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At first, we cast the localization problem as a Content-based Image Retrieval (CBIR) problem and we train a CNN image descriptor with radiometry to dense geometry transfer as side training objective. Once trained, our system can be used on monocular images only to construct an expressive descriptor for localization in challenging conditions. Secondly, we introduce a new relocalization pipeline to improve the localization given by our initial localization step. In a same manner as our global image descriptor, the relocalization is aided by the geometric information learned during an offline stage. The extra geometric information is used to constrain the final pose estimation of the query. Through comprehensive experiments, we demonstrate the effectiveness of our proposals for both indoor and outdoor localization.
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Résumé

La localisation basée vision consiste à déterminer l'emplacement d'une requête visuelle par rapport à un espace de référence connu. Le principal défi de la localisation visuelle réside dans le fait que la requête peut avoir été acquise à un moment différent de celui de la base de données. On pourra alors observer des changements visuels entre l'environnement actuel et celui de la base de référence, en particulier lors d'application de localisation en extérieur. Les approches récentes utilisent des informations complémentaires afin de répondre à ces scénarios de localisation visuellement ambigus, comme la géométrie ou la sémantique. Cependant, ces modalités auxiliaires ne sont pas toujours disponibles ou peuvent être coûteuses à obtenir. Afin de s'affranchir de l'utilisation d'une modalité supplémentaire pour faire face à ces scénarios de localisation difficiles, nous proposons d'utiliser un modèle de transfert de modalité capable de reproduire la géométrie d'une scène à partir d'une image monoculaire.

Dans un premier temps, nous présentons le problème de localisation comme un problème d'indexation d'images et nous entrainons un réseau de neurones convolutif pour la description globale d'image, en introduisant le transfert de modalité radiométrie vers géométrie comme objectif secondaire. Une fois entrainé, notre modèle peut être appliqué à des images monoculaires pour construire un descripteur efficace pour la localisation en conditions difficiles.

Dans un second temps, nous introduisons une nouvelle méthode de raffinement de pose pour améliorer la localisation obtenue à la première étape. 

Introduction

This first chapter introduce the scientific environment of the thesis. We first present the global topic of long-term mapping followed by the introduction the overall project this thesis is part of. Then, we focus on the localization task, as it is the main topic of this research work.

Long-term mapping

Creating informative, accurate and detailed maps is a crucial step for many applications: pedestrian or vehicle navigation, data valuation, visualization, land or spatial planning, to name a few. Mobile mapping vehicles are able to collect and arrange large amount of data in order to create rich referential. However, these maps are fixed in time. Depending of the mapped area, the environment representation could be quickly outdated. Instead of recreating a completely new map, which is a costly operation, another solution is to locally update the map. This is what we called long-term mapping.

In order to include new data source to our initial representation, we need to located these information. In other words, we have to find the position of the up-to-date data according to the original map frame. Once we get a proper alignment between the two sources of data, we can update our main referential. In this thesis, we focus on the localization of visual data in the context of long-term mapping. Visual-based Localization (VBL) is not limited to the update of outdated referential and further applications are presented in the following. Thus, the core subject of this research is about localization of new visual data to a fixed, potentially outdated, map.
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pLaTINUM project

This thesis is founded by the French Agence Nationale de la Recherche (ANR) and is part of the project named Cartographie Long Terme pour la Navigation Urbaine (pLaTINUM) (ANR-15-CE23-0010). pLaTINUM is a long-term mapping project composed of three parts: high quality multi-sources map creation, online visual-based urban navigation with user feedback and automatic map update for long-life usage. The first part is an offline mapping step from multi-modal data sources collected by a mobile mapping vehicle [START_REF] Boussaha | On the Production of Semantic and Textured 3D Meshes of Large scale Urban Environments from Mobile Mapping Images and LiDAR scans[END_REF][START_REF] Boussaha | Large Scale Textured Mesh Reconstruction from Mobile Mapping Images and LIDAR scans[END_REF][START_REF] Paparoditis | Stereopolis II: A multi-purpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF] that produces a high resolution textured mesh with radiometric, geometric and semantic information. Then, this map is used as a reference for an online visual navigation module. During the navigation, an agent sends visual feedback to the server in order to, in a third step, update the map if changes are detected between the reference map and the current observation. The city center of Rouen, in France, have been chosen to carry out the project experiments.

The subject of this thesis is the initial localization of the agent over the entire map before the start of the navigation. We detail in the next paragraphs the localization pipeline.

Summary of the map. The online localization task within the pLaTINUM project consists of finding the position a visual data from the agent over a summarized version of the global map. To summarize the initial textured mesh, we render a set of radiometric (RGB), depth (D) and semantically labeled (L) spheres at meaningful location for covering the entire area of possible navigation [START_REF] Salah | Summarizing large scale 3D point cloud for navigation tasks[END_REF][START_REF] Salah | Summarizing Large Scale 3D Mesh[END_REF][START_REF] Salah | Navigability Graph Extraction from Large-Scale 3D Point Cloud[END_REF]. This representation contains all the modalities and most of the information from the original map while being lighter. Initial agent query. In order to start the visually-guided navigation of the agent, we have to find its absolute position on the mapped area. We assume that the agent is not equipped with any global localization equipment, such as GPS, and carry only an embedded device to acquire visual information. This is a regular assumption in urban area where global positional system can suffer from buildings obstruction (e.g. the urban canyon effect that affects the GPS signal). In order to be globally located, the agent sends from his capture device a visual request to a server. By visual request, we regardless denote: monocular image, video sequence, pair of stereo images, semantically annotated image or combination of these. The localization task within the pLaTINUM project: we are interested in the localization of an agent on a large outdoor urban scene. The map is succinctly described by a set of geo-referenced RGBDL spheres. The agent sends a visual request from a mobile device and we have to apply VBL methods to find the closest RGBDL sphere to the agent.

Localization in a graph of spheres. Once the map has been summarized and the agent request received, the localization task can be compiled in this question: "which RGBDL spheres is located closest to the agent visual query?". In order to answer this question, we have to develop methods that can handle potentially multi-modal requests and compare them to augmented spherical images.

We present in figure 1.1 the localization task considered within the pLaTINUM project.

Visual-based Localization with heterogeneous data

As introduced in the previous section, with the work of this thesis, we aim to solve a VBL problem. In the following, we introduce the general formulation of VBL and the
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particularity of our problem: the heterogeneity of the visual data.

Visual-based Localization

VBL consists of retrieving the location of a visual request within a known space representation [START_REF] Brejcha | State-of-the-art in visual geo-localization[END_REF][START_REF] Zamir | Large-scale visual geo-localization[END_REF]. For instance, recovering the pose (position + orientation) of a camera that took a given photography according to a set of geo-localized images or a 3D model is a simple illustration of such a localization system [START_REF] Kendall | PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[END_REF][START_REF] Sattler | Efficient & Effective Prioritized Matching for Large-Scale Image-Based Localization[END_REF]. VBL has been an increasingly dynamic research subject in the last decade. This recent gain of interest is due to the provision of large geo-localized images database, the multiplication of embedded visual acquisition system (e.g. camera on smart-phone) and the limitation of usual localization system in urban environment (e.g. GPS signal failure in cluttered environment). Aforementioned localization problem is involved in several present-day practical applications, such as GPS-like localization system [START_REF] Armagan | Accurate Camera Registration in Urban Environments Using High-Level Feature Matching[END_REF], indoor [START_REF] Cavallari | Real-Time RGB-D Camera Pose Estimation in Novel Scenes using a Relocalisation Cascade[END_REF] or outdoor navigation [START_REF] Brahmbhatt | DeepNav: Learning to navigate large cities[END_REF], 3D reconstruction, models and databases update, cultural heritage [START_REF] Bhowmik | Cross-domain Image Localization by Adaptive Feature Fusion[END_REF], consumer photography [START_REF] Hays | IM2GPS: Estimating Geographic Information From a Single Image[END_REF][START_REF] Weyand | PlaNet -Photo Geolocation with Convolutional Neural Networks[END_REF] and augmented reality [START_REF] Glocker | Real-time RGB-D camera relocalization[END_REF]. VBL is also used in robotics Simultaneous Localization and Mapping (SLAM) for Loop Closure Detection (LCD) [START_REF] Garg | LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics[END_REF] or to solve the «kidnapped robot» scenario [START_REF] Cupec | Recognition of Objects and Places in 3D Point Clouds for Robotic Applications[END_REF].

VBL is a very challenging problem. The main obstacle comes from the fact that the visual request we aim to localize have been taken at a different time than the database.

Visual changes may occur on the observed environment during this period of time, especially if we target outdoor localization [START_REF] Lowry | Visual Place Recognition: A Survey[END_REF][START_REF] Sattler | Benchmarking 6DOF Urban Visual Localization in Changing Conditions[END_REF]. For outdoor VBL, the appearance of the same scene observed from the query and the reference data can be different due to season changes [START_REF] Krajník | Image features for visual teach-and-repeat navigation in changing environments[END_REF], day-night cycle [START_REF] Porav | Adversarial Training for Adverse Conditions: Robust Metric Localisation using Appearance Transfer[END_REF], weather conditions [START_REF] Porav | I Can See Clearly Now : Image Restoration via De-Raining[END_REF], mobile objects [START_REF] Toft | Semantic Match Consistency for Long-Term Visual Localization[END_REF] (like cars or pedestrian) or urban evolution [START_REF] Saha | Improved Visual Relocalization by Discovering Anchor Points[END_REF] (e.g. destruction or creation of buildings, change of street furniture). For the indoor case [START_REF] Taira | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[END_REF], visual changes can be generated by the modulation of the lightning [START_REF] Lu | Where am I in the dark: Exploring active transfer learning on the use of indoor localization based on thermal imaging[END_REF], a rearrangement of a room, the people occupancy, etc. Differences in the request and the reference are also observable when the condition of the data acquisition differs. This can be due to the sensor architecture, e.g. database and reference images acquired by different cameras [START_REF] Majdik | MAV urban localization from Google street view data[END_REF][START_REF] Middelberg | Scalable 6-DOF localization on mobile devices[END_REF] or to differences on the pose of the agent that acquire the data, resulting on important view point changes [START_REF] Lin | Cross-view image geolocalization[END_REF][START_REF] Majdik | MAV urban localization from Google street view data[END_REF][START_REF] Tian | Cross-View Image Matching for Geo-localization in Urban Environments[END_REF][START_REF] Torii | Visual localization by linear combination of image descriptors[END_REF][START_REF] Vo | Localizing and Orienting Street Views Using Overhead Imagery[END_REF].

Thesis outlines

It is very challenging to address these corner case with image-only VBL. However, the use of over information, such as the scene geometry [START_REF] Uy | PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition[END_REF][START_REF] Yew | 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration[END_REF] or a semantic understanding of the image [START_REF] Weinzaepfel | Visual Localization by Learning Objects-of-Interest Dense Match Regression[END_REF], can circumvent the limitation of mono-modal VBL.

Heterogeneous data in VBL

VBL involves comparing a visual data for which we seek the location, the query, to a geo-located reference database. In conventional pipeline, the query and the reference data are from the same modalities: e.g. an image and a collection of geo-referenced images [START_REF] Arandjelović | DisLocation : Scalable descriptor[END_REF][START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF] or a segment of a 3D model with semantic information to a the fully semantized 3D model [START_REF] Schönberger | Semantic Visual Localization[END_REF]. It exists plenty of VBL methods relying on a single-modality such as radiometric information [START_REF] Liu | Deep Stochastic Attraction and Repulsion Embedding for Image Based Localization[END_REF][START_REF] Radenović | Fine-tuning CNN Image Retrieval with No Human Annotation[END_REF], geometric information [START_REF] Uy | PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition[END_REF][START_REF] Yew | 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration[END_REF] or semantic information [START_REF] Ardeshir | GIS-assisted object detection and geospatial localization[END_REF] as well as methods based on multi-modal data: images and geometry [START_REF] Schönberger | Semantic Visual Localization[END_REF], images and semantic [START_REF] Arandjelović | Visual vocabulary with a semantic twist[END_REF], etc. The principal challenge comes when we observe an asymmetric representation of modalities between the request and the reference data. How to compare, or combine, data from different nature? This is a complex question, consequently, there is lack of method that benefit from heterogeneous data for the task of localization.

In this work, we are interested in VBL with heterogeneous data, i.e. the query and the reference data may not contain the same modalities. As mentioned in section 1.1, in the pLaTINUM project we are interested in localization of a heterogeneous visual query to a set of multi-modal geo-localized RGBDL spheres. That means we could encounter missing modalities or missing data within the queries comparing to the radiometric, depth and semantic modalities present in the reference data. We believe that heterogeneous and asymmetric data can be used wisely for the task of Visual-based Localization to overcome the limitation of single-modality systems. Therefore, within this thesis, we pursue research in this direction.

Thesis outlines

This thesis presents an original research work on the development of a new VBL method taking benefit from heterogeneous data.

An exhaustive review of existing VBL methods is presented in Chapter 2, with a special attention paid to data heterogeneity within these methods [START_REF] Piasco | A survey on Visual-Based Localization: On the benefit of heterogeneous data[END_REF]. We first enu-
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merate common processing among VBL methods and then we introduce the three classes of localization approaches. Open challenges as well as auxiliary data used to overcome limitation of visual-only systems are discussed thereafter.

Chap. 3 presents our learned global image descriptor augmented with auxiliary modalities and designed for the task of VBL in challenging conditions [START_REF] Piasco | Learning Scene Geometry for Visual Localization in Challenging Conditions[END_REF][START_REF] Piasco | Improving Image Description with Auxiliary Modality for Visual Localization in Challenging Conditions[END_REF]. We open the chapter with a brief review of descriptors for localization before introducing our global image feature extractor. The rest of the chapter is dedicated to exhaustive experiments on multiple challenging localization tasks.

In Chapter 4, we introduce a original image pose refinement step which uses missing geometric information to improve localization performances over our first method [START_REF] Piasco | Geometric Camera Pose Refinement With Learned Depth Maps[END_REF][START_REF] Piasco | Perspective-n-Learned-Point: Pose Estimation from Relative Depth[END_REF]. Preliminary work and our final refinement pipeline are first presented. Then, we show the effectiveness of our method for localization in indoor environment before presenting furthers experiments on unsupervised auxiliary geometric learning for outdoor pose estimation. Finally, Chap. 5 concludes the thesis and offers avenues for prospective work.

Chapter 2

Comprehensive study of Visual-Based Localization methods

In this chapter, we present the Visual-based Localization (VBL) problem by firstly focusing on the computer vision methods used in this area (sections 2.1-2.2) and, secondly, by regarding challenges in VBL (sections 2.3) and the nature of the data involved in the localization process (sections 2.4).

Topics addressed. We mainly focus on urban VBL as it represents the most studied end-user application in literature. This can be explained by the fact that most of the related applications take place in non-rural environment. As an illustration, VBL as GPS pedestrian localization system should be used when the presence of buildings disrupt the satellite signal. Most of the augmented reality applications are also designed for indoor or urbanized environment. Similar reasoning can be employed with robotic applications.

Nowadays principal concerns about robots are related to human assistance or supervision and autonomous vehicles. Those services occur in indoor and outdoor man-made areas, therefore the robot localization should be studied for these sites. The other aspect that invites researchers to focus on urban environment is that large datasets are mainly describing cities or road networks. Indeed, they are the most reachable places. With the exception of airborne and satellite imageries, that are abundant all over the globe.

Regarding aerial images, use cases differ as the data are usually already well organized and accurately geo-referenced. Finally, interest in urban VBL is motivated by the high number of remaining open challenges: handling the large number of different object
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classes present in the scene, dealing with visual obstruction and dynamic changes induced by significant temporal variation, etc.

As well as VBL presents a heterogeneity about its end-user applications, methods and data involved in the process of localizing an image are various. These methods are divided into three categories: Content-based Image Retrieval (CBIR) for image localization [START_REF] Arandjelović | Three things everyone should know to improve object retrieval[END_REF][START_REF] Liu | Deep Stochastic Attraction and Repulsion Embedding for Image Based Localization[END_REF][START_REF] Radenović | CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples[END_REF], 6 Degrees of Freedom (DoF) image pose estimation [START_REF] Brachmann | Learning Less is More -6D Camera Localization via 3D Surface Regression[END_REF][START_REF] Sattler | Efficient & Effective Prioritized Matching for Large-Scale Image-Based Localization[END_REF] and hierarchical localization [START_REF] Sarlin | From Coarse to Fine: Robust Hierarchical Localization at Large Scale[END_REF]. CBIR methods used in VBL slightly differ from classical vision object-retrieval algorithm [START_REF] Sivic | Video Google: A Text Retrieval Approach to Object Matching in Videos[END_REF] on two points: the images in the query and the database represent scenes rather than objects (e.g. street view panorama, buildings images, indoor scenes) and the performance of such system is evaluated according to the precision rate rather than the recall rate (i.e. a perfect VBL system should recover in its top ranked candidates documents that display the exact location of the query).

On the other hand, pose estimation methods aim to recover instantly the 6 DoF pose of the query data. Where Structure From Motion (SfM) or Simultaneous Localization and Mapping (SLAM) techniques provide a relative pose of a sequence of data, VBL tackles the problem of retrieving the absolute pose of a query data according to a known representation. Nevertheless, this representation could have been built thanks to SfM or SLAM mapping module. Finally, hierarchical localization, also known as coarse to fine localization, relative pose regression or localization cascade, can be seen as a combination of the two aforementioned methods. These methods can be divided into two steps: as a first instance, the research scope is reduced to obtain a initial coarse query pose, then, this result is refined by computing the correct transformation between the query location and the first guess pose.

When designing a VBL system, the type of method is not the only parameter to consider. As pointed out in [START_REF] Lowry | Visual Place Recognition: A Survey[END_REF], robustness to environment appearance changes over time is a main concern. Data involved in the process of localization also define specifications of the system, like area covered by the VBL method or precision of the regressed pose.

Data types are various in VBL: visual data, geometric information (provided by RGB-D camera, LIDAR, etc.) and semantic clues. Combination of different data in VBL aims to overcome limitation of images-only based method.

Related works. VBL is a well studied topic, and many contributions propose overviews of this domain. Brejcha and Čadík [START_REF] Brejcha | State-of-the-art in visual geo-localization[END_REF] present many works on VBL and classify them depending on the environment for which the particular method was developed. Conversely, we focus our study on systems built for city-scale localization as it concerns the most VBL applications. Moreover, we propose a comprehensive description of the three types of methods used in VBL, and highlight the benefits of the use of heterogeneous data in the context of localization in challenging scenarios. Zamir et al. [START_REF] Zamir | Large-scale visual geo-localization[END_REF] gather recent articles to draw a large panorama of VBL, corroborating the growing importance of this domain in current research. This assumption is comforted regarding the many tutorials (CVPR2014, CVPR2015, CVPR2017, ECCV2018 and ICCV2019), workshops (CVPR2015 and CVPR2019) and challenges (Google Landmark Retrieval 2018, Google Landmark Retrieval 2019, Visual Localization Benchmark) about the Visual Localization problem in high impact international conferences.

Visual Place Recognition is a roboticist problem, defined in the general sense in [START_REF] Lowry | Visual Place Recognition: A Survey[END_REF] as the visual ability of a human, an animal or a robot to recognize an already visited place.

It is a main concern for navigation, especially when we consider topological mapping [START_REF] Garcia-Fidalgo | Vision-based topological mapping and localization methods: A survey[END_REF].

Despite the fact that Visual Place Recognition shares huge similarity with VBL, the two problems differ on three major points. On the one hand, visual-based localization and visual place recognition purposes differ; where Place Recognition decides if a given place have already been seen, VBL produces a pose of the visual acquisition system. This explains the difference in their respective pipeline. Visual place recognition is composed of three main components; the data processing module, the mapping module and the belief generation modules, while visual-based localization does not consider the mapping module. On the other hand, the study presented here aims to consider VBL in a more general context. Communities and applications of the reviewed methods belong to the Computer Vision community [START_REF] Sattler | Fast image-based localization using direct 2Dto-3D matching[END_REF], as well as the Robotics [START_REF] Garcia-Fidalgo | Vision-based topological mapping and localization methods: A survey[END_REF] community. Finally, we consider heterogeneous visual data without restriction, including: raw colour and greyscale images, depth images, point cloud and 3D models, as well as semantic information extracted from aforementioned data. However, we advise reader to refer to the recent surveys related to Visual Place Recognition [START_REF] Garcia-Fidalgo | Vision-based topological mapping and localization methods: A survey[END_REF][START_REF] Kostavelis | Semantic mapping for mobile robotics tasks: A survey[END_REF][START_REF] Lowry | Visual Place Recognition: A Survey[END_REF] in order to capture a global panorama of existing approaches involved in localization process with visual data.

The rest of this chapter is organized as follows: in section 2.1, we introduce data representations used in VBL followed by a description of the three family of localization methods in section 2.2. Section 2.3 analyses the problem of challenging association across data variability and in section 2.4 we present an overview of the different types of data used in VBL. Finally, in section 2.5, common datasets and trends in VBL are discussed.

Data Representation

What is the best manner for representing visual data? This central question, present in various Computer Vision, Robotic and Photogrammetric applications, leads up to numerous answers. The data representation, termed features, should incorporate as much as possible discriminant information from the initial visual document and be fast to compute and compare. We present in this section representations used in VBL. Table 2.1 summarizes the following presented features.

Local Features

Local features are widely used in VBL and more generally in Computer Vision. Their description occurs at pixel level among a local neighborhood of several points in the image. The description through local features is two-step: firstly detect salient region (the extraction phase) and then characterize them according to their neighborhood (the description phase).

Point features. Several criteria are taken into account for the selection of point features: scale, orientation and illumination invariance, as well as computational cost and descriptor vector dimension. A comprehensive list of local feature descriptors used in topological mapping in robotics can be found in Garcia-Fidalgo and Ortiz [START_REF] Garcia-Fidalgo | Vision-based topological mapping and localization methods: A survey[END_REF] survey. Krajník et al. [START_REF] Krajník | Image features for visual teach-and-repeat navigation in changing environments[END_REF] explore in-deep many combination of detector/descriptor for the specific task of images matching across seasons. The most used point feature in VBL remains the Hessian-affine detector [START_REF] Mikolajczyk | Scale & affine invariant interest point detectors[END_REF] combined with SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] descriptor. Important contribution from Arandjelović and Zisserman [START_REF] Arandjelović | Three things everyone should know to improve object retrieval[END_REF] introduces RootSIFT which presents better results in matching step with minor overhead in computational load.

SURF descriptors [START_REF] Bay | Surf: Speeded up robust features[END_REF], light version of SIFT, are employed when real-time performance are required [START_REF] Cummins | FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance[END_REF][START_REF] Qu | Evaluation of SIFT and SURF for vision based localization[END_REF][START_REF] Stumm | Robust Visual Place Recognition with Graph Kernels[END_REF]. BRIEF descriptor rapidly computes a binary signature associated to a keypoint using pixel intensity comparisons. The advantage of binary descriptors is that they can be compared efficiently using hamming distance. ORB lo-cal feature [START_REF] Rublee | ORB: an efficient alternative to SIFT or SURF[END_REF] counter the lake of angular invariability of BRIEF descriptor by using orientation-aware feature detector from FAST [START_REF] Rosten | Machine learning for high-speed corner detection[END_REF]. Binary descriptors are widely used in VBL [START_REF] Feng | Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features[END_REF][START_REF] Griffith | Survey Registration For Long-Term Natural Environment Monitoring[END_REF][START_REF] Krajník | Long-Term Topological Localisation for Service Robots in Dynamic Environments using Spectral Maps[END_REF][START_REF] Krajník | Image features for visual teach-and-repeat navigation in changing environments[END_REF][START_REF] Middelberg | Scalable 6-DOF localization on mobile devices[END_REF][START_REF] Mühlfellner | Summary Maps for Lifelong Visual Localization[END_REF].

Learned local features is a well studied topic [START_REF] Carlevaris-Bianco | Learning visual feature descriptors for dynamic lighting conditions[END_REF][START_REF] Detone | Toward Geometric Deep SLAM[END_REF][START_REF] Detone | SuperPoint: Self-supervised interest point detection and description[END_REF][START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF][START_REF] Ono | LF-Net: Learning Local Features from Images[END_REF][START_REF] Paulin | Local convolutional features with unsupervised training for image retrieval[END_REF][START_REF] Yi | LIFT: Learned Invariant Feature Transform[END_REF]. Features are detected and described through Convolutional Neural Networks (CNN) trained for the task of similar features association. Schönberger et al. [START_REF] Schönberger | Comparative Evaluation of Hand-Crafted and Learned Local Features[END_REF] propose a recent comparison of hand-crafted and learned feature proposed and show, amongst others, that traditional local features perform the best in some scenario related to VBL. In [START_REF] Sarlin | From Coarse to Fine: Robust Hierarchical Localization at Large Scale[END_REF], authors use SuperPoint [START_REF] Detone | SuperPoint: Self-supervised interest point detection and description[END_REF] as local features for images localization. D2-Net [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF] have also been successfully applied to VBL. Features block extracted from a CNN can also serve as densely sampled local keypoints [START_REF] Widya | Structure from motion using dense CNN features with keypoint relocalization[END_REF] (each keypoint is extracted along the depth of the features block). This dense extraction of local features have been successfully used for VBL in [START_REF] Piasco | Geometric Camera Pose Refinement With Learned Depth Maps[END_REF][START_REF] Taira | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[END_REF]. Attention mechanism can be added to select discriminative areas from the dense features block, as illustrated with the weakly supervised DELF [START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF] system trained for large scale image localization.

Geometric features. Visual data can be described by primitive geometric shapes.

Despite the fact that geometric features are less compliant than point features, they include semantically meaningful information. For example, vertical lines are convenient descriptor in urban environment to represent buildings [START_REF] Arth | Instant Outdoor Localization and SLAM Initialization from 2.5D Maps[END_REF][START_REF] Morago | 2D Matching Using Repetitive and Salient Features in Architectural Images[END_REF][START_REF] Ramalingam | Pose Estimation Using Both Points and Lines for Geolocation[END_REF]. On the basis of this observation, Hays and Efros [START_REF] Hays | IM2GPS: Estimating Geographic Information From a Single Image[END_REF] introduce line extraction in combination with others descriptors to describe images. Works in [START_REF] Cham | Estimating camera pose from a single urban ground-view omnidirectional image and a 2D building outline map[END_REF] introduce a semantic line-based descriptor. The vertical lines are extracted using Canny filtering and coded into VCLH (Vertical Corner Line Hypothesis) for meaningful building corners representation. Contour extraction have also been employed by Russell et al. [START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF] to recover the pose of an image in a site of archaeological excavations. In the work of Baatz et al. [START_REF] Baatz | Large Scale Visual Geo-Localization of Images in Mountainous Terrain[END_REF], authors assume that skyline will be present in the data and use it as a geometric features to describe mountain panoramas. Dehaze segmentation is used to extract the skyline that is thereafter encoded in a curve bin descriptor.

Considering 3D data, several works use three-dimensional geometric features like normal vectors [START_REF] Li | Absolute pose estimation using multiple forms of correspondences from RGB-D frames[END_REF] or planar surfaces [START_REF] Fernandez-Moral | Fast place recognition with plane-based maps[END_REF]. Bansal and Daniilidis [START_REF] Bansal | Geometric Urban Geo-Localization[END_REF] use PointRay (i.e. a 3D vectors aligning with an edge) extracted from a Digital Elevation Model (DEM) to represent building corners. With recent progress of Deep Learning (DL) on 3D point cloud processing [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF], local learned point feature descriptors for localization have emerged. 3DMatch [START_REF] Zeng | 3DMatch: Learning the Matching of Local 3D Geometry in Range Scans[END_REF], 3DFeat-Net [START_REF] Yew | 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration[END_REF] and PPFNet [START_REF] Deng | PPFNet: Global Context Aware Local Features for Robust 3D Point Matching[END_REF] are a 3D point descriptor trained for the task of 3D points to 3D points registration and used to localize a local laser scan within a reference point cloud.

Point features with geometric relations. The lack of geometric consistency across the whole image is a shortcoming associated with point features. Various contributions propose to overcome this limitation by adding local geometric information directly on the point descriptor [START_REF] Baatz | Large Scale Visual Geo-Localization of Images in Mountainous Terrain[END_REF][START_REF] Jégou | Hamming Embedding and Weak Geometry Consistency for Large Scale Image Search[END_REF] or with the geometric association of numerous points [START_REF] Li | Pairwise geometric matching for large-scale object retrieval[END_REF][START_REF] Liu | Virtual line descriptor and semi-local matching method for reliable feature correspondence[END_REF]. SIFT features contain scale and orientation information, that have been originally used in [START_REF] Jégou | Hamming Embedding and Weak Geometry Consistency for Large Scale Image Search[END_REF] through the Weak Geometry Consistency framework. Following the same idea, Baatz et al. [START_REF] Baatz | Large Scale Visual Geo-Localization of Images in Mountainous Terrain[END_REF] encode features relative pose in the image to perform geometric verification at matching time. Liu and Marlet [START_REF] Liu | Virtual line descriptor and semi-local matching method for reliable feature correspondence[END_REF] introduce a geometric descriptor called Virtual Line Descriptor (VLD) by connecting two local features with each other.

The subsequent lines are used to reinforce the robustness of the matching process in VBL scenario [START_REF] Majdik | MAV urban localization from Google street view data[END_REF]. Li et al. [START_REF] Li | Pairwise geometric matching for large-scale object retrieval[END_REF] propose a different pairwise geometric descriptor (PGM), showing great results on both urban and landscape scenes.

Global Features

Another description approach considers the image as a whole and produces one signature Hand-crafted features GIST descriptor introduced by Oliva and Torralba [START_REF] Oliva | Modeling the shape of the scene: A holistic representation of the spatial envelope[END_REF] is the most used hand-crafted global descriptor in VBL [START_REF] Azzi | Filtering 3D Keypoints Using GIST For Accurate Image-Based Localization[END_REF][START_REF] Hays | IM2GPS: Estimating Geographic Information From a Single Image[END_REF][START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF]. Azzi et al. [START_REF] Azzi | Filtering 3D Keypoints Using GIST For Accurate Image-Based Localization[END_REF] use features in a cascade scheme to first narrow the search scope with global feature GIST and then select the good candidates with local features SIFT. The raw image can serve as a descriptor, with systematic resizing in order to obtain thumbnail [START_REF] Corke | Dealing with shadows: Capturing intrinsic scene appearance for image-based outdoor localisation[END_REF][START_REF] Hays | IM2GPS: Estimating Geographic Information From a Single Image[END_REF] (potentially augmented with depth information [START_REF] Gee | 6D Relocalisation for RGBD Cameras Using Synthetic View Regression[END_REF]). Simple descriptor computed through an histogram upon various criteria (color, texture [START_REF] Hays | IM2GPS: Estimating Geographic Information From a Single Image[END_REF] or depth [START_REF] Ni | Epitomic location recognition[END_REF]) also provides a fast global information. Taking the image as a whole in a different representation space that is more discriminant for similarity research can also be considered as global description.

For instance, Fourier Transform (FT) is used by Wan et al. [START_REF] Wan | Illumination-invariant image matching for autonomous UAV localisation based on optical sensing[END_REF].

Learned features Democratization of CNN in computer vision domain leads to stateof-the-art techniques in image retrieval for urban scenes [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF][START_REF] Gordo | Deep Image Retrieval: Learning Global Representations for Image Search[END_REF][START_REF] Kim | Learned Contextual Feature Reweighting for Image Geo-Localization[END_REF][START_REF] Radenović | CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples[END_REF]. Descriptors created through CNN are obtained using pooling mechanism on the computed features block [START_REF] Babenko | Neural Codes for Image Retrieval[END_REF]. We refer readers to section 3.1.1 for a detailed review on learned global image descriptor for the task of VBL. Similar learned approaches have been recently used for 3D point cloud global description [START_REF] Schönberger | Semantic Visual Localization[END_REF][START_REF] Uy | PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition[END_REF]. Schönberger et al. [START_REF] Schönberger | Semantic Visual Localization[END_REF] combine 3D convolution on point cloud (the 3D information is stocked in volumetric grid of voxels) and an self-supervised deep autoencoder and use the low dimensional latent representation computed by the network as global point cloud descriptor. In [START_REF] Uy | PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition[END_REF] the PointNet [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF] network is associated to a differentiable Vector of Locally Aggregated Descriptors (VLAD) module, called NetVLAD [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF],

to train in a supervised manner a discriminative global feature for fast localization.

Patch features

Patch features consider region of interest in the image, it can be interpreted as a compromise between local and global features. The patch could be manually extracted (with a fixed grid on an image, or a sliding window [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]) or automatically chosen in according to image saliency [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF]. The discriminative HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] descriptor has been used in VBL for capturing architectural cues of building and landmarks [START_REF] Aubry | Painting-to-3D model alignment via discriminative visual elements[END_REF][START_REF] Mcmanus | Scene Signatures : Localised and Pointless Features for Localisation[END_REF][START_REF] Morago | 2D Matching Using Repetitive and Salient Features in Architectural Images[END_REF][START_REF] Shrivastava | Data-driven visual similarity for cross-domain image matching[END_REF]. In the work of [START_REF] Kim | Predicting good features for image geo-localization using per-bundle VLAD[END_REF][START_REF] Nistér | Scalable recognition with a vocabulary tree[END_REF], MSER blob detector by Matas et al. [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF] is used to extract visual information. Morago et al. [START_REF] Morago | 2D Matching Using Repetitive and Salient Features in Architectural Images[END_REF] use a combination of local and patch features to describe repetitive shapes. Patch detector coupled with global descriptors are a common use in VBL, as illustrated in [START_REF] Gordo | Deep Image Retrieval: Learning Global Representations for Image Search[END_REF][START_REF] Kim | Predicting good features for image geo-localization using per-bundle VLAD[END_REF][START_REF] Sünderhauf | Place Recognition with ConvNet Landmarks: Viewpoint-Robust, Condition-Robust, Training-Free[END_REF][START_REF] Yan | SIFT for Image Retrieval[END_REF]. Sünderhauf et al. [START_REF] Sünderhauf | Place Recognition with ConvNet Landmarks: Viewpoint-Robust, Condition-Robust, Training-Free[END_REF] present promising works where the feature patches are automatically extracted with an edge boxes detector [START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF]. Another CNN approach is introduced to perform VBL in [START_REF] Gordo | Deep Image Retrieval: Learning Global Representations for Image Search[END_REF], authors use a custom region proposal network [START_REF] Ren | Faster R-CNN: Towards real-time object detection with region proposal networks[END_REF] to extract regions of interest (ROI) and compute a deep representation of the ROI. [START_REF] Morago | An Ensemble Approach to Image Matching Using Contextual Features[END_REF] Point [START_REF] Morago | An Ensemble Approach to Image Matching Using Contextual Features[END_REF][START_REF] Morago | 2D Matching Using Repetitive and Salient Features in Architectural Images[END_REF] Hessian-affine [START_REF] Mikolajczyk | Scale & affine invariant interest point detectors[END_REF] Point [START_REF] Arandjelović | Three things everyone should know to improve object retrieval[END_REF][START_REF] Arandjelović | DisLocation : Scalable descriptor[END_REF][START_REF] Jégou | On the burstiness of visual elements[END_REF][START_REF] Li | Pairwise geometric matching for large-scale object retrieval[END_REF][START_REF] Sattler | Large-Scale Location Recognition and the Geometric Burstiness Problem[END_REF] FALoG [START_REF] Wang | FRIF: Fast Robust Invariant Feature[END_REF] Point [START_REF] Feng | Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features[END_REF] SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] Point [START_REF] Liang | Image Based Localization in Indoor Environments[END_REF][START_REF] Nistér | Scalable recognition with a vocabulary tree[END_REF][START_REF] Schindler | City-Scale Location Recognition[END_REF][START_REF] Song | 6-DOF Image Localization From Massive Geo-Tagged Reference Images[END_REF][START_REF] Yan | SIFT for Image Retrieval[END_REF][START_REF] Zamir | Accurate image localization based on google maps street view[END_REF][START_REF] Zamir | Image geo-localization based on multiplenearest neighbor feature matching using generalized graphs[END_REF] RootSIFT [START_REF] Arandjelović | All About VLAD[END_REF] Point [START_REF] Arandjelović | DisLocation : Scalable descriptor[END_REF][START_REF] Middelberg | Scalable 6-DOF localization on mobile devices[END_REF][START_REF] Sattler | Large-Scale Location Recognition and the Geometric Burstiness Problem[END_REF][START_REF] Torii | Visual Place Recognition with Repetitive Structures[END_REF][START_REF] Torii | 24/7 place recognition by view synthesis[END_REF] SURF [START_REF] Bay | Surf: Speeded up robust features[END_REF] Point [START_REF] Cummins | FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance[END_REF][START_REF] Li | Pairwise geometric matching for large-scale object retrieval[END_REF][START_REF] Qu | Evaluation of SIFT and SURF for vision based localization[END_REF][START_REF] Song | 6-DOF Image Localization From Massive Geo-Tagged Reference Images[END_REF][START_REF] Stumm | Location graphs for visual place recognition[END_REF][START_REF] Valgren | SIFT, SURF & seasons: Appearance-based longterm localization in outdoor environments[END_REF] ORB [START_REF] Rublee | ORB: an efficient alternative to SIFT or SURF[END_REF] Point [START_REF] Griffith | Survey Registration For Long-Term Natural Environment Monitoring[END_REF] BRIEF [START_REF] Calonder | BRIEF: Binary robust independent elementary features[END_REF] Point [START_REF] Krajník | Long-Term Topological Localisation for Service Robots in Dynamic Environments using Spectral Maps[END_REF][START_REF] Krajník | Image features for visual teach-and-repeat navigation in changing environments[END_REF] BRISK [START_REF] Leutenegger | BRISK: Binary robust invariant scalable keypoints[END_REF] Point [START_REF] Feng | Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features[END_REF][START_REF] Middelberg | Scalable 6-DOF localization on mobile devices[END_REF][START_REF] Mühlfellner | Summary Maps for Lifelong Visual Localization[END_REF] Learned descriptor Point [START_REF] Carlevaris-Bianco | Learning visual feature descriptors for dynamic lighting conditions[END_REF][START_REF] Krajník | Image features for visual teach-and-repeat navigation in changing environments[END_REF][START_REF] Paulin | Local convolutional features with unsupervised training for image retrieval[END_REF][START_REF] Piasco | Geometric Camera Pose Refinement With Learned Depth Maps[END_REF][START_REF] Taira | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[END_REF] Learned features Point [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF][START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF][START_REF] Sarlin | From Coarse to Fine: Robust Hierarchical Localization at Large Scale[END_REF] Lines [START_REF] Vc | Method and means for recognizing complex patterns[END_REF] Geometric-2D [START_REF] Arth | Instant Outdoor Localization and SLAM Initialization from 2.5D Maps[END_REF][START_REF] Hays | IM2GPS: Estimating Geographic Information From a Single Image[END_REF][START_REF] Morago | 2D Matching Using Repetitive and Salient Features in Architectural Images[END_REF][START_REF] Ramalingam | Pose Estimation Using Both Points and Lines for Geolocation[END_REF] Skyline Geometric-2D [START_REF] Baatz | Large Scale Visual Geo-Localization of Images in Mountainous Terrain[END_REF][START_REF] Chen | Camera geolocation from mountain images[END_REF][START_REF] Tzeng | User-driven geolocation of untagged desert imagery using digital elevation models[END_REF] Contours [START_REF] Canny | A computational approach to edge detection[END_REF] Geometric-2D [START_REF] Ramalingam | SKYLINE2GPS: Localization in urban canyons using omni-skylines[END_REF][START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF] VLD [START_REF] Liu | Virtual line descriptor and semi-local matching method for reliable feature correspondence[END_REF] Geometric-2D [START_REF] Majdik | MAV urban localization from Google street view data[END_REF] VCLH [START_REF] Cham | Estimating camera pose from a single urban ground-view omnidirectional image and a 2D building outline map[END_REF] Geometric-2D [START_REF] Cham | Estimating camera pose from a single urban ground-view omnidirectional image and a 2D building outline map[END_REF] PGM [START_REF] Li | Pairwise geometric matching for large-scale object retrieval[END_REF] Geometric-2D [START_REF] Li | Pairwise geometric matching for large-scale object retrieval[END_REF] GIST [START_REF] Oliva | Modeling the shape of the scene: A holistic representation of the spatial envelope[END_REF] Global - [START_REF] Azzi | Filtering 3D Keypoints Using GIST For Accurate Image-Based Localization[END_REF][START_REF] Hays | IM2GPS: Estimating Geographic Information From a Single Image[END_REF][START_REF] Murillo | Localization in urban environments using a panoramic gist descriptor[END_REF][START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF] Tiny images Global - [START_REF] Corke | Dealing with shadows: Capturing intrinsic scene appearance for image-based outdoor localisation[END_REF][START_REF] Gee | 6D Relocalisation for RGBD Cameras Using Synthetic View Regression[END_REF][START_REF] Hays | IM2GPS: Estimating Geographic Information From a Single Image[END_REF] Histogram Global - [START_REF] Hays | IM2GPS: Estimating Geographic Information From a Single Image[END_REF][START_REF] Ni | Epitomic location recognition[END_REF] Fourier Transform Global - [START_REF] Wan | Illumination-invariant image matching for autonomous UAV localisation based on optical sensing[END_REF] CNN Global -Refer to section 3.1.1 HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] Patch [START_REF] Aubry | Painting-to-3D model alignment via discriminative visual elements[END_REF][START_REF] Mcmanus | Scene Signatures : Localised and Pointless Features for Localisation[END_REF][START_REF] Morago | 2D Matching Using Repetitive and Salient Features in Architectural Images[END_REF][START_REF] Shrivastava | Data-driven visual similarity for cross-domain image matching[END_REF] RPN [START_REF] Ren | Faster R-CNN: Towards real-time object detection with region proposal networks[END_REF] Patch [START_REF] Gordo | Deep Image Retrieval: Learning Global Representations for Image Search[END_REF] Edge boxes [START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF] Patch [START_REF] Panphattarasap | Visual place recognition using landmark distribution descriptors[END_REF][START_REF] Sünderhauf | Place Recognition with ConvNet Landmarks: Viewpoint-Robust, Condition-Robust, Training-Free[END_REF][START_REF] Yan | SIFT for Image Retrieval[END_REF] MSER [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF] Blob [START_REF] Kim | Predicting good features for image geo-localization using per-bundle VLAD[END_REF][START_REF] Nistér | Scalable recognition with a vocabulary tree[END_REF] Normal vector Point-3D [START_REF] Fernandez-Moral | Fast place recognition with plane-based maps[END_REF][START_REF] Li | Absolute pose estimation using multiple forms of correspondences from RGB-D frames[END_REF] PointRay [START_REF] Bansal | Geometric Urban Geo-Localization[END_REF] Point-3D [START_REF] Bansal | Geometric Urban Geo-Localization[END_REF] Learned 3D point descriptor Point-3D [START_REF] Deng | PPFNet: Global Context Aware Local Features for Robust 3D Point Matching[END_REF][START_REF] Yew | 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration[END_REF][START_REF] Zeng | 3DMatch: Learning the Matching of Local 3D Geometry in Range Scans[END_REF] Planar surface Patch-3D [START_REF] Fernandez-Moral | Fast place recognition with plane-based maps[END_REF] Spherical function [START_REF] Saupe | 3D model retrieval with spherical harmonics and moments[END_REF] Global-3D - [START_REF] Lu | Localize Me Anywhere, Anytime: A Multi-task Point-Retrieval Approach[END_REF] Learned point cloud descriptor Global-3D - [START_REF] Schönberger | Semantic Visual Localization[END_REF][START_REF] Uy | PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition[END_REF] 

VBL methods

In the previous section, we have described data representation mostly used in VBL.

The current section is dedicated to the method built on this representation to perform localization. As mentioned in the introduction, it exists three main family of methods:

• Content-based Image Retrieval (CBIR) for localization,

• 6 DoF camera pose estimation,

• coarse to fine localization.

CBIR for localization

The aim of CBIR methods is to retrieve a set of data presents in the database that are similar to an input query. This is a problem related to instance retrieval [START_REF] Zheng | SIFT Meets CNN: A Decade Survey of Instance Retrieval[END_REF].

As the visual data used in VBL are augmented with geospatial information (e.g. a geotag associated to an image), retrieving documents comparable to the input provides an information on the possible location of the query. This localization method is threestep: description of the visual data, similarity association across the description vectors previously extracted and possible candidates re-ranking. CBIR for localization pipeline is illustrate in figure 2.1.

REVIEW OF VISUAL-BASED LOCALIZATION METHODS

Efficient data representation for localization

As one of our main contribution in this thesis targets the design of a new learned global image representation for long-term CBIR for localization, we do not detail data description in this chapter. We refer reader to the first section of Chapter 3, Sect. 3.1, for a comprehensive review of image representation suited for localization by indexing.

For the subsequent tasks of the localization process, we assume that we are able to produce low dimensional vectors to describe the visual data.

Similarity Research

The similarity research step involve evaluating the sameness between the request descriptor (i.e. the description vector computed from the visual request we want to localize) and the reference descriptors. At the end of this step, we obtain a list of reference candidates, ranked accordingly to their similarity to the request.

Pre-processing. Dimension reduction of descriptor is often performed to reduce matching time and memory footprint. The most used technique remains the Principal Components Analysis (PCA). PCA is applied on high dimension vector, e.g. features block extracted from CNN layers ( [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF][START_REF] Gordo | Deep Image Retrieval: Learning Global Representations for Image Search[END_REF]). PCA has also been used to reduce the size of local features aggregated vectors [START_REF] Kim | Predicting good features for image geo-localization using per-bundle VLAD[END_REF][START_REF] Torii | 24/7 place recognition by view synthesis[END_REF] or global descriptors [START_REF] Ni | Epitomic location recognition[END_REF]. Gaussian Random Projection is applied in [START_REF] Panphattarasap | Visual place recognition using landmark distribution descriptors[END_REF][START_REF] Sünderhauf | Place Recognition with ConvNet Landmarks: Viewpoint-Robust, Condition-Robust, Training-Free[END_REF] and in a different work, binary locality-sensitive hashing [START_REF] Sünderhauf | On the performance of ConvNet features for place recognition[END_REF] is used instead. To reinforce data consistency, whitening could be applied to final features before the similarity search [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF][START_REF] Gong | Multi-scale Orderless Pooling of Deep Convolutional Activation Features[END_REF][START_REF] Gordo | Deep Image Retrieval: Learning Global Representations for Image Search[END_REF][START_REF] Jégou | Negative evidences and co-occurrences in image retrieval : the benefit of PCA and whitening[END_REF][START_REF] Radenović | CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples[END_REF][START_REF] Tolias | Particular object retrieval with integral maxpooling of CNN activations[END_REF].

Similarity metric. For most methods, comparison between descriptors is a trivial operation: it consists in a simple euclidean distance computation between vectors (with L2 norm or cosine similarityif the vectors are unitary -as usually used function).

Area correlation is another approach for computing data similarity. Simple forms of correlation like Sum of Squared Difference (SSD) or Sum of Absolute Difference (SAD)

have been used in VBL to directly compare raw images [START_REF] Milford | Sequence Searching with Deep-learnt Depth for Conditionand Viewpoint-invariant Route-based Place Recognition[END_REF][START_REF] Poglitsch | A particle filter approach to outdoor localization using image-based rendering[END_REF]. Wan et al. [START_REF] Wan | Illumination-invariant image matching for autonomous UAV localisation based on optical sensing[END_REF] use PC (Phase Correlation) on images described with FT (Fourier Transform) in order to be robust to shadow artifacts. In the work of [START_REF] Corke | Dealing with shadows: Capturing intrinsic scene appearance for image-based outdoor localisation[END_REF], authors compare shadow invariant grey-scale images with Zero Mean Normalized Cross-Correlation (ZNCC).

Neareast Neighbor search. In some works, when the amount of data to compare remains acceptable, linear or brute-force retrieval procedure can be employed to retrieve the closest neighbors. Well-suited data structure (e.g. inverted-index or k-d-tree) can be used in order to speed-up the research process. Linear NN search is used in [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF][START_REF] Babenko | Neural Codes for Image Retrieval[END_REF][START_REF] Gordo | Deep Image Retrieval: Learning Global Representations for Image Search[END_REF][START_REF] Radenović | CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples[END_REF][START_REF] Sünderhauf | On the performance of ConvNet features for place recognition[END_REF][START_REF] Sünderhauf | Place Recognition with ConvNet Landmarks: Viewpoint-Robust, Condition-Robust, Training-Free[END_REF][START_REF] Zamir | Accurate image localization based on google maps street view[END_REF][START_REF] Zamir | Image geo-localization based on multiplenearest neighbor feature matching using generalized graphs[END_REF], among others, where low-dimension global image descriptor ( §2.1.2) are used to describe the data.

Exact nearest neighbors search becomes impracticable when the amount and/or dimensionality of the features are too large. Authors then turn to approximate nearest neighbor search to trade efficiency for rapidity, thus accepting some errors in the retrieved neighbors. Approximate matching involve hashing methods [START_REF] Gionis | Similarity Search in High Dimensions via Hashing[END_REF] and quantization frameworks [START_REF] Jégou | Product Quantization for Nearest Neighbor Search Herve[END_REF][START_REF] Nistér | Scalable recognition with a vocabulary tree[END_REF][START_REF] Philbin | Object retrieval with large vocabularies and fast spatial matching[END_REF]. Interested readers may see [START_REF] Wang | A Survey on Learning to Hash[END_REF] for more details.

Several NN search algorithms are efficiently implemented in the FLANN library [START_REF] Muja | Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration[END_REF],

and in the new Facebook FAISS library [START_REF] Johnson | Billion-scale similarity search with GPUs[END_REF].

Machine Learning matching methods. Learning the distribution of the extracted features is an alternative to aforementioned NN search methods.

Support Vector Machines (SVM) classifiers are used in numerous works [START_REF] Aubry | Painting-to-3D model alignment via discriminative visual elements[END_REF][START_REF] Cao | Graph-Based Discriminative Learning for Location Recognition[END_REF][START_REF] Linegar | Made to measure: Bespoke landmarks for 24-hour, all-weather localisation with a camera[END_REF][START_REF] Mcmanus | Scene Signatures : Localised and Pointless Features for Localisation[END_REF][START_REF] Shrivastava | Data-driven visual similarity for cross-domain image matching[END_REF] to cast the similarity research as a classification task. Cao and Snavely [START_REF] Cao | Graph-Based Discriminative Learning for Location Recognition[END_REF] initially cluster the database according to the resemblance of the images. On top of this graph of similar images, they trained SVM for each cluster and at query time oppose the input image to all classifiers. By selecting the data associated to the SVM reaching the higher score of classification, this approach permits to quickly retrieve a pool of similar images. In [START_REF] Aubry | Painting-to-3D model alignment via discriminative visual elements[END_REF][START_REF] Mcmanus | Scene Signatures : Localised and Pointless Features for Localisation[END_REF] authors train linear classifiers on HOG descriptors to robustly retrieve similar images that present extreme appearances changes. Aubry et al. [START_REF] Aubry | Painting-to-3D model alignment via discriminative visual elements[END_REF] take the advantages of Linear Discriminant Analysis (LDA) data representation in order to avoid expensive SVM training (like hard negative mining used in [START_REF] Kim | Predicting good features for image geo-localization using per-bundle VLAD[END_REF][START_REF] Shrivastava | Data-driven visual similarity for cross-domain image matching[END_REF]). Similarly, Kim et al. [START_REF] Kim | Predicting good features for image geo-localization using per-bundle VLAD[END_REF] train SVM classifier to predict the robustness of extracted descriptors. This improves the matching process and reduces the number of features to compare against the database.

Lu et al. [START_REF] Lu | Localize Me Anywhere, Anytime: A Multi-task Point-Retrieval Approach[END_REF] introduce a Multi-task Learning (MTL) layout designed for features similarity association. Works from Torralba et al. [START_REF] Torralba | Context-based vision system for place and object recognition[END_REF] and Ni et al. [START_REF] Ni | Epitomic location recognition[END_REF] present VBL methods that are able to localize an input query among a set of predefined places. Authors embedded the recognition process into probabilistic framework, Gaussian Mixture Model (GMM) in [START_REF] Torralba | Context-based vision system for place and object recognition[END_REF] and epitome in [START_REF] Ni | Epitomic location recognition[END_REF], trained upon images representing different areas. Such paradigms allow an easy integration of additional knowledge (such as depth information [START_REF] Ni | Epitomic location recognition[END_REF]).

Graph matching. Stumm et al. [START_REF] Stumm | Location graphs for visual place recognition[END_REF] introduce an innovative method based on graph matching. The visual vocabulary abstraction is employed and augmented with a graph of covisibility of the visual words in images. The graph is constructed as follows: nodes represent visual word detected in images and edges are created between two nodes if they are seen together in a same image. This formulation permits integrating geometric relations between the extracted features. Authors use a graph kernel for the similarity comparison among the query graph and the database [START_REF] Stumm | Building Location Models for Visual Place Recognition[END_REF][START_REF] Stumm | Robust Visual Place Recognition with Graph Kernels[END_REF]. Notice that graph-based approaches are often employed when scenes are described by spatially organized semantic clues such as office furnitures [START_REF] Salas-Moreno | SLAM++: Simultaneous localisation and mapping at the level of objects[END_REF] or street equipments [START_REF] Ardeshir | GIS-assisted object detection and geospatial localization[END_REF].

Candidates re-ranking

Data can be processed after the similarity research to improve the final result. Postprocessing methods are widely used to re-rank the candidate list, improving relevance of retrieved data.

Generic re-ranking. Query expansion is a post-process that re-query the database after a first retrieval step to increase the recall rate [START_REF] Chum | Total recall: Automatic query expansion with a generative feature model for object retrieval[END_REF][START_REF] Chum | Total Recall II : Query Expansion Revisited[END_REF][START_REF] Tolias | Visual query expansion with or without geometry: Refining local descriptors by feature aggregation[END_REF]. However, increasing the recall rate is not the main concern of VBL indirect method [START_REF] Sattler | Improving image-based localization by active correspondence search[END_REF]. Indeed, as exposed in the introduction, a perfect VBL indirect system should retrieve at first position the closest visual document present in the database. However, more suitable top ranked candidates in the list of retrieved data could benefit to a subsequent pose estimation step [START_REF] Song | 6-DOF Image Localization From Massive Geo-Tagged Reference Images[END_REF]. The VBL system presented by Cao and Snavely [START_REF] Cao | Graph-Based Discriminative Learning for Location Recognition[END_REF] increase the diversity of retrieved images by introducing a probabilistic re-ranking on the assumption that the first ranked candidate is not a good one and by maximizing the probability that the second one is. On the other hand, geometric consistency check is often used to reject wrong matching. Relative pose between the query and the database candidates is computed by considering homography or multiple-view transformation, and candidates that produce the most consistent pose are ranked up. Philbin et al. [START_REF] Philbin | Object retrieval with large vocabularies and fast spatial matching[END_REF] democratize the use of spatial verification by introducing prior on the pose of the photography by assuming a top-oriented view. Authors perform spatial check hierarchically to get more flexibility between time computation and retrieval precision. The geometric transformation between the query and the candidate is usually computed with minimal solver embedded in a Random Sample Consensus (RANSAC) [START_REF] Fischler | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF]. There exists multiple alternatives to the classical RANSAC algorithm. PROSAC by [START_REF] Chum | Matching with PROSAC-progressive sample consensus[END_REF], used in [START_REF] Donoser | Discriminative feature-to-point matching in image-based localization[END_REF], prioritize specific features during the random selection step. We can also enumerate LO-RANSAC used in [START_REF] Philbin | Object retrieval with large vocabularies and fast spatial matching[END_REF] and AC-RANSAC in [START_REF] Qu | Vehicle localization using mono-camera and geo-referenced traffic signs[END_REF][START_REF] Qu | Evaluation of SIFT and SURF for vision based localization[END_REF]. Novel method F-SORT presented by Chan et al. [START_REF] Chan | F-SORT : An Alternative for Faster Geometric Verification[END_REF] show outstanding result both in term on matching quality and computation efficiency. Notice that these algorithms, beside improving the relevance of the retrieved candidates, can give information about the relative pose of the query. That is why numerous 6 DoF pose estimation methods, presented thereafter in Sect. 2.2.2, rely also on these techniques.

Specific VBL re-ranking. Unlike conventional methods of object-retrieval, indirect VBL can benefit from geo-localization information associated to the documents present in the database. As discussed earlier, this information can be used to construct structured graph for the similarity search process [START_REF] Cao | Graph-Based Discriminative Learning for Location Recognition[END_REF][START_REF] Torii | Visual localization by linear combination of image descriptors[END_REF] or exploited to re-rank the candidates list [START_REF] Sattler | Large-Scale Location Recognition and the Geometric Burstiness Problem[END_REF][START_REF] Zamir | Accurate image localization based on google maps street view[END_REF][START_REF] Zamir | Image geo-localization based on multiplenearest neighbor feature matching using generalized graphs[END_REF]. Zamir and Shah [START_REF] Zamir | Accurate image localization based on google maps street view[END_REF] introduce this geographic re-ranking after a classical image-retrieval algorithm to quickly remove irrelevant candidates. Authors go one step further in [START_REF] Zamir | Image geo-localization based on multiplenearest neighbor feature matching using generalized graphs[END_REF] and embed the matching process within a Generalized Minimum Clique Graphs scheme to retrieve consistent candidates according to the GPS tag associated to the visual data. Sattler et al. [START_REF] Sattler | Large-Scale Location Recognition and the Geometric Burstiness Problem[END_REF] generalize the problem of visual burstiness introduced by [START_REF] Jégou | On the burstiness of visual elements[END_REF] to a geographic level, introducing the concept of geometric burstiness. They improve the relevance of the ranked list of candidates using position and popularity meta-information of database images. Learned approaches: the second considered family of algorithms are methods that learns a model to directly regress from an input visual data to its corresponding pose. We distinguish between local [START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF] and global [START_REF] Kendall | PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[END_REF] learned methods.

6 DoF pose estimation

Geometric methods

A widely represented family of VBL methods aims to regress the pose of a camera based on the analysis of a 3D point cloud reconstructed by SfM algorithms [START_REF] Moulon | Openmvg: Open multiple view geometry[END_REF][START_REF] Rupnik | MicMac, a free, open-source solution for photogrammetry[END_REF][START_REF] Schönberger | Structure-from-Motion Revisited[END_REF].

The principle of these methods is to establish 2D features to 3D points correspondences (F2P or 2D-3D in short terms). In a first step, three-dimensional representation of the environment is built thanks to many images. Triangulated points within this structure are associated to the local features (most of the time SIFT vectors [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]) extracted from all the images where the considered point is visible. At query time, local features from the query are matched against the set of pre-computed 3D points. Finally, 2D-3D correspondences permit a 6 DoF pose estimation of the acquisition system. Irschara et al. [START_REF] Irschara | From Structure-from-Motion Point Clouds to Fast Location Recognition[END_REF] introduce the first F2P method based on SfM environment representation.

The overall pipeline of structured methods is presented in figure 2.2.

These methods have a lot in common with CBIR for localization approaches described in Section 2.2.1 as they share two major steps: feature extraction and data association.

Yet, the use of a geometrically structured database introduces interesting elements not exploitable in a classical image-retrieval scheme [START_REF] Sattler | Image Retrieval for Image-Based Localization Revisited[END_REF].

Scalable localization. In [START_REF] Irschara | From Structure-from-Motion Point Clouds to Fast Location Recognition[END_REF], authors perform scalable VBL by registering the point cloud into synthetic visual documents covering the entire model. Sattler et al. [START_REF] Sattler | Fast image-based localization using direct 2Dto-3D matching[END_REF] consider the original features to points correspondences scheme by [START_REF] Irschara | From Structure-from-Motion Point Clouds to Fast Location Recognition[END_REF] and introduce a

Vocabulary-based Prioritized Search (VPS) inspired by BoF matching method. Heisterklaus et al. [START_REF] Heisterklaus | Image-based pose estimation using a compact 3D model[END_REF] introduce MPEG compression for visual document in order to speed-up the system. Works from [START_REF] Lynen | Get out of my lab: Large-scale, real-time visual-intertial localization[END_REF][START_REF] Middelberg | Scalable 6-DOF localization on mobile devices[END_REF] tackle the problem of VBL embedded in a mobile device with limited memory storage and computational power. To achieve real-time performances, authors in [START_REF] Middelberg | Scalable 6-DOF localization on mobile devices[END_REF] produce a very light 3D model to track the mobile camera in an urban environment. They send at regular interval key-frames to a server that is in charge of computing the global pose of the camera regarding a pre-produced point cloud. Aligning a light relative point cloud reconstructed with SfM to a bigger one have also been investigated in [START_REF] Lu | Localize Me Anywhere, Anytime: A Multi-task Point-Retrieval Approach[END_REF]. In the work described in [START_REF] Donoser | Discriminative feature-to-point matching in image-based localization[END_REF], authors use the descriptor redundancy associated to 3D points to train random ferns on the top of each points. F2P matching time requirement is by the fact greatly reduced. Recent work by Feng et al.

[81] reduce drastically the computational power requirement by considering fast point extractor and binary descriptors combined with an efficient similarity research. Authors show an order of magnitude in time reduction without any pose estimation performances deterioration.

Filtering wrong correspondences. Li et al. [START_REF] Li | Location Recognition using Prioritized Feature Matching[END_REF] reverse the conventional F2P process by searching from the point cloud correspondences in the image (P2F), instead of matching features from the image to points. This formulation causes an overhead in computation but is correctly handled by considering a compressed version of the SfM model and by implementing end-conditions and rejection cases in their algorithm. In work from [START_REF] Li | Worldwide Pose Estimation Using 3D Point Clouds[END_REF], authors augment the P2F matching with hypothesis of co-occurrence of 3D points present in a close neighborhood. Based on similar observation, Sattler et al. [START_REF] Sattler | Hyperpoints and fine vocabularies for large-scale location recognition[END_REF] consider visibility graph to reject wrong matchings. Svarm et al. [START_REF] Svarm | Accurate Localization and Pose Estimation for Large 3D Models[END_REF] consider the problem of VBL with F2P matching as a combinatorial optimization problem and design a fast outliers rejection scheme. This promising work have been improved

through [START_REF] Svarm | City-Scale Localization for Cameras with Known Vertical Direction[END_REF][START_REF] Zeisl | Camera Pose Voting for Large-Scale Image-Based Localization[END_REF] contributions. In [START_REF] Kroeger | Video registration to SfM models[END_REF], authors extend the image registration problem to video registration. Temporal redundancy obtained from the visual flux facilitates the 2D-3D matching by adding smoothness constraints. Semantic filtering is also used to enforce matching consistency between features and points [START_REF] Toft | Semantic Match Consistency for Long-Term Visual Localization[END_REF]. In [START_REF] Liu | Efficient Global 2D-3D Matching for Camera Localization in a Large-Scale 3D Map[END_REF], the proposed method achieve the best localization result on commonly used datasets without any prior assumptions on the query pose by introducing global co-visibility constraints with Markov network.

Pose estimation. F2P (as well as P2F) provides correspondences between 2D pixels and 3D points. Properly redefined by Hartley and Zisserman [START_REF] Hartley | Multiple view geometry in computer vision[END_REF], perspective-n-point (PnP) formulation is the most common tool to recover the absolute camera pose according to a point cloud reconstructed by SfM.

Embedded in a random consensus scheme (see §2.2.1), six correspondences between the image and the 3D model are sufficient to retrieve the pose, if we have no information about the intrinsic parameters of the camera [START_REF] Donoser | Discriminative feature-to-point matching in image-based localization[END_REF][START_REF] Heisterklaus | Image-based pose estimation using a compact 3D model[END_REF][START_REF] Li | Location Recognition using Prioritized Feature Matching[END_REF][START_REF] Li | Location Recognition using Prioritized Feature Matching[END_REF]. This formulation is known as P6P and can be solved with Direct Linear Transformation (DLT [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]).

In particular cases, three correspondences between the image and the model are sufficient (P3P pose computation problem). Especially, the pose estimation problem can be reduced to a P3P formulation if the intrinsic parameters of the camera are known [START_REF] Irschara | From Structure-from-Motion Point Clouds to Fast Location Recognition[END_REF][START_REF] Middelberg | Scalable 6-DOF localization on mobile devices[END_REF], or if 3 or more DoF are fixed [START_REF] Qu | Evaluation of SIFT and SURF for vision based localization[END_REF][START_REF] Svarm | Accurate Localization and Pose Estimation for Large 3D Models[END_REF][START_REF] Svarm | City-Scale Localization for Cameras with Known Vertical Direction[END_REF][START_REF] Zeisl | Camera Pose Voting for Large-Scale Image-Based Localization[END_REF]. In those particular cases, P3P solvers Kneip and Furgale [START_REF] Kneip | OpenGV: A unified and generalized approach to realtime calibrated geometric vision[END_REF] are mostly used to recover the pose.

In [START_REF] Speciale | Privacy Preserving Image-Based Localization[END_REF], authors are interested in privacy preserving personal information in augmentedreality consumer application. They argues that SfM point cloud can be targeted by inversion attack to recover the original state of the mapped scene. That is why they propose a 3D Line Cloud scene representation to replace the original point cloud and use 3D points to 3D lines association to recover the pose of a query image.

Learned methods

The last class of 6-DoF pose estimation methods cast VBL as a machine learning problem.

A model is trained with geolocalized visual data in order to be able to predict the be applied [START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF] (i.e. the data involved in the learning processes are local feature or raw pixels). Otherwise, the method is global and entire images are used as input to the model [START_REF] Kendall | PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[END_REF].

Local methods. First introduced by Shotton et al. [START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF], local learned method for VBL are based on the scene coordinates representation of the environment. Scene coordinates representation associates to each pixel of an image its 3-dimension coordinate in a global scene frame. It means that we requires both image 6-DoF pose as well as scene geometry (e.g. depth map associated to the image) to create a scene coordinates representation. See figure 2.4 for a colorized example of scene coordinates representation.

During training, we minimize the error between predicted 3D coordinates of each pixel of a training set of images with the ground truth scene coordinates. Once the model is trained, we can use it to predict dense 3D coordinates at each pixel position of a new image. Finally, these 2D-3D correspondences (2D position of pixels' image and predicted 3D coordinates) are used to compute the 6-DoF of the query image. Similar algorithm as the ones used for structure-based methods (see section 2.2.2), embedded in a random consensus, are used in order to compute the query pose. This class of method is compact but not scalable: it requires to train one model by scene.

In the initial works by Shotton et al. [START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF], authors use a regression forest to learn the mapping from pixel to 3D scene coordinates. At query time, a handful of pixels from a depth camera frame are processed into the regression forest. This method is fast and precise and can be used on texture-less data. However, the depth information associated to each pixel is needed at test time. This initial method have been improved in [START_REF] Guzman-Rivera | Multi-Output Learning for Camera Relocalization[END_REF], where authors take in consideration several candidates for the final pose regression obtained by multiple trained predictors. Valentin et al. [START_REF] Valentin | Exploiting Uncertainty in Regression Forests for Accurate Camera Relocalization[END_REF] introduce mixture of Gaussian to represent the uncertainty associated with the regression forest prediction and significantly improve the 6 DoF estimation by embedding this information within the full camera pose regression step. The regression forest have been replaced by Neural Network (NN) in [START_REF] Massiceti | Random Forests versus Neural Networks -What's Best for Camera Relocalization[END_REF], bringing slightly better result at the cost of computational overhead. Meng et al. [START_REF] Meng | Exploiting Random RGB and Sparse Features for Camera Pose Estimation[END_REF] consider only RGB images at query time. The loss in precision is compensated by a post pose refinement step based on nearest neighbors search with sparse extracted SIFT features (like in structured approaches, see section 2.2.2).

Duong et al. [START_REF] Duong | XyzNet: Towards Machine Learning Camera Relocalization by Using a Scene Coordinate Prediction Network[END_REF] introduce a patch-based approaches where area centered on keypoints extracted from standard image detector are used instead of raw pixels. During training, they use a CNN to predict 3D-coordinate from the extracted image patches. In major work of Brachmann and Rother [START_REF] Brachmann | Learning Less is More -6D Camera Localization via 3D Surface Regression[END_REF], the complete image is used as input to a fully-CNN.

The model predict a dense scene coordinates image and the authors perform end-to-end training regarding the final pose prediction thanks to a differentiable version of RANSAC (DSAC [START_REF] Brachmann | DSAC -Differentiable RANSAC for Camera Localization[END_REF]). They obtain convening results using only images and they show that their method can be applied even if we do not know the full geometry of the scene. In [START_REF] Li | Scene Coordinate Regression with Angle-Based Reprojection Loss for Camera Relocalization[END_REF], a new loss function is introduced to stabilize the training of fully-CNN for dense scene coordinates prediction.

To address the scene-dependent limitation of classical methods, Glocker et al. [START_REF] Glocker | Real-time RGB-D camera relocalization via randomized ferns for keyframe encoding[END_REF] design a system based on regression ferns to quickly associate an RGB-D image to a binary feature. Ferns produce descriptor according to randomly initialized binary rules, and a look up table is maintained to directly associated image signature with 3D pose in the scene. Presented system is less precise that the one presented by Shotton et al. [START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF] but has the advantages of not relying on a heavy pre-processing step (i.e. the spawning of the regression forest). Along the same line, promising work of Cavallari et al. [START_REF] Cavallari | On-the-Fly Adaptation of Regression Forests for Online Camera Relocalisation[END_REF][START_REF] Cavallari | Real-Time RGB-D Camera Pose Estimation in Novel Scenes using a Relocalisation Cascade[END_REF] propose to quickly adapt a pre-trained regression forest to a new scene. This method permit to recover the pose of a RGB-D camera frame, more precisely than Glocker et al. [START_REF] Glocker | Real-time RGB-D camera relocalization[END_REF][START_REF] Glocker | Real-time RGB-D camera relocalization via randomized ferns for keyframe encoding[END_REF], without the costly step of complete regression forest training. Recent work in [START_REF] Cavallari | Let's Take This Online: Adapting Scene Coordinate Regression Network Predictions for Online RGB-D Camera Relocalisation[END_REF] applied a variant of the precedent method with fully-CNN architecture of [START_REF] Brachmann | Learning Less is More -6D Camera Localization via 3D Surface Regression[END_REF] instead of regression forest. They fill coordinates reservoir at the end of a pretrained model with information about a new scene to quickly obtain a precise localization system. In a different manner in [START_REF] Brachmann | Expert Sample Consensus Applied to Camera Re-Localization[END_REF], authors propose to use multiple models distributed all over the area of interest. At query time, they use a Mixture of Export (MoE) for weighting predictions of each model, embedded in a differentiable RANSAC [START_REF] Brachmann | Neural-Guided RANSAC: Learning Where to Sample Model Hypotheses[END_REF][START_REF] Brachmann | DSAC -Differentiable RANSAC for Camera Localization[END_REF] for end-to-end training.

Global methods. Introduced in 2015 by Kendall et al. [START_REF] Kendall | PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[END_REF], the first global learned method, PoseNet, consists of a fine-tuned CNN for the task of 6-DoF pose regression.

The network is trained upon a set of paired image/pose and directly regress the 6-DoF pose of a camera from an image. The pose obtained through this method is not as accurate as the pose obtained with geometric or local method [START_REF] Brachmann | Learning Less is More -6D Camera Localization via 3D Surface Regression[END_REF][START_REF] Feng | Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features[END_REF] but provides great tolerance to changes in scale and appearance. Compared to scene coordinates-based methods [START_REF] Li | Scene Coordinate Regression with Angle-Based Reprojection Loss for Camera Relocalization[END_REF][START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF], CNN seems more appropriate to handle large environment and does not rely on depth information.

Recent improvement have been proposed by the original authors [START_REF] Kendall | Modelling Uncertainty in Deep Learning for Camera Relocalization[END_REF] to integrate an uncertainty estimation in the regression process. Liu et al. [START_REF] Liu | Depth-Based Local Feature Selection for Mobile Visual Search[END_REF] consider this CNN architecture with only depth map information, acquirement with active depth sensor, for recovering the pose of a camera in complete obscurity. The work by Walch et al. [START_REF] Walch | Image-based Localization with Spatial LSTMs[END_REF] present a combination of a PoseNet [START_REF] Kendall | PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[END_REF] with a Long Short-term Memory (LSTM) units plugged at the output of the network in order to encode stronger spatial information from the image. This combination slightly improves the precision of the system. Authors of [START_REF] Jia | Deep Convolutional Neural Network for 6-DOF Image Localization[END_REF] propose a new method to gather supplementary image/pose pairs for the network training. They generate artificial images from a dense point cloud model obtained by SfM thanks to a rendering software. Computer graphics shaders effects are added on some rendered views for simulating various illuminations. In [START_REF] Purkait | Synthetic View Generation for Absolute Pose Regression and Image Synthesis[END_REF], the view synthesis procedure is extended to real images thank to the known geometry of the scene. Contreras and Mayol-Cuevas [START_REF] Contreras | Towards CNN Map Compression for camera relocalisation[END_REF] exploit this CNN architecture in order to create a fixed size map that can be improved by adding new trajectories. Authors were able to reduce the original size of the CNN by factor of three while maintaining similar localization performances on indoor scenes. Recent contribution [START_REF] Kendall | Geometric loss functions for camera pose regression with deep learning[END_REF] investigate new loss-functions for the training phase of the CNN, by adding constraints from multi-view geometry standards [START_REF] Hartley | Multiple view geometry in computer vision[END_REF].

MapNet [START_REF] Brahmbhatt | Geometry-Aware Learning of Maps for Camera Localization[END_REF] introduces relative constraint between two consecutive images in order to train the regression network with unannotated data. For this training setup, the relative pose between two images is computed by a Visual Odometry (VO) algorithm [START_REF] Engel | Direct sparse odometry[END_REF][START_REF] Forster | SVO: Semidirect visual odometry for monocular and multicamera systems[END_REF].

In a similar manner, VLocNet [START_REF] Valada | Deep Auxiliary Learning for Visual Localization and Odometry[END_REF] benefits from relative pose information between consecutive frames by relying on two different networks with shared representation: one for absolute pose regression and the over one for relative pose estimation between two images. In a subsequent work [START_REF] Radwan | VLocNet++: Deep Multitask Learning for Semantic Visual Localization and Odometry[END_REF][START_REF] Valada | Incorporating Semantic and Geometric Priors in Deep Pose Regression[END_REF], authors show how multitask [START_REF] Kendall | Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics[END_REF][START_REF] Kokkinos | Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory[END_REF][START_REF] Zamir | Taskonomy: Disentangling Task Transfer Learning[END_REF] learning can improve the pose estimation.

Although Posenet-like method has the advantages of being lightweight and relies on only-images, Sattler et al. [START_REF] Sattler | Understanding the Limitations of CNN-based Absolute Camera Pose Regression[END_REF] show that performances of such methods are less precise than CBIR-based pose estimation (section 2.2.1). They demonstrate that learned pose regression method are more likely to average the pose of the training examples [START_REF] Torii | Visual Place Recognition with Repetitive Structures[END_REF] rather that computing a real pose based on geometric constraints. Another disadvantage of Posenet-like methods, and more generally of learned methods, rely on the fact that a different model has to be trained for each new scene.

Differently, recent work from Weyand et al. [START_REF] Weyand | PlaNet -Photo Geolocation with Convolutional Neural Networks[END_REF] consider the localization problem as a classification task. They perform a worldwide training on 126M images categorized into 26k places across the globe. According to a given image a CNN, named PlaNet, estimates the most likely location of the query over the split map. Localization of multiples photos taken from a common album can be performed by augmenting the original network with a LSTM layer. Vo et al. [START_REF] Vo | Revisiting IM2GPS in the Deep Learning Era[END_REF] push further the study of such a neural network and conclude that the features extracted from layers of PlaNet are more discriminative to determine the location of an input image that the CNN classifier itself. By extracting features instead of using a classification algorithm, their contribution is closer to the original CBIR world-wide localization method IM2GPS [START_REF] Hays | IM2GPS: Estimating Geographic Information From a Single Image[END_REF] (see section 2.2.1). Seo et al. [START_REF] Seo | CPlaNet: Enhancing Image Geolocalization by Combinatorial Partitioning of Maps[END_REF] introduce CPlaNet and use combinatorial partitioning in order to improve fine-grained localization. They use several models trained on different earth partitioning in such way that the final query location can be determine by considering the overlap of each model prediction.

Coarse to fine localization

The last family of VBL method we consider here are approaches called equivalently: coarse to fine, hierarchical or cascaded localization. In a word, the localization process is divided in two parts: initial coarse localization followed by a 6-DoF precise and relative pose estimation on the reduced search area.

Initial localization

Initial step of the localization; its provides a coarse pose or position information or multiple location hypothesis.

External sensors. The location prior can be obtained through extern sensors, like a GPS that provide 3-DoF position information [START_REF] Armagan | Semantic Segmentation for 3D Localization in Urban Environments[END_REF][START_REF] Armagan | Learning to Align Semantic Segmentation and 2.5D Maps for Geolocalization[END_REF][START_REF] Arth | Instant Outdoor Localization and SLAM Initialization from 2.5D Maps[END_REF][START_REF] Chen | City-scale landmark identification on mobile devices[END_REF][START_REF] Poglitsch | A particle filter approach to outdoor localization using image-based rendering[END_REF]. In order to recover the orientation as well, magnetic compass can be used [START_REF] Svarm | Accurate Localization and Pose Estimation for Large 3D Models[END_REF][START_REF] Svarm | City-Scale Localization for Cameras with Known Vertical Direction[END_REF][START_REF] Zeisl | Camera Pose Voting for Large-Scale Image-Based Localization[END_REF].

CBIR initial localization. Most of the hierarchical localization methods rely on

CBIR to obtain an initial localization [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF][START_REF] Rocco | Neighbourhood Consensus Networks[END_REF][START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF][START_REF] Sarlin | Leveraging Deep Visual Descriptors for Hierarchical Efficient Localization[END_REF][START_REF] Sarlin | From Coarse to Fine: Robust Hierarchical Localization at Large Scale[END_REF][START_REF] Sattler | Are Large-Scale 3D Models Really Necessary for Accurate Visual Localization[END_REF][START_REF] Sattler | Are Large-Scale 3D Models Really Necessary for Accurate Visual Localization[END_REF][START_REF] Song | 6-DOF Image Localization From Massive Geo-Tagged Reference Images[END_REF][START_REF] Taira | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[END_REF][START_REF] Taira | Is This The Right Place? Geometric-Semantic Pose Verification for Indoor Visual Localization[END_REF][START_REF] Torii | Visual localization by linear combination of image descriptors[END_REF] (see section 2.2.1). In addition to obtain a coarse location information (from the georeference information attached to the retrieved candidates), this approach provides visually similar data that can be used afterwards for the refinement step [START_REF] Rocco | Neighbourhood Consensus Networks[END_REF][START_REF] Taira | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[END_REF][START_REF] Taira | Is This The Right Place? Geometric-Semantic Pose Verification for Indoor Visual Localization[END_REF].

The most used image descriptor for retrieval in hierarchical methods is the CNN learned global descriptor NetVLAD [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF] (more information about NetVLAD can be found in next chapter).

Pose refinement

The second localization step used the prior location information to generate a finer pose estimation. This step often permits to obtain a full 6-DoF pose.

REVIEW OF VISUAL-BASED LOCALIZATION METHODS

Image-based refinement. Innovative contribution from Torii et al. [START_REF] Torii | Visual localization by linear combination of image descriptors[END_REF] refine the query location with a linear interpolation in the feature space domain of the closest database images. The database is arranged with a graph representation, where images represent the nodes and the edges encode spatial relation, i.e. images that are close to each other (according to their GPS-tag) are connected. The exact position of the query is guessed according to a linear combination of GPS information of the initially retrieved database images. Although promising, this method relies on complete panorama images, limiting its range of applications. Similar method have been used in [START_REF] Sattler | Understanding the Limitations of CNN-based Absolute Camera Pose Regression[END_REF] to demonstrate that Posenet-like methods ( § 2.2.2) can only average learned pose from data instead of reasoning on the image geometry to compute real 6-DoF pose.

Song et al. [START_REF] Song | 6-DOF Image Localization From Massive Geo-Tagged Reference Images[END_REF] introduce a purely image-based 6-DoF pose estimation after CBIR indexing. Authors first compute relative poses of the query image regarding two retrieved candidates by computing the essential matrix from 2D-2D correspondences [START_REF] Hartley | Multiple view geometry in computer vision[END_REF].

These two relative poses are used together to find the exact 6-DoF query pose. Such approach has been extended in [START_REF] Zhou | To Learn or Not to Learn: Visual Localization from Essential Matrices[END_REF], where authors investigated the replacement of the conventional essential matrix estimation by a direct regression through a DL model.

In [START_REF] Dusmanu | D2-Net: A Trainable CNN for Joint Detection and Description of Local Features[END_REF][START_REF] Taira | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[END_REF][START_REF] Taira | Is This The Right Place? Geometric-Semantic Pose Verification for Indoor Visual Localization[END_REF], authors establish a dense correspondences between the query image and the top-k retrieved candidates. Because the reference data are augmented with 3D depth map information (only indoor environment are considered), 6-DoF query pose can be retrieved from these correspondences (paragraph 2.2.2). This method, called InLoc, have been improved in [START_REF] Rocco | Neighbourhood Consensus Networks[END_REF] by replacing the dense correspondences operation by a CNN capable of establishing local matches between a pair of images by features block correlation.

In [START_REF] Balntas | RelocNet : Continous Metric Learning Relocalisation using Neural Nets[END_REF], the relative pose estimation between two images (the request and the topretrieved candidates from initial CBIR) is directly computed by a two-streams CNN. As well as absolute pose regression described earlier ( § 2.2.2), relative pose regression with deep models is a well studied topic [START_REF] En | RPNet: an End-to-End Network for Relative Camera Pose Estimation[END_REF][START_REF] Laskar | Camera Relocalization by Predicting Pairwise Relative Poses Using Convolutional Neural Network[END_REF][START_REF] Li | Relative Geometry-Aware Siamese Neural Network for 6DOF Camera Relocalization[END_REF][START_REF] Melekhov | Relative Camera Pose Estimation Using Convolutional Neural Networks[END_REF][START_REF] Saha | Improved Visual Relocalization by Discovering Anchor Points[END_REF].

Model-based refinement. Arth et al. [START_REF] Arth | Wide area localization on mobile phones[END_REF] present a system that recover the pose of a smart-phone camera by confronting an image to a subset of 3D points that should be visible in the query according to a prior pose information. This idea of local SfM model have been extended in [START_REF] Rubio | Efficient Monocular Pose Estimation for Complex 3D Models[END_REF][START_REF] Sattler | Are Large-Scale 3D Models Really Necessary for Accurate Visual Localization[END_REF], where only a subset of the reference images (the ones retrieved in the initial step) is used to compute the 3D model. Authors of [START_REF] Sarlin | Leveraging Deep Visual Descriptors for Hierarchical Efficient Localization[END_REF][START_REF] Sarlin | From Coarse to Fine: Robust Hierarchical Localization at Large Scale[END_REF] use multiple position hypothesis obtained by clustering location information initially obtained by CBIR. The query image is registered on these different places and the most likely final pose is selected according to inlier count ( § 2.2.2). Shi et al. [START_REF] Shi | Visual Localization Using Sparse Semantic 3D Map[END_REF] use a similar approach, with the augmentation of the 3D point cloud with semantic information.

Russell et al. [START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF] investigate techniques to retrieve the pose of a painting or sketch according to a photo-realistic 3D model. Given a coarse pose prior, the query location is refined by establishing edges correspondences with the real model, followed by Iterative Closest Point (ICP) like algorithm. ICP pose refinement has also been used in [START_REF] Baatz | Large Scale Visual Geo-Localization of Images in Mountainous Terrain[END_REF],

where authors register mountain images to a DEM. Similarly, Arth et al. [START_REF] Arth | Instant Outdoor Localization and SLAM Initialization from 2.5D Maps[END_REF] introduce a method to estimate a fine pose of a mobile camera to initialize Augmented Reality (AR) applications or SLAM systems. Authors refine the initial pose by matching geometric features to buildings outlines extracted from a 2.5D map. This method have been extended recently with advanced geometric features extraction models [START_REF] Armagan | Semantic Segmentation for 3D Localization in Urban Environments[END_REF][START_REF] Armagan | Learning to Align Semantic Segmentation and 2.5D Maps for Geolocalization[END_REF][START_REF] Armagan | Accurate Camera Registration in Urban Environments Using High-Level Feature Matching[END_REF]. In [START_REF] Schönberger | Semantic Visual Localization[END_REF], a local 3D point cloud augmented with semantic information is located in relation to a larger model. After a initial retrieval step, the query point cloud is precisely located using 3D-3D correspondences (with semantic agreement) followed by ICP.

Poglitsch et al. [START_REF] Poglitsch | A particle filter approach to outdoor localization using image-based rendering[END_REF] introduce a particle filter to perform localization. The particles are randomly generated over a 3D model from a coarse position information. Widely spread in robotic community, particle filters have also been used to refine a coarse pose of a mobile robot in known ground 3D space [START_REF] Mason | Textured Occupancy Grids for Monocular Localization Without Features[END_REF] or an aerial map [START_REF] Brubaker | Map-based probabilistic visual self-localization[END_REF][START_REF] Christie | Semantics for UGV Registration in GPS-denied Environments[END_REF].

Data with Dissimilar Appearances

As pointed out by Lowry et al. [START_REF] Lowry | Visual Place Recognition: A Survey[END_REF], permanent changes occurring in our environment is a huge concern in vision domain. In VBL, to the difference of SLAM based navigation methods [START_REF] Garcia-Fidalgo | Vision-based topological mapping and localization methods: A survey[END_REF][START_REF] Lowry | Visual Place Recognition: A Survey[END_REF], the environment representation (i.e. the database) is most of the time acquired at a single date and query can be opposed to the system years after. To take into account local changes of the environment the database needs to be updated. Depending on the size of the covered area, database update can be a costly operation. Thus, an ideal VBL system should be able to handle minor visual changes from various sources: daily and season cycle, difference in viewpoint or modifications of the local geometry of the scene. In this section we review selected VBL papers that tackle the problem of visual changes in the environment. We dedicate the second part of the section to localization

In [START_REF] Garg | LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics[END_REF], authors use semantically weighted keypoints to match images taken with opposite viewpoints.

Image rectification [START_REF] Förstner | Photogrammetric Computer Vision[END_REF] is also employed in VBL to minimize appearance changes introduced by different viewpoints. With strong assumption on the environment where the localization is performed (e.g. such as Manhattan world assumption [START_REF] Cham | Estimating camera pose from a single urban ground-view omnidirectional image and a 2D building outline map[END_REF][START_REF] Murillo | Localization in urban environments using a panoramic gist descriptor[END_REF]), images rectification ensure that facing direction of all visual data will be barely the same. With the hypothesis of an urban scene, vanishing points can be extracted [START_REF] Förstner | Photogrammetric Computer Vision[END_REF][START_REF] Hartley | Multiple view geometry in computer vision[END_REF][START_REF] Lezama | Finding vanishing points via point alignments in image primal and dual domains[END_REF] and images rectified to display front facing buildings [START_REF] Arth | Instant Outdoor Localization and SLAM Initialization from 2.5D Maps[END_REF][START_REF] Cham | Estimating camera pose from a single urban ground-view omnidirectional image and a 2D building outline map[END_REF][START_REF] Chen | City-scale landmark identification on mobile devices[END_REF][START_REF] Morago | 2D Matching Using Repetitive and Salient Features in Architectural Images[END_REF][START_REF] Robertson | An Image-Based System for Urban Navigation[END_REF].

Other approaches consist of filling the database with additional data to cover all the possible viewpoints for a given environment. Milford et al. [START_REF] Milford | Sequence Searching with Deep-learnt Depth for Conditionand Viewpoint-invariant Route-based Place Recognition[END_REF] generate translated view on a database road-circuit for preventing miss-matches if the car, carrying the acquisition system, is moving on a different traffic way than the one used to collect the database. Notice the use of a depth from monocular images DL model to produce synthetic shifted-views. Work from [START_REF] Aubry | Painting-to-3D model alignment via discriminative visual elements[END_REF][START_REF] Irschara | From Structure-from-Motion Point Clouds to Fast Location Recognition[END_REF][START_REF] Torii | 24/7 place recognition by view synthesis[END_REF] increases the number of documents in the database by automatic data generation to ensure that whatever the viewpoint of an incoming query, a document displaying a similar view can be retrieved. Majdik et al. [START_REF] Majdik | MAV urban localization from Google street view data[END_REF] perform air-ground matching of picture taken by a Micro Air Vehicle (MAV) against street view images. The main challenge outlined in this paper is the large difference in angle viewpoint. Authors generate artificial view from both the database and the query image to handle the affine transformation introduced by altitude differences (inspired by the work of [START_REF] Morel | ASIFT: A new framework for fully affine invariant image comparison[END_REF]). Inloc [START_REF] Taira | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[END_REF][START_REF] Taira | Is This The Right Place? Geometric-Semantic Pose Verification for Indoor Visual Localization[END_REF] introduces dense pose verification with view synthesis for indoor localization: artificial viewpoints are rendered from a 3D model at putative query poses.

Long-term localization. As exposed in the introduction of this section, VBL methods need to be robust to visual changes present in images taken at different times.

These differences can be induced by: illumination changes across season, daily cycle, weather conditions, or dynamic changes in the scene (see figure 2.5(a) for illustration).

Lowry et al. [168,

Section VII] explore exhaustively Visual SLAM methods that perform strong illumination invariance place recognition (e.g. SeqSLAM [START_REF] Milford | SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights[END_REF][START_REF] Pepperell | All -Environment Visual Place Recognition with SMART[END_REF][START_REF] Pepperell | Routed roads: Probabilistic vision-based place recognition for changing conditions, split streets and varied viewpoints[END_REF] or FAB-MAP [START_REF] Cummins | FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance[END_REF][START_REF] Cummins | Accelerating FAB-MAP with concentration inequalities[END_REF][START_REF] Paul | FAB-MAP 3D: Topological mapping with spatial and visual appearance[END_REF]). In [START_REF] Lowry | Supervised and Unsupervised Linear Learning Techniques for Visual Place Recognition in Changing Environments[END_REF], authors present an invariant-free image representation in order to overcome perturbation induced by long-term localization. Rosen et al. [START_REF] Rosen | Towards Lifelong Feature-Based Mapping in Semi-Static Environments[END_REF] propose a model to take in account the features persistence, decreasing the probability of encountering a feature that have been met for the first time a long time ago. In the work of Porav et al. [START_REF] Porav | Adversarial Training for Adverse Conditions: Robust Metric Localisation using Appearance Transfer[END_REF], authors use Generative Adversarial Network (GAN) to produce time-shifted images before the localization task. For instance, they convert night-time images into daytime images to improve local feature matching across the query and references data. This method can also be used for inter-season localization. Bescos et al. [START_REF] Bescos | Empty Cities: Image Inpainting for a Dynamic-Object-Invariant Space[END_REF] handle explicitly non-sustainable visual elements, such as car or pedestrian, in order to create invariant image representation. They detect disruptive objects in images, remove it and finally inpaint the modified element thanks to a GAN trained on synthetic data.

In [START_REF] Naseer | Semantics-aware Visual Localization under Challenging Perceptual Conditions[END_REF], a adaptive learned mask is applied on the input images. This mask aims to remove non-persistent elements upstream of the image description.

As mentioned previously, methods based on local descriptors are prompt to handle local changes in images due to dynamic modifications of the environment (e.g. vegetation growing, buildings construction or annihilation, presence of pedestrians or vehicles, partial occlusions, etc.). Several investigations have been led for designing robust descriptors to local geometric changes. In [START_REF] Kim | Predicting good features for image geo-localization using per-bundle VLAD[END_REF][START_REF] Linegar | Made to measure: Bespoke landmarks for 24-hour, all-weather localisation with a camera[END_REF], authors train SVM classifiers to discriminate strong and weak local features for the VBL task. This method, and its continuation [START_REF] Kim | Satellite Image-based Localization via Learned Embeddings[END_REF],

shows promising results where features are more often selected when they are attached to persistent objects, such as facades, and dismissed when they represent ephemeral or changing elements, such as people or trees. In general terms, pretrained network for semantic segmentation offer strong local description for long-term localization, as illustrated in [START_REF] Garg | LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics[END_REF][START_REF] Mousavian | Semantically guided location recognition for outdoors scenes[END_REF][START_REF] Schönberger | Semantic Visual Localization[END_REF][START_REF] Shi | Visual Localization Using Sparse Semantic 3D Map[END_REF][START_REF] Toft | Semantic Match Consistency for Long-Term Visual Localization[END_REF].

In a more robotic-oriented-scenario, Mühlfellner et al. [START_REF] Mühlfellner | Summary Maps for Lifelong Visual Localization[END_REF] investigate map invariance representation when multiple instances of the same environment are available. On the other hand, learned descriptors show good performances if trained for the specific interseason matching task [START_REF] Carlevaris-Bianco | Learning visual feature descriptors for dynamic lighting conditions[END_REF]. Arandjelović et al. [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF] train a CNN for global description upon images from the Google Street View Time Machine to get diverse representation of the same scene captured over a period of ten years. From this kind of representation of the environment, persistent clues can be efficiently extracted [START_REF] Neubert | Superpixel-based appearance change prediction for long-term navigation across seasons[END_REF]. Similarly, Kumar et al. [START_REF] Kumar | Condition and viewpoint invariant omni-directional place recognition using cnn[END_REF] proposes a CNN approach for place recognition across seasons. In Germain et al. [START_REF] Germain | Efficient Condition-based Representations for Long-Term Visual Localization[END_REF], authors use a CNN as global descriptor for localization trained with explicit information about the outdoor condition of each example. Once trained, their descriptor can be used for cross-condition localization, as long as external conditions (e.g. daytime, rain, etc.) are known at query time.

In the following we report methods focusing on one specific problem induced by longterm localization.

Dealing with seasons & weather. Valgren and Lilienthal [START_REF] Valgren | SIFT, SURF & seasons: Appearance-based longterm localization in outdoor environments[END_REF] have shown that usual local features, like SIFT or SURF, are not well suited for similarity association across season cycles. GRIEF local descriptor [START_REF] Krajník | Image features for visual teach-and-repeat navigation in changing environments[END_REF] (derivatives of BRIEF [START_REF] Calonder | BRIEF: Binary robust independent elementary features[END_REF]) or ORB feature [START_REF] Griffith | Survey Registration For Long-Term Natural Environment Monitoring[END_REF] show better results for this task. Works described in [START_REF] Krajník | Long-Term Topological Localisation for Service Robots in Dynamic Environments using Spectral Maps[END_REF][START_REF] Krajník | Image features for visual teach-and-repeat navigation in changing environments[END_REF] model seasonal-like cycle in a probabilistic framework in order to downgrade features that are not likely to appear during a given period of time. A de-raining CNN filter is proposed in [START_REF] Porav | I Can See Clearly Now : Image Restoration via De-Raining[END_REF] to improve localization with bad weather condition. Their model is trained with both synthetic and real data.

Dealing with nocturnal illumination. In some application, especially for vehicle localization, VBL has to be performed during a complete day, including overnight [START_REF] Mcmanus | Scene Signatures : Localised and Pointless Features for Localisation[END_REF][START_REF] Milford | Sequence Searching with Deep-learnt Depth for Conditionand Viewpoint-invariant Route-based Place Recognition[END_REF] (see middle example of figure 2.5(a)). Dense descriptors' extraction used in [START_REF] Torii | 24/7 place recognition by view synthesis[END_REF] exhibit promising result for daytime to overnight images matching. At first glance, artificial lights ubiquitous in urban scene can be considered as sources of disruption. However, Nelson et al. [START_REF] Nelson | From Dusk till Dawn: Localisation at Night using Artificial Light Sources[END_REF] focus on this particular clues to perform localization across only night road images. Anoosheh et al. [START_REF] Anoosheh | Night-to-Day Image Translation for Retrieval-based Localization[END_REF], with an approach similar to [START_REF] Porav | Adversarial Training for Adverse Conditions: Robust Metric Localisation using Appearance Transfer[END_REF], use a night-to-day GAN to improve localization of night images.

Dealing with shadows. Some researches focus on the specific perturbation introduced by shadow casting over images. Wan et al. [START_REF] Wan | Illumination-invariant image matching for autonomous UAV localisation based on optical sensing[END_REF] outline that satellite and overhead images can change drastically in appearance depending on the relative position of the sun during the day. Authors show that Fourier transforms can be used to create shadow-invariant image representation. Corke et al. [START_REF] Corke | Dealing with shadows: Capturing intrinsic scene appearance for image-based outdoor localisation[END_REF] implement the shadow suppression method presented in [START_REF] Finlayson | On the removal of shadows from images[END_REF] to localize street images with important depth artefacts projected by trees or buildings. This method still remains very sensor-dependent.

Cross-appearance localization

Subsequent part focus on methods that reach an extreme with change-invariance consideration by creating cross-appearance algorithms for VBL. We distinguish between two main categories of applications: cross-view VBL, where authors localize a ground-view image against database of aerial images, and cross-domain VBL, where the purpose is to localize images of various nature (like ancient photographies, painting, sketching, etc.).

Cross-view Cross-view localization [START_REF] Castaldo | Semantic Cross-View Matching[END_REF][START_REF] Lin | Cross-view image geolocalization[END_REF][START_REF] Tian | Cross-View Image Matching for Geo-localization in Urban Environments[END_REF][START_REF] Vo | Localizing and Orienting Street Views Using Overhead Imagery[END_REF][START_REF] Workman | Wide-area image geolocalization with aerial reference imagery[END_REF], also denoted as ultra-wide baseline matching [START_REF] Bansal | Ultra-wide baseline facade matching for geo-localization[END_REF], consider the problem of ground level localization from aeriallevel set of photo shoots (see figure 2.5(b) for an illustration of data association targeted by cross-view systems). Cross-view VBL is motivated by the fact that satellite photographies are rich sources of information, available almost all over the globe. However, finding similarity between data acquired at a ground level and data captured with flying devices is a hard task due to the extreme change in viewpoint. In [START_REF] Vo | Localizing and Orienting Street Views Using Overhead Imagery[END_REF][START_REF] Workman | Wide-area image geolocalization with aerial reference imagery[END_REF], authors investigate the use of a CNN to automatically associate ground level images taken from street view service with fine-grained overhead images. Vo and Hays [START_REF] Vo | Localizing and Orienting Street Views Using Overhead Imagery[END_REF] compare several CNN architectures and conclude that triplet trained network provides the most suitable descriptors for cross-view matching. Rotation invariance between ground and overhead images is also studied through auxiliary loss and special training. Conditional GAN are explored in [START_REF] Regmi | Cross-View Image Synthesis using Conditional GANs[END_REF] to generate ground level image from aerial footage (or vice versa).

Authors show that the latent representation learned by the CNN can be used as image feature for cross-view localization.

In [START_REF] Bansal | Geo-localization of street views with aerial image databases[END_REF][START_REF] Bansal | Ultra-wide baseline facade matching for geo-localization[END_REF][START_REF] Lin | Learning Deep Representations for Ground-to-Aerial Geolocalization[END_REF], authors use bird's eye imagery to localize ground level snapshots.

Bansal et al. [START_REF] Bansal | Geo-localization of street views with aerial image databases[END_REF] method relies on ground level images rectification, like methods focused on viewpoint changes (refer to §2.3.1).

Cross-domain

Another field of research where the data association is very challenging is the cross-domain localization (an example of cross-domain VBL is presented in figure 2.5(c)). Russell et al. [START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF] work, followed by Aubry et al. [START_REF] Aubry | Painting-to-3D model alignment via discriminative visual elements[END_REF] contribution, focus on the task of retrieving the pose of an old hand-drafted document (a sketch or a painting) according to a known realistic representation. In [START_REF] Aubry | Painting-to-3D model alignment via discriminative visual elements[END_REF], hard training of HOG-based descriptors are used to capture the global shape of the architectural scene displayed in the documents, in the same manner as [START_REF] Shrivastava | Data-driven visual similarity for cross-domain image matching[END_REF]. Results are impressive, but the used descriptor is not robust to viewpoint changes. Cross-domain techniques are also used to recover the pose of ancient photographies and to confront them with current data [START_REF] Bae | Computational rephotography[END_REF][START_REF] Bhowmik | Cross-domain Image Localization by Adaptive Feature Fusion[END_REF]. Bhowmik et al. [START_REF] Bhowmik | Cross-domain Image Localization by Adaptive Feature Fusion[END_REF] study a new approach for pairing various local descriptors in order to increase result of VBL methods in term of robustness against visual changes and precision. We divide geometric information used in VBL on four main categories:

• Weak Geometry: basic primitives like plans or simplified geometric model,

• Point Cloud: unordered set of 3D points, triangulated from images or acquired from lidar,

• Depth Camera: locally dense geometry obtained by active sensors,

• 3D Model: full geometric model covering the area of localization, hand-crafted or generated from other sources.

Weak geometry. In [START_REF] Chen | City-scale landmark identification on mobile devices[END_REF][START_REF] Torii | 24/7 place recognition by view synthesis[END_REF], authors introduce weak geometric clues that describe principal 3D planes present in the scene. This information is then used to modify existing images in the database: for rectification purpose [START_REF] Chen | City-scale landmark identification on mobile devices[END_REF] or to generate more images in order to cover a larger area [START_REF] Torii | 24/7 place recognition by view synthesis[END_REF]. Cham et al. [START_REF] Cham | Estimating camera pose from a single urban ground-view omnidirectional image and a 2D building outline map[END_REF] use a 2D buildings outline map for VBL.

From a given image, authors extract buildings corner and match them according to the map. Along the same line, VBL method from [START_REF] Armagan | Semantic Segmentation for 3D Localization in Urban Environments[END_REF][START_REF] Armagan | Learning to Align Semantic Segmentation and 2.5D Maps for Geolocalization[END_REF][START_REF] Armagan | Accurate Camera Registration in Urban Environments Using High-Level Feature Matching[END_REF][START_REF] Arth | Instant Outdoor Localization and SLAM Initialization from 2.5D Maps[END_REF] relies on a 2.5D city model (schematic buildings outlines boxes from OpenStreetMap1 ). 2D map is also used as georeference in the work from [START_REF] Brubaker | Lost! leveraging the crowd for probabilistic visual self-localization[END_REF] (extended version in [START_REF] Brubaker | Map-based probabilistic visual self-localization[END_REF]) where authors produce, thanks to a stereo-camera, a path of a vehicle that is afterwards matched against the map. The matching process is embedded in a probabilistic framework to handle large environment.

Baatz et al. [START_REF] Baatz | Large Scale Visual Geo-Localization of Images in Mountainous Terrain[END_REF] introduce the use of a DEM to perform localization in mountainous terrain [START_REF] Chen | Camera geolocation from mountain images[END_REF][START_REF] Ramalingam | SKYLINE2GPS: Localization in urban canyons using omni-skylines[END_REF][START_REF] Tzeng | User-driven geolocation of untagged desert imagery using digital elevation models[END_REF]. Bansal and Daniilidis [START_REF] Bansal | Geometric Urban Geo-Localization[END_REF] extend this idea in urban localization to perform purely geometric VBL with images as query input and city DEM as reference.

These purely geometric descriptions, also used in [START_REF] Christie | Semantics for UGV Registration in GPS-denied Environments[END_REF][START_REF] Matei | Image to LI-DAR matching for geotagging in urban environments[END_REF][START_REF] Ramalingam | SKYLINE2GPS: Localization in urban canyons using omni-skylines[END_REF][START_REF] Ramalingam | Pose Estimation Using Both Points and Lines for Geolocation[END_REF] [START_REF] Sattler | Image Retrieval for Image-Based Localization Revisited[END_REF] and permits precise pose estimation of the query, on the contrary of methods based on simple images collections.

In addition to the structured-based methods, some works focus on the localization of non-photogrammetric point cloud (i.e. not create from images with SfM algorithms), for instance acquired by laser scans [START_REF] Deng | PPFNet: Global Context Aware Local Features for Robust 3D Point Matching[END_REF][START_REF] Elbaz | 3D Point Cloud Registration for Localization using a Deep Neural Network Auto-Encoder[END_REF][START_REF] Schönberger | Semantic Visual Localization[END_REF][START_REF] Uy | PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition[END_REF][START_REF] Yew | 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration[END_REF][START_REF] Zeng | 3DMatch: Learning the Matching of Local 3D Geometry in Range Scans[END_REF]. From these methods, we can distinguish between global [START_REF] Schönberger | Semantic Visual Localization[END_REF][START_REF] Uy | PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition[END_REF] and local [START_REF] Deng | PPFNet: Global Context Aware Local Features for Robust 3D Point Matching[END_REF][START_REF] Elbaz | 3D Point Cloud Registration for Localization using a Deep Neural Network Auto-Encoder[END_REF][START_REF] Yew | 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration[END_REF][START_REF] Zeng | 3DMatch: Learning the Matching of Local 3D Geometry in Range Scans[END_REF] point cloud description. Fluctuation in point density is handle trough 3D automatic completion with an autoencoder in [START_REF] Schönberger | Semantic Visual Localization[END_REF] and by projection the 3D points in 2D in [START_REF] Elbaz | 3D Point Cloud Registration for Localization using a Deep Neural Network Auto-Encoder[END_REF]. In order to be more robust to view point changes, methods in [START_REF] Deng | PPFNet: Global Context Aware Local Features for Robust 3D Point Matching[END_REF][START_REF] Yew | 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration[END_REF] process points in an unordered manner. By considering only the geometric structure of the scene, such methods are prone to handle radiometric changes present in long-term localization scenario, as illustrate in [START_REF] Schönberger | Semantic Visual Localization[END_REF][START_REF] Uy | PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition[END_REF] (see top of figure 2.6(a)).

Depth camera. SfM reconstruction is a costly operation and laser sensor can be expensive and cumbersome for embedded VBL application. Depth cameras permit a direct and cheap perception of the 3D geometry of the scene (e.g. stereo camera, IR pattern projective camera, Time of Flight (ToF) camera, etc.). Raw data from those depth sensor are often used to add supplementary information channel to the VBL system. Works from [START_REF] Mcmanus | Scene Signatures : Localised and Pointless Features for Localisation[END_REF][START_REF] Ni | Epitomic location recognition[END_REF][START_REF] Wan | A Cross-Site Visual Localization Method for Yutu Rover[END_REF] use disparity map from stereo camera. Several authors [START_REF] Glocker | Real-time RGB-D camera relocalization via randomized ferns for keyframe encoding[END_REF][START_REF] Guzman-Rivera | Multi-Output Learning for Camera Relocalization[END_REF][START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF] used active depth camera that project infra-red pattern to train regression forest for localization. Similar technology is used in [START_REF] Li | Night-time indoor relocalization using depth image with Convolutional Neural Networks[END_REF] to perform VBL in complete obscurity. In the work of [START_REF] Fernandez-Moral | Fast place recognition with plane-based maps[END_REF], authors consider planar surfaces extracted from an RGB-D live stream as sustainable information for localization. The plane are organized within global graph where the pose of the camera can be retrieved quickly through sub-graph to global-graph matching. However, depth camera are not well suited for outdoor uses, reducing the range of applications to indoor scene.

3D model. Consistent 3D models (i.e. watertight 3D reconstruction) are also used to perform VBL task. For indoor localization, works from [START_REF] Pascoe | Robust Direct Visual Localisation using Normalised Information Distance[END_REF][START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF][START_REF] Taira | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[END_REF][START_REF] Taira | Is This The Right Place? Geometric-Semantic Pose Verification for Indoor Visual Localization[END_REF] use textured model reconstructed from RGB-D sensor [START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF] or hand-crafted with dedicated software [START_REF] Pascoe | Robust Direct Visual Localisation using Normalised Information Distance[END_REF]. Salas-Moreno et al. [START_REF] Salas-Moreno | SLAM++: Simultaneous localisation and mapping at the level of objects[END_REF] introduce Computer Aided Design (CAD) models to describe objects in an indoor environment and recover the pose of a depth camera when the pose tracking is lost. City-scale models are used by [START_REF] Aubry | Painting-to-3D model alignment via discriminative visual elements[END_REF][START_REF] Caselitz | Matching Geometry for Long-term Monocular Camera Localization[END_REF][START_REF] Pascoe | Direct Visual Localisation and Calibration for Road Vehicles in Changing City Environments[END_REF][START_REF] Pascoe | FARLAP : Fast Robust Localisation using Appearance Priors[END_REF][START_REF] Poglitsch | A particle filter approach to outdoor localization using image-based rendering[END_REF] to perform outdoor VBL.

Semantic information

Robustness and precision brought by geometric information has a significant cost in term on data acquisition, processing power and storage needs. Nevertheless, there is a good alternative and discriminant data representation: the semantic information. In addition to being generic regarding the original "raw" scene representation, semantic abstraction permits a discriminative and robust description of the scene. Semantic information used in VBL are classified between two classes: segmentation and categorization. Segmentation involves local methods that recognize within a data sub-parts with a semantic meaning (e.g. object detection in an image). On the other hand, categorization can be seen as global descriptors that associated semantic labels to a given data (e.g. scenes interpretation [START_REF] Deng | Imagenet: A largescale hierarchical image database[END_REF]).

Segmentation. In [START_REF] Ardeshir | GIS-assisted object detection and geospatial localization[END_REF][START_REF] Castaldo | Semantic Cross-View Matching[END_REF][START_REF] Christie | Semantics for UGV Registration in GPS-denied Environments[END_REF][START_REF] Weinzaepfel | Visual Localization by Learning Objects-of-Interest Dense Match Regression[END_REF], authors use object to object semantic correspondences to directly recover the pose of the query (illustration on figure 2.6(b)). Weinzaepfel et al. [START_REF] Weinzaepfel | Visual Localization by Learning Objects-of-Interest Dense Match Regression[END_REF] create an object-of-interest database for localization. They demonstrate the robustness of their method to illumination changing on a synthetic museum dataset,

where the object-of-interest are the paintings in a gallery. In [START_REF] Lu | Localize Me Anywhere, Anytime: A Multi-task Point-Retrieval Approach[END_REF], semantic segmentation is used to narrow the search scope by aggregating information about the detected objects in a room.

In a different manner, Arth et al. [START_REF] Arth | Instant Outdoor Localization and SLAM Initialization from 2.5D Maps[END_REF] present concrete application of semantic segmentation for localization by extracting building primitives to correct pose hypothesis (the image is segmented with a SVM classifier). In following works [START_REF] Armagan | Semantic Segmentation for 3D Localization in Urban Environments[END_REF][START_REF] Armagan | Learning to Align Semantic Segmentation and 2.5D Maps for Geolocalization[END_REF][START_REF] Armagan | Accurate Camera Registration in Urban Environments Using High-Level Feature Matching[END_REF], the image localization is performed by segmenting principal semantic components (facades, normal to facades, corners, etc.) of a building and by optimizing the query pose based on this segmentation and a map. They use CNN trained in a weakly supervised manner to densely extract the architectural elements of buildings. On the other hand, several methods rely on annotated map [START_REF] Atanasov | Localization from semantic observations via the matrix permanent[END_REF][START_REF] Wang | Lost shopping! Monocular localization in large indoor spaces[END_REF] or Geographic Information System (GIS) [START_REF] Ardeshir | GIS-assisted object detection and geospatial localization[END_REF][START_REF] Castaldo | Semantic Cross-View Matching[END_REF][START_REF] Qu | Vehicle localization using mono-camera and geo-referenced traffic signs[END_REF] to guide the localization.

Works described in [START_REF] Arandjelović | Visual vocabulary with a semantic twist[END_REF][START_REF] Mousavian | Semantically guided location recognition for outdoors scenes[END_REF] works [START_REF] Radwan | VLocNet++: Deep Multitask Learning for Semantic Visual Localization and Odometry[END_REF][START_REF] Seymour | Semantically-Aware Attentive Neural Embeddings for Image-based Visual Localization[END_REF] In [START_REF] Garg | Don't Look Back: Robustifying Place Categorization for Viewpoint-and Condition-Invariant Place Recognition[END_REF][START_REF] Garg | LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics[END_REF], authors explicitly model the semantic classes of feature associated to a given region for localization of images with extreme view-point changes.

Categorization. Scene categorization [START_REF] Wu | Visual place categorization: Problem, dataset, and algorithm[END_REF] is a different manner to exploit semantic clues for VBL. High level semantic features have been popularized with the augmentation of labelled data and the accessibility of high computation power devices (GPU, Cloud Computing). ImageNet challenge introduced in 2009 by [START_REF] Deng | Imagenet: A largescale hierarchical image database[END_REF] permits the emergence of fast and robust classification methods, like the one described in [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. Image classification produces a sub-sample of semantically identical images associated to a class. In VBL, classification can be used to decimate the database in order to proceed in a subsequent step to a more precise pose search. This method is successfully applied in [START_REF] Sünderhauf | On the performance of ConvNet features for place recognition[END_REF], where the used CNN has a dual-purpose: narrowing the search scope by semantic labelling and producing a global descriptor by weight aggregation. In [START_REF] Ni | Epitomic location recognition[END_REF][START_REF] Torralba | Context-based vision system for place and object recognition[END_REF], classical learning methods like Gaussian Mixture Models (GMM) or epitome are employed for associating images to a finite number of possible locations. Recent work from [START_REF] Garg | Improving Condition and Environment-Invariant Place Recognition with Semantic Place Categorization[END_REF] use semantic categorization in order to establish transition probabilities from a given type of environment to another one. Authors embed this framework in the SeqSLAM algorithm, improving the global system accuracy. Finally, works presented in [START_REF] Seo | CPlaNet: Enhancing Image Geolocalization by Combinatorial Partitioning of Maps[END_REF][START_REF] Weyand | PlaNet -Photo Geolocation with Convolutional Neural Networks[END_REF] consider the problem of world-wide localization as a classification task. A CNN is trained to predict, from an raw image, its most probable location among a fixed number of Earth places.

Other modalities

Geometric and semantic are the principals modalities used in common with radiometric information to improve VBL. Yet, some works rely on thermal imaging [START_REF] Lu | Where am I in the dark: Exploring active transfer learning on the use of indoor localization based on thermal imaging[END_REF], infrared sensor [START_REF] Bonardi | PHROG: A Multimodal Feature for Place Recognition[END_REF] or polarimetric cameras [START_REF] Rastgoo | Attitude Estimation from Polarimetric Cameras[END_REF]. Thermal imaging makes possible the pose estimation of a camera in challenging low-light scenario [START_REF] Lu | Where am I in the dark: Exploring active transfer learning on the use of indoor localization based on thermal imaging[END_REF]. On the other hand, sun light waves measurement from polarimetric cameras enables attitude estimation in unknown outdoor environment [START_REF] Rastgoo | Attitude Estimation from Polarimetric Cameras[END_REF].

Cross-data localization

We have presented so far three different kinds of information that can be used for VBL: radiometric, geometric and semantic. These types of data are commonly used together to improve localization. In this part, we consider the scenario where all types of data are not available at query time, for instance if the database uses more complete representation of the environment than the query input. It is a common scenario because some data are more difficult to acquire or required specific sensors (e.g. geometric information). In this case, methods have to deal with asymmetric representation of the environment in term of data type. We denote this problem cross-data VBL and classify the methods founded in the literature in two categories: methods using a common description regardless of the type of data and methods projecting one type of data within another data representation space.

Common description. Features to Points (F2P) VBL (see §2.2.2) oppose 2D images to 3D point cloud. In fact, all the features are exclusively extracted from images. On the other hand, semantic abstraction permit cross-data comparison by considering semantic object extracted from various types of data: images to 2D building outline map [START_REF] Cham | Estimating camera pose from a single urban ground-view omnidirectional image and a 2D building outline map[END_REF],

images to map [START_REF] Ardeshir | GIS-assisted object detection and geospatial localization[END_REF][START_REF] Brubaker | Map-based probabilistic visual self-localization[END_REF][START_REF] Castaldo | Semantic Cross-View Matching[END_REF][START_REF] Qu | Vehicle localization using mono-camera and geo-referenced traffic signs[END_REF], RGB-D data to DEM [START_REF] Christie | Semantics for UGV Registration in GPS-denied Environments[END_REF], etc. Referring to a similar physical entity, not necessary semantic, is also a manner to link information from various types of data. Images to DEM correspondences is performed in [START_REF] Bansal | Geometric Urban Geo-Localization[END_REF] based on a method relying on purely geometric clues extracted both in the image and the model. Recent work from [START_REF] Li | Indoor Relocalization in Challenging Environments With Dual-Stream Convolutional Neural Networks[END_REF][START_REF] Sizikova | Enhancing Place Recognition using Joint Intensity -Depth Analysis and Synthetic Data[END_REF] use joint descriptors to merge RGB and depth data into a single feature.

Data projection. Another widely used method for combining data of different types consists of projecting one of the engaged data into the representation space of the other.

For instance, lot of methods consider the challenging problem of registering photographies upon 3D models [START_REF] Arth | Instant Outdoor Localization and SLAM Initialization from 2.5D Maps[END_REF][START_REF] Baatz | Large Scale Visual Geo-Localization of Images in Mountainous Terrain[END_REF][START_REF] Kendall | PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[END_REF][START_REF] Pascoe | Robust Direct Visual Localisation using Normalised Information Distance[END_REF][START_REF] Pascoe | Direct Visual Localisation and Calibration for Road Vehicles in Changing City Environments[END_REF][START_REF] Pascoe | FARLAP : Fast Robust Localisation using Appearance Priors[END_REF]. Similarity comparison is performed thanks to synthetic images generated from the 3D models [START_REF] Aubry | Painting-to-3D model alignment via discriminative visual elements[END_REF][START_REF] Mason | Textured Occupancy Grids for Monocular Localization Without Features[END_REF][START_REF] Poglitsch | A particle filter approach to outdoor localization using image-based rendering[END_REF][START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF][START_REF] Taira | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[END_REF][START_REF] Taira | Is This The Right Place? Geometric-Semantic Pose Verification for Indoor Visual Localization[END_REF]. Notice the synthesis of skyline profiles from DEM in the work of Baatz et al. [START_REF] Baatz | Large Scale Visual Geo-Localization of Images in Mountainous Terrain[END_REF]. In [START_REF] Aubry | Painting-to-3D model alignment via discriminative visual elements[END_REF][START_REF] Gee | 6D Relocalisation for RGBD Cameras Using Synthetic View Regression[END_REF][START_REF] Irschara | From Structure-from-Motion Point Clouds to Fast Location Recognition[END_REF][START_REF] Torii | 24/7 place recognition by view synthesis[END_REF],

special attention is paid to placement of the artificial cameras that generate virtual 2D views.

Generative models that create auxiliary modalities from images [START_REF] Zamir | Taskonomy: Disentangling Task Transfer Learning[END_REF] are promising tools for cross-data localization. CNN that deduces normal direction (derivative of the depth map) and semantic segmentation from raw images have been successfully used in [START_REF] Taira | Is This The Right Place? Geometric-Semantic Pose Verification for Indoor Visual Localization[END_REF] for indoor localization.

Discussion

As VBL panorama is wide and varied, we first propose a review of recent datasets and evaluation metrics used for comparing different approaches. Afterwards, we highlight common usage and promising research avenues in VBL.

Datasets

Commonly used datasets in VBL are presented in table 2.2. Because of the important difference between 6-DoF pose estimation and CBIR for localization, there exists two kinds of datasets used in VBL: list of images (with basic position information or landmark/place tags) and strongly structured datasets (that can be composed of point cloud or fine geo-referenced images). Notice the growing number of publicly available datasets starring complete 3D scans of large cities [START_REF] Maddern | km: The Oxford RobotCar dataset[END_REF][START_REF] Menze | Object Scene Flow for Autonomous Vehicles[END_REF][START_REF] Wang | TorontoCity: Seeing the World with a Million Eyes[END_REF]. As mentioned earlier, longterm localization in changing environment is an hot topic in robotic research. We observe therefore appearance of several datasets featuring multiple acquisitions of the same place over long period of time [START_REF] Carlevaris-Bianco | University of Michigan North Campus long-term vision and lidar dataset[END_REF][START_REF] Krajník | Simple yet stable bearing-only navigation[END_REF][START_REF] Krajník | Long-Term Topological Localisation for Service Robots in Dynamic Environments using Spectral Maps[END_REF][START_REF] Maddern | km: The Oxford RobotCar dataset[END_REF].

For landmarks recognition in city (used method come mainly from CBIR for localization approaches), the most used dataset is the revisited version of Oxford and Paris landmarks [START_REF] Radenović | Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking[END_REF]. Concerning precise 6-DoF pose estimation under changing condition, researchers prefer the recent benchmark from Sattler et al. [START_REF] Sattler | Benchmarking 6DOF Urban Visual Localization in Changing Conditions[END_REF] that compiles multiples datasets focused on long-term localization scenario.

Coverage and consistency. All the application relying on VBL do not cover the same area. For instance, a system design for car pose estimation should be able to localize a vehicle in a larger area than a pedestrian VBL system should do. Thus, there exists dataset with a coverage spreading from small indoor scenes to world-wide area.

Visual content within a dataset can be uniform, reference and queries are from the same sensor and captured at the same time, or inconsistent, queries have been taken

under different condition or with different sensor than the references data. In order to reflect real-life conditions, outdoor datasets are often inconsistent, with visual dissimilarity between queries and references induced by acquisition sensors, dynamic changes in the scene (cars & pedestrians), weather conditions etc. Indoor datasets use more uniform data [START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF], thus targeting application like camera re-localization for robot navigation or augmented reality.

Evaluation metrics. Authors use various types of performances criteria in order to compare CBIR for localization methods. The recall @k, or recall @k%, is the most used metric. It represents the percentage of queries that present a good match within the k or k% top ranked images. A query is considered correctly localized if it lies inside a tolerance radius from its ground truth position (from 10 to 25m, depending on the dataset). Usually k is set to 10 or 1%. If we consider only the top 1 retrieved candidate for evaluation, distance from the ground truth is used as the main precision criteria.

For places or landmarks recognition tasks [START_REF] Radenović | Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking[END_REF], mean Average Precision (mAP) evaluate performances of the method.

Concerning 6-DoF pose estimation methods, authors simply compute the median (rarely the mean) of absolute position and orientation error relative to the ground truth.

Another criterion can be extracted from the inlier count obtained against a robust geometric verification (for image based localization). A query is considered as successfully matched if enough inliers are found after RANSAC. However, such a metric does not ensure that the data is well localized according to the model [START_REF] Sattler | Hyperpoints and fine vocabularies for large-scale location recognition[END_REF]. Percentage of well localized images, i.e. under a given error threshold (e.g. 5cm & 5 • for indoor scene), is also a current evaluation metric. Recently, Sattler et al. [START_REF] Sattler | Benchmarking 6DOF Urban Visual Localization in Changing Conditions[END_REF] introduce a more detailed metric by considering multiple level of precision (from fine to coarse localization) with different thresholds. Oxford Robotcar [START_REF] Maddern | km: The Oxford RobotCar dataset[END_REF] Multi-purpose (long-term loc.)
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Trends in VBL

A quantitative comparison between all VBL systems is impossible due to the diversity in both methods and applications. Nevertheless, we refer reader to recent papers that quantitatively compare specific types of state-of-the-art methods. Concerning CBIR methods, following recent contributions [START_REF] Gordo | Deep Image Retrieval: Learning Global Representations for Image Search[END_REF][START_REF] Radenović | CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples[END_REF] show comprehensive comparisons. In [START_REF] Radenović | Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking[END_REF], authors benchmark state-of-the-art methods on the Revisited Oxford and Paris dataset.

F2P methods based on SfM are carefully compared on three papers [START_REF] Feng | Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features[END_REF][START_REF] Sattler | Efficient & Effective Prioritized Matching for Large-Scale Image-Based Localization[END_REF][START_REF] Svarm | City-Scale Localization for Cameras with Known Vertical Direction[END_REF]. A comprehensive comparison between 6-DoF pose estimation approaches, both learned and structured based, is presented in [START_REF] Sattler | Understanding the Limitations of CNN-based Absolute Camera Pose Regression[END_REF]. We refer readers to the online leader-board of the visual localization benchmark [START_REF] Sattler | Benchmarking 6DOF Urban Visual Localization in Changing Conditions[END_REF] for up-to-date bests methods for pose estimation under challenging conditions. In the following, we propose our qualitative analysis of VBL panorama.

Method development. As discussed earlier, there is a trade-off between the area covered and the precision reached by the VBL system; the survey of Brejcha and Čadík [START_REF] Brejcha | State-of-the-art in visual geo-localization[END_REF] provides a complete overview of this problem. CBIR for localization methods prioritize the space coverage, city scale [START_REF] Gordo | Deep Image Retrieval: Learning Global Representations for Image Search[END_REF] to word-wide [START_REF] Vo | Revisiting IM2GPS in the Deep Learning Era[END_REF], whereas full pose computation methods focus on precision and exact 6-DoF estimation [START_REF] Feng | Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features[END_REF] on reduced area.

Getting both wide area coverage and high precision of the query pose is the current challenge of VBL. As shown in [START_REF] Sattler | Are Large-Scale 3D Models Really Necessary for Accurate Visual Localization[END_REF], coarse to find localization systems (see section 2.2.3) are certainly a good alternative to achieve this objective. By firstly reducing the amount of data and in a second step recovering the exact pose of the query is a clever manner to target both pose precision and scalability. This cascaded localization pipeline is a well studied research area [START_REF] Azzi | Filtering 3D Keypoints Using GIST For Accurate Image-Based Localization[END_REF][START_REF] Meng | Exploiting Random RGB and Sparse Features for Camera Pose Estimation[END_REF][START_REF] Rubio | Efficient Monocular Pose Estimation for Complex 3D Models[END_REF][START_REF] Sattler | Are Large-Scale 3D Models Really Necessary for Accurate Visual Localization[END_REF][START_REF] Song | 6-DOF Image Localization From Massive Geo-Tagged Reference Images[END_REF], and more and more recent works address the location problem in this way [START_REF] Germain | Sparse-to-Dense Hypercolumn Matching for Long-Term Visual Localization[END_REF][START_REF] Sarlin | Leveraging Deep Visual Descriptors for Hierarchical Efficient Localization[END_REF][START_REF] Sarlin | From Coarse to Fine: Robust Hierarchical Localization at Large Scale[END_REF][START_REF] Taira | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[END_REF][START_REF] Taira | Is This The Right Place? Geometric-Semantic Pose Verification for Indoor Visual Localization[END_REF].

Benefit of heterogeneous data. All along this survey we emphasize the growing importance of multiple types of data (radiometric, geometric and semantic information)

for the task of VBL. As discussed in section 2.4, using more sophisticate data aims to overcome shortcoming of radiometric based systems. Geometric data improve the final pose estimation [START_REF] Paudel | LMI-based 2D-3D registration: From uncalibrated images to Euclidean scene[END_REF][START_REF] Paudel | Robust and Optimal Sum-of-Squares-Based Point-to-Plane Registration of Image Sets and Structured Scenes[END_REF][START_REF] Taira | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[END_REF] and are robust to radiometric changes that we encounter in long-term localization [START_REF] Uy | PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition[END_REF]. Semantic representation also offer promising results. Description at object-level is generic and compact in regard to the raw data [START_REF] Salas-Moreno | SLAM++: Simultaneous localisation and mapping at the level of objects[END_REF] and can be used to handle local changes in scene appearance and geometry [START_REF] Weinzaepfel | Visual Localization by Learning Objects-of-Interest Dense Match Regression[END_REF]. Images, though, contain extremely explanatory clues [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF] and are much more easier to collect compared to semantic and geometric data. That is why, when considered as complementary information, these three type of data offer the most effective scene representation for VBL [START_REF] Schönberger | Semantic Visual Localization[END_REF][START_REF] Taira | Is This The Right Place? Geometric-Semantic Pose Verification for Indoor Visual Localization[END_REF].

Machine VBL approaches [START_REF] Naseer | Semantics-aware Visual Localization under Challenging Perceptual Conditions[END_REF][START_REF] Schönberger | Semantic Visual Localization[END_REF][START_REF] Shi | Visual Localization Using Sparse Semantic 3D Map[END_REF][START_REF] Toft | Long-term 3D Localization and Pose from Semantic Labellings[END_REF][START_REF] Toft | Semantic Match Consistency for Long-Term Visual Localization[END_REF]. VBL based on geometric information are also beneficing from DL progress. For instance, PointNet [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF] has been successfully used to describe point cloud for large-scale localization [START_REF] Uy | PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition[END_REF]. New models capable of modality transfer, like depth from monocular images CNN [START_REF] Eigen | Depth Map Prediction from a Single Image using a Multi-Scale Deep Network[END_REF], are well designed to handle cross-data localization scenario. Its can be used in VBL [START_REF] Taira | Is This The Right Place? Geometric-Semantic Pose Verification for Indoor Visual Localization[END_REF], as its have been used in autonomous navigation to improve SLAM systems [START_REF] Loo | CNN-SVO: Improving the Mapping in Semi-Direct Visual Odometry Using Single-Image Depth Prediction[END_REF][START_REF] Tateno | CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction[END_REF].

Runtime consideration Real-time performances and embedded architectures are constraints mainly present in the robotic community. In VBL, such criteria are not always taken into account. This can be explained by the fact that recovering the localization of an input query is a one-shoot action; i.e. it has to be performed only once compared to tracking systems [START_REF] Marchand | Pose Estimation for Augmented Reality : a Hands-On Survey[END_REF] or SLAM algorithms [START_REF] Garcia-Fidalgo | Vision-based topological mapping and localization methods: A survey[END_REF]. Furthermore, as described in previous section 2.2, VBL methods are two-step: an offline and an online step. Computational time is mainly consumed during the offline step that can be computed in advance of the localization.

Yet, some authors manage to reduce the computational cost of their system [START_REF] Glocker | Real-time RGB-D camera relocalization via randomized ferns for keyframe encoding[END_REF][START_REF] Lynen | Get out of my lab: Large-scale, real-time visual-intertial localization[END_REF][START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF]. For instance works from [START_REF] Cheng | Cascaded Parallel Filtering for Memory-Efficient Image-Based Localization[END_REF][START_REF] Feng | Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features[END_REF] introduce a light version of F2P method, using binary local descriptors, and works from [START_REF] Contreras | Towards CNN Map Compression for camera relocalisation[END_REF][START_REF] Kendall | PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[END_REF][START_REF] Weyand | PlaNet -Photo Geolocation with Convolutional Neural Networks[END_REF]] embed their localization system in a compact CNN architecture loadable on a smart-phone. Middelberg et al. [START_REF] Middelberg | Scalable 6-DOF localization on mobile devices[END_REF] introduce a multi-scale scene representation for low-cost computation. The pose is firstly estimated according to a local representation of the scene before a global estimation on the full scene, computed on the cloud. Sarlin et al. [START_REF] Sarlin | From Coarse to Fine: Robust Hierarchical Localization at Large Scale[END_REF] reduce the size of their CNN by training it through distillation.

Conclusion

In this chapter, we have been through the principals characteristic of a VBL system.

We began by presenting common data description shared by localization method, then we introduced the three main classes of localization methods, CBIR for localization, 6-DoF pose estimation and coarse to fine localization, and we reviewed the principal VBL systems within these classes. In the second part of this chapter, we described the major challenges encountered in real-condition VBL scenarios and, in a second step, we have shown how auxiliary information about the scene, like the geometry or the semantic, can circumvent the limitation induced by the use of only radiometric data.

During the discussion, we have highlighted two major trends in modern localization systems. On the application level, the main challenge concerns the long-term localization scenario, where the queries and the reference data can be very different. From a methodological point of view, cascaded localization methods are providing the best trade-off between precision and coverage. That is why we decided to focus our research on the design of a 2-step VBL system well suited for long-term localization. In order to do so, our method will take advantages of learned geometric clues from a modality-transfer CNN. We have paid a particular attention at the implementation of our method. Thus, the proposed localization system is light and do not rely on a heavy scene representation:

it is therefore suitable for embedded or robotic applications. The two following chapters, chapter 3 and chapter 4, are receptively dedicated to our new image descriptor for localization and to our pose refinement step based on learned geometry.

Chapter 3

Side modality learning for large-scale visual localization

In this chapter, we introduce the first step of our hierarchical localization method: a Content-based Image Retrieval (CBIR) method tuned for localization (see section 2.2.1).

More precisely, we are interested in the design of an efficient global image descriptor for long-term localization.

As discussed in the previous chapter, one of the main challenges of Visual-based Localization (VBL) remains the mapping of images acquired under changing conditions: cross-season images matching [START_REF] Naseer | Semantics-aware Visual Localization under Challenging Perceptual Conditions[END_REF], comparison of recent images with reference data collected a long time ago [START_REF] Toft | Semantic Match Consistency for Long-Term Visual Localization[END_REF], day to night place recognition [START_REF] Torii | 24/7 place recognition by view synthesis[END_REF], etc. Recent approaches use complementary information in order to address these visually challenging localization scenarios: geometric information through point cloud [START_REF] Sattler | Benchmarking 6DOF Urban Visual Localization in Changing Conditions[END_REF][START_REF] Schönberger | Semantic Visual Localization[END_REF] or depth maps [START_REF] Christie | Semantics for UGV Registration in GPS-denied Environments[END_REF] and semantic information [START_REF] Ardeshir | GIS-assisted object detection and geospatial localization[END_REF][START_REF] Christie | Semantics for UGV Registration in GPS-denied Environments[END_REF][START_REF] Naseer | Semantics-aware Visual Localization under Challenging Perceptual Conditions[END_REF]. However geometric or semantic information are not always available or can be costly to obtain, especially in robotics or mobile applications when the sensor or the computational load on the system is limited, or in cultural heritage when the data belong to ancient collections.

In this work, we are considering a scenario where we have an offline access to multimodal data but only-radiometric information during the online localization step (as illustrated in figure 3.1). This is a realistic scenario: a mobile mapping vehicle with multiple sensors is used once to gather initial information on the area of interest and then, agents are sending localization request with a low computational sensor like a smart-phone camera. Such setup is also in accordance with the specifications of the Cartographie Long

Multi-modal data available oine Single-modality data available online Terme pour la Navigation Urbaine (pLaTINUM) project (see section 1.2), which this works is part of.

Based on these observations, we propose an image descriptor capable of reproducing the underlying scene geometry from a monocular image, in order to deal with challenging outdoor large-scale image-based localization scenarios. We introduce dense geometric information as side training objective to make our new descriptor robust to visual changes that occur between images taken at different times. Once trained, our system can be used on monocular images only to construct an expressive descriptor for image retrieval. This kind of system design is also known as side information learning [START_REF] Hoffman | Learning with Side Information through Modality Hallucination[END_REF], as it uses geometric and radiometric information only during the training step and pure radiometric data for image localization.

The chapter is organized as follows. In section 3.1, we first revisit recent works related to image description for localization and side information learning approaches.

In section 3.2, we describe steps that have led to the design of strong image descriptor trained with side depth information. In section 3.3 we give insight on our implementation and on the dataset we used and we illustrate the effectiveness of the proposed method on six localization scenarios in section 3.4. We discuss, in section 3.5, about the challenging night to day image matching problem and, in section 3.6, we present a variation of our method using dense object reflectance maps instead of depth maps. Section 3.7 finally concludes the chapter.

Related work

3.1.1 Image descriptor for localization.

As described in section 2.2.1 (figure 2.1), the first step of a CBIR as a localization method is the data description. This can be done using local descriptors, aggregating local features into a global vector or by computing a global signature from the raw image (section 2.1). In the following we review the two type of features mainly used in the literature:

• aggregated local descriptors,

• learned descriptors.

Aggregation of local descriptors

Local features (section 2.1.1) are prompt to produce a large number of descriptors for one single data, making the subsequent similarity search intractable. Hence, features aggregation is performed to reduce the dimensionality of the final descriptor vector. In VBL, the aggregation process emphasize specific features that are more beneficial for the localization task.

Quantization. Quantization methods have been widely adopted in image-retrieval domain since the pioneering contribution of Sivic and Zisserman [START_REF] Sivic | Video Google: A Text Retrieval Approach to Object Matching in Videos[END_REF]. They consider the problem of object retrieval in an image described through local features in the same manner as text document research. Words equivalent in image domain becomes local features and a dictionary is build upon a large set of features extracted from visual documents' database. These features are clustered to reduce the size of the dictionary; clusters' centroids are then called visual words. For each visual word in the dictionary, and inverted file is maintained to efficiently retrieve all the data that present this specific visual word. The Bag of Features (BoF) associates a vector of the dimension of the dictionary containing the visual word frequency of a specific visual document. With this representation, data similarity can be efficiently computed by a simple inner product of their respective visual word frequency vector.

BoF improvements. BoF original scheme [START_REF] Sivic | Video Google: A Text Retrieval Approach to Object Matching in Videos[END_REF] proceeds to a hard assignment from the extracted feature to the nearest visual word in the dictionary. However, depending on where the feature lies inside the Voronoi cell created in the clustering step, hard assignment can deteriorate the representation of the visual document. Soft assignment [START_REF] Philbin | Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases[END_REF] methods have been considered by associating the features according to a linear combination of the k nearest visual words. Hamming embedding (HE), introduced by Jégou et al. [START_REF] Jégou | Hamming Embedding and Weak Geometry Consistency for Large Scale Image Search[END_REF], subdivides Voronoi cells and associates to each feature a binary signature to refine its position in the visual vocabulary. This method leads to excellent result in term of accuracy and rapidity and is still used in state-of-the-art VBL [START_REF] Arandjelović | DisLocation : Scalable descriptor[END_REF]. Inspired by Fisher Vector (FV) formulation [START_REF] Perronnin | Large-Scale Image Retrieval with Compressed Fisher Vectors[END_REF], Jégou et al. [START_REF] Jégou | Aggregating local image descriptors into compact codes[END_REF] introduce Vector of Locally Aggregated Descriptors (VLAD) representation for image-based retrieval. The difference between a feature and its closest visual word is assigned to the final descriptor, instead of the visual word itself. The underlying idea behind VLAD representation have inspired various VBL methods [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF][START_REF] Kim | Predicting good features for image geo-localization using per-bundle VLAD[END_REF][START_REF] Torii | 24/7 place recognition by view synthesis[END_REF][START_REF] Yan | SIFT for Image Retrieval[END_REF]. For instance, Kim et al. [START_REF] Kim | Predicting good features for image geo-localization using per-bundle VLAD[END_REF] introduce PBVLAD method to locally fuse SIFT features detected inside a MSER blob. Novel features aggregation method have been recently presented in [START_REF] Jégou | Triangulation embedding and democratic aggregation for image search[END_REF].

Local features weighting. The weighting step is supposed to emphasize discriminative features regarding the similarity comparison. Original method by [START_REF] Sivic | Video Google: A Text Retrieval Approach to Object Matching in Videos[END_REF] used tf-idf weighting, relying on the occurrence frequency of the features in the database. Jégou et al. [START_REF] Jégou | On the burstiness of visual elements[END_REF] handle the problem of intra and inter burstiness of visual words (i.e. the fact that a feature is more likely to appear in an image if it has already been detected once) by adapting the weight of the visual words before (inter-burstiness) and during (intra-burstiness) the query process. Torii et al. [START_REF] Torii | Visual Place Recognition with Repetitive Structures[END_REF] tackle the problem of visual burstiness introduced by repetitive structures (abundant in urban environment) and introduce meta-features encompassing several similar descriptors (comparable both in their descriptor vector and their spatial location in the image). Such improvement permits a dense extraction of local features in images, bringing superior result in urban environment VBL [START_REF] Qu | Evaluation of SIFT and SURF for vision based localization[END_REF][START_REF] Torii | 24/7 place recognition by view synthesis[END_REF].

Another work from Morago et al. [START_REF] Morago | 2D Matching Using Repetitive and Salient Features in Architectural Images[END_REF] also exploits the redundancy present in buildings facades. Recently, Arandjelović and Zisserman [START_REF] Arandjelović | DisLocation : Scalable descriptor[END_REF] improve tf-idf scheme by considering the descriptors' density in feature space. With their DisLoc weighing, 7% of the less discriminative visual words can be removed from the database without impacting the performances of the similarity computation. Mousavian et al. [START_REF] Mousavian | Semantically guided location recognition for outdoors scenes[END_REF] introduce semantic knowledge in the local feature weighting process, reducing the impact of features associated with non-relevant elements for localization (i.e. elements that are likely to change or disappear, such as trees and cars).

Learned descriptors

With the recent progress of image representation through deep neural network, learned descriptors have become a key component for numerous visual localization methods [START_REF] Germain | Sparse-to-Dense Hypercolumn Matching for Long-Term Visual Localization[END_REF][START_REF] Paulin | Convolutional Patch Representations for Image Retrieval: An Unsupervised Approach[END_REF][START_REF] Sarlin | Leveraging Deep Visual Descriptors for Hierarchical Efficient Localization[END_REF][START_REF] Sarlin | From Coarse to Fine: Robust Hierarchical Localization at Large Scale[END_REF][START_REF] Sattler | Benchmarking 6DOF Urban Visual Localization in Changing Conditions[END_REF][START_REF] Schönberger | Semantic Visual Localization[END_REF][START_REF] Sünderhauf | Place Recognition with ConvNet Landmarks: Viewpoint-Robust, Condition-Robust, Training-Free[END_REF]. Therefore we decide to build on these recent advances and use a Convolutional Neural Networks (CNN) based image descriptor as base component of our system. We review in the following recent advances on learned representation for localization.

Off the shelf models. One of the first method based on learned model for the task of image retrieval have been introduced in [START_REF] Babenko | Neural Codes for Image Retrieval[END_REF]. Authors simply use pooling operation on the features block (= neural code) extracted from a CNN to compute the image descriptor (see figure 3.2). Although not trained for the specific task of image retrieval, such model benefits from initial training on images classification task on a huge amount of data (e.g. Imagenet dataset [START_REF] Deng | Imagenet: A largescale hierarchical image database[END_REF]). In [START_REF] Babenko | Neural Codes for Image Retrieval[END_REF][START_REF] Sünderhauf | On the performance of ConvNet features for place recognition[END_REF], authors show that the most discriminative descriptors for the task of image-retrieval, especially applied to place recognition [START_REF] Sünderhauf | On the performance of ConvNet features for place recognition[END_REF],

are extracted from mid-level convolutional layers instead of last fully-connected layers.

As shown in figure ??, convolutional layers produce features block, composed of several activation maps stacked together. In order to capture a more discriminative representation from these features block, several activation map pooling methods can be applied. Maximum Activation of Convolutions (MAC) [START_REF] Razavian | Visual Instance Retrieval with Deep Convolutional Networks[END_REF] reduce the features block by aggregating the maximum of each activation maps into a vector. Instead of maximum pooling, Sum-Pooled Convolutional Features (SPoC) [START_REF] Babenko | Aggregating local deep features for image retrieval[END_REF] has shown superior results in image retrieval. More specific pooling method, carefully designed for localization, are presented in the next paragraph.

Learned descriptors can be combined with local or patch detectors, in order to obtain sparse representation of the data. In this case, features extracted from the image can be gathered into a single descriptor, like in the BoF framework. VLAD embedding is employed in [START_REF] Yan | SIFT for Image Retrieval[END_REF]. In [START_REF] Panphattarasap | Visual place recognition using landmark distribution descriptors[END_REF], patches are sorted according to their relative position in the image and aggregated in a Landmark Distribution Descriptor to improve the subsequent
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Features block escriptor Specific architecture. Regional Maximum Activation of Convolutions (R-MAC) [START_REF] Tolias | Particular object retrieval with integral maxpooling of CNN activations[END_REF] is an improvement of the precedent MAC method, consisting of the computation of the MAC vector over regions of various sizes on the activation map. Gordo et al. [START_REF] Gordo | End-to-End Learning of Deep Visual Representations for Image Retrieval[END_REF] achieve state-of-the-art performances by combining MAC representation with a custom Region Proposal Network (RPN) that autonomously detects regions of interest on the activation map. They also add a differentiable Principal Components Analysis (PCA) layer (implemented with one fully connected layer) for dimension reduction. In [START_REF] Radenović | Fine-tuning CNN Image Retrieval with No Human Annotation[END_REF], authors use Generalized-Mean (GeM) pooling, a trade of between mean and max pooling with a trainable parameter controlling the degree of spatial "focus" of the network. An entirely trainable aggregation layer, called NetVLAD, have been proposed in [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF]. Authors design a differentiable architecture that aim to mimic VLAD aggregation scheme.
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In [START_REF] Iscen | Panorama to panorama matching for location recognition[END_REF], authors create panorama features by aggregating multiple NetVLAD descriptor in a memory vector. Kim et al. [START_REF] Kim | Learned Contextual Feature Reweighting for Image Geo-Localization[END_REF] Multiple loss functions can be used to guide the descriptor training. Triplet ranking loss is used in [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF][START_REF] Gordo | End-to-End Learning of Deep Visual Representations for Image Retrieval[END_REF] while in [START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF][START_REF] Radenović | CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples[END_REF], authors choose a contrastive loss. A comprehensive evaluation of different objective functions is given by Liu et al. [START_REF] Liu | Deep Stochastic Attraction and Repulsion Embedding for Image Based Localization[END_REF]. They also propose a Stochastic Attraction and Repulsion Embedding (SARE) loss function, that enforces both inter-place similarity and intra-place difference within the embedding space.

Arandjelović et al. [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF] introduce a weakly supervised training approach, using the Google Time machine engine to automatically create large database of triplets. Work from [START_REF] Gordo | End-to-End Learning of Deep Visual Representations for Image Retrieval[END_REF][START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF] make use of a large Landmark dataset for triplets creation. In [START_REF] Radenović | CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples[END_REF][START_REF] Radenović | Fine-tuning CNN Image Retrieval with No Human Annotation[END_REF],

Structure From Motion (SfM) is used to link multiple images over a large panel of places. 

Learning with side information

As mentioned previously, complementary modalities useful for localization, like geometry or semantic, may not be always available at test time. This could be due to limited resources (e.g. with embedded system), different sensors, localization of old data, etc.

For this reason, we make available the geometric information used in this work only during the offline training step and we rely on side information learning to benefit from this auxiliary modality at test time. Recent work from [START_REF] Li | Visual Recognition in RGB Images and Videos by Learning from RGB-D Data[END_REF] casts the side information learning problem as a domain adaptation problem, where source domain includes multiple modalities and the target domain is composed of a single modality. Another successful method has been introduced in [START_REF] Hoffman | Learning with Side Information through Modality Hallucination[END_REF]: authors train a deep neural network to hallucinate features from a depth map only presented during the training process to improve objects detection in images. The closest work to ours, presented in [START_REF] Xu | Detection, Learning crossmodal deep representations for robust pedestrian[END_REF], uses recreated thermal images to improve pedestrian detection on standard images only. Our system, inspired by [START_REF] Xu | Detection, Learning crossmodal deep representations for robust pedestrian[END_REF], learns how to produce depth maps from images to enhance the description of these images.

Depth from monocular image for localization. Modern neural networks architectures can provide reliable estimation of the depth associated to monocular image in a simple and fast manner [START_REF] Eigen | Depth Map Prediction from a Single Image using a Multi-Scale Deep Network[END_REF][START_REF] Godard | Unsupervised Monocular Depth Estimation with Left-Right Consistency[END_REF][START_REF] Mahjourian | Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints[END_REF]. This ability of neural networks has been used in [START_REF] Tateno | CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction[END_REF] to recover the absolute scale in a Simultaneous Localization and Mapping (SLAM) mapping system. Loo et al. [START_REF] Loo | CNN-SVO: Improving the Mapping in Semi-Direct Visual Odometry Using Single-Image Depth Prediction[END_REF] use the depth estimation produced by a CNN to improve a visual odometry algorithm by reducing the incertitude related to the projected 3D points. In this work, we use the depth information obtained by a neural network as stable features across season changes. Taira et al. [START_REF] Taira | Is This The Right Place? Geometric-Semantic Pose Verification for Indoor Visual Localization[END_REF] rely on dense surface normal (derivative of the depth map) and semantic segmentation created by a convolutional encoder/decoder [START_REF] Zamir | Taskonomy: Disentangling Task Transfer Learning[END_REF] for localization of indoor low-textured images.

Model architectures and training

Motivation. As illustrated in figure 3.4, outdoor conditions drastically impact visual appearance of a scene. It will be challenging for a descriptor relying only on the radiometric information to associate a similar embedding to the four images of figure 3.4. But, if we take a look at the underlying geometry in these images (i.e. the associated depth maps, bottom of figure 3.4), this information seems more stable over time. The central idea of our method is to use recent modality transfer network [START_REF] Eigen | Depth Map Prediction from a Single Image using a Multi-Scale Deep Network[END_REF][START_REF] Godard | Unsupervised Monocular Depth Estimation with Left-Right Consistency[END_REF][START_REF] Mahjourian | Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints[END_REF] (from images to depth maps) to provide invariant image representation to our CNN descriptor during training. At test time, the trained descriptor is used on images only.

Initial architecture

An overview of our first method can be seen in figure 3.5.

Principal descriptor. We build on recent advances in CNN image descriptor for designing our system. We use standard convolution features extractor linked to a pooling descriptor layer (figure 3.2). Formally, we denote f p the principal features vector of image

x computed by encoder E p and descriptor P p :

f p (x) = P p (E p (x)). (3.1)
We denote θ p the weights of the image encoder and descriptor {E p , P p }. Notice that descriptor P do not necessary contains trainable parameters (if we consider MAC pooling method for instance).

Considering the images triplet {x, x + , x -}, as described in previous section (see fig- 

L p (x, x + , x -) = max λ + f p (x) -f p (x + ) 2 -f p (x) -f p (x -) 2 , 0 , (3.2) 
where λ is an hyper-parameter controlling the margin between positive and negative examples.

Side geometry learning. In order to recover the geometric information from the radiometric signal, we use a fully convolutional decoder D a [START_REF] Eigen | Depth Map Prediction from a Single Image using a Multi-Scale Deep Network[END_REF]. Let {x, z} be a pair of image and corresponding depth map, we can train our decoder to compute a depth map from an input image with the following loss function:

L pix (x, z) = z -ẑ(x) 1 , (3.3) 
where ẑ(x) = D a (E p (x)), is the output of the decoder. L pix is a simple pixel loss penalizing absolute error between the output depth map ẑ(x) and the target z.

Auxiliary descriptor. In order to take advantages of the learned depth representation in our final descriptor, we use intermediate deep features computed by D a to create another descriptor f a :

f a (x) = P a ( Da (E p (x))), (3.4) 
where P a is a descriptor and Da designs an intermediate output extracted from decoder D a . We do not use the reconstructed depth map ẑ(x) (i.e. raw output of D a ) to produce vector f a (x) because it will be to sensitive to small viewpoint variations. Instead, we use an intermediate output from Da , that should be more meaningful compared to ẑ(x) and less sensitive to viewpoint changes. Indeed, because the decoder upsample the feature maps, output of Da has a smaller spatial resolution and is deeper in comparison to ẑ(x).

We apply a triplet ranking loss L a (see equation 3.2) to train weights θ a of decoder D a and descriptor P a .

Overall training. Finally, we combine the principal and auxiliary features, f p (x) and f a (x) in a common vector:

f p,a (x) = [f p (x), f a (x)] , (3.5) 
where [•] is the concatenation operation. Combined descriptor optimization is obtained through the last triplet ranking loss L p,a and the final optimization is defined by:

(θ p , θ a ) := arg min θp,θa L p (x, x + , x -) + L a (x, x + , x -) + L p,a (x, x + , x -) + 1 3 L pix (x, z) + L pix (x + , z + ) + L pix (x -, z -) . (3.6)
Our initial method requires triplets of RGB-D data to be trained.

Hallucination network

We compare our method of side information learning with a state-of-the-art approach system, named hallucination network [START_REF] Hoffman | Learning with Side Information through Modality Hallucination[END_REF]. The hallucination network was originally designed for object detection and classification in images and has never been used for global image description. We adapt the work of Hoffman et al. [START_REF] Hoffman | Learning with Side Information through Modality Hallucination[END_REF] to create an image descriptor system that benefits from depth map side modality during training. Our adaptation of the hallucination network for image description is presented in figure 3.6. Principal descriptor. Similar to our proposal, the system is composed of a principal image descriptor: encoder E p + descriptor P p , trained jointly through triplet ranking loss of equation 3.2.

Image Depth paired triplets

Auxiliary descriptor. Hallucination architecture needs an auxiliary network for training purpose, that will be discarded at test time. This auxiliary branch focus on extracting significant information from the side modality (the depth map in our case). We design the auxiliary network similar to our principal branch: the depth map descriptor is composed of an encoder E a linked to a descriptor P a . The depth map descriptor is trained with a triplet ranking loss L a , where the embeddings are directly computed from the truth depth maps:

f a (z) = P a (E a (z)).
(3.7)

Hallucination descriptor. The key component of Hoffman et al. [START_REF] Hoffman | Learning with Side Information through Modality Hallucination[END_REF] proposal is the hallucination network. The task of the hallucination branch is, with images as input, to reproduce feature maps that would have been obtained by a network trained with depth map rather than the depth map itself. The hallucination network share the same architecture as the principal and the auxiliary branches. The hallucination descriptor is composed of an encoder E h and a descriptor P h with trainable weights θ h . It is trained with triplet ranking loss L h under the constraint of a perceptual loss [START_REF] Johnson | Perceptual Losses for Style Transfer and Super-Resolution[END_REF]:

L feat (x, z) = E h (x) -E a (z) 2 . (3.8)
This constraint can be interpreted as knowledge distillation [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF]. Final image descriptor is obtained by concatenating f p (x) and f h (x).

Overall training. Training routine presented in [START_REF] Hoffman | Learning with Side Information through Modality Hallucination[END_REF] is two-step: we first optimize weights θ a of the auxiliary descriptor with loss L a (z, z + , z -) and, secondly, we initialize hallucination weights θ h with pre-trained weights θ a and solve the following optimization problem:

(θ p , θ h ) := arg min θp,θ h α L p (x, x + , x -) + L h (x, x + , x -) + L p,h (x, x + , x -) +γ L feat (x, z) + L feat (x + , z + ) + L feat (x -, z -) , (3.9)
where α and γ are weighting constants. During final optimization, weights θ a are frozen.

Like our proposal, this method requires triplets of RGB-D data to be trained and, at test time, the principal and hallucination descriptors are used on images only.

Discussion

Exploratory testing of our method has lead to unsuccessful results. During the training step, our network failed to produce at the same time a meaningful image representation for localization (losses L p , L a and L p,a ) and to reconstruct the scene geometry (loss L pix ). After analyzing our architecture, we came up with the following conclusion: the two target objectives are disrupting each other. This problem was due to the design of our initial method: weights modification computed by the triplet ranking losses were affecting both weights of encoder E p and decoder D a . At the same time, modifications induced by the loss L pix (equation 3.3) were also correcting the same weights, making the system unable to converge.

We do not encounter the same problem with our implementation of hallucination network. The only loss functions that can interfere during the optimization are triplet ranking loss L h and perceptual loss L feat . Both losses lead to modification of hallucination encoder E h weights. But targeted task of the two loss function are the same:

L h directly optimize the hallucination embedding for image retrieval and L feat force the feature maps of encoder E h to be close to the feature maps of encoder E a , an encoder that have been trained for image retrieval task as well.

In the next section, we propose an improved version of our initial method that solves the aforementioned issue.

Final architecture

Our modified architecture, presented in figure 3.7, is composed of:

• a CNN image encoder E p linked to a feature aggregation layer P p that produces the principal image descriptor,

• a CNN image decoder D a used to reconstruct the corresponding depth map according to the monocular image, • a CNN depth map encoder E a linked to a feature aggregation layer P a that produces an auxiliary depth map descriptor,

• a fusion module that concatenates the image and depth map descriptor.

Training routine. Principal and auxiliary descriptor, {E p , P p } and {E a , P a }, are trained separately with triplet ranking losses L p and L a . As before, loss L p,a is used for joint optimization. The auxiliary descriptor {E a , P a } takes as input the reconstructed depth map ẑ(x). Similar to our first architecture, decoder D a take feature maps of encoder E p to generate output ẑ(x). We constrain ẑ(x) to be close to ground truth depth map z with the pixel loss defined in equation 3.3.

We designate θ p weights of encoder/descriptor pair {E p , P p }, θ a weights of encoder/descriptor pair {E a , P a } and θ g weights of decoder D a . The whole system is trained according to the following constraints:

(θ p , θ a ) := arg min θp,θa L p (x, x + , x -) + L a (x, x + , x -) + L p,a (x, x + , x -) , (3.10) 
(θ g ) := arg min θg [L pix (x, z)] . (3.11) 
We use two different optimizers: one updating θ p and θ a weights regarding constraint (3.10) and the other updating θ g weights regarding constraint (3.11). Because decoder D a relies on feature maps computed by encoder E p , at each optimization step on θ p we need to update decoder weights θ g to take in account possible changes in the image features. We finally train our entire system, by alternating between the optimization of weights {θ p , θ a } and {θ g } until convergence. By removing E p from the optimization of the depth from monocular objective (equation 3.11) and by adding an auxiliary encoder E a , we get rid of the interfering tasks problem observed earlier (see § 3.2.3). Notice that even if the encoder E p is not especially trained for depth map reconstruction, its intern representation is rich enough to be used by the decoder D a for depth map reconstruction.

Advantages and drawbacks. One advantage of the hallucination network over our proposal is that it does not require a decoder network (D a ), resulting in a architecture lighter than ours. However, it needs a pre-training step, where image descriptor {E p , P p } and depth map descriptor {E a , P a } are trained separately from each other before a final optimization step with the hallucination part of the system. Our system does not need such initialization.

One advantage of our method over the hallucination approach is that we have two unrelated objectives during training: learning an efficient image representation for localization and learning how to reconstruct scene geometry from an image. It means that we can train several parts of our system separately, with different datasets. Especially, we can improve the scene geometry reconstruction task with non localized {image, depth map} pairs. These weakly annotated data are easier to gather than triplets, as we only need calibrated system capable of sensing radiometric and geometric modalities at the same time. We will show in practice how this can be exploited to fine tune the decoder part to deal with complex localization scenarios in the following section 3.4.2.

Hard mining and swapping in triplet ranking loss

Hard negative minning policy. As mentioned in the previous section, hard mining is a crucial step in metric learning [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF][START_REF] Gordo | Deep Image Retrieval: Learning Global Representations for Image Search[END_REF][START_REF] Iscen | Mining on Manifolds: Metric Learning without Labels[END_REF][START_REF] Radenović | Fine-tuning CNN Image Retrieval with No Human Annotation[END_REF]. We construct our triplets like in [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF], using the GPS-tag information provided with the data. We gather N triplets Because M n is too large, exact hard mining examples is not tractable. In [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF], authors store a fixed representation of the negatives examples that is used for negative mining.

x, x + i i∈[1,Mp] , x - i i∈[1,
They update the representation of all negative examples as soon as the new representation computed by their model differs to much to the stored one. We adopt a different approach with a small overhead in term of computation but taking directly in account model Influence of the joint loss L p,a : we report localization results of our method trained with or without the joint triplet ranking loss L p,a . We detail the used metrics and datasets in section 3.3. 

{positive, negative} examples:

L swap (x, x + , x -) = max λ + f (x) -f (x + ) 2 -min f (x) -f (x -) 2 , f (x + ) -f (x -) 2 , 0 , (3.
L final x, x + i i∈[1,Mp] , x - i i∈[1,M sub n ] = 1 M p M hard n Mp i=1 M hard n j=1 L swap x, x + i , x - j .
(3.13)

Descriptors fusion and dimension reduction

Fusion policy. We try to replace our basic features fusion operator introduced in equation 3.5 (vectors concatenation) by more advanced functions, in order to benefit as much as possible from the complementarity of the principal and the auxiliary modalities.

We investigate: hand-tuned descriptors scalar weighting, trained scalar weighting [START_REF] Sizikova | Enhancing Place Recognition using Joint Intensity -Depth Analysis and Synthetic Data[END_REF],

trained modal attention mechanism at the level of descriptors and trained spatial and modal attention mechanism at the level of the deep features [START_REF] Seymour | Semantically-Aware Attentive Neural Embeddings for Image-based Visual Localization[END_REF]. We found that all the fusion policies perform similarly. Indeed, as can be seen in figure 3.8, the modalities fusion are learned by our system through the triplet loss L p,a , making the system aware of what is important and complementary in the radiometric and geometric domain, without the need of a complex fusion method. Preliminary experiment presented in figure 3.8 also demonstrates the importance of using a triplet ranking loss on the combination of the two feature vectors f p and f a . In this preliminary experiment, we use Resnet18 as base encoder and NetVLAD [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF] as pooling layer.

Post-treatment. After L 2 normalization, we reduce the dimension of the final descriptor by applying PCA + whitening [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF][START_REF] Gordo | End-to-End Learning of Deep Visual Representations for Image Retrieval[END_REF][START_REF] Radenović | CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples[END_REF][START_REF] Radenović | Fine-tuning CNN Image Retrieval with No Human Annotation[END_REF]. After the convergence of the whole system we reuse the images from the training dataset to compute the PCA parameters.

Implementation details

This section presents the datasets used for training and testing our method as well as insight about our implementation and a short presentation of the competitors compared to our proposal.

Datasets

We have tested our proposal on the Oxford Robotcar public dataset [START_REF] Maddern | km: The Oxford RobotCar dataset[END_REF] and on the CMU Visual localization dataset [START_REF] Bansal | Understanding how camera configuration and environmental conditions affect appearance-based localization[END_REF] from the city of Pittsburg. These are common datasets used for image-based localization [START_REF] Sattler | Benchmarking 6DOF Urban Visual Localization in Changing Conditions[END_REF] and loop closure algorithm involving neural networks training [START_REF] Porav | Adversarial Training for Adverse Conditions: Robust Metric Localisation using Appearance Transfer[END_REF] under challenging conditions.

Training data. We exploit the temporal redundancy present in Oxford Robotcar dataset to build the images triplets needed to train our CNN. We build 400 triplets • Oxford -Snow: queries have been acquired during a snowy day,

• Oxford -Night: queries have been acquired at night, resulting in radical visual changes compared to the reference images.

For the CMU Visual localization dataset, the reference dataset is composed of 1944 images with a sunny weather and the three query sets are:

• CMU -Long-term (LT): queries have been acquired 10 months after the reference images under similar weather conditions,

• CMU -Snow: queries have been acquired during a snowy day,

• CMU -Autumn: queries have been acquired during Autumn, featuring warmcoloured foliage and low sunlight compare to the reference data.

Query examples are presented in figure 3.11.

Evaluation metric For a given query, the reference images are ranked according to the cosine similarity score computed over their descriptors. To evaluate the localization performances, we consider two evaluation metrics:

• Recall @N: we plot the percentage of well localized queries regarding the number N of returned candidates. A query is considered well localized if one of the top N retrieved images lies within 25m radius from the ground truth query position.

• Top-1 recall @D: we compute the distance between the top ranked returned database image position and the query ground truth position, and report the percentage of queries located under a threshold D (from 15 to 50 meters), like in [START_REF] Zamir | Image geo-localization based on multiplenearest neighbor feature matching using generalized graphs[END_REF].

This metric qualifies the accuracy of the localization system.

Implementation

Our proposal is implemented using Pytorch as deep learning framework, ADAM stochastic gradient descent algorithm for the CNN training with learning rate set to 1e-4, weight decay to 1e-3 and λ in the triplet loss of equation 3.2 equal to 0.1. We use batch size between 10 and 25 triplets depending of the size of the system to train, convergence occurs rapidly and takes around 30 to 50 epochs. We perform hard negative mining Encoder architectures. We use the fully convolutional part of Alexnet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] and Resnet18 [START_REF] He | Deep residual learning for image recognition[END_REF] (Resnet in short) architectures for features extraction. Weights are initialized with the pre-trained weights on ImageNet and firsts convolutional filter weights remain fixe during training. We always use Alexnet encoder to extract features from raw depth map, reconstructed depth map, or hallucinated depth map. Indeed the quality of our depth map is usually very low, and we have found that using deeper network does not significantly improve localization results. We transform the 1-channel depth map into 3-channels jet colorization depth map in order to benefit from the convolutional filters learned on ImageNet. We do not use the 3-channels HHA depth map representation introduced in [START_REF] Gupta | Learning rich features from RGB-D images for object detection and segmentation[END_REF] as it have been shown to perform equivalently to jet colorization [START_REF] Eitel | Multimodal deep learning for robust RGB-D object recognition[END_REF].

Descriptor architectures. We test the two state-of-the-art image descriptors MAC [START_REF] Razavian | Visual Instance Retrieval with Deep Convolutional Networks[END_REF] and NetVLAD [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF] (see section 3.1). We experimented that NetVLAD descriptor combined with Resnet architecture does not perform well. NetVLAD can be view as a pooling method that acts on local deep features densely extracted from the input image. We argue that the spatial resolution of the features block obtained with Resnet encoder is too low compared to the other architecture (for instance 13 × 13 for Alexnet compared to Decoder architecture. The decoder used in our proposal is based on Unet architecture and inspired by network generator from [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF]. Details about our decoder architecture can be found in appendix A.1. Decoder weights are initialized randomly.

Competitors

We compare the three following global image descriptors:

1. RGB only (RGB): simple networks composed of encoder + descriptor trained with images only, without side depth maps information. Networks are trained as explain in previous section, with triplet ranking loss of equation 3.2. We also train the RGB network on the aforementioned dataset, but only with the radiometric modality. [START_REF] Hoffman | Learning with Side Information through Modality Hallucination[END_REF] (see figure 3.6), trained on aligned triplets of images and depth maps.

Hallucination network (RGB(H)): our version of the hallucination network

For fair comparison, as RGB(D) and RGB(H) image descriptors are obtain by concatenation two full-size descriptors (see section 3.2.6), we perform PCA to reduce the size of the final descriptor of all three methods to 2048.

Network

Top-1 recall@D Recall@N Name #Param. @15 @30 @50 @1 @5 RGB + MAC 

Long-term localization

As a first step, we conduct preliminary experiments to justify design choices for our method. Then, in the second part of this section, we compare the localization performances of the proposed image descriptors.

Preliminary results

Contribution of the depth information

In this paragraph, we investigate the impact on localization performances provided by the side geometric information on our method. For a consistent comparison in terms of number of trainable parameters, we introduce RGB + network that has the same architecture as our proposed method. We train RGB + with images only to compare the localization results against our method that uses side depth information. For training RGB + , we simply remove the pixel loss introduced in equation (3.3), and make the weights of the decoder D a trainable when optimizing triplets losses constraints. Results on the validation dataset with encoder architecture Alexnet and decoder MAC are presented in table 3.1.

Increasing the size of the system results in a better localization (RGB + + MAC > RGB + MAC). However, our RGB(D) + MAC system always produces higher localization results facing RGB + + MAC, which shows that the side depth information provided during training is wisely used to create the final description.

Descriptor comparison

In figure 3.13, we present the localization scores of the three different methods on the validation set with Alexnet as backbone encoder. It clearly demonstrates the superiority of the NetVLAD pooling layer compared to the MAC descriptor in term of precision (recall@D). As we are more interested in precision than in recall, our concern is about localization, we only use NetVLAD as pooling layer for the rest of the experiments (in Comparison of descriptors pooling layer: NetVLAD [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF] pooling layer perform better than MAC [START_REF] Razavian | Visual Instance Retrieval with Deep Convolutional Networks[END_REF] in our preliminary experiment, whatever the tested method.

combination with Alexnet or Resnet encoder). Still, this preliminary experiment has shown that the proposed method can be used in combination with various descriptor pooling layers.

Localization results

Localization results on the six query sets are presented in figure 3.14. We also show, in figure 3.15 (3 rd , 5 th and 6 th columns), some examples of top-1 returned candidate by the different descriptors. Both methods trained with auxiliary depth information (hallucination RGB(H) and our RGB(D)) perform on average better than the RGB baseline. This confirm our intuition: geometric clues given during the training process can be efficiently used for CBIR for localization. In addition to that, compared to hallucination network, our method shows better results, both in terms of recall and precision. We report results for the hallucination network only with encoder Alexnet as we were not able to obtain stable training when using a deeper architecture.

We obtain convincing localization results for the CMU query sets (figure 3 our method is able to extract useful geometric information to improve the matching (see figure 3.18, 3 rd row).

Impact of fine tuning on other environments

In this section, we measure the impact of the fine tuning process on other localization scenarios. Performances could decrease if our system "forgets" how to produce depth map from daylight images. To prevent that, we integrate half of daylight images with the night images in the training data used for fine tuning.

We show results of the fine-tuned network on figure 3.17. Localization accuracy remains stable after the fine tuning. We even observe slight increase in the localization performances for some scenarios (figure 3.17-b): thank to the fine tuning with night images, the decoder has improved the depth map generation of dark images acquired during daytime. The fact that fine tuning our system, to deal with hard localization scenarios, do not negatively impact the performances on other environment makes our new method well suited for real applications when we cannot predict what will be the outdoor conditions.

Laser reflectance as side information

In this section we investigate the use of another modality replacing the depth map in order to evaluate the generalization capabilities of the proposed framework. We use lidar reflectance values as auxiliary modality for these experiments.

Laser reflectance

Lidar reflectance is defined by the proportion of the signal returned to the laser sensor after hitting an object in the scene. Reflectance characterizes the material property of an object. We use the reflectance information provided in the Robotcar dataset [START_REF] Maddern | km: The Oxford RobotCar dataset[END_REF].

Reflectance values range from 0 to 1 indicating if the object has reflected from 0 to 100% of the original laser beam. We process the sparse reflectance data in the same manner as the depth map using inpainting algorithm from [START_REF] Bevilacqua | Joint inpainting of depth and reflectance with visibility estimation[END_REF] to produce dense reflectance maps ( § 3. than the other on a specific dataset (for instance depth over reflectance for the query set CMU -Snow, figure 3.20-d), the combination of the both will cancel potential benefit given by the most informative modality. As discussed before, the reflectance information can be source of disturbance if snow is present on the image, resulting on a worse scene description. On figure 3.15, we can observe successful image localization on very challenging examples: CMU -LT 1 st row, where the closest reference image is highly overexposed and on Oxford -Snow 1 st row with this very confounding image query.

These preliminary results concerning the use of multiple modalities during the training process of the descriptor are encouraging. Still, additional experiments have to be performed. In particular the behavior of the proposal according to the joint use of these modalities indicate that we have to focus more on the final descriptor fusion; modality-aware aggregation descriptor or more complex attention mechanism may be considered [START_REF] Seymour | Semantically-Aware Attentive Neural Embeddings for Image-based Visual Localization[END_REF].

Conclusion

We have introduced a new competitive global image descriptor designed for image-based localization under challenging conditions. Our descriptor handle visual changes between images by learning the geometry of the scene. Strength of our method remains in the fact that it needs geometric information only during the learning procedure. Our trained descriptor is then used on images only. Experiments show that our proposal is much more efficient than state-of-the-art localization methods [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF][START_REF] Radenović | Fine-tuning CNN Image Retrieval with No Human Annotation[END_REF], including methods based on side information learning [START_REF] Hoffman | Learning with Side Information through Modality Hallucination[END_REF]. Our descriptor performs especially well for challenging cross-season localization scenario, therefore it can be used to solve long-term place recognition problem. We additionally obtain encouraging results for night to day image retrieval. Finally we show that our method can generalize to over auxiliary modality supervision during training. We use lidar reflectance to illustrate this generalization capability.

In the next chapter, we will show how the learned depth can be used again in a pose refinement step.

Chapter 4

Refining visual localisation with learned geometric clues

Many applications in Computer Vision and Robotics require a precise initial pose estimation of the visual data acquisition system: augmented reality [START_REF] Arth | Instant Outdoor Localization and SLAM Initialization from 2.5D Maps[END_REF], visual odometry [START_REF] Pascoe | FARLAP : Fast Robust Localisation using Appearance Priors[END_REF],

SLAM [START_REF] Milford | SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights[END_REF] or visual servoing [START_REF] Marchand | Pose Estimation for Augmented Reality : a Hands-On Survey[END_REF], to name a few. Coarse estimation provided from standard geo-localization system (e.g. GPS) or Content-based Image Retrieval (CBIR) for localization are not accurate enough for such applications, and other processing are required to initialize the system with a suitable pose. For instance, considering a system using pose initialization by CBIR, the reference database is never dense enough to ensure that there is a database example located at the same pose as the query. Thus, the exact 6-Degrees of Freedom (DoF) of the query cannot be recovered.

We introduced in the previous chapter a global image descriptor for localization under challenging condition. We are now considering the problem of pose refinement, in other words, the second step of our hierarchical Visual-based Localization (VBL) system. In section 2.2.3, we mentioned two main approaches for pose refinement: image-based and model based. As our first localization step rely on image indexing, an image-based refinement method is more logical to implement. Like in the global image descriptor introduced previously (see section 3.2), our objective is to take advantage of an auxiliary modality in our refinement step. We decide to use the learned depth maps to incorporate geometric constraints in our pose refinement process.

For computing the real 6-DoF pose of a query, we first compute dense correspondences between the query and the top retrieved images from our initial CBIR step. From these correspondences, we can estimate relative pose information with geometric algorithms. In order to obtain a position at true scale (which is not the case with traditional multi-view methods [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]), we exploit the reconstructed depth map. We use the same neural model to compute the global image descriptor used in CBIR, the dense matching between the query and the retrieved image and to estimate the depth map associated to a single image.

Thanks to this multi-task design, our system is compact and lightweight and can be used on various environment without specific retraining. Unlike model-based hierarchical VBL methods, our proposal does not requires heavy representation of the scene geometry as we exploit the capability of recent neural networks to learn the underlying structure of a scene from the radiometric appearance.

For a comprehensive review of hierarchical methods for VBL, please refer to section 2.2.3, chapter 2. The rest of this chapter is presented as follows: section 4.1 is dedicated to the workflow explanation of our method, then we introduce the two geometric algorithms used to compute the relative pose of the query 4.2. We present explanatory results for indoor localization on section 4.3 and we pursue more experiments on indoor localization on 4.4. Before the conclusion, we investigate unsupervised depth from monocular training as well as outdoor localization in section 4.5. We finally conclude the chapter, after a short discussion, in section 4.7.

Method

The camera pose is estimated following this four-step algorithm:

1. we obtain the initial pose of the query image by CBIR (section 4.1.1), 2. then we find dense correspondences between the query image and the best retrieved images (section 4.1.2),

3. meanwhile, we use a neural network to create the depth map related to the images (section 4.1.3), 4. finally, we use the dense correspondences as well as the reconstructed depth maps to compute relative poses from the retrieved candidates and the query image, using geometric reasoning (section 4.2).

The two first steps of our pose refinement method are illustrated in figure 4.1. Notations. The aim of our method is to recover the exact 6 DoF camera pose h q ∈ R 4×4 , represented by a pose matrix in homogeneous coordinates, corresponding to an input RGB image x q ∈ R 3×H×W . We know the matrix K ∈ R 3×3 of intrinsic parameters of the camera. We assume that we know the pose {h r i } i∈[1,N ] of a pool of N reference images {x r i } i∈ [1,N ] of the scene where we want to localize the query. These poses can be obtained by Structure From Motion (SfM) algorithms or by using external sensors. We denote as E, respectively D, a neural network encoder, respectively decoder. P denotes the pooling layer used to create a global image descriptor for image indexing.

Method

Image retrieval

CBIR for localization are deeply detailed in the previous chapter. We provide a short explanation in the following. We assume that the reference data are augmented with 6-DoF pose information and we cast the initial pose estimation task as a CBIR problem like in [START_REF] Balntas | RelocNet : Continous Metric Learning Relocalisation using Neural Nets[END_REF]. In order to evaluate the similarity between the unknown pose query image x q and the N reference images {x r i } i∈[1,N ] , we need to use a discriminative image representation. We use deep global image descriptor for place recognition, to describe the data by low-dimensional L 2 normalized vectors. The image descriptor f (x q ) is obtained 

Iterative Closest Learned Point

The general idea is to obtain the relative camera pose h r→q by registering the point cloud P q obtained by projecting in 3D the depth map (equation 4.4) ẑq of query x q to the points cloud P sim j from the reference depth maps ẑsim j of images x sim j , j ∈ [1, K]. One reference point cloud is evaluate at a time and we chose the final registration that minimizes the point-to-point distance between the two point clouds.

Point matching. Refinement with ICP involves matching corresponding points between two point clouds in order to estimate a rigid transformation that minimizes the distances between the paired points. Standard approaches only consider the Euclidean distance between a single point and its nearest neighbours in the reference point cloud to establish matching, making the initial alignment between the two point clouds a crucial step to obtain correct results. We can rely on point descriptors to establish strongest matches [START_REF] Pomerleau | A Review of Point Cloud Registration Algorithms for Mobile Robotics[END_REF]. We use local descriptor d l,m introduced in section 4.1.2 and we associate to each projected point p l,m the descriptor corresponding to the deep feature computed by the encoder E at the same spatial position {l, m}. The matching process remains the same as the one detailed in § 4.1.2, with the additional 3D point information added to the local features. We present in table 4.1 results of an exploratory experiment to estimate the benefit of adding the deep features for the point cloud alignment. We observe a clear improvement at almost no cost (the deep features are extracted from the already computed features block of the depth from monocular CNN).

Data: query point cloud to align P q with augmented descriptors D q and reference point cloud P sim with associated descriptors D sim Result: relative pose h r→q , mean distance between matched points M 2 h r→q ← I 4×4 ; h it ← 1 4×4 ; while h it -I 4×4 F ≥ do P q ← h r→q P q ; M ← match_points [P q , D q ] , P sim , D sim ; h it ← relative_pose(M); h r→q ← h it h r→q ; end Algorithm 1: Our ICLP algorithm, see section 4.1.2 for details about functions match_points and section 4.2.1 for function relative_pose. Expression [P q , D q ] denote the concatenation of the point coordinates with their corresponding deep feature d, as explained in section 4.2.1

Algorithm. Relative pose h r→q is obtain thank to the iterative algorithm detailed in 1. The relative_pose function computes the relative transformation between the matched points that minimizes the Euclidean difference between the two point clouds.

We use classical relative pose estimation algorithm [START_REF] Pomerleau | A Review of Point Cloud Registration Algorithms for Mobile Robotics[END_REF]:

• Rotation: we apply Singular Value Decomposition (SVD) on the matching matrix obtained by multiplication of the zeros-centered corresponding 3D points in each point cloud. Rotation matrix can be computed by multiplying the right-singular vectors matrix with the transposed of the left-singular vectors matrix.

• Translation: we obtain the translation component by aligning in the same frame the two point cloud centroids, using the rotation matrix, and evaluating the difference between them.

We embed the pose computation within a Random Sample Consensus (RANSAC) algorithm, as the point cloud may contain erroneous data because it has been generated from image-only information by our encoder/decoder CNN. We run the algorithm for a fixed number of iterations, for each of the top K retrieved images by the first indexing step. We chose the final relative pose h r→q best according to the minimal mean alignment error returned by our algorithm ( M 2 ).

Perspective-n-learned-Points

Thanks to the generated depth map (section 4.1.3) and the equation 4.4, we can project 2D points from retrieved images into 3D coordinates. 2D-2D correspondences obtained in section 4.1.2 can be interpreted as 2D-3D correspondences and we can use a PnP algorithm to compute the relative transformation h r→q between the query image and the reference image.

We embed our PnLP algorithm within a RANSAC consensus where a sub-part of 2D-3D correspondences is evaluated at a time. We use 3-points algorithm from [START_REF] Kneip | A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation[END_REF], using the authors efficient implementation [START_REF] Kneip | OpenGV: A unified and generalized approach to realtime calibrated geometric vision[END_REF]. As we have K reference candidates from image retrieval step (section 4.1.1), we select the best pose h r→q best as the one with the largest proportion of inlier correspondences after the PnP optimisation. If the ratio of inlier is below a given threshold, we simply affect the pose of the retrieved image to the query.

Final pose computation

We obtain final pose of query image x q using the relation:

h q = h r best h r→q best . (4.5)

System design and motivation

Multi-task model. In order to make our system fast and lightweight, we use a single encoder/decoder neural network for the three tasks needed in our pose estimation pipeline. That means with a single image forward, we obtain a compact global image description, dense local descriptors and a depth map corresponding to the observed scene.

Preliminary results

Single task training policy. There are dedicated training pipeline for each of the computer vision tasks involved in our image pose estimation framework: methods for learning a global image descriptor [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF][START_REF] Gordo | End-to-End Learning of Deep Visual Representations for Image Retrieval[END_REF][START_REF] Radenović | Fine-tuning CNN Image Retrieval with No Human Annotation[END_REF], CNN designed to extract and describe local features [START_REF] Ono | LF-Net: Learning Local Features from Images[END_REF][START_REF] Rocco | Neighbourhood Consensus Networks[END_REF][START_REF] Yi | LIFT: Learned Invariant Feature Transform[END_REF] and systems that produce a depth map from a monocular image [START_REF] Eigen | Depth Map Prediction from a Single Image using a Multi-Scale Deep Network[END_REF][START_REF] Godard | Unsupervised Monocular Depth Estimation with Left-Right Consistency[END_REF][START_REF] Mahjourian | Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints[END_REF]. We decide to train our encoder/decoder network for the task of depth from monocular estimation because estimation of erroneous depth measurement will result in wrong estimation of the final pose. In the next section, we experimentally show that even if our network has not been trained especially for the task of image description or local feature matching, the latent features computed within the network embed enough high-level semantic to perform well on these tasks [START_REF] Taira | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[END_REF][START_REF] Zamir | Taskonomy: Disentangling Task Transfer Learning[END_REF].

Generalization. Because we rely on a non-absolute representation of the scene geometry (depth is estimated relatively to the camera frame), our model is not limited to localization on one specific scene like end-to-end pose estimation networks [START_REF] Brachmann | Learning Less is More -6D Camera Localization via 3D Surface Regression[END_REF][START_REF] Kendall | Geometric loss functions for camera pose regression with deep learning[END_REF]. In other words, the same trained network can be used to localize images in multiple indoor and outdoor scenes, and even in totally unknown environments.

Preliminary results

In this section, we discuss about implementation details as well as training and testing datasets. Afterward, we present preliminary experiments to evaluate our two relative pose estimation methods.

Implementation

Dataset. We train and test our method on the 7 scenes indoor localization dataset [START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF].

This datasets are composed of various indoor environments scanned with RGB-D sen- Method parameters. We compare MAC [START_REF] Razavian | Visual Instance Retrieval with Deep Convolutional Networks[END_REF] and NetVLAD layer [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF] with 64 clusters as global image descriptor for initial pose estimation. Deep local features are gathered from the second convolutional layer before the Relu activation of our architecture (appendix ??), resulting in 56×56 feature vectors of dimension 64. We use this particular features block as it has the same spatial dimension as the generated depth map (i.e. 4

times smaller than the input). Concerning the ICLP algorithm: we set the maximum number of iteration to 100 and the threshold θ equal to 0.4. For the PnLP method, we set the inliers ratio threshold mentioned in section 4.2.2 to 10%.

Methods comparison

We report in table 4.2 initial result on the 7 scenes indoor dataset, using only the top-1 retrieved candidate (for computational time saving). 

Indoor localization

Indoor localization

In this section we present more detailed results on indoor localization, by comparing our method with state-of-the-art competitors and by evaluating our proposal on different environments than the one used for training. 

Competitors

Indoor localisation error on 7 scenes [START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF] dataset are presented in table 4.3. We compare our proposal with Relocnet [START_REF] Purkait | Synthetic View Generation for Absolute Pose Regression and Image Synthesis[END_REF] and Posenet [START_REF] Kendall | Geometric loss functions for camera pose regression with deep learning[END_REF] trained with a geometric-aware loss function. Compared to Posenet [START_REF] Kendall | Geometric loss functions for camera pose regression with deep learning[END_REF] our model uses the same trained network for all the 7 scenes, compared to one network by scene for Posenet. Relocnet relies on two different networks: one trained especially to produce discriminative global image descriptors for CBIR and the second to estimate the relative pose between two images. Our method is lighter as it uses a single network and do not uses specific training for the task of global image description.

Results

At first glance, we find that the initial pose estimation with image retrieval produces decent results (first column), while the network used to produce the global image descriptor has not been trained to this particular task. After applying our PnLP pose refinement, our method produces the most precise localization among the presented methods. We observe a failure case of our method for the scene stairs due to a poor initial pose estimation. This scene contains repetitive visual patterns that may confuse the CBIR localization.

Image 4.3). These encouraging results prove that, even without ground truth depth maps as supervision data, we can apply our refinement algorithm successfully.

For the novel scenes of the 12 scenes dataset, we observe an average relative improvement of ×1.2/×1.5, compare to ×1.1/×1.6, for the supervised, respectively unsupervised, model in position/rotation from initial to refined pose. We also show, in figure 4.7, the generalization capability of methods trained with or without ground truth depth maps, from images taken in both known and unknown scenes. We notice that the poor localization performance on the Apt2-bed scenes is closely related to the poor generated depth map on this scene (see figure 4.7, two last columns).

Outdoor localization

Dataset. We use the Cambridge Landmarks [START_REF] Kendall | PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[END_REF] dataset for outdoor evaluation. This dataset is composed of 6 scenes featuring dynamic changes (pedestrian and cars in movement during the acquisition) acquired by a cell-phone camera. As no ground truth depth maps are available for the Cambridge Landmarks scenes, we only perform outdoor experiments related to the unsupervised depth from monocular training.

Network architecture and training. For the unsupervised scenario, we use a slightly different network architecture, composed of recurrent cells (Long Short-term Memory (LSTM)) in the decoder to capture long term dependencies [START_REF] Li | LSTM-CF: Unifying Context Modeling and Fusion with LSTMs for RGB-D Scene Labeling[END_REF][START_REF] Visin | ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks[END_REF] initial pose estimation at the CBIR preliminary step. Compared to Posenet [START_REF] Kendall | Geometric loss functions for camera pose regression with deep learning[END_REF], our method is marginally less precise but requires only one trained model compared to the 6 models needed by Posenet and can potentially be used on unknown scenes according to the previous indoor experiments. We do not compare our method to Relocnet [START_REF] Purkait | Synthetic View Generation for Absolute Pose Regression and Image Synthesis[END_REF] baseline because authors do not evaluate Relocnet on outdoor scenes and the source code

is not yet available.

Discussion

The final camera pose accuracy is highly dependent on the images returned by the CBIR Chapter 5

Conclusion

In this final chapter, we summarize the main contributions of this thesis and we propose future research directions regarding the presented solutions.

Summary of the thesis

Throughout this thesis, we have focused on Visual-based Localization (VBL) in urban environment. We defined the boundaries of our research in the first chapter. In chapter 2, we reviewed exhaustively VBL related fields and methods, with a particular attention paid to challenges induced by long-term localization and to the data heterogeneity presents in the localization approaches. We came out with the conclusion that they are a lake of methods taking advantages of asymmetric data, i.e. different data modalities in the query side and in the database used as reference map. For instance, the query is often composed of a single modality, radiometric information, whereas the database is composed of multiple sensors information, like scene geometry, semantic and images.

In the chapter 3, we have proposed a new trainable global image descriptor for Content-based Image Retrieval (CBIR) for localization. Our method was built on the powerful NetVLAD [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF] image descriptor, combined with a modality transfer model capable of generating a depth map from a single image. The particularity of our method remained in the fact that our descriptor could be trained using side modality that was not available during the task of localization. We showed that spreading out geometric clues within our pure radiometric descriptor improve the performances in challenging long-term localization scenarios. We were able to improve location accuracy for various realistic scenarios, involving cross-season data and nocturnal images. We demonstrated that our method can take advantages of not-only geometric information but also reflectance given by laser scan sensor.

Chapter 4 was dedicated to our relocalization pipeline. Our method aimed to improve the localization given by our initial localization step. Using geometric reasoning, we refined 6-Degrees of Freedom (DoF) pose of the query to localize. In order to do so, we established dense 2D to 2D correspondences between the query and retrieved examples returned by our initial localization step. The matching was computed thanks to deep features extracted from a Convolutional Neural Networks (CNN). We defined our method to be lightweight and easily plugged after an existing CBIR for localization approach.

In a same manner as our global image descriptor, the relocalization was aided by the geometric information learned during an offline stage. Indeed, the 2D to 2D matches were not sufficient to recover the truth 6-DoF pose of the query and the extra geometric information was used to constrain the final pose estimation. Through comprehensive experiments, we showed the effectiveness of our method in both indoor and outdoor scenes.

Scientific contributions

In the following, we summarize the major scientific contributions made during this thesis along with the corresponding publications:

Detailed review of VBL methods: we present a large panorama of image-based localization methods [START_REF] Piasco | A survey on Visual-Based Localization: On the benefit of heterogeneous data[END_REF]. We propose a simple three-categories methods classification and we highlight common processing within the different VBL approaches. We also present in detail current challenges in localization as well as the different data types engaged in the localization process. We finally describe trends and common usages in the visual localization field as well as promising avenues for VBL. Relative pose estimation from learned depth maps: we present a pose refinement method based on geometric alignment of learned depth map [START_REF] Piasco | Geometric Camera Pose Refinement With Learned Depth Maps[END_REF]. In a subsequent work [START_REF] Piasco | Perspective-n-Learned-Point: Pose Estimation from Relative Depth[END_REF], we improves the seminal method with a more efficient algorithm. We show the performances of the final method for pose refinement on indoor and outdoor environment.

Future Research

In this section, we enumerate possible improvements regarding the work presented in this thesis, as well as potential new research topics offered by new research results, including our contributions, and by ongoing proposal of various new datasets.

Towards an unified VBL pipeline. The two localization steps presented in this thesis have been developed in parallel during this thesis, resulting on two independent architectures. A straightforward improvement of this work would be the unification of these two frameworks, in order to get a complete two stage hierarchical localization method [START_REF] Sarlin | From Coarse to Fine: Robust Hierarchical Localization at Large Scale[END_REF]. This unification would make possible the strict comparison of our localization results with the state of the art on VBL thanks to new challenging localization benchmarks, such as Sattler et al. [START_REF] Sattler | Benchmarking 6DOF Urban Visual Localization in Changing Conditions[END_REF].

Multi-task training. It will be interesting to investigate multi-task learning in order to address all the computer vision problems involved in VBL jointly. Our localization method involve global image description, establishments of dense correspondences between images and depth map generation from a monocular image. We only target one specific training task for our global image descriptor and our refinement method. Optimizing jointly the different tasks involved in our localization pipeline would certainly improve the overall precision of the system.

Heterogeneity in the geometry of acquisition. In this research work, we propose methods to deal with heterogeneity within the data modality. Indeed, we find a solution to benefit from extra modalities present in the reference dataset but not in the query side. Another interesting research oriented question would be: how to deal with visual data with different acquisition geometries? To be more specific, it would be interesting to tackle the problem of comparing perspective images with spherical ones [START_REF] Iscen | Panorama to panorama matching for location recognition[END_REF][START_REF] Ramalingam | SKYLINE2GPS: Localization in urban canyons using omni-skylines[END_REF][START_REF] Torii | Visual localization by linear combination of image descriptors[END_REF][START_REF] Zamir | Accurate image localization based on google maps street view[END_REF][START_REF] Zamir | Image geo-localization based on multiplenearest neighbor feature matching using generalized graphs[END_REF]. Indeed, database coverage can be easily extended by using wide angle or omnidirectional cameras (e.g. google street view panorama). Furthermore, recent work have introduced a specific tool to exploit spherical geometry with deep learning:

spherical CNN [START_REF] Cohen | Spherical CNNs[END_REF]. This new architecture has already been successfully used to solve a wide range of problems: room layout recovery from 360 images [START_REF] Fernandez-Labrador | Corners for Layout: End-to-End Layout Recovery from 360 Images[END_REF], depth estimation from spherical panorama [START_REF] Zioulis | OmniDepth: Dense Depth Estimation for Indoors Spherical Panoramas[END_REF], etc. We are convinced that similar approaches can be used to solve geometrically heterogeneous VBL problems. [START_REF] Kendall | PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[END_REF] outdoor dataset: we report median position/orientation error in meters/degrees. We compare our two network architectures trained in an unsupervised manner. Best localization results are shown in bold. For unsupervised depth from monocular training on outdoor scene, we add recurrent layers in our decoder to enforce spatial consistency. We replace two convolutional layers by bidirectional recurrent layer (4 Long Short-term Memory (LSTM) units: 1 for right to left, 1 for left to right, 1 for up to down and 1 for down to up). We design our spatial recurrent layers as in ReNet from [START_REF] Visin | ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks[END_REF]. We denote the fully convolutional architecture as FC and the recurrent variation as C+LSTM. We show in table A.1 the comparison of our two methods. 

  Comme pour le descripteur d'image global, la relocalisation est facilitée par les informations géométriques apprises lors d'une étape préalable. L'information géométrique supplémentaire est utilisée pour contraindre l'estimation finale xix Chapter 1
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 23 Figure 1.1: The localization task within the pLaTINUM project: we are interested in the localization of an agent on a large outdoor urban scene. The map is succinctly described by a set of geo-referenced RGBDL spheres. The agent sends a visual request from a mobile device and we have to apply VBL methods to find the closest RGBDL sphere to the agent.

  with high dimensionality (usually up to 4096 elements). Compared to local descriptors, global features are considered less robust in viewpoint changes, occlusion and local variations in the image. However, they are computationally less intensive to extract and capture a comprehensive description of the visual data. With the recent progress on Machine Learning (ML), a new class of very efficient global descriptor computed by CNN have emerged.

Figure 2 . 1 :

 21 Figure 2.1: CBIR for localization: the location of a given request can be retrieved by comparing the query to a pool of geolocalized candidates. After the similarity research, the location associated to the top-ranked reference data is considered as the location of the query. Re-ranking of the reference data can be used in order to improve the relevance of the top-ranked candidates.

Figure 2 . 2 :

 22 Figure 2.2: Structure-based VBL: reference data are used to construct a 3D model of the environment. During localization, the query is compared to this model to determine its 6-DoF pose.

6 -

 6 DoF pose of an unknown visual request. Key components of learned methods are presented in figure 2.3. If the scene geometry is completely known, local method can

Figure 2 . 3 :

 23 Figure 2.3: Learned method for VBL: a model is trained with geolocalized data in order to regress the right pose of a visual request. Once trained, the model is used to predict the pose of a unknown query. The data can be preprocessed (dotted blocks) before the evaluation by the model.

Figure 2 . 4 :

 24 Figure 2.4: Scene coordinates repesentation: local learnedbased VBL method rely on scene coordinates representation of the environment to retrieve the 6-DoF pose of a query. Model on the right is colorized according to the xyz position of the 3D points mapped in RGB color space. Figure from [33].

  consider the re-weighting of extracted local features in image according to the semantic class of the pixel obtained by image segmentation. Using this information, authors reduce the influence of local features that are not semantically robust for VBL, like vegetation or cars. Thanks to progress in DL, specially in image semantic segmentation, new methods based on CNN have been successfully used to enforce coherence of local matching between images for localization [275, 291, 295]. Schönberger et al. [272] used latent representation computed by an autoencoder as global features for localization. They show that incorporating semantic segmentation information into the model representation improves significantly the localization performances of their descriptor. Similar conclusion are drawn in these following

Figure 3 . 1 :

 31 Figure 3.1: Data partitioning within a practical localization scenario: data available offline are richer than the one used during the localization task. We consider RGB (radiometric) + D (geometric) + R (material reflectance) as multi-modal data and only-RGB as single modality information.

Figure 3 . 2 :

 32 Figure 3.2: CNN image descriptor: modern learned descriptors are composed of two parts: a features extractor (encoder) and a descriptor pooling method. The features block has a lower spatial resolution that the input (W × H > W f × H f ) with more channels (D 3). The pooling method aims to reduce the size of the features block (D d W f × H f × D) while keeping discriminative clues.

  use the NetVLAD aggregation layer coupled with an Contextual Reweighing Network (CRN) to downgrade irrelevant features according to their local neighborhood, without the use of any manually annotated data. Along the same lines, Noh et al. [201] propose the DELF architecture for local features extraction. DELF relies on a self-spatial-attention mechanism to select discriminative local region on the features block.

Figure 3 . 3 :

 33 Figure 3.3: CNN descriptor training with images triplets: the triplet loss guided the training by penalizing difference of the anchor and the positive embeddings and the similarity of the anchor and the negative embeddings (see equation 3.2).

  The geometric verification provided by SfM allows to control the overlaps between anchors and positives examples. In metric learning, hard examples mining is a crucial step for creating meaningful embedding space. Hard negative mining is performed in[START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF][START_REF] Gordo | Deep Image Retrieval: Learning Global Representations for Image Search[END_REF][START_REF] Radenović | Fine-tuning CNN Image Retrieval with No Human Annotation[END_REF] by selecting negative examples that are closer to the anchor in the embedding space. Iscen et al.[START_REF] Iscen | Mining on Manifolds: Metric Learning without Labels[END_REF] introduce a manifold distance to compare dataset examples. Using diffusion, they are able to mine more effective examples compare to standard mining methods.
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 34 Figure 3.4: Visual changes between radiometric and geometric domain: due to outdoor conditions, visual aspect of images changes over time (top row), while, geometry of the scene (corresponding depth maps, bottom row) remains stable.

ure 3 . 3 )Figure 3 . 5 :

 3335 Figure 3.5: Training pipeline of our preliminary solution.

Figure 3 . 6 :

 36 Figure 3.6: Hallucination network for image descriptors learning: we train an hallucination network, inspired from [110], for the task of global image description. Unlike the proposed method (see figure 3.7), hallucination network reproduces feature maps that would have been obtained by a network trained with depth map rather than the deep map itself.

Figure 3 . 7 :

 37 Figure 3.7: Image descriptors training with auxiliary depth data: two encoders are used for extracting deep features map from the main image modality and the auxiliary reconstructed depth map (inferred from our deep decoder). These features are used to create intermediate descriptors that are finally concatenated in one final image descriptor.

  Mn] composed of one anchor, M p positive examples and M n negative examples. Negative examples are easy to collect as we only have to consider all the data located further than a given distance threshold (according to the GPS information), resulting in a large number of negative examples (M n ≈ 2000 in our experiment).

  updates. At each iteration, we randomly select a subset of M sub n negative examples from the entire pool, and compute the truth hard negative example from this subset. This strategy also act as regularization during training as the negative training examples are different at each epoch. Anchor and positive swapping. We also adopt swapping technique introduced in [20]. It simply consists in choosing the most confusing pair between {anchor, negative} and Individual optimization -Joint optimization Test set: -CMU-LT -CMU-Autumn -CMU-Snow

Figure 3

 3 Figure 3.8:Influence of the joint loss L p,a : we report localization results of our method trained with or without the joint triplet ranking loss L p,a . We detail the used metrics and datasets in section 3.3.

12 )

 12 Multiple examples. Finally, we use all the positive examples and M hard n hard negative mined examples from initial pool M sub n of negative examples, to compute a normalized triplet ranking loss:

Figure 3 . 9 :

 39 Figure 3.9: Train, validation and test zones: the green path delimits our training area, the blue trajectory the validation zone and the red path the test region. All the data are from the Oxford RobotCar dataset [172].

Figure 3 . 11 :

 311 Figure 3.11: Examples of test images : we evaluate our proposal on 6 challenging localization sequences. Query image samples and the closest reference images in the database are presented from Oxford Robotcar [172] (left) and CMU season dataset [22] (right).

Figure 3 . 12 :

 312 Figure 3.12: Full backbone resnet versus truncated version with NetVLAD : we show the importance of the spatial resolution of the feature maps used with NetVLAD layer. The truncated version of Resnet18 (Rt), two times lighter than the complete one (R), achieves much better localization results.

7 × 7

 7 for Resnet for an 224 × 224 input image). We propose to use a truncated version of Resnet encoder, created by drooping the end of the network after the 13 th convolutional layer. Thus we obtain a feature block with greater spatial resolution: 256 × 14 × 14 compared to 512 × 7 × 7. Results on our validation set for both architectures are presented in figure 3.12. As the truncated version of Resnet encoder clearly dominates the full one, we use the truncated version for the following experiments. By combining Alexnet or Resnet encoder with MAC or NetVLAD descriptor pooling, we obtain 4 global image descriptor variants.

2 .

 2 Our proposal (RGB(D)): introduced in the previous section (see figure 3.7) this architecture uses pairs of aligned image and depth map during training step and images only at test time.

Figure 3

 3 Figure 3.13:Comparison of descriptors pooling layer: NetVLAD[START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF] pooling layer perform better than MAC[START_REF] Razavian | Visual Instance Retrieval with Deep Convolutional Networks[END_REF] in our preliminary experiment, whatever the tested method.

-Figure 3 . 14 :

 314 figure 3.15, CMU-Snow 1 st row). Similar results should be intended regarding Oxford -

Figure 3 . 15 :Figure 3 . 16 :

 315316 Figure 3.15: Comparison of top-1 retrieved images: we show top-1 retrieved candidate after the nearest neighbor search for the different descriptor. Red box indicates a wrong match and green box a proper one (i.e. retrieved image lies in 25m radius from the query ground truth position). All the descriptor use Resnet18 as backbone, excepted RGB(H).

Figure 3 . 17 :

 317 Figure 3.17: Results after fine tuning: we are able to drastically improve localization performance for the Oxford -Night challenging scenario (c) by only fine tuning the decoder part of our network with weakly annotated data. Curves best viewed in color.

3 . 1 )Figure 3 . 18 :Figure 3 . 19 :

 31318319 Figure 3.18: Comparison of top-1 retrieved images on night dataset: we show top-1 retrieved candidate after the challenging night to day localizations scenario. Red box indicates a wrong match and green box a proper one (i.e. retrieved image lies in 25m radius from the query ground truth position). -A denotes Alexnet and -R truncated Resnet18 backbone used with NetVLAD.

-Figure 3 . 20 :Figure 3 . 21 :

 320321 Figure 3.20: Comparison of depth map and reflectance map as side information.The geometric information (in blue) remains more informative than the reflectance map (in gray) for the task of image description for localization. However, when combined (in green), depth map and reflectance map can benefit from each other and produce the most discriminative image descriptors for scenarios b, c & e. Curves best viewed in colors.

Figure 4 . 1 :

 41 Figure 4.1: The two first steps of our relocalization pipeline:. a) We retrieve initial pose of an image query using CBIR. b) We make 2D dense correspondences between the retrieve image and the query. Purple boxes are deep features blocks used for dense images matching.

Figure 4 . 2 :

 42 Figure 4.2: Our two method for relative pose computation: 4.2(a) we compute the relative 6-DoF from 2D-3D correspondances using a PnP-like method. 4.2(b) we manage to align two point clouds projected from learned depth maps to recover the realtive pose of the two images, using an ICP-like algorithm.

Figure 4 . 3 :

 43 Figure 4.3: Trade of between precision/computation time: we compute for two scenes [276] the median absolute error in position and orientation for multiple number of k nearest neighbours used for pose refinement (see section 4.2.2).

Figure 4 .

 4 Figure 4.3 shows improvement for 4 values of K, from 1 to 10. We found that K = 5 is a good trade-off between pose precision and time consumption. Localizing a query takes approximately one second using our non-optimized python code, including the image indexing step.

Figures 4. 4

 4 Figures 4.4-4.5 present estimated position at different steps of our method for 4

  Figures 4.4-4.5 present estimated position at different steps of our method for 4 scenes. Our method is able to recover accurate positions even if there are not previous acquisitions close to the ground truth camera pose (see figure 4.4, top of the fire scene or figure 4.5, right of the heads scene).

Figure 4 . 7 : 4 . 5 . 2

 47452 Figure 4.7: Visualization of the depth map generated from RGB input: from top to bottom: image, ground truth depth map, generated depth map (supervised training), generated depth map (unsupervised training). In both configurations (supervised and unsupervised), networks are trained on the 7 scenes dataset [276]. Examples from 12 scenes [308] show networks generalization

  initial step. Thus, our method performances are limited by the quality of the global image descriptor. Wrong initial pose estimation for stairs indoor scene and street outdoor environment cannot be recovered by PnLP pose refinement. It will be interesting to consider more discriminative image descriptors, and especially image descriptors that can benefit from the depth map related to the image like the one presented in previous chapter 3.The pose refinement is also very sensitive to the quality of the generated depth map.Artifacts present in depth map related to images of unknown scenes or wrong reconstruction, as can be seen in the last 4 columns of figure 4.7, generate outliers for the PnLP optimization. This first work can be view as a proof of concept where we use very limited data for training our model. We can expect better results if we take advantages of bigger dataset, such as Megadepth dataset introduced in[START_REF] Li | MegaDepth: Learning Single-View Depth Prediction from Internet Photos[END_REF].

  Side modality trained global image descriptor: we introduce a new global image descriptor for VBL, trained with side geometric information[START_REF] Piasco | Learning Scene Geometry for Visual Localization in Challenging Conditions[END_REF]. By combining state-of-the-art global image descriptor along with modality transfer model, we are able to create discriminative image descriptors for localization in challenging conditions. To demonstrate the generalization capability of our proposal, we extend5.3 Future Researchthis previous work with experiments on another dataset and we replace the geometric auxiliary modality by laser reflectance as side information during the training process[START_REF] Piasco | Improving Image Description with Auxiliary Modality for Visual Localization in Challenging Conditions[END_REF].

Figure A. 1 :

 1 Figure A.1: Visualization of the depth map on outdoor scene: from top to bottom: image, generated depth map from architecture FC and generated depth map from architecture C+LSTM. Purple boxes show regions where C+LSTM network produces slightly better depth map reconstruction compared to FC.

  Figure A.1 illustrates the better reconstruction capability of the C+LSTM architecture.

Table 2 . 1 :

 21 Features in VBL:Synthetic overview of features used in Visual-Based Localization.

	Detector Descriptor Used in VBL	
	Feature type	
	Name	Pseudo Corners detector

Table 2 .

 2 2: Currently used datasets in VBL. Data type concerns the documents composing the database, not the one used as queries. RGB-D refer to data recorded with depth-cameras and RGB-S to information collected with standard cameras coupled with laser-scan.

† 6 DoF available in

[START_REF] Sattler | Are Large-Scale 3D Models Really Necessary for Accurate Visual Localization[END_REF]

.

  learning in VBL. VBL benefits from the recent progress in machine learn-

	ing. Recent global image descriptors for localization are CNN especially trained for this
	task [101, 201, 234] (see next chapter, section 3.1). End-to-end CNN for 6-DoF pose re-
	gression are also a growing research subject [37, 126, 127, 128, 236, 251, 314]. Regarding
	structured methods, classic gradient-based local features (e.g. SIFT) are progressively
	replaced by their learned counterpart [244, 257]. DL plays also an important role in the
	semantically-guided localization methods (section 2.4.2). High performances achieved
	by recent dense semantic segmentation models have permitted the emergence of novel

Table 3 .

 3 

	1:	Contribution
	of the depth side information
	during training.	

Table 4 .

 4 

	7 Scenes	ICLP w/o deep	ICLP w/ deep
	[276]	features	features
	Chess	0.28/8.6	0.23/5.4
	Fire	0.39/16.5	0.30/14.1
	Heads	0.18/14.9	0 .19/14.1
	Office	0.41/13.4	0.36/11.3
	Pumpkin	0.40/12.0	0.35/7.4
	Kitchen	0.24/ 7.5	0.19/4.9
	Stairs	0.57/12.2	0.48/10.3

1: Point cloud registration: we report median error on position and orientation (m/ • ) for each scene. Its shows the importance of deep feature for point cloud matching in our method. Global image descriptors for image indexing are MAC descriptor, see section 4.3 for more details about the used datasets and our implementation.

Table 4 .

 4 sors. 6-DoF image poses and camera calibration parameters are provided. For all the experiments, reference images used for the initial pose estimation with VBL are taken from the training split and query images are taken from the testing split of the respective datasets. 2: Methods comparison: we report mean pose error (translation and orientation, m/ • ) of our two relative pose algorithms. Best results are shown in bold.Network architecture and training. We use a U-Net like convolutional encoder/decoder architecture[START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF] with multi-scale outputs[START_REF] Godard | Unsupervised Monocular Depth Estimation with Left-Right Consistency[END_REF], see appendix A.2 for details. As the accuracy of our methods is highly correlated to the quality of the generated depth map, we use a more sophisticated network architecture than previously and we train it from scratch, without using pretrained weights. During training and testing, images

		Initial localization (CBIR)	Pose refinement
	Scene	MAC (M)	NetVLAD (V)	V + ICLP V + PnLP
	Chess	0.31/14.9	0 .29/13.0	0 .12/4.5	0.07/2.9
	Fire	0.49/16.7	0 .40/15.5	0 .25/8.9	0.09/3.6
	Heads	0.28/20.5	0 .20/16.0	0 .18/9.9	0.06/4.3
	Office	0.46/16.4	0 .38/13.0	0 .22/7.3	0.06/4.3
	Pumpkin	0.50/15.0	0 .43/13.1	0 .21/6.2	0.05/2.2
	Kitchen	0.30/11.2	0 .23/9.5	0 .15/4.5	0.10/3.2
	Stairs	0.64/16.0	0 .46/14.9	0 .48/12.2	0.44/10.3

are resized to 224 × 224 pixels. The generated depth map is 4 times smaller than the image input. We use L 1 pixel loss function for the fully supervised depth from monocular training. We train our architecture with Adam optimizer, learning rate of 10 -4 divided by two every 50 epochs. Training our model using all the training sequences of the 7 scenes dataset takes approximately one day on our Nvidia Titan X GPU with a batch size sets to 24.

Table 4 .

 4 3: Results on the 7 scenes[START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF] dataset: we report median position/orientation error in meters/degree. We compare the first pose estimation (im. retrieval, in italics) and, the final image localization (PnLP) of our method and two state-of-the-art approaches. Best localisation results are shown in bold.

	Scene	Image retrieval PnLP refinement Relocnet [21] Posenet [127]
	Chess	0.29/13.0	0.07/2.7	0.12/4.1	0.13/4.5
	Fire	0.40/15.5	0.07/3.2	0.26/10.4	0.27/11.3
	Heads	0.28/20.5	0.05/3.9	0.14/10.5	0.17/13.0
	Office	0.38/13.0	0.09/2.9	0.18/5.3	0.19/5.6
	Pumpkin	0.43/13.1	0.13/3.6	0.26/4.2	0.26/4.8
	Kitchen	0.23/9.5	0.05/2.0	0.23/5.1	0.23/5.4
	Stairs	0.46/14.9	0.40/9.2	0.28/7.5	0.35/12.4

Table 4 . 5 :

 45 Results on the 7 scenes[START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF] and 12 scenes[START_REF] Valentin | Learning to navigate the energy landscape[END_REF] indoor datasets, we report median position/orientation error in meters/degrees. Supervised (in purple) and unsupervised (in blue) refer to our model trained with, respectively without, truth depth maps as supervision signal. Best localization results are shown in bold and underlined numbers show failure cases when the pose refinement increases the initial pose error. Table best viewed in color.

				retrieval	PnLP refinement
		Scene	supervised unsupervised supervised unsupervised
	7-Scenes [276]	Chess Fire Heads Office Pumpkin Kitchen	0.29/13.0 0.40/15.5 0.28/20.5 0.38/13.0 0.43/13.1 0.23/9.5	0.34/15.4 0.48/19.3 0.25/17.9 0.50/16.1 0.54/15.0 0.26/10.5	0.07/2.7 0.07/3.2 0.05/3.9 0.09/2.9 0.13/3.6 0.05/2.0	0.13/4.7 0.22/8.2 0.15/10.5 0.23/6.3 0.29/7.1 0.12/3.3
		Stairs	0.46/14.9	0.49/15.5	0.40/9.2	0.48/12.2
		Apt1-kitchen	0.12/7.7	0.14/9.2	0.09/4.1	0.14/5.0
		Apt1-living	0.12/6.8	0.13/6.7	0.08/2.9	0.10/3.3
		Apt2-kitchen	0.10/6.5	0.10/6.6	0.10/3.7	0.10/3.9
	12-Scenes [308]	Apt2-living Apt2-bed Apt2-luke Office 5a Office 5b Lounge	0.11/5.6 0.13/7.0 0.15/7.2 0.12/5.3 0.15/7.2 0.16/7.1	0.13/7.3 0.12/7.1 0.16/7.8 0.13/6.3 0.18/6.7 0.19/8.3	0.10/4.7 0.12/5.7 0.14/5.5 0.09/3.6 0.10/4.7 0.10/3.5	0.11/3.7 0.15/5.0 0.14/5.3 0.14/4.6 0.14/5.0 0.13/4.7
		Manolis	0.13/6.3	0.15/7.8	0.09/3.7	0.12/4.5
		Gates362	0.13/5.9	0.14/6.5	0.10/4.7	0.11/3.9
		Gates381	0.15/7.7	0.16/9.0	0.11/4.4	0.13/5.1

  (more details can be found in appendix A.2). During training and testing, images are rescaled to 224 × 112 pixels.Results. Outdoor localization results are presented in table 4.6. PnLP performs well on outdoor scenes, with a mean improvement of ×1.5/×1.6 in position/rotation precision over initial pose given by CBIR. Our method is not able to recover a proper pose for the scene Street. As same as for the indoor failure case, this is the result of a poor Table4.6: Results on the Cambridge Landmarks[START_REF] Kendall | PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[END_REF] outdoor dataset: we report median position/orientation error in meters/degrees. We compare our network architectures trained in an unsupervised manner with Posenet[START_REF] Kendall | Geometric loss functions for camera pose regression with deep learning[END_REF]. Best localization results are shown in bold.

	Scene	Image retrieval	PnLP	Posenet [127]
	Great Court	24.3/20.94	13.2/10.07	-
	Kings College	5.0/5.86	2.7/3.10	0.9/1.04
	Old Hospital	6.5/8.60	3.5/5.55	3.2/3.29
	Shop	3.2/9.47	1.1/3.38	0.9/3.78
	St Mary's Church	5.9/12.71	2.6/5.85	1.6/3.32
	Street	92.5/67.10	69.5/52.07	20.3/25.5

  Great Court Kings C. Old Hosp. Shop St Mary's Street FC 25.5/22.64 2.9/2.98 4.9/6.37 1.8/5.78 3.5/6.99 76.2/51.91 C+LSTM 13.2/10.07 2.7/3.10 3.5/5.55 1.1/3.38 2.6/5.85 69.5/52.07 Table A.1: Results on the Cambridge Landmarks

https://www.openstreetmap.org
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Night query set (figure 3.14-c), however, none of the tested methods are able to perform on this particular scenario. In the following section, we investigate why our method has failed on the night to day localization task.

Night to day localization scenarios

As mentioned previously, at first glance our method is not well designed to perform night to day matching. In this section, we conduct experiments in order to explain the results previously obtained and we propose an enhanced version of our descriptor performing much better on the night to day image matching task.

Night to day localization

Night to day localization [START_REF] Anoosheh | Night-to-Day Image Translation for Retrieval-based Localization[END_REF][START_REF] Jenicek | No Fear of the Dark: Image Retrieval under Varying Illumination Conditions[END_REF] is an extremely challenging problem: our best RGB baseline achieves a performance less than 13% recall@1. This can be explained by the huge difference in visual appearance between night and daytime images and also by the poor quality of night images (motion blur), as illustrated in figure 3.11. Our system should be able to improve the RGB baseline relying on the learned scene geometry, which remains the same during day and night. Unfortunately, we use training data exclusively composed of daytime images, thus making the decoder unable to reconstruct a depth map from an image taken at night. The last line of figure 3. [START_REF] Baatz | Large Scale Visual Geo-Localization of Images in Mountainous Terrain[END_REF] shows the poor quality of the estimated depth maps after initial training. In order to improve the decoder's performances, we propose to use weakly annotated data to fine tune the decoder part of our system. We collect 1000 pairs of image and depth map acquired at night and retrain only decoder weights θ g using the loss of equation (3.3). Figure 3.16 presents the qualitative improvement on the inferred depth map after the fine tuning. Such postprocessing trick cannot be used to improve standard RGB image descriptors, because we need to know the location of the night data. For instance, we use a night run from the Robotcar dataset with a low quality GPS signal, that makes impossible the automatic creation of triplets that are essential for training a deep image descriptor.

We show in figure 3.17-c that we are able to nearly double the localization performances by only fine tuning a small part of our system. Our best network achieves 23% recall@1 against 13% recall@1 for the best RGB baseline. We present some daylight images returned after the nearest neighbor search in figure 3.18. Even with blurry images,

Reflectance versus Depth

We report in figure 3.20 results using reflectance map during the descriptor training (RGB(R), in gray). We also illustrate in figure 3.15 localization performances of the different methods by comparing the top-1 retrieved candidate after similarity evaluation.

Localization accuracy is slightly worst when using the reflectance map than the results obtained while using the depth map. Still, reflectance information is beneficial as it increases the results over the RGB only descriptor. We can draw the conclusion that scene geometry is more informative for long term localization than reflectance property of observed objects.

We find that the reflectance side information signal enhances the image descriptor by leveraging visual clues of material with particular property: low reflectance capability (like windows, see figure 3 

Multi-modal complementarity of Reflectance and Depth

In this final experiment, we compare the performances of a single side modality training descriptor and a multiple side modalities training descriptor. We slightly modify our original system to benefit from both depth and reflectance information, by adding an extra modal branch with refectance decoder D a and auxiliary encoder and descriptor {E a , P a }. The modified network is presented in figure 3.21. We report localization results of the three methods, depth map as side information (RGB(D), in blue), reflectance map as side information (RGB(R), in gray) and depth and reflectance map as side information (RGB(DR), in green), in figure 3.20.

We do not observe systematic improvement when using both modalities. Nevertheless we obtain best localization results for 3 out of 5 query sets (figure 3.20 b, c & e). We observe that modality combination is beneficial only if each modal information performs equivalently when used alone. In other words, if one modality is a lot more informative by concatenating the dense feature from neural network encoder E: f (x q ) = P (E(x q )).

(4.1)

In the following, we write f (x q ) as f q for readability.

We first compute reference descriptors {f r i } i∈[1,N ] from the reference images. Then we compare the query descriptor f q to the pre-computed descriptors by nearest neighbour indexing and retrieval:

where sim is the nearest neighbour matching function and f sim j , j ∈ [1, K], the K ranked closest reference descriptors to the query descriptor. We use cosine similarity to evaluate the similarity between two descriptors and K-D tree as indexing structure. We consider the retrieved poses h sim j∈ [1,K] as initial candidate poses of the image x q .

Dense correspondences

In order to refine the initial pose obtained by image retrieval, we compute correspondences between the query image and the closest retrieved image candidates. In [START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF][START_REF] Taira | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[END_REF][START_REF] Widya | Structure from motion using dense CNN features with keypoint relocalization[END_REF],

authors use the dense features extracted by a convolutional neural network in order to compute correspondences between images. We follow the same idea and use the latent representation already computed by the neural network encoder E to compute correspondences between the query image and the K retrieved candidates. Since we only consider the K nearest neighbours to our query, dense features matching is tractable.

Local image descriptors d l,m are obtained from the latent image representation by concatenating the features at each position (l, m) W E ,H E (W E and H E are the spatial dimensions of the features map) along the depth of the features map [START_REF] Taira | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[END_REF][START_REF] Widya | Structure from motion using dense CNN features with keypoint relocalization[END_REF]. We subsequently L 2 -normalize the extracted descriptors before matching. We consider only consistence matches by rejecting correspondences that do not respect the bidirectional test (nearest descriptors from image 1 to image 2 have to be the same as nearest descriptors from image 2 to image 1).

Depth from monocular image

2D to 2D correspondences obtained by dense features matching (section 4.1.2) do not provide enough information to compute relative pose between images at absolute scale [START_REF] Hartley | Multiple view geometry in computer vision[END_REF].

Therefore, we propose to reconstruct the relative scene geometry from the camera to circumvent this limitation. Various recent deep learning generative models are able to properly reconstruct geometry associated to radiometric data, with full supervision training [START_REF] Eigen | Depth Map Prediction from a Single Image using a Multi-Scale Deep Network[END_REF], weakly annotated data [START_REF] Godard | Unsupervised Monocular Depth Estimation with Left-Right Consistency[END_REF] or even in an unsupervized fashion [START_REF] Mahjourian | Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints[END_REF].

We train a Convolutional Neural Networks (CNN) encoder/decoder to predict the corresponding depth map ẑ associated to an image:

3D projection. With the generated depth map and the intrinsic parameters of the camera K, we can project the 2D point in the image frame at coordinate {l, m} to the corresponding 3D coordinate in the scene p l,m ∈ R 3 , relative to the camera frame:

where ẑ [l, m] is the metric depth value at position {l, m} in the reconstructed depth map ẑ.

Relative pose estimation

We propose two alternatives to compute the relative pose between the query image x q and the most similar retrieved images x sim j , j ∈ [1, K]:

1. an ICP-based method called Iterative Closest Learned Point (ICLP),

a PnP-based algorithm called Perspective-n-Learned-Point (PnLP).

The main differences between these two approaches are that ICLP is iterative and rely on the reconstructed depth map of the two densely matched images, while PnLP uses only one depth map. In figure 4.2, our two relative pose estimation are presented, side by side. [START_REF] Valentin | Learning to navigate the energy landscape[END_REF] indoor dataset: we report median absolute position/orientation error in meters/degrees. Our model has been trained on a different dataset than the one used for testing. Best results are in bold.

Generalization

We report on table 4.4 localization errors the 12 Scenes dataset [START_REF] Valentin | Learning to navigate the energy landscape[END_REF]. The 12 scenes dataset is used to evaluate the generalization capability of our method. For these experiments, we use the same network as mentioned earlier, trained on 7 Scenes dataset [START_REF] Shotton | Scene coordinate regression forests for camera relocalization in RGB-D images[END_REF].

We observe an average relative improvement of ×1.2/×1.5 in position/rotation from initial to refined pose, compare to ×2.8/×3.5 on the 7 scenes dataset. Even though the pose refinement is not as effective as previously, it shows that our system can be used on completely new indoor environments.

We show on figure 4.6 positions recovered by our method on 2 of the 12 scenes of the dataset. Our method is able to compute new positions closer to the ground truth positions compare to the initial image retrieval step guess.

Unsupervised training and outdoor localization

In this section, we are interested in applied our method for outdoor localization. However, accurate dense depth map of outdoor environment for supervised depth from monocular CNN training are not easy to obtain. Thus, we decide to train our model in a unsupervised manner, i.e. without ground truth depth maps as training data. In the following, we first compare the impact of unsupervised training for indoor localization and then we test our proposal on outdoor scenes.

Unsupervised depth from monocular training

Training. To learn depth from RGB in a unsupervised manner, we follow the training procedure of [START_REF] Zhou | Unsupervised Learning of Depth and Ego-Motion from Video[END_REF], using the ground truth relative pose between images and by adding SSIM loss function for radiometric comparison as in [START_REF] Mahjourian | Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints[END_REF]. We train the network with Adam optimizer, learning rate of 10 -4 divided by two every 5 epochs. Training takes the same time as the supervised training, with a batch size reduced to 12.

Unsupervised depth from monocular at scale. It is not self-explanatory to claim that the depth maps produced from our unsupervised trained network [START_REF] Zhou | Unsupervised Learning of Depth and Ego-Motion from Video[END_REF] are at a real scale. In [START_REF] Zhou | Unsupervised Learning of Depth and Ego-Motion from Video[END_REF], authors use an auxiliary relative pose estimation network to make their method trainable with video sequences without any pre-processing. The counterpart is that the final CNN produces depth maps up to an unknown scale factor. Nevertheless, in our experiment they are at truth scale as we use the absolute 6-DoF camera pose (obtained by SfM or dense 3D fusion method [START_REF] Whelan | Elasticfusion: dense SLAM without a pose graph[END_REF]) to compute the relative position and orientation of the training images. Some learned depth maps can be found in figure 4.7, showing that unsupervised method leads to true scale depth values as long as it has been trained with true camera pose information.

Conclusion

We have presented a new method for VBL consisting of an initial pose estimation by CBIR followed by a new relative pose estimation method. PnLP relies on densely matched 2D to 3D points between the query and the reference images, where the 3D points are project thank to the reconstructed depth map from a monocular image. The introduced method is compact and fast as all the components needed by the localization pipeline are computed using the same neural network in a single forward pass. Because our network learns the depth relative to the camera frame, not the absolute geometric structure of the scene, it can be used in unknown environment without fine tuning or specific training.

In the next chapter, we summarize our contributions on visual localization. We conclude the manuscript presenting potential improvement applicable to our system and discussing future works.

Appendix A

Network architectures

A.1 Global image descriptor network

We use Alexnet or Resnet18 as backbone encoder for our image descriptor. NetVLAD layer is implemented as described in the original paper [START_REF] Arandjelović | NetVLAD: CNN architecture for weakly supervised place recognition[END_REF].

Our decoder is inspired by U-Net network architecture, i.e. we concatenate deep feature from encoder to recover fine details in the final depth maps. Up-sampling is performed through inverse convolutions and final activation is a sigmoid function, constraining the output depth (or reflectance) value to be in range [0, 1]. Non-linearity is assured by LeakyReLU and we use batch normalization and input data normalization.

A.2 Multitask pose refinement network

We build our own network, taking inspiration from the architecture Pix2Pix presented in [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF]. Our encoder has 7 convolutional layers and our decoder has 5. We use skip connections between the encoder and the decoder. We use LeakyReLU non-linearity in our encoder and ReLu in our decoder and group normalization between layers. Final activation is a sigmoid function. Down-sampling in our encoder is performed through convolution operation only (using stride > 1). For up-sampling, we rely on bilinear interpolation followed by convolution for decoding the features maps to avoid artifact patterns induced by inverse convolution. Our final model as approximately 20M parameters (between Resnet18 and Resnet50).