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Abstract

This dissertation aims at gathering some contributions of my research activity devoted to the development
and implementation of mathematical and High Performance Computing (HPC) methods for modeling
complex flows. Chapter 1 contains a detailed Curriculum Vitae and administrative data while Chapter 2
presents a general introduction.

Over the last decade, I have focused on two areas of research forming the two parts of this manuscript.
Part I concerns CFD simulations of incompressible flows for which a wide range of issues have

been raised. One of the major difficulty when solving computationally the incompressible Navier-Stokes
equations consists in ensuring the solenoidal constraint on the velocity. It can be done by the computation
of a pressure field which will guarantee a solenoidal velocity field. From all the methods dealing with
this point, we can sort them in two categories: exact (as Uzawa method) and approximative methods.
Chapter 3 discusses several exact strategies to compute the 2D Stokes eigenvalue problem using spectral
element methods. Among the approximative methods, pressure-correction schemes decouple the pres-
sure from the velocity: pressure is treated explicitly in a first sub-step, and is corrected in a second one
by projecting the predicted velocity onto an ad-hoc space during a pressure correction step. Chapter 4
proposes a new original method to compute the Hodge Helmoltz decomposition, drawing a parallel be-
tween this decomposition and the pressure correction step. In addition to the pressure correction scheme,
the velocity-correction scheme switches the two sub-steps: a pressure prediction problem is solved, fol-
lowed by a velocity correction step. Most of the studies made on these time-splitting methods consider
only Dirichlet boundary conditions while few references deal with outflow boundary conditions. That is
why Chapter 5 proposes a new numerical scheme treating outflow boundary conditions, for both pressure
and velocity correction schemes. An additional issue on this theme concerns the computational geome-
try. When flows are calculated for complex geometries, one can either use a block-structured grid or an
unstructured one. Chapter 6 describes a domain decomposition method to run the Navier-Stokes equa-
tions efficiently on non-matching and overlapping block-structured meshes. Chapter 7 describes how we
developed a mesh partitioner to carry out HPC simulations on block-structured meshes.

Part II is dedicated to the modeling and finite volume numerical simulation of multiphase flows in
porous media. Chapter 8 proposes a non exhaustive state of the art and the description of the environment
DuMuX in which we have been implementing and integrating all our developments for several years.
Chapter 9 describes our main contributions concerning these methods and their implementations in a
HPC context. We have been involved in the European project FORGE (Fate of Repository Gases) that
aimed at studying gas migration in deep repository for radioactive waste. We participated to several
benchmarks and we coupled DuMuX with an upscaling strategy to treat the strong heterogeneities present
in the nuclear waste disposal. Our method allowed to reduce drastically the 3D computational time,
while producing results that were very close to those of the other participants. Since 2013, we have been
interested in the numerical simulation of multiphase reactive flows. We started with a sequential scheme
that consists in solving a two-phase compositional flow followed by a reactive transport problem. Several
successive strategies involving significant developments have been considered to improve the resolution
of the reactive transport problem. Nonetheless, sequential approaches can introduce splitting errors
necessitating reduction for the time steps that can become prohibitive. As a consequence, we decided
to complete our study by the development of fully coupled fully implicit strategies. Sequential and
implicit strategies were validated through numerical benchmarks with applications to geological storage
of CO2 and nuclear waste. We present here a part of these results and focus on the comparison between
sequential and global implicit approaches in terms of accuracy and computational time. Some parallel
computations are also discussed.

Lastly, some concluding remarks and perspectives are formulated in Chapter10.
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Résumé

Ce manuscrit vise à rassembler des contributions de mes activités de recherche dédiées au développement
et l’implémentation de méthodes numériques et de calcul haute performance (HPC) pour la modélisation
d’écoulements de fluides complexes. Le Chapitre 1 contient un Curriculum Vitae détaillé ainsi que des
données administratives tandis que le Chapitre 2 présente une introduction générale.

Durant les dix dernières années, je me suis focalisé sur deux axes de recherche constituant les deux
parties de ce manuscrit.

La Partie I concerne des simulations de Mécanique des Fluides Numérique (MFN) concernant des
écoulements incompressibles pour lesquels un grand nombre de problèmes ont été abordés. L’une des
difficultés majeures dans la résolution des équations de Navier-Stokes incompressibles consiste à as-
surer la contrainte solénoïdale sur la vitesse. Cela peut se faire par le calcul d’un champ de pression
qui garantira un champ de vitesse solénoïdal. Les méthodes traitant de ce point peuvent être classées
en deux catégories : les méthodes exactes (comme la méthode d’Uzawa) et les méthodes approchées.
Le Chapitre 3 discute de plusieurs stratégies exactes pour calculer le problème aux valeurs propres de
Stokes 2D en utilisant des méthodes d’éléments spectraux. Parmi les méthodes approchées, les méthodes
de correction de pression découplent la pression de la vitesse : la pression est traitée explicitement dans
un premier sous-problème, puis elle est corrigée en projetant la vitesse prédite sur un espace approprié
lors d’une étape dite de correction de pression. Le Chapitre 4 propose une nouvelle méthode originale
pour calculer la décomposition de Hodge Helmoltz, établissant un parallèle entre cette décomposition et
l’étape de correction de pression. Outre les méthodes de correction de pression, les méthodes de correc-
tion de vitesse commute les deux sous-problèmes : un problème de prédiction de pression est résolu, suivi
d’une étape de correction de vitesse. La plupart des études réalisées sur ces méthodes de time-splitting ne
tiennent compte que de conditions aux limites de Dirichlet, tandis que peu de références portent sur les
conditions aux limites de sortie. Ainsi, le Chapitre 5 propose une nouvelle stratégie numérique traitant
des conditions aux limites de sortie, à la fois pour les schémas de correction de pression et de vitesse.
Une autre question sur ce thème concerne la géométrie de calcul. Lorsque la géométrie de calcul est com-
plexe, on peut utiliser soit une maillage structuré par blocs, soit un maillage non structuré. Le Chapitre 6
décrit une méthode de décomposition de domaine pour résoudre efficacement les équations de Navier-
Stokes sur des maillages structurés par blocs non-conformes avec recouvrement. Le chapitre 7 décrit
le développement d’un partitionneur de maillage pour effectuer des simulations HPC sur des maillages
structurés par blocs.

La partie II est consacrée à la modélisation et à la simulation numérique d’écoulements multi-
phasiques en milieux poreux par la méthode des volumes finis. Le Chapitre 8 propose un état de l’art non
exhaustif et la description de l’environnement DuMuX dans lequel nous avons mis en œuvre et intégré
tous nos développements depuis plusieurs années. Le Chapitre 9 décrit nos principales contributions
concernant ces méthodes numériques et leurs implémentations dans un contexte HPC. Nous avons par-
ticipé au projet européen FORGE (Fate of Repository Gases) qui visait à étudier la migration de gaz
dans un stockage profond de déchets radioactifs. Nous avons participé à plusieurs benchmarks et nous
avons couplé DuMuX avec une stratégie d’upscaling pour traiter les fortes hétérogénéités présentes dans
le site de stockage. Notre méthode a permis de réduire drastiquement le temps de calcul 3D, tout en
produisant des résultats très proches de ceux des autres participants. Depuis 2013, nous nous intéressons
à la simulation numérique d’écoulements réactifs multiphasiques. Nous avons commencé par considérer
une approche séquentielle qui consiste à résoudre un écoulement multiphasique compositionnel suivi
d’un problème de transport réactif. Plusieurs stratégies successives impliquant des développements sig-
nificatifs ont été envisagées pour améliorer la résolution du problème du transport réactif. Néanmoins,
les approches séquentielles peuvent introduire des erreurs de splitting qui nécessitent des réductions de
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pas temps pouvant devenir rédhibitoires. En conséquence, nous avons décidé de compléter notre étude
par l’élaboration de stratégies totalement couplées et totalement implicites. Les stratégies séquentielles
et implicites ont été validées par de nombreux benchmarks numériques avec des applications au stock-
age géologique du CO2 et de déchets nucléaires. Nous présentons ici une partie de ces résultats et nous
nous concentrons sur la comparaison entre les approches séquentielle et globale implicite en termes de
précision et de temps de calcul. Quelques calculs parallèles sont également discutés.

Pour conclure, quelques remarques finales et perspectives sont formulées dans le Chapitre 10.
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Chapter 2

General introduction

Mathematical modeling and numerical simulation are essential for studying a large number of physical
problems. The modeling step consists in finding a system of partial differential equations (PDE) rele-
vant to represent the problem. A compromise has to be found between the richness of the model that
must ensure a realistic modeling and its ability to be solved with moderate computational costs. Then,
the elaboration of adequate numerical methods includes, besides the mathematical analysis (existence,
stability), the study of numerical schemes, the analysis of their convergence, their complexity and their
validation on benchmarks. Finally, the computational implementation must depend on the complexity
of the geometries, the size of the problems to be solved and the orders of magnitude of the different
characteristic scales.
In this context, this manuscript aims at gathering my contributions since my PhD thesis entitled "High
order method for the -grad(div(.)) operator and applications" and defended in 2007 in the laboratory
TREFLE (Transfer Fluid Energy) at the University of Bordeaux 1 [12]. The purpose of this work was
to contribute to the approximation of the -grad(div(.)) operator by spectral element methods. Several
applications related to Stokes problem, and the steady and unsteady Navier-Stokes incompressible equa-
tions were considered. After my PhD defense in 2007, I spent three years in the laboratory TREFLE
as temporary research and teaching assistant (09/2007-09/2008) and as post-doctoral fellow (10/2008-
09/2010). During the first two years, I focused on the implementation of new features on a Finite-Volume
code named Thetis dedicated to the modeling and simulation of incompressible flows. In 2010, I was
recruited as a CNRS researcher in the Laboratory of Mathematics and its Applications of Pau at the Uni-
versity of Pau & Pays Adour. I have been working in the teams "Analysis ans Numerical Simulation"
and then "Numerical methods and complex fluids" on the numerical simulation of multiphase flows in
porous media. Therefore, since my PhD thesis, I mainly work around two research areas: the numerical
simulation of incompressible fluids and the numerical simulation of multiphase flow in porous media.
The common point between these two activities is the development and implementation of mathemati-
cal and high performance computational methods for modeling complex flows. As a consequence, this
manuscript is divided into two parts.

Part I deals with contributions for Computational Fluid Dynamics (CFD) of incompressible flows. It
is composed of five chapters presenting work that has been published in 7 articles [20, 23, 24, 25, 26, 27,
247], the content of which is briefly detailed thereafter. Computational fluid mechanics is an essential
tool to analyze fluid behavior in many environmental and industrial issues. Given the constant progress
in computing resources and the need to model increasingly complex problems, sophisticated numerical
schemes must be developed to take benefit from these computational facilities. Many issues are related
to the numerical simulation of incompressible fluids (such that water or blood). Solving computationally
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an accurate solution to the unsteady incompressible Navier-Stokes equations is an intricate task. Beside
the treatment of nonlinearities, a solenoidal constraint on the velocity (div~u = 0) must be ensured. In can
be done by the computation of a pressure field which will ensure a solenoidal velocity field. From all the
methods dealing with this point, we can sort them in two categories: exact and approximative methods.
In the first one, there are all the methods based on the idea proposed by Uzawa. In this context, Chapter 3
discusses several exact strategies to compute the 2D Stokes eigenvalue problem in the framework of spec-
tral element methods. We focus on formulations considering only the velocity as variable (the pressure
gradient is eliminated in a relevant way): the penalty method and a so-called "divergence-free Galerkin
approach" [24, 25]. Another class of non-exact methods consists in decoupling the pressure from the
velocity by means of a time-splitting scheme. This scheme significantly reduces the computational cost
of an approximate solution satisfying the incompressibility constraint but with a diminished accuracy.
The most popular methods are pressure-correction schemes. They require the solution of two sub-steps:
the pressure is treated explicitly in the first one, and is corrected in the second one by projecting the
predicted velocity onto an ad-hoc space during a pressure correction step. Chapter 4 draws a parallel
between this pressure correction step and the Hodge Helmoltz decomposition that consists, among other
things, in extracting the solenoidal part of a vector field. Still using spectral element methods, a new
original method is proposed in Chapter 4 to perform this decomposition [20]. In addition to the pressure
correction scheme, there is a less studied alternative technique known as the velocity-correction scheme.
It consists in switching the two sub-steps: a pressure prediction problem is solved, followed by a velocity
correction step. The majority of the studies made on these time-splitting methods consider only Dirichlet
boundary conditions while few references deal with outflow boundary conditions. That is why Chap-
ter 5 proposes a new numerical scheme for incompressible Navier-Stokes equations with open boundary
conditions, for both pressure and velocity correction schemes [23, 247]. An other difficulty in the nu-
merical computation of the incompressible Navier-Stokes equations can come from the computational
geometry. When flows are calculated for complex geometries, one can either use a block-structured
grid or an unstructured one. Faced with a software constraint requiring us to use structured meshes, we
present in Chapter 6 a domain decomposition method to run the Navier-Stokes equations efficiently on
non-matching and overlapping block-structured meshes [26]. For the same software, Chapter 7 describes
how we developed a mesh partitioner to carry out high performance parallel simulations of incompress-
ible flows on block-structured meshes [27].

Part II is composed of two chapters and is dedicated to the modeling and numerical simulation of mul-
tiphase flows in porous media. Seven journal publications have arisen out of the results of this work [13,
14, 15, 16, 29, 30, 31]. This theme has also been the subject of 2 thesis co-supervision [215, 301], 2
master’s thesis co-supervision and numerous communications in international conferences. Multiphase
multicomponent flow in porous media play a significant role for many applications in geological and
reservoir engineering processes. We can mention for instance the hydrocarbon recovery, the sequestra-
tion of CO2 in saline aquifers, the geological storage of nuclear waste or the prevention of groundwater
pollution and the contaminant remediation. Numerical models have been increasingly used for this pur-
pose, a trend that will continue because more sophisticated models and codes are being developed and
computer costs keep decreasing. Significant efforts and attempts have been made during recent years
toward the development of such tools. It is why since several years, we have integrated all our devel-
opments in DuMuX (DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in
porous media) [3, 119], a free and open-source simulator for flow and transport processes in porous
media. Thus, Chapter 8 proposes a non exhaustive state of the art dedicated to the numerical simula-
tion of reactive multiphase flow in porous media, followed by a short description of the main features
of the simulator DuMuX . Chapter 9 describes our main contributions related to the development and
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the implementation of new numerical schemes in the DuMuX framework in a high performance com-
puting context. From 2009 to 2013, we have been involved in the European project FORGE (Fate Of
Repository Gases: http://www.bgs.ac.uk/forge/) that aimed at studying gas migration in deep reposi-
tory for radioactive waste. In order to deal with the complexity of the geometries to be considered and
the strong heterogeneity of the different materials, we coupled DuMuX with an upscaling strategy [13].
Section 9.2 shows that our mathematical upscaling method combined to a finite-volume method was
capable to reduce drastically the computational time, while producing results in a robust and accurate
fashion. From January 2013, in the frame of the PhD thesis of V. Vostrikov [301] that I co-advised with
B. Amaziane (University of Pau & Pays Adour) and M. Kern (INRIA Paris), we were interested in the
numerical simulation of two-phase reactive flow in porous media, with an application to the geological
storage of CO2. We chose a sequential approach to tackle the problem: a two-phase compositional flow
is solved, followed by a reactive transport problem. For this latter, several strategies were considered.
In [29, 301], the reactive transport problem was tackled by a sequential iterative approach (SIA) where
transport and equilibrium chemical reactions were solved sequentially in a iterative loop. Precisely, we
developed and integrated in DuMuX a multicomponent transport module, coupled iteratively with a lo-
cally developed code for chemical equilibrium, called ChemEqLib using the GSL library [5]. In [30], the
code ChemEqLib was dropped and the chemistry calculations were directly integrated in DuMuX . Still
considering a SIA, kinetic chemical reactions that were not taken into account until now were added to
the transport, and equilibrium chemical calculations. To reduce the possible splitting errors and increase
the robustness of our strategy, in [14, 15] the SIA was replaced by a global implicit approach (GIA) to
solve the reactive transport subproblem. These developments have been validated by numerous bench-
marks with applications concerning geological sequestration of CO2 [15, 29, 30] and geological storage
of nuclear waste in deep repository [14]. Section 9.3 is dedicated to the presentation of simulations using
this sequential approach with some comparison between different strategies. Since January 2017, I have
been co-supervising the PhD thesis of M. Id Moulay [215] with B. Amaziane. This PhD thesis aims at
developing a fully coupled fully implicit strategy to perform numerical simulation of two-phase reactive
flow. Indeed, sequential approaches can introduce operator splitting errors requiring restrictions on the
time step that can be prohibitive. First, a fully implicit approach has been considered to deal with single
phase reactive flows and intensively validated through benchmarks including parallel computations [15].
Then, this methodology has been extended for two-phase reactive flows [16]. Section 9.4 presents some
numerical simulations of reactive flows using fully implicit approach. Particular attention is paid to the
comparison between sequential and global implicit approaches in terms of accuracy and computational
time.

For the sake of consistency of the present manuscript, some of my research activities have been
purposely discarded. From October 2009 to September 2010, I was a post-doctoral fellow in the labo-
ratory TREFLE in collaboration with the company ABENGOA. During this position, we investigated a
Singular Value Decomposition (SVD) method to process thermography data for the characterization of
thermal parameters. The inverse problem to solve is based on the model of transient heat transfer. The
most significant advantage is the transformation of the dynamic identification problem into a steady iden-
tification equation. Truncated SVD provided and accurate thermal parameters estimation, even for noisy
data [17]. In [18], we proposed a strategy to automatically simplify Darcy’s equations with pressure
dependent permeability. In the framework of spectral element methods, a posteriori estimates allowed
us to omit this dependence where the pressure does not vary too much. We performed the numerical
analysis of a spectral element discretization of the simplified model and we proposed a strategy which
leads to an automatic identification of the part of the domain where the simplified model can be used
without increasing significantly the error.



14 Chapter 2. General introduction

Finally, Chapter 10 presents some conclusions and research perspectives for the next years. Two
upcoming projects are directly related to our recent work. First we will be involved in the Horizon
2020 European Joint Programme on Radioactive Waste Management (EURAD). For this project, we aim
at going towards simulations taken into account coupled thermo-hydro-mechanical-chemical (THMC)
processes in porous media that represent a crucial issue for the performance assessment of geological
disposal of radioactive waste. Secondly, we will be involved in the CO2ES project (CO2 Enhanced
Storage) whose objective is to provide a better understanding of the various CO2 trapping and transport
processes involved in CO2 geological storage. The project is mainly experimental but we will perform
some numerical simulations to scale-up the phenomena pointed out in the experimental part by using
homogenization tools as well as guiding further experimental activities. A third project will be dedicated
to the numerical simulation of multicomponent fluid in nano-porous media. For this kind of simulation,
classical approaches such as Darcy’s or Stokes’ formulations that are at the heart of Parts I and II are
not always relevant and a new paradigm will be proposed, using among others, molecular dynamics
simulations. Finally, we would like to apply and adapt reduced-order models to the applications described
above.



Part I

CFD simulations of incompressible flows
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Introduction

Computational Fluid Dynamics (CFD) combines numerical analysis and computer science to analyze and
solve problems involving fluid flows. CFD has numerous applications, ranging from academic research
to industrial issues. We can mention non exhaustively aerodynamic, weather simulation, natural and
environmental science or biological engineering. Most of the works described in this Part are devoted to
the particular case of incompressible flows governed by the incompressible Navier-Stokes equations. In
recent years, one can observe a trend regarding flow simulations: the requirement for higher accuracy in
the computational resolution with a need to obtain results faster. To meet the high accuracy requirements,
a part of my contributions deal with spectral elements methods [78, 103]. It is the continuity of my PhD
thesis [12] where I used spectral element methods for the approximation of the -grad(div(.)) operator
and several applications related to Stokes eigenvalues problem and Navier-Stokes equations were con-
sidered.
In this context of high order methods, Chapter 3 discusses several strategies to compute the 2D Stokes
eigenvalue problem. The content of the chapter is based on the articles [24, 25]. We consider the 2D
Stokes eigenvalue problem as model example for the approximation of eigenvalues and associated eigen-
functions of a linear operator under an incompressibility constraint. One of the difficulties is to propose
methods of approximation which satisfy in a stable and accurate way the eigenvalues equations, the
incompressibility constraint and the boundary conditions. Using any non-stable method leads to the
presence of non-physical eigenvalues: a multiple zero one called spurious modes and non-zero ones
called pollution modes. One way to eliminate these two families is to favor the constraint equations by
satisfying it exactly and to verify the equations of the eigenvalues equations in weak ways. To illustrate
our contribution in this field, we considered and described several methods producing the correct num-
ber of eigenvalues. Numerical results proved how these methods are adequate to correctly solve the 2D
Stokes eigenvalue problem.
Chapter 4 describes a work dedicated to the Hodge Helmholtz decomposition that consists in extracting
the solenoidal, irrotational and harmonic parts from a given vector field. It is based on the article [20].
Our method consists in projecting the vector to be decomposed on solenoidal and irrotational basis, con-
structed in a original way. After validation on analytical test cases, the method has been used to deal with
an unsteady Navier-Stokes problem, to solve the projection step in a Goda pressure correction scheme.
In Chapter 5, we present a numerical scheme for incompressible Navier-Stokes equations with open
boundary conditions, in the framework of the pressure and velocity correction schemes. It is based on
the articles [23, 247]. In [248], the authors presented an almost second-order accurate version of the
open boundary condition with a pressure-correction scheme in finite volume framework. We extended
this method in spectral element method framework for both pressure- and velocity-correction schemes.
A new way to enforce this type of boundary condition has been proposed and provided a pressure and
velocity convergence rate in space and time higher than with the present state of the art. Some numerical
tests illustrated the efficiency of the approach.
The second part of my contribution to numerical simulation of incompressible flows concerns the imple-
mentation of new features on the Finite-Volume code named Thetis developed at the TREFLE laboratory.
This CFD code was based on a marker and cell [144] orthogonal curvilinear structured grid. To overcome
this software constraint and extend the use of the code to more complex geometries, Chapter 6 describes
a domain decomposition method to run the Navier-Stokes equations efficiently on non-matching and
overlapping block-structured meshes [26]. Precisely, using a pressure correction scheme, we improved
a method first introduced in [258] and [259] where the authors reported a problem of mass conservation
and a discontinuity of pressure through the interfaces between different meshes. With our new implemen-
tation, the pressure is continuous through the interfaces and the incompressibility constraint is ensured
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over the whole domain. Several numerical tests were carried out to assess the proposed method.
Computational fluid dynamics simulations aim at solving increasingly complex and large problems, as
quickly as possible. To achieve these requirements, they must rely on High-Performance Computing
(HPC). In parallel computing, the computational domain is distributed over several processors. The par-
titioning strategy must best respect load balancing (each processor must have approximately the same
workload) while trying to minimize exchanges between processors. Chapter 7 presents a work based on
the article [27] where we developed a mesh partitioner to carry out parallel simulations of incompress-
ible flows on block-structured meshes. Because classical partitioner as CHACO [147], METIS [167],
SCOTCH [239] were not suitable for structured meshes, we proposed a new partitioning method. The
quality of rectangular partitions was checked and compared with other methods, as regards load balance,
edge-cut and block numbers. The partitioner was coupled with the massively parallel HYPRE solver
library [110] and good strong and weak parallel efficiencies were obtained. Finally, the code was applied
to study laminar flows (steady and unsteady) on non-rectangular geometries, using very fine grids to
compute reference solutions.
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Computation of the Stokes eigenvalue
problem
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This chapter covers the entirety of article [25] and is also based on article [24] which can be found
in the Appendix. Both articles are listed below:

• E. Ahusborde, M. Azaïez, R. Gruber, Numerical Assessment of a Class of High Order Stokes
Spectrum Solver, Journal of Mathematical Study, Vol 51, 1-14, 2018.

Abstract: It is well known that the approximation of eigenvalues and associated eigenfunctions
of a linear operator under constraint is a difficult problem. One of the difficulties is to propose
methods of approximation which satisfy in a stable and accurate way the eigenvalues equations,
the constraint one and the boundary conditions. Using any non-stable method leads to the presence
of non-physical eigenvalues: a multiple zero one called spurious modes and non-zero one called
pollution modes. One way to eliminate these two families is to favor the constraint equations by
satisfying it exactly and to verify the equations of the eigenvalues equations in weak ways. To
illustrate our contribution in this field we consider in this paper the case of Stokes operator. We
describe several methods that produce the correct number of eigenvalues. We numerically prove
how these methods are adequate to correctly solve the 2D Stokes eigenvalue problem.

• E. Ahusborde, M. Azaïez, R. Gruber, Constraint oriented spectral element method, Lecture Notes
in Computational Science and Engineering, Vol 76, 93-100, 2011.

Abstract: An original polynomial approximation to solve partial differential equations is pre-
sented. This spectral element version takes into account the underlying nature of the corresponding
physical problem. For different types of operators, this approach allows to all terms in a varia-
tional form to be represented by the same functional dependence and by the same regularity, thus
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eliminating regularity constraints imposed by standard numerical methods. This method satisfies
automatically different type of constraints, such as occur for the grad(div) and curl(curl) opera-
tors, and this for any geometry. It can be applied to a wide range of physical problems, including
fluid flows, electromagnetism, material sciences, ideal linear magnetohydrodynamic stability anal-
ysis, and Alfvèn wave heating of fusion plasmas.

3.1 Introduction

This chapter deals with the numerical computation of the 2D Stokes eigenvalue problem on a square
domain. This problem is considered as model example with a conservation law of the type ∇ ·~u = 0.
With this test example it is possible to discuss the various numerical problems that appear when flux
conservation has to be satisfied in the incompressible Navier-Stokes equations. If these constraint condi-
tion cannot be satisfied precisely, so-called spectral pollution [132] appears and the numerical approach
does not stably converge to the physical solution. The reason is that due to regularity constraints im-
posed by standard numerical approximation methods, the energy cannot reach the minimum required by
the physics. In fact, current numerical methods satisfy the boundary conditions strongly, the operator
equations and the constraints only weakly. If the constraint ∇ ·~u = 0 is satisfied by a ~u = ∇×ψ ansatz,
the number of degrees of freedom remains the same as in the unconstrained Laplacian problem. As a
consequence, besides the Stokes modes, one finds a whole spectrum of additional unphysical modes,
corresponding to those of the heat equation. Thus, the initial physical problem has fundamentally been
changed. This approach has been applied to compute the full Stokes spectrum [186] by the first time.
Due to the choice of a unit square domain, the authors were able to separate the Stokes modes from those
belonging to the heat equation.
In Section (3.2), we present the 2D Stokes eigenvalue problem and we focus on two formulations con-
sidering only the velocity as variable: the penalty method and the divergence-free Galerkin approach.
In Section (3.3), in the framework of spectral element approximation schemes, a stable spectral element
is proposed for each method. For the penalty method, a COOL approach [24, 28] is considered and
the unphysical modes can be pushed towards λ = 0. For the divergence-free Galerkin approach, two
strategies christened “explicit” and “implicit” are detailed. The explicit strategy consists in using the
properties of the kernel of the grad(div) operator to construct a divergence-free basis. Such a basis has
the right number of degrees of freedom, thus delivering the exact number of Stokes eigenfunctions with
high precision. The implicit strategy is a direct algebraic elimination process of the ∇ ·~u = 0 constraint.
This leads to a sparse matrix elimination process, described in detail in [28]. It delivers the right number
of highly precise Stokes modes.
Finally, in Section (3.4), some numerical experiments are performed to prove the efficiency of the pro-
posed methods and a comparison between the different approaches is given.

3.2 The Stokes eigenvalue problem: continuous version

Let Ω ⊂ IRd , d = 2,3, be a Lipschitz domain, the generic point of Ω is denoted x. The symbol L2(Ω)
stands for the usual Lebesgue space and H1(Ω), the Sobolev space that involves all the functions that
are, together with their gradient, in L2(Ω).C (Ω) denotes the space of continuous functions defined in Ω.
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The continuous Stokes eigenvalue problem reads: Find a vector~u and λ 2 ∈ IR+ such that

−∆~u = λ 2~u, for x ∈ Ω,
∇ ·~u = 0, for x ∈ Ω,

~u = ~0, for x ∈ ∂Ω,

(3.1)

where IR+ denotes the set of positive real numbers, including zero. For the sake of simplicity we assume
here that Ω is the reference domain (−1,+1)2.

Problem (3.1) is often solved using different strategies but we prefer to focus on methods involving
only~u as unknown. The first one is called Penalty method

Penalty method This method consists in taking into account the divergence free constraint by adding
a term of penalty to control the level of divergence when solving the eigenvalue problem.

The penalty formulation, called also regularization method (see [127]), reads: Find ~u ∈ (H1
0 (Ω))2

and λ 2 ∈ IR+ such that
−∆~u−α∇(∇ ·~u) = λ 2~u, for x ∈ Ω. (3.2)

Its variational formulation writes: Find~u ∈ (H1
0 (Ω))2 and λ 2 ∈ IR+ such that∫

Ω

∇~u ·∇~vdx+α

∫
Ω

∇ ·~u∇ ·~vdx = λ
2
∫

Ω

~u ·~vd~x,∀~v ∈ (H1
0 (Ω))2. (3.3)

In practice, the infinite dimensional problem (3.3) is replaced by a finite dimensional one using a stable
spectral element taking into account the constraint by an adequate choice of α (see [24]).

Divergence-free Galerkin approach The second method is called "divergence-free Galerkin approach"
and starts from the fact that the system (3.3) can reduce to: Find~u ∈ ~X and λ 2 ∈ IR+ such that

S (~u,~v) :=
∫

Ω
∇~u ·∇~vdx = λ 2 ∫

Ω
~u ·~vdx, ∀~v ∈ ~X , (3.4)

where ~X is in the space defined by

~X =
{
~v ∈ (H1

0 (Ω))2, such that ∇ ·~v = 0
}
. (3.5)

Again the infinite dimensional problem (3.4) is replaced by a finite dimensional one using a stable spec-
tral element that will be developed later.

3.3 The Stokes eigenvalue problem: discrete version

We firstly introduce some notations and reminders. Let ΣGLL = {(ξi, ρi); 0≤ i≤ p} and ΣGL = {(ζi, ωi); 1≤
i ≤ p} respectively denote the sets of Gauss-Lobatto-Legendre and Gauss-Legendre quadrature nodes
and weights associated to polynomials of degree p. These quantities are such that on Λ :=]−1,+1[

∀Φ ∈ IP2p−1(Λ),
∫ +1

−1
Φ(ξ )dξ =

p

∑
j=0

Φ(ξ j)ρ j, (3.6)

∀Φ ∈ IP2p−1(Λ),
∫ +1

−1
Φ(ζ )dζ =

p

∑
j=1

Φ(ζ j)ω j, (3.7)
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where IPp(Λ) denotes the space of polynomials with degree ≤ p. We recall that the nodes ξi (0 ≤ i ≤
p) are solution to (1− x2)L′p(x) = 0 where Lp denotes the Legendre polynomial of degree p, whereas
ζi (1≤ i≤ p) are solution to Lp(x) = 0 (see [103]).

The canonical polynomial interpolation basis hi(x) ∈ IPp(Λ) built on ΣGLL is given by the relation-
ships:

hi(x) = −
1

p(p+1)
1

Lp(ξi)

(1− x2)L′p(x)
(x−ξi)

, −1≤ x≤+1, 0≤ i≤ p, (3.8)

with the elementary cardinality property

hi(ξ j) = δi j, 0≤ i, j ≤ p, (3.9)

where δi j is Kronecker’s delta symbol.

We also introduce a new family of polynomials functions gi(x) associated to the canonical basis (3.8)
through the relationships:

gi(x) = hi(x) − βiLp(x), 0≤ i≤ p, (3.10)

where the constants βi are such that all gi(x) ∈ IPp−1(]− 1,+1[) [28, 24]. The functions gi(x) have the
following properties:

1. Their moments up to order (p−1) are equal to those of their corresponding element in the Gauss-
Lobatto-Legendre canonical basis, i.e.: For 0≤ i≤ p,∫ +1

−1
(gi(x)−hi(x))x j dx = 0, ∀ j, 0≤ j ≤ (p−1). (3.11)

The difference (gi(x)− hi(x)) being proportional to Lp(x) is orthogonal to all polynomials of de-
gree less or equal to (p−1).

2. Interpolation of their corresponding element in the canonical basis at the Gauss-Legendre nodes,
i.e.: For 0≤ i≤ p,

gi(ζ j) = hi(ζ j), ∀ j, 1≤ j ≤ p. (3.12)

3. The constants βi can be obtained through a series expansion of (3.8) and one gets:

βi =
1

(p+1)Lp(ξi)
, 0≤ i≤ p. (3.13)

In [24] one can read more informations concerning these polynomial functions.

3.3.1 Penalty method

In [24], we present a detailed description of this method. The discrete version of problem (3.3) writes:
Find~up ∈ Y p and λ 2 ∈ IR+ such that

Ap(~up,~vp)+α Bp(~up,~vp) = λ
2(~up,~vp)p, ∀~vp ∈ Y p, (3.14)

where:

Ap(~up,~vp) = (∇~up,∇~vp)p, (3.15)

Bp(~up,~vp) = (∇ ·~up,∇ ·~vp)p. (3.16)
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Here (·, ·)p is discrete scalar product based on Gauss Lobatto quadrature formula. Y p is the space of
polynomial functions of degree lower or equal to p vanishing on ∂Ω. It is assumed to ensure a stable
approximation for grad(div) operator to avoid the phenomenon of spurious pollution [24]. Since ~up is
equal to zero on the boundary, the solution ~up ∈ ~Yp is approximated by u(0)r p (x,y), u(1)r p (x,y) or u(2)r p (x,y)
according to the functional dependence and the regularity required (r = x or y).

u(0)r p (x,y) =
p−1

∑
i=1

p−1

∑
j=1

ur p(ξi,ξ j)gi(x)g j(y),

u(1)r p (x,y) =
p

∑
i=1

p−1

∑
j=1

ur p(ξi,ξ j)hi(x)g j(y), (3.17)

u(2)r p (x,y) =
p

∑
i=1

p−1

∑
j=1

ur p(ξi,ξ j)gi(x)h j(y).

The superscript (1) is used to represent quantities derived in direction x while superscript (2) is used to
represent quantities derived in direction y. The coefficients in the previous three expansions are the same
thanks to (3.12).
Replacing~up by the previous development in (3.14), the penalty discrete form writes

(∂xu(1)x p ,∂xv(1)x p )p +(∂yu(2)y p ,∂yv(2)y p )p + α (∂xu(1)x p +∂yu(2)y p ,∂xv(1)x p +∂yv(2)y p )p

= λ
2(~u(0)p ,~v(0)p )p, ∀~vp ∈ Y p. (3.18)

3.3.2 Divergence-free Galerkin approach

The keystone of the divergence-free Galerkin approach is the construction of a discrete version X p of the
divergence free space ~X defined in equation (3.5).

According to [28], we need the divergence to be a polynomial of degree less or equal to p− 1.
Consequently, we want to build a space:

~Xp = {~up ∈ (IPp(Ω))2 | ∇ ·~up ∈ IPp−1(Ω)}∩~X .

Expanding ~up according to (3.17) its divergence is a polynomials of degree p− 1. Consequently, if the
divergence is orthogonal to all polynomial of IPp−1(Ω), it is necessarily equal to 0. This point gives a
new characterization for ~Xp:

~Xp = {~up ∈ (IP0
p(Ω))2 |

∫
Ω

(
∂u(1)x p

∂x
+

∂u(2)y p

∂y
)q d~x = 0, ∀q ∈ IPp−1(Ω)}.

We want to build a basis of ~Xp. The first step consists in determining the size of this space.

dim ~Xp = dim (IP0
p(Ω))2− p2,

where p2 is the number of necessary and sufficient equations to ensure ∇ ·~up ≡ 0.
∇ ·~up ∈ IPp−1(Ω) therefore p2 ≤ p2.
There are 2 dependent equations in 2D (see [61] for details) since:∫

Ω

∇ ·~up L0(x)L0(y)d~x = 0, ∀~up ∈ (IP0
p(Ω))2,∫

Ω

∇ ·~up L′p(x)L
′
p(y)d~x = 0, ∀~up ∈ (IP0

p(Ω))2.
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Polynomials L0(x)L0(y) and L′p(x)L
′
p(y) are spurious modes and reduce the number of independent equa-

tions from p2 to p2−2. Consequently, we require p2 = p2−2 test functions q to ensure
∫

Ω
∇ ·~up q d~x= 0.

dim ~Xp = dim (IP0
p(Ω))2− p2 = 2(p−1)2− (p2−2) = (p−2)2.

After the computation of the size of ~Xp (denoted p1 = (p−2)2 in the sequel), we propose two strategies
to compute a divergence-free basis.

3.3.2.1 Divergence-free Galerkin explicit approach

We consider the following eigenvalue problem:

−∇(∇ ·~u) = λ 2~u, for x ∈ Ω,

~u = ~0, for x ∈ ∂Ω.
(3.19)

The kernel of the grad(div) operator includes all the modes~uk
s,p associated to λ 2 = 0 and ∇ ·~uk

s,p = 0.
It constitutes a basis for the subspace ~Xp. Its size is (p− 2)2 and then ~up ∈ ~Xp can be decomposed
according to the following form:

~up =
(p−2)2

∑
k=1

βk~uk
s,p.

Replacing ~up by the previous development in (3.4), the discrete variational formulation writes: Find
~up ∈ ~Xp and λ 2 ∈ IR+∗ such that

(p−2)2

∑
k=1

(∇~uk
s,p,∇~u

i
s,p)pβk = λ

2
(p−2)2

∑
k=1

(~uk
s,p,~u

i
s,p)p βk,∀~ui

s,p ∈ ~Xp.

This can be written:

S e
β = λ

2M e
β .

The stiff matrix S e and mass matrix M e are symmetric and positive definite and are defined by:

S e
ik = (∇~uk

s,p,∇~u
i
s,p)p,

M e
ik = (~uk

s,p,~u
i
s,p)p,

for (1≤ i, k ≤ (p−2)2).

3.3.2.2 Divergence-free Galerkin implicit approach

As highlighted before, the main difficulty of the problem (3.1) consists in satisfying the incompressibility
constraint ∇ ·~u = 0. Classical approaches usually satisfy operator equations strongly with as many equa-
tions as degrees of freedom for the velocity while incompressibility constraint is only satisfied weakly
with fewer equations than degrees of freedom for the divergence. Contrary to the classical approaches,
our objective is to favor the incompressibility constraint in comparison with the other equations. Our
strategy, introduced in [28], consists in sharing the degrees of freedom of~u in a relevant way to satisfy:

• The incompressibility constraint in strong sense.
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• The other equations in weak sense.

Let ~up be in ~Xp. The divergence of ~up is orthogonal to p2− 2 polynomials of degree p− 1. It is
equivalent to saying that the divergence of~up ∈ ~Xp nullifies in p2−2 Gauss points. The algebraic diver-
gence equation writes D~up = 0 (see Figure (4.1)).

D up = 0

2(p−1)2

p2−2

Figure 3.1: Algebraic system.

D1 D2

~u1
p

~u2
p

= 0

p1 p2

p2

Figure 3.2: Decomposition of D.

D is a rectangular matrix with p2 = p2−2 rows and 2(p−1)2 columns.
Then, one splits D into D1⊕D2 and~up into~u1 p⊕~u2 p (see Figure (4.2)).

Since, the p2− 2 lines of D are independent, there is at least one choice of matrix D2 invertible.
Equation D~up = 0 becomes:

D1~u1 p +D2~u2 p = 0.

For instance, ~u1 contains the p1 first values of ~up and consequently ~u2 p contains the p2 remaining
values. Figure (4.3) displays the sizes of the matrices D2 and D1.

D1 ~u1
p + D2 ~u2

p = 0

p1 p2

p2

Figure 3.3: Algebraic system D1~u1 p +D2~u2 p = 0.

Since D2 is invertible, the system leads to a relation between~u1 p and~u2 p:

~u2 p =−D−1
2 D1~u1 p. (3.20)

Eq. (3.20) is crucial since it means that if we have any part ~u1 p of ~up, we can build the complemen-
tary~u2 p such that divergence of~up equals 0. This argument allows us to build a basis of ~Xp.

We consider~vp ∈ (IP0
p(Ω))2. Our strategy consists in combining implicitly:

• A reduction from~vp to~v1 p,

• An extension from~v1 p to ~wp = (~v1 p,~v2 p) such that ∇ ·~wp = 0 ensured by the multiplication of~v1 p

by the matrix

M =

[
Ip1

−D−1
2 D1

]
.
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The matrix M is a two blocks matrix. The first block is a matrix of order p1 equal to identity. The second
block contains p2 rows and p1 columns. It ensures the passage from~v1 p to~v2 p.

• For each~vp ∈ (IP0
p(Ω))2, one associates a vector ~wp of ~Xp.

By consequent, our strategy for the construction of a basis of ~Xp consists in:

• Choosing p1 = (p− 2)2 vectors (vk
p)k=1,...,p1 of the basis of (IP0

p(Ω))2 (for instance, the (p− 2)2

first vectors),

• For each one of these p1 vectors, we consider its p1-size reduced part denoted~vk
1 p,

• We carry out the divergence-free extension (~wk
p)k=1,...,p1 = (M~vk

1 p)k=1,...,p1 .

The (~wk
p)k=1,...,p1 family is a basis of ~Xp and every ~up ∈ ~Xp can be decomposed according to the

following form:

~up =
p1

∑
k=1

γk ~wk
p.

Replacing~up by the previous development, the discrete variational formulation writes: Find~up ∈ ~Xp

and λ 2 ∈ IR+∗ such that

p1

∑
k=1

(∇~wk
p,∇~wi

p)p γk = λ
2

p1

∑
k=1

(~wk
p,~w

i
p)p γk, ∀~wi

p ∈ ~Xp.

This can be written:

S i
γ = λ

2M i
γ,

with for (1≤ i,k ≤ p1),

S i
ik = (∇~wk

p,∇~wi
p)p,

M i
ik = (~wk

p,~w
i
p)p.

S i and M i refer respectively to the Laplace operator and mass matrices expressed on the basis ~wp.

Finally, this system is equivalent to:

MT AM~up1 = λ
2MT BM~up1,

where A and B refer respectively to the classical Laplacian and mass matrices.

3.4 Numerical results

This section discusses some numerical results. We will apply each of the three approaches to compute
the Stokes eigenvalues and associated eigenfunctions.
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2 4 6 8 10 12 14 16 18 20
p
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1e-06

1e-04

1e-02
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 α = 10
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Figure 3.4: Convergence plots obtained using the penalty method for the first Stokes mode (λ 2 =
13.086172791) as a function of the polynomial order p for several values of α .

p 4 8 12 16 20
min ||∇ ·~up||L2(Ω) 8.1×10−7 8.97×10−7 8.97×10−7 8.97×10−7 8.97×10−7

max ||∇ ·~up||L2(Ω) 8.92×10−6 7.66×10−5 2.54×10−5 5.95×10−4 1.15×10−3

Table 3.1: Maximum and minimum of the L2(Ω)-norm of the divergence of all the Stokes eigenmodes
as a function of p.

Penalty approach Figure (3.4) displays the convergence for the lowest eigenvalue of problem (3.2) for
several values of α .

One can see that the choice of α leads to slightly different convergence behaviors. For double
precision arithmetic, α = 107 appears to give the best convergence results. With an increasing polynomial
degree to represent the eigenfunction, the eigenvalue converges exponentially as expected for p ≤ 9.
Increasing p further does not improve the accuracy of the eigenvalue, with the precision limited to 10−6.
Tab. (3.1) shows the limit in precision for the incompressibility condition for α = 107 as a function of p.

The eigenvalue problem (3.14) gives 2(p−1)2 eigenvalues and associated eigenvectors correspond-
ing to the degrees of freedom in Y p. Among these eigenvalues, there are the Stokes eigenvalues and
the non-zero eigenvalues of the grad(div) operator multiplied by α . The number of Stokes eigenvalues
NS corresponds to the size of the kernel of the discretized grad(div) operator, i.e. to the number of zero
eigenvalues. As said in Section (3.3.2.1), it can be proved that this number is equal to (p− 2)2. Con-
sequently, the resolution of the problem (3.14) leads to NS = (p− 2)2 Stokes eigenmodes. The p2− 2
remaining eigenmodes are those of the class of non-zero eigenvalues of the grad(div) operator multiplied
by α .

Figure (3.5) illustrates the convergence of the difference ε between the four lowest Stokes eigen-
values as a function of p computed by our method with those produced in [186] for α = 107 on a
semi-logarithmic scale. The error is exponentially decreasing as expected for p≤ 11 and then stagnates.

Divergence-free Galerkin explicit approach Figure (3.6) illustrates the convergence of the differ-
ence ε between the four lowest Stokes eigenvalues as a function of p computed by the divergence-free
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Figure 3.5: Convergence plots obtained using the penalty method for the four lowest divergence-free
modes as a function of p. Again, α = 107.

Galerkin explicit approach with those produced in [186] on a semi-logarithmic scale. The error is expo-
nentially decreasing as expected.
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Figure 3.6: Convergence plots obtained using the divergence-free Galerkin explicit approach method for
the four lowest divergence-free modes as a function of p.

Divergence-free Galerkin implicit approach To validate our divergence-free Galerkin implicit ap-
proach, we have computed the Stokes eigenvalues and compared with those obtained in [186]. Fig-
ure (3.7) shows the convergence for the four lowest eigenvalues as a function of p on a semi-logarithmic
scale. The calculation of the eigenvalues converges exponentially as expected.

It has been shown theoretically that the eigenmodes have a global structure with an infinite series of
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Figure 3.7: Relative error ε for the for the four lowest Stokes eigenvalues as a function of p on a
semi-logarithmic scale with the divergence-free Galerkin implicit approach.

Moffat corner vortices [211] of increasingly smaller amplitude. The right part of Figure (3.8) represents
the upx component of the thirteenth eigenmode. The amplitude is 0.852. In the center of the figure, we
can see the first Moffat vortex in the left upper corner of the geometry with an amplitude of 1×10−3. At
last, in the left side of the figure, the second Moffat vortex has an amplitude of 2×10−6. These results
are in accordance with the theoretical ones.

Figure 3.8: upx component of 13th Stokes eigenvector: Moffatt vortices in the corners.

Comparison between the different approaches The three strategies described in this chapter give
the expected number of Stokes eigenvalues with a high precision. Nonetheless, Figure (3.5) compared
with Figure (3.6) and Figure (3.7) indicates that the penalty approach is less accurate that the two other
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ones. Moreover, the divergence of the eigenvectors computed by the penalty approach is not identically
null and its level can depend on the tricky choice of the values of α . On the contrary, the divergence-
free Galerkin approaches computed eigenvectors that are perfectly divergence-free. As drawback of the
explicit version, we can mention that an initial computation of the kernel of the discretized grad(div)
operator has to be performed leading to the resolution of two eigenvalue problems. Consequently, due to
the reasons mentioned above, in our opinion, among the three strategies studied in this chapter, the best
one is the divergence-free Galerkin implicit approach.
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The content of this chapter covers the entirety of article [20], completed with an application to un-
steady Navier-Stokes equations:

• E. Ahusborde and M. Azaïez and J.P. Caltagirone and M. Gerritsma and A. Lemoine, Discrete
Hodge Helmoltz Decomposition, Monografías Matemáticas "García de Galdeano", Vol 39, 1-10,
2014.

Abstract: This paper presents a new method using spectral approaches to compute the Discrete
Hodge Helmholtz Decomposition (DHHD) of a given vector field. This decomposition consists in
extracting the solenoidal (i.e. divergence-free), the non-solenoidal (i.e. rotational-free or, gradient
of a scalar field) and the harmonic components (that is divergence-free and rotational-free) of a
this vector field. A test case illustrates the proposed method.

4.1 Introduction

The Hodge Helmholtz decomposition of a general vector field~u =~uψ +~uφ +~uH is a classical problem in
applied and computational physics [127]. Application areas include (among others) electromagnetism,
linear elasticity, fluid mechanics, image and video processing. A closed form of this decomposition may
be obtained for unbounded domains through Biot-Savart type integrals. In finite domains, however such
an approach is no longer feasible and computational solutions are the only practical way to perform this
decomposition.

In the sequel, we mention a non exhaustive list of applications and references related to the Hodge
Helmholtz decomposition. A detailed survey about this topics can be found in [64]. With regard to
elasticity, work by Brezzi and Fortin [71], and by Arnold and Falk [44] used the Hodge Helmholtz
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decomposition theorem for the study of the Reissner-Mindlin plate model. With regard to incompress-
ible fluid flows, the scalar potential φ such that ~uφ = ∇φ in the Hodge Helmholtz decomposition is
usually related to the pressure field p, and the vector potential ~uψ corresponds to the solenoidal veloc-
ity field ~uS both quantities being involved in the Navier-Stokes equations. Stokes and Navier-Stokes
solvers decouple most of the time the computation of the velocity and pressure fields [103]. The family
of correction-pressure time splitting methods [130] generates first a tentative velocity field that is not
incompressible but contains the right vorticity. The addition of a pressure gradient to this temporary
velocity (equivalent to Hodge Helmholtz decomposition) makes it divergence-free [89, 288]. Another
approach resorts to pressure penalization [77, 19] using the grad(div(.)) operator. Still considering this
operator, we proposed in [22] a constructive spectral approaches for the Helmholtz decomposition of a
vector field which consists in projecting the field to be decomposed on the kernel and the ranges of the
grad(div(.)) operator. Indeed, the kernel of the grad(div(.)) operator consists of solenoidal eigenvectors
while the eigenvectors related to non-zero eigenvalues are curl-free (see [21]). In video processing, the
Hodge Helmholtz decomposition allows to detect the fingerprint reference or hurricanes from satellite
pictures [232]. In [243], the authors proposed a meshless approach for the Hodge Helmholtz decom-
position while in [145], divergence-free and curl-free wavelets are used. In [184], the authors propose
a methodology to perform discrete Hodge Helmoltz decomposition on three-dimensional polyhedral
meshes using structure-preserving schemes.

Consider a given vector field ~u defined in some domain Ω with boundary ∂Ω. The Helmholtz de-
composition writes (see [127])

~u =~uψ +~uφ +~uH . (4.1)

The solenoidal component~uψ satisfies the equations{
∇ ·~uψ = 0 in Ω,

~uψ ·~n = 0 on ∂Ω,
(4.2)

while the irrotational complement~uφ is such that{
∇×~uφ =~0 in Ω,

~uφ ×~n =~0 on ∂Ω.
(4.3)

Finally, the harmonic component is both solenoidal and irrotational:

∇ ·~uH = 0 and ∇×~uH =~0. (4.4)

The main difficulty of the problem (4.1) consists in satisfying the solenoidal (4.2) and irrotational
constraints (4.3).

4.2 Divergence-free and curl-free Galerkin approaches

The method we present in this chapter is based on the construction of a basis satisfying the expected
constraints. Its originality lies in the way these bases are built. To illustrate this, we will focus our
presentation on how we derive a divergence-free basis. The derivation of the rotational-free basis in 2D
will be presented in Subsection 4.2.2. We only consider the 2D case and then it is good to distinguish
between curl and rot, where

∇×~u = rot~u =
∂u2

∂x1
− ∂u1

∂x2
, curlφ =

(
∂φ/∂x2
−∂φ/∂x1

)
.
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4.2.1 Computation of the solenoidal component

In order to state the problem in variational form we introduce the relevant spaces of functions:

H(div,Ω) =
{
~w ∈ (L2(Ω))2 ∣∣ ∇ ·~w ∈ L2(Ω)

}
,

L2
0(Ω) =

{
q ∈ L2(Ω)

∣∣∣ ∫
Ω

qdx = 0
}
.

Let~v,~w ∈ H(div,Ω). We define the inner product

(~v,~w)H(div,Ω) = (~v,~w)(L2(Ω))2 +(∇ ·~v,∇ ·~w)L2(Ω), (4.5)

and associated norm ||~w||H(div,Ω) =
(
||~w||2

(L2(Ω))2 + ||∇ ·~w||2L2(Ω)

)1/2
.

Consider also the proper subspace H0(div,Ω)⊂ H(div,Ω):

H0(div,Ω) = {~w ∈ H(div,Ω) | ~w ·~n = 0 on ∂Ω} .

The admissible space for~uψ in Problem (4.1)–(4.4) is a subspace of H0(div,Ω):

X = {~u ∈ H0(div,Ω) | ~∇ ·~u = 0 in Ω}.

4.2.1.1 Variational formulation and its discretization

The variational formulation of problem (4.1) writes: Find~uψ ∈ X such that∫
Ω

~uψ ·~vd~x =
∫

Ω

~u ·~vd~x, ∀~v ∈ X . (4.6)

Due to the nature of X ,~uφ and~uH disappear.
We firstly introduce the Raviart-Thomas space [257]

Rp = (P0
p(Λ)⊗Pp−1(Λ))× (Pp−1(Λ)⊗P0

p(Λ)), (4.7)

where PN(Λ) is the space of polynomials with degree ≤ N and P0
p(Λ) denotes the space of polynomials

of degree p vanishing on ±1. The dimension of Rp is equal to 2(p−1)p.
The solution is approximated by~uψ,p = (ux

ψ,p,u
y
ψ,p) in Rp with

ux
ψ,p(x,y) =

p−1

∑
i=1

p

∑
j=1

ux
ψ,p(ξi,ζ j)hi(x) h̃ j(y),

uy
ψ,p(x,y) =

p

∑
i=1

p−1

∑
j=1

uy
ψ,p(ζi,ξ j) h̃i(x)h j(y).

Let ΣGLL = {(ξi, ρi) | 0≤ i≤ N} and ΣGL = {(ζi, ωi) | 1≤ i≤ N} denote respectively the sets of Gauss-
Lobatto-Legendre and Gauss-Legendre quadrature nodes and weights (see [103]). Likewise, hi(x) ∈
PN(Λ) and h̃ j(x)∈ PN−1(Λ) are respectively the canonical Lagrange polynomial interpolation basis built
on ΣGLL and on ΣGL.

With this choice, the divergence of ~uψ,p is a polynomial of degree p−1. Consequently, if the diver-
gence is orthogonal to all polynomial of Pp−1(Ω), it is necessarily equal to 0. This point gives a new
characterization for Xp = Rp∩X :

Xp =

{
~uψ,p ∈ Rp

∣∣∣∣ ∂ux
ψ,p

∂x
+

∂uy
ψ,p

∂y
= 0
}
,

Xp =

{
~uψ,p ∈ Rp

∣∣∣∣ ∫
Ω

(
∂ux

ψ,p

∂x
+

∂uy
ψ,p

∂y
)qd~x = 0, ∀q ∈ Pp−1(Ω)

}
.
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D ~uψ,p = ~0

2p(p−1)

p2−1

Figure 4.1: Algebraic system.

D1 D2

~u1
ψ,p

~u2
ψ,p

= ~0

N1 N2

N2

Figure 4.2: Decomposition of D.

D1 ~u1
ψ,p + D2 ~u2

ψ,p = ~0

N1 N2

N2

Figure 4.3: Algebraic system.

4.2.1.2 A basis for Xp

The first step consists in determining the dimension of the space Xp, that we denote by N1:

N1 = dimRp−N2 = 2(p−1)p−N2,

where N2 is the dimension of the range of the divergence operator which is also the dimension of
Pp−1(Ω)∩L2

0(Ω) and then equals to p2−1. We deduce that N1 = (p−1)2.
One can also view N2 as the number of necessary and sufficient equations to ensure ∇ ·~uψ,p ≡ 0:

∇ ·~uψ,p ∈ Pp−1(Ω) so N2 ≤ p2.

Due to the boundary conditions (here ~uψ,p ·~n = 0 on ∂Ω), there is a dependent equation in the two
dimensional case [49], since ∫

Ω

∇ ·~uψ,pL0(x)L0(y)d~x = 0, ∀~uψ,p ∈ Rp.

Indeed, the polynomial L0(x)L0(y) is a spurious mode and it reduces the number of independent equa-
tions from p2 to p2−1. Consequently, we require N2 = p2−1 test functions q to ensure

∫
Ω

∇ ·~uψ,p qd~x =
0.

Once the dimension is known, we describe now how to proceed to derive a divergence free basis
from any N1 given vectors of Rp

Algebraic characterization of Xp Let ~uψ,p be in Xp. The divergence of ~uψ,p is orthogonal to p2− 1
polynomials of degree p− 1. It is equivalent to saying that the divergence of ~uψ,p nullifies into p2− 1
Gauss points. The algebraic divergence equation writes D~uψ,p =~0, where D is a rectangular matrix with
p2−1 rows and 2p(p−1) columns (see Figure 4.1).

One splits D into D1⊕D2 and~uψ,p into~u1
ψ,p⊕~u2

ψ,p. The vector~u1
ψ,p contains N1 = (p−1)2 values of

~uψ,p, whereas~u2
ψ,p contains the N2 = p2−1 remaining values (see Figure 4.2). The equation D~uψ,p =~0

becomes D1~u1
ψ,p +D2~u2

ψ,p =~0, as shown in Figure 4.3.
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Since, the p2−1 rows of D are independent, there exists at least one choice of matrix D2 invertible
and the system leads to a relation between~u2

ψ,p and~u1
ψ,p:

~u2
ψ,p =−D−1

2 D1~u1
ψ,p. (4.8)

This equation is very important since it means that, if we have any part ~u1
ψ,p of ~uψ,p, we can build the

complementary ~u2
ψ,p such that divergence of ~uψ,p equals 0. This argument allows us to build a basis of

Xp.

Basis of Xp The technique we use to project any vector of Rp on Xp is in the spirit of that published in
[28] and used to solve the Stokes problem.

We consider~vp ∈ Rp. Our strategy consists in combining implicitly:

• A reduction from~vp to~v1
p.

• An extension from~v1
p to ~wp = (~v1

p,~v
2
p) such that ∇ ·~wp = 0 ensured by the multiplication of~v1

p by
the matrix

M =

[
IN1

−D−1
2 D1

]
.

The first block of M is the identity matrix of order N1. The second block contains N2 rows and N1
columns. It ensures the passage from~v1

p to~v2
p.

• For each~vp ∈ Rp one associates a vector ~wp of Xp.

By consequent, our strategy for the construction of a basis of Xp consists in:

• Choosing N1 = (p−1)2 vectors (~vk
p)k=1..N1 of the basis of Rp.

• For each one of these N1 vectors, we consider its N1-size reduced part denoted by~vk,1
p .

• We carry out the divergence-free extension (~wk
p)k=1..N1 = (M~vk,1

p )k=1..N1 .

The (~wk
p)k=1..N1 family is a basis of Xp. Consequently, ~uψ,p ∈ Xp can be decomposed according to

~uψ,p = ∑
N1
k=1 αk~wk

p and the discrete variational formulation similar to (4.6) writes: Find ~uψ,p ∈ Xp such
that

N1

∑
k=1

(~wk
p,~w

i
p)pαk = (~up,~wi

p)p.

This can be written as
M α = F ,

with, for 1≤ i,k ≤ N1,

M ik = (~wk
p,~w

i
p)p,

F k = (~u,~wk
p)p.

Finally, this system is equivalent to

MT BM~u1
ψ,p = MT B~up,

where B refers to the classical mass matrix computed using the (hi× h̃ j)⊗ (h̃i×h j) basis.
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4.2.2 Computation of the irrotational component

A similar strategy to that described previously is used to compute the irrotational component ~uφ , so we
will limit to the description of the outline and we will not give all the details of its implementation.

Firstly, we introduce three spaces of functions:

H(rot,Ω) =
{
~w ∈ (L2(Ω))2 ∣∣ ∇×~w ∈ L2(Ω)

}
,

H0(rot,Ω) = {~w ∈ H(rot,Ω) | ~w×~n = 0 on ∂Ω} ,
Y = {~u ∈ H0(rot,Ω) | ∇×~u = 0 in Ω} .

The variational formulation of Problem (4.1) writes: Find~uφ ∈ Y such that∫
Ω

~uφ ·~vd~x =
∫

Ω

~u ·~vd~x, ∀~v ∈ Y.

For the discretization, we introduce the Nédélec space [219]

Np = (Pp−1(Λ)⊗P0
p(Λ))× (P0

p(Λ)⊗Pp−1(Λ)).

The solution is approximated by~uφ ,p = (ux
φ ,p,u

y
φ ,p) ∈ Yp = Np∩Y with

ux
φ ,p(x,y) =

p

∑
i=1

p−1

∑
j=1

ux
φ ,p(ζi,ξ j) h̃i(x)h j(y),

uy
φ ,p(x,y) =

p−1

∑
i=1

p

∑
j=1

uy
φ ,p(ξi,ζ j)hi(x) h̃ j(y).

As previously, we build a basis of Yp. With the same reasoning as for Xp and taking into account the
same spurious mode L0(x)L0(y), we determine the size of Yp equal to N1 = (p−1)2.

Then the constraint ∇×~uφ ,p =~0 is written into N1 = (p− 1)2 Gauss points and gives an algebraic
equations R~uφ ,p =~0. A splitting strategy for the matrix R into R1⊕R2 and the vector~uφ ,p into~u1

φ ,p⊕~u2
φ ,p

gives R1~u1
φ ,p +R2~u2

φ ,p =
~0 and finally~u2

φ ,p =−R−1
2 R1~u1

φ ,p.
Thanks to the (N1 +N2)×N1 matrix

N =

[
IN1

−R−1
2 R1

]
,

we can construct a basis of Yp.
Finally we obtain the system NT B̃N~u1

φ ,p = NT B̃~up, where B̃ refers to the classical mass matrix com-
puted using (h̃i×h j)⊗ (hi× h̃ j) basis.

4.3 Numerical results

4.3.1 Analytical test

To illustrate the efficiency of our approach for the Hodge Helmholtz decomposition, we have made a
numerical experiment in the square Ω = (−1,+1)2 with the case~u =~uψ +~uφ +~uH corresponding to the
following components:

~uψ = (sin(πx)cos(πy),−sin(πy)cos(πx)),

~uφ = (sin(πy)cos(πx),sin(πx)cos(πy)),

~uH = (0.5,−1).



4.3. Numerical results 37

The component ~uψ,p is approximated as outlined in Subsection 4.2.1, while the irrotational part ~uφ ,p is
computed as outlined in Subsection 4.2.2. Finally,~uH is calculated by the relation~uH =~u−~uψ −~uφ .

Table 4.1 gives ||∇ ·~uψ,p||L2(Ω) and ||∇×~uφ ,p||L2(Ω) as a function of the polynomial degree p. As
expected, the norms remain close to round-off independently of p.

p 4 8 12 16
||∇ ·~uψ,p||L2(Ω) 8.56×10−16 1.71×10−15 1.95×10−15 5.23×10−15

||∇×~uφ ,p||L2(Ω) 4.90×10−16 2.18×10−15 3.87×10−15 5.09×10−15

Table 4.1: L2(Ω)-norm of the divergence and the rotational of solenoidal and irrotational components.

Figure 4.4 exhibits on a semi-logarithmic scale the (L2(Ω))2-norm of the error for the three compo-
nents as a function of the polynomial degree p. We can observe a spectral decrease.
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Figure 4.4: (L2(Ω))2-norm of the error as a function of the polynomial degree p.

Figure 4.5 displays the Hodge Helmholtz decomposition of the vector~u.

4.3.2 Unsteady Navier-Stokes problems

This second example deals with unsteady Navier-Stokes problems. The use of time splitting schemes
involves a projection step which is nothing else than an Hodge Helmholtz decomposition. We want to
probe the effects of the new approach introduced previously on the accuracy of the decomposition.

We consider a two-dimensional square cavity filled with an incompressible fluid having density ρ

and dynamic viscosity µ . The flow is driven by a prescribed body force ~f (~x, t). Pressure p(~x, t) and
velocity~u(~x, t) satisfy the time dependent Navier-Stokes equations:

ρ

(
∂~u
∂ t

+(~u ·∇)~u
)
−µ ∆~u+∇p = ~f , in Ω× [0, t∗], (4.9)

∇ ·~u = 0, in Ω× [0, t∗], (4.10)

where Ω denotes the cavity domain ]−1,+1[2 and t∗ the time span of the transient. We apply Dirichlet
boundary conditions on the velocity

~u(~x, t)|∂Ω =~g(~x, t)|∂Ω, ∀ t ∈ [0, t∗], (4.11)

with the initial condition~u(~x,0) =~u0(~x).
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uψ

u φ u
H

u uψ

u φ u
H

u~u ~uψ

uψ

u φ u
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u uψ

u φ u
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u

~uφ ~uH

Figure 4.5: Decomposition of the vector and its three components.

We apply the Goda pressure correction time integration scheme which consists in splitting the Stokes
system into two stages, a diffusion-prediction and a pressure-correction [130]. The numerical method
begins with the treatment of the non-linear term (~u.∇)~u involved in the material derivative of the velocity,
d~u
dt (=

∂~u
∂ t +(~u.∇)~u). The scheme adopted here is the classical explicit second-order Adams-Bashforth

algorithm. The time interval [0, t∗] is divided into M equidistant time steps of length ∆t = t∗
M . The

approximate velocity and pressure fields at time tm := m∆t (m = 0, . . . ,M) are denoted ~um(~x) and pm(~x)
respectively. Assuming all quantities are known up to tm, the solution at tm+1 results from the diffusion
prediction step: Find~um+1

∗ such that

ρ

3
2~u

m+1
∗ −2~um + 1

2~u
m−1

∆t
−µ ∆~um+1

∗ +∇pm = ~f m+1−ABm in Ω, (4.12)

~um+1
∗ = ~0, on ∂Ω, (4.13)

where ABm = 2ρ ((~u.∇)~u)m−ρ ((~u.∇)~u)m−1 ,

followed by the pressure correction step: Find~um+1 and pm+1 such that

ρ

3
2~u

m+1− 3
2~u

m+1
∗

∆t
+∇(pm+1− pm) = 0, in Ω, (4.14)

∇ ·~um+1 = 0, in Ω, (4.15)

~um+1 ·~n = 0, on ∂Ω. (4.16)
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One will notice that the coefficients in the left-hand side of (4.12) and of (4.14) correspond to a second-
order backward Euler scheme.

Looking carefully at (4.14)-(4.16) one realizes that these equations correspond exactly to the Hodge
Helmholtz decomposition of the auxiliary velocity field~um+1

∗ resulting from the diffusion prediction step,
into:

~um+1 + ∇ψ = ~um+1
∗ , in Ω, (4.17)

~∇ ·~um+1 = 0, in Ω, (4.18)

~um+1 ·~n = 0, on ∂Ω, (4.19)

with
pm+1 = pm +

3
2

ρ

∆t
ψ. (4.20)

Consequently, we propose to compute the Hodge Helmholtz decomposition (4.17)-(4.19) thanks to our
strategy presented previously.

To assess our new decomposition scheme we have performed the test case of the lid-driven cavity.
This problem has long been used as a test for the validation of new codes or new methods. The standard
case deals with a fluid contained in a square domain with three wall sides and one moving side (with
velocity tangential to the side). We refer to the works of Botella [66] and Ehrenstein and Peyret [106]
where the domain Ω = [0,1]2 and a regularized velocity (u(x,1) = −16x2(1− x)2) are considered. For
this computation two Reynolds numbers (Re = 100 and Re = 400) are used.
The results are obtained with convergence criteria on stationarity below 10−8 and a polynomial degree
p = 24. In order to compare our results with those obtained in [66] and [106], we have computed the
stream function ψ and the vorticity ω where:

ω =
∂vM

p

∂x
−

∂uM
p

∂y
with uM

p = (uM
p ,v

M
p ), (4.21)

and

∆ψ = −ω in Ω, (4.22)

ψ = 0 on ∂Ω. (4.23)

Figure (4.6) depicts the streamlines and the stream function for Re = 100 and Re = 400.

Table (4.2) represents the maximal value of the stream function |ψ| and the position of this maxi-
mum for the two values of the Reynolds number. We can see that we are in accordance with the results
produced in [66] and [106].

Re=100 Re=400
Reference Maximum x y Maximum x y
Present 8.3339×10−2 0.37 0.75 8.5731×10−2 0.43 0.63
Botella [66] 8.3315×10−2 0.37 0.75 8.5716×10−2 0.43 0.63
Ehrenstein and Peyret [106] 8.3315×10−2 0.37 0.75 8.5715×10−2 0.43 0.63

Table 4.2: Intensity and position (x,y) of the maximum of the stream function.

Table (4.3) displays the maximal value of vorticity |ω| on the upper side y = 1. Again, our results
present a good accordance with those obtained in [66] and [106].
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Figure 4.6: Streamlines (left) and stream function (right) computed for the lid driven cavity. Top: Re =
100, bottom: Re = 400.

Re=100 Re=400
Reference Maximum x Maximum x
Present 13.4323 0.63 24.9222 0.63
Botella [66] 13.4226 0.63 24.9157 0.63
Ehrenstein and Peyret [106] 13.4227 0.63 24.9344 0.63

Table 4.3: Intensity and position x of the maximum of the vorticity on the upper side.
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This chapter covers the entirety of article [23] and is also based on article [247] which can be found
in the Appendix. Both articles are listed below:

• E. Ahusborde, M. Azaïez M., S. Glockner, and A. Poux. A contribution to the outflow boundary
conditions for Navier-Stokes time-splitting methods, Lecture Notes in Computational Science and
Engineering, 95:75-86, 2014.

Abstract: We present in this paper a numerical scheme for incompressible Navier-Stokes equa-
tions with open boundary conditions, in the framework of the pressure and velocity correction
schemes. In Poux et al. (J Comput Phys 230:4011- 4027, 2011), the authors presented an almost
second-order accurate version of the open boundary condition with a pressure-correction scheme
in finite volume framework. This paper proposes an extension of this method in spectral element
method framework for both pressure- and velocity-correction schemes. A new way to enforce this
type of boundary condition is proposed and provides a pressure and velocity convergence rate in
space and time higher than with the present state of the art. We illustrate this result by computing
some numerical tests.

• A. Poux, S. Glockner, E. Ahusborde and M. Azaïez. Open and traction boundary conditions for
velocity correction scheme for Navier-Stokes equations, Computers and Fluids, 70:29-43, 2012.

Abstract: In this paper we propose to study open boundary conditions for incompressible Navier-
Stokes equations, in the framework of velocity-correction methods. The standard way to enforce
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this type of boundary condition is described, followed by an adaptation of the one we proposed in
[248] that provides higher pressure and velocity convergence rates in space and time for pressure-
correction schemes. These two methods are illustrated with a numerical test with both finite volume
and spectral Legendre methods. We conclude with three physical simulations: first with the flow
over a backward-facing step, secondly, we study, in a geometry where a bifurcation takes place,
the influence of Reynolds number on the laminar flow structure, and lastly, we verify the solution
obtained for the unsteady flow around a square cylinder.

5.1 Introduction

A difficulty in obtaining the numerical solution of the incompressible Navier-Stokes equations, lies in
the Stokes stage and specifically in the determination of the pressure field which will ensure a solenoidal
velocity field. Several approaches are possible. We can for instance consider exact methods as the
Uzawa [45] and augmented lagrangian [121] ones. In complex geometries or three dimensional meth-
ods, theses techniques are inappropriate since their computational time costs are very high. An alternative
consists in decoupling the pressure from the velocity by means of a time splitting scheme. A large num-
ber of theoretical and numerical studies have been published that discuss the accuracy and the stability
properties of such approaches. The most popular methods are pressure-correction schemes. They were
first introduced by Chorin-Temam [89, 288], and improved by Goda (the standard incremental scheme)
in [130], and later by Timmermans in [292] (the rotational incremental scheme). They require the solu-
tion of two sub-steps: the pressure is treated explicitly in the first one, and is corrected in the second one
by projecting the predicted velocity onto an ad-hoc space. A less studied alternative technique known as
the velocity-correction scheme, developed by Orszag et al in [231], Karniadakis et al in [166], Leriche
et al in [185] and more recently by Guermond et al in [135], consists in switching the two sub-steps.

In [269] and [136], the authors proved the reliability of such approaches from the stability and the
convergence rate points of view. A series of numerical issues related to the analysis and implementation
of fractional step methods for incompressible flows are addressed in the review paper [134]. In this
reference the authors describe the state of the art for both theoretical and numerical results related to the
time splitting approach.

Another difficulty consists in the treatment of outflow boundary conditions. Indeed the majority of
the studies made on these methods consider only Dirichlet boundary conditions. We are interested here
in outflow boundary conditions. A large variety of boundary conditions of this type exists, such as the
non reflecting boundary condition developed by Orlanski [230] or Engquist [107]. Here we present some
results on the open and traction boundary condition [133, 193].

With open or traction boundary conditions, while no studies have been reported with a velocity-
correction scheme, a few have been done with pressure-correction schemes. In [134] the authors proved
that only spatial and time convergence rates between O(∆x+∆t) and O(∆x3/2+∆t3/2) on the velocity and
O(∆x1/2 +∆t1/2) on the pressure are to be expected with the standard incremental scheme, and between
O(∆x+∆t) and O(∆x3/2 +∆t3/2) on the velocity and pressure for the rotational incremental scheme.
In [248], the authors presented a new version of the boundary condition for the pressure-correction
scheme in the finite volume framework. They obtained a second-order accuracy for the velocity and
rates between O(∆x3/2 +∆t3/2) and O(∆x2 +∆t2) with the standard incremental scheme while with the
rotational version, a second order convergence is reached for both velocity and pressure. We propose here
to extend this method in spectral element method framework for both pressure-correction and velocity-
correction schemes.
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5.2 Pressure-correction scheme for open boundary condition

5.2.1 Governing equations

Let Ω be a regular bounded domain in IRd with~n a unit vector on the outward normal along the boundary
Γ = ∂Ω oriented outward. We suppose that Γ is partitioned into two portions ΓD and ΓN .

Our study consists, for a given finite time interval ]0, t∗] in computing velocity~u=~u(~x, t) and pressure
p = p(~x, t) fields satisfying:

ρ
∂~u
∂ t
−µ∆~u+∇p = ~f in Ω×]0, t∗], (5.1)

∇ ·~u = 0 in Ω×]0, t∗], (5.2)

~u = ~g on ΓD×]0, t∗], (5.3)

(µ∇~u− pI)~n = ~t on ΓN×]0, t∗], (5.4)

where ρ and µ are the density and the dynamic viscosity of the flow respectively and I the unit tensor.
The body force ~f = ~f (~x, t), the constraint~t =~t(~x, t) and the boundary condition ~g =~g(~x, t) are known.
For the sake of simplicity, we chose~g =~0. Finally, the initial state is characterised by a given~u(.,0).

We shall compute two sequences (~un)0≤n≤N and (pn)0≤n≤N in a recurrent way that approximate in
some sense the quantities (~u(., tn))0≤n≤N and (p(., tn))0≤n≤N , solutions of unsteady Stokes problem (5.1)-
(5.4). Using a second order backward difference formula (BDF) time scheme, its semi-discrete version
reads:

ρ
α~un+1 +β~un + γ~un−1

∆t
−µ∆~un+1 +∇pn+1 = ~f n+1 in Ω, (5.5)

∇ ·~un+1 = 0 in Ω, (5.6)

~un+1 = ~0 on ΓD, (5.7)(
µ∇~un+1− pn+1I

)
~n = ~tn+1 on ΓN . (5.8)

Values of parameters α,β ,γ depend on the temporal scheme used. Namely:

• α = 1, β =−1, γ = 0 for the first order Euler time scheme,

• α = 3
2 , β =−2, γ = 1

2 for the second order Backward Difference Formulae time scheme.

Equations (5.5)-(5.8) are split into two sub-problems. The first one is a prediction diffusion problem
that computes a predicted velocity field: Find~un+1/2 such that

ρ
α~un+1/2 +β~un + γ~un−1

∆t
−µ∆~un+1/2 +∇pn = ~f n+1 in Ω, (5.9)

~un+1/2 = 0 on ΓD, (5.10)(
µ∇~un+1/2− p̃n+1Id

)
~n = ~tn+1 on ΓN . (5.11)

Expression of p̃n+1 depends on the time scheme:

• for the first order time scheme

p̃n+1 = pn, (5.12)
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• for the second order time scheme

p̃n+1 = 2pn− pn−1. (5.13)

The second step is a correction pressure-continuity: Find (~un+1,ϕn+1) such that

ρα

∆t

(
~un+1−~un+1/2

)
+∇ϕ

n+1 = ~0 in Ω, (5.14)

∇ ·~un+1 = 0 in Ω, (5.15)

~un+1 ·~n = 0 on ΓD, (5.16)

B.C. (ϕn+1) on ΓN . (5.17)

The pressure is upgraded via:

pn+1 = pn +ϕn+1−χµ∇ ·~un+1/2 in Ω. (5.18)

The parameter χ is used to switch between the standard incremental scheme and the rotational one:

• χ = 0 for the standard incremental scheme,

• χ = 0.7 for the rotational incremental scheme.1

In practice, this second step is replaced by a Poisson problem on ϕn+1:

∆t
αρ

∆ϕ
n+1 = ∇ ·~un+1/2 in Ω, (5.19)

∂ϕn+1

∂n
= 0 on ΓD, (5.20)

B.C. (ϕn+1) on ΓN , (5.21)

completed by:

pn+1 = pn +ϕ
n+1−χµ∇ ·~un+1/2 in Ω, (5.22)

~un+1 = ~un+1/2− ∆t
αρ

∇ϕ
n+1 in Ω. (5.23)

The natural choice for B.C. (ϕn+1) consists in choosing ϕn+1 = 0 on ΓN . Such a choice involves a
numerical locking for χ = 0 since the boundary condition on the pressure increment causes the pressure
on the limit to be equal to its initial value. A real improvement is obtained for χ = 0.7 but the expected
rates of convergence are not reached.

In the next section we will keep the nature of the boundary condition of ϕn+1 and will suggest a value
of it allowing the reduction of the boundary layer effect mentioned previously.

1Ideally, χ = 1 but as Guermond proved [133], for stability issues, χ is necessarily strictly lower than 2µ/d.
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5.2.2 Improvement of the pressure boundary conditions

For the sake of simplicity we choose a square domain Ω with ΓN at its right boundary. The starting point
of our approach is the derivation on x1 of the first component of (5.14):

− ∆t
αρ

∂ 2ϕn+1

∂x2
1

=
∂ux1

n+1

∂x1
− ∂ux1

n+ 1
2

∂x1
. (5.24)

Then, we project on direction x1 the equations (5.4) and (5.8):

µ
∂un+1

x1

∂x1
− pn+1 = tn+1

x1
, (5.25)

µ
∂un+ 1

2
x1

∂x1
− p̃n+1 = tn+1

x1
. (5.26)

The combination of those three last equations (5.24)-(5.26) gives:

− ∆t
αρ

∂ 2ϕn+1

∂x2
1

=
1
µ
(pn+1− p̃n+1). (5.27)

Replacing p̃n+1 by its expressions (5.12) gives for the first order scheme:(
∆t
αρ

∂ 2

∂x2
1
+

1
µ

)
ϕ

n+1 = +χ∇ ·~un+ 1
2 . (5.28)

Or for a second order scheme using (5.13) :(
∆t
αρ

∂ 2

∂x2
1
+

1
µ

)
ϕ

n+1 =
ϕn

µ
+χ∇ ·

(
~un+ 1

2 −~un− 1
2

)
. (5.29)

Moreover taking into account the Poisson problem (5.19):

∂ 2ϕn+1

∂x2
1

+
∂ 2ϕn+1

∂x2
2

= ∇ ·~un+1/2, (5.30)

and substracting (5.28) or (5.29) in (5.30) one obtains:

• First-order open boundary condition (OBC1):(
∆t
αρ

∂ 2

∂x2
2
− 1

µ

)
ϕ

n+1 = (1−χ)∇ ·~un+ 1
2 , (5.31)

• Second-order open boundary condition (OBC2):(
∆t
αρ

∂ 2

∂x2
2
− 1

µ

)
ϕ

n+1 = (1−χ)∇ ·~un+ 1
2 − ϕn

µ
+χ∇ ·~un− 1

2 . (5.32)

To summarize, we propose a pressure-correction step that writes: Find ϕn+1 such that

∆t
αρ

∆ϕ
n+1 = ∇ ·~un+1/2 in Ω, (5.33)

∂ϕn+1

∂n
= 0 on ΓD, (5.34)

ϕ
n+1 = ϕ

∗ on ΓN , (5.35)
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where ϕ∗ is solution of:(
∆t
αρ

∂ 2

∂x2
2
− 1

µ

)
ϕ
∗ = (1−χ)∇ ·~un+ 1

2 −2γ

(
ϕn

µ
−χ∇ ·~un− 1

2

)
on ΓN , (5.36)

∂ϕ∗

∂x2
(±1) = 0. (5.37)

5.2.3 Numerical experiments

5.2.3.1 Spectral Element Method Implementation

The domain Ω is the union of quadrangular elements Ω = ∪K
k=1Ωk.

For simplification, we consider only rectilinear elements with edges collinear to the axis x and y, that is:

Ωk =]ck,c′k[×]dk,d′k[.

The partition is conforming in the sense that the intersection of two adjacent elements is either a vertex
or a whole edge.
The discrete and stable subspaces to approximate the velocity and the pressure, ~Xp ⊂ (H1

0 (Ω))2

and Mp ⊂ L2
0 (Ω) are chosen to be:

~Xp =
{
~wp ∈ (H1

0 (Ω))2, ~wk
p = ~wp|Ωk ∈ (IPp (Ω))2

}
, (5.38)

Mp =
{

qp ∈ L2 (Ω), qk
p = qp|Ωk ∈ IPp−2 (Ωk),

∫
Ω

qp d~x = 0
}
. (5.39)

The spectral Legendre approach consists in using the Legendre-Galerkin methods introduced in
[103] applied to the variational formulation of elliptic problems introduced in our algorithms.

5.2.3.2 Numerical results for the Stokes problem

Exact solutions for~uex =
(
uex

x1
,uex

x2

)
and pex correspond to these data:

uex
x1
(x1,x2, t) = sin(x1)sin(x2)cos(2πωt) , (5.40)

uex
x2
(x1,x2, t) = cos(x1)cos(x2)cos(2πωt) , (5.41)

pex(x1,x2, t) = −2cos(1)sin(2(x1−1)− x2)cos(2πωt) . (5.42)

To study the time splitting error, we consider the unsteady case ω = 0.7 and the errors at t∗ = 1 with a
second order time discretization for a range of time steps 5×10−4 ≤ ∆t ≤ 10−1.

Figure (5.1) depicts results when we use the natural choice for the boundary conditions for ϕn+1 that
is ϕn+1 = 0 on ΓN . The left part of the figure displays the error in L2-norm for both pressure and velocity
when using the standard incremental scheme (χ = 0). We can see that the results are very bad and no
order of convergence can be calculated. The right part exhibits the same quantities when using the ro-
tational scheme with χ = 0.7. We can see that only rates close to 1 are obtained while order 2 is expected.

Figure (5.2) displays the same results using our boundary condition (5.32). Again, the left part of
the figure depicts the errors with standard incremental scheme whereas the right part depicts the errors
with the rotational scheme. Contrary to [248], where the authors obtained an almost second-order for the
standard incremental scheme and a full second-order for the rotational scheme, we obtain here, in both
cases, convergence rates equal to 2.
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Figure 5.1: Time convergence rates with the standard incremental scheme (left) and the rotational
scheme (right) at t∗ = 1 with K = 1 and p = 18 with standard open boundary conditions and spectral
element method.
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Figure 5.2: Time convergence rates with the standard incremental scheme (left) and the rotational
scheme (right) at t∗ = 1 with K = 1 and p = 18 with the proposed open boundary conditions and spectral
element method.

5.3 Velocity-correction scheme for open boundary condition

5.3.1 Governing equations

We propose now to extend our boundary condition for the velocity-correction scheme. The scheme
developed by Guermond and Shen in [135] consists on two sub-steps.
The first one is the prediction problem that computes a pressure increment and a solenoidal velocity:
find ϕn+1 and~un+1 such that:

ρ
α~un+1 +(β −α)~̃un +(γ−β )~̃un−1− γ~̃un−2

∆t
+∇ϕ

n+1 = ~f n+1−~f n in Ω, (5.43)

∇ ·~un+1 = 0 in Ω, (5.44)

~un+1 ·~n = 0 on ΓD, (5.45)

µ∂n(~un+1 ·~n)− pn+1 =~tn+1 ·~n on ΓN , (5.46)
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where ϕ is the pressure increment defined as:

ϕ
n+1 = pn+1− pn +χµ∇ ·~̃un. (5.47)

In practice, this step is processed by solving the following problem: find ϕn+1 such that:

∇ ·
(

∆t
ρ

∇ϕ
n+1
)
= ∇ ·

(
∆t
ρ

(
~f n+1−~f n

)
− (β −α)~̃un− (γ−β )~̃un−1 + γ~̃un−2

)
in Ω, (5.48)

∂nϕ
n+1 =

(
~f n+1−~f n

)
·~n on ΓD, (5.49)

B.C. (ϕn+1) on ΓN , (5.50)

and upgrading the pressure and the solenoidal velocity via (5.47) and (5.43).
The second step is a correction-diffusion problem: find ~̃un+1 such that:

ρ
α~̃un+1 +β~̃un + γ~̃un−1

∆t
−µ∆~̃un+1 = ~f n+1−∇pn+1 in Ω, (5.51)

~̃un+1 =~0 on ΓD, (5.52)

µ∂n(~̃u ·~n)n+1 =~tn+1 ·~n+ pn+1 on ΓN , (5.53)

µ∂n(~̃u ·~τ)n+1 =~tn+1 ·~τ on ΓN . (5.54)

Again the main difficulty lies on the boundary condition (5.50). The natural choice consisting in
choosing ϕ∗ = 0 leads to the same issues as for the pressure-correction scheme since rates of con-
vergences are lower that the expected ones. In [247], we have carried out the same reasoning as for
the pressure-correction scheme and we proposed this formulation for the pressure computation step:
Find ϕn+1 such that

∆t
ρ

∆ϕ
n+1 = ∇ ·

(
∆t
ρ

(
~f n+1−~f n

)
− (β −α)~̃un− (γ−β )~̃un−1 + γ~̃un−2

)
in Ω, (5.55)

∂nϕ
n+1 =

(
~f n+1−~f n

)
·~n on ΓD, (5.56)

ϕ
n+1 = ϕ

∗ on ΓN , (5.57)

where ϕ∗ is solution of:(
∆t
ρ

∂x2
2
− α

µ

)
ϕ

n+1 = ∂x2

∆t
ρ

(
f n+1
x2
− f n

x2

)
−∇ ·

(
(β −α)~̃un +(γ−β )~̃un−1− γ~̃un−2)−Hn, (5.58)

with:

Hn = χ∇ ·
(
α~̃un +β~̃un−1 + γ~̃un−2)− 1

µ

(
βϕ

n + γϕ
n−1)

− 1
µ

(
α (tn+1

x1
− tn

x1
)+β (tn

x1
− tn−1

x1
)+ γ (tn−1

x1
− tn−2

x1
)
)
. (5.59)
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5.3.2 Numerical experiments

The same numerical experiments as for the pressure-correction scheme are carried out. Again we present
firstly in Figure (5.3) the results using the natural choice for ϕ∗ that is ϕ∗ = 0 on ΓN . The left part of the
figure displays the error in L2-norm for the pressure and velocity when we use the standard incremental
scheme. We can see that the results are very bad and no order of convergence can be calculated.The right
part exhibits the same quantities when using the rotational scheme with χ = 0.7. We can see that only
rates close to 1 for the pressure and 3

2 for the velocity are obtained.
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Figure 5.3: Time convergence rates with the standard incremental scheme (left) and the rotational
scheme (right) at t∗ = 1 with K = 1 and p = 18 with standard open boundary conditions and spectral
element method.
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Figure 5.4: Time convergence rates with the standard incremental scheme (left) and the rotational
scheme (right) at t∗ = 1 with K = 1 and p = 18 with the proposed open boundary conditions and spectral
element method.

In Figure (5.4), results corresponding to the proposed boundary condition are exhibited. Again, the
left part of the figure depicts the errors with standard incremental scheme whereas the right part depicts
the errors with the rotational scheme. We can see that for the standard incremental scheme rates of
convergence close to 2 are obtained as expected. For the rotational scheme, we can remark that unlike
the pressure-correction scheme for which the standard and rotational schemes give the same results
with a slight improvement with the rotational scheme, the results show here a distinct advantage for the
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standard version. Indeed, for the pressure, the convergence rate is now 1.4. This conclusion is confirmed
by several numerical tests. A similar observation can be found in [135] where the Dirichlet boundary
condition is considered for the Stokes problem.
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This chapter summarizes in detail article [26]:

• E. Ahusborde, S. Glockner, An implicit method for the Navier-Stokes equations on overlapping
block-structured grids, International Journal for Numerical Methods in Fluids, Vol 62, 784-801,
2010.

Abstract: This paper deals with a method first introduced by Romé et al. in two articles. The
authors reported that their method was suitable to run the Navier-Stokes equations efficiently on
non-matching and overlapping block-structured meshes. However, there was a problem of mass
conservation and a discontinuity of pressure through the interfaces in some cases. In the present
paper, an improvement of the method based on a pressure correction scheme is proposed. With this
improvement, the pressure is continuous through the interfaces and the incompressibility constraint
is ensured over the whole domain. Several numerical tests were carried out to assess the proposed
method.

6.1 Introduction

In computational fluid dynamics when flows are calculated on complex geometries, one can use either a
block-structured grid or an unstructured one. Unstructured grids allow to mesh very complex geometries
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leading to complex discretization schemes and solvers that require table of connectivity between nodes
and indirect addressing. If the geometry is not too complicated, it can be divided into a reasonable num-
ber of structured blocks. The lexical numbering makes easy the discretization of the equations (specially
if the grid remains orthogonal) and the use of many solvers dedicated to the structured grids.
Domain decomposition methods are well suited to these problematics. They can be classified according
to several criteria [253]. For instance, the block structured grids can be used with overlapping or non-
overlapping. Generally, each block is computed separately and provides the boundary conditions for the
neighbouring blocks. Historically, these methods have been introduced by Schwartz. The main draw-
backs of this method is that overlapping is required for convergence. An improvement of these method
consists in substituting overlapping by another boundary condition. In [192], Lions proposed the use of
a Robin boundary condition. Our strategy consists in working with overlapping in order to deal with
orthogonal grids. The main difficulty is to find a relevant projection operator on the interfaces between
sub-domains. Mortar element methods have been proposed to solve this problem [62, 76]. Chimera
methods represent an other approach [283]. These methods are particularly used in aerodynamic simu-
lations.
Non-matching meshes raise the classical question of the interpolation. This difficulty becomes harder
when the interpolation must be carried out under constraint. In case of the simulation of an incompress-
ible flow, the constraint ∇ ·~u = 0 must be verified. Generally, interpolation is conservative if it is based
on finite volume techniques [191, 293]. Fluxes through interfaces are calculated using local balance with
a neighbouring block or a projection. Recently, a mass-flux based interpolation algorithm was proposed
by Tang et al [284, 285]. Some authors who used a non-conservative interpolation have shown that mass
conservation is directly linked to the order of the interpolation [148].
In this paper, we propose an implicit method to compute the incompressible Navier-Stokes equations on
block-structured meshes based on a non-conservative interpolation. This study proposes an improvement
of the method first introduced in [258] and [259]. Indeed, the authors have previously met problems in
order to satisfy the incompressibility constraint on the interfaces between blocks leading in some cases to
a discontinuity of pressure. They used the augmented Lagrangian method [121] for the pressure-velocity
coupling. In the present case, this method has been replaced by a pressure correction scheme [292] in
order to circumvent these drawbacks.
We first present the numerical context of this study by describing the models and numerical methods of
the CFD code Aquilon (Aq. on figures and tables). Then, we describe the novelties of the method in
comparison with the method firstly introduced in [258] and [259]. At last, numerical tests have been
carried out in order to validate this method and clearly show the improvements.

6.2 Numerical context

In this chapter, the incompressible Navier-Stokes equations are considered using the pressure correction
scheme [292] described in Section 5.2. The spatial discretization is based on the finite volume method on
velocity-pressure staggered grid of the Marker and Cells type [144]. Pressure unknowns are associated
to the cell vertices whereas velocity components are face centred. A centred scheme of order 2 is used in
this work for the inertial and constraint terms.
The multifrontal sparse direct solver MUMPS [35] is used to solve the linear systems stemmed from
velocity prediction and pressure correction steps.
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6.3 An implicit method for connecting blocks

In order to connect the sub-domain, the missing information are transferred from block to block. Polyno-
mial interpolations are build and integrated as special boundary conditions. The polynomial coefficients
of the interpolation are present in the linear system and couple the solution on each block through the in-
terface. The non-conservative interpolation of the variables at the interfaces can be seen as a new implicit
boundary condition used for the discretization of the equation at the nodes strictly inside the different
blocks.

6.3.1 Pressure correction step

Two blocks (a) and (b) are considered (see Figure 6.1). The pressure increment φ defined on block
(b) is interpolated, which gives the new boundary conditions on block (a). Interpolation is based on
the construction of a polynomial basis of a given order. For instance, the interpolation of φ at a point
M0(x0,y0) belonging to a block (a) is obtained from the values of φ at points Mi(xi,yi) on block (b) by
the relation:

φ
(a)(x0,y0) = fint(φ

(b)) =
N

∑
i=1

Fi(x0,y0)φ
(b)(xi,yi). (6.1)

The interpolation must now be constructed locally to each node at the interface. The technique consists
in building a canonical basis of Q-type of order d thanks to the neighbouring of M0(x0,y0). The number
of nodes required depends on the order of the chosen polynomial. For instance, in case of a Q(1) inter-
polation Figure 6.1 represents the interpolation of the pressure on the node M0 belonging to the interface
of the block (a) obtained from the values of pressure on the nodes M1, M2, M3 and M4 belonging to the
block (b).
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Figure 6.1: Interpolation of the pressure.

In order to reduce the values of the coefficients of the polynomial, M0 is chosen as the centre of the
frame. A polynomial Q(d)

i built using the Mi nodes, 1≤ i≤ (d +1)2 is written:

Q(d)
i (x− x0,y− y0) =

d

∑
m=0

d

∑
n=0

amni (x− x0)
m (y− y0)

n. (6.2)
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Q(d)
i has the following properties:

∀i, j 1≤ i, j ≤ (d +1)2, Q(d)
i (x j− x0,y j− y0) = δi j. (6.3)

The equation (6.2) associated with the property (6.3) can be seen as a line of the (d + 1)2× (d + 1)2

linear system A×B = Id with:

A =


a001 · · · amn1 · · · ad d 1

...
...

...
a00 i · · · amni · · · ad d i

...
...

...
a00(d+1)2 · · · amn(d+1)2 · · · ad d (d+1)2

 ,

and

B =


(x1− x0)

0(y1− y0)
0 · · · (xi− x0)

0(yi− y0)
0 · · · (x(d+1)2− x0)

0(y(d+1)2− y0)
0

...
...

...
(x1− x0)

m(y1− y0)
n · · · (xi− x0)

m(yi− y0)
n · · · (x(d+1)2− x0)

m(y(d+1)2− y0)
n

...
...

...
(x1− x0)

d(y1− y0)
d · · · (xi− x0)

d(yi− y0)
d · · · (x(d+1)2− x0)

d(y(d+1)2− y0)
d

 .

The inversion of this linear system (one for each node of the interface) is performed during the prepa-
ration step of a simulation and provides the values of the matrix A. The value of the pressure φ at node
M0(x0,y0) reads:

φ
(a)(x0,y0) =

(d+1)2

∑
i=1

Q(d)
i (x0,y0)φ

(b)(xi,yi). (6.4)

The Q(d)
i can be placed in the linear system of the pressure correction step (see Figure 6.2).

S ϕ

S ϕ

S ϕ

S ϕ

=
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(b)
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(b)

0

0

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

Figure 6.2: Representation of the pressure correction matrix on 2 blocks.

Thus, on a matrix line corresponding to a node at the interface, non-zero elements are the diagonal
term and the elements with a column number corresponding to unknowns used to interpolate the pressure.
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With this method, the pressure is obviously continuous at the interfaces (up to the order of the polynomial
interpolation) but the divergence of the velocity is not null at the interfaces since the velocities u2, u4, v1,
v2, and v3 (see Figure 6.1) are not corrected by the pressure correction.
In order to circumvent this problem, we propose to increase overlapping between blocks adding a row of
ghost nodes (nodes φ1, φ2 and φ3 in figure 6.3).
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Figure 6.3: New stencil to ensure incompressibility constraint.

The pressure is now connected from one block to each other thanks to these ghost nodes. The pressure
gradient can be computed precisely on velocity nodes at the interfaces. This addition allows satisfaction
of incompressibility constraint. Nonetheless, the pressure is no longer continuous on the interface. It is
probably due to an accumulation on the pressure nodes pn+1 at the interface of the interpolation error
of φ n+1 on the ghost nodes. In order to overcome this problem, a new pressure correction scheme is
proposed. The velocity prediction step does not change but the pressure correction step is modified and
a third interpolation step is added. The new scheme reads as follow.

• Velocity prediction step: Find~un+1
∗ such that

ρ

(
~un+1
∗ −~un

∆t
+∇ · (~un+1

∗ ⊗~un)−~un+1
∗ ∇ ·~un

)
= −∇pn

+∇ ·µ(∇~un+1
∗ + ∇

t~un+1
∗ ), in Ω, (6.5)

~un+1
∗ = 0, on ∂Ω, (6.6)

• Pressure correction step: Find~un+1 and φ n+1 such that

ρ
~un+1−~un+1

∗
∆t

+∇φ
n+1 = 0, in Ω, (6.7)

∇ ·un+1 = 0, in Ω, (6.8)

un+1 ·~n = 0, on ∂Ω, (6.9)

with:

φ
n+1 = p̃n+1− pn +µ∇ ·~un+1

∗ , (6.10)

• Interpolation step: Compute pn+1 such that

pn+1 = p̃n+1, in Ω/Γ, (6.11)

pn+1 = fint(p̃n+1), on Γ, (6.12)
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where Γ is the whole interface between blocks and fint represents the interpolation function on Γ.

This new scheme ensures continuity of the pressure through the interfaces and still verifies the incom-
pressibility constraint.

6.3.2 Velocity prediction step

Interpolation of the velocity is more difficult since it is a vector field. If the blocks have not the same
orientation, both velocity components are needed to compute a single component of the velocity field on
the interface. For a precise description of the method, particularly the interpolation technique on carte-
sian blocks with any orientation or on curvilinear blocks, the reader is referred to [259]. Previously, the
interpolation of the normal component of the velocity field at the interface was performed on pressure
nodes whereas the tangential component was interpolated at the velocity nodes. In the present case, both
components are interpolated at the velocity nodes (see Figure 6.4 in case of a Q(1) interpolation).
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Figure 6.4: New interpolation of the velocity vector on a staggered grid.

In next section, many computations have been carried out to assess the proposal method and to exhibit
its improvements in comparison with [259]. Q(2) polynomial interpolation has been systematically used.
This leads to a 5-points stencil for the pressure and to a 24-points stencil for the velocity.

6.4 Numerical results

In [26], a series of numerical experiments has been performed to evaluate the accuracy and the efficiency
of the method. Here we present only the study of a flow past a triangular cylinder. The Reynolds number
is based on the side of the triangular cylinder and the axial velocity inlet. We are interested in two flow
ranges according to the value of the Reynolds number in relation to the critical Reynolds Rec:

• Re < Rec: the flow is stationary. One can observe two steady symmetrical vortices behind the
cylinder whose size increases with increase in Re.

• Re ≥ Rec: the flow becomes unsteady and periodic. Two vortices form at the rear-end vertices of
the cylinder and are shed alternately.
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Jackson [156] studied the onset of vortex shedding in flow past variously shaped bodies. For an isosce-
les triangle with base 1 and height 0.8, he reported a critical Reynolds as 34.318 and a corresponding
Strouhal number as 0.13554. Zielinska and Wesfreid [339] computed a flow past an equilateral triangle
with a blockage ratio equal to 1/15 and found a critical Reynolds of 38.3. De and Dalal [99] carried
out a similar study and calculated a critical Reynolds of 39.9 for a blockage ratio of 1/20. This case has
been chosen because most of the studies deal with the flow past circular or square cylinder and laminar
flow past a triangular cylinder has not been intensively treated so far. Moreover, this configuration is well
adapted to validate and illustrate the interest of block-structured meshes.

6.4.1 Parameters of the case test

The configuration is presented in Figure 6.5.

Figure 6.5: Global features of the computational geometry.

Figure 6.6 represents the block-structured mesh used in this case. The grid is fine around the cylinder
and space step size increases in front of and behind it. The number of grid nodes distributed over a side
of the cylinder is 100. The total number of elements is 137980. At the inlet, a flat profile is imposed for
the axial velocity u and zero for the velocity v. At the outlet, a Neumann condition is imposed on both
velocity components. We will compare the results with [99].

6.4.2 Steady flow

The streamlines in the vicinity of the cylinder for several Reynolds number are shown in figure 6.7.
To assess the method, the recirculation length (Lr) defined by the reattachment of the fluid has been
measured and a linear relationship between Lr and Re has been obtained in [99] (see figure 6.8). The
results seem to be in good accordance with those presented in [99].

6.4.3 Unsteady and periodic flow

The flow becomes unsteady and periodic for Re ≥ 40. For Re = 100, the time-average drag coefficient
(CD), time-average pressure drag coefficient (CDp), rms of the lift coefficient (CLrms) and the Strouhal
number (St) are compared with [99]. We can see in table 6.1 difference below 5% except for the CLrms

where the gap is 11%. It can be explained by the difference of the mesh size and the numerical method
used by the authors.

Finally, Figure 6.9 shows the streamlines around the triangular cylinder during a period at Re = 100.
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Figure 6.6: Block-structured mesh for the flow past a triangular cylinder.

CD CDp CLrms St
Present 1.6698 1.3579 0.2626 0.1960

De and Dalal [99] 1.7549 1.2986 0.2974 0.1962

Table 6.1: Comparison of the results for Re = 100.

6.5 Conclusion

In this chapter, we have proposed an improvement of a method firstly introduced by Romé et al in [259].
Both methods deal with a domain decomposition technique for non-conforming and overlapping block-
structured meshes. They are non-iterative and based on a implicit non-conservative interpolation of the
variables at the interfaces. The linear systems are modified in comparison with those obtained on a
monoblock mesh since lines are added to take into account the connectivity between blocks.
The main difference of the two methods is the velocity-pressure coupling. In [259], the authors treated
this coupling by a augmented Lagrangian method. In some cases, the divergence of the velocity at the
interfaces between block was not null leading to a discontinuity for the pressure. In the present work,
velocity and pressure have been coupled by a pressure correction scheme. The divergence of the velocity
is now null on the whole domain and the discontinuity of pressure has disappeared.
Several numerical test have been carried out in order to validate the proposed method. They have clearly
showed its feasibility and its accuracy.
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(a)

(b)

(c)

Figure 6.7: Steady state streamlines (a) Re = 20, (b) Re = 30 and (c) Re = 35.



60 Chapter 6. Domain decomposition for Navier-Stokes equations

Figure 6.8: Lr−Re relationship.
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Figure 6.9: Streamlines for the flow past a triangular cylinder during a period at Re = 100 (it reads from
left to right and vertically).
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This chapter proposes a detailed synthesis of article [27]:

• E. Ahusborde, S. Glockner, A 2D block-structured mesh partitioner for accurate flow simulations
on non-rectangular geometries, Computers and Fluids, Vol 43, 2-13, 2011.

Abstract: The motivation of this work is to carry out parallel simulations of incompressible flows
on block-structured meshes. A new partitioning method is proposed. The quality of rectangular
partitions is checked and compared with other methods, as regards load balance, edge-cut and
block numbers. The partitioner is coupled with the massively parallel HYPRE solver library and
efficiency of the coupling is measured. Finally, the code is applied to study laminar flows (steady
and unsteady) on three non-rectangular geometries. Very fine grids are used to compute reference
solutions of a Z-shaped channel flow and the L-shaped and double lid driven cavities.

7.1 Introduction

Flow simulations on complex geometries require either block-structured or unstructured grids. The latter
allow very complex geometries to be meshed leading to complex discretization schemes and solvers
that require a table of connectivity between nodes and indirect addressing. If the geometry is not too
complicated, it can be divided into a reasonable number of structured and conforming blocks. The
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volume control aspect and lexical numbering facilitate the discretization of the equations (specially if the
grid remains orthogonal) and the use of the fastest parallel solvers dedicated to the structured grids.
Solver performances are closely linked to the mesh partitioning or the matrix graph. Partitioning methods
can be divided into two classes: geometric and combinatorial [105]. Geometric techniques are based on
the coordinates of the mesh nodes whereas combinatorial partitioning uses the graph or the hypergraph
of the mesh. Geometric techniques produce lower quality partitions than combinatorial methods but
are extremely fast. For unstructured meshes, partitioner libraries such as CHACO [147], METIS [167],
SCOTCH [239] are available. Unfortunately, they are not well suited to the block-structured framework
since they produce unstructured partitions, as shown in Figure (7.1).

Figure 7.1: Partitioning provided by METIS.

For block-structured meshes, few works have been carried out. The two main strategies used for
the partitioning of such meshes are the recursive edge bisection [60] and the so-called greedy algo-
rithm [331]. These geometric techniques are used in elsA software [131] which is devoted to compress-
ible flows around complex geometries. We can also cite the works of Rantakokko [256] who proposes a
framework for partitioning composite grids. In our opinion, his more interesting approach consists in a
graph strategy applied at the block level instead of the node level (block refinement is also proposed).

Our goal consists in providing a partitioning strategy for block-structured geometries which produces
rectangular partitions. It can be classified as a geometric method even if the coordinates of the nodes
are not used. The partitioner is coupled with the massively parallel solver and preconditioner HYPRE
library [110], more precisely with the semicoarsening geometric multigrid solver [72]-[265]. Firstly, we
are going to present the different steps upon which the proposed method relies. Then, on the particular
example of a double lid driven cavity studied in [227] and [338], we will compare the quality of the
partitions with other approaches and analyze the performance of the coupling with HYPRE solvers.
Lastly, we will apply our code to compute incompressible flow on a this particular geometry.

7.2 Partitioning strategy

Firstly, let us recall the two main qualities of a partitioner:

• It must respect load balancing between processors: each processor should have nearly the same
amount of work to do to minimize idle processors. In our context, each processor should have
around the same number of nodes, close to the ideal load which is equal to the number of nodes
divided by the number of processors.

• It must minimize explicit communication between processors, i.e. the surface-to-volume ratio or
edge-cuts. The goal is to delay as far as possible the moment when communications between
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processors increase such that efficiency collapses as the number of processors rises.

The conceptual interface [111] of HYPRE is quite complete and supports four options: structured grid,
block-structured grid, finite element interface, and linear algebraic interface. The fastest solvers such
as geometric multigrid ones are available for structured grids, and block-structured grids, which is our
framework. The interface requires global indexing of the nodes and rectangular boxes that can be non-
contiguous. In the next sections, we will present the main steps of the partitioner and finally a complete
algorithm that can be used in another solver framework.

7.2.1 An elementary block decomposition

In our opinion, the partitioner should be independent of the initial block construction. For instance, two
geometries are defined on the left part of Figure (7.2). On the right part, different ways to decompose
them, into 3 or 4 blocks are presented (that can be later meshed). Meshes are not shown but they are
continuous through the interfaces between blocks. In the proposed method, the same partition will be
produced for any geometry decomposition. This approach avoids having to consider parallelism during
the construction phase of the mesh.

Geometry First decomposition Second decomposition Third decomposition

Figure 7.2: Example of geometries.

Consequently, the first step consists of splitting the main blocks into elementary ones. This is done
by lengthening each boundary line. Intersections between lines define corners of new elementary blocks.
For instance in Figure (7.3), 3 blocks of the geometry are split into 7 elementary ones.

At this point, we can make 3 remarks:

• These elementary blocks are now the starting point of our partitioner.

• There is no reason for these blocks to be balanced.

• These blocks could have been created during the construction phase of the mesh, but it can become
really fastidious for a large number of blocks.

7.2.2 Block merging

The second step of the partitioner consists in merging the elementary blocks into macro-blocks. In
Figure (7.4), we have merged 10 elementary blocks into 4 macro-blocks. The first macro-block is the
largest of all possible macro-blocks. Then with the remaining elementary blocks, we choose the largest
remaining macro-block and so on until there is no more elementary blocks. The idea of generating
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3 blocks 7 elementary blocks

Original mesh Elementary block splitting

Figure 7.3: Elementary block splitting.

macro-blocks as big as possible is to minimize the number of blocks (and consequently to maximize
their size) for which we are able to construct simple and optimal partitioning. Each macro-block is split
into 3 zones (see Figure (7.5)). The main zone is zone 1 while zones 2 and 3 are residual zones.

Figure 7.4: Merging of elementary block into rectangular macro-blocks.

7.2.2.1 Main zone

The size of the main zone is chosen such that it is a multiple of the ideal load. Then, straightforward
partitioning that minimizes edge-cut and respects load balancing is applied.

The number of cells in each direction of space is taken as an input by the partitioning (Nx = number
of cells in the x direction, Ny= number of cells in the y direction). It can produce square or rectangular
partitions. We also consider a special case if the number of processor associated to the zone 1 is a prime
number (see Figure (7.6)).

7.2.2.2 Residual zones

Residual zones 2 and 3 of two different macro-blocks are associated to one processor so that the sum of
their size is equal to the ideal load. Thus, load balancing is ensured (see Figure (7.5)).
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2 2 312 11

3 2
Size (A  + B  ) = Ideal load

2 1 3

Macro−block A Macro−block B

Figure 7.5: Residual zones.

xN  = N y xN  << N y Prime number

Figure 7.6: Partitioning for the main zone.

We can note in Figure (7.4) that very small macro-blocks (the darker one) can be composed just of
one zone 2 or the sum of zone 2 and 3. These zones can create some non-contiguous regions on the same
processor.

7.2.3 Node partitioning

If we had used cell partitioning, further caution would not have been necessary. With node partitioning,
however, care has to be taken to the boundaries between blocks that can lead to non-rectangular macro-
blocks. Indeed, as shown in Figure (7.7), there exist two configurations that produce a broken boundary
line. The only solution is to split the blocks in two parts. These configurations are quite rare in the cases
we have studied.
From this set of geometric considerations, an algorithm (1) has been extracted that can be applied to any
2D block-structured grid.

7.3 Block-Structured partitioner quality and performance

7.3.1 Load balancing and edge-cuts

In this section, we test the quality of the partitioner concerning the load balancing, the number of edge-
cuts, the number of blocks and the time consumed by the partitioning in comparison with those using
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Broken line −> Split the block

Configuration 1 Configuration 2 

Figure 7.7: Block merging rules.

METIS, the recursive edge bisection (REB) and the greedy algorithm (GA). For the two latters, results
have been obtained with elsA software [131]. Several examples were considered in [27] but we only
present the double cavity geometry, composed of 3 blocks, 4 elementary blocks and 4× 105 nodes.
Figure (7.8) represents the partitions for 16 and 64 processors (one color per processor).

Figure 7.8: Partitioning of a double cavity mesh.

Table (7.1) compares load imbalance, edge-cut and block numbers between the different approaches.

The test cases underline very good load imbalance lower than 1% if the number of processors is not
too high. It confirms that splitting macro-blocks into 3 zones is efficient, residual zones being associated
to verify ideal load. Lower load imbalance cannot be reached because the precision of the partitioner is
equal to the length of a mesh line (necessary to keep rectangular partitions). If the number of processors
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Algorithm 1 Partitioning strategy
1: Elementary block splitting
2: for Each elementary block do
3: Create the list of all possible rectangular macro-blocks associated to the elementary block
4: end for
5: while Macro-block partitioning not finished do
6: Choose the biggest remaining macro block
7: if Configuration 1 then
8: Reject the macro-block from the list
9: else if Configuration 2 then

10: Cut the block and update macro-block list
11: else
12: Accept the macro-block and update macro-block list
13: end if
14: end while
15: for Each macro-block do
16: Construction of the main zone and residual zones
17: Partitioning of the main zone
18: end for
19: return

increases, load imbalance increases but remains lower than 3%. Here, the partitioning effect of zone
1 is more visible: the size of a line of the mesh is relatively high in comparison with the size of the
partition. The number of edge-cuts is overall very good, better than with METIS. REB method shows
optimal results as regards edge-cut and block numbers but very high load imbalance (up to 47%) which is
a crippling default. Moreover, this method did not provide acceptable results for the ring mesh probably
because of the circular aspect of the geometry. Load imbalance produced by the GA is controlled by an
epsilon parameter which has a consequence on the number of blocks generated: the lower is ε the lower
is the load imbalance, but the greater is the number of blocks. Two values for ε have been used: 0.05
and 0.001. For ε = 0.001 load imbalance is very low, edge-cut number is acceptable but the number
of blocks is more than the double of the number of processors. That leads to a high number of non-
contiguous subdomains associated to a processor: it can reduce solver efficiency and it increases the
memory requirement due to the multiplication of ghost cells necessary to the communications between
processors [131]. For ε = 0.05, load imbalance is higher than our method, as well as edge-cut and block
numbers. Finally for the ring example, CPU time shows that the proposed block-approach is much faster
(nearly 30 times) than the other methods. This point could be even more relevant for 3D partitioning
where CPU time is much longer. We can conclude that the proposed method is efficient for the studied
geometries and shows a good compromise between all the partitioning requirements.

7.3.2 Scalability

The efficiency of coupling the partitioner and the HYPRE library is illustrated solving the Poisson equa-
tion obtained from one velocity correction step [130] which is very CPU time consuming in a Navier-
Stokes solver. The studied problem is the double lid driven cavity flow.

The solver is a GMRES (Generalized Minimal Residual Method) associated to the geometric semi-
coarsening multigrid preconditioner. The relative residual is set to 10−10. The code runs on an SGI ICE
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Number of processors 8 16 32 64
Load Imbalance Present (%) 0.54 0.44 1.40 2.87
Load Imbalance METIS (%) 1.54 2.28 3.17 3.28
Load Imbalance REB (%) 17.07 17.07 17.08 17.08
Load Imbalance GA 0.001 (%) 0.08 0.08 0.09 0.09
Load Imbalance GA 0.05 (%) 0.97 4.49 5 4.85
Edge-cuts Present 2829 4584 7513 11360
Edge-cuts METIS 3230 4853 7507 11176
Edge-cuts REB 2300 3800 6000 9000
Edge-cuts GA 0.001 3183 5042 7706 13259
Edge-cuts GA 0.05 3077 4636 7303 12961
Number of blocks Present 11 19 35 66
Number of blocks METIS 8 16 32 64
Number of blocks REB 8 16 32 64
Number of blocks GA 0.001 21 49 87 171
Number of blocks GA 0.05 14 22 41 94

Table 7.1: Partitioner performance for the double cavity mesh.

cluster. Two types of processors have been used: Harpertown nodes linked to a DDR Infiniband network
and Nehalem nodes linked to a QDR Infiniband network.

7.3.2.1 Weak Scaling

The left part of Figure (7.9) displays for each type of processor (Harpertown and Nehalem) CPU time as
a function of the number of processors, with 32500 and 65000 degrees of freedom (dof) per processor.
We can see that processors Nehalem are much faster than Harpertown ones, particularly if the number of
processors is low. A time ratio from 1.3 to 2.1 can be observed.
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Figure 7.9: Left: CPU time versus the number of processors. Right: Weak scaling versus the number of
processors.
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Weak efficiency is presented in the right part of Figure (7.9). Efficiency equal to one indicates an
optimal behaviour for the algorithm and the computer architecture. Indeed, CPU times remains constant,
equal to the reference time, while the total size of the problem increases with the number of processors.
Usually, this property is hardly verified and curves with plateaus can be observed. Values of the plateaus
rise toward one with the load of each processor. This phenomenon is illustrated in Figure (7.9). Weak
efficiency is better for the Harpertown cluster than the Nehalem one, besides a longer computation time.

7.3.2.2 Strong Scaling

The left part of Figure (7.10) displays for each type of processor (Harpertown and Nehalem) on a loga-
rithmic scale, CPU time as a function of the number of processors for two fixed size problems of 1 and
16 million degrees of freedom. Again, processors Nehalem are much faster than Harpertown ones.
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Figure 7.10: Left: CPU time versus the number of processors. Right: Strong scaling versus the number
of processors.

The right part of Figure (7.10) represents the strong scaling versus the number of processors on a
semi-logarithmic scale. With the Harpertown architecture and 16 million dof, a very high efficiency
greater than 0.8 for up to 1024 processors can be observed (16000 dof per processor). The first part of
the graph being over the expected efficiency is due to memory bandwidth saturation when the number
of processors is low that leads to a long reference time in the strong efficiency formula. Using more
processors leads to smaller tasks that lead to a performance increase when more and more data can be
kept in cache. With 1 million dof, this effect is less visible ans scaling is very good up to 128 processors
(8000 dof per processor). With the Nehalem architecture which has a much higher memory bandwidth
(more than 3 times), efficiency curves have the expected behavior. Consequently, optimal efficiencies are
obtained for 512 and 32 processors respectively for the 16 and 1 million dof problems. The saturation
of the efficiency due to the increase of the communications between processors appears earlier with this
architecture.

The next part of chapter the is devoted to the study of incompressible flows in non-rectangular ge-
ometries using the approach proposed here.
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7.4 Computations of incompressible flows on non-rectangular geometries

Laminar flows in rectangular geometries, such as the lid driven cavity [73]-[240], have been extensively
studied in the literature. Several numerical methods have been compared and reference solutions are
available for a wide range of Reynolds numbers (leading to stationary or unsteady flows). In [27], we
proposed a precise solution of flows for three non-rectangular geometries, scarcely studied so far but
here we focus only on the double lid driven cavity.

Time discretization of the Navier-Stokes equations is implicit thanks to Gear’s second order back-
ward differentiation formula [124]. A pressure correction method (see Goda [130]) is used to solve the
velocity-pressure coupling. Spatial discretization (second order centered scheme) is based on the finite
volume method on a staggered grid of the Marker and Cells type. Solvers of the HYPRE library are used.

Flow in a double lid driven cavity has been studied in [227] and [338]. This configuration is presented
in the left upper part of Figure (7.11).

L

0.4L

0.4LL

Re = 100

Re = 1000 Re = 3000

u  =−1, u   = 0
1 2

u  = u  = 0
1 2

1u  = u   = 02

1u  =1, u   = 02

Figure 7.11: Configuration of the double lid driven cavity and streamlines for different Reynolds num-
bers.

The fluid is driven by the lower and upper boundaries in opposite directions. The other boundaries
are walls. The Reynolds number Re is based on the cavity length L and the lid velocity. We focused on
two flow ranges according to the value of the Reynolds number in relation to its critical value Rec:

• Re < Rec: the flow is stationary. We can note three different regimes represented in Figure (7.11).
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On the upper right part for Re = 100, twin primary eddies are created between the two driving lids
while secondary vortices appear in the left and right corners. In the lower left part for Re = 1000,
the two primary vortices coalesce and two secondary vortices appear. Finally, in the lower right
part for Re = 3000, the primary eddy becomes horizontal. The size of the two latter secondary
vortices increases and two new secondary eddies appear (vertically on the upper right and lower
left parts of the domain). However, it is now well-known [289] that cavity flows experience 3-
dimensional global instability well below Rec. Consequently, for Re≥ Re3D

c 2-dimensional studies
are not physical anymore even if they can present numerical interests. Re3D

c has been recently
identified for the double and cross-sectional cavity flows [101]. For the former, it characterizes the
transition between the two first flow regimes.

• Re≥ Rec: the flow becomes 2D unsteady, from periodic to chaotic. In [240] and [73], a study was
carried out to identify the transition from stable to periodic flow in the case of the 2D lid driven
square cavity flow. The flow becomes unstable via a Hopf bifurcation. In [73], the first Lyapunov
exponent was used to compute a critical Reynolds number Rec close to 8000. In [240], thanks to
a different approach (unsteady simulations with small time step), the first Hopf bifurcation occurs
for Rec = 7402. Several subcritical and supercritical flow regimes were identified.

Here we focus on the study of the steady flow (Re = 1000) but in [27], unsteady simulations were
performed. The lower left part of Figure (7.11) displays the streamlines. As described above, a primary
vortex and four secondary eddies appear. With very fine meshes, ternary vortices appear between the
secondary ones and the corner of the domain (see right part of Figure (7.12)). These vortices were not
shown in previous studies [338] and [227]. Figure (7.12) represents two zooms in which we define
the points Pi (xi,yi) of detachment and reattachment of the flow. The results found in the literature are
given on the intensities and positions of the vortices. In the present study, the results were obtained with
convergence criteria on stationarity below 10−12 between two consecutive iterations. Four increasingly
fine grids with 6.25×104, 2.5×105, 106 and 4×106 nodes have been used.
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Figure 7.12: Streamlines for the double lid driven cavity for Re = 1000.

Velocity profiles In Figure (7.13), the velocity profiles at x = 0.7 and y = 0.7 present good accordance
with those obtained by Zhou et al [338].
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Figure 7.13: Velocity profiles at x = 0.7 and y = 0.7.

Positions and intensities of the vortices Tables (7.2) and (7.3) represent the positions and intensities
of the primary and secondary vortices as a function of the mesh size for Re = 1000. Positions and in-
tensities of the ternary vortex are shown in Table (7.4). For the sake of conciseness, we only focus on
the positions and the intensities of one ternary and two secondary vortices. The others can be obtained
symmetrically in relation to the center of the cavity. We observed symmetrical values to up to four
or five significant digits. Table (7.5) displays the positions of the detachment and reattachment points
Pi (i = 1,5) defined in Figure (7.12). In [338] and [227], the authors use coarser grids that could explain
the difference between their values and ours for the primary vortices.

Reference Main Vortex (x,y) Vorticity
Zhou [338] (0.70000, 0.70000) -1.41562
Nithiarasu [227] (0.68950, 0.69690) -1.52363
Present (Mesh 1) (0.70099, 0.70070) -1.49753
Present (Mesh 2) (0.69996, 0.69996) -1.49974
Present (Mesh 3) (0.70000, 0.70000) -1.49858
Present (Mesh 4) (0.69999, 0.69999) -1.49838

Table 7.2: Positions (x,y) and intensities of the main vortex.

7.5 Conclusion

In this chapter, we proposed a method for partitioning 2D block-structured meshes. The goal was to
compute flow simulations on non-rectangular geometries. Our geometrical partitioner was coupled with
the massively parallel solver and preconditioner HYPRE library. Several examples of partitioning are
presented to check, both the efficiency and the performance of our strategy in comparison with other
partitioners. Finally, we computed flow on non-rectangular geometries with very fine grids to propose
reference solutions.
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Reference Lower secondary vortex (x,y) Vorticity
Zhou [338] (0.72560, 0.20000) 2.38559
Nithiarasu [227] (0.85230, 0.20150) 2.60588
Present (Mesh 1) (0.84952, 0.19744) 2.60184
Present (Mesh 2) (0.85055, 0.19637) 2.59861
Present (Mesh 3) (0.85112, 0.19587) 2.59770
Present (Mesh 4) (0.85139, 0.19563) 2.59745
Reference Right secondary vortex (x,y) Vorticity
Zhou [338] (1.32500, 0.48440) 0.53846
Nithiarasu [227] (1.32210, 0.48360) 0.65005
Present (Mesh 1) (1.32226, 0.48356) 0.63099
Present (Mesh 2) (1.32243, 0.48353) 0.62956
Present (Mesh 3) (1.32249, 0.48349) 0.62971
Present (Mesh 4) (1.32253, 0.48346) 0.62996

Table 7.3: Positions (x,y) and intensities of the secondary vortices.

Reference (x,y) Vorticity
Mesh 1 —— ——-
Mesh 2 (1.39579, 0.40420) -0.002911
Mesh 3 (1.39531, 0.40468) -0.004380
Mesh 4 (1.39522, 0.40478) -0.004718

Table 7.4: Positions (x,y) and intensities of the right ternary vortex.

Reference P1(x1,y1) P2(x2,y2) P3(x3,y3)

Mesh 1 (1, 0.09999) (1.23999, 0.4) (1, 0.63999)
Mesh 2 (1, 0.09999) (1.23748, 0.4) (1, 0.64499)
Mesh 3 (1, 0.09874) (1.23624, 0.4) (1, 0.64874)
Mesh 4 (1, 0.09937) (1.23563, 0.4) (1, 0.64999)

Reference P4(x4,y4) P5(x5,y5)

Mesh 1 —— ——
Mesh 2 (1.3925, 0.4) (1, 0.4075)
Mesh 3 (1.3900, 0.4) (1, 0.4100)
Mesh 4 (1.3887, 0.4) (1, 0.4112)

Table 7.5: Positions (xi,yi) of the detachment and reattachment points Pi (i = 1,5).
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Introduction

Multiphase multicomponent flow in porous media are involved in many applications related to subsurface
environment and energy issues. We can mention, no exhaustively, hydrocarbon recovery in petroleum en-
gineering, the geological sequestration of CO2, the geological sequestration of nuclear waste, prevention
of groundwater pollution and remediation or deep geothermal energy. Numerical modeling and simula-
tion have been increasingly used for this purpose, a trend that will continue because more sophisticated
physical processes involving complex mathematical and numerical issues need to be modeled.

This part contains two chapters, in which we focus on the particular case of reactive multiphase
flows in porous media. For a general discussion on the physical principles of the multiphase flow in
porous media, we refer e.g. to [57, 146, 244, 234], while for a description of mathematical models and
computational methods for flows in porous media we refer to [85, 88], and finally for reactive transport
modeling, we refer for instance to [58, 226, 254, 332] and [312] where a recent and detailed review of
the applications above mentioned can be found. Reactive multiphase flow are governed by a set of highly
nonlinear system of degenerate partial differential equations (PDEs) coupled to algebraic and ordinary
differential equations requiring special numerical treatment. There exists a vast amount of literature
on the discretization methods for such a system of PDEs (see for instance [118] for a detailed review of
locally conservative discretization methods that are indispensable for the simulation of flow and transport
processes in porous media). However, we can mention that Finite Volume Methods, Finite Difference
Methods, Finite Element Methods or Control-Volume Finite-Element Methods have been intensively
used in the numerical simulation of multiphase flow in porous media. In this chapter, we consider and
focus on Finite Volume Methods. This part is organized as follows.

In Chapter 8, we start by a non exhaustive state of the art about multiphase reactive flows in porous
media. We describe some applications related to reactive transport modeling. In the numerical modeling
of multiphase flow, a crucial issue is the management of the possible phase appearance and disappear-
ance. This problem needs a relevant choice in the primary variables that will be used in the computations.
A considerable amount of literature is available about his topic. Another important issue is how the cou-
pling between flow, transport and chemistry is treated. Indeed, reactive transport modeling requires to
solve a set of highly nonlinear system of degenerate partial differential equations governing a compo-
sitional multiphase flow, coupled to algebraic differential equations related to equilibrium and kinetic
reactions. The approaches found in the literature can be classified into two categories: the sequential and
the global implicit approaches. Sequential approaches propose to decouple flow, transport and chemistry
in a relevant manner while global implicit approaches solves a highly nonlinear system gathering all the
equations. Both strategies are discussed. We propose a description of several reactive codes dedicated to
subsurface environmental simulations and their main characteristics are highlighted. The sequel of the
chapter describes briefly the simulator DuMuX (DUNE for Multi-{Phase, Component, Scale, Physics, ...}
flow and transport in porous media [3, 119]). DuMuX is a free and open-source simulator to perform nu-
merical simulation of complex flows in porous media. Among others, we present the numerical scheme
and the numerous models available in DuMuX .

In Chapter 9, we present our main contributions and implementations in the framework of DuMuX in
a high performance computing context. Section 9.2 deals with a scenario of gas migration in deep repos-
itory for radioactive waste. We have been involved in the European project FORGE (Fate Of Repository
Gases : http://www.bgs.ac.uk/forge/) and we participated to several benchmark exercises proposed in this
framework. For this, we coupled DuMuX with an upscaling strategy to treat the strong heterogeneities
present in the nuclear waste disposal. Our method allowed to reduce drastically the computational time,
while producing results that were very close from the ones of the others participants. For several years,
we have been interested in the numerical simulation of multiphase reactive flows. Several sequential
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and fully implicit strategies have been considered. Sections 9.3 and 9.4 present respectively sequential
and fully coupled fully implicit schemes that have been developed and integrated in DuMuX . Both sin-
gle phase and two-phase flow simulations were performed. We present here a part of these results and
focus on the comparison between sequential and global implicit approaches in terms of accuracy and
computational time. Some parallel computations are also discussed.
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Numerical simulation of multiphase
reactive flow in porous media: a review
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8.1 State of the art

8.1.1 Applications of multiphase flow in porous media

The understanding and prediction of multiphase flow in porous media is of great importance in various
areas of research and industry. The field encompasses a number of diverse applications related to envi-
ronment and energy issues in groundwater. We propose here a non-exhaustive list of these applications.

8.1.1.1 Hydrocarbon recovery in petroleum engineering

In petroleum engineering, the production of hydrocarbons from petroleum reservoirs require accurate
numerical simulations involving multiphase compositional flow (see, e.g., [85, 109]). Primary and sec-
ondary oil recovery processes (such as water or gas injection), can be modeled with black oil simu-
lators [88]. Concerning the ternary recovery, complex enhanced recovery techniques have emerged.
Among these recovery techniques, we can mention for instance the miscible injection of gas (CO2, nat-
ural gas, . . . )[270], thermal recovery techniques (steam injection, in situ combustion [180]) or chemical
flooding (polymer, foam, . . . ) [197]. This emergence has emphasized the need for sophisticated mathe-
matical tools, capable of modeling intricate chemical and physical phenomena [86].
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8.1.1.2 Geological sequestration of CO2

Carbon Capture from industrial facilities and Storage (CCS) in deep saline aquifers represents a promis-
ing technology to mitigate the contribution of this gas to the acidification of the environment and to
global warming. Several physical and geochemical trapping mechanisms must be combined to ensure a
high containment rate [161]. These four basic mechanisms which hold the CO2 in place are structural,
residual, solubility, and mineral trappings. Gaseous CO2 is compressed and injected in its supercriti-
cal form with ideal properties for transport (viscosity of a gas) and storage (density of a liquid). Less
dense than the brine present in the aquifer, it migrates, vertically firstly and then along the top of the
aquifer and finally it builds up under the cover rock. This is called structural or stratigraphic trapping.
Going up, some part of the CO2 remains in the reservoir rock in the form of small bubbles trapped in
the pores: it is the residual or capillary trapping. This CO2 trapped in the reservoir rock will dissolve
slowly in water. This is the solubility trapping. Water containing dissolved CO2 becomes heavier than
the surrounding water and is going down to migrate to the bottom of the reservoir. Chemical reactions
with the rock matrix transform the dissolved CO2 into carbonate minerals. That is the mineral trapping.
These mechanisms occur at different time scales (immediately after the injection in the case of solubility
trapping, and up to several thousand years in the case of mineral trapping). By consequent, assessing the
viability in term of risk and capacity of storage must rely on numerical simulations due to the long time
scales involved. Many references can be found for the numerical approximation of such phenomena,
see e. g., [32, 194, 226], and the references therein. Two mains issues concern the reactive transport in
the framework of geological storage of CO2: firstly the simulation of the different trapping mechanisms
above mentioned and secondly the sustainability of the storage through the durability of well cements.
For the numerical simulation of the geological sequestration of CO2, the studies can be classified into two
categories according on whether we consider geochemical effects or not. In [252], the authors compare
several codes dedicated for geologic disposal of CO2. Even if chemical and hydro-mechanical processes
are briefly discussed, most of the article focuses on the hydro-geological processes induced in CO2 se-
questration for one-dimensional geometries. Good agreements are obtained between the different codes
but the authors conclude that three-dimensional computations including heterogeneities would be more
relevant. In [91], several benchmarks are proposed to model compositional effects due to dissolution of
CO2 into the brine and non-isothermal effects on two- and three-dimensional heterogeneous problems.
The results show that a fairly good agreement of model predictions is obtained. Three-dimensional com-
putations are also performed in [220] where structural, solubility and residual trappings are considered
while geochemical reactions are neglected. To obtain simulations of increasingly complex phenomena
with higher physics fidelity, many authors consider the coupling between hydro-geological, thermal and
chemical processes. These works can also classified into two categories according on whether a single
(liquid) or a two-phase flow (supercritical/gas-liquid) is considered. Under certain simplifying condi-
tions, single phase flow is considered for instance in [137] and [178]. In [137], in the framework of
SHPCO2 Project [138], the gas phase is assumed to be immobile and therefore gaseous carbon dioxide
is considered as a fixed species neglecting the two-phase flow effects. In [178], an initial amount of super-
critical CO2 is converted into a source term of liquid CO2 and then the authors study the transport of the
dissolved CO2 and the precipitation/dissolution process of minerals. In [10], the authors employ a single
phase reactive flow to model the leaking of CO2-saturated brine in a fractured pathway once supercritical
CO2 is totally dissolved. CO2 is generally injected in its supercritical form. This injection may induce
important overpressure that can damage the reservoir or induce fracturing and seismic events. Moreover,
the supercritical CO2 that is less dense than the brine present in the aquifer, will migrate vertically firstly
and then it will build up under the cover rock inducing a risk of leakage through faults. In [245, 297], the
authors propose an alternative strategy that consists in injecting dissolved CO2 to circumvent the above-
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mentioned risks and increase the security of its geological sequestration. In [11], a study of this process
and its interactions with the carbonate reservoir through geochemical reactions is proposed. Even if
in [225], the authors show that modified single phase flow models can predict pressure build-up far from
the injection as well as complex two-phase flow models, most of the studies deal with two-phase reactive
flows. The following is a non-exhaustive list of references: [47, 113, 183, 221, 222, 260, 290], the main
difference between theses references being the complexity of the geochemical system.
During its storage, liquid or supercritical CO2 is injected through a well composed of cases of cement.
Once the injection is terminated, the well is closed by a cement plug. By consequent, the integrity of the
disposal and its impermeability can be strongly influenced by the chemical reactivity of cement (see for
instance [48], [154] or [157] where a comparison between numerical and experimental results is given).

8.1.1.3 Geological sequestration of nuclear waste

The long-term safety of the disposal of nuclear waste is an important issue in all countries with a sig-
nificant nuclear program. Repositories for the disposal of high-level and long-lived radioactive waste
generally rely on a multi-barrier system to isolate the waste from the biosphere. The multi-barrier
system typically comprises the natural geological barrier provided by the repository host rock and its
surroundings, and an engineered barrier system. When designing nuclear waste geological reposito-
ries, a problem of possible two-phase flow of water and gas appears (for more details see, for instance,
[6, 228]). Multiple recent studies have established that in such installations, important amounts of gases,
mainly hydrogen, are expected to be produced, in particular due to the corrosion of metallic canisters
used in the repository design. The creation and transport of a gas phase is a crucial issue concerning
the capability of the engineered and natural barriers to evacuate the gas phase and avoid pressure build-
up, thus preventing mechanical damage. Several studies involving two-phase compositional flow have
been proposed by national and international programs to study the gas migration and its impact on the
performance assessment of underground radioactive waste repositories. We can cite for instance the
benchmarks Couplex-Gas [333] proposed by the French Agency for the Management of Radioactive
Waste (ANDRA) and the French research group MoMaS (Mathematical Modeling and Numerical Sim-
ulation for Nuclear Waste Management) or the benchmarks proposed in the framework of the European
Project FORGE: Fate Of Repository Gases (http://www.bgs.ac.uk/forge/) [13, 34, 303, 304, 305]. There
is also a vast literature where, in addition to the hydrological aspects, more complex physical phenomena
are taken into account. For instance in [90], the authors discuss how this complex assembly that consti-
tutes the repository system will evolve due to thermal, hydraulic, mechanical, chemical and radiological
processes. They propose a detail review of recent contributions and future challenges regarding the re-
active transport modeling applied to deep repository systems. As for the geological storage of CO2, the
integrity and the sustainability of the disposal must be ensured for thousands of years. We can cite for
instance [63, 214, 266, 318, 319], where the authors study the corrosion or/and the alteration of carbon
steel, compacted bentonite and concrete that constitute the engineered multi-barrier system.

8.1.1.4 Prevention of groundwater pollution and remediation

Groundwater is a one of the major source of water supply in many parts of the world. It covers the needs
in domestic consumption, irrigation and industrial processing. Consequently, prevention of groundwa-
ter contamination is a crucial issue in the management of the water quality. Sources of pollution can
be numerous and varied and since groundwater is hidden beneath the surface, these sources are often
hardly identifiable. As a consequence, modeling of multiphase flow in porous media plays a significant
role to forecast the transport of the contaminant and to model some expensive remediation processes.
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Many contributions deal with contaminated soils by non-aqueous-phase liquid (NAPL). For NAPL re-
mediation, we can cite for instance [207] where remediation is performed by air sparging or [92] where
a more complex three-phase non-isothermal flow (gas-water-NAPL) is considered. It can be relevant to
also take into account chemical and biological processes involved in contaminant transport and remedi-
ation (see for instance [42, 58, 336]). In the event of a leak of radionuclide, the chemical interactions
between the leaked radionuclide and the surrounding media must be taken into account to predict at
best their migration (see for instance [268, 279, 298, 311]). Many references related to the Hanford
site in the USA can be found (see for instance [190, 281]). In this case, cesium has been released into
the environment accidentally due do leaking of high level waste (HLW) storage tanks and the retarda-
tion effect arising from adsorption is studied. In the remediation process, microbial bio-degradation
can mitigate the dangerousness of certain contaminants. In this case, the contaminants are decomposed
by action of micro-organisms. Bio-remediation of hydrocarbon-contaminated zones is studied for in-
stance in [38] for a benzene pollution and in [204, 291] for a toluene pollution. Other potential targets
of groundwater remediation are nitrate-polluted soils, particularly in rural zones as a result of agricul-
tural activities [246, 287] or radionuclide-polluted zones (see for instance [43] for strontium remediation
or [324] for uranium bioremediation).

8.1.1.5 Deep geothermal energy

Deep geothermal energy consists of extracting the heat stored inside the Earth by injecting a fluid in a
fractured reservoir via an injection well. A recent overview of the worldwide applications of geothermal
energy for direct utilization can be found in [195]. The fluid will circulate in the fracture network and
then heat up in contact with the hot matrix rock. The fluid is then extracted by production wells and
then transformed into steam through an heat exchanger to drive a turbine to produce electricity. The
interactions between the fluid and the rock matrix can lead to the precipitation/dissolution of minerals
and consequently have significant effects on the long-term performance of these reservoirs. Indeed,
precipitation can reduce permeability and lead to complete clogging of matrix or fracture porosity while
dissolution can improve the permeability. Reactive transport modeling can be essential to understand
the effects of the fluid circulation on the mineralogical evolution of the reservoir and how the chemical
composition of reinjection waters can be modified to improve reservoir performance by maintaining or
even enhancing injectivity (see for instance [317, 320, 323]).

It is also possible to couple CO2 storage and deep geothermal energy production. A strategy consists
in replacing water by CO2 as injection fluid [189, 251]. Numerical simulations suggest that CO2 is
superior to water in its ability to mine heat from hot fractured rock due to, in part, its relatively high
mobility. Still considering a coupling between CO2 geological storage and deep geothermal energy
production, a recent strategy proposes to inject CO2 in deep saline aquifers in dissolved form close to
the emitting facilities [170, 255]. This process allows to overcome the transport issues that are inherent
in massive storage. Usually, CO2 is injected in supercritical form. As mentioned above, injection of
dissolved CO2 has several advantages in terms of storage safety. It reduces the risks of overpressure due
to the injection in supercritical form, the risks of leakage by avoiding the creation of a deep gas bubble
and therefore its eventual rise. Finally, it offers a potential for faster mineralization. The recovery of hot
carbon-laden water and then the reinjection are performed by means of a set of injectors and producers
wells, such as the heating networks.
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8.1.2 Management of phase appearance and disappearance

One major issue in the numerical modeling of compositional multiphase flow concerns the management
of the possible appearance/disappearance of some phases. This problem was intensively explored and
the literature is vast. It is directly related to the choice of primary variables considered to solve the
compositional multiphase flow. We focus here in the particular case of two-phase flow (liquid-gas) with
two components in each phase where solubility of the components in the phases has to be taken into
account. This particular configuration has been widely studied for nuclear waste management where a
possible two-phase flow (H2O-H2) appears or the geological sequestration of CO2. A standard choice
for the primary variables would consist in choosing one phase pressure and one saturation but due to the
possible disappearance of a phase, the saturation can no longer be used as a primary variable. A common
technique consists in choosing these standard variables (pressures, saturations, mole or mass fractions)
and then, primary variable switching is applied according to the present phases [93, 96, 120]: when only
one phase is present, saturation is replaced by a molar fraction as primary variable. Another strategy
consists in opting for a choice of persistent variables, valid whatever the composition of the flow. Several
approaches exist:

• In [7, 235], the authors extend the saturation to artificial negative values, so that the system of
mass conservation laws does not degenerate in the single phase region and the saturation can still
be used as a primary variable.

• In [69, 70], the authors use persistent variant of the primary variables: dissolved gas mass concen-
tration and liquid pressure that are defined both for liquid saturated and unsaturated regions.

• In [126, 158], the authors add the solubility as third primary variable to the liquid phase pressure
and liquid phase saturation. Then, they use additional nonlinear complementarity constraints that
describe the transition from one-phase to two-phase region, to close the system.

• In [220], the authors propose a set of primary variables that consists of gas pressure and capillary
pressure. To make this set uniform for both saturated and unsaturated by gas phase regions, Henry’s
law is used to couple solubility and pressure whatever the composition of the flow. This idea was
introduced in [155]. A similar strategy is adopted in [39, 40] where the two phase pressures are
considered as primary variables, still using Henry’s law to define gas pressure in zones where only
liquid phase is present.

• In [182], the authors consider pressures, saturations and fugacities as primary variables. Then,
they include phase transitions in the nonlinear system of equations using a set of local inequality
constraints. These constraints are then directly integrated into the semi-smooth Newton method
using a nonlinear complementarity function.

• In [198, 199, 200], the authors present another persistent set of primary variables that contains the
total molar fraction of the light component and a mean pressure which equals the pressure of the
remaining phase when one of them disappears.

• In [33], the authors also use a persistent set of primary variable set that does not depend on phase
transitions. As first primary variable the authors propose to use a global pressure variable, which
partially decouples the system of equations. The notion of the global pressure was introduced
in [41] and [85] for immiscible incompressible two-phase flow and was then extended to compo-
sitional flow (see for instance [87]). As a second persistent variable the authors introduce the total
mass density of the gas component defined in single phase and two-phase zones.
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In the framework of the French research group MoMaS, several benchmarks were proposed [67].
They aimed at assessing how traditional simulators for multiphase flow in porous media are facing when
attempting to simulate gas migration in deep geological repositories. Several exercises focused on simu-
lation of the gas phase appearance/disappearance in a two-phase flow, produced by the injection of H2 in
an homogeneous porous medium initially fully saturated with pure water. In [68], the authors compare
the results of several teams using different strategies to deal with the phase appearance/disappearance.
Most of the results are qualitatively similar, even if some differences remain. No comparison in term
of accuracy, performance (CPU time) or complexity (difficulties to solve the nonlinear system) is pro-
posed. These test cases have also been intensively studied in other contributions (see for instance [33],
[70], [198], [220] or more recently in [75]). In [201], the authors propose an advanced comparison of
three strategies in terms of nonlinear solver convergence and solutions on different 1D and 3D exam-
ples involving gas appearance and liquid disappearance. These formulations are the "Natural variable
formulation (NVF)" [96], the "Pressures, saturations and fugacities formulation (PSF)" [182] and the
"Pressures, and fugacities formulation (PPF)" [40]. Firstly, they show that the three formulations lead
to equivalent definitions of the phase transitions. They conclude that on their particular test cases, the
NVF and PSF behave better than the PPF in terms of nonlinear convergence. In [125], the NVF and PSF
are also compared and the NVF performs slightly better than the PSF in term of CPU time consumption.
Indeed, with the PSF, the time step size decreases when the nonwetting phase disappears, leading to a
higher number of time steps.

8.1.3 Sequential approach versus global implicit approach

Multiphase multicomponent reactive flows are modeled by a mass balance law for each phase, Darcy-
Muskat’s law, capillary pressure law, solubility laws, equations of state and closure relations. Coupling
between flow and chemistry occurs through reactions rates. In the case of equilibrium reactions, these
rates are unknown and are commonly eliminated through linear transformations [187, 212] and replaced
by mass actions laws that are algebraic equations relating the activities of concerned species. For kinetic
reactions, the rates are nonlinear functions of concentrations [181] and involve ordinary differential equa-
tions. By consequence, the problem is modeled by a system of partial differential equations (describing
a multiphase compositional flow) coupled with algebraic or ordinary differential equations related to
chemical reactions.

The numerical strategies for solving this system can be divided into three dominant algorithms: the
global implicit (GIA), the sequential iterative (SIA) and sequential non-iterative (SNIA) approaches [282,
327]. In the GIA, one nonlinear system gathering all equations is solved at each time step. For the se-
quential solution approaches, flow and reactive transport (or possibly, flow, transport and chemistry)
are solved sequentially at each time step. The difference between the SIA and SNIA lies on the fact
that for the SIA, the procedure is present in an iterative loop. Sequential approaches are also named
operator-splitting approaches. In comparison with GIA, sequential approaches can be easier to im-
plement since existing codes and specific methods can be used for each subproblem (flow, transport,
chemistry). Nonetheless, sequential approaches can introduce operator splitting errors [51, 294] and re-
strictions on the time step are mandatory to ensure mass conservation for instance. In [327], the authors
described the GIA as “research tools for one-dimensional investigations” due to their complexity and
their high computational requirements. Thanks to the advance of high-performance computing in the
last decades, these restrictions are no longer relevant.

The French research group MoMaS proposed in [82] a benchmark to test numerical methods used
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to deal with single phase reactive transport problems. In this framework, several sequential and implicit
algorithms have been compared. In [80] and [179], the authors propose respectively a SNIA and a SIA.
The other participants [37, 100, 149, 206] deal with various global implicit algorithms. More precisely,
in [37], the authors propose a method where the chemical problem is eliminated locally, leading to a
nonlinear system where the transport and chemistry subsystems remain separated. In [100, 108], the
problem is written in the form of differential algebraic equations (DAE) allowing the use of efficient
and robust DAE solvers. In [149], the authors use a reduction technique introduced in [175, 176] that
aims at reducing drastically the number of coupled nonlinear differential equations. Finally in [206], a
direct substitution approach (DSA) consisting in substituting the equations of chemistry directly in the
equations of transport is employed. In [81], the results provided by the different teams are compared
with a good agreement. The different versions of this benchmark showed that sequential approaches can
be as accurate as global ones provided they are carefully implemented while global approaches are now
more efficient that originally thought.

For coupled multiphase flow and reactive transport problems, most of the codes presented in [280]
and [332] use a splitting approach to treat the nonlinear coupling. The global problem is split into a
multiphase flow problem and a reactive transport problem. The relevant physical quantities are updated
once each of these subproblems has been solved. The GIA has also been applied by few authors to couple
multiphase flow and reactive transport problems [75, 113, 115, 221]. A description of several sequential
and implicit codes is given in Section 8.1.4.

8.1.4 Presentation of codes for reactive transport modeling

Several codes dealing with the numerical modeling of reactive flows in porous media are described
in [280, 332]. In the sequel we propose a brief and non-exhaustive description of most commonly used
codes, although others exist. In their description, we focus only on some information: How are (single
phase or multiphase) flow and reactive transport coupled? What is the method of discretization? What
are the applications considered?

8.1.4.1 AD-GPRS

The Automatic Differentiation General Purpose Research Simulator (AD-GPRS) is a flexible and exten-
sible multiphysics simulation platform [79, 162]. It has been extended to geochemical modeling using a
fully-implicit approach. It has been applied to in-situ conversion of oil shale [112] or geological carbon
sequestration [113, 115].

8.1.4.2 COORES

COORES is a code developed by IFPEN to simulate coupled multiphase flow and reactive transport pro-
cesses. The first version of COORES coupled an existing 3D three phase compositional flow reservoir
simulator and the geochemical module Arxim [216]. It has been widely used to simulate CO2 geological
sequestration (see for instance [137]). More recently, a new version of COORES named GEOXIM, writ-
ten in C++ and based on high performance computing has been developed to treat implicitly multiphase
reactive flow problems.
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8.1.4.3 CORE2D

An overview of the code CORE2D V4 (a COde for modeling partly or fully saturated water flow, heat
transport and multi-component REactive solute transport under both local chemical equilibrium and
kinetic conditions) and its previous versions is given in [264]. A Sequential Partly Iterative Approach
(SPIA) [263] improving the accuracy of the traditional Sequential Non-Iterative Approach (SNIA) and
less CPU consuming than the general Sequential Iterative Approach (SIA) is employed. CORE2DV4
and its previous versions codes have been extensively used for many applications such as long-term
geochemical evolution of HLW (High Level Waste) repositories in clay [214, 325].

8.1.4.4 CrunchFlow

CrunchFlow is a multicomponent reactive flow and transport code [1]. Both global implicit approach
(through a direct substitution approach (DSA)) and operator splitting approach based on SNIA are im-
plemented in Crunchflow. Recently, CrunchFlow has been coupled with a parallel hydrologic model
(ParFlow) to take benefit of high-performance computing facilities [59]. Among many applications,
CrunchFlow has been used for instance for reactive contaminant transport [84] or CO2 sequestration [46].

8.1.4.5 DARST

DARST (Delft Advanced Research Terra Simulator)[2] is a simulator using the Operator-Based Lin-
earization (OBL) framework, which has been proposed recently for complex multiphase flow [171, 300].
A fully implicit approach using a finite volume scheme is implemented. DARST has been used for sev-
eral applications including CO2 storage in saline aquifer [164] or the prediction of heat production in
geothermal reservoirs [302].

8.1.4.6 eSTOMP

eSTOMP is the parallel processing version of the Subsurface Transport Over Multiple Phases (STOMP)
simulator. STOMP [308] is a suite of multifluid subsurface flow and transport simulators (see [307] for
the story of the previous versions and the description of the reactive module ECKEChem). Its parallel
version eSTOMP was scalable up to 131,000 processors cores. A sequential non-iterative coupling
between the flow and reactive transport is performed. The code has been used, among other things,
for the geological sequestration of CO2 [223] or [224] where a coupling with geomechanics is achieved
or desorption of uranium from contaminated sediments [307].

8.1.4.7 GEM-GHG

GEM-GHG [221] is a fully implicit geochemical compositional Equation-of-State (EOS) compositional
simulator. An adaptive-implicit method [98] is applied to solve the nonlinear system. It consists in
solving implicitly only a small number of blocks, while the remaining ones are solved explicitly, thereby
reducing the size of the nonlinear system. GEM-GHG has been widely used for the numerical modeling
of CO2 storage in aquifers [221, 222, 290].

8.1.4.8 HYDROGEOCHEM

HYDROGEOCHEM [328, 329, 330], couple equations describing thermal (T), hydrology (H), mechan-
ics (M) and chemical (C) processes (THMC). Four fully-coupled modules solving multiphase flow, ther-
mal transport, reactive biological transport and geomechanics displacement and deformation can be com-
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puted iteratively. HYDROGEOCHEM has been used for numerous applications including for instance
polluted soil remediation [168] or radionuclide migration [326].

8.1.4.9 HYTEC

HYTEC [296] is a code coupling hydrodynamic flow and multi-component transport with biogeochem-
ical processes using the geochemical module CHESS [295]. Coupling between flow and geochemical
transport is achieved via a sequential iterative approach. HYTEC has been validated by several bench-
mark studies (for instance in the MoMaS benchmark above mentioned [81, 179]). Among the numerous
applications treated by HYTEC, we can mention for instance the cement degradation [310], the per-
formance assessment of radioactive waste disposal [102] or the geological storage of sour gases [178,
275, 276]. Recently, HYTEC has been extended to two-phase flow using an operator splitting ap-
proach [274, 275, 276].

8.1.4.10 IPARS

IPARS (Integrated Parallel and Accurate Reservoir Simulator) [306] is an environment providing some
physical models for the numerical simulation of flow in oil reservoirs or aquifers. The TRCHEM (TRans-
port with general biogeoCHEMistry) [241] module implemented in the framework of IPARS simulates
multiphase reactive transport in porous media thanks to a time splitting approach. In [242] applications to
the migration of radionuclide and bioremediation of xylene are depicted while in [291], bioremediation
of toluene is considered.

8.1.4.11 M++

M++ is a finite element toolbox for parallel computations based on C++ using the MPI standard for
parallelization [309]. In [74, 75], the reduction technique described in [150] for reactive single phase flow
was extended to the case of two-phase reactive flow and implemented in the M++ framework. Unlike
the classical strategy, their general transformation method does not only eliminate unknown equilibrium
reaction rates. It also potentially reduces the nonlinear coupled part of the problem, allowing the use of
large time steps and avoiding the potential drawbacks of sequential approaches.

8.1.4.12 MIN3P

MIN3P [202, 205] is a general purpose multicomponent reactive transport code for variably saturated
media. Flow is governed by the Richards equation while a direct substitution approach is employed to
tackle reactive transport problem. MIN3P has been used to consider numerous applications involving
saturated flows such as for instance the groundwater remediation [203]. To take into account more
complex phenomena, some specific enhanced versions of MIN3P have been implemented. MIN3P-
Bubble [38] has been developed to consider gas entrapment and release in the groundwater zone. In
MIN3P-Dusty [213], some enhancements have been performed to simulate multicomponent advective
and diffusive gas migration in the vadose zone. In MIN3P-THCm [55, 56], a THMC formulation has
been implemented.

8.1.4.13 NUFT

NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) [142] is a code for modeling multi-
phase, multi-component heat and mass flow and reactive transport in unsaturated and saturated porous
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media. Several models of varying complexity, ranging from isothermal single phase single component
flow (UCSAT module) to non-isothermal multiphase flow (USNT module) can be sequentially coupled
to a geochemical multiphase transport module (TRANS module). The TRANS module combines and
solves in a fully implicit manner the chemical equations (equilibrium and kinetic) and the transport
equations. The numerous applications of NUFT include geological disposal of nuclear waste [128], CO2
geologic sequestration and storage [163] or groundwater monitoring [129].

8.1.4.14 OpenGeoSys

OpenGeoSys [173] is an open-source initiative for numerical simulation of thermo-hydro-mechanical-
chemical (THMC) processes in porous media. OpenGeoSys has been validated and verified through
numerous benchmarks initiatives (see for instance [174]). Thanks to the IWAS-ToolBox [165], Open-
GeoSys has been coupled with external geochemical simulation tools such as PHREEQC2 [313] to sim-
ulate the chemical processes in partially saturated bentonite, GEM-Selektor [177] for radium migration
an retardation in [268] or BRNS [9] for organic carbon degradation in [83].

8.1.4.15 ORCHESTRA

ORCHESTRA [208] is a platform dedicated to the modeling of reactive flows in porous media. Both
sequential iterative and non-iterative algorithms are available to split the flow and chemistry subprob-
lems. ORCHESTRA has been broadly used for the management of groundwater pollution (see for
instance [114] for chromium remediation or [104] for leaching of heavy metals from polluted soils).
Recently, in [160] ORCHESTRA has been coupled with the parameter estimation software PEST to
calculate ion-binding model parameters.

8.1.4.16 PHREEQC

PHREEQC [236, 237] is a code designed to perform a wide variety of aqueous geochemical calculations.
Transport and geochemical reactions are coupled thanks to a sequential non-iterative strategy. Due to its
wide range of geochemical capabilities, its open-source code and the continued support and develop-
ment, PHREEQC has been coupled by many researchers with existing flow and transport codes via a
sequential non-iterative approach. For instance, in the code HPx (HP1, HP2, HP3) [273], a coupling
between HYDRUS [271, 272] and PHREEQC is proposed for variably saturated flow conditions. In
iCP [217], a coupling between the multiphysic simulator COMSOL and PHREEQC is presented with
an application to a large scale thermo-hydro-chemical (THC) problem. PHAST [238] and PHT3D [249]
couple respectively the geochemical model PHREEQC and the flow and transport calculations performed
by HST3D [172] and MT3DMS [337].

8.1.4.17 PFLOTRAN

PFLOTRAN [140, 188], is a massively parallel reactive flow and transport code for modeling subsurface
processes. Parallelization is performed using a domain decomposition method thanks to the PETSc [50]
parallel framework. Several flow modules can be sequentially coupled to a multicomponent geochem-
ical transport module. PFLOTRAN has been used for numerous subsurface applications including for
example uranium transport at the Hanford site [139] or CO2 geological sequestration [189, 218].
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8.1.4.18 PROOST

PROOST [123] is a simulator for modeling multiphase reactive transport in porous media. A sequential
iterative approach is used where CHEPROO (CHEmical PRocesses Object Oriented) [54] deals with the
geochemical processes. In [123], an application to the modeling of a column of porous gypsum subjected
to a constant source of heat is given while in [122], evaporation of brine is considered.

8.1.4.19 RETRASO-CODEBRIGHT

RETRASO-CODEBRIGHT (RCB) is the result of the coupling between two codes: RETRASO [261]
and CODE_BRIGHT [229]. RETRASO (REactive TRAnsport of SOlutes) is designed to solve reactive
transport problems while CODE_BRIGHT (COupled DEformormation of BRIne Gas and Heat Trans-
port) aims at performing coupled thermo-hydro-mechanical (THM) analysis in geological porous media.
By consequence, in the coupling strategy, CODE_BRIGHT computes the flow properties (Darcy’s ve-
locity for each phase, saturation of each phase, temperature, density...) and give them to the RETRASO
code for the calculation of reactive transport problem. In [260], the authors added directly the chemical
equations in CodeBright to consider a fully implicit approach to deal with a scenario of geological se-
questration of CO2. The solution of the chemical problem is pre-computed by the code CHEPROO [54]
for some number of reference conditions (they are shown to depend only on gas pressure), and then
polynomial interpolation is used within the solution procedure, leading to a large reduction in computing
time.

8.1.4.20 RT3D

RT3D [94, 95] is a code for simulating three-dimensional, multi-species, reactive transport in ground-
water. It is a member of the MT3D [335] family of codes derived from MT3DMS [337]. RT3D solves
only reactive transport with a prescribed velocity and is consequently coupled with the MODFLOW
code [143]. RT3D has been used for many applications, particularly for bioremediation of contaminated
soils (see for instance [287] and the references in [95]).

8.1.4.21 SPECY

SPECY [80] is a reactive transport code based on the non-iterative operator splitting approach (SNIA).
The reactive transport equations are solved in three stages: a convection step, a dispersion step and fi-
nally a chemical equilibrium computation. Each step can be solved with a specific and relevant method.
Recently in [196], the authors compared linear solvers for equilibrium geochemistry computations. Pre-
cisely, several direct solvers (LU decomposition, QR decomposition, Cholsesky decomposition...) and
iterative solvers (GMRES, Gauss Seidel, Conjuate gradient, Biconjugate gradient...) are compared using
a panel of chemical systems, including or excluding the formation of mineral species.

8.1.4.22 TOUGHREACT

TOUGHREACT [320, 321, 322] is a numerical simulation program for reactive flows in porous and
fractured media. It was developed by adding geochemical calculations in the multiphase simulator
TOUGH [250]. The reactive transport is achieved by a sequential approach that can be either itera-
tive or not. The broad spectrum of applications of TOUGHREACT ranges from CO2 geological se-
questration [47, 320] to bentonite alteration in a nuclear waste repository [318, 319] or geothermal sys-
tems [316, 317].
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8.1.4.23 Synthesis

Table 8.1 summarizes the description of the codes presented above. We focus on the supported dis-
cretization method, the coupling strategies and if there exists a parallel version of the code. To describe
the coupling strategies, we consider two levels of coupling depending on whether the code deals with
multiphase multicomponent flow or only saturated flow. If the code solves reactive multiphase multi-
component flow, we specify how the multiphase flow and the reactive transport problem are coupled
(implicitly or sequentially). Then, if the code considers a sequential strategy, we specify what is the
approach adopted to deal with the reactive transport (implicit or sequential). For codes solving only
saturated flow, we specify only this latter point.

Codes
PDE
discretization1

Phase
conservation
and
transport
coupling 2

Transport and
reaction
coupling2

Parallelization

M
ul

tip
ha

se
-m

ul
tic

om
po

ne
nt

flo
w

AD-GPRS FVM GIA YES
COORES FVM GIA YES
CORE2D FEM SEQ SEQ NO
DARST FVM GIA YES
eSTOMP IDFM SEQ SEQ YES
GEM-GHG IDFM GIA YES
HYDROGEOCHEM FEM/MMC SEQ GIA NO
HYTEC FVM SEQ SEQ YES
IPARS MFEM/DGM SEQ SEQ YES
M++ FEM GIA YES
MIN3P FVM SEQ SEQ YES
NUFT IDFM SEQ GIA YES
OpenGeoSys FEM SEQ SEQ YES
PFLOTRAN FVM SEQ GIA YES
PROOST FEM/MFEM SEQ GIA/SEQ NO
RETRASO-CODEBRIGHT FEM GIA/SEQ GIA/SEQ NO
RT3D FDM SEQ SEQ NO
eSTOMP IFDM SEQ SEQ YES
TOUGHREACT FVM SEQ SEQ YES

Sa
tu

ra
te

d
flo

w CrunchFlow FVM GIA/SEQ YES

ORCHESTRA MC SEQ YES

PHREEQC MC SEQ NO

SPECY DFEM/MHFEM SEQ NO

Table 8.1: Supported discretization method, coupling strategies for different reactive transport codes
(adapted from [123] and [280]).

1 FVM: Finite Volume Method, FEM: Finite Element Method, IDFM: Integrated Finited Difference Method, MMC: Modified
Method of Characteristic, MFEM: Mixed Finite Element method, DGM: Discontinuous Galerkin Method, FDM: finite dif-
ference method, MC: mixing cell, DFEM: Discontinuous Finite Element Method, MHFEM: Mixed Hybrid Finite Element
method.

2 GIA: Global Implicit Approach, SEQ: Sequential Approach.
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8.2 Presentation of DuMuX

DuMuX (DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous me-
dia) [3] is a free and open-source simulator for flow and transport processes in porous media. It is based
on DUNE (Distributed and Unified Numerics Environment) [4], a modular toolbox for solving partial
differential equations with grid-based methods [52, 53]. A good overview and description of DuMuX

can be found in [119]. Nonetheless, a short description is given in the sequel.
DuMuX includes several standard models of varying complexity, ranging from stationary isothermal

single phase single-component flow to transient non-isothermal multiphase compositional flow. All mod-
els employ efficient nonlinear solvers in close combination with a sophisticated time step management.
The capabilities of DUNE are heavily exploited to offer various spatial discretization schemes as well as
the possibility of parallel computations.

DuMuX is coded in C++ and employs high-level generic programming techniques. The basic princi-
ple of DuMuX code designing is modularity. DuMuX provides shelves of modularized objects, enabling
the user to choose the appropriate parts according to the handled problem. The main shelves of this
modular setup are (see Figure 8.1):

• Numerical schemes,

• Model concepts,

• Control strategies for the simulation,

• Material systems: multitude of substances (components), material laws.

Figure 8.1: Modular design of DuMuX (taken from [119]).

8.2.1 Numerical schemes

When using DuMuX , we have the choice between two existing standard approaches for the solution of
porous media problems: a coupled fully-implicit approach and a decoupled semi-implicit approach. The
fully-implicit approach solves a large system gathering all the original coupled balance equations by an
implicit method in time. For the implicit approach, two spatial discretization methods are provided: a
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cell-centered finite volume method and a box method which unites the advantages of the finite-volume
and finite-element methods. The decoupled approach splits the set of balance equations into one equation
for the pressure and the remaining ones for mass or energy balance equations. Then, the pressure equation
is solved implicitly while the transport of mass/energy is solved explicitly (as the well known IMPES
strategy [88]). In comparison with a fully implicit approach, the decoupled strategy allow to use of a
specific discretization methods for each equation. The standard method used in the decoupled strategy
is a cell-centered finite volume method. For both the coupled fully-implicit and decoupled approaches,
linearized problem obtained after the procedure of spatial and time discretization is solved by one of the
linear solvers implemented in DUNE.

8.2.2 Control strategies

In DuMuX , both the coupled fully-implicit and decoupled schemes use a unique strategy for the time-step
control: the period of simulation, at first, is divided into episodes, defined as time periods where boundary
conditions, source terms can be time-dependent. Then simulation time is advanced by the minimum of
the time-step suggested by numerical schemes or the time span until the end of episodes. For the coupled
fully-implicit schemes, the control of the time-step is based on the number of iterations required by
the Newton method to achieve convergence for the last time iteration. The time-step is reduced, if the
number of iterations exceeds a specified threshold, whereas it is increased if the method converges within
less iterations. For the decoupled schemes, the calculation of the step size is constrained by a CFL type
condition.

8.2.3 Models

DuMuX provides several standard models of varying complexity. An overview of the available models
in the version 2.12 [117] with their capabilities and characteristics is given in Table 8.2. In the names of
models, "p" stands for the number of phases and "c" denotes the number of components present in each
phase. Several models can be coupled with an energy balance equation and extended to non-isothermal
simulations.

8.2.4 Material systems

The DuMuX material system constitutes a framework that allows a convenient definition and usage of
parameters and material laws. This framework has a modular structure and is separated into the following
parts.

Components. The term component stands for constituents of the phases which can be associated with
a unique chemical species or with a group of species exploiting similar physical behavior. Each
component is implemented as a class with functions describing the physical properties of the com-
ponent (molar mass, density, viscosity,. . . ).

FluidSystems. A FluidSystem describes the properties of the fluid phases involved in the problem.
These properties include phase densities and viscosities as well as fugacities and diffusion coef-
ficients of components inside phases. They depend on the composition of the phases which is
described in a separate object of type FluidState containing, among other things, the saturation,
the pressure, the temperature or the mole fraction values.

FluidMatrixInteractions. This module collects the material laws which describe interactions of fluid
phases with the porous medium (capillary pressure law and relative permeability). A collection of
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Porous Medium flow Free Flow Geomechanics Multidomain

Approach Fully Implicit Sequential
Fully
Implicit

Fully Implicit Fully Implicit

Models

1p, 1p2c
Richards

2p, 2p1c, 2p2c,
2pdfm, 2pminc
2pnc, 2pncmin
co2

3p, 3p3c,
3pwateroil

mpnc

+ non isothermal

1p

2p, 2p2c

stokes,
stokesnc,
stokesncni,
zeroeq,
zeroeqnc,
zeroeqncni

el1p2c

el2p

elastic

2cstokes2p2c,
2cnistokes2p2cni,
2czeroeq2p2c,
2cnizeroeq2p2cn

Discretization
Box method

Cell-centered FV
with TPFA

Cell-centered FV
with TPFA,
MPFA-L,
MPFA-0 (2p),
MFD (2p)

Box method
Box method
for flow

FE for
displacement

Box method

Parallelization Yes Yes Yes

Table 8.2: Available Models in DuMuX 2.12 with some particularities and characteristics.

standard laws is provided, e.g. Van-Genuchten and Brooks and Corey models. Each material law
uses a set of appropriately definable parameters (residual saturations) of type MaterialLawParams,
which may depend on the location inside the domain. Each material law has a regularized version.

SpatialParameters. This part collects all parameters that may be space dependent in the computational
domain (porosity, intrinsic permeability, heat capacity, heat conductivity, material law, . . . ).
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9.1 Introduction

This chapter aims at describing our main contributions concerning the development and the implemen-
tation of new numerical schemes in the DuMuX framework. As mentioned in Section 8.2, DuMuX is a
free and open-source environment developed at the University of Stuttgart in which our team has devel-
oped all its codes since several years. We chose the simulator DuMuX because it provides a sustainable
environment and sophisticated tools for developers to implement some new numerical methods for the
simulation of flows in porous media. Among others, it allows the users to benefit from an environ-
ment where tools for meshing, discretization and linear solvers are provided as well as usual constitutive
laws for flows in porous media. Recently, the environment DuMuX received a funding of about 680
KC (2019-2022) from the German Research Foundation for their project "Sustainable infrastructure for
the improved usability and archivability of research software on the example of the porous-media sim-
ulator DuMuX ". This recognition has reinforced our choice to continue to use this environment for our
upcoming projects.
In the framework of the Euratom FP7 project FORGE: Fate Of Repository Gases, we were involved
in the Work Package WP1.2 (Numerical benchmarks on Gas Migration). This Work Package aimed at
comparing a number of numerical models applied to a specific problem in the context of hydrogen flow
and transport in a nuclear waste repository. The processes were modeled by a two-phase (water and
hydrogen) transient flow in a heterogeneous porous medium under isothermal conditions. We performed
a three-dimensional numerical simulation of a module of a repository for high-level waste in a clay host
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rock. Section 9.2 describes this work where we coupled an upscaling technique to manage the strong
heterogeneities and a vertex-centred finite-volume method implemented in DuMuX to yield very accu-
rate solutions. As far as we know, concerning reactive flows, except in [65] where geological simulation
of CO2 is considered, most of the contributions in DuMuX considering reactivity only consider kinetic
reactions. For instance, in [159] and [209], a fully implicit approach is used to model evaporation and
salt precipitation. In [151, 152, 153], the authors study the microbially induced calcite precipitation for
preventing leakage by clogging the reservoir during geological storage of CO2. In these contributions,
the geochemistry is modeled by nonlinear souce/sink terms in the balance equations. To treat equilibrium
reactions involved in our applications, in the framework of the PhD thesis of V. Vostrikov [301], we de-
veloped and integrated in DuMuX a sequential approach to study two-phase reactive flows [29, 30]. Our
scheme splits the global problem into two sub-problems. The first sub-problem computes a two-phase
compositional flow where only species present in both phases are treated implicitly. Exchanges between
phases are totally solved in this step and the contribution of the other species is treated explicitly. The
second sub-problem calculates a reactive transport problem where flow properties (Darcy velocity for
each phase, saturation of each phase, temperature, density,...) are given by the first step. In [29, 30],
a SIA has been implemented for the reactive transport sub-problem. To improve the robustness of the
scheme and the possible accuracy loss due to the time-splitting involved by the SIA, we switched to
a GIA. More precisely, we used a direct substitution approach (DSA). Then in [15], still considering
a sequential approach we have coupled this fully implicit approach for the reactive transport problem
with a compositional two-phase flow. Both subproblems are now solved using a fully implicit manner.
These developments have been validated by several test cases including high performance computing
and considering several applications. For instance in [14], the migration of hydrogen produced by the
corrosion reaction in deep geological radioactive waste repository is studied while in [15], a scenario of
geological storage of CO2 in a deep saline aquifer is treated. In this context, Section 9.3 summarizes
our contributions on the numerical simulation of multiphase reactive flows using sequential approaches.
More recently, in the framework of the PhD thesis of M. Id Moulay [215], we have abandoned sequential
approaches to consider a fully coupled fully implicit strategy. In addition to the improvement in terms of
accuracy due to the elimination of splitting errors, we expect to be able to use larger time steps during
simulations. In [31], a fully implicit approach for a single phase multicomponent flow with reactive
transport has been developed and validated via numerous 2D and 3D test cases including high perfor-
mance computing. Then in [16], the method has been extended to consider two-phase reactive flows.
An advanced comparison between sequential and fully coupled fully implicit approaches is in progress.
Section 9.4 describes these recent developments.

9.2 Numerical simulations of gas migration in deep repository for ra-
dioactive waste

This section proposes a synthesis of following article [13] which can be consulted in its entirety in the
Appendix:

• Ahusborde E., Amaziane B., Jurak M., 3D numerical simulation by upscaling of gas migration
through engineered and geological barriers for a deep repository for radioactive waste, Geological
Society, London, Special Publications, Vol 415, 123-141, 2015.

Abstract: This paper presents the results of a benchmark study that compares a number of nu-
merical models applied to a specific problem in the context of hydrogen flow and transport in a
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nuclear waste repository. The processes modeled are two-phase (water and hydrogen) immiscible
compressible two-component transient flow in a heterogeneous porous medium under isothermal
conditions. The three-dimensional (3D) model represents a module of a repository for high-level
waste in a clay host rock. An upscaling technique and a vertex-centered finite-volume method are
employed to yield very accurate solutions. Since the full range of results required in the benchmark
is too large to be displayed in this paper, we focus on the evolution of the pressures, the saturations,
the fluxes and the comparison of the numerical results with the other participants. A homemade
C++ upscaling code and the parallel multiphase flow simulator DuMuX have been adopted for
this study.

Numerical simulation plays an important role in the optimization of design of a nuclear waste repos-
itory and its safety case, used as a bridge between current process knowledge and predictive assessment,
on large time and space scales that experiments cannot reach. In this context, from 2009 to 2012, the
Laboratory of Mathematics and its Applications of Pau (LMAP) has participated in the European project
FORGE (Fate Of Repository Gases: http://www.bgs.ac.uk/forge/). The FORGE project studied key gas
migration issues in repository performance assessment. We were involved in the Work Package WP1:
“Treatment of gas in performance assessment” that dealt with the modeling and the numerical migration
of hydrogen in a nuclear waste repository. Hydrogen is produced by the corrosion of metallic canisters
used in the repository design. This Work Package brought together, in addition to the CNRS, numerous
partners (ANDRA, CEA, IRSN, SCK-CEN, LEI, ENSI, NDA, Quintessa, Geofirma). Most of them are
national radioactive waste management agencies. Three benchmarks at different scale were proposed
(cell scale, module scale and repository scale). The processes modeled are two-phase (water and hydro-
gen) immiscible compressible two component transient flow in an heterogeneous porous medium under
isothermal conditions. This complex flow is governed by a set of nonlinear and highly coupled partial
differential equations.

Figure 9.1 represents an horizontal cross-section of the whole repository model, which is composed
of 10 modules connected by the main drift going to the well that connects the repository to the surface.

Figure 9.1: Schematic representation of a repository for high-level waste (from [304]).
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Each module contains 100 waste canisters, 50 on each side of the access drift that connects them
to the main drift. One of the modules is shown in Figure 9.2. Each canister in the module is separated
from the access drift by a bentonite plug. The bentonite plugs are also placed in the main drift in order
to separate one module from another and, finally, there is a bentonite plug in the well that separates the
whole repository from the surface. All tunnels that make the repository are surrounded by a layer of the
EDZ, which is a fractured medium and thus more permeable than the surrounding geological medium.
The contact between the waste canister and the EDZ is not perfect, and a thin space of 1 cm exists (called
the interface). It is presented in the model as a very permeable porous medium with very low capillary
pressure curve (compared to other material curves).

Figure 9.2: Schematic representation of the module (from [304]).

The main difficulty of the benchmark is its highly heterogeneous structure (material with very differ-
ent permeabilities), and the presence of structures such as the interfaces and the EDZ, which have very
small dimensions compared to the dimensions of the computational domain (thickness of the interface
of 1 cm compared to the length of 700 m of the module).

A detailed 3D modeling of the FORGE module scale benchmark would require a tremendous com-
putational effort, even when using high-performance simulator codes. Because such a detailed model
can be highly CPU-time consuming, there exist various attempts that aim at the optimum compromise
between the quality of the simulation and the required amount of CPU time. Upscaling refers to the
techniques used to transform a fine-grid model into a more practical, coarser one. In an upscaled model,
each coarse-grid block is composed of a number of fine-grid blocks, all having different physical proper-
ties. The upscaling replaces these heterogeneous properties of the porous material within the coarse-grid
block with the equivalent homogeneous ones, which will be called the effective properties. To circum-
vent the heterogeneities and the difficulty in taking into account the thin interface surrounding the waste
canisters and the bentonite plugs, we have considered a mathematical upscaling strategy. We have de-
signed two levels of upscaling, denoted UM1 and UM2 (Upscaled Model), of increasing homogeneity
in order to verify, by comparison, the capacity of the upscaled models to simulate global behaviour of
the module. In UM1, the canisters and their plugs, EDZ, and the interface are substituted by an homoge-



9.2. Numerical simulations of gas migration in deep repository 101

neous block. In UM2, the homogeneous block is enlarged by the surrounding geological medium: that
is, the EDZ and the interface, the canister, the plug and the surrounding geological media are substituted
by one homogeneous block. The corresponding grids are shown in Figures 9.3 and 9.4.

Figure 9.3: Grid of the module for UM1 (188 298 elements).

Figure 9.4: Grid of the module for UM2 (27776 elements).

A strategy of coupling between these upscaling techniques and a two-phase two-component flow
has been implemented in DuMuX . Figure 9.5 represents the pressure and the saturation at different
instants. Figure 9.6 compares the gas pressure at two points C50-3 (top) and Pd-1 (bottom) between our
simulations and simulations of four other participants of the benchmark: the Lithuanian Energy Institute
(LEI), the Nuclear Waste Management Organization (NWMO), the Agence Nationale pour la gestion
des Déchets RAdioactifs (ANDRA) and the Nuclear Decommissioning Authority (NDA).

The results are in good accordance and show the reliability of our approach. The CPU time on eight
processors for the UM2 was about 4h, while the UM1 took approximately 1 month on 24 processors.
Our simulations show that the maximum pressure in the module will be about 7 MPa and that, at the
places where the fluxes were calculated, the convection in the gaseous phase will be the main method
of hydrogen transport. The transport of hydrogen dissolved in water is about two or three orders of
magnitude less significant than the transport of gaseous hydrogen. Hydrogen is transported from the
cells to the access and main drifts, which represent preferential paths for the hydrogen migration. The
geological medium shows only a slight desaturation of less than 2 %. The main drift bentonite blocks
are almost fully resaturated after 1000 years. The above results illustrate that the proposed mathematical
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Figure 9.5: Pressure and saturation for the gas phase at t=1000 years (top) and t=10000 years (bottom)
for UM1.
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Figure 9.6: Comparison of the gas pressure. Left: P-C50-3 in the main drift. Right: P-Pd-1 in the
bentonite of the access drift.

upscaling combined to a finite-volume method is capable of tackling, in a robust and accurate fashion,
various physical phenomena relevant to hydrogen flow and transport in a nuclear waste repository.
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9.3 Sequential algorithm for numerical simulation of two-phase reactive
flows

The content of this section relies on a synthesis of article [15] and is also based on articles [14, 29, 30].
These 4 articles are listed below and can be found in the Appendix:

• Ahusborde E., Amaziane B., El Ossmani M., Improvement of numerical approximation of coupled
two-phase multicomponent flow with reactive geochemical transport in porous media, Oil & Gas
Science and Technology - Rev. IFP Energies nouvelles, Vol 73, 73, 2018.

Abstract: In this paper, we consider a parallel finite volume algorithm for modeling complex pro-
cesses in porous media that include multiphase flow and geochemical interactions. Coupled flow
and reactive transport phenomena often occur in a wide range of subsurface systems such as hy-
drocarbon reservoir production, groundwater management, carbon dioxide sequestration, nuclear
waste repository or geothermal energy production. This work aims to develop and implement a
parallel code coupling approach for non-isothermal multiphase multicomponent flow and reactive
transport simulation in the framework of the parallel open-source platform DuMuX . Modeling
such problems leads to a highly nonlinear coupled system of degenerate partial differential equa-
tions to algebraic or ordinary differential equations requiring special numerical treatment. We
propose a sequential fully implicit scheme solving firstly a multiphase compositional flow problem
and then a Direct Substitution Approach (DSA) is used to solve the reactive transport problem.
Both subsystems are discretized by a fully implicit cell-centred finite volume scheme and then an
efficient sequential coupling has been implemented in DuMuX . We focus on the stability and ro-
bustness of the coupling process and the numerical benefits of the DSA approach. Parallelization
is carried out using the DUNE parallel library package based on MPI providing high parallel
efficiency and allowing simulations with several tens of millions of degrees of freedom to be car-
ried out, ideal for large-scale field applications involving multicomponent chemistry. As we deal
with complex codes, we have tested and demonstrated the correctness of the implemented software
by benchmarking, including the MoMaS reactive transport benchmark, and comparison to exist-
ing simulations in the literature. The accuracy and effectiveness of the approach is demonstrated
through 2D and 3D numerical simulations. Parallel scalability is investigated for 3D simulations
with different grid resolutions. Numerical results for long-term fate of injected CO2 for geological
storage are presented. The numerical results have demonstrated that this approach yields physi-
cally realistic flow fields in highly heterogeneous media and showed that this approach performs
significantly better than the Sequential Iterative Approach (SIA).

• Ahusborde E., Amaziane B., El Ossmani M., Finite volume scheme for coupling two-phase flow
with reactive transport in porous media, Springer Proceedings in Mathematics and Statistics, Vol
200, 407-415, 2017.

Abstract: In this work the numerical solution of a system of coupled partial differential and
differential algebraic equations describing two-phase multicomponent flow, transport and chem-
ical reactions is considered. An implicit finite volume scheme is used to descretize a two-phase
two-component flow problem, which is then sequentially coupled to a reactive transport problem
solved by a direct substitution approach (DSA). More precisely, we used firstly the module 2p2c
implemented in the parallel open-source simulator DuMuX to solve a two-phase two-component
flow with two dominant species without chemistry. Secondly, the reactive transport is described by
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advection dispersion equations coupled to differential algebraic equations to deal with the minor
species. Again an implicit finite volume method is used to discretize this subsystem using a DSA.
In this context, we have developed and integrated a reactive transport module 1pNc-react in the
DuMuX framework. Finally, numerical results for a highly complex geochemistry problem are pre-
sented to demonstrate the ability of our method to approximate solutions of two-phase flows with
reactive transport in heterogeneous porous media.

• Ahusborde E., Kern M., Vostrikov V., Numerical simulation of two-phase multi-component flow
with reactive transport in porous media: application to geological storage of CO2, ESAIM: Pro-
ceedings and Surveys, Vol 49, 21-39, 2015.

Abstract: In this work, we consider two-phase multicomponent flow in heterogeneous porous
media with chemical reactions. Equations governing the system are the mass conservation law
for each species, together with Darcy’s law and complementary equations such as the capillary
pressure law. Coupling with chemistry occurs through reactions rates. These rates can either
be given nonlinear functions of concentrations in the case of kinetic chemical reactions or are
unknown in the case of equilibrium chemical reactions (such as reactions in aqueous phase). In
this latter case, each reaction gives rise to a mass action law, an algebraic relation that relates the
activities of the implied species. The resulting system will couple partial differential equations with
algebraic equations. The aim of this paper is to develop a numerical method for the simulation
of this system. We consider a sequential approach that consists in splitting the initial problem
into two sub-systems. The first subsystem is a two-phase two-component flow, while the second
subsystem is devoted to a reactive transport problem. For the two-phase two-component flow part,
we have used an already existing module of the open-source parallel multiphase flow simulator
DuMuX . To solve the reactive transport problem, we have implemented a new module in the
DuMuX framework that solves a single phase multicomponent transport problem, and we have
coupled it with a locally developed code for chemical equilibrium, called ChemEqLib, through a
sequential iterative approach. Then, both modules have been coupled to propose a simple, but
mathematically consistent, iterative method that handles two-phase flow with reactive transport.
The approach is validated on a 2D example from the literature representative of a model for the
long-term fate of sequestered CO2.

• Ahusborde E., El Ossmani M., A sequential approach for numerical simulation of two-phase mul-
ticomponent flow with reactive transport in porous media, Mathematics and Computers in Simu-
lation, Vol 137, 71-89, 2017.

Abstract: We develop a new scheme for numerical solution of immiscible compressible two-phase
flow in porous media with geochemistry. The problem is modeled by the mass balance law for
each phase, Darcy-Muskat’s law, and the capillary pressure law. Coupling with chemistry occurs
through reactions rates. These rates can be either given nonlinear functions of concentrations
in the case of kinetic chemical reactions or unknown for equilibrium chemical reactions. Each
kinetic reaction produces an ordinary differential equation while each equilibrium reaction gives
rise to a mass action law that is an algebraic relation that links the activities of concerned species.
An implicit finite volume scheme is applied to solve the two-phase flow equations, which is then
sequentially coupled to a method for solving the reactive transport problem. More precisely, we
used firstly the module 2p2c implemented in the parallel open-source simulator DuMuX to solve a
simplified two-phase two-component flow with two dominant species without chemistry. Secondly,
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we have developed and integrated a reactive transport module in the DuMuX framework to deal
with the other species using a sequential iterative approach (SIA) where transport, equilibrium
chemical reactions and kinetic chemical reactions are solved sequentially. A new module for
transport and a code using the GSL library for the chemical problem have been coupled. Finally,
our approach has been validated by solving several test cases. Here we will present two benchmark
tests to demonstrate the ability of our method to approximate solutions of single and two-phase
flows with reactive transport in heterogeneous porous media.

This section deals with the development and the implementation of numerical schemes to perform
numerical simulation of two-phase multicomponent flow with reactive transport in porous media. The
major difficulties related to this model are in the nonlinear degenerate structure of the equations, as well
as in the strong coupling between the flow and reactive transport equations. The chemical processes
involves inter-phase mass transfer as well as an host of chemical reactions, including dissolution, ion
exchange, adsorption, precipitation, and oxidation/reduction.

In [14, 15, 29, 30] and in the framework of the PhD thesis of V. Vostrikov [301], we considered a
sequential approach to tackle the problem consisting in a set of nonlinear partial differential equations
coupled with differential algebraic equations. Instead of solving this set of equations all together, the
sequential strategy splits the original problem into two sub-problems. The first sub-problem is devoted
to a compositional two-phase flow where the effects of the geochemistry are treated explicitly. The sec-
ond one solves a reactive transport problem. The main difference between the previous contributions
is the strategy to deal with this second step, with a focus on continuous improvement. In [29, 301], the
reactive transport problem was tackled by a sequential iterative approach (SIA) where transport and equi-
librium chemical reactions were solved sequentially. Precisely, we developed and integrated in DuMuX

a module named 1pNc (one-phase, N-component) solving a transport problem. Then, this module was
coupled iteratively with a locally developed code for chemical equilibrium, called ChemEqLib using the
GSL library [5]. In [30], we abandoned the code ChemEqLib and decided to incorporate the chemistry
calculation directly in DuMuX to have an unified environment. Still considering a SIA, transport, equi-
librium chemical reactions and also kinetic chemical reactions (that were not taken into account in the
previous work) were solved sequentially. For this, we have developed and integrated a reactive transport
module named 1pNc-React (one-phase, N-component reactive) still using the GSL library. To reduce
the possible splitting errors and increase the robustness of our strategy, in [14, 15] the SIA was replaced
by a global implicit approach to solve the reactive transport subproblem. More precisely, we considered
the Direct Substitution Approach (DSA). All our implementations have been validated by numerous test
cases including several applications. In [14], we studied the migration of hydrogen produced by the
corrosion of the canisters in deep geological radioactive waste repository and obtained some results co-
inciding with those presented in [318]. In [15, 29, 30], we focused on different scenarios of injection of
CO2 in a deep saline aquifer. In the sequel of this section, we propose to present some numerical results
for this application.

9.3.1 Geological sequestration of CO2

To validate our sequential algorithm implemented in [15], we applied our simulator to a 3D coupled two-
phase flow and reactive transport problem proposed in [113] for a scenario of geological sequestration
of CO2. In this work, the authors propose to use two variants of complex geochemical systems that
include both equilibrium and kinetic reactions. We consider the test named "six-element model", whose
reactions are displayed in Table 9.1.
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Reactions log10(K)

CO2(g) = CO2(l) -
CO2(l) + H2O = H+ + HCO–

3 -10.23
CO2 –

3 + H+ = HCO–
3 -6.32

OH– + H+ = H2O -13.26
Ano + 8H+ = 4H2O + Ca2+ + 2Al3+ + 2SiO2(l) 25.82
Cal + H+ = Ca2+ + HCO3

– 1.6
Kao + 6H+ = 5H2O + 2Al3+ + 2SiO2(l) 6.82

Table 9.1: Chemical reactions.

It involves four equilibrium reactions (the first four reactions) and three kinetic reactions (the last
three ones) of mineral dissolution/precipitation. For the first reaction, the solubility law for CO2 is
implemented according to [278]. Mineral data for the kinetic reactions are summarized in Table 9.2.

Mineral log10(Ks) As Init. conc.
Ano -12.0 88 87
Cal -8.80 88 238
Kao -13.0 17600 88

Table 9.2: Mineral, precipitation and dissolution parameters.

A three-dimensional domain that is 15 km in both the x and y-directions and 100 m in the z-direction
is considered. A well perforated in a single grid block located 25 m from the top of the aquifer injects
a pure CO2 stream at constant rate during the first 20 years. After the 20 years injection period, a total
of 18.6×109 kg of CO2 is injected. As initial conditions for the two-phase two-component H2O – CO2
flow we have used hydrostatic condition for liquid pressure Pl , initial liquid saturation Sl = 1 and initial
CO2 molality in liquid phase equals 3.55× 10−3 mol.kg−1. Initial conditions for the reactive transport
problem, parameters for the B-dot model used as activity model and mineral data for the kinetic reactions
can be found in [15]. Impermeable Neumann boundary conditions are enforced on the boundaries of the
domain. Constitutive laws and physical parameters are given in Table 9.3.

Figure 9.7 displays concentrations of calcite, anorthite and kaolinite at 20 and 2000 years for a grid
composed of 1.6×105 elements (100×100×16). Initially, their concentration were respectively 238, 87
and 88 mol.m−3. We can see that calcite is dissolved near the injection of CO2 and precipitated far from
the injection while anorthite and kaolinite are respectively dissolved and precipitated everywhere.

Figure 9.8 depicts the molality of aqueous CO2, the pH and the gas saturation at 20 and 2000 years.
The pH and the molality of aqueous CO2 are strongly correlated since CO2 is a sour gas. After the
injection, the gaseous CO2 migrates upward and spreads laterally when reaching the top of the aquifer
that is impermeable.

9.3.2 Parallel performances

Parallelization in the DuMuX is carried out using the DUNE [52, 53] parallel library package. DUNE
gives arbitrary data decomposition in a generic way and the employed assembly operator and linear
solvers are designed correspondingly. Parallel computations on a hierarchical grid follow the "single
program multiple data" (SPMD) programming paradigm based on a suitable decomposition of the grid
entities. Tasks are divided and run simultaneously on several processors with different input. Processors
execute their own program and communicate with each other using the Message Passing Interface (MPI).
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Calcite concentration at t = 20 years [mol.m−3] Calcite concentration at t = 2000 years [mol.m−3]

Anorthite concentration at t = 20 years [mol.m−3] Anorthite concentration at t = 2000 years [mol.m−3]

Kaolinite concentration at t = 20 years [mol.m−3] Kaolinite concentration at t = 2000 years [mol.m−3]

Figure 9.7: Profiles of mineral concentrations.
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pH at t = 20 years pH at t = 2000 years

Aqueous CO2 molality [mol.kg−1] at t = 20 years Aqueous CO2 molality [mol.kg−1] at t = 2000 years

Gas saturation at t = 20 years Gas saturation at t = 2000 years

Figure 9.8: Profiles of pH, aqueous CO2 molality and gas saturation.
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Constitutive law Parameters
Capillary pressure law Pc = 0 Pa
Absolute permeability K= 10−13I [m2]
Relative permeability

krl = (S∗l )
4 S∗l =

Sl−Slr

1−Slr
krg = 0.4(1−S∗l )

2(1− (S∗l )
2) Slr = 0.2

Liquid diffusion tensor
Dl = DmI Dm = 1. 10−9 m2.s−1

Gas diffusion tensor Stokes-Einstein equation [315]
Porosity φ = 0.18
Temperature T = 50oC
Liquid density Model based on [8]
Liquid viscosity µl = 4.8 10−4 Pa.s−1

Gas density Model based on [277]
Gas viscosity Model based on [116]

Table 9.3: Physical parameters for the test case of CO2 injection.

Parallel computations up to 768 processors have been performed on several grids for the 3D version
of the test. The parallel efficiency of our strategy is illustrated by solving 10 time steps. The code ran
on a Bull cluster named OCCIGEN with Intel "Haswell" 12-Core E5-2690 V3 processors. In parallel
computing, two types of scalability are defined. The first is the strong scaling, which represents the
relation between the computation time and the number of processors for a fixed total problem size. The
second is the weak scaling, for which the load per processor is fixed.

Strong scaling
Figure 9.9 a) displays on a logarithmic scale, CPU time as a function of the number of processors for three
size problems of 1.6×105, 1.28×106 and 5.76×106 elements corresponding respectively to 1.92×106,
1.536×107 and 6.912×107 degrees of freedom. The dashed lines represent an ideal behavior.

Strong efficiency is given by:

SE(N) =
CPU time on p processors × p
CPU time on N processors ×N

, (9.1)

here p denotes the number of processors used for the reference time (not always equal to one for heavy
computations). For both calculations, we took p= 8. It points out an optimal use of the parallel resources.
Efficiency equal to one indicates that communications and synchronizations between processors are neg-
ligible. Figure 9.9 b) represents the strong scaling versus the number of processors. For this calculation,
we took p= 12, 24 and 48 as number of processors used for the reference time. A high efficiency (greater
than 0.70) is observed up to 256 processors for the computations involving 1.536×107 and 6.912×107

degrees of freedom. For the simulation with 1.92× 106 degrees of freedom, the efficiency is good up
to 72 processors. The loss of efficiency is mainly due to the increase of the communications between
processors in comparison with the load of each processor. In [140, 141], the authors evaluate the par-
allel performance of the simulators PFLOTRAN. In [140], the authors assert that “as a general rule of
thumb a minimum of 10,000 dof per core is needed to obtain good scaling performance”. In [59], for
the simulator ParCrunchFlow, strong scaling breaks down somewhere between 69,000 and 40,000 dof
per processor. Here, a minimum of 30,000 degrees of freedom per processor seems to be required to
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Figure 9.9: CPU time and strong parallel efficiency as a function of the number of processors.
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Figure 9.10: CPU time and weak parallel efficiency as a function of the number of processors.

maintain a good scaling.

Weak scaling
Figure 9.10 a) displays CPU time as a function of the number of processors, with around 10000, 20000
and 40000 elements per processor.

Weak efficiency is given by:

WE(N) =
CPU time on p processors
CPU time on N processors

, (9.2)

where p still denotes the number of processors used for the reference time. Here, p = 1 for the three
scenarios. Weak efficiency is depicted in Figure 9.10 b). Efficiency equal to one indicates an optimal
behavior for the algorithm and the computer architecture. Indeed, CPU times remains constant, equal to
the reference time, while the total size of the problem increases with the number of processors. Usually,
this property is hardly verified and curves with plateaus can be observed. Values of the plateaus rise
toward one with the load of each processor. This phenomenon is illustrated in Figure 9.10 b)
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9.3.3 Comparison between direct substitution and sequential iterative approaches

This subsection aims at comparing the DSA used in [15] with the SIA developed in [30] for solving
the reactive transport subproblem for the example presented above. Both approaches adopt an adaptive
time-stepping. In the DSA, the control of the time-step is based on the number of iterations required
by the Newton method to achieve convergence while in the SIA, it is based on the number of iterations
required in the iterative algorithm to reach the tolerance εSIA. In the sequel, tolerances for the Newton
method and iterative algorithm are respectively εNewton = 10−8 and εSIA = 10−8.

Figure 9.11 compares the evolution of the molalities of H+ and Ca2+ obtained with the DSA and the
SIA close to the injection with a mesh composed of 40000 cells during the first year of injection. We can
observe that the results are in good accordance and that both methods provide comparable results.
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Figure 9.11: Comparison of the molalities of H+ and Ca2+ obtained with the DSA and the SIA.

Table 9.6 displays the CPU time required for the DSA and the SIA to achieve the first year of injection
years on several meshes. We can see that for this example, the DSA is faster than the SIA whatever the
size of the mesh. The SIA is more CPU consuming in comparison with the DSA because many iteration
steps in the iterative procedure and smaller time steps are required.

Number of cells DSA SIA
10000 982.2 1518.8
40000 3847.5 6235.5

160000 15901.9 27235.5

Table 9.4: CPU time (s) for the DSA and the SIA.

9.4 Fully coupled fully implicit algorithms for numerical simulation of
reactive flows

The content of this section relies on a synthesis of article [31] and is also based on article [16]. Both
articles are listed below and can be found in the Appendix:
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• Ahusborde E., El Ossmani M., Id Moulay M., A fully implicit finite volume scheme for single
phase flow with reactive transport in porous media, Mathematics and Computers in Simulation,
Vol 164, 3-23, 2019.

Abstract: Single phase flow and reactive transport modeling involve solving a highly nonlinear
coupled system of partial differential equations to algebraic or ordinary differential equations re-
quiring special numerical treatment. In this paper, we propose a fully implicit finite volume method
using a direct substitution approach to improve the efficiency and the accuracy of numerical com-
putations for such systems. The approach has been developed and implemented in the framework
of the parallel open-source platform DuMuX . The object oriented code allows solving reactive
transport problems considering different coupling approaches. A number of 2D and 3D numerical
tests were performed for verifying and demonstrating the capability of the coupled fully implicit
approach for single phase flow and reactive transport in porous media. Numerical results for
the reactive transport benchmark of MoMaS and long-term fate of injected CO2 for geological
storage including a comparison between the direct substitution approach and the sequential itera-
tive approach are presented. Parallel scalability is investigated for simulations with different grid
resolutions.

• Ahusborde E., Amaziane B., El Ossmani M., Id Moulay M., Numerical modeling and simulation
of fully coupled processes of reactive multiphase flow in porous media, Accepted for publication
in Journal of Mathematical Study, 2019.

Abstract: In this paper, we consider a finite volume approach for modeling multiphase flow cou-
pled to geochemistry in porous media. Reactive multiphase flows are modeled by a highly non-
linear system of degenerate partial differential equations coupled with algebraic and ordinary
differential equations. We propose a fully implicit scheme using a direct substitution approach
(DSA) implemented in the framework of the parallel open-source platform DuMuX . We focus
on the particular case where porosity changes due to mineral dissolution/precipitation are taken
into account. This alteration of the porosity can have significant effects on the permeability and
the tortuosity. The accuracy and effectiveness of the implementation of permeability/porosity and
tortuosity/porosity relationships related to mineral dissolution/precipitation for single phase and
two-phase flows are demonstrated through numerical simulations.

Recently, in the framework of the PhD thesis of M. Id Moulay [215], we decided to set aside tem-
porarily the sequential strategies presented in Section 9.3. Indeed, sequential approaches can introduce
operator splitting errors and some questions about the coupling between all the physical processes have
to be studied to asses if sequential approaches are relevant to solve very coupled phenomena or if implicit
approaches are better suited. By consequence, we developed and implemented a parallel fully-coupled,
fully implicit method to solve reactive multiphase multicomponent flow to achieve improved stability. In
comparison with sequential strategies, we expect that the errors of mass conservation due to the operator
splitting will be erased and that larger time steps can be used during simulations.

9.4.1 Numerical simulation of single phase reactive flows

First, we focused on the single phase case. Besides the DSA that has already been used to solve the
reactive transport problem in [14, 15], several other formulations involving different choices for the
primary variables were envisaged and tested. No significant change was observed and as a consequence,
we maintained the choice to use a DSA. This led us to propose in [31] a fully implicit finite volume
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strategy for single phase reactive flows. This fully implicit strategy has been validated by numerous test
cases, notably the MoMaS benchmark [82]. Detailed results can be found in [31]. In this subsection,
on the particular example of the SHPCO2 Project [137], we propose an advanced comparison between
the DSA and the SIA considered in [30] in term of computational time for several grid resolutions. The
three-dimensional version of the test is also calculated and parallel computations are presented with good
strong and weak parallel efficiencies.

9.4.1.1 SHPCO2 test case

This test case was proposed in the framework of the SHPCO2 Project (French acronym for High Per-
formance Simulation of CO2 Geological Storage). Its detailed description can be found in [137]. The
chemical system consists of components involved in 4 reactions displayed in Table 9.5.

No. Reactions
(1) OH– + H+ −−⇀↽−− H2O
(2) CO2(g) −−⇀↽−− CO2(l)
(3) HCO–

3 + H+ −−⇀↽−− CO2(l) + H2O
(4) Calcite + H+ −−⇀↽−− Ca2+ + HCO–

3

Table 9.5: Chemical reactions for the SHPCO2 test case.

The geometry (2D and 3D) of the domain is depicted in Figure 9.12. We consider firstly the two-
dimensional version of the test. It is divided into two zones: a "barrier" zone with a low permeability
Kbarrier = 10−15 m2 (represented in green in Figure 9.12) and a "drain" zone (the remaining part) with
higher permeability Kdrain = 10−13 m2.

Figure 9.12: Two-dimensional (left) and three-dimensional (right) geometry of domain for the SHPCO2
test case (taken from [137]).

In this test, the gas phase is assumed to be immobile and therefore gaseous carbon dioxide CO2(g) is
considered as a fixed species. The hypothesis of immobility of gas allows to focus on reactive transport
without worrying issues of multiphase flow. Consequently, the problem is modeled by a single phase
multicomponent flow with reactive transport. Initially, in the orange bubble of Figure 9.12 gaseous car-
bon dioxide CO2(g) is present while in the remaining zone, concentration of CO2(g) is equal to zero. For



114 Chapter 9. Main contributions

the flow, Dirichlet boundary conditions for the pressure are enforced at the boundary surfaces Injec-
tor1, Injector2 and Productor while at the rest of the boundary of the domain, homogeneous Neumann
condition are imposed. Concerning the transport, a pure advective flux on the boundary surfaces In-
jector1, Injector2 and Productor is imposed. On the rest of the boundary of the domain, we consider
homogeneous Neumann conditions. Physical parameters and initial concentrations can be found in [30].
The period of simulation is equal to 4500 years. Several two-dimensional meshes have been used. An
adaptive time step strategy is used with a maximal time step equal to 10 years.

Figure 9.13 represents the evolution of the concentration of CO2(g) and CO2(aq) at t = 400 years and
t = 1600 years with a mesh composed of 233472 elements. Due to the hypothesis of the immobility of
the gas phase, the position of zone with CO2(g) does not change with time but its size is significantly
reduced. This is explained by the fact that CO2(g) dissolves in liquid phase and is transported by flow
outside the initial gaseous zone.

Figure 9.13: Evolution of the concentrations of CO2(g) (top) and CO2(aq) (bottom). Left: 400 years.
Right: 1600 years.

9.4.1.2 Comparison between DSA and SIA

We aim at comparing DSA and SIA implemented in [30] in the same numerical environment for the
example presented above. Both approaches adopt an adaptive time-stepping. In the DSA, the control of
the time-step is based on the number of iterations required by the Newton method to achieve convergence
while in the SIA, it is based on the number of iterations required in the iterative algorithm to reach the
tolerance εSIA. In the sequel, tolerances for the Newton method and iterative algorithm are respectively
εNewton = 10−8 and εSIA = 10−5.
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Figure 9.14 compares the concentration of CO2(aq) obtained with DSA and SIA on the line y = 600
with two meshes composed of 14592 and 58368 cells at t = 1600 years. We can observe that the results
are in great accordance.
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Figure 9.14: Comparison of the concentration of CO2(aq) obtained with DSA and SIA.

Table 9.6 displays the CPU time required and the number of time steps for the DSA and the SIA to
reach 1200 years on several meshes. We can see that for this example, DSA is faster than SIA when
fine meshes are used. Figure 9.15 a) represents the time steps used by the DSA and SIA during the
computations for the two finest meshes. We have to specify that a maximum time step equal to 10 years
was enforced for both simulations. We can remark that the implicit approach allows to use larger time
steps than the sequential approach as expected. This is emphasized by Figure 9.15 b) that depicts the
number of iterations required by the Newton method to achieve εNewton in the DSA and the number of
iterations required in the SIA to reach the tolerance εSIA. The results are given for the mesh composed of
58368 elements. We can see that the SIA requires more iterations than the DSA and therefore, the time
step can not increase as quickly as for the DSA and never reaches the maximum value equal to 10 years.

DSA SIA

Cells CPU time(s)
Number of
time steps

CPU time(s)
Number of
time steps

912 1118 567 741 572
3648 2272 578 2288 572
14592 8612 578 11439 575
58368 27143 579 72813 626

Table 9.6: CPU time (s) and number of time steps for DSA and SIA.

9.4.1.3 Three-dimensional simulation

In [31], we have also performed the three-dimensional version of the test, whose geometry is repre-
sented in Figure 9.12. Figure 9.16 represents several quantities after 1500 years of simulation on a mesh
composed of 912000 elements. The computation has been performed with 256 processors. As for the
two-dimensional case, the initial bubble of gaseous CO2(g) is dissolved and transported in liquid phase.
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Figure 9.15: Comparison between DSA ad SIA.

The concentrations of H+ and CO2(aq) are very correlated since high concentrations of CO2(aq) acidify
the medium.

9.4.1.4 Parallel performance

Parallel computations up to 512 processors have been performed on several grids for the 3D version of the
test. The parallel efficiency of our strategy is illustrated by solving 100 time steps. As for the sequential
strategy, the code ran on the cluster OCCIGEN and strong and weak scalabilities were evaluated.

Strong scaling
Figure 9.17 a) displays on a logarithmic scale, CPU time as a function of the number of processors for 2
size problems of 228000 and 912000 elements corresponding to approximately 1.6×106 and 6.4×106

unknowns. The dashed lines represent an ideal behaviour.
Figure 9.17 b) represents the strong scaling versus the number of processors. A high efficiency

(greater than 0.85) is observed up to 256 processors for the computations involving 912000 cells. For
the simulation with 228000 cells, the efficiency is good up to 64 processors. The loss of efficiency is
mainly due to the increase of the communications between processors in comparison with the load of
each processor.

Weak scaling
Figure 9.18 a) displays CPU time as a function of the number of processors, with 9120 and 18240
elements per processor. Efficiency equal to one indicates an optimal behavior for the algorithm and the
computer architecture. Indeed, CPU times remains constant, equal to the reference time, while the total
size of the problem increases with the number of processors. Usually, this property is hardly verified and
curves with plateaus can be observed. This phenomenon is illustrated in Figure 9.18 b).
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Figure 9.16: Profiles of concentrations and pressure at t = 1500 years.
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Figure 9.17: CPU time and strong parallel efficiency as a function of the number of processors.
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Figure 9.18: CPU time and weak parallel efficiency as a function of the number of processors.

9.4.2 Numerical simulation of two-phase reactive flows

In [16], we proposed to extend the global implicit approach developed in [31] to deal with reactive two-
phase flows and consequently to drop out the sequential approach considered until then. To validate
our methodology, we started by considering a one-dimensional test case proposed in [267]. Despite
its relatively simple geometry, this test case presents the additional difficulty to deal with porosity and
permeability changes. Indeed, the simulation of permeability and tortuosity evolution due to porosity
changes can be of crucial importance in the simulation of several processes. These porosity changes can
occur due to the dissolution or precipitation of minerals. If the porosity is increased, new pathways can
develop, facilitating solute transport while the decrease of porosity can lead to a total clogging, with a
possible annihilation of any flow and/or solute transport (see also for instance [97] or [314]). The de-
pendencies between the transport properties and porosity (Millington-Quirk’s relationship for diffusivity
and Kozeny-Carman’s relationship) have been treated implicitly. This implicit treatment added an addi-
tional computational complexity by further increasing the strong nonlinearity of the system of equations.
A numerical convergence analysis was carried out, giving numerical results in good agreement with
those obtained in [267]. Numerical simulations provided validation of our implementation of perme-
ability/porosity and tortuosity/porosity relationships related to mineral dissolution/precipitation. Then,
in the framework of the PhD thesis of M. Id Moulay [215], we have pursued the validation of our fully
implicit approach for reactive multiphase flows by considering a three-dimensional test case involving
a more complex chemical systems. More precisely, we computed the test case proposed in [113] and
presented in Subsection 9.3.1 for the sequential algorithm. An advanced comparison between the fully
implicit and sequential approaches is in progress. We can already confirm that for this particular test
case, both approaches provide very close results. We were also able to highlight the loss of mass for
the sequential case (even if it is minimal) whereas the implicit approach is totally mass-conservative.
The fully implicit approach is more CPU time consuming than the sequential one, but the difference is
not significant. Even if no definitive conclusion can be drawn, we can assess that for this test case, our
sequential approach can be as accurate as the fully implicit one provided it is carefully implemented.
Moreover, the fully implicit approach is now more efficient that originally thought thanks to the advance
of high-performance computing. We have to continue to validate our fully implicit approach by consid-
ering additional benchmarks. In this regard, we would like to point out that we encountered difficulties
to find reliable and well documented benchmarks. In many articles, some data are missing. We think
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that a well documented benchmark for two-phase flow with reactive transport in porous media would
be very useful for the community. It is why, a contribution on this important issue is in progress. Let
mention also that even if most of the presented results concern two-phase reactive flows, the platform we
developed is able to treat a more complex flow by considering multiphase multicomponent reactive flows.

Finally, to make the implicit approach even more competitive, further improvements must continue to
be achieved. Due to the strong coupling between multiphase flow and reactive transport inducing strong
nonlinearities in the global problem, particular attention should be paid to improve the convergence of
linear solvers, using for example a series of algebraic reductions (Schur complements) as in [113]. A
posteriori estimators could be also used and implemented to achieve computational savings by stopping
timely the linear and nonlinear solvers as in [299]. We could also use the PETSc (Parallel Extensible
Toolkit for Scientific computing) solver library as in PFLOTRAN [140]. It could be also interesting to
adapt the reduction technique proposed in [74, 75] for an integration in DuMuX .
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Chapter 10

Conclusions and Perspectives

This dissertation presents some of the results of my research activity devoted to the development and
implementation of mathematical and high performance computational methods for modeling complex
flows. Over the last decade, I have focused on two areas of research. In the continuity of my PhD thesis,
the first one concerns CFD simulations of incompressible flows for which a wide range of issues have
been raised. The second area deals with a thematic that I discovered with my recruitment at the Labora-
tory of Mathematics and its Applications of Pau: the numerical simulation of multiphase flow in porous
media. For this topic, the numerical study of reactive flows was highlighted and several sequential and
implicit strategies were implemented and compared in a high performance computing framework. The
use of DuMuX allowed to integrate all these developments in an unified and homogeneous environment
and ensure their sustainability. To conclude this dissertation, I present some research directions I want to
pursue in future years.

10.1 Modeling of coupled thermo-hydro-mechanical-chemical (THMC)
processes in porous media

This work will be performed in collaboration with B. Amaziane (LMAP, University of Pau & Pays
Adour), M. Jurak (University of Zagreb, Croatia) and M. El Ossmani (University Moulay Ismaïl, Mo-
rocco). The understanding of coupled thermal, hydraulic, mechanical and chemical (THMC) processes
(illustrated in Figure 10.1) is a crucial issue for the performance assessment of geological disposal of
carbon dioxide or/and radioactive waste. During the last years, we implemented several sequential and
implicit strategies to couple the hydraulic and chemical processes. During the next four years (June
2019 - June 2023), we will be involved in the Horizon 2020 European Joint Program on Radioactive
Waste Management (EURAD). More precisely, we participate to the Work Package untitled "Develop-
ment/improvement of numerical methods & tools for modeling coupled processes (DONUT)" through
the task "Numerical methods for high performance computing of coupled processes". We will develop
some open access massively parallel numerical tools for coupling thermo-hydro with chemical processes
(a grant for a post-doctoral position has been obtained). In parallel, we wish to go further and con-
sider the numerical modeling of the coupling between geomechanics and fluid (gas and liquid) flow
in rock formations. Our goal is to undertake some numerical simulation incorporating the coupling
between gas migration and mechanical behavior, with particular emphasis placed on changes in perme-
ability/transmissivity during mechanical loading and/or deformation. First, we will consider a sequential
approach as in [56, 210, 262, 330]. However, some questions about the coupling between all the physical
processes described above have to be studied to corroborate if some very coupled phenomena can be
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Figure 10.1: Coupled THMC processes, coupling thermal (T), hydrological (H), rock mechanical (M)
and chemical (C) effects for geological storage of CO2 (adapted from [226]).

really solved by sequential schemes or if they need to be treated as a strongly coupled entity as in [334].
We wish also consider new applications as geothermal reservoir modeling for which the understanding
of coupled THMC processes is a crucial issue [233, 286]

10.2 CO2 storage enhancement

This work will be performed in collaboration with F. Croccolo (LFCR, University of Pau & Pays Adour)
and B. Amaziane (LMAP, University of Pau & Pays Adour). The CO2ES project (CO2 Enhanced Stor-
age) project led by F. Croccolo aims at improving the understanding of the various CO2 trapping and
transport processes involved in CO2 geological storage. The project is mainly experimental and seeks to
investigate processes to enhance CO2 storage efficiency and safety by dissolution and by mineral trap-
ping. However, it comprises also a numerical part in which we will be involved through our participation
in the Work Package untitled "Up-scaling of CO2 storage processes". Numerical activities are intended
to scale-up the phenomena pointed out in the experimental part by using homogenization tools as well
as guiding further experimental activities.

10.3 Multicomponent transport in low permeability porous media

This work will be performed in collaboration with G. Galliéro (LFCR, University of Pau & Pays Adour)
and M. Azaïez (I2M, University of Bordeaux). The description of the dynamics of a multicomponent
fluid confined in a nano-porous medium is an intricate task despite its wide interest for many applica-
tions (chemical engineering, geosciences). Classical approaches (such Darcy’s or Stokes’ formulations
depending the scale) can be inappropriate in the case where the pore size is similar to that of fluid
molecules since surface effects become predominant compared to volume effects. We aim at proposing
a different paradigm to describe multicomponent transport in porous media based on one equation of
momentum conservation per species at the pore scale as proposed in [169]. Then, we plan to use ho-
mogenization theory to move from pore scale to Darcy’s scale. The coupling between these equations is
achieved by a Maxwell-Stefan friction terms to ensure momentum exchange between different species
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and requires the knowledge of new fluid physical properties such as partial viscosities or slip lengths by
species. Up to now, these properties were difficult to obtain but using molecular dynamics simulations,
it is now possible to have access to such quantities [36] which makes this new paradigm accessible. A
post-doctoral fellow will be hired to work on this topic.

10.4 Reduction Order Modeling

The propose is to use Reduced Order Modeling (ROM), a new paradigm in industrial design and opti-
mization, for the solution of the two families of problems previously described in this document. ROM
provides dramatic reduction in computation times, and finds its place at the crossroads with the upcoming
integration of machine learning and artificial intelligence tools in the construction and engineering sec-
tors. This paradigm has undergone a fast development, and is progressively being applied with success to
large optimization and design problems in engineering, that were deemed completely out of reach only
a few years ago. I aim at collaborating with M. Azaïez and E. Prulière (I2M, University of Bordeaux) to
apply and adapt these approaches to some of our applications. Two objectives can be considered:

• Reduction in parameter space. The processes and physical phenomena present in the manuscript
depend on large number of parameters (geometrical and environmental). Reducing this number of
parameters while maintaining the accuracy of the computation is of primary importance in tackling
the optimization design problem.

• Data assimilation. The huge amount of information required to set up the conditions for the
computational codes are frequently incomplete. There is a need to re-construct the fields with
accurate and fast procedures.
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My work performed during the last decade has been summarized in the previous chapters. Some articles
have been reviewed in details while others have been just summarized or mentioned. As a consequence,
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3. Ahusborde E., Amaziane B., Jurak M., 3D numerical simulation by upscaling of gas migration
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6. Ahusborde E., Amaziane B., El Ossmani M., Finite volume scheme for coupling two-phase flow
with reactive transport in porous media, Springer Proceedings in Mathematics and Statistics, Vol
200, 407-415, 2017.

7. Ahusborde E., Kern M., Vostrikov V., Numerical simulation of two-phase multi-component flow
with reactive transport in porous media: application to geological storage of CO2, ESAIM: Pro-
ceedings and Surveys, Vol 49, 21-39, 2015.

8. Ahusborde E., El Ossmani M., Id Moulay M., A fully implicit finite volume scheme for single
phase flow with reactive transport in porous media, Mathematics and Computers in Simulation,
Vol 164, 3-23, 2019.

9. Ahusborde E., Amaziane B., El Ossmani M., Id Moulay M., Numerical modeling and simulation
of fully coupled processes of reactive multiphase flow in porous media, Accepted for publication
in Journal of Mathematical Study, 2019.



150


	Contents
	Administrative overview
	Curriculum vitae
	Professional activities
	International and national collaborations
	Organization of scientific events

	Students supervision
	Teaching and administrative activities
	Teaching activities
	Participation in administrative tasks

	Publications
	Communications

	General introduction

	I CFD simulations of incompressible flows
	Computation of the Stokes eigenvalue problem
	Introduction
	The Stokes eigenvalue problem: continuous version
	The Stokes eigenvalue problem: discrete version
	Penalty method
	Divergence-free Galerkin approach

	Numerical results

	Hodge Helmoltz Decomposition
	Introduction
	Divergence-free and curl-free Galerkin approaches
	Computation of the solenoidal component
	Computation of the irrotational component

	Numerical results
	Analytical test
	Unsteady Navier-Stokes problems


	Outflow boundary conditions for Navier-Stokes equations
	Introduction
	Pressure-correction scheme for open boundary condition
	Governing equations
	Improvement of the pressure boundary conditions
	Numerical experiments

	Velocity-correction scheme for open boundary condition
	Governing equations
	Numerical experiments


	Domain decomposition for Navier-Stokes equations
	Introduction
	Numerical context
	An implicit method for connecting blocks
	Pressure correction step
	Velocity prediction step

	Numerical results
	Parameters of the case test
	Steady flow
	Unsteady and periodic flow

	Conclusion

	Mesh partitioner for flow simulations on non-rectangular geometries
	Introduction
	Partitioning strategy
	An elementary block decomposition
	Block merging
	Node partitioning

	Block-Structured partitioner quality and performance
	Load balancing and edge-cuts
	Scalability

	Computations of incompressible flows on non-rectangular geometries
	Conclusion


	II Multiphase flow in porous media
	Numerical simulation of multiphase reactive flow: a review
	State of the art
	Applications of multiphase flow in porous media
	Management of phase appearance and disappearance
	Sequential approach versus global implicit approach
	Presentation of codes for reactive transport modeling

	Presentation of DuMuX
	Numerical schemes
	Control strategies
	Models
	Material systems


	Main contributions
	Introduction
	Numerical simulations of gas migration in deep repository
	Sequential algorithm for numerical simulation of two-phase reactive flows
	Geological sequestration of CO2
	Parallel performances
	Comparison between direct substitution and sequential iterative approaches

	Fully coupled fully implicit algorithms for numerical simulation of reactive flows
	Numerical simulation of single phase reactive flows
	Numerical simulation of two-phase reactive flows


	Conclusions and Perspectives
	Modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in porous media
	 CO2 storage enhancement
	Multicomponent transport in low permeability porous media
	Reduction Order Modeling


	Bibliography
	Bibliography

	Appendix
	Appendix


