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Abstract

In this thesis, motivated by applications in Neuroscience, we study efficient Monte
Carlo (MC) and Multilevel Monte Carlo (MLMC) methods based on the thinning for
piecewise deterministic (Markov) processes (PDMP or PDP) that we apply to stochastic
conductance-based models. On the one hand, when the deterministic motion of the
PDMP is explicitly known we end up with an exact simulation. On the other hand,
when the deterministic motion is not explicit, we establish strong estimates and a weak
error expansion for the numerical scheme that we introduce. The thinning method is
fundamental in this thesis. Beside the fact that it is intuitive, we use it both numerically
(to simulate trajectories of PDMP/PDP) and theoretically (to construct the jump times
and establish error estimates for PDMP/PDP).

In a first part we consider the class of PDMP with explicit flow. In this case using
the thinning we are able to simulate exactly the jump times and we obtain an exact
simulation of the trajectories. We study both theoretically and numerically the efficiency
of such thinning algorithms for different types of bounds, from the classical global bound
to a path-adapted one.

In a second part, for PDMPs with no explicit flow, we efficiently approximate an
expectation involving the process at a terminal time. We first discretise the flow with
the classical deterministic Euler scheme and we apply the results of the first part to the
discretisation of the PDMP (which turns out to be a PDP). We are able to prove strong
error estimates for PDP and a weak error expansion for PDMP. We then use these error
estimates to investigate the efficiency of the MLMC method

Stochastic conductance-based models are composed by two distinct variables, the first
one is continuous and models the membrane potential whereas the second one is discrete
and models the configuration of the ionic channels. These models naturally lead to the
class of PDMPs. We are interested in applications to stochastic counterparts of Hodgkin-
Huxley and Morris-Lecar models which are known as biologically realistic since they take
into account the precise description of the ionic channels as opposed to the FitzHugh-
Nagumo model for example. The flow is explicit for PDMP-type Hodgkin-Huxley and
3-dimensional Morris-Lecar models. However it is not explicit for the classically used
2-dimensional Morris-Lecar PDMP. We apply the theoretical part to simulate exactly
and efficiently the first spike latency. Moreover, on these models our MLMC estimator
does indeed outperform the classical MC one.

Keywords: Piecewise deterministic (Markov) process, Thinning, Exact simulation,
Strong error estimate, Weak error expansion, Multilevel Monte Carlo, Hodgkin-Huxley,
Morris-Lecar.






Contents

Introduction 11
1 Positioning of the thesis . . . . . . . ... .. ... ... .. ... ... 12
2 Conductance-based models . . . . . . .. ..o oo 15
3 Piecewise deterministic (Markov) processes . . . . ... ... ... .... 22
4 Simulation of non-homogeneous Poisson processes and thinning . . . . . . 26
5 Monte Carlo simulations . . . . . .. .. .. ... .. L oL 27

5.1 Non biased framework . . . . . . .. ... ... ... ... ..... 28

5.2 Biased framework . . . . .. ... ... oL 29

6 Results of the thesis . . . . . . . .. ... o 32
6.1 Chapter 1: Exact simulation of the jump times of a class of Piece-

wise Deterministic Markov Processes . . . . . . ... ... ... .. 33

6.2 Chapter 2: Thinning and Multilevel Monte Carlo for Piecewise
Deterministic (Markov) Processes. Application to a stochastic

Morris-Lecar model. . . . . . . ... Lo oo 37
7 Perspectives . . . . . . . 44
I Exact simulation of the jump times of a class of Piecewise Deterministic

Markov Processes 46
1.1 Introduction . . . . . . . . . .. L L 47
1.2 PDMPs and assumptions . . . . . .. .. ..o 49
1.3 Simulation of PDMPs and thinning . . . . . . ... ... ... ... 52
1.4 Jumprate bounds . .. .. ... ... ... 55
1.4.1 Theglobal bound . . . . . . .. ... ... ... .. ... ..., 55
1.4.2 Thelocal bound . . .. ... ... ... ... ... .. ... 56
1.4.3 Theoptimal bound . . . . . . ... ... ... ... ... ... ... 56
1.5 Efficiency of the thinning algorithm . . . . . . . .. .. ... ... ... .. 57
1.5.1 Comparison of the mean number of total jump times . . . . . . . . 58
1.5.2 Rateofacceptance . . . . .. . ... ... ... .. ... ... ... 59

1.5.3 Convergence of the counting process with a specific optimal bound
asjump rate . ... 61
1.6 Hodgkin-Huxley models . . . . . . ... ... ... ... ... ..., 65
1.6.1 Deterministic Hodgkin-Huxley models . . . . . . ... ... .. .. 65
1.6.2 Stochastic Hodgkin-Huxley models . . . . . . ... ... ... ... 67
1.7 Simulations . . . . . .. L 72



CONTENTS

1.7.1 Determination of the jump rate bounds . . . ... ... ... ... 72
1.7.2 Numerical results . . . . . . .. .. ... L 75
1.8 Appendix . . . . ... 82
IT Thinning and Multilevel Monte Carlo for Piecewise Deterministic (Markov)
Processes.Application to a stochastic Morris-Lecar model. 83
2.1 Introduction . . . . . . . . . ... 84
2.2 Piecewise Deterministic Process by thinning . . . . . . . ... ... .. .. 88
2.2.1 Construction . . . . . . . . .. ... e 88
2.2.2 Approximationofa PDP . . . ... ... 90
2.2.3  Application to the construction of a PDMP and its associated Euler
scheme. . . . . .. . ... 91
2.2.4 Thinning representation for the marginal distribution of a PDP . . 92
2.3 Strong error estimates . . . . . ... ..o 98
2.3.1 Preliminary lemmas . . . .. .. .. ... .. oL 99
2.3.2 Proof of Theorem 2.3.1 . . . . . ... ... ... ... ....... 100
2.3.3 Proof of Theorem 2.3.2 . . .. . ... ... ... ... ....... 102
2.4 Weak error expansion . . . . . . . . ... e 104
2.4.1 Further results on PDMPs: It6 and Feynman-Kac formulas . . . . 105
2.4.2 Proof of Theorem 2.4.1 . . . . . . . . ... ... ... ....... 107
2.5 Numerical experiment . . . . . . .. ... ... 0 o 110
2.5.1 The PDMP 2-dimensional Morris-Lecar . . . .. ... ... .. .. 110
2.5.2 Classical and Multilevel Monte Carlo estimators . . . .. .. . .. 111
2.5.3 Methodology . . . . . . . . . ... 113
2.5.4 Numerical results . . . . . . . ... . ... ... 114
Bibliography 118

10



INTRODUCTION

11



INTRODUCTION

The purpose of this thesis is to study probabilistic numerical methods for Piecewise
Deterministic (Markov) Processes (PDMP or PDP) with a view towards applications in
Neuroscience.

In the first section of the present introduction we position our work with respect to
the literature. In section 2 we present the conductance-based models that will be used
for applications purpose. In section 3 we introduce the general class of PDMP/PDP we
consider. In sections 4 and 5 we review the general ideas behind thinning and Monte
Carlo simulations (classical and multilevel). Section 6 describes, chapter by chapter, the
main mathematical results obtained in this thesis. Some perspectives related to our work
are discussed in Section 7.

1 Positioning of the thesis

In this thesis, motivated by applications in Neuroscience, we study efficient Monte
Carlo (MC) and Multilevel Monte Carlo (MLMC) methods based on the thinning for
piecewise deterministic (Markov) processes (PDMP or PDP) that we apply to stochastic
conductance-based models. On the one hand, when the deterministic motion of the
PDMP is explicitly known we end up with an exact simulation. On the other hand,
when the deterministic motion is not explicit, we establish strong estimates and a weak
error expansion for the numerical scheme that we introduce. The thinning method is
fundamental in this thesis. Beside the fact that it is intuitive, we use it both numerically
(to simulate trajectories of PDMP/PDP) and theoretically (to construct the jump times
and establish error estimates for PDMP /PDP).

Stochastic conductance-based models are composed by two distinct variables, the
first one is continuous and models the membrane potential whereas the second one is
discrete and models the configuration of the ionic channels. Those variables are fully
coupled in the sense that the evolution of the membrane potential is influenced by the
proportion of ionic channels in a given configuration and the opening/closing dynamic of
the channels depends continuously on the membrane potential. As a consequence, these
models naturally lead to the class of PDMPs [67]. We are interested in applications to
stochastic counterparts of Hodgkin-Huxley [47] and Morris-Lecar [63] models which are
known as biologically realistic since they take into account the precise description of the
ionic channels as opposed to the FitzHugh-Nagumo model [31] for example.

In a first part we consider the class of PDMP with explicit flow. In this case using
the thinning we are able to simulate exactly the jump times and we obtain an exact
simulation of the trajectories. We study both theoretically and numerically the efficiency
of such thinning algorithms for different types of bounds from the classical global bound
to a path-adapted one. We did not find such systematic study of these different bounds
in the literature.

Suppose that we want to approximate an expectation E[g(x7)] involving the process
at a terminal time. Classical MC would be satisfactory when we have explicit flow.

12



INTRODUCTION

However, when the flow is not explicit we have first to discretise it, for instance with a
classical Euler scheme, in order to get back to an explicit flow. On the discretised flow we
can use classical MC, but this would result in a high complexity. This motivated us to
consider MLMC for PDMP which to the best of our knowledge have not been considered
in the literature.

We apply the first part to the discretisation of the PDMP (which turns out to be a
PDP) for which we obtain by thinning an exact simulation. Based on this construction,
we are able to prove strong error estimates for PDP and a weak error expansion for
PDMP. We then use these error estimates to investigate the efficiency of the MLMC
method to approximate expectations of functions of the state of a PDMP at fixed time.

Regarding stochastic conductance-based models, the flow is explicit for PDMP-type
Hodgkin-Huxley and 3-dimensional Morris-Lecar models. However it is not explicit
for the classically used 2-dimensional Morris-Lecar PDMP. For example, our work can
be applied to simulate exactly and efficiently quantities of interest such as first spike
latency or inter-spike intervals in a PDMP-type Hodgkin-Huxley model and to efficiently
approximate the moments of the proportion of open channels or the membrane potential
at fixed time in a 2-dimensional Morris-Lecar PDMP in order to compute statistics on
these biological variables.

In the literature, numerical schemes for PDMP /PDP have been the subject of different
papers. In [7] and [8], the authors introduce numerical methods to compute expectations
of functionals of a PDMP and optimal stopping times. Their approaches are based
on the quantization of the underlying discrete-time Markov chain. In [71] and [2], the
authors show that a PDMP with a specific jump distribution can be represented as
the solution of a stochastic differential equation (SDE) where the noise comes from
counting processes. Consequently, they build fixed time step numerical schemes where
they simulate the number of jumps within each time step rather than the jump times
explicitly. The numerical schemes introduced in [27] and [70] explicitly simulate the jump
times and are both based on the numerical inversion of a survival function. In [27], the
authors approximate the log-survival function (i.e the integrated jump rate) of the jump
times using a numerical scheme together with a linear interpolation. By doing this, they
approximate the distribution of the jump times with a piecewise exponential distribution.
In [70], the author reformulates the problem of the inversion of the survival function of
each jump time as a hitting time problem for a system of ordinary differential equations
(ODE) with random threshold. The system of ODEs is non-linear, includes an equation
on the jump rate along the flow of the PDMP and is different for each jump time. A
numerical scheme which is related to [70] can be found in [77] where the author uses
a change of time in the previous system of ODEs in order to obviate the hitting time
problem. None of the numerical schemes discussed above uses the thinning and none of
them produces an exact simulation even if the flow of the PDMP is explicit.

The author in [77] compares his ODE-based algorithm with a fictitious jump method
proposed in [42]. This is a thinning algorithm which uses a constant global bound for
the intensity of the PDMP and is exact when the flow is explicit. Another thinning
algorithm using a constant global bound can be found in [12] in order to simulate a model

13



INTRODUCTION

of chemostat.

Regarding the schemes specifically devoted to stochastic conductance-based models,
several algorithms have been developed. The algorithms in [75], [15], [74], [14] consist in
following the evolution of each channel separately (therefore the efficiency is low) and
do not use thinning. Papers [14], [60], [72] simulate the number of channels in each
possible states without considering each channel individually in the spirit of Gillespie
algorithm [35]. Gillespie algorithm is used to simulate continuous time homogeneous
Markov chains and has been popularized by Gillespie in order to simulate the stochastic
time evolution of a system of chemical reactions. We emphasize that this algorithm is
known under different names in the literature such as kinetic Monte Carlo, stochastic
simulation algorithm or n-fold way algorithm. Generalisations of this algorithm have been
considered for example by Gillespie himself to take into account the case of semi-Markov
processes [36]. However Gillespie algorithm does not use thinning and is based on the
inversion of a survival function. To be complete, let us mention that many papers aim
to speed up the simulation using diffusion approximations of the Markov dynamic of
the ionic channels [32], [58], [41], [65], [20], [48], [69]. Under this common theoretical
approach, each implementation differs in how it handles various numerical difficulties
such as bounding of channels proportion to [0,1]. We precise that in this thesis we do
not work in this direction.

To summarize, the thinning has been used in few papers dealing with numerical
schemes for PDMP and only with a global constant bound for the intensity. No study of
the efficiency of thinning algorithms has been conducted. Moreover, the MLMC method
for PDMP has not been considered.

The MLMC method is a general method which allows to approximate efficiently
the expectation of a random variable X. MLMC relies on the existence of a numerical
scheme (X3, h > 0) which converges strongly (in the sense of squared L? norm) and
weakly to X as h goes to 0. The main difficulty to efficiently use the MLMC method is
to build a numerical scheme, well correlated to X, for which we have strong and weak
estimates. Indeed, the orders of convergence play a crucial role in the complexity of a
MLMC estimator.

The MLMC method has been popularized by Giles [34] in the case of SDEs with a
view towards financial applications. Giles considers the fixed time step Euler-Maruyama
scheme which is correlated to the underlying SDE by using the same brownian motion
for both processes. Such scheme is known to verify a O(h) strong and weak convergence
(see [53], [76]).

For a jump-diffusion when the intensity is state-dependent the authors in [82], mo-
tivated by financial applications, use the jump-adapted Milstein scheme to build an
approximation which they correlate to the original jump-diffusion by thinning. The weak
convergence of such a Milstein scheme for jump-diffusions has been investigated first in
[59] in which an O(h?) convergence was proved under strong regularity assumptions on
the coefficients of the jump-diffusion and on the function g (remember that we want
to approximate E[g(x7)]). When the jump coefficient is not regular (for instance not
continuous) O(h?) is still valid under stronger assumptions on g as was proved in [38].
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More recently, [81] obtains an O(h) weak convergence for a Lipschitz jump coefficient
and a class of g larger than those considered in [59] and [38]. Note that in [59] and
[38] the numerical scheme is based on thinning. We emphasize that the discretisation
grid in [59], [38] and [82] is constructed a priori and is composed by a fixed grid to
which they add the jump times of the Poisson process introduced for the thinning. As a
consequence, they simulate explicitly the jump times of the discretised process. Regarding
the strong convergence, it is known that the Milstein scheme for diffusions provides an
O(h?) convergence. However, because of the jumps and the fact that some proposed jump
times may be accepted for one process but not for the other, or vice versa, the authors
in [82] obtain only an O(h) strong convergence. In order to improve this order, they
introduce a change of probability under which the original process and its discretisation
have the same probability of accepting a proposed jump time. Under this probability
change they obtain an O(h?) strong convergence.

MLMC has been investigate for continuous time homogeneous Markov chains in [3] in
the context of chemical reactions. The authors represent such processes as the solution
of a random time change equation (see [29]) which is similar to a classical SDE without
drift where the noise arises from a Poisson random measure. Consequently, they use the
fixed time step Euler-Maruyama scheme where they simulate the number of jumps within
each time step rather than the jump times explicitly. They correlate the original process
and its approximation using the additivity property of independent Poisson variables and
they prove O(h) strong and weak convergence. In their paper they do not use thinning.

Our approach differs from the previous ones in the way we construct an approximation
of our original PDMP. Since one of the characteristics of a PDMP is a family of vector
fields indexed by its discrete component, we discretise a priori the flow corresponding to
each vector field using a deterministic Euler scheme. Then, we build our scheme step by
step inspired by the original iterative construction of PDMP/PDP (see [21]). In the first
step, using the discretised initial flow and thinning, we simulate explicitly the first jump
time and the new position. Then we start anew from this first jump (which is simulated
exactly from the results in the first part of the thesis) and we iterate this procedure.
This implies that our discretisation grid is constructed iteratively and starts anew from
each jump times and so it differs from the ones in [34], [82] and [3]. Moreover we use the
thinning also in the theoretical study of the error estimates. We first show that there is
an O(h) strong and weak convergence. Then, inspired by [82], we also introduce a new
probability under which we obtain an O(h?) strong convergence. This is an important
step in order to lower the complexity of the MLMC estimator as we detail in section 5.
When implemented on a PDMP-type Morris-Lecar model, our MLMC estimator does
indeed outperform the classical MC one.

2 Conductance-based models
Most neurons respond to incoming signals with action potentials (also called spikes) which

are the building block of the neural coding. Action potentials are generated in the soma,
propagate along the axon and produce inputs to the other neurons through dendrites.
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Based on this biological phenomenon, two key Neuroscience fields have emerged in order
to understand how neurons communicate: the neural encoding and the neural decoding.
The neural encoding concerns the study of the response of a neuron to a given input (or
stimulus) while the neural decoding is the opposite, it concerns the problem of recovering
the stimulus observing the response (see [23] for more details). The response of a neuron
usually refers to quantities of interest related to the spike train (sequence of spike times)
it produces such as the first spike latency, the distribution of the inter-spike interval or
the spike rate.

Neuron’s membrane separates the intracellular environment from the extracellular
one and allows exchanges of material and energy between these two environments. These
exchanges are allowed by the opening and closing of ionic channels located on the
membrane. A ionic channel is constituted by four gates which can be of different types
(activation and inactivation) and is specific to one type of ions, for example, a sodium
channel allows sodium ions only to pass the membrane. We say that a channel is active
when all its gates are open. In most neurons, the intracellular environment contains a
large proportion of potassium ions, whereas the extracellular environment contains a
majority of sodium ones. A.LL Hodgkin and A. Huxley discovered that the generation of
action potentials principally relies on the movement of these two kind of ions across the
membrane.

A stimulus (it can be an input from other neurons or external applied current) makes
the sodium channels active, thus, sodium ions enter in the intracellular environment.
It implies an increase of the membrane potential (voltage) above its resting value :
the membrane is depolarized. The sodium channels open very fast leading to a fast
increase of the membrane potential. When the membrane potential exceeds a certain
threshold value, we say that the neuron emits an action potential or a spike (we also say
the neuron discharges or fires). After being active, sodium channels become inactive,
while potassium channels open at a much slower time scale. Potassium ions leave the
intracellular environment to compensate the entry of sodium ions and the membrane
potential goes back to its resting value : the membrane is re-polarized. Potassium
channels stay active longer than sodium ones, thus, the membrane potential continues to
decrease and goes below its resting value : the membrane is hyper-polarized. Finally,
a protein makes the potassium ions go back into the intracellular environment and
expels sodium ions in the extracellular one. The membrane potential then goes back
to its resting value until the next action potential. These are the principal steps of the
generation of an action potential.

The original deterministic Hodgkin-Huxley model and its stochastic counter-
part

In 1952, Hodgkin and Huxley provided two models to describe the ionic mechanism

underlying the generation and the propagation of action potentials in the squid giant
axon [47]. We only consider models of generation of action potentials. Biologically, it
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means that we clamp (isolate) a piece of the axon or the soma of the neuron and we study
electrical properties in time in this clamped area (also called membrane-patch). The
original four-dimensional Hodgkin-Huxley (HH) model is the following set of nonlinear
differential equations.

C%’ =1I(t) — F(v,m,h,n),

@2 = (1 —m)am(v) — mBp(v),
2 = (1= h)an(v) — hfBn(v),

& = (1= n)ag(v) —nby(v).

In this model, a channel is modelled by the gates that compose it. The R valued
function v represents the membrane potential (voltage). The [0, 1] valued functions m,
h, n correspond to the probability of a gate of type m, h (for the sodium) or n (for
the potassium) to be open. The voltage-dependent functions o, and 3, for z = m, h,n
are opening and closing rates of gates of type z respectively. [ is a time-dependent
function which represents the input current, C' is the membrane capacity. The function
F' is given by F(v,m,h,n) := I,(v) + INa(v,m, h) + Ix(v,n) where, for z € {Na, K, L},
I, = g.(v — v,) represents the ionic currents where gn, = §Nam3h, gK = gKn4 and
gL, = gr, are the conductances of the sodium, potassium and leak respectively. The
constants gi,, gna, Gk are the conductances when all the gates are open and vr,, vNa, VK
are the resting potentials.

(1)

vt)‘—

m(t)
0.9 h(t) i
/\ 0.8 \ )

80

60 0.7 /
= / \\ z 06
% 40 3 05 / 1™
5 / T oo [/ i
S a
20 0.3 // \\
/ \ 0.2 4
0 R 0.1 /
N < S S B
0 i
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Figure 1 — Simulated trajectory of the membrane potential v (left) and of the corresponding
gates m, h and n (right) in the deterministic Hodgkin-Huxley model (1) with a constant
applied current I(t) = 10 and initial condition (v, m, h,n) = (0,0,0,0).

This deterministic model successfully reproduces some of the main features of neural
response such as the shape, amplitude and threshold of the action potential, the refractory
period. However, the channels are considered to be in a very large number, it then fails
to explain a fundamental experimental observation. When submitted to a repeated given
stimulation (input current), the response of a single neuron is never exactly the same
[78]. This observation suggests that there exists a stochastic component in the biological
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mechanisms that generate action potentials. One explanation for that randomness is the
fact that the opening and closing of ionic channels are subject to thermal noise, and are
thus stochastic mechanisms [14], [80].

To obtain a stochastic version of the deterministic HH model (1), consider that the
number of ionic channels in the neuron is small enough for the thermal noise to have an
impact on the evolution of the membrane potential. Ionic channels are thus represented by
finite-state pure jump processes with transitions depending on the membrane potential.
Between jumps of these processes, the membrane potential evolves according to a
deterministic dynamic which is influenced by the proportion of ionic channels in a given
configuration. Such a model belongs to the class of Piecewise Deterministic Markov
Processes (PDMP), see [21], [22], [51] (see also the section 3 of the present introduction).
In this thesis, the stochastic version of the deterministic HH model (1) is called the
subunit model. More precisely, the subunit model (v, g(m) g(h), 9(”)) can be described as
follows:

e For each type of gates z = m, h,n, we consider that single gates i € {1,..., N},

where N, is the number of gates of type z, are modelled by independent jump
(2)

processes u, (t) with voltage-dependent transition rates o, and f,

0 1. (2)

The state 0 indicates that the gate is close and the state 1 that the gate is open.

e The proportion (empirical measure) of open gates of type z = m, h,n is then defined
as:

@ 1B e
0,° =F2uf (t).
? =1

e Between the jumps of = (#(™), (M) 9(™) the dynamic of the membrane potential
is given by the following ordinary differential equation (ODE):

dv
C’E = [(t) — F(v,0), (3)

where the function F is as in the model (1). We emphasize that for fixed 6, the
above ODE is linear so that an explicit flow exits.

By noting 8 = (0™, 6" (")) the jump rate of this model is then given by
A(O,0) =N (am(@)(1 = 00) + B ()0™) + Ny (an(v)(1 = 0®) + B (0)0™ ) +

N, (an(y)(l — ™) + Bn(y)ﬁ(")>
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Figure 2 — 10 simulated trajectories of the membrane potential v (left) and of the
corresponding proportion of gates 8™ 9(") and (™) (right) in the subunit model with a
constant applied current I(t) = 10, initial condition (v, #(™), 9" 9} = (0,0,0,0) and
Ny, = Np, = N, = 300.

so that if at time ¢y the model is in state (1, 8) the survival function of the next transition

t
time, say T, is given by t — e Jig 20,900 (s.0))ds oy ¢o, (., 0) denotes the solution of

(3) with initial condition (1, 6p). Between times ¢t and 7', the membrane potential evolves
deterministically according to ¢g, (., ). At time T a gate opens or closes according to a
transition measure, say (), which is proportional to the corresponding transition rate.
For example, if we write A\(0,v) = 2?21 Xi(0,v) where A\1(0,1) = Npam(v)(1 —60™)
denotes the rate for the opening of a gate of type m, Ag denotes the rate for the closing
of a gate of type m and so on, then the probability that a gate of type m opens at time
T is given by
A1(0o, 9o, (T — to, o))
Q (190,00, (T — 1o, 1)), 10 + (1/N, 0,0)p) = S P00 ()
The electrical circuit introduced by Hodgkin and Huxley in [47] to model the membrane
potential dynamic in the squid giant axon has become the basic formalism to represent
most of the additional conductances encountered in neuron modelling. Among them, we
can quote the transient potassium current [17] and the low-threshold calcium current
[79], [43], [49]. This formalism is also used to model the membrane potential dynamic
of different excitable cells such as cardiac cells [61] or muscle fibers [63]. Models that
treat these aspects of ionic conductances, known as conductance-based models, can
reproduce the rich and complex dynamics of real excitable cells quite accurately. For
more details we refer to [46], [23], [50]. Moreover, the stochastic counterpart of these
conductance-based models are obtained as for the HH model (1) by replacing the gain-loss
equations describing the channels by jump processes. It is known that such stochastic
models converge to their corresponding deterministic models when the number of channels
goes to infinity [67].

Another stochastic Hodgkin-Huxley model: the channel model
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Figure 3 — Simulated spike train using the subunit model with a constant applied current
I(t) =1 (left) and I(t) = 10 (right), initial condition (v, 8(™), 8" (™) = (0,0,0,0) and
Ny, = Np = N, = 300.

Actually, there is another stochastic Hodgkin-Huxley model which focuses on the
channels themselves instead of the gates that compose it. Consequently, this model
differs from the subunit model in the way the ionic conductances are modelled. We
call it the channel model. It is also much used in computational Neuroscience since
it describes the channel states more in detail. More precisely, let Ny, be the number
of sodium channels and Nk be the number of potassium ones. We define independent
jump processes u,(CNa) fork=1,..., NNa and uI(CK) for k =1,..., Nk to model the sodium
and potassium channels respectively. Unlike the dynamic of the gates (2), the dynamic
of these jump processes can be represented by the diagrams in Figures 4 and 5 with
voltage-dependent transition rates.

3am 20m, Qm
mOhO — mlhO — m2h0 pr— m3h0

Bim 26m 3Bm

B || an B || on B || on || o

Sam 20ém Om
m()hl pr— m1h1 p— m2h1 pr— m3h1

Figure 4 — Sodium (Na) scheme.
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Figure 5 — Potassium (K) scheme.
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The conducting state (the state that makes the channel active) of the sodium (re-
spectively potassium) channels is {msh1} (respectively {n4}) which corresponds to three
open gates m and one open gate h (respectively four open gates n). The conductance
of the membrane now depends on the empirical measures defined by the proportion of
active channels of each types as follows

mah 1 Na
915 ’ 1) = xr 1{m3h1}<u](g )(t))a

Similarly, for i = 0,1,2,3 and j = 0, 1, let #(™i"3) be the proportion of sodium channels
in state {m;h;} and for k = 0,1,2, 3,4, let 0("x) be the proportion of potassium channels

in state {ny}. Consequently, by noting 6 = <(9(mihﬂ'))i,j, (9(”k))k>, the function F' which
defines the ODE for the evolution of the membrane potential in (3) now reads

F(r,6) = (v — 1) — Gaaf ™" (v = viva) — Fic8™ (v — 110),

and just as in (3), an explicit flow is available since F' is linear in v for fixed . Moreover
the jump rate can be written in the following matrix form

am@)\ (3 2 1 0 3 2 1 0\ /gGmoho)

B Buw)| 1012301 23
A v) =Na | )y 1111000 0)| -
Br(v) 00001 1 1 1)\0"™™"

T (no)

an (V) 4 3 210 .

() (0138 9|

g(na)

The channel model has 28 possible transitions (see Figures 4 and 5) compared to the
subunit model which has only 6 (opening or closing of a gate of type m, h or n) and its jump
distribution can be presented just as (4). For example, if we write A(0, ) = Y20, Xi(6, v)
where A1 (0,v) = Nya0"0"0)3q,,(v) denotes the rate of the transition from the state
mohg to the state mihgy and if we note (6y, 1) the state of the model just before a jump
(or a transition), then the probability that the transition mghg — mihgy occurs is

Q (80, %0), {60 + (=1/Nwa, 1/Nxa, 0, 0)}) = m

Deterministic and stochastic Morris-Lecar models

The original three-dimensional Morris-Lecar model has been introduced by C. Morris
and H. Lecar in 1981 (see [63]) to account for various oscillating states in the barnacle
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giant muscle fiber. This model also belongs to the family of conductance-based models
and involves calcium and potassium conductances. It takes the following form

C% =1I(t)— F(v,M,N),

A — (1~ M)aca(v) — MBea(v), (5)
4¥ = (1 - N)ak(v) — NBk(v).

In this model, the [0, 1] valued functions M and N correspond to the probability of a
calcium and potassium gate respectively to be open. The function F' is given by

F(v,M,N) =g1(v =) + geaM (v — vca) + gV (v — vi).

The functions v, I, a, and 3, for z = Ca,K as well as the constants C, g;,, §ca, K-
vL, Uca and vk have the same meaning as in the HH model (1). In their paper [63],
Morris and Lecar reduce the dimension of the above model (5) by assuming that the
variable M evolves much faster than N so that M is replaced by its steady state value
My,. Consequently, they obtain the following set of equations

{ C% = I(t> - F(’U7MOO(U)7N)7

AN — (1 — N)ak(v) — NSk (v). (6)

The model (6) is called the reduced or the two-dimensional Morris-Lecar model. It is
particularly interesting because of its low dimension. Indeed, many of its properties can
be visualised on the (v, N) phase space. Stochastic counterparts of models (5) and (6)
are obtained as explained above in the case of the HH model (1). We emphasize that
because the function My, is not linear, the ODE which gives the deterministic behaviour
of the membrane potential in the stochastic two-dimensional Morris-Lecar model can not
be solved explicitly.

3 Piecewise deterministic (Markov) processes

Piecewise Deterministic Processes (PDPs) have been introduced by M.H.A Davis as
a general class of non-diffusive processes. These processes are based on an increasing
sequence of random times in which the processes have a jump and on a deterministic
evolution between two successive random times. The distribution of a PDP is thus
determined by three parameters called the characteristics of the PDP: a vector field, a
jump rate (intensity function) and a transition measure.

In this thesis we are interested in PDPs, that we denote by (x¢,t € R;), which has
two distinct components: a discrete one which takes its values in a finite or countable set
and a continuous one with values in a subset of R¢, d > 1. Let © be a finite or countable
set and let D be an open subset of RY. We denote by 0D the boundary of D. Let

E={0,v):0e0,ve D}
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be the state space of the process (x) = (¢, 11). We denote by 0F its boundary.

Let (®p,0 € ©) be a family of functions such that ®p : Ry x D — D for all § € O.
The functions (®g) will determine the deterministic motion of the continuous component
of the PDP. Moreover, for z = (6,v) € E, let us define

L(z) = inf{t > 0: ®y(t,v) € 0D},
#\T) = +0o0 if no such time exists.

For each x € E, t,(x) is the time needed to reach the boundary 0D following the curve
®y(.,v) starting from the point x. Note that this time is deterministic given the starting
point. For notational convenience in the sequel, we set U(t,z) := (0, Py(t,v)) for all
t>0and x = (0,v) € E.

The jump mechanism of the PDP is described by a jump rate function A : E —]0, +oo[
and a transition measure @) : E x B(E) — [0, 1] where B(E) denotes the o-field generated
by the Borel sets of E. We make the following hypotheses

1. The function A\ is bounded,
2. Q(z,{z})=0,Yx e E.

If there were no jumps from the boundary, the assumption on A would ensure that the
resulting PDP does not blow up. In the presence of jumps from the boundary, we need
an additional assumption on the transition measure to avoid blow up. Roughly speaking,
this assumption ensures that the post-jump value from the boundary does not goes back
to the boundary too fast (see [22] p.60).

We now present the classical construction of PDPs by M.H.A Davis [21]. Let (2, F,P)
be the probability space consisting in all sequences of independent uniformly distributed
random variables on [0,1]. We construct the PDP (z4,t € R} ) = ((6¢,14),t € Ry) from
one such sequence. First, let

t
Sz (t) = ]lt<t*(x)e_ Jo A(¥(s,2))ds (7)

be the survival function of the inter jump times and let G, : [0, 1] — R be its generalised
inverse defined by

inf{t > 0:S,(t) <u},
+oo if the above set is empty.

Gul) - |

Moreover, there exits (see [22] p.56) a measurable function H, : [0,1] — FE such that for
all z € E and A € B(E)
P(H,(U) € A) = Q(z, A),

where U is a random variable with uniform distribution on [0, 1]. The function H is the
generalised inverse of Q.
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Let (Ug,k = 1) be a sequence of i.i.d random variables with uniform distribution
on [0,1]. The sample path of the process (z;), starting from a fixed initial point
xo = (0o, v9) € E is defined as follows. Let w € €.

1. The initial condition is deterministic and is given by
(6o(w), v0(w)) = (6o, v0)-

2. The component v(w) follows the deterministic motion given by the function ®, (., vp)
as long as the discrete component (w) remains equal to 6. The first jump time of
f(w) is defined by

T1(w) = Gay(Ur(w)-

Thus for ¢ € [0, T} (w)[ we have

xt(w) = (00’ (I)Go (t’ VO))'

3. At time Tj(w) the process have a jump, its value is updated according to the
distribution @ ((0o, ®g, (11 (w), 1)), ), that is,

r1y (W) = H gy, (T (w),00)) (U2(w))-

4. The algorithm is then repeated for n > 2
Th(w) = Tho1(w) + Gop () (U2n—1(w)), (8)

and

xr, (W) = H( (Uzn(w)),

O, @)@0p, () (Ta)~Tur (@), ()

so that for t € [T, (w), Tn41(w)[

zy(w) = (01, (W), Poy,, (w) (t — Tn(w), vr,, (W)))-

As a particular case, we emphasize that the jump mechanism of stochastic conductance-
based models of section 2 only concerns their discrete component and that there is no
boundary. Indeed, the continuous component, which models the membrane potential, does
not jump and D = R. In this case, for (6,7) € ©2 and v € R, let \;(6, v) be the rate for the
transition from state # to state j given that the membrane potential value is v. Then, for all
z = (0,v) € E, the jump rate reads A(z) = >};cq Aj(z) and the transition measure (on the
whole state space E) is given for j € © and B € B(R) by Q(z,{j} x B) = Q(z, {j})6,(B)
where Q : E x B(©) — [0, 1] is such that Q(z, {j}) = \;(x)/\(z).

Now let (fy,0 € ©) be a family of vector fields such that the functions fy: D — D
are bounded and Lipschitz continuous uniformly in 6. If we choose ®y = ¢y in the
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above construction where for all z = (6,v) € E, we denote by (¢g(t,v),t = 0) the unique
solution of the ordinary differential equation (ODE)

dyt) _
= =Jo(y(1)),
{ yzlo) =V, (9)

then the corresponding PDP is Markov since ¢ satisfies the semi-group property which
reads ¢p(t + s,v) = pg(t, po(s,v)) for all t,s = 0 and for all (#,r) € E. In this case, the
process (z¢) is a piecewise deterministic Markov process (see [22] or [51]).

The following definition and theorems gather important properties of a stochastic
process constructed as above. In their statement a PDP or a PDMP refers to a process
constructed as above with characteristics (®,\, Q) or (¢, A, Q) respectively.

Definition 3.1. Associated to a PDP (x4,t € Ry) we define the following processes for
all Ae B(E).

1. p(t, A) = 2z In<ilapea.

2. p*(t) = Yoy Iry<tloy, _con-

3. p(t, A) = § Qas, AN(zs)ds + §, Q(zs—, A)p* (ds).
4. q(t,A) =p(t,A) —p(t, A).

In the above definition, p and p* are counting processes where p* counts the number of
jumps from the boundary, p is the compensator of p so that g is a local martingale.

Theorem 3.1 (Extended generator [22]). A stochastic process (xy,t € Ry ) constructed
as above with characteristics (¢, \, Q) is a homogeneous strong Markov cidlag piecewise
deterministic process. The domain D(A) of its extended generator A consists of the
bounded measurable functions g defined on E such that

1. t — g(0, po(t,v)) is absolutely continuous for all x = (0,v) € E and t € [0, t(x)].
2. For all x € OF, the boundary condition g(x) = §5 g(y)Q(x, dy) is satisfied.

For g € D(A) the extended generator is given by

Ag(z) = (Vg.f)(@) + Az) f (6) — 9(2)) Qa, dy).

E

Theorem 3.2 (It6 formula [22]). Let (x¢,t € Ry) be a PDMP. Then, for g € D(A) and
forallt =0

g(x) = g(xo) + fo Ag(zs)ds + MY,

where M} := Sé Sz (9(y) — g(xs—) q(ds, dy) is a true martingale with respect to the filtra-
tion generated by p.
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Theorem 3.3 (Feynman-Kac formula [22]). Let (z4,t € Ry) be a PDMP, T > 0 and
F: E — R be a bounded function. The following integro-differential equation

Lu(t,x) + Au(t,z) =0, (t,z)€[0,T[xE,
) = Spult,y)Q(x,dy),  (t,x) € [0,T[xIE,
uw(T,z)=F(x), =z€kE,

admits a unique solution u : Ry x E— R which is given by

u(t,z) = E[F(xr)|z = x], (t,x)€[0,T] x E.

4 Simulation of non-homogeneous Poisson processes and
thinning

Let A be a positive real function defined on [0, 4+00[ and consider a non-homogeneous
Poisson process (N, t = 0) with intensity (or jump rate) A and jump times (7,,n = 0).
It is known that for all n > 0 and given that 7T, = t for some real t > () the survival
function F' of the inter-jump time 7,41 — 7T}, is given by F(s) = e~ — 5 A
One way to simulate (N;) (and probably the most natural) is to simulate iteratively
the inter-jump times using the inverse of the survival function F~!' and a sequence
of i.i.d random variables (U,,n > 1) with uniform distribution on [0, 1] according to
Tn+1 Tp = F~Y(Upy1). In this case we have F~!(u) = A= (—In(u) + A(t)) — t where
So s)ds and A~! denotes the inverse of A. Consequently, we have the following
theorern

Theorem 4.1. Let (T,,,n = 0) be a non-homogeneous Poisson process with jump rate
ARy — Ry such that Ty = 0 and let (Ey,n = 1) be an i.i.d sequence of exponential
variables with parameter 1 independent of (T,,). Then, for n = 0, we have the following
equality in distribution

Tpir = A (Bpyt + A(T)) .

Simulating the Poisson process (INV;) using Theorem 4.1 requires to compute A and A~
This task can be tedious especially if the jump rate A is a complicated function which is
not explicitly integrable. In this case, the computation can be done numerically using
the Euler scheme for example. However, we emphasize that this method is numerically
efficient when the jump rate is explicitly integrable with explicit inverse of its integral.

Another way to simulate the Poisson process (NVy) is through the thinning of a Poisson
process (N;*, ¢t = 0) with jump times (7,%,n > 0) and jump rate A* such that A(t) < A\*(t)
for all t = 0. The thinning method which has been introduced by Lewis and Shedler
in [57] can be viewed as the analogue of the rejection method for point processes and
in particular for Poisson processes. The idea of the thinning is the following. If we
independently delete the points 7,* with probability 1 — A(7.¥)/\*(T¥) then the remaining
points form a non-homogeneous Poisson process with jump rate A. The thinning method
is formalised in the following theorem.
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Theorem 4.2. Let A and \* be two real and positive functions defined on [0, +00[ such
that A(t) < A*(t) for allt = 0. Let (N, t = 0) and (N;*,t = 0) be two Poisson processes
with jump rate X\ and X* respectively. Let us denote by (T, n = 0) with T§ = 0 the jump
times of (N;). Let (Up,n = 0) be a sequence of i.i.d random variables with uniform
distribution on [0, 1] independent of (T)¥) and let (1,,n = 0) be a sequence of indexes
defined iteratively by

T0 = 07
{ Tap1 = 0t {k > 7 : Uy < MTF)/A*(TH))

Then, the process (T ,n = 0) is a realisation of the non-homogeneous Poisson process
(Ny) with jump rate A.

The key point to efficiently simulate a non-homogeneous Poisson process by thinning
is that the simulation of (N;*) must be simpler than the one of (N¢). The case where
(N}*) is a homogeneous Poisson process has become classic and the resulting algorithm is
easy to implement. However, it is intuitive that a constant upper bound A* could lead
to many rejections especially if the jump rate presents significant variations over the
time thus increasing the computation time too much. Consequently, if one can find a
function \* such that A\(¢)/A\*(t) is close to 1 for all £ > 0 and such that the function
t— S(t) A*(s)ds is explicit with explicit inverse, then, the combination of Theorems 4.2
and 4.1 will lead to an efficient simulation with few rejections and will obviates the need
for numerical integration of the jump rate.

As a particular case, the thinning can be used to simulate random variables with
survival function ¢ ~ e~ o A(s)ds
[0, +00[ as follows.

where h is a real and positive functions defined on

Corollary 4.1. Let h and \* be two real and positive functions defined on [0, +0| such
that h(t) < X*(t) for all t = 0. Let (T;¥,n = 0) with Tj = 0 be a non-homogeneous
Poisson process with jump rate \* independent of (U,,n = 1) a sequence of i.i.d random
variables with uniform distribution on [0,1]. Let us define the random variable T by

T =1inf{k > 0: Uy < h(T})/ N (T})} .

Then, the survival function of the random variable T is t — e~ §o hls)ds,

Finally, note that since the seminal paper [57] several variants and generalisations have
been developed. As a variant, we can quote [26] (chapter 6) where a non homogeneous
Poisson process is obtained from a two-dimensional one with unit rate. Moreover, we can
find generalisations to multi-variate point process with stochastic intensity in [64], to
spatial point processes in [62] and to random measures in [52].

5 Monte Carlo simulations

Let X be a random variable defined on some probability space (€2, F,P). Consider the
problem of the numerical approximation of E[X]. To this purpose let us denote by Y
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an estimator of such a quantity for which the computational complexity (or cost) is
denoted by C(Y'). The computational complexity of an estimator is usually defined as
the number of operations necessary to its simulation. Generally speaking, we measure
the error committed by approximating E[X] by Y using the Mean Squared Error (MSE)
which is defined as the squared quadratic error (squared L?-error), namely

MSE := E [(Y — E[X])?].

A direct computation shows that the MSE admits the following bias-variance decomposi-
tion

MSE = E[(Y — E[Y] +E[Y] - E[X])?]
= (E[Y] — E[X])? + Var(Y). (10)

5.1 Non biased framework

Consider that the random variable X can be simulated (at a reasonable complexity) and
let (Xg, k > 1) denote a sequence of independent random variables distributed as X. The
classical Monte Carlo (MC) estimator then reads

Ly
Y =— N x4,
Nk:l *

where N > 1 appears as a parameter. In this case E[Y] = E[X] so that the estimator is
not biased. A natural question is: how to choose N so that Y approximates E[X] quite
accurately?

On the one hand, the strong law of large numbers which states that

N
1
lim — =
Wl 2 X = BLX)
k=1
suggests that if we choose N large enough then Y will be close to E[X]. Moreover, if
Var(X) < +o0, the central limit theorem states that the renormalized statistical error

vV N(Y —E[X]) is approximatively distributed as a centred Gaussian with variance Var(X).

This allows to build confidence intervals [E[X] —ay/Var(X)/N,E[X] + a«/Var(X)/N]

where a is a quantile of the centred Gaussian distribution with variance Var(X) and then
to choose N in order to obtain the user desired precision (confidence level).

On the other hand, we can choose N in order to minimize the computational complexity
of Y subject to the constraint that the MSE must be less or equal to ¢ where ¢ > 0
is a user prescribed error. Since Y is not biased, we have MSE = Var(Y) = +Var(X),
moreover, C(Y) = Nk where k is the complexity of a single simulation of X. The optimal
sample size of the estimator is then obtained by saturation of the constraint MSE < €,

this leads to the following choice

_ Var(X)

e

N
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and the corresponding complexity is

CY) = KVar(X) _ O(e72). (11)

€2

We emphasize that it is not possible to build an estimator with an optimal complexity
better than O(e~2).

In the present non biased framework, both approaches (confidence interval and MSE)
are similar since the precision € is related to the quantity +/Var(X)/N. However, we
will privilege the approach with the MSE in the biased framework because it explicitly
takes into account the bias of the estimator through (10) whereas the approach with the
confidence intervals does not.

5.2 Biased framework

Consider now that the random variable X can not be simulated (at a reasonable complex-
ity). We then introduce a family of random variables (X}, h > 0) such that X} can be
simulated (at a reasonable complexity) for A > 0. Moreover, we assume that (X, h > 0)
converges to X when h — 0 in the strong and weak following senses

I >0,8>0, E[X,—X?] <Wh?, (12)

and
deg > 0, >0, E[X]—E[X] = c1h® + o(h?). (13)

The family (X3, h > 0) will be used to construct an estimator and the strong and weak
estimates (12) and (13) will be used to control respectively the variance and the bias
of the estimator. We denote by x(h) the computational complexity induced by one
simulation of Xj. It is natural to assume that h — k(h) is a decreasing function of h
and that limy,_,g k(h) = 400 since X}, becomes closer to X when h — 0, keeping in mind
that X can not be simulated at a reasonable complexity. It is convenient to assume that
k(h) = K/h where % is a positive constant, see [54] or [66]. The complexity x(h) is usually
interpreted as the number of time steps performed to simulate a realisation of Xj.

Classical Monte Carlo

Let h > 0 and let (X,’f,k: > 1) be a sequence of independent random variables
distributed as Xj,. The classical MC estimator now reads

1 N
Yy ==Y X}
Nl;l h»

where h and N > 1 appear as parameters. In this case, the bias (using the weak estimate
(13)), the variance and the complexity of the estimator read

E[Y] - E[X] = c1h® + o(h®),  Var(Y) = %Var(Xh), C(Y) = =N.

= =
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From the strong estimate (12) we have Var(X}) — Var(X) as h — 0 so that Var(X})
is asymptotically a constant independent of h. Moreover, using (13) the bias of the
estimator is independent of N and is asymptotically equals to ¢;h®. Thus, the optimal
parameters (h, N) = argminyjgg<.2 C(Y') are such that the bias parameter h must be of
order €= and the sample size N must be of order e 2. The resulting optimal complexity
is then

C(Y) = 0(e =) (14)
Consequently, the unbiased MC complexity (11) is always better than the biased MC
one (14).

Multilevel Monte Carlo

The Multilevel Monte Carlo (MLMC) method refers to the use of a MLMC estimator.
This method has been introduced by S. Heinrich in [45] and developed by M. Giles in
[34]. The main idea to obtain a MLMC estimator based on the family (X}, h > 0) is to
consider the following telescopic sum with depth L > 2

L
E[Xn, ] = E[X4s] + Y E[Xp, — Xi,_,], (15)
=2

where (h;,1 <1 < L) is a geometrically decreasing sequence h; = h*M~(=1) with h* > 0
and M > 1 free parameters. In equality (15), the corrective term at level I, (Xp, — X4, ,),
is composed by two random variables, one with a fine time step, X},, and the other with
a coarse one, Xj, ,. For each level [ € {1,...,L}, a classical MC estimator is used to
independently approximate E[X};, — X}, ,] and E[Xp,«]. At each level, a number N; > 1
of samples are required and the key point is that the random variables X3, and Xj, , are
assumed to be correlated in order to make the variance of X}, — X}, | small. Considering
at each level | = 2,..., L independent couples (X}, X3, ,) of correlated random variables
independent of X+, the MLMC estimator then reads

1 & k L 1 l k k
Y= — D Xf+ Y = DUXF - XF ), (16)
N oMo

where (XF, k > 1) is a sequence of independent and identically distributed random
variables distributed as Xj» and ((X ,]fl,X ,’fl_l), k> 1) for I = 2,..., L are independent

sequences of independent copies of (Xj,, X}, ,) and independent of (X ,’f*) From the
weak estimate (13), the bias of the estimator (16) is given by

E[Y] - E[X] = c1hS + o (h2).

Note that an increase of L produces a decrease of the bias. Using the mutual independence
of Xp+ and (Xp,, Xp, ,) for I = 2,..., L, the variance of (16) is given by

1 CH |
Var(Y) = EVar(Xh*) + Z ﬁlVar(Xh, — X ,)
=2
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Note that from (13) and (12), Var(Xp, — X}, ,) — 0 when [ — 400. Thus, we need only
a small number N; of samples on the finest levels. Moreover, the global computational
complexity of this estimator is given by

L
ClY)=E <‘2:f + Z Ny (Bt + hf_11)> ) (17)
=2

It is known (see [34], [54], [66]) that provided that (Xp,h > 0) satisfies (13) and (12)
there exists values of the parameters L, (N;,1 < [ < L) such that the estimator (16)
reaches a MSE less or equal to €? with a computational complexity which satisfies

02  p>1,
C(Y) =1 O ( g(e))?) if f =1,
O =) ifp<l.

Consequently, in the case 8 > 1, the MLMC complexity is of the same order as the
unbiased MC one (11). Moreover, in the worst case scenario 5 < 1, the MLMC complexity
is still better than the biased MC one (14).

The computational complexity saving of a MLMC estimator depends on how fast the
variance Var(Xp, — X}, ,) decreases as the level goes up. It is then an important matter
to build MLMC estimators with strong order convergence 3 > 1.

Actually, a more general MLMC estimator can be obtained by considering at each level

different approximations for fine and coarse simulations. Let (X ,]: ,h > 0) and (X}, h > 0)
be two families of random variables which satisfy the following strong estimate

Wie{2,...,L},IVi>0,8>0, E[IX] —X; [Pl <Wh), (18)

and which weakly converge to X in the same sense as (13), so that, for h > 0, E[X ,J: ] =
E[X[]. In this case, equality (15) reads

L
]E[X,{L] = E[X}s] + Z E[X,{l ~ X5,
=2

and the corresponding MLMC estimator reads
1.k ek
NIZX +Z EX - Xt ). (19)

To finish this section, we emphasize that there is (at least) two ways to determine
the parameters L, (N;,l = 1,..., L) of a multilevel estimator which respect the condition
MSE = €2. On the one hand, the initial way (see [34]) is through the use of an iterative
algorithm in which the parameters are determined a posteriori. This algorithm is as
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follows. Start with L = 2 and build a MLMC estimator with depth level L where the
sample sizes N; at levels [ = 1,..., L are given by

= |y (3, v

I

where V] is a rough estimation of the variance of the corrective term at level [. This
makes the estimated variance of the estimator less than %62. Then, in order to ensure
that the bias is less than %e use the following test

1
Yi| < —=(M — 1)e, 20
Y| \/5( ) (20)
where Y; denotes the classical MC estimator used at level [. If (20) is verified then stop
otherwise set L = L + 1 and continue until (20) is verified.
On the other hand, in [54] (see also [66]) the authors show that we can determine the
parameters a priori through the following optimisation problem

(L,Ny,...,Nr) =argminC(Y). (21)
MSE<e?

In order to give some details about the resolution of (21), let us first introduce some
notations. Consider that the sample size at level [ is given by N; = [N¢;| where N is
the global sample size and ¢ = (¢;,1 <1 < L) is a stratification with ZIL:I q = 1. The
complexity of the estimator (see (17)) then reads C(Y) = NC(q, L) and the MSE is then
asymptotically of the form MSE = p?(L) + +v(q, L) where u(L) denotes the bias of the
estimator and v(q, L)/N its variance. Let ¢(q, L) = v(q, L)C(q, L) denotes the effort of
the estimator (the product of the variance and complexity) which is independent of N.
Since the problem (21) can not be solved directly, the authors decompose it in three
steps. Firstly, they fix L and determine the stratification ¢* which minimize the effort,
that is
q* = argmin ¢(q, L).

Secondly, using the optimal stratification and always with fixed L they saturate the
constraint MSE = €? with respect to N in order to find the optimal sample size

v(q*, L)

Nt =
e — p*(L)

Thirdly, they are able to choose the depth level L which minimize the complexity as
follows
L* = argmin N*C(¢*, L).
w(L)<e
6 Results of the thesis

In this section, we present the results of the present thesis chapter by chapter.
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6.1 Chapter 1: Exact simulation of the jump times of a class of Piece-
wise Deterministic Markov Processes

This chapter has been published in the Journal of Scientific Computing (see [55]). The
aim of this chapter is to introduce an exact simulation (perfect sampling) algorithm
for the class of PDMPs whose flows are known. This means that we explicitly know
the solution of each ordinary differential equation associated to each vector field. We
focus on the (exact) simulation of the inter-jump times considering that the post-jump
values can be simulated exactly. We emphasize that the post-jump values are discrete
random variables (finite or countable) for which the exact simulation is, in general, not
an issue. M.H.A Davis in [21] or [22] provides an iterative construction of PDMPs which
suggests to simulate the inter-jump times by inversion of their survival function (see
also the section 3 of the present introduction). The survival function is expressed using
the integral of the jump rate along the flow. Thus, we are not guaranteed to be able to
inverse the survival function even if the flows are known explicitly. To overcome this
difficulty we use the thinning method [57] (see also the section 4 of this introduction).
We propose different kinds of bounds for the intensity along the flow, from coarse to
path-adapted:

e the global bound, the coarsest, which is constant (in particular it is independent of
the state of the PDMP and of time),

e the local bound, which depends on the post-jump value of the PDMP and which is
constant between two successive jump times,

e the optimal bound, the finest, which depends on the post-jump value of the PDMP
and also on the time evolution of the process between two successive jump times.

The main interest of the optimal bound is that the thinning algorithm with such a
bound applies with weaker hypotheses on the jump rate than with the classical global
bound. More precisely, the optimal bound requires that the jump rate is locally bounded
along a given flow whereas the global bound requires that it is globally bounded on the
state space. Moreover, the optimal bound provides a powerful thinning algorithm. The
drawback of this bound is that when the bound becomes very close to the actual jump
rate, the computation time may be too long. It is thus necessary to look for a satisfactory
balance.

Our main contribution is the theoretical study of their respective efficiency. We choose
to define the efficiency as the mean value of the ratio between the number of selected
jump times and the number of generated jump times. This indicator is between 0 and
1 and is easily understood, the closer it is to 1 the less we reject points, thus the more
efficient the algorithm is.

As an application, we use the subunit and the channel model (see section 2) to numerically
compare the efficiency of the different bounds (global, local, optimal). In this introduction
we only present the results concerning the channel model since they are similar to those
obtained with the subunit model. The comparison of the bounds enables us to show that
the optimal bound speeds up simulation compared to the global and the local bound.
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Let E = © x D where O is a finite or countable set and D is an open subset of R%,
d > 1. We consider a E-valued PDMP (x¢,¢ > 0) with characteristics (¢, A, Q) where ¢
is an explicit solution of the ODE (9) and A, @ are as in section 3. Depending on which
bound we use, we assume that one of the following assumptions is satisfied.

Additional assumptions on the jump rate:
HE"°: sup,.p\(z) < 0.
H'°®: VeeE, sup,o\((s,z)) < oo,
HOP': Vre E\VICR,, supy,; A¢(s,z)) < oo.

Forall x = (0,v) € E and t = 0 we set ¥ (t,x) = (6, ¢pg(t,v)). In this case, the survival
function of the inter-jump times is given by (7) with U = % so that the jump-times occur
either in a deterministic way (when the flow hits a boundary) or in a Poisson-like fashion.

In order to construct (and simulate) the inter-jump times by thinning, we first prove the
following lemma.

Lemma 6.1. Let T > 0 and g : Ry — Ry be a non-negative, locally integrable function.
Define

S(t) = Lope 0096 Gp) = e Soals)ds,
Let Y (Y respectively) be a random variable with survival function S (S respectively).
Then, we have Y Wy AT

Thinning algorithm
We describe the thinning algorithm with a generic function  : Ry x E — R, which
is assumed to have the following properties:

e Vu=>=>0,VyeF, )
A (u,y)) < Mu, ).

e Yu >0, Vy e E, the function A,(u) = 5o (v, y)dv is explicitly computable.

e Yy € E, the inverse of [\y, denoted by ([\y)_l, is explicitly computable.

We simulate a sample path of the PDMP (x4,¢ > 0) with values in F, starting from a
fixed initial point zg € E at time 0 as follows.
Let (T,? .k > 0) be a non homogeneous Poisson process with jump rate (¢, zo) for
t =0, and,
7 = inf{k > 0: UMNTY, 20) < MW (TD, 20))},

where (U7(11), n>=1)isa sequence of independent random variables with uniform distribu-
tion on [0, 1], independent of (T?). Then, from Corollary 4.1 and Lemma 6.1 we have
Ty = T2 A ti(wo). On [0,T1[ the PDMP evolves deterministically according to the flow
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(., z0). Then we simulate the post-jump value as a random variable whose conditional
distribution is @ (¢ (71, o), .).

Suppose we have simulated the PDMP up to time 7;. Then, conditionally on (T3, z1,),
the PDMP (z;) restarts from x7, at time T} independently from the past. Let (T}, k = 0)
be a Poisson process with jump rate 5\(t — T, xr,) for t = T;, and,

i = inf{k > 0: UTINTE, 21)) < M@(TF, 21))},
where ( SH), n > 1) is a sequence of independent uniform random variables, independent
of (T k) and zr,. Then, always from Corollary 4.1 and Lemma 6.1 we have T;; =
T; +T.  Ate(zr,). On [T;, Ti41[ the process evolves according to the flow ¥(. — T}, xr,).

Ti+1

The post-jump value has distribution Q (¢(T;+1 — Ti, 71;), .) and so on.

Note that given (T1,21,), ..., (T, xr,) respectively, we efficiently simulate the Poisson
processes (T2), (TY), ..., (T}) respectwely using Theorem 4.1.

We formally define the efficiency of a generic bound A\, that we call rate of acceptance,
by E[N;/N;] where (Vi) is the counting process associated to the sequence of jump times
of the PDMP and (IV;) is the counting process whose (stochastic) intensity is A(f, z;).

The bounds

The three different bounds we consider are formally defined by:
global bound: )& := sup,.p \(z).
local bound: N°°(y) :=sup,o A (¥(s,y)), Vye E.

optimal bound: P (u,y) := Y, psup.ep, AMU(s,y))1p, (u), Yu > 0,Vy e E, where
P is a finite or countable set and (Pg, k € P) is a partition of [0, +oo].

The three additional hypotheses H8°, H!°¢ H°P! ensure that the functions A, A
and (Az)_l are well defined, z € {glo, loc, opt}. Considering the optimal bound, note that
we are free to choose the partition we want and for any partition the simulation remains
exact. The simplest partition (also the one we use to expose the numerical results below)
is obtained by letting € > 0 and setting P = {0,1} and Py = [0, €[, P1 = [¢, +00[. The
optimal bound using this partition is called the optimal-P¢ bound.

Numerical results

To numerically compare the efficiency of the three bounds (optimal-P¢, local, global),
we simulate 107 trajectories of the channel model on a finite time interval [0, 7] and we
approximate the rate of acceptance and the simulation time using a classical Monte Carlo
estimator. The numerical results are given in Figure 7 and Table 1. Moreover, Figure 6
shows the ratio A(x;)/A(t, z;) for the three bounds as a function of time.

Figure 7 shows the computation time and the rate of acceptance using the optimal-P¢
bound as a function of the parameter €. In all cases (i.e Ncepan = 30,300, 3000), there is a
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Figure 6 — Simulated trajectories of the jump rate and the different bounds (optimal-
PO-095 “ocal, global) (left) and of the corresponding ratio A/A (right) in the channel
model with Ny, = Nk = 3000.

value of € which minimizes the computation time and maximizes the rate of acceptance.
This optimal € is inversely proportional to the jump rate. Thus, in order to efficiently
use this optimal bound one has to take a small € (respectively large) when the jumps
frequency is high (respectively low). More precisely, the optimal computation time and
rate of acceptance are obtained for € of order max,, | T, +1 — Ty /.

The results in Table 1 indicate that the simulation time is approximately reduced
by 2 in going from the global bound to the local bound and it is again approximately
reduced by 2 in going from the local to the optimal bound. However note that the rate
of acceptance is refined by a factor of approximately 4 in going from the global to the
local bound and is again refined by a factor 4 from the local to the optimal bound.
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Figure 7 — Computation time and rate of acceptance with the optimal-P€ bound as a
function of the parameter € in the channel model with Nn, = Nk = Nchan Where Nepan
denotes the number of channels.
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Table 1 — Computation time and rate of acceptance for the three bounds (optimal, local,
global) in the channel model with Ny, = Nk = Nehan Where Nepan denotes the number
of channels.

Nehan Bound computation time (sec) | rate of acceptance
Optimal-P%! 0,003 (£1.1079) 0,80 (£1.1073)

30 Local 0,008 (+2.107%) 0,14 (+£1.1073)
Global 0,012 (£3.107%) 0,06 (£2.107°)
Optimal-P0-01 0,027 (4+5.107%) 0,95 (+9.1079)

300 Local 0,05 (+1.107%) 0,22 (£8.107°)
Global 0,120 (4+2.1073) 0,06 (+1.107°)
Optimal-P9-005 0,26 (+£3.1072) 0,99 (+9.1079)

3000 Local 0,474 (+4.1072) 0,24 (+7.1079)
Global 1.184 (+£3.1071) 0,06 (£9.107%)

6.2 Chapter 2: Thinning and Multilevel Monte Carlo for Piecewise
Deterministic (Markov) Processes. Application to a stochastic
Morris-Lecar model.

This chapter has been submitted to the Journal of Applied Probability, the preprint
[56] is available on arXiv or HAL. The aim of this chapter is to extend the Multilevel
Monte Carlo (MLMC) method to approximate expectations of a function of the state
of a PDMP at fixed time. In the first part of this chapter we study approximations of
trajectories of Piecewise Deterministic Processes (PDP) when the flow is not explicit by
the thinning method. We also establish strong error estimates for PDPs as well as a weak
error expansion for Piecewise Deterministic Markov Processes (PDMP). These estimates
are the building blocks of the Multilevel Monte Carlo (MLMC) method which we study in
the second part. The coupling required by the MLMC is based on the thinning procedure.
In the third part we apply these results to a 2-dimensional Morris-Lecar model with
stochastic ion channels. In the range of our simulations the MLMC estimator does indeed
outperform the classical Monte Carlo one.

Let E = © x R? where O is a finite or countable set, d > 1 and let T > 0. We first
consider a finite time horizon E-valued PDP (x4,t € [0,T]) with characteristics (®, A, @),
without jumps from the boundary, that we construct by thinning of a homogeneous
Poisson process as in chapter 1. We also consider that the functions (®g,60 € O) are
not known explicitly and we use a numerical scheme ®y (with implicit time step h)
approximating ®y for which there exits positive constants C; and Cs independent of h
and 6 such that

sup [ ®y(t,v1) — y(t,12)| < e |1 — va| + Cah, V6 € ©,V(v1, 1) e R*. (22)
te[0,T]

We associate to the family (®9,6 € ©) a PDP also constructed by thinning that we denote
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(Z¢,t € [0,T]). We emphasize that the processes (z;) and (7;) are correlated via the
thinning of the same homogeneous Poisson process. We prove in the following theorem a
strong error estimate for PDPs.

Theorem 6.1. Let (x4,t € [0,T]) and (T, t € [0,T]) be two correlated PDPs with
characteristics (®,\, Q) and (®,\, Q) such that xg = To = = for some x € E. Assume
that © is finite and that for all 6 € © and for all A € B(©) the functions A\(0,.) and
Q((8,.), A) are Lipschitz uniformly in 0. Then, for all bounded functions F : E — R
such that for all 6 € © the function v — F(0,v) is Lp-Lipschitz where L is positive and
independent of 0, there exists constants V4 > 0 and Vo > 0 independent of the time step
h such that

E[|F(zr) — F(zr)]?] < Vih + Vah?. (23)

The result of Theorem 6.1 is mainly based on the construction of the couple (x¢,7;) and
on the fact that the Euler scheme is of order 1 this is why it is valid for a general PDP
and its Euler scheme. Since the PDPs (x;) and (7;) are constructed using two different
functions ® and ® the probability of accepting a proposed jump time differs from one
process to the other. Consequently, the sequence of jump times of both processes may
be different. Moreover the discrete components of the post-jump locations may also be
different. The presence of the term Vjh results from the trajectories of ((z¢, %), t € [0,T])
where the jump times and/or the discrete components differ (see Figure 8b) whereas
the term Voh? results from those where the jump times and the discrete components are
equal (see Figure 8a).

Consider now that ®g = ¢y for all § € © where ¢y is a non explicit solution of (9).
In this case, the process (x;) is a PDMP with characteristics (¢, A, Q). Moreover, let us
denote by ¢, the continuous Euler scheme (also called Euler polygon) which approximate
¢ with some time step h > 0 and let (Z;) be a PDP with characteristics (¢, A, Q). We
emphasize that (7;) is not Markov since the continuous Euler scheme ¢ fails to satisfy
the semi-group property and that ¢ and ¢ satisfy estimate (22). In this case, we prove in
the following theorem a weak error expansion for PDMPs.

Theorem 6.2. Let (v4,t € [0,T]) be a PDMP with characteristics (¢, A, Q) and let
(Ty,t € [0,T]) be a PDP with characteristics (¢, \,Q) such that xo = To = = for some
x € E. Assume that for all 8 € © and for all A € B(©), the functions Q ((0,.),A), A (6,.)
and fg(.) are bounded and twice continuously differentiable with bounded derivatives.
Assume moreover that the solution u of the integro differential equation

{ Au(t,z) =0, (t,z)e [0, T[xE,
u(T,z) = F(x), =ze€kE,

with F': E — R a bounded function and A the generator of the process (t,x¢) is such that

for all 8 € O, the function (t,v) — u(t,8,v) is bounded and two times differentiable with
bounded derivatives and that the second derivatives of (t,v) — u(t,8,v) are uniformly
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Figure 8 — Illustration of two typical behaviours of the couple of processes (fi”,f? 1)

involved at level [ of the estimator (25).

Lipschitz in 0. Then, for any bounded function F' : E — R there exists a constant ¢y
independent of h such that

E[F(Zr)] — E[F(x7)] = her + O(h?).

The result of Theorem 6.2 mainly relies on the Feynman-Kac formula for PDMPs and so
on the Markov property. Note that a similar weak error expansion has been proved for
stochastic differential equations using the Feynman-Kac formula for those processes.

We now want to apply the MLMC method in order to approximate expectations of
the form E[F(xr)] where (x4,t € [0,T]) is a PDMP and F': E — R is a smooth function.
The MLMC method relies simultaneously on Theorems 6.1 and 6.2 that is why we study
its application to the PDMP framework instead of the more general PDP one. The
results of Theorems 6.1 and 6.2 indicate that the family (indexed by a time step h) of
random variables (F'(Z7), h > 0) converges strongly and weakly to F(zr) as in (12) and
(13) which are the building blocks of biased Monte Carlo simulations (see section 5.2).
Moreover, the same theorems suggest to investigate the use of the MLMC method in the
PDMP framework with =1 and o = 1.
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Setting X}, := F(Zr) for h > 0 to emphasize the dependence of Zp on a time step h,
we build a classical MC estimator (denoted by YM®) and a MLMC estimator (denoted
by YMIMC) of B[F(27)] as follows

N
1
MO - o 3 X, (24)
k=1

where (XF,k > 1) is an i.i.d sequence of random variables distributed like X}, and
T BN B CENTRR O P ks
Y - v PR N DUXFE - XF ), (25)
k=1 1= k=1

where <(X }’fl,X ’1;,171)’ k> 1) for I = 2,...,L are independent sequences of independent

copies of the couple (Xp,, Xp, ,) and independent of the i.i.d sequence (XF, k > 1).
In order to improve the convergence rate of the MLMC estimator (25) (to increase
the parameter 8 in Theorem 6.1) we prove that the following representation holds.

Proposition 6.1. Let (z,t € [0,T]) and (Zy,t € [0,T]) be two PDPs with characteristics
(®,\,Q) and (&, ), Q) respectively such that o = Ty = x for a given x = (6,v) € E.
Assume that X and Q depend only on 0, that Q is always positive and 0 < 5\(9) < ¥
for all 0 € ©. Then, there exists a process (Ry,t € [0,T]) which depends on ®,\,Q,\,Q
and (&¢,t € [0,T]) such that for all t € [0,T] and for all bounded measurable functions
g: FE —> R, we have
Elg(z¢)] = E[g(Z¢) Re].

The fact that A and Q only depend on 6 implies that the jump mechanism of the PDP
(Z¢) is given by an autonomous Markov chain (independent of ®). Consequently, the
jump mechanism of the PDPs () with characteristics (@, X, Q) for h > 0 is exactly the
same as the one of (Z;), that is, the jump times and the discrete components are the
same. This situation is illustrated in Figure 9.

From Proposition 6.1, we can then decompose E[F (E%L)] over the levels using the

scheme (F @52)39, h > 0) as follows

L
~ h* ~ ~
E[F(z3*)] = E[F(@ )Ry ] + Y E[F@)E; - F@r )Ry,
1=2
where, for [ = 1,..., L, the discrete components of the processes (@? ) jump at the

same times and in the same states and the processes (E? ") are such that E[F(E{ﬁ)] =

E[F@?)E?] Then, letting Xy, = F(Zp)Ry for h > 0, we define a second MLMC
estimator noted YMEMC ag follows

YMLMC _ 1 Al Xk ; 1 L Xk Xk 26
*EZ h*"'EﬁlZ( hy hl—1)' ( )
k=1 =2 k=1

We prove in the following theorem a strong error estimate for the numerical scheme
(F() Ry, h > 0).
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Figure 9 — Illustration of the typical behaviour of the couple of processes
(@?1,3?1), @?1’1,3?“10 involved at level [ of the estimator (26). In this situation,

the jump times and the discrete components of both processes (Z) and @? 1) are the
same and are equal to those of an autonomous Markov chain (independent of gl and
@l_l) represented in green in the above graphics. Thus, the continuous components of
both (Z") and @? 1) evolves as described on Figure 8a (see the left hand side graphic).
Moreover, the corrective processes (E? ") and (Ei”_l) are not necessarily close to 1 but

are close to each other (see the right hand side graphic). Consequently, the corresponding
L2 error (see (27)) is of order O(h}).

Theorem 6.3. Let (x;) and (&;) be as in Proposition 6.1. Let (T, t € [0,T]) and
(Z,,t € [0,T]) be two PDPs with characteristics (®,\, Q) and (®,\, Q) respectively.
Let (Ry,t € [0,T]) and (R;,t € [0,T]) be as in Proposition 6.1, that is such that,
E[g(x:)] = E[g(i:)R:] and E[g(z:)] = E[g(Z,)R,]. Assume that for all 6 € © and for all
A € B(©) the functions \(0,.) and Q((0,.), A) are Lipschitz uniformly in 0. Then, for
all bounded functions F : E — R such that for all 0 € © the function v — F(0,v) is
Lp-Lipschitz (Lp > 0), there exists a positive constant Vi independent of the time step h
such that

E[|F(&r)Ry — F(Zr)Rr|*] < Vih?. (27)

Thus, we end up with 8 = 2 in (12) with X = F(&7)Rr and X, = F(&r)Ry so that
the complexity goes from a O(e 2(log(¢))?) to a O(e~2). We also prove in the following
proposition another representation which allows to build a MLMC estimator with two
different numerical schemes (see (19)).

Proposition 6.2. Let (z,t € [0,T]) and (Z,t € [0,T]) be two PDPs with characteristics
(P, )\, Q) and (éﬁ), A, Q) respectively and let xo = &g = x for a given x = (0,v) e E. We
denote by (0y,) and (T,) the discrete component and the jump times respectively of (xy).
Assume that Q is always positive and that 0 < X(z) < A* for all x € E. Let (yn,n € N)
be the sequence defined by po = v and py, = ‘i)en,l(Tn —Tn-1,pn-1) for n =1 and let us
define for all t € [0,T], ys = (On, ®o, (t — Ty, i) if t € [Ty, Tps1[. Then, there exists a
process (Ry,t € [0, T]) which depends on ® &\, Q, (un) and (x¢,t € [0,T]) such that for
all t € [0,T] and for all bounded measurable functions g : E — R, we have

E[g(Z:)] = Elg(ye) Re].
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Figure 10 — Illustration of the typical behaviour of the couple of processes

((y(” 2 RIS” 1)), (Ei”‘l)> involved at level [ of the estimator (28). In this situation,

the discrete component and the jump times of (ygl’lfl)) are those of (T?lil). Thus, their
corresponding continuous components evolves as described on Figure 8a (see the left

hand side graphic). Moreover, the corrective process (Rt(l’lfl)) is close to 1 (see the right
hand side graphic). Consequently, the corresponding L? error (see (29)) is of order O(h}).

From Proposition 6.2 we can then decompose E[F(T?FL)] over the levels as follows
E[F(73/)] = E[ +ZE (wp' )RETY — P ),

where for | = 2,..., L, the process (ygl’l_l),t € [0,7]) is a PDP whose deterministic

motions are given by the approximate flow ¢, with time step h; and whose discrete

component jumps at the same times and in the same states as the Euler scheme (7)

with time step h;_; do. Moreover, the process (R,E” 2 ,t € [0,T]) is as in Proposition

6.2, that is such that E[F( gl 1))R(” 1)] E[F(z :}}l)] We illustrate this situation in
Figure 10. Letting (X,];,X}C”_l) = (F(y(” 1))R§£l 2 F(J” Y) for il =2,..., L we define
a third MLMC estimator also noted YMIMC a5 follows
Ny
yyene _ DX+ Z Z (X[F— X7k . (28)

lel

Following the same arguments as in the proof of Theorem 6.3 we are able to prove the
following theorem.

Theorem 6.4. For alll € {2,...,L}, let (y,fl’l_l)) (Rg” 1)) and (J” ') be as above.
Then, there exists a constant Vy independent of h; such that

E[|F(y¢' ) REY — P@h)?] < ikl (29)

Thus, we end up with 8 = 2 in (18) with (X,];,Xf”_l) = <F(y¥’l_1))}?¥’l_1),F(Egl‘l))
Numerical Results
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We first illustrate the strong convergence results of Theorems 6.1, 6.3 and 6.4 on a
2-dimensional Morris-Lecar PDMP, then, we numerically compare (on the same model)
the classical MC estimator and the MLMC estimators. We chose the mean value of the
membrane potential at fixed time as the quantity of interest. More precisely, we are
interested in the approximation of E[F (x7)] where (a¢,t € [0,T]) denotes a 2-dimensional
Morris-Lecar PDMP, F(0,v) = v for (6,v) € E and T > 0 is fixed.

15
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Figure 11 — The plot shows the decay of E[(Xp, — Xn, ,)?], E[(Xn, — Xn,_,)?] and
E[(X,{l — Xfll_l)2] (y-axis, log,, scale) as a function of I with hy = h x M~V h =1,
M = 4. For visual guide, we added black solid lines with slopes -1 and -2.

In Figure 11 we represent the L2 errors E[(Xp, — Xp,_,)?], E[(Xp, — X, ,)?] and
E[(X,{l - Xleil)Q] as a function of the level | where we set

(Xn Xn,) = (F@), F@p ).,
= 5 - ~h ~hi_1\ hi—
(Kn Zny) = (F@O Ry, F(ay )R

c Li-1)\ 7(L1— _hi
(] X5, ) = (P HREY, F@h)).

The theoretical order of convergence are respected since the L? error E[(Xp,, — Xp,_,)?]
as a function of the level I behaves like a line with slope -1 and since E[(Xp, — X5, ,)?]
and E[(X ,{l - Xf(il,l)Q] behave like a line with slope -2. The green curve (representing

E[(Xn, — Xn, ,)?]) is above the purple one (representing IE[(X}]; - X,C”il)2]) because the

variance of EZ}Z and E;Lf ~! is bigger than the one of Rg’l_l). Consequently, the variance of

the MLMC estimator (26) is bigger than the one of the estimator (28). For that reason
we do not consider the estimator (26) in the comparison below.

In Figure 12 we compare the complexity and the CPU-time of the classical MC
estimator (24) and the MLMC estimators (25) and (28) as a function of a prescribed
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€ > 0. We observe that the complexity of the classical MC estimator (24) and those of
the MLMC estimators (25) and (28) do indeed behave as a O(e~3), O(e~2(log(¢))?) and
O(e72) respectively as it is theoretically expected. The numerical results suggest that
MLMC estimators can be successfully used in the framework of PDMPs.

T 10 T
yMC yMC
yMLMC N7 yMLMC N7

-{\ )"/MLMC x f/t\lLMC x
+\

—
(=]

CPU time ratio

Complexity ratio

(a) Ratio of the complexities. (b) Ratio of the CPU-times.

Figure 12 — The plots (a) and (b) show the complexity and CPU-time ratios w.r.t the
complexity and CPU-time of the estimator YMIMC (28) as a function of the prescribed e
(log, scale for the z-axis, log scale for the y-axis).

7 Perspectives

In this section, we present perspectives which are linked to our work that we would like
to develop in the future.

Exact simulation of action potentials

The thinning algorithm introduced in chapter 1 provides us with an exact simulation of
the trajectories of conductance-based models with explicit flow such as a Hodgkin-Huxley
PDMP. As mentioned above, several diffusion approximations have been developed to
approximate such models. In [73], [69], the authors compare their respective accuracy
and computational efficiency through a numerical analysis. They quantify the errors
made in estimating quantities of interest related to action potentials (i.e distribution
of inter-spike intervals, first spike latency or spike rate) using approximate algorithms
such as the Euler-Maruyama scheme. They all use a model in which the channels are
modelled by Markov chains with simplified or approximated transitions as a reference.
This does not produce exact samples of action potentials or of spiking times. Since the
thinning algorithm is exact, a possible perspective is to use it as a reference algorithm to
conduct such a numerical analysis.

Multilevel Monte Carlo
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In chapter 2 we consider a PDMP (zy,t € [0,7']) with no explicit flow, we propose
a numerical scheme, (7;), approximating the PDMP and we prove strong and weak
convergences which are the building blocks of Monte Carlo simulations. Then, we
address the problem of estimating E[F'(z7)] by MLMC where F' : E — R is a smooth
function. This framework does not include the biologically relevant estimation of inter-
spike intervals, first spike latency or spike rate which are modelled as path-dependent
functionals of the PDMP. A perspective could be to investigate the MLMC in this setting.
More precisely, if we denote by D([0,T], E) the space of E-valued cad-lag functions
defined on [0,7"] one could investigate strong and weak convergences of G (74, t € [0,T1])
toward G (z,t € [0,T]) where G : D([0,T],E) — R. The order of such convergences
could then be used to estimate quantities of the form E [G (x¢,t € [0,T7)].

Another related work could be to consider a different numerical scheme for the PDMP.
More precisely, in this thesis we have chosen to approximate a PDMP with characteristics
(¢, ), Q) by a PDP with characteristics (¢, A, Q) where ¢ denotes the classical Euler
scheme associated to ¢. This choice implies that both processes can be constructed
using the same classical iterative construction. Consequently, the discretisation grid of
the PDP on [0,7] is random and is formed by the points T,, + kh for n = 0,..., Np
where k = 0,...,|(Tns1 A T —T,)/h| and h denotes the time step of ¢. This differs
from the case where the numerical scheme is constructed from the regular fixed grid
(tn,0 <n < N) on [0,T] defined by ¢, = nh forn =0,... N where N > 0 and h = T'/N.
It would be interesting to construct a scheme for PDMP on that fixed grid, that is, a
sequence (X,,0 <n < N) such that X,, approximates z;, in order to study strong and
weak convergences and to compare the computational efficiency in both settings.
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Chapter 1

Exact simulation of the jump
times of a class of Piecewise
Deterministic Markov Processes

Abstract

In this paper, we are interested in the exact simulation of a class of Piecewise Deterministic
Markov Processes (PDMP). We show how to perform an efficient thinning algorithm
depending on the jump rate bound. For different types of bounds, we compare theoretically
the efficiency of the algorithm (measured by the mean ratio between the total number
of jump times generated by thinning and the number of selected ones) and we compare
numerically the computation times. We use the thinning algorithm on Hodgkin-Huxley
models with Markovian ion channels dynamics to illustrate our results.
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1.1 Introduction

In many areas it is important to be able to simulate exactly and rapidly trajectories of
a stochastic process. This is the case for Monte Carlo methods, statistical estimation,
bootstrap. In this article, we are interested in the exact simulation (perfect sampling) of a
class of Piecewise Deterministic Markov Processes (PDMP). These processes, introduced
by M.H.A. Davis in [21], are based on an increasing sequence of random times in which
the processes have a jump and on a deterministic evolution between two successive
random times. The law of a PDMP is thus determined by three parameters called the
characteristics of the PDMP: a family of vector fields, a jump rate (intensity function)
and a transition measure.

In this study we consider the class of PDMPs whose flows are known, this means
that we explicitly know the solution of each ordinary differential equation associated to
each vector field. Explicit flows cover a wide-enough range of interesting applications.
For example, we can quote the temporal evolution of the membrane potential and ionic
channels in neuroscience (see [67]), the evolution of a food contaminant in the human
body in pharmacokinetics (see [6]), the growth of bacteria in biology (see [28]), the data
transmission in internet network (see [13]) or the evolution of a chemical network in
chemistry (see [1]). For hybrid models in cell biology and gene networks see [9] and [18].

In this paper we focus on the exact simulation of the PDMP inter-jump times. Davis
in [22] provides an iterative construction of PDMPs (cf. p. 59) which suggests to simulate
the inter-jump times by inversion of their survival function. However he does not specify
precisely how to do it numerically. The survival function is expressed using the integral of
the jump rate along the flow. When the jump rate along the flow is explicitly integrable
and when its integral is explicitly invertible, we can simulate the jump times exactly
(by using the jump rate directly), see [26]. When the survival function is not explicitly
invertible, several algorithms have been proposed in the literature (cf [70], [77], [27]) but
none of them produced exact samples even if the flows are explicit.

We use the thinning method introduced by Lewis and Schedler in [57] to simulate
Poisson processes and generalised by Ogata [64] to any point process. The thinning
method obviates the need for numerical integration of the jump rate and produces an
exact simulation. This method has become classic when the jump rate of the process
admits a constant upper bound . In this case, it consists in generating the jump times
of a (homogeneous) Poisson process with intensity A and then to select some of these
times by a rejection argument. The times selected are realisations of the jump times. The
resulting algorithm is easy to implement. However, it is intuitive that a constant upper
bound A could lead to many rejections especially if the jump rate presents significant
variations thus increasing the computation time too much.

In the sequel we focus on path-adapted upper bounds. We propose different kinds of
such bounds for the intensity along the flow, from coarse to path-adapted. Our main
contribution is the theoretical study of their respective efficiency. We also provide a
numerical study of the computation times for the different bounds. We will consider
three types of jump rate bounds:
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e the global bound (1.8), the coarsest, which is constant (in particular it is independent
of the state of the PDMP and of time),

e the local bound (1.9), which depends on the post-jump value of the PDMP and
which is constant between two successive jump times,

e the optimal bound (1.10), the finest, which depends on the post-jump value of the
PDMP and also on the time evolution of the process between two successive jump
times.

We see at least three interests in the optimal bound. The first is that the thinning
algorithm with an optimal bound applies with weaker hypotheses on the jump rate than
with the classical global bound. More precisely, the optimal bound requires that the jump
rate is locally bounded along a given flow whereas the global bound requires that it is
globally bounded on the state space. The second is that it provides a powerful thinning
algorithm. The drawback of this bound is that when the bound becomes very close
to the actual jump rate, the computation time may be too long. It is thus necessary
to look for a satisfactory balance. We discuss this difficulty on a numerical example.
Finally, the optimal bound is constructed by following each vector field of the family. This
construction is thus natural in the context of switching processes such as PDMPs. For this
reason we think that the algorithm studied in this article can be applied to a much larger
family of processes such as Hawkes processes, switching stochastic differential equations
or switching stochastic partial differential equations with state-dependent intensity.

As an indicator of the efficiency of our thinning algorithm, we choose the mean value
of the ratio between the number of selected jump times and the number of generated
jump times. We call it rate of acceptance. This indicator is between 0 and 1 and is
easily understood, the closer it is to 1 the less we reject points, thus the more efficient
the algorithm is. We explicitly express this rate of acceptance in terms of the transition
measure of a discrete time Markov chain which carries information about the PDMP
but also about all the rejected jump times. In particular this chain is different from the
embedded Markov chain classically associated to a PDMP. We also express the rate of
acceptance as a function of the ratio between the jump rate of the PDMP and the jump
rate bound. This expression enables us to see that the closer the jump rate bound is to
the PDMP jump rate the more efficient the algorithm is. Let us note that our rate of
acceptance is different from the efficiency defined in [57] or [26] chap. 6 which is the ratio
between the mean number of selected jump times and the mean number of generated
jump times. However, both coincide in the case of Poisson processes.

As an application, we consider two stochastic versions of the deterministic Hodgkin-
Huxley (HH) model (cf. [47]). The two biophysicist Hodgkin and Huxley proposed a four
dimensional system of ordinary differential equations (ODE) based on their observations,
in order to model the coupled evolution of the membrane potential of a neuron and of
specific pores called channels located in the membrane. The circulation of ions through
the channels create currents that modify the electric balance and the potential. (HH)
model has become classic because it provides a way to express the conductance of the
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membrane: the conductance is expressed using the potential dependent probability that
specific subunits of channels (called gates) are open given that each gate can be in two
states only, either open or closed. However since channels (and consequently gates) are in
finite number it is natural to consider a stochastic version of (HH) that we call the subunit
model. Actually a second stochastic version exists that focuses on the channels themselves.
In this case the stochastic model is fourteen dimensional (see Section 1.6.2). We call it
the channel model. 1t is also much used in computational Neuroscience since it describes
the channel states more in detail. Both stochastic versions are PDMP. When the number
of channels goes to infinity the channel model converges to a deterministic system of ODE
(of dimension 14) such that the variable modelling the membrane potential coincides
with the one in (HH) when the initial conditions satisfy a binomial relation [67].

The jump rates of the subunit and the channel models (which come from the modelling
[47]) are complex functions with high variations especially when the membrane potential
is in a depolarization phase. Thus, numerical inversion of the distribution function of the
inter-jump times can be time consuming. We show in section 1.7.1 how to determine
jump rate bounds in such stochastic (HH) models. We use these models to compare
numerically the different bounds (I1.8), (1.9), (1.10), and thus, to highlight the efficiency
of the optimal bound. The comparison of the bounds enables us to show that the optimal
bound speeds up simulation compared to the global bound and the local bound. We show
that the computation time is reduced by 2 in going from the global bound to the local
bound and that it is again reduced by 2 in going from the local bound to the optimal
bound.

To be complete, let us mention some algorithms specific to (HH) models. When the
number of channels or gates is high, some authors have used diffusion approximations to
improve the computation time (cf [65], [41], [32]), which clearly does not produce exact
samples. On the other hand, in many papers, the channels/gates are modelled by Markov
chains with simplified or approximated transitions (cf [75], [14], [2], [15], [74]). This does
not produce exact samples even if they are called exact in these papers in comparison to
the diffusion approximation. For a review of these specific algorithms, see [60].

The paper is organized as follows. In section 2, we give the definition of PDMPs,
the assumptions and set the notation used in other sections. In section 3, we present
the construction of PDMPs by thinning. In section 4, we introduce the different jump
rate bounds. In section 5, we give the theoretical results concerning the comparison
of the jump rate bounds and the rate of acceptance without boundaries. In section 6,
we introduce the Hodgkin-Huxley models. In section 7 we numerically illustrate the
results. Section 1.8 is an appendix in which we compute the rate of acceptance for Poisson
processes.

1.2 PDMPs and assumptions

A PDMP is a stochastic process in which the randomness comes from random jump
times and post-jump locations [22],[21]. In this paper, we consider that such a process
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takes the following general form
Ty = (9t7 ‘/t)a vt > 07
where

e §: Rt — K is a jump process that characterizes the mode of the system, K is a
finite or countable space.

e VV:R" — D is a stochastic process which evolves deterministically between two
successive jumps of 6, D is an open subset of R%.

Let us denote E = K x D so that (z;);>0 is an E-valued process. We note (T},),>0 the
sequence of jump times of the PDMP and (N;)¢>o the counting process, Ny = >3 -, 11, <¢-
We assume that for every starting point x € E, E,[V;] < oo for all t = 0. This assumption
implies in particular that T;,, — oo almost surely.

Such a process is uniquely determined by three characteristics, namely, (¢, A, Q). In
the remainder of the paper, we consider that the characteristics verify the following.

Assumptions on the characteristics

o The deterministic flow ¢ : Ry x E — D is assumed continuous and induced by a
conservative vector field F': E — D, see [21].

e The jump rate A : E —]0, 40| is assumed to be a measurable function such that
for each x = (0,v) € E the function s — A(6,¢(s,z)) is locally integrable. We
also assume that A has a uniformly bounded derivative along the flow and that

inf(s,x)eR+ xE )‘(97 ¢(Sa I‘)) > 0.

e The transition measure Q : E x B(E) — [0, 1] governs the post-jump location of
the process. We assume that

Q(m, {x}) =0, Ve e E.

For t € [T}, T,+1[, V takes the following form V; = ¢(t — T,,, z7,) and the trajectory of
the process (z¢)¢=0 is then given by

.Tt = Z <0Tn9¢(t - Tn7an)>1Tn<t<Tn+1'

n=0

For notational convenience, we define a vector field G : E — FE such that, for x € F,

G(x) = < F?w) > We note v the flow induced by G. Then the PDMP can be written

as follows
Ty = Z w(t - Tn7 mTn)]-TnSt<Tn+17 (Il)

n=0
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Denote by ¢D the boundary of D. For all x € E, let

t(w) = { inf{t > 0: ¢(t,z) € 0D},

400 if no such time exists.

For each x € E, t.(x) is the time needed to reach the boundary from z. Note that this
time is deterministic. In [22], M.H.A Davis shows that there exists a filtered probability
space (92, F, F, P;) such that the process (x;);>0 is a Markov process. He also shows
that (z7,)k>0 is a Markov chain with kernel Z such that for all z € E

Ly ()

2.4 = [ @(vte.0), 4wt e A

e WA (Y1, (2),2), 4).

Let (Sy,) := (T, — T,—1) be the sequence of inter-jump times. The intensity of S, 41
conditionally on (17, z7,) is A(¢(t — Tp,, x7,)) for ¢t = T,,. We emphasise that the jump
rate A determines the law of the inter-jump times through the survival function S, defined
forallt > 0 and x € E by

Se(t) = Lict, ()€ Jo MW (sm))ds. (L.2)

Thus, the jump-times occur either in a deterministic way (when the flow hit a boundary)
or in a Poisson-like fashion.

Identity (I.1) implies the representation

Az¢) = Z AWt = Ty 21,) ) 1T <t <T 15 (1.3)

n=0

for the jump rate along the trajectory of (z;). In the sequel, and depending on the
context, we assume that one of the following assumptions is satisfied.

Additional assumptions on the jump rate:
H8"°: sup,.pA\(z) < 0.
H'°%: VazeE, sup,.q\((s,z)) < oo.

HOP': Vre E\VICR,, supy; A(¢Y(s,x)) < oo.

Note that assumption H8 is verified when \ is bounded. Assumption H!°C is verified
when ) is continuous and 1 is bounded. In assumption H°P*, when I is compact, A
continuous and 1 continuous is sufficient. Also, H8!© implies (Hl°° and H°P?) and Hloc
implies HPPt. Note also that HOP! implies H'°® so that these two assumptions are, in
fact, equivalent.
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1.3 Simulation of PDMPs and thinning

In [21] and [22] Davis provides an iterative construction of a PDMP and suggests to
simulate its inter-jump times using the generalized inverse ¥, of (I.2) defined for all
u€ [0,1] and x € E by

inf{t > 0:5;(t) < u},
+oo if the above set is empty.

() - |

Thus, the random variable W, (U) where U ~ U(]0, 1]), has survival function (1.2) (see,
for example, [22] chap. 2 section 2.3 and 2.4). However, the problem of the exact
computation of W, is not obvious. If the function (I.2) is explicitly invertible, the problem
is solved. However, in most applications we cannot compute A (t) = Sé)\(w(s,x))ds
explicitly and even less invert it. Moreover the indicator function must be taken into
account.

On the other hand, several papers have proposed methods to approximate the inverse
(I.4). In [70] and [77], the authors use deterministic numerical methods which essentially
consist in solving ODEs to compute (I.4). In [27], the authors use a piecewise linear
approximation of (I.2) which can be explicitly invertible. In these three papers, the flows
are not assumed explicit, the authors do not consider boundaries that is t,(z) = +00
for all x € E. We emphasise that the algorithms proposed in these papers would not
produce exact samples even if the flows were explicit.

We show how to simulate exactly the inter-jump times in the presence of a boundary
when the flows are explicit. We proceed by thinning. Details on thinning may be found
in [57] or [26]. First, let us introduce a modified survival function, S, defined by

(L4)

S (t) = e So Mw(sa)ds (L5)

For z € E, (1.5) is the survival function of a random variable with hazard rate A\(¢(., x))
(cf. [26] chap. 6). Let A be a function such that A(y(t,z)) < A(t,z) for all ¢ > 0. Let
(Ti)x>1 be a Poisson process with jump rate A(.,z) independent of (U, )n>1 a sequence of
iid random variables with uniform distribution on [0,1]. We define the random variable
T by

7 =inf{k >0: Ukj\(fk,lt) < A(iﬁ(fk,x))}

Then, we have the following lemma (see [26]).
Lemma 1.3.1. The random variable T, has hazard rate \(¢(.,x)).

Since the flows are assumed explicit, we can compute exactly the ratio A(¢(t, x))/A(t, z)
for all t = 0. We use the following lemma to simulate the Poisson process (Tj)x>1-

Lemma 1.3.2 (Devroye [26], chap. 6). Let (Tn)n>0 be a Poisson process with jump rate
f(t) and let € be an exponential variable with parameter 1 independent of the Poisson
process, then, for n = 0, we have

Tort 2 FHE+ F(TL)
where F(t) = Sé f(s)ds.

52



Chapter I Exact simulation of a class of PDMPs

Thus, we need an explicit expression of A( So s,x)ds and of A L(t) to simulate
exactly the process (T},) (in section 1.4, we present bounds which verify these conditions).
In the case where the bound ) is constant, A, and its inverse are explicit and easy to
compute. However, we can see from the expression of 7 that such a bound will lead to
many rejections especially when the function ¢ — A(¢(¢, z)) present significant variations.
Consequently many evaluations of the intensity along the flow and many generations of
pseudo-random variables will be necessary to simulate 7. This will potentially increase
the computation time compared to a refined bound possibly complicated to integrate and
invert but leading to fewer rejections. This balance between coarse and refined bounds
will be illustrated both theoretically and numerically in the sequel.

So far, we have shown how to simulate exactly a random variable with survival
function (I.5). To simulate exactly the inter-jump times with boundaries (i.e. a random
variable with survival function (I.2)) by using the thinning described above, we need the
following lemma.

Lemma 1.3.3. Let T > 0 and g : Ry — R, be a non-negative, locally integrable function.
Define

S(t) = Lyope Y098 G(t) = ¢~ Tog()ds
Let Y (Y respectively) be a random variable with survival function S (S respectively).
Then, we have Y AT

Proof. A direct computation shows that, Vo = 0, P(Y > z) = P(Y A T > z). O

Since the flows are explicit, the deterministic time ¢,(x) can be computed exactly.
Therefore we simulate the first jump of a PDMP starting from x by T A t(x) using
lemmas 1.3.1 and 1.3.3 where the variables (7)) and 7 are as above.

We now describe the construction of a PDMP (x;) by thinning. In the remainder of
this section and by analogy with the representation (I1.3), we consider a generic bound of
A, namely 3, defined by

t l’t Z )\ Tn, .’I,'Tn)].Tngt<Tn+1 . (I6)

n=0
We assume that the function A : Ry x E — R, has the following properties:

o Vu>0,VyeFE, )
A (u,y)) < Mw, y)-

e Yu =0, Vy € E, the function A So v,y)dv is explicitly computable.

e Yy € E, the inverse of ]\y, denoted by ([\y)_l, is explicitly computable.

The form of the generic bound (I1.6) follows from the structure of the PDMP. In practice,
one has to specify a bound X to implement the generic algorithm 1 below (three specifi-
cations are given in section 1.4). We construct a sample path of the PDMP (z);>0 with
values in F, starting from a fixed initial point zp € E at time 0 as follows.
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Let (T,?)k>0 be a Poisson process defined on [0, +-00[ with jump rate \(t,zg) for t = 0,
and,
7 = inf{k > 0: UMNTY, 20) < MW (TP, 20))},

where (UT(Ll))nzl is a sequence of independent random variables with uniform distribution
on [0, 1], independent of (TP)x=0. By lemma 1.3.3, the first jump time T3 = Sy of the
PDMP is the minimum between the first jump time of a non-homogeneous Poisson process
defined on [0, +oo[ with jump rate A(¢(¢,z9)) and ty(xg). Thus, T} = T% A te(xg). On
[0, T1[ the PDMP evolves as follows

Ty = ¢(t7 xO)‘

The random variable x7, has distribution Q(@D(Tb x0), ) Note that conditionally on T3

the process (T/?)kzl is a Poisson process on [0, T1[ with jump rate (¢, z9) — A(¢(t, o)),
see [26] chap.6.

Suppose we have simulated T;, then, conditionally on (T, z7,), the PDMP (z;) restarts
from z7, at time 7; independently from the past. Let (T,i) k>0 be a Poisson process on
[0, +00[ with jump rate A(t — T;,x7,) for t > T;, and,

i1 = inf{k > 0: USTOXNT, 21,)) < M(TF, 21,)},

where (U7(f+1) Jn>1 is a sequence of independent uniform random variables, independent
of (1})k=0 and x7,. By lemma 1.3.3 and the thinning procedure, we have Tj;1 =

T + Tf;i“ A ty(xr,). On [T}, Ti41] the process evolves as follows

Tt = ¢(t - EaxTi)'

The random variable zr, , has distribution Q(@b(SiH, xT), ) Note that, conditionally

on (T;,z7,,Tiy1), the process (T; + Té)k;l is a Poisson process on [T}, T;11[ with jump
rate A(t — Tj, x7,) — MW (t — Ty, x7)).

Conditionally on (T, z1y, ..., T;, 1, Ti+1), the points in [T;, Tj4+1[ obtained from the
Poisson process (T; + T} )x=1 are independent of the points in [Tj_1, Tj[ obtained from
the Poisson process (7 + T;z)kzl for 5 = 1,...,7. The construction above provides a
generic algorithm associated to the bound (I.6) to simulate trajectories of PDMPs (see
Algorithm 1 below).

To conclude this section, consider the case of PDMPs without boundaries. In this
case, the construction above provides a point process, namely,

To<TP <..<TX  <Ti<Ti+T{ <...<Ty+T, _<Dh<Dh+T¢<... (L7)

Notation 1.3.1. In the sequel, the process defined by (1.7) is noted (Ty)r=o and the
associated counting process is noted (N;)i=0. We also denote by (Ty)i=0 the process
formed by all the rejected points (i.e the process (Tj)r=0 without the jump times (Ty)k>0)
and (N¢)i=o the associated counting process.
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Algorithm 1 Simulation of a trajectory of (z;) on [0,T].

Require: Fix the initial condition xg = (0y, Vp), set a jump counter n = 0 and fix the
initial time T}, = 0. Set also an auxiliary jump counter & = 0 and an auxiliary variable
Ty = T,
repeat

repeat
k<—k+1.
Simulate U2k—1 ~ Z/{(]O, 1[)
Set Ek = _log(UQkfl).
Set T = (Aup, ) (Br + Auy (Ti1))-
Simulate Usi, ~ U(]0, 1]).
until UQkS\(Tk,xTn) < A(l/J(Tk,xTn))
Set Tpo1 =T, + Tk A t*(ﬂj‘Tn).
Set Tk = 0.
if 7,41 <7 then
Vi = ¢(t — T, xp,) for t € [Ty, Thga .
Simulate a post-jump value z7, , according to the Markovian kernel

Q (Y(Sn+1,21,); -)-

else

Vi = ¢(t — T, x7,) for t € [T,,, T7[.
end if
n<«—n+1.

until 7,, > T

The sequence (Tj)x=0 contains both generated and selected points and the sub-
sequence noted (T)g=o such that for k > 1, T}, = Zle TTZZ_ 1 defines the jump times
of the PDMP. Thus, we have constructed the jump times of the PDMP by thinning
the process (Tj)r=0 With non-constant (and random) probabilities (py) such that py =
>\($Tk_)/;\($fk_7fk) is the probability to accept Tj. Note that the process (T})i>0 is
composed by pieces of independent Poisson processes (T,?), (Tk}), e (T,i), -

1.4 Jump rate bounds

In this section we introduce the different jump rate bounds considered in this paper,
namely, the optimal bound, the local bound and the global bound. The optimal bound is
particularly efficient in term of reject because it is as close as we want to the jump rate.

1.4.1 The global bound
We define the global bound by

X (u,y) = sup \(z), Yu=0,Vye E. (L8)
zeF
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By definition, this bound is constant and does not depend on the state of the PDMP nor
on time, we will denote it by A8'°. This bound is probably the most used and has the
advantage to lead to an easy implementation. Indeed, to simulate the jump times of the
PDMP we simulate a homogeneous Poisson process with jump rate A8 disregarding the
state of the PDMP. For v > 0 and y € F, the integrated jump rate bound is given by
A%lo(u) — X&loy and the inverse is given by (A%lo)_l(u) — /A8,

1.4.2 The local bound

We define the local bound by

MoC(u, ) := sup X (¢(s,y)), Yu=0,YyeE. (1.9)

s=0

By definition, this bound is constant between two successive jump times and has the
advantage of being adapted to the state of the PDMP right-after a jump. We will denote
it by :\loc(y). To each jump time of the PDMP corresponds a homogeneous Poisson
process whose intensity depends on the state of the PDMP at the jump time. For v > 0

and y € E, the integrated jump rate bound is /NXZOC(u) = (sups>0 A(zb(s,y)))u and the

inverse is given by (/N\lyoc)fl(u) = <u/ SUPg>0 (s, y)))

1.4.3 The optimal bound

Let P be a finite or a countable space, for i = 1,...,card(P), we note p; its elements.
Let us denote by (Pk)rep a partition of [0, +oo[ formed by intervals. Thus, there exists
ap,_,, ap;, € R such that P,, = [ap, ,,ap,[ with ap, := 0. We assume that ap,, , < a,
for i = 1,...,card(P). The partition (Pj)rep can contain at most one element whose
Lebesgue measure is infinite. Thus, if such an element exits, it is the last of the partition,

i€, | Ppcaracpy| = @ and, 'Ppi’ <o for i = 1,...,Card(P) — 1. We define the optimal
bound by
AP (u, y) == D" sup M(¥(s,y))1p, (u), Yu>0,¥ye E. (L10)
keP 5€Pk

By definition, this bound is piecewise constant between two successive jump times, thus
it is adapted to the state of the PDMP right-after a jump but also to the evolution in
time of the jump rate. To each jump time of the PDMP corresponds a non-homogeneous
Poisson process whose intensity depends on the state of the PDMP at the jump time
and on the flow starting from this state. For « > 0 and y € F, the integrated jump rate
bound is given by

APt () = Y sup A (s,))| Py o [0,1]
ke P S€Pk

9
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where ’Pk N [0, u]‘ represents the length (Lebesgue measure) of Py n [0, u]. The inverse,

(Agpt)il, is given by

i—1
- Sl e, Ao

rd(P)
o 1
(57 ; (s, Ay *Z’P’"

) 'ﬂpi,p,ﬁpi[(u)’

fori =1,...,Card(P). By convention, we set

where Kp; = 22:1 Supsepk )‘(7?(37 y))‘,Ppk
S0, P

As an example of partition let P = N, € > 0 and define P§ = [ke, (k + 1)e[. Note
that this partition is infinite. This is not a numerical problem since the time horizon
is finite (A is assumed positive, see section 1.2). Now, consider the optimal bound with
this partition (see section 1.7.2 for a numerical study of this bound). We emphasise that
the smaller the parameter € is the fewer rejected points are. This point is theoretically
illustrated by proposition 1.5.5. However, when € is too small, possibly many iterations
are required to compute A(.) and A~!(.), this will increase the computation time. We
will see in section 1.7.2 that taking e of order max,,(T,,+1 — T},) leads to the optimal
computation time.

Remark 1.4.1. The three hypotheses HI°, H'¢, H°P' (section 1.2) ensure that the

functions N, A% and (Az)fl are well defined, z € {glo, loc, opt}. Moreover, the numerical
tractability of the suprema involved in the different bounds follows from the characteristics
of the PDMP to simulate. We refer to section 1.7.1 for explicit formulas of these bounds
for two stochastic HH models. Also, hypotheses H'*® and HP! allow to implement the
algorithm 1 when the jump rate is not globally bounded.

= 0 and kp, = 0.

Remark 1.4.2. For the three jump rate bounds, the simulation is exact. In particular,
for all finite or countable P, that is, for any partitions of [0, 400[, the simulation remains
exact.

Remark 1.4.3. The choice of the bound depends on the PDMP we want to simulate. If
the jump rate does not vary very much in time, the local bound or the global constant
bound can be chosen but if the jump rate presents high variations in a small time interval,
the optimal bound is preferable in term of computation time.

Remark 1.4.4. The local bound and the optimal bound along the trajectory of the PDMP
(z¢) namely, 3¢ and 3°P!, are stochastic processes.
1.5 Efficiency of the thinning algorithm

In this section, we do not consider boundaries. We compare the efficiency of the thinning
algorithm in term of reject for the different bounds. The number of points needed to
simulate one inter-jump time of a PDMP in state x € E is given by

7%(x) = inf{k > 0 : Ukj\z(fk,l‘) <A (w(fk,$))},
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for z € {glo,loc, opt}, where (Uy,)n>1 is a sequence of iid random variables with uniform
distribution on [0, 1] independent of a Poisson process (Tk)r>1 with jump rate N*(t,z).
The randomness of a PDMP (x) is contained in the associated jump process ()

defined by
n =TT, T, <t<Thy1. (Ill)

Because T,, = inf{t > T},_1 : n— # m;}, the knowledge of (1¢):>0 implies the knowledge
of (Tn)n=0-

1.5.1 Comparison of the mean number of total jump times

In this section, the variables 77(z) for z € {glo,loc,opt} and = € E are called local reject.
In proposition 1.5.1, we show that the best local reject is obtained with the optimal bound.
The smaller the local reject the fewer pseudo-random variables have to be simulated.
Thus, the computation time using the optimal bound is expected to be smaller than with
the two other bounds.

Proposition 1.5.1. For all x € E, we have
E[r%(z)] < E[r"(z)] < E[r"°(x)].

Proof. Let x € E. From the definitions of the three bounds (1.8), (I.9) and (I1.10), we
have } ) 3
APt ) < MoC(z) < A&l°) vt > 0.

Recall that, for fixed x € E, 7°P%(z), 7°°(x) and 78°(x) denote the number of points
(or iterations) needed to simulate one inter-jump time of a PDMP (which is in state z)
by thinning using the upper bounds A°Pt, A\°¢ and A8l respectively. Thus, we can use
Theorem 2.2 (chapter 6) of [26] which gives a formula for the mean number of iterations
in a thinning algorithm for random variables characterised by a hazard rate. We obtain
the following equalities.

+
E[Tglo(m)] — j\gbf ” e 0 /\(w(sw))dsdt’
0

_ +00 "
E[TIOC(x)] _ )‘loc(x)f e 5o )\(w(s,x))dsdt’
0

+oo "
E[r%(2)] = J KOPY (8, ) So AW (o) s g
0

Since infiepinfs=o A(¢¥(s,2)) > 0, we have 0 < Sgoo e~ S0 AW@)dsgt < on and the
conclusion follows. ]

From Proposition 1.5.1, we deduce that E[N "] < E[N}¢] < E[N£*] where N7,
N/°¢ and thlo are counting processes with stochastic intensity S°Pt, 5°¢ and (8l respec-
tively.
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1.5.2 Rate of acceptance

We are now interested in the rate of acceptance, that is, the mean proportion of selected
points in an interval of the form [0, ¢] for ¢ > 0. Let (/V;) be the counting process of the
PDMP and (Nt) the counting process with generic jump rate (I.6). In proposition 1.5.2
we give an explicit formula for the rate of acceptance defined as E[N;/N;|N; > 1]. This
formula is valid for the three bounds A\°Pt, Al°¢ and A8 introduced in section 1.4. Note
that for k£ > 1

br = A(¢(Tk nk’xTn ))/A( nk’xTnk))

is the probability to accept the point Tj where T, denotes the last selected jump-time
before T}, and (T},) is defined by (L.7). Let J : R, — R, be the process defined by
Jt = Y=ot — Ti)l1<t<Ty,,- Thus, for t > 0, J; gives the age of the last selected
jump-time before t. Then, for k£ > 1, we can write the probabilities py as follows

Pk = )‘(1#(‘]7:;671 + gk’ nTk—l))/X(JTk—l + gk’ nkal)’

where S, = T}, — Ty and (1) is defined by (1. 11) The process (S, Xi.)p=0 where
X, = (JT N, ) defines a Markov chain on Ry x E where E = R, x E with Markov
kernel M deﬁned by

M (jo, z0; ds, dj, dx) = a(jo, xo; ds)Q(s, jo, xo; dj, dz),

where,
a(jo, xo: ds) = A(jo + s, zg)e ™ Yo Aot=z0)dz g

and,

AW (o + 5, 0))
)‘(]0 + SaCEO)at)

Qs, o vo; dj dr) = (1 - )i+ 0z (d2)+

Ao + s, 20))
A(jo + s, 20)

Q(W(io + 5.0). dz) o ().

The Markov kernel M should~ be understood as follows. Given that szo = (jo,xg) for
some ko € N (that is, at time T}, the age of the last accepted jump time is JTk = jo and
0

the state of the PDMP at the last accepted jump time is Ng, = x0), the next proposed
~ 0 B

inter-jump time Sj,41 has a density given by a. Then, conditionally on Si,+1 = s, we

accept or not this proposed inter-jump time according to the kernel ). More precisely,

we reject it with probability 1 — A(.)/A(.), in this case the age of the last accepted jump
time is updated, JTk = jo + s, and the state of the PDMP is not updated, N oy = T0-
0 0

If we accept it (with probability A(.)/A(.)), then the age of the last accepted jump time
is set to 0 and the state of the PDMP is updated according to the kernel Q.
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Proposition 1.5.2. Let (Ny)i=o be the counting process of the PDMP (x4) =0, (Nt)t>0
be the counting process with jump times (T)n=0 and M be the kernel of the Markov chain
(Sks J5,» 117, k=0, we have

B[ SN 1] =3 f 32 AUkt ¥ 84 D) | 7 Bt )
Ny P(Ne = 1) S nJ(mexe)" |2 AUk—1+ 8k, Tk-1)

X 1>y, i(dzo) M (0, xo; ds1, dji, dxy) ... M (Gp—1,Tn—1; dsp, djn, dxy,),

where ty, 1= Y"1 i, p is the law of ng, and the integration variables s, and (j.,x.) belong
to Ry and E respectively.

Proof. We provide a proof in two steps. First, we establish that, with an appropriate
conditioning, the conditional law of NV, is the conditional law of a sum of independent
Bernoulli random variables with different parameters. Then, we use this property as well
as the kernel M to compute the rate of acceptance.

Let n > 1 and let us define n independent Bernoulli random variables X; with
parameters p; such that

Mg, + Sisng, )
)\(JTFI + Si?nﬂ-,l)

pi =

Let X =3, X; and A, = {N; = n,p1,...,pn}. By noting that, for 0 < k < n, we
have

W=kt = U [0 <pt 10> pid] = (X = ko1, -opal

1< <...<ip<n ’L'EII::L ’LETZ

where I = {i1,...,ix} € {1,...,n}, T is the complementary of I} in {1,...,n} and
(U;) are independent random variables uniformly distributed in [0, 1] and independent of
(pi), we deduce that

L(Nt|Apn) = L(X|p1,- -, pn)-

In particular, E[N¢|A¢ ] = E[X|p1,...,pn] = 2y pi- Thus, one can write

N, - 1 1
E| 2N >1]=—— EfE[NL_]
[Nt’ ! ] P(N; > no Lt Ne=n

1
_ “E[E[N:|A || N; = n] P(N, =

B = 1) o LN Al = P =)

1 1

S oF =

P(N, > 1) & n ;p Ni=n
-1 1Ei~1~E[1~ 0ty St S I, |
PN =>1)An lzlpl =T, 200 | 15, 507, (M7 P15 - - -5 Ons I 5 10,
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Conditionally to (177:0, Sh, Jr s Mgy S, J7, snf, ), the random variable S,+1 is a hazard
law with rate S\(an +t,mg, ) for t > 0. Thus,

E[%?Nt > 1] = E”(]\Z})l);}l [zz:lpz oS Tn X(Jg, +umg, )dult Tn>0]
- P(N:Zl) ;1 %E[f(ﬁfo, S, S Ngys - , Sn, ‘]f’n’nfn)]’
where,
F(@0, 81,1, %15 -+ Sny Jns Tn)
. Sf) P en Z\(jn+u,xn)du1 LS a0 Zn] W(Ji1 + Siy T 1))'

5‘ ]z 1+ Si,Xi— 1)

Since (S, J5, 07, Jk=0 is a Markov chain with kernel M, we obtain

E[f(nfovglw'wsnv‘]’f 777Tn):| :J ~ nf(xovslajhxl"'78117].71,)1'”)
(Ry xE)

M(d$U)M(Oa Zo; dSl, djla d$1) cee M(jnfly Tn—1; dSn, d]na dl’n),
where 1 is the law of 7z . Thus, we have the result. O

When ) is close to A, the rate of acceptance is expected to be close to 1. As an example,
consider the case of two Poisson processes (N;) and (Ny) with intensity A(t) and A(t)
respectively such that )\( ) = A for all ¢ > 0. Thus, forn =1, Si,...,S, are independent
exponential variables with parameter X. Let us also consider that /\(t) ~ X fort > 0. In
this case, the rate of acceptance is

N; - t (s1+.. +S7z))
E[ﬁt“\ft > 1] - e_/\t Z J Lizs 4. qs,(dsy), ..., a(dsy,),

n=1

where Of(dS) — Xesds. Since, T,, = Si + ...+ S, is gamma distributed with parameters
n and A\, we have

Ny < 1 St 1 )™ 5
BB O 1 - [l SV PUSEL S g A Y
Ny 1—e M 5 T l-etMim

1.5.3 Convergence of the counting process with a specific optimal bound
as jump rate

We first show, in proposition 1.5.3, that (Tx)x=0 (defined in section 1.3) is a Cox process
with stochastic jump rate (¢, x;) — A(x¢). Details on Cox processes can be found in [52].
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Proposition 1.5.3. The point process

ot = D) 17

n=0

is a Cox process directed by the random measure p such that u([0,t]) = SS(B(S,I'S) -
Azs))ds.

Proof. Let us first note that for ¢ > 0, and, from (1.6) and (I.3), we have

B(t, ) = 3 [t =T or,) = AW = T op,)) 17, <m0

n=0

The Laplace transform of a random measure completely characterises its distribution
(see in [19], the discussion p.57 after Theorem 9.4.IT). Moreover, the Laplace transform
of a Cox process is given in [52], chap 12. Thus, we show that for any measurable and
non-negative function f, the Laplace transform of ¢ satisfies

E[e /] = E[e #(1~¢ )], (1.12)

where f = § fd¢. Let f be a non-negative measurable function. Let us note fr(t) =
f(t)li<r for T > 0. Thus, limp_,o fr(t) = f(t) with fr increasing with T. Then, by
Beppo-Levi Theorem, £fr /7 &f and e ¢/7 N\, e7¢f when T goes to infinity. Moreover,
e ¢/ < 1, thus by Lebesgue dominated convergence Theorem

E[e~%/7] - E[e~%/].
With the same type of arguments, we show that
E[e #(1~¢7)] o e+,
Thus, it is sufficient to show (I.12) for functions fr. We have

E[e_EfT] — E[e_ anl fT(Tn)]

= Y E[e” 2wz 1T | Ny = KJP(N = k)
k=0

k
[ H n>l fT Tn)lT <Tn<T 41 |NT e k‘ (’r]t) T]|NT = k]P(NT = k)

k=0

By the thinning procedure, the points T, in [T;, T;11[ may be written as T; + Tf
for some [ > 1 where (7}');>1 is, conditionally on (7}, z1;), a Poisson process with jump
rate A(t — Tj, o1,) — AN (t — Ti,z7,)) for t = T;. Since (T});>0 is independent of (T}) for

- anl fT(Tn)
&

i@ # j, the random variables X; := Ti<Tn<Ti+1 are independent conditionally
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on (n)o<t<r- Moreover, the Laplace functional of a Poisson process £ with intensity u
verifies E[e~¢/] = e=#(1=¢"") Thus, we obtain

k i
- > Tn)l . <T. .
E[e~¢/7] = E E[ | | Ele Zoz TNy ar <r, |N7 =k, (nt)ost<r]|NT = k]P(NT = k)
k>0 i=0

Z B —Zi\g) (1—€7fT<S)1Ti<s<Ti+1)(x(S—TMETi)—>\(1/1(S—Ti7$Ti))>
e
k=0

[67 Y=ol (1*6#7"(5)) 17, <s<Typq (S\(S*Tz‘nyTi)*A(Tli(S*Tz‘,wTi))) ds]

ds
Ny = k;]IP(NT — k)

O

Now, let P =N, € > 0 and let (P})ken be the partition such that Pj = [ke, (k + 1)e[
for k € N. Let us denote A\°P%¢ the optimal bound with the partition (Pf)ren. In this case
we have,

XPYE () = D0 sup A8, 1) L e, (k1) (1) (1.13)
k>0 s€lke,(k+1)e[

Moreover, we note 3°PY¢(¢, z;) the jump rate bound along the trajectory of (z;) and
we note (Nf pt’e) the corresponding counting process. The number of points needed to
simulate one inter-jump time of a PDMP in state z € F with this particular optimal
bound is noted TP¢(x).

We show, in proposition 1.5.4, that the counting process (NtO pt’s) converges in distri-
bution when e goes to 0 to the counting process (IV;) of the PDMP. Finally, proposition
1.5.5 states that the smaller the parameter e the fewer points have to be rejected. We
begin by a lemma.

Lemma 1.5.1. We have the following uniform convergence

sup sup |/~\Opt’€(3a z) — A (s, 2))| 0 0,

zel s=0
where \°Pb< is given by (1.13).

Proof. For n > 0 we set € = 1/n, thus,

j\opt,l/n(t’;p) = sup A5, 2)) Lo/, (k+1) /[ (E)-
ése[k/n7(k+l)/n[ i [

Let M = sup,cpsupy>g ’%(1/}(3@))’, v>0,N=[M/vland n > N. Let x € E and
t = 0, there exists [ = 0 such that ¢ € [I[/n, (I + 1)/n[. Thus,

gy = sup A(w(sa).
s€[l/n,(14+1)/n[
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Let to € [I/n, (I + 1)/n] such that sup.ep/n, 141y MY (8, 7)) = A(%(to, )). The applica-
tion of the mean value inequality to the function ¢t — A(¥(t,x)) gives

(AW (to, 2)) = AW(t, z))| < Mlto —t| < M— <.

1
n
The conclusion follows. O

Proposition 1.5.4. Let (N;) be the counting process of the PDMP (x;). For (NS7%)
defined above, we have the following convergence in distribution

Nopt,e — S N.

e—0

Proof. In order to show the convergence in distribution of N°P%¢ toward N when € goes
to 0, we show the convergence of the Laplace transform of N°Pt¢ toward the one of N (see
[16] Proposition 4.13, p.99 for example). More precisely, for all non-negative measurable
function f, we show that

]E[e—gfd]\?‘)pt’f] N ]E[Q_Sde]-

e—0

Let f be a non-negative measurable function and let T' > 0, following the same
arguments as in the beginning of the proof of proposition 1.5.3, it is sufficient to show
the convergence of the Laplace transform for functions fr(t) = f(t)1s<r. Let (T¢) be
the points of the process N°Pt¢. We have

E[e~ $/TaN") = E[e~ Znzo /7(T3)]
= E|E[e™ 2020 70| () o<y
_ E[e_2n>0 Ir(T)E[e= Snzo fT(TZ),(m)OggT]}
where (T",) denotes the rejected points. Since (T%,) is a Cox process with stochastic jump
rate SPY¢(t, x1) — A\(x¢), we obtain
E[e$/raNort) = E[e* Ynso fr(Tn) o= S(lfe’fT“))(BOp“‘(s,xs)*/\(ws))dS]_

Since e~ Znz0/1(Tn) o= J(1=e~ TN (FP(s,25)=A(@5))ds < 1 we obtain, by Lebesgue dom-
inated convergence Theorem and by continuity of the exponential, that

lim E[e™ SdeNOpt’e] -F [e_ Snz0 F7(Tn) Glimeo § —(l—e_fT(S))(ﬂo"t’e(s,ﬂcs)—/\(ms))dS] ‘
e—0
Moreover, we have

~Tsupsup (AP (u, y) — A\ (u,)) ) < f (1= e Fr) 8PV (s, 2,) — A(wy))ds < 0,

yeE u=0

Where X°PH€ is given by (1.13).
By lemma 1.5.1, we obtain that almost surely elimeno § —(1—e=IT())(BPL(@y,5)=A(ws))ds —
1. The conclusion follows since E[e_ 2in>0 fT(Tn)] = E[e*SdeN]. ]
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Proposition 1.5.5. For all x € E, we have

E[T‘)pt’g(:v)] — 1.

e—0
Proof. Let x € E and € > 0. From theorem 2.2 in chap.6 of [26], we have

+00 "
E[Topt,e(x)] _ J;) /\opt,e (t, .1‘)6_ So )\(w(s,z))dsdt’

Where X°PH€ is given by (1.13).
From theorem 2.3 in [26] chap.6, we deduce that

By Lemma 1.5.1, we obtain

lim E[7°P%¢(z)] < 1.

e—0

Since E[7°P%¢(z)] = 1 for all € > 0, the conclusion follows. O

1.6 Hodgkin-Huxley models

In this section, we introduce two deterministic Hodgkin-Huxley models and their stochastic
versions, namely, the subunit model and the channel model.

1.6.1 Deterministic Hodgkin-Huxley models

In the celebrated paper [47] Alan Lloyd Hodgkin and Andrew Huxley proposed a determin-
istic model to explain the ionic mechanisms underlying the initiation of action potentials
in the squid giant axon. They pointed out that the initiation of action potentials relies
on three types of channels (sodium, potassium, and leak) which allow the transfer of
ions across the membrane. A sodium (potassium respectively) channel is permeable
to sodium ions (potassium ions respectively) only and is composed by three activation
gates represented by the variable m and one inactivation gate h (four activation gates
n and zero inactivation gates respectively). Leak channels are always open and allow
all types of ions to pass the membrane. The gates are either open or closed and we
say that a channel is open when all its gates are open. The classical four-dimensional
Hodgkin-Huxley model is the following set of nonlinear differential equations.

C’% = I(t) — I,(v) — Ina(v,m, h) — Ix(v,n),

G = (1= m)am(v) —mbn(v),

9 (1 By (v) hm) (L14)
= (1= n)an(v) — nBn(v).
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In this model, a channel is modelled by the gates that compose it. The R valued
function v represents the membrane potential (voltage). The [0, 1] valued functions m,
h, n correspond to the probability of a gate of type m, h (for the sodium) or n (for the
potassium) to be open. The functions a, and 3, for z = m, h,n are opening and closing
rates of gates z respectively. I is a time-dependent function which represents the input
current, C' is the membrane capacity. For z € {Na,K,L}, I, = g,(v — v,) represents the
ionic currents where gna = gnam°h, gk = gxn* and g, = gy, are the conductances of
the sodium, potassium and leak respectively. Thus the constants gy, gn,, Gk are the
conductances when all the gates are open and vy, vnNa, Uk are the resting potentials.

Now consider a channel in itself. Let Enx, = {moho, m1ho, maho, mshg, mohi, mihq,
mahi, mshi} be the set of the possible states of a sodium channel and Fx = {ng, n1, ng, ng,
n4} be the set of those of a potassium channel. The fourteen dimensional Hodgkin-Huxley
model is given by the following set of nonlinear differential equations.

O = I(t) — I,(0) — Ina(0,752,,) — Ik (0,7K),

d Na R R

= DicEn ik Prk @)1 — PR3 (0)7p®, Yk € Exa, (1.15)
dvK . N

T = Diecgr PO — Pl @,V € P

The [0,1] valued functions v3® for k € Ex, (7K for [ € Ex respectively) represent
the probability of a sodium (potassium respectively) channel to be in the state k (state
[ respectively). For all (i,7) € Ena X Ena (Fx X Ex respectively), the function pyja
(pzlfj respectively) is the transition rate from state i to state j for a sodium (potassium
respectively) channel. The possible sodium (potassium respectively) transitions are given
in Figure (I1.2) below ((I.3) respectively). For example, pyj‘ = 3ayy, if i = moho and
j =mihg and pfj = ay, if 1 = n3 and j = n4. In this model, the functions v, I, I, INa
and Ik and the constant C have the same meaning as in (I.14) but, the conductances of
the sodium and potassium are now modelled by gn, = gNa'yﬁzhl and gg = EK%I;. Note
that the conductance of the membrane depends on the probability of a channel to be
open.

These models describe the electrical behaviour of a neuron with an infinite number
of gates or channels. Thus, they do not reflect the variability observed experimentally.
Note that, if a binomial relation is satisfied between the initial configuration of gates
and channels and if v(0) = 9(0), then, the two models provide the same potential (i.e.
v(t) = v(t), for all t = 0), see [67]. Figure 1.1 is obtained with the following set of
parameters.

0.1-0.01 2.5—0.1
Oén($) = ex(p(l—O.GC)B)—l’ Oém(.%') = exp((2.5—0.1:;3))—1’ ah(x) = 0.07 eXp(_2£0>7

Bn(x) = 0.125exp(—55), Bm(z) = dexp(—1%), Br(@) = spEoTaTT
Via = 115, gna = 120, Vi = —12, gk =36, Vi =0, g, =03, C=1.
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90

l‘:)etermi‘nistic H(‘)dgkin-l‘-luxley r‘nodel

potential

=20 | | | | | | I I I

time (msec)

Figure I.1 — Simulated trajectory of the deterministic four-dimensional Hodgkin-Huxley
model. The value of the parameters is given above and I(t) = 301 (%)

1.6.2 Stochastic Hodgkin-Huxley models

Neurons are subject to various sources of fluctuations, intrinsic (from the membrane) and
extrinsic (from synapses). The intrinsic fluctuations are mainly caused by ion channels.
To take into account these fluctuations in the models, we fix a finite number of gates
or channels and replace their deterministic dynamic by stochastic processes. Here, we
discuss two stochastic models, the subunit model and the channel model. These models
belong to the class of Piecewise Deterministic Markov Processes. In the sequel we denote
by V the stochastic membrane potentials of the subunit model and the channel model as
opposed to the deterministic ones denoted by v and ¥ (see 1.14 and 1.15 respectively).

The subunit model

The subunit model is obtained by considering that the conductance of the membrane
depends on the empirical measure defined by the proportion of open gates. We denote
the number of gates of type m (respectively h, n) by N,, (respectively Np, N,). Let
us consider that each gate is represented by a {0, 1}-valued Markovian Jump Process
(MJP) noted u,(f) for z =m,h,nand k = 1,...,N,. State 1 corresponds to the open
configuration and 0 to the closed one. The opening and closing rates which depend on the
voltage are noted o, (.) and f3,(.) respectively. The dynamics of a gate can be represented
by the following diagram.

0 1. (1.16)
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We consider that all MJPs are independent conditionally on V4, the value of the potential
at time ¢, and we define the number of open gates z at time t by

N
09 (t) = > u ().
k=1

Furthermore, let Ogy, = {0,..., Np} x {0,..., Ny} x {0,..., N} be the state space of
the process 0; = (9(") (t), 00 (t), 6" (t)) which records the number of open gates at

time t. Note that, N, — #(*)(t) gives the number of closed gates z at time t. The subunit
model takes the following form

dVy __ rsub
(S) { (C(etﬂ)lf f (etv‘/bt)y

where,
PO,V = 1)~ 3V — Vi) — G N (607 ) N 000 (v — Vi)
— g N4 (9<">)4(v ~ V).
We also define the jump rate of the process by
A9, V) = (am(V)(Nm — gy 4+ 5m(V)9<m>) n (ah(V)(Nh gy 4 ,Bh(vw(h)) +

(an(V)(Nn — o) ﬂn(V)G(”)).

The membrane potential is continuous thus the transition measure Q" is only concerned

by the post-jump location of the jump process 6. For example, the probability of the

event of exactly one gate n opens (conditionally on the last jump time being T}) is given

by

(V) (N — 00 (T3_1))
/\SUb(aTk—lﬂ VTk)

qub ((GTk—N VTk)7 {ng—l + (17 0, 0)}) =

To summarize, the subunit model can be expressed as a PDMP z5"° = (6, V;,t) €
Ogupb X R x Ry with vector field fS“b : Ogub X R X Ry — R, jump rate o L xR —
R, and transition measure Q%" : Oy, x R x B(Ogy,) — [0,1]. The subunit model
converges to (I1.14) when the number of gates goes to infinity [67].

The channel model

In the channel model we denote by Ny, the number of sodium channels and by Nk the

number of potassium ones. We define MJPs u,(cNa) for k =1,..., NNna (respectively u,gK)
for k =1,..., Nx), conditionally independent on V;, to model the sodium (respectively

potassium) channels. The dynamics of these MJPs can be represented by the diagrams
in Figures 1.2 and 1.3.
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Sa m 20('"1 Qm

mohg —— mihgy —— m2hy —— mgzhy
Bm 20Bm 3Bm
T T S
3aum 20um m
mohy (a:> m; h, é mahy a: mgzhy
Bm 2Bm 3Bm
Figure 1.2 — Sodium (Na) scheme
4oy, 3an 20, Qn
o —_— n; —_ o —_ ng —_— ny
Bn 20n 306n 4B

Figure 1.3 — Potassium (K) scheme

The conducting state (the state that makes the channel active) of sodium (respectively
potassium) channels is {mghi} (respectively {n4}) which corresponds to three open
gates m and one open gate h (respectively four open gates n). The conductance of the
membrane depends on the empirical measure defined by the proportion of active channels.
We define the number of active channels at time ¢t > 0 by

NNa NK
Q(mShl)(t) = Z 1{m3h1}<u,(€Na) (t)>, 9(n4)(t) = Z 1{n4} <ul(<:K) (t)>
k=1 k=1

Fori=0,1,2,3and j = 0,1, let #(™"3) be the number of channels in state {m;h;} and for
k=0,1,2,3,4, let #(™) be the number of channels in state {ny}. Let Ochan be the state

space of the process ; = <(9(mihﬂ' )(t))igs (0(”k)(t))k) which records the configuration of
the channels at time ¢t. The state space is defined by

3 1 5
Ochan = {0 € {0,...,Nna}® x {0,..., Nx}® : Z Z 9(mihs) — Ny, Z o) = N}
i=0 =0 k=0

The channel model takes the following form

C4t = fehan(g, Vi 1),
©) { (9;)!% o

The vector field is given by
FERO, V1) = 1(8) = Gu(V = VL) = InaNya 07" (V = Via) = e Ni 00 (V = V).

A change in the configuration of the channels happens when a gate opens or closes. We
define the application 7 : Ochan — Osup Which, given a configuration of channels, returns
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the configuration of the corresponding gates. We have

0(m1) 4 29(n2) 4 39(n3) 4 49(na)
n(0) = | lmiho) 4 29(maho) 4 39(msho)  glmiha) 4 og(mahi) 4 gg(mahi)
gmoh1) 4 gmih1) | g(mah1) 4 g(mshi)
The first component of the vector n(0) contains 07, the number of open gates n, the
second 6, the number of open gates m and the third Ggpen, the number of open gates
h. Thus, for z = m, h,n, 073, (t) = N. — 05,.,(t) gives the number of closed gates 2 at

time ¢. We define the jump rate of the channel model by
ARG, V) = X (n(6), V),
where,
N2(3(0), V) = (m(V) (N = Oopen) + Bon (V)0 )
+ (n(V) (Vo = Open) + Bu(V )0
+ (n(V) (Vo = Bpen) + Ba(V) i)

Since V is continuous, the kernel Q" is only concerned by the post-location of the
process 0. Defining Q"®* classically done in the literature ([70] p.53 and [60] p.587)
is computationally expensive because we have more transitions to deal with than in
the subunit model. We propose to decompose the kernel Q"" into a product of two
kernels. The decomposition is based on the following observation: it is a change in the
configuration of the gates that implies a change in the configuration of the channels. Thus,
to determine which transition occurs at time ¢ among the 28 transitions given above,
we first determine which gate opens or closes by using the kernel Q%" with A**®(n(.),.)
and then, depending on which gate changes state, we determine a channel transition by
using another kernel. For example, suppose that at time ¢ a gate m opens, thus, the
possible channel transitions are: {moho — miho}, {miho — maho}, {mahy — msho},
{moh1 — mih1}, {mih1 — maohi}, {mah1 — msh;} and the next transition is one of
those. We define six kernels to take into account all the possibilities.

Let Lobens Lioses Lgpen, LYo Lipens Liiose Pe kernels defined on Ocpan X R x B(Ochan )
with values in [0, 1] such that L}, is the kernel which chooses a transition as above,
Lf)”pen is a kernel which choose a transition among the following ones {mohy — mohi},
{mihg — mih1}, {ma2ho — maohi}, {msho — mshi} and so on. For example, the
probability of the event of having the transition {mohg — miho} (conditional on the last
jump time being T}) is given by

QU (01, Vi), 10m,_, + (—1,+1,0,...,0)})
:qub ((77(9ka1)’ VTk)a {77(9ka1) + (O> L, O)}>
% Linen (0115 Vi), 101, + (<1,41,0,...,0)}).
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where,

QSUb ((77(0ka1)7 VTk)7 {77(9Tk,1) + (0, 1, 0)}) — O;T:u(b‘sz()e close)(I;fYTl)) ’
(m

30(moho)(Ty,_ )
eclose(Tk 1)

Finally, the probability of having the transition {mohgo — mihg} is, as expected, given
by the rate of this transition multiplied by the number of channels in the state {mgho}
divided by the total rate.

For xz € F, the support K §han of the discrete measure of probability Q2 (z, .) contains
at most 28 elements (depending on the current state z), thus, in the worst case we have
to do 28 "if — then" tests to determine the next transition. With the decomposition
of Q"1 we have, in the worst case 12 "if — then" tests to do. Indeed, for x € F the
support KS"™ of the discrete probability @**P(n(x),.) contains at most six elements, and
the support of the probabilities Ly, (@, ), Ll (2, ), ijpen( Oy LM (2, Lipen (T, ),
L7 s (z,.) contains also at most six elements (When we deal with a transition of a gate

m). Therefore, it is computationally cheaper to decompose the kernel.

Thus, the channel model can be expressed as a PDMP x"han = (0, Vi, t) € Ochan X R x
R, with vector field f"2" : Qgan x R x Ry — R, jump rate A" : © ., x R — R, and
transition measure Q" : O gan X R X B(Ochan) — [0,1]. The channel model converges
to (I.15) when the number of channels goes to infinity [67].

LngLJeII((HTk—l’ VTk)’ {eTk—l + (_17 +1,0,... 70)}>

Explicit flow between two successive jump times

In this section, we determine the explicit expression of the flow of both models. For
n >0, t>T, and z € {sub, chan}, the trajectory of the flow ¢ on [T}, +0[ is given by
the following ODE.

{ WUPrt) — f2(6r,, §(t — T, om,),t) = —az(t — To,or,) + b + &1(2),
¢(0,$Tn) = VTn)

where,
sub _ 1 3(p(m) 3 -1 (h) (n) 4
a® = 5 (g + gvalV, (9 (Tn)) oM (T,) + g N, (9 (Tn)) ,

1 3 4
by = c <9LVL + gnaVaa N, <9(m)(Tn)) N 0T + gk VN, (0(”)(Tn)> ) ’
a‘;Lhan = % (gL + gNaN{I;@(m:”hl)(Tn) + gKNIZ19(n4)(Tn)> ;

1
chlhan _ C (gLVL JFgNaVNa 19(m3h1)( )+ gKVKN 16(”4)( )) .

Then, the flow is given by

n

z t
¢t — Ty, xp,) = e % (t=Tn) [VT + S—Z(eai(t*Tn) —-1)+ éf eai(S*Tn)I(s)ds]. (I.17)

n
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For both models we consider that the stimulation I takes the form I(t) = K1, 4,)(?)
with K > 0 and t,t1,t0 € Ry.

1.7 Simulations

We now proceed to the simulations of the subunit model and the channel model using
the algorithm 1. Firstly, we explicit the three bounds for both models. Secondly, we
numerically compare the efficiency of the bounds in term of reject and computation time.
Finally, we use the algorithm 1 to compute a variable of biological interest for both
models.

1.7.1 Determination of the jump rate bounds

For simplicity of presentation, we do not distinguish in the notation the flows of the
subunit model and those of the channel model, one has to use a*** and b*“® for the subunit
model and a®"*™ and b°"*" for the channel model. The determination of the bounds relies
on the fact that «a,,, oy, Bp are increasing functions, B,, Bm, ap are decreasing, and that
for n > 0, the flow (I.17) is bounded.

The global bound

To determine the global bound we use a result in [11] concerning the channel model which
states that if Vy € [V_, V4], then, V; € [V_,V,] Vt = 0, with, V_ = min{VNa, Vk, V1}
and V. = max{Wna, Vk,V1}. By using the monotony of the opening and closing rate
functions, we find

A = Nt (V) + NiBh(Via) + Noom (Viva).-

The result in [11] is also applicable to the subunit model and leads to the same expression
of the global bound for this model.

The local bound

Let n > 0 and t > T},. To determine the local bound, N°¢(xr, ), we write the flow (1.17)
as follows,

¢(t - meTn) = fn(t) + gn<t)7

where,

b
— o—an(t=Th) 20 pan(t=Tn) _
fult) = e (Vi + e D),
1 t
gn(t) = e~ an(t=Tn) — e“”(sz")I(s)ds.
CJr,
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The purpose is to determine a lower and an upper bound of (I.17). We have a,, > 0,

b, may be negative or non-negative, and f,, is monotone. By using the fact that, V¢ > 0,
I(t) < K, we find

Vo, < ¢t —Ty,z1,) < Vo, (L.18)

where, V1, = Vg, v 2—2 + CLan, and V., =V, A ba
Then, by using the monotony of the opening and closing rate functions we obtain

Ne(or,) =(am(V,) (N = Onen(T0)) + B (Vr, )i (T2))
+ (ah(ZTn)( h — eopen( )) + lBthn) open(T ))
+ (n(V5,) (N = O (T) + (Vo )0ipen(Tn) )

The expression of the local bound is the same for the channel and subunit model but
the Markov chain @ is different.

The optimal bound

Let n > 0. We consider two partitions of [0, +00[. The first one is the same as in section
1.5.3 which is noted, for fixed € > 0, (Pf)ren. We recall that, for k € N, Py = [ke, (k+1)¢[
and that, in this case, the optimal bound is given by

NP, g, ) = D0 sup A8, 21,)) L ke, (s 1)e] (1)
kzose[ke,(kJrl)e[

For k € N, we have

sup A (s, 21,)) = (V) (Non = gt (T)) + B (V)0 (T0) ) +
SEPE
+

( (Vke)(Nh Hopen( )) + 5h(VT ) open(T ))
(@n(VE) (N = B (To)) + Bu(VE) 0l (T0) )

where,
k€ Tn+(k+1)
Ve = fo Ty + ke) v fo (T + (b + 1)) + ek J et (=) [(5)ds,

T +ke
Kl';; = fu (T + ke) A fr (T + (k4 1)e) + ea”(k“)ff e (s=Tn) (5)ds.

n

The integrated optimal bound is given, for v = 0, by

ASPYE(yy) = Z sup A(w(s,xTn))[(kJ +1)e Au—ken u]

T,
" k>0 s€PE
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Its inverse is given by

~onte) 1 U — €2£;i SUp sepe AW(s,z1,))
(R) 0= B (A leany T 07D et @)

p>1

where, kp = €>h_, SUP gepe A% (s, z7,)) and, by convention, kg = 0.
The second partition is obtained for P = {0,1} and is noted (Qf,)kep where Qf = [0, €[
and Qf = [e, +o0[. In this case, the optimal bound is given by

NP (u, 2, ) = Sﬁ)p[/\(w(s, 21,)) Ljo0,ef () + N (27, ) L, oo (1)
s€[0,e

The integrated optimal bound is

APY (1) = sup A(@(s,z7,))(e A w) + NC(27, ) (u — € A w).

T,
" s€[0,¢[

The inverse is given by

Aopme -1 _ u 1
( xT”> ) SUPsefo,of A (s, 77,,)) Ocsupucgo, Mo ) ()

(1 W) g "
)\IOC('ITn) [E SupsE[O,e[ (7/1(57517’1‘”)),-‘1-@0[

Once again, the expression of the optimal bound is the same for both models but the
Markov chain is different. We precise that we used the local bound to define the optimal
bound with the partition (Qf”’ﬁ)ke{o,l}.

Note that, for n = 0, it is possible to define an €, which is "adapted" to the inter jump
time T;,+1 — 1T,. To determine such an ¢,, we use the bounds of the flow in inequality
(I.18) to define a lower local bound, A(zT,), as follows

Awr,) = (@n(Var, ) (Non = ten () + Bon (Ve (T2)
+ (an(V1, ) (N = Olen (T0)) + Bu(Vr, )0en(T2))
+ (Vo )(No = en (T0)) + BV, )ipen (T2) ).
We note (T,,)n>0 the corresponding point process. Then we have

0.05 = P(Tps1 — T > €n) S P(Lyiq — L, > €,) = e~ 2@T),

—log(0.05)

We take €, = Aan) Note that €, is in fact adapted to the inter jump time 7', ,; —T',,.

1.7.2 Numerical results

In this section, we numerically compare the three different jump rate bounds (I1.8), (I1.9),
(I.10) and we use Algorithm 1 to simulate a variable of biological interest, the spiking
time.
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Numerical comparison of the jump rate bounds

In this part, we first show trajectories of the two stochastic Hodgkin-Huxley models
obtained with Algorithm 1 using the optimal bound with the partition (Pf)gen. Then,
we collect in several tables and graphs the results concerning the computation time and
the rate of acceptance of both models for the three types of bounds.
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Figure 1.4 — First column : subunit model. Second column : channel model. Vertical red
rows are the standard deviation of the spiking times (see section 1.7.2).

In the sequel, for € > 0, the optimal-Q° (respectively optimal-P¢) bound denotes the
optimal bound using the partition (Qf)refo,1} (respectively (Pg)ren), see section 1.7.1.
All numerical values are obtained from a classic Monte Carlo method with 100 000 trials.
Parameters of the models are given in section 1.6.1 (the same set of parameters is used
for both models). We denote by Ncpan the common number of sodium and potassium
channels, Nehan = NNna = Nk. The input current is I(¢) = 301(; 9)(¢). The computation
time represents the time needed to simulate one path of the PDMP on [0,10]. The
simulations were carried out on a computer with a processor Intel Core 15-4300U CPU @
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1.90GHz x 4. The code is written in C++ language.

Each rows of Figure 2 shows fifty trajectories of the subunit and the channel model
with a different number of channels, N, = 30, 300, 3000. It allows to see the different
behaviours of the two models. In each rows, we see that the behaviour of the channel
model is more erratic than the subunit model one (except for the third row where the two
models have approximately the same behaviour). Differences in trajectories are mainly
explained by two distinct modelling approaches of the conductance of the membrane. In
the subunit model, we consider that the conductance at time ¢ depends on the fraction
of open gates at time t, thus, the equation of the voltage changes rapidly at the same
time as the state of the gates. In the channel model, the conductance at time ¢t depends
on the fraction of active channels at time ¢, therefore, a change in the state of the gates
may not imply a change in the voltage’s equation. Thus, the dynamic of the membrane
potential changes less than in the first case and trajectories are more irregular. We also
see that, the higher the number of channels the smaller the differences in trajectories. It
illustrates a result in [67] where the authors showed that the deterministic limit (when
the number of channels goes to infinity) of the variable V' of both models are the same.
However, it seems that the convergence speed is not the same.
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Figure 1.5 — Computation time and rate of acceptance with the optimal-P¢ bound as a
function of the parameter e.

Concerning the optimal-P¢ bound, we see on Figure 1.5 that in both models, the

smaller ethe fewer rejected points. It illustrates the fact that N¢ converge to N when e
goes to 0 (proposition 1.5.4). Figure 3 also shows that, for fixed Nepan, the computation
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Figure 1.6 — Computation time and rate of acceptance with the optimal-Q° bound as a
function of the parameter e.

time varies with €. For both models, the value of € which minimizes the computation time
is inversely proportional to the parameter Nepan. Let €(Ncpan) be that optimal value of e.
For increasing € > €(Ncpan), the rate of acceptance decreases, thus, we have to simulate
more and more uniform pseudo-random variables and the computation time increases.
For decreasing € < €(Nchan), the rate of acceptance increases but the computation time
too because of the increasing number of iterations needed to compute the integrated
jump rate bound and its inverse. Thus, one has to take a small (respectively large) e
when the jumps frequency is high (respectively low).

We see on Figure 4 that, the smaller ¢ the closer the rate of acceptance of the
optimal-Q° bound to the one of the local bound. Note that the value of ¢ which maximises
the rate of acceptance is the same which minimizes the computation time. As in the
case of the optimal-P¢ bound, the optimal value of € is inversely proportional to Nepan.
For decreasing € < €(Nchan), the rate of acceptance decreases and the computation time
increases because we mainly use the local bound, N°°(x7, ), instead of the smaller bound,
SUPgefo, AM(¥ (8, 27,)), in the computation of APt and (A°PE€) =1 (see section 1.7.1). For
increasing € > €(N¢han), the rate of acceptance decreases and the computation time
increases because the bound supepo [ A(¥(s, 21, )) becomes bigger and bigger.

By comparing the optimal-Q*@enan) and the optimal-PNevan) bound we see that the
first one is the most efficient in term of computation time, it is also the simplest to
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implement. However, this bound does not exist when the jump rate or the flow is not
bounded. In this case, one may use the optimal-PcNenan) bound which is efficient too but
a little bit more complex to implement.

From Figures 3 and 4, we see that for both the optimal-Q° and the optimal-P¢ bounds
the best computation time is achieved for €(30) = 0.1, €(300) = 0.01 and €(3000) = 0.005.
We saw in sections 1.6.2 and 1.6.2 that the subunit model and the channel model share
the same jump rate. For both models, the maximum value of the inter-jump times is of
order 10! for Ngpan = 30, 1072 for Ngpan = 300 and 1073 for Nepan = 3000. It coincides
with the values €(Nchan) which, in this case, confirm that the optimal computation time
is obtained for € of order max,, |T,,+1 — Tp|-

Table 1.1 — computation time and rate of acceptance for Nepan = 30. The lines ODE
represent the algorithm in [70] with h = 1072 for both subunit model and channel model.

Model Bound computation time (sec) | rate of acceptance
Optimal-Q¢r 0,003 (£8.1077) 0,857 (+2.1073)
Channel Local 0,008 (+6.1079) 0,141 (£2.1073)
Global 0,012 (£3.1079) 0,065 (+6.107°)

ODE 0.009 (+1.1077)
Optimal- Q" 0,016 (£1.1079) 0,88 (+1.1073)
Subunit Local 0,050 (£2.107%) 0,22 (+1.107%)
Global 0,12 (£3.107%) 0,061 (+2.107°)

ODE 0,016 (4+2.1077)

Table 1.2 — computation time and rate of acceptance for Nepa, = 300. The lines ODE
represent the algorithm in [70] with h = 10~% for both subunit model and channel model.

Model Bound computation time (sec) | rate of acceptance
Optimal-Q¢~ 0,030 (£3.107°) 0,962 (4+9.107°)
Channel Local 0,050 (+1.107%) 0,223 (+3.107%)
Global 0,120 (£3.107%) 0,062 (£7.107)

ODE 0.094 (£+1.1079)
Optimal-Q¢r 0,148 (£5.107%) 0,957 (4+9.1079)
Subunit Local 0,244 (£1.1073) 0,237 (£8.107°)
Global 0,322 (£2.1073) 0,061 (+1.107°)

ODE 0,157 (£1.107)

Tables 1.1-1.3 show results of the computation time and of the rate of acceptance
of the thinning algorithm for the global, local and optimal-Q bounds using both the
channel and the subunit models with different values of the parameter N¢pan. For both
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Table 1.3 — computation time and rate of acceptance for Nepan = 3000. The lines ODE
represent the algorithm in [70] with h = 1075 for both subunit model and channel model.

Model Bound computation time (sec) | rate of acceptance
optimal-Q" 0,296 (£3.1073) 0,965 (£2.107°)
Channel Local 0,474 (+6.1079) 0,236 (+3.107°)
Global 1,184 (+£2.107%) 0,060 (£3.1077)

ODE 0.940 (+5.107%)
Optimal-Q¢r 1,471 (£3.1072) 0,964 (4+9.1079)
Subunit Local 2,478 (£4.1072) 0,238 (£7.1079)
Global 3,315 (+3.1071) 0,060 (+9.107%)

ODE 1,567 (+£1.1079)

models and for all the studied values of N¢phan, the computation time using the optimal
bounds (QE(Nchaﬂ),PE(Nchﬂ“) and Q) is better than the one obtained with both the global
and local bounds. Note that the optimal-Q® bound is more efficient than the optimal-
PeWNehan) poynd to simulate the subunit model. Since the computation of €, requires the
computation of the jump rate bound at each iterations, the optimal-Q bound will be
more efficient when the jumps frequency is low. Thus, for all studied values of Ncpan, the
optimal—Qe(Nchan) bound is the most efficient.

The differences of computation time between the subunit and the channel model are
explained by the fact that the numerical computation of the flow of the channel model is
cheaper than the one of the subunit model. Note that the computation time using the
three bounds (global, local, optimal) increases linearly as a function of Nepap.

In the ODE algorithm [70], we need to adapt the time step h when the parameter
Nchan varies, otherwise, we do not simulate the expected trajectories of the models.
Thinning algorithm in the channel model speeds up the simulation by a factor 3 compared
to the ODE method whereas in the subunit model the factor is approximately 1. Such a
difference is explained by the fact that the ratio of the computation times between the
flows of the subunit and the channel (for thinning algorithm) is bigger than the ratio
of the computation times between the vector fields of the subunit and the channel (for
ODE algorithm).

Despite the complexity of the optimal bound compared to the two others, it is the
most efficient one in terms of reject and computation time to simulate both the channel
model and the subunit model.

Spiking times

Bio-scientists believe that the timing of action potentials is one of the characteristics of the
nervous system which carries the most of information. It has been shown experimentally
[78] that if a neuron is repeatedly stimulated by identical pulses, both the amplitude and
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the timing of the action potentials is variable. In the sequel we numerically compare
the mean value of the spiking time of the subunit and channel model to the one of the
deterministic Hodgkin-Huxley model.

Let (z¢) be the subunit model or the channel model defined on a filtered probability
space (0, F, F,P,). We consider that the stimulation is a monophasic current which
produces only one action potential within a given time window [0,7'] as in Figure I.1.
We suppose that a spike occurs when the membrane potential exceeds a certain value
noted v. Let T be the spiking time that we define by

T =inf{t€[0,T]: V; = v}.

We are interested in the numerical computation of the mean and the standard
deviation of 7 as a function of the number of channels. For low values of the parameters
Nna and Nk a spike may never occur. In this case, 7 = T and we do not count these
trajectories in the Monte Carlo procedure. Thus, we evaluate the mean value of the
spiking time conditionally on having a spike, E[T|7T < T'], with the following estimator
Ine = (1/M) 2L, Tr. where () are iid realizations of 7~ conditionally on {7 < T} and
M denotes the sample size of the estimator. We define the proportion of spikes as follows.
Consider that we simulate n independent trajectories of stochastic action potentials (with
the subunit model or the channel model) on [0,T]. We define a sequence of independent
random variables X1, ..., X, as follows: for i =1,...,n,

) 1 if there exits t € [0, T] such that V; > v,
| oifforallte[0,T], Vi <wv.

Then we define the proportion of spikes as 1/n " | X;.

1
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Figure 1.7 — Proportion of spikes obtained with the subunit model and the channel model
as a function of the number of channels Noyan.

It has been shown in [67] that the deterministic limits of both the subunit (Hodgkin-
Huxley of dimension four [47]) and the channel model (Hodgkin-Huxley of dimension
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Figure 1.8 — Mean value of the spiking time (ms) with standard deviation as a function
of the number of channels Nepa,. Left: subunit model. Right: channel model.

fourteen [67]) are equivalent when the initial conditions satisfy a combinatorial relationship.
We consider that, at time ¢ = 0, all the gates of the subunit model are closed and all the
channels of the channel model are in the corresponding state, i.e state {mghg} for the
sodium and {ng} for the potassium. These initial conditions satisfy the combinatorial
relationship in [67]. The initial conditions of both deterministic Hodgkin-Huxley models
are also chosen so that they satisfy the binomial relation. Thus, the spiking time of
these deterministic models is the same. In the simulations, we take T' = 10, v = 60, we
consider that the stimulation is given by I(t) = 301 5(¢) and that Nxa = Nk = Nehan-
In this case, the spiking time of the deterministic model is 79t = 2,443,

Figure 1.8 illustrates the convergence of the mean spiking time of both the subunit and
the channel model when the number of channels goes to infinity. For Nepan = 1500 we see
that the dispersion of the spiking time around its deterministic limit is approximately of
order 10~! ms for the subunit model and of order 10~2 ms for the channel model. Thus,
a membrane patch with a number of channels superior to 1500 mimics the behaviour of
the deterministic Hodgkin-Huxley model. For a number of channels inferior to 500, we
see from Figure 1.7 that the neuron may not respond to the stimuli. In this case, the
dispersion of the spiking time ranges from approximately 10~ and almost 1 ms which is
consistent with the observations in [78]. Since the simulation is exact the estimator I,
is unbiased and errors due to the Monte Carlo procedure are of order of M~/2.

1.8 Appendix

In this section we compute the rate of acceptance for the thinning of Poisson processes.
Let N and N be two Poisson processes with jump rate A and X respectively and jump
times (T},)n>1 and (T},)p>1 respectively. Assume that N is the thinning of N. Since
P(N; = 0) = e™ [6A®)ds e define the rate of acceptance by E[N;/Ny|N; = 1]. In the
case of Poisson processes this indicator takes the following form
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¢
N - A(s)d
N, 5 1) = WA
Ny §o A(s)ds
To get (I.19), we use the following result which is similar to the n-uplet of non-ordering
uniform variables in the Poisson homogeneous case

E[ (1.19)

A(t1) ... A(tn)
f(Tl,...,Tn|Nt:n) (t17 et ’tn = t < 717' 1(t17~~:tn)€[07t]n' (120)
(SO )\(s)ds)
_ Equation (I.20) gives an explicit formula of the conditional density of the vector
(Th,...,T,|Ny = n). Note that we do not consider any ordering in points (Tk)o<k<n
and that conditionally on {N; = n}, the points 71, ...,T,, are independent with density

(A(s)/ §A(u)du) Lo . By noting that, for k < n,
{N; = k|N; = n}
- U [ N owddmen N s d@m=n)

1<i1 <o <ip <N 4€{iy,nnyig} i€{i1,.005 ¢

_ where (U;) are independent variables uniformly distributed in [0, 1], independent of
(T3), we deduce that

~ A ~ ~ k )\ ~ _ n—k
B(N; = KN, = n) = ( " )P (Ui < ()18 - n) P (Ui > (1)1 = n) .
(I.21)
Thus, the law of the number of selected points is binomial conditionally on the number
of generated points. With (1.20) and (I.21), one is able to determine that

ﬁ(Ntht = TL) = B(n,p),
with p = Sé A(s)ds/ Sé A(s)ds. Then, we find (I.19) by using that

~ 1
Nz 1] = o

E[= §
Ny P(N, = 1) /

S|~

=1
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Chapter 11

Thinning and Multilevel Monte
Carlo for Piecewise Deterministic
(Markov) Processes. Application
to a stochastic Morris-Lecar
model.

Abstract

In the first part of this paper we study approximations of trajectories of Piecewise
Deterministic Processes (PDP) when the flow is not explicit by the thinning method.
We also establish a strong error estimate for PDPs as well as a weak error expansion for
Piecewise Deterministic Markov Processes (PDMP). These estimates are the building
blocks of the Multilevel Monte Carlo (MLMC) method which we study in the second part.
The coupling required by the MLMC is based on the thinning procedure. In the third
part we apply these results to a 2-dimensional Morris-Lecar model with stochastic ion
channels. In the range of our simulations the MLMC estimator outperforms the classical
Monte Carlo one.
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2.1 Introduction

In this paper we are interested in the approximation of the trajectories of PDPs. We
establish strong error estimates for a PDP and a weak error expansion for a PDMP.
Then we study the application of the Multilevel Monte Carlo (MLMC) method in order
to approximate expectations of functional of PDMPs. Our motivation comes from
Neuroscience where the whole class of stochastic conductance-based neuron models can
be interpreted as PDMPs. The response of a neuron to a stimulus, called neural coding,
is considered as a relevant information to understand the functional properties of such
excitable cells. Thus many quantities of interest such as mean first spike latency, mean
interspike intervals and mean firing rate can be modelled as expectations of functionals
of PDMPs.

PDPs have been introduced by Davis in [21] as a general class of stochastic processes
characterized by a deterministic evolution between two successive random times. In the
case where the deterministic evolution part follows a family of Ordinary Differential
Equations (ODEs) the corresponding PDP enjoys the Markov property and is called a
PDMP. The distribution of a PDMP is thus determined by three parameters called the
characteristics of the PDMP: a family of vector fields, a jump rate (intensity function)
and a transition measure.

We consider first a general PDP (x;) which is not necessarily Markov on a finite time
interval [0,7"] for which the flow is not explicitly solvable. Approximating its flows by the
classical Euler scheme and using our previous work [55], we build a thinning algorithm
which provides us with an exact simulation of an approximation of (z;) that we denote
(Z¢). The process (Z;) is a PDP constructed by thinning of a homogeneous Poisson
process which enjoys explicitly solvable flows.

Actually this thinning construction provides a whole family of approximations indexed
by the time step h > 0 of the Euler scheme. We prove that for any real valued smooth
function F' the following strong estimate holds

IV >0,V >0, E[F(@r)— F(zr)*] < Vih + Vah? (IL.1)

Moreover if (z;) is a PDMP the following weak error expansion holds
Je1 >0, E[F(@r)] —E[F(z7)] = c1h + o(h?). (I1.2)

The estimate (II.1) is mainly based on the construction of the couple (x¢,7;) and on the
fact that the Euler scheme is of order 1 this is why it is valid for a general PDP and its
Euler scheme. On the contrary, the estimate (I1.2) relies on properties which are specific
to PDMPs such as the Feynman-Kac formula.

The MLMC method relies simultaneously on estimates (II.1) and (I.2) that is why we
study its application to the PDMP framework instead of the more general PDP one.
MLMC extends the classical Monte Carlo (MC) method which is a very general approach
to estimate expectations using stochastic simulations. The complexity (i.e the number of
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operations necessary in the simulation) associated to a MC estimation can be prohibitive
especially when the complexity of an individual random sample is very high. MLMC relies
on repeated independent random samplings taken on different levels of accuracy which
differs from the classical MC method. MLMC can then greatly reduces the complexity
of the classical MC by performing most simulations with low accuracy but with low
complexity and only few simulations with high accuracy at high complexity. MLMC have
been introduced by S. Heinrich in [45] and developed by M. Giles in [34]. The MLMC
estimator has been efficiently used in various fields of numerical probability such as SDEs
[34], Markov chains [3], [4], [40], Lévy processes [30], jump diffusions [82], [24], [25] or
nested Monte Carlo [54], [37]. See [33] for more references. To the best of our knowledge,
application of MLMC to PDMPs has not been considered.

For the sake of clarity, we describe here the general improvement of MLMC. We are
interested in the estimation of E[X | where X is a real valued square integrable random
variable on a probability space (2, F,P). When X can be simulated exactly the classical
MC estimator (1/N) Z;@Vﬂ X* with X* k > 1 independent random variables identically
distributed as X, provides an unbiased estimator. The associated L? - error satisfies
|'Y —E[X] ||3= Var(Y) = £ Var(X). If we quantify the precision by the L? - error, then
a user-prescribed precision €2 > 0 is achieved for N = O(e2) so that in this case the
global complexity is of order O(e~2).

Assume now that X cannot be simulated exactly (or cannot be simulated at a reasonable
cost) and that we can build a family of real valued random variables (X,,h > 0) on
(Q, F,P) which converges weakly and strongly to X as h — 0 in the following sense

Jep>0,a>0, E[Xp]—E[X]=ch®+ o(h*), (I1.3)

and
IVi>0,8>0, E[X,-X[*]<Wh’ (IL.4)

Assume moreover that for h > 0 the random variable X}, can be simulated at a reasonable
complexity (the complexity increases as h — 0). The classical MC estimator now consists
in a sequence of random variables

1 N
Yy =— Y XxF 1.

where X ,{f, k = 1 are independent random variables identically distributed as Xj. The
bias and the variance of the estimator (II.5) are respectively given by E[Y] — E[X] =
E[X)] — E[X] ~ ¢1h* and Var(Y) = +Var(X},). From the strong estimate (IL4) we
have that Var(X};) — Var(X) as h — 0 so that Var(X}) is asymptotically a constant
independent of h. If as above we quantify the precision by the L? - error and use that
| Y —E[X] ||I3= (E[Y] — E[X])? + Var(Y), we obtain that the estimator (IL.5) achieves
a user-prescribed precision €2 > 0 for h = O(e'/*) and N = O(¢~2) so that the global

complexity of the estimator is now O(e_Q_é).
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The MLMC method takes advantage of the estimate (II.4) in order to reduce the global
complexity. Let us fix L > 2 and consider for [ € {1,..., L} a geometrically decreasing
sequence (hy,1 <1 < L) where by = h*M~(=1) for fixed h* > 0 and M > 1. The indexes
[ are called the levels of the MLMC and the complexity of X}, increases as the level
increases. Thanks to the weak expansion (II.3), the quantity E[X}, | approximates E[X].
Using the linearity of the expectation the quantity E[X}, | can be decomposed over the
levels [ € {1,..., L} as follows

L
E[Xp,] = E[Xps] + D E[Xp, — Xp,_,]- (1L6)
1=2
For each level [ € {1,..., L}, a classical MC estimator is used to approximate E[ X}, —

X, ,] and E[Xpx]. At each level, a number N; > 1 of samples are required and the
key point is that the random variables X}, and X}, | are assumed to be correlated in
order to make the variance of X}, — X3, |, small. Considering at each level [ = 2,...,L
independent couples (Xp,, Xp, ,) of correlated random variables, the MLMC estimator
then reads

1 N, L 1 N;
Y= — > Xfat Y — D (Xf = XE ), (IL.7)
Ni o SNo

where (X ,’f*, k > 1) is a sequence of independent and identically distributed random
variables distributed as X+ and ((Xflfz’Xf]fzq)’ k> 1) for = 2,..., L are independent

sequences of independent copies of (Xp,, Xp, ,) and independent of (X ,’f*) It is known,
see [34] or [54], that given a precision € > 0 and provided that the family (X,,h > 0)
satisfies the strong and weak error estimates (II.4) and (II.3), the multilevel estimator
(I1.7) achieves a precision || Y — E[X] ||3= €* with a global complexity of order O(e~2)
if 8> 1, O(e2(log(e))?) if B = 1 and O(e~2~(1=A/®) if 8 < 1. This complexity result
shows the importance of the parameter 5. Finally, let us mention that in the case § > 1
it possible to build an unbiased multilevel estimator, see [39].

Estimates (II.1) and (II.2) suggest to investigate the use of the MLMC method in the
PDMP framework with § = 1 and o = 1. Letting X = F(zr) and X}, = F(@r) for h > 0
and F a smooth function, we define a MLMC estimator of E[F(x7)] just as in (I1.7)
(noted YMIMC i the paper) where the processes involved at the level I are correlated
by thinning. Since these processes are constructed using two different time steps, the
probability of accepting a proposed jump time differs from one process to the other.
Moreover the discrete components of the post-jump locations may also be different. This
results in the presence of the term Vjh in the estimate (II.1). In order to improve the
convergence rate (to increase the parameter 3) in (II.1), we show that for a given PDMP
(z¢) we have the following auxiliary representation

E[F(x7)] = E[F(Z1)Rr). (IL.8)

The PDMP (Z;) and its Euler scheme are such that their discrete components jump at
the same times and in the same state. (R;) is a process which depends on (Z4,t € [0, 7).
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The representation (I1.8) is inspired by the change of probability introduced in [82] and
is actually valid for a general PDP (Proposition 2.2.2) so that E[F(Z7)] = E[F ()R]
where (&,) is the Euler scheme corresponding to (;) and (R,) is a process which depends
on (&t € [0,T]). Letting X = F(&7)Ry and X}, = F(&7)Ry we define a second MLMC
estimator (noted YMIMC) where now the discrete components of the Euler schemes
(Z;) involved at the level [ always jump in the same states and at the same times. To
sum up, the first MLMC estimator we consider (YMIMC) derives from (I1.6) where the
corrective term at level [ is E[F (Tgl) —F (f:}ﬁ_l )] whereas the corrective term of the second
estimator (YMEMC) js B[F (E%Z)E?l — F@:];Z_I)Egl ~']. For readability, we no longer write
the dependence of the approximations on the time step. For the processes (F(Z;)R,) and
(F(#)R;) we show the following strong estimate

IVi >0, E[F(Zr)Br — F(ir)Rr|’] < Vih?,

so that we end up with 8 = 2 and the complexity goes from a O(e 2(log(¢))?) to a
O(e7?).

As an application we consider the PDMP version of the 2-dimensional Morris-Lecar
model, see [67], which takes into account the precise description of the ionic channels and
in which the flows are not explicit. Let us mention [5] for the application of quantitative
bounds for the long time behavior of PDMPs to a stochastic 3-dimensional Morris-Lecar
model. The original deterministic Morris-Lecar model has been introduced in [63] to
account for various oscillating states in the barnacle giant muscle fiber. Because of its low
dimension, this model is among the favourite conductance-based models in computational
Neuroscience. Furthermore, this model is particularly interesting because it reproduces
some of the main features of excitable cells response such as the shape, amplitude and
threshold of the action potential, the refractory period. We compare the classical MC and
the MLMC estimators on the 2-dimensional stochastic Morris-Lecar model to estimate
the mean value of the membrane potential at fixed time. It turns out that in the range of
our simulations the MLMC estimator outperforms the MC one. It suggests that MLMC
estimators can be used successfully in the framework of PDMPs.

As mentioned above, the quantities of interest such as mean first spike latency, mean
interspike intervals and mean firing rate can be modelled as expectations of path-dependent
functional of PDMPs. This setting can then be considered as a natural extension of this
work.

The paper is organised as follows. In section 2, we construct a general PDP by thinning
and we give a representation of its distribution in term of the thinning data (Proposition
1). In section 3, we establish strong error estimates (Theorems 1-2). In section 4, we
establish a weak error expansion (Theorem 3). In section 5, we compare the efficiency of
the classical and the multilevel Monte Carlo estimators on the 2-dimensional stochastic
Morris-Lecar model.
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2.2 Piecewise Deterministic Process by thinning

2.2.1 Construction

In this section we introduce the setting and recall some results on the thinning method
from our previous paper [55]. Let E := © x R? where © is a finite or countable set
and d > 1. A piecewise deterministic process (PDP) is defined from the following
characteristics

e a family of functions (®g,# € ©) such that & : R, x R? — R? for all § € O,
e a measurable function \ : E —]0, +00[,
e a transition measure Q : E x B(E) — [0, 1].

We denote by = = (0, 1) a generic element of E. We only consider PDPs with continuous
v-component so that for A € B(0) and B € B(RY), we write

Q(z, A x B) = Q(x,A)d,(B). (IL.9)
Then it holds that for all measurable function f: F — R, for all z = (6,v) € E and for
allt >0
| 16200 Bott.v).didz) = 3 £ Buft. o) QO Bol0.0)).0)
€0

Our results do not depend on the dimension of the variable in R? so we restrict ourself
to R (d = 1) for the readability. We work under the following assumption

Assumption 2.2.1. There exists \* < +00 such that, for all x € E, A\(x) < \*.

In [55] we considered a general upper bound A\*. In the present paper \* is constant (see
Assumption 2.2.1). Let (22, F,P) be a probability space on which we define

1. an homogeneous Poisson process (N, ¢ > 0) with intensity A* (given in Assumption
2.2.1) whose successive jump times are denoted (77, k > 1). We set T§ = 0.

2. two sequences of iid random variables with uniform distribution on [0, 1], (Ug, k > 1)
and (Vj, k > 1) independent of each other and independent of (T}, k > 1).

Given T > 0 we construct iteratively the sequence of jump times and post-jump locations
(T, (0, vn),n = 0) of the E-valued PDP (x4,¢ € [0,T]) that we want to obtain in the
end using its characteristics (®,\, Q). Let (6p,v9) € E be fixed and let Ty = 0. We
construct 77 by thinning of (77), that is

Tl = T*

T1?

(11.10)

where

71 = inf {k > 0 : UpA* < (60, Ba, (T}, 10))} - (I1.11)
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We denote by |©] the cardinal of © (which may be infinite) and we set © = {k1, ..., kjo}-

For j e {1,...,|0|} we introduce the functions a; defined on E by
J
aj(x) == Y Qx,{ki}), Vxek. (IL.12)
i=1

By convention, we set ag := 0. We also introduce the function H defined by

9]
H(x, u) = Z ki]lai,l(z)<u<ai(x)7 Vre E,Vue [0, 1].
i=1

For all x € E, H(z,.) is the inverse of the cumulative distribution function of Q(z,.) (see
for example [26]). Then, we construct (61, v1) from the uniform random variable V; and
the function H as follows

(0r,v1) = (H ((80, o, (T, 10)), Vi) , dao (T3, 10))
(H ((907 (I)Go(Tlv VO))7 Vi) ’¢90(T1a VO)) :

Thus, the distribution of (61, v1) given (11, (1} )k<r ) is Q((Oo, Po, (T

*,19)),.) or in view
of (I1.9),

kez@ Q ((00; oo (73, 10)), {k}) 01550 (7% 1))

For n > 1, assume that (Tn_l, (T k<rn_1> (On—1, Vn_l)) is constructed. Then, we con-
struct T, by thinning of (7}*) conditionally to (Tn,l, (T3 k<rn_ 1> (On—1, l/n,l)), that is

T, := Tfn,

where
Tp i= inf {k: > Tt UpN* < M1, ®g,_ (T, =T, Vn_l))} )

Then, we construct (0, v,,) using the uniform random variable V,, and the function H as
follows

(Ons ) i= (H (1, @0, (TF, = TE_ vne1)), Vi) @o, (T3, = TE )
= (H ((enflv ¢6n,1(Tn - Tnfly anl))a Vn) aq)9n71 (Tn - Tnfla anl)) .

We define the PDP x; for all t € [0,T7] from the process (T}, (6n, vn)) by
xp = (Op, Py, (t — Thyvn)), t€[Tn, Thii]. (I1.13)

Thus, z1,, = (0p, n) and 27, = (0n—1,v). We also define the counting process associated
to the jump times N; := Zn21 11, <.
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2.2.2 Approximation of a PDP

In applications we may not know explicitly the functions ®y. In this case, we use a
numerical scheme ®y approximating ®¢. In this paper, we consider schemes such that
there exits positive constants C7 and Cs independent of h and 6 such that

sup |(I)9(t, 1/1) (I)g(t V2)| ClT‘I/l I/2| + Cgh, Vo e @,V(Vl, 1/2) € Rz. (1114)

te[0,T7]

To the family (®g) we can associate a PDP constructed as above that we denote (7;). We
emphasize that there is a positive probability that (z;) and (Z;) jump at different times
and/or in different states even if they are both constructed from the same data (Ny'),
(Uy) and (Vi). However if the characteristics (®, A, Q) of a PDP (#;) are such that X
and Q depend only on 6, that is A(x ) = /\( ) and Q(z,.) = Q(8,.) for all z = (A,v) € E,
then its embedded Markov chain ( n,(Gn,Vn) n = 0) is such that (f,,n > 0) is an
autonomous Markov chain with kernel Q and (T,,,n > 0) is a counting process with
intensity \; = Dins0 X(én)ﬂfngkfnﬂ' In particular, both (6,) and (7,) do not depend
on ®. The particular form of the characteristics A and Q implies that the PDP (Z¢) and
its approximation (Z;) are correlated via the same process (7, 0,). In other words, these
processes always jump exactly at the same times and their #-component always jump in
the same states. Such processes (Z;) are easier theoretically as well as numerically than
the general case. They will be useful for us in the sequel.

The following lemma (which is important for several proofs below) gives a direct conse-
quence of the estimate (I1.14).

Lemma 2.2.1. Let (®y) and (®g) satisfying (11.14). Let (t,,n = 0) be an increasing
sequence of non-negative real numbers with to = 0 and let (ay,,n = 0) be a sequence of
©-valued components. For a given v € R let us define iteratively the sequences (B, n = 0)
and (B,,,n = 0) as follows

{ gn = S)oznfl(tn - tn—la ﬁn—l)a and { Bn = ‘I)an,1 (tn - tn—l;Bn—l)7
0 — - .

Then, for alln = 1 we have
1B, — Bl < eC1nnCah,
where C1 and Cy are positive constants independent of h.

Proof of Lemma 2.2.1. Let n = 1. From the estimate (I1.14), we have for all k < n

1By, — Br| < eCrUt=)[B | — B 1| + Cah,
and therefore
et 1B — Bi| < e”C=1|B, | — Br_1| + Cah.
By summing up these inequalities for 1 <

< n and since By = B, we obtain

k
B, — Ba| < e“1'"nCsh.
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2.2.3 Application to the construction of a PDMP and its associated
Euler scheme

In this section we define a PDMP and its associated Euler scheme from the construction
of the section 2.2.1. Consider a family of vector fields (fy, 0 € ©) satisfying

Assumption 2.2.2. For all 0 € O, the function fy : R — R is bounded and Lipschitz
with constant L independent of 6.

If we choose ®y = ¢y in the above construction where for all z = (0,v) € E, we denote
by (¢g(t,v),t = 0) the unique solution of the ordinary differential equation (ODE)

W — f5 (y(2)),
{ - (IL.15)

then the corresponding PDP is Markov since ¢ satisfies the semi-group property which
reads ¢g(t + s,v) = ¢p(t, po(s,v)) for all t,s > 0 and for all (§,v) € E. In this case, the
process (x¢) is a piecewise deterministic Markov process (see [22] or [51]).

Let h > 0. We approximate the solution of (II.15) by the Euler scheme with time step h.
First, we define the Euler subdivision of [0, +0o[ with time step h, noted (¢;,7 = 0), by
t; := th.
Then, for all x = (0,v) € E, we define the sequence (y;(x),7 = 0), the classical Euler
scheme, iteratively by

{ Uir1(x) = 7;(x) + hfo(mi(x)),

gO ($) =Vr,

to emphasize its dependence on the initial condition. Finally, for all z = (0,v) € E, we
set

Po(t,v) :=7;(x) + (t — 1) fo(y;(x)),  Vte [titir]. (I1.16)
We construct the approximating process (Z;) as follows. Its continuous component
starts from vy at time 0 and follows the flow ¢, (¢,19) until the first jump time T
that we construct by (I1.10) and (II.11) of section 2.2.1 where we replace ®q, (T}, 1p) by
$90 (T, ). At time Ty the continuous component of Tz, is equal to 590 (T1,v9) =1
since there is no jump in the continuous component. The discrete component jumps to
01. We iterate this procedure with the new flow 551 (t — Tq,71) until the next jump time
T given by (I1.10) and (I1.11) with %1 (T —T1,71) and so on. We proceed by iteration
to construct (7;) on [0,T].
Consequently, the discretisation grid for (Z;) on the interval [0,T] is random and is
formed by the points T, + kh for n = 0,...,Np and k = 0,...,[(Ths1 A T — Ty)/h].
This differs from the SDE case where the classical grid is fixed.

By classical results of numerical analysis (see [44] for example), the continuous Euler
scheme (I1.16) (also called Euler polygon) satisfies estimate (I1.14). If we choose ®y = ¢y
in the above construction then the corresponding PDP (Z;) is not Markov since the
functions ¢y (.,v) do not satisfy the semi-group property (see [51]).
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2.2.4 Thinning representation for the marginal distribution of a PDP

The sequence (T, (0, vn),n = 0) is an Ry x E-valued Markov chain with respect to its
natural filtration F,, and with kernel K defined by

K((t,ﬁ,u),dudjdz) = Tyt A0, Pg(u—t,v))e” §67" A0 @o(s.) 5Q((0, Dg(u—t, v)), djdz)du .

(I1.17)
That is to say, for n > 0, the law of the random variable T,, given F,,_1 admits the
density given for u > 0 by

Tus, A(On—1, ®p, , (u— Ty 1))e S0 MO B vn))ds, (I1.18)

and the law of (0, v,) knowing F,,_1 and T,, is given, in view of (I.9), by the following
probability measure

Q ((an—la (I)Hn,l(Tn - Tn—l’ Vn—l))u ) 5(D9n U Tn—Tp—1+Vn— 1)( ) (1119)

The marginal distribution of x; can then be expressed for n € N, for fixed o =z € FE
and for any bounded measurable function g using (II.13), the intensity A via (II.18) as
follows

E[g(z:)1n,—n] = E[g(0n ( — T, vn) ) 1N, =]
=E[g(6n — T, v) ) g, <iE[L1, 5| F] |
=E |9(0n. qm = Ty va) e 80 A0 o (s |

Moreover, using (I1.19), we get

Tn
E [9(2t)Ln=n] = E |11, (B [ 9(0n, @, (t = Ty )™ " MO tmnlmdis 7 ||

- ZIE[Q( ety Un) 1) g0, 5t — Ty v)) L, <pe™ S0 Tr (i, B4 (s, vn))ds)
€0
(I1.20)

where, for short, v, = ®g (T, — Thh—1,Vn—1). We can iterate on (I1.20) using successive
conditioning and the kernel (I1.17) to finally obtain

E [g(xt)]th:n
R+ XE)”

J g(ln, (I)in (t — tn, Zn))ei S(t)—tn )\(in:q’in (s,2n))ds
(
(O, :C)’ dtldildzl)'“K((tn*h infla anl), dtndanZn)

] =
K(
However since we have constructed (z;) by thinning, we would prefer to express the
distribution of x; using the upper bound A\*, the Poisson process (N;*,t = 0) and the
sequences (Ug, k € N), (Vi, k € N). In Proposition 2.2.1, we give another representation

of (II.20). Instead of using the conditional density of the jump times (II.18), we focus on
the random indexes 7, (recall that T;, = T}* ) to make appears the acceptance and reject

92



Chapter I Multilevel Monte Carlo for PDMPs

probabilities (A(.)/A* and 1—A(.)/A*). The product term which appear in the expectation
in the right hand side of the equality in Proposition 2.2.1 should be interpreted as the
survival function of T}, 11 in (I1.20). Indeed, consider for example the first jump time 7}
and that o = (0,v) € E is fixed. Using (II.18), we have

]P)(Tl > t) =e S(t) A0,y (s,v))ds
Moreover, we have

N
B(Ty > 1) = H M>

In order to derive the above equality, we use that

{T1 >t} ={T}, >t}

={n > N/}

MO, (17, v)) A0, (T, v))
= v =p, U0 > ( A(*l ),...,Up>A*p }
p=0

and the fact that the sequence (Ug,k > 0) is independent of the Poisson process N*.
Then, using the partition Up=o{N;* = p}, the fact that { Ny = p} = {T;; <t < T}, ,}, the
density of (T7,...,T,;) given T, and the fact that T, is gamma distributed, we are
able to show that

N
H W{)Q—))) — e~ SO 9<I>g(su))ds

Proposition 2.2.1 allows us to identify corrective terms (which can be interpreted as
Radon-Nikodym derivatives) in order to express the marginal distribution of a PDP (ay)
with characteristics (®, A, @) in term of a PDP (#;) with the same flow ® and simplified
jump characteristics (5\, Q) In Proposition 2.2.2 we state this change of representation
and we define the corrective terms. Note that we modify the intensity of a PDP through
the acceptance and reject probabilities. The new proposed representation (in Proposition
2.2.2) will be used to construct an efficient MLMC estimator in section 2.5.2.

Proposition 2.2.1. Let (x,t € [0,T]) be a PDP with characteristics (P, A\, Q) con-

structed in section 2.2.1. Let n and m be integers such that n < m and let py,...,pn be
an ordered sequence of integers. Then, for all bounded measurable function g we have
E[g(xt)]l{Nt=n}] = Z Z ]E[Q( Tl;kn = 0) g(ea (I)G (t - T;n? Vn))
1<pi1<pz....<pn<m 6cO©
m MO, @o(TF =T ,vm))
]I{Ti=Pi71<i<naNf‘=m} H (1- q)\* £ )]
q=pn+1
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The following proposition and its corollaries will be useful in section 2.3. In their
statements (x,t € [0,T]) and (&,t € [0,T]) are PDPs constructed in section 2.2.1 using
the same data (N;), (Ug), (Vi) and the same initial point = € E but with different sets
of characteristics.

The following results are inspired by the change of probability introduced in [82] where
the authors are interested in the application of the MLMC to jump-diffusion SDEs with
state-dependent intensity. In our case, we need a change of probability which guarantees
not only that the processes jump at the same times but also in the same states.

Proposition 2.2.2. Let us denote by (<I>,)\~, Q) (resp. (®,1,Q)) the characteristics of
(z1) (resp. (%¢)). Let us assume that X and Q depend only on 0, that Q is always positive
and 0 < \(0) < \* for all € ©. For all integer n, let us define on the event { Ny = n},

Qg .0) SO\ TN M 2, (T T )
on = Q(On—1,0r) ((1_ A* > ) H <1_ ¥ )’

q=Tn+1

the product being equal to 1 if 7,, = N and for all 1 < £ <n—1,

Z :?(i'%;;a@e) <X(9}) (1 ) ;@)Ym_ﬁ_l)

1

Q(Op_1,00) \ X* ¥
A(bp, g, (T2 —T%, %)) ﬁﬁl - A(O¢, g, (Ty — T2, 7))
A* \* >
q=Te+1
- o~ -~ ~ Fi— -1 ~ - i ~ -
- (AMBo) [, A\ Ao, @, (Th ) HH [ Ao, B, (T, 7))
Zy = )\* 1-— o I 1_[1 1-— o ,
q:
Rn :Zn 14
=0

Then, for all n = 0 we have
E[g(Z+) By 1y, —ny] = Elg(20) Tin,=n}]-

Corollary 2.2.1. Under the assumptions of Proposition 2.2.2, setting Ry = RNU we
have

Elg(Z¢)Re] = E[g(x1)]-

Remark 2.2.1. Proposition 2.2.2 looks like a Girsanov theorem (see [68]) however we
do not use the martingale theory here.

Remark 2.2.2. We have chosen to state Proposition 2.2.2 with a PDP (%;) whose
intensity and transition measure only depend on 0 for readability purposes. Actually the
arguments of the proof are valid for non homogeneous intensity and transition measure

of the form 5\(1’,@ and Q((z,t),dy) for x = (,v) € E. A possible choice of such

characteristics is Nx,t) = M6, Dy(t,v)) and Q((x,t),dy) = Q((0, ®y(t,v)),dy) for ® a
given function. This remark will be implemented in section 2.5.4.
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Corollary 2.2.2. Let (®,), Q) (resp. (®,\,Q)) be the set of characteristics of (x;)
(resp. (Z¢)). We assume that Q is always positive and that 0 < A(x) < A* for all v € E.
Let (un) be the sequence defined by pp = v and p, = (i)Gn_l(Tn —Thn-1,pin—1) forn = 1.
For all integer n, let us define on the event {N; = n},

NF -1

Z Q((@n,l,un),ﬁn) l—t[ 1 )‘(em(I)Hn(T; _T:Myn))

" QO ) 0n) AL A

f—t*[ (1 (0, B, (T T*,m))

q=Tn+1

)

)\*
the products being equal to 1 if 7, = N;* and for all1 < <n—1,

= Q(O—1,110),00) [ MOe, @, (T7, | — T, v0)) Tl A(Op, @, (T — T, 1)) o
Zz _Q((eéfl,yﬁ)aeé) < 2\ * H 1- A\*

A0y, o, (T2, | — T3, 110)) H_l <1 A(0¢, B0, (T

q=T¢+1

)

A¥ A¥

T* ) MZ)))

q=T¢+1

_ -1
Z() _()\(00,‘1)90 7-17 H < 907@9;)\&T;7V0))> )
>\(90,‘1>90 T# , o)) 1—[ ( 90,‘1390(T;7M0))>

)\*

Then, for all n = 0 we have

]E[g (9n7 (i)@n (t - Tn7 NTL)) Rn ]l{Nt:n}] = E[g(j}t) ]]'{Nt:n}]

Proof of Proposition 2.2.1. Tt holds that {N; = n,7; = p;, 1 < i < n} < {N/ = p,}.
Then

E[g(mt)]l{Nt:n}] = Z E[g(xt)]l{Nt=n,Ti=pi, léiSn,Nt’k:m}]'
1<pi<p2<..<pn<m

The set {N; = n,7; = p;, 1 <i<n, NjY=m} is equivalent to the following
- Njf =m,
- among the times TZ*, < f < m exactly n are accepted by the thinning method they
are the 7)), 1 < i < n, all the others are rejected.
We proceed by 1nduct10n starting from the fact that all the 7", p, + 1 < ¢ < m are
rejected which corresponds to the event

A(On, o, (T =Ty s vn))
A¥ '

V pn+1<g<m, Uy >
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The random variable 1 _, 1<i<ny depends on (0y,vp,1 < £ < n—1,TF1 < i <
Pn, Uj, 1 < j < pp) where by construction vy = ¢, (T5, T, ve—1), ¢ = H((8e—1,v¢), Vi)
which implies that (6,1¢,1 < £ < n —1) depend on (77,1 < i < pp—1,U;,1 < j <
Pn—1, Vi, 1 < k <n—1). Thus V,, is independent of all the other random variables of
thinning that are present in g(z:)Ln,_n 7 —p;, 1<i<n, N#*—m}- The conditional expecta-
tion of g(xt)]l{Nt=n7Ti=pi,1<i<n7Nt*=m} w.r.t. the vector (T, 1 <i<m+1,U;,1 <j <
m, Vi, 1 <k <n—1) is therefore an expectation indexed by this vector as parameters.
Since the law of H(z,V},) is Q(z,-) for all x € E we obtain for p; < ps < ... < p, < m,

E[g(xt)]l{Nt=n,Ti:pi, 1<i<n, Nt*=m}]

=E[), Qugs .0)g(0, D4t — T, vn)
e nt

FO,U;,1<j<m, T/, 1<{<m+1,V,1<k<n-1)], (I1.21)
with

FO,U;,1<j<m, T/, 1<l{<m+1,V,1<k<n-1)

m
= ]l{Nt* =m,T;=p;, 1<i<n} H 1 - A0, P (T =T vn)) *
g=pn+1 71 \E

In (II.21) the random variables (U, p, + 1 < ¢ < m) are independent of the vector
(TF,1<i<m+1,U;,1 <j<pp,Vi,1<k<n-—1). Conditioning by this vector we
obtain

E[g(l't)]l{Nt:n,n:pi, 1<i<n, Nt*:m}]
= Z E[Q(xij;Fl s 9) g(9, (I)G(t - T;na Vn))]]‘{N;k=m7Ti=pi, 1<i<n}

0€©
ﬁ 1 (0, o (T — T;ﬂ,yn)))]
q=pn+1 A* .

We can iterate on the latter form by first conditioning V;,—; by all the other r.v. and then
conditioning (Uy, pn—1 + 1 < ¢ < py,) by all the remaining ones and so on. However the
terms that appear do not have the same structure since the U, correspond to a rejection
for p,—1 +1 < q < p, — 1 whereas U, corresponds to an acceptation. So that the next
step yields

E[g(‘rt)]l{Nt:n,Ti:pi, 1<i<n, Nt*:m}]
= Z Z ]E[Q(l‘;;n_Z ) O[)Q ((aa Vn)v 9) g(eu ©9(t - T;nv Vn))]]-{Nt*=m,Ti=pi, 1<i<n—1}

a€e® 0O
Ao, ©o (T, — T, vn—1)) pﬁl Q- Ao, 0o (T — T;‘nil,l/n_l)))
e I
q=pn—1+1
m O, (T — T 1))
[] - qA* £ )], (11.22)
q=pn+1
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where we write v, for simplicity keeping in mind that v,, = ®, , (T =15 . vn 1) =
®p,,_, (Tl;kn _Tl;knfl s ®o,,_, (T;n 1 T oo Vn— 2)) Py (T;n_T;nfl’ Pg,,_, (T*nfl _Tpn72’ V”_Q))'

Moreover the previous arguments apply to E(g(a) f(0s,v5,1 <i<n—1,0p,v,, T, 1<
k< m) LN, —nr=p;, 1<i<n, N¥=m}) and provide

E[g(xt)f(917 V’L" ]- < Z < n— 1)971) Vn7T]::k? 1 < k; g m) ]]w{]\ft:nﬂ'i:pi’]_gign7 Nt*:m}]

= Z E[Q(xi;knilae)g(eaq)G(t - T;;kn ))f(az'?l/ia I<i<n-— 17‘91 VTL>TI:<> 1<k< m)

0cO©
m MO, @o(Ty — T ,vn))
]l{Nt*:m,Ti:pi, 1<i<n} H (1 - q)\* £ )] (1123)
q=pn+1
O

We prove below Proposition 2.2.2. The other statements can be proved analogously.

Proof of Proposition 2.2.2. By assumption the (jump) characteristics (X, Q) of (;) de-

pend only on 0. Let p1 < po2 < ... < pn < m. Applying the same arguments as in (11.23)
to (Z¢) and using the deﬁnltlons of Zy, 0 < £ < n and R, we obtain,

E[g(xt) Rn ]I{Nt:n,ﬁ:pi,léién N* —m}]

_ = ANO)
= Z E On-1,0 (07(1)9(t H {N =m,7=p;, 1<z<n}] (1 - )E*)) br

0eO© =0

n—1 N
_ ) ) NON.
2 n 17 (9 (I)G H Z ]l{N* =m,F;=p;, 1<i<n} (1 )(\*)) b
[SS] £=0
3 Q@ ,0) m UK =15, v
((1 _ )\)(\f) )m—pn) _ ?Pn 1 1_[ (1 o ( 9( /\* )) )]
Q( n—1, ) q:pn+1
n—2

= % pn 1’ ) (07 (1)6'(75 - T;n, ’;n)) Zn-1 g) Zy ]l{Nt*=m,7~'i=pi, 1<i<n}

[ (@ AORlT} T 0)

q=pn+1

We iterate the previous argument based on the use of (I1.23) and we use the definition of
Zn—1 to obtain

E[g(i‘t)‘én]l{l\?t:n,ﬁ:pi, 1<i<n, Nt”< :m}]
= Z Z E[Q(‘%i;k ) @)Q((a, ), 0) g(0, Po(t — T;n, Un))

a€e® AeO®
n—2 m ~
- MO, @p(TF —T*n,V )
H 2t L N* —m 7=pr, 1<isn—1) H (1- q)\* ol 22)
=0 q=pn+1
AMa, (I)a(T;n — T;nil, Up—1)) Pln_—[l (- AMay, @Q(T; — T;nil, Un—1)) N
)\* q=pn—1+1 >\*
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where for short o, = ¢o(T};, — T |, Pp—1) and Op_1 = &5 (Tp | — Ty . n—2).

Comparing the latter expression to (I1.22) and using an induction we conclude that

E[g('%t)‘énﬂ{]\?t:n,ﬁ:pi, 1<i<n, Nt*:m}] = E[g(xt) ]l{Nt=n,Ti=p,-,1<i<n,Nt* =m}]

It remains to sum up on p;,1 < ¢ < n and m. ]

2.3 Strong error estimates

In this section we are interested in strong error estimates that we define as squared L?
errors (mean squared errors) in order to respect the MLMC framework introduced in
[54]. Below, we state the main assumptions and theorems of this section, the proofs are
given in sections 2.3.2, 2.3.3 respectively.

Assumption 2.3.1. For all § € © and for all A € B(©), the functions v — \(0,v) and
v Q((8,v),A) are Lipschitz with constants Ly > 0, Lg > 0 respectively independent
of 0.

Theorem 2.3.1. Let &y and Dy satisfying (11.14) and let (x4, t € [0,T]) and (Ty,t €
[0,T]) be the corresponding PDPs constructed in section 2.2.1 with xo = Ty = x for some
x € E. Assume that © is finite and that A and Q satisfy Assumption 2.3.1. Then, for
all bounded functions F : E — R such that for all 0 € © the function v — F(0,v) is
Lp-Lipschitz where Lg is positive and independent of 0, there exists constants Vi > 0
and Vo > 0 independent of the time step h such that

E[|F(Zr) — F(zr)|*] < Vih + Vah®.

Remark 2.3.1. When the numerical scheme ®g is of order p > 1, which means that
SUDye[0,7] | o (t,v1) — Py(t,12)] < €ClT|I/1 — 1| + Coh? we have E [|F(§T) — F(xT)|2] <
VihP + VQth.

Assumption 2.3.2. There exist positive constants p, Amin, Amax Such that for all (i,j) €
02, p < Q(i,7) and Amin < A1) < Amax < A*.

Theorem 2.3.2. Let ®y and @y satisfying (11.14) and let (Z;,t € [0,T]) and (Z,,t €
[0,T]) be the corresponding PDPs constructed in section 2.2.1 with Z, = Zo = x for some
z e E. Let (Ry,t € [0,T]) and (R,,t € [0,T]) be defined as in Corollary 2.2.1. Under
assumptions 2.3.1 and 2.3.2 and for all bounded functions F' : E — R such that for all
0 € © the function v — F(6,v) is Lp-Lipschitz (Lp > 0), there exists a positive constant
Vi independent of the time step h such that

E[|F(zr) Ry — F(2r)Rr|?] < ViR2.

We now introduce the random variable 7' which will play an important role in the strong
error estimate of Theorem 2.3.1 as well as in the identification of the coeflicient ¢; in the
weak error expansion in section 2.4 (see the proof of Theorem 2.4.1 in section 2.4.2).
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Definition 2.3.1. Let us define 7/ := inf{k >0: (1%, 0k) # (7k,5k)}~

The random variable 7! enables us to partition the trajectories of the couple (¢, Z;) in a
sense that we precise now. Consider the event

{min(T, Toy) > T} = {NT = N, (T1,01) = (T1,81), ..., (Tny, On,) = (TNT,HNT)} :

(I1.24)

where (T,) and (T,,) denote the sequences of jump times of (z;) and (Z3). On this

event {min(7%+,T—) > T} the trajectories of the discrete time processes (T, 6,) and

(Ty,0,) are equal for all n such that T), € [0, T] (or equivalently T, € [0,T]). Moreover

the complement i.e {min(7Ls,T-1) < T'} contains the trajectories for which (7,,6,) and
(T, 0,) differ on [0,T] (there exits n < Ny v N such that T, # T, or 0,, # 6,).

2.3.1 Preliminary lemmas

In this section we start with two lemmas which will be useful to prove Theorems 2.3.2
and 2.3.3.

Lemma 2.3.1. Let K be a finite set. We denote by \K] the cardinal of K and for
i=1,...,|K| we denote by k; its elements. Let (p;,1 <i < |K|) and (p;,1 < i < |K]|) be
two probabilities on K. Let aj := YJ_, p; and @; := Zz:lpz forallje{l,...,|K|}. By
convention, we set ag = Gy := 0. Let X and X be two K -valued random vam’ables defined
by
X :=GU), X:=GU),
and

where U ~ U([0,1]), G(u) = X5 ko, <uza, and Glu) = X5 kila | cusa, for all

€ [0,1]. Then, we have
|K|—1

P(X # X) 2 la; —ajl.

Proof of Lemma 2.3.1. By definition of X and X and since the intervals |a;_1, a;]n]a;_1,a;]
are disjoints for 7 = 1,..., K, we have
_IE]
P(X = X) = Z ]P)(U € ]aj,l, CLj] m]aj,l,aj]).
j=1

Moreover, for all 1 < j < |K]|, we have

P(UE ]aj—1,aj]m]6j—1,aj]> - { ¥ if Jaj 1, a;]nfa;1, ;] = &,

a; N Gaj — Gj—1V Gj—1 if ]aj_l, aj] ﬁ]aj_l,aj] #* .

Thus, denoting by z+ := max(z,0) the positive part of z € R and using that % > z, we

obtain
|K|

[P(X = X) = Z(aj ANTj— Gj—1 V aj—l)'
j=1
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Adding and subtracting a; v @; in the the above sum yields

K| ||
IP)(X = X) = Z(CL]‘ vV a; —aj—1 Vaj_l) + Z(aj A G5 — aj Vﬁj).
j=1 j=1
The first sum above is a telescopic sum. Since a|x| = @)x| = 1 and ap = @y = 0, we have
~ K|-1 _
P(X =X)>1- 5" o, —ayl.
O

Lemma 2.3.2. Let (ap,n = 1) and (by,n = 1) be two real-valued sequences. For all
n =1, we have

n n n n i—1
H(Ii—HbiZZ(ai—bi) H ajl_[bj
i=1 i=1 i=1 j=i+l  j=1

Proof of Lemma 2.3.2. By induction. 0

2.3.2 Proof of Theorem 2.3.1
First, we write

E[|F(@r) - Fler)?]

= B Ly 7 <rl F@) = F@o)P | + B | g 72| F @) = Flar) P

= P+ E,
where 71 is defined in Definition 2.3.1. The term P has the same behaviour with respect
to the time step h as the probability that the discrete processes (1), 0,) and (T, 0,)
differ on [0,T]. Moreover, the term D behaves like h? because the discrete processes

(T, 0,) and (T, 0,) are equal on [0, T]. In the following we prove that P = O(h) and
that D = O(h?).

Step 1: estimation of P.
The function F being bounded we have P < 4MZP (min(7%+,T~) < T) where My > 0.
Moreover, for k > 1, {?T = k} = {?T >k — 1} N {(Tk,ek) # (?k,gk)}. Hence

P (min(T?T’T?T) < T) = Z E []lmin(Tk,Tk)ST]l?Tzk]
1

E
1

< Jp + 21,
1

=
\Y

I:]lmin(Tk.,Tk)ST]l?T>k'—l]l(Tk,ek)#:(?k,gk):|

=
\Y

=
\%

Jk =E |:]1min(Tk,Tk)STﬂ?T>k—117—k=Fk]19k7é§k:| ) Tk =E []lmin(Tk,Tk)ST]l?T>k—1]l7'k¢7k] :
(IL.25)
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We start with J. First note that, for k > 1, {1y, = Tx} = {Tx = Tk} and that on the event
{T}, = T}, we have min(Ty, T) = Ty, so that J, = E []lTkST]l?Bk—l]lTk:?k]lak;e?k] . We

emphasize that it makes no difference in the rest of the proof if we choose min(Ty,T}) =
T}. Since {71 >k — 1} = ;:01 (15,0;) = (Ti,0;)}, we can rewrite J, as follows

Z E[]l{n:ﬂ:pi,léz‘sk}]l{9i=§i:ai,1<i<k—1}]lT,;"ksT]le,ﬂéék]' (11.26)

1<py<...<pg

By construction we have 0, = H((05_1,v1), Vi) and 0, = H((0_1,7%), Vi). The random
variable ]I{n':ﬂ:pi,lSKk}1{9i:§-:ai,1<i<k—1}]1T5‘k<T depends on the vector (U;,1 < i <
P T 1< j<pp, Vg1 <g<k-— 1) which is independent of V. Conditioning by this
vector in (I1.26) and applying Lemma 2.3.1 yields

E[H{Ti=F1'=Pi,1§i<k‘}]l{eizéi:ai,lgigkfl}ﬂT* <T]l9k¢§k]

PR
©l-1
<E | Ljprmpii<ich Lig,g,—ai<icr-y g < D) laj(an—1,7k) — aj(an-1, )]
Jj=1

From the definition of a; (see (I1.12)), the triangle inequality and since @ is Lg-Lipschitz,
we have Zﬁ‘;l |laj(op— 1,Pk) aj(ag—1, )| < MLQW;C — vg|. Since we are on the
event {1, =7; = p;, 1 <1 k} N{0; = 0; = a;,1 < i < k — 1}, the application of Lemma
2.2.1 yields |7, — | < e TokkCh. Thus Jr < C1hE[Lq,<rk] where C; is a constant
independent of h. Moreover, >, -, I, <7k = ]kV:Tl k < N2 and E[N2] < E[(N%)?] <
+00 so that >3-, Jr. = O(h). From the definition of I}, (see (I1.25)), we can write

]l n (T, T) <T17'T>/€—1(]17k<?k + ]l'rk>?k)]

) L 7(2)

[ k<T17T>k 1]17'k<7'k] +E[ T gT]l?T>k—1]lTk>?k]
,ﬁ + 12,

The second equality above follows since {7, < 71} = {Tk < T} and {1, > 7} = {T} >
Tk}. We only treat the term T,gl), the term T,(f) can be treated similarly by interchanging

the role of (7x,T)) and (Tx, Tk). Just as in the previous case, we can rewrite T,E}) as

follows

Z E[]l{n:ﬂ:pi,léiskfl}]l{eizéi:amgigk_nlﬂ;"k <T]lTk=Pk]lPk<?k]' (IL.27)
1<py<...<pg
Qe ap_1€0

In (I1.27) we have {1x = pr} N {pr < Tk} < {/\(ozk_l,aak_l(T;‘ Ty Vk-1)) <

Up A" < Mag—1,Pay_, (T, — T, vk—1))}. The random variable 1 = _, 1<i<k—1}
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Lig,—8,—as,1<i<h—1y Lz <r depends on (Ui, 1 < i < pp-1, T3, 1 < J < pi, Vo 1 < ¢ <
k — 1) which is 1ndependent of Up,. Condltlonmg by this vector in (I1.27) yields
]

E[]l{Ti:?i:phlgigk_l}]l{Gizai:ai,l$i<k—l}1T* <T]17k =Pk Pk<7

< E[]l{ﬂ:=ﬂ=17i,1<i<k—1}1{9¢=§i=ai71<i<k—1}]lT;k <T

|)‘<ak*1760¢k_1(T* 15, kal)) - )‘(ak*h@ak_l(T* -1, ’/kfl))‘]

Pr—-17 Pr—1’

Using the Lipschitz continuity of A then Lemma 2.2.1 we get that T,(C ) < CohE[17, <1k]
where (5 is a constant independent of h. Concerning the term T,(f), we will end with the
estimate T,g ) < CohE[l7 o

above that Y, I}, = O(h).

k]. We conclude in the same way as in the estimation of Jj

Step 2: estimation of D.

Note that for n > 0 we have {Ny = n} n {min(1%;,T=) > T} = {Np = n} n {Np =
n} n {71 > n}, where we can interchange the role of {Ny = n} and {Np = n}. Thus,
using the partition { N7 = n,n = 0}, we have

— 2
D= 2 [ﬂNT =nl Nr=n T‘r>n ‘F Hn, (1)9 (T Tm Vn)) - F(Gm (I)Hn (T - Tn; Vn))‘ ]
n=0
The application of the Lipschitz continuity of F' and of Lemma 2.2.1 yields
|F (6, @o, (T — T, 7)) — F(0n, ®o, (T — Ty )| < Lpe™! (n + 1)Ch.

Then, we have D < C3h? Yo B []lNTzn(n + 1)2] where C3 is a constant independent
of h. Since Y, o E [1ny—n(n + 1)*] = E[(Np + 1)*] < E[(Nf + 1)*] < +0, we conclude
that D = O(h?).

O
2.3.3 Proof of Theorem 2.3.2
First we reorder the terms in RT. We write RT = QTSTFIT where
~ NT Q( T*7 )
Qr=|]|="> (11.28)
E Q(01-1,01)
o MENO, 0 (TE-TE 01) [ M1, %5, (T —T% . 1-1))
ST _ H 1—1 )\; 1—1 H (1_ 1—1 )\* -1
=1 k=7_1+1
(I1.29)
%k A ~
¥ ’
Z_TNT+1
NT Y Y —1 1
N AO—1), - AO—1) s - MO, ) Nx—7
Hr = 1-— T=T-1 - s N 11.30
r= (5 -5 (- 25 (1.30)
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Likewise we reorder the terms in Ry writing Ry = QTST Hz where QT and S are defined
as (I1.28) and (IL.29) replacing & and ® by Z and ®. Since the processes (6,,) and (7,)
do not depend on ® or @, the term H is the same in R and R . To prove Theorem 2.3.2,
let us decompose the problem and write

|F(27) By — F(ir)Rr| = |(F(Zr) — F(i1))Br + (By — Rr)F(27)]
< |F(Zr) — F(@r)||Br| + |By — Rr||F(27)],

so that

E[|F(Zr) By — F(Z2r)Rr|?] < 2B [|F(Z1) — F(@r)]?|Br|?] + 2E [| Ry — Rrl?|F(21)[?]
=:2D 4 2C.

In the following we show that C' = O(h?) and that D = O(h?).

Step 1: estimation of C. . .

The function F being bounded we have C' < MZE [|ET — RT|2] where M is a positive

constant. Moreover, for all # € ©, we have (1 — A(0)/A*)™1 < (1 — Apax/A*) ™" and
- - ~N}

(M0)/3*) " < (Amin/A*)~ L. Thus, Ay < ( o (1 — A;%)) ” and using the definition

of R and R (see (I1.28), (I1.29) and (I1.30)) we can write

R Amax)
Br- Rl < (20 229) Q- QriSe + 15y - 51Qy)
We set J = |Q, — Qr|Sr and T = |S; — S7|Q,. To provide the desired estimate for C,
we proceed as follows. First, we work w by w to determine (random) bounds for Jand T
from which we deduce a (random) bound for |[R; — Ryp|. Finally, we take the expectation.
We start with 1. For all (§,v) € E and for all t > 0 we have, from Assumption 2.2.1, that

— A0, Py(t,v))/A* <1 and A(0, Py(t,v))/\* < 1. Then, using Lemma 2.3.2 (twice) we
have

Nr+1 Tl/\N 3
’ST_ST‘ )\* Z Z ‘)‘(01 1? 91 (Tk T‘Fl 17”1—1))_)\(91717 6,1 (Tk T‘rl 177/[71))"
=1 k=7_1+1

Using the Lipschitz continuity of A and Lemma 2.2.1, we find that, foralll = 1,..., Np+1
and k=7_1+1,...,7 A NJ,

‘)\(él—lv ;-1 (Tk - T’Tl 17l/l 1)) A(él—h @9171 (TI: - T;;_Nﬁl—l)” < eLTChl'
Moreover, for all [ = 1,..., Ny + 1 we have 7 A NF — 711 < NF so that |ST — §T| <
NT(NT )201h where C7 is a positive constant independent of h. Finally, since
QT NT we have

T < p N NE(NE +1)2Chh. (11.31)
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Now, consider J. Note that from Assumption 2.2.1 we have Sy < 1. We use the same
type of arguments as for I. That is, we successively use Lemma 2.3.2, the Lipschitz
continuity of @ and Lemma 2.2.1 to obtain

T < p NI (NF)2Coh, (I1.32)

where Cs is a positive constant independent of h. Then, we derive from the previous
estimates (I1.31) and (II.32) that

|Ry — Ry| < E1(Nj)Csh,

where E1(n) = (pj‘;\“—*‘“(l - 5‘3\“;")) nn(n +1)% and O3 = max(C1,Cs). Finally, we have
E[|Rr— Rr|?] < C3h*E[Z1(N3)?]. Since E[Z1(N)?] < +00 we conclude that C' = O(h?).

Step 2: estimation~0f D. )
Recall that Zp = (GNT’ (I)éNT (T_TNT’ ﬁNT)) and Zp = (QNT, (I)gNT (T_TNT72NT))’ Then,

using the Lipschitz continuity of F', Lemma 2.2.1 and since Ny < N we get

|F(27) — F(Z7)| < Lre (Np + 1)Ch < Lpe (N3 + 1)Ch.

_N¥

Moreover, |Rp| < (pj‘;j%(l - 5‘;%)) " so that D < C4h2E[Ey(N#)2] where Cy is a

< < -n
positive constant independent of h and Z9(n) = (n + 1) (p)‘/‘\“—*‘“(l - %)) . Since

E[Z2(N£)?] < +00 we conclude that D = O(h?).
O

2.4 Weak error expansion

In this section we are interested in a weak error expansion for the PDMP (z;) of section
2.2.3 and its associated Euler scheme (7;). First of all, we recall from [21] that the
generator A of the process (¢, z;) which acts on functions g defined on Ry x FE is given by

Ag(t,x) = drg(t, ) + f(x)0vg(t, x) + A(z) L(g(u y) —9(t,2))Q(x,dy),  (I1.33)

where for notational convenience we have set 0,g(¢, x) := g—g(t, 0,v), Oig(t,x) := %(t, x)
and f(z) = fg(v) for all x = (0,v) € E. Below, we state the assumptions and the main
theorem of this section. Its proof which is inspired by [76] (see also [66] or [42]) is delayed
in section 2.4.2.

Assumption 2.4.1. For all € © and for all A € B(0), the functions v — Q ((0,v), A),
vi— A0O,v) and v — fp(v) are bounded and twice continuously differentiable with
bounded derivatives.
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Assumption 2.4.2. The solution u of the integro differential equation

{ Au(t,z) =0, (t,z)e[0,T[xE,

w(T,z) = F(z), xe€E, (11.34)

with F' : E — R a bounded function and A given by (I1.33) is such that for all 6 € O,
the function (t,v) — u(t,0,v) is bounded and two times differentiable with bounded
derivatives. Moreover the second derivatives of (t,v) — u(t,0,v) are uniformly Lipschitz
in 0.

Theorem 2.4.1. Let (z¢,t € [0,T]) be a PDMP and (T¢,t € [0,T]) its approzimation
constructed in section 2.2.3 with xo = Tog = x for some x € E. Under assumptions 2.4.1.
and 2.4.2. for any bounded function F': E — R there exists a constant c1 independent of
h such that

E[F(Zr)] — E[F(z7)] = hey + O(h?). (I1.35)

Remark 2.4.1. If (Z;) is a PDMP whose characteristics X, Q satisfy the assumptions
of Proposition 2.2.2 and (Z,) is its approzimation we deduce from Theorem 2.4.1 that

E[F(&r)Ry] — E[F(ir)Rr] = her + O(h?). (I1.36)

2.4.1 Further results on PDMPs: It6 and Feynman-Kac formulas

Definition 2.4.1. Let us define the following operators which act on functions g defined
on Ry x F.
Tg(ta :E) = atg(twr) + f(:v)@,,g(t,m),

Slt,x) = A<x>j (9(t,y) — g(t,2))Q(z, dy).

E

From Definition 2.4.1, the generator A defined by (I1.33) reads Ag(t,z) = Tg(t,z) +
Sg(t,x). We introduce the random counting measure p associated to the PDMP (ay)
defined by p([0,t] x A) := >, o I7,<ly,eca for t € [0,7] and for A € B(E). The
compensator of p, noted p’, is given from [21] by

¢
P01 x 4) = | A)Qas. A)ds.
Hence, ¢ := p — p’ is a martingale with respect to the filtration generated by p noted
(]:f)te[o,T]- Similarly, we introduce p, P, g and (]-"?)te[O’T] to be the same objects as
above but corresponding to the approximation (Z;). The fact that p’ is the compensator
of p and that § is a martingale derives from arguments of the marked point processes
theory, see [10].

Definition 2.4.2. Let us define the following operators which act on functions g defined
on Ry x F.

Ty(t,z,y) := dg(t, ) + f(y)dvg(t, 2),
Ag(t,z,y) := Tg(t,z,y) + Sg(t, x).
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Remark 2.4.2. For all functions g defined on Ry x E, Tg(t,z,z) = Tg(t, ), so that
Ag(t, z, ) = Ag(t, z).

The next theorem provides It6 formulas for the PDMP (x:) and its approximation (Z).
For all s € [0,T], we set 7(s) := Ty, + kh if s € [Ty, + kh, (T, + (k + 1)h) A Tp41] for
some n > 0 and for some k € {0,...,|(Tht1 —Th)/h|}.

Theorem 2.4.2. Let (x,t € [0,T]) and (T¢,t € [0,T]) be a PDMP and its approximation

respectively constructed in section 2.2.3 with xo = To = x for some x € E. For all bounded
functions g : Ry x E — R continuously differentiable with bounded derivatives, we have

t
g(t,z) = g(0,2) + f Ag(s,zs)ds + M, (I1.37)
0
where M} = Sg Sp(9(s,y) — g(s,x5-))q(dsdy) is a true F; -martingale, and
t
g(t,m) = g(0,2) + J Ag(s, s, Ty(s))ds + M7, (I1.38)
0

where, M7 := Sé Sp(9(s,y) — g(s,Ts-))q(dsdy) is a true FP-martingale.

Proof of Theorem 2.4.2. The proof of (I1.37) is given in [21]. We prove (I1.38) following
the same arguments. Since § = p — P, we have

Z ]lT <t( Tk,:rT ) — Tk,xf f Sg(s,Ts)d
k=1

Consider the above sum. As in [21], we write, on the event {N; = n}, that

3 g (90 77,) — 9(Th 7))

k=1
= g(t7ft) - g(O,x) - [g(taxt) meT Z Tk+17x* 1) - g(Tk,ka)

For all k < n — 1, we decompose the increment g(Tk+1,7 ) — g(T, 7, ) as a sum of
k+1

increments on the intervals [Ty + ih, (Ty + (i + 1)h) A Tgi1] < [Tk, Tk+1]- Without loss
of generality we are led to consider increments of the form g(t, 8, ¢4(t,v)) — g(ih, 0,7;(z))
for some i = 0, t € [ih, (i + 1)h] and for all x = (6,v) € E where we recall that ¢ is
defined by (I1.16). The function g is smooth enough to write

t
g(ta 07 ¢9(t7 V)) - g(lha eagl(x)) = fh (atg + fﬂ(yl(l'))allg) (57 97 gb@(s’ I/))dS.
Then, the above arguments together with definition 2.4.2 yields

n—1 t
9(t.7t) = 9(T'n, T3, ) + ’;)g(TkH,w;kH) —9(Th,77,) = L T(s, Ts, Trs) ) ds.
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The following theorem gives us a way to represent the solution of the integro-differential
equation (I1.34) as the conditional expected value of a functional of the terminal value of
the PDMP (z). It plays a key role in the proof of Theorem 2.4.1.

Theorem 2.4.3 (PDMP’s Feynman-Kac formula [22]). Let F : E — R be a bounded
function. Then the integro-differential equation (11.34) has a unique solution v : Ry x E —
R given by

u(t,z) = E[F(xp)|z: = z], (t,x2) € [0,T] x E.

2.4.2 Proof of Theorem 2.4.1

We provide a proof in two steps. First, we give an appropriate representation of the weak
error E[F(Zr)] — E[F(z7)]. Then, we use this representation to identify the coefficient
¢ in (I1.35).

Step 1: Representing E[F (Zr)] — E[F(x7)].
Let u denote the solution of (I1.34). From Theorem 2.4.3 we can write E[F(Zr)]| —

E[F(z7)] = E[w(T,Zr)] — u(0,x). Then, the application of the Ité formula (I1.38) to u
at time T yields

T
uw(T,zr) = u(0,z) + f Au(s, Ty, Tp(5) )ds + M.
0
Since (M) is a true martingale, we obtain
T*
E[u(T, 71) — u(0,2)] = E [ f Au(s,xs,xn(s))ds] .
0
For s € [0,T] we have Au(s, Ts, Tr(s)) = Oru(s, Ts) + f(Tr(s)) Opu(s, Ts) + Su(s, T,) (see
Definition 2.4.2). From the regularity of A\, @ and u (see assumptions 2.4.1 and 2.4.2), the

functions dyu, d,u and Su are smooth enough to apply the 1t6 formula (I1.38) between
7(s) and s respectively. This yields

Oru(s, Ts) = Sru(T(s), Tr(s)) + f( )Z(&tu)(r, T, Ty )T + M?tu - Mgt(z)j
n(s

_ _ _ — _ —F0,u =50, u
dyu(s, Ts) = 0,u(7(s), Tr(s)) + A(Ou) (1, Ty, Ty )dr + M — Mz,

( 7
s — — _ — =0, U S 70LU
+ J( ) f(xﬁ(r))A(aVu) (7’, Ly ‘Tﬁ(r))dr + f(xﬁ(s))(Ms - Mﬁ(s))?
n(s
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so that

S

Au(s, Ts, Ty(s)) = Au(m(s), T(s)> Tr(s)) + B )T(T,%,Eﬁ(r))dr
ns
—Su

—=0tu =70t _ ——=0pu =0, u
+Mst _Mﬁzs)—i_f(wﬁ( )(M —M()>+M — M- 7i(s)>

S

where,

Y(t,z,y) = (AGu) + f(y)A(Gu) + A(Su)) (t,z,y). (I1.39)

Since Au(t,z,z) = Au(t,z), the first term in the above equality is 0 by Theorem 2.4.3.
By using Fubini’s theorem and the fact that (Mftu) and (Mfu) are true martingales, we

obtain
U v —Ma“;)ds}z U s S)ds]z

u
Moreover, since (M t" ) is a FP-martingale, we have

T _ —0,u —d,u T _ —d,u —0,u )
E 0 f(xﬁ(s))(Ms - Mﬁ(s))ds = 0 E [f(xﬁ(s))E[Ms - Mﬁ(s)|]:ﬁ(s)]] ds = 0.

Collecting the previous results, we obtain

E[F(zr)] — E[F [J f (7, Ty Ty ))drds] .

We can compute an explicit form of Y in term of u, f, A, @ and their derivatives. Indeed,
T is given by (I1.39), and we have

j(f?tu)(lf z,y) = ttu< ,x) + f(y)dhult, x) +5(5tU)(t x),
(FA@)) (t.2,y) = fy) (Fult, ) + f(y)d,ult,x) + S(Ouu)(t, x))
A(S )(t T,y) = (%(SU)(t z) + f(y)0u(Su)(t, x) + S(Su)(t, ).

The application of the Taylor formula to the functions dZu, 02,u, 02,u, S(dwu), S(d,u)
01(Su), 0,(Su) and S(Su) at the order 0 around (7(r), Tr()) ylelds Y (r, Ty, T(ry) =
Y(7(r), Ty, Trery) + O(h). Setting W(t, x) = Y (¢, 7, x) and recalling that for r € [7(s), s]
7(r) = 7(s) and that |s —7(s)| < h, we obtain

)

)

T
BLF(0)] - BLF(er)] = B | [ (s =16 W(ate).7y00)ds| + O(12),
Consider the expectation in the right-hand side of the above equality. We decompose the
integral into a (finite) sum of integrals on the intervals [T, + kh, (T, + (k+ 1)h) A Tpi1]
where U is constant. Without loss of generality, we are led to consider integrals of the
form Slih(s — kh)Cds for some k > 0, t € [kh, (k + 1)h] and C a bounded constant. We
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have S,tch(s —kh)Cds = # Slih Cds moreover adding and subtracting h in the numerator
of (t — kh)/2 yields

t t _ t
f (s —kh)Cds = b Cds + L=kt Dh Cds.

kh 2 Jn 2 kh

Since C' is bounded we deduce that Szh(s — kh)Cds = %SZh Cds + O(h?). Since V¥ is

assumed bounded and E[N7] < +00, the above arguments yields the following represen-
tation

h T
MF@ﬂI—MFuﬂ]=2EU;@m@p%@m%+wxﬁy (I1.40)

Step 2: From the representation (11.40) to the expansion at the order one.

In this step, we show that E [S(?\P(ﬁ(s),fﬁ(s))ds] =E [S()T\If(s,xs)ds] + O(h). First,
we introduce the random variables T' and T' defined by T := Sg U (7(s), Ty(s))ds and
I:= Sg W (7(s), T5(5))ds and write

EIT =) = E [0, 7pyerT = T + BT, 7o T = T1]

where 7' is defined in Definition 2.3.1. Since ¥ is bounded and P(min(7%+,T~) < T) =
O(h) (see the proof of Theorem 2.3.1), we have E [T - I‘|]lmm(T?T 7T7T)<T] = O(h). Now,

recall from (IL.24) that, on the event {min(7L:,T) > T}, we have T}, = T}, and ), = 0},
for all k > 1 such that T} € [0,T]. Thus, for all n < Nt and for all s € [T, Tpi1| we
have Ty () = (On, 5 (ﬁ(i) — T, V) and a5y = (0n, ¢, (M(s) — T'n,vn)). Consequently,
on the event {min(7+,T~+) > T'} we have

Thni1 AT o . .
<), f (U ((s), On, g, (11(s) = Tn, Vn)) — W (T(s), On, &g, (1(s) — T, vn))|ds.

n

From the regularity assumptions 2.4.1 and 2.4.2, the function v — ¥(¢,6,v) is uniformly
Lipschitz in (t,6) with constant Lg as sum and product of bounded Lipschitz functions.
Thus, from this Lipschitz property and the application of Lemma 2.2.1, we get

(W(7(5), 0n, &g (0(s) — T, ) — V((5), On, &5, (1(s) — Ty vm))| < LwCe™" (n + 1)h.
From the above inequality, we find that
Eﬁ

min (7. ,T,T)>T’f - F\] < LyCelT"ThE[N7 (N7 + 1)].

Since Ny < Nj and E[N}(N#+1)] < 400 we conclude that E []lmin(lT T,T)>T|F - F|] =

O(h). We have shown that E [8(7; \P(ﬁ(s),fﬁ(s))ds] =E [Sg U(7(s), xﬁ(s))ds] + O(h). Sec-
ondly, from the regularity assumptions 2.4.1 and 2.4.2, the function (¢,v) — ¥(t,0,v)
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is uniformly Lipschitz in 6. Moreover, for all s € [0,7"] there exits k¥ > 0 such that
both s and 7(s) belong to the same interval [Ty, Tg41[ so that x5 = (Ok, g, (s —
Tk,vr)) and w55y = (Ok, 96, (7(s) — Tr,v)). Thus, from the Lipschitz continuity
of U, from the fact that |s — 7(s)| < h and since fp is uniformly bounded in 6 we
have [W(s,zs) — ¥(7(s), Z5(5))| < Ch where C is a constant independent of h. Then,
we obtain supcjo 7 [E[¥(s, zs)] — E[W(7(s), z5(s))]| < Ch from which we deduce that
’E [qu/(ﬁ(s), ] - [SO (s, s ds” < CTh. Finally, the weak error expansion
reads

T
E[F(Zr)] — E[F(zr)] = gIE UO \If(s,xs)ds] + O(h?).

2.5 Numerical experiment

In this section, we use the theoretical results above to apply the MLMC method to the
PDMP 2-dimensional Morris-Lecar (shortened PDMP 2d-ML).

2.5.1 The PDMP 2-dimensional Morris-Lecar

The deterministic Morris-Lecar model has been introduced in 1981 by Catherine Morris
and Harold Lecar in [63] to explain the dynamics of the barnacle muscle fiber. This
model belongs to the family of conductance-based models (just as the Hodgkin-Huxley
model [47]) and takes the following form

{ -1 (I — gLeak (v — Vieak) — gcaMoo (v) (v — Va) — grn(v — VK))7 (11.41)

dn — (1 —n)ak(v) — nBk(v),

where M (v) = (1 -+ tanh[(v — V)/Va])/2, axc(v) = Ak(0)Noo(0), Bic(v) = Ax(v)(1 —
Ny (v)), Noo(v) = (1 + tanh[(v — V3)/V4])/2, Ak (v) = Ak cosh((v — V3)/2V}).

In this section we consider the PDMP version of (I1.41) that we denote by (z¢,t € [0,T]),
T > 0, whose characteristics (f, A, Q) are given by

i f(ea V) = % (I - gLeak(V - VLeak) - gCaMOO(V)(V - VCa) - gKNiK(V - VK))7
e \0,v) = (N —0)ax(v) + 06k (v),
o Q((6.0),10+ 1)) = P Q((0.0),46 - 1}) =

The state space of the model is E' = {0, ..., Nk} x R where Nx > 1 stands for the number
of potassium gates. The values of the parameters used in the simulations are V; = —1.2
, Vo =18, V3 =2, V4 =30, Ak = 0.04, C = 20, greak = 2, Vieak = —60, gca = 4.4,
Voa = 120, gk = 8, Vk = =84, I = 60, Nx = 100.
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Figure II.1 — 10 trajectories of the characteristics of the PDMP 2d-ML on [0, 100].

2.5.2 Classical and Multilevel Monte Carlo estimators

In this section we introduce the classical and multilevel Monte Carlo estimators in
order to estimate the quantity E [F(zr)] where (x¢,t € [0,T]) is the PDMP 2d-ML and
F(0,v) = v for (0,v) € E so that F(zr) gives the value of the membrane potential at
time T'. Note that other possible choices are F'(6,v) = v" or F(0,v) = 6" for some n > 2.
In those cases, the quantity E [F(z7)] gives the moments of the membrane potential or
the number of open gates at time 71" so that we can compute statistics on these biological
variables.

Let X := F(x7). In the sequel it will be convenient to emphasize the dependence of
the Euler scheme (Z;) on a time step h. We introduce a family of random variables
(Xp,h > 0) defined by X}, := F(Zr) where for a given h > 0 the corresponding PDP
(T¢) is constructed as in section 2.2.3 with time step h. In particular, the processes (7;)
for h > 0 are correlated through the same randomness (Uy), (Vi) and (NV;). We build a
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classical Monte Carlo estimator of E[X] based on the family (X, h > 0) as follows

1 N
=¥ ;1 Xk, (I1.42)

where (X ,’f, k > 1) is an i.i.d sequence of random variables distributed like X}. The
parameters h > 0 and N € N have to be determined. We build a multilevel Monte Carlo
estimator based on the family (X}, h > 0) as follows

yMLMC _ ¥ EXh* +2 ZZ Xk - XE ), (11.43)
i Vo

where ((X ;fl,X f]fl—l)’ k> 1) for I = 2,...,L are independent sequences of independent

copies of the couple (Xp,, X, ,) and independent of the i.i.d sequence (X,’f*, k>=1). The
parameter h* is a free parameter that we fix in section 2.5.4. The parameters L > 2,
M=>2 Nz>1andq=(q,...,q) €]0,1[* with Zlel q: = 1 have to be determined,
then we set N; := [Nq], hy := h*M— (-1

We also set X := F (iT)RT where Ry is defined as in Proposition 2.2.2 with an intensity
X and a kernel Q that will be specified in section 2.5.4 and let (Xp,h > 0) be such
that X, := F(Z7)Ry for all h > 0 . By Proposition 2.2.2, we have E[X] = E[X] and
E[X}4] = E[X}] for h > 0. Consequently, we build likewise a multilevel estimator Y MLMC
based on the family (X, h > 0).

The complexity of the classical Monte Carlo estimator YMC depends on the parameters
(h, N) and the one of the multilevel estimators YMIMC and YMIMC depends on (L,q,N).
In order to compare those estimators we proceed as in [54] (see also [66]), that is to say,
for each estimator we determine the parameters which minimize the global complexity (or
cost) subject to the constraint that the resulting L2-error must be lower than a prescribed
e> 0.

As in [54], we call Vi, ¢1, «, B and Var(X) the structural parameters associated to the
family (Xp,h > 0) and X. We know theoretically from Theorem 2.3.1 (strong estimate)
and Theorem 2.4.1 (weak expansion) that («, 8) = (1,1) whereas V1, ¢; and Var(X) are
not explicit (We explain how we estimate them in section 2.5. 3). Moreover, the structural
parameters Vi, &1, @&, 6 and Var(X) associated to (Xh, h > 0) and X are such that @ = a,
¢ = ¢ (see (IL.36)), B = 2 (see Theorem 2.3.2) and V;, Var(X) are not explicit.

The classical and the multilevel estimators defined above are linear and of Monte Carlo
type in the sense described in [54]. The optimal parameters of those estimators are then
expressed in term of the corresponding structural parameters as follows (see [54] or [66]).
For a user prescribed € > 0, the classical Monte Carlo parameters h and N are

hie) = (1 +20) % <|€> C N(e = (1 + 210) Var(X) (1+ ph”()) . (IL44)

o1 €2

where p = 1/V1/Var(X). The parameters of the estimator YMMC are given in Table I1.1
where n; := M1 for [ = 1, ..., L with the convention ng = nal = 0. The parameters of
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1
log(Je1| @ h*) | log(A/e) _
L {1 + Gt a"lig(M)], A=+1+2a
* * 8
@ = p*(1+ p(h*)2)
q
T
B n.Z,+n,; X ) . .
q; = pw*p(h*)2 \}ﬁ J=2,..., Lyt = 1/Z1<j<LQJ
,5 —B8 2
Var(X) (1+p(h*)ngL 1<n 2 +ng? >4/TL]’1+7’LJ‘>
N 1+ 5=
( * 20‘) X5 aj(nj—14n;)
Table II.1 — Optimal parameters for the MLMC estimator (11.43).
YMIMC are given in a similar way using Vi, 3 and Var(X). Finally, the parameter M (¢)

is determined as in [54] section 5.1.

2.5.3 Methodology

We compare the classical and the multilevel Monte Carlo estimators in term of precision,
CPU-time and complexity. The precision of an estimator Y is defined by the L2-error
| Y — E[X] [2= +/(E[Y] — E[X])? + Var(Y) also known as the Root Mean Square
Error (RMSE). The CPU-time represents the time needed to compute one realisation
of an estimator. The complexity is defined as the number of time steps involved in the
simulation of an estimator. Let Y denote the estimator (I1.42) or (I1.43). We estimate

the bias of Y by
1 i .
- —N'yk_
Ri=

where Y!,...,Y® are R independent replications of the estimator. We estimate the
variance of Y by

1 g,
DR S5
szl
1 R

where v, ..., v'"" are R independent replications of v the empirical variance of Y. In the
case where Y is the crude Monte Carlo estimator we set

1 ol 1 Y
- ). (Xf - 2 —E
CTNN 1) (Ko =ma )% my = 5 =

If Y is the MLMC estimator, we set
1 J" S N mYH2
- - _ k
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1) _ 1 M yk 0 _ 15N yk k
where my; = Ny Dik=1 Xy and for [ > 2, My, = 77 2ake1 Xp, — Xp,_,- Then, we define

the empirical RMSE € by
€r = W/BQR + Ug. (H.45)

The numerical computation of (I1.45) for both estimators (I1.42) and (11.43) requires the
computation of the optimal parameters given by (I1.44) and in table II.1 of section 2.5.2
which are expressed in term of the structural parameters ¢1, V1 and Var(X). Moreover
the computation of the bias requires the value E[X]. Since there is no closed formula
for the mean and variance of X we estimate them using a crude Monte Carlo estimator
with h = 107 and N = 10%. The constants ¢; and Vj are not explicit, we use the same
estimator of V} as in [54] section 5.1, that is

Vi=(1+M P2 PE[|X, — Xanl], (I1.46)
and we use the following estimator of ¢;
a=01-M"*""h Ok [ X — Xa]. (I1.47)

The estimator of ¢; is obtained writing the weak error expansion for the two time steps
h and h/M, summing and neglecting the O(h?) term. In (I1.46) we use (h, M) = (0.1,4)
and in (IL.47), we use (h, M) = (1,4) and the expectations are estimated using a classical
Monte Carlo of size N = 10* on (X, /v, Xn). We emphasize that we interested in the
order of ¢; and V7 so that we do not need a precise estimation here.

2.5.4 Numerical results

In this section we first illustrate the results of Theorems 2.3.1 and 2.3.2 on the Morris-
Lecar PDMP, then we compare the MC and MLMC estimators. The simulations were
carried out on a computer with a processor Intel Core i5-4300U CPU @ 1.90GHz x 4.
The code is written in C++ language. We implement the estimator YMIMC (see section
2.5.2) for the following choices of the parameters (A, Q).

Case 1: \(f) = 1 and Q(G, {6 + 1}) = N]‘ffe, Q(@, {60 — 1}) = NiK'

K

Case 2: \(z,t) = A(6,v(t)) and Q((z, 1), dy) = Q((A,v(t)), dy) where v denotes the first
component of the solution of (I1.41).

Cases 1 and 2 correspond to the application of Proposition 2.2.2. Based on Corollary
2.2.2 we also consider the following case.

Case 3: Consider the quantity E[F(xr) — F(Zr)] where (z;) and (Z;) are PDPs
with characteristics (®,\, Q) and (®, \, Q) respectively. By Corollary 2.2.2, we have
E[F(i7)] = E[F(yr)Rr] where (y;) is a PDP whose discrete component jumps in the
same states and at the times as the discrete component of (z;) do and (R;) is the

corresponding corrective process. Thus, we consider the quantity E[F(z7) — F(yr)Rr]
instead of E[F(z7) — F(Z7)].
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The case 3 implies to use the following MLMC estimator which is slightly different from
(11.43).

§MLMC _ 1 & Xk &1 Yk _ Xk
— Fl Z h* +Zﬁl 2 h‘l - h’l—l’
1 A

where ((X ,’fl,f( ,’fl_l), k= 1) for [ = 2,..., L are independent sequences of independent
copies of the couple (X, X5, ,) = (F(@r), F(gy)Rr) where (7,) is a PDP whose discrete
component jumps in the same states and at the same times as the Euler scheme (Z;) with
time step h; do, whose deterministic motions are given by the approximate flows with
time step h;—1 and (R;) is the corresponding corrective process (see Corollary 2.2.2).

15 6

O E[ =X 07 o E[, = X )7
E (Xh, - :h:)z : 8552 % + ]E[ th _ )-{hzfi 2]: é’;bg%
E[(Xp, — :h,H)Q : Case 2 E éXhl - X}”?'gz \ Caso 3
10 E[(Xp—~Xp,_,)?%: Case 3 1 9
T~
o - o
2 o S 4 2 .
< > Nﬂ)
S N\ L )
M— 8
5 i
T B 10
10 12
1 2 3 4 5 6 7 3 1 9 3 1 5 P - o
level level
(a) T=10. (b) T=20.
8 . . :
. EUXn o Xn_)?] ﬁ
6 E[(Xhy.=.&Xn_,)?]: Case 3
T
bS] 2-{}\\_|
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(c) T=30.

Figure I1.2 — The plots (a),(b) and (c) show the decay of E[(X}, — Xp, ,)?] and E[ X}, —
Xhl_l)Z] (y-axis, log,, scale) as a function of I with by = h x M~—(=1 h =1, M = 4, for
different values of the final time T. For visual guide, we added black solid lines with
slopes -1 and -2.

The figure 1.2 confirms numerically that E[| X, — X5, ,|?] = O(h) and that E[| X}, —
Xp,_,1?] = O(h?) for the cases 1,2 and 3 (see Theorems 2.3.1 and 2.3.2 respectively).
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Indeed, for T' = 10 (see figure I1.2a), we observe that the curve corresponding to the
decay of E[|Xp,, — X5, ,|?] as [ increases is approximately parallel to a line of slope -1
and that the curves corresponding to the decay of E[| X}, — X3, ,|?] in the cases 1,2 and
3 are parallel to a line of slope -2. We also see that the curves corresponding to the cases
2 and 3 are approximately similar and that for some value of | those curves go below the
one corresponding to E[| X}, — Xp,_,[2]. The curve corresponding to the case 1 is always
above all the other ones, this indicates that the L2-error (or the variance) in the case 1 is
too big (w.r.t the others) and that is why we do do not consider this case in the sequel.
As T increases (see figures I1.2b and I1.2c), the theoretical order of the numerical schemes
is still observed. However, for T' = 20, a slight difference begin to emerge between the
cases 2 and 3 (the case 3 being better) and this difference is accentuated for T' = 30 so
that we do not represent the case 2.

For the Monte Carlo simulations we set T = 30, A* = 10 and the time step involved in
the first level of the MLMC is set to h* = 0.1. We choose this value for h* because it
represents (on average) the size of an interval [T}¥,T}%, ;] of two successive jump times
of the auxiliary Poisson process (N;*). The estimation of the true value and variance
leads E[X] = —31.4723 and Var(X) = 335. Note that v(30) = —35.3083 where v is the
deterministic membrane potential solution of (II.41) so that there is an offset between
the deterministic potential and the mean of the stochastic potential. We replicate 100
times the simulation of the classical and multilevel estimators to compute the empirical
RMSE so that R = 100 in (I1.45).

e=27k €100 b100 100 time (sec) N h cost

5.00e-01
2.50e-01
1.25e-01
6.25e-02
3.12e-02

QU W N~

Table I1.2 — Results and parameters of the classical Monte Carlo estimator YMC. Esti-
mated values of the structural parameters: ¢; = 4.58, V; = 7.25.

4.32e-01
2.59e-01
1.17e-01
5.67e-02
2.50e-02

2.34e-01
1.69e-01
6.25e-02
2.73e-02
-1.78e-03

1.52e-01
3.87e-02
9.78e-03
2.47e-03
6.21e-04

3.10e-01

1.55e+-00
8.80e+00
9.62e+01
3.93e+-02

2.16e+03
8.47e+03
3.34e+04
1.32e+405
5.24e+05

6.30e-02
3.15e-02
1.58e-02

7.88e-03
3.94e-03

3.43e+04
2.69e+05
2.12e+4-06
1.68e+-07
1.33e+08

kle=27F €100 8100 100 time (sec) L|M|h* N cost

115.00e-01|3.89¢-01| 1.14e-01 | 1.38e-01| 3.62e-01 | 2| 2 [0.1|2.60e+03|2.82e+04
2 12.50e-01]2.29e-01 | 1.19e-01 | 3.83e-02 | 1.44e+00 | 2| 4 |0.1|1.04e+04 |1.16e+05
311.25e-01]1.21e-01 | 6.24e-02 | 1.07e-02 | 5.76e+00 | 2 | 7 |0.1|4.22e+04 | 4.85e+05
416.25e-02 |5.91e-02 | 1.38e-02 | 3.30e-03 | 2.69e+01 | 3| 4 |0.1]1.90e+05|2.37e+406
5 13.12e-02]3.47e-02 | -1.39e-02 | 1.01e-03 | 1.08e+02 | 3| 6 |0.1|7.71e+05 | 9.99e+06

Table II.3 — Results and parameters of the Multilevel Monte Carlo estimator YMIMC,
Estimated values of the structural parameters: ¢; = 4.58, V7 = 7.25.

The results of the Monte Carlo simulations are shown in tables II1.2 for the classical
Monte Carlo estimator YMC and in tables I1.3 and I1.4 for the multilevel estimators
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h* N cost

0.1(2.38¢+03 | 2.50e+04
0.1]9.46e+03 | 1.00e+05
0.1]3.80e+04 | 4.11e405
0.1]1.58¢e+05|1.75e+06
0.1[6.30e+05 | 7.02e+4-06

e=2"F €100 /5100 100 time (sec)
5.00e-01 | 4.28e-01 | 1.98e-01| 1.44e-01 | 3.13e-01
2.50e-01 | 2.47e-01 | 1.55e-01 | 3.72e-02 | 1.26e+400
1.25e-01 | 1.36e-01 | 8.90e-02 | 1.05e-02 | 5.00e+00
6.25e-02 | 6.22e-02 | 2.15e-02 | 3.41e-03 | 2.09e+01
3.12e-02 | 3.17e-02 | 6.07e-03 | 9.71e-04 | 8.35e+4-01

Lo LI NN N
T oW

QU W N~

Table I1.4 — Results and parameters of the Multilevel Monte Carlq estimator Y MLMC
(case 3). Estimated values of the structural parameters: ¢; = 3.91, V; = 34.1.

YMEMC and YMIMC (cage 3). As an example, the first line of table I1.3 reads as follows:
for a user prescribed € = 271 = 0.5, the MLMC estimator YMIMC is implemented with
L = 2 levels, the time step at the first level is A* = 0.1, this time step is refined by a
factor n; = M'~1 with M = 2 at each levels and the sample size is N = 2600. For such
parameters, the numerical complexity of the estimator is Cost(YMFMC) = 28200, the
empirical RMSE €199 = 0.389 and the computational time of one realisation of YyMLMC ¢
0.362 seconds. We also reported the empirical bias b1gp and the empirical variance 19
in view of (IL.45).

10

yMC + yMC +

YMLM(' YMLM()

'ﬁ\ PMINC, case 3 K YMIMC: case 3 3K
_{

=
Sy

Complexity ratio
/
CPU time ratio

K K
1 % X K
275 274 273 272 271 275 274 2‘73 272 271
(a) Ratio of the complexities. (b) Ratio of the CPU-times.

Figure IL.3 — The plots (a) and (b) show the complexity and CPU-time ratios w.r.t the
complexity and CPU-time of the estimator YMMC ag a function of the prescribed ¢ (log,
scale for the z-axis, log scale for the y-axis).

The results indicate that the MLMC outperforms the classical MC. More precisely, for
small values of € (i.e k = 1,2,3) the complexity and the CPU-time of the classical and
the multilevel MC estimators are of the same order. As e decreases (i.e as k increases)
the difference in complexity and CPU-time between classical and multilevel MC increases.
Indeed, for k = 5 the complexity of the estimator YMC is approximately 13 times superior
to the one of YMEMC 4nd 19 times superior to the one of YMIMC  The same fact
appears when we look at the complexity ratio of the estimators YMEMC apd yMLMC
(i.e Cost(YMEMC) /Cost(YMIMCY) a5 ¢ decreases. However, the difference between the
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complexity of these two MLMC estimators increases more slowly than the one between a
MC and a MLMC estimator. Recall that the computational benefit of the MLMC over
the MC grows as the prescribed e decreases.

Both classical and multilevel estimators provide an empirical RMSE which is close to the
prescribed precision (see tables I1.2, I1.3 and 11.4). We can conclude that the choice of
the parameters is well adapted. For the readability, figures 11.3a, I11.3b show the ratios of
the complexities and the CPU-times of the three estimators YMC yMLMC 4y q yMLMC
as a function of e.
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