on a eight-core processor. There
are many opportunities to improve the calculation times, for instance by trying
another parameter ε for the SIVIA algorithms, by improving the implementation
of Ceval – an operator called thousands of times – or by using another computer
representation for the tubes or the t-plane’s paving.
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7.3.3 Daurade’s underwater mission, 19th October 2015

The constraint based approach defended in this document allows us to consider any
kind of observation at any time. Therefore, one could apply this SLAM method
without any knowledge on the initial condition – see for instance the kidnapped
robot problem, Section 4.4.3, page 125.

We will apply the temporal SLAM in this context with another experiment
performed the day before, in the same area. Related figures are displayed at
pages 230 and 231.
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Figure 7.15: 19th October 2015: observation tube [z](·).

This time, an accurate positioning estimation is assumed in the middle of the
mission. Figure 7.17 reveals backward and forward propagations from this reference.

In addition, this example demonstrates that the fastTemporalSLAM algorithm
may provide poor results compared with the full temporalSLAM version. In this
experiment, significant improvements are obtained with the accurate variant. It
means that the wrapping effect on the loop sets Ωi, enclosed by a box [b] = [Ωi], is
too important on this application so that it becomes relevant to study each t-box
of these subpavings. Such pessimistic effect could be evaluated in order to select
the appropriate algorithm to apply, but the global impact of these enclosures on
the contractions is not easily predictable.

227



Chapter 7. A reliable temporal approach for the SLAM problem

Summary of the 20th October experiment
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Figure 7.16: 20th October 2015: mission map. The robot evolved under the surface
during 1h36. The gray area • depicts a bounded dead-reckoning method while the
blue tube • is the result obtained with the temporal SLAM approach. The white
line is Daurade’s trajectory estimated by means of its embedded INS filtered by a
USBL. Red boxes • depict the last slice of the tube [p](·), successively reduced by
the iterative algorithm.
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j
loop

detections
loop

proofs
computation

time
cumulated
comp. time

[p](tf )
contraction

SLAM
algorithm

1 122 104 259s 259s 63.22% fast

2 128 112 192s 451s 71.46% fast

3 128 112 172s 623s 75.17% fast

4 129 115 180s 803s 75.22% fast

5 129 115 182s 985s (0h16) 75.22% fast

fixed point

6 129 115 2708s (0h45) 3693s (1h02) 76.91% accurate

7 129 115 2506s (0h41) 6199s (1h43) 76.96% accurate

8 129 115 2391s (0h40) 8590s (2h23) 76.96% accurate

fixed point

Table 7.2: 20th October 2015: SLAM iterations on Daurade’s experiment. Each
line correspond to an iteration of the Cp⇒z or Cfast

p⇒z contractor. The percentage
column expresses the contraction rate of the final position box [p](tf), initially
obtained with a dead-reckoning method.
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Figure 7.17: 20th October 2015: thickness graph depicting the drift of Daurade
along the mission. The initial drift is linear due to the single integration of velocity
measurements, Equation (7.31). The algorithm fastTemporalSLAM is then applied
iteratively up to a fixed point. Its efficiency on [p](·) is plotted in blue •. Then,
we apply the algorithm temporalSLAM in order to obtain thinner results drawn in
red •. The last values of this graph, at tf = 5760s, depict the diagonal length of
the red boxes drawn in Figure 7.16.
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Summary of the 20th October experiment
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Figure 7.18: 19th October 2015: mission map. This time, the initial state is assumed
unknown. The constraints are propagated from a known position in the middle
of the mission in backward and forward ways. Red boxes • picture estimation
improvements on initial and final states.
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j
loop

detections
loop

proofs
computation

time
cumulated
comp. time

[p](t0)
contraction

SLAM
algorithm

1 76 65 93s 93s 22.76% fast

2 78 67 90s 183s 22.76% fast

3 78 67 108s 291s (0h05) 22.76% fast

fixed point

4 78 67 1726s (0h29) 2017s (0h34) 31.47% accurate

5 77 67 1392s (0h23) 3409s (0h57) 46.96% accurate

6 77 67 1424s (0h24) 4833s (1h21) 51.85% accurate

7 77 68 1470s (0h24) 6303s (1h45) 51.85% accurate

fixed point

Table 7.3: 19th October 2015: SLAM iterations on Daurade’s experiment. The
robot evolved under the surface during 1h05. The percentage column expresses the
contraction rate of the first position box [p](t0), initially obtained with a backward
dead-reckoning method.
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Figure 7.19: 19th October 2015: thickness graph. Constraints are propagated from
a bounded state at t = 1965s.
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7.3.4 Overview of the environment

Finally, we provide in Figure 7.20 a Digital Elevation Model (DEM) of the area
covered by the robot during these two experiments. One should note that this map
has not been used for the SLAM. It is however interesting to picture an overview
of the feasible observations in order to understand the contractions over each loop.
Unfortunately, this survey does not completely cover the 20th October’s experiment.

Less convincing results have been obtained for the 19th October’s experiment.
This is probably due to the high number of loops in the 20th’s trial, which weighs
in favour of numerous constraints of interest for the localization. In addition, the
DEM reveals a more homogeneous seafloor for the 19th’s mission.

20 22 24 26 28 30 32 34 36 38
depth

Figure 7.20: Digital Elevation Model (DEM) of the area obtained during another
campaign by a vessel equipped with a multibeam echosounder and GNSS positioning.
The trajectories of the presented experiments are drawn on the map in order to
visualize the bathymetric measurements. Credits: SHOM.
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7.4 Discussions

7.4.1 Relation to the state of the art

A considerable amount of work has been done to address the SLAM problem over
the past decades. Numerous SLAM techniques have been studied and it would
be impossible to provide an exhaustive list of methods in this chapter. We shall
rather use a taxonomy given in [Thrun and Leonard, 2008] in order to distinguish
the main approaches and place our contribution in this field.

— full SLAM vs. online SLAM. Online SLAM algorithms are filters that
estimate the present robot location instead of the complete past trajectory.
These methods are usually incremental. On the other hand, a full SLAM
algorithm will identify antecedent states during a global resolution. Our
approach has been studied in the context of full SLAM problems and its
extension for online applications is a work in progress.

— topological vs. metric. Topological approaches build maps by defining
relations between features; e.g. a point a is adjacent to b. This qualitative
mapping is suited for navigation purposes. On the other hand, a metric SLAM
will provide maps made of metric relations between the places, which is our
case if we build a map from the state estimation that has been performed.

— volumetric vs. feature-based. Volumetric methods process a high resolu-
tion map, thus providing a realistic reconstruction of the environment. This
usually implies heavy computations and high dimensional maps, contrary to
feature-based methods that extract relevant information to be recognized
along the exploration. In this latter case, the map amounts to a set of
features which is an efficient way to summarize the information, at the risk of
discarding useful data. From our point of view, the method proposed in this
chapter is neither volumetric nor feature-based, but temporal in the sense
that the relations between the items are entirely based on time references.

— known vs. unknown correspondence. When sensed items are identified,
then correspondences can be searched. This is known as the data association
problem. Other methods do not rely on the identification of landmarks and
are classified as unknown correspondence approaches, which is the case of our
SLAM method.
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— static vs. dynamic. Dynamic methods assume that the environment may
change over time, which is a complicated challenge. However in the literature,
most of the methods are static, which is also the case of ours despite the use
of evolution models such as Equation (7.29), page 223: any unpredictable
change will disrupt the resolution.

— small vs. large uncertainty. Some approaches are efficient only in the case
of small uncertainties in the location estimate. Conversely, other methods deal
with large amounts of uncertainties which lead to the loop closure problem.
Our method is comfortable in this situation, being able to detect and prove
loop closings in the worst bounded-error contexts.

— active vs. passive. An active SLAM method will integrate the control of
the robot into its own resolution process. In this way, the exploration can
be more comprehensive and the localization easily refined by selecting the
areas to visit again. Our approach is passive since we are purely observing
datasets without acting upon them.

— single-robot vs. multi-robot. Multi-robot missions grew in popularity
over the past years, providing new constraints of interest for the localization
problem while multiplying the footprint of observation sensors. Our method
involves a single robot and its extension to collaborative contexts will be the
object of future work.

— probabilistic vs. set-membership. Lastly, our approach provides guar-
anteed results which is of high interest for safety purposes. This is a strong
advantage of set-membership methods against probabilistic ones.

A synthesis of these categories is provided in Table 7.4.

7.4.2 About a Bayesian resolution

One could employ Bayesian methods to solve our temporal SLAM problem. How-
ever, we believe that set-membership tools are more suitable for this very case.

In particular, we may mention that tubes are infinite-dimensional spaces. Indeed,
considering a trajectory defined over three times t1, t2, t3, then the corresponding
space will be three-dimensional. In the continuous case, this space becomes of
infinite dimension.
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Table 7.4: Positioning of our approach among SLAM methods.

versus

full SLAM online SLAM

topological metric

volumetric temporal feature-based

known corresp. unknown corresp.

static dynamic

small uncertainty large uncertainty

active passive

single-robot multi-robot

probabilistic set-membership

Bayesian methods badly behave in case of large dimensional spaces. For instance,
bisecting a box [a] ∈ IR250 along each dimension will lead to 2250 possibilities10.
These are all cases to test independently. Conversely, by working on bounds only,
we believe that set-membership methods are more efficient in this situation.

In addition, our temporal approach relies on the implication constraint defined in
Equation (7.11), page 205. It induces a strong dependency between proprioceptive
and exteroceptive information, while Bayesian methods usually assume independent
variables.

7.4.3 Biased sensors

We emphasize that this temporal approach is robust to biased observation sensors.
An unknown – but constant – bias b will have no impact on the relation z(t1) = z(t2),
which is equivalent to z(t1)+b = z(t2)+b. This is common when dealing with inter-
temporal measurements, as the Borda’s double weighing does. In practice, the main
advantage of this is the ability to apply the method with uncalibrated observation
sensors. Naturally, this remark does not apply for evolution measurements.

10As an order of magnitude, 2250 is comparable to the number of atoms in the universe.
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7.4.4 Fluctuating measurements

One can easily understand that the limits of our approach are reached in case of a
constant observation over time, i.e. ż(·) = 0. Indeed, the kernel characterization of
[z](·) will be too uncertain to allow any loop set contraction. On the other hand, a
signal presenting strong fluctuations will not efficiently contract a t-set (Tp)i. An
effective contraction is presented in Figure 7.7, page 210, while this fluctuating
effect is highlighted in Figure 7.21.

It is actually difficult to estimate the best properties expected for z(·). A
suitable fluctuation would be highly related to the temporal drift of the initial
dead-reckoning method. In any case, though, any measurement is always welcome
and the fusion of many p scalar properties is easily achievable with a single vector
z ∈ Rp.
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Figure 7.21: An example of inefficient temporal contractions in case of too fluctu-
ating observations. The loop set is sparsely contracted which does not significantly
reduce its envelope. Consequently, very few contractions on [p](·) can then be
expected.
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7.5 Conclusion

Our fourth contribution was a new reliable SLAM method.

Robotic contribution

The main novelty lies in the temporal approach used for the resolution: time
references become unknown variables to be estimated. This way, the localization
process does not stand on a conventional map to be built, but on a set of temporal
references to be approximated.

The method is illustrated over actual experiments involving the Daurade AUV.
The proposed bathymetric SLAM, a topic that has been little studied in the
case of single beam echosounders, reveals how the method behaves in case of
strong positioning uncertainties and poor observation measurements. In addition,
the approach stands on so-called inter-temporal measurements which allows the
consideration of any kind of time-invariant observations, even when the analytical
expression of the observation function is not known.

If we used bathymetric data in our illustrations, one could also employ other
kinds of measurements. For instance, a terrestrial robot evolving in a dark room
could successively sense the acoustic response of the place to a sound stimulus.
Then the temporal SLAM method could refine the localization in case of a proven
loop by comparing acoustic signals at different times.

Constraints contributions

The originality of this work was also to model a SLAM problem by a CN involving
inter-temporal constraints and heterogeneous variables such as sets or trajectories.
Using the tools provided in the previous chapters, we ensure the SLAM constraints
to be fulfilled at any time during the process.

However, an operator for the specific inter-temporal implication constraint was
still missing to achieve the resolution with a full contractor programming approach.
This chapter introduced a new contractor Cp⇒z made as a composition of the tools
provided in the previous parts of this document. In particular, the contractor Ceval
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presented in Chapter 5 revealed its full potential on this application, providing
a way to couple trajectories with time variables in a bounded-error context. In
addition, it is shown that Cp⇒z necessarily relies on a zero verification algorithm
such as the topological degree test detailed in Chapter 6.

In sum, this SLAM problem was an opportunity to study the following elemen-
tary constraints:

1. Evolution constraint – Chapter 4
L d

dt

(
x(·),v(·)

)
: ẋ(·) = v(·)

2. Evaluation constraint – Chapter 5

Leval
(
t, z,p(·),w(·)

)
:
{

z = p(t)
ṗ(·) = w(·)

3. Inter-temporal evaluation constraint – Chapter 7

Lt1,t2
(
t1, t2,p(·),w(·)

)
:
{

p(t1) = p(t2)
ṗ(·) = w(·)

4. Inter-temporal implication constraint – Chapters 6 and 7

Lp⇒z
(
p(·),w(·), z(·)

)
:
{

p(t1) = p(t2) =⇒ z(t1) = z(t2)
ṗ(·) = w(·)

All of them have been ultimately involved in the algorithm temporalSLAM under
the form of contractors.

Prospects

There is still a lot of work to be done on this SLAM topic. The first point to
investigate is a meaningful comparison of our work with other SLAM approaches.
If it may not be relevant to compare a set-membership method with a probabilistic
one because of the heterogeneousness of the outcomes, we could however merge
several methods and improve the state of the art in the probabilistic field.

About the bathymetric SLAM application, new experiments with more suited
sensors such as a single beam echosounder would be welcomed. According to the
availability of Daurade in the coming months, we could apply the method with a
more complex evolution model based on an hybridization INS/DVL. This would
allow thinner results in the trajectories estimations. Using an accurate bathymetric
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sensor, we could then evaluate how the method is of interest to hold the special
order of hydrographic surveys for a longer period. Further experiments involving
smaller units such as the Toutatis AUVs, presented in the introduction of this
document, or best known robots such as Comet11, Iver12 or Remus 100 13 vehicles,
would be interesting to state the usefulness of the approach for low-cost units and
stronger measurement uncertainties.

We discussed in Section 7.4 that our method is passive: the algorithm does not
output the control of the robot during its process. It would be interesting to study
an active approach to decide where to move in order to improve the localization
as efficiently as possible. Such strategy would induce relevant loops that could
potentially raise valuable observation constraints. It is indeed interesting to provoke
a loop over an heterogeneous part of the seabed instead of a flat seafloor area.

Another point is the mapping part of the method that has not been properly
studied. Each measurement is referenced by a precise date t which spatially corre-
sponds to a position box [p](t) ∈ IR2 that has been contracted during the process.
In our application, several tools such as bathymetric interpolation methods could
be integrated in order to build a complete map. A reliable mapping approximation
can also be studied based on interval tools such as those presented in [Desrochers
and Jaulin, 2017].

Finally, the constraint Lp⇒z
(
p(·),w(·), z(·)

)
has been illustrated with an appli-

cation involving 2D trajectories p(·). The zero-verification algorithm requested for
this constraint has to be scalable according to the dimension of p(·). We provided
a 2D implementation of the topological degree test in Chapter 6, but a higher
dimensional test would be welcomed to apply Lp⇒z in the most generic way. This
is currently a work in progress.

11Comet AUVs: http://rtsys.eu/en/drones/comet
12Iver AUVs: http://www.iver-auv.com
13Remus 100 AUVs: https://www.km.kongsberg.com
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8.1 Conclusions

This thesis considers the localization of autonomous robots evolving in unstructured
underwater environments. The common thread of this work is the use of temporal
constraints and inter-temporal measurements raising new opportunities of localiza-
tion, under-exploited so far. Besides, these robotic problems have motivated the
study of academic research topics in the fields of interval analysis and constraint
programming. Our goal was to develop new reliable tools to fit our needs. While
their application on underwater experiments appears to be efficient, their use in
other fields such as automatic and control, collision avoidance, path planning,
terrestrial localization or spatial trajectory evaluations could also be considered.

Scope of the contributions

Our primary motivation is the localization of mobile robots in environments
characterized by the paucity of relevant information. A SLAM approach would
allow a concurrent localization of the vehicle and mapping of the area, without a
prior knowledge on the environment nor the use of positioning systems. However,
already existing approaches are not comfortable with poor measurements, unknown
observation functions or strong positioning uncertainties. In addition, they do not
provide guaranteed results that may be expected for safety reasons.

Our strategy consisted in taking a temporal approach to solve a spatial problem.
Indeed, time references tie together state estimations and environment observations
that are uncertain spatial values due to errors coming from the sensors. The
matching of these values implies further uncertainties and we proposed to handle
them in a bi-temporal space depicting inter-temporal configurations. This view
differs from usual methods that only consider uncertainties in the spatial space
without performing estimations of temporal references.
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Chapter 7 detailed this temporal SLAM and provided illustrations on actual
underwater experiments. Our choice was to address this problem with a constraint
programming approach coupled with interval analysis. This decision was motivated
by the simplicity and the genericity allowed by this paradigm. By depicting a
problem with constraints and sets of feasible solutions, one can perfectly deal with
complicated situations or poor datasets. Furthermore, the developed algorithms do
not require sophisticated settings: in this document, only two parameters have been
introduced: the time discretization of a tube δ and the precision ε of set-inversion
algorithms (SIVIA).

To reach our goal, though, three primary constraints had to be studied. All
of them apply to trajectories by means of new operators designed in purpose to
reduce the domains of feasible dynamical solutions: so-called tubes. The first study
of L d

dt
: ẋ(·) = v(·) has been the object of earlier work but a reliable contractor

was still missing. Definitions and proofs of the new contractor C d
dt

were provided
in Chapter 4 together with robotic applications. We also discussed the limits of
the approach when it comes to overcome unwanted pessimism on the trajectories
evaluations.

The second constraint of interest, Leval : z = y(t), is fully investigated for the
first time in this thesis. It allows the consideration of strong time uncertainties: a
topic that has been poorly studied with set-membership methods and in the state
estimation community. Chapter 5 presented Ceval which aims at considering any
uncertainty about the evaluation of a trajectory at a given time. Its application
on robotic problems, such as the correction of a drifting clock, is a first step
towards new problem-solving techniques, allowing resolutions from a temporal
aspect. Chapter 7 typically illustrated an original application made possible by
this contractor.

Our SLAM problem has also triggered the development of a so-called inter-
temporal implication constraint denoted Lp⇒z : p(t1) = p(t2) =⇒ z(t1) = z(t2).
Its implementation required the study of a new zero verification test that has been
successfully applied in robotics to prove the existence of loops along uncertain
robot trajectories. Indeed, Chapter 6 demonstrated the efficiency of the topological
degree theory when coupled with function evaluations in a bounded-error context.
In our robotic applications, we discussed the optimality of the approach. These
results strongly impact the effectiveness of the Cp⇒z contractor, that has then be
detailed in Chapter 7 and illustrated in the context of a new bathymetric SLAM
approach.
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In a nutshell, this thesis is rooted in robotic problems which gradually leads to
the development of new academic tools. It brought new advances in the field of
constraint programming by proposing a declarative way to deal with dynamical
systems. A reliable contractor programming framework is now at hand, allowing
one to build solvers for dynamical systems. This set of tools has been illustrated
along this document with realistic robotic applications.

8.2 Summary of the contributions

Papers

Chapters 4, 5, 6 and 7 are subject to publications in robotic journals. The last
one is still a work in progress. We plan new experiments with accurate datasets in
order to clearly assess the relevancy of our approach for underwater navigation.

The list of published or submitted papers of this thesis is summarized below:

— Rohou, S., Jaulin, L., Mihaylova, L., Le Bars, F., and Veres, S. M. (2017).
Guaranteed computation of robot trajectories. Robotics and Autonomous
Systems, 93:76–84

— Rohou, S., Jaulin, L., Mihaylova, L., Le Bars, F., and Veres, S. M. (2018b).
Reliable non-linear state estimation involving time uncertainties. Automatica,
93:379–388

— Rohou, S., Franek, P., Aubry, C., and Jaulin, L. (2018a). Proving the existence
of loops in robot trajectories. Submitted to the International Journal of
Robotics Research

Open-source library

A significant contribution of this work is the development by the author of the new
open-source library Tubex , freely available at:

— http://www.simon-rohou.fr/research/tubex-lib
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This project gathers all the elementary tools presented in this document. The
reader will be able to process the simulated examples and build its own solvers for
the resolution of more dedicated dynamical problems.

8.3 Overall prospects

From now on, the reader should be able to address problems related to dynamical
systems by breaking them down into a set of elementary constraints involving
vectors, trajectories or sets. Then he could appropriately define initial domains of
variables and use the presented contractors to approximate solution sets. However,
build such solver requires technical skills to efficiently handle intervals, tubes,
contractors and related settings. This knowledge is not at hand for many users
who could benefit from this constraint programming approach. There is then a
need to provide an extra abstraction level in the design of solvers.

The continuation of this thesis will be to design a dedicated language to define
problems. This would imply syntax definitions and an appropriate semantic to
maintain the ability to deal with a wide range of problems. A close link must be
investigated between this language and its automatic implementation under the
form of contractors. For instance, tubes should be automatically instantiated with
an appropriate time discretization δ. Similarly, while we explained that the order
of contractor calls has no impact on the final result, a smart scheduling could be
processed in order to speed up the computations.

In addition, this would also be a good opportunity to push the limits of our
approach by coupling it with further tools. One could merge several methods of
guaranteed integration, such as those presented in the introduction of Chapter 4,
which would be helpful to avoid some overestimation of trajectories sets. Further-
more, the complicated task of managing hybrid constraints with our approach
could be dealt by merging it with some Eulerian approaches such as [Le Mézo
et al., 2018].

All these optimizations can be hidden from user’s view who would only focus on
its problem definition. This opening is the subject of the new Contredo consortium1

that will gather several academic and industrial partners on this topic over the
next three years.

1From the French National Research Agency (ANR). ANR Programme: (DS0702) 2016.
Project ID: ANR-16-CE33-0024. Project coordinator: Pr. Gilles Trombettoni.

244

http://www.agence-nationale-recherche.fr/Project-ANR-16-CE33-0024
http://www.agence-nationale-recherche.fr/en


Bibliography

[Abdallah et al., 2008] Abdallah, F., Gning, A., and Bonnifait, P. (2008). Box
particle filtering for nonlinear state estimation using interval analysis. Automatica,
44(3):807–815.

[Alexandre dit Sandretto and Chapoutot, 2016] Alexandre dit Sandretto, J. and
Chapoutot, A. (2016). Validated Explicit and Implicit Runge-Kutta Methods.
Reliable Computing electronic edition, 22.

[Alexandre dit Sandretto et al., 2014] Alexandre dit Sandretto, J., Trombettoni,
G., Daney, D., and Chabert, G. (2014). Certified Calibration of a Cable-Driven
Robot Using Interval Contractor Programming. In Thomas, F. and Perez Gracia,
A., editors, Computational Kinematics: Proceedings of the 6th International
Workshop on Computational Kinematics (CK2013), pages 209–217. Springer
Netherlands, Dordrecht.

[Angeli et al., 2008] Angeli, A., Filliat, D., Doncieux, S., and Meyer, J.-A. (2008).
Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual
Words. IEEE Transactions on Robotics, 24(5):1027–1037.

[Apt, 1999] Apt, K. R. (1999). The essence of constraint propagation. Theoretical
Computer Science, 221(1):179–210.

[Araya et al., 2008] Araya, I., Neveu, B., and Trombettoni, G. (2008). Exploiting
Common Subexpressions in Numerical CSPs. In Stuckey, P. J., editor, Principles
and Practice of Constraint Programming: 14th International Conference, CP
2008, Sydney, Australia, September 14-18, 2008. Proceedings, pages 342–357.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[Araya et al., 2012] Araya, I., Trombettoni, G., and Neveu, B. (2012). A Contractor
Based on Convex Interval Taylor. In Beldiceanu, N., Jussien, N., and Pinson,
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[Drevelle and Bonnifait, 2009] Drevelle, V. and Bonnifait, P. (2009). High integrity
GNSS location zone characterization using interval analysis. In ION GNSS 2009,
pages 2178–2187, Savannah, GA, United States.

[Drevelle and Nicola, 2014] Drevelle, V. and Nicola, J. (2014). VIBes: A Visualizer
for Intervals and Boxes. Mathematics in Computer Science, 8(3):563–572.

[Dubins, 1957] Dubins, L. E. (1957). On Curves of Minimal Length with a Con-
straint on Average Curvature, and with Prescribed Initial and Terminal Positions
and Tangents. American Journal of Mathematics, 79(3):497.

[Duracz, 2016] Duracz, A. (2016). Rigorous Simulation : Its Theory and Appli-
cations. PhD thesis, Halmstad University, Centre for Research on Embedded
Systems (CERES).

[Durrant-Whyte and Bailey, 2006] Durrant-Whyte, H. and Bailey, T. (2006). Si-
multaneous localization and mapping: part I. IEEE Robotics & Automation
Magazine, 13(2):99–110.

[Filippova et al., 1996] Filippova, T. F., Kurzhanski, A. B., Sugimoto, K., and
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Reliable robot localization:
a constraint programming approach

over dynamical systems

The localization of underwater robots remains a challenging issue. Usual sensors, such as Global Nav-
igation Satellite System (GNSS) receivers, cannot be used under the surface and other inertial systems
suffer from a strong integration drift. On top of that, the seabed is generally uniform and unstructured,
making it difficult to apply usual Simultaneous Localization and Mapping (SLAM) methods to perform
a localization.

Hence, innovative approaches have to be explored. The presented method can be characterized as a
raw-data SLAM approach, but we propose a temporal resolution – which differs from usual methods –
by considering time as a standard variable to be estimated. This concept raises new opportunities for
state estimation, under-exploited so far. However, such temporal resolution is not straightforward and
requires a set of theoretical tools in order to achieve the main purpose of localization.

This thesis is thus not only a contribution in the field of mobile robotics, it also offers new perspec-
tives in the areas of constraint programming and set-membership approaches. We provide a reliable
contractor programming framework in order to build solvers for dynamical systems. This set of tools is
illustrated throughout this document with realistic robotic applications.

Keywords: mobile robotics, dynamical systems, constraint programming, interval analysis, localization,
SLAM, AUVs

Localisation fiable de robots :
une approche de programmation par contraintes

sur des systèmes dynamiques

Aujourd’hui, la localisation de robots sous-marins demeure une tâche complexe. L’utilisation de cap-
teurs habituels est impossible sous la surface, tels que ceux reposant sur les systèmes de géolocalisation
par satellites. Les approches inertielles sont quant à elles limitées par leur forte dérive dans le temps.
De plus, les fonds marins sont généralement homogènes et non structurés, rendant difficile l’utilisation
de méthodes SLAM connues, qui couplent la localisation et la cartographie de manière simultanée.

Il devient donc nécessaire d’explorer de nouvelles alternatives. Notre approche consiste à traiter un
problème de SLAM de manière purement temporelle. L’originalité de ce travail est de représenter le
temps comme une variable classique qu’il faut estimer. Cette stratégie soulève de nouvelles opportunités
dans le domaine de l’estimation d’état, permettant de traiter de nombreux problèmes sous un autre
angle. Toutefois, une telle résolution temporelle demande un ensemble d’outils théoriques qu’il convient
de développer.

Cette thèse n’est donc pas seulement une contribution dans le monde de la robotique mobile, elle
propose également une nouvelle démarche dans les domaines de la propagation de contraintes et des
méthodes ensemblistes. Cette étude apporte de nouveaux outils de programmation par contracteurs qui
permettent le développement de solveurs pour des systèmes dynamiques. Les composants étudiés sont
mis en application tout au long de ce document autours de problèmes robotiques concrets.

Mots-clefs : robotique mobile, systèmes dynamiques, programmation par contraintes, analyse par
intervalles, localisation, SLAM, AUVs
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