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pensée à mes amis de prépa, Léa, Rémy, Maxime, Paul, et bien d’autres,

3



4
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c’est aussi le fruit de votre soutien.
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Chapter 1

Introduction

1.1 Introduction en français

1.1.1 Analyse des données, statistiques et géométrie

L’analyse des données. L’analyse des données est devenue, au cours
de la dernière décennie, un des domaines de recherche en mathématiques
appliquées et en informatique les plus actifs et prolifiques. L’évolution des
moyens d’acquisition et des capacités de stockage en tout genre a permis
de constistuer des collections de données colossales en tout genre : images
[KH+09], formes 3D [CFG+15], sons [BMEWL11], données médicales et
biologiques [CHF12], réseaux sociaux [YV15, KKM+16, PWZ+17]... Le
but de l’analyse des données est de comprendre et de valoriser ces nouvelles
informations disponibles.

Pour cela, le paradigme le plus courant de nos jours est de recourir à
“l’apprentissage automatique”, dont l’idée générale est la suivante : pro-
poser un algorithme capable d’extraire une information utile d’un jeu de
données, permettant par exemple de réaliser de regrouper les données par
similarité (clustering), d’attribuer des labels à de nouvelles observations
(classification), etc.

Statistiques et géométrie. Évidemment, il n’existe pas d’algorithme
tout-puissant, qui serait capable de prédire sans erreur dans n’importe quel
contexte. Si les observations et les labels ne sont pas ou peu liés, ou si le
nombre d’observations est trop faible, même le meilleur algorithme possible
ne saura pas se montrer utile lorsqu’il s’agira d’extrapoler son apprentissage
à de nouvelles observations.

9



10 CHAPTER 1. INTRODUCTION

Figure 1.1: Nuages de 400 points tirés selon un mélange de quatre gaussiennes,
représentant quatre classes. Sur la figure de gauche, les gaussiennes ont une faible
variance, et il est facile de séparer les différentes classes. Sur la figure de droite,
la séparation des classes est plus difficile.

La difficulté à résoudre un problème d’apprentissage, par exemple sa
dépendance au nombre d’observations, peut se mesurer au moyen d’outils
statistiques. Dans un problème de classification ou de clustering par exem-
ple, plus les observations d’une même classe (c-à-d. partageant un même
label) sont concentrées autour de leur moyenne (faible variance) et plus les
classes sont distinctes, plus le problème sera résolu efficacement (voir Fig-
ure 1.1) De manière générale, il est important de comprendre comment nos
observations sont distribuées. L’approche généralement adoptée en statis-
tique est la suivante : nos observations sont indépendantes et proviennent
d’une distribution de probabilité sous-jacente (inconnue). Connâıtre par-
faitement cette distribution permettrait de comprendre le comportement
des algorithmes d’apprentissage et d’optimiser leurs performances sur ce
jeu de données (sans pour autant arriver nécessairement à un score par-
fait). En pratique, l’idée est donc d’estimer certaines propriétés de cette
distribution sous-jacente à partir de notre échantillon d’observations.

L’exemple le plus élémentaire, et qui va nous amener à des considérations
géométriques, est l’estimation de l’espérance de la loi sous-jacente, c’est-à-
dire la valeur moyenne d’une observation tirée aléatoirement. Ce problème
est en général très simple quand on observe des nombres réels : si on observe
(x1 . . . xn) n nombres tirés indépendamment selon une loi µ, un estimateur
de l’espérance de µ est simplement la moyenne arithmétique des (xi)i, c’est-
à-dire 1

n

∑n
i=1 xi. Cependant, dans les problèmes d’apprentissage modernes,
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Figure 1.2: À gauche, un tore dont on identifie les propriétés topologiques. En-
suite, un cercle, deux transformations qui en préservent la topologie, et deux
transformations qui ne les préservent pas (déchirement et recollement respective-
ment).

la géométrie sous-jacente à nos observations est généralement complexe et
inconnue : graphes, images, molécules... autant de cas où la notion de
moyenne, et a fortiori des descripteurs statistiques plus sophistiqués, est
difficile à proprement définir et estimer.

1.1.2 Descripteurs topologiques

Dans cette thèse, nous nous intéresserons à un type d’observations en
particulier, les diagrammes de persistance, qui proviennent de l’analyse
topologique des données. L’étude de la géométrie sous-jacente à ces ob-
jets, tout comme la conception et le calcul de descripteurs statistiques, sont
des sujets de recherche actifs.

Topologie. Brièvement, la notion de topologie renvoie à celle de “forme”.
Étant donné un objet, par exemple une forme 3D, combien celui-ci possède-
t-il de composantes connexes ? Peut-on identifier des boucles caractéristiques
à sa surface ? Possède-t-il des cavités ? Le tore représenté en Figure 1.2
possède par exemple une composante connexe, deux boucles (en rouge), et
une cavité (en bleu). Le cercle, lui, possède une composante connexe et une
boucle.

Dans un cadre plus général, la topologie peut se comprendre comme les
propriétés d’un objet qui sont préservées par des transformations continues,
sans déchirement ni recollement, voir Figure 1.2. Par exemple, lorsqu’on
applique une telle transformation à un cercle, si la géométrie de l’objet
peut varier, sa topologie reste inchangée. D’un point de vue formel, les
propriétés topologiques d’un objet sont décrites par ses groupes d’homologie.
Les groupes d’homologie d’un espace topologique (objet) sont décrit par une
suite de groupe abélien (Hk)k (k = 0 correspond aux propriétés topologiques
de dimension 0, c’est-à-dire les composantes connexes; k = 1 correspond
aux boucles, k = 2 aux cavités, etc.) dont les générateurs indentifient les
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Figure 1.3: Illustration du phénomène d’évolution de la topologie à différentes
échelles.

propriétés topologiques “indépendantes” de l’espace. Par exemple, pour
un tore, H1 a deux générateurs. Ceux-ci correspondent intuitivement aux
deux boucles rouges sur la Figure 1.2: toutes les autres boucles que l’on
peut dessiner sur le tore s’écrivent - en un sens - comme une combinaison
linéaire de ces deux boucles. Le lecteur intéressé peut consulter l’Annexe A
ou [Mun84] pour une présentation plus détaillée de la théorie de l’homologie.

Descripteurs multi-échelles de la topologie. En pratique néanmoins,
l’usage de la topologie en apprentissage automatique n’est pas immédiat.
La plupart des méthodes d’acquisition des données vont produire des objets
sous forme de nuage de points, dont la topologie intrinsèque est excessive-
ment simple. Les groupes d’homologie d’un nuage de points (Hk)k sont triv-
iaux dès que k ≥ 1, tandis que H0 est le groupe abélien libre engendré par
N éléments, où N désigne la cardinalité du nuage de points. L’homologie
seule n’est pas capable de refléter la structure sous-jacente de tels objets.

L’idée fondamentale développée dans les années 2000 (quoique les fonde-
ments peuvent être tracés tout au long du XXe siècle) est de regarder
la topologie d’un espace topologique à différentes échelles, et de regarder
quelles sont les propriétés topologiques qui persistent à travers celles-ci.
Considérons par exemple le nuage de points représenté à gauche sur la Fig-
ure 1.3. Initialement, il ne s’agit (topologiquement) que d’une collection
de composantes connexes indépendantes. Il apparait cependant naturel
d’identifier trois boucles, de tailles différentes. Regarder la topologie de cet
objet à différentes échelles va nous permettre de détecter lesdites boucles.
Pour introduire cette notion d’échelle, une idée est de faire grossir des boules
centrées en chacun des points du nuage. Le paramètre d’échelle t ≥ 0 cor-
respond ici au rayon des boules. Ainsi, à partir du nuage de points X
au paramètre t = 0, on construit une famille d’objets (Xt)t≥0. On parle
alors de filtration. Pour certaines valeurs critiques du paramètre t, voir
Figure 1.3, la topologie1 change : des boucles apparaissent (par exemple à

1Ici, par souci de simplicité, on s’intéresse uniquement aux boucles.



1.1. INTRODUCTION EN FRANÇAIS 13

t = 1 ou t = 2 sur la figure) ou disparaissent (lorsqu’elles sont complètement
“remplies”, t = 2, t = 3, t = 5 sur la figure).

Ce sont ces valeurs critiques, appelées temps de naissance et de mort
des propriétés topologiques, qui seront enregistrées dans un descripteur
topologique : le diagramme de persistance. Un diagramme de persistance
se présente comme une collection de points dans le plan. La présence d’un
point de coordonnées (b, d) dans le diagramme va indiquer qu’une propriété
topologique (composante connexe, boucle, cavité...) est apparue à l’échelle
t = b et a disparu à l’échelle t = d. Ainsi, un point proche de la diagonale,
c’est-à-dire tel que d ' b, représente une propriété topologique qui est ap-
parue et a presque immédiatement disparu : cette propriété a peu persisté à
travers les échelles. À l’inverse, un point loin de la diagonale va représenter
une composante topologique présente durant un large intervalle d’échelles,
généralement considérée comme plus significative. Formellement, un di-
agramme de persistance est décrit comme un multi-ensemble de points2

supporté sur le demi-plan

Ω := {(b, d) ∈ R2, d > b}

ou, de façon équivalente, comme une mesure de Radon µ s’écrivant

µ :=
∑

x∈X

nxδx,

où X ⊂ Ω est localement fini, nx et un entier et δx désigne la masse de
Dirac en x ∈ X.3

Bien entendu, le cadre d’application de l’analyse topologique des données
ne se résume pas aux nuages de points et à des boules qui grossissent ; la
théorie générale est présentée dans la Section 2.1. À ce stade, l’essentiel est
de retenir qu’il est donc possible de transformer une collection d’observations
complexes en une collection de diagrammes de persistance, à partir de laque-
lle on peut envisager de produire une analyse statistique ou de réaliser une
tâche d’apprentissage automatique.

2Un ensemble dans lequel les points peuvent être répétés
3Dans leur définition la plus générale, les diagrammes de persistance peuvent avoir

des points avec des coordonnées infinies (b = −∞ or d = +∞) qui appartiennent donc
au demi-plan étendu; ou des points sur la diagonale (b = d). Nous ignorons ces points
dans cette thèse, voir les Remarques 2.2 et 2.3.
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yj′

proj(yj′)

xi

yj

xi′

proj(xi′)

Figure 1.4: Deux diagrammes de persistance. La distance de bottleneck entre ces
deux diagrammes est, par définition, la longueur de la plus longue arête dessinée.

1.1.3 Diagramme de persistance et apprentissage:
limitations et enjeux

Les diagrammes de persistances portent une information riche et en général
complémentaire aux autres méthodes classiques d’analyse de données. Mal-
heureusement, leur incorporation dans les outils modernes d’apprentissage,
tels que les réseaux de neurones, n’est absolument pas évidente.

Distance entre diagrammes de persistance. Pour comprendre cela,
il faut dans un premier temps souligner qu’il est possible de mesurer une
distance entre deux diagrammes de persistance, ce qui permet donc de com-
parer les deux objets initiaux d’un point de vue topologique. La distance de
référence entre diagrammes est appelée distance de bottleneck, et se calcule
de la façon suivante. Pour deux diagrammes X et Y , notons (x1 . . . xn)
et (y1 . . . ym) leurs points respectifs (notons qu’on n’a pas nécessairement
n = m). La première étape est de chercher à transporter 4 chaque point xi
du diagramme X vers un point yj de Y ou, éventuellement, vers sa projec-
tion orthogonale sur la diagonale (voir Figure 1.4). Les points yj de Y qui
ne sont pas atteints par un point xi de X sont eux aussi transportés sur leur
projection sur la diagonale. Nous imposons de plus que ce transport soit
bijectif : chaque point xi est envoyé - au plus - sur un point yj, et chaque
yj doit être atteint par - au plus - un seul xi. En notant (xi, yj) quand xi
est transporté sur yj, et (xi, ∂Ω) (resp. (∂Ω, yj)) lorsque xi (resp. yj) est
transporté sur la diagonale, un transport partiel entre X et Y est décrit par
une liste . . . (xi, yj)ij . . . (xi, ∂Ω) . . . (∂Ω, yj) . . . , où chaque point xi de X et
chaque point yj de Y apparâıt exactement une fois.

4On parle plus fréquemment “d’appariement”, mais nous préfèrerons la terminologie
de “transport” pour des raisons qui deviendront évidentes par la suite.
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Figure 1.5: Illustration de la stabilité des diagrammes de persistance en bottle-
neck, et instabilité du nombre de points.

Bien entendu, il existe une multitude de façons de transporter un dia-
gramme X sur un autre diagramme Y . Pour définir la distance entre deux
diagrammes, nous allons chercher un transport partiel optimal au sens suiv-
ant : le coût d’un transport partiel est la plus grande distance parcourue
entre deux points du transport. Un transport partiel optimal est un trans-
port partiel dont le coût est minimal parmi tous les transports partiels
entre X et Y possibles. Le coût minimal ainsi réalisé est, par définition,
la distance de bottleneck. Formellement, si on note Γ(X, Y ) l’ensemble des
transports entre deux diagrammes X et Y , on pose

d∞(X, Y ) := min
γ∈Γ(X,Y )

max
(x,y)∈γ

‖x− y‖.

Le choix de cette distance n’est pas arbitraire et est motivé par des con-
sidérations algébriques profondes qui sont détaillées dans la Section 2.1.
Cette distance jouit de la propriété d’être stable, au sens où des objets
initialement proches auront systématiquement des diagrammes proches en
distance de bottleneck (Figure 1.5).

Limitations. Étant donnée une collection de diagrammes, grâce à la dis-
tance de bottleneck, il est possible de calculer des distances entre chaque
paire de diagrammes. L’utilisation de certains algorithmes d’apprentissage
basiques, comme celui du plus proche voisin, ou par exemple le multi-
dimensional scaling (MDS), est alors possible, car ceux-ci requièrent seule-
ment de savoir calculer des distances entre nos observations (ici les dia-
grammes).
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Néanmoins, la plupart des algorithmes modernes d’apprentissage de-
mandent beaucoup plus de structure, qui va faire défaut dans le cadre des
diagrammes de persistance. En effet, l’espace des diagrammes de persis-
tance n’est pas linéaire, ce qui veut essentiellement dire qu’il n’est pas pos-
sible de donner un sens5 à la somme de deux diagrammes de persistance,
ou à la multiplication d’un diagramme par un nombre réel. Il n’est donc
pas possible d’incorporer näıvement les diagrammes de persistance dans les
machineries d’apprentissage modernes, et leur utilisation dans la pratique
en est donc compromise.

Une solution de remplacement va consister à plonger l’espace des dia-
grammes dans un espace linéaire, sur lequel il sera donc possible d’effectuer
des tâches d’apprentissage aisément. Cela signifie qu’on cherche une appli-
cation Φ qui transforme les diagrammes en vecteurs, c’est-à-dire un élément
dans un espace linéaire. Une telle application est appelée une vectorisa-
tion. Par exemple, une vectorisation naive pourrait consister à associer à
chaque diagramme X son nombre de points Φ(X), plongeant l’espace des
diagrammes dans l’espace des nombres réels, bien entendu linéaire. Cette
vectorisation est très décevante car deux diagrammes très différents (au sens
de la distance de bottleneck) peuvent avoir le même nombre de points, mais
aussi deux diagrammes très proches peuvent avoir un nombre de points très
différent (comme en Figure 1.5). Autrement dit, Φ(X) n’a pas grand chose
à voir avec X, ce qui est profondément regrettable.

Bien entendu, de nombreuses vectorisations bien plus satisfaisantes ont
été proposées, avec d’importants succès dans les applications [Bub15, AEK+17,
CCO17]. Néanmoins, l’usage d’une vectorisation soulève quelques interro-
gations importantes :

• Le choix de la vectorisation est arbitraire. Parmi le large catalogue de
vectorisations disponibles, il n’existe pas à ce jour d’heuristique pour
choisir laquelle sera adaptée à une tâche d’apprentissage donnée.

• Il semble impossible6 d’obtenir, en toute généralité, un plongement
qui soit bi-stable, c’est à dire pour lequel on aurait, pour toute paire
de diagramme X, Y , et deux constantes 0 < A ≤ B <∞,

A‖Φ(X)− Φ(Y )‖ ≤ d∞(X, Y ) ≤ B‖Φ(X)− Φ(Y )‖,

ce qui aurait le mérite d’assurer que des diagrammes proches ont des
représentations proches, et inversement.

5Qui serait compatible avec la distance de bottleneck
6Ce problème est encore ouvert, mais tous les résultats actuels semblent aller dans

ce sens [CB19, BW20, Wag19]
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• Enfin, il faut rappeler que les diagrammes de persistance ont été con-
struits en partie pour leur interprétabilité. Recourir à une vectorisa-
tion, et réaliser des calculs dans l’espace linéaire associé, retire cette
interprétabilité. S’il est possible pour une collection de diagrammes
X1 . . . Xn de calculer facilement une moyenne dans l’espace linéaire en
posant M = 1

n

∑n
i=1 Φ(Xi), il est important de comprendre que cette

quantité n’a, a priori, rien à voir avec une notion de moyenne dans
l’espace des diagrammes de persistance. Cela vaut plus généralement
pour toutes les opérations réalisées dans l’espace linéaire (qui con-
duiraient par exemple à du clustering, etc.).

Enjeux. Si l’étude des vectorisations de l’espace des diagrammes de per-
sistance reste un domaine de recherche pertinent, nous proposons ici de tra-
vailler directement dans l’espace des diagrammes de persistance. L’objectif
est donc de répondre à la question

“Comment peut-on faire des statistiques dans l’espace des diagrammes de
persistance ?”

Pour cela, il est important de comprendre d’abord quelles sont les pro-
priétés géométriques de cet espace, pour lequel nous ne disposons a priori
que d’une distance pour en étudier la structure. Cela doit permettre en-
suite de proposer un cadre théorique solide dans lequel des outils statistiques
sont proprement définis. Enfin, il est important que ces outils statistiques
puissent être calculés et utilisés, au moins de façon approchée, en pratique.

1.1.4 Contributions et organisation du manuscrit

Afin de proposer des éléments de réponse à cette problématique, nous nous
appuierons sur un autre domaine des mathématiques appliquées : la théorie
du transport optimal, dont la présentation est faite dans la Section 2.2. Il
s’agit peut-être du point essentiel de ce manuscrit : l’établissement d’un
lien formel entre l’espace des diagrammes de persistance et les modèles
utilisés en transport optimal. Cette connexion entre ces deux champs
mathématiques est extrêmement prolifique : le transport optimal est un
domaine très développé, tant dans sa théorie que dans les applications en
statistiques et en apprentissage ; et nombre de ses outils s’adaptent à l’étude
des diagrammes de persistance. Cela nous permettra d’obtenir de nouveaux
résultats théoriques relatifs à l’utilisation des diagrammes de persistance en
statistiques et en apprentissage, mais aussi de proposer divers algorithmes
et outils numériques qui permettent de résoudre des problèmes difficiles
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en persistance, comme l’estimation de moyennes (dites “de Fréchet”), la
quantification, l’apprentissage de vectorisation, entre autres.

De façon générale, et sauf mention explicite du contraire, nous adoptons
la convention suivante : les résultats (théorèmes, propositions, etc.) pour
lesquels nous proposons une preuve sont le fruit de mon travail ou d’un
travail joint avec mes collaborateurs : Mathieu Carrière, Frédéric Chazal,
Marco Cuturi, Vincent Divol, Yuichi Ike, Steve Oudot, Martin Royer, et
Yuhei Umeda.

Plan et lien avec les travaux réalisés durant la thèse.

Chapitre 2: Préliminaires. Ce chapitre présente les deux domaines im-
pliqués dans ce travail: l’analyse topologique des données (Section 2.1) et
le transport optimal (Section 2.2). L’objectif est de présenter rapidement
l’état de l’art relatif aux différents problèmes abordés dans ce manuscrit.
Notons néanmoins que la construction algébrique des diagrammes de per-
sistance, developpée dans les sous-sections A.1 et A.2, est indépendante du
reste du manuscrit.

Les contributions sont présentées en deux parties, en fonction de leur
nature théorique (propriétés géométriques générales, etc.) ou appliquée
(pour faire simple, conduisant à une implémentation).

Partie I — Théorie.

Chapitre 3: Un formalisme issu du transport optimal pour les di-
agrammes de persistance. Ce chapitre présente et développe les fonde-
ments théoriques de ce manuscrit. Son contenu repose essentiellement sur
la section 3 de l’article [DL19], en révisions mineures au Journal of Applied
and Computational Topology. Nous y présentons comment les métriques
utilisées habituellement pour comparer les diagrammes de persistance peu-
vent se reformuler comme des problèmes de transport optimal partiels, et
les nombreux résultats théoriques qui en découlent.

Chapitre 4: Moyenne de Fréchet pour les diagrammes de per-
sistance: aspects théoriques. Ce chapitre est consacré à l’étude des
moyennes de Fréchet (ou barycentres) pour les diagrammes de persistance.
Il repose sur la section 4 de [DL19]. On y prouve notamment un résultat
d’existence très général, et on établit un lien fort entre ces moyennes et les
fameux “barycentres de Wasserstein”, largement étudiés dans la littérature
du transport optimal traditionnel.
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Partie II — Applications.

Chapitre 5: Algorithmes efficaces pour l’estimation des moyennes
de Fréchet des diagrammes de persistance. On propose ici un al-
gorithme pour approcher les moyennes entre diagrammes; particulièrement
efficace pour traiter les problèmes à grande échelle. Cette approche a été
publiée dans les annales de la conférence internationale Neural Information
Processing Systems, 2018, voir [LCO18].

Chapitre 6: Représentations linéaires des diagrammes de persis-
tance. Ce chapitre se consacre à l’étude des représentations linéaires de di-
agramme de persistance, pour lesquelles on propose une caractérisation ex-
haustive. Une fois encore, les résultats théoriques (Section 6.1) sont issus de
[DL19, §5.1]. On propose ensuite une application de ce résultat en appren-
tissage automatique en introduisant PersLay, une couche pour les réseaux
de neurones7 spécifiquement élaborée pour apprendre des représentations
adaptées à une tâche donnée. Ce travail a été publié dans les annales de la
conférence Artificial Intelligence and Statistics, 2020, voir [CCI+20].

Chapitre 7: Exemples complémentaires. Ce dernier chapitre regroupe
diverses applications et algorithmes qui ont été développés afin de résoudre
divers problèmes relatifs aux diagrammes de persistance. La Section 7.1
démontre l’intérêt du formalisme théorique développé dans le Chapitre 3
pour étudier les diagrammes de persistance dans un contexte aléatoire. On
y trouve des résultats de convergence et de stabilité pour des analogues
aléatoires des diagrammes de persistance. La Section 7.2 étudie la quantisa-
tion des diagrammes de persistance. Enfin, la Section 7.3 propose une façon
simple et efficace pour estimer des distances entre diagrammes a transfor-
mation près. Ces résultats n’ont pas encore été publiés, mais les algorithmes
correspondant ont, ou vont être, intégrés à la librairie d’analyse topologique
des données Gudhi [GUD15]; ce manuscrit de thèse est une bonne occasion
d’en présenter les rouages.

Code et contributions à la librairie gudhi. La plupart des méthodes
présentées en Partie II ont été, ou vont être, incorporées à la librairie Gudhi.

7disponible publiquement et incorporée à la librairie Gudhi.

https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
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1.2 Introduction in English

1.2.1 Data Analysis, Statistics, and Geometry

Data Analysis. Data analysis has become, during the last decade, one
of the most active research areas in applied mathematics and computer
science. Progress in data gathering and storage has led to very large
datasets of various types: images [KH+09], 3D shapes [CFG+15], mu-
sic [BMEWL11], medical and biological data [CHF12], social networks
[YV15, KKM+16, PWZ+17]... Data analysis aims to understand and add
value to such newly available information.

To do so, the most standard paradigm nowadays is to make use of “ma-
chine learning”. It aims at designing algorithms that will be able to extract
useful information from a given set of observations; allowing for instance to
regroup data by similarity (clustering), to assign labels to new observations
based on the labels of the training data (classification), etc.

Statistics and geometry. Of course, there is no omnipotent algorithm
that would be able to predict with no error in any context. If observations
and labels are not correlated or if the number of observations is too low,
even the best possible algorithm will not be of any use when it comes to
generalizing its learning to new sets of observations.

The difficulty to solve a given learning problem, for instance its depen-
dence on the number of observations, can be measured with statistical tools.
In a classification or clustering problem for instance, the more the observa-
tions sharing the same label are concentrated around their mean value (low
variance) and the more the different classes are separated from each other,
the easier the problem will be to solve (see Figure 1.6). In general, it is
important to understand how our observations are distributed. The general
approach taken in statistical learning is to assume that our observations are
independent and come from an (unknown) underlying probability distribu-
tion. Perfect knowledge of this distribution would allow us to understand
the behavior of learning algorithms and to optimize their performances on
a given dataset (without necessarily reaching a perfect score). In prac-
tice, it is thus useful to infer some properties of the underlying probability
distribution from our sample of observations.

The most basic example, which will lead to geometric considerations, is
the estimation of the expectation of the underlying law, that is the average
value of a randomly sampled observation. When the observations are real
numbers, this problem is pretty simple: if we observe (x1 . . . xn) n numbers
independently sampled from a law µ, an estimation of the expectation of
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Figure 1.6: Point clouds (400 points) sampled from a mixture of four Gaussian
distributions, representing four classes. On the left subfigure, the Gaussians
distributions have a low variance, it is thus easy to separate the different classes.
On the right subfigure, class separation is harder to perform.

µ is simply given by the arithmetic mean of the (xi)is, that is 1
n

∑n
i=1 xi.

However, in modern machine learning problems, the underlying geometry
of the observations is often complex and unknown: think of graphs, images,
molecular structures... These are cases where the notion of mean, and
a fortiori more sophisticated descriptors, is hard to clearly define and to
estimate.

1.2.2 Topological Descriptors

In this thesis, we will focus on a specific type of observations: the persis-
tence diagrams, which come from topological data analysis . Understanding
the underlying geometry of these objects is an active research area, as is
the design and the computation of statistical descriptors built on top of
persistence diagrams.

Topology. Roughly speaking, the term “topology” is related to the notion
of “shape”. Considering a given object, such as a 3D shape, how many
connected components does it have? Can we identify characteristic loops?
Does it have cavities? For instance, the torus represented in Figure 1.7 has
one connected component, two loops (red), and a cavity (blue). In contrast,
a circle has a single connected component and a single loop.
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Figure 1.7: On the left, a torus and its topological properties. Then, a circle,
two transformations that preserve its topology, and two transformations that do
not (ripping and gluing respectively).

More generally, topology can be described as the set of properties of an
object that do not change when we apply transformations without ripping
nor gluing (see Figure 1.7). For instance, when such a transformation is
applied to a circle, the topology (presence of one loop and one connected
component) is unchanged, although the geometry is. Formally, the topo-
logical properties of an object are described by homology groups. Homol-
ogy groups of a topological space (object) consist of a sequence of abelian
groups (Hk)k≥0 (k = 0 accounts for 0-dimensional topological properties of
the space, that is connected components; k = 1 accounts for loops, k = 2
for cavities, and so on) whose generators identify “independent” topological
features of the space. For instance, in the context of a torus (Figure 1.7),
H1 has two generators. These would correspond intuitively to the two red
loops: any other loop on the torus is—in some sense—a linear combination
of these two loops. We refer the interested reader to Appendix A or [Mun84]
for a detailed presentation of homology theory.

Multi-scale topological descriptors. In practice however, the use of
topology in machine learning is not straightforward. Most data acquisition
methods are likely to produce objects with an extremely simple topology,
such as point clouds. The homology groups of a point cloud (Hk)k are trivial
for k ≥ 1, while H0 is the free abelian group with N generators, N being
the cardinality of the point cloud. Homology alone is not able to reflect the
underlying structure of such objects.

The core idea, whose foundations can be traced back to Morse’s work
[Mor40] and have been developed in [Fro92, Rob99, CFP01, ZC05], is to
consider the topology of a space at different scales, and to look for topolog-
ical properties that persist through scales. Let us consider as an example
the point cloud represented on the left of Figure 1.8. Initially, it is (from a
topological perspective) a collection of independent connected components.
It is however intuitive to identify three loops of different sizes. Recording
the topology of this object at different scales will allow us to detect these
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Figure 1.8: (Top) Topology of a point cloud at different scales for the Čech
filtration. (Bot) The persistence diagram of the point cloud (restricted to loops).

loops. To introduce this notion of scale, an idea is to put balls centered on
each point of the point cloud and to let them grow. The scale parameter
t ≥ 0 corresponds here to the radius of the balls. Therefore, starting with
a point cloud X at t = 0, we build an increasing sequence of topological
spaces (Xt)t≥0, called a (Čech) filtration. For some critical values of t (see
Figure 1.8) the topology8 changes: loops appear (at t = 1, t = 1.5, t = 2 on
the figure) or disappear (when they get “filled in”, at t = 2, t = 3, t = 5 on
the figure).

These critical values, called birth times and death times , are recorded
in a topological descriptor: the persistence diagram, which is a collection
of points in the plane. Each point of coordinate (b, d) in the diagram will
account for a topological property (connected component, loop, caveat...)
that appeared at scale t = b and disappeared at scale t = d. Therefore, a
point close to the diagonal (that is, such that b ' d) represents a topological
property that appeared then almost instantly disappeared: this feature did
not persist much. In contrast, a point away from the diagonal represents a
topological feature that was recorded through a large interval of scales, gen-
erally considered as being more significant. Formally, a persistence diagram

8Here, for the sake of simplicity, we only consider loops.



24 CHAPTER 1. INTRODUCTION

can be described as a multi-set of points9 supported on a half-plane

Ω := {(b, d) ∈ R2, d > b}

or, equivalently, as a point measure, that is a Radon measure µ of the form

µ =
∑

x∈X

nxδx,

where X is a locally finite subset of Ω, nx is an integer and δx denotes the
Dirac mass located at x ∈ X.10

Of course, the situations in which topological data analysis can be ap-
plied are not reduced to point clouds and growing balls: the general theory
is detailed in Appendix A. The important point is that one can transform a
set of complex observations into a collection of persistence diagrams, from
which we might consider producing a statistical analysis or performing a
machine learning task.

1.2.3 Persistence diagrams and learning: challenges
and limitations

In practical applications, incorporating persistence diagrams in modern
machine learning toolboxes, such as neural networks, is unfortunately not
straightforward.

Distance between persistence diagrams. In order to understand this,
we must first mention that one can compute a distance between two per-
sistence diagrams, which thus allows us to compare two objects adopting a
topological viewpoint. The standard distance used to compare diagrams is
called the bottleneck distance, and can be computed in the following way.
For two diagrams X and Y , let (x1 . . . xn) and (y1 . . . ym) denote their re-
spective points (note that we do not necessarily have n = m). The first step
is to transport11 each point xi in the diagram X to a point yj in Y or, pos-
sibly, to its orthogonal projection onto the diagonal (see Figure 1.9). The
points yj in Y which are not reached by a point xi in X are also transported

9A set where points can be repeated.
10In the greatest generality, persistence diagrams can have points with infinite co-

ordinates (b = −∞ or d = +∞) thus belonging to the extended half-plane; or points
supported exactly on the diagonal (b = d). We will not consider such points in this
thesis; this is discussed in Remark 2.2 and Remark 2.3.

11It is more standard to use the wording “matching”, but we will prefer “transport”
for reasons that will become obvious later on.



1.2. INTRODUCTION IN ENGLISH 25

yj′

proj(yj′)

xi

yj

xi′

proj(xi′)

Figure 1.9: Two persistence diagrams. The bottleneck distance between these
two diagrams is given, by definition, by the length of the longest edge drawn
here.

on their respective projections onto the diagonal. We also enforce that each
point xi is transported to—at most—a single point yj, and each yj must
be reached by—at most—a single xi. Denote by (xi, yj) the fact that xi is
transported on yj, and (xi, ∂Ω) (resp. (∂Ω, yj)) when xi (resp. yj) is trans-
ported to the diagonal. A partial transport between X and Y is given by
a list . . . (xi, yj)ij . . . (xi, ∂Ω) . . . (∂Ω, yj) . . . , where each xi, yj must appear
exactly once.

Of course, there exist many ways to transport a diagram X onto another
diagram Y . In order to define a distance, one seeks for an optimal partial
transport in the following sense: the cost of a partial transport is given
by the longest distance traveled when performing the transport. A partial
transport is optimal if it has minimum cost among all the possible partial
transport between x and Y . The bottleneck distance is then defined as
the minimal cost achieved by this optimal transport. Formally, let Γ(X, Y )
denote the set of all possible partial transports between X and Y , and
define the bottleneck distance as

d∞(X, Y ) := min
γ∈Γ(X,Y )

max
(x,y)∈γ

‖x− y‖.

The choice of such a distance is motivated by algebraic considerations de-
tailed in Appendix A and Section 2.1. This distance has the nice property
of being stable, in the sense that initially close objects will always have dia-
grams that are close in the bottleneck distance (Figure 1.10). For instance,
in the context of two point clouds P, P ′ and corresponding diagrams µ, µ′

built using the Čech filtration (Figure 1.8), it yields

d∞(µ, µ′) ≤ dH(P, P ′),

where dH stands for the Hausdorff distance between the point clouds (see
Example A.21 for details).
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Figure 1.10: Stability of persistence diagrams for the bottleneck distance. Here,
the bottleneck distance between the two diagrams is controlled by the Hausdorff
distance between the point clouds.

Limitations. Given a collection of diagrams, and thanks to the bottle-
neck distance, it becomes possible to compute pairwise distances between
diagrams. It makes it possible to use these diagrams as the input of some
simple machine learning algorithms, such as the nearest neighbor algorithm
or the metric multi-dimensional scaling (MDS) one, as these algorithms only
require to be able to compute distances between our observations (here, the
persistence diagrams).

However, most modern machine learning algorithms ask for a linear
structure on the space in which the data live. Unfortunately, the space
of persistence diagrams is not linear, which essentially means that there is
no simple way12 to define the sum of two diagrams, or the multiplication
of a diagram by a real number. Therefore, it is not possible to incorpo-
rate faithfully persistence diagrams in a modern machine learning pipeline,
compromising their use in practical applications.

An alternative is to embed the space of persistence diagrams in a lin-
ear space, on which it will be possible to easily perform standard learning
tasks. It means that we look for a map Φ which transforms the diagrams
into vectors, namely an element of a linear space. Such a map is called a
vectorization.

Various vectorizations have been proposed, with significant success in

12That will be compatible with the bottleneck distance
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applications [Bub15, AEK+17, CCO17]. Nonetheless, using a vectorization
raises some important questions:

• The choice of the vectorization is arbitrary. There is currently no
heuristic available to choose, among all the possible vectorizations,
which one will be adapted to perform well on a given learning task.

• It seems impossible13 to have, in the greatest generality, a coarse
embedding, that is an embedding for which it holds, for any pair
of diagrams X, Y , and two non-decreasing map ρ1, ρ2 : [0,+∞) →
[0,+∞) with ρ1(t)→ +∞ when t→ +∞,

ρ1(d∞(X, Y )) ≤ ‖Φ(X)− Φ(Y )‖ ≤ ρ2(d∞(X, Y )),

which would ensure that close diagrams have close representations,
and vice-versa.

• Finally, let us recall that diagrams benefit from their interpretability.
Using a vectorization, and doing the computations in the correspond-
ing linear space, would lose this interpretability. For instance, given
a map Φ and a set of diagrams X1 . . . Xn, one can compute a mean
in the linear space by setting M = 1

n

∑n
i=1 Φ(Xi). However, it is im-

portant to note that M has, a priori, nothing to do with a notion
of mean in the space of persistence diagrams as it may not even be
in the image of Φ. This holds more generally for any computation
performed in the linear space (which could lead to clustering, etc.).

Challenges. While studying vectorizations of the space of persistence di-
agrams remains an important research topic, we propose in this manuscript
to work in the space of persistence diagrams directly. The goal is thus to
answer the following question:

“How can we do statistics in the space of persistence diagrams?”

To answer this question, it is important to understand the geometric
properties of this space. This should allow us to provide a solid theoretical
framework in which statistical tools will be properly defined. Finally, these
statistical tools must be usable in practice, that is we must be able to
compute (or at least estimate) them.

13This problem is still open, but all recent results seem to point this way [BV18,
CB19, BLPY19, BW20, Wag19].
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1.2.4 Contributions and outline

To provide some solutions to this problem, we will rely on another field of
applied mathematics: optimal transport theory, presented in Section 2.2. It
is one of the most important contributions of this manuscript: establish-
ing a formal connection between the geometry of the space of persistence
diagrams and models used in optimal transport. This connection between
these two fields is highly useful: optimal transport is a well-developed do-
main both from a theoretical and computational perspective and has many
applications in statistical and machine learning. It turns out that most of
its tools can be transposed or adapted to deal with persistence diagrams,
which will allow us to obtain new theoretical results regarding the use of
persistence diagrams in statistics and learning, but also to provide various
algorithms and computational tools that allow us to address some difficult
problems in topological data analysis, such as the estimation of Fréchet
means, quantization, vectorization learning, to name a few.

In general and unless stated differently, results (theorems, propositions,
etc.) for which we provide a proof are consequences of my work or joint
work with my Ph.D. advisors or collaborators: Mathieu Carrière, Frédéric
Chazal, Marco Cuturi, Vincent Divol, Yuichi Ike, Steve Oudot, Martin
Royer, and Yuhei Umeda.

Outline and relations with the research productions during the
Ph.D. thesis.

Chapter 2: Background. This chapter presents the two fields involved
in this work: topological data analysis (Section 2.1) and optimal transport
(Section 2.2). It aims to provide a concise introduction to both domains and
a presentation of the different problems tackled in this manuscript. Note
that a presentation of the algebraic construction of persistence diagrams
can be found in Appendix A.

The contributions are organized into two separate parts, according to
their theoretical or applied (roughly speaking, results leading to an imple-
mentation) nature.

Part I — Theory.

Chapter 3: an optimal transport framework for persistence dia-
grams. This chapter presents the theoretical foundations of the manuscript.
It essentially corresponds to Section 3 in [DL19], under minor revisions for
the Journal of Applied and Computational Topology. We present here how
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the standard metrics used to compare persistence diagrams can be reformu-
lated as optimal partial transport problems, and the new theoretical results
that come out of it.

Chapter 4: A theoretical study of Fréchet means for persistence
diagrams. This chapter is dedicated to the study of Fréchet means (or
barycenters) of persistence diagrams from a theoretical perspective. It es-
sentially corresponds to Section 4 in [DL19]. We prove the existence of
Fréchet means in great generality, and establish a close link between those
and the “Wasserstein barycenters”, their counterparts in standard optimal
transport theory.

Part II — Applications.

Chapter 5: Fast algorithms for the estimation of Fréchet means
of persistence diagrams. We propose an algorithm to estimate these
means, which is useful especially on large scale problems. This approach
has been published in the proceedings of the international conference on
Neural Information Processing Systems, 2018 [LCO18].

Chapter 6: Linear representation of persistence diagrams. This
is dedicated to the study of linear vectorizations of the space of persistence
diagrams, for which we provide an exhaustive characterization. The the-
oretical part (Section 6.1) comes from [DL19, §5.1]. We then provide an
application in machine learning, where we introduce PersLay, a neural
network layer14 devoted to learning optimal linear vectorizations to solve
a given learning task. This work has been published in the proceedings of
the international conference on Artificial Intelligence and Statistics, 2020
[CCI+20].

Chapter 7: Complementary examples. This last chapter gathers
other algorithms developed for persistence diagrams. In Section 7.1, we
showcase the strength of the formalism developed in Chapter 3 in the con-
text of random persistence diagrams. We prove convergence and stability
results of the probabilistic counterpart of persistence diagrams. Section 7.2
is dedicated to the quantization of persistence diagrams, a useful tool that
has benefits when incorporating persistence diagrams in machine learning

14including a publicly available implementation and incorporation to the Gudhi li-
brary.

https://gudhi.inria.fr/
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pipelines. Finally, Section 7.3 proposes a simple and efficient way to esti-
mate a shift-invariant distance between persistence diagrams.

Code and contributions to the Gudhi library. Most of the methods
presented in Part II have been—or will be—incorporated into the topolog-
ical data analysis library Gudhi.

https://gudhi.inria.fr/


Chapter 2

Background

Abstract

This chapter presents some background material coming from
the two main research fields involved in this work: topological data
analysis (Section 2.1) and optimal transport (Section 2.2). They are
essentially presented in a way that serves the contents of Part I and
Part II. Therefore, they do not aim at being exhaustive but rather
at providing a decent state-of-the-art of the topics covered by this
thesis.

2.1 Topological Data Analysis

This section is dedicated to the presentation of our objects of interest: per-
sistence diagrams. A detailed algebraic construction of persistence diagrams—
which is not required to understand the vast majority of this manuscript—
can be found in Appendix A. We also refer the interested reader to [EH10,
Oud15] for a thorough description. Subsection 2.1.1 below gives a concise
presentation of these notions. Subsections 2.1.2 and 2.1.3 introduce vari-
ous metrics between persistence diagrams and some of the properties of the
resulting metric spaces.

2.1.1 Persistent homology in a nutshell

Let X be a topological space, and f : X → R a real-valued continuous
function. The t-sublevel set of (X, f) is defined as

Ft = {x ∈ X, f(x) ≤ t}.

31
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Making t increase from −∞ to +∞ gives an increasing sequence of sublevel
sets (Ft)t called the filtration induced by f . To the increasing family of
topological spaces (Ft)t corresponds a persistence module (Vt)t, which is a
family of K-vector spaces (for some fixed field of coefficients K) equipped
with linear maps vts : Vs → Vt for s ≤ t which are induced by the inclusion
Fs ⊂ Ft (see Appendix A for details). In particular, for I = [b, d] ⊂ R an
interval—with R = R∪{±∞}—, the interval module I[b,d] is the persistence
module defined by I[b,d]t

= K for t ∈ I, and {0} otherwise, while vts = idK if
s, t ∈ I and vts = 0 otherwise. Under mild assumptions (e.g. rk(vts) is finite
for any s, t), a persistence module (Vt)t can be decomposed uniquely as a
direct sum of interval modules, which reads

V =
⊕

j∈J

I[bj ,dj ],

for some locally finite family of intervals ([bj, dj])j∈J . Therefore, V is entirely
described by a multiset1 of points {(b, d)} that belong to the extended upper
half-plane

R2

≥ := {(b, d) ∈ R2
, d ≥ b},

called the barcode, or persistence diagram, of (X, f), also denoted by Dgm(X, f)
or simply Dgm(f) if there is no ambiguity.

Intuitively, an interval [b, d] appearing in Dgm(X, f) accounts for the
presence of a topological feature (connected component, loop, cavity, etc.)
that appears at scale t = b in (Ft)t and disappears (gets “filled”) at scale
t = d. Equivalently, a persistence diagram can be described as a point

measure supported on R2

≥, that is a measure µ of the form

µ =
∑

x∈X

nxδx,

where X is a locally finite subset of R2

≥, nx is an integer, and δx denotes the
Dirac mass supported on {x}. This measure-theoretic perspective on per-
sistence diagrams is motivated in [CDSGO16] (see also Theorem A.17) and
has huge benefits when studying the properties of the space of persistence
diagrams, as showcased in Chapter 3.

2.1.2 Metrics between persistence diagrams

In order to use persistence diagrams in practice, we must—at the very
least—be able to compare them using a metric. The standard metric used

1Points can be repeated in the family. The number of times a point appears in a the
multiset is called its multiplicity.
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yj′

proj(yj′)
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yj

xi′

proj(xi′)

∂Ω

2

Figure 2.1: Partial matching between two diagrams. The ‘2’ indicates that the
point has multiplicity 2.

to compare persistence diagrams is the bottleneck distance, defined below.
It is a partial matching distance between the points of the diagrams, counted

with multiplicity. We recall that R2

≥ denotes the extended closed upper half-
plane. Let also ∂Ω denote the diagonal (this notation will be clarified later
on, in Definition 2.9):

∂Ω := {(t, t), t ∈ R}.

Definition 2.1. Let µ =
∑

i δxi and ν =
∑

j δyj be two persistence di-

agrams. Let X = (xi)i ⊂ R2

≥ and Y = (yj)j ⊂ R2

≥ be the points of the
diagrams, counted with multiplicity.

A partial matching γ is a subset of (X ∪ ∂Ω) × (Y ∪ ∂Ω) such that
any xi ∈ X (resp. yj in Y ) appears exactly once as a first (resp. second)
coordinate in γ (see Figure 2.1).

Let Γ(µ, ν) denote the set of partial matchings between µ and ν.
The cost of a matching γ ∈ Γ(µ, ν) is defined as the length of the longest

edge in the matching, that is max{‖x− y‖∞, (x, y) ∈ γ}.
The bottleneck distance between the two diagrams is then defined as the

minimal cost that can be achieved by such a matching, that is

d∞(µ, ν) = inf
γ∈Γ(µ,ν)

max
(x,y)∈γ

‖x− y‖∞. (2.1)

A partial matching that realizes this infimum is said to be optimal.

Remark 2.2. We start by noting some important remarks about these
definitions.



34 CHAPTER 2. BACKGROUND

• In the above definition, x (resp. y) belongs either to X or to the diag-
onal ∂Ω. If x ∈ X has finite coordinates and is matched to ∂Ω, that
is it belongs to a tuple (x, y) ∈ γ with y ∈ ∂Ω, then one can always
assume that y is the orthogonal projection of x onto the diagonal as
this would only reduce the cost.

• Similarly, although a partial matching might theoretically contain cou-
ples (x, y) ∈ ∂Ω × ∂Ω, these can be removed when looking for an
optimal matching as this does not increase the cost.

• Persistence diagrams might contain points that belong to ∂Ω, in which
case they can always be matched to the diagonal (with themselves) with
a null cost. In particular, the bottleneck distance is only a pseudo-
metric at this stage. This aspect will be clarified in the following
subsection.

• In the standard definition of the bottleneck distance, ‖ · ‖∞ stands for
the L∞ norm in R2, although it can be replaced with any norm ‖ · ‖q
with 1 ≤ q ≤ ∞. Adapting the following results is straightforward due
to the equivalence of norms in R2. When q does not play any role, we
simply use the notation ‖ · ‖.

Remark 2.3. Persistence diagrams may contain points with coordinates
of the form x = (b,+∞) (resp. (−∞, d)). The set of such points is called the
essential part of the diagram. When comparing two persistence diagrams,
if the cardinalities of their essential parts differ, the cost of any matching
(thus the bottleneck distance) is +∞.

Otherwise, the points of the respective essential parts must be matched
together for the cost to be finite, and it is straightforward to observe that
optimally matching those points consists in sorting the points with respect
to their first (resp. second) coordinate and then using the increasing match-
ing. It mostly means that the behavior of essential parts is obvious and
independent of the rest of the diagrams.

In the rest of this manuscript, we will therefore only consider persistence
diagrams with empty essential parts. Most of our theoretical and practical
results can be easily adapted to take the essential parts into account sepa-
rately.

Using the bottleneck distance to compare persistence diagrams is mo-
tivated by algebraic considerations detailed in Appendix A. In addition,
this distance is supported by the following strong stability result, due to
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Figure 2.2: Stability of the bottleneck distance for the Čech diagrams with respect
to the Hausdorff distance between the point clouds.

[CSEH07, CCSG+09a], which states that two close filtrations induce close
persistence diagrams in the bottleneck distance.

Theorem 2.4 (Stability theorem). Let f, g : X→ R be two q-tame func-
tions (they induce q-tame persistence modules, see Appendix A), and let
Dgm(f),Dgm(g) be their respective persistence diagrams. Then,

d∞(Dgm(f),Dgm(g)) ≤ ‖f − g‖∞, (2.2)

that is the operator f 7→ Dgm(f) is 1-Lipschitz, that is:

Example A.21 in Appendix A provides a simple application in the con-
text of diagrams built on top of point clouds. Briefly, if P and P ′ are two
finite point clouds in Rd, one has

d∞(Dgm(dP ),Dgm(dP ′)) ≤ dH(P, P ′),

where dP (resp. dP ′) denotes the distance to P (resp. P ′), and dH(P, P ′) is
the Haussdorf distance between P and P ′: similar point clouds have similar
persistence diagrams. This fact is illustrated in Figure 2.2.

Other metrics of interest. From a theoretical perspective, the bottle-
neck distance is a natural choice to compare persistence diagrams. However,
when used for statistical and machine learning applications, it has some im-
portant drawbacks. Indeed, given two diagrams µ and ν and an optimal
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partial matching γ∗, the bottleneck distance between µ and ν only depends
on the longest edge in γ∗. It means that

• Any matching, as long as it does not change the length of the longest
edge in γ∗, will also be optimal. There are therefore plenty of optimal
matchings between two diagrams in general.

• Similarly, a slight perturbation in the points in µ, as long as it does
not change the length of the longest edge of an optimal matching, will
not be detected in the bottleneck distance.

In statistical and machine learning applications, discriminating information
might lie in these undetected properties. Therefore, in practice, a variation
of the bottleneck distance is usually preferred.

Definition 2.5. Let 1 ≤ p < ∞. The p-th distance between two dia-
grams µ and ν is defined as

dp(µ, ν) =


 inf
γ∈Γ(µ,ν)

∑

(x,y)∈γ

‖x− y‖pq




1
p

. (2.3)

In (2.3), ‖ · ‖q stands for any q-norm, with 1 ≤ q ≤ ∞. Natural choices
are q = 2 (Euclidean ground metric), q = p, and q = ∞. This choice has
barely any impact on the theoretical results presented in the manuscript.
The choice q = p might have benefits in numerical problems (see Chapter 5)
as it leads to a separable cost .

While dp → d∞ as p → ∞, it improves on the drawbacks mentioned
above: the optimal partial matching between two diagrams (for the dp
metric) is generically unique, its cost involves all the edges of the matching
(making this distance able to account for small perturbations), etc. The
p-th diagram distance also satisfies a (weaker) stability property.

Definition 2.6. A metric space X is said to imply a bounded degree-
q total persistence if there exists a constant CX such that for every tame
Lipschitz function f : X → R, with Lip(f) ≤ 1, one has Persq(Dgm(f)) ≤
CX, where

Persq(Dgm(f)) := dq(Dgm(f),0) =


 ∑

x∈Dgm(f)

‖x− ∂Ω‖q



1
q

, (2.4)

with 0 denoting the empty diagram.
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Theorem 2.7 ([CSEHM10]). Let X be a triangulable, compact metric
space that implies bounded degree-q total persistence for some q ≥ 1, and
f, g : X→ R two tame Lipschitz functions. There exists a constant CX that
depends on X such that for all p ≥ q,

dp(Dgm(f),Dgm(g)) ≤ CX(max Lip(f)q,Lip(g)q)
1
p‖f − g‖1− q

p
∞ . (2.5)

Remark 2.8. The p-th distances between persistence diagrams are gen-
erally referred to as “Wasserstein distances” between persistence diagrams,
a terminology that comes from optimal transport theory, see Section 2.2
below. As optimal transport will take a big place in this manuscript, we
use the word “Wasserstein” to denote standard optimal transport metrics
to avoid confusion.

2.1.3 Statistics and machine learning with
persistence diagrams

Let us end this section by introducing important notions for the develop-
ment of this manuscript. Namely, we start by defining and stating the
main properties of the space of persistence diagrams. We then present some
statistical and machine learning problems that take place in this space.

Recall (Remark 2.3) that we only consider diagrams whose points have
finite coordinates.

The space of persistence diagrams

We can now compare persistence diagrams using either the bottleneck or
the p-th distances (for the sake of simplicity, we use the notation dp for
both metrics). It invites us to consider the space of all possible diagrams
equipped with such metrics.

First, note that the wording “metrics” is actually improper as the bot-
tleneck and the p-th distances are only pseudo-metrics in the sense that one
can have dp(µ, ν) = 0 while µ 6= ν. This is due to the points in the dia-
grams that lie on the diagonal ∂Ω, as those can be matched to the diagonal
with a cost of 0. This leads to a natural equivalence between diagrams:
two persistence diagrams are equivalent if their off-diagonal parts coincide.
The resulting equivalence classes will still be referred to as persistence dia-
grams. From a practical perspective, this is equivalent to simply removing
the points lying on the diagonal. We can now give our core definitions.
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Definition 2.9. Let us define the open upper half-plane

Ω := {(b, d) ∈ R2, b < d}, (2.6)

and note that the diagonal ∂Ω := {(t, t), t ∈ R} is its boundary.
A persistence diagram is a point measure supported on Ω, that is a

measure of the form

µ =
∑

x∈X

nxδx,

where X is a locally finite subset of Ω, and nx ∈ N.
The set of all persistence diagrams will be denoted by D.

Essentially, this definition is consistent with the algebraic one developed
in the previous subsection, where diagrams are understood without their
essential parts (as it is treated separately in a trivial manner) and points on
the diagonal are removed (as those cannot be detected by the dp distances).
These assumptions allow recovering true metric spaces on which we can
provide a relevant analysis.

Definition 2.10. Let µ ∈ D, and 1 ≤ p ≤ ∞. The total persistence of
µ of parameter p is

Persp(µ) := dp(µ,0) ∈ [0,+∞], (2.7)

where 0 denotes the empty diagram.
The space of persistence diagrams of parameter p is

Dp := {µ ∈ D,Persp(µ) <∞}. (2.8)

This definition was introduced in the seminal papers [MMH11, TMMH14].
The assumption Persp(µ) <∞ in (2.8) ensures that for any µ, ν ∈ Dp, the
quantity dp(µ, ν) is finite. It makes (Dp,dp) a metric space. Note the
convenient expression, for 1 ≤ p <∞,

Persp(µ) =
∑

x∈X

nx‖x− ∂Ω‖p = µ(‖ · −∂Ω‖p), (2.9)

where ‖x − ∂Ω‖ denotes the distance between a point x ∈ Ω and (its
orthogonal projection onto) the diagonal ∂Ω. When p = ∞, note that
Pers∞(µ) = supx∈X ‖x− ∂Ω‖.

The space of persistence diagrams, at least for finite p, satisfies some
fundamental properties.
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Proposition 2.11 ([MMH11, Theorems 6 and 12]). Let 1 ≤ p < ∞.
The space Dp is a Polish metric space (i.e. is complete and separable in the
metric dp).

It implies that one can define probability distributions supported on Dp,
the starting point of any statistical analysis.

Remark 2.12. It is important to keep in mind that we allow for diagrams
with possibly infinitely many points (although they must remain locally fi-
nite). This assumption is required for Dp to be complete (see Example 2.13).
Note that one could also recover a complete space by enforcing a uniform
bound N on the number of points (mass) on the diagrams (i.e. considering
the space of diagrams with at most N points). This assumption is however
not suitable nor realistic in some situations. For instance,

• The number of points in a diagram is not a stable quantity in appli-
cations: slight modifications in the input might drastically change the
number of points (by creating many points close to the diagonal, see
for instance Figure 2.2). This phenomenon also occurs when sam-
pling points (uniformly, iid) on a (unknown) shape X and looking at
the Čech diagram of the sample. The Hausdorff distance between the
sample and the shape X converges to 0 as the sample size n→∞, so
does the diagram2 thanks to the stability theorem. However the num-
ber of points in the diagram reflecting homology of dimension 1 (loops)
explodes (see Figure 2.3): in this case, working with diagrams with at
most N points would refrain us from producing a relevant analysis of
convergence.

• In theory, some objects might have diagrams with infinitely many
points. For instance, the (random) persistence diagram µ built from
the sublevel sets of a Brownian motion has (almost surely) infinitely
many points, while for any ε > 0, we have Pers2+ε(µ) < ∞ thus
µ ∈ D2+ε. In practice, if we want to compute the diagrams of approx-
imated counterparts of such objects, we might expect the number of
points in our diagrams to explode as the approximation error goes to
0.

Nonetheless, the space of persistence diagrams with uniformly bounded mass
has some interesting structure and can provide a relevant framework in some
cases. It will be studied in detail in Section 3.2.

2for the bottleneck distance. A slightly more sophisticated analysis is required for
the dp metric with p <∞.
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Figure 2.3: (Top) A n-sample on a Torus for n = 100, 500, 5000. (Bottom) The
corresponding persistence diagrams in H1; the title of each subplot indicates the
number of points in the corresponding diagram. Although the diagram converges
(in the bottleneck distance) to the diagram of the underlying torus (which has
2 points, one for each generating loop), the number of points in the diagram
diverges.

Example 2.13. Let µn =
∑n

k=1 δxk , where xk =
(
0, 2−k

)
. The sequence

(µn)n is a Cauchy sequence for the dp metric, as for n < m we have
dp(µn, µm) ≤ 2(m−n). However, the limit object is

∑
k≥1 δxk , which has

infinitely many points. See Figure 2.4 for an illustration.

Remark 2.14. The space of persistence diagrams equipped with the bot-
tleneck metric (p =∞) is more intricate. Indeed, Eq. (2.8) does not define
a separable metric space in this context (see Remark 3.25 in Chapter 3 or
[BV18, Thm. 4.20]). A careful study of this space is provided in Section 3.3.

Thanks to the work [TMMH14], we know more about the geometric
structure of Dp in the case p = 2 (although their analysis easily extends to
any finite p). See appendix C for a reminder of important notions in metric
geometry (geodesic curves, curvature, etc.).

Proposition 2.15. The space D2 is a geodesic space. It is a non-
negatively curved Alexandrov space.
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Figure 2.4: (Left) A Cauchy sequence of finite diagrams that converges to a
diagram with infinitely many points. (Right) An example where the geodesic
between two diagrams is not unique.

In Chapter 3, we will provide a new analysis of this space based on opti-
mal transport theory. We will recover some results of [MMH11, TMMH14]
using different tools and prove new properties of the space by adopting a
measure-based formalism. This formalism will allow us to address some of
the problems we present below.

Fréchet means of persistence diagrams

Assume we have a set of observations X1 . . . Xn from which we compute
(for some filtration, etc.) a set of diagrams µ1 . . . µn ∈ D2 (i.e. with p = 2).
In order to summarize the topological information contained in the (µi)is,
the most natural attempt is to define and compute a notion of mean, or
barycenter . However, the space of persistence diagrams, equipped with any
of the dp metrics, does not have a linear structure. Therefore, the notion
of arithmetic mean used routinely in Euclidean spaces does not make sense
in this space.

However, a characterization of the arithmetic mean in metric spaces is
that it is the unique minimizer of x 7→∑n

i=1 ‖x− xi‖2. The latter formula
only involves metrics and thus still makes sense in the context of metric
spaces, in particular D2.

Definition 2.16. Let µ1 . . . µn be n persistence diagrams. A Fréchet
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mean of µ1 . . . µn is any minimizer, should it exist, of the energy functional

E : ν 7→ 1

n

n∑

i=1

d2(ν, µi)
2. (2.10)

More generally, if P is a probability distribution supported on D2, the energy
functional reads

E : ν 7→
∫

d2(ν, µ)2dP (µ). (2.11)

We commonly add the assumption E(0) < ∞, where 0 denotes the empty
diagram.

The study of Fréchet means in D2 was initiated in [MMH11, TMMH14],
where authors proved the existence of Fréchet means in the finite case (2.10)
and in the general case (2.11) under some assumptions on the distribution
P . Note that Fréchet means in D2 might not be unique, but generically are
[Tur13]. From a computational perspective, [TMMH14] provided an algo-
rithm to estimate a minimizer of (2.10), see Figure 2.5 for an illustration.
However, this algorithm can return possibly bad estimates (see Chapter 5)
and does not scale up on large samples.

Once again, by making use of the optimal transport formalism devel-
oped in Chapter 3, we will show how we can improve on this result. From
a theoretical perspective, we will prove in Chapter 4 the existence of mini-
mizers of (2.11) for any distribution P (satisfying a necessary finite moment
assumption), extending the previous result of [MMH11]. From a practical
perspective, making use of recent progress in computational optimal trans-
port [PC17], we will propose in Chapter 5 a convex and scalable relaxation
strategy to estimate minimizers of (2.10).

Persistence diagrams in random settings

A natural approach in statistics is to assume that our observations are gen-
erated, independently, by some underlying random process. In the context
of topological data analysis, it leads to considering the random topological
properties of this process.

For instance, consider the following: let ξ be a probability distribution
supported on Rd. Fix n ∈ N. Let Xn = (X1 . . . Xn) be a n-sample of
law ξ (that is, ∀i,Xi ∼ ξ, i.i.d.). One can build, using the Čech (or Rips)
filtration (Example A.10) a random persistence diagram Dgm(Xn).

The topology of this sampling process is encoded by the (random)
points of Dgm(Xn). As such, for any compact set K ⊂ Ω, the quantity
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Figure 2.5: An example of Fréchet mean of three persistence diagrams (red, blue,
green) with uniform weights.

Dgm(Xn)(K) encodes the (random) number of points of Dgm(Xn) that fall
into K; it is an integer-valued random variable. A natural deterministic
quantity to consider is then the expectation of this random variable. It
defines the expected persistence diagram (EPD) E[Dgm(Xn)] of the random
process Xn:

For all K ⊂ Ω, E[Dgm(Xn)](K) := E[Dgm(Xn)(K)]. (2.12)

Obviously, E[Dgm(Xn)] is not integer-valued. These objects were intro-
duced by Chazal and Divol in [DC19], where the authors proved that under
regularity condition on the sampling process ξ, the EPD is a Radon measure
supported on Ω that admits a Lebesgue density supported on Ω.

How to study such objects? EPDs can be interpreted in a similar way
to classical persistence diagrams: areas of high density indicate that, on av-
erage, random realizations of Dgm(Xn) have points in this area. However,
the combinatorial definition of the diagram metrics (2.1) and (2.3) makes
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them unable to handle measures with continuous support. Being able to
compute distances involving expected persistence diagrams (or other mea-
sures with a continuous support) is of interest, as it would allow us to
address interesting questions from a statistical viewpoint, such as

• How does the expected persistence diagram depend on the underlying
law ξ generating the points?

• Given m realizations of Xn, denoted by (X
(i)
n )mi=1, a natural estimator

of E[Dgm(Xn)] is µmn := 1
n

∑m
i=1 Dgm(X

(i)
n ). Indeed, for any compact

K ⊂ Ω, µmn (K) = 1
n

∑
i Dgm(X

(i)
n )(K)→ E[Dgm(Xn)(K)] as m→∞

by the law of large numbers. However, can we quantify how fast µmn
converges?

In Chapter 3, we show how the metrics dp can be extended to handle
measures with continuous support. It will allow us to address the above
questions in Section 7.1.

Learning with persistence diagrams

We end this section by mentioning some interesting questions that arise
when one attempts to perform machine learning with persistence diagrams.
First, note that as mentioned above, the lack of linear structure in the space
of persistence diagrams prevents from using simple statistical descriptors
faithfully, such as arithmetic means. A fortiori, some sophisticated machine
learning pipelines, think for instance of deep neural networks, cannot be
used as they generally take elements of a finite-dimensional vector space as
input.

To circumvent this issue, various approaches have been proposed to
embed the space of persistence diagrams into a linear space, essentially
making use of vectorizations.

Definition 2.17. A vectorization is a map Φ : D → B for some Banach
space B.

A linear representation is a vectorization of the form Φ : µ 7→ µ(f) for
some fixed function f : Ω→ B, where B is a Banach space.

In practice, essentially two types of vectorizations have been used:

• Through the use of kernel methods [KFH17, LY18, CCO17, RHBK15].
It consists in proposing a map k : D × D → R which is symmetric,
positive definite. In this case, Aronszajn’s theorem states that there
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exists a map φ : D → H to some Hilbert spaceH (called a reproducing
kernel Hilbert space) such that k(µ, ν) = 〈φ(µ), φ(ν)〉H. The map φ
is implicit in general but various machine learning algorithms only
make use of (expressions based on) the computable quantity k(·, ·).
This approach will not be covered in detail in this manuscript.

• Through explicit mappings into finite-dimensional spaces [Bub15, AEK+17,
BM19]. In practice, it turns out that many of these are linear repre-
sentations.

The formalism we develop in this manuscript is especially adapted to study
linear representations of persistence diagrams, as detailed in Chapter 6.
We characterize exhaustively continuous linear representations, and detail
in Section 6.2 how one can design a neural network layer that will learn a
task-specific linear representation based on this formalism.

2.2 Optimal Transport

This section is addressed to the reader who is new to the optimal trans-
port (OT) literature. This brief introduction will essentially focus on the
important aspects of OT that will be used through the manuscript. We in-
dicate to the interested reader three books that provide a significantly more
exhaustive presentation of the field, ranked from the most theory-heavy to
the more computation-oriented: [Vil08], [San15], and [PC17].

2.2.1 Monge and Kantorovich problems

We present here the optimal transport problem in its historical formula-
tion as introduced by Gaspard Monge [Mon84], and its extension due to
Kantorovich [Kan42].

Motivation and intuition

The initial motivations behind the development of the optimal transport
theory were practical ones. To get the first intuition, one could consider
the following problem: consider a pile of sand in some starting configura-
tion, and suppose that you want to move it in order to reach some target
configuration (for instance, to fill a hole). Of course, moving the sand is
exhausting, and you may want to minimize the amount of effort put to
reach your goal.
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µ

ν

Figure 2.6: Intuitive illustration of the optimal transportation problem in 1D.

Without being completely formal yet, we can model this problem in the
following way: initially, the sand is distributed in some manner, denoted by
µ. The notation dµ(x) will denote the quantity (say, mass) of sand located
at a given position x. Similarly, the target distribution (i.e. configuration)
will be denoted by ν. Transporting µ onto ν, in the sense of Monge, means
finding a map T : x 7→ T (x) such that for any set of locations A, one
has ν(A) = µ(T−1(A)), a relation which is denoted by ν = T#µ, called
a push-forward . Note that this implicitly assumes that the distribution µ
and ν must have the same total mass: at this stage, we cannot create sand
ex-nihilo, nor make some sand disappear.

For each initial location x, going from some position x to a target po-
sition T (x) has some cost, denoted by c(x, T (x)). For instance, c could be
the distance traveled to reach x from T (x), the time taken to travel, or
some price. A natural assumption is that the practical cost for the user is
actually proportional to the quantity of mass transported dµ(x), that is we
actually pay c(x, T (x))dµ(x) when transporting a quantity of mass dµ(x)
located at x onto T (x). As this holds for any location x, the total cost
induced by the transport map T when transporting µ onto ν is given by the
sum of each individual cost c(x, T (x))dµ(x), yielding

∫

x

c(x, T (x))dµ(x).

Of course, one might have various ways of transporting µ onto ν, that is
to pick a map T satisfying T#µ = ν, and one might pick an optimal one.
Namely, we are looking for a map T ∗ that would realize

inf
T :T#µ=ν

∫

x

c(x, T (x))dµ(x).
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The Monge problem

We are now ready to give the formulation of the Monge problem. First, we
consider two Polish spaces X and Y , and two non-negative finite measures
µ and ν supported on X and Y respectively. Let c : X × Y → R+ be a
lower semi-continuous non-negatively valued cost function.

The Monge problem between µ and ν is

minimize
T

{∫

x∈X
c(x, T (x))dµ(x) : T#µ = ν

}
. (2.13)

A map T ∗ minimizing (2.13) is an optimal transport map, and its cost∫
x
c(x, T ∗(x))dµ(x) is the (Monge-)optimal transport cost between µ and ν,

denoted by OTc(µ, ν).
First, observe that if µ and ν do not have the same total mass, there is

no transport map satisfying T#µ = ν. We will thus make this assumption
in the remainder of this section. Note also that the problem is linear in
the mass, that is for any λ > 0, we have OTc(λµ, λν) = λOTc(µ, ν). As
such, it is common (if not systematic) in the optimal transport literature to
consider that µ, ν are probability measures on their respective spaces, that
is non-negative Radon measures of mass 1.

Unfortunately, in many situations, looking for transport maps from µ
to ν is too restrictive. Indeed, this formalism enforces that the whole mass
located at x ∈ X is transported to a single target location T (x) ∈ Y :
splitting the mass is not allowed. As such, there are simple situations where
there is no transport map. For instance, fix X = Y = R and consider µ = δ0

the Dirac mass located at 0, and ν = 1
2
(δ−1 + δ1). In this context, there is

no T satisfying T#µ = ν ; see also Figure 2.7 for an illustration. Actually,
even when the set of transport maps is not empty, it might happen that no
transport map is optimal, see [Vil08, Example 4.9] for instance.

To overcome this limitation, one resorts to the Kantorovich formulation
of the transport problem. Essentially, this extension of the Monge problem
consists in optimizing on transport plans instead of transport maps. A
transport plan is a measure π supported on the product space X ×Y whose
natural interpretation is the following: dπ(x, y) represents the fraction of
mass initially located at x that is transported to y. In addition, we ask
the transport plan to actually transport µ onto ν, which is encoded by the
marginal constraints that read, for all Borel subsets A ⊂ X , B ⊂ Y ,

µ(A) =

∫

x∈A

∫

y∈Y
dπ(x, y), ν(B) =

∫

y∈B

∫

x∈X
dπ(x, y). (2.14)

The set of transport plans between µ and ν is called the transportation
polytope between µ and ν and will be denoted by Π(µ, ν). The Kantorovich
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X = Y
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X = Y
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(1/2)
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Figure 2.7: (Left) A basic example where there exists no transport map between
µ and ν. (Right) An example where there exists an optimal Monge map (dashed),
but performs poorly compared to an optimal transport plan (that would be able
to split the (1/2) red mass and transport it onto the (1/4) blue masses).

formulation of the optimal transport problem finally reads

minimize
π∈Π(µ,ν)

∫∫

X×Y
c(x, y)dπ(x, y). (2.15)

As in the Monge transportation problem, a minimizer of (2.15) is an op-
timal transport plan, and the infimum value is the (Kantorovich-)optimal
transport cost between µ and ν for the cost c, also denoted by OTc(µ, ν).

Remark 2.18. Unlike the Monge problem, optimal transport plans for the
Kantorovich problem always exist [Vil08, Theorem 4.1]. In general, it might
happen that an optimal transport map exists but achieves a much larger cost
than an optimal transport plan (see Figure 2.7). However, if µ is atomless,
although an optimal transport map might not exist, the infimum value in
the Monge problems coincide with the minimum value of the Kantorovich
problems [Pra07, Theorem B].

Finally, let us note two important situations where optimal transport
maps and optimal transport plans do coincide.

Proposition 2.19 ([Vil08, Theorem 9.4, Theorem 10.41]). If X = Y =
Rd and c(x, y) = ‖x − y‖2 (the so-called quadratic cost), and if µ admits
a density with respect to the Lebesgue measure, then there exists a unique
optimal transport plan, which is actually an optimal transport map, which
eventually turns out to be the (sub)gradient of a convex function.

Proposition 2.20 (Birkhoff-von Neumann). If µ and ν are discrete
measures with uniform weights, that is of the form µ =

∑n
i=1 δxi and

ν =
∑n

i=1 δyj for some integer n, then there exists an optimal transport
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plan between µ and ν which is a transport map; that is a bijection between
the supports of µ and ν, also known as an optimal matching.

2.2.2 Wasserstein distances and Wasserstein spaces

A natural context where one can apply optimal transport is the following:
assume that the (Polish) space X is equipped with a metric d, and consider
some 1 ≤ p < ∞. The p-Wasserstein distance between µ and ν is defined
as the optimal transport cost (to the power 1/p) of transporting µ onto ν
for the cost c(x, y) = d(x, y)p, that is

Wp,d(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫∫

X×X
d(x, y)pdπ(x, y)

) 1
p

, (2.16)

When there is no ambiguity on the distance d used, we simply write Wp

instead of Wp,d. In order to have Wp finite, µ and ν are required to have a
finite p-th moment, that is there exists x0 ∈ X such that

∫
X d(x, x0)pdµ(x)

(resp. dν) is finite. A nice observation is that Wp is a metric over the
set of such probability measures, referred to as Wp(X ) and called the p-
Wasserstein space over (X , d). A first interesting remark that can be done

is the simple equality
Wp,d(δx, δy) = d(x, y),

for any x, y ∈ X . Thus, the Wasserstein spaceWp(X ) contains an isometric
copy of the ground space X by simply looking at Dirac masses. From a
theoretical viewpoint, the Wasserstein space over (X , d) is of interest as
many geometric properties of (X , d) are reflected in Wp(X ). For instance,
if (X , d) is a Polish [Vil08, Theorem 6.18], or a compact [Vil08, Remark
6.19], or a geodesic [Vil08, Corollary 7.22] space, so is Wp(X ). Therefore,
when dealing with a collection of probability measures µ1 . . . µN supported
on some “nice” ground space (X , d), think for instance of Rd equipped with
the Euclidean metric, one can build statistical summaries of the (µi)is by
working in the Wasserstein space. Such statistics are likely to reflect the
geometry of the ground space in some sense (see Example 2.21).

Example 2.21. Let µ1 . . . µN be a collection of probability measures sup-
ported on Rd with finite second moment. A Wasserstein barycenter of
µ1 . . . µN (also called a Fréchet mean) is any minimizer (in W2(Rd)) of
the energy functional

E : µ 7→
N∑

i=1

λiW
2
2 (µ, µi), (2.17)
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where the λis are non-negative weights that sum to 1. This problem was
studied in the seminal work [AC11] where authors proved the existence of
solutions. From a theoretical viewpoint, this result was extended in [LGL16]
to the case of averaging infinitely many probability measures on Wp(Rd).
Namely, given a probability distribution P supported on Wp(Rd) (a distri-
bution of probability measures), they proved the existence of solutions to

E : µ 7→
∫
W 2

2 (µ, ν)dP (ν), (2.18)

and they also proved that minimizers of (2.17) must converge to minimizers
of (2.18) as N →∞—under the assumption that the µi ∼ P , i.i.d.

From a computational perspective, based on entropic regularization (see
Section 2.2.4 below) of the Wasserstein metrics, efficient methods to es-
timate solutions of (2.17) have been proposed in a series of works in the
mid 2010’s [CD14, SDGP+15, CP16], see Figure 2.8 for an illustration.
Wasserstein barycenters are still actively studied; among interesting re-
search branches, we point out the work [GPRS19] where authors study
the convergence rates of minimizers of (2.17) to minimizers of (2.18) as
N →∞ (where µi ∼ P ).

2.2.3 Unbalanced optimal transport

Wasserstein distances and dp metrics between persistence diagrams defined
in Eq. (2.3) share the key idea of defining a distance by minimizing a cost
over some matchings. However, the set of transport plans Π(µ, ν) between
two measures is non-empty if and only if the two measures have the same
mass, while persistence diagrams with different masses (number of points)
can be compared, making a crucial difference between the Wp and dp met-
rics.

Extending optimal transport to measures of different masses, generally
referred to as unbalanced optimal transport , has been addressed by differ-
ent authors [Fig10, CPSV18, KMV+16], and we refer to the PhD thesis
manuscript of L.Chizat [Chi17] for a general presentation. We present in
the following two approaches to deal with unbalanced measures that will
be of interest to handle persistence diagrams.

Regularization of marginal constraints

Consider a Polish space X and two non-negative finite Radon measures µ, ν
supported on X . As mentioned above, the transportation polytope Π(µ, ν)
is empty if (and only if) µ and ν do not have the same masses. Intuitively,
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Figure 2.8: Wasserstein barycenters of three measures for different weights.

it means that in this context, satisfying the marginal constraints (2.14) is
too strong of a requirement. A natural workaround is then to relax this
requirement: instead of asking the marginals of a measure π on X × X to
be exactly µ and ν, we penalize the distance between the marginals and
the “targets” µ and ν. Formally, this is done using a Csiszár-divergence (or
ϕ-divergence).

Let ϕ : R → R+ be an entropy function, that is a convex lower semi-
continuous function, satisfying ϕ(p) = +∞ if p < 0 and ϕ(1) = 0. Define
ϕ′∞ = limp→∞ ϕ(p)/p. The divergence associated to ϕ between two non-
negative Radon measures is defined as

Dϕ(α|β) :=

∫

X
ϕ

(
dα

dβ

)
dβ(x) + ϕ′∞

∫

X
dα′, (2.19)

where dα
dβ

is the Radon-Nikodym decomposition of α with respect to β (see

Appendix B), with the standard convention ∞× 0 = 0 if ϕ′∞ = ∞. The
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unbalanced transport problem between µ and ν is then defined as

minimize
π∈M(X×X )

∫∫
c(x, y)dπ + ρDϕ(π(1)|µ) + ρDϕ(π(2)|ν), (2.20)

where π(1), π(2) denote the first and second marginals of π respectively, and
ρ > 0 is a parameter controlling the strength of the (regularized) marginal
constraints.

Example 2.22. Some choices of ϕ allow recovering well-known notions
of divergence between measures. For instance,

• ϕ : z 7→ z log(z) − z + 1 defines Dϕ = KL, the Kullback-Leibler
divergence.

• ϕ : z 7→ |1− z| defines the total variation between measures.

Note also that taking ϕ : z 7→ 0 if z = 1, and ϕ(z) = +∞ otherwise, define
the convex indicator function of 1, in which case we recover the balanced
OT problem (2.15) as a particular case of (2.20).

This formalism can be appealing when attempting to provide an optimal
transport formulation of metrics between persistence diagrams. However,
it is important to observe that the penalization Dϕ(π(1)|µ) is independent
of the geometry of the ground space. When comparing persistence diagrams
(2.3), in contrast, we considered that unmatched points were transported
to their orthogonal projections onto the diagonal; so the cost of not trans-
porting a point depends on its location.

Optimal transport with boundary

An alternative approach, that is not encompassed by (2.20), was proposed
by Figalli and Gigli in [FG10]. In this work, authors propose to extend
Wasserstein distances to Radon measures supported on a bounded open
proper subset X of Rd, whose boundary is denoted by ∂X (and X :=
X t ∂X ).

Informally, they propose to use the boundary ∂X as an infinite reservoir
of mass. To do that, they relax the marginal constraints, proposing to match
an element of mass dµ(x) either to some dν(y), with cost d(x, y)p, or to the
boundary of the space ∂X , with cost d(x, ∂X ) := minx′∈∂X d(x, x′)p (and
similarly for ν). This is formalized by the following definition.
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Definition 2.23. [FG10, Problem 1.1] Let p ∈ [1,+∞). Let µ, ν be two
Radon measures supported on X satisfying

∫

X
d(x, ∂X )pdµ(x) < +∞,

∫

X
d(x, ∂X )pdν(x) < +∞. (2.21)

The set of admissible transport plans (or couplings) Adm(µ, ν) is defined
as the set of measures π on X × X satisfying for all Borel sets A,B ⊂ X ,

π(A×X ) = µ(A) and π(X ×B) = ν(B).

The cost of π ∈ Adm(µ, ν) is defined as

Cp(π) :=

∫∫

X×X
d(x, y)pdπ(x, y). (2.22)

The Optimal Transport (with boundary) distance OTp(µ, ν) is then defined
as

OTp(µ, ν) :=

(
inf

π∈Adm(µ,ν)
Cp(π)

)1/p

. (2.23)

As in the balanced OT formalism (2.15), plans π ∈ Adm(µ, ν) realizing the
infimum in (2.23) are called optimal. The set of optimal transport plans
between µ and ν for the cost (x, y) 7→ d(x, y)p is denoted by Optp(µ, ν).

As we will see later in Chapter 3, this formulation is exactly the one we
need to bridge the gap between persistence diagram metrics and optimal
transport formulations. At this point, we simply put the emphasis on some
important facts:

• OTp is well-defined even between Radon measures of infinite mass,
as long as they satisfy (2.21). This property can be seen as an ana-
log to the finite moment condition involved in the definition of the
Wasserstein distance in Section 2.2.2.

• In their work, Figalli and Gigli supposed the ground space X to be
bounded. Of course, the upper half-plane Ω on which persistence
diagrams are supported is not bounded. This does not prevent us
from defining OTp in this context but will require additional care in
the proofs.

We end this section by introducing a useful notion that will be used in
Chapter 3, which shows how to build an element of Adm(µ, ν) given a map
f : X → X satisfying some balance condition (see Figure 2.9).
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Figure 2.9: A transport map f must satisfy that the mass ν(B) (light blue) is
the sum of the mass µ(f−1(B) ∩ X ) given by µ that is transported by f onto B
(light red) and the mass ν(B ∩ f(∂X )) coming from ∂X and transported by f
onto B.

Definition 2.24. Let µ, ν ∈ M. Consider f : X → X a measurable
function satisfying for all Borel set B ⊂ X

µ(f−1(B) ∩ X ) + ν(B ∩ f(∂X )) = ν(B). (2.24)

Define for all Borel sets A,B ⊂ X ,

π(A×B) = µ(f−1(B) ∩ X ∩ A) + ν(X ∩B ∩ f(A ∩ ∂X )). (2.25)

π is called the transport plan induced by the transport map f .

One can easily check that we have indeed π(A×X ) = µ(A) and π(X ×
B) = ν(B) for any Borel sets A,B ⊂ X , so that π ∈ Adm(µ, ν) (see Figure
2.9).

2.2.4 Entropic regularization of optimal transport

The last variation of the optimal transport problem we need to introduce in
this background section is the entropic regularization of optimal transport,
an idea that can be traced back to the Schrödinger problem [Sch31, Léo14].
This approach was highly popularized by Cuturi [Cut13], showing that the
(unique!) solution of the regularized problem introduced below can be ap-
proximated at a lightspeed rate.
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Definition

Consider µ, ν, two probability measures supported on some space X equipped
with some cost function c (typically c(x, y) = d(x, y)p, for p ≥ 1). The trans-
portation polytope Π(µ, ν) is not empty: it contains at least the product
measure µ⊗ ν, defined as µ⊗ ν(A,B) := µ(A)ν(B) for all Borel A,B ⊂ X .
Interestingly, it turns out that µ ⊗ ν is the element of Π(µ, ν) that has
minimal negentropy h, defined as

h : π 7→
∫∫

(log(π)− 1)dπ,

with the standard convention 0 × log(0) = 0. As such, an intuitive under-
standing one can have about the entropic regularization of optimal transport
is the following. On the one hand, there is (at least) one optimal transport
plan π∗, but this might be “hard” to find. On the other hand, there is the
trivial transport plan µ⊗ν, which is straightforward to compute, but which
will be suboptimal in general. Why not interpolate between both? It turns
out that µ⊗ν is the element of Π(µ, ν) that has maximal entropy (minimal
negentropy). It invites us to consider, for some regularization parameter
ε > 0,

W ε
c (µ, ν) := inf

π∈Π(µ,ν)

∫∫
c(x, y)dπ + εh(π). (2.26)

A slight variation of this definition, used in recent works in optimal trans-
port [RTC17, GPC18, FSV+19, SFV+19], consists in changing the negen-
tropy h for the Kullback-Leibler divergence to the product measure µ ⊗ ν,
reading

OTε
c(µ, ν) := inf

π∈Π(µ,ν)

∫∫
c(x, y)dπ + εKL(π|µ⊗ ν), (2.27)

where we recall that, as µ, ν have mass 1,

KL(π|µ⊗ ν) =

∫∫
log

(
dπ

dµ⊗ ν

)
dπ.

In both cases, the first consequence of introducing the regularization term is
that it makes the minimization problem strictly convex, ensuring that there
is a unique solution πε. Furthermore, πε → π∗ as ε → 0, where π∗ is the
optimal transport plan between µ and ν (for the non-regularized problem)
that has maximal entropy.
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Remark 2.25. As explained in [PC17, Remark 4.2], using the Kullback-
Leibler divergence instead of the negentropy is nothing but a change of “ref-
erence measure”. Indeed, the negentropy h is (up to a constant factor)
the Kullback-Leibler divergence with respect to the Lebesgue measure. Us-
ing µ ⊗ ν as a reference measure is motivated by the following fact: as
the regularization parameter ε goes to ∞, the unique solution πε (either of
(2.26) or (2.27)) is expected to get closer to µ⊗ ν (as it is the measure in
Π(µ, ν) of largest entropy). Using any other reference measure would make
the regularized transport cost to diverge as ε→∞. In contrast, one has

OTε
c(µ, ν)→

∫∫
c(x, y)dµ(x)dν(y)

as ε → ∞. A proof of this fact can be found in the Ph.D. thesis of Aude
Genevay (see [Gen19, Theorem 10]).

Eventually, it turns out that the map (µ, ν) 7→ πε is smooth. This
smoothness is at the core of some variational algorithms to solve optimiza-
tion problems in the Wasserstein space, such as computing Wasserstein
barycenters. We will present in Chapter 5 an application of this property
in the context of persistence diagrams.

Computational aspect

Nonetheless, what makes the entropic regularization so popular in com-
putational optimal transport nowadays lies in its computational strengths.
For the sake of exposition, and as we target numerical applications here,
let us expose these strengths in the finite-dimensional setting , that is when
the measures of interest have finite support. Namely, let µ =

∑n
i=1 aiδxi

and ν =
∑m

j=1 bjδyj , where the a = (ai)i ∈ Rn
+ and b = (bj)j ∈ Rm

+ are non-

negative weights that sum to 1, and (xi)i, (yj)j are points in Rd. Finally, let
C ∈ Rn×m denote the matrix (c(xi, yj))ij (typically c(xi, yj) = ‖xi − yj‖2

2,
but any choice would work in the following).

In this context, (2.26) reads3

W ε
c (µ, ν) = inf

P∈Rn×m
{ 〈P,C〉+ ε

∑

ij

Pij(log(Pij)− 1),

P1m = a, P T1n = b},
(2.28)

where 〈P,C〉 =
∑

ij PijCij denotes the Frobenius dot product between P

and C, and 1k denotes the vector (1 . . . 1) ∈ Rk. Using standard duality
3Similar computational results exist for the variation OTε

c, not detailed here for the
sake of concision. See [FSV+19] for details.
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results, this problem is equivalent to the following unconstrained maximiza-
tion problem

W ε
c (µ, ν) = sup

f∈Rn,g∈Rm
〈a, f〉+ 〈b, g〉 − ε

∑

ij

exp

(
fi + gj − Cij

ε

)
, (2.29)

with the primal-dual relation between a minimizer P ∗ in (2.28) and maxi-
mizers (f ∗, g∗) of (2.29):

P ∗ = exp

(
fi + gj − Cij

ε

)
. (2.30)

Introducing the variables u = exp(f/ε), v = exp(g/ε) and K = exp(−C/ε)
(where exponentiation must be understood term-wise), the first order con-
ditions read (term-wise division)

{
u = a

Kv

v = b
KTu

. (2.31)

Said differently, an optimal pair (u, v) is a fixed point of the Sinkhorn map

S : (u, v) 7→
(

a

Kv
,

b

KTu

)
. (2.32)

Furthermore, the sequence (ut, vt)t defined for arbitrary (u0, v0) as
{
ut+1 ← a

Kvt

vt+1 ← b
KTut+1

(2.33)

converges toward a such a fixed point (u, v). This gives a fairly simple
algorithm to approximate a solution of (2.28) (both in terms of minimum
and minimizer). The iterations involved in (2.33) only involve basic matrix
manipulations and are thus especially suited to be run on modern hardware
such as a GPU.

This algorithm can have even more computational benefits when dealing
with histograms (think of images for instance), that is measures supported
on a common finite set of cardinality n. A histogram is thus a vector Rn

+

whose coordinates sum to one. Assume that one wants to solve N instances
of (2.28). It involves N pairs of variables (u(1), v(1)) . . . (u(N), v(N)) but a
single cost matrix C ∈ Rn×n. As such, one can run the iterations (2.33) only
once, using u(1...N) := (u(1) . . . u(N)) ∈ Rn×N and v(1...N) = (v(1) . . . v(N)).
This makes the Sinkhorn algorithm especially efficient when one wants to
estimate a large number of transport distances between histograms.
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Sinkhorn divergences

Although regularized optimal transport was initially popularized for its
computational properties, some effort has been recently dedicated to provid-
ing a better understanding of its theoretical behavior. In [GPC18], Genevay
et al. introduced the notion of Sinkhorn divergence, namely they define:

Sεc (µ, ν) = OTε
c(µ, ν)− 1

2
OTε

c(µ, µ)− 1

2
OTε

c(ν, ν). (2.34)

The initial idea behind this definition is that OTε
c(µ, µ) does not necessarily

equal 0, while Sεc (µ, µ) obviously does. Furthermore, while it was well-
known that OTε

c(µ, ν) → OTc(µ, ν) as ε → 0 (the same hold with W ε
c or

Sεc ), authors in [RTC17] and [GPC18] observe that

lim
ε→+∞

Sεc (µ, ν) = −
∫∫

c(x, y)d(µ− ν)(x)d(µ− ν)(y)

=: MMD(µ, ν),

where MMD stands for the maximum mean discrepancy [GBR+12], another
notion of distance between probability measures, making the Sinkhorn di-
vergence an interpolation between two common ways to compare proba-
bility measures. Feydy et al. [FSV+19, Theorem 1] strengthened this fact
by showing, under some assumptions on c and for measures supported on
a common compact domain, that although Sεc is not a distance (it does
not satisfy the triangle inequality), one has for all probability measures
(µn)n, µ, ν,

Sεc (µ, ν) ≥ Sεc (µ, µ) ≥ 0,

Sεc (µ, ν) = 0⇔ µ = ν,

Sεc (µn, µ)→ 0⇔ OTc(µn, µ)→ 0.

Thus, the Sinkhorn divergence induces a good notion of divergence between
probability measures. Finally, let us mention that Sinkhorn divergences
have been extended to the unbalanced case (Section 2.2.3) in the recent
work of Séjourné et al. [SFV+19].
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2.3 Notations

We will use the following notations throughout the manuscript.
Let Ω denote the open half-plane

Ω := {(b, d) ∈ R2, b < d}, (2.35)

and let ∂Ω denote its boundary, namely the diagonal

∂Ω := {(t, t), t ∈ R}. (2.36)

For x ∈ Ω, p∂Ω(x) denotes its orthogonal projection onto the diagonal ∂Ω.
Let Ω denote Ω t ∂Ω. The function d : Ω × Ω → R denotes the ground
metric on Ω, typically d(x, y) := ‖x − y‖q for some q ∈ [1,+∞]. We will
also use the notation

EΩ := Ω× Ω\∂Ω× ∂Ω.

The space of persistence measures of parameter 1 ≤ p ≤ ∞ is the
space of non-negative Radon measures supported on Ω that have finite
total persistence-p, that is

Mp :=

{
µ, Persp(µ) :=

∫

Ω

d(x, ∂Ω)pdµ(x) <∞
}
, (2.37)

where in the case p =∞ the total persistence reads

Pers∞(µ) = sup
x∈spt(µ)

d(x, ∂Ω),

also known as µ-essential supremum of the function x 7→ d(x, ∂Ω). It is
equipped with an optimal partial transport metric denoted by OTp.

The space of persistence diagrams of parameter p is the subset Dp ⊂Mp

consisting only of point measures, that is measures µ of the form

µ =
∑

x∈X

nxδx (2.38)

where X ⊂ Ω is a locally finite set, and nx ∈ N. It is equipped with a
partial matching metric dp, although we show that dp = OTp over Dp.

Given a Polish metric space (X , d), and a parameter 1 ≤ p ≤ ∞, let
Wp,d (or Wp if there is no ambiguity on the ground metric d) denote the p-
Wasserstein distance between probability measures (of finite p-th moment)
supported on X ; and Wp(X , d) or simply Wp(X ) the space of such proba-
bility measures equipped with the metric Wp,d.
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Chapter 3

Persistence diagrams and measures,
an Optimal Transport Viewpoint

Abstract

This chapter is dedicated to a theoretical study of spaces of per-
sistence diagrams by adopting an optimal transport viewpoint. By
establishing a strong connection between diagram metrics and opti-
mal transport ones, we obtain new results on these spaces, in par-
ticular, a very useful characterization of convergence of persistence
diagrams in terms of measure theory. Furthermore, this formalism
allows us to define an extension of the diagram metrics to any mea-
sure supported on the open half-plane, not only those with discrete
support such as diagrams, offering the possibility to deal with more
complicated objects such as random persistence diagrams (see Sec-
tion 2.1.3). The strength of this formalism will be showcased through
various applications in Part II.

3.1 General properties of Mp

Let Ω denote the open half-plane

Ω := {(b, d) ∈ R2, b > d}, (3.1)

and let ∂Ω denote its boundary, namely the diagonal

∂Ω := {(t, t), t ∈ R}. (3.2)

Eventually, let Ω denote Ω t ∂Ω.
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For now, we fix a parameter p ∈ [1,+∞). The particular case p = ∞
is studied in Section 3.3. Recall from Definition 2.9 in Section 2.1 that
persistence diagrams are defined as locally finite point measures supported
on Ω, that is of the form

∑
x∈X nxδx, where X ⊂ Ω is locally finite, and nx ∈

N for all x ∈ X. The space of persistence diagrams is equipped with metrics
dp, defining a metric space (Dp,dp). A diagram µ ∈ Dp might have infinitely
many points, but we request that Persp(µ) :=

∑
x∈X nxd(x, ∂Ω)p < ∞,

where d(·, ·) denotes the ground distance on R2, typically ‖ · − · ‖q for
q ∈ [1,+∞] (the choice of q does not play any important role). This
condition is equivalent to saying that µ must be at a finite distance from
the empty diagram, i.e. dp(µ,0) <∞.

Considering diagrams as measures invites us to consider more general
measures supported on Ω. Let thus M(Ω) denote the set of non-negative
Radon measures supported on Ω (see Appendix B for details in measure
theory). Without further ado, we introduce the space of persistence mea-
sures

Mp :=

{
µ ∈M(Ω), Persp(µ) :=

∫

x

d(x, ∂Ω)pdµ(x) <∞
}
. (3.3)

We equip Mp with the metric OTp (see Section 2.2.3 for a more detailed
presentation) defined as

OTp(µ, ν) = inf
π∈Adm(µ,ν)

∫∫

Ω×Ω

d(x, y)pdπ(x, y), (3.4)

where Adm(µ, ν) is the set of admissible plans between µ and ν, that is the
set of measures supported on Ω× Ω satisfying:

for all Borel sets A,B ⊂ Ω, π(A,Ω) = µ(A), π(Ω, B) = ν(B). (3.5)

Remark 3.1. These metrics have already been introduced by Figalli and
Gigli in [FG10]. In their work, authors however consider the ground space
(here, the open half-plane Ω) to be compact (which is obviously not the case
here). Some of the results presented below have counterparts in the work of
Figalli and Gigli. Sometimes, the corresponding proofs could be immediately
adapted to our framework, sometimes it required to develop new techniques
(and, of course, some results just do not hold on non-compact domains).

For the ease of readability, we have delayed some proofs to a separate
section (§3.5). We explicitly mention for each result if its proof straightfor-
wardly adapts from one of [FG10] or if it can be considered as a new result
or a new proof.
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Proposition 3.2. Let µ, ν ∈Mp. The set of transport plans Adm(µ, ν)
is sequentially compact for the vague topology on EΩ := Ω × Ω\∂Ω × ∂Ω.
Moreover, for this topology,

• π ∈ Adm(µ, ν) 7→ Cp(π) is lower semi-continuous.

• Optp(µ, ν) is a non-empty sequentially compact set.

• OTp is lower semi-continuous, in the sense that for sequences (µn)n, (νn)n
in Mp satisfying µn

v−→ µ and νn
v−→ ν, we have

OTp(µ, ν) ≤ lim inf
n→∞

OTp(µn, νn).

Moreover, OTp is a distance on Mp.

These properties are mentioned in [FG10, pages 4-5] in the bounded case,
and the corresponding proofs adapt straightforwardly to our framework (see
Section 3.5).

Remark 3.3. If a (Borel) measure µ satisfies Persp(µ) < ∞, then for
any Borel set A ⊂ Ω satisfying d(A, ∂Ω) := infx∈A d(x, ∂Ω) > 0, we have:

µ(A)d(A, ∂Ω)p ≤
∫

A

d(x, ∂Ω)pdµ(x)

≤
∫

Ω

d(x, ∂Ω)pdµ(x) = Persp(µ) <∞,
(3.6)

so that µ(A) <∞. In particular, µ is automatically a Radon measure.

The following lemma gives a simple way to approximate a persistence
measure (resp. diagram) with ones of finite masses.

Lemma 3.4. Let µ ∈ Mp. Fix r > 0, and let Ar := {x ∈ Ω, d(x, ∂Ω) ≤
r}. Let µ(r) be the restriction of µ to Ω\Ar. Then OTp(µ

(r), µ) → 0 when
r → 0. Similarly, if a ∈ Dp, we have dp(a

(r), a)→ 0.

Proof. Let π ∈ Adm(µ, µ(r)) be the transport plan induced by the identity
map on Ω\Ar, and the projection onto ∂Ω on Ar. As π is sub-optimal, one
has:

OTp
p(µ, µ

(r)) ≤ Cp(π) =

∫

Ar

d(x, ∂Ω)pdµ(x) = Persp(µ)− Persp(µ
(r)).

Thus, by the monotone convergence theorem applied to µ with the functions
fr : x 7→ d(x, ∂Ω)p · 1Ω\Ar(x), we obtain that OTp(µ, µ

(r)) → 0 as r → 0.
Similar arguments show that dp(a

(r), a)→ 0 as r → 0.
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The following result is central in this work: it shows that the metrics
OTp are extensions of the metrics dp.

Proposition 3.5. For a, b ∈ Dp, OTp(a, b) = dp(a, b).

Proof. Let a, b ∈ Dp be two persistence diagrams. Assume first that a, b
have finitely many points {x1 . . . xn} and {y1 . . . ym} respectively. For the
sake of simplicity, let us assume that each xi and yj has multiplicity one. Let
γ be an optimal partial matching that achieves dp(a, b) (see Section 2.1). It
induces an admissible transport plan π by defining π(x, y) = 1 if (x, y) ∈ γ,
and 0 otherwise. Furthermore,

∑

(x,y)∈γ

d(x, y)p =

∫∫
d(x, y)pdπ(x, y).

It yields dp(a, b) ≥ OTp(a, b).

Conversely, an element π ∈ Adm(a, b) that would achieve OTp(a, b)
must be supported on {x1 . . . xn} ∪ {p∂Ω(y1) . . .p∂Ω(ym)} × {y1 . . . ym} ∪
{p∂Ω(x1) . . .p∂Ω(xn)}, where p∂Ω(x) denotes the orthogonal projection of
x ∈ Ω onto the diagonal ∂Ω. It can thus be described as a bi-stochastic
matrix P ∈ R(n+m)×(m+n)

+ . If we denote by Sn+m this set, it yields

OTp(a, b) = inf
P∈Sn+m

〈C,P 〉 ,

where 〈C,P 〉 =
∑

ij CijPij (Frobenius dot product) and C ∈ R(n+m)×(m+n)

is defined by

Cij = d(xi, yj) if 1 ≤ i ≤ n, 1 ≤ j ≤ m,

Cij = d(xi,p∂Ω(xi)) if 1 ≤ i ≤ n, j > m,

Cij = d(p∂Ω(yj), yj) if i > n, 1 ≤ j ≤ m,

Cij = 0 if i > n, j > m.

By Birkhoff-Von Neumann theorem (Proposition 2.20), it follows that among
the minimizers of 〈C,P 〉 in Sn+m, there must be a permutation matrix
P ∗. Such a permutation matrix induces a partial matching γ defined by
(xi, yj) ∈ γ ⇔ Pij = 1, while we have

OTp(a, b) = 〈C,P ∗〉 =
∑

(x,y)∈γ

d(x, y)p ≥ dp(a, b),

so that eventually OTp(a, b) = dp(a, b).
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In the general case, let r > 0. Due to (3.6), the diagrams a(r) and b(r) de-
fined in Lemma 3.4 have a finite mass (thus finite number of points). There-
fore, dp(a

(r), b(r)) = OTp(a
(r), b(r)). By Lemma 3.4, the former converges to

dp(a, b) while the latter converges to OTp(a, b), giving the conclusion.

As a consequence of this result, we will use OTp to denote the distance
between two elements of Dp from now on.

Proposition 3.6. The space (Mp,OTp) is a Polish space.

As for Proposition 3.2, this proposition appears in [FG10, Proposition
2.7] in the bounded case, and its proof is straightforwardly adapted to our
framework (see Section 3.5).

The following is one of the most important results of this chapter: a
characterization of convergence in (Mp,OTp).

Theorem 3.7. Let µ, µ1, µ2, . . . be measures in Mp. Then,

OTp(µn, µ)→ 0⇔
{
µn

v−→ µ,

Persp(µn)→ Persp(µ).
(3.7)

This result is analog to the characterization of convergence of probability
measures in the Wasserstein space (see [Vil08, Theorem 6.9]) and can be
found in [FG10, Proposition 2.7] in the case where the ground space is
bounded. While the proof of the direct implication can be easily adapted
from [FG10], a new proof is needed for the converse implication. Both can
be found in Section 3.5.

Remark 3.8. The assumption Persp(µn)→ Persp(µ) is crucial to obtain
OTp-convergence assuming vague convergence. For instance, the sequence
defined by µn := δ(n,n+1) converges vaguely to µ = 0 and (Persp(µn))n does
converge (it is constant), while OTp(µn, 0) 9 0. This does not contradict
Theorem 3.7 since Persp(µ) = 0 6= limn Persp(µn).

Theorem 3.7 implies some very useful results. First, it entails that the
topology of the metric OTp is stronger than the vague topology. As a
consequence, the following corollary holds, using Proposition B.9 (Dp is
closed in Mp for the vague topology).

Corollary 3.9. Dp is closed in Mp for the metric OTp.
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We recover in particular that the space of persistence diagrams (Dp,OTp)
is a Polish space (due to Proposition 3.6), a result already proved in [MMH11,
Theorems 7 and 12] with a different approach.

Secondly, we show that the vague convergence of µn to µ along with the
convergence of Persp(µn)→ Persp(µ) is equivalent to the weak convergence
of a weighted measure (see Appendix B for a definition of weak convergence,
denoted by

w−→ in the following). For µ ∈ Mp, let us introduce the Borel
measure with finite mass µ[p] defined, for a Borel subset A ⊂ Ω, as:

µ[p](A) =

∫

A

d(x, ∂Ω)pdµ(x). (3.8)

Corollary 3.10. For a sequence (µn)n and a persistence measure µ ∈
Mp, we have

OTp(µn, µ)→ 0 if and only if µ[p]
n

w−→ µ[p].

Proof. Consider µ, µ1, µ2, · · · ∈ Mp and assume that OTp(µn, µ) → 0. By

Theorem 3.7, this is equivalent to µn
v−→ µ and µ

[p]
n (Ω) = Persp(µn) →

Persp(µ) = µ[p](Ω). Since for any continuous function f compactly sup-
ported, the map x 7→ d(x, ∂Ω)pf(x) is also continuous and compactly sup-

ported, µn
v−→ µ implies µ

[p]
n

v−→ µ[p]. Likewise, the map x 7→ d(x, ∂Ω)−pf(x)

is also continuous and compactly supported, so that µ
(p)
n

v−→ µ(p) implies
µn

v−→ µ. Hence, µn
v−→ µ is equivalent to µ

(p)
n

v−→ µ(p). By Proposition B.6,
the vague convergence along with the convergence of the masses is also
equivalent to the weak convergence µ

[p]
n

w−→ µ[p].

We end this section with two results: a characterization of relatively
compact sets in (Mp,OTp), and a convexity property of OTp

p that will be
useful later on.

Proposition 3.11. A set F is relatively compact in (Mp,OTp) if and
only if the set {µ[p], µ ∈ F} is tight and supµ∈F Persp(µ) <∞.

Proof. From Corollary 3.10, the relative compactness of a set F ⊂ Mp

for the metric OTp is equivalent to the relative compactness of the set
{µ[p], µ ∈ F} for the weak convergence. Recall that all µ[p] have a finite
mass, as µ[p](Ω) = Persp(µ) < ∞. Therefore, one can use Prokhorov’s
theorem (Proposition B.5) to conclude.

Remark 3.12. This characterization is equivalent to the one described
in [MMH11, Theorem 21] for persistence diagrams. The notions introduced



3.2. THE FINITE SETTING 69

therein by the authors of off-diagonally birth-death boundedness, and uni-
formness are rephrased using the notion of tightness, standard in measure
theory.

Lemma 3.13. For 1 ≤ p < ∞, the function OTp
p : Mp ×Mp → R is

convex, that is for all t ∈ [0, 1] and all µ1, µ2, ν1, ν2 ∈Mp, we have

OTp
p(tµ1 + (1− t)µ2, tν1 + (1− t)ν2) ≤ tOTp

p(µ1, ν1) + (1− t)OTp
p(µ2, ν2).

Proof. Fix µ1, µ2, ν1, ν2 ∈ Mp and t ∈ [0, 1]. Let π11 ∈ Optp(µ1, ν1) and
π22 ∈ Optp(µ2, ν2). It is straightforward to check that π := tπ11 + (1− t)π22

is an admissible plan between tµ1 +(1− t)µ2 and tν1 +(1− t)ν2. The cost of
this admissible plan is tOTp

p(µ1, ν1) + (1− t)OTp
p(µ2, ν2), which is therefore

larger than OTp
p(tµ1 + (1− t)µ2, tν1 + (1− t)ν2).

3.2 Persistence measures in the finite

setting

In practice, many statistical results regarding persistence diagrams are
stated for sets of diagrams with uniformly bounded number of points [KHN+15,
CCO17], and the specific properties of OTp in this setting are therefore
of interest. Introduce for m ≥ 0 the subset Mp

≤m of Mp defined as
Mp
≤m := {µ ∈ Mp, µ(Ω) ≤ m}, and the set Mp

f of finite persistence
measures, Mp

f :=
⋃
m≥0Mp

≤m. Define similarly the set D≤m (resp. Df ).
Note that the assumption Persp(a) <∞ is always satisfied for a finite dia-
gram a (which is not true for general Radon measures), so that the exponent
p is not needed when defining D≤m and Df .

Proposition 3.14. Mp
f (resp. Df) is dense in Mp (resp. Dp) for the

metric OTp.

Proof. This is a straightforward consequence of Lemma 3.4. Indeed, if
µ ∈ Mp and r > 0, then (3.6) implies that µ(r) is of finite mass while
µ(r) → µ when r → 0.

Let Ω̃ = Ωt{∂Ω} be the quotient of Ω by the closed subset ∂Ω—i.e. we
encode the diagonal by just one point (still denoted by ∂Ω). The distance

d on Ω
2

induces naturally a function d̃ on Ω̃2, defined for x, y ∈ Ω by
d̃(x, y) = d(x, y), d̃(x, ∂Ω) = d̃(∂Ω, x) = d(x,p∂Ω(x)) and d̃(∂Ω, ∂Ω) = 0.
However, d̃ is not a distance since one can have d̃(x, y) > d̃(x, ∂Ω)+d̃(y, ∂Ω).
Define

ρ(x, y) := min{d̃(x, y), d̃(x, ∂Ω) + d̃(y, ∂Ω)}. (3.9)
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It is straightforward to check that ρ is a distance on Ω̃ and that (Ω̃, ρ) is
a Polish space. One can then define the Wasserstein distance Wp,ρ with
respect to ρ for finite measures on Ω̃ which have the same masses, that is
the infimum of C̃p(π̃) :=

∫∫
Ω̃2 ρ(x, y)pdπ̃(x, y), for π̃ a transport plan with

corresponding marginals (see Section 2.2.2). The following result states that
the problem of computing the OTp metric between two persistence measures
with finite masses can be turn into the one of computing the Wasserstein
distances between two measures supported on Ω̃ with the same mass. For
the sake of simplicity, we assume here that d(x, y) = ‖x− y‖q with q > 1 so
that for x ∈ Ω, the set arg min{y ∈ ∂Ω, d(x, y)} is given by the orthogonal
projection p∂Ω(x) of x onto ∂Ω. The following result could be seamlessly
adapted to the case q = 1.

Proposition 3.15. Let µ, ν ∈ Mp
f and r ≥ µ(Ω) + ν(Ω). Define µ̃ =

µ+(r−µ(Ω))δ∂Ω and ν̃ = ν+(r−ν(Ω))δ∂Ω. Then OTp(µ, ν) = Wp,ρ(µ̃, ν̃).

Before proving Proposition 3.15, we need to introduce two lemmas. The
first one essentially states that an element π ∈ Adm(µ, ν) can be turned
into an element π̃ ∈ Π(µ̃, ν̃) such that π and π̃ have the same transport
cost (for d and d̃ respectively), and vice-versa. The second lemma gives a
first inequality to prove Proposition 3.15. The proofs of these lemmas have
been delayed to Section 3.5.

Lemma 3.16. Let µ, ν ∈ Mp
f and r ≥ max(µ(Ω), ν(Ω)). Let µ̃ := µ +

(r− µ(Ω))δ∂Ω, ν̃ := ν + (r− ν(Ω))δ∂Ω and p∂Ω : Ω→ ∂Ω be the orthogonal
projection on the diagonal.

1. Define T (µ, ν) the set of plans π ∈ Adm(µ, ν) satisfying π({(x, y) ∈
Ω×∂Ω, y 6= p∂Ω(x)}) = π({(x, y) ∈ ∂Ω×Ω, x 6= p∂Ω(y)}) = 0 along
with π(∂Ω× ∂Ω) = 0. Then, Optp(µ, ν) ⊂ T (µ, ν).

2. Let π ∈ T (µ, ν) be such that µ(Ω) + π(∂Ω × Ω) ≤ r. Define ι(π) ∈
Π(µ̃, ν̃) by, for Borel sets A,B ⊂ Ω,





ι(π)(A×B) = π(A×B),

ι(π)(A× {∂Ω}) = π(A× ∂Ω),

ι(π)({∂Ω} ×B) = π(∂Ω×B),

ι(π)({∂Ω} × {∂Ω}) = r − µ(Ω)− π(∂Ω× Ω) ≥ 0.

(3.10)

Then, Cp(π) =
∫∫

Ω̃×Ω̃
d(x, y)pdι(π)(x, y).
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3. Let π̃ ∈ Π(µ̃, ν̃). Define κ(π̃) ∈ T (µ, ν) by (where A,B are Borel
sets),





κ(π̃)(A×B) = π̃(A×B), A,B ⊂ Ω,

κ(π̃)(A×B) = π̃((A ∩ s−1(B))× {∂Ω}), A ⊂ Ω, B ⊂ ∂Ω,

κ(π̃)(A×B) = π̃({∂Ω} × (B ∩ s−1(A))), A ⊂ ∂Ω, B ⊂ Ω,

κ(π̃)(∂Ω, ∂Ω) = 0.

Then,
∫∫

Ω̃×Ω̃
d(x, y)pdπ̃(x, y) = Cp(κ(π̃)).

Lemma 3.17. Let µ, ν ∈ Mp
f and r ≥ max(µ(Ω), ν(Ω)). Let µ̃ := µ +

(r − µ(Ω))δ∂Ω, ν̃ := ν + (r − ν(Ω))δ∂Ω. Then, OTp(µ, ν) ≤ Wp,ρ(µ̃, ν̃).

Proof of Proposition 3.15. Let π ∈ T (µ, ν). As µ(Ω)+π(∂Ω×Ω) ≤ µ(Ω)+
ν(Ω) ≤ r, one can define π̃ = ι(π). Since ρ(x, y) ≤ d(x, y), we have
C̃p(π̃) ≤

∫∫
d(x, y)pdπ̃(x, y) = Cp(π) (Lemma 3.16). Taking the infi-

mum gives Wp,ρ(µ̃, ν̃) ≤ OTp(µ, ν). The other inequality holds according
to Lemma 3.17.

Remark 3.18. A careful read of the proof of Proposition 3.15 and relative
lemmas shows that one could replace the metric ρ by

ρp : (x, y) 7→ min{d(x, y), (d(x, ∂Ω)p + d(∂Ω, y)p)
1
p}.

This fact will be used in Section 3.4.

Remark 3.19. The starting idea of this theorem—informally,“adding the
mass of one diagram to the other and vice-versa”—is known in TDA as a
bipartite graph matching [EH10, Ch. VIII.4] and used in practical compu-
tations [KMN17]. Here, Proposition 3.15 states that solving this bipartite
graph matching problem can be formalized as computing a Wasserstein dis-
tance on the metric space (Ω̃, ρ) and, as such, makes sense (and remains
true) for more general measures.

Remark 3.20. Proposition 3.15 is useful for numerical purposes since it
allows in applications, when dealing with a finite set of finite measures (in
particular diagrams), to directly use the various tools developed in computa-
tional optimal transport [PC17] to compute Wasserstein distances. This al-
ternative to the combinatorial algorithms considered in the literature [KMN17,
TMMH14] will be presented in Chapter 5, based on [LCO18]. This result
is also helpful to prove the existence of Fréchet means of sets of persistence
measures (see Chapter 4).
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3.3 The OT∞ distance

In classical optimal transport, the∞-Wasserstein distance is known to have
a much more erratic behavior than its p <∞ counterparts [San15, Section
5.5.1]. However, in the context of persistence diagrams, the distance d∞
defined in Eq. (2.1) appears naturally as an interleaving distance between
persistence modules (see Appendix A.2) and satisfies strong stability re-
sults: it is thus worthy of interest. It also happens that, when restricted to
diagrams having some specific finiteness properties, most irregular behav-
iors are suppressed and a convenient characterization of convergence exists.

Definition 3.21. Let spt(µ) denote the support of a measure µ and

Pers∞(µ) := sup{d(x, ∂Ω), x ∈ spt(µ)}.

Define

M∞ := {µ ∈M, Pers∞(µ) <∞} and D∞ := D ∩M∞. (3.11)

For µ, ν ∈M∞ and π ∈ Adm(µ, ν), let

C∞(π) := sup{d(x, y), (x, y) ∈ spt(π)}

and let

OT∞(µ, ν) := inf
π∈Adm(µ,ν)

C∞(π). (3.12)

The set of transport plans minimizing (3.12) is denoted by Opt∞(µ, ν).

Proposition 3.22. Let µ, ν ∈M∞. For the vague topology on EΩ,

• the map π ∈ Adm(µ, ν) 7→ C∞(π) is lower semi-continuous.

• The set Opt∞(µ, ν) is a non-empty sequentially compact set.

• OT∞ is lower semi-continuous.

Moreover, OT∞ is a distance on M∞.

The proofs of these results are found in Section 3.5.
As in the case p <∞, OT∞ and d∞ coincide on D∞.

Proposition 3.23. For a, b ∈ D∞, OT∞(a, b) = d∞(a, b).
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Proof. Consider two diagrams a, b ∈ D∞, written as a =
∑

i∈I δxi and
b =

∑
j∈J δyj , where I, J ⊂ N∗ are (potentially infinite) sets of indices.

The marginals constraints imply that a plan π ∈ Adm(µ, ν) is supported
on ({xi}i ∪ ∂Ω)× ({yj}j ∪ ∂Ω), and the cost of such a plan can always be
reduced if some of the mass π({xi}, ∂Ω) (resp. π(∂Ω, {yj})) is sent on a point
other than the projection of xi (resp. yj) on the diagonal ∂Ω. Introduce the
matrix C indexed on (−J ∪ I)× (−I ∪ J) defined by





Ci,j = d(xi, yj) for i, j > 0,

Ci,j = d(∂Ω, yj) for i < 0, j > 0,

Ci,j = d(xi, ∂Ω) for i > 0, j < 0,

Ci,j = 0 for i, j < 0.

(3.13)

In this context, an element of Opt(a, b) can be written a matrix P indexed
on (−J ∪ I) × (−I ∪ J), and marginal constraints state that P must be-
long to the set of doubly stochastic matrices S. Therefore, OT∞(a, b) =
infP∈S sup{Ci,j, (i, j) ∈ spt(P )}, where S is the set of doubly stochastic
matrices indexed on (−J ∪ I)× (−I ∪ J), and spt(P ) denotes the support
of P , that is the set {(i, j), Pi,j > 0}.

Let P ∈ S. For any k ∈ N, and any set of distinct indices {i1, . . . , ik} ⊂
−J ∪ I, we have

k =
k∑

k′=1

∑

j∈−I∪J

Pik′ ,j

︸ ︷︷ ︸
=1

=
∑

j∈−I∪J

k∑

k′=1

Pik′ ,j

︸ ︷︷ ︸
≤1

.

Thus, the cardinality of {j, ∃k′ such that (ik′ , j) ∈ spt(P )} must be larger
than k. Said differently, the marginals constraints impose that any set of k
points in a must be matched to at least k points in b (points are counted
with eventual repetitions here). Under such conditions, the Hall’s marriage
theorem (see [Hal86, p. 51]) guarantees the existence of a permutation ma-
trix P ′ with spt(P ′) ⊂ spt(P ). As a consequence,

sup{Ci,j, (i, j) ∈ spt(P )} ≥ sup{Ci,j, (i, j) ∈ spt(P ′)}
≥ inf

P ′∈S′
sup{Ci,j, (i, j) ∈ spt(P ′)} = d∞(a, b),

where S ′ denotes the set of permutations matrix indexed on (−J ∪ I) ×
(−I ∪ J). Taking the infimum on P ∈ S on the left-hand side and using
that S ′ ⊂ S finally gives that OT∞(a, b) = d∞(a, b).

Proposition 3.24. The space (M∞,OT∞) is complete.
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Proof. Let (µn)n be a Cauchy sequence for OT∞. Fix a compact K ⊂
Ω, and pick ε = d(K, ∂Ω)/2. There exists n0 such that for n > n0,
OT∞(µn, µn0) < ε. Let Kε := {x ∈ Ω, d(x,K) ≤ ε}. By considering
πn ∈ Opt∞(µn, µn0), and since OT∞(µn, µn0) < ε, we have that

µn(K) = πn(K × Ω) = πn(K ×Kε) ≤ µn0(Kε). (3.14)

Therefore, (µn(K))n is uniformly bounded, and Proposition B.4 implies
that (µn)n is relatively compact. Finally, the exact same computations as
in the proof of the completeness for p < ∞ (see Section 3.5) show that
(µn)n converges for the OT∞ metric.

Remark 3.25. Unlike the case p <∞, the space D∞ (and thereforeM∞)
is not separable. Indeed, for I ⊂ N, define the diagram aI :=

∑
i∈I δ(i,i+1) ∈

D∞. The family {aI , I ⊂ N} is uncountable, and for two distinct I, I ′,

OT∞(aI , aI′) =
√

2
2

. This result is similar to [BV18, Theorem 4.20].

We now show that the direct implication in Theorem 3.7 still holds in
the case p =∞.

Proposition 3.26. Let µ, µ1, µ2, . . . be measures inM∞. If OT∞(µn, µ)→
0, then (µn)n converges vaguely to µ.

The proof is found in Section 3.5.

Remark 3.27. As for the case 1 ≤ p <∞, Proposition 3.26 implies that
OT∞ metricizes the vague convergence, and thus using Proposition 3.23
and Proposition 3.28, we have that (D∞, d∞) is closed in (M∞,OT∞) and
is—in particular—complete.

In contrast to the case p < ∞, a converse implication for Proposi-
tion 3.26 does not hold, even on the subspace of persistence diagrams (see
Figure 3.1). To recover a space with a structure more similar to the one of
Dp, it is useful to look at a smaller set. Introduce D∞0 the set of persistence
diagrams such that for all r > 0, there are a finite number of points of the
diagram of persistence larger than r and recall that Df denotes the set of
persistence diagrams with finite number of points.

Proposition 3.28. The closure of Df for the distance OT∞ is D∞0 .

Proof. Consider a ∈ D∞0 . By definition, for all n ∈ N, a has a finite number
of points with persistence larger than 1

n
, so that the restriction an of a to
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µn = n−1δx

log(n)−1

µn = nδxn

(a) (b) (c)

. .
.

1
1

an =
n∑

i=1

δxi

1
n

n

1
1

1

Figure 3.1: Illustration of differences between OTp, OT∞, and vague conver-
gences. Blue color represents the mass on a point while red color designates dis-
tances. (a) A case where OTp(µn, 0)→ 0 for any p <∞ while OT∞(µn, 0) = 1.
(b) A case where OT∞(µn, 0) → 0 while for all p < ∞, OTp(µn, µ) → ∞. (c)
A sequence of persistence diagrams an ∈ D∞, where (an)n converges vaguely to
a =

∑
i δxi and Pers∞(an) = Pers∞(a), but (an) does not converge to a for OT∞.

points with persistence larger than 1
n

belongs to Df . As OT∞(a, an) ≤ 1
n
→

0, D∞0 is contained in the closure of Df .
Conversely, consider a diagram a ∈ D∞\D∞0 . There is a constant r > 0

such that a has infinitely many points with persistence larger than r. For
any finite diagram a′ ∈ Df , we have OT∞(a′, a) ≥ r, thus a is not the limit
for the OT∞ metric of any sequence in Df .

Remark 3.29. The space D∞0 is exactly the set introduced in [BGMP14,
Theorem 3.5] as the completion of Df for the bottleneck metric d∞. Here,
we recover that D∞0 is complete as a closed subset of the complete space D∞.

Define for r > 0 and a ∈ D, a(r) the persistence diagram restricted to
{x ∈ Ω, d(x, ∂Ω) > r} (as in Lemma 3.4). The following characterization
of convergence holds in D∞0 .

Proposition 3.30. Let a, a1, a2, . . . be persistence diagrams in D∞0 . Then,

OT∞(an, a)→ 0⇔
{
an

v−→ a,

(a
(r)
n )n is tight for all positive r.

Proof of Proposition 3.30. Let us prove first the direct implication. Propo-
sition 3.26 states that the convergence with respect to OT∞ implies the
vague convergence. Fix r > 0. By definition, a(r) is made of a finite number
of points, all included in some open bounded set U ⊂ Ω. As a

(r)
n (U c) is
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a sequence of integers, the bottleneck convergence implies that for n large
enough, a

(r)
n (U c) is equal to 0. Thus, (a

(r)
n )n is tight.

Let us prove the converse. Consider a ∈ D∞0 and a sequence (an)n that

converges vaguely to a, with (a
(r)
n ) tight for all r > 0. Fix r > 0 and

let x1, . . . , xK be an enumeration of the points in a(r), the point xk being
present with multiplicity mk ∈ N. Denote by B(x, ε) (resp. B(x, ε)) the
open (resp. closed) ball of radius ε centered at x. By the Portmanteau
theorem, for ε small enough,





lim inf
n→∞

an(B(xk, ε)) ≥ a(B(xk, ε)) = mk

lim sup
n→∞

an(B(xk, ε)) ≤ a(B(xk, ε)) = mk,

so that, for n large enough, there are exactly mk points of an in B(xk, ε)
(since (an(B(xk, ε)))n is a converging sequence of integers). The tightness

of (a
(r)
n )n implies the existence of some compact K ⊂ Ω such that for n large

enough, a
(r)
n (Kc) = 0 (as the measures take their values in N). Applying

the Portmanteau theorem to the closed set K ′ := K\⋃K
i=1 B(xi, ε) gives

lim sup
n→∞

a(r)
n (K ′) ≤ a(r)(K ′) = 0.

This implies that for n large enough, there are no other point in an with
persistence larger than r and thus OT∞(a(r), an) is less than or equal to
r + ε. Finally,

lim sup
n→∞

OT∞(an, a) ≤ lim sup
n→∞

OT∞(an, a
(r)) + r ≤ 2r + ε.

Letting ε→ 0 then r → 0, the bottleneck convergence holds.

As for the case of OTp metrics, this allows us to characterize relatively
compact subsets of D∞0 . A similar result can be found in [PMK19, Theorem
11]. Here again,

Corollary 3.31. A set F ⊂ D∞0 is relatively compact for the metric
OT∞ if and only if for all compact K, sup{a(K), a ∈ F} is finite and for
all r > 0, there exists a compact K such that ar(Ω\K) = 0 for all a ∈ F .

3.4 Duality

We end this chapter by providing a duality result for the OTp metrics we
introduced. Our approach essentially mimics the standard proof done in
standard optimal transport [Vil08, Ch. 5] and also builds on some elements
introduced in [FG10].
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To alleviate notations, let c(x, y) := d(x, y)p in the following, and denote
by Mc the set Mp. Define also

c̃(x, y) := min{c(x, y), c(x, ∂Ω) + c(∂Ω, y)} = ρpp,

where ρp was introduced in Remark 3.18. Introduce

A := {(x, y) ∈ Ω, c̃(x, y) = c(x, y)}.

The following definitions are standard in convex optimization and are
routinely used in optimal transport theory when it comes to study duality.

Definition 3.32. For ϕ : Ω→ R, define its c-transform as

ϕc(y) = inf
x
c(x, y)− ϕ(x).

We say that ϕ is c-concave if it is the c-transform of some function ψ, that
is ϕ = ψc.

Define then the c-superdifferential of a c-concave function ϕ as the set

∂cϕ := {(x, y) ∈ Ω× Ω, ϕ(x) + ϕc(y) = c(x, y)}.

Finally, say that a subset X of Ω×Ω is c-cyclically monotone if for any
K ∈ N and any finite sample (x1, y1) . . . (xK , yK) ∈ X, and any permutation
σ ∈ SK, one has

K∑

i=1

c(xi, yi) ≤
K∑

i=1

c(xi, yσ(i)). (3.15)

Notions of c̃-concavity, c̃-transform, c̃-superdifferential, c̃-cyclical mono-
tonicity are defined similarly.

The following proposition in central to obtain a duality result.

Proposition 3.33. Let µ, ν ∈ Mc and π ∈ Adm(µ, ν). We have equiv-
alence between

(i) π ∈ Opt(µ, ν).

(ii) spt(π) ⊂ A and spt(π) is c̃-cyclically monotone.

(iii) There exists a c-concave function ϕ such that ϕ and ϕc both vanish
on ∂Ω and spt(π) ⊂ ∂cϕ.

As a corollary, if µn
v−→ µ and νn

v−→ ν, and πn ∈ Opt(µn, νn), then πn
v−→

π ∈ Opt(µ, ν).
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The proof essentially follows [FG10] and can be found in Section 3.5.

Theorem 3.34 (Duality). One has

Lc(µ, ν) := inf
π∈Adm(µ,ν)

〈c, π〉 = sup
f,g∈Ψc

〈f, µ〉+ 〈g, ν〉 (3.16)

where Ψc denotes the set of continuous functions f, g : Ω→ R satisfying

• ∀x, y ∈ Ω, f(x) + g(y) ≤ c(x, y).

• f(∂Ω) = g(∂Ω) = 0

Proof. The proof relies on the equivalence between (i) and (iii) in Proposi-
tion 3.33. Let ϕ be a continuous function supported on Ω that vanishes on
the diagonal ∂Ω. By definition of the c-transform, for all x, y ∈ Ω, one has
ϕ(x) + ϕc(y) ≤ c(x, y). Therefore, for any π ∈ Adm(µ, ν), we have

∫

Ω

ϕ(x)dµ(x) +

∫

Ω

ϕc(y)dν(y) ≤
∫∫

Ω×Ω

c(x, y)dπ(x, y)

thanks to the marginal constraints (and that ϕ, ϕc both vanish on the
diagonal). Thus,

sup
ϕ
〈ϕ, µ〉+ 〈ϕc, ν〉 ≤ inf

π∈Adm(µ,ν)
〈c, π〉 , (3.17)

where the supremum in the left hand side is taken over the continuous
functions ϕ that vanish on the diagonal. This inequality is known as a
duality gap.

Now, consider π ∈ Opt(µ, ν). We know thanks to (iii) that one can
pick ϕ such that spt(π) ⊂ ∂cϕ, which gives that 〈ϕ, µ〉+ 〈ϕc, ν〉 = 〈c, π〉 =
OTp(µ, ν). Therefore, it follows that the duality gap in (3.17) is actually 0.

Finally, to prove the claimed result, it suffices to observe that by defini-
tion of the c-transform, one has g(y) ≤ ϕc(y) for any function g vanishing
on the diagonal that satisfies ϕ(x) + g(y) ≤ c(x, y), and thus (changing ϕ
for f), we obtain the inequality.

These results have some nice consequences in the particular case p = 1,
that is c(x, y) = d(x, y). One can observe (see [San15, Prop. 3.1]) that in
this case, a function ϕ : Ω → R is c-concave if and only if it is Lipschitz
continuous with constant less than 1 (with respect to d), and for such a
function ϕ, one has ϕc = −ϕ. Thus, we obtain the following Kantorovich-
Rubinstein duality result:
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Proposition 3.35. Let p = 1, that is c(x, y) = d(x, y) = ‖x − y‖, and
µ, ν ∈M1. We have

OT1(µ, ν) = max
f∈L

(µ− ν)(f), (3.18)

where L denotes the set of Lipschitz continuous functions f : Ω → R with
Lipschitz constant less than 1 and that satisfy f(∂Ω) = 0.

Note that a similar duality result for finite persistence diagram metrics
was proved in [BE19].

3.5 Proofs

Proofs of Proposition 3.2 and Proposition 3.22.

• For π ∈ Adm(µ, ν) supported on EΩ, and for any compact sets
K, K ′ ⊂ Ω, one has π((K × Ω) ∪ (Ω × K ′)) ≤ µ(K) + ν(K ′) <
∞. As any compact subset of EΩ is included in a set of the form
(K × Ω) ∪ (Ω ×K ′), Proposition B.4 implies that Adm(µ, ν) is rela-
tively compact for the vague convergence on EΩ. Also, if a sequence
(πn)n in Adm(µ, ν) converges vaguely to some π ∈ M(EΩ), then the
marginals of π on Ω are still µ and ν. Indeed, if f is a continuous
function with compact support on Ω, then

∫

EΩ

f(x)dπ(x, y) = lim
n

∫

EΩ

f(x)dπn(x, y)

= lim
n

∫

Ω

f(x)dµn(x)

=

∫

Ω

f(x)dµ(x),

and we show likewise that the second marginal of π is ν. Thus,
Adm(µ, ν) is closed in M(EΩ): it is therefore sequentially compact.

• To prove the second point of Proposition 3.2, consider π, π1, π2, . . .
such that πn

v−→ π, and introduce π′n : A 7→
∫∫

A
d(x, y)pdπn. The se-

quence (π′n)n converges vaguely to π′ : A 7→
∫∫

A
d(x, y)pdπ. The Port-

manteau theorem (Proposition B.7) applied with the open set EΩ to
the measures π′n

v−→ π′ implies that Cp(π) = π′(EΩ) ≤ lim infn π
′
n(EΩ) =

lim infnCp(πn), i.e. Cp is lower semi-continuous.



80 CHAPTER 3. OPTIMAL TRANSPORT VIEWPOINT

• We now prove the lower semi-continuity of C∞. Let (πn)n be a se-
quence converging vaguely to π on EΩ and let r > lim inf

n→∞
C∞(πn).

The set Ur = {(x, y) ∈ EΩ, d(x, y) > r} is open. By the Portmanteau
theorem (Proposition B.7), we have 0 = lim infn→∞ πn(Ur) ≥ π(Ur).
Therefore, spt(π) ⊂ U c

r and C∞(π) ≤ r. As this holds for any
r > lim inf

n→∞
C∞(πn), we have lim inf

n→∞
C∞(πn) ≥ C∞(π).

• We show that for any 1 ≤ p ≤ ∞, the lower semi-continuity of Cp and
the sequential compactness of Adm(µ, ν) imply that (1.) Optp(µ, ν)
is a non-empty compact set for the vague topology on EΩ and that
(2.) OTp is lower semi-continuous.

1. Let (πn)n be a minimizing sequence of (2.22) in Adm(µ, ν). As
Adm(µ, ν) is sequentially compact, it has an adherence value π,
and the lower semi-continuity implies that

Cp(π) ≤ lim inf
n→∞

Cp(πn) = OTp
p(µ, ν),

so that Optp(µ, ν) is non-empty. Using once again the lower semi-
continuity of Cp, if a sequence in Optp(µ, ν) converges to some
limit, then the cost of the limit is smaller than (and thus equal
to) OTp

p(µ, ν), i.e. the limit is in Optp(µ, ν). The set Optp(µ, ν)
being closed in the sequentially compact set Adm(µ, ν), it is also
sequentially compact.

2. Let µn
v−→ µ and νn

v−→ ν. One has lim infn OTp(µn, νn) =
limk OTp(µnk , νnk) for some subsequence (nk)k. For ease of no-
tation, we will still use the index n to denote this subsequence.
If the limit is infinite, there is nothing to prove. Otherwise, con-
sider πn ∈ Optp(µn, νn). For any compact sets K, K ′ ⊂ Ω, one

has πn((K × Ω) ∪ (Ω ×K ′)) ≤ supn µn(K) + supn νn(K ′) < ∞.
Therefore, by Proposition B.4, there exists a subsequence (πnk)k
which converges vaguely to some measure π ∈ Adm(µ, ν). Note
that the first (resp. second) marginal of π is equal to the limit µ
(resp. ν) of the first (resp. second) marginal of (πnk), so that π
is in Adm(µ, ν). Therefore,

OTp
p(µ, ν) ≤ Cp(π) ≤ lim inf

n→∞
Cp(πn) = lim inf

n→∞
OTp

p(µn, νn).

• Finally, we prove that OTp is a metric on Mp. Let µ, ν, λ ∈ Mp.
The symmetry of OTp is clear. If OTp(µ, ν) = 0, then there exists
π ∈ Adm(µ, ν) supported on {(x, x), x ∈ Ω}. Therefore, for a Borel
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set A ⊂ Ω, µ(A) = π(A × Ω) = π(A × A) = π(Ω × A) = ν(A),
and µ = ν. To prove the triangle inequality, we need a variant on
the gluing lemma, stated in [FG10, Lemma 2.1]: for π12 ∈ Opt(µ, ν)

and π23 ∈ Opt(ν, λ) there exists a measure γ ∈ M(Ω
3
) such that the

marginal corresponding to the first two entries (resp. two last entries),
when restricted to EΩ, is equal to π12 (resp. π23) and is concentrated
on {(x, x), x ∈ ∂Ω} on ∂Ω× ∂Ω. Note that the corresponding trans-
portation cost on ∂Ω× ∂Ω is 0. Note also that the measure on Ω×Ω
defined by

∫
y

dγ(x, y, z) has µ and λ as marginals (when restricted to

Ω), that is it belongs to Adm(µ, λ). Therefore, by the triangle and
Minkowski inequality,

OTp(µ, λ) ≤
(∫

Ω
3
d(x, z)pdγ(x, y, z)

)1/p

≤
(∫

Ω
3
d(x, y)pdγ(x, y, z)

)1/p

+

(∫

Ω
3
d(y, z)pdγ(x, y, z)

)1/p

=

(∫

Ω
2
d(x, y)pdπ12(x, y)

)1/p

+

(∫

Ω
2
d(y, z)pdπ23(y, z)

)1/p

= OTp(µ, ν) + OTp(ν, λ).

The proof is similar for p =∞.

Proof of Proposition 3.6. We first show the separability. Consider for k > 0
a partition of Ω into squares (Ck

i ) of side length 2−k, centered at points
xki . Let F be the set of all measures of the form

∑
i∈I qiδxki for qi positive

rationals, k > 0 and I a finite subset of N. Our goal is to show that the
countable set F is dense in Mp. Fix ε > 0, and µ ∈ Mp. The proof is in
three steps.

1. Since Persp(µ) <∞, there exists a compactK ⊂ Ω such that Persp(µ)−
Persp(µ0) < εp, where µ0 is the restriction of µ to K. By considering
the transport plan between µ and µ0 induced by the identity map
on K and the projection onto the diagonal on Ω\K, it follows that
OTp

p(µ, µ0) ≤ Persp(µ)− Persp(µ0) ≤ εp.

2. Consider k such that 2−k ≤ ε/(
√

2µ(K)1/p) and denote by I the in-
dices corresponding to squares Ck

i intersecting K. Let us introduce
µ1 =

∑∞
i∈I µ0(Ck

i )δxki . One can create a transport map between µ0
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and µ1 by mapping each square Ck
i to its center xki , so that

OTp(µ0, µ1) ≤
(∑

i

µ0(Ck
i )(
√

2 · 2−k)p
)1/p

≤ µ(K)1/p
√

2 · 2−k ≤ ε.

3. Consider, for i ∈ I, qi a rational number satisfying qi ≤ µ0(Ck
i ) and

|µ0(Ck
i )− qi| ≤ εp/

(∑
i∈I d(xki , ∂Ω)p

)
. Let µ2 =

∑
i∈I qiδxki . Consider

the transport plan between µ2 and µ1 that fully transports µ2 onto
µ1, and transport the remaining mass in µ1 onto the diagonal. Then,

OTp(µ1, µ2) ≤
(∑

i∈I

|µ0(Ck
i )− qi|d(xki , ∂Ω)p

)1/p

≤ ε.

As µ2 ∈ F and OTp(µ, µ2) ≤ 3ε, the separability is proven.

To prove that the space is complete, consider a Cauchy sequence (µn)n.
As (Persp(µn))n = (OTp

p(µn, 0))n is a Cauchy sequence, it is bounded.
Therefore, for K ⊂ Ω a compact set, (3.6) implies that supn µn(K) < ∞.
Proposition B.4 implies that (µn)n is relatively compact for the vague topol-
ogy on Ω. Consider (µnk)k a subsequence converging vaguely on Ω to some
measure µ. By the lower semi-continuity of OTp,

Persp(µ) = OTp
p(µ, 0) ≤ lim inf

k→∞
OTp

p(µnk , 0) <∞,

so that µ ∈Mp. Using once again the lower semi-continuity of OTp,

OTp(µn, µ) ≤ lim inf
k→∞

OTp(µn, µnk)

lim
n→∞

OTp(µn, µ) ≤ lim
n→∞

lim inf
k→∞

OTp(µn, µnk) = 0,

ensuring that OTp(µn, µ)→ 0, that is the space is complete.

Proof of the direct implication of Theorem 3.7. Let µ, µ1, µ2, . . . be elements
ofMp and assume that the sequence (OTp(µn, µ))n converges to 0. The tri-
angle inequality implies that Persp(µn) = OTp

p(µn, 0) converges to Persp(µ) =
OTp

p(µ, 0). Let f ∈ Cc(Ω), whose support is included in some compact set
K. For any ε > 0, there exists a Lipschitz function fε, with Lipschitz con-
stant L and whose support is included in K, with the ∞-norm ‖f − fε‖∞
less than or equal to ε. The convergence of Persp(µn) and (3.6) imply that
supk µk(K) <∞. Let πn ∈ Optp(µn, µ), we have

|µn(f)− µ(f)| ≤ |µn(f − fε)|+ |µ(f − fε)|+ |µn(fε)− µ(fε)|
≤ (µn(K) + µ(K))ε+ |µn(fε)− µ(fε)|
≤ (sup

k
µk(K) + µ(K))ε+ |µn(fε)− µ(fε)|.
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Also,

|µn(fε)− µ(fε)| ≤
∫∫

Ω
2
|fε(x)− fε(y)|dπn(x, y) where πn ∈ Opt(µn, µ)

≤ L

∫∫

(K×Ω)∪(Ω×K)

d(x, y)dπn(x, y)

≤ Lπn((K × Ω) ∪ (Ω×K))1− 1
p




∫∫

(K×Ω)∪(Ω×K)

d(x, y)pdπn(x, y)




1
p

by Hölder’s inequality.

≤ L

(
sup
k
µk(K) + µ(K)

)1− 1
p

OTp(µn, µ)→ 0.

This last quantity converges to 0 as n goes to ∞ for fixed ε. Therefore,
taking the limsup in n and then letting ε → 0, we obtain that µn(f) →
µ(f).

Proof of the converse implication of Theorem 3.7. Let µ, µ1, µ2 . . . be ele-
ments of Mp and assume that µn

v−→ µ and Persp(µn)→ Persp(µ). Since

OTp(µn, µ) ≤ OTp(µn, 0) + OTp(µ, 0) = Persp(µn)1/p + Persp(µ)1/p,

the sequence (OTp(µn, µ))n is bounded. Thus, if we show that (OTp(µn, µ))n
admits 0 as unique accumulation point, then the convergence holds. Up to
extracting a subsequence, we may assume that (OTp(µn, µ))n converges to
some limit. Let (πn)n ∈ Opt(µn, µ)N be the corresponding optimal trans-
port plans. Let K be a compact subset of Ω. Recall (Proposition B.4 in
Appendix B) that relative compactness for the vague convergence of a se-
quence (µn)n is equivalent to supn{µn(K)} <∞ for every compact K ⊂ Ω.
Therefore, for any compact K ⊂ Ω, and n ∈ N,

πn((K × Ω) ∪ (Ω×K)) ≤ µn(K) + µ(K) ≤ sup
k
µk(K) + µ(K) <∞.

As any compact of EΩ is included is some set of the form (K∪Ω)×(Ω∪K),
for K ⊂ Ω compact, using Proposition B.4 again, it follows that (πn)n is
also relatively compact for the vague topology.

Let thus π be the limit of any converging subsequence of (πn)n, which
indexes are still denoted by n. As µn

v−→ µ, π is necessarily in Optp(µ, µ)
(see [FG10, Prop. 2.3]), i.e. π is supported on {(x, x), x ∈ Ω}. The vague
convergence of (µn)n and the convergence of (Persp(µn))n to Persp(µ) imply
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that for a given compact set K ⊂ Ω, whose complementary set in Ω is
denoted by Kc, its interior set is denoted by K̊, and its boundary by ∂K
we have

lim sup
n→∞

∫

Kc

d(x, ∂Ω)pdµn(x)

= lim sup
n→∞

(
Persp(µn)−

∫

K

d(x, ∂Ω)pdµn(x)

)

= lim
n

Persp(µ)− lim inf
n

∫

K̊

d(x, ∂Ω)pdµn(x)− lim inf
n

∫

∂K

d(x, ∂Ω)pdµn(x)

≤ Persp(µ)−
∫

K̊

d(x, ∂Ω)pdµ(x) by the Portmanteau theorem

=

∫

Kc

d(x, ∂Ω)pdµ(x).

Recall that Persp(µ) <∞. Therefore, for ε > 0, there exists some compact
set K ⊂ Ω, with

lim sup
n

∫

Kc

d(x, ∂Ω)pdµn(x) < ε and

∫

Kc

d(x, ∂Ω)pdµ(x) < ε. (3.19)

Let p∂Ω : Ω → ∂Ω be the orthogonal projection on ∂Ω. We consider
the following transport plan π̃n (consider informally that what went from
K to Kc and from Kc to K is now transported onto the diagonal, while
everything else is unchanged):

π̃n = πn on K2 t (Kc)2,

π̃n = 0 on K ×Kc tKc ×K,
π̃n(A×B) = πn(A×B) + πn(A× (p−1

∂Ω(B) ∩Kc)) for A ⊂ K, B ⊂ ∂Ω,

π̃n(A×B) = πn(A×B) + πn(A× (p−1
∂Ω(B) ∩K)) for A ⊂ Kc, B ⊂ ∂Ω,

π̃n(A×B) = πn(A×B) + πn((p−1
∂Ω(A) ∩Kc)×B) for A ⊂ ∂Ω, B ⊂ K,

π̃n(A×B) = πn(A×B) + πn((p−1
∂Ω(A) ∩K)×B) for A ⊂ ∂Ω, B ⊂ Kc.

(3.20)

Note that π̃n ∈ Adm(µn, µ): for instance, for A ⊂ K a Borel set,

π̃n(A× Ω) = π̃n(A×K) + π̃n(A×Kc) + π̃n(A× ∂Ω)

= πn(A×K) + 0 + πn(A× ∂Ω) + πn(A× (p−1
∂Ω(∂Ω) ∩Kc))

= πn(A× Ω) = µn(A),

and it is shown likewise that the other constraints are satisfied. As π̃n is
suboptimal, OTp

p(µn, µ) ≤
∫

Ω
2 d(x, y)pdπ̃n(x, y). The latter integral is equal

to a sum of different terms, and we will show that each of them converges to
0. Assume without loss of generality that the compact set K belongs to an
increasing sequence of compact sets whose union is Ω, with π(∂(K×K)) = 0
for all compacts of the sequence.
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• We have
∫∫

K2 d(x, y)pdπ̃n(x, y) =
∫∫

K2 d(x, y)pdπn(x, y). The lim sup
of the integral is less than or equal to

∫∫
K2 d(x, y)pdπ(x, y) by the

Portmanteau theorem (applied to the sequence (d(x, y)pdπn(x, y))n),
and, recalling that π is supported on the diagonal of EΩ, this integral
is equal to 0.

• For optimality reasons, any optimal transport plan must be supported
on {d(x, y)p ≤ d(x, ∂Ω)p + d(y, ∂Ω)p} (this fact is detailed in [FG10,
Prop. 2.3]). It follows that
∫∫

(Kc)2

d(x, y)pdπ̃n(x, y) =

∫∫

(Kc)2

d(x, y)pdπn(x, y)

≤
∫

Kc

d(x, ∂Ω)pdµn(x) +

∫

Kc

d(y, ∂Ω)pdµ(y).

Taking the lim sup in n, and then letting K go to Ω, this quantity
converges to 0 by (3.19).

• We have
∫∫

K×∂Ω

d(x, ∂Ω)pdπ̃n(x, y) =

∫

K

d(x, ∂Ω)pdµn(x)−
∫∫

K2

d(x, ∂Ω)pdπn(x, y).

By the Portmanteau theorem applied to the sequence (d(x, ∂Ω)pdµn(x))n,
we obtain that

lim sup
n

∫

K

d(x, ∂Ω)pdµn(x) ≤
∫

K

d(x, ∂Ω)pdµ(x).

Recall that we assume that π(∂(K×K)) = 0. By applying the second
characterization of the Portmanteau theorem on the second term to
the sequence (d(x, y)pdπn(x, y))n, and using that π is supported on
the diagonal of EΩ, we have

lim sup
n
−
∫∫

K2

d(x, ∂Ω)pdπn(x, y) ≤−
∫∫

K2

d(x, ∂Ω)pdπ(x, y)

=−
∫

K

d(x, ∂Ω)pdµ(x)

as π(∂(K × K)) = 0. Therefore, the lim sup of this (non-negative)
integral is equal to 0.

• The three remaining terms (corresponding to the three last lines of
the definition (3.20)) are treated likewise.
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Finally, we have proven that (OTp(µn, µ))n is bounded and that for any
converging subsequence (µnk)k, OTp(µnk , µ) converges to 0. It follows that
OTp(µn, µ)→ 0.

Proof of Lemma 3.16.

1. Consider π ∈ Adm(µ, ν), and define π′ that coincides with π on Ω×
Ω, and is such that we enforce that the mass located at some x ∈
Ω transported on the diagonal to be transported on its orthogonal
projection p∂Ω(x): more precisely, for all Borel set A ⊂ Ω, B ⊂ ∂Ω,
π′(A×B) = π((p−1

∂Ω(B)∩A)×B) and π′(B×A) = π(B×(p−1
∂Ω(B)∩A)).

Note that π′ ∈ T (µ, ν). Since p∂Ω(x) is the unique minimizer of
y 7→ d(x, y)p, it follows that Cp(π

′) ≤ Cp(π), with equality if and only
if π ∈ T (µ, ν), and thus Optp(µ, ν) ⊂ T (µ, ν).

2. Write π̃ = ι(π). The mass π̃({∂Ω}× {∂Ω}) is non-negative by defini-
tion. One has for all Borel sets A ⊂ Ω,

π̃(A× Ω̃) = π̃(A× Ω) + π̃(A× {∂Ω})
= π(A× Ω) + π(A× ∂Ω) = π(A× Ω) = µ(A) = µ̃(A).

Similarly, π̃(Ω̃×B) = ν̃(B) for all B ⊂ Ω. Observe also that

π̃({∂Ω}×Ω̃) = π̃({∂Ω}×{∂Ω})+π̃({∂Ω}×Ω) = r−µ(Ω) = µ̃({∂Ω}).

Similarly, π̃(Ω̃ × {∂Ω}) = ν̃({∂Ω}). It gives that ι(π) ∈ Π(µ̃, ν̃), so
that ι is well defined. Observe that

∫∫

Ω̃×Ω̃

d(x, y)pdπ̃(x, y) =

∫∫

Ω×Ω

d(x, y)pdπ(x, y)

+

∫

Ω

d(x, ∂Ω)pdπ(x, ∂Ω)

+

∫

Ω

d(∂Ω, y)pdπ(∂Ω, y) + 0

= Cp(π) as π ∈ T (µ, ν).

3. Write π = κ(π̃). For A ⊂ Ω a Borel set,

π(A× Ω) = π(A× Ω) + π(A× ∂Ω)

= π̃(A× Ω) + π̃(A× {∂Ω}) = π̃(A× Ω̃) = µ(A).

Similarly, π(Ω×B) = ν(B) for all B ⊂ Ω. Therefore, π ∈ Adm(µ, ν),
and by construction, if a point x ∈ Ω is transported on ∂Ω, it is



3.5. PROOFS 87

transported on p∂Ω(x), so that π ∈ T (µ, ν). Observe that µ(Ω) +
π(∂Ω×Ω) ≤ π̃(Ω̃×Ω̃) = r, so that ι(π) is well defined. Also, ι(π) = π̃,
so that, according to point 2, Cp(π) =

∫∫
Ω̃×Ω̃

d(x, y)pdπ̃(x, y).

Proof of Lemma 3.17. Let π̃ ∈ Π(µ̃, ν̃). Define the set H := {(x, y) ∈
Ω̃2, ρ(x, y) = d(x, y)}, and let Hc be its complementary set in Ω̃2, i.e. the
set where ρ(x, y) = d(x, ∂Ω) + d(∂Ω, y). Define π̃′ ∈ M(Ω̃2) by, for Borel
sets A,B ⊂ Ω:





π̃′(A×B) = π̃((A×B) ∩H)

π̃′(A× {∂Ω}) = π̃((A× Ω̃) ∩Hc) + π̃(A× {∂Ω})
π̃′({∂Ω} ×B) = π̃((Ω̃×B) ∩Hc) + π̃({∂Ω} ×B).

We easily check that π̃′ ∈ Π(µ̃, ν̃). Also, using (a+ b)p ≥ ap+ bp for positive
a, b, we have

∫∫

Ω̃×Ω̃

ρ(x, y)pdπ̃(x, y) =

∫∫

H

d(x, y)pdπ̃(x, y)

+

∫∫

Hc

(d(x, ∂Ω) + d(∂Ω, y))pdπ̃(x, y)

≥
∫∫

H

d(x, y)pdπ̃′(x, y)

+

∫∫

Hc

(d(x, ∂Ω)p + d(y, ∂Ω)p) dπ̃(x, y)

=

∫∫

Ω̃×Ω̃

d(x, y)pdπ̃′(x, y)

≥ inf
π̃′∈Π(µ̃,ν̃)

∫∫

Ω̃×Ω̃

d(x, y)pdπ̃′(x, y).

We conclude by taking the infimum on π̃ that

Wp,ρ(µ̃, ν̃) ≥ inf
π̃′∈Π(µ̃,ν̃)

∫∫

Ω̃×Ω̃

d(x, y)pdπ̃′(x, y).

Since ρ(x, y) ≤ d(x, y), it follows that

W p
p,ρ(µ̃, ν̃) = inf

π̃∈Π(µ̃,ν̃)

∫∫

Ω̃2

d(x, y)pdπ̃(x, y). (3.21)

Since d is continuous, the infimum in the right hand side of (3.21) is reached
[Vil08, Theorem 4.1]. Consider thus π̃ ∈ Π(µ̃, ν̃) which realizes the infimum.
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We can write, using Lemma 3.16,

W p
p,ρ(µ̃, ν̃) =

∫∫

Ω̃2

d(x, y)pdπ̃(x, y) =

∫∫

Ω×Ω

d(x, y)pdκ(π̃)(x, y)

≥ inf
π∈T (µ,ν)

∫∫

Ω×Ω

d(x, y)pdπ(x, y) = OTp
p(µ, ν),

which concludes the proof.

Proof of Proposition 3.26. First, the convergence Pers∞(µn) → Pers∞(µ)
is a consequence of the reverse triangle inequality:

|Pers∞(µn)− Pers∞(µ)| = |OT∞(µn, 0)−OT∞(µ, 0)| ≤ OT∞(µn, µ),

which converges to 0 as n goes to ∞.
We now prove the vague convergence. Let f ∈ Cc(Ω), whose support

is included in some compact set K. For any ε > 0, there exists a L-
Lipschitz function fε, whose support is included in K, with ‖f − fε‖∞ ≤ ε.
Observe that supk µk(K) < ∞ using the same arguments than for (3.14).
Let πn ∈ Opt∞(µn, µ). We have

|µn(f)− µ(f)| ≤ |µn(f − fε)|+ |µ(f − fε)|+ |µn(fε)− µ(fε)|
≤ (µn(K) + µ(K))ε+ |µn(fε)− µ(fε)|
≤ (sup

k
µk(K) + µ(K))ε+ |µn(fε)− µ(fε)|.

Also,

|µn(fε)− µ(fε)| ≤
∫∫

Ω
2
|fε(x)− fε(y)|dπn(x, y)

≤ L

∫∫

(K×Ω)∪(Ω×K)

d(x, y)dπn(x, y)

≤ LC∞(πn)(πn(K × Ω) + πn(Ω×K))

≤ LOT∞(µn, µ)

(
sup
k
µk(K) + µ(K)

)
→ 0.

This last quantity converges to 0 as n → ∞ for fixed ε. Therefore, taking
the lim sup in n and then letting ε go to 0, we obtain that µn(f)→ µ(f).

Proof of Proposition 3.33. (i) ⇒ (ii). Let π ∈ Opt(µ, ν). Define π′ as in
[FG10, Eq. (7)], that is

π′ := π|A + (p1,p∂Ω ◦ p1)#π|Ω×Ω\A + (p∂Ω ◦ p2, p2)#π|Ω×Ω\A,
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where p∂Ω is the orthogonal projection onto the diagonal, and p1, p2 are the
projections of a measure onto its first and second marginal respectively. One
can observe that π ∈ Adm(µ, ν), that spt(π) ⊂ A, and that Cp(π

′) ≤ Cp(π)
with a strict inequality if spt(π) 6⊂ A. As such, any optimal transport plan
must be supported on A.

In order to prove c̃-cyclical monotonicity, we first introduce µn, νn two
measures with finite mass. In this context, we know from Proposition 3.15
and Remark 3.18 that OTp(µn, νn) = Wp,c̃(µ̃n, ν̃n) and that an optimal
transport plan π̃n between µ̃n and ν̃n for the cost c̃ induces an optimal
transport plan πn between µn and νn for the cost c. Using [Vil08, Thm. 5.10,
part (ii)], it follows that spt(π̃n) is c̃-cyclically monotone, and thus that
spt(πn) is also c̃-cyclically monotone.

Now, consider µ, ν ∈Mp and π ∈ Optp(µ, ν). Denote by πn the restric-
tion of π to (Ac1/n∪∂Ω)×(Ac1/n∪∂Ω), where Ac1/n := {x ∈ Ω, d(x, ∂Ω) > 1

n
},

and let µn, νn denote respectively the first and second marginal of πn re-
stricted to Ω. Observe that πn ∈ Optp(µn, νn), otherwise one could con-
sider π′n ∈ Optp(µn, νn) that would satisfy Cp(π

′
n) < Cp(πn) and then

π′ = (π−πn)+π′n ∈ Adm(µ, ν) would achieve a strictly smaller cost than π
which is supported to be optimal. Furthermore, µn and νn have finite total
masses. Indeed, for any Borel subset B ⊂ Ω, one has

µn(B) = πn(B,Ω) ≤ π(B ∩ Ac1/n,Ω) = µ(B ∩ Ac1/n) ≤ µ(Ac1/n) <∞,

as Persp(µ) < ∞, see Remark 3.3; and a similar argument holds for νn.
Therefore, πn is an optimal transport plan between two finite measures and
its support is thus c̃-cyclically monotone by the previous point. Eventually,
πn

v−→ π as n → ∞, and thus spt(π) is also c̃-cyclically monotone. Indeed,
fix an integer K ∈ N and (x1, y1) . . . (xK , yK) ∈ spt(π); for n large enough,
(x1, y1) . . . (xK , yK) belong to spt(πn), thus satisfy (3.15) (with c̃ instead of
c), proving the claim.

In order to prove (ii)⇒ (iii), as remarked in [FG10], it suffices to observe
that these statements do not deal with the mass of π and its marginals,
but only about its support. As such, one can just reproduce the Step 3
of the proof of [Vil08, Thm. 5.10, part (i)] along with the computations
made in the proof of [FG10, Prop. 2.3]. More precisely, it suffices to fix
(x0, y0) ∈ spt(π) and to define

ϕ(x) := sup
K∈N

sup{[c̃(x1, y0)− c̃(x0, y0)] + [c̃(x2, y1)− c̃(x1, y1)]

+ · · ·+ c̃(x, yK)− c̃(xK , yK)]},
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where the second supremum is taken over (x1, y1) . . . (xK , yK) ∈ spt(π).
Observe that ϕ is c̃-concave and that spt(π) ⊂ ∂ c̃ϕ. Furthermore, for
x, y ∈ ∂Ω, one has ϕ(x) + ϕc̃(y) = c̃(x, y) = 0. As such, up to adding
a constant, we have that ϕ and ϕc̃ both vanish on ∂Ω. To prove that
these observations remain true when replacing c̃ by c, following [FG10], we
observe that spt(π) ⊂ ∂ c̃ϕ ∩ A ⊂ ∂cϕ. Then, recalling that ϕ(x) = 0 for
x ∈ ∂Ω, it follows ϕc(x) = ϕ(x) + ϕc(x) = c(x, x) = 0, proving that ϕc also
vanishes on ∂Ω.

Finally, to prove (iii) ⇒ (i), consider π, π′ ∈ Adm(µ, ν) (supported on
EΩ) and assume that π ⊂ ∂cϕ for some c-concave function ϕ with ϕ, ϕc

that vanish on ∂Ω. Observe that for all x, y,

ϕ(x) ≤ c(x, ∂Ω), , ϕc(y) ≤ c(∂Ω, y),

so that µ(ϕ), µ(ϕc) < ∞ for any µ ∈ Mp. Finally, observe that for any
x, y ∈ Ω, ϕ(x) + ϕc(y) ≤ c(x, y) (while equality holds on ∂cϕ). It allows us
to write

Cp(π) =

∫∫

∂cϕ

c(x, y)dπ(x, y)

=

∫∫

Ω×Ω

ϕ(x)dπ(x, y) +

∫∫

Ω×Ω

ϕc(y)dπ(x, y)

=

∫
ϕ(x)dµ(x) +

∫
ϕc(y)dν(y)

=

∫∫

Ω×Ω

ϕ(x)dπ′(x, y) +

∫∫

Ω×Ω

ϕc(y)dπ′(x, y)

=

∫∫

Ω×Ω

(ϕ(x) + ϕc(y))dπ′(x, y)

≤
∫∫

c(x, y)dπ′(x, y) = Cp(π
′).

Therefore, π ∈ Opt(µ, ν).

The last assertion is known as stability of optimal transport in standard
optimal transport literature [Vil08, Thm. 5.20], and mentioned in [FG10].
It is an immediate corollary of the equivalence between (i) and (ii): let
πn ∈ Opt(µn, νn). As such, for all n, the support of πn is a subset of A and
is c̃-cyclically monotone. Up to extracting a subsequence, (πn)n converges
vaguely to some π, which also has its support included in A and c̃-cyclically
monotone, as c̃ is continuous. Therefore, π ∈ Opt(µ, ν).



Chapter 4

Fréchet means in the space of
persistence measures

Abstract

In this chapter, we state the existence of Fréchet means for prob-
ability distributions supported onMp. We start with the finite case
(i.e. averaging finitely many persistence measures) and then extend
the result to any probability distribution with finite p-th moment.
We then study the specific case of distribution supported on Dp
(i.e. averaging persistence diagrams) and show that in the finite set-
ting, the set of Fréchet means is a convex set whose extreme points
are in Dd (i.e. are actual persistence diagrams). As in the previ-
ous chapter, some technical proofs have been deferred to a specific
section (§4.4). Note that computational aspects are not addressed
here: they will be covered in the next part of the manuscript, which
is dedicated to applications.

Remark 4.1. In this chapter, we will assume that 1 < p < ∞ and 1 <
q <∞ (recall d(·, ·) = ‖ ·− · ‖q). These assumptions will ensure that (i) the
projection of x ∈ Ω onto ∂Ω is uniquely defined and (ii) the Fréchet mean
of k points x1 . . . xk in Ω, i.e. minimizer of x 7→ ∑k

i=1 ‖x − xi‖pq, is also
uniquely defined; two facts used in our proofs.

Recall that (Mp,OTp) is a Polish space, and let Wp denote the Wasser-
stein distance (see Section 2.2.2) between probability measures supported
on (Mp,OTp). We denote by Wp(Mp) the space of probability measures
P supported on Mp, equipped with the Wp metric, which are at a finite
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distance from δ0—the Dirac mass supported on the empty diagram—i.e.

W p
p (P, δ0) =

∫

ν∈Mp

OTp
p(ν,0)dP (ν) =

∫

ν∈Mp

Persp(ν)dP (ν) <∞.

Definition 4.2. Consider P ∈ Wp(Mp). A measure µ∗ ∈ Mp is a
Fréchet mean of P if it minimizes the energy functional

E : µ ∈Mp 7→
∫

ν∈Mp

OTp
p(µ, ν)dP (ν).

4.1 Fréchet means in the finite case

Let P be of the form
∑N

i=1 λiδµi with N ∈ N, µi a persistence measure of
finite mass mi, and (λi)i non-negative weights that sum to 1. Let E be
the corresponding energy functional. Define mtot :=

∑N
i=1mi. To prove

the existence of Fréchet means for such a P , we show that, in this case,
Fréchet means correspond to Fréchet means for the Wasserstein distance of
some distribution on Mp

mtot
(Ω̃), the set of measures on Ω̃ that all have the

same mass mtot (see Section 3.2), a problem well studied in the literature
[AC11, CE10, COO15a]. Recall from Section 3.2 that Ω̃ denotes the closed
half-plane Ω where the points of the boundary ∂Ω have been identified. This
space is naturally equipped with a metric ρ deduced from d by enforcing
the triangle inequality, that is

ρ(x, y) = min(d(x, y), d(x,p∂Ω(x)) + d(p∂Ω(y), y)).

We start with a lemma which claims that if a measure µ has too much
mass (larger than mtot), then it cannot be a Fréchet mean of µ1 . . . µN . Its
proof can be find in Section 4.4. The idea of the proof is to show that if a
measure µ has some mass that is mapped to the diagonal in each transport
plan between µ and µi, then we can build a measure µ′ by “removing” this
mass, and then observe that such a measure µ′ has a smaller energy E(µ′).

Lemma 4.3. We have inf{E(µ), µ ∈Mp} = inf{E(µ), µ ∈Mp
≤mtot

}.

Let Wp,ρ denote the Wasserstein distance between measures with same
mass supported on the metric space (Ω̃, ρ) (see Sections 2.2.2 and 3.2).

Proposition 4.4. Let

Ψ :Mp
≤mtot

→Mp
mtot

(Ω̃)

µ 7→ µ+ (mtot − µ(Ω))δ∂Ω.
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The functionals

E : µ ∈Mp
≤mtot

7→
N∑

i=1

λiOTp
p(µ, µi)

and

F : µ̃ ∈Mp
mtot

(Ω̃) 7→
N∑

i=1

λiW
p
p,ρ (µ̃,Ψ(µi)) ,

have the same infimum values and arg min E = Ψ−1(arg minF).

The existence of minimizers µ̃ of F , that is “Wasserstein barycenter”
(i.e. Fréchet means for the Wasserstein distance) of P̃ :=

∑N
i=1 λiδµ̃i , is

well-known (see [AC11, Theorem 8]). Proposition 4.4 asserts that Ψ−1(µ̃)
is a minimizer of E onMp

≤mtot
, and thus a Fréchet mean of P according to

Lemma 4.3. We therefore have the following corollary, namely the existence
of Fréchet means in the finite case.

Corollary 4.5. Let µ1 . . . µN be N persistence measures in Mp, and
let λ1 . . . λN be non-negative weights that sum to one. The distribution
P =

∑N
i=1 λiδµi ∈ Wp(Mp) admits a Fréchet mean.

4.2 Existence and consistency of Fréchet

means

We now extend the results of the previous section to the Fréchet means
of general probability distributions supported on Mp. First, we show a
consistency result, in the vein of [LGL16, Theorem 3].

Proposition 4.6. Let (Pn)n, P be probability measures in Wp(Mp). As-
sume that each Pn has a Fréchet mean µn and that Wp(Pn, P )→ 0. Then,
the sequence (µn)n is relatively compact in (Mp,OTp), and any limit of a
converging subsequence is a Fréchet mean of P .

To prove this result, we introduce the following lemma, whose proof can
be found in Section 4.4.

Lemma 4.7. Let µ, µ1, µ2, · · · ∈ Mp. Then, OTp(µn, µ) → 0 if and

only if µn
v−→ µ and there exists a persistence measure ν ∈ Mp such that

OTp(µn, ν)→ OTp(µ, ν).
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Proof of Proposition 4.6. We first prove the relative compactness of (µn)n.
Following Proposition B.4, we can show that for every compact K ⊂ Ω,
sup{µn(K)} < ∞. Consider a compact set K ⊂ Ω. We have, because of
(3.6),

µn(K)
1
p ≤ 1

d(K, ∂Ω)
OTp(µn,0) =

1

d(K, ∂Ω)
Wp(δµn , δ0)

≤ 1

d(K, ∂Ω)
(Wp(δµn , Pn) +Wp(Pn, δ0)) .

Since µn is a Fréchet mean of Pn, it minimizes {Wp(δν , Pn), ν ∈Mp}, and
in particular Wp(δµn , Pn) ≤ Wp(δ0, Pn). Furthermore, since we assume that
Wp(Pn, P ) → 0, we have in particular that supnWp(Pn, δ0) < ∞. As a
consequence supn µn(K) < ∞, and it follows (Proposition B.4) that the
sequence (µn)n is relatively compact for the vague topology.

Without relabeling, assume thus that (µn)n
v−→ µ. One must show that µ

is a Fréchet mean of P . At this stage, we can follow the same computations
as [LGL16, Proof of Theorem 3]. Let ν be a persistence measure. We write

∫
OTp

p(ν, ξ)dP (ξ) = W p
p (δν , P )

= lim
n→∞

W p
p (δν , Pn)

≥ lim
n→∞

W p
p (δµn , Pn)

= lim
n→∞

∫
OTp

p(µn, ξ)dPn(ξ)

≥
∫

lim inf
n→∞

OTp
p(µn, ξ)dPn(ξ)

≥
∫

OTp
p(µ, ξ)dP (ξ) by lower semi-continuity.

This proves that µ must be a barycenter of P . Furthermore, taking ν = µ
in the above series of inequalities yields

Wp(δµn , Pn)→ Wp(δµ, P ),

and then by triangle inequality, and using that Wp(Pn, P )→ 0,

Wp(δµn , P )→ Wp(δµ, P ).
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Therefore, we can write

∫
OTp

p(µ, ξ)dP (ξ) = W p
p (δµ, P )

= lim
n→∞

W p
p (δµn , P )

= lim
n→∞

∫
OTp

p(µn, ξ)dP (ξ)

≥
∫

lim inf
n→∞

OTp
p(µn, ξ)dP (ξ)

≥
∫

OTp
p(µ, ξ)dP (ξ),

forcing in particular that

∫
lim inf
n→∞

OTp
p(µn, ξ)−OTp

p(µ, ξ)
︸ ︷︷ ︸

≥0

dP (ξ) = 0,

and thus, P -almost surely, we have

lim inf
n→∞

OTp
p(µn, ξ) = OTp

p(µ, ξ).

We eventually obtain the existence of some ν ∈ Mp such that, up to a
subsequence,

OTp(µn, ν)→ OTp(µ, ν).

Lemma 4.7 gives the desired conclusion.

Proposition 4.6 allows us to generalize existence of barycenters in the
finite case (Section 4.1) to general probability distributions supported on
Mp.

Theorem 4.8. For any probability distribution P supported on Mp with
finite p-th moment, the set of Fréchet means of P is a non-empty compact
convex set of Mp.

Note that here, convexity must be understood in the sense of linear
combination of measures, that is a convex set C ⊂Mp is such that for any
two measures µ, ν ∈ C, and any t ∈ (0, 1), one has (1− t)µ+ tν ∈ C.

Proof. We first prove the non-emptiness. Let P =
∑N

i=1 λiµi be a proba-
bility measure on Mp with finite support µ1, . . . , µN . According to Propo-
sition 3.14, there exists sequences (µ

(n)
i )n in Mp

f with OTp(µ
(n)
i , µi) → 0.
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As a consequence of the result of Section 4.1, the probability measures
P (n) :=

∑
i λiδµ(n)

i
admit Fréchet means. Furthermore, W p

p (P (n), P ) ≤
∑

i λiOTp
p(µ

(n)
i , µi) so that this quantity converges to 0 as n → ∞. It

follows from Proposition 4.6 that P admits a Fréchet mean.

If P has infinite support, following [LGL16], it can be approximated (in
Wp) by an empirical probability measure Pn = 1

n

∑n
i=1 δµi where the µi are

i.i.d. from P . We know that Pn admits a Fréchet mean since its support
is finite, and thus, applying Proposition 4.6 once again, we obtain that P
admits a Fréchet mean.

Finally, the compactness of the set of Fréchet means follows from Propo-
sition 4.6 and the convexity of the set from the convexity of OTp

p (Lemma 3.13).

4.3 Fréchet means in Dp
We now prove the existence of Fréchet means for distributions of persis-
tence diagram (i.e. probability distributions supported on Dp), extending
the results of [MMH11], in which authors prove their existence for spe-
cific probability distributions (namely distributions with compact support
or specific rates of decay). Theorem 4.10 below asserts two different things:
that arg min{E(a), a ∈ Dp} is non empty, and that

min{E(a), a ∈ Dp} = min{E(µ), µ ∈Mp},

that is an optimal persistence measure cannot perform strictly better than
an optimal persistence diagram when averaging persistence diagrams. As
for Fréchet means inMp, we start with the finite case. The following lemma
actually gives a geometric description of the set of Fréchet means obtained
when averaging a finite number of finite diagrams.

Lemma 4.9. Consider a1, . . . , aN ∈ Df , weights (λi)i that sum to 1, and

let P :=
∑N

i=1 λiδai. Then, the set of minimizers of µ 7→∑N
i=1 λiOTp

p(µ, ai)
is a non empty convex subset of Mf whose extreme points belong to Df . In
particular, P admits a Fréchet mean in Df .

The proof of this lemma relies on integer programming results and is
found in Section 4.4. Note that, as a straightforward consequence, if P has
a unique minimizer in Df (which is generically true [Tur13]), then so it does
in Mf (and this unique minimizer is a persistence diagram).
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Theorem 4.10. For any probability distribution P supported on Dp with
finite p-th moment, the set of Fréchet means of P contains an element
of Dp. Furthermore, if P is supported on a finite set of finite persistence
diagrams, then the set of the Fréchet means of P is a convex set whose
extreme points are in Dp.

Proof. The second assertion of the theorem is stated in Lemma 4.9. To
prove the existence of a Fréchet mean which is a persistence diagram, we
argue as in the proof of Theorem 4.8, using additionally the fact that Dp is
closed in Mp (Corollary 3.9).

4.4 Proofs

Proof of Lemma 4.3. Let µ ∈ Mp. Let πi ∈ Optp(µi, µ) for i = 1, . . . , N .
The measure A ⊂ Ω 7→ πi(∂Ω × A) is absolutely continuous with respect
to µ. Therefore, it has a density fi with respect to µ. Define for A ⊂ Ω a
Borel set,

µ′(A) := µ(A)−
∫

A

min
j
fj(x)dµ(x),

and, for i = 1, . . . , N , a measure π′i, equal to πi on Ω×Ω and which satisfies
for A ⊂ Ω a Borel set,

π′i(∂Ω× A) = π′i(p∂Ω(A)× A) := πi(∂Ω× A)−
∫

A

min
j
fj(x)dµ(x),

where s is the orthogonal projection on ∂Ω. As πi(∂Ω×A) =
∫
A
fi(x)dµ(x),

π′i(A) is non-negative, and as πi(∂Ω × A) ≤ µ(A), it follows that µ′(A) is
non-negative. To prove that π′i ∈ Adm(µi, µ

′), it is enough to check that
for A ⊂ Ω, π′i(Ω× A) = µ′(A):

π′i(Ω× A) = πi(Ω× A) + πi(∂Ω× A)−
∫

A

min
j
fj(x)dµ(x)

= µ(A)−
∫

A

min
j
fj(x)dµ(x) = µ′(A).
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Also,

µ′(Ω) =

∫

Ω

(1−min
j
fj)dµ(x) ≤

N∑

j=1

∫

Ω

(1− fj)dµ(x)

=
N∑

j=1

(µ(Ω)− πj(∂Ω× Ω)) =
N∑

j=1

(πj(Ω× Ω)− πj(∂Ω× Ω))

=
N∑

j=1

πj(Ω× Ω) ≤
N∑

j=1

πj(Ω× Ω) =
N∑

j=1

mj = mtot.

and thus µ′(Ω) ≤ mtot. To conclude, observe that

E(µ′) ≤
N∑

i=1

λiCp(π
′
i) =

N∑

i=1

λi

(∫∫

Ω×Ω

d(x, y)pdπi(x, y)

+

∫∫

∂Ω×Ω

d(x, y)pdπi(x, y)−
∫

Ω

d(x, ∂Ω)p min
j
fj(x)dµ(x)

)

≤
N∑

i=1

λiCp(π) = E(µ).

Proof of Proposition 4.4. Let G be the set of µ ∈ Mp such that, for all i,
there exists πi ∈ Optp(µi, µ) with πi(Ω, ∂Ω) = 0. By point 2 of Lemma 3.16,
for µ ∈ G and πi ∈ Optp(µi, µ) with πi(Ω, ∂Ω) = 0, ι(πi) is well defined and
satisfies

OTp
p(µi, µ) = Cp(πi) =

∫∫

Ω̃×Ω̃

d(x, y)pdι(πi)(x, y) ≥ C̃p(ι(πi)) ≥ W p
p,ρ(µ̃i, µ̃),

so that F(Ψ(µ)) ≤ E(µ). As, by Lemma 3.17, E ≤ F ◦Ψ, we therefore have
E(µ) = F(Ψ(µ)) for µ ∈ G.

We now show that if µ /∈ G, then there exists µ′ ∈ Mp with E(µ′) <
E(µ). Let µ /∈ G and πi ∈ Optp(µi, µ). Assume that for some i, we have
πi(Ω, ∂Ω) > 0, and introduce ν ∈ Mp defined as ν(A) = πi(A, ∂Ω) for
A ⊂ Ω. Define

Ti : Ω 3 x 7→ arg min
y∈Ω

{
λid(x, y)p +

∑

j 6=i

λjd(y, ∂Ω)p

}
∈ Ω.

Note that since p > 1, this map is well defined (the minimizer is unique due
to strict convexity) and continuous thus measurable. Consider the measure
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∂Ω

x

T (x)

A

T (A)

T

π′
i

π′
j

πi

Ω

(T#νi)�T (A)

νi

T

Figure 4.1: Global picture of the proof. The main idea is to observe that the
cost induced by πi (red) is strictly larger than the sum of costs induces by the
π′is (blue), which leads to a strictly better energy.

µ′ = µ + (Ti#ν), where Ti#ν is the push-forward of ν by the map Ti.
Consider the transport plan π′i deduced from πi where ν is transported onto
Ti#ν instead of being transported to ∂Ω (see Figure 4.1). More precisely,
π′i is the measure on Ω× Ω defined by, for Borel sets A,B ⊂ Ω:

π′i(A×B) = πi(A×B) + ν(A ∩ T−1
i (B)),

π′i(A× ∂Ω) = 0, π′i(∂Ω×B) = πi(∂Ω×B).

We have π′i ∈ Adm(µi, µ
′). Indeed, for Borel sets A,B ⊂ Ω:

π′i(A× Ω) = π′i(A× Ω) = πi(A× Ω) + ν(A) = πi(A× Ω) = µi(A),

and

π′i(Ω×B) = π′i(Ω×B) + π′i(∂Ω×B)

= πi(Ω×B) + ν(T−1
i (B)) + πi(∂Ω×B)

= µ(B) + Ti#ν(B) = µ′(B).

Using π′i instead of πi changes the transport cost by the quantity

∫

Ω

[d(x, Ti(x))p − d(x, ∂Ω)p]dν(x) < 0.

In a similar way, we define for j 6= i the plan π′j ∈ Adm(µj, µ
′) by

transporting the mass induced by the newly added (Ti#ν) to the diagonal
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∂Ω. Using these modified transport plans increases the total cost by

∑

j 6=i

λj

∫

Ω

d(Ti(x), ∂Ω)pdν(x).

One can observe that

∫

Ω

[
λi (d(x, Ti(x))p − d(x, ∂Ω)p) +

∑

j 6=i

λjd(Ti(x), ∂Ω)p

]
dν(x) < 0

due to the definition of T and ν(Ω) > 0.
Therefore, the total transport cost induced by the (π′i)i=1...N is strictly

less than E(µ), and thus E(µ′) < E(µ). Finally, we have

inf
µ∈Mp

≤mtot

E(µ) = inf
µ∈G
E(µ) = inf

µ∈G
F(Ψ(µ)) ≥ inf

µ∈Mp
≤mtot

F(Ψ(µ)) ≥ inf
µ∈Mp

≤mtot

E(µ),

where the last inequality comes from F ◦Ψ ≥ E (Lemma 3.17). Therefore,
inf E = inf F ◦ Ψ, which is equal to inf F , as Ψ is a bijection. Also, if
µ is a minimizer of E (should it exist), then µ ∈ G and E(µ) = F(Ψ(µ)).
Therefore, as the infimum are equal, Ψ(µ) is a minimizer of F . Reciprocally,
if µ̃ is a minimizer of F , then, by Lemma 3.17, F(µ̃) ≥ E(Ψ−1(µ̃)), and, as
the infimum are equal, Ψ−1(µ̃) is a minimizer of E .

LM,r

KM,r

Ar

M

r

M

∂Ω

Ω

Figure 4.2: Partition of Ω used in the proof of Lemma 4.7.



4.4. PROOFS 101

Proof of Lemma 4.7. For the direct implication, take ν = 0 and apply The-
orem 3.7.

Let us prove the converse implication. Assume that µn
v−→ µ and

OTp(µn, ν)→ OTp(µ, ν) for some ν ∈ Dp. The vague convergence of (µn)n
implies that µ[p] is the only possible accumulation point for weak conver-
gence of the sequence (µ

[p]
n )n. Therefore, it is sufficient to show that the

sequence (µ
[p]
n )n is relatively compact for weak convergence (i.e. tight and

bounded in total variation, see Proposition B.5). Indeed, this would mean

that (µ
[p]
n ) converges weakly to µ[p], or equivalently by Proposition B.6 that

µn
v−→ µ and Persp(µn)→ Persp(µ). The conclusion is then obtained thanks

to Theorem 3.7.

Thus, let (µn)n be any subsequence and (πn)n be corresponding optimal
transport plans between µn and ν. The vague convergence of (µn)n implies
that (πn)n is relatively compact with respect to the vague topology on EΩ.
Let π be a limit of any converging subsequence of (πn)n, which indexes
are still denoted by n. One can prove that π ∈ Opt(µ, ν) (see [FG10,
Prop. 2.3]). For r > 0, define Ar := {x ∈ Ω, d(x, ∂Ω) ≤ r} and write Ar
for Ar ∪ ∂Ω. Consider η > 1. We can write

∫

Ar

d(x, ∂Ω)pdµn(x) =

∫∫

Ar×Ω

d(x, ∂Ω)pdπn(x, y)

=

∫∫

Ar×(Ω\Aηr)

d(x, ∂Ω)pdπn(x, y) +

∫∫

Ar×Aηr

d(x, ∂Ω)pdπn(x, y)

(∗)
≤ 1

(η − 1)p

∫∫

Ar×(Ω\Aηr)

d(x, y)pdπn(x, y) +

∫∫

Ar×Aηr

d(x, ∂Ω)pdπn(x, y)

≤ 1

(η − 1)p
OTp

p(µn, ν)

+ 2p−1

( ∫∫

Ar×Aηr

d(x, y)pdπn(x, y) +

∫∫

Ar×Aηr

d(y, ∂Ω)pdπn(x, y)

)

≤ 1

(η − 1)p
OTp

p(µn, ν)

+ 2p−1

(
OTp

p(µn, ν)−
∫∫

EΩ\(Ar×Aηr)

d(x, y)pdπn(x, y) +

∫

Aηr

d(y, ∂Ω)pdν(y)

)

where (∗) holds because d(x, y) ≥ (η − 1)r ≥ (η − 1)d(x, ∂Ω) for (x, y) ∈
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Ar × Acηr. Therefore,

lim sup
n→∞

∫

Ar

d(x, ∂Ω)pdµn(x) ≤ 1

(η − 1)p
OTp

p(µ, ν) + 2p−1

(
OTp

p(µ, ν)

−
∫∫

EΩ\(Ar×Aηr)

d(x, y)pdπ(x, y)

+

∫

Aηr

d(y, ∂Ω)pdν(y)

)

Note that at the last line, we used the Portmanteau theorem (see Proposi-
tion B.7) on the sequence of measures (d(x, y)pdπn(x, y))n for the open set
EΩ\(Ar × Aηr). Letting r → 0, then η goes to infinity, one obtains

lim
r→0

lim sup
n→∞

∫

Ar

d(x, ∂Ω)pdµn(x) = 0.

The second part consists in showing that there can not be mass escaping
“at infinity” in the subsequence (µ

[p]
n )n. Fix r,M > 0. For x ∈ Ω, denote

p∂Ω(x) the projection of x on ∂Ω. Pose

KM,r := {x ∈ Ω\Ar, d(x, ∂Ω) < M, d(p∂Ω(x), 0) < M}

and LM,r the closure of Ω\(Ar ∪KM,r) (see Figure 4.2). For r′ > 0,
∫

LM,r

d(x, ∂Ω)pdµn(x) =

∫∫

LM,r×Ω

d(x, ∂Ω)pdπn(x, y)

=

∫∫

LM,r×(LM/2,r′∪Ar′ )

d(x, ∂Ω)pdπn(x, y) +

∫∫

LM,r×KM/2,r′

d(x, ∂Ω)pdπn(x, y)

≤ 2p−1

∫∫

LM,r×(LM/2,r′∪Ar′ )

d(x, y)pdπn(x, y)

+ 2p−1

∫∫

LM,r×(LM/2,r′∪Ar′ )

d(∂Ω, y)pdπn(x, y)

+

∫∫

LM,r×KM/2,r′

d(x, ∂Ω)pdπn(x, y).

We treat the three parts of the sum separately. As before, taking the lim sup
in n and letting M → ∞, the first part of the sum converges to 0 (apply
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the Portmanteau theorem on the open set EΩ\(LM,r× (LM/2,r′ ∪Ar′)). The
second part is less than or equal to

2p−1

∫

LM/2,r′∪Ar′
d(y, ∂Ω)pdν(y),

which converges to 0 as M → ∞ and r′ → 0. For the third part, notice
that if (x, y) ∈ LM,r ×KM/2,r′ , then

d(x, ∂Ω) ≤ d(x,p∂Ω(y)) ≤ d(x, y) + d(y,p∂Ω(y)) ≤ d(x, y) +
M

2
≤ 2d(x, y).

Therefore,
∫∫

LM,r×KM/2,r′

d(x, ∂Ω)pdπn(x, y) ≤ 2p
∫∫

LM,r×KM/2,r′

d(x, y)pdπn(x, y)

≤ 2p
∫∫

LM,r×Ω

d(x, y)pdπn(x, y).

As before, it is shown that lim supn
∫∫

LM,r×Ω
d(x, y)pdπn(x, y) converges to

0 when M goes to infinity by applying the Portmanteau theorem on the
open set EΩ\(LM,r × Ω).

Finally, we have shown that by taking r small enough and M large
enough, one can find a compact set KM,r such that

∫
Ω\KM,r

d(x, ∂Ω)pdµn =

µ
[p]
n (Ω\KM,r) is uniformly small: (µ

[p]
n )n is tight. As we have

µ[p]
n (Ω) = Persp(µn) = OTp

p(µn, 0)

≤ (OTp(µn, ν) + OTp(ν, 0))p → (OTp(µ, ν) + OTp(ν, 0))p,

it is also bounded in total variation. Hence, (µ
[p]
n )n is relatively compact for

the weak convergence: this concludes the proof.

Proof of Lemma 4.9. Let P =
∑N

i=1 λiδai be a probability distribution with

ai ∈ Df of mass mi ∈ N, and define mtot =
∑N

i=1 mi. By Proposition 4.4,
every Fréchet mean a of P is in correspondence with a Fréchet mean for the
Wasserstein distance ã of P̃ =

∑N
i=1 λiδãi , where ãi = ai + (mtot −mi)δ∂Ω,

with a being the restriction of ã to Ω.
Fix m ∈ N, and let ã1, . . . , ãN be point measures of mass m in Ω̃. Write

ãi =
∑m

j=1 δxi,j , so that xi,j ∈ Ω̃ for 1 ≤ i ≤ N, 1 ≤ j ≤ m, with the xi,js
non-necessarily distinct. Define

T : (x1, . . . , xN) ∈ Ω̃N 7→ arg min

{
N∑

i=1

λiρ(xi, y)p, y ∈ Ω̃

}
∈ Ω̃. (4.1)
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Since we assume p > 1, T is well-defined and is continuous (the minimizer
is unique by strict convexity). Using the localization property stated in
[COO15a, Section 2.2], we know that the support of a Fréchet mean of P̃
is included in the finite set

S := {T (x1,j1 , . . . , xN,jN ), 1 ≤ j1, . . . , jN ≤ m}.

Let K = mN and let z1, . . . , zK be an enumeration of the points of S
(with potential repetitions). Denote by Gr(zk) the N elements x1, . . . , xN ,
with xi ∈ spt(ãi), such that zk = T (x1, . . . , xN). It is explained in [COO15a,
§2.3], that finding a Fréchet mean of P̃ is equivalent to finding a minimizer
of the problem

inf
(γ1,...,γN )∈Π

N∑

i=1

λi

∫∫

Ω̃2

ρ(xi, y)pdγi(xi, y), (4.2)

where Π is the set of plans (γi)i=1,...,N , with γi having for first marginal ãi,
and such that all γis share the same (non-fixed) second marginal. Further-
more, we can assume without loss of generality that (γ1 . . . γN) is supported
on (Gr(zk), zk)k, i.e. a point zk in the Fréchet mean is necessary transported
to its corresponding grouping Gr(zk) by (optimal) γ1, . . . γN [COO15a, §2.3].
For such a minimizer, the common second marginal is a Fréchet mean of P̃ .

A potential minimizer of (4.2) is described by a vector γ = (γi,j,k) ∈
RNmK

+ such that:

{
for 1 ≤ i ≤ N, 1 ≤ j ≤ m,

∑K
k=1 γi,j,k = 1 and

for 2 ≤ i ≤ N, 1 ≤ k ≤ K,
∑m

j=1 γ1,j,k =
∑m

j=1 γi,j,k.
(4.3)

Let c ∈ RNmK be the vector defined by ci,j,k = 1{xi,j ∈ Gr(zk)}λiρ(xi,j, zk)
p.

Then, the problem (4.2) is equivalent to

minimize
γ∈RNmK+

γT c under the constraints (4.3). (4.4)

The set of Fréchet means of P are in bijection with the set of minimizers
of this Linear Programming problem (see [Sch03, §5.15]), which is given
by a face of the polyhedron described by the equations (4.3). Hence, if we
show that this polyhedron is integer (i.e. its vertices have integer values),
then it would imply that the extreme points of the set of Fréchet means
of P are point measures, concluding the proof. The constraints (4.3) are
described by a matrix A of size (Nm + (N − 1)K) × NmK and a vector
b = [1Nm,0(N−1)K ], such that γ ∈ RNmK satisfies (4.3) if and only if Aγ = b.
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A sufficient condition for the polyhedron {Ax ≤ b} to be integer is to satisfy
the following property (see [Sch03, Section 5.17]): for all u ∈ ZNmK , the
dual problem

max{yT b, y ≥ 0 and yTA = u} (4.5)

has either no solution (i.e. there is no y ≥ 0 satisfying yTA = u), or it has
an integer optimal solution y.

For y satisfying yTA = u, write y = [y0, y1] with y0 ∈ RNm and y1 ∈
R(N−1)K , so that y0 is indexed on 1 ≤ i ≤ N, 1 ≤ j ≤ m and y1 is indexed
on 2 ≤ i ≤ N, 1 ≤ k ≤ K. One can check that, for 2 ≤ i ≤ N, 1 ≤ j ≤
m, 1 ≤ k ≤ K:

u1,j,k = y0
1,j +

N∑

i′=2

y1
i′,k and ui,j,k = y0

i,j − y1
i,k, (4.6)

so that,

yT b =
N∑

i=1

m∑

j=1

y0
i,j =

m∑

j=1

y0
1,j +

N∑

i=2

m∑

j=1

y0
i,j

=
m∑

j=1

(u1,j,k −
N∑

i=2

y1
i,k) +

N∑

i=2

m∑

j=1

(ui,j,k + y1
i,k)

=
N∑

i=1

m∑

j=1

ui,j,k.

Therefore, the function yT b is constant on the set P := {y ≥ 0, yTA = u},
and any point of the set is an argmax. We need to check that if the set P
is non-empty, then it contains a vector with integer coordinates: this would
conclude the proof. A solution of the homogeneous equation yTA = 0
satisfies y0

i,j = y1
i,k = λi for i ≥ 2 and y0

1,j = −∑N
i=2 y

1
i,k = −∑N

i=2 λi and
reciprocally, any choice of λi ∈ R gives rise to a solution of the homogeneous
equation. For a given u, one can verify that the set of solutions of yTA = u
is given, for λi ∈ R, by





y0
1,j =

∑N
i=1 ui,j,k −

∑N
i=2 λi

y0
i,j = λi for i ≥ 2,

y1
i,k = −ui,j,k + λi for i ≥ 2.

Such a solution exists if and only if for all j, Uj :=
∑N

i=1 ui,j,k does not
depend on k and for i ≥ 2, Ui,k := ui,j,k does not depend on j. For such a
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vector u, P corresponds to the λi ≥ 0 with λi ≥ maxk Ui,k and Uj ≥
∑N

i=1 λi.
If this set is non empty, it contains as least the point corresponding to
λi = max{0,maxk Ui,k}, which is an integer: this point is integer valued,
concluding the proof.



Part II

Applications in statistics and
learning
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Chapter 5

Fast estimation of Fréchet means
for persistence diagrams

Abstract

In this chapter, we address the problem of estimating Fréchet
means (a.k.a. barycenters) in the space of persistence diagrams from
a computational perspective. A theoretical study of Fréchet means
of persistence diagrams and measures can be found in Chapter 4,
where existence results are provided. Here, we propose an approach
to approximate Fréchet means of persistence diagrams in a convex,
parallelizable, and GPU-friendly way. This work is essentially taken
from [LCO18], although being significantly more detailed and revis-
ited under the light of Chapter 3.

Implementation resources.

• Implementation in Gudhi of Wasserstein distances and Lagrangian
barycenters for persistence diagrams.

• (To appear in Gudhi) Eulerian barycenters using entropic regulariza-
tion.

• A tutorial in Gudhi for barycenters of persistence diagrams.

109

https://gudhi.inria.fr/python/latest/wasserstein_distance_user.html
https://gudhi.inria.fr/python/latest/wasserstein_distance_user.html
https://gudhi.inria.fr/
https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-Barycenters-of-persistence-diagrams.ipynb
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5.1 Preliminary remarks and problem

formulation

Let Ω denote the open half-plane

Ω := {(b, d) ∈ R2, b > d}, (5.1)

and let ∂Ω denote its boundary, namely the diagonal

∂Ω := {(t, t), t ∈ R}. (5.2)

Eventually, let Ω denote Ω t ∂Ω.
For now, we fix a parameter p ∈ [1,+∞). Recall from Definition 2.9

in Section 2.1 that persistence diagrams are defined as locally finite point
measures supported on Ω, that is of the form

∑
x∈X nxδx, where X ⊂ Ω is

locally finite, and nx ∈ N for all x ∈ X. Recall that persistence diagrams
can be equipped with metrics dp, defining a metric space (Dp,dp), and
which depends on a ground metric d which is set to be d(x, y) := ‖x− y‖p
in this chapter. The space of persistence diagrams is denoted by D. It
is a subset of the space of non-negative Radon measures supported on Ω,
denoted by M(Ω) or M if there is no ambiguity.

Here, as we target numerical applications, we will only consider finite
sets of finite persistence diagrams. Therefore, we can assume that our
diagrams are supported on [0, 1]2 ∩ Ω.

Problem formulation In this context, we consider the following prob-
lem. Given a set of (finite) persistence diagrams ν1, . . . νN ∈ Dp, and non-
negative weights (λi)1≤i≤N that sum to one, we are looking for minimizers
of

E : µ 7→
N∑

i=1

λidp(µ, νi)
p. (5.3)

This problem was initially introduced in [TMMH14], we refer the reader to
Section 2.1.3 for more details. This problem is known to have (non-unique,
in general) solutions in both D and M (and the minimum values are the
same). However, these exact solutions are generally intractable. The goal
is thus to provide a way to estimate such minimizers in practice, ideally in
a large-scale manner.

Diagram metrics as an optimal transport problems (reminder).
In this context, following the results of Chapter 3 (namely, Proposition 3.5
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and Proposition 3.15), the metric dp between two persistence diagrams
µ =

∑n1

i=1 δxi and ν =
∑n2

j=1 δyj can be reformulated as a balanced optimal

transport problem (see Section 2.2) on the space Ω̃ obtained from Ω by
identifying all the points in ∂Ω to a single point (still denoted by ∂Ω).
First, note that d naturally induces a ground cost on Ω̃ × Ω̃ (still denoted
by d) by setting d(x, {∂Ω}) := d(x,p∂Ω(x)), where p∂Ω(x) is the orthogonal
projection of x ∈ Ω onto the diagonal ∂Ω.

Introduce the operator

R :M(Ω)→M({∂Ω})
µ 7→ µ(Ω)δ∂Ω,

(5.4)

and let µ̃ = µ + Rν and ν̃ = ν + Rµ. Let a = (1n1 , n2) ∈ Rn1+1 and
b = (1n2 , n1) ∈ Rn2+1 be the weight vectors of µ and ν respectively, where
1k = (1 . . . 1) ∈ Rk. Let C be the cost matrix with block structure

C =

(
Ĉ u
vT 0

)
∈ R(n1+1)×(n2+1), (5.5)

with ui = d(xi, ∂Ω)p, vj = d(∂Ω, yj)
p and Ĉ = (d(xi, yj)

p)ij.
It reads

dp(µ, ν)p = LC(a, b) (5.6)

where LC is defined by the following optimization problems, dual of each
other:

LC(a, b) = min
P∈Π(a,b)

〈C,P 〉 = min
P∈Π(a,b)

∑

ij

CijPij, (5.7)

= max
f,g∈ΨC

〈a, f〉+ 〈b, g〉 = max
f,g∈ΨC

∑

i

aifi +
∑

j

bjgj, (5.8)

where the constraint sets are respectively defined as

Π(a, b) := {P ∈ R(n1+1)×(n2+1), P1n2+1 = a, P T1n1+1 = b}, (5.9)

ΨC := {(f, g) ∈ Rn1+1 × Rn2+1, ∀i, j, fi + gj ≤ Cij}. (5.10)

Remark 5.1. Note that the cost d defined on Ω̃×Ω̃ is not a metric as one
could have d(x, y) ≥ d(x, ∂Ω) + d(∂Ω, y). To recover a true metric space,
we can define

ρ(x, y) := min{d(x, y), d(x, ∂Ω) + d(∂Ω, y)}.
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It is proved (Proposition 3.15) that using either ρ or d leads to the same
optimal transport plans and optimal transport costs, so actually these two
costs are interchangeable. Formally, it yields with previous notations,

LC(a, b) = W p
p,ρ(µ̂, ν̂).

From a computational perspective, using d(x, y)p = ‖x − y‖pp, which is a
separable cost, is highly beneficial when implementing the entropic regular-
ization of diagram distances.

5.2 A Lagrangian approach

The first algorithm proposed to address the problem (5.3), assuming p = 2,
was also introduced in [TMMH14]. It relies on a Lagrangian approach
and is summarized in Algorithm 1. As it performs barycenter estimation
relying on the Munkres (Hungarian) algorithm, it is referred to as the B-
Munkres algorithm in the following. This algorithm is proved to converge
to a local minimum of E in D, see Figure 5.1 for an illustrative example.
In this section, we propose to revisit this algorithm by adopting an optimal
transport perspective.

For x1 . . . xm ∈ Ω̃, assume that x1 . . . xk ∈ Ω (i.e. are off-diagonal points)
and xk+1 . . . xm = ∂Ω, let x denote the arithmetic mean of x1 . . . xk, and
define

mean(x1 . . . xm) := arg min
x

n∑

i=1

d(x, xi)
2 =

k

m
x+

m− k
m

p∂Ω(x).

Interestingly, under the light of (5.6), Algorithm 1 can formally be re-
trieved as a slight variation of algorithms introduced independently in the
optimal transport literature at a similar time in [CD14]. To clarify this, we
introduce the following proposition.

Proposition 5.2. Let ν1, . . . , νN be N persistence diagrams of respective
masses (number of points) n1, . . . , nN . Let mtot :=

∑
i ni. Define wni :=

(1ni ,mtot − ni) ∈ Rni+1. Minimizing the energy

E : µ 7→
N∑

i=1

dpp(µ, νi)

is equivalent to minimizing

Ẽ : (Ω̃)mtot → R
(y1 . . . ymtot) 7→ LCi(wk, wni)
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Algorithm 1 Estimation of Fréchet means (B-Munkres) [TMMH14]

Input: Set of diagrams ν1 . . . νN , initial guess Y = {y1 . . . yk}.
Output: A persistence diagram µ =

∑
j δyj that is a local minima of E

on D with p = 2.
Let converged = False.
while not converged do
Z ← ∅ /* store new points arising from ∂Ω */.
for i = 1 . . . N do

Compute γi optimal partial matching between µ and νi,

Z ← Z ∪
{
x
m

+ (m−1)
m

p∂Ω(x), (p∂Ω(x), x) ∈ γi
}

.

end for
for each yj ∈ µ do

Let xij ∈ spt(νi) ∪ ∂Ω be such that (yj, x
i
j) ∈ γi

yj ← mean(xij, 1 ≤ i ≤ N)
end for
if None of the (yj)j has changed and Z is empty then
converged ← True.

else
Y ← Y ∪ Z.

end if
end while
return µ.

where k := |{i, yi ∈ Ω}| (number of off-diagonal points) and Ci is the
pairwise distance matrix defined in (5.5) (between the off-diagonal points of

µ :=
∑

i, yi∈Ω

δyi and νi). Furthermore, if (y1 . . . ymtot) is a minimizer of Ẽ,

then µ is a minimizer of E, and vice-versa.

Proof. In Chapter 4, we proved (Proposition 4.4 and Lemma 4.9) that min-
imizing E on D was equivalent to minimize

F : Dmtot(Ω̃)→ R

µ̃ 7→
N∑

i=1

W p
p,ρ(µ̃, νi + (mtot − ni)δ∂Ω),

where Dmtot(Ω̃) denotes the measures of the form µ̃ =
mtot∑

j=1

δyj , where yj ∈ Ω̃,

in sense that if µ̃ minimizes F , then µ :=
∑

i, yi∈Ω δyj minimizes E , and vice-
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Figure 5.1: Example of output of Algorithm 1.

versa.
Furthermore, in this context (see Remark 5.1),

W p
p,ρ(µ̃, νi + (mtot − ni)δ∂Ω) = LCi(wk, wni),

proving the claim.

This problem is exactly a standard optimal-transport barycenter prob-
lem. A first remark that can be done from this crucial observation is that
we immediately obtain that minimizers of Ẽ (thus of E once we restrict to
off-diagonal points) must have their support included in

{mean(x1 . . . xN), x1 ∈ (a1 ∪ {∂Ω}) . . . xN ∈ (aN ∪ {∂Ω})} ,
a property known as the localization property [COO15a, Section 2.2].

In [CD14, §4.3], Cuturi and Doucet propose to consider the problem
of minimizing Ẽ as a minimization problem over the positions {y1 . . . ymtot}
describing (the current estimation of) the barycenter. They derive a Newton
update rule that reads (in the context of persistence diagrams)

{y1 . . . ymtot} = Y ← mean(XiP
∗,T
i ),
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where Xi denotes the positions of the points of ai (completed with a mass
mtot − ai(Ω) on ∂Ω), and P ∗,Ti is an optimal transport plan between Y
and Xi for the cost matrix C(X, Y ) defined in (5.5). Enforcing Pi to be
a permutation matrix (which is always possible thanks to the Birkhoff-
von Neumann theorem, see Section 2.2) exactly yields the update rule of
Algorithm 1. To sum up, Algorithm 1 can be understood as a particular
instance1 of [CD14, Algorithm 2].

Limitations. In particular, Algorithm 1 only provides a local minimizer
of E in D. Here, a local minimizer must be understood as an element µ ∈ D
for which there is some ε > 0, such that

∀ν ∈ D, d2(µ, ν) ≤ ε⇒ E(µ) ≤ E(ν).

One can naturally wonder if such local minimizers do exist, and how
“bad” they are. Unfortunately, we prove that E admits arbitrary bad local
minimizers in D, to which the algorithm converges when initialized with
one of the input diagrams (as suggested in [TMMH14]).

Lemma 5.3. For any κ ≥ 1, there exists a set of diagrams ν1, . . . , νN
such that, when initialized with one of the (νi)i, the B-Munkres algorithm
converges to a diagram µloc such that

E(µloc) ≥ κE∗

where E∗ = minµ∈D E(µ).

Proof. To alleviate notations, we write in this proof the coordinates of the
points in Ω with respect to the axes given by ∂Ω, ∂Ω⊥. Fix an integer
N ∈ N and let εN = 1

2N
. For 1 ≤ i ≤ N , let νi be a diagram with N points

x
(i)
1 , . . . , x

(i)
N of respective coordinates (((i − 1)N + k)εN , 1), see Figure 5.2

for an illustration with N = 3. Let also νN+1 be the empty diagram.
Assume that Algorithm 1, when applied to estimate a Fréchet mean of

XN := ν1 . . . νN+1 with weights λ1 = · · · = λN+1 = 1
N+1

, is initialized on
νN+1, so that initially the estimate is described by Y = ∅. Let EN denote
the corresponding energy function.

The optimal partial matching γN+1 between the current estimate and
νN+1 is empty, while we have for 1 ≤ i ≤ N ,

γi = {(p∂Ω(x
(i)
k ), x

(i)
k ), k = 1 . . . N}.

1More precisely, a slight variation, as Cuturi and Doucet only considered the Eu-
clidean cost. On the quotient space Ω̃, d is not the Euclidean cost, but computations
adapt faithfully thanks to the block structure of C mentioned in (5.5).
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Ω

∂Ω

∂Ω⊥

εNx
(1)
1 x

(2)
1 x

(3)
1 x

(1)
2 . . .

1
N+1

1
N+1

N
N+1

N
N+1

Figure 5.2: Illustration of the diagrams used in the proof with N = 3. Purple
crosses represent the output of the algorithm when initialized on the empty dia-
gram, denoted by µloc in the proof. Orange squares represent the competitor µ̂
that performs, asymptotically, arbitrarily better than µloc.

Thus, the update step consists in adding to Y the N2 points

yj =

(
(i− 1)N + k,

1

N + 1

)
, where j = (i− 1)N + k, 1 ≤ j ≤ N2.

At the second iteration, the optimal partial matchings are respectively
given by

γi = {(yj, x(i)
k )) if j = (i− 1)N + k, (yj,p∂Ω(yj)) otherwise}.

In particular, no new point needs to be added. Furthermore, one can check
that the update rule let Y unchanged, reaching the stopping criterion of

the algorithm. As an output of Algorithm 1, this resulting µloc =
∑N2

j=1 δyj
is necessarily a local minimum of E on D [TMMH14, §3.1]. The energy
reached by this diagram is

EN(µloc) =
1

N + 1
N2 ·

(
1

N + 1

)2

︸ ︷︷ ︸
d2

2(µloc,νN+1)

+
N

N + 1
·
(
N ·

(
N

N + 1

)2

+N(N − 1)

(
1

N + 1

)2
)

︸ ︷︷ ︸
d2

2(µloc,νi)

,

so that essentially EN(µloc) ∼ N as N →∞.
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On the other hand, let us introduce the diagram with N points µ̂ :=∑N
j=1 δŷj , with

ŷj := mean((x
(i)
j )Ni=1, ∂Ω) =

(
((j − 1)N + (N − 1)/2) εN ,

N

N + 1

)
.

The optimal partial matching between µ̂ and νi, for 1 ≤ i ≤ N , is given by

γ̂i = {(ŷj, x(i)
j ), j = 1 . . . N},

inducing a cost of

d2
2(µ̂, νi) = N ·

((
N + 1

2
− i
)2

ε2
N +

(
1

N + 1

)2
)
,

while the distance to νN+1 = 0 is simply N
(

N
N+1

)2
. Eventually, the energy

of µ̂ is

EN(µ̂) =
N

N + 1

(
N

N + 1

)2

+
N

N + 1

N∑

i=1

((
N + 1

2
− i
)2

ε2
N +

(
1

N + 1

)2
)
,

so that, since εN = 2−N , E∗N ≤ EN(µ̂) → 1 as N → ∞, and in particular
EN(µloc)/E∗N can be arbitrarily large.

Aside from its non-convexity, Algorithm 1 suffers in practice from a high
computational cost. Indeed, solving partial matching problems between two
diagrams of size n scales (just as any optimal transport problem) essentially
in O(n3). As Algorithm 1 requires, at each iteration, to compute N optimal
partial matchings, it is untractable when the number of diagram N and the
typical size of the diagram n increase, which is confirmed numerically (see
Figure 5.8 below).

Improving on these two issues. Algorithm 1 produces an estimation
of a Fréchet mean by optimizing on positions: it is a Lagrangian approach
(see Section 2.2). Lagrangian approaches are known to lead to non-convex
optimization problems (see for instance [CD14, §4.4]). In contrast, we adopt
below a Eulerian approach which—at the cost of discretizing the ground
space—allows us to recover a convex optimization problem.

In terms of computational efficiency, we rely on an entropic regulariza-
tion of optimal transport, see Section 2.2.4 for an introduction. A careful
adaptation of computational techniques developed in computational opti-
mal transport [PC17] yields to a scalable problem than can be run effi-
ciently on GPUs, drastically improving running times on large sets of large
diagrams.
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Remark 5.4. We end this section by mentioning a concurrent approach
to improve on Algorithm 1 introduced in [VBT19, KVT19]. Briefly speak-
ing, it consists in using the Auction algorithm—as adapted in [KMN17]—to
estimate optimal partial matchings between persistence diagrams. This ap-
proach significantly reduces the running time in Algorithm 1 and has the ben-
efits of providing an output that is an actual persistence diagram (while the
approach we develop below returns a measure supported on the discretized
groundspace). However, the resulting problem is still not convex.

5.3 Entropic approximation for distances

and means of persistence diagrams

Following the correspondence established in (5.6), entropic regularization
of optimal transport metrics (we refer the reader to Section 2.2.4 for more
details) can be used to approximate the diagram distance dp(·, ·). Given
two persistence diagrams µ, ν with respective mass n1, n2, let n := n1 + n2,
a = (1n1 , n2) ∈ Rn1+1, b = (1n2 , n1) ∈ Rn2+1, and let C be the cost matrix
as defined in (5.5). In this context, given a regularization parameter γ > 0,
one can approximate the distance between µ and ν using one of the following
optimization problems, dual of each other:

dp(µ, ν)p ' dγp(µ, ν)p := inf
P∈Π(a,b)

〈P,C〉+ γh(P ), (5.11)

= sup
(f,g)∈Rn1+1×Rn2+1

〈a, f〉+ 〈b, g〉 (5.12)

− ε
∑

ij

exp

(
fi + gj − Cij

ε

)
, (5.13)

=: Lγ
C(a, b) (5.14)

where Π(a, b) is defined in (5.9), h(P ) :=
∑

ij Pij(log(Pij) − 1) is the ne-
gentropy . For an optimal P γ, we define the Sinkhorn cost as SγC(a, b) :=
〈P γ, C〉. Note that one has SγC(a, b) ≥ Lγ

C(a, b).
The seminal strength of the minimization problem involved in (5.11)

is that it is strictly convex and thus admits a unique solution P γ. This
solution can be approximated by iterating the Sinkhorn map

S : (u, v) ∈ Rn1+1 × Rn2+1 7→
(

a

Kv
,

b

KTu

)
, (5.15)

where K = exp(−C/ε) ∈ R(n1+1)×(n2+1) (where exponentiation must be
understood term-wise). Indeed, if (uγ, vγ) is a fixed point of (5.15), then
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it turns out that uγKvγ = P γ. Furthermore, for any initialization (u0, v0),
the sequence defined by

ut+1 =
a

Kvt
(5.16)

vt+1 =
b

KTut+1

, (5.17)

converges to an optimal pair (uγ, vγ). Note also the relation (uγ, vγ) =
(exp(fγ/γ), exp(gγ/γ)), where (fγ, gγ) is optimal in (5.14).

5.3.1 Error control

The above definition gives us a way to approximate dp by dγp by simply
iterating the Sinkhorn map S (note that in practice, additional care is
required to obtain much faster computations). Of course, one might ask for
some control on the error made by using dγp instead of dp. There are two
sources of error:

• The regularization error induced by the parameter γ

• The fact that, in practice, we do not exactly reach a fixed point of S
as this would required to perform “infinitely many” iterations.

Therefore, in practice, we obtain a transport plan P γ
t = diag(uγt )Kdiag(vγt )

where (uγt , v
γ
t ) is the output after t iterations of the Sinkhorn map (5.15).

The error made by approximating dp(µ, ν)p by 〈P γ
t , C〉 has been studied in

[AWR17]. Adapted to our context, their bounds read

|dp(µ, ν)p − 〈P γ
t , C〉 | ≤2γn log (n) + dist(P γ

t ,Π(a, b))‖C‖∞ (5.18)

where
dist(P,Π(a, b)) := ‖P1− a‖1 + ‖P T1− b‖1,

(that is, error on marginals). It remains to understand at which rate
dist(P,Π(a, b)) → 0 as the number of iterations t → ∞. In [DGK18],
authors prove that iterating the Sinkhorn map (5.15) gives a plan P γ

t satis-

fying dist(P γ
t ,Π(a, b)) < ε in O

(
‖C‖2∞
γε

+ ln(n)
)

iterations. Given (5.18), a

natural choice is thus to take γ = ε
n ln(n)

for a desired precision ε, which lead

to a total of O
(
n ln(n)‖C‖2∞

ε2

)
iterations in the Sinkhorn loop. These results

can be used to pre-tune parameters t and γ to control the approximation
error due to smoothing. However, these are worst-case bounds, controlled
by max-norms, and are often too pessimistic in practice. To overcome this
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phenomenon, we introduce on-the-fly error control, using approximate so-
lutions to the smoothed primal (5.11) and dual (5.14) optimal transport
problems, which provide upper and lower bounds on the optimal transport
cost.

Upper and Lower Bounds. The Sinkhorn algorithm, after at least one
iteration (t ≥ 1), produces feasible variables for the (non-regularized) dual
problem (5.8):

(fγt , f
γ
t ) = (γ log(uγt ), γ log(vγt )) ∈ ΨC ,

providing a natural lower bound of the target quantity

〈fγt , a〉+ 〈gγt , b〉 ≤ sup
f,g∈ΨC

〈a, f〉+ 〈b, g〉 = dp(µ, ν)p.

However, it turns out that in practice, this quantity performs poorly as a
lower bound of the true optimal transport cost (see Figure 5.3 and Sec-
tion 5.3.4 below) in most of our experiments. To improve on this, we com-
puted the so called C-transform (fγt )c of fγt [San15, §1.6], defined as:

∀j, (fγt )cj = max
i
{Cij − fi}, j ≤ n2 + 1.

Applying a CT -transform on (fγt )c, we recover two vectors (fγt )cc̄ ∈
Rn1+1, (fγt )c ∈ Rn2+1. For any feasible f, g, we have that [PC17, Prop 3.1]

〈f, a〉+ 〈g, b〉 ≤ 〈f cc̄, a〉+ 〈f c, b〉 .

When C’s top-left block is the squared Euclidean metric, this problem can
be cast as that of computing the Moreau envelope [Mor65] of f . In a Eule-
rian setting and when our measures are described as histograms supported
on a finite regular grid (which we consider below), the C-transform in linear
time with respect to the grid resolution d by using either a linear-time Leg-
endre transform or the Parabolic Envelope algorithm [Luc10, §2.2.1,§2.2.2].

Unlike dual iterations, the primal iterate P γ
t does not belong to the

transport polytope Π(a, b) after a finite number t of iterations. We use
the rounding to feasible algorithm introduced in [AWR17] to compute
efficiently a feasible approximation Rγ

t of P γ
t that does belong to Π(a, b).

Putting these two elements together, we obtain

〈(fγt )cc̄, a〉+ 〈(fγt )c, b〉︸ ︷︷ ︸
mγt

≤ LC(a, b) ≤ 〈Rγ
t , C〉︸ ︷︷ ︸
Mγ
t

. (5.19)
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Figure 5.3: (Left) Mγ
t := 〈Rγt , C〉 (red) and mγ

t := 〈αcc̄t , a〉+ 〈αct , b〉 (green) as a
function of t, the number of iterations of the Sinkhorn map (t ranges from 1 to
500, with fixed γ = 10−3). (Middle) Final Mγ (red) and mγ (green) provided by
Alg.1, computed for decreasing γs, ranging from 10−1 to 5.10−4. For each value
of γ, Sinkhorn loop is run until d(P γt ,Π(a, b)) < 10−3. Note that the γ-axis is
flipped. (Right) Influence of cc̄-transform for the Sinkhorn dual cost. (orange)
The dual cost 〈αγt , a〉+〈βγt , b〉, where (αγt , β

γ
t ) are Sinkhorn dual variables (before

the C-transform). (green) Dual cost after C-transform, i.e. with ((αγt )cc̄, (αγt )c).
Experiment run with γ = 10−3 and 500 iterations.

Therefore, after iterating the Sinkhorn map (5.15) t times, we have that
if Mγ

t − mγ
t is below a certain criterion ε, then we can guarantee that

〈Rγ
t , C〉 is a fortiori an ε-approximation of LC(a, b). Observe that one

can also have a relative error control: if one has Mγ
t − mγ

t ≤ εMγ
t , then

(1 − ε)Mγ
t ≤ LC(a, b) ≤ Mγ

t . Note that mγ
t might be negative but can

always be replaced by max(mγ
t , 0) since C has non-negative entries (and

therefore LC(a, b) ≥ 0), while Mγ
t is always non-negative.

5.3.2 Computational aspects

Discretization. As mentioned in the beginning of the section, we assume
in the remaining that our diagrams have their support in [0, 1]2 ∩ Ω. As
explained previously, updating positions (Lagrangian approaches) generally
leads to non-convex problem. To recover a convex problem, we propose
instead to adopt an Eulerian approach: just as a persistence diagram µ
can be describe as a set of positions {x1 . . . xn}, it can also be seen as a
map x ∈ Ω 7→ 1 if x is a point of the diagram, 0 otherwise. That is, we
will optimize the mass put on each x in Ω. Of course, this theoretically
leads to an infinite-dimensional optimization problem. In practice, we have
to discretize the ground space to recover a tractable optimization problem,
that has the huge advantage of being convex.

From a numerical perspective, encoding persistence diagrams as his-
tograms on the square offers numerous advantages. Given a uniform grid
of size d × d on [0, 1]2, we associate to a given diagram µ a matrix-shaped
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histogram a ∈ Rd×d such that aij is the number of points in µ belonging
to the cell located at position (i, j) in the grid (we use bold-faced small
letters to insist on the fact that these histograms must be stored as square
matrices). Note that, in order to account for the mass located on ∂Ω, we
must add an additional coordinate that will be denoted by ∆. We extend
the operator R to histograms, associating to a histogram a ∈ Rd×d its total
mass on the ∆ coordinate (the (d2 + 1)-th one).

Convolutions. In the Eulerian setting, where diagrams are matrix-shaped
histograms of size d×d = d2, the cost matrix would have size d2×d2. Since
one may want to use large values of d to have low discretization error (typ-
ically d = 100), instantiating the cost matrix naively is usually intractable.
However, [SDGP+15] showed that for regular grids endowed with a sepa-
rable cost, each Sinkhorn iteration (as well as other key operations such as
evaluating Sinkhorn’s cost SγC = 〈P γ, C〉) can be performed using Gaussian
convolutions, which amounts to performing matrix multiplications of size
d×d, without having to manipulate d2×d2 matrices at any step. The frame-
work we consider is slightly different due to the extra dimension {∂Ω} (and
the corresponding row and column in (5.5)), but equivalent computational
properties hold. This observation is crucial from a numerical perspective.
The idea is sketched in Figure 5.4.

Implementation details. Let (u, u∆) be a pair where u ∈ Rd×d is a
matrix-shaped histogram and u∆ ∈ R+ is a real number accounting for the
mass located the ∆ coordinate (i.e. on {∂Ω}). We denote by −→u the d2 × 1
column vector obtained when reshaping u. The (d2 + 1) × (d2 + 1) cost
matrix C and corresponding kernel K are given by

C =

(
Ĉ −→c∆−→c∆
T 0

)
, K =

(
K̂ := e−

Ĉ
γ
−→
k∆ := e−

−→c∆
γ

−→
k∆

T 1

)
,

where Ĉ = (‖(i, i′) − (j, j′)‖pp)ii′,jj′ , c∆ = (‖(i, i′) − π∆((i, i′))‖pp)ii′ . The
crucial point is that C and K as defined above will never be instantiated,
because we can rely instead on c ∈ Rd×d defined as cij = |i − j|p and

k = e−
c
γ .

Proposition 5.5 (Iteration of Sinkhorn map). The operation of K to
(u, u∆) can be performed as:

(u, u∆) 7→
(
k(kuT )T + u∆k∆, 〈u,k∆〉+ u∆

)
(5.20)

where 〈·, ·〉 denotes the Froebenius dot-product in Rd×d.
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We now introduce m := k�c and m∆ := k∆�c∆ (� denotes term-wise
multiplication).

Proposition 5.6 (Computation of SγC). Let (u, u∆), (v, v∆) ∈ Rd×d+1.
The transport cost of P := diag(−→u , u∆)Kdiag(−→v , v∆) can be computed as:

〈diag(−→u , u∆)Kdiag(−→v , v∆), C〉 = 〈diag(−→u )K̂diag(−→v ), Ĉ〉
+ u∆ 〈v,m∆〉+ v∆ 〈u,m∆〉 ,

(5.21)

where the first term can be computed as:

〈diag(−→u )K̂diag(−→v ), Ĉ〉 = ‖u�
(
m(kvT )T + k(mvT )T

)
‖1. (5.22)

The last proposition addresses the computation of the upper bound
involved in (5.19). First, we recall the rounding to feasible algorithm
introduced by Altschuler et al. in [AWR17]. Here, r(P ) and c(P ) denote
respectively the first and second marginal of a matrix P .

Algorithm 2 Rounding algorithm of [AWR17]

1: Input: P ∈ Rd×d, desired marginals r, c.
2: Output: F (P ) ∈ Π(r, c) close to P .

3: X = min
(

r
r(P )

, 1
)
∈ Rd

4: P ′ = diag(X)P

5: Y = min
(

c
c(P ′)

, 1
)
∈ Rd

6: P ′′ = P ′diag(Y )
7: er = r − r(P ′′), ec = c− c(P ′′)
8: return F (P ) := P ′′ + ere

T
c /‖ec‖1

Finally, consider two histograms (a, a∆), (b, b∆) ∈ Rd×d × R, let R ∈
Π((a, a∆), (b, b∆)) be the rounded matrix of P as introduced in Algorithm 2.
Let r(P ), c(P ) ∈ Rd×d × R denote the first and second marginal of P
respectively. We introduce (minimum and divisions must be understood
term-wise):

X = min

(
(a, a∆)

r(P )
,1

)
, Y = min

(
(b, b∆)

c(diag(X)P )
,1

)
,

along with P ′ = diag(X)Pdiag(Y ) and the marginal errors:

(er, (er)∆) = (a, a∆)− r(P ′), (ec, (ec)∆) = (b, b∆)− c(P ′),
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K

(
u
u∆

)
=

e−
1
γ
‖(i,j)−(i′,j′)‖pp

= e−
1
γ
|i−i′|p︸ ︷︷ ︸ · e− 1

γ
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Figure 5.4: Sketch of the convolution technique used to efficiently iterate the
Sinkhorn map (5.15) in a Eulerian setting.

Proposition 5.7 (Computation of the upper bound 〈R,C〉). The trans-
port cost induced by R can be computed as:

〈R,C〉 = 〈diag(X � (u, u∆))Kdiag(Y � (v, v∆)), C〉

+
1

‖ec‖1 + (ec)∆

(
‖eTr cec‖1 + ‖erceTc ‖1

+ (ec)∆ 〈er, c∆〉+ (er)∆ 〈ec, c∆〉
)
.

(5.23)

Note that the first term can be computed using (5.21)

The proofs of these propositions are purely technical and can be found
in Section 5.3.5.

Parallelization and GPU. Using a Eulerian representation is particu-
larly beneficial when applying Sinkhorn’s algorithm, as shown by [Cut13].
Indeed, the Sinkhorn map (5.15) only involves matrix-vector operations.
Furthermore, the cost matrix C is constant: it does not depend on the pair
of histograms involved. When dealing with a large number of histograms,
concatenating these histograms and running Sinkhorn’s iterations in paral-
lel as matrix-matrix product results in significant speedup that can exploit
GPGPU to compare a large number of pairs simultaneously. This makes
this approach especially well-suited for large sets of persistence diagrams.
This idea is sketched in Figure 5.5.

Algorithm 3 allows us to estimate distances between persistence dia-
grams in parallel by performing only (d × d)-sized matrix multiplications,
leading to a computational scaling in d3 where d is the grid resolution pa-
rameter. Note that a standard stopping threshold in Sinkhorn iteration
process is to check the error to marginals dist(P,Π(a,b)), as motivated by
(5.18).
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Figure 5.5: Sketch of parallel computations of S when dealing with multiple pairs
of diagrams.

Algorithm 3 Sinkhorn cost for persistence diagrams

Input: Pairs of PDs (Di, D
′
i)i, smoothing parameter γ > 0, grid step

d ∈ N, stopping criterion, initial (u,v).
Output: Approximation of all (dp(Di, D

′
i)
p)i, upper and lower bounds

if wanted.
init Cast Di, D

′
i as histograms ai, bi on a d× d grid

while stopping criterion not reached do
Iterate in parallel (5.15) (u,v) 7→ S(u,v) using (5.20)

end while
Compute all SγC(ai + Rbi,bi + Rai) using (5.21)
if Want a upper bound then

Compute 〈Ri, C〉 in parallel using (5.23)
end if
if Want a lower bound then

Compute 〈(αγt )cc̄, ai〉+ 〈(αγt )c,bi〉 using [Luc10]
end if

5.3.3 Entropic regularization for Fréchet means in D
In addition to numerical efficiency, a major advantage of the regularized
optimal transport is that

a 7→ Lγ
C(a, b)

is differentiable. In the Eulerian setting, where C is fixed, its gradient
is given by centering the vector γ log(uγ) where uγ is a fixed point of the
Sinkhorn map (5.15) (see [CD14]). This result can be adapted to our frame-
work, namely:

Proposition 5.8. Let ν1 . . . νN be PDs, and (ai)i the corresponding his-
tograms on a d×d grid. Let Cd be the corresponding (d2 + 1)× (d2 + 1) cost
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Figure 5.6: Barycenter estimation for different γs with a simple set of 3 PDs (red,
blue and green). The smaller the γ, the better the estimation (E decreases, note
the γ-axis is flipped on the right plot), at the cost of more iterations in Alg. 4.
The mass appearing along the diagonal is a consequence of entropic smoothing:
it does not cost much to delete while it increases the entropy of transport plans.

matrix. Note that Cd does not depend on x. The gradient of the functional

Eγ,d : x 7→
N∑

i=1

Lγ
Cd

(x + Rai, ai + Rx)

is given by

∇xEγ,d = γ

(
N∑

i=1

log(uγi ) + RT log(vγi )

)
(5.24)

where RT denotes the adjoint operator R and (uγi , v
γ
i ) is a fixed point of the

Sinkhorn map obtained while transporting x+Rai onto ai+Rx for the cost
C.

This result follows from the envelope theorem, taking into account the
fact that x appears in both terms depending on u and v. This formula
can be exploited to compute barycenters via gradient descent, yielding Al-
gorithm 4. Following [CD14, §4.2], we use a multiplicative update. This
is a particular case of mirror descent [BT03] and is equivalent to a (Breg-
man) projected gradient descent on the positive orthant, retaining positive
coefficients (masses) throughout iterations.

Remark 5.9 (A comparison with linear representations). When doing
statistical analysis with persistence diagrams, a standard approach is to
transform a diagram into a finite-dimensional vector—in a stable way—
and then perform statistical analysis and learning with a Euclidean struc-
ture. This approach does not preserve the Wasserstein-like geometry of the
diagram space and thus loses the algebraic interpretability of persistence
diagrams. Figure 5.7 gives a qualitative illustration of the difference be-
tween Wasserstein barycenters (Fréchet mean) of persistence diagrams and
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Algorithm 4 Estimation of Fréchet means of persistence diagrams

Input: Persistence diagrams ν1, . . . , νN , learning rate λ, smoothing pa-
rameter γ > 0, grid step d ∈ N.
Output: Estimated barycenter x
Init: x uniform measure above the diagonal.
Cast each νi as a histogram ai on a d× d grid
while x changes do

Iterate S defined in (5.15) in parallel between all the pairs (x + Rai)i
and (ai + Rx)i, using (5.20).
∇ := γ(

∑
i log(uγi ) + RT log(vγi ))

x := x� exp(−λ∇)
end while
if Want energy then

Compute 1
N

∑
i S

γ
C(x + Rai, ai + Rx) using (5.21)

end if
Return x

Euclidean barycenters (linear means) of persistence images [AEK+17], a
commonly used vectorization for PDs [MKPY16, ZZJS16, OHK18].

Remark 5.10. Aside from its computational strengths (convexity, paral-
lelism, GPU-capable), this Eulerian approach has another major advantage
over Lagrangian ones: it straightforwardly extends to any measure sup-
ported on [0, 1]2 ∩ Ω and is not restricted to persistence diagram (nor even
to measures with finite support). Therefore, this approach would allow us
to compute (more precisely, to estimate) distance and barycenters between
more complicated measures supported on Ω, such as expected persistence
diagrams (see Section 7.1).

5.3.4 Experiments

Let us now showcase Algorithm 3 and Algorithm 4 in numerical applica-
tions. In the following, experiments are run with p = 2, but would work
with any finite p ≥ 1. The choice of p = 2 is consistent with the work of
[TMMH14] for Fréchet mean estimation.

Fast barycenters Let us compare Algorithm 4 (referred to as Sinkhorn)
with the combinatorial algorithm of the B-Munkres algorithm Algorithm 1.
Figure 5.8 records running times of both algorithms on a set of 10 diagrams
having from n to 2n points, n ranging from 1 to 500, on Intel Xeon 2.3
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Figure 5.7: Illustration of differences between Fréchet means with Wasserstein
and Euclidean geometry. The top row represents input data, namely persis-
tence diagrams (left), vectorization of diagrams as persistence images in R100×100

(middle, [AEK+17]), and discretization of diagrams as histograms (right). The
bottom row represents the estimated barycenters (orange scale) with input data
(shaded), using the approach of Algorithm 1 [TMMH14] (left), the arithmetic
mean of persistence images (middle) and our optimal transport based approach
(right).

GHz (CPU) and P100 (GPU, Sinkhorn only). When running Algorithm 4,
the gradient descent is performed until |E(xt+1)/E(xt) − 1| < 0.01, with
γ = 10−1/n and d = 50. Our experiment shows that Algorithm 4 drastically
outperforms B-Munkres as the number of points n increases. We interrupt
B-Munkres at n = 30, after which computational time becomes an issue.

Aside the computational efficiency, we highlight the benefits of operating
with a convex formulation in Figure 5.9. Due to non-convexity, the B-
Munkres algorithm is only guaranteed to converge to a local minima, and
its output depends on initialization. We illustrate on a toy set of N = 3
diagrams how our algorithm avoids local minima thanks to the Eulerian
approach we take.

k-means on large PD sets. We now merge Algorithm 3 and Algorithm 4
in order to perform unsupervised clustering via k-means on PDs. We work
with the 3D-shape database provided by [SP04] and generate diagrams in
the same way as in [COO15b], working in practice with 5000 diagrams
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Figure 5.8: Average running times for B-Munkres (blue) and Sinkhorn (red)
algorithms (log-log scale) to average 10 PDs.
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Figure 5.9: Qualitative comparison of B-Munkres and Algorithm 4. (a) Input
set of N = 3 diagrams with n = 20 points each. (b) Output of B-Munkres when
initialized on the blue diagram (orange squares) and input data (grey scale).
(c) Output of B-Munkres initialized on the green diagram. (d) Output of Algo-
rithm 4 on a 100 × 100 grid, γ = 5.10−4, learning-rate λ = 5, Sinkhorn stop-
ping criterion (distance to marginals): 0.001, gradient descent performed until
|E(zt+1)/E(zt)− 1| < 0.01.—As one can see, localization of masses is similar.
Initialization of B-Munkres is made on one of the input diagram as indicated
in [TMMH14, Alg. 1], and leads to convergence to different local minima. Our
convex approach (Algorithm 4) performs better (lower energy). As a baseline,
the energy of the naive arithmetic mean of the three diagrams is 0.72.
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Figure 5.10: Illustration of our k-means algorithm. From left to right: 20 di-
agrams extracted from horses and camels plot together (one color for each di-
agram); the centroid they are matched with provided by our algorithm; 20 di-
agrams of head and faces; along with their centroid; decrease of the objective
function. Running time depends on many parameters along with the random ini-
tialization of k-means. As an order of magnitude, it takes from 40 to 80 minutes
with this 5000 PD dataset on a P100 GPU.

with 50 to 100 points each. The database contains 6 classes: camel, cat,
elephant, horse, head and face. In practice, this unsupervised cluster-
ing algorithm detects two main clusters: faces and heads on one hand,
camels and horses on the other hand are systematically grouped together.
Figure 5.10 illustrates the convergence of our algorithm and the computed
centroids for the aforementioned clusters.

5.3.5 Proofs of Propositions 5.5, 5.6, 5.7

Proof of Proposition 5.5. Given a histogram u ∈ Rd×d and a mass u∆ ∈ R+,
one can observe that:

K̂u = k(kuT )T . (5.25)

In particular, the operation u 7→ K̂u can be perform by only manipulating
matrices in Rd×d.

Indeed, observe that:

K̂ij,kl = e−(i−k)2/γe−(j−l)2/γ = kikkjl,

so we have:

(K̂u)i,j =
∑

k,l

Kij,kluk,l

=
∑

k,l

kikkjluk,l =
∑

k

kik
∑

l

kjlukl

=
∑

k

kik(kuT )jk = (k(kuT )T )i,j.
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Thus we have in our case:

K(u, u∆) = (K̂u + u∆k∆, 〈u,k∆〉+ u∆)

where 〈a, b〉 designs the Froebenius dot product between two histograms
a, b ∈ Rd×d. These computations only involves manipulation of matrices
with size d× d.

Proof of Proposition 5.6.

〈diag(−→u )K̂diag(−→v ), Ĉ〉 =
∑

ijkl

uijkikkjl[cik + cjl]vkl

=
∑

ijkl

uij ([kikcik]kjlvkl + kik[kjlcjl]vkl)

=
∑

ij

uij
∑

kl

(mikkjlvkl + kikmjlvkl)

Thus, we finally have:

〈diag(−→u )K̂diag(−→v ), Ĉ〉 = ‖u�
(
m(kvT )T + kmvT ]T

)
‖1

And finally, taking the {∆} bin into considerations,

〈diag(−→u , u∆)Kdiag(−→v , v∆), C〉

= 〈
(

diag(−→u )K̂diag(−→v ) v∆(−→u �−→k ∆)

u∆(−→v T �−→k T
∆) u∆v∆

)
,

(
Ĉ −→c ∆−→c T

∆ 0

)
〉

= 〈diag(−→u )K̂diag(−→v ), Ĉ〉+ u∆ 〈v,k∆ � c∆〉+ v∆ 〈u,k∆ � c∆〉 ,

concluding the proof.

Proof of Proposition 5.7. By straightforward computations, the first and
second marginals of P γ

t = diag(−→u )Kdiag(−→v ) are given by:

(∑

kl

uijKij,klvkl

)

ij

= u� (Kv),

(∑

ij

uijKij,klvkl

)

kl

= (uK)� v.

Observe that Kv and uK can be computed using Proposition 5.5.
Now, the transport cost computation is:

〈F (P γ
t ), C〉 = 〈diag(X)P γ

t diag(Y ), C〉+ 〈ereTc /‖ec‖1, C〉

= 〈diag(X � u)Kdiag(Y � v), C〉+
1

‖ec‖1

∑

ijkl

(er)ij(ec)kl[cik + cjl]
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The first term is the transport cost induced by a rescaling of u,v and can be
computed with Proposition 5.6. Consider now the second term. Without
considering the additional bin {∆}, we have:

∑

ijkl

(er)ij(ec)kl[cik + cjl] =
∑

ijl

(er)ij
∑

k

cik(ec)kl +
∑

ijk

(er)ij
∑

l

cjl(ec)kl

=
∑

ijl

(er)ij(cec)il +
∑

ijk

(er)ij(ce
T
c )jk

= ‖eTr cec‖1 + ‖erceTc ‖1,

so when we consider our framework (with {∆}), it comes:

〈
(

er
(er)∆

)
·
(
ec (ec)∆

)
, C〉 = 〈

(
ere

T
c (ec)∆er

(er)∆e
T
c (er)∆(ec)∆

)
,

(
Ĉ −→c ∆−→c T

∆ 0

)
〉

= 〈ereTc , Ĉ〉+ (ec)∆ 〈er, c∆〉+ (er)∆ 〈ec, c∆〉 .

Putting things together finally proves the claim.



Chapter 6

Linear representations of
persistence diagrams

Abstract

In this chapter, we study linear representations of persistence
diagrams, a common vectorization method to make use of persistence
diagrams and measures in machine learning. The first section uses
the characterization of convergence proved in Chapter 3 to derive a
useful characterization of continuous linear representations in a very
general theoretical framework. The second section proposes a neural
network architecture that we call PersLay, which aims at learning a
task-driven representation method in a supervised learning context.
It is essentially based on [CCI+20].

Implementation resources.

• (To appear in Gudhi) implementation of PersLay. Preliminary ver-
sion available on Mathieu Carriere’s github page, along with a tutorial.

6.1 Continuity of linear representations

Recall thatMp denotes the space of persistence measures (Radon measures
supported on the open half-plane Ω with finite total persistence).

133

https://gudhi.inria.fr/
https://github.com/MathieuCarriere/perslay
https://github.com/MathieuCarriere/perslay/blob/master/tutorial/tutorialPersLay.ipynb


134 CHAPTER 6. LINEAR REPRESENTATIONS

0.0 0.2 0.4 0.6 0.8 1.0

t1

0.0

0.2

0.4

0.6

0.8

1.0

t 2
Persistence Diagram

0.0 0.2 0.4 0.6 0.8 1.0

t1

0.0

0.2

0.4

0.6

0.8

1.0

t 2

Persistence Image

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

Persistence Silhouette

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

Betti Curve

Figure 6.1: Some common linear representations of persistence diagrams. From
left to right: A persistence diagram. Its persistence surface [AEK+17], which is
a persistence measure. The corresponding persistence silhouette [CFL+14]. The
corresponding Betti Curve [Ume17].

A linear representation of persistence measures (in particular persistence
diagrams) is a map

Φ :Mp → B
µ 7→ µ(f)

for some Banach space B and some chosen function f : Ω → B. Do-
ing so, one can turn a sample of diagrams (or measures) into a sample
of vectors, making the use of machine learning tools easier. Of course, a
natural requirement is that Φ must be continuous. In practice, building a
linear representation (see below for a list of examples) generally follows the
same pattern: first consider a “nice” function φ, e.g. a Gaussian distribu-
tion, then introduce a weight with respect to the distance to the diagonal
d(·, ∂Ω)p, and prove that µ 7→ µ(φ(·)d(·, ∂Ω)p) has some regularity proper-
ties (continuity, stability, etc.). By relying on a result proved in Chapter 3,
namely Theorem 3.7, we show that this approach always gives a continuous
linear representation, and that it is the only way to do so.

6.1.1 Characterization of continuity

For (B, ‖ · ‖B) a Banach space (typically Rd), define the class of functions:

C0
b,p =

{
f : Ω→ B, f continuous and x 7→ ‖f(x)‖B

d(x, ∂Ω)p
bounded

}
(6.1)

Proposition 6.1. Let B be a Banach space and f : Ω → B a func-
tion. The linear representation Φ : Mp → B defined by Φ : µ 7→ µ(f) =∫

Ω
f(x)dµ(x) is continuous with respect to OTp and ‖ · ‖B if and only if

f ∈ C0
b,p.
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Before proving this result, we recall the content of Theorem 3.7 intro-
duced in Chapter 3: let (µn)n be a sequence in Mp, and µ ∈ Mp. One
has

OTp(µn, µ)→ 0⇔
{
µn

v−→ µ,

Persp(µn)→ Persp(µ).

It follows that (Corollary 3.10) that OTp(µn, µ) → 0 ⇔ µ
[p]
n

w−→ µ[p], where
the measure µ[p] is defined, for A ⊂ Ω (Borel), by

µ[p](A) :=

∫

A

d(x, ∂Ω)pdµ(x).

This strong characterization of the convergence in the metric space (Mp,OTp)
gives us a powerful tool to immediately study continuity questions, as show-
cased in the following proof.

Proof. Let f ∈ C0
b,p and µ, µ1, µ2 · · · ∈ Mp be such that OTp(µn, µ) → 0.

Following [Nie11, Theorem 2], it is sufficient to treat the case where f takes

values in R (B = R). Using Corollary 3.10, it means that µ
[p]
n

w−→ µ[p], and
thus that ∫

Ω

f(x)

d(x, ∂Ω)p
dµ[p]

n (x)→
∫

Ω

f(x)

d(x, ∂Ω)p
dµ[p](x),

that is

Φ(µn) =

∫

Ω

f(x)dµn(x)→
∫

Ω

f(x)dµ(x) = Φ(µ),

i.e. Φ is continuous with respect to OTp.

Conversely, let f : Ω → B. Assume first that f is not continuous at
some x ∈ Ω. There exists a sequence (xn)n ∈ ΩN such that xn → x but
f(xn) 9 f(x). Let µn = δxn and µ = δx. We have OTp(µn, µ) → 0, but
µn(f) = f(xn) 9 f(x0) = µ(f), so that the linear representation µ 7→ µ(f)
cannot be continuous.
Then, assume that f is continuous but that x 7→ f(x)

d(x,∂Ω)p
is not bounded.

Let thus (xn)n ∈ ΩN be a sequence such that
∥∥∥ f(xn)
d(xn,∂Ω)p

∥∥∥ → +∞. Define

the measure µn := 1
‖f(xn)‖δxn . Observe that OTp(µn, 0) = d(xn,∂Ω)p

‖f(xn)‖ → 0

by hypothesis. However, ‖µn(f)‖ = 1 for all n, allowing to conclude once
again that µ 7→ µ(f) cannot be continuous.

Example 6.2. Let us give some examples of such linear representations
(which are thus continuous) commonly used in applications of TDA. Note
that the following definitions do not rely on the fact that the input must be
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a persistence diagram and actually make sense for any persistence measure
in Mp. See Figure 6.1 for an illustration, in which computations are done
with p = 1 (and p′ = 1 for the weighted Betti curve).

• Persistence surface and its variations. Let K : R2 → R be a nonnega-

tive Lipschitz continuous bounded function (e.g. K(x, y) = exp
(
−‖x−y‖2

2

)
)

and define f : x ∈ Ω 7→ d(x, ∂Ω)p ×K(x, ·), so that f(x) : R2 → R is
a real-valued function. The corresponding representation Φ takes its
values in (Cb(R2), ‖ · ‖∞), the (Banach) space of continuous bounded
functions. This representation is called the persistence surface and
has been introduced with slight variations in different works [AEK+17,
CWRW15, KHF16, RHBK15].

• Persistence silhouettes. Let Λ(x, t) = max
(
x2−x1

2
−
∣∣t− x1+x2

2

∣∣ , 0
)

for
t ∈ R and x ∈ Ω. Then, defining f : x ∈ Ω 7→ d(x, ∂Ω)p−1 × Λ(x, ·),
one has that ‖f(x)‖∞ is proportional to d(x, ∂Ω)p, so that the corre-
sponding representation is continuous for OTp. This representation is
called the persistence silhouette, and was introduced in [CFL+14]. In
particular, it consists in a weighted sum of the different functions of
the persistence landscape [Bub15, BD17]. The corresponding Banach
space is (Cb(R), ‖ · ‖∞).

• Weighted Betti curves. For t ∈ R, define Bt the rectangle (−∞, t] ×
[t,+∞). Let p, p′ ≥ 1, and define f : x ∈ Ω 7→ (t 7→ d(x, ∂Ω)p−1/p′1{x ∈
Bt}). Then f(x) ∈ Lp′(R) with ‖f(x)‖p′ proportional to d(x, ∂Ω)p.
The corresponding function Φ is the weighted Betti curve, which takes
its values in the Banach space (Lp′(R), ‖ · ‖p′). In particular, one ob-
tains the continuity of the classical Betti curves from (M1,OT1) to
L1(R).

6.1.2 Stability in the case p = 1.

Continuity is a basic expectation when embedding a set of diagrams (or
measures) in some Banach space B. One could however ask for more,
e.g. some Lipschitz regularity: given a representation Φ : Mp → B, one
may want to have ‖Φ(µ) − Φ(ν)‖ ≤ C · OTp(µ, ν) for some constant C.
This property is generally referred to as “stability” in the TDA community
and is generally obtained with p = 1, see for example [AEK+17, Theorem
5], [CCO17, Theorem 3.3 & 3.4], [STNR+18, §4], [RHBK15, Theorem 2],
etc.

Here, we still consider the case of linear representations, and show that
stability always holds with respect to the distance OT1. Informally, this is
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explained by the fact that when p = 1, the cost function (x, y) 7→ d(x, y)p

is an actual distance.

Proposition 6.3. Define L the set of Lipschitz continuous functions f :
Ω → R with Lipschitz constant less than 1 and that satisfy f(∂Ω) = 0.
Let T ⊂ R, and consider a family (ft)t∈T with ft ∈ L. Then the linear
representation Φ : µ 7→ (µ(ft))t∈T is 1-Lipschitz continuous in the following
sense:

‖Φ(µ)− Φ(ν)‖∞ := sup
t∈T
|(µ− ν)(ft)| ≤ OT1(µ, ν), (6.2)

for any measures µ, ν ∈M1.

Proof. Consider µ, ν ∈ M1, and π ∈ Opt(µ, ν) an optimal transport plan.
Let t ∈ T . We have:

(µ− ν)(ft) =

∫

Ω

ft(x)dµ(x)−
∫

Ω

ft(y)dν(y) =

∫∫

Ω×Ω

(ft(x)− ft(y))dπ(x, y)

≤
∫∫

Ω×Ω

d(x, y)dπ(x, y) = OT1(µ, ν),

and thus, ‖Φ(µ)− Φ(ν)‖∞ ≤ OT1(µ, ν).

Remark 6.4. As observed in Section 3.4, when p = 1, one actually
has the Kantorovich-Rubinstein duality result OT1(µ, ν) = supf |µ(f) −
ν(f)|, where the supremum is taken over 1-Lipschitz functions f that sat-
isfy f(∂Ω) = 0.

6.2 Learning representations of persistence

diagrams using PersLay

In this section, as we target numerical applications, we restrict ourselves
to finite persistence diagrams and will only consider linear representation
valued in Rd.

Linear representations are pretty handy: they are pretty simple to define
and to compute. For instance, if µ =

∑
nxδx is a persistence diagram, and

f : Ω → Rd, the representation µ(f) is simply given by
∑
nxf(x) ∈ Rd.

Therefore, given a set of persistence diagrams µ1 . . . µN , one can recover
a set µ1(f) . . . µN(f) ∈ Rd, on which basically every standard machine
learning pipeline can be applied to solve a given task in a supervised setting .
However, it might happen that the chosen function f is not adapted, or at
least not optimal, to perform a given task; and there is no heuristic to
choose f a priori.
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6.2.1 Model

In [CCI+20], we considered the problem of optimizing the representation
function f . Motivated by Section 6.1, we considered linear representations
based on a function f of the form

x 7→ w(x)φ(x),

where w : R2 → R is the weight function and φ : R2 → Rq is the representa-
tion function. The crucial point is that we consider parameterized functions
w = wθ1 and φ = φθ2 , where (θ1, θ2) ∈ Θ ⊂ RD are trainable parameters
that are learned during a training phase through a gradient descent.

Remark 6.5. There is some slight redundancy in using two functions w
and φ. Formally, this helps to clarify how our formalism encompasses most
vectorizations methods used in topological data analysis literature (also, it
is implemented this way). In practice, it also has the benefits in terms of
interpretability: the map w : R2 → R can be easily visualized, giving a
qualitative information on which areas of Ω are useful to achieve a good
score in a given task (see Figure 6.4).

Remark 6.6. Proposition 6.3 ensures that if x 7→ w(x)φ(x)/d(x, ∂Ω)p is
bounded, the vectorization µ 7→ µ(wφ) would be continuous with respect to
the OTp metric. In practice, this would enforce to have to small values of
w on points close to the diagonal. However, in supervised learning appli-
cations, there is no obvious reason for this, so we actually allow for more
general (trainable) weight functions w.

This flexible formalism allows us to recover and generalize standard
vectorization methods used in topological data analysis. To that end we
define our generic neural network layer for persistence diagrams, that we
call PersLay. For a (finite) persistence diagram µ =

∑n
i=1 δxi , it is defined

through the following equation:

PersLay(µ) := µ(f) = op ({w(xi) · φ(xi)}1≤i≤n) , (6.3)

where op is any permutation invariant operator (such as minimum, maxi-
mum, sum, kth largest value...), w : R2 → R is a weight function for the
persistence diagram points, and φ : R2 → Rq is a representation function
that we call point transformation, mapping each point (αb, αd) of a persis-
tence diagram to a vector.
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Remark 6.7 (Relation to other works). Note that this problem is also
addressed in the concurrent work [HKN19], where authors consider a simi-
lar framework. They enforce w = d(·, ∂Ω)p, and introduce essentially three
point transformation functions φ, which roughly correspond to Gaussian,
spike, and cone functions centered on the diagram points, and only con-
sider op = sum. To that respect, our approach generalizes from their
and allows our model to encompass a much larger class of vectorization
methods used in practice. Furthermore, we focus on providing a publicly
available implementation as a module of the Gudhi library, also hosted at
https: // github. com/ MathieuCarriere/ perslay .

It is also important to note that both [CCI+20] and [HKN19] took some
of their inspiration from [ZKR+17], introducing the notion of Deep Sets. In
this work, authors proved that given a (countable, or compact) set X, a map
Φ : Xn → R is permutation invariant—that is, it satisfies Φ(x1 . . . xn) =
Φ(xσ(1) . . . xσ(n)) for any (x1 . . . xn) ∈ Xn and any permutation σ ∈ Sn—if
and only if it exists two maps ρ1 : X → R and ρ2 : R → R such that
Φ(x1 . . . xn) = ρ2 (

∑n
i=1 ρ1(xi)). This expression is consistent with the one

proposed by [HKN19] and with (6.3) with op = ρ2 ◦
∑

and w(·)φ(·) = ρ1(·).

As explained above, in practice w and φ are of the form wθ1 , φθ2 where
the gradients of θ1 7→ wθ1 and θ2 7→ φθ2 are known and implemented so
that back-propagation can be performed, and the parameters θ1, θ2 can
be optimized during the training process. We emphasize that any neural
network architecture ρ can be composed with PersLay to generate a neural
network architecture for persistence diagrams. Let us now introduce three
point transformation functions that we use and implement for parameter φ
in (6.3).

• The triangle point transformation

φΛ : R2 → Rq, x 7→
[
Λx(t1),Λx(t2), . . . ,Λx(tq)

]T
,

where the triangle function Λx associated to a point x = (b, d) ∈ R2

is Λx : t 7→ max{0, d− |t− b|}, with q ∈ N and t1, . . . , tq ∈ R.

• The Gaussian point transformation

φΓ : R2 → Rq, x 7→
[
Γx(t1),Γx(t2), . . . ,Γx(tq)

]T
,

where the Gaussian function Γx associated to a point x = (b, d) ∈ R2

is Γx : t 7→ exp (−‖x− t‖2
2/(2σ

2)) for a given σ > 0, q ∈ N and
t1, . . . , tq ∈ R2.

https://gudhi.inria.fr/
https://github.com/MathieuCarriere/perslay
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• The line point transformation

φL : R2 → Rq, x 7→
[
L∆1(x), L∆2(x), . . . , L∆q(x)

]T
,

where the line function L∆ associated to a line ∆ with direction vector
e∆ ∈ R2 and bias b∆ ∈ R is L∆ : x 7→ 〈x, e∆〉 + b∆, with q ∈ N and
∆1, . . . ,∆q are q lines in the plane.

Formulation (6.3) is very general: despite its simplicity, it allows us to
remarkably encode most persistence diagram vectorizations with a small
set of point transformation functions φ, allowing to consider the choice of
φ as a hyperparameter of sort. Let us show how it connects to most of the
popular vectorizations and kernel methods for persistence diagrams in the
literature.

• Using: φ = φΛ with samples t1, . . . , tq ∈ R, op = kth largest value,
w = 1 (a constant weight function), amounts to evaluating the kth
persistence landscape [Bub15] on t1, . . . , tq ∈ R.

• Using φ = φΛ with samples t1, . . . , tq ∈ R, op = sum, arbitrary weight
function w, amounts to evaluating the persistence silhouette weighted
by w [CFL+14] on t1, . . . , tq ∈ R.

• Using φ = φΓ with samples t1, . . . , tq ∈ R2, op = sum, arbitrary weight
function w, amounts to evaluating the persistence surface weighted
by w [AEK+17] on t1, . . . , tq ∈ R2. Moreover, characterizing points of
persistence diagrams with Gaussian functions is also the approach ad-
vocated in several kernel methods for persistence diagrams [RHBK15,
LY18, KHF16].

• Using φ = φΓ̃ where Γ̃ is a modification of the Gaussian point trans-
formation defined with: Γ̃p = Γp̃ for any p = (x, y) ∈ R2, where p̃ = p
if y ≤ ν for some ν > 0, and

(
x, ν + log

(
y
ν

))
otherwise, op = sum,

weight function w = 1, is the approach presented in [HKNU17].

• Using φ = φL with lines ∆1, . . . ,∆q ∈ R2, op = kth largest value,
weight function w = 1, is similar to the approach advocated in [CCO17],
where the sorted projections of the points onto the lines are then com-
pared with the ‖ · ‖1 norm and exponentiated to build the so-called
Sliced Wasserstein kernel for persistence diagrams.
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Figure 6.2: Some examples of orbits generated by the different choices of r (three
simulations are represented for the different values of r).

6.2.2 Numerical experiments

We describe here some numerical experiments that were run in [CCI+20,
§3.2, §4], and refer the reader to Appendix C therein for complementary
details (e.g. report of the hyperparameters used). The accuracies reported
in Table 6.1 and Table 6.2 represent a snapshot of the performances of some
state-of-the-art methods at the time [CCI+20] was submitted.

Orbit classification. Our first application is on a synthetic dataset used
as a benchmark in topological data analysis [LY18, CCO17, AEK+17]. It
consists of sequences of points generated by different dynamical systems (see
[HSW07]). Given some initial position (x0, y0) ∈ [0, 1]2 and a parameter
r > 0, we generate a point cloud (xn, yn)n=1,...,N following:

{
xn+1 = xn + ryn(1− yn) mod 1,

yn+1 = yn + rxn+1(1− xn+1) mod 1.
(6.4)

The orbits of this dynamical system heavily depend on parameter r (see
Figure 6.2). More precisely, for some values of r, voids might form in these
orbits, and as such, persistence diagrams are likely to perform well at at-
tempting to classify orbits with respect to the value of r generating them. As
in previous works [LY18, CCO17, AEK+17], we use the five different param-
eters r = 2.5, 3.5, 4.0, 4.1 and 4.3 to simulate the different classes of orbits,
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Dataset PSS-K PWG-K SW-K PF-K PersLay
ORBIT5K 72.38(±2.4) 76.63(±0.7) 83.6(±0.9) 85.9(±0.8) 87.7(±1.0)
ORBIT100K — — — — 89.2(±0.3)

Table 6.1: Performance table. PSS-K, PWG-K, SW-K, PF-K stand for Per-
sistence Scale Space Kernel [RHBK15], Persistence Weighted Gaussian Kernel
[KHF16], Sliced Wasserstein Kernel [CCO17] and Persistence Fisher Kernel
[LY18] respectively. We report the scores given in [LY18] for competitors on
ORBIT5K, and the one we obtained using PersLay for both the ORBIT5K and
ORBIT100K datasets. The latter dataset, and the corresponding diagrams, are
too large in practice to be handled by kernel methods on persistence diagrams.

with random initialization of (x0, y0) and N = 1, 000 points in each simu-
lated orbit. These point clouds are then turned into persistence diagrams
using a standard geometric filtration [CDSO14], called the AlphaComplex

filtration1 in dimensions 0 and 1. We generate two datasets: The first is
ORBIT5K, where for each value of r, we generate 1000 orbits, ending up
with a dataset of 5, 000 point clouds. This dataset is the same as the one
used in [LY18]. The second is ORBIT100K, which contains 20, 000 orbits per
class, resulting in a dataset of 100, 000 point clouds—a scale that kernel for
persistence diagrams cannot handle. This dataset aims to show the edge of
our neural-network based approach over kernels methods when dealing with
very large datasets of large diagrams, since all the previous works dealing
with this data [LY18, CCO17, AEK+17] use kernel methods. Results are
displayed in Table 6.1. As it can be observed, we improve on previous results
for ORBIT5K, we also show with ORBIT100K that classification accuracy is
further increased as more observations are made available. For consistency
we use the same accuracy metric as [LY18], that is, we split observations in
70%-30% training-test sets and report the average test accuracy over 100
runs.

Graph classification. The second experiment we used to illustrate the
use of PersLay as an interface to incorporate persistence diagrams in
learning pipeline is a graph classification task. Each graphs in a given
dataset was turned into a set of persistence diagrams using the so-called
Heat Kernel Signatures (HKS) of the graph. For the sake of concision, we
do not give a detailed presentation of the HKS signatures here, and refer
the reader to the original paper for complementary information.

1http://gudhi.gforge.inria.fr/python/latest/alpha_complex_ref.html

http://gudhi.gforge.inria.fr/python/latest/alpha_complex_ref.html
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We used a series of different graph datasets commonly used as a baseline
in graph classification problems.

• REDDIT5K, REDDIT12K, COLLAB (from [YV15]) IMDB-B, IMDB-M (from
[TVH18]) are composed of social graphs.

• COX2, DHFR, MUTAG, PROTEINS, NCI1, NCI109 are graphs coming
from medical or biological frameworks (also from [TVH18]).

We compared performances with five other top graph classification methods.

• Scale-variant topo [TVH18] leverages a kernel for ordinary persistence
diagrams computed on point cloud used to encode the graphs.

• RetGK [ZWX+18] is a kernel method for graphs that leverages even-
tual attributes on the graph vertices and edges.

• FGSD [VZ17] is a finite-dimensional graph embedding that does not
leverage attributes.

• Finally, GCNN [XC19] and GIN [XHLJ19] are two graph neural net-
work approaches that reach top-tier results.

One could also compare our results on the REDDIT datasets to the ones of
[HKNU17], where authors also use persistence diagrams to feed a network
(using as first channel a particular case of PersLay), achieving 54.5% and
44.5% of accuracy on REDDIT5K and REDDIT12K respectively.

In this experiment, we used a voluntarily simple network architecture,
namely a two-layer network. The first layer is PersLay, which processes
persistence diagrams. The resulting vector is normalized and fed to the
second and final layer, a fully-connected layer whose output is used for
predictions. See Figure 6.3 for an illustration. We emphasize that this
simplistic two-layer architecture is designed so as to produce understanding
rather than achieving the best possible performances.
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Figure 6.3: Network architecture illustrated in the case of our graph classification
experiments. Each graph is encoded as a set of 4 persistence diagrams, then pro-
cessed by an independent instance of PersLay. Each instance embeds diagrams
in some vector space using two functions w, φ that are optimized during training
and a fixed permutation-invariant operator op.
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Figure 6.4: Weight function w when chosen to be a grid with size 20× 20 before
and after training (MUTAG dataset). Here, Ord0, Rel1, Ext0, and Ext1 denote the
different diagrams extracted from a graphs, each of them being processed by an
independent instance of PersLay.

Dataset SV1 RetGK∗ 2 FGSD 3 GCNN 4 GIN 5 PersLay
Mean Max

REDDIT5K — 56.1 47.8 52.9 57.0 55.6 56.5
REDDIT12K — 48.7 — 46.6 — 47.7 49.1
COLLAB — 81.0 80.0 79.6 80.1 76.4 78.0
IMDB-B 72.9 71.9 73.6 73.1 74.3 71.2 72.6
IMDB-M 50.3 47.7 52.4 50.3 52.1 48.8 52.2
COX2∗ 78.4 80.1 — — — 80.9 81.6
DHFR∗ 78.4 81.5 — — — 80.3 80.9
MUTAG∗ 88.3 90.3 92.1 86.7 89.0 89.8 91.5
PROTEINS∗ 72.6 75.8 73.4 76.3 75.9 74.8 75.9
NCI1∗ 71.6 84.5 79.8 78.4 82.7 73.5 74.0
NCI109∗ 70.5 — 78.8 — — 69.5 70.1

Table 6.2: Classification accuracy over benchmark graph datasets. Our results
(PersLay, right hand side) are recorded from ten runs of a 10-fold classification
evaluation. “Mean” is consistent with [ZWX+18]2, while “Max” should be com-
pared to [TVH18]1, [VZ17]3, [XC19]4 and [XHLJ19]5, as it corresponds to the
mean accuracy over a single 10-fold. The * indicates datasets that contain at-
tributes (labels) on graph nodes and symmetrically the methods that leverage
such attributes for classification purposes.





Chapter 7

Complementary examples

Abstract

This final chapter gathers three independent examples that show-
case how adopting an optimal transport perspective and a measure-
based formalism is helpful when dealing with persistence diagrams.
Section 7.1 is dedicated to the study of expected persistence diagrams,
that arise when considering persistence diagrams in a random set-
ting. As those are measures with continuous support, they can be
manipulated using our formalism, where standard definitions of di-
agram metrics would be insufficient. Section 7.2 studies the quan-
tization of persistence diagrams, namely approximating a diagram
by a persistence measure with a chosen size support. Finally, Sec-
tion 7.3 addresses the question of estimating shift-invariant distances
between persistence diagrams. Using the entropic regularization of
optimal transport (adapted to persistence diagrams), we obtain a
simple and fast algorithm (although non-convex) to propose solu-
tions to this problem.

Implementation resources.

• A tutorial for Expected persistence diagrams.

• (To appear in Gudhi) Quantization of persistence diagrams.

• (In progress) Shift-invariant distance.
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https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-Expected-persistence-diagrams.ipynb
https://gudhi.inria.fr/
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7.1 Expected persistence diagrams and

their estimators

Recall thatMp denotes the space of persistence measures (Radon measures
supported on the open half-plane Ω) for some parameter 1 ≤ p < ∞, and
Dp ⊂ Mp denotes the subspace of persistence diagrams. These spaces are
equipped with metric OTp. These are Polish metric spaces (see Chapter 3)
and therefore, one can consider probability distribution supported on these.

When observing a sample of persistence diagrams µ1 . . . µK ∈ Dp, a
natural model is to assume that the µis are sampled i.i.d. with respect
to some underlying probability distribution P belonging to Wp(Dp), the
Wasserstein space on Dp (see Section 2.2 and Chapter 3 for details). This
section is dedicated to the study of a natural statistical descriptor that one
can build on P : its (linear) expectation, denoted by EP [µ] where µ ∼ P ,
and called its expected persistence diagram (EPD). We start by proving a
stability result on the map P 7→ EP [µ] (this result was part of [DL19, §5]).
As in practice one only has access to a finite sample µ1 . . . µK ∼ P , we
will study how the empirical estimator 1

K

∑
µi performs when it comes to

model the underlying object EP [µ].

7.1.1 Definition and properties

Let P be a probability distribution of persistence diagrams. One may want
to build a statistic on P , such as defining and computing its mean. As
(Dp,OTp) is not a vector space but only a metric space, the notion of
mean is ill-defined. A natural attempt is to consider Fréchet means, that
is minimizers of the functional ν 7→

∫
µ∈Dp OTp

p(ν, µ)dP (µ). Algorithms to

address this minimization problem have been proposed (see Chapter 5 and
references therein) but those only provide an estimate and can be expensive
to compute. On the other hand, one could go for a much simpler approach
and define a measure EP [µ] supported on Ω by stating, for A ⊂ Ω compact,

EP [µ](A) := EP [µ(A)], (7.1)

where µ ∼ P , and µ(A) is the (random) number of points of µ that belongs
to A. This deterministic measure, called the expected persistence diagram
of P , was introduced in [DC19]. In this work, Divol and Chazal proved
in particular that under mild assumptions on P , the corresponding EPD
admits a density with respect to the Lebesgue measure on Ω. Therefore, it
is an element of Mp, although not being a persistence diagram.
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Figure 7.1: (Left) A n-sample on a torus, with n = 500. (Middle) The corre-
sponding persistence diagram. (Right) The corresponding (empirical) expected
persistence diagram, estimated by sampling K = 100 times n points on a torus.
Note that for illustration purpose, the empirical EPD has been rendered using
a 30 × 30 grid, and masses of each bin have been weighted according to their
distance to the diagonal, to the power p = 2.

Intuitively, the mass EP [µ] gives to an area A ⊂ Ω is the average number
of points that fall in A when sampling diagrams with respect to P . See
Figure 7.1 for an illustration.

Remark 7.1. A well-suited definition of the linear expectation in (7.1)
requires technical care (basically, turning the finite sum into a Bochner in-
tegral) and is detailed in Section 7.1.3. This is required, in particular, to
apply the Jensen inequality in our proof of the stability result. Nonethe-
less, on first read one can treat EP [µ] as a standard expectation and take
Equation (7.1) as a definition.

The main theoretical result of this section states the stability of the map

Wp(Dp)→Mp

P 7→ EP [µ].
(7.2)

Proposition 7.2. Let P, P ′ ∈ Wp(Mp). We have

OTp(EP [µ],EP ′ [µ]) ≤ Wp,OTp(P, P
′).

The proof can be found in Section 7.1.3.

Using stability results on the distances dp (= OTp) between persistence
diagrams (see Theorem 2.7 or [CSEHM10]), one is able to obtain a more
precise control between the expectations in some situations. For Y a sample
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Figure 7.2: Just as standard diagrams, expected persistence diagrams are stable
with respect to small perturbations. (Left) Two point clouds (with n = 130
points). Blue (dot) is (randomly, iid) sampled exactly on the union of two circles,
while red (cross) is sampled on the union of these two circles in addition to some
small bounded noise. (Middle and Right The (empirical) expected persistence
diagram (EPD) for the “clean” (blue) sampling process and for the “noisy” (red)
sampling process respectively. Due to the noise, the second EPD has some mass
close to the diagonal; but the two EPDs remain close in terms of OT∞ metric.

in some metric space, denote by Dgm(Y) the persistence diagram of Y built
with the Čech filtration.

Proposition 7.3. Let ξ, ξ′ be two probability measures on Rd. Let Xn

(resp. X′n) be a n-sample of law ξ (resp. ξ′). Then, for any k > d, and any
p ≥ k + 1,

OTp
p(E[Dgm(Xn)],E[Dgm(X′n)]) ≤ Ck,d · n ·W p−k

p−k (ξ, ξ′) (7.3)

where Ck,d := Cdiam(X)k−d k
k−d for some constant C depending only on X.

In particular, letting p→∞, we obtain a bottleneck stability result:

OT∞(E[Dgm(Xn)],E[Dgm(X′n)]) ≤ W∞(ξ, ξ′). (7.4)

Proof. Let γ be any coupling between Xn a n-sample of law ξ, and X′n a
n-sample of law ξ′. According to Proposition 7.2,

OTp
p(E[Dgm(Xn)],E[Dgm(X′n)]) ≤ Eγ[OTp

p(Dgm(Xn),Dgm(X′n))].

Theorem 2.7 states (see also [CSEHM10, Wasserstein Stability Theorem])
that

OTp
p(Dgm(Xn),Dgm(X′n)) ≤ Ck,dH(Xn,X′n)p−k,
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where Ck,d := Cdiam(X)k−d k
k−d for some constant C depending only on X,

and H is the Hausdorff distance between sets. By taking the infimum on
transport plans γ, we obtain

OTp
p(E[Dgm(Xn)],E[Dgm(X′n)]) ≤ Ck,dW

p−k
H,p−k(ξ

⊗n, (ξ′)⊗n),

where WH,p is the p-Wasserstein distance between probability distributions
on compact sets of the manifold X, endowed with the Hausdorff distance.
Lemma 15 of [CFL+15] states that

W p−k
H,p−k(ξ

⊗n, (ξ′)⊗n) ≤ n ·W p−k
p−k (ξ, ξ′),

concluding the proof.

Note that this proposition illustrates the usefulness of introducing new
distances OTp: considering the proximity between linear expectations re-
quires to extend the metrics dp to Radon measures.

7.1.2 Approximating EPDs with empirical EPDs.

As in practice, one generally only have access to a sample of observations
instead of the whole underlying law P and thus the corresponding expected
persistence diagram EP , we now address the question of estimating the EPD
by its empirical counterpart.

Let P be a probability measure on (Dp,OTp) and let µ(1), . . . ,µ(K) be
a K-sample1 of law P . The empirical EPD is defined as

µK :=
µ(1) + · · ·+ µ(K)

K
. (7.5)

We first study the convergence of µK to EP [µ] as K →∞.

Proposition 7.4. Let p ≥ 1 and assume that EP [Persp(µ)] <∞. Then,
E[OTp

p(µK,EP [µ])]→ 0.

Proof. We use the characterization of convergence that we proved in Theo-
rem 3.7. It states that the convergence OTp

p(µK,EP [µ]) → 0 holds almost
surely if and only if (i) Persp(µK) → Persp(EP [µ]) a.s. and (ii) µK con-
verges vaguely to EP [µ] a.s., that is if µK(φ) → EP [µ](φ) a.s., for all
φ : Ω → R continuous with compact support [Kal17, Lemma 4.8]. Those
two conditions hold by the strong law of large numbers. Thus, we have

1That is, K measures sampled i.i.d.
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OTp
p(µK,EP [µ]) → 0 a.s. To obtain the convergence of the expecta-

tion, we also need the sequence of random variables (OTp
p(µK,EP [µ]))K

to be uniformly integrable. By the triangle inequality, and using that
(a+ b)p ≤ 2p−1(ap + bp) for a, b ≥ 0, with 0 denoting the empty diagram,

OTp
p(µK,EP [µ]) ≤ (OTp(µK,0) + OTp(EP [µ],0))p

≤ 2p−1(Persp(µK) + Persp(EP [µ]))

= 2p−1 1

K

K∑

k=1

Persp(µ
(k)) + EP [Persp(µ)].

This last quantity is uniformly integrable, and we can conclude as almost
sure convergence and uniform integrability imply convergence in expecta-
tion.

We can make this convergence result more quantitative by making more
assumptions on the probability P , namely that the diagrams sampled ac-
cording to P have a uniformly bounded mass (number of points) and sup-
port.

Proposition 7.5. Consider p ≥ 1 and let P be a probability measure on
(Dp,OTp) such that µ ∼ P is a.s. supported on [−L,L]2 and of total mass
less than or equal to M . Then, for any K > 0,

E[OTp
p(µK,EP [µ])] ≤ CpMLp√

K
ap(K). (7.6)

with ap(K) = 1 if p > 1 and a1(K) = ln(K).

The proof, slightly technical, is delayed to Section 7.1.3.

Remark 7.6. Using the dual formulation (Section 3.4) for p = 1, the
quantity OT1(µ, ν) is equal to supf |µ(f) − ν(f)|, where the supremum is

taken on all Lipschitz continuous functions f : Ω → R with f(∂Ω) = 0.
Hence, Proposition 7.5 implies that

E[sup
f
|µK(f)− EP [µ](f)|] ≤ CML

ln(K)√
K

. (7.7)

Taking different choices of f induce different representations on PDs, in-
cluding e.g. persistent surfaces [AEK+17], persistent silhouettes [CFL+14],
the persistence scale-space kernel [RHBK15] or gaussian functions centered
at random locations [HKNU17]. Hence, Proposition 7.5 gives a uniform
rate of convergence for all those representations.
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Let MM,L be the set of persistence measures with support included
in [−L,L]2 and of mass less than or equal to M , and let PM,L be the
set of all probability distributions supported on the set D ∩MM,L. The
following proposition shows that the minimax rate for the estimation of the
EPD given K observations of law P ∈ PM,L is of order 1/

√
K, implying

that the empirical EPD is a minimax estimator of the EPD. The notation
aK � b means that there exists a constant C such that ∀K, aK/b ≤ C and
b/aK ≤ C.

Proposition 7.7. Let 1 ≤ p <∞. One has

inf
µ̂K

sup
P∈PM,L

E[OTp
p(µ̂K,EP [µ])] � MLp√

K
, (7.8)

where the infimum is taken on all measurableMM,L-valued functions µ̂K of
a K-sample µ(1), . . . , µ(K) of law P ∈ PM,L.

7.1.3 Complementary details and delayed proofs

Formal definition of the expected persistence diagram. DefineM±
the space of signed measures on Ω, i.e. a measure µ ∈M± is written µ+−µ−
for two finite (non-negative) measures µ+, µ− ∈ Mf . The total variation
distance |·| is a norm onM±, and (M±, |·|) is a Banach space. The Bochner
integral [Boc33] is a generalization of the Lebesgue integral for functions
taking their values in Banach space. We define the expected persistence
measure of P ∈ Wp(Mp) as the Bochner integral of some pushforward of
P . More precisely, recall the definition (3.8) of µ[p] and define

F : (Mp,OTp)→ (M±, | · |)
µ 7→ µ[p].

Note that F has an inverseG onMf , defined byG(ν)(A) :=
∫
A
d(x,Ω)−pdν(x)

for A ⊂ Ω a Borel set. Theorem 3.7 implies that G is a continuous function
from (Mf , | · |) to (Mp,OTp). In particular, as Mf and Mp are Polish
spaces and G is injective, F is measurable (see [Kec95, Theorem 15.1]). For
P ∈ Wp(Mp(Ω)), define for µ ∼ P , E[µ] the linear expectation of P by

E[µ] := G

(∫
νd(F#P )(ν)

)
∈Mp, (7.9)

where the integral is the Bochner integral on the Banach space (M±, | · |)
and F#P is the pushforward of P by F . One can check that E[µ] defined
in that way satisfies the relation

∀K ⊂ Ω compact, E[µ](K) = E[µ(K)].
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Delayed proofs.

Proof of Proposition 7.2. The proof consists in applying Jensen’s inequality
in an infinite-dimensional setting. We first recall that the function OTp

p

is convex (Lemma 3.13). We then use the following result, which is a
particular case of [Per74, Theorem 3.10].

Proposition 7.8. Let X be a Hausdorff locally convex topological vector
space and C ⊂ X a closed convex set. Let Q be a probability measure on X
endowed with its borelian σ-algebra, which is supported on C. Assume that∫
‖x‖dQ(x) <∞. Let f : C → [0,∞) be a continuous convex function with∫
f(x)dQ(x) <∞. Then

f

(∫
xdQ(x)

)
≤
∫
f(x)dQ(x).

Let X =M±×M± which is a Banach space (endowed with the product
norm), and thus in particular a Hausdorff locally convex topological vector
space. Let C =Mf ×Mf , which is convex and closed (closedness follows
immediately from the definition of the total variation | · |) and let f =
OTp

p ◦ (G,G) : X → R. The continuity of G implies that f is continuous
and Lemma 3.13 implies the convexity of f . Let P , P ′ be two probability
measures inWp(Mp) and γ be an optimal coupling between P and P ′. We
let Q be the image measure of γ by (F, F ), so that

∫

x∈X
‖x‖dQ(x) =

∫

µ,µ′∈Mp

max(|µ(p)|, |(µ′)(p)|)dγ(µ, µ′)

≤
∫

µ

Persp(µ)dP (µ) +

∫

µ′
Persp(µ

′)dP ′(µ′) <∞

and that
∫

x∈X
f(x)dQ(x) =

∫

µ,µ′∈Mp

OTp
p(µ, µ

′)dγ(µ, µ′) = W p
p,OTp

(P, P ′) <∞.

Also, we have
∫
xdQ(x) =

∫

ν,ν′∈Mp

(ν, ν ′)d(F, F )#γ(ν, ν ′)

=

(∫

ν∈Mp

νdF#P (ν),

∫

ν′∈Mp

ν ′dF#P
′(ν ′)

)
,

so that by (7.9), f
(∫

xdQ(x)
)

= OTp
p(E[µ],E[µ′]), where µ ∼ P and

µ′ ∼ P ′. Proposition 7.2 yields the conclusion.
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Proof of Proposition 7.5. The total variation between measures will be de-
noted by | · | in the proof. By using the triangle inequality,

OTp(µ, ν) ≤ OTp

( |ν|
|µ|µ, µ

)
+ OTp

( |ν|
|µ|µ, ν

)

≤ |µ− ν|1/p L+Wp,‖·‖

( |ν|
|µ|µ, ν

)
,

where at the second line, the first term is bounded by considering the trans-
port plan which consists in taking the identity map on Ω, and by map-
ping the remaining mass on the diagonal, with a cost therefore bounded
by |µ− ν|Lp; and the second term is bounded by observing that any off-

diagonal transport plan π supported on Ω × Ω between |ν|
|µ|µ and ν (which

do have the same total mass) is an admissible (partial) plan between these
two persistence measures.

Let Pl be the natural partition of [−L,L)2 induced by a 2L× 2L regular
grid. For any µ, ν supported on [−L,L)2, we let

Dp(µ, ν) :=
∑

l≥1

2−pl
∑

F∈Pl

|µ(F )− ν(F )|. (7.10)

This quantity was introduced by [FG15], who proved in particular that
if two measures σ, τ have the same total mass, then there exists a con-
stant κp such that W p

p,‖·‖(σ, τ) ≤ κpL
pDp(σ, τ). Also, for F ∈ Pl, we have∣∣∣ |ν||µ|µ(F )− ν(F )

∣∣∣ ≤
∣∣∣ |ν||µ| − 1

∣∣∣µ(F ) + |µ(F )− ν(F )|. Hence,

Wp,‖·‖(
|ν|
|µ|µ, ν) ≤ κpL

pDp(
|ν|
|µ|µ, ν)

≤ κpL
p
∑

l≥1

4−l
∑

F∈Pl

∣∣∣∣
|ν|
|µ| − 1

∣∣∣∣µ(F ) + κpL
pDp(µ, ν)

≤ κp
3
Lp |µ− ν|+ κpL

pDp(µ, ν),

and using that (a + b)p ≤ 2p−1(ap + bp), we obtain that OTp
p(µ, ν) ≤

Lp
(
2p−1 + κp

3

)
|µ− ν|+ 2p−1κpL

pDp(µ, ν). We now apply this last inequal-
ity to µ = EP [µ] and ν = µK. For A ⊂ [−1, 1)2 a measurable set, we
have

E[|µK(A)− EP [µ](A)|] ≤
√

EP [µ(A)2]

K
≤ M√

K
. (7.11)
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Thus, E[|µK − EP [µ]|] ≤M/
√
K and, by using Jensen inequality twice,

∑

F∈Pl

EP [|µK(F )− EP [µ](F )|]

≤ 2l

(∑

F∈Pl

EP [(µK(F )− EP [µ](F ))2]

)1/2

≤ 2l√
K

(∑

F∈Pl

EP [µ(F )2]

)1/2

≤ 2l√
K

(
M
∑

F∈Pl

EP [µ(F )]

)1/2

≤ 2lM√
K
.

In the case p > 1, we obtain the conclusion as
∑

l≥1 2(1−p)l = cp < ∞. In
the case p = 1, we use that

∑

F∈Pl

EP [|µK(F )− EP [µ](F )|] ≤ 2
∑

F∈Pl

EP [µ](F ) ≤ 2M,

yielding

E[D1(µK,EP [µ])] ≤
∑

l≥1

2−l min

(
2M,

2lM√
K

)

≤ CM
ln(K)√
K

for some absolute constant C > 0.

Proof of Proposition 7.7. The upper bound on the minimax rate is given
by the rates of convergence of the empirical EPD given in Proposition 7.5.

To obtain the lower bound, we use that if µ, ν are two persistence mea-
sures on Ω of mass less than or equal to M , then we can use the results
proved in Section 3.2, namely Proposition 3.15 which states

OTp(µ, ν) = Wp,ρ(Φ(µ),Φ(ν)),

where

• ρ is a distance on Ω̃ := Ω ∪ {∂Ω} defined by ∀x, y ∈ Ω̃,

ρ(x, y) = min(d(x, y), d(x, ∂Ω) + d(y, ∂Ω)),

where by convention for x ∈ Ω, we set d(x, ∂Ω) := d(x,p∂Ω(x)), with
p∂Ω(x) the orthogonal projection of x onto the diagonal ∂Ω.
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• Φ(µ) := µ+ (2M − |µ|)δ∂Ω.

• Wp,ρ denotes the Wasserstein distance between measures (with same
mass) with distance ρ (see Section 2.2.2).

As Φ is a bijection, the minimax rates for the estimation of EP [µ] is therefore
equal to

inf
Φ(µ̂K)

sup
P∈PM,L

E[W p
p,ρ(Φ(µ̂K),Φ(EP [µ]))].

The set PM,L contains in particular the set of all distributions Pτ for which
µ ∼ P satisfies Φ(µ) = 2Mδx, where x ∼ τ , where τ is a probability
measure on (Ω̃, ρ). For such a distribution P , one has Φ(EP [µ]) = 2Mτ , so
that, letting Q be the set of Borel probability measures on (Ω̃∩ [−L,L]2, ρ),
the minimax rate must be larger than

inf
âK

sup
τ∈Q

E[W p
p,ρ(âK, 2Mτ)],

where the infimum is taken on all measurable functions based on K obser-
vations of the form 2Mδx(k) with x(1), . . . ,x(K) a K-sample of law τ ∈ Q.
Hence, we have shown that the minimax rate for the estimation of EP [µ]
with respect to OTp is larger up to a factor M than the minimax rate for
the estimation of τ a distribution on (Ω̃ ∩ [−L,L]2, ρ) given K i.i.d. obser-
vations of τ . As the minimax rate for this problem is known to be larger
than Lp/

√
K [SP18, Theorem 9], we obtain the conclusion.

7.2 Quantization of persistence diagrams

We address in this section the quantization of persistence diagram. By
quantization, we mean a projection with respect to diagram metrics on a
subspace of the space of persistence diagrams (or, as we will see, general
persistence measures) consisting of measures with a fixed (finite) support
size. LetMp denote the space of persistence measures and Dp ⊂Mp be the
space of persistence diagrams, for some parameter 1 ≤ p ≤ ∞. Recall that
Mp is equipped with a metric OTp which generalizes the partial matching
metric dp defined on Dp, see Section 2.1 for details. As we target numerical
applications, we implicitly only consider in this section persistence diagrams
and measures with finite support.
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7.2.1 Definition and motivations

Definition 7.9. Fix some integer k ≥ 1. Let Mk ⊂ Mp(Ω) be the
persistence measures with support of size k supported on Ω, that is

Mk :=

{
µ(a,X) :=

k∑

i=1

aiδxi , a ∈ Rk
+, X = (x1 . . . xk) ∈ Ω

k

}
. (7.12)

A k-quantization is a projection onto a subset of X of Mk, that is a map

Q : ν 7→ Q(ν) ∈ arg min
µ∈X

{OTp
p(µ, ν)}, (7.13)

In the vocabulary of quantization, the xks are called codepoints and
X = (x1 . . . xk) is called a codebook.

Remark 7.10. Note that quantized diagrams are supported on Ω (i.e. are
allowed to have points on the diagonal). This gives, for instance, a solution
to the problem minimizex OTp(δx,0), where δx is a persistence diagram with
a single point x ∈ Ω and 0 represents the empty diagram.

As it will be used in the following, we recall that metrics OTp can be
computed as solution of a linear program (as introduced in Chapter 5). Let
us consider two persistence measures with finite support µ =

∑n1

i=1 aiδxi
and ν =

∑n2

j=1 bjδyj , where ai, bj ≥ 0 and xi, yj ∈ Ω. Let X = (xi)i, Y =
(yj)j denote the locations of the points and a = (ai)j, b = (bj)j be the
corresponding masses. Let p∂Ω(x) denote the (orthogonal) projection of
x ∈ Ω onto the diagonal ∂Ω := {(t, t), t ∈ R}. Let also pers(x) denote the
distance of x ∈ Ω to the diagonal, that is pers(x) := d(x,p∂Ω(x)).

Let C = C(X, Y ) be the cost matrix with block structure

C =

(
CXY CX∆

C∆Y 0

)
∈ R(n1+1)×(n2+1), (7.14)

with CX∆ = (pers(xi)
p)i, C∆Y = (pers(yj)

p)j and CXY = (d(xi, yj)
p)ij.

It reads
OTp

p(µ, ν) = LC(a, b) (7.15)

where LC is defined by the following optimization problems, dual of each
other:

LC(a, b) = min
P∈Π(a,b)

〈C,P 〉 = min
P∈Π(a,b)

∑

ij

CijPij, (7.16)

= max
f,g∈ΨC

n1∑

i=1

aifi + f∆

(∑

j

bj

)
+

n2∑

j=1

bjgj + g∆

(∑

i

ai

)
, (7.17)
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where f∆ and g∆ respectively denote the (n1 + 1)-th and (n2 + 1)-th coor-
dinates of f and g, and the constraint sets are respectively defined as

Π(a, b) :=
{
P ∈ R(n1+1)×(n2+1),

P1n2+1 = (a1, . . . , an1 ,
∑

j

bj),

P T1n1+1 = (b1, . . . , bn2 ,
∑

i

ai)
}
,

ΨC := {(f, g) ∈ Rn1+1 × Rn2+1, ∀i, j, fi + gj ≤ Cij}.

Note that solving LC and recovering (primal or dual) optimizers can be
done using, for instance, the POT library [FC17].

Motivations. Quantization can be fairly useful in practice from different
perspectives.

• First, it allows us to “summarize” the information contained in a per-
sistence diagram. Indeed, persistence diagrams in practice are likely
to have a large number of points (e.g. few thousands). Each point
accounts for a topological feature in the filtration process generating
the diagram (see Section 2.1), but when the diagram is too big, this
information is overloaded. Quantizing the diagram provides a per-
sistence diagram (or measure) close to the input while being much
simpler to interpret.

• Reducing the size of diagrams has huge benefits from a computational
perspective. Computing the partial matching distance dp between two
large diagrams is expensive. Given two diagrams µ, ν and a quantiza-
tion Q, one can use OTp(Q(µ), Q(ν)) as an estimation of OTp(µ, ν),
where the error done is controlled by the quality of the quantization
(using the triangle inequality).

• Finally, quantization can also be seen as a vectorization method (up
to permutation). Indeed, an advantage of quantization in applications
(in machine learning in particular) is that it turns a persistence dia-
gram µ of arbitrary size into a vector in R3×k (two dimensions for the
point coordinates xi, and one for the weight ai), allowing for the use
of many machine learning algorithms. Note that the k points in the
(quantized) diagrams are not ordered (that is, permuting coordinates
and weights of the vector in R3 should be considered as representing
the same diagram); this can be handled by using permutation invari-
ant layers such as PersLay(see Section 6.2).

https://pot.readthedocs.io/en/stable/
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Example 7.11. Let Dk := Mk ∩ D denote the space of persistence di-
agrams with exactly k points (supported on Ω). Let ν =

∑n
j=1 δyj be a

persistence diagram. Assume for the sake of simplicity that pers(y1) >
pers(y2) > · · · > pers(yn). Then,

arg min
µ∈Dk

d2(µ, ν) =
k∑

i=1

δyi ,

that is, it is the diagram obtained from ν by keeping the k points of largest
persistence. This quantization has the benefits of being straightforward to
compute. Note that this technique, namely “only keeping points with highest
persistence”, is routinely used in applications (e.g. [CCI+20, CO08]). It is
reinterpreted here as a solution of a natural minimization problem.

Example 7.12. Let us move temporarily out of the space of persistence
diagrams. A well-known quantization problem—in the Wasserstein space
W2(Rd), see Section 2.2—is the k-means problem. Indeed, consider a point
cloud {y1 . . . yn} ⊂ Rd that is encoded by a probability measure ν = 1

n

∑n
j=1 δyj .

Given an integer k, the k-means problem can be phrased as

minimize
x∈Rd×k,a∈Rk+,

∑
i ai=1

{
W 2

2 (µ(a, x), ν)
}
,

where µ(a, x) :=
∑k

i=1 aiδxi, and W2 is the 2-Wasserstein distance.

Remark 7.13. Example 7.11 essentially solves the problem of quantizing
“in D”, and we will thus focus on proposing quantizations whose output is
not a persistence diagram, in sense that mass ai on a point xi might not be
integers. Considering this larger space of measures, which is made possible
by connecting the diagram metrics dp to the optimal transport metrics OTp,
allows us to obtain significantly better quantized diagrams while preserving
the benefits of quantization mentioned above (optimizing on a larger space
gives better minima). Note also that, although we restrict our focus to
persistence diagrams in this section, the techniques presented below would
apply to more general measures (e.g. empirical estimators of the EPD, see
Section 7.1).

7.2.2 Optimization problem and Algorithm

General problem formulation. Let us now fix a persistence diagram
ν =

∑n
j=1 δyj and k ∈ N. Let X be a subset ofMk. Our goal is to minimize
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the objective
F : Rk

+ × Rk×2 → R
(a,X) 7→ LC(X,Y )(a, b),

(7.18)

under the constraint µ(a,X) ∈ X , where µ(a,X) =
∑k

i=1 aiδxi . For a given
X, we denote by KX := {a, µ(a,X) ∈ X}, and symmetrically, for a given
a, we define Ka := {X, µ(a,X) ∈ X}.

Remark 7.14. Quantizations problems, such as k-means (Example 7.12),
are in general (NP) hard to solve. The objective functional (7.18) is in gen-
eral not convex. We will thus focus in the following on providing algorithms
that converges to a local minimum of F (just as the Lloyd algorithm returns
a local optimum of the k-means problem).

We propose to address this problem by alternate minimization: given
an initialization (a(0), X(0)), we build a sequence (a(t), X(t))t by defining

a(t+1) = min
a∈KX

F (a,X(t)),

X(t+1) = min
X∈Ka

F (a(t+1), X).
(7.19)

Obviously, such a sequence necessarily converges to a local minimum of F .
The two minimization sub-problems will hopefully be simpler to deal with.

Mass update. Fix the location X ∈ Rk×2, and consider FX : a 7→
F (a,X). The dual formulation (7.17) yields

FX(a) = max
f,g∈ΦC

n1∑

i=1

aifi + f∆

(∑

j

bj

)
+

n2∑

j=1

bjgj + g∆

(∑

i

ai

)
(7.20)

Assume we have found optimal f ∗, g∗. The envelope theorem states that a
(sub-)gradient of FX is given by

∇aFX = (f ∗i + g∗∆)1≤i≤k. (7.21)

Note that, as a supremum of convex (in fact, linear) functions, FX is con-
vex. Therefore, assuming KX is closed and convex, FX can be minimized
using any projected gradient descent-based technique. For now, we only
considered in our implementations the (naive) Euclidean gradient step and
projection, that is for some learning rate λ > 0,

a← projKX (a− λ∇aFX), (7.22)
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where projKX is the projection onKX for the Euclidean, that is projKX (a′) :=
arg mina′′∈KX ‖a′′ − a′‖2

2. More sophisticated techniques (e.g. accelerated
gradient descent [Nes05]) are considered and will be incorporated in Gudhi

if adapted. We also briefly mention the recent work of L.Chizat [Chi19]
which considers optimization of discrete measures supported on a manifold
(which is not (Ω̃, ρ))—it is likely that tools introduced in this work can
be adapted to handle persistence diagrams and this will be investigated in
future work.

Location update. Fix the weights a ∈ Rk, and consider Fa : X 7→
F (a,X). The primal formulation (7.16) yields

min
X∈Ka

Fa(X) = min
X∈Ka

min
P∈Π(a,b)

∑

ij

PijCij. (7.23)

Once again, we propose to solve this (non-convex) problem by alternating
minimization between X ∈ Ka and P ∈ Π(a, b). The latter simply consists
in solving the primal optimal transport problem. Now, given an optimal
P ∗, the former reads

minimize
X∈Ka

∑

1≤i,j≤k,n

P ∗ijd(xi, yj)
p +

k∑

i=1

P ∗i∆d(xi,p∂Ω(xi))
p, (7.24)

where we recall that p∂Ω(xi) is the (orthogonal) projection of xi onto the
diagonal ∂Ω.

In contrast to the update of masses, solving this minimization problem
significantly depends on the nature of d, p, and Ka. We provide below some
detailed examples.

The meta-algorithm summarizing masses and locations updates is de-
scribed in Algorithm 5.

Remark 7.15. It is worth noting that Algorithm 5 can be straightfor-
wardly adapted to not update either the mass or the locations (simplifying
the loop).

Remark 7.16. One can replace optimal primal P ∗ and dual (f ∗, g∗) vari-
ables by their entropic regularized counterparts, see Section 2.2.4 for an in-
troduction to entropic regularization of optimal transport, and Chapter 5 to
see how it adapts to persistence measures. It can improve computational
efficiently when k, n are getting large, but also the regularity of the algo-
rithm, in particular with respect to the initialization. Indeed, without the

https://gudhi.inria.fr/
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Algorithm 5 Quantization of persistence diagrams.

Input: Integer k, initial masses a(0) ∈ Rk and locations X(0) ∈ Ω
k
.

Constraints Ka, KX .
Output: A local minimum (a,X) of (7.18).
(Init) a← a(0), X ← X(0).
while Not converged (1) do

while Not converged (2) do
Compute (f ∗, g∗) optimal in (7.17) using POT

Set ∇ = (f ∗i + g∗∆)ki=1

a← a− λ∇
a← projKX (a)

end while
while Not converged (3) do

Compute P ∗ optimal in (7.16) using POT

X ← X∗ optimal in (7.24).
end while

end while
return (a,X).

entropic regularization, the optimal transport plan P ∗, as a function of the
current locations X, is not stable in sense that it is not unique (although
being generically unique) and two close locations X ′, X ′′ can lead to two
significantly different optimal transport plans P ∗

′
, P ∗

′′
and thus significant

differences regarding the output of the algorithm. In contrast, the entropic
regularized counterpart of P ∗ is unique and continuous with respect to X.

7.2.3 Examples

Let us provide examples in three natural contexts in which one may want
to perform quantization of persistence diagrams. In the following, we fix
an integer k and an input measure ν(b, Y ) =

∑n
j=1 bjYj, b ∈ Rn, Y ⊂ Ω.

Unconstrained case. The simplest case to consider is the unconstrained
one, that is we put no constraint on either locations nor masses aside from
having non-negative masses, i.e. belonging to the positive orthan Rk

+. With
previous notations, and with q = p = 2—that is d(x, y)p = ‖x − y‖2

2, it
reads

• a ≥ 0 entry-wise (formally, it yields ∀X,KX = Rk
+).

https://pot.readthedocs.io/en/stable/
https://pot.readthedocs.io/en/stable/
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• X ∈ Ω
k
. Let X(0), X(1) ∈ Rk denote the first and second coordinates

of X respectively. We must have X(1) ≥ X(0) (element-wise). How-
ever, one can observe that if there is a point x = (x(0), x(1)) in X such
that x(1) < x(0) (the point is below the diagonal), then replacing x by
x′ = (x(1), x(0)) in X will decrease the objective F (a,X). Therefore,

this constraint is not even required explicitly. Note that Ka = Ω
k

for
all a ∈ Rk

+

In this context, the mass update (7.22) requires only to project onto the
non-negative orthant, which simply reads

projRk+(x) = max(x, 0),

where the maximum is meant term-wise. We thus focus on the location
update. It simplifies to

minimize
x

(0)
1 ...x

(0)
k ,x

(1)
1 ...x

(1)
k ∈R

∑

ij

P ∗ij

[(
x

(1)
i − y(1)

j

)2

+
(
x

(0)
i − y(0)

j

)2
]

+
1

2

∑

i

P ∗i∆
(
x(1) − x(0)

)2
+
∑

j

P ∗∆j(y
(1)
j − y(0)

j )2.

Proposition 7.17. Assume that a > 0 element-wise. For 1 ≤ i ≤ k,
let Pi :=

∑n
j=1 P

∗
ij and yi := 1

Pi

∑n
j=1 P

∗
ijyj. Also, let τi := Pi

ai
≤ 1. The

optimality condition reads

{
x

(0)
i = x

(1)
i if Pi = 0,

xi = τiyi + (1− τi) p∂Ω(yi) otherwise.
(7.25)

Here, Pi represents the quantity of mass initially located on xi that
is off-diagonally transported, and yi represents a barycenter of the (yj)j
weighted by the proportion of mass P ∗ij/Pi transported from xi to yj. The
new position of xi is eventually a barycenter between yi and its orthogonal
projection onto ∂Ω, where the weight τi represents the fraction of mass that
is off-diagonally transported.

Proof. Let F denote the function to minimize. Let 1 ≤ i ≤ k, α ∈ {0, 1},
and α′ = 1 − α. The partial derivative of this function with respect to xαi
is given by

∂xαi F = 2
∑

1≤j≤n

P ∗ij(x
α
i − yαj ) + P ∗i∆(xαi − xα

′

i ).
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Recall the relation Pi+Pi∆ = ai (marginal constraint on the transportation
polytope). Equalizing this quantity to 0 gives

2Pix
α
i − 2Piy

α
i + Pi∆(xαi − xα

′

i ) = 0,

that is aix
α
i −Piy

α
i = Pi,∆

(
xαi + xα

′
i

2

)
,

and same relation holds interchanging α and α′, so that we have

{
xαi + xα

′
i = yαi + yα

′
i

aix
α
i −Piy

α
i = aix

α′
i −Piy

α′
i

⇒
{
xαi + xα

′
i = yαi + yα

′
i

xαi − xα
′
i = τi(y

α
i − yα

′
i )

which gives {
2xαi = (1− τi)(yαi + yα

′
i ) + 2τiy

α
i ,

2xα
′
i = (1− τi)(yα′i + yαi ) + 2τiy

α′
i ,

(7.26)

which proves the claim, using that p∂Ω(yi) =

(
y

(0)
i +y

(1)
i

2
,
y

(0)
i +y

(1)
i

2

)
.

Mass constrained. The unconstrained case presents the advantage of
being fairly simple to solve. One might however want the quantized diagram
to have more properties. For instance, one may ask that, although having
k points, the quantized diagram should have the same total mass as the
input diagram. Since the mass of the input diagram corresponds to its
number of points (counted with multiplicity), and each point accounts for
a topological event occurring in the filtration process, this constraint can
be interpreted as asking for the quantized diagram to account for the same
“total number of events” observed in the filtration process. Formally, the
constraint on the masses a simply reads (for any location X)

k∑

i=1

ai = aT1k = n,

that is, a must lies on a re-scaled version of the probability simplex of
dimension k, {u ∈ Rk, uT1k = 1, u ≥ 0}. The (Euclidean) projection
onto the probability simplex can be found using, for instance, [WCP13,
Algorithm 1]. Cuturi and Doucet [CD14, §4.2] propose to rely on a Bregman
projected gradient descent. In that context, a gradient step reads

a← n
a� exp(−λ∇aF )

‖a� exp(−λ∇aFX)‖1

,
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where � denotes element-wise multiplication, λ > 0 is a learning rate, and
∇aFX = (f ∗i + g∗∆)i for an optimal pair of dual potentials (f ∗, g∗).

Note that the locations remain unconstrained, and one can use Propo-
sition 7.17 to update the locations.

Persistence constrained. We finally consider a more complicated varia-
tion where we ask the quantized diagram to share the same total persistence
as the input diagram ν. Recall that for a parameter p, the total persistence
of µ =

∑k
i=1 aiδxi is defined as

Persp(µ) =
k∑

i=1

aipers(xi)
p = aTpers(X),

where pers(X) := (pers(xi)
p)i = (d(xi,p∂Ω(xi))

p)i. Informally, the total
persistence can be understood as the total quantity of topological informa-
tion contained in a diagram. Preserving the total persistence appears thus
as a natural constraint.

Let ρ = Persp(ν) be the total persistence of the input diagram ν. For a
given X, the constraint on a is given by KX = {u ≥ 0} ∩ {u, uTpers(X) =
ρ}, which is the intersection of two convex sets: the non-negative orthant
and an affine plan, it is thus convex. Furthermore, if X has at least one
off-diagonal point, this intersection is not empty (assume pers(xi) > 0, and
take a = (0 . . . 0, ρ/pers(xi), 0 . . . 0)). The (Euclidean) projection on this
set can be found using a Linear Program solver.

Let us fix the mass a. The subtlety is that now, the locationsX = (xi)
k
i=1

are also constrained to satisfy aTpers(X) = ρ. In particular, this constraint
is not convex if we set p = 2, yielding d(x, y)p = ‖x − y‖2

2. We would
face a Quadratically Constrained Quadratic Program, with non-convex con-
straints. Such a problem cannot be handle by a standard optimizer solver
and would require to do optimization on the manifold

{
1

2

n∑

i=1

(x
(1)
i − x(0)

i )2 = ρ

}
= {µ ∈Mk, OT2

2(µ,0) = ρ},

which corresponds to a sphere of radius
√
ρ centered on the empty diagram

0 on (Mk,OT2). Optimization on manifold is a wide topic for which tech-
niques exist [AMS09, Bou14]. Those have not been implemented at the
time I am writing these lines and are left for future work.
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Figure 7.3: Persistence constrained quantization with k = 10. (Left) Initial state
of the quantization algorithm. Initialization on location is performed using a sim-
ple k-mean algorithm on the points of the input diagram ν (shaded red). Initial-
ization of weights is with ai = ρ/

∑
i pers(xi), so that Pers1(µ(ainit, Xinit)) = ρ.

(Middle) Output of the algorithm after convergence with constrained persis-
tence. (Right) Evolution of Et := OT1(µ(t), ν) through iterations t. Stopped
when |Et+1/Et − 1| ≤ 0.001.

In order to recover a convex problem, we instead consider in the following
the case p = q = 1, that is d(x, y)p = ‖x− y‖1. The constraints now read

k∑

i=1

ai(x
(1)
i − x(0)

i ) = ρ, X(1) ≥ X(0) (7.27)

and are thus convex. Meanwhile, the objective functional reads, for an
optimal transport plan P ∗,

Fa(X) =
∑

ij

P ∗ij

(
|x(0)
i − y(0)

j |+ |x(1)
i − y(1)

j |
)

+
∑

i

P ∗i∆(x
(1)
i − x(0)

i ) +
∑

j

P ∗∆j(y
(1) − y(0)),

which is convex. Minimizing Fa under the constraints (7.27) problem can
be reformulated as a Linear Program, and thus finding an optimal X can be
handled by a convex optimization solver such as GLPK interfaced with cvxpy

[DB16], as done in our implementation. See Figure 7.3 for an illustration.

7.3 Shift-invariant distance between

persistence diagrams

Motivations and preliminary remarks

Recall that a persistence diagram µ built on top of an object X comes
from a filtration f : X → R, which is denoted by µ = Dgm(X, f)—see

https://www.gnu.org/software/glpk/
https://www.cvxpy.org/index.html
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Section 2.1 for details. In particular, the points (xi)i of µ =
∑n

i=1 δxi
are linked with some critical values of the map f . Roughly speaking2,
the coordinates (bi, di) ∈ Ω of a point xi in the diagram µ = Dgm(X, f)
must correspond to local minima or maxima of f reached at bi and di. As
such, if one composes f with a (strictly) increasing map ϕ : R → R, the
resulting diagram Dgm(X,ϕ ◦ f)—that will also be denoted by ϕ(µ)—is
simply described by

∑n
i=1 δϕ(xi), where ϕ(xi) := (ϕ(bi), ϕ(di)) ∈ Ω, with

xi = (bi, di) ∈ Ω. Note that in particular Dgm(X,ϕ ◦ f) and Dgm(X, f)
have the same number of points n, and one has a natural correspondence
between those points (although this might not be the correspondence given
by an optimal partial matching between the two diagrams). To sum up,
the two diagrams are the same up to a transformation of the ground space
Ω.

Example 7.18. Let X ⊂ Rd be a (finite) point cloud centered at 0, and
λX be the point cloud obtained from X by scaling it with a factor λ > 0.
One can build the Čech diagrams (see Example A.10 for details) on top
of X and λX, using distances in log-scale. This would respectively give
two diagrams µ and ν = τ(µ), where τ = log(λ). If the scaling factor λ
is far from 1, µ and ν are two very different diagrams (in terms of the
diagram metric dp). However, one could argue that describing topology of a
point cloud should be scale-independent. It invites us to consider a distance
between diagram up to translation, yielding (7.28) below. See Figure 7.4 for
an illustration.

A natural question is thus: given two diagrams µ, ν, is it possible to
compute their distance up to such a transformation of the ground space?
Note that allowing for any increasing transformation ϕ is too general: for
instance if we let ϕλ : t 7→ λt with λ > 0, one has infλ,λ′ d

p
p(ϕλ(µ), ϕλ′(ν)) =

0 for any diagrams µ, ν (by taking λ, λ′ arbitrarily small, so that the points
of the diagrams collapse to (0, 0) ∈ ∂Ω). Motivated by Example 7.18 and
Remark 7.20 below, we restrict in this section to the study of ϕ being a
translation, that is being parameterized by τ ∈ R with ϕτ : t 7→ t + τ . To
alleviate notations, we write ϕτ (µ) =: τ(µ) for τ ∈ R and µ ∈ Dp. Observe
that τ(µ) is simply obtained from µ by shifting all the points by a translation
(τ, τ) parallel to the diagonal. Note also that d(τ(x), ∂Ω) = d(x, ∂Ω) for all
x ∈ Ω so that Persp(µ) = Persp(τ(µ)) and thus Dp is stable by µ 7→ τ(µ).
Furthermore, µ ∼ ν ⇔ ∃τ, µ = τ(ν) defines an equivalence relation on Dp,

2This can be made formal by observing that the persistence module of (X,ϕ ◦ f)
indexed by t ∈ R is exactly the one of (X, f) indexed by ϕ(t) ∈ R.
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Figure 7.4: (Left) Two circles, the largest obtained by scaling the smallest by a
factor λ = 3. (Middle) The standard Čech diagrams of both circles. (Right) The
Čech diagrams in log-scale. They are obtained from each other by a translation
(parallel to the diagonal) by a factor τ = log(λ). As such, their distance up to
translation is 0.

hence we let cl(µ) := {τ(µ), τ ∈ R}, and we denote by Dp/τ the quotient
space {cl(µ), µ ∈ Dp}.3

It invites us to define, for µ, ν ∈ Dp,

dτ
p (cl(µ), cl(ν)) := inf

τ∈R
dp(µ, τ(ν)). (7.28)

Proposition 7.19. For any τ ∈ R, µ, ν ∈ Dp, we have dp(τ(µ), τ(ν)) =
dp(µ, ν), thus dτ

p is well-defined. Furthermore, it is a distance on Dp/τ .

Proof. The relation dp(τ(µ), τ(ν)) = dp(µ, ν) follows from the fact that
d(τ(x), τ(y)) = d(x, y) and d(x, ∂Ω) = d(τ(x), ∂Ω) for all x, y ∈ Ω and that
π 7→ τ#π induces a bijection between Adm(µ, ν) and Adm(τ(µ), τ(ν)); so
eventually Cp(π) = Cp(τ#π) and thus dp(µ, ν) = dp(τ(µ), τ(ν)). Therefore,
the right-and-side in (7.28) does not depend on the choice of µ ∈ cl(µ)
(resp. ν ∈ cl(ν)) and dτ

p is well-defined.

Let us prove that is it a distance. Non-negativity is clear. Symmetry
follows from the previous point (and the symmetry of dp). Now, let µ, ν ∈
Dp and assume that dτp(cl(µ), cl(ν)) = 0. If µ = 0 (the empty diagram),
this yields infτ Persp(τ(ν)) = Persp(ν) = 0 thus ν = 0 = µ. Now, let (τn)n
be such that dp(µ, τn(ν)) → 0. Assume that (τn)n is not bounded. Up
to extracting a subsequence, we can assume that τn → +∞ (resp. −∞).
By the characterization of convergence in (Dp,dp) (Theorem 3.7), we know

3Formally, cl(µ) is the orbit of µ under the action of (R,+) on D defined by τ · µ :=
τ(µ).
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Figure 7.5: Rotation of the ground space used to make computations simpler.

that for each compact subset K ⊂ Ω, τn(ν)(K) → µ(K). On the other
hand, τn(ν)(K) → 0 since τn → +∞ (resp. −∞) and Persp(ν) < +∞.
Thus, µ(K) = 0 and µ = 0, and ν = 0 as well. Otherwise, it means that
(τn)n must be bounded, and thus up to extracting a subsequence, converges
to some τ ∗ ∈ R. As τn(ν) → τ ∗(ν), we obtain dp(µ, τ

∗(ν)) = 0, that is
cl(µ) = cl(ν). Finally, let µ, ν, λ ∈ Dp. For all τ, τ ′ ∈ R we have

dτp(cl(µ), cl(λ)) ≤ dp(µ, τ
′(λ))

≤ dp(µ, τ(ν)) + d(τ(ν), τ ′(λ))

= dp(µ, τ(ν)) + d(ν, (τ ′ − τ)(λ)),

taking the infimum in τ ′, then in τ , gives the triangle inequality.

Remark 7.20. In symplectic topology, recent advances in the field were
brought by considering persistence diagrams built using a Hamiltonian as a
filtration. However, such filtrations are defined up to a constant term; the
resulting persistence diagram is therefore only defined up to a translation
parallel to the diagonal—that is an element of Dp/τ , see [RSV18, Remark
34] or the paragraph barcodes in [BHS18, §1.1] for more details. The natu-
ral metric that arises in this context to compare these topological descriptors
is then exactly dτ,22 .

Computational aspects

Remark 7.21. For the ease of notations and computations, in the re-
mainder this section we restrict to the case p = 2 and rotate the ground
space Ω by −π

4
. In particular, the distance between a point x = (x(0), x(1))

and the diagonal ∂Ω is now simply given by x(1), see Figure 7.5.
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Figure 7.6: Illustration of the non-convexity of τ 7→ d2
2(µ, τ(ν)) in a simple case.

Here, µ = δx1 + δx2 (red points), and ν = δy (blue point). Here, f has two
(global) minima: τ = −1 and τ = 1. However, f(0) is not a minimum. On the
left, the graph of the map τ 7→ f(τ), which illustrates (a) non convexity of f , (b)
presence of points of non-differentiability, (c) presence of plateaus.

Remark 7.22. In standard optimal transport (see Section 2.2) on the
Euclidean space Rd, the analog problem is trivial: one just has to center the
measures considered. Namely, if µ, ν are two probability measures in Rd.
We have that4 infτ∈RdW2(µ, τ(ν)) is reached for τ = E(µ) − E(ν), where
W2 denotes the 2-Wasserstein distance on the Wasserstein space W2(Rd).

However, including the diagonal, even if the set of translations consid-
ered here is only one-dimensional (τ ∈ R), the problem becomes harder as
it is, in particular, not convex, see Figure 7.6.

Limitation of naive variational approaches. Intuitively, one could
try to (locally) minimize the map f : τ 7→ d2

2(µ, τ(ν)) by using either an
alternate minimization or by doing a gradient descent as explained previ-
ously. Unfortunately, f is likely to have many plateaus (intervals on which it
takes a constant value) or points of non-differentiability due to the peculiar
role played by the diagonal, see for instance Figure 7.6. As a consequence,
if initialized in such plateaus, both methods would get stuck and return a
clearly unsatisfactory result.

Remark 7.23. We point out that a similar problem was already con-
sidered by Sheehy et al. in [SKC18]. Their method consists in adopting a
combinatorial approach to provide a global minimizer of F . Their work
differs from the one we present here in the following ways:

• Sheehy et al. consider the bottleneck distance (case p =∞, i.e. turning
the sum into a max), while we consider the Wasserstein distance with

4With τ(ν) the push-forward of ν by the map x 7→ x+ τ .
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p = 2 (although our approach works for any p ≥ 1 using as ground
metric d(x, y) = ‖x− y‖p).

• They did not focus on tractability of their algorithm: theoretical com-
plexity is in O(n3.5) (where n is the cardinality of the diagrams in
input) and they report a running time of 2 minutes for n = 128. Our
implementation can handle much larger instances.

• Although developed in the context of persistence diagrams, our ap-
proach straightforwardly adapts to any discrete measure supported on
Ω and, theoretically, even to measures with a non-discrete support,
adopting the formalism developed in Chapter 3, allowing to compute
shift-invariant distance between persistence surfaces (see Section 6.1
and [AEK+17]), expected persistence diagrams (see Section 7.1) or
quantized diagrams (see Section 7.2) for instance.

Entropic optimal transport to get non-zero gradients

In order to mitigate the effect of these plateaus, we propose to use (once
again) entropic optimal transport. This will also have benefits on differ-
entiability and computational efficiency. With the notations above, let
X = (x1 . . . xn) ∈ Rn×2 and Y = (y1 . . . ym) ∈ Rm×2 be the points ap-
pearing in µ and ν respectively. Define a = (1 . . . 1,m)/(n+m) ∈ Rn+1 and
b = (1 . . . 1, n)/(n + m) ∈ Rm+1. Note that here, we renormalized a, b so
that they belong to the probability simplex, allowing the use of standard
(regularized) optimal transport results off-the-shelf.

We recall that we work with p = 2, and we thus we define c(x, y) =
‖x−y‖2

2 and c(x, ∂Ω) := ‖x−p∂Ω(x)‖2
2 = (x(1))2, where x = (x(0), x(1)) ∈ Ω

(recall that we performed a rotation of the ground space Ω by −π/4 to
simplify computations, see Figure 7.5). Consider C(τ) := c(xi, yj + (τ, 0))
the cost matrix where locations Y of ν get translated by τ , parallel to ∂Ω.
Note that c(∂Ω, y) = c(∂Ω, y + (τ, 0)). Our goal becomes to minimize the
function f(·, γ) : R→ R defined for a parameter γ ≥ 0 by:

f(τ, γ) = min
P∈Π(a,b)

E(P, τ, γ) (7.29)

with
E(P, τ, γ) := 〈P,C(τ)〉+ γKL(P |a⊗ b) (7.30)

which corresponds to the primal formulation of entropic regularized op-
timal transport problem (see Section 2.2 and Chapter 5). Here, Π(a, b)
denotes the transportation polytope between a and b and KL(P |a ⊗ b) :=∑

ij Pij log
(
Pij
aibj

)
is the Kullback-Leibler divergence.
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Figure 7.7: Illustration of the role of the regularization γ when µ = ν = δx is a
diagram with a single point. When γ = 0, f(τ, 0) = d2

2(µ, τ(ν)) takes a constant
value as long as |τ | > 2‖x − p∂Ω(x)‖22—in which case it becomes cheaper to
transport the point of both diagram to the diagonal. Increasing the value of γ
helps to mitigate this phenomenon.

We denote by P (τ, γ) the minimizer of P 7→ E(P, τ, γ), which is unique
if γ > 0, and by convention P (τ, 0) denotes the minimizer of P 7→ E(P, τ, 0)
of largest entropy. It is well known [PC17, Prop. 4.1] that P (τ, γ)→ P (τ, 0)
as γ → 0. We also denote by P∂Ω the “trivial” transport plan that maps
every point to (its orthogonal projection onto) the diagonal ∂Ω, formally
defined as

P∂Ω :=




1
n+m

0
...
1

n+m
1

n+m
. . . 1

n+m
0


 ∈ R(n+1)×(m+1).

By definition, we know that for all τ, γ,

f(τ, γ) ≤E(P∂Ω, τ, γ) =
1

n+m
(Pers(µ) + Pers(ν)) + γKL(P∂Ω|a⊗ b)

=:E∂Ω(γ),

where Pers(µ) =
∑n

i=1 ‖xi−p∂Ω(xi)‖2
2 is the total persistence of µ (Pers(ν)

is defined likewise). Importantly, the latter quantity does not depend on τ ,
and thus f(·, γ) is bounded for all γ ≥ 0.

Some intuition. Why could it help to add this entropic regularization?
Aside from its general strengths (faster computations, access to gradients,
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etc.), in our context, the key idea is that the (entropic regularized) optimal
transport plan P (τ, γ) is dense, that is P (τ, γ)ij > 0 for all i, j. To be
more precise, there exist two diagonal matrices u, v (unique up to a scaling
factor) such that

P (τ, γ) = u · exp

(
−C(τ)

γ

)
· v.

Therefore, in contrast to the non-regularized optimal transport plan (which
is, in this case, a permutation matrix (Proposition 2.20 and Proposition 3.5),
the smoothed transport plan takes account of interactions between all pairs
of points x, y even if those are far away. In particular, the situation where
everything is transported onto the diagonal ∂Ω cannot occur when adding
this entropic regularization5. See Figure 7.7 for an illustration.

We now state asymptotic properties (in both γ and τ) of f .

Proposition 7.24 (Asymptotic behavior). One has

lim
γ→0

f(τ, γ) = min
P∈Π(a,b)

〈P,C(τ)〉 =: f(τ, 0). (7.31)

and
lim
γ→∞

f(τ, γ) = 〈a⊗ b, C(τ)〉 =: f(τ,∞). (7.32)

In particular, f(τ,∞) admits a unique minimizer

τ(∞) :=
1

m

∑

j

y0
j −

1

n

∑

i

x0
i . (7.33)

Similarly, one has

lim
|τ |→∞

f(τ, γ) = E∂Ω(γ). (7.34)

Proof. Equations (7.31) and (7.32) are now standard results in optimal
transport theory, see [Gen19, Theorem 10] for instance. Note that

〈a⊗ b, C(τ)〉 =
1

(n+m)2

∑

1≤i,j≤n,m

[(τ + y
(0)
j − x(0)

i )2 + (y
(1)
j − x(1)

i )2]

+
n

(n+m)2
Pers(ν) +

m

(n+m)2
Pers(µ),

which give the value of τ(∞).

5Note that however, in practice, if C(τ)/γ has some large entries at indices i, j, it
numerically yields exp(−C(τ)ij/γ) ' 0, which would impose Pij = 0.
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For the asymptotic in τ , let P (τ, γ) denote the (unique) minimizer of
f . Assume that for some 1 ≤ i, j ≤ n,m, we do not have Pij(τ, γ)Cij(τ)
bounded as τ → ∞. As the Kullback-Leibler divergence is always non-
negative, we have f(τ, γ) ≥∑ij Cij(τ)Pij(τ, γ)→∞. This contradicts the
fact that f must remain bounded. Therefore, as Cij(τ)→∞, we necessarily
have Pij(τ, γ) → 0 and thus P (τ, γ) → P∂Ω (due to marginal constraints)
and (as E is continuous) f(τ, γ)→ E∂Ω(γ).

Intuitively, the larger the regularization γ, the simpler it is to minimize
f(·, γ), to the extreme case γ = ∞ where f(·,∞) is even convex with a
minimizer τ(∞) that can be found in closed-form. Of course, a (global)
minimizer τ(γ) of f(·, γ) has no reason to be a good approximation of some
τ(0) (a minimizer of our initial objective, f(τ, 0)). There is a natural trade-
off between a large γ (making the optimization problem simple) and a small
one, that would give satisfactory minimizers. We first make this last point
more precise.

Proposition 7.25 (Convergence of minima and minimizers). We have
convergence of minimum values:

lim
γ→0

min
τ∈R

f(τ, γ) = min
τ∈R

f(τ, 0). (7.35)

Now, let τ(γ) be in arg min f(τ, γ) for γ > 0. One has

{
limγ→0 τ(γ) ∈ arg minτ f(τ, 0)

f(τ(γ), γ)→ minτ f(τ, 0)
(7.36)

In order to prove this proposition, we introduce the following lemma.

Lemma 7.26 (Variations). One has, for any (τ, γ) and (τ ′, γ′):

|f(τ, γ)− f(τ, γ′)| ≤ 2 |γ − γ′| log(n+m). (7.37)

In particular, the map f(·, γ) uniformly converges to f(·, 0) as γ → 0.

Similarly,

|f(τ ′, γ)− f(τ, γ)| ≤ 1

n+m
‖C(τ)− C(τ ′)‖1 (7.38)

Proof. Recall that P (τ, γ) denotes the unique minimizer of P 7→ E(P, τ, γ)
(or, in the particular case γ = 0, the one with largest entropy).
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By definition,

f(τ, γ) = 〈P (τ, γ), C(τ)〉+ γKL(P (τ, γ)|a⊗ b)
≤ 〈P (τ, γ′), C(τ)〉+ γKL(P (τ, γ′)|a⊗ b)
= f(τ, γ′) + (γ − γ′)KL(P (τ, γ′)|a⊗ b).

Now, observe that KL(P |a⊗ b) =
∑

ij Pij log(Pij)−
∑

ij Pij log(aibj). The
first term is non-positive. Furthermore,

−
∑

ij

Pij log(aibj) =
∑

1≤i,j≤n,m

Pij log((n+m)2)

+
∑

1≤i≤n

Pi,m+1 log((n+m)2/n)

+
∑

1≤j≤m

Pn+1,j log((n+m)2/m)

+ Pn+1,m+1 log((n+m)2/nm)

=2 log(n+m)− (log(n)
∑

1≤i≤n

Pi,m+1

+ log(m)
∑

1≤j≤m

Pn+1,j + log(nm)Pn+1,m+1)

=2 log(n+m)− n

n+m
log(n)− m

n+m
log(m)

≤2 log(n+m).

It proves the first inequality.

The second inequality is obtained in a similar way. By definition,

f(τ, γ) ≤ 〈P (τ ′, γ), C(τ)〉+ γKL(P (τ ′, γ)|a⊗ b)
= f(τ ′, γ) + 〈P (τ ′, γ), C(τ)− C(τ ′)〉 .

Note that for i = n + 1 or j = m + 1, C does not depend on τ . Using the
Hölder inequality on the indices 1 ≤ i, j ≤ n,m, we can write

〈P (τ ′, γ), C(τ)− C(τ ′)〉 ≤ ‖P‖q‖C(τ)− C(τ ′)‖q′
where 1/q + 1/q′ = 1. Taking q = ∞, and observing that (on the afore-
mentioned indices) P (·) ≤ 1

n+m
(due to the marginal constraints) gives the

result.

Proof of Proposition 7.25. Given uniform convergence of the maps (Lemma 7.26),
convergences of minima and minimizers follow from standard result in Γ-
convergence literature (see [DM12]). More precisely, (7.35) is given by
[DM12, Theorem 7.4], and (7.36) is given by [DM12, Corollary 7.20].
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Proposition 7.25 supports that it is reasonable to minimize f(·, γ) for
some small γ > 0. Actually, it even suggests that one can start by minimiz-
ing f(·, γ) with some large γ, obtaining a minimizer τ(γ), and progressively
decreasing γ. These techniques cannot guarantee to reach a global optimum
of f(·, 0), but significantly improve on doing a naive alternate minimization
on f(·, 0) directly. We give in the following the formula to optimize τ doing
either an alternate minimization or a gradient step. Recall that computing
P (τ, γ) can be done using the Sinkhorn algorithm—see Section 2.2—and is
handle in practice by the library POT [FC17] (for instance).

Proposition 7.27 (Optimization steps). Let τ ∈ R and γ > 0. Let P ∈
Π(a, b) be a transport plan and assume that

∑
1≤i,j≤n,m Pij > 0 (i.e. there is

some off-diagonal mass that is transported). Then, alternate minimization
can be performed by using the following formula:

arg min
τ

E(P, τ, γ) =

∑
1≤i,j≤n,m Pij(x

(0)
i − y(0)

j )∑
1≤i,j≤n,m Pij

. (7.39)

Now, let P (τ, γ) be the unique minimizer of P 7→ E(P, τ, γ). Then gradient
descent can be performed by using the following formula

∂f(τ, γ)

∂τ
= 2

∑

1≤i,j≤n,m

P (τ, γ)ij(τ + y
(0)
j − x(0)

i ). (7.40)

Proof. Equation (7.39) follows from straightforward computations. Indeed,

E(P, τ, γ) =
∑

ij

P1≤ij≤n,m[(τ + y
(0)
j − x(0)

i )2 + (y
(1)
j − x(1)

i )2]

+
n∑

i=1

Pi,m+1‖xi − p∂Ω(xi)‖2
2 +

m∑

j=1

Pn+1,j‖yj − p∂Ω(yj)‖2
2

+ γKL(P |a⊗ b)

which is a quadratic (in particular, convex) map in τ (as long as ∃(1 ≤
i, j ≤ n,m)|Pij > 0) which is minimized for

∑

ij

P1≤ij≤n,m(τ + y
(0)
j − x(0)

i ) = 0,

which proves the formula.

https://pot.readthedocs.io/en/stable/
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Equation (7.40) is obtained using the envelope theorem which here sim-
ply reads

∂

∂τ
f(τ, γ) =

∑

ij

P (τ, γ)ij
d

dτ
C(τ)ij

=2
∑

1≤i,j≤n,m

P (τ, γ)ij(τ + y
(0)
j − x(0)

i ),

concluding the proof.

This approach is eventually summarized in Algorithm 6. We propose
to initialize on τ(∞) as defined in (7.33). We initialize γ at 1, but other
values might be satisfactory too. We run our experiments with a preset
series of decreasing values of γ for illustration purpose but other heuristics
such as γ ← γ/2 would make sense. Note also that we have access to ∂f

∂γ
,

which is simply given by KL(P (τ, γ)|a ⊗ b) (once again, this follows from
the envelope theorem).

Algorithm 6 Shift-invariant distance between persistence diagram.

Input: Initial diagrams locations X (fixed) and Y (optimized). Update
rule for γ. If gradient descent, learning rate λ > 0.
Output: A local minimum τ ∗ of f(τ, γ).
(Init) τ = τ(∞), γ = 1.
while Not converged (1) do

while Not converged (2) do
Compute P (τt, γt′) optimal using POT .
if Gradient descent then

Set ∇ = ∂f
∂τ

using (7.40).
τt+1 ← τt − λ∇.

end if
if Alternate minimization then

Set τt+1 ← arg minτ E(P (τt, γt′), τ, γt′) using (7.39).
end if

end while
Update γ

end while
return (a,X).

https://pot.readthedocs.io/en/stable/
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Figure 7.8: Illustration of the shift-invariant distance algorithm on a simple ex-
ample. (Left) The two diagrams we want to “align”, at τ = 0. Intuitively,
one should shift the red diagram by τ ' −0.6 ; however the presence of a
red cluster close to some of the blue points makes τ ' 0 a local optimum of
τ 7→ d2

2(µ, τ(ν)) =: f(τ, 0). (Right) The graphs of τ 7→ f(τ, γ) for different
regularization parameters γ. In red dots, the values (τ(γt), f(τ(γt), γt)) for γt
decreasing from 1.0 to 0.01. In this (lucky) configuration, our approach does
converge (close) to the global optimum, while directly working with γ = 0 (or
even a small γ) would get stuck in the local optimum around τ = 0.





Conclusion

The similarities between the metrics used to compare persistence diagrams
in topological data analysis and those used to compare probability measures
in optimal transport were known for long. However, an explicit connection
between these two formalisms was yet to come. In this thesis, we estab-
lished such a connection. It turned out to be very prolific, especially when
targeting geometric and statistical applications but also in the conception
of new algorithms based on optimal transport techniques that could be of
great use when dealing with persistence diagrams.

The contributions of this work were presented in two different parts.
Part I is dedicated to the theoretical results. Chapter 3 is the engine of the
machinery we developed. We show how persistence diagram metrics can be
reformulated as optimal partial transport problems. Of major interest, our
formalism handles any kind of non-negative measures, not only those with
discrete support such as persistence diagrams. We study the properties
of the resulting space in detail, proving some powerful results such as a
characterization of convergence in the space. Chapter 4 studies Fréchet
means in this space from a theoretical perspective. We have established
a strong connection between Fréchet means of persistence diagrams and
their counterpart in optimal transport theory. It allows us to prove their
existence as well as a consistency result in a great generality.

Part II is dedicated to applications. Following Chapter 4, Chapter 5
is dedicated to the estimation of Fréchet means of persistence diagrams
in practice. By switching from a Lagrangian approach to a Eulerian one,
we retrieved a convex problem, a major improvement over previous ap-
proaches. Furthermore, building on entropic optimal transport, we obtain
a GPU-friendly parallelizable implementation, especially efficient on large
sets of large diagrams. Chapter 6 is dedicated to linear representations
of persistence diagrams, for which we provide an exhaustive criterion to
prove their continuity. We then propose a neural network architecture,
named PersLay, that will learn a task-driven linear representation. Our
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publicly available implementation is made to encompass most preexisting
vectorization techniques used when incorporating persistence diagrams in
machine learning pipelines. Finally, Chapter 7 provides some complemen-
tary examples that showcase the benefits of our work. We study persistence
diagrams in a random setting for which measures with continuous support
naturally appear. We prove stability properties of persistence diagrams in
this context, a result that only makes sense after extending diagram metrics
to measures with continuous support. This is done thanks to our optimal
transport based approach. Similarly, we propose an algorithm to perform
quantization on persistence diagrams, and a method to estimate a shift-
invariant distance between them.

We believe this work opens the way for faithful use of optimal transport
tools in combination with topological descriptors such as persistence dia-
grams, both in theory and in pratice. Of course, many tracks remain to be
explored. Pretty much any aspect of the optimal transport literature may
lead to an interesting counterpart in topological data analysis. We think for
instance of gradient flows [AGS08], convergence rates based on geometric
properties of the space [GPRS19] and using different regularization terms
[BSR18], to name a few.
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dient flows: in metric spaces and in the space of proba-
bility measures. Springer Science & Business Media, 2008.

Cited on page 182

[AKP17] Stephanie Alexander, Vitali Kapovitch, and Anton Petrunin.
Alexandrov geometry. Book in preparation, 2017.

Cited on page 223

[AMS09] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Opti-
mization algorithms on matrix manifolds. Princeton Univer-
sity Press, 2009. Cited on page 166

[AWR17] Jason Altschuler, Jonathan Weed, and Philippe Rigol-
let. Near-linear time approximation algorithms for opti-
mal transport via sinkhorn iteration. In Advances in Neu-
ral Information Processing Systems, pages 1961–1971, 2017.

Cited (3) on pages 119, 120, and 123

183



184 BIBLIOGRAPHY

[BBB+01] Dmitri Burago, Iu D Burago, Yuri Burago, Sergei A Ivanov,
and Sergei Ivanov. A course in metric geometry, volume 33.
American Mathematical Soc., 2001. Cited on page 223

[BD17] Peter Bubenik and Pawe l D lotko. A persistence landscapes
toolbox for topological statistics. Journal of Symbolic Com-
putation, 78:91–114, 2017. Cited on page 136

[BE19] Peter Bubenik and Alex Elchesen. Universality of persistence
diagrams and the bottleneck and wasserstein distances. arXiv
preprint arXiv:1912.02563, 2019. Cited on page 79

[BGMP14] Andrew J Blumberg, Itamar Gal, Michael A Mandell, and
Matthew Pancia. Robust statistics, hypothesis testing, and
confidence intervals for persistent homology on metric mea-
sure spaces. Foundations of Computational Mathematics,
14(4):745–789, 2014. Cited on page 75

[BHS18] Lev Buhovsky, Vincent Humiliere, and Sobhan Seyfaddini.
The action spectrum and cˆ 0 symplectic topology. arXiv
preprint arXiv:1808.09790, 2018. Cited on page 170

[BLPY19] Greg Bell, Austin Lawson, C Neil Pritchard, and Dan Yasaki.
The space of persistence diagrams fails to have yu’s property
a. arXiv preprint arXiv:1902.02288, 2019. Cited on page 27

[BM19] Christophe AN Biscio and Jesper Møller. The accumu-
lated persistence function, a new useful functional summary
statistic for topological data analysis, with a view to brain
artery trees and spatial point process applications. Journal
of Computational and Graphical Statistics, (just-accepted):1–
20, 2019. Cited on page 45

[BMEWL11] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman,
and Paul Lamere. The million song dataset. In Proceedings
of the 12th International Conference on Music Information
Retrieval (ISMIR 2011), 2011. Cited (2) on pages 9 and 20

[Boc33] Salomon Bochner. Integration von funktionen, deren werte
die elemente eines vektorraumes sind. Fundamenta Mathe-
maticae, 20(1):262–176, 1933. Cited on page 153

[Bou14] Nicolas Boumal. Optimization and estimation on mani-
folds. PhD thesis, Catholic University of Louvain, Louvain-
la-Neuve, Belgium, 2014. Cited on page 166



BIBLIOGRAPHY 185

[BSR18] Mathieu Blondel, Vivien Seguy, and Antoine Rolet. Smooth
and sparse optimal transport. In International Conference
on Artificial Intelligence and Statistics, pages 880–889, 2018.

Cited on page 182

[BT03] Amir Beck and Marc Teboulle. Mirror descent and non-
linear projected subgradient methods for convex optimiza-
tion. Operations Research Letters, 31(3):167–175, 2003.

Cited on page 126

[Bub15] Peter Bubenik. Statistical topological data anal-
ysis using persistence landscapes. The Journal of
Machine Learning Research, 16(1):77–102, 2015.

Cited (5) on pages 16, 27, 45, 136, and 140

[BV18] Peter Bubenik and Tane Vergili. Topological spaces of
persistence modules and their properties. Journal of
Applied and Computational Topology, pages 1–37, 2018.

Cited (3) on pages 27, 40, and 74

[BW20] Peter Bubenik and Alexander Wagner. Embeddings of
persistence diagrams into hilbert spaces. Journal of
Applied and Computational Topology, 4(3):339–351, 2020.

Cited (2) on pages 16 and 27

[CB15] William Crawley-Boevey. Decomposition of pointwise finite-
dimensional persistence modules. Journal of Algebra and its
Applications, 14(05):1550066, 2015. Cited on page 213

[CB19] Mathieu Carrière and Ulrich Bauer. On the metric distor-
tion of embedding persistence diagrams into separable hilbert
spaces. In 35th International Symposium on Computational
Geometry (SoCG 2019). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2019. Cited (2) on pages 16 and 27

[CCI+20] Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo La-
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Čech, 167
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Appendix A

Complementary notions of
homology and persistence theory

This chapter recalls the algebraic root of topological data analysis: ho-
mology theory, which gives a formal meaning to the notions of “topologi-
cal properties”. It then presents (one-dimensional) persistence theory, the
modern bridge between homology and data science, and its main tool: the
persistence diagram.

A.1 Homology theory

For the sakes of simplicity and concision, we focus in this section on sim-
plicial homology , which is the version of homology used in applications.
We briefly mention at the end of this section an extension to more general
objects. We refer the interested reader to [Mun84] for more details.

Simplicial complexes

Simplicial homology is the formal way to describe the topology of a sim-
plicial complex, a generalization of the notion of graph that can be conve-
niently encoded in a computer and used to make computations in applica-
tions.

Definition A.1. Let E = {v0 . . . vN} be a finite set. A simplex on E
is an element of P(E), whose elements are called its vertices. A simpli-
cial complex X on E is a (non-empty) subset of P(E) that satisfies the

203
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a

b

c

d

Figure A.1: An example of simplicial complex.

following:

∀σ ∈ X, ∀τ ⊂ σ with τ 6= ∅, we have τ ∈ X.

The dimension of a simplex σ is dim(σ) := card(σ) − 1. Simplices of
dimension 0 will be called points or vertices, those of dimension 1 are called
edges, dimension 2 and above are generally called faces. The dimension
of a simplicial complex is the largest dimension of one of the simplices it
contains. The k-simplices of X are the simplices of dimension k in X, and
we write Xk for the set of k-simplices of X.

Note that simplicial complexes are purely combinatorial structures: they
do not need do be embedded in some (Euclidean) space.

We now introduce the notion of orientation of a simplex . Intuitively, it
formalizes the idea that an edge {a, b} can be oriented either “from a to b”,
denoted by [a, b], or “from b to a”, denoted by [b, a].

Definition A.2 (Orientation). Let σ = {v0 . . . vk} be a k-simplex. Two
orderings (vi)

k
i=1 of σ are equivalent if they differ from one another by an

even permutation. It defines two equivalence classes, called the orientations
of σ. We will write σ = [v0 . . . vk] to specify an orientation of σ.

From now on, we will implicitly assume that our simplices are oriented.

Example A.3. The complex represented in Figure A.1 is defined by

X = {{a}, {b}, {c}, {d}, simplices of dim 0

{ab}, {ad}, {bc}, {bd}, {cd} simplices of dim 1

{abd}} simplices of dim 2.
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Simplicial homology

Computing the simplicial homology of a simplicial complex consists, roughly
speaking, in encoding its topological features. Informally, topological fea-
tures are connected components (features of “dimension 0”), loops (dimen-
sion 1), cavities (dimension 2), and so on... To formalize this intuition, we
need to put an algebraic structure on our simplicial complex that will allow
us, both in theory and in practice, to identify these topological features.

Let X be a (finite) simplicial complex. Let Z denote the ring of integers.

Definition A.4 (k-chains). The space of k-chains of a simplicial com-
plex X is the free abelian group generated by the set of k-simplices Xk =
{σ1 . . . σ|Xk|}:

Ck(X,Z) :=





|Xk|∑

i=1

αiσi : αi ∈ Z



 .

boundary operator. Now that we have a group structure on the (Xk)k,
we can build morphisms between these.

Definition A.5. Given a k-simplex [v0 . . . vk] ∈ Xk, we denote by [v0 . . . , v̂j, . . . vk] ∈
Xk−1 the (k − 1)-simplex (which is a face of [v0 . . . vk]) where the vertex vj
has been removed.

The boundary operator ∂k for k > 1 over k-dimensional chains is de-
fined as the morphism:

∂k : Ck(X,Z)→ Ck−1(X,Z)

σ = [v0 . . . vk] 7→
k∑

j=0

(−1)j [v0 . . . v̂j, . . . , vk]︸ ︷︷ ︸
∈Xk−1

(σ + λσ′) 7→ ∂kσ + λ∂kσ
′

By convention, ∂0 = 0.

Note that ∀k > 0 we have ∂k−1 ◦ ∂k = 0, that is, the boundary of a
boundary is zero.

Homology groups. We have the following sequence1 of applications:

Ck(X,Z)
∂k−→ Ck−1(X,Z)

∂k−1−−→ Ck−2(X,Z)
∂k−2−−→ . . .

1Called a chain complex , as if A
f−→ B

g−→ C, we have Im(f) ⊂ ker(g).
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We define:

• k-cycles : Zk := ker(∂k) = {σ ∈ Ck, ∂kσ = 0}

• k-boundaries : Bk := Im(∂k+1) = {∂k+1σ, σ ∈ Ck+1}

As ∂k−1 ◦ ∂k = 0, we know that Im(∂k+1) ⊂ ker(∂k), which states that
boundaries of (k + 1)-simplices are k-cycles. It allows us to define the
following quotient.

Definition A.6. The k-th homology group of X is

Hk(X,Z) :=
ker(∂k)

Im(∂k+1)
. (A.1)

This definition can be interpreted in the following way: the homology
group of a complex X represents the “space of its cycles modulo its bound-
aries”.

The collection of the homology groups of X is denoted by H∗(X,Z).

Remark A.7. In practice, simplicial homology is computed by replac-
ing the ring Z by a finite field K such as Z/pZ for some prime number
p (typically p = 2). It follows that Ck(X,K) and thus Hk(X,K) have a
finite-dimensional vector space structure. In this context, the dimension βk
of Hk(X,K) is called the k-th Betti number of X (for the field of coeffi-
cients K). A basis v1 . . . vβk of Hk(X,K), which are (representing) linear
combinations of elements in X, can be understood as a maximal family of
independent topological features of dimension k. In particular, βk encodes
the number of such topological features.

From a theoretical perspective, the choice of the field of coefficients K
has some consequence on the computation of Hk(X,K) only when Hk(X,Z)
has torsion, see [Mun84] for more details. In applications however, it seems
that the choice of K has barely any impact [OY19].

Invariance properties. We briefly discuss here why homology is a rele-
vant descriptor to describe the topology of structured objects. First, let us
introduce a notion of equivalence between topological spaces.

Definition A.8. Let X and Y be two topological spaces. Two continuous
maps u, v : X → Y are homotopic if there exists ϕ : [0, 1] × X → Y
continuous, such that ϕ(0, ·) = u and ϕ(1, ·) = v. This will be denoted by
u ∼ v.
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Let X and Y be two topological spaces. They are said to have the same
homotopy type if there exist f : X → Y and g : Y → X such as f ◦ g ∼
idY , g ◦ f ∼ idX . We will denote this by X ∼ Y.

Let X be a (finite) simplicial complex. A geometric realization of X is a
map ψ : X → R2n+1 such that for any simplex σ ∈ X, with σ = {v1 . . . vk},
one has ψ(σ) = conv({ψ(v1) . . . ψ(vk)}) where the (ψ(vi))i must be affinely
independent and conv(A) denotes the convex hull of a set A, and such that
for any σ1, σ2 ∈ X, one has ψ(σ1)∩ ψ(σ2) = ψ(σ1 ∩ σ2) (with ψ(∅) = ∅). A
simplicial complex X of dimension n always admits a geometric realization
in the Euclidean space R2n+1 (by Whitney’s Embedding theorem).

The important result to note is the following one:

Theorem. Let X, Y be two simplicial complexes, and r(X), r(Y ) be two
geometric realizations of those. If r(X) ∼ r(Y ) then H∗(X,K) = H∗(Y,K).

This theorem can be rephrased by stating that two complexes that have
isomorphic homotopy type have the same homology groups, or equivalently
that homology is a homotopy invariant.

Singular homology. We end this section by mentioning that homology
theory can be extended to a wider class of objects than just simplicial com-
plexes. Namely, given a topological space X , we can say that Σ ⊂ X is
a singular simplex of X of dimension k if it is the image of the geometric
realization of a (oriented) k-simplex conv({v0 . . . vk}) by a continuous map
(Figure A.2). All the definitions and properties stated above can be adapted
to general topological spaces: the space of k-chains is the free abelian group
generated by the (oriented) singular simplices of X, and all the subsequent
definitions (boundary operator, cycles, boundaries, homology groups, ho-
motopy invariance) extend straightforwardly. Note that the (simplicial)
homology groups of X and the (singular) homology groups of a geomet-
ric realization r(X) do coincide, making singular homology a satisfactory
extension of simplicial homology to general topological spaces. Note that
singular homology is also a homotopy invariant.

A.2 Filtrations and persistence modules

Although simplicial homology allows us to describe the topological features
of a given object, it cannot be used faithfully in statistical and machine
learning applications, for several reasons:
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v0 v1

v2
σ

∆
σ(∆)

X

Figure A.2: (Left) A geometric realization ∆ of the 2-simplex in R2. (Right) A
torus X and a singular simplex (the image of ∆ by a continuous map σ).

• The topology of a simplicial complex is based on a purely combinato-
rial representation of the object, without (explicitly) taking the extra
information available (such as the geometry of the ambient space) into
account.

• The homology groups of a point cloud P ⊂ Rd with n points will
simply be given by H0(P,Z) = Zn and Hk(P,Z) = 0 for k ≥ 1
(n connected components and nothing else); even if the points are
perfectly distributed on, say, a circle.

• The information encoded by homology might not be quantitative
enough. Although H1(X,Z) might account for the presence of loops,
for instance, we do not have access to some quantitative information
about these loops: are there some loops more significant, or more
reliable, than others?

To improve on these, we will rely on persistence theory : namely we will
study the evolution of the homology groups of an object at various scales
using a filtration.

Preliminary definitions

Definition A.9. Let X be a topological space and T ⊂ R. A filtration
(Ft)t∈T is a familly of topological spaces such that

∀(s, t) ∈ T 2, s ≤ t⇒ Fs ⊂ Ft.
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C(P, t)

R(P, t)
t

Figure A.3: Example of Čech and Rips complexes built on a point cloud.

A standard way to build filtration is to look at the sublevel sets of a map
f : X → R, i.e. the subsets of X of the form

Ft := f−1((−∞, t]).

Example A.10. Let P = {x1 . . . xn} be a point cloud in Rd. The offsets
filtration on P is the filtration described by the map

f = distP : x 7→ min
1≤i≤n

‖x− xi‖2.

Here, one has

Ft =
n⋃

i=1

B(xi, t),

where B(xi, t) is the Euclidean ball centered in xi of radius t for t ≥ 0, set
to be the empty set if t < 0. See Figure A.3 for an example. Note that
in practice, computing the homology groups of the space Ft directly is not
handy as algorithms take simplicial complexes as input. In this particular
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case however, one has two natural options to build a simplicial complex
based on Ft:

• The Čech complex C(P, t) of parameter t is given, for t ≥ 0, by

{xi1 . . . xik} = σ ∈ C(P, t)⇔
k⋂

j=0

B(xij , t) 6= ∅,

that is the balls have a common intersection. The nerve theorem
ensures that C(P, t) and Ft have the same homotopy type and thus
the same homology groups (see Appendix A). Therefore, working in
practice with the simplicial complexes (C(P, t))t allows us to exactly
recover the topology of (Ft)t.

• Similarly, the Rips complex R(P, t) of parameter t is given, for t ≥ 0,
by

{xi1 . . . xik} = σ ∈ R(P, t)⇔ ∀j, j′, B(xij , t) ∩B(xij′ , t) 6= ∅,

that is the balls have pairwise intersections. Note that we have for all
t ≥ 0:

C(P, t) ⊂ R(P, t) ⊂ C(P, 2t). (A.2)

Furthermore, R(P, t) is much simpler to compute than C(P, t) as one
has to check if the balls have pairwise intersections instead of common
intersections.

Persistence modules

Now, fix a field K. It turns out that (H∗(Ft,K))t is not a family of indepen-
dent vector spaces but—thanks to the increasing property s ≤ t ⇒ Fs ⊂
Ft—has much more structure, which is encoded as a persistence module.

Definition A.11. A persistence module over T ⊂ R is a family V =
(Vt)t∈T of K-vector spaces, endowed with linear applications vt

′
t : Vt → Vt′

such that:

∀t ∈ T, vtt = id

∀t ≤ t′ ≤ t′′ ∈ T, vt
′′

t′ ◦ vt
′

t = vt
′′

t .

Note that the linear applications are generally made implicit in the
notation, that is we will write V = (Vt)t to denote a persistence module
over a family of K-vector spaces (Vt)t endowed with maps (vt

′
t )t≤t′ .
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Rs t u≤ ≤

Fs Ft Fu⊂ ⊂ . . .. . .

H∗(Fs,K) H∗(Ft,K) H∗(Fu,K)vts vut . . .. . .

Figure A.4: Global picture of the algebraic pipeline behind the construction of
persistence modules.

Persistence module of a simplicial filtration. Let X, Y, Z be three
simplicial complexes such that X ⊂ Y ⊂ Z. Let iYX and iZY denote the
inclusion maps between (X, Y ) and (Y, Z) respectively, along with iZX =
iZY ◦ iYX , the inclusion between X and Z. Let also HX , HY , HZ denote their
respective homology groups. The inclusion maps are naturally turned into
linear maps vHYHX , v

HZ
HY
, vHZHX respectively, and one has vHZHY ◦ v

HY
HX

= vHZHX , see
Figure A.5.

Thus, if we have F = (Ft)t a filtration of simplicial complexes (called a
simplicial filtration), we have:

• ∀t ∈ T , we define Vt := H∗(Ft,K)

• ∀t ≤ t′, let vt
′
t be the linear mapping induced by the canonical inclu-

sion Ft ↪−→ Ft′ .

This defines the (canonical) persistence module over F . Without introduc-

ing the terminology of category theory, which is out of the scope covered
by this manuscript, it can be useful to have the following global picture
(Figure A.4) in mind: a real number s is turned into a topological space Fs
which is then turned into a vector space H∗(Fs,K), while inequalities s ≤ t
are turned into inclusions Fs ⊂ Ft which are then turned into linear maps
vts : H∗(Fs,K)→ H∗(Ft,K).

Example A.12. Figure A.5 gives an example of an increasing sequence
of simplicial complexes on which we derive the corresponding persistence
module, that is H0(Ft) ⊕ H1(Ft), t ∈ {1 . . . 6}. Linear applications vt+1

t :
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H0(Ft) ⊕ H1(Ft) → H0(Ft+1) ⊕ H1(Ft+1) are represented as matrices at
each step.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
1.1 1.2

1.3

2.1

2.2

3.1

4.1

4.2

5.1
6.1

H0 ' K3

H1 ' {0}
H0 ' K1

H1 ' {0}
H0 ' K2

H1 ' {0}
H0 ' K1

H1 ' K
H0 ' K1

H1 ' K2

H0 ' K3

H1 ' {0}
⊕ ⊕ ⊕ ⊕ ⊕ ⊕

(
1 1 1

)
(
1
0

) (
1 1
0 0

)


1 0
0 1
0 0


 (

1 0 0
0 1 1

)

Figure A.5: An example of filtration over a simplicial complex and the corre-
sponding persistence module.

A.3 Persistence diagrams

Decompositions of persistence modules

Fix T ⊂ R and a field K.

Definition A.13. An interval of T is a subset I ⊂ T such as:

∀t ≤ t′ ≤ t′′ ∈ T, t, t′′ ∈ I ⇒ t′ ∈ I

An interval module over an interval I ⊂ T is a persistence module V
defined by:

• Vt = K if t ∈ I, Vt = {0} otherwise.

• ∀t ≤ t′ ∈ T, vt′t = idK if t, t′ ∈ I, vt
′
t = 0 otherwise.

For I = [b, d], the corresponding interval module is denoted by I[b,d]. It
can be described as

I[b,d] := {0} 0−→ . . .
0−→ {0}︸ ︷︷ ︸

t<b

0−→ K id−→ . . .
id−→ K︸ ︷︷ ︸

b≤t≤d

0−→ {0} 0−→ . . .
0−→ {0}︸ ︷︷ ︸

d<t

Analogous definitions and notations stand for I = (a, b], (a, b), [a, b).
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Interpretation. Interval modules are the “base blocks” of persistence
modules, intuitively in the same way as prime numbers are the base block of
natural integers, or (maybe more precisely) as real lines are the base blocks
of real vector spaces. Just as any real vector space can be decomposed
as a unique (up to isomorphism) direct sum of real lines, we will see that
(under mild assumption), any persistence module can be uniquely (up to
isomorphism) decomposed as a direct sum (see below) of interval modules.

Definition A.14. Given V = (Vt)t,W = (Wt)t two persistence modules
with linear applications (vt

′
t )t,t′ , (w

t′
t )t,t′, we define the direct sum of modules

V⊕W by:

• V⊕W = (Vt ⊕Wt)t

• The corresponding linear applications are denoted by:

(v ⊕ w)t
′

t : Vt ⊕Wt → Vt′ ⊕Wt′

(x, y) 7→ (vt
′

t (x), wt
′

t (y))

This definition extends naturally to a family of persistence modules (Vj)j∈J ,
denoted by V :=

⊕
j∈J Vj.

Note that V ⊕W is also a persistence module (so is the sum over a
family).

Theorem A.15 ([CDSGO16, Theorem 2.8]). A persistence module V can
be decomposed as a direct sum of interval modules, written as:

V '
⊕

I[bj ,dj ],

in the following sufficient cases:

1. If T is finite [Gab72].

2. When all the vector spaces Vt are finite-dimensional [CB15].

When it exists, the decomposition is unique (up to isomorphism and order-
ing of the terms).

When we have such a decomposition, the knowledge of the intervals
([bj, dj])j gives a complete description of the structure of V. This infor-
mation can be encoded as a (multi-)set2 of points, called the persistence

2That is, a set where elements can be repeated. The number of times an element x
appears in a multiset is called its multiplicity.
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diagram Dgm(V) of the persistence module, supported on

R2

≥ := {(b, d) ∈ R2
, b ≤ d}, (A.3)

where R is the extended real line R∪ {±∞}. Each point in the persistence
diagram accounts for an interval module in the decomposition of V.

It might happen that V is not decomposable. However, one can still
define a persistence diagram of V assuming that V is q-tame.

Definition A.16. A persistence module V is said to be q-tame if ∀t <
t′ ∈ T , rank(vt

′
t ) is finite.

Extending the notion of persistence diagram for a persistence module V
that cannot be decomposed can be done using a measure-theoretic formal-
ism. Intuitively, the idea is the following: when V can be decomposed, the

number of points of Dgm(V) that fall into a rectangle [a, b] × [c, d] ⊂ R2

≥
with a < b ≤ c < d corresponds to the number of intervals that start
between a and b and end between c and d. It turns out to be equal to
rank(vda)− rank(vca) + rank(vcb)− rank(vdb ).

Therefore, for a q-tame persistence module V, let us define

µV : [a, b]× [c, d] 7→ rank(vda)− rank(vca) + rank(vcb)− rank(vdb ),

which defines, modulo some technical details (see [CDSGO16, Chapter 3]),

a measure on R2

≥. It turns out that this measure has some strong structure
properties.

Theorem A.17 ([CCSG+09a, CDSGO16]). Let V be a q-tame persistence
module. Then µV is a point measure, i.e. is integer-valued and supported

on a locally finite set X ⊂ R2

≥. It can thus be written as

µV =
∑

x∈X

nxδx,

where δx denotes the Dirac mass located at x ∈ R2

≥, and nx ∈ N denotes the
multiplicity of x.

Furthermore, if V can be decomposed as V =
⊕

j I[bj ,dj ], then µV =
Dgm(V), in sense that µV =

∑
j δ(bj ,dj).

This theorem is the first example in which adopting a measure-theoretic
perspective provides a powerful framework to study topological descriptors.
We will adopt this approach in chapters 3 and 4 and showcase its strength to
deal with various statistical problems occurring in topological data analysis.
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Computation

Let us now mention how persistence diagrams can be computed. In practice,
algorithms take as input a simplicial filtration, that is a filtration over a
simplicial complex K which satisfies:

• T = {0, 1, . . . ,m} (finite, so we have a decomposable persistence mod-
ule).

• K0 = ∅, Km = K.

• ∀t ∈ T,Kt is a finite simplicial complex, which is a sub-complex of
Kt+1.

We can also assume that we actually only add one simplex at each step,
that is Kt+1\Kt = {σt}.

Persistence diagrams can be computed using Gaussian elimination, tak-
ing in addition the ordering of the simplices into account. The pipeline
reads as follows

1. Let M be the matrix of the boundary operator ∂.

2. Define

low(j) :=

{
max{i|Mij 6= 0}
0 if Mij = 0 for all i

3. Use Gaussian elimination from the left to the right (see Algorithm 7).

Algorithm 7 Compute the barcode corresponding to a simplicial filtration

for j = 1 . . .m do
while ∃i < j s.t. low(i) = low(j) 6= 0 do

cj ← cj − M [low(i),j]
M [low(i),i]

ci
end while

end for
return The reduced matrix.

4. Building the diagram: after reduction each column with only 0 entries
accounts for the birth of a cycle. Any other column j (with non 0)
induces a boundary which trivializes (fills in) the cycle i = low(j).
Thus:
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• Each column i with only 0 entries encodes the beginning of one
interval module in the decomposition of the persistence module
I[t(i),?], where t(i) denotes the insertion time of the corresponding
simplex.

• Finite intervals are I[t(i),t(j)] with i = low(j)

• Infinite intervals are I[t(i),+∞) when there is no j such that i =
low(j).

Note that in practice, we generally build one diagram for each homology
dimension k.

Example A.18. Let K = Z/2Z. The pipeline is illustrated in Figure A.6.
After reduction, the column of e5 is empty, it means that inserting e5 cre-
ated a cycle (of dimension dim(e5) = 1, that is a loop). As low(σ1) = e5, it
means that inserting σ1 at t = 6 killed (filled) the cycle created by e5. It is
recorded in the persistence diagram by adding a point with the correspond-
ing insertion times (5, 6). Similarly, e4 created a cycle. As there is no σ
such that low(σ) = e4, the cycle did not get killed at the end of the filtra-
tion process, resulting in a point of coordinates (4,+∞) in the persistence
diagram.

Thus, the decomposition of the persistence module is given by

H0 ' I[1,+∞) ⊕ I[1,2) ⊕ I[1,2) ⊕ I[3,4)

H1 ' I[4,+∞) ⊕ I[5,6),

and the corresponding persistence diagrams in homology dimension k = 0
and k = 1 reads, adopting the measure notation,

Dgm0 = δ(1,+∞) + 2δ(1,2) + δ(3,4)

Dgm1 = δ(4,+∞) + δ(5,6).

Interleaving and bottleneck distances

Using the bottleneck distance to compare persistence diagrams is motivated
by algebraic considerations. The bridge between the bottleneck distance
and persistence modules is made by re-interpreting this distance in terms
of interleaving.

Definition A.19. Let ε > 0. Let V = (Vt)t∈R and W = (Wt)t∈R be two
persistence modules on R. V and W are said to be ε-interleaved if there
are two families of applications ϕ = (ϕt)t, ψ = (ψt)t where ϕt : Vt → Wt+ε
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t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
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1
1
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1

Gaussian elimination

v1
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σ1

e 1 e 2 e 3 e 4 e 5 σ
1

Persistence diagram

2

1 3

2

4

5

6

+∞

Zero dimensional topological features

One dimensional topological features

Figure A.6: Pipeline to build a persistence diagram from a simplicial filtration.
(Top) The simplicial filtration. (Middle) On the left, the matrix of the boundary
operator ∂. Note that simplices must be ordered with respect to their insertion
time t. On the right, the matrix after reduction. (Bottom) The persistence
diagram deduced from the reduced matrix.
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and ψt : Wt → Vt+ε such that for all t ≤ t′, the diagrams in Figure A.7
commute:

Vt′

Wt′+εWt+ε

Vt
vt

′

t

wt
′+ε
t+ε

ϕt
ϕt′

Wt Wt′

Vt+ε Vt′+ε

ψt
ψt′

Wt+ε

Vt Vt+2ε

ϕt
ψt+ε

Wt

Vt+ε

Wt+2ε

ψt
ϕt+ε

Figure A.7: Schematic representation of interleaving between persistence module.

Then, we define the interleaving distance as

di(V,W) := inf{ε > 0|V,W are ε-interleaved } ∈ R+ ∪ {+∞}.
The bottleneck distance between persistence diagrams and the inter-

leaving distance between persistence modules are strongly related by the
following result.

Theorem A.20 ([CDSGO16, Theorem 5.14]). If V,W are q-tame, then

d∞(Dgm(V),Dgm(W)) = di(V,W).

A complementary example on stability properties of the bottle-
neck distance.

Example A.21. Let X, Y be two point clouds in Rd. Consider the two
filtrations dX = distX and dY = distY . Recall (Example A.10) that f and
g induce the Čech complexes of X and Y respectively. Let thus Dgm(dX)
and Dgm(dY ) denote the Čech diagrams of X and Y .

Simple computations show that

‖dX − dY ‖∞ = sup
z∈Rd

∣∣∣∣min
x∈X
‖x− z‖ −min

y∈Y
‖y − z‖

∣∣∣∣
= max{max

y∈Y
min
x∈X
‖x− y‖,max

x∈X
min
y∈Y
‖x− y‖}

=: dH(X, Y ),



A.3. PERSISTENCE DIAGRAMS 219

the latter quantity being known as the Hausdorff distance between X and
Y , a standard metric between point clouds (and more generally between
compact metric spaces).

In this context, the stability theorem implies that

d∞(Dgm(dX),Dgm(dY )) ≤ dH(X, Y ), (A.4)

that is the (bottleneck) distance between the two diagrams is controlled by
the (Hausdorff) distance between the point clouds (see Figure 2.2).

This example can be extended to any finite metric spaces, in which case
the stability is expressed in terms of the Gromov-Hausdorff distance or
Gromov-Wasserstein distance, we refer the interested reader to [CCSG+09b,
Theorem 3.2, Corollary 5.1].

This result has some consequences in applications. For instance, con-
sider a (unknown) compact set X ⊂ Rd, and a point cloud P ⊂ X (for
which the diagram can be computed in practice). If one can ensure that
dH(P,X) ≤ ε (we say that P is a ε-sample of X), then it follows that

d∞(Dgm(dP ),Dgm(dX)) ≤ ε.

Under some geometric assumptions on X, not detailed here, Dgm(dX)
actually reflects the homology of X, and so does Dgm(dP ) if P is close
enough to X.





Appendix B

Elements of measure theory

In the following, let Ω be a locally compact Polish metric space (i.e. a Polish
space equipped with a distinguished Polish metric).

Definition B.1 (Radon measures). The spaceM(Ω) of Radon measures
supported on Ω is the space of Borel measures which give finite mass to every
compact set of Ω. The vague topology on M(Ω) is the coarsest topology
such that the maps µ 7→ µ(f) :=

∫
Ω
f(x)dµ(x) are continuous for every

f ∈ Cc(Ω), the space of continuous functions with compact support in Ω.

Definition B.2 (Weak topology). Denote by Mf (Ω) the space of finite
Borel measures on Ω. The weak topology onMf (Ω) is the coarsest topology
such that the maps µ 7→ µ(f) are continuous for every f ∈ Cb(Ω), the space
of continuous bounded functions in Ω.

We denote by
v−→ the vague convergence and

w−→ the weak convergence.

Definition B.3. A set F ⊂M(Ω) is said to be tight if, for every ε > 0,
there exists a compact set K with µ(Ω\K) ≤ ε for every µ ∈ F .

The following propositions are standard results. Corresponding proofs
can be found for instance in [Kal83, Section 15.7].

Proposition B.4. A set F ⊂M(Ω) is relatively compact for the vague
topology if and only if for every compact set K included in Ω,

sup{µ(K), µ ∈ F} <∞.

221
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Proposition B.5 (Prokhorov’s theorem). A set F ⊂Mf (Ω) is relatively
compact for the weak topology if and only if F is tight and supµ∈F µ(Ω) <∞.

Proposition B.6. Let µ, µ1, µ2, . . . be measures inMf (Ω). Then, µn
w−→

µ if and only if µn(Ω)→ µ(Ω) and µn
v−→ µ.

Proposition B.7 (Portmanteau theorem). Let µ, µ1, µ2, . . . be measures
in M(Ω). Then, µn

v−→ µ if and only if one of the following propositions
holds:

• for all open sets U ⊂ Ω and all bounded closed sets F ⊂ Ω ,

lim sup
n→∞

µn(F ) ≤ µ(F ) and lim inf
n→∞

µn(U) ≥ µ(U).

• for all bounded Borel sets A with µ(∂A) = 0, lim
n→∞

µn(A) = µ(A).

Definition B.8. The set of point measures on Ω is the subset D(Ω) ⊂
M(Ω) of Radon measures with discrete support and integer mass on each
point, that is of the form ∑

x∈X

nxδx

where nx ∈ N and X ⊂ Ω is some locally finite set.

Proposition B.9. The set D(Ω) is closed in M(Ω) for the vague topol-
ogy.

Definition B.10. Let µ, ν be two non-negative Radon measures on a
space Ω. We say that µ is absolutely continuous with respect to ν, denoted
by µ � ν if for all Borel A ⊂ Ω such that ν(A) = 0, one has µ(A) = 0.
We say that µ and ν are singular (to each other), denoted by µ ⊥ ν, if
there exists a Borel set E ⊂ Ω such that for all Borel A, µ(A\E) = 0 and
ν(A\Ec) = 0.

Proposition B.11 (Radon-Nikodym derivative and Lebesgue decompo-
sition theorem.). Let µ, ν be two non-negative Radon measures supported
on Ω. There exists a unique pair of measures (µ1, µ2) such that µ = µ1 +µ2,
µ1 � ν, and µ2 ⊥ ν.

Furthermore, there exists a measurable non-negative function denoted
by dµ1

dν
, unique ν-ae, such that dµ1 = dµ1

dν
dν. This function is called the

Radon-Nikodym derivative of µ with respect to ν.
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Elements of metric geometry

Here, X denotes a locally compact Polish metric space, equipped with a
distance d. The following definitions are standard and the interested reader
can find more content in [BBB+01] and the recent book [AKP17].

Definition C.1 (Paths, lengths, geodesics). A path between x, y in X is
a continuous map γ : [0, 1] → X such that γ(0) = x, γ(1) = y. The length
of a path γ is

L(γ) := inf
0=t1≤···≤tn=1

n∑

i=1

d(γ(ti), γ(ti+1)).

Let P (x, y) denote the set of paths between two points x and y of X .

Definition C.2 (Geodesics). The space X is said to be a length space
if

inf
γ∈P (x,y)

L(γ) = d(x, y).

A path realizing this infimum, should it exist, is said to be a geodesic between
x and y.

If for any pair x, y ∈ X , there exists a geodesic between x and y, X is
said to be a geodesic space.

The notion of curvature in geodesic spaces is of major importance to un-
derstand the behavior of Fréchet means, among other things. For the sake
of simplicity, we only expose here the notion of “non-negatively curved”
Alexandrov spaces, as it covers the case of spaces of persistence diagrams.
Intuitively, it means that two geodesics emanating from a same point tends
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to “get closer”, as it would happen on a sphere for instance. This is mea-
sured by the notion of angle, mimicking the formula one would expect in
the Euclidean setting.

Definition C.3. Let p, x, y be three points in a geodesic space X . The
angle ]p(x, y) between x and y at p is defined as

cos(]p(x, y)) =
d(p, x)2 + d(p, y)2 − d(x, y)2

2d(p, x)d(p, y)
.

Definition C.4. A geodesic space X is said to be a non-negatively
curved Alexandrov space if for any triplet of points (p, x, y), and for any
geodesics γx ∈ P (p, x) and γy ∈ P (p, y), the function

(s, t) 7→ cos(]p(γx(s), γy(t)))

is increasing in both of its arguments.
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d’apprentissage. Elle va représenter cette informa-
tion sous forme de descripteurs dont font partie les
diagrammes de persistance, qui peuvent être décrits
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