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Et encore les deux étudiants de TU Delft venus à l'ONERA réaliser leur stage de Master of Science, Giovanni Todarello et Floris Vonck. Je leur sais gré, et de leur entrain au travail, et de leur exigence scientifique.

Je dois associer à leurs travaux Jean-Antoine Désidéri, Directeur de Recherches INRIA, consultant scientifique à l'ONERA, qui a contribué à l'encadrement ou à l'expertise des travaux de presque tous ces étudiants, apportant sa vue très complète sur les méthodes numériques, sa connaissance des méthodes d'optimisation, des écoulements supersoniques et encore des finesses de la langue anglaise. Je lui en sais gré de même que je sais gré à Florent Renac de ses indications sur le sujet de la section 2.2.

Les travaux de recherche présentés dans les pages qui suivent reposent sur le module de calcul de gradient du grand code aérodynamique elsA de l'ONERA auquel ont largement contribué Florent Renac et Pierre Trontin. Par ailleurs, beaucoup de calculs et développements ont été rendus possibles grâce à l'assistance efficace de Sébastien Heib et Julien Mayeur. Je les remercie vivement.

(Le professeur Aronnax, Conseil et Ned Land s'inquiètent de la marche du Nautilus menacée par les mouvements d'un iceberg) Je me promenai pendant quelques instants du salon à la bibliothèque. Mes compagnons assis se taisaient. Je me jetai bientôt sur un divan, et je pris un livre que mes yeux parcoururent machinalement. Un quart d'heure après, Conseil s'étant approché de moi me dit : -Est-ce intéressant ce que lit monsieur ? -Très intéressant, répondis-je.

-Je le crois. C'est le livre de monsieur que lit monsieur ! -Mon livre ? En effet je tenais à la main l'ouvrage des Grands Fonds sous-marins Vingt mille lieux sous les mers (IIe partie, chapitre XV). Jules Verne

Introduction

When I was a student in "Math Spé", the Maths teacher one day made a remarkable hand-drawing on the blackboard. He drew a frame of reference and a perfect paraboloïd -let us say it was x 2 + 2y 2 -z -6 = 0before drawing a set of three or four parallel oblique planes -let us say these were

x + y + z = K planes.
The question was to find Min (x+y +z) on the paraboloïd. By some kind geometrical evidence (this was one of the few non-demonstrated properties during this year), he inferred that the limiting plane crossing the paraboloïd when decreasing K would be tangent to it at the point we were looking for. So there was a λ coefficient, that we could call Lagrange multiplier, such that, at the target solution point, the gradients of the two surfaces would be proportional,

λ    2x 4y -1    =    1 1 1   
which quickly lead to the calculation of λ, then x and y and finally z. This λ was something nice and efficient that had made a tough problem simple... and I had then no idea I would later spend about fifteen years calculating and manipulating adjoint vectors.

The next time I heard about Lagrange multipliers was in 2001 as Airbus and ONERA prepared a joint project on discrete adjoint and local optimization (and it quickly appeared to me that the λ would not be a single real number but possibly a very large vector). Looking back at what had been done before, I realized that Computational Fluid Dynamics (CFD) based aerodynamic optimization was about as old as CFD. It actually started in the 70's and 80's with simple parametrizations of aerofoils and wings, and gradient based local optimization where the gradient of the functions of interest were calculated by finite differences [START_REF] Hicks | Wing design by numerical optimization[END_REF][START_REF] Hicks | Wing design by numerical optimization[END_REF][START_REF] Reneaux | The use of numerical optimization for airfoil design[END_REF]. This field then underwent a very deep change in 1988: Fifteen years after a famous article by Pironneau, that introduced shape optimization via optimal control for incompressible flows [START_REF] Pironneau | On optimum profiles in Stokes flow[END_REF], Jameson introduced the continuous adjoint method for aerodynamics [START_REF] Jameson | Aerodynamic design via control theory[END_REF]. This method allows the calculation of the objective and constraints sensitivities with respect to (w.r.t.) design parameters at a cost scaling with the number of functions to differentiate which arose a strong interest in the CFD community. A few years later, Shubin and Frank demonstrated a discrete version of Jameson's adjoint method [START_REF] Shubin | Obtaining cheap optimization gradients from computational aerodynamics codes[END_REF][START_REF] Shubin | A comparison of implicit gradient approach and the variational approach to aerodynamic design optimization[END_REF][START_REF] Frank | A comparison of optimisation-based approaches for a model computational aerodynamics design problem[END_REF] that they called the "implicit gradient approach" and that, soon after, was called "discrete adjoint method". It did not require the manipulation of partial differential equations (p.d.e.) of fluid dynamics with a mapping of the fluid domain and was hence much simpler from a mathematical point of view... but involved more operations to differentiate the discrete fluxes of the direct calculation. This was probably the beginning of an unlimited debate between those in favor of continuous adjoint (linearize-then-discretize) and those in favor of discrete adjoint (discretize-then-linearize) ([139] §2.7) formulations.

Both methods have assets but it seems today that the discrete approach is the dominant one for large CFD codes. Probably the main reason for this is the consistency of the gradients w.r.t. finite differences at fixed mesh size that is important for shape optimization and other applications like gradient-enhanced metamodeling 1 . Besides, not only this theoretical property is desirable but NASA Langley teams have demonstrated at the end of the 90's that gradients with almost perfect accuracy could indeed be obtained, even in the quite complex case of (RANS) flows and unstructured meshes [START_REF] Anderson | Airfoil design optimization on unstructured grids for turbulent flows[END_REF][START_REF] Nielsen | Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations[END_REF], at the price of an extremely rigorous process for the development of the discrete adjoint code. Finally the possibility to use Automatic Differentiation (AD) tools to linearize the residual without bug may be an important second asset for the discrete approach when working in a large CFD code.

In 2002, it was actually a discrete adjoint module, named elsA/Opt [START_REF] Peter | Discrete adjoint method for shape optimization and mesh adaptation in the elsA code. status and challenges[END_REF], that had to be added to the elsA code [START_REF] Cambier | elsA: an efficient object-oriented solution to CFD complexity[END_REF][START_REF] Cambier | Status of the elsA CFD software for flow simulation and and multidisciplinary applications[END_REF][START_REF] Cambier | The elsA CFD software: input from research and feedback from industry[END_REF]. This activity was started for aircraft "options", that is fluxes, join and boundary conditions generally used for external aerodynamics simulations. The counterpart work for turbomachinery started a few years later and, as discrete adjoint development went on in the CFD Department, all the other components of a local optimization chain were developed or improved at the Applied Aerodynamics Department2 of ONERA : parametrization, volume mesh deformation, descent method and advanced post-processing providing partial derivatives of the functions of interest.

At the same time, the engineers involved in development of the adjoint module of the elsA code have developed related research activities on implicit stages for the adjoint equation, extension of classical discrete adjoint to hovering rotor and optimization based on the so-called "shape gradient". These research activities are summarized in the first chapter of the manuscript.

In 2005, roughly speaking, it appeared evident that the sensitivities of the volume mesh w.r.t. the design parameters would become the memory bottleneck of the adjoint method. At the cost of calculating the Jacobian of the discrete residual w.r.t. volume mesh nodes coordinates, it was possible to get rid of the mesh sensitivities and, more generally, of the design parameters in the CFD adjoint module. The outputs of this module are then the total derivative of the functions of interest w.r.t. volume mesh node coordinates that can later be processed to calculate wall mesh sensitivities ("shape gradients") then the sensitivities w.r.t. one or several sets of design variables. In 2008, after these total derivatives were available in elsA, a very significant effort has been undertaken to use them for "goal-oriented" mesh refinement, that is mesh-refinement aiming at the accurate calculation of a specific output functional. These research activities are summarized in the second chapter of this document. Adjoint vector (column) of function J k for scheme R θ [J] m

Nomenclature

Local indicator for J-oriented mesh refinement (based on P(dJ/dX)) θ [J] m

Local indicator for J-oriented mesh refinement (based on spatial mean of P(dJ/dX)) θ [J] Estimator of suitability of current mesh to evaluate J (based on P(dJ/dX)) ) θ [J] Estimator of suitability of current mesh to evaluate J (based on spatial mean of P(dJ/dX)) µ [J] m Norm of P(dJ/dX m ) µ [J] Mean of µ[J] m values over the mesh Ψ Modified total variation of curvature of a current wall mesh X S ρ Density

Chapter 1

Discrete gradient calculation methods for shape optimization

This chapter starts with a general subsection ( §I.1) that provides all the classical equations of discrete gradient method for finite volume (FV) CFD for compressible flows ( §I.1.1) to ( §I.1.7) [START_REF] Mohammadi | Applied shape Design for Fluids[END_REF][START_REF] Peter | Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches[END_REF]. This subsection goes on with two technical pages ( §I. 1.8) summarizing the fluxes, models and boundary conditions that have been linearized with respect to state variable and/or volume-mesh coordinates in the elsA/Opt module [START_REF] Peter | Discrete adjoint method for shape optimization and mesh adaptation in the elsA code. status and challenges[END_REF]. Its ends ( §I.1.9) with a note about mesh convergence of discrete adjoint fields.

On the contrary, the next three subsections, ( §I.2) to ( §I.4), refer to specific research activities. A family of implicit stages that has been defined by me for the solution of steady state flows [START_REF] Peter | DTP CAÏMEN phase 2B, année 3, tâche C4. Méthodes d'accélération de convergence multigrilles et implicites[END_REF] is presented in ( §I.2). Their description includes reference to stability analysis carried out with Drullion [START_REF] Drullion | Définition et études de sytèmes linéaires pour la simulation et l'optimisation de formes aérodynamiques par méthode de gradient[END_REF][START_REF] Peter | Large stencil viscous flux linearization for the simulation of 3D turbulent compressible flows with backward-Euler schemes[END_REF] and extension to the solution of direct differentiation and discrete adjoint equations. Subsection ( §I.3) summarizes the work done by Dumont [START_REF] Dumont | Calcul de gradient pour l'optimisation des performances aérodynamiques d'un rotor d'hélicoptère en vol stationnaire[END_REF][START_REF] Dumont | Sensitivity analysis using direct differentiation and adjoint vector methods for helicopter rotor flow in hover[END_REF] and his supervisors to extend ONERA's discrete adjoint capability from aircraft mechanical formulation, to the "absolute velocity/relative frame of reference" mechanical formulation that is classically used for rotor simulations. It includes also a short presentation of an adjoint-based shape optimization of a rotor. The next and last subsection ( §I.4) is a presentation of part of Bompard's research during his PhD [START_REF] Bompard | Modèles de substitution pour l'optimisation globale de forme en aérodynamique et méthode locale sans paramétrisation[END_REF], namely effort to optimize airfoil based on the so called shape gradients, that is the total derivative of the function of interest (objective and constraints) with respect to wall mesh node coordinates.

This work has been presented in the following journal articles:

• Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches. Computers and Fluids 39 (2010) (J. Peter and R.P. Dwight)

• Large stencil viscous flux linearization for the simulation of 3D turbulent compressible flows with backward-Euler schemes. Computers & Fluids 36 (2007) (J. Peter and F. Drullion)

• Aerodynamic shape optimization of hovering rotors using a discrete adjoint of the Reynolds-Averaged Navier-Stokes Equations. Journal of the American Helicopter Society 56 (2011) (A. Dumont, A. Le Pape, J. Peter, S. Huberson) and in lecture notes and conference papers that are referred in each specific section.

Reminder: Discrete gradient calculation methods

The purpose of this section is to recall the equations of discrete gradient calculation for finite volume CFD (subsection 1.1 to 1.4), which are the basis of the research activities to be then described. For the sake of completeness, the equations of the alternative point of view, the continuous approach, are presented in Annex A for a simple case and a short discussion about respective assets of both approaches is presented in subsection 1.9. No extended bibliography is provided here but the reader can find a number of relevant references in publications by R.P. Dwight and me [START_REF] Peter | Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches[END_REF] or M. Bompard and me [START_REF] Bompard | Strategies for Optimization and Automated Design of Gas Turbine Engines -Chapter: Local Search Methods for Design in Aeronautics[END_REF].

Notation

In the framework of shape optimization by mean of Computational Fluid Dynamics, a set of parametrized meshes has first to be defined. These meshes surround the various shapes that the aeronautical item of interest (possibly wing, blade, tail, aircraft...) may take. We do not here enter the detail of meshing/mesh deformation techniques on the design space 1 . The vector of design parameters is denoted α (size n α ) ; its domain of variation is denoted D α . The volume mesh is denoted X (size n X ) and the wall surface mesh X S (size n S ). The volume mesh X(α), and hence also X S (α), are supposed to at least continuously differentiable.

The finite volume scheme of interest defines the steady-state flow W (size n W ) as the solution of a set of n W non linear equations involving W and X, R(W, X) = 0,

where R is supposed to be a C 1 function of its both arguments. This assumption may seem strong as numerical fluxes and limiters possibly involve min, max or absolute value and as update stage in industrial codes involve cuts-off. This point is further discussed for the selected schemes in subsection 1.1.8.

Besides at every pair of flow and mesh (W i , X i ) where variation calculus is to be performed, it is assumed that the flow is perfectly converged

R(W i , X i ) = 0 and that det ∂R ∂W [W i , X i ] = 0.
The implicit function theorem then guarantees the existence of an open set D X including X i and a C 1 unique function W such that

W(X i ) = W i R(W(X), X) = 0 ∀X ∈ D X .
This yields a straightforward local definition of W as a continuously differentiable function of the vector of design parameters α. For the sake of simplicity, it assumed hereafter that this C 1 dependence of W w.r.t. α is valid all over D α .

Typical functional outputs involved in local optimization are objectives like drag, component of drag... and constraints like lift, pitching moment... When using a gradient-based local optimization algorithm, derivatives of the objective and active constraints are needed. Depending on the algorithm, the derivatives of non-active constraints may or may not be required. These n f functions to be differentiated w.r.t. the design parameters are denoted J k when considered as functions of flow and mesh W and X and J k when considered as functions of α, with the obvious link

J k (α) = J k (W (α), X(α)) k ∈ {1...n f }.
Besides expressing W as a function of X through the implicit function theorem, allows to define the functions of interest as function of the mesh only:

J k (X) = J k (W(X), X) k ∈ {1...n f }
Older discrete gradient calculation methods aim at computing all n f × n α derivatives

∂J k (α) ∂α i i ∈ {1, ..n α } k ∈ {1, ..n f }
A more recent method aims at first calculating the total derivative

dJ k dX k ∈ {1...n f },
that includes both the direct influence of node position of the function and its indirect influence through change of discrete flow to reach steady state convergence.

Finite differences and complex variable method

The application of finite differences to an entire flow solver is the oldest and, by far, the simplest means of obtaining solution gradients, as it requires no modification of the solver itself. To proceed, the numerical flow solution corresponding not only to α but also to perturbed states α + δα and possibly α -δα is calculated. For the typical case of second order finite difference δα l (l ∈ {1...n α }) representing a geometry modification in direction l of D α , this implies two mesh deformations X(α+δα l ) X(α-δα l ), and two new flow solutions on the modified meshes satisfying R (W (α -δα l ), X(α -δα l )) = 0 , R (W (α + δα l ), X(α + δα l )) = 0.

An approximation of all functions derivatives in the direction δα can then be approximated by classical centred finite difference formula

dJ k (α) dα l δα l 1 2 [J k (α + δα l ) -J k (α -δα l )] ∀ k ∈ {1...n f } = 1 2 [J(W (α + δα l ), X(α + δα l )) -J(W (α -δα l ), X(α -δα l ))] .
(

The entire matrix dJ (α)/dα may be evaluated at a cost of 2 × n α flow solutions2 making the method impractical for large design spaces. Another serious disadvantage is that the choice of the step size δα is critical to the accuracy of the result. If it is too small then rounding errors become significant; if it is too large the neglection of higher order terms in the Taylor expansion in (1.1) is not valid. Moreover, balancing these two errors requires the third order derivative of J k in the direction dα l that is unknown so that in practice only very expensive parametric studies lead to the best finite difference value. See [START_REF] Peter | Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches[END_REF] for more details. All these issues may be alleviated by using a complex finite difference formula, such as

dJ dα l δα l [J (α + iδα l )] ,
where represents the imaginary part. As there is no longer any difference of J in this expression, it does not suffer from cancellation error, and δα l may be chosen as machine zero with no loss of accuracy [START_REF] Anderson | Sensitivity analysis for the Navier-Stokes equations on unstructured meshes using complex variables[END_REF]. However the solver must be modified to accept complex variables throughout, negating the main advantage of finite differences. Finite differences have been used since the 70s in the context of shape optimization. Early contributions include works of Hicks, Henne and VanderPlats [START_REF] Hicks | An assessment of airfoil design by numerical optimization[END_REF][START_REF] Vanderplaats | Numerical airfoil optimization using a reduced number of design coordinates[END_REF][START_REF] Hicks | Wing design by numerical optimization[END_REF], also Destarac, Reneaux and Thibert [START_REF] Reneaux | Méthode de définition de profils par optimisation numérique[END_REF][START_REF] Reneaux | The use of numerical optimization for airfoil design[END_REF][START_REF] Destarac | Application de l'optimisation numérique à l'aérodynamique des avions de transport[END_REF]. Complex variable method is the verification method of NASA's FUN3D adjoint module [START_REF] Anderson | Sensitivity analysis for the Navier-Stokes equations on unstructured meshes using complex variables[END_REF][START_REF] Nielsen | Discrete adjoint-based design optimization of unsteady turbulent flow on dynamic unstructured grids[END_REF]. However these methods have cost scaling with the number of design parameters, n α , and solve numerous non linear sets of equations. This has lead to the investigation of alternative means of gradient evaluation.

Direct differentiation method

Under the assumptions detailed in subsection 1.1.1,

∀α ∈ D α R(W (α), X(α)) = 0
and this form of the governing equations may be differentiated with respect to all α l to give

∂R ∂W dW dα l = - ∂R ∂X dX dα l ∀l ∈ {1...n α }. (1.2)
This may be regarded as a linear system in unknowns dW/dα l . The dimension of the system is the number of degrees of freedom in the non-linear equations n W , and it can be regarded as a linearization of those equations. Given the n α solutions dW/dα, the derivatives of J are

dJ k (α) dα l = ∂J k ∂W dW dα l + ∂J k ∂X dX dα l ∀l ∈ {1...n α } (1.3)
where again the partial derivatives are in principle easy to evaluate, as J k is a known, explicit function of W and X. The cost of getting flow and aerodynamics function derivatives is one non-linear and n α linear solutions, all of dimension n W . This method was considered as early as 1982 by Bristow and Hawk for a subsonic panel method [START_REF] Bristow | Subsonic panel method for the efficient analysis of multiple geometry perturbations[END_REF][START_REF] Bristow | Subsonic panel method for designing wing surface from pressure distribution[END_REF], and again in 1989 for the transonic perturbations equations by Elbanna et al. [START_REF] Elbanna | Determination of aerodynamic sensitivity coefficients in the transonic and supersonic regimes[END_REF]. In the early 90s it was applied to the compressible Euler equation by two teams at Old Dominion University; that of Baysal [START_REF] Baysal | Aerodynamic design sensitivity analysis methods for the compressible Euler equations[END_REF] and that of Taylor and Hou [START_REF] Taylor | Sensitivity analysis applied to the Euler equations: A feasibility study with emphasis on variation of geometric shape[END_REF]. On unstructured grids the idea was pursued by Newmann, Taylor et al. from 1995 onwards [START_REF] Newman | An unstructured grid approach to sensitivity analysis and shape optimization using the Euler equations[END_REF].

The Discrete Adjoint Method

There are many ways to derive the discrete adjoint equations, the one given here is chosen for its similarity to the derivation of the continuous adjoint presented in annex A. Let the direct linearization (1.2) be premultiplied by an arbitrary line vector Λ T of dimension n W , so that

Λ T ∂R ∂W dW dα l + Λ T ∂R ∂X dX dα l = 0, ∀Λ ∈ R n W .
Adding this expression to (1.3)

dJ (α) dα l = ∂J k ∂X dX dα l + ∂J k ∂W dW dα l + Λ T ∂R ∂W dW dα l + Λ T ∂R ∂X dX dα l , ∀Λ ∈ R n W , ( 1.4) 
and factorizing

dJ k (α) dα l = ∂J k ∂W + Λ T ∂R ∂W dW dα l + ∂J k ∂X dX dα l + Λ T ∂R ∂X dX dα l , ∀Λ ∈ R n W ,
isolates the term dW/dα, which may be eliminated by choosing the arbitrary vector Λ to satisfy

∂J k ∂W + Λ T ∂R ∂W = 0
Actually, the vector Λ is then fixed and associated to the k-th function of interest so that so that a suitable notation is now Λ k . It is the solution of

∂J k ∂W + Λ T k ∂R ∂W = 0 or equivalently ∂R ∂W T Λ k = - ∂J k ∂W T , ( 1.5) 
the discrete adjoint equation, a linear system in unknowns Λ k the adjoint vector associated to function J k for scheme R. Given Λ k the sensitivities of function J k may be written

dJ k (α) dα = ∂J k ∂X dX dα + Λ T k ∂R ∂X dX dα .
The critical point is that, because α does not appear in equation (1.5), that linear system must only be solved once for each J k . Hence the full matrix dJ /dα may be evaluated at a cost of n J linear system solutions, substantially independent of n f . Perhaps the first application of this method was given by Shubin and Frank in 1991 for a quasi one-dimensional nozzle flow using the compressible Euler equations [START_REF] Shubin | A comparison of implicit gradient approach and the variational approach to aerodynamic design optimization[END_REF][START_REF] Shubin | Obtaining cheap optimization gradients from computational aerodynamics codes[END_REF][START_REF] Frank | A comparison of optimisation-based approaches for a model computational aerodynamics design problem[END_REF], and was denoted there the "implicit gradient approach" as contrast to the direct approach. Baysal et al. also recognized its potential, and offered it as an alternative to the direct approach when n J n f [START_REF] Baysal | Aerodynamic design sensitivity analysis methods for the compressible Euler equations[END_REF].

Identification of adjoint vector. Numerical and physical point of view

The equations of this section require a cell index (m), a component index (a), and an index going from 1 to the number of equations of the initial p.d.e.. For the sake of readability, the function index k is dropped here from the function and and adjoint vector; Λ is the discrete adjoint vector associated to the function J for discretization R.

In the previous subsection the discrete adjoint vector appeared as a multiplier of direct differentiation equation that can be specified to remove the flow sensitivity dW/dα l from the derivatives dJ k (α)/dα l for one specific function J k but for all design parameters α l . It could also have been defined with a Lagrangian in an closely related way. In both presentations, the discrete adjoint vector is linked to the numerical scheme R and the current mesh X and no insight is gained about a possible mesh convergence of this field. The following characterization of discrete adjoint is interesting from this point of view [START_REF] Fidkowski | Review of output-based error estimation and mesh adaptation in computational fluid dynamics[END_REF].

It is assumed that small arbitrary changes δR are done in R (think of very small fixed numbers added to some of R components). The corresponding solution perturbation δW is such that W + δW satisfies new discrete flow equations (R + δR)(W + δW, X) = 0,

or at first order [ R(W, X)+ ] δR + ∂R ∂W δW = 0
The first order change in the function of interest J due to change in flow δW is In the context of J-oriented mesh refinement (successive computations aiming at accurate calculation of J output), we may assimilate δR to a lack of accuracy in space discretization and the adjoint vector would indicate the importance of local accurate space discretization for the calculation of J. Actually, in the discrete adjoint method only expressions involving products of adjoint vector times residual R or derivatives of R have an intrinsic value independent of the definition of R and this point will have to be more precisely discussed in chapter 2.

δJ = - ∂J ∂W ( ∂R ∂W ) -1 δR since J(W + δW, X) J(W, X) + ( ∂J 
Up to now the adjoint vector appears as a mathematical object, dual of the residual R. However, in a well-known conference paper Giles and Pierce proposed a physical point of view [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF]. As their discussion is based on continuous adjoint, we transpose their ideas in discrete adjoint (and refer in parenthesis to the counterpart in [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF]). For this discussion, the residual R is a consistent discretization of Euler or (RANS) equations flux balance (not divided by volume) so that the discrete and continuous adjoint fields are similar 3 . Giles and Pierce consider four local perturbations δR (Dirac perturbation f n (ξ)δ(x -ξ)) in all cells of index m (location ξ) for 2D Euler equations (linearized Euler equations with homogeneous boundary conditions) about an aerofoil: (1) mass source at fixed stagnation pressure and total enthalpy ; (2) local normal force ; (3) change in total enthalpy at fixed static and total pressure ; (4) change in total pressure at fixed total enthalpy and static pressure. The reader is referred to reference [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF] for details but, as a starting point, the expression of δR 1 (mass source at fixed stagnation pressure and total enthalpy) is

δR 1 m =      1 u v H     
which indeed expresses the presence of mass source in cell m (mass flow kg/s -1 ) and compensates all disequilibrium caused in Euler equations by the flow injection.

The function of interest is the integral over the airfoil of the pressure times a local constant (denoted h) which involves inviscid drag and lift. By the mean of approximate mechanical analysis, its variations δJ (1m) , δJ (2m) , δJ (3m) , δJ (4m) due to the source terms in cell m, δR 1 m , δR 2 m , δR 3 m and δR 4 m , are calculated and (assuming they are exact) from (1.6), (δJ (1m) , δJ (2m) , δJ (3m) , δJ (dm) . As the four changes in R are linearly independent Giles and Pierce may define the adjoint vector at cell m as

(4m) ) = (Λ 1,m , Λ 2,m , Λ 3,m , Λ 4,m )     δR 1 1,m δR 2 1,m δR 3 1,m δR 4 1,m δR 1 2,m
(Λ 1 m , Λ 2 m , Λ 3 m , Λ 4 m ) = (δJ (1m) , δJ (2m) , δJ (3m) , δJ (4m) )     δR 1 1,m δR 2 1,m δR 3 1,m δR 4 1,m δR 1 2,m δR 2 2,m δR 3 2,m δR 4 2,m δR 1 3,m δR 2 3,m δR 3 3,m δR 4 3,m δR 1 4,m δR 2 4,m δR 3 4,m δR 4 4,m     -1 (1.7)
This of course is derived from (1.6) and close to it except that the residual perturbation δR have been physically defined and which makes the local discrete adjoint vector physically defined. For all system of equation for which a similar demonstration can be done, the adjoint vector gets intrinsic and we can expect similar solutions from different discretization and also mesh convergence.

Let us finally note that not only the Λ components can plotted, as usually done but also, in the spirit of Giles and Pierce, the limit ratio of the δJ (d) divided by (the small parameter of the physical source term). The corresponding plot is a view of the influence of the source term on the output of interest plotted at source term location -see fig. 3 in [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF].

Adjoint-mesh gradient computation

The technique that we call "adjoint-mesh" computation is a way to gather the derivative terms that avoids to manipulate any quantity related to the design parameters inside the CFD code during the adjoint step. It unfortunately does not seem to have a unique name (it is sometimes called "full-adjoint" or "fullreverse-mode").

In the mid 2000's the cost of evaluating dX/dα was becoming a burden in case X is an implicit function of the wall mesh [START_REF] Nielsen | Using an adjoint approach to eliminate mesh sensitivities in aerodynamic design[END_REF]. Moreover, successively reading (for all functions) or loading in memory all dX/dα l was becoming a time and/or memory burden limiting in practice the cost independence-ofdesign-parameters of the adjoint method. Finally the cost of the calculation of geometrical sensitivity of the residual, even by finite differences like,

∂R ∂X dX dα l R(W (α), X(α) + (dX/dα l )) -R(W (α), X(α) -(dX/dα l )) 2 , ( 1.8) 
was possibly not neglectible for the very large numbers of design parameters n α that were then more and more often considered. All these costs scaling with n α were not satisfactory of course in the discrete adjoint method that is expected to scale with the number of functions n J .

To overcome this issue, in case X is an explicit function of the design parameters α, the adjoint community has used a rewriting of adjoint gradient (see [START_REF] Peter | Calcul de la dérivée totale d'une fonction aérodynamique par rapport aux coordonnées de maillage. mode "pleinement adjoint" pour le calcul des gradients pour l'optimisation de forme[END_REF][START_REF] Peter | Développement du logiciel elsA en mode pleinement adjoint[END_REF])

dJ k (α) dα = ∂J k ∂X + Λ T k ∂R ∂X dX dα , ( 1.9) 
where the two factors of the right-hand-side of (1.10) may be calculated independently. The factor in the bracket is calculated by the CFD code that solved the adjoint equation and is saved on files ; the CFD code has then no knowledge of parametrization. The product is carried out besides by a basic code that does not need to be run on a supercomputer.

The term inside the bracket is easily identified as the total derivative of the function of interest w.r.t. the volume mesh nodes

dJ k dX = ∂J k ∂X + Λ T k ∂R ∂X (1.10)
A component of the first term, (∂J k /∂X m ), corresponds to the direct dependency of function J k on the location of node m, whereas a component of the second term, Λ T k (∂R/∂X m ), corresponds to changes of the flow field on the support of function J k , due to driving residual R to zero after changing node m location.

The dJ/dX vector field may be checked by finite differences. For a second-order check at a specific node X m , two opposite individual small displacements of X m along each frame axis need to be considered. For example, let δy m and -δy m be small displacement of node X m along y axis and X (+δym) X (-δym) be the shifted meshes resulting of these single alterations of the nominal mesh X. Discrete flows denoted W (+δym) and W (-δym) , need then to be converged for the shifted meshes by solving R W (+δym) , X (+δym) = 0 and R W (-δym) , X (-δym) = 0.

(1.11)

Then of course dJ/dy m can be checked based on

dJ dy m = J(W (+δym) , X (+δym) ) -J(W (-δym) , X (-δym) ) 2δy m + O(δy 2 m ) (1.12)

Shape gradient

Finally, let us note that if the X explicitly depends on the wall mesh, X S , that depends on the design parameters, a simple and efficient way to compute the derivatives of interest is to solve the n f adjoint equations and then to calculate the sensitivity of the functions w.r.t. wall mesh nodes:

∂R ∂W T Λ k = - ∂J k ∂W T dJ k dX = ∂J k ∂X + Λ T k ∂R ∂X dJ k dα l = dJ k dX dX dX S dX S dα l
(where the term in brackets is to be computed first).

In case X depends implicitly on X S which directly depends on the design parameters α, Nielsen and Park proposed an elegant solution [START_REF] Nielsen | Using an adjoint approach to eliminate mesh sensitivities in aerodynamic design[END_REF]. Let us denote D(X, X s ) = 0 the implicit link between volume and volume mesh. In reference [START_REF] Nielsen | Using an adjoint approach to eliminate mesh sensitivities in aerodynamic design[END_REF] for example, D was a simplified linear elasticity solver and the cost of solving the sensitivity equation

∂D ∂X dX dα l + ∂D ∂X S dX S dα l = 0 ∀l ∈ {1...n α }, (1.13) 
for dX dα i was not neglectible. Nielsen and Park proposed to add an adjoint equation for the mesh deformation to get rid of this issue. The sequence of operations is the following:

∂R ∂W T Λ k = - ∂J k ∂W T ∂D ∂X T Γ k = - ∂J k ∂X + Λ T ∂R ∂X T = - dJ k dX T dJ k dα l = Γ T k ∂D ∂X S dX S dα l
(where the term in brackets is to be computed first). Finally, as J k (X) has been defined from J k (W, X) where the residual of the discrete flow is converged (R(W, X) = 0), we can define J k (X S ) from J k (X) where X is the volume mesh that corresponds to surface mesh X S , namely (in the implicit case)

J k (X S ) = J k (X) where D(X, X s ) = 0 k ∈ {1...n f }. (1.14)
The gradient of J w.r.t. X S , dJ/dX S , is often called shape gradient. Previous equations yield

dJ k dX S = dJ k dX dX dX s (explicit link between X and X s ) (1.15) dJ k dX S = Γ T k ∂D ∂X S = - dJ k dX ∂D ∂X -1 ∂D ∂X S (implicit link D(X, X s ) = 0). (1.16)
The shape gradient is a field of interest for design engineers. It should confirm their knowledge about how to modify the solid walls to improve the values of the output of interest and possibly give them new intuitions.

Discrete versus continuous adjoint. ONERA options for discrete adjoint

For the sake of completeness, annex 1 presents the equations of continuous adjoint method in the simple case of a 2D Euler flow, although only discrete adjoint was developed ar ONERA. This choice was made in agreement with Airbus experts [START_REF] Meaux | Viscous aerodynamic shape optimization based on the discrete adjoint state for 3d industrial configurations[END_REF] and for the following reasons:

(1) to get the gradient of the discrete objective and be fully consistent with the optimizer in the optimization process ;

(2) to work on well posed problems for all types in functions. More specifically, ONERA has developed a strong expertise on far-field drag extraction under the lead of Destarac [START_REF] Destarac | Far-field / near-field drag balance[END_REF] and continuous adjoint equations do not exist for functions defined as integrals inside the fluid domain (typically, in the calculations of annex 1, the flow sensitivity can not be cancelled along the integration contour of the far-field functions) ;

(3) to possibly use automatic differentiation [START_REF] Griewank | Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation[END_REF] to produce routines calculating Jacobian of fluxes multiplied, on the right, by flow sensitivity or, on the left, by an adjoint vector. This technique is more and more commonly used even concurrentlty with the continuous approach [START_REF] Economon | Adjoint formulation investigations of benchmark aerodynamic design cases in SU2[END_REF][START_REF] Albring | Efficient aerodynamic design using the discrete adjoint method in su2[END_REF][START_REF] Zhou | A discrete adjoint framework for unsteady aerodynamic and aeroacoustic optimization[END_REF] ;

(4) to get a theoretically simple definition of adjoint systems even for complex flow equations involving complex turbulence models source terms.

The accepted drawback of this choice is that the discrete "explicit part"of the adjoint code, that linearizes the discrete fluxes entering the flux balance R, is considerably longer and more complex than its continuous adjoint counterpart would have been. The discrete adjoint code has been essentialy written by hand although INRIA's Automatic Differentiation code Tapenade has been used for tests and checks [START_REF] Hascoët | The Tapenade Automatic Differentiation tool: Principles, Model, and Specification[END_REF]. This approach is more error-prone than automatic differentiation but leads to a more efficient code [START_REF] Müller | On the performance of discrete CFD codes using automatic differentiation[END_REF].

ONERA's aerodynamic discrete adjoint module is part of the elsA code [START_REF] Cambier | elsA: an efficient object-oriented solution to CFD complexity[END_REF][START_REF] Cambier | Status of the elsA CFD software for flow simulation and and multidisciplinary applications[END_REF][START_REF] Cambier | The elsA CFD software: input from research and feedback from industry[END_REF]. This module is named elsA/Opt [START_REF] Peter | Discrete adjoint method for shape optimization and mesh adaptation in the elsA code. status and challenges[END_REF]. End of 2015, its number of lines was about 300000 which was about 20 percent of elsA's total number of lines. elsA is a very large finite-volume cell-centred code and it has not been planned to differentiate all schemes and turbulence models. The considered types of equations / schemes / linearization are the following: -Euler flows discretized by Roe flux [START_REF] Roe | Approximate Riemann solvers, parameters vectors, and difference schemes[END_REF] (with parabolic entropy fix) plus MUSCL approach with van Albada limiting function [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V -a second order sequel to godunov's method[END_REF][START_REF] Van Albada | A comparative study of computational methods in cosmis gas dynamics[END_REF] or by Jameson-Schmidt-Turkel flux [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF].

-RANS equations discretized by the above mentioned convective fluxes and so called 5P-COR viscous fluxes (cell-centred gradients which arithmetic mean at interface is corrected in the direction connecting the centers of the two cells adjacent to the face) with frozen eddy-viscosity in the linearization.

-RANS and Spallart-Almaras model equations with linearization of the equation of the discrete model. Discretization and linearization for mean flow are as presented before. Discretization of one-equation turbulence model involves first order convective Roe flux (with parabolic entropy fix), 5P-COR viscous flux formula and source term calculated from cell-centered gradients.

We recall here the assumption that the discrete steady residual of the scheme should be continuously differentiable w.r.t. to flow and mesh to perform discrete gradient calculation ( §1.1.1). Actually most of the results presented in later sections were obtained with Roe flux [START_REF] Roe | Approximate Riemann solvers, parameters vectors, and difference schemes[END_REF] with parabolic entropy fix plus van Albada limiting function [START_REF] Van Albada | A comparative study of computational methods in cosmis gas dynamics[END_REF]. This flux possibly entering R is actually C 1 (but not C 2 ) w.r.t. the flow field W . Some results have been obtained with Jameson-Schmidt-Turkel scheme [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF] that is not C 1 where the velocity at a specific face is orthogonal to its normal vector 4 or possibly where the classical pressure-velocity sensor for high gradients is zero 5 . The reader is referred to [START_REF] Nguyen-Dinh | Qualification des simulations numériques par adaptation anisotropique de maillages[END_REF] ( §1.2) for an example with a symmetric-mesh and symmetric-flow where the violation of this regularity requirement has clear consequences. The same section of the PhD thesis of Nguyen-Dinh [START_REF] Nguyen-Dinh | Qualification des simulations numériques par adaptation anisotropique de maillages[END_REF] discusses a possible regularization to make this scheme continuously differentiable. Considered viscous flux formula, and source term discretization are both C 1 w.r.t flowfield. Besides, all mentioned fluxes and source terms are C 1 w.r.t mesh X.

As concerning the resolution of direct differentiation and adjoint equation with the elsA code, the method that has been generally used is LU relaxation method for an iterative scheme based on an approximate Jacobian of the scheme. Actually, although direct differentiation and adjoint sets of equations are linear, their size is too big for large 3D test cases to use direct resolution and iterative solve is the classical way of processing. The selected method has been derived from the classical backward-Euler schemes [START_REF] Bryley | An overview and generalization of implicit Navier-Stokes algorithms and approximate factorization[END_REF]. The approximate Jacobian and LU relaxation have been proposed and studied by Drullion and me [START_REF] Peter | Large stencil viscous flux linearization for the simulation of 3D turbulent compressible flows with backward-Euler schemes[END_REF] and adapted for adjoint. More information is given in section §1.2 about these implicit stages. Recently, Cerfacs engineers and then Blondeau at ONERA proposed advanced GMRES methods to solve adjoint equation [START_REF] Pinel | Block Krylov methods to solve adjoint problems in aerodynamic design optimization[END_REF]. More advanced methods involving Runge-Kutta steps and multigrid have been presented by Xu et al. [START_REF] Xu | Stabilisation of discrete steady adjoint solvers[END_REF] and could be considered for elsA/Opt future improvements. The generalization of iterative resolution of direct differentiation and adjoint equation raised the questions of "exact duality" at the beginning of the 2000's:

-under what conditions would the asymptotic rate of convergence of direct non-linear problem and direct differentiation method be the same ?

-under what conditions the gradients evaluated at any step of the iterative process for direct differentiation and adjoint method would be strictly equal (so that their convergence rate would be the same) ? Giles and coworkers, Nielsen and coworkers answered to these two questions for different types of schemes [START_REF] Giles | On the iterative solution of the adjoint equations[END_REF][START_REF] Giles | Adjoint code developments using the exact discrete approach[END_REF][START_REF] Giles | Algorithm developments for discrete adjoint methods[END_REF][START_REF] Nielsen | An implicit exact dual adjoint solution method for turbulent flows on unstructured grids[END_REF] The complete gradient equations are easily derived with these actual dependancies [START_REF] Peter | Introduction to shape design in aerodynamics and some applications[END_REF]. All classical local boundary conditions have actually been differentiated plus radial equilibrium. Besides, elsA involves a large number of matching conditions (1 to 1 matching, 1 to N matching, general surface matching...) that have been taken into account in the discrete gradient module elsA/Opt by a ghost-cell filling process (using the same routines for adjoint vector or flow sensitivity as for flowfield).

As concerning mechanical formulations for Euler and (RANS) equations, the basic option is the simplest "aircraft" formulation where flow equations involve velocity in absolute frame of reference and where this set of axis is used for the projection of the momentum conversation law. For rotating flows, two formulations are avalaible in elsA: equations with relative velocity in the relative frame of reference (for turbomachinery flows) and equations with absolute velocity projected in the relative frame of reference (for rotor flows ; absolute velocity avoids numerical issues in far-field cells) although the second formulation tends to replace the first for turbomachinery flows. This framework was fixed by Jean-Christophe Boniface [START_REF] Boniface | Calculs d'écoulements compressibles autour des rotor d'hélicoptères et vol stationnire ou en vol d'avancement par résolution des équations d'Euler[END_REF]. Extension of direct differentiation method and discrete adjoint parameter method for absolute velocity / relative frame was done by Dumont [START_REF] Dumont | Calcul de gradient pour l'optimisation des performances aérodynamiques d'un rotor d'hélicoptère en vol stationnaire[END_REF] with my contribution for the analysis of the numerical terms and the debugging. It is described in §1.2 that is completed with a short presentation of an adjoint-based local shape optimization. Extension of direct differentiation method and discrete adjoint parameter method for relative velocity / relative frame was carried out by Pham and Renac [START_REF] Pham | Linéarisation du Flux Visqueux des Equations de Navier-Stokes et de Modèles de Turbulence pour l'Optimisation Aérodynamique en Turbomachines[END_REF][START_REF] Renac | Sensitivity analysis for the RANS equations coupled with a linearized turbulence model[END_REF].

Finally, lets us note that advanced post-processing tools have been developed at ONERA for the aircraft (FFD series of codes, under the lead of Destarac [START_REF] Destarac | Far-field / near-field drag balance[END_REF]), helicopters (HeliOpt, under the lead of Dumont) and engines (Xopt now named TurbOpt, under the lead of Castillon). The specific functions calculated be these tools are precisely the one that are to be involved as objective and constraints in the local optimization process. For the sake of consistency and efficiency, the partial derivatives ∂J/∂W , ∂J/∂X are calculated by these tools.

1.1.9 Note on mesh convergence of discrete adjoint fields Discrete adjoint mesh convergence is connected to both the discrete adjoint overview ( §I.1) and the review of goal oriented mesh refinement methods ( §II.1). The subject is rather discussed here for the clarity of the next chapter. Actually all classical goal-oriented mesh refinement methods implicitely assume adjoint mesh convergence. The best illustration is probably the rewriting of the well-known dualweighted-residual as proposed by Venditti and Darmofal [START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF] (H denoting current grid, h denoting finer embedded grid),

(Λ h W H h ) T R h (W H h ) = Λ H h R h (W H h ) + ((Λ h W H h ) T -Λ H h )R h (W H h ),
where it is implicitly assumed that Λ H h is a satisfactory approximation of Λ h W H h which converges towards Λ h as W H h converges towards W h . Unfortunately the question of discrete adjoint mesh convergence is not so simple when singularities are expected in the adjoint field, which is the case for Euler flows, under some far-field and geometrical conditions, at stagnation streamline and at the wall [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF].

Let us first recall the end of section §1.1.5: following a paper of Giles and Pierce [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF], under the existence of d6 independent physical source terms δR that can be added everywhere in the fluid domain to the right-hand side of the evolution equations of interest to define well-posed problems, we may expect the discrete adjoint fields to converge as the mesh is refined as numerical solution of a series of wellposed physical problems (1.7).

It is not absolutely clear whether mass injection or normal force, for example, can be applied in all the fluid domain including contact discontinuities and shock-waves to define a sound physical problems and we move to the numerical point of view. Adjoint mesh convergence is obviously not the simple counterpart of flow mesh convergence as the discrete adjoint field is the solution of an equation which depends on the discrete flow calculated on the current grid. The question of mesh convergence could hence be possibly addressed with a "perfect" flow solution interpolating a limiting flow field to the current grid to make independent flow and adjoint grid convergence. Actually, for all the following discussion, only the practical point of view with converged discrete flow then converged discrete adjoint based on this flow, is considered A technical point is made before moving to the bibliography on the subject of discrete adjoint mesh convergence : In the discrete adjoint module of a finite volume CFD code, R may be defined as the flux-balance or possibly the flux balance divided by the cell-volume (often called "explicit residual" and used as right-hand-side for implicit stages). 7 Discretizing Euler flux balance in one cell of a structured mesh, assuming the flux is simply the physical flux at the arithmetic mean of left and right state, is one simple way to establish a link between discrete adjoint equation (1.5) and continuous adjoint equation (3.6). In this comparison, it clearly appears that the residual R of the discrete adjoint should be the flux balance so that the discrete adjoint vector would be the counterpart of the continuous adjoint vector. It is then actually observed that the discrete adjoint field has similar general aspect when moving to coarser or finer grid.

Maybe the first contribution to the subject of discrete adjoint mesh convergence is the one of Giles, Duta, Müller and Pierce [START_REF] Giles | Adjoint code developments using the exact discrete approach[END_REF][START_REF] Giles | Algorithm developments for discrete adjoint methods[END_REF]. They considered a transonic flow about the NAC0012 with a strong shock which wandered between mesh points as the angle of attack was varied. The lift of the aerofoil was seen to be somewhat dependent on the position of the shock within the local mesh cell, as a result of which the design parameter-lift curve took on a slightly scalloped shape. As the mesh was refined, the amplitude of the scalloping was reduced as expected -but, as it always took the same shape, the amplitude of its gradient with respect to the angle of attack was not reduced. A counterpart issue for internal flows was discussed and illustrated with a shocked nozzle flow with varying outlet pressure and "lift" as function of interest. From this numerical issue for the gradient, Giles and his co-authors concluded that "the fact that grid convergence of non linear flow calculation does not guarantee convergence of linear sensitivities is a fundamental problem for the discrete approach to adjoint calculations". Altough they relate to continuous adjoint, I mention here recent contributions by Lozano: in two papers published in 2012 [START_REF] Lozano | Adjoint viscous derivatives with a reduced gradient formulation[END_REF][START_REF] Lozano | Discrete surprises in the computation of sensitivities from boundary integrals in the continupus approach to inviscid aerodynamic shape optimization[END_REF], he discusses the assets and drawbacks of different continuous adjoint formulations for Euler and Navier-Stokes equations. One test case is the NACA0012 airfoil represented by a NURBS and mesh convergence of lift/drag sensitivities w.r.t. to the parameters of the NURBS (coordinates and weights of the 18 selected control points) is studied. Discrepancies are observed between gradients issued from ajoint sensitivities and finite differences even on the finest grid. In a more recent contribution paper [START_REF] Lozano | On the properties of the solutions of the 2D adjoint Euler equations[END_REF][START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF], the same author points out a strong lack of adjoint mesh convergence for a simple case: a transonic (M ∞ = 0.8, AoA = 1.25 o ) flow about the NACA0012 aerofoil is considered and lift-adjoint is computed 8 . Mesh convergence is not observed at the wall for this lifting flow whereas it is demonstrated for a non-lifting flow. A specific issue appears at the trailing edge where the values of the adjoint variables at the next-to-trailing-edge nodes grow continually as the mesh is refined.

I am not aware of any article that had further discussed the issues pointed ot in reference [START_REF] Giles | Adjoint code developments using the exact discrete approach[END_REF][START_REF] Giles | Algorithm developments for discrete adjoint methods[END_REF]. As concerning the question recently raised by Lozano [START_REF] Lozano | On the properties of the solutions of the 2D adjoint Euler equations[END_REF][START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF], it deserves a specific in-depth study. Nevertheless, as together with PhD students and colleagues, we have calculated series of Euler flows and corresponding CLp/CDp-adjoint fields for various verifications, a few plots a presented in this section for a simple flow about the NACA0012 airfoil at transonic flow conditions (M ∞ = 0.8, AoA = 2. o ). Once again the meshes are those of the classical article [START_REF] Vassberg | In pursuit of grid convergence for two-dimensional Euler solutions[END_REF]. The selected scheme is the one defined by Jameson et al. [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF] 9 . The isolines of the first component of lift-adjoint are plotted in the fluid domain -figure 1.1 -and no sign of lack of mesh convergence can be observed in this first image. It is also plotted in the cells adjacent to the wall and along a line normal to the stagnation streamline, distant of half a chord to the trailing edge -figure 1.1 upper part. The reason for this second extraction is that close adjoint-isolines are observed in the vicinity of the stagnation streamline where Giles and Pierce predicted an inverse square-root singularity [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF]. The drawback of the plots for cells adjacent to the wall is that the location of the variables vary when the mesh is refined. This is the reason why first and third component of lift -adjoint are plotted and along the vertical line (x=0.5 z>0.) as function of z components -figure 1.1 lower part. -figure 1.1 left and right. Anyhow, it clearly appears in this series of figures, that the adjoint mesh convergence is not reached at oblique characteristic line or at the trailing edge even for that last two very dense meshes. 

Implicit stages for flow solution and gradient calculation methods

The purpose of this section is first to define the approximate Jacobians that have been proposed and studied for flow calculation by backward-Euler schemes [START_REF] Peter | Large stencil viscous flux linearization for the simulation of 3D turbulent compressible flows with backward-Euler schemes[END_REF]. A second subsection then describes the way these implicit stages have been adapted to direct differention method and discrete adjoint method.

Implicit stages for backward-Euler schemes for steady-state flows

The implicit stages of elsA that are most often used to solve direct and adjoint discrete equations on structured meshes, derive from those proposed by me [START_REF] Peter | DTP CAÏMEN phase 2B, année 3, tâche C4. Méthodes d'accélération de convergence multigrilles et implicites[END_REF] and studied with Drullion for the computation of steady state flows with backward-Euler schemes [START_REF] Peter | Large stencil viscous flux linearization for the simulation of 3D turbulent compressible flows with backward-Euler schemes[END_REF]. These implicit stages (named "LURELAX" in the framework of the elsA project) are briefly rewieved in this section, whereas the next section indicates which ones were selected for discrete gradient computation and how they were adapted for adjoint. The generic form of a backward-Euler scheme is simply:

I + ∆t V ol ∂R ∂W (AP P ) W (l+1) -W (l) = - ∆t V ol R(W (l) ) (1.17)
Most often, an approximate Jacobian of the scheme ∂R ∂W (AP P ) is first defined and an approximate resolution of the linear system (approximate factorization method, relaxation method, Krylov method...) is selected which completes the definition of the implicit stage.

Of course, approximate Jacobians of both upwind and centred schemes is an old topic in CFD [START_REF] Briley | An overview and generalization of implicit Navier-Stokes algorithms and approximate factorization[END_REF]. The specific features of those proposed in reference [START_REF] Peter | Large stencil viscous flux linearization for the simulation of 3D turbulent compressible flows with backward-Euler schemes[END_REF] are the following: (1) all terms are gathered at cell centers (avoiding the complexity of Jacobian absolute value or spectral radius calculated at interfaces) ;

(2) if the viscous flux is calculated from cell-centred gradient, it uses a five point approximate linearization of viscous flux balance.

The basic matrix approximate linearization of convective and diffusive flux balance entering (∂R/∂W ) AP P are hence the following :

• for the inviscid flux

d(F i+ 1 2 -F i-1 2 ) (δ + i A -+ δ - i A + )dW = -A + i-1 dW i-1 + |A i |dW i + A - i+1 dW i+1 , ( 1.18) 
|A|, A + , A -matrices being the absolute value, positive and negative part of (diagonalizable) physical Jacobian A in the mesh line direction (evaluated at cell-centers taking the mean of adjacent faces surface vectors) ;

• for the viscous flux

-d(F v i+ 1 2 -F v i-1 2 ) -M v i-1 dW i-1 + 2M v i dW i -M v i+1 dW i+1 (1.19) if F v is calculated from face centred gradients, but if cell-centred gradients enter F v , then -d(F v i+ 1 2 -F v i-1 2 ) 1 4 (-M v i-2 dW i-2 + 2M v i dW i -M v i+1 dW i+2 ) (1.20)
where M v is the classical Jacobian of the thin layer-approximation of viscous flux [START_REF] Candler | Hypersonic flow past 3D configurations[END_REF][START_REF] Pham | Linéarisation du Flux Visqueux des Equations de Navier-Stokes et de Modèles de Turbulence pour l'Optimisation Aérodynamique en Turbomachines[END_REF].

Actually, reference [START_REF] Peter | Large stencil viscous flux linearization for the simulation of 3D turbulent compressible flows with backward-Euler schemes[END_REF] also considers two possibly efficient variants in these implicit phases: the classical scalar approximation of convective and diffusive terms [START_REF] Yoon | A lower-upper symmetric Gauss-Seidel method for the Euler and Navier-Stokes equations[END_REF] and the inclusion of a fourth order artificial dissipation term in the original linearizations (without scalar approximation). The linear systems were solved by LU relaxation (two or four steps). Drullion presented the scalar linear stability analysis of the schemes which we checked together, whereas I conducted series of (RANS)&(k,ω) monogrid and multigrid calculations for a wing and a wing-body-pylon-nacelle configuration for three centred schemes [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF][START_REF] Martinelli | Calculation of viscous flows with a multigrid method[END_REF][START_REF] Swanson | On central-difference and upwind schemes[END_REF] for the studied implicit stages. The reader is refered to [START_REF] Peter | Large stencil viscous flux linearization for the simulation of 3D turbulent compressible flows with backward-Euler schemes[END_REF] for the analysis of the most efficient associations of centred schemes and implicit stages.

Implicit stages for the recursive solution of discrete adjoint equation

Until recently, the discrete direct differentiation equation and discrete adjoint equations were solved in elsA by iterative methods that read ∂R ∂W

(AP P ) T λ (l+1) k -λ (l) k = -( ∂R ∂W ) T λ (l) k + ( ∂J k ∂W ) T , (1.21)
∂R ∂W

(AP P ) ( dW dα i ) (l+1) -( dW dα i ) (l) = -( ∂R ∂W ) dW dα i (l) + ∂R ∂X dX dα i . (1.22)
Comparing equation (1.17) (backward-Euler scheme) and equation (1.22) (direct differentiation method), it is clear that the involved linear systems may be almost the same in both contexts -there is only a ∆t/V ol factor that should be inverted for all lines to produce a suitable routine for direct differentiation equation. This is actually the way the first routines for the solution of direct differentiation were derived. The basic features were kept -same approximate Jacobian definition, few LU-relaxation steps to approximately solve equation (1.21), multi-domain correction at matching-boundaries between two L or U relaxation steps -but not all approximate Jacobian routines were transfered to the gradient calculation module. The first reason was the growing use of the discrete viscous flux based on cell-centred (velocity and temperature) gradients corrected at interface in the direction of the two adjacent centers [START_REF] Peter | DTP CAÏMEN phase 2B, année 3, tâche C1. Contrôle de la dissipation numérique[END_REF] (that is called 5P-COR in the framework of the elsA project). For structured meshes, this discrete flux exhibits an accuracy close to the one obtained with interface-centred gradients, whereas its memory storage is the low one of the classical formula based on cell-centred gradients. As the approximate Jacobian of its flux balance is equation (1.19), only this formula was coded in the gradient calculation module. Besides, as up to now Roe's flux is the most used inviscid discretization with elsA/Opt and as it is best combined with block-matrix approximate Jacobians in the iterative procedure (1.22), the scalar-approximated matrices studied in [START_REF] Peter | Large stencil viscous flux linearization for the simulation of 3D turbulent compressible flows with backward-Euler schemes[END_REF] have not yet been transfered in the gradient calculation module.

Concerning the discrete adjoint equation, a technical question araised: formulas like (1.18), (1.19) or (1.20) imply that all block-matrices of a specific column of the approximated Jacobian are evaluated at the corresponding same point. This allows a lot of simplifications when coding the L-and U-relaxation routines but this property is lost of course when moving to adjoint. Keeping this coding would have meant to change the approximate Jacobians to have all block-matrices of a specific line evaluated at the corresponding same point. It was decided to keep the same approximate Jacobian and define a new coding for LU relaxation adjoint routines.

Extension of discrete gradient capability to relative frame/asbsolute velocity

To our knowledge, Lee and Kwon were the first to develop an adjoint approach for a rotor flow [START_REF] Lee-Rausch | Aerodynamic shape optimization of rotor blades in hover using unstructured meshes[END_REF]. In their method, the 3D Euler equations were solved on unstructured meshes and they used a continuous adjoint approach. More recently ONERA (with the elsA code [START_REF] Cambier | elsA: an efficient object-oriented solution to CFD complexity[END_REF][START_REF] Cambier | Status of the elsA CFD software for flow simulation and and multidisciplinary applications[END_REF][START_REF] Cambier | The elsA CFD software: input from research and feedback from industry[END_REF]) and NASA Langley (with the FUN3D code [11]) pursued the objective to carry out adjoint-based local optimization with (RANS) equations. Nielsen et al. [START_REF] Nielsen | Adjoint-based design of rotors using the Navier-Stokes equations in a noninertial reference frame[END_REF] developed a discrete adjoint for (RANS) discretized on unstructured meshes including full linearization of Spallart-Almaras turbulence model. They presented the optimization of a tilt rotor in purely axial flow. At the same time, Dumont and his PhD supervisors developed the same kind of capability with structured meshes and presented optimization of ONERA 7A rotor and ONERA-DLR ERATO rotor [START_REF] Dumont | Sensitivity analysis using direct differentiation and adjoint vector methods for helicopter rotor flow in hover[END_REF][START_REF] Dumont | Aerodynamic shape optimization of hovering rotors using a discrete adjoint of the RANS equations[END_REF][START_REF] Dumont | Calcul de gradient pour l'optimisation des performances aérodynamiques d'un rotor d'hélicoptère en vol stationnaire[END_REF][START_REF] Dumont | Aerodynamic shape optimization of hovering rotors using a discrete adjoint of the Reynolds-averaged Navier-Stokes equations[END_REF].

Flow equations, discretization

The classical Navier-Stokes equations read

∂ρ ∂t + div(ρV ) = 0 (1.23) ∂ρV ∂t + div(ρV ⊗ V + pI) = div(τ + τ R ) (1.24) ∂ρE ∂t + div(ρEV + pV ) = div((τ + τ R )V ) -div(s) -div( st ) (1.25)
where all variables are defined according to Favre 10 , where τ R is the Reynolds stress tensor and s t is the diffusive flux of turbulent enthalpy. We consider here only models relying on Boussinesq assumption where τ R and s t are respectively proportional to τ , the tensor of viscous stresses and s, the heat flux. The retained turbulence model is the k -ω model of Kok [START_REF] Kok | Resolving the dependance of free stream value for k -ω turbulence model[END_REF] that defines the turbulent viscosity involved in the equations defining τ R and s t .

The system of equations (1.23)-(1.25) is reformulated in a relative frame of reference with absolute velocity. The rotor is assumed to rotate at constant angular speed Ω and, when using a frame of reference attached to the rotor, we may still consider the absolute velocity but calculate, gradient, integrals... and write the momentum equation in the rotating frame of reference. The use of absolute velocity avoids to manipulate large non uniform velocity fields in the far-field and prevents the apparition of numerical noise. Conversely, the use of the rotating frame of reference makes the rotor and mesh steady. The no-slip condition on the rotor blade is then formulated as the equality between the flow velocity and the local entrainment velocity of the rotating frame. For these questions of velocity and frame formulation, the reference document at ONERA is the PhD thesis of Boniface [START_REF] Boniface | Calculs d'écoulements compressibles autour des rotor d'hélicoptères et vol stationnire ou en vol d'avancement par résolution des équations d'Euler[END_REF].

The velocity of a fixed point of the rotating frame in the inertial frame is from now on denoted V e ( in French "vitesse d'entrainement"). The (RANS) equations with this choice for velocity and frame read

∂ρ ∂t + div(ρ(V -V e )) = 0 (1.26) ∂ρV ∂t + div(ρV ⊗ (V -V e ) + pI) = div(τ + τ R ) + C (1.27) ∂ρE ∂t + div(ρE(V -V e ) + pV ) = div((τ + τ R )V ) -div(s) -div( st ) (1.28)
where C is a source term arising from the definition of velocity and frame

C = -ρΩ ∧ V ,
and Ω is the vector defining the constant rotation w.r.t. the rotor-axis (which norm is equal to the angular velocity).

Discretization and linearization in direct and adjoint modes

Among all the space-discretizations available in the elsA code, the ones that have been linearized have been recalled in subsection §1.1.8. Among the two linearized inviscid fluxes, the one retained for the steady state calculation was Roe flux with van Albda limiting function [START_REF] Roe | Approximate Riemann solvers, parameters vectors, and difference schemes[END_REF][START_REF] Van Leer | Towards the ultimate conservative difference scheme. V -a second order sequel to godunov's method[END_REF][START_REF] Van Albada | A comparative study of computational methods in cosmis gas dynamics[END_REF]. The frozen turbulence assumption was retained in the linearization ; its influence on the accuracy of flow and functions of interest sensitivity was eventually checked ([41] §2.7 [START_REF] Dumont | Sensitivity analysis using direct differentiation and adjoint vector methods for helicopter rotor flow in hover[END_REF] §VI.B) and found acceptable.

The steady state simulation capability with absolute velocity / relative frame has been implemented in the elsA software by Boniface. The adaption of the direct differentiation / adjoint-parameter capability 11 to this formulation has been carried out by Dumont with my contribution for the analysis of discrete term, coding options and debugging. Five steps were required ([41] §2.6):

-adapting Roe flux linearization, correcting Jacobian eigenvalues and Harten fix w.r.t. absolute velocity/absolute frame formulation ; -linearizing the source term of the formulation that depends on ρV ; -adapting the linearization of inviscid wall boundary condition (for objective and residual linearization) accounting for wall displacement with velocity V e ; -adapting the linearization of viscous wall boundary condition (for objective and residual linearization) accounting for wall displacement with velocity V e ; -adapting the linearization of far-field boundary conditions (that depends on V e ) for residual linearization ; -adapting to the formulation the approximate Jacobian of the Newton/relaxation method and the additive-Schwartz multi-domain correction between two relaxations steps -equations (1.22) and (1.21). Actually, all Jacobians, positive/negative/ absolute value of Jacobians have their eigenvalues shifted by V e .S where S is the relevant surface vector.

Example of application : ERATO rotor

This test case is selected to provide an example of application of previous adjoint capability and a glance at adjoint-based aerodynamic optimization at ONERA. More general information about that second activity can be found in [START_REF] Bompard | Strategies for Optimization and Automated Design of Gas Turbine Engines -Chapter: Local Search Methods for Design in Aeronautics[END_REF] or [START_REF] Peter | Discrete adjoint method for shape optimization and mesh adaptation in the elsA code. status and challenges[END_REF] but, in a nutshell:

-for parametrization, either the mesh is globally parametrized by free-form [START_REF] Yamazaki | Geometry parameterization and computational mesh deformation by physics-based direct manipulation approaches[END_REF] or the solid shape is parametrized by any of the numerous classical techniques and the wall deformation is propagated in the fluid domain by an analytic method [START_REF] Meaux | Viscous aerodynamic shape optimization based on the discrete adjoint state for 3d industrial configurations[END_REF] or quaternions. In the later case, the method is differentiated to possibly calculate the shape gradient ( §1.1.7) -elsA is used for solving direct [START_REF] Cambier | elsA: an efficient object-oriented solution to CFD complexity[END_REF][START_REF] Cambier | Status of the elsA CFD software for flow simulation and and multidisciplinary applications[END_REF][START_REF] Cambier | The elsA CFD software: input from research and feedback from industry[END_REF] and adjoint equations ( §1.1.7 and [START_REF] Peter | Discrete adjoint method for shape optimization and mesh adaptation in the elsA code. status and challenges[END_REF]) ; -objective, constraints and their partial derivatives are calculated by application-specific codes named FFD72 for aircraft [START_REF] Destarac | Far-field / near-field drag balance[END_REF], HeliOpt for rotor flows [START_REF] Dumont | Calcul de gradient pour l'optimisation des performances aérodynamiques d'un rotor d'hélicoptère en vol stationnaire[END_REF] and TurbOpt for internal engine flows ; -most used descent methods are conjugate gradient method for unconstrained problems and feasible direction method for constrained problems [START_REF] Vanderplaats | Numerical optimization techniques for engineering design: with applications[END_REF]. Least Square Sequential Quadratic Programming has also been successfully tested [START_REF] Carrier | Gradient-based optimization with the elsA software[END_REF].

The considered rotors are made of four blades. The flow about one blade is calculated and the influence of the other blades (in particular vortex shed by front blade) is obtained by angular join conditions expressing the angular periodicity of the flow. A CH structured mono-domain mesh is designed about the simulated blade. It is checked after calculation of the (RANS) steady state flow that y + of first cell center (adjacent to the wall) is close to 1.

Concerning the parametrization of blades and mesh deformation, Dumont and Le Pape decided to never deform the profiles of the initial blade, as it is very difficult to define profiles that are suitable for helicopter blades, especially for forward flight were the blade encounters an unsteady regime. The design parameters were then twist, chord, dihedral and sweep. The laws for the variations of these geometrical quantities w.r.t. radius can be either linear by part functions or Bézier curves. The mesh deformation method that defines a new volume mesh X(α) from a new surface mesh X S (α) is an analytic C 1 function that propagates full deformation up to a distance d 1 , no deformation after distance d 2 and makes a regular transition between d 1 and d 2 (see [START_REF] Dumont | Calcul de gradient pour l'optimisation des performances aérodynamiques d'un rotor d'hélicoptère en vol stationnaire[END_REF] §2.4 for more details). The objective function for the local optimization is the classical one for aerodynamic optimization of hovering rotors, the Function of Merit F M ([41] §1.5 and Annex B).

The ERATO rotor has been designed in the framework of an aeroacoustic ONERA-DLR joint initiative [START_REF] Splettstoesser | Wind tunnel test results and proof of design for an aeroacoustically optimized rotor[END_REF][START_REF] Prieur | ERATO an ONERA-DLR cooperative program on aeroacoustic optimization[END_REF]. Its radius is R = 2.1 m, its mean chord 0.14 m and its twist varies linearly w.r.t. to span and is egal to -10 degree at the tip. Its aeroacoustic performance has been assessed in windtunnel. Its aerodynamic performance in forward flight has been proved to be good but its performance in hovering flight has been considered as not very good, in particular for high loads [START_REF] Dumont | Calcul de gradient pour l'optimisation des performances aérodynamiques d'un rotor d'hélicoptère en vol stationnaire[END_REF].

For this reason, an adjoint-based local optimisation has been carried out for this geometry. The tip Mach number of the flow was 0.617 and the Reynolds number was the one derived from radius, velocity of the tip, density and dynamic viscosity of the air at the ground. Laws describing changes in twist, chord and sweep on the external part of the rotor, [0.45 R, R], have been considered. These are degree nine polynomials curves like

TW(t) = i=9 i=0 TW i B i,n (t) t = (r -0.45R) .55R B i,n (t) = n i t i (1 -t) n-i ,
where the first of the TW i is fixed and the eight others have fixed abscissae (see the red points, fig-ure1.2) and varying ordinate (that are precisely the design parameters). Using the classical properties of Bernstein polynomials, it is possible to bound the maximum twist (resp. chord and sweep) by bounding identically the coefficients in the Bézier functions. On top of these 24 (3×8) parameters, the angle of rotation of the blade along its span, that is called collective pitch for rotors, has also been included as design parameter in the optimization process. The objective function was the F M . No constraint is involved in the local optimization but considering the definition of F M , it is unlikely that the lift would be decreased during the optimization. Besides, a full polar for initial and final shape was eventually calculated.

Seven steps of adjoint based local optimization have been done. The (discrete adjoint) gradient vector of F M at each step is used by the conjugate gradient method of Fletcher and Reeves [START_REF] Fletcher | Function minimization by conjugate grandients[END_REF][START_REF] Vanderplaats | Numerical optimization techniques for engineering design: with applications[END_REF] to define the successive descent directions. Based on an estimation of step size, three configurations (geometry and collective pitch) in the fixed direction of descent are defined for which flow and Figure of Merit are computed. A third order polynomial interpolation for F M is then used to estimate by 1D maximization the descent step and the configuration where the optimization process is to be pursued. Seven optimization hence mean 28 flow computations (possibly restarted from neighboring flow) and seven adjoint solves.

The global increase of F M is 6.6 points. The changes in shapes is described by the Bézier curves for twist chord and sweep -see figure (1.3) the three final curves. The variation of shape can be directly observed in Figure (1.5) that also presents the change in pressure distribution in three span sections. Finally looking at polar curve of the rotor -F M as a function of collective pitch, figure (1.4) -it is observed that the optimized shape has led to both higher lift and higher F M (at constant lift, the optimized shape has an higher F M in all the domain of lift/collective pitch).

Finally, the CPU cost of the optimization was calculated and also its counterpart assuming gradients of F M would have been calculated by finite difference (all time measurements refer to NEC SX8, former large computing facility of ONERA). The time needed to get a steady state flow solution was 1h20min, the time to get the adjoint gradients was 1h40min. The total time of adjoint-based optimization was hence 49 CPU hours. Would the gradient of F M w.r.t. the 25 parameters have been calculated by first order finite difference, the cost would have been 270 CPU hours. The corresponding cost with second order finite difference being 504 CPU hours. The advantage of adjoint method was then obvious. 

Airfoil optimisation based on shape gradient

Defining the number of parameters that is suitable to drive a shape optimization is not a trivial task. Obviously, very few or too global parameters is not a good option as the optimal shape(s) may not be part of the design space. [START_REF] Stück | Adjoint RANS with filtered shape derivatives for hydrodynamic optimization[END_REF]. "Noise" does not mean here that the gradient is numerically unstable and prone to numerical errors but that it exhibits high frequencies for many simple problems and can hence not be safely used in descent methods [START_REF] Li | Using high resolution design spaces for aerodynamic shape optimization under uncertainty[END_REF] 12 .

One way to go forward, is to nevertheless use the richest possible design space for a given mesh, that is the set of all wall nodes coordinates X S , but smooth the shape gradient dJ/dX S -or more commonly, its component normal to the wall (dJ/dX S , n) -before using it in a local optimization algorithm. Different research teams have studied several types of smoothers. At ONERA, Bompard, Maugars, A. Costes, Désidéri and I worked on this topic [START_REF] Bompard | Modèles de substitution pour l'optimisation globale de forme en aérodynamique et méthode locale sans paramétrisation[END_REF][START_REF] Bompard | Two-dimensional aerodynamic optimization with or without parametrization[END_REF][START_REF] Costes | Lissage du gradient de forme pour l'optimisation aérodynamique des profils[END_REF]. Bompard and his supervisors proposed an original smoother and an original criterion to assess the validity of new shapes [START_REF] Bompard | Modèles de substitution pour l'optimisation globale de forme en aérodynamique et méthode locale sans paramétrisation[END_REF][START_REF] Bompard | Two-dimensional aerodynamic optimization with or without parametrization[END_REF]. This work was unfortunately not published in an international journal due to uncomplete proof of superiority over existing methods and inability to include friction in the adjoint step.

The state of the art about shape gradient smoothing, Bompard et al. smoother and criterion for shape suitability [START_REF] Bompard | Two-dimensional aerodynamic optimization with or without parametrization[END_REF] are presented here after.

Profile smoothing

For the sake of completeness, let us first note that profile smoothing is not always related to design.

Campbell defined a curvature smoothing procedure in the framework of its inverse design tool CDISC [START_REF] Campbell | Efficient viscous design of realistic aircraft configurations[END_REF][START_REF] Li | Spline-based airfoil curvature smoothing and its applications[END_REF]. It is based on Akima's interpolation scheme [START_REF] Akima | A new method of interpolation and smooth curve fitting based on local procedures[END_REF]. The CFAST method of Li and Krist, based on Dierckx's spline [START_REF] Dierckx | An algorithm for surface-fitting with spline functions[END_REF], is meant to remove curvature oscillations with extremely small geometry changes when defining a cubic spline description of an airfoil from a set of points [START_REF] Li | Spline-based airfoil curvature smoothing and its applications[END_REF].

Implicit shape gradient smoothing. State of the Art

The focus is here on the smoothing of the shape gradient for profile optimization by descent method. In practice, the field of normal shape gradient,

d = ( dJ k dX S , n),
(that is a scalar field defined at each node of the aerofoil) is smoothed and the corresponding operator is denoted S. Among all proposed methods for the regularization of field d, the one defined by Jameson is the most commonly used : it is based on an implicit residual smoothing method (IRS) [START_REF] Lerat | An implicit finite volume method for solving the Euler equations[END_REF][START_REF] Jameson | Solution of the Euler equations for complex configurations[END_REF], previously introduced as an implicit stage for steady state flow calculations. It results in a smoothed normal shape derivative also called "Sobolev gradient" as it exhibits a property of decreasing the objective in a relation where the right-hand-side is expressed as a weighted dot product of H 1 0 [START_REF] Jameson | Aerodynamic shape optimization using the adjoint method[END_REF][START_REF] Kim | Enhancement of adjoint design methods via optimization of adjoint parameters[END_REF]. The method has been presented by Jameson and coworkers in numerous articles and conference papers [START_REF] Jameson | Optimum aerodynamic design via boundary control[END_REF][START_REF] Jameson | Optimum aerodynamic design using CFD and control theory[END_REF][START_REF] Jameson | Aerodynamics shape optimization techniques based on control theory[END_REF][START_REF] Jameson | Optimum aerodynamic design using the Navier-Stokes equations[END_REF][START_REF] Jameson | Studies of alternative numerical optimization methods applied to the brachistochrone problem[END_REF][START_REF] Jameson | Computational fluid dynamics for aerodynamic design: Its current and future impact[END_REF][START_REF] Jameson | Aerodynamic shape optimization using the adjoint method[END_REF][START_REF] Kim | Enhancement of adjoint design methods via optimization of adjoint parameters[END_REF]. It was used among others by Mohammadi et al. in their CAD-free framework [START_REF] Mohammadi | Applied shape Design for Fluids[END_REF], Mousavi, Castonguay and Nadarajah [START_REF] Mousavi | Survey of shape parametrization techniques and its effects on three-dimensional aerodynamic shape optimization[END_REF][START_REF] Castonguay | Effect of shape parametrization on aerodynamic shape optimization[END_REF] and Schmidt, Schultz, Gauger et al. [START_REF] Schmidt | Three dimensional large scale aerodynamic shape optimization based on shape calculus[END_REF] who presented the operator as an approximate Hessian. In [START_REF] Jameson | Aerodynamics shape optimization techniques based on control theory[END_REF][START_REF] Jameson | Optimum aerodynamic design using the Navier-Stokes equations[END_REF] the authors noted that, when using a smoothed information, incomplete convergence of the flow and the adjoint solution is sufficient thus permitting large savings in computational costs.

The interior point equation for the smoothing of 1D field d in S(d) is

-J S(d) l-1 + (1 + 2 J )S(d) l -J S(d) l+1 = d l
The first and last equations can be adapted in particular to ensure that the sum of the element of the S(d) is equal to the sum of the d terms. It is also possible to remove the J terms from one line to equalize the corresponding left-hand-side and right-hand-side components. This is often done for leading-edge and trailing edge after the value of d at these points has been set to zero in order to keep the chord unchanged.

Finally, a method associating ideas of parameter-based and parameter-free shape optimization is mentioned : Castonguay and Nadarajah used implicitely smoothed shape gradients in conjunction with local shape parameters [START_REF] Castonguay | Effect of shape parametrization on aerodynamic shape optimization[END_REF]. In the classical reduced form of discrete adjoint gradient

dJ k dα l = dJ k dX S dX S dα l l ∈ {1...n α } k ∈ {1...n f },
the shape gradient dJ k /dX S is replaced by a smoothed counterpart field. Reference [START_REF] Castonguay | Effect of shape parametrization on aerodynamic shape optimization[END_REF] discusses the benefit of this approach for aerofoil optimization with B-splines and Hicks-Henne bumps.

Explicit shape gradient smoothing. State of the Art

In [START_REF] Jameson | Optimum aerodynamic design using CFD and control theory[END_REF] Jameson also considered a simple two-pass three-point-per-mesh-direction explicit smoothing, one pass being

S(d) l = J d l-1 + (1 -2 J )d l + J d l+1 .
The same operator was used recursively by Jaworski and Müller [START_REF] Jaworski | An implicit finite volume method for solving the Euler equations[END_REF]. Recently, Stück et al. used an explicit operator based on a convolution of the shape gradient with a truncated Gaussian kernel and established a link between this operator and Jameson's implicit operator [START_REF] Stück | Adjoint RANS with filtered shape derivatives for hydrodynamic optimization[END_REF]. In the slightly different context of multi-level shape optimization, Vasquez, Dervieux and Koobus defined an explicit smoothing operator that projects the current shape change to a smaller space [START_REF] Vasquez | Aerodynamical and sonic boom optimization of a supersonic aircraft[END_REF]. More geometrical methods have been proposed and assessed. In particular, the POSSEM method of Li et al. controls the curvature of the airfoil induced by a shape modification in case it is defined by cubic B-splines [START_REF] Li | Transonic airfoil shape optimization in preliminary design environment[END_REF].

Besides, an advanced explicit smoothing method has been proposed by Bletzinger and co-workers [START_REF] Hojjat | The vertex morphing method for node-based shape optimization[END_REF]. It acts on both the tangential and normal components of the shape to define suitable shapes and meshes in the optimization process. As concerning the smoothing of normal shape gradient, the method is not strictly parameter-free. Design parameters denoted α need to be defined. A piecewise linear filter A T on shape gradients is used and then a transposed filter A for displacement of the wall nodes δX S dJ dα = A T dJ dX S [descent algorithm for α] δX S = Aδα 1.4.4 Proposed criterion for shape gradient smoothing. Curvature-control

As mentioned before, dJ/dX s and its components orthogonal to the wall, (dJ/dX S , n), are very wavy fields even for usual airfoils, flow conditions, meshes and functions of interest, whereas the airfoils considered all along the optimization path must be regular. This is the reason why smoothing operators are applied to dJ/dX S or (dJ/dX S , n) before changing the shape of the airfoil. As curvature changes most often result in perturbations of the flow-field, a control of the curvature total-variation of targeted airfoils is proposed : the curvature k(s) as a function of the arc length s, is first computed over the airfoil of interest X S , using Frenet formulas. More precisely, Frenet formulas define the curvature as the derivative of the angle of the local tangent with a fixed direction w.r.t. the arc length. Actually, the local angle of the curve w.r.t. the Ox axis is calculated for the points of the discrete curve X S . Then an Akima's spline [START_REF] Akima | A new method of interpolation and smooth curve fitting based on local procedures[END_REF], denoted S, is fitted to this function and the curvature is obtained by differentiating the spline formula. This yield an accurate estimation of the curvature k(s) even where the discretization nodes tend to cluster). The total variation of k(s) is then ˆS |k (s)|ds.

In order to select suitable shapes when carrying out shape optimization, a smaller and more significant variable was found to be obtained by subtracting the difference in curvature between the upper side trailing edge (arc length s tu ) and the leading edge (arc length s le ) and the analogous quantities on the lower side:

Ψ(S) = ˆS |k (s)|ds -|k(s le ) -k(s tu )| -|k(s le ) -k(s tl )|.
The curvature of the classical RAE2822 profile is presented at figure 1.6 as a function of the arc length s. It appears that Ψ(S) does remove the influence of the very strong negative curvature at the leading edge, accounting only for changes of curvature at the upper side and lower side of the airfoil.

The current airfoil at a specific step of the local optimization process is denoted X c s , its local normal vector is denoted n c , the characteristic step-size of the descent method is τ and d stands for (dJ/dX c s , n c ). Finally, S denoting the smoothing operator applied to d, the targeted airfoil is defined at each point of the surface mesh by 13 :

X τ S = X c S + τ S(d)n c (1.29)
The proposed smoothing operator that is described in next subsection is recursive and uses as stopping criterion Ψ(S τ ) < q Ψ(S c ) , (1.30) where S τ and S c are the Akima's splines corresponding to X τ S and X c S . A suitable value for constant q was found to be about 2. Actually this criterion could be used in any other smoothing method to check if a proposed new profile is suitable or not. The method of Dierckx is based on the search of a balance between fitting the data and minimizing a smoothness measure. It enforces that a data fitting error is lower than a given parameter , and seeks the smoothest spline curve subject to this constraint. In this study, order-three splines are used and the smoothness is achieved by minimizing the discontinuity jumps of the third derivatives at the interior knots of the spline. In this procedure, the number of knots and their position is automatically chosen by the algorithm. The fitting criterion is the weighted sum of the squares of the differences between the input function and its spline approximate. In the input distribution d(s), the three values corresponding to the leading edge and trailing edges (upper and lower sides) are set to zero and their weights in the fitting criterion are assigned much larger values than the analogous weights associated to the other inputs so that the output distribution S(d) also has null values at these three points. The recursive algorithm is defined as follows [START_REF] Bompard | Two-dimensional aerodynamic optimization with or without parametrization[END_REF]:

1. Set l = 1 ; Compute Ψ(S c
) the total variation of curvature indicator of current airfoil shape S c (defined by the set of coordinates X c S ). Set d 0 = (dJ/dX c s , n c ) . Compute the descent step τ that would lead to a specified decrease of J in case J was varying linearly in direction d 0 .

2. Apply Dierckx's spline interpolation with tolerance to the field d l-1 to get d l .

3. Compute the target airfoil based on the step size τ and the current normal displacement d l :

X l S = X c S + τ d l n c .
4. Compute the curvature of the Akmina's spline S l corresponding to target airfoil X l S and test if Ψ(S l ) < q Ψ(S c ). If condition satisfied, stop ; otherwise restart at step 2 with l = l + 1.

Test case for smoothing operator and parameter-free optimization chain

Although the next two subsections are focuses on smoothing operator and global efficiency of the parameterfree aerofoil optimization chain proposed by Bompard et al [START_REF] Bompard | Two-dimensional aerodynamic optimization with or without parametrization[END_REF], a short presentation of all building blocks of this chain is given hereafter. The main reason is that the complete definition of the shape gradient requires the one of the space discretization residual R, the function of interest J and link between volume mesh X and wall mesh X S . The studied parametrization-free optimization chain included six steps [START_REF] Bompard | Modèles de substitution pour l'optimisation globale de forme en aérodynamique et méthode locale sans paramétrisation[END_REF][START_REF] Bompard | Two-dimensional aerodynamic optimization with or without parametrization[END_REF]:

1. Solve the (RANS)&(SA) equations around the current shape. The finite-volume cell-centred elsA software [START_REF] Cambier | elsA: an efficient object-oriented solution to CFD complexity[END_REF][START_REF] Cambier | Status of the elsA CFD software for flow simulation and and multidisciplinary applications[END_REF][START_REF] Cambier | The elsA CFD software: input from research and feedback from industry[END_REF] was used for this stage. Second order Roe's flux [START_REF] Roe | Approximate Riemann solvers, parameters vectors, and difference schemes[END_REF] (using the MUSCL approach [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V -a second order sequel to godunov's method[END_REF] with the Van Albada limiting function [START_REF] Van Albada | A comparative study of computational methods in cosmis gas dynamics[END_REF]) was used for the mean flow convective terms. Centered fluxes with interface-centered evaluation of gradients were used for both diffusive terms. Cell-centred gradients were used for the source terms.

2. Extract the relevant aerodynamic coefficient and evaluate the objective function. The FFD code was used [START_REF] Destarac | Far-field / near-field drag balance[END_REF]. For the applications, the wave drag was differentiated. The sum of wave drag and friction was the function of interest.

3. Compute the total derivative of the objective function (w.r.t. mesh coordinates) by the discrete adjoint method. This adjoint module of the elsA software was used [START_REF] Peter | Discrete adjoint method in elsA (part I): method/theory[END_REF][START_REF] Peter | Discrete adjoint method for shape optimization and mesh adaptation in the elsA code. status and challenges[END_REF].

4. Compute the derivatives of the objective function w.r.t. surface nodes. The method deforming the volume mesh based on the wall mesh displacements was the analytic method proposed by Meaux and coworkers [START_REF] Meaux | Viscous aerodynamic shape optimization based on the discrete adjoint state for 3d industrial configurations[END_REF].

5. Smooth the normal component of shape derivative. Bompard et al. method was used.

6. Update the shape using a descent algorithm. The optimization method was the CONMIN [START_REF] Vanderplaats | CONMIN -a fortran program for constrained function minimization -user's manual[END_REF] iterative method that combines Zoutendijk's method of Feasible Directions [START_REF] Zoutendijk | Methods of feasible direction[END_REF] (when some constraints are active) and the conjugate direction method of Fletcher and Reeves (otherwise) [START_REF] Fletcher | Function minimization by conjugate grandients[END_REF].

The RAE2822 aerofoil is considered. The flow conditions are M ∞ = 0.730, AoA= 2.79 o , Re= 6.5 10 6 (as concerning the angle of attack, see footnote14 below). Three two-domain meshes, including 32832, ). Hence, this grid is retained for the assessment of smoothing operators and parameter-free shape optimizations.

Assessment of proposed smoothing operator

The smoothing operators are tested for the nominal shape, with the scheme described in previous subsection, on a distribution of normal component of wave drag shape gradient, (dCDw/dX S ,n). The adjoint for CDw has been run with both the frozen-turbulence assumption and linearization of the turbulence model (see [START_REF] Bompard | Two-dimensional aerodynamic optimization with or without parametrization[END_REF] figures 4 and 5). The two curves -with and without turbulence-freezing -are quite close for both sides of the aerofoil. They are considered as representative of those appearing during the optimization process. Finally, the distribution of (dCDw/dX S ,n) obtained with the frozen-turbulence are retained for the assessment of smoothing methods. This distribution is presented in figures 1.9 (lower side) and 1.10 (upper side).

The algorithm defined in section 1. [START_REF] Ali | Optimal mesh topology for CFD[END_REF] For the sake of completeness, it is checked that recursivity is needed to define satisfactory smoothed curves. If only one step of smoothing via Dierckx's spline is applied, way larger values of are needed to satisfy the stopping criterion (1.30). The lowest corresponding value is 3.2. The corresponding S(d) distribution is plotted in figure 1.13, together with those obtained for equal to 2 and 4 and the reference curve selected above. It clearly appears that these curves cannot be considered as smooth approximations of the original distribution. Besides, (IRS) was tested for standard values of J . This parameter was set to zero in the equations corresponding to leading edge and trailing edge in order to get zero value of S at these points. This also makes the smoothing of (dJ/dX S , n) independent on the upper and the lower sides. The curves resulting of the application of this operator to the selected distribution are presented by figure 1.14. In our test-case, the gradient at the leading and trailing edges are very high and difficulties to apply (IRS) have been experienced. For the sake of completeness (IRS) was also tested inside the recursive algorithm defined for Dierckx's spline smoothing. Very low values of S(d) were obtained (which was the reason why (1.30) was satisfied) whereas the resulting S(d) curves did not appear as approximations of the original d distribution. 

Assessment of proposed parameter free optimization chain

In every test, the computation is initiated with the RAE2822 airfoil geometry and carried out at the flight conditions of the experiment of Cook et al. [START_REF] Cook | Aerofoil RAE 2822 -pressure distributions, and boundary layer and wake measurements -experimental data base for computer program assessment[END_REF] mentioned above (M ∞ = 0.730 and Re= 6.5 10 6 ). Four design cases, similar to those introduced by Kim et al [START_REF] Kim | Two-dimensional high-lift aerodynamic optimization using the continuous adjoint method[END_REF], have been considered : In the study of Kim et al, the surface of the airfoil was parametrized using 50 Hicks-Henne bump functions spread evenly on the upper and lower sides. In this paper, the same computations are made by the design procedure presented in subsection §1. [START_REF] Ali | Optimal mesh topology for CFD[END_REF] 

Goal-oriented mesh adaptation

Goal-oriented mesh adaptation aims at defining suitable meshes for the calculation of a functional output (typically a force or moment for external flows ; loss, efficiency, massflow or outlet total pressure for internal flows). Concerning finite-difference/finite-volume methods, the subject was initiated by Giles and Pierce [START_REF] Giles | Improved lift and drag estimates using adjoint Euler equations[END_REF] with the goal of improving the accuracy of integral functionals. Venditti and Darmofal then defined the most popular method for non-linear outputs focusing on both estimates improvement and goal-oriented mesh refinement [START_REF] Venditti | Adjoint error estimation and grid adaptation for functional outputs: Application to quasi-one-dimensional flow[END_REF][START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: Application to two-dimensional viscous flows[END_REF].

The scientific community became aware that the resulting adapted meshes (typically for lift of drag, for a transonic 2D flow) were very different from those defined by the older classical feature-based methods. In particular, goal-oriented adjoint-based methods effectively refine the mesh upwind the function support and features of interest which feature-based methods typically fail to do. Feature-based methods also refine zones that have no influence on the flow close to the function support. Figure 2.1 provides a visual illustration of this matter. Moreover, focusing on convergence of output functionals, it appeared that classical feature-based indicators sometimes fail to drive the output value towards the reference one, obtained using very fine regular meshes. This deficiency, that was early demonstrated in [START_REF] Warren | Grid convergence for adaptative methods[END_REF] and then in [START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF] (four times) and [START_REF] Dwight | Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation[END_REF], has strengthened the interest in goal-oriented mesh refinement. Finally, as noted recently by Park in a recent paper [START_REF] Park | Unstructured grid adaptation: status, potential, impacts and recommended investments toward CFD Vision[END_REF], maps of goal-oriented error indicator and output adapted grids have influenced the design of new meshes [START_REF] Brezillon | Private Communication[END_REF].

After coworkers and I coded the adjoint mesh mode in the elsA code for one of ONERA's industrial partners [START_REF] Peter | Calcul de la dérivée totale d'une fonction aérodynamique par rapport aux coordonnées de maillage. mode "pleinement adjoint" pour le calcul des gradients pour l'optimisation de forme[END_REF][START_REF] Peter | Développement du logiciel elsA en mode pleinement adjoint[END_REF], we considered the usage of the total derivative dJ/dX for J-oriented mesh refinement. In a nutshell, the norm of this field times the local characteristic size of the mesh appeared to be a suitable indicator for refinement aiming at an accurate J computation. This research was presented in conference papers [START_REF] Peter | Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates[END_REF][START_REF] Peter | Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates -with application to Euler flows[END_REF][START_REF] Peter | Unstructured mesh adaptation for functional outputs. With application to two-dimensionnal inviscid flows[END_REF] and in the following journal articles [START_REF] Peter | Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates -with application to Euler flows[END_REF][START_REF] Nguyen-Dinh | Mesh quality assessment based on aerodynamic functional output total derivative[END_REF][START_REF] Todarello | Finite-volume goal-oriented mesh-adaptation using functional derivative with respect to nodal coordinates[END_REF][START_REF] Resmini | Mono-block and non-matching multi-block structured mesh adaptation based on aerodynamic functional derivatives for RANS flows[END_REF] :

• Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates -With application to Euler flows. The classical methods for (FV) goal-oriented mesh refinement are recalled in section §II.1. After the asymptotic behavior of dJ/dX has been discussed in section §II.2, the proposed criteria for mesh adaptation and mesh assessment are derived in section §II.3. Applications to 2D and 3D, Euler and RANS flows with structured meshes are presented in section §II.4. Most conclusive results have been obtained with unstructured meshes which define the most suitable setting for mesh adaptation : for classical exercises of 2D Euler lift/drag-oriented mesh adaptation, the proposed method efficiently defined adapted meshes with the same refined zones as the most used method [START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: Application to two-dimensional viscous flows[END_REF] but without the need of a finer grid. These results are presented in section §II.5. In section §II.6, the perspectives of the dJ/dX-based method are discussed in relation with the maturity of the classical methods presented in §II.1. 2.1 Classical methods for finite-volume goal-oriented mesh-adaptation

Classical FV goal-oriented error estimators

A complete review of output-based error estimation and mesh adaptation methods has been published in by Fidkowski and Darmofal [START_REF] Fidkowski | Review of output-based error estimation and mesh adaptation in computational fluid dynamics[END_REF]. The reader is referred to this article for a detailed discussion covering variational formulations, mesh types and mesh adaptation strategies whereas this subsection focuses on the presentation of the classical methods for (FV) goal-oriented error estimation. As a complement the next one presents a few references about isotropic and anisotropic refinement. At the end of the 90's, Pierce and Giles introduced adjoint-based error estimation for functions in a very broad framework [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF][START_REF] Giles | Improved lift and drag estimates using adjoint Euler equations[END_REF][START_REF] Pierce | Adjoint recovery of superconvergent functionals from PDE approximations[END_REF][START_REF] Giles | Adjoint error correction for integral ouptputs[END_REF]. It is simply supposed that, in a Hilbert space H, whose inner product is denoted (., .) 1 : (a) a well-posed "direct" linear differential equation Lw = f can be solved, exactly or approximately, before computing the scalar product of the (possibly approximate) solution by another vector g of H; (b) a corresponding adjoint problem L * λ = g is well defined and can be solved exactly or approximately, before computing the dot product of the (possibly approximate) solution by f . The error in the estimation of the common goal, (g, w) = (L * λ, w) = (λ, Lw) = (λ, f ), by the approx-imate solution w h (h denoting the average mesh size) of the direct problem is

(g, w) -(g, w h ) = (g, (w -w h )) = (L * λ, (w -w h )) = (λ, L(w -w h )) = (λ, f -Lw h ). (2.1)
If the adjoint problem has also been approximately solved, the error can be expressed as

(g, w) -(g, w h ) = (λ h , f -Lw h ) + (λ -λ h , f -Lw h ) (2.2)
Pierce and Giles have given a detailed analysis of these formulas for a wide range of problems and numerical methods (including both finite-difference and finite-element methods). For simple linear differential equations like 1D or 2D Poisson equation, they presented complete proof and illustration that (λ h , f -Lw h ) is the dominant error term and the order of (λ -λ h , f -Lw h ) is twice the order of this first term. In this case, they proposed

j (g, w h ) + (λ h , f -Lw h )
as (superconvergent) function estimation [START_REF] Giles | Improved lift and drag estimates using adjoint Euler equations[END_REF][START_REF] Pierce | Adjoint recovery of superconvergent functionals from PDE approximations[END_REF]. In 2003, they involved in their theorems the accuracy of the reconstruction operator2 that builds continuous functions from the discrete w h , λ h before estimating the outputs and error terms in equations (2.1) (2.2) [START_REF] Giles | Adjoint and defect error bounding and correction for funvtional estimates[END_REF]. Giles, Pierce and Müller presented equivalently good results for a shock-free nozzle and an airfoil [START_REF] Giles | Improved lift and drag estimates using adjoint Euler equations[END_REF][START_REF] Pierce | Adjoint recovery of superconvergent functionals from PDE approximations[END_REF][START_REF] Müller | Solution adaptative mesh refinement using adjoint error analysis[END_REF] but the theory they proposed for non-linear equations and non-linear outputs involves averaged Fréchet derivatives of considered system of partial differential equations (and boundary conditions). It also requires the evaluation of the the residual of the discrete flow for these operators. This theory has not been as broadly tested and used as the method proposed a little later by Venditti and Darmofal. 3 .

In a series of three articles [START_REF] Venditti | Adjoint error estimation and grid adaptation for functional outputs: Application to quasi-one-dimensional flow[END_REF][START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: Application to two-dimensional viscous flows[END_REF], Venditti and Darmofal have proposed similar formulas but for non-linear outputs, for FV (or FD) schemes and for discrete adjoint. They presented applications to 2D compressible flow computations [START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: Application to two-dimensional viscous flows[END_REF]. For the description of their method, we drop the index k attached in chapter 1 to function-to-differentiate and adjoint vector and use subscripts and superscripts corresponding to grid level. The method involves two grids: a coarse one of characteristic mesh size H, and a fine one of characteristic mesh size h. The full computation of the flow field and the output of interest on level H is supposed to be affordable, whereas it would be prohibitively expensive on level h. The subscripts h and H will be attached here to R, X and W . Lastly, W H h and λ H h represent the coarse-grid flow-field and adjoint vector reconstructed on the fine grid via some consistent projection operator. A Taylor's expansion of the functional output of interest J h about the interpolated coarse-grid solution yields

J h (W h , X h ) = J h (W H h , X h ) + ( ∂J ∂W W H h )(W h -W H h ) + O(||W h -W H h || 2 )
Using an adjoint-like equation solved on the fine grid (2.3) and then a Taylor's expansion of R about W H h yields

(Λ h W H h ) T ∂R h ∂W h W H h = - ∂J h ∂W h W H h (2.3) J h (W h , X h ) = J h (W H h , X h ) -(Λ h W H h ) T ( ∂R h ∂W h W H h )(W h -W H h ) + O(||W h -W H h || 2 ) = J h (W H h , X h ) + (Λ h W H h ) T R h (W H h ) + O(||W h -W H h || 2 ) (2.4)
If the flow computation is not affordable on the fine grid, neither is the solution of equation ( 2.

3) for (Λ h W H h

). The alternative is to replace this adjoint field by the interpolated coarse-grid adjoint,

J h (W h , X h ) J h (W H h , X h ) + (Λ H h ) T R h (W H h ) computable correction + ((Λ h W H h ) T -(Λ H h ) T )R h (W H h )
error in computable correction (ECC)

(2.5)

The authors recommend to take J

h (W H h , X h )+Λ H h R h (W H h )
as the function estimate and adapt the mesh by reducing uniformly the simple upper bound of ECC that is obtained taking the sum of the absolute value of elemental contributions. When doing so, the bound of ECC term is actually approximated using two interpolations from coarse grids with different polynomial accuracy (typically, linear for Λ H h and quadratic for approximate Λ h W H h ). Finally, let us note that the error in computable correction, ECC, has an other expression and a first order approximation: a residual of adjoint equation at interpolated flow is first defined:

R Λ h (Λ) = ∂R h ∂W h W H h T Λ - ∂J h ∂W h W H h T = ∂R h ∂W h W H h T (Λ -Λ h W H h ).
The EEC is then easily expressed as

ECC b = ECC = -R Λ h (Λ H h ) T ∂R h ∂W h W H h -1 R h (W H h ), (2.6) 
Finally, using the straightforward equality

R h (W H h ) = R h (W H h ) -R h (W h ), ECC c = R Λ h (Λ H h ) T (W h -W H h ) ECC = ECC b
These formulas have raised a deep interest in the aeronautical CFD community. The main applications of this method are described in the first section of reference [START_REF] Peter | Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates -with application to Euler flows[END_REF]. Let me finally note that if the interpolation operator is carefully coded so that J h (W H h , X h ) J H (W H , X H ), the correction term accounts for the difference between fine and coarse grid output functional value so that refinement based on the correction may also be considered (see [START_REF] Müller | Solution adaptative mesh refinement using adjoint error analysis[END_REF] and [START_REF] Giles | Adjoint error correction for integral ouptputs[END_REF] §5).

Later on, Dwight has proposed a very different adjoint-based method attached to Jameson et al. scheme [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF]. In a series of two articles [START_REF] Dwight | Goal-oriented mesh adaptation using a dissipation based error indicator[END_REF][START_REF] Dwight | Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation[END_REF], he considered classical test cases for Euler flows. He ran computations using Jameson et al. scheme [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF] on hierarchies of grids and for different sets of artificial dissipation coefficients (k 2 , k 4 ). The error for the functions of interest appeared to be mainly due to artificial dissipation. On this basis, the following measure for the approximation error in the Jameson et al. scheme has been proposed:

k 2 dJ dk 2 + k 4 dJ dk 4
The dissipation coefficients are then interpreted as being defined independently for each control volume. This leads to a local indicator for dissipation-error in cell m:

k 2 dJ dk 2 m + k 4 dJ dk 4 m
The derivatives dJ/dk 2 m and dJ/dk 4 m can only be computed by the adjoint method with the standard adjoint equation and a specific gradient formula

∂R ∂W T Λ = - ∂J ∂W T dJ/dk 2 m = Λ T ∂R ∂k 2 m dJ/dk 4 m = Λ T ∂R ∂k 4 m (2.7)
The field of local indicator for dissipation error is used as a mesh refinement indicator and J-k 2 dJ/dk 2k4 dJ/dk 4 is considered as the corrected output value.

In 2010, Fidkowski and Roe made and illustrated an original contribution exhibiting specific functions for which the adjoint field is known [START_REF] Fidkowski | An entropy approach to mesh refinement[END_REF]. For subsonic Euler flows, considering continuous equations, they first demonstrated that the entropy variables v, defined as the derivatives of the entropy s 4 with respect to conservative variables s = -ρS/(γ -1) (S being the physical entropy S = ln p -γ ln ρ ),

v = ds/dW = γ -S γ -1 - ρV 2 2p , ρu p , ρv p , ρw p , - ρ p T ,
are the adjoint vector of the entropy flux

J e = ˆ∂Ω sρV.ndS .
They could then derive J e -oriented mesh refinement without solving a system of equations to get the adjoint vector. In case of a subsonic inviscid flow, discrete non-zero value of J e is due to numerical dissipation and J e -based refinement is relevant. The method could also be demonstrated for a transonic inviscid flow although the shock-wave abruptly creates entropy ([52] §6.5). We refer to [START_REF] Fidkowski | An entropy approach to mesh refinement[END_REF] for the extension of the method to viscous flows 5 . The method was demonstrated with a discontinuous Galerkin code but the free-adjoint-field property could also be exploited with a Finite Volume or Finite Element code.

In a later reference, Fidkowski, Ceze and Roe took benefit of far-field drag breakdown theory in 2D. They derived mechanical conditions under which J e is proportional to an approximate form of Oswatitsch drag in 2D. They could then perform approximate-drag oriented mesh adaptation without solving the adjoint equation for the drag [START_REF] Fidkowski | Entropy-based drag error estimation and mesh-adaptation in two dimensions[END_REF].

I finally mention the work of Alauzet, Dervieux, Loseille and Belme, although the numerical method they use is an hybrid of finite-volume (for inviscid fluxes) and finite-elements (for viscous fluxes) [START_REF] Loseille | Fully anisotropic mesh adaptation for 3D steady Euler equations[END_REF][START_REF] Belme | An a priori anisotropic goal-oriented error estimate for viscous compressible flow and application to mesh adaptation[END_REF].

Let me first recall that INRIA scientists have extensively studied this formalism of continuous mesh, derived from Riemannian geometry, where a symmetric metric tensor is defined all over the geometrical domain. The mesh sizes prescribed in the directions of the eigenvectors are derived from the eigenvalues (one over the square of the eigenvalues) [START_REF] Castro-Diaz | Anisotropic unstructured mesh adaptation for flow simulations[END_REF][START_REF] Frey | Anisotropic mesh adaptation for CFD computations[END_REF][START_REF] Loseille | Continuous mesh framework. part I: well-posed continuous interpolation error[END_REF], the idea being that in the actual discrete mesh, all edge lengths should have unit measure under the metric. This description is hence intrinsically anisotropic. In this framework and for quadratic functions, Loseille and Alauzet presented exact evaluations of the linear interpolation error and derived the optimal continuous mesh that minimizes the interpolation error [START_REF] Loseille | Continuous mesh framework. part I: well-posed continuous interpolation error[END_REF][START_REF] Loseille | Continuous mesh framework. part II: validation and applications[END_REF].

Concerning goal-oriented simulations, Alauzet, Dervieux, Loseille and Belme carried out the mathematical analysis of their numerical scheme in order to derive a bound for the a priori error estimate of the goal like

|J(W ) -J(W h )| ≤ ˆΩh |∇Λ||F(W ) -Π h F(W )|dΩ h + ˆΓh |Λ||F(W ) -Π h F(W )|dΩ h (2.8)
where W is the exact flow solution, Λ is the exact adjoint of J, Ω h the computational domain, Γ h its boundary, F is a function of Euler physical flux and the boundary conditions and Π h is the linear interpolation based on the current mesh. (This is the case of Euler equations, [START_REF] Loseille | Fully anisotropic mesh adaptation for 3D steady Euler equations[END_REF] equation [START_REF] Boniface | Calculs d'écoulements compressibles autour des rotor d'hélicoptères et vol stationnire ou en vol d'avancement par résolution des équations d'Euler[END_REF], see corresponding bound, equation ( 22) in [START_REF] Belme | An a priori anisotropic goal-oriented error estimate for viscous compressible flow and application to mesh adaptation[END_REF], for laminar flows.) The minimization of the weighted interpolation errors that appear in the bound of the exact error on J, is then solved in the continuous metric space [START_REF] Loseille | Fully anisotropic mesh adaptation for 3D steady Euler equations[END_REF] with a fixed goal complexity (continuous counterpart of number of points). Once the exact solution for the metric has been derived using current discrete flow and adjoint, a mesh is finally derived by a metric-conforming mesh-generator.

Also using the continuous mesh framework, Yano and Darmofal have presented a method for anisotropic h-adaptation of simplex meshes [START_REF] Yano | An optimization-based framework for anisotropic simplex mesh adaptation[END_REF]. The method can be applied when the error to be minimized is a local function of the mesh; it is first demonstrated for L 2 projection error of regular functions (locality is obvious) then for dual-weighted-residual mesh-refinement with a DG scheme (locality is not obvioussee [START_REF] Yano | An optimization-based framework for anisotropic simplex mesh adaptation[END_REF] §4.3). The principle is to apply a series of local changes to each element 6 

Isotropic vs anisotropic FV goal-oriented mesh refinement

Local adaptation strategies try to equidistribute the error estimator they rely on. Various ways of selecting cells to divide (in the standard case of unstructured meshes) or locations where to add mesh lines/planes (for structured mesh refinement) exist -fixed threshold, decreasing threshold, fixed fraction of the degrees of freedom... see [START_REF] Fidkowski | Review of output-based error estimation and mesh adaptation in computational fluid dynamics[END_REF] §IVC for an overview. In the common situation where remeshing is performed by a dedicated tool, the last major item of the adaptation is the question whether isotropic or anisotropic meshes should be built [START_REF] Park | Unstructured grid adaptation: status, potential, impacts and recommended investments toward CFD Vision[END_REF] .

I briefly review the methods presented in the previous subsection from this point of view : -Venditti and Darmofal used isotropic mesh refinement when dealing with Euler flows [START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF] and anisotropic mesh refinement when dealing with Navier-Stokes flows [START_REF] Venditti | Anisotropic grid adaptation for functional outputs: Application to two-dimensional viscous flows[END_REF]. In the later case, they combined their error estimator with the Hessian of the Mach number to introduce anisotropy in their procedure. Besides, Rogé and Martin derived another anisotropic version of Ventitti et al. original method [START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF] by introducing finer meshes refined in one physical direction only [START_REF] Rogé | Goal-oriented anisotropic grid adaptation[END_REF]; -More recently Darmofal et al. have used the method proposed by Yano and Darmofal that is intrinsicaly anisotropic; -the contribution of Dwight involves isotropic mesh refinement for Euler flows [START_REF] Dwight | Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation[END_REF]; -Fidkowski et al. used isotropic refinement for Euler, laminar and turbulent flows [START_REF] Fidkowski | An entropy approach to mesh refinement[END_REF][START_REF] Fidkowski | Entropy-based drag error estimation and mesh-adaptation in two dimensions[END_REF]. The mesh adaptation starts from a structured mesh and builds locally adapted meshes with one level hanging-nodes. It is isotropic in the sense that the cells flagged by the error indicator are divided in all mesh-directions but the anisotropy of the initial mesh is locally retained ; -Alauzet, Dervieux, Loseille and Belme use metric matrices that naturally describe anisotropic meshes [START_REF] Loseille | Fully anisotropic mesh adaptation for 3D steady Euler equations[END_REF][START_REF] Belme | An a priori anisotropic goal-oriented error estimate for viscous compressible flow and application to mesh adaptation[END_REF]. In the work carried out at ONERA, when dealing with structured meshes, anisotropy was supported by mesh parametrization or by an elliptic equation method to be presented. When dealing with unstructured meshes for Euler flow, only isotropic mesh refinement was performed.

Asymptotic analysis of dJ/X for 2D Euler flows

In the later sections, a local mesh refinement indicator based on dJ/dX is proposed and assessed. It is hence useful to establish the order of dJ/dX in the local space step as this allows to estimate the decrease of the indicator when refining the mesh and calculate a local goal mesh size for the next adapted mesh.

This question has been considered from a practical point of view when dealing with unstructured mesh adaptation for 2D Euler flows (see §2.5.2 and figure 2.21). Besides, Nguyen-Dinh and me have considered this question from a mathematical point of view for regular structured meshes. The total derivative7 

dJ dX = ∂J ∂X + Λ T ∂R ∂X .
includes a simple explicit term ∂J ∂X and the more complex Λ T ∂R ∂X that involves the discrete adjoint vector, geometrical dependancies of the scheme and the usual FV metrics formula. Even restricted to the case of 2D Euler flows, this discussion is intricate due to the complexity of ∂R/∂X and the discontinuities of limiting flow and adjoint fields ( §2.2.2 and §2.2.3).

Space-order of (∂J/∂X)

As concerning J functions, the discussion is restricted to the case of classical outputs of external aerodynamics calculated from flow-field at the wall (without gradient terms) and wall metric. This includes pressure drag, pressure lift, pressure pitching moment, wall-integral of stagnation pressure, temperature... As concerning the metric, there is no variant in the calculation of 2D edge vectors and, when evaluating the 3D surface vectors, it is assumed that they are calculated as half the cross product of the face diagonals.

Under these assumptions, it is easily verified that ∂J k /∂X m is -for a 2D problem, first order in space, except if X m is the extremity of a non-closed integration curve were it would be zero-th order, but this is typically a case where the node would be fixed and where the projection P would set its components to zero.

-for a 3D problem, second order in space, except if X m is at the border of the integration domain (typically symmetry plane in wing or wing-body calculation) where first-order components appear. In case of a symmetry plane, these components will not be all cancelled by the projection operator P.

Regularity of flow, CLp-and CDp-adjoint for 2D Euler flows

The asymptotic study of Λ T (∂R/∂X) has been made for a specific type of schemes, for 2D Euler flows, under a strong assumption of local C 2 regularity of the discrete fluxes w.r.t. its two arguments, the flow W and mesh coordinates X. Moreover, it is also assumed that the limiting flow and adjoint fields are C 1 . This, of course, prevents considering transonic or supersonic flows involving shock-waves. Besides, for a lifting subcritical flow, it is observed that CLp adjoint and CDp adjoint fields look very different close to stagnation streamline. The CLp-adjoint field exhibits a singularity at the stagnation streamline as predicted by Giles and Pierce ([60] fourth perturbation, I 4 , and figure 3d). On the contrary CDp adjoint only exhibits a small (physical or numerical) perturbation at this location. This is illustrated in figure 2.2 for the inviscid flow about a NACA0012 at M ∞ =0.4 and AoA=5 o . Finally, for this subcritical flow, no slip-line at the trailing edge is observed, and this case is selected to illustrate the developments of next subsection due to the regularity of its (numerical) flow and drag adjoint fields. The discussion of the space order of Λ T (∂R/∂X) is obviously dependent on scheme R. In a first attempt to deal with the subject, the following statement was demonstrated for 2D Euler flows [START_REF] Nguyen-Dinh | Mesh quality assessment based on aerodynamic functional output total derivative[END_REF][START_REF] Nguyen-Dinh | Qualification des simulations numériques par adaptation anisotropique de maillages[END_REF].

Statement: A 2D finite-volume cell-centered scheme for Euler flows and for structured grids is considered. The numerical flux is supposed (a) to directly depend on the local surface vector and on two or four states of the corresponding mesh line on either side of the interface; (b) to be C 2 except at marginal locations where the absolute value has a zero argument, or min or max functions have equal arguments. The fixed node of interest X i,j , is assumed to be located (a) outside of the support of J ; (b) in a zone of the fluid domain where the discrete flow-field w and the adjoint vector tend toward C 1 limiting functions w and λ ; (c) in a location such that the fluxes of the four surfaces attached to X i,j are C 2 functions of their aerodynamic and geometric arguments at the limit of small step sizes. Under these assumptions, the indirect aerodynamic dependence of J w.r.t. Xi,j has the following asymptotic behavior as the mesh is refined:

       Λ ∂R ∂x i,j Λ ∂R ∂z i,j        = ds i,j 4 d=1       ∂λ d ∂z ∂F d Z ∂w ∂w ∂x - ∂λ d ∂x ∂F d Z ∂w ∂w ∂z - ∂λ d ∂z ∂F d X ∂w ∂w ∂x + ∂λ d ∂x ∂F d X ∂w ∂w ∂z       + o(ds) (2.9)
where F X (resp. F Z ) is the continuous Euler flux density in direction x (resp. z) evaluted at w and ds i,j is the surface attached to node X i,j (one quarter of the surface of the four neighboring cells).

This result seemed satisfactory and consistent with the numerical result presented before in figure 2.3 Unfortunately, Nguyen-Dinh and me missed that, if the limiting adjoint field λ is solution of the continuous adjoint equation (in Cartesian coordinates [START_REF] Anderson | Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation[END_REF])

∂F x ∂w T ∂λ ∂x + ∂F z ∂w T ∂λ ∂z = 0 (2.10)
the term in brackets in the right hand side of equation (2.9) is zero 8 . This is derived from flow equations, Hence, the numerical behavior observed for the selected regular flow with regular drag-adjoint is not yet the asymptotic one.

∂F
Is then relation (2.9) useless ? Actually at fixed mesh size, when looking at plots of (1/ds) Λ T ∂R ∂W and discrete Green-formula based evaluation of

4 d=1     ∂λ d ∂z ∂F d Z (W ) ∂x -∂λ d ∂x ∂F d Z (W ) ∂z -∂λ d ∂z ∂F d X (W ) ∂x + ∂λ d ∂x ∂F d X (W ) ∂z     , (2.11) 
it appears that these plots are surprisingly similar. This is illustrated by a series of images presented in annex 3. Conversely, when refining the mesh, both fields have decreasing values. This similarity is also observed when the flow and/or the adjoint field involve discontinuities. Precisely, these discontinuities are then the marked zones in these similar plots and those marked zones get thinner and thinner when the mesh is refined.

Proposed mesh adaptation and mesh assessment method 2.3.1 Mesh adaptation based on dJ/dX. Intuitions. State of the art

The vector field of the total sensitivity of the goal J w.r.t. the volume mesh node coordinates X, dJ/dX, seems to provide valuable information to carry out J-oriented mesh adaptation or to assess the suitability of mesh X to compute accurately J. How it could be used in practice for these purposes is, however, not straightforward. For classical exercises of goal-oriented mesh adaptation, when plotting dJ/dX or h dJ/dX on a regular mesh, it appears that the iso-lines of these quantities roughly draw the node density map of J-oriented adapted meshes. This comparison is illustrated here in order to gain intuition about dJ/dXbased goal oriented mesh adaptation. It is not claimed this is a thorough argument as (1) unstructured goal-oriented adapted meshes published in classical articles are confronted with dJ/dX fields calculated by me on structured meshes; (2) the schemes are not same; (3) we only make a start on the analysis of the critical zones for the accurate evaluation of the outputs of interest (this question is discussed in §2.6.

See also [START_REF] Todarello | Finite-volume goal-oriented mesh-adaptation using functional derivative with respect to nodal coordinates[END_REF] §5.4). 6); this plot is intented to be compared with figure 8 of reference [START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF]. Right: iso-(h dCDp/dX ) lines on a regular structured 1025×1025 mesh

For the NACA0012 at supersonic flow conditions M ∞ =1.5, AoA=1 o , the high values of iso-(h dCLp/dX ) (obtained with Roe's scheme on the 1025×1025 mesh of the classical study [START_REF] Vassberg | In pursuit of grid convergence for two-dimensional Euler solutions[END_REF]) clearly draw a section of the detached shockwave and a section of two characteristic lines9 from shockwave to trailing edge -see figure 2.4. These are precisely the dense mesh zones obtained by Dwight when proceeding to CLp-oriented mesh refinement with his method [START_REF] Dwight | Goal-oriented mesh adaptation using a dissipation based error indicator[END_REF][START_REF] Dwight | Efficient a posteriori error estimation for finite volume methods[END_REF][START_REF] Dwight | Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation[END_REF]. For the NACA0012 at flow conditions M ∞ =0.95, AoA=0 o , the high values of iso-(h dCDp/dX ) (obtained with Jameson-Schmidt-Turkel scheme on the same 1025×1025 mesh) draw a diamond shape plus small lines close to the leading edge as shown in figure 2.5. This is very consistent with the dense mesh zones obtained by me when proceeding to CDp-oriented mesh refinement with the method of Venditti and Darmofal. A last confrontation is possible for the same profile, at transonic flow condition M ∞ =0.85, AoA=2 o , for lift, looking at figures 2.1 (middle-down sub-plot) and 2.25. Again the dense zones of the mesh adapted for CLp calculation (figure 2.1) match the isolines of high (h dCLp/dX ) values. As regular meshes have been used at this step, it can not be infered at this stage whether dJ/dX or h dJ/dX could be used for J-oriented mesh refinement. This matter is discussed in later subsections.

Somehow surprisingly, outside of ONERA, it seems only NIA has tried to use dJ/dX for J-oriented mesh adaptation. In [START_REF] Yamaleev | Error minimization via adjoint-based anistropic grid adaptation[END_REF], Yamaleev et al. considered a nozzle and 2D Poisson problem for which quasi-exact solutions were available. They used the mesh sensitivity of the square of an output error and a descent method for the mesh to lower the error (and its sensitivity to the mesh). For the nozzle flow, the output was the nozzle pressure integral and the successful demonstration was made using the steady and then the unsteady adjoint of the FUN3D code. In [START_REF] Diskin | Grid adaptation using adjoint-based error minimization[END_REF], the method was extended to the case where the exact value is not known. The estimated reference value was then based on current estimation and a classical correction (dual-weighted residual after interpolation of flow and adjoint to a finer grid -see §2.1.1). The method was again successfully demonstrated for a nozzle flow.

First order variation of the functional output when displacing the mesh

After an hesitation that will briefly appear at the beginning of section 2.4, Nguyen-Dinh, Trontin and I proposed a goal-oriented mesh adaptation method that is based on the first order variation of the output of interest that admissible nodes displacement can cause. This first order variation of J due to a mesh displacement dX is obviously

J(X + dX) -J(X) dJ dX .dX
The only a priori restrictions in dX being that the nodes displacement dX (1) does not distort the solid shape ; (2) does not distort the support of J ; (3) does not lead to an inconsistent mesh. The simplest way to ensure requirement (3) is to bound the displacement of node X m by half the lowest distance to its neighbors, denoted 0. 2). In particular, when plotting the dJ/dX vector field for simple configurations and classical functions (like nearfield pressure drag CD p of an airfoil or stagnation pressure integrated over the airfoil -see [START_REF] Widhalm | Investigation of adjoint based gradient computation for realistic 3D aero-optimization[END_REF][START_REF] Peter | Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates -with application to Euler flows[END_REF][START_REF] Peter | Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates[END_REF][START_REF] Nguyen-Dinh | Qualification des simulations numériques par adaptation anisotropique de maillages[END_REF]) it often exhibits long vectors at the solid wall with a significant component normal to the wall. These components, of course, can not guide a node displacement for mesh adaptation as they would change the shape of the solid item of interest. A projected field, denoted P(dJ/dX), has hence been introduced. It retains all components suitable for mesh adaptation, and cancels the other ones :

P(dJ/dX) = dJ/dX
Outside the support ofJ and solid walls contour P(dJ/dX) = dJ/dX -(dJ/dX • n) n Inside the support of J, along the walls, at the outer border (normal n)

P(dJ/dX) = 0
At a corner of the support of J or at a trailing edge During a mesh adaptation, a node w of the wall surface can only move tangently to the solid surface (before being projected on the exact surface) so that dX w = t, t being tangent to the wall. The corresponding first order change in J value is J(X + dX w ) -J(X) dJ/dX w .( t) = dJ/dX w .t = P(dJ/dX w ).t

More generally for any admissible mesh displacement field dX J(X + dX) -J(X) (dJ/dX).dX = P(dJ/dX).dX.

(2.12)

Hence, a sharper upper bound for the first-order change of J, due do the restriction to an admissible mesh displacement dX, is Hence, it is not easy to decide whether this zone should be refined for a stable evaluation of the output of interest.

|J(X + dX) -J(X)| | dJ dX .dX| ≤ 0.5 m ||P(dJ/dX m )||h m . ( 2 
Figure 2.6: Three types of P(dJ/dX) fields

This third case and the wish to characterise the "reasonable" mesh displacements dX when doing mesh adaptation by nodes displacement, initiated an effort to define a relevant spatial mean of P(dJ/dX) field. In a framework where the mesh displacement fields dX corresponds to the values at the nodes of a C 1 regular function assumed to be well approximated by its first-order Taylor expansion on all circles of radius L, a spatial mean P(dJ/dX) is exhibited such that P(dJ/dX).dX = P(dJ/dX).dX

The construction of this P(dJ/dX) mean first identifies dX at any node with a spatial mean of dX k over a circle of radius L. Then the sum of the dot product and the sum of the mean are reversed to build P(dJ/dX). Detailed definition is given in Annex 4.

Criterion for goal-oriented mesh assessment

A demand of Airbus during the PhD thesis of Nguyen-Dinh [START_REF] Nguyen-Dinh | Qualification des simulations numériques par adaptation anisotropique de maillages[END_REF] was to propose a characterization of the meshes suitable for the calculation of a specific output functional. Of course, the error estimators of the classical goal-oriented mesh-refinement methods presented in section §2.1 provide such an information -Venditti and Darmofal method [START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: Application to two-dimensional viscous flows[END_REF] based on interpolation to a finer grid, Dwight's method [START_REF] Dwight | Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation[END_REF] based on artificial dissipation of Jameson-Schmidt-Turkel scheme [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF]. In the framework defined in the previous subsection, the relevance of θ,

θ = 1 n X n X m=1 θ m θ = 0.5 ||P(dJ/dX m )|| h m (2.14) and θ, θ = 1 n X n X m=1 θ m θ m = 0.5 ||P(dJ/dX) m ||h m ,
for this purpose was studied. (NB: When considering several aerodynamic functions, [J] is added to the previous notations in order to indicate the function to which the criterion is related.) A mesh assessment exercise, that is detailed in reference [START_REF] Nguyen-Dinh | Mesh quality assessment based on aerodynamic functional output total derivative[END_REF] section 6, is summarized here for one test flow condition and one function.

A simple example of θ[J]-based mesh-assessment

A subsonic inviscid flow around a slightly modified NACA0012 is considered (M ∞ = 0.5 AoA=0°). The flow is calculated with JST scheme on hierarchy of regular meshes defined by Vassberg for a well-known mesh convergence study [START_REF] Vassberg | In pursuit of grid convergence for two-dimensional Euler solutions[END_REF]. The functions of interest, CDp and P a , are defined by:

CD p = ˛Γ 2 γM 2 ∞ p p ∞ -1 n • e ∞ dl (2.15) P a = 1 L(Γ)p a∞ ˛Γ p a dl (2.16)
where p ∞ and p a∞ are respectively the upstream static pressure and stagnation pressure. The output functional values are estimated on the series of regular grids in order to provide accuracy references for the future results on adapted meshes ( [START_REF] Nguyen-Dinh | Mesh quality assessment based on aerodynamic functional output total derivative[END_REF] Tables 1 and2, subcritical part). Of course the ideal values of CD p and P a for this inviscid subcritical flow are respectively 0. and 1. which allows exact error evaluation.

A two-parameter family of (129 × 129) meshes is then built by linear interpolation in the (2049 × 2049) mesh defined by Vassberg [START_REF] Vassberg | In pursuit of grid convergence for two-dimensional Euler solutions[END_REF]. It is mathematically defined in reference [START_REF] Nguyen-Dinh | Mesh quality assessment based on aerodynamic functional output total derivative[END_REF] section §6.1.2 and presented here visually in the upper part of figure 2.7. The α parameter of the family drives a stretching of I-mesh lines upwind the profile and the β parameter drives the stretching of J-mesh lines close to the wall. Figure 2.7(a) presents P a values in terms of mesh parameters (α, β) (196 meshes are used, 14 for each parameter). The theoretical P a value is 1. In this case numerical dissipation acts essentially monotonically on P a by reducing its value. We notice that meshes that provide the better P a estimations are those which are generated with the smallest value of β (β = 0.05 meshes such that J-lines are closely gathered around the airfoil). The question to be answered is whether small values of criteria θ[P a ], and θ[P a ] corresponds to accurate values of P a .

Actually θ[P a ], and θ[P a ] achieve their lower values for the small values of β and α (see figure 2.7 (b) and (c)). On the lower border β = 0.05, the variations of the function of interest P a are very small (from 0.99938 to 0.99948). It is at (α, β) = (0.05, 0.05) that the criteria θ and θ achieve their lower values. At this point of the parameter space P a is equal to 0.99946 whereas the closer value to the limiting one is obtained at (α, β) = (0.6, 0.05) (P a = 0.99948). The first-order variation criteria, θ and θ, applied to P a point out good meshes for the computation of P a whereas its absolute minimum does not correspond to the best mesh but to one for which the estimation of P a is close to best. 

Criterion for goal-oriented mesh refinement

The retained criterion, denoted θ[J] is hence

θ[J] m = 0.5||P(dJ/dX m )|| h m ,
h m being the minimal distance of node m to its neighbors. (When dealing with a unique J function the [J] mention is omitted as in the remaining part of this section).

For structured mesh adaptation, the criterion can be summed over the nodes of a mesh line (2D) / mesh plane (3D) and the highest values of this sum define the locations where mesh lines (2D) or mesh planes (3D) should be added or drawn closer.

In the more classical framework of unstructured mesh adaptation, θ m is the local indicator for refinement.

In case an asymptotic property is known for P(dJ/dX) or, at least, for ||P(dJ/dX)||, like

||P(dJ/dX)|| = Ch p + o(h k )
(where the constant C depends on the location but not on h of course), the calculation of the desirable cell-size is straightforward. If T is the threshold for θ values, that is locally exceeded, the reduced local mesh size compatible with T limit for θ is such that

0.5 C h p new h new = T θ m θ m = T θ m 0.5 C h p cur h cur so that h new = T θ m 1/(p+1) h cur .
2.4 Goal-oriented adaptation of structured meshes

Mesh adaptation for Euler flows with heuristic mesh transformation

Nguyen-Dinh, Trontin and I first carried out mesh adaptations for inviscid external flows by nodes displacement and node addition based on the higher values of

µ m = 0.5||P(dJ/dX m )||
instead of θ m defined by equation (2.14). In these first adaptations, the functions of interest J were the pressure drag or the stagnation pressure integrated over the wall (2.15) (2.16). During the mesh adaptation process, the global values

θ = 1 n X n X m=1 0.5||P(dJ/dX m )||h m and µ = 1 n X n X m=1 0.5||P(dJ/dX m )||
were monitored. These trials where actually quite successful as the adaptations started from regular structured meshes for which adaptation based on µ m lead to the required refinement close to the walls as would also have been obtained with θ m criterion. Nevertheless at the end of these researches [START_REF] Peter | Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates[END_REF][START_REF] Peter | Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates -with application to Euler flows[END_REF][START_REF] Peter | Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates[END_REF], in the conclusion of reference [START_REF] Peter | Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates[END_REF], it appeared that θ would be a better global indicator than µ for the suitability of the mesh to calculate J. Interested reader can have a look at µ[P a] and θ[P a] values in table 5 and table 6 of reference [START_REF] Peter | Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates[END_REF] where it appeared that the µ[P a] values are not lower on stretched and specifically adapted grids, that are both well-suited for accurate near-field function calculation, than on less appropriate grids. Besides, a set of evidences indicated that θ m would be a better local goal-oriented criterion that µ m ; in particular, as the nodes of the very first mesh-lines adjacent to the wall are moved closer to the wall, their µ m values get higher and higher.

These mesh adaptations were based on mono-block structured meshes about the NACA0012 aerofoil and the ONERA M6 wing. Very dense meshes were available thanks to Vassberg (NACA0012 airfoil [START_REF] Vassberg | In pursuit of grid convergence for two-dimensional Euler solutions[END_REF]) and Destarac (ONERA M6 wing). They allowed simple addition or displacement of lines/planes by linear interpolation. The reader is referred to [START_REF] Peter | Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates[END_REF] for the description of the node addition and node displacement method and corresponding results (or, for node addition method, to §2.4.4 where its application to a 3D RANS flow is presented). Only aspects of dJ/dX fields, θ and µ values are now discussed.

The NACA0012 test case with subsonic flow conditions M ∞ = 0.5, AoA= 0 o is retained for this purpose. The meshes of Jameson and Vassberg's study [START_REF] Vassberg | In pursuit of grid convergence for two-dimensional Euler solutions[END_REF] have O-topology. Each quadrilateral cell of these meshes has an aspect-ratio of one and the mesh-lines are orthogonal at each grid point. The sizes of those selected for the study are (129 × 129), (257 × 257), (513 × 513), (1025 × 1025), (2049 × 2049) discarding the finest and two coarsest meshes of the original study. These meshes are referred to as "quasi-regular". Besides, based on these meshes, a second family was built, with aspect ratio 1/8 at the wall and power law for the width of the cells in the direction from wall to far-field. Along the airfoil, the mesh size is minimum near z = 0 (upstream of leading edge, downstream of trailing edge) and x = 0.5 (shock location for transonic conditions M ∞ = 0.8, AoA=0 o ) at the upper and lower part of the airfoil.

The ratio of the cell-width in this direction at these locations with the mean length in the other mesh direction is 1/3. The far-field boundary for both families is about 150 chord lengths away from the airfoil. These meshes are referred to as "stretched". For a discussion of the aspect of P(dJ/dX) vector fields, P(dP a /dX) and -P(dCP p/dX) are presented in figure 2.8 and 2.9 for the (129×129) (257×257) and (513×513) meshes.

At the scale of the wider plots of these two sets of figures, P(dP a /dX) and -P(dCP p/dX) can only be seen in the vicinity of the leading edge and for the point just behind the trailing edge. This is why they are plotted at the leading edge. When examining the plots from coarse to fine meshes, we note that :

(1) P(dJ/dX) are not much larger for the wall nodes although they involve a first order component in space ( §2.2.1 -fig. 4(b) in [START_REF] Peter | Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates -with application to Euler flows[END_REF]).

(2) for the two coarsest meshes and at least for P a , the P(dJ/dX) vectors for the nodes close to the wall are not shorter for the stretched meshes than for the quasi-regular ones. Besides more nodes have significant P(dJ/dX) vectors on the stretched (129 × 129) and (257 × 257) meshes than on the corresponding quasi-regular meshes. It is well-known for the long practice of Euler CFD that stretched close to wall meshes are better suited for near flow and aerodynamic function calculation than quasi-regular meshes 10 , this gives an hint that minimizing the θ criterion may be more suitable than minimizing the µ criterion to adapt meshes for J calculation.

(3) For external inviscid flows, the static pressure at the wall should be equal to its far-field value but is actually lowered by numerical dissipation so that displacing nodes to increase P a seems a good idea. When looking at the left column of figure 2.9, it appears that the P(dP a /dX) fields "recommend" to move the first J-mesh lines closer to the wall, that is a sound advice for the reason recalled just above.

(4) When looking more closely at the P(dP a /dX) field on the quasi-regular (513×513) mesh, it is observed that following the direction of the vectors to guide individual moves of J-mesh lines following the J-lines of the finest mesh 11 , would bring closer to the wall lines J=2,3,5 but bring further from the wall line J=4. This displacement of these four J-lines would create an irregular spacing and would not be satisfactory. If adapting the mesh to increase P a is a sound idea, P a as a function of the node coordinates (or even the position of J mesh-lines) is very multi-modal function so that the maximization should be carried out with care enforcing standard regularity for the mesh.

Finally, table 2.1 confirms that the θ[J] values are lower on the stretched meshes than on the quasi-regular meshes. As concerning the µ[J] values, the µ[CD] values are higher for the five quasi-regular meshes than for the corresponding stretched meshes, whereas the ordering depends on the refinement level for µ[P a]. This confirms that θ[J] is better suited than µ[J] for assessing the capability of a mesh to lead to an accurate J evaluation. 12

Mesh adaptation for 2D (RANS) flows with a θ-based heuristic

The work of Resmini, Lucor and I [START_REF] Resmini | Mono-block and non-matching multi-block structured mesh adaptation based on aerodynamic functional derivatives for RANS flows[END_REF] extends to (RANS) flows the line adaptation methods used for Euler flows [START_REF] Peter | Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates[END_REF]. To get a very fine mesh allowing the definition of new meshes by linear interpolation Resmini mapped the NACA0012 (4097×4097) mesh of Vassberg and Jameson [START_REF] Vassberg | In pursuit of grid convergence for two-dimensional Euler solutions[END_REF] about the RAE2822. The hierarchy of meshes allowing limiting value calculations for lift and drag was then derived by coarsening. The θ criterion was calculated on the successive meshes of the adaptation process. Its mean was computed along mesh-lines (2D) to define the zones to refine. CDp-oriented adaptations 

CDp (×10 4 ) µ[CDp] θ[CDp] Pa µ[P a ] θ[Pa] 57 
quasi-uniform grids lim. value 0.

---- were carried out for the classical flow conditions about the RAE2822 leading satisfactory enhancement of CDp convergence towards its limiting value w.r.t. calculations on regularly refined meshes.

Besides, an attempt to use non-matching joins was done for the RAE2822 case 13 . The fluid domain was split in three zones delimited by two edges that follow specific J-lines of the very fine mesh. It was actually possible the avoid unnecessary refinements up to far-field but the balance of the θ values between the three domains was not easy to manage and the exercise was eventually conducted with a fixed mesh about the profile, refining only the two other domains. The reader is referred to figures 2 and 3 of reference [START_REF] Resmini | Mono-block and non-matching multi-block structured mesh adaptation based on aerodynamic functional derivatives for RANS flows[END_REF] for the synthesis of this study.

Mesh adaptation for a 3D (RANS) flow with a θ-based heuristic

The corresponding study for the ONERA M6 wing ([157] §5) is described here with some more details.

The flow is at Re = 11.72 10 6 based on the mean aerodynamic chord of 0.64607m and Mach number at 0.8395 with AoA = 3.06 o and null angle of sideslip 14 . Under these conditions, the classical λ-shock structure is observed on the wing surface. (RANS) equations completed by Spalart-Allmaras turbulence model (SA) are retained. The selected discretization for mean flow and turbulence equations are detailed in [START_REF] Resmini | Mono-block and non-matching multi-block structured mesh adaptation based on aerodynamic functional derivatives for RANS flows[END_REF] Following the idea proposed by Nguyen-Din and me in [START_REF] Peter | Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates[END_REF], all involved N i × N j × N k meshes are defined by three increasing sequences of real numbers denoted ϕ i , ϕ j , ϕ k . Sequence ϕ i (resp. ϕ j , ϕ k ) defines the position of the N i i-planes (resp. N j j-planes, N k k-planes) within the 513 (resp. 513, 257) ones of the reference fine mesh. Those sequences fully define the indices and coefficients of the bilinear interpolation B that calculates the current mesh from the reference one following

ϕ B {1, N i }{1, N j }{1, N k } -→ [1, 513] [1, 513] [1, 257] -→ R 3 (i, j, k) (ϕ i , ϕ j , ϕ k ) X(x, y, z)
The starting mesh prior to adaptation is the same for the standard base refinement (i.e. by doubling the total number of nodes at each step) and for the CD-based mono-block adaptation: namely, with N i = N j = 65 and N k = 33, uniformly distributed in i and k directions and 20 j-mesh planes in the boundary-layer.

At each adaptation step, the dCDp/dX and then θ[CDp] fields are calculated. Means of θ[CDp] m are then calculated over all i, j and k mesh-planes and then averaged two by two to attribute a mean to the (N i -1) i-cell-planes, the (N j -1)-j cell-planes and the (N k -1) k-cell-planes. The cell-planes with the higher values are then divided in two to five parallel planes depending on their mean θ value. In term of ϕ sequences, this corresponds to enriched sequences. To ensure a smooth node location, the ϕ l sequences resulting from plane-addition are regularized with a third order dissipation applied to (ϕ l+1 -ϕ l ) before using bilinear interpolation to get the next mesh. CD convergence is plotted in Figure 2.12 for regularly refined and θ-based adapted grids. The asset given by the proposed method is patent. The CD estimation error in the CD-based adapted mesh is under five drag counts w.r.t. both the estimation from the finest standard grid and from the Richardson method. Concerning the CL, the estimation error is under one lift count.

In the context of monoblock 3D structured meshes, in order to deal with meshes of different sizes and easily identify the refinement zones, the ϕ i sequences ({1, N i } → [START_REF] Akima | A new method of interpolation and smooth curve fitting based on local procedures[END_REF]513]) are transformed, by straightforward affine mapping, to discrete values of increasing ([0, 1] → [0, 1]) functions denoted Φ i (and just the same for ϕ j and ϕ k ). Figure 2.11 is precisely the plot of Φ i , Φ j and Φ k for the starting base mesh and for the CD-based adapted one 15 . The low slope areas in the distribution of the CD-based adapted mesh correspond to refinement areas. For instance, in Figure 2.11(a), a refinement is undergone around i min and i max (trailing edge) as well as around (i min + i max )/2 (leading edge). Similarly, in 2.11(c), a refinement is identified around k min (wing tip) and k max (symmetry plane).

Euler and (RANS) adaptation based on an elliptic pde. Applications to 2D flows.

Nguyen-Dinh could benefit of Airbus-F strong experience in structured mesh adaptation by nodes displacement. One method used at that time by the CFD groups of this company relies on the elliptic equation

3 i,j=1 g ij x ξ i ξ j + 3 k=1 g kk P k x ξ k = 0. (2.17) 
The unknown vector is the position vector x = (x 1 , x 2 , x 3 ) whereas ξ = (ξ 1 , ξ 2 , ξ 3 ) are the curvilinear coordinates (structured planes/lines indices are discrete values of these curvilinear coordinates). After the contravariant and covariant base vectors of the (x, ξ) mapping have been defined,

g i = ∂x ∂ξ i and g i = ∂ξ ∂x i ,
the contravariant metric tensor is simply All terms of equation (2.17) are now defined but the so-called control functions, P k . These P k fields entirely define the structured mesh. They may be calculated a posteriori even if the structured mesh has not been generated using this theoretical framework. For mesh adaptation, the P k can be modified according to

g ij = (g i , g j )
P k = P initial k + P adapt k
where is a constant factor, P initial k is the k-th control function of the initial mesh and P adapt k is built according to the user's criterion. The calculation of P adapt k has been based on intermediate fields defined as the norm of P(dJ/dX) times the characteristic lengths in the two (in 2D) respectively three (in 3D) mesh directions. As I was not closely associated to this part of the work of Nguyen-Dinh done at Airbus-Saint-Martindu-Touch and the reader is referred to [START_REF] Nguyen-Dinh | Mesh quality assessment based on aerodynamic functional output total derivative[END_REF] §4, [START_REF] Nguyen-Dinh | Qualification des simulations numériques par adaptation anisotropique de maillages[END_REF] §3.2 for the details of the θ-based calculation of P adapt k and to references 23 to 27 of [START_REF] Nguyen-Dinh | Mesh quality assessment based on aerodynamic functional output total derivative[END_REF] for the elliptic equation method.

Two mesh adaptations for 2D inviscid flows, carried out by Nguyen-Dinh, Sauvage and Meaux, are briefly described here to point out some assets of the method [START_REF] Nguyen-Dinh | Mesh quality assessment based on aerodynamic functional output total derivative[END_REF]. Starting from Vassberg and Jameson's (129 × 129) regular mesh about the NACA0012 [START_REF] Vassberg | In pursuit of grid convergence for two-dimensional Euler solutions[END_REF], the elliptic equation method has been applied for one subcritical (M ∞ =0.5 and AoA=0 o ) and one transonic (M ∞ =0.8 and AoA=0 o ) flow, for the same two functions as before, CDp and P a . The reader is refered to [START_REF] Nguyen-Dinh | Mesh quality assessment based on aerodynamic functional output total derivative[END_REF] §7 for precise discussion of the satisfactory function value improvements, but the final adapted meshes are presented in figure 2.13 and their features are discussed hereafter. The adaptations required 5 to 9 steps depending on the case. The ability of the method to manage large node displacements, while keeping a certain regularity in the mesh, is first noted. Besides, the method is able manage the refinement of specific zones like supersonic area (CD p -oriented transonic), vicinity of the wall (P a-oriented), vicinity of leading and trailing edge (CD p -oriented), zone upwind the trailingedge (P a-oriented, subcritical flow). This versatility is clearly higher than the one of the techniques of mesh parametrization used before [START_REF] Peter | Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates[END_REF][START_REF] Peter | Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates -with application to Euler flows[END_REF][START_REF] Peter | Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates[END_REF]. The clear differences close to the wall between the meshes adapted for CD p and for P a is finally underlined.

The PhD thesis of Nguyen-Dinh [START_REF] Nguyen-Dinh | Qualification des simulations numériques par adaptation anisotropique de maillages[END_REF] then presents interesting (unpublished) mesh adaptations for (RANS) flows, retaining components of drag as goal, checking (possible) improvements of the all classi-cal functions of external aerodynamics when adapting the mesh for the calculation of one of them. I only extract here from the 2D part of his work two plots of a CD-oriented mesh-adaptation for the RAE2822 aerofoil (M ∞ =0.725 and AoA=2.466 o , Re/m = 6.5 10 6 ). A hierarchy of C-meshes from (257×65) to (4097×1025) leads limiting values for four outputs of interest CLp, CD, CDp and CDf . A θ-based CD-oriented mesh adaptation is then performed for the (513×129) mesh. Its nodes are displaced in three steps using the elliptic equation method. The improvement in the output CD is very satisfactory (Initial mesh 123. 93 10 -4 ; adapted mesh 119.41 10 -4 ; limiting value 118,60 10 -4 ) with simultaneous improvement of CLp, CDp, and CDf ( [START_REF] Nguyen-Dinh | Qualification des simulations numériques par adaptation anisotropique de maillages[END_REF]). The final mesh and the local θ[CD] are presented in figure 2.14. It is noted that bringing closer the mesh lines 16 , in the zones of high values of θ[CD] has lowered the local criterion on the adapted mesh. The elliptic pde based method has also been assessed in 3D ([121] §4.1 to 4.3). The test case is the XRF1 Airbus configuration. Without specifically optimized geometrical preprocessing, it is considered that P(dJ/dX) is too expensive to compute for structured multidomain meshes of several million points. This mean of P(dJ/dX) is replaced by a simpler formula that only involves the first neighbors. The corresponding local value of indicator is denoted θm (local value). Its mean over the mesh is denoted θ.

The XRF1 Wing-Fuselage is retained for the mesh adaptation based on θm . The flow conditions are M ∞ =0.83 and AoA=2.607 o , Re/m = 7.8 10 6 . A hierarchy of five meshes with 3.2, 10, 13.5, 74 and 100M points is defined to obtain reference values for lift and drag (very fine grid values being considered as limiting values). These near-field forces values are gathered in table 2.2. The CLp-oriented adaptation of the medium mesh (13.5M nodes) is summarized here and the reader is refered to [START_REF] Nguyen-Dinh | Qualification des simulations numériques par adaptation anisotropique de maillages[END_REF] §4.3 for more details. The adaptation steps reduce by 3.3% the error in CL p and all near-field functions exhibit improved values (see table 2.2). It is observed that θ[CL p ] is slightly increased (from 3.29 10 -12 to 3.38 10 -12 ) during the optimization and the same behavior is observed for θ[CL p ] (from 2.10 10 -12 to 2.28 10 -12 ). It is understood from these values that the 13.5 M mesh may probably not be significantly further improved for CL p evaluation. Finally the θm field is plotted is three vertical mesh planes for the initial and the adapted mesh (figure 2.15). It is observed that the zones of highest sensitivity have been decreased but near the wall for the first vertical cut.

A similar mesh-adaptation has been conducted for CD p . It leads to a stronger improvement of goal value (12.8 % error reduction) but to a more complex discussion of the influence of the mesh-adaptation on other near-field functions. Finally, the last sections of [START_REF] Nguyen-Dinh | Qualification des simulations numériques par adaptation anisotropique de maillages[END_REF] include the examination of the basic θ criterion on a "generic modern aircraft". The wing-body-pylon-nacelle-vertical-tail configuration is retained. The structured nonmatching mesh is composed of 81 million points and 1394 mesh blocks involving non-matching joins between blocks. The θ fields of lift, drag and integrated wall-temperature are looked at 17 . The zones marked by high values of the θ criterion for the three functions exhibited significant differences. This is illustrated by figures 2.16, 2.17 and 2.18. These zones were found to be relevant by Airbus experts and Joël Brezillon recently confirmed that the local θ criterion is currently used by Airbus and subcontractors for non-matching structured mesh improvement by automatic addition of mesh planes in zones of high θ values [START_REF] Brezillon | Private Communication[END_REF].

Goal oriented adaption of unstructured meshes

The goal-oriented adaptation of unstructured meshes was started at ONERA in 2011 by Bourasseau in the framework of his PhD thesis [START_REF] Bourasseau | Contribution à une méthode de raffinement de maillage basée sur le vecteur adjoint pour le calcul de fonctions aerodynamiques[END_REF]. He first extended the adjoint module of the elsA code to unstructured meshes, for inviscid flows, under my supervision 18 then developed a goal-oriented mesh adaptation chain based on INRIA's MMG series of codes [START_REF] Dobrzynski | MMG3D user guide[END_REF]. He eventually presented satisfactory mesh adaptations and goal convergence. As an illustration of Bourasseau's work, figure 2.19 is the plot the initial and fourth-adapted mesh for a 2D inviscid flow about the LS89 turbine blade. The classical subsonic inflow and outflow conditions have been used 19 . The function of interest, P a, is the integral of total pressure at the outlet. The refinement criterion is θ[P a]. The final mesh exhibits strong refinement at the oblique shock-wave starting from trailing edge, the outflow and the acceleration zone close to leading edge which are precisely the regions where accuracy is expected to be needed for a satisfactory estimation of the output. We refer to [START_REF] Bourasseau | Contribution à une méthode de raffinement de maillage basée sur le vecteur adjoint pour le calcul de fonctions aerodynamiques[END_REF] for more details. Later on, based essentialy on extensions of the same adjoint [START_REF] Todarello | Goal oriented adaptation of unstructured meshes. application to finite volume methods[END_REF] and adaptation code, mesh adaptations for external flows were performed by Vonck and me. The corresponding activity led to the most demonstrative results among those presented as (1) a complete comparison of the proposed method with Venditti and Darmofal's one [START_REF] Venditti | Adjoint error estimation and grid adaptation for functional outputs: Application to quasi-one-dimensional flow[END_REF][START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: Application to two-dimensional viscous flows[END_REF] 20 was performed ; (2) accurate limting values could be estimated for the functions of interest allowing error calculations for the outputs. The corresponding research is presented in reference [START_REF] Todarello | Finite-volume goal-oriented mesh-adaptation using functional derivative with respect to nodal coordinates[END_REF] where it was illustrated by mesh adaptations for three inviscid flows about the NACA0012 aerofoil at two transonic flow conditions (M ∞ =0.85, AoA=2 0 ) (M ∞ =0.95, AoA=0 0 ) and one supersonic flow condition (M ∞ =1.5, AoA=1 0 ). The derivation of the method is recalled hereafter ; its efficiency is illustrated by a lift-oriented mesh adaptation for the first transonic test case.

Validity of linear expansion of J(X)

The proposed refinement indicator relies on an upper bound of the first order change in J when moving one node inside a circular vicinity included in the polygon defined by its neighbors. The validity of the first order Taylor expansion of J,

J(X + dX i ) J(X) + dJ dX i dX i , ( 2.18) 
is hence first to be studied. Six nodes are selected in a rather coarse unstructured mesh about the NACA0012 airfoil (see figure 2.20 left) for which we expect stronger non-linear behavior of J(X) compared to finer meshes. For the transonic flow conditions (M ∞ =0.85, AoA=0 0 ), after the accuracy of dCL p /dX has been exhaustively 

Asymptotic behavior of P(dJ/dX)

When dealing with structured meshes, theoretical efforts have been undergone to analyze the asymptotic behavior of dJ/dX -see section §2.2 or references [START_REF] Nguyen-Dinh | Qualification des simulations numériques par adaptation anisotropique de maillages[END_REF][START_REF] Nguyen-Dinh | Mesh quality assessment based on aerodynamic functional output total derivative[END_REF]. When moving to unstructured meshes, the counterpart developments would have been much more tedious if even doable as (1) even a basic generic unstructured mesh is more geometrically complex than a structured Cartesian mesh ; (2) the coding of an inviscid second order scheme on an unstructured mesh involves more geometrical terms compared to its counterpart for structured meshes (Typically, gradients of primitive variables are needed for the calculation of MUSCL left and right states on unstructured grids but are not required on structured grids). A more practical approach has hence been adopted here.

The first step was to check on a hierarchy of embedded meshes 21 and for simple 2D inviscid flows, that

µ[J] = 1 n X n X m=1 P(dJ/dX i )
is second order in the characteristic mesh size (J stands for lift, CLp, or drag, CDp). More details can be be found in reference [START_REF] Todarello | Finite-volume goal-oriented mesh-adaptation using functional derivative with respect to nodal coordinates[END_REF], in the discussion of figure 1.

The second step was to discuss whether this global property reflects a local property. ds i , denoting the area associated to the node of index m in the classical construction of a dual mesh, ||P(dCDp/dX m )||/ds m and ||P(dCLp/dX m )||/ds m have been calculated and plotted for the hierarchy of meshes mentioned before. The pattern of isolines of these scalar fields is roughly the same as the mesh refines (see right column of figure 2.21 for drag). When an approximate asymptotic behavior of ||P(dJ/dX)|| will be needed to construct a mesh adaptation strategy, according to the observation above, ||P(dJ/dX m )|| will be assumed to scale with the square of the local mesh size h m for 2D Eulerian flows and for the selected scheme.

Adaptation procedure

As discussed in section (2.2) the proposed goal oriented mesh adaptation method aims at regularizing the straightforward upper bound of the first order change that a displacement of a node can cause to the considered output. More explicitly, the retained criterion is

θ m = P dJ dX m h m 2 . (2.19)
whereby h m is defined as the distance of node X m to the closest neighboring node.

The corresponding global indicator is

θ[J] = 1 n X n X m=1 P dJ dX m h m 2 .
The adaptation procedure is defined by using a threshold value, T , comparing the node criterion values θ m to the threshold and refining the zones where it is larger. In order to get an approximation of the local change in criterion θ caused by a local change in characteristic mesh size h, it is necessary to make an assumption on the decay of dJ/dX when h is decreased: It is simply assumed that the asymptotic behavior observed for the family of regular meshes of the previous section is valid in the case of a local refinement -in other words, that dJ/dX decays like h 2 . The new local mesh size h new m , where the threshold is exceeded is then (as the mesh is adapted by refinement only),

h new m = h cur m min T θ m 1/3 , 1 . (2.20)
In accordance to a classical reference on goal oriented mesh refinement [START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF], the threshold value for θ is set in such a way that not more than half the number of nodes are flagged for refinement. The remeshing is performed using MMG2D, from INRIA [START_REF] Dobrzynski | MMG3D user guide[END_REF]. This tool uses the classical metric matrix formalism to define the goal shape of the cells in the vicinity of a node. In this case where isotropic mesh refinement is performed, the input provided to MMG2D is a simple diagonal 2x2 matrix with two equal coefficients equal to the inverse of the square of the desired local mesh size.

2.5.4 Lift-oriented mesh adaptation at (M ∞ =0.85, AoA=2 0 ). Comparison with reference method

The flow about the NACA0012 at this transonic condition involves a strong suction-side shock-wave, a pressure-side shock-wave and a sliding line behind the trailing edge. The iso-Mach number lines obtained on a fine regular grid are presented subsequently in figure 2.24 of section (2.6).

Limiting values and GCI confidence intervals for lift and drag result from series of calculations on fine structured meshes up to 4097×4097 [START_REF] Vassberg | In pursuit of grid convergence for two-dimensional Euler solutions[END_REF]. A limiting value of 824. The adapted meshes at step five (fourth adapted meshes) are compared in figure 2.23 (reference method; 12973 nodes ; proposed method; 12502 nodes). They actually present very similar dense zones close to the upper side and lower side shock waves, upwind the profile and along a hat shape above the airfoil. The reason for this will be discussed in next section.

The plots of compared analysis of refinement criteria are the upper and bottom part of figure 2.23. They exhibit closely similar trends: the two methods initially select for refinement a large area upstream and above the profile. On the second to fifth steps, they alternatively detect a thin area upwind the profile, the upper-side shock-wave and the already mentioned hat shape above the airfoil. When looking closely to pictures 2.23, the only clear difference between the error estimator of the reference method and the sensitivity indicator of the proposed method is that the latter one is relatively stronger close to the wall and this leads to a higher mesh density in this zone. 

Attempt to control the error in the output

As a path towards an heuristic error control, the global value of the indicator θ CLp was plotted as a function of the number of nodes and the error error in CL p (w.r.t. the limiting value calculated besides) has been plotted as a function of θ CLp .

For this application, θ CLp scales with 1/n 3/2 X (see [START_REF] Todarello | Finite-volume goal-oriented mesh-adaptation using functional derivative with respect to nodal coordinates[END_REF] fig 8(a)) n X being the total number of nodes. This is not very different from was is expected and observed on regular meshes. Other mesh adaptations have exhibited a decrease of θ as the inverse the square of n X . When looking at the error in CL p as a function of θ, unfortunately, no simple correlation could be established so that no heuristic error control could be proposed.

2.5.6 Analysis of an adapted mesh and corresponding P(dJ/dX) field

As noted in the introduction of this chapter, goal-oriented adapted meshes are very different from those defined by feature-based criteria and are quite different from those that were defined by engineers experience before the introduction of goal-oriented mesh refinement. They actually gather nodes in zones that are not always easily connected with the flow and output functional of interest. Désidéri and I contributed to the analysis of the map of the sensitive zones (for lift) for two inviscid 2D flows in [START_REF] Todarello | Finite-volume goal-oriented mesh-adaptation using functional derivative with respect to nodal coordinates[END_REF] with an original method based on the characterization of the adjoint vector by perturbation of the residual ( §1. 1.5). This method is presented in the second subsection for a transonic flow and lift as selected goal. The corresponding flow, adjoint field and dJ/dX fields are discussed in the first subsection.

The final lift-adapted meshes about the NACA0012 airfoil at (M ∞ ,AoA) = (0.85, 2 o ) are presented in bottom-right part of the two sets of plots of figure 2.23. They exhibit refinement of shock waves, of the stagnation stream line and of large "circumflex accents" upwind both shock waves. These dense mesh zones are in fact the union of the strong gradient areas of the flowfield and zones of high values of the adjoint field. This can be easily checked looking at figure 2.24 that presents the iso-lines of Mach number and first component of lift-adjoint for the inviscid flow of interest (for the sake of simplicity all the plots of this section have been obtained on the regular (1025×1025) mesh of reference [START_REF] Vassberg | In pursuit of grid convergence for two-dimensional Euler solutions[END_REF] with Roe-MUSCL scheme). These mesh-aspects are now classical ; they have been obtained not only with the classical method of Venditti and Darmofal [START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF] and the proposed method but also with Dwight's method [START_REF] Dwight | Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation[END_REF] for Jameson-Schmidt-Turkel scheme. and it is easily understood that the dJ/dX field gathers information of both direct and adjoint equations. These observations do not fully explain the critical influence of the zones refined by all goal-oriented methods for CLp that are actually the same as those obtained for pressure drag. Of course accurate position and representation of shock waves is necessary for a satisfactory evaluation of lift or drag. The influence of the zone upwind the profile (that is the support of lift and near-field drag integration) is quite intuitive -it is necessary to convect a sound, non-dissipated flow up to the wall -and has been discussed by Giles and Pierce [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF]. The downstream line of what we called "circumflex accent" upwind shocks has been well identified as a characteristic line (it is fully included in the supersonic zone) impinging the shock wave foot. As far as I know, the mechanism through which the flow in the upstream part of "circumflex accent" influences lift and drag has not been discussed ; however from a plot of a recent paper by Lozano [START_REF] Lozano | On the properties of the solutions of the 2D adjoint Euler equations[END_REF], it appears that this line is also a characteristic line of the supersonic zone (the two lines of the circumflex accent belonging to the two different curve families)

Analysis of 2D inviscid adjoint fields

In order to gain insight in the influence mechanism on output that adjoint vector detects, let us first recall that this vector is the sensitivity of the function of interest (now specifically the lift coefficient CLp) to an infinitesimal perturbation of the residual (section §1. 1.5). This observation led us to conduct a series of original tests in which the (density-related) first component of the residual of our CFD code was perturbed by a small amount (∆R 1 = ±2 × 10 -4 ), and the resulting variation in the Mach number field was observed. These experiments were made at points 1-7 of Figure 2.26 which provides the isovalue contours of the corresponding first component of the adjoint vector λ 1 = ∂CL p /∂R 1 2.6 Maturity of (FV) goal-oriented mesh adaption methods. Perspective for proposed method 2.6.1 Technical maturity of classical FV goal-oriented mesh refinement methods

Five methods have been presented in section §2.1 from a theoretical point of view. Their technical maturity and actual usage for compressible flow simulations is discussed here before presenting the future developments of the proposed method. Of course, when dealing with possible applications, the robustness of the direct solver, the robustness of the adjoint solver, the remeshing process (possibly subsidiary tools for local mesh improvement), the projection of the state variables onto the newly generated meshes and the link between CAD and mesh are key-factors. This is the reason why I refer to CFD codes and (re)meshing tools in this sub-section.

• The adjoint-weighted-residual method, in the non-linear form introduced by Venditti and Darmofal [START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: Application to two-dimensional viscous flows[END_REF], has the assets to provide an error estimator for the goal and to be applicable to all FV schemes. Its drawback is to require a finer-than-current grid. (If the discrete adjoint is not perfect, a second drawback is that the correction term is most often wrong -see contribution of Tourrette in [START_REF] Tourrette | A European initiative on the development of adaptative higher-order methods variational methods for aerospace applications[END_REF]).

The method has raised a deep interest in the aeronautical CFD community and has been used not only with unstructured meshes as in the original reference but also with structured [START_REF] Kroll | Ongoing activities in shape optimization within the german project megadesign[END_REF][START_REF] Barthet | Adjoint-based error correction applied to farfield drag breakdown on structured grid[END_REF][START_REF] Peter | Verification, validation and error estimation in cfd[END_REF] and embeddedboundary Cartesian meshes [START_REF] Nemec | Adjoint error estimation and adaptative refinement for embeddedboundary cartesian mesh[END_REF][START_REF] Nemec | Adjoint-based adaptative mesh refinement for complex geometries[END_REF]. It is important to note that it has been fully developed in at least two industrial codes: -Park and coworkers from the NASA Langley have implemented the method in the FUN3D suite of codes (the FUN3D code being a finite volume Navier-Stokes solver using dual mesh and flow-variables stored at the nodes of the original mesh). They have presented 3D Euler applications for sonic boom prediction [START_REF] Lee-Rausch | Application of parallel adjointbased error estimation and anisotropic grid adaptation for three-dimensional aerospace configurations[END_REF][START_REF] Jones | Validation of 3d adjoint based error estimation and mesh adaptation for sonic boom prediction[END_REF] and also 3D (RANS)&(SA) applications including the wing-body DLR-F6 DPW2 test case [START_REF] Park | Three-dimensional turbulent RANS adjoint-based error correction[END_REF][START_REF] Lee-Rausch | Application of parallel adjointbased error estimation and anisotropic grid adaptation for three-dimensional aerospace configurations[END_REF]. The refinement of the current mesh is detailed in [START_REF] Park | Three-dimensional turbulent RANS adjoint-based error correction[END_REF] for tetrahedral meshes (8 small tetrahedras are included in one tetrahedra of the original mesh) as well as the linear and higher order reconstruction (based on least-square fit of a quadratic function) and the combination of the goal oriented estimator with the Hessian of a flow variable [START_REF] Park | Three-dimensional turbulent RANS adjoint-based error correction[END_REF] as in reference [START_REF] Venditti | Anisotropic grid adaptation for functional outputs: Application to two-dimensional viscous flows[END_REF]. In 2008, Park proposed a single grid goal error estimate ([129] equation (4.22)) that mimics the original one but only uses higher and lower order reconstruction of discrete flow and adjoint on the current grid ; when this formula is used, no correction (and hence no error estimate) is available anymore. In recent publications, both the classical finer embbeded grid and single grid error indicators are used. They are actually compared in [START_REF] Park | FUN3D and CFL3D computations for the first high-lift prediction workshop[END_REF] where they are found to provide equivalently good results for the complex HighLiftPW configuration.

-In a recent publication, the adjoint-weighted-residual method was also demonstrated for 3D complex flows with HYDRA, the in-house CFD code of Rolls-Royce (HYDRA being a finite-volume edge-based / dual control volumes code whose discrete adjoint module has been derived by automatic differentiation) [START_REF] Ali | Optimal mesh topology for CFD[END_REF]. Actually, the goal-oriented error-estimation framework is not the focus of the article and no mesh-adaptation is carried out. The capability allows to select the most efficient structured blockingmeshing procedure for complex internal and external flows, in the sense that the flows computed on the corresponding meshes exhibit the lowest error for the functions of interest. The interested reader is also refered to [START_REF] Ponsin | Implementation of an adjoint-based error estimation and grid adaptation module in the DLR TAU code[END_REF] that presents the coding of the method and mesh adaptation for 3D Euler flows using the DLR TAU code.

• In the method defined in 2003 by Venditti and Darmofal for anisotropic adaptation of viscous flows, the tightest element size was defined by the goal-oriented error analysis and the Hessian of Mach number was used to equidistribute the interpolation error for the flow variables. In comparison, the more recent analysis by Yano and Darmofal [START_REF] Yano | An optimization-based framework for anisotropic simplex mesh adaptation[END_REF] is "strictly" goal-oriented as the search for changes in the local anisotropy are based on corresponding error reductions in the goal. It has also the advantage not to require a global finer grid 22 but the drawback not to provide an error estimator for the output functional of interest. The new approach has been applied to elliptic interface problems and conjugate heat transfer problems [START_REF] Hu | Application of higher-order adaptive method to Reynolds-Averaged Navier-Stokes test cases[END_REF]. There does not seem to be many applications in aerodynamics up to now apart from [START_REF] Hu | Application of higher-order adaptive method to Reynolds-Averaged Navier-Stokes test cases[END_REF] where the method is applied with Discontinuous Galerkin method to 2D turbulent flows.

• Dwight's method has the assets to deal with the current grid only and to provide an error estimator. Its drawback is that Jameson Schmidt Turkel scheme [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF] is the mandatory discretisation of inviscid fluxes.

Although it is well-known, it seems only Albensoeder coded it [START_REF] Albensoeder | Application of Mesh Modifications and Adjoint Error Estimates[END_REF] after it has been defined and assessed by Dwight for 2D Euler flows with the TAU code of DLR [START_REF] Dwight | Goal-oriented mesh adaptation using a dissipation based error indicator[END_REF][START_REF] Dwight | Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation[END_REF]. Extension to (RANS) flow would clearly require a new discussion of the error attribuable to numerical, explicitely added, dissipation (counterpart of [START_REF] Dwight | Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation[END_REF] §4 for Euler flows). This discussion would of course involve the discrete convective flux of turbulent variables whose dissipative part should probably be cancelable monitoring a multiplicative parameter. Moreover, in many industrial codes, it is considered acceptable to discretize the convective flux of turbulent variables at first order which would probably make the discussion more complex and intricate with robustness issues.

• Fidkowski and Roe's entropy adjoint technique provides a free adjoint for adjoint-weighted-residual type methods. It naturally provides an error estimate for the goal and requires a finer than current grid 23 . Its drawback is to be limited to the entropy flux and, under specific assumptions, to Owatitsch drag. It has been demonstrated for Euler, laminar and turbulent flows about airfoils and also for an inviscid 3D flow about a wing [START_REF] Fidkowski | An entropy approach to mesh refinement[END_REF][START_REF] Fidkowski | Entropy-based drag error estimation and mesh-adaptation in two dimensions[END_REF]. Although the articles describing the method are frequently quoted, it does not seem that it has been coded in other codes than the one(s) of Michigan University.

• The method developed by Alauzet, Dervieux, Loseille and Belme is based on an a priori error bound for the goal (involving linear approximation error) and a global minimization of that bound in a space of continuous meshes. It is hence very different from the previous ones. In particular, it is naturally anistropic and global. It does not require a finer grid but is limited to the numerical schemes for which the a priori error analysis leads to the suitable expression for the error-bound. The theory has been published for Euler [START_REF] Loseille | Fully anisotropic mesh adaptation for 3D steady Euler equations[END_REF] and laminar flows [START_REF] Belme | An a priori anisotropic goal-oriented error estimate for viscous compressible flow and application to mesh adaptation[END_REF], but also developed by Frazza and his supervisors for (RANS)&(SA) flows [START_REF] Frazza | 3D anisotropic mesh adaptation for Reynolds Averaged Navier-Stokes simulations[END_REF]. Complex mesh adaptations have been carried out and presented for Euler flows (about a F15 fighter and a Falcon business jet, in particular) [START_REF] Loseille | Fully anisotropic mesh adaptation for 3D steady Euler equations[END_REF]. Also a series of successfull mesh adaptations for 2D laminar flows is described in reference [START_REF] Belme | An a priori anisotropic goal-oriented error estimate for viscous compressible flow and application to mesh adaptation[END_REF] 

Perspectives for dJ/dX based method

The dJ/dX-based goal-oriented mesh refinement-method is free if the dJ/dX vector field is calculated any-how (typically for shape optimization) and used without spatial mean (θ criterion). Otherwise, it requires an adjoint solve as all the methods discussed above but the one of Fidkowski and Roe. If a spatial mean of dJ/dX is used (θ criterion), the cost of this operation can be significant. The method has the advantages not to require a finer grid, not to be limited to a single output, not to be limited to a single scheme. It has the drawback not to provide an error estimator for the goal.

The capabilities of dJ/dX-based method for goal-oriented mesh adaptation have been extensively presented and discussed for structured meshes in the previous sections. Of course, unstructured meshes provide the most suitable framework for mesh adaptation and the 2D activity of isotropic refinement for 2D Euler flows should be followed by extension to 3D, (RANS) and, if possible, anistropic refinement. Although satisfactory, the 2D activity was not immediately followed by an effort towards 3D and then (RANS) flows due to the lack of adjoint code for these types of flow. Fortunately, a recent line of elsA versions called elsA remotorisé 25 benefits from this capability and the extension of dJ/dX-based method is currently being planned.

The first foreseen step is the detailed examination of the type of meshes that are compliant with the 23 the proposed method summarized in [START_REF] Fidkowski | Entropy-based drag error estimation and mesh-adaptation in two dimensions[END_REF] §VID not only involves a residual evaluation on the fine grid but a few relaxation iterations for direct or adjoint equations 24 this paper presents in section §8.5 a 3D turbulent test case, 3D tubulent shock boundary layer interaction, but it is not explicitely said how turbulence is taken into account 25 unfortunately, there is today no public document about elsA remotorisé available numerical schemes. It is noticeable that authors working with well-known large codes have significantly different judgements on this topic. In [START_REF] Park | FUN3D and CFL3D computations for the first high-lift prediction workshop[END_REF], we read the discretization of FUN3D is more accurate for semi-structured right-angle elements in the boundary layer, whereas in [START_REF] Frazza | 3D anisotropic mesh adaptation for Reynolds Averaged Navier-Stokes simulations[END_REF] on the contrary, it is indicated and illustrated that the finite-volume flow solver Wolf [performs satisfactory] RANS computations on fully unstructured meshes. Following Park et al., the case where semi-structured stacks of prismatic elements near wall-bounded shear layers are beneficial to the solver accuracy is today the most frequent [START_REF] Park | Unstructured grid adaptation: status, potential, impacts and recommended investments toward CFD Vision[END_REF]. The constraint put on meshes for standard (RANS) simulation should also be applied to the new meshes generated during the adaptation process.

A second point to consider is the type of (RANS) mesh adaptation that is to be performed : full domain adaptation, adaptation with fixed mesh in the boundary layer [START_REF] Park | FUN3D and CFL3D computations for the first high-lift prediction workshop[END_REF], fixed number of structured layers in the boundary but possibly more elements [START_REF] Kavouklis | Parallel adaptation of general three-dimensionnal hybrid meshes[END_REF], fixed wall mesh but adaptation of the number of mesh planes in the boundary layers (references in [START_REF] Chitale | Anisotropic adaptation for transonic flows with turbulent boundary layers[END_REF]) The projection operator was applied up to now to dJ/dX to remove degrees of freedom that are not associated to mesh adaptation but to shape optimization. If some features of the mesh are fixed (like number of planes parallel to the wall) the operator could also be used to remove the components of dJ/dX that are not to be exploited (like components normal to those planes). This of course, is to be tested and assessed.

Preserving geometric features of an initial anisotric mesh is a basic approach to produce anisotropic adapted meshes, as discussed just above for the boundary layer region. More generally, considering all the fluid domain, anisotropic goal-oriented mesh refinement methods are known to be more efficient than their isotropic counterpart whenever sharp flow structures influence the goal value. When considering only a local node vector P(dJ/dX m ) and taking its norm, all anisotropic information is lost. Hence a deeper (in pratice, spatially more global) extraction of information from dJ/dX vector field should be considered to move towards general anisotropic mesh adaptation.

Chapter 3

Conclusion and perspectives

Discrete gradient computation started at ONERA beginning of 2002 in close cooperation with AIRBUS-F CFD team. The primal goal was then to provide an efficient means to calculate derivatives of forces and moments w.r.t. numerous design parameters for quick local optimization by descent methods. This target was progressively reached as illustrated by the optimization of the AVECA flying wing configuration by Méheut, Arntz and Carrier with more than a hundred design parameters -see references [START_REF] Méheut | Optimization of a blending wing body using the adjoint method[END_REF][START_REF] Méheut | Aerodynamic shape optimizations of a blended wing body configuration for several wing planforms[END_REF] and also figure 3.2 right. These results demonstrate the current maturity of elsA discrete adjoint module [START_REF] Peter | Discrete adjoint method for shape optimization and mesh adaptation in the elsA code. status and challenges[END_REF] and ONERA's techniques for parametrization, mesh deformation and advanced post-processing as well.

At the same time, ONERA participated in various groups and sessions devoted to adjoint method and local optimization (RTO-AVT-167 group, Dagstuhl 2014 workshop...), and contributed to lecture notes [START_REF] Bompard | Strategies for Optimization and Automated Design of Gas Turbine Engines -Chapter: Local Search Methods for Design in Aeronautics[END_REF] and a bibliographic review article [START_REF] Peter | Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches[END_REF]. Significant effort was devoted to the adaptation of backward-Euler implicit stages [START_REF] Drullion | Définition et études de sytèmes linéaires pour la simulation et l'optimisation de formes aérodynamiques par méthode de gradient[END_REF][START_REF] Peter | Large stencil viscous flux linearization for the simulation of 3D turbulent compressible flows with backward-Euler schemes[END_REF] to the solution of discrete adjoint equation. The elsA adjoint solver was extended from fixed to rotating wings and one of the first (RANS) adjoint-based optimization of a hovering rotor could be performed [START_REF] Dumont | Sensitivity analysis using direct differentiation and adjoint vector methods for helicopter rotor flow in hover[END_REF]. Besides, efforts were dedicated to 2D local optimization based on the so-called shape gradient ; the corresponding original ideas proposed by Bompard and his supervisors have been summarized in section §1.3 of this document.

The ajoint module of the elsA code is currently further improved: a time-spectral adjoint is under development ; GMRES with advanced restart is implemented ; the adjoint-mesh mode is extended to the relative frame-absolute velocity formulation. Besides, from an application point of view, it is foreseen that the module will be used in a near future, not only for shape optimization but also for meta-model based uncertainty quantification.

Concerning more fundamental issues about adjoint, the recent articles of Lozano about dual consistency of finite-volume discrete adjoint [START_REF] Lozano | A note on the dual consistency of the discrete adjoint quasi-one dimensional Euler equations with cell-centred and cell-vertex central discretization[END_REF] and singular & discontinuous solutions of the adjoint Euler equations [START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF] have raised interest at ONERA. A research activity is ongoing about consistency of (extremely fine) discrete adjoint fields with the continuous equation, boundary conditions and jump conditions for adjoint derivatives at shock-waves [START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF]. As an illustration of this activity, the plot of an adjoint field with a strong normal-derivative discontinuity at shock is presented below (NACA0012 M ∞ =0.85, AoA = 2 o ).

In 2005 roughly speaking, as the maturity of the discrete adjoint codes of the large research centers and aircraft companies was growing, it appeared that the sensitivities of the volume-mesh with respect to design parameters would soon be the memory bottle-neck of adjoint-based gradient calculation for complex configurations. The necessity appeared to avoid finite differences for the geometrical sensitivity of the residual w.r.t. parameters. The residual was then differentiated w.r.t. mesh coordinates and all con- tributions to the total derivative of the output(s) of interest w.r.t. volume mesh coordinates were gathered1 . Nielsen and Park had not only a memory bootleneck in FUN3D adjoint-based optimization chain, but also a CPU-time burden as their volume-mesh sensitivities were the outputs of a linear-elasticity equation2 . They proposed an elegant adjoint-mesh sensitivity method to circumvent this difficulty and increased the interest of the CFD community in the shape-gradient that is the output of their calculations [START_REF] Nielsen | Using an adjoint approach to eliminate mesh sensitivities in aerodynamic design[END_REF].

After the total derivative of the functions of interest w.r.t volume-mesh nodes coordinate, dJ k /dX, had become a possible output of the elsA adjoint code, Destarac and I examined closely some plots of this newly available vector fields. The left part of figure 3.2 is one of these plots. It presents a NACA64A212 C-mesh with the wave drag integration contour defined by FFD72 [START_REF] Destarac | Far-field / near-field drag balance[END_REF] and the iso-lines of dCDw/dz for the flow conditions (M ∞ =0.71, AoA=2.5 o ) (inviscid flow). Zones of high sensitivity of CDw clearly appear far from its contour raising the question whether the corresponding areas should be refined (leading edge, trailing edge and vicinity of wall).

A very significant research effort was then started with the aim of defining a dJ/dX-based goal-oriented refinement indicator and if possible, an error estimator as well. Considering existing methods for finitevolume CFD, the proposed one should not require a finer grid and not be specific to a single scheme or a single output functional [START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: Application to two-dimensional viscous flows[END_REF][START_REF] Dwight | Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation[END_REF][START_REF] Fidkowski | An entropy approach to mesh refinement[END_REF][START_REF] Fidkowski | Entropy-based drag error estimation and mesh-adaptation in two dimensions[END_REF].

A first effort [START_REF] Peter | Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates[END_REF] lead to the introduction of the upper-bound of the first-order variation of the output J when performing an admissible displacement of one node, θ[J] m , and its mean value over all nodes, θ[J], where each vertex moves inside a circular neighborhood. These quantities are relevant for J-oriented mesh adaption as they are essentially decreasing when moving from unsuitable to suitable meshes for the calculation of J, which is not the case of ||dJ/dX m || (local move) or the corresponding mean over the volume-mesh (global move). Besides, a projection removing all components of dJ/dX altering the solid shape or the function support was also defined then and its relevance has been assessed thereafter in several mesh-adaptations ([171], fig 2.22 of this document).

For ordinary outputs, configurations, flow conditions and mesh densities, the dJ/dX vector fields are actually rather irregular. When working with structured meshes, this raises the question of how to use a dJ/dX-based criterion without altering the regularity of the initial structured mesh. A first point in this respect is to avoid any mesh change somehow directly guided by P(dJ/dX), even if J is monotonically altered by numerical dissipation, the reason being that all aerodynamic outputs are very multimodal functions of the free volume-mesh node coordinates and that the gradient is short-sighted in this hill landscape. Figure 6 in [START_REF] Peter | Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates[END_REF] is an example of a bad mesh produced by direct P(dJ/dX)-guidance and even more serious examples exist. Fortunately, several methods may address this issue. The use of parametrized structured mesh-families, the definition of a spatial mean θ associated to a length-scale, the solution of an elliptic structured-mesh deformation equation were satisfactory solutions for the definition of structured goal-oriented adapted meshes [START_REF] Peter | Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates -with application to Euler flows[END_REF][START_REF] Nguyen-Dinh | Mesh quality assessment based on aerodynamic functional output total derivative[END_REF][START_REF] Nguyen-Dinh | Qualification des simulations numériques par adaptation anisotropique de maillages[END_REF]. The global criterion θ[J] was proposed besides to assess the quality of existing meshes for the calculation of J. The local criterion θ[J] m is still currently used by AIRBUS in the process of (RANS) structured mesh construction ([121] §4.4, [START_REF] Brezillon | Private Communication[END_REF]).

When dealing with adaptation of unstructured meshes by node addition, the irregularities of dJ/dX m or θ[J] m fields are not such a serious issue. This was actually confirmed by successful 2D Euler mesh adaptations ( [START_REF] Todarello | Finite-volume goal-oriented mesh-adaptation using functional derivative with respect to nodal coordinates[END_REF]) which produced the expected refinement for classical 2D Euler flows and standard functions. Besides, the convergence speed towards the limiting value was found to be equivalent to the one of the error-based most used method [START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: Application to two-dimensional viscous flows[END_REF] that requires a finer-than-current auxiliary grid.

The dJ/dX based method should be improved with respect to the two issues that were not solved up to now: (1) define a criteria to distiguish meshes for which nodes displacement can improve the J evaluation and lower the global θ[J] criterion and meshes for which this is not possible anymore. Most probably, statistical analysis of the local θ[J] m values would here be involved ; (2) associate a heuristic error estimator to the adaptation process.

Besides, the recent elsA remotorisé versions will allow the extension of the method to 2D and 3D (RANS) for unstructured meshes along the lines discussed in §II.6 : determination of the type of suitable adapted meshes, adaptation of the criterion according to constraints imposed to the boundary-layer mesh and, if possible, extraction of relevant anisotropic information from P(dJ/dX) to move towards anisotropic refinement. 

Scientific and technical appendix Annex 1 -Continuous adjoint method

For the sake of completeness of the presentation adjoint method, this annex is devoted to a short presentation of continuous adjoint (although the method has not been implemented in the ONERA codes). In this approach, the adjoint of the continuous governing equations with respect to a given objective function is derived, before being discretized. The first appearance was due to Pironneau [START_REF] Pironneau | On optimum profiles in Stokes flow[END_REF], with Jameson providing the first treatment for compressible flows [START_REF] Jameson | Aerodynamic design via control theory[END_REF]. It is no longer possible to present the theory independently of the particular equations considered, therefore we first consider the 2d Euler equations in body-fitted coordinates. The following subsections are an extended presentation derived from an article by Giles and Pierce ([62, 63] section 3.5).

2d Euler equations in body-fitted coordinates

It is assumed that the problem in physical space with a body-fitted structured grid, can be transformed into computational coordinates (ξ, η), see Figure 3.3, in such a way that the transformation of D xy to D ξη is direct, that D ξη is a rectangular domain [ξ min , ξ max ] × [η min , η max ] and that ξ min corresponds to the surfaceof an airfoil. Note that, when performing shape optimization, whereas the coordinate change operator depends on α, D ξη itself does not.

Let H and K be the determinants of the Jacobian of the coordinate transformations In the specific case of the 2D profile (figure 3.3), the slip-wall boundary condition is U = 0 on ξ = ξ min , and a farfield condition is applied to the ξ max boundary.

Continuous adjoint equations approach for this set of equations

In the specific case of the 2D profile (figure 3.3), the slip-wall boundary condition is U = 0 on ξ = ξ min , and a farfield condition is applied to the ξ max boundary. The objective function formulated in the new coordinate system is

J (α) = ˆξmin J 1 (w) ∂y ∂η dη + ˆDξη J 2 (w)K(ξ, η) dξ dη, (3.2) 
where the domain of integration is now independent of α. J corresponds in body-fitted coordinates to the integral over the profile of the x component of a vector field (typically the force on the profile) plus a volume integral. The continuous adjoint equations can now be derived as follows: first write the first variation of the flow equations with respect to the design parameter α. Referring to (3.1) there are two distinct types of variation: the flux terms f (w) and g(w) vary with α, because the flow changes in the transformed coordinate space when the shape changes, and independently all metric terms also depend on α: The idea behind the following procedure is to add to (3.4) the inner product of the linearized governing equations with an arbitrary four-component Lagrange multiplier λ, analogously to the discrete case in Section 1.1.4. Then we search for a condition on λ for the gradient to be independent of the dw/dα terms. In this case we assume that the flow and adjoint solutions, w and λ, are once continuously differentiable with respect to the computational coordinates, i.e. w, λ ∈ C 1 (D ξη ) 4 . Note that this is a very different restriction to that necessary in the discrete case. Proceeding from (3.3) 

f (w) → f (
the continuous adjoint equations and boundary conditions. One very significant feature of this problem is that not all objective functions J 1 lead to a well posed adjoint boundary condition, because the flux Jacobian a 1 is singular at a slip wall [START_REF] Jameson | Aerodynamic design via control theory[END_REF]. For the compressible Euler equations described here functions of pressure are admissible, which is fortunate given that integral forces on a profile are thereby allowed. On the other hand for the Navier-Stokes equations there is no clear way of accounting for wall shear-stresses, and hence viscous drag [START_REF] Anderson | Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation[END_REF]. Given a solution of (3.6) (3.7)

For the extension to the Navier-Stokes equations, also derived in curvilinear coordinates, see the seminary articles of Jameson, Martinelli and Pierce of 1997 [START_REF] Jameson | Optimum aerodynamic design using the Navier-Stokes equations[END_REF], while a more discursive treatment is given in [START_REF] Jameson | Aerodynamic shape optimization using the adjoint method[END_REF], which also includes considerations related to the use of the thus obtained gradients in shape optimization.

For finite volumes on unstructured meshes such coordinate transforms as described above are not used, and a formulation in physical coordinates is necessary. One approach was first published by Anderson and Venkatakrishnan in 1998 [START_REF] Anderson | Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation[END_REF], and one year later by Hiernaux and Essers [START_REF] Hiernaux | An optimal control theory based algorithm to solve 2D aerodynamic shape optimisation problems for inviscid and viscous flows[END_REF][START_REF] Hiernaux | Aerodynamic optimization using Navier-Stokes equations and optimal control theory[END_REF]. Also of interest is an early adjoint formulation of the thin shear-layer equations in physical coordinates [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF].

Finally we note that the continuous direct formulation, embodied by (3.3), rarely occurs in the gradient evaluation literature. Pelletier et al. [START_REF] Pelletier | Adaptivity, sensitivity and uncertainty: Towards standards in CFD[END_REF][START_REF] Pelletier | Reliable sensitivity analysis via an adaptive sensitivity equation method[END_REF] applied it to incompressible flows, and the one of few compressible references is of Sharp and Sirovitch for hypersonic profile optimization [START_REF] Sharp | Constructing a continuous parameter range of computational flows[END_REF]. At the end, of course, the continuous equations are discretized (using most often classical CFD schemes) to define are computational problem of finite dimension. where we have used the fact that s is the arc length along S so that dS(s)/ds = t(s). Of course, s is not the actual arc length along S τ but from a classical formula for parametrized curves, one can easily derive the expression of k τ (s), the curvature along S τ : As stated before, it is highly desirable that the curvature along S τ satisfies a bounding condition -equation (1.30). We now try to derive from previous equations the corresponding condition on d(s) :

-based on a Taylor expansion on parameter τ . Obviously The curvature of the current airfoil is much more regular than d(s) distributions that appear during the optimization and smoothing process. Hence, in first approximation, a strong increase in total variation of curvature between S and S τ would be caused by a high total variation of d(s) or d (s). Actually, the total variation of d(s) is decreased by all smoothing operators, hence the desirable property appears to be a limited total variation of d (s); or in other words, a smooth d (s).

Additionally, the following limits can be shown without small τ assumption from formula (3. Annex D -Organization of scientific events 

( 1 . 6 )

 16 ∂W )δW Involving discrete adjoint vector Λ k , defined by equation (1.5), yields δJ = Λ T δR If only the a-th component of R at cell index m has been arbitrarly altered by a small number δR a m then previous equation yields Λ a m = δJ/δR a m This defines the a-th component of Λ at cell index m as the limit ratio of change in J k divided by infinitesimal change in the residual R at the corresponding cell & component who caused the change in flow and function value.

  the (dm) superscript for δJ means change in J function due to d-th change of R at cell m, reconverging flow W with global change δW d which trace on the aerofoil leads to change δJ

Figure 1 . 1 :

 11 Figure 1.1: NACA0012 M ∞ =0.8, AoA = 2. o inviscid flow -Isolines: first component of CLp-adjoint vector -Curves: -Up left: cells adjacent to the wall (first component) -Up right: along a line normal to stagnation streamline, half a chord from stagnation point (first component) -Down left: vertical cell-line, suction side (X=0.5, Z>0) (first component) -Down left: same location (third component)
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 121415 Figure 1.2: Position of the 8 Bézier poles of the laws for geometrical changes Figure 1.3: Variation of geometrical laws
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 16 Figure 1.6: Curvature of RAE2822 airfoil as a function of curve length
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 1718 Figure 1.7: Two domains, 32832 cells grid about the RAE2822 airfoil
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 19 Figure 1.9: Distribution of (dCDw/dX S ,n). Lower side
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 113 Figure 1.13: Smoothed distribution of (dCDw/dX S ,n) using once Dierckx's spline. Lower side
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 1 drag minimization at fixed angle of attack AoA=2.79 o ; 2. lift maximization at fixed angle of attack AoA=2.79 o ; 3. drag minimization at fixed lift CL 0 = 0.8; 4. lift maximization at fixed drag CD 0 = 0.011.
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 21 Figure 2.1: NACA0012 inviscid flows. From left to right (M ∞ ,AoA) = (0.5,0 o ) (0.85,2 o ) (1.5,1 o ). Up: classical feature-based refinement. Down: CL-oriented refinement. Reproduced with permission from reference[START_REF] Dwight | Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation[END_REF] 
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 2223 Figure 2.2: NACA0012 M ∞ =0.4 AoA=5 o inviscid flow -Left: first component of drag adjoint. Right: first component of lift adjoint
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 2425 Figure 2.4: NACA0012 M ∞ =1.5, AoA=1 o . Left: mesh adapted for CLp by Dwight's method ([45] figure 6. Reproduced with permission). Right: iso-(h dCLp/dX ) lines on a regular structured 1025×1025 mesh
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 5 h m . With this restriction for dX the first-order change in the function of interest is obviously bounded by m ||h m (m being the node index). This individual contribution 0.5||dJ/dX m ||h m requires a slight modification to take into account conditions (1) and (
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 27 Figure 2.7: Up : Family of parametrized structured (129 × 129) meshes about the NACA0012 -Down: 2D Subsonic flow about NACA0012 (a) P a as function of α (I-lines) and β (J-lines) parametrization (b) Θ[P a] in the parameter domain (c) Θ[P a] values in the parameter domain
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 28 Figure 2.8: NACA0012, subcritical flow conditions. Examination of -P(dCDp/dX) for (129×129) (top) (257×257) (middle) (513×513) down for quasi-uniform (right) and stretched mesh (right) for Roe's scheme (same scale for all plots). 56
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 29 Figure 2.9: NACA0012, subcritical flow conditions. Examination of P(dP a/dX) for (129×129) (top) (257×257) (middle) (513×513) down for quasi-uniform (right) and stretched mesh (right) for Roe's scheme (same scale for all plots). 57
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 2 Figure 2.10: ONERA M6 wing, (RANS) flow. Starting regular structured 65×65×33 mesh prior to adaptation. Left : view of the symmetry plane and the wing surface. Right : view of the mesh topology, i-mesh planes in green run clockwise along the wing section from the trailing edge along the pressure side and back to the trailing edge along the suction side, j-mesh planes in blue go from the wing surface to the farfield boundary, k-mesh planes in orange run from the tip to the root of the wing (they are symmetric w.r.t. z = 0). The hemispheric farfield boundary is placed at 145 chords from the leading edge.
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 2 Figure 2.11: ONERA M6 wing, (RANS) flow. Functions defining the position of the i-jand k-planes w.r.t. those of reference fine mesh
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 2622 Figure 2.13: NACA0012 inviscid flow. Final meshes obtained by elliptic-equation-θ-based. P a-oriented (left) and CDp-oriented (right) adaptations
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 2 Figure 2.15: XRF1. Criterion θ[CDp]. Left: initial mesh -Right: adapted mesh
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 216 Figure 2.16: Modern green aircraft. Criterion θ[CL]. Left : symetry plane. Right : plane between the engine and the fuselage.
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 217 Figure 2.17: Modern green aircraft. Criterion θ[CD]. Left : symetry plane. Right : plane between the engine and the fuselage.
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 218 Figure 2.18: Modern green aircraft. Criterion θ[T emp]. Left : symetry plane. Right : plane between the engine and the fuselage.
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 2 Figure 2.19: LS89 initial regular mesh (2705 nodes) and final P a-oriented adapted mesh (11338 nodes)

Figure 2 . 20 :

 220 Figure 2.20: Left: location of points for check of total derivatives of outputs w.r.t. mesh coordinates. Right: evaluation of CLp deviation, ϕ, w.r.t. nominal value at points A, B, C, D, E, F (scaled as indicated for points C, D and F)

  152 d.c. and a confidence interval of [823.839,826.963] d.c. based on the finest grid estimation (CD 1 = 825.401 × 10 -4 ) are obtained.
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 221 Figure 2.21: Meshes and corresponding iso-lines of 1/ds i ||P(dCDp/dX i )|| about the NACA0012 (M ∞ =0.85 AoA = 2 0 )

Finally, the relevance

  of the projection operation involved in the criterion definition -equation (2.19) -is assessed. As expected from the experience gained with structured meshes, the indicator obtained without the projection operation (denoted no-projection θ-indicator in the legend of figure 2.22) leads to over-refinement close to the wall and stall of CLp value below the limiting value.
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 222223 Figure 2.22: Convergence of CL p (right) for θ-based and reference method (M ∞ = 0.85 and AoA = 2 o )
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 2 25 presents the iso-values of θ[CLp] m = 0.5 h m ||P(dCLp/dX m )|| on the (1025×1025) regular mesh and hence shows the zones selected for refinement on this regular mesh by the θ method. The zones of high values of h m ||P(dJ/dX m )|| are definitely those listed above. In this specific case of a very regular mesh, they are the same as those of high ||P(dCLp/dX m )||. The reason why dCLp/dX "detects" strong gradients of flow and high values of adjoint stems from its definition, equation (of the lift-adjoint field which zones of high gradients correspond to narrow zones of high-values. Dealing with a near-field function, the field values of dJ/dX are those of Λ T k ∂R ∂X
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 2 Figure 2.24: NACA0012 M ∞ = 0.85 and AoA = 2 o inviscid flow -iso-Mach number lines (left), iso-lines of first-component of lift adjoint vector (right)
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 2 Figure 2.25: NACA0012 M ∞ = 0.85 and AoA = 2 o inviscid flow -iso-lines of θ[CLp] m = 0.5h m ||P(dCLp/dX m )||
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 2 Figure 2.26: position of points for assessment of residual perturbation influence on CLp. Change of Mach number due to change of R 1 at point 5 (left) and 7 (right)
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 31 Figure 3.1: NACA0012 M ∞ =0.85 AoA=2 o inviscid flow -Left: component of lift adjoint associated to z-axis momentum equation. Right: zoom at the suction-side shock-foot and location of shock (pink line)
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 32 Figure 3.2: Left: NACA64A212 inviscid flow. M∞ = 0.71, AoA=2.5 o . Integration contour for CDw, iso-dCDw/dz lines -Right : AVECA flying-wing configuration. Volumic constraints, design parameters, summary of multi-point optimization.
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 3334 Figure 3.3: Body-fitted to computational coordinate domain transformation
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 4 Before continuing it is convenient to introduce notation for the flux Jacobian in the computational mesh directions ξ and η, a 1 (w, ξ, η) = a(w) ∂y ∂η -b(w) ∂x ∂η , a 2 (w, ξ, η) = -a(w)

Annex 2 -Figure 3 . 5 :

 235 Figure 3.5: Notations for curvature calculation Figure 3.6: Extruded curve The targeted curve is denoted here S τ (s) = S(s) + τ d(s)n(s). The first two derivatives of the formula are given by dS τ (s) ds = (1 -τ d(s)k(s)) t(s) + τ d (s)n(s)d 2 S τ (s) ds 2 = -τ 2d (s)k(s) + d(s)k (s) t(s) + k(s) + τ (d (s) -d(s)k(s) 2 ) n(s)

k

  τ (s) = (k(s) + τ (d (s) -d(s)k(s) 2 ))(1 -τ d(s)k(s)) + τ 2 d (s)(2d (s)k(s) + d(s)k (s)) ((1 -τ d(s)k(s)) 2 + τ 2 d (s) 2 ) 3/2 (3.8)

k

  τ (s) = k(s) (1 + τ (d (s)/k(s) -d(s)k(s)))(1 -τ d(s)k(s)) (1 -2τ d(s)k(s)) 3/2 + O(τ 2 ) Or k τ (s) = k(s) 1 + τ (d (s)/k(s) + d(s)k(s)) + O(τ 2 )

  8) k τ (s) → 0 as d (s) → ∞ and |k τ (s)| → ∞ as d (s) → ∞. • UMRIDA Uncertainty Management for Robust Industrial Design in Aeronautics (October 2013 -September 2016). Contributor • ITN ANADE Advances in Numerical and Analytical tools for DEtached flow prediction (January 2012 -December 2015). Supervisor of one student. Contributor to one of the teaching sessions. • S& T-AVT 167. Strategies for Optimization and Automated Design of Gas Turbine Engines (2007-2010). Responsible for the teaching of local search methods. • S& T-AVT 191 Sensitivity Analysis and Uncertainty Quantification Methods for Military Vehicle Design (2011 -2015). Responsible of the external aero group.

  

  

  

  . The iterative methods for direct and adjoint gradient methods in elsA/Opt where no built with this strict requirement. It nonetheless very rarely happened that, with corresponding parameters and options, one calculation would diverge and the other one would converge.The elsA software is a cell-centred finite-volume code and specific boundary states (denoted W b in the elsA documentation) are calculated at boundary faces. For standard boundary conditions, W b depends on the flowfield in the adjacent cell and on the local normal via discrete characteristic relations. It is needed to differentiate W b w.r.t. flow for all discrete gradient methods (terms entering the Jacobian ∂R/∂W ) and also w.r.t. mesh for the adjoint-mesh method. Besides, the support of the functions of interest is most often a set of boundary faces and terms like (∂J/∂W b )(∂W b /∂W ) or (∂J/∂W b )(∂W b /∂X) appear in the right-hand of adjoint equation (first term) and in the expression of dJ/dX (second term).

  .5 has been tested with different values of . While increasing , the fitting constraint of Dierckx's spline definition is released and more smoothed curves are derived from the minimization of the smoothing criterion. It is also observed that the number of recursive iterations needed to satisfy criterion (1.30) gets lower. Figures 1.11 and 1.12 present the output curves obtained for different values of . It clearly appears that the lower values of lead to better curves. It is observed that most satisfactory curves (corresponding to ∈ [3.2 10 -3 , 10 -4 ]) actually retain the global features and zones of positive and negative values of the input field. Numerically, it is checked that the dot product between d and S(d) is positive so that S(d) is an actual descent direction. Also monitored is arccos(d, S(d)) that is almost constant in the interval of mentioned above. The smoothed distributions obtained with = 10 -4 are retained for the comparison with other methods.

Table 1 .

 1 .6. The satisfactory results, described in table 1.1 were obtained with the proposed method.

		min CD	max CL	min CD	max CL
				s.t. CL ≥ CL 0	s.t. CD ≤ CD 0
	Parameter-free			
	frozen µ t (S.A. model)	0.0143 ⇒ 0.0098 0.756 ⇒ 0.901 0.0169 ⇒ 0.0120	0.8 ⇒ 0.998
	CD 0 = 0.0110			
	CL 0 = 0.8			
	Parameter-free			
	lin. of S.A.	0.0143 ⇒ 0.0102 0.756 ⇒ 0.916 0.0169 ⇒ 0.0118	0.8 ⇒ 0.818
	CD 0 = 0.0110			
	CL 0 = 0.8			
	50 Hicks-Henne			
	frozen µ t (B.L. model) [91] 0.0152 ⇒ 0.0100 0.799 ⇒ 0.857 0.0167 ⇒ 0.0109 0.799 ⇒ 0.976
	CD 0 = 0.0143			
	CL 0 = 0.83			

1: Results of parameter-free and parameter-based optimization chain on the four test cases 37 Chapter 2

  and calculate/estimate the new local error for each of the considered configurations. The continuous metric formalism allows to build a local surrogate of the error on the metric space as each of the modified elements is naturally described by a new local metric matrix (more precisely, the error function depends on the logarithmic map matrix describing the change in the current metric. See[START_REF] Yano | An optimization-based framework for anisotropic simplex mesh adaptation[END_REF] §3 and §4.3). Finally, a surrogate cost function and surrogate global error model are formulated by summing the element-contributions and the problem is solved approximately by a descent algorithm derived from the optimality conditions. The new local metric is then derived from the calculated metric change by the so-called exponential map relation and the new mesh is calculated by a metric conforming mesh-generator. The model is demonstrated for L 2 projection error and for a model advection-diffusion problem in the original reference.

This discussion focuses on FV methods. For adjoint-based error estimation and mesh adaptation with Discontinuous Galerkin schemes, I refer to the articles of Hartmann et al.

[START_REF] Hartmann | Adaptative Discontinuous Galerkin finite element methods for the compressible Euler equations[END_REF][START_REF] Leicht | Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations[END_REF][START_REF] Hartmann | Adjoint-based error estimation and adaptative mesh refinement for the RANS and k-ω turbulence model equations[END_REF]

.

  .[START_REF] Bompard | Best Hermitian interpolation in presence of uncertainties[END_REF] This point is now discussed based on equation (2.13) and figure 2.6 representing three possible P(dJ/dX) fields. Figure(2.6)(a) is a typical case where equation (2.13) proves that a local mesh refinement is needed, as moving down the three mesh lines with high ||dJ/dX|| values would cause a significant increase of J value. Figure(2.6)(b) is a case of high sensitivity of J value to the position of some nodes but, as these nodes can not be significantly moved, the evaluation of J does not appear to be sensitive to a simple feasible mesh deformation -figure (2.6)(b) is actually typical of P(dJ/dX) fields for Euler flows, a near field function and a classical mesh with stretching of mesh lines/planes close to the wall. Figure(2.6)(c) is a case of high sensibility of J value to the position of some nodes that can be significantly moved but the contribution of the different nodes in (2.13) tend to cancel if they are moved coherently.

  -8 1.22 10 -11 0.99905 6.70 10 -6 1.24 10 -9 1025 × 1025 0.674 2.89 10 -7 1.44 10 -10 0.99812 2.96 10 -5 3.75 10 -8

				1.	--	--
	2049 × 2049 3.95 10 513 × 513 0.169 2.634 1.73 10 -6 1.30 10 -9	0.99622 1.02 10 -4 7.55 10 -7
	257 × 257	10.331	9.03 10 -6 1.66 10 -8	0.99217 3.19 10 -4 1.04 10 -5
	129 × 129	40.986	4.38 10 -5 3.99 10 -7	0.98396 1.05 10 -3 9.75 10 -5
			stretched grids	
	2049 × 2049	0.005	1.52 10 -8 3.16 10 -13 0.99983 1.60 10 -5 1.65 10 -9
	1025 × 1025	0.018	6.20 10 -8 3.17 10 -12 0.99973 2.33 10 -5 1.02 10 -8
	513 × 513	0.119	3.68 10 -7 5.45 10 -10 0.99950 8.39 10 -5 4.36 10 -8
	257 × 257	1.079	2.72 10 -6 1.15 10 -9	0.99898 4.35 10 -4 1.12 10 -7
	129 × 129	7.849	2.47 10 -5 1.65 10 -8	0.99784 2.34 10 -3 3.45 10 -6

Table 2 . 1 :

 21 CDp and P a for baseline and stretched grids. M ∞ = 0.5.

  §2.2 §3.1. The accuracy of elsA's adjoint in dJ/dX mode for (RANS)&(SA) discrete equations is also discussed and found satisfactory ([157] §3.2). A 513 × 513 × 257 reference fine mesh was provided by Destarac and Dumont. Its O-O topology is presented by figure 2.10 and corresponding caption. The hierarchy of meshes allowing limiting value calculations for lift and drag is derived by coarsening the 513 × 513 × 257 mesh. The calculated limiting values are CD lim =0.01870 for drag and CL lim =0.274 for lift. A mesh adaptation by plane addition is conducted up to a drag-error (w.r.t. CD lim ) lower than 0.0005.

Table 2 .

 2 2: XRF1 at M ∞ =0.83, AoA=2.607 o , Re/m = 7.8 10 6 . CL, CL p , CD, CD p , CD f values for baseline meshes and medium adapted mesh.

	Mesh size	CL/CL ref CL p /CL ref p	CD/CD ref CD p /CD ref p	CD f /CD ref f
	100 M	1.	1.	1.	1.	1.
	74 M	.99645	.99666	.99390	0.99608	.98990
	13.5 M (baseline)	.98476	.98498	1.04371	1.05849	1.01656
	13.5 M (adapted)	.98526	.98529	1.03727	1.05008	1.01374
	10 M	.98407	.98429	1.04790	1.06562	1.01550
	3.2 M	.96470	.96491	1.19002	1.29034	1.00658

  24 . Besides, Frazza has presented in his PhD thesis several pre-industrial and industrial applications (ONERA M6 wing, Rotor 37, High-lift CRM). The goal-oriented mesh-adaptation chain of INRIA Gamma3 team is based on the mixed finite-volume finite-element solver Wolf ([55] §1) and the iterative mesh generator feflo.a. These tools are clearly able to deal with industrial configurations and[START_REF] Frazza | 3D anisotropic mesh adaptation for Reynolds Averaged Navier-Stokes simulations[END_REF] mentions support by SafranTech and Boeing Commercial Aircrafts (and feflo.a is also used at ONERA for research activities with CEDRE code). I am not aware of other laboratories having further developed the method.

  Introduce a(w) = df (w)/dw and b(w) = dg(w)/dw the flux Jacobians, then the linearized equation corresponding to the steady state form of (3.1) is

								w) +	∂f ∂w	dw dα	δα,	∂x ∂η	→	∂x ∂η	+	∂ 2 x ∂η∂α	δα.
	∂ ∂ξ	a(w)	∂y ∂η	-b(w)	∂x ∂η	dw dα	+	∂ ∂η	-a(w)	∂y ∂ξ	+ b(w)	∂x ∂ξ	dw dα
	+	∂ ∂ξ	f (w)	∂ 2 y ∂η∂α	-g(w)	∂ 2 x ∂η∂α		+	∂ ∂η	-f (w)	∂ 2 y ∂ξ∂α	+ g(w)	∂ξ∂α ∂ 2 x	= 0,	(3.3)
	and similarly for (3.2):											
			dJ (α) dα	= +	ˆξmin ˆDξη	dJ 1 (w) dw dJ 2 (w) dw dw dw dα dα K(ξ, η) + J 2 (w) ∂y ∂η + J 1 (w) ∂ 2 y ∂η∂α ∂K(ξ, η) dη ∂α	dξ dη.

  Using integration by parts, and the fact that the flow sensitivity and coordinate derivatives such as ∂ 2 y/∂ξ∂α are taken to be zero at the farfield we have Adding this expression to (3.4) and extracting terms multiplying dw/dα we obtain, from the volume and surface integrals respectively:

															we have that
												ˆDξη	λ T ∂ ∂ξ	a 1 (w, ξ, η)	dw dα	+	∂ ∂η	a 2 (w, ξ, η)	dw dα	dξ dη+
	ˆDξη	λ T ∂ ∂ξ	f (w)	∂ 2 y ∂η∂α	-g(w)	∂ 2 x ∂η∂α	+	∂ ∂η	-f (w)	∂ 2 y ∂ξ∂α	+ g(w)	∂ 2 x ∂ξ∂α	dξ dη = 0.
										-	ˆDξη	∂λ T ∂ξ	a 1 (w, ξ, η)	dw dα	dξ dη -	ˆDξη	∂λ T ∂η	a 2 (w, ξ, η)	dw dα	dξ dη
	-	ˆDξη	∂λ T ∂ξ		f (w)	∂ 2 y ∂η∂α	-g(w)	∂ 2 x ∂η∂α	+	∂λ T ∂η	-f (w)	∂ 2 y ∂ξ∂α	+ g(w)	∂ 2 x ∂ξ∂α	dξ dη
						-	ˆξmin	λ T a 1 (w, ξ, η)	dw dα	dη -	ˆξmin	λ T f (w)	∂ 2 y ∂η∂α	-g(w)	∂ 2 x ∂η∂α	dη = 0.
				    	dJ 2 (w) dw	K(ξ, η) -	∂λ T ∂ξ	a 1 (w, ξ, η) -	∂λ T ∂η	a
				   										

2 (w, ξ, η) = 0, on D ξ,η , -λ T a 1 (w, ξ, η) + dJ 1 (w) dw ∂y ∂η = 0, on ξ min , (

  the gradients of J may be written

	dJ (α) dα	=	ˆξmin	J 1 (w)	∂ 2 y ∂η∂α	dη -	ˆξmin	λ T f (w)	∂ 2 y ∂η∂α	-g(w)	∂ 2 x ∂η∂α	dη
		-	ˆDξη	∂λ T ∂ξ		f (w)	∂ 2 y ∂η∂α	-g(w)	∂ 2 x ∂η∂α	dξ dη
		-+	ˆDξη ˆDξη	∂λ T ∂η J 2 (w)	-f (w) ∂K(ξ, η) ∂ 2 y ∂ξ∂α ∂α dξ dη. + g(w)	∂ 2 x ∂ξ∂α	dξ dη

  • ONERA's Symposium on approximation and uncertainty in flow simulation ONERA Châtillon. December, 3rd, 2010 Approximately 40 participants Organizer and scientific coordinator • ERCOFTAC course on Mathematical methods and tools in uncertainty management and quantification ONERA Châtillon. October, 24&25, 2013 Approximately 30 participants Local coordinator • ERCOFTAC course on LBM for Indusstrial Applications. Overview, guidance and examples ONERA Châtillon. June, 13&14, 2016 Approximately 30 participants Local coordinator

On this subject, see references in[START_REF] Bompard | Modèles de substitution pour l'optimisation globale de forme en aérodynamique et méthode locale sans paramétrisation[END_REF][START_REF] Bompard | Best Hermitian interpolation in presence of uncertainties[END_REF] 

The teams of these two former Departments are now gathered in a single Department called "Département Aérodynamique, Aéroélasticité, Acoustique" (DAAA)

Many options exist : working on difference with respect to a reference shape or directly on the shape itself ; directly meshing the fluid domain, or first the wall of the item then the fluid domain ; use aeronautical expert parameters or a geometrical approach...

or if a first-order difference is used nα + 1 flow solutions

this technical requirement in presented with more details in §2.1.2 

the spectral radius involved in numerical dissipation then includes a |V .S| term with V .S = 0

in its usual form involving only static pressure, this sensor has the following form νi = |p i+1 -2p i +p i-1 p i+1 +2p i +p i-1 |

dimension of the considered system of e.d.p. that is 4 in 2D and 5 in 3D

From a strict mathematical point of view, any other definition ensuring null flux balance at convergence would lead to consistent discrete adjoint gradients. Flux balance divided by cell-index, or multiplied by z coordinate of center would work... but add useless calculations and have no connection with continuous adjoint.

direct and adjoint computations with DLR's unstructured solver TAU also used for the two previously quoted references

Actually, the convergence of flows equations to machine zero could be achieved for the (129×129), (257×257), (513×513) and (1025×1025). Reduction of the explicit residual was

-9 for the (2049×2049) mesh

in compressible (RANS) equations, ρ and p are defined as statistical repetition mean of the corresponding physical quantities, V is defined by Favre mean, that is the statistical repetition mean of ρV divided by the one of ρ

The adjoint-mesh capability was not developed at that time. See §III Conclusion and perspectives

This can be considered as obvious. From a mechanical point of view, one can argue that moving towards wavy shapes will reduce the aerodynamic performance of the airfoil because (if the flow is attached) as the regularity of the velocity and pressure distribution is directly related to the airfoil curvature as easily understood by examining the Euler equations written in the local streamwise reference frame[START_REF] Délery | Traité d'aérodynamique compressible[END_REF] 

in practice, leading and trailing edge are never displaced which means that anyhow S(d) is set to zero at theses points.

This test case corresponds to Cook's et al.[START_REF] Cook | Aerofoil RAE 2822 -pressure distributions, and boundary layer and wake measurements -experimental data base for computer program assessment[END_REF] 9 th experiment related to the RAE2822 airfoil M∞ = 0.730, AoA= 3.19 o , Re= 6.5 10 6 (this Reynolds number is based on the density, velocity, eddy viscosity at infinity and the chord of the 2D profile). Within the EUROVAL project[START_REF] Haase | EUROVAL -an European initiative on validation of CFD codes[END_REF], it was suggested that the influence of the wind tunnel walls could be accounted for in the calculations by correcting the angle of attack (AoA= 2.79 o instead of AoA= 3.19 o ). This correction, that has been widely accepted by the CFD community, is retained for our computations.

We keep the notations of the original papers by Giles and co-workers. They are consistent with those introduced earlier but typed in lower case. This seems satisfactory as the method has been largely demonstrated for scalar equations before being extended to systems of equations

actually, linear or cubic spline interpolation

Let us nevertheless note that reference[START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF] presents in the last equation of section I the adjoint weighted residual of Venditti and Darmofal theory except it involves the analytic flow solution at discrete grid points instead of a discrete flowfield interpolated from a coarser grid

this is for a perfect gas

The entropy variables are then no longer the adjoint variables of the entropy flux but of a more complex function with two new terms involving the viscous tensor

for triangles: division in two triangles following the medians, isotropic division in four triangles

where for the sake of readability of the technical calculations to come, I have dropped the function and adjoint vector index, k

An erratum concerning figure10of[START_REF] Nguyen-Dinh | Mesh quality assessment based on aerodynamic functional output total derivative[END_REF] and a short addendum to this article is to be sent to the European Journal of Mechanics B/Fluids

the flow is supersonic everywhere but in a small bubble dowstream the shockwave and close to the leading edge

that are essentially tools for mesh convergence analysis

J-mesh lines are those circling around the aerofoil. They are approximately located at constant distance to the wall

with the only exception of θ[P a] on the (2049 ×2049) meshes

The adjoint module of the elsA code can manage non-matching conditions

the reference surface, 0.7532, is obtained as the trapezoidal part of the wing

Please note the uniform distribution in i and k while the exponential distribution in j (due to the BL) for the starting base mesh

whereas θ and θ were not calculated for this configuration

Todarello contributed, coding the direct and adjoint linearization of Roe-MUSCL scheme for unstructured meshes[START_REF] Todarello | Goal oriented adaptation of unstructured meshes. application to finite volume methods[END_REF] 

Inflow: fixed total pressure and total temperature fixed flow direction parallel to machine axis. Outflow: fixed static pressure. its ratio w.r.t inlet total pressure being .7587

which can be viewed as the reference for finite volume goal-oriented mesh adaptation

These meshes were derived from those of Vassberg and Jameson's study[START_REF] Vassberg | In pursuit of grid convergence for two-dimensional Euler solutions[END_REF] by splitting every cell in two. See left column of figure2.[START_REF] Bristow | Subsonic panel method for designing wing surface from pressure distribution[END_REF] 

of course, with a specific (and surely tedious) coding, the correction and error of correction of[START_REF] Venditti | Grid adaptation for functional outputs: Application to twodimensional inviscid flows[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: Application to two-dimensional viscous flows[END_REF] could be computed without manipulating and storing at same time all the elements of the finer grid

Namely, avoid using equation (1.8), compute ∂R/∂X, compute dJ/dX according to equation(1.9) 

Namely, equation(1.13) 
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We first check that the sign of λ 1 given by this figure is indeed consistent with the variations in the Mach number field observed on figure 2.26 and analogous plots for the other five points omitted (for the sake of brevity). For points 1, 4, 6, 7, the upper-surface shock is pushed downstream thus enlarging the suction zone, and by this effect, increasing the lift. The effect on the lower-surface shock is opposite. Indeed, λ 1 is positive at these point. For points 2, 3 and 5, the upper-surface shock is pushed upstream and the lower-surface shock is shifted upstream. The main effect is caused by the upper-surface shock

Annex 3 -Visualization of (1/ds)Λ T CD p (∂R/∂X) for a 2D Euler subcritical flow

The series of plots 3.7 illustrates the good consistency of left-hand-side and numerically estimated righthand-side of equation (2.9) (based on the same flow and adjoint fields). This property is also observed if flow and/or adjoint involve discontinuities. For the visualisation, both fields are divided by the surface attached to the node in the dual mesh ((1/ds)Λ T CDp (∂R/∂X) versus discrete evaluation of term (2.11) ). A discrete convolution based spatial mean P(dJ/dX) is built. It is defined for a 2D problem and a structured mesh but extensions to 3D and unstructured meshes are straightforward. It is assumed that the discrete values of a realistic mesh displacement field dX are the values of a C 1 regular function noted XC taken at the nodes of the mesh. It is also assumed that XC is well approximated by its first-order Taylor expansion on all circles of radius L. Finally, D (C,L) denotes the disk centered in C with radius L and Ψ L denotes a radial a radial function of support D(O, L) and integral 1 on this disk. Using all these properties, it is easily checked that the displacement of the node (i, j) (denoted dX ij ) can be estimated by the following relation:

Although this property is available for all radial function Ψ L (r) of support D(O, L) and integral 1, it is desirable to use a decreasing function of r. In practice, the following kind of functions is used

The simplest discretization on the mesh of equation (3.9) is

where ds ij is the surface of the mesh element associated with the point X ij (plotted on figure 3.8(a)). However this relation is not exact on a constant field and inconsistent for coarse mesh zones. So we prefer the barycentric discretization

Henceforth we note γ ijL the denominator of the right hand side of equation (3.10)

The dot product of interest can then be rewritten:

It is interesting to switch the sums over the indices (i, j) and (i j ) noticing that Our purpose was to build a mean such that for any displacement field dX well approximated by a linear function at scale L P(dJ/dX).dX = P(dJ/dX).dX

By simple identification with previous equation (and switching the indices with and without prime)

which defines the mean field of P(dJ/dX) as an explicit convolution-like mean.

Unfortunately, the equations (3.9),(3.10) are inaccurate at all nodes (i, j) such that D (X ij ,L) is not entirely included in the fluid domain. Therefore the previous definition of the mean field P(dJ/dX) is used only for the nodes (i, j) such that D (X ij ,L) is entirely included in the fluid domain. For the other nodes, the definition has been extended by changing the shape of the integration domain.

Appendix Annex A -Publications

Rank A journal articles

Contributions to discrete adjoint method in aerodynamics for shape optimization and goal-oriented mesh-adaptation

This document sums up the researches conducted in Computational Fluid Dynamics, based on discrete adjoint of finite-volume schemes, for shape optimization and for goal-oriented mesh adaptation.

Concerning shape optimization, the researches were devoted to the adaptation of backward-Euler implicit stages to the FPI resolution of the discrete adjoint equation, to the adaptation of a basic external flow adjoint module to the mechanical formulation suitable for the simulation of rotors in hovering flight and to the optimization of airfoils using a smoothed shape gradient.

Concerning goal-oriented mesh adaptation, an adaptation criterion based on the total derivative of the goal w.r.t. volume mesh node coordinates has been proposed. This criterion includes a projection of this vector field and the local characteristic size of the current mesh. Successfull mesh adaptation based this criterion were conducted for various types of meshes (structured/unstructured) and flows (Euler and (RANS)), in 2D and 3D. Keywords : AERODYNAMICS ; NUMERICAL SIMULATION ; MESH ADAPTATION ; DISCRETE ADJOINT ;

OPTIMISATION FORME

Contributions à la méthode adjointe discrète pour l'optimisation de forme et le raffinement de maillage ciblé

Le manuscrit résume les travaux de recherche s'appuyant sur la méthode adjointe discrète en simulation aérodynamique pour l'optimisation de forme et pour le raffinement de maillage ciblé. Dans le domaine de l'optimisation de forme, les travaux ont porté sur l'adaptation de phases implicites Euler-rétrograde pour la résolution de l'équation adjointe discrète par méthode de point fixe, sur l'adaptation des discrétisations et formulations usuelles à la formulation mécanique utilisée pour la simulation de rotors en vol stationnaire et sur l'optimisation de profils par gradient de forme lissé.

Dans le domaine de l'adaptation de maillage ciblée, on a proposé un critère d'adaptation basé sur la dérivée totale de la fonction d'intérêt par rapport aux coordonnées du maillage volumique. Ce critère fait intervenir une projection de ce champ vectoriel et la taille locale du maillage courant. Des adaptations de maillage ont été conduites avec succès selon ce critère pour différents types de maillages (structuré/non structuré) et d'écoulements (régi par les équations d'Euler ou RANS), en 2D et en 3D.