Keywords: 2 Professional activities 1.2.1 International and national collaborations Laboratory of Mathematical Modeling and Computer science, Meknès, Morocco

This dissertation aims at gathering some contributions of my research activity devoted to the development and implementation of mathematical and High Performance Computing (HPC) methods for modeling complex flows. Chapter 1 contains a detailed Curriculum Vitae and administrative data while Chapter 2 presents a general introduction.

Over the last decade, I have focused on two areas of research forming the two parts of this manuscript. Part I concerns CFD simulations of incompressible flows for which a wide range of issues have been raised. One of the major difficulty when solving computationally the incompressible Navier-Stokes equations consists in ensuring the solenoidal constraint on the velocity. It can be done by the computation of a pressure field which will guarantee a solenoidal velocity field. From all the methods dealing with this point, we can sort them in two categories: exact (as Uzawa method) and approximative methods. Chapter 3 discusses several exact strategies to compute the 2D Stokes eigenvalue problem using spectral element methods. Among the approximative methods, pressure-correction schemes decouple the pressure from the velocity: pressure is treated explicitly in a first sub-step, and is corrected in a second one by projecting the predicted velocity onto an ad-hoc space during a pressure correction step. Chapter 4 proposes a new original method to compute the Hodge Helmoltz decomposition, drawing a parallel between this decomposition and the pressure correction step. In addition to the pressure correction scheme, the velocity-correction scheme switches the two sub-steps: a pressure prediction problem is solved, followed by a velocity correction step. Most of the studies made on these time-splitting methods consider only Dirichlet boundary conditions while few references deal with outflow boundary conditions. That is why Chapter 5 proposes a new numerical scheme treating outflow boundary conditions, for both pressure and velocity correction schemes. An additional issue on this theme concerns the computational geometry. When flows are calculated for complex geometries, one can either use a block-structured grid or an unstructured one. Chapter 6 describes a domain decomposition method to run the Navier-Stokes equations efficiently on non-matching and overlapping block-structured meshes. Chapter 7 describes how we developed a mesh partitioner to carry out HPC simulations on block-structured meshes.

Part II is dedicated to the modeling and finite volume numerical simulation of multiphase flows in porous media. Chapter 8 proposes a non exhaustive state of the art and the description of the environment DuMu X in which we have been implementing and integrating all our developments for several years. Chapter 9 describes our main contributions concerning these methods and their implementations in a HPC context. We have been involved in the European project FORGE (Fate of Repository Gases) that aimed at studying gas migration in deep repository for radioactive waste. We participated to several benchmarks and we coupled DuMu X with an upscaling strategy to treat the strong heterogeneities present in the nuclear waste disposal. Our method allowed to reduce drastically the 3D computational time, while producing results that were very close to those of the other participants. Since 2013, we have been interested in the numerical simulation of multiphase reactive flows. We started with a sequential scheme that consists in solving a two-phase compositional flow followed by a reactive transport problem. Several successive strategies involving significant developments have been considered to improve the resolution of the reactive transport problem. Nonetheless, sequential approaches can introduce splitting errors necessitating reduction for the time steps that can become prohibitive. As a consequence, we decided to complete our study by the development of fully coupled fully implicit strategies. Sequential and implicit strategies were validated through numerical benchmarks with applications to geological storage of CO 2 and nuclear waste. We present here a part of these results and focus on the comparison between sequential and global implicit approaches in terms of accuracy and computational time. Some parallel computations are also discussed.

Lastly, some concluding remarks and perspectives are formulated in Chapter10.

Chapter 1. Administrative overview 1.

Résumé

Ce manuscrit vise à rassembler des contributions de mes activités de recherche dédiées au développement et l'implémentation de méthodes numériques et de calcul haute performance (HPC) pour la modélisation d'écoulements de fluides complexes. Le Chapitre 1 contient un Curriculum Vitae détaillé ainsi que des données administratives tandis que le Chapitre 2 présente une introduction générale.

Durant les dix dernières années, je me suis focalisé sur deux axes de recherche constituant les deux parties de ce manuscrit.

La Partie I concerne des simulations de Mécanique des Fluides Numérique (MFN) concernant des écoulements incompressibles pour lesquels un grand nombre de problèmes ont été abordés. L'une des difficultés majeures dans la résolution des équations de Navier-Stokes incompressibles consiste à assurer la contrainte solénoïdale sur la vitesse. Cela peut se faire par le calcul d'un champ de pression qui garantira un champ de vitesse solénoïdal. Les méthodes traitant de ce point peuvent être classées en deux catégories : les méthodes exactes (comme la méthode d'Uzawa) et les méthodes approchées. Le Chapitre 3 discute de plusieurs stratégies exactes pour calculer le problème aux valeurs propres de Stokes 2D en utilisant des méthodes d'éléments spectraux. Parmi les méthodes approchées, les méthodes de correction de pression découplent la pression de la vitesse : la pression est traitée explicitement dans un premier sous-problème, puis elle est corrigée en projetant la vitesse prédite sur un espace approprié lors d'une étape dite de correction de pression. Le Chapitre 4 propose une nouvelle méthode originale pour calculer la décomposition de Hodge Helmoltz, établissant un parallèle entre cette décomposition et l'étape de correction de pression. Outre les méthodes de correction de pression, les méthodes de correction de vitesse commute les deux sous-problèmes : un problème de prédiction de pression est résolu, suivi d'une étape de correction de vitesse. La plupart des études réalisées sur ces méthodes de time-splitting ne tiennent compte que de conditions aux limites de Dirichlet, tandis que peu de références portent sur les conditions aux limites de sortie. Ainsi, le Chapitre 5 propose une nouvelle stratégie numérique traitant des conditions aux limites de sortie, à la fois pour les schémas de correction de pression et de vitesse. Une autre question sur ce thème concerne la géométrie de calcul. Lorsque la géométrie de calcul est complexe, on peut utiliser soit une maillage structuré par blocs, soit un maillage non structuré. Le Chapitre 6 décrit une méthode de décomposition de domaine pour résoudre efficacement les équations de Navier-Stokes sur des maillages structurés par blocs non-conformes avec recouvrement. Le chapitre 7 décrit le développement d'un partitionneur de maillage pour effectuer des simulations HPC sur des maillages structurés par blocs.

La partie II est consacrée à la modélisation et à la simulation numérique d'écoulements multiphasiques en milieux poreux par la méthode des volumes finis. Le Chapitre 8 propose un état de l'art non exhaustif et la description de l'environnement DuMu X dans lequel nous avons mis en oeuvre et intégré tous nos développements depuis plusieurs années. Le Chapitre 9 décrit nos principales contributions concernant ces méthodes numériques et leurs implémentations dans un contexte HPC. Nous avons participé au projet européen FORGE (Fate of Repository Gases) qui visait à étudier la migration de gaz dans un stockage profond de déchets radioactifs. Nous avons participé à plusieurs benchmarks et nous avons couplé DuMu X avec une stratégie d'upscaling pour traiter les fortes hétérogénéités présentes dans le site de stockage. Notre méthode a permis de réduire drastiquement le temps de calcul 3D, tout en produisant des résultats très proches de ceux des autres participants. Depuis 2013, nous nous intéressons à la simulation numérique d'écoulements réactifs multiphasiques. Nous avons commencé par considérer une approche séquentielle qui consiste à résoudre un écoulement multiphasique compositionnel suivi d'un problème de transport réactif. Plusieurs stratégies successives impliquant des développements significatifs ont été envisagées pour améliorer la résolution du problème du transport réactif. Néanmoins, les approches séquentielles peuvent introduire des erreurs de splitting qui nécessitent des réductions de v pas temps pouvant devenir rédhibitoires. En conséquence, nous avons décidé de compléter notre étude par l'élaboration de stratégies totalement couplées et totalement implicites. Les stratégies séquentielles et implicites ont été validées par de nombreux benchmarks numériques avec des applications au stockage géologique du CO 2 et de déchets nucléaires. Nous présentons ici une partie de ces résultats et nous nous concentrons sur la comparaison entre les approches séquentielle et globale implicite en termes de précision et de temps de calcul. Quelques calculs parallèles sont également discutés.

Pour conclure, quelques remarques finales et perspectives sont formulées dans le Chapitre 10. 8.1 Supported discretization method, coupling strategies for different reactive transport codes (adapted from [START_REF] Gamazo | PROOST: Object-oriented approach to multiphase reactive transport modeling in porous media[END_REF] and [START_REF] Steefel | Reactive transport codes for subsurface environmental simulation[END_REF]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Available Models in DuMu X 2.12 with some particularities and characteristics. . . . . . etienne.ahusborde@univ-pau.fr Webpage:
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Other communications, symposium, workshop Chapter 2

General introduction

Mathematical modeling and numerical simulation are essential for studying a large number of physical problems. The modeling step consists in finding a system of partial differential equations (PDE) relevant to represent the problem. A compromise has to be found between the richness of the model that must ensure a realistic modeling and its ability to be solved with moderate computational costs. Then, the elaboration of adequate numerical methods includes, besides the mathematical analysis (existence, stability), the study of numerical schemes, the analysis of their convergence, their complexity and their validation on benchmarks. Finally, the computational implementation must depend on the complexity of the geometries, the size of the problems to be solved and the orders of magnitude of the different characteristic scales.

In this context, this manuscript aims at gathering my contributions since my PhD thesis entitled "High order method for the -grad(div(.)) operator and applications" and defended in 2007 in the laboratory TREFLE (Transfer Fluid Energy) at the University of Bordeaux 1 [12]. The purpose of this work was to contribute to the approximation of the -grad(div(.)) operator by spectral element methods. Several applications related to Stokes problem, and the steady and unsteady Navier-Stokes incompressible equations were considered. After my PhD defense in 2007, I spent three years in the laboratory TREFLE as temporary research and teaching assistant (09/2007-09/2008) and as post-doctoral fellow (10/2008-09/2010). During the first two years, I focused on the implementation of new features on a Finite-Volume code named Thetis dedicated to the modeling and simulation of incompressible flows. In 2010, I was recruited as a CNRS researcher in the Laboratory of Mathematics and its Applications of Pau at the University of Pau & Pays Adour. I have been working in the teams "Analysis ans Numerical Simulation" and then "Numerical methods and complex fluids" on the numerical simulation of multiphase flows in porous media. Therefore, since my PhD thesis, I mainly work around two research areas: the numerical simulation of incompressible fluids and the numerical simulation of multiphase flow in porous media.

The common point between these two activities is the development and implementation of mathematical and high performance computational methods for modeling complex flows. As a consequence, this manuscript is divided into two parts.

Part I deals with contributions for Computational Fluid Dynamics (CFD) of incompressible flows. It is composed of five chapters presenting work that has been published in 7 articles [20,23,24,25,26,27,[START_REF] Poux | Open and traction boundary conditions for velocity correction scheme for Navier-Stokes equations[END_REF], the content of which is briefly detailed thereafter. Computational fluid mechanics is an essential tool to analyze fluid behavior in many environmental and industrial issues. Given the constant progress in computing resources and the need to model increasingly complex problems, sophisticated numerical schemes must be developed to take benefit from these computational facilities. Many issues are related to the numerical simulation of incompressible fluids (such that water or blood). Solving computationally an accurate solution to the unsteady incompressible Navier-Stokes equations is an intricate task. Beside the treatment of nonlinearities, a solenoidal constraint on the velocity (div u = 0) must be ensured. In can be done by the computation of a pressure field which will ensure a solenoidal velocity field. From all the methods dealing with this point, we can sort them in two categories: exact and approximative methods. In the first one, there are all the methods based on the idea proposed by Uzawa. In this context, Chapter 3 discusses several exact strategies to compute the 2D Stokes eigenvalue problem in the framework of spectral element methods. We focus on formulations considering only the velocity as variable (the pressure gradient is eliminated in a relevant way): the penalty method and a so-called "divergence-free Galerkin approach" [24,25]. Another class of non-exact methods consists in decoupling the pressure from the velocity by means of a time-splitting scheme. This scheme significantly reduces the computational cost of an approximate solution satisfying the incompressibility constraint but with a diminished accuracy. The most popular methods are pressure-correction schemes. They require the solution of two sub-steps: the pressure is treated explicitly in the first one, and is corrected in the second one by projecting the predicted velocity onto an ad-hoc space during a pressure correction step. Chapter 4 draws a parallel between this pressure correction step and the Hodge Helmoltz decomposition that consists, among other things, in extracting the solenoidal part of a vector field. Still using spectral element methods, a new original method is proposed in Chapter 4 to perform this decomposition [20]. In addition to the pressure correction scheme, there is a less studied alternative technique known as the velocity-correction scheme. It consists in switching the two sub-steps: a pressure prediction problem is solved, followed by a velocity correction step. The majority of the studies made on these time-splitting methods consider only Dirichlet boundary conditions while few references deal with outflow boundary conditions. That is why Chapter 5 proposes a new numerical scheme for incompressible Navier-Stokes equations with open boundary conditions, for both pressure and velocity correction schemes [23,[START_REF] Poux | Open and traction boundary conditions for velocity correction scheme for Navier-Stokes equations[END_REF]. An other difficulty in the numerical computation of the incompressible Navier-Stokes equations can come from the computational geometry. When flows are calculated for complex geometries, one can either use a block-structured grid or an unstructured one. Faced with a software constraint requiring us to use structured meshes, we present in Chapter 6 a domain decomposition method to run the Navier-Stokes equations efficiently on non-matching and overlapping block-structured meshes [26]. For the same software, Chapter 7 describes how we developed a mesh partitioner to carry out high performance parallel simulations of incompressible flows on block-structured meshes [27].

Part II is composed of two chapters and is dedicated to the modeling and numerical simulation of multiphase flows in porous media. Seven journal publications have arisen out of the results of this work [13,14,15,16,29,30,31]. This theme has also been the subject of 2 thesis co-supervision [START_REF] Moulay | 3D numerical simulation of reactive multiphase flow in porous media[END_REF][START_REF] Vostrikov | Numerical Simulation of two-phase multicomponent flow with reactive transport in porous media[END_REF], 2 master's thesis co-supervision and numerous communications in international conferences. Multiphase multicomponent flow in porous media play a significant role for many applications in geological and reservoir engineering processes. We can mention for instance the hydrocarbon recovery, the sequestration of CO 2 in saline aquifers, the geological storage of nuclear waste or the prevention of groundwater pollution and the contaminant remediation. Numerical models have been increasingly used for this purpose, a trend that will continue because more sophisticated models and codes are being developed and computer costs keep decreasing. Significant efforts and attempts have been made during recent years toward the development of such tools. It is why since several years, we have integrated all our developments in DuMu X (DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media) [3,[START_REF] Flemisch | DuMu X : DUNE for multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media[END_REF], a free and open-source simulator for flow and transport processes in porous media. Thus, Chapter 8 proposes a non exhaustive state of the art dedicated to the numerical simulation of reactive multiphase flow in porous media, followed by a short description of the main features of the simulator DuMu X . Chapter 9 describes our main contributions related to the development and the implementation of new numerical schemes in the DuMu X framework in a high performance computing context. From 2009 to 2013, we have been involved in the European project FORGE (Fate Of Repository Gases: http://www.bgs.ac.uk/forge/) that aimed at studying gas migration in deep repository for radioactive waste. In order to deal with the complexity of the geometries to be considered and the strong heterogeneity of the different materials, we coupled DuMu X with an upscaling strategy [13]. Section 9.2 shows that our mathematical upscaling method combined to a finite-volume method was capable to reduce drastically the computational time, while producing results in a robust and accurate fashion. From January 2013, in the frame of the PhD thesis of V. Vostrikov [START_REF] Vostrikov | Numerical Simulation of two-phase multicomponent flow with reactive transport in porous media[END_REF] that I co-advised with B. Amaziane (University of Pau & Pays Adour) and M. Kern (INRIA Paris), we were interested in the numerical simulation of two-phase reactive flow in porous media, with an application to the geological storage of CO 2 . We chose a sequential approach to tackle the problem: a two-phase compositional flow is solved, followed by a reactive transport problem. For this latter, several strategies were considered. In [29,[START_REF] Vostrikov | Numerical Simulation of two-phase multicomponent flow with reactive transport in porous media[END_REF], the reactive transport problem was tackled by a sequential iterative approach (SIA) where transport and equilibrium chemical reactions were solved sequentially in a iterative loop. Precisely, we developed and integrated in DuMu X a multicomponent transport module, coupled iteratively with a locally developed code for chemical equilibrium, called ChemEqLib using the GSL library [5]. In [30], the code ChemEqLib was dropped and the chemistry calculations were directly integrated in DuMu X . Still considering a SIA, kinetic chemical reactions that were not taken into account until now were added to the transport, and equilibrium chemical calculations. To reduce the possible splitting errors and increase the robustness of our strategy, in [14,15] the SIA was replaced by a global implicit approach (GIA) to solve the reactive transport subproblem. These developments have been validated by numerous benchmarks with applications concerning geological sequestration of CO 2 [15,29,30] and geological storage of nuclear waste in deep repository [14]. Section 9.3 is dedicated to the presentation of simulations using this sequential approach with some comparison between different strategies. Since January 2017, I have been co-supervising the PhD thesis of M. Id Moulay [START_REF] Moulay | 3D numerical simulation of reactive multiphase flow in porous media[END_REF] with B. Amaziane. This PhD thesis aims at developing a fully coupled fully implicit strategy to perform numerical simulation of two-phase reactive flow. Indeed, sequential approaches can introduce operator splitting errors requiring restrictions on the time step that can be prohibitive. First, a fully implicit approach has been considered to deal with single phase reactive flows and intensively validated through benchmarks including parallel computations [15]. Then, this methodology has been extended for two-phase reactive flows [16]. Section 9.4 presents some numerical simulations of reactive flows using fully implicit approach. Particular attention is paid to the comparison between sequential and global implicit approaches in terms of accuracy and computational time.

For the sake of consistency of the present manuscript, some of my research activities have been purposely discarded. From October 2009 to September 2010, I was a post-doctoral fellow in the laboratory TREFLE in collaboration with the company ABENGOA. During this position, we investigated a Singular Value Decomposition (SVD) method to process thermography data for the characterization of thermal parameters. The inverse problem to solve is based on the model of transient heat transfer. The most significant advantage is the transformation of the dynamic identification problem into a steady identification equation. Truncated SVD provided and accurate thermal parameters estimation, even for noisy data [17]. In [18], we proposed a strategy to automatically simplify Darcy's equations with pressure dependent permeability. In the framework of spectral element methods, a posteriori estimates allowed us to omit this dependence where the pressure does not vary too much. We performed the numerical analysis of a spectral element discretization of the simplified model and we proposed a strategy which leads to an automatic identification of the part of the domain where the simplified model can be used without increasing significantly the error.

Finally, Chapter 10 presents some conclusions and research perspectives for the next years. Two upcoming projects are directly related to our recent work. First we will be involved in the Horizon 2020 European Joint Programme on Radioactive Waste Management (EURAD). For this project, we aim at going towards simulations taken into account coupled thermo-hydro-mechanical-chemical (THMC) processes in porous media that represent a crucial issue for the performance assessment of geological disposal of radioactive waste. Secondly, we will be involved in the CO2ES project (CO 2 Enhanced Storage) whose objective is to provide a better understanding of the various CO 2 trapping and transport processes involved in CO 2 geological storage. The project is mainly experimental but we will perform some numerical simulations to scale-up the phenomena pointed out in the experimental part by using homogenization tools as well as guiding further experimental activities. A third project will be dedicated to the numerical simulation of multicomponent fluid in nano-porous media. For this kind of simulation, classical approaches such as Darcy's or Stokes' formulations that are at the heart of Parts I and II are not always relevant and a new paradigm will be proposed, using among others, molecular dynamics simulations. Finally, we would like to apply and adapt reduced-order models to the applications described above.

Part I CFD simulations of incompressible flows Introduction

Computational Fluid Dynamics (CFD) combines numerical analysis and computer science to analyze and solve problems involving fluid flows. CFD has numerous applications, ranging from academic research to industrial issues. We can mention non exhaustively aerodynamic, weather simulation, natural and environmental science or biological engineering. Most of the works described in this Part are devoted to the particular case of incompressible flows governed by the incompressible Navier-Stokes equations. In recent years, one can observe a trend regarding flow simulations: the requirement for higher accuracy in the computational resolution with a need to obtain results faster. To meet the high accuracy requirements, a part of my contributions deal with spectral elements methods [START_REF] Canuto | Spectral Methods in Fluid Dynamics[END_REF][START_REF] Deville | High-Order Methods for Incompressible Fluid Flow[END_REF]. It is the continuity of my PhD thesis [12] where I used spectral element methods for the approximation of the -grad(div(.)) operator and several applications related to Stokes eigenvalues problem and Navier-Stokes equations were considered. In this context of high order methods, Chapter 3 discusses several strategies to compute the 2D Stokes eigenvalue problem. The content of the chapter is based on the articles [24,25]. We consider the 2D Stokes eigenvalue problem as model example for the approximation of eigenvalues and associated eigenfunctions of a linear operator under an incompressibility constraint. One of the difficulties is to propose methods of approximation which satisfy in a stable and accurate way the eigenvalues equations, the incompressibility constraint and the boundary conditions. Using any non-stable method leads to the presence of non-physical eigenvalues: a multiple zero one called spurious modes and non-zero ones called pollution modes. One way to eliminate these two families is to favor the constraint equations by satisfying it exactly and to verify the equations of the eigenvalues equations in weak ways. To illustrate our contribution in this field, we considered and described several methods producing the correct number of eigenvalues. Numerical results proved how these methods are adequate to correctly solve the 2D Stokes eigenvalue problem. Chapter 4 describes a work dedicated to the Hodge Helmholtz decomposition that consists in extracting the solenoidal, irrotational and harmonic parts from a given vector field. It is based on the article [20]. Our method consists in projecting the vector to be decomposed on solenoidal and irrotational basis, constructed in a original way. After validation on analytical test cases, the method has been used to deal with an unsteady Navier-Stokes problem, to solve the projection step in a Goda pressure correction scheme. In Chapter 5, we present a numerical scheme for incompressible Navier-Stokes equations with open boundary conditions, in the framework of the pressure and velocity correction schemes. It is based on the articles [23,[START_REF] Poux | Open and traction boundary conditions for velocity correction scheme for Navier-Stokes equations[END_REF]. In [START_REF] Poux | Improvements on open and traction boundary conditions for navier-stokes time-splitting methods[END_REF], the authors presented an almost second-order accurate version of the open boundary condition with a pressure-correction scheme in finite volume framework. We extended this method in spectral element method framework for both pressure-and velocity-correction schemes. A new way to enforce this type of boundary condition has been proposed and provided a pressure and velocity convergence rate in space and time higher than with the present state of the art. Some numerical tests illustrated the efficiency of the approach. The second part of my contribution to numerical simulation of incompressible flows concerns the implementation of new features on the Finite-Volume code named Thetis developed at the TREFLE laboratory. This CFD code was based on a marker and cell [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF] orthogonal curvilinear structured grid. To overcome this software constraint and extend the use of the code to more complex geometries, Chapter 6 describes a domain decomposition method to run the Navier-Stokes equations efficiently on non-matching and overlapping block-structured meshes [26]. Precisely, using a pressure correction scheme, we improved a method first introduced in [START_REF] Romé | An implicit multiblock coupling for the incompressible Navier-Stokes equations[END_REF] and [START_REF] Romé | Resolution of the Navier-Stokes equations on blockstructured meshes[END_REF] where the authors reported a problem of mass conservation and a discontinuity of pressure through the interfaces between different meshes. With our new implementation, the pressure is continuous through the interfaces and the incompressibility constraint is ensured over the whole domain. Several numerical tests were carried out to assess the proposed method. Computational fluid dynamics simulations aim at solving increasingly complex and large problems, as quickly as possible. To achieve these requirements, they must rely on High-Performance Computing (HPC). In parallel computing, the computational domain is distributed over several processors. The partitioning strategy must best respect load balancing (each processor must have approximately the same workload) while trying to minimize exchanges between processors. Chapter 7 presents a work based on the article [27] where we developed a mesh partitioner to carry out parallel simulations of incompressible flows on block-structured meshes. Because classical partitioner as CHACO [START_REF] Hendrickson | The Chaco user's guide, version 2.0[END_REF], METIS [START_REF] Karypis | METIS: unstructured graph partitioning and sparse matrix ordering system[END_REF], SCOTCH [START_REF] Pellegrini | SCOTCH 3.1 user's guide[END_REF] were not suitable for structured meshes, we proposed a new partitioning method. The quality of rectangular partitions was checked and compared with other methods, as regards load balance, edge-cut and block numbers. The partitioner was coupled with the massively parallel HYPRE solver library [START_REF] Falgout | HYPRE high performance preconditioners user's manual[END_REF] and good strong and weak parallel efficiencies were obtained. Finally, the code was applied to study laminar flows (steady and unsteady) on non-rectangular geometries, using very fine grids to compute reference solutions. This chapter covers the entirety of article [25] and is also based on article [24] which can be found in the Appendix. Both articles are listed below: Abstract: It is well known that the approximation of eigenvalues and associated eigenfunctions of a linear operator under constraint is a difficult problem. One of the difficulties is to propose methods of approximation which satisfy in a stable and accurate way the eigenvalues equations, the constraint one and the boundary conditions. Using any non-stable method leads to the presence of non-physical eigenvalues: a multiple zero one called spurious modes and non-zero one called pollution modes. One way to eliminate these two families is to favor the constraint equations by satisfying it exactly and to verify the equations of the eigenvalues equations in weak ways. To illustrate our contribution in this field we consider in this paper the case of Stokes operator. We describe several methods that produce the correct number of eigenvalues. We numerically prove how these methods are adequate to correctly solve the 2D Stokes eigenvalue problem.

Chapter 3

Computation of the Stokes eigenvalue problem

• E.
• E. Ahusborde, M. Azaïez, R. Gruber, Constraint oriented spectral element method, Lecture Notes in Computational Science and Engineering, Vol 76, 93-100, 2011.

Abstract: An original polynomial approximation to solve partial differential equations is presented. This spectral element version takes into account the underlying nature of the corresponding physical problem. For different types of operators, this approach allows to all terms in a variational form to be represented by the same functional dependence and by the same regularity, thus eliminating regularity constraints imposed by standard numerical methods. This method satisfies automatically different type of constraints, such as occur for the grad(div) and curl(curl) operators, and this for any geometry. It can be applied to a wide range of physical problems, including fluid flows, electromagnetism, material sciences, ideal linear magnetohydrodynamic stability analysis, and Alfvèn wave heating of fusion plasmas.

Introduction

This chapter deals with the numerical computation of the 2D Stokes eigenvalue problem on a square domain. This problem is considered as model example with a conservation law of the type ∇ • u = 0.

With this test example it is possible to discuss the various numerical problems that appear when flux conservation has to be satisfied in the incompressible Navier-Stokes equations. If these constraint condition cannot be satisfied precisely, so-called spectral pollution [START_REF] Gruber | Finite Element Methods in Linear Ideal MHD[END_REF] appears and the numerical approach does not stably converge to the physical solution. The reason is that due to regularity constraints imposed by standard numerical approximation methods, the energy cannot reach the minimum required by the physics. In fact, current numerical methods satisfy the boundary conditions strongly, the operator equations and the constraints only weakly. If the constraint ∇ • u = 0 is satisfied by a u = ∇ × ψ ansatz, the number of degrees of freedom remains the same as in the unconstrained Laplacian problem. As a consequence, besides the Stokes modes, one finds a whole spectrum of additional unphysical modes, corresponding to those of the heat equation. Thus, the initial physical problem has fundamentally been changed. This approach has been applied to compute the full Stokes spectrum [START_REF] Leriche | Stokes eigenmodes in a square domain and the stream functionvelocity correlation[END_REF] by the first time.

Due to the choice of a unit square domain, the authors were able to separate the Stokes modes from those belonging to the heat equation.

In Section (3.2), we present the 2D Stokes eigenvalue problem and we focus on two formulations considering only the velocity as variable: the penalty method and the divergence-free Galerkin approach.

In Section (3.3), in the framework of spectral element approximation schemes, a stable spectral element is proposed for each method. For the penalty method, a COOL approach [24,28] is considered and the unphysical modes can be pushed towards λ = 0. For the divergence-free Galerkin approach, two strategies christened "explicit" and "implicit" are detailed. The explicit strategy consists in using the properties of the kernel of the grad(div) operator to construct a divergence-free basis. Such a basis has the right number of degrees of freedom, thus delivering the exact number of Stokes eigenfunctions with high precision. The implicit strategy is a direct algebraic elimination process of the ∇ • u = 0 constraint. This leads to a sparse matrix elimination process, described in detail in [28]. It delivers the right number of highly precise Stokes modes. Finally, in Section (3.4), some numerical experiments are performed to prove the efficiency of the proposed methods and a comparison between the different approaches is given.

The Stokes eigenvalue problem: continuous version

Let Ω ⊂ IR d , d = 2, 3, be a Lipschitz domain, the generic point of Ω is denoted x. The symbol L 2 (Ω) stands for the usual Lebesgue space and H 1 (Ω), the Sobolev space that involves all the functions that are, together with their gradient, in L 2 (Ω).C (Ω) denotes the space of continuous functions defined in Ω.

The continuous Stokes eigenvalue problem reads: Find a vector u and λ 2 ∈ IR + such that

-∆ u = λ 2 u, for x ∈ Ω, ∇ • u = 0, for x ∈ Ω, u = 0, for x ∈ ∂ Ω, (3.1) 
where IR + denotes the set of positive real numbers, including zero. For the sake of simplicity we assume here that Ω is the reference domain (-1, +1) 2 . Problem (3.1) is often solved using different strategies but we prefer to focus on methods involving only u as unknown. The first one is called Penalty method Penalty method This method consists in taking into account the divergence free constraint by adding a term of penalty to control the level of divergence when solving the eigenvalue problem.

The penalty formulation, called also regularization method (see [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF]), reads:

Find u ∈ (H 1 0 (Ω)) 2 and λ 2 ∈ IR + such that -∆ u -α∇(∇ • u) = λ 2 u, for x ∈ Ω. (3.2) 
Its variational formulation writes:

Find u ∈ (H 1 0 (Ω)) 2 and λ 2 ∈ IR + such that Ω ∇ u • ∇ vdx + α Ω ∇ • u ∇ • v dx = λ 2 Ω u • v d x, ∀ v ∈ (H 1 0 (Ω)) 2 . (3.3) 
In practice, the infinite dimensional problem (3.3) is replaced by a finite dimensional one using a stable spectral element taking into account the constraint by an adequate choice of α (see [24]).

Divergence-free Galerkin approach The second method is called "divergence-free Galerkin approach" and starts from the fact that the system (3.3) can reduce to: Find u ∈ X and λ 2 ∈ IR + such that

S ( u, v) := Ω ∇ u • ∇ v dx = λ 2 Ω u • v dx, ∀ v ∈ X, (3.4) 
where X is in the space defined by

X = v ∈ (H 1 0 (Ω)) 2 , such that ∇ • v = 0 . (3.5) 
Again the infinite dimensional problem (3.4) is replaced by a finite dimensional one using a stable spectral element that will be developed later.

The Stokes eigenvalue problem: discrete version

We firstly introduce some notations and reminders. Let Σ GLL = {(ξ i , ρ i ); 0 ≤ i ≤ p} and Σ GL = {(ζ i , ω i ); 1 ≤ i ≤ p} respectively denote the sets of Gauss-Lobatto-Legendre and Gauss-Legendre quadrature nodes and weights associated to polynomials of degree p. These quantities are such that on

Λ :=] -1, +1[ ∀ Φ ∈ IP 2p-1 (Λ), +1 -1 Φ(ξ ) dξ = p ∑ j=0 Φ(ξ j ) ρ j , (3.6) 
∀ Φ ∈ IP 2p-1 (Λ), +1 -1 Φ(ζ ) dζ = p ∑ j=1 Φ(ζ j ) ω j , (3.7) 
where IP p (Λ) denotes the space of polynomials with degree ≤ p. We recall that the nodes ξ i (0 ≤ i ≤ p) are solution to (1x 2 )L p (x) = 0 where L p denotes the Legendre polynomial of degree p, whereas ζ i (1 ≤ i ≤ p) are solution to L p (x) = 0 (see [START_REF] Deville | High-Order Methods for Incompressible Fluid Flow[END_REF]). The canonical polynomial interpolation basis h i (x) ∈ IP p (Λ) built on Σ GLL is given by the relationships:

h i (x) = - 1 p(p + 1) 1 L p (ξ i ) (1 -x 2 ) L p (x) (x -ξ i ) , -1 ≤ x ≤ +1, 0 ≤ i ≤ p, (3.8) 
with the elementary cardinality property

h i (ξ j ) = δ i j , 0 ≤ i, j ≤ p, (3.9) 
where δ i j is Kronecker's delta symbol.

We also introduce a new family of polynomials functions g i (x) associated to the canonical basis (3.8) through the relationships:

g i (x) = h i (x) -β i L p (x), 0 ≤ i ≤ p, (3.10) 
where the constants β i are such that all g i (x) ∈ IP p-1 (] -1, +1[) [28,24]. The functions g i (x) have the following properties:

1. Their moments up to order (p -1) are equal to those of their corresponding element in the Gauss-Lobatto-Legendre canonical basis, i.e.: For

0 ≤ i ≤ p, +1 -1 (g i (x) -h i (x)) x j dx = 0, ∀ j, 0 ≤ j ≤ (p -1). (3.11) 
The difference (g i (x)h i (x)) being proportional to L p (x) is orthogonal to all polynomials of degree less or equal to (p -1).

2. Interpolation of their corresponding element in the canonical basis at the Gauss-Legendre nodes, i.e.: For

0 ≤ i ≤ p, g i (ζ j ) = h i (ζ j ), ∀ j, 1 ≤ j ≤ p. (3.12) 
3. The constants β i can be obtained through a series expansion of (3.8) and one gets:

β i = 1 (p + 1) L p (ξ i ) , 0 ≤ i ≤ p. (3.13) 
In [24] one can read more informations concerning these polynomial functions.

Penalty method

In [24], we present a detailed description of this method. The discrete version of problem (3.3) writes: Find u p ∈ Y p and λ 2 ∈ IR + such that

A p ( u p , v p ) + α B p ( u p , v p ) = λ 2 ( u p , v p ) p , ∀ v p ∈ Y p , (3.14) 
where:

A p ( u p , v p ) = (∇ u p , ∇ v p ) p , (3.15) B p ( u p , v p ) = (∇ • u p , ∇ • v p ) p . (3.16) 
Here (•, •) p is discrete scalar product based on Gauss Lobatto quadrature formula. Y p is the space of polynomial functions of degree lower or equal to p vanishing on ∂ Ω. It is assumed to ensure a stable approximation for grad(div) operator to avoid the phenomenon of spurious pollution [24]. Since u p is equal to zero on the boundary, the solution u p ∈ Y p is approximated by u (0)

r p (x, y), u (1) 
r p (x, y) or u

(2) r p (x, y) according to the functional dependence and the regularity required (r = x or y).

u (0) r p (x, y) = p-1 ∑ i=1 p-1 ∑ j=1 u r p (ξ i , ξ j ) g i (x) g j (y), u (1) r p (x, y) = p ∑ i=1 p-1 ∑ j=1 u r p (ξ i , ξ j ) h i (x) g j (y), (3.17) u 
(2)

r p (x, y) = p ∑ i=1 p-1 ∑ j=1 u r p (ξ i , ξ j ) g i (x) h j (y).
The superscript (1) is used to represent quantities derived in direction x while superscript (2) is used to represent quantities derived in direction y. The coefficients in the previous three expansions are the same thanks to (3.12). Replacing u p by the previous development in (3.14), the penalty discrete form writes

(∂ x u (1) 
x p , ∂ x v

x p ) p + (∂ y u

(2)

y p , ∂ y v (2) 
y p ) p + α (∂ x u (1) 
x p + ∂ y u

(2)

y p , ∂ x v (1) 
x p + ∂ y v

(2)

y p ) p = λ 2 ( u (0) p , v (0) p ) p , ∀ v p ∈ Y p .
(3.18)

Divergence-free Galerkin approach

The keystone of the divergence-free Galerkin approach is the construction of a discrete version X p of the divergence free space X defined in equation (3.5).

According to [28], we need the divergence to be a polynomial of degree less or equal to p -1. Consequently, we want to build a space:

X p = { u p ∈ (IP p (Ω)) 2 | ∇ • u p ∈ IP p-1 (Ω)} ∩ X.
Expanding u p according to (3.17) its divergence is a polynomials of degree p -1. Consequently, if the divergence is orthogonal to all polynomial of IP p-1 (Ω), it is necessarily equal to 0. This point gives a new characterization for X p :

X p = { u p ∈ (IP 0 p (Ω)) 2 | Ω ( ∂ u (1) x p ∂ x + ∂ u (2) y p ∂ y )q d x = 0, ∀ q ∈ IP p-1 (Ω)}.
We want to build a basis of X p . The first step consists in determining the size of this space.

dim X p = dim (IP 0 p (Ω)) 2p 2 , where p 2 is the number of necessary and sufficient equations to ensure

∇ • u p ≡ 0. ∇ • u p ∈ IP p-1 (Ω) therefore p 2 ≤ p 2 .
There are 2 dependent equations in 2D (see [START_REF] Bernardi | Spectral Methods in Handbook of Numerical Analysis[END_REF] for details) since:

Ω ∇ • u p L 0 (x)L 0 (y)d x = 0, ∀ u p ∈ (IP 0 p (Ω)) 2 , Ω ∇ • u p L p (x)L p (y)d x = 0, ∀ u p ∈ (IP 0 p (Ω)) 2 .
Polynomials L 0 (x)L 0 (y) and L p (x)L p (y) are spurious modes and reduce the number of independent equations from p 2 to p 2 -2. Consequently, we require p 2 = p 2 -2 test functions q to ensure Ω ∇• u p q d x = 0.

dim

X p = dim (IP 0 p (Ω)) 2 -p 2 = 2(p -1) 2 -(p 2 -2) = (p -2) 2 .
After the computation of the size of X p (denoted p 1 = (p -2) 2 in the sequel), we propose two strategies to compute a divergence-free basis.

Divergence-free Galerkin explicit approach

We consider the following eigenvalue problem:

-∇(∇ • u) = λ 2 u, for x ∈ Ω, u = 0, for x ∈ ∂ Ω. (3.19)
The kernel of the grad(div) operator includes all the modes u k s,p associated to λ 2 = 0 and ∇ • u k s,p = 0. It constitutes a basis for the subspace X p . Its size is (p -2) 2 and then u p ∈ X p can be decomposed according to the following form:

u p = (p-2) 2 ∑ k=1 β k u k s,p .
Replacing u p by the previous development in (3.4), the discrete variational formulation writes: Find u p ∈ X p and λ 2 ∈ IR + * such that

(p-2) 2 ∑ k=1 (∇ u k s,p , ∇ u i s,p ) p β k = λ 2 (p-2) 2 ∑ k=1 ( u k s,p , u i s,p ) p β k , ∀ u i s,p ∈ X p .
This can be written:

S e β = λ 2 M e β .
The stiff matrix S e and mass matrix M e are symmetric and positive definite and are defined by:

S e ik = (∇ u k s,p , ∇ u i s,p ) p , M e ik = ( u k s,p , u i s,p ) p , for (1 ≤ i, k ≤ (p -2) 2 ).

Divergence-free Galerkin implicit approach

As highlighted before, the main difficulty of the problem (3.1) consists in satisfying the incompressibility constraint ∇ • u = 0. Classical approaches usually satisfy operator equations strongly with as many equations as degrees of freedom for the velocity while incompressibility constraint is only satisfied weakly with fewer equations than degrees of freedom for the divergence. Contrary to the classical approaches, our objective is to favor the incompressibility constraint in comparison with the other equations. Our strategy, introduced in [28], consists in sharing the degrees of freedom of u in a relevant way to satisfy:

• The incompressibility constraint in strong sense.

• The other equations in weak sense.

Let u p be in X p . The divergence of u p is orthogonal to p 2 -2 polynomials of degree p -1. It is equivalent to saying that the divergence of u p ∈ X p nullifies in p 2 -2 Gauss points. The algebraic divergence equation writes D u p = 0 (see Figure Since, the p 2 -2 lines of D are independent, there is at least one choice of matrix D 2 invertible. Equation D u p = 0 becomes:

D 1 u 1 p + D 2 u 2 p = 0.
For instance, u 1 contains the p 1 first values of u p and consequently u 2 p contains the p 2 remaining values. Figure (4.3) displays the sizes of the matrices D 2 and D 1 .

D 1 u 1 p + D 2 u 2 p = 0 p 1 p 2 p 2 Figure 3.3: Algebraic system D 1 u 1 p + D 2 u 2 p = 0.
Since D 2 is invertible, the system leads to a relation between u 1 p and u 2 p :

u 2 p = -D -1 2 D 1 u 1 p . (3.20) 
Eq. (3.20) is crucial since it means that if we have any part u 1 p of u p , we can build the complementary u 2 p such that divergence of u p equals 0. This argument allows us to build a basis of X p . We consider v p ∈ (IP 0 p (Ω)) 2 . Our strategy consists in combining implicitly:

• A reduction from v p to v 1 p ,
• An extension from v 1 p to w p = ( v 1 p , v 2 p ) such that ∇ • w p = 0 ensured by the multiplication of v 1 p by the matrix

M = I p 1 -D -1 2 D 1
.

The matrix M is a two blocks matrix. The first block is a matrix of order p 1 equal to identity. The second block contains p 2 rows and p 1 columns. It ensures the passage from v 1 p to v 2 p .

• For each v p ∈ (IP 0 p (Ω)) 2 , one associates a vector w p of X p .

By consequent, our strategy for the construction of a basis of X p consists in:

• Choosing p 1 = (p -2) 2 vectors (v k p ) k=1,...,p 1 of the basis of (IP 0 p (Ω)) 2 (for instance, the (p -2) 2 first vectors),

• For each one of these p 1 vectors, we consider its p 1 -size reduced part denoted v k 1 p ,

• We carry out the divergence-free extension ( w k p ) k=1,...,p 1 = (M v k 1 p ) k=1,...,p 1 .

The ( w k p ) k=1,...,p 1 family is a basis of X p and every u p ∈ X p can be decomposed according to the following form:

u p = p 1 ∑ k=1 γ k w k p .
Replacing u p by the previous development, the discrete variational formulation writes: Find u p ∈ X p and λ 2 ∈ IR + * such that

p 1 ∑ k=1 (∇ w k p , ∇ w i p ) p γ k = λ 2 p 1 ∑ k=1 ( w k p , w i p ) p γ k , ∀ w i p ∈ X p .
This can be written:

S i γ = λ 2 M i γ, with for (1 ≤ i, k ≤ p 1 ), S i ik = (∇ w k p , ∇ w i p ) p , M i ik = ( w k p , w i p ) p .
S i and M i refer respectively to the Laplace operator and mass matrices expressed on the basis w p .

Finally, this system is equivalent to:

M T A M u p 1 = λ 2 M T B M u p 1 ,
where A and B refer respectively to the classical Laplacian and mass matrices.

Numerical results

This section discusses some numerical results. We will apply each of the three approaches to compute the Stokes eigenvalues and associated eigenfunctions. One can see that the choice of α leads to slightly different convergence behaviors. For double precision arithmetic, α = 10 7 appears to give the best convergence results. With an increasing polynomial degree to represent the eigenfunction, the eigenvalue converges exponentially as expected for p ≤ 9. Increasing p further does not improve the accuracy of the eigenvalue, with the precision limited to 10 -6 . Tab. (3.1) shows the limit in precision for the incompressibility condition for α = 10 7 as a function of p.

The eigenvalue problem (3.14) gives 2(p -1) 2 eigenvalues and associated eigenvectors corresponding to the degrees of freedom in Y p . Among these eigenvalues, there are the Stokes eigenvalues and the non-zero eigenvalues of the grad(div) operator multiplied by α. The number of Stokes eigenvalues N S corresponds to the size of the kernel of the discretized grad(div) operator, i.e. to the number of zero eigenvalues. As said in Section (3.3.2.1), it can be proved that this number is equal to (p -2) 2 . Consequently, the resolution of the problem (3.14) leads to N S = (p -2) 2 Stokes eigenmodes. The p 2 -2 remaining eigenmodes are those of the class of non-zero eigenvalues of the grad(div) operator multiplied by α.

Figure (3.5) illustrates the convergence of the difference ε between the four lowest Stokes eigenvalues as a function of p computed by our method with those produced in [START_REF] Leriche | Stokes eigenmodes in a square domain and the stream functionvelocity correlation[END_REF] for α = 10 7 on a semi-logarithmic scale. The error is exponentially decreasing as expected for p ≤ 11 and then stagnates.

Divergence-free Galerkin explicit approach Figure (3.6) illustrates the convergence of the difference ε between the four lowest Stokes eigenvalues as a function of p computed by the divergence-free Galerkin explicit approach with those produced in [START_REF] Leriche | Stokes eigenmodes in a square domain and the stream functionvelocity correlation[END_REF] on a semi-logarithmic scale. The error is exponentially decreasing as expected. Divergence-free Galerkin implicit approach To validate our divergence-free Galerkin implicit approach, we have computed the Stokes eigenvalues and compared with those obtained in [START_REF] Leriche | Stokes eigenmodes in a square domain and the stream functionvelocity correlation[END_REF]. Figure (3.7) shows the convergence for the four lowest eigenvalues as a function of p on a semi-logarithmic scale. The calculation of the eigenvalues converges exponentially as expected.

It has been shown theoretically that the eigenmodes have a global structure with an infinite series of ) indicates that the penalty approach is less accurate that the two other ones. Moreover, the divergence of the eigenvectors computed by the penalty approach is not identically null and its level can depend on the tricky choice of the values of α. On the contrary, the divergencefree Galerkin approaches computed eigenvectors that are perfectly divergence-free. As drawback of the explicit version, we can mention that an initial computation of the kernel of the discretized grad(div) operator has to be performed leading to the resolution of two eigenvalue problems. Consequently, due to the reasons mentioned above, in our opinion, among the three strategies studied in this chapter, the best one is the divergence-free Galerkin implicit approach.

Chapter 4

Hodge Helmoltz Decomposition The content of this chapter covers the entirety of article [20], completed with an application to unsteady Navier-Stokes equations:

• E. Ahusborde and M. Azaïez and J.P. Caltagirone and M. Gerritsma and A. Lemoine, Discrete Hodge Helmoltz Decomposition, Monografías Matemáticas "García de Galdeano", Vol 39, 1-10, 2014.

Abstract: This paper presents a new method using spectral approaches to compute the Discrete Hodge Helmholtz Decomposition (DHHD) of a given vector field. This decomposition consists in extracting the solenoidal (i.e. divergence-free), the non-solenoidal (i.e. rotational-free or, gradient of a scalar field) and the harmonic components (that is divergence-free and rotational-free) of a this vector field. A test case illustrates the proposed method.

Introduction

The Hodge Helmholtz decomposition of a general vector field u = u ψ + u φ + u H is a classical problem in applied and computational physics [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF]. Application areas include (among others) electromagnetism, linear elasticity, fluid mechanics, image and video processing. A closed form of this decomposition may be obtained for unbounded domains through Biot-Savart type integrals. In finite domains, however such an approach is no longer feasible and computational solutions are the only practical way to perform this decomposition.

In the sequel, we mention a non exhaustive list of applications and references related to the Hodge Helmholtz decomposition. A detailed survey about this topics can be found in [START_REF] Bhatia | The Helmholtz-Hodge Decomposition-A Survey[END_REF]. With regard to elasticity, work by Brezzi and Fortin [START_REF] Brezzi | Numerical approximations of Mindlin-Reissner plates[END_REF], and by Arnold and Falk [START_REF] Arnold | A uniformly accurate finite element method for the Reissner-Mindlin plate[END_REF] used the Hodge Helmholtz decomposition theorem for the study of the Reissner-Mindlin plate model. With regard to incompressible fluid flows, the scalar potential φ such that u φ = ∇φ in the Hodge Helmholtz decomposition is usually related to the pressure field p, and the vector potential u ψ corresponds to the solenoidal velocity field u S both quantities being involved in the Navier-Stokes equations. Stokes and Navier-Stokes solvers decouple most of the time the computation of the velocity and pressure fields [START_REF] Deville | High-Order Methods for Incompressible Fluid Flow[END_REF]. The family of correction-pressure time splitting methods [START_REF] Goda | A multistep technique with implicit difference schemes for calculating two-or threedimensional cavity flows[END_REF] generates first a tentative velocity field that is not incompressible but contains the right vorticity. The addition of a pressure gradient to this temporary velocity (equivalent to Hodge Helmholtz decomposition) makes it divergence-free [START_REF] Chorin | Numerical solution of the navier-stokes equations[END_REF][START_REF] Témam | Navier Stokes Equations: Theory and Numerical Analysis[END_REF]. Another approach resorts to pressure penalization [START_REF] Caltagirone | Sur une méthode de projection vectorielle pour la résolution des équations de Navier-Stokes[END_REF]19] using the grad(div(.)) operator. Still considering this operator, we proposed in [22] a constructive spectral approaches for the Helmholtz decomposition of a vector field which consists in projecting the field to be decomposed on the kernel and the ranges of the grad(div(.)) operator. Indeed, the kernel of the grad(div(.)) operator consists of solenoidal eigenvectors while the eigenvectors related to non-zero eigenvalues are curl-free (see [21]). In video processing, the Hodge Helmholtz decomposition allows to detect the fingerprint reference or hurricanes from satellite pictures [START_REF] Palit | Applications of the discrete Hodge Helmholtz decomposition to image and video processing[END_REF]. In [START_REF] Petronetto | Meshless Helmholtz Hodge decomposition[END_REF], the authors proposed a meshless approach for the Hodge Helmholtz decomposition while in [START_REF] Harouna | Helmholtz Hodge decomposition on [0, 1] d by divergence-free and curl-free wavelets[END_REF], divergence-free and curl-free wavelets are used. In [START_REF] Lemoine | Discrete Helmholtz-Hodge Decomposition on Polyhedral Meshes Using Compatible Discrete Operators[END_REF], the authors propose a methodology to perform discrete Hodge Helmoltz decomposition on three-dimensional polyhedral meshes using structure-preserving schemes.

Consider a given vector field u defined in some domain Ω with boundary ∂ Ω. The Helmholtz decomposition writes (see [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF])

u = u ψ + u φ + u H . (4.1) 
The solenoidal component u ψ satisfies the equations

∇ • u ψ = 0 in Ω, u ψ • n = 0 on ∂ Ω, (4.2) 
while the irrotational complement u φ is such that

∇ × u φ = 0 in Ω, u φ × n = 0 on ∂ Ω. (4.3) 
Finally, the harmonic component is both solenoidal and irrotational:

∇ • u H = 0 and ∇ × u H = 0. (4.4)
The main difficulty of the problem (4.1) consists in satisfying the solenoidal (4.2) and irrotational constraints (4.3).

Divergence-free and curl-free Galerkin approaches

The method we present in this chapter is based on the construction of a basis satisfying the expected constraints. Its originality lies in the way these bases are built. To illustrate this, we will focus our presentation on how we derive a divergence-free basis. The derivation of the rotational-free basis in 2D will be presented in Subsection 4.2.2. We only consider the 2D case and then it is good to distinguish between curl and rot, where

∇ × u = rot u = ∂ u 2 ∂ x 1 - ∂ u 1 ∂ x 2 , curlφ = ∂ φ /∂ x 2 -∂ φ /∂ x 1 .

Computation of the solenoidal component

In order to state the problem in variational form we introduce the relevant spaces of functions:

H(div, Ω) = w ∈ (L 2 (Ω)) 2 ∇ • w ∈ L 2 (Ω) , L 2 0 (Ω) = q ∈ L 2 (Ω) Ω q dx = 0 .
Let v, w ∈ H(div, Ω). We define the inner product

( v, w) H(div,Ω) = ( v, w) (L 2 (Ω)) 2 + (∇ • v, ∇ • w) L 2 (Ω) , (4.5) 
and associated norm

|| w|| H(div,Ω) = || w|| 2 (L 2 (Ω)) 2 + ||∇ • w|| 2 L 2 (Ω) 1/2
. Consider also the proper subspace H 0 (div, Ω) ⊂ H(div, Ω):

H 0 (div, Ω) = { w ∈ H(div, Ω) | w • n = 0 on ∂ Ω} .
The admissible space for u ψ in Problem (4.1)-(4.4) is a subspace of H 0 (div, Ω):

X = { u ∈ H 0 (div, Ω) | ∇ • u = 0 in Ω}.

Variational formulation and its discretization

The variational formulation of problem (4.1) writes:

Find u ψ ∈ X such that Ω u ψ • v d x = Ω u • v d x, ∀ v ∈ X. (4.6) 
Due to the nature of X, u φ and u H disappear. We firstly introduce the Raviart-Thomas space [START_REF] Raviart | A mixed finite element method for second order elliptic problems. Mathematical Aspects of Finite Element Method[END_REF] R p = (P 0 p (Λ)

⊗ P p-1 (Λ)) × (P p-1 (Λ) ⊗ P 0 p (Λ)), (4.7) 
where P N (Λ) is the space of polynomials with degree ≤ N and P 0 p (Λ) denotes the space of polynomials of degree p vanishing on ±1. The dimension of R p is equal to 2(p -1)p.

The solution is approximated by u ψ,p = (u x ψ,p , u y ψ,p ) in R p with

u x ψ,p (x, y) = p-1 ∑ i=1 p ∑ j=1 u x ψ,p (ξ i , ζ j ) h i (x) h j (y), u y ψ,p (x, y) = p ∑ i=1 p-1 ∑ j=1 u y ψ,p (ζ i , ξ j ) hi (x) h j (y). Let Σ GLL = {(ξ i , ρ i ) | 0 ≤ i ≤ N} and Σ GL = {(ζ i , ω i ) | 1 ≤ i ≤ N}
denote respectively the sets of Gauss-Lobatto-Legendre and Gauss-Legendre quadrature nodes and weights (see [START_REF] Deville | High-Order Methods for Incompressible Fluid Flow[END_REF]). Likewise, h i (x) ∈ P N (Λ) and h j (x) ∈ P N-1 (Λ) are respectively the canonical Lagrange polynomial interpolation basis built on Σ GLL and on Σ GL . With this choice, the divergence of u ψ,p is a polynomial of degree p -1. Consequently, if the divergence is orthogonal to all polynomial of P p-1 (Ω), it is necessarily equal to 0. This point gives a new characterization for X p = R p ∩ X: 

X p = u ψ,p ∈ R p ∂ u x ψ,p ∂ x + ∂ u y ψ,p ∂ y = 0 , X p = u ψ,p ∈ R p Ω ( ∂ u x ψ,p ∂ x + ∂ u y ψ,p ∂ y ) q d x = 0, ∀q ∈ P p-1 (Ω) . D u ψ,p = 0 2p(p -1) p 2 -1 Figure 4.1: Algebraic system. D 1 D 2 u 1 ψ,p u 2 ψ,p = 0 N 1 N 2 N 2 Figure 4.2: Decomposition of D. D 1 u 1 ψ,p + D 2 u 2 ψ,p = 0 N 1 N 2 N 2

A basis for X p

The first step consists in determining the dimension of the space X p , that we denote by N 1 :

N 1 = dim R p -N 2 = 2(p -1)p -N 2 ,
where N 2 is the dimension of the range of the divergence operator which is also the dimension of P p-1 (Ω) ∩ L 2 0 (Ω) and then equals to p 2 -1. We deduce that N 1 = (p -1) 2 . One can also view N 2 as the number of necessary and sufficient equations to ensure ∇ • u ψ,p ≡ 0:

∇ • u ψ,p ∈ P p-1 (Ω) so N 2 ≤ p 2 .
Due to the boundary conditions (here u ψ,p • n = 0 on ∂ Ω), there is a dependent equation in the two dimensional case [START_REF] Azaïez | Spectral methods applied to porous media equations[END_REF], since

Ω ∇ • u ψ,p L 0 (x)L 0 (y)d x = 0, ∀ u ψ,p ∈ R p .
Indeed, the polynomial L 0 (x)L 0 (y) is a spurious mode and it reduces the number of independent equations from p 2 to p 2 -1. Consequently, we require

N 2 = p 2 -1 test functions q to ensure Ω ∇ • u ψ,p q d x = 0.
Once the dimension is known, we describe now how to proceed to derive a divergence free basis from any N 1 given vectors of R p Algebraic characterization of X p Let u ψ,p be in X p . The divergence of u ψ,p is orthogonal to p 2 -1 polynomials of degree p -1. It is equivalent to saying that the divergence of u ψ,p nullifies into p 2 -1 Gauss points. The algebraic divergence equation writes D u ψ,p = 0, where D is a rectangular matrix with p 2 -1 rows and 2p(p -1) columns (see Figure 4.1).

One splits

D into D 1 ⊕ D 2 and u ψ,p into u 1 ψ,p ⊕ u 2 ψ,p . The vector u 1 ψ,p contains N 1 = (p -1) 2 values of u ψ,p , whereas u 2 ψ,p contains the N 2 = p 2 -1 remaining values (see Figure 4.2). The equation D u ψ,p = 0 becomes D 1 u 1 ψ,p + D 2 u 2 ψ,p = 0, as shown in Figure 4.3.
Since, the p 2 -1 rows of D are independent, there exists at least one choice of matrix D 2 invertible and the system leads to a relation between u 2 ψ,p and u 1 ψ,p :

u 2 ψ,p = -D -1 2 D 1 u 1 ψ,p . (4.8) 
This equation is very important since it means that, if we have any part u 1 ψ,p of u ψ,p , we can build the complementary u 2 ψ,p such that divergence of u ψ,p equals 0. This argument allows us to build a basis of X p .

Basis of X p

The technique we use to project any vector of R p on X p is in the spirit of that published in [28] and used to solve the Stokes problem.

We consider v p ∈ R p . Our strategy consists in combining implicitly:

• A reduction from v p to v 1 p .

• An extension from v 1 p to w p = ( v 1 p , v 2 p ) such that ∇ • w p = 0 ensured by the multiplication of v 1 p by the matrix

M = I N 1 -D -1 2 D 1 .
The first block of M is the identity matrix of order N 1 . The second block contains N 2 rows and N 1 columns. It ensures the passage from v 1 p to v 2 p .

• For each v p ∈ R p one associates a vector w p of X p .

By consequent, our strategy for the construction of a basis of X p consists in:

• Choosing N 1 = (p -1) 2 vectors ( v k p ) k=1.
.N 1 of the basis of R p .

• For each one of these N 1 vectors, we consider its N 1 -size reduced part denoted by v k,1 p .

• We carry out the divergence-free extension (

w k p ) k=1..N 1 = (M v k,1 p ) k=1..N 1 .
The ( w k p ) k=1..N 1 family is a basis of X p . Consequently, u ψ,p ∈ X p can be decomposed according to

u ψ,p = ∑ N 1 k=1 α k w k
p and the discrete variational formulation similar to (4.6) writes: Find u ψ,p ∈ X p such that

N 1 ∑ k=1 ( w k p , w i p ) p α k = ( u p , w i p ) p .
This can be written as

M α = F , with, for 1 ≤ i, k ≤ N 1 , M ik = ( w k p , w i p ) p , F k = ( u, w k p ) p .
Finally, this system is equivalent to

M T BM u 1 ψ,p = M T B u p ,
where B refers to the classical mass matrix computed using the (h i × h j ) ⊗ ( hi × h j ) basis.

Computation of the irrotational component

A similar strategy to that described previously is used to compute the irrotational component u φ , so we will limit to the description of the outline and we will not give all the details of its implementation. Firstly, we introduce three spaces of functions:

H(rot, Ω) = w ∈ (L 2 (Ω)) 2 ∇ × w ∈ L 2 (Ω) , H 0 (rot, Ω) = { w ∈ H(rot, Ω) | w × n = 0 on ∂ Ω} , Y = { u ∈ H 0 (rot, Ω) | ∇ × u = 0 in Ω} .
The variational formulation of Problem (4.1) writes:

Find u φ ∈ Y such that Ω u φ • v d x = Ω u • v d x, ∀ v ∈ Y.
For the discretization, we introduce the Nédélec space [219]

N p = (P p-1 (Λ) ⊗ P 0 p (Λ)) × (P 0 p (Λ) ⊗ P p-1 (Λ)). The solution is approximated by u φ ,p = (u x φ ,p , u y φ ,p ) ∈ Y p = N p ∩Y with u x φ ,p (x, y) = p ∑ i=1 p-1 ∑ j=1 u x φ ,p (ζ i , ξ j ) hi (x) h j (y), u y φ ,p (x, y) = p-1 ∑ i=1 p ∑ j=1 u y φ ,p (ξ i , ζ j ) h i (x) h j (y).
As previously, we build a basis of Y p . With the same reasoning as for X p and taking into account the same spurious mode L 0 (x)L 0 (y), we determine the size of Y p equal to N 1 = (p -1) 2 .

Then the constraint ∇ × u φ ,p = 0 is written into N 1 = (p -1) 2 Gauss points and gives an algebraic equations R u φ ,p = 0. A splitting strategy for the matrix R into R 1 ⊕ R 2 and the vector

u φ ,p into u 1 φ ,p ⊕ u 2 φ ,p gives R 1 u 1 φ ,p + R 2 u 2 φ ,p = 0 and finally u 2 φ ,p = -R -1 2 R 1 u 1 φ ,p . Thanks to the (N 1 + N 2 ) × N 1 matrix N = I N 1 -R -1 2 R 1 ,
we can construct a basis of Y p .

Finally we obtain the system N T BN u 1 φ ,p = N T B u p , where B refers to the classical mass matrix computed using ( hi × h j ) ⊗ (h i × h j ) basis.

Numerical results

Analytical test

To illustrate the efficiency of our approach for the Hodge Helmholtz decomposition, we have made a numerical experiment in the square Ω = (-1, +1) 2 with the case u = u ψ + u φ + u H corresponding to the following components: u ψ = (sin(πx) cos(πy),sin(πy) cos(πx)), u φ = (sin(πy) cos(πx), sin(πx) cos(πy)), u H = (0.5, -1).

The component u ψ,p is approximated as outlined in Subsection 4.2.1, while the irrotational part u φ ,p is computed as outlined in Subsection 4.2.2. Finally, u H is calculated by the relation u

H = u -u ψ -u φ . Table 4.1 gives ||∇ • u ψ,p || L 2 (Ω) and ||∇ × u φ ,p || L 2 (Ω)
as a function of the polynomial degree p. As expected, the norms remain close to round-off independently of p. 

ε ||u Φ,p -u Φ || L 2 ||u Ψ,p -u Ψ || L 2 ||u H,p -u H || L 2
ε ||∇ . u Φ,p -∇ . u Φ || L 2 ||∇ × u Ψ,p -∇ × u Ψ || L 2

Unsteady Navier-Stokes problems

This second example deals with unsteady Navier-Stokes problems. The use of time splitting schemes involves a projection step which is nothing else than an Hodge Helmholtz decomposition. We want to probe the effects of the new approach introduced previously on the accuracy of the decomposition. We consider a two-dimensional square cavity filled with an incompressible fluid having density ρ and dynamic viscosity µ. The flow is driven by a prescribed body force f ( x,t). Pressure p( x,t) and velocity u( x,t) satisfy the time dependent Navier-Stokes equations:

ρ ∂ u ∂t + ( u • ∇) u -µ ∆ u + ∇p = f , in Ω × [0,t * ], (4.9) 
∇ • u = 0, in Ω × [0,t * ], (4.10) 
where Ω denotes the cavity domain ] -1, +1[ 2 and t * the time span of the transient. We apply Dirichlet boundary conditions on the velocity

u( x,t) |∂ Ω = g( x,t) |∂ Ω , ∀t ∈ [0,t * ], (4.11) 
with the initial condition u( x, 0) = u 0 ( x).

u ψ u φ u H u u ψ u φ u H u u u ψ u ψ u φ u H u u ψ u φ u H u u φ u H Figure 4
.5: Decomposition of the vector and its three components.

We apply the Goda pressure correction time integration scheme which consists in splitting the Stokes system into two stages, a diffusion-prediction and a pressure-correction [START_REF] Goda | A multistep technique with implicit difference schemes for calculating two-or threedimensional cavity flows[END_REF]. The numerical method begins with the treatment of the non-linear term ( u.∇) u involved in the material derivative of the velocity,

d u dt (= ∂ u ∂t + ( u.∇) u).
The scheme adopted here is the classical explicit second-order Adams-Bashforth algorithm. The time interval [0,t * ] is divided into M equidistant time steps of length ∆t = t * M . The approximate velocity and pressure fields at time t m := m∆t (m = 0, . . . , M) are denoted u m ( x) and p m ( x) respectively. Assuming all quantities are known up to t m , the solution at t m+1 results from the diffusion prediction step: Find u m+1 * such that

ρ 3 2 u m+1 * -2 u m + 1 2 u m-1 ∆t -µ ∆ u m+1 * + ∇p m = f m+1 -AB m in Ω, (4.12 
)

u m+1 * = 0, on ∂ Ω, (4.13) 
where

AB m = 2ρ (( u.∇) u) m -ρ (( u.∇) u) m-1 ,
followed by the pressure correction step: Find u m+1 and p m+1 such that

ρ 3 2 u m+1 -3 2 u m+1 * ∆t + ∇(p m+1 -p m ) = 0, in Ω, (4.14) 
∇ • u m+1 = 0, in Ω, (4.15) u m+1 • n = 0, on ∂ Ω. (4.16)
One will notice that the coefficients in the left-hand side of (4.12) and of (4.14) correspond to a secondorder backward Euler scheme. Looking carefully at (4.14)-(4.16) one realizes that these equations correspond exactly to the Hodge Helmholtz decomposition of the auxiliary velocity field u m+1 * resulting from the diffusion prediction step, into:

u m+1 + ∇ ψ = u m+1 * , in Ω, (4.17) 
∇ • u m+1 = 0, in Ω, (4.18) u m+1 • n = 0, on ∂ Ω, (4.19) 
with

p m+1 = p m + 3 2 ρ ∆t ψ. (4.20)
Consequently, we propose to compute the Hodge Helmholtz decomposition (4.17)-(4.19) thanks to our strategy presented previously.

To assess our new decomposition scheme we have performed the test case of the lid-driven cavity. This problem has long been used as a test for the validation of new codes or new methods. The standard case deals with a fluid contained in a square domain with three wall sides and one moving side (with velocity tangential to the side). We refer to the works of Botella [START_REF] Botella | On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time[END_REF] and Ehrenstein and Peyret [START_REF] Ehrenstein | A Chebyshev collocation method for the Navier-Stokes equations with application to double-diffusive convection[END_REF] where the domain Ω = [0, 1] 2 and a regularized velocity (u(x, 1) = -16x 2 (1x) 2 ) are considered. For this computation two Reynolds numbers (Re = 100 and Re = 400) are used. The results are obtained with convergence criteria on stationarity below 10 -8 and a polynomial degree p = 24. In order to compare our results with those obtained in [START_REF] Botella | On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time[END_REF] and [START_REF] Ehrenstein | A Chebyshev collocation method for the Navier-Stokes equations with application to double-diffusive convection[END_REF], we have computed the stream function ψ and the vorticity ω where:

ω = ∂ v M p ∂ x - ∂ u M p ∂ y with u M p = (u M p , v M p ), (4.21) 
and Table (4.2) represents the maximal value of the stream function |ψ| and the position of this maximum for the two values of the Reynolds number. We can see that we are in accordance with the results produced in [START_REF] Botella | On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time[END_REF] and [START_REF] Ehrenstein | A Chebyshev collocation method for the Navier-Stokes equations with application to double-diffusive convection[END_REF]. Table (4.3) displays the maximal value of vorticity |ω| on the upper side y = 1. Again, our results present a good accordance with those obtained in [START_REF] Botella | On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time[END_REF] and [START_REF] Ehrenstein | A Chebyshev collocation method for the Navier-Stokes equations with application to double-diffusive convection[END_REF]. This chapter covers the entirety of article [23] and is also based on article [START_REF] Poux | Open and traction boundary conditions for velocity correction scheme for Navier-Stokes equations[END_REF] which can be found in the Appendix. Both articles are listed below: This paper proposes an extension of this method in spectral element method framework for both pressure-and velocity-correction schemes. A new way to enforce this type of boundary condition is proposed and provides a pressure and velocity convergence rate in space and time higher than with the present state of the art. We illustrate this result by computing some numerical tests. this type of boundary condition is described, followed by an adaptation of the one we proposed in [START_REF] Poux | Improvements on open and traction boundary conditions for navier-stokes time-splitting methods[END_REF] that provides higher pressure and velocity convergence rates in space and time for pressurecorrection schemes. These two methods are illustrated with a numerical test with both finite volume and spectral Legendre methods. We conclude with three physical simulations: first with the flow over a backward-facing step, secondly, we study, in a geometry where a bifurcation takes place, the influence of Reynolds number on the laminar flow structure, and lastly, we verify the solution obtained for the unsteady flow around a square cylinder.

∆ψ = -ω in Ω, (4.22) 
ψ = 0 on ∂ Ω. ( 4 

Introduction

A difficulty in obtaining the numerical solution of the incompressible Navier-Stokes equations, lies in the Stokes stage and specifically in the determination of the pressure field which will ensure a solenoidal velocity field. Several approaches are possible. We can for instance consider exact methods as the Uzawa [START_REF] Arrow | Studies in linear and non-linear programming[END_REF] and augmented lagrangian [START_REF] Fortin | éthodes de Lagrangien Augmenté, Application à la résolution numérique de problèmes aux limites[END_REF] ones. In complex geometries or three dimensional methods, theses techniques are inappropriate since their computational time costs are very high. An alternative consists in decoupling the pressure from the velocity by means of a time splitting scheme. A large number of theoretical and numerical studies have been published that discuss the accuracy and the stability properties of such approaches. The most popular methods are pressure-correction schemes. They were first introduced by Chorin-Temam [START_REF] Chorin | Numerical solution of the navier-stokes equations[END_REF][START_REF] Témam | Navier Stokes Equations: Theory and Numerical Analysis[END_REF], and improved by Goda (the standard incremental scheme) in [START_REF] Goda | A multistep technique with implicit difference schemes for calculating two-or threedimensional cavity flows[END_REF], and later by Timmermans in [START_REF] Timmermans | An approximate projection scheme for incompressible flow using spectral elements[END_REF] (the rotational incremental scheme). They require the solution of two sub-steps: the pressure is treated explicitly in the first one, and is corrected in the second one by projecting the predicted velocity onto an ad-hoc space. A less studied alternative technique known as the velocity-correction scheme, developed by Orszag et al in [START_REF] Orszag | Boundary conditions for incompressible flows[END_REF], Karniadakis et al in [START_REF] Karniadakis | High-order splitting methods for the incompressible navier-stokes equation[END_REF], Leriche et al in [START_REF] Leriche | High-order direct Stokes solvers with or without temporal splitting: numerical investigations of their comparative properties[END_REF] and more recently by Guermond et al in [START_REF] Guermond | Velocity-correction projection methods for incompressible flows[END_REF], consists in switching the two sub-steps.

In [START_REF] Shen | On error estimates of the projection methods for the Navier-Stokes equations: Secondorder schemes[END_REF] and [START_REF] Guermond | Calculation of incompressible viscous flows by an unconditionally stable projection fem[END_REF], the authors proved the reliability of such approaches from the stability and the convergence rate points of view. A series of numerical issues related to the analysis and implementation of fractional step methods for incompressible flows are addressed in the review paper [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF]. In this reference the authors describe the state of the art for both theoretical and numerical results related to the time splitting approach.

Another difficulty consists in the treatment of outflow boundary conditions. Indeed the majority of the studies made on these methods consider only Dirichlet boundary conditions. We are interested here in outflow boundary conditions. A large variety of boundary conditions of this type exists, such as the non reflecting boundary condition developed by Orlanski [START_REF] Orlanski | A simple boundary condition for unbounded hyperbolic flows[END_REF] or Engquist [START_REF] Engquist | Absorbing boundary conditions for numerical simulation of waves[END_REF]. Here we present some results on the open and traction boundary condition [START_REF] Guermond | Error analysis of pressure-correction schemes for the time-dependent stokes equations with open boundary conditions[END_REF][START_REF] Liu | Open and traction boundary conditions for the incompressible Navier-Stokes equations[END_REF].

With open or traction boundary conditions, while no studies have been reported with a velocitycorrection scheme, a few have been done with pressure-correction schemes. In [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF] the authors proved that only spatial and time convergence rates between O(∆x+∆t) and O(∆x 3/2 +∆t 3/2 ) on the velocity and O(∆x 1/2 + ∆t 1/2 ) on the pressure are to be expected with the standard incremental scheme, and between O(∆x + ∆t) and O(∆x 3/2 + ∆t 3/2 ) on the velocity and pressure for the rotational incremental scheme. In [START_REF] Poux | Improvements on open and traction boundary conditions for navier-stokes time-splitting methods[END_REF], the authors presented a new version of the boundary condition for the pressure-correction scheme in the finite volume framework. They obtained a second-order accuracy for the velocity and rates between O(∆x 3/2 + ∆t 3/2 ) and O(∆x 2 + ∆t 2 ) with the standard incremental scheme while with the rotational version, a second order convergence is reached for both velocity and pressure. We propose here to extend this method in spectral element method framework for both pressure-correction and velocitycorrection schemes.

Pressure-correction scheme for open boundary condition 5.2.1 Governing equations

Let Ω be a regular bounded domain in IR d with n a unit vector on the outward normal along the boundary Γ = ∂ Ω oriented outward. We suppose that Γ is partitioned into two portions Γ D and Γ N .

Our study consists, for a given finite time interval ]0,t * ] in computing velocity u = u( x,t) and pressure p = p( x,t) fields satisfying:

ρ ∂ u ∂t -µ∆ u + ∇p = f in Ω×]0,t * ], (5.1) 
∇ • u = 0 in Ω×]0,t * ], (5.2) u = g on Γ D ×]0,t * ],
(5.3)

(µ∇ u -pI) n = t on Γ N ×]0,t * ], (5.4) 
where ρ and µ are the density and the dynamic viscosity of the flow respectively and I the unit tensor.

The body force f = f ( x,t), the constraint t = t( x,t) and the boundary condition g = g( x,t) are known.

For the sake of simplicity, we chose g = 0. Finally, the initial state is characterised by a given u(., 0).

We shall compute two sequences ( u n ) 0≤n≤N and (p n ) 0≤n≤N in a recurrent way that approximate in some sense the quantities ( u(.,t n )) 0≤n≤N and (p(.,t n )) 0≤n≤N , solutions of unsteady Stokes problem (5.1)- (5.4). Using a second order backward difference formula (BDF) time scheme, its semi-discrete version reads:

ρ α u n+1 + β u n + γ u n-1 ∆t -µ∆ u n+1 + ∇p n+1 = f n+1 in Ω, (5.5) 
∇ • u n+1 = 0 in Ω, (5.6) u n+1 = 0 on Γ D , (5.7) 
µ∇ u n+1p n+1 I n = t n+1 on Γ N .

(5.8)

Values of parameters α, β , γ depend on the temporal scheme used. Namely:

• α = 1, β = -1, γ = 0 for the first order Euler time scheme,

• α = 3 2 , β = -2, γ = 1 2
for the second order Backward Difference Formulae time scheme.

Equations (5.5)-(5.8) are split into two sub-problems. The first one is a prediction diffusion problem that computes a predicted velocity field: Find u n+1/2 such that

ρ α u n+1/2 + β u n + γ u n-1 ∆t -µ∆ u n+1/2 + ∇p n = f n+1 in Ω, (5.9) 
u n+1/2 = 0 on Γ D , (5.10 
)

µ∇ u n+1/2 -pn+1 Id n = t n+1 on Γ N . (5.11)
Expression of pn+1 depends on the time scheme:

• for the first order time scheme pn+1 = p n , (5.12)

• for the second order time scheme pn+1 = 2p np n-1 .

(5.13)

The second step is a correction pressure-continuity:

Find ( u n+1 , ϕ n+1 ) such that ρα ∆t u n+1 -u n+1/2 + ∇ϕ n+1 = 0 in Ω, (5.14) 
∇ • u n+1 = 0 in Ω, (5.15) u n+1 • n = 0 on Γ D , (5.16) B.C. (ϕ n+1 ) on Γ N .
(5.17

)
The pressure is upgraded via:

p n+1 = p n + ϕ n+1 -χ µ∇ • u n+1/2 in Ω. (5.18)
The parameter χ is used to switch between the standard incremental scheme and the rotational one:

• χ = 0 for the standard incremental scheme,

• χ = 0.7 for the rotational incremental scheme. 1 In practice, this second step is replaced by a Poisson problem on ϕ n+1 :

∆t αρ ∆ϕ n+1 = ∇ • u n+1/2 in Ω, (5.19) 
∂ ϕ n+1 ∂ n = 0 on Γ D , (5.20) 
B.C. (ϕ n+1 ) on Γ N , (5.21) 
completed by:

p n+1 = p n + ϕ n+1 -χ µ∇ • u n+1/2 in Ω, (5.22) 
u n+1 = u n+1/2 - ∆t αρ ∇ϕ n+1 in Ω.
(5.23)

The natural choice for B.C. (ϕ n+1 ) consists in choosing ϕ n+1 = 0 on Γ N . Such a choice involves a numerical locking for χ = 0 since the boundary condition on the pressure increment causes the pressure on the limit to be equal to its initial value. A real improvement is obtained for χ = 0.7 but the expected rates of convergence are not reached.

In the next section we will keep the nature of the boundary condition of ϕ n+1 and will suggest a value of it allowing the reduction of the boundary layer effect mentioned previously.

Improvement of the pressure boundary conditions

For the sake of simplicity we choose a square domain Ω with Γ N at its right boundary. The starting point of our approach is the derivation on x 1 of the first component of (5.14):

- ∆t αρ ∂ 2 ϕ n+1 ∂ x 2 1 = ∂ u x 1 n+1 ∂ x 1 - ∂ u x 1 n+ 1 2 ∂ x 1 .
(5.24)

Then, we project on direction x 1 the equations (5.4) and (5.8):

µ ∂ u n+1 x 1 ∂ x 1 -p n+1 = t n+1 x 1 , (5.25) 
µ ∂ u n+ 1 2 x 1 ∂ x 1 -pn+1 = t n+1 x 1 .
(5.26)

The combination of those three last equations (5.24)-(5.26) gives:

- ∆t αρ ∂ 2 ϕ n+1 ∂ x 2 1 = 1 µ (p n+1 -pn+1 ).
(5.27)

Replacing pn+1 by its expressions (5.12) gives for the first order scheme:

∆t αρ ∂ 2 ∂ x 2 1 + 1 µ ϕ n+1 = +χ∇ • u n+ 1 2 .
(5.28)

Or for a second order scheme using (5.13) :

∆t αρ ∂ 2 ∂ x 2 1 + 1 µ ϕ n+1 = ϕ n µ + χ∇ • u n+ 1 2 -u n-1 2 .
(5.29)

Moreover taking into account the Poisson problem (5.19):

∂ 2 ϕ n+1 ∂ x 2 1 + ∂ 2 ϕ n+1 ∂ x 2 2 = ∇ • u n+1/2 , (5.30) 
and substracting (5.28) or (5.29) in (5.30) one obtains:

• First-order open boundary condition (OBC1):

∆t αρ ∂ 2 ∂ x 2 2 - 1 µ ϕ n+1 = (1 -χ)∇ • u n+ 1 2 , (5.31) 
• Second-order open boundary condition (OBC2):

∆t αρ ∂ 2 ∂ x 2 2 - 1 µ ϕ n+1 = (1 -χ)∇ • u n+ 1 2 - ϕ n µ + χ∇ • u n-1 2 .
(5.32)

To summarize, we propose a pressure-correction step that writes: Find ϕ n+1 such that

∆t αρ ∆ϕ n+1 = ∇ • u n+1/2 in Ω, (5.33) 
∂ ϕ n+1 ∂ n = 0 on Γ D , (5.34) 
ϕ n+1 = ϕ * on Γ N , (5.35) 
where ϕ * is solution of:

∆t αρ ∂ 2 ∂ x 2 2 - 1 µ ϕ * = (1 -χ)∇ • u n+ 1 2 -2γ ϕ n µ -χ∇ • u n-1 2 on Γ N , (5.36) ∂ ϕ * ∂ x 2 (±1) = 0.
(5.37)

Numerical experiments

Spectral Element Method Implementation

The domain Ω is the union of quadrangular elements Ω = ∪ K k=1 Ω k . For simplification, we consider only rectilinear elements with edges collinear to the axis x and y, that is:

Ω k =]c k , c k [×]d k , d k [.
The partition is conforming in the sense that the intersection of two adjacent elements is either a vertex or a whole edge. The discrete and stable subspaces to approximate the velocity and the pressure, X p ⊂ (H 1 0 (Ω)) 2 and M p ⊂ L 2 0 (Ω) are chosen to be:

X p = w p ∈ (H 1 0 (Ω)) 2 , w k p = w p|Ω k ∈ (IP p (Ω)) 2 , (5.38) 
M p = q p ∈ L 2 (Ω), q k p = q p|Ω k ∈ IP p-2 (Ω k ), Ω q p d x = 0 . (5.39) 
The spectral Legendre approach consists in using the Legendre-Galerkin methods introduced in [START_REF] Deville | High-Order Methods for Incompressible Fluid Flow[END_REF] applied to the variational formulation of elliptic problems introduced in our algorithms.

Numerical results for the Stokes problem

Exact solutions for u ex = u ex x 1 , u ex x 2 and p ex correspond to these data:

u ex x 1 (x 1 , x 2 ,t) = sin (x 1 ) sin (x 2 ) cos (2πωt) , (5.40) u ex x 2 (x 1 , x 2 ,t) = cos (x 1 ) cos (x 2 ) cos (2πωt) , (5.41) p ex (x 1 , x 2 ,t) = -2 cos (1) sin (2 (x 1 -1) -x 2 ) cos (2πωt) .
(5.42)

To study the time splitting error, we consider the unsteady case ω = 0.7 and the errors at t * = 1 with a second order time discretization for a range of time steps 5 × 10 -4 ≤ ∆t ≤ 10 -1 .

Figure (5.1) depicts results when we use the natural choice for the boundary conditions for ϕ n+1 that is ϕ n+1 = 0 on Γ N . The left part of the figure displays the error in L 2 -norm for both pressure and velocity when using the standard incremental scheme (χ = 0). We can see that the results are very bad and no order of convergence can be calculated. The right part exhibits the same quantities when using the rotational scheme with χ = 0.7. We can see that only rates close to 1 are obtained while order 2 is expected. Figure (5.2) displays the same results using our boundary condition (5.32). Again, the left part of the figure depicts the errors with standard incremental scheme whereas the right part depicts the errors with the rotational scheme. Contrary to [START_REF] Poux | Improvements on open and traction boundary conditions for navier-stokes time-splitting methods[END_REF], where the authors obtained an almost second-order for the standard incremental scheme and a full second-order for the rotational scheme, we obtain here, in both cases, convergence rates equal to 2. 

Velocity-correction scheme for open boundary condition 5.3.1 Governing equations

We propose now to extend our boundary condition for the velocity-correction scheme. The scheme developed by Guermond and Shen in [START_REF] Guermond | Velocity-correction projection methods for incompressible flows[END_REF] consists on two sub-steps. The first one is the prediction problem that computes a pressure increment and a solenoidal velocity: find ϕ n+1 and u n+1 such that:

ρ α u n+1 + (β -α) ˜ u n + (γ -β ) ˜ u n-1 -γ ˜ u n-2 ∆t + ∇ϕ n+1 = f n+1 -f n in Ω, (5.43) 
∇ • u n+1 = 0 in Ω, (5.44) 
u n+1 • n = 0 on Γ D , (5.45 
)

µ∂ n ( u n+1 • n) -p n+1 = t n+1 • n on Γ N , (5.46) 
where ϕ is the pressure increment defined as:

ϕ n+1 = p n+1 -p n + χ µ∇ • ˜ u n . (5.47)
In practice, this step is processed by solving the following problem: find ϕ n+1 such that:

∇ • ∆t ρ ∇ϕ n+1 = ∇ • ∆t ρ f n+1 -f n -(β -α) ˜ u n -(γ -β ) ˜ u n-1 + γ ˜ u n-2 in Ω, (5.48) 
∂ n ϕ n+1 = f n+1 -f n • n on Γ D , (5.49) 
B.C. (ϕ n+1 ) on Γ N , (5.50) 
and upgrading the pressure and the solenoidal velocity via (5.47) and (5.43).

The second step is a correction-diffusion problem: find ˜ u n+1 such that:

ρ α ˜ u n+1 + β ˜ u n + γ ˜ u n-1 ∆t -µ∆ ˜ u n+1 = f n+1 -∇p n+1 in Ω, (5.51) 
˜ u n+1 = 0 on Γ D , (5.52 
)

µ∂ n ( ũ • n) n+1 = t n+1 • n + p n+1 on Γ N , (5.53 
)

µ∂ n ( ũ • τ) n+1 = t n+1 • τ on Γ N . (5.54) 
Again the main difficulty lies on the boundary condition (5.50). The natural choice consisting in choosing ϕ * = 0 leads to the same issues as for the pressure-correction scheme since rates of convergences are lower that the expected ones. In [START_REF] Poux | Open and traction boundary conditions for velocity correction scheme for Navier-Stokes equations[END_REF], we have carried out the same reasoning as for the pressure-correction scheme and we proposed this formulation for the pressure computation step:

Find ϕ n+1 such that ∆t ρ ∆ϕ n+1 = ∇ • ∆t ρ f n+1 -f n -(β -α) ˜ u n -(γ -β ) ˜ u n-1 + γ ˜ u n-2 in Ω, (5.55) 
∂ n ϕ n+1 = f n+1 -f n • n on Γ D , (5.56) 
ϕ n+1 = ϕ * on Γ N , (5.57) 
where ϕ * is solution of:

∆t ρ ∂ x 2 2 - α µ ϕ n+1 = ∂ x 2 ∆t ρ f n+1 x 2 -f n x 2 -∇ • (β -α) ˜ u n + (γ -β ) ˜ u n-1 -γ ˜ u n-2 -H n , (5.58) 
with:

H n = χ∇ • α ˜ u n + β ˜ u n-1 + γ ˜ u n-2 - 1 µ β ϕ n + γϕ n-1 - 1 µ α (t n+1 x 1 -t n x 1 ) + β (t n x 1 -t n-1 x 1 ) + γ (t n-1 x 1 -t n-2 x 1 ) .
(5.59)

Numerical experiments

The same numerical experiments as for the pressure-correction scheme are carried out. Again we present firstly in Figure (5.3) the results using the natural choice for ϕ * that is ϕ * = 0 on Γ N . The left part of the figure displays the error in L 2 -norm for the pressure and velocity when we use the standard incremental scheme. We can see that the results are very bad and no order of convergence can be calculated.The right part exhibits the same quantities when using the rotational scheme with χ = 0.7. We can see that only rates close to 1 for the pressure and 3 2 for the velocity are obtained. In Figure (5.4), results corresponding to the proposed boundary condition are exhibited. Again, the left part of the figure depicts the errors with standard incremental scheme whereas the right part depicts the errors with the rotational scheme. We can see that for the standard incremental scheme rates of convergence close to 2 are obtained as expected. For the rotational scheme, we can remark that unlike the pressure-correction scheme for which the standard and rotational schemes give the same results with a slight improvement with the rotational scheme, the results show here a distinct advantage for the standard version. Indeed, for the pressure, the convergence rate is now 1.4. This conclusion is confirmed by several numerical tests. A similar observation can be found in [START_REF] Guermond | Velocity-correction projection methods for incompressible flows[END_REF] where the Dirichlet boundary condition is considered for the Stokes problem. This chapter summarizes in detail article [26]:

• E. Ahusborde, S. Glockner, An implicit method for the Navier-Stokes equations on overlapping block-structured grids, International Journal for Numerical Methods in Fluids, Vol 62, 784-801, 2010.

Abstract: This paper deals with a method first introduced by Romé et al. in two articles. The authors reported that their method was suitable to run the Navier-Stokes equations efficiently on non-matching and overlapping block-structured meshes. However, there was a problem of mass conservation and a discontinuity of pressure through the interfaces in some cases. In the present paper, an improvement of the method based on a pressure correction scheme is proposed. With this improvement, the pressure is continuous through the interfaces and the incompressibility constraint is ensured over the whole domain. Several numerical tests were carried out to assess the proposed method.

Introduction

In computational fluid dynamics when flows are calculated on complex geometries, one can use either a block-structured grid or an unstructured one. Unstructured grids allow to mesh very complex geometries leading to complex discretization schemes and solvers that require table of connectivity between nodes and indirect addressing. If the geometry is not too complicated, it can be divided into a reasonable number of structured blocks. The lexical numbering makes easy the discretization of the equations (specially if the grid remains orthogonal) and the use of many solvers dedicated to the structured grids. Domain decomposition methods are well suited to these problematics. They can be classified according to several criteria [START_REF] Quarteroni | Domain Decomposition Methods for Partial Differential Equations[END_REF]. For instance, the block structured grids can be used with overlapping or nonoverlapping. Generally, each block is computed separately and provides the boundary conditions for the neighbouring blocks. Historically, these methods have been introduced by Schwartz. The main drawbacks of this method is that overlapping is required for convergence. An improvement of these method consists in substituting overlapping by another boundary condition. In [START_REF] Lions | On the Schwarz alternating method III: a variant for nonoverlapping subdomains[END_REF], Lions proposed the use of a Robin boundary condition. Our strategy consists in working with overlapping in order to deal with orthogonal grids. The main difficulty is to find a relevant projection operator on the interfaces between sub-domains. Mortar element methods have been proposed to solve this problem [START_REF] Bernardi | Domain decomposition by the mortar element method. in asymptotic and numerical methods for partial differential equations with critical parameters[END_REF][START_REF] Cai | Overlapping nonmatching grid mortar element methods for elliptic problems[END_REF]. Chimera methods represent an other approach [START_REF] Steger | On the use of composite grid schemes in computational aerodynamics[END_REF]. These methods are particularly used in aerodynamic simulations.

Non-matching meshes raise the classical question of the interpolation. This difficulty becomes harder when the interpolation must be carried out under constraint. In case of the simulation of an incompressible flow, the constraint ∇ • u = 0 must be verified. Generally, interpolation is conservative if it is based on finite volume techniques [START_REF] Lilek | An implicit finite-volume method using nonmatching blocks of structured grid[END_REF][START_REF] Usera | A parallel block-structured finite volume method for flows in complex geometry with sliding interfaces[END_REF]. Fluxes through interfaces are calculated using local balance with a neighbouring block or a projection. Recently, a mass-flux based interpolation algorithm was proposed by Tang et al [START_REF] Tang | Study on a grid algorithm for solution of incompressible Navier-Stokes equations[END_REF][START_REF] Tang | An overset-grid method for 3D unsteady incompressible flows[END_REF]. Some authors who used a non-conservative interpolation have shown that mass conservation is directly linked to the order of the interpolation [START_REF] Henshaw | A fourth-order accurate method for the incompressible navier stokes equations on overlapping grids[END_REF].

In this paper, we propose an implicit method to compute the incompressible Navier-Stokes equations on block-structured meshes based on a non-conservative interpolation. This study proposes an improvement of the method first introduced in [START_REF] Romé | An implicit multiblock coupling for the incompressible Navier-Stokes equations[END_REF] and [START_REF] Romé | Resolution of the Navier-Stokes equations on blockstructured meshes[END_REF]. Indeed, the authors have previously met problems in order to satisfy the incompressibility constraint on the interfaces between blocks leading in some cases to a discontinuity of pressure. They used the augmented Lagrangian method [START_REF] Fortin | éthodes de Lagrangien Augmenté, Application à la résolution numérique de problèmes aux limites[END_REF] for the pressure-velocity coupling. In the present case, this method has been replaced by a pressure correction scheme [START_REF] Timmermans | An approximate projection scheme for incompressible flow using spectral elements[END_REF] in order to circumvent these drawbacks. We first present the numerical context of this study by describing the models and numerical methods of the CFD code Aquilon (Aq. on figures and tables). Then, we describe the novelties of the method in comparison with the method firstly introduced in [START_REF] Romé | An implicit multiblock coupling for the incompressible Navier-Stokes equations[END_REF] and [START_REF] Romé | Resolution of the Navier-Stokes equations on blockstructured meshes[END_REF]. At last, numerical tests have been carried out in order to validate this method and clearly show the improvements.

Numerical context

In this chapter, the incompressible Navier-Stokes equations are considered using the pressure correction scheme [START_REF] Timmermans | An approximate projection scheme for incompressible flow using spectral elements[END_REF] described in Section 5.2. The spatial discretization is based on the finite volume method on velocity-pressure staggered grid of the Marker and Cells type [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF]. Pressure unknowns are associated to the cell vertices whereas velocity components are face centred. A centred scheme of order 2 is used in this work for the inertial and constraint terms. The multifrontal sparse direct solver MUMPS [35] is used to solve the linear systems stemmed from velocity prediction and pressure correction steps.

An implicit method for connecting blocks

In order to connect the sub-domain, the missing information are transferred from block to block. Polynomial interpolations are build and integrated as special boundary conditions. The polynomial coefficients of the interpolation are present in the linear system and couple the solution on each block through the interface. The non-conservative interpolation of the variables at the interfaces can be seen as a new implicit boundary condition used for the discretization of the equation at the nodes strictly inside the different blocks.

Pressure correction step

Two blocks (a) and (b) are considered (see Figure 6.1). The pressure increment φ defined on block (b) is interpolated, which gives the new boundary conditions on block (a). Interpolation is based on the construction of a polynomial basis of a given order. For instance, the interpolation of φ at a point M 0 (x 0 , y 0 ) belonging to a block (a) is obtained from the values of φ at points M i (x i , y i ) on block (b) by the relation:

φ (a) (x 0 , y 0 ) = f int (φ (b) ) = N ∑ i=1 F i (x 0 , y 0 )φ (b) (x i , y i ). (6.1) 
The interpolation must now be constructed locally to each node at the interface. The technique consists in building a canonical basis of Q-type of order d thanks to the neighbouring of M 0 (x 0 , y 0 ). The number of nodes required depends on the order of the chosen polynomial. For instance, in case of a Q (1) interpolation Figure 6 In order to reduce the values of the coefficients of the polynomial, M 0 is chosen as the centre of the frame. A polynomial Q (d) i built using the M i nodes, 1 ≤ i ≤ (d + 1) 2 is written:

Q (d) i (x -x 0 , y -y 0 ) = d ∑ m=0 d ∑ n=0 a m n i (x -x 0 ) m (y -y 0 ) n . (6.2) Q (d)
i has the following properties:

∀i, j 1 ≤ i, j ≤ (d + 1) 2 , Q (d) 
i (x jx 0 , y jy 0 ) = δ i j . (6.

3)

The equation (6.2) associated with the property (6.3) can be seen as a line of the (d + 1) 2 × (d + 1) 2 linear system A × B = Id with:

A =         a 0 0 1 • • • a m n 1 • • • a d d 1 . . . . . . . . . a 0 0 i • • • a m n i • • • a d d i . . . . . . . . . a 0 0 (d+1) 2 • • • a m n (d+1) 2 • • • a d d (d+1) 2         , and 
B =         (x 1 -x 0 ) 0 (y 1 -y 0 ) 0 • • • (x i -x 0 ) 0 (y i -y 0 ) 0 • • • (x (d+1) 2 -x 0 ) 0 (y (d+1) 2 -y 0 ) 0 . . . . . . . . . (x 1 -x 0 ) m (y 1 -y 0 ) n • • • (x i -x 0 ) m (y i -y 0 ) n • • • (x (d+1) 2 -x 0 ) m (y (d+1) 2 -y 0 ) n . . . . . . . . . (x 1 -x 0 ) d (y 1 -y 0 ) d • • • (x i -x 0 ) d (y i -y 0 ) d • • • (x (d+1) 2 -x 0 ) d (y (d+1) 2 -y 0 ) d        
.

The inversion of this linear system (one for each node of the interface) is performed during the preparation step of a simulation and provides the values of the matrix A. The value of the pressure φ at node M 0 (x 0 , y 0 ) reads:

φ (a) (x 0 , y 0 ) = (d+1) 2 ∑ i=1 Q (d) i (x 0 , y 0 ) φ (b) (x i , y i ). (6.4) The Q (d)
i can be placed in the linear system of the pressure correction step (see Figure 6.2). Thus, on a matrix line corresponding to a node at the interface, non-zero elements are the diagonal term and the elements with a column number corresponding to unknowns used to interpolate the pressure.

With this method, the pressure is obviously continuous at the interfaces (up to the order of the polynomial interpolation) but the divergence of the velocity is not null at the interfaces since the velocities u 2 , u 4 , v 1 , v 2 , and v 3 (see Figure 6.1) are not corrected by the pressure correction. In order to circumvent this problem, we propose to increase overlapping between blocks adding a row of ghost nodes (nodes φ 1 , φ 2 and φ 3 in figure 6.3). The pressure is now connected from one block to each other thanks to these ghost nodes. The pressure gradient can be computed precisely on velocity nodes at the interfaces. This addition allows satisfaction of incompressibility constraint. Nonetheless, the pressure is no longer continuous on the interface. It is probably due to an accumulation on the pressure nodes p n+1 at the interface of the interpolation error of φ n+1 on the ghost nodes. In order to overcome this problem, a new pressure correction scheme is proposed. The velocity prediction step does not change but the pressure correction step is modified and a third interpolation step is added. The new scheme reads as follow.

• Velocity prediction step: Find u n+1 * such that

ρ u n+1 * -u n ∆t + ∇ • ( u n+1 * ⊗ u n ) -u n+1 * ∇ • u n = -∇p n +∇ • µ(∇ u n+1 * + ∇ t u n+1 * ), in Ω, (6.5) u n+1 * = 0, on ∂ Ω, (6.6) 
• Pressure correction step: Find u n+1 and φ n+1 such that

ρ u n+1 -u n+1 * ∆t + ∇φ n+1 = 0, in Ω, (6.7) 
∇ • u n+1 = 0, in Ω, (6.8) u n+1 • n = 0, on ∂ Ω, (6.9) 
with:

φ n+1 = pn+1 -p n + µ∇ • u n+1 * , (6.10) 
• Interpolation step: Compute p n+1 such that p n+1 = pn+1 , in Ω/Γ, (6.11)

p n+1 = f int ( pn+1 ), on Γ, (6.12) 
where Γ is the whole interface between blocks and f int represents the interpolation function on Γ.

This new scheme ensures continuity of the pressure through the interfaces and still verifies the incompressibility constraint.

Velocity prediction step

Interpolation of the velocity is more difficult since it is a vector field. If the blocks have not the same orientation, both velocity components are needed to compute a single component of the velocity field on the interface. For a precise description of the method, particularly the interpolation technique on cartesian blocks with any orientation or on curvilinear blocks, the reader is referred to [START_REF] Romé | Resolution of the Navier-Stokes equations on blockstructured meshes[END_REF]. Previously, the interpolation of the normal component of the velocity field at the interface was performed on pressure nodes whereas the tangential component was interpolated at the velocity nodes. In the present case, both components are interpolated at the velocity nodes (see Figure 6.4 in case of a Q (1) interpolation). In next section, many computations have been carried out to assess the proposal method and to exhibit its improvements in comparison with [START_REF] Romé | Resolution of the Navier-Stokes equations on blockstructured meshes[END_REF]. Q (2) polynomial interpolation has been systematically used. This leads to a 5-points stencil for the pressure and to a 24-points stencil for the velocity.

Numerical results

In [26], a series of numerical experiments has been performed to evaluate the accuracy and the efficiency of the method. Here we present only the study of a flow past a triangular cylinder. The Reynolds number is based on the side of the triangular cylinder and the axial velocity inlet. We are interested in two flow ranges according to the value of the Reynolds number in relation to the critical Reynolds Re c :

• Re < Re c : the flow is stationary. One can observe two steady symmetrical vortices behind the cylinder whose size increases with increase in Re.

• Re ≥ Re c : the flow becomes unsteady and periodic. Two vortices form at the rear-end vertices of the cylinder and are shed alternately.

Jackson [START_REF] Jackson | A finite-element study of the onset of vortex shedding in flow past variously shaped bodies[END_REF] studied the onset of vortex shedding in flow past variously shaped bodies. For an isosceles triangle with base 1 and height 0.8, he reported a critical Reynolds as 34.318 and a corresponding Strouhal number as 0.13554. Zielinska and Wesfreid [START_REF] Zielinska | On the spatial structure of global modes in wake flow[END_REF] computed a flow past an equilateral triangle with a blockage ratio equal to 1/15 and found a critical Reynolds of 38.3. De and Dalal [START_REF] De | Numerical simulation of unconfined flow past a triangular cylinder[END_REF] carried out a similar study and calculated a critical Reynolds of 39.9 for a blockage ratio of 1/20. This case has been chosen because most of the studies deal with the flow past circular or square cylinder and laminar flow past a triangular cylinder has not been intensively treated so far. Moreover, this configuration is well adapted to validate and illustrate the interest of block-structured meshes.

Parameters of the case test

The configuration is presented in Figure 6.5.

Figure 6.5: Global features of the computational geometry.

Figure 6.6 represents the block-structured mesh used in this case. The grid is fine around the cylinder and space step size increases in front of and behind it. The number of grid nodes distributed over a side of the cylinder is 100. The total number of elements is 137980. At the inlet, a flat profile is imposed for the axial velocity u and zero for the velocity v. At the outlet, a Neumann condition is imposed on both velocity components. We will compare the results with [START_REF] De | Numerical simulation of unconfined flow past a triangular cylinder[END_REF].

Steady flow

The streamlines in the vicinity of the cylinder for several Reynolds number are shown in figure 6.7. To assess the method, the recirculation length (L r ) defined by the reattachment of the fluid has been measured and a linear relationship between L r and Re has been obtained in [START_REF] De | Numerical simulation of unconfined flow past a triangular cylinder[END_REF] (see figure 6.8). The results seem to be in good accordance with those presented in [START_REF] De | Numerical simulation of unconfined flow past a triangular cylinder[END_REF].

Unsteady and periodic flow

The flow becomes unsteady and periodic for Re ≥ 40. For Re = 100, the time-average drag coefficient (C D ), time-average pressure drag coefficient (C D p ), rms of the lift coefficient (C L rms ) and the Strouhal number (St) are compared with [START_REF] De | Numerical simulation of unconfined flow past a triangular cylinder[END_REF]. We can see in table 6.1 difference below 5% except for the C L rms where the gap is 11%. It can be explained by the difference of the mesh size and the numerical method used by the authors.

Finally, Figure 6.9 shows the streamlines around the triangular cylinder during a period at Re = 100. 

Conclusion

In this chapter, we have proposed an improvement of a method firstly introduced by Romé et al in [START_REF] Romé | Resolution of the Navier-Stokes equations on blockstructured meshes[END_REF]. Both methods deal with a domain decomposition technique for non-conforming and overlapping blockstructured meshes. They are non-iterative and based on a implicit non-conservative interpolation of the variables at the interfaces. The linear systems are modified in comparison with those obtained on a monoblock mesh since lines are added to take into account the connectivity between blocks. The main difference of the two methods is the velocity-pressure coupling. In [START_REF] Romé | Resolution of the Navier-Stokes equations on blockstructured meshes[END_REF], the authors treated this coupling by a augmented Lagrangian method. In some cases, the divergence of the velocity at the interfaces between block was not null leading to a discontinuity for the pressure. In the present work, velocity and pressure have been coupled by a pressure correction scheme. The divergence of the velocity is now null on the whole domain and the discontinuity of pressure has disappeared. Several numerical test have been carried out in order to validate the proposed method. They have clearly showed its feasibility and its accuracy. This chapter proposes a detailed synthesis of article [27]:

• E. Ahusborde, S. Glockner, A 2D block-structured mesh partitioner for accurate flow simulations on non-rectangular geometries, Computers and Fluids, Vol 43, 2-13, 2011.

Abstract: The motivation of this work is to carry out parallel simulations of incompressible flows on block-structured meshes. A new partitioning method is proposed. The quality of rectangular partitions is checked and compared with other methods, as regards load balance, edge-cut and block numbers. The partitioner is coupled with the massively parallel HYPRE solver library and efficiency of the coupling is measured. Finally, the code is applied to study laminar flows (steady and unsteady) on three non-rectangular geometries. Very fine grids are used to compute reference solutions of a Z-shaped channel flow and the L-shaped and double lid driven cavities.

Introduction

Flow simulations on complex geometries require either block-structured or unstructured grids. The latter allow very complex geometries to be meshed leading to complex discretization schemes and solvers that require a table of connectivity between nodes and indirect addressing. If the geometry is not too complicated, it can be divided into a reasonable number of structured and conforming blocks. The volume control aspect and lexical numbering facilitate the discretization of the equations (specially if the grid remains orthogonal) and the use of the fastest parallel solvers dedicated to the structured grids. Solver performances are closely linked to the mesh partitioning or the matrix graph. Partitioning methods can be divided into two classes: geometric and combinatorial [START_REF] Dongarra | Sourcebook of parallel computing[END_REF]. Geometric techniques are based on the coordinates of the mesh nodes whereas combinatorial partitioning uses the graph or the hypergraph of the mesh. Geometric techniques produce lower quality partitions than combinatorial methods but are extremely fast. For unstructured meshes, partitioner libraries such as CHACO [START_REF] Hendrickson | The Chaco user's guide, version 2.0[END_REF], METIS [START_REF] Karypis | METIS: unstructured graph partitioning and sparse matrix ordering system[END_REF], SCOTCH [START_REF] Pellegrini | SCOTCH 3.1 user's guide[END_REF] are available. Unfortunately, they are not well suited to the block-structured framework since they produce unstructured partitions, as shown in Figure For block-structured meshes, few works have been carried out. The two main strategies used for the partitioning of such meshes are the recursive edge bisection [START_REF] Bergern | Partitioning strategy for nonuniform problems on multiprocessors[END_REF] and the so-called greedy algorithm [START_REF] Ytterström | A tool for partitioning structured multiblock meshes for parallel computational mechanics[END_REF]. These geometric techniques are used in elsA software [START_REF] Gourdain | High performance parallel computing of flows in complex geometries: I. methods[END_REF] which is devoted to compressible flows around complex geometries. We can also cite the works of Rantakokko [START_REF] Rantakokko | Partitioning strategies for structured multiblock grids[END_REF] who proposes a framework for partitioning composite grids. In our opinion, his more interesting approach consists in a graph strategy applied at the block level instead of the node level (block refinement is also proposed).

Our goal consists in providing a partitioning strategy for block-structured geometries which produces rectangular partitions. It can be classified as a geometric method even if the coordinates of the nodes are not used. The partitioner is coupled with the massively parallel solver and preconditioner HYPRE library [START_REF] Falgout | HYPRE high performance preconditioners user's manual[END_REF], more precisely with the semicoarsening geometric multigrid solver [START_REF] Brown | Semicoarsening multigrid on distributed memory machines[END_REF]- [START_REF] Schaffer | A semicoarsening multigrid method for elliptic partial differential equations with highly discontinuous and anisotropic coefficients[END_REF]. Firstly, we are going to present the different steps upon which the proposed method relies. Then, on the particular example of a double lid driven cavity studied in [START_REF] Nithiarasu | Steady and unsteady incompressible flow in a double driven cavity using the artificial compressibility (AC)-based characteristic-based split (CBS) scheme[END_REF] and [START_REF] Zhou | DSC solution for flow in a staggered double lid driven cavity[END_REF], we will compare the quality of the partitions with other approaches and analyze the performance of the coupling with HYPRE solvers. Lastly, we will apply our code to compute incompressible flow on a this particular geometry.

Partitioning strategy

Firstly, let us recall the two main qualities of a partitioner:

• It must respect load balancing between processors: each processor should have nearly the same amount of work to do to minimize idle processors. In our context, each processor should have around the same number of nodes, close to the ideal load which is equal to the number of nodes divided by the number of processors.

• It must minimize explicit communication between processors, i.e. the surface-to-volume ratio or edge-cuts. The goal is to delay as far as possible the moment when communications between processors increase such that efficiency collapses as the number of processors rises.

The conceptual interface [START_REF] Falgout | Conceptual Interfaces in HYPRE[END_REF] of HYPRE is quite complete and supports four options: structured grid, block-structured grid, finite element interface, and linear algebraic interface. The fastest solvers such as geometric multigrid ones are available for structured grids, and block-structured grids, which is our framework. The interface requires global indexing of the nodes and rectangular boxes that can be noncontiguous. In the next sections, we will present the main steps of the partitioner and finally a complete algorithm that can be used in another solver framework.

An elementary block decomposition

In our opinion, the partitioner should be independent of the initial block construction. For instance, two geometries are defined on the left part of Figure (7.2). On the right part, different ways to decompose them, into 3 or 4 blocks are presented (that can be later meshed). Meshes are not shown but they are continuous through the interfaces between blocks. In the proposed method, the same partition will be produced for any geometry decomposition. This approach avoids having to consider parallelism during the construction phase of the mesh.

Geometry First decomposition

Second decomposition Third decomposition Consequently, the first step consists of splitting the main blocks into elementary ones. This is done by lengthening each boundary line. Intersections between lines define corners of new elementary blocks. For instance in Figure (7.3), 3 blocks of the geometry are split into 7 elementary ones.

At this point, we can make 3 remarks:

• These elementary blocks are now the starting point of our partitioner.

• There is no reason for these blocks to be balanced.

• These blocks could have been created during the construction phase of the mesh, but it can become really fastidious for a large number of blocks.

Block merging

The second step of the partitioner consists in merging the elementary blocks into macro-blocks. In Figure (7.4), we have merged 10 elementary blocks into 4 macro-blocks. The first macro-block is the largest of all possible macro-blocks. Then with the remaining elementary blocks, we choose the largest remaining macro-block and so on until there is no more elementary blocks. The idea of generating macro-blocks as big as possible is to minimize the number of blocks (and consequently to maximize their size) for which we are able to construct simple and optimal partitioning. Each macro-block is split into 3 zones (see Figure (7.5)). The main zone is zone 1 while zones 2 and 3 are residual zones. 

Main zone

The size of the main zone is chosen such that it is a multiple of the ideal load. Then, straightforward partitioning that minimizes edge-cut and respects load balancing is applied.

The number of cells in each direction of space is taken as an input by the partitioning (N x = number of cells in the x direction, N y = number of cells in the y direction). It can produce square or rectangular partitions. We also consider a special case if the number of processor associated to the zone 1 is a prime number (see Figure (7.6)).

Residual zones

Residual zones 2 and 3 of two different macro-blocks are associated to one processor so that the sum of their size is equal to the ideal load. Thus, load balancing is ensured (see Figure (7.5)). We can note in Figure (7.4) that very small macro-blocks (the darker one) can be composed just of one zone 2 or the sum of zone 2 and 3. These zones can create some non-contiguous regions on the same processor.

Node partitioning

If we had used cell partitioning, further caution would not have been necessary. With node partitioning, however, care has to be taken to the boundaries between blocks that can lead to non-rectangular macroblocks. Indeed, as shown in Figure (7.7), there exist two configurations that produce a broken boundary line. The only solution is to split the blocks in two parts. These configurations are quite rare in the cases we have studied. From this set of geometric considerations, an algorithm (1) has been extracted that can be applied to any 2D block-structured grid.

Block-Structured partitioner quality and performance 7.3.1 Load balancing and edge-cuts

In this section, we test the quality of the partitioner concerning the load balancing, the number of edgecuts, the number of blocks and the time consumed by the partitioning in comparison with those using METIS, the recursive edge bisection (REB) and the greedy algorithm (GA). For the two latters, results have been obtained with elsA software [START_REF] Gourdain | High performance parallel computing of flows in complex geometries: I. methods[END_REF]. Several examples were considered in [27] but we only present the double cavity geometry, composed of 3 blocks, 4 elementary blocks and 4 × 10 5 nodes. The test cases underline very good load imbalance lower than 1% if the number of processors is not too high. It confirms that splitting macro-blocks into 3 zones is efficient, residual zones being associated to verify ideal load. Lower load imbalance cannot be reached because the precision of the partitioner is equal to the length of a mesh line (necessary to keep rectangular partitions). If the number of processors Partitioning of the main zone 18: end for 19: return increases, load imbalance increases but remains lower than 3%. Here, the partitioning effect of zone 1 is more visible: the size of a line of the mesh is relatively high in comparison with the size of the partition. The number of edge-cuts is overall very good, better than with METIS. REB method shows optimal results as regards edge-cut and block numbers but very high load imbalance (up to 47%) which is a crippling default. Moreover, this method did not provide acceptable results for the ring mesh probably because of the circular aspect of the geometry. Load imbalance produced by the GA is controlled by an epsilon parameter which has a consequence on the number of blocks generated: the lower is ε the lower is the load imbalance, but the greater is the number of blocks. Two values for ε have been used: 0.05 and 0.001. For ε = 0.001 load imbalance is very low, edge-cut number is acceptable but the number of blocks is more than the double of the number of processors. That leads to a high number of noncontiguous subdomains associated to a processor: it can reduce solver efficiency and it increases the memory requirement due to the multiplication of ghost cells necessary to the communications between processors [START_REF] Gourdain | High performance parallel computing of flows in complex geometries: I. methods[END_REF]. For ε = 0.05, load imbalance is higher than our method, as well as edge-cut and block numbers. Finally for the ring example, CPU time shows that the proposed block-approach is much faster (nearly 30 times) than the other methods. This point could be even more relevant for 3D partitioning where CPU time is much longer. We can conclude that the proposed method is efficient for the studied geometries and shows a good compromise between all the partitioning requirements.

Scalability

The efficiency of coupling the partitioner and the HYPRE library is illustrated solving the Poisson equation obtained from one velocity correction step [START_REF] Goda | A multistep technique with implicit difference schemes for calculating two-or threedimensional cavity flows[END_REF] which is very CPU time consuming in a Navier-Stokes solver. The studied problem is the double lid driven cavity flow.

The solver is a GMRES (Generalized Minimal Residual Method) associated to the geometric semicoarsening multigrid preconditioner. The relative residual is set to 10 Weak efficiency is presented in the right part of Figure (7.9). Efficiency equal to one indicates an optimal behaviour for the algorithm and the computer architecture. Indeed, CPU times remains constant, equal to the reference time, while the total size of the problem increases with the number of processors. Usually, this property is hardly verified and curves with plateaus can be observed. Values of the plateaus rise toward one with the load of each processor. This phenomenon is illustrated in Figure (7.9). Weak efficiency is better for the Harpertown cluster than the Nehalem one, besides a longer computation time.

Strong Scaling

The left part of Figure (7.10) displays for each type of processor (Harpertown and Nehalem) on a logarithmic scale, CPU time as a function of the number of processors for two fixed size problems of 1 and 16 million degrees of freedom. Again, processors Nehalem are much faster than Harpertown ones. The right part of Figure (7.10) represents the strong scaling versus the number of processors on a semi-logarithmic scale. With the Harpertown architecture and 16 million dof, a very high efficiency greater than 0.8 for up to 1024 processors can be observed (16000 dof per processor). The first part of the graph being over the expected efficiency is due to memory bandwidth saturation when the number of processors is low that leads to a long reference time in the strong efficiency formula. Using more processors leads to smaller tasks that lead to a performance increase when more and more data can be kept in cache. With 1 million dof, this effect is less visible ans scaling is very good up to 128 processors (8000 dof per processor). With the Nehalem architecture which has a much higher memory bandwidth (more than 3 times), efficiency curves have the expected behavior. Consequently, optimal efficiencies are obtained for 512 and 32 processors respectively for the 16 and 1 million dof problems. The saturation of the efficiency due to the increase of the communications between processors appears earlier with this architecture.

The next part of chapter the is devoted to the study of incompressible flows in non-rectangular geometries using the approach proposed here.

Computations of incompressible flows on non-rectangular geometries

Laminar flows in rectangular geometries, such as the lid driven cavity [START_REF] Bruneau | The 2D lid-driven cavity problem revisited[END_REF]- [START_REF] Peng | Transition in a 2-D lid driven cavity flow[END_REF], have been extensively studied in the literature. Several numerical methods have been compared and reference solutions are available for a wide range of Reynolds numbers (leading to stationary or unsteady flows). In [27], we proposed a precise solution of flows for three non-rectangular geometries, scarcely studied so far but here we focus only on the double lid driven cavity.

Time discretization of the Navier-Stokes equations is implicit thanks to Gear's second order backward differentiation formula [START_REF] Gear | Numerical Initial Value Problems in Ordinary Differential Equation[END_REF]. A pressure correction method (see Goda [START_REF] Goda | A multistep technique with implicit difference schemes for calculating two-or threedimensional cavity flows[END_REF]) is used to solve the velocity-pressure coupling. Spatial discretization (second order centered scheme) is based on the finite volume method on a staggered grid of the Marker and Cells type. Solvers of the HYPRE library are used.

Flow in a double lid driven cavity has been studied in [START_REF] Nithiarasu | Steady and unsteady incompressible flow in a double driven cavity using the artificial compressibility (AC)-based characteristic-based split (CBS) scheme[END_REF] and [START_REF] Zhou | DSC solution for flow in a staggered double lid driven cavity[END_REF]. This configuration is presented in the left upper part of Figure (7.11). The fluid is driven by the lower and upper boundaries in opposite directions. The other boundaries are walls. The Reynolds number Re is based on the cavity length L and the lid velocity. We focused on two flow ranges according to the value of the Reynolds number in relation to its critical value Re c :

• Re < Re c : the flow is stationary. We can note three different regimes represented in Figure (7.11).

On the upper right part for Re = 100, twin primary eddies are created between the two driving lids while secondary vortices appear in the left and right corners. In the lower left part for Re = 1000, the two primary vortices coalesce and two secondary vortices appear. Finally, in the lower right part for Re = 3000, the primary eddy becomes horizontal. The size of the two latter secondary vortices increases and two new secondary eddies appear (vertically on the upper right and lower left parts of the domain). However, it is now well-known [START_REF] Theofilis | Advances in global linear instability analysis of nonparallel and three-dimensional flows[END_REF] that cavity flows experience 3dimensional global instability well below Re c . Consequently, for Re ≥ Re 3D c 2-dimensional studies are not physical anymore even if they can present numerical interests. Re 3D c has been recently identified for the double and cross-sectional cavity flows [START_REF] De Vicente | Stability analysis in spanwise-periodic double-sided lid-driven cavity flows with complex cross-sectional profiles[END_REF]. For the former, it characterizes the transition between the two first flow regimes.

• Re ≥ Re c : the flow becomes 2D unsteady, from periodic to chaotic. In [START_REF] Peng | Transition in a 2-D lid driven cavity flow[END_REF] and [START_REF] Bruneau | The 2D lid-driven cavity problem revisited[END_REF], a study was carried out to identify the transition from stable to periodic flow in the case of the 2D lid driven square cavity flow. The flow becomes unstable via a Hopf bifurcation. In [START_REF] Bruneau | The 2D lid-driven cavity problem revisited[END_REF], the first Lyapunov exponent was used to compute a critical Reynolds number Re c close to 8000. In [START_REF] Peng | Transition in a 2-D lid driven cavity flow[END_REF], thanks to a different approach (unsteady simulations with small time step), the first Hopf bifurcation occurs for Re c = 7402. Several subcritical and supercritical flow regimes were identified.

Here we focus on the study of the steady flow (Re = 1000) but in [27], unsteady simulations were performed. The lower left part of Figure (7.11) displays the streamlines. As described above, a primary vortex and four secondary eddies appear. With very fine meshes, ternary vortices appear between the secondary ones and the corner of the domain (see right part of Figure (7.12)). These vortices were not shown in previous studies [START_REF] Zhou | DSC solution for flow in a staggered double lid driven cavity[END_REF] and [START_REF] Nithiarasu | Steady and unsteady incompressible flow in a double driven cavity using the artificial compressibility (AC)-based characteristic-based split (CBS) scheme[END_REF]. Figure (7.12) represents two zooms in which we define the points P i (x i , y i ) of detachment and reattachment of the flow. The results found in the literature are given on the intensities and positions of the vortices. In the present study, the results were obtained with convergence criteria on stationarity below 10 -12 between two consecutive iterations. Four increasingly fine grids with 6.25 × 10 4 , 2.5 × 10 5 , 10 6 and 4 × 10 6 nodes have been used. Positions and intensities of the vortices Tables (7.2) and (7.3) represent the positions and intensities of the primary and secondary vortices as a function of the mesh size for Re = 1000. Positions and intensities of the ternary vortex are shown in Table (7.4). For the sake of conciseness, we only focus on the positions and the intensities of one ternary and two secondary vortices. The others can be obtained symmetrically in relation to the center of the cavity. We observed symmetrical values to up to four or five significant digits. Table (7.5) displays the positions of the detachment and reattachment points P i (i = 1, 5) defined in Figure (7.12). In [START_REF] Zhou | DSC solution for flow in a staggered double lid driven cavity[END_REF] and [START_REF] Nithiarasu | Steady and unsteady incompressible flow in a double driven cavity using the artificial compressibility (AC)-based characteristic-based split (CBS) scheme[END_REF], the authors use coarser grids that could explain the difference between their values and ours for the primary vortices.

Reference

Main Vortex (x, y) Vorticity Zhou [START_REF] Zhou | DSC solution for flow in a staggered double lid driven cavity[END_REF] (0.70000, 0.70000) -1.41562 Nithiarasu [START_REF] Nithiarasu | Steady and unsteady incompressible flow in a double driven cavity using the artificial compressibility (AC)-based characteristic-based split (CBS) scheme[END_REF] (0.68950, 0.69690) -1.52363 Present (Mesh 1) (0.70099, 0.70070) -1.49753 Present (Mesh 2) (0.69996, 0.69996) -1.49974 Present (Mesh 3) (0.70000, 0.70000) -1.49858 Present (Mesh 4) (0.69999, 0.69999) -1.49838 Table 7.2: Positions (x, y) and intensities of the main vortex.

Conclusion

In this chapter, we proposed a method for partitioning 2D block-structured meshes. The goal was to compute flow simulations on non-rectangular geometries. Our geometrical partitioner was coupled with the massively parallel solver and preconditioner HYPRE library. Several examples of partitioning are presented to check, both the efficiency and the performance of our strategy in comparison with other partitioners. Finally, we computed flow on non-rectangular geometries with very fine grids to propose reference solutions.

Reference

Lower secondary vortex (x, y) Vorticity Zhou [START_REF] Zhou | DSC solution for flow in a staggered double lid driven cavity[END_REF] (0.72560, 0.20000) 2.38559 Nithiarasu [START_REF] Nithiarasu | Steady and unsteady incompressible flow in a double driven cavity using the artificial compressibility (AC)-based characteristic-based split (CBS) scheme[END_REF] ( 

Part II

Multiphase flow in porous media

Introduction

Multiphase multicomponent flow in porous media are involved in many applications related to subsurface environment and energy issues. We can mention, no exhaustively, hydrocarbon recovery in petroleum engineering, the geological sequestration of CO 2 , the geological sequestration of nuclear waste, prevention of groundwater pollution and remediation or deep geothermal energy. Numerical modeling and simulation have been increasingly used for this purpose, a trend that will continue because more sophisticated physical processes involving complex mathematical and numerical issues need to be modeled. This part contains two chapters, in which we focus on the particular case of reactive multiphase flows in porous media. For a general discussion on the physical principles of the multiphase flow in porous media, we refer e.g. to [START_REF] Bear | Dynamics of Fluids in Porous Media[END_REF][START_REF] Helmig | Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems[END_REF][START_REF] Pinder | Essentials of Multiphase Flow and Transport in Porous Media[END_REF][START_REF] Panfilov | Physicochemical Fluid Dynamics in Porous Media: Applications in Geosciences and Petroleum Engineering[END_REF], while for a description of mathematical models and computational methods for flows in porous media we refer to [START_REF] Chavent | Mathematical Models and Finite Elements for Reservoir Simulation[END_REF][START_REF] Chen | Computational Methods for Multiphase Flows in Porous Media[END_REF], and finally for reactive transport modeling, we refer for instance to [START_REF] Bear | Modeling Groundwater Flow and Contaminant Transport[END_REF][START_REF] Niemi | Geological Storage of CO 2 in Deep Saline Formations[END_REF][START_REF] Quintard | Coupled, nonlinear mass transfer and heterogeneous reaction in porous media[END_REF][START_REF] Zhang | Groundwater reactive transport models[END_REF] and [START_REF] Xiao | Reactive Transport Modeling: Applications in Subsurface Energy and Environmental Problems[END_REF] where a recent and detailed review of the applications above mentioned can be found. Reactive multiphase flow are governed by a set of highly nonlinear system of degenerate partial differential equations (PDEs) coupled to algebraic and ordinary differential equations requiring special numerical treatment. There exists a vast amount of literature on the discretization methods for such a system of PDEs (see for instance [START_REF] Flemisch | Tackling coupled problems in porous media: Development of numerical models and an open source simulator[END_REF] for a detailed review of locally conservative discretization methods that are indispensable for the simulation of flow and transport processes in porous media). However, we can mention that Finite Volume Methods, Finite Difference Methods, Finite Element Methods or Control-Volume Finite-Element Methods have been intensively used in the numerical simulation of multiphase flow in porous media. In this chapter, we consider and focus on Finite Volume Methods. This part is organized as follows.

In Chapter 8, we start by a non exhaustive state of the art about multiphase reactive flows in porous media. We describe some applications related to reactive transport modeling. In the numerical modeling of multiphase flow, a crucial issue is the management of the possible phase appearance and disappearance. This problem needs a relevant choice in the primary variables that will be used in the computations. A considerable amount of literature is available about his topic. Another important issue is how the coupling between flow, transport and chemistry is treated. Indeed, reactive transport modeling requires to solve a set of highly nonlinear system of degenerate partial differential equations governing a compositional multiphase flow, coupled to algebraic differential equations related to equilibrium and kinetic reactions. The approaches found in the literature can be classified into two categories: the sequential and the global implicit approaches. Sequential approaches propose to decouple flow, transport and chemistry in a relevant manner while global implicit approaches solves a highly nonlinear system gathering all the equations. Both strategies are discussed. We propose a description of several reactive codes dedicated to subsurface environmental simulations and their main characteristics are highlighted. The sequel of the chapter describes briefly the simulator DuMu X (DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media [3,[START_REF] Flemisch | DuMu X : DUNE for multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media[END_REF]). DuMu X is a free and open-source simulator to perform numerical simulation of complex flows in porous media. Among others, we present the numerical scheme and the numerous models available in DuMu X .

In Chapter 9, we present our main contributions and implementations in the framework of DuMu X in a high performance computing context. Section 9.2 deals with a scenario of gas migration in deep repository for radioactive waste. We have been involved in the European project FORGE (Fate Of Repository Gases : http://www.bgs.ac.uk/forge/) and we participated to several benchmark exercises proposed in this framework. For this, we coupled DuMu X with an upscaling strategy to treat the strong heterogeneities present in the nuclear waste disposal. Our method allowed to reduce drastically the computational time, while producing results that were very close from the ones of the others participants. For several years, we have been interested in the numerical simulation of multiphase reactive flows. Several sequential and fully implicit strategies have been considered. Sections 9.3 and 9.4 present respectively sequential and fully coupled fully implicit schemes that have been developed and integrated in DuMu X . Both single phase and two-phase flow simulations were performed. We present here a part of these results and focus on the comparison between sequential and global implicit approaches in terms of accuracy and computational time. Some parallel computations are also discussed.

Chapter 8

Numerical simulation of multiphase reactive flow in porous media: a review The understanding and prediction of multiphase flow in porous media is of great importance in various areas of research and industry. The field encompasses a number of diverse applications related to environment and energy issues in groundwater. We propose here a non-exhaustive list of these applications.

Hydrocarbon recovery in petroleum engineering

In petroleum engineering, the production of hydrocarbons from petroleum reservoirs require accurate numerical simulations involving multiphase compositional flow (see, e.g., [START_REF] Chavent | Mathematical Models and Finite Elements for Reservoir Simulation[END_REF][START_REF] Ewing | The Mathematics of Reservoir Simulation[END_REF]). Primary and secondary oil recovery processes (such as water or gas injection), can be modeled with black oil simulators [START_REF] Chen | Computational Methods for Multiphase Flows in Porous Media[END_REF]. Concerning the ternary recovery, complex enhanced recovery techniques have emerged. Among these recovery techniques, we can mention for instance the miscible injection of gas (CO 2 , natural gas, . . . ) [START_REF] Sheng | Enhanced oil recovery in shale reservoirs by gas injection[END_REF], thermal recovery techniques (steam injection, in situ combustion [START_REF] Lapene | Effects of steam on heavy oil combustion[END_REF]) or chemical flooding (polymer, foam, . . . ) [START_REF]Chemical flood enhanced oil recovery: A review[END_REF]. This emergence has emphasized the need for sophisticated mathematical tools, capable of modeling intricate chemical and physical phenomena [START_REF] Chen | Reservoir Simulation Mathematical Techniques in Oil Recovery[END_REF].

Geological sequestration of CO 2

Carbon Capture from industrial facilities and Storage (CCS) in deep saline aquifers represents a promising technology to mitigate the contribution of this gas to the acidification of the environment and to global warming. Several physical and geochemical trapping mechanisms must be combined to ensure a high containment rate [START_REF] Jiang | A review of physical modelling and numerical simulation of long-term geological storage of CO 2[END_REF]. These four basic mechanisms which hold the CO 2 in place are structural, residual, solubility, and mineral trappings. Gaseous CO 2 is compressed and injected in its supercritical form with ideal properties for transport (viscosity of a gas) and storage (density of a liquid). Less dense than the brine present in the aquifer, it migrates, vertically firstly and then along the top of the aquifer and finally it builds up under the cover rock. This is called structural or stratigraphic trapping. Going up, some part of the CO 2 remains in the reservoir rock in the form of small bubbles trapped in the pores: it is the residual or capillary trapping. This CO 2 trapped in the reservoir rock will dissolve slowly in water. This is the solubility trapping. Water containing dissolved CO 2 becomes heavier than the surrounding water and is going down to migrate to the bottom of the reservoir. Chemical reactions with the rock matrix transform the dissolved CO 2 into carbonate minerals. That is the mineral trapping. These mechanisms occur at different time scales (immediately after the injection in the case of solubility trapping, and up to several thousand years in the case of mineral trapping). By consequent, assessing the viability in term of risk and capacity of storage must rely on numerical simulations due to the long time scales involved. Many references can be found for the numerical approximation of such phenomena, see e. g., [32,[START_REF] Liu | A tutorial review of reactive transport modeling and risk assessment for geologic CO 2 sequestration[END_REF][START_REF] Niemi | Geological Storage of CO 2 in Deep Saline Formations[END_REF], and the references therein. Two mains issues concern the reactive transport in the framework of geological storage of CO 2 : firstly the simulation of the different trapping mechanisms above mentioned and secondly the sustainability of the storage through the durability of well cements.

For the numerical simulation of the geological sequestration of CO 2 , the studies can be classified into two categories according on whether we consider geochemical effects or not. In [START_REF] Pruess | Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO 2[END_REF], the authors compare several codes dedicated for geologic disposal of CO 2 . Even if chemical and hydro-mechanical processes are briefly discussed, most of the article focuses on the hydro-geological processes induced in CO 2 sequestration for one-dimensional geometries. Good agreements are obtained between the different codes but the authors conclude that three-dimensional computations including heterogeneities would be more relevant. In [START_REF] Class | A benchmark study on problems related to CO 2 storage in geologic formations : Summary and discussion of the results[END_REF], several benchmarks are proposed to model compositional effects due to dissolution of CO 2 into the brine and non-isothermal effects on two-and three-dimensional heterogeneous problems.

The results show that a fairly good agreement of model predictions is obtained. Three-dimensional computations are also performed in [START_REF] Neumann | Modeling and simulation of two-phase two-component flow with disappearing nonwetting phase[END_REF] where structural, solubility and residual trappings are considered while geochemical reactions are neglected. To obtain simulations of increasingly complex phenomena with higher physics fidelity, many authors consider the coupling between hydro-geological, thermal and chemical processes. These works can also classified into two categories according on whether a single (liquid) or a two-phase flow (supercritical/gas-liquid) is considered. Under certain simplifying conditions, single phase flow is considered for instance in [START_REF] Haeberlein | Time Space Domain Decomposition Methods for Reactive Transport -Application to CO 2 Geological Storage[END_REF] and [START_REF] Lagneau | Reactive transport modelling of CO 2 sequestration in deep saline aquifers[END_REF]. In [START_REF] Haeberlein | Time Space Domain Decomposition Methods for Reactive Transport -Application to CO 2 Geological Storage[END_REF], in the framework of SHPCO2 Project [START_REF] Haeberlein | A test case for multi-species reactivetransport in heterogeneous porous media applied to CO 2 geological storage[END_REF], the gas phase is assumed to be immobile and therefore gaseous carbon dioxide is considered as a fixed species neglecting the two-phase flow effects. In [START_REF] Lagneau | Reactive transport modelling of CO 2 sequestration in deep saline aquifers[END_REF], an initial amount of supercritical CO 2 is converted into a source term of liquid CO 2 and then the authors study the transport of the dissolved CO 2 and the precipitation/dissolution process of minerals. In [10], the authors employ a single phase reactive flow to model the leaking of CO 2 -saturated brine in a fractured pathway once supercritical CO 2 is totally dissolved. CO 2 is generally injected in its supercritical form. This injection may induce important overpressure that can damage the reservoir or induce fracturing and seismic events. Moreover, the supercritical CO 2 that is less dense than the brine present in the aquifer, will migrate vertically firstly and then it will build up under the cover rock inducing a risk of leakage through faults. In [START_REF] Pool | Dynamics and design of systems for geological storage of dissolved CO 2[END_REF][START_REF] Vilarrasa | Dissolved CO 2 injection to eliminate the risk of CO 2 leakage in geologic carbon storage[END_REF], the authors propose an alternative strategy that consists in injecting dissolved CO 2 to circumvent the above-mentioned risks and increase the security of its geological sequestration. In [11], a study of this process and its interactions with the carbonate reservoir through geochemical reactions is proposed. Even if in [START_REF] Nicot | Are single-phase flow numerical models sufficient to estimate pressure distribution in CO 2 sequestration projects?[END_REF], the authors show that modified single phase flow models can predict pressure build-up far from the injection as well as complex two-phase flow models, most of the studies deal with two-phase reactive flows. The following is a non-exhaustive list of references: [START_REF] Audigane | Two-dimensional reactive transport modeling of CO 2 injection in a saline aquifer at the Sleipner site, North Sea[END_REF][START_REF] Fan | A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO 2 storage simulations[END_REF][START_REF] Leal | A robust and efficient numerical method for multiphase equilibrium calculations: Application to CO 2 -brine-rock systems at high temperatures, pressures and salinities[END_REF][START_REF] Nghiem | Modeling CO 2 storage in aquifers with a fully-coupled geochemical eos compositional simulator[END_REF][START_REF] Nghiem | Modeling aqueous phase behavior and chemical reactions in compositional simulation[END_REF][START_REF] Saaltink | A method for incorporating equilibrium chemical reactions into multiphase flow models for CO 2 storage[END_REF][START_REF] Thibeau | A modeling study of the role of selected minerals in enhancing CO 2 mineralization during CO 2 aquifer storage[END_REF], the main difference between theses references being the complexity of the geochemical system. During its storage, liquid or supercritical CO 2 is injected through a well composed of cases of cement.

Once the injection is terminated, the well is closed by a cement plug. By consequent, the integrity of the disposal and its impermeability can be strongly influenced by the chemical reactivity of cement (see for instance [START_REF] Audigane | Modeling Reactive Transport in CO 2 Geological Storage: Applications at the Site Scale and Near-Well Effects[END_REF], [START_REF] Huet | Quantitative reactive transport modeling of portland cement in CO 2 -saturated water[END_REF] or [START_REF] Jacquemet | Armouring of well cement in H 2 S-CO 2 saturated brine by calcite coating -experiments and numerical modelling[END_REF] where a comparison between numerical and experimental results is given).

Geological sequestration of nuclear waste

The long-term safety of the disposal of nuclear waste is an important issue in all countries with a significant nuclear program. Repositories for the disposal of high-level and long-lived radioactive waste generally rely on a multi-barrier system to isolate the waste from the biosphere. The multi-barrier system typically comprises the natural geological barrier provided by the repository host rock and its surroundings, and an engineered barrier system. When designing nuclear waste geological repositories, a problem of possible two-phase flow of water and gas appears (for more details see, for instance, [6,[START_REF] Norris | Summary of gas generation and migration current state-of-the-art[END_REF]). Multiple recent studies have established that in such installations, important amounts of gases, mainly hydrogen, are expected to be produced, in particular due to the corrosion of metallic canisters used in the repository design. The creation and transport of a gas phase is a crucial issue concerning the capability of the engineered and natural barriers to evacuate the gas phase and avoid pressure buildup, thus preventing mechanical damage. Several studies involving two-phase compositional flow have been proposed by national and international programs to study the gas migration and its impact on the performance assessment of underground radioactive waste repositories. We can cite for instance the benchmarks Couplex-Gas [START_REF] Zhang | Computation of the Couplex-Gaz exercise with TOUGH2-MP: hydrogen flow and transport in the pore water of a low-permeability clay rock hosting a nuclear waste repository[END_REF] proposed by the French Agency for the Management of Radioactive Waste (ANDRA) and the French research group MoMaS (Mathematical Modeling and Numerical Simulation for Nuclear Waste Management) or the benchmarks proposed in the framework of the European Project FORGE: Fate Of Repository Gases (http://www.bgs.ac.uk/forge/) [13,34,[START_REF] Wendling | Gas transport modelling at different spatial scales of a geological repository in clay host rock[END_REF][START_REF] Wendling | Final report on benchmark studies on repository-scale numerical simulations of gas migration, part 1: Cell scale benchmark[END_REF][START_REF] Wendling | Final report on benchmark studies on repository-scale numerical simulations of gas migration, part 2: Module scale benchmark[END_REF]. There is also a vast literature where, in addition to the hydrological aspects, more complex physical phenomena are taken into account. For instance in [START_REF] Claret | Modeling the Long-term Stability of Multi-barrier Systems for Nuclear Waste Disposal in Geological Clay Formations[END_REF], the authors discuss how this complex assembly that constitutes the repository system will evolve due to thermal, hydraulic, mechanical, chemical and radiological processes. They propose a detail review of recent contributions and future challenges regarding the reactive transport modeling applied to deep repository systems. As for the geological storage of CO 2 , the integrity and the sustainability of the disposal must be ensured for thousands of years. We can cite for instance [START_REF] Berner | Geochemical impact of a low-ph cement liner on the near field of a repository for spent fuel and high-level radioactive waste[END_REF][START_REF] Mon | Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay[END_REF][START_REF] Sedighi | Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer[END_REF][START_REF] Xu | Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effects[END_REF][START_REF] Xu | Bentonite alteration due to thermal-hydro-chemical processes during the early thermal period in a nuclear waste repository[END_REF], where the authors study the corrosion or/and the alteration of carbon steel, compacted bentonite and concrete that constitute the engineered multi-barrier system.

Prevention of groundwater pollution and remediation

Groundwater is a one of the major source of water supply in many parts of the world. It covers the needs in domestic consumption, irrigation and industrial processing. Consequently, prevention of groundwater contamination is a crucial issue in the management of the water quality. Sources of pollution can be numerous and varied and since groundwater is hidden beneath the surface, these sources are often hardly identifiable. As a consequence, modeling of multiphase flow in porous media plays a significant role to forecast the transport of the contaminant and to model some expensive remediation processes.

Many contributions deal with contaminated soils by non-aqueous-phase liquid (NAPL). For NAPL remediation, we can cite for instance [START_REF] Mccray | Numerical simulation of air sparging for remediation of napl contamination[END_REF] where remediation is performed by air sparging or [START_REF] Class | Numerical simulation of non-isothermal multiphase multicomponent processes in porous media. 2. applications for the injection of steam and air[END_REF] where a more complex three-phase non-isothermal flow (gas-water-NAPL) is considered. It can be relevant to also take into account chemical and biological processes involved in contaminant transport and remediation (see for instance [START_REF] Appelo | Geochemistry, Groundwater and Pollution, Second Edition[END_REF][START_REF] Bear | Modeling Groundwater Flow and Contaminant Transport[END_REF][START_REF] Zheng | Applied Contaminant transport modeling[END_REF]). In the event of a leak of radionuclide, the chemical interactions between the leaked radionuclide and the surrounding media must be taken into account to predict at best their migration (see for instance [START_REF] Shao | Modeling reactive transport in non-ideal aqueous-solid solution system[END_REF][START_REF] Spycher | Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada[END_REF][START_REF] Viswanathan | A reactive transport model of neptunium migration from the potential repository at Yucca Mountain[END_REF][START_REF] De Windt | Coupled modeling of cement/claystone interactions and radionuclide migration[END_REF]). Many references related to the Hanford site in the USA can be found (see for instance [START_REF] Lichtner | Role of competitive cation exchange on chromatographic displacement of cesium in the vadose zone beneath the hanford s/sx tank farm[END_REF][START_REF] Steefel | Cesium migration in hanford sediment: A multisite cation exchange model based on laboratory transport experiments[END_REF]). In this case, cesium has been released into the environment accidentally due do leaking of high level waste (HLW) storage tanks and the retardation effect arising from adsorption is studied. In the remediation process, microbial bio-degradation can mitigate the dangerousness of certain contaminants. In this case, the contaminants are decomposed by action of micro-organisms. Bio-remediation of hydrocarbon-contaminated zones is studied for instance in [38] for a benzene pollution and in [START_REF] Mayer | Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions[END_REF][START_REF] Thomas | Multiblock methods for coupled flow-transport and compositional flow through porous media -applications to the simulation of transport of reactive species and carbon sequestration[END_REF] for a toluene pollution. Other potential targets of groundwater remediation are nitrate-polluted soils, particularly in rural zones as a result of agricultural activities [START_REF] Pous | Bioremediation of nitrate-polluted groundwater in a microbial fuel cell[END_REF][START_REF] Tartakovsky | Ethanol-stimulated bioremediation of nitrate-contaminated ground water[END_REF] or radionuclide-polluted zones (see for instance [START_REF] Arbogast | Computational methods for multiphase flow and reactive transport problems arising in subsurface contaminant remediation[END_REF] for strontium remediation or [START_REF] Yabusaki | A uranium bioremediation reactive transport benchmark[END_REF] for uranium bioremediation).

Deep geothermal energy

Deep geothermal energy consists of extracting the heat stored inside the Earth by injecting a fluid in a fractured reservoir via an injection well. A recent overview of the worldwide applications of geothermal energy for direct utilization can be found in [START_REF] Lund | Direct utilization of geothermal energy 2015 worldwide review[END_REF]. The fluid will circulate in the fracture network and then heat up in contact with the hot matrix rock. The fluid is then extracted by production wells and then transformed into steam through an heat exchanger to drive a turbine to produce electricity. The interactions between the fluid and the rock matrix can lead to the precipitation/dissolution of minerals and consequently have significant effects on the long-term performance of these reservoirs. Indeed, precipitation can reduce permeability and lead to complete clogging of matrix or fracture porosity while dissolution can improve the permeability. Reactive transport modeling can be essential to understand the effects of the fluid circulation on the mineralogical evolution of the reservoir and how the chemical composition of reinjection waters can be modified to improve reservoir performance by maintaining or even enhancing injectivity (see for instance [START_REF] Xu | On modeling of chemical stimulation of an enhanced geothermal system using a high ph solution with chelating agent[END_REF][START_REF] Xu | TOUGHREACT -A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO 2 geological sequestration[END_REF][START_REF] Xu | Application of Reactive Transport Modeling to CO 2 Geological Sequestration and Chemical Stimulation of an Enhanced Geothermal Reservoir[END_REF]).

It is also possible to couple CO 2 storage and deep geothermal energy production. A strategy consists in replacing water by CO 2 as injection fluid [START_REF] Lichtner | Modeling multiscale-multiphase-multicomponent reactive flows in porous media: Application toCO 2 sequestration and enhanced geothermal energy using[END_REF][START_REF] Pruess | Enhanced geothermal systems (egs) using CO 2 as working fluid-a novel approach for generating renewable energy with simultaneous sequestration of carbon[END_REF]. Numerical simulations suggest that CO 2 is superior to water in its ability to mine heat from hot fractured rock due to, in part, its relatively high mobility. Still considering a coupling between CO 2 geological storage and deep geothermal energy production, a recent strategy proposes to inject CO 2 in deep saline aquifers in dissolved form close to the emitting facilities [START_REF] Kervévan | CO2-DISSOLVED: a Novel Concept Coupling Geological Storage of Dissolved CO 2 and Geothermal Heat Recovery -Part 1: Assessment of the Integration of an Innovative Low-cost, Water-based CO 2 Capture Technology[END_REF][START_REF] Randi | Experimental and Numerical Simulation of the Injection of a CO 2 Saturated Solution in a Carbonate Reservoir: Application to the CO2-DISSOLVED Concept Combining CO 2 Geological Storage and Geothermal Heat Recovery[END_REF]. This process allows to overcome the transport issues that are inherent in massive storage. Usually, CO 2 is injected in supercritical form. As mentioned above, injection of dissolved CO 2 has several advantages in terms of storage safety. It reduces the risks of overpressure due to the injection in supercritical form, the risks of leakage by avoiding the creation of a deep gas bubble and therefore its eventual rise. Finally, it offers a potential for faster mineralization. The recovery of hot carbon-laden water and then the reinjection are performed by means of a set of injectors and producers wells, such as the heating networks.

Management of phase appearance and disappearance

One major issue in the numerical modeling of compositional multiphase flow concerns the management of the possible appearance/disappearance of some phases. This problem was intensively explored and the literature is vast. It is directly related to the choice of primary variables considered to solve the compositional multiphase flow. We focus here in the particular case of two-phase flow (liquid-gas) with two components in each phase where solubility of the components in the phases has to be taken into account. This particular configuration has been widely studied for nuclear waste management where a possible two-phase flow (H 2 O-H 2 ) appears or the geological sequestration of CO 2 . A standard choice for the primary variables would consist in choosing one phase pressure and one saturation but due to the possible disappearance of a phase, the saturation can no longer be used as a primary variable. A common technique consists in choosing these standard variables (pressures, saturations, mole or mass fractions) and then, primary variable switching is applied according to the present phases [START_REF] Class | Numerical simulation of non-isothermal multiphase multicomponent processes in porous media. 1. An efficient solution technique[END_REF][START_REF] Coats | An equation of state compositional model[END_REF][START_REF] Forsyth | A two-phase two-component model for natural convection in a porous medium[END_REF]: when only one phase is present, saturation is replaced by a molar fraction as primary variable. Another strategy consists in opting for a choice of persistent variables, valid whatever the composition of the flow. Several approaches exist:

• In [7,[START_REF] Panfilov | Interfaces of phase transition and disappearance and method of negative saturation for compositional flow with diffusion and capillarity in porous media[END_REF], the authors extend the saturation to artificial negative values, so that the system of mass conservation laws does not degenerate in the single phase region and the saturation can still be used as a primary variable.

• In [START_REF] Bourgeat | Two-phase, partially miscible flow and transport modeling in porous media; application to gas migration in a nuclear waste repository[END_REF][START_REF] Bourgeat | On persistent primary variables for numerical modeling of gas migration in a nuclear waste repository[END_REF], the authors use persistent variant of the primary variables: dissolved gas mass concentration and liquid pressure that are defined both for liquid saturated and unsaturated regions.

• In [START_REF] Gharbia | Gas phase appearance and disappearance as a problem with complementarity constraints[END_REF][START_REF] Jaffré | Henry's law and gas phase disappearance[END_REF], the authors add the solubility as third primary variable to the liquid phase pressure and liquid phase saturation. Then, they use additional nonlinear complementarity constraints that describe the transition from one-phase to two-phase region, to close the system.

• In [START_REF] Neumann | Modeling and simulation of two-phase two-component flow with disappearing nonwetting phase[END_REF], the authors propose a set of primary variables that consists of gas pressure and capillary pressure. To make this set uniform for both saturated and unsaturated by gas phase regions, Henry's law is used to couple solubility and pressure whatever the composition of the flow. This idea was introduced in [START_REF] Ippisch | Coupled transport in natural porous media[END_REF]. A similar strategy is adopted in [39,[START_REF] Angelini | Finite volume approximation of a diffusion-dissolution model and application to nuclear waste storage[END_REF] where the two phase pressures are considered as primary variables, still using Henry's law to define gas pressure in zones where only liquid phase is present.

• In [START_REF] Lauser | A new approach for phase transitions in miscible multi-phase flow in porous media[END_REF], the authors consider pressures, saturations and fugacities as primary variables. Then, they include phase transitions in the nonlinear system of equations using a set of local inequality constraints. These constraints are then directly integrated into the semi-smooth Newton method using a nonlinear complementarity function.

• In [START_REF] Marchand | Results of the MoMaS benchmark for gas phase appearance and disappearance using generalized MHFE[END_REF][START_REF] Marchand | Fully coupled generalised hybrid-mixed finite element approximation of two-phase two-component flow in porous media. part ii: numerical scheme and numerical results[END_REF][START_REF] Marchand | Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. part i: formulation and properties of the mathematical model[END_REF], the authors present another persistent set of primary variables that contains the total molar fraction of the light component and a mean pressure which equals the pressure of the remaining phase when one of them disappears.

• In [33], the authors also use a persistent set of primary variable set that does not depend on phase transitions. As first primary variable the authors propose to use a global pressure variable, which partially decouples the system of equations. The notion of the global pressure was introduced in [START_REF] Antontsev | Boundary Value Problems in Mechanics of Non homogeneous Fluids[END_REF] and [START_REF] Chavent | Mathematical Models and Finite Elements for Reservoir Simulation[END_REF] for immiscible incompressible two-phase flow and was then extended to compositional flow (see for instance [START_REF] Chen | From single-phase to compositional flow: applicability of mixed finite elements[END_REF]). As a second persistent variable the authors introduce the total mass density of the gas component defined in single phase and two-phase zones.

In the framework of the French research group MoMaS, several benchmarks were proposed [START_REF] Bourgeat | Numerical test data base (benchmark on multiphase flow in porous media[END_REF]. They aimed at assessing how traditional simulators for multiphase flow in porous media are facing when attempting to simulate gas migration in deep geological repositories. Several exercises focused on simulation of the gas phase appearance/disappearance in a two-phase flow, produced by the injection of H 2 in an homogeneous porous medium initially fully saturated with pure water. In [START_REF] Bourgeat | Compositional two-phase flow in saturated-unsaturated porous media: benchmarks for phase appearance/disappearance[END_REF], the authors compare the results of several teams using different strategies to deal with the phase appearance/disappearance. Most of the results are qualitatively similar, even if some differences remain. No comparison in term of accuracy, performance (CPU time) or complexity (difficulties to solve the nonlinear system) is proposed. These test cases have also been intensively studied in other contributions (see for instance [33], [START_REF] Bourgeat | On persistent primary variables for numerical modeling of gas migration in a nuclear waste repository[END_REF], [START_REF] Marchand | Results of the MoMaS benchmark for gas phase appearance and disappearance using generalized MHFE[END_REF], [START_REF] Neumann | Modeling and simulation of two-phase two-component flow with disappearing nonwetting phase[END_REF] or more recently in [START_REF] Brunner | A global implicit solver for miscible reactive multiphase multicomponent flow in porous media[END_REF]). In [START_REF] Masson | Formulations of two phase liquid gas compositional Darcy flows with phase transitions[END_REF], the authors propose an advanced comparison of three strategies in terms of nonlinear solver convergence and solutions on different 1D and 3D examples involving gas appearance and liquid disappearance. These formulations are the "Natural variable formulation (NVF)" [START_REF] Coats | An equation of state compositional model[END_REF], the "Pressures, saturations and fugacities formulation (PSF)" [START_REF] Lauser | A new approach for phase transitions in miscible multi-phase flow in porous media[END_REF] and the "Pressures, and fugacities formulation (PPF)" [START_REF] Angelini | Finite volume approximation of a diffusion-dissolution model and application to nuclear waste storage[END_REF]. Firstly, they show that the three formulations lead to equivalent definitions of the phase transitions. They conclude that on their particular test cases, the NVF and PSF behave better than the PPF in terms of nonlinear convergence. In [START_REF] Ben Gharbia | Study of compositional multi-phase flow formulations with cubic EOS[END_REF], the NVF and PSF are also compared and the NVF performs slightly better than the PSF in term of CPU time consumption. Indeed, with the PSF, the time step size decreases when the nonwetting phase disappears, leading to a higher number of time steps.

Sequential approach versus global implicit approach

Multiphase multicomponent reactive flows are modeled by a mass balance law for each phase, Darcy-Muskat's law, capillary pressure law, solubility laws, equations of state and closure relations. Coupling between flow and chemistry occurs through reactions rates. In the case of equilibrium reactions, these rates are unknown and are commonly eliminated through linear transformations [START_REF] Lichtner | Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems[END_REF][START_REF] Molins | A formulation for decoupling components in reactive transport problems[END_REF] and replaced by mass actions laws that are algebraic equations relating the activities of concerned species. For kinetic reactions, the rates are nonlinear functions of concentrations [START_REF] Lasaga | Chemical weathering rate laws and global geochemical cycles[END_REF] and involve ordinary differential equations. By consequence, the problem is modeled by a system of partial differential equations (describing a multiphase compositional flow) coupled with algebraic or ordinary differential equations related to chemical reactions.

The numerical strategies for solving this system can be divided into three dominant algorithms: the global implicit (GIA), the sequential iterative (SIA) and sequential non-iterative (SNIA) approaches [START_REF] Steefel | Approaches to modeling of reactive transport in porous media[END_REF][START_REF] Yeh | A model for simulating transport of reactive multispecies components: Model development and demonstration[END_REF]. In the GIA, one nonlinear system gathering all equations is solved at each time step. For the sequential solution approaches, flow and reactive transport (or possibly, flow, transport and chemistry) are solved sequentially at each time step. The difference between the SIA and SNIA lies on the fact that for the SIA, the procedure is present in an iterative loop. Sequential approaches are also named operator-splitting approaches. In comparison with GIA, sequential approaches can be easier to implement since existing codes and specific methods can be used for each subproblem (flow, transport, chemistry). Nonetheless, sequential approaches can introduce operator splitting errors [START_REF] Barry | Temporal discretisation errors in non-iterative split-operator approaches to solving chemical reaction/groundwater transport models[END_REF][START_REF] Valocchi | Accuracy of operator splitting for advection-dispersion-reaction problems[END_REF] and restrictions on the time step are mandatory to ensure mass conservation for instance. In [START_REF] Yeh | A model for simulating transport of reactive multispecies components: Model development and demonstration[END_REF], the authors described the GIA as "research tools for one-dimensional investigations" due to their complexity and their high computational requirements. Thanks to the advance of high-performance computing in the last decades, these restrictions are no longer relevant.

The French research group MoMaS proposed in [START_REF] Carrayrou | Reactive transport benchmark of MoMaS[END_REF] a benchmark to test numerical methods used to deal with single phase reactive transport problems. In this framework, several sequential and implicit algorithms have been compared. In [START_REF] Carrayrou | Looking for some reference solutions for the reactive transport benchmark of Mo-MaS with SPECY[END_REF] and [START_REF] Lagneau | HYTEC results of the MoMaS reactive transport benchmark[END_REF], the authors propose respectively a SNIA and a SIA. The other participants [37,[START_REF] De Dieuleveult | A global approach to reactive transport: Application to the MoMas benchmark[END_REF][START_REF] Hoffmann | A parallel global-implicit 2-D solver for reactive transport problems in porous media based on a reduction scheme and its application to the MoMaS benchmark problem[END_REF][START_REF] Mayer | Solution of the MoMaS reactive transport benchmark with MIN3P-model formulation and simulation results[END_REF] deal with various global implicit algorithms. More precisely, in [37], the authors propose a method where the chemical problem is eliminated locally, leading to a nonlinear system where the transport and chemistry subsystems remain separated. In [START_REF] De Dieuleveult | A global approach to reactive transport: Application to the MoMas benchmark[END_REF][START_REF] Erhel | Analysis of a global reactive transport model and results for the MoMaS benchmark[END_REF], the problem is written in the form of differential algebraic equations (DAE) allowing the use of efficient and robust DAE solvers. In [START_REF] Hoffmann | A parallel global-implicit 2-D solver for reactive transport problems in porous media based on a reduction scheme and its application to the MoMaS benchmark problem[END_REF], the authors use a reduction technique introduced in [START_REF] Kräutle | A new numerical reduction scheme for fully coupled multicomponent transport-reaction problems in porous media[END_REF][START_REF] Kräutle | A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions[END_REF] that aims at reducing drastically the number of coupled nonlinear differential equations. Finally in [START_REF] Mayer | Solution of the MoMaS reactive transport benchmark with MIN3P-model formulation and simulation results[END_REF], a direct substitution approach (DSA) consisting in substituting the equations of chemistry directly in the equations of transport is employed. In [START_REF] Carrayrou | Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems-the MoMaS benchmark case[END_REF], the results provided by the different teams are compared with a good agreement. The different versions of this benchmark showed that sequential approaches can be as accurate as global ones provided they are carefully implemented while global approaches are now more efficient that originally thought.

For coupled multiphase flow and reactive transport problems, most of the codes presented in [START_REF] Steefel | Reactive transport codes for subsurface environmental simulation[END_REF] and [START_REF] Zhang | Groundwater reactive transport models[END_REF] use a splitting approach to treat the nonlinear coupling. The global problem is split into a multiphase flow problem and a reactive transport problem. The relevant physical quantities are updated once each of these subproblems has been solved. The GIA has also been applied by few authors to couple multiphase flow and reactive transport problems [START_REF] Brunner | A global implicit solver for miscible reactive multiphase multicomponent flow in porous media[END_REF][START_REF] Fan | A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO 2 storage simulations[END_REF][START_REF] Farshidi | Chemical reaction modeling in a compositional reservoir-simulation framework[END_REF][START_REF] Nghiem | Modeling CO 2 storage in aquifers with a fully-coupled geochemical eos compositional simulator[END_REF]. A description of several sequential and implicit codes is given in Section 8.1.4.

Presentation of codes for reactive transport modeling

Several codes dealing with the numerical modeling of reactive flows in porous media are described in [START_REF] Steefel | Reactive transport codes for subsurface environmental simulation[END_REF][START_REF] Zhang | Groundwater reactive transport models[END_REF]. In the sequel we propose a brief and non-exhaustive description of most commonly used codes, although others exist. In their description, we focus only on some information: How are (single phase or multiphase) flow and reactive transport coupled? What is the method of discretization? What are the applications considered?

AD-GPRS

The Automatic Differentiation General Purpose Research Simulator (AD-GPRS) is a flexible and extensible multiphysics simulation platform [START_REF] Cao | Development of techniques for general purpose simulators[END_REF][START_REF] Jiang | Techniques for modeling complex reservoirs and advanced wells[END_REF]. It has been extended to geochemical modeling using a fully-implicit approach. It has been applied to in-situ conversion of oil shale [START_REF] Fan | Numerical simulation of the in-situ upgrading of oil shale[END_REF] or geological carbon sequestration [START_REF] Fan | A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO 2 storage simulations[END_REF][START_REF] Farshidi | Chemical reaction modeling in a compositional reservoir-simulation framework[END_REF].

COORES

COORES is a code developed by IFPEN to simulate coupled multiphase flow and reactive transport processes. The first version of COORES coupled an existing 3D three phase compositional flow reservoir simulator and the geochemical module Arxim [START_REF] Moutte | ARXIM, a library for thermodynamic modelling of reactive heterogeneous systems, with applications to the simulation of fluid -rock systems[END_REF]. It has been widely used to simulate CO 2 geological sequestration (see for instance [START_REF] Haeberlein | Time Space Domain Decomposition Methods for Reactive Transport -Application to CO 2 Geological Storage[END_REF]). More recently, a new version of COORES named GEOXIM, written in C++ and based on high performance computing has been developed to treat implicitly multiphase reactive flow problems.

CORE 2D

An overview of the code CORE 2D V4 (a COde for modeling partly or fully saturated water flow, heat transport and multi-component REactive solute transport under both local chemical equilibrium and kinetic conditions) and its previous versions is given in [START_REF] Samper | CORE 2D V4: A code for water flow, heat and solute transport, geochemical reactions, and microbial processes[END_REF]. A Sequential Partly Iterative Approach (SPIA) [START_REF] Samper | A sequential partly iterative approach for multicomponent reactive transport with CORE2D[END_REF] improving the accuracy of the traditional Sequential Non-Iterative Approach (SNIA) and less CPU consuming than the general Sequential Iterative Approach (SIA) is employed. CORE 2D V4 and its previous versions codes have been extensively used for many applications such as long-term geochemical evolution of HLW (High Level Waste) repositories in clay [START_REF] Mon | Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay[END_REF][START_REF] Yang | A coupled non-isothermal reactive transport model for long-term geochemical evolution of a HLW repository in clay[END_REF].

CrunchFlow

CrunchFlow is a multicomponent reactive flow and transport code [1]. Both global implicit approach (through a direct substitution approach (DSA)) and operator splitting approach based on SNIA are implemented in Crunchflow. Recently, CrunchFlow has been coupled with a parallel hydrologic model (ParFlow) to take benefit of high-performance computing facilities [START_REF] Beisman | ParCrunchFlow: an efficient, parallel reactive transport simulation tool for physically and chemically heterogeneous saturated subsurface environments[END_REF]. Among many applications, CrunchFlow has been used for instance for reactive contaminant transport [START_REF] Chang | Strontium and cesium release mechanisms during unsaturated flow through waste-weathered hanford sediments[END_REF] or CO 2 sequestration [START_REF] Atchley | Using streamlines to simulate stochastic reactive transport in heterogeneous aquifers: Kinetic metal release and transport in CO 2 impacted drinking water aquifers[END_REF].

DARST

DARST (Delft Advanced Research Terra Simulator) [2] is a simulator using the Operator-Based Linearization (OBL) framework, which has been proposed recently for complex multiphase flow [START_REF] Khait | Operator-based linearization for efficient modeling of geothermal processes[END_REF][START_REF] Voskov | Operator-based linearization approach for modeling of multiphase multi-component flow in porous media[END_REF]. A fully implicit approach using a finite volume scheme is implemented. DARST has been used for several applications including CO 2 storage in saline aquifer [START_REF] Kala | Parameterization of element balance formulation in reactive compositional flow and transport[END_REF] or the prediction of heat production in geothermal reservoirs [START_REF] Wang | Benchmark test and sensitivity analysis for geothermal applications in the Netherlands[END_REF].

eSTOMP

eSTOMP is the parallel processing version of the Subsurface Transport Over Multiple Phases (STOMP) simulator. STOMP [START_REF] White | STOMP, subsurface transport over multiple phases, version 4.0. user's guide[END_REF] is a suite of multifluid subsurface flow and transport simulators (see [START_REF] White | STOMP-ECKEChem: An engineering perspective on reactive transport in geologic media[END_REF] for the story of the previous versions and the description of the reactive module ECKEChem). Its parallel version eSTOMP was scalable up to 131,000 processors cores. A sequential non-iterative coupling between the flow and reactive transport is performed. The code has been used, among other things, for the geological sequestration of CO 2 [START_REF] Nguyen | Three-dimensional modeling of the reactive transport of CO 2 and its impact on geomechanical properties of reservoir rocks and seals[END_REF] or [START_REF] Nguyen | A multiscale hydro-geochemicalmechanical approach to analyze faulted CO 2 reservoirs[END_REF] where a coupling with geomechanics is achieved or desorption of uranium from contaminated sediments [START_REF] White | STOMP-ECKEChem: An engineering perspective on reactive transport in geologic media[END_REF]. [START_REF] Nghiem | Modeling CO 2 storage in aquifers with a fully-coupled geochemical eos compositional simulator[END_REF] is a fully implicit geochemical compositional Equation-of-State (EOS) compositional simulator. An adaptive-implicit method [START_REF] Collins | Efficient approach to adaptiveimplicit compositional simulation with an equation of state[END_REF] is applied to solve the nonlinear system. It consists in solving implicitly only a small number of blocks, while the remaining ones are solved explicitly, thereby reducing the size of the nonlinear system. GEM-GHG has been widely used for the numerical modeling of CO 2 storage in aquifers [START_REF] Nghiem | Modeling CO 2 storage in aquifers with a fully-coupled geochemical eos compositional simulator[END_REF][START_REF] Nghiem | Modeling aqueous phase behavior and chemical reactions in compositional simulation[END_REF][START_REF] Thibeau | A modeling study of the role of selected minerals in enhancing CO 2 mineralization during CO 2 aquifer storage[END_REF].

GEM-GHG

GEM-GHG

HYDROGEOCHEM

HYDROGEOCHEM [START_REF] Yeh | HYDROGEOCGEM: A coupled model of variably saturated flow, thermal transport, and reactive biogeochemical transport. Groundwater reactive transport models[END_REF][START_REF] Yeh | HYDROGEOCHEM 6.1 A Two-Dimensional Model of Coupled Fluid Flow, Thermal Transport, HYDROGEOCHEMical Transport, and Geomechanics through Multiple Phase Systems Version 6.1 (A Two Dimensional THMC Processes Model[END_REF][START_REF] Yeh | HYDROGEOCHEM 7.1 A Three-Dimensional Model of Coupled Fluid Flow, Thermal Transport, HYDROGEOCHEMical Transport, and Geomechanics through Multiple Phase Systems Version 7.1 (A Three Dimensional THMC Processes Model[END_REF], couple equations describing thermal (T), hydrology (H), mechanics (M) and chemical (C) processes (THMC). Four fully-coupled modules solving multiphase flow, thermal transport, reactive biological transport and geomechanics displacement and deformation can be com-puted iteratively. HYDROGEOCHEM has been used for numerous applications including for instance polluted soil remediation [START_REF] Kent | Transport of chromium and selenium in the suboxic zone of a shallow aquifer: Influence of redox and adsorption reactions[END_REF] or radionuclide migration [START_REF] Yeh | Innovative mathematical modeling in environmental remediation[END_REF].

8.1.4.9 HYTEC HYTEC [START_REF] Van Der Lee | Module-oriented modeling of reactive transport with HYTEC[END_REF] is a code coupling hydrodynamic flow and multi-component transport with biogeochemical processes using the geochemical module CHESS [START_REF] Van Der Lee | Thermodynamic and mathematical concepts of CHESS[END_REF]. Coupling between flow and geochemical transport is achieved via a sequential iterative approach. HYTEC has been validated by several benchmark studies (for instance in the MoMaS benchmark above mentioned [START_REF] Carrayrou | Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems-the MoMaS benchmark case[END_REF][START_REF] Lagneau | HYTEC results of the MoMaS reactive transport benchmark[END_REF]). Among the numerous applications treated by HYTEC, we can mention for instance the cement degradation [START_REF] Windt | Modeling the degradation of portland cement pastes by biogenic organic acids[END_REF], the performance assessment of radioactive waste disposal [START_REF] Debure | HLW glass dissolution in the presence of magnesium carbonate: Diffusion cell experiment and coupled modeling of diffusion and geochemical interactions[END_REF] or the geological storage of sour gases [START_REF] Lagneau | Reactive transport modelling of CO 2 sequestration in deep saline aquifers[END_REF][START_REF] Sin | Integrating a compressible multicomponent two-phase flow into an existing reactive transport simulator[END_REF][START_REF] Sin | 2D simulation of natural gas reservoir by two-phase multicomponent reactive flow and transport-description of a benchmarking exercise[END_REF]. Recently, HYTEC has been extended to two-phase flow using an operator splitting approach [START_REF] Sin | Numerical simulation of compressible two-phase flow and reactive transport in porous media -Applications to the study of CO 2 storage and natural gas reservoirs[END_REF][START_REF] Sin | Integrating a compressible multicomponent two-phase flow into an existing reactive transport simulator[END_REF][START_REF] Sin | 2D simulation of natural gas reservoir by two-phase multicomponent reactive flow and transport-description of a benchmarking exercise[END_REF].

IPARS

IPARS (Integrated Parallel and Accurate Reservoir Simulator) [START_REF] Wheeler | Modeling of Flow and Reactive Transport in IPARS[END_REF] is an environment providing some physical models for the numerical simulation of flow in oil reservoirs or aquifers. The TRCHEM (TRansport with general biogeoCHEMistry) [START_REF] Peszynska | Multiphase reactive transport module (TRCHEM) in IPARS[END_REF] module implemented in the framework of IPARS simulates multiphase reactive transport in porous media thanks to a time splitting approach. In [START_REF] Peszynska | Reactive transport model coupled to multiphase flow models[END_REF] applications to the migration of radionuclide and bioremediation of xylene are depicted while in [START_REF] Thomas | Multiblock methods for coupled flow-transport and compositional flow through porous media -applications to the simulation of transport of reactive species and carbon sequestration[END_REF], bioremediation of toluene is considered.

M++

M++ is a finite element toolbox for parallel computations based on C++ using the MPI standard for parallelization [START_REF] Wieners | A geometric data structure for parallel finite elements and the application to multigrid methods with block smoothing[END_REF]. In [START_REF] Brunner | Multiphase multicomponent flow in porous media with general reactions: efficient problem formulations, conservative discretizations, and convergence analysis[END_REF][START_REF] Brunner | A global implicit solver for miscible reactive multiphase multicomponent flow in porous media[END_REF], the reduction technique described in [START_REF] Hoffmann | A general reduction scheme for reactive transport in porous media[END_REF] for reactive single phase flow was extended to the case of two-phase reactive flow and implemented in the M++ framework. Unlike the classical strategy, their general transformation method does not only eliminate unknown equilibrium reaction rates. It also potentially reduces the nonlinear coupled part of the problem, allowing the use of large time steps and avoiding the potential drawbacks of sequential approaches.

MIN3P

MIN3P [START_REF] Mayer | Reactive Transport Modeling in Variably Saturated Media with MIN3P: Basic Model Formulation and Model Enhancements[END_REF][START_REF] Mayer | Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions[END_REF] is a general purpose multicomponent reactive transport code for variably saturated media. Flow is governed by the Richards equation while a direct substitution approach is employed to tackle reactive transport problem. MIN3P has been used to consider numerous applications involving saturated flows such as for instance the groundwater remediation [START_REF] Mayer | Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater[END_REF]. To take into account more complex phenomena, some specific enhanced versions of MIN3P have been implemented. MIN3P-Bubble [38] has been developed to consider gas entrapment and release in the groundwater zone. In MIN3P-Dusty [START_REF] Molins | Coupling between geochemical reactions and multicomponent gas and solute transport in unsaturated media: A reactive transport modeling study[END_REF], some enhancements have been performed to simulate multicomponent advective and diffusive gas migration in the vadose zone. In MIN3P-THCm [START_REF] Bea | Modelling reactive transport in sedimentary rock environments -Phase II MIN3P-THCm code enhancements and illustrative simulations for a glaciation scenario[END_REF][START_REF] Bea | Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative example[END_REF], a THMC formulation has been implemented.

NUFT

NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) [START_REF] Hao | Overview of NUFT: A Versatile Numerical Model for Simulating Flow and Reactive Transport in Porous Media[END_REF] is a code for modeling multiphase, multi-component heat and mass flow and reactive transport in unsaturated and saturated porous media. Several models of varying complexity, ranging from isothermal single phase single component flow (UCSAT module) to non-isothermal multiphase flow (USNT module) can be sequentially coupled to a geochemical multiphase transport module (TRANS module). The TRANS module combines and solves in a fully implicit manner the chemical equations (equilibrium and kinetic) and the transport equations. The numerous applications of NUFT include geological disposal of nuclear waste [START_REF] Glassley | Three-dimensional spatial variability of chemical properties around a monitored waste emplacement tunnel[END_REF], CO 2 geologic sequestration and storage [START_REF] Johnson | Reactive transport modelling of CO 2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning[END_REF] or groundwater monitoring [START_REF] Glassley | The impact of climate change on vadose zone pore waters and its implication for long-term monitoring[END_REF].

OpenGeoSys

OpenGeoSys [START_REF] Kolditz | OpenGeoSys: An open-source initiative for numerical simulation of thermohydro-mechanical/chemical (THM/C) processes in porous media[END_REF] is an open-source initiative for numerical simulation of thermo-hydro-mechanicalchemical (THMC) processes in porous media. OpenGeoSys has been validated and verified through numerous benchmarks initiatives (see for instance [START_REF] Kolditz | Thermo-hydro-mechanical-chemical processes in fractured porous media[END_REF]). Thanks to the IWAS-ToolBox [START_REF] Kalbacher | The IWAS-ToolBox: Software coupling for an integrated water resources management[END_REF], Open-GeoSys has been coupled with external geochemical simulation tools such as PHREEQC2 [START_REF] Xie | Numerical simulation of reactive processes in an experiment with partially saturated bentonite[END_REF] to simulate the chemical processes in partially saturated bentonite, GEM-Selektor [START_REF] Kulik | GEM-Selektor (GEMS-PSI) -research package for thermodynamic modeling of aquatic (geo)chemical systems by gibbs energy minimization[END_REF] for radium migration an retardation in [START_REF] Shao | Modeling reactive transport in non-ideal aqueous-solid solution system[END_REF] or BRNS [9] for organic carbon degradation in [START_REF] Centler | GeoSysBRNS-a flexible multidimensional reactive transport model for simulating biogeochemical subsurface processes[END_REF].

ORCHESTRA

ORCHESTRA [START_REF] Meeussen | Orchestra: An object-oriented framework for implementing chemical equilibrium models[END_REF] is a platform dedicated to the modeling of reactive flows in porous media. Both sequential iterative and non-iterative algorithms are available to split the flow and chemistry subproblems. ORCHESTRA has been broadly used for the management of groundwater pollution (see for instance [START_REF] Farmer | Assessment and modelling of the environmental chemistry and potential for remediative treatment of chromium-contaminated land[END_REF] for chromium remediation or [START_REF] Dijkstra | Leaching of heavy metals from contaminated soils: An experimental and modeling study[END_REF] for leaching of heavy metals from polluted soils). Recently, in [START_REF] Janot | PEST-ORCHESTRA, a tool for optimising advanced ion-binding model parameters: Derivation of NICA-Donnan model parameters for humic substances reactivity[END_REF] ORCHESTRA has been coupled with the parameter estimation software PEST to calculate ion-binding model parameters.

PHREEQC

PHREEQC [START_REF] Parkhurst | User's guide to PHREEQC (version 2) -a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations, water-resources investigations[END_REF][START_REF] Parkhurst | Description of input and examples for PHREEQC version 3-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[END_REF] is a code designed to perform a wide variety of aqueous geochemical calculations. Transport and geochemical reactions are coupled thanks to a sequential non-iterative strategy. Due to its wide range of geochemical capabilities, its open-source code and the continued support and development, PHREEQC has been coupled by many researchers with existing flow and transport codes via a sequential non-iterative approach. For instance, in the code HPx (HP1, HP2, HP3) [START_REF] Simunek | The HP2 program for HYDRUS (2D/3D): A coupled code for simulating two-dimensional variably-saturated water flow, heat transport, and biogeochemistry in porous media, version 1.0, pc progress[END_REF], a coupling between HYDRUS [START_REF] Simunek | Modeling nonequilibrium flow and transport processes using hydrus[END_REF]272] and PHREEQC is proposed for variably saturated flow conditions. In iCP [START_REF] Nardi | Interface COMSOL-PHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry[END_REF], a coupling between the multiphysic simulator COMSOL and PHREEQC is presented with an application to a large scale thermo-hydro-chemical (THC) problem. PHAST [START_REF] Parkhurst | PHAST Version 2-a program for simulating groundwater flow, solute transport, and multicomponent geochemical reactions[END_REF] and PHT3D [START_REF] Prommer | PHT3D, a reactive multicomponent transport model for saturated porous media[END_REF] couple respectively the geochemical model PHREEQC and the flow and transport calculations performed by HST3D [START_REF] Kipp | Guide to the Revised Heat and Solute Transport Simulator HST3D -Version 2[END_REF] and MT3DMS [START_REF] Zheng | MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in ground water systems: documentation and user's guide[END_REF].

PFLOTRAN

PFLOTRAN [START_REF] Hammond | PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers[END_REF][START_REF] Lichtner | PFLOTRAN User manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes[END_REF], is a massively parallel reactive flow and transport code for modeling subsurface processes. Parallelization is performed using a domain decomposition method thanks to the PETSc [START_REF] Balay | PETSc Users Manual[END_REF] parallel framework. Several flow modules can be sequentially coupled to a multicomponent geochemical transport module. PFLOTRAN has been used for numerous subsurface applications including for example uranium transport at the Hanford site [START_REF] Hammond | Field-scale model for the natural attenuation of uranium at the hanford 300 area using high-performance computing[END_REF] or CO 2 geological sequestration [START_REF] Lichtner | Modeling multiscale-multiphase-multicomponent reactive flows in porous media: Application toCO 2 sequestration and enhanced geothermal energy using[END_REF][START_REF] Navarre-Sitchler | Elucidating geochemical response of shallow heterogeneous aquifers to CO 2 leakage using high-performance computing: Implications for monitoring of CO 2 sequestration[END_REF].

PROOST

PROOST [START_REF] Gamazo | PROOST: Object-oriented approach to multiphase reactive transport modeling in porous media[END_REF] is a simulator for modeling multiphase reactive transport in porous media. A sequential iterative approach is used where CHEPROO (CHEmical PRocesses Object Oriented) [START_REF] Bea | CHEPROO: A Fortran 90 objectoriented module to solve chemical processes in Earth Science models[END_REF] deals with the geochemical processes. In [START_REF] Gamazo | PROOST: Object-oriented approach to multiphase reactive transport modeling in porous media[END_REF], an application to the modeling of a column of porous gypsum subjected to a constant source of heat is given while in [START_REF] Gamazo | Modeling the interaction between evaporation and chemical composition in a natural saline system[END_REF], evaporation of brine is considered.

RETRASO-CODEBRIGHT

RETRASO-CODEBRIGHT (RCB) is the result of the coupling between two codes: RETRASO [START_REF] Saaltink | RETRASO, a code for modeling reactive transport in saturated and unsaturated porous media[END_REF] and CODE_BRIGHT [START_REF] Olivella | Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media[END_REF]. RETRASO (REactive TRAnsport of SOlutes) is designed to solve reactive transport problems while CODE_BRIGHT (COupled DEformormation of BRIne Gas and Heat Transport) aims at performing coupled thermo-hydro-mechanical (THM) analysis in geological porous media. By consequence, in the coupling strategy, CODE_BRIGHT computes the flow properties (Darcy's velocity for each phase, saturation of each phase, temperature, density...) and give them to the RETRASO code for the calculation of reactive transport problem. In [START_REF] Saaltink | A method for incorporating equilibrium chemical reactions into multiphase flow models for CO 2 storage[END_REF], the authors added directly the chemical equations in CodeBright to consider a fully implicit approach to deal with a scenario of geological sequestration of CO 2 . The solution of the chemical problem is pre-computed by the code CHEPROO [START_REF] Bea | CHEPROO: A Fortran 90 objectoriented module to solve chemical processes in Earth Science models[END_REF] for some number of reference conditions (they are shown to depend only on gas pressure), and then polynomial interpolation is used within the solution procedure, leading to a large reduction in computing time.

RT3D

RT3D [START_REF] Clement | RT3D-A modular computer code for simulating reactive multi-species transport in 3-dimensional groundwater aquifers[END_REF][START_REF] Clement | RT3D: Reactive Transport in 3-Dimensions[END_REF] is a code for simulating three-dimensional, multi-species, reactive transport in groundwater. It is a member of the MT3D [START_REF] Zheng | MT3D: A Modular Three-dimensional transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems[END_REF] family of codes derived from MT3DMS [START_REF] Zheng | MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in ground water systems: documentation and user's guide[END_REF]. RT3D solves only reactive transport with a prescribed velocity and is consequently coupled with the MODFLOW code [START_REF] Harbaugh | MODFLOW-2005: the U.S. geological survey modular ground-water model the ground-water flow process[END_REF]. RT3D has been used for many applications, particularly for bioremediation of contaminated soils (see for instance [START_REF] Tartakovsky | Ethanol-stimulated bioremediation of nitrate-contaminated ground water[END_REF] and the references in [START_REF] Clement | RT3D: Reactive Transport in 3-Dimensions[END_REF]).

SPECY

SPECY [START_REF] Carrayrou | Looking for some reference solutions for the reactive transport benchmark of Mo-MaS with SPECY[END_REF] is a reactive transport code based on the non-iterative operator splitting approach (SNIA). The reactive transport equations are solved in three stages: a convection step, a dispersion step and finally a chemical equilibrium computation. Each step can be solved with a specific and relevant method. Recently in [START_REF] Machat | Comparison of linear solvers for equilibrium geochemistry computations[END_REF], the authors compared linear solvers for equilibrium geochemistry computations. Precisely, several direct solvers (LU decomposition, QR decomposition, Cholsesky decomposition...) and iterative solvers (GMRES, Gauss Seidel, Conjuate gradient, Biconjugate gradient...) are compared using a panel of chemical systems, including or excluding the formation of mineral species.

TOUGHREACT

TOUGHREACT [START_REF] Xu | TOUGHREACT -A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO 2 geological sequestration[END_REF][START_REF] Xu | TOUGHREACT: A Simulation Program for Subsurface Reactive Chemical Transport under Non-isothermal Multiphase Flow Conditions[END_REF][START_REF] Xu | TOUGHREACT version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions[END_REF] is a numerical simulation program for reactive flows in porous and fractured media. It was developed by adding geochemical calculations in the multiphase simulator TOUGH [START_REF] Pruess | The TOUGH codes-a family of simulation tools for multiphase flow and transport processes in permeable media[END_REF]. The reactive transport is achieved by a sequential approach that can be either iterative or not. The broad spectrum of applications of TOUGHREACT ranges from CO 2 geological sequestration [START_REF] Audigane | Two-dimensional reactive transport modeling of CO 2 injection in a saline aquifer at the Sleipner site, North Sea[END_REF][START_REF] Xu | TOUGHREACT -A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO 2 geological sequestration[END_REF] to bentonite alteration in a nuclear waste repository [START_REF] Xu | Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effects[END_REF][START_REF] Xu | Bentonite alteration due to thermal-hydro-chemical processes during the early thermal period in a nuclear waste repository[END_REF] or geothermal systems [START_REF] Xu | Reactive transport modeling of injection well scaling and acidizing at Tiwi field, Philippines[END_REF][START_REF] Xu | On modeling of chemical stimulation of an enhanced geothermal system using a high ph solution with chelating agent[END_REF].

Synthesis

Table 8.1 summarizes the description of the codes presented above. We focus on the supported discretization method, the coupling strategies and if there exists a parallel version of the code. To describe the coupling strategies, we consider two levels of coupling depending on whether the code deals with multiphase multicomponent flow or only saturated flow. If the code solves reactive multiphase multicomponent flow, we specify how the multiphase flow and the reactive transport problem are coupled (implicitly or sequentially). Then, if the code considers a sequential strategy, we specify what is the approach adopted to deal with the reactive transport (implicit or sequential). For codes solving only saturated flow, we specify only this latter point. [START_REF] Gamazo | PROOST: Object-oriented approach to multiphase reactive transport modeling in porous media[END_REF] and [START_REF] Steefel | Reactive transport codes for subsurface environmental simulation[END_REF]).

Codes

Presentation of DuMu X

DuMu X (DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media) [3] is a free and open-source simulator for flow and transport processes in porous media. It is based on DUNE (Distributed and Unified Numerics Environment) [4], a modular toolbox for solving partial differential equations with grid-based methods [START_REF] Bastian | A generic grid interface for parallel and adaptive scientific computing. II. Implementation and tests in DUNE[END_REF][START_REF] Bastian | A generic grid interface for parallel and adaptive scientific computing. i. abstract framework[END_REF]. A good overview and description of DuMu X can be found in [START_REF] Flemisch | DuMu X : DUNE for multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media[END_REF]. Nonetheless, a short description is given in the sequel. DuMu X includes several standard models of varying complexity, ranging from stationary isothermal single phase single-component flow to transient non-isothermal multiphase compositional flow. All models employ efficient nonlinear solvers in close combination with a sophisticated time step management. The capabilities of DUNE are heavily exploited to offer various spatial discretization schemes as well as the possibility of parallel computations.

DuMu X is coded in C++ and employs high-level generic programming techniques. The basic principle of DuMu X code designing is modularity. DuMu X provides shelves of modularized objects, enabling the user to choose the appropriate parts according to the handled problem. The main shelves of this modular setup are (see Figure 8.1):

• Numerical schemes,

• Model concepts,

• Control strategies for the simulation,

• Material systems: multitude of substances (components), material laws. 

Numerical schemes

When using DuMu X , we have the choice between two existing standard approaches for the solution of porous media problems: a coupled fully-implicit approach and a decoupled semi-implicit approach. The fully-implicit approach solves a large system gathering all the original coupled balance equations by an implicit method in time. For the implicit approach, two spatial discretization methods are provided: a cell-centered finite volume method and a box method which unites the advantages of the finite-volume and finite-element methods. The decoupled approach splits the set of balance equations into one equation for the pressure and the remaining ones for mass or energy balance equations. Then, the pressure equation is solved implicitly while the transport of mass/energy is solved explicitly (as the well known IMPES strategy [START_REF] Chen | Computational Methods for Multiphase Flows in Porous Media[END_REF]). In comparison with a fully implicit approach, the decoupled strategy allow to use of a specific discretization methods for each equation. The standard method used in the decoupled strategy is a cell-centered finite volume method. For both the coupled fully-implicit and decoupled approaches, linearized problem obtained after the procedure of spatial and time discretization is solved by one of the linear solvers implemented in DUNE.

Control strategies

In DuMu X , both the coupled fully-implicit and decoupled schemes use a unique strategy for the time-step control: the period of simulation, at first, is divided into episodes, defined as time periods where boundary conditions, source terms can be time-dependent. Then simulation time is advanced by the minimum of the time-step suggested by numerical schemes or the time span until the end of episodes. For the coupled fully-implicit schemes, the control of the time-step is based on the number of iterations required by the Newton method to achieve convergence for the last time iteration. The time-step is reduced, if the number of iterations exceeds a specified threshold, whereas it is increased if the method converges within less iterations. For the decoupled schemes, the calculation of the step size is constrained by a CFL type condition.

Models

DuMu X provides several standard models of varying complexity. An overview of the available models in the version 2.12 [117] with their capabilities and characteristics is given in Table 8.2. In the names of models, "p" stands for the number of phases and "c" denotes the number of components present in each phase. Several models can be coupled with an energy balance equation and extended to non-isothermal simulations.

Material systems

The DuMu X material system constitutes a framework that allows a convenient definition and usage of parameters and material laws. This framework has a modular structure and is separated into the following parts.

Components. The term component stands for constituents of the phases which can be associated with a unique chemical species or with a group of species exploiting similar physical behavior. Each component is implemented as a class with functions describing the physical properties of the component (molar mass, density, viscosity,. . . ).

FluidSystems. A FluidSystem describes the properties of the fluid phases involved in the problem. These properties include phase densities and viscosities as well as fugacities and diffusion coefficients of components inside phases. They depend on the composition of the phases which is described in a separate object of type FluidState containing, among other things, the saturation, the pressure, the temperature or the mole fraction values.

FluidMatrixInteractions. This module collects the material laws which describe interactions of fluid phases with the porous medium (capillary pressure law and relative permeability SpatialParameters. This part collects all parameters that may be space dependent in the computational domain (porosity, intrinsic permeability, heat capacity, heat conductivity, material law, . . . ).

Chapter 9

Main contributions 

Introduction

This chapter aims at describing our main contributions concerning the development and the implementation of new numerical schemes in the DuMu X framework. As mentioned in Section 8.2, DuMu X is a free and open-source environment developed at the University of Stuttgart in which our team has developed all its codes since several years. We chose the simulator DuMu X because it provides a sustainable environment and sophisticated tools for developers to implement some new numerical methods for the simulation of flows in porous media. Among others, it allows the users to benefit from an environment where tools for meshing, discretization and linear solvers are provided as well as usual constitutive laws for flows in porous media. Recently, the environment DuMu X received a funding of about 680 KC (2019-2022) from the German Research Foundation for their project "Sustainable infrastructure for the improved usability and archivability of research software on the example of the porous-media simulator DuMu X ". This recognition has reinforced our choice to continue to use this environment for our upcoming projects. In the framework of the Euratom FP7 project FORGE: Fate Of Repository Gases, we were involved in the Work Package WP1.2 (Numerical benchmarks on Gas Migration). This Work Package aimed at comparing a number of numerical models applied to a specific problem in the context of hydrogen flow and transport in a nuclear waste repository. The processes were modeled by a two-phase (water and hydrogen) transient flow in a heterogeneous porous medium under isothermal conditions. We performed a three-dimensional numerical simulation of a module of a repository for high-level waste in a clay host rock. Section 9.2 describes this work where we coupled an upscaling technique to manage the strong heterogeneities and a vertex-centred finite-volume method implemented in DuMu X to yield very accurate solutions. As far as we know, concerning reactive flows, except in [START_REF] Bielinski | Numerical simulation of CO 2 sequestration in geological formations[END_REF] where geological simulation of CO 2 is considered, most of the contributions in DuMu X considering reactivity only consider kinetic reactions. For instance, in [START_REF] Jambhekar | Kinetic approach to model reactive transport and mixed salt precipitation in a g-flow-porous-media system[END_REF] and [START_REF] Mejri | Heterogeneity effects on evaporation-induced halite and gypsum co-precipitation in porous media[END_REF], a fully implicit approach is used to model evaporation and salt precipitation. In [START_REF] Hommel | Numerical investigation of microbially induced calcite precipitation as a leakage mitigation technology[END_REF][START_REF] Hommel | Investigating the influence of the initial biomass distribution and injection strategies on biofilmmediated calcite precipitation in porous media[END_REF][START_REF] Hommel | A revised model for microbially induced calcite precipitation: Improvements and new insights based on recent experiments[END_REF], the authors study the microbially induced calcite precipitation for preventing leakage by clogging the reservoir during geological storage of CO 2 . In these contributions, the geochemistry is modeled by nonlinear souce/sink terms in the balance equations. To treat equilibrium reactions involved in our applications, in the framework of the PhD thesis of V. Vostrikov [START_REF] Vostrikov | Numerical Simulation of two-phase multicomponent flow with reactive transport in porous media[END_REF], we developed and integrated in DuMu X a sequential approach to study two-phase reactive flows [29,30]. Our scheme splits the global problem into two sub-problems. The first sub-problem computes a two-phase compositional flow where only species present in both phases are treated implicitly. Exchanges between phases are totally solved in this step and the contribution of the other species is treated explicitly. The second sub-problem calculates a reactive transport problem where flow properties (Darcy velocity for each phase, saturation of each phase, temperature, density,...) are given by the first step. In [29,30], a SIA has been implemented for the reactive transport sub-problem. To improve the robustness of the scheme and the possible accuracy loss due to the time-splitting involved by the SIA, we switched to a GIA. More precisely, we used a direct substitution approach (DSA). Then in [15], still considering a sequential approach we have coupled this fully implicit approach for the reactive transport problem with a compositional two-phase flow. Both subproblems are now solved using a fully implicit manner. These developments have been validated by several test cases including high performance computing and considering several applications. For instance in [14], the migration of hydrogen produced by the corrosion reaction in deep geological radioactive waste repository is studied while in [15], a scenario of geological storage of CO 2 in a deep saline aquifer is treated. In this context, Section 9.3 summarizes our contributions on the numerical simulation of multiphase reactive flows using sequential approaches. More recently, in the framework of the PhD thesis of M. Id Moulay [START_REF] Moulay | 3D numerical simulation of reactive multiphase flow in porous media[END_REF], we have abandoned sequential approaches to consider a fully coupled fully implicit strategy. In addition to the improvement in terms of accuracy due to the elimination of splitting errors, we expect to be able to use larger time steps during simulations. In [31], a fully implicit approach for a single phase multicomponent flow with reactive transport has been developed and validated via numerous 2D and 3D test cases including high performance computing. Then in [16], the method has been extended to consider two-phase reactive flows. An advanced comparison between sequential and fully coupled fully implicit approaches is in progress. Section 9.4 describes these recent developments.

Numerical simulations of gas migration in deep repository for radioactive waste

This section proposes a synthesis of following article [13] which can be consulted in its entirety in the Appendix:

• Ahusborde E., Amaziane B., Jurak M., 3D numerical simulation by upscaling of gas migration through engineered and geological barriers for a deep repository for radioactive waste, Geological Society, London, Special Publications, Vol 415, [START_REF] Gamazo | PROOST: Object-oriented approach to multiphase reactive transport modeling in porous media[END_REF][START_REF] Gear | Numerical Initial Value Problems in Ordinary Differential Equation[END_REF][START_REF] Ben Gharbia | Study of compositional multi-phase flow formulations with cubic EOS[END_REF][START_REF] Gharbia | Gas phase appearance and disappearance as a problem with complementarity constraints[END_REF][START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF][START_REF] Glassley | Three-dimensional spatial variability of chemical properties around a monitored waste emplacement tunnel[END_REF][START_REF] Glassley | The impact of climate change on vadose zone pore waters and its implication for long-term monitoring[END_REF][START_REF] Goda | A multistep technique with implicit difference schemes for calculating two-or threedimensional cavity flows[END_REF][START_REF] Gourdain | High performance parallel computing of flows in complex geometries: I. methods[END_REF][START_REF] Gruber | Finite Element Methods in Linear Ideal MHD[END_REF][START_REF] Guermond | Error analysis of pressure-correction schemes for the time-dependent stokes equations with open boundary conditions[END_REF][START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF][START_REF] Guermond | Velocity-correction projection methods for incompressible flows[END_REF][START_REF] Guermond | Calculation of incompressible viscous flows by an unconditionally stable projection fem[END_REF][START_REF] Haeberlein | Time Space Domain Decomposition Methods for Reactive Transport -Application to CO 2 Geological Storage[END_REF][START_REF] Haeberlein | A test case for multi-species reactivetransport in heterogeneous porous media applied to CO 2 geological storage[END_REF][START_REF] Hammond | Field-scale model for the natural attenuation of uranium at the hanford 300 area using high-performance computing[END_REF][START_REF] Hammond | PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers[END_REF][START_REF] Hammond | Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN[END_REF]2015.

Abstract: This paper presents the results of a benchmark study that compares a number of numerical models applied to a specific problem in the context of hydrogen flow and transport in a nuclear waste repository. The processes modeled are two-phase (water and hydrogen) immiscible compressible two-component transient flow in a heterogeneous porous medium under isothermal conditions. The three-dimensional (3D) model represents a module of a repository for high-level waste in a clay host rock. An upscaling technique and a vertex-centered finite-volume method are employed to yield very accurate solutions. Since the full range of results required in the benchmark is too large to be displayed in this paper, we focus on the evolution of the pressures, the saturations, the fluxes and the comparison of the numerical results with the other participants. A homemade C++ upscaling code and the parallel multiphase flow simulator DuMu X have been adopted for this study.

Numerical simulation plays an important role in the optimization of design of a nuclear waste repository and its safety case, used as a bridge between current process knowledge and predictive assessment, on large time and space scales that experiments cannot reach. In this context, from 2009 to 2012, the Laboratory of Mathematics and its Applications of Pau (LMAP) has participated in the European project FORGE (Fate Of Repository Gases: http://www.bgs.ac.uk/forge/). The FORGE project studied key gas migration issues in repository performance assessment. We were involved in the Work Package WP1: "Treatment of gas in performance assessment" that dealt with the modeling and the numerical migration of hydrogen in a nuclear waste repository. Hydrogen is produced by the corrosion of metallic canisters used in the repository design. This Work Package brought together, in addition to the CNRS, numerous partners (ANDRA, CEA, IRSN, SCK-CEN, LEI, ENSI, NDA, Quintessa, Geofirma). Most of them are national radioactive waste management agencies. Three benchmarks at different scale were proposed (cell scale, module scale and repository scale). The processes modeled are two-phase (water and hydrogen) immiscible compressible two component transient flow in an heterogeneous porous medium under isothermal conditions. This complex flow is governed by a set of nonlinear and highly coupled partial differential equations.

Figure 9.1 represents an horizontal cross-section of the whole repository model, which is composed of 10 modules connected by the main drift going to the well that connects the repository to the surface. Figure 9.1: Schematic representation of a repository for high-level waste (from [START_REF] Wendling | Final report on benchmark studies on repository-scale numerical simulations of gas migration, part 1: Cell scale benchmark[END_REF]).

Each module contains 100 waste canisters, 50 on each side of the access drift that connects them to the main drift. One of the modules is shown in Figure 9.2. Each canister in the module is separated from the access drift by a bentonite plug. The bentonite plugs are also placed in the main drift in order to separate one module from another and, finally, there is a bentonite plug in the well that separates the whole repository from the surface. All tunnels that make the repository are surrounded by a layer of the EDZ, which is a fractured medium and thus more permeable than the surrounding geological medium. The contact between the waste canister and the EDZ is not perfect, and a thin space of 1 cm exists (called the interface). It is presented in the model as a very permeable porous medium with very low capillary pressure curve (compared to other material curves). The main difficulty of the benchmark is its highly heterogeneous structure (material with very different permeabilities), and the presence of structures such as the interfaces and the EDZ, which have very small dimensions compared to the dimensions of the computational domain (thickness of the interface of 1 cm compared to the length of 700 m of the module).

A detailed 3D modeling of the FORGE module scale benchmark would require a tremendous computational effort, even when using high-performance simulator codes. Because such a detailed model can be highly CPU-time consuming, there exist various attempts that aim at the optimum compromise between the quality of the simulation and the required amount of CPU time. Upscaling refers to the techniques used to transform a fine-grid model into a more practical, coarser one. In an upscaled model, each coarse-grid block is composed of a number of fine-grid blocks, all having different physical properties. The upscaling replaces these heterogeneous properties of the porous material within the coarse-grid block with the equivalent homogeneous ones, which will be called the effective properties. To circumvent the heterogeneities and the difficulty in taking into account the thin interface surrounding the waste canisters and the bentonite plugs, we have considered a mathematical upscaling strategy. We have designed two levels of upscaling, denoted UM1 and UM2 (Upscaled Model), of increasing homogeneity in order to verify, by comparison, the capacity of the upscaled models to simulate global behaviour of the module. In UM1, the canisters and their plugs, EDZ, and the interface are substituted by an homoge-neous block. In UM2, the homogeneous block is enlarged by the surrounding geological medium: that is, the EDZ and the interface, the canister, the plug and the surrounding geological media are substituted by one homogeneous block. The corresponding grids are shown in Figures 9.3 A strategy of coupling between these upscaling techniques and a two-phase two-component flow has been implemented in DuMu X . Figure 9.5 represents the pressure and the saturation at different instants. Figure 9.6 compares the gas pressure at two points C50-3 (top) and Pd-1 (bottom) between our simulations and simulations of four other participants of the benchmark: the Lithuanian Energy Institute (LEI), the Nuclear Waste Management Organization (NWMO), the Agence Nationale pour la gestion des Déchets RAdioactifs (ANDRA) and the Nuclear Decommissioning Authority (NDA).

The results are in good accordance and show the reliability of our approach. The CPU time on eight processors for the UM2 was about 4h, while the UM1 took approximately 1 month on 24 processors. Our simulations show that the maximum pressure in the module will be about 7 MPa and that, at the places where the fluxes were calculated, the convection in the gaseous phase will be the main method of hydrogen transport. The transport of hydrogen dissolved in water is about two or three orders of magnitude less significant than the transport of gaseous hydrogen. Hydrogen is transported from the cells to the access and main drifts, which represent preferential paths for the hydrogen migration. The geological medium shows only a slight desaturation of less than 2 %. The main drift bentonite blocks are almost fully resaturated after 1000 years. The above results illustrate that the proposed mathematical upscaling combined to a finite-volume method is capable of tackling, in a robust and accurate fashion, various physical phenomena relevant to hydrogen flow and transport in a nuclear waste repository.

Sequential algorithm for numerical simulation of two-phase reactive flows

The content of this section relies on a synthesis of article [15] and is also based on articles [14,29,30]. These 4 articles are listed below and can be found in the Appendix:

• Ahusborde E., Amaziane B., El Ossmani M., Improvement of numerical approximation of coupled two-phase multicomponent flow with reactive geochemical transport in porous media, Oil & Gas Science and Technology -Rev. IFP Energies nouvelles, Vol 73, 73, 2018.

Abstract: In this paper, we consider a parallel finite volume algorithm for modeling complex processes in porous media that include multiphase flow and geochemical interactions. Coupled flow and reactive transport phenomena often occur in a wide range of subsurface systems such as hydrocarbon reservoir production, groundwater management, carbon dioxide sequestration, nuclear waste repository or geothermal energy production. This work aims to develop and implement a parallel code coupling approach for non-isothermal multiphase multicomponent flow and reactive transport simulation in the framework of the parallel open-source platform DuMu X . Modeling such problems leads to a highly nonlinear coupled system of degenerate partial differential equations to algebraic or ordinary differential equations requiring special numerical treatment. We propose a sequential fully implicit scheme solving firstly a multiphase compositional flow problem and then a Direct Substitution Approach (DSA) is used to solve the reactive transport problem. Both subsystems are discretized by a fully implicit cell-centred finite volume scheme and then an efficient sequential coupling has been implemented in DuMu X . We focus on the stability and robustness of the coupling process and the numerical benefits of the DSA approach. Parallelization is carried out using the DUNE parallel library package based on MPI providing high parallel efficiency and allowing simulations with several tens of millions of degrees of freedom to be carried out, ideal for large-scale field applications involving multicomponent chemistry. As we deal with complex codes, we have tested and demonstrated the correctness of the implemented software by benchmarking, including the MoMaS reactive transport benchmark, and comparison to existing simulations in the literature. The accuracy and effectiveness of the approach is demonstrated through 2D and 3D numerical simulations. Parallel scalability is investigated for 3D simulations with different grid resolutions. Numerical results for long-term fate of injected CO 2 for geological storage are presented. The numerical results have demonstrated that this approach yields physically realistic flow fields in highly heterogeneous media and showed that this approach performs significantly better than the Sequential Iterative Approach (SIA).

• Ahusborde E., Amaziane B., El Ossmani M., Finite volume scheme for coupling two-phase flow with reactive transport in porous media, Springer Proceedings in Mathematics and Statistics, Vol 200, 407-415, 2017.

Abstract: In this work the numerical solution of a system of coupled partial differential and differential algebraic equations describing two-phase multicomponent flow, transport and chemical reactions is considered. An implicit finite volume scheme is used to descretize a two-phase two-component flow problem, which is then sequentially coupled to a reactive transport problem solved by a direct substitution approach (DSA). More precisely, we used firstly the module 2p2c implemented in the parallel open-source simulator DuMu X to solve a two-phase two-component flow with two dominant species without chemistry. Secondly, the reactive transport is described by advection dispersion equations coupled to differential algebraic equations to deal with the minor species. Again an implicit finite volume method is used to discretize this subsystem using a DSA. In this context, we have developed and integrated a reactive transport module 1pNc-react in the DuMu X framework. Finally, numerical results for a highly complex geochemistry problem are presented to demonstrate the ability of our method to approximate solutions of two-phase flows with reactive transport in heterogeneous porous media.

• Ahusborde E., Kern M., Vostrikov V., Numerical simulation of two-phase multi-component flow with reactive transport in porous media: application to geological storage of CO 2 , ESAIM: Proceedings and Surveys, Vol 49, 21-39, 2015.

Abstract: In this work, we consider two-phase multicomponent flow in heterogeneous porous media with chemical reactions. Equations governing the system are the mass conservation law for each species, together with Darcy's law and complementary equations such as the capillary pressure law. Coupling with chemistry occurs through reactions rates. These rates can either be given nonlinear functions of concentrations in the case of kinetic chemical reactions or are unknown in the case of equilibrium chemical reactions (such as reactions in aqueous phase). In this latter case, each reaction gives rise to a mass action law, an algebraic relation that relates the activities of the implied species. The resulting system will couple partial differential equations with algebraic equations. The aim of this paper is to develop a numerical method for the simulation of this system. We consider a sequential approach that consists in splitting the initial problem into two sub-systems. The first subsystem is a two-phase two-component flow, while the second subsystem is devoted to a reactive transport problem. For the two-phase two-component flow part, we have used an already existing module of the open-source parallel multiphase flow simulator DuMu X . To solve the reactive transport problem, we have implemented a new module in the DuMu X framework that solves a single phase multicomponent transport problem, and we have coupled it with a locally developed code for chemical equilibrium, called ChemEqLib, through a sequential iterative approach. Then, both modules have been coupled to propose a simple, but mathematically consistent, iterative method that handles two-phase flow with reactive transport.

The approach is validated on a 2D example from the literature representative of a model for the long-term fate of sequestered CO 2 .

• Ahusborde E., El Ossmani M., A sequential approach for numerical simulation of two-phase multicomponent flow with reactive transport in porous media, Mathematics and Computers in Simulation, Vol 137, 71-89, 2017.

Abstract: We develop a new scheme for numerical solution of immiscible compressible two-phase flow in porous media with geochemistry. The problem is modeled by the mass balance law for each phase, Darcy-Muskat's law, and the capillary pressure law. Coupling with chemistry occurs through reactions rates. These rates can be either given nonlinear functions of concentrations in the case of kinetic chemical reactions or unknown for equilibrium chemical reactions. Each kinetic reaction produces an ordinary differential equation while each equilibrium reaction gives rise to a mass action law that is an algebraic relation that links the activities of concerned species. An implicit finite volume scheme is applied to solve the two-phase flow equations, which is then sequentially coupled to a method for solving the reactive transport problem. More precisely, we used firstly the module 2p2c implemented in the parallel open-source simulator DuMu X to solve a simplified two-phase two-component flow with two dominant species without chemistry. Secondly, we have developed and integrated a reactive transport module in the DuMu X framework to deal with the other species using a sequential iterative approach (SIA) where transport, equilibrium chemical reactions and kinetic chemical reactions are solved sequentially. A new module for transport and a code using the GSL library for the chemical problem have been coupled. Finally, our approach has been validated by solving several test cases. Here we will present two benchmark tests to demonstrate the ability of our method to approximate solutions of single and two-phase flows with reactive transport in heterogeneous porous media.

This section deals with the development and the implementation of numerical schemes to perform numerical simulation of two-phase multicomponent flow with reactive transport in porous media. The major difficulties related to this model are in the nonlinear degenerate structure of the equations, as well as in the strong coupling between the flow and reactive transport equations. The chemical processes involves inter-phase mass transfer as well as an host of chemical reactions, including dissolution, ion exchange, adsorption, precipitation, and oxidation/reduction.

In [14,15,29,30] and in the framework of the PhD thesis of V. Vostrikov [START_REF] Vostrikov | Numerical Simulation of two-phase multicomponent flow with reactive transport in porous media[END_REF], we considered a sequential approach to tackle the problem consisting in a set of nonlinear partial differential equations coupled with differential algebraic equations. Instead of solving this set of equations all together, the sequential strategy splits the original problem into two sub-problems. The first sub-problem is devoted to a compositional two-phase flow where the effects of the geochemistry are treated explicitly. The second one solves a reactive transport problem. The main difference between the previous contributions is the strategy to deal with this second step, with a focus on continuous improvement. In [29,[START_REF] Vostrikov | Numerical Simulation of two-phase multicomponent flow with reactive transport in porous media[END_REF], the reactive transport problem was tackled by a sequential iterative approach (SIA) where transport and equilibrium chemical reactions were solved sequentially. Precisely, we developed and integrated in DuMu X a module named 1pNc (one-phase, N-component) solving a transport problem. Then, this module was coupled iteratively with a locally developed code for chemical equilibrium, called ChemEqLib using the GSL library [5]. In [30], we abandoned the code ChemEqLib and decided to incorporate the chemistry calculation directly in DuMu X to have an unified environment. Still considering a SIA, transport, equilibrium chemical reactions and also kinetic chemical reactions (that were not taken into account in the previous work) were solved sequentially. For this, we have developed and integrated a reactive transport module named 1pNc-React (one-phase, N-component reactive) still using the GSL library. To reduce the possible splitting errors and increase the robustness of our strategy, in [14,15] the SIA was replaced by a global implicit approach to solve the reactive transport subproblem. More precisely, we considered the Direct Substitution Approach (DSA). All our implementations have been validated by numerous test cases including several applications. In [14], we studied the migration of hydrogen produced by the corrosion of the canisters in deep geological radioactive waste repository and obtained some results coinciding with those presented in [START_REF] Xu | Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effects[END_REF]. In [15,29,30], we focused on different scenarios of injection of CO 2 in a deep saline aquifer. In the sequel of this section, we propose to present some numerical results for this application.

Geological sequestration of CO 2

To validate our sequential algorithm implemented in [15], we applied our simulator to a 3D coupled twophase flow and reactive transport problem proposed in [START_REF] Fan | A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO 2 storage simulations[END_REF] for a scenario of geological sequestration of CO 2 . In this work, the authors propose to use two variants of complex geochemical systems that include both equilibrium and kinetic reactions. We consider the test named "six-element model", whose reactions are displayed in It involves four equilibrium reactions (the first four reactions) and three kinetic reactions (the last three ones) of mineral dissolution/precipitation. For the first reaction, the solubility law for CO 2 is implemented according to [START_REF] Spycher | CO 2 -H 2 O mixtures in the geological sequestration of CO 2 . ii. partitioning in chloride brines at 12-100 o c and up to 600 bar[END_REF]. Mineral data for the kinetic reactions are summarized in Table 9 A three-dimensional domain that is 15 km in both the x and y-directions and 100 m in the z-direction is considered. A well perforated in a single grid block located 25 m from the top of the aquifer injects a pure CO 2 stream at constant rate during the first 20 years. After the 20 years injection period, a total of 18.6 × 10 9 kg of CO 2 is injected. As initial conditions for the two-phase two-component H 2 O -CO 2 flow we have used hydrostatic condition for liquid pressure P l , initial liquid saturation S l = 1 and initial CO 2 molality in liquid phase equals 3.55 × 10 -3 mol.kg -1 . Initial conditions for the reactive transport problem, parameters for the B-dot model used as activity model and mineral data for the kinetic reactions can be found in [15]. Impermeable Neumann boundary conditions are enforced on the boundaries of the domain. Constitutive laws and physical parameters are given in Table 9.3.

Figure 9.7 displays concentrations of calcite, anorthite and kaolinite at 20 and 2000 years for a grid composed of 1.6 × 10 5 elements (100×100×16). Initially, their concentration were respectively 238, 87 and 88 mol.m -3 . We can see that calcite is dissolved near the injection of CO 2 and precipitated far from the injection while anorthite and kaolinite are respectively dissolved and precipitated everywhere.

Figure 9.8 depicts the molality of aqueous CO 2 , the pH and the gas saturation at 20 and 2000 years. The pH and the molality of aqueous CO 2 are strongly correlated since CO 2 is a sour gas. After the injection, the gaseous CO 2 migrates upward and spreads laterally when reaching the top of the aquifer that is impermeable.

Parallel performances

Parallelization in the DuMu X is carried out using the DUNE [START_REF] Bastian | A generic grid interface for parallel and adaptive scientific computing. II. Implementation and tests in DUNE[END_REF][START_REF] Bastian | A generic grid interface for parallel and adaptive scientific computing. i. abstract framework[END_REF] parallel library package. DUNE gives arbitrary data decomposition in a generic way and the employed assembly operator and linear solvers are designed correspondingly. Parallel computations on a hierarchical grid follow the "single program multiple data" (SPMD) programming paradigm based on a suitable decomposition of the grid entities. Tasks are divided and run simultaneously on several processors with different input. Processors execute their own program and communicate with each other using the Message Passing Interface (MPI). 

where p still denotes the number of processors used for the reference time. Here, p = 1 for the three scenarios. Weak efficiency is depicted in Figure 9.10 b). Efficiency equal to one indicates an optimal behavior for the algorithm and the computer architecture. Indeed, CPU times remains constant, equal to the reference time, while the total size of the problem increases with the number of processors. Usually, this property is hardly verified and curves with plateaus can be observed. Values of the plateaus rise toward one with the load of each processor. This phenomenon is illustrated in Figure 9.10 b)

Comparison between direct substitution and sequential iterative approaches

This subsection aims at comparing the DSA used in [15] with the SIA developed in [30] for solving the reactive transport subproblem for the example presented above. Both approaches adopt an adaptive time-stepping. In the DSA, the control of the time-step is based on the number of iterations required by the Newton method to achieve convergence while in the SIA, it is based on the number of iterations required in the iterative algorithm to reach the tolerance ε SIA . In the sequel, tolerances for the Newton method and iterative algorithm are respectively ε Newton = 10 -8 and ε SIA = 10 -8 . Figure 9.11 compares the evolution of the molalities of H + and Ca 2+ obtained with the DSA and the SIA close to the injection with a mesh composed of 40000 cells during the first year of injection. We can observe that the results are in good accordance and that both methods provide comparable results. Table 9.6 displays the CPU time required for the DSA and the SIA to achieve the first year of injection years on several meshes. We can see that for this example, the DSA is faster than the SIA whatever the size of the mesh. The SIA is more CPU consuming in comparison with the DSA because many iteration steps in the iterative procedure and smaller time steps are required. 

Fully coupled fully implicit algorithms for numerical simulation of reactive flows

The content of this section relies on a synthesis of article [31] and is also based on article [16]. Both articles are listed below and can be found in the Appendix:

• Ahusborde E., El Ossmani M., Id Moulay M., A fully implicit finite volume scheme for single phase flow with reactive transport in porous media, Mathematics and Computers in Simulation, Vol 164, 3-23, 2019.

Abstract: Single phase flow and reactive transport modeling involve solving a highly nonlinear coupled system of partial differential equations to algebraic or ordinary differential equations requiring special numerical treatment. In this paper, we propose a fully implicit finite volume method using a direct substitution approach to improve the efficiency and the accuracy of numerical computations for such systems. The approach has been developed and implemented in the framework of the parallel open-source platform DuMu X . The object oriented code allows solving reactive transport problems considering different coupling approaches. A number of 2D and 3D numerical tests were performed for verifying and demonstrating the capability of the coupled fully implicit approach for single phase flow and reactive transport in porous media. Numerical results for the reactive transport benchmark of MoMaS and long-term fate of injected CO 2 for geological storage including a comparison between the direct substitution approach and the sequential iterative approach are presented. Parallel scalability is investigated for simulations with different grid resolutions.

• Ahusborde E., Amaziane B., El Ossmani M., Id Moulay M., Numerical modeling and simulation of fully coupled processes of reactive multiphase flow in porous media, Accepted for publication in Journal of Mathematical Study, 2019.

Abstract: In this paper, we consider a finite volume approach for modeling multiphase flow coupled to geochemistry in porous media. Reactive multiphase flows are modeled by a highly nonlinear system of degenerate partial differential equations coupled with algebraic and ordinary differential equations. We propose a fully implicit scheme using a direct substitution approach (DSA) implemented in the framework of the parallel open-source platform DuMu X . We focus on the particular case where porosity changes due to mineral dissolution/precipitation are taken into account. This alteration of the porosity can have significant effects on the permeability and the tortuosity. The accuracy and effectiveness of the implementation of permeability/porosity and tortuosity/porosity relationships related to mineral dissolution/precipitation for single phase and two-phase flows are demonstrated through numerical simulations.

Recently, in the framework of the PhD thesis of M. Id Moulay [START_REF] Moulay | 3D numerical simulation of reactive multiphase flow in porous media[END_REF], we decided to set aside temporarily the sequential strategies presented in Section 9.3. Indeed, sequential approaches can introduce operator splitting errors and some questions about the coupling between all the physical processes have to be studied to asses if sequential approaches are relevant to solve very coupled phenomena or if implicit approaches are better suited. By consequence, we developed and implemented a parallel fully-coupled, fully implicit method to solve reactive multiphase multicomponent flow to achieve improved stability. In comparison with sequential strategies, we expect that the errors of mass conservation due to the operator splitting will be erased and that larger time steps can be used during simulations.

Numerical simulation of single phase reactive flows

First, we focused on the single phase case. Besides the DSA that has already been used to solve the reactive transport problem in [14,15], several other formulations involving different choices for the primary variables were envisaged and tested. No significant change was observed and as a consequence, we maintained the choice to use a DSA. This led us to propose in [31] a fully implicit finite volume strategy for single phase reactive flows. This fully implicit strategy has been validated by numerous test cases, notably the MoMaS benchmark [START_REF] Carrayrou | Reactive transport benchmark of MoMaS[END_REF]. Detailed results can be found in [31]. In this subsection, on the particular example of the SHPCO2 Project [START_REF] Haeberlein | Time Space Domain Decomposition Methods for Reactive Transport -Application to CO 2 Geological Storage[END_REF], we propose an advanced comparison between the DSA and the SIA considered in [30] in term of computational time for several grid resolutions. The three-dimensional version of the test is also calculated and parallel computations are presented with good strong and weak parallel efficiencies.

SHPCO2 test case

This test case was proposed in the framework of the SHPCO2 Project (French acronym for High Performance Simulation of CO 2 Geological Storage). Its detailed description can be found in [START_REF] Haeberlein | Time Space Domain Decomposition Methods for Reactive Transport -Application to CO 2 Geological Storage[END_REF]. The chemical system consists of components involved in 4 reactions displayed in Table 9.5.

No. Reactions (1) OH -+ H + ----H 2 O (2) CO 2(g) ----CO 2(l) (3) HCO - 3 + H + ----CO 2(l) + H 2 O (4) Calcite + H + ----Ca 2+ + HCO - 3 Table 9.5: Chemical reactions for the SHPCO2 test case.

The geometry (2D and 3D) of the domain is depicted in Figure 9.12. We consider firstly the twodimensional version of the test. It is divided into two zones: a "barrier" zone with a low permeability K barrier = 10 -15 m 2 (represented in green in Figure 9.12) and a "drain" zone (the remaining part) with higher permeability K drain = 10 -13 m 2 . Figure 9.12: Two-dimensional (left) and three-dimensional (right) geometry of domain for the SHPCO2 test case (taken from [START_REF] Haeberlein | Time Space Domain Decomposition Methods for Reactive Transport -Application to CO 2 Geological Storage[END_REF]).

In this test, the gas phase is assumed to be immobile and therefore gaseous carbon dioxide CO 2(g) is considered as a fixed species. The hypothesis of immobility of gas allows to focus on reactive transport without worrying issues of multiphase flow. Consequently, the problem is modeled by a single phase multicomponent flow with reactive transport. Initially, in the orange bubble of Figure 9.12 gaseous carbon dioxide CO 2(g) is present while in the remaining zone, concentration of CO 2(g) is equal to zero. For the flow, Dirichlet boundary conditions for the pressure are enforced at the boundary surfaces Injec-tor1, Injector2 and Productor while at the rest of the boundary of the domain, homogeneous Neumann condition are imposed. Concerning the transport, a pure advective flux on the boundary surfaces In-jector1, Injector2 and Productor is imposed. On the rest of the boundary of the domain, we consider homogeneous Neumann conditions. Physical parameters and initial concentrations can be found in [30]. The period of simulation is equal to 4500 years. Several two-dimensional meshes have been used. An adaptive time step strategy is used with a maximal time step equal to 10 years. Figure 9.13 represents the evolution of the concentration of CO 2(g) and CO 2(aq) at t = 400 years and t = 1600 years with a mesh composed of 233472 elements. Due to the hypothesis of the immobility of the gas phase, the position of zone with CO 2(g) does not change with time but its size is significantly reduced. This is explained by the fact that CO 2(g) dissolves in liquid phase and is transported by flow outside the initial gaseous zone. We aim at comparing DSA and SIA implemented in [30] in the same numerical environment for the example presented above. Both approaches adopt an adaptive time-stepping. In the DSA, the control of the time-step is based on the number of iterations required by the Newton method to achieve convergence while in the SIA, it is based on the number of iterations required in the iterative algorithm to reach the tolerance ε SIA . In the sequel, tolerances for the Newton method and iterative algorithm are respectively ε Newton = 10 -8 and ε SIA = 10 -5 . Figure 9.14 compares the concentration of CO 2(aq) obtained with DSA and SIA on the line y = 600 with two meshes composed of 14592 and 58368 cells at t = 1600 years. We can observe that the results are in great accordance. Table 9.6 displays the CPU time required and the number of time steps for the DSA and the SIA to reach 1200 years on several meshes. We can see that for this example, DSA is faster than SIA when fine meshes are used. Figure 9.15 a) represents the time steps used by the DSA and SIA during the computations for the two finest meshes. We have to specify that a maximum time step equal to 10 years was enforced for both simulations. We can remark that the implicit approach allows to use larger time steps than the sequential approach as expected. This is emphasized by Figure 9.15 b) that depicts the number of iterations required by the Newton method to achieve ε Newton in the DSA and the number of iterations required in the SIA to reach the tolerance ε SIA . The results are given for the mesh composed of 58368 elements. We can see that the SIA requires more iterations than the DSA and therefore, the time step can not increase as quickly as for the DSA and never reaches the maximum value equal to 10 years. 

Three-dimensional simulation

In [31], we have also performed the three-dimensional version of the test, whose geometry is represented in Figure 9.12. Figure 9.16 represents several quantities after 1500 years of simulation on a mesh composed of 912000 elements. The computation has been performed with 256 processors. As for the two-dimensional case, the initial bubble of gaseous CO 2(g) is dissolved and transported in liquid phase. The concentrations of H + and CO 2(aq) are very correlated since high concentrations of CO 2(aq) acidify the medium.

Parallel performance

Parallel computations up to 512 processors have been performed on several grids for the 3D version of the test. The parallel efficiency of our strategy is illustrated by solving 100 time steps. As for the sequential strategy, the code ran on the cluster OCCIGEN and strong and weak scalabilities were evaluated.

Strong scaling Figure 9.17 a) displays on a logarithmic scale, CPU time as a function of the number of processors for 2 size problems of 228000 and 912000 elements corresponding to approximately 1.6 × 10 6 and 6.4 × 10 6 unknowns. The dashed lines represent an ideal behaviour. Figure 9.17 b) represents the strong scaling versus the number of processors. A high efficiency (greater than 0.85) is observed up to 256 processors for the computations involving 912000 cells. For the simulation with 228000 cells, the efficiency is good up to 64 processors. The loss of efficiency is mainly due to the increase of the communications between processors in comparison with the load of each processor.

Weak scaling Figure 9.18 a) displays CPU time as a function of the number of processors, with 9120 and 18240 elements per processor. Efficiency equal to one indicates an optimal behavior for the algorithm and the computer architecture. Indeed, CPU times remains constant, equal to the reference time, while the total size of the problem increases with the number of processors. Usually, this property is hardly verified and curves with plateaus can be observed. This phenomenon is illustrated in Figure 9.18 b). 

Numerical simulation of two-phase reactive flows

In [16], we proposed to extend the global implicit approach developed in [31] to deal with reactive twophase flows and consequently to drop out the sequential approach considered until then. To validate our methodology, we started by considering a one-dimensional test case proposed in [START_REF] Seigneur | Recoupling flow and chemistry in variably saturated reactive transport modelling -an algorithm to accurately couple the feedback of chemistry on water consumption, variable porosity and flow[END_REF]. Despite its relatively simple geometry, this test case presents the additional difficulty to deal with porosity and permeability changes. Indeed, the simulation of permeability and tortuosity evolution due to porosity changes can be of crucial importance in the simulation of several processes. These porosity changes can occur due to the dissolution or precipitation of minerals. If the porosity is increased, new pathways can develop, facilitating solute transport while the decrease of porosity can lead to a total clogging, with a possible annihilation of any flow and/or solute transport (see also for instance [START_REF] Cochepin | Approaches to modelling coupled flow and reaction in a 2d cementation experiment[END_REF] or [START_REF] Xie | Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation[END_REF]). The dependencies between the transport properties and porosity (Millington-Quirk's relationship for diffusivity and Kozeny-Carman's relationship) have been treated implicitly. This implicit treatment added an additional computational complexity by further increasing the strong nonlinearity of the system of equations.

A numerical convergence analysis was carried out, giving numerical results in good agreement with those obtained in [START_REF] Seigneur | Recoupling flow and chemistry in variably saturated reactive transport modelling -an algorithm to accurately couple the feedback of chemistry on water consumption, variable porosity and flow[END_REF]. Numerical simulations provided validation of our implementation of permeability/porosity and tortuosity/porosity relationships related to mineral dissolution/precipitation. Then, in the framework of the PhD thesis of M. Id Moulay [START_REF] Moulay | 3D numerical simulation of reactive multiphase flow in porous media[END_REF], we have pursued the validation of our fully implicit approach for reactive multiphase flows by considering a three-dimensional test case involving a more complex chemical systems. More precisely, we computed the test case proposed in [START_REF] Fan | A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO 2 storage simulations[END_REF] and presented in Subsection 9.3.1 for the sequential algorithm. An advanced comparison between the fully implicit and sequential approaches is in progress. We can already confirm that for this particular test case, both approaches provide very close results. We were also able to highlight the loss of mass for the sequential case (even if it is minimal) whereas the implicit approach is totally mass-conservative. The fully implicit approach is more CPU time consuming than the sequential one, but the difference is not significant. Even if no definitive conclusion can be drawn, we can assess that for this test case, our sequential approach can be as accurate as the fully implicit one provided it is carefully implemented. Moreover, the fully implicit approach is now more efficient that originally thought thanks to the advance of high-performance computing. We have to continue to validate our fully implicit approach by considering additional benchmarks. In this regard, we would like to point out that we encountered difficulties to find reliable and well documented benchmarks. In many articles, some data are missing. We think that a well documented benchmark for two-phase flow with reactive transport in porous media would be very useful for the community. It is why, a contribution on this important issue is in progress. Let mention also that even if most of the presented results concern two-phase reactive flows, the platform we developed is able to treat a more complex flow by considering multiphase multicomponent reactive flows.

Finally, to make the implicit approach even more competitive, further improvements must continue to be achieved. Due to the strong coupling between multiphase flow and reactive transport inducing strong nonlinearities in the global problem, particular attention should be paid to improve the convergence of linear solvers, using for example a series of algebraic reductions (Schur complements) as in [START_REF] Fan | A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO 2 storage simulations[END_REF]. A posteriori estimators could be also used and implemented to achieve computational savings by stopping timely the linear and nonlinear solvers as in [START_REF] Vohralík | A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows[END_REF]. We could also use the PETSc (Parallel Extensible Toolkit for Scientific computing) solver library as in PFLOTRAN [START_REF] Hammond | PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers[END_REF]. It could be also interesting to adapt the reduction technique proposed in [START_REF] Brunner | Multiphase multicomponent flow in porous media with general reactions: efficient problem formulations, conservative discretizations, and convergence analysis[END_REF][START_REF] Brunner | A global implicit solver for miscible reactive multiphase multicomponent flow in porous media[END_REF] for an integration in DuMu X .

Chapter 10

Conclusions and Perspectives

This dissertation presents some of the results of my research activity devoted to the development and implementation of mathematical and high performance computational methods for modeling complex flows. Over the last decade, I have focused on two areas of research. In the continuity of my PhD thesis, the first one concerns CFD simulations of incompressible flows for which a wide range of issues have been raised. The second area deals with a thematic that I discovered with my recruitment at the Laboratory of Mathematics and its Applications of Pau: the numerical simulation of multiphase flow in porous media. For this topic, the numerical study of reactive flows was highlighted and several sequential and implicit strategies were implemented and compared in a high performance computing framework. The use of DuMu X allowed to integrate all these developments in an unified and homogeneous environment and ensure their sustainability. To conclude this dissertation, I present some research directions I want to pursue in future years. More precisely, we participate to the Work Package untitled "Development/improvement of numerical methods & tools for modeling coupled processes (DONUT)" through the task "Numerical methods for high performance computing of coupled processes". We will develop some open access massively parallel numerical tools for coupling thermo-hydro with chemical processes (a grant for a post-doctoral position has been obtained). In parallel, we wish to go further and consider the numerical modeling of the coupling between geomechanics and fluid (gas and liquid) flow in rock formations. Our goal is to undertake some numerical simulation incorporating the coupling between gas migration and mechanical behavior, with particular emphasis placed on changes in permeability/transmissivity during mechanical loading and/or deformation. First, we will consider a sequential approach as in [START_REF] Bea | Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: Model development, verification, and illustrative example[END_REF][START_REF] Mikelić | Convergence of iterative coupling for coupled flow and geomechanics[END_REF][START_REF] Samper | Coupled THCM model of a heating and hydration concrete-bentonite column test[END_REF][START_REF] Yeh | HYDROGEOCHEM 7.1 A Three-Dimensional Model of Coupled Fluid Flow, Thermal Transport, HYDROGEOCHEMical Transport, and Geomechanics through Multiple Phase Systems Version 7.1 (A Three Dimensional THMC Processes Model[END_REF]. However, some questions about the coupling between all the physical processes described above have to be studied to corroborate if some very coupled phenomena can be really solved by sequential schemes or if they need to be treated as a strongly coupled entity as in [START_REF] Zhang | A fully coupled thermal-hydrologicalmechanical-chemical model for CO 2 geological sequestration[END_REF]. We wish also consider new applications as geothermal reservoir modeling for which the understanding of coupled THMC processes is a crucial issue [START_REF] Pandey | Geothermal reservoir modeling in a coupled thermohydro-mechanical-chemical approach: A review[END_REF][START_REF] Tao | Coupled thermo-hydro-mechanical-chemical modeling of permeability evolution in a CO 2 -circulated geothermal reservoir[END_REF] 10.2 CO 2 storage enhancement This work will be performed in collaboration with F. Croccolo (LFCR, University of Pau & Pays Adour) and B. Amaziane (LMAP, University of Pau & Pays Adour). The CO2ES project (CO 2 Enhanced Storage) project led by F. Croccolo aims at improving the understanding of the various CO 2 trapping and transport processes involved in CO 2 geological storage. The project is mainly experimental and seeks to investigate processes to enhance CO 2 storage efficiency and safety by dissolution and by mineral trapping. However, it comprises also a numerical part in which we will be involved through our participation in the Work Package untitled "Up-scaling of CO 2 storage processes". Numerical activities are intended to scale-up the phenomena pointed out in the experimental part by using homogenization tools as well as guiding further experimental activities.

Multicomponent transport in low permeability porous media

This work will be performed in collaboration with G. Galliéro (LFCR, University of Pau & Pays Adour) and M. Azaïez (I2M, University of Bordeaux). The description of the dynamics of a multicomponent fluid confined in a nano-porous medium is an intricate task despite its wide interest for many applications (chemical engineering, geosciences). Classical approaches (such Darcy's or Stokes' formulations depending the scale) can be inappropriate in the case where the pore size is similar to that of fluid molecules since surface effects become predominant compared to volume effects. We aim at proposing a different paradigm to describe multicomponent transport in porous media based on one equation of momentum conservation per species at the pore scale as proposed in [START_REF] Kerkhof | Analysis and extension of the theory of multicomponent fluid diffusion[END_REF]. Then, we plan to use homogenization theory to move from pore scale to Darcy's scale. The coupling between these equations is achieved by a Maxwell-Stefan friction terms to ensure momentum exchange between different species and requires the knowledge of new fluid physical properties such as partial viscosities or slip lengths by species. Up to now, these properties were difficult to obtain but using molecular dynamics simulations, it is now possible to have access to such quantities [36] which makes this new paradigm accessible. A post-doctoral fellow will be hired to work on this topic.

Reduction Order Modeling

The propose is to use Reduced Order Modeling (ROM), a new paradigm in industrial design and optimization, for the solution of the two families of problems previously described in this document. ROM provides dramatic reduction in computation times, and finds its place at the crossroads with the upcoming integration of machine learning and artificial intelligence tools in the construction and engineering sectors. This paradigm has undergone a fast development, and is progressively being applied with success to large optimization and design problems in engineering, that were deemed completely out of reach only a few years ago. I aim at collaborating with M. Azaïez and E. Prulière (I2M, University of Bordeaux) to apply and adapt these approaches to some of our applications. Two objectives can be considered:

• Reduction in parameter space. The processes and physical phenomena present in the manuscript depend on large number of parameters (geometrical and environmental). Reducing this number of parameters while maintaining the accuracy of the computation is of primary importance in tackling the optimization design problem.

• Data assimilation. The huge amount of information required to set up the conditions for the computational codes are frequently incomplete. There is a need to re-construct the fields with accurate and fast procedures.
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 81 Figure 8.1: Modular design of DuMu X (taken from [119]).
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 1 Modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in porous mediaThis work will be performed in collaboration with B. Amaziane (LMAP, University of Pau & Pays Adour), M. Jurak (University of Zagreb, Croatia) and M. El Ossmani (University Moulay Ismaïl, Morocco). The understanding of coupled thermal, hydraulic, mechanical and chemical (THMC) processes (illustrated in Figure10.1) is a crucial issue for the performance assessment of geological disposal of carbon dioxide or/and radioactive waste. During the last years, we implemented several sequential and implicit strategies to couple the hydraulic and chemical processes. During the next four years (June 2019 -June 2023), we will be involved in the Horizon 2020 European Joint Program on Radioactive Waste Management (EURAD).
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 101 Figure 10.1: Coupled THMC processes, coupling thermal (T), hydrological (H), rock mechanical (M) and chemical (C) effects for geological storage of CO 2 (adapted from[START_REF] Niemi | Geological Storage of CO 2 in Deep Saline Formations[END_REF]).
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	Figure 3.4: Convergence plots obtained using the penalty method for the first Stokes mode (λ 2 =
	13.086172791) as a function of the polynomial order p for several values of α.
	p		4			8				12			16	20
	min ||∇ • u p || L 2 (Ω)	8.1									

Table 3 .

 3 1: Maximum and minimum of the L 2 (Ω)-norm of the divergence of all the Stokes eigenmodes as a function of p.

	Penalty approach Figure (3.4) displays the convergence for the lowest eigenvalue of problem (3.2) for
	several values of α.
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 4 10 -2 0.37 0.75 8.5716 × 10 -2 0.43 0.63 Ehrenstein and Peyret [106] 8.3315 × 10 -2 0.37 0.75 8.5715 × 10 -2 0.43 0.63

		Re=100			Re=400		
	Reference	Maximum	x	y	Maximum	x	y
	Present	8.3339 × 10 -2 0.37 0.75 8.5731 × 10 -2 0.43 0.63
	Botella [66]	8.3315 ×					

Table 4 .

 4 

		Re=100		Re=400	
	Reference	Maximum	x	Maximum	x
	Present	13.4323	0.63	24.9222	0.63
	Botella [66]	13.4226	0.63	24.9157	0.63
	Ehrenstein and Peyret [106]	13.4227	0.63	24.9344	0.63

3: Intensity and position x of the maximum of the vorticity on the upper side.

Table 7 .

 7 -10 . The code runs on an SGI ICE

	Number of processors	8	16	32	64
	Load Imbalance Present (%)	0.54	0.44	1.40	2.87
	Load Imbalance METIS (%)	1.54	2.28	3.17	3.28
	Load Imbalance REB (%)	17.07 17.07 17.08 17.08
	Load Imbalance GA 0.001 (%) 0.08	0.08	0.09	0.09
	Load Imbalance GA 0.05 (%)	0.97	4.49	5	4.85
	Edge-cuts Present	2829 4584 7513 11360
	Edge-cuts METIS	3230 4853 7507 11176
	Edge-cuts REB	2300 3800 6000	9000
	Edge-cuts GA 0.001	3183 5042 7706 13259
	Edge-cuts GA 0.05	3077 4636 7303 12961
	Number of blocks Present	11	19	35	66
	Number of blocks METIS	8	16	32	64
	Number of blocks REB	8	16	32	64
	Number of blocks GA 0.001	21	49	87	171
	Number of blocks GA 0.05	14	22	41	94

1: Partitioner performance for the double cavity mesh.

cluster. Two types of processors have been used: Harpertown nodes linked to a DDR Infiniband network and Nehalem nodes linked to a QDR Infiniband network.

7.3.2.1 Weak Scaling

The left part of Figure (7.9) displays for each type of processor (Harpertown and Nehalem) CPU time as a function of the number of processors, with 32500 and 65000 degrees of freedom (dof) per processor. We can see that processors Nehalem are much faster than Harpertown ones, particularly if the number of processors is low. A time ratio from 1.3 to 2.1 can be observed.
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 7 

		0.85230, 0.20150)	2.60588
	Present (Mesh 1)	(0.84952, 0.19744)	2.60184
	Present (Mesh 2)	(0.85055, 0.19637)	2.59861
	Present (Mesh 3)	(0.85112, 0.19587)	2.59770
	Present (Mesh 4)	(0.85139, 0.19563)	2.59745
	Reference	Right secondary vortex (x, y) Vorticity
	Zhou [338]	(1.32500, 0.48440)	0.53846
	Nithiarasu [227]	(1.32210, 0.48360)	0.65005
	Present (Mesh 1)	(1.32226, 0.48356)	0.63099
	Present (Mesh 2)	(1.32243, 0.48353)	0.62956
	Present (Mesh 3)	(1.32249, 0.48349)	0.62971
	Present (Mesh 4)	(1.32253, 0.48346)	0.62996
	Reference	(x, y)	Vorticity
	Mesh 1	--	---
	Mesh 2	(1.39579, 0.40420) -0.002911
	Mesh 3	(1.39531, 0.40468) -0.004380
	Mesh 4	(1.39522, 0.40478) -0.004718

3: Positions (x, y) and intensities of the secondary vortices.
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	Mesh 1	(1, 0.09999) (1.23999, 0.4) (1, 0.63999)
	Mesh 2	(1, 0.09999) (1.23748, 0.4) (1, 0.64499)
	Mesh 3	(1, 0.09874) (1.23624, 0.4) (1, 0.64874)
	Mesh 4	(1, 0.09937) (1.23563, 0.4) (1, 0.64999)
		Reference	P 4 (x 4 , y 4 )	P 5 (x 5 , y 5 )
		Mesh 1	--	--
		Mesh 2	(1.3925, 0.4) (1, 0.4075)
		Mesh 3	(1.3900, 0.4) (1, 0.4100)
		Mesh 4	(1.3887, 0.4) (1, 0.4112)

4: Positions (x, y) and intensities of the right ternary vortex. Reference P 1 (x 1 , y 1 ) P 2 (x 2 , y 2 ) P 3 (x 3 , y 3 )

Table 7 .

 7 

5: Positions (x i , y i ) of the detachment and reattachment points P i (i = 1, 5).
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Table 8 .

 8 2: Available Models in DuMu X 2.12 with some particularities and characteristics. standard laws is provided, e.g. Van-Genuchten and Brooks and Corey models. Each material law uses a set of appropriately definable parameters (residual saturations) of type MaterialLawParams, which may depend on the location inside the domain. Each material law has a regularized version.

	). A collection of

Table 9 .

 9 1. 

	Reactions		log 10 (K)
	CO 2(g) = CO 2(l)		-
	CO 2(l) + H 2 O = H + + HCO -3 CO 2 -3 + H + = HCO -3 OH -+ H + = H 2 O	-10.23 -6.32 -13.26
	Ano + 8 H + = 4 H 2 O + Ca 2+ + 2 Al 3+ + 2 SiO 2(l)	25.82
	Cal + H + = Ca 2+ + HCO 3	-	1.6
	Kao + 6 H + = 5 H 2 O + 2 Al 3+ + 2 SiO 2(l)	6.82
	Table 9.1: Chemical reactions.	

Table 9 .

 9 .2.

	Mineral log 10 (K s ) A s	Init. conc.
	Ano	-12.0	88	87
	Cal	-8.80	88	238
	Kao	-13.0	17600 88

2: Mineral, precipitation and dissolution parameters.

Table 9 .

 9 4: CPU time (s) for the DSA and the SIA.

	Number of cells	DSA	SIA
	10000	982.2	1518.8
	40000	3847.5	6235.5
	160000	15901.9 27235.5

Table 9 .

 9 6: CPU time (s) and number of time steps for DSA and SIA.

	SIA

Ideally, χ = 1 but as Guermond proved[START_REF] Guermond | Error analysis of pressure-correction schemes for the time-dependent stokes equations with open boundary conditions[END_REF], for stability issues, χ is necessarily strictly lower than

2µ/d.

FVM: Finite Volume Method, FEM: Finite Element Method, IDFM: Integrated Finited Difference Method, MMC: Modified Method of Characteristic, MFEM: Mixed Finite Element method, DGM: Discontinuous Galerkin Method, FDM: finite difference method, MC: mixing cell, DFEM: Discontinuous Finite Element Method, MHFEM: Mixed Hybrid Finite Element method.

2 GIA: Global Implicit Approach, SEQ: Sequential Approach.

Application to marine intrusion. Project funded by the Francophone University Agency (AUF). • 2011-2014. Partners: INRIA Rocquencourt & Maison de la Simulation.
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Parallel computations up to 768 processors have been performed on several grids for the 3D version of the test. The parallel efficiency of our strategy is illustrated by solving 10 time steps. The code ran on a Bull cluster named OCCIGEN with Intel "Haswell" 12-Core E5-2690 V3 processors. In parallel computing, two types of scalability are defined. The first is the strong scaling, which represents the relation between the computation time and the number of processors for a fixed total problem size. The second is the weak scaling, for which the load per processor is fixed.

Strong scaling Figure 9.9 a) displays on a logarithmic scale, CPU time as a function of the number of processors for three size problems of 1.6 × 10 5 , 1.28 × 10 6 and 5.76 × 10 6 elements corresponding respectively to 1.92 × 10 6 , 1.536 × 10 7 and 6.912 × 10 7 degrees of freedom. The dashed lines represent an ideal behavior.

Strong efficiency is given by:

here p denotes the number of processors used for the reference time (not always equal to one for heavy computations). For both calculations, we took p = 8. It points out an optimal use of the parallel resources. Efficiency equal to one indicates that communications and synchronizations between processors are negligible. Figure 9.9 b) represents the strong scaling versus the number of processors. For this calculation, we took p = 12, 24 and 48 as number of processors used for the reference time. A high efficiency (greater than 0.70) is observed up to 256 processors for the computations involving 1.536 × 10 7 and 6.912 × 10 7 degrees of freedom. For the simulation with 1.92 × 10 6 degrees of freedom, the efficiency is good up to 72 processors. The loss of efficiency is mainly due to the increase of the communications between processors in comparison with the load of each processor. In [START_REF] Hammond | PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers[END_REF][START_REF] Hammond | Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN[END_REF], the authors evaluate the parallel performance of the simulators PFLOTRAN. In [START_REF] Hammond | PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers[END_REF], the authors assert that "as a general rule of thumb a minimum of 10,000 dof per core is needed to obtain good scaling performance". In [START_REF] Beisman | ParCrunchFlow: an efficient, parallel reactive transport simulation tool for physically and chemically heterogeneous saturated subsurface environments[END_REF], for the simulator ParCrunchFlow, strong scaling breaks down somewhere between 69,000 and 40,000 dof per processor. Here, a minimum of 30,000 degrees of freedom per processor seems to be required to

Appendix

My work performed during the last decade has been summarized in the previous chapters. Some articles have been reviewed in details while others have been just summarized or mentioned. As a consequence, I propose in this Appendix 9 additional articles: