
HAL Id: tel-02979044
https://hal.science/tel-02979044

Submitted on 26 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RANDOM PHASE APPROXIMATION AND
BEYOND: FROM THEORY TO REALISTIC

MATERIALS
Dario Rocca

To cite this version:
Dario Rocca. RANDOM PHASE APPROXIMATION AND BEYOND: FROM THEORY TO RE-
ALISTIC MATERIALS. Theoretical and/or physical chemistry. Université de Lorraine, 2020. �tel-
02979044�

https://hal.science/tel-02979044
https://hal.archives-ouvertes.fr


HABILITATION À DIRIGER DES RECHERCHES
Date de soutenance: 14 janvier 2020

Dario Rocca

UNIVERSITÉ DE LORRAINE ET CNRS
Laboratoire de Physique et Chimie Théoriques, LPCT

Institut Jean Barriol

RANDOM PHASE APPROXIMATION AND BEYOND:
FROM THEORY TO REALISTIC MATERIALS

APPROXIMATION DE LA PHASE ALÉATOIRE ET
AU-DELÀ : DE LA THÉORIE AU MATÉRIAUX RÉELS

Composition du jury

RAPPORTEURS

Dr. Julien Toulouse, LCT, Sorbonne Université & CNRS
Prof. Mébarek Alouani, IPCMS, Université de Strasbourg & CNRS
Dr. Lucia Reining, LSI, École Polytechnique & CNRS

EXAMINATEURS

Dr. Sébastien Lebègue, LPCT, Université de Lorraine & CNRS
Prof. Emilie Gaudry, IJL, Université de Lorraine & CNRS
Prof. Paolo Umari, Università degli Studi di Padova
Prof. Stefano de Gironcoli, Scuola Internazionale Superiore di Studi Avanzati



Abstract

Despite the high computational cost the adiabatic connection fluctuation dissi-
pation theorem (ACFDT) represents a promising approach to improve the descrip-
tion of the electronic correlation within density functional theory. The simplest
approximation that can be applied in the context of the ACFDT is the random
phase approximation (RPA). First, we show how the RPA can be improved by
introducing a kernel containing an approximate electron-hole exchange term that
leads to two different beyond-RPA methods. Then, we show that the RPA and
beyond-RPA approaches can be efficiently computed within a plane-wave basis
set implementation by using dielectric eigenpotentials as a compact auxiliary ba-
sis set and the Lanczos algorithm. A series of applications to molecules and solids
are presented to demonstrate the efficiency and accuracy of these approximations.
Importantly, it will be shown that the highly accurate beyond-RPA methods can
be scaled to treat molecular systems with one hundred electrons requiring a basis
set with hundreds of thousands of plane-waves. Finally, it is shown how the so-
phisticated and computationally expensive ACFDT methods can be used to com-
pute finite-temperature properties of realistic materials (adsorption enthalpies of
molecules in zeolites) by coupling molecular-dynamics simulations with machine
learning algorithms.

Résumé

Malgré un coût de calcul élevé, le théorème de fluctuation-dissipation avec
connexion adiabatique (ACFDT) représente une approche prometteuse pour amé-
liorer la description de la corrélation électronique en théorie de la fonctionnelle de
la densité. L’approximation pratique la plus simple dans le contexte de l’ACFDT
est l’approximation de la phase aléatoire (RPA). D’abord, nous montrons com-
ment la RPA peut être améliorée en introduisant un noyau contenant un terme
approximatif d’échange “électron-trou” qui conduit à deux méthodes différentes
au-delà de la RPA. Ensuite, nous montrons que les approches RPA et au-delà de
la RPA peuvent être calculées d’une façon efficace dans le cadre d’une implé-
mentation basée sur une base d’ondes planes en utilisant les vecteurs propres de
la matrice diélectrique comme une base auxiliaire compacte et l’algorithme de
Lanczos. Une série d’applications à des molécules et à des solides sont présentées
pour démontrer l’efficacité et la précision de ces approximations. De plus, il sera
démontré que les méthodes très précises au-delà de la RPA peuvent traiter des sys-
tèmes moléculaires avec des centaines d’électrons de valence et nécessitant une
base avec des centaines de milliers d’ondes planes. Enfin, nous montrons com-
ment les méthodes ACFDT, très couteuse en termes de temps de calcul, peuvent
être utilisées pour calculer les propriétés à température finie de matériaux réa-
listes (spécifiquement les enthalpies d’adsorption de molécules dans des zéolites)
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en couplant des simulations de dynamique moléculaire à des algorithmes d’ap-
prentissage automatique.
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Chapter 1

Introduction

This manuscript describes my main (but not exclusive) research activities devel-
oped starting from September 2012, when I was hired as a Maître de Conférences
at the Université de Lorraine. My work has largely focused on methodological
development to compute correlation energies based on the random phase approx-
imation (RPA) and its variants.

Because of its reasonable compromise between accuracy and efficiency den-
sity functional theory (DFT)[70, 77] has become the most widespread computa-
tional method in first principles materials science. DFT is applicable to relatively
large systems of up to thousands of atoms, mainly owing its original success to
rather simple approximations for the exchange-correlation (xc) functional, such
as the local-density (LDA) [77, 108] and generalized-gradient approximations
(GGA) [106]. More recent classes of functionals include meta-generalized gra-
dient approximations [143, 140] and hybrid functionals, which mix a certain per-
centage of Hartree-Fock exchange with semi-local contributions [7]. All of these
approximations, involving an increasing level of accuracy but also of computa-
tional complexity, can be pictorically depicted by the Jacob’s ladder scheme of
DFT approximations proposed by John Perdew (see Fig. 1.1) [107]. While several
approximations for the the unknown xc functional have been proposed, research
in this field is still quite active, with the ultimate goal of obtaining a “final theory”.
Challenging classes of problems for DFT approximations include materials where
strong electronic interactions or van der Waals forces play an important role. Ad-
ditionally, traditional approximate xc functionals do not systematically reach the
chemical accuracy threshold (1 kcal/mol).

This manuscript will focus on the fifth and highest rung of the ladder of
DFT functionals in Fig. 1.1. Specifically, the ground-state electronic correla-
tion energy within the random phase approximation (RPA) will be considered.
The RPA was already introduced in the 1950’s to describe the correlation en-
ergy in the degenerate electron gas [14] and its diagrammatic structure has long
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Figure 1.1: The Jacob’s ladder of density functional approximations proposed by
John Perdew to visualize the different levels of approximation in the exchange-
correlation functionals. By climbing the ladder the accuracy increases at the ex-
pense of a higher computational cost (figure reproduced from Ref. 107).

been known (see Fig. 1.2) [45]. In the DFT context the theoretical basis for
the RPA correlation energy is provided by the adiabatic-connection fluctuation-
dissipation theorem (ACFDT) [80, 81], that will be introduced in Chapter 2.
The ACFDT provides in principle an exact equation for the ground-state corre-
lation energy in terms of linear response functions (i.e. the polarizability or the
dielectric matrix). Within the ACFDT the random phase approximation (RPA)
has provided a first practical scheme for applications to realistic systems, such as
molecules [39, 144, 100, 153, 101, 35, 117, 124], solids [58, 85, 151, 60, 74],
layered materials [92, 82], and molecules adsorbed on surfaces [118, 133]. In
particular, for condensed matter/solid state applications the traditional quantum-
chemical methods (e.g. the coupled-cluster theory) can be hardly applied and the
RPA is probably the most sophisticated correlated approximation of practical in-
terest. The rise of interest in the RPA is mostly, but not exclusively, related to the
capability of the RPA to accurately include van der Waals (vdW) forces in a seam-
less way [32, 41]. Despite its growing success, the RPA is still a niche approach,
especially if compared to other DFT approximations routinely applied in mate-
rials simulations. This is related to different reasons: (1) While being a highly
sophisticated theory, shortcomings remain within the RPA: Binding curves of cer-
tain diatomic dimers present an unphysical “bump” at intermediate distances [39],
total correlation energies are usually overestimated [78], and binding energies are
often underestimated [41, 59]. (2) Implementations to compute the RPA correla-
tion energies are rather complex and practical calculations involve several numer-
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Figure 1.2: The effective interaction within the RPA is obtained as the sum to
infinite order of ring diagrams (figure reproduced from Ref. 75).

ical bottlenecks, such as the full diagonalization of the starting-point Hamiltonian
to obtain all the virtual (conduction) states, the manipulation of large response
function matrices, and the evaluation of improper integrals over the frequency.
(3) The computational time involved in RPA calculations is often several orders
of magnitude higher than the time required by basic (semi-)local approximations;
additionally, implementations to compute analytic interatomic forces are not triv-
ial. For these reasons applications to realistic materials are highly demanding in
terms of computational resources and typically based on frozen geometries opti-
mized using different theories.

In this manuscript I will address these different issues. While a series of meth-
ods have already been proposed to improve the RPA in the literature [104, 84, 42,
120, 66, 25, 63, 6], in Chapter 2 I will discuss my work on the development of
new approximations that avoid the self-correlation problem of the RPA by using
a non-local exchange kernel. In Chapter 3 I will show how the previously intro-
duced RPA and beyond-RPA methods can be efficiently implemented in an ab
initio solid state code based on plane-waves by using a compact auxiliary basis
set, the Lanczos algorithm, and density functional perturbation theory techniques.
In Chapter 4 this numerical implementation is applied to a series of benchmark
molecular test sets and to bulk solids. Chapter 5 will discuss in detail the (slow)
numerical convergence of the (beyond-)RPA correlation energy with respect to the
basis set size; this is a well known issue for quantum chemical methods that in-
stead does not manifest itself when DFT is employed with more traditional (semi-
)local or hybrid functionals. In Chapter 6 I address the issue of the applicability
of RPA-based methods to realistic materials including temperature effects. In this
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context an impressive level of efficiency and accuracy is achieved by coupling
machine learning algorithms with thermodynamic perturbation theory to provide
the MLPT method. Applications of MLPT to compute molecular enthalpies of
adsorption in zeolites shows the feasibility and potential impact of this approach.
The future perspectives of this work are presented in Chapter 7. In particular,
future research will further address the development of MLPT and, more in gen-
eral, the development of techniques to bridge highly sophisticated methods for the
electronic correlation with applications to realistic materials.



Chapter 2

Correlation energy within the
random phase approximation and
beyond

This chapter is based on original work previously published in Refs. [99, 28, 31].

In this chapter we will discuss the theoretical formalism which is at the base
of this manuscript. After a short presentation of the main ideas behind density
functional theory (DFT), the adiabatic connection fluctuation dissipation theorem
(ACFDT) is introduced. In principle, this approach provides an exact equation
for the exchange-correlation (xc) energy functional of DFT in terms of response
functions (i.e. the polarizability for molecules and the dielectric matrix for solids).
In practice, approximations for the response functions are necessary and, in this
context, the random phase approximation (RPA) is probably the simplest practical
approach. The RPA provides a fully non-local xc functional which accurately in-
cludes van der Waals forces in a seamless way [32, 41]. Still, the RPA is character-
ized by some issues: Binding curves of certain diatomic dimers present an unphys-
ical “bump” at intermediate distances [39], total correlation energies are usually
overestimated [78], and binding energies are often underestimated [41, 59]. With
the aim of decreasing the self-correlation of the RPA and alleviating these issues
we introduce two new approximations that include exact exchange effects: The
electron-hole time-dependent Hartree-Fock (eh-TDHF) and the adiabatic connec-
tion second order screened exchange approximation (AC-SOSEX). The eh-TDHF
represents a fully original contribution of my work and the AC-SOSEX was not
previously used in a dielectric matrix formulation. The accuracy of these RPA
and beyond-RPA approaches will be established by the numerical applications in
Chapter 4.

Before starting the discussion a few technical notes are useful to follow the
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development of the formalism:

• Atomic units will be used throughout this manuscript.

• The formalism will be developed in a spin-restricted way and the orbitals φ
are considered as space orbitals.

• For the sake of simplicity, we will suppose that all the orbitals φ are real;
this is a general assumption in the case of molecular systems with time-
reversal symmetry. For the RPA the formalism has also been implemented
for periodic systems by including the integration over the first Brillouin
zone [74].

• The subscripts v will be used to denote valence (namely occupied) states
and the subscripts c will be used to denote conduction (namely virtual or
unoccupied) states.

2.1 Density Functional Theory
Density Functional Theory has become impressively popular in the condensed
matter physics and quantum chemistry communities because of its good compro-
mise between accuracy and computational cost. The main (formidable) achieve-
ment of this approach is the mapping of a many-body electronic problem onto a
non-interacting one. DFT was developed in the work of Hohenberg and Kohn [70]
and in the work of Kohn and Sham [77]. Hohenberg and Kohn (HK) established
the two theorems which constitute the theoretical foundation of DFT:

• Theorem I: For any system of interacting electrons in an external potential
Vext(r), there is a one-to-one (apart from an irrelevant additive constant)
correspondence between Vext(r) and the ground-state particle density n0(r);

• Theorem II: The energy of an interacting-electron system in an external
potential Vext(r) can be expressed as a functional of the electronic density
n(r) of the form

EHK[n] = FHK[n] +

∫
Vext(r)n(r)dr, (2.1)

where FHK[n] is a universal functional of the density which does not depend
on Vext(r). Furthermore, the minimum value of EHK[n] is reached for n =
n0 and corresponds to the exact ground-state energy of the system.
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The meaning of the first theorem is that the density completely determines all
the properties of a given many body system. The second theorem is simply a
corollary of the first and of the variational principle of quantum mechanics. The
HK theorems provide a quite general theoretical result but they do not contain any
practical recipe on how to solve the quantum many-body problem in practice.

A practical formulation of DFT is provided by the Kohn-Sham (KS) ansatz,
which results in rewriting Eq. (2.1) as:

EHK[n] = T [n] + EH[n] + Exc[n] +

∫
Vext(r)n(r)dr. (2.2)

In Eq. (2.2) T is the kinetic energy, EH[n] the Hartree energy, and Exc is defined
by Eq. (2.2) as the difference FHK[n] − T [n] − EH[n]. In order to apply DFT
in practice, a good approximation for Exc is necessary. In the Introduction we
briefly mentioned some popular approaches, such as the local-density approxi-
mations (LDA) [77, 108], the generalized-gradient approximation (GGA) [106],
the meta-GGA [143, 140], and the hybrid functionals [7]; in the next section we
will introduce an in principle exact formula for Exc that can be used in practice
to develop new approximate xc functionals. By applying the variational principle
of Theorem II to the HK energy functional in the form of Eq. (2.2) the Euler
equation is obtained:

δT [n]

δn(r)
+ VKS(r) = µ, (2.3)

where

VKS(r) = VH(r) + Vxc(r) + Vext(r) (2.4)

=

∫
n(r′)

|r− r′|
dr′ +

δExc[n]

δn(r)
+ Vext(r), (2.5)

and µ is a Lagrange multiplier that enforces the conservation of the total number of
particles. In this way the ground-state density of the interacting-electron system
n0(r) can be obtained by solving the Schrödinger equation of a fictitious non-
interacting system: [

−1

2
∇2 + VKS(r)

]
φi(r) = εiφi(r). (2.6)

Indeed, the one-particle orbitals φi can be then used to construct the density

n(r) =
Nv∑
i

φ∗i (r)φi(r), (2.7)
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where Nv is the number of occupied states. Eq. (2.6) is named Kohn-Sham (KS)
equation. Since VKS is a functional of the exact ground-state density, Eq. (2.6)
has to be solved self-consistently. It is worth to note that, strictly speaking, the
eigenvalues εi and eigenvectors φi do not have any physical meaning, but they
are just mathematical devices used to obtain the ground-state energy and charge
density of the full many-body system. Within this approach it is possible to calcu-
late many ground-state properties, such as atomic forces, equilibrium geometries,
stress tensors and phonon dispersion curves.

2.2 Correlation energy within the adiabatic connec-
tion fluctuation-dissipation theorem

In this section we discuss the exact expression of the exchange-correlation energy
Exc that can be obtained using the adiabatic connection fluctuation-dissipation
theorem (ACFDT) [80, 81].

In the context of density functional theory the starting point to develop the
ACFDT formalism is the adiabatic connection Hamiltonian for an electronic sys-
tem

Ĥλ = T̂ + V̂ λ
ext + λV̂ee, (2.8)

where
V̂ee =

∑
i 6=j

1

|ri − rj|
(2.9)

contains the contribution from the electron-electron Coulomb interaction and the
parameter λ can assume values between 0 and 1. When λ = 0 the electrons
are not interacting and the corresponding system is the Kohn-Sham system with
V̂ λ=0

ext = V̂ext + V̂H + V̂xc = V̂KS. When λ = 1 the full electron interaction V̂ee is
turned on and V̂ λ=1

ext = V̂ext. Because of the particular form of Ĥλ the density n(r)
remains constant by switching on the interaction going from λ = 0 to λ = 1; this
introduces some simplifications in the the ACFDT formalism.

By using the Hellmann-Feynman theorem and by integrating over the param-
eter λ it can be shown that

EH + EACFDT
xc =

∫ 1

0

dλ
d

dλ
(〈ψλ|Ĥλ|ψλ〉 − 〈ψλ|V̂ λ

ext|ψλ〉) (2.10)

=

∫ 1

0

dλ〈ψλ|V̂ee|ψλ〉. (2.11)

The expression in Eq. 2.11 can then be recast in terms of density fluctuation oper-
ators. By using the fluctuation-dissipation theorem we can arrive to an expression
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of the correlation energy in terms of response functions Π̃ evaluated on the com-
plex frequency axis iω:

EACFDT
c = −1

2

∫ 1

0

dλ

∫ ∞
−∞

dω

2π
Tr
{

Π̃λ(iω) K̃ − Π̃0(iω) K̃
}
. (2.12)

The exchange termEACFDT
x is formally equivalent to the Hartree-Fock exact-exchange

but is evaluated using KS orbitals.
In the definition ofEACFDT

c the matrix K̃ is constituted by four identical blocks
K:

K̃ =

(
K K
K K

)
, (2.13)

where the matrix elements

Kvc,v′c′ = 2〈φvφc|V |φv′φc′〉 = 2

∫
φv(r)φc(r)V (r− r′)φv′(r

′)φc′(r
′)drdr′

(2.14)
correspond to the electron-hole representation of the Coulomb potential V ; the
independent electron polarizability Π̃0 is given by the equation

Π̃0(iω) =

(
−(∆− iωI) 0

0 −(∆ + iωI)

)−1

=

(
Π0

+(iω) 0
0 Π0

−(iω)

)
, (2.15)

where I denotes the identity matrix and ∆vc,v′c′ = (εc − εv)δvv′δcc′ contains the
KS independent electron excitations, defined as differences between conduction
state energies εc and valence state energies εv. In Eqs. 2.12-2.15 as well as in the
rest of this manuscript the bold letters are used to denote matrices. An additional
tilde ˜ has been added on top of 2Neh × 2Neh matrices (where Neh = NvNc is
equal to the product of the number of valence Nv and conduction Nc states) to
distinguish them from the Neh ×Neh blocks; this notation will be useful to avoid
confusion in the equations of the following sections.

2.3 Random phase approximation

In Eq. 2.12, Π̃
λ

refers to the polarizability of a fictitious system where the elec-
trons interact with a scaled Coulomb potential λV . This term is unknown, and
approximations need to be made to compute the correlation energy expression.
The interacting polarizability under the RPA is defined as:

Π̃
λ

RPA(iω) =
(
Ĩ − λΠ̃

0
(iω)K̃

)−1

Π̃
0
(iω), (2.16)
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which when plugged in Eq. 2.12 gives us the RPA correlation energy after inte-
gration over λ and simplification of the trace over the 4× 4 block matrices:

ERPA
c =

1

2

∞∫
−∞

dω

2π
Tr
[
ln
{
I − χ0(iω)K

}
+ χ0K

]
, (2.17)

where we introduced

χ0(iω) = Π0
+ + Π0

− = 2<
(

1

iω + εv − εc

)
δvv′δcc′ (2.18)

and < represents the real part. The I − χ0(iω)K term is commonly known as
dielectric matrix and will be denoted by ε. The absence of ˜ over the matrices
in Eq. 2.17 indicates that the dimensionality has been reduced to Neh ×Neh. The
expression of the correlation energy in Eq. 2.17 is often referred as direct-RPA
(or d-RPA) in the quantum chemistry community to emphasize the absence of
exchange effects.

2.4 Electron-hole time-dependent Hartree-Fock for
correlation energies

In this section the response function will be approximated at the time-dependent
Hartree-Fock (TDHF) level of theory [93, 16]:

Π̃λ(iω) = (Ĩ − λ Π̃0(iω) Ξ̃)−1Π̃0(iω), (2.19)

where the kernel Ξ̃ is defined as

Ξ̃ =

(
A B
B A

)
, (2.20)

with

Avc,v′c′ = 2〈φvφc|V |φv′φc′〉 − 〈φvφv′ |V |φcφc′〉 (2.21)
Bvc,v′c′ = 2〈φvφc|V |φv′φc′〉 − 〈φvφc′|V |φv′φc〉. (2.22)

In principle, TDHF denotes an approach developed from a Hartree-Fock reference
ground-state. In practice, the approximations used in this manuscript will instead
use a DFT reference state, which can be efficiently obtained within a PW basis
set implementation. A HF ground-state could be also used as a starting point, by
rederiving the formalism using the ACFDT based on a HF reference [34].
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In order to simplify the formalism we introduce an approximation in the full
TDHF response function. This approximation was introduced in Ref. 99 and
shown to lead to very accurate results. Specifically, the kernel Ξ̃ in Eq. 2.20 can
be divided in two different components

Ξ̃ = B̃ +
(
Ξ̃− B̃

)
=

(
B B
B B

)
+

(
A−B 0

0 A−B.

)
(2.23)

and the identity(
Ĩ − λ Π̃0(iω) Ξ̃

)−1
=
(
Ĩ − λ Π̃0(iω) B̃

)−1

+ λ
[
Ĩ − λ(Ĩ − λ Π̃0(iω) B̃

)−1
Π̃0(iω)

(
Ξ̃− B̃

)]−1
×

×
(
Ĩ − λ Π̃0(iω) B̃

)−1
Π̃0(iω)

(
Ξ̃− B̃

) (
Ĩ − λ Π̃0(iω) B̃

)−1 (2.24)

can be introduced. By discarding the last term in Eq. 2.24 a TDHF equation with
an approximate kernel is obtained:

Π̃λ(iω) = (Ĩ − λ Π̃0(iω) B̃)−1Π̃0(iω); (2.25)

this equation involves exclusively the evaluation of products of valence and con-
duction states (conduction-conduction and valence-valence products are contained
only in theAmatrix) and will be denoted as electron-hole time-dependent Hartree-
Fock (eh-TDHF). In Ref. 99 it was shown that the eh-TDHF approximation leads
to significantly more accurate correlation energies with respect to the RPA. Addi-
tional approximations based on the eh kernel (Eq. 2.25) have also been proposed
in the literature. In Ref. 66, Heßelmann and Görling relied on this approximation
to develop a local exact-exchange kernel and showed that the electron-hole kernel
is equivalent to the full kernel for a two electron system. In Ref. 6, Bates and
Furche used the B̃ kernel to develop the RPA renormalized many-body perturba-
tion theory. In the context of the plane-wave basis set Eq. 2.25 presents important
practical advantages with respect to Eq. 2.19 (see Chapter 3 for details).

It is important to stress that the discussion in this section is specifically meant
for ground state correlation energies. Indeed, the B̃ kernel and the corresponding
response function in Eq. 2.25 are good approximations within the ACFDT frame-
work and are not intended, for example, to compute optical absorption spectra. For
this kind of applications the B̃ kernel does not contain the contributions necessary
to correctly describe the physics of charge-transfer excitations in molecules [127]
and of excitons in solids [1, 105]. However, this approximate kernel would satisfy
the f-sum rule for any possible reference state used to build the response func-
tion [89, 145, 128]. Since the ACFDT requires an integral between−∞ and∞ of
the response functions (see Eq. 2.12), the fulfillment of the f-sum rule might play
a role in making this kernel accurate for correlation energies.
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We can now replace the eh-TDHF response function (Eq. 2.25) in the ACFDT
equation for the correlation energy (Eq. 2.12). Because of the simplified structure
of the electron-hole kernel B̃, the integration over the parameter λ can be carried
out analytically and the trace can be expressed in terms of the Neh × Neh blocks
only:

Eeh-TDHF
c =

1

2

∫ ∞
−∞

dω

2π
Tr
{

ln
(
I − χ0(iω)B

)
B−1K + χ0(iω)K

}
, (2.26)

where χ0(iω) has been defined in Eq. 2.18. If the exchange component of B in
Eq. 2.26 is set to 0 (namely B = K) the direct RPA approximation is found. By
considering the Taylor expansion of the logarithm in Eq. 2.26 to the second order
the MP2 approximation is obtained [30]:

EMP2
c = −1

4

∫ ∞
−∞

dω

2π
Tr
{
χ0(iω)Bχ0(iω)K

}
= −1

2

∑
vc,v′c′

Kvc,v′c′Bv′c′,vc

εc + εc′ − εv − εv′
. (2.27)

As already discussed in Ref. 99, the Taylor expansion of Eq. 2.26 is convergent
only when all the eigenvalues of χ0(iω)B are smaller than 1. Nevertheless, the
expression in Eq. 2.27 is mathematically equivalent to MP2 and represents a re-
sponse function reformulation of this approximation [30].

2.5 Adiabatic connection second order screened ex-
change approximation

The adiabatic connection second order screened exchange (AC-SOSEX) approxi-
mation has been first proposed in Ref. 2 and formulated within a dielectric matrix
framework in Ref. 99. Within the AC-SOSEX approximation the correlation en-
ergy is expressed as

EAC-SOSEX
c = −1

2

∫ 1

0

dλ

∫ ∞
−∞

dω

2π
Tr
{

Π̃λ
RPA(iω) Ξ̃− Π̃0(iω) Ξ̃

}
. (2.28)

where Ξ̃ is defined by Eqs.2.20-2.22 and Π̃λ is obtained within the direct RPA:

Π̃λ
RPA(iω) = (Ĩ − λ Π̃0(iω) K̃)−1Π̃0(iω). (2.29)

In Eq. 2.28 the antisymmetrization of the correlation energy, which is missing in
the direct RPA, is introduced by the exchange part of Ξ̃. The trace in Eq. 2.28 can
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be more conveniently expressed as

Tr
{

Π̃λ
RPA Ξ̃− Π̃0 Ξ̃

}
= λTr

{
(Ĩ − λ Π̃0 K̃)−1Π̃0 K̃Π̃0 B̃

}
+λTr

{
(Ĩ − λ Π̃0 K̃)−1Π̃0 K̃Π̃0

(
Ξ̃− B̃

)}
, (2.30)

where in the last line Ξ̃ has been split as in Eq. 2.23 and the dependence on iω
is kept implicit. By exploiting the properties of the trace operator and matrix
algebra, the two contributions to the trace in Eq. 2.30 can be rewritten in terms of
reduced size Neh ×Neh matrices:

λTr
{

(Ĩ − λ Π̃0 K̃)−1Π̃0 K̃Π̃0 B̃
}

= λTr
{

(I − λχ0K)−1χ0Kχ0B
}

(2.31)

and

λTr
{

(Ĩ − λ Π̃0 K̃)−1Π̃0 K̃Π̃0
(
Ξ̃− B̃

)}
= λTr

{
(I − λχ0K)−1(Π0

+KΠ0
+ + Π0

−KΠ0
−)(A−B)

}
. (2.32)

In the following we will show that the contribution to the correlation energy com-
ing from Eq. 2.32 is likely to be small. By using the matrix identity(

I − λχ0K
)−1

= I + λ
(
I − λχ0K

)−1
χ0K (2.33)

we notice that the inverse of I−λχ0K is given by the sum of the identity matrix
and a smaller contribution. Indeed, since the eigenvalues of −χ0K are positive
and decay to 0 rapidly [150], all the eigenvalues of λ(I−λχ0K)−1χ0K are< 1
and most of them are� 1. By assuming (I − λχ0K)

−1 ≈ I , the contribution of
Eq. 2.32 to the correlation energy in Eq. 2.28 can be computed analytically and the
final result is exactly 0 [99]. Accordingly, the term in Eq. 2.32 is discarded. The
effect of this approximation on the correlation energy was discussed in Ref. [99]
(see, for example, Figure 2 and Table II) and it was found that neglecting the con-
tribution in Eq. 2.32 leads to more accurate correlation energies. From a practical
point of view this approximation allows us to express the correlation energy in
terms of electron-hole integrals only. Indeed, by replacing Eq. 2.31 in Eq. 2.28
and carrying out an analytical integration over λ, the following expression for the
AC-SOSEX is obtained:

EAC-SOSEX
c =

1

2

∫ ∞
−∞

dω

2π
Tr
{

ln
(
I − χ0(iω)K

)
K−1B + χ0(iω)B

}
. (2.34)

Similarly to Eq. 2.26, also Eq. 2.34 reduces to the RPA in theB = K case and to
MP2 by Taylor expanding the logarithm.



Chapter 3

Numerical implementation within a
plane-wave basis set using iterative
algorithms

This chapter is based on original work previously published in Refs. [124, 28, 31].

The equations of RPA and beyond-RPA methods presented in Chapter 2 are
based on an electron-hole representation (only conduction-valence products are
present in the formalism). A first “brute-force” implementation of this formalism
has been presented in Ref. [99] within the Gaussian basis set code Molpro [148].
Results obtained with this implementation will be used in Chapter 4 for bench-
mark and comparison purposes. However, in this manuscript we will focus on
algorithms and applications based on the PW basis set. This numerical approach
is more flexible and allows us to treat molecules, bulk solids, and periodic nanos-
tructures within the same framework. However, the size of the basis set can be
large, easily reaching several hundreds of thousands for large supercells. In a
similar way, the number of electron-hole pairs also becomes rapidly unmanage-
able. For this reason it is convenient to represent the response functions involved
in RPA and beyond-RPA methods using a compact basis set. Here we use the
eigenvectors of an approximate polarizability that includes only the kinetic en-
ergy contribution [124]. This method is an approximation of the projective di-
electric eigenpotential technique (PDEP) of Refs. 150, 100. In order to evaluate
efficiently the matrix elements of the polarizability on the auxiliary basis set it is
useful to resort to additional numerical techniques: The resummation of conduc-
tion states to obtain a formalism that depends on only occupied states [3, 147, 126]
and the use of the Lanczos algorithm to compute the resolvent of the Hamito-
nian [126, 146, 102]. These methodologies to compute RPA and beyond-RPA
correlation energies have been implemented as a separate module in the Quantum

16
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Espresso package, which uses plane-waves and pseudopotentials [47, 46].
For the sake of simplicity the formalism in this chapter will be discussed ex-

clusively including only the Γ point in the integration over the first Brillouin zone
and by considering the orbitals as real. This assumption is valid for calculations
involving sufficiently large supercells. The same ideas presented here can be ex-
tended to periodic solids. In this case the evaluation of RPA and beyond-RPA
correlation energies requires a double integration in the first Brillouin zone (over
k- and q-points). Until now this has been done only for the RPA [74]. Results
obtained with this implementation are presented in Sec. 4.4 of the next chapter.

The sections of this chapter are structured as follows:

• In Sec. 3.1 we recast the equations of Chapter 2 by introducing an auxiliary
basis set. At this stage we suppose that an optimally small basis set for
response functions exists but we do not define it explicitly.

• In Sec. 3.2 we show how the equations presented in Sec. 3.1 can be reformu-
lated by avoiding any reference to unoccupied states. Within this formalism
the response functions are recast as matrix elements of the resolvent of the
Hamiltonian.

• In Sec. 3.3 we show how the resolvent of the Hamiltonian can be computed
efficiently by using the Lanczos algorithm.

• In Sec. 3.4 we discuss the construction of the auxiliary basis set.

• In Sec. 3.5 we present an additional algorithm, based on the Gram-Schmidt
orthogonalization, that is essential to further lower the numerical cost of
beyond-RPA methods.

3.1 Implementation using an auxiliary basis set
To start the presentation of the formalism we suppose that a basis set exists that
allows for a compact representation of the matrices involved in Eq. 2.17, 2.26,
and Eq. 2.34 (where compact representation means considerably smaller than the
Neh × Neh full size). The details on the generation of this basis set will be dis-
cussed later in Sec. 3.4. In the following we will denote the vectors belonging to
this auxiliary basis set as Φ and their total number as Naux; the discussion will
be carried out for the eh-TDHF correlation energy but analogous equations can
be introduced in the AC-SOSEX case. The equations for the RPA can be simply
obtained from the eh-TDHF formalism by setting to 0 the exchange component.
While the focus of this manuscript is mainly related to the PW implementation,
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the formalism presented in this section is general and could be also employed for
a density fitting implementation based on localized basis sets [99].

By using the completeness relation I =
∑

G |ΦG〉〈ΦG| and the definition (see
Eq. 2.22)

Bvc,v′c′ = Kvc,v′c′ −Kx
vc,v′c′ = 2〈φvφc|V |φv′φc′〉 − 〈φvφc′|V |φv′φc〉, (3.1)

we obtain

Kvc,v′c′ = 2
∑
G

〈φvφc|V
1
2 |ΦG〉〈ΦG|V

1
2 |φv′φc′〉

=
∑
G

Nvc,GNG,v′c′ =
[
NNT

]
vc,v′c′

(3.2)

Kx
vc,v′c′ =

∑
G

〈φvφc′ |V
1
2 |ΦG〉〈ΦG|V

1
2 |φv′φc〉

=
∑
G

Mvc,GMG,v′c′ =
[
MMT

]
vc,v′c′

. (3.3)

Since the Coulomb potential is diagonal in a PW representation, the calculation
of V

1
2 in Eqs. 3.2-3.3 is trivial.

By using Eqs. 3.1-3.3 the first contribution to the trace in Eq. 2.26 can be
written as

Tr
{

ln(I − χ0B)B−1K
}

= Tr
{

ln(I − χ0K + χ0Kx)(K −Kx)−1K
}

= Tr
{

ln(I − χ0K + χ0Kx)(K −Kx)−1(χ0)−1χ0K
}

= Tr
{
f
[
χ0K − χ0Kx

]
χ0K

}
= Tr

{
f
[
χ0K − χ0Kxχ0K(χ0K)−1

]
χ0K

}
= Tr

{
f
[
χ0NNT − χ0MMTχ0NNT (χ0NNT )−1

]
χ0NNT

}
= Tr

{
NTf

[
χ0NNT − χ0MMTχ0NNT (χ0NNT )−1

]
χ0N

}
= Tr

{
f
[
NTχ0N −NTχ0MMTχ0N (NTχ0N )−1

]
NTχ0N

}
,(3.4)

where we have defined the function of a matrix f(A) = ln(I −A)A−1 and used
the cyclic property of the trace operator; additionally, the result in Eq. 3.4 exploits
properties of functions of a matrix that are described in more detail in Ref. 99.
The dependence of χ0 on iω is kept implicit in Eq. 3.4.

It is now convenient to introduce the definitions

CQR(iω) = (NTχ0N )QR

= 〈ΦQ|V
1
2 χ̂0V

1
2 |ΦR〉,

= 4
∑
vc

〈ΦQ|V
1
2 |φvφc〉 R

1

iω + εv − εc
〈φvφc|V

1
2 |ΦR〉, (3.5)
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Jvv
′

QG(iω) = 2
∑
c

〈ΦQ|V
1
2 |φvφc〉 R

1

iω + εv − εc
〈φv′φc|V

1
2 |ΦG〉, (3.6)

Lvv
′

GR(iω) = 2
∑
c′

〈ΦG|V
1
2 |φvφc′〉R

1

iω + εv′ − εc′
〈φv′φc′ |V

1
2 |ΦR〉, (3.7)

and

ZQR(iω) = (NTχ0MMTχ0N )QR = 2
∑
vv′

∑
G

Jvv
′

QG(iω)Lvv
′

GR(iω); (3.8)

the compact notation in terms of the operator χ̂0 on the second line of Eq 3.5 will
be useful later. In Eqs. 3.5-3.8 the subscripts Q, R, and G are used to denote dif-
ferent vectors Φ belonging to the auxiliary basis set. By using the definitions in
Eqs. 3.5-3.8 we can finally reformulate the eh-TDHF correlation energy expres-
sion in Eq. 2.26 to obtain

Eeh-TDHF
c =

1

2

∫ ∞
−∞

dω

2π
Tr
{

ln
[
I −C(iω) + Z(iω)C−1(iω)

]
×
[
C(iω)− Z(iω)C−1(iω)

]−1
C(iω) + C(iω)

}
. (3.9)

This final expression for the correlation energy is more convenient than the origi-
nal form Eq. 2.26 since it involves Naux ×Naux matrices, where Naux � Neh.

If the exchange term in the eh-TDHF kernel is set to zero we have that Z(iω) =
0 and the correlation energy reduces to the RPA expression

ERPA
c =

1

2

∫ ∞
−∞

dω

2π
Tr
{

ln [I −C(iω)] + C(iω)
}

; (3.10)

where I −C is nothing but the symmetrized dielectric matrix ε̃ represented in the
Φ basis set [124].

By Taylor expanding the logarithm in Eq. 3.9 up to second order we obtain the
MP2 approximation:

EMP2
c = −1

2

∫∞
0

dω
2π

tr
{
C2(iω)−Z(iω)

}
. (3.11)

This equation reformulates the MP2 correlation energy in a form that could be
easily computed using an implementation derived from our eh-TDHF and AC-
SOSEX code. However, RPA and beyond-RPA methods work as post-processing
to a standard DFT calculation using local or semi-local functionals. While being
numerically stable, the MP2 correlation energies computed through Eq. 3.11 us-
ing a DFT starting point are incorrect, since the Brillouin theorem is not anymore
valid. Indeed the MP2 correlation energy is rather derived in a post-Hartree-Fock
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framework and is not supposed to use DFT orbitals and energy levels as starting
point [141]. We proposed an implementation of Eq. 3.11 in a Hartree-Fock frame-
work in Ref. [30]. However, the calculation of the HF exact exchange is highly
expensive within the PW basis set and this also limits the applicability of our MP2
code to systems with few valence electrons. This MP2 implementation will not
be further discussed on this manuscript, which will remain focused on RPA-type
methods.

Also the AC-SOSEX correlation energy (Eq. 2.34) can be rewritten in terms
of the compact auxiliary basis set:

EAC-SOSEX
c =

1

2

∫ ∞
−∞

dω

2π
Tr
{

[ln (I −C(iω)) + C(iω)]

×
[
I −C−1(iω)Z(iω)C−1(iω)

]}
. (3.12)

Similarly to Eq. 3.9, also the AC-SOSEX reduces to MP2 by Taylor expanding
the logarithm and to RPA by setting Z(iω) = 0.

To conclude this section it is useful to show explicitly the form of Eq. 3.5 when
plane-waves are used as an auxiliary basis set. Indeed, this formulation is used in
traditional implementations to compute RPA correlation energies [39, 92, 58]. By
denoting the reciprocal-lattice vectors with G and G′ we have

CG,G′(iω) = 4
∑
vc

〈G|V
1
2 |φvφc〉 R

1

iω + εv − εc
〈φvφc|V

1
2 |G′〉

= 4
∑
vc

1

G
〈φv|eiG·r|φc〉 R

1

iω + εv − εc
〈φv|e−iG

′·r′|φc〉
1

G′

=
1

G
χ0
G,G′

1

G′
(3.13)

Since in traditional RPA implementations the response functions are repre-
sented using the PW basis set, practical calculations involve storage and diago-
nalization of matrices that become rapidly large by increasing the kinetic energy
cut-off and/or the cell size [39, 92, 58, 137]. Additionally, the full diagonalization
of the Hamiltonian is required to evaluate RPA and beyond-RPA correlation ener-
gies and also this task is influenced by the number of PWs. This last issue will be
addressed in the next section.

3.2 Elimination of the empty states
Eqs. 3.5-3.8 can be evaluated directly by diagonalizing the ground-state KS Hamil-
tonian Ĥ to obtain conduction and valence states. However, the large dimension
of the PW basis set leads to a very high number of conduction states and fully
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converged results can be obtained only through extrapolation techniques [92] or
by diagonalizing the full Hamiltonian. Similarly to recent work on the calculation
of RPA correlation energies [100, 85, 124], our numerical implementation takes
instead advantage of DFPT techniques [3]. Indeed, we can notice that Eq. 3.5 and
Eq. 3.6 can be rewritten in the form

CQR(iω) = 4
∑
vc

〈ΦQ|V
1
2 |φvφc〉 R

1

iω + εv − εc
〈φvφc|V

1
2 |ΦR〉

= 4
∑
vc

〈φv|ΦQV
1
2 |φc〉〈φc| R

1

iω + εv − Ĥ
|φc〉〈φc|V

1
2 ΦR|φv〉

= 4
∑
v

〈φv|ΦQV
1
2 P̂ R

1

iω + εv − Ĥ
P̂V

1
2 ΦR|φv〉 (3.14)

and

Jvv
′

QG(iω) = 2
∑
c

〈ΦQ|V
1
2 |φvφc〉 R

1

iω + εv − εc
〈φv′φc|V

1
2 |ΦG〉

= 2
∑
c

〈φv|ΦQV
1
2 |φc〉〈φc| R

1

iω + εv − Ĥ
|φc〉〈φc|V

1
2 ΦG|φv′〉

= 2〈φv|ΦQV
1
2 P̂ R

1

iω + εv − Ĥ
P̂V

1
2 ΦG|φv′〉, (3.15)

respectively; also Eq. 3.7 can be written in an analogous way. In Eqs. 3.14-3.15
P̂ =

∑
c |φc〉〈φc| is the projector onto the conduction state subspace. By ex-

ploiting the completeness of the basis set, the projector onto the conduction state
subspace can be expressed as P̂ = Î −

∑
v |φv〉〈φv|, where in this case the sum

is limited to the occupied states only [3]. This approach does not require approxi-
mations and automatically includes all the conduction states described by the PW
basis set. Once the auxiliary basis set elements ΦQ and ΦR are fixed the matrix
elements involved in the last line of Eq. 3.14 and Eq. 3.15 can be efficiently com-
puted by using the Lanczos algorithm for response functions [126, 146, 102]. This
approach will be discussed in detail in the next section.

3.3 Lanczos algorithm
Eqs. 3.14-3.15 allow us to compute RPA and beyond-RPA correlation energies
without referring explicitly to unoccupied states. However, this formulation re-
quires the computation of the resolvent of the Hamiltonian Ĥ for many different
values of iω. Specifically, the mathematical problem that needs to be solved in
Eqs. 3.14-3.15 can be formulated in the following general way:

g(iω) = 〈u|(iω − Â)−1|v〉, (3.16)
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where Â is a Hermitian operator. For the specific case of Eqs. 3.14-3.15 we have
Â = Ĥ− εv. Depending on the number of occupied states and the size of the aux-
iliary basis set, the matrix element of the resolvent in Eq. 3.16 has to be computed
for several different vectors u and v (see also Secs. 3.4 and 3.5).

The calculation of g(iω) can be obtained by using standard iterative techniques
to solve Hermitian linear systems (e.g., the conjugate gradient algorithm) [131].
In this case the linear system (iω− Â)−1|z〉 = v〉 is solved and g(iω) is computed
as 〈u|z〉. The disadvantage of this approach is that a different linear system has to
be solved for each different value of iω.

The Lanczos algorithm is known to be an efficient method to compute the
resolvent of Hermitian operators by performing a single iterative recursion inde-
pendent of ω [61].The standard Lanczos algorithm is limited to the case u=v; how-
ever, for our purpose it is necessary to compute also the off-diagonal elements of
g(iω). For this task we use the Lanczos algorithm proposed in Ref. 126 for time-
dependent density functional theory and later applied to GW calculations [146,
102]. This algorithm generates iteratively a series of vectors {q1, q2, · · · } by us-
ing the following procedure:

q0 = 0,

q1 = v/
√
〈v|v〉,

βn+1|qn+1〉 = Â|qn〉 − αn|qn〉 − βn|qn−1〉 (3.17)

where βn+1 is determined in order to impose the normalization condition 〈qn+1|qn+1〉 =
1 and αn = 〈qn|Â|qn〉. In the orthonormal basis set of the vectors {q1, q2, · · · } the
matrix Â has tridiagonal form:

T j =


α1 β2 0 · · · 0

β2 α2 β3 0
...

0 β3 α3
. . . 0

... 0
. . . . . . βj

0 · · · 0 βj αj

 (3.18)

where α and β are the coefficients of the Lanczos recursion (Eq. 3.17) and j is the
maximum number of Lanczos iterations performed. The value of g(iω) can then
be approximated as

g(iω) ≈ 〈ζj|(iω − T j)−1|ej1〉. (3.19)

where ζjT is a j-dimensional vector defined as (〈u|q1〉, 〈u|q2〉, · · · , 〈u|qj〉) and ej1
is the j-dimensional unit vector (1, 0, · · · , 0). In general, the dimension j (the
number of Lanczos iterations) of the matrix T j necessary to obtain an accurate
approximation of g(iω) is much smaller than the dimension of the full matrix Â.
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There are two important advantages in using Eq. 3.19. First, the matrix T j and
the corresponding Lanczos iterative recursion do not depend on iω. Once T j is
generated, the value of g(iω) can be computed for many values of iω by simple
linear algebra operations in a small j-dimensional space (Eq. 3.19). For all the
numerical applications considered in this manuscript 30 Lanczos iterations have
been found to be sufficient to achieve a satisfactory level of accuracy. Second, the
Lanczos recursion (Eq. 3.17) depends only on the right vector |v〉 and different
ζj vectors can be generated “on the fly” during the Lanczos chain in order to
compute matrix elements of g(iω) for different left vectors 〈u|. This feature is
particularly convenient to evaluate Eqs. 3.14-3.15, where the calculation of several
off-diagonal elements (u 6= v) is required.

One of the main advantages of the present method is the efficient treatment of
the dynamical effects in the response function. Once the tridiagonal matrix T l is
computed through the Lanczos algorithm the response functions can be efficiently
evaluated for several different values of ω (see Eq. 3.19). In this work the integrals
over ω in Eqs. 3.9, 3.10, and 3.12 are evaluated by a 20-point Gauss-Legendre
quadrature in the interval 0 to 200 Ry. The accuracy of this integration scheme
can be estimated by comparison with the simple trapezoidal rule. An example
has been presented in Ref. [124]: By considering 100 kinetic-PDEP basis vectors
for the benzene dimer the difference between the values of ∆Ec obtained with
the trapezoidal rule (uniform grid with a 0.0001 Ry step) and the Gauss-Legendre
quadrature is of the order of 10−6 kcal/mol. The results are also well converged
with respect to the integration range: By integrating between 0 and 100 Ry the
change in the value of ∆Ec is of the order of 10−5 kcal/mol.

3.4 Construction of a compact auxiliary basis set by
diagonalizing an approximate response function

Despite the several advantages of the Lanczos algorithm, in order to make this
procedure efficient it is necessary to consider a basis set {ΦI} as small as possible.
Indeed, even if the Lanczos procedure requires only a few iterations, it is still
necessary to perform a number of Lanczos chains which is proportional to the
size of the basis set {ΦI}. In order to discuss the construction of the optimal basis
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we redefine Eq. 3.5 as:

CQR = 4
∑
vc

〈ΦQ|V
1
2 |φvφc〉 R

1

εv − εc
〈φvφc|V

1
2 |ΦR〉

= 4
∑
vc

〈Φ̄Q|φvφc〉 R
1

εv − εc
〈φvφc|Φ̄R〉 (3.20)

=

∫
Φ̄Q(r)χ0(r, r′)Φ̄R(r′)drdr′, (3.21)

where we focus on the static case (ω = 0). It is possible to switch between the
two alternative forms of the auxiliary basis set Φ and Φ̄ simply by multiplying by
V

1
2 or its inverse (which are diagonal in reciprocal space). In Eq. 3.21 we used

the static polarizability in the real-space representation

χ0(r, r′) = 4
∑
cv

φv(r)φc(r)φc(r
′)φv(r

′)

εv − εc
; (3.22)

this definition will be useful below. From Eq. 3.20 it is clear that an optimally
small basis set Φ̄ needs to efficiently represent the φcφv products. While φc and
φv are orthonormal orbitals, the products φcφv might have a strong linear depen-
dence. This observation suggests the possibility of representing χ0 on a relatively
small basis set (at least much smaller than the number of products φcφv). The
resolution of the identity techniques used to speed up localized basis set RPA cal-
culations are based on this idea [35, 117]. However, in a PW implementation
the number of products φcφv could reach several millions and the corresponding
subspace would still require a large basis set to be accurately represented. In a
PW framework an optimally small basis set for χ0 (or ε̃) can be generated by
“eliminating” the linear dependence of the products φcφv keeping into account at
the same time the weighting factor 1/(εv − εc) (see Eq. 3.22). For example, for
a molecule the importance of the φLUMOφHOMO term in the sum in Eq. 3.22 is
enhanced by the factor 1/(εHOMO − εLUMO); similarly, the contribution of the
φ(LUMO+N)φHOMO term (where N is a large integer) to the sum in Eq. 3.22 might
be much smaller because 1/(εHOMO − ε(LUMO+N)) goes to 0 for N → +∞.
Accordingly, the optimal basis set should well represent the φLUMOφHOMO term
rather than φ(LUMO+N)φHOMO.

The idea of keeping into account the linear dependence of the φcφv products
together with the weight 1/(εv − εc) is implicit in projective dielectric eigenpo-
tential (PDEP) method [150, 100, 85, 112]. Within this approach the response
functions χ0 or, equivalently, ε̃ are iteratively diagonalized. At each iteration χ0
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is applied to a set of trial potentials {Φ̄trial
I } by using Eqs. 3.21 and 3.14:∫
χ0(r, r′)Φ̄trial

I (r′)dr′

= 4
∑
v

φv(r)〈r|(εv − Ĥ)−1P̂ |Φ̄trial
I φv〉 (3.23)

until the iterative algorithm (e.g. conjugate gradient) reaches convergence; Eq. 3.23
can be easily generalized to the dynamical case. The diagonalization of the static
ε̃ has been used to build the optimal basis set used in the Lanczos-based GW im-
plementation of Refs. 102, 109. In the PDEP method only a limited number of
dominant eigenvalues and eigenpotentials (eigenvectors) are necessary to repre-
sent χ0 or ε̃. Indeed, the eigenpotentials corresponding to the largest (in absolute
value) eigenvalues have a strong superimposition with the products φcφv through
the term P̂ |Φ̄trial

I φv〉 in Eq. 3.23, while at the same time (εv− Ĥ)−1 keeps into ac-
count the weight of the different transitions. This is done without explicitly com-
puting the empty states φc of the system. This qualitative argument suggests why
the PDEP technique provides a compact representation for χ0 and ε̃. The PDEP
method has been used to compute RPA correlation energies by diagonalizing ε̃ for
each value of iω included in the numerical integration of Eq. 3.10 [85, 100]. The
main drawback of the PDEP procedure is that, each time χ0 is applied to a vector
through Eq. 3.23, the (εv − Ĥ)−1 operator has to be evaluated by solving a linear
system.

In this manuscript we discuss a new and more efficient method to construct
a basis set to compactly represent dielectric matrices. The main idea consists in
noticing that for sufficiently high energies εc is mostly determined by the kinetic
energy contribution εkinc . For this reason we approximate the weighting factor in
Eq. 3.22 as 1/(εv − εc) ≈ 1/(εv − εkinc ). This approximation describes well high
energy excitations but is certainly not valid for the low energy εc’s. However,
since the main purpose of this procedure is to build a basis set that “discard” the
high energy contributions to Eq. 3.22, this approximation is acceptable and works
well in practice (see also the numerical results of Chapter 4). Since we want to
obtain a compact representation for χ0 without computing explicitly empty states,
similarly to the PDEP procedure, we consider the iterative diagonalization of a
χ0
kin operator containing only the kinetic energy contribution. This operator can

be applied to a trial potential in the following way:∫
χ0
kin(r, r′)Φ̄trial

I (r′)dr′

= 4
∑
v

φv(r)〈r|P̂ (εv +∇2/2)−1P̂ |Φ̄trial
I φv〉, (3.24)
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Figure 3.1: Convergence with respect to the auxiliary basis set size of the corre-
lation energy contribution to the energy of the C2H2+H2O→ CH3CHO reaction.
Specifically, ∆Ec = ECH3CHO

c − EC2H2
c − EH2O

c .

where the kinetic energy operator −∇2/2 is diagonal in a plane-wave represen-
tation (it is proportional to G2 in reciprocal space). This is one of the main ad-
vantages of Eq. 3.24: Since (εv + ∇2/2) is diagonal its inversion is trivial and
the implementation to solve Eq. 3.24 is simple and efficient. We will call this
procedure kinetic-PDEP. Eq. 3.24 gives an accurate description of high energy
excitations while the low energy excitations are approximated in a rather poor
way. For example, the term (εv +∇2/2) does not contain any information on the
exact value of the gap of the system. However, it is important to stress that the
only purpose of the kinetic-PDEP procedure is to build a compact basis whose
size can be systematically increased to achieve convergence. The details of the
real electronic energy levels (as well as the dynamical contributions) are included
by the Lanczos algorithm.

In Eq. 3.24 χ0
kin is considered exclusively in the static limit (iω = 0); this

approximation has been proven reliable to built an effective basis set also for the
dynamical case (iω 6= 0) [102, 109, 50]. However, the structure of the matrix ele-
ments CQR in Eq. 3.14 is different from the structure of Jvv′QG (or, similarly, Lvv′GR)
in Eq. 3.15: Jvv′QG does not involve a summation over the occupied states. From
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a rigorous point of view the basis set obtained from the kinetic-PDEP (or PDEP)
method is designed to compactly represent CQR in Eq. 3.5, which is the main in-
gredient for RPA calculations. As a consequence, it is not straightforward to con-
clude that the kinetic-PDEP basis set would also efficiently represent the matrix
elements in Eq. 3.6 and Eq. 3.7. However, as discussed qualitatively in Ref. 124,
the eigenvectors obtained by diagonalizing the operator in Eq. 3.24 well represent
the occupied-virtual orbital products by eliminating at the same time their linear
dependence and the excitations too high in energy, that weakly contribute to the
response functions. Since Eq. 3.2 and Eq. 3.3 also involve occupied-virtual state
products and excitation energies at the denominator, it is reasonable to suppose
that the kinetic-PDEP basis set would also well represent these matrix elements.
From numerical calculations we observed that this is indeed the case. In Fig. 3.1,
we show the convergence with respect to the auxiliary basis set of the correlation
energy contribution to the energy of the C2H2+H2O→ CH3CHO reaction (this re-
action is part of a test set that will be considered in detail in Sec. 4.3). Specifically,
∆Ec = ECH3CHO

c − EC2H2
c − EH2O

c . Fig. 3.1 allows us to observe the rapid con-
vergence of ∆Ec as a function of the size of the auxiliary basis set. For example,
by increasing Naux from 270 to 360 the values ∆Ec evaluated at the AC-SOSEX
and eh-TDHF are all contained within a 0.04 kcal/mol interval for AC-SOSEX
and eh-TDHF and within a 0.1 kcal/mol interval for RPA. In general, we observed
that the eh-TDHF and AC-SOSEX correlation energies have a convergence rate
with respect toNaux which is similar to the RPA case and sometimes even slightly
better. This allows us to use a more compact basis set to solve Eq. 2.26, whose
direct solution would be very challenging by expressing the response functions on
the eh basis set or the plane-wave basis set. For example, in the case shown in
Fig. 3.1 the use of the full plane-wave basis set for the potential to directly repre-
sent the response functions in Eq. 2.26 or Eq. 2.34 would involve matrices with
a 850000 × 850000 size; alternatively, the use of Eq. 3.9 and Eq. 3.12 with the
kinetic-PDEP auxiliary basis set leads to converged results with as little as 360
basis elements corresponding to 360× 360 matrices.

In order to converge energy differences as done in Fig. 3.1 it is necessary to
use a number of basis vectors proportional to the number of electrons for each
component. For example, if 360 basis vectors are used to compute the correla-
tion energy of CH3CHO, for C2H2 and H2O we should use 200 and 160 vectors,
respectively. This procedure will be described in detail in Chapter 5.

3.5 Gram-Schmidt orthogonalization
Even though the use of the compact auxiliary basis greatly reduces the dimension-
ality of dielectric matrices, the calculation requires the evaluation (Naux)

2 matrix
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elements for C and (NauxNv)
2 matrix elements for J and L. For the following

discussion, we introduce the compact notation |U v
G〉 = P̂ V

1
2 ΦG|φv〉 and a similar

definition for 〈U v
G|. As seen in Eq. 3.10 the calculation of the RPA correlation

energy requires the evaluation of matrix elements of the type:

CQR(iω) = 4
∑
v

〈U v
Q|<

(
iω + εv − Ĥ

)−1

|U v
R〉; (3.25)

which is just Eq. 3.14 written in a more compact notation. The AC-SOSEX and
eh-TDHF require the evaluation of additional terms such as:

Jvv
′

QG(iω) = 2〈U v
Q|<

(
iω + εv − Ĥ

)−1

|U v′

G 〉 (3.26)

The matrix elements in Eqs. 3.25-3.26 can be efficiently computed by using the
Lanczos algorithm. Since the subscripts v and v′ are in general different in Eq. 3.26,
the numerical complexity of beyond-RPA methods is higher than that of RPA,
which requires only the evaluation of Eq. 3.25. This is a major bottleneck for
the AC-SOSEX and eh-TDHF methods whose numerical complexity scales as
NPW × N2

aux × N2
v , where NPW is the number of plane-wave, Naux the num-

ber of auxiliary basis vectors, and Nv the number of valence states (compared to
NPW × N2

aux × Nv for RPA). Intuitively, this can be understood by considering
that the Lanczos algorithm computes the solution to the Nv×Naux linear systems
(iω + εv − Ĥ)−1|U v′

G 〉; each solution, represented on NPW plane-waves, is pro-
jected over the Nv × Naux left vectors 〈U v

Q|. Additionally, in order to store all
the left vectors the memory requirements for beyond-RPA calculations scale as
NPW ×Nv ×Naux (in RPA it is sufficient to store only one value of v at a time);
this problem could be overcome by recomputing these matrix elements on the fly
or by storing them on disk but this comes at a big loss in efficiency. Because of
these computational and memory issues, the applicability of the AC-SOSEX and
eh-TDHF methods would be limited to molecules with a maximum of twenty to
thirty electrons. For example, the largest dimers in the S22 test set considered in
Sec. 4.1.2 (≈ 100 electrons) would be completely out of reach.

In order to overcome these difficulties in applying the beyond-RPA methods to
large systems, we use a procedure inspired by previous work of Umari and Baroni
in the context of GW calculations [146]. Specifically, we reduce the large number
of right and left vectors in Eq. 3.26 by applying a Gram-Schmidt orthogonalization
procedure to eliminate vectors that are linearly dependent. To do so, we define a
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new set of orthonormal vectors as,

|O1〉 = |U1
1 〉/N1

|O2〉 =
[
|U2

1 〉 − 〈O1|U2
1 〉 |O1〉

]
/N2

· · ·

|ONaux×Nv〉 =

[
|UNv

Naux
〉 −

Naux×Nv∑
i=1

〈Oi|UNv
Naux
〉 |Oi〉

]
/N(Naux×Nv),

(3.27)

where the factors Nn at the denominator are used to normalize each vector of the
basis |O〉. Up to this point this procedure does not allow for any computational
saving but rather introduces additional expensive numerical computations. How-
ever, if for a certain |On〉 we have Nn ≈ 0, this vector can be fully represented
by the previous ones (|O1〉, · · · , |On−1〉) and does not need to be included in the
orthonormalized basis set. By setting the threshold for the normalizing factors to a
reasonable value,this idea can be used to generate a basis set (|O1〉, · · · , |ONortho

〉)
where Northo � Naux × Nv. The threshold on the normalizing factors Nn has to
be chosen with a compromise between computational time and accuracy. In this
work we chose a variable threshold, that will be referred to as “default threshold”
(DT): 10−5 for the first 20% of the vectors |U〉, 10−4 between 20% and 50%, and
10−3 for all the remaining vectors. In this way the first vectors, which give a more
important contribution to the final result, are more accurately represented. While
this specific choice is to a certain extent arbitrary, we will further discuss this point
at the end of this section.

The gain in practical calculations can be quantitatively understood by looking
at Fig. 3.2, where data for all the dimers and monomers considered in Secs. 4.1.1
and 4.1.2 are presented (92 monomers and 46 dimers). In this figure Naux is fixed
to forty times the number of KS valence states Nv, which is sufficient to reach
convergence for almost all systems (see discussion in Sec. 4.1 and Chapter 5).
While by definition Naux ×Nv grows quadratically with the number of electrons,
Northo has an approximately linear growth. This leads to a significant saving, with
the memory necessary to store the vectors reduced to NPW × Northo and the nu-
merical complexity reduced to NPW ×N2

ortho.

This linear growth is to a certain extent related to the threshold choice. In-
deed, in the case of a sufficiently small threshold Northo would be comparable
to Naux ×Nv. With the DT this approximately linear behavior has been deduced
empirically considering 138 molecular systems. Since this is a rather extended en-
semble, we believe that this effect is robust and generalizable to all the molecules.
However, in order to be meaningful, this observation of a linear behavior has to
be associated with a high level of accuracy when only Northo vectors are included
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in the calculations rather than the full Naux ×Nv vector set. This point is further
discussed at the end of this section and in Sec. 4.1.1.
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Figure 3.2: This figure shows how the number of vectors involved in the computa-
tion of dielectric matrices can be decreased by a Gram-Schmidt orthogonalization
(GSO) procedure. The original method requires Naux ×Nv vectors, which grows
quadratically with the number of electrons. The GSO version requires Northo ma-
trix elements, which grows linearly with the number of electrons. See text for
further details.

As it will be shown in Sec. 4.1.2, this procedure allows for calculations for
systems with up to 98 electrons and about 400k plane-waves. In order to com-
pute the correlation energy in Eqs. 3.9 and 3.12 the Lanczos algorithm is used

to evaluate the matrix elements 〈Oi|<
(
iω + εv − Ĥ

)−1

|Oj〉 and the matrix J in
Eq. 3.26 is then reconstructed as

Jvv
′

QG = 2

Northo∑
i,j=1

〈U v
Q|Oi〉〈Oi|<

(
iω + εv − Ĥ

)−1

|Oj〉〈Oj|U v′

G 〉. (3.28)

Similar reconstructions can be obtained for C and L. The evaluation of Eq. 3.28
can be performed with aNortho×N2

aux×N2
v scaling. Accordingly, this implemen-

tation still scales with the fifth power of the system size. However, since Northo

is much smaller than NPW (up to a factor 60 for the largest system considered in
this work), computational time is significantly reduced and calculations of much
larger systems become feasible. In the following we will use “GSO” to denote the
new optimized version of our code and “original” to denote the code that does not
use the orthogonalization.

To conclude this section we further discuss the specific choice of the thresh-
old we made. Table 3.1 shows the effect of this parameter on the accuracy of the
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Table 3.1: Binding energy of the formaldehyde dimer in the A24 test set as com-
puted for different approximations (RPA, eh-TDHF, and AC-SOSEX) with dif-
ferent thresholds for the Gram-Schmidt orthogonalization (GSO). DT denotes the
default threshold described in the text. In the last line of the table we report the to-
tal time taken to complete the calculation on an Intel Xeon mchine with 14 cores.

Original code GSO DT DT×10 DT /10

RPA −2.739 −2.674 −2.312 −2.728
eh-TDHF −3.280 −3.255 −3.283 −3.263

AC-SOSEX −3.571 −3.572 −3.589 −3.558

Time taken 28h 15m 6h 19m 6h 00m 9h 44m

binding energy of the formaldehyde dimer, the largest system in the A24 test set
(see Sec. 4.1.1). Specifically, we considered the default threshold (DT), a larger
threshold (DT×10), and a smaller threshold (DT/10) and compared the results
with the original version of the code; the last line on the table reports the time
taken to obtain the results on a node of our cluster (Intel Xeon CPU E5-2680 v4 @
2.40GHz, 14 cores). Since the RPA, eh-TDHF, and AC-SOSEX methods require
the evaluation of the same matrices, the three correlation energies are all provided
by a single calculation and, accordingly, a single time is provided in Table 3.1.
As expected, the GSO implementation significantly speed up calculations and the
time decreases by increasing the threshold in the GSO procedure. The difference
in the time taken by the DT and DT×10 calculations is rather small; this can be
understood by considering that a large threshold significantly decreasesNortho but
at the same time the cost of rebuilding the response function (Eq. 3.28) increases.
Discarding some small fluctuations in part related to the auxiliary basis set con-
vergence, the original, the GSO DT, and the GSO DT/10 implementations all give
results quantitatively in good agreement. Differently, the GSO DT×10 calculation
leads to an error of about 0.4 kcal/mol for the RPA result. By considering these
results the choice of the DT provides an excellent compromise between accuracy
and computer time. In Sec. 4.1.1 we will systematically discuss the influence of
the Gram-Schmidt procedure with DT on the accuracy of the binding energies of
the full A24 test set.



Chapter 4

Numerical applications to molecules
and solids

This chapter is based on original work previously published in Refs. [28, 31, 99,
74].

In this chapter we present a series of different applications of the methods
introduced in Chapter 2 using the implementation discussed in Chapter 3. Specif-
ically, we will consider weakly bound molecular dimers, molecular reaction en-
ergies involving the breaking and formation of covalent bonds, and bulk solids
(for the latter the discussion will be limited to the RPA, since an implementa-
tion of eh-TDHF and AC-SOSEX including the first Brillouin zone integration
is currently not yet available). The accuracy of RPA and beyond-RPA methods
will be determined by comparison with high-accuracy reference values obtained
from coupled cluster theory (molecules) and experiment (solids). It will be shown
that the inclusion of exchange effects beyond the RPA significantly improves the
results.

Ideally, ACFDT correlation energies should be computed self-consistently [103],
as typically done for DFT approaches. In practice, these types of calculations are
cumbersome and here we will rely exclusively on a fixed starting point obtained
from an affordable DFT approximation. Specifically, all the results for molecules
presented in this manuscript are based on response functions built from GGA or-
bitals and energy levels [106]. Instead, GGA-based RPA results for solids will be
compared with correlation energies using a LDA starting point.

32
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4.1 Applications to weakly bound molecular dimers

4.1.1 A24 Test Set
We present here the results for the A24 test set proposed by Řezáč and Hobza [121],
which contains interaction energies for 24 molecular dimers. The results are com-
pared with the CCSD(T) and CCSDT(Q) values from the same reference. Our cal-
culations do not include core correlation and relativistic effects, and the reference
values have been accordingly chosen. All dimers were placed in a 30×30×30 a3

0

box, and the plane-wave cut-off was set to 80 Ry to achieve sufficient conver-
gence. This cut-off corresponds to about 160k plane-waves. Norm-conserving
FHI pseudopotentials were used [40]. For the RPA and beyond-RPA calcula-
tions, the number of auxiliary basis vectors was set to twenty times the number
of electrons. Since we have non-spin polarized calculations, this corresponds to
Naux = 40×Nv. The number of elements included in the auxiliary basis is orders
of magnitude smaller than the number of plane-waves.

We start the discussion by validating the Gram-Schmidt orthogonalization
(GSO) algorithm introduced in Sec. 3.5. Since the dimers in the A24 test set
are relatively small, results with and without GSO can be compared to understand
the implications of this procedure on the numerical accuracy. For the S22 test set,
discussed in the next subsection, the GSO algorithm is indispensable to obtain the
correlation energies for the largest dimers. Figure 4.1 shows the differences be-
tween the interaction energies calculated with the original and the GSO versions.
As can be observed, the differences are small, below 0.085 kcal/mol for all the
molecules. As indicated in Table 4.1, the mean absolute error (MAE) of the GSO
results with respect to the “exact” results is 0.047 kcal/mol for the RPA, 0.033
kcal/mol for the eh-TDHF, 0.029 kcal/mol for the AC-SOSEX approximations.
Therefore, the GSO algorithm can be applied to calculate correlation energies at
the RPA and beyond-RPA levels of theory for different types of systems, e.g.,
weakly interacting systems, which require stricter convergence criteria.

Table 4.1: Mean absolute errors (MAE) and maximum absolute deviations
(|MAX|) in kcal/mol for the A24 test set introduced by applying the Gram-
Schmidt orthogonalization procedure described in the text.

System RPA eh-TDHF AC-SOSEX
MAE 0.047 0.033 0.029
|MAX| 0.084 0.075 0.078
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Figure 4.1: Differences in kcal/mol for the A24 test set introduced by applying
the Gram-Schmidt orthogonalization procedure described in the text.

From now we will discuss exclusively results for the A24 and S22 (in the next
subsection) test sets obtained using the GSO version of the code. To compare our
results with CCSD(T) and CCSDT(Q) values, we used slightly more strict con-
vergence parameters for a few systems. Specifically, Naux was increased to sixty
times the number of valence states for the borane-methane, ethene-Ar, methane-
HF and methane-water dimers to ensure a convergence of the RPA interaction
energy to within 0.09 kcal/mol.

The fully converged results are shown in Table 4.2. The maximum absolute
deviation (|MAX|) of the RPA and beyond-RPA methods from the CCSDT(Q) ref-
erence values is found for the formaldehyde dimer, with almost 1.8 kcal/mol for
the RPA, 1.2 kcal/mol for the eh-TDHF and 0.9 kcal/mol for the AC-SOSEX ap-
proximations. It could also noticed that in the comparison between the CCSD(T)
and CCSDT(Q), the maximum deviation was also found for the formaldehyde
dimer. In general, the inclusion of approximate exchange effects in the beyond-
RPA methods improve results over the RPA. This is most visible for the hydrogen-
bonded systems, where the mean absolute errors for the eh-TDHF and AC-SOSEX
are 0.356 kcal/mol and 0.339 kcal/mol, respectively, as compared to the value of
0.605 kcal/mol for the RPA, and for the mixed-type systems, where the mean
absolute errors for the eh-TDHF and AC-SOSEX are 0.224 kcal/mol and 0.179
kcal/mol, respectively, as compared to the value of 0.442 kcal/mol for the RPA.
In the case of dispersion-dominated systems, the improvement is less clear, with
the mean absolute error for the eh-TDHF and AC-SOSEX are 0.242 kcal/mol and
0.314 kcal/mol respectively compared to 0.264 kcal/mol for the RPA. While these
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differences are small compared to numerical accuracy, for these systems only the
eh-TDHF method slightly improves over the RPA. The deviations with respect to
CCSDT(Q) are plotted in Fig. 4.2. Positive mean errors for the RPA and beyond-
RPA methods indicate a general tendency of all these methods to consistently
underestimate the absolute binding energies of the various systems. We observe
that the beyond-RPA methods improve over the MP2 values reported in the liter-
ature [19], where MAEs of 0.389 kcal/mol and 0.364 kcal/mol were found for the
counter-poise corrected and uncorrected case, respectively.
We also observe a good agreement of our values with earlier works. In the case of
RPA, our values have a mean absolute error of 0.409 kcal/mol compared to 0.338
kcal/mol obtained by Bates and Furche [6] and 0.4 kcal/mol obtained by Grundei
and Burow [54] within a localized basis set implementation. For the AC-SOSEX
calculations, our results have a mean absolute error of 0.263 kcal/mol compared
to 0.208 kcal/mol obtained by Bates and Furche [6].
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Figure 4.2: Differences in kcal/mol for the A24 test set for the RPA, eh-TDHF,
and AC-SOSEX methods computed with respect to CCSDT(Q) reference values.
For the sake of completeness the errors of CCSD(T) [121] are also included.

4.1.2 S22 Test Set
We apply here the more efficient algorithm based on the GSO to the S22 test set
proposed by Jurečka et al., which consists of interaction energies for 22 molecu-
lar dimers [73]. This test set has been very valuable for benchmarking new and
existing methods for non-covalent complexes, as it contains 22 dimers of vari-
ous types (H-bonded, dispersion dominated and mixed), and system sizes (from
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Table 4.2: Interaction energies (in kcal/mol) for the A24 test set as obtained with
the RPA, eh-TDHF, and AC-SOSEX methods compared with CCSDT(Q) and
CCSD(T) reference values. The mean absolute errors (MAE), mean errors (ME)
and the maximum deviations (|MAX|) are provided with respect to CCSDT(Q)
values for the three types of molecular dimers and for the total test set.

System CCSDT(Q) [121] CCSD(T) [121] RPA eh-TDHF AC-SOSEX
Hydrogen-bonded systems

1 water. . . ammonia Cs −6.492 −6.493 −5.753 −6.037 −6.100
2 water dimer Cs −4.994 −5.006 −4.223 −4.603 −4.691
3 HCN dimer Cs −4.738 −4.745 −4.506 −4.962 −5.107
4 HF dimer Cs −4.564 −4.581 −3.837 −4.244 −4.350
5 ammonia dimer C2h −3.141 −3.137 −2.584 −2.748 −2.726

MAE 0.008 0.605 0.356 0.339
ME −0.007 0.605 0.267 0.191
|MAX| 0.017 0.771 0.455 0.415

Mixed-type systems
6 methane. . . HF C3v −1.660 −1.654 −1.371 −1.626 −1.651
7 ammonia. . . methane C3v −0.771 −0.765 −0.511 −0.644 −0.645
8 methane. . . water Cs −0.665 −0.663 −0.510 −0.664 −0.660
9 formaldehyde dimer Cs −4.479 −4.554 −2.674 −3.255 −3.572
10 ethene. . . water Cs −2.564 −2.557 −2.018 −2.364 −2.467
11 ethene. . . formaldehyde Cs −1.623 −1.621 −1.282 −1.519 −1.562
12 ethyne dimer C2v −1.529 −1.524 −1.304 −1.526 −1.568
13 ethene. . . ammonia Cs −1.382 −1.374 −0.993 −1.153 −1.176
14 ethene dimer C2v −1.106 −1.090 −0.731 −0.912 −0.898
15 methane. . . ethene Cs −0.509 −0.502 −0.324 −0.422 −0.421

MAE 0.013 0.442 0.224 0.179
ME −0.002 0.442 0.224 0.171
|MAX| 0.075 1.792 1.237 0.927

Dispersion-dominated systems
16 borane. . . methane Cs −1.513 −1.485 −0.636 −0.883 −0.850
17 methane. . . ethane Cs −0.836 −0.827 −0.621 −0.717 −0.671
18 methane. . . ethane C3 −0.614 −0.607 −0.455 −0.512 −0.471
19 methane dimer D3d −0.539 −0.533 −0.416 −0.496 −0.457
20 methane. . . Ar C3v −0.405 −0.405 −0.263 −0.362 −0.343
21 ethene. . . Ar C2v −0.365 −0.364 −0.165 −0.226 −0.211
22 ethene. . . ethyne C2v +0.794 +0.821 +1.007 +1.143 +1.291
23 ethene dimer D2h +0.909 +0.934 +1.112 +1.263 +1.462
24 ethyne dimer D2h +1.084 +1.115 +1.311 +1.454 +1.561

MAE 0.015 0.264 0.242 0.314
ME 0.015 0.264 0.242 0.314
|MAX| 0.031 0.887 0.668 0.699

Total
MAE 0.013 0.409 0.259 0.263
ME 0.004 0.409 0.240 0.229
|MAX| 0.075 1.792 1.237 0.927
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water dimer to adenine-thymine complexes), which has led to a rise of its popular-
ity [68, 123, 94, 97, 132, 90, 48, 11, 91, 51, 142, 64, 34]. It has even been used to
parametrize and adjust certain methods so that the relative errors with respect to
the S22 values are minimized [135, 27, 113]. The kinetic energy cut-off was set to
80 Ry to achieve well-converged PBE orbitals. As with the A24 test set, the num-
ber of auxiliary basis vectors was set to forty times the number of valence states
to ensure convergence, except for the formic acid (Naux = 60 × Nv), formamide
(Naux = 60 × Nv), phenol (Naux = 32 × Nv), uracil (Naux = 32 × Nv) and
adenine-thymine dimers (Naux = 32×Nv). This ensured that the variations of the
RPA and beyond-RPA interaction energies were within 0.1 kcal/mol. The results
are tabulated in Table 4.3, and the errors with respect to the CCSD(T) values of
Takatani et al. [142] are shown graphically in Fig. 4.3.

As was observed with the A24 test set, the inclusion of exchange effects gen-
erally improve the RPA interaction energy values, with the mean absolute er-
rors for the eh-TDHF and AC-SOSEX methods around 0.43 kcal/mol and 0.42
kcal/mol respectively, compared to 0.81 kcal/mol for the RPA. Specifically, the
improvement is more clear in the hydrogen-bonded systems, where the mean ab-
solute errors for the beyond-RPA methods are 0.48 kcal/mol for the eh-TDHF and
0.36 kcal/mol for the AC-SOSEX approximations, compared to the value of 1.26
kcal/mol for the RPA, and in the mixed-type dimers, where the mean absolute er-
rors for eh-TDHF and AC-SOSEX methods is 0.20 kcal/mol and 0.21 kcal/mol re-
spectively, compared to 0.46 kcal/mol for the RPA. In case of dispersion-dominated
systems, as was seen with the A24 test set, the improvement is more limited,
where the mean absolute errors for the eh-TDHF and AC-SOSEX methods are
0.60 kcal/mol and 0.65 kcal/mol respectively compared to the value of 0.72 kcal/mol
for the RPA. A similar behavior was previously noticed for the RPA+SOSEX
method within localized basis sets implementations [119]. Similar to the A24 test
set, we observe that all methods have positive mean errors, indicating a general
tendency of these methods to consistently underestimate the absolute binding en-
ergies when compared with CCSD(T) interaction energy values. We observe that
the beyond-RPA methods significantly improve over the MP2 values reported by
Takatani et al. [142], whose MAE is 0.88 kcal/mol.
Overall, we obtain a good agreement of our RPA results with earlier works, with
a mean error of 0.81 kcal/mol compared to 0.9 kcal/mol obtained by Ren et
al. [117, 119] and 0.79 kcal/mol obtained by Eshuis and Furche [34]. The AC-
SOSEX values have a mean absolute percentage error of 9.5% in close agreement
with the value of 10.5% reported for a localized basis set implementation [119].
We highlight that our implementation was done within the plane-wave basis set,
which can treat molecules and solids on the same footing, and does not use ex-
trapolation techniques to obtain complete basis set-quality results (see Chapter 5).
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Table 4.3: Interaction energies (in kcal/mol) for the S22 test set as obtained with
the RPA, eh-TDHF, and AC-SOSEX methods compared with CCSD(T) reference
values [142]. The mean absolute errors (MAE), mean errors (ME) and the maxi-
mum deviations (|MAX|) are provided with respect to CCSD(T) values [142] for
the three types of molecular dimers and for the total test set.

System CCSD(T) [142] CCSD(T) [73] RPA eh-TDHF AC-SOSEX
Takatani et al. Jurečka et al.

Hydrogen-bonded systems
1 ammonia dimer C2h −3.17 −3.17 −2.54 −2.72 −2.71
2 water dimer Cs −5.02 −5.02 −4.20 −4.58 −4.65
3 formic acid dimer C2h −18.80 −18.61 −17.05 −18.24 −18.60
4 formamide dimer C2h −16.12 −15.96 −14.75 −15.57 −15.71
5 uracil dimer C2h −20.69 −20.65 −18.78 −20.32 −21.02
6 2-pyridoxine. . . 2-aminopyridine C1 −17.00 −16.71 −15.78 −16.46 −16.61
7 adenine. . . thymine (WC) C1 −16.74 −16.37 −15.63 −16.30 −16.37

MAE 0.15 1.26 0.48 0.36
ME 0.15 1.26 0.48 0.27
|MAX| 0.37 1.91 0.56 0.46

Dispersion-dominated systems
8 methane dimer D3d −0.53 −0.53 −0.47 −0.52 −0.48
9 ethene dimer D2d −1.50 −1.51 −1.15 −1.33 −1.31
10 benzene. . . methane C3 −1.45 −1.50 −1.18 −1.32 −1.28
11 benzene dimer C2h −2.62 −2.73 −1.92 −1.86 −1.70
12 pyrazine dimer Cs −4.20 −4.42 −3.40 −3.39 −3.24
13 uracil dimer C2 −9.74 −10.12 −8.61 −9.11 −9.26
14 indole. . . benzene C1 −4.59 −5.22 −3.41 −3.35 −3.19
15 adenine. . . thymine (stack) C1 −11.66 −12.23 −10.36 −10.59 −10.62

MAE 0.25 0.72 0.60 0.65
ME −0.25 0.72 0.60 0.65
|MAX| 0.63 1.30 1.24 1.40

Mixed-type systems
16 ethene. . . ethine C2v −1.51 −1.53 −1.29 −1.50 −1.57
17 benzene. . . water Cs −3.29 −3.28 −2.89 −3.10 −3.10
18 benzene. . . ammonia Cs −2.32 −2.35 −1.91 −2.07 −2.06
19 benzene. . . hydrogen cyanide Cs −4.55 −4.46 −4.03 −4.49 −4.61
20 benzene dimer C2v −2.71 −2.74 −2.31 −2.45 −2.42
21 indole. . . benzene (T-shape) C1 −5.62 −5.73 −5.18 −5.38 −5.37
22 phenol dimer C1 −7.09 −7.05 −6.31 −6.76 −6.79

MAE 0.05 0.46 0.20 0.21
ME −0.01 0.46 0.20 0.17
|MAX| 0.11 0.78 0.33 0.33

Total
MAE 0.15 0.81 0.43 0.42
ME −0.04 0.81 0.43 0.38
|MAX| 0.63 1.91 1.24 1.40

4.2 Binding curves
Up to this point we have only considered weakly bound dimers in their equi-
librium geometry. In this subsection we consider the application of RPA, AC-
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Figure 4.3: Differences in kcal/mol for the S22 test set for the RPA, eh-TDHF,
and AC-SOSEX methods computed with respect to CCSD(T) reference values
reported by Takatani et al. [142]. For the sake of completeness we included the
deviations of the CCSD(T) values previously reported by Jurečka et al. [73]

SOSEX, and eh-TDHF to compute the full energy curve of three weakly bound
dimers from the S22 test set [73]: The ethene dimer, which is categorized as a
dispersion-dominated system, the water dimer, which is hydrogen bonded, and
the ethene-ethyne dimer, which belongs to the mixed-type complexes. This al-
lows us to estimate the accuracy of the different approximations also for equilib-
rium positions. In PW calculations a kinetic-energy cut-off of 80 Ry was used and
supercell sizes were chosen to guarantee a distance of at least a 10 Å between peri-
odically repeated images. The computed curves for the three dimers are shown in
Figs. 4.4-4.6. In the case of the ethene and ethene-ethyne dimers CCSD(T) curves
from Ref. 65 are shown as a reference; in the case of the water dimer we included
only the CCSD(T) value at equilibrium. A summary of the equilibrium binding
energies is also given in Table 4.4. While the RPA reproduces already at least
80% of the binding energy, the methods with exchange systematically improve
this result. For example, eh-TDHF gives 92% of the binding energy of the ethene
dimer, 99% for the ethene-ethyne dimer, and 93% for the water dimer. A simi-
lar result is obtained for the AC-SOSEX method, with a slight overestimation of
the binding energy of the ethene-ethyne dimer. The RPA and beyond-RPA meth-
ods also perform well in reproducing the minimum of the binding curve, which
is exactly reproduced within the 0.1 Å accuracy of the grid used to discretize the
intermolecular distance. This is not the case for PBE, that for the ethene dimer
predicts a too large binding distance. With exception of the water dimer, whose
interaction is dominated by polar forces, PBE also significantly underestimates
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Figure 4.4: Binding curve of the ethene dimer.

binding energies.
In Table 4.4 we also compare the results obtained with the present PW im-

plementation and the Gaussian basis set implementation that we introduced in
Ref. 99. This is also useful to understand the effect of pseudopotentials in PW
results. The PBE and HF binding energies were computed by using the aug-cc-
pCV5Z basis set; the RPA and beyond-RPA correlation energies were extrapolated
to the complete basis set (CBS) limit by using aug-cc-pCVQZ and aug-cc-pCV5Z
basis sets. In this case the two different methods lead to close results with differ-
ences of the order of about 0.1 kcal/mol at most. This is not surprising, since weak
interactions only marginally involve core regions and the effect of pseudopoten-
tials is expected to be weak. While comparing the two different implementations
of the RPA, AC-SOSEX, and eh-TDHF methods it is also important to keep into
account that the PW results are converged within 0.03-0.04 kcal/mol with respect
to the auxiliary basis set and Gaussian basis set results might be affected by er-
rors due to the CBS extrapolation and basis set superimposition. Accordingly,
the agreement between the two different implementations can be considered fully
satisfactory in the case of the weakly bound dimers.

4.3 Application to reaction energies involving cova-
lent bonds

In this section we present the results for the reaction energy test set proposed by
Hesselmann [65]. These reactions involve the breaking and formation of covalent
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Figure 4.5: Binding curve of the ethene-ethyne dimer.
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Figure 4.6: Binding curve of the water dimer.
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bonds. Results obtained within the plane-wave framework will also be compared
to values obtained using a previous localized basis set implementation that we
developed [99].

In order to decrease the spurious interaction between periodically repeated im-
ages, each molecule from the reaction test set has been placed in a 26 × 26 × 26
a3

0 supercell. Norm-conserving pseudopotentials were taken from the library of
Schlipf and Gygi [134], which has been generated within the optimized norm-
conserving Vanderbilt pseudopotential scheme recently introduced by Hamann [57].
A kinetic-energy cut-off of 80 Ry was used to expand the orbitals.

In the columns 2-6 of Table 4.5 we show the results obtained within the PW
implementation. The last three lines of this table contain the mean absolute er-
ror (MAE), the mean error (ME), and the absolute value of the largest devia-
tion (|MAX|) in kcal/mol computed with respect to reference localized orbital
CCSD(T) results [65]; these results are also pictorially represented in Fig. 4.7.
Similarly to the results obtained with the Gaussian basis set of Ref. 99, the RPA
significantly improves over PBE (the MAE is decreased from 4.49 kcal/mol to
3.27 kcal/mol) and this result is improved further by including the exchange con-
tribution; in particular, the eh-TDHF is the most accurate approach with a MAE of
only 1.19 kcal/mol. This is particularly promising in the context of plane-wave im-
plementations, where access to the most accurate quantum chemical approaches
are numerically challenging [15] and applications rely mostly on semi-local DFT.

We now discuss the comparison of the results obtained within the present PW
implementation and the localized basis set implementation in Molpro [149, 148,
99]. For a reliable comparison with the plane-wave basis set, we used localized
basis sets larger than in Ref. 99. Specifically, here the PBE and HF from a PBE
starting point (HF@PBE) total energies have been computed by using the aug-cc-
pCV6Z basis set. Since HF@PBE results are used to compute RPA and beyond-
RPA total energies by adding the correlation term, their inclusion in the discussion
is useful to better understand the origin of differences between PW and Gaussian
results. The RPA and beyond-RPA correlation energies were extrapolated to the
complete basis set (CBS) limit by the usual 1/X3 formula [79] considering aug-
cc-pCVXZ basis sets with X going from Q to 6. In the columns 7-11 of Table 4.5
and in Fig. 4.8 we present the reaction energy values for the localized basis set im-
plementation. The general trend of the errors is similar to the PW case. However,
a sizeable difference in the MAE can be seen in the RPA case (which decreases
from 3.27 kcal/mol for PWs to 2.42 kcal/mol for the localized basis sets) and dif-
ferences are present also in the ME and |MAX|. This issue has to be ascribed to
the use of norm-conserving pseudopotentials in the plane-wave basis set. Indeed,
Hesselmann’s test set involves strong covalent interactions and short bond lengths
whose energy might be affected by the core regions of pseudopotentials. As shown
in Sec. 4.1, in the case of weakly bound systems the interaction energy is mostly
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Figure 4.7: Mean absolute error (MAE), mean error (ME), and maximum abso-
lute deviation (|MAX|) for a test set of 16 reaction energies [65]. Errors have been
computed for PBE, HF@PBE, RPA, AC-SOSEX, and eh-TDHF results obtained
within the pane-wave (PW) basis set implementation with respect to CCSD(T)
reference values.
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determined by long range forces far from the core region and pseudopotentials
weakly affect the results.

To better understand the PW-Gaussian basis set comparison in Fig. 4.9 we
present the MAE, ME, and |MAX| of the PW basis set results with respect to the
corresponding localized basis set results. The first important observation is that
errors increase going from PBE, to HF@PBE, and to ACFDT methods. This is
not surprising, since the pseudopotentials have been optimized to provide accu-
rate PBE results [134]. Another important point is that the MEs for HF@PBE and
for ACFDT methods are positive and close in value to the corresponding MAE
values; this indicates that the error induced by the pseudopotentials is rather sys-
tematic and tends to underestimate the absolute value of reaction energies. This
explains why only in the RPA case the PW MAE with respect to CCSD(T) size-
ably increases with respect to Gaussian basis set results: Since the RPA approach
already presents a systematic underestimation of the absolute value of reaction
energies, the error induced by the pseudopotential accumulates over this intrinsic
error of the RPA. All the other approaches (PBE, HF@PBE, AC-SOSEX, and eh-
TDHF) have more erratic behaviors: The significant difference between the MAE
and ME in Figs. 4.7-4.8 implies that these methods sometimes overestimate and
sometimes underestimate reaction energies. Accordingly, the effect of the pseu-
dopotential is mostly compensated when computing the MAE. While the effect of
pseudopotentials in the PW implementation is relatively large with respect to the
level of accuracy of the AC-SOSEX and eh-TDHF methods, by considering MAE
and |MAX| in Fig. 4.7 it is possible to clearly appreciate the improvement of these
approaches with respect to the RPA.

The pseudopotential approximation affects HF@PBE and ACFDT results mainly
in two ways: (1) The lack of valence-core contributions; (2) The use of pseudo-
orbitals to compute the HF exchange and the response functions. However, it
is important to mention that also the accuracy of correlation energies computed
within a Gaussian basis set might be affected to a certain extent by the CBS ex-
trapolation.

In principle, it might be possible to improve the comparison of PW basis set
results with Gaussian basis set results by using the projector augmented-wave
method [13]. However, within this framework the formalism is significantly more
involved and approximations are typically introduced to compute response func-
tions.

4.4 Applications to solids
In this section we present applications of the RPA within the implementation of
Chapter 3 to compute the structural properties of covalent solids (C in the dia-
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Figure 4.8: Mean absolute error (MAE), mean error (ME), and maximum abso-
lute deviation (|MAX|) for a test set of 16 reaction energies [65]. Errors have been
computed for PBE, HF@PBE, RPA, AC-SOSEX, and eh-TDHF results obtained
within the Gaussian basis set implementation with respect to CCSD(T) reference
values.
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Figure 4.9: Mean absolute error (MAE), mean error (ME), and maximum ab-
solute deviation (|MAX|) for a test set of 16 reaction energies [65]. Errors have
been computed for PBE, HF@PBE, RPA, AC-SOSEX, and eh-TDHF results ob-
tained within the plane-wave (PW) basis set implementation with respect to values
obtained within the Gaussian basis set implementation of the same methods.
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mond structure, silicon, and silicon carbide) and of weakly bonded solids (Ne,
Ar, and Kr). While this set of bulk materials is not fully comprehensive, it pro-
vides a test-bed to prove accuracy and efficiency of the methodology discussed in
this work. The discussion will be limited to the RPA, since an implementation of
eh-TDHF and AC-SOSEX for solids is currently not yet available. The calcula-
tions were performed with norm-conserving pseudopotentials from the Quantum
Espresso website [47, 46]. Both LDA [108] and GGA [106] have been considered
as starting points for the RPA calculations (these approximations will be denoted
as RPA@LDA and RPA@GGA). The convergence with respect to the kinetic en-
ergy cut-off and the k-point and q-point grids have been tested carefully1. All
the total energy curves were obtained by interpolating the total energy computed
for at least seven different lattice parameters (up to eleven for Ne) with the Mur-
naghan equation of state (EOS) [98]. For all the materials studied it was found
that Naux = 250 is sufficient to obtain accurate results, with the exception of solid
Ne, for which the size of the auxiliary basis set was increased up to 480. The use
of the auxiliary basis set was instrumental to reach convergence without extrapo-
lation techniques (see also Chapter 5). For example, the dimensionality reduction
is particularly important for noble gas solids, with NPW/Naux up to 150 for neon
and up to 120 for argon and krypton.

In Tables 4.6 and 4.7 we show the results for lattice constants and bulk moduli,
respectively, for the six bulk materials considered in this work. For comparison
purposes we also provide experimental (see Refs. 139, 129 and references therein)
and other results based on the RPA in the literature [58, 60, 84].

In general, compared to experimental values, the RPA preserves the good level
of accuracy of the LDA and GGA for covalently bonded systems [60]. In the
case of silicon the RPA@LDA lattice constant is slightly less accurate than the
LDA lattice constant (the 0.6% underestimation by LDA increases up to 1.5%
for RPA@LDA). Previous RPA and RPA+ calculations based on pseudopotentials
had already shown a similar trend of RPA@LDA to underestimate the lattice con-
stant of bulk silicon [100, 43, 84]; in particular, as shown in Table 4.6, the RPA
result is in excellent agreement with our value [84]. In Ref. 60 a RPA@LDA
lattice constant was obtained in perfect agreement with experiments; the discrep-
ancy with respect to our results might be due to the details of the implementation,

1Converged parameters: RPA@LDA for C: 70 Ry (kinetic energy cut-off for wavefunctions),
6 × 6 × 6 (k-point grid), 4 × 4 × 4 (q-point grid shifted from the origin); RPA@GGA for C: 70
Ry, 6× 6× 6, 4× 4× 4; RPA@LDA for Si: 40 Ry, 6× 6× 6, and 4× 4× 4; RPA@GGA for Si:
40 Ry, 6× 6× 6, and 4× 4× 4; RPA@LDA for SiC: 70 Ry, 6× 6× 6, and 4× 4× 4; RPA@GGA
for SiC: 70 Ry, 6× 6× 6, and 4× 4× 4; RPA@LDA for Ne: 160 Ry, 4× 4× 4, and 4× 4× 4;
RPA@GGA for Ne: 160 Ry, 4 × 4 × 4, and 4 × 4 × 4; RPA@LDA for Ar: 60 Ry, 4 × 4 × 4,
and 4 × 4 × 4; RPA@GGA for Ar: 80 Ry, 4 × 4 × 4, and 4 × 4 × 4; RPA@LDA for Kr: 70 Ry,
4× 4× 4, and 4× 4× 4; RPA@GGA for Kr: 80 Ry, 4× 4× 4, and 4× 4× 4.
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Table 4.6: Lattice parameter as computed within different approximations (LDA,
GGA, RPA@LDA, and RPA@GGA) for six different materials. Experimental
values and previous RPA results in the literature are also provided for reference.

Method C Si SiC Ne Ar Kr
LDA 6.67 10.20 8.21 7.27 9.32 10.09
RPA@LDA 6.68 10.11 8.17 8.97 10.23 10.83
GGA 6.73 10.33 8.26 8.69 11.22 12.12
RPA@GGA 6.73 10.21 8.21 8.18 10.00 10.72
RPA@LDA Literature 6.75a 10.27a, 10.12b / 8.88c 10.20c 10.96c

RPA@GGA Literature 6.75a 10.26a 8.25a 8.50c 10.02c 10.77c

Experiments 6.74d 10.26d 8.24d 8.22e 9.88e 10.60e

a Ref. 60.
b Ref. 84.
c Ref. 58.
d Experimental lattice constants extrapolated at 0 K. See Ref. 139 and references therein.
e Experimental lattice constants extrapolated at 0 K. See Ref. 129 and references therein.

since in this previous calculation a code based on the projector augmented wave
(PAW) method was used and the RPA correlation energy was obtained by extrap-
olation techniques. When GGA is used as a starting point for the RPA calculation
(RPA@GGA), the lattice constant of silicon is improved with respect to both LDA
and GGA. As shown in Table 4.7, the RPA systematically improves the bulk mod-
ulus of covalent solids with respect to traditional (semi-)local functionals.

The case of noble gas solids is certainly more interesting. In this case, the in-
teraction is dominated by weak dispersion forces and the RPA strongly improves
the results of LDA and GGA [58]. In general, as shown in Table 4.6, the LDA im-
portantly underestimates experimental values of the lattice constant (LDA relative
error with respect to experiments: -11.6% for Ne, -5.7% for Ar, and -4.8% for Kr)
while the GGA overestimates them (GGA relative error: +5.6% for Ne, +13.6%
for Ar, and +14.3 % for Kr). Since the RPA accurately describes weak dispersion
forces, the results for lattice constants are significantly improved both using LDA
and GGA as a starting point (RPA@LDA relative error: +9.1% for Ne, +3.5% for
Ar, and +2.2% for Kr; RPA@GGA relative error: -0.5% for Ne, +1.2% for Ar,
and +1.1% for Kr). As shown in Table 4.7, the RPA strongly improves also the
bulk moduli of noble gas solids. For example, LDA strongly overestimates the
bulk moduli (LDA relative error: +657% for Ne, +182% for Ar, and +70% for Kr)
while overall RPA@GGA gives results much closer to experiments (RPA@GGA
relative error: +35% for Ne, +17% for Ar, and -17% for Kr). In general, while
LDA and GGA lead to very different structural properties, this behavior is less
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Table 4.7: Bulk modulus as computed within different approximations (LDA,
GGA, RPA@LDA, and RPA@GGA) for six different materials. Experimental
values and previous RPA results in the literature are also provided for reference.

Method C Si SiC Ne Ar Kr
LDA 449.7 92.10 216.1 8.25 6.71 6.15
RPA@LDA 441.1 102.1 222.4 0.26 1.58 2.24
GGA 416.2 85.70 204.4 1.17 0.70 0.61
RPA@GGA 417.0 97.30 215.0 1.47 2.79 2.98
RPA@LDA Literature 439a 98a, 103b / / / /
RPA@GGA Literature 441 99 223 / / /
Experiments 443.0c 99.2c 225.0c 1.09d 2.38d 3.61d

a Ref. 60.
b Ref. 84.
c See Ref. 139 and references therein.
d See Ref. 129 and references therein.

pronounced for the RPA, that gives much closer results to experiment starting
from LDA or GGA states.

For comparison purposes, in Tables 4.6 and 4.7 we included results from previ-
ous RPA calculations available in the literature [58, 60, 84]. The overall agreement
of our results with previous work is good. However, a straightforward compari-
son is not possible since the majority of previous results were obtained with an
implementation based on PAW and extrapolation techniques [58, 60]. Further-
more, bulk moduli of noble gas solids have not been computed before at the RPA
level of theory.

By considering the examples shown in this section we can conclude, in agree-
ment with previous work [58, 60], that the RPA preserves the accuracy of (semi-
)local functionals for covalently bonded solids, such as C, Si, and SiC, and strongly
improves the structural properties of weakly bonded noble gas solids. In particu-
lar, the RPA approximated starting from GGA orbitals has been shown to have an
impressive accuracy for the structural properties of the systems considered in this
work.



Chapter 5

Auxiliary basis set convergence

This chapter is based on original work previously published in Ref. [29].

In this chapter we discuss in detail a point that was only briefly addressed
in Chapter 3, the technique used to achieve basis set convergence of correla-
tion energies. Differently from semi-local or hybrid functionals, the ACFDT
approaches are characterized by a slow convergence with respect to this param-
eter. This behavior is analogous to that of traditional quantum chemical meth-
ods. Indeed, convergence of the correlation energy is known to be slow in cor-
related methods such as Møller-Plesset perturbation theory or coupled cluster
theory [136, 62, 56, 36, 121, 122, 95, 4]. In order to overcome this issue, tech-
niques to extrapolate the results to the complete basis set (CBS) limit are routinely
used [79, 56, 122].

In Chapter 4 we did not rely on any complete basis set extrapolation technique
for the the application of RPA or beyond-RPA methods, but we rather converged
energy differences. This is a peculiar feature of our implementation that takes
advantage of a compact auxiliary basis set which is designed to rapidly converge
the eigenvalues of the response functions [150, 124]. In this chapter we give
a detailed description of the methodology that we have been using so far, and
compare it to a more traditional approach, the complete basis set extrapolation.

5.1 Convergence of energy differences vs. complete
basis set extrapolation

To understand how correlation energy differences are converged, a simple obser-
vation is necessary, illustrated by a simple example. Let us suppose that we are
interested in computing the interaction energy of the argon dimer at the RPA level
of theory [101, 86]. We first consider the two atoms at a very large distance so

52
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that
Eint = Edimer − 2Eatom ≈ 0, (5.1)

where Eint is the interaction energy, Edimer is the total dimer energy, and Eatom

is the total atom energy. Eq. 5.1 is a consequence of the size consistency of the
RPA [49]. Clearly, each single contribution to the energy should be exactly com-
pensated for, including the correlation energy: Eint

c = Edimer
c − 2Eatom

c ≈ 0.
By using a single eigenvalue of the polarizability for each frequency λ1(iω) (the
largest in absolute value), the RPA correlation energy (Eq. 3.10) of each single
argon atom is

Eatom
c =

1

2

∞∫
−∞

dω

2π
[ln {1− λ1(iω)}+ λ1(iω)] . (5.2)

In order to obtain Eint ≈ 0 it is now clear that the correlation energy of the dimer
should be computed including two eigenvalues per frequency in the correlation
energy expression:

Edimer
c =

1

2

∞∫
−∞

dω

2π
[ln {1− λ1(iω)}+ λ1(iω) + ln {1− λ2(iω)}+ λ2(iω)] .

(5.3)
Indeed, since the interatomic distance is large, we have λ2(iω) ≈ λ1(iω). This
error cancellation would have not been possible if we would have naively used
the same number of eigenvalues for the atoms and the dimer. The same idea can
be also applied to small interatomic distances; there should be a compensation
between the eigenvalue contributions of the dimer and the monomers to induce
error cancellation. Generally, at small or intermediate distances it is necessary to
significantly increase the number of eigenvalues Neig included in the evaluation
of the correlation energy to reach convergence, while maintaining the condition
Ndimer
eig = 2Nmonomer

eig . Henceforth, we refer to this approach as the size-consistent
energy difference approach.

This idea can also be generalized to systems, whose components are different
(e.g. a dimer of two different molecules), or which involve different types of inter-
actions. When the PDEP technique was first introduced it was already understood
that the number of eigenvalues necessary to reach a certain level of accuracy in the
description of the response function is approximately proportional to the number
of electrons [150]. Accordingly, the number of eigenvalues (namely of auxiliary
basis vectors) used to describe the response function should be chosen to be pro-
portional to the number of electrons. For example, if in a certain molecular dimer,
the monomer 1 has double the number of electrons than the monomer 2, in the
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correlation energy equations we should always use Nmonomer1
aux = 2Nmonomer2

aux and
Ndimer
aux = Nmonomer1

aux +Nmonomer2
aux = 2Nmonomer2

aux +Nmonomer2
aux . As shown by the

numerical results in Sec. 5.2 this approach works well in practice.
All this discussion has been presented for the RPA. The eh-TDHF and AC-

SOSEX correlation energies have a similar structure to the RPA (see Eqs. 3.9
and 3.12), but contain additional exchange terms. As shown in Eqs. 3.6-3.8, the
additional exchange contributions have a structure similar to the response func-
tion in Eq. 3.5, the main difference being related to the v 6= v′ terms. It was
already observed that the PDEP basis set, specifically designed for the polariz-
ability (Eq. 3.5), represents well also the exchange terms (Eqs. 3.6-3.8) [28, 31].
Because of these affinities between the RPA and the beyond-RPA methods dis-
cussed in this work, the same convergence techniques can be used in practical
calculations for beyond-RPA methods as well.

By using the size-consistent energy difference technique, the interaction en-
ergy converges quite rapidly with respect to the auxiliary basis set size. As an
example, we present in Fig. 5.1 the interaction energy of the formaldehyde dimer
computed at the RPA and beyond-RPA levels of theory. The convergence with
respect to Naux is quite rapid, with the beyond-RPA energies seeming to con-
verge faster than RPA. Since the measurable physical observables are energy dif-
ferences, convergence of the interaction energy with respect to the auxiliary basis
set size is sufficient for practical applications. Empirically we have observed that
Naux = 40 × Nv is sufficient to achieve convergence for most molecular sys-
tems, where Nv is the number of Kohn-Sham states (half the number of valence
electrons) in the system. This is a very small number compared to the number
of plane-waves (NPW = 163000 for the formaldehyde dimer), and convergence
of the interaction energy can be achieved without resorting to extrapolation tech-
niques. However, if we consider the correlation energies of the formaldehyde
dimer and of the monomer separately, convergence is far from achieved. For ex-
ample, by increasing the basis set from 35×Nv to 70×Nv, the correlation energy
decreases by about 10 kcal/mol for the dimer and by about 5 kcal/mol for the
monomers; this leads to the error cancellation shown in Fig. 5.1.

It is important to mention that the size-consistent energy difference technique
can in principle be used with different types of auxiliary basis sets. For example,
plane-waves are traditionally used to represent dielectric matrices. For a given size
of the dielectric matrix, the accuracy of the eigenvalues in the PW representation
is lower than for the kinetic-PDEP auxiliary basis sets and, accordingly, also the
energy differences less accurate. This implies that the use of PWs or other basis
set, while compatible with the energy difference method, might lead to slower
convergence.

The approach described in this section to converge energy differences has been
previously used for homogeneous [101, 86, 124] and heterogeneous systems [28,
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Figure 5.1: Interaction energy (kcal/mol) of the formaldehyde dimer at the RPA
(red), eh-TDHF (blue) and AC-SOSEX (green) levels of theory as a function of
Naux/Nv. Dashed lines indicate the CBS interaction energy values computed with
Eq. 5.4.

30, 31]. Here we will systematically study its accuracy for weakly bound systems
and reaction energies involving the breaking and formation of covalent bonds (see
Sec. 5.2).

The complete basis set extrapolation scheme for the RPA and beyond-RPA
correlation energies used here is,

ENaux
c = A+

B

Naux

, (5.4)

where A = E∞c is the CBS correlation energy and B is a system-dependent pa-
rameter. As shown in Fig. 5.2 for the formaldehyde dimer, the function in Eq. 5.4
provides a reasonable description of the behavior of the correlation energy as a
function of Naux. An analogous expression with an additional C/N2

aux term was
previously used to compute the interaction energy of molecular crystals [85]. The
higher order contribution can be discarded for sufficiently high values of Naux

(this is the case for the results of Sec. 5.2). In Ref. 85, the PDEP method was used
to exactly diagonalize the dielectric matrix for each different value of the fre-
quency. By comparison our approach is approximated, as the basis set generated
in the static case is used in the dynamical case as well.

Beyond working well in practice, Eq. 5.4 is similar to the function routinely
used in the quantum chemistry community to extrapolate the correlation energy of
approximations based on Møller-Plesset perturbation theory and coupled cluster
theory. In these approaches the correlation energy is extrapolated to the infinite
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Figure 5.2: Correlation energy (red dots) of the formaldehyde dimer at the RPA
level of theory as a function of 1/Naux. The points correspond to the range from
Naux = 21×Nv toNaux = 70×Nv. The continuous line denotes a linear fit of the
data. The dotted and dot-dash lines show partial fits, demonstrating how rapidly
the approach converges.

basis set limit as [136, 62, 56, 36],

EX
c = E∞c +

B

X3
, (5.5)

with X denoting the cardinal number of the basis set, E∞c being its “true” correla-
tion energy evaluated at the complete basis set limit, and B being a system-, and
method-dependent constant. The number of the basis set functions is typically

NX =
1

3
(X + 1)

(
X +

3

2

)
(X + 2) , (5.6)

namely NX ∝ X3, and for sufficiently large values of NX we get to leading order

EX
c = E∞c +

B′

NX

, (5.7)

which has a form similar to Eq. 5.4. As with B above, B′ depends on the system
and method.

Alternative extrapolation techniques used in the quantum chemistry commu-
nity include expressions with variable exponents such as [121, 122],

EX
c = E∞c +

B

XC
, (5.8)
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where, typically, small deviations are observed from C = 3 (Eq. 5.5).
In standard implementations using plane-wave basis sets, the RPA correlation

energy is often extrapolated to CBS as [58],

E|G|cutc = E∞c +
B

|Gcut|3
= E∞c +

B′

NPW

, (5.9)

where |Gcut| is the maximum reciprocal lattice vector used to represent the re-
sponse function and NPW is the number of plane-waves. This is different with
respect to Eq. 5.7, where NX is the basis set used to describe the full electronic
structure and not just the dielectric matrices (which are not even used in typi-
cal coupled-cluster or Møller-Plesset perturbation theory formulations). Our im-
plementation is also based on a plane-wave basis set but the response functions
are represented on a system-dependent optimized basis set. Because of this dif-
ference, the range of values of Naux used to apply the extrapolation function in
Eq. 5.4 might be different from the range of values of NPW used for the extrapo-
lation function in Eq. 5.9. Since the basic numerical framework is the same, the
two implementations should give indistinguishable results in the CBS limit.

To complete the literature review, we mention that Björkman et al. [12] and
Gulans [55] used a different approach to converge RPA results for layered mate-
rials like hexagonal boron nitride and molybdenum di-sulphide. In these works
it was observed that the correlation energy differences of layered materials con-
verge as |Gcut|−5, and this observation was used to obtain CBS results. By using
this approach it was possible to obtain accurate CBS interaction energies with
much lower kinetic energy cut-offs (∼ 100-150 eV). However, it is not clear if
this methodology is valid in general for different classes of materials, or is a spe-
cific property of spatially infinite planar solids. Though attractive, such behavior
of correlation energy differences was not observed in our calculations.

Both approaches based on the CBS extrapolation and on the size-consistent
energy differences present advantages and disadvantages. In the case of the CBS
extrapolation, the choice of the model is to a certain extent arbitrary (for exam-
ple, Eq. 5.5 or Eq. 5.8); additionally, the final result might be affected by small
fluctuations in the correlation energies used for the fitting. On the plus side this
approach can be applied to any kind of system. By contrast, the alternative tech-
nique proposed here is not biased by the model chosen, but is based on reasonable
assumptions about size-consistency. However, this approach might suffer from
slow convergence when energy differences are computed between systems that
have a very different dielectric eigenvalue structure.

Let us consider an extreme example: the interaction between a small molecule
(monomer1), with only one occupied state, and a larger molecule (monomer2),
with nine occupied states. Specifically, we suppose that λmonomer2400 (iω) > λmonomer11 (iω),
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where λi(iω) indicates the ith dielectric eigenvalue for each system. If we com-
pute the RPA correlation energy for the corresponding dimer when the two molecules
are separated by a large distance, by using just 400 eigenvalues (40 × Nv), we
would have,

Edimer
c =

1

2

∞∫
−∞

dω

2π

400∑
i

[
ln
{

1− λdimeri (iω)
}

+ λdimeri (iω)
]

=
1

2

∞∫
−∞

dω

2π

400∑
i

[
ln
{

1− λmonomer1i (iω)
}

+ λmonomer1i (iω)
]

;

(5.10)

it is clear that in this case, the energy of the dimer is fully dominated by the
eigenvalues of the larger system. In other words, there are no eigenvalues of
monomer2 present in the eigenvalue listing of the dimer, and no error cancel-
lation can be obtained for Naux = 40 × Nv. Accordingly, convergence can be
achieved only for very large values of Naux. This slow convergence could also
appear in cases where the correlation energy difference is computed between two
systems and a corresponding complex containing the same atoms rearranged in
a significantly different structure with a significantly different dielectric eigen-
values. In this context the reaction energy test set discussed in Sec. 5.2.C could
represent a problematic example, as it contains reactants and products with differ-
ent molecular structures and possibly significantly different dielectric spectrum;
still the size-consistent energy difference method provides accurate estimates of
the reaction energies. In general, the size-consistent energy difference approach
allows for a systematic study of convergence as a function of Naux, and problem-
atic cases can be identified and potentially dealt with, a significant advantage over
the the CBS technique.

In the following section, we present the RPA and beyond-RPA interaction en-
ergy results for the A24 test set [121], for the methane-formaldehyde complex
(MFC), and for reaction energies as computed for different auxiliary basis set
sizes (Naux) with and without the extrapolation technique of Eq. 5.4. The A24
and reaction energy test sets were already considered in Chapter 4; here the dis-
cussion will be limited exclusively to the convergence properties with respect to
the auxiliary basis set.
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5.2 Numerical examples

5.2.1 A24 Test Set
To verify the energy differences, and compare the values with those obtained with
the CBS extrapolation technique, we start by considering the A24 test set proposed
by Řezáč et al., which provides interaction energies for 24 molecular dimers of
three types – hydrogen-bonded, dispersion-dominated and mixed-type [121]. A
comparison of the RPA and beyond-RPA methods with the reference CCSDT(Q)
values has been discussed in Chapter 4, and is not repeated here. Here we focus
on estimating the inaccuracies due to the use of an incomplete auxiliary basis set;
as the molecules included in the A24 are relatively small, a systematic study is
possible by increasing Naux to large values. For establishing a reference, the RPA
and beyond-RPA calculations were first performed using an auxiliary basis set size
of 70 × Nv (in Chapter 4 this number was limited to 40 × Nv for most systems)
and then the absolute values of the correlation energies were extrapolated to CBS
using Eq. 5.4 with 30 points from 41×Nv to 70×Nv. Although small numerical
fluctuations might still be present, this procedure, by including a large number
of points in the fitting and a large Naux, provides reasonably accurate reference
values to study the convergence of RPA and beyond-RPA methods.

The choice of the 41Nv− 70Nv CBS value as a reference will also be used for
the other numerical examples considered in the following subsections. As we will
consider below values from size-consistent energy differences and CBS extrapo-
lations from different intervals of Naux, it is important to keep in mind that our
specific choice of the reference introduces a bias in favor of CBS results, which in
general will be characterized by a more regular and predictable convergence.

In the following we study the level of convergence of CBS values obtained by
extrapolating 20 points in three different ranges: Naux/Nv = 11-30, 21-40, and
31-50. We compare these results with size-consistent energy differences com-
puted at Naux/Nv = 30, 40, and 50 by using the procedure discussed in Sec. 5.1.
For convenience, we denote withECBS(n,m)

A the CBS interaction energy computed
by extrapolating 20 correlation energies between Naux = n × Nv and m × Nv

at the A level of theory (A = RPA, eh-TDHF, or AC-SOSEX); more specifi-
cally, Eq. 5.4 was used to obtain CBS correlation energies for each system (dimer
and monomer) and these values were then used to compute correlation energies.
Similarly, ENaux=nNv

A corresponds to the non-extrapolated (namely based on size-
consistent energy differences) interaction energy at the A level of theory obtained
with Naux = n×Nv.

The top panel of Fig. 5.3 shows the mean absolute errors (MAE) with re-
spect to ECBS(41,70)

RPA for the RPA interaction energies obtained from the CBS for
three different intervals, ECBS(11,30)

RPA , ECBS(21,40)
RPA , and ECBS(31,50)

RPA , and obtained
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Figure 5.3: Mean absolute errors (MAEs) of RPA (red), eh-TDHF (blue) and AC-
SOSEX (green) for the A24 test set interaction energies using CBS extrapolations
for ECBS(11,30), ECBS(21,40), and ECBS(31,50), and size-consistent energy differ-
ences for ENaux=30, ENaux=40, and ENaux=50. The ECBS(41,70) interaction energy
was used as a reference (see text).
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from energy differences for three different values of Naux, ENaux=30
RPA ,ENaux=40

RPA ,
and ENaux=50

RPA . In the middle and lower panels of Fig. 5.3, analogous results are
shown for the eh-TDHF and AC-SOSEX methods respectively. From the three
panels, we observe that the MAEs are rather small in all cases. However, consid-
ering the small energy scales involved in the A24 test set (the average interaction
energy at the CCSDT(Q) level of theory is about 2 kcal/mol [121]), a high level
of convergence is also particularly important. By considering Fig. 5.3 we can no-
tice that: (1) RPA presents larger MAEs than the beyond-RPA methods, hinting
that its convergence is slower and/or less stable; this empirically observed behav-
ior might be related to a reduced cusp problem in beyond-RPA approximations,
although further investigation will be necessary in the future for a better under-
standing; (2) if the maximum value for Naux is the same, results based on the
CBS extrapolation or on the energy differences have similar accuracy; (3) MAEs
systematically decrease by increasing the maximum value of Naux; (4) the value
of Naux = 40×Nv used previously in Chapter 4 to compute interaction energies
provides a good level of accuracy, especially for the beyond-RPA methods.

According to this discussion for the A24 test set, the CBS results and the
size-consistent energy differences have similar convergence rates and the two
approaches are equivalent for most practical calculations. However, the size-
consistent energy differences have the advantage of not being biased by the choice
of a particular function to extrapolate to CBS.

5.2.2 Methane-Formaldehyde Complex
To further study the convergence rate of the RPA and beyond-RPA methods with
respect to the auxiliary basis set size, we computed six points on the potential
energy surface (PES) of the methane-formaldehyde complex (MFC). For these
points accurate coupled-cluster benchmark results have been recently published [96].
The numerical results for the MFC complex are also based on FHI norm-conserving
pseudopotentials. This system allows us to verify the accuracy of the RPA and
beyond-RPA methods and the reliability of the convergence techniques discussed
in Sec. 5.1 also for the case of out-of-equilibrium geometries. As in the case of the
A24 test set, we use ECBS(41,70) energies as the reference and we test the conver-
gence of the CBS extrapolated values for three intervals, ECBS(11,30), ECBS(21,40),
and ECBS(31,50), and the energy differences at three values of Naux, ENaux=30Nv

RPA ,
ENaux=40Nv

RPA , and ENaux=50Nv
RPA . In Fig. 5.4 we present the corresponding MAEs

for the RPA, the eh-TDHF, and the AC-SOSEX. For the MFC, the MAEs de-
crease by increasing the value of Naux, as was observed with the A24 test set. In
contrast though, the convergence of energy differences significantly outperform
CBS extrapolations for the beyond-RPA methods, whereas the converse is true
for the RPA. To a certain extent this behavior can be interpreted by considering
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that size-consistent energy differences benefit from error cancellations, whereas
the CBS extrapolations are sensitive to small fluctuations in the data. If for ex-
ample we consider ECBS(41,60)

RPA , which includes a subset of the points used for
the reference ECBS(41,70)

RPA , the MAE actually increases to 0.07 kcal/mol, showing
that small fluctuations influence the CBS extrapolation. On the other hand, the
MAE on the energy differences continues to decrease with an increase in Naux,
reaching a value of 0.12 kcal/mol for ENaux=60Nv

RPA . Thus, the convergence of the
RPA is slower and more unstable, similar to that observed for the A24 test set.
For the beyond-RPA methods, convergence is instead more systematic, with both
approaches leading to similar results for sufficiently high values of Naux. The
method based on size-consistent energy differences is thus confirmed as a reliable
and unbiased approach for the MFC as well, in particular, for the eh-TDHF and
AC-SOSEX methods.

Fig. 5.5 shows the CBS results for the MFC PES compared to CCSD(T) ref-
erence values [96]. The RPA and beyond-RPA methods all capture the PES cor-
rectly, with the correct ordering in energy of the configurations. With respect
to the coupled-cluster reference the mean absolute error for the RPA is 0.085
kcal/mol. This value reduces to 0.061 and 0.066 kcal/mol for the eh-TDHF and
AC-SOSEX respectively, highlighting the accurate nature of these methods. How-
ever, the convergence of RPA results is more problematic and, by considering the
small energy scales involved in this PES, the eh-TDHF and AC-SOSEX results
are certainly more reliable.

5.2.3 Reaction energies
After considering weakly bound systems, in this section we discuss results for the
reaction energy test set by Hesselmann [65], which involves the breaking and for-
mation of covalent bonds. While results for this test set were previously presented
in Chapter 4, here we extend the auxiliary basis set up to 70 × Nv and compare
extrapolated results with energy differences. Studying this test set is particularly
interesting, since going from the reactants (e.g. HCOOH and NH3) to the prod-
ucts (e.g. HCONH2 and H2O) involves the breaking and formation of covalent
bonds. Accordingly, reactants and products could have a rather different struc-
ture of the dielectric eigenspectrum and this could represent a challenge for the
size-consistent energy difference method.

In Fig. 5.6 we present the MAEs obtained at the RPA, the eh-TDHF, and the
AC-SOSEX levels of theory. As for the weakly bound systems, the MAEs are
computed with respect to the ECBS(41,70) extrapolated value. Not surprisingly for
this test set the deviation between CBS and size-consistent energy differences is
more sizeable than for the weakly-interacting systems. A few observations are
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Figure 5.4: Mean absolute errors (MAEs) of RPA (red), eh-TDHF (blue) and
AC-SOSEX (green) for the methane-formaldehyde complex interaction ener-
gies using CBS extrapolations for ECBS(11,30), ECBS(21,40), and ECBS(31,50), and
size-consistent energy differences for ENaux=30, ENaux=40, and ENaux=50. The
ECBS(41,70) interaction energy was used as a reference (see text).
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Figure 5.5: Potential energy surface points (kcal/mol) of the methane-
formaldehyde complex at the extrapolated RPA (red), eh-TDHF (blue) and AC-
SOSEX (green) levels of theory compared with the CCSD(T) values (black).

important for a full understanding of the results in Fig. 5.6: (1) As the average
reaction energy at the CCSDT(Q) level of theory is about 29 kcal/mol, the energy
scales involved in this test set are usually larger than for weakly interacting sys-
tems and, accordingly, higher errors can be tolerated; (2) As mentioned before,
the use of an ECBS(41,70) reference is to some extent arbitrary and creates a bias in
favor of the CBS results; by using ENaux=70 as a reference instead, the behavior
shown in Fig. 5.6 would be swapped, with the size-consistent energy difference
method showing a faster convergence; (3) The MAE of ENaux=70 with respect
to ECBS(41,70) (or vice versa) is within 0.09 kcal/mol for all the approximations
and this observation point to the fact that the two methods studied in this work
converge to the same values.

According to this discussion, the size-consistent energy difference method
works well also beyond the expected range of applicability. The convergence
of correlation energies for applications involving the breaking and formation of
covalent bonds is more problematic but can achieve a good level of reliability.

5.3 Conclusions
We analyzed the basis set convergence of the RPA, eh-TDHF, and AC-SOSEX
methods. Specifically, two techniques were used to converge correlation ener-
gies: one based on a complete basis set extrapolation, and the other that converges
energy differences by accounting for the size-consistency property. These two
methods were tested by considering the A24 test set and six points on the poten-
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Figure 5.6: Mean absolute errors (MAEs) of RPA (red), eh-TDHF (blue) and AC-
SOSEX (green) for the reaction energy test set of Hesselmann [65] using CBS
extrapolations for ECBS(11,30), ECBS(21,40), and ECBS(31,50), and size-consistent
energy differences for ENaux=30, ENaux=40, and ENaux=50. The ECBS(41,70) inter-
action energy was used as a reference (see text).
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tial energy surface of the methane-formaldehyde complex. It was found that both
the CBS extrapolation and size-consistent energy differences converge to similar
results at similar speeds as a function of the auxiliary basis set size. It was also
shown that the RPA is in general characterized by a slower convergence than the
beyond-RPA methods. At least for the weakly bound systems considered in this
manuscript, the two approaches have been found to be equivalent for practical pur-
poses. If the breaking and formation of covalent bonds is involved, convergence
is less trivial but satisfactory levels of accuracy can be reached.

The size-consistent energy difference technique represents a new and alterna-
tive scheme to conventional basis set extrapolation for converging results of corre-
lated methods within a dielectric matrix formulation. While possibly less general
than the CBS extrapolation, this approach has the advantage of not relying on any
assumption on the model used for the fitting.



Chapter 6

Applications to realistic systems by
machine learning thermodynamic
perturbation theory

This chapter is based on original work previously published in Refs. [125, 20].

Up to this point we have discussed new approximations for the electronic cor-
relation that hold the promise for a higher level of accuracy than traditional DFT
approximations but involve a significantly high computational cost. Additionally,
the implementation of analytical gradients, necessary for geometry optimizations
or molecular dynamics, is challenging for these methods and further increases the
computational requirements. Accordingly, RPA molecular dynamics are by far
too expensive to be routinely used in applications that require higher levels of ac-
curacy. In this chapter we will consider examples of computations of adsorption
enthalpies in zeolites. Directly performing a RPA ab initio molecular dynamics
(AIMD) for these systems is estimated to require several tens of millions of CPU
hours. In order to compute finite-temperature properties at the RPA level of theory
in a simple and numerically efficient way, here we discuss the MLPT method, that
couples machine learning (ML) techniques with thermodynamic perturbation the-
ory (TPT). The numerical applications of this methodology presented below show
that a high level of accuracy can be achieved by training a ML model with as few
as 10 RPA energies. The MLPT approach represents an important step towards
the possibility of applying the RPA and other high-accuracy/high-cost ab initio
methodologies to reach a new level of reliability in finite-temperature materials
simulations.

67
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6.1 Methodological approach: Machine learning ther-
modynamic perturbation theory

Since the work of Behler and Parrinello (BP) in 2007 [10] the use of ML algo-
rithms in MD simulations is growing in popularity [24, 23, 152, 9]. In the BP ap-
proach and its variants, a certain number of configurations of a system is generated
by performing a relatively short MD simulation or by properly sampling the con-
figuration space. A ML learning model, usually a neural network (NN), is trained
on the energies and/or forces computed for these configurations. A full molecu-
lar dynamics (MD) simulation is then performed by using the previously trained
neural network. At each step of the MD simulation, instead of directly solving the
Schrödinger equation, forces and energies are inexpensively “predicted” by the
ML model and used to generate the configuration in the next step. In this way the
timescale accessible by a typical MD run is significantly increased while keeping
to a large extent the accuracy of an ab initio simulation. However, the training of a
ML learning algorithm for a MD simulation typically requires thousands or even
tens of thousands of configurations and, accordingly, the BP approach is almost
exclusively trained on DFT energies and/or forces.

Similarly to the BP approach, here we use a ML learning regression model
to predict the energy surface from a certain number of training examples. Differ-
ently from the BP approach, this model is not used to perform a full MD simula-
tion but it is rather coupled with thermodynamic perturbation theory, whose brute
force application also requires an impractically high number of RPA calculations.
The corresponding MLPT calculation is executed in the following steps: (1) an
AIMD simulation is performed using a numerically affordable DFT functional;
(2) a small number Ntrain of configurations generated by the initial MD is se-
lected and RPA calculations are performed on them; (3) a ML model is trained on
the selected configurations to predict the RPA energies for all the remaining con-
figurations; (4) based on TPT, the contributions from the configurations generated
at step 1 are reweighted using the predicted energies and RPA ensemble averages
are computed. For the specific objective of this work, the present MLPT approach
has the following advantages with respect to BP MD: (1) The ML regression algo-
rithm is exclusively trained on energies; this is useful since most condensed phase
implementations of correlated methods do not support the calculation of analytical
gradients. (2) The implementation is easier, since the BP method requires also the
derivative of the ML model with respect to atomic positions in order to compute
forces. (3) The accuracy of the ML predictions can be enhanced in a straightfor-
ward way by using a ∆-machine learning approach [115], which trains the model
on energy differences instead of total energies (see Sec. 6.1). In the two following
subsections we discuss the technical details of thermodynamic perturbation theory
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and machine learning that are at the base of the MLPT method.

6.1.1 Thermodynamic perturbation theory
Starting from a molecular dynamics driven by a numerically inexpensive approx-
imation, our goal is to use thermodynamic perturbation theory (TPT) to obtain
finite-temperature observables at a high level of theory. This methodology is
general but for the specific numerical applications of this manuscript the van der
Waals corrected PBE+D2 functional [53, 106] will be used as a (cheap) starting
point to compute RPA ensemble averages.

A general review of TPT in the context of classical MD can be found e.g. in
Refs. 22, 114. Here we will discuss the main ideas necessary to understand the
MLPT method. Molecular dynamics is used to evaluate the finite-temperature
expectation values of a certain observable O:

〈O〉H =

∫
O(q,p)exp {−βH(q,p)} dq dp∫

exp {−βH(q,p)} dq dp
, (6.1)

where 〈. . .〉H is used to compactly denote the average over the canonical ensemble
corresponding to the Hamiltonian H , β = 1/kB T , and q and p denote nuclear
positions and momenta, respectively. In Eq. 6.1 the nuclear motion is driven by
the classical Hamiltonian

H(q,p) = T (p) + V (q), (6.2)

where T (p) is the nuclear kinetic energy and V (q) is the potential acting on the
nuclei. Here we will focus on AIMD, where the potential V (q) is determined by
the solution of the electronic Schrödinger equation within different approxima-
tions, usually based on DFT:

V (q) =〈Ψ(q)|ĤDFT |Ψ(q)〉+ UII(q), (6.3)

where UII is the repulsive nuclear energy and ĤDFT is the electronic DFT Hamil-
tonian (not to be confused with the classical HamiltonianH). As explained above,
our main goal is to use thermodynamic perturbation theory to compute observ-
ables within a sophisticated quantum chemical approximation (e.g. the RPA)
starting from a molecular dynamics driven by a computationally “cheap” DFT
approximation (e.g. PBE+D2). Below the Hamiltonian H and the corresponding
potential V will be associated with the less expensive quantum-mechanical ap-
proximation while primed quantities (H ′ and V ′) will be associated with the more
expensive approach. By using the identity

H ′(q,p) = H(q,p) + V ′(q)− V (q) = H(q,p) + ∆V (q), (6.4)
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the average of the observable O(q,p) over the ensemble corresponding to H ′ can
be written as

〈O〉H′ =

∫
O(q,p)exp {−βH ′(q,p)} dq dp∫

exp {−βH ′(q,p)} dq dp

=

∫
O(q,p)exp {−β∆V (q)} exp {−βH(q,p)} dq dp∫

exp {−β∆V (q)} exp {−βH(q,p)} dq dp

=
〈Oexp {−β∆V }〉H
〈exp {−β∆V }〉H

, (6.5)

which provides the main result of TPT used in this discussion. This equation has
important theoretical and practical implications, showing that the ensemble aver-
age 〈O〉H′ can be redefined in terms of an ensemble average corresponding to H;
this is achieved through the reweighting factor exp {−β∆V }. From a numerical
point of view Eq. 6.5 implies that the statistics sampled by a MD driven by H can
be used to obtain finite-temperature expectation values corresponding to H ′. This
is a crucial point since directly performing a MD based on H ′ would be extremely
costly if feasible at all.

From a practical point of view, in order for the perturbative procedure in
Eq. 6.5 to be effective, it is necessary that a MD driven by H would sample a
configurational space that is similar to that sampled by an hypothetical H ′ MD. If
the corresponding high probability ensembles are disjoint or only partially super-
imposed, the perturbative approach will have low accuracy. A detailed discussion
of this issue can be found in Refs. 22, 114. Following Ref. 125, we suppose that
PBE+D2 represents a reliable starting point for RPA.

In this manuscript the TPT formalism will be applied to the specific problem
of computing adsorption energies in zeolites at the RPA level of theory. The ad-
sorption enthalpy can be computed as

∆adsH(T ) = 〈V ′S+A〉H′ − [〈V ′S〉H′ + 〈V ′A〉H′ ]− kBT, (6.6)

where S denotes the clean substrate (a zeolite in this case) and A the adsorbate;
the values of 〈V ′〉H′ can be obtained from Eq. 6.5 for the specific case O = V ′.
In order to evaluate numerically the ensemble averages in practical numerical cal-
culations, a MD based on H is first performed and then the ensemble average is
computed as

〈V ′〉H′ ≈
∑Ntot

i=1 V
′
i exp {−β(V ′i − Vi)}∑Ntot

i=1 exp {−β(V ′i − Vi)}
=

∑Ntot

i=1 V
′
i exp {−β∆Vi}∑Ntot

i=1 exp {−β∆Vi}
, (6.7)

where the index i runs over all the Ntot configurations generated by the produc-
tion MD run. Since in the MD simulations considered below Ntot = 190000,
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Eq. 6.7 highlights the limited practical applicability of TPT alone. Indeed, even
by considering a smaller subset of uncorrelated configurations, several thousands
of calculations of V ′ (namely of RPA total energies) are expected to be neces-
sary to reach convergence. This issue can be significantly alleviated by using a
ML regression algorithm. Within this approach only few V ′i ’s are explicitly com-
puted and used to train a ML model; all the remaining values up to Ntot are then
predicted at a negligible computational cost.

6.1.2 Machine Learning approach
In order to significantly decrease the number of expensive calculations (i.e. based
on the RPA) required to apply thermodynamic perturbation theory, we propose the
use of a ML regression model. To this purpose we chose the smooth overlap of
atomic positions (SOAP) [5, 26] as descriptor for the geometric configurations and
the kernel ridge regression (KRR) [130] as ML algorithm to predict total energies.
This choice, that allowed us to reach a satisfactory level of accuracy, was partially
driven by a recent comparative study that reported a good performance of SOAP in
predicting adsorption energies of hydrogen on nanoclusters [72]. Several other de-
scriptors for periodic materials have also been proposed in the literature, such as,
for example, the many-body tensor representation (MBTR) [71] or atom-centered
symmetry functions (ACSF) [8]. While a systematic comparison of different ML
approaches is beyond the purpose of this discussion, other descriptors and/or ML
algorithms might also perform well for the problem we are considering.

Below we summarize the main ideas of the SOAP and KRR approaches; a
more detailed presentation can be found in Refs. 5, 130, 26. The numerical
implementation of the ML models considered here is based on the DScribe li-
braries [69]1.

For a structure A of a given material let us define an environment XA
i that

includes the atoms surrounding a specific atom i within a certain radius. The
density of the atoms ρ in the environment XA

i is defined as a sum of Gaussians

ρXA
i

(r) =
∑
j∈XA

i

exp

{
−(r− xj)

2

2σ2

}
, (6.8)

where the Gaussians of variance σ2 are centered at the positions xj of all the
atoms in the environment XA

i (including the central one). For systems containing
different atomic species, as those considered here, a different environment has to
be defined for each species. The SOAP kernel is then defined as an overlap integral
of the densities of different environments, possibly from different structures A and

1The DScribe libraries are available at https://github.com/SINGROUP/dscribe
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B:

k̃(XA
i ,XB

j ) =

∫
dR̂

(∫
ρXA

i
(r)ρXB

j
(R̂r)dr

)2

, (6.9)

where the first integral is performed over the three-dimensional rotations, as re-
quired in order to have a rotationally invariant representation. For practical pur-
poses a normalised version of the kernel in Eq. 6.9 is typically used:

k(XA
i ,XB

j ) =
k̃(XA

i ,XB
j )√

k̃(XA
i ,XA

i )k̃(XB
j ,XB

j )
. (6.10)

This normalized kernel provides a measure of similarity since the maximum value
(one) is attained when the two environments XA

i and XB
j are identical (indepen-

dently of rotation and translations of the environment). Because of the specific
form of the density of atoms, expressed as an expansion of Gaussians, the integral
over the rotations in Eq. 6.9 can be carried out analytically. This is achieved by
using a basis of spherical harmonics and the corresponding formalism is discussed
in details in Refs. 5, 26.

The kernels introduced in Eqs. 6.9-6.10 can be used to compare environments
surrounding specific atoms and, in this respect, describe only a local similarity.
For our specific purpose it is necessary to determine the similarity among different
structures (all with the same chemical composition) generated by a MD simula-
tion. This global information is included in the full covariance matrix C(A,B),
whose elements

Cij(A,B) = k(XA
i ,XB

j ) (6.11)

contain all the possible pairings of environments belonging to structure A and
to structure B. Based on the matrix in Eq. 6.11 different global kernels can be
defined. For our purpose the regularized entropy match (REMatch) kernel will
be used, that is typically coupled with SOAP descriptors [5, 26]. The REMatch
kernel is defined as

Kγ(A,B) = TrPγC(A,B), (6.12)

where P is a doubly stochastic matrix that satisfies the condition

Pγ = arg min
P

∑
i,j

Pij(1− Cij + γlnPij), (6.13)

and γ is a hyperparameter that controls the entropic contribution.
The REMatch kernel in Eq. 6.12 can then be coupled with the kernel ridge re-

gression ML algorithm. Since our purpose is to predict RPA total energies for the
configurations generated by a PBE+D2 MD, a certain number of configurations
Ntrain is selected to train the ML model (the specific selection criterion used will
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be discussed later). From these Ntrain configurations the REMatch kernel Kγ
train

is built and used to train the ML model:

w = (Kγ
train + λ1)−1ytrain (6.14)

where ytrain in this case contains the RPA energies corresponding to the configu-
rations in the training set and λ is a regularization hyperparameter used to prevent
overfitting. The weights w determined by Eq. 6.14 are then used to predict the
RPA energies for all the remaining Npredict = Ntot − Ntrain configurations in the
MD:

ypredict = Kγ
predictw, (6.15)

where ypredict contains the predicted energies and Kγ
predict is the Npredict×Ntrain

REMatch kernel.
As RPA calculations are highly expensive it is crucial to develop a ML model

that can be trained with a number of configurations which is as small as possible.
Indeed, Ntrain explicit RPA calculations are required while the remaining Npredict

are inexpensively predicted by Eq. 6.15. To this purpose it is useful to use the
energy difference ∆Vi = V ′i −Vi as a variable for training rather than the absolute
energy V ′i . Indeed, the energy difference ∆Vi has a much smoother behavior than
V ′i and the error on the prediction can be lowered by one order of magnitude with
respect to a ML model that uses total energies. This idea is based on the ∆-
machine learning approach [115]. For example, for CH4 adsorbed in protonated
chabazite (see Sec. 6.2), ∆Vi (and, correspondingly, V ′i ) can be predicted with a
root mean square error of about 0.4 kcal/mol by using only Ntrain = 10 and with
a systematic decrease of the error as a function of Ntrain.

6.1.3 Statistical error evaluation
The accuracy of a ML model is characterized by a statistical error that can be
possibly decreased by increasing the quantity of data used for training. In our
specific case the energies V ′i or, equivalently, the energy differences ∆Vi are pre-
dicted with a statistical error that has implications on the estimate of the internal
energy (Eq. 6.7) and enthalpy (Eq. 6.6).

As a starting point for our discussion it is necessary to determine the error
involved in the prediction of ∆Vi and V ′i . To this purpose the root mean square
error (RMSE) of the predicted energies with respect to the exact RPA results is
computed for a small test set. This set includes configurations that are reasonably
independent and uncorrelated with respect to configurations used for training the
ML model (see Sec. 6.2 for additional details). Since the prediction is not biased
(mean error is always well below 0.1 kcal/mol), the RMSE can be interpreted as
the standard deviation of the distribution of the residuals in the regression model
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and will be denoted by s. The RMSE in the prediction of the RPA energies of in-
dividual configurations leads to both a systematic and random error in the internal
energy expressed by Eq. 6.7.

To discuss the systematic error we will split the ensemble energy in Eq. 6.7
into two contributions

〈V ′〉H′ =

∑Ntot

i=1 Viexp {−β∆Vi}∑Ntot

i=1 exp {−β∆Vi}
+

∑Ntot

i=1 ∆Viexp {−β∆Vi}∑Ntot

i=1 exp {−β∆Vi}
= f1 + f2 (6.16)

and we will focus on the last term f2 that depends only on ∆Vi. Because of the
statistical error associated with the machine learning model, we suppose that the
exact ∆Vi is replaced by values E normally distributed with variance s2:

P (E) = Kexp
{
−(E −∆Vi)

2

2s2

}
, (6.17)

where K is a normalizing factor. The estimate of f2 that keeps into account this
distribution can be written in the following way:

f̃2 =

∑
i

∫
dE E exp {−βE} × exp

{
− (E−∆Vi)

2

2s2

}
∑

i

∫
dE exp {−βE} × exp

{
− (E−∆Vi)2

2s2

}
=

∑
i

∫
dE E exp {−β∆Vi} × exp

{
− (E−∆Vi−βs2)2

2s2

}
∑

i

∫
dE exp {−β∆Vi} × exp

{
− (E−∆Vi−βs2)2

2s2

}
=

∑
i

∫
dE ′(E ′ + βs2)exp {−β∆Vi} × exp

{
− (E′−∆Vi)

2

2s2

}
∑

i

∫
dE ′ exp {−β∆Vi} × exp

{
− (E′−∆Vi)2

2s2

}
= f2 + βs2, (6.18)

where the sum over i is implicitly intended between 1 and Ntot. Here f2 is the
reweighted average obtained using the exact energy differences ∆Vi while f̃2 is
based on the values of ∆Vi predicted by a ML algorithm that introduces a random
statistical error. Accordingly, when ML and TPT are coupled, a systematic error
of βs2 in the prediction of ensemble averages has to be expected. In the assump-
tion that the residuals are normally distributed and that the variance s2 is known,
this bias can be easily evaluated using Eq. 6.18. The results that will be discussed
below have all been corrected for this systematic error. The value of s and, con-
sequently, of βs2 decreases by increasing the number of training examples Ntrain.
For example, if we consider CH4 adsorbed in protonated chabazite (see Sec. 6.2
and in particular Table 6.1) the βs2 correction is 0.33 kcal/mol for Ntrain=10 and
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0.07 kcal/mol for Ntrain=200. By the same logic, it is easy to see that f̃1 = f1

and hence the first term on the right hand side of Eq. 6.16 is unaffected by the
systematic error arising from s.

We now consider the evaluation of the random error in the ensemble averages
associated with the ML model. To this purpose it is important to notice that Eq. 6.7
is a non linear function of V ′i and, accordingly, an error propagation formula based
on first derivatives will be used here. We have that the standard error δML in the
ensemble average is

δML =

√√√√Ntot∑
i=1

(
∂〈V ′〉H′

∂V ′i

)2

s2
V ′
i

= s

√√√√Ntot∑
i=1

(
∂〈V ′〉H′

∂V ′i

)2

(6.19)

where sV ′
i

= s is the standard deviation of the V ′i ’s distribution and the derivative
is explicitly given by

∂〈V ′〉H′

∂V ′i
= wi (1− βV ′i + β〈V ′〉H′) , (6.20)

where we defined the weight

wi =
exp {−β(V ′i − Vi)}∑Ntot

i=1 exp {−β(V ′i − Vi)}
. (6.21)

In all calculations discussed further, δML is typically much smaller than s.
Finally, we discuss the source of random error that is associated with the finite

sample size. This error is not related to the ML approach but is typical of MD
simulations, which span a finite time interval. As the term 〈V ′〉H′ in Eq. 6.7 can
be considered as a weighted average of the form

〈V ′〉H′ =
Ntot∑
i=1

V ′i wi (6.22)

with the weight wi defined in Eq. 6.21, the corresponding statistical error can be
estimated using the standard formula [44]

δs =

√√√√ Ns

(Ns − 1)

Ns∑
i=1

w2
i (V ′i − 〈V ′〉H′)2, (6.23)

where Ns � Ntot is the number of uncorrelated samples. In practice, the latter
can be identified e.g. by the block method of Flyvbjerg and Petersen. [37, 38].
The value of δs depends on the length and the quality of the MD trajectory and
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it can, in principle, be made arbitrarily small by performing a sufficiently long
simulation.

In our numerical examples discussed below, the error bars are evaluated as

δ =
√
δ2
ML + δ2

s (6.24)

where δML is defined in Eq. 6.19 and δs in Eq. 6.23. The values of δs are in all
cases discussed in Sec. 6.2 significantly larger than those of δML and hence the
former term represents a dominant contribution to δ.

6.2 RPA enthalpies of adsorption in zeolites
In order to establish the accuracy and efficiency of the MLPT methodology we
consider the calculation of molecular enthalpies of adsorption in zeolites, which
are porous materials used in many applications [138] such as depollution [21, 17,
67], separation of chemicals [110, 88, 76], and catalysis [52, 18, 83]. Specifically,
we consider four applications involving CH4 and CO2 in protonated chabazite (de-
noted as HCHAB) and siliceous chabazite (CHAB). The four corresponding ad-
sorbed systems will be indicated as HCHAB+CH4, HCHAB+CO2, CHAB+CH4,
and CHAB+CO2. The HCHAB+CH4 example will be discussed in more detail
to describe the numerical properties of the MLPT approach. The corresponding
periodic model is shown in Fig. 6.1.

Figure 6.1: Periodic model used for CH4 adsorbed in protonated chabazite. The
unit cell used in our calculations is shown by solid lines.

Following Ref. 125 we used MD trajectories based on the vdW corrected
PBE+D2 functional [53, 106] as a starting point for the MLPT method. MD sim-
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Table 6.1: RMSE (kcal/mol) in the prediction of RPA energies of the
configurations of protonated chabazite (HCHAB), CH4, and adsorbed system
(HCHAB+CH4) as a function of the number of training structures Ntrain. The
RMSE is estimated on a test set of 20 configurations (see text).

Ntrain HCHAB+CH4 HCHAB CH4

10 0.45 0.34 0.03
25 0.36 0.30 0.01
50 0.29 0.26 0.01

100 0.24 0.23 0.01
200 0.21 0.20 0.01

ulations were performed in the NVT ensemble. Temperature was set to 300 K and
the length of trajectories was fixed at 100 ps with an integration step of 0.5 fs. In
a production period succeeding the equilibration length of 5 ps, a total of 190,000
configurations were generated.

The first step of the MLPT is the selection of a proper training set with Ntrain

elements. Since configurations along a MD trajectory are time correlated, we
select configurations that are as distanced as possible in time. For example,
Ntrain=10 indicates that out of the 190,000 configurations one configuration every
19,000 is selected to obtain a total of 10 training structures. Five training sets
are considered here with Ntrain = 10, 25, 50, 100, and 200. Additionally, a test
set of 20 configurations is selected to estimate the RMSE in the prediction of the
machine learning model. Those configurations are chosen randomly but with the
constraint of being at a distance of at least 350 time steps from the geometries
contained in the largest training set (Ntrain=200). In this way the test and training
sets are reasonably independent. For the HCHAB+CH4 system the RMSE error
(also denoted with s) in the prediction of the RPA energies of configurations is
shown in Table 6.1. The RMSE clearly decreases by increasing the number of
training examples Ntrain.

Since configurations are selected using time separation as a criterion it is also
important to understand to which extent they span the geometric space. This is
particularly important for the adsorbed systems, where the molecule can move
rather freely in the cage of the zeolite. If certain parts of the configurational space
do not have representative structures included in the training set, the ML learn-
ing model might have limited predictive power in these regions. Fig. 6.2 helps
visualizing the selected configurations for HCHAB+CH4 using the t-Distributed
Stochastic Neighbor Embedding algorithm (t-SNE) [87]. t-SNE is an unsuper-
vised learning method that allows for a dimensionality reduction to visualize high-
dimensional data: Points that are closer in the high-dimensional space have higher
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Table 6.2: RPA internal energies and enthalpy of adsorption (kcal/mol) of pro-
tonated chabazite (HCHAB), CH4, and adsorbed system (HCHAB+CH4) as esti-
mated by MLPT for different values of Ntrain.

Ntrain HCHAB+CH4 HCHAB CH4 ∆ads H
10 -21398.01 ± 0.19 -20213.82 ± 0.13 -1181.05 ± 0.02 -3.74 ± 0.23
25 -21398.13 ± 0.21 -20213.94 ± 0.13 -1181.07 ± 0.02 -3.72 ± 0.25
50 -21398.17 ± 0.21 -20213.99 ± 0.13 -1181.06 ± 0.02 -3.72 ± 0.25

100 -21398.13 ± 0.21 -20213.93 ± 0.12 -1181.06 ± 0.02 -3.74 ± 0.24
200 -21398.15 ± 0.20 -20213.95 ± 0.12 -1181.06 ± 0.02 -3.74 ± 0.23

probability to be closer in the reduced two-dimensional space used for the plot.
In order to generate Fig. 6.2, t-SNE is used to visualize the SOAP descriptors
generated by considering only the carbon environment of CH4 in HCHAB+CH4.
In this way the analysis is focused on the diffusion of the molecule in the zeolite
rather than on the full system, that contains many more environments and degrees
of freedom. Fig. 6.2(b) shows the configurations in the Ntrain = 200 training set
with respect to the total number of configurations. The sampling is uniform and
all the regions of the configuration space are fairly well represented by the training
set. For Ntrain = 25 (Fig. 6.2(a)) the sampling is less satisfactory but, as shown
below, the model can still be predictive. This is likely to be related to the use of
the ∆-ML approach. Indeed, the model is trained on energy differences ∆V and
a large contribution to the RPA total energy is already provided by the PBE+D2
total energy, whose exact value is available from the initial MD trajectory.

Detailed MLPT numerical results for CH4 adsorbed in protonated chabazite
are presented in Table 6.2, where values for the RPA ensemble averages of each
system (CH4, protonated chabazite, and adsorbed system) and enthalpies of ad-
sorption (in kcal/mol) are reported. Results are rather stable with respect to
the Ntrain variation and all the values of internal energies are well within a 0.2
kcal/mol interval. As few as 10 configurations can already provide highly accu-
rate estimates of the RPA enthalphy of adsorption. As explained in Sec. 6.1, these
values have been corrected for the systematic error βs2 (see Eq. 6.18). This cor-
rection ranges from 0.33 kcal/mol (Ntrain=10) to 0.07 kcal/mol (Ntrain = 200).
The table reports also error bars ±δ associated with random errors Eq. 6.24. The
values of δ are rather insensitive to the change of Ntrain; this is mostly due to
the fact that the finite sampling component δs, which is independent of Ntrain,
provides a larger contribution than δML.

In order to highlight the importance of the ML approach in providing con-
verged values for RPA internal energies and enthalpies, in Table 6.3 we present
the results that would be obtained by applying thermodynamic perturbation the-
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(a)

(b)

Figure 6.2: For HCHAB+CH4 the dimensionality reduction t-SNE algorithm is
used to visualize the configurations selected to train the machine learning model
(in red) with respect to the total set of configurations (in blue). (a) Ntrain = 25;
(b) Ntrain = 200.
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Table 6.3: RPA internal energies and enthalpy of adsorption (kcal/mol) of pro-
tonated chabazite (HCHAB), CH4, and adsorbed system (HCHAB+CH4) as es-
timated by a brute force application of thermodynamic perturbation theory for a
small number of configurations Nconf . Differently from Table 6.2, the ML ap-
proach is not applied in this case, causing thus a dramatic deterioration of conver-
gence.

Nconf HCHAB+CH4 HCHAB CH4 ∆ads H
10 -21401.99 -20213.75 -1180.97 -7.88
25 -21398.81 -20214.22 -1181.27 -3.91
50 -21399.19 -20214.20 -1181.24 -4.34

100 -21398.06 -20214.56 -1181.32 -2.78
200 -21398.41 -20214.56 -1181.16 -3.28

ory only on the small set of training configurations. Namely, in this case no ML
model is used and, for example, Nconf = 100 means that TPT includes only the
100 configurations computed explicitly. Since configurations along a MD trajec-
tory are time correlated, it is reasonable to expect convergence with a relatively
small subset of configurations, as assumed in Ref. 33. However, as shown in Ta-
ble 6.3 this is not the case for the sets considered in this work. For example, even
the largest set Nconf = 200 still predicts results for the enthalpy of adsorption that
deviate by about 0.5 kcal/mol with respect to the most converged MLPT values
in Table 6.2. Importantly, the enthalpies ∆adsH in Table 6.3 strongly oscillate and
no convergence can be inferred from these results.

Finally, in Table 6.4 we summarize the RPA enthalpies of adsorption (in kcal/mol)
as functions of Ntrain for the all four systems considered in this work. The RPA,
which is often considered a reference method for periodic condensed matter ap-
plications, provides systematically accurate estimates within chemical accuracy
in comparison to experiments. The tendency to slightly underestimate is a well
known behavior of the RPA [120]. Enthalpies obtained from the PBE+D2 MD
are instead less consistent, with large deviations for the adsorption in HCHAB
and more reliable results for CHAB. Importantly, RPA results with Ntrain = 10
can be obtained with a CPU time comparable to or even shorter than the under-
lying PBE+D2 MD but can provide a significantly higher level of accuracy and
more reliable results for different types of systems.
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Table 6.4: PBE+D2, RPA, and experimental enthalpies of adsorption (kcal/mol)
of CH4 and CO2 adsorbed in protonated (HCHAB) and siliceous (CHAB)
chabazite. RPA results are provided as a function of Ntrain.

∆ads H HCHAB+CH4 HCHAB+CO2 CHAB+CH4 CHAB+CO2

PBE+D2 -6.09 -9.72 -4.64 -5.14
RPA (Ntrain = 10) -3.74 ± 0.23 -8.06 ± 0.44 -3.22 ± 0.19 -4.57 ± 0.25
RPA (Ntrain = 25) -3.72 ± 0.25 -7.85 ± 0.37 -3.19 ± 0.19 -4.48 ± 0.22
RPA (Ntrain = 50) -3.72 ± 0.25 -7.93 ± 0.38 -3.32 ± 0.19 -4.66 ± 0.21
RPA (Ntrain = 100) -3.74 ± 0.24 -8.08 ± 0.34 -3.41 ± 0.19 -4.73 ± 0.21
RPA (Ntrain = 200) -3.74 ± 0.23 -8.01 ± 0.32 -3.36 ± 0.19 -4.65 ± 0.21
Exp. -4.06a -8.41b -4.09c -5.02c

a Refs. 111
b Ref. 110
c Ref. 88

6.3 Conclusions
in this chapter we discussed the MLPT method that couples machine learning
techniques with TPT to efficiently evaluate finite temperature properties using the
RPA or other correlated quantum-chemical methods. By computing enthalpies
of adsorption of small molecules in zeolites, it is shown that as few as 10 RPA
energies used to train a ML model are sufficient to reach a satisfactory level of
convergence. This work open the path to a broader use of high-accuracy/high-cost
ab initio methodologies to reach a new level of reliability in materials simulations.



Chapter 7

Perspectives

In Chapter 6 we introduced a general purpose methodology, MLPT, to couple
correlated methods with molecular dynamics at a reasonable computational cost.
This approach allowed us to compute adsorption enthalpies of molecules in ze-
olites at the RPA of theory. Considering the high numerical cost of this ap-
proximation it would be inconceivable to directly perform a brute-force ab ini-
tio molecular dynamics. This recent work on MLPT will be at the base of sev-
eral future developments and extensions. The ultimate goal will be to develop a
highly accurate methodology to describe the properties of materials in realistic
(finite-temperature) conditions. Specifically, the following research lines will be
pursued:

• Further development of machine learning perturbation theory (MLPT)
- The MLPT approach (see Chapter 6) is based on thermodynamic pertur-
bation theory coupled to machine learning (ML) techniques. Within this
approach a MD is performed using a numerically inexpensive functional
and a small number of structures is chosen to sample the configurational
space. The high-level correlated calculations are performed only on these
geometries. Part of these high-level results are used to train a ML learning
model and part of them are held out to test it (alternatively, a cross-validation
approach could be used). The regression model is then used to predict the
properties (e.g. the energy) of the full set of (hundreds of thousands) con-
figurations and perturbation theory is applied to compute the finite temper-
ature observables. This procedure can be improved in several aspects: (1)
In order to build the training set algorithms could be developed to sample
as uniformely as possible the configurational space (2) The performance of
different types of descriptors and ML algorithms could be tested to make
MLPT more efficient and/or accurate (e.g. the many-body tensor represen-
tation (MBTR) [71] or atom-centered symmetry functions (ACSF) [8].). (3)
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The dependence of the perturbative approach on the starting point should be
better understood and approaches to evaluate the corresponding error should
be developed. (4) Using beyond-RPA methods or other more traditional
quantum chemistry approaches to further improve the accuracy of thermo-
dynamic calculations. (5) Properties other than then the energy could be
computed.

The MLPT method is still at an early stage of development but has huge
potential to significantly impact the field of materials simulations. To fully
establish this approach it will be necessary to understand its range of appli-
cability and numerical properties.

• Machine learning molecular dynamics (MLMD) - This is a methodol-
ogy that has seen a growing popularity since the seminal work of Behler
and Parrinello in 2007 [10]. In this approach a large number of configura-
tions of a certain system is generated by performing a MD simulation or by
properly sampling the configurational space. A ML learning model, usu-
ally a neural network (NN), is then trained on the energies and/or forces
computed for these configurations. A full molecular dynamics is then per-
formed by using this neural network. At each step of the MD simulation,
instead of directly solving the Schrödinger equation, forces and energies are
inexpensively “predicted” by the ML model and used to generate the next
configuration. The accuracy of the model is strictly related to the quality of
the sampling used to generate the training examples. One of the advantages
of the MLMD approach is that a NN model can be trained by using only the
energies and then forces can be obtained by deriving the NN with respects
to atomic positions. This avoids the problem of the limited availability of
analytic gradient implementations for correlated methods (e.g. RPA) for
condensed matter applications. To couple the Behler-Parrinello with RPA-
type methods it is crucial to decrease the number of configurations used to
train the ML model. Indeed, a high level correlated calculation is required
for every training example. Similarly to MLPT, this optimal sampling could
be obtained from energetic or geometric arguments. For example, a large
number of configurations could be generated at first; then the features corre-
sponding to these geometric configurations could be clustered by using un-
supervised learning algorithms; finally, a few representatives of each clus-
ter could be randomly chosen to span the configurational space and to train
the NN model. For certain systems it could also be possible to exploit the
symmetry to “increase” the amount of information used to train the neural
network model [23]. Differently from MLPT, the MLMD approach does
not apply perturbation theory but rather performs a full molecular dynamics
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simulation. Accordingly, the MLMD methods could possibly reach a higher
level of accuracy and should not be affected by the choice of the starting
point as in perturbative approaches. From a practical point of view some
libraries to perform MLMD calculations are already openly available [152]
or, if necessary, we could develop our own codes by using Tensorflow.

• Direct calculation of gradients - As discussed before, directly preform-
ing a molecular dynamics with correlated approximations (e.g. the RPA)
requires impractical computational resources and complex algorithms to
compute interatomic forces. An implementation of analytic forces has been
recently proposed for the random phase approximation (RPA) within a pe-
riodic plane-wave basis set framework [116]; to the best of our knowledge
this is the only one based on the PW approach. In the context of this project
we will couple the ideas developed in Ref. 116 with the efficient algorithms
described in Chapter 3 to obtain an efficient implementation to compute the
interatomic forces for the RPA and possibly also for the beyond-RPA and
MP2 methods. This part of the work will serve two purposes: (1) At least
for the some small systems it will be possible to run a full molecular dynam-
ics to compare and benchmark the MLPT and MLMD approaches; (2) The
gradients will be used in the context of MLMD to train machine learning
models that specifically require this information [23, 152].

These research directions represent different paths heading towards the same
goal - the development of a general purpose methodology to compute finite tem-
perature properties using correlated methods, such as the RPA. For the MLPT
approach some proof-of-principle results are already available and show great
promise. However, most of the ideas proposed here remains unexplored and it
is not possible to establish which approach will give the best results in term of ac-
curacy and numerical efficiency. Importantly, the different paths proposed above
are not mutually exclusive. For example, the development of different techniques
to sample the configurational space could improve both the MLPT and MLDM
approaches. Similarly, an implementation to compute interatomic forces could be
used to train the models used for MLMD. As the main outcome of our future work,
we will establish which methodology is the most general, efficient, and accurate
for finite temperature correlated simulations.

Beyond the methodologial development aspect, applications to realistic mate-
rials will be considered in the future with the purpose of testing the new methods,
establishing them within the scientific community, and shedding new light on im-
portant experimental and technological problems. These will include:

• Study of the adsorption of molecules on surfaces or porous materials.
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• Study of molecular crystals. These systems, which are important, for ex-
ample, in pharmaceutical applications, are usually characterized by poly-
morphs with similar energetic stability. The methods described above will
be used to rank the relative stability of different polymorphs.

• Study of few-layer materials and heterostructures of two-dimensional mate-
rials. The new methodologies will be used to study the structural parameters
of these systems and the interlayer binding energy.
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Appendix C

Résumé étendu en français

Ce manuscrit décrit mes activités de recherche principales (mais non exclusives)
développées à partir de septembre 2012, lorsque j’ai été embauché en tant que
maître de conférences à l’Université de Lorraine. Mon travail a été principale-
ment concentré sur le développement méthodologique pour le calcul des énergies
de corrélation basées sur l’approximation de la phase aléatoire (RPA) et de ses
variantes.

En raison de son compromis raisonnable entre précision et efficacité, la théo-
rie de la fonctionnelle de la densité (DFT) [70, 77] est devenue la méthode la plus
utilisée pour le calcul ab initio des propriétés des matériaux. La DFT s’applique
à des systèmes relativement grands comprenant jusqu’à des milliers d’atomes et
son succès initial est fortement lié à des approximations assez simples pour la
fonctionnelle d’échange-corrélation (xc), comme les approximations de la densité
locale (LDA) [77, 108] et des gradients généralisés (GGA) [106]. Des classes de
fonctionnelles plus récentes incluent la meta-GGA [143, 140] et les hybrides, qui
mélangent un certain pourcentage d’échanges de Hartree-Fock avec des contri-
butions semi-locales [7]. Toutes ces méthodes impliquent un niveau croissant de
précision mais également de coût numérique du calcul. Le schéma de l’échelle de
Jacob des approximations DFT (voir Fig. C.1) a été proposé par John Perdew pour
visualiser et classifier ces différentes approches [107]. Bien que plusieurs formes
pour la fonctionnelle d’échange-corrélation aient été proposées, la recherche dans
ce domaine est toujours très active, avec le but ultime d’obtenir une "théorie fi-
nale". Des classes de systèmes problématiques pour la DFT traditionnelle incluent
les matériaux où la corrélation électroniques est forte ou où les forces de van der
Waals jouent un rôle important. De plus, les fonctionnelles d’échange-corrélation
traditionnelles n’atteignent pas systématiquement le seuil de la précision chimique
(1 kcal/mol).

Ce manuscrit se concentre sur le cinquième et plus haut échelon du schéma
de Perdew (Fig. C.1). Plus particulièrement, l’énergie de corrélation électronique
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FIGURE C.1 : L’“échelle de Jacob” proposée par John Perdew pour visualiser les
différents niveaux d’approximation utilisées pour les fonctionnelles d’échange-
corrélation en DFT. En grimpant les échelons la précision augmente au détriment
du coût de calcul, qui augmente considérablement (figure reproduite de Ref. 107).

de l’état fondamental est considérée dans l’approximation de la phase aléatoire
(RPA) et ses variantes. La RPA avait déjà été introduite dans les années 50 pour
décrire l’énergie de corrélation dans le gaz d’électrons dégénéré [14] et son expan-
sion en diagrammes de Feynman est connue depuis longtemps (voir Fig. C.2) [45].
Dans le contexte de la DFT, la base théorique pour la RPA est fournie par le théo-
rème de fluctuation-dissipation avec connexion adiabatique (ACFDT) [80, 81],
qui est présenté au chapitre 2. L’ACFDT fournit en principe une expression exacte
pour l’énergie de corrélation de l’état fondamental en utilisant des fonctions de ré-
ponse linéaires (c’est-à-dire la polarisabilité ou la matrice diélectrique). Dans le
contexte de l’ACFDT la RPA est l’approximation pratique la plus simple qui peut
être utilisée pour des applications numériques à des systèmes réalistes, tels que des
molécules [39, 144, 100, 153, 101, 35, 117, 124], des solides [58, 85, 151, 60, 74],
des matériaux en couches minces [92, 82] et des molécules adsorbées sur des sur-
faces [118, 133]. En particulier, pour les applications à la matière condensée les
méthodes de chimie quantique traditionnelles (par exemple la théorie du cluster
couplé) peuvent être difficilement utilisées et la RPA est probablement l’approxi-
mation corrélée la plus sophistiquée d’intérêt pratique pour ces systèmes. L’intérêt
croissant suscité par la RPA est principalement (mais pas exclusivement) lié à la
capacité de la RPA de décrire avec haute précision les forces de van der Waals
(vdW) [32, 41]. Malgré son succès croissant, la RPA reste une approche de niche,
surtout si on la compare à d’autres approximations DFT qui sont appliqués cou-
ramment dans les simulations des matériaux. Ceci est lié à différentes raisons : (1)
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FIGURE C.2 : L’interaction effective au sein de la RPA est obtenue par la somme
à l’ordre infini des diagrammes “à anneau” (figure reproduite de Ref. 75).

Bien qu’il s’agisse d’une théorie très sophistiquée, des problèmes subsistent au
sein de la RPA : les courbes de liaison de certains dimères diatomiques présentent
une "bosse" non physique à des distances intermédiaires [39], les énergies de cor-
rélation totales sont généralement surestimés [78] et les énergies de liaison sont
souvent sous-estimées [41, 59]. (2) Les implémentations numériques de la RPA
sont plutôt complexes et les calculs pratiques relèvent plusieurs défis, tels que
la diagonalisation complète de l’hamiltonien pour obtenir tous les états virtuels
(de conduction), la manipulation de matrices de grande taille correspondantes aux
fonctions de réponse et l’évaluation d’intégrales impropres sur la fréquence. (3) Le
temps de calcul nécessaire pour la RPA est souvent supérieur de plusieurs ordres
de grandeur par rapport au temps requis par les approximations (semi-)locales de
la DFT; de plus, le développement d’une implémentation pour le calcul des forces
interatomiques analytiques n’est pas banale. Pour ces raisons, les applications aux
matériaux réels exigent des ressources de calcul considérables et généralement
sont basées sur des géométries fixes optimisées en utilisant des différentes théo-
ries.

Dans ce manuscrit, je présente des nouvelles méthodologies pour surmon-
ter ces difficultés. Au chapitre 2, je discute de mes travaux sur le développe-
ment de nouvelles approximations qui évitent le problème d’autocorrélation de
la RPA en utilisant un noyau d’échange non local. Plus précisément, j’ai déve-
loppé deux nouvelles approximations pour l’énergie de corrélation de l’état fon-
damental basées sur l’ACFDT : le “electron-hole time-dependent Hartree-Fock”
(eh-TDHF) et le “ adiabatic connection second order screened exchange” (AC-
SOSEX) [99, 28, 31]. Au chapitre 3 je présente l’implémentation numérique que
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j’ai développé pour le calcul des énergies de corrélation pour les méthodes RPA
est au-delà en utilisant une base d’ondes planes (PW) et des algorithmes itératifs.
La taille de cette base peut atteindre plusieurs centaines de milliers d’éléments
pour les grandes mailles. Pour cette raison, il est pratique de représenter les fonc-
tions de réponse impliquées dans les méthodes RPA et au-delà de la RPA à l’aide
d’une base auxiliaire compacte. Dans ce manuscrit on utilise les vecteurs propres
d’une polarisabilité approximative ne comprenant que la contribution de l’éner-
gie cinétique [124]. La convergence des énergies de corrélation par rapport à la
base n’est pas banale et est analysée en détail au chapitre 5. Afin d’évaluer effi-
cacement les éléments de matrice de la polarisabilité sur la base auxiliaire il est
utile de recourir à des techniques numériques supplémentaires : l’élimination des
états de conduction pour obtenir un formalisme qui ne dépend que des états oc-
cupés [3, 147, 126] et l’utilisation de l’algorithme de Lanczos pour calculer le
résolvant de l’Hamiltonien [126, 146, 102]. Au chapitre 4 cette implémentation
numérique est appliquée à une série d’ensembles moléculaires pour lesquels des
résultats de haut niveau sont disponibles et à des solides. La Fig. C.3 montre un
exemple d’application au calcul de l’énergie d’interaction des 22 dimères molécu-
laires contenus dans l’ensemble S22. Les approximations SOSEX et eh-TDHF en
incluant la contribution d’échange éliminent l’effet d’auto-corrélation de la RPA
et conduisent à des résultats beaucoup plus précis. Ces résultats démontrent qu’un
niveau élevé de précision peut être atteint pour les énergies de l’état fondamental
dans une formulation basée uniquement sur des fonctions de réponse.
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FIGURE C.3 : Différences en kcal/mol pour l’ensemble S22 pour les méthodes
RPA, eh-TDHF et AC-SOSEX calculées par rapport aux valeurs de référence ob-
tenus pas la théorie du cluster couplé CCSD(T) [142]

Les méthodologies RPA et au-delà présentées dans ce manuscrit fournissent
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une efficacité élevée et une grande précision pour le calcul des énergies de corré-
lation électronique. Cependant, en considérant que le coût numérique est consi-
dérablement supérieur à celui des approximations traditionnelles de la DFT, l’ap-
plications systématique de ces approches à des matériaux réels est particulière-
ment difficile. De plus, les gradients analytiques pour l’optimisation structurelle
et la dynamique moléculaire impliquent des difficultés additionnelles pour l’im-
plémentation numérique et augmentent davantage le temps de calcul. À cette fin
j’ai développé une nouvelle technique basée sur l’apprentissage automatique (ma-
chine learning - ML) pour calculer les propriétés de matériaux aux températures
finies à partir seulement de quelques calculs RPA. Cette méthode, appelée “ma-
chine learning thermodynamic perturbation theory” (MLPT) [20], est décrite au
chapitre 6. Dans la méthode MLPT, une dynamique moléculaire ab initio (AIMD)

FIGURE C.4 : Modèle périodique utilisé pour CH4 adsorbé dans la chabazite pro-
tonée. La cellule unitaire utilisée dans les calculs est représentée par des lignes
continues.

est réalisée à l’aide d’une fonctionnelle DFT numériquement peu coûteuse. Cette
simulation implique généralement la génération de plusieurs centaines de milliers
de configurations. Parmi ces configurations un jeu d’entrainement est sélectionné
pour former un modèle d’apprentissage automatique. Pour toutes les autres confi-
gurations générées par la dynamique moléculaire initiale, le modèle de ML est
utilisé pour prédire de manière peu coûteuse les énergies RPA. La distribution de
probabilité correspondante à la RPA est reconstruite à partir de la théorie de la
perturbation thermodynamique en changeant les poids statistiques des configura-
tions échantillonnées par la MD initiale et utilisée pour évaluer les observables à
température finie. L’avantage de cette méthode est clair : en ne sélectionnant que
quelques dizaines de configurations significatives sur des centaines de milliers,
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TABLE C.1 : Les energies internes et enthalpie d’adsorption (kcal/mol) au niveau
de théorie RPA de la chabazite protonée (HCHAB), de CH4 et du système ad-
sorbé (HCHAB+CH4) selon les estimations de MLPT pour différentes taille du
jeu d’entrainement.

Ntrain HCHAB+CH4 HCHAB CH4 ∆ads H
10 -21398.01 ± 0.19 -20213.82 ± 0.13 -1181.05 ± 0.02 -3.74 ± 0.23
25 -21398.13 ± 0.21 -20213.94 ± 0.13 -1181.07 ± 0.02 -3.72 ± 0.25
50 -21398.17 ± 0.21 -20213.99 ± 0.13 -1181.06 ± 0.02 -3.72 ± 0.25

100 -21398.13 ± 0.21 -20213.93 ± 0.12 -1181.06 ± 0.02 -3.74 ± 0.24
200 -21398.15 ± 0.20 -20213.95 ± 0.12 -1181.06 ± 0.02 -3.74 ± 0.23

le temps de calcul nécessaire pour appliquer la théorie de la perturbation avec la
RPA est réduit de plusieurs ordres de grandeur. Les résultats montrant la précision
et l’efficacité de la méthode MLPT sont présentés dans le tableau C.1. Plus préci-
sément, l’enthalpie d’adsorption du méthane dans un matériau poreux (la zéolite
chabazite) a été calculée en utilisant la RPA. Le modèle périodique correspon-
dant, qui implique 200 électrons de valence, est présenté en figure C.4. Comme
le montre le tableau C.1, alors que la fonctionnelle de départ PBE+D2 donne un
résultat qui dépasse largement le seuil de précision chimique (1 kcal / mol), la
valeur de la RPA est en excellent accord avec la valeur expérimentale. En consé-
quence, l’utilisation de MLPT associé à la RPA ou à d’autres méthodes corrélées
au-delà de la RPA peut atteindre un niveau de précision beaucoup plus élevé tout
en limitant dans une large mesure l’investissement en temps de calcul.
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database of accurate (mp2 and ccsd (t) complete basis set limit) interac-
tion energies of small model complexes, dna base pairs, and amino acid
pairs. Physical Chemistry Chemical Physics 8, 17 (2006), 1985–1993.

[74] KAOUI, F., AND ROCCA, D. Random phase approximation correlation
energy using a compact representation for linear response functions: appli-
cation to solids. J. Phys. Condens. Matter 28, 3 (2016), 035201.

[75] KE, L., AND JI-SHENG, C. Dispersion relation of excitation mode in spin-
polarized fermi gas. Chinese Physics B 21, 3 (2012), 030309.

[76] KHALIL, I., JABRAOUI, H., MAURIN, G., LEBÈGUE, S., BADAWI, M.,
THOMAS, K., AND MAUGÉ, F. Selective capture of phenol from biofuel
using protonated faujasite zeolites with different si/al ratios. J. Phys. Chem.
C 122, 46 (2018), 26419–26429.

[77] KOHN, W., AND SHAM, L. J. Self-consistent equations including ex-
change and correlation effects. Phys. Rev. 140 (1965), A1133–A1138.

[78] KURTH, S., AND PERDEW, J. P. Density-functional correction of random-
phase-approximation correlation with results for jellium surface energies.
Phys. Rev. B 59 (Apr 1999), 10461–10468.

[79] KUTZELNIGG, W., AND MORGAN III, J. D. Rates of convergence of the
partial-wave expansions of atomic correlation energies. J. Chem. Phys. 96,
6 (1992), 4484.

[80] LANGRETH, D. C., AND PERDEW, J. P. The exchange-correlation energy
of a metallic surface. Solid State Commun. 17 (Dec. 1975), 1425–1429.

[81] LANGRETH, D. C., AND PERDEW, J. P. Exchange-correlation energy of
a metallic surface: Wave-vector analysis. Phys. Rev. B 15 (Mar 1977),
2884–2901.



BIBLIOGRAPHY 119

[82] LEBÈGUE, S., HARL, J., GOULD, T., ÁNGYÁN, J. G., KRESSE, G., AND

DOBSON, J. F. Cohesive properties and asymptotics of the dispersion in-
teraction in graphite by the random phase approximation. Phys. Rev. Lett.
105 (Nov 2010), 196401.

[83] LOSCH, P., JOSHI, H. R., VOZNIUK, O., GRUNERT, A., OCHOA-
HERNÁNDEZ, C., JABRAOUI, H., BADAWI, M., AND SCHMIDT, W. Pro-
ton mobility, intrinsic acid strength, and acid site location in zeolites re-
vealed by varying temperature infrared spectroscopy and density functional
theory studies. J. Am. Chem. Soc. 140, 50 (2018), 17790–17799.

[84] LU, D. Evaluation of model exchange-correlation kernels in the adiabatic
connection fluctuation-dissipation theorem for inhomogeneous systems. J.
Chem. Phys. 140, 18 (2014), 18A520.

[85] LU, D., LI, Y., ROCCA, D., AND GALLI, G. Ab initio calculation of
van der waals bonded molecular crystals. Phys. Rev. Lett. 102 (May 2009),
206411.

[86] LU, D., NGUYEN, H.-V., AND GALLI, G. Power series expansion of the
random phase approximation correlation energy: The role of the third- and
higher-order contributions. J. Chem. Phys. 133, 15 (Oct. 2010), 154110.

[87] MAATEN, L. V. D., AND HINTON, G. Visualizing data using t-sne. J.
Mach. Learn. Res. 9, Nov (2008), 2579–2605.

[88] MAGHSOUDI, H., SOLTANIEH, M., BOZORGZADEH, H., AND MO-
HAMADALIZADEH, A. Adsorption isotherms and ideal selectivities of
hydrogen sulfide and carbon dioxide over methane for the si-cha zeolite:
comparison of carbon dioxide and methane adsorption with the all-silica
dd3r zeolite. Adsorption 19, 5 (2013), 1045–1053.
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