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Abstract

While we have the technologies and computational tools to analyze entire genomes, transcrip-
tomes and proteomes, the computational description of phenotypes resulting from this molecular
basis is still lagging behind. Yet, the quantitative description of the diverse aspects of the phe-
nome is a prerequisite for understanding the complex genotype-phenotype relationships in living
systems.
High Content Screening (HCS) allows to systematically explore many different aspects of the
phenome, in particular cell morphology, the dynamics of cellular behavior and the spatial dis-
tribution of transcripts and proteins inside cells. Monitoring and analyzing the changes in these
aspects upon perturbation by gene silencing or drug treatment have the potential to unravel the
relationship between these cellular properties and the molecular mechanisms that regulate them.
Similarly, the analysis of stained tissue slides allows to study architectural changes depending
on disease related variables.
Large-scale imaging approaches, such as HCS and histopathology, thus provide information that
is complementary to information at the molecular level, traditionally studied in bioinformatics.
In order to make best use of these challenging and complex large-scale image data sets, we need
robust and sophisticated methods capable of integrating a large set of image features in order
to reach a biologically meaningful description of the data. For this reason, computer vision is
the method of choice for computational phenotyping.
This manuscript describes my contributions to the field of computational phenotyping by com-
puter vision. After an introduction to the field of Bioimage Informatics as well as some back-
ground on High Content Screening, I will describe a number of different projects I have been
working on over the last years exemplifying the different types of information that can be studied
with images: (1) analysis of morphological phenotypes by supervised learning, (2) analysis of
temporal information, in the form of phenotypic and spatial trajectories, (3) analysis of local-
ization patterns, i.e. the spatial distributions of biomolecules inside cells and (4) analysis at the
tissular scale.
These methods have been applied to large-scale screens on cell division and migration, namely
the first genome-wide screen by time-lapse microscopy in a human cell line. Some more recent
applications include the study of the spatial aspects of gene expression, where we aim at un-
derstanding the patterns according to which RNA localize inside cells, as well as the field of
digital pathology, where we wish to predict clinical variables, such as outcome or response to
treatment, from large stained images of diseased tissue. While often used for diagnostic purpose,
histopathology data is also informative about cellular phenotypes and therefore allows to bridge
the gap between phenotypic analysis at the cellular level and implications for disease (at the
patient level).
The most striking evolution in this field is the advent of deep learning, that has revolutionized
computer vision over the last years. I will discuss the role deep learning is going to play in the
near future with respect to the different applications mentioned above, and the methodological
or conceptional developments that are most promising for each application in turn.
Altogether, one of the major challenges in bioinformatics today is to establish relationships be-
tween the molecular level (e.g. the level of genetic mutations or transcripts) and the level of
an entire biological system (e.g. cell or even patient level) by analysis of large-scale omics data
sets. These associations need to cross 9 orders of magnitude. The projects and methods I am
showing in this manuscript will contribute to bridging this gap.
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Résumé

Nous possédons aujourd’hui les technologies expérimentales et computationnelles pour analyser
des génomes, transcriptomes et protéomes dans leur intégralité. Cependant, les méthodes per-
mettant la description et l’analyse computationnelle des phénotypes — résultant de cette base
moléculaire — sont encore insuffisantes. Or, la description quantitative des divers aspects du
phénome est une condition sine qua non pour la connaissance approfondie des relations com-
plexes entre génotype et phénotype.
Le criblage à haut débit nous permet d’explorer de façon systématique un grand nombre d’aspects
du phénome, en particulier en ce qui concerne la morphologie cellulaire, le comportement dy-
namique des cellules et la distribution spatiale des transcrits et protéines à l’intérieur des cellules.
L’observation et l’analyse du changement de ces propriétés en réponse à des perturbations (e.g.
l’extinction d’un gène ou un traitement pharmacologique) font apparaître le lien fonctionnel
entre les perturbations agissant au niveau moléculaire et les variables phénotypiques. De façon
similaire, l’analyse des coupes histologiques permet d’étudier les changements architecturaux qui
interviennent au niveau tissulaire en réponse à une maladie.
Le criblage à haut débit et l’histopathologie génèrent donc de grands jeux de données qui donnent
accès à une information complémentaire à celle portant sur l’échelle moléculaire, traditionnelle-
ment étudiée en bioinformatique. Afin de pleinement exploiter le potentiel de ces données com-
plexes et massives, nous avons besoin de méthodes robustes et sophistiquées, capables d’intégrer
une grande quantité de caractéristiques d’images. Pour cette raison, la vision par ordinateur
s’impose comme choix méthodologique afin d’arriver à une description biologiquement perti-
nente.
Ce manuscrit décrit mes contributions au domaine du phénotypage computationnel par des
méthodes de vision par ordinateur. Après une introduction générale qui portera sur les problé-
matiques actuelles en bio-imagerie et le criblage à haut contenu, je décrirai les travaux que j’ai
menés ces dernières années au regard des différents types d’information que l’on peut étudier
avec des images : (1) L’analyse de phénotypes morphologiques par l’apprentissage supervisé (2)
L’analyse de l’information temporelle sous forme de trajectoires phénotypiques et spatiales (3)
L’analyse des distributions spatiales de biomolécules à l’intérieur des cellules (4) L’analyse de
l’échelle tissulaire.
En termes d’applications biologiques, je présenterai l’analyse que j’ai réalisée du premier crible
à l’échelle génomique par vidéo-microscopie dans des cellules humaines, qui a permis d’étudier
la division et la migration cellulaires. Mes projets plus récents incluent l’étude des aspects spa-
tiaux de l’expression génétique, où l’on veut comprendre la répartition spatiale intra-cellulaire
des ARNs, ainsi que la pathologie digitale. C’est un sujet en plein essor, dans lequel on souhaite
prédire des variables cliniques, comme la réponse au traitement des données histopathologiques.
L’évolution la plus remarquable dans ce domaine ces dernières années est la montée de l’apprentis-
sage profond, qui a révolutionné la vision par ordinateur. Je discuterai du rôle que l’apprentissage
profond jouera en analyse d’images biologiques, ainsi que des développements méthodologiques
et conceptuels les plus prometteurs pour chacune des applications mentionnées plus haut.
Pour conclure, l’un des défis majeurs en bioinformatique est d’étudier les relations entre le niveau
moléculaire (e.g. les mutations génétiques) et le niveau d’un système biologique intégral (e.g. le
patient) par l’analyse des données omics. Relier l’un à l’autre nécessite de franchir 9 ordres de
grandeur. Les projets et méthodes que je présente dans ce manuscrit contribueront à combler
ce fossé.
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1 Introduction

In this introductory chapter, I will present the context of my research project. Bioimage In-
formatics is an emerging discipline at the interface between image analysis and computational
biology, aiming at providing the computational tools to answer biological questions from the
analysis of image data. This covers a broad range different problems and methodological ap-
proaches, ranging from image reconstruction and inverse problems to image classification and
data integration. I will start by giving a systematic overview over the different problems and
approaches in the field. Then, I will focus in some more detail on Computational Phenotyping,
where we aim at quantifying the visual readout provided by microscopy in order to infer bio-
logically relevant information. Given this overall context, I will finish this chapter by giving an
overview of my trajectory and the projects I had the opportunity to contribute to.

1.1 Bioimage Informatics - an emerging discipline

In the last two decades, technological developments, such as next-generation sequencing, have
triggered revolutionary changes in the life sciences. In particular, the many new technologies
have reinforced the quantitative aspects of biology and encouraged ambitious, large-scale projects
involving a large number of research institutions worldwide. Examples include fundamental
research projects aiming at deciphering the human genome (International Human Genome Se-
quencing Consortium 2001; International Human Genome Sequencing Consortium 2004) and
studying its variability (ENCODE Project Consortium 2007; ENCODE Project Consortium
2012; 1000 Genomes Project Consortium 2010). Unlike most traditional research projects in
life sciences in the past, where the main contribution consisted in the written publication, these
large-scale projects reach their main impact by the generation of large data repositories, open to
the scientific community, and thus building a precious resource for future research projects. The
emergence of these enormous efforts to collect and maintain high-quality data describing the
molecular aspects of life has transformed biology to become - to some extend - a data science.
This shift in focus, as well as the wealth and amount of data currently acquired in studies of
all scales, has resulted in an ever increasing importance of the development of sophisticated and
robust computational methods and tools, thus initiating the emergence of bioinformatics as a
discipline, which is now a well-established and recognized field of research.

Long before these technical breakthroughs imaging has been and still is one of the most important
and most widely used experimental techniques in biology. Importantly, imaging approaches are
complementary to most molecular approaches in several ways. In particular, they allow one:

1. To investigate the morphological properties of biological entities, often informative about
biological function.

2. To explore the temporal dimension. Microscopy is certainly among the most efficient
techniques when it comes to studying the behavior of biological systems over time.

1



1 Introduction

3. To explore the spatial dimension of living systems, such as the spatial arrangements of
proteins inside cells, or the organization of cells in a developing organism.

4. To study living systems at different scales of organization: the molecular, cellular, tissular
and organism scale are accessible to imaging approaches (see Figure 1.1). In many cases,
we can even have access to two or more of these scales at the same time.

Molecular complexes Cellular level Tissue level Organism level

Figure 1.1: Bioimages give access to multiple scales, allow to study cellular phenotypes and to explore
the spatial dimension of living systems.

On the downside, imaging also faces limitations, as compared to molecular techniques.

1. While imaging approaches have become much more powerful with the advent of fluores-
cence microscopy (see also Annexe A), the number of marked biomolecules in the same
sample is necessarily limited to only a handful. In contrast to sequencing technologies,
imaging approaches are thus not comprehensive; only a small fraction of the biomolecules
present in a sample is usually imaged. While there are some notable exceptions — dis-
cussed in section 4.3 — the lack of comprehensiveness remains a key limitation for most
imaging approaches in biology.

2. While sequencing (and many other molecular techniques) has become much cheaper over
the last years, the price of imaging systems has not decreased so dramatically. Conse-
quently, large imaging studies can represent an important financial burden for research
laboratories.

3. The information contained in an image does not allow for a direct and straightforward
representation usable in an analysis workflow. Indeed, images were initially not meant
for quantitative analysis and rather suggested subjective and qualitative interpretation;
unlike for expression or sequence data, it is often a difficult issue to extract meaningful
information from an image.

The need for quantification schemes optimized for microscopy data has been recognized already
in the seventies and eighties (Young 1972; Meyer 1986). While computational analysis of images
has been an exception at that time, image quantification and analysis have now become an
essential part of microscopy-based assays and also a requirement for publication in most journals
(Swedlow et al. 2003). This evolution has been further amplified by the emergence of imaging
techniques that require sophisticated algorithms for image generation, such as super-resolution
or light-sheet microscopy, and of large-scale imaging projects, where the size and complexity
of image data make manual analysis unpractical. In this context, bioimage informatics has
emerged as a new discipline (Peng 2008; Peng et al. 2012; Danuser 2011; Myers 2012; Cardona
et al. 2012; Kervrann et al. 2016; Jug et al. 2014). Bioimage informatics is the discipline that
covers all methodological and software aspects that are necessary to answer biological questions
by computational analysis of image data. Bioimage informatics is therefore at the interface

2



1.1 Bioimage Informatics - an emerging discipline

between bioinformatics, biology, microscopy, image analysis, image processing, data handling,
mining and visualization.

Tasks for Bioimage Informatics There are many reasons justifying the use of image processing
and analysis for biology, and consequently the diversity of concrete tasks and application areas
is huge. Here, I give a short overview over the different categories of approaches in this field.

Image reconstruction aims at generating one image from a series of acquired raw images. Each
of these individual raw images cannot be used by itself to interpret the biological information
in the sample. For instance, in PALM (Betzig et al. 2006) and STORM (Rust et al. 2006), the
two most popular techniques for super-resolution microscopy, a series of images is taken, each
resulting from the stochastic emission of a subset of fluorophores present in the image (for more
details, see Annex A). Only processing the entire series of images and their combination into one
super-resolved image of the sample can reveal structures inside the cells at high resolution. The
generated image, i.e. the image that is presented to the biologist, therefore involves already heavy
processing. Similar situations arise in other microscopy techniques, such as Optical Coherence
Tomography (Sharpe et al. 2002) or light-sheet microscopy (Huisken et al. 2004), where each
single image corresponds to the projection of the sample in one direction, and the ultimate image
to be generated is the 3D volume (see also Annex A).

Image enhancement and image restoration aims at estimating from the observation an
image that is closest in some sense to the (unknown) original object by using prior knowledge
about the kind of perturbation (such as the optical system or the corrupting noise). This is known
as an inverse problem: the rationale is to estimate an original image X, from an observed image
Y = f(X), where f(·) models the kind of perturbation we are trying to revert. This is achieved
by minimizing a cost function J(X,Y ) = D(f(X), Y ) + R(X), where D is a measure for the
divergence between observed and estimated data and R expresses constraints on the original
object (Sarder et al. 2006).

Image quantification / Image analysis extracts biologically meaningful information from
images or image series, i.e. the input is an image or a series of images, and the output is
a measurement or a distribution of measurements. This category includes a large panel of
methodologically different problems. While often the actual measurements may seem trivial to
perform (such as intensity measurements, cell size, number of microtubules or particle speed), the
underlying workflows can be complex and often involve classical but challenging image analysis
problems, such as object detection, segmentation and tracking. Segmentation and tracking are
thus core problems in Bioimage Informatics, and many of the challenges organized in this domain
tackle these questions (e.g. (Chenouard et al. 2014; Vladimir 2017)).

Combining experiments One of the limitations of imaging approaches in biology mentioned
above is the limited number of markers that can be used in experiments. Some recently developed
experimental techniques to partly overcome this limitation (Schubert et al. 2006; Chen et al.
2015) are only applicable in specific setups and challenging to perform routinely. Another
strategy is to address this problem computationally by mapping images taken with different
markers to a common reference volume. This strategy is called atlas based registration, and
has been applied to developing embryos (Fowlkes et al. 2008) and full grown organs (Peng et
al. 2011). At the cellular level, this is even more challenging due to the large morphological
variability between cells, but has also been addressed by the use of generative models (Zhao et
al. 2007). The most recent development in this category relies on the hypothesis that standard
microscopy images contain much more information than what can be grasped by our visual
system. It is therefore possible to predict fluorescence images without actually acquiring them

3



1 Introduction

(Christiansen et al. 2018). Another challenging application is the combination of images taken
under different modalities, for instance by light and electron microscopy (Paul-Gilloteaux et al.
2017).

Computer Vision and computational phenotyping The phenotype of a biological system,
such as a cell or an organism, is the set of its observable properties. Computational phenotyping
refers to automatically inferring a quantitative description of a phenotype from images. This
is related to image quantification and analysis in that we aim at transforming an image into a
set of numbers, but the objective is to jointly analyze a relatively large number of properties
allowing thus to reach an understanding of the image in biological terms. The computational
discipline that is concerned with the understanding of images rather than analyzing one aspect
is called Computer Vision. For this reason, computational phenotyping and computer vision are
intimately related. Examples include the detection of subcellular protein localization patterns
(Boland et al. 1998) or classification of cellular phenotypes (Walter et al. 2010a). In section 1.2,
I will explain these approaches in more detail.

Visualization of the increasingly complex and massive data sets has also become an important
issue in Bioimage Informatics (Walter et al. 2010b). One difficulty in visualization stems from
the fact that image data sets are carrying more and more information, either in the form of
additional dimensions (space, time, channels) or just in size, as it is often the case for tissue
imaging. Such data sets tend to be huge (tens of GB to TB of data), and can contain detailed
information on hundreds of thousands of individual cells. Typical visualization problems are (i)
how to navigate through massive raw data, (ii) how to display multi-dimensional analysis results
on top of the image data and (iii) how to summarize trends in the data in a concise way that
can be communicated to other researchers. In particular for 3D volumes, an additional question
arises when we want to annotate objects or regions in an intuitive and effective way (Alessandro
et al. 2016). An additional problem occurs when the number of experiments is large, e.g. in High
Content Screening (HCS), where a single data set can consist in thousands of single experiments.
Here, the task is to provide concise overviews of the quantitative data derived from the images,
ideally with some capacity to link back to the initial image data (Jones et al. 2008; Antal et al.
2015).

Image data bases have also become increasingly important over the last decade, and not only
for large-scale projects with tens of thousands of experiments. In the frame of reproducible
research it is essential to store not only the actual images, but also the exact experimental
settings under which the image was taken, as well as the measurements that were taken from
the image and the underlying computational workflow. The first step towards such a system
was actually to find a common image format supported by virtually all microscope vendors.
This was a huge effort that brought together academic and industrial partners, who eventually
agreed on a common format that coexists today with proprietary formats and allows independent
analysis groups to access the data (Linkert et al. 2010). Today, we also see a number of database
solutions specialized in microscopy images (Goldberg et al. 2005; Linkert et al. 2010; Williams
et al. 2017).

Bioimage Informatics and Medical image analysis Analysis of medical images has a long
tradition and is perhaps the closest relative of Bioimage Informatics, as in both cases, the
imaged objects are living systems. While there are indeed some common conferences (such as
ISBI, MICCAI) and journals, the two communities remain overall relatively separated. There is
of course an important overlap in terms of methodologies, but there are also major differences
in the nature of the data and the underlying scientific questions:

4



1.2 Phenomics and computational phenotyping

1. Medical Imaging naturally focuses on the human body, often at the scale of the organ.
In bioimaging, there is a large variety of scales at which imaging experiments might be
performed; the object of interest might be protein complexes, organels, cells, tissues and
evolving or full-grown organisms.

2. The image acquisition modes in the bioimaging field are less standardized than in medical
imaging. In the medical field, images are taken in clinical routine with clear and strict
protocols. In biology, acquisition techniques are rapidly evolving and protocols tend to
change relatively often for a variety of reasons. Changes in the experimental protocol or the
acquisition techniques imply important differences in the image characteristics, but provide
researchers also with an additional degree of flexibility in order to make computational
analysis easier by improving the image quality.

3. Moreover, even if the same object (e.g. a cell) is imaged with the same microscope, the
signal characteristics and image analysis tasks will entirely depend on what part of the
cell is highlighted with fluorescence markers. This makes bioimages highly variable.

4. Generally, medical imaging aims at providing a large variety of diagnostic tools; bioimaging
aims at answering scientific questions in biology. This difference has a huge impact on the
computational methods in the two domains: while the actual objective of medical image
analysis is mostly to improve the diagnostic power of medical examinations and is therefore
clearly defined and standardized, the objective of bioimage informatics can be very variable
and usually evolves during a project.

5. As a consequence of the aforementioned considerations, there are more large-scale an-
notated datasets in the medical field than in the domain of bioimaging. This has an
important impact on methodological choices, too, in particular with respect to the deep
learning methodology, which is today the predominant technique used in medical imaging,
in particular in computer aided diagnosis.

Despite these differences, Medical Image Analysis has had a huge impact on Bioimage Infor-
matics, both in terms of methodological developments and in terms of community activities and
organization. Also, the differences mentioned above only describe general trends with notable
exceptions. For instance, it is of course also possible to answer fundamental scientific questions
with medical imaging approaches, e.g. in computational neuroscience, where MRI data are often
analyzed in view of understanding the functioning of the human brain rather than to perform
diagnostic tasks. Moreover, there are also imaging modalities that are used both in fundamental
biology and for diagnostic purposes (e.g. histology).

Altogether, Bioimage Informatics deals with all computational aspects of bioimaging, covering
methodological developments in diverse fields and ultimately aims at supporting microscopy and
inferring biological knowledge from image data.

1.2 Phenomics and computational phenotyping

The phenotype of a living system describes its observable physical and biochemical characteristics
that result from the complex interaction of the genetic code and environmental factors (Houle
et al. 2010). In analogy to genomics where we study the entirety of the genetic code, the
term phenomics suggests that we aim at studying the full set of all possible characteristics of
a living system. While this is of course not possible, as we have never access to all variables of
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1 Introduction

a living system, we understand by phenomics the systematic study of complex phenotypes in
form of a high-dimensional set of observable properties as a function of changes in the genome,
gene expression or environmental factors, as opposed to over-simplified approaches where we
characterize a living system by only one or very few variables (such as survival).

Imaging approaches are in general well suited to phenomics studies, as they give access to
a large number of fundamental properties of cells, tissues and organisms, while maintaining
their spatial organization and morphological integrity. In particular, the use of fluorescent
markers (Chalfie et al. 1994), a technique widely used in biology since the nineties, allows to
highlight predefined sets of biomolecules. This has been instrumental for microscopy, because
it allows one to either study the spatial distribution of these molecules, thereby linking imaging
technologies to the molecular techniques, or to infer properties of the marked biological structures
(structures where the marked protein is known to localize), such as cytoskeletal arrangements
or nuclear morphologies. While by using imaging techniques, we can obtain rich information on
many properties of the biological system informative on many biological processes, we must be
aware that most of the system’s variables remain hidden. This is very different from molecular
techniques in the field of phenomics, such as transcriptomics.

High Content Screening for Phenomics In order to study phenotypes systematically as a
function of genetic mutations, changes in gene expression or chemical perturbations, we need
to perform a large number of experiments under controlled conditions. The set of experimental
techniques allowing to perform a large number of biological experiments in parallel relying on a
high degree of automation, is referred to as High Throughput Screening (HTS). Traditional HTS
usually provides little information in each experiment, such as a single number informative on
the number of cells or the overall cytotoxicity. In High Content Screening (HCS), each one of the
experiments is characterized by high information content, as provided by imaging experiments.
For cell based assays for instance, this means that single cells can be distinguished and analyzed
individually. In HCS, large numbers of different conditions can be tested with respect to their
effect on cells and organisms. We can thus obtain systematic views on the phenotypic space
living systems explore in response to these perturbations (see Figure 1.2). HCS is therefore an
excellent tool for phenomics.

High Content Screening in fundamental research In fundamental research, genetic screening
aims at deciphering the molecular basis of cellular processes. For this, the expression of genes
is altered, e.g. the expression of genes can be increased (overexpression) or reduced (knock-
downs, e.g. by RNA interference) or completely prevented (knock-out). The consequence of
this change in expression on the cellular phenotypes is monitored by microscopy employing
fluorescent reporters tailored to the biological question. The rationale of these approaches is
that the analysis of the loss- or gain-of-function phenotypes will provide us with information
on the function of the down-regulated or overexpressed gene (Pepperkok et al. 2006; Carpenter
et al. 2004; Echeverri et al. 2006). Such large-scale studies have been successfully applied to
unravel the molecular basis of cellular processes as diverse and as fundamental as cell migration
(K. J. Simpson et al. 2008), protein secretion (J. C. Simpson et al. 2012), endocytosis (Collinet
et al. 2010) and cell division (Neumann et al. 2010). Another example for large-scale imaging
studies are localization screens where the objective is to understand the spatial distribution
of proteins or RNA inside cells and organisms, the localization mechanisms (such as active
transport) and functional impact of localization. The subcellular localization of proteins for
instance has been the subject of systematic studies for many years (Boland et al. 1998; Glory
et al. 2007; Coelho et al. 2010; Regev et al. 2017; Thul et al. 2017) and triggered the development
of may computational methods in the field. Localization studies are also very popular at the
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1.2 Phenomics and computational phenotyping

Large Scale Screen

Removal of false positives:
- Validation experiments
- Rescue experiments

Secondary Screens:
- Localization experiments
- Increased resolution
- Additional reporters 

Pilot Screen:
- Validation of the pipeline
- Small number of experiments
- Full automation

Assay development:
- Cell type
- Fluorescent reporter
- Imaging method
- Controls
- Automated analysis

Sample Preparation

Automated Microscopy

t

Data Storage

Automatic Analysis and Bioinformatics

t

gene A
gene B
gene C
gene D
gene E
gene F

a) b)

Figure 1.2: Project workflow for high-throughput screening. (A) After the design of the assay is
completed, a pilot screen is performed, applying the entire assay pipeline on a small scale
to identify and correct potential short- comings. The subsequent large-scale screen then
typically results in a list of candidate hits that must be validated. In secondary screens
with higher spatial, temporal, and phenotypic resolutions, more information on these vali-
dated hits can be collected and integrated. (B) The typical workflow for a large-scale
screen based on time-lapse microscopy consists of sample preparation, automated time-
lapse microscopy, professional data storage and back- up and automatic analysis, and
bioinformatics. Figure is taken from (Terjung et al. 2010)

level of tissues (Uhlen et al. 2015) and organisms (Lécuyer et al. 2007; Lécuyer et al. 2008).
Both functional and localization screens provide us with functionally relevant information on
gene products in cells, tissues and organisms and are therefore important tools for functional
genomics.

High Content Screening in drug screening Similar experimental and computational workflows
are being used for the discovery and the phenotypic characterization of drugs, as they constitute
an interesting compromise between throughput and richness of functional information on the
drug effect on living systems (Perlman et al. 2004; Loo et al. 2007). In comparison to more
traditional high-throughput screens, such as cytotoxicity or viability assays, they provide a
complex picture of drug-induced phenotypes, bearing information on the perturbed biological
processes and pathways. Importantly, they also allow scoring for phenotypic heterogeneity of
the drug response (D. K. Singh et al. 2010; Slack et al. 2008), which has major implications for
the efficiency of drugs.
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1 Introduction

High Content Screening data sets HCS generates large, systematic and comprehensive data
sets, which have the potential to become a scientific resource that ideally complements other
omics data; they allow for the exploration of the phenotypic space (Yin et al. 2013) and the
phenotypic annotation of genes, thereby contributing to the understanding of complex genotype-
phenotype relationships. In order to make best use of these rich data sets and allow meta-studies
combining several screens (on different processes, in different models, etc.), it is essential to
develop tools to adequately present these data to the scientific community (Neumann et al.
2010; Antal et al. 2015; Williams et al. 2017) and to standardize the formats of phenotypic
description (Hoehndorf et al. 2012). These technical developments will allow - on the long run -
to re-mine and integrate different existing data sets and to perform meta-analyses (Schoenauer
Sebag et al. 2015b; Schoenauer Sebag et al. 2015a; Suratanee et al. 2014; Pau et al. 2013).
Today, screening approaches are no longer limited to a few specialized laboratories, and access
to screening platforms is currently organized by large national and supranational initiatives, such
as Euro Bioimaging (http://www.eurobioimaging.eu) at the European and France Bioimaging
(FBI, http://france-bioimaging.org) at the national level in France. Consequently, many more
large-scale HCS data sets are going to be acquired in the next years complementing and extending
the existing genome-wide surveys in different ways.

Cellular phenotyping in their tissular context High Content Screening traditionally focuses
on cells in culture, i.e. cells that are heavily modified in order to allow for controlled experiments
and optimal imaging conditions. While such approaches have been instrumental to elucidate the
molecular basis of many fundamental biological processes and to infer the mechanism of action
of drugs, they are limited to these rather artificial conditions and also do not allow to study the
more complex interplay of cells in a tissue or an organism, as well as the role of their spatial
organization. In order to address these questions, researchers have developed a plethora of assays
in developing organisms (Donà et al. 2013; Jug et al. 2014; Guirao et al. 2015). In addition,
thanks to experimental advances in digital pathology and large-scale initiatives like The Cancer
Genome Atlas (TCGA) (International Cancer Genome Consortium 2010), huge image data bases
of stained tumor tissue sections are available bearing information both at the cellular and the
tissue level. While stained tissue sections are usually complex to analyze automatically due to
the specificities of the staining procedure and the tissue variability, these large-scale datasets
represent an exciting resource bridging the gap between the cellular and the tissular scale. Each
tissue slide tends to be very large and may contain information on hundreds of thousands of
cells, each of which needs to be segmented and analyzed, which is a formidable challenge.

In all of these approaches, acquired image data sets are becoming increasingly massive and
complex. In both basic research and drug discovery, as well as tissue phenotyping, there is
therefore a strong need for increasingly sophisticated, yet robust and systematically studied
methods to analyze these data and for software tools allowing the scientific community to apply
these methods to newly acquired data sets.

1.3 From clinical applications to fundamental research and back

This manuscript gives an overview over my research activities in the years 2006-2020. My
research focuses on the development of methods for computational phenotyping. Nevertheless,
I would like to mention the research I have been concentrating on before and that initiated my
interest in this exciting field.

In my PhD thesis at the Centre of Mathematical Morphology (CMM) at Mines ParisTech, I
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1.3 From clinical applications to fundamental research and back

developed methods for the Computer Aided Diagnosis of Diabetic Retinopathy, a severe and
frequent eye disease, related to diabetes (Walter et al. 2001; Walter et al. 2002a; Walter et al.
2002b; Walter et al. 2005; Walter et al. 2007). My work focused on the detection of lesions (such
as microaneurysms, hemorrhages and exudates) and anatomical landmarks (such as the vascular
tree, the optic disk and the macula) in color images of the human retina (see Figure 1.3) in view
of building a system for Computer Aided Diagnosis (CAD) of Diabetic Retinopathy, a severe
and frequent eye disease. Today, 15 years later, DR has been the first disease for which the U.S.
Food and Drug Administration (FDA) has approved a diagnostic device based on Computer
Vision, whose predictions are not controlled by an expert (Abràmoff et al. 2018).

Vessel

Optic disc

Macula

Exudates

Hemorrhages

Microaneurysms

Figure 1.3: A color image of the human retina. The main lesions (microaneurysms, hemorrhages,
exudates) and the main anatomical landmarks (vascular tree, optic disk, macula) are
indicated.

While I continued to be interested in medical applications, I wanted to slightly shift the focus of
my research from a more clinical application, where the ultimate goal is to support diagnosis by
automation and/or quantification, to a more experimental field, where the objective is to make
discoveries using image based assays. My first step in this direction was to start a project with
the team of Pierre Corvol at the Collège de France. The objective of the project was to investigate
the level of angiogenesis in response to drug treatment (Sihn et al. 2007). Angiogenesis is the
main process of blood vessel formation and therefore plays an important role in tissue growth
and development, but it is also a major hallmark of tumor progression. Blocking angiogenesis is
therefore one important strategy in cancer treatment. In this work, I developed tools to quantify
angiogenesis in chicken embryos in order to assess the anti-angiogenic properties of drugs by
quantifying first and second order vessels, bifurcation points and overall vascular density (see
Figure 1.4).

From a methodological point of view, these two projects were dominated by Mathematical
Morphology, but I also started to get interested in Computer Vision and Machine Learning,
namely in the context of lesion detection (Walter et al. 2007). Both Mathematical Morphology
and Machine Learning remained the most important computational fields for my future work.

With this first experience in analyzing experimental rather than patient data, I decided to move
to applications of image analysis in fundamental research in biology. In 2006, I moved to the
European Molecular Biology Laboratory (EMBL) in Heidelberg, where I joined the group of Jan
Ellenberg. Here, I started to work in the field of Computational Phenotyping and High Content
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1 Introduction

2.2. Chorioallantoic membrane angiogenic assay
The chorioallantoic membrane (CAM) assay was adapted from Cel-

erier et al. [12]. At embryonic day 8 (E8), each CAM received two sil-
icon rings (10 mm-ID) laid onto two areas looking alike for their
vascularization. Twenty-five microliters of ITPP hexasodium salt
0.1 M [7] were applied on the first ring, and 25 ll of vehicle (0.15 M
NaCl + 2.5 mM CaCl2) on the second one. After 24 h treatment,
CAM were either analyzed on angiographic pictures after i.v. injection
of FITC-dextran (see details in [13]), or collected for molecular histo-
logy.

2.3. Quantification of vascular parameters of the CAM
Quantification was carried out on 1.8·-magnified angiographic

images. Automated quantification was performed as follows:
(A) Vessel segmentation. After normalizing the dynamic range of

the images, a prefiltering step was applied to remove the capil-
lary bed (morphological closing by reconstruction, dynamic fil-
tering [14] and volume leveling [15]). Then, the following
threshold scheme was applied: (1) A first (high) threshold was
applied on the prefiltered image in order to segment the bright
(thick) vessels. (2) The small vessels were extracted from the pre-
filtered image by means of the top-hat transformation [14],
smoothed in their main direction with a Gaussian profile filter
[16], and segmented with a second (low) threshold. These results
were combined resulting in a binary image representing the ves-
sels.

(B) Finding the extremities. Extremities of a binary set coincide with
the local maxima of its geodesic distance map [17,18]. However,
parasite maxima may exist due to (1) border irregularities and (2)
loops in the segmentation result. These two problems have been
overcome by (1) removing all local maxima with low dynamic
[14] and (2) carrying along a label image while constructing the
geodesic distance map, allowing the identification of bifurca-
tions, and therewith the identification of the parasite maxima
[18]. This method has been implemented efficiently using
FIFO-structures (queues). By the end of this procedure, all end-
points of the vascular tree were obtained, which coincided with
the first order vessels [19].

(C) Calculation of a clean skeleton. The classical skeleton (set of one
pixel wide lines) of the vascular tree was calculated. From this
skeleton, we removed all branches with endpoints not coinciding
with the ones calculated in section 2.

(D) Calculation of parameters. From the segmentation result (A)
the ratio of the number of vascular pixels to the number of
non vascular pixels (VBR, vessel background ratio) was calcu-
lated, reflecting the vascular density. Alternatively, this mea-
sure can be calculated for small vessels only (SVBR), in
order to avoid the bias induced by large vessels. The extremities
(B) gave the number of first order vessels (FOV). With the
skeleton (C) the number of bifurcations (three outgoing
branches), the number of crossings (four or more outgoing
branches), the number of second order vessels (SOV) [19], and
the length distribution and total length of the vascular tree were
calculated.

2.4. Reliability of the automated quantification
Results obtained by manual observation by three different observers

were compared to those of automated quantification. For this compar-
ison, which was made on nine CAMs of a single experiment, the FOV
parameter was investigated. Plotting the computed data against those
of each observer revealed linear regression curves with scores (R2) of
0.74 ± 0.02 (Fig. 1B). As well, inter-observer comparisons also led to
linear curves with R2 of 0.82 ± 0.03 (Fig. 1B). Equations of the regres-
sion curves are in Fig. 1B.

2.5. Experimental glioma assay
Experimental human glioma assays were performed on the CAM as

described by Hagedorn et al. [20]: at E10, a silicon ring was laid onto
the CAM, and 3–5 million U87 human glioma cells in 20 ll of medium
were deposited after gentle laceration of surface. At E12, embryos
bearing size-matching tumors were treated until E14 with 25 ll per
day of either ITPP 0.1 M or the vehicle. The effect of ITPP was ana-
lyzed on the tumoral growth and vascularization, and appearance of
hemorrhages within the tumor.

2.6. Histological procedures
Tissues were fixed overnight in 4% paraformaldehyde at 4 !C, dehy-

drated in graded alcohol, cleared in xylene, embedded in paraffin, and
cut into 7 lm-thick sections. Chick blood vessels were labeled with bio-
tinylated Sambucus Nigra lectin (SNA-lectin) (1:1000; Vector, Burlin-
game, CA), with routine signal amplification by ABC Elite (Vector,
Burlingame, CA) and diaminobenzidine as chromogen. For quantifica-
tion of vascular density within the U87 cell nodules, three fields per
section of three different sections were analysed for each nodule as fol-
lows: images of SNA-lectin-labeled nodules were taken with a Cool-
snap digital camera (Roper Scientific, Trenton, NJ), binarized with a
threshold determined manually for each image, and quantified for
the number of colored pixels with the IPLab software (IPLab, Scana-
lytics).

2.7. Statistical analysis
For manual and automatic quantification of vascular parameters of

the CAM, a non parametric test of Mann and Whitney was used.

3. Results

3.1. Effects of ITPP on the CAM
ITPP at 0.1 M provoked obvious alterations of the CAM

vascular tree as soon as after 24 h of treatment. Compared
to the controls (Fig. 2A, C), the vascular network appeared
disorganized (Fig. 2B, D) as observed on angiographic pic-
tures, notably at the level of the microvascular bed (Fig. 2D
vs C).

We evaluated these defects by measuring several parameters
of the vascular network with the program described in Section
2, which allows an automated quantification. Thirteen CAM
from two series of experiments were analyzed. A treatment
with ITPP led to a significant decrease in parameters such as

Fig. 1. Automated quantification. (A) Computed analysis of CAM
vasculature, allowing, from an angiographic image (inset 1), the
quantification of first order vessels (FOV, inset 2), second order vessels
(SOV, inset 3) Bifurcations (Bif, inset 4) and vessel/background ratio
(VBR, inset 5) parameters, revealed in purple (for details, see Section
2). (B) Plots of computed measurements for the FOV parameter
against manual measurements of a first observer (obs. 1). As a
comparison, plots of manual measurements of two other observers
(obs. 2 and obs. 3) against obs. 1 are shown. The equations of the
regression curves obtained for the different plots as well as their
correlation scores (R2) are indicated. Scale bar: 400 lm.

G. Sihn et al. / FEBS Letters 581 (2007) 962–966 963

Figure 1.4: Quantification of angiogenesis in chicken embryos: (1) Detail of an angiography, (2) Detec-
tion of First Order Vessels (FOV), the vessels in vicinity to the capillaries, (3) Detection of
Second Order Vessels (SOV), the vessels in vicinity to the first order vessels, (4) Bifurcation
points, (5) Vessel segmentation, allowing to measure the overall vascular density.

Screening. I had the chance to join the Mitocheck-Project, a European project that aimed at
a systematic study of cell division involving a large-scale screen generating 200.000 videos that
needed to be analyzed. This gave me the opportunity to apply and extend many of the concepts
I had learned during my PhD thesis, but it also shifted the focus from pure image analysis to a
mix of computer vision, data mining and computational biology.

In 2012, I joined the Centre for Computational Biology, Mines ParisTech, where I started to
build a team on Bioimage Informatics. There have been three main axes of research. First, I con-
tinued to work on live cell imaging data in view of analyzing mitotic and migration phenotypes.
Concretely, I was interested in developing methods for the analysis of Secondary Screening data
with higher temporal and spatial resolution, still in view of analyzing mitotic phenotypes. In
addition, my team developed a methodological framework for the analysis of migration phe-
notypes from large-scale microscopy data. More recently, we proposed new methods for drug
screening in multiple cell lines, each corresponding to different molecularly defined subtypes of
a disease. The challenge was to compare phenotypes even if the baseline morphologies differ.
The second research axis is dedicated to the emerging field of Spatial Transcriptomics, where
we develop methods to analyze the spatial aspects of gene expression. This involves detection
of individual transcripts in cells and classification of localization patterns. In the third axis,
we develop methods to analyze stained tissue slides. Histopathology links information on cel-
lular phenotypes with clinical relevance, and therefore closes the loop I started during my PhD
thesis.

These three axes cover the complementary aspects of biological systems that can be explored
with images: morphology, time, physical space and multi-scale organization. The organization
of the manuscript follows roughly this organization rather than being strictly chronological:
in chapter 2, I describe the methods I and my team have been developing for the analysis of
morphological phenotyping. Chapter 3 is dedicated to the analysis of the temporal aspects of
phenotypes. Chapter 4 deals with current and future projects in the field of RNA localization
and spatial transcriptomics and chapter 5 focuses on our work on tissue phenotyping.
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2 Computational methods for morphological
phenotyping

As introduced in section 1.2, the phenotype of a cell refers to a potentially large set of observable
parameters. The difficulty in the computational analysis of such data is thus to capture all of
the interesting properties, to describe them quantitatively and to infer biological knowledge from
these descriptors.

In the following, I will first discuss basic strategies in section 2.1 and review the relevant lit-
erature. In section 2.2, I discuss in detail methods that I have developed together with my
collaborators for the computational analysis of morphological phenotypes and in particular the
detection of mitotic phenotypes. Section 2.3 introduces the methodological extensions we de-
veloped in order to screen multiple cell lines. In section 2.4 I discuss the articles I published on
this topic and detail the perspectives for the field to which I plan to contribute.

2.1 Overview

In this section, I will give an overview over different strategies for the computational analysis
of phenotypes from large-scale screening data; see also excellent reviews (S. Singh et al. 2014;
Caicedo et al. 2017) and comparative analyses (Kümmel et al. 2011; Ljosa et al. 2013) on this
topic. Given the many possible imaging techniques, the presentation cannot be exhaustive, but
I hope to cover the main options.

Single cell level Cell population level Screen level

Cluster 1
Cluster 2

Cluster 3

Negative control

Figure 2.1: Simplified view on the different levels of computational phenotyping: (1) the phenotype
of individual cells can be quantified (left). (2) The phenotypic description of individual
cells can be aggregated to build the phenotypic profile of the cell population (middle). (3)
Phenotypic profiles of cell populations can be further analyzed in order to identify groups of
experimental conditions with similar effect (right panel). Different colors indicate different
condition groups, orange corresponds to the negative controls (no effect). Red squares
indicate experimental conditions with known effects. They can be used for interpretation
of the result ("guilt by association").

The problem of computational phenotyping can be stated as follows: we start from a large
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2 Computational methods for morphological phenotyping

Computational analysis of population phenotypes

 1

Phenotype description by a single feature distribution  
The ideal situation arises, if we can directly measure the relevant biological feature. 
Examples: particle speed, elongation of cells, number of spots, … 

357

298

914

620

Original image Segmentation Feature Feature Distribution

...
...

Figure 2.2: Phenotype description by a single feature distribution: for each segmented object, a single
feature is calculated. The population is thus described by a univariate feature distribution.

number of microscopy experiments, each consisting in a single image with potentially several
channels1:

I : E ⊂ ZD → RC

u → I(u) (2.1)

where D is the number of spatial dimensions (2 or 3) and C the number of channels, which
is traditionally between 1 and 5, but which can - with some techniques - also reach several
hundreds (Eng et al. 2019). Alternatively, images can also be defined as tensors of order 4:
I ∈ RD1×D2×D3×C , where D1,2,3 are the spatial dimensions and C the number of channels. In
this presentation, there is no formal difference between spatial and channel dimensions. Each of
these images displays cellular populations under varying experimental conditions. Importantly,
depending on the imaging modality and the choice of fluorescent markers, the part of the cell
which is visible and thus amenable to computational analysis, might differ from project to
project. We assume however, that there is at least one channel that allows us to identify
individual nuclei or cells.

The first step usually consists in segmenting cells or cellular compartments from the images.
This step can be rather trivial or exceedingly complicated, depending on the objects that are to
be studied, the performance we need to achieve and the imaging modalities and markers that
are used. As a result of the segmentation step, we obtain a partition of the image plane E into
disjoint regions, one of which representing the background, and all others different objects. We
denote the set of object pixels ζ =

⋃
i=1..NS

Si, with Si the connected components of ζ and thus
corresponding to the individual objects of interest (typically cells or nuclei).

There are different levels of phenotyping (see Figure 2.1): at the cellular level, we aim at
quantifying the phenotype of individual cells. At the population level, we want to quantify
(or profile) the phenotype of a cellular population, potentially by aggregating the single cell
descriptions. Population profiles are then further analyzed to identify experimental conditions
that deviate from the negative controls (hit detection) and eventually to identify groups of
experimental conditions with similar population phenotypes.

2.1.1 Phenotype description by univariate feature distributions

In the conceptually easiest case, there is one feature that fully describes the biological process
under study. Obvious examples of such features include cell size or overall fluorescence intensity,
e.g. in the DAPI channel as a proxy for the cell cycle phase (Carpenter et al. 2006). Furthermore,

1We do not consider live cell imaging experiments in this section and refer the reader to section 2.2
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2.1 Overview

Computational analysis of population phenotypes

 2

Phenotype description by feature distributions  
Sometimes, we are interested in more than one interpretable feature. The challenge is 
then to analyze the distributions of these features in a univariate or multivariate 
setting.

...
...
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Figure 2.3: Phenotype description by a multivariate feature distribution

presence of fluorescent reporters can be measured by intensity or ratio measurements at specific
locations in the cell, and thus inform on more complex phenotypes such as intra-cellular transport
(J. C. Simpson et al. 2012) (in this case the amount of reporter proteins accumulating in the cell
membrane is an indicator of the correct functioning of the transport mechanism). The feature
might also be more complex than just an intensity, ratio or size measurement. DNA damage
for instance can be quantified by detection and counting of spots from a γ-H2AX marker that
highlights individual breaks in DNA (Ivashkevich et al. 2012; Garcia-Canton et al. 2013) or by
using texture features allowing to omit the detection step (J. Boyd et al. 2018).

In all these cases, the analysis at the single cell level sums up to determining this one feature
for each cell and the population phenotype is then described by a univariate feature distribution
(see figure 2.2). Further processing steps include spatial normalization to remove systematic
bias due to the location of the experiment inside the well plate, batch normalization to remove
any systematic inter-plate variation and statistical testing in order to identify those genes that
differ significantly from the control conditions (Bray et al. 2012; S. Singh et al. 2014).

While limited in many aspects, it is the simplicity in the description of the phenotype by a
simple feature that makes the subsequent analysis steps more straightforward. This also includes
a well-known parameter to judge the "quality" of a screen (called Z ′-factor) which evaluates the
difference between feature distributions of negative and positive controls2. For these reasons and
despite the limitations discussed below, this modeling strategy is still very popular, in particular
in pharmaceutical companies.

2.1.2 Phenotype description by multivariate feature distributions

In most cases, there is more than one relevant feature that can be measured for a cell. Indeed,
even if it is possible to quantitatively describe the biological process under study with just one
feature (as described in section 2.1.1), it is usually interesting to relate this feature to other
features measured for the same cells. In this case, each object i is represented by a vector of P
feature values x ∈ RP . These features can be calculated from the set of pixels Si in which case
they are called shape features or on the corresponding image values I(x) with x ∈ Si, in which
case they are called intensity or texture features.

A population of cells is thus modeled by a joint distribution of feature values (see figure 2.3).
Further analysis of these multidimensional distributions can take different forms, depending on
whether the features are biologically interpretable or general features:

2A negative control is an experiment from which we expect that there is no effect, while a positive control is an
experiment from which we expect a strong effect.
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2 Computational methods for morphological phenotyping

 3

Computational analysis of population phenotypes

Phenotype description by single cell classification  
Sometimes, the biological information cannot be easily represented by a single or 
multiple interpretable features. In this case we can use many uninterpretable features 
to derive biologically meaningful classes.
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Figure 2.4: Phenotype description by single cell classification

• General features: One simple approach consists in describing the population phenotype
by a vector of average feature values (Adams et al. 2006), other statistical descriptors of
univariate distributions (Collinet et al. 2010) or test statistics resulting from a comparison
to the control condition (Perlman et al. 2004). These and similar strategies disregard
potential connections between features and thus model the multivariate feature distribution
of P features as P independent feature distributions. Instead of using average values of
the raw features as phenotypic profiles, it is also possible to project the features to a lower-
dimensional space, e.g. by Principal Component Analysis or Factor Analysis (Ljosa et al.
2013).

• Biologically interpretable features: It is also possible to model the joint distribution
of features by graphical models. This is particularly interesting if the features are biologi-
cally interpretable. Such models thus allow to investigate potential dependencies between
different cellular properties and the modifications of these dependencies upon perturbation
(Graml et al. 2014) or the investigation of causal relationships (J. Boyd et al. 2018) be-
tween the biologically interpretable features, allowing thus to distinguish between primary
and secondary phenotypes or to remove the effect of confounders.

It is important to note that if features are not interpretable by themselves, biological inter-
pretability needs to be injected at a later stage of the workflow. This is typically done in
the last step in a guilt by association approach (see Figure 2.1): similar phenotypic profiles are
grouped together, and the biological meaning of such a group with similar population phenotype
is inferred from a priori biological knowledge about one or several of its members.

2.1.3 Phenotype description by single cell classification

In most cases, the number of raw image features that allow for a biological interpretation is
relatively low. As a consequence, it is likely that many aspects of a cellular phenotype are typi-
cally not accounted for, when describing each cell by such a low-dimensional, yet interpretable
feature vector. Furthermore, there are visually striking features, such as texture or morphology,
that do not easily translate into a single biologically meaningful image feature. On the other
hand, it is possible to extract a high dimensional feature vector that is likely to describe most
aspects of the appearance of a cell under the microscope. But such a profile - albeit a good
and potentially comprehensive description - is difficult to interpret. In many cases, we wish to
interpret the result of our analysis not only in a final map of condition clusters, as shown in
Figure 2.1, but actually at a single cell level. Moreover, the description of a population profile
by a joint feature distribution in a high-dimensional space is not necessarily very practical for
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2.1 Overview

further processing.

In such a case, it makes sense to use supervised or unsupervised learning in order to assign to
each segmented object one morphological class (see figure 2.4):

f : RP → Y = {y(1), y(2), . . . y(K)}
x → y = f(x) (2.2)

f is thus the function that predicts a phenotypic class given a feature vector. This function is
learned from the data. We distinguish two important settings:

• Supervised Learning. In this case f is inferred from a set of annotated samples called
the training set T = {(xi, yi)}i=1..N . The advantage of supervised learning is that we can
guarantee that the output is biologically meaningful, as we predefine the classes according
to our a priori knowledge on the biological system. The drawback is that we might not know
all the phenotypic classes in a large-scale data set, and for this reason novelty detection (at
the single cell level) is not possible in this setting. Methods used in this context include
Support Vector Machines (SVM) (Walter et al. 2008; Walter et al. 2010a), AdaBoost,
Random Forests (Dao et al. 2016) and — more recently — Deep Learning (Dürr et al.
2016; Pawlowski et al. 2016; Sommer et al. 2017). In contrast to other classification
methods, Deep Learning does not rely on hand-crafted features, i.e. the representation
vector x is also learned from the training data.

• Unsupervised Learning. In this case, there are no annotations, and the classes are
derived from the data. The advantage is that this analysis is to a certain degree unbiased
and allows for the detection of new phenotypes (Yin et al. 2008). In addition to being com-
putationally challenging for large amounts of data, the drawback of unsupervised learning
is that the biological sense is not guaranteed: two cells might be visually different but
biologically very close and vice versa. In contrast to supervised learning, there is no way
of imposing "biological meaningfulness". As unsupervised learning does often not give
the desired results, one often seeks a compromise between supervised and unsupervised
methods (Sommer et al. 2017).

The population of cells is thus described by a vector of classification results or a summary
statistic thereof, typically the percentages of cells in all classes. It is also possible to concatenate
classification results and descriptors of the feature description (Fuchs et al. 2010). And finally,
depending on the biological process under study, the spatial distribution of cells of different
types of states might also be relevant (Snijder et al. 2009).

2.1.4 Omitting the cellular level: population phenotyping without cell
segmentation

Finally, there is also the option to classify images directly without segmenting and analyzing
individual cells. This can be done by either calculating large feature vectors (Orlov et al.
2008; Uhlmann et al. 2016) with typically P > 1000 and applying supervised or unsupervised
learning algorithms on these feature vectors. Deep Learning is also well suited to this kind of
approach (Godinez et al. 2017). Alternatively, images can be partitioned into nested superpixel
representations and unsupervised learning and projection techniques can be applied to find
suitable low dimensional representations of images with the benefit of being independent from
the number of cells (Rajaram et al. 2012).
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The benefit of these methods is that image segmentation is omitted altogether. Indeed, image
segmentation often is — depending on the fluorescent markers used — the bottleneck of the
entire analysis workflow, as the adaptation of existing algorithms and their validation is often
time-consuming and cumbersome. The price to pay is that the single cell resolution gets lost,
and one of the most formidable advantages of using images in the first place, i.e. the access
to the single cell level and the investigation of phenotypic heterogeneity, needs to be sacrificed.
As a consequence, biological interpretation is only possible at the very last step of the analysis
workflow (guilt by association, see Figure 2.1). This therefore removes any intermediate valida-
tion step that might be time-consuming, but which are also useful in terms of algorithmic design
(modularity).

This strategy is particularly promising in the case of drug screens: in this case, ground truth is
available at the level of the experiment and often little is known about the expected cellular phe-
notypes. As stated in (Rajaram et al. 2012), this approach is also not incompatible with a more
detailed cellular analysis: indeed, it can be used for a coarse primary analysis, complemented
by a more detailed secondary analysis at the cellular level.

2.2 Morphological phenotyping in action: detecting mitotic
phenotypes in a genome-wide screen

I started to work in the field of High Content Screening in 2006, when I joined the group of
Jan Ellenberg at the EMBL in Heidelberg. The project I was working on between 2006 and
2010 was the Mitocheck-project, where we aimed at identifying all human genes required for
cell division. It was the first RNAi screen by live cell imaging in human cells, and the data
generated during this screen was unprecedented in terms of size and complexity at that time.
Many of the papers I have cited in the previous section, were not yet published at that time, and
both method and software tools to analyze such large-scale screening data were scarce. In the
following section, I will describe the methods and tools we have developed in the context of this
project. Even though this one project initially triggered most of our developments, they have
been refined, further developed and applied in the context of several targeted live cell imaging
screens at small or medium scale (often referred to as "secondary screens"). Finally, I would
like to mention that these developments were the fruit of a joint effort of the entire team I
was part of. The input of experimental biologists was instrumental to the success of the entire
project, but also the design of the algorithms. In terms of pure methodological development, I
would like to highlight the fruitful collaboration with Michael Held, with whom I shared both
ideas and code that ultimately was the basis of our common open-source software CellCognition
(https://www.cellcognition-project.org).

2.2.1 A genome-wide RNAi screen for the identification of genes required for
cell division

Since entire genomes of many species have been sequenced, including the human genome (Inter-
national Human Genome Sequencing Consortium 2001; International Human Genome Sequenc-
ing Consortium 2004), one of the major tasks today is to understand how biological function
arises from genomic information. This field of research is usually referred to as Functional
Genomics.

Loss-of-function screens are important tools in this field: individual genes are down-regulated
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Interphase Prophase Metaphase Anaphase Telophase

Figure 2.5: Mitotic phases (Blue: DNA, Red: Actin, Green: Microtubuli). 5 mitotic phases are
shown: Interphase (corresponding to G1, S and G2), Prophase (caracterized by nuclear
envelope breakdown and chromosome condensation), Metaphase (microtubuli form the
mitotic spindle and chromosomes are aligned at the metaphase plate), Anaphase (chromo-
some sets are distributed to the two daughter cells), Telophase (chromosome decondense,
the nuclear envelope reforms and cytokinesis concludes cell division).

or knocked out and the phenotype in response to the loss of the gene product is observed by
microscopy. There are several techniques that can be used to reduce the expression of a gene.
RNA interference (RNAi) for instance is a natural process to regulate gene expression, which
can be hijacked in order to downregulate (i.e. reduce the expression level of) a specific target
gene. From the imaged phenotype, it is often possible to derive hypotheses on the function of
the gene. The specificity of this hypothesis depends on the choice of the imaging method and
the employed marker: if for instance, we observe cell death without any other modification, we
can only conclude that the gene is essential, i.e. the gene product is required for survival. If we
observe a characteristic shape modification, we can hypothesize on a more specific role in the
regulation of cell shape.

In our project, we wanted to identify the genes required for mitosis (cell division). Cell divi-
sion involves a dramatic rearrangement of virtually all cellular compartments, but the different
mitotic phases can actually be inferred from the chromosome configurations alone. Cell divi-
sion is a relatively rare event. At any given time point, only 5% of the cells are undergoing
mitosis. In addition, it is a highly dynamical process. We therefore reasoned that in order to
capture the phenotypic dynamics and to collect data relevant for mitosis from most cells inside
the cellular population, we would need to acquire live cell imaging data for each knock-down
experiment. Taken together, our approach to identify all human genes required for cell division
was to perform a genome-wide RNAi screen by live cell imaging in HeLa3 cells stably expressing
the chromosome marker H2B-GFP4. With at least 6 experiments for each of the ∼ 20000 protein
coding genes and the necessary control experiments, we finally acquired a data set of more than
190000 videos of 48 hours (time-lapse of 30 minutes).

2.2.2 Morphological Phenotyping and detection of mitotic phases

As described in section 2.1.3, morphologies cannot be easily represented by a low number of
interpretable features; on the other hand, it is usually relatively easy to provide examples for
different morphological categories. Supervised Learning is therefore the method of choice, when
it comes to morphological profiling. This is particularly true for mitosis, as the changes in
morphology are rather dramatic and the different mitotic phases are clearly defined and distin-
guishable (see Figure 2.5). Our strategy was therefore to first segment nuclei and to extract a

3HeLa cells: immortalized cell line that is widely used in biological research. The name comes from Henrietta
Lacks, from whom the original cells were taken.

4H2B-GFP refers to a fused protein consisting in the histone H2B and the Green Fluorescent Protein (GFP).
The histone H2B is part of the nucleosomes that help organizing, packaging and maintaining chromosomes.
The amount of H2B is supposed to be roughly proportional to the amount of DNA. Stable expression means
that the cells are genetically modified in order to express the fused protein H2B-GFP.
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large number of features for each segmented nucleus describing both shape and texture. Fur-
thermore, we defined a set of classes, annotated examples for each of these classes and trained a
Support Vector Machine in order to classify unseen nuclei into one of these predefined classes.

Segmentation While segmentation can often be the bottleneck in image analysis, it was rea-
sonably straightforward in this project, where nuclei appear as bright, well-contrasted and rarely
overlapping objects on a dark background. They can be reasonably well detected with standard
approaches (prefiltering, background subtraction and thresholding). The most frequent prob-
lem of this technique is that sometimes close objects are segmented as one single object. One
traditional way of separating close roundish objects is to apply the Watershed transform on
the inverse distance transform of the initial segmentation result (Beucher et al. 1979). This
strategy however corresponds to a strong shape prior: objects must not have prominent notches.
If they have they are split into several objects. As this genome-wide screen contained many
and actually unpredictable morphologies, we went for a more conservative strategy: we used
Toggle Mappings (Meyer et al. 1989; Soille 2003) to prefilter images and to prevent close, but
still separated objects from being segmented together (Walter et al. 2010a). In this case, we
would accept that overlapping objects are segmented together, simply because in this context,
we have no way of deciding whether they are separated in reality and just segmented together
or truly connected, which can happen for instance due to segregation problems after division.
We will come back to the segmentation of nuclei under more difficult conditions in chapter 5.

Object Features In order to describe shape, intensity and texture of objects, we used several
families of descriptors, including basic shape and intensity features (e.g. size, elongation, circu-
larity, etc.), classical texture features (Haralick features (Haralick et al. 1973), moment-based
features (Reeve et al. 1992)), but also less widely used features (statistical geometric features
(Walker et al. 1996), morphological granulometries (Serra 1983)) and newly defined features
based on the convex hull and on morphological dynamics of the distance map. Altogether, we
encoded each individual cell by a feature vector x ∈ RP with P = 190. Most of these features
had no evident biological sense.

Class definition and generation of a training set The next step was to apply supervised
learning to assign a class label to each of the nuclei. For this, we needed (1) a predefined set of
classes and (2) a set of manually annotated examples for each of these classes.

1. Class definition: When defining morphological classes, one would first be guided by
the literature and try to identify morphologies that have been previously reported. In
our case, this was reasonably straightforward: nuclear morphologies corresponding to the
different mitotic phases are well known (Interphase, Prophase, Prometaphase, Metaphase,
Anaphase and Telophase, see Figure 2.5). However, a compromise needs to be found be-
tween what is technically possible and what is essential for the biological interpretation.
For instance, depending on the spatial resolution of the microscope, it can be very difficult
to detect early prophase, as the change between interphase and prophase concerns subtle
changes which are not clearly visible at low resolution. Second, there might be morpholo-
gies resulting from perturbation experiments that we do not know a priori. This means,
that we need to use unsupervised learning (clustering or novelty detection) in order to
identify these categories, which is problematic for several reasons as discussed in section
2.1.3.

2. Finding examples for each class: When classes are defined, we need to annotate
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Figure 2.6: Classes of nuclear morphologies from the Mitocheck screen (Neumann et al. 2010). On top
of each image: name of the morphological class. Below each image: the name of the gene,
whose down-regulation can lead to the corresponding morphology (images were taken from
the corresponding RNAi-experiment). Color indicates broader categories: black indicates
variations of single interphase nuclei, green indicates normal and abnormal mitotic phases,
blue indicates interphase morphologies consisting in several nuclei as a consequence of a
failure in division, magenta indicates nuclei with severe, but non-mitotic phenotypes, red
indicates variants of cell death.

samples that fall into these categories. While this might seem straightforward for some
categories, there can be a number of practical problems: (1) there can be borderline cases
that are hard to annotate, (2) rare morphologies can be tricky and time-consuming to
find in large scale data sets, (3) it is difficult to evaluate how many samples need to be
annotated to cover the morphological variability inside a class.

These two steps were actually the bottleneck of the computational analysis, and even today, 14
years after the start of my involvement in the project, there have been few publications actually
targeting this problem.

Classification For classification, we used Support Vector Machines with an RBF kernel, where
the parameters are found with grid search and the reported performance determined with nested
cross validation. The reasons for using SVM were twofold: first, it was one of the most powerful
methods for classification at that time, second it compared favorably to other methods tested and
third, the training does not need any particular care by the user, as both training and parameter
tuning are well defined procedures. We also used Recursive Feature Elimination (Guyon et al.
2003) to reduce the set of features, but finally, there was no clear advantage of using a smaller set
of features: the accuracy did not improve with smaller feature sets and in terms of computation
time, there was also little to be gained, as computation time depends rather on the number of
feature families than the number of actual features (e.g. if a co-occurrence matrix is already
calculated, it does not matter whether the full set of Haralick features is calculated or just a
subset). It is important to emphasize, that the actual problem of applying supervised learning
to computational phenotyping is not so much the classification itself. The major bottleneck
was clearly the definition of the classes and the generation of the training set. It must be also
noted that in practice, there is often a time-consuming back-and-forth between class definition,
annotation and classification. Altogether, we trained a classifier to detect the morphologies
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illustrated in Figure 2.6 with an accuracy of 86% (Walter et al. 2010a; Neumann et al. 2010).
For smaller screens with less morphological variability and in particular fewer morphological
classes, the same method reaches an accuracy of > 95% for the detection of mitotic phases
(Held et al. 2010). Classification of chromosome figures was the key component of the analysis
workflow applied on the mitosis screen introduced in section 2.2.1, but was complemented by an
analysis of the dynamic behavior detailed in section 3.1.

2.3 Screening multiple cell lines

As explained in section 1.2, HCS is not limited to applications in functional genomics, but also
provides us with a powerful tool for identifying potential drugs effective against a particular
disease (Perlman et al. 2004). In drug screens, we test a panel of drugs against a cell line that
serves as a model for the studied disease in order to discover new drugs active against the disease
and to get insights into the mechanism of action (MOA) of the drugs by relating the observed
phenotypes to the perturbed pathways.

However, as a proxy for diseased cells, a single cell line cannot be thought of as a perfect
model. Many diseases feature a significant molecular heterogeneity. Consequently, a drug may be
effective against one molecular subtype of a disease, but less so against another. To characterize
drugs with respect to their effect not only on one cell line but on a consensus of several is
therefore a promising strategy to streamline the drug discovery process. Nevertheless, this is
not an easy task in morphological screening, as different cell lines usually have distinct archetypal
morphologies even prior to perturbation. It is therefore conceptually difficult to characterize and
compare drug effects across cell lines.

a. b.

Figure 2.7: t-SNE embeddings of encodings from autoencoder (left) and domain-adversarial autoen-
coder (right), with cell lines distinguished by colour, and mean silhouette scores of 0.11
and 0.01 respectively.

In order to address this issue, my team has benchmarked a large panel of traditional and deep
learning methods for MOA prediction in triple negative breast cancer (TNBC) cell lines and
developed methods based on domain adaptation by adversary training in order to compare drug
effects in two different cell lines (J. C. Boyd et al. 2019). The idea is to find a representation that
allows to predict drug MOA (e.g. the molecular target or the targeted biological process) and at
the same time does not allow to predict the cell line (the domain). In other words, the network
parameters are optimized such as to minimize the loss for MOA prediction, and to maximize
the loss for cell line prediction. This can be done elegantly by reversing the gradient layer. The
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Figure 2.8: MDS embedding of drug effect profiles for MDA231 and MDA468 cell lines. Detection of
differential drug effects between cell lines with examples for each category below (MDA231
top, MDA468 bottom). From left to right: no drug effect in either cell line (negative
control); drug effect in MDA231 cell line only; drug effect in MDA468 cell line only;
similar drug effects in both cell lines; differentiated drug effects in both cell lines. Shown
are example images, blue: DAPI, red: microtubules, green: DSB.

effect of domain adaptation on cellular features is illustrated in figure 2.7.

Application of these methods to a pilot screen allowed us to categorize drugs into four different
groups: (1) drugs that act only on one of the cell lines, (2) drugs that act on both cell lines
in a similar way, (3) drugs that act on both cell lines, but differently, (4) inactive drugs. MDS
projection of the domain invariant features and examples are illustrated in figure 2.8.

While only applied to a small pilot screen, I believe that there is a lot of potential in the
developed method: multi-cell-line-screens are becoming increasingly popular, as they represent
an excellent environment to develop methods for precision medicine Costello et al. 2014; Eduati
et al. 2015. While these toxicogenetic data sets were so far limited to single numbered outputs,
it is obvious that a richer readout, such as images, can provide a much better estimation of drug
effect similarities, which in turn are key for models aiming at predicting the effect of a drug to
a cell-line from its genomic and transcriptomic descriptions.

2.4 Conclusion and perspectives

2.4.1 Supervision and Publications

Section 2.2 was dedicated to the classification of cell morphologies, applied to a genome-wide
RNAi screen by live cell imaging, described in section 2.2.1. The analysis workflows I have devel-
oped in this context therefore contained both the automatic recognition of cellular morphologies
and the analysis of the time-resolved data, which will be discussed in detail in the next chapter.
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For this reason, some of my publications from this time deal with both aspects (Erfle et al. 2007;
Walter et al. 2008; Walter et al. 2010a; Neumann et al. 2010; Walter et al. 2010b; Held et al.
2010; Terjung et al. 2010; Conrad et al. 2011) and are therefore listed again in section 3.3).

In collaboration with the Carazo group at the Gurdon institute, Camebridge, I also contributed
to a genetic screen in yeast, where we investigated the interplay between several biological
processes and modeled the interdependencies between features by a Bayesian network (Graml
et al. 2014). I have been also involved in two competitions on multi-cell-line drug screens without
images, where the objective was to predict the drug effect, as measured by a single value, from
the drug and the genetic features of the cell-line, leading to three publications (Costello et al.
2014; Eduati et al. 2015; Bernard et al. 2017). Our experience in these two challenges was that a
single number can be hardly sufficient to represent the complex drug-induced phenotypes. This
triggered the idea of performing multi-cell-line HCS, in particular for drug screening, where
the cell lines could represent molecularly defined subtypes of a disease. This work was done by
Joseph Boyd, a PhD student in my group, who will defend his thesis in 2020. So far, this project
has lead to 2 publications (J. Boyd et al. 2018; J. C. Boyd et al. 2019).

2.4.2 Perspectives

Computational analysis of morphological phenotypes is a well developed field. The standard
method consisting in segmentation, feature extraction and classification is versatile and powerful
enough for many real-world applications. For instance, classification of mitotic phenotypes
reaches accuracies of more than 95% with these methods (Held et al. 2010). While we could
potentially improve on that with newer methods, in particular deep learning, the usefulness
of such developments would certainly be questionable. For this reason, it is probably more
interesting to target questions that we cannot answer with traditional methods or for which the
current results are either poor or in some other way not effective.

Segmentation of cells and cellular structures by fully convolutional neural networks One of
the bottlenecks of the workflows discussed in section 2.1 is the segmentation of cells and cellular
components that can be difficult. Segmentation of nuclei is often a simple task, but can get
difficult depending on the cell line and the imaging modality (see for instance the detection
of nuclei in stained tissues in section 5.2). Segmentation of the cytoplasmic region can still
be complicated in some cases, and in general segmentation tasks are often time consuming and
complex, in particular for label-free microscopy, such as bright-field or phase contrast microscopy.
For this reason, novel and generally applicable segmentation methods are currently developed
and can have a great impact on HCS, as we can extend the applicability of HCS to cell lines
and imaging conditions that are far from being ideal.

Deep Learning with experimentally generated ground truth Beyond image segmentation,
deep learning is also the state of the art method for image classification. Two major use cases:

1. Classification of entire cell populations, i.e. classification at the experiment level, can be
interesting for drug screening (Godinez et al. 2017), but in many cases, we still wish to
keep the cellular level: images provide us with the advantage that we can observe and
quantify cellular heterogeneity; it is suboptimal to give away this interesting property.

2. Classification of single cell morphologies by convolutional neural networks is an interesting
alternative to the traditional approaches, in particular for morphologies that are so far
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difficult to classify. However, it is well known that neural networks - while more powerful
- tend to require more annotated data than traditional classification methods (e.g. SVM,
RF).

As discussed in section 1.1, it is challenging to get large annotated data sets for individual
biological projects, and annotations from one project are often not easily transferable to another.
Beyond the use of pretrained networks, one of the major issues is therefore how to get larger
annotated data sets. One interesting option is to use smart experiment design to actually
generate ground truth data at a cellular level. This can be achieved by the use of fluorescent
labels for training that are indicative for certain phenotypes (such as cell division or cell death).
We are currently investigating this strategy to analyze a large series of live cell phase contrast
imaging experiments. The objective of this project is to study engineered T-cells that selectively
attack cancer cells. The relevant cell classes can be marked with fluorescent markers, but there
are several reasons which make the use of live dyes in this context impractical, such as cost and
long term stability. However, they can be used in a calibration phase to derive a ground truth
from which a Deep Neural Network can be trained and applied to the phase contrast data. In
contrast, the experiments can be run without any fluorescent marker.

In silico labeling With in silico labeling, we refer to the prediction of fluorescence images from
bright field or phase contrast images (Christiansen et al. 2018; Weigert et al. 2018; Ounkomol
et al. 2018; Belthangady et al. 2019). The subtle difference to the generation of ground truth by
experiment design is that we are not predicting class labels but images of a different modality.
The main use case of this technique is that we can predict the position and shape of organelles
from phase contrast or bright field images, with the advantage that we do not need to fluores-
cently label these structures. This evolution is likely to revolutionize HCS, as we can now have a
panel of landmark proteins marked computationally, while we can keep the fluorescent channels
for other proteins. We are going to use and further develop these techniques in the frame of
localization screens introduced in chapter 4.
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3 Exploring the temporal dimension:
recognition of dynamic phenotypes

In this chapter, I will describe my developments for the analysis of the temporal aspects of cellular
phenotypes. In section 3.1, I briefly describe our efforts to describe time-resolved morphological
phenotypes, starting with clustering and modeling approaches of phenotype dynamics for the
Mitocheck screen, described in section 2.2.1, followed by our work on secondary screening data,
where we apply Hidden Markov Models (HMM) for error correction and in silico alignment of
mitotic phenotypes. These projects were mostly developed during my time at the EMBL in close
collaboration with experimental and computational researchers from EMBL. In section 3.2, I
describe the developments of my team to analyze nuclear movements in the mitocheck data
involving clustering of spatial trajectories. Hence, while section 3.1 is concerned with morpho-
temporal analysis, section 3.2 is dedicated to spatio-temporal analysis and therefore represents
a transition to the next chapter dedicated to the analysis of spatial patterns.

3.1 Analysis of morphological phenotypes over time

In the last section, we assigned to each object (nucleus) first a feature vector x ∈ RP and to each
x a class y ∈ Y = {y(1), y(2), . . . , y(K)} from the set of K predefined classes. We can therefore
describe an initial image sequence {It}t=1..T by a sequence of relative count vectors {ct}t=1..T ,
where for each timepoint t the vector of fractions of objects in each of the K predefined classes
is denoted by ct ∈ [0, 1]K . This sequence of vectors (or equivalently, this multidimensional time
series) is now our description of the time-resolved phenotype.

With these time-series, we can now find those experiments that differ from negative controls and
thus identify the "hits" of the screen (Neumann et al. 2010), i.e. genes with notable differences in
the classes relevant for mitosis. In addition to this, we can study the dynamics of the phenotypes.
For this, we developed methods to give a concise overview over the order in which phenotypic
events occur (Event Order Maps, EOM). The strategy is to find an order of events that is in
agreement with most pairwise event orders from the different replicates (Walter et al. 2010a).

3.1.1 Clustering of multi-dimensional time series

Beyond pure visualization to study major causes and consequences of phenotypes at the popu-
lation level, we wanted also to cluster experiments according to phenotypic similarity using the
full time-resolved profiles. This involves calculating similarities between multidimensional time-
series. An additional complication is that phenotypic onsets can be very different between RNAi
experiments against different gene products, but have little value for functional similarity (the
phenotypic onset is typically influenced by factors such as protein stability or the required level
of the targeted protein). We therefore developed a dissimilarity measure that is independent
of phenotypic onsets (given that the phenotypes are in the observation window, i.e. that the
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Figure 3.1: Principle of trajectory clustering for multi-dimensional time series: each set of time-series
is represented by a trajectory in the phenotypic space, where time is an implicit param-
eter. These trajectories are represented by a set of vectors (here a pair of vectors). The
dissimilarity is calculated on these trajectories. The result is a time-resolved heatmap (on
the right), where every gene corresponds to one line, for every morphology, we display its
percentage over time.

phenotypic onset does not occur prior to the start of the imaging). The idea is to represent the
K-dimensional time series by a trajectory in a K-dimensional space, where time is an implicit
parameter of the phenotypic trajectory: trajectories represent the joint evolution of the differ-
ent time curves, independent from their phenotypic onset and speed of change. We argue that
RNAi experiments with overall similar trajectories are likely to show a similar overall phenotype
(Walter et al. 2010a). The method is illustrated in figure 3.1.

In a collaboration with Gregoire Pau and Wolfgang Huber, we investigated an alternative way of
modeling the time series (Pau et al. 2013), where we focused on the transitions between different
phenotypes at the population level. Based on a model of possible transitions between different
phenotypic states, we modeled the time series by a system of Ordinary Differential Equations
(ODE). An important aspect here is that the transitions between different morphological classes
cannot be considered to be constant. Indeed, during the experiment, we can expect that the
cells run out of the down-regulated proteins and consequently, the parameters of the model, and
namely the transition rates are bound to change over time. While the drawback of the method is
that we need an a priori model regarding existing transitions between morphologies, this method
provides nonetheless a powerful tool for the description of dynamic phenotypes. We also showed
that the identified model parameters can also be used for clustering (Pau et al. 2013).

3.1.2 Phenotypic trajectories at the single cell level in secondary screening
experiments

All of the methods presented in this chapter so far aimed at analyzing population phenotypes
over time, i.e. for each time point, the entire population of cells is analyzed and their pheno-
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type summarized as absolute or relative count vectors in the respective classes. An alternative
strategy is to track individual cells over time and to measure the order of phenotypic events and
phenotypic state transitions at the single cell level instead of estimating them at the population
level. While this is in principle attractive, we actually followed this strategy first for secondary
screens with higher spatial and temporal resolution and a better understanding of the pheno-
types we were facing. Indeed, tracking all individual cells in the lower-resolution genome-wide
data set is not an easy task, which we endeavored only at a later stage (see section 3.2).

Secondary Screening Primary screens as the one presented in section 2.2.1 aim at providing
comprehensive surveys of the molecular basis of fundamental biological processes, here cell di-
vision (Neumann et al. 2010). The result of such a screening project consists in lists of genes
with putative function in these processes, and — depending on the richness of the phenotypic
readout — a more detailed hypothesis on the function of the encoded proteins. In figure 3.1,
we see for instance that there are different clusters corresponding to different phenotypes: there
are groups of genes whose downregulation leads to an accumulation of cells in an early mitotic
state, suggesting problems in the formation of a mitotic spindle, sometimes followed by cell
death, sometimes by micro-nucleation (a defect in the reforming of the nuclear envelope), some-
times by segregation defects. Another group of gene knockdowns leads to an accumulation of
binucleated cells, thus indicating a defect in cytokinesis. We therefore see that even though all
these phenotypes are related to cell division, the nature of the failure can be very different.

In order to elucidate the role of these different groups of genes and to better understand the
underlying mechanisms, one usually performs secondary screening experiments at higher spatial
and temporal resolution with markers that are tailored to the hypothesis inferred from the
primary screening data. Secondary Screening projects concern thus fewer genes (typically tens
to hundreds), are less comprehensive and less exploratory (with the consequence that we have a
stronger biological prior on the expected phenotype), and usually employ more complex imaging
conditions. I have been involved in several secondary screening projects regarding mitosis (Mall
et al. 2012; Hériché et al. 2014; Isokane et al. 2016).

A secondary screening example: the regulation of lamin disassembly during early mitosis
In this secondary screening approach with Moritz Mall from Ian Mattaj’s group at the EMBL,
we were interested in elucidating the role of two kinases PKC and CDK1 to orchestrate the
disassembly of nuclear lamina during early mitosis. The nuclear lamina form a dense meshwork
of intermediary filaments that underpins the nuclear envelope. During envelope breakdown, the
lamina disassemble and translocate either to the mitotic endoplasmic reticulum (ER) or to the
cytoplasm.

In order to investigate the disassembly of the lamina and to relate it to the different phases of cell
division, we used a cell line stably expressing EGFP-LAMINB1 to report on lamin organization
and H2B-mCherry to track mitotic phases. By live cell imaging at high temporal resolution (2
minutes), we monitored the dynamics of lamin translocation from the nucleus to the cytoplasm
(see figure 3.2.a). Concretely, we took the following steps:

1. We classified mitotic phases from the H2B-mCherry signal.

2. We tracked individual cells over time with a simple nearest neighbor tracker. For each cell
n we had thus an individual time series of classification results {c(n)

t }t=1...Tn .

3. We detected the transition from interphase to prophase and aligned cells undergoing mi-
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a.

b.
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Figure 3.2: Analyzing disassembly of the nuclear lamina. a. Gallery of a single cell undergoing mitosis.
Green: LAMINB1-eGFP. Red: H2B-mCherry. b. Workflow: from the H2B channel (first
panel), nuclei are segmented and classified (second panel). HMM are used for correction
(3rd panel). Intensities inside and outside the nucleus are measured. For each dividing
cell we can measure a time series, as shown on the bottom plot.
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3.2 Analysis of movement types

tosis on this transition (in silico alignment).

4. We used Hidden Markov Models (HMM) in order to correct for classification errors. The
confusion matrix defined the emission probabilities, some transition probabilities were set
to 0 according to our prior knowledge on cell division, and the rest of the parameters was
inferred by the Baum-Welch algorithm. Application of the Viterbi algorithm then provided
us with the sequence (c̃

(n)
t )t=1...Tn of corrected classification results.

5. We used to the nuclei segmentation in order to measure intensity in the Lamin channel
inside and outside the nucleus and normalized about the value in interphase:

xin(t)− xout(t)
xin(t)− xout(0)

(3.1)

6. We inferred disassembly and reassembly time from this time-series.

The approach is illustrated in figure 3.2.b. Application of this model to a number of RNAi
and chemical perturbation experiments allowed us to build a model of the control of lamina
disassembly during early mitosis. On a more technical note, we see that each project might come
with its own specificities and its own quantification problems, but there is still an algorithmic
backbone that is similar across projects, and which was therefore used in a number of secondary
screening projects I have been involved in.

3.2 Analysis of movement types

Large-scale genomic screens are rarely informative about only one biological process. For in-
stance, the genome-wide screen described in section 2.2.1, initially designed for the identification
of human genes required for cell division (Neumann et al. 2010), was in principle also informa-
tive about proliferation, survival and nuclear motility. While scoring for other morphological
phenotypes was straightforward and solely required new class definitions and annotations the
other elements of the workflow remaining identical, analysis of movement required different algo-
rithmic approaches. For this, we first tracked cells over time. The resulting spatial trajectories
were then mapped to an original feature space describing various movement properties. From
the feature distributions we first identified those experiments that were significantly different
from negative controls and then turned to unsupervised analysis in order to identify trajectory
classes. We validated this approach on a simulated screen and applied it to the genome-wide
screen presented in 2.2.1.

3.2.1 Tracking by learning

Cell tracking faces several challenges in videos from high content screens like Mitocheck. The
algorithm has to handle apparitions, disappearances, divisions and fusions (due to occlusions or
segmentation errors). In addition, it has to cope with a high phenotypic inter-cell variability,
and must not rely on strong a priori assumptions on movement, as we wish to identify abnormal
movement types. Therefore, we extended a non-parametric structured learning approach from
(Lou et al. 2011). For this, we consider all possible matches between objects at time t and
t + 1 under movement type e ∈ {move, appear, disappear, split, merge}. In practice, this is
represented by indicator variables zei,j(t) ∈ {0, 1} which are 1 if object i at time t corresponds to
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3 Exploring the temporal dimension: recognition of dynamic phenotypes

object j at time t+1 under movement type e and 0 otherwise. Appearances and disappearances
are modeled by the use of virtual objects (i = 0 for appearances and j = 0 for disappearances);
for splits and fusions we need to consider links between objects and sets of objects (which we
omit here for sake of simplicity). Next, we characterize each match by a describing feature vector
composed of euclidean distance, orientation distance (angular distance of the principal axes at
t and t+ 1, respectively), and the difference in texture and shape features, as defined in section
2.2.2.

The optimal object matching ẑ(t) comes down to bi-partite graph matching: it is solved by
maximizing a likelihood function L which depends on the weights w and the match features fei,j ,
subject to the constraint that all objects are matched in both frames (cf equation 3.2).

ẑ(t) = arg max
z(t)

L(z(t);w) (3.2)

where

L(z(t);w) =
∑

e∈E
Obji,t
Objj,t+1

< we, fei,j > zei,j(t)

s.t. ∀i
∑

e
Objj,t+1

zei,j(t) = 1

and ∀j
∑

e
Obji,t

zei,j(t) = 1

The weights w are learned by a support vector machine using annotated trajectories, following
the formulation of (Lou et al. 2011). The likelihood maximization is an integer linear program-
ming (ILP) problem that can be solved by IBM Cplex.

As we showed in (Schoenauer Sebag et al. 2015b), this algorithm compared favorably to con-
strained nearest neighbor tracking and a widely used method where tracking is formulated as
a linear assignment problem (Jaqaman et al. 2008). It must be noted however, that for sim-
ple movements at low to medium cell density, there is barely a difference between the different
tracking methods (Schoenauer Sebag et al. 2015b). Indeed, the main advantage of this method
is that complex object features are used to establish correspondences, and this is only relevant
in cases where the Euclidean distance is not informative enough (e.g. in the case of splits, fast
movements and dense populations).

3.2.2 Trajectory features

Tracking allows us to represent each experiment by a set of N spatial trajectories {Γ(n) | n =
1..N}, each trajectory of length T corresponding to the sequence of cell center positions Γ(n) =

{u(n)
t }t=1...T . In analogy to the approach described in section 2.2.2, we characterize each trajec-

tory by a set of features xn ∈ RP , describing different movement properties. We have used a set
of 14 features, consisting in basic movement features, features based on moments of displacement
(Sbalzarini et al. 2005) and features we have designed according to different aspects we wanted
to be represented. These features are described in detail in annex B.
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3.2.3 Identification of movement types by unsupervised learning

Given the trajectories Γ(n) and their feature descriptions xn, the next task is to classify individual
trajectories into one out of several movement categories and to summarize the RNAi experiment
by the percentages of trajectories falling in each category. However, unlike the approaches for
morphological phenotyping, we do not know the different types of movement we can expect in
this large-scale screen. We therefore went for unsupervised learning, as explained in section
2.1.

However, with roughly 20 million trajectories and an important biological variability, unsuper-
vised learning did not prove to be successful when applied to the full set of trajectories, for a
wide range of clustering techniques (k-means, Gaussian mixtures models, spectral clustering,
fuzzy c-means, kernel k-means). There are several reasons for this: the number of trajectories is
very large and some more powerful methods for clustering cannot cope with such a large num-
ber of samples. In addition, the data is highly imbalanced and the vast majority of trajectories
are just variants of normal behavior. In particular, the imbalance makes randomly downsam-
pling a questionable approach. Our approach was therefore a mixture of outlier detection and
clustering: we first identified experiments that significantly deviated from negative controls with
respect to at least one of the features and then used the pooled trajectories from this reduced set
of experiments for further clustering. We validated this approach on a virtual screen, where we
simulated trajectories according to a priori defined movement types and tested whether we could
identify the movement categories and assign the trajectories to the correct classes (accuracy of
∼ 90%). Application to the genome-wide screen allowed us to identify different movement types
in a screen that was not initially designed for the analysis of nuclear motility (Schoenauer Sebag
et al. 2015b; Schoenauer Sebag et al. 2015a).

Regarding the methodological developments, we learned two lessons from this project:

1. For very large datasets and a serious imbalance, it is advantageous to enrich for rare cases
in order to give the minority classes a chance to be represented by their own cluster. This
is actually also what we do when we manually annotate datasets in supervised learning:
we do not reproduce the prior probabilities in the data sets, but we tend to enrich for rare
classes.

2. Validation on simulated data is an interesting option for unsupervised problems, where no
ground truth is available. Ideally complemented with other types of validation, such as
enrichment analysis of the results, cluster stability and validation on annotated data (if
available), it is in a truly unsupervised case often the only option we have.

3.3 Conclusion: Supervision and Publications

Section 3.1 was dedicated to the analysis of morphological phenotypes over time. This work was
done at the EMBL in close collaboration with experimental scientists at the EMBL. In (Walter et
al. 2008; Walter et al. 2010a), I published the entire workflow including the recognition of nuclear
phenotypes (described in section 2.2) and the clustering of population time-series. In (Neumann
et al. 2010) we applied the method to a genome-wide screen on cell division. In (Tegha-Dunghu
et al. 2008; Tegha-Dunghu et al. 2014), we applied the methods for computational phenotyping
on small-scale studies, in (Mall et al. 2012; Hériché et al. 2014; Isokane et al. 2016) to secondary
screening data. In a collaboration with the Gerlich group, we implemented these and other
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3 Exploring the temporal dimension: recognition of dynamic phenotypes

methods in the open-source software CellCognition (Held et al. 2010). In a collaboration with
the Huber group, we also modeled the time-series by Ordinary Differential Equations (Pau et al.
2013). In addition to this, I also contributed to a protocol paper on experimental HCS techniques
(Erfle et al. 2007) and the Micropilot project where the morphological classification was used to
guide image acquisition (Conrad et al. 2011). In (Walter et al. 2010b), colleagues and I reviewed
visualization tools for bioimaging data, including data from High Content Screening; (Terjung
et al. 2010) was a review dedicated to technical aspects of High Content Screening.

Section 3.2 was dedicated to the analysis of spatial trajectories. The work was performed by
Alice Schoenauer Sebag, a PhD student in our lab and led to two publications (Schoenauer
Sebag et al. 2015b; Schoenauer Sebag et al. 2015a).
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4 Localization phenotyping: spatial
transcriptomics

In chapter 2, we have discussed how to computationally analyze morphological data, chapter 3
was dedicated to the analysis of time-resolved microscopy data. In this chapter, I will show our
developments in view of analyzing spatial distributions of RNA molecules inside cells.

4.1 Biological context: RNA localization

Gene expression is the process by which genetic information is transformed into functional
products. For this, genetic information is copied to RNAs, a process named transcription. RNA
molecules are then further processed before they eventually leave the nucleus in order to either
fulfill a function of their own (such as ribosomal RNA) or to serve as a blueprint for protein
generation, a process named translation. In any case, the number of RNA molecules present
in a cell or a cellular population can be seen as a proxy of the "activity" of that gene. Tight
regulation of gene expression is essential for a gene to fulfill its basic functions, and disregulation
of gene expression can lead to serious failures at the cellular, tissular and organism level. For all
these reasons, the study of gene expression has been one of the major fields in genome biology
for many years and has triggered the development of both experimental techniques, such as
microarrays or RNA sequencing, and computational methods in Bioinformatics.

Traditionally, these studies focused on the expression level, i.e. the number of RNA molecules or
a proxy thereof. More recently however, it has become apparent that it is not only the number
of RNA molecules that matters, but also their localization inside cells. Indeed, RNA molecules
may localize in specific regions of the cytoplasm, i.e. they distribute according to a specific
localization pattern. Subcellular localization of mRNAs is thought of as playing an important
role for the spatial control of gene expression; its misregulation is linked to an increasing number
of diseases (Buxbaum et al. 2014; Chin et al. 2017). However, the function and mechanism of
RNA localization are not yet well understood. In addition, it is likely that not all localization
patterns are known so far and it is still unclear which mRNAs distribute according to which
localization pattern.

These questions can be addressed by large-scale image-based assays, where individual mRNA
molecules are visualized by single molecule Fluorescence in situ hybridization (smFISH). smFISH
allows for the visualization of individual mRNA molecules in their native cellular environment
(Raj et al. 2008; Tsanov et al. 2016). The principle of smFISH is to target mRNA with several
fluorescently labeled oligonucleotides (see figure 4.1.a). Many variants of this method exist,
with optimizations regarding signal to noise ratio (SNR), experimental protocol, specificity of the
targeting, scalability, automatization and cost. In our project, we use single molecule inexpensive
FISH (smiFISH, see figure 4.1.b), a technique that is particularly inexpensive and therefore
scalable at the level of High Content Screening (Tsanov et al. 2016). Individual RNA molecules
appear as small diffraction limited spots under the microscope (see figure 4.1.c).
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Figure 1. mRNA detection using smiFISH. (A) Principle of smiFISH. 24 primary probes are pre-hybridized in vitro with the secondary probe via the
FLAP sequence. Resulting duplexes are subsequently hybridized in cells. Length (nt: nucleotides) and !G37◦C are indicated. Red circles: Cy3 moieties.
(B and C) Dual-colour labelling of HIV transcripts with smiFISH-Cy3 and MS2-GFP in HeLa-HIV-MS2-GFP cells and parental HeLa cells (negative
control). (B) Red arrows indicate examples of individual mRNA molecules. Blue arrows indicate active transcription site. (C) Percentage of smiFISH spots
that co-localized with a MS2 spot. Each dot corresponds to one cell, plotted as a function of the number of smiFISH spots per cell (N = 50 cells). (D)
Androgenetic (AK2) and parthenogenetic (PR8) mouse embryonic stem cells mES cells were hybridized with smiFISH probes targeting either Grb10 or
Peg3. Red arrows indicate examples of individual mRNA molecules. Number of detected mRNAs are reported for each image. Nuclei manually drawn
from DAPI images (not shown) are outlined in blue.

tected spots as a function of a threshold with increasing in-
tensity (Figure 2B). The number of detected spots decreased
with increasing threshold intensities, but a plateau appeared
in the middle of the curve when using 24 or 45 smiFISH
probes (or 20 to 40 smFISH probes). This plateau separates
spots of low and high intensities. Control cell line lacked the
spots of high intensities (Figure 2C), indicating the low and
high intensity spots corresponded to false positive (back-
ground) and true positive (RNA molecules) spots, respec-
tively. As reported before (4,5), this plateau corresponds
hence to a range of intensity values that yield an optimal de-
tection. Smaller intensity values lead to an over-detection,
larger intensity values to an under-detection. Thus, we con-
cluded that the use of 24 to 45 smiFISH probes allowed a
proper separation between true positive and false positive
detections, and that a higher number of probes yielded a
better separation between them. Next, we fit each detected
RNA spot with a 3D Gaussian function (5). We found that
spot intensities (Amplitude of the Gaussian) increased with
the number of probes (Figure 2C). Finally, we calculated the
signal-to-noise ratio (SNR) as the ratio of amplitude and
standard deviation of the background, and found that the
SNR also increased with probe number, and that smiFISH
and smFISH yielded similar SNRs when a similar number
of probes were used (Figure 2D). Altogether, these data in-
dicated that smiFISH performed similarly to smFISH, and

that using more probes yielded a better separation between
the signal of true RNA molecules from false detections.
However, more probes also mean higher cost, and 24 probes
provide a good compromise between cost and signal quality
since it readily allowed to separate true RNA signals from
background (Figure 2C).

Next, we optimized the method to determine the best
hybridization sequences. Traditionally, sequences are cho-
sen such that they have a similar melting temperature
(Tm). However, hybridization and washing are performed
at 37◦C, far lower than the typical Tm. The standard free
energy of binding (!G) varies in a sequence-dependent
manner with temperature (19), and oligonucleotides with
different sequences may thus have an identical !G at
the Tm, but different !G at 37◦C. We thus developed
a script––Oligostan––to identify hybridization sequences
with a common !G37◦C, and thus with an identical tar-
get affinity at this temperature (Supplementary Note 2).
To further improve probe design, we also incorporated
empirical criteria for optimal determination of hybridiza-
tion sequences, which were determined previously in large-
scale hybridization experiments (20). We tested Oligostan
on three genes with different expression levels: GAPDH,
CTNNA1 and CTNNB1. In each case, we obtained im-
ages with clearly identifiable mRNA molecules (Supple-
mentary Figure S2). A direct comparison of 14 probe sets
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Figure 4.1: single molecule FISH - a. Standard smFISH procedure: fluorescently labeled probes are
hybridized on the target RNA. b. smiFISH: gene specific unlabeled probes are hybridized
to the target RNA. They contain a FLAP sequence, onto which the fluorescently labeled
probes are hybridized in a second step. c. Example smFISH image.

In order to identify the RNAs1 with non-random localization and to obtain the landscape of
RNA localization patterns, we can thus perform a large-scale screen, where we visualize the
mRNA molecules for one gene at a time by smFISH for a predefined set of genes (typically tens
to hundreds of genes for one screen). This raises the computational challenge of identifying the
different mRNA localization patterns and to assign each tested mRNA to one of them.

4.2 Computational analysis of subcellular localization patterns of
mRNAs

As described in section 4.1, computational analysis can in principle be casted as a problem of
unsupervised learning: given the full set of screening images, we wish to identify all localization
patterns present in the data set. Once the set of localization patterns is known, we wish to assign
each cell to one of them, and the computational task can then be formulated as a supervised
learning problem.

Overview In figure 4.2, we see the basic workflow of the computational analysis, consisting in
cell segmentation, detection of individual mRNAs, description of their spatial distribution by
features, and a machine learning step, consisting in either supervised or unsupervised learning.
This step might be replaced by projection to a low-dimensional space and visual inspection.
Compared to the workflow shown in section 2.1.4, the main difference is (1) we detect individual
RNAs prior to classification, (2) that consequently, we aim at classifying point clouds rather
than general textures and (3) that in most cases, we do not have annotated data sets, as little
is known about existing localization patterns.

Segmentation and detection tasks In (Samacoits et al. 2018), we have presented methods
for the segmentation of the cytoplasm from a dedicated marker (CellMask) or — with less
accuracy — from the background FISH signal. For this, we have developed novel techniques for

1In the following, "mRNA molecules" denote all instances of the same mRNA. In contrast, with "mRNAs" we
refer to different mRNAs (i.e. the transcripts of different genes). Furthermore, this study is concerned with
mRNA only (so whenever we talk of RNA, we actually mean mRNA).
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Figure 4.2: Workflow for the analysis of smFISH images. Cells are segmented, individual RNAs de-
tected. The spatial distribution of points inside each cell can be mapped to a feature
space. In the last step, machine learning allows to assign a localization pattern to each
cell.

focus projection and explored both traditional techniques based on Mathematical Morphology
and Deep Learning strategies for multiple instance segmentation. In addition, we also detect
the nuclei from the DAPI signal with traditional methods. For the detection of spots we used
traditional techniques for spot detection based on the Laplacian of Gaussian and local maxima
(Mueller et al. 2013). In order to resolve agglomerations of spots, we decomposed them using
mixture models. At the end of this step, we have thus for each cell the cytoplasmic region Rc,
the nuclear region Rn and the locations ui of the individual RNA molecules.

Localization features To describe the spatial distribution of molecules in the cell, we calcu-
late a set of features, some of which coming from the literature (Battich et al. 2013), others
were introduced by us (Samacoits et al. 2018). There are features that represent the distance
distributions from landmarks in the cell (i.e. distances from the cytoplasmic membrane or dis-
tances from the nucleus) and others relate to the inter-point distances (mostly features based
on Ripley’s L-function). It is important to normalize the features such that they do not (or only
mildly) depend on the point density (expression level) and the cellular morphologies, as both
morphology and expression level might act as potential confounders. For more details, we refer
to (Samacoits et al. 2018).

Simulation of smFISH images One of the main difficulties in the unsupervised approach il-
lustrated in figure 4.2, is that in the absence of an annotated ground truth data set for RNA
localization in smFISH data, it is virtually impossible to assess usefulness of features and perfor-
mance of the clustering workflow. As mentioned in section 3.2.3, simulated ground truth data
can be used to validate clustering workflows. In the case of smFISH images, this is particularly
interesting, as a human might find it difficult to make annotations on 3D data, without getting
influenced by confounding factors, such as point density and morphology. The impact of these
covariates is amplified by the fact that we might know only few example genes for a given lo-
calization pattern. In the extreme case, we would not even know a single example gene for a
hypothetical localization pattern, but we might nevertheless be interested in knowing whether
this (postulated) pattern is present in the data set. All of these considerations encouraged us to
build a simulation framework, where we generated point patterns from known localization rules
to create large amounts of ground-truth data.

For this, we first developed an experimental workflow allowing us to generate a library of cell
reference volumes with precise information on the plasma membrane and the nuclear region in

35



4 Localization phenotyping: spatial transcriptomics

Simulation of 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Figure 4.3: Simulation of smFISH images: a library of cell reference volumes is acquired. In these
volumes, we place points according to a priori laws of localization. 6 patterns are shown
here. Cell edge and nuclear edge are localizations close to the cellular and nuclear boundary
respectively (in 2D). Nuclear I/M refers to localizations inside the nucleus or on the nuclear
membrane in 3D. Foci correspond to clustering of several RNA molecules in relatively small
aggregates.

3D, as well as the background signal obtained by mockFISH. We then placed points into these
reference volumes according to a priori laws of localization. In order to control the strength
of the pattern, positions were drawn from a mixture distribution between random localization
and pattern localization: ui ∼ πS + (1 − π)R, where S is the pattern distribution and R
the random distribution. In order to benchmark our method and other existing methods, we
simulated 8 different patterns, 6 of which are shown in figure 4.3. In order to test the performance
of the algorithms independently from confounders such as cell shape and expression level, we
systematically varied cell shape and expression levels for all simulated localization patterns.

With this validation framework, we benchmarked different existing and newly developed meth-
ods, in particular different hand-crafted feature sets. In an unsupervised setting, we were able
to identify the correct classes with an accuracy of 88% (Samacoits et al. 2018).

Application to real data We applied the workflow to experimental smFISH data for 10 genes
(a total of ∼ 2000 cells). We then applied several unsupervised machine learning methods in
order to analyze these data. Figure 4.4 shows a t-SNE projection (Maaten et al. 2008) of the
localization features for the data. We observe that genes with similar localization patterns tend
to live in close proximity in the feature space, whereas genes with different localization patterns
have the tendency to be located in different regions. This being said, there are no clearly
distinguishable clusters: not surprisingly, localization seems to cover a continuum in the feature
space. Moreover, we also observe an important heterogeneity in terms of localization, which —
given the stochasticity of the entire expression process — was also expected.

Our analysis workflow thus allows us in principle to analyze RNA localization data, to identify
localization patterns and to classify cells according to the localization of the mRNA molecules.
In addition to the pilot screen shown in figure 4.4, we are currently working on a medium-scale
study. In the frame of this project, we extend our existing workflow to include more features. A
preliminary analysis along with a series of follow-up experiments allowed us already to identify
mRNAs that are translated in specialized translation factories, potentially enabling new gene
regulatory mechanisms (Chouaib et al. 2018). While this is already an exciting finding, we
suspect that there are many more discoveries to be made that will complement our current
understanding of gene expression at the cellular level.

36



4.3 Conclusion and perspectives
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Figure 4.4: t-SNE projection of the localization features for 10 genes. Each point is one cell, genes
are color coded according to the legend.

4.3 Conclusion and perspectives

4.3.1 Supervision and publications

The work presented in this chapter is the result of a very fruitful collaboration between my
team, Florian Müller from the Imaging and Modeling group (director: Christoph Zimmer, In-
stitut Pasteur) and Edouard Bertrand and his team from the Institut Génétique Moléculaire
de Montpellier (IGMM). Our first PhD student was Aubin Samacoïts, cosupervised by Florian
Müller and myself, who developed the simulation framework and the analysis with traditional
features and applied these methods to the pilot screen (Tsanov et al. 2016; Samacoits et al.
2018). Since then, we have started to work on several extensions of the workflow, namely the
use of convolutional neural networks trained on simulated data for the recognition of localization
patterns. This approach was investigated by Rémy Dubois, a master student at the CBIO in
2018 and Arthur Imbert, a PhD student who arrived in 2018 (Dubois et al. 2019). Aubin Imbert
is also deeply involved in the analysis of the screen on RNA and protein localization, currently
under review (Chouaib et al. 2018). The supervision continues to be shared between Florian
Müller and myself. We have received funding from the GDR ImaBio (master thesis by Rémy
Dubois) and from the ANR (2015-2018).

In a parallel project, I also developed tools to analyze image based cytometry data, where we
could analyze 20 protein channels in the human tonsil in order to identify cell types and analyze
their spatial distribution (M. Durand et al. 2019).

4.3.2 Perspectives

With our encouraging first biological results, the availability of experimental protocols allowing
for large-scale screening and the first generation of computational tools we have developed, there
are many exciting perspectives opening up in this field today.
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4 Localization phenotyping: spatial transcriptomics

Screens for RNA localization In order to identify more RNAs with non-random localization,
our collaborators are currently performing large-scale screens on different gene families, where
hundreds of RNAs are probed individually. Our short-term objective is to identify more RNAs
translated in translation factories, detectable by organization of mRNA in foci. Moreover, we are
generally interested in exploring the localization landscape of gene expression, i.e. identifying
all localization patterns in these large-scale screening data. One interesting aspect is to include
other markers into this workflow, allowing us not only to evaluate the spatial distributions of
RNA molecules with respect to nucleus and cytoplasmic membrane, but also to other organelles
in the cell. As an example, we will work on a screen with an additional marker for centrosomes,
allowing us to elucidate the role spatial control of gene expression might play for cell division.
We also envision the use of in silico labeling 2.4 in order to predict major cellular compartments
from phase contrast images. This would allow us to monitor the intra-cellular localization of
RNA with unprecedented precision. Finally, we will aim at predicting the localization pattern
from sequence motifs. This will generate hypotheses of the regulatory mechanisms controlling
RNA localization. These data and their computational analysis are bound to provide us with
new insights into the local control of gene expression. This project has been accepted for funding
by the ANR (project TRANSFACT, ANR-19-CE12-0007-03, 2019-2023).

Learning from simulations With our simulation framework, we can generate large data sets
with known ground truth. Rather than using them for validation, we can also use them to train
classifiers in a supervised setting. Recently, we have shown that this is possible for a simple
Random Forest classifier trained on the handcrafted features proposed in (Samacoits et al. 2018)
and with Convolutional Neural Networks, thereby omitting the feature engineering step (Dubois
et al. 2019). In principle, such an approach is interesting as it allows one to classify patterns
according to biophysical laws rather than annotated examples of known patterns. In addition,
we can control the covariates, such as expression level and cell morphology, and obtain classifiers
that are much more robust in practice. However, simulated data - albeit visually similar - follow a
different distribution than real data. We will therefore apply domain adaptation by adversarial
training (Ganin et al. 2016; Shrivastava et al. 2017) in order to overcome the distributional
differences between simulated and real data. We will also make use of Generative Adversary
Networks (GANs) in order to improve the simulated data.

Spatial Transcriptomics in tissues The screens we have introduced so far use smFISH tech-
niques where the transcripts of a single gene are visualized. On a longer term perspective, we
will use techniques that have been recently proposed to visualize the transcripts of hundreds of
genes in the same cells (Chen et al. 2015; Moffitt et al. 2016; Achim et al. 2015; Fazal et al.
2019; Eng et al. 2019). These methods are in many cases applicable both to cell culture and tis-
sues, and the newest versions give also access to the subcellular localizations. Measuring several
transcripts in the same cells allows us to relate the expression levels and transcript localization
of hundreds of genes to each other. Co-expression and transcript co-localization can therefore
be measured at an unprecedented level in individual cells with intact morphology.

In particular for tissues, these technical advances will allow us to study challenging and exciting
questions. Tissues are composed of cells of diverse cell types interacting physically and chemically
to fulfill the tissue specific functions. Cell types are determined by their transcriptional programs,
i.e. by the set of genes that are expressed. For this reason, it is usually sufficient to measure the
expression levels of a set of genes (typically tens of genes) in order to determine the type of each
cell in a given tissue. Understanding the spatial composition of tissues at the cellular level is an
extremely interesting objective in itself that has been addressed recently for several tissue types,
such as the liver (Halpern et al. 2017). These studies ideally complement the cell type surveys
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4.3 Conclusion and perspectives

based on RNAseq recently published for a number of tissue types. A highly interesting question
is how this composition changes upon disease. In a collaboration with experimental groups at
the Institut Curie and the Institut Pasteur, we will analyze the differences in the abundance and
the spatial distribution of the diverse cell types in pulmonary fibrosis, induced by irradiation
in mice. The experimental setup allows us also to correlate the composition changes to the
time after irradiation, and thereby to understand the order in which these changes occur. This
project has obtained funding by the ANR (project LUSTRA, 2020-2024). On a longer-term
perspective, such approaches can be also extremely valuable to study the composition of the
tumor micro-environment, which is thought to play a major role for cancer progression and
outcome.
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5 Tissue phenotyping

Most of the work I have presented in this manuscript deals with computational phenotyping
at the cellular level. In section 4.3, I have presented an interesting perspective of analyzing
molecularly defined cell types in tissue in order to study tissular characteristics in disease condi-
tions. While the proposed study relies on major experimental advances over the last few years
(Shah et al. 2016; Eng et al. 2019), the analysis of tissue slides for diagnostic purpose has a long
tradition in medicine. In this chapter I will present the contributions of my team in the field
of computational pathology. After an introduction to the biomedical context in section 5.1, I
will explain two complementary approaches to the analysis of tissue phenotypes: the analysis of
single cell data in tissues 5.2 and the end-to-end analysis of full slides in section 5.3, the latter
being work in progress at the time of writing. Finally, I will detail the perspectives in this field
in section 5.4.

5.1 Biomedical context

Histopathology and H&E staining Histopathological examination of stained tissue slides is
a cornerstone of cancer diagnosis and prognosis. Haematoxylin and Eosin (H&E) staining -
invented more than 100 years ago - is the most widely used staining protocol in histopathology:
cell nuclei are stained in blue (haematoxylin), whereas the cytoplasm is colored in pink (eosin).
Other structures can take combinations of blue and pink. H&E staining allows the pathologist to
inspect nuclear morphologies, to categorize cell types, and to appreciate the general architecture
of a tissue sample (see figure 5.1), albeit without molecular information.

Interpretation of H&E stained images requires several years of special training and a tremen-
dous expertise in medicine and cancer biology. Importantly, given the central role of cellular
phenotypes for the visual inspection of a tissue slide, histopathology represents a natural link
between fundamental research in cancer cell biology and disease relevance.

Digital Pathology Today, slides can be scanned, visualized, analyzed and annotated on the
screen; this is usually referred to as Digital Pathology. Digital pathology has paved the way for
the development and application of algorithms to automatically or semi-automatically analyze
histopathology images. In most cases, the objective of such a method is to directly assist the
pathologist in the diagnosis (Computer Aided Diagnosis, CAD) by detecting and quantifying
certain features, such as detecting and measuring the tumor region (Qaiser et al. 2019), estimat-
ing the number of dividing cells (Veta et al. 2014), quantifying necrosis (Homeyer et al. 2013)
or predicting the cancer type (Coudray et al. 2018). Recently, systems have been proposed
to automatically classify entire slides, e.g. for metastasis detection in lymph nodes (Bejnordi
et al. 2017; Liu et al. 2017; Lin et al. 2019). The idea is to unburden the pathologist’s work
by pre-screening the large number of slides and removing those that can be classified as be-
ing non-cancerous with high confidence. The workload could thus be reduced by 65 − 75%
(Campanella et al. 2019). Another more research-oriented objective is to identify image-based
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5 Tissue phenotypingNuclei segmentation: challenging task

Figure 5.1: Examples of H&E stained tissue sections typically used in histopathology

biomarkers that are predictive for certain outcome variables and that can ideally complement
gene-expression signatures (Bera et al. 2019). Another interesting research field is to combine
image and molecular data. This can be done in different ways: images can be used in order to
deconvolve bulk measurements (Yuan et al. 2012), or to predict the mutational status of genes
(Coudray et al. 2018). In summary, while Computer Aided Diagnosis is clearly the most impor-
tant application of computational pathology, there are more and more articles that go beyond
automatically reproducing interpretations by human pathologists.

Computational tasks related to digital pathology Irrespective of the concrete biomedical
questions, the main tasks in computational pathology typically fall into one or combinations of
the following categories:

1. Color normalization in order to remove the bias induced by different staining protocols
used in different centers.

2. Detection, segmentation and classification of cell nuclei.

3. Segmentation of regions (metastatic region, necrotic region, ... )

4. Prediction of output variables from the entire slide.

While points 1, 2 and 3 are clearly defined - albeit challenging - problems, the general strategy to
address point 4 is debatable. Indeed, one of the main difficulties in histopathology, as compared
to other problems in computer vision, is the size of the images. They are typically in the
Gigapixel range (100000× 100000 pixels). This makes handling of the images difficult and their
processing time-consuming. More importantly, it is unclear how to encode the information of an
entire slide: like in genomics, we have a massive amount of data for each patient most of which is
probably irrelevant for the disease, and it is unclear which pieces of information are important for
the final prediction in a very general setting. In general, there are two main avenues to tackle
these problems: either we aim at quantifying a slide with respect to biologically meaningful
variables and build predictive models based on these variables or we try to solve the prediction
problem directly and eventually try to understand a posteriori which elements of the slide were
responsible for the predictions. Finding a suitable encoding is also a prerequisite of integrating
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image data with genomic and transcriptomic data in order to use both complementary sources
of information for predictions. The methodological developments in this field are paralleled by
a considerable increase in the size of generated data sets over the last years. Given all these
considerations, we can expect major developments and discoveries in the field of computational
pathology.

Prediction of treatment response from biopsy data The concrete medical question my team
started to address is the prediction of treatment response from biopsies in Triple Negative Breast
Cancer (TNBC). Among women in France breast cancer is the most common cancer and leading
cause of cancer deaths with 18.2% of deaths among female cancer patients(Cancer 2017). TNBC
is a subtype of breast cancer with poor prognosis and limited treatment options. In TNBC, the
malignant invasive cells do not contain receptors for estrogen (ER), progesterone (PR) or HER2
and can therefore not be treated with hormone therapies or medications that work by blocking
HER2. The treatment used is neoadjuvant chemotherapy, i.e. chemotherapy prior to surgery.
Response to neoadjuvant chemotherapy varies among patients and can be quantified after surgery
via a Residual Cancer Burden (RCB) score (score between 0 and 3, where 0 corresponds to a
complete response). The objective of our project is to predict this score from biopsy data (see
figure 5.2). Upon success, patients could benefit from such a prediction, as they could be spared
an invasive treatment that is likely to fail in their case. On a research perspective, we hope that
such a system would point us to the cellular and tissular features that are informative about the
responsiveness. Of note, pathologists are currently not able to predict resistance to neoadjuvant
chemotherapy from biopsies.

5.2 Cellular Phenotyping in cancer tissues

In view of extracting biologically interpretable features from a Whole Slide Image (WSI), the
cellular level plays a pivotal role. Cancer is a genetic disease, where cells acquire a set capabilities
that moves them to a neoplastic state (Hanahan et al. 2011). Moreover, we have a detailed, yet
incomplete, understanding of how changes in the genome or the transcriptional program effect
cellular phenotypes, and we can relate morphological phenotypes to affected biological processes.
It seems therefore logical to include a cellular level in the analysis of diseased tissue. In the
context of analysis of H & E stained tissue sections, it makes sense to focus on nuclei, because
they are indicative of many cellular phenotypes (Chow et al. 2012), their morphology is currently
used by pathologists in order to identify the mitotic index and the level of nuclear pleomorphism
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Figure 5.3: Results for nuclei segmentation, as presented in (Naylor et al. 2018)

(Elston et al. 1991) and — unlike other cellular structures — they appear reasonably well
contrasted under standard staining procedures.

Segmentation of nuclei in stained tissue sections Segmentation of nuclei in WSI is the
first essential step for cellular and tissular phenotyping. As can be seen from figure 5.1, it is
actually a rather challenging problem and many traditional image analysis methods have been
proposed to address this problem, including mathematical morphology, level sets and graph-
based segmentation (Irshad et al. 2014; Xing et al. 2016). Today, fully convolutional neural
networks are considered to be among the most powerful methods for image segmentation, the
U-net (Ronneberger et al. 2015) being particularly popular for biological applications (Falk et al.
2019).

While fully convolutional neural networks without any kind of postprocessing often give excellent
results at the pixel level, they typically fail to segment touching objects and therefore tend to
give bad results at the object level. In order to address this issue, there are several strategies,
such as giving larger weights to pixels in close proximity of the object contours (Ronneberger
et al. 2015), predicting both the objects and their contours (Van Valen et al. 2016; Kumar et al.
2017) or learning a notion of the object by combining object region prediction with pixel-level
segmentation (He et al. 2017).

In (Naylor et al. 2017; Naylor et al. 2018), we published two methods to address this issue. In
(Naylor et al. 2017), we observed that the posterior probabilitiy obtained by the fully convolu-
tional network typically decreases towards the borders of the nucleus. We therefore argued that
objects should be split if on any path linking two local maxima (nuclei centers) the decrease
in posterior probability is sufficiently large, which sums up to application of morphological dy-
namics (Michel Grimaud 1992) and the watershed transformation (Beucher et al. 1979). While
appealing at first sight, we observed also that this strategy can lead to severe oversegmentation
in difficult cases, i.e. in cases where the hypothesis that the posterior probability gradually de-
creases between center and border of the nucleus is violated. We therefore proposed to formulate
the instance segmentation as a regression problem, where we predict the distance map instead
of predicting hard pixel classes (Naylor et al. 2018), i.e. instead of predicting for each pixel ui
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the variable yi:

yi =

{
1, if ui ∈

⋃
j Sj

0, otherwise
(5.1)

we predict a continuous variable yi:

yi =

{
minv/∈Sj d(ui, v), if ui ∈ Sj
0, ifui /∈

⋃
j Sj

(5.2)

Here, Sj denotes the connected components of the groundtruth data. The formulation in equa-
tion 5.2 shows already that the variable we are trying to predict combines pixel with object
level. Consequently, the network which is optimized to predict yi is bound to learn the notion
of an object. More generally, it makes sense to predict some object feature along the pixel label
in order to segment instances, which is finally also the rationale in the famous mask-R-CNN
(He et al. 2017). Examples are shown in figure 5.3, for a detailed quantitative analysis and
benchmarking, I refer to (Naylor et al. 2018).

With these results, we have now the challenging opportunity to segment all nuclei in WSI in
a variety of project and to study the morphological landscape of nuclei as well as their spatial
distribution in different types and subtypes of cancer, and in particular to relate this phenotypic
information to a variety of clinical variables. We are going to detail these approaches in section
5.4.

5.3 Analysis of Whole Slide Images

Complementary to the approach of cellular phenotyping, we also started to investigate the
problem of direct prediction of the output variable from the WSI, without prior segmentation of
cells or tissue areas. As mentioned in section 5.1, one of the major problems in digital pathology
is the size of the images which makes it impossible to process entire WSI with Neural Networks.
In addition, there are many features at the slide level that are not informative about the output
variables, such as the shape and the size of the biopsy itself. For these reasons, the common
approach is to partition the WSI into a large number of smaller images, usually referred to as
tiles. In contrast, the most important annotations are made at the slide level (such as disease
state or prognosis or — in our case — the response to treatment). This problem therefore
falls into the category of weak supervision (inaccurate supervision) and can be addressed with
techniques usually referred to as "multiple instance learning" (MIL). Importantly, it is not
known a priori how many of the tiles may be informative: even a small region in the entire slide
might contain important and even decisive information. Taken together, we are still in need of
systematic studies of the existing methods and new algorithms to reach a meaningful encoding
of entire slides.

In analogy to the HCS approach shown in section 2.1, we argued, that if there were different
tile classes, such as tumor, stroma, etc. we could simply represent each slide i by the vector of
percentages z(i) of tiles falling into each of the categories. As we do not have annotations at the
tile level, we can find tile classes by unsupervised learning from the pooled (and down-sampled)
set of tiles from all slides, where each tile j in slide i is represented by a feature vector x(i)

j from
a pretrained network. This approach is illustrated in figure 5.4.

Using this approach as a baseline, we argued that we can replace the cumbersome off-line
clustering step by a bottleneck layer in an end-to-end neural network approach, illustrated
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Figure 5.4: Two step method: ResNet features xj ∈ RP are extracted and used for clustering. Each
tile j is therefore represented by the cluster label yj and the slide is represented by the
percentages of tiles in each of the clusters.

in figure 5.5. Instead of assigning to each feature vector x(i)
j one hard cluster label we map

each x(i)
j to a low dimensional representation y(i)

j ∈ RK . This can be seen as a generalization
of a cluster assignment. We use a 1-dimensional convolution to learn the mapping. We then
pool these representations y(i)

j for all j to reach a description z(i) of the entire slide. If we set
K = 1 and use the Weldon pooling (T. Durand et al. 2016) this model is essentially the one
proposed by (Courtiol et al. 2017). Prediction of RCB as a proxy of chemotherapy efficiency
reached 60.6%, and therefore gave similar performance as prediction with Random Forests from
manual measurements obtained by a pathologist (59.8%). Training on some additional images
allowed us to further increase the score up to 70%. While this is far from being usable in clinical
practice, we see that there is at least some signal. We are currently working on extensions and
modifications of this method, also integrating more data.

Figure 5.5: The clustering approach from figure 5.4 is replaced by a bottleneck layer of a Neural
Network.

5.4 Conclusion and perspectives

5.4.1 Supervision and publications

My team is working in the field of histopathology since 2014. We started working on the detection
of mitoses (Veta et al. 2014) and turned then first to the segmentation of nuclei (Naylor et al.
2017; Naylor et al. 2018). More recently, we have started to work on the prediction of treatment
response (Naylor et al. 2019). The main body of work was performed by Peter Naylor who
defended his PhD thesis in 2019. The PhD project was based on a collaboration between my
team and Fabien Reyal (Institut Curie). Peter Naylor received a PhD fellowship by the Ligue
contre le cancer.
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In fall 2019, Tristan Lazard started his PhD thesis in the field of digital pathology, funded by
QLife. Guillaume Bataillon, a trained pathologist, joined the team in 2020 for 6 months, and
later in the year we expect the arrival on a new PhD student who will also work in the field of
digital pathology, but on a different cancer type.

5.4.2 Perspectives

As described in section 5.1, there are numerous perspectives, both short-term and long-term. Of
note, we are regularly confronted with new biomedical questions as more and more large-scale
data sets are acquired. While the last data sets we were working on contained less than 200
WSI, newer datasets contain 1000-2000, and this number is ever increasing.

The data we will focus on for the next 2-3 years comes from the pathology department of
the Institut Curie thanks to a collaboration with Anne Vincent-Salomon. These data sets are
specific, in a sense that they focus on one particular type of cancer.

• Ovary cancer (1400 slides). In addition to the slides, we have data on survival, risk of
relapse and the mutational status of BRCA1 and BRCA2, both genes whose mutation is
known to be an important risk factor.

• Breast cancer (800 slides). In addition to the slides, we have data on grade, survival, risk
of relapse, mutational status of BRCA1 and BRCA2 and information on the homologous
recombination deficiency (HRD), a defect in the DNA repair pathway.

Cellular Phenotyping As discussed in section 5.1, cellular phenotyping is one of the main ap-
proaches in order to make interpretable predictions from WSI slides, because cellular phenotypes
directly point to deregulated cellular processes whose molecular basis is often at least partially
understood. Cellular phenotyping therefore provides an interesting link between basic research
in cell biology and the clinical impact of these findings. The availability of segmentation and de-
tection methods we and others have developed (Naylor et al. 2018; Hollandi et al. 2019; Stringer
et al. 2020) provides us with the challenging opportunity to study the morphological landscape
of cell nuclei in cancer. Technically, there are a number of difficulties:

• There is a large number of different cell types, not all of which are distinguishable in H&E
images. In addition, the cell type is not only defined by shape and texture, but also by
the spatial relation to other cells.

• Annotated data sets are scarce as cell type annotation does not belong to the standard
diagnostic procedure.

• Different tissue types contain different cell types; annotated data sets for one tissue type
are therefore not easily transferable to other tissue types.

• Differences in staining procedure and the scanning system make classifiers difficult to use
for different or heterogeneous data sets.

• Finally, the most difficult problem is to aggregate information at the cellular level in order
to make predictions at the slide level.
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My team is currently working on methods for cellular phenotyping. We use both hand-crafted
and Deep Neural network features in order to explore the morphological landscape of different
cancers and classify cells according to type (e.g. epithelial, endothelial, lymphocytes, . . .) or
phenotype (e.g. mitotic cells, dead cells, . . .).

 3
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Anaphase

Late 
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Figure 5.6: Mitotic phases as observed by fluorescence microscopy in cell culture and in H&E stained
tissue sections

In order to tackle the problem of scarce annotated data sets, we propose to use fluorescence
microscopy data in combination with domain adaptation in order to boost the performance of
trained classifiers (see figure 5.6). Being able to train classifiers on fluorescence microscopy data
and to apply them to histopathology data would not only boost phenotypic recognition, but
could also help in identifying similar morphological phenotypes between experiments in cultured
cells and in diseased tissue.

However, this approach can not be extended to the recognition of cell types. For this, we
still need to make use of manual annotations in a more traditional setting. In contrast to
phenotype recognition and whole slide image annotations, there are few attempts to publish
annotated data sets for cell type classification so far. On the long run however, there will be
more publicly available annotated data sets for cellular phenotyping. Another interesting avenue
is experimental ground truth generation as we have discussed in 2.4.

WSI encoding In order to aggregate cellular information, we propose to build a low-resolution
image of multiple channels, where each tile corresponds to one pixel. The value of each pixel
in one channel is the percentage of cells in the tile falling into one of the different cell type
categories. Then, we train a neural network on these low-resolution images to predict the
output variables. The neural network therefore integrates information from the cell level into
the decision taken at the slide level and thereby propagates information from higher resolutions
to lower resolutions. Importantly, the network integrates both phenotypic information and their
spatial distribution. First results show promising albeit not yet conclusive results. Alternative
approaches include measurements of cell type abundance inside important regions and analyzing
the spatial distribution by graph based approaches.

We will also continue to work on our previous approach described in section 5.3. Indeed, there
are many design choices that remain to be explored. For instance, we can try to not only predict
the RCB score, but the full set of measurements reported by the pathologist. In this multi-task
setting, we could probably learn more meaningful representations.
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Integration of molecular and image data The most important challenge we are facing is the
integration of molecular and image data. In the projects described above, we aim at predicting
the mutational status of genes known to play a mechanistic role in cancer progression. In a
second step, we can extend these approaches to predict the expression levels of more genes,
potentially with unknown role for cancer progression. This can be done both at the cellular
and the slide level. First attempts seem to be rather promising (Bera et al. 2019; Coudray
et al. 2018). Another interesting approach is to integrate genomic and image data in order to
make predictions of clinical variables. This data integration can be achieved elegantly by kernel
methods.

49





6 Conclusion and Perspectives

In this chapter, I will briefly summarize my developments over the last years and summarize the
perspectives I have detailed in the chapters 2 to 5.

6.1 Conclusion

This manuscript describes my developments in the field of computational phenotyping between
2006 and 2020 with applications in High Content Screening and histopathology. High Content
Screening allows us to explore the phenotypic space, i.e. to study the cellular phenotypes that
arise from changes in gene expression or from perturbation by drugs. This gives us precious
insights into the regulation of important cellular functions, including disease relevant processes,
as well as the mechanism of action of drugs. HCS can also be used to better understand properties
of living systems without perturbation, such as localization of biomolecules (RNA or proteins).
Outside the context of experiments, new insights can also be gained in analyzing diseased tissue
data, where we can study the effect of natural perturbations caused by disease. Stained tissue
sections provide an excellent link between clinical relevance and fundamental science, and this
link is provided by the cellular phenotypes.

I subdivided my work over the last years into 4 main domains, according to the biological
property we are exploring: morphological phenotyping of cells (chapter 2), analysis of phenotypic
dynamics (chapter 3), analysis of spatial patterns (chapter 4) and analysis of tissue architecture
(chapter 5). All of these projects are biology driven; the objective of my work is to answer
biological questions with computational methods, applied to large scale image data. From a
methodological point of view, most of the problems I am confronted with in this context can
be framed as supervised or unsupervised learning problems, such as the classification of nuclear
morphologies, clustering of phenotypic time-series, characterization and clustering of spatial
trajectories, classification of localization patterns, as well challenging segmentation tasks.

Given the methodological (r)evolution in computer vision, traditional pattern recognition ap-
proaches (segmentation, feature extraction, shallow classification) are more and more replaced
by deep learning approaches. Indeed, deep learning does not simply improve existing methods in
terms of accuracy, but provides a new arsenal of methods that have the potential to revolutionize
the field of Bioimage Informatics.

6.2 Perspectives

My work is situated at the interface between biology and computer vision. For this reason there
are always two aspects for my research projects: the biological question along with the expected
discoveries and the methodological developments that are required to answer these questions.

51



6 Conclusion and Perspectives

From a biological perspective, my research can be divided into three axes : computational pheno-
typing for High Content Screening (HCS), understanding the spatial aspects of gene expression
and digital pathology. These three application domains are good examples for the sources of
information that can be efficiently explored with imaging assays: morphological phenotypes,
spatial configurations and multi-scale organization of living systems.

From a methodological perspective, my current research interests focus on Deep Learning for
biomedical image analysis, and namely for computational phenotyping. Indeed, Deep Learning
has revolutionized Computer Vision, and many problems that were considered several years ago
to be too difficult for automatic image analysis can now be successfully addressed. Yet, the major
hurdle in using deep neural networks for bioimaging are the large annotated data sets that are
typically required and which — in contrast to medical applications, where imaging protocols and
readouts are standardized — seem unrealistic for many biological applications, where imaging
conditions and the analysis task vary dramatically between different projects. For each of the
biological applications, I will therefore detail the strategy to overcome this obstacle.

Learning without manual annotations: High Content Screening by label-free microscopy
Computer Vision has always been the method of choice for the analysis of High Content Screen-
ing data. In most cases, traditional methods for supervised and unsupervised learning achieved
excellent results in the recognition of protein localization patterns (Glory et al. 2007) or mor-
phological phenotypes (Neumann et al. 2010). I argue that Deep Learning has not only the
potential to improve results obtained by traditional learning methods, but also to address new
problems we did not consider to be solvable before.

Usually, HCS employs fluorescent markers tailored to the biological question studied. However,
fluorescent markers also come with a number of drawbacks, in particular for live cell imaging.
For instance, the number of channels is limited (often to 2 or 3), live dyes often fade out and
stable expression requires genetic modification of the cell lines, which might not be wanted. It
turns out that much of the information that is highlighted by fluorescent markers is in principle
present in traditional label-free microscopy. In order to reveal this information, we will first
acquire a dataset with both label-free and fluorescence microscopy. From there, we have two
options:

1. We can predict the fluorescence image from the label-free microscopy image — a strategy
referred to as "in silico labeling" (Christiansen et al. 2018). This strategy can be used to
detect important elements inside the cell (e.g. nucleus, cytoplasm, Golgi), which can then
either serve as reference markers to enrich the phenotypic description of each cell.

2. We can use the fluorescence images to assign a hard label to the entire cell according to
its phenotype (e.g. the cell cycle phase or alive/dead) and then train a classifier to predict
this label from the label-free microscopy. In this case, the fluorescence microscopy serves
as an experimental ground truth generator.

While seemingly similar, the two options imply different analysis workflows and architectures
(image generation versus object detection).

From a methodological point of view, this approach can very elegantly overcome the need for
massive annotations, simply by replacing manual annotation by experimental data. First works
on cross-modality image reconstruction show indeed very promising results (Christiansen et al.
2018; Weigert et al. 2018; Ounkomol et al. 2018), but they have not yet been demonstrated
to perform well in screening mode, where we typically face a large phenotypic heterogeneity.
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Furthermore, the training of Neural Networks for object detection and cell classification from
fluorescence microscopy images as ground truth is not yet mainstream, but clearly is a very
promising strategy to overcome the need for massive image annotation. These approaches also
raise the interesting question of how to statistically treat measurements that are made on pre-
dicted images, rather than on acquired images (Whitehill et al. 2018).

From a biological point of view, I will apply these methods in three different projects: (1) a
large series of live-cell imaging experiments for the study of Chimeric antigen receptor (CAR)
T-cells, an important anti-cancer treatment, (2) a cytokinesis screen by live cell imaging aiming
at identifying key regulators for this last step of cell division and (3) a number of medium-scale
RNA localization screens, where we wish to increase the number of reference structures in the
cell and a way to stratify the cells with respect to their phenotypes (such as cell cycle).

Learning from simulations: RNA localization and spatial transcriptomics A good example
for the power of imaging approaches and their complementarity to omics data is the study
of spatial aspects of gene expression, both at the cellular and the tissular level. Preferential
localization of transcripts inside cells was long considered to be of minor importance. Recent
studies show that many RNAs are non-uniformly distributed inside cells, but we are still lacking
a comprehensive picture on the subcellular localization preferences of RNAs. Single Molecule
Fluorescence in situ hybridization (smFISH) allows to visualize individual transcripts inside
cells. Importantly, the technique is scalable and can be applied in screening mode, probing
hundreds of different RNAs. These screens will ultimately allow us to identify the patterns
according to which RNA localize in cells and to understand which RNA localizes according to
which pattern. Thorough analysis of these exciting new data have the potential to point to new
mechanisms for the spatial control of gene expression (Chouaib et al. 2018). While in principle
the analysis of these data can be addressed by a pattern recognition workflow, where we segment
the cells, detect the individual RNA molecules, represent their spatial distribution by features
and finally apply supervised or unsupervised learning on the resulting feature vector, we are
facing the problem of generating representative training sets (Samacoits et al. 2018). This is
difficult, because the data is complicated to analyze manually, and because we cannot control
for known co-variates, such as the number of RNA molecules and the shape of the cell. In
order to overcome these problems related to image annotation, we propose training classifiers
on simulated data and to apply domain adaptation (Ganin et al. 2016) in order to make them
applicable to real data. Another interesting extension to the current state-of-the art is the use
of in silico labeled cells, as described above. This would help us to identify and interpret new
localization patterns.

At the tissular level, smFISH can be used in multiplex and/or sequential mode in order to
visualize RNA molecules transcribed from different genes in the same cells. There is a number of
techniques to perform this multiplexed smFISH; ultimately they all result in large multi-channel
images of a tissue. By single cell segmentation and analysis of the smFISH in the different
channels, we can derive for each cell a gene expression profile for a potentially large number of
genes. While the approach is usually not comprehensive, the number of RNAs simultaneously
monitored is largely sufficient to make the cell type identifiable. The cell types present in the
tissue type can be identified independently by single cell RNA sequencing (scRNAseq), and
a sparse representation that recapitulates the cell types can be found. smFISH against these
markers then allows to identify these cell types and to map them spatially in the tissue (Zhu
et al. 2018). With my team, I will work on computational methods to analyze the spatial
configurations of the mapped cells in their native context and infer physical interactions. In
particular, I am interested in the change of these configurations under pathological conditions.
In our recently funded project LUSTRA, we follow this strategy by analyzing lung tissue of
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mice with induced pulmonary fibrosis. The overall strategy will be also applicable to other
tissue types and diseases.

Phenotyping diseased tissue: applications to digital pathology New imaging technologies,
such as spatial transcriptomics, will provide us with unprecedented views on tissue architecture,
but — as all new technologies — they do not allow us to relate these insights to longer-term
observations, such as patient outcome or relapse risk. For this, we need to turn to large cohorts
imaged with traditional techniques, such as H&E staining.

Indeed, analysis of H&E stained tissue is both timely and important in several ways: first, in
the context of computer aided diagnosis, machine learning can help pathologists in their daily
routine, e.g. to quantify certain aspects, to pre-screen slides or to point to suspicious regions
in the image. Second, histopathology data provides a link between biologically interpretable
cellular phenotypes and clinical variables. We therefore aim at analyzing tissue slides both at
the level of single cell phenotypes and higher level tissue architecture. Concretely, we wish to
predict clinical variables as well as genetic and expression data from stained tissue slides. This
will unravel the link between molecular and cellular information and thereby help to bridge the
gap between the molecular scale and the patient scale.

Technically, the main difficulty is the size of the images, and the imbalance between the scale
of the image and the scale of the potentially relevant information: small tissue regions and
even single cells can contribute to the final classification of the entire slide, while many global
features are meaningless (such as the shape and size of the tissue sample). For this reason
as well as memory limitations on GPU cards, a slide is usually subdivided into tiles that are
then processed individually. The tile results are then aggregated in a second step. However,
most clinical annotations are made at the slide or patient level. The challenge is therefore to
learn useful representations at the tile level from a global annotation concerning a set of tiles.
The relevant technique is called "Multiple instance learning" (MIL) and represents the most
promising strategy for digital pathology today. However, there are many design choices and
open questions within this framework that are far from being definitely solved, e.g. how to
represent tiles, how to aggregate tile scores and how to normalize the color between different
imaging centers. Moreover, most publications still focus on the prediction of tumor presence
and tumor segmentation (Campanella et al. 2019) or subtype prediction. With my team, I will
work on the prediction of response to different treatments, such as neoadjuvant chemotherapy
or immunotherapy, as well as the prediction of molecularly defined data, such as homologous
recombination deficiency (HRD) or genetic mutations, which would allow these algorithms to
be part of a precision medicine approach and unravel the link between genetic information and
tissular phenotypes.

Another interesting approach is to use cellular phenotypes for whole slide prediction. Based on
our recent work on nuclei segmentation in tissues (Naylor et al. 2019), we can morphologically
profile all individual cells in a tissue and thereby build an atlas of morphological phenotypes at
the single cell level for cancer tissues. In a second step, my team will make use of innovative deep
learning approaches to reveal the impact of cellular phenotypes with respect to clinical variables,
such as subtype, treatment response or risk of relapse. Preliminary analyses (Naylor 2019) show
that these analyses are on par with the aforementioned MIL approaches, but provide a much
higher level of interpretability. Finally, the morphological cancer atlas can also serve as reference
to query for the presence of particular cellular phenotypes in cancer tissues and therefore provides
a natural link between basic research in cell biology, where cellular phenotypes are often well
understood and their implication for cancer.
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Altogether, my research project aims at developing new methods to analyze cellular and tissular
phenotypes. Bioinformatics traditionally describes living systems by the analysis of genetic
and transcriptional information. As stated by major scientists in the field, such as Trey Ideker
(personal communication) or Sydney Brenner (Brenner 2010), one of the major obstacles of large
scale approaches in genome and systems biology is the enormous gap between information at
the single nucleotide level and the level of an entire biological system. Images play a pivotal role
in bridging this gap, as they have the potential to link multiple scales and to explore dimensions
that are complementary to molecular information, such as space, time and morphology. As
computational scientists, we are facing today the challenging opportunity to design methods
that will allow us to link these types of information to the molecular level, and thereby to bring
an important piece to our understanding of the mechanisms of life.
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A Microscopy

Here, I very briefly review the most current microscopy techniques used in life sciences today.
This presentation cannot be exhaustive of course, but it should provide the reader with an idea
of the variety and diversity of existing methods to acquire the data the methods described in
this thesis aim at dealing with. The presentation is taken from (Walter et al. 2010b). Figure
A.1 illustrates examples for the different techniques.

Figure A.1: Microscopy techniques. (a) Brightfield microscopy: mouse embryo, in situ expression
pattern of Irx1, Eurexpress; scale bar: 2mm. (b) Fluorescence microscopy: HT29 cells
stained for DNA (blue), actin (red) and phospho-histone H3 (green)75; scale bar: 20µm.
(c) Confocal microscopy: actin polymerization along the breaking nuclear envelope dur-
ing meiotic maturation of a starfish oocyte. Actin filaments, red (rhodamine-phalloidin
stain); chromosomes, cyan (Hoechst 33342 stain). Projection of confocal sections, (image
courtesy P. Lénárt); scale bar: 20µm. (d) Bioluminescence imaging: in vivo biolumi-
nescence imaging of mice after implantation of Gli36-Gluc cells76, (figure courtesy B.A.
Tannous). (e) Optical projection tomography: mouse embryo, EMAP33,66; scale bar:
1mm. (f) Single/selective plane illumination microscopy: late-stage Drosophila embryo
probed with anti-GFP antibody and DRAQ5 nuclear marker: frontal, caudal, lateral and
ventral views of the same embryo77; scale bar: 50µm. (g) Transmission electron mi-
croscopy: human fibroblast, glancing section close to surface (image courtesy R. Parton
and M. Floetenmeyer); scale bar: 100nm. (h) Scanning electron microscopy: zebrafish
peridermal skin cells (courtesy R. Parton and M. Floetenmeyer); scale bar: 10µm

Brightfield microscopy with colorimetric stains is the primary technique for capturing tissue
and whole organism morphology (Fig. A.1.a). For high-throughput capture of in situ expression
patterns, automated bright-field microscopy has been used for whole-genome projects such as
the Allen Brain Atlas.

Widefield fluorescence microscopy is the most widely used imaging technique in biology
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(Fig. A.1.b). Fluorescent markers make it possible to see particular structures with high con-
trast, either in fixed samples using immunostaining or in living cells with expressed GFP-tagged
proteins83. The resolution is limited by diffraction to about 200 nm.

Confocal scanning microscopy generates optical sections through a specimen by pointwise
scanning of different focal planes and thereby reduces both scattered light from the focal plane
and out-of-focus light84. The image quality of two- dimensional images is therefore improved,
and 3D images can be taken (axial resolution is typically 2 to 3 times lower than lateral resolution;
see Fig. A.1.c). The method is also applicable to live cell imaging. There are variants of this
method increasing axial resolution (for example, 4Pi microscopy)85.

Computational optical sectioning microscopy (COSM) achieves optical sectioning by
taking a series of two-dimensional images with a widefield microscope focusing in different planes
of the specimen84. Out-of-focus light is then removed computationally.

Structured illumination microscopy acquires several widefield images at different focal
planes using spatial illumination patterns84. As the out-of-focus light is less dependent on
the spatial illumination pattern than the in-focus light, combinations of different images at the
same focal plane under laterally shifted illumination patterns allow computational attenuation
of out-of-focus light.

Two-photon microscopy is similar to confocal scanning microscopy but uses nonlinear excita-
tion involving two-photon (or multiphoton) absorption86. This allows the use of longer excitation
wavelengths, permitting deeper penetration into the tissue and — owing to the nonlinearity —
confines emission to the perifocal region, leading to substantial reduction of scattering.

Super-resolution fluorescence microscopy groups several recently developed methods in
light microscopy capable of significantly increasing resolution and visualizing details at the
nanometer scale. In stimulated emission depletion (STED) microscopy (Hell 2003), the focal
spot is ńarrowedb́y overlapping it with a doughnut-shaped spot that prevents the surrounding
fluorophores from fluorescing and thereby contributing to the collected light. In PALM (photo-
activated localization microscopy) (Betzig et al. 2006) and STORM (stochastic optical recon-
struction microscopy) (Rust et al. 2006), subsets of the fluorophores present are activated and
localized. Iterating this process and combining the acquired raw images yields a high-resolution
image.

Bioluminescence imaging (Fig. A.1.d) is based on the detection of light produced by
luciferase-mediated oxidation of a substrate in living organisms. Transfected cells expressing lu-
ciferase can be injected into animals, or transgenic animals can be created that express luciferase
as a reporter gene. When such animals are injected with a luciferase substrate, light is produced
by the luciferase-expressing cells in the presence of oxygen. The bioluminescence image is often
superimposed on a white-light image to show localization of the light-producing cells.

Optical projection tomography captures object projections in different directions as line
integrals of the transmitted light89 (Fig. A.1.e). From these projections (corresponding to the
śhadoẃ’ of the object), a volumetric model can be calculated by means of back- projection
algorithms.

Light sheet-based fluorescence microscopy uses a thin sheet of laser light for optical section-
ing and a perpendicularly oriented objective with a CCD camera for detection of the fluorescent
signal. Single- or selective plane illumination microscopy (SPIM)90 (Fig. A.1.f) adds sample
rotation that enables acquisition of large samples from multiple angles. Low phototoxicity, high

58



acquisition speed and ability to cover large samples make it particularly suitable for in toto
time-lapse imaging of developing biological specimens, such as model organism embryos, with
cellular resolution.

Transmission electron microscopy (TEM) (Fig. A.1.g) uses accelerated electrons instead
of visible light for imaging. As a result, the achievable resolution (typically 2 nm) is much higher
than in light microscopy. The method is not applicable to live cell imaging, and the specimen
preparation is technically very complex. In electron tomography, the specimen is physically
sectioned and 3D images are obtained by imaging each section at progressive angles of rotation,
followed by computational reassembly to yield a tomogram. Resolution ranges from 20-30 nm
to 5 nm or less.

Scanning electron microscopy (SEM) (Fig. A.1.h) produces an image of the 3D structure
of the surface of the specimen by collecting the scattered electrons (rather than the transmitted
electrons as in TEM). The resolution is typically lower than for TEM.

59





B Trajectory features

A single cell trajectory corresponds to a sequence of cell center positions :

ut=1...T with ut ∈ R2 (B.1)

T denotes the length of the trajectory, i.e. the number of consecutive frames the objects has
been tracked on.

Basic trajectory features Some basic trajectory features can be defined:

• Effective path length L = ‖uT − u1‖2

• Effective speed L
T

• Largest Move maxt ‖ut − ut+1‖2

• Straightness index
√
TL/P , where P is the total path length

∑T−1
t ‖ut+1 − ut‖2.

Trajectory features based on moments of displacement These features are inspired by
biophysical approaches describing diffusive properties of particle movement, as described in
(Sbalzarini et al. 2005). While diffusive modeling of an active process such as cell migration
or nuclear motility might be questionable, these features can still be calculated and describe
meaningful properties of the trajectories, irrespective of the underlying physical process.

The moments of displacement for a single trajectory (u)t=1...T are defined as:

µν(∆t) =
1

T −∆t

T−∆t∑

t=1

‖ut+∆t − ut‖ (B.2)

The original definition from statistical physics involves averaging over N particle trajectories,
rather than time, i.e. µν(t) =< (un(t)− un(0) >n=1...N . Equation B.2 therefore requires ergod-
icity and long trajectories which are questionable in our case. Nevertheless, we can represent
important features of our trajectories based on equation B.2.

Following the presentation in (Sbalzarini et al. 2005), we can assume that µν ∝ tγν . Furthermore,
for all self-similar processes, we have γν ∝ ν. The proportional factor between γν is called
movement type γ and quantifies how directed the particle motion is. If γ is equal to 1, the
movement is perfectly directed, whereas if γ is equal to 0.5, it is perfectly diffusive. Between 0.5
and 1, the movement is super-diffusive, whereas below 0.5 it is called sub-diffusive.

A special case of equation B.2 occurs for γ = 0.5 and ν = 2, which corresponds to mean-squared
displacement (MSD) for a perfectly diffusive process. In this case, γ2 = 1, and we see that the
MSD is proportional to ∆t:

µ2(∆t) = D∆t (B.3)
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D is called the diffusion coefficient and can also be used as feature. In order to include some
measure of how adequately the process can be described as a diffusive process, we propose to
include the correlation between µ2(∆t) and ∆t as a feature (diffusion adequation).

In summary, we have 4 features based on moments of displacement: Motion type, Diffusion
coefficient, Diffusion adequation, Mean squared displacement for ∆t = 1.

Figure B.1: Annotated cell trajectory

New features We also designed some novel features in order to describe the spatial trajecto-
ries:

• Area of the convex hull of the points of the trajectory. This feature mimics a traditional
feature used in the cell migration field, where the temporal trajectory is measured without
live-cell-imaging using phagokinetic tracks (traces that are left by migrating cells) (Naffar-
Abu-Amara et al. 2008).

• Mean curvature: for each position t, an orthogonal regression is performed on {ut, . . . , ut+∆t}
using orthogonal distance regression (∆t = 10). The mean curvature of the trajectory is
the average of all regression sums of squares.

• Mean turning angle arctan(
Σ sin(‖αt+1 − αt)‖
Σ cos(‖αt+1 − αt)‖

), where αt are the angles as shown in figure

B.1.

• Entropy features: we place a series of balls of fixed radius ri, such that they cover the
maximum number of consecutive data points. We repeat this until all points have been
assigned to exactly one ball (see figure B.1 for illustration, details can be found in (Schoe-
nauer Sebag et al. 2015a; Schoenauer Sebag et al. 2015b)). We then calculate the entropy
of points inside the ball:

Er = − 1

T

∑

Br

card(Br)

T
log(

card(Br)

T
) (B.4)

with Br the sets of points falling in the balls with radius r. The final features are Er and
the number of balls.
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“Bioimage Informatics for High Content Screening” (lecture)

2015/01/09 Quantitative Bioimaging (QBI), Paris, France: “Quantitative phenotypic profiling for live
cell imaging data in high content screening” (invited talk)

2014/11/17 2nd High Throughput Cell Biology: from screening to applications, Paris, France: “Quan-
titative phenotypic profiling for live cell imaging data in high content screening” (invited
talk)

2014/10/24 EMBO Course on High Throughput Microscopy for Systems Biology, Heidelberg, Germany:
“Bioimage Informatics for High Content Screening” (lecture)

2014/08/24 International Conference on Pattern Recognition (ICPR), Stockholm, Sweden: “Compu-
tational analysis of cellular phenotypes: from high-content-screening to histopathology”
(contributed talk)

2014/07/01 Workshop on Bioimage Informatics & Modeling at the cellular scale, Toulouse, France:
“Quantitative phenotypic profiling for live cell imaging data in High Content Screening”
(invited talk)

2014/06/20 European Symposium on Biopathology, Paris, France: “Dissecting cancer relevant cellular
processes by phenotypic profiling from live cell imaging data” (invited talk)

2013/11/06 CellCognition User Meeting, EMBL Heidelberg, Germany: “Tracking for CellCognition”
(invited talk)

2013/07/05 FBI-AT Course on Bioimage Informatics: “From images to gene clusters: computational
approaches for phenotypic profiling” (lecture)

2013/07/04 Colloquium of the French Society for Microscopy, Nantes, France: “Quantitative Phenotypic
Profiling for live cell imaging data in High Content Screening” (invited talk)

2013/02/02 Finish Institute of Molecular Medicine, Helsinki, Finland: “Quantitative phenotypic profiling
for live cell imaging data in High Content Screening” (invited seminar)

2012/10/05 Bioinformatics and Cancer, Paris, France: “Dissecting cancer relevant cellular processes by
phenotypic profiling from live cell imaging data” (invited talk)

2012/10/20 EMBO Course on High Throughput Microscopy for Systems Biology, Heidelberg, Germany:
“From images to gene clusters: computational approaches for phenotypic profiling” (lecture)

2012/09/17 Bioimage Informatics Conference, MPI Dresden, Germany: “Quantitative phenotypic
profiling for live cell imaging data in the context of High Content Screening” (invited talk)
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[1] Joseph C Boyd, Alice Pinheiro, Elaine Del Nery, Fabien Reyal, et al. “Domain-Invariant Features for

Mechanism of Action Prediction in a Multi-Cell-Line Drug Screen”. In: Bioinformatics 36.5 (Oct. 14,
2019), pp. 1607–1613. doi: 10.1093/bioinformatics/btz774.

[2] Rémy Dubois, Arthur Imbert, Aubin Samacoits, Marion Peter, et al. “A Deep Learning Approach
to Identify mRNA Localization Patterns”. In: IEEE 16th International Symposium on Biomedical
Imaging (ISBI 2019). 2019, pp. 1386–1390. doi: 10.1109/ISBI.2019.8759235.

[3] Mélanie Durand, Thomas Walter, Tiphène Pirnay, Thomas Naessens, et al. “Human Lymphoid Organ
cDC2 and Macrophages Play Complementary Roles in T Follicular Helper Responses”. In: The Journal
of Experimental Medicine 216.7 (July 1, 2019), 1561 LP –1581. doi: 10.1084/jem.20181994.

[4] Inna Kuperstein and Emmanuel Barillot, eds. Computational Systems Biology Approaches in Cancer
Research. Chapman and Hall/CRC, 2019.

[5] P Naylor, J Boyd, M Laé, F Reyal, et al. “Predicting Residual Cancer Burden In A Triple Negative
Breast Cancer Cohort”. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI
2019). 2019, pp. 933–937. doi: 10.1109/ISBI.2019.8759205.

[6] Peter Naylor, Marick La, Fabien Reyal, and Thomas Walter. “Segmentation of Nuclei in Histopathol-
ogy Images by Deep Regression of the Distance Map”. In: IEEE Transactions on Medical Imaging
38.2 (2019), pp. 448–459. doi: 10.1109/TMI.2018.2865709.

[7] Joseph Boyd, Alice Pinhiero, Elaine D. Nery, Fabien Reyal, et al. “Analysing Double-Strand Breaks
in Cultured Cells for Drug Screening Applications by Causal Inference”. In: International Symposium
on Biomedical Imaging (ISBI): From Nano to Macro. Vol. 2018-April. 2018, pp. 445–448. doi:
10.1109/ISBI.2018.8363612.

[8] Racha Chouaib, Adham Safieddine, Xavier Pichon, Oh Sung Kwon, et al. A Localization Screen
Reveals Translation Factories and Widespread Co-Translational Protein Targeting. SSRN Scholarly
Paper ID 3300043. Rochester, NY: Social Science Research Network, Dec. 12, 2018.

[9] Aubin Samacoits, Racha Chouaib, Adham Safieddine, Abdel-Meneem Traboulsi, et al. “A Computa-
tional Framework to Study Sub-Cellular RNA Localization”. In: Nature Communications 9.1 (2018),
p. 4584. doi: 10.1038/s41467-018-06868-w. pmid: 30389932.

[10] Elsa Bernard, Yunlong Jiao, Erwan Scornet, Véronique Stoven, et al. “Kernel Multitask Regression
for Toxicogenetics”. In: Molecular Informatics 36 (Jan. 1, 2017).

[11] Peter Naylor, Marick Lae, Fabien Reyal, and Thomas Walter. “Nuclei Segmentation in Histopathology
Images Using Deep Neural Networks”. In: 2017 IEEE 14th International Symposium on Biomedical
Imaging (ISBI 2017) (2017), IEEE, EMB, IEEE Signal Proc Soc. doi: 10.1109/ISBI.2017.
7950669.

[12] Mayumi Isokane, Thomas Walter, Robert Mahen, Bianca Nijmeijer, et al. “ARHGEF17 Is an Essential
Spindle Assembly Checkpoint Factor That Targets Mps1 to Kinetochores”. In: The Journal of Cell
Biology 212.6 (Mar. 14, 2016), pp. 647–659. doi: 10.1083/jcb.201408089.

[13] Vaïa Machairas, Thérèse Baldeweck, Thomas Walter, and Etienne Décencière. “New General Features
Based on Superpixels for Image Segmentation Learning”. In: International Symposium on Biomedical
Imaging (ISBI): From Nano to Macro. 2016, (accepted for publication).

[14] Nikolay Tsanov, Aubin Samacoits, Racha Chouaib, Abdel Meneem Traboulsi, et al. “SmiFISH and
FISH-Quant - A Flexible Single RNA Detection Approach with Super-Resolution Capability”. In:
Nucleic Acids Research 44.22 (2016). doi: 10.1093/nar/gkw784. pmid: 27599845.
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[15] Federica Eduati, Lara M Mangravite, Tao Wang, Hao Tang, et al. “Prediction of Human Population
Responses to Toxic Compounds by a Collaborative Competition”. In: Nature Biotechnology 33
(Aug. 10, 2015), p. 933.

[16] Vaïa Machairas, Etienne Decencière, and Thomas Walter. “Spatial Repulsion Between Markers
Improves Watershed Performance”. In: International Symposium of Mathematical Morphology. 2015.

[17] Vaïa Machairas, Etienne Decencière, and Thomas Walter. “Spatial Repulsion Between Markers
Improves Watershed Performance BT - Mathematical Morphology and Its Applications to Signal
and Image Processing”. In: ed. by Jón Atli Benediktsson, Jocelyn Chanussot, Laurent Najman, and
Hugues Talbot. Cham: Springer International Publishing, 2015, pp. 194–202.

[18] Vaïa Machairas, Matthieu Faessel, David Cárdenas-peña, Théodore Chabardes, et al. “Waterpixels”.
In: IEEE Transactions on Image Processing 24.11 (2015), pp. 3707–3716.

[19] A. Schoenauer Sebag, S. Plancade, C. Raulet-Tomkiewicz, R. Barouki, et al. “A Generic Method-
ological Framework for Studying Single Cell Motility in High-Throughput Time-Lapse Data”. In:
Bioinformatics 31.12 (2015), pp. i320–i328. doi: 10.1093/bioinformatics/btv225.

[20] Alice Schoenauer Sebag, Sandra Plancade, Céline Raulet-Tomkiewicz, Robert Barouki, et al. “Infering
an Ontology of Single Cell Motions from High-Throughput Microscopy Data”. In: Proceedings of
the 12th IEEE International Symposium on Biomedical Imaging (ISBI): From Nano to Macro. New
York, New York, USA, 2015, pp. 160–163.

[21] James C Costello, Laura M Heiser, Elisabeth Georgii, Mehmet Gönen, et al. “A Community Effort to
Assess and Improve Drug Sensitivity Prediction Algorithms.” In: Nature biotechnology 32.12 (2014),
pp. 1–103. doi: 10.1038/nbt.2877. pmid: 24880487.

[22] Veronika Graml, Xenia Studera, Jonathan L D Lawson, Anatole Chessel, et al. “A Genomic Multi-
process Survey of Machineries That Control and Link Cell Shape, Microtubule Organization, and
Cell-Cycle Progression”. In: Developmental Cell 31.2 (2014), pp. 227–239. doi: 10.1016/j.devcel.
2014.09.005.

[23] Jean-Karim Hériché, Jon G Lees, Ian Morilla, Thomas Walter, et al. “Integration of Biological
Data by Kernels on Graph Nodes Allows Prediction of New Genes Involved in Mitotic Chromosome
Condensation”. In: Molecular Biology of the cell 25 (2014), pp. 2522–2536. doi: 10.1091/mbc.E13-
04-0221.

[24] Vaïa Machairas, Etienne Decencière, and Thomas Walter. “Waterpixels: Superpixels Based on
the Watershed Transformation”. In: International Conference on Image Processing (ICIP). 2014,
pp. 4343–4347.

[25] Justus Tegha-Dunghu, Elena Bausch, Beate Neumann, Annelie Wuensche, et al. “MAP1S Controls
Microtubule Stability throughout the Cell Cycle in Human Cells”. In: Journal of Cell Science 127.23
(Dec. 1, 2014), 5007 LP –5013. doi: 10.1242/jcs.136457.

[26] Mitko Veta, Paul J Van Diest, Stefan M Willems, Haibo Wang, et al. “Assessment of Algorithms for
Mitosis Detection in Breast Cancer Histopathology Images”. In: Medical Image Analysis (2014),
pp. 1–23.

[27] Gregoire Pau, Thomas Walter, Beate Neumann, Jean-karim Hériché, et al. “Dynamical Modelling
of Phenotypes in a Genome-Wide RNAi Live-Cell Imaging Assay”. In: BMC bioinformatics 14.308
(2013), pp. 1–10. doi: 10.1186/1471-2105-14-308.

[28] Moritz Mall, Thomas Walter, Mátyás Gorjánácz, Iain F Davidson, et al. “Mitotic Lamin Disassembly
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[29] Christian Conrad, Annelie Wünsche, Tze Heng Tan, Jutta Bulkescher, et al. “Micropilot: Automation
of Fluorescence Microscopy-Based Imaging for Systems Biology.” In: Nature methods 8.3 (Mar.
2011), pp. 246–9. doi: 10.1038/nmeth.1558. pmid: 21258339.

[30] Seán I O Donoghue, Anne-claude Gavin, Nils Gehlenborg, David S Goodsell, et al. “Visualizing
Biological Data — Now and in the Future”. In: Nature Methods 7 (3s 2010), S2–S4. doi: 10.1038/
nmeth0310-S2.

[31] Bénédicte Dupas, Thomas Walter, Ali Erginay, John-Richard Ordonez, et al. “Evaluation of Auto-
mated Fundus Photograph Analysis Algorithms for Detecting Microaneurysms, Haemorrhages and
Exudates, and of a Computer-Assisted Diagnostic System for Grading Diabetic Retinopathy.” In:
Diabetes & metabolism 36.3 (June 2010). Place: France, pp. 213–220. doi: 10.1016/j.diabet.
2010.01.002. pmid: 20219404.

[32] Michael Held, Michael Schmitz, Bernd Fischer, Thomas Walter, et al. “CellCognition: Time-Resolved
Phenotype Annotation in High-Throughput Live Cell Imaging.” In: Nature methods 7.9 (Sept. 2010),
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[33] Stefan Terjung, Thomas Walter, Arne Seitz, Beate Neumann, et al. “High-Throughput Microscopy
Using Live Mammalian Cells.” In: Live Cell Imaging: A Laboratory Manual. Ed. by R.D. Goldman,
Jason R. Swedlow, and David L. Spector. Cold Spring Harbor Laboratory Press, Cold Spring Harbor,
2010.

[34] Thomas Walter, Michael Held, Beate Neumann, Jean-Karim Hériché, et al. “Automatic Identification
and Clustering of Chromosome Phenotypes in a Genome Wide RNAi Screen by Time-Lapse Imaging.”
In: Journal of structural biology 170.1 (Apr. 2010), pp. 1–9. doi: 10.1016/j.jsb.2009.10.004.
pmid: 19854275.

[35] Thomas Walter, Beate Neumann, Jean-Karim Hériché, Jutta Bulkescher, et al. “Phenotypic Profiling
of the Human Genome by Time-Lapse Microscopy Reveals Cell Division Genes.” In: Nature 464.7289
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Screen by Time Lapse Microscopy in Order to Identify Mitotic Genes - Computational Aspects and
Challenges”. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to
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[42] Thomas Walter, Pascale Massin, Ali Erginay, Richard Ordonez, et al. “Automatic Detection of
Microaneurysms in Color Fundus Images.” In: Medical Image Analysis 11.6 (2007), pp. 555–66.

[43] Thomas Walter and Jean-Claude Klein. “Automatic Analysis of Color Fundus Photographs and Its
Application to the Diagnosis of Diabetic Retinopathy BT - Handbook of Biomedical Image Analysis:
Volume II: Segmentation Models Part B”. In: ed. by Jasjit S Suri, David L Wilson, and Swamy
Laxminarayan. Boston, MA: Springer US, 2005, pp. 315–368. doi: 10.1007/0-306-48606-7_7.

[44] Thomas Walter, Richard Ordonez, and Jean-Claude Klein. “A Morphological Approach for Skeleton
Filtering with Reconstruction of the Relevant Branches”. In: 10th Computer Vision Winter Workshop.
Zell, Austria, Feb. 2005.

[45] Thomas Walter. “Application de la Morphologie Mathématique au diagnostic de la Rétinopathie
Diabétique à partir d’images couleur”. PhD thesis. Fontainebleau, France: Mines ParisTech, Sept.
2003. 228 pp.

[46] Thomas Walter and Jean-Claude Klein. “A Computational Approach to Diagnosis of Diabetic
Retinopathy”. In: 6th Conference on Systemics, Cybernetics and Informatics (SCI). 2002, pp. 521–
526.

[47] Thomas Walter and Jean-Claude Klein. “Automatic Detection of Microaneurysms in Color Fundus
Images of the Human Retina by Means of the Bounding Box Closing”. In: International Symposium on
Medical Data Analysis (ISMDA). Ed. by Alfredo Colosimo, Paolo Sirabella, and Alessandro Giuliani.
Vol. 2526. Lecture Notes in Computer Science (LNCS). Rome, Italy: Springer Berlin Heidelberg,
2002, pp. 210–220.

[48] Thomas Walter, Jean-claude Klein, Pascale Massin, and Ali Erginay. “A Contribution of Image
Processing to the Diagnosis of Diabetic Retinopathy — Detection of Exudates in Color Fundus Images
of the Human Retina”. In: IEEE Transactions on Medical Imaging 21.10 (2002), pp. 1236–1243.
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[49] Thomas Walter and Jean-Claude Klein. “Segmentation of Color Fundus Images of the Human
Retina : Detection of the Optic Disc and the Vascular Tree Using Morphological Techniques”. In:
International Symposium on Medical Data Analysis (ISMDA). Ed. by Jose Crespo, Maojo, Victor, and
Fernando Martin. Vol. 2199. Lecture Notes in Computer Science (LNCS). Madrid, Spain: Springer
Berlin Heidelberg, 2001, pp. 282–287. doi: 10.1007/3-540-45497-7_43.

[50] Thomas Walter, Jean-Claude Klein, Pascale Massin, and Frédéric Zana. “Automatic Segmentation
and Registration of Retinal Fluorescein Angiographies - Application to Diabetic Retinopathy”. In:
First International Workshop on Computer Assisted Fundus Image Analysis (CAFIA). Copenhagen,
Denmark, May 2000.
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D Selected articles

I have selected the following articles from my publication list in order to represent the different
aspects of my work:

• Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division
genes (2010): https://cloud.mines-paristech.fr/index.php/s/kBBY0MCc8v0kLu4

• A generic methodological framework for studying single cell motility in high-throughput
time-lapse data (2015): https://cloud.mines-paristech.fr/index.php/s/tqvr3MHEF43PjNT

• A computational framework to study sub-cellular RNA localization (2018): https://
cloud.mines-paristech.fr/index.php/s/D9QsQ1OIRnnnf61

• Segmentation of Nuclei in Histopathology Images by deep regression of the distance map
(2018): https://cloud.mines-paristech.fr/index.php/s/6Wkf6CNIhbHcqEi
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