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Preface

This manuscript summarizes some of the research activities I conducted after obtaining my
Phd degree from Politecnico di Milano in February 2011. Soon after my graduation, I moved
to the Laboratoire Traitement et Communication de l’Information (LTCI), Telecom Paristech,
initially as a post-doc researcher, and since 2012 as a permanent CNRS researcher (“chargé
de recherches”). This position gave me a great freedom to study multiple aspects of visual
information processing concurrently, and to take risks in exploring different topics from those I
worked on in my PhD thesis. Since the end of 2016, I carry out my research at the Laboratoire
des Signaux et Systèmes (L2S), CentraleSupelec, Universitè Paris Sud, Universitè Paris Saclay.

As mentioned above, my research covers several aspects of visual information processing. This
is a rich and variegate field, ranging from image/video acquisition to coding and transmission,
models of perception, quality of experience, interactivity, security and analysis. In this context,
my research mainly focuses on three aspects. The first is finding efficient representations for
image/video compression: this is especially relevant for new and emerging video formats,
such as high dynamic range (HDR) video, light-field content, point clouds, etc. A second
research theme is assessing and modeling the perception of the quality of experience (QoE)
for image/video content, in particular for new and richer video representations. Indeed, this
enables to improve existing compression algorithms and to design new ones, taking into account
the perceived quality of coding artifacts. Also, measuring the QoE enables to gauge the added
value of these media in pursuing a truly realistic and immersive video experience. Finally,
the third research thread is about image/video analysis. Oftentimes, image/video content is
not intended for entertainment and might be input to other, possibly automatic, tasks such as
object detection, recognition or tracking. This entails a more general notion of perception,
which is becoming increasingly important in many applications, from video surveillance to
autonomous driving. In this respect, my focus is mainly on how to process visual information
in order to facilitate further analysis tasks, again with a particular emphasis on richer content
representations.

This manuscript is organized in three parts. The first part consists of an extended curriculum
vitae, with a focus on the research activities I have supervised/coordinated. In the second part,
I provide a selection of my past research contributions, according to the three main themes
mentioned above. Each chapter and section can be read in a “multi-resolution” fashion: the in-
troduction provides an overall outline of the contributions; some details and the most significant
results are reported in the rest of the text; and finally, for a complete presentation of the work,
the readers are pointed to the original papers where the contributions have been published. Fi-
nally, the third and last part of the manuscript provides some insights on my future research
perspective in this domain.

i



ii



Contents

Preface i

I Extended Curriculum Vitae 2

II Summary of research activities 11

1 Video compression 12

1.1 Depth video compression using Don’t Care Regions . . . . . . . . . . . . . . . 12

1.1.1 Definition of Don’t Care Region (DCR) . . . . . . . . . . . . . . . . . 13

1.1.2 Application to temporal coding . . . . . . . . . . . . . . . . . . . . . 14

1.1.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Optimal tone mapping for HDR video compression . . . . . . . . . . . . . . . 16

1.2.1 Content Adaptive Tone Mapping Operator . . . . . . . . . . . . . . . . 17

1.2.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Enhancing Intra prediction using context-based learning . . . . . . . . . . . . 23

1.3.1 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Learning-based coding of point cloud geometry . . . . . . . . . . . . . . . . . 26

1.4.1 Proposed PCC coding scheme . . . . . . . . . . . . . . . . . . . . . . 28

1.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



iv CONTENTS

2 Quality of Experience 31

2.1 An extensive evaluation of HDR fidelity metrics . . . . . . . . . . . . . . . . . 32

2.1.1 Datasets and quality metrics . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.2 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.3 Discriminability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Blind HDR quality estimation disentangling perceptual and noisy features . . . 40

2.2.1 Proposed model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.2 Two-step training procedure . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Perceived dynamic range for HDR images . . . . . . . . . . . . . . . . . . . . 46

2.3.1 Subjective dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.2 Considered image features . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.3 PDR predictor model . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Towards a unified quality scale fusing rating and ranking measures . . . . . . . 51

2.4.1 Observer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.2 Psychometric scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.3 The relation between MOS and PWC and the importance of cross-

content comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.4 Combining rating and pairwise comparisons . . . . . . . . . . . . . . . 59

3 Image and video analysis 62

3.1 Local features for RGBD image matching . . . . . . . . . . . . . . . . . . . . 63

3.1.1 Background concepts on image matching . . . . . . . . . . . . . . . . 63

3.1.2 Keypoint extraction based on a RGBD scale space . . . . . . . . . . . 65

3.1.3 TRISK: local features extraction for RGBD content matching . . . . . 71

3.2 Learning-based tone mapping for robust image matching under illumination

changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.1 Design of OpTMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



CONTENTS 1

3.2.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Detection of inverse tone mapping in HDR images . . . . . . . . . . . . . . . 83

3.3.1 Forensic analysis based on Fisher scores . . . . . . . . . . . . . . . . . 85

3.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Predicting subjectivity in image aesthetic assessment . . . . . . . . . . . . . . 87

3.4.1 Subjectivity measures . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.2 Prediction of subjectivity . . . . . . . . . . . . . . . . . . . . . . . . . 90

III Future research perspectives 93

4 Towards effective representations for immersive visual communication 94

4.1 Learning good representations for video compression and quality assessment . 95

4.1.1 Deep generative models for video coding . . . . . . . . . . . . . . . . 95

4.1.2 Representation learning in quality assessment . . . . . . . . . . . . . . 97

4.2 New methodologies for Quality of Experience . . . . . . . . . . . . . . . . . . 98

4.3 Immersive visual communication . . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix 100

A List of publications 101



Part I

Extended Curriculum Vitae

2



3

General information

Name: Giuseppe
Surname: Valenzise
Birth: 28th of December 1982, Monza, Italy
Nationality: Italian
E-mail: giuseppe.valenzise@l2s.centralesupelec.fr
Website: http://webpages.l2s.centralesupelec.fr/perso/giuseppe.
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Current position

Position (since Oct.
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Address: 3 rue Joliot-Curie, 91192 Gif-sur-Yvette Cedex, France
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Oct. 2012 - Oct. 2016: Chargé de recherches CNRS at LTCI, Telecom Paristech, Paris, France
Jul. 2011 - Sep. 2012: Post-doc researcher at Telecom Paristech, Paris, France
Feb. 2011 - Jun. 2011: Post-doc researcher at Politecnico di Milano, Italy
Jan. 2009 - Aug. 2009: Visiting researcher at University of Southern California, Los Angeles,

USA

Education

Feb. 2011: PhD in Information Technology, Politecnico di Milano, Italy. Thesis:
“No-reference and reduced-reference methods for multimedia forensics
and quality assessment”

Apr. 2007: MSc in Computer Engineering, Politecnico di Milano, Italy

Supervision activities

Former PhD theses

1. Paul Lauga, “High Dynamic Range (HDR) representations for Digital Video” (with F.
Dufaux, starting from June 2012; thesis defended on December 3, 2015)

HDR processing allows to capture and represent a scene with a greater level of realism
than conventional, low dynamic range (LDR) images. This representation brings new
challenges such as encoding and evaluating the quality of HDR content, or converting
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HDR to LDR and vice versa. In his thesis, Dr. Lauga proposed several new compression
methods adapted to HDR images and video sequences. A first method segments the
HDR image into dark and bright regions, in order to preserve more details of the original
picture [94, 95]. The next two methods propose to include two regularization terms for
the spatial [96] and temporal [137, 138] complexity, respectively, in order to optimize the
rate-distortion trade-off. These compression methods have been compared with those in
the state of the art using several HDR quality metrics. The effectiveness of these metrics
in the case of HDR image compression has been validated through a subjective study
[189]. A final study evaluates subjectively the performance of the application of different
expansion algorithms on LDR video sequences in order to display them on a HDR display
[26].

Dr. Lauga is currently employed as a post-doc researcher at Hypervision technology,
Paris, in collaboration with Centrale Marseille. Previously, he worked as a post-doc re-
searcher at Institut Fresnel, Marseille.

2. Maxim Karpushin, “Local features for RGBD image matching under viewpoint changes”
(with F. Dufaux, starting October 2013; thesis defended on November 3, 2016)

Texture+depth (RGBD) visual content acquisition offers new possibilities for different
classical problems in vision, robotics and multimedia. In his thesis, Dr. Karpushin has
addressed the task of establishing local visual correspondences in images, which is a basic
operation underlying numerous higher-level problems, including object tracking, visual
odometry, multimedia indexing and visual search. The local correspondences are com-
monly found through local visual features. While these have been exhaustively studied
for traditional images, little has been done for the case of RGBD content. Yet, depth
can provide useful information to increase the robustness of local features to one of the
major difficulties in image matching, i.e., drastic viewpoint changes. Based on this ob-
servation, Dr. Karpushin contributed several new approaches of keypoint detection and
descriptor extraction, that preserve the conventional degree of keypoint covariance and
descriptor invariance to in-plane visual deformations, but aim at improved stability to out-
of-plane (3D) transformations in comparison to existing texture-only and texture+depth
local features. More specifically, Dr. Karpushin initially proposed to normalize the lo-
cal descriptor sampling patterns in order to adapt to the local geometry of objects in the
scene, by either using planar approximations [70] or by directly sampling the surface
manifold [71]. The latter approach may provide better invariance to descriptor extraction,
but entails a higher computational cost. Therefore, Dr. Karpushin focused on the for-
mer strategy, formalizing the concept of local adaptive axes [76, 77]. On the other hand,
Dr. Karpushin revisited a classical construction of local keypoint detection: scale spaces.
Based on the axiomatic definition of scale space, Dr. Karpushin derived a stable numer-
ical diffusion process and proved that this engenders a scale space, satisfying the scale
space axioms [72, 74]. He also proposed a simpler and faster approximation to the scale
space construction [75]. Finally, he developed a fast and accurate quadratic approxima-
tion to Gaussian smoothing, required for generating scale spaces in 2D, based on integral
images [73]. Dr. Karpushing evaluated these proposed methods using application-level
scenarios on RGBD datasets acquired with Kinect sensors.
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Dr. Karpushin is currently a senior R&D engineer at GoPro, France.

3. Emin Zerman, “Assessment and analysis of high dynamic range video quality” (with F.
Dufaux, starting February 2015; thesis defended on January 19, 2018)

High dynamic range video quality assessment presents a number of differences and chal-
lenges with respect to conventional video quality assessment, e.g., the impact of brighter
displays on the perception of distortion and colors, and how to take into account these
phenomena when computing video quality metrics. In his PhD thesis, Dr. Zerman identi-
fied and targeted some of these challenges. Initially, he considered the effects of display
rendering on HDR image quality assessment. To this end, he proposed a new display
shading algorithm [209], and he carried out a subjective study to investigate the effect
of different shading methods on both subjective scores and objective metrics [208]. Af-
terwards, Dr. Zerman studied the effect of using different color spaces on HDR video
compression performance [206]. Interestingly, these studies found that quality (fidelity)
scores for compression artifacts are quite robust to both different rendering schemes and
color transformations, suggesting strong similarities to low dynamic range (LDR) qual-
ity evaluation. In order to further study these similarities, and specifically how existing
LDR quality metrics can be adapted to predict HDR quality, Dr. Zerman conducted an
extensive validation of existing fidelity measures [210], including metrics specifically de-
signed for HDR as well as metrics originally proposed for LDR and adapted to HDR by
means of a proper perceptual encoding. This study collects aligned opinion scores from
several previous quality surveys, and proposes a new one, yielding the largest available
benchmark of HDR image fidelity metrics.

In the last part of his PhD thesis, Dr. Zerman focused on more methodological aspects of
gauging subjective quality scores. More specifically, in collaboration with Dr. Rafal Man-
tiuk (University of Cambridge, UK), he studied the relationship between rating scores
(such as MOS, mean opinion scores), and pairwise comparison scores [207]. This work
is currently being extended towards defining a unified quality scale using scores deriving
from different experiments.

Dr. Zerman is currently working as a post-doctoral researcher at the V-SENSE lab, Trinity
College of Dublin, Ireland.

4. Aakanksha Rana, “High dynamic range image analysis” (with F. Dufaux, starting April
2015; thesis defended on March 15, 2018)

Drastic illumination changes are one of the greatest challenges for image matching and,
in general, image analysis. One way to face this challenge, which was the subject of Dr.
Rana’s Phd thesis, consists in employing a richer visual representation, such as the one
provided by HDR imaging, in order to capture more details both in the bright and dark
areas of the scene. In principle, HDR represents the scene radiance, and should provide
invariance to illumination changes. In practice, the HDR content needs to be properly
processed in order to obtain this invariance. Traditionally, tone mapping operators (TMO)
have been proposed to separate scene illumination from object reflectance. However,
these algorithms have been conventionally designed and tuned to maximize the visual
experience of human observers, rather than for facilitating machine tasks. Dr. Rana
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began her thesis by exploring which kind of HDR representation (linear radiance values,
different tone mapping methods or fixed transfer function to compress the luminance
range) best fits the task of image matching [151, 152]. She found that dynamic range
compression is necessary to obtain more stable and descriptive features, while linear light
is not adapted to current feature extraction pipelines. However, no single existing HDR
representation gives optimal performance in general, which suggests potential gains in
optimizing a tone mapping operator for a given content and for the specific task of image
matching [153]. Based on these observations, Dr. Rana proposed a learning approach to
derive the optimal TMO for a given scene, by collecting a dataset of pictures with different
illumination conditions. Afterwards, she used this dataset to learn a local parametric
bilateral filter able to optimize both keypoint detection [154] and matching [155, 156].
In the last part of her thesis, Dr. Rana proposed an end-to-end optimized tone mapping
operator, based on a conditional generative adversarial network (cGAN). This work is
under submission at the time of this writing.

Dr. Rana is currently working as a post-doctoral researcher at Harward Medical School,
Boston, USA. Previously, she worked as a post-doctoral researcher at the V-SENSE lab,
Trinity College of Dublin, Ireland.

Former post-doctoral fellows

1. Cagri Ozcinar, 1 year

Dr. Ozcinar worked in collaboration with Paul Lauga to the definition and implementa-
tion of a temporally coherent tone mapping operator for scalable HDR video compres-
sion [137, 138]. The proposed TMO consists in formulating a convex optimization prob-
lem to minimize HDR video reconstruction distortion, while at the same time taking into
account the temporal smoothness of the luminance of motion trajectories.

Dr. Ozcinar is currently working as a post-doctoral researcher at the V-SENSE lab, Trinity
College of Dublin, Ireland.

2. Wei Fan, 1 year

Dr. Fan post-doctoral research focused on the forensic analysis of high dynamic range
content. In particular, one important difference between HDR and LDR pictures is that the
former might be obtained by fusing multiple pictures with different exposure (mHDR) or
by artificially boosting the dynamic range of an LDR picture, through an operation called
inverse tone mapping (iHDR). Dr. Fan proposed a forensic feature to distinguish mHDR
from iHDR pictures. The feature, based on the Fisher score of a Gaussian mixture model
of local pixel dependencies, was showed to be discriminative and robust to a number of
different inverse tone mapping methods [34, 35].

After her post-doc experience in Telecom Paristech, Dr. Fan has worked as post-doc
researcher at Dartmouth University, US, and she is currently at Google, Mountain View,
as a senior engineer.
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3. Vedad Hulusic, 2 years and 3 months

Dr. Hulusic mainly worked on measuring and modeling the perception of dynamic range
in HDR pictures. He built a (publicly available) subjectively annotated dataset of HDR
pictures with dynamic range judged by people on a rating scale [52]. Afterwards, he used
this dataset to develop a computational model to predict the perceived dynamic range
taking into account some geometric aspects of light distribution in the picture, linking it
to previously studied concepts in lightness perception [48, 49]. He further extended this
study to consider the case of stimuli with no semantic information [50]. In the context
of the 4EVER2 project, Dr. Hulusic conducted a study on the combined effect of Ultra
High Definition (UHD) and High Frame Rate (HFR) video formats to the quality of ex-
perience [51]. He also co-supervised an intern student to carry out a subjective study on
the video quality for tile-based spatial adaptation in HTTP adaptive streaming.

Dr. Hulusic is currently a senior Lecturer in Games Design and Development at the
Department of Creative Technology, Faculty of Science and Technology, University of
Bournemouth, UK.

Current PhD students

1. Chen Kang, “Aesthetic video quality assessment using deep neural networks”, started in
October 2017; expected graduation September 2020. I am the main director of this thesis,
which is co-supervised by F. Dufaux (50%)

Predicting aesthetic judgments of video is a highly subjective process, and is far more
challenging than traditional quality assessment. In her PhD thesis, Chen Kang studies
how to predict aesthetic quality using deep convolutional neural networks. Deep learning
approaches have been successfully used in the last few years to predict aesthetic quality in
a supervised fashion, thanks to the availability of large-scale subjectively annotated public
datasets such as AVA. In the first part of the thesis, Chen Kang focused on quantifying and
estimating the subjectivity of aesthetic scores [67]. In fact, images having similar average
ratings might display very different degrees of consensus among human observers. In this
context, she proposed several measures to quantify this consensus, showing that it is more
efficient to directly predict these measures rather than predicting the distribution of the
scores, which seems to be an intrinsically more difficult task. Existing aesthetic datasets
are very noisy, and subjective scores do not reflect only the aesthetic value of pictures
but are influenced by many external or personal factors (photographic challenge, topic,
interestingness, popularity, etc.). Therefore, in the second part of the thesis we focus on
building a new aesthetic datasets, which will be collected in a more disciplined way, e.g.,
by clearly defining aesthetic attributes and training raters to their intepretation. This will
enable to improve aesthetic prediction and interpretability, and to facilitate tasks such as
automatic image enhancement.

2. Maurice Quach, “Compression and Quality Assessment of Point Cloud”, started in Oc-
tober 2018; expected graduation September 2021. Co-supervised with F. Dufaux at 50%.

The PhD thesis of Maurice Quach focuses on the efficient compression of point cloud
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video, and on the estimation of the perceptual quality of compressed point clouds. In
particular, in the first part of his thesis he has focused on the lossy compression of point
cloud geometry, proposing a learning-based framework based on auto-encoders [150].

3. Milan Stepanov, “View extraction and coding for light field imaging”, started in Decem-
ber 2018; expected graduation November 2021. Co-supervised with F. Dufaux at 50%.

The goal of Milan Stepanov’s thesis is to investigate new coding approaches for light
field video. In particular, he will explore learning-based solutions and adapt them to the
specific structure of light field data.

Current Post-doctoral fellows

1. Li Wang, started February 2018

Dr. Wang conducts her post-doctoral research on video coding optimization using deep
generative models. In particular, she studies how deep generative models can be em-
ployed to optimize typical coding tools, such as spatial/temporal prediction; and entropy
coding, which account for a large part of the efficiency of current video coding techniques.
Specifically, Li Wang has proposed an encoder-decoder convolutional network able to re-
duce the energy of the residuals of HEVC intra prediction, by leveraging the available
context of previously decoded neighboring blocks [194]. Currently, she is studying how
to extend this scheme to temporal prediction, and how to optimize the architecture by em-
bedding a non-supervised classification of coding block prior to prediction in the system.

Teaching

• Deep Learning for Multimedia – Master Multimedia and Networking, Paris Saclay (co-
organizer of the class, 3 hours of teaching). 2018

• Image Processing – Master 3IR, University Paris 13 (20 hours). 2017

• SI222: Techniques de Compression. Telecom Paris, Master (3 hours). 2012-2017

• SI350: Vidéo numérique et multimédia. Telecom Paris, Master (3 hours). 2012-2017

• Télévision numérique: distribution, services et systèmes. Telecom Paris, Formation con-
tinue (6 hours). 2012-2016

• Projet d’application final (PAF), Telecom Paris (approx. 20 hours of student mentoring).
2014-2016

Scientific production and dissemination

My complete scientific production is reported in the appendix and includes:

• 18 published journal papers;
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• 60 published conference papers;

• 4 published book chapters.

According to Google Scholar, my h-index is equal to 17, with more than 1300 citations, on
August 21, 2019.

Together with E. Reinhard (Technicolor) and F. Dufaux (CNRS), I gave two tutorials on high
dynamic range video at EUSIPCO 2016 and ICIP 2016, respectively.

Research projects

• RealVision (ITN Marie-Curie), January 2018, ongoing

• ReVeRY – RichEr VidEo for Richer creativitY (ANR), December 2017, ongoing

– Leader of the workpackage on video quality evaluation

• V-CODE – Video Coding Optimization using Deep Generative Models (Labex Digicosme
2018)

• Projet STIC Paris-Saclay, 2017 (financement post-doc)

• 4EVER2 – For Enhanced Video ExpeRience (FUI 19), 2015-2017

• PLEIN-PHARE – Projet d’améLioration bas-coût d’unE chaIne de vidéosurveillaNce Par
l’exploitation de technologies HDR d’Analyse et de Restitution (FUI 18), 2015-2017

– Leader of the workpackage on video coding and analysis

• NEVEx – The NExt Video Experience (FUI 11), 2011-2014

• PHC BOSPHORE 2016 – Backward compatible and native encoding of High Dynamic
Range video and its perceptual evaluation

– Leader of the French team

• NORAH – NO-Reference quality Assessment for High dynamic range content (PEPS
JCJC INS2I 2017)

• CLUE-HDR – CoLor appearance based qUality Estimation for HDR content (PEPS JCJC
INS2I 2016)

Editorial activities and participation to technical committees

I serve as associate editor for two international journals: IEEE Transactions on Circuits and Sys-
tems for Video Technology (since 2016) and Elsevier Signal processing: Image communication
(since 2015). I have participated to the technical program committee of several conferences,
including ICASSP, ICIP, MMSP, ICME, VCIP, EUSIPCO, etc.
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I am an elected member for the term 2018-2020 of the IEEE technical committee on Multimedia
Signal Processing (MMSP) and the IEEE technical committee on Image, Video and Multidi-
mensional Signal Processing (IVMSP), as well as a member of the Special Area Team on Visual
Information Processing (SAT-VIP) of EURASIP.

Awards

I have received the EURASIP early career award in 2018 for significant contributions to video
coding and analysis. I was awarded the “Prime d’Excellence Scientifique” (prize of scientific
excellence) by CNRS in 2017. My PhD student, Dr. Karpushin, received the 1st Prize of the
Telecom Foundation for the best PhD thesis in 2017. I also received the second prize for best
student paper at ICIP 2011.
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Chapter 1

Video compression

In this chapter I review my past research activity on optimization of video coding. I have
been especially focusing on video representations which enable a higher degree of realism and
interaction with the scene, such as high dynamic range imaging. I will start by describing in
Section 1.1 a contribution on the motion prediction in depth video in the Multiview-plus-Depth
(MVD) video format [188], where we exploit the fact that depth is never directly displayed to
observers, but rather used to synthesize new view points. The second contribution (Section 1.2)
is about the design of an optimal tone mapping operator (TMO) for high dynamic range (HDR)
video coding [138]. This TMO does not only optimize the end-to-end reconstruction error of
the HDR signal, but it also takes into account both spatial and temporal dependencies in order to
improve the overall rate-distortion performance. Finally, more recently I have started applying
machine learning tools to video compression, and to explore new video representations for
virtual and mixed reality. I will conclude the chapter with some ongoing research on optimizing
video compression using machine learning [194] (Section 1.3), and on the compression of point
cloud geometry [150] (Section 1.4).

1.1 Depth video compression using Don’t Care Regions

In order to enhance visual experience beyond conventional single-camera-captured video, free-
viewpoint television [91] aims at enabling a richer interaction between the observer and the
scene, by enabling to freely change the viewpoint as video is played back in time. A way
to achieve an FTV experience consists in using elaborate arrays of closely spaced cameras
(e.g., 100 cameras were used in one setup in [39]) to capture a scene of interest from multiple
viewing angles. If, in addition to texture maps (RGB images), depth maps (per-pixel physical
distance between scene objects and the capturing camera) are also acquired, then the observer
can synthesize successive intermediate views between two camera-captured views via depth-
image-based rendering (DIBR) [114] for smooth view transition. Transmitting both texture
and depth maps of multiple viewpoints—a format known as texture-plus-depth—from server to
client entails a large bit overhead, however. In this section, we address the problem of temporal
coding of depth maps in texture-plus-depth format for multiview video, by introducing and
employing the concept of Don’t care region.

12
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Figure 1.1.1: Don’t Care Region. (a) Definition of DCR for a given threshold τ. (b) Coding the
residuals using DCR with a toy example with just two pixels (dn(1) and dn(2)). In conventional
coding, given predictor (pred), one aims to reconstruct the original ground truth (gt). However,
considering DCR, it is sufficient to encode a generally smaller residual, i.e. one that enables to
reconstruct a value inside or on the border of the DCR (shaded area in the picture)

This work has been conducted while I was a postdoc researcher at Telecom Paristech, and is
described in greater details in the paper [188].

1.1.1 Definition of Don’t Care Region (DCR)

The key observation in this work is that depth maps are not themselves directly viewed, but are
only used to provide geometric information of the captured scene for view synthesis at decoder.
Thus, as long as the resulting geometric error does not lead to unacceptable synthesized view
quality, each depth pixel only needs to be reconstructed coarsely at decoder, e.g., within a
defined tolerable range. We formalize the notion of this tolerable range per depth pixel as don’t
care region (DCR) using a threshold τ, by studying the synthesized view distortion sensitivity
to the pixel value. Specifically, if a depth pixel’s reconstructed value is inside its defined DCR,
then the resulting geometric error will lead to distortion in a targeted synthesized view by no
more than τ. Clearly a sensitive depth pixel (e.g., an object boundary pixel whose geometric
error will lead to confusion between background and foreground) will have a narrow DCR, and
vice versa.

More formally, a pixel vn(i, j) in texture map vn, with associated disparity value dn(i, j), can be
obtained by a corresponding pixel in view n+1 through a view synthesis function s(i, j;dn(i, j)).
In the simplest case where the views are captured by purely horizontally shifted cameras,
s(i, j;dn(i, j)) corresponds to displacing a pixel in texture map vn+1 of view n+ 1 in the x-
direction by an amount proportional to dn(i, j); i.e.,

s(i, j;dn(i, j)) = vn+1(i, j− γ ·dn(i, j)) (1.1.1)

where γ is a scaling factor depending on the camera spacing.

We define the view synthesis error, ε(i, j;d), as the absolute error between the mapped-to pixel
s(i, j;d) in the synthesized view n and the original pixel value vn(i, j), given disparity value d
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for pixel (i, j) in vn; i.e.,

ε(i, j;dn(i, j)) = |s(i, j;dn(i, j))− vn(i, j)| . (1.1.2)

Notice that, in general, ε(i, j;dn(i, j))> 0 because d can be quantized or noisy, and the synthesis
model does not take into account disocclusions or illumination changes.

We define the Don’t Care Region DCR(i, j) = [DCRlow(i, j),DCRup(i, j)] as the largest con-
tiguous interval of disparity values containing the ground-truth disparity dn(i, j), such that the
view synthesis error for any point of the interval is smaller than ε(i, j;dn(i, j))+ τ, for a given
threshold τ > 0. The definition of DCR is illustrated in Figure 1.1(a). Note that DCR intervals
are defined per pixel, thus giving precise information about how much error can be tolerated in
the disparity maps.

1.1.2 Application to temporal coding

The defined per-pixel DCRs give us a new degree of freedom in the encoding of disparity maps,
where we are only required to reconstruct each depth pixel at the decoder to within its defined
range of precision (as opposed to the original depth pixel), thus potentially resulting in further
compression gain. Specifically, we change three aspects of the encoder in order to exploit
DCRs: motion estimation, residual coding, and skip mode.

We start by defining a per-block DCR space for a target depth block B as the feasible space
containing depth signals with each pixel falling inside its per-pixel DCR. As an example, Fig-
ure 1.1(b) illustrates the DCR space for a two-pixel block with per-pixel DCR [2,6] and [1,4].
For a given predictor block, in order to minimize the energy of the prediction residuals, we
project the predictor on the DCR space. In Figure 1.1(b), if the predictor is (5,5), we identify
(5,4) in DCR space as the closest signal in DCR space, with resulting residuals (0,−1). If the
preditor is (5,3), we identify (5,3) in DCR space as the closest signal with residuals (0,0).

In mathematical terms, we compute a prediction residual r′(i, j) for each pixel (i, j) given pre-
dictor pixel value P (i, j) and DCR [DCRlow(i, j),DCRup(i, j)] according to the following soft-
thresholding function:

r′(i, j) =


P (i, j)−DCRup(i, j) if P (i, j)> DCRup(i, j),
P (i, j)−DCRlow(i, j) if P (i, j)< DCRlow(i, j),
0 otherwise.

(1.1.3)

We use these residuals to find the motion vectors in the rate-distortion optimization. These
residuals are then transformed, quantized and entropy coded, following the standard coding
pipeline.

For SKIP macroblocks, no residual signal is coded, and thus we can not guarantee that the
synthesized view error is bounded. Thus, we (conservatively) prevent the SKIP mode to be
selected from the encoder if any reconstructed pixel of that macroblock violates DCR.
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(b) Balloons

Figure 1.1.2: RD curves for Kendo and Balloons

1.1.3 Experimental results

We modified an H.264/AVC encoder (JM reference software v. 18.0) in order to include DCR
in the motion prediction and coding of residuals. Our test material includes 100 frames of two
multiview video sequences, Kendo and Balloons with spatial resolution of 1024× 768 pixels
and frame rate equal to 30 Hz. For both sequences we coded the disparity maps d3 and d5
of views 3 and 5 (with IPP. . . GOP structure), using either the original H.264/AVC encoder
or the modified one. In the latter case, we computed per-pixel DCRs with three values of τ,
namely τ = {3,5,7}. Given the reconstructed disparities in both cases (with/without DCR), we
synthesize view v4 using the uncompressed views v3 and v5 and the compressed depths d̃3 and
d̃5. Finally, we evaluate the quality of the reconstructed view v̂4 w.r.t. ground-truth center view
v4.

The resulting rate-distortion curves are reported in Figure 1.1.2. For the Kendo sequence, using
τ = 5 we obtain an average gain in PSNR of 0.34 dB and an average rate saving of about
28.5%, measured through the Bjontegaard metric. Notice that the proposed method enables a
significant amount of bit saving by reducing selectively the fidelity of the reconstructed depths
where this is not bound to affect excessively the synthesized view. On the other had, to achieve
an equivalent bitrate reduction, a conventional decoder should quantize prediction residuals
much more aggressively, and the quantization error can affect all the synthesized pixels.

We observe that most of the rate savings are obtained through a more efficient use of SKIP

mode (which increases by over 18% in our experiments), and by a more efficient prediction
of motion and coding of residuals. Notice that in the current setting, we are not taking into
account the effect of quantization error, which could make reconstructed values lie outside
DCR. Also, we optimize residuals in the spatial domain, while in practice they are transform
coded. Jointly optimizing motion vectors and transform coded residuals, as well as pushing the
de-quantized and reconstructed values inside DCR is a more challenging problem, and has been
not considered in this work.
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1.2 Optimal tone mapping for HDR video compression

The Human Visual System (HVS) is able to perceive a wide range of colors and luminous
intensities, as present in real life outdoor scenes, ranging from bright sunshine to dark shadows.
However, current traditional imaging technologies cannot capture nor reproduce such a broad
range of luminance. The objective of High Dynamic Range (HDR) imaging is to overcome these
limitations, hence leading to more realistic videos and a greatly enhanced user experience.

Whereas conventional Standard Dynamic Range (SDR) video has luminance values typically
ranging from 0.1 to 100 cd/m2, HDR video can represent a substantially higher peak lumi-
nance up to 10000 cd/m2, providing bright pictures and wide contrast that result in a viewing
experience closer to reality. Given that it entails a significantly higher raw data rate, efficient
representation and coding of HDR video is one of the important issues to be addressed. In ad-
dition, the data characteristics also differ when compared to conventional SDR video content,
calling for new coding approaches.

HDR video coding has been matter of standardization in MPEG [106]. The proposed solutions
were based on the state-of-the-art video coding standard, high efficient video coding (HEVC)
[81], and focused on HDR video compression efficiency using an electro-optical transfer func-
tion (EOTF) with 10 bit-depth coding profile [37]. Essentially, the EOTF is applied to provide
a perceptually uniform representation which allows reducing the number of bits required for
coding. Among several proposals, two perceptually optimized transfer functions, hybrid log-
gamma (HLG) [13] and perceptual quantizer (PQ) [120], have been recommended for HDR
video coding. Both transfer functions map absolute luminance values to perceptual codewords
and share similarities with the perceptually uniform (PU) encoding introduced by Aydin et al.
in [5]. However, they are mainly addressing two different applications. On one hand, HLG
aims at providing a backward-compatible representation with 10 bit-depth video devices, espe-
cially suited for TV broadcasting services. On the other hand, PQ focuses on high bit precision
representation coding, e.g., 10 or 12 bit-depth video representation, which is not backward-
compatible with the currently available SDR devices.

Unlike EOTF-based HDR video compression solutions, where a fixed curve is used for con-
verting each HDR frame to a reduced dynamic range representation, in this work we consider a
content-adaptive tone mapping operator (TMO). Therefore, our solution takes statistical char-
acteristics of the input HDR frame into account. An illustration of this coding scheme is given
in Figure 1.2.1: HDR video frames are first tone mapped to an SDR representation, which is fed

metadata
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Figure 1.2.1: General diagram of the proposed HDR video coding method.
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Figure 1.2.2: Block diagram of the proposed TMO. A content-adaptive spatially and temporally
constrained tone mapping curve is obtained for each frame.

into a conventional video encoding pipeline. At the decoder side, the TMO is reversed (with
losses), producing a reconstructed HDR video sequence. In addition to the SDR video bit-
stream, this scheme requires the transmission of metadata, e.g., the TMO parameters, in order
to reverse the tone mapping operation at the decoder.

We employ the same piecewise-linear parametrization of a global tone mapping curve pro-
posed by Mai et al. [107]. In that work the curve parameters are found by minimizing the mean
squared error (MSE) between the original and the reconstructed HDR pixels. However, optimiz-
ing TMO independently for each frame does not take into account the spatial and temporal re-
dundancies typical of a video signal. Instead, we introduce a content-adaptive, spatio-temporal
tone mapping operator (ST-TMO) that includes spatial and temporal regularization terms, in
order to find the optimal rate distortion (RD) tone-mapping curves for each frame. Through
a comprehensive performance assessment including comparisons with state-of-the-art methods
and multiple objective quality metrics, we show that the proposed scheme leads to significant
coding gains over simpler tone mapping approaches and the MPEG PQ anchor.

The content of this section is described in greater detail in the papers [96, 137, 138].

1.2.1 Content Adaptive Tone Mapping Operator

The general scheme of the proposed ST-TMO is illustrated in Figure 1.2.2. For each input
HDR video frame, we compute two cost terms: an estimation of the MSE between the original
and the reconstructed HDR frame; and a regularization term, which enforces spatial or temporal
coherence, depending on whether the frame is Intra or Inter predicted, respectively. Specifically,
the temporal regularization relies on the knowledge of the motion field between the current and
the previous frame (without loss of generality, we assume here that the temporal prediction at
time t is obtained based on the frame at time t−1).

We express the unknown tone mapping curve to be found using the simple, piecewise-linear
parametrization proposed in [107]. That is, the TMO is expressed as a vector s of slopes, as
detailed below. This enables to define the cost terms mentioned above as convex functions
of s, and to solve the resulting convex optimization problem through a proximal optimization
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Figure 1.2.3: Piecewise parametrization of the optimal tone mapping curve as in [107].

method. As a result, we obtain a vector s∗ of optimal slopes, which can be used to tone map
the HDR picture into an SDR frame f SDR

t . The vector s∗ is sent as metadata information to the
decoder in order to invert the tone mapping and reconstruct the HDR information. A more de-
tailed description of the parametrization employed, the cost terms and the convex optimization
follows.

TMO parametrization

The piecewise-linear TMO parametrization is illustrated in Figure 1.2.3. The histogram of the
log-luminance l is divided into N segments of equal length δ. Let k ∈ [1, . . .N] be the segment
index, and pk the associated probability mass. The TMO curve is then described by the set of
nodes {lk,vk}, where vk denotes the tone-mapped value; or, equivalently, by a vector s ∈ RN

+

composed by the non-negative slopes sk for each segment, that is:

sk =
vk+1− vk

δ
. (1.2.1)

Based on the sk, the tone-mapped pixel values v are obtained as

v(l) = (l− lk) · sk + vk, ∀l ∈ [lk, lk +1), (1.2.2)

where l1 = lmin is the minimum luminance of the image. In order to inverse (1.2.2) and compute
the reconstructed log-luminance, l̂, the receiver needs to know as side information the slopes
sk, the value of δ as well as lmin. Therefore, the size of the metadata depends on the number of
segments, or equivalently on δ. Here we select δ = 0.1 in log10 units to approximately match
the Weber ratio (at least at high luminance), as proposed in [107]. For typical HDR content,
this results in a number N of segments around 70∼ 80, which represents a modest overhead to
overall transmission cost.
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This parametrization can be used to find the optimal TMO curve, i.e., the slopes sk that minimize
the squared reconstruction error ε(sk) = ‖l − l̂‖2

2. It is shown in [107] that, at least at high
bitrates, the distortion is well approximated as a function of sk as:

ε(sk)≈
N

∑
k=1

pk

s2
k
. (1.2.3)

Based on this approximation, the authors of [107] find the slopes that minimize the squared-
error distortion by formulating the following optimization problem:

minimize
sk

ε(sk) subject to:
N

∑
k=1

sk =
vmax

δ
; sk > 0, (1.2.4)

where the constraint guarantees that the TMO curve spans all the available standard dynamic
range (e.g., vmax = 255 for 8-bit images). This problem can be solved in closed form, yielding:

sk =
vmax p1/3

k

δ∑
N
n=1 p1/3

n

. (1.2.5)

Notice that this result is optimal in the MSE sense, but does not take into account the excess
of bitrate produced by the possible loss of spatial and temporal coherency in the v signal. In
order to take these effects into account, in the following we propose a spatial and a temporal
regularization terms to be added to the problem in (1.2.4).

Spatial regularization

By simply optimizing (1.2.4), the resulting tone-mapped frames might lose spatial smoothness,
which is typical in natural images, e.g., due to noise in the original HDR picture. This increases
spatial complexity, and thus bitrate. To alleviate this, we modify problem (1.2.4) by adding
a spatial regularization term, Cspa( f SDR

intra), for tone-mapped Intra-coded images. Cspa is a real-
valued convex function that models the spatial complexity, and f SDR

intra is the intra frame of a
given GOP of the SDR (i.e., tone mapped) video. Since natural images usually exhibit a smooth
spatial behavior, except around some locations (e.g., object edges) where discontinuities arise,
popular regularization models tend to penalize the image gradient. In this context, we adopt the
total variation measure [18] due to its simplicity and effectiveness. Thus, we express the spatial
regularization term as:

Cspa

(
f SDR
intra

)
=
∥∥∥∇ f SDR

intra

∥∥∥
1,2

= ∑
i∈Ω

∥∥∥(∇ f SDR
intra)i

∥∥∥
2
, (1.2.6)

where Ω is the rectangular lattice over which the image f is defined, and (∇ f SDR
intra)i is the 2-

element vector denoting the gradient of f SDR
intra at site i.

Notice that, since the log-luminance values l are constant for a given image, the tone mapping
in (1.2.2) is linear in s, and can thus be conveniently rewritten as a matrix-vector multiplication



20 Chapter 1. Video compression

f SDR
intra = Zs. Specifically, for a given HDR image with M pixels, Z = [z1, . . . ,zM]T is an M×N

matrix, where each row has the form:

zm = [δ, . . . ,δ, l− lk,0, . . . ,0], (1.2.7)

with the term l− lk in the k-th position if l ∈ [lk, lk+1). This formulation expresses the tone
mapping equation (1.2.2), in that an HDR pixel li, falling in the j-th bin of the histogram, is
mapped as vi = ∑

j−1
k=1 δsk +(li− l j)s j.

Temporal regularization

For Inter-predicted tone-mapped video frames, applying the frame-by-frame tone mapping
curve in (1.2.1) might lead to a loss of temporal coherence and a consequent increase of coding
bitrate. We enforce temporal smoothness in the tone-mapped video by proposing a temporal
regularization term, Ctemp, to add to problem (1.2.4).

Specifically, Ctemp is defined as:

Ctemp( f SDR
inter) = ∑

i, j

(
f SDR
t (i, j)−Φ

[
f SDR
t−1 (i, j);Ψ(i, j)

])2
(1.2.8)

where Φ[ ft−1(i, j);Ψ(i, j)] = ft−1 (i+Ψ(i, j)x, j+Ψ(i, j)y) is a function that gives the value of
pixel at position (i, j) after motion compensation by the 2-element motion vector Ψ(i, j) (x and
y represent the horizontal and vertical components, respectively). The notation f SDR

inter is used
here to stress the fact that ft is inter predicted. In order to get a precise per pixel motion field,
we estimate Ψ by employing the optical flow algorithm in [21] directly on the original HDR
frames f HDR

t and f HDR
t−1 . This optical flow is then applied to obtain the motion compensated

frame Φ
[

f SDR
t−1 (i, j);Ψ(i, j)

]
.

Note that f SDR
t is a function of sk. By explicitly minimizing a temporal prediction residual, such

a constraint leads to improved rate-distortion performance when encoding the tone mapped SDR
video sequence. Instead of explicitly computing the sum of pixel-wise differences, as defined
in Eq. (1.2.8), we notice that the temporal term Ctemp is proportional to the expected temporal
difference between two (motion-compensated) frames. By the definition of expected value, we
can then compute (1.2.8) as the sum of all possible frame difference values, weighted by the
probability of occurrence of each difference, that is:

Ctemp( f SDR
inter) =

N

∑
k=1

vmax

∑
w=0

{(dk

2
+

k−1

∑
i=1

di−w
)2

pk,w

}
, (1.2.9)

where, for notational convenience, we define dk = δsk; dk
2 +∑

k−1
i=1 di is then the SDR recon-

struction value for pixels falling in the bin k of the log-luminance histogram as in Eq. (1.2.2),
assuming a mid-tread quantizer on the real tone-mapped pixel values; w ∈ [0,vmax] is the
value of a pixel in the motion-compensated SDR frame Φ

[
f SDR
t−1 (i, j);Ψ(i, j)

]
; and, finally,

pk,w = Pr{ f HDR
t = lk ∧ f SDR

t−1 = w} is the joint probability that a pixel with log-luminance lk in
f HDR
t has a motion-compensated predictor which has been tone mapped to the value w in f SDR

t−1 .
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Notice that, while tone mapping f HDR
t , the previous SDR frame f SDR

t−1 has been already com-
puted, i.e., w depends only on the (constant) motion vector field Ψ. In practice, we pre-compute
pk,w after motion estimation, before computing Eq. (1.2.9). Finally, as shown more in detail
in [138], the temporal constraint in (1.2.9) can be rewritten as a quadratic function:

Ctemp( f SDR
inter) = sTW2s+ sTW1, (1.2.10)

where W1 and W2 are constant matrices defined in [138].

Convex Optimization

Based on the spatial and temporal constraints defined above, we can redefine the optimization
problem for each frame f HDR

t in Eq. (1.2.4) as:

minimize
sk

ε̂(sk)+C subject to:
N

∑
k=1

sk =
vmax

δ
, (1.2.11)

where the term:

C =

{
λspaCspa( f SDR

intra) if f HDR
t is Intra-predicted

λtempCtemp( f SDR
inter) if f HDR

t is Inter-predicted.

The weighting terms λspa and λtemp define the relative importance of spatial/temporal smooth-
ness with respect to MSE minimization, and the details about how to determine them are given
in [138]. Notice that Problem (1.2.11) consists in minimizing the sum of two convex functions
over the convex set:

Θ =

{
s ∈ RN

∣∣∣∣∣ N

∑
k=1

sk =
vmax

δ

}
. (1.2.12)

Moreover, the term ε̂(sk), defined as:

ε̂(sk) =

{
+∞ if sk ≤ 0
ε(sk) otherwise,

(1.2.13)

is also convex.

In order to solve Problem (1.2.11), we employ here a proximal algorithm [23], which enables to
address both non-smooth functions and hard constraints, without requiring any matrix inversion.

1.2.2 Experimental results

We evaluate the compression performance of the proposed ST-TMO through an extensive set
of experiments. The input to ST-TMO is an HDR video frame in linear (photometric) RGB
domain. The required color conversion and chroma sub-sampling algorithms suggested in the
MPEG CfE on HDR and WCG video coding [106] are used. We employ the optical flow
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algorithm (with the publicly available implementation) in [43, 21] (details about the optical
flow configuration are reported in [138]).

Experiments were carried out for eight high-definition (HD) test sequences, namely: SunRise,
Smith_Welding, EBU_06_Starting, Market3Clip4000r2, FireEater2Clip4000r1, EBU_04_Hur-
dles, Carousel_fireworks_03, and Carousel_fireworks_04. These sequences have been selected
in order to provide a varied sample of spatial/temporal complexity and dynamic range.

We compare the proposed ST-TMO with the frame-by-frame TMO of Mai et al. (2011) [107]
and with the anchor solution based on the PQ EOTF proposed in the MPEG CfE [106], available
in the MPEG HDRTools v.0.17 [187]. In addition, we implemented the temporally optimized
TMO of Mai et al. (2013) [108], where flickering is reduced by penalizing the difference
between the average brightness of consecutive tone-mapped frames, instead of local (per pixel)
motion trajectories as in ST-TMO. The rate overhead from the all the tone mapping methods
(i.e., transmitting metadata) is included in all reported results, and is around 130 kbps on average
for the considered sequences.

In order to evaluate the compression performance, video test sequences were encoded using the
HEVC reference model (HM) ver. 16.2 software. The low-delay HEVC encoder configuration
we used is as follows: GOP length of 16, predictive coded (P) pictures, YCbCr 4:2:0 chroma
sampling, and an internal bit-depth of 10. We set vmax to 1023 for TMOs. Variation in bitrates
was achieved using different quantization parameter (QP) values.

Evaluation of HDR video distortion is more challenging than conventional SDR quality assess-
ment (see Section 2.1). In order to provide a more informative comparison, we evaluate HDR
video distortion using several metrics: Peak signal to noise ratio (PSNR) and structural simi-
larity index (SSIM) [196], both computed on either log-luminance or PU-encoded values [5];
HDR-Visible differences predictor (HDR VDP 2.2.1) [131]; the HDR-Video Quality Measure
(HDR-VQM) [129]; HDR Metrics in the MPEG HDRTools [187], including tPSNR, L100 and
L1000.

We report average Bjøntegaard delta (BD) metric [11] gains in Table 1.2.1. These values are
the average gain in the corresponding quality metric. We opted for reporting BD quality instead
of BD rate gains since the computation of the latter is unstable when the RD curves are not
properly aligned on the quality axis From the table, it is evident that the proposed ST-TMO
leads to superior coding performance in most cases, and on average yields consistent gains with
all the considered quality metrics with respect to both a fixed transfer function and a state-
of-the-art TMO-based HDR video compression scheme. In particular, our proposed TMO is
beneficial for contents that display local motion and high spatial and temporal complexity.

It must be mentioned that the proposed ST-TMO has a higher complexity than a fixed EOTF or a
frame-by-frame TMO (see [138] for a more detailed analysis). In fact, if a per pixel motion esti-
mation enables to achieve higher coding gain compared to [108], the optical flow is responsible
for a large increase in the computation time. Thus, an interesting follow-up direction would be
to study how the performance of ST-TMO are affected by coarser and faster motion estimation
techniques. In addition, the current optimization employs mean squared error as a fidelity crite-
rion, as this brings to a convex problem formulation. It might be interesting to study how more
perceptually motivated fidelity criteria (e.g., based on structural similarity) could be employed



1.3. Enhancing Intra prediction using context-based learning 23

Table 1.2.1: Quality gain of the proposed ST-TMO in terms of BD quality (dB) gains. The
highest BD-quality gains in blue and BD-quality losses in red.

Method Sequence log-PSNR log-SSIM PU-PSNR PU-SSIM HDR-VDP Q HDR-VQM tPSNR L100 L1000

PQ
Market3Clip4000r2

0.247 0.001 -0.070 -0.001 1.029 0.071 0.252 -0.241 -0.272
Mai et al. (2011) 1.507 0.011 0.85 0.002 2.119 0.185 1.468 0.237 0.216
Mai et al. (2013) 0.813 0.003 0.543 0.002 1.198 0.070 0.687 0.066 0.061

PQ
FireEater2Clip4000r1

0.794 0.008 0.002 -0.001 -0.367 0.056 4.469 1.911 1.903
Mai et al. (2011) 4.556 0.028 3.370 0.014 -0.309 0.074 5.863 2.299 2.104
Mai et al. (2013) 0.221 -0.001 0.789 0.001 0.579 0.088 10.180 -1.219 -0.985

PQ
SunRise

5.337 0.004 6.838 0.003 7.265 0.020 4.537 3.492 0.060
Mai et al. (2011) 3.516 0.006 4.794 0.002 2.902 0.030 0.071 3.867 3.932
Mai et al. (2013) -0.896 -0.003 -0.892 -0.002 0.638 -0.030 -0.477 -0.154 -0.155

PQ
EBU_04_Hurdles

0.128 -0.006 -0.217 -0.008 5.324 0.142 6.402 0.915 0.932
Mai et al. (2011) 1.477 -0.001 1.239 -0.001 2.901 0.042 2.138 1.351 1.357
Mai et al. (2013) 2.514 0.017 2.437 0.021 11.581 0.240 6.685 1.202 1.196

PQ
EBU_06_Starting

0.959 0.001 0.217 -0.001 2.744 0.017 2.276 1.358 1.369
Mai et al. (2011) 2.025 0.006 1.595 0.002 2.226 0.095 2.702 1.389 1.401
Mai et al. (2013) 0.952 0.003 0.744 0.003 1.716 0.011 1.485 0.912 0.919

PQ
Carousel_fireworks_03

3.688 0.042 4.770 0.008 2.172 0.158 3.598 1.288 1.363
Mai et al. (2011) 7.529 0.147 10.294 0.040 4.323 0.065 7.438 4.209 4.798
Mai et al. (2013) 1.249 0.020 1.441 0.01 1.670 0.280 1.837 0.865 0.915

PQ
Carousel_fireworks_04

4.819 0.021 5.679 0.013 4.523 0.247 5.543 1.558 1.465
Mai et al. (2011) 7.862 0.043 9.074 0.023 5.254 -0.014 7.987 3.626 3.635
Mai et al. (2013) 2.938 0.052 3.649 0.040 3.349 0.203 2.798 1.698 1.640

PQ
Smith_Welding

0.071 0.014 -1.091 -0.001 1.406 -0.138 -0.335 0.558 0.752
Mai et al. (2011) 14.954 0.909 14.077 0.093 3.466 0.024 2.057 7.232 6.778
Mai et al. (2013) 0.366 0.002 1.121 0.001 0.031 0.072 1.032 0.432 0.698

Average

PQ 2.005 0.011 2.018 0.002 3.012 0.072 3.343 1.355 0.946
Mai et al. (2011) 5.428 0.144 5.662 0.022 2.860 0.063 3.716 3.026 3.027
Mai et al. (2013) 1.02 0.012 1.229 0.008 2.595 0.117 3.028 0.475 0.536

to further increase coding gains.

1.3 Enhancing Intra prediction using context-based learning

This section describes ongoing work on using machine learning tools (and specifically, deep
convolutional neural networks) to enhance parts of the state-of-the-art video coding pipeline,
such as spatial/temporal prediction. In particular, the work on Intra prediction reported in the
following has been recently published in [194].

Modern image and video codecs strongly rely on spatial prediction as a fundamental tool to
achieve high rate-distortion performance. Conventionally, spatial prediction leverages an en-
semble of simple linear models to interpolate information from a context of already decoded
pixels, with the goal to obtain a prediction residual which is simpler to code than the original
signal. These prediction models have been improved and optimized for several decades, by
continuously adding new modes, block partitions and prediction directions, e.g., 33 directional
modes and up to 32×32 prediction units are employed in the HEVC video standard [180].

Despite the high number of available prediction modes, current spatial prediction approaches
assume the underlying signal can be approximated by a simple linear combination of a few
(reconstructed) pixels. Increasing further the number of prediction modes might guarantee a
better signal approximation; however, this leads to continuously increase the computational
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Figure 1.3.1: The proposed encoder-decoder convolutional network architecture.

cost, and is still ineffective when the signal to predict requires more complex representations
than simple bilinear interpolation.

Recently, deep representation learning models such as auto-encoders have been employed to
learn effective representations for very complex signals such as natural images [42]. Differently
from the signal models used in video spatial prediction, deep auto-encoders are much more
complex and highly non-linear. In the last couple of years, these models have been applied to
image compression [182, 1, 121, 162, 6, 167], yielding in many cases equivalent or better visual
quality than traditional image codecs [192].

In this work we aim at improving the spatial prediction produced by state-of-the-art codecs
such as HEVC, in order to reduce the bitrate of the prediction residual. Differently from the
work cited above on learning-based image coding, we do not propose here an end-to-end cod-
ing approach, but rather to improve the already well-optimized spatial prediction of HEVC by
leveraging the expresiveness of a deep convolutional representation. To this end, we employ a
convolutional encoder-decoder neural network to predict a block of an image based on a context
of already decoded pixels and the spatial prediction of the same block as produced by the rate-
distortion optimization of the video encoder. We refer to the proposed scheme as context-based
prediction enhancement (CBPE). Our experiments on a dataset of natural images show that the
proposed CBPE reduces the mean square error of HEVC spatial prediction by 25% on average.

1.3.1 Network

In order to improve the HEVC Intra predictor of HEVC we propose the CBPE network architec-
ture shown in Fig. 1.3.1. It is composed of an encoder connected to a decoder via a bottleneck
[139]. The encoder takes in input a 64×64 image I and projects it on a latent feature space.
The decoder recovers from the features produced by the bottleneck layer a 32×32 image.

Our network is trained end-to-end to reconstruct an original (uncompressed) 32× 32 block O
starting from an input 64×64 image I , as shown in Figure 1.3.1. The bottom-right quadrant of
the input block is the HEVC prediction P obtained after rate-distortion optimization, while the
remaining quadrants are the decoded (thus, noisy) causal context of the block to be predicted.
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The loss function is defined as the mean squared error (MSE) between Y and O, that is:

L(w,y,o) =
1
K ∑

k
(yk(w)−ok)

2, (1.3.1)

where yk and ok are pixels of Y and O, respectively, and K = 322. Further details about the
network architecture, initialization and optimization parameters are available in [194].

1.3.2 Experimental results

The training and validation of the proposed CBPE is carried out by drawing at random about
16k images from the dataset originally proposed in [168]. The dataset contains natural images
downloaded from Flickr, spanning a wide range of semantic classes and acquisition quality. The
images come in a JPEG compressed format, with the original quality/resolution of the Flickr
source, thus providing a large variety of train/test conditions. Each image is independently
compressed and decoded using the H.265/HEVC HM reference software (version 16.0), with a
fixed QP = 15. All prediction unit sizes, from 4×4 to 32×32 are enabled in the rate-distortion
optimization. Next, for each decoded image, we extract a number of non-overlapping 64× 64
patches aligned with the HEVC CTU grid, along with the HEVC predictors P . Following
this protocol, a total of 405k patches are extracted from a first set of randomly drawn images,
of which 324k (80%) are used for training and 81k (20%) for validation. Finally, about 50k
patches are extracted from a different set of randomly drawn images for testing.

In order to test the performance of the proposed CBPE, we provide in input to our trained
network the test patches and, for each test patch, we measure the MSE between the network
output Y and the ground-truth, uncompressed reference O, i.e., the energy of the prediction
residual obtained by CBPE. For comparison, we also compute for each test patch the energy of
the HEVC prediction residual, i.e., the MSE between HEVC predictor P and O. In approxi-
mately 66% of the cases the CBPE enhances the HEVC predictor by reducing the energy of the
prediction residuals. The MSE of CBPE reduces the average HEVC predictor MSE by about
25%. Although quantifying precisely the end-to-end coding gain provided by CBPE would re-
quire integrating it into a whole coding chain, we notice that reducing the energy of prediction
residuals can generally improve rate-distortion performance in predictive coding.

In order to illustrate qualitatively the prediction improvement brought by CBPE, we report in
Figure 1.3.2 a few examples of predicted blocks. From left to the right, we show the original
content, the HEVC predictor, the predictor refined by CBPE, the HEVC prediction residual and
the residual after CBPE, for three different patches, with the corresponding prediction MSE. We
observe that, in these cases, the HEVC predictor can capture the overall structure of the block.
However, due to the limited directional prediction modes and the block-based predictions, the
HEVC prediction alone introduces some visible artifacts, and fails in capturing fine-grained
structures of the content. Conversely, the CBPE can enhance this prediction, smoothing out the
HEVC blocking and recovering somehow better the original image structure. Interestingly, the
CBPE predictor has a more natural aspect, confirming previous findings on the ability of deep
generative models to learn image “naturalness” [192].
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Figure 1.3.2: Comparison of predicted patches by using HEVC prediction and proposed scheme
prediction methods. The MSE of prediction blocks using HEVC and CBPE for each blocks are:
top: 83.99 (HEVC), 34.99 (CBPE); middle: 321.71 (HEVC), 57.37 (CBPE); bottom: 36.63
(HEVC), 27.41 (CBPE).

It is also instructive to analyze cases where CBPE fails and degrades the quality the HEVC pre-
dictor. Figure 1.3.3 shows two examples. We observe that CBPE tends to over-smooth patches
with periodic or high-frequency structures and sharp edges, and in some cases to add some
low-frequency noise which was not present in the original signal. This might be caused by the
lack of sufficient training data. An interesting solution to explore would be to add a regulariza-
tion term in the loss function (1.3.1) in order to preserve sharper structures and penalize noise,
similar to what is done in total-variation denoising.

This work provides a proof of concept that deep representations have a large potential to be
used in video compression, by extending or replacing the conventional linear prediction and
transform tools. However, how to optimally employ a deep predictor in a state-of-the-art video
codec still needs a substantial amount of further research. From a practical point of view,
an implementation of this work in a video codec would require a network for each possible
prediction unit size, due to the progressive nature of spatial prediction, in order to maintain the
synchronization between encoder and decoder. On the other hand, from a more speculative point
of view, we are currently considering how prediction performance might be further enhanced
by classifying (in an unsupervised way) the content of a block prior to CBPE.

1.4 Learning-based coding of point cloud geometry

This section describes preliminary work on coding of point cloud video. Point clouds are an
essential data structure for Virtual Reality (VR) and Mixed Reality (MR) applications. A point
cloud is a set of points in the 3D space represented by coordinates x,y,z and optional attributes
(for example color, normals, etc.). Point cloud data is often very large as point clouds easily
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Figure 1.3.3: Some failure cases where CBPE is not able to improve HEVC spatial prediction.
The MSE of prediction blocks using HEVC and CBPE for each blocks are: top: 2.25e+03
(HEVC), 3.53e+03 (CBPE); bottom: 1.45e+03(HEVC), 2.54e+03 (CBPE).

range in the millions of points and can have complex sets of attributes. Therefore, efficient
point cloud compression (PCC) is particularly important to enable practical usage in VR and
MR applications.

The Moving Picture Experts Group (MPEG) is currently working on PCC. In 2017, MPEG
issued a call for proposals (CfP) and in order to provide a baseline, a point cloud codec for
tele-immersive video [115] was chosen as the MPEG anchor. Research on PCC can be cate-
gorized along two dimensions. On one hand, one can either compress point cloud geometry,
i.e., the spatial position of the points, or their associated attributes. On the other hand, we can
also separate works focusing on compression of dynamic point clouds, which contain temporal
information, and static point clouds.

In this work, we focus on the lossy compression of static point cloud geometry. In PCC, a pre-
cise reconstruction of geometric information is of paramount importance to enable high-quality
rendering and interactive applications. For this reasons, lossless geometry coding has been in-
vestigated recently in MPEG, but even state-of-the-art techniques struggle to compress beyond
about 2 bits per occupied voxels (bpov) [40]. This results in large storage and transmission
costs for rich point clouds.

Lossy compression proposed in the literature, on the other hand, are based on octrees which
achieve variable-rate geometry compression by changing the octree depth. Unfortunately, low-
ering the depth reduces the number of points exponentially. As a result, octree based lossy
compression tends to produce “blocky” results at the rendering stage with medium to low bi-
trates. In order to partially attenuate this issue, [89] proposes to use wavelet transforms and
volumetric functions to compact the energy of the point cloud signal. However, since they still
employ an octree representation, their method exhibits rapid geometry degradation at lower bi-
trates. While previous approaches use hand-crafted transforms, we propose here a data driven
approach based on learned convolutional transforms which directly works on voxels.

Specifically, we present a method for learning analysis and synthesis transforms suitable for
point cloud geometry compression. In addition, by interpreting the point cloud geometry as
a binary signal defined over the voxel grid, we cast decoding as the problem of classifying
whether a given voxel is occupied or not. We train our model on the ModelNet40 mesh dataset
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[202, 169], test its performance on the Microsoft Voxelized Upper Bodies (MVUB) dataset
[103] and compare it with the MPEG anchor [115]. We find that our method outperforms the
anchor on all sequences at all bitrates. Additionally, in contrast to octree-based methods, ours
does not exhibit exponential diminution in the number of points when lowering the bitrate. We
also show that our model generalizes well by using completely different datasets for training
and testing.

This work is described in further details in the paper [150].

1.4.1 Proposed PCC coding scheme

We define the set of possible points at resolution r as Ωr = [0 . . .r]3. Then, we define a point
cloud as a set of points S ⊆ Ωr and its corresponding voxel grid vS as the following binary
occupancy map:

vS : Ωr −→ {0,1},

z 7−→

{
1, if z ∈ S
0, otherwise.

We use a 3D convolutional auto-encoder composed of an analysis transform fa, followed by
a uniform quantizer and a synthesis transform fs. Let x = vS be the original point cloud. The
corresponding latent representation is y = fa(x). To quantize y, we introduce a quantization
function Q so that ŷ = Q(y). This allows us to express the decompressed point cloud as x̂ =
v̂S = fs(ŷ). Finally, we obtain the decompressed point cloud x̃ = ṽS = round(min(0,max(1, x̂)))
using element-wise minimum, maximum and rounding functions. The functions fa and fs are
convolutional neural networks. The details about the architecture of these networks, as well as
the definition of 3D convolution and deconvolution operations used in this work, are available
in [150]. We use the Adam optimizer [82] to learn the weights for our auto-encoder.

We handle quantization similarly to [6]. Q represents element-wise integer rounding during
evaluation and Q adds uniform noise between −0.5 and 0.5 to each element during training
which allows for differentiability. To compress Q(y), we perform range coding and use the
Deflate algorithm, a combination of LZ77 and Huffman coding [47] with shape information on
x and y added before compression. Note however that our method does not assume any specific
entropy coding algorithm.

Our decoding process can also be interpreted as a binary classification problem where each point
z ∈ Ωr of the voxel grid is either present or not. This allows us to decompose x̂ = v̂S into its
individuals voxels z whose associated probability of occupancy is pz. However, as point clouds
are usually very sparse, most vS(z) values are equal to zero. To compensate for the imbalance
between empty and occupied voxels we use the α-balanced focal loss as defined in [101]:

FL(pt
z) =−αz(1− pt

z)
γlog(pt

z) (1.4.1)

with pt
z defined as pz if vS(z) = 1 and 1− pz otherwise. Analogously, αz is defined as α when
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Figure 1.4.1: RD curves for three sequences of the MVUB dataset. We compare our method to
the MPEG anchor.

vS(z) = 1 and 1−α otherwise. The focal loss for the decompressed point cloud can then be
computed as follows:

FL(x̃) = ∑
z∈S

FL(pt
z). (1.4.2)

Our final loss is L = λD+R where D is the distortion calculated using the focal loss and R is
the rate in number of bits per input occupied voxel (bpov).

Notice that the rate is computed differently during training and during evaluation. On one hand,
during evaluation, as the data is quantized, we compute the rate using the number of bits of the
final compressed representation. On the other hand, during training, we add uniform noise in
place of discretization to allow for differentiation. It follows that the probability distribution of
the latent space Q(y) during training is a continuous relaxation of the probability distribution
of Q(y) during evaluation which is discrete. As a result, entropies computed during training are
actually differential entropies, or continuous entropies, while entropies computed during eval-
uation are discrete entropies. During training, we use differential entropy as an approximation
of discrete entropy. This makes the loss differentiable which is essential for training neural
networks.

1.4.2 Experimental results

We train and evaluate our network on the ModelNet40 aligned dataset [202]. The ModelNet40
dataset contains 12,311 mesh models from 40 categories. This dataset provides us with both
variety and quantity to ensure good generalization when training our network. To convert this
dataset to a point cloud dataset, we first perform sampling on the surface of each mesh. Then,
we translate and scale it into a voxel grid of resolution r. We use this dataset for training with
a resolution r = 64. Details about the training parameters (learning rate, batch size, etc.) are
reported in [150].

Then, we perform tests on the MVUB dataset and we compare our method with the MPEG
anchor [115]. The MVUB dataset [103] contains 5 sequences captured at 30 fps during 7 to 10
seconds each with a total of 1202 frames. We test our method on each individual frame with
a resolution r = 512. In other words, we evaluate performance for intra-frame compression on
each sequence.
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(a) Original (b) Proposed method (c) MPEG Anchor

Figure 1.4.2: Original point cloud (left), the compressed point cloud using the proposed method
(middle) and the MPEG anchor (right). Colors are mapped using nearest neighbor matching.
Our compressed point cloud was compressed using λ = 10−6 with a PSNR of 29.22 dB and
0.071 bpov. The anchor compressed point cloud was compressed using a depth 6 octree with
a PSNR of 23.98 dB and 0.058 bpov. They respectively have 370,798; 1,302,027; and 5,963
points.

We compute RD curves for each sequence of the test dataset. For our method, we use the
following λ values to compute RD points : 10−4, 5×10−5, 10−5, 5×10−6 and 10−6. For each
sequence, we average distortions and bitrates over time for each λ to obtain RD points. For the
MPEG anchor, we use the same process with different octree depths.

To evaluate distortion, we use the point-to-plane symmetric PSNR [184], that is, esymm(A,B) =
min(e(A,B),e(B,A)) where e(A,B) provides the point-to-plane PSNR between points in A and
their nearest neighbors in B. This choice is due to the fact that original and reconstructed point
clouds may have a very different number of points, e.g., in octree-based methods the compressed
point cloud has significantly less points than the original, while in our method it is the opposite.

Our method outperforms the MPEG anchor on all sequences at all bitrates. The latter has a
mean bitrate of 0.719 bpov and a mean PSNR of 16.68 dB while our method has a mean bitrate
of 0.691 and a mean PSNR of 24.11 dB. RD curves and the Bjontegaard-delta bitrates (BDBR)
for three sequences are reported in Figure 1.4.1. Our method achieves 51.5% BDBR savings on
average compared to the anchor.

In Figure 1.4.2, we show examples on the first frame of the Phil sequence. Our method achieves
lower distortion at similar bitrates and produces more points than the anchor which increases
quality at low bitrates while avoiding “blocking” effects. This particular example shows that
our method produces 218 times more points than the anchor at similar bitrates. In other words,
both methods introduce different types of distortions. Indeed, the number of points produced
by octree structures diminishes exponentially when reducing the octree depth. Conversely, our
method produces more points at lower bitrates as the focal loss penalizes false negatives more
heavily.

We are currently extending this work towards the compression of point cloud attributes. In
particular, we are exploring the use of graph convolutions to compress attributes given the graph
geometry.
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Quality of Experience

Assessing visual Quality of Experience is of paramount importance for the evaluation, tuning
and design of image/video processing and compression pipelines. This chapter provides a sum-
mary of some contributions in QoE assessment for image and video. These contributions can be
grouped along two main axes: on one hand, research work aimed at predicting visual quality or
perceptual attributes through objective measures, in particular for emerging video formats such
as high dynamic range imaging; on the other hand, research focusing on subjective methodolo-
gies for collecting ground-truth quality scores.

In Section 2.1, I describe an extensive evaluation campaign of full-reference quality metrics
for HDR images and video [210]: in addition to the standard statistical performance evalua-
tion, we also propose a new discriminability analysis methodology which takes into account the
stochastic nature of ground-truth mean opinion scores. The second contribution (Section 2.2
is a no-reference quality assessment method for HDR pictures [84, 84]. The originality of the
work consists in disentangling perceptual quality as a combination of two distinct processes:
the physical (per pixel) error, and the perceptual scaling of this error that leads to the overall
quality judgment. We model these two terms using convolutional neural networks. As a third
contribution, I summarize in Section 2.3 a series of studies we conducted with the goal of mea-
suring the perceived dynamic range (PDR) of an HDR picture [48, 52, 49]. In contrast with
conventional psychophysical experiments on simple stimuli, assessing the perceived dynamic
range on complex stimuli requires designing a new subjective methodology that takes into ac-
count the constraints of content visualization and the definition of the perceptual attribute. The
collected data is used to fit a simple linear model to predict PDR based on image features.

Finally, the fourth contribution described in Section 2.4 [142, 207, 211] aims at exploring the
relation between quality scales induced by rating and pairwise comparisons experiments. We
recall the principles of scaling preferences onto an interval scale, showing the importance of
comparing pairs of stimuli coming from different contents. These results are used later to build
a model to merge rating and pairwise comparison scores.

31
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2.1 An extensive evaluation of HDR fidelity metrics

As introduced in Section 1.2, evaluating High Dynamic Range (HDR) visual quality presents
new challenges compared to conventional Low Dynamic Range (LDR) images [134]. The
higher peak brightness and contrast offered by HDR increases the visibility of artifacts, and at
the same time changes the way viewers focus their attention compared to LDR [133]. Since
these and other factors intervene in a complex way to determine HDR visual quality, the most
accurate approach to assess it is, in general, through subjective test experiments. However, these
are expensive to design and implement, require specialized expertize and are time-consuming.
Furthermore, in the case of HDR, subjective testing requires specialized devices such as HDR
displays, which still have a high cost and a limited diffusion. Therefore, designing and tun-
ing full-reference (fidelity) quality metrics for HDR content has been an important research
topic [110, 129, 131, 5].

Two main approaches have been proposed to measure HDR fidelity. On one hand, some met-
rics require modeling of the human visual system (HVS), such as the HDR-VDP [110]. On
the other hand, one can resort to metrics developed in the context of LDR imagery, such as
PSNR or SSIM [195]. All these LDR metrics are based on the assumption that pixel values are
perceptually linear, i.e., equal increments of pixel values correspond to equivalent changes in
the perceived luminance. This is not true in the case of HDR content, where pixel values store
linear light, i.e., pixels are proportional to the physical luminance of the scene. Instead, hu-
man perception has a more complex behavior: it can be approximated by a square-root in low
luminance values and is approximately proportional to luminance ratios in higher luminance
values, as expressed by the De Vries-Rose and Weber-Fechner laws, respectively [92]. Thus, in
order to employ these metrics, the HDR content needs to be perceptually linearized, e.g., using
a logarithmic or perceptually uniform (PU) encoding [5].

Previous studies about the performance of quality metrics show sometimes discrepancies in
their conclusions about the ability of these metrics to yield consistent and accurate predictions
of ground-truth Mean Opinion Scores (MOS). The aim of this work is to provide an extensive,
reliable, and consistent benchmark of the most popular HDR image fidelity metrics. To this
end, we collected as many as possible publicly available databases of HDR compressed images
with subjective scores, in addition to proposing a new one which mixes different codecs and
pixel encoding functions. This gives a total of 690 HDR images, which is by far larger than
previous studies on HDR visual quality. We then align the MOS’s of these databases using the
iterated nested least square algorithm (INLSA) proposed in [146], in order to obtain a common
subjective scale. Based on this data, we analyze the prediction accuracy and the discriminability
(i.e., the ability of detecting when two images have different perceived quality) of 25 fidelity
metrics, including those employed in MPEG standardization.

The content of this Section is described in greater detail in the original paper [210].
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Table 2.1.1: Number of observers, subjective methodology, number of stimuli, compression
type and tone mappings employed in the HDR image quality databases used in this section.
TMOs legend: AS: Ashikmin, RG: Reinhard Global, RL: Reinhard Local, DR: Durand, Log:
Logarithmic, MT: Mantiuk.

No Obs. Meth. Stim. Compr. TMO

#1 [132] 27 ACR-HR 140 JPEG iCAM [90]

#2 [130] 29 ACR-HR 210 JPEG 2000

AS [4]
RG [158]
RL [158]
DR [32]

Log

#3 [83] 24 DSIS 240 JPEG-XT
RG [158]
MT [111]

#4 [189] 15 DSIS 50
JPEG

JPEG 2000
JPEG-XT

Mai [107]

#5 15 DSIS 50
JPEG

JPEG 2000
Mai [107]
PQ [120]

2.1.1 Datasets and quality metrics

Subjective datasets

In order to provide a solid evaluation of objective quality metrics, we considered 5 subjectively
annotated datasets. The stimuli in each dataset have been obtained by compressing original
HDR pictures (represented on floating point values). We focus on coding distortion as this
is a typical test condition for fidelity metrics, and for the relevance this topic has had in the
context of HDR video standardization. Specifically, except the JPEG-XT standard [161], the
remaining compression schemes employ a tone mapping operator (TMO) to convert the HDR
picture into a conventional, 8-bit representation, in order to use a standard image codec such as
JPEG or JPEG2000, similar to the approach described in Section 1.2. The TMO is reversed at
the decoder to reproduce a reconstructed HDR image. The key features of these datasets are
summarized in Table 2.1.1. Notice that Dataset #4 was published in our previous work [189],
while Dataset #5 is one of the contributions of this work. Further details about the selected
datasets are reported in [210].

Alignment of the subjective scores

The datasets reported in Table 2.1.1 have been collected with different subjective methodologies
and in different experimental conditions. Therefore, the corresponding mean opinion scores are
not lying, in general, on the same scale. In Fig. 2.1.1(a), we observe the MOS distribution for
non-aligned databases as a function of the HDR-VQM metric. We notice that different datasets
tend to have a different relationship between the objective metric and the subjective scores. In
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Figure 2.1.1: Plots of MOS vs HDR-VQM scores before and after INLSA alignment. The
INLSA algorithm scales MOS values so that images which have similar objective scores also
have similar MOS values. In order to compare the scatter plot quantitatively, the root mean
squared error (RMSE) of the data is reported for each case.

other words, due to the characteristics of the experiments and test material, a similar value of
the objective metric may correspond to a very different level of impairment in the subjective
scale. Therefore, in order to use in a consistent way the MOS values of different subjective
databases, these need to be mapped onto a common quality scale.

In order to align the MOS values of all five HDR image databases, we use the iterated nested
least square algorithm (INLSA) proposed in [146]. This algorithm requires objective param-
eters for the alignment, under the assumption that those are sufficiently well correlated and
linear with respect to MOS. Therefore, we selected the five most linear and most correlated
objective quality metrics: HDR-VDP-2.2, HDR-VQM, PU-IFC, PU-UQI, and PU-VIF (more
details about these metrics will be provided in the following). The INLSA algorithm first nor-
malizes MOS scores from each source in the [0,1] interval, and then aligns them by solving
two least square problems: first, the MOS values of different datasets are corrected by an affine
transformation in order to span the same subjective scale; second, the MOS values are aligned to
the corresponding objective values by finding the optimal (in least-square sense) combination
of weights such that the corrected MOS’s can be predicted as a linear combination of objec-
tive parameters. These two steps, prediction and correction, are repeated iteratively till some
convergence criterion is met. Details about the algorithm can be found in [146].

The scatter plots of MOS values and HDR-VQM metric values after alignment can be seen
in Fig. 2.1.1(b). It can be observed that data points having similar HDR-VQM values have
similar MOS values after INLSA alignment. After the alignment, all the MOS values have been
mapped onto a common subjective scale, and they can be used in the evaluation of the objective
quality metrics.

From Fig. 2.1.1(b), we notice that images in Database #2 [130] have very different character-
istics compared to others, and MOS values are much more scattered than other databases after
the alignment. This is mainly due to the characteristics of this database, i.e., the stimuli were
mainly obtained by changing the tone mapping algorithm used in the compression, including
many TMO’s which produce strong color artifacts in the reconstructed HDR image. Also, dif-
ferent kinds of distortion are present simultaneously, such as color banding, saturation etc. In
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some cases, it is noticed that false contours have been generated, and some color channels were
saturated. Database #2 is thus very challenging for all the quality metrics we considered in this
work. Therefore, in order to provide a complete overview of the performance of HDR fidelity
metrics, in the following we report results both with and without including Database #2 in the
evaluations.

After the alignment of MOS values of the databases, we obtain an image data set consisting of
690 (or 480 images if Database #2 is excluded) images compressed using JPEG, JPEG-XT, and
JPEG 2000.

Considered objective metrics

In order to calculate quality metrics, we first scale pixel values to the range of luminance emitted
by the HDR displays used in each subjective experiments. This is especially important for those
metrics such as HDR-VDP 2.2 which rely on physical luminance. In order to compute these
values, we convert HDR pixels into luminance emitted by a hypothetical HDR display, assuming
it has a linear response between the minimum and maximum luminance of the display. As the
same display (i.e. SIM2 HDR47E S 4K) has been used in all the experiments, we have selected
the same parameters for all experiments, i.e., 0.03 cd/m2 and 4250 cd/m2 for minimum an
maximum luminance, respectively.

We consider the following objective quality metrics:

• HDR-specific metrics: HDR-VDP-2.2 [131] and HDR-VQM [129] are fidelity metrics
developed for HDR image and video, respectively. They model several phenomena that
characterize the perception of HDR content, and thus requires some knowledge of view-
ing conditions (such as distance from the display, ambient luminance, etc.). The mPSNR
is PSNR applied on an exposure bracket extracted from the HDR image, and then aver-
aged across exposures.

• Color difference metrics: we use CIE ∆E 2000 (denoted as CIE ∆E00), which entails a
color space conversion in order to get perceptually uniform color differences [105], and
its spatial extension [213] (denoted as CIE ∆ES

00).

• LDR metrics applied after a transfer function: LDR metrics such as MSE, PSNR,
VIF [172], SSIM [195], MSSIM [198], IFC [173], and UQI [197]. To compute these
LDR metrics we use:

– Physical luminance of the scene directly, denoted as Photometric-,

– Perceptually uniform [5] encoded pixel values, denoted as PU-,

– Logarithmic coded pixel values, denoted as Log-, or

– Perceptually quantized [120] pixel values. For this case, only tPSNR-YUV has been
considered as in [187].
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Table 2.1.2: Pearson Correlation Coefficient (PCC) Results for Each Database and for Aligned
Data

Metric Database #1 Database #2 Database #3 Database #4&5 Combined Except
Datab. #2

Photometric-MSE 0.4051 0.1444 0.7080 0.5095 0.3651 0.6987
Photometric-PSNR 0.4409 0.2564 0.7132 0.5594 0.5166 0.6506
Photometric-SSIM 0.5016 0.3583 0.8655 0.6708 0.6441 0.7462
Photometric-IFC 0.7781 0.8234 0.9183 0.8195 0.8344 0.7680
Photometric-UQI 0.7718 0.8208 0.8846 0.7876 0.8312 0.7667
Photometric-VIF 0.7603 0.5076 0.8666 0.6144 0.6264 0.8452

PU-MSE 0.4824 0.3309 0.8559 0.8024 0.6273 0.7710
PU-PSNR 0.5297 0.3269 0.8606 0.8009 0.6271 0.7761
PU-SSIM 0.8661 0.7049 0.9532 0.9201 0.8441 0.9016
PU-IFC 0.7910 0.8422 0.9201 0.8566 0.8569 0.8024
PU-MSSIM 0.8847 0.7236 0.9564 0.9038 0.8570 0.9210
PU-UQI 0.7823 0.8507 0.8768 0.7777 0.8367 0.7637
PU-VIF 0.7845 0.7583 0.9349 0.9181 0.8574 0.8655

Log-MSE 0.6114 0.5314 0.8856 0.8820 0.6844 0.7872
Log-PSNR 0.6456 0.5624 0.8870 0.8819 0.7001 0.7923
Log-SSIM 0.8965 0.8035 0.9235 0.8255 0.8418 0.8401
Log-IFC 0.7919 0.8366 0.9167 0.8551 0.8530 0.8034
Log-UQI 0.7837 0.8268 0.8786 0.7830 0.8285 0.7592
Log-VIF 0.5079 0.6202 0.8354 0.7065 0.6049 0.6889

HDR-VDP-2.2 Q 0.8989 0.5482 0.9531 0.9408 0.7590 0.9261
HDR-VQM 0.8949 0.7932 0.9612 0.9332 0.8807 0.9419

mPSNR 0.6545 0.6564 0.8593 0.8587 0.7434 0.7959
tPSNR-YUV 0.5784 0.4524 0.8319 0.7789 0.6580 0.7718

CIE ∆E00 0.6088 0.2553 0.7889 0.6082 0.4979 0.7752
CIE ∆ES

00 0.6167 0.3331 0.8793 0.7322 0.5783 0.7929

2.1.2 Statistical analysis

We initially perform a statistical evaluation of the metrics listed above in terms of prediction
accuracy, prediction monotonicity, and prediction consistency, following the recommenda-
tion [61]. For prediction accuracy, Pearson correlation coefficient (PCC), and root mean square
error (RMSE) are computed. Spearman rank-order correlation coefficient (SROCC) is used to
find the prediction monotonicity, and outlier ratio (OR) is calculated to determine the predic-
tion consistency. These performance metrics have been computed after a non-linear regression
performed on objective quality metric results using a logistic function, as described in the final
report of VQEG FR Phase I [163].

For the sake of conciseness, we report only the results for PCC in Table 2.1.2 — the complete set
of results is available in the original paper [210]. the results for the other performance criteria
show essentially similar conclusions:

• The performance of many fidelity metrics may significantly vary from one database to
another, due to the different characteristics of the test material and of the subjective eval-
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uation procedure. In particular, Database #2 is the most challenging for all the considered
metrics, due to its more complex distortion features, as discussed before.

• Despite the variations across databases, we can observe a consistent behavior for some
metrics. Photometric-MSE is the worst correlated one, for all databases. This is expected
as mean square error is computed on photometric values, without any consideration of
visual perception phenomena. On the other hand, HDR-VQM, HDR-VDP-2.2 Q, and
PU-MSSIM are the best performing metrics, with the exception of Database #2.

• In general, metrics which are based on MSE and PSNR (PU-MSE, Log-MSE, PU-PSNR,
mPSNR, etc.) yield worse results compared to other metrics. Instead, more advanced
LDR metrics such as IFC, UQI, SSIM, and MSSIM yield much better results. We also
notice that mPSNR, tPSNR-YUV, and CIE ∆E 2000, which have been recently used in
MPEG standardization activities, perform rather poorly in comparison to the others.

• Interestingly, the HDR-VQM metric, which has been designed to predict video fidelity,
gives excellent results also in the case of static images, and is indeed more accurate on
Database #2 than HDR-VDP-2.2.

• The impact of compression artifacts on image quality seems to dominate that of color
differences, and CIE ∆E00 and CIE ∆ES

00 do not correlate well with subjective scores.
Thus, our analysis confirms the results we have obtained in our work [206].

2.1.3 Discriminability analysis

The performance scores considered in the previous section assume that MOS values are known
deterministically. Hence, the goal of fidelity metrics is to predict them as precisely as possible.
However, MOS values are estimated from a sample of human observers, i.e., they represent ex-
pected values of random variables (the perceived annoyance or quality). Therefore, MOS are as
well random variables which are known with some uncertainty, which is typically represented
by their confidence intervals [56]. Thus, it can happen that images having the same MOS might
have different underlying quality, and viceversa, the quality of images having different MOS
could not be discriminated in practice. Therefore, in this section we propose another evaluation
approach, which aims at assessing if an objective fidelity metric is able to discriminate whether
two images have significantly different subjective quality.

Prior work has considered the problem of evaluating objective quality metrics taking into ac-
count the variability of MOS. Brill et al. [15] introduced the concept of resolving power of
an objective metric, which indicates the minimum difference in the output of a quality predic-
tion algorithm such that at least p% of viewers (where generally p = 95%) would observe a
difference of quality between two images. This approach has also been standardized in ITU
Recommendation J.149 [60]. Nevertheless, this technique has a number of disadvantages that
makes it little used in practice, e.g.: it requires transforming MOS to a common scale through
a fitting that might be ill-posed; the resolving power might correspond to a variable metric res-
olution in the original scale; and the performance indicators are mainly qualitative and difficult
to interpret. In parallel to our work, Krasula et al. [88] have proposed a different method which
does not require using a common scale and uses instead a classification approach.
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Our approach also does not need the transformation into a common scale, and overcomes the
limitations of [15]. The basic idea of the proposed method is to convert the classical regression
problem of accurately predicting MOS values, into a binary classification (detection) problem.
We denote by S(I) and O(I) the subjective (MOS) and objective quality of stimulus I, respec-
tively, for a certain objective quality metric. Given two stimuli Ii, I j, we model the detection
problem as one of choosing between the two hypotheses H0, i.e., there is no significant differ-
ence between the visual quality of Ii and I j, and H1, i.e., Ii and I j have significantly different
visual quality. Formally:

H0 : S(Ii)∼= S(I j);
H1 : S(I j)� S(I j), (2.1.1)

where we use ∼= (resp. �) to indicate that the means of two populations of subjective scores
(i.e., two MOS values) are the same (resp. different). Given a dataset of subjective scores,
it is possible to apply a pairwise statistical test (e.g., a two-way t-test or z-test) to determine
whether two MOS’s are the same, at a given significance level. In our work, we employ a
one-way analysis of variance (ANOVA), with Tukey’s honestly significant difference criterion
to account for the multiple comparison bias.

In order to decide between H0 and H1, similar to Krasula et al. [88], we consider the simple test
statistic ∆O

i j = |O(Ii)−O(I j)|, i.e., we compare the difference between the objective scores for
the two stimuli to a threshold τ, that is:

Decide:

{
H0 if ∆O

i j ≤ τ

H1 otherwise.
(2.1.2)

For a given value of τ, we can then label the set of stimuli as being equivalent or not. Clearly,
the performance of the detector in (2.1.2) depends on the choice of τ. We call true positive rate
(TPR) the ratio of images with different MOS’s correctly classified as being of different quality,
and false positive rate (FPR) the ratio of images with equal MOS’s incorrectly classified as
being of the different quality. By varying the value of τ, we can trace a Receiver Operating
Characteristic (ROC) curve, which represents the TPR at a given value of FPR [80]. The area
under the ROC curve (AUC) is higher when the overlap between the marginal distributions of
∆O

i j under each hypothesis, that is, p(∆O
i j;H0) and p(∆O

i j;H1), is smaller. Therefore, the AUC is
a measure of the discrimination power of an objective quality metric.

Table 2.1.3 reports the AUC results. In addition to the area under the ROC curve, we also
compute the balanced classification accuracy:

Acc =
2×T P

T P+FN
+

2×T N
T N +FP

. (2.1.3)

In Table 2.1.3 we report the maximum classification accuracy, Acc∗ = maxτ Acc, which charac-
terizes the global detection performance. These results in Table 2.1.3 are complemented with
the percentage of correct decisions (CD) in [15], which is to be compared with Acc∗. We no-
tice that, in general, the values of CD are much lower than Acc∗. This is due to the fact that
the method in [15] not only aims at distinguishing whether two images have the same quality,
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Table 2.1.3: Results of discriminability analysis: area under the ROC curve (AUC) and maxi-
mum classification accuracy. We report for comparison the fraction of Correct Decisions (CD)
at 95% confidence level as proposed in [15]. For CD, ‘–’ indicates that the 95% confidence
level cannot be achieved.

Combined Except Database #2
Metric AUC Acc* CD [15] AUC Acc* CD [15]

Photometric-MSE 0.532 0.530 – 0.644 0.614 0.317
Photometric-PSNR 0.576 0.556 – 0.633 0.596 0.249
Photometric-SSIM 0.609 0.590 – 0.677 0.633 0.306
Photometric-IFC 0.716 0.666 0.398 0.675 0.629 0.340
Photometric-UQI 0.765 0.707 0.380 0.730 0.678 0.296
Photometric-VIF 0.605 0.585 0.204 0.717 0.654 0.446

PU-MSE 0.596 0.580 – 0.677 0.645 0.379
PU-PSNR 0.625 0.593 – 0.715 0.661 0.380
PU-SSIM 0.721 0.663 0.399 0.804 0.725 0.512
PU-IFC 0.729 0.676 0.451 0.694 0.643 0.386
PU-MSSIM 0.737 0.680 0.434 0.838 0.758 0.598
PU-UQI 0.770 0.711 0.391 0.730 0.678 0.286
PU-VIF 0.782 0.719 0.463 0.802 0.735 0.493

Log-MSE 0.600 0.587 0.253 0.687 0.653 0.393
Log-PSNR 0.668 0.624 0.256 0.729 0.668 0.395
Log-SSIM 0.717 0.664 0.394 0.762 0.696 0.407
Log-IFC 0.725 0.673 0.443 0.694 0.642 0.382
Log-UQI 0.769 0.711 0.368 0.728 0.676 0.272
Log-VIF 0.634 0.593 0.217 0.666 0.635 0.282

HDR-VDP-2.2 Q 0.689 0.630 0.300 0.850 0.759 0.622
HDR-VQM 0.791 0.727 0.487 0.893 0.816 0.684

mPSNR 0.690 0.648 0.278 0.727 0.671 0.381
tPSNR-YUV 0.636 0.603 0.178 0.708 0.658 0.367

CIE ∆E00 0.580 0.559 0.168 0.721 0.669 0.332
CIE ∆ES

00 0.602 0.575 0.187 0.723 0.668 0.349

but also to determine which is the one with better quality. Thus the classification task is more
difficult, as there are three classes – equivalent, better or worse – to label. Notice that in some
cases, the CD cannot be computed, as the percentage of observers seeing a difference between
image qualities is lower than 95% for any metric difference values.

The results of discriminability analysis lead to similar conclusions as the statistical analysis in
Section 2.1.2. Nevertheless, even for the best performing metrics having correlation with MOS
larger than 0.9, maximum accuracy saturates at 0.8. This suggests that there is still space for
improving existing HDR objective quality measures, as far as discriminability (and not only
prediction accuracy) is included in the evaluation of performance.
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2.2 Blind HDR quality estimation disentangling perceptual
and noisy features

Differently from the previous section, where we discussed fidelity (full-reference) quality met-
rics, in this section we take a no-reference perspective, i.e., we assume that the pristine image
is not available. We continue to focus on assessing the distortion produced by HDR image
compression algorithms.

We propose a model capable of predicting the perceived HDR image quality and localizing the
distortions. We use a convolutional neural network (CNN) based architecture to achieve this
goal. We approach the problem of designing a perceptual HDR no-reference image quality as-
sessment (NR-IQA) model by dividing the visual quality analytic process into sub-components.
We represent visual quality perception as the result of two functional units. The first unit takes
a distorted image and detects error, and the second unit performs a perceptual scaling of this
error to compute a quality score. By using a supervised learning approach, the mathematical
behavior of these two units can be modeled. The data required for this training is obtained from
an IQA dataset, which contains images and the corresponding quality scores.

Specifically, the contributions presented include:

• Proposing an NR-IQA model based on a convolutional neural network architecture, which
can separate pixelwise errors from their impact on perception in a distorted image. Our
model outperforms other NR-IQA models and is competitive with state-of-the-art HDR
full-reference IQA algorithms.

• Providing an accurate error prediction in a distorted image without a reference image.

• Predicting the visual masking effects without the need of explicit psychovisual subjective
tests.

The content of this section is described in further details in the original paper [84].

2.2.1 Proposed model

To estimate HDR image quality, we design a system based on two convolutional neural net-
works (CNN), illustrated in Figure 2.1(a). The input are HDR image blocks composed of linear
luminance values. We use a block size of 32× 32 pixels. This is the same block size that was
suggested in [69]. Our CNN model has three major parts: E-net, P-net and a Mixing func-
tion. E-net estimates the Error δ(i, j) of an image block centered at (i, j). P-net computes the
Perceptual Resistance T (i, j) of the block. The output of these two systems are then input to
a Mixing function, to produce the local block quality. We obtain Differential Mean Opinion
Scores (DMOS) for each image block. The block scores are then combined to generate the
final image quality score. In our model, DMOS is a number directly proportional to the level of
distortion in a HDR image. We describe each component in detail in the following.
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(a) Proposed NR-IQA (b) Two-step training process

Figure 2.2.1: Proposed strategy for HDR NR-IQA. (a) E-net detects the error, P-net detects the
perceptual resistance, and Mixing function consolidates the results and computes a DMOS. (b)
The two-step training process enables to avoid the need for psychovisual ground-truth labels.

E-net Error Estimation

The Error δ(i, j) quantifies the change in statistics in a distorted image block. For an image
block centered at (i, j), we define the error as,

δ(i, j) = mean(
∣∣YR(i, j)−YD(i, j)

∣∣) (2.2.1)

where YR and YD are, respectively, the original and distorted linear HDR luminance values of
the image block centered at (i, j). This does not indicate a Full Reference computation, as the
original version is only used during training (a pair of HDR image and its distorted version
is used here). The objective is to train E-net with the distortion characteristics, like blocky
artifacts, blurring effects, jagged edges, etc.

We use `1 norm for error computation (Eq. 2.2.1) instead of alternative measures such as `2
norm, to avoid over-emphasizing large errors. This is particularly important in HDR images
where the histogram of Y is generally very skewed and some pixels take very high luminance
values. We use our own CNN approach to design E-net to obtain and estimation δ̂(i, j) of the
error in Eq. (2.2.1)

P-net Perceptual Resistance

For each image block centered at (i, j), we compute the Perceptual Resistance T (i, j). This
value represents the difficulty for a viewer to perceive the error δ(i, j) of the block. A high
T value implies that it is less likely to see the error, and hence the quality of the block is less
affected (high perceptual resistance). Conversely, a low value implies that the image block will
be perceptually degraded by error. Perceptual Resistance T (i, j) aims to represent a combination
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of all perceptual effects exhibited by an image block centered at (i, j). Though it is functionally
similar to the pixel-wise just noticeable error measure used in conventional IQA systems like
[215], [25] and [131], we introduce Perceptual Resistance as a new term because our model
generates local quality scores (DMOS), as opposed to a local probability of error detection.

Instead of following the traditional perceptual modeling method of deriving perceptual thresh-
olds from psychophysical experiments, we solve this problem by a data driven method. We
use a convolutional neural network (CNN) based architecture, P-net, to derive the Perceptual
Resistance of a block.

Mixing function

We use a Mixing function f (δ̂,T ), which combines the estimated error and Perceptual Resis-
tance to generate a quality score. This is a critical part of the system because it is this value that
is optimized by the training process to match human quality scores. The output of P-net would
change based on how the Mixing function is designed.

The Mixing function is designed as follows, with error expressed in multiples of Perceptual
Resistance:

DMOS = f (δ̂,T ) = G
(

δ̂

T

)
, (2.2.2)

where G is a monotonically increasing function. By using this, we express error in JND like
measure ( error

JND ), so that the error quantity is mapped onto a more perceptually relevant scale.
Such interpretation is common in IQA literature, e.g., [215]

Mapping δ̂

T to quality scores is achieved by the function G. Since increase in visible error always
leads to decrease in quality and increase in DMOS, the latter must monotonically increase with
error
JND , implying that G also has to be monotonically increasing with δ̂

T . Thus, any monotonically
increasing function is sufficient for G. However, choosing a G that is too complex can lead
to optimization problems because of unstable data points along the function, or low values for
gradients, leading to slow or zero learning.

Based on the above considerations, we use G(x) = 1− exp(−|kx|) and DMOS is computed as:

DMOS(i, j) = 1− exp
(
−

∣∣∣∣∣k ∗ δ̂(i, j)
T (i, j)

∣∣∣∣∣
)

(2.2.3)

This choice is inspired by the error model proposed in [215], but we introduce a scaling factor
k. Here the added parameter (weight) k can be tuned during the training process, so that the
predicted values of DMOS are as close to the ground truth DMOS as possible.

Network architecture

E-net is a typical CNN architecture consisting of five layers. Details are given in [84]. For P-net,
we define a customized CNN layer, called augmented input layer. In this layer, in addition to
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the original luminance values of the block, we compute the mean, variance and MSCN images.

For the MSCN image, we use the formulation in [122], i.e., MSCN(yN(i, j)) =
yN(i, j)−µyN (i, j)
σyN (i, j)+0.01 ,

where µyN(i, j) is the mean and σyN(i, j) is the variance. They are computed by replacing every
pixel (i, j) with the mean and variance, respectively, over a local Gaussian window of size N
around (i, j).

2.2.2 Two-step training procedure

An important element in a CNN-based system is the selection of right labels for training. To
force the desired behavior of the sub-components, we need to provide the right examples to
each of the CNN’s.

E-net detects blockwise errors. It is trained with linear luminance values of the distorted image
as input, and per pixel errors (Eq. (2.2.1)) as output, which are available in the training stage.

For P-Net, the ideal training data is a numeric quantity, encapsulating all perceptual effects on
the HVS, generated from an image block. Although we cannot get such a final value directly,
our system can produce a quality score after the Mixing function process. We use this score for
training. This two-stage training forces the P-net to extract a set of perceptual features from the
image blocks and to derive a single final Perceptual Resistance value.

We therefore define our two-stage training process as follows:

Stage 1: E-net is trained with distorted image blocks as input and errors δ as target. The error
is computed with Eq. (2.2.1).

Stage 2: all the training weights of E-net are frozen by setting their learning rate to zero. The
whole network is then trained with image blocks as input and ground truth image quality of the
whole image, DMOSgt , as target. We use J as the cost function for any image block centered at
(i, j), where

J(i, j) =
∣∣DMOS(i, j)−DMOSgt

∣∣ . (2.2.4)

DMOS(i, j) is the output of the Mixing function. The P-net and the mixing function (optimal
value of k) get trained during this stage.

The overall process is illustrated in Fig 2.1(b).

Notice that in Eq. (2.2.4) we assume that the local quality of an image block is the same as the
global image quality score, similarly to the setting in [69]. While this assumption is somehow
inaccurate (as distortion can be unevenly spread across a picture), it has been proven to be
accurate enough to predict image quality without reference [69].

2.2.3 Experimental results

We compare the performance of our algorithm with existing methods and show a clear improve-
ment in performance. We conduct two tests: 1) a test of overall performance of the proposed
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Table 2.2.1: Comparison of overall prediction performance. Highlighted in bold are the highest
performing metrics.

(a) All data together

Scheme Processing SRCC PLCC RMSE

BRISQUE

Lin 0.7274 0.7231 18.1797
PU 0.8047 0.7825 17.3576
TMO - Drago 0.7374 0.7203 19.1261
TMO - Reinhard 02 0.7782 0.7699 18.1523
TMO - Reinhard 05 0.6903 0.6643 20.3307
TMO - Mantiuk 0.6172 0.6148 22.1868

SSEQ

Lin 0.6022 0.6008 23.3017
PU 0.7342 0.7175 19.4117
TMO - Drago 0.6853 0.6954 20.8766
TMO - Reinhard 02 0.6866 0.6688 21.0673
TMO - Reinhard 05 0.6568 0.6467 20.5737
TMO - Mantiuk 0.4185 0.4651 25.7570

BIQI

Lin 0.1817 0.1466 38.7513
PU 0.3387 0.3445 30.5220
TMO - Drago 0.2803 0.2960 41.0579
TMO - Reinhard 02 0.3756 0.3766 33.2005
TMO - Reinhard 05 0.3097 0.2874 27.7294
TMO - Mantiuk 0.2822 0.2408 39.0999

DIIVINE

Lin 0.6677 0.6759 21.8020
PU 0.7156 0.7193 18.7586
TMO - Drago 0.7418 0.7400 18.9959
TMO - Reinhard 02 0.7149 0.7024 20.7177
TMO - Reinhard 05 0.7900 0.7809 17.2134
TMO - Mantiuk 0.4946 0.4936 27.4918

kCNN

Lin 0.8363 0.8134 19.1753
PU 0.8638 0.8497 16.8937
TMO - Drago 0.7700 0.7485 18.2759
TMO - Mantiuk 0.8075 0.8053 17.7948
TMO - Reinhard 02 0.8613 0.8179 17.7157
TMO - Reinhard 05 0.6438 0.6074 22.3484

Proposed PU 0.8860 0.8871 16.4171
Proposed Lin 0.8920 0.8860 14.1464

(b) Cross-dataset

Scheme Processing SRCC PLCC RMSE

BRISQUE

Lin 0.5400 0.4772 28.8475
PU 0.7135 0.6503 20.5534
TMO - Drago 0.6337 0.5903 21.7118
TMO - Reinhard 02 0.6583 0.6512 18.4500
TMO - Reinhard 05 0.3524 0.3946 30.6615
TMO - Mantiuk 0.5887 0.5493 22.7529

SSEQ

Lin 0.5287 0.4714 25.2588
PU 0.6492 0.6111 19.6977
TMO - Drago 0.5865 0.5634 22.6987
TMO - Reinhard 02 0.5810 0.5644 22.9900
TMO - Reinhard 05 0.4990 0.5036 24.9193
TMO - Mantiuk 0.4973 0.4770 21.2044

BIQI

Lin 0.2845 0.2831 31.0686
PU 0.4386 0.4399 21.2084
TMO - Drago 0.5332 0.4436 25.6200
TMO - Reinhard 02 0.4632 0.4358 22.0376
TMO - Reinhard 05 0.5748 0.5630 19.4825
TMO - Mantiuk 0.4651 0.4571 24.2268

DIIVINE

Lin 0.5041 0.5209 20.6506
PU 0.5318 0.5442 19.6772
TMO - Drago 0.4143 0.4065 25.9697
TMO - Reinhard 02 0.3634 0.3953 26.1464
TMO - Reinhard 05 0.5558 0.5374 19.3122
TMO - Mantiuk 0.4138 0.4496 21.0499

kCNN Lin 0.6991 0.7008 19.3677
kCNN PU 0.7694 0.7544 18.5854

Proposed Lin 0.8672 0.8780 18.626

HDR-VDP Full Reference 0.9298 0.9408 10.120
HDR-VQM Full Reference 0.9193 0.9332 10.725
PU-MSSIM Full Reference 0.8969 0.9038 12.775
PU-SSIM Full Reference 0.9121 0.9201 11.688

method on a large dataset of subjectively annotated HDR images; 2) a cross-dataset test to
assess the generalization capabilities of the proposed approach.

We use the HDR dataset described in Section 2.1, obtained by aligning the five subjectively
annotated HDR image datasets as shown in Table 2.1.1 and in Figure 2.1.1. The datasets provide
only MOS values of the images. Since our system requires the difference of mean opinion scores
(DMOS), we convert MOS to DMOS as follows:

DMOSgt(i) =
MOSMAX −MOS(i)

MOSMAX
, (2.2.5)

where DMOSgt(i) is the ground truth DMOS score for image i, MOSMAX represents the max-
imum MOS in the IQA training dataset and MOS(i) is the MOS of the ith image of combined
database after INLSA alignment.

We compared our approach with a number of state-of-the-art LDR NR-IQA methods: BRISQUE
[122], SSEQ [102], BIQI [124], DIIVINE [125], and kCNN [68], with and without pre-processing
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Figure 2.2.2: Example output of E-net and P-net. Given the input image, we report: the actual
error δ, the output of E-net δ̂ (estimated error), the output of P-net T (perceptual resistance),
and the estimated local perceptual quality DMOS(i, j) after the mixing function..

operators. PU encoding [5] was used as a pre-processing operator. We also used a number of
tone-mapping operators, which include [159], [157], [30] and [113], in pre-processing.

In order to test the overall performance of the proposed method, we (re)train each algorithm
on our combined image dataset, by splitting it in training/testing subsets (80% for training
and 20% for testing), in such a way that the training and testing sets do not contain the same
contents. We repeat this procedure 100 times, and report median prediction performance in
Table 2.1(a). The best performances are obtained by using BRISQUE [122] and kCNN [69].
The high performances of BRISQUE and kCNN on HDR linear values can be attributed to the
features they use, i.e., the MSCN coefficients. It is likely that the normalization by variance
cancels the effects of the increased dynamic range and yields a similar distortion pattern as
LDR images.

Furthermore, we observe a clear performance improvement in LDR NR-IQA algorithms if the
data is pre-processed and the dynamic range of the data is reduced to LDR levels, confirming
what we found in Section 2.1. PU encoding improves the performance in most of the cases.
The best performance among LDR NR-IQA is obtained while using PU encoding in conjunc-
tion with kCNN. The performance of the proposed system is significantly better than the other
algorithms in all cases both with or without pre-processing using PU encoding.

In order to demonstrate the generalization capabilities of the proposed NR-IQA technique to
different conditions and contents, we train the algorithms using datasets #1, #2 and #3, and test
them on datasets #4 and #5 (see Table 2.1.1). Notice that this is a more challenging scenario,
and in fact the performance of the metrics are generally lower. We report also the performance
of some of the best full-reference metrics from Table 2.1.2 for comparison. The proposed
algorithm outperforms related methods in all test cases when considering generalization to a
real-world scenario, and achieves performance close to full-reference quality metrics.

Figure 2.2.2 reports a visual example of the output of the proposed network for a given com-
pressed image. Notice that the perceptual resistance, T , is higher in areas which are either
darker (lower luminance reduces the sensitivity to artefacts) or have strong textures, such as
the flowers (contrast masking), while it is lower in smoother regions such as the sky, where
distortion is more visible. More examples and analyses are reported in the paper [84].

We have shown in later work [85] that the proposed model with E-net and P-net, and the cor-
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responding two-step training, is able to learn somehow contrast sensitivity from image quality,
also for the general case of LDR images. Our experiments in [85] demonstrate that the latent in-
formation about distortion visibility carried by supra-threshold quality scores can be recovered
and used to predict near-threshold local masking. One advantage of our approach, compared
to models based on psychophysical data, is that it can leverage the larger availability of subjec-
tively annotated image quality datasets.

2.3 Perceived dynamic range for HDR images

In this section we consider measuring a specific perceptual attribute of an HDR picture: its
dynamic range. Specifically, we consider this problem from a no-reference perspective, where
the perceptual attribute is an intrinsic property of the image and not one deduced by a difference
to a reference picture with an “ideal” quantity of that attribute.

One of the main reasons why high dynamic range is supposed to boost the quality of visual
experience is its ability to reproduce very bright and very dark portions of a scene concurrently.
The span between these extrema in the brightness scale is commonly referred to as the dynamic
range of a picture. The dynamic range of image or video content is typically computed as the
ratio between the maximum and minimum pixel luminance of an image, which will be referred
to as pixel-based dynamic range (DR) in the rest of this section. Such a computation can
be biased due to image noise or singularities, such as isolated pixels with extreme luminance
values. Furthermore, such measures do not capture the complex behavior of the human visual
system’s (HVS) response and perception of lightness [41]. Instead, the perceived dynamic
range (PDR) depends on more complex characteristics of the content, and its assessment in
HDR conditions is relevant in a number of applications, from optimization and assessment of
inverse tone mapping operators (ITMOs) [26], to the evaluation of HDR displays and HDR
content selection for subjective studies [135].

In this section we describe a study to model the PDR for HDR images. Specifically, our method-
ology consists in: i) collecting a dataset with PDR mean opinion scores for chromatic and
achromatic HDR pictures; ii) proposing and selecting a number of features to explain PDR, and
formulating a model with them. In summary, the contributions of this work are the following:

• we create a subjectively annotated data set with PDR values, using complex, chromatic
and achromatic stimuli and HDR viewing conditions using an HDR display;

• we propose a novel test methodology for measuring perceived dynamic range, partially
inspired by the subjective assessment methodology for video quality (SAMVIQ) [12];

• based on the results of the study, the Pearson’s correlations between mean opinion scores
(MOS) and five image features are analyzed;

• the effect of chromatic information on perceived dynamic range is investigated and the
relation between chromatic and achromatic quantified;

• we propose a model for predicting the perceived dynamic range for both achromatic and
chromatic.
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The content of this section is described in greater detail in the original papers [52, 48].

2.3.1 Subjective dataset

Experimental design

In the study, a subjective evaluation of PDR of both achromatic and chromatic images was
conducted. The participants were asked to evaluate the overall impression of the difference
between the brightest and the darkest part(s) in the images. The independent variable was the
image content, while the dependent variable was the reported PDR of the image. The study was
conducted in two separate sessions, one for achromatic and another for chromatic images.

Three possible evaluation methods are typically considered during the design of experiments
of this type: paired comparison, ranking and rating. Paired comparisons were ruled out due
to their impracticality with large data sets. More efficient pair comparison techniques can be
used under certain assumptions. However, due to multidimensionality and non-deterministic
DR appearance, these assumptions in our case were violated. While the ranking methods are
straightforward, and quick to conduct, as with pairwise comparisons, they provide no informa-
tion on the magnitude of the differences. Therefore, this method has been designed in order to
use the advantages of the three methods: it permits ranking of the stimuli, a direct comparison
between the image pairs, and it uses the continuous scale for subjective scores.

The evaluation method was inspired by the Subjective Assessment Methodology for Video
Quality (SAMVIQ) [12], adapted to static images. The data set consisted of 36 images, selected
from the pool of 137 images, and divided into three subsets of 12 pseudo-randomly selected im-
ages in a randomized order. The evaluation session was not time constrained. Each subset was
evaluated independently, allowing participants to re-evaluate any image within, but not across
subsets as many times as they wanted. This allowed for multiple comparisons between the im-
ages and fine adjustments of the scores. The rating was performed on a 0-100 continuous scale,
divided into five equal intervals with corresponding labels: very low, low, medium, high and
very high, included for general guidance.

Stimuli

A set of 33 images were selected from the HDR Photographic Survey [33] in order to have
an approximately uniform distribution of three image features: dynamic range, image key, and
spatial information, as described in [52]. Since most of the images from the Fairchild’s data
set are photographs of nature, a single frame from the Market HDR video sequence proposed
in MPEG by Technicolor [93] and a frame from both the Carousel and Bistro video sequences
from the Stuttgart HDR Video Database [38] were added to the test data set. All 36 images were
converted to the corresponding achromatic images, using BT.709 primaries to compute relative
luminance [59].

The images were reproduced on an HDR SIM2 HDR47ES4MB 47” display, employed in the
DVI Plus (DVI+) mode, that allows for directly and independently controlling backlight LEDs
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Achromatic images (23 participants)

(a) Achromatic
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Chromatic images (23 participants)

(b) Chromatic

Figure 2.3.1: Extended boxplot diagrams for achromatic (top) and chromatic (bottom) images.
Blue circles = MOS; Red horizontal lines = median values; Blue boxes = the interquartile
ranges; Whiskers = adjacent values; Red crosses = outliers; Red line: pixel-based DR values
(scaled as DR = DR

max(DR) ·100). The scores are sorted by the mean value.

and LCD pixel values, based on the dual-modulation algorithm [209].

Results

In Figure 2.3.1, the extended box plot depicts the distribution of the perceived DR scores, with
the corresponding mean and median values, confidence intervals and outliers. In addition, the
pixel-based DR is also presented to visually display the correlation between the subjective and
objective scores. The Pearson and Spearman correlations between the chromatic MOS and
achromatic MOS are r = .99 and rs = .98, respectively, indicating the chromatic and achromatic
scores are very highly correlated.
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2.3.2 Considered image features

In order to compute image features, the pixel luminance values were first scaled to the display
range, yielding physical luminance in cd/m2, with the following equation:

L′ =
L−min(L)

max(L)−min(L)
· (Dispmax−Dispmin)+Dispmin, (2.3.1)

where Dispmin = 0.03cd/m2 and Dispmax = 4250cd/m2 in our setup.

We consider the following 5 features as factors that might explain the PDR:

• Pixel-based Dynamic Range (DR), calculated after excluding 1% of the darkest and
brightest pixels in the image, using

DR = log10
max(L′)
min(L′)

, (2.3.2)

where L′ is the image with scaled values.

• Image key (IK), which gives a measure of the average image brightness, defined as:

IK =
ln(avg(L))− ln(min(L))
ln(max(L))− ln(min(L))

, (2.3.3)

where the avg(L) was computed as ln(avg(L)) = Σi j ln(L(i, j)+ δ)/N, with δ = 10−5 to
avoid singularities and N was the number of pixels. Once again, min(L) and max(L) were
calculated robustly, after excluding 1% of the darkest and the brightest pixels.

• Area’ of specular highlights, calculated as Area′ = Area1/4, where:

Area = ∑
i j
(L(i, j)), for L(i, j)> 2400cd/m2, (2.3.4)

is the number of pixels greater than the diffuse white threshold value. The value of 2,400
cd/m2 was selected as recommended in ITU document [58], in accordance with the re-
sults of the study by Daly et al. [24], where different thresholds were found for different
levels of user expertise. The 1/4 power has been introduced a posteriori to linearize the
relation of the feature with the collected MOS.

• Contrast (C), which we compute using an adapted version of the multi-scale contrast
measure of Peli [140] — details about computation are available in the original paper [48].

• Colorfulness (Col), only for chromatic stimuli, computed as in [46].

The Pearson and Spearman correlation coefficients between each of these features and MOS
values are reported in Table 2.3.1.
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Table 2.3.1: Pearson’s r and Spearman’s rs correlation coefficients between MOS values for
both achromatic and chromatic images and five objective measures: DR, IK, Area, C and Col.
* denotes significance at p < .01.

MOS Achromatic Chromatic
Measure DR IK Area’ C DR IK Area’ C Col

r .87* -.60* .87* -.19 .84* -.61* .87* -.22 -.47*
rs .87* -.55* .89* -.24 .84* -.57* .90* -.27 -.43*

2.3.3 PDR predictor model

We use a multi-variate linear regression to produce a model that can predict the PDR based on
the features described above. First, we normalize the features values to put them in the same
scale:

x′i =
xi− 1

n ∑
n
i=1 xi

max(X)−min(X)
(2.3.5)

where x denotes a given feature. Then, we use a hierarchical approach in order to find the
independent variables (image features) that significantly improve the prediction of the outcome
variable (PDR). Since pixel-based DR is known to be a good predictor of the perceived DR, it
is selected for the first block in the hierarchy. All other predictors (IK, Area’, C and Col) are
added to the second block, and the contribution of each predictor is computed by looking at
the semi-partial correlation with the outcome. After this procedure, only the Area’ is found to
significantly contribute to PDR prediction. Therefore, only DR and Area’ are retained to create
the model.

Once the two relevant features are selected, the PDR for the achromatic images is predicted as:

P̂DR = 0.573 ·DR+0.448 ·Area′ (2.3.6)

while for the chromatic images it is:

P̂DR = 0.506 ·DR+0.471 ·Area′. (2.3.7)

Notice that the two models are indeed very similar, which confirms the high correlation between
chromatic and achromatic PDR.

From the point of view of model prediction performance, we observe that the correlation be-
tween predicted and ground-truth PDR is r = .945 and r = .932 for achromatic and chromatic
images, respectively. If only DR was considered, the correlation would have been significantly
lower, i.e., r = .866 and r = .839, respectively. An analysis on eight scenes with the highest
discrepancies between the MOS and pixel-based DR values, described in more detail in [48],
shows that the PDR prediction is significantly improved when the Area predictor contributes to
the model.

Although the results show that, overall, the PDR prediction with the proposed model is closer
to the MOS it is likely that there will be images where this is not the case due to the excessive
complexity of the HVS and the related processes in the perception of such visual attributes. We
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have shown in [50] that first-order statistics (i.e., the histogram) of an image are not sufficient to
account for the perception of dynamic range. A limitation in this domain is the lack of annotated
data, especially for HDR conditions. Another interesting direction to explore is modeling PDR
for dynamic (video) content, where also more complex adaptation mechanism enter into play.

2.4 Towards a unified quality scale fusing rating and ranking
measures

Differently from previous sections, where we focused on objective quality assessment, in this
section we change perspective and we consider how to efficiently collect subjective ground-
truth scores. This is especially important, since collecting subjective scores is an expensive
and time-consuming task, and quantifying precisely perceptual experience enables to better
employ a given budget of measurements and to merge existing datasets collected with different
methodologies.

Two of the main methods of subjective quality assessment for multimedia content are direct
rating and ranking. Direct rating methods ask the observers to assign scores to observed stimuli.
They may involve displaying a single stimulus (absolute category rating (ACR), single stimulus
continuous quality evaluation (SSCQE)), or displaying two stimuli (double stimulus impairment
scale (DSIS), double stimulus continuous quality evaluation (DSCQE)). Ranking methods ask
the observers to compare two or more stimuli and order them according to their quality. The
most commonly employed ranking method is pairwise comparisons (PWC).

Essentially, rating has the advantage to provide an interpretable, supra-threshold scale of quality
or distortion impairment, but it also requires a careful training of subjects, who might have a
different interpretation of the scale adjectives. As a consequence, the rating scale is in general
not universal. On the other hand, pairwise comparison experiments have a lower cognitive load,
require little training and generally eliminate the bias of the observer. However, the total number
of possible comparisons increase quadratically with the number of stimuli, which makes a full
comparison approach unfeasible. In practice, not all comparisons are equally useful, e.g., com-
paring stimuli with too close or too distant impairment levels is generally uninformative [199].
Pairs of stimuli to be compared can be sampled iteratively based on the previously compared
stimuli, based on heuristics [149] or, information-theoretic criteria[203].

Motivations and contributions of this work

The vast majority of studies employing the pairwise comparison method compare only the im-
ages depicting the same content, for example comparing different distortion levels applied to
the same original image. However, assessing and scaling each content independently makes it
difficult to obtain scores that correctly capture quality differences between conditions across
different contents on a common quality scale. Furthermore, pairwise comparison capture only
relative quality relations. Therefore, in order to assign an absolute value to such relative mea-
surements, the experimenter needs to assume a fixed quality for a certain condition which is
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then used as reference for the scaling. As a result, the scaling error accumulates as conditions
get perceptually farther from the reference.

On the other hand, it is useful in practice to aggregate quality scores obtained from different
quality evaluation experiments, e.g., to create larger annotated datasets. While this aggregation
of subjective quality scores is usually done for rating (i.e. mean opinion scores) [146, 147, 210]
or pairwise comparisons [145, 174] individually, little has been done to study the fusion of
scores obtained by both these two methodologies.

In this section we consider the above two questions — how to obtain a unified quality scale
merging rating and pairwise comparisons, and which is the role played by cross-content com-
parisons. Specifically, we describe the following contributions:

• We show the importance of scaling PWC results according to a given observer model,
in order to convert preferences to an interval scale. Differently from typical mean opin-
ion score (rating) scales, the obtained scale can be interpreted in terms of probability of
preferences;

• We find experimentally that the relation between rating and scaled PWC results is ap-
proximately linear. This can be used to fuse measurements obtained from the two types
of experiments;

• We show the advantages of adding cross-content comparisons in PWC, and we analyze
through simulations which is the optimal ratio of cross/same content comparisons in a
typical subjective quality assessment test.

The content of this section is presented and discussed in greater details (especially, with more
experimental results and analyses) in the papers [207, 211, 142].

2.4.1 Observer model

In order to map data collected in experiments into a unified quality scale, we need to make
certain assumptions about how observers respond. Such assumptions are encapsulated in the
observer model. Observers might vary in their notions of quality among them (inter-observer
variance), and their opinions are also likely to change when they repeat the same experiment
(intra-observer variance). Thus, quality is not a deterministic value, but a random variable,
which accounts for the subjective nature of these experiments. We describe in the following the
observer models we employ for rating and pairwise comparison experiments.

Rating

In rating experiments the random variable associated with the quality can be expressed using
the following model of observer rating behavior [64]:

πik = mi +δk +ξik, (2.4.1)
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meaning that the rating πik for observer k and condition i depends on: mi, the ground truth
quality score; δk, the subject bias; and ξik the subject inaccuracy and stimulus scoring difficulty.
All components in the model are assumed to be independent random variables that are Nor-
mally distributed and ξik is assumed to have a zero mean. This makes rating πik also Normally
distributed.

Pairwise comparisons

As for pairwise comparisons, the two most widely used observer models are Thurstone [183]
and Bradley-Terry [14]. In practice, both lead to similar solutions. Within the Thurstone model
the perceived quality of condition i is modeled as a random variable:

ωi ∼ N(qi,σi) (2.4.2)

where the mean of the distribution is assumed to be the (latent) true quality score qi and the stan-
dard deviation σi accounts for combined inter- and intra-observer variance. Individual quality
scores of compared conditions can be inferred from the relative distances, calculated as:

ω j−ωi ∼ N(qi j,σi j) (2.4.3)

where σi j is the standard deviation of a new distribution obtained from the difference between
two quality distributions and qi j = qi−q j. A typical assumption, known as Thurstone Case V,
assumes σi j to be the same across all conditions, and thus ωi ∼ N(qi,σ).

The main difference between Thurstone Case V and Bradley-Terry models is that in the lat-
ter the difference between quality scores is expressed using a logistic distribution instead of a
normal distribution. This leads to a more efficient numerical solution when optimizing quality
scores. The difference between the cumulative Gaussian and logistic distribution is displayed
in Figure 2.1(a), which shows that the two models are indeed very similar. In the following, we
employ the Thurston Case V model, though the proposed approach might be extended to the
Bradley-Terry one.

2.4.2 Psychometric scaling

Figure 2.1(b) shows a graphic representation of different steps in psychometric scaling via pair-
wise comparisons. Psychometric scaling aims to estimate the latent scores q̂ such that distances
between scores closely resemble distances q̂i− q̂ j.

To this end, the results of a pairwise comparison experiment are first arranged in a matrix
C, in which element ci j counts the number of times stimulus i was chosen as better than j.
Probabilities pi j of ωi > ω j can be empirically estimated:

p̂i j =
ci j

ci j + c ji
, i 6= j. (2.4.4)

Scaling consists in recovering the distance qi−q j between underlying quality scores qi and q j,
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Figure 2.4.1: (a) Different cumulative distributions mapping probabilities into distances in the
scale. Parameters for Thurstone and Bradley-Terry models were chosen such that the difference
in 1 unit correspond to 75% probability of one condition being better than another. (b) Exam-
ples of different subjective judgment experiments and graphic representation of scaling using
pairwise comparisons.

given an observer model. Following Thurstone Case V assumption, the difference of ωi and ω j
is a Gaussian random variable (for Bradley-Terry, it is a logistic), as shown in Eq. (2.4.3). The
probability of choosing condition i over j can be computed using the cumulative distribution
over the difference ωi−ω j:

P(ωi > ω j) = F(qi j,si j)≈ p̂i j, (2.4.5)

where F is the cumulative distribution function associated to the chosen observer model and
si j the parameter associated to the distribution (σi j for the Normal distribution in Thurstone
model and si j for the logistic function in Bradley-Terry model). P(ωi > ω j) is approximated
using p̂i j. The inverse of F is shown in Figure 2.1(a). Note that the choice of si j determines the
relationship between distances in the quality scale and probabilities of better perceived quality.

The probability of observing pairwise comparisons ci j given latent quality scores qi is explained
by the Binomial distribution:

P(C|q,σ) = ∏
i, j

(
ni j

ci j

)
F
(
qi j,si j

)ci j
(
1−F

(
qi j,si j

))ni j−ci j , (2.4.6)

where ni j = ci j + c ji and F is the cumulative distribution from Eq. (2.4.5). Under Thurstone
Case V assumptions, F is the cumulative normal distribution and si j =

√
2σ, where σ is the

standard deviation of the observer model. σ is often selected so that when conditions are 1 unit
apart in the quality scale, 75% of observers select one condition over another. This corresponds
to σ = 1.0484 and si j = 1.4826 for normal distribution. We call this unit on the obtained scale
a Just Objectionable Difference (JOD), in contrast to the commonly used Just Noticeable
Difference (JND), to emphasize the fact that here we consider quality preferences (stimulus
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Figure 2.4.2: Psychometric scaling (a) vs. vote counts (b), on the HDR video dataset in [207].
In both cases, the PWC scores are compared to MOS obtained by a rating experiment on the
same stimuli. The JOD scores are more in agreement with those of the rating experiment.

i is better than j), rather than detection of differences (i is different from j). Assuming that
all the undistorted reference stimuli are equivalent to each other (i.e. having pristine quality
with “0” quality score), the distorted images would then have negative JOD quality values after
scaling, corresponding to the distortions compared to the undistorted reference stimuli (unless
enhancement is considered).

Given the posterior probability in Eq. (2.4.6), the latent quality scores q can be found using the
maximum likelihood estimation [141].

Scaling vs. vote counts

It should be noted that in some works the scaling of quality scores is avoided and the quality
estimates are computed directly by summing up columns (or rows) of the comparison matrix.
For example, the quality scores for the TID2013 dataset were computed as the average number
of votes (wins in pairwise comparisons) that each condition received [149]. We refer to this
approach as vote counts (VC). Such an approach works only if each condition was compared
the same number of times and it is unsuitable for imbalanced experiment designs.

We verified experimentally in [207] that psychometric scaling, in general, yields subjective
scores which are more coherent across experiments. Specifically, we simulated vote counts
based on the comparison matrix obtained in a PWC experiment, and we correlated with the
results of a rating experiment conducted on the same dataset. The scatter plots in Figure 2.4.2
shows that JOD values are more in agreement with mean opinion scores.
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2.4.3 The relation between MOS and PWC and the importance of cross-
content comparisons

Now that we have introduce psychometric scaling and shown the importance of the observer
model in converting empirical probabilities to distances, we move to study the relationship be-
tween scaled PWC results (expressed in JOD) and rating results, expressed on a mean opinion
score scale. To this end, we employ the HDR video quality database (HDRDVB) proposed
in [206], which has been augmented with further rating and PWC measurements in [207]. Sim-
ilar analyses as the one conducted here have been carried out on other image and video quality
datasets in [142, 211], but are not reported here for the sake of conciseness.

HDRVB dataset

This dataset includes subjective scores for a total of 60 distorted stimuli from 5 original contents.
Originally created to analyse the effect of different colourspaces on HDR compression, this
database contains subjective quality scores collected using 4 different subjective experiment
sessions and includes:

1. Double stimulus impairment scale (DSIS) session

2. PWC with only same-content pairs

3. Additional PWC with cross-content pairs

4. Additional PWC with same-content pairs

In total, the stimuli were compared 6390 times (5190 same-content and 1200 cross-content).
The preference matrices of the PWC experiments were found and JOD scores were estimated
using three different sets of PWC data. JODStandard was found using the data acquired in the
same-content PWC experiment. JODCC, on the other hand, was found using the data acquired
in both the same-content and the cross-content PC experiments. Finally, JODSC is obtained by
adding to the original PWC same-content data additional same-content comparisons, to have a
total number of conditions comparable to those used for JODCC. For the DSIS experiment, the
MOS values were calculated by taking the mean of opinion scores. Confidence intervals (CI),
on the other hand, were calculated using bootstrapping in order to compare them to the CIs of
JOD scores. These JOD scores are plotted vs. MOS values in Figure 2.4.3.

Linear relationship between MOS and JOD

The results in Figure 2.4.3 show that there is a strong relationship between MOS values and
JOD scores. The introduction of cross-content pairs increases the correlation and linearity of
the relationship between JOD and MOS. To be exact, the Pearson correlation coefficient (PCC)
was found to be ρ = 0.925 for the case with only same-content pairs and ρ = 0.979 for the case
including both same-content and cross-content pairs.
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Figure 2.4.3: Relation between JOD and MOS and effect of cross-content comparisons. (a)-(f):
JODSC vs. MOS. The solid red line indicates the best linear fit to the data, and the dashed violet
line indicates the best linear fit line of the case ’All Together’. (g)-(l): JODCC vs. MOS. Instead
of only same-content pairs, a combination of same-content and cross-content pairs were used
to find JODCC. Figure best seen on a display.

Reduced Content Dependency

In Figure 2.4.3, the slopes of the best fitted line are found for each content. In order to find the
effect of the addition of cross-content pairs, the variance of these slopes was found. Variance of
the slopes in the case of JODSC was 2.7972 and in the case of JODCC was 0.6445. Another met-
ric, Stdp2l , was computed for each figure presented. It is calculated as Stdp2l =

√
mean(d(P, l)2)

where d(·) is the perpendicular distance from point P to line l. In the case of Figures 2.4.3(a)-
(e) and (g)-(k), Stdp2l was computed considering the dashed violet line, i.e., the best linear fit
when all the contents are considered together. It is clear that the addition of cross-content pairs
decrease the variance of the slopes of the best fitted line for each content and Stdp2l as well,
thus bringing JOD scores closer on a common quality scale.

Reduced Error Accumulation

In order to analyze the change in CI, average CI values are reported in Table 2.4.1. Since the
CI does not change with respect to the color space much, the CI values were averaged for the
same bitrate. The last column of Table 2.4.1 shows that the CIs are decreased for almost every
case up to 30-60%, especially at higher bitrates where scaling error would instead accumulate
in the standard PC. With cross-content comparisons, the CI size becomes more uniform across
different levels of quality.

All the results indicate that the scaling of the pairwise comparison data yields JOD scores that
are highly correlated to MOS values acquired in the DSIS experiment. The introduction of
cross-content pairs make JOD more uniform, and reduce the confidence intervals. Similar re-
sults have been showcased for other datasets, such as TID2013, in the paper [142].
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Table 2.4.1: Average confidence intervals of the videos with different bitrates (BR1 is the high-
est) for the considered experiments. The last column is the ratio of the CI of the combined
PC data with additional cross-content pairs (CICC, CI of JODCC) to the CI of the combined PC
data with additional same-content pairs (CISC, CI of JODSC). CI of standard PC experiment
(CIStandard , CI of JODStandard) are also reported for completeness.

Contents CIStandard CISC CICC RatioCC/SC

Balloon

BR1 1.23 1.23 1.53 1.25
BR2 2.21 1.68 1.86 1.11
BR3 3.03 2.84 2.48 0.87
BR4 3.93 3.36 2.56 0.76

Hurdles

BR1 1.45 1.50 1.12 0.75
BR2 2.31 1.90 1.55 0.82
BR3 3.12 2.36 2.46 1.04
BR4 3.43 2.96 2.62 0.89

Starting

BR1 3.52 3.50 1.29 0.37
BR2 4.45 4.06 1.47 0.36
BR3 5.61 4.76 1.97 0.41
BR4 6.04 5.11 2.29 0.45

Market

BR1 2.12 2.35 0.85 0.36
BR2 3.05 2.80 1.63 0.58
BR3 4.32 3.18 2.57 0.81
BR4 4.73 3.28 2.94 0.90

Bistro

BR1 1.60 1.70 1.25 0.73
BR2 2.12 1.91 1.46 0.76
BR3 2.92 2.49 2.00 0.81
BR4 3.34 2.91 2.26 0.78

What is the optimal fraction of cross-content comparisons?

In order to interpret the role of cross-content pairs in scaling, we can view pairwise comparison
experiments as a graph, in which conditions represent nodes and comparisons edges. To scale
the quality scores for such a graph in a consistent manner all conditions must be connected,
i.e., there should be no disconnected components in the graph of comparisons. However, when
each content is assessed individually, this forms a set of disconnected graphs, each with its own
relative quality scale. We could potentially anchor each content by assuming that reference
image for each content has a fixed quality score, for example, 0. However, then conditions far
away in quality from the reference accumulate large measurement error. Thus, connecting these
disconnected parts through cross-content comparisons is an essential step for unifying quality
scale.

In this respect, when building this graph, i.e., deciding which conditions need to be compared,
an interesting question is: given a fixed budget of comparisons, how to allocate it among same-
content and cross-content comparisons? To answer this question, in [211] we have run sam-
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Figure 2.4.4: The fixed-budget simulation results for HDRVDB. The x-axis indicates the num-
ber of same-content pairs for a total fixed-budget of N pairs, as N is indicated in the subcaptions.
The whiskers indicate confidence interval for each case. The red circle indicates the case with
the maximum correlation with MOS, and the black cross indicates the case with the minimum
variation of PCC values.

pling simulations on two datasets. Specifically, we conduct a simulation in which we randomly
sample a subset of same-content and cross-content pairs from the whole set of measured pairs
(i.e., from the real experiment data), and we use this sub-sampled data to perform psychometric
scaling. The sampling and simulation processes are described in [211].

We report here the results for the HDRVDB dataset in Figure 2.4.4, which shows the linear
correlation coefficient between JOD’s and MOS’s as a function of the number of same-content
comparisons. Notice that here the sum of same-content and cross-content pairs is constant.
We also report the confidence intervals of PCC, estimated through bootstrapping. We observe
that, in general, same-content pairs are more important than cross-content pairs, and we need
a minimum number of same-content pairs before starting to add cross-content pairs. However,
the best correlation with MOS is obtained when a small fraction of cross-content pairs, around
20% for this dataset, is considered. Cross-content pairs also help in stabilizing the results,
minimizing the width of PCC confidence intervals.

Notice that these results are obtained by random subsampling of pairs, and thus all our con-
clusions must be interpreted in terms of the expected PCC with the (approximate) ground-truth
quality scores. In other words, we do not take into account the impact of pair selection. The pair
selection can have a great effect on the PWC scaling, and it can be done through, e.g., active
sampling [203, 99].

2.4.4 Combining rating and pairwise comparisons

When results of both ranking and rating experiments are available for the same set of contents,
it may be desirable to use all information when constructing the quality scale. In the following
we propose a simple way of combining both types of measurements.
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Based on the results of Section 2.4.3, we assume a linear relationship between random variables
ωi representing quality scores obtained from a pairwise comparison experiment (Eq. 2.4.2), and
the random variables obtained from a rating experiment πi:

ωi = a ·πi +b. (2.4.7)

We further assume that the standard deviation of the observer model may differ between both
experimental protocols: people can confuse two conditions more often in one protocol than the
other. Given that, the relationship is expanded to:

N(qi,σ) = a ·N(mik,c ·σ)+b = N(a ·mik +b,a · c ·σ), (2.4.8)

where mik is the collected opinion score for the condition i and observer k. qi is the latent
quality score, which we want to recover. a, b and c are the unknown parameters that control the
relationship between the rating and pairwise comparison data. Our goal is to find the values of
the latent variables given the observed opinion scores mik and pairwise comparisons ci j.

Since opinion scores are generally continuous, we express the probability of observing mik using
the density function of the Normal distribution:

f (mik|qi,a,b,c) =
1√

2πa2c2σ2
e−

((a·mik+b)−qi)
2

2a2c2σ2 . (2.4.9)

Assuming independence between observers, the likelihood of observing the whole set of opin-
ion scores M is:

P(M|q,σ,a,b,c) =
N

∏
i=1

J

∏
k=1

f (mik|qi,σ,a,b,c). (2.4.10)

Similarly, the likelihood of observing pairwise comparisons P(C|q,σ) is given in Eq. (2.4.6).
One advantage of this probabilistic formulation is that missing data, for example when observers
rate only a portion of all conditions, can be simply omitted from the above product.

To recover latent quality scores q from both measurements, we use the maximum likelihood
estimator with the posterior probability:

arg max
q,a,b,c

P(q,a,b,c|C,M,σ), (2.4.11)

where P(q,a,b,c|C,M,σ) ∝ P(C|q,σ) ·P(M|q,σ,a,b,c) ·P(q) and P(q) is a prior included to
enforce convexity, e.g., uniform or Gaussian distribution.

Likelihood functions are scale-invariant, i.e. P(M|q,σ) = P(M|tq, tσ) for a constant t 6= 0.
Thus, without loss of generality, we can fix σ to an arbitrary value. As before, since scales are
relative, we need to set an anchor, e.g. q1 = 0.

Note that if we wish to mix different datasets, e.g. several datasets for which rating measure-
ments have been collected, we can do so by collecting pairwise comparisons that link the data
and running the optimization procedure previously presented. In this case, different standard
deviation of the observer model and scaling parameters (a, b and c) should be assumed for dif-
ferent datasets. In particular, the value of c in (2.4.8) indicates the different degree of incertitude
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in performing a rating assessment vs. a PWC on a given dataset. In [142] we performed mixed
scaling and estimated the value of the parameter c for the TID2013 dataset, which we found
to be 1.24. This suggest that in a typical image quality assessment experiment, the pairwise
comparison protocol results in less confusion between observers.
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Image and video analysis

In many applications, images and video are not directly consumed by human observers, but are
rather used as input to further processing aimed at extracting some information from them. This
is the typical example of computer vision applications, aiming, e.g., at classifying objects or
scenes; but also higher level tasks such as image understanding, or security applications where
the goal is to assess the authenticity of a content. In this chapter, I review some of my past
research activities on image and video analysis, which span several domains, from computer
vision to forensics.

In Section 3.1, I consider the problem of image matching in presence of significant viewpoint
changes. These represent one of the most challenging classes of geometric transformations for
the basic block of image matching, which is local feature extraction. In our work, we show that
having geometric information about the scene, e.g., in form of depth maps which are nowadays
relatively easy to obtain, enables to design local features which are in principle invariant to
changes of viewpoint of the camera. This is particularly interesting in scenarios such as for
self-driving cars. In Section 3.2, I consider another class of transformations that affect matching
performance: nonlinear illumination changes. In this case, we argue that high dynamic range
imaging can be successfully used for countering even dramatic changes of illumination in a
scene, without the need for designing new feature extraction pipelines. Specifically, we propose
a learning-based framework to optimize a tone mapping operator for feature extraction, rather
than for the traditional task of content display.

Section 3.3 moves from computer vision to the field of forensics and security, where the goal is
to establish the authenticity of a content in a passive and blind manner. An essential problem
in forensics is reconstructing the history of a content, e.g., in order to find its source. Here, we
consider for the first time a forensic problem in the HDR domain: determining whether an HDR
image has been obtained by multiple exposures or by single LDR image through inverse tone
mapping.

Finally, I conclude the chapter with ongoing work on predicting the aesthetic quality of a picture
in Section 3.4.

62
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3.1 Local features for RGBD image matching

Local image features represent a key tool in a number of practical scenarios and applications in
multimedia, including visual search, classification, indexing, image analysis, etc. The industrial
demand for robust, distinctive and compact visual features has stimulated MPEG standardiza-
tion activities for Compact Descriptors for Visual Search (CDVS) [54] and Compact Descriptors
for Visual Analysis (CDVA) [55].

While 2D visual features have nowadays achieved a substantial level of maturity in terms of
robustness, compactness, and efficiency, the emergence of richer image and video formats,
such as texture+depth (RGBD), multiview or plenoptic images, have recently attracted atten-
tion towards the definition of features able to capture and leverage the geometric information
of a scene [79, 70, 186]. Indeed, acquiring scene geometry is nowadays feasible with low-cost
devices, such as Microsoft Kinect, which are capable of acquiring depth together with conven-
tional color images.

The availability of geometrical information provided by depth could help to improve the perfor-
mance of current image matching techniques in the presence of large variations of the camera
viewpoint and out-of-plane rotations, where conventional feature schemes fail to detect and
match repeatable keypoints.

In this section I describe several contributions aimed at employing the depth information in or-
der to extract repeatable keypoints and describe them in a way that is as invariant as possible to
the camera position. I start by introducing the basic concepts of image matching and invariance
in Section 3.1.1. In Section 3.1.2 I describe how to extract viewpoint and scale-invariant key-
points by using a smoothing operator that engenders a scale space in the RGBD domain [72, 74].
Finally, in Section 3.1.3, I will describe a complete local feature extraction pipeline for RGBD
content matching.

3.1.1 Background concepts on image matching

The problem of finding local correspondences between images is a fundamental task in vision.
The common framework to solve this problem is referred to as image matching. It consists of
three main stages.

1. Detection: each input image is processed independently to find repeatable salient visual
points.

2. Description: a compact signature representing a neighborhood of each detected point is
computed.

3. Matching: signature sets from different images are compared, producing a set of corre-
spondences.

Salient visual points are also called keypoints. Typical keypoints could be corners or blobs
(regions with similar characteristics) in the image. In order to design a local feature extraction
pipeline, we thus need to design a detector and a descriptor.
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The common purpose of image matching is to recognize (semantically) the same content in dif-
ferent acquisition conditions. In other words, the two images being matched typically represent
the same or similar content, and are related by a visual deformation. From this perspective, two
key concepts may be defined: covariance and invariance. In order to be able to match the same
content within the two input images, we expect to extract the same or very similar descriptors.
Therefore, when the observed content undergoes a deformation, the descriptors are expected to
remain the same or invariant, so that they provide a representation of the content and not condi-
tions of its acquisition. Contrary to the descriptors, the keypoints are expected to be covariant,
i.e., when a deformation occurs, they are expected to follow it (change accordingly). The key-
points thus depend on the deformation and represent the conditions of acquisition rather than
the content itself. Together these two concepts are generalized to feature stability: a stable fea-
ture is such a feature that allows to match two images related by a corresponding deformation,
i.e., it remains detectable when the content undergoes this deformation. To be stable, a feature
needs a covariant keypoint and an invariant descriptor. By convention, we sometimes say that a
feature is invariant when it is stable to a given visual deformation. Another commonly accepted
term referring this quality is feature repeatability.

The degree of feature stability may be qualitatively measured by the nature of visual deforma-
tions the given feature is robust to. A simple classification of the deformations affecting feature
stability is given in Table 3.1.1 [78]. To some of the listed deformation classes, e.g., image
noise (P-III), no feature could be perfectly stable neither totally unstable: one can measure the
stability quantitatively, for example, adding a progressively increasing noise to the image and
trying to match it against its noiseless original. However, to the most part of other deforma-
tions, notably geometric ones, a given feature may be invariant by design. For example, many
existing local features in traditional imaging are invariant by design to the first three classes de-
scribing orthogonal transformations in camera plane. Also, some simple illumination changes
(P-I) (such as affine I → αI +β for α and β constant all over the image I) are typically cov-
ered too. A classic example of translation, rotation, scale and (partially) illumination invariant
feature is SIFT [104].

To be invariant by design to a specific deformation class, a feature extraction process must
involve processing techniques that are themselves covariant and invariant to that class. For
example, in-plane scale changes are handled by involving a multiscale representation on the
detection stage that allows to discover scale-covariant keypoints, and the descriptor patch is
then scaled accordingly to the detected characteristic scale.

In many application scenarios exploiting image matching as a basic task, the observer and/or the
objects can move arbitrarily not only in the camera plane, but in all the three dimensions. This
causes perspective distortions. In the context of local features, they are often seen as an effect of
out-of-plane rotations (G-IV). Due to the locality of the features, these deformations become
equivalent to unconstrained local tridimensional rigid deformations of the observed content,
which is arguably the most common kind of visual distortions in practice. Invariance by design
to out-of-plane rotations is unlikely to be achieved using only photometric information. This
reveals a weak point of the paradigm of photometric local features. For example, SIFT may
demonstrate limited performance when the content undergoes out-of-plane rotations more than
40◦ [104, 126]. This problem may be addressed when the image is complemented by a geometry
description. This is the focus of the rest of this section.
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Table 3.1.1: A classification of the most common visual deformation classes in the context of
feature matching robustness. The degree of stability of a given feature extraction approach can
be assessed by its capacity to perform well when a deformation of the corresponding class is
present between the two matched images. We denote different classes with “G” for geometric
deformations and “P” for photometric ones, ordering them in each group by arguably increasing
complexity from the feature matching points of view. Courtesy from [78].

G-I In-plane translations 

Geometric 

Rigid 

G-II In-plane rotations 

G-III Scale changes 

G-IV Out-of-plane rotations 

G-V Affine deformations 

Non-rigid G-VI Isometric deformations 

G-VII Non-isometric deformations 

P-I Affine illumination changes 

Photometric P-II Non-linear illumination changes 

P-III Image noise 

3.1.2 Keypoint extraction based on a RGBD scale space

In this section we focus on the first step of the feature extraction pipeline, i.e., keypoint detection.
A texture+depth (RGBD) image could be considered as a mesh with an associated texture.
Thus, RGBD matching could be cast as a problem of mesh matching, where several techniques
have been proposed in the literature [204, 200, 87]. However, these techniques are not apt to
deal with occlusions, that are commonly present in images, and the repeatability of detected
keypoints is intrinsically limited by resampling when the camera moves. Therefore, image-
level techniques for feature detection on RGBD content are of interest. The proposed approach
consists in exploiting the depth map in order to define a non-uniform scale space for the texture
image. The process we define aims at exploiting the surface properties that do not depend on
the observer position in order to render a viewpoint-covariant multiscale representation that is
able to reveal robust keypoints. The construction of the scale space is summarized below, and
described with more mathematical details in [74].
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Definition of RGBD scale space

In order to construct the proposed RGBD scale space, we first need to define a Laplacian opera-
tor, such that it enables to establish a diffusion process. The first step is to define a parametriza-
tion of the image surface in local camera coordinates as illustrated in Fig. 3.1.1:

~r(u,v) =

 2u tan ω

2
2v H

W tan ω

2
1

D(u,v). (3.1.1)

Based on this reparametrization, we can define first-order differential quantities, which are sim-
ilar to directional derivatives, e.g.:

∂u f =
f (u+h,v)− f (u−h,v)
‖~r(u+h,v)−~r(u−h,v)‖

, (3.1.2)

and similarly for ∂v f . Second-order differential quantities are obtained by applying twice these
operators, e.g., ∂uu f = ∂u (∂u f ). A more precise formulation of these quantities is available
in [74]. Finally, we define a Laplacian-like second order differential operator summing up the
second-order differential quantities defined above:

L≡ ∂uu +∂vv. (3.1.3)

Next, we set up a partial differential equation problem that describes the diffusion process with
the proposed Laplacian operator (3.1.3):

∂ f
∂t

= L f

f |t=0 = f0.
(3.1.4)

This problem is very similar to the classic diffusion problem. To study this similarity we con-
sider the continuous case of this problem. We obtain a continuous generalization of the differ-
ential quantities defined above by letting h tend towards zero, that is:

Du f = fu‖~ru‖−1

Duu f = fuu‖~ru‖−2− fu‖~ru‖−4 (~ru,~ruu) . (3.1.5)

Thus, we get the continuous version of problem (3.1.4):
∂ f
∂t

= Duu f +Dvv f

f |t=0 = f0.
(3.1.6)

It is worth noticing that if the depth D is constant (i.e., we have a non-informative depth map),
this PDE problem becomes equivalent to the classic linear diffusion filtering, as the differential
operator on the right side of the equation turns into the classic Laplacian up to a constant multi-
plier due to~ru =~rv ≡ const and~ruu =~rvv ≡ 0. This allows for a “backward compatibility” of the
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Figure 3.1.1: Scene surface parametrization in local camera coordinates.

proposed scale space to the classic Gaussian scale space in the case when the depth map is not
provided. Moreover, this property is satisfied locally, i.e., at points where D is continuous and
the surface normal is parallel to the camera optical axis. It can be shown that Problem (3.1.5)
is well posed, causal (no spurious features will appear during the smoothing process), and is
numerically stable, and can be efficiently solved on GPU’s [74].

The designed filter simulates a uniform smoothing along the scene surface through a non-
uniform diffusion in the image plane. Since smoothing along surfaces is, in principle, inde-
pendent on the observer position, the proposed scale space can provide keypoints that are in-
variant to viewpoint position changes. This behavior is referred to as viewpoint covariance, as
discussed in Section 3.1.1. It mainly comes from the definition of the first order differential
operators (3.1.2), where we weight the derivative computed on two neighboring samples by the
real distance between the corresponding sample points on the scene surfaces, inferred from the
depth map. In practice, this diffusion process only approximates a diffusion process on the man-
ifold defined by the depth map, due to depth errors and texture sampling precision. Therefore,
the resulting scale space behavior will be approximately viewpoint covariant.

Some examples of images obtained with the proposed smoothing operator compared to the
Gaussian smoothing are presented in Fig. 3.1.2. The input image is taken from the LIVE
dataset [179, 178], which provides depth maps captured through a laser scanner. The viewpoint-
covariant behavior could be observed on large scales (images (b), (c), (e), (f)): as the smoothing
is propagating along the surface, and not uniformly in the image plane (as in case of the Gaus-
sian scale space), the image becomes less smoothed when the distance increases.

Proposed detector

A keypoint detector mainly consists of three parts: (i) initial keypoint candidates selection cri-
teria selecting a set of locations with corresponding scales in the input image, (ii) a candidate
filtering, aimed at rejecting candidates that are likely less repeatable, and (iii) an accurate local-
ization procedure of remaining keypoints.

Similarly to the popular SIFT detector [104], the initial keypoint candidates in our proposed
detector are selected as local extrema of the Laplacian operator (3.1.3). the main difference with
respect to the SIFT detection criterion is that we look only for spatial local extrema at each scale,
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Gaussian
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Figure 3.1.2: An example of the proposed scale space on a real RGBD image. Top row: standard
Gaussian scale space (no depth map used), second row: the proposed scale space. Images (a),
(b) and (c) in each row present different levels of smoothing: σ = 5, 10 and 25 for the Gaussian
scale space and σ = 0.1, 0.2 and 0.5 for the proposed one. Images (d), (e) and (f) represent
corresponding Laplacian operator outputs.

i.e., over variables u,v, and not for the local extrema along both spatial and scale coordinates,
i.e., over u, v and σ. Indeed, in our experiments we found that keypoint candidates issued from
extrema along the σ axis are generally unstable. A possible reason for that is related to the
intrinsic nature of our proposed scale space: the smoothing injected into the image is spatially
varying, so that σ represents a scale with respect to the scene geometry, and not the scale in
the image plane. On the other hand, local minima and maxima of our Laplacian (3.1.3) with
respect only to spatial image variables u,v turn out to be very repeatable, and reveal distinctive
blob-like structures on the scene surface.

Specifically, we construct a set of smoothed images of levels σ0,2σ0,4σ0, ...,2M−1σ0 (M = 5
in our experiments). Here σ0 is a constant, i.e., its value is set manually according to the depth
measurement unit used in the depth map. Each subsequent image is subsampled by two in each
dimension with respect to the previous one. After selecting local extrema, we filter out the
keypoints localized on the edges that are likely to be unstable, as they can move along the edge
when the camera position changes. In order to localize keypoints with subsample precision, we
apply the accurate localization procedure presented in [17], reducing it from three dimensions
(u,v,σ) to two (see [74] for details).

After the keypoints are detected, in order to be able to use standard descriptors, we derive their
on-screen scale. We consider keypoint k as a sphere of radius σk, situated on the scene surface.
σk is simply equal to the scale level where the keypoint is detected. Assuming that its center is
projected on the screen at point (uk,vk), obtained from the accurate localization procedure, we
apply the pinhole camera model to get the output (on-screen) keypoint scale:

sk =
σkW

2D(uk,vk) tan ω

2
. (3.1.7)

The set of triples {(uk,vk,sk)}k constitutes the detector output and is sent to the descriptor
extraction stage. An example of detected keypoints in an image from Bricks sequence is given
in Fig. 3.1.3.
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Figure 3.1.3: Keypoints detected using the proposed method in an image of Bricks sequence.

Repeatability evaluation

Repeatability [118, 119] is a commonly used measure to evaluate a keypoint detector. The
evaluation consists in extracting keypoints from several images (views) of a given scene, and
then counting the portion of repeated keypoints between a reference view and each remaining
view. The keypoint A coming from the reference view is considered as repeated if there is
a keypoint B in the test view that covers (approximatively) the same area of the scene. An
overlap error threshold η∈ (0,1) is employed to decide how strict the correspondence between
keypoints should be: the smaller η is, the more precisely the keypoints should be repeated.
The repeatability score is the number of repeated keypoints divided by the maximum possible
number of repetitions. For the latter we take the maximum number of keypoints detected in one
of the two views, excluding those keypoints that fall out of the field of view of any of the two
cameras, so that only the surface area present in both views is considered.

We compare the proposed detector to the standard SIFT detector and to Viewpoint Invariant
Patches [201], which incorporates a keypoint detector that uses the depth map. Three RGBD
test sequences are used [71], representing different content, containing significant viewpoint
position changes: Bricks (20 images), Graffiti (25 images, re-synthesized from the original
Graffiti sequence from [118]) and House (25 images). The repeatability score of each detector
is computed for two values of the overlap error threshold η = 0.5 and η = 0.25. The results
of this experiments are shown in Fig. 3.1.4. It can be observed that, for both values of the
overlap η, the proposed detector clearly outperforms the two other approaches. Moreover, even
in the tighter condition η = 0.25 our proposed detector demonstrates a comparable or better
repeatability to the two other detectors, even when those are matched using the more tolerant
value η = 0.5.

Scene recognition using Kinect images

The proposed RGBD detector can be employed in a simple scene recognition application which
requires repeatable local features. The application scenario is, e.g., for a mobile robot or a drone,
to recognize the location (room) where it is situated, solely using visual sensors data and prior
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Figure 3.1.4: Repeatability score on synthetic RGBD sequences in function of angle of view
difference between reference and test images.

knowledge, i.e., a database of local features representing different locations. Using Microsoft
Kinect sensor, we captured 75 RGBD images in 15 different indoor location (5 images per
location taken from different positions, but in such a way that the same objects are visible in all
the 5 images).

To this end, we detect keypoints in a query image and in each image of the dataset, and match
their corresponding descriptors. We use state-of-the-art descriptors jointly with the newly pro-
posed detector, in particular:

• original VIP features [201],

• standard SIFT features (VLFeat [193] implementation, referred to as DOG+SIFT),

• SIFT descriptors undergoing affine normalization [117], bootstrapped with SIFT key-
points (VLFeat implementation, referred to as DOG+AFFINE),

• our proposed detector with standard SIFT descriptors (referred to as PROPOSED+SIFT),

• SIFT descriptors undergoing affine normalization [117], bootstrapped with our proposed
detector (referred to as PROPOSED+AFFINE).

If the number of closely matching descriptors is large enough, then the two images are assumed
visually similar, and the location of the image is assigned consequently. Details on the experi-
mental protocol are available in [74]. The portion of correctly classified images per method in
this setting is reported in Fig. 3.5(a), for two classificatio scenarios (see the description in the
figure). Our proposed detector achieves a higher recognition accuracy in both the experiments.
Affine normalization compensates the perspective distortions on the descriptor computation
stage, yielding improved performance compared to the unnormalized SIFT descriptors.

For qualitative comparison, an additional illustration of matching using these descriptors is
given in Fig. 3.5(b): keypoints detected with the proposed detector generally provide more
consistent and regular correspondences. Moreover, in spite of the noise present in depth maps
and their incompleteness (some areas have undefined depth, which is a common problem of
infrared depth sensors), our proposed approach is able to detect repeatable keypoints.
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Figure 3.1.5: (a) Accuracy of scene recognition. The left bars (complete) are computed by
matching a query image to all the remaining 74 images in the dataset. In the single-reference
classification, instead, each image is classified using a set of 15 randomly selected reference
images (one per class). In this case the reported results are the average over 100 repetitions,
and the error bar is the corresponding standard deviation. (b) Raw (putative) feature matches
between two RGBD images from Board scene obtained with affine-covariant descriptors on top
1000 keypoints in each image. Left: SIFT detector (243 matches), right: the proposed detector
(419 matches).

3.1.3 TRISK: local features extraction for RGBD content matching

In this section we consider a different kind of keypoints commonly used in computer vision:
corner points. Differently from Section 3.1.2, here we design a complete feature extraction
pipeline consisting of a detector and a descriptor [77]. The key idea consists in involving the
surface metric, derived from the depth map, into the texture map processing, in the form of
adaptive local axes replacing the regular image coordinates. This allows to apply Accelerated
Segment Test (AST) in an intrinsic way to the scene surface and render keypoints more stable.
This test lies at the basis of the proposed detector. The proposed descriptor is based on an
efficient local planar normalization resulting from the local axes.

We build the proposed scheme following the binary local features paradigm. One of the first
proposed binary features, BRIEF (Binary Robust Independent Elementary Feature) [19] ex-
tends the idea of local binary patterns [136], originally designed for texture analysis tasks, to
describe interesting points. Since the extracted feature is a string of bits, the matching is done
using Hamming distance, which is more efficient to compute than the Euclidean one. This
idea is further elaborated in numerous works [165, 97, 3]. Notably, ORB (Oriented FAST and
Rotated BRIEF) [165] and BRISK (Binary Robust Invariant Scalable Keypoints) [97] present
complete extractors of scale and rotation invariant binary features. They apply FAST [164] and
AGAST [109] corner detectors to scale space-like image pyramids to find the keypoints, estimate
dominant keypoint orientations, and then invoke the same principle of binary description. The
feature proposed in this work employs a similar binary pattern, but we sample it in the scene
surface rather than in the camera plane. To underline the continuity with the visual feature liter-
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Figure 3.1.6: The architecture of the proposed TRISK pipeline. TRISK is a complete feature ex-
traction framework for RGBD content, composed by a keypoint detector and a descriptor. Both
leverage the geometric information provided by the depth map in order to sample the texture
considering a different local coordinate system for each point of an object surface. The detector
is based on the Adaptive Generic Accelerated Segment Test (AGAST) response, computed in
local coordinates. Depth is also used to find the approximate geometric scale of a keypoint,
which is further refined at the description stage together with orientation normalization. The
local maxima filtering and accurate localization stages enable to select the most repeatable key-
points. In order to compute the descriptor, the texture is sampled again in local coordinates. A
multi-pass procedure is employed to accurately estimate the orientation and scale of the sam-
pling pattern. Finally, similarly to the BRISK descriptor, pairwise comparison tests across the
texture samples are carried out to produce a binary descriptor string.

ature and specifically BRISK, we then call the proposed features TRISK, for “Tridimensional
Rotational Invariant Surface Keypoints”. The overall scheme of TRISK is shown in Fig. 3.1.6.

Local axes computation

In order to render the feature extraction process as independent as possible of the camera posi-
tion, we adapt all the local processing to the surface geometry, considering the observed image
as a textured manifold. In TRISK, we follow this way by selecting a proper basis at each image
point, which we further refer to as adaptive local axes. They are used to transfer the detection
and the description from the camera plane onto the scene surface, basing them on the surface
metric, which is intrinsically independent of the reciprocal camera-to-object position and ori-
entation.

Assuming that keypoint detection and description are rotationally invariant, the local axes are
given by any orthonormal basis of the tangent plane, projected on the camera plane and nor-
malized so that its largest vector has unit norm in pixels. An intuitive geometrical explanation
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Figure 3.1.7: Computation of local axes ~q1 and ~q2. On the left: ~q1 and ~q2 are obtained by
projecting ~m1 and ~m2 in the 3D space onto the camera plane. ~m1 is chosen to be always parallel
to the camera plane, and its projected local axis is normalized to unit length. The projection
of ~m2, i.e., ~q2 has a length reflecting the perspective distortion at A, which depends on the
angle ϑ between the viewpoint ~A and the normal at A. On the right: examples of local axes
fields computed on images from Arnold and Bricks sequences, with~q1 shown in cyan and~q2 in
yellow.

and examples showing local axes (~q1,~q2) for two RGBD scenes are shown in Fig. 3.1.7. The
local axis field can be computed based on the depth information, based on the projection model
we introduced in Figure 3.1.1. In particular, the local axes ~q1 and ~q2 depend only on the sur-
face normal and the point position on the camera plane (u,v), but not on the depth map values
directly. To estimate the normal vector we use PCA-based normal estimation [166]. Therefore,
differently from the scale space introduced in Section 3.1.2, TRISK avoids explicit manipula-
tions with differential characteristics of the depth map, which are prone to noise. In [77] we
derive an analytic expression of the local axes field, allowing to compute them efficiently at
each pixel location.

Detector

We employ the Adaptive Generic Accelerated Segment Test [109] to detect corners in the local
adaptive axes, as illustrated in Figure 3.1.8. According to this test, a pixel is deemed to be
a corner if it is darker or brighter than at least N connected points on a circle {(uk,vk)}N

k=1
surrounding it. In TRISK, the texture map is interpolated using the local surface axes described
above. Specifically, in order to transform the circle into its equivalent {(xk,yk)}16

k=1 on the local
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Figure 3.1.8: Illustration of application of Accelerated Segment Test (AST) in standard image
axis versus local axes derived from the depth map. A corner viewed under a large angle projects
itself at a nearly straight contour on the camera plane, so that the corner test in standard image
axes fails causing a repeatability loss.

axes (~q1,~q2), we need to perform a change of basis, i.e., we sample the texture map at locations

(xk,yk) = (ukξ1 + vkξ2,ukη1 + vkη2), k = 1, ...,N. (3.1.8)

The corner test is then performed on the obtained samples. The idea of performing AGAST
in local axes is illustrated in Fig. 3.1.8. Non-local maxima suppression is then applied on the
generated score map in order to select the keypoint candidates.

To derive the keypoint scale we exploit the depth map similarly to [28]. We use AGAST re-
sponse only to derive the keypoint position but not its scale, since in case of RGBD images a
better clue of scale is available in the depth map. To achieve scale invariance, we employ the
geometrical scale. Namely, we get the keypoint scale from the depth map assuming that the
underlying visual detail is of a fixed spatial size σ0. Keypoints farther from the camera have
smaller spatial support in pixel units, due to perspective distortion. σ0 is the coefficient of this
inverse proportionality relation, which defines a sort of “anchor” size to which objects (in spa-
tial units measured in the camera plane) are scaled based on their depth. That is, σ =

σ0

z
, where

z is the average depth of the keypoint. Intuitively, σ0 is related to the characteristic size of re-
peatable landmarks, which depends on the content and viewing conditions. The optimal value
of σ0 is found by grid search as explained in [77]. The keypoint area is finally described by an
ellipse spanning the scaled local axes σ~q1 and σ~q2. Thus, TRISK keypoints are not circular as
those of SIFT or BRISK, or those obtained by our RGBD scale space shown in Figure 3.1.3;
they are rather elliptical, similarly to the keypoints produced by affine-covariant detectors [117].

Local maxima filtering to select the most stable keypoint candidates, and accurate localization
of keypoint position are carried out similarly to conventional local features such as SIFT, and
are detailed in [77].
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Figure 3.1.9: BRISK descriptor sampling pattern from the original implementation (left) and
its mapping to the surface through local planar normalization (right).

Descriptor

Once the set of interesting point positions and scales is provided, a compact description is
computed for each point. In [71], we studied how binary features may be used to extract a
surface-intrinsic information from RGBD images in order to provide a description robust to
rigid 3D deformations. A descriptor sampling pattern was projected on the scene surface, pro-
viding a depth-based descriptor normalization procedure aimed at producing invariant features.
However, such a projection is (1) very sensitive to depth map noise and (2) requires a high
computational effort. To be robust to the viewpoint position changes on the descriptor level, in
TRISK we propose a simpler approach based on a similar concept: the descriptor normalization
is performed according to the local tangent plane approximating the scene geometry nearby the
keypoint, computed directly in the camera coordinates using the definition of local axes.

Specifically, we reuse the BRISK descriptor sampling pattern, which consists in computing the
average image intensity at certain points and within a given range, as shown in Figure 3.1.9. We
apply this pattern to the image in adaptive local axes computed at the keypoint, that immedi-
ately gives us the approximating local plane. An example of how the BRISK pattern is mapped
onto the scene using local axes at a given corner point is shown in Fig. 3.1.9. We notice that
our design is not restricted to the BRISK sampling pattern; another manually designed or ap-
propriately learned pattern, e.g. [3] or [165], might be used with no additional cost. In [77], we
propose a three-pass sampling scheme that estimates accurately both the dominant orientation
and scale.

Experimental results

We compare the performance of TRISK with 5 state-of-the-art features, summarized in Ta-
ble 3.1.2. We test these methods on the RGBD sequences used in Section 3.1.2 and on the
Freiburg RGBD dataset [177].

As a first evaluation on the syntehtic RGBD sequences, we compute the matching score and the
ROC curve for each feature, by matching the first image of the sequence to the remaining ones.
In a nutshell, matching score allows to judge on the ability of the detector to produce repeatable
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Table 3.1.2: Summary of compared methods.

Method Keypoint Descriptor Depth map
type type and size use

TRISK Corner Binary 512 bit detector and descriptor
BRISK [97] Corner Binary 512 bit no
STAR-BRAND [28] Blob Binary 512 bit descriptor
VIP [201] Blob Numeric 128 dim. preprocessing
AFFINE [117] Blob Numeric 128 dim. no
SIFT [104] Blob Numeric 128 dim. no

keypoints as well as on the matching capability of the entire pipeline, whereas ROC shows how
the descriptors are discriminative, e.g., their ability of distinguishing salient visual information
in presence of deformations. Put together, these characteristics trace the two main axes of the
local visual features mid-level evaluation: repeatability and distinctiveness.

More specifically, to compute matching score we first match each descriptor in the reference
image to the descriptors in the test images, by computing an inter-descriptor similarity measure
(Hamming or Euclidean distance, depending on the descriptor type). Two descriptors are then
said to match if their distance is below a given threshold (putative matches). The set of pu-
tative matches between the two given images is split into correct (true positive) and incorrect
(false positive) matches using ground truth. Two keypoints coming from different images but
occupying the same area of the scene are called repeated keypoints (see Section 3.1.2); they
produce a correct match if the descriptors corresponding to these keypoints are matched. The
ratio between the number of correct matches and the maximum possible number of matches is
the matching score per image pair. By varying the threshold to decide putative matches, one
can compute the true and false positive rates and trace the ROC curve.

The resulting matching score and ROC curves obtained on the synthetic RGBD test sequences
are presented in Fig. 3.1.10 — similar results for the Freiburg dataset are available in [77]
and are not reported here for the sake of space. It can be seen from the results that in all the
test sequences TRISK demonstrates improved overall matching score. In some cases (Graffiti,
House) TRISK also shows the slowest decay, which indicates improved feature stability under
viewpoint position changes. The second best matching score on synthetic sequences (top row
in Fig. 3.1.10) is arguably achieved by VIP. Based on a planar normalization technique, VIP
performs well in case of simple geometry, i.e., when the scene surface is mostly planar or
very smooth, otherwise it may even be unable to detect any features. TRISK also exploits the
principle of planar normalization, but in a much more local way, which allows it to perform
well in scenes with more complex geometry, such as House.

In terms of ROC curves, we observe that TRISK performs relatively well but it is sometimes
outperformed by non-binary features like SIFT (which use a more precise numeric represen-
tation for descriptors, see Table 3.1.2), and VIP. For House the latter has apparently a higher
discriminability, but its matching score drops dramatically after 10◦of out-of-plane rotation.
Descriptors can actually be fairly compared only for similar values of matching score.
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Figure 3.1.10: Matching score and receiver operating characteristics demonstrating repeatabil-
ity and distinctiveness of the compared detectors and descriptors, mainly under out-of-plane
rotations (Bricks and Floor sequences) and scale changes (House sequence). Computed on
synthetic RGB data.

We also assess TRISK performance in a visual odometry scenario using image sequences from
the Freiburg dataset [177]. The goal consists in retrieving camera pose evolution relatively to
an initial pose using only the acquired images. The ground truth pose is recorded with a motion
capture system and is provided within the dataset. We follow the setting of [28]: to compute the
camera transformation (translation and rotation) between two frames, we match them, apply
RANSAC to filter putative matches and, finally, run the Iterative Closest Point algorithm [9]
retrieving the relative translation vector and rotation matrix. The resulting pose is recovered
by cumulating deduced translations and rotations. To perform the evaluation, we subsample
the sequence temporally in order to provide more challenging matching conditions, and we
evaluate the translation and rotation error with respect to the ground-truth camera position and
orientation.

The evolution of these errors on a sequence from Freiburg dataset is presented in Fig. 3.1.11
— other examples are reported in [77]. We observe that TRISK generally achieves smaller and
bounded errors, in particular on the estimation of the rotation, where the approximate invariance
to viewpoint changes makes the proposed feature more robust. It is worth noticing that on this
sequence VIP is unable to provide enough matches for continuous trajectory estimation, and
thus is not reported.

We conclude these results by observing that TRISK could be improved in its ability to deal with
complex, highly detailed geometry, currently limited by the local planar approximation used to
compute the descriptor. We have proposed a more complex way to render the descriptor stable
and invariant to viewpoint position changes in [71]. However, this is more computationally
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Figure 3.1.11: Visual odometry with 10 frames skipping on freiburg2_desk sequence (first 500
frames): translation (top) and rotation (bottom) errors. VIP fails on this sequence, thus it is not
reported.

expensive and sensible to the depth map noise. Rendering the descriptor robust to geometrically
complex scenes is still an open problem, although recently approaches based on convolutional
neural networks have been showing interesting results [205].

3.2 Learning-based tone mapping for robust image matching
under illumination changes

In contrast to the previous section focusing on robustness to out-of-plane rotations, in the fol-
lowing I will consider another class of challenging transformations for image matching: that
of non-linear illumination changes (class P-II in Table 3.1.1). The performance of computer
vision algorithms can substantially degrade with drastic lighting variations [214]. A possible
solution to this problem consists in using a contrast-preserving acquisition technology such as
high dynamic range imaging. HDR imaging could in principle produce features invariant to
photometric changes, as it enables to draw on subtle, yet discriminating details present both in
the extremely dark and bright areas of a scene, which would otherwise get lost.

However, even when an HDR acquisition of the scene is feasible, matching HDR images
directly does not guarantee good matching results. We have shown in [151, 152] that us-
ing HDR linear (radiance) values significantly biases the localization of keypoints towards
the extremely bright areas, leading to poor matching performance using conventional feature
extraction pipelines. Differently from the previous section where we designed new detec-
tors/descriptors for RGBD, in this work we aim at using existing, state-of-the-art local features.
Therefore, we propose to modify the input to these feature extractors, i.e., the HDR images,
by applying a proper tone mapping operator (TMO). Specifically, based on the observation that
HDR images need to be used by a computer vision algorithm and not displayed to a human
observer, we design a TMO that is optimal for the specific task of feature extraction, rather than
for display purposes. In this respect, this work shares similarities with the TMO optimization
for video compression described in Section 1.2, in that it is task specific rather than oriented to
visual perception.

Optimizing a TMO considering keypoint detection and description concurrently is not trivial,
as the corresponding design objectives are generally different. In this section, we address this
problem and design an optimal tone mapping operator (OpTMO) to enhance the detection
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and matching of features extracted from HDR scenes captured under complex real-world illu-
mination transitions. To this end, we initially introduce a tone mapping function which can
be locally modulated by varying spatially (pixel-wise) its parameters as a function of the HDR
content characteristics. Afterwards, we learn the local TMO parameters based on some charac-
teristic features 1 extracted from the HDR image, using a support vector regressor (SVR) [175].
An essential problem in any learning-based approach is to find the right data to train the model.
In the absence of an annotated dataset with optimal TMO parameters per pixel, we compute the
ground-truth target parameters based on a set of HDR scenes captured under drastic illumina-
tion variations. For these scenes, we obtain per pixel ground-truth TMO parameters by solving
an optimization problem, which simultaneously ensures: 1) stable keypoint detection; and 2)
keypoint description robust to illumination changes. Since these two objectives are, in general,
non differentiable, we also propose a proxy cost function which enables to compute the required
derivatives and obtain an optimal solution.

The details of this work are available in the original paper [156].

3.2.1 Design of OpTMO

Let ϕ be a tone mapping function which maps the linear-valued HDR content of an image I to
an output LDR I′. In general, for each image pixel x, the TMO operates as:

I′(x) = ϕ(I(x),θ), (3.2.1)

where I(x)∈ℜ, I′(x)∈ [0,255]. The θ represents a set of parameters, given as θ= {θ1,θ2, ..,θh}
where h is the number of parameters and depends on the considered TMO. Conventionally, these
parameters are often tuned globally by cumbersome trial-test procedures to produce visually
pleasing output images. Instead, we optimize the parameter vector θ per pixel, using support
vector regression, in order to (1) to distinguish and localize a keypoint from its neighborhood
locations; (2) to preserve local gradient orientation patterns around the keypoint; and (3) to bring
invariance (as much as possible) to non-affine lighting variations in physical world scenes. To
this end, we need to generate a training set of local parameters θ to use as ground-truth training
data for the SVR, as explained in the following.

Ground-truth parameter generation

In order to find the ground-truth parameters θ, we employ a set of HDR images of the same
scene captured under different lighting conditions, and search for the TMO parameters θ that
maximize image matching performance after tone mapping across all lighting conditions. This
provides a robust estimation of TMO parameters to use later in SVR training.

More specifically, we minimize a cost function f (θ) which drives the choice of parameters
towards maximizing both keypoint repeatability and discriminability (see Section 3.1.2 and

1Here we use the term characteristic feature to denote any statistic computed from data, in contrast with the
local features consisting of keypoints and descriptors.
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3.1.3 for the definition of these measures). That is, our cost function is composed of two terms:

minimize
θ

f (θ) = Edet(θ)+Edes(θ), (3.2.2)

where each term is computed over a scene composed of N HDR images with lighting variations.
P =

{
(1,2),(2,3), . . .

}
is the set of K =

(N
2

)
pair combinations of N images. The Edet term

aims to ensure the co-variance of the corner response maps. Conversely, the Edes term helps
in retaining the invariance of the discriminative patterns around the key locations in the image
pairs when undergoing drastic transformations.

In order to maximize keypoint repeatability across pairs of images, we observe that it is im-
portant to enforce the similarity in detection response maps. We define the detection similarity
term Edet , by summing the penalty computed from each pair in the set K, as:

Edet =
λdet

K ∑
{i, j}∈P

C1(Ri(θ),R j(θ)). (3.2.3)

For each sample pair {i, j} ∈ P, we penalize the response maps dissimilarity by a logistic cost
function given as:

C1(i, j) = log(1+ exp(εc−
〈
Ri ·R j

〉
), (3.2.4)

where εc is the penalty control factor, Ri and R j are the response maps corresponding to the
images i, j ∈ S, and 〈·〉 denotes the scalar product. λdet weighs the penalization corresponding
to detection. We employ the Harris cornerness measure [45] as response map R , for its simplic-
ity and effectiveness — we show experimentally that this choice still provides state-of-the-art
repeatability even if a blob detector is used in practice.

The second term, Edes, aims to penalize the dissimilarity of the descriptors extracted from the
tone-mapped images, and is defined as follows:

Edes =
λdes

K ∑
{i, j}∈P

C2(Di(θ)−D j(θ)), (3.2.5)

where C2 is the Euclidean distance and λdes is a weighting factor. Since here we consider
local (sparse) features, and not dense feature maps as in [155], we propose to constrain the
penalization to those descriptors that belong to some potential keypoint region. That is, we
compute the descriptor D after the keypoint localization which is obtained by applying the
softargmax operation S on the resulting response map:

S = ∑
i

exp(βzi)

∑ j exp(βz j)
· i (3.2.6)

where zi is the pixel location and β is a hyper-parameter for defining the shape parameter. The
softargmax operation is a differentiable function to obtain local optima and helps in avoiding
the cluttering in response maps. To compute an accurate keypoint localization, we define the
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final gradient orientation around each pixel location computation as follows:

D =

{
h(p), if S(R )≥ Λ

0, otherwise
(3.2.7)

where h(p) is the SIFT gradient orientation feature map over a patch p (see [156] for details),
and Λ is the maximum softargmax value in a 16×16 neighborhood window of the considered
pixel. It simply means that if the softargmax response score for the considered pixel location
is maximum in its neighborhood window, only then the gradient orientation map is taken into
account to contribute in the final descriptor-based penalty term in Eq. (3.2.5).

In order to find the ground-truth parameters θ We optimize the objective function in Eq. (3.2.2)
using stochastic gradient descent (SGD).

Choice of tone mapping function

Many tone mapping approaches aim at separating scene illumination, which can display large
dynamic range variations, from the reflectance of objects, which instead has lower dynamic
range characteristics [22, 153]. Following this idea, we consider a tone mapping function ϕ,
expressed as: ϕ = I ·L−1. The illumination component L is estimated by an adaptive version of
bilateral filtering [185] and is given as:

L(x,θ) =
1

W
· ∑

y∈Ω

Gθ1(x)(‖x− y‖) ·Gθ2(x)(‖I(x)− I(y)‖)I(y), (3.2.8)

where G is a Gaussian kernel. The parameter map vector θ has two components, θ1 and θ2, also
known as spatial and range variance. For each pixel location x, y is a pixel in the neighborhood
Ω of x.

Training of support vector regression

Once the ground-truth target parameters have been computed, we train an SVR to predict θ

based on some local characteristic features extracted directly from the HDR input image. Con-
sider the sample set of characteristic features F = { f1, . . . , fn} and the corresponding output
denoted by Y = {θk(1), . . . ,θk(n)} where k = 1,2 in our case. To build our predictor model,
we want feature samples which capture distinctive information for both descriptor and detector.
To that end, we build our feature sample fi by concatenating two parts: a) the gradient-based
SIFT pattern [104], 64 dimensional feature; and b) the 5×5 grid-based detector response fea-
ture [154], 25 dimensional feature. This forms a total dimension of 79. The features fk are
computed from the original HDR linear values, without any processing. This is not contra-
dictory with the need to perform a TMO as, locally, HDR images generally display limited
dynamic range [16].
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3.2.2 Experimental results

We test our proposed OpTMO for image matching task on 8 HDR scenes at detection and
description levels, and compare with state-of-the-art TMOs. The HDR dataset is composed of a
total of 52 images, yielding a total of 280 test image pairs. We compare the proposed OpTMO
with classical perception-based TMOs, including: the bilateral TMO (BTMO) [31], Chiu [22],
Drago [29], Reinhard [159] and Mantiuk [112]. In addition, we also compare the OpTMO with
optimizing independently either the Edet or the Edes terms in Eq. (3.2.2), respectively. Details
about this independent optimization are available in [154] and [155]. We refer to these two
methods as DetTMO and DesTMO, respectively.

We evaluate the results in terms of Repeatability Rate (defined in Section 3.1.2), Matching Score
(defined in Section 3.1.3), and Mean Average Precision (mAP). The latter gives an overall eval-
uation of image matching, and is obtained by generating a precision-recall curve by varying
the matching threshold. Recall is defined as the fraction of true positives over total correspon-
dences and precision is given as the ratio of true positives to the total number of matches. Once
the precision-recall curves are generated for each scene, we then compute the mAP scores by
determining the area under the curves.

Keypoint detection

In Figure 3.2.1, we show the performance of our OpTMO and other state-of-the-art TMOs in
terms of RR averaged over all test scenes, using several state-of-the-art keypoint extraction
methods. For the sake of completeness, we also report the average RR obtained using HDR
linear photometric values (HDRLin), without any tone mapping. Our results clearly show that
the proposed OpTMO outperforms all the perception-based TMOs. In addition, the significant
drop in performance with HDRlin demonstrates that HDR linear values are highly sub-optimal
for keypoint detection task, similar to what is found in previous studies An analysis of per scene
performance shows that gains are especially important for indoor scenes, which have been ac-
quired by varying locally the illumination and introducing stark shadows. Notice that Harris
detector here tends to be favored by our method, as we use the Harris cornerness response R
in Eq. (3.2.4); however, even totally different detectors, such as SIFT (blob) detectors, get sig-
nificant improvements in repeatability using the proposed TMO. We also observe that keypoint
repeatability for OpTMO is lower compared to DetTMO. This is expected, as the additional
descriptor-level cost term in Eq. (3.2.5) changes the objective function with respect to detec-
tor repeatability only (as in DetTMO). However, the joint optimization enables to increase the
overall matching performance, as showed in the following.

Descriptor matching

In Figure 3.2.2, we compare the average OpTMO matching score with respect to state-of-the-
art TMOs, for several descriptors (gradient-based or binary). Overall, we attain significant
gains in terms of MS using all feature extraction methods. The gains are more important for
gradient-based features schemes such as SIFT and SURF, which is expected by design given
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Figure 3.2.1: Keypoint Detection: Average Repeatability Rate computed on different TMOs using
various keypoint detection schemes. The average is calculated over all test scenes.

the definition of the descriptor signature in Eq. (3.2.7).
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Figure 3.2.2: Descriptor Matching computed on different TMOs using SURF, SIFT, FREAK, BRISK
descriptor extraction schemes. The average is calculated over all test scenes.

Image matching

We evaluate the full image matching chain by computing mean average precision (mAP) scores
over the complete dataset. The results per TMO are reported in Figure 3.3(a). We observe that
for every descriptor extraction scheme our proposed model outperforms all the other TMOs.
High mAP scores imply that our model obtains more correct matches and reduce the probability
of false matches. An illustration of matching results is given in Figure 3.3(b), showing that the
proposed full-chain optimal tone mapping improves the matching efficiency in drastic lighting
variations. Notice that ReinhardTMO and MantiukTMO provide poor image matching results
compared with the proposed approach, although they provide better visually looking images.

3.3 Detection of inverse tone mapping in HDR images

Image forensics is a well recognized research field in multimedia security, which aims at achiev-
ing image authentication in a blind and passive manner [148]. Various image forensic methods
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Figure 3.2.3: Image Matching. (a) mAP % scores for the 9 different LDR modalities using 4 feature
extraction schemes. Scores are averaged over 8 scenes. (b) An example of matching: Row I: 2 HDR
luminance images from Invalides, scene are displayed after log scaling. Row II: the feature matching
using our proposed OpTMO (21 correct and 3 incorrect matches). Correct and incorrect matches are
shown with yellow and red lines, respectively. Row III: using Mantiuk TMO (3 correct and 4 incorrect
matches). Row VI: using Reinhard TMO (3 correct and 11 incorrect matches).

have been proposed in the literature; however, all of them have been designed with the conven-
tional, 8-bit low dynamic range (LDR) image representation in mind. In this section, I consider
instead a forensic problem related to the source identification of high dynamic range images.

Nowadays, the two most common techniques to generate HDR content include: 1) acquiring
multiple conventional LDR pictures of the scene at different exposure times, which can be fused
together afterwards using, e.g., the method in [27] — we will refer to HDR pictures generated in
this way as mHDR; 2) acquiring an LDR picture of the scene, and expanding its dynamic range
through an operation commonly known as inverse tone mapping (iTM), since conceptually
it does the opposite of tone mapping algorithms conceived to display HDR pictures on LDR
displays [7]. We will refer to this kind of images as iHDR. This latter option is particularly
attractive considering that nowadays the majority of legacy video footage is LDR, and that
range expansion is needed to display it on next-generation HDR displays [170]. Furthermore,
it has been shown that in many cases HDR video obtained through iTM yields similar, or even
indistinguishable, visual experience as HDR content generated by multiple exposures [2, 26].
In this work, we consider the forensic problem of identifying whether an HDR picture is
mHDR or iHDR. From a multimedia security perspective, solving this forensic problem can
help to identify the authenticity of a content, and to localize tampering whenever mHDR and
iHDR image patches have been composed together to create a forgery. To this end, we propose
a forensic feature able to perform fine-grained mHDR/iHDR classification, in such a way to
accurately localize the tampered regions and infer their semantics consequently.

The details of this work are described further in the original papers [34, 35].
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3.3.1 Forensic analysis based on Fisher scores

HDR image forensics presents some subtleties and new challenges with respect to standard
forensic techniques. For instance, while iTM might resemble a contrast enhancement process,
classical forensic detectors based on statistical fingerprints [176, 20] fail when applied on iHDR
pictures, as those images do not present typical peak/gap artifacts in their histogram. In [35],
we analyzed the performance of a Fourier-based forensic feature that describes the presence of
periodic patterns in iHDR pictures, based on the observation that iHDR pictures are obtained
from an LDR signal, which has a discrete nature. We found there that such a detector achieves
about 85% accuracy when iHDR images are obtained from 8-bit LDR pictures. However, per-
formance rapidly decrease when one considers iHDR obtained by 16-bit RAW images output
by professional digital cameras. This shows that second-order statistics are only partially ef-
fective. In fact, as a result of the continuous nature of HDR values, most forensic methods
based on integer arithmetics, such as classical compression and point-wise transformation de-
tectors [36, 10, 176] are not applicable.

More sophisticated forensic tools employ higher-order statistics to model local image content,
e.g., the Subtractive Pixel Adjacency Matrix (SPAM) features [144]. These methods compare
neighboring pixel values as if they were lying on a uniform interval scale. However, as see in
Section 2.1, HDR images need to be preprocessed through a non-linear transformation in order
to yield perceptually uniform values. Our proposed forensic feature also employs higher-order
statistics, which are modeled by means of Gaussian mixture models (GMM).

Fisher scores

In the LDR image analysis literature, the concept of Fisher scores [63] has largely influenced
image classification in the form of the well-known Fisher vector [143], which further inspired
the recently proposed LHS feature [171] in texture/facial analysis. Here, we use this concept
for the first time in a HDR forensic scenario.

Given a generic pixel z0 and its s× s local neighborhood {z1,z2, · · · ,zs2−1}, we obtain a local
differential vector x with xi = zi−z0 (i = 1,2, · · · ,s2−1). Its likelihood under an M-component
Gaussian mixture model (GMM) parametrized by θ = {πi,µi,(Ci)|i = 1,2, · · · ,M} is computed
as:

L(θ|x) = p(x|θ) =
M

∑
i=1

π
iN (x|µi,Ci), (3.3.1)

where πi, µi, and Ci are respectively the mixing weight, mean, and covariance matrix of the
i-th GMM component.The higher-order statistics in the local neighborhood of z0 can therefore
be represented using the Fisher scores [63], which are calculated as the partial derivatives with
respect to the parameters θ of the log-likelihood, i.e.:

F(θ,x) = ∇θ log L(θ|x). (3.3.2)

For the sake of simplicity and also for reducing the dimensionality of the final forensic feature,
we assume Ci are diagonal matrices. Since x captures the local derivatives of z, which carry
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high-frequency information, the trained means µi are generally close to zero. Therefore, we
remove the DC component before training the GMM models. The resulting Fisher score vector
F(θ,x) has a length of s2M.

In practice, we compute the Fisher scores with respect to two GMMs, parametrized by θ
0 and

θ
1, representing mHDR and iHDR, respectively. These two GMMs are learned in a previous,

off-line training stage from a database containing the two classes of HDR images, using the
Expectation-Maximization algorithm. Given x, we then can form the following 2s2M×1 sized
Fisher score vector:

f̃(x) =
[
F(θ0,x)T ,F(θ1,x)T ]T , (3.3.3)

which is further normalized to construct the proposed forensic feature vector with the i-th ele-
ment as:

fi(x) = sign
(
f̃i(x)

) ∣∣f̃i(x)
∣∣1/2

∑i
∣∣f̃i(x)

∣∣ , i = 1,2, . . . ,2s2M. (3.3.4)

After defining the forensic feature in Eq. (3.3.3), we use it in a discriminative model such as a
Support Vector Machine (SVM) in order to classify images as mHDR or iHDR.

3.3.2 Experimental results

In order to conduct our forensic tests, we collected a dataset of 498 high-resolution mHDR im-
ages from several publicly available HDR datasets, as detailed in [35]. For iHDR, we consider
an equal number of LDR pictures, and we expand their dynamic range using 6 popular iTM
algorithms: Akyüz et al. [2] (A); Banterle et al. [8] (B); Huo et al. [53] (H); Kovaleski and
Oliveira [86] (K); Meylan et al. [116] (M); Rempel et al. [160] (R). A performs a linear ex-
pansion of the dynamic range to match a target HDR display range; B, H, K and R expand the
range using a nonlinear function, and adjust the dynamic range locally by means of an expand
map; finally M applies different linear expansions in different areas of the image, which are
classified as diffuse or specular.

In order to train the SVM classifier to detect iHDR/mHDR, we crop 512× 512 images from
the pictures in the datasets mentioned above. This gives a total of 1839 iHDR/mHDR images
for each of the six iTM for training, and 1851 iHDR/mHDR images for testing, respectively.
We also consider smaller block sizes, up to 3× 3 pixels. Finally, we also consider the ‘mix’
scenario to train and test forensic features, where all the iTM algorithms are mixed together.
Details about the construction of train/test datasets are reported in [35]. We compare the pro-
posed feature with 2nd-order SPAM features [144], and with the LHS feature [171], which is
used in face recognition and that is similar in principle to the proposed one, although it uses
a single non-zero-mean GMM to compute Fisher scores. 38-component and 43-component
GMMs are used respectively by the proposed method and the LHS feature. For all the consid-
ered methods, we compress the HDR pixel values by applying a logarithmic function prior to
feature extraction.

Detection accuracy for different methods, iTM and image size are reported in Table 3.3.1. The
proposed method achieves at least comparable performance with the SPAM/LHS features, and
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Table 3.3.1: Detection accuracy (%) comparison when different image (block) sizes are con-
sidered. The feature dimensionalities of the SPAM feature, the LHS feature, and the proposed
feature are respectively 686, 688, and 684.

size feature ‘mix’ ‘A’ ‘B’ ‘H’ ‘K’ ‘M’ ‘R’

512×512
SPAM 97.19 97.16 96.92 97.08 97.14 97.00 97.92
LHS 94.68 94.79 96.38 95.14 94.95 95.11 96.81

Proposed 94.35 93.84 97.11 94.06 94.38 94.81 97.27

8×8
SPAM 73.56 74.37 71.01 73.75 74.15 74.31 79.76
LHS 72.98 73.75 69.69 71.49 73.52 73.76 77.88

Proposed 76.45 76.70 75.55 76.21 76.59 76.37 81.24

7×7
SPAM 71.39 72.25 68.07 71.26 72.37 72.36 78.36
LHS 70.12 71.66 68.26 70.57 71.11 71.40 76.48

Proposed 74.67 74.99 73.95 74.20 74.79 74.86 80.32

6×6
SPAM 69.68 70.96 66.35 70.21 70.43 70.93 75.88
LHS 69.12 70.54 66.08 69.69 70.61 70.15 75.63

Proposed 72.70 73.33 71.87 72.01 73.01 73.12 78.22

5×5
SPAM 67.10 68.25 63.24 67.26 68.17 68.50 74.23
LHS 67.72 68.21 64.05 67.09 68.81 67.88 72.81

Proposed 70.82 71.16 68.64 70.68 71.38 71.36 76.52

4×4
SPAM 63.06 63.97 59.22 63.11 63.87 64.41 69.76
LHS 64.67 65.09 60.32 64.49 65.19 65.60 69.98

Proposed 67.50 67.71 64.67 67.25 67.55 67.91 73.88

3×3
SPAM - - - - - - -
LHS 62.28 64.02 58.66 62.59 63.82 63.76 68.93

Proposed 63.66 64.89 60.44 63.92 64.79 64.63 70.51

is especially advantageous on very small image blocks. Note that, on image blocks as small
as 3× 3, the SPAM feature cannot even be extracted, as it is not possible to count the co-
occurrences of neighboring second-order derivatives. However, the proposed method can still
perform the forensic task thanks to the fact that the GMMs are learned on 3×3 image patches.
Though in such an extreme case the detection accuracies are much lower than for 512× 512
images, we believe that these result show the boundary achievable by forensic methods when
we keep pushing the limits of image block size. This is very important for the forensic study of
very fine-grained image tampering localization.

3.4 Predicting subjectivity in image aesthetic assessment

I conclude this chapter with recent work on predicting the aesthetic value of a picture. The goal
of image aesthetic quality assessment is to determine how beautiful an image looks to a human
observer. This problem lies in between quality assessment, as it aims at quantifying the visual
experience of watching a photo, and image analysis, since aesthetics is definitely affected by
higher-level features such as image content and other semantic clues.
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Mean SD MAD MED DUD
5.174 2.104 1.697 0.278 3.570

(a)

Mean SD MAD MED DUD
5.180 0.902 0.657 0.650 4.439

(b)

Figure 3.4.1: Example of aesthetic subjectivity for two images of the AVA dataset. The two
images, displayed in the top-left panels, have similar mean score but different distribution of
aesthetic judgments given by human raters, shown in the histograms on the top-right panels.
The tables report several measures that compactly describe subjectivity based on the score dis-
tribution, which are described in Section 3.4.1.

More precisely, I deal here with the intrinsic subjectivity of aesthetic assessment, which de-
rives from the different opinions human raters might have about the beauty of a digital picture.
Most of existing aesthetic quality prediction approaches assume that aesthetic quality can be
represented by a single value, e.g., the mean aesthetic score or the aesthetic class (good/bad).
However, this assumption does not take into account other internal factors that may influence
the aesthetic judgments, such as personal background, interests, mood, etc. Indeed, experi-
mental psychology studies show that, while beauty is conveyed by objective visual clues, the
resulting aesthetic appraisal is subjective and depends on how the visual clues are processed by
higher-level cognitive areas in the brain.

In the rest of this section I discuss our preliminary work on quantifying and predicting subjectiv-
ity in image aesthetics. Specifically, we first introduce scalar measures to quantify subjectivity
based on the distribution of aesthetic scores; afterwards, we compare two prediction schemes to
estimate these measures. This work is described in greater details in [67].

3.4.1 Subjectivity measures

We define subjectivity as the degree of consensus about the aesthetic value of a picture when
the latter is judged by a panel of human raters. The top row of Figure 3.4.1 illustrates this with
an example: two images from the AVA dataset (which is one of the largest available subjec-
tively annotated aesthetic dataset) have a similar average aesthetic score, but a different degree
of subjectivity. In the image in Figure 3.1(a), it is evident that humans tend to agree more
on the aesthetic quality of the image, while the judgments are more dispersed for the image
in Figure 3.1(b). Intuitively, being able to predict aesthetic subjectivity can provide valuable
information in order to determine to which extent aesthetic predictions can be trusted. This in
turn could be beneficial in applications such as enhancement or retrieval, in order to obtain more
reliable and accurate results.
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We consider a dataset of N images {In}, n = 1 . . .N, where each image has been voted by Mn
human raters on a discrete scale with k levels, s = {s1, . . . ,sk}. We model the Mn aesthetic
scores xn for each image In as a realization of a categorical random variable with distribution
pn(xn), which we approximate with the normalized sample histogram pn(xn). Given pn(xn), we
define µn and mn as the mean and median of xn, respectively.

In order to describe the level of consensus of human raters about the aesthetic quality of a given
image, we propose using the following measures:

• Standard Deviation (SD) of the score distribution, which describes the dispersion of the
scores around the average score. A higher value of SD indicates a lower consensus around
the average score, and thus higher subjectivity.

• Mean Absolute Deviation around the median (MAD), defined as the sample average
deviation of the scores around the median score, that is:

MADn =
1

Mn

Mn

∑
i=1
|xn(i)−mn|. (3.4.1)

As for SD, higher values of MAD imply higher subjectivity.

• Distance to Uniform Distribution (DUD). We consider the distance of the score dis-
tribution pn(xn) from the distribution having the maximum entropy over s, which is the
uniform distribution. We quantify this distance using the 2-Wasserstein metric dW (pn,us),
that is:

DUDn = dW (pn,us) =

[
k

∑
i=1

(Pn(i)−Us(i))2

]1/2

, (3.4.2)

where us is the discrete uniform distribution defined over the categories s, and Pn and Us
are the cumulative distribution functions of pn and us, respectively.

A lower value of DUD implies that the score distribution is more similar to the uniform
distribution, and thus the degree of subjectivity is higher.

• Distance from the Maximum Entropy Distribution (MED). Since the uniform distribu-
tion has always a mean value equal to the midpoint of the score scale, the DUD measure
tends to penalize more skewed distributions having mean values close to the extremes of
the quality scale. To overcome this bias, we compare the score distribution with the maxi-
mum entropy distribution over the quality scale having the same mean. More specifically,
we look for a discrete distribution qs which solves the following optimization problem:

maximize
q

H(q)

subject to µ [q] = µn,

where H denotes discrete entropy and µ[q] is the mean of q.
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(a) Indirect subjectivity prediction (b) Direct subjectivity prediction

Figure 3.4.2: Subjectivity Prediction Framework. In the indirect prediction framework, an aes-
thetic score distribution is estimated first, and subjectivity measures are computed over it. We
compare this approach with directly predicting subjectivity computed on ground-truth distribu-
tions (b).

Then MED for image n is defined as:

MEDn = dW (pn,qs) =

[
k

∑
i=1

(Pn(i)−Qs(i))2

]1/2

, (3.4.3)

where Qs is the cumulative distribution of qs. As for the DUD measure, the lower MED
is, the higher is the subjectivity of an image.

The tables in Figure 3.4.1 show an example of these measures computed for the two images in
the top panel. We can observe that all of them capture correctly the degree of consensus of the
score distributions. In the following, we will study how accurately each of these measures can
be predicted, either directly or by means of predicted score distributions.

3.4.2 Prediction of subjectivity

In order to predict the subjectivity measures proposed above, we consider two options: i) we
predict the score distribution indirectly using an existing score prediction method [65, 66, 127];
or ii) we compute subjectivity measures on ground-truth scores, and learn to predict them di-
rectly. These two approaches are illustrated in Figure 3.2(b), and compared experimentally in
the following.

Experimental setup

We predict subjectivity using a deep convolutional neural network. We employ a modified
Resnet-34 network as baseline for our experiments. In addition, we also use Resnet-101 to
study the influence of a deeper network structure in the direct aesthetic subjectivity prediction.
The details about the network architecture and training are available in [67].
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Table 3.4.1: Pearson’s Linear Correlation Coefficient (PLCC)

Methods SD MAD MED DUD

Bin Jin’s[65] 0.145 0.159 0.178 0.096
NIMA [181] 0.169 0.187 0.211 0.255
RSCJS [66] 0.187 0.199 0.227 0.281

Direct (Resnet-34) 0.274 0.276 0.323 0.351
Direct (Resnet-101) 0.307 0.304 0.333 0.360

We use the standard training/testing partition of the AVA dataset [128] to learn directly or in-
directly subjectivity. The AVA dataset contains over 250,000 images from photography am-
ateurs. The scores have been collected through approximately 1400 photographic challenges
from viewers who voted integer scores in the range [1,10]. The number of votes in AVA ranges
between 78 and 549, and the average is around 210, thus enabling a more reliable estimation of
score distributions.

For the indirect subjectivity prediction, we consider the following three methods for predict-
ing aesthetic score distributions: the work of Bin Jin et al. [65] (chi-square distance loss);
NIMA [181] (Earth Mover’s Distance loss); and the RSCJS method of Jin et al. [66] (cumula-
tive Jensen-Shannon divergence loss).

Experimental results and discussion

Table 3.4.1 reports Pearson’s linear correlation coefficients (PLCC) between the predicted sub-
jectivity measures, and the subjectivity measures computed on ground-truth aesthetic scores.
We observe that direct subjectivity prediction always outperforms indirect prediction through
distribution scores, for all the proposed subjectivity measures. In particular, for the same net-
work complexity (Resnet-34), predicting directly the subjectivity is clearly better than predict-
ing the score distribution first and computing subjectivity based on it. Similar results are ob-
tained when considering Spearman correlation coefficients and RMSE, as reported in [67].

Although direct prediction improves all the considered performance indicators, we observe that
overall the prediction performance is still not satisfactory, e.g., the PLCC is below 0.4. We might
wonder whether this is due to a limited capacity of the Resnet-34 model we employed. There-
fore, in order to study how subjectivity prediction performance improves with a more complex
network, we tested the direct prediction scheme using Resnet-101, which is much deeper than
Resnet-34. As expected, the results generally improve over the simpler Resnet-34. However,
this improvement is in most case only marginal, showing that aesthetic subjectivity prediction
is intrinsically a hard problem – at least a harder one than predicting the average aesthetic score,
where PLCC between predicted and ground-truth values is higher than 0.6 [181].

Comparing the different subjectivity measures, those inspired by information theory (DUD and
MED) are in general those with higher prediction performance. Among the statistical moti-
vated descriptors, the SD is generally predicted more accurately than MAD. We can assume
that, for the same neural network model complexity, a ground-truth variable which has a higher
dependence on the input is easier to predict, or, in other terms, target variables which tend to be
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more “noisy” will be more difficult to learn. Thus, we can argue that the subjectivity measures
based on information theory are somewhat more robust than statistical deviation measures. A
possible rationale behind this could be that both DUD and MED are based on distances between
histograms, which take into account the whole score distribution. On the other hand, SD com-
pletely captures data variability when the underlying score distribution is Gaussian, which is the
case for only 62% of AVA images [66]. MAD is supposed to be more robust to skewed distribu-
tions, but it might be affected by the sample median computation, which on a 10-dimensional
distribution as for aesthetic scores can only take values over a small set, i.e., {1,1.5,2, . . . ,10}.

Despite our approach achieves state-of-the-art subjectivity prediction performance, predicting
subjectivity is still a very challenging task. We believe that this is partially due, in addition to
the complexity of the task in itself, to the noisy nature of current aesthetic datasets. This is
evident for the benchmark AVA dataset, where aesthetic scores are influenced by many factors
that go beyond the pure aesthetic value of a picture. Building cleaner and more reliable aesthetic
datasets is among the future directions to consider in this field.
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Chapter 4

Towards effective representations for
immersive visual communication

Finding meaningful and effective signal representations is one of the most fundamental prob-
lems in signal processing. In compression, modeling some properties of a signal, such as piece-
wise smoothness and other forms of regularities, enables to efficiently encode and transmit data.
In visual quality assessment, simple pixel-wise metrics such the mean squared error are known
to be unable to capture perceptual and contextual phenomena that incur in the formation of
quality judgments. Instead, computing distances using more advanced visual representations
can display better predictions of human opinion scores. In general, visual analysis tasks sub-
stantially rely on designing effective representations and features able to capture the properties
of interest in the signal.

For human perceptual tasks, the cognitive process through which visual information is analyzed
requires a complex and accurate modeling of the human visual system. This is especially true
for immersive video formats, where the goal is to produce a truly realistic and interactive user
experience, which involves, e.g., 3D and free viewpoint perception. In the past few years, the
problem of designing good features and representations has been partially solved by data-driven
techniques, thanks to tools such as deep neural networks, and to the availability of large anno-
tated datasets. The success of this approach is evident in tasks which traditionally are difficult to
model, such as classification or detection, where machine learning is able nowadays to achieve
better performance than an average human annotator. Nevertheless, in domains such as visual
communication, tools such as deep representation learning and generative models have become
popular only recently (see Section 1.3 and 2.2), and their applications to visual communication
is an emerging research topic. In image coding, for instance, end-to-end schemes based on
deep representation learning, such as auto-encoders, are still unable to provide competitive re-
sults compared to state-of-the-art hybrid codecs [191]. Learning representations end-to-end in
the case of video is fundamentally limited by computational complexity and memory issues, and
will be an important research topic for the next years. In quality assessment, learning what is
a “natural” (undistorted) image is significantly more difficult than modeling single-class image
manifolds (such as faces or specific objects), due to the very large variability of the content. In
this context, learning representations able to generalize to real-world content variations remains
an open problem.
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In order to conceive effective representations for immersive video, assessing the quality of
experience (QoE) is of fundamental importance. Emerging 3D representations such as point
clouds, for example, entail new kinds of processing artefacts, such as geometric distortion.
How to properly assess these artefacts, whose perception is the result of interaction between the
observer and the content, is currently an active research area. More generally, data collection is
of paramount importance in data-driven approaches, and even more so in QoE, where ground-
truth scores can not be objectively measured as in other computer vision applications such as
tracking or classification, but are subjective and stochastic in nature. A typical example is
predicting the aesthetic value of a picture, as discussed in Section 3.4. One of the greatest
challenges in data collection for QoE is the trade-off between the quantity and the quality of
subjective data. In the example of aesthetics, the largest datasets used nowadays have been
collected “in the wild”: images are downloaded from existing online resources, where aesthetic
labels are often confused with other concepts such as popularity, interestingness, etc. This
fundamentally limits the possibilities to extract deeper knowledge from data, e.g., which are the
factors that make a picture look beautiful. Designing proper methodologies to collect data in a
disciplined way, following QoE best practices, under uncontrolled conditions, is a key factor to
enable further advances in the understanding of complex perceptual attributes of images.

My research project is at the intersection of three main axes, as illustrated in Figure 4.1.1: i)
designing good visual representations for compression and quality assessment; ii) conceiving
new methodologies for measuring QoE and collecting subjective data; iii) applying these tools
to achieve higher immersion in visual communication. In the following, I will detail these axes,
pointing to mutual interactions across them, and outlining some possible research directions in
each domain.

4.1 Learning good representations for video compression and
quality assessment

Deep generative models — from restricted Boltzman machines to variational auto-encoders
and, more recently, generative adversarial networks [42] — can learn effective representations
for very complex signals such as natural images. I will consider how to use these representations
both in compression of visual content and in visual quality assessment.

4.1.1 Deep generative models for video coding

In the past few years, deep generative models and representation learning have been shown to be
able to effectively capture the complex statistics of image and video. Recently, these tools have
been applied to image and video compression, displaying potential gains compared to tradi-
tional architectures. As a result, learning-based compression is nowadays a hot research topic,
as demonstrated by the popularity of challenges such as CLIC-CVPR, and by the increasing
interest towards these approaches in standardization committees such as JPEG (e.g., the new
JPEG-AI initiative) and MPEG.
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Figure 4.1.1

The goal of generative models is to learn the distribution of the data. This can be effectively
achieved when the data variability is relatively small, e.g., when images are drawn from a
few semantic classes. However, learning good generative models becomes significantly more
difficult when the input data is unconstrained, which is instead the typical use case for video
compression. Indeed, recent work on learning-based spatial prediction shows that classifying
input patches into two classes according to their prediction characteristics, and learning a model
for each of the classes, is in general better than learning a single, “one-size-fits-all” model [98].
However, the problem of establishing automatically how many and which are the classes that
optimize the coding efficiency has not been studied so far. Differently from the conventional
discriminative classification problem, the number of classes, as well as the frontiers between
them, is not well defined in advance, nor it corresponds to an explicit semantic labeling of
the training data. Instead, since the final goal is coding efficiency, the classification criterion
is rather linked to the rate-distortion performance of the specialized codec which follows the
learned classifiers. Therefore, an interesting direction will be to study how to jointly learn
classification and coding.

Another application of deep generative models to video compression is in context-based en-
tropy coding. Arithmetic coding enables to code symbols by approaching the entropy rate of
the source, provided the data distribution is known. When only an approximation of the data
distribution is available, there is a loss of coding efficiency, which is quantified by the Kullback-
Leibler divergence between the actual distribution and the used one. The context-adaptive bi-
nary arithmetic coder used in modern video codecs employs a set of predefined conditional
probability models, which are updated on-the-fly during encoding depending on the observed
symbols. The problem of context dilution — the degradation of probability estimation accuracy
due to the curse of dimensionality — limits the number of different contexts that could be used.
We will consider a different approach: instead of using several conditional probabilities tables,
which practically forces the context to be small, we will instead use a deep generative model
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with a large context, which could potentially involve all the previous coded symbols. To this
end, we will consider recurrent neural networks to model sequences of symbols; this approach
has been successfully used, e.g., in image generation [44].

Finally, a fundamental challenge in video coding is modeling the operational rate-distortion
(RD) function of the codec. This problem is know to be hard, for several reasons. First, state-
of-the-art video codecs are very complex systems, which use several tools in addition to quanti-
zation in order to yield high compression efficiency. Some of these tools are difficult to model,
e.g., mode decision. Second, the RD performance of a codec depend strongly on the content.
Finally, modeling coding dependencies induced by predictive coding is a well-known chicken-
and-egg problem [190], which would require architectures able to take into account the state of
the prediction such as recurrent neural networks. Deep neural networks are universal approx-
imators, and could be used in principle to learn a direct mapping from pixels (plus some side
information) to a point in the RD plane. However, training this kind of system, especially on a
fine-grained coding unit scale, is not trivial, as it somehow depends on the choice of the cod-
ing mode. Learning the RD function would be extremely useful in rate-distortion optimization,
and especially to embed a bit-rate term in the loss function for learning-based coding tools as
the context-based prediction enhancement described in Section 1.3. Moreover, approximating
the RD function with a neural network would solve one of the greatest issues in end-to-end
learning-based compression methods: dealing with non-differentiable operations such as quan-
tization. This is currently approximated in various ways, e.g., by replacing quantization noise
with uniform noise in backpropagation. Instead, a neural network-based rate estimator is by
construction differentiable and would easily fit a gradient optimization technique.

4.1.2 Representation learning in quality assessment

As mentioned above, representing visual content in a proper space is key in evaluating visual
quality, by incorporating the cognitive process of the human visual system. This cognitive
process can be seen from two different perspectives. On one hand, quality assessment methods
can be framed as the problem of finding a discriminative model for the data, i.e., by performing
a supervised training of a proper regressor in order to explain and predict a set of observations.
These consist of (distorted) images associated to their mean opinion scores. Deep convolutional
neural networks have been successfully used to this purpose with impressive results, as shown
in Section 2.2, both to predict overall quality scores and to localize the distorted regions. The
main disadvantage of this approach is the need for large annotated datasets, which in the case
of quality scores requires a costly and cumbersome data collection work.

On the other hand, one can cast visual quality assessment as the problem of finding a genera-
tive model for visual information. Estimating this model is an unsupervised learning problem,
which has been addressed in different ways in the past. A large amount of work has been done
to model natural scene statistics (NSS), e.g., in terms of the distribution of wavelet coefficients
over large collections of undistorted images. Deviations with respect to these statistics have
been used to quantify the impairment of an image [125]. However, evidence from neuroscience
and cognitive theories (from seminal Helmholtz’s studies in the 1860’s and Gestalt school prin-
ciples, to modern neuroscience tenets) suggest that vision is the outcome of an active inference
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process and not simply a matter of signal representation. In this respect, psychovisual quality
is closely related to how accurately visual sensory data can be explained by the brain internal
generative model. This principle has been successfully employed in the recent “free-energy”
based quality approach [212], where the generative model is approximated by a simple auto-
regressive process. Clearly, this is only a first-order approximation, as the internal brain model
is far from being fully understood. In this context, deep neural network architectures seem
particularly promising, as their cascaded nonlinear transformations are believed to mimic the
processes of evolution that have shaped visual representations within the human brain.

In this context, I am particularly interested in learning representations using an opinion- and
distortion-unaware approach, such as in the NIQE quality metric [123]. While there simple
local image representations are used, such as the mean-subtracted contrast-normalized pixels
(see Section 2.2), it is reasonable to expect that higher level representations learned, e.g., by a
deep auto-encoder, might lead to a more expressive quality representation. In addition, how to
compute distances between these representations is itself an open question. Previous work has
modeled coefficients in the feature space using generalized Gaussian distributions [123], which
enables to easily compute the likelihood of a sample under this model, or to compute distances
between distributions. In the general case, one could instead learn this distance function from
data. In alternative, one could learn representations in such a way to maximize the distance be-
tween pristine and distorted images, using a self-supervised approach in which pristine images
are corrupted with different kinds of artefacts, and using architectures such as Siamese networks
to learn embeddings in the representation space.

4.2 New methodologies for Quality of Experience

As mentioned above, a fundamental challenge in learning representations for visual quality is
the trade-off between the quantity and quality of subjective data. Collecting good data is crucial
to learn good representations. However, data collection in QoE is costly and intrinsically subjec-
tive, it can require specialized equipment and needs a precise definition of the task to evaluate.
An important aspect in collecting QoE at large scale is using efficient methodologies to sam-
ple the distribution of opinion scores. A promising research area is employing active sampling
approaches [100], and fusing datasets collected using different methodologies as discussed in
Section 2.4.

There has been a large amount of work on defining recommendations for assessing visual QoE
in multimedia services [57, 62], as well as studies on how to collect user opinions using crowd
sourcing approaches. While this is feasible for simple quality tasks, more advanced and multi-
dimensional QoE problems, such as judging the aesthetic value of pictures, require a careful
design in order to collect meaningful data. Specifically, the multi-dimensional nature of com-
plex QoE tasks requires defining clearly and unambiguously the perceptual/semantic dimension
to collect, that should be explained to observers through a proper training phase as in well-
established best practices of QoE assessment. This might include as well indicators about the
confidence or uncertainty of observers in giving their judgments. A more solid understanding
of these good practices in multimedia QoE and how to apply to large-scale data collection is
an ongoing research field, which can largely benefit from studies in other related fields such as
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psychology, sociology, marketing, etc.

Measuring QoE for immersive content is substantially different from QoE of conventional 2D
video. In fact, standard evaluation protocols explicitly require that the viewing conditions be
the same across observers. These include the viewing distance and angle, the lighting condi-
tions, and, of course, the stimuli, which (up to a permutation) are rendered in the same way
for each observer. While these conditions were appropriate for classical 2D television, in im-
mersive video each observer can explore a scene in a different, personal way. As a result, a
number of natural questions arise when assessing visual quality of experience of humans in an
interactive scenario: How to adapt the existing subjective assessment methodologies to consider
interaction? How does the interaction between the human and the visualization device affect the
perceived quality and visual attention? Which is the most appropriate device to collect ground-
truth subjective scores? These will be interesting research directions to explore for emerging
immersive formats such as 3D point clouds and light fields.

4.3 Immersive visual communication

Immersive communication consists in producing a realistic and credible virtual communication
experience in which remote users feel as they were exchanging the same stimuli and receiving
the same feedback from the environment as if they were participating to a face-to-face meeting.
Producing truly realistic and immersive 3D video experience is widely considered as the key for
the success of applications such as virtual (VR) and augmented reality (AR). Immersive AR/VR
products have started to appear in the consumer market, revolutionizing a broad range of sectors,
from immersive communication (e.g., Microsoft Holoportation), to telemedicine, design, and
even working habits. This has been made possible by the development of efficient immersive
video representations beyond conventional 2D images and video. The most general of these
representations, known as plenoptic function, aims at reproducing the intensity of light seen
from any viewpoint or 3D spatial position, angular direction, over time and for each wavelength.
In practice, this would require a huge amount of information to be captured and stored, and
therefore, several different samplings (and thus, approximations) of it have been proposed.

One attractive way to approximate the plenoptic function from the point of view of human in-
teraction is to shift from a flat, 2D pixel-based format to a geometric representation such as
3D point clouds, which provide six degrees of freedom interaction with objects in the scene.
Point cloud video representations come with a number of technical challenges. The non-regular
sampling of point clouds makes difficult to use conventional signal processing tools, which
have been traditionally designed to work on regular discrete spaces such as a pixel grid. This
is particularly critical for point cloud video compression (PCC), which is essential to store and
transmit the large amount of geometric information of a scene (see Section 1.4). Future re-
search in immersive point cloud visual communication will definitely benefit from advances
in representation learning and QoE assessment, as discussed above. For instance, current ap-
proaches for PCC use octree-based representations for geometry and attribute compression, or
2D projections in the case of dynamic PC. We have been among the first to propose to learn
representations for voxelized point clouds [150]. However, this just opens a number of research
paths in this domain, e.g., designing graph convolutional transforms for modeling local statistics
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over a point cloud manifold. An important issue in the perception of PC impairments involves
gemeotric artefacts. Currently used geometric metrics do not model perceptual phenomena, like
the 3D contrast sensitivity and masking. Inspired by mesh fidelity metrics, one could extend
these simple geometric metrics to model human visual perception. In addition, it would be an
interesting direction to model visual saliency for this kind of content.

Consumer light-field cameras, such as the Lytro or Raytrix, are also able to produce a sampling
of the plenoptic function, by capturing a high number of micro-images of the scene represent-
ing it from multiple points of view. This information, clearly, is highly redundant, and thus
requires to be efficiently compressed. Light-field images might be represented in several ways,
from macro-pixels to sub-aperture images to epipolar representations. Understanding which
representation is more adapt to code and trasmit light-field information is still an open question.
A possible approach is to reconstruct the light field based on a sample of the possible views
of the scene. This is made possible by the advances on view synthesis using deep learning
techniques. Macro-pixel representations, which store light rays arriving at a given spatial point
from several directions, might be integrated as attributes into point clouds, potentially solving
the main issue of specular reflections — PC texture coding makes the implicit assumption of dif-
fusive surfaces. Finally, a stimulating research direction in immersive communication is digital
holography, where one of the main limitations is the huge amount of data required to represent
high-resolution holograms. It will be interesting to apply similar ideas as those discussed above
to this field in the future.
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