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Résumé

Grâce à d’importants développements technologiques au fil des ans, il a été possible de
collecter des quantités massives de données de télédétection. Par exemple, les constel-
lations de divers satellites sont capables de capturer de grandes quantités d’images de
télédétection à haute résolution spatiale ainsi que de riches informations spectrales sur
tout le globe. La disponibilité de données aussi gigantesques a ouvert la porte à de
nombreuses applications et a soulevé de nombreux défis scientifiques. Parmi ces défis,
la génération automatique de cartes précises est devenue l’un des problèmes les plus
intéressants et les plus anciens, car il s’agit d’un processus crucial pour un large éventail
d’applications dans des domaines tels que la surveillance et l’aménagement urbains,
l’agriculture de précision, la conduite autonome et la navigation.

Cette thèse vise à développer de nouvelles approches pour générer des cartes vec-
torielles à partir d’images de télédétection. À cette fin, nous avons divisé la tâche en
deux sous-étapes. La première étape consiste à générer des cartes matricielles à partir
d’images de télédétection en effectuant une classification au niveau des pixels grâce à
des techniques avancées d’apprentissage profond. La seconde étape vise à convertir les
cartes matricielles en cartes vectorielles en utilisant des structures de données et des al-
gorithmes de géométrie algorithmique. Cette thèse aborde les défis qui sont couramment
rencontrés au cours de ces deux étapes.

Bien que des recherches antérieures aient montré que les réseaux neuronaux convolu-
tifs (CNN) sont capables de générer d’excellentes cartes lorsque les données d’entrâınement
sont représentatives des données d’essai, leurs performances diminuent considérablement
lorsqu’il existe une grande différence de distribution entre les images d’entrâınement et
d’essai. Dans la première étape de notre traitement, nous visons principalement à sur-
monter les capacités de généralisation limitées des CNN pour effectuer une classification
à grande échelle. Nous explorons également un moyen d’exploiter de multiples ensem-
bles de données collectées à différentes époques avec des annotations pour des classes
distinctes afin de former des CNN capables de générer des cartes pour toutes les classes.

Dans la deuxième partie, nous décrivons une méthode qui vectorise les cartes ma-
tricielles pour les intégrer dans des applications de systèmes d’information géographique,
ce qui complète notre châıne de traitement. Tout au long de cette thèse, nous expérimentons
sur un grand nombre d’images satellitaires et aériennes de très haute résolution. Nos
expériences démontrent la robustesse et la capacité à généraliser des méthodes proposées.

Mots Clés: Apprentissage profond, Segmentation sémantique, Images satellites,
Adaptation de domaine, Apprentissage incrémental, Vectorisation d’images
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Abstract

With the help of significant technological developments over the years, it has been pos-
sible to collect massive amounts of remote sensing data. For example, the constellations
of various satellites are able to capture large amounts of remote sensing images with high
spatial resolution as well as rich spectral information over the globe. The availability of
such huge volume of data has opened the door to numerous applications and raised many
challenges. Among these challenges, automatically generating accurate maps has become
one of the most interesting and long-standing problems, since it is a crucial process for
a wide range of applications in domains such as urban monitoring and management,
precise agriculture, autonomous driving, and navigation.

This thesis seeks for developing novel approaches to generate vector maps from re-
mote sensing images. To this end, we split the task into two sub-stages. The former stage
consists in generating raster maps from remote sensing images by performing pixel-wise
classification using advanced deep learning techniques. The latter stage aims at convert-
ing raster maps to vector ones by leveraging computational geometry approaches. This
thesis addresses the challenges that are commonly encountered within both stages.

Although previous research has shown that convolutional neural networks (CNNs)
are able to generate excellent maps when training data are representative for test data,
their performance significantly drops when there exists a large distribution difference
between training and test images. In the first stage of our pipeline, we mainly aim at
overcoming limited generalization abilities of CNNs to perform large-scale classification.
We also explore a way of leveraging multiple data sets collected at different times with
annotations for separate classes to train CNNs that can generate maps for all the classes.

In the second part, we propose a method that vectorizes raster maps to integrate
them into geographic information systems applications, which completes our processing
pipeline. Throughout this thesis, we experiment on a large number of very high resolution
satellite and aerial images. Our experiments demonstrate robustness and scalability of
the proposed methods.

Keywords: Deep learning, Semantic segmentation, Satellite images, Domain adap-
tation, Incremental learning, Image vectorization
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Chapter 1

Introduction

1.1 Context and Motivations

Over the years, the continuous proliferation and the significant improvements of satellite
sensors enabled to collect huge volume of remote sensing images from a significant part
of the Earth’s surface with high spatial and temporal resolution, as well as rich spectral
information. Such massive data contain crucial information, which has opened the door
to a wide range of applications such as monitoring natural disasters, urban planning,
autonomous driving, navigation, and precise agriculture. However, a substantial portion
of these massive data is still unused. In order to efficiently process such data for many
real-world applications, it is of paramount importance to devise efficient representations
for these images.

For the aforementioned representations, it is of great interest to develop novel meth-
ods that can generate vector maps containing geometric structures that precisely delin-
eate contours of the objects. It is also necessary to enrich such geometric structures with
semantic information to query which semantic class each structure belongs to. Consid-
ering that remote sensing images usually cover a large geographic extent and contain a
large number of pixels, it would be unfeasible to generate maps manually. Hence, this
process needs to be automatized.

Over the last couple of decades, semantic segmentation or dense labeling of remote
sensing images have gained a great interest for the purpose of such automation. This
task consists in assigning a semantic label to each pixel in the image. Especially after
convolutional neural networks (CNNs) have been invented and became popular, in many
benchmarks such as INRIA [111], ISPRS [85], SpaceNet [177], it has been proven that
precise raster maps can be automatically generated. Although CNNs achieve an excellent
segmentation performance when training and test data have similar data distributions,
it has been shown that they have limited generalization abilities [175]. Therefore, we
must develop methods that will overcome this issue to generalize CNNs to unseen ge-
ographic locations. Another problem is that it is not feasible for them to deal with
training data obtained at different times and having annotations for separate classes.
An ideal approach must be capable of learning from such heterogeneous training data
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and generating maps for all the classes that it has learned over time.
Vectorization of raster maps has also been gaining a growing attention, since it is

a crucial step for extracting an efficient vector representation. For this task, imple-
mentations of many polygon generalization algorithms are already available in various
geographic information systems (GIS) software. However, we seek for a compact yet
faithful representation with a good complexity/fidelity trade-off for fast querying and
easy processing. We also wish the vectorization algorithm to fix the potential errors in
the raster maps introduced by the learning approaches.

Given these recent advances, one can consider splitting the task of generating ef-
ficient representations into two sub-tasks. The first task consists in generating raster
maps from remote sensing images using advanced machine learning techniques, and the
second task aims at vectorizing the predicted raster maps using computational geometry
methodologies. Both tasks have their own challenges that need to be solved.

1.2 Remote Sensing Images

For the purpose of this thesis, remote sensing can be defined as the measurement of object
properties on the Earth’s surface using data acquired from aircraft and satellites [153].
In the following sub-sections, we summarize the remote sensing image types that are
used in this thesis.

1.2.1 Aerial Images

The interests in very high resolution remote sensing images are receiving a growing atten-
tion. Especially for the automatic cartography problem, very high resolution images are
particularly useful, because they facilitate generating maps with high precision. Aerial
images are collected by cameras mounted on aircraft, helicopters, unmanned aerial vehi-
cles (UAVs), balloons, etc. Using these cameras, oblique or nadir images can be acquired.
In oblique imagery, photographs are taken at certain angles relative to the normal of the
Earth’s surface. Nadir images correspond to orthophotos taken from vertically above.
The oblique images are relevant for problems like 3-D reconstruction [87] and height
estimation [131]. On the other hand, nadir images are useful for cartography.

For research purposes, there are public data sets consisting of aerial images such as
INRIA [111], Potsdam and Vaihingen benchmarks [85]. However, there are fewer sources
for aerial images than for satellite images. The main reason is that the flying devices
need to be used every time when new images are intended to be collected. In addition,
such devices have some restrictions in certain countries.

1.2.2 Satellite Images

Satellite images are the data acquired over the Earth’s surface via satellites operated
by governments and various businesses around the world. The recent significant tech-
nological improvements in satellite sensors have allowed us to collect massive volume of
satellite images covering the whole world. The abundance of satellite images makes them
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Figure 1.1: Wavelengths of the spectral bands of WorldView-2 satellite. The figure is
taken from [132].

one of the most commonly used data source for Earth observation. Compared to aerial
images, there is a significantly larger number of satellite images accessible. For instance,
some public benchmarks such as SpaceNet [177] and DeepGlobe [45] are example public
data sources of satellite images, and they cover relatively large geographic extents.

The images generated by Landsat, Sentinel, Pléiades, and Worldview missions are
examples of satellite images. Landsat 8 mission was launched in 2013. The satellite
images captured by this sensor consist of 11 bands, in which their resolutions range
between 15 and 30 meters. Sentinel-2A and Sentinel-2B missions were launched in 2015
and 2017, respectively. They collect MS data with 13 bands. The spatial resolutions of
the bands are 10 m, 20 m, or 30 m. Since the medium resolution Sentinel-2 images are
publicly accessible, they are commonly used for land cover classification [83]. Pléiades
and Worldview are able to acquire both panchromatic and MS images. The panchromatic
data correspond to a high resolution single band image. For instance, spatial resolutions
of the panchromatic images captured by Pléiades and Worldview are 0.5 m and 0.31 m,
respectively. On the other hand, MS images usually comprise red, green, blue, and
near-infrared bands with four times lower resolution.

One disadvantage of the satellite images is that due the technical limitations in
satellite sensors, there must be a tradeoff between the spatial and the spectral reso-
lutions [122, 154]. Instead of capturing high resolution multi-spectral images, satellite
sensors are usually capable of collecting high resolution panchromatic (PAN) images and
lower resolution multi-spectral (MS) images concurrently. This problem originates from
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(a) (b) (c)

Figure 1.2: Pan-sharpening. (a) Multi-spectral image, (b) panchromatic image, (c) pan-
sharpened image.

two reasons. The first one is the radiation energy collected by the sensor. As depicted
in Fig. 1.1, PAN images have broader and MS images have narrower bandwidths. In
order to collect more photons, the size of the MS detector must be larger [122]. The
second issue is the size of the acquired data. Since high resolution MS images occupy
significantly larger space that PAN and MS bundle, it is easier to collect the images as
a PAN and MS bundle.

In the context of semantic segmentation, both PAN and MS images carry important
information. To benefit from the advantages of both types of data, it is a common prac-
tice to merge them so that high resolution MS images can be obtained. This operation
is referred to as image pan-sharpening [6,7,89]. The pan-sharpening process is depicted
in Fig. 1.2. Effective pan-sharpening is a research topic in itself.

The second disadvantage of satellite data is that in general satellite databases are
huge and require significant image processing to create useful images from the raw data.
The third issue is that various weather conditions and different sensor characteristics
make the processing of satellite images challenging. For example, due to the atmospheric
conditions, the images depicted in Figs. 1.3a and 1.3b have substantially different color
distributions. In addition, depending on the data acquisition time, the geographic loca-
tion from which data are captured, and the pre-processing technique, collected satellite
images might be cloudy, hazy, or noisy as respectively shown in Figs. 1.3c, 1.3d, and 1.3e.
Besides, depending on the satellite sensor, taken satellite images may consist of different
types of spectral bands. For example, the image in Fig. 1.3f comprises near infrared,
red, and green bands whereas the other images in Fig. 1.3 consist of red, green, and blue
bands. In the context of dense labeling problem, the above-mentioned problems prevent
machine learning models from generating precise maps.

This thesis mainly focuses on satellite images, especially the data collected by Pléiades
satellite.
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: Challenges in satellite images. (a-b) Images affected by various atmospheric
conditions, and (c) cloudy, (d) hazy, (e) noisy, (f) NIRRG images.

1.3 Overview of the Supervised Learning Approaches for
Semantic Segmentation of Remote Sensing Images

Semantic segmentation, pixel-wise classification, or dense labeling of remote sensing
images is a long-standing problem, since it is a crucial process for a wide range of ap-
plications such as urban planning, mapping, navigation, and autonomous driving. In
supervised semantic segmentation setting, a classifier is trained on labeled training im-
ages and used to segment unlabeled test images. A large part of this thesis is dedicated to
semantic segmentation of satellite images using advanced machine learning techniques,
which constitutes the first stage of our overall pipeline. In this section, we review the
supervised learning based approaches for semantic segmentation of remote sensing im-
ages.

1.3.1 Traditional Learning Based Approaches

Among the traditional learning based approaches, Support Vector Machine (SVM) [41],
Random Forest (RF) [17], and Artificial Neural Networks (ANNs) [186] have been the
most commonly used methods in remote sensing literature.

The SVM is a kernel based classifier, which maps data samples into a higher di-
mensional feature space. In the new feature space, the data samples belonging to two
different classes are separated by a hyper-plane. The data points nearest to the hyper-
plane are referred to as support vectors. To find the right hyper-plane, margin between
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the support vectors is maximized. To perform multi-class classification, multiple hyper-
planes are used instead of only one. The SVM historically has been one of the most
widespread used segmentation approach for remote sensing images [121]. Its major limi-
tation is that it performs pixel-wise classification without taking the spatial information
into account [163]. As a consequence, the output segmentation is usually noisy. To over-
come this limitation, certain regularization approaches have been introduced such as
markov random field (MRF) [163], conditional random field (CRF) [70], and graph-cut
based methods [164, 165]. Remote sensing literature describes the SVM based meth-
ods for other dense labeling problems as well, such as active learning [18] and domain
adaptation [20].

The RF is an ensemble learning approach consisting of multiple decision trees. The
decision tree is a rule-based and tree-like learning approach, where each node represents
a test on an attribute, each branch represents the outcome of the test, and each leaf
node corresponds to a class label. In RF, the outputs of multiple decision trees are
aggregated to predict class labels of the data samples. In remote sensing literature,
the RF has been used for land cover [40], urban building [10] and impervious surface
classification [47]. The biggest advantage of RF is that it does not require as much data
as CNNs. It can achieve a relatively good performance with much less training data.
Therefore, it has been extensively used for large-scale land cover mapping. For instance,
Inglada et al. generated a land cover map consisting of 17 classes for the whole France
by leveraging Sentinel time series images.

The ANNs are learning methods that mimic the way biological networks in the brain
process information. ANNs consist of several layers, where each layer comprises a certain
number of neurons. The neurons in adjacent layers are connected to each other, and each
connection has a weight. The weights of an ANNs are used to activate each neuron. The
first, the last, and the intermediate layers are referred to as input, output, and hidden
layers respectively. The input and the output layers correspond to the input data samples
and the predictions by the network. The hidden layers represent the features learned by
the network in the training stage. The ANNs have two stages: forward propagation and
backward propagation. Given some data samples, the ANNs output predictions in the
forward propagation. In the backward propagation, weights of the ANNs are updated
via certain optimizers such as gradient descent [43] or Adam [90] by computing and
minimizing the mismatch between the ground-truth as well as the predictions by the
ANNs. In the training stage, both forward and backward propagations are conducted,
whereas only forward propagation is performed in the test stage. The biggest advantage
of the ANNs is that they do not require feature engineering; they learn useful features
themselves. Benediktsson et al. introduced the early stage usage of ANNs for remote
sensing image classification [11,12].

1.3.2 Deep Convolutional Neural Networks

Deep convolutional neural networks (CNNs) are network architectures comprising a stack
of convolutional filters [94]. There is a vast literature on segmentation of remote sensing
images using only spectral information of each pixel. As mentioned earlier, there are
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alternative methods that aim to incorporate spatial information with spectral informa-
tion to generate better maps. However, these approaches are not effective when it comes
to generating accurate maps for large-scale images. On the other hand, CNNs are able
to take the contextual information into account as well. Due to the recent significant
developments in hardware, deeper and higher performing CNNs can be trained on the
current GPUs in an end-to-end manner.

Initially, the CNNs have been designed for image categorization problem [38, 92].
These methods consist of multiple convolutional filters to extract the features followed
by several fully connected layers for class prediction. In remote sensing, Mnih proposed
a specific patch based CNN architecture to perform dense labeling [124]. In the architec-
ture, the network takes an image as input, and outputs a predicted map with a smaller
size centered in the input image. To perform dense labeling, the output size of the final
fully connected layer is increased. However, due to its patch-based architecture, this
approach generates inaccurate maps. Later on, Long and Shelhamer introduced fully
convolutional neural networks for semantic segmentation [106]. Maggiori et al. extended
this approach and applied their architecture to remote sensing images [110,112].

Recently, U-net architecture [144] has gained a significant attention in the field of
remote sensing. This network architecture consists of a contracting path that captures
the context and a symmetric expanding path, enabling accurate localization. In addition
to traditional encoder-decoder layers, the U-net architecture utilizes skip connections,
which combine low level features with the high level ones in the expanding path to
increase precision of localization. It has been shown that concatenating low level features
with high level ones via skip connections allows to generate better segmentation, and
the choice of loss function plays an important role [75]. The variants of U-net such as
TernausNet [81], TernausNetV2 [80], D-LinkNet [197], and AlbuNet [159] have exhibited
a great success in many remote sensing benchmarks.

The other popular network architectures are the variants of DeepLab (i.e., DeepLabv1 [31],
DeepLabv2 [32], DeepLabv3 [33], and DeepLabv3+ [34]). Different from U-net and other
CNNs, these architectures use atrous convolutions to enlarge the view of the filters. Al-
though U-net is the most widespread used architecture for classes requiring high preci-
sion such as buildings and roads, variants of DeepLab are commonly used for land cover
classification [93]. Another common architecture is Mask R-CNN [67], which tackles
instance segmentation problem. It generates a bounding box around each object as well
as the segmentation mask for the object inside each bounding box. In remote sensing,
it has been used for building [195], ship [127], and airplane [161] segmentation.

Although in this thesis, we split the task of generating efficient vector representations
into two stages, there is also an intense research activity aiming to develop CNNs that
can generate such vector representations directly from satellite images. In this context
PolygonRNN [27] and PolygonRNN++ [1] are the first attempts to output vector seg-
mentation. However, they require human interaction. The end user needs to draw a
bounding box around the object that would be segmented. Zuoyue et al. have recently
extended these approaches to make them end-to-end trainable. They applied their so-
lution to extract vector representations of building and road classes. The literature also

16



describes several deep learning approaches that learn parameters of the active contour
models to perform building segmentation [66,117].

1.3.3 Transition to Large-scale Classification

Until the last decade, among researchers, it has been a common practice to use some
portion of a single remote sensing image as training and the rest as test data to evaluate
the performance of their machine learning models. In remote sensing, there are public
benchmarks that adopt such an experimental setting. For example, in the Vaihingen and
the Potsdam benchmarks provided by International Society for Photogrammetry and
Remote Sensing (ISPRS) [85], an aerial image taken from a city is split into several tiles.
Some of the tiles are provided as training and the rest as test data. Particularly deep
learning approaches have exhibited an impressive performance for semantic segmentation
in such an experimental setup. However, the main limitation of such a setting is that
training and test images have very similar data distributions. As a result, and even if
the machine learning model overfits to the training data, it performs extremely well on
test data.

However, especially for dense labeling problem, preparing an annotated training data
set is extremely labor-intensive, since the contour of each object needs to be precisely
delineated. As mentioned before, due to the various weather conditions, intra-class vari-
ability, and different sensor characteristics, objects in the images collected from different
parts of world tend to greatly differ. As a consequence, it is challenging to have mas-
sive volume of annotated images that are representative for the images collected from
different geographic locations. Hence, to perform large-scale semantic segmentation, it
is crucial to develop novel learning approaches that offer high generalization abilities.

Our main focus in the first stage of our overall pipeline is to propose novel methods
that can generate accurate maps even when objects in training and test images look
significantly different.

1.4 Objective and Challenges

In this thesis, we seek for generating efficient vector representations for remote sensing
images. To achieve this task, we follow a two step procedure. The former aims to
assign a thematic label in the image using advanced deep learning methods, and the
latter vectorizes the raster map obtained in the first step. This thesis addresses several
challenges arising in both steps. They are as follows:

� Automation: It is the key for real-wold practical applications. Since we aim at
dealing with massive volume of data, in both stages of our overall procedure, it is
essential to propose hassle-free methods that do not require any human interaction.

� Generalization: As we will discuss in great detail in Chapters 3, 4, and 5, re-
mote sensing images collected from different geographic locations at distinct times
usually have largely different data distributions due to various reasons such as
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atmospheric conditions, differences in acquisitions, etc. Such differences between
images make machine learning models likely to fail to generate high quality maps.
Therefore, we must devise efficient machine learning methods that are robust to
such distribution differences.

� Adaptability: With the help of significant technological developments in remote
sensing sensors and many satellite missions launched in the couple of decades, we
are able to obtain huge amounts of annotated and unlabeled images every day.
Hence, it is of great importance to develop advanced deep learning models that
can efficiently and effectively adapt to continuously growing data.

� Heterogeneous annotations: Oftentimes, from different data set providers, we
retrieve satellite images with annotations for separate classes. In order to maximize
the information gain, an ideal machine learning model should be able to learn from
data having such heterogeneous annotations. If this task can be accomplished,
when new images are given, the model can generate maps for all the classes that
it has learned over time.

� Scalability: As nowadays we have huge amounts of remote sensing data, we need
to develop scalable solutions that can deal with a large number of images.

� Representation Power: The final vector representation must be efficient and
effective. It must be powerful enough to precisely delineate contours of the Earth’s
objects but also effective enough to allow fast processing and easy querying. To
this end, it is of paramount importance to generate vector maps with a good
complexity/fidelity tradeoff.

1.5 Contributions

In the following, we describe the main contributions of each chapter. Notice that every
chapter has its own problem definition, motivations, related work, methodology, and
concluding remarks.

Chapter 2 We propose an incremental learning methodology enabling to learn seg-
menting new classes without hindering dense labeling abilities for the previous
classes, although the entire previous data are not accessible. Our experimental re-
sults prove that it is possible to add new classes to the network, while maintaining
its performance for the previous classes, despite the whole previous training data
are not available.

Chapter 3 Although convolutional neural networks have been proven to be an effective
tool to generate high quality maps from remote sensing images, their performance
significantly deteriorates when there exists a large domain shift between train-
ing and test data. To address this issue, we propose two new data augmentation
approaches that transfer the style of test data to training data using generative ad-
versarial networks. Our semantic segmentation framework consists in first training
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a classifier from the real training data and then fine-tuning it on the test stylized
fake training data generated by the proposed approaches. Our experimental re-
sults prove that our data augmentation approaches enable classifiers to achieve a
substantially better performance.

Chapter 4 The vast majority of the domain adaptation methods tackle single-source
and single-target case, where the model trained on a single source domain is
adapted to a target domain. However, these methods have limited practical real-
world applications, since usually one has multiple source domains with different
data distributions. In this chapter, we deal with multi-source domain adaptation
problem. Our method standardizes each source and target domains so that all
the data have similar data distributions. We then use the standardized source
domains to train a classifier and segment the standardized target domain. Our ex-
perimental results show that the standardized data allow the classifiers to generate
significantly better segmentation.

Chapter 5 We propose a novel approach for unsupervised, multi-source, multi-target,
and life-long domain adaptation of satellite images. It consists of a classifier and
a data augmentor. The data augmentor, which is a shallow network, is able to
perform style transfer between multiple satellite images in an unsupervised manner,
even when new data are added over time. In each training iteration, it provides
the classifier with diversified data, which makes the classifier robust to large data
distribution difference between the domains. Our extensive experiments prove that
our approach significantly better generalizes to new geographic locations than the
existing approaches.

Chapter 6 We propose a novel approach, which recasts the polygonization problem as a
mesh-based approximation of the input classification map, where binary labels are
assigned to the mesh triangles to represent the building class. A dense initial mesh
is decimated and optimized using local edge and vertex-based operators in order
to minimize an objective function that models a balance between fidelity to the
classification map in `1 norm sense, right angle regularity for polygonized buildings,
and final mesh complexity. Experiments show that our approach outperforms
commonly used polygon generalization methods in remote sensing literature for
similar numbers of vertices.

In the last chapter, we draw the final conclusions for this thesis and discuss the
possible future directions.
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Chapter 2

Progressively Learning to
Segment New Classes

2.1 Problem Definition

In this chapter, we propose an incremental learning approach for progressively learning
to segment new classes without forgetting the previous ones. The inputs for the proposed
approach are multiple satellite images acquired at different times and having annotations
for separate classes. Every time new training data are obtained, we use new data to learn
to segment new classes and a small portion of the previous data in order for the approach
not to forget the previous classes. The desired output is a precise raster map containing
new as well as old classes.

2.2 Motivations

In the last decade, with the great advances in deep neural networks, notably convo-
lutional neural networks (CNNs), it has been possible to obtain accurate segmenta-
tions [112]. Among the CNN-based approaches, U-net architecture [144] has gained a
particular attention due to its success for various segmentation problems in different
domains (e.g., medical imaging and remote sensing).

The major drawback of U-net or other CNNs is their assumption that the whole
training data are available in the beginning, which is not the case in real-world remote
sensing applications, as new images are collected from all over the world everyday. Be-
sides, having large amounts of standard and unique label maps is almost impossible,
because the label maps retrieved from different sources usually have distinct classes. In
addition, it is not always possible to store massive volume of training data. For the rea-
sons described above, designing an incremental learning methodology, which can learn
from new training data while retaining performance for old classes without accessing to
the entire previous training data is crucial. Although a good solution for this problem is
needed to generate high-quality maps from satellite images that cover a large geographic
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Figure 2.1: Incremental learning scenario. Firstly, satellite images as well as their label
maps for building and high vegetation classes are fed to the network. Then, from the
second training data, the network learns water class without forgetting building and
high vegetation classes. Finally, road and railway classes are taught to the network.
Whenever new training data are obtained, we store only a small part of the previous
ones for the network to remember. When a new test image comes, the network is able
to detect all the classes.

extent, it has remained unexplored in remote sensing community.
Rather than assuming that we initially have all the training data, we aim to design

an incremental learning methodology. Let us explain with an example of a real-world
problem (see Fig. 2.1) where, in the beginning, we are provided images from several
cities in Austria with correspondent label maps for building and high vegetation classes.
Later on, we are given other training data, having label maps for water class, collected
from different areas in Germany. Finally, we receive new satellite images and their
annotations for road and railway classes from certain cities in France. Every time new
data arrive, we assume that only a small portion of the previous data is stored. In
such a scenario, our goal is to add segmentation capabilities for new classes to the
previously trained network, without forgetting the already learned information so that
maps for all the learned classes could be generated by the network. In addition to the
described problem, because labeling satellite images covering a large geographic area
requires a lot of manual work, it is quite common that annotations of different classes
for the same images are provided sequentially in time. In this kind of situation, it is not
feasible to train a new classifier from scratch every time new label maps are obtained.
The limitations pointed out in this section have motivated us to design an incremental
learning methodology.

2.3 Related Work

The biggest challenge in incremental learning problem is that when new tasks are in-
tended to be added to a classification system, performance of the system for the previ-
ously learned tasks degrades abruptly, which is referred to as ”catastrophic forgetting”
in the literature [54,62]. Incremental learning has been a historically important problem.
Even before neural networks have become popular, researches had been studying this
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issue [21, 29, 134, 172]. In the following sub-sections, we summarize the recent related
work on incremental learning.

2.3.1 Enlarging the Network Architecture

These methods usually enlarge the network architecture to learn new tasks. One of the
most commonly used approaches is progressively growing the network architecture by
sharing early layers and splitting later ones by adding new convolutional kernels [151].
Such architectural growth can be horizontal [148,187] or hierarchical via a tree-structured
model [181]. The problem of determining the number of filters to be added to each layer
can be learned by reinforcement learning [183]. The major weakness of these approaches
is that since the network grows during training, the number of parameters increases
drastically as new tasks are added to the network.

2.3.2 Using a Small Portion of the Previous Data

To learn new tasks, these methodologies use not only the new training data but also a
small portion of the old data [73,107,138]. These methods usually consist in learning new
tasks from the current training data and remembering old tasks from a small fraction
of the previous data. Which samples to keep from the previous training data can be
determined by training a Support Vector Machine (SVM) [99]. The samples in the
previous data that correspond to support vectors of the SVM can be stored to remember
the former classes when the network is adapted to the new training data. Instead of
using the old data directly, fake data resembling the previous data can be generated by
generative adversarial networks (GANs) as well [158,180].

2.3.3 Regularizing the Network

These methods mostly regularize the network by finding the important neurons for old
tasks and preventing them from changing drastically to maintain the performance for
the previous tasks. It has been proven that many configurations of the network pa-
rameters may produce the same result [162]. Inspired by this idea, several approaches,
which try to find a configuration of the network parameters that well represents both the
previous and the new training data have been published. Kirkpatrick et al. introduced
an elastic weight consolidation (EWC) term, which is a multiplication of the impor-
tance values of the parameters for the old tasks and quadratic penalty on difference
between the parameters of the previous and the updated networks [91]. The importance
values of the parameters are measured by the estimated diagonal Fisher information
matrix. The same work has been extended by rotating the Fisher matrix [105]. Another
extension is combining the trained models for all the tasks via incremental moment
matching (IMM) [97]. The elastic weight consolidation can be performed in online fash-
ion as well [191]. Aljundi et al. determine the importance of each neuron by averaging
gradients of the network outputs with respect to the parameters of the neurons [5]. Ran-
nen et al. reconstruct features from the previous data using auto-encoders and use them
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to preserve the information, which the old tasks rely upon [137]. Some methods aim at
learning a mask marking the important neurons for old tasks [114,115]. They update only
the masked out neurons when learning new tasks. Fernando et al. find paths through the
network, which represent a subset of parameters by using tournament selection genetic
algorithm [52]. In the training stage, only the neurons that are located along the paths
are updated. Srivastava et al. proposed a method based on adaptive compression. There
are also relevant contributions based on Bayesian inference [126,142,192].

2.3.4 Knowledge Distillation

In the context of neural networks, knowledge distillation means transferring the knowl-
edge from a network or an assembly of several networks to a smaller network [69].
This strategy has inspired several approaches on incremental learning. It is quite com-
mon to facilitate a distillation loss in order to maintain performance for the previous
tasks [28, 55, 101]. Shmelkov et al. proposed another knowledge distillation based ap-
proach that deals with incremental object detection and classification tasks at the same
time.

2.4 Contributions

The contributions of this chapter are as follows:

� We propose an incremental learning methodology for semantic segmentation prob-
lem, where the network learns segmenting new classes without deteriorating per-
formance for the previously learned classes, even when the entire previous training
data are not stored. To the best of our knowledge, this is the first work which
proposes a solution for the incremental semantic segmentation problem.

� We validate effectiveness of our approach on both satellite and aerial images. Our
experiments address two common real-world problems, in which the former is the
situation of retrieving stream of training data, where in each time step the data
contain satellite images collected from different locations in the world and anno-
tations for separate classes, the latter is the case where label maps for the same
geographic area are provided sequentially.

2.5 Method

2.5.1 Network Architecture

Our network (see Fig. 2.2) is a variant of U-net, which consists of an encoder that is
architecturally the same as the first 13 convolutional layers of VGG16 [160], a corre-
sponding decoder, mapping low resolution encoder feature maps to original input image
size of outputs, and two center convolutional layers. We prefer to use VGG16 as the
encoder, because it provides a good compromise between complexity and performance,
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Figure 2.2: The network structure. The number below each layer corresponds to number
of filters. We refer the last layer shown by yellow color as the classification, and the rest
as the shared layers.

as it is not as deep as e.g., VGG19 but still it is one of the best performers on famous
benchmark challenges (e.g., ImageNet [147]).

The output of each pooling layer in the encoder is concatenated with the output of
the symmetric deconvolutional layer in the decoder through skip connections to combine
higher level features with the lower ones. Kernel size and stride in all the convolutional
layers are 3 and 1 respectively. Padding parameter in the convolutional layers is set to
1 so as to keep height and width of output the same as output of the previous layer.
The max-pooling layers having 2× 2 window with stride 2 are used to halve width and
height of the previous layer. In order to upsample the output of the previous layer by
factor of 2, both kernel size and stride parameters are set to 2 in deconvolutional layers.
Except the last convolutional layer, all the convolution and deconvolution operations are
followed by a ReLU. Since batch normalization uses the memory inefficiently, we prefer
not to use it. We add more patches in a batch instead.

Multi-task learning is the learning strategy which solves multiple problems at the
same time by learning all the tasks jointly. In deep neural networks, bottom layers enable
to share information for all the tasks, whereas the last layers are dedicated to provide
a solution for each task [26, 146]. In incremental semantic segmentation problem, since
the label maps of a remote sensing image for a class or several classes come sequentially,
we consider the segmentation tasks as a multi-task learning problem, where performing
a binary classification for each class corresponds to a different task. The output of our
network is a 3-D matrix that is a stack of binary predicted maps for all the classes. In
the test stage, to generate a binary segmentation for each class, we first convert outputs
of the final convolutional layers to probability maps using sigmoid; then, we threshold
the probabilities at 0.5.
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Figure 2.3: Adapting the network to new training data. Although annotations for only
2 classes are provided, the updated network is still able to learn the current classes as
well as the previously learned 2 classes with the help of the memory network.
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2.5.2 Adapting the Network to the New Training Data

To explain the adaptation phase, let us assume that the current training data are in-
dicated by Dcurr. We denote sets of the previously learned classes and the classes in
Dcurr by Lprev and Lcurr, where Lprev ∩ Lcurr = ∅. The main goals we try to achieve
during adaptation are to update the formerly trained network so that segmentation ca-
pabilities for Lcurr are added, and to fine-tune the network on Dcurr for Lprev, although
annotations for Lprev are not available in Dcurr. The output of the updated network is
the matrix consisting of binary segmentations for Lupdated = Lprev ∪ Lcurr.

We use the knowledge distillation from the previously trained network, which we
refer to as memory network, as a proxy in absence of the ground-truth for Lprev in
Dcurr. We create an updated network, having exactly the same structure except the last
classification layer, which has |Lupdated| filters instead of |Lprev|. During creation of the
updated network, additional |Lcurr| filters in the last classification layer are initialized
using Xavier initialization [59], and the rest of the parameters are loaded from the
memory network. When Dcurr arrive, the incoming label map is first converted to a 3-D
matrix, consisting of binary ground-truth for Lcurr. The probability maps generated
by the memory network are concatenated with this 3-D matrix to provide information
about Lprev to the updated network. The final 3-D matrix as well as the input image
in Dcurr are fed to the network as the new training data. While concatenating output
of the memory network with the new ground-truth, we prefer to use soft probability
maps generated by the memory network rather than hard classification maps in order
to reduce the propagated error rate, caused by imprecision in output of the memory
network, at each time step of incremental learning.

Let us denote the binary target label vectors for n training samples i = 1 . . . n in a

batch from Dcurr by y
(i)
curr and the predicted probabilities for Lprev from the memory

network by ŷ
(i)
mem. We denote by ŷ

(i)
up curr and ŷ

(i)
up prev, the predicted probabilities for

Lcurr and Lprev from the updated network. The classification loss Lclass quantifies

mismatch between y
(i)
curr and ŷ

(i)
up curr. In order to compute Lclass, since we deal with

generation of a binary segmentation for each class as a separate task, we use sigmoid
cross entropy loss defined as:

Lclass = − 1

n|Lcurr|
n∑
i=1

|Lcurr|∑
k=1

[
y
(i)
curr(k)log

(
ŷ
(i)
up curr(k)

)
+
(

1− y(i)curr(k)
)

log
(

1− ŷ(i)up curr(k)
) ]
.

(2.1)
In order for the updated network to learn Lprev on Dcurr, we try to keep discrepancy

between ŷ
(i)
up prev and ŷ

(i)
mem as small as possible. The distillation loss Ldistil, which

measures this disparity is defined as:

Ldistil = − 1

n|Lprev|
n∑
i=1

|Lprev |∑
k=1

[
ŷ
(i)
mem(k)log

(
ŷ
(i)
up prev(k)

)
+
(

1− ŷ(i)mem(k)

)
log
(

1− ŷ(i)up prev(k)
) ]
.

(2.2)

28
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Figure 2.4: An example optimization sequence. The new classes are added on Training
data 3 to the network, which was already trained on Training data 1 and Training data 2.
The optimization sequence is as follows: Lrem on Training data 1, Ladapt on Training
data 3, Lrem on Training data 2, and Ladapt on Training data 3 again.

The overall adaptation loss Ladapt that is optimized during adaptation is computed by
adding these two terms:

Ladapt = Lclass + Ldistil. (2.3)

Fig. 2.3 depicts how the network is adapted to the new data.

2.5.3 Remembering From the Previous Training Data

We denote the previous training data by Dprev = D
(1)
prev ∪ D(2)

prev ∪ . . . ∪ D(m)
prev, where

D
(1)
prev corresponds to the first data, D

(2)
prev is the second data, and so forth. If the

training data are captured sequentially from different geographic locations, in order
for the network not to overfit on Dcurr for Lprev, we remind the previously learned
information by systematically showing patches from the stored, small portion of Dprev.
Since in most cases classes in the training data are highly imbalanced, when determining

which training patches to store in D
(j)
prev, random selection may cause storing no samples

for less frequent classes. For this reason, we take the class imbalance problem into

account. We first compute weight wc of each class c ∈ L(j)prev in D
(j)
prev as:

wc =
median(fc|c ∈ L(j)prev)

fc
, (2.4)

where fc denotes frequency of the pixels that are labeled as class c. We then assign an

importance value I(l) to the lth training patch in D
(j)
prev as:

I(l) =
∑

c∈L(j)prev

wcf
(l)
c , (2.5)

where f
(l)
c denotes the number of pixels, belonging to c in the patch. We store certain

number of patches that have the highest I value, which we denote by D
(j)
prev imp. In order

to diversify the patches that are fed to the network, we randomly select a small fraction

of the remaining patches. We denote the randomly chosen patches by D
(j)
prev random. The
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Table 2.1: Advantages and disadvantages of each method.
Method Static l. Multiple l. Fixed repr. Fine-tuning Inc. L. (ours)

Tr. Time
fast fast very fast fast medium

(1 iter.)

Test
fast very slow fast fast fast

Time

Performance inc. learn.
good very bad good goodfor new is not

classes supported

Performance inc. learn.
good good very bad goodfor old is not

classes supported

Convergence inc. learn.
medium cannot learn very fast very fasttime for is not

new classes supported

Number of
1 N 1 1 1

Classifiers

data to be stored from D
(j)
prev for remembering are D

(j)
prev rem = D

(j)
prev imp ∪ D

(j)
prev random.

The number of patches that is selected randomly and using the importance value needs
to be determined by the end user.

Let us denote the target vector for the ith sample among n samples in a batch

from D
(j)
prev rem by y

(j)(i)
prev . We denote by ŷ

(j)(i)
up prev the predicted vector from the updated

network for the same sample. The remembering loss Lrem is calculated as:

Lrem = − 1

n|L(j)prev|

n∑
i=1

|L(j)prev |∑
k=1

[
y
(j)(i)
prev(k)log

(
ŷ
(j)(i)
up prev(k)

)
+
(

1− y(j)(i)prev(k)

)
log
(

1− ŷ(j)(i)up prev(k)

) ]
.

(2.6)

During remembering from D
(j)
prev, we freeze the classification layers that are responsible

for c 6∈ L(j)prev and optimize the rest of the network. The user needs to determine how often
and on which data Lrem is optimized. An example optimization sequence is depicted in
Fig. 2.4.

2.6 Experiments

2.6.1 Methods Used for Comparison

Table 2.1 compares our methodology with the following approaches:

Static learning. This is the traditional learning approach, where we assume that all
the training images and annotations for the same classes are available at the time of
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Figure 2.5: Example network structures for fixed representation and fine-tuning. During
the test stage, classification layers for the previous classes are appended to the network
to generate label maps for all the classes.

training. In real-world segmentation problems, this condition is extremely hard to meet.
This method does not support learning new classes continually.

Multiple learning. In this learning strategy, we train an additional classifier whenever
the new training data are obtained. The number of classifiers that needs to be stored
increases linearly. In addition, because the test images have to be segmented using all
the trained classifiers to generate a map for each class, the test stage might be extremely
long. Therefore, this approach is overly expensive in terms of storage and segmentation
efficiency.

Fixed representation. To learn new classes, we remove the classification layers,
which were optimized for the previous classes, and plug in new classification layers
dedicated for the new classes. The newly added classification layers are initialized with
Xavier method [59]. When new training data arrive, we optimize only the newly added
classification layers and freeze the rest of the network. Hence, training is very fast. Dur-
ing testing, we append the formerly trained classification layers back to the network to
generate label maps for all the classes. The major issue is that although performance
for the initial classes is preserved, the network struggles in learning new classes, because
the previously extracted features are not optimized to represent the new classes.
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Table 2.2: Training and validation cities in the first experiment.
Data Type and

City
Area

Classes for
Class Frequency (%)mult. learning

static learning
(km2)fixed rep.

fine-tuning
Build. High ve. Road Rail. Water

inc. learning

T
ra

in
1

building

T
ra

in

Bad Ischl 27.71 5.51 35.38 5.87 0.16 2.58
Osttirol 28.38 6.96 15.37 7.72 0.44 0.84

Voitsberg 28.70 7.47 30.21 6.54 0.44 0.98
Bayonne-Bi. 66.58 15.21 19.45 12.66 0.45 1.26

high veg.
Bourges 72.20 9.81 14.83 10.10 0.42 0.92

building Draguignan 25.54 9.64 34.99 10.24 0.00 0.08
Nı̂mes 26.62 21.78 19.65 14.10 1.30 0.04

T
ra

in
2

road
high veg. Enns 64.49 6.25 12.54 6.81 1.36 2.82

Innsbruck 132.50 8.92 22.78 7.00 0.90 2.97
road Klagenfurt 67.73 10.96 18.89 9.05 0.65 1.20

railway
Sankt Pö. 87.17 6.68 25.13 5.40 0.99 1.70

railway Béziers 25.75 19.09 10.91 16.10 1.52 0.78
Lyon 187.14 18.48 16.82 12.59 1.41 2.83

T
ra

in
3

water

water Albi 25.76 17.20 15.19 13.93 0.55 1.65
Villach 43.59 9.26 19.91 9.61 1.02 2.69

Salzburg 134.71 9.44 23.88 7.90 0.79 2.41
Angers 74.16 15.78 15.97 10.40 0.63 1.39
Douai 58.10 13.31 14.62 8.63 0.93 2.09

V
a
li
d
at

io
n

building
Amstetten 14.26 11.11 15.61 9.67 1.85 1.72

high veg.
Leibnitz 32.72 6.96 16.84 6.99 0.34 3.30

road
Lille 117.58 18.36 15.40 11.39 1.32 1.02

railway
Roanne 25.84 18.44 8.33 14.00 0.78 0.95

water

Fine-tuning. We use a similar strategy that we follow in fixed representation. The
only difference is that while training the network, instead of only the classification layers,
we optimize the whole network using only the new training data. In this methodology,
although the network performs a remarkable performance for the new classes, it suffers
from catastrophic forgetting. Example network structures for fixed representation and
fine-tuning, for both training and test phases, are illustrated in Fig. 2.5.

For our approach, it is required for the memory network to generate probability maps
from the training patches to optimize Ldistil. Therefore, training time for our approach
is slightly longer than the others. This can be considered as the only disadvantage of
the proposed methodology.

2.6.2 Data Sets and Evaluation Metrics

The first data we use contain 8-bit satellite images collected from 22 different cities in
Europe. 11 of these cities are located in France and the other 11 are in Austria. The
cities cover the total area of approximately 1367 km2. The images were collected from

32



Table 2.3: F1 scores on the first data set. The numbers with a star (*) denote the
quantitative results for static learning (the upper bound).

Method Epoch Building High ve. Road Rail. Water Overall

static l. 500 80.74* 71.26* 66.21* 61.72* 82.74* 72.54*

multiple l. 500 71.25 68.88 59.28 55.65 79.83 66.98

fixed repr.
1000 71.25 68.88 2.71 0.00 —
1500 71.25 68.88 2.71 0.00 0.11 28.59

fine-tuning
1000 28.91 0.17 59.30 60.06 —
1500 27.90 7.71 0.14 0.01 90.20 25.19

inc. l. 1000 74.19 66.32 56.57 50.87 —
w/o Lrem 1500 74.91 66.87 58.14 51.70 82.32 66.79

inc. l.
1000 75.98 72.38 57.29 50.18 —
1500 76.78 72.06 59.58 53.07 78.94 68.09

Training Set 1 Training Set 2 Tr. Set 3

the following cities: Amstetten, Enns, Leibnitz, Salzburg, Villach, Bad Ischl, Innsbruck,
Klagenfurt, Osttirol, Sankt Pölten, Voitsberg in Austria, and Albi, Angers, Bayonne-
Biarritz, Béziers, Bourges, Douai, Draguignan, Lille, Lyon, Nı̂mes, Roanne in France.
The spectral bands of the images are composed of Red (R), Green (G), and Blue (B)
channels. The spatial resolution is 1 m. Since the images were captured over different
geographic locations, they have different color distributions and visual features. The
annotations for building, road, high vegetation, water, and railway classes are provided.

The other two data sets on which we conduct our experiments are the Vaihingen and
the Potsdam benchmarks provided by the ISPRS [85]. Both data sets contain 8-bit aerial
images. The Vaihingen data set consists of 33 image tiles (of average size 2494 × 2064),
where 16 of them are provided as training and the rest as test. The images comprise
3 spectral bands: Near Infrared (NIR), R, and G. The spatial resolution is 9 cm. The
Potsdam data set includes 38 tiles (of size 6000 × 6000), out of which 24 are dedicated for
training and the remaining for test. The images contain 5 channels: NIR, R, G, B, and
the normalized DSM (nDSM) data. The resolution of the images in this benchmark is
5 cm. Both data sets contain full annotations for 6 classes: impervious surfaces, building,
low vegetation, high vegetation, car, and clutter. However, since only 0.78% of the pixels
in the Vaihingen data set is labeled as clutter, we ignore this class in the experiments
on this benchmark. As of 2018 summer, the competition for these benchmarks is over,
and all the reference data are publicly available. Hence, we use all the training tiles for
training, and test tiles for validation. To account for the labeling mistakes while the data
sets are annotated, the eroded ground-truth is also provided. We use this ground-truth
to assess the performance on the benchmarks.

To quantitatively assess the performance for each class, we compare the binary pre-
dicted map and the binary ground-truth using two evaluation metrics: intersection over
union (IoU) [42] and F1-score [74].
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(a) k = 1.4 (b) k = 0.6 (c) Image (d) γ = 0.6 (e) γ = 1.4

Figure 2.6: Illustration of the contrast change (a - b) and the gamma correction (d - e)
for an example input image (c).
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Figure 2.7: IoU vs. number of epochs plots for static learning on the 4 validation cities
in the first experiment.
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Figure 2.8: IoU vs. number of epochs plots for multiple learning on the 4 validation
cities in the first experiment.
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Figure 2.9: IoU vs. number of epochs plots for fixed representation on the 4 validation
cities in the first experiment.
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Figure 2.10: IoU vs. number of epochs plots for incremental learning on the 4 validation
cities in the first experiment.
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Figure 2.11: Close-ups from validation cities in the first data set. Classes: background
(black), building (red), road (white), railway (yellow), high vegetation (green), and water
(blue).
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2.6.3 Experiments on the First Data Set

In this experimental setup, we suppose that the training data are obtained sequentially
in time, and every snapshot of the streaming training data contains the satellite images
from different cities and label maps for separate classes. We use 9 cities located in Austria
and 9 cities in France as training data. We use 2 cities from each country for validation.
We split the training cities into three sets as reported in Table 2.1 by paying attention
that the cities in each set are the ones, which contain a reasonable amount of samples
for the given annotations, and whose color distributions are as diverse as possible. We
assume that the training cities are streamed in this order: Train1, Train2, Train3. For
multiple learning, fixed representation, and fine-tuning we assume that the previous data
are not accessible. For incremental learning, we store only 30% of the training patches
in the previous data, out of which 15% are selected using the importance value and
15% are chosen randomly, as explained in section 2.5.3. We also evaluate our approach
without accessing to the previous data (i.e., without optimizing Lrem), which we refer
as incremental learning w/o Lrem. Since static learning does not support adding new
classes continually, for this approach, we use all the training images from 18 different
cities and label maps of all 5 classes for each image when training a network. For this
reason, we expect it to be an obvious upper bound of the other methods.

During the pre-processing step, we split all the training images into 384 × 384 patches
with an overlap of 32 × 32 pixels between the neighboring patches. The validation
images are divided into 2240 × 2240 patches with 64 × 64 pixels of overlap. After all
the validation patches are classified, they are combined back to get the original size
classification maps. Because the satellite images arrive sequentially (except for static
learning), it is not possible to compute mean values for the image channels. Hence, for
the normalization, we subtract 127 from all the pixels, as the images are 8 bit.

We train a single model for static learning using the whole training data for 500
epochs, in which each epoch has 100 iterations. For multiple learning, we train 3 sepa-
rate models from scratch on Train1, Train2, and Train3 with the same hyper-parameters.
For fixed representation, fine-tuning, and the proposed incremental learning methodolo-
gies, every time when new classes are added from new data, we optimize the network
for the same number of epochs and iterations as for static learning and multiple learn-
ing. In every 5 training iterations of the network for incremental learning approach on
Train2, we optimize Lrem on Train1 for 1 iteration and Ladapt for the next consecutive
4 iterations. During the training on Train3, since the network has already learned in-
formation from both Train1 and Train2, we prefer to remind the network the previously
learned information more often. On Train3, the optimization sequence as follows: Lrem
on Train1 for 1 iteration, Ladapt for 2 iterations, Lrem on Train2 for 1 iteration, and
Ladapt for 2 iterations again.

To update parameters of the network, we use Adam optimizer, where the learning
rate is 0.0001, exponential decay rate for the first and the second moment estimates are
0.9 and 0.999, respectively. In every training iteration, a mini-batch of 12 patches is
used for the optimization. When sampling a patch, we first select a random country
(i.e., Austria or France). We then sample a random patch belonging to the city, which
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is also randomly chosen from the selected country. While training the network we apply
online data augmentation to enrich the training data. The patches are augmented by
random vertical/horizontal flips, 0/90/180/270 degrees of rotations, and distorting their
radiometry by random contrast change and gamma correction. The contrast of each
channel in the image is changed as:

xcurr = (xprev − µ) ∗ k + µ, (2.7)

where xprev and µ are the pixel value and mean of all the pixels before the change, xcurr
is the pixel value after the change, and k is the distortion factor, for which we generate
a random value between 0.75 and 1.5. Gamma correction is formulated as:

xcurr = xprev
γ , (2.8)

where γ is the correction factor, which is drawn uniformly between 0.75 and 1.25. In
Eqs. 2.7 and 2.8, we assume that the pixel values range between [0-1]. Fig. 2.6 illustrates
the effect of gamma correction and the contrast change.

The overall F1-scores of all the classes on the first data set for each method are
reported in Table 2.3. The method achieving the closest performance to the performance
of static learning is highlighted. Figs. 2.7 to 2.10 depict the change of IoU values on the
validation cities as the training progresses. Visual close-up results for static learning,
multiple learning, incremental learning w/o rem, and incremental learning generated by
the final models are shown in Fig. 2.11. Although our network generates a binary label
map for each class, for the sake of concise and better visualization, we provide multi-
class predicted maps obtained by assigning each pixel to the class, for which the highest
probability is produced. In the figure, the pixels, having no probability higher than or
equal to 0.5 are labeled as background.

As expected, static learning outperforms the other approaches on the first data set
(see Table 2.3), because in the training stage, we feed much more and diverse training
data to the model compared to the other approaches. Although static learning is superior
to the other approaches on the first data set, it is applicable only if the data are static
and the annotations are unique, which is almost never the case in real-world applications.
In multiple learning, even if the previous data are not accessible, predicted maps for all
the presented classes can be generated. However, because of the growing number of
classifiers, this approach is inefficient in terms of test efficiency and storage. In addition,
for each individual classifier, learning is limited to the data, on which the classifier was
initially trained. For instance, building - high vegetation classifier trained on Train1 can
not be fine-tuned on Train2, as annotations for these classes are not available on Train2.

In fixed representation methodology, the exact performance for the initially intro-
duced classes is retained as neither the shared nor the classification layers for these
classes change. On the other hand, the network performs extremely poorly for the new
classes as shown in Fig. 2.9 and reported in Table 2.3. Overall, we conclude that shared
layers of the network must be adapted to the new training data. When we apply fine-
tuning, since instead of initializing all the parameters randomly, the extracted features
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Figure 2.12: Comparison of incremental learning and incremental learning w/o Lrem for
high vegetation class.

for the previous classes are used, performance for the new classes is remarkable, espe-
cially when there is only one class to be added. For instance, it is the best performer for
water class. However, the results justify that the network catastrophically forgets the
previously learned information.

As reported in Table 2.3, incremental learning exhibits the closest performance to
static learning. Since our approach enables the network to learn the old classes on the
new data and remember them from the previous data, the performance for the previous
classes improves over time. If the previous data are never shown, the performance for the
old classes may decrease as a result of adapting the network to the new data completely
and imprecision of output of the memory network on the new data for the previous
classes. Fig. 2.12 compares incremental learning and incremental learning w/o Lrem
for high vegetation before and after adding road and railway classes on Train2 (i.e.,
before and after the 500th epoch) to the building & high vegetation classifier trained
on Train1. The close-ups from Roanne in Fig. 2.11 show that incremental learning w/o
Lrem fails to detect a lot of high vegetation, whereas incremental learning exhibits a
good performance. We also observe that incremental learning significantly outperforms
multiple learning for building class. The reason is that the network in multiple learning
learns building only on Train1, while incremental learning facilitates learning the same
class from all the training data sequentially. Although when buildings are small and
regular shaped as in Leibnitz and Roanne, both approaches generate similar outputs,
multiple learning is not able to delineate the borders very well when buildings cover a
large area as in Amstetten. Road and Railway classes turn out to be the most difficult
classes, as the numeric results for them are substantially lower than for the other classes.
As can be seen in the close-up from Lille, they visually look quite similar, which makes
the classifiers confuse between them in some cases. Incremental learning seems detecting
the roads and railways that are mis-classified by incremental learning w/o Lrem.
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Table 2.4: F1 scores on the Vaihingen benchmark data set. The numbers with a star (*)
denote the quantitative results for static learning (the upper bound).

Method Epoch Build. High v. Imp. s. Low v. Car Overall

static l. 500 93.61* 87.87* 91.55* 81.05* 82.83* 87.38*

multiple l. 500 94.43 88.12 90.71 80.41 87.90 88.31

fixed repr.
1000 94.43 88.12 87.09 76.39 —
1500 94.43 88.12 87.09 76.39 13.37 71.88

fine-tuning
1000 52.40 0.03 91.83 80.99 —
1500 0.02 0.00 43.81 0.01 86.18 26.00

inc. l. 1000 94.34 88.02 91.42 81.65 —
w/o Lrem 1500 94.31 88.07 91.51 81.60 81.69 87.44

Training Set 1 Training Set 2 Tr. Set 3

Table 2.5: F1 scores on the Postdam benchmark data set. The numbers with a star (*)
denote the quantitative results for static learning (the upper bound).

Method Epoch Build. High v. Clut. Imp. s. Low v. Car Ovr.

static l. 500 96.83* 85.04* 54.57* 92.62* 85.69* 94.84* 84.93*

mult. l. 500 96.59 85.25 50.82 92.07 84.82 95.36 84.15

fixed repr.
1000 96.59 85.25 50.82 86.76 79.98 —
1500 96.59 85.25 50.82 86.76 79.98 72.14 78.59

fine-tuning
1000 0.00 44.53 3.23 92.13 85.45 —
1500 1.62 24.73 0.00 65.00 0.01 94.60 30.99

inc. l. 1000 96.91 86.12 50.23 92.20 85.64 —
w/o Lrem 1500 96.86 85.28 51.56 92.10 85.28 94.43 84.25

Training Set 1 Training Set 2 T. S. 3
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Figure 2.13: IoU vs. number of epochs plots for static learning on the Vaihingen bench-
mark.
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Figure 2.14: IoU vs. number of epochs plots for multiple learning on the Vaihingen
benchmark.
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Figure 2.15: IoU vs. number of epochs plots for fixed representation on the Vaihingen
benchmark.
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Figure 2.16: IoU vs. number of epochs plots for incremental learning w/o Lrem on the
Vaihingen benchmark.
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Figure 2.17: Close-ups from the benchmarks. Classes: background (black), impervious
surfaces (white), building (blue), low vegetation (cyan), high vegetation (green), car
(yellow), and clutter (red). The results in the upper row are from the Vaihingen data
set, and the bottom row are from the Potsdam benchmark.

2.6.4 Experiments on the Benchmarks

In the experiments on the benchmarks, we assume that we have access to the whole
training tiles, but we are provided the annotations sequentially. We suppose that every
time when new annotations are retrieved, the previous ones are not accessible. On
the Vaihingen data set, we consider that we retrieve label maps for building and high
vegetation classes in the beginning. We are then given the ground-truth for impervious
surfaces and low vegetation. Finally, we receive the annotations for car class. On the
Potsdam data set, since there is an additional clutter class, we assume that the label
map for this class is also available in the initial training data. For our approach, since
we always use the same training images, we remind the network the old classes using
output of the memory network (i.e., we only optimize Ladapt). On contrary the other
approaches, for static learning, we use all training tiles as well as annotations for all the
classes at once in the training stage.

Because the images in the benchmarks are of much higher resolution than the satellite
images in the first data set, the patches need to be larger to cover a reasonable area.
Therefore, we divide the training tiles into 512 × 512 patches. The validation tiles are
split into 2000 × 2000 patches. The training and validation tiles have 64 × 64 and 120
× 120 pixels of overlap, respectively. We compute a global mean for each channel from
the training tiles and subtract it from all the pixels.

For each approach, we train the same number of models for the same number of
epochs and iterations using the same optimizer with the same parameters as in the
experiments on the first data set. As size of the training patches is larger than in the
previous experiments, we randomly sample 8 patches instead of 12. Another difference
is that since both training and validation patches are from the same city, we augment
the patches by only random flips and rotations.

We present the qualitative and quantitative experimental results on the benchmarks
in a similar way described in Sec. 2.6.3. We report F1-score for each class in Tables 2.4
and 2.5. We depict the plots for IoU vs. number of epochs on the Vaihingen benchmark
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in Figs. 2.13 to 2.16, and close-ups from both benchmarks in Fig. 2.17. As we use all the
annotations at once for static learning, we again choose this approach as the reference
method.

From the IoU vs. # of epochs plots in both experiments, our first observation is
that IoU values for each model, as the training iterations continue, fluctuate much more
on the first data set than on the Vaihingen benchmark. We also observe that models,
trained from the Vaihingen data set converge faster. The reason for these two conclusions
is that in the Vahingen data set, a single aerial image was split into smaller tiles, while
images in the first data set were taken from different cities at different dates; therefore,
they have distinct color variations and visual features. Furthermore, satellite images in
the first data set are of much lower resolution, and the validation set consists of the cities
that are not seen by the network during training. For all these reasons, accuracies for
the same classes (i.e., building and high vegetation) are significantly lower in the first
experiment.

Our observations for fixed representation and fine-tuning are similar to the first
experiment. As can be seen in Fig. 2.15, for fixed representation, although some classes
such as impervious surface and low vegetation can be learned relatively well, the network
performs poorly when the newly added class represents small objects such as cars.

Since training as well as test tiles are from the same city, the output of the memory
network becomes almost the ground-truth for the previous classes. As a result, even if
annotations for the previous classes are not accessible, new classes can be learned while
exhibiting a similar performance for the former classes. We justify this claim in Fig. 2.16,
in which it is demonstrated that IoU plots for the previously learned classes remain quite
flat over time. The predicted maps of the close-ups from Vaihingen in Fig. 2.17 for 3
approaches look very similar. The advantage of our approach is that with the help of the
features for the previous classes, the network converges very fast for the new classes. For
instance, as illustrated in Fig. 2.13, it takes roughly 50 epochs in order for the network
to converge for low vegetation class when static learning is applied, whereas with the
proposed approach, a similar accuracy for the same class can be achieved in only a few
epochs, as depicted in Fig. 2.16.

In this experimental setup, if the classes have distinct visual appearance and features
like in the Vaihingen benchmark, as the classification tasks are shared between several
classifiers, multiple learning performs better especially when the class (e.g., car) has a
low number of samples. As training tiles of the Potsdam data set contain the nDSM
data, detecting car class is easier on this data set than on the Vaihingen benchmark.
As reported in Table 2.5, the gap between multiple learning and the other approaches
is smaller for this class. On the contrary, as can be seen in the last row in Fig. 2.17,
clutter class has high visual similarities with some pixels labeled as impervious surfaces
or low vegetation. Hence, a single classifier that is trained jointly for all the classes,
performs better in distinguishing these classes. Unlike multiple learning, where sev-
eral isolated classifiers are trained, our approach allows joint training via the memory
network. Therefore, our approach performs better for these classes, as confirmed by
Table 2.5. The last row in Fig. 2.17 exemplifies some mis-classified clutter pixels by
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Table 2.6: Training times for each approach
Method Patch Size Batch Size Time for 1 Iter. (seconds)

Inc. learn. 384 12 1.03
Fixed. Repr. 384 12 0.31
The Others 384 12 0.72

Inc. learn. 512 8 1.21
Fixed. Repr. 512 8 0.32
The Others 512 8 0.87

multiple learning but correctly detected by our approach.

2.6.5 Running Times

We have implemented all the approaches in Tensorflow, and conducted all the experi-
ments on an Nvidia Geforce GTX1080 Ti GPU with 11 GB of RAM. Table 2.6 reports
the training times for incremental learning, fixed representation, and the others. Let us
remark that the training times for fine-tuning, multiple learning, and static learning are
almost the same; therefore, we refer to these approaches as the others and report the
average of their training times in the table. Since we optimize only the classification
layer for fixed representation, its training is extremely fast. For incremental learning,
probability maps from the current training batch need to be generated by the memory
network for the knowledge transfer. Hence, the training time in each iteration of incre-
mental learning is about 0.3 seconds longer than those of fine-tuning, multiple learning,
and static learning.

2.7 Concluding Remarks

In remote sensing, it is quite often that data set providers are interested in generating
maps for separate classes. Hence, it is of crucial importance to propose methods that
are able to learn from multiple data sets having annotations for heterogeneous classes. If
a learning system can accomplish this task when a new test image arrives, the classifier
can generate a map for all the classes that it has incrementally learned over time.

In this chapter, we proposed a novel incremental learning methodology, which en-
ables the neural network to learn segmentation capabilities for new classes while retaining
dense labeling abilities for the formerly trained classes without using the entire previous
training data. In our experiments, we first showed that the common learning approaches
are extremely inefficient or inapplicable to learn from streaming data. We then demon-
strated why using only the features extracted for the previous classes is inefficient to learn
new classes. We also provided the results, showing that when the network is trained us-
ing only the new data without having any regularization, the learned information for
the previous classes is catastrophically forgotten. Finally, on three different data sets we
proved that the proposed approach achieves a high performance for new classes without
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forgetting old classes.
The major drawback of the proposed incremental learning approach is that the mem-

ory network generates imperfect probability maps for old classes in the adaptation phase,
when there exists a large data distribution difference between the current and the previ-
ous data sets. Such distribution differences usually originate from various atmospheric
conditions such as sensor characteristics or differences in acquisition. This problem is
referred to as domain adaptation in the literature [175]. The next three chapters tackle
the domain adaptation problem.

As future work, it is worth exploring how to incorporate domain adaptation tech-
niques with our incremental learning methodology so that the trained network could
better generalize to the data collected from new geographic locations.
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Chapter 3

City-to-city Domain Adaptation

3.1 Problem Statement

In this chapter, we deal with unsupervised city-to-city domain adaptation problem. Our
goal is to devise efficient methods enabling to train a classifier on an annotated source
city and to generate high quality maps for an unlabeled target city, under a large data
distribution difference between the cities. The inputs for the proposed approaches are a
satellite image from a source city, its ground-truth in raster format, and a satellite image
from a target city. The desired output is an automatically generated precise raster map
for the satellite image captured over the target city. In the context of domain adaptation,
a satellite image collected over a geographic location can be considered as a domain.
Hence, we use ”domain” and ”a satellite image” statements interchangeably.

3.2 Motivations

Although various benchmarks such as INRIA [111] and SpaceNet [177] have proven that
convolutional neural networks (CNNs) are one of the most promising methods for se-
mantic segmentation of remote sensing data, it is a known issue that their performance
crucially depends on the representativeness of the source data [175]. However, in real-
world remote sensing applications, it is often the case that the source domain is not
representative for the target domain, due to a large data distribution difference between
the domains caused by various reasons such as atmospheric effects, intra-class varia-
tions, and differences in acquisition. The large data distribution difference between the
source and the target domains causes the current state-of-the-art supervised learning
approaches to output unsatisfactory maps [175]. For the same reason, the memory net-
work introduced in the previous chapter outputs imperfect predictions for the previously
learned classes from new satellite images.

The above-mentioned issues have motivated us to develop new methods that are
robust to a considerable data distribution difference between the domains. The most
naive approach to hinder the performance deficiency under a large distribution difference
between the domains is to manually annotate some portions of the target domain to fine-
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tune [110] the already trained model on the source domain. However, such an approach
requires human intervention in the process, and labeling even a small portion of a satellite
image is time-consuming. To increase the generalization capabilities of CNNs, one of
the most commonly used methods is to perform online data augmentation with random
color changes [25]. For instance, gamma correction and random contrast changes are
widespread used in remote sensing [170, 171]. However, these augmentation approaches
are limited when it comes to adapting the model from one domain to another, when
there exists a significant domain shift between the images.

A more powerful data augmentation approach would be to use generative adversarial
networks (GANs) [61] to generate a fake source domain with a similar data distribution
to that of a target domain [166]. If this task can be achieved, one can use the fake
source domain and the ground-truth for the real source domain to train a classifier or to
fine-tune the classifier already trained on the real source domain. The main challenge
here is to generate a fake source domain that looks like the target domain while keeping
it semantically consistent with the real source domain. For example, if the method
replaces some objects with others or adds artificial structures to the fake domain in the
generation process, the fake domain would not match with the ground-truth of the real
source domain, and we could not train a classifier.

In this chapter, we tackle the aforementioned challenge to address the city-to-city
domain adaptation problem.

3.3 Related Work

The existing approaches on domain adaptation problem can be split into two main
categories as adapting the classifier and adapting the inputs.

3.3.1 Adapting the Classifier

The goal of the approaches falling under this category is to adapt a classifier from an
annotated source domain to an unlabeled target domain, without modifying the data.

A common approach is to perform multi-task learning, where one of the tasks is to
train a classifier from the source domain via common supervised learning approaches,
and the other one is to align the features extracted from both source and target domains
by adversarial training [72, 76, 173]. A similar approach [48] has also been applied to
remote sensing data (SpaceNet challenge [177]).

The adaptation can also be performed by expectation-maximization algorithm (EM),
variants of support vector machine (SVM) [41], and covariance and tensor alignment.
Bruzzone et al. described an approach that updates the parameters of the previously
trained classifier on the unlabeled target domain via the EM algorithm [22]. This ap-
proach has then been extended to a cascade classification framework [23] and multiple
cascade classifiers pipeline [19]. Bruzzone and Marconcini proposed the domain adap-
tation support vector machine (DASVM) [20]. Ma et al. introduced an approach based
on centroid and covariance alignment [109]. Qin et al. used tensor alignment for domain
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adaptation [135].
Other attempts in the literature aim at solving the domain adaptation problem by

regularizing or normalizing specific layers of the network, or by self-learning. The fully
convolutional tri-branch network (FCTN) [193] and the class-balanced self learning ap-
proach (CBST) [200] are examples of self-learning based methods. Romijnders et al. pro-
posed a new domain agnostic normalization layer [143]. Saito et al. introduced a new
adversarial dropout regularization technique [150]. The IBN-Net [129] combined the
batch normalization with the instance normalization [176]. Zhu et al. proposed a new
conservative loss [199]. Gross et al. presented a non-linear feature normalization for
domain adaptation of hyper-spectral data [63].

3.3.2 Adapting the Inputs

These methods usually aim at either modifying the source domain to make its data
distribution similar to that of the target domain, or mapping the domains into a common
space to make their distributions close to each other. If the former approach is adopted,
a classifier is trained on the modified source domain and evaluated on the real target
domain. If the latter approach is preferred, a classifier needs to be trained on the
modified source domain and evaluated on the modified target domain.

To match the distribution of the source domain with the distribution of the target
domain, histogram matching [60, 82] and graph matching [174] are commonly used.
Another way is to use style transfer or image-to-image translation (I2I) methods to
generate a fake source domain stylized as the target domain. For instance, CyCADA [71]
generates a fake source domain with CycleGAN [198] and uses it to train a classifier.
Similarly, Benjdira et al. use CycleGAN for I2I between aerial images [13]. Other state-
of-the-art I2I approaches such as UNIT [104], MUNIT [78], DRIT [96] are also relevant
for domain adaptation.

To bridge the distribution gap between the domains by mapping them into a common
space, one may think of applying color constancy algorithms [3] such as gray-world [24]
and gamut [53]. These algorithms assume that colors of the objects are highly affected
by the color of the illuminant and try to remove this effect. In some cases, the domain
shift can be corrected by radiometric correction [86,128] as well.

3.4 Contributions

The unsupervised domain adaptation assumes that annotations for any part of the target
domain are not available, and aims at generating a high quality map even when there is
a significant distribution difference between the domains. To tackle this challenge, the
way we approach the problem is methodologically based on adapting the inputs. The
contributions of this chapter are as follows:

� ColorMapGAN and SemI2I: We propose two novel GANs based I2I approaches,
coined ColorMapGAN and SemI2I, which are able to generate a target stylized
fake source domain that is semantically consistent with the real source domain.
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After generating the fake domain, we fine-tune the already trained classifier using
the fake source domain and the ground-truth of the real source domain.

� Lower complexity: The training time of both approaches are shorter than the exist-
ing GANs due to their simple architectural designs. Especially the training time of
ColorMapGAN is considerably short, because its generator does not perform any
convolution or pooling operations unlike the GANs in the literature. It transforms
the colors of the source domain with only one element-wise matrix multiplication
and one matrix addition.

� Validation on Pléiades data: We perform city-to-city adaptation between two im-
age pairs collected over four European cities by Pléiades satellite. We compare our
approaches with nine competitive methods and verify that our techniques outper-
form the others.

3.5 Background on Generative Adversarial Networks

In machine learning, we can divide the models trained in a supervised setting into two
groups: discriminative and generative models. In the field of image analysis, the discrim-
inative models are usually trained to learn a mapping from a high dimensional input to
class labels as in image categorization and segmentation problems. On the other hand,
the generative models aim to estimate the distribution of the data samples so that new
samples can be drawn from the estimation. In 2014, Goodfellow et al. proposed the
generative adversarial networks (GANs) [61], which is a combination of generative and
discriminative models.

GANs usually comprise a generative model G and a discriminative model D. The
goal of G is to estimate the distribution of the real data and to output fake data from
the estimation. G takes a random noise z as input, and represents a mapping to data
space G(z). We denote the distribution of the real data x by p(x) and a prior on input
noise variables by p(z). Let us assume that the real data x and the fake data G(z) are
indicated by 1 and 0, respectively. D outputs a scalar between 0 and 1, and aims to
maximize the probability of labeling x and G(z) correctly. In other words, the goal of
D is to discriminate between the real and the fake data. The objective function for D
that is maximized during training is described as:

max
D

V (D) = Ex∼p(x)log[D(x)] + Ez∼p(z)[log(1−D(G(z)))], (3.1)

where E is the expected value. G is simultaneously trained to minimize the objective
function defined as:

min
G
V (G) = Ez∼p(z)[log(1−D(G(z)))]. (3.2)

As a result, the minimax game played between G and D could be formulated as:

min
G

max
D

V (D,G) = Ex∼p(x)logD(x) + Ez∼p(z) log(1−D(G(z))). (3.3)
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Once D and G are simultaneously trained for a sufficiently long time, D becomes good
at discriminating the fake and the real data, and G becomes better at generating fake
data that are indistinguishable from the real data.

Although GANs work well with shallow multi-layer perceptrons, they suffer from
instability problems during training when a more complex network is used. Several
approaches have been presented to address the instability issues. In DCGAN [136],
instead of multilayer perceptrons, deep convolutional networks were used in both G and
D, and certain architectural constraints were introduced for a more stable training. In
WGAN [8], rather than the logarithms in Eq. (3.3), Wasserstein distance was used to
compute distance between the distributions, and gradient clipping was applied in the
training stage. WGAN-GP [64] is an extension of WGAN, where a gradient penalty is
performed to solve the limitations of the gradient clipping. LSGAN [116] proved that
adopting the least squares loss function in Eq. (3.3) allows more stabilized training.

Finally, the original GANs have been extended to conditional GANs [123], where
instead of generating the fake data from noise z, both G and D are conditioned on
some extra information y. y can be class labels or data from other modalities. In this
architecture, G learns a mapping from combination of z and y to the data space. If we
consider y as the source domain and x as the target domain, G aims to learn a mapping
from source domain to target domain. Inspired from this idea, conditional GANs have
been used for several I2I approaches [84,198].

3.6 Methods

3.6.1 Overall Segmentation Framework

Fig. 3.1 depicts the overall segmentation framework consisting of 4 steps as follows:

� Training the initial classifier: We train a classifier on the real source domain.

� Image-to-image translation: We generate a target stylized fake source domain
that is semantically consistent with the real source domain using the proposed
ColorMapGAN or SemI2I.

� Fine-tuning: We fine-tune the model obtained in step 1 using the fake source
domain and the ground-truth for the real source domain.

� Classification: Finally, we generate a map for the target domain.

We use a slightly modified version of U-net [144] as the classifier. We replace rectified
linear activation units (ReLU) by leaky rectified linear activation units (Leaky-ReLU)
for a better performance [182]. We also remove the batch normalization operation in
each layer, since it uses the memory inefficiently. In the framework, the steps 1, 3, and
4 are self-explanatory, whereas step 2 needs further explanation.
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Figure 3.1: Overall segmentation framework.

3.6.2 ColorMapGAN

The novelty of the proposed ColorMapGAN lies in the architecturally simple but pow-
erful design of its generator.

We denote a set of patches from the source domain by S = {s1, s2, . . . , sN} and a set
of patches from the target domain by T = {t1, t2, . . . , tM}. G(S) corresponds to the set
of fake source domain patches generated by G. The goal of G is to generate G(S), whose
spectral distribution is as similar as possible to the distribution of T , while keeping G(S)
and S semantically exactly the same. Contrary to the existing GANs in the literature,
we do not use convolutional or pooling layers in G to preserve the exact semantics of S
in G(S). Fig. 3.2 depicts the overall flowchart for the feedforward pass of G.

Let us assume that S and T are composed of 8-bit images comprising red, green,
and blue channels. We denote by R = {0, 1, . . . , 255}, G = {0, 1, . . . , 255}, and B =
{0, 1, . . . 255}, the values each color band of the pixels can take. We denote all the
possible 16, 777, 216 (256× 256× 256) colors by RGB, which is defined as:

RGB = R×G×B, (3.4)

where× stands for the Cartesian product. In order to transform RGB to another color
matrix R′G′B′, we use a scale W and a shift K matrices with the same size as RGB.
R′G′B′ could be computed as:

R′G′B′ = RGB ◦W +K, (3.5)
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Figure 3.2: Overall flowchart for the feedforward pass of the generator in ColorMapGAN.
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where ◦ denotes the element-wise product. The only learnable parameters of our G
are W and K. Before the training starts, we initialize W with ones and K with zeros.
Hence, at the end of the first iteration, the input and the output of G are exactly the
same.

The main bottleneck for computing Eq. (3.5) is the computational complexity. Since
each of RGB, W , and K matrices has more than 50 millions of elements (256 × 256
× 256 × 3), it is not feasible to perform the operation defined in Eq. (3.5) on a GPU.
However, the number of colors in a training image patch is substantially lower than the
number of all the possible colors. Therefore, it is sufficient to update only the elements
of W and K which transform the colors that are available in the training patch. To do
this, we use an index vector I that is defined as:

I = r × 256× 256 + g × 256 + b, (3.6)

where r, g, b are red, green, blue values of all the pixels in the training patch. After
the elements of I are found, we normalize and center each si ∈ S and tj ∈ T by first
dividing by 127.5 and then subtracting 1 so that each color channel ranges between −1
and 1. We then partially update R′G′B′ as:

R′G′B′[I] = RGB[I] ◦W [I] +K[I], (3.7)

where [·] operation corresponds to retrieving the rows of an arbitrary 2-D matrix indexed
by the given vector. Then, in R′G′B′[I], we replace the elements that are bigger than
1 and smaller than -1 by 1 and -1, respectively. To range all the values in R′G′B′[I]
between 0 and 255, we then use the denormalization function DN that is defined as:

DN(p) = b(p+ 1)× 127.5c, (3.8)

where p is a 2-D input matrix. The final output of G can be obtained by reshaping
DN(R′G′B′[I]) back to the shape of the input patch. In each training iteration, we
update only W [I] and K[I].

The discriminator in ColorMapGAN is architecturally the same as the discriminator
of CycleGAN [198] (see Fig. 3.3). Instead of outputting a single scalar for the whole
image patch to determine if the patch is real or fake, this discriminator generates a two-
dimensional matrix. Each element of the matrix is used to locally determine whether
the input patch is real or fake. We then take average of all the elements of the matrix
to yield a final scalar quantifying the realness of the input image patch.

As mentioned in Sec. 3.5, GANs suffer from the instability issues; therefore, other
objective functions have been proposed as an alternative to Eqs. 3.1, 3.2, and 3.3. We
prefer to use the functions presented in LSGAN [116], as they are commonly used in
state-of-the-art I2I methods [78, 96, 104, 198]. In LSGAN, the adversarial loss for D is
defined as:

LDadv
(X,Y ) = Ex[(D(x)− 1)2] + Ey[(D(G(y)))2], (3.9)

where x and y denote randomly sampled patches from X and Y . The adversarial loss
for G is defined as:

LGadv
(X,Y ) = Ey[(D(y)− 1)2]. (3.10)
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Figure 3.3: The architecture of the discriminator used in both ColorMapGAN and
SemI2I. n denotes the patch size, and the number below each layer corresponds to the
number of channels in the activation.

We compute the losses for the discriminator and the generator in ColorMapGAN as:

LColorMapGAN D = LDadv
(T, S) (3.11)

and
LColorMapGAN G = LGadv

(T, S). (3.12)

We simultaneously train D and G in ColorMapGAN by minimizing Eqs. 3.11 and 3.12.

3.6.3 SemI2I

Let us assume that both domains are denoted by A and B, respectively. The essential
goal of SemI2I is to generate a fake A with the style of B, and a fake B with the style
of A. The design of SemI2I is depicted in Fig. 3.4. As can be seen in the figure, there
are two encoders and two decoders. One of the encoders extracts embeddings from A
and fake B, and the other one encodes B and fake A. Similarly, the decoders are used
to decode the embeddings of A and fake B, and B and fake A. In SemI2I, there are also
two discriminators, where one discriminates between A and fake B, and the other one
distinguishes B from fake A. As in ColorMapGAN, we use the same discriminators in
CycleGAN [198].

The crucial components for the style transfer are adaptive instance normalization
(AdaIN [77]) and adversarial losses. To generate a B stylized fake A and an A stylized
fake B, we first encode both A and B using domain specific encoders. In the encoded
embeddings, we compute mean µ and standard deviation σ values of each feature channel.
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Figure 3.4: SemI2I. ks and s stand for kernel size and strides. µ and σ are mean and
standard deviation values for each feature channel of the embeddings. Since SemI2I
performs I2I, one can consider A as source and B as target domains, or vice versa.

The embedding itself has the content information, whereas µ and σ carry the style
information. To combine the content of A with the style of B and the content of B with
the style of A, we first normalize the embeddings by using AdaIN [77] that is defined as:

AdaIN(x, y) = σ(y)

(
x− µ(x)

σ(x)

)
+ µ(y), (3.13)

where x and y denote the embeddings for both domains. AdaIN aligns mean and stan-
dard deviation for each channel of x with those of the channels of y. In other words, it
allows us to switch the styles of A and B. We then decode the normalized embeddings
to generate fake A and fake B. After fake A and fake B are obtained, we need to ensure
that fake A looks like B, and fake B is visually similar to A. To enforce such constraint,
we use the same adversarial losses defined in Eqs. 3.9 and 3.10. The adversarial losses
for the generators and the discriminators in SemI2I are computed as:

LSemI2I D adv = LDadv
(A,B) + LDadv

(B,A) (3.14)

and
LSemI2I G adv = LGadv

(A,B) + LGadv
(B,A). (3.15)

As mentioned in Sec. 3.2, one of the main challenges is to keep A and fake B, and
B and fake A semantically the same. To impose such consistency, we define several
constraints. First of all, we switch the styles of fake A and fake B to obtain A′′ and B′′,
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by following the same steps when we generate fake B and fake A from A and B. In an
ideal transformation A and A′′, and B and B′′ have to be exactly the same. Hence, we
minimize the cross reconstruction loss LSemI2I cross defined as:

LSemI2I cross = |A−A′′|+ |B− B′′|. (3.16)

Secondly, when we decode the embeddings of A and B with their own decoders, we obtain
A′ and B′. Here, since the embedding of a domain is decoded with its own decoder, the
domain itself needs to be reconstructed. Therefore, we force A and A′, and B and B′ to
be as similar as possible. We minimize the self reconstruction loss LSemI2I self that is
computed as:

LSemI2I self = |A−A′|+ |B− B′|. (3.17)

In addition, the textural features of A and fake A, and B and fake B must be very close.
Let us assume that Gr(·, ·) is a function that takes two three-band images as inputs,
converts them to gray-scale images, computes their horizontal and vertical gradients by
Sobel filter, and sums L1 norm between the horizontal and L1 norm between the vertical
gradients. We minimize the edge loss LSemI2I edge as:

LSemI2I edge = Gr(A, fake A) +Gr(B, fake B). (3.18)

Note that other textural features such as Haralick features [65] can be considered as
well. However, we prefer Sobel operator mainly because of its short execution time.

Finally, as it has been proven that the filters in the first convolutional layer of each
encoder learns domain independent low level features such as edges [190], we re-size and
concatenate these low level features from each encoder with the input to each deconvolu-
tion layer in the corresponding decoder (see gray arrows in Fig. 3.4). Such concatenation
allows the decoder to have a footprint of the objects in the real data; therefore, it guides
the decoder to place the right objects in the correct locations. The overall generator loss
for SemI2I becomes:

LSemI2I G = λ1LSemI2I cross+λ2LSemI2I self +λ3LSemI2I edge+λ4LSemI2I G adv, (3.19)

where λ1, λ2, λ3, and λ4 are used to adjust the relative importance of each loss. The
discriminator loss is defined as :

LSemI2I D = λ4LSemI2I D adv. (3.20)

To train SemI2I, we simultaneously minimize LSemI2I G and LSemI2I D.
The combination of an encoder and a decoder constitutes a generator. In the test

stage, to generate a B stylized fake A, we need the encoder A and the decoder B (see the
top left generator in Fig. 3.4 that generates fake A). However, as can be seen in Fig. 3.4,
before feeding the embedding encoded by the encoder A from real A to the decoder B, it
needs to be normalized by AdaIN using µB and σB calculated from the embedding of B.
When generating fake A, one may think of randomly sampling a patch from B, encoding
it by the encoder B, computing its µ and σ values, and using them to normalize the
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embedding of A. However, this is not a good idea, because depending on which patch
is sampled from B, we may end up generating a fake A having a different style in each
run. For instance, a patch sampled from a forest and another patch sampled from an
industrial area will have substantially different µ and σ values, as their styles are quite
different. We have exactly the same problem when generating fake B. In the test stage,
we want SemI2I to generate exactly the same fake data every time when we run it. To
do this, we propose to estimate the global µ and σ values for the embeddings of both
domains via Alg. 1 during the training. In Alg. 1, d rate is a parameter ranging between
0 and 1. Note that this parameter needs to be set to a value that is close to 1 (e.g., 0.95),
so that the current patches would not change the global mean and standard deviation
too much. Once the training is completed, we use the estimated µgB and σgB when
generating fake A. Similarly, we use µgA and σgA while generating fake B.

Algorithm 1: Estimation of the global µ and σ values for the embeddings of
both domains.

output: global mean µgA, µgB and global standard deviation σgA, σgB values
for the embeddings of both domains.

µgA ← 0, σgA ← 0
µgB ← 0, σgB ← 0
d rate← 0.95 ; // decay rate parameter

foreach training iteration do
sample a patch from A, compute µA and σA of its embedding
sample a patch from B, compute µB and σB of its embedding
train SemI2I by minimizing Eqs. 3.19 and 3.20
/* update the global estimations as: */

µgA ← d rate× µgA + (1− d rate)× µA
σgA ← d rate× σgA + (1− d rate)× σA
µgB ← d rate× µgB + (1− d rate)× µB
σgB ← d rate× σgB + (1− d rate)× σB

end

3.7 Experiments

3.7.1 Data Set

We conduct our experiments over Pléiades images collected over four cities: Bad Ischl
and Villach from Austria, Béziers and Roanne from France. Fig. 3.5 depicts a close-up
from each city. The images have been converted to 8-bit, and their spatial resolution
has been reduced to 1 m by the data set providers. The images in the data set contain
red, green, and blue channels. The full annotations for building, road, and tree classes
have been provided. We split the cities into two pairs, where the first pair consists of
Bad Ischl and Villach, and the second pair comprises Béziers and Roanne. To make the
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Table 3.1: The data set.

City # of patches Area (km2)
Class frequency (%)

building road tree

Bad Ischl 457 27.71 5.51 6.03 35.38
Villach 749 43.59 9.26 10.63 19.91
Béziers 407 25.75 19.09 17.62 10.91
Roanne 384 25.84 18.44 8.33 14.78

(a) (b) (c) (d)

Figure 3.5: Close-ups from the four cities used in the experiments. (a) Bad Ischl,
(b) Villach, (c) Béziers, (d) Roanne. The first pair is composed of Bad Ischl and Villach.
Béziers and Roanne constitute the second pair.

experimental setup suitable for the unsupervised domain adaptation problem, when we
split the cities into pairs, we pay attention that radiometry of both cities in each pair
is as different as possible, and the objects belonging to the same class (e.g., building)
have similar structural characteristics. For instance, buildings in Béziers and Roanne
are densely grouped and have mostly rectangular shape, whereas buildings in Bad Ischl
and Villach are more sparsely distributed and mostly square-like shaped. In both pairs,
we first use one of the cities as source and the other one as target. We then switch the
source and the target cities.

In the pre-processing step, we split each satellite image into 256×256 training patches
with an overlap of 32 pixels between neighboring patches. Table 3.1 reports for each
city the number of patches, the total area covered, and the class frequencies. For the
quantitative performance assessment, we use Intersection over Union (IoU) [42] as the
evaluation metric.

3.7.2 Methods Used for Comparison

We compare our segmentation framework with the following approaches:

� U-net [144]: We simply train a U-net from the source city and segment the target
city without performing any type of domain adaptation techniques.

� CycleGAN [198]: In this methodology, there are two generators, one is used
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to learn a mapping from the source domain to the target domain, and the other
one learns the reverse mapping. The methodology requires that after a domain
is mapped to another one, applying a reverse mapping must reconstruct the real
domain. This constraint is enforced by minimizing L1 norm between the real and
the reconstructed domains.

� UNIT [104]: Let us assume that both domains are denoted by X and Y , and x
and y correspond to patches sampled from the domains. The generator of UNIT
has two encoders Ex and Ey and two decoders Gx and Gy. The encoders are
used to embed X and Y to a common space. The fake images are generated by
Gx(Ey(Y )) and Gy(Fx(X)). In an ideal transformation, X and Gx(Ey(Y )), and
Y and Gy(Ex(X)) must have similar statistics.

� MUNIT [78]: It decomposes the images from both domains into content and style
codes. To generate fake images, the content code of one domain and the style code
of another domain are combined via AdaIN [77].

� DRIT [96]: Methodologically DRIT is almost the same as MUNIT. The only
difference is that the content code of one domain and the style code of another
domain are combined by concatenating them.

� Histogram matching [60]: For each color channel, we match the histogram of
the source domain with the histogram of the target domain to correct the spectral
shift between the images.

� Gray-world [24]: It is one of the color constancy algorithms [3]. This algorithm
assumes that the average color of the image should be natural gray, and any devia-
tion from gray is caused by the illuminant. This assumption is used to remove the
effect of the illuminant. We use gray-world algorithm to standardize both domains.

� AdaptSegNet single [173]: It aims at training a domain invariant network that
performs well in segmenting both domains. To do this, the classifier generates
predicted maps for both domains, and the discriminator forces the predicted maps
for the target domain to look like the predictions for the source domain. In the
original paper, DeepLab v2 [32] is used as the classifier. However, Atrous Spatial
Pyramid Pooling (ASPP) in this network reduces the segmentation performance on
satellite images significantly, especially when the image contains objects covering
a small area. Hence, we remove ASPP from the network and directly up-sample
the final classification layer.

� AdaptSegNet multiple [173]: In the same paper, in addition to aligning the
final predictions for both domains, the experimental results with 2 classification
layers and 2 discriminators are also presented. We compare our method with this
strategy as well.

To make a fair comparison between our approaches (i.e., ColorMapGAN and SemI2I)
and CycleGAN, UNIT, MUNIT, DRIT, histogram matching, and gray-world, we replace
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the step 2 in our segmentation framework (see Fig. 3.1) with these algorithms. For gray-
world, we also modify the step 4. Instead of segmenting the real target city, we segment
the target city in which the illuminant effect is removed.

3.7.3 Training Details

In the first step of the framework, we train a U-net with Adam optimizer, where the
learning rate is 0.0001, exponential decay rate for the first and the second moment
estimates are 0.9 and 0.999. In each iteration, we randomly sample a batch of 32 training
patches. We apply online data augmentation with random horizontal/vertical flips and
0/90/180/270 degrees of rotations. We use sigmoid cross entropy as the loss function
and ignore the background class while computing the loss. We optimize the network for
2,500 iterations.

When training both ColorMapGAN and SemI2I, we randomly sample only one patch
from each city. We use Adam optimizer [90] to update the generators and the discrim-
inators. Since the generator of ColorMapGAN is architecturally much simpler than its
discriminator, we prefer to optimize it with a larger learning rate. For the generator,
the learning rate is 0.0005, whereas we set it to 0.0001 for the discriminator. We train
ColorMapGAN for 8,000 iterations, since we verify by visual inspection that visually
appealing results are obtained for this number of iterations. We train SemI2I for 25
epochs, where the number of iterations in each epoch is the minimum of the number
of patches from each domain. We optimize SemI2I with Adam optimizer. We set the
learning rate to 0.0002 in the first 15 epochs, and compute it in the rest of the epochs
as:

LR = 0.0002× num epochs− epoch no

num epochs− decay epoch
, (3.21)

where LR, num epochs, epoch no are the current learning rate, the total number of
epochs, and current epoch no. decay epoch stands for the epoch, which is set to 15 in
our experiments, where the learning rate is started to be reduced. We set λ1, λ2, λ3 and
λ4 in Eqs. 3.19 and 3.20 to 10, 10, 10, and 1, respectively. We have found these values
empirically.

In the third stage of our framework, we fine-tune the initially trained U-net for
2,500 iterations using the generated fake source city as well as the ground-truth for the
real source city. When generating a fake source city with the compared I2I approaches
explained in Sec. 3.7.2 and when generating a map for the target city via AdaptSegNet,
we use the default hyper-parameters described in the papers.

3.7.4 Results

Tables 3.2 and 3.3 report IoU values for each method in two city pairs. Figs. 3.6 to 3.9
show a close-up from each city, the corresponding ground-truth, and the predictions by
each compared method. To provide as reliable as possible results, we repeat the step
3 in our framework 20 times for each method that generates fake data, and report the
average IoU values in the tables. Re-running the step 3 of the framework 20 times is
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Table 3.2: IoU scores for the target cities in pair 1.

Method
Source: Bad Ischl, Target: Villach Source: Villach, Target: Bad Ischl
Building Road Tree Overall Building Road Tree Overall

U-net [144] 23.61 0.91 40.53 21.68 5.84 0.24 0.50 2.19

AdaptSegNet Single [173] 6.01 4.37 10.43 6.94 3.06 2.71 10.23 5.33
AdaptSegNet Multi [173] 24.59 9.02 56.08 29.86 14.26 4.46 24.66 14.46
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CycleGAN [198] 43.03 28.96 68.86 46.95 43.62 38.69 71.68 51.33
UNIT [104] 30.86 15.84 63.00 36.57 19.29 36.83 35.57 30.56
MUNIT [78] 0.02 1.38 47.23 16.21 6.20 0.13 0.05 2.13
DRIT [96] 0.01 3.96 8.72 4.23 0.00 10.19 0.01 3.40

Gray-world [24] 25.19 26.43 56.15 35.92 29.55 24.80 46.41 33.58
Hist. matching [60] 24.95 29.34 61.59 38.63 6.45 0.92 1.28 2.88

ColorMapGAN 48.47 37.82 58.92 48.40 49.16 41.75 59.84 50.25
SemI2I 47.79 38.22 68.76 51.59 53.38 47.59 79.17 60.05

Table 3.3: IoU scores for the target cities in pair 2.

Method
Source: Béziers, Target: Roanne Source: Roanne, Target: Béziers
Building Road Tree Overall Building Road Tree Overall

U-net 26.13 11.16 7.79 15.03 19.85 0.00 0.00 6.62

AdaptSegNet Single [173] 6.61 11.05 3.37 7.01 11.07 4.19 3.71 6.32
AdaptSegNet Multi [173] 22.42 5.87 17.84 15.37 24.27 10.88 10.45 15.20
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CycleGAN [198] 18.19 24.28 0.19 14.22 9.92 16.00 0.54 8.82
UNIT [104] 41.99 38.47 0.39 26.95 29.99 39.19 3.11 24.10
MUNIT [78] 10.17 1.66 0.31 4.05 7.49 0.84 0.13 2.82
DRIT [96] 42.16 41.77 1.18 28.37 25.73 36.54 0.68 20.98

Gray-world [24] 51.47 40.42 18.25 36.71 14.61 31.32 21.99 22.64
Hist. matching [60] 18.64 9.87 4.81 11.11 20.63 0.02 0.00 6.88

ColorMapGAN 55.60 44.66 28.39 42.88 47.12 35.18 21.91 34.74
SemI2I 53.48 45.05 36.40 44.98 50.97 44.27 35.15 43.46

feasible, since we fine-tune the classifier for only 750 iterations in this step. However,
AdaptSegNet tries to adapt the classifier to the target city directly. Hence, we need
to train a classifier from scratch every time when we repeat the experiment. For this
reason, for AdaptSegNet Single and Multi, we show the average IoU values for only 3
runs.

Figs. 3.10 to 3.13 depict close-ups from each real source and fake source images
generated by CycleGAN [198], UNIT [104], MUNIT [78], DRIT [96], gray-world [24],
histogram matching [60], ColorMapGAN, and SemI2I. From the images, we can clearly
see that MUNIT and DRIT spoil the semantic identity of the images completely. For
instance, the structures indicated by yellow and green rectangles in the real images are
either replaced by other objects or distorted in the fake images. In some cases, UNIT
seems to generate better results. For instance, the fake cities generated by UNIT in
the second pair are semantically relatively consistent with the real source images, and
style-wise similar to the target cities. On the other hand, the fake cities in the first
pair have plenty of artificial objects that do not exist in the real source cities. For
UNIT, MUNIT, and DRIT, since the fake images do not match with the ground-truth
of the real source images, the network learns wrong information in the step 3 of our
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3.6: Bad Ischl, its ground-truth, and the predictions. (a) Bad Ischl, (b) ground-
truth, (c) predictions by U-net [144], (d) by AdaptSegNet multi [173], by our framework
with (e) CycleGAN [198], (f) UNIT [104], (g) MUNIT [78], (h) DRIT [96], (i) gray-
world [24], (j) histogram matching [60], (k) ColorMapGAN, (l) SemI2I. Red, white, and
green pixels represent building, road, and three classes, respectively. The pixels in black
do not belong to a class.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3.7: Villach, its ground-truth, and the predictions. (a) Villach, (b) ground-truth,
(c) predictions by U-net [144], (d) by AdaptSegNet multi [173], by our framework with
(e) CycleGAN [198], (f) UNIT [104], (g) MUNIT [78], (h) DRIT [96], (i) gray-world [24],
(j) histogram matching [60], (k) ColorMapGAN, (l) SemI2I. Red, white, and green pixels
represent building, road, and three classes, respectively. The pixels in black do not belong
to a class.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3.8: Béziers, its ground-truth, and the predictions. (a) Béziers, (b) ground-truth,
(c) predictions by U-net [144], (d) by AdaptSegNet multi [173], by our framework with
(e) CycleGAN [198], (f) UNIT [104], (g) MUNIT [78], (h) DRIT [96], (i) gray-world [24],
(j) histogram matching [60], (k) ColorMapGAN, (l) SemI2I. Red, white, and green pixels
represent building, road, and three classes, respectively. The pixels in black do not belong
to a class.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3.9: Roanne, its ground-truth, and the predictions. (a) Roanne, (b) ground-
truth, (c) predictions by U-net [144], (d) by AdaptSegNet multi [173], by our framework
with (e) CycleGAN [198], (f) UNIT [104], (g) MUNIT [78], (h) DRIT [96], (i) gray-
world [24], (j) histogram matching [60], (k) ColorMapGAN, (l) SemI2I. Red, white, and
green pixels represent building, road, and three classes, respectively. The pixels in black
do not belong to a class.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.10: Real Bad Ischl and fake images from Bad Ischl to segment Villach. (a) Real
Bad Ischl, fake Bad Ischl by (b) CycleGAN [198], (c) UNIT [104], (d) MUNIT [78],
(e) DRIT [96], (f) gray-world [24], (g) histogram matching [60], (h) ColorMapGAN,
(i) SemI2I.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.11: Real Villach and fake images from Villach to segment Bad Ischl. (a) Real
Villach, fake Villach by (b) CycleGAN [198], (c) UNIT [104], (d) MUNIT [78], (e) DRIT
[96], (f) gray-world [24], (g) histogram matching [60], (h) ColorMapGAN, (i) SemI2I.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.12: Real Béziers and fake images from Béziers to segment Roanne. (a) Real
Béziers, fake Béziers by (b) CycleGAN [198], (c) UNIT [104], (d) MUNIT [78], (e) DRIT
[96], (f) gray-world [24], (g) histogram matching [60], (h) ColorMapGAN, (i) SemI2I.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.13: Real Roanne and fake images from Roanne to segment Béziers. (a) Real
Roanne, fake Roanne by (b) CycleGAN [198], (c) UNIT [104], (d) MUNIT [78], (e) DRIT
[96], (f) gray-world [24], (g) histogram matching [60], (h) ColorMapGAN, (i) SemI2I.
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framework. Another problem with these approaches is that we observe tiling effect in
the fake images. Especially in the fake images from Villach, the transition between
the patches is not continuous. The reason is that since it is impossible to fit the large
satellite images to GPU directly when generating fake images, we need to generate
fake data from each patch and combine them to get the entire fake city. However,
these approaches mostly generate irrelevant output for the neighboring patches. As a
result, the proposed framework with these methods perform poorly on the target city,
as confirmed by Tables 3.2 and 3.3.

As can be seen in Figs. 3.10 to 3.13, the spectral difference between the source and
the target images can be reduced by standardizing them using gray-world algorithm.
However, between the fake images in each city pair, we still observe a spectral shift; it
is not completely corrected. As a consequence, the performance of gray-world algorithm
is mostly better than UNIT, MUNIT, and DRIT, but it is not as good as desired.

The network architecture used in AdaptSegNet single is very deep; therefore, aligning
only the outputs of the final classification layer for the source and the target images does
not yield a good performance. However, if the alignment is performed in multiple layers,
a better performance could be obtained, especially when the objects of interests cover a
large area such as forests. For instance, most of the trees in Villach are located inside
forests areas. For tree class in this city, IoU value for AdaptSegNet multi is 56.08%, which
is slightly lower than the performance of our framework with ColorMapGAN. However,
the performance of AdaptSegNet is not satisfactory in segmenting small objects such as
building and thin objects like roads.

At the first sight, histogram matching seems to be working well; semantic structures
of the training city are well preserved in the fake source city, and the style of the target
city is perfectly transferred to the fake source city. However, it is noticeable in Tables 3.2
and 3.3 that the quantitative results for this approach are quite poor in most cases. Be-
sides, the fake cities generated by CycleGAN, ColorMapGAN, and SemI2I in the first
pair look similar. However, still there exists a large gap between the performances of the
framework with CycleGAN, ColorMapGAN, or SemI2I. For example, when segmenting
Villach, for road class, the IoU of CycleGAN is around 9% lower than that of Col-
orMapGAN. Similarly, ColorMapGAN outperforms CycleGAN by 6% for building class,
when segmenting Bad Ischl. On the other hand, CycleGAN outperforms ColorMapGAN
for tree class. SemI2I is the best performer in most cases. To better understand the
reasons for aforementioned performance differences, the comparisons between histogram
matching, CycleGAN, ColorMapGAN, and SemI2I need further analysis.

Detailed comparisons with CycleGAN: First of all, it is worth noting that the
performance of CycleGAN is unstable. Our framework with CycleGAN performs unsat-
isfactorily on the second pair because of its semantically inconsistent outputs with the
real source images. As highlighted by yellow rectangles in Figs. 3.12 and 3.13, Cycle-
GAN removes some objects that exist in the real source cities. There are several reasons
why it performs worse than ColorMapGAN and SemI2I in the first pair for building
and road classes. Firstly, the resolution of its output is lower than the resolution of
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(a) (b) (c) (d)

Figure 3.14: Real and fake images from Villach. (a) Real Villach, fake images by (b) Cy-
cleGAN [198], (c) ColorMapGAN, (d) SemI2I.

the real source city and the outputs of ColorMapGAN and SemI2I. Fig. 3.14 depicts a
closeup from Villach and the corresponding fake images generated by CycleGAN, Col-
orMapGAN, and SemI2I. The resolution difference between the fake images can easily be
noticed in the outlined areas by yellow rectangles. Learning from blurrier data obviously
deteriorates the performance. Secondly, the output of CycleGAN has some artifacts as
shown in the same figure by a green rectangle. We do not observe such artifacts in the
outputs of ColorMapGAN and SemI2I. Finally, since we generate fake cities patch by
patch because of memory constraints, there exists a spectral difference between some of
the neighboring patches in the fake images generated by CycleGAN (see bottom-right
corner of the yellow rectangle in Fig. 3.10). This difference leads the network to exhibit
a lower performance. ColorMapGAN does not have this problem, because it maps each
color to another one. Irrespective of their locations, the pixels with the same color in
the source images will have the same color in the fake source images. Therefore, the
neighboring patches are spectrally consistent, and there is no tiling effect between them.
We do not notice such tiling effect in the outputs of SemI2I either, since we use the
estimated global µ and σ values computed via the proposed Alg. 1 when performing
style transfer. One drawback of ColorMapGAN is that it seems to be slightly smoothing
out trees (see the cyan rectangle in Fig. 3.14). This is probably why our framework with
CycleGAN or SemI2I outperforms the framework with ColorMapGAN in the first pair
for tree class.

Detailed comparisons with histogram matching: The main problem of histogram
matching is that it does not take into account the contextual information, it only tries
to match the histogram of the whole source city with the histogram of the whole target
city. On the other hand, the discriminator of GANs based methods extracts high level
features from the output of the generator and the target city to decide which one is
real and which one is fake. In other words, the generator generates a fake source city
in a way that its high level features align with the high level features extracted from
the target city. For this reason, the proposed framework with ColorMapGAN or SemI2I
yields substantially improved results. As highlighted in Fig. 3.15 by yellow rectangles,
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(a) (b) (c) (d)

Figure 3.15: Real and fake images from Villach. (a) Real Villach, fake images by (b) his-
togram matching [60], (c) ColorMapGAN, (d) SemI2I.

(a) (b) (c) (d)

Figure 3.16: Real and fake images from Villach. (a) Real Villach, fake images by (b) his-
togram matching [60], (c) ColorMapGAN, (d) SemI2I.
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Figure 3.17: Color histograms of the pixels belonging to building class in Béziers and
Roanne. Histograms for (a) Béziers, (b) Roanne, fake images from Roanne generated by
(c) histogram matching, (d) ColorMapGAN, (e) SemI2I.
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(a) (b) (c) (d)

Figure 3.18: Failure cases for ColorMapGAN. (a-c) Real images from Villach, (b-d) noisy
fake images generated by ColorMapGAN.

when generating fake Bad Ischl, histogram matching converts some gray rooftops to cyan
ones, whereas ColorMapGAN and SemI2I keep them gray. Similarly, in the same figure,
we observe that the buildings highlighted by green rectangles have dark violet rooftops
in the output of histogram matching, and black rooftops in the images generated by
ColorMapGAN and SemI2I. In Fig. 3.5, we can see that there is no building having a
cyan or dark violet rooftop in Villach, but there exists many buildings with gray or black
rooftops. If the generator of ColorMapGAN or SemI2I generated cyan or dark violet
colored rooftops, the discriminator would easily understand that these buildings were
fake. For this reason, such buildings do not appear in the outputs of ColorMapGAN
and SemI2I. Similarly, in the process of generating fake Roanne, histogram matching
algorithm generates some reddish roads, as shown in Fig. 3.16 by a yellow rectangle. In
the same figure, we see that ColorMapGAN and SemI2I output gray roads. Moreover,
ColorMapGAN and SemI2I generate buildings having brownish colored rooftops, which
are probably more representative for the buildings in Béziers than the buildings with
red rooftops generated by histogram matching. Furthermore, in Fig. 3.17, we depict
color histograms of the buildings in Roanne, in Béziers, and in the fake images from
Roanne generated by histogram matching, ColorMapGAN, and SemI2I. Since Roanne
and Béziers are two different cities and the number of pixels belonging to each class
in both cities is different, we cannot expect the histograms of an ideal fake Roanne
and Béziers to be exactly the same. However, we expect them to resemble each other.
Although histogram matching algorithm tries to match the histogram of the source city
with the histogram of the target city, there exists a large difference between the class-
wise histograms of the fake source and the target cities. As can be seen in Fig. 3.17,
there is a large deviation between some of the neighboring bins in the histograms. In
contrast, color histograms of the buildings in the fake images from Roanne generated
by ColorMapGAN and SemI2I are more similar to the histograms of the buildings in
Béziers. For histogram matching, we observe the same issue for the other classes as well.

Detailed comparisons between ColorMapGAN and SemI2I: Tables 3.2 and 3.3
prove that the proposed ColorMapGAN and SemI2I significantly outperform the existing
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(a) (b) (c) (d)

Figure 3.19: Failure cases for SemI2I. (a-c) Real images from Villach, (b-d) imperfect
fake images generated by SemI2I.

approaches. Both ColorMapGAN and SemI2I have their own strengths and weaknesses.
The biggest advantage of ColorMapGAN is its extremely short training time mainly
because of its architecturally simple generator, which performs only one element-wise
matrix multiplication and one addition operations. With the hyper-parameters used in
our experiments, it takes only 6.5 minutes to train ColorMapGAN on an Nvidia Geforce
GTX1080 Ti GPU. On the other hand, the training time of SemI2I is 17 minutes.
Note that the training of SemI2I is quite short as well due to its shallow generators
consisting of only a few layers, but it is longer than that of ColorMapGAN. One of the
disadvantages of ColorMapGAN is that it is not capable of mapping the same color to
different colors. ColorMapGAN assigns exactly the same color to the pixels having the
same red, green, and blue channel values irrespective of where the pixels are located. For
instance, it cannot map the colors of a building and a road pixels with the same color
to two different colors. The second disadvantage is that since it maps each individual
color to another one, its output is noisy. We observe the noisy output especially on
top of the structures having bright colors. Fig. 3.18 illustrates two failure cases, where
ColorMapGAN adds noise on top of rooftops. However, it is worth mentioning that
deliberately adding some noise to training data (e.g., Gaussian noise) is a common
practice in real-world applications to make the classifiers robust to noisy data. Therefore,
the second disadvantage of ColorMapGAN may not be regarded as a big drawback. As
reported in Tables 3.2 and 3.3, SemI2I is the best performer for most of the classes in
both experiments. Its weakness is that it generates unnatural objects in some cases.
Fig. 3.19 depicts such a failure case, where building rooftops have an odd mix of colors.

3.7.5 Running Times

The proposed framework, ColorMapGAN, SemI2I, CycleGAN, UNIT, MUNIT, and
DRIT were implemented in Tensorflow1. We conducted all the experiments on an Nvidia
Geforce GTX1080 Ti GPU with 11 GB of RAM. Table 3.4 reports the training times of
image-to-image translation based methods for 1 iteration. The table demonstrates that

1https://www.tensorflow.org

72



Table 3.4: Training times of I2I based methods.
Method Training time for 1 iteration (seconds)

CycleGAN [198] 0.11
UNIT [104] 0.47
MUNIT [78] 0.45
DRIT [96] 0.29

ColorMapGAN 0.05
SemI2I 0.08

Table 3.5: Execution times of non-learning based methods.

City
Execution time (seconds)

Gray-world [24] Histogram matching [60]

Bad Ischl 1.46 19.77
Villach 1.89 26.78
Béziers 1.37 18.05
Roanne 1.24 20.32

the training times of ColorMapGAN and SemI2I are shorter than the other learning
based approaches. It is also notable that non-learning based approaches generate an
output in a substantially shorter time, as confirmed by Table 3.5. The execution time of
gray-world algorithm is almost instant, and histogram matching needs less than half a
minute. However, the quality of the results for non-learning based methods is deficient.

3.8 Concluding Remarks

Although convolutional neural networks have been proven to be an effective tool to
generate high quality maps from remote sensing images, their performance significantly
deteriorates when there exists a large domain shift between source and target domains.
Especially in remote sensing, such domain shift occurs quite often for various reasons
such as atmospheric conditions and some differences in acquisition that change spectral
characteristics of objects.

To increase the generalization abilities of classifiers, in this chapter, we presented a 4-
step segmentation framework dealing with city-to-city domain adaptation problem. The
crucial stage of our framework is the second step, where we generate a fake source city
with the style of target city. We then use the fake source city as well as the ground-truth
of the real source city to fine-tune the classifier trained in the first step our framework.
One limitation of our framework is that it cannot be trained end-to-end. Each step of
our framework needs to be run consecutively by passing the outputs of each step to the
next one as inputs.

For the second stage of our segmentation framework, we introduced two novel meth-
ods, namely ColorMapGAN and SemI2I, which are able to generate a target stylized fake
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source city that is semantically consistent with the real source city. In two experimental
setups, we verified that the fake cities generated by ColorMapGAN and SemI2I allow the
classifiers to significantly better generalize to a target city than the existing approaches.
Furthermore, we discussed the advantages and disadvantages of both methods over each
other in great detail.

We believe that there are rooms to further improve the outputs of ColorMapGAN
and SemI2I. For example, to overcome the issue of noisy data by ColorMapGAN, one
can consider adding a regularization term enforcing neighboring pixels to have similar
colors. Another improvement could be to modify only the most significant four bits of
each color in the source image. This approach may lead to not only generating less
noisy outputs by also reducing the number of parameters as well as the training time.
To improve SemI2I, a possible future direction might be separating content and style
information of each domain, and combining the content of one domain with the style of
another one. In the next two chapters, we present new methods inspired by this idea.
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Chapter 4

Multi-source Domain Adaptation
by Data Standardization

4.1 Problem Statement

In this chapter, we tackle multi-source domain adaptation problem for semantic seg-
mentation of satellite images. We seek for developing a novel method that learns from
multiple source domains and generates a precise map for a target domain, even when
the data distributions of all the domains are significantly different. The inputs for the
proposed approach are multiple satellite images collected from different geographic lo-
cations and their annotations. The desired output is a high quality map for the target
city, in raster format.

4.2 Motivations

With the help of significant technological developments over the years, it has been pos-
sible to access massive amounts of remote sensing data. For example, the constellations
of Pléiades satellites are able to capture large amounts of images with high spatial res-
olution over the globe.

As mentioned in the previous chapter, it is quite often that images collected in
separate locations and at different times have significantly large data distribution, as a
result of various atmospheric conditions and some differences in acquisition that change
spectral characteristics of objects, intra-class variability, and differences in the spectral
characteristics of the sensor. Although nowadays we have access to massive amounts of
data, because manual annotation is extremely labor-intensive, the annotated data are
scarce. Besides, the above-mentioned distribution differences cause machine learning
models to generate unsatisfactory maps for images with different distributions than
those of the training data. Therefore, it is crucial to develop new methods having strong
generalization abilities despite the scarcity of the labeled training data.

In this context, there are many methods in the literature aiming at adapting a
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Figure 4.1: Real cities and their standardized versions.

classifier from one domain to another. In addition, in the previous chapter, we proposed
two novel methods for city-to-city domain adaptation problem. However, these methods
have limited practical real-world applications. Since nowadays huge volume of data are
accessible, oftentimes one has multiple source domains with different data distributions.
Hence, it is of paramount importance to develop new methods that can learn from
multiple source domains and segment target domains well.

In our multi-source domain adaptation problem definition, we assume that each
source and target domains have significantly different data distributions (see real data
in the first row of Fig. 4.1). We aim at finding a common representation for all the
domains by standardizing the samples belonging to each domain using GANs. As shown
in Fig. 4.1, in a way, the standardized data could be considered as spectral interpolation
across the domains. Adopting such a standardization strategy has two advantages.
Firstly, in the training stage, it prevents the classifier from capturing the idiosyncrasies
of each source domain. The classifier rather learns from the common representation.
Secondly, since in the common representation the samples belonging to source domains
and target domain have distributions close to each other, we expect the classifier trained
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on the standardized source domains to segment well the standardized target domain.
Standardizing multiple domains using GANs raises several challenges. Firstly, when

training GANs, one needs real data so that the generator can generate fake data with
the distribution that is as close as possible to the distribution of the real data. However,
in our case, the standardized data do not exist. In other words, we wish to generate
data without showing samples drawn from a similar distribution. Secondly, all the stan-
dardized domains need to have similar data distributions. Otherwise, the advantages
mentioned above would be lost. Thirdly, the standardized data and the real data them-
selves must be semantically consistent. For example, when generating the standardized
data, the method should not replace some objects by others, add artificial objects, or
remove some objects existing in the real data. Otherwise, the standardized data and
the ground-truth for the real data would not match, and we could not train a model.
Finally, the method should be efficient. If the number of networks and their structures
are not kept as small as possible, depending on the number of domains, we could face
issues in terms of memory occupation and computational time.

4.3 Related Work

4.3.1 Adapting the Classifier

Some of the methods that are based on adapting the classifier described in the previous
chapter can be used for multi-source domain adaptation problem as well. The methods
in this category aim at adapting the classifier to a target domain without modifying the
data. For instance, methods performing multi-task learning, where one of the tasks is to
train a classifier from the source domain via common supervised learning approaches, and
the other task is to align the features extracted from both source and target domains by
adversarial training [72,76,173], are suitable for this problem. Self learning methods [193,
200] can also be considered.

4.3.2 Adapting the Inputs

As mentioned in the previous chapter, the methods based on adapting the inputs usually
aim at performing image-to-image translation (I2I) or style transfer to generate a fake
source domain with a similar distribution to that of a target domain. For instance,
CyCADA [71] uses the fake domain to train a classifier. The most straightforward
approach for multi-source domain adaptation problem would be to perform I2I between
each source and target domains to stylize all of the source domains as the target domain.
However, this method is extremely cumbersome, because the training must be performed
for each source domain and the target domain pair.

4.3.3 Multi-source Adaptation

Recently, specifically for multi-source adaptation, a few methods focusing on image
classification have been proposed [130, 184, 194]. However, it may not be possible to
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extend these approaches to semantic segmentation, as precisely structured output is
required. To address the issue of multi-source adaptation for semantic segmentation,
Zhao et al. have proposed MADAN [196], which is an extension of CyCADA, but it
is extremely compute-intensive. JCPOT [139] investigates optimal transport for multi-
source adaptation problem. Elshamli et al. have recently proposed a method consisting
in patch based networks [50]. However, since the network architectures are not fully
convolutional, the method may not be suitable to classes requiring high precision such
as buildings and roads.

4.3.4 Data Standardization

In machine learning, one of the most commonly used data standardization approach
is referred to as linear scaling to unit variance (a.k.a. z-score normalization) [4] and
computed as:

x′ =
x− µ
σ

, (4.1)

where x, µ, σ correspond to original data, mean value and standard deviation. In
addition, histogram equalization [60] is also a common pre-processing step. However,
these approaches do not take into account the contextual information and just follow
certain heuristics. One may also think of applying color constancy algorithms [3] such as
gray-world [24] and gamut [53] approaches. These algorithms assume that colors of the
objects are highly affected by the color of the illuminant and try to remove this effect.

4.4 Contributions

In this chapter, we present novel StandardGAN, which deals with the challenges ex-
plained in Sec. 4.2 for standardization of multiple satellite images. After the images are
standardized, we train a classifier on the standardized source images and we segment
the standardized target image. The contributions of this chapter are three-fold:

� For the first time, we introduce the use of GANs in the context of data standard-
ization. StandardGAN learns to take average of the styles of all the domains to
generate standardized images.

� We present GANs that is able to generate data samples without providing it with
data coming from the same or a similar distribution. Although no data with similar
distributions to those of the standardized data are available, our GANs achieves
to generate standardized data.

� Finally, we propose to apply this multi-source domain adaptation solution to the
semantic segmentation of very high resolution satellite images collected over several
geographic locations in the world.
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Figure 4.2: Style transfer between two cities. In this example, there are 2 style encoders,
1 content encoder, 1 decoder, and 1 discriminator.

4.5 Method

In this section, we first explain how to perform style transfer between two domains. We
then describe how StandardGAN standardizes two domains. Finally, we detail how we
extend StandardGAN to multi-domain case.

StandardGAN consists of one content encoder, one decoder, one discriminator and n
style encoders, where n denotes the number of domains. Fig. 4.2 illustrates the generator
to perform style transfer between two domains. The discriminator performs multi-task
learning as in StarGAN [36] by adding an auxiliary classifier on top of the discriminator
of CycleGAN [198]. The first task allows the fake source and the target domains to have
as similar data distributions as possible, whereas the other task helps the discriminator
to understand between which fake and real data it is discriminating. We provide detailed
explanations for both tasks in the following sub-section.

4.5.1 Style Transfer Between Two Domains

The goal of style transfer is to generate a fake A with the style of B and a fake B
having a similar data distribution as real A. To perform style transfer, we use two types
of encoders. One is domain agnostic content encoder, and the other one is domain
specific style encoder. The content encoder is used to map the data into a common
space, irrespective of which domain the data come from. On the other hand, the style
encoder helps the decoder to generate output with the style of its specific domain. We
use adaptive instance normalization (AdaIN) [77] to combine the content of A with the
style of B (or vice versa). AdaIN is defined as:

AdaIN(x, γ, β) = γ

(
x− µ(x)

σ(x)

)
+ β, (4.2)
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Figure 4.3: Combining the content of one city with the style of another city.

where x is the activation of the content encoder’s final convolutional layer, and γ and
β correspond to the parameters that are learned by the style encoder. As can be seen
in Eq. 4.2, γ and β are used to scale and shift the activation, which results in changing
the style of the output. After the activation is normalized by AdaIN, as depicted by
Fig. 4.3, it is fed to the decoder to generate the fake data.

In order to force real A and fake B, and real B and fake A to have as similar data
distributions as possible, we compute and minimize an adversarial loss between them.
We use the adversarial loss functions described in LSGAN [116]. The discriminator
adversarial loss between real A and fake B (or real B and fake A) is defined as:

Ladv D(X,Y ) = Ex[(Dadv(x)− 1)2] + Ey[(Dadv(G(y)))2] (4.3)

where E denotes the expected value, G and Dadv stand for the generator and the adver-
sarial output of the discriminator (the first task), and x and y correspond image patches
sampled from domains X and Y . The generator adversarial loss is computed as:

Ladv G(X,Y ) = Ey[(Dadv(y)− 1)2]. (4.4)

The overall generator adversarial loss Ladv G and the discriminator adversarial loss
Ladv D are calculated as:

Ladv D = Ladv D(A,B) + Ladv D(B,A) (4.5)

and
Ladv G = Ladv G(A,B) + Ladv G(B,A). (4.6)

To force real A and fake B, and real B and fake A to have similar styles, normally, we
need two discriminators. One is used for discriminating between real A and fake B, and

80



the other is responsible for distinguishing between real B and fake A. However, as men-
tioned in Sec. 4.2, we want to keep the number of networks as small as possible to easily
extend StandardGAN to multi-domain case. In order to use only one discriminator, we
adopt the approach described in StarGAN [36]. Let us assume that X is the source and
Y is the target domain. We suppose that the labels of X and Y are indicated by c s
and c t (e.g., c s = 0 and c t = 1), and the image patch sampled from X is denoted
by x. On top of the discriminator, we add a classifier. Both the discriminator and the
generator have a role on this classifier. On the one hand, the discriminator wants the
classifier to predict the label of X correctly. On the other hand, the generator tries to
generate a fake X in a way that the classifier predicts it as Y . The classification loss for
the discriminator is defined as:

Lcls D(X) = E[−logDcls(c s | x)], (4.7)

where Dcls(c s | x) denotes the probability distribution over domain labels generated by
D. By minimizing this function, D learns from which domain x come. The classification
loss for the generator is computed as:

Lcls G(X) = E[−logDcls(c t | G(x))]. (4.8)

The overall discriminator and the generator losses are computed as:

Lcls D = Lcls D(A) + Lcls D(B) (4.9)

and
Lcls G = Lcls G(A) + Lcls G(B). (4.10)

In the training stage, minimizing Eqs. 4.9 and 4.10 allows the discriminator to under-
stand whether it needs to distinguish between real A and fake B or between real B and
fake A. As a result, the style transfer can be performed with only one discriminator. The
classification loss is particularly useful when we extend StandardGAN to multi-domain
adaptation case.

As mentioned in Sec. 4.2, it is crucial to perform the style transfer without spoiling
the semantics of the real data. Otherwise, the fake data and the ground-truth for the
real data would not overlap. Thus, they cannot be used to train a model. To preserve
the semantic consistency, we propose several constraints and architectural designs. First
of all, our decoder is architecturally quite simple. It consists of only one convolution and
two deconvolution blocks (see Fig. 4.3). After scaling and shifting the content embedding
of one domain with the AdaIN parameters learned by the style encoder from another
domain, we directly decode the embedding, instead of adding further residual blocks.
Moreover, we use the same constraints defined when explaining SemI2I in the previous
chapter. As shown in Fig. 4.2, after we generate fake A with the style of B and fake B
with the style of real A, we switch the styles once again to obtain A′′ and B′′. In an
ideal case, A and A′′, and B and B′′ must be the same. Hence, we minimize the cross
reconstruction loss Lcross that is defined as:

Lcross = |A−A′′|+ |B− B′′|. (4.11)
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(a) (b)

Figure 4.4: It is not possible to fit large satellite images into GPUs, they need to be
processed patch by patch. (a) and (b) illustrate example patches from two cities.

Similarly, when we combine the content information of a domain with its own style
information, we should be reconstructing itself (see A′ and B′ in Fig. 4.2). We also
minimize the self reconstruction loss Lself computed as:

Lself = |A−A′|+ |B− B′|. (4.12)

The overall generator loss is calculated as:

LG = λ1Lcross + λ2Lself + λ3Lcls G + λ4Ladv G, (4.13)

where λ1, λ2, λ3, and λ4 denote the weights for the individual losses. The discriminator
loss is defined as:

LD = λ3Lcls D + λ4Ladv D. (4.14)

We minimize LG and LD simultaneously.
As can be seen in Fig. 4.3, to generate fake data, content encoder, decoder, and the

AdaIN parameters learned by the style encoder of the other domain are required. The
problem is that usually it is not possible to fit satellite images into GPUs because of their
large number of pixels. Hence, when generating fake images, each image needs to be
split into smaller patches as shown in Fig 4.4. The patches are then processed separately
and combined again to obtain the whole standardized image. The issue here is that the
style encoder produces different AdaIN parameters for each image patch depending on
the context of the patch. For instance, we cannot expect patches from a forest and an
industrial area to have similar parameters, because they have different styles. For each
domain, to capture the global AdaIN parameters, we first initialize domain specific γ
and β parameters with zeros. We then propose to update them in each training iteration
as:

p = 0.95× p+ 0.05× p current, (4.15)
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where p is the global domain specific AdaIN parameter (i.e., γ or β) and p current is
the parameter from the current training patch. After a sufficiently long training process,
Eq. 4.15 estimates the global AdaIN parameters for each domain. These estimations
can then be used to stylize each patch from one domain as the other domain in the test
stage.

4.5.2 StandardGAN for Image Standardization

As mentioned previously, the domain agnostic content encoder learns to map domains
into a common space. To generate target stylized fake source data, the content embed-
ding extracted by the content encoder from the source domain is normalized with the
global AdaIN parameters of the target domain. The normalized embedding is then given
to the decoder to generate the fake data. We have discovered that instead of normalizing
the embedding with the AdaIN parameters for one of the domains, if we normalize it with
the arithmetic average of the global AdaIN parameters of both domains, StandardGAN
learns to generate standardized data. The standardization process for two domains is
depicted in Fig. 4.5. As shown in the figure, real A and real B have considerably different
data distributions. On the other hand, standardized A and standardized B look quite
similar, and their data distributions are somewhere between the data distributions of
real A and real B.

To standardize multiple domains, we propose Alg. 2. In multi-domain case, c s and
c t in Eqs. 4.9 and 4.10 can range between 0 and n - 1, where n is the number of domains.
As shown in Fig. 4.6, we perform adaptation between each pair of domains. We then
take the average of the global AdaIN parameters of each domain and use the average to
normalize the embeddings extracted by the content encoder from all the domains. We
finally decode the normalized embeddings via the decoder to generate the standardized
data.

4.6 Experiments

4.6.1 Data Set & Experimental Setup

In our experiments, we use Pléiades images captured from 5 cities in Austria, 2 cities
in France, and 1 city in Liechtenstein. The spectral channels consist of red, green, and
blue bands. The spatial resolution has been reduced to 1 m by the data set providers.
The annotations for building, road, and tree classes are provided. Table 4.1 records, for
each city, the name of the city, the percentage of pixels belonging to each class as well
as the total covered area.

We have two experimental setups. In the first experiment, we use the images from
Salzburg Stadt, Villach, Lienz, and Sankt Pölten for training and the image from Bad
Ischl for test. In the second experiment, we choose Salzburg Stadt, Villach, Bourges, and
Lille as the training cities and Vaduz as the test city. In the first experiment, we want
to observe how well our method generalize to a new city from the same country. On the
other hand, the goal of the second experiment is to investigate the generalization abilities
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Figure 4.5: Standardizing two domains. Dashed lines correspond to arithmetic average.

Figure 4.6: Standardizing multiple domains. Solid arrows represent adaptation between
two domains. Dashed lines correspond to arithmetic average. γavg and βavg are used for
standardization.
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Algorithm 2: The pseudocode for StandardGAN to standardize multiple do-
mains.

create 1 content encoder, 1 decoder, and 1 discriminator
foreach domain do

initialize domain specific AdaIN parameters with zeros
create a domain specific style encoder

end
foreach training iteration do
LG ← 0, LD ← 0 ; // G and D losses

for i← 0 to (# of domains - 1) do
for j ← (i+ 1) to (# of domains - 1) do
LG current ← G loss between domains i&j (Eq. 4.13)
LD current ← D loss between domains i&j (Eq. 4.14)
LG ← LG + LG current

LD ← LD + LD current

end

end
backprop. LG and LD, LG ← 0, LD ← 0
foreach domain do

update domain specific AdaIN parameters via Eq. 4.15
end
average AdaIN parameters ← arithmetic average of domain specific AdaIN
parameters

end

Table 4.1: The data set.

City (Country)
Class percentages (%) Area
Building Road Tree (km2)

Bad Ischl (AT) 5.51 6.0 35.38 27.71
Salzburg Stadt (AT) 9.44 8.69 23.88 134.71
Villach (AT) 9.26 10.63 19.91 43.59
Lienz (AT) 6.96 8.16 15.37 28.38
Sankt Pölten (AT) 6.68 6.39 25.13 87.17
Bourges (FR) 9.81 10.52 14.83 72.20
Lille (FR) 18.36 12.71 15.40 117.58
Vaduz (LI) 3.57 4.30 33.69 96.08
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Table 4.2: Training time of StandardGAN for both experiments.
GPU Experiment No # of patches Training time (h:m:s)

Nvidia Tesla 1 5712 1:41:17
V100 SXM2 2 8226 2:45:29

of our approach when training and test data come from different countries. Let us also
remark that, as confirmed by Table 4.1, classes in the test cities (i.e., Bad Ischl and
Vaduz) are highly imbalanced, which makes the domain adaptation problem even more
difficult. For example, in both cases, the number of pixels labeled as tree is significantly
larger than the number of pixels labeled as buildings and roads.

4.6.2 Training Details

In the pre-processing step, we split all the cities into 256×256 patches with 32 pixels of
overlap. We set λ1, λ2, λ3, and λ4 in Eqs. 4.13 and 4.14 to 10, 10, 1, and 1, respectively.
We train StandardGAN for 20 epochs with Adam optimizer, where the initial learning
rate is 0.0002, the exponential decay rates for the moment estimates are 0.5 and 0.999,
respectively. In each training iteration of StandardGAN, we randomly sample 1 patch
from each domain. After the 10th epoch, we progressively reduce the learning rate in
each epoch as:

learn. rate = init lr× num epochs− epoch no

num epochs− decay epoch
, (4.16)

where init lr, num epochs, epoch no, and decay epoch correspond to the initial learning
rate (0.0002 in our case), the total number of epochs (we set it to 20), the current epoch
no, and the epoch no in which we start reducing the learning rate (we determine it as
10). Table 4.2 reports the total number of training patches in both experiments and
the training time of StandardGAN. We first standardize all the data. We then train a
model on the standardized source data and classify the standardized target data. We
compare our approach with the other standardization algorithms described in Sec. 4.3,
namely gray-world [24], histogram equalization [60], and Z-score normalization [4]. We
use U-net [144] as the classifier. We also provide the experimental results for naive U-
net without applying any domain adaptation methods. For each comparison, we train
a U-net for 35 epochs via Adam optimizer with the learning rate of 0.0001 and the
exponential decays rates of 0.9 and 0.999. In each training iteration of U-net, we use
a mini-batch of 32 randomly sampled patches. We perform online data augmentation
with random rotations and flips.

4.6.3 Results

In Fig. 4.7, we depict close-ups from the cities used in the first experiment and the
fake data generated by StandardGAN. Note that to train a model, we do not use the
target stylized source data, we use only the standardized data that are highlighted by red
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Figure 4.7: Real data used in the first experiment and the outputs generated by Stan-
dardGAN. Left column: the real data. Matrix on the right: The standardized data are
highlighted by red bounding boxes. The rest of the cells depict the ith domain with the
style of jth domain. The domain ids are indicated inside parentheses.
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Figure 4.8: Histograms for green band of the cities used in the first experiment. (a)
Before standardization, (b) After standardization.
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Figure 4.9: Real cities used in the second experiment, and the standardized data gener-
ated by StandardGAN.
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Table 4.3: IoU scores for Bad Ischl (the first experiment).
Method building road tree Overall

U-net 45.36 18.81 82.43 48.87
U

-n
et

o
n

d
at

a
b
y Gray-world 49.39 42.25 66.31 52.65

Histogram Equalization 45.33 39.07 73.03 52.48
Z-score normalization 51.22 46.56 77.62 58.47

StandardGAN 56.41 50.26 80.59 62.42

Table 4.4: IoU scores for Vaduz (the second experiment).
Method building road tree Overall

U-net 29.83 26.42 46.25 34.16

U
-n

et
on

d
at

a
b
y Gray-world 27.95 31.13 36.65 31.91

Histogram Equalization 21.21 19.19 51.93 30.78
Z-score normalization 29.94 29.87 41.98 33.93

StandardGAN 54.86 42.43 63.09 53.46

bounding boxes in the figure. The style transfer between each domain is the prior step
to the standardization. We can clearly observe that there exists a substantial difference
between the data distributions of the real data, whereas the standardized data look
similar. Moreover, Fig. 4.8 confirms that color histograms of the standardized data are
considerably closer to each other than those of the real data. Fig. 4.9 shows closeups from
the cities in the second experiment and their standardized versions by StandardGAN.
The standardized and the real data for Salzburg Stadt and Lille seem quite similar. The
reason is the data distributions of these two cities are already somewhere between the
distributions of all five cities. However, the radiometry of Villach, Bourges, and Vaduz
significantly changes after the standardization process. Besides, all the standardized
data have similar data distributions.

Tables 4.3 and 4.4 report the intersection over union (IoU) [42] values on both experi-
ments. The training data acquired over a single country are usually more representative
for a city from the same country than a city from another country. For this reason,
the quantitative results for the first experiment are generally higher. Besides, in some
cases, the representativeness of the samples belonging to different classes may vary. For
instance, in the first experiment, the traditional U-net already exhibits a relatively good
performance for tree class, as the tree samples from the source domains represent well
the samples in the target data. For this class, the performance of our method is slightly
worse. It is probably because of some artifacts generated by the proposed GANs ar-
chitecture when standardizing the domains. On the other hand, for the other classes,
our approach achieves a better performance than all other methods. In the second
experiment, unlike the first one, none of the class samples in the source domains are
representative for the target domain. Hence, the performance of U-net is poor. In ad-
dition, the common heuristic based pre-processing methods do not help improving the
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Figure 4.10: Comparison between the traditional U-net and our framework. Red, green,
and white pixels represent building, road, and tree classes, respectively. The pixels in
black do not belong to any class.

results. However, the StandardGAN better allow the classifier to generalize completely
different geographic locations. Fig. 4.10 illustrates the improvement of our framework
against the naive U-net in terms of predicted maps.

4.7 Concluding Remarks

The recent technological developments in satellite images have enabled us to collect
huge volume of data. The availability of such massive data motivates us to propose
novel solutions that can learn from multiple satellite images and generate high quality
maps for unlabeled data, even when there exists large distribution differences between
images.

In remote sensing, while there is a rich literature in terms of domain adaptation
methods aiming at adapting the classifiers from one domain to another, these approaches
are not feasible for large-scale semantic segmentation problem. Although multi-source
domain adaptation problem has many practical real-world applications, it has not been
investigated in detail until recently. To address this issue, in this chapter, we presented
novel StandardGAN, which is a new pre-processing approach proposed with the purpose
of standardizing multiple satellite images. In our experiments, we verified that the
standardized data generated by StandardGAN enable the classifier to significantly better
generalize to new Pléiades data. Note that StandardGAN has only one encoder, one
discriminator, one decoder, and n style encoders. Although there are multiple style
encoders, their architecture is fairly simple. Thus, it is feasible to use StandardGAN to
standardize larger number of domains than the number of cities in our experiments.

We believe that StandardGAN is not only relevant for domain adaptation, it is
suitable for other real-world applications as well. As mentioned Sec. 4.2, satellite images
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collected in different times usually have different data distributions. Because of this
reason, oftentimes, we observe radiometric differences between satellite images taken
from neighboring locations. Image mosaicking aims at fixing such radiometric distortions
to obtain one continuous satellite image [2]. As future work, one can consider applying
StandardGAN to this problem. Another potential application is change detection, where
similarities and differences between satellite images acquired over the same location are
analyzed [108]. However, distribution difference between the images makes the methods
proposed for this problem likely to fail. StandardGAN can be used as a pre-processing
step for change detection problem as well.

As in our segmentation framework described in the previous chapter, the segmenta-
tion approach explained in this chapter cannot be trained end-to-end as well. One needs
to standardize training and test images via StandardGAN as a pre-processing step to
train a classifier in the second stage. Another drawback of StandardGAN is that every
time when a new image is added, it is required to insert an additional style encoder.
Although the style encoder is a shallow network, still the method is limited to a certain
number of domains. In this next chapter, we present a method dealing with this issue.
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Chapter 5

Multi-source, Multi-target, and
Life-long Domain Adaptation

5.1 Problem Statement

In this chapter, we address unsupervised, multi-source, multi-target, and life-long do-
main adaptation problem. We aim at introducing a dense labeling method that can
learn on multiple annotated source images and generate high quality maps for multiple
target images under large distribution differences between the images. We also want the
approach to be capable of adapting to progressively increasing data. In our problem
definition, we assume that there might be one or more source and target images with
greatly different data distributions. Moreover, we suppose that new labeled source and
unlabeled target images can be added over the time. In such a setting, instead of train-
ing a domain adaptation method from scratch, we wish to devise an approach that can
adapt the previously trained classifier to newly added source and target images, even
when each image has a significantly different distribution.

5.2 Motivations

As mentioned in the previous chapter, the common single-source and single-target adap-
tation setting limits the proposed approaches to small-scale segmentation problems. The
new generation of satellites with a short revisit time generate in routine massive amounts
of remote sensing data. These data usually contain multiple domains with largely dif-
ferent data distributions and are relevant for many real-world applications. Therefore,
to perform large-scale classification, an ideal unsupervised domain adaptation approach
should be capable of learning from annotated multiple source domains and well seg-
menting unlabeled multiple target domains, even when the data distributions of all the
domains are different. In addition, nowadays, the constellations of satellites collect im-
ages from the entire earth everyday. As a consequence, in many cases, one receives
new annotated source domains and unlabeled target domains over time. Hence, it is
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also crucial for the ideal approach to perform life-long adaptation over the continuously
increasing data.

By performing unsupervised style transfer between two domains with GANs, it is
possible to generate a fake source domain whose data distribution is as similar as possible
to the distribution of a target domain [167, 168]. A possible solution for unsupervised,
multi-source, multi target, and life-long domain adaptation problem would be learning
to perform style transfer between all domain pairs. If this task can be accomplished,
we can generate multiple fake domains from each domain, where each fake domain is
representative for a different domain. We then can use the fake domains generated from
the source domains to train a classifier. Training a classifier on such diversified data
would allow the classifier to learn from the data that are representative for both the
source and the target domains, instead of capturing the idiosyncrasies of each source
domain.

However, the problem of style transfer between progressively growing multiple do-
mains raises some challenges. Firstly, all of the fake domains generated from each source
domain must be semantically consistent with the original domain. For example, if the
method replaces some objects with others or adds artificial structures to the fake domains
in the generation process, the fake domains and the ground-truth for the real domain
would not match. Thus, we cannot train a classifier. Secondly, when we perform style
transfer between domain pairs, the data distribution of the fake domain generated from
one domain must be similar to the distribution of the other domain. Otherwise, the
fake domain would not be representative for the other domain. Thirdly, the number of
networks should not grow with the number of domains in order for the method to scale
to many domains. For example, if the method requires using a style encoder for each
domain as in MUNIT [78], DRIT [96], StarGAN [36], StarGAN v2 [37], and Standard-
GAN [79], it would be limited to a certain number of domains. In addition, it would be
necessary to add new style encoders every time when we receive new data. Finally, once
the training is completed, ability to perform style transfer between the domains on the
fly is desired. Otherwise, it would be required to store all the fake domains on a disk.

5.3 Related Work

5.3.1 Single-Source and Multi-target Adaptation

As in multi-source adaptation problem, it is possible to solve multi-target adaptation
problem by executing an I2I method to generate fake source domains with similar dis-
tributions to those of the target domains. These fake domains can then be used to train
a classifier. However, such a solution is sub-optimal as it requires applying an I2I ap-
proach multiple times. Specifically for multi-target adaptation problem, an information
theoretic approach [58] and a model parameter adaptation framework [188] have been
proposed. However, in their problem definitions, these methods assume that there exists
only one source domain. In our case, on the other hand, there might be more than one
source domain. In addition, these methods have been proposed for image categorization
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problem. Hence, it may not be possible to use them for semantic segmentation.

5.3.2 Multi-Source and Multi-target Adaptation

The methods based on data standardization described in the previous section, namely Z-
score normalization [4], histogram equalization [60], color constancy algorithms such as
gray-world [24] and gamut [53] are relevant for multi-source and multi-target adaptation.
Our experiments in the previous chapter proved that StandardGAN outperforms these
approaches. However, the main limitation of StandardGAN is that there needs to be a
different style encoder for each satellite image. As a consequence, the method is limited
to a certain number of images.

5.3.3 Life-long Adaptation

The remote sensing literature describes methods based on semi-supervised active learn-
ing, where an annotator labels some portions of the received domain to be included in the
training data. In the approach proposed by Persello and Bruzzone [133], the classifier it-
eratively learns from a small number of newly added samples from the target domain and
removes some of the source samples whose distribution does not fit with the distribution
of the target domain. The SVM based method presented by Matasci et al. also follows
a similar approach [118]. Another kernel based active learning approach is introduced
by Deng et al. [46]. The usage of neural networks for active learning has been studied
as well [57]. However, we seek for an unsupervised method instead, as automation is the
key for practical real-world applications.

5.4 Contributions

In this chapter, we introduce a new approach dealing with the challenges mentioned in
Sec. 5.2. Our contributions are as follows:

� We propose an approach that can perform style transfer between multiple domains
with only one encoder, one decoder, and one discriminator unlike MUNIT [78],
DRIT [96], StarGAN [36], StarGAN v2 [37], and StandardGAN [79] that rely
upon a different style encoder for each domain. In addition, since the number of
networks is constant irrespective of the number of domains, our approach can do
style transfer across multiple domains even when new domains are progressively
added.

� We introduce novel DAugNet consisting of a data augmentor and a classifier. The
data augmentor, which is a shallow network, can stylize each domain as another
one. Due to its simple architecture, it allows online data diversification rather than
storing all the fake data on a disk and loading them when training a classifier. In
each training iteration of DAugNet, the data augmentor diversifies a batch of
training patches by stylizing each patch as a randomly selected domain before
passing the batch to the classifier.
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� We validate DAugNet on semantic segmentation of Pléiades images captured over
multiple cities from three European countries. Our data comprise images with
either red, green, blue bands or near-infrared, red, green bands. In three extensive
experiments, we investigate how DAugNet performs on single-source and single-
target, multi-source and multi-target, and life-long adaptation problems. We also
conduct five ablation studies to further analyze the properties of our solution.

5.5 Method

Our training pipeline consists of two stages. In the first stage, we learn how to stylize
each domain like any other using only one encoder, one decoder, and one discriminator.
Note that this stage is completely unsupervised. Therefore, we use both annotated source
and unlabeled target domains during training. A subset of the networks used in this
stage forms a data augmentor. In the second stage, we train DAugNet that is composed
of the data augmentor and a classifier. In each training iteration of DAugNet, the data
augmentor is frozen and diversifies a batch of patches sampled from source domains by
stylizing each patch in the batch as a randomly selected domain. The diversified batch
is then given to the classifier. The randomly selected domain can be chosen among both
source and target domains. Hence, when training DAugNet, the classifier learns from
the data that are representative for all of the source and the target domains. As a result,
it is expected that DAugNet would perform better than a classifier trained only on real
source domains.

In the remainder of this section, we first describe how we concurrently switch the
styles of two domains. We then detail how we perform style transfer between multiple
domains. We finally explain the architecture of DAugNet and its overall training pipeline
for multi-source, multi-target, and life-long domain adaptation.

5.5.1 Style Transfer Between Two Domains

To perform style transfer between two domains, we use one encoder, one decoder, and one
multi-task discriminator. Throughout this sub-section, we refer to one of the domains
as A and the other one as B for the sake of simplicity.

Before the training starts, we initially generate a unique and constant style code for
each domain. We denote by SA = {γA, βA} and SB = {γB, βB} the style codes of A and
B. We initialize each parameter of SA and SB (i.e., γ and β) with 128 values drawn from
the uniform distribution that ranges between 0 and 1. To generate a fake domain stylized
as the other one, we first extract an embedding from the domain using the encoder. We
then normalize the embedding via adaptive instance normalization (AdaIN) [77] that is
defined as:

AdaIN(x, γ, β) = γ

(
x− µ(x)

σ(x)

)
+ β, (5.1)

where x denotes the final activation of the encoder from one domain, and γ and β
correspond to the style code parameters of the other domain. We finally decode the

95



Figure 5.1: Combining the content of one domain with the style of another domain. ks
and s correspond to kernel size and stride parameters of the convolution. IN , LN , and
NN ups. stand for instance normalization, layer normalization, and the nearest neighbor
upsampling, respectively. The numbers above the gray rectangles denote the number of
channels in each activation.

Figure 5.2: Multi-task discriminator. IN and LReLU denote instance normalization
and leaky rectified linear unit, respectively. The number of channels in each activation
is indicated above the blue rectangles.
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Figure 5.3: Style transfer between two domains. To generate fake A and fake B, we
combine the embeddings of A and B with SB and SA, respectively. L1 norms enforce
semantic consistency between A and fake A, and B and fake B. The adversarial losses
force fake A and fake B to look like B and A, respectively.

normalized embedding via the decoder. As depicted in Fig. 5.1, the embedding extracted
from one domain through the encoder consists of 128 channels, each of which is scaled
and shifted by the style code parameters of the other domain with Eq. 5.1 before feeding
the embedding to the decoder. Decoding the normalized embedding of A with SB and
the embedding of B with SA results in generating fake A stylized as B and fake B with
the style of A. StandardGAN introduced in the previous chapter aims at learning the
parameters of SA and SB from A and B by domain specific so-called style encoders.
Such approach requires using a different style encoder for each domain. However, we
have discovered that it is possible to combine the content of A with the style B (or vice
versa) using randomly initialized and unique SA and SB parameters instead of trying to
learn them.

After combining A with SB and B with SA to generate fake A and fake B, we need
to ensure that the data distributions of A and fake B, and B and fake A are as similar
as possible. To overcome this issue, one could use adversarial learning to force the
distributions of fake A and fake B to be similar to those of B and A, respectively. To
perform style transfer between two domains, the current state-of-the-art I2I approaches
such as SemI2I [168], CycleGAN [198], UNIT [104] use two discriminators, where one
discriminates between A and fake B, and the other one tries to distinguish B from fake
A. However, as discussed in Sec. 5.2, one of the challenges is to use as small number of
networks as possible to easily extend the method to multi-domain adaptation problem.
Hence, instead of including multiple discriminators, we propose to use only one multi-
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task discriminator. As shown in Fig. 5.2, our discriminator comprises several shared
layers and multiple domain specific layers. Each domain specific layer tries to understand
whether the given data are fake or belong to that domain. Let us also remark that each
domain specific layer of our discriminator outputs a two dimensional matrix. Each
element of this matrix determines whether different parts of the input image are real
or fake. We then take average of all the elements to generate a scalar quantifying the
realness of the input. Our generator is depicted in Fig. 5.3. Let us denote by DA and
DB the discriminator’s outputs for A and B, and by G the generator. The adversarial
loss for the discriminator is defined as:

LDadv
(X,Y ) = −

[
Ex[log(DX(x))] + Ey[log(1−DX(G(y)))]

]
, (5.2)

where X and Y denote two domains, and x and y correspond to patches sampled from
these domains. The adversarial loss for the generator is described as:

LGadv
(X,Y ) = −

[
log(DX(G(y)))

]
. (5.3)

We compute the overall adversarial losses for the discriminator and the generator as:

LDadv
= LDadv

(A, B) + LDadv
(B, A) (5.4)

and
LGadv

= LGadv
(A, B) + LGadv

(B, A). (5.5)

Another challenge is to keep A and fake A, and B and fake B semantically consistent.
Otherwise fake A and fake B would not match with the ground-truth of A and B, and
could not be used to train a classifier. To enforce the semantic consistency, we define
several constraints. Firstly, after we generate fake A and fake B, we combine their
contents with the style codes of B and A (i.e., SB and SA) to generate A′′ and B′′. By
switching the styles of fake A and fake B, the original domains need to be reconstructed.
Hence, we minimize the cross reconstruction loss Lcross that is defined as:

Lcross = |A−A′′|+ |B− B′′|. (5.6)

Secondly, when we combine A with SA and B with SB, we obtain A′ and B′. Here, since
we combine the content of each domain with its own style, A′ and B′ must be the same
as A and B. Therefore, we minimize the self reconstruction loss that is computed as:

Lself = |A−A′|+ |B− B′|. (5.7)

Finally, the textural features of A and fake A, and B and fake B must be very close.
Let us assume that Gr(·, ·) is a function that takes two three-band images as inputs,
converts them to gray-scale images, computes their horizontal and vertical gradients by
Sobel filter, and sums the L1 norm between the horizontal and the L1 norm between the
vertical gradients. We minimize the edge loss Ledge as:

Ledge = Gr(A, fake A) +Gr(B, fake B). (5.8)
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Figure 5.4: Training procedure of DAugNet that comprises a data augmentor and a clas-
sifier. In each training iteration, the classifier learns from the diversified batch generated
by the data augmentor.

Note that other textural features such as Haralick features [65] can be considered as
well. However, we prefer Sobel operator mainly because of its short execution time.

The final objective for the generator is computed as:

LG = λ1Ladv G + λ2Lcross + λ3Lself + λ4Ledge, (5.9)

where λ1, λ2, λ3, and λ4 adjust the relative importance of each loss. The discriminator
loss is defined as:

LD = λ1Ladv D. (5.10)

In the training stage, we minimize both LG and LD simultaneously.

5.5.2 DAugNet for Multi-source, Multi-Target, and Life-long Domain
Adaptation

Let us assume that we have N domains out of which Ns of them are annotated source
domains and Nt of them are unlabeled target domains. We also suppose that all of
the domains have considerably different data distributions. In such a multi-source and
multi-target segmentation setting, our goal is to generate maps for Nt unlabeled target
domains. In the pre-processing step, we first split all of the domains into smaller patches
and generate a unique style code for each domain. We then perform multi-domain
style transfer by sampling a patch from randomly selected two domains among N and
minimizing Eqs. 5.9 and 5.10 in each training iteration. After a sufficiently long training
process, we are able to generate fake N − 1 domains from each one. Our constraints
explained in Sec. 5.5.1 enforce each fake domain to representative for a different domain
and to be semantically consistent with the original domain.

Once the training process of the initial unsupervised and multi-domain style transfer
is completed, we move on to training DAugNet. As illustrated in Fig. 5.4, the main
components of DAugNet is the data augmentor and the classifier. In this stage, the data
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augmentor is frozen, only the classifier is updated. The combination of the encoder and
the decoder forms a data augmentor. Both the encoder and the decoder are shallow
networks, where the former consists of six layers and the latter is composed of only
two layers (see Fig. 5.1). In each training iteration of DAugNet, we randomly sample a
batch of training patches from Ns source domains as well as their corresponding ground-
truth. With 0.9 probability, the data augmentor diversifies the batch by extracting
its embedding via the encoder, scaling and shifting the embedding for each patch with
the style code parameters of a randomly selected domain, and decoding the normalized
embedding. We then use the diversified batch and the ground-truth for the original
batch to update the classifier by minimizing the classification loss Lclass defined as:

Lclass = λ5LsigmCE(y, ŷ) + λ6Lsoft IoU (y, ŷ), (5.11)

where LsigmCE , Lsoft IoU , y, and ŷ denote sigmoid cross entropy loss, soft IoU loss [119],
class labels, and the predictions, respectively. Diversifying the original batch with the
proposed shallow data augmentor has two advantages. Firstly, such diversification ap-
proach allows the classifier to learn from the data that are representative for all N
domains. Therefore, for target domains, we can expect DAugNet to achieve a better
performance than naively training a classifier on the real data. Secondly, the diversifica-
tion can be carried out in an online fashion, rather than storing all the fake domains in
the pre-processing step and loading them when training the classifier. In each iteration,
we deactivate the data augmentor with 10% chance for the classifier to learn from the
real data as well.

To better explain life-long, multi-source, and multi-task adaptation problem, let us
assume that we are provided additional M domains comprising Ms annotated source
and Mt unlabeled target domains with different data distributions. The problem now
becomes segmenting Nt +Mt domains. To solve this problem, we first generate unique
style codes for the newly added M domains. We load the style codes of the initial N
domains and the pre-trained weights for the encoder, the decoder, and the classifier of
DAugNet. We also initialize the parameters of the discriminator’s shared layers as well
as its domain specific layers for the previous domains with the pre-trained weights. For
the current M domains, we add additional M domain specific layers to the discriminator
with random initialization. We then conduct the initial training to perform style transfer
between N +M domains. This time, when selecting two random domains, we randomly
choose one domain among the current M domains and another one from all M + N
domains we have at hand. With this sampling strategy, we guarantee that at least one
of the domains is selected from the newly added ones. We finally fine-tune DAugNet
with the same diversification method as explained above. Let us remark that every time
we receive a new domain, we do not increase the number of networks. We only add a
new layer to the discriminator. Considering that the networks with hundreds of layers
can be fit into the current GPUs as in ResNet-152 [68], it is feasible to add many layers
to the discriminator.
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Table 5.1: The data set.

City (Country)
Class percentages (%) 256×256
Building Road Tree patches

Villach (AT) 9.26 10.63 19.91 749
Sankt Pölten (AT) 6.68 6.39 25.13 1558
Bad Ischl (AT) 5.51 6.0 35.38 457
Salzburg Stadt (AT) 9.44 8.69 23.88 2496
Leibnitz (AT) 7.00 7.37 16.78 572
Bourges (FR) 9.81 10.52 14.83 1188
Lille (FR) 18.36 12.71 15.40 2181
Béziers (FR) 19.09 17.62 10.91 407
Albi (FR) 17.20 14.48 15.19 413
Vaduz (LI) 3.57 4.30 33.69 1612

5.6 Experiments

5.6.1 Data Set

Our data set consists of Pléiades images collected over five cities in Austria, four cities in
France, and one city in Liechtenstein. We are given the annotations for building, road,
and tree classes by the data providers. Table 5.1 records city names and the percentage
of pixels belonging to each class. The image from Leibnitz is composed of near-infrared,
red, green bands, and its spatial resolution is 0.5 m. The rest of the cities comprise red,
green, and blue channels, and their resolution is 1 m. We reduce the resolution of the
image from Leibnitz to 1 m so as to make our data set homogeneous in terms of spatial
resolution. The images in our data set cover the total area of 663.02 km2.

In the pre-processing step, we split all the images into 256×256 smaller patches with
an overlap of 32 pixels. We use these patches in every stage of our training pipeline (i.e.,
both the multi-domain style transfer part and the process of training DAugNet). We
indicate the number of patches belonging to each city in Table 5.1.

5.6.2 City-to-city Adaptation

In our first experimental setup, we perform city-to-city adaptation between Villach and
Bad Ischl. A close-up from each city is depicted in Figs. 5.5a and 5.6a. We first use
Villach as the source city and Bad Ischl as the target. We then switch the source and the
target cities. In both cases, we assume that the source image is annotated and the target
image is unlabeled. We compare our method with thirteen different approaches. The
compared methods can be categorized into four groups: naive, adapting the classifier,
data standardization, and image-to-image translation.

The approach belonging to the first category corresponds to training a U-net [144] on
the source image and segmenting the target city without doing any domain adaptation.
As confirmed by Tables 5.2 and 5.3, when there exists a large data distribution difference
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Table 5.2: IoU scores for Villach in the first experiment (City-to-city adaptation).
Method Source: Bad Ischl ⇒ Target: Villach

Name Type Building Road Tree Overall

U-net [144] naive 29.00 3.78 58.52 30.43

AdaptSegNet Single [173] adapting 6.01 4.37 10.43 6.94
AdaptSegNet Multi [173] classifier 24.59 9.02 56.08 29.86
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Gray-world [24]
data

11.98 25.66 60.91 32.85
Hist. Equalization [60]

standard.
23.28 23.36 64.31 36.98

Z-score norm. [4] 17.86 20.53 61.64 33.34
Hist. Matching [60] 8.20 20.18 54.81 27.73

UNIT [104] image 1.96 0.51 66.68 23.05
MUNIT [78] to 6.72 0.00 37.32 14.68
DRIT [96] image 0.00 0.00 15.14 5.05

CycleGAN [198] trans. 25.80 25.20 66.07 39.03
ColorMapGAN [167] 42.28 40.25 65.28 49.27

SemI2I [168] 40.18 32.66 66.83 46.56

DAugNet (ours) divers. 49.68 35.32 68.14 51.05

Table 5.3: IoU scores for Bad Ischl in the first experiment (City-to-city adaptation).
Method Source: Villach ⇒ Target: Bad Ischl

Name Type Building Road Tree Overall

U-net [144] naive 5.12 0.08 0.00 1.73

AdaptSegNet Single [173] adapting 3.06 2.71 10.23 5.33
AdaptSegNet Multi [173] classifier 14.26 4.46 24.66 14.46
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Gray-world [24]
data

34.30 29.08 58.12 40.50
Hist. Equalization [60]

standard.
34.08 22.81 64.93 40.60

Z-score norm. [4] 23.20 34.22 52.00 36.47
Hist. Matching [60] 2.27 0.13 0.00 0.80

UNIT [104] image 32.51 4.39 41.77 26.22
MUNIT [78] to 2.41 0.00 1.22 1.21
DRIT [96] image 0.00 0.30 0.00 0.10

CycleGAN [198] trans. 42.01 12.15 76.39 43.52
ColorMapGAN [167] 52.00 42.29 47.28 47.19

SemI2I [168] 49.32 41.06 70.18 53.52

DAugNet (ours) divers. 53.19 41.84 80.07 58.37
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5.5: Bad Ischl and its modified versions to segment Villach. (a) Bad Ischl,
(b) gray-world [24], (c) histogram equalization [60], (d) z-score normalization [4], (e) his-
togram matching [60], (f) UNIT [104], (g) MUNIT [78], (h) DRIT [96], (i) Cycle-
GAN [198], (j) ColorMapGAN [167], (k) SemI2I [168], (l) DAugNet (ours).

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5.6: Villach and its modified versions to segment Bad Ischl. (a) Villach, (b) gray-
world [24], (c) histogram equalization [60], (d) z-score normalization [4], (e) histogram
matching [60], (f) UNIT [104], (g) MUNIT [78], (h) DRIT [96], (i) CycleGAN [198],
(j) ColorMapGAN [167], (k) SemI2I [168], (l) DAugNet (ours).
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between the source and the target cities, U-net fails to generate high quality maps.
Especially for Bad Ischl, the quantitative results are extremely poor.

We also apply AdaptSegNet [173], which is an approach belonging to the second
group, to our data set. This network architecture simultaneously learns from the source
city and aligns the features extracted from both cities to train a domain agnostic clas-
sifier. The authors use DeepLab v2 [32] as the classifier. The feature alignment can
be executed in one or multiple layers. In Tables 5.2 and 5.3, AdaptSegNet Single and
AdaptSegNet Multi respectively correspond to the proposed method when the alignment
is done in the last and in the last two layers before upsampling. However, the quanti-
tative results prove that this method does not exhibit a good performance on domain
adaptation of satellite images.

Among the methods based on data standardization, we compare our approach with
gray-world algorithm [24], histogram equalization [60], and z-score normalization [4]. We
first standardize images from both cities. We then train a U-net on the standardized
source image and segment the standardized target data. Although these standardization
methods enable U-net to better generalize, the improvement is unsatisfactory. As shown
in Figs. 5.5 and 5.6, while the data distributions of the images get close to each other
with these approaches, we still observe some differences.

To evaluate image-to-image translation based methods, we first a generate target
stylized fake source city. Afterwards, we train a U-net on the fake source city and evalu-
ate it on the target city. We provide the results for histogram matching [60], UNIT [104],
MUNIT [78], DRIT [96], CycleGAN [198], ColorMapGAN [167], and SemI2I [168]. As
illustrated in Figs. 5.5 and 5.6, the fake images generated by UNIT [104], MUNIT [78],
and DRIT [96] are semantically inconsistent with the real source images. Therefore,
U-net learns from data, where image and the ground-truth do not match. As a con-
sequence, the quantitative results for these approaches are poor. Histogram matching
does not take into account the contextual information. For example, fake image gen-
erated by histogram matching from Bad Ischl contains a lot of buildings with violet or
cyan rooftops. However, such buildings do not exist in Villach. Since the fake source
image is not representative for the target image, the performance of this approach is
unsatisfactory. CycleGAN generates blurry fake source images, which negatively affects
the performance of U-net. ColorMapGAN and SemI2I are better performers than the
other ones. More detailed comparisons between city-to-city adaptation methods can be
found in the third chapter.

When we train the multi-domain style transfer part of our solution, we set λ1, λ2,
λ3, and λ4 parameters in Eqs. 5.9 and 5.10 to 1, 10, 10, and 100, respectively. We have
found these values empirically. We train our style transfer method for 25 epochs. The
learning rate for the initial 15 epochs is 0.0001. We reduce it gradually in the rest of the
epochs as:

LR = 0.0001× num epochs− epoch no

num epochs− decay epoch
, (5.12)

where LR, num epochs, epoch no, and decay epoch denote the current learning rate,
total number of epochs, current epoch no, and the epoch no where we start reducing
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Table 5.4: IoU scores for Bad Ischl in the second experiment (multi-source and multi-
target adaptation).

Method
IoUs for Bad Ischl

Building Road Tree Overall

U-net [144] 35.48 26.36 51.24 37.69

U-net trained Gray-world [24] 50.30 43.00 70.41 54.57
on data Histogram Equalization [60] 42.32 38.21 75.16 51.90

generated by Z-score normalization [4] 39.77 41.86 78.53 53.39

DAugNet 59.70 49.05 83.39 64.05

Table 5.5: IoU scores for Vaduz in the second experiment (multi-source and multi-target
adaptation).

Method
IoUs for Vaduz

Building Road Tree Overall

U-net [144] 12.49 18.68 58.34 29.84

U-net trained Gray-world [24] 19.45 19.59 18.85 19.29
on data Histogram Equalization [60] 19.32 20.64 68.50 36.15

generated by Z-score normalization [4] 15.40 24.16 58.94 32.83

DAugNet 51.83 34.41 69.74 51.99

the learning rate. As the optimizer, we use Adam algorithm [90]. We set the beta
coefficients of Adam to 0.5 and 0.999, respectively. When we train DAugNet, our data
augmentor generates only target stylized image batches, since there are only two cities
in this experimental setup. Note that any network architecture can be used as the
classifier of DAugNet. We prefer to use U-net. We train DAugNet for 35 epochs with
0.0001 learning rate. Except for AdapSegNet, we train U-net for all the compared
methods for 35 epochs with the same learning rate. When training DAugNet and U-net
for the compared methods, we set λ5 and λ6 in Eq. 5.11 to 0.25 and 0.75, respectively.
We sample a batch of 32 training patches and perform online data augmentation with
random flips and rotations. Tables 5.2 and 5.3 attest that DAugNet performs the best
in most cases.

5.6.3 Multi-source and Multi-target Domain Adaptation

To evaluate the performance of our approach on Multi-source and Multi-target adap-
tation setting, we choose Villach, Sankt Pölten, Bourges, and Lille as the source, and
Bad Ischl and Vaduz as the target cities. In this setup, we train our initial multi-domain
style transfer approach for 200 epochs. We use Adam optimizer with initial learning of
0.0001 and the same beta coefficients used in the previous experiment. Starting from the
100th epoch, we reduce the learning rate via Eq. 5.12. We train DAugNet as described
in Sec. 5.5.2 for 100 epochs. We compare our framework with the same standardization
approaches explained in the previous experimental setup. Once all the data are stan-
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Figure 5.7: Style transfer between the images used in the second experiment. The cells
with red bounding boxes are real data. The rest of the cells represent the fake data
generated by our multi-domain style transfer approach.
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Figure 5.8: Target images used in the second experiment, their ground-truth, and the
predictions. Red, white, and green pixels represent building, road, and tree classes,
respectively. The pixels in black do not belong to any class.

Table 5.6: IoU scores for Bad Ischl in the third experiment (multi-source, multi-target,
and life-long adaptation).

Method
IoUs for Bad Ischl

Build. Road Tree Overall

U-net [144] 51.86 39.33 79.80 56.99

U-net on Gray-world [24] 59.59 47.95 68.72 58.75
data Hist. Eq. [60] 44.03 39.94 78.56 54.18

generated by Z-score norm. [4] 46.58 44.62 75.25 55.48

DAugNet 60.52 53.08 82.87 65.49

dardized, we train a U-net on the standardized source images for 100 epochs and report
the results on the standardized target cities.

Tables 5.4 and 5.5 report the IoU scores for multi-source and multi-target experi-
mental setup. Our first observation is that adding more source cities with different data
distributions bridges the domain gap between the source and the target cities. Thus,
the classifier better generalizes to new geographic locations. For instance, although we
use Bad Ischl as the target city both in this experiment and in the previous one, the
quantitative results of each method for this city are significantly higher in this setting.
Secondly, in some cases, the performances of the standardization algorithms are unstable.
All of these algorithms allow the classifier to exhibit a considerably better performance
on Bad Ischl, whereas the quantitative results for Vaduz are either roughly on par with
or even worse than naive U-net. As depicted in Fig. 5.7, our multi-domain style transfer
method is able to stylize each city as another one. As mentioned earlier, diversifying
a batch of image patches when training DAugNet with the help of the data augmentor
enables DAugNet to learn from data that are not only representative for the source
cities but also representative for the target cities. Hence, DAugNet achieves a better
performance than the others. Fig 5.8 shows a close-up from each city, its ground-truth,
and the predictions.
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Figure 5.9: Style transfer between newly added cities in the third experiment and all
the cities. The cells with yellow bounding boxes represent the additional real images.
The rest of the cells show the fake images generated by our multi-domain style transfer
approach.

Table 5.7: IoU scores for Vaduz in the third experiment (multi-source, multi-target, and
life-long adaptation).

Method
IoUs for Vaduz

Build. Road Tree Overall

U-net [144] 38.04 34.33 75.88 49.42

U-net on Gray-world [24] 26.04 30.98 45.37 34.13
data Hist. Eq. [60] 19.19 23.64 71.11 37.98

generated by Z-score norm. [4] 29.08 28.97 48.38 35.48

DAugNet 53.03 39.44 71.77 54.75

Table 5.8: IoU scores for Leibnitz in the third experiment (multi-source, multi-target,
and life-long adaptation).

Method
IoUs for Leibnitz

Build. Road Tree Overall

U-net [144] 2.29 1.13 0.04 1.15

U-net on Gray-world [24] 0.01 0.10 21.59 7.23
data Hist. Eq. [60] 1.23 0.42 55.93 19.19

generated by Z-score norm. [4] 0.10 1.14 11.80 4.35

DAugNet 43.31 34.28 73.18 50.26
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Figure 5.10: Target images used in the third experiment, their ground-truth, and the
predictions. Red, white, and green pixels represent building, road, and tree classes,
respectively. The pixels in black do not belong to any class.

5.6.4 Life-long Domain Adaptation

In the third experiment, we assume that in addition to the ones in the second experi-
ment, we receive new annotated source images from Béziers, Salzburg Stadt, Albi, and
unlabeled target data from Leibnitz. The image from Leibnitz consists of near-infrared,
red, and green channels, whereas the other nine cities are composed of red, green, and
blue spectral bands. This experimental setup has two goals. Firstly, we wish to ver-
ify whether our method can perform style transfer between ten images having different
data distributions even when the type of spectral bands are different. Secondly, we want
to observe the relevance of our solution for the life-long adaptation setting, where new
source and target images are added. In this experimental setup, we have seven source
and three target cities in total.

We first generate unique style codes for the new cities and train our style transfer
method as described in Sec. 5.5.2 for 50 epochs. As in the first two experiments, we use
Adam optimizer with the initial learning rate of 0.0001. We reduce the learning rate
after the 25th epoch via Eq. 5.12. Before training DAugNet, we initialize the parameters
of U-net in DAugNet with the pre-trained weights from the second experiment. We then
fine-tune DAugNet for 100 epochs. We compare DAugNet with the same data stan-
dardization approaches as the previous experiment. For each compared standardization
method, we fine-tune the U-net trained in the second experiment for 100 epochs.

As confirmed by Tables 5.6, 5.7, 5.8, because of the new three source cities, the
IoU scores of all the methods for Bad Ischl and Vaduz are higher than in the second
experiment. For example, the performance of U-net especially for tree class significantly
improves. It is probably because trees in the new cities are more representative for
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Figure 5.11: Random style codes of Villach in the second experimental setup and in the
second ablation study. (a-b) γ and β values of Villach in the second experiment. (c-d)
γ and β values of Villach in the first run of the second ablation study. (e-f) γ and β
values of Villach in the second run of the same study.

the target cities. For instance, as can be seen in Fig. 5.9, the data distributions of
trees in Salzburg stadt and Vaduz, and Albi and Bad Ischl seem close. Naive U-net
slightly better detects trees in Vaduz than DAugNet. This slight performance difference
probably stems from some artifacts added by our GAN architecture in the process of
generating fake cities. However, DAugNet outperforms the compared approaches for
all the other classes. When it comes to segmenting Leibnitz, the performances of the
compared methods are extremely poor, mainly because the spectral bands of this image
do not comprise red, green, and blue channels. On the other hand, as shown in Fig. 5.9,
our style transfer method can easily convert red, green, blue images to near infrared,
red, green ones. As a consequence, DAugNet significantly outperforms the others on
Leibnitz, since it learns from data consisting of both red, green, blue and near infrared,
red, green bands. Fig. 5.10 depicts a close-up from each city used in this experiment, its
ground-truth, and the predictions.
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Table 5.9: Quantitative results for the first ablation study.
City Result type Building Road Tree Overall

Bad Ischl
IoUs for run 2 59.91 50.00 82.70 64.20
IoUs for run 3 60.50 50.44 83.64 64.86
standard dev. 0.34 0.58 0.40 0.35

Vaduz
IoUs for run 2 51.65 35.42 62.56 49.88
IoUs for run 3 51.72 32.76 66.98 50.49
standard dev. 0.07 1.10 2.96 0.89

Table 5.10: Quantitative results for the second ablation study.
City Result type Building Road Tree Overall

Bad Ischl
IoUs for run 2 59.10 49.45 81.71 63.42
IoUs for run 3 59.95 52.27 83.16 65.12
standard dev. 0.36 1.43 0.74 0.70

Vaduz
IoUs for run 2 50.07 37.31 64.80 50.73
IoUs for run 3 46.03 34.14 65.86 48.68
standard dev. 2.43 1.43 2.12 1.36

(a) (b) (c)

Figure 5.12: Real Vaduz and Fake Vaduz in Bad Ischl style. (a) Vaduz, fake Vaduz by
our approach with (b) edge loss and (c) without edge loss.

Table 5.11: Drop in IoU scores when edge loss is deactivated.
City Building Road Tree Overall

Bad Ischl 2.04 2.25 2.59 2.30
Vaduz 5.88 2.00 14.81 7.56
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Figure 5.13: Style transfer between 20 satellite images, each of which has been collected
from a different city. Rows and columns of this matrix correspond to content and
style information, respectively. The cells on the diagonal from top-left to bottom-right
represent real images. Each of the rest of the cells shows a fake city with the style of
another one.
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Table 5.12: DAugNet vs. U-net training time comparison.

Training Data (# cities) # patches
Tr. time (h:m:s)

U-net DAugNet

Source data in Exp. 2 (4) 5676 1:47:21 2:05:25
Source data in Exp. 3 (7) 8992 2:50:29 3:18:05

Table 5.13: Training time of multi-domain style transfer.
Tr. Data (# cities) # patches # epochs Tr. time (h:m:s)

Cities in Exp. 2 (6) 7745 200 2:25:47
Cities in Exp. 3 (10) 11633 50 0:34:57

5.6.5 Ablation Studies

Effect of random diversification. As explained earlier, the data augmentor in
DAugNet randomly diversifies the training batch before passing it to the classifier. In
the first ablation study, we analyze the robustness of DAugNet to random diversifica-
tion. We train DAugNet two more times from scratch on the source cities in the second
experimental setup and segment Bad Ischl and Vaduz. Note that we do not train the
initial multi-domain style transfer part of our pipeline again to evaluate the effect of
only random diversification. Table 5.9 reports IoU scores of the two runs. In the table,
we also indicate the standard deviation of IoUs in the second experiment and IoUs of
these two runs. Because the standard deviations are quite small, we conclude that our
framework is robust to random diversification.

Effect of random style codes and diversification. We repeat the whole training
pipeline of our approach in the second experiment two times. Fig. 5.11 depicts the
randomly initialized 128 γ and β values for Villach in the second experiment and in the
two runs of this ablation study. In Table 5.10, we report IoU scores of these two runs
and the standard deviations. Although the style codes (i.e., γ and β) of the cities are
different in each run, the standard deviations for IoUs are very small. In conclusion, our
solution is robust to random style codes and random diversification.

Effect of edge loss. We deactivate the edge loss by setting λ4 in Eq. 5.9 to zero and
repeat the second experiment to evaluate the effect of the edge loss. As can be seen in
Fig. 5.12, when λ4 is zero, our style transfer approach generates slightly blurred fake
images, which causes DAugNet to exhibit a worse performance. The drop in IoU scores
is reported in Table 5.11. Note that the other terms in Eq. 5.9 are mandatory; therefore,
λ1, λ2, and λ3 cannot be set to zero.

U-net vs. DAugNet training time comparison. Because the data augmentor
needs to diversify the batch in each training iteration, the training time of DAugNet is

113



longer than that of U-net. Table 5.12 reports the time required to train DAugNet and U-
net on the source data in the second and in the third experiments on an NVidia GeForce
GTX 1080 Ti GPU. Due to its simple architecture, the data augmentor prolongs training
time of the classifier for only 18 minutes in the second experiment, and for 28 minutes
in the third experiment. Table 5.13 reports the time needed to train the multi-domain
style transfer part of our framework in the second and in the third experiments.

Scalability of the proposed method. As mentioned in Sec. 5.2, significant techno-
logical advancements in satellite sensors and a large number of satellite missions have
made massive volume of remote sensing data available. Therefore, it is of paramount
importance to propose highly scalable methods that can efficiently process a lot of satel-
lite images. To demonstrate that our method is capable of dealing with many satellite
images, we perform style transfer between twenty images collected from different cities in
Europe. Spectral bands of one image consists of near-infrared, red, green bands, whereas
the other images comprise red, green, and blue channels. As depicted in Fig. 5.13, our
style transfer method successfully stylizes each image like any other. This ablation study
proves that our method is suitable to large-scale segmentation problems.

5.7 Concluding Remarks

The satellite missions launched in the last decade have enabled us to collect huge volume
of remote sensing data over the entire Earth every day. Because of various atmospheric
conditions, sensor characteristics, and differences in acquisition, remote sensing images
collected from separate geographic locations in distinct times tend to have largely dif-
ferent data distributions. The data distribution difference between source and target
images prevents the machine learning models from generating precise maps. Moreover,
scarcity of annotated data motivates us to propose methods that are robust to such
distribution difference. In addition, it is crucial to introduce new approaches that can
adapt to continually growing data.

In this context, we presented a new approach for multi-source, multi-target, and life-
long domain adaptation problem. In the pre-processing stage of our method, we learn
how to perform style transfer between multiple source and target domains using only
one encoder, one decoder, and one discriminator. A subset of the networks used in this
stage constitutes a data augmentor. We then train the proposed DAugNet comprising the
data augmentor and a classifier. In each training iteration, the data augmentor randomly
diversifies the training batch before passing it to the classifier. As a consequence, the
classifier is more robust to the data distribution difference between the images, since it
learns from the data that are representative for all source and target cities.

The state-of-the-art methods in the literature either aim at solving single-source and
single target adaptation problem or use multiple networks to deal with multi-source
domain adaptation problem. However, because the number of networks in multi-domain
style transfer stage (pre-processing step) of our method is constant regardless of the
number of cities, our approach enabled us to perform adaptation between many cities.
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For the same reason, we could extend our solution to life-long adaptation setting. In
three extensive experiments, we verified effectiveness of our solution. Moreover, in five
ablation studies, we analyzed the properties of our approach in great detail, and we
demonstrated that our method is scalable.

One limitation of our approach is that the training time of DAugNet is slightly longer
than that of U-net. However, as confirmed by Table 5.12, the difference is kept small
due to the simple architectural design of the data augmentor. Another limitation is
that our method matches the distribution of one image with the global distribution of
another one when we perform style transfer. Matching the global distributions does not
guarantee similarity between class specific distributions. For example, let us assume
that we are interested only in road segmentation. When we stylize a source city as the
target city, in some cases, roads in the fake training and the target cities may not look
similar even though their global distributions are similar. In the literature, there is a
recent research activity on attention guided image-to-image translation [35,120,155,185].
These methods aim at performing translation between only the desired objects via the
proposed attention mechanisms. Our approach could be further improved by adopting
such attention methods.
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Chapter 6

Vectorization of Buildings via
Mesh Approximation

6.1 Problem Definition

In this chapter, we introduce a method based on mesh approximation to vectorize the
raster maps. Here, we are particularly interested in the building class. The input for
the proposed approach is a binary segmentation mask generated by a machine learning
model. The desired output is a vector map in which building contours are precisely
delineated.

6.2 Motivations

The maps that are used in Geographic Information System (GIS) applications can be
split into two categories: raster maps and vector maps. Raster maps comprise a grid of
pixels. They are generated by assigning a class label to each pixel in the remotely sensed
image. Vector maps, on the other hand, consist of features. The features in GIS appli-
cations usually correspond to points, lines, or polygons [157]. In the previous chapters,
we devised efficient approaches allowing to generate raster maps from satellite or aerial
images. However, vector maps are more desired in many real-world GIS applications,
because they have several advantages over raster maps.

First of all, they allow a more compact representation that enables fast processing
and easy management. For instance, if we would like to create a polygon feature that
delineates borders of a building, it is sufficient to store only the points located on the
building corners. Secondly, vector maps enable users to easily query the data. With
vector maps, it is feasible to answer the queries such as ”How many buildings are located
in this area?”, ”What are the areas of the selected objects?”, ”How many objects intersect
with the selected road?”, ”What is the shortest path between two geographic locations?”,
etc. When enriched with semantic, maps can answer many more application-dependent
usages. Thirdly, vector maps represent the objects more accurately. For instance, the
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(a) (b)

Figure 6.1: Close-ups from a satellite image and its corresponding raster map generated
by U-net [144]. (a) Satellite image, (b) predictions by U-net. Red, white, and green
colors represent building, road, and tree classes, respectively. As can be seen, building
corners are overly rounded.

user can zoom in/out unlimited number of times without observing any pixel effect unlike
in raster maps. Finally, in vector maps, geometric properties such as topology can easily
be described and maintained.

When vectorizing the raster maps, we encounter with several challenges. For exam-
ple, it is often the case that building corners in the raster maps predicted by a machine
learning model are overly rounded (see Fig. 6.1). In such cases, the vectorization algo-
rithm should correct the raster maps so that corners of the buildings meet at right angle.
The correction can be performed either by introducing geometric prior information such
as right angle regularity of building corners, parallelism of curves or edges delineating
roads, etc., or by using satellite images in addition to the raster maps, as the images
carry spectral and spatial information. Another challenge is generating vector maps
that efficiently represent all the objects. Otherwise, the maps may not meet the needs
of real-world applications because of their long processing times. Therefore, we must
generate maps with as small number of vertices, edges, etc. as possible.

The advantages described here have motivated us to generate efficient vector maps
from remote sensing data.

6.3 Related Work

6.3.1 Polygon Generalization

In order to generate a digitized representation, the most straightforward approach is to
vectorize the classification map, and simplify the polylines of the complex vectorized
output, which is referred to as polygon generalization [56]. Among the polygon gener-
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alization methods, Radial distance [157] and Reumann-Witkam [140] are quite similar.
The former removes vertices located inside tolerance circles centered at vertices of in-
terest, and the latter computes the line passing through two consecutive vertices and
removes the vertices that are closer to this line than a tolerance value. The Valingam-
Whyatt approach [178] ranks all the vertices in accordance to their significance derived
from their effective area, and iteratively removes the less significant vertices if their effec-
tive areas are lower than a tolerance value. The common Douglas-Peucker [49] approach
computes the edge joining the first and last vertices, and finds the farthest vertex from
this edge. If the distance between this vertex and the edge is larger than a threshold,
the algorithm is repeated recursively with the first and farthest, then farthest and last
vertices. If the distance between the farthest vertex and the edge is smaller than a
threshold, all intermediate vertices are removed.

All of these methods are available in most GIS packages such as GRASS and QGIS.
Douglas-Peucker is the most commonly used method in the community. It has been ex-
tended to preserve topology and to generate outputs that do not contain self-intersecting
polygons [149,179].

6.3.2 Mesh Approximation

A polygon mesh is defined as a collection of vertices, edges, and faces to represent the
shape of a polyhedral object. One of the most commonly used meshes is triangle mesh
that divides the space into non-overlapping triangles [16,44].

Mesh approximation has been a long-standing problem in geometry processing, where
a set of operators are defined and applied to modify the mesh [16]. A mesh can be
modified by both discrete operators such as edge flips and collapses [16] and continuous
operators like vertex relocation [16]. A combination of different operators can be used
for mesh approximation [14]. In the context of generating vector maps from raster maps,
labeled triangle meshes can be used [113,169].

When approximating a mesh via a set of certain operators, we may confront with
several challenges. One of the common issues is ending up having a mesh that contains
degenerate triangles. The degenerate triangle is a triangle where all three vertices form
almost a line. This problem can be overcome by adding some constraints to the operators.
For instance, we can force the smallest degree in each triangle to be larger than a certain
threshold. On the other hand, such constraints may limit the flexibility of the operators.
After approximating the mesh, a post-processing can be another way to avoid degenerate
triangles [15]. Another challenge is topology preservation. Especially collapse operators
(e.g., half-edge collapse) may cause distorting the topology. The topology preservation
can be enforced via Euler characteristic [141].

6.3.3 Learning Based Approaches

These approaches aim at training a machine learning model that can generate polygonal
segmentation for a given image.
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To this end, inspired by interactive segmentation tools [145], some semi-supervised
learning approaches have been proposed. PolygonRNN [27] and its improved version
PolygonRNN++ [1] are examples of such semi-supervised methods. Both approaches
require the user to draw a bounding box around the object of interest. PolygonRNN
first predicts location of the first vertex inside the bounding box. It then takes the
last two vertices and the first vertex as inputs in the current time step and tries to
predict location of the next vertex using a combination of CNNs and recurrent neural
networks (RNNs) [156]. PolygonRNN++ extends PolygonRNN by introducing the use of
graph neural networks (GNNs) [100,152]. Since one must draw a bounding box around
the object for which a polygonal segmentation would be generated, these approaches
are not feasible for vectorizing objects in satellite images. To avoid human interaction,
PolyMapper [102] proposed to use feature pyramid networks [103] to extract bounding
boxes around buildings. This extension made the approach end-to-end trainable.

Active contour models (ACMs) [88] historically have been used for many segmenta-
tion problems. These models constrain the polygonal segmentation to a set of curves
and optimize them by minimizing a cost function consisting of several terms such as con-
tinuity and smoothness. To further improve their performance, additional terms (e.g.,
balloon [39]) have been proposed as well. Recently, a few deep learning based methods
that learn parameters of the ACMs have been proposed [66, 117]. In the papers, it has
been proven that these methods can be trained end-to-end and can be used for build-
ing segmentation. However, the major limitation of these approaches is that building
borders are delineated by curves, which results in overly rounded building corners. In
remote sensing data, buildings usually have regular shapes; their corners oftentimes meet
at a factor of 90 degrees.

6.4 Contributions

The contributions of this chapter are as follows:

� We present a mesh approximation based approach, where a dense initial mesh
is decimated and optimized using local edge and vertex-based operators in order
to minimize an objective function that models a balance between fidelity to the
classification map in `1 norm sense, right angle regularity for polygonized buildings,
and final mesh complexity.

� Our method yields a better performance with a more compact representation. In
our experiments, we compare our approach with common polygon generalization
methods available in GIS software. Our experiments prove that our approach
generates vector maps that significantly better represent buildings with less number
of vertices.

119



(a) (b) (c) (d)

Figure 6.2: Input image and example labeled meshes. (a) Input image, (b) Initial fine
lattice, (c) Initial and (d) Optimized labeled triangle meshes. The triangles labeled as
building are indicated by white.

6.5 Method

6.5.1 Objective Function

In this chapter, we extend a recent method [113], which uses a binary labeled triangle
mesh to approximate the input classification map. In the recent approach, the objective
function is designed to trade mesh complexity for fidelity to the classification map in
`1 norm sense. While deep neural network approaches yield classification maps with
high accuracy, a closer visual inspection reveals that such maps do not delineate the
building contours perfectly, in particular near building corners that are overly rounded.
Using only the classification map yields artifacts in the vectorized outputs. Based on a
prior knowledge that most building edges meet at right angles, we add a novel geometric
regularity term to the objective function, which favors angles of building corners being
a factor of π

2 radians.
We denote by L a set of binary labels, where l ∈ L is 1 for building and 0 for non-

building class. We denote by T the labeled triangle mesh consisting of triangles {ti},
A(t) the area of triangle t, lt its label, and Vt its vertices. Θi denotes the wedge of a
vertex vi ∈ Vt, defined by summing the angles between the edges origination from vi, of
the consecutive faces with label 1 (building), starting from t and incident to vi. Fig.6.3
depicts three wedges of a triangle t.

Our goal is to minimize the following objective function:

E(T ) =
∑
t∈T

[
(1 + δ(lt))

min
lt∈L

∫∫
x,y∈t

Cprob(lt, x, y) dx dy

+

δ(1− lt)

∑
vi∈Vt

Creg(Θi)

 A(t)

3
+ λ

]
,

(6.1)

where Cprob(lt, x, y) denotes the cost of assigning label lt to the pixel located at x, y,
Creg(Θi) is the regularity cost for wedge Θi, and λ provides a means to trade mesh
complexity for fidelity.

120



Figure 6.3: Three wedges of triangle t. Θ1,Θ2 and Θ3 correspond to wedges of vertices
v1, v2 and v3, respectively. Triangles with label 1 are depicted in gray.

Figure 6.4: An illustration for Cprob. Blue rectanges represent probability of each pixel
in a triangle to be building. In this figure, Cprob can be considered as minimum of A
and B.
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Figure 6.5: Creg(Θ) when scale is 0.5 and skewness is 2.

P (l, x, y) denotes the probability, estimated by a classifier, of assigning a label l ∈ L
to a pixel located at (x, y) in the image. We define the probability cost in Eq. 6.1 as:

Cprob(l, x, y) = ‖1− P (l, x, y)‖1, (6.2)

which may be seen as the volume contained between the classifier’s probability surface
and the approximation surface delineated by the labeled mesh, as can be seen in Fig.6.4.

The regularity cost function Creg(Θ) is designed to favor that edges of building
corners meet at right angles (i.e., factor of π

2 radians) and is defined as:

Creg (Θ) = min
k={1,2,3}

{
scale, skewness

(
Θ− kπ

2

)2
}
, (6.3)

where scale is the maximum cost for a wedge, and skewness adjusts how tolerant
the system would be to the distance from the closest factor of π

2 for a wedge. A large
value for the skewness parameter reduces the tolerance to the distance from the closest
factor of π

2 , and vice-versa. We set scale parameter to 0.5 to ensure that probability and
regularity costs range between 0 and 0.5A(t). The skewness parameter is set to 2 by
default. A plot for Creg(Θ) with default parameters is shown in Fig.6.5.

The last term λ in Eq. 6.1, also summed over the mesh triangles, provides a means
to control the balance with the final mesh complexity (a large value for λ decreases the
number of triangles, and vice-versa). δ(·) denotes the Dirac delta function, with value
one at zero and zero elsewhere. The regularity cost for a triangle is computed only if it
has been classified as building (i.e., lt = 1) and if at least one of its vertices is located
on building borders. Otherwise, its regularity cost is ignored and the probability cost in
Eq. 6.1 is multiplied by 2 so that the total cost for each triangle consistently and ranges
between 0 and A(t).

6.5.2 Operators

We now detail the local mesh-based operators utilized to minimize the objective function.
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(a) (b)

Figure 6.6: Edge based operators. (a) Edge flip, (b) Half-edge collapse.

(a) (b) (c)

Figure 6.7: Vertex relocation. Mesh (a) before relocation, (b) during relocation, (c) after
relocation. The triangles with label 1 are depicted in gray, and the others in white.

Discrete edge-based operators. Among the existing discrete operators in the liter-
ature, we use edge flips and half-edge collapses. The flip operator is valid for an edge
only if the edge is between two adjacent triangles. This operator is used to flip the inner
edge as illustrated in Fig. 6.6a. It is useful to improve edge alignment with building
borders. Let us assume that the vertices of a line segment are denoted by A and B.
Half-edge collapse operator collapses A to B or B to A as depicted in Fig. 6.6b. Note
that collapsing A to B or B to A result in obtaining different meshes. Therefore, half-
edge collapse can be applied to each line segment in two different directions. In order for
this operator to be valid on a line segment, we need to verify that the resulting planar
subdivision will be valid. For example, after applying the operator there should not be
any intersecting triangle.

Continuous vertex-based operator. The limitation of edge-based operators is that
they work on only fixed vertices that have already been placed. In order to compensate
this limitation and increase expressiveness of the labeled triangle mesh we utilize another
operator, which relocates the vertices in continuous space (see Fig. 6.7).

The kernel of a polygon is described as the locus of the points inside the polygon,
from which all the vertices of the polygon are visible. The kernel of a polygon can be
found by intersecting the half-planes determined by edges of the polygon [95]. Note
that we must relocate each vertex only inside the polygon kernel in order to keep the
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(a) (b)

(c) (d)

Figure 6.8: Illustration of polygon kernel, valid and invalid relocation of vertex v. (a) Ex-
ample polygon, (b) its kernel, (c) invalid vertex relocation that spoils the triangulation
by introducing self-intersecting triangles, (d) valid vertex relocation.
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triangulation valid. If a vertex is relocated outside the kernel, the triangulation structure
is spoiled, because some self-intersecting triangles are added. Fig. 6.8 depicts an example
polygon, its kernel, valid and invalid vertex relocation operations.

When relocating a vertex, the main challenge is to determine the moving direction
that reduces the objective defined in Eq. 6.1 for the vertex. Because the objective func-
tion is not differentiable w.r.t current location of the vertex, gradient based optimization
approaches are not applicable to our problem. We adopt the simplex method [125] for
function minimization. We denote the vertex that would be relocated by v. We generate
two random vertices inside the kernel of the polygon (see Fig. 6.8b) that consists of the
faces incident to v. The triangle formed by v and the two random vertices is moved
to find the new location for v, by using three different movement types: reflection, ex-
pansion, and shrink. We define the best and the worst points of the triangle as the
points, to which if v is relocated, would produce the lowest and the highest values for
the objective defined in Eq. 6.1. We denote these points by Pb and Pw, cost of a point
Pi of the triangle by yi, and distance between Pi and Pj by [PiPj ]. The reflection of Pw
is denoted by P ∗ is and defined as:

P ∗ = (1 + α)P − αPw, (6.4)

where P is centroid of the triangle and α is the ratio of [P ∗P ] to [PwP ]. If y∗ is between
yw and yb, Pw is replaced by P ∗ and the reflection process starts again. If y∗ < yb, the
new minimum is found, P ∗ is expanded to P ∗∗ as:

P ∗∗ = γP ∗ + (1− γ)P , (6.5)

where γ is the ratio of [P ∗∗P ] to [P ∗P ]. If y∗∗ < yb, we replace Pw by P ∗∗ and restart
the process. On the contrary, if y∗∗ > yb, that means it is a failed expansion, and Pw is
replaced by P ∗ again. If y∗ > yw, Pw is either kept at its original location or replaced
by P ∗ depending on which location gives the lower cost; then, the contraction operation
is applied as:

P ∗∗ = βPw + (1− β)P , (6.6)

where β is the contraction coefficient, which is the ratio of [P ∗∗P ] to [PP ]. We accept
P ∗∗ for Pw and restart the process unless y∗∗ > min(yw, y

∗), which means the contracted
point is worse than the better of Pw and P ∗. For such a failed contraction movement,
all the Pi’s are replaced by (Pi + Pb)/2 and the process is started over.

Once the moving triangle includes the new optimum location for v, it keeps shrinking,
i.e. its area is getting smaller and smaller at each iteration. We define three stopping
criteria for the relocation algorithm. Firstly, we check if area of the triangle became
smaller than a predefined threshold value. Secondly, we check whether the total number
of iterations reached a threshold value. Finally, to avoid degenerate triangles, we check
whether after the relocation, the minimum angle in each triangle would be smaller than
3 degrees. If one of these conditions is fulfilled, we stop the execution.
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Figure 6.9: IoU vs. # of vertices plot.

6.5.3 Implementation

Starting from the initial lattice, we iteratively optimize the labeled triangle mesh. We
simulate each change, caused by the operators, that transforms the mesh T to T ′ and
calculate the objective difference ∆E = E(T ′)−E(T ) incurred by the change. We push
all the operators to a priority queue, where they are sorted according to their ∆E value
in ascending order. The first element in the queue is popped first and applied if its asso-
ciated ∆E is negative. In each iteration, we relabel all the affected triangles, recalculate
their costs, and update the priority queue accordingly. The iterations continue until
there is no operator left in the queue.

Although the labeled mesh is optimized by the operators according to Eq. 6.1, in
some cases results may not be visually appealing because of the topology change. We
observe the topology change clearly when neighboring buildings are very close to each
other. In such a case, multiple objects are merged into one. To describe the topology,
we use Euler characteristic χ = V −E+F , in which V,E and F are number of vertices,
edges and faces that are adjacent to triangles, labeled as building in the mesh. In order
to preserve the topology, we compute difference ∆V,∆E, and ∆F between in T and T ′,
and transform T to T ′ only if χ = ∆V −∆E + ∆F = 0.

126



(a) (b)

(c) (d)

(e) (f) (g) (h)

Figure 6.10: Visual comparison of mesh approximation with and without regularity when
# of vertices are similar. Input image and classification map are depicted in the left and
right column respectively. (a, b, e, g): with, (c, d, f, h) without regularity.
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6.6 Experiments

We use a 1180 × 1030 Pléiades image that has been captured over Santiago and has near
infrared, red, and green bands. A ground-truth, in which each pixel is labeled as either
building or non-building has been manually prepared. We generate the classification
map using the MLP network [112].

We first create a fine lattice by generating a vertex at every 10 pixels. We then apply
mesh operators in batches, where each batch fills the queue with one type of operator
and applies all the operators in the queue to the mesh. We modify the initial labeled
triangle mesh by proceeding with this sequence of batches: edge flip, vertex relocation,
half-edge collapse, and vertex relocation.

We set the parameters for reflection, expansion and contraction movements in vertex
relocation operator to the following values; α = 1, γ = 2, and β = 0.5. We also set # of
iterations and area thresholds for the simplex optimization method to 100 and 0.1 re-
spectively. In addition, we ignore relocation movements when magnitude of displacement
is below 0.01 pixels.

We compare our approach with commonly used polygon generalization algorithms
in GIS applications, namely Radial distance [157], Reumann-Witkam [140], Valingam-
Whyatt [178], and Douglas-Peucker [49]. We also provide the results for our approach
with and without right angle regularity term. For the generalization algorithms, we
vectorize the classification map by using gdal polygonize function of the GDAL library,
and simplify the complex vectorized output by the generalization algorithms. We use
intersection over union (IoU) between the vectorized classifications and ground-truth for
the building class as the performance measurement. We compare the results for different
number of vertices by changing the value of λ parameter in Eq. 6.1, and the value of tol-
erance threshold in generalization methods. IoU vs. number of vertices plots are shown
in Fig. 6.9. The plots show that our approach significantly outperforms the others. We
also observe that mesh approximation with right angle regularity yields better results
than mesh approximation without the regularity term. Example building contours gen-
erated by our method with and without regularity term are shown in Fig 6.10. These
qualitative results prove that even if building corners are overly rounded in the raster
maps generated by the classifier, regular building contours can be delineated with the
help of the regularity term defined in Eq. 6.1.

6.7 Concluding Remarks

Especially after convolutional neural networks (CNNs) had revolutionized the computer
vision community, many approaches generating high quality pixel-wise maps have been
proposed. However, in real-world GIS applications, digitized representations are more
commonly used because of their certain advantages over raster maps such as fast pro-
cessing and easy querying. Hence, it is essential to propose methods that can convert
raster maps to vector ones.

In this context, we presented a novel mesh approximation based method. We defined
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an objective function that takes into account fidelity to the classification map, right an-
gle regularity, and mesh complexity. Furthermore, we defined two edge based and one
vertex based operators that minimizes the objective function to approximate building
contours. In our experiments, we demonstrated that the proposed approach outper-
forms the polygon generalization algorithms commonly used in GIS applications. We
also showed that the regularity term allows the algorithm to correct imprecise building
contours in the raster map.

The main limitation of our work is that it takes as input only an imperfect raster map.
Although we showed that some errors in the raster maps could be eliminated with the
help of the regularity term in our objective function, if the input raster map is severely
imprecise, our approach may not generate high quality polygons. To overcome this
limitation, one can think of using the input image itself in addition to the segmentation
to benefit from spectral information. Our objective function is quite flexible, additional
terms can easily be added. For instance, we can add another term enforcing standard
deviation of the spectral values of the pixels in each triangle to be as small as possible.

Another future direction can be adding a richer set of regularities. For example,
other regularities such as parallelism, symmetries, and orbits can be included as well.
We must also extend our approach to polygonize other classes. To vectorize classes
such as roads, water surfaces, trees, and low vegetation areas, working with higher order
of geometric elements like Béziers curves might be useful. The recent curved optimal
Delaunay triangulation approach [51] is relevant for this directiosn.
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Chapter 7

Conclusions and Perspectives

7.1 Conclusions

With the continuous proliferation and improvement of satellite sensors, numerous new
generation satellite missions have been created, which has made it possible to collect
huge amounts of data. However, a significant portion of these massive volume of data
is unstructured and stored as raw files. The main objective of this thesis was to gener-
ate efficient representations for large-scale remote sensing images. Such representations
have several potential impacts in many application domains such as monitoring natu-
ral disasters, urban planning, autonomous driving, navigation and precise agriculture.
To reach this goal, we split the overall problem into two sub-stages. The former task
aimed to generate raster maps by performing pixel-wise classification via advanced ma-
chine learning methods, and the latter stage consisted in vectorizing the raster maps by
computational geometry techniques. In both stages of the overall procedure, we have
encountered with various scientific challenges.

The first two challenges were generalization and adaptability. Especially in the field
of remote sensing, images collected in different times have significantly different data
distributions. Such data distributions usually originate from atmospheric conditions,
differences in acquisitions, etc. Although in many benchmarks convolutional neural
networks (CNNs) have been proven to be excellent in semantic segmentation, in this
thesis, we showed that their success crucially depends on the representativeness of the
training data. In other words, they have quite limited generalization abilities. One can
overcome this limitation by collecting more training data that would be representative for
more diverse data. However, since manual annotations is too costly, it is quite challenging
to have training data that are representative for the whole globe. Hence, it is essential
to develop novel methods with high generalization capabilities although annotated data
are scarce. In addition, oftentimes, we retrieve new annotated and unlabeled images
from different locations of the world due to the continuous advancements. Therefore, we
wanted to propose methods that can easily adapt to new images.

Another challenge was the heterogeneous annotations. It is often the case that differ-
ent data set providers and practitioners are interested in maps for separate classes. For
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this reason, different data sets obtained in various times tend to have annotations for dif-
ferent classes. Moreover, every time when we receive new data, it is not always possible
to store enormous amounts of data. In such a setting, we must develop an incremental
learning approach that can learn from the data acquired over the time with annotations
for separate classes, without accessing to entire previous training data. Such approach
would enable us to generate maps for all the classes that it has partially learned from
different data sets.

The main challenge for the vectorization algorithm was to generate efficient vector
maps with strong representation power. To this end, it was of paramount importance
to obtain maps that precisely delineate object contours with a minimum number of
geometric components. We also had to pay attention that both stages of our overall
procedure are highly scalable and automated to efficiently process large-scale remote
sensing data.

Given the problem definition and the aforementioned challenges, this thesis described
several contributions for various machine learning and computational geometry prob-
lems. In Chapter 2, we argued that CNNs suffer from catastrophic forgetting: a signif-
icant performance drop for the already learned classes when new classes are added on
the data having no annotations for the old classes. We proposed an incremental learning
methodology enabling to learn segmenting new classes without hindering dense labeling
abilities for the previous classes, although the entire previous data are not accessible.
The key points of the proposed approach were adapting the network to learn new as well
as old classes on new training data, and allowing it to remember the previously learned
information for old classes. For adaptation, we kept a frozen copy of the previously
trained network, which was used as a memory for the updated network in absence of an-
notations for the former classes. The updated network minimized a loss function, which
balances the discrepancy between outputs for the previous classes from the memory and
updated networks, and the mis-classification rate between outputs for the new classes
from the updated network and the new ground-truth. For remembering, we regularly
fed samples from the stored, little fraction of the previous data.

The major drawback of the incremental learning approach introduced in Chapter 2
is that the memory network generates imprecise maps for old classes on new data, when
there exists a large data distribution difference between new and old data. This problem
has motivated us to tackle domain adaptation problem. In Chapter 3, we proposed
ColorMapGAN and SemI2I for city-to-city adaptation problem. The main objective of
both approaches was to generate a target stylized fake source city that is semantically
consistent with the original source city. In that chapter, we demonstrated that training
a classifier using the fake source city and the ground-truth of the real source city yields
a significantly better performance. On the other hand, we discussed that city-to-city
adaptation has limited real-world applications, as usually we have many images collected
from different geographic locations in the world.

To overcome this limitation, we had to deal with multiple images having largely
different data distributions. In this context, we presented StandardGAN in Chapter 4.
The core idea behind this approach is to standardize both source and target images by
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taking average of their styles. This process was the pre-processing step prior to training
a classifier. In the experiments, we proved that training a classifier on the standardized
source data and segmenting the standardized target images allows a significant perfor-
mance gain. Its main drawback is the use of a different style encoder for each image.
Although the style encoder is a shallow network, the method is still limited to a certain
number of images.

To address this issue, we introduced DAugNet in Chapter 5. It consists of a data
augmentor and a classifier. In each training iteration, the data augmentor provides the
classifier with diversified data, which makes the classifier robust to large data distribu-
tion difference between the domains. Here, the main advantage is that the proposed
approach is able to perform style transfer between multiple images with only one en-
coder, one decoder, and one discriminator irrespective of how many images there are.
In our experiments, we showed that mainly because of the data augmentor, DAugNet
has a strong generalization ability. In our life-long experiment, we also proved that this
approach can efficiently adapt to continuously growing data. In our last ablation study,
where we performed style transfer between twenty images, we demonstrated that our
solution is scalable.

In Chapter 6, we presented a mesh approximation based vectorization algorithm
to vectorize binary classification maps for building class. In this approach, a dense
initial mesh was decimated and optimized using local edge and vertex-based operators
in order to minimize an objective function that models a balance between fidelity to
the classification map, right angle regularity for polygonized buildings, and final mesh
complexity. In our experiments, we showed that this approach outperforms common
polygon generalization algorithms implemented in GIS applications.

7.2 Perspectives

We now discuss the possible future directions to further improve the methods presented
in this thesis.

Although we verified the effectiveness of StandardGAN for domain adaptation, we
believe that it is also relevant for other applications such as image mosaicking and
change detection. Image mosaicking aims at generating a continuous image by combining
adjacent images having different radiometries. The goal of change detection is to find
similarities or differences between the images taken from the same locations at different
times. As future work, it would be certainly interesting to explore whether StandardGAN
is suitable for these problems. To efficiently process large-scale remote sensing images,
one could extend StandardGAN by adopting the idea of using randomly initialized style
codes as in DAugNet.

Domain generalization and domain adaptation are somewhat related but different
problems. The main difference of domain generalization from domain adaptation is that
it assumes that any target data are not accessible [98]. In other words, this research
problem aims at training a model that is able to segment an arbitrary image given
to the model. If this problem is solved, maps for any remote sensing image can be
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automatically generated in a very short period of time. The recent domain randomization
approach [189] showed that randomizing images using an auxiliary image set that is
composed of ImageNet classes [147] is a valid option to solve this problem. As mentioned
earlier, the data augmentor in DAugNet diversifies the training batch before passing it to
the classifier. As a consequence, the classifier becomes robust to distribution difference
between training and test data. As future work, it would be interesting to explore
whether DAugNet is applicable for the domain generalization problem. For example, in
order for the data augmentor to diversify the training data even more, one can collect
all the publicly available images and perform style transfer between them. Another
possible future direction might be introducing attention mechanisms [35,120,155,185] to
perform style transfer between only the desired classes rather than matching the global
distributions of two remote sensing images.

In this thesis, we presented a method for incremental learning and several approaches
for various domain adaptation problems. However, we have not combined them. It would
also be worth exploring whether our domain adaptation techniques can be incorporated
into incremental learning approach. Another interesting direction would be investigating
if crowd-source databases such as OpenStreetMap (OSM) could be used for better seg-
mentation. The main challenge for this problem is that acquired remote sensing images
and OSM maps usually do not match. Oftentimes, we observe a lot of unlabeled or
incorrectly delineated objects. It is worth conducting research on the domain of weakly
supervised learning [30] to benefit from such databases.

In the future, our vectorization approach definitely needs to be extended to other
classes in addition to building class. Adding a set of richer geometric regularities such
as parallelism, symmetries, and orbits can also be considered. To vectorize objects with
irregular shapes such as trees and water surfaces, introducing higher order of geometric
elements such as Béziers curves is relevant [51]. Besides, additional information such
as the input satellite image itself would be certainly beneficial. For this direction, one
can be inspired by the KIPPI approach that utilizes a kinetic computational geometry
framework [9].
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