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A short and imprecise history of persistence
and its applications

The foundations

There is no need to recall how the field of machine learning has intensely
developed over the last fifty years. One could probably explain this

progression by three main factors: the theoretical advances in statistical
methods, the technological progress in micro-electronics (increasing the
computational power of computers), and the almost systematic harvest of
data from multiple sources (allowing to train statistical models over ever
bigger datasets). In this context, Topological Data Analysis (TDA) arose in
the early 2000’s, with the aim to provide computational means to estimate
topological quantities (such as (co-)homology groups) of a dataset.

Although the philosophical roots of TDA probably lie before (see eg.
[Bar94]), the concept of persistence was first introduced in its actual for-
mulation by Afra Zomorodian in his Ph.D. thesis [Zom01]. Given a finite
sequence of nested simplicial complexes ∅ = X0 ⊂ X2 ⊂ ... ⊂ Xn = X,
he defines an algorithm to determine when a i-cycle is born and dies in
the i-th simplicial homology (with coefficients in a field k) of this filtration.
Four years later, A. Zomorodian and G. Carlsson define in [CZ05] the i-th
persistence module of this filtration. It is the sequence of k-vector spaces
and linear maps obtained by applying the i-th simplicial homology functor
to the filtration of simplicial complexes:

0 = Hi(∅) // Hi(X1) // Hi(X2) // ... // Hi(Xn) = Hi(X) .

In this situation where the simplicial complex X is finite, standard re-
sults in commutative algebra imply that one can find a decomposition of
this persistence module as a direct sum of persistence modules which are
worth k between the values b and d in the filtration, and with the linear
maps between any pair of index degree which lies between b and d being
identities. The collection of pairs (b, d) appearing in the decomposition is
called the i-th barcode of the filtration. It totally determines the i-th persis-
tence module of this filtration up to isomorphism. Therefore, the barcode
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8 CHAPTER 1. INTRODUCTION

is a discrete invariant encoding topological features of the filtration. Al-
though at this point, it is hard to use barcodes for machine learning since
we do not yet know how to compare how similar two barcodes are. This is
precisely the reason why G. Carlsson et al. introduced the bottleneck dis-
tance between barcodes in [CZCG05]. Roughly speaking, two barcodes are
at bottleneck distance less than δ, if there exists a pairing between all bars
of length greater than 2δ of each barcode, such that two paired bars have
endpoints at distance at most δ. This distance can be easily computed in
polynomial time with respect to the total number of bars in the barcodes.
It has had surprisingly deep interpretations and consequences, which are
the cornerstone of modern methods of TDA.

In [CSEH05], Cohen-Steiner et al. proved a fundamental property of
the bottleneck distance. Consider f : X → R a function on the topological
space X, one can define the i-th sub-level sets persistence module of f as
the collection of k-vector spaces (Hsing

i (f−1(] − ∞, s[)))s∈R equipped with
the linear maps (ϕs,t)s<t∈R defined as the linear maps induced by inclusion:

ϕs,t : Hsing
i (f−1(])∞, s[)) −→ Hsing

i (f−1(])∞, t[))

Assume that f, g : X → R are two continuous functions such that the
homology of the preimage by f and g of intervals (−∞, s] changes only
when crossing a finite number of values of the parameter s (eg. f and
g are Morse functions and X is a manifold). Then one can define the
barcodes of their respective i-th persistence modules, written Bi(f) and
Bi(g). The authors of [CSEH05] then proved that one can control the
bottleneck distance dB(Bi(f),Bi(g)) by the L∞ distance between f and g.
More precisely:

dB(Bi(f),Bi(g)) ≤ sup
x∈X
‖f(x)− g(x)‖ = dL∞(f, g). (1.1)

This result indicates that the bottleneck distance is a consistent choice
for measuring differences between barcodes to perform machine learning
tasks. Indeed, real-world datasets always come with noise. Therefore, one
never observes the reality, but rather a noisy version of it. Thanks to this
stability result, one can be assured that the barcode of a noisy version f̃
of f is never further apart from the real barcode of f , with respect to the
bottleneck distance, than f̃ is of f for the L∞ distance.

The algebraic viewpoint

The next key turn in the theory of persistence is a purely algebraic
interpretation of (1.1) by Chazal et al. in [CSG+09]. The authors defined
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persistence modules as functors from the category associated to the partially
ordered set (R,≤) to the category of k-vector spaces. They introduced the
notion of ε-interleavings between two persistence modules, which is thought
of as an approximate isomorphism, and defined the interleaving distance
between two persistence modules as the infimum of the values of ε such
that they are ε-interleaved. From its definition, it is straightforward to
prove that the interleaving distance between the i-th persistence modules
of two functions f, g : X → R is bounded by the L∞ distance between f
and g.

Crawley-Boevey proved in [CB12] that under mild assumptions, persis-
tence modules (still considered as functors from the poset (R,≤) to the
category of k-vector spaces) admit a barcode. The algebraic miracle is then
that under the assumptions of Crawley-Boevey’s theorem, the interleav-
ing distance between two persistence modules M and N is equal to the
bottleneck distance between their barcode:

dI(M,N) = dB(B(M),B(N)). (1.2)

The purely algebraic viewpoint of interleavings has instigated the cate-
gorification of many concepts of TDA, and allowed to lay down the theoreti-
cal foundations in order to further develop persistence. One of the beautiful
manifestations of this approach is the induced matching theorem of Bauer
and Lesnick [BL15]. It states that epimorphisms of persistence modules
f : M → N induce functorially a matching between the barcodes of M and
N , whose cost is determined by the length of the longest bar appearing in
the barcode of ker(f) and coker(f).

Many fruitful applications

Since its introduction, the techniques of TDA have spread widely in very
diverse areas of Science and of Mathematics. Let us mention a few of them,
with no intention to be exhaustive.

Material sciences. In [NHH+15], persistent homology allows to charac-
terize the microscopic structure of different medium-range order in anomor-
phous silica.

Cellular Biology. In [RCK+17], the authors use TDA to efficiently predict
cellular differenciation within RNA sequence analysis.

Time series analysis. In [DUC19], the authors use persistent homology as
a feature extraction technique on electro-cardiograms to detect arrhytmia
through neural networks.
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Comprehension of Neural Networks. In [NZL20], the authors describe
by the mean of persistent homology, the transformations operated by the
successive layers of a neural network performing binary classification of
point cloud data. This allows them to draw important insights on some
fundamental behaviours of deep learning.

Symplectic Topology. The Floer homology, a central construction in
symplectic topology, is naturally equipped with a filtration by the real-
valued action function. This induces a structure of persistence module on
the Floer homology. Although the barcode vocabulary did not exist at the
time, Viterbo introduced in [Vit92] the spectral invariants, which roughly
speaking correspond to the set of values s ∈ R such that the interval ]s,+∞[
appears in the barcode of the Floer homology persistence module. The
barcode formalism has been introduced in this context by Polterovich and
Shelukhin in [PS15]. In [BHS18], the authors have proved a stability theo-
rem for the bottleneck distance between barcodes originating from filtered
Floer homology.

Towards richer topological invariants

Beyond sub-level sets persistence

Although the theory of sub-level sets persistence is particularly well
suited for computer science, it is not difficult to exhibit certain of its lim-
itations. The first one is that by nature, sub-level sets persistence forget
many informations contained in the fibers of a function. For instance (see
example 2.1.36), one can easily construct two functions f, g : X → R with
the same barcode, at arbitrarily large L∞ distance one of another. One way
to partially overcome this issue is by studying a richer type of perstistence
modules obtained from f . Instead of looking only at the pre-images by
f of intervals of type ] − ∞, s[, one can study the i-th homology groups
of the pre-images by f of open bounded intervals ] − x, y[. This object is
either called the i-th zig-zag/interlevel-sets/level-sets persistence module of
f . In [Bot15], Botnan proved that one can define an interleaving distance
for such persistence modules, which enjoy the same stability property as
the usual sub-level sets persistence. The algebraic structure underlying this
construction is given by functors from the poset (R2,≤) to the category
of k-vector spaces, satisfying a certain property called middle-exactness.
Cochoy and Oudot have proved in [CO17] that such persistence modules
enjoy a decomposition theorem that allows to define a notion of barcode for
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level sets persistence modules of real valued functions. Moreover, Bjerke-
vik [Bje16] proved that one can compute the interleaving distance between
two middle-exact persistence modules as the bottleneck distance between
their barcodes.

Therefore, level-sets persistence appears to be a good candidate as a first
step to enrich the computational methods of persistence. Indeed, it has the
same formal and computational properties as sublevel-sets persistence, but
carries strictly more information.

Multi-parameter persistence

Another way to enrich the persistence module arising from a function
f : X → R, is by adding extra information coming from another real valued
function g : X → R in it. One way to achieve so is to study the filtration
of X obtained by studying the fibers of f and g simultaneously, that is,
understanding the persistence module with two parameters, that associates
to a couple of real numbers (s, t), the homology of the topological space

f−1(]−∞, s[) ∩ g−1(]−∞, t[).

The underlying algebraic structure of this construction is that of a func-
tor from the partially ordered set (R2,≤) to the category of k-vector spaces.
Unlike level-sets persistence modules, such functors do not satisfy in general
a tameness property such as middle-exactness. This motivates the study
of multi-parameter persistence modules, that is, functors from the partially
ordered set (Rn,≤) to the category of k-vector spaces, with n ≥ 2, in full
generality.

In [CZ09], Carlsson and Zomorodian proved that the category of persis-
tence modules with n discrete parameters is equivalent to a certain category
of graded modules over a polynomial ring with n indeterminates. This re-
sult shows the impossibility of a barcode-like decomposition for persistence
modules with more than one parameter, both in the discrete and continu-
ous setting. Indeed, modules over a polynomial ring with more than one
indeterminate have the representation type of a wild quiver – those quiv-
ers for which the problem of expliciting a “simple”list of indecomposable
representations is impossible [Mik90]. Therefore, one direction of research
in multi-persistence is to seek for algebraic invariants of multi-parameter
persistence modules, rather than studying general decomposition results.
To be useful in the context of machine learning, these invariants have to
be computable, and to satisfy a certain form of stability with respect to the
noise in the input datasets. The first invariant that was proposed by the
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authors is the rank invariant, which records the rank of every internal map
of a given persistence module. However, this invariant has been shown not
to be discriminative in many important situations.

In his Ph. D. thesis [Les12], M. Lesnick studied in great details the in-
terleaving distance for multi-parameter persistence modules. In particular,
he showed that it is universal (in a precise sense) amongst all distances on
persistence modules which are stable. This justifies the choice of this metric
for the study of multi-parameter persistence modules. However, Bjerkevik,
Botnan and Kerber proved in [BBK18] that the interleaving distance be-
tween two persistence modules with n parameters is NP-hard to compute
whenever n ≥ 2.

By restricting a persistence modules with n parameters to a line of pos-
itive slope in Rn, one can obtain a barcode. The collection for all lines
of these barcodes form an invariant of multi-parameter persistence mod-
ules which is equivalent to the rank invariant. In the case where n = 2,
those can be efficiently computed thanks to the software RIVET [LW15].
From this collection of barcodes, one can derive a distance between persis-
tence modules with n parameters, by taking the supremum over the lines
of positive slopes in Rn of the (weighted) bottleneck distance between the
barcodes of each persistence modules restricted to this line. This distance
is bounded by the interleaving distance, and therefore satisfy the same sta-
bility property. Some recent advances by Vipond [Vip20] shows that it is
even locally equivalent to the interleaving distance on the class of finitely
presented persistence modules.

One of the main challenges of the research in multi-parameter persis-
tence today is to find invariants of multi-parameter persistence modules
which are expressive, computable and stable. In view of the results we have
recalled here, studying the category of persistence modules in general seems
very ambitious.

Sheaves and persistence

The initial work of J. Curry

One key observation is that the persistence modules arising from fil-
trations of continuous functions carry extra-structure. One way to express
this is by invoking the formalism of sheaves. Sheaves were invented by Jean
Leray during his detention in Germany during World War two, as a way to
express local to global properties of certain construction of algebraic topol-
ogy. It has then been spectacularly extended by Alexander Grothendieck
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during the second half of the 20th century. Sheaf theory is a very powerful
language in which a great part of the modern results in algebraic topology
and geometry are expressed.

In his Ph.D. thesis [Cur14], Justin Curry expressed sheaf theoretical
constructions in a computational framework, in particular by using the
notion of cellular (co-)sheaf. He also made the first links between persistence
modules and sheaves, and introduced a metric on sheaves inspired by the
interleaving distance.

The derived approach of Kashiwara-Schapira

However, sheaf theory takes its full strength when working in the derived
category, which was only partially done in the work of Curry. In particular,
its interleaving distance for sheaves is defined at an abelian level. We will
show in this manuscript that it is not sufficient to fully understand —for
instance— the behaviour of sheaves that are at finite distance to sheaves
constant on open subsets.

In their seminal work [KS18a], Kashiwara and Schapira introduced the
convolution distance between objects of the derived category of sheaves on
a finite dimensional real vector space, as a proposition for an interleaving-
like distance on sheaves. The convolution functor —the equivalent of the
shift functor for persistence modules in this setting— is expressed in terms
of Grothendieck operations, which is appropriate to perform cohomological
computations. The authors prove that this distance is stable with respect
to the derived pushforward, mimicking the stability property of the inter-
leaving distance. They introduce the notion of piecewise linear sheaves
—sheaves that should be storable in a computer, and prove that any con-
structible sheaf can be approximated within any precision in the convolution
distance, by a piecewise linear sheaf. Moreover, the authors suggest that
a topology that they have studied in detail in [KS90] —the γ-topology—
should be of interest to transfer ideas of persistence such as multi-parameter
persistence modules into sheaf theory. They finally develop a theory of γ-
piecewise linear sheaves which they further develop in [KS18b].

The challenge of applied sheaf theory

The mathematical content of this thesis could be named applied sheaf
theory. We aim in this work at employing the powerful theoretical frame-
work of Kashiwara-Schapira to develop topological invariants of a new type,
to be useful in machine learning and potentially other fields of mathematics
such as symplectic topology. The price to pay to use this theory is a high



14 CHAPTER 1. INTRODUCTION

level of abstraction, which is not well suited at first sight for a computa-
tional approach. In this manuscript, we make efforts to develop results that
link the usual theory of persistence —that can be easily implemented in
a computer, but has many algebraic limitations— with the formalism of
sheaves in the derived setting —for which there exists a very rich literature,
but which lacks an easy combinatorial description.

Structure and contributions of the thesis
This manuscript is divided into six chapters (including this introduc-

tion), a bibliography, an appendix presenting a brief introduction to sheaf
theory, an index of definitions and an index of notations. While chapter 5
can be read independently of the other chapters, chapter 4 uses results of
chapter 3. We have tried to make this work as self contained as possible,
in order to allow a wide range of mathematicians to read it. In particular,
we have given in appendix a very short introduction to abelian sheaves in
the derived setting, alhtough this material is standard in the community of
algebraic topologists. Our main contributions are the following ones:

Stable free resolutions of persistence modules. The last section of
chapter 2 is devoted to show in a very simple setting the importance of “de-
riving” constructions, in order to get homological invariants of persistence
modules which are stable with respect to the interleaving distance. More
precisely, we introduce an interleaving distance on the homotopy and de-
rived categories of persistence modules such that resolution and localization
functors are isometric. This construction explains why a certain invariant
of a persistence module —the graded Betti numbers— is not stable in a
naive way with respect to the interleaving distance, and gives an algebraic
framework in which seeking for stable homological invariants. This content
is submitted for publication and is available as a preprint [Ber19].

Derived isometry theorem for sheaves. In chapter 3, we start from
the observation that constructible (derived) sheaves on the real line admit a
barcode, which is naturally graded over the integers. We prove an isometry
theorem in this setting: one can compute the convolution distance between
two sheaves in a purely combinatorial way from their barcodes. This indi-
cates that this sheaf barcode, together with the convolution distance, can
easily be handled by computers. As a byproduct, we are able to study some
properties of the convolution distance. We prove that it is closed (thus an-
swering an open question of Kashiwara-Schapira in dimension one) and that
the space of constructible sheaves over R is locally path-connected when



15

equipped with this distance. This content is a collaboration with Grégory
Ginot. It is submitted for publication and is available as a preprint [BG18].

Level-sets persistence and sheaves. In chapter 4, we make precise the
intuition that the collection of the level-sets persistence modules associ-
ated to a continuous function f : X → R carries the same information
than Rf∗kX , the derived pushforward of the constant sheaf on X by f .
To compare these objects, we construct two functors exchanging level-sets
persistence of functions and derived pushforward of sheaves. This is pos-
sible only by observing that the collection of level-sets persistence of f
carry extra structure, which we call Mayer-Vietoris systems. We classify
all Mayer-Vietoris systems with an appropriate finiteness property that we
call strongly finite dimensionality, and prove that our functors are isomet-
ric with respect to the interleaving distance and the convolution distance.
Ultimately, we establish a bijection between the barcodes of level-sets per-
sistence and the sheaf graded barcodes. We prove that we can compute the
convolution distance in a rather simple way from the knowledge of the level-
sets persistence barcode, which can be computed by several software suites.
This content is a collaboration with Grégory Ginot and Steve Oudot. It is
submitted for publication and is available as a preprint [BGO19].

Ephemeral persistence modules and distance comparison. In chap-
ter 5, we follow Kashiwara-Schapira’s program and study precisely the links
between multi-parameter persistence modules, sheaves in the Alexandrov
topology, and sheaves in the γ-topology —where all of these categories are
equipped with interleaving-like distances. We first generalize the definition
of ephemeral persistence modules that was introduced in the one-parameter
setting by Chazal et al. in [CCBS16]. This enables us to construct the
observable category of persistence modules in the multi-parameter case: the
quotient category of persistence modules by the ephemeral persistence mod-
ules. We build an equivalence from the observable category of persistence
modules to the category of γ-sheaves that is distance preserving in their
respective interleaving distances. We then strengthen this result by show-
ing that, with some finiteness assumptions always satisfied by persistence
modules arising from data point cloud, the interleaving distance between γ-
sheaves equals the convolution distance of Kashiwara-Schapira. This shows
that the observable information contained in multi-parameter persistence
can be cast isometrically into the (derived) category of γ-sheaves. This cat-
egory was shown in [KS18a] to be equivalent to a subcategory of the derived
category of sheaves in the usual euclidean topology. Therefore, our results
allow to use usual modern sheaves techniques to tackle the multi-parameter
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persistence setting. This content is a collaboration with François Petit and
is to appear in Algebraic and Geometric Topology [BPar].
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2.1 Persistence theory

This section aims at introducing the algebraic concepts behind the the-
ory of persistence, and the main theoretical results obtained in the last
decade in the special cases of one-parameter persistence and level-sets per-
sistence. In all the manuscript, we let k be a field.

2.1.1 The category Pers(kP) and the interleaving
distance

To any partially ordered set (poset for short) (P ,≤), one can associate
a category, also noted (P ,≤), defined by:{

Obj((P ,≤)) = P ,
Hom(P,≤)(x, y) = {∗} if x ≤ y, ∅ otherwise.

Definition 2.1.1
The category of k-persistence modules over (P ,≤) (or persistence modules
over P , when there is no risk of confusion) is the category of functors from
(P ,≤) to the category of k-vector spaces Mod(k). We shall denote it by
Pers(kP).

It is a classical result that functors categories inherit the properties of
their target category. Therefore, Pers(kP) is a Grothendieck category: it
is abelian, complete (small limits exist), co-complete (small colimits exist),
has enough injectives and projectives, small filtered colimits are exacts, and
has a generator since Mod(k) has all these properties.

An objectM of an additive category C is indecomposable ifM 6= 0, and
for any isomorphim M 'M1 ⊕M2, either M1 or M2 is equal to 0.

A subset I of P is an interval , if it satisfies: (i) for any x, z ∈ I, and
y ∈ P satisfying x ≤ y ≤ z, then y ∈ I; (ii) for x, y ∈ I there exists a
finite sequence (ri)i=0..n in P such that r0 = x, rn = y and for any i < n,
ri ≤ ri+1 or ri+1 ≤ ri.

Definition 2.1.2
Given I an interval of (P ,≤), one can define kI the interval persistence
module by: {

kI(x) = k if x ∈ I, 0 otherwise,
kI(x ≤ y) = idk if x and y ∈ I, 0 otherwise.
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Observing that HomP(kI ,kI) ' k, one can prove that kI is an inde-
composable persistence module. Note that kI is the persistent counterpart
of kZ , the constant sheaf on a locally closed subset Z of a topological space
X (see example A.2.12). We write I as a superscript to avoid confusions
between the two constructions.
Definition 2.1.3
A category C is a Krull-Schmidt category if it satisfies the following axioms.

(KS-1) C is an additive category.
(KS-2) For any object X of C , there exists a family of indecomposable

objects B(X) of C such that X '
⊕

I∈B(X) I which is essentially
unique. That is, for any other family of indecomposable objects
B′(X) with the same property, there exists a bijection σ : B(X) →
B′(X) such that I ' σ(I), for all I in B(X).

(KS-3) For any object X of C such that X '
⊕

I∈B(X) I with B(X) a
collection of indecomposable objects of C , then

∏
I∈B(X) I exists in

C and the canonical morphism :⊕
I∈B(X)

I −→
∏

I∈B(X)

I

is an isomorphism.

Definition 2.1.4
Let M be a persistence module over a poset (P ,≤). M is pointwise finite
dimensional (pfd for short), if M(x) is a finite dimensional k-vector space,
for all x ∈ P . We denote by Persf (kP) the full subcategory of Pers(kP)
consisting of pfd persistence modules.

Remark 2.1.5
Note that the usual definition of a Krull-Schmidt category asks, with no-
tations of definition 2.1.3, that B(X) is finite (see eg. [Kra14]). This will
not be sufficient for our study of pfd persistence modules since they are po-
tentially infinite direct sum of interval modules (theorem 2.1.21). However,
one important behaviour of these direct sums is that they satisfy axiom
(KS-3), as expressed in the following proposition.

Proposition 2.1.6
Let J be an indexing set, and (Mj)j∈J be a family of persistence modules
over (P ,≤), such that ⊕jMj is pfd. Then the canonical morphism :⊕

j∈J

Mj −→
∏
j∈J

Mj,

is an isomorphism.
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Proof
Since Pers(kP) is the functor category from (P ,≤) to Mod(k), the latter
being a complete and co-complete category, small products and co-products
can be computed pointwise in Pers(kP). Therefore, given s ∈ P , we have
the following isomorphisms:

(⊕
j∈J

Mj

)
(s) '

⊕
j∈J

Mj(s) (2.1)

'
∏
j∈J

Mj(s) (finite dimensionality) (2.2)

'

(∏
j∈J

Mj

)
(s), (2.3)

which concludes the proof.

�

Theorem 2.1.7 ( [BCB18] - Thm. 1.1)
Let (P ,≤) be a poset andM ∈ Obj(Persf (kP)). ThenM is isomorphic to a
direct sum of indecomposable persistence modules with local endomorphism
ring.

Combining proposition 2.1.6 and theorem 2.1.7, we deduce the following
result:

Theorem 2.1.8
Let (P ,≤) be a poset, the category Persf (kP) is a Krull-Schmidt category.

We will now introduce the formalism of interleaving distance associated
to a flow, as introduced in [dMS18]. Since, we do not need the full generality
of the theory, we will give simpler definitions that are specific to our context.

We denote by ([0,+∞),≤) the poset of positive real numbers endowed
with the usual order. Also, let End((P ,≤)) denote the category of endo-
functors of (P ,≤).

Definition 2.1.9
A flow on (P ,≤) is a functor T : ([0,+∞),≤)→ End((P ,≤)) satisfying:

1. T (0) = idP ,

2. for any ε, ε′ ∈ [0,+∞), T (ε) ◦ T (ε′) = T (ε+ ε′).
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Definition 2.1.10
Given T a flow on (P ,≤), M a persistence module over (P ,≤) and ε ≥ 0,
one defines a new persistence module M [ε]T , the ε-shift of M along T , by:

M [ε]T = M ◦ T (ε). (2.4)

For 0 ≤ ε′ ≤ ε, the morphism T (ε′ ≤ ε) induces a morphism

τMε′,ε(M) : M [ε′]T →M [ε]T . (2.5)

Since T (0) = idP , the morphism T (0 ≤ ε) induces a morphism τMε : M →
M [ε]T which we call the ε-smoothing morphism 1 of M along T .

Definition 2.1.11
Let T be a flow on the poset (P ,≤). Let M,N be two persistence modules
over P , and ε ≥ 0. A (ε, T )-interleaving (or ε-interleaving when there is
no risk of confusion) is the data of two morphisms f : M → M [ε]T and
g : N → N [ε]T fitting in a commutative diagram:

M

""

τM2ε

''
f // N [ε]T

%%

g[ε] //M [2ε]T

N

<<

τN2ε

77
g //M [ε]T

99

f [ε] // N [2ε]T

In this situation, we will say that M and N are (ε, T )-interleaved and
write M ∼Tε N . We will omit T when there is no risk of confusion.

Observe that a 0-interleaving is an isomorphism. Hence, one shall un-
derstand ε-interleaving as a weaker form of isomorphism. However, one
must pay attention that “being ε-interleaved” is not an equivalence rela-
tion since it is not transitive. Indeed, if we have M ∼Tε N ∼Tε L one can
only deduce M ∼T2ε L.
Definition 2.1.12
Let M and N be two persistence modules over (P ,≤), and T be a flow on
(P ,≤). The interleaving distance with respect to T between M and N is
the possibly infinite following quantity:

dTI (M,N) = inf{ε ≥ 0 |M ∼Tε N}.
1. The name comes from the fact that the image of τMε corresponds to elements of

M that lives longer than ε in the filtration.
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Proposition 2.1.13 ( [dMS18]- Thm. 2.5 )
The interleaving distance with respect to a flow T of (P ,≤) is an ex-
tended pseudo-distance on Pers(kP). That is, it satisfies for L,M,N ∈
Obj(Pers(kP)):
(M1) dTI (M,N) ∈ R≥0 ∪ {+∞},
(M2) dTI (M,N) = dTI (N,M),
(M3) dTI (M,N) ≤ dTI (M,L) + dTI (L,N).

Observe also that dTI satisfies (M4): if M ' N , then dTI (M,N) = 0.
Note that the converse is not true in general.

Definition 2.1.14
The interleaving distance with respect to the flow T is said to be closed if
it satisfies, for M,N any persistence modules and all ε ≥ 0:

dTI (M,N) ≤ ε =⇒M ∼Tε N.

In particular, if dTI is closed, then the converse to (M4) holds.

Remark 2.1.15
Note that not all interleaving distances associated with a flow are closed.
An important example that will be presented in the next sections, is the
interleaving distance over Pers(kRn) associated with the flow T (ε) : s 7→ s+
(ε, ..., ε). In this context, their exists some ephemeral persistence modules,
which are non zero persistence modules which are at distance 0 from the
zero persistence module (eg. the persistence module k{0}). In chapter 5, we
will give a precise treatment of these persistence modules.

Let C be a Krull-Schmidt category, equipped with a map d : Obj(C )×
Obj(C ) → R≥0 satisfying (M1) − (M4). For any object X of C , one
denotes by B(X) a collection of indecomposable objects of C such that
X ' ⊕I∈B(X)I.

Definition 2.1.16
Let X, Y ∈ Obj(C ) and ε ≥ 0. An ε-matching between B(X) and B(Y ) is
the following data.

1. Two subcollections X ⊂ B(X) and Y ⊂ B(Y ), and a bijection σ :
X → Y satisying d(I, σ(I)) ≤ ε for all I in X .

2. Moreover: d(I, 0) ≤ ε, for any I in B(X)\X or in B(Y )\Y .

Since d satisfies (M4), the existence of a ε-matching does not depend
on the choice of representatives in B(X) and B(Y ).
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Definition 2.1.17
Let X and Y be two objects of C . One defines the bottleneck distance
associated to d between X and Y as the possibly infinite following quantity:

dB(X, Y ) = inf{ε ≥ 0 | there exists an ε-matching between B(X) and B(Y )}.

Remark 2.1.18
At this point, dB shall not satisfy any of the axioms (M1) − (M3). The
isometry theorem problem associated to the Krull-Schmidt category
C equipped with the map d satisfying (M1)-(M4) is to determine whether
d = dB. Note that the isometry theorem is far from true in general. It has
been proved (see theorem 2.1.22) that it holds for Pers(kR) equipped with
the usual interleaving distance (see section 2.1.2), and we will prove it in
chapter 3 for the derived category of constructible sheaves over R equipped
with the convolution distance (see 3.4.18).

However in [Bje16, Example 5.2], the author provide a counter-example
to the isometry theorem for Pers(kR2

). In particular, the author constructs
two persistence modules over R2, M and N such that:

dI(M,N) = 1 and dB(M,N).

A more down to earth way to understand this counterexample, is that
an ε-interleaving between M = ⊕iMi and N = ⊕iNi does not necessarily
imply the existence of a ε-matching between {Mi}i and {Ni}i.

2.1.2 One parameter persistence

One-parameter persistence is the persistence theory associated to the
poset (P ,≤) = (R,≤). Hence, a one-parameter persistence module is an
object of Pers(kR).

The main example of one-parameter persistence module is: given a func-
tion u : X → R (not necessarily continous), one defines its sub-level sets
filtration as the functor S(u) from the poset category (R,≤) to the cat-
egory of topological spaces Top, defined by S(u)(s) = u−1(−∞, s), and
S(u)(s ≤ t) is the inclusion of u−1(−∞, s) into u−1(−∞, t). For n ≥ 0, the
n-th sublevel set persistence modules associated to u is the functor

Sn(u) := Hsing
n ◦ S(u),

where Hsing
n denotes the n-th singular homology functor with coefficients in

k.
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It is easy to verify that the functor T : ([0,+∞),≤) → End((R,≤))
defined by T (ε) : s 7→ s + ε is a flow on (R,≤). This flow induces an
interleaving distance on Pers(kR) which allows us to express the stability
properties of the mapping u 7→ Sn(u).

Theorem 2.1.19 ( [CdSGO16])
Let u, v : X → R be two maps from a topological space X to R, and n ≥ 0.
Then:

dTI (Sn(u),Sn(v)) ≤ sup
x∈X
|u(x)− v(x)|.

Moreover, dTI is universal amongst all other metrics satisfying this sta-
bility property.

Theorem 2.1.20 ( [Les12] - Thm. 5.5)
Let k be a prime field, ie. k = Z/pZ with p a prime number or k = Q. Let
d : Obj(Pers(kR))×Obj(Pers(kR))→ R which satisfies axioms (M1)−(M4)
(see prop. 2.1.13). Assume also that for any u, v : X → R and n ≥ 0, d
satisfies:

d(Sn(u),Sn(v)) ≤ sup
x∈X
|u(x)− v(x)|.

Then d ≤ dTI .

In addition to satisfying this stability property, pfd one-parameter per-
sistence modules (def. 2.1.4) enjoy a combinatorial description:

Theorem 2.1.21 ( [CB12] - Thm. 1.1)
For any pointwise finite dimensional one-parameter persistence module M ,
there exists a unique multi-set of intervals of R (that is, an interval can
appear several times in the list) noted B(M) , such that :

M '
⊕
I∈B(M)

kI .

B(M) is the barcode of M .

Therefore, the barcode of M , which consists of a list (with repetition)
of intervals of R, completely determines the isomorphism class of M . If
u : X → R is such that Sn(u) is pfd, one defines its n-th sublevel sets
barcode as the barcode of Sn(u). There is no reason a priori that one can
compute the interleaving distance between two persistence modules in a
combinatorial way, from the knowledge of their barcodes. Nevertheless,
the following result asserts that it is possible in the very specific context
of one-parameter persistence. Usually, it is referred to as the isometry
theorem.
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Theorem 2.1.22 ( [Les15] - Thm. 3.4)
Let dTB be the bottleneck distance associated to dTI . Then for M and N any
pointwise finite dimensional persistence modules over R:

dTI (M,N) = dTB(M,N).

This theorem is at the core of all the applications of persistence, both in
machine learning and in theoretical areas of mathematics such as symplectic
geometry.

2.1.3 Level-sets persistence

Level-sets persistence is the persistence theory associated to a certain
class of persistence modules over the poset ∆+ = {(x, y) ∈ R2 | x+ y > 0},
endowed with the following order:

(x, y) ≤ (x′, y′) ⇐⇒ x ≤ x′ and y ≤ y′.

Level-sets persistence take its name from the level-set filtration asso-
ciated to a real-valued function. Consider u : X → R a map from a
topological space X to R. Then, one defines the level-sets filtration of
u as the functor L(u) from the poset category (∆+,≤) to the category
of topological spaces Top, defined by L(u)((x, y)) = u−1(] − x, y[), and
L(u)((x, y) ≤ (x′, y′)) is the inclusion of u−1(] − x, y[) into u−1(] − x′, y′[).
For n ≥ 0, the n-th level-sets persistence module associated to u is the
functor

Ln(u) := Hsing
n ◦ L(u),

where Hsing
n denotes the n-th singular homology functor with coefficients in

k.
It is easy to verify that the functor T : ([0,+∞),≤) → End((∆+,≤))

defined by T (ε) : s 7→ s + (ε, ε) is a flow on (∆+,≤). This flow induces an
interleaving distance on Pers(k∆+

) which allows us to express the stability
properties of the mapping u 7→ Ln(u).

Theorem 2.1.23 ( [BL17])
Let u, v : X → R be two maps from a topological space X to R, and n ≥ 0.
Then:

dTI (Ln(u),Ln(v)) ≤ sup
x∈X
|u(x)− v(x)|.

We shall extend the definition of the shift functor to vectors of (R≥0)2.
Let M ∈ Obj(Pers(k∆+

)) and s = (s1, s1) ∈ (R≥0)2. We shall denote in the
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sequel sx = (s1, 0) and sy = (0, s2). The persistence module M [s] is defined
by: M [s](v) = M(v + s) for any v ∈ ∆+, and M [s](v ≤ w) = M(v + s ≤
w + s).

It is immediate to check that there is a canonical s-smoothing morphism:

τMs : M −→M [s].

When the context is clear, we shall not make explicit the smoothing
morphisms in our diagrams. To a persistence module M over ∆+ and any
s ∈ (R≥0)2, one can associate a commutative diagram in Pers(k∆+

) :

M [sy] //M [s]

M

OO

//M [sx]

OO

This induces the short complex:

M{s} := M −→M [sx]⊕M [sy] −→M [s] (2.6)

where the first map is
(

τMsx
−τMsy

)
and the second one is (τ

M [sx]
sy , τ

M [sy ]
sx )

in matrix notations.
Definition 2.1.24
An object M ∈ Pers(k∆+

) is a middle-exact persistence module if the com-
plexes M{s} are exact for every s ∈ R2

>0.

Remark 2.1.25
We think of middle-exact persistence modules as being the analogue for
the poset ∆+ of half the terms of the Mayer-Vietoris long exact sequence
relating the various homology groups of two open subsets of a space, their
reunion and intersection. What is missing to have a long exact sequence
are precisely the connecting homomorphisms relating homology groups of
different degrees. In Section 4.2.1, we will precisely introduce an additional
data on a (graded) middle-exact object of Pers(k∆+

) to obtain such long
exact sequences.

Middle-exact persistence modules have a barcode decomposition similar
to persistence modules over R that we now describe. First we specify the
various geometric types, called blocks, of the barcode.

Notation. Given a < b in R ∪ {±∞}, we shall denote by 〈a, b〉 any of the
four intervals ]a, b[, [a, b], ]a, b], [a, b[.
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(x, y) (−y, y)

(x,−x)

∆ ∆

(−x, x)

(−y, y)

∆

(x, y)
(−y, y)

(x,−x)

Figure 2.1 – On the left a block of type bb− pictured in blue. On the
middle a block of type vb pictured in green. On the right a block of type
db in red and its dual block of type bb+ in yellow. The various coordinates
refers to the intersection points of the boundaries of the blocks with the
anti-diagonal ∆ as well as the extremum of the birth or death blocks. The
dashed boundary lines means that the boundary line is not part of the
block.

Definition 2.1.26
A block B is a subset of R2 of the following type:

1. A birthblock (bb for short) if there exists (a, b) ∈ R2 such that B =
〈a,∞〉 × 〈b,∞〉, where a and b can both equal −∞ simultaneously.
Moreover, we will write that B is of type bb+ if a + b > 0, and of
type bb− if a+ b ≤ 0.

2. A deathblock (db for short) if there exists (a, b) ∈ R2 such that B =
〈−∞, a〉 × 〈−∞, b〉. Moreover, we will write that B is of type db+ if
a+ b > 0 and of type db− if not.

3. A horizontalblock (hb for short) if there exists a ∈ R and b ∈ R ∪
{+∞} such that B = R× 〈a, b〉.

4. A verticalblock (vb for short) if there exists a ∈ R∪{+∞} and b ∈ R
such that B = 〈a, b〉 × R.

Remark 2.1.27
Blocks are defined over the whole plane R2 and not just ∆+.

Remark 2.1.28
Note that a deathblock B is characterized by its supremum 2, that is sup{s ∈
B} together with the data of whether its two boundary lines are in the block
or not (note that the supremum is inside B if and only if both boundaries
lines are). Similarly a birth block B′ is characterized by its infimum inf{s ∈

2. which is easily seen to be, if B = 〈−∞, x〉 × 〈−∞, y〉, the point (x, y) ∈ R2
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B′} and the data of whether its boundary lines are in B or not. Note also
that the vertical and horizontal blocks never have finite extrema.

Definition 2.1.29 (Duality between death and birth blocks)
The dual of a deathblock B is the birthblock B† whose infimum is the
supremum of B and whose vertical (resp. horizontal) boundary line is in
B† if and only if the vertical (resp. horizontal) boundary line of B is not.

Dually we define the dual C† of a birthblock C as the death block
whose supremum is the infimum of C and whose vertical (resp. horizontal)
boundary line is in C† if and only if the the vertical (resp. horizontal)
boundary line of C are not.

Remark 2.1.30
The rule B 7→ B† is involutive: (B†)† = B, thereby it exhibits a perfect
duality between death and birth blocks. Furthermore, note that the dual of
a deathblock is of type bb+ if and only if the deathblock has a non-trivial
intersection with ∆+ i.e. is in db+.

One easily observe that for a block B, the set B ∩ ∆+ is an interval
of the poset ∆+. Therefore the persistence module kB∩∆+

is well defined
according to definition 2.1.2. For simplicity, we will omit ∆+ and write kB

for kB∩∆+

. This leads to the following remark:

Remark 2.1.31
If B is in db−, then kB = 0. Therefore we will usually not consider the
block modules associated to such negative deathblocks. In what follows,
the reader can safely assume that when we speak about a deathblock we
mean an element of db+, unless otherwise stated.

Let us denote, for s ∈ ∆+, B − s = {t− s, t ∈ B}; this is a block of the
same type as B (up to sign ±).
Lemma 2.1.32
Let B be a block and s ∈ ∆+. There is a canonical isomorphism

kB[s] ∼= kB−s.

Proof
By definition 2.1.2, we have that

kB[s](t) = kB(t+ (s1, s2)) =

{
k if t ∈ B − s
0 else.

Therefore we have that
kB[s] ∼= kB−s.
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Theorem 2.1.33 ( [CO17], [BCB18])
LetM ∈ Pers(k∆+

) be middle exact and pointwise finite dimensional (pfd).
Then there exists a unique multiset of blocks B(M) such that:

M '
⊕

B∈B(M)

kB.

B(M) is the barcode of M .

Proposition 2.1.34
Let u : X → R be a continuous map of topological spaces. Then Ln(u) is a
middle-exact persistence module for all n ≥ 0.

Proof
Let s = (s1, s2) ∈ (R>0)2 and n ≥ 0. The complex Ln(u){s} is exact if and
only if it is exact when evaluated on all points (x, y) ∈ ∆+. The sequence

Ln(u)(x, y) −→ Ln(u)[sx](x, y)⊕ Ln(u)[sy](x, y) −→ Ln(u)[s](x, y)

is exact, since it is the middle part of the Mayer-Vietoris sequence asso-
ciated to the open covering:

u−1(]− x− s1, y + s2[) = u−1 (]− x− s1, y[) ∪ u−1 (]− x, y + s2[) ,

u−1 (]− x− s1, y[) ∩ u−1 (]− x, y + s2[) = u−1 (]− x, y[) .

Therefore, if u is such that Ln(u) is pfd, it admits a decomposition as
a direct sum of block modules. Therefore, we can define the n-th level-
sets barcode of u as the multiset of blocks B(Ln(u)). Similarly to the case
of one-parameter persistence, one can ask whether it is possible to find a
combinatorial expression for the interleaving distance between two middle-
exact persistence modules. More precisely, if the interleaving distance is
equal to its associated bottleneck distance, noted dTB. Bjerkevik gave a
positive answer to this question.

Theorem 2.1.35 ( [Bje16] - Thm 3.3)
Let M and N be two pfd middle-exact persistence modules over ∆+, then:

dTI (M,N) = dTB(M,N).

Note that this result is not true without the middle-exacteness assump-
tion. In [Bje16, Ex. 5.2], the author gives an example of two persistence
modules over ∆+,M and N , which are finite direct sums of interval modules
and verify:

dTI (M,N) = 1, dTB(M,N) = 3.
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Figure 2.2 – The topological space X in R2 and its subset X ′ in red.

A natural question to ask is to compare the difference in topological
information given by the sublevel-sets and the level-sets persistence modules
construction. As one could expect, the level-sets persistence modules of a
function contains strictly more information than its sub-levelsets module.
This statement will be made precise in chapter 5. For now, we only present
an example illustrating this phenomenon.

Example 2.1.36
We define the topological space

X = {(x, x) | x ∈ [−1, 1]} ∪ {(x,−x) | x ∈ [−1, 1]}

endowed with the euclidean topology. We setX ′ = {(x, x) | x ∈ [0, 1]} ⊂ X.
We denote by p : R2 → R the second coordinate projection. We define

the maps from u, v : X → R by:

u(x) = p(x), and v(x) =

{
p(x) if x ∈ X \X ′,
0 if x ∈ X ′.

We can compute easily the homology of the pre-images by u and v of
open intervals by the following, for x, y ∈ R ∪ {±∞}:
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u−1(]x, y[) 'h


{∗} if 0 ∈]x, y[

{∗,#} if 0 6∈]x, y[ and ]x, y[∩[−1, 1] 6= ∅
∅ otherwise

v−1(]x, y[) 'h


{∗} if [0, 1]∩]x, y[ 6= ∅
{∗,#} if y ∈]− 1, 0]

∅ otherwise

Where the notation 'h means “is homotopically equivalent to” and {∗}
(resp. {∗,#}) is the set with one element (resp. two elements) equipped
with the discrete topology.

From this, we deduce that the only degree where u and v have non-
trivial homology of groups for pre-image of intervals is 0. Moreover, we
have the following barcode decomposition:

S0(u) ' k]−1,+∞[ ⊕ k]−1,0] S0(v) ' k]−1,+∞[ ⊕ k]−1,0]

L0(u) ' kB
[−1,1]
b ⊕ kB

[−1,0[
h ⊕ kB

]0,1]
v L0(v) ' kB

[−1,1]
b ⊕ kB

[−1,0[
h

where the notation for the block modules appearing in level-sets persistence
is defined in lemma 4.3.9 (it is not necessary to understand the notation to
get the intuition from the example). Then, we observe that S0(u) is isomor-
phic to S0(v). Nevertheless, the non-trivial summand kB

]0,1]
v appears in the

decomposition of L0(u), yet not in the decomposition of L0(v). This indi-
cates that the level-sets persistence construction detects more information
than the sublevel sets persistence. One can actually obtain the following
computation, where the interleaving distances considered are the ones we
have introduced in sections 2.1.2 and 2.1.3 :

dI(S0(u),S0(v)) = 0 and dI(L0(u),L0(v)) = 1.

2.1.4 Persistence modules as modules, or the curse of
multi-parameter persistence

A natural generalization of one-parameter is motivated by the study of
the homology of pre-images of functions valued in a higher-dimensional real
vector space. Given d ≥ 0 one defines the product order over Rd by:

(x1, ..., xd) ≤ (y1, ..., yd) ⇐⇒ xi ≤ yi for all i.
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Note that this order generalizes the one we introduced on R2 in the
previous section. We define the category of persistence modules with d
parameters as the category Pers(kRd). We will refer to multi-parameter
persistence modules as objects of Pers(kRd) for a certain d > 1.

Let X be a topological space, and u : X → Rd be a map. One defines
its sublevel-set filtration as the functor S(u) from (Rd,≤) to Top such that
for x, y ∈ Rd:

S(u)(x) = u−1({z ∈ Rd | z ≤ x}),
S(u)(x ≤ y) = u−1({z ∈ Rd | y ≤ x}) ⊂ u−1({z ∈ Rd | z ≤ y}).

The n-th persistence module associated to u is the persistence module over
Rd defined by:

Sn(u) := Hsing
n ◦ S(u).

Similarly to the cases of one-parameter persistence and level-sets persis-
tence, the functor T : ([0,+∞),≤) → End((Rd,≤)) defined by T (ε) : s 7→
s + (ε, ..., ε) is a flow on (Rd,≤). It induces an interleaving satisfying the
stability theorem for sublevel-sets filtration of functions to Rd.

Theorem 2.1.37 ( [Les12])
Let u, v : X → Rd be two maps from a topological space X to Rd, and
n ≥ 0. Then:

dTI (Sn(u),Sn(v)) ≤ sup
x∈X
|u(x)− v(x)|.

Furthermore dTI satisfies the same universality property with respect to
sublevel sets filtrations as in theorem 2.1.20.

One way to understand the category Pers(kRd), first explained by Carls-
son and Zormorodian in [CZ09] in the specific case of persistence modules
over Nd, and then generalized to the continuous case of Rd in [Les12, Section
2.1.3], is to see persistence modules over Rd as Rd-graded modules over the
Rd-graded algebra of generalized polynomials k{x1, ..., xd} (see definition
below). This equivalence of categories explains the impossibility to give a
combinatorial classification of Pers(kRd) when d ≥ 2.

Definition 2.1.38
A Rd-graded k-algebra is a k-algebra A together with a decomposition of
k-vector spaces A =

⊕
i∈Rd Ai such that Ai · Aj ⊂ Ai+j for all i, j ∈ Rd.

Given A a Rd-graded k-algebra, a Rd-graded module over A is a module
M over the k-algebra A together with a decomposition of k-vector spaces
M =

⊕
i∈RdMi such that Ai ·Mj ⊂Mi+j for all i, j ∈ Rd.

In both cases, Rd-graded morphisms are usual morphisms that respect
the decomposition. We denote by A-Rd-grad-mod the abelian category of
Rd-graded modules over A.
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Let k{x1, ..., xd} be the algebra of generalized polynomials with coef-
ficients in k and real positive exponents, that is polynomials that are ex-
pressed as a finite sum

P =
∑
i

αix
e1i
1 ...x

edi
d ,

with αi ∈ k and eji ∈ R≥0. Given e = (e1, ..., en) ∈ (R≥0)d, one denotes the
monomial xe11 ...x

ed
d by xe.

The polynomial k-algebra k{x1, ..., xd} is naturally endowed with a Rd-
grading, given by the decomposition of k-vector spaces:

k{x1, ..., xd} =
⊕
e∈Rd≥0

k · xe.

Let M be a persistence k-module over Rd. One defines α(M) to be the
following k{x1, ..., xd}-Rd-graded module :

Rd-grading : α(M) =
⊕

i∈RdM(i)
Action of k{x1, ..., xd} : for e ∈ Rd

≥0, define the action of xe component
wise on α(M), that is for i ∈ Rd and e ∈ Rd

≥0 let · xe : α(M)i =
M(i)→ α(M)i+e = M(i+ e) be the morphism M(i ≤ i+ e)

Conversely, for V =
⊕

s∈Rd Vs a k{x1, ..., xd}-Rd-graded module, define
γ(V ) the persistence module over Rd by, for s ≤ t in Rd:

· γ(V )(s) = Vs
· γ(V )(s ≤ t) is the restriction of the action of xt−s to the component
Vs

The following was proved in [CZ09] (theorem 1) in the discrete case of
persistence modules over Zd. Its proof generalizes readily to the continuous
setting of persistence modules over Rd.

Theorem 2.1.39
The mappings α and γ induce functors between Pers(kRd) and k{x1, ..., xd}-
Rd-grad-mod. These functors are additive exact isomorphisms of categories,
inverse to each other.

This description of persistence modules as graded-modules over polyno-
mial rings shows that there is no hope for the existence of a combinatorial
invariant that entirely classifies the isomorphism classes of the category
Pers(kRd), when d > 1. The module-theoretic approach to persistence for
more general posets has been extended by Ezra Miller in [Mil19]. It has led
to important results, such as the proof [Mil19, Corollary 8.25 and 8.26] of
a conjecture of Kashiwara-Schapira [KS18b, Conjecture 3.17 and 3.20].
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2.2 Persistence and sheaves

In the manuscript, we will use the classical notations of [KS90]. We
have recalled in the appendix A the main classical results about sheaves
that we will use. In particular given a topological space X, Mod(kX) is
the category of sheaves of k-vector spaces on X, D(kX) (resp. Db(kX)) its
derived category (resp. bounded derived category).

2.2.1 Persistence modules as sheaves

Let (P ,≤) be a poset. We say that U is a lower set of (P ,≤) if for all
x ∈ U and y ∈ P with y ≤ x, we have y ∈ U .

Proposition 2.2.1
The collection of lower sets of (P ,≤) is a topology on P , called the Alexan-
drov topology.

We denote by Pa the topological space P endowed with the Alexandrov
topology. For x ∈ P , one defines D(x) = {y ∈ P | y ≤ x}. It is the
smallest open subset of P containing x. The family (D(x))x∈P is a basis
for the Alexandrov topology of P , since every lower set in P contains D(x)
for each x therein.

Proposition 2.2.2
Let (P ,≤) and (Q,≤′) be two posets. A map f : P → Q is continuous for
the Alexandrov topologies of P and Q if and only it is order preserving.

Let M be a persistence module over (P ,≤). One denotes by (Pop,≤op)
the poset whose underlying set is P , and whose order is defined by x ≤op y
if and only if y ≤ x. A basis for the Alexandrov topology of (Pop,≤op) is
given by the family of upper sets U (x) = {y ∈ P | x ≤ y}. Moreover, this
family satisfies:

x ≤ y ⇐⇒ U (y) ⊂ U (x).

One defines θ−1M as the object of Mod(kPop
a

) defined on the basis
(U (x))x∈P by:

θ−1M(U (x)) = M(x),

θ−1M(U (x))→ θ−1M(U (y)) = M(x ≤ y),

for any x ≤ y in P . We can extend θ−1 as a well defined functor from
Pers(kP) to Mod(kPop

a
).
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Proposition 2.2.3 ( [KS18a] - prop. 1.15)
The functor θ−1 : Pers(kP)→ Mod(kPop

a
) is an equivalence of categories.

Therefore, one can treat persistence modules as sheaves on the Alexan-
drov topology. This point of view will be studied in details in chapter 5.

2.2.2 The convolution distance

In this section, we make a short review of the concepts introduced in
[KS18a]. The framework is the study of sheaves on a real vector space V of
finite dimension n equipped with a norm ‖ · ‖. For two such sheaves, one
can define their convolution, which, as the name suggests, will be at the
core of the definition 2.2.8 of the convolution distance.

The construction of the convolution of sheaves is as follows. Consider
the following maps (addition and the canonical projections):

s : V× V→ V, s(x, y) = x+ y

qi : V× V→ V (i = 1, 2) q1(x, y) = x, q2(x, y) = y

Definition 2.2.4
For F,G ∈ Obj(Db(kV)), define the convolution of F and G by the formula:

F ? G = Rs!(F �G).

Where F � G := q−1
1 F ⊗kV×V q

−1
2 G is the external tensor product of F

and G. This defines a bi-functor −?− : Db(kV)×Db(kV)→ Db(kV). In the
following, we will be interested in a more specific case: the convolution will
be considered with one of the sheaves being the constant sheaf supported
on a ball centered at 0. For r > 0, we denote Br := {x ∈ V | ‖x‖ ≤ r} the
closed ball of radius r centered at 0, and

◦
Br its interior, that is, the open

ball of radius r centered at 0. For ε ∈ R we define:

Kε :=

{
kBε if ε ≥ 0

k ◦
B−ε

[n] if ε < 0,
(2.7)

with k ◦
B−ε

[n] seen as a complex concentrated in degree −n (recall that
n is the dimension of V). We have the following properties:

Proposition 2.2.5
Let ε, ε′ ∈ R and F ∈ Obj(Db(kV)) .

1. There are functorial isomorphisms (F ? Kε) ? Kε′ ' F ? Kε+ε′ and
F ? K0 ' F .
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2. If ε ≥ ε′, there is a canonical morphism Kε → Kε′ in Db(kV) inducing
a natural transformation F ?Kε → F ?Kε′ . In the special case where
ε′ = 0, we shall write φF,ε for this natural transformation.

3. The canonical morphism F ? Kε → F ? Kε′ induces an isomorphism
RΓ(V;F ? Kε)→̃RΓ(V;F ? K ′ε).

Proof
We prove the third point, whose proof is omitted in [KS18a]. By 1., it is
sufficient to prove the result for ε′ = 0.

Let a1 : V→ pt and a2 : V× V→ pt. As s is proper on supp(F )× Bε,
one has Rs!(F �Kε) ' Rs∗(F �Kε). Moreover, since a1 ◦ s = a2, we have
the isomorphisms :

RΓ(V;F ? Kε) ' Ra1∗Rs∗(F �Kε)

' Ra2∗(F �Kε)

Hence, we are only left to prove the isomorphism RΓ(V×V;F �Kε) '
RΓ(V;F ).

First, observe that :

RΓ(V× V;F �Kε) ' RΓ(V×Bε;F �Kε).

Let f : V × Bε → V be the first coordinate projection. Since f is
continuous, proper, and has contractible fibers, Cor 2.77 (iv) from [KS90]
applies, and we have that the map F → Rf∗f−1(F ) ' Rf∗((F �Kε)|V×Bε)
is an isomorphism. We conclude by taking global sections.

�

In particular, Proposition 2.2.5.(1) implies that any map f : F ? Kε → G
induces canonical maps

f ? Kτ : F ? Kε+τ ' F ? Kε ? Kτ → G ? Kτ . (2.8)

The following definition is central.

Definition 2.2.6
For F,G ∈ Obj(Db(kV)) and ε ≥ 0, one says that F and G are ε-interleaved
if there exists two morphisms in Db(kV), f : F ?Kε → G and g : G?Kε → F

such that the compositions F ? K2ε
f?Kε−→ G ? Kε

g−→ F and G ? K2ε
g?Kε−→

F ?Kε
f−→ G are the natural morphisms F ?K2ε

φF,2ε−→ F and G?K2ε

φG,2ε−→ G,
that is, we have a commutative diagram in Db(kV) :
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F ? K2ε

%%

φF,2ε

&&f?Kε // G ? Kε

##

g // F

G ? K2ε

99

φG,2ε

88
g?Kε // F ? Kε

;;

f // G

In this case, we write F ∼ε G.

Observe that F and G are 0-interleaved if and only if F ' G.

Remark 2.2.7
One must be aware that in [KS18a], the authors call this data an ε-isomorphism.
Here, we choose to follow the usual terminology of persistence theory.

Since 0-interleavings are isomorphisms, the existence of an ε-interleaving
between two sheaves expresses a notion of closeness. This leads the authors
of [KS18a] to define the convolution distance as follows:

Definition 2.2.8
Let F,G ∈ Obj(Db(kV)). Their convolution distance is the possibily infinite
real number:

dC(F,G) := inf ({a ∈ R≥0 | F and G are a-interleaved})

Proposition 2.2.9
The convolution distance satisfies for F,G,H ∈ Obj(Db(kV)):

1. dC(F,G) ∈ R≥0 ∪ {+∞},
2. dC(F,G) = dC(G,F ),
3. dC(F,G) ≤ dC(F,H) + dC(H,G).

That is, it is an extended pseudo-distance on Obj(Db(kV)).

Remark 2.2.10
In section 3.5.2, we will present an example of two sheaves F,G ∈ Db(kR)
such that dC(F,G) = 0 but F 6' G. We will also prove that if we assume
F and G in Db(kR) to be constructible, then dC(F,G) = 0 implies F ' G.

The following proposition expresses that the functors RΓ(V,−) and
RΓc(V,−) define some necessary conditions for two sheaves to be at finite
distance.
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Proposition 2.2.11 (Remark 2.5 - [KS18a])
Let F,G ∈ Obj(Db(kV)).

1. If dC(F,G) < +∞ then RΓ(V, G) ' RΓ(V;F ) and RΓc(V;G) '
RΓc(V;F ).

2. If supp(F ), supp(G) ⊂ Ba then dC(F,G) ≤ 2a if and only if RΓ(V;G) '
RΓ(V;F ).

There is a fundamental example that plays a central role in our work.
Given X a topological space and u : X → V a continuous map, one can
consider the sheaves Ru∗kX and Ru!kX . Roughly speaking, and under
some smoothness assumptions on X and f , they contain the information
on how the cohomologies of the fibers of u evolve when moving on V. For
this information to be meaningful in practice, it has to be stable when we
perturb u, that is, Ru∗kX must stay in a neighborhood in the sense of the
convolution distance, controlled by the size of the perturbation of u. This
is expressed by the following theorem, which is the analogue of the stability
theorem from persistence theory.

Theorem 2.2.12 ( [KS18a] - Thm. 2.7)
Let X be a locally compact topological space, and u, v : X → V two
continuous functions. Then for any F ∈ Obj(Db(kV)) one has:

dC(Ru∗F,Rv∗F ) ≤ ‖u− v‖ and dC(Ru!F,Rv!F ) ≤ ‖u− v‖

where ‖u− v‖ = supx∈X ‖u(x)− v(x)‖.

2.3 Stable resolutions of persistence modules

This section presents the content of [Ber19]. We shall introduce the
notion of graded-Betti numbers for a multi-parameter persistence modules,
a candidate as an invariant for multi-parameter persistence. While infor-
mative about the algebraic structure of a given persistence modules, we
will explain why this information is not stable with respect to the inter-
leaving distance in a suitable way. Therefore, it cannot be easily used to
extract topological information from persistence modules arising from noisy
datasets. We aim at finding the algebraic level at which the information
contained in the graded-Betti numbers satisfies a form of stability with re-
spect to the interleaving distance. Graded-Betti numbers are obtained as
the graded rank of free minimal resolutions. We will prove here that it is
possible to equip the homotopy category of persistence modules with an
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interleaving distance so that resolution functors (see def. 2.3.1) are always
isometric.

From theorem 2.1.39, the category Pers(kRd) is equivalent to a category
of modules. As a consequence, it has enough projectives. Given C an
additive category, we denote by K(C ) the homotopy category of C , and
K−(C ) its full subcategory of complexes bounded from above (see definition
A.1.17). For any objectM in Pers(kRd) there exists a complex of projective
modules P (M) in K−(Pers(kRd)) and a quasi-isomorphism P (M) → M ,
where M is seen as a complex concentrated in degree 0. Let P be the
full subcategory of Pers(kRd) consisting of projective objects. The mapping
M 7→ P (M) defines a fully-faithful functor Pers(kRd)→ K−(P), which we
call a projective resolution functor. More precisely:

Definition 2.3.1
A projective resolution functor of an abelian category C is the following
data:

1. for all objects X in K−(C ), a projective resolution j(X),

2. for all objects X in K−(C ), a quasi-isomorphism iX : j(X)→ X.

Lemma 13.23.3 in [Pro] states that the data of a resolution functor
induces a unique functor j : K−(C ) → K−(P), where P is the full sub-
category of projective objects of X, together with a unique 2-isomorphism,
such that the following diagram is 2-commutative :

D−(C )
KS

'

K−(C )
j

//

99

K−(P)

ee

Therefore in our particular situation, we have the following diagram of
categories, which commutes up to isomorphism of functors:

Pers(kRd)

P

yy

ι

''

K−(P)
Q

∼ // D−(Pers(kRd))

where P is a projective resolution functor restricted to the full sub-
category of K−(Pers(kRd)) consisting of complexes concentrated in degree
0 (which we identify with Pers(kRd)), Q is the localization functor (def.
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A.1.28) and ι is the functor which sends a persistence modules to the associ-
ated complex concentrated in degree 0. Following section 2.1.4, the category
Pers(kRd) can be endowed with an interleaving distance which is universal
with respect to sublevel-sets filtration of functions. In this section, our aim
will be to define interleaving distances on the categories K−(Pers(kRd)) and
D−(Pers(kRd)), so that the functors P , Q and ι become isometries.

2.3.1 Graded-Betti numbers of persistence modules

In this section, we start by giving an abstract definition of the graded-
Betti numbers associated to a persistence module over Rd. In the case
where a persistence module over Rd admits a minimal finite free resolution,
we interpret the graded-Betti numbers in terms of the graded rank function
at each step of this resolution. The conditions for the existence of minimal
free resolutions of persistence over Rd is still an open question, as is the
right notion of minimality in a continuous setting. It seems reasonable to
think that finitely presented persistence modules over Rd admit minimal free
resolutions in the sense of definition 2.3.2. Although, we do not provide a
proof of this statement as it is very technical, and our focus here is not about
the computation, but the stability, of invariants of persistence modules.

Definition 2.3.2
Let I = 〈xe | e ∈ Rd

>0〉 be the maximal graded ideal of k{x1, ..., xd}, M ∈
Obj(Pers(kRd)), and (P, ∂) be a projective resolution of M . Then (P, ∂) is
said to be a minimal resolution if for any j ∈ Z<0, im α(∂j) ⊂ I · α(Pj+1).
With α as in theorem 2.1.39.

Definition 2.3.3
Let M be a persistence module over Rd. Given n ∈ Z≥0, define its i-th
graded-Betti number to be the function βn(M) : Rd → Z≥0∪{∞} such that
for s ∈ Rd:

βn(M)(s) = dimk (Torn (α(M),k{x1, ..., xd}/I · k{x1, ..., xd})s) .

Given a ∈ Rd, we will denote by Fa the persistence module over Rd

defined by, for s ≤ t in Rd:

Fa(s) =

{
k if a ≤ s

0 else
Fa(s ≤ t) =

{
idk if a ≤ s

0 else



2.3. STABLE RESOLUTIONS OF PERSISTENCE MODULES 41

Definition 2.3.4
A finite free persistence module over Rd is a persistence module M over Rd

such that there exists a function with finite support ξ(M) : Rd → Z≥0 such
that:

M '
⊕
i∈Rd

F
⊕ξ(M)(i)
i ,

where F⊕ξ(M)(i)
i corresponds to the direct sum of ξ(M)(i) copies of Fi.

Remark 2.3.5
1. The name “finite free” module is coherent with the classical notion

of free modules through the functor α (see section 2.1.4): indeed,
M is free in Pers(kRd) if and only if α(M) is a finitely generated
free graded-module. In particular, they are projective objects of the
category Pers(kRd).

2. By the Krull-Schmidt theorem for pfd persistence modules (thm.
2.1.7), the function ξ(M) is well-defined for each M , since Fa ' Fb if
and only if a = b.

Proposition 2.3.6
Let M be a persistence module over Rd. Assume that M admits a minimal
projective resolution such (P, ∂) such that for all j ∈ Z<0, Pj is a finite free
persistence module. Then with the notations of definition 2.3.4, we have
for all n ∈ Z≥0:

βn(M) = ξ(P−n).

Proof
We shall use the notation Bd = k{x1, ..., xd}. By definition:

TorBdn (α(M), Bd/I ·Bd) ' Hn(α(P )⊗Bd Bd/I ·Bd).

By minimality of P , the complex α(P ) ⊗Bd Bd/I · Bd has differentials
which are worth 0. This ends the proof.

�
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2.3.2 A counter-example to naive stability of
graded-Betti numbers

In the following, we propose to show that, although informative about
the algebraic structure of a persistence module, graded-Betti numbers do
not satisfy a naive form of stability with respect to the interleaving distance.
Recall that we have defined an interleaving distance on Pers(kRd) in section
2.1.4. We can find a persistence module M and a family of persistence
modules Nε such that the interleaving distance between M and Nε goes to
0 as ε goes to 0, and the graded-Betti numbers of Nε

Consider ε ≥ 0, M and Nε the persistence modules over R2 defined by:

M = kR≥0×R≥0 and Nε = M ⊕ k[0,ε[2 .

(0, 0)

M

(0, 0)

Nε

(ε, ε)

Observe that the interleaving distance betweenM and Nε is ε
2
. SinceM

is a free module (see definition 2.3.4), it is its own minimal free resolution.
Hence, β0(M)(x) = 1 for x = (0, 0) and β0(M)(x) = 0 otherwise.

Also, Nε has one more generator at (0, 0), thus β0(Nε)(x) = 2 for x =
(0, 0) and β0(N)(x) = 0 otherwise.

Therefore, for any ε > 0:

dI(M,Nε) =
ε

2
and sup

x∈Rd
|β0(M)(x)− β0(Nε)(x)| ≥ 1.

This very simple example shows that graded-Betti numbers are ex-
tremely sensitive to noise. An arbitrary small perturbation of the input
persistence modules can lead to an arbitrary change in the graded-Betti
numbers. In the rest of this section, our aim will be to show that it is pos-
sible to equip the homotopy (or derived) category of persistence modules
over Rd with an interleaving distance. Taking homotopy into accounts, we
will show that all projective resolution functors are isometric, in particular
the minimal free resolution functor from which the graded-Betti numbers
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are computed. This result (thm. 2.3.15) opens the door to obtaining new
stable homological invariants for multi-parameter persistence.

2.3.3 Homotopy and derived interleavings

For the usual flow T on Rd (section 2.1.4), the ε-shift functor along T
(see equation 2.1.10) extends readily for negative values of ε. Recall that
we denote M ◦ T (ε) by M [ε]T , and shall omit T to simplify notations. We
have for any ε ∈ R and persistence module M :

M [ε](s) = M
(
s+ (ε, ..., ε)

)
,

M [ε](s ≤ t) = M
(
s+ (ε, ..., ε) ≤ t+ (ε, ..., ε)

)
,

for s ≤ t in Rd.
From the obvious computation:

·[ε] ◦ ·[−ε] = ·[−ε] ◦ ·[ε] = idPers(kRd )
,

one deduces the following.

Proposition 2.3.7
Let ε ∈ R.

1. The functor ·[ε] is exact.
2. The functor ·[ε] sends projective objects to projective object.

Therefore, ·[ε] preserves quasi-isomorphisms and induces a well-defined
endofunctor of D(Pers(kRd)), by applying ·[ε] degree-wise to a complex. One
shall still denote ·[ε] the induced functor on C(Pers(kRd)) (the category of
chain complexes of Pers(kRd) - see definition A.1.13), K(Pers(kRd)) and
D(Pers(kRd)). Let X be an object of C(Pers(kRd)) and 0 ≤ ε′ ≤ ε. It is
immediate to verify that the collection (τX

i

ε′,ε)i∈Z defines a homomorphism

τXε′,ε ∈ Hom
C(Pers(kRd ))

(X[ε′], X[ε]).

We shall denote by [τXε ] (resp. {τXε }) the image of τXε in K(Pers(kRd))

(resp. D(Pers(kRd))).

Proposition 2.3.8
Let X be an object of C(Pers(kRd)) and 0 ≤ ε′′ ≤ ε′ ≤ ε. Then:

[τXε′,ε] ◦ [τXε′′,ε′ ] = [τXε′′,ε] and {τXε′,ε} ◦ {τXε′′,ε′} = {τXε′′,ε}.
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Proof
The first equality is a consequence of the computation:

τXε′,ε ◦ τXε′′,ε′ = τXε′′,ε.

We deduce the second equality from the first one, by the exactness of the
functor ·[ε].

�

Definition 2.3.9
Let X, and Y be two objects of K(Pers(kRd)). An homotopy ε-interleaving
between X and Y is the data of two morphisms of K(Pers(kRd)), f : X →
Y [ε] and g : X → Y [ε] such that the following diagram commutes in
K(Pers(kRd)):

X

!!

[τX2ε ]

&&
f // Y [ε]

##

g[ε] // X[2ε]

Y

==

[τY2ε]

88
g // X[ε]

;;

f [ε] // Y [2ε]

If such a diagram exists, we say that X and Y are homotopically ε-
interleaved and write X ∼Kε Y . If the context is clear, we will often drop
“homotopically”.

Definition 2.3.10
Let X, Y ∈ K(Pers(kRd)). One defines their homotopy interleaving distance
(interleaving distance when no confusion is possible) to be the possibly
infinite number:

dKI (X, Y ) = inf{ε ∈ Z≥0 | X ∼Kε Y }

Proposition 2.3.11
The interleaving distance dKI is an extended pseudo-distance onK(Pers(kRd)).

Proof
For X an object of K(Pers(kRd)), we have dKI (X,X) = 0 since isomor-
phisms are 0-interleavings. The triangle inequality is an easy consequence
of proposition 2.3.8.

�
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We proceed in the same way to define an interleaving distance on D(Pers(kRd)).
Definition 2.3.12
Let X, Y ∈ Obj(D(Pers(kRd))). A derived ε-interleaving between X and Y
is the data of two derived morphisms f : X → Y [ε] and g : X → Y [ε] such
that the following diagram commutes in D(Pers(kRd))) :

X

!!

{τX2ε}

&&
f // Y [ε]

##

g[ε] // X[2ε]

Y

==

{τY2ε}

88
g // X[ε]

;;

f [ε] // Y [2ε]

If such a diagram exists, we say that X and Y are derived ε-interleaved
and write X ∼Dε Y . We will drop derived”if the context is clear.

Definition 2.3.13
Let X and Y be two objects of D(Pers(kRd)). Define their derived inter-
leaving distance (or interleaving distance when no confusion is possible) to
be the possibly infinite number:

dDI (X, Y ) = inf{ε ∈ Z≥0 | X ∼Dε Y }
Proposition 2.3.14
The interleaving distance dDI is an extended pseudo-distance on D(Pers(kRd)).

2.3.4 Distance comparisons

We can now state the distance comparison theorem, that we will prove
in this subsection.
Theorem 2.3.15 ( [Ber19])
Let P be a projective resolution functor on Pers(kRd), Q be the localization
functor and ι the fully-faithful embedding of Pers(kRd) in its derived cate-
gory. The following diagram of categories is commutative, and all functors
are isometries.

(Pers(kRd), dI)

P

vv

ι

))

(K−(P), dKI )
Q

∼ // (D−(Pers(kRd)), dDI )
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We recall the following important proposition about projective resolu-
tion functors (definition 2.3.1).

Proposition 2.3.16 ( [Pro] - Lem. 13.23.4)
Assume C is an abelian category with enough projectives. Then there exists
a projective resolution functor of C . Moreover, for any two such functors
P, P ′ there exists a unique isomorphism of functors P ' P ′.

The functor P (− · [ε])[−ε] is a resolution functor. By proposition 2.3.16
for any ε, ε′ ≥ 0, there exists a unique isomorphism of functors

χε,ε′ : P (− · [ε])[−ε] ∼⇒ P (− · [ε′])[−ε′].

By the uniqueness of χε,ε′ , we also deduce the identity:

χε′,ε′′ ◦ χε,ε′ = χε,ε′′ . (2.9)

Lemma 2.3.17
Let M ∈ Obj(Pers(kRd)) and ε ≥ 0. Then:

P (τMε ) = χε,0(M)[ε] ◦
[
τP (M)
ε

]
.

Consequently:
H0
([
τP (M)
ε

])
= τMε .

Proof
Consider a chain morphism ϕ : P (M)[ε] → P (M [ε]) such that [ϕ] =

χε,0(M)[ε]. One has the following commutative diagram in C(Pers(kRd)) :

... // P i(M)

τ
Pi(M)
ε
��

// ... // P 1(M)

τ
P1(M)
ε
��

// P 0(M) //

τ
P0(M)
ε
��

M

τMε
��

// 0

... // P i(M)[ε] //

ϕi

��

... // P 1(M)[ε] //

ϕ1

��

P 0(M)[ε] //

ϕ0

��

M [ε] //

idM [ε]

��

0

... // P i(M [ε]) // ... // P 1(M [ε]) // P 0(M [ε]) //M [ε] // 0

Therefore, ϕ ◦ τP (M)
ε is one lift of τMε , which by characterization of lifts

of morphism to projective resolutions proves that

P (τMε ) =
[
ϕ ◦ τP (M)

ε

]
= [ϕ] ◦

[
τP (M)
ε

]
= χε,0(M)[ε] ◦

[
τP (M)
ε

]
.
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Lemma 2.3.18 (Homotopy comparison)
Let M and N be two persistence modules in Pers(kRd) and ε ≥ 0.

1. If M and N are ε-interleaved with respect to f : M → N [ε] and
g : N → M [ε] in Pers(kRd), then P (M) and P (N) are ε-interleaved
with respect to χε,0(N)[ε]◦P (f) and χε,0(M)[ε]◦P (g) inK(Pers(kRd)).

2. Conversely, if P (M) and P (N) are ε-interleaved with respect to α :
P (M)→ P (N)[ε] and β : P (N)→ P (M)[ε] in K(Pers(Rd)), then M
and N are ε-interleaved with respect to H0(α) and H0(β) in Pers(kRd).

Proof
1. Applying the functor P to the interleaving diagram gives:

P (M)

P (τM2ε )

((
P (f) // P (N [ε])

P (g[ε])// P (M [2ε])

P (N)

P (τN2ε)

66

P (g) // P (M [ε])
P (f [ε])// P (N [2ε])

Therefore we have a commutative diagram in K(Pers(kRd)):

P (M)

P (τM2ε )

))P (f) // P (N [ε])
P (g[ε]) //

χε,0(N)[ε] '
��

P (M [2ε])

χ2ε,0(M)[2ε]'
��

P (N)[ε]
χ2ε,0(M)[2ε]◦P (g[ε])◦(χε,0(N)[ε])−1

// P (M)[2ε]

We introduce the morphisms

f̃ = χε,0(N)[ε] ◦ P (f) : P (M)→ P (N)[ε],

g̃ = χε,0(M)[ε] ◦ P (g) : P (N)→ P (M)[ε].

One has the following computations:

g̃[ε] = χ2ε,0(M)[2ε] ◦ P (g[ε]) ◦ (χε,0(N)[ε])−1 , (2.10)
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H0
(
g̃[ε] ◦ f̃

)
= τM2ε . (2.11)

From equation 2.11 and lemma 2.3.17, we deduce:

g̃[ε] ◦ f̃ = [τ
P (M)
2ε ]. (2.12)

Equations 2.10,2.11,2.12 also hold when intertwining f and g, M and
N , f̃ and g̃. Therefore, f̃ and g̃ define a homotopy ε-interleaving
between P (N) and P (M).

2. The converse of the theorem is obtained applying H0 to the interleav-
ing diagram, and lemma 2.3.17 according to which H0([τ

P (M)
ε ]) = τMε .

Corollary 2.3.19
The functor P : (Pers(kRd), dI) → (K(Pers(kRd)), dKI ) is distance preserv-
ing.

Proof (of theorem 2.3.15)
There only remains to prove that ι and Q are distance preserving.

Since by definition, ι(τMε ) = {τMε }, ι sends ε-interleavings to ε-interleavings.
Conversely, assume that ι(M) and ι(N) are ε-interleaved. Then since ι is
fully-faithful, applying H0 to the ε-interleaving in the derived category leads
to a ε-interleaving in Pers(kRd).

By definition, for X an object of K−(P), Q([τXε ]) = {τXε }, which shows
that Q preserves interleavings. Now assume that Q(X) and Q(Y ) are ε-
interleaved. Since Q is fully-faithful and Q([τXε ]) = {τXε }, one deduces the
existence of a ε-interleaving between X and Y in K−(P).

2.3.5 Computations and discussions

In this subsection, we develop the motivating example introduced in
section 2.3.2 with the persistence modules over R2, M and Nε. Using no-
tations of section 2.3.1, the minimal finite free resolutions of M and Nε are
given, up to isomorphism, by the following:

π(M) ' 0 // 0 // 0 // F(0,0)
// 0

π(Nε) ' 0 // F(ε,ε)

(
1
−1

)
// F(ε,0) ⊕ F(0,ε)

(
1 −1
0 0

)
// F 2

(0,0)
// 0

Now, observe that for any η > ε
2
, M and Nε are η-interleaved with

respect to the following morphisms:
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M

(
0

τ
F(0,0)
η

)
// Nε[η]

Nε

(
0 τ

F(0,0)
η

)
//M [η]

However for every i ∈ {0,−1−2}, πi(M) is not η-interleaved with πi(Nε)

in Pers(kR2

). Let us now construct a homotopy η-interleaving between
π(M) and π(Nε).

Define the following Koszul complex:

Cε = 0 // F(ε,ε)

(
1
−1

)
// F(ε,0) ⊕ F(0,ε)

( 1 −1 )
// F(0,0)

// 0

And observe that since π(Nε) = π(M)⊕Cε, it is sufficient to prove that
Cε is η-interleaved with 0 in K(Pers(Rn)). This is equivalent to proving
that [τCε2η ] = 0, that is, the chain map τCε2η : Cε → Cε[2η] is homotopic to 0.

Now define:

h−2 : C−2
ε = F(ε,ε)

0 // 0 = C−3
ε [2η]

h−1 : C−1
ε = F(ε,0) ⊕ F(0,ε)

(
1
0

)
// F(ε−2η,ε−2η) = C−2

ε [2η]

h0 : C0
ε = F(0,0)

( 0 1 )
// F(ε−2η,−2η) ⊕ F(−2η,−2η) = C−1

ε [2η]

Note that h−1 and h0 are well-defined only when η ≥ ε
2
. We have that

h = (hi) defines an homotopy from τCε2η to 0. That is, we have (with hi = 0
for i different from 0,−1):

τCε2η = d′ ◦ h+ h ◦ d,

where d stands for the differential of the complex Cε and d′ the differ-
ential of Cε[2η].

This example shows that, even in such a simple case, one cannot avoid
taking into account homotopies in the problem of lifting interleavings to
resolutions of persistence modules. Thus, to obtain homological invariants
that are stable for persistence with multiple parameters, our work shows
that a good algebraic framework is the homotopy category of persistence
modules, equipped with the homotopy interleaving distance.



50 CHAPTER 2. BACKGROUND & FIRST RESULTS

In [BL17], the authors prove that in the case of free persistence modules
over R2, the interleaving distance can be computed exactly as a matching
distance. This result has since been extended in [Bje16], where Bjerkevik
proves an inequality bounding the bottleneck distance between two free
persistence modules over Rn a multiple of their interleaving distance. One
could ask whether it is possible to define a bottleneck distance between
minimal free resolutions of two persistence modules (that would allow to
match free indecomposables across degrees), and to bound this distance
by a multiple of the homotopy interleaving distance. This would lead to a
computable lower bound to the interleaving distance (which has been shown
to be NP-hard to compute for persistence modules with more than one
parameter in [BBK18]), not relying on any kind of decomposition theorems.
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Abstract

In this chapter, we prove an isometry theorem for derived con-
structible sheaves on the real line. That is, we express the con-

volution distance of sheaves as a matching distance between com-
binatorial objects associated to them that we call graded barcodes.
This allows to consider sheaf-theoretical constructions as combina-
torial, stable topological descriptors of data, and generalizes the sit-
uation of persistence with one parameter. As a byproduct of our
isometry theorem, we prove that the convolution distance is closed
between constructible sheaves on R and provide a counter-example
without constructibility assumption, thus answering an open ques-
tion of Kashiwara-Schapira in dimension one. We conjecture that
this result extends to higher dimensional real vector-spaces. We also
give a precise description of connected components of Db

Rc(kR). Fur-
thermore, we provide some explicit examples of computation of the
convolution distance. This chapter follows from a collaboration with
Grégory Ginot [BG18].
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3.1 Introduction and preliminaries

Persistence theory appeared in the early 2000’s as an attempt to make
some constructions inspired by Morse theory computable in practice. For
instance, in the context of studying the underlying topology of a data set.
It has since been widely developed and applied in many ways. We refer the
reader to [Oud15,EH10] for extended expositions of the theory and of its
applications. One promising expansion of the theory, initiated by Curry in
his Ph.D. thesis [Cur14], is to combine the powerful theory of sheaves with
computer-friendly ideas coming from persistence. However, sheaf theory
takes its full strength in the derived setting and Kashiwara and Schapira
developped persistent homology in this new framework in [KS18a]. It fol-
lows from theorems 3.1.2 and 3.1.4 that objects in the derived category of
constructible sheaves on R admit a natural notion of barcode: a multi-set
of intervals of R that entirely describes their isomorphism class. However,
this barcode naturally comes with a grading (each cohomology object of
a complex admits a barcode), leading to the notion of graded-barcodes.
The aim of this chapter is to define a bottleneck distance between graded-
barcodes and to prove an isometry theorem: the convolution distance be-
tween two complexes of sheaves is equal to the bottleneck distance between
their graded-barcodes. This relates to classical one-dimensional persistence
isometry theorem (theorem 2.1.22), with the particularity that our bottle-
neck distance heavily relies on the possibility of matching intervals across
different degrees. The difficulty lies in the fact that although constructible
sheaves on R have a graded description, there exists morphisms in the de-
rived category between complexes concentrated in different degree.

The chapter is structured as follows:
Section 2 aims at introducing the mathematical context of the chapter.
Section 3 is dedicated to the complete description of the morphisms in

Db
Rc(kR), the derived category of constructible sheaves on R, and

to compute the action of the convolution functor − ? Kε. To do
so, we need to overcome the fact that the category of constructible
sheaves on R does not have enough projective/injective. Hence to
compute derived morphisms from F to G, we need to take a different
type of resolutions for F and G. The tables of propositions 3.1 and
3.7, describing these homomorphisms, are the main output of this
section, and may be of independent interest.

Section 4 describes the conditions for two indecomposable sheaves to
be ε-close, and introduce the central-left-right decomposition for any
sheaf F ∈ Obj(Db

Rc(kR)), which is adapted to the convolution dis-
tance in the following sense: two sheaves are ε-close with respect to
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dC if and only if their central (resp. left, resp. right) parts are.
Section 5 introduces rigorously the notion of graded-barcodes associ-

ated to an object of Db
Rc(kR), defines the appropriate notion of ε-

matching between graded-barcodes, and then expresses the associ-
ated bottleneck distance dB. We prove that this distance bounds
the convolution distance: “dC ≤ dB”. We then prove that given an
ε-interleaving between the central (resp. left, resp. right) parts of
two sheaves, it induces an ε-matching between the graded-barcodes
of their central (resp. left, resp. right) parts. We reduce the proof
for left and right parts to the well-known case of one-parameter per-
sistence modules by introducing fully faithful functors from sheaves
supported on half-open intervals to persistence modules. The con-
struction of the ε-matching between the central parts is far less di-
rect. We adapt the proof by Bjerkevik [Bje16] to our setting, in-
troducing a similar pre-order ≤α on central parts, enabling us to
“trigonalize” the interleaving morphisms. By a rank argument, this
allows us to apply Hall’s marriage theorem and to deduce the ex-
istence of an ε-matching. Note that our definition of ≤α differs in
nature from Bjerkevik’s, for it enables us to compare elements of
the graded-barcodes in different degrees. We conclude the section by
proving the isometry theorem, which states that “dC = dB”.

Section 6 provides some applications of the isometry theorem. We start
by an example brought to our knowledge by Justin Curry and that
motivated our work. Then, we prove that the convolution distance
is closed (two constructible sheaves are ε-close if and only if they
are ε-interleaved). We also provide a counter-example of two non-
constructible sheaves which are non-isomorphic, and at distance 0
for the convolution distance - this answers in dimension one an open
question of Kashiwara and Schapira in [KS18a]. Finally, we intro-
duce the category of graded-barcodes, equipped with the graded-
bottleneck distance, and prove that it is a locally path-connected
metric space.

Preliminaries

Which metric for sheaves?

In [Cur14], Curry defined an interleaving-like distance on Mod(kX) for
a metric space (X, d). It is based on what he calls the smoothing of opens.
For F ∈ Mod(kX), define F ε ∈ Mod(kX) to be the the sheafification of the
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presheaf U 7→ F (U ε), with

U ε = {x ∈ X | ∃u ∈ U, d(x, u) ≤ ε}.

This yields a functor ·ε : Mod(kX) → Mod(kX) together with a natural
transformation ·ε ⇒ idMod(kX). Although this seems to mimic the construc-
tion of interleaving distance for persistence modules, one must pay attention
to the fact that ·ε is only left-exact. Since topological informations are ob-
tained from sheaves by considering sheaf-cohomology, one needs to derive
the functor ·ε in order to keep track of the cohomological informations while
smoothing a sheaf.

This is precisely the sense of the convolution distance (definition 2.2.8)
introduced by Kashiwara and Schapira in [KS18b] using convolution of
sheaves, which has the advantage to have a nice expression in term of
Grothendieck operations (that precisely allows appropriate operations for
sheaf cohomology). Moreover, it satisfies a general stability result with
respect to derived direct pushforward of continuous functions (theorem
2.2.12), which is of crucial importance for applications.

Constructible sheaves over R

We let k be a field. We will write ModRc(kM) for the abelian cate-
gory of R-constructible sheaves on M (definition A.2.14), and Db

Rc(kM) the
full triangulated subcategory of Db(kM) consisting of complexes of sheaves
whose cohomology objects lies in ModRc(kM). Note that Theorem 8.4.5
in [KS90] asserts that the natural functor Db(ModRc(kM)) → Db

Rc(kM) is
an equivalence of triangulated categories. Theorem 3.1.2 below is proved
in [KS18a] and generalizes Crawley-Boeyvey’s theorem [CB12] to the con-
text of constructible sheaves on the real line. Together with Theorem 3.1.4,
they will be the cornerstone to define the graded-barcode of an object of
Db(ModRc(kR)) later on in Section 5.

Definition 3.1.1
Let I = {Iα}α∈A be a multi-set of intervals of R, that is, a list of interval
where one interval can appear several times. Then I is said to be locally
finite if and only if for every compact set K ⊂ R, the set AK = {α ∈ A |
K ∩ Iα 6= ∅} is finite.

Theorem 3.1.2 ( [KS18a] - Thm 1.17)
Let F ∈ Obj(ModRc(kR)), then there exists a locally finite family of inter-
vals {Iα}α∈A such that F '

⊕
α∈A kIα . Moreover, this decomposition is

unique up to isomorphism.
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Corollary 3.1.3
Let F,G ∈ Obj(Db

Rc(kR)), and j ≥ 2, then: Extj(F,G) = 0.

A classical consequence of such a statement is the following:

Theorem 3.1.4 (Structure)
Let F ∈ Obj(Db

Rc(kR)). Then there exists an isomorphism in Db
Rc(kR):

F '
⊕
j∈Z

Hj(F )[−j],

where Hj(F )[−j] is seen as a complex concentrated in degree j.

The isometry theorem problem

From the decomposition and structure theorems (theorems 3.1.2 and 3.1.4),
a complex of sheaves in Db

Rc(kR) is entirely determined up to isomorphism
by recording the intervals appearing in the decomposition of each of its co-
homology objects. Hence, this graded-barcode (see Definition 3.4.1 below)
is a complete and discrete invariant of the isomorphism classes of objects of
Db

Rc(kR). As a consequence, Db
Rc(kR) is a Krull-Schmidt category (definition

2.1.3).
Following notations of section 2.1.1, proposition 2.2.9 asserts that the

convolution distance dC satisfies axioms (M1)-(M4). Therefore, we can con-
sider the bottleneck distance associated to dC (definition 2.1.17), which we
shall denote by dB. The isometry theorem problem, which we address in this
chapter, is to determine whether dC is equal to dB. We shall demonstrate
that it is the case when considering the distance between two constructible
sheaves (theorem 3.4.18). We will also provide an counter-example to an
isometry theorem for non-constructible sheaves in section 3.5.2.

3.2 Homomorphisms in Db
Rc(kR)

This section aims at making explicit all the computations of morphisms
in Db

Rc(kR). Combining theorems 3.1.4 and 3.1.2, we see that any object of
Db

Rc(kR) is isomorphic to a direct sum of sheaves constant on an interval seen
as a complex concentrated in one degree. Hence, to give a full description of
the morphisms, it is enough to compute RHomMod(kR)(kI ,kJ) for I, J two
intervals. To do so, we start by computing the morphisms in ModRc(kR).
To derive the functor HomModRc(kR), we introduce the subcategories O and
K such that the pair (Oop,K ) is HomModRc(kR)-injective. This gives us a
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systematic way to compute HomDbRc(kR)(kI ,kJ [i]) : consider a left resolu-
tion of kI by sheaves which are constant on open intervals O•(kI) and a
right resolution of kJ [i] by sheaves which are constant on closed intervals
K•(kJ [i]), and compute the first cohomology object of the totalization of
the double complex Hom(O•(kI), K•(kJ [i])). In addition, we also compute
kI ? Kε in every cases. These computations are at the core of our proof of
the isometry theorem. However, they might be useful by themselves outside
of this context.

3.2.1 Homomorphisms in ModRc(kR)

In this section, we give a description of all the morphisms in ModRc(kR)
that will enable us to make explicit computations in the derived setting.

Throughout the chapter, recall that we will write Hom instead of HomModRc(kR),
except if stated otherwise.

Proposition 3.2.1
Let a ≤ b and c ≤ d be four elements of R ∪ {±∞}. We have the following
homomorphism groups, where the lines define the left-side object (i.e. the
source) in Hom(−,−) and the columns the right-side one:
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Where a, b, c, d ∈ R∪ {−∞,+∞}, and we extend the order on R to the
values −∞ and +∞ in the obvious manner.

Remark 3.2.2
Observe that some intervals with an infinite bound can be written with
different type. For instance if a ∈ R, (a,+∞) can be considered as open
or half-open. In the above table, intervals with an infinite bound are seen
as being open at the neighborhood of their bound if they are at the source
and closed if they are the target of the morphism. Namely (a,+∞) is seen
as open in the source and as half-open in the target.

Proof
We set the following notations for the proof:

U = (a, b), V = (c, d), S = [a, b], T = [c, d].

Open to open, closed to closed : We start from the general fact (corol-
lary A.2.15) that for any non-empty open set U ⊂ V and F ∈
Mod(kR), we have a canonical morphism FU → FV and dually for
any closed sets T ⊂ S, FS → FT . In the case were F = kR those mor-
phisms are not zero. Indeed, for x ∈ U (resp. x ∈ T ), they induce the
isomorphisms between the non zero vector spaces (FU)x

∼−→ (FV )x
(resp. (FS)x

∼−→ (FT )x).
Now observe that since the intervals of R are all contractible, Hom(kU ,kV )
and Hom(kS,kT ) are at most of dimension 1.
It remains to prove that if T 6⊂ S, then Hom(kS,kT ) ' 0. The dual
case with open sets can be proved similarly.
Let us now suppose S ∩ T 6= ∅ and T 6⊂ S and consider a natural
morphism Ψ : kS → kT . With S = [a, b] and T = [c, d] we will
treat the case where we have a < c < b < d. Thus we can construct
U ⊂ V such that U = (x, y), b < x < y < d and V = (z, w) with
z < b < y < w < d. Therefore we get a commutative diagram:

kS(V ) ' k //

��

kS(U) ' 0

��
kT (V ) ' k // kT (U) ' k

Hence ΨV : kS(V ) → kT (V ) is the zero map. As both S and T are
contractible, Ψ has to be zero.
The remaining cases works the same.

Open to close : Just consider the composition kU → kR → kT . It is
not zero if U ∩ T 6= ∅ since for x ∈ U ∩ T the composition (kU)x →
(kR)x → (kT )x is an isomorphism.
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Close to open: Suppose there exists a non zero morphism kS → kV .
Then, applying the functor (−)S we get a non zero morphism kS

s−→
kV ∩S. Apply again this exact functor to the exact sequence:

0→ kV → kR → kR\V → 0

we obtain the exact sequence:

0 // kV ∩S // kS //

s
{{

k(R\V )∩S // 0

And s is a section for this sequence. Hence kS decomposes as a direct
sum, which is a contradiction.

Half-open : To prove the non-existence of non-zero morphisms involving
constant sheaves on half-open intervals, we can always, as before,
consider the restrictions to some subsets so that we are left with
some morphism between constant sheaves on either open or closed
interval.
Hence, we are only left to construct the morphisms in the cases we
are claiming that they exist.
Consider the case where the source is k[a,b) and the target k[c,d) with
the condition a ≤ c < b ≤ d. Then consider the two morphisms
k(a−1,b) → k(a−1,d) and k[a,d+1] → k[c,d+a]. Then taking the tensor
product of those two morphisms lead to a morphism

k(a−1,b) ⊗ k(a−1,d) ' k[a,b) −→ k(a−1,d) ⊗ k[c,d+a] ' k[c,d)

that is not zero.
�

Lemma 3.2.3
Let F ∈ ModRc(kR). Then there exists a locally finite set of open bounded
intervals {(aα, bα)}α∈A such that there exists an epimorphism:⊕

α∈A

k(aα,bα) � F

Proof
It is sufficient to prove it for any F ' kI with I any interval and thus to
consider the following cases.

1. I = (a, b) with a, b ∈ R then take {(aα, bα)}α∈A = {(a, b)}
2. I = [a, b] then take {(aα, bα)}α∈A = {(a− 1, b+ 1)}
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3. I = [a, b) with a, b ∈ R then take {(aα, bα)}α∈A = {(a− 1, b)}
4. I = (a, b] with a, b ∈ R then take {(aα, bα)}α∈A = {(a, b+ 1)}
5. I = R then take {(aα, bα)}α∈A = {(n, n+ 2)}n∈Z
6. I = (−∞, b) then take {(aα, bα)}α∈A = {(b− (n+ 2), b− n)}n∈N
7. I = (−∞, b] then take {(aα, bα)}α∈A = {(b− (n+ 2), b− n)}n∈N∪{−1}

8. I = (a,∞) then take {(aα, bα)}α∈A = {(a+ n, a+ (n+ 2))}n∈N
9. I = [a,∞) then take {(aα, bα)}α∈A = {(a+ n, a+ (n+ 2))}n∈N∪{−1}.

�

The open bounded and compact intervals play dual role in ModRc(kR),
hence we have the following :

Lemma 3.2.4
Let F ∈ ModRc(kR). Then there exists a locally finite set of compact
intervals {[aα, bα]}α∈A such that there exists a monomorphism:

F �
⊕
α∈A

k[aα,bα]

The proof is similar to the one of Lemma 3.2.3.

3.2.2 Derived (bi-)functors and application to − ? Kε

and Hom

We now explain how to compute derived morphisms and the convolution
of a sheaf with Kε.

Computation of − ?Kε

To compute convolution (Definition 2.2.4) with Kε (see Equation 2.7
of section 2.2.2), we start by computing it for sheaves constant over some
closed intervals. We then deduce the other computations by sitting the
other cases in distinguished triangles.

Proposition 3.2.5
Let ε ≥ 0, and a ≤ b in R ∪ {±∞}. Then:
• kR ?Kε ' kR,
• k[a,b] ?Kε ' k[a−ε,b+ε],

• k(a,b) ?Kε '

{
k(a+ε,b−ε) if ε < |b−a|

2
,

k[ b−a
2
−ε, b−a

2
+ε][−1] if ε ≥ |b−a|

2
,
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• k(a,b] ?Kε ' k(a+ε,b+ε],
• k[a,b) ?Kε ' k[a−ε,b−ε).

The two first statements are particular cases of the more general follow-
ing lemma.
Lemma 3.2.6
Let A,B ⊂ V two closed subsets of the finite dimensional real vector space
V (endowed with the topology inherited from any norm) satisfying:

1. the map s|A×B : A×B → V is proper,
2. for any x ∈ V, s−1

|A×B(x) is contractible.
Then kA ? kB ' kA+B with A+B = {a+ b | a ∈ A, b ∈ B}.

Proof (of the lemma)
We start by proving the existence of a non zero morphism kA+B → kA ?kB.
In all the proof, Hom sets are implicitly understood as the ones in the
corresponding derived category of sheaves.

Observe that since A×B = (A× V) ∩ (V×B), we have:

kA×B '
(

(kV � kV)|A×V

)
|V×B

'
(
(q−1

1 kV)|A×V ⊗ (q−1
2 kV)|A×V

)
|V×B

' (q−1
1 kV)|A×V ⊗ (q−1

2 kV)|V×B

' q−1
1 kA ⊗ q−1

2 kB
' kA � kB.

Now since s is proper on A×B, we have an isomorphism Rs!(kA�kB) '
Rs∗(kA×B). Therefore:

Hom(kA+B,kA ? kB) ' Hom(s−1kA+B,kA×B).

Since A + B is closed, the inclusion A + B −→ V is proper and by
base change we have s−1kA+B ' ks−1(A+B). Let i : A × B −→ V × V
the inclusion, it is also proper since A × B is closed and we have by base
change i−1ks−1(A+B) ' ki−1(s−1(A+B)) = kA×B. Using this computation in
the former, we get :

Hom(kA+B,kA ? kB) ' Hom(ks−1(A+B), i∗i
−1kA×B)

' Hom(ks−1(A+B), i∗i
−1kA×B)

' Hom(i−1ks−1(A+B), i
−1kA×B)

' Hom(kA×B,kA×B).
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Now consider the image of idkA×B in Hom(kA+B,kA ? kB), written ϕ.
One can prove that it induces the following isomorphisms on stalks at any
x ∈ V:

(kA ? kB)x ' RΓc(s
−1(x),kA×B|s−1(x))

' RΓ(s−1(x),kA×B|s−1(x))

' (kA+B)x

where the second isomorphism holds by properness of s|A×B and the third
one by contractibility of s−1(x).

This proves that ϕ is an isomorphism.

�

Proof (of the proposition)
We can obtain the computation for k(a,b) by using the distinguished trian-
gle k(a,b) −→ kR −→ kR\(a,b)

+1−→, as kR\(a,b) is the direct sum of one or
two sheaves constant over closed intervals. Similarly for half-open intervals
k[a,b), we can use the distinguished triangles k[a,b) −→ k[a,b] −→ k{b}

+1−→.

�

Definition 3.2.7
We define K (resp. O) to be the full sub-category of ModRc(kR) whose
objects are locally finite direct sums of sheaves of the type kI , with I a
compact interval (resp. a relatively compact open interval).

3.2.3 Computation of derived homomorphisms
Proposition 3.2.8
The pair (Oop,K ) is Hom-injective (see Definitions A.1.38 and A.1.43).

Proof
By lemma 3.2.3, we are left to prove that for any open interval (a, b) and
closed interval [c, d], K is Hom(k(a,b),−)-injective and Oop is Hom(−,k[c,d])-
injective. We will give the proof of the first part, as the second statement
works similarly.

According to lemma 3.2.3, K satisfies the first axiom to be Hom(k(a,b),−)-
injective. Let X,X ′ ∈ Obj(K ) and X ′′ ∈ ModRc(kR) be objects such that
there is an exact sequence in ModRc(kR):

0→ X ′ → X → X ′′ → 0.
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Now decompose X ′′ ' ⊕J∈B′′kJ and X ' ⊕I∈BkI . As X → X ′′ is an
epimorphism, for every J ∈ B′′ there exists I ∈ B such that the following
composition is not zero:

kI −→ X −→ X ′′ −→ kJ .

As X is an object of K , I is a closed interval. From the computation
of morphisms (Proposition 3.2.1) in Mod(kX), J must be a closed interval.
Hence X ′′ ∈ Obj(K ). This proves the second axiom.

Now let 0 → X ′′ → X → X ′ → 0 be a short exact sequence of objects
of K . Applying Hom(k(a,b),−) we get a long exact sequence in Mod(k):

0→ Hom(k(a,b), X
′)→ Hom(k(a,b), X)→ Hom(k(a,b), X

′′)→ Ext1(k(a,b), X
′)→ ...

Now recall that k(a,b) represents the functor Γ((a, b);−), that is we
have a natural isomorphism Hom(k(a,b),−) ' Γ((a, b);−) and consequently
Ext1(k(a,b);X

′) ' R1Γ((a, b);X ′).
Finally, observe that RΓ1((a, b);kS) ' 0 for any closed interval S.

�

The following proposition is standard for derived categories of abelian
categories with enough injectives.

Proposition 3.2.9
For any F, G ∈ Obj(Db

Rc(kR)), we have an isomorphism of k-vector spaces:

H0(RHom(F,G)) ' HomDbRc(kR)(F,G).

Remark 3.2.10
As a consequence, we obtain the classical result for I, J two intervals of R,
then HomDbRc(kR)(kI ,kJ) ' Hom(kI ,kJ) and HomDbRc(kR)(kI ,kJ [−1]) ' 0.
Where kJ [−1] is seen as a complex concentrated in degree +1.

It remains to see the case of homomorphisms where the target is shifted
in cohomological degree 1.

Proposition 3.2.11
Let a ≤ b and c ≤ d be four elements of R ∪ {±∞}. Recall that for J
an interval, kJ [1] is the complex of sheaves concentrated in degree −1. We
have the following homomorphism groups, where the lines define the left-
side object (i.e. the source) in Hom(−,−[1]) and the columns the right-side
one:
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Where a, b, c, d ∈ R∪ {−∞,+∞}, and we extend the order on R to the
values −∞ and +∞ in the obvious manner.

Remark 3.2.12
1. Some intervals can be written with different type. For instance if
a ∈ R, (a,+∞) can be considered as open or half-open. We follow
the same convention as in Proposition 3.2.1 with respect to these
choices.

2. Since HomDbRc(kR)(k[a,b],k(c,d)[1]) can be non zero, observe that theorem
14.2.3 in [Cur14], which states that Db

Rc(kR) is equivalent to the Z-
graded category of ModRc(kR) cannot hold. In other words every
object is isomorphic to its graded cohomology but morphisms are not
the same in the two categories.

Proof
The strategy for the computations will always be the same: for I, J two
intervals, consider O•(kI) a left resolution of kI by objects of O, andK•(kJ)
a right resolution of kJ by objects of K. For simplicity, we will write Hom•

instead of Hom•(O•(kI), K•(kJ)), and similarly Hom−1,Hom0,Hom1 will
stand for Hom−1(O•(kI), K•(kJ)) etc.. We note Zi for the cycles of order
i. Also in order to have lighter notations, we shall write only intervals, to
stand for the constant sheaf supported on this interval.

— I = (a, b) and J = (c, d), then choose:

O•(kI) = 0→ 0→ (a, b)→ 0,

K•(kJ)[1] = 0→ [c, d]→ ·c ⊕ ·d → 0.

Then we have:

Hom−1 = 0× Hom((a, b), [c, d])

Hom0 = 0× Hom((a, b), ·c ⊕ ·d)

Hom1 = 0× 0

Hence we get that Z0(Hom•) ' Hom((a, b), ·c⊕·d) thus H0(Hom•) 6'
0 if and only if Hom((a, b), ·c⊕·d) ' k2, that is [c, d] ⊂ (a, b). In this
case, H0(Hom•) ' k ' HomDbRc(kR)(kI ,kJ [1]).

— I = (a, b) and J = [c, d], then choose:

O•(kI) = 0→ 0→ (a, b)→ 0,
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K•(kJ)[1] = 0→ [c, d]→ 0→ 0.

Then we have:

Hom−1 = 0× Hom((a, b), [c, d]),

Hom0 = 0× 0,

Hom1 = 0× 0.

Hence we get that Z0(Hom•) ' 0 thus H0(Hom•) ' 0 ' HomDbRc(kR)(kI ,kJ [1]).
— I = [a, b] and J = (c, d), then choose :

O•(kI) = 0→ (−∞, a)⊕ (b,∞)→ R→ 0,

K•(kJ)[1] = 0→ [c, d]→ ·c ⊕ ·d → 0.

Then we have:

Hom−1 = 0× Hom(R, [c, d]) ' 0× k,

Hom0 = Hom((−∞, a)⊕ (b,∞), [c, d])× Hom(R, ·c ⊕ ·d),

Hom1 = Hom((−∞, a)⊕ (b,∞), ·c ⊕ ·d)× 0.

Hence we get that Z0(Hom•) ' k2 if and only if [a, b] ∩ (c, d) 6= ∅
and since the differential Hom−1 → Hom0 is injective when not 0,
we obtain H0(Hom•) 6' 0 if and only if [a, b] ⊂ (c, d). In this case,
H0(Hom•) ' k ' HomDbRc(kR)(kI ,kJ [1]).

— I = [a, b] and J = [c, d] , then choose:

O•(kI) = 0→ (−∞, a)⊕ (b,∞)→ R→ 0,

K•(kJ)[1] = 0→ [c, d]→ 0→ 0.

Then we have:

Hom−1 = 0× Hom(R, [c, d]) ' 0× k,

Hom0 = Hom((−∞, a)⊕ (b,∞), [c, d])× 0,

Hom1 = 0× 0.
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Hence Z0(Hom•) ' Hom((−∞, a) ⊕ (b,∞), [c, d]) and since the dif-
ferential Hom−1 → Hom0 is injective, we obtain H0(Hom•) 6' 0 if
and only if Hom((−∞, a)⊕ (b,∞), [c, d]) ' k2 which is equivalent to
[a, b] ⊂ (c, d).

— I = (a, b) and J = [c, d), then choose:

O•(kI) = 0→ 0→ (a, b)→ 0,

K•(kJ)[1] = 0→ [c, d]→ ·d → 0.

Then we have:

Hom−1 = 0× Hom((a, b), [c, d]),

Hom0 = 0× Hom((a, b), ·d),

Hom1 = 0× 0.

Hence we get that Z0(Hom•) ' Hom((a, b), ·d) thus H0(Hom•) ' 0
since the differential Hom−1 → Hom0 is injective when Hom−1 6' 0.

— I = [a, b] and J = [c, d), then choose:

O•(kI) = 0→ (−∞, a)⊕ (b,∞)→ R→ 0

K•(kJ)[1] = 0→ [c, d]→ ·d → 0

Then we have:
Hom−1 = 0× Hom(R, [c, d]),

Hom0 = Hom((−∞, a)⊕ (b,∞), [c, d])× Hom((a, b), ·d),

Hom1 = Hom((−∞, a)⊕ (b,∞), ·d)× 0.

Hence we get that Z0(Hom•) '

{
k2 if c < a

k else
. Since the differential

Hom−1 → Hom0 is injective when not zero, H0(Hom•) 6' 0 if and
only if Z0(Hom•) ' k2, that is c < a. In this case, H0(Hom•) ' k '
HomDbRc(kR)(kI ,kJ [1]).
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— I = [a, b) and J = (c, d), then choose:

O•(kI) = 0→ (−∞, a)→ (−∞, b)→ 0,

K•(kJ)[1] = 0→ [c, d]→ ·c ⊕ ·d → 0.

Then we have:

Hom−1 = 0× Hom((−∞, b), [c, d]),

Hom0 = Hom((−∞, a), [c, d])× Hom((−∞, b), ·c ⊕ ·d),

Hom1 = Hom((−∞, a), ·c ⊕ ·d)× 0.

Hence we get that Z0(Hom•) ' k2 if and only if a ≤ d < b and since
the differential Hom−1 → Hom0 is injective, we obtain H0(Hom•) 6' 0
if and only if Z0(Hom•) ' k2 which is equivalent to a ≤ d < b.

— I = [a, b) and J = [c, d], then choose:

O•(kI) = 0→ (−∞, a)→ (−∞, b)→ 0,

K•(kJ)[1] = 0→ [c, d]→ 0→ 0.

Then we have:

Hom−1 = 0× Hom((−∞, b), [c, d]),

Hom0 = Hom((−∞, a), [c, d])× 0,

Hom1 = 0× 0.

Hence we get that Z0(Hom•) ' Hom((−∞, a), [c, d]) and since the
differential Hom−1 → Hom0 is injective when not zero, we obtain
H0(Hom•) ' 0.

— I = [a, b) and J = [c, d), then choose:

O•(kI) = 0→ (−∞, a)→ (−∞, b)→ 0,

K•(kJ)[1] = 0→ [c, d]→ ·d → 0.

Then we have:

Hom−1 = 0× Hom((−∞, b), [c, d]),
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Hom0 = Hom((−∞, a), [c, d])× Hom((−∞, b), ·d),

Hom1 = Hom((−∞, a), ·d)× 0.

Hence we get that Z0(Hom•) ' k2 if and only if c < a ≤ d < b
and since the differential Hom−1 → Hom0 is injective, we obtain
H0(Hom•) 6' 0 if and only if Z0(Hom•) ' k2 which is equivalent to
c < a ≤ d < b.

— I = [a, b) and J = (c, d], then choose:

O•(kI) = 0→ (−∞, a)→ (−∞, b)→ 0,

K•(kJ)[1] = 0→ [c, d]→ ·c → 0.

Then we have:

Hom−1 = 0× Hom((−∞, b), [c, d]),

Hom0 = Hom((−∞, a), [c, d])× Hom((−∞, b), ·c),

Hom1 = Hom((−∞, a), ·c)× 0.

Hence we get that the differential Hom−1 → Hom0 is always a sur-
jective onto Z0(Hom•). Hence H0(Hom•) ' 0.
�

3.3 Structure of ε-interleavings
The aim of this section is to start to study the convolution distance, now

that we know effective computations of morphisms and how to compute the
convolution in Db

Rc(kR). We start by giving some explicit conditions on the
support of two sheaves, which are constant on an interval, for them to be
ε-close with respect to dC . This will lead us, in a second time, to prove that
dC has a specific behavior when considering two sheaves F and G. To do so
we introduce what we call the CLR decomposition, that is decomposition
into central part (made of sheaves whose summands have support which
are either bounded open or compact intervals) and left and right parts
(made of the two possible types of half-open intervals). Then we prove that
the distance between F and G is nothing but the maximum of the distance
between FC and GC , FR and GR, FL and GL, that is between the respective
three parts.
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3.3.1 Characterization of ε-interleavings between
indecomposables sheaves

For any interval I and real number ε ≥ 0, we will write Iε = ∪
x∈I

B(x, ε)

where B(x, ε) is the euclidean closed ball centered at x with radius ε.
Moreover if I = (a, b) with a, b ∈ R, and ε < b−a

2
= diam(I)

2
, define

I−ε = (a + ε, b − ε). Further, if I is bounded, we write cent(I) for its
center, that is (b+ a)/2 where a, b are the boundary points of I.

The following proposition describes the condition for sheaves constant
on open/closed intervals to be ε-close (Definition 2.2.6).

Proposition 3.3.1 (closed/open)
Let S, T be two closed interval, U, V be two open intervals and ε > 0. Then:

1. kS ∼ε kT ⇐⇒ S ⊂ T ε and T ⊂ Sε

2. kU ∼ε kV ⇐⇒ U ⊂ V ε and V ⊂ U ε

3. kS ∼ε kU [−1] ⇐⇒ ε ≥ diam(U)
2

and S ⊂ [cent(U)−(ε−diam(U)
2

), cent(U)+

(ε− diam(U)
2

)]

Proof
1. Consider f : kS ? Kε → kT and g : kT ? Kε → kS the data of an
ε-interleaving. Then f and g are in particular not zero as

RΓ(R, φkS ,2ε) = RΓ(R, g) ◦ RΓ(R, f ?Kε)

is an isomorphism between RΓ(R,kS ? K2ε) and RΓ(R,kT ) that are
not zero. Remark that kS ?Kε ' kSε and kT ?Kε ' kT ε by Proposi-
tion 3.2.5. From our computations of morphisms (Proposition 3.2.1),
we have necessarily S ⊂ T ε and T ⊂ Sε. Conversely, if S ⊂ T ε and
T ⊂ Sε, it is easy to build an ε-interleaving.

2. Consider f : kU ? Kε → kV and g : kV ? Kε → kU the data of an
ε-interleaving. For the same reason as above, f and g are not zero.
Hence, f ? K−ε : kU → kV ? K−ε is not zero. As kV ? K−ε ' kV ε ,
we get again with our computations of morphisms (Proposition 3.2.1)
that U ⊂ V ε. Similarly we have V ⊂ U ε.
Conversely if we assume U ⊂ V ε and U ⊂ V ε, it is easy to construct
an ε-interleaving.

3. f : kS ? Kε → kU [−1] and g : kU [−1] ? Kε → kS the data of an
ε-interleaving. For the same reason as above, f and g are not zero.
Suppose ε < diam(U)

2
, then Proposition 3.2.5 implies that kU [−1]?Kε '

kU−ε [−1], hence the fact that g is not zero is absurd.
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Therefore we necessarily have ε ≥ diam(U)
2

, and

kU [−1] ?Kε ' k
[cent(U)−(ε−diam(U)

2
),cent(U)+(ε−diam(U)

2
)]
.

Hence the existence of g implies that S ⊂ [cent(U)−(ε−diam(U)
2

), cent(U)+

(ε− diam(U)
2

)], also the existence of f implies that Sε∩U 6= ∅, but this
condition is weaker than the previous one.
Conversely, if ε ≥ diam(U)

2
and S ⊂ [cent(U)− (ε− diam(U)

2
), cent(U) +

(ε − diam(U)
2

)], we can construct the desired morphisms (for instance
using Proposition 3.2.11) and have to check that their composition
(after applying ε convolution to one of the two) is not zero. This can
be obtained by taking stalks at any x ∈ J .

Proposition 3.3.2 (half-open)
Let I = [a, b) and J = [c, d) with a, c ∈ R and b, d ∈ R∪ {+∞}, and ε ≥ 0,
then:

kI ∼ε kJ ⇐⇒ | a− c |≤ ε and | b− d |≤ ε.

Similarly for I = (a, b] and J = (c, d],

kI ∼ε kJ ⇐⇒ | a− c |≤ ε and | b− d |≤ ε.

Proof
The proof works exactly the same as the open/closed case, that is Proposi-
tion 3.3.1.

�

3.3.2 CLR Decomposition

In order to define a matching between graded barcodes, we will have
to distinguish between the topological nature of their support interval as
the existence of shifted morphisms between them depends on this nature
according to Proposition 3.2.11.

Definition 3.3.3
Let I be an interval.

1. I is said to be an interval of type C iff there exists (a, b) ∈ R2 such
that I = [a, b] or I = (a, b).

2. I is said to be an interval of type R iff there exists (a, b) ∈ R2 such
that either I = [a, b), I = (−∞, b), I = [a,+∞) or I = R.
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3. I is said to be an interval of type L iff there exists (a, b) ∈ R2 such
that I = (a, b], I = (−∞, b] or I = (a,+∞).

Proposition 3.3.4
Let F ∈ Obj(Db

Rc(kR)) then there exists a unique decomposition up to
isomorphism F ' FC ⊕ FR ⊕ FL such that :

1. The cohomology objects of FC are direct sums of constant sheaves
over intervals of type C,

2. The cohomology objects of FR are direct sums of constant sheaves
over intervals of type R,

3. The cohomology objects of FL are direct sums of constant sheaves
over intervals of type L.

We will call FC (resp. FR, FL) the central (resp. right, left) part of F ,
and name it the CLR decomposition of F .

Proof
Observe that the types C,L,R do form a partition of the set of intervals of
R, and apply the decomposition and structure theorems from section 2.

�

Definition 3.3.5
Let F ∈ Db

Rc(kR). F is said to be a central sheaf if F ' FC . Similarly, F is
a left (resp. right) sheaf if F ' FL (resp. F ' FR).

The CLR decomposition is compatible with the convolution distance. More
precisely, we have the following result.

Theorem 3.3.6 (Theorem 4.5 - [BG18])
Let F,G ∈ Obj(Db

Rc(kR)) and ε ≥ 0, then the following holds:

dC(F,G) ≤ ε ⇐⇒


dC(FC , GC) ≤ ε

dC(FR, GR) ≤ ε

dC(FL, GL) ≤ ε

Proof
We will in fact prove the stronger statement: for any ε ≥ 0, F and G are
ε-interleaved if and only if FC and GC , FR and GR, FL and GL are. The
right to left implication is an immediate consequence of the additivity of
the convolution functor. Now let us consider the data of an ε-interleaving
between F and G, that is, two morphisms F ?Kε

f−→ G and G ?Kε
g−→ F

such that f ? Kε ◦ g : G ? K2ε −→ F is the canonical arrow and similarly
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for g ? Kε ◦ f : F ? K2ε −→ G. During the proof, we will use the letters
i to denote a canonical injection of a summand into a sheaf, and p for the
canonical projection.

1. Let I be a closed or open interval and j ∈ Z be such that kI [−j] ap-
pears in the decomposition of the cohomology objects of FC . Consider
the composition:

kI [−j] ? K2ε

iFI−→ F ? K2ε
f?Kε−→ G ?Kε

pGL−→ GL ?Kε
g−→ F

pFI−→ kI [−j]

From our previous computations (Proposition 3.3.1, this composition
must be zero whether I is open or closed. The same results hold for
GR instead of GL using Proposition 3.3.2. Hence, the composition:

kI [−j] ? K2ε

iFI−→ F ? K2ε
f?Kε−→ G ?Kε

g−→ F
pFI−→ kI [−j]

is equal to the composition:

kI [−j] ? K2ε

iFI−→ F ? K2ε
f?Kε−→ G

pGC−→ GC ?Kε
g−→ F

pFI−→ kI [−j].

As this is true for any direct summands of FC , we get that the com-
position

FC ? K2ε

iFC−→ F ? K2ε
f?Kε−→ G ?Kε

g−→ F
pFC−→ FC

is equal to the composition:

FC ? K2ε
iC−→ F ? K2ε

f?Kε−→ G ?Kε

pGC−→ GC ?Kε
g−→ F

pFC−→ FC .

In other words, it is just the canonical arrow FC ?Kε −→ FC .
Intertwining F and G proves that the composition:

GC ? K2ε
iC−→ G ? K2ε

g?Kε−→ F ?Kε

pGC−→ FC ?Kε
f−→ G

pGC−→ GC

is the canonical arrow. Hence pGC ◦ f ◦ iFC and pFC ◦ g ◦ iGC defines an
ε-interleaving between FC and GC .

2. We proceed exactly similarly to prove that pGL ◦ f ◦ iFL and pFL ◦ g ◦ iGL
(resp. pGR ◦ f ◦ iFR and pFR ◦ g ◦ iGR) define ε-interleavings between FL
and GL (resp. FR and GR).
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3.4 Isometry theorem and graded barcodes

This section presents the proof of the isometry theorem after defining
precisely the graded barcodes associated to a complexe of constructible
sheaves in the derived category. To do so, we use the results of previous
sections to first define graded barcodes, the combinatorial object that en-
tirely encodes the isomorphism class of a sheaf. The properties of the CLR
decomposition invite us to split this barcode into three parts: central, left,
right, and to define ε-matchings between each of these parts. This leads us
to a definition of a bottleneck distance between graded barcodes, which, as
we prove, bounds the convolution distance.

In order to prove the reverse inequality, we prove that an ε-interleaving
between two sheaves induces a ε-matching between their graded-barcodes.
To do so, we construct the matching according to the CLR decomposition.
We reduce the construction of the matching between the left and right parts
to the well-known case of persistence modules with one parameter. To this
end, we first prove that interleavings between right (resp. left) parts of
two sheaves happen degree-wise at the level of their cohomology objects.
This enables us to define functors Ψj

R, that send the j-th cohomology of
the right part of a sheaf to a one parameter persistence module. We prove
that the Ψj

R’s are barcode preserving, and send interleavings of sheaves to
interleavings of persistence modules.

To build the matching between central parts, we adapt Bjerkevik’s ap-
proach [Bje16]: we introduce a similar pre-order to his, ≤α, between graded-
intervals. This pre-order allows us to “trigonalize” the interleaving mor-
phisms, and by a rank argument to deduce that the hypothesis of Hall’s
marriage theorem are satisfied.

3.4.1 Graded-barcodes, bottleneck distance and
stability

We start by introducing the abstract notion of a graded barcode, and
then define the graded barcode of a complex of sheaves.

Definition 3.4.1
A graded-barcode B is the data of three Z-indexed sequence of multi-set of
intervals ((BjC)j∈Z, (BjR)j∈Z, (BjL)j∈Z) such that for every j ∈ Z:

1. BjC is a locally finite multiset of closed or open bounded intervals.

2. BjR is a locally finite multiset of half-open intervals of the form [a, b)
with a, b ∈ R ∪ {±∞}.
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3. BjL is a locally finite multiset of half-open intervals of the form (a, b]
with a, b ∈ R ∪ {±∞} and (a, b] 6= R.

We can now define the graded barcode of a constructible sheaf.

Definition 3.4.2
Let F ∈ Obj(Db

Rc(kR)), that decomposes uniquely up to isomorphism as
F ' FC ⊕ FR ⊕ FL. We define the graded-barcode of F to be B(F ) =
(BC(F ),BR(F ),BL(F )) where:

1. BC(F ) = (BjC(F ))j∈Z, BR(F ) = (BjR(F ))j∈Z, BL(F ) = (BjL(F ))j∈Z.

2. For j ∈ Z, and α ∈ {L,R}, Bjα(F ) is a complete enumeration of the
intervals appearing in the decomposition of Hj(Fα), that is, we have
an isomorphism in Mod(kR):

Hj(Fα) '
⊕

I∈Bjα(F )

kI .

3. For j ∈ Z, BjC(F ) is a complete enumeration of the open intervals
appearing in the decomposition of Hj(FC), and of the closed intervals
appearing in the decomposition of Hj+1(FC).

Remark 3.4.3
Since F ∈ Obj(Db

Rc(kR)), there existsN ≥ 0 such that for |j| ≥ N , BjC(F ) =

BjR(F ) = BjL(F ) = ∅.

From the decomposition theorem 3.1.2 and structure theorem 3.1.4 of
section 2, the isomorphism classes of objects in Db

Rc(kR) are completely
determined by their graded-barcodes. And conversely to a graded-barcode
corresponds a unique isomorphism class of object in Db

Rc(kR).
Now, we will define a bottleneck distance between the graded barcodes.

We start by defining ε-matchings between graded barcodes.

Definition 3.4.4
For S and T two sets, a partial matching between S and T is the data of
two subsets S ′ ⊂ S and T ′ ⊂ T and a bijection σ : S ′ −→ T ′. We define
T ′ = im σ as the image of the partial matching, S ′ = coim σ its co-image.

We will refer to the partial matching just as σ and denote it σ : S 6→ T .

Definition 3.4.5
Let B and D be two graded-barcodes and ε ≥ 0. An ε-matching between B
and D is the data σ = ((σjC)j∈Z, (σ

j
R)j∈Z, (σ

j
L)j∈Z) where, for j ∈ Z :
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1. σjC : BjC −→ Dj
C is a bijection satisfying, for any I ∈ BjC :kI ∼ε

kσjC(I)[−δ], where δ = 0 if I and σjC(I) are both open or both closed,
δ = 1 if I is open and σjC(I) is closed and δ = −1 if I is closed and
σjC(I) is open.

2. σjR : BjR 6→ Dj
R is a partial matching satisfying:

(i) for any I ∈ im σjC t coim σjC , one has kI [−j] ∼ε kσjC(I)[−j] ;

(ii) for I ∈ (BjR\im σjC) t (Dj
R\coim σjC), one has kI [−j] ∼ε 0.

3. σjL : BjL 6→ Dj
L is a partial matching satisfying :

(i) for any I ∈ im σjC t coim σjC , one has kI [−j] ∼ε kσjC(I)[−j] ;

(ii) for I ∈ (BjL\im σjC) t (Dj
L\coim σjC), one has kI [−j] ∼ε 0.

As one could expect, we can now define a bottleneck distance from this
notion of matching in a standard way:

Definition 3.4.6
Let B and D be two graded-barcodes, then one defines their graded bottleneck
distance to be the possibly infinite positive value:

dB(B,D) = inf{ε ≥ 0 | there exists a ε-matching between B and D}

Proposition 3.4.7
The distance dB is indeed the bottleneck distance associated to dC on the
Krull-Schmidt category Db

Rc(kR) according to definition 2.1.17.

Proof
This is a direct consequence of the fact that interleavings respect the CLR
decomposition (theorem 3.3.6).

Remark 3.4.8
Note that our definition of the bottleneck distance allows to compare in-
tervals of a barcodes defines in different degrees unlike in the traditional
persistence module case. This is fundamental in order to take into account
the derived nature of sheaves; a basic example demonstrating this is given
in Section 3.5.1.

Lemma 3.4.9
Let F,G two objects of Db

Rc(kR), then:

dC(F,G) ≤ dB(B(F ),B(G)).
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Proof
By definition, an ε-matching between the graded-barcodes of F and G im-
plies the existence of an ε-interleaving between F and G. Hence we have
the following inclusion:

{ε ≥ 0 | there exists a ε-matching between B(F ) and B(G)}

⊂ {ε ≥ 0 | there exists a ε-isomorphism between F and G}

which proves the lemma.

�

3.4.2 The cases FR ↔ GR and FL ↔ GL

In this section, we give a description of the ε-interleavings between the
right part of two complexes of sheaves. The proofs and statements for the
left part are exactly the same.

Construction of Ψj
R

Proposition 3.4.10
Let F,G ∈ Obj(Db

Rc(kR)) and ε ≥ 0 with right parts FR and GR. The
following holds:

dC(FR, GR) ≤ ε ⇐⇒ ∀j ∈ Z, dC(Hj(FR),Hj(GR)) ≤ ε.

Here in the last inequality, Hj(FR) and Hj(GR) are seen as complexes
concentrated in degree j.

Proof
As in Theorem 3.3.6, we will prove the stronger statement (which is, in fact,
equivalent by 3.5.3) that FR and GR are ε-interleaved if and only if each of
their cohomologies are pairwise ε-interleaved. The right to left implication
by additivity of the convolution functor and the structure theorem 3.1.4, so
let us consider an ε-interleaving given by FR ?Kε

f−→ GR and GR ?Kε
g−→

FR. Let j ∈ Z and pick kI a direct summand of Hj(FR) (I is a half-open
interval of the type [a, b)). We consider again the composition:

kI [−j] ? K2ε

i
FR
I−→ FR ? K2ε

f?Kε−→ GR ?Kε
g−→ FR

p
FR
I−→ kI [−j]

From our computations of derived morphisms (Proposition 3.2.11), this
is equal to the composition :



78 CHAPTER 3. THE DERIVED ISOMETRY THEOREM

kI [−j] ? K2ε

i
FR
I−→ FR ? K2ε

f?Kε−→ Hj(GR ?Kε)[−j]⊕ Hj+1(GR ?Kε)[−j − 1]

g−→ FR
p
FR
I−→ kI [−j].

We obtain using our computations of convolution (Proposition 3.2.5)
and morphisms show that since GR has only half-open intervals in the de-
composition of its cohomologie objects, Hj(GR ?Kε)[−j] ' Hj(GR)[−j]?Kε

and Hj+1(GR ?Kε)[−j − 1] ' Hj+1(GR)[−j − 1] ?Kε.
It follows again from our computations in Proposition 3.2.11 that any

morphism of kI [−j] ?Kε → kI [−j] that factors through a complex concen-
trated in degree j + 1 must be zero.

Finally, the first composition is thus equal to

kI [−j] ? K2ε

i
FR
I−→ FR ? K2ε

f?Kε−→ Hj(GR)[−j] ?Kε
g−→ FR

p
FR
I−→ kI [−j].

As this is true for any summands of Hj(FR) we get that the composition:

Hj(FR)[−j] ? K2ε

i
FR
I−→ FR ? K2ε

f?Kε−→ GR ?Kε
g−→ FR

p
FR
I−→ Hj(FR)[−j]

is equal to the composition

Hj(FR)[−j]?K2ε

i
FR
I−→ FR?K2ε

f?Kε−→ Hj(GR)[−j]?Kε
g−→ FR

p
FR
I−→ Hj(FR)[−j].

This gives the first part of the ε-interleaving. We get the second one by
intertwining the roles of FR and GR.

�

The above result shows that when one wants to understand an ε-interleaving
between the right parts of two sheaves, it is sufficient to understand it at
the level of each of their cohomology objects, degree wise. In the sequel, we
will show that the behavior of ε-interleavings between sheaves with coho-
mologies concentrated in degree j ∈ Z decomposing into direct summands
of type R, is essentially the same as looking at ε-interleavings in the op-
posite category of one-parameter persistence modules, which is well under-
stood. According to section 2.1.1, we denote by Pers(kR) the category of
persistence modules over the poset (R,≤), we write Persf (kR) for its full
subcategory of pointwise finite dimensional persistence modules. We also
denote dI the usual interleaving distance on Pers(kR).
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Proposition 3.4.11
Let Dj

R be the full sub-category of Db
Rc(kR) with objects complexes of

sheaves F such that F ' FR and Hi(F ) = 0 for i 6= j. Then there ex-
ists a well-defined functor Ψj

R : Dj
R −→ Persf (kR)op such that:

1. For F ∈ Obj(Dj
R) such that Hj(F ) ' ⊕I∈BkI , we have Ψj

R(F ) =
⊕I∈BkI .

2. Ψj
R is fully faithful.

3. For ε ≥ 0 and F ∈ Obj(Dj
R), Ψj

R(F ?Kε) = Ψj
R(F )[ε] and Ψj

R(φF,ε) =

s
ΨjR(F )
ε .

4. Ψj
R is isometric with respect to dC(·, ·) and dI(·, ·).

Proof
This is a combination of the computations of morphisms and convolution
(Propositions 3.2.9, 3.2.5, 3.3.4), together with the observation that for I, J
two intervals of type R and j ∈ Z, then we have the functorial isomorphisms:

HomDbRc(kR)(kI [−j],kJ [−j]) ' HomMod(kR)(kI ,kJ) ' HomPersf (kR)(k
J ,kI).

Induced matching

Theorem 3.4.12 (Theorem 5.11 - [BG18])
Let F,G ∈ Obj(Db

Rc(kR)) which are ε-interleaved through the maps F ?

Kε
f−→ G and G ? Kε

g−→ F . For any j ∈ Z, there exists an ε-matching
σjR : BjR(F ) 6−→ BjR(G).

Proof
Observe that Ψj

R(FR) (resp. Ψj
R(GR)) is a persistence module with the

same barcode than Hj(FR) (resp. Hj(GR)). Also, from proposition 5.3,
Ψj
R(FR) and Ψj

R(GR) are ε-interleaved as persistence modules. Hence, we
can apply the isometry theorem for pointwise finite dimensional persistence
modules [CdSGO16, Theorem 4.11] to Ψj

R(FR) and Ψj
R(GR) and deduce

the existence of a ε-matching of barcodes of persistence modules between
BjR(F ) and BjR(F ). Notice now that this matching is exactly what we ask
for σjR, by proposition 3.3.2.

�
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3.4.3 The case FC ↔ GC

In this section, we construct the ε-matching between the central parts
of two sheaves, assuming they are ε-interleaved. Using ideas of Bjerkevik
[Bje16, Section 4], we introduce a pre-order ≤α on the set of graded-intervals
of type C whose purpose is to prove the existence of the ε-matching using
Hall’s marriage theorem. To apply this theorem, we must prove that given
a finite list of interval in the barcode of one of the two sheaves, there exists,
at least, the same number of intervals in the barcode of the second sheaf
which are at distance less than ε from an interval in the first list.

We will show that ordering the graded-barcodes of the sheaves accord-
ing to ≤α will actually lead to a very nice expression of the interleaving
morphisms, allowing us, by a rank argument, to deduce that this condition
is satisfied.

Ordering graded-intervals of type C

We define a graded interval to be an interval I together with an integer
j ∈ Z. It will be written Ij henceforth. For I of type C such that either
I = [a, b] or I = (a, b) with a, b ∈ R, define diam(I) = b − a to be its
diameter.
Definition 3.4.13
The relation ≤α on the set of graded intervals of type C is defined by:

1. For Ri, T j two closed intervals in degree i and j: Ri ≤α T j ⇐⇒ i = j
and diam(T ) ≤ diam(R),

2. for U i, V j two open intervals in degree i and j: U i ≤α V j ⇐⇒ i = j
and diam(U) ≤ diam(V ),

3. for Ri a closed interval in degree i, and V j an open interval in degree
j: Ri ≤α V j ⇐⇒ i = j + 1.

Proposition 3.4.14
The relation ≤α is a partial pre-order over the set of graded intervals, that
is, it is reflexive and transitive. Moreover, it is total if restricted to subsets
of graded intervals containing only, for a given i ∈ Z, open intervals in
degree i and closed intervals in degree i+ 1.

The following is the analogous result in our setting to [Bje16, Lemma
4.6].

Proposition 3.4.15
Let I i, J i, Sl be three graded intervals of type C and ε ≥ 0 such that
I i ≤α J j and there exists two non-zero morphisms χ : kS[−l] ? Kε −→
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kI [−i] and ξ : kJ [−j] ? Kε −→ kS[−l]. Then either kS[−l] ∼ε kI [−i] or
kS[−l] ∼ε kJ [−j].

Proof
By definition of the pre-order ≤α, we only have to investigate the three
cases of the above definition 3.4.13 :

1. Let i ∈ Z and R, T be two open intervals such that Ri ≤α T i, that
is, diam(T ) ≤ diam(R). Let Sl be a graded interval such that there
exists some non-zero χ and ξ. Then S must be a closed interval, and
l = i. As a consequence, R ⊂ Sε and S ⊂ T ε.
Assume that kR[−i] 6∼ε kS[−i]. Then, as R ⊂ Sε, S 6⊂ Rε. So either
min(S) < min(R)− ε, or max(S) > max(R) + ε. Assume the latter.
As S ⊂ Rε, min(S) − ε < min(R), we get subtracting the first in-
equality to this one:diam(S) + ε > diam(R) + ε. Hence S <α R. We
get the same thing assuming min(S) < min(R)− ε.
Moreover, one can prove this way that kT [−i] 6∼ε kS[−i] implies S <α

R.
As we assumed Ri ≤α T i, one has kS[−l] ∼ε kI [−i] or kS[−l] ∼ε
kJ [−j].

2. The proof for U i, V i where U and V are open intervals is similar.

3. Let Ri a closed interval, V j an open interval, with i = j + 1. Let
Sl be a graded interval and ε such that there exists χ and ξ such as
in the proposition. Then S must be an open interval and l = j. By
the existence of χ, we have that ε ≥ diam(U)

2
and R ⊂ [cent(U)− (ε−

diam(U)
2

), cent(U) + (ε − diam(U)
2

)], which, according to our characteri-
zation of ε-interleaving between indecomposable sheaves (proposition
3.3.1), is equivalent to kR[−j − 1] ∼ε kS[−j].

Induced matching

We now have the ingredients to prove the theorem.

Theorem 3.4.16 (Theorem 5.15 - [BG18])
Let F = FC and G = GC be two objects of Db

Rc(kR), and ε ≥ 0 be such that

FC and GC are ε-interleaved through maps FC ?Kε
f−→ GC and GC ?Kε

g−→
FC . Then, for every j ∈ Z, there exists a bijection

σjC : BjC(FC) −→ BjC(GC)
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such that, for I ∈ BjC , we have kI ∼ε kσjC(I)[−δ], where δ = 0 if I and σjC(I)

are both open or both closed, and δ = 1 if I is open and σjC(I) is closed,
δ = −1 if I is closed and σjC(I) is open.

Our proof will use a generalization of Hall’s marriage theorem to the
case of countable sets. It was first proved in 1976 by Podewski and Steffens
[PS76]:

Theorem 3.4.17 (Hall)
Let X and Y be two countable sets, let P(Y ) be the set of subsets of Y
and M : X → P(Y ). Then the following are equivalent:

1. there exists an injective map m : X → Y satisfying m(x) ∈M(x) for
every x ∈ X;

2. for every finite subset A ⊂ X, |A| ≤ | ∪x∈A M(x)|. Where |A| is the
cardinality of A.

We introduce some notations that will be used, developed and refined
later on. For FC ∈ Obj(Db

Rc(kR)) a central sheaf, recall first that FC '
⊕j∈ZHj(FC)[−j], and for any j ∈ Z, there exists a unique multi-set BjC(F )
of bounded open or compact intervals of R (an interval can appear several
times in the list) such that

Hj(F ) = Hj(FC) '
⊕

I∈BjC(F )

kI ,

where the last isomorphism is in the category Mod(kR).
In the following, we let F,G ∈ Obj(Db

Rc(kR)) for which we set two
isomorphisms:

F '
⊕
j∈Z

⊕
Ij∈Bj(F )

kI [−j] and G '
⊕
j∈Z

⊕
Ij∈Bj(G)

kI [−j].

For any morphism f : F → G, given I i ∈ Bi(F ) and J j ∈ Bj(G), we
will write:

fIi,Jj = kI [−i] −→ F
f−→ G −→ kJ [−j].

Similarly for A ⊂ B(F ), let f|A be the composition:⊕
Ii∈A

kI [−i] −→ F
f−→ G.
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Let F and G in Obj(Db
Rc(kR)) be two central sheaves and ε ≥ 0 such

that F and G are ε-interleaved with respect to f and g. For I i ∈ BiC(F )
and J j ∈ BjC(G) our computations of propositions 3.2.1, 3.2.11 and 3.3.1:

(f?Kε)Ii,Jj◦gJj ,Ii 6= 0 implies either:


I, J are closed and i = j,

I is open, J is closed and j = i+ 1,

J is open, I is closed and i = j + 1.

Proof (matching of central parts)
Our strategy is to adapt Bjerkevik’s proof of [Bje16, Theorem 4.2] to our
setting. The pre-order ≤α we have defined has exactly the same properties
as the one defined in his proof.

Let n ∈ Z, to define σnC , we will apply Hall’s theorem. Since graded-
barcodes of F and G are locally finite, they are countable. We here consider
multi-sets as sets, to make the proof easier to understand. Nevertheless, it
would not be difficult to write the proof properly using multi-sets. Let
M : BnC(FC)→ P(BnC(GC)) defined by:

M(I) = {J ∈ BnC(GC) | kI ∼ε kJ [−δ],

where δ = 0 if I and σjC(I) are both open or both closed, δ = 1 if I is open

and σjC(I) is closed, δ = −1 if I is closed and σjC(I) is open. },

for I ∈ BnC(FC).
Thus, let A be a finite subset of BnC(FC) and M(A) = ∪I∈AM(I). To

apply Hall’s theorem and deduce the existence of σnC , we need to prove that
|A| ≤ |M(A)|. If M(A) is infinite, the result is automatically true. Let us
assume now that M(A) is finite.

By proposition 3.4.14, ≤α is a total pre-order on A. Hence, with r = |A|,
there exists an enumeration A = {I i11 , ..., I

ir
r }, where il = n if Il is an open

interval and il = n+ 1 if Il is a closed interval, such that for 1 ≤ l ≤ m ≤ r
we have I ill ≤α I imm .

We have by assumption g ◦ (f ? Kε) = φF,2ε (see definition 2.2.6), also,
the additivity of the convolution functor implies the following equality for
I ill ∈ A:

φkI [−il],2ε = kI [−il] ?Kε −→ F ?Kε

φF,2ε−→ F → kI [−il]

Therefore:



84 CHAPTER 3. THE DERIVED ISOMETRY THEOREM

φkI [−il],2ε =
∑

Jj∈B(G)

g
Jj ,I

il
l

◦ (f ?Kε)Iill ,Jj

=
∑

Jj∈Bl(G)

g
Jj ,I

il
l

◦
[
f
I
il
l ,J

j ?Kε

]
.

Now observe that if g
Jj ,I

il
l

◦
[
f
I
il
l ,J

j ?Kε

]
6= 0 then kIl [−il] ∼ε kJ [−j],

hence:

φkI [−il],2ε =
∑

Jj∈M(A)

g
Jj ,I

il
l

◦ (f ?Kε)Iill ,Jj

Similarly for Im 6= Im′ in A,

0 =
∑

Jj∈Bl(G)

gJj ,Iimm ◦
[
f
I
im′
m′ ,J

j
?Kε

]
.

Hence if m < m′ and gJj ,Iimm ◦
[
f
I
im′
m′ ,J

j
?Kε

]
6= 0, then kJ [−j] is ε-

interleaved with either kIm [−m] or kIm′ [−m
′]. Therefore:

0 =
∑

Jj∈M(A)

gJj ,Iimm ◦
[
f
I
im′
m′ ,J

j
?Kε

]
.

For m > m′, we can’t say anything about the value of∑
Jj∈M(A)

gJj ,Iimm ◦
[
f
I
im′
m′ ,J

j
?Kε

]
.

Writing those equalities in matrix form, we get :


g
J1,I

i1
1

. . . gJ1,Iirr
...

. . .
...

g
Js,I

i1
1

. . . gJs,Iirr




f
I
i1
1 ,J1 ?Kε . . . fIirr ,J1 ?Kε

...
. . .

...
f
I
i1
1 ,Js

?Kε . . . fIirr ,Js ?Kε



=


φ
I
i1
1 ,2ε

? ? ?

0 φ
I
i2
2 ,2ε

? ?

...
...

. . . ?
0 0 . . . φIirr ,2ε
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Now recall that RΓ(R,−) is an additive functor. Hence, applying RΓ(R,−)
to the above equality, we get:


RΓ(R, g

J1,I
i1
1

) . . . RΓ(R, gJ1,Iirr
)

...
. . .

...
RΓ(R, g

Js,I
i1
1

) . . . RΓ(R, gJs,Iirr )




RΓ(R, f
I
i1
1 ,J1 ?Kε) . . . RΓ(R, fIirr ,J1 ?Kε)

...
. . .

...
RΓ(R, f

I
i1
1 ,Js

?Kε) . . . RΓ(R, fIirr ,Js ?Kε)



=


RΓ(R, φ

I
i1
1 ,2ε

) ? ? ?

0 RΓ(R, φ
I
i2
2 ,2ε

) ? ?

...
...

. . . ?
0 0 . . . RΓ(R, φIirr ,2ε)



=


1 ? ? ?
0 1 ? ?
...

...
. . . ?

0 0 . . . 1

 .

Each entry in those matrices is uniquely characterized by one scalar.
Hence, we can consider their rank. The left hand side has rank at most
equal to the minimum of r and s, in particular it is less or equal to |M(A)|.
The right-hand side has rank r = |A|. Therefore we get the inequality we
wanted.

�

3.4.4 Isometry theorem

In this section, we put together the results proved before to prove that
the convolution distance between two sheaves is exactly the same as the
bottleneck distance between their graded-barcodes.

Theorem 3.4.18 (Theorem 5.17 - [BG18])
Let F,G be two objects of Db

Rc(kR), then:

dC(F,G) = dB(B(F ),B(G)).

Proof
By lemma 3.4.9, there only remains to prove that dC(F,G) ≥ dB(B(F ),B(G)),
or equivalently, that any ε-interleaving between F and G induces an ε-
matching between B(F ) and B(G).

According to sections 5.3 and 5.4, this interleaving induces a ε-matching
between the central, left and right parts of F and G, which proves the
theorem.
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The formulation of the convolution distance as a matching distance we
obtained here turns the computation of an algebraic problem into minimiz-
ing the cost of a matching, which is of combinatorial nature. This is in
fact a variant of a very classical problem of linear programming, for which
there exists an abundant literature and that can be solved in polynomial
time in the total numbers of bars in the barcodes, using the Hungarian
algorithm [Kuh09]. Hence, distances in Db

Rc(kR) can be implemented in a
computer and computed. Although at this point, we can compute distances
between sheaves, we do not yet know how to compute their barcodes. This
will be the purpose of the next chapter. This will lead to an equivalent for-
mulation to the matching problem associated with the graded bottleneck
distance that is even simpler to implement (see corollary 4.5.5).

3.5 Applications

In this section, we expose some corollaries of the isometry theorem. We
start with some explicit computations on an example, showing the fun-
damentally derived nature ouf our graded-bottleneck distance. Then, we
prove that dC is closed between constructible sheaves on R, that is, two
constructible sheaves are ε-close if and only if they are ε-interleaved, which
in particular implies that dC induces a metric on isomorphism classes of
Db

Rc(kR). This allows us to consider the set of isomorphism classes of
Db

Rc(kR) as a topological metric space. We prove that it is locally path-
connected and give a characterization of its connected components. We
also provide a counter-example of two non constructible sheaves which are
at convolution distance 0 and which are not isomorphic.

3.5.1 Example: projection from the circle

We aim here to explain and compute an explicit example that was
pointed to us by Justin Curry, that is two simple projections from the
euclidean circle to the real line. Understanding this example has been at
the origin of our reflexions. It is simple yet general enough to exhibit the
phenomenons and issues that can happen with the matchings of graded
barcodes.

Let S1 = {(x, y) ∈ R2 | x2 + y2 = 1} be the circle seen as a sub-
manifold in R2. Let f : S1 → R be the first coordinate projection and
g : S1 → R be the constant map with value zero. Let F = Rf∗kS1 and
G = Rg∗kS1 . Since ‖f − g‖ = 1, the stability theorem by Kashiwara and
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R R

f(x, y) = x g(x, y) = 0

S1 ⊂ R2 S1 ⊂ R2

H0(Rf∗kS1) H0(Rg∗kS1)

H1(Rf∗kS1) H1(Rg∗kS1)

−1 1 −1 10

[ ]

( )

∅

•

•

Figure 3.1 – The maps f and g and the graded-barcodes of Rf∗kX and
Rg∗kX .

Schapira [KS18a, theorem 2.7] implies:

dC(F,G) ≤ 1.

The CLR decomposition (Definition 3.3.3) of this two complexes of sheaves
is easy to compute (and depicted in the figure below).

Proposition 3.5.1
The complexes F and G have non-zero cohomology spaces at most in degree
0 and 1. Moreover:

1. H0(F ) ' k(−1,1) ⊕ k[−1,1] and H1(F ) ' 0

2. H0(G) ' k{0} and H1(G) ' k{0}

Hence, F and G are central sheaves and B0
C(F ) = {[−1, 1], (−1, 1)},

B1
C(F ) = ∅, B0

C(G) = {{0}}, B1
C(G) = {{0}}. Even in this simple exam-

ple, there could be no ε-matching between the graded-barcodes if one was
working in the ordinary graded category. Indeed, dC(k{0}[−1], 0) = +∞.
Hence this will not agree both with Kashiwara-Schapira (naturally derived)
convolution distance and the intuition from persistence.

However, using our derived notion of interleavings and matching dis-
tance we get the expected answer and in fact prove that in this case the
bound given by the L∞-norm between the function is optimal.
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Indeed, let (σjC)j∈Z be defined by :

σ0
C([−1, 1]0) = {0}0 and σ0

C((−1, 1)0) = {0}1

Then we claim that σC is a 1-matching between BC(F ) and BC(G). As
F = FC and G = GC , it extends trivially to a 1-matching between B(F )
and B(G). Moreover, since the convolution distances between any pair of
graded intervals is at least 1, there can not exist an ε-matching between
B(F ) and B(G) for 0 ≤ ε < 1. Hence we have F ∼1 G and further

Proposition 3.5.2
The convolution distance of F = Rf∗kS1 and G = Rg∗kS1 is

dC(Rf∗kS1 ,Rg∗kS1) = 1.

3.5.2 About the closedness of dC
In this section we apply our isometry Theorem 3.4.18 to answer an

open question on the closedness of the convolution distance (see Remark
2.3 of [KS18a]). More precisely, we show that the convolution distance is
closed between constructible sheaves over R. We also provide a counter-
example to this statement without constructibility assumption.

Theorem 3.5.3 (Theorem 6.3 - [BG18])
The convolution distance is closed on Db

Rc(kR). That is, for F,G ∈ Obj(Db
Rc(kR))

and ε ≥ 0 :
dC(F,G) ≤ ε if and only if F ∼ε G.

Corollary 3.5.4
dC induces a metric on the isomorphism classes of Db

Rc(kR).

We start with the following easy lemma, whose proof is a direct conse-
quence of section 3.3.1.

Lemma 3.5.5
Let I i, J j two graded intervals (possibly empty, we set k∅ = 0) and ε ≥ 0.
Then:

dC(kI [−i],kJ [−j]) ≤ ε ⇐⇒ kI [−i] ∼ε kJ [−j].

Proof (of the theorem)
Suppose dC(F,G) ≤ ε. Then by definition there exists a decreasing se-
quence (εn) such that εn → ε when n goes to infinity and for every n ∈ N,
F ∼εn G. For simplicity of the proof, we will assume the graded-barcodes
of F and G to be finite, but the proof generalizes to the locally finite case.
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Then by applying the isometry theorem, for n ≥ 0, there exists a εn match-
ing σn : B(F )→ B(G).

Now by finiteness of the graded-barcodes, the set of matchings between
B(F ) and B(G) is finite. Hence, we can extract from (σn) a constant se-
quence, say (σϕ(n)). Applying lemma 4.1 and making n going to infinity, we
see that σ := σϕ(0) is an ε-matching between B(F ) and B(G).

Remark 3.5.6
One must pay attention to the fact that in the case of persistence mod-
ules, the interleaving distance is not closed. There exists some ephemeral
modules at distance 0 from 0: consider the one parameter persistence mod-
ule k{0} (keeping notations of section 5.2). To avoid this issue, Chazal,
Crawley-Boevey and de Silva introduced the observable category of persis-
tence modules Obs(Pers(kR)) in [CCBS16]. It is defined as the quotient
category of Pers(kR) by the full sub-category of ephemeral persistent mod-
ules, which has objects M ∈ Pers(R) such that M(s < t) = 0 for every
s < t ∈ R. By construction, the interleaving distance on Pers(kR) in-
duces a closed metric on Obs(Pers(kR)). Note that we will generalize this
construction in chapter 5.

Corollary 3.5.7
The functors Ψj

R : Dj
R → Pers(R)op introduced in 5.2 induces an isometric

equivalence of category between Dj
R and Obs(Pers(R))op.

Note that, this result is the manifestation in dimension one of the more gen-
eral proposition 5.3.13, since one can easily observe, that Dj

R ' ModRc(kRγ ),
where γ = [0,+∞[ and Rγ is the topological space R endowed with the γ-
topology (section 5.2.1).

We now construct a counter-example to the closedness of dC without
constructibility assumptions. More precisely, we will construct two sheaves
F,G ∈ Db(kR) such that dC(F,G) = 0 but F 6' G. We consider the sets
X = Q ∩ [0, 1] and Y =

√
2Q ∩ [0, 1] = {

√
2q | q ∈ Q} ∩ [0, 1].

Proposition 3.5.8
There exists a sequence of functions (rn)n∈Z>0 from X to Y satisfying:

1. for any n ∈ Z>0, rn : X → Y is bijective,
2. supx∈X |rn(x)− x| −−−−→

n→+∞
0.

Proof
Let n ∈ Zn>0. We define rn piecewise on [0, 1 − 1

n
] ∩ Q and ]1 − 1

n
, 1] ∩ Q.

For q ∈ [0, 1 − 1
n
] ∩ Q, we set rn(q) =

√
2

d
√

2e10(n)
q, with d

√
2e10(n) = d10n

√
2e

d10ne
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Figure 3.2 – Graphical representation of rn

the n-th ceil decimal approximation of
√

2. Then rn|[0,1− 1
n

]∩Q is injective,
and

rn

(
[0, 1− 1

n
] ∩Q

)
=

{√
2q | q ∈

[
0,

1− 1/n

d
√

2e10(n)

]
∩Q

}
= Y ∩

[
0,
√

2
1− 1/n

d
√

2e10(n)

]
( Y.

Now, since ]1 − 1
n
, 1] ∩ Q and Y

∖
rn
(
[0, 1− 1

n
] ∩Q

)
are both infinite

subsets of Q, there exists a bijection

ϕn :

]
1− 1

n
, 1

]
∩Q ∼−→ Y

∖
rn

(
[0, 1− 1

n
] ∩Q

)
.

We define rn|]1− 1
n
,1]∩Q = ϕn. Then rn|]1− 1

n
,1]∩Q is injective and

rn(]1− 1

n
, 1] ∩Q) = Y

∖
rn

(
[0, 1− 1

n
] ∩Q

)
.

Finally, rn is indeed a bijective function from X to Y =
√

2Q ∩ [0, 1].
Observe that:
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sup
x∈X
|rn(x)− x| = max

(
sup

x∈X∩[0,1− 1
n

]

|rn(x)− x|, sup
x∈X∩[1− 1

n
,1]

|rn(x)− x|

)
.

The first term of the maximum is worth
( √

2
d
√

2e10(n)
− 1
)

(1− 1/n), and
the second term is bounded from above by the diameter of the interval
[
√

2 1−1/n

d
√

2e10(n)
, 1] which is worth 1−

√
2 1−1/n

d
√

2e10(n)
. Since both of these terms go

to 0 as n goes to infinity, we deduce the desired property:

sup
x∈X
|rn(x)− x| −−−−→

n→+∞
0.

Proposition 3.5.9
Let (Fi)i∈I and (Gj)j∈J be two families of objects of Db(kV). Assume that
there exists a bijective function σ : I → J , and ε ≥ 0 such that for all i ∈ I,
dC(Fi, Gσ(i)) ≤ ε. Then:

dC

(⊕
i∈I

Fi,
⊕
j∈J

Gj

)
≤ ε.

Proof
Let ε′ > ε and i ∈ I. Then by assumptions, there exists some ε′-interleaving
morphisms between Fi and Gσ(i), ϕi : Fi?Kε′ → Gσ(i) and ψi : Gσ(i)?Kε′ →
Fi. Since − ? Kε′ is a left-adjoint functor, it commutes with arbitrary col-
imits. Therefore, by taking direct sums of the previous ε′-interleaving mor-
phisms, we get ε′-interleaving morphisms between

⊕
i∈I Fi and

⊕
i∈I Gσ(i) '⊕

j∈J Gj, which proves the result.

�

Let F =
⊕

x∈X k{x} and G =
⊕

y∈Y k{y}.

Proposition 3.5.10
F is not isomorphic to G and dC(F,G) = 0.

Proof
F and G cannot be isomorphic since F1 ' k and G1 ' 0.

Let rn : X → Y as in proposition 3.5.8. Using proposition 3.5.9, and
the fact that for x, y ∈ R, dC(k{x},k{y}) = |x − y|, we obtain that for any
n ∈ Z>0 :
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dC(F,G) ≤ sup
x∈X
|rn(x)− x|.

Taking the limit as n goes to infinity, we deduce that dC(F,G) = 0.

�

We conjecture that this results extend to higher dimensional real vector
spaces. More precisely, consider V a finite-dimensional real vector space,
endowed with a norm ‖ · ‖ and consider the convolution distance associated
to this norm.
Conjecture 3.5.11
Let F and G in Db

Rc(kV), and ε ≥ 0. Then:

F ∼ε G ⇐⇒ dC(F,G) ≤ ε.

3.5.3 Description of the connected components of
Db

Rc(kR)

In this section, we introduce the small category Barcode as a combina-
torial description of Db

Rc(kR). The category Barcode is shown to be skeletal
(any two isomorphic objects are equal), and is equipped with the graded
bottleneck distance. We thus obtain an extended metric space, which is
locally path-connected. To do so, we prove an interpolation lemma in the
same fashion as Chazal et al. [CdSGO16, Theorem 3.5], which stands that
if two sheaves are ε-interleaved, there exists a 1-lipschitz path in Db

Rc(kR)
between them.

Lemma 3.5.12 (Interpolation)
Let F,G ∈ Obj(Db

Rc(kR)) be such that F ∼ε G for some ε ≥ 0. Then there
exists a family of sheaves (Ut)t∈[0,ε] in Db

Rc(kR) such that :

1. U0 = F and Uε = G.
2. For t ∈ [0, ε], dC(F,Ut) ≤ t and dC(G,Ut) ≤ ε− t.
3. For (t, t′) ∈ [0, ε]2, dC(Ut, Ut′) ≤ |t− t′|.

Proof
Let F ?Kε

ϕ−→ G and G?Kε
ψ−→ F be the interleaving morphisms between

F and G.
We start by constructing Ut for t ∈ [0, ε

2
]. The interleaving morphism

and the canonical maps in Db
Rc(kR) give (by Proposition 2.2.5 and (2.8))

the following diagram Dt:
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G ? Kt−ε

φG,2t?Kt−ε

��

ψ?Kt−ε

%%

F ? K−t

φF,2ε−2t?K−t

��

ϕ?K−t

yy
G ? K−t−ε F ? Kt−2ε

.

Taking resolutions in Mod(kR), one can assume this diagram is actually
given by a diagram still denoted Dt in C(Mod(kR)) which we assume from
now on. One can note that this diagram defines the two maps θt, φ̃t :

(G ? Kt−ε) ⊕ (F ? K−t) −→ (G ? K−t−ε) ⊕ (F ? Kt−2ε) given by (x, y)
θt7→

(ϕ ? K−t(y), ψ ? Kt−ε(x)) and (x, y)
φ̃t7→ (φG,2t ? Kt−ε(x), φF,2ε−2t ? K−t(y)).

The limit lim←−Dt of the diagram is precisely (isomorphic to) the equalizer of
the two maps and thus to the kernel ker(θt − φ̃t) of their difference.

Since we are dealing with a diagram in C(Mod(kR)) that we wish to
see in the derived category we essentially only need to replace the limit by
its homotopy limit. Namely, we define Ũt := ho lim←−Dt to be the homotopy
limit in (the model category of sheaves [Cra95]) C(Mod(kR)) of the diagram
Dt. For the reader who wish to avoid the use of the technique of homotopy
limits in model category (see [Dug]), in view of the above identification, an
explicit model for this homotopy limit is given by the cocone of the map

(G ?Kt−ε)⊕ (F ?K−t)
θt−φ̃t−→ (G ?K−t−ε)⊕ (F ?Kt−2ε) and hence passes to

Db
Rc(kR).
We need to prove that Ũt is t-interleaved with F . Note that by definition

of an homotopy limit we have a canonical map Ũt → (G?Kt−ε)⊕ (F ?K−t),
simply given by the obvious map on the cocone above. Hence we have a
morphism to either factor, in particular we have Ũt

f→ F ? K−t and hence
(by proposition 2.2.5) a map

Ũt ? Kt
f→ F. (3.1)

We now need to define a map g : F ?Kt → Ũt. By definition of an homotopy
limit, we have a canonical factorization lim←−Dt → Ũt → (G?Kt−ε)⊕(F ?K−t)
of the canonical map defined by the limit in C(Mod(kR)). At the explicit
cocone level this is just given by the canonical map of the limit on its first
summand (G ? Kt−ε)⊕ (F ? K−t)

The interleaving map ϕ : F ? Kε → G induces the map

F ? Kt

(ϕ?Kt−ε,φF,2t?Kt)−→ (G ? Kt−ε)⊕ (F ? K−t) (3.2)
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which makes the following diagram

F ? Kt
φF,2t?Kt

&&

ϕ?Kt−ε

xx
G ? Kt−ε

φG,2t?Kt−ε

��

ψ?Kt−ε

''

F ? K−t

φF,2ε−2t?K−t

��

ϕ?K−t

ww
G ? K−t−ε F ? Kt−2ε

commutative since ϕ, ψ defines a ε-interleaving. This implies that the
map (3.2) factors through lim←−Dt and hence we get a map g : F ? Kt →
lim←−Dt → Ũt in Db

Rc(kR).
For t ∈] ε

2
, ε], we construct Ut in a similar fashion by intertwining the

roles of F and G in the diagram C(Mod(kR)).
Let ∆ε = {(x, y) ∈ R2 | 0 ≤ y − x ≤ ε} be equipped with the standard

product order of R2 : (x, y) ≤ (x′, y′) ⇐⇒ x ≤ x′ and y ≤ y′. Observe
that the mapping :

∆ε 3 (x, y) Uy−x ? K−x−y

induces a well defined functor (∆ε,≤) −→ Db
Rc(kR) whose restriction to

the poset {(x, y) ∈ R2 | y − x = t} is the functor : (x, y) −→ Ut ? K−x−y
with internal maps given by the natural morphisms (φUt,ε). Hence, for
ε ≥ t, t′ ≥ 0, Ut and Ut′ are |t− t′| interleaved.

�

We write Int(R) the set of intervals of R. Let p1 and p2 be the two
first coordinate projections of Int(R) × Z × Z≥0. Let B be a subset of
Int(R) × Z × Z≥0. Then B is said to be locally finite if p1(B) ∩K is finite
for all compact subsets of R. It is said to be bounded is p2(B) ⊂ Z is
bounded. Moreover, B is well-defined if the fibers of the projection (p1, p2)
have cardinality at most 1.

We define the category Barcode as follows :

Obj(Barcode) = {B ⊂ Int(R)× Z× Z≥0 |

B is bounded, locally finite and well-defined},
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for any B,B′ ∈ Obj(Barcode),

HomBarcode(B,B′) =
∏

(I,j,n)∈B
(I′,j′,n′)∈B′

HomDbRc(kR)

(
knI [−j],kn′I′ [−j′]

)
.

We define the composition in Barcode so that the mapping :

ι : Obj(Barcode) 3 B 7→
⊕

(I,j,n)∈B

knI [−j] ∈ Obj(Db
Rc(kR))

becomes a fully faithful functor :

ι : Barcode −→ Db
Rc(kR).

Note that this is possible only because the objects of Barcode are lo-
cally finite. Theorems 3.1.4 and 3.1.2 assert that ι is essentially surjective,
therefore is an equivalence. We also deduce from these theorems that Bar-
code is a skeletal category: it satisfies for any B,B′ ∈ Obj(Barcode),

B ' B′ if and only if B = B′.

The notion of equality is well-defined here since Obj(Barcode) is a set.
Therefore ι identifies its image as a skeleton of Db

Rc(kR), a full-subcategory
which is dense and skeletal.

Moreover, from these theorems, we can equip the set Obj(Barcode)
with the graded-bottleneck distance (definition 3.4.6), and we deduce from
the derived isometry theorem 3.4.18 that for any B,B′ ∈ Obj(Barcode) :

dC(ι(B), ι(B′)) = dB(B,B′).

Theorem 3.5.13
The following assertions hold :

1. (Obj(Barcode), dB) is an extended metric space,
2. (Obj(Barcode), dB) is locally path-connected.

Proof
1. The fact that dB is a pseudo-extended metric is inherited from the

properties of dC (proposition 2.2.9) by the derived isometry theorem.
Moreover, if dB(B,B′) = 0 then B = B′ by theorem 3.5.3.

2. We will prove that open balls are path-connected, that is, any two
barcodes at finite distance can be connected by a continuous path.
Let B0 and Bε in Obj(Barcode) such that dB(B0,Bε) = ε. According
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to the interpolation lemma 3.5.12, there exists a family of objects
(Ft)t∈[0,ε] of Db

Rc(kR) such that F0 = ι(B0), Fε = ι(Bε), and for any
t, t′ ∈ [0, ε], dC(Ft, Ft′) ≤ |t− t′|. Given t ∈ [0, ε], define Bt to be the
graded-barcode of Ft. Then, thanks to the derived isometry theorem,
(t 7→ Bt) defines a 1-lipschitz path between B0 and Bε.

Remark 3.5.14
One shall be aware that it is not sufficient for being in the same connected
component to have graded-barcodes of the same “type”, as one can see in
the following counter-example. Define:

F =
⊕
n∈Z≥0

k(n(n+1)
2

,
(n+1)(n+2)

2 ) and G =
⊕
n∈Z≥0

k( (n+1)2

2
−1,

(n+1)2

2
+1
)

Then dC(F,G) = +∞, hence F and G do not belong to the same con-
nected component, whereas one might think that the obvious matching
between their barcodes leads to a continuous path between the two sheaves.
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Abstract

In this chapter we provide an explicit connection between persis-
tence theory on the one hand, and sheaf theory on the other hand.

To do so, we observe that the collection of 2-parameter persistence
modules arising in level-sets persistence of real-valued functions carry
extra-structure, that we call Mayer-Vietoris systems. We establish
a functorial correspondence between Mayer-Vietoris systems and de-
rived sheaves on R, which exchanges the level-sets persistence of a
real-valued function f : X → R with the derived pushforward by this
function of the constant sheaf onX. This correspondence yields what
we call an isometric pseudo-equivalence of categories between level-
sets persistence modules with the interleaving distance, and derived
constructible sheaves with the convolution distance of Kashiwara and
Schapira. Ultimately, it allows to relate the barcodes and bottleneck
distances of each of these theories. This content was developed in
collaboration with Grégory Ginot and Steve Oudot in [BGO19].
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4.1 Introduction

Level-sets persistence studies the homology groups of preimages Hsing
i (f−1(]s, t[),

where ]s, t[ is the French notation 1 for the open interval (s, t). The col-
lection of these groups for s < t ∈ R, together with the collection of
morphisms induced by inclusions of smaller intervals into larger intervals,
form a two-parameter persistence module indexed over the upper half-plane
∆+ = {(x, y) | x + y > 0} via the identification of each interval ]s, t[ with
the point (−s, t). This module is called the i-th level-sets persistence mod-
ule of f and denoted by Li(f) (see 4.2.14). Note that the plane R2 is
equipped with the partial product order, noted ≤. Henceforth we will write
Pers(kR2

) for the category of persistence modules indexed over (R2,≤), and
Pers(k∆+

) for its counterpart over (∆+,≤). Unfortunately, though very
natural, the theory of general 2-parameter persistence modules is signifi-
cantly more complicated than 1-parameter persistence. For instance, there
is no analogue of barcodes, due to the poset (R2,≤) being a wild-type quiver
with arbitrarily complicated indecomposables. Nevertheless, one can still
define an interleaving distance in this context, satisfying the same stability
and universality properties as in 1-parameter persistence as explained in
section 2.1.4.

Another very promising direction of investigation is given by merging
sheaf theory with persistence and computer-friendly techniques. It was
pioneered by the work of Curry [Cur14], and a general framework was de-
veloped by Kashiwara and Schapira [KS18a, KS18b]. In order to benefit
fully from the cohomology of sheaves, it is necessary to work with the de-
rived category. Kashiwara-Schapira have equipped the derived category of
sheaves on a real vector space with a distance, called the convolution dis-
tance, which is a derived analogue of the interleaving distance, see definition
2.2.8. Furthermore, there is a natural notion of barcode and a decomposi-
tion theorem for constructible sheaves over R. To a function f : X → R,
one can associate a canonical sheaf over R, namely the derived pushforward
Rf∗kX , which is a sheaf analogue of the level-sets persistence homology
introduced earlier (here k is our ground field). We have already studied
in depth in chapter 3 the persistence theory for sheaves over R, following
Kashiwara and Schapira’s program. In particular, a derived bottleneck dis-
tance for constructible sheaves was developed and proven to be isometric
to the convolution distance.

1. We adopt this notation for the sake of clarity, to avoid potential confusions with
the point (s, t) ∈ R2.
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The main motivation of this chapter is to relate precisely the above de-
velopments, namely: persistence modules over ∆+ := {(x, y), x + y > 0}
on the one hand; sheaves over R on the other hand. Specifically, given a
function f : X → R, we are interested in connecting the collection of level-
sets persistence module (Li(f))i∈Z with the derived pushforward Rf∗kX . In
order to do so, we will construct a functor (−) from 2-parameter persistence
modules to sheaves over R (see section 4.3.1). Note that this functor is not
an equivalence of categories, and that it is not isometric nor reasonably Lip-
schitz either. Indeed, there can be no equivalences or almost equivalences
between these two categories, since the general category of 2-parameter per-
sistence modules is wild representation type as we have mentioned already,
and since its objects do not, in general, satisfy any of the local-to-global
properties of sheaves.

As mentioned above, of particular interest to us are the level-sets per-
sistence modules (Li(f))i∈Z arising from continuous functions f : X → R,
which actually have more structure than general persistence modules over
∆+.

Our idea is thus to consider a variant of the category of 2-parameter
persistence modules taking into account the extra structure and properties
carried by level-sets persistence modules.

This follows the fundamental credo of algebraic topology that extra
structure on homology gives refined homotopy and geometric information.
A general idea here is that to get a better-behaved category of 2-parameter
persistence modules, it is key to consider and restrict to those objects having
the extra structure and properties coming from data arising in practical
applications.

Let us now explain where this extra structure comes from: the various
homology groups of a topological space obtained as the union of two open
subsets are connected through the well-known Mayer-Vietoris long exact
sequence. This sequence involves the homology groups of the union, the
sum of the homology groups of the two open subsets, and the homology
of their intersection. We axiomatize this data to define a structure we
call Mayer-Vietoris (MV) persistence systems over ∆+, whose category is
denoted by MV(R). A MV-system is a graded persistence module (Si)i∈Z
over ∆+, together with connecting morphisms δsi : Si+1[s] → Si for all
vectors s ∈ (R>0)2 and grades i ∈ Z, giving rise to the following exact
sequences (see Definition 4.2.1):

Si+1[s]
δsi+1 // Si // Si[sx]⊕ Si[sy] // Si[s]

δsi // Si−1
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and satisfying some appropriate compatibility conditions. These se-
quences encode the interactions between the various homology groups at
various points of ∆+, and they carry both a derived and local-to-global
information—in some sense that will be made precise in the chapter.

A key property that we leverage in our analysis, is that the category
of Mayer-Vietoris systems is rather well behaved. In particular, we prove
a structure theorem for Mayer-Vietoris persistence systems under standard
pointwise finite dimensionality assumptions (see Theorem 4.2.6). Accord-
ing to this result, there are four different types of indecomposable Mayer-
Vietoris systems, which all have pointwise dimension at most 1 and are
therefore characterized by their supports. The supports can be either ver-
tical or horizontal bands, or else birth or death blocks (see Definition 4.2.3
and Lemma 4.3.9). Degree-wise, these indecomposables behave like the so-
called block modules from level-sets persistence and middle-exact bipersis-
tence theories [BCB18,BL17,CdSKM19,CdSM09,CO17]. For this reason,
in the following we abuse terms and also call our indecomposables block
MV-systems. Our structure theorem (Theorem 4.2.6) takes the following
form:
Theorem 4.1.1
A, bounded below, pointwise finite-dimensional (pfd) Mayer-Vietoris sys-
tem has a unique decomposition as a direct sum of block MV-systems.

This result follows non-trivially from the decomposition theorem for middle-
exact bipersistence modules [BCB18, CO17]. It provides a barcode for
Mayer-Vietoris systems, made of the blocks involved in their decomposition.
Furthermore, we have a canonical interleaving distance for Mayer-Vietoris
systems inherited from the classical one of persistence modules.

The aforementioned functor (−) from 2-parameter persistence modules
to sheaves lifts as a (contravariant) functor (−)

MV
from Mayer-Vietoris

systems to the derived category D(kR) of sheaves on R, which is essentially
the sheafification of the duality functor. We construct a pointwise section
of this functor, i.e. a functor Ψ from sheaves to Mayer-Vietoris systems
such that the composition with (−)

MV
gives the identity pointwise on every

sheaf F ∈ Db
Rc(kR) (see Corollary 4.4.18):(

( · )MV ◦Ψ
)

(F ) ' F.

Roughly speaking, this functor Ψ is defined as the dual of the derived
global sections of sheaves (see Definition 4.4.7). Both functors restrict to
the subcategories of pointwise (resp. strongly pointwise see Definition 4.4.1)
finite-dimensional Mayer-Vietoris systems on one side, and of constructible
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sheaves on R on the other side. Under standard pointwise finiteness con-
ditions, we are able to prove that these two functors establish an isometric
pseudo-equivalence between these categories. More precisely, our second
main theorem (see Theorem 4.4.21 and Corollary 4.4.20) states as follows,
where MV(R)sf denotes the category of strongly pointwise finite dimensional
MV-systems (definition 4.4.1):

Theorem 4.1.2
The functors (−)

MV
: MV(R)sf → Db

Rc(kR)op and Ψ : Db
Rc(kR)op → MV(R)sf

form an isometric pseudo-equivalence of categories, meaning:
— for all strongly pointwise finite-dimensional Mayer-Vietoris systems

M,N , one has equality

dMV
I (M,N) = dC(M

MV
, N

MV
) = dB(B(M

MV
),B(N

MV
))

between the interleaving, convolution and derived bottleneck dis-
tances;

— for all constructible sheaves F,G ∈ Db
Rc(kR), one has dB(B(F ),B(G)) =

dC(F,G) = dI(Ψ(F ),Ψ(G));
— M

MV
= N

MV if and only if dI(M,N) = 0.

In particular, the derived distances can be computed using the 2-parameters
interleaving distance for MV systems. We also strengthen this result by
proving that the MV interleaving distance can be computed as the maxi-
mum of the degree-wise usual interleaving distances between the persistence
modules which constitute the MV systems (theorem 4.5.4).

To prove theorem 4.1.2, we explicitly compute in Sections 4.4.1 and 4.4.2
the action of the sheafification of Mayer-Vietoris systems functor (−)

MV
and

of its section Ψ on shifts and convolution for the building block modules of
each theories. These are computations of independent interest.

Finally, we prove that the functors Rf∗kX and L∗(f) are equivalent to
each other under these transformations, i.e. L∗(f)

MV ∼= (Rf∗kX) (Propo-
sition 4.4.6). Combined with theorem 4.1.2, this establishes the sought-for
correspondence between level-sets persistence and derived pushforward for
continuous real-valued functions.

Theorem 4.1.3 below summarizes our main results connecting level-sets
persistence, Mayer-Vietoris systems, and derived sheaves. The notation
Top|R stands for the category of topological spaces over R, whose objects
are spaces X together with a continuous map f : X → R, and whose

morphisms are commutative triangles X
φ
//

f

''
Y g

// R . We let Topc|R



102 CHAPTER 4. LEVEL-SETS PERSISTENCE AND SHEAVES

denote the subcategory of those functions f : X → R such that Rf∗kX is
constructible, Db

Rc(kR) denote the bounded derived category of constructible
sheaves on R, and we denote R(−)∗k(−) the functor f 7→

⊕
Rif∗(kX)[−i].

Theorem 4.1.3
The following diagram of categories and functors commutes up to isomor-
phism of functors:

Top|R L∗(−)
//

R(−)∗k(−)

''
MV(R)

(−)
MV
// D(kR)op

Topc|R
L∗(−)//

?�

OO

R(−)∗k(−)

77
MV(R)sf
?�

OO

(−)
MV

// Db
Rc(kR)op.
?�

OO

Furthermore, (−)
MV

restricted to MV(R)sf and the vertical functors are
isometries, while L∗(−) is 1-Lipschitz.

Proof
The existence and commutativity of the diagram is the content of Lemma 4.4.3,
Propositions 4.2.15 and 4.4.6, and Theorem 4.4.21. The rest of the state-
ment is given by Theorem 4.4.21 and the stability theorems 4.2.17, 2.2.12.

�

Theorem 4.1.3 relates precisely, and in fact essentially identifies, level-sets
persistence and constructible sheaves. Moreover, it does so in a functorial
way. In the final section of the chapter (Section 4.5.1) we give an example
with full detail that illustrates this result.

4.1.1 Notations

Here we detail our notations and conventions, for the reader’s convenience:
— We fix a ground (commutative) field denoted k.
— For s = (s1, s2) ∈ R2

>0, we will use the notations sx := (s1, 0) and
sy := (0, s2).

— Given a category C , we denote C op its opposite category.
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Notations for intervals

— We will use the french notation ]a, b[ for open intervals (a, b) in R.
The reason is to avoid confusion with points (a, b) ∈ R2 which will
both be possible values of persistent or sheaf objects (and usually
appear with similar letters).

— For real numbers a ≤ b, the notation 〈a, b〉 will mean an interval
whose boundary points are a and b. We use this notation 〈 , 〉 when
we do not want to precise if the interval is open, compact, or half-
open; in other words as a variable.

Notations and conventions for shifts of graded and persistent
objects

Standard and convenient notations for shifting the degree of a (possibly
differential) graded object or for shifted (or translated) persistent object are
both given by [−] in the literature. We will have to use objects which are
both differential graded and persistent, and we now explain how to avoid
confusion about this notation in the chapter. Note that we also have to
deal with objects which are naturally homologically graded (for instance
persistence modules) and cohomologically graded (sheaves).

For any (differential) cohomologically graded object C, we will use the
notation C[i] for the (differential) graded object C[i]n := Ci+n where i ∈ Z.
The letter i can be replaced by j, k, Q, m or n in the chapter, and the
notation with one of these letters always means such a grading shift. These
letters can also show up in subscripts.

Similarly, for a (differential) homologically graded object M∗ we will use
the notation M∗[i] for the graded object (M∗[i])n = Mi+n, following for
instance the conventions of [Sta19, Section 12.13]. We warn the reader
that there is also an opposite convention in the literature (which is the
topological convention for suspension). The main advantage of this choice
of convention in this chapter is that the duality functor commutes with the
shift in grading (instead of changing to its opposite):

Homk(C∗[i],k) ∼= Homk(C∗,k)[i]

where following the usual convention for dual of (differential) graded objects
we define

Homk(C∗,k)n := Homk(Cn,k), Homk(D∗,k)n := Homk(Dn,k)

for any integer n.
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For a persistence module P (over ∆+ or R2, see 2.1.1) we will also use
the standard notation P [s] (where s is in R2) for its shifted by the vector s,
which is also a persistence module (Definition 2.1.10). Note that the shift
is by a vector, i.e. a point in R2 not an integer. We will also use letters
such as t, x or ~ε, sx, sy for these operations. This should cause no confusion
since the sets of letters used in the two types of shifts are disjoint.

For instance for a graded persistent object P , the notation (P [i])[s] =
(P [s])[i], where i ∈ Z and s ∈ R2

>0, stands for the persistent object defined
by (P [i])[s](x)n := P n+i(x+ s).

4.2 The category MV(R)
In this section we study the notion of Mayer-Vietoris system which are

sequence of persistence modules over {(x, y) | x + y > 0} with additional
structure.

4.2.1 Mayer-Vietoris systems over R and their
classification

Definition 4.2.1
We define the category MV(R) of Mayer-Vietoris persistent systems over
R as follows:
• Objects: collections S = (Si, δ

s
i )i∈Z,s∈R2

>0
where Si is in Pers(∆+) and

δsi ∈ Hom∆+(Si[s], Si−1), such that for all i ∈ Z and all s ∈ R2
>0, the

following sequence

Si+1[s]
δsi+1 // Si // Si[sx]⊕ Si[sy] // Si[s]

δsi // Si−1 (4.1)

is exact and furthermore the following diagram is commutative, for
s′ ≥ s:

Si[s]
δsi //

��

Si−1

idSi−1

��
Si[s

′]
δs
′
i // Si−1.

(4.2)

• Morphisms: for (Si, δ
s
i ) and (Ti, δ̃

s
i ) two Mayer-Vietoris systems over

R, a morphism from (Si, δ
s
i ) to (Ti, δ̃

s
i ) is a collection of morphisms

(ϕi)i∈Z where ϕi ∈ HomPers(k∆+
)
(Si, Ti) such that the following dia-

gram
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Si[s]
δsi //

ϕi[s]

��

Si−1

ϕi−1

��
Ti[s]

δ̃si // Ti−1

(4.3)

commutes for all i ∈ Z and s ∈ R2
>0.

For a Mayer-Vietoris system S and i ∈ Z, we will write Si for the associated
object of Pers(k∆+

) of S which lies in degree i.

A natural class of examples of such MV systems is provided by homology
of level-sets of a continuous function on a topological space X. See, exam-
ple 4.2.14 below. Furthermore, we will see that any complex of sheaves F
on R gives rise to a MV-system Ψ(F ) (see Proposition 4.4.11).

Remark 4.2.2
— Observe that if (Si, δ

s
i ) is a Mayer-Vietoris system, Si is in particular

a middle exact modules, for i ∈ Z.
— The category MV(R) is indeed a category. It is easy from the defi-

nition to observe that it is additive. However, as we shall see later
on, it is not abelian.

Our remaining goal in this section is to classify Mayer-Vietoris system
in a way similar to Theorem 2.1.33. For this, we introduce building blocks
for those.
Definition 4.2.3
Let B be a block (Definition 2.1.26) and j ∈ Z. We define the Mayer-
Vietoris system of degree j associated to B, denoted SB

j , by:
— If B is of type bb−, hb or vb then SB

j = (Mi, 0)i,s with Mi = 0 for
all i 6= j and Mj = kB

— If B is of type db+, then SB
j = (Mi, δ

s
i ) with Mi = 0 for all i 6∈

{j + 1, j}, δsi = 0 for all s ∈ R2 and for i 6= j + 1, we define Mj+1 =
kB† , Mj = kB, and δsj+1 : kB† [s] → kB by pointwise identities on
B†[s] ∩B ∩∆+.

— Dually, if B is of type bb+, then define SB
j as SB†j−1.

— If B is of type db−, then we set SB = 0.

Of course the case of db− matches remark 2.1.31.
Remark 4.2.4
One can easily see that the Mayer-Vietoris systems SBj are indecomposable
objects of the additive category MV(R). We will refer to these Mayer-
Vietoris systems to block MV-systems for short.
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Also note that for a block B of type db+ or bb+ and j ∈ Z, the graded
persistence module (Mi, 0)i,s with Mi = 0 for all i 6= j and Mj = kB is not
a Mayer-Vietoris system.

Lemma 4.2.5
The graded persistence modules SBj associated to blocksB in Definition 4.2.3
are Mayer-Vietoris systems for any j and block B.

Proof
We advise the reader to draw the different cases in a way similar to fig-
ure 4.1. Since SBj = SB

†
j−1, the case of db+ and bb+ are equivalent.

Note that every block which is not of type db is stable by upward
vertical and/or left-to-right horizontal translations. It follows that kB →
kB[sx]⊕ kB[sy] is injective. Thus for blocks of type vb, hb or bb−, SBj →
SBj [sx] ⊕ SBj [sy] is one to one as well in every degree, a well as is the map
SBj → SBj [sx]⊕ SBj [sy] in degree i 6= j for B of type db (and therefore also
for SBj−1 if B is of type bb+ by definition 4.2.3).

Note now that for a block B, if z ∈ R2 and s ∈ R2
>0 satisfies that

z+s ∈ B, then either z+sx or z+sy is in B as well if B is of type different
from bb. Furthermore, for a block of type bb, the latter property only fails
if x ∈ B ∩ B† where B† is its dual (death)block. When B is of type bb−,
those points are not in ∆+. Therefore, the maps kB[sx] ⊕ kB[sy] → kB[s]
are surjective for all blocks of type different from bb+.

Let us now prove that the subsequences kB // kB[sx]⊕ kB[sy] // kB[s]

are exact for any B; we have already seen that the composition is zero. Now,
assume (αx, αy) ∈ kB[sx](v)⊕ kB[sy](v) is a nonzero element in the kernel
of τsx ⊕ τsy . Then, if v + s ∈ B then so are v + sx and v + sb and therefore
τsx and τy are the identity map k → k. In particular αx = αy =: α. But
since kB[s](v) = kB(s+ v) = k as well, then kB(v)→ kB[sx](v)⊕kB[sy](v)
is the map (id, id) and hence (α, α) is in its image. If v + s /∈ B, then B
is not a birthblock and at least one element among v + sx and v + sy is
not in B. If none are, then there is nothing to prove and if not then B
is either a vertical or horizontal block. In the first case, v + sy ∈ B and
therefore kB → kB[sy] is the identity map so that we have a preimage for
αy. The other case is dual. This conclude the proof of the lemma for all
blocks which are not of type db+.

To prove the result for blocks of type db+, since SBi = SB[−i] and by
the injectivity result we have obtained at the beginning of that proof, it is
enough to prove that the sequences

kB
†
[s](v)→ kB(v)→ kB[sx](v)⊕ kB[sy](v)
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k

k
k⊕ k

s s

∆ ∆

Figure 4.1 – On the left: A deathblock B in yellow (and blue) and the
translated deathblock B − s = B[s] in blue where s is the vector drawn.
The dotted lines are the boundary of the dual birth block B†[s]. On the
right: The value of kB[sx] ⊕ kB[sy] in every region where the green region
is the translated death block B − sx, the red is the translated death block
B − sy. The value is 0 on the white region and below the antidiagonal.

are exact for any s ∈ R2
>0, v ∈ ∆+. If v /∈ B, there is nothing to prove.

Thus we assume v ∈ B. First, if both kB[sx] and kB[sy] are null, then
x ∈ B ∩ B†[s] = B ∩ (B − s)†. Therefore, kB

†
[s](v) → kB(v) is the

identity and the sequence is exact. If both kB[sx] and kB[sy] are non-null,
then kB(v)→ kB[sx](v)⊕ kB[sy](v) identifies with the necessarily injective
diagonal inclusion and v /∈ B[s]† so that kB

†
[s](v) = 0 and the sequence

is thus exact. Finally if only one kB[sx] or kB[sy] is non-null, one of the
map kB → kB[sx] or kB → kB[sy] is the identity-hence injective-and we
still have v /∈ B[s]†. Thus kB

†
[s](v) = 0. The sequence is again exact and

the lemma is proved.

�

Denote by MV+(R) the full sub-category of Mayer-Vietoris systems over
R whose objects are the MV systems S = (Sj, δ

s
j ) such that there exists N ∈

Z with Sj = 0 for all j < N . In other words, MV+(R) is the subcategory
of lower-bounded Mayer-Vietoris systems. Moreover, S will be said to be
point-wise finitely dimensional if all the Sj are.
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Theorem 4.2.6 (Theorem 2.19 - [BGO19])
Let S be an object of MV+(R) which is pointwise finite dimensional. Then
there exists a unique collection of multisets of blocks B(S) = (Bj(S))j∈Z of
type bb−, hb, vb, and db+, such that we have an isomorphism in MV(R):

S '
⊕
j∈Z

⊕
B∈Bj(S)

SBj

We call B(S) the barcode of S. It completely determines S up to
isomorphism of Mayer-Vietoris systems.

Remark 4.2.7
By Definition 2.1.26, birth blocks of type bb+ generate the same MV sys-
tems as their dual death blocks, therefore they come in pairs in the decom-
position given by Theorem 4.2.6, which explains why the blocks of type
bb+ are ignored in the barcode.

To prove the theorem 4.2.6, we will use the following technical lemmas :

Lemma 4.2.8
Let S = (Sj, δ

s
j ) be a pfd MV-system over R. If B(Sj) contains only blocks

of type db+, then S = 0.

Proof
Given s ∈ R2

>0, the universal property of cokernels and the exactness of
equation 4.1 imply that δsj factorizes through

coker (Sj[sx]⊕ Sj[sy] −→ Sj[s]) .

Now, this cokernel is trivial since by assumption Sj is isomorphic to a direct
sum of blocks of type db+. Therefore, δsj = 0.

Consequently, for every B ∈ B(Sj) and every s ∈ R2
>0, the exact se-

quence of persistence modules

0 −→ kB −→ kB[sx]⊕ kB[sy]

yields B = ∅ since B is assumed to be of type db+.

�

Lemma 4.2.9
Let S be a pfd MV-system over R, such that there exists a block B =
〈a,∞〉 × 〈b,∞〉 of type bb+ such that B ∈ B(Sj) for some j ∈ Z. Then
there exists a pfd MV system Σ such that:

S ' SBj ⊕ Σ = SB
†

j−1 ⊕ Σ
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Proof
Let s ≥

√
2(a + b, a + b), since coker

(
kB[sx]⊕ kB[sy] −→ kB[s]

)
' kB†

we have the following commutative diagram, where the rows are exact se-
quences and where ϕ exists (and is injective) by the universal property of
cokernels:

0 // kB� _

��

// kB[sx]⊕ kB[sy] //
� _

��

kB[s] //
� _

��

kB† //

ϕ

��

0

. . . // Sj // Sj[sx]⊕ Sj[sy] // Sj[s]
δsj // Sj−1

// . . .

(4.4)

Since B† is a directed ideal of ∆+, kB† is an injective object of Pers(k∆+

)
by lemma 2.1 of [BCB18]. Therefore, ϕ splits and imϕ ' kB† is a summand
of Sj+1. The commutativity of (4.4) then implies the existence of a comple-
ment Xj of im(kB ↪→ Sj) in Sj, such that S decomposes locally as follows:

Xj ⊕ kB

'
��

// Xj[sx]⊕Xj[sy]⊕ kb[sx]⊕ kb[sy]

'
��

// Xj[s]⊕ kB[s]

'
��

// Xj−1 ⊕ kB†

'
��

Sj
σ // Sj[sx]⊕ Sj[sy] // Sj[s]

δsj // Sj−1

Note that we may assume without loss of generality that Xj ⊇ kerσ.
Then, by exactness of S, we have imδsj+1 = ker σ ⊆ Xj, therefore our local
decomposition extends to a full decomposition of S, which means that the
upper row complex in (4.4) is a summand of S.

�

Proof (of theorem 4.2.6)
Let S = (Sj, δ

s
j ) ∈ MV+(R), and assume without loss of generality that

the lower bound N is equal to 1. Then, all the Sj’s are middle-exact pfd
persistence modules over ∆+, therefore they decompose uniquely (up to
isomorphism) as direct sums of block modules, by theorem 2.1.33. Note
that for j ≤ 0 the decomposition is trivial.

The finite barcode case:
We first show the result in the case where B(Sj) is finite for every j ∈ Z.

For each j ∈ Z, fix an isomorphism ϕj : Sj
∼−→
⊕

B∈B(Sj)
kB. Thus, the

family (ϕj)j induces an isomorphism of MV systems from S to

S ′ :=

 ⊕
B∈B(Sj)

kB, ϕj−1 ◦ δsj ◦ ϕ−1
j [s]


j∈Z,s∈R2

>0
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Let B ∈ B(Sj) of type either bb−, hb or vb, then for s ∈ R2
>0, the map:

kB[sx]⊕ kB[sy] −→ kB[s]

is surjective. Thus, ϕj−1 ◦ δsj ◦ ϕ−1
j [s] is zero on kB[s]. This proves that

SBj is a summand of S ′. Finally, noting B−(Sj) the multi-set of intervals of
B(Sj) of type either bb−, hb or vb, we have:

S ′ =

⊕
j∈Z

⊕
B∈B−(Sj)

SBj

⊕
⊕

j∈Z

⊕
B∈B(Sj)\B−(Sj)

kB, ϕj−1 ◦ δsj ◦ ϕ−1
j [s]

 .

There remains to prove that the right-hand side of the direct sum, noted
S ′′, decomposes in MV(R). For j ∈ Z, the barcode B(Sj)\B−(Sj) contains
only blocks of type either bb+ or db+. Denote by B(Sj)

+ the multiset of
blocks of type bb+ involved in B(Sj). Let us prove by induction that, for
any j0 ≥ 1(= N), there exists a MV system Σj0 such that

S ′′ '

 ⊕
1≤j<j0

⊕
B∈B(Sj)+

SBj

⊕ Σj0 .

For j0 = 1 the property holds with Σj0 = S ′′. Let us now assume the
property holds up to some j0 ≥ 1. Since B(Sj0)+ has finite cardinality,
Lemma 4.2.9 (applied repeatedly) decomposes Σj0 as

Σj0 '

 ⊕
B∈B(Sj0 )+

SBj0

⊕ Σj0+1,

which yields the induction step.
Now, given j0 ≥ 1, for any j < j0 the barcode of Σj0

j can only contain
deathblocks by construction. Therefore, by Lemma 4.2.8, we have Σj0

j = 0.
It follows that

S ′′ '
⊕
j∈Z

⊕
B∈B(Sj)+

SBj ,

thus concluding the decomposition in the finite barcode case.

The infinite barcode case:
We now generalize to the case where the barcodes B(Sj) can be infinite.

For the same reason as in the finite case, each block of type bb−, hb or vb
involved in some barcode B(Sj) splits as a summand SBj of S. Hence, we are
reduced to proving the existence of the decomposition in the case where S
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is a pfd MV system, and B(Sj) contains only blocks of type bb+ or db+ for
all j ∈ Z. Given n ∈ Z>0, define ∆+

n := ∆+ ∩ {(x, y) ∈ R2 | x ≤ n, y ≤ n}.
Define also

B(Sj)n := {B ∈ B(Sj) | B is of type bb+ and B ∩∆+
n 6= ∅

or B is of type db+ and B ⊂ ∆+
n }.

Then we have that B(Sj) =
⋃
n B(Sj)n, and since S is pointwise finite

dimensional, B(Sj)n contains finitely many blocks of type bb+, for all n ≥
0. We now identify each Sj with its block decomposition via some fixed
isomorphism, and for n ≥ 0 we define nS̃ as follows:

nS̃ =

 ⊕
B∈B(Sj)n

kB, (δsj )|⊕B∈B(Sj)n
kB


Let us prove that S̃ is a sub-MV system of S. To do so, it is sufficient

to prove that for all j ∈ Z, the image of (δsj )|
⊕
B∈B(Sj)n

is contained in⊕
B∈B(Sj−1)n

kB. Fix j ∈ Z and s ∈ R2
>0. Then (δsj )|

⊕
B∈B(Sj)n

factorizes
uniquely through:

coker

 ⊕
B∈B(Sj)n

kB[sx]⊕ kB[sy] −→
⊕

B∈B(Sj)n

kB[s]


'

⊕
B∈B(Sj)n

coker (kB[sx]⊕ kB[sy] −→ kB[s])

=
⊕

B∈B(Sj)n
B is of type bb+

coker (kB[sx]⊕ kB[sy] −→ kB[s])

As previously, for every B ∈ B(Sj)n of type bb+, we can find s ∈ R2
>0

such that the canonical map:

coker
(
kB[sx]⊕ kB[sy] −→ kB[s]

)
−→

⊕
B∈B(Sj−1)

kB

is a monomorphism. And as seen in the proof of Lemma 4.2.9, coker
(
kB[sx]⊕

kB[sy] −→ kB[s]
)
is isomorphic to kB† , hence an injective object of Pers(k∆+

),
so its image splits off as a summand of

⊕
B∈B(Sj−1) kB and is therefore in-

cluded in
kmB† ⊂

⊕
B∈B(Sj−1)

kB
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where m is the multiplicity of B† in B(Sj−1). Since B† ∈ B(Sj−1)n, we
conclude that im((δsj )|

⊕
B∈B(Sj)n

) ⊂
⊕

B∈B(Sj−1)n
kB. This proves that nS̃ is

a sub-MV system of S.
Then, we can apply our decomposition result in the finite barcode case

to nS̃. And since we have the filtration

S =
⋃
n≥0

nS̃

which stabilizes pointwise, we get a decomposition for S.

�

Remark 4.2.10
Let us finish by a remark on the “derived” meaning of Mayer-Vietoris sys-
tems. The axioms and structure we put on MV(R) are actually encoding a
natural homotopy property. To state it, we have to consider the (derived)
category of 2-parameter persistence chains complexes, that is the (associ-
ated derived) category of functors ∆+ → dg-Mod(k). Taking the direct
sum of homology groups of 2-parameter persistence chain complex gives
a graded 2-parameter persistence module. Such graded 2-parameter per-
sistence modules (Hi(C•)i∈Z that can be lifted to a Mayer-Vietoris system
are precisely those such that the underlying 2-parameter persistence chain
complex C• satisfies the following property:

For any s ∈ ∆+, the canonical map C•[sx]⊕ C•[sy]→ C•[s] exhibits C•[s]
as the homotopy quotient hocoker

(
C• → C•[sx]⊕ C•[sy]

)
of the

persistence chain complex morphisms C• → C•[sx]⊕ C•[sy].

A down to earth way of expressing this homotopy quotient property is to say
C•[s] is quasi-isomorphic to the cone of C• → C•[sx]⊕C•[sy] as a persistent
chain complex over ∆+. In other words, the structure of Mayer-Vietoris
systems is essentially encoding the data of a homotopy property carried
by their underlying chain complexes; property expressing that the chain
complex at a (x, y)+s is determined by those of the chain complexes at the
point (x, y), (x, y) + sx, (x, y) + sy for any s ∈ ∆+ which exhibits a local
to global coherence of the values of those special 2-parameter persistence
chain complexes.

4.2.2 Interleaving distance for MV systems

Given t ∈ (R≥0)2, and M = (Mi, δ
s
i ) a Mayer-Vietoris system over

R (as in Definition 4.2.1), the collection of shifted modules (Mi[t], δ
s
i [t]) is
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indeed a Mayer-Vietoris system, that we call the t-shift ofM . The mapping
M 7→M [t] induces an endofunctor of Pers(k∆+

).
Observe that the collection τMt := (τMi

t )i∈Z is a morphism of Mayer-
Vietoris systems

τMt : M −→M [t].

We shall denote the diagonal embedding ε 7→ ~ε where ~ε = (ε, ε). We
also
−→
(−) : (R>0,≤)→ (∆+,≤) the induced functor.

Definition 4.2.11
Let M and N two Mayer-Vietoris systems over R. An ε-interleaving
between M and N is the data of two morphisms of MV systems f = (fi) :
(Mi, δ

s
i ) −→ (Ni[~ε], δ̃

s
i [~ε]) and g = (gi) : (Ni, δ̃

s
i ) −→ (Mi[~ε], δ

s
i [~ε]) such that

the following diagram commutes:

M

!!

τM2~ε

&&
f // N [~ε]

##

g[~ε] //M [2~ε]

N

==

τN2~ε

88
g //M [~ε]

;;

f [~ε] // N [2~ε]

(4.5)

If M and N are ε-interleaved, we shall write M ∼MV
ε N .

Remark 4.2.12
In particular for i ∈ Z, fi and gi define an ε-interleaving of persistence
modules between Mi and Ni. Therefore, interleavings of Mayer-Vietoris
systems are just a derived 2 extension of the usual interleavings for persis-
tence modules over ∆+.

Definition 4.2.13
Define the interleaving distance between two Mayer-Vietoris systemsM and
N to be the non-negative or possibly infinite number:

dMV
I (M,N) := inf{ε ≥ 0 |M ∼MV

ε N}.

We say that a Mayer-Vietoris systemM = (Mi, δi)i∈Z is bounded if there
is only finitely many Mi which are non-zero.

We now turn to a main source of examples of Mayer-Vietoris systems.

2. because we precisely requires the morphisms to commute with the maps δis con-
necting homology groups of different degrees. This claim will be even more supported
by the isometry theorem 4.4.21
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Example 4.2.14 (MV system associated to continuous functions)
Let u : X → R be a continuous function on a topological space X. For any
z = (z1, z2) ∈ ∆+, recall that we set

Li(u)(z) := Hi(u
−1(]− z1, z2[).

If z′ = (z′1, z
′
2) ≥ x, then we have the inclusion ]−z1, z2[⊂ ]−z′1, z′2[ inducing,

for all i’s, homomorphisms Li(u)(z) = Hi(u
−1(] − z1, z2[) → Hi(u

−1(] −
z′1, z

′
2[) = Li(u)(z′) in homology. By Lemma 4.3.1, this makes Li(u)(−) a

persistence module over ∆+, which is called the i-th level sets persistence
module associated to h : X → R.

Now, let s = (s1, s2) ∈ R2
>0. For any z = (z1, z2) ∈ ∆+, we have

that the open interval ] − z1 − s1, z2,+s2[ has a cover given by the two
open sub-intervals ] − z1 − s1, z2[ and ] − z1, z2,+s2[ whose intersection is
] − z1, z2[. Therefore the Mayer-Vietoris sequence associated to this cover
gives us linear maps (δs,zi )i∈N and exact sequences

Li+1(u)[s](z)
δs,zi+1 // Li(u)(z) // Li(u)[sx](z)⊕ Li(u)[sy](z) // Li(u)[s](z)

δs,zi // Li−1(u)(z).

(4.6)
We write δsi : Li(u)[s] → Li−1(u) the maps given at every point z by δs,zi
and for i ≤ 0 we set δi = 0.

Proposition 4.2.15
The δsi ’s are persistence modules morphisms and makes the collection L∗(u) :=
(Li(u), δsi )i∈Z,s∈R2

>0
a Mayer-Vietoris persistence system over R. Further-

more, the assignment u 7→ L∗(u) is a functor

L∗ : Top|R −→ MV(R).

Proof
The fact that the δsi are persistence modules maps as well as the commu-
tativity of diagram (4.2) follow from the naturality of the Mayer-Vietoris
sequence. The exactness of (4.6) implies the condition (4.1).

Recall from the introduction that Top|R is the category of topological
spaces over R which by definition has objects given by continuous functions
u : X → R where X is a topological space. The set of morphisms from
u : X → R to v : Y → R is the set of all continuous maps φ : X → Y

such that the diagram X
φ
//

u

''
Y v

// R is commutative. Since u−1(] −
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x, y[) = φ−1
(
v−1(] − x, y[)

)
, we have that φ restricts to a continuous map

φ : u−1(]− x, y[) ↪→ v−1(]− x, y[). Therefore we have induced maps

φ∗(x, y) : Li(u)(x, y) = Hi(u
−1(]− x, y[)→ Hi(v

−1(]− x, y[) = Li(v)(x, y)

after taking homology for all (x, y) ∈ ∆+. The functoriality of the homology
functor and Mayer-Vietoris sequence prove that this φ∗ is a morphism of
Mayer-Vietoris system and furthermore that the assignment u 7→ L∗(u),
φ 7→ (s 7→ φ∗(s)) is a functor.

�

Example 4.2.16
AssumeX is a smooth or topological manifold and u : X → R is continuous.
Then the Mayer Vietoris system L∗(u) (given by example 4.2.14) is bounded
since an open subset of a manifold is a manifold and hence has no homology
in degrees higher than its dimension.

The MV interleaving distance enjoy a similar stability property than the
usual interleaving distance for persistence modules:

Proposition 4.2.17
Let u, v : X → R two continuous functions defined on the topological space
X, then:

dMV
I (L∗(u),L∗(v)) ≤ sup

x∈X
|u(x)− v(x)|

Proof
If the distance is∞, there is nothing to prove. Otherwise, let ε = supx∈X |u(x)−
v(x)|. Then for any (x, y) ∈ ∆+, we have level-sets inclusions u−1(]−x, y[) ⊂
v−1(]− x− ε, y+ ε[) and v−1(]− x, y[) ⊂ u−1(]− x− ε, y+ ε[) which induce
persistence modules over ∆+ morphisms

f :
(
Li(u)(x, y) = Hi(u

−1(]−x, y[)→ Hi(v
−1(]−x−ε, y+ε[) = Li(v)[~ε](x, y)

)
(x,y)∈∆+ ,

g :
(
Li(v)(x, y) = Hi(v

−1(]−x, y[)→ Hi(u
−1(]−x−ε, y+ε[) = Li(u)[~ε](x, y)

)
(x,y)∈∆+

since taking homology groups is a functor and by lemma 4.3.1.
The fact that these maps are Mayer-Vietoris systems morphisms follows

again as in proposition 4.2.15 by the naturality of the Mayer-Vietoris se-
quence associated to open covers of the intervals ]−x−ε, y+ε[ by ]−x−ε, y[
and ]− x, y + ε[.

�
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4.3 Stable sheaf theoretic interpretation of
persistence

4.3.1 Extending level-sets persistence modules as
pre-sheaves over R

In this section we interpret level-sets persistence modules as (pre)sheaves
on the line R. In particular, we construct a functor:

(−) : Pers(k∆+

) −→ Mod(kR)op,

which is, roughly speaking, the right Kan extension of the dual of a
persistence module along the inclusion of bounded intervals in the category
of open subsets of R.

Let (Op(R),⊂) be the poset of open subsets of R ordered by the inclu-
sion. We denote in the same way the associated category.
Lemma 4.3.1
Set ι : (∆+,≤) → (Op(R),⊂) to be given on objects by ι : s = (s1, s2) 7→
]− s1, s2[.Then ι is a well defined fully faithfull functor. The esential image
of ι is precisely the full subcategory of bounded open intervals of R.

In particular, restricting to objects of those categories, ι is a bijection from
∆+ to bounded open intervals of R.
Proof
By definition

s = (s1, s2) ∈ ∆+ ⇐⇒ −s1 < s2

hence ι is well defined, injective on objects with image the bounded open
intervals. Furthermore, if (s1, s2) ≤ (s′1, s

′
2) then −s′1 ≤ −s1 < s2 ≤ s′2

which proves that ι is order presearving (and necessarily fully faithfull since
the morphisms are empty or a singleton).

�

Given M ∈ Obj(Pers(k∆+

)) we can consider its pointwise dual t 7→
HomMod(k)(M(t);k) which has a canonical structure of a persistence co-
module, that is of an object of

Fun((∆+)op;Mod(k)) ∼= Fun(∆+;Mod(k)op)op.

We denote by M∗ this dual of M . More precisely, M∗ is the composition
of functors

M∗ := ∆+op Mop

−→ Mod(k)op HomMod(k)(−;k)
−→ Mod(k).
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Since M∗ is a persistence comodule, for any open U ⊂ R, one sets

M̃(U) := lim←−
]−x,y[⊂U

M∗((x, y)). (4.7)

Lemma 4.3.2
There is a functor ˜(−) : Pers(k∆+

)→ PSh(R)op extending the formula (4.7)
into a canonical presheaf on R, that is such that for U ∈ Obj(Op(R)), one
has

M̃(U) := lim←−
]−x,y[⊂U

M∗((x, y)).

Proof
One notice that the formula exhibits M̃ as a Kan extension which makes it
into a presheaf canonically. Indeed, consider ιop : (∆+)op −→ Op(R)op the
(opposite of the) functor defined previously (see 4.3.1) and let RanιopM∗ be
the right Kan extension along ιop of M∗, which is therefore by definition an
object of PSh(X):

∆+op � � ιop //

M∗

��

Op(R)op

RanιopM∗=:M̃xx
Mod(k)

As Mod(k) is complete, the pointwise formula (4.7) is an immediate conse-
quence.

�

Composing ˜(−) with the (opposite of the) sheafification functor PSh(R)→
Mod(kR) gives the functor from persistence modules on ∆+ to sheaves on
R.
Definition 4.3.3
Let M be a persistence module over ∆+. We set M to be the sheafification
of the presheaf M̃ and we write

(−) : Pers(k∆+

) −→ Mod(kR)op

for the induced functor M 7→ M . We call (−) the level-sets persistence to
sheaves functor .

Similarly there is a functor going in the other direction defined as follows.
Given a sheaf on R, by restriction to open intervals and using the identifica-
tion of lemma 4.3.1, we get a persistence comodule. Since pointwise duality
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transforms a persistence comodule into a persistence module we obtain the
functor

π : Mod(kR)op −→ Pers(k∆+

), F op 7→ Homk(−,k) ◦ F op ◦ ι. (4.8)

Given V a k-vector space, one denotes for short

V∗ := Homk(V,k).

Let F be a sheaf in Mod(kR). We define the pointwise bidual of F as
the sheaffification of the presheaf:

U 7→ F (U)∗∗.

This defines a functor bidualMod(kR) : Mod(kR) → Mod(kR). There is a
canonical natural transformation

idMod(kR) −→ bidualMod(kR) (4.9)

given by the pointwise canonical morphism.

Proposition 4.3.4
The level-sets persistence to sheaves functor (−) : Pers(k∆+

) −→ Mod(kR)op

from Definition 4.3.3 satisfies the following properties.

1. Its composition with the restriction-to-intervals functors is the canon-
ical biduality functor: (−) ◦ π = bidualMod(kR).
In particular the restriction of this composition of functors to the
subcategory of pointwise finite dimensional 3 objects is naturally iso-
morphic to idMod(kR)pfd

2. If M is a pointwise finite dimensional persistence module, and M '
⊕iMi, then M ' ⊕iMi

3. Assume that M ∈ Obj(Pers(k∆+

)) is pointwise finite dimensional.
Then, for all α ∈ R, we have natural isomorphisms

lim←−
]−x;y[3α

M((x, y)) ' M̃α ' Mα

provided that the left hand side is finite dimensional.

4. One can identify M with the image of pre-sheaves morphism:M̃ −→∏
α∈R M̃α.

3. where we mean the sheaves whose stalk at each point are finite dimensional
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Proof

1. First, once the formula (−)◦π = (−)◦π = bidualMod(kR) is proved, to
check that the asserted restriction of the composite (−) ◦ π is canoni-
cally isomorphic to the identity, it is sufficient to prove that the canon-
ical transformation idMod(kR) → bidualMod(kR) is an isomorphism on all
stalks when restricted to a pointwise finite dimensional sheaf. This
reduces the statement to the standard case of finite dimensional vec-
tor spaces. To prove the formula note that the section of a sheaf F
on an open U is uniquely determined by its value on any open cover;
furthermore, for any open interval I one has that

lim←−
]−x,y[⊂I

((F (I))∗)∗ ∼= (F (I)∗)∗.

In particular, on can restrict to cover by open intervals (Ij) of U and
compute the value of the sheaf at U as a limit. Therefore, noticing
that the intersection of two intervvals is an interval, we get that for a
sheaf F , one has

π(F )(U) = lim←−
(
π(F )(

∐
Uk)

//
// π(F )(

∐
(Ui ∩ Uj))

)
∼= lim←−

( ∏
(F (Uk)

∗)∗
//
//
∏

(F (Ui ∩ Uj)∗)∗
)

∼= (F (U)∗)∗

2. The functors Hom(−,k), sheafification (which is a right adjoint) as
well as right Kan extensions commute with finite direct sums. This
gives the finite sums case. But the assumption ensures it is enough
to estblish the resutls on the stalks and therefore the canonical map⊕

M i →
⊕

Mi is an isomorphism.
3. Write Int(α) for the (full) subcategory ofOp(R) consisting of intervals

containing α. Let us fix G : (]0,∞[,≤) −→ Int(α) defined by G(ε) =
]α − ε, α + ε[. Then G is a functor and is initial among functors
(]0,∞[,≤) −→ Int(α). Therefore:

lim←−
]−x;y[3α

M((x, y)) ' lim←−M ◦G = lim←−
ε>0

M((ε− α, α + ε))

Since (]0,∞[,≤) is a totally ordered set, we can apply the theorem
of decomposition of pfd modules over totally ordered sets to M ◦ G,
thus there exists a multiset B(M ◦G) of intervals of R such that:

M ◦G '
⊕

I∈B(M◦G)

kI (4.10)
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It follows that

lim←−
ε>0

M((ε− α, α + ε)) '
∏

I∈B(M◦G)
0∈closure(I)

k (4.11)

Now if lim←−
]−x;y[3α

M((x, y)) is finite dimensional then the above product

in the right hand side of (4.11) is a finite product and thus a direct
sum:

∏
I∈B(M◦G)
0∈closure(I)

k '
⊕

I∈B(M◦G)
0∈closure(I)

k. Therefore we have

lim←−
]−x;y[3α

M((x, y)) '
⊕

I∈B(M◦G)
0∈closure(I)

k

' lim←−
]−x;y[3α

Hom (M((x, y)),k) (by (4.10) and finite dimensionality)

' M̃α (by (4.7))

'Mα.

4. This is a direct consequence of the definition of the sheaffification
functor for sheaves on a T1-topological space, that is for sheaves on a
space for which all points are closed.

�

Remark 4.3.5
We have sticked to the traditional point of view of looking at level-sets as
being given by homology functors and thus as persistent objects; point of
view for which computational models are well developed. This is the reason
why some (bi)duality shows up in the picture. It is possible (and actually
slightly easier) to construct an analogue of (−) : M 7→ (M) going from
persistence co-modules to sheaves.

Let ∆ = {(−x, x) | x ∈ R}, and p : ∆ −→ R be the projection
(x1, x2) 7→ x2 onto the second coordinate. Recall that for any block B (Def-
inition 2.1.2) we have defined a persistence module kB ∈ Obj(Pers(k∆+

)).

Proposition 4.3.6
Let B be a block. Let a, b ∈ R be such that < a, b >= p(B ∩∆), with the
convention that a = 1 and b = −1 when p(B ∩∆) = ∅.

1. If B is of type db, then kB ' k]a,b[.
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2. If B is of type bb, then kB ' k[a,b].

3. If B is of type vb, then kB ' k]a,b].

4. If B is of type hb, then kB ' k[a,b[.

Proof
Let B be of type db. If B is included in R2 \ ∆+, then kB is identically
null as well as k]a,b[ and there is nothing to prove. If not, B has a non-
trivial intersection with ∆ and (−a, b) = supB(s) are the coordinates of the
supremum of B for the order relation of ∆+. Then, for s = (s1, s2) ∈ R2

>0,
one has

kB(s) =

{
k if (s1, s2) < (−a, b)
0 if (s1, s2) 66 (−a, b)

Hence kB(s) is non-zero if a ≤ −s1 < s2 ≤ b and always null if either −s1 <
a or s2 > b. It follows that that for α ∈ R, then kB(−α−ε, α+ε) = 0 if α /∈
]a, b[ and for all α ∈]a, b[, there exists η > 0 such that k(−α−η, α+η) = k.
We conclude that

lim←−
]−x,y[3α

kB(x, y) =

{
k if α ∈]a, b[
0 else. (4.12)

By claim 5 of Proposition 4.3.4, we deduce that kB ∼= k]a,b[. Similarly, if Bv

is a vertical block, delimited by the lines x = −b, x = −a with a < b, then
we have

kBv(s1, s2) =

{
k if − b < s1 < −a
0 if s1 > −a or s1 < −b

independently of whether the boundary lines are part of Bv or not. In
particular, for any α ∈]a, b], there exists η > 0 such that k(−α−η, α+η) = k
while there exists ε > 0 such that kB(−α− ε, α+ ε) = 0 if α ≤ a or α > b.
As in the db case (4.12), we thus find that

lim←−
]−x,y[3α

kBv(x, y) =

{
k if α ∈]a, b]
0 else.

The last two other cases are obtained using a similar analysis.

�

Remark 4.3.7
In particular, kB does not depend on whether B contains its boundary or
not. If B is of type bb+, then kB = 0 (since B ∩∆ = ∅).
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Remark 4.3.8 (characterizations of (a, b))
If B is of type bb−, then the numbers a and b are characterized by the fact
that the point (−b, a) is the infimum of the points in B, see figure (2.1.3).

Similarly, if B is of type db, then the numbers a and b satisfies that the
point (−a, b) is the supremum of the points in B.

Finally, for B of type vb, a and b satisfies that B has boundary given
by the lines of equation x = −b and x = −a, while if it is of type hb, a
and b satisfies that the boundary of B are the horizontal lines of equations
y = a and y = b.

Blocks of type db+, hb, vb and bb− are actually uniquely determined
by their intersection with the anti-diagonal, that is the interval 〈a, b〉 =
p(∆ ∩B) (as in Proposition 4.3.6). Precisely we have:

Lemma 4.3.9
Let a < b be real numbers. Let {<,>} ∈ {[, ]}2. There are unique blocks
B
〈a,b〉
b , B〈a,b〉h , B〈a,b〉v and B

〈a,b〉
d respectively of type bb−, hb, vb and db+

such that p(∆ ∩B〈a,b〉λ ) = 〈a, b〉, for λ ∈ {b, h, v, d}.

Proof
By definition 2.1.26, all the blocks except the birth blocks lying entirely
in ∆+

>0, that is those of type bb+, are uniquely determined by their in-
tersection with the anti-diagonal (also see figure 2.1.3). In fact the points
a, b determine the block of any of these types as in remark 4.3.8 and more
precisely it determines the boundary lines of the block. To determine if the
lines are included in the block or not, we look to whether a or b are inside
the interval 〈a, b〉. For instance, for B[a,b]

v we take the vertical block delim-
ited by the vertical lines x = −b and x = −a and containing them, while
B

]a,b[
v is the block vertical delimited by the same lines but not containing

any of them.

�

Corollary 4.3.10
If M ∈ Obj(Pers(k∆+

)) is middle-exact and pointwise finite dimensional,
then M is weakly constructible. Furthermore, if M is strongly pointwise
finite dimensional (definition 4.4.1) and midddle-exact, then M is con-
structible.

In particular, the restriction of the sheafification functor (−) = (−) :

Pers(k∆+

) → Mod(kR) to the full subcategory of strongly pointwise fi-
nite dimensional middle exact modules takes values in the subcategory
ModRc(kR) of constructible sheaves.
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Proof
By the decomposition Theorem 2.1.33, the pfd module M is isomorphic
to a direct sum of blocks M ∼=

⊕
B∈B(M) k

B. Since (−) commutes with
direct sum for pfd modules (Proposition 4.3.4), Proposition 4.3.6 yields
that M ∼=

⊕
B∈B(M) k

B is a (pointwise finite when M is strongly pfd) direct
sum of sheaves of the form kI where I is an interval.

�

The level-sets persistence to sheaves functor (−) does not preserve in-
terleavings in general. However, the trouble is only related to the death or
bb+ quadrant. More precisely we have the following two lemmas.

Lemma 4.3.11
Let M,N ∈ Obj(Pers(k∆+

)) be middle exact pointwise finite dimensional
and such that their barcodes contains only blocks of type bb−, vb and hb.
Then

M [~ε] ∼= M ?Kε.

Furthermore, if M ∼∆+

ε N , then

M ∼ε N.

Proof
By Theorem 2.1.33, we have isomorphisms M ∼=

⊕
B∈B(M)

kB, N ∼=
⊕

B∈B(N)

kB

of persistence modules, such that the blocks B are of types bb−, vb and
hb. Lemma 2.1.32 implies that

M [~ε] ∼=
⊕

B∈B(M)

kB−~ε

N [~ε] ∼=
⊕

B′∈B(N)

kB′−~ε

where each kB−~ε is of the form kI(B,ε) where I(B, ε) is an interval < a, b >=
p((B − ~ε) ∩∆) which is

— a closed non-empty interval if B is of type bb−;
— a semi-open interval closed on the left (resp. closed on the right) if

B is of type hb (resp. vb).
Therefore we have:

if B is of type bb−, then kB−~ε ∼= k[a−ε,b+ε],

if B is of type vb, then kB−~ε ∼= k]a+ε,b+ε],

if B is of type hb, then kB−~ε ∼= k[a−ε,b−ε[.
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Using Proposition 3.2.5, we thus get that in all cases,

kB−~ε ∼= kB ? Kε

and by additivity of the convolution functor we obtain M [~ε] ∼= M ? Kε as
claimed.

The same results holds for the blocks B′ ∈ B(N) so that

M [~ε] ∼= M ?Kε, N [~ε] ∼= N ? Kε.

Note further that, for a bb− block B, the canonical map kB ? Kε → kB

(of proposition 2.2.5) is identified with the canonical sheaf map k[a−ε,b+ε] →
k[a,b] as follows from the proof of 3.2.6. Since the sheaf map is induced by
restriction we obtain from the above equivalences, that the diagram

kB ? Kε

∼= //

��

k[a−ε,b+ε]
∼= //

��

kB[ε]

τkBε��

kB
∼= // k[a,b]

∼= // kB

is commutative. Using proposition 3.2.5, the above identification extends
to the vb and hb blocks case as well: that is we have, for any block B of
type bb−, vb and hb a commutative diagram

kB ? Kε

∼= //

��

kB[ε]

τkBε��

kB
∼= // kB

(4.13)

Now let f : M → N [~ε] and g : N → M [~ε] be an ε-interleaving between
M and N , then applying the functor (−) to the latter isomorphisms, we

obtain an ε-interleaving in sheaves given by M
f→ N [~ε] ∼= N ? Kε and

N
g→M [~ε] ∼= M ?Kε.

�

For deathblocks or birthblocks of type bb+, the sheafification functor does
not intertwine shifts with convolution in a naive way. However we have the
following precise result. To state it, we first recall that to a block B, we
can associate the two real numbers a, b ∈ R such that < a, b >= p(B ∩∆);
the convention being that a = 1 and b = −1 when p(B ∩∆) = ∅.
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Lemma 4.3.12
Let B be a block of type db or bb+. If B is a bb+ block, its dual death
block B† intersects ∆ and we denote < a†, b† >= p(B† ∩∆).

Furthermore, for any ε ≥ 0, we have that,

if B is of type db, then, kB[~ε] ∼=
{

kB ? Kε if ε < b−a
2

0 if ε > b−a
2
,

(4.14)

if B is of type bb+, then, kB[~ε] ∼=

{
0 if ε < b†−a†

2

k
[a
†+b†

2
,a
†+b†

2
]
? K

ε− b†−a†
2

if ε > b†−a†
2

.

(4.15)

Proof
The proof will be similar to the one of lemma 4.3.11. First note that, if B
is of birthtype bb+, the supremum of B† is the infimum of B by definition
of the dual block. Therefore, by remark 4.3.8, we have that the infimum
of the elements of B is the point (−a†, b†) ∈ ∆+. It follows that B − ~ε

remains of type bb+ as long as ε < b†−a†
2

and it becomes of type bb− when
ε > b†−a†

2
. Furthermore, in that latter case, we have that

p((B − ~ε) ∩∆) = 〈b† − ε, a† + ε〉.

By lemma 2.1.32 and proposition 4.3.6, we thus have that if B is of type
bb+, then

kB−~ε ∼=

{
0 if ε < b†−a†

2

k[b†−ε,a†+ε] if ε > b†−a†
2

.

Using Proposition 3.2.5, we see that for ε > b†−a†
2

, one has

k[b†−ε,a†+ε]
∼= k

[a
†+b†

2
,a
†+b†

2
]
? K

ε− b†−a†
2

which shows the formula (4.15).
Now, note that if B is of type db, then B − ~ε has a non-empty inter-

section with ∆ as long as ε <
b− a

2
. And similarly we find, using proposi-

tion 4.3.6 that

kB−~ε ∼=

{
0 if ε ≥ b†−a†

2

k]a+ε,b−ε[ if ε < b†−a†
2
.

To prove formula (4.14), we are left to apply Proposition 3.2.5 a last time.

�
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Remark 4.3.13
The proof of lemma 4.3.12 and proposition 4.3.6 also shows that the last
equivalence in lemma 4.3.12 also reads, for ε ≥ b†−a†

2
, as

k
[a
†+b†

2
,a
†+b†

2
]
? K

ε− b†−a†
2

∼= kB−
−−−−→
b†−a†

2 ? K
ε− b†−a†

2

. (4.16)

4.4 Isometric pseudo-equivalence between
MV(R)sf and Db

Rc(kR)

In this section, we explain why the interleaving distance between level
set persistence is essentially the same as the derived bottleneck distance
between the associated sheaves (in the constructible case).

In order to express this we will relate constructible sheaves by an isome-
try to a specific type of graded persistence modules, that is those satisfying
the following definition.
Definition 4.4.1
A middle-exact persistence module M ∈ Pers(k∆+

), is a strongly pointwise
finite dimensional persistence module, if it is pointwise finite dimensional
and satisfies the following additional condition:

For every α ∈ ∆, lim←−
]−x;y[3α

M((x, y)) is finite dimensional

A Mayer-Vietoris system S = (Si, δ
s
i ) is said to be strongly pointwise

finite dimensional if each Si is strongly pointwise finite dimensional and
only finitely many Si’s are non-zero.

The full subcategory of MV(R) whose objects are strongly pointwise
finite dimensional MV-systems is denoted by MV(R)sf.

Our goal now is to build two distance-preserving functors:

(−)MV : MV(R)sf // Db
Rc(kR)op

Ψ : Db
Rc(kR)op //MV(R)sf

Satisfying for every F ∈ Db
Rc(kR), ( · )MV ◦Ψ(F ) ' F , in other words Ψ

is a pointwise section, and that, for every M ∈ MV(R)sf,

dMV
I

(
M,Ψ

(
M

MV))
= 0.

This goal will be achieved by Corollary 4.4.18 and Corollary 4.4.20.
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4.4.1 Sheafification of MV-systems: the functor
( · )MV

We will now apply section 4.3.1 to compare the Mayer-Vietoris persis-
tence systems and constructible sheaves. To do so, we first consider the
direct sum of the level set persistence to sheaves functor:

Let Q : K(Mod(kR)) → D(kR) be the localization functor sending
the category of complexes of sheaves over R to its derived category D(kR)
(definition A.1.28).

Definition 4.4.2
The sheafification of MV-systems functor : (−)

MV
: MV(R) → D(kR)op is

the functor given, on objects S = (Si, δ
S
i )i∈Z,s∈R2

>0
∈ Obj(MV(R)), by

S
MV

:= Q
(⊕

i∈Z

Si[−i]
)

and, on morphisms (Si
ϕi→ Ti)i∈Z, by

(ϕi)i∈Z := Q

(⊕
i∈Z

ϕi

)
.

The notation Si[−i] stands for the complex concentrated in degree i with
value Si. The functoriality is a direct consequence of section 4.3.1.

Lemma 4.4.3
If S is a strongly pointwise finite dimensional Mayer-Vietoris system, then
S

MV is a constructible sheaf. In particular, we have a commutative diagram
of functors:

MV(R)
(−)

MV

// D(kR)op

MV(R)sf
?�

OO

(−)
MV

// Db
Rc(kR)op
?�

OO

Proof
We can apply Theorem 4.2.6 together with proposition 4.3.6 in a way similar
to the proof of corollary 4.3.10.

�

The same argument shows that if S is pfd (but not necessarily strongly),
then SMV is weakly constructible.
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Proposition 4.4.4
The sheafification of MV-systems functor (−)

MV
: MV(R)sf → Db

Rc(kR)
satisfies the following properties:

1. it commutes with degree shifting operator:for all Mayer-Vietoris sys-
tem M , one has M [n]

MV ∼= M
MV

[n].
2. For a block B of type bb−, hb, vb, db+, j ∈ Z and ε ≥ 0, we have:

(SBj [ε])MV ' kI(B)[−j] ? Kε

where, still denoting 〈a, b〉 = p(B ∩∆+), I(B) is the interval given by

I(B) = [a, b] if B is of type bb−, I(B) = [a, b[ if B is of type hb,
I(B) =]a, b] if B is of type vb, I(B) =]a, b[ if B is of type db+.

3. If M ∼∆+

ε N , then MMV ∼ε N
MV.

4. IfMMV is isomorphic toNMV (in the derived category), then dMV
I (M,N) =

0.

Proof
Note that assertion 1 is immediate from the definition since we put each Si
precisely in degree i.

2 and 3. First assume B is of type bb−, hb or vb. Then definition 4.2.3
implies that SBj ∼= kB[−j]. Since (·)

MV
commutes with direct sum and

shifts, Lemma 4.3.11 implies (SBj [ε])MV ' kB[−j] ? Kε and further, for
ε ≤ ε′, this isomorphism sends the canonical structure maps SBj [ε′]→ SBj [ε]

onto the canonical map kB[−j] ? Kε → kB[−j] ? Kε′ (see diagram (4.13)).
It remains to prove the same result in the case of a block of type db.

Then definition 4.2.3 says that as a graded persistence module, one has

SBj
∼= kB[−j]⊕ kB† [−j − 1]

and therefore
SBj [~ε]

MV ∼= kB[ε][−j]⊕ kB† [ε][−j − 1].

Denote 〈a, b〉 = p(B∩∆) as before Proposition 4.3.6. Following the notation
of Lemma 4.3.12 we thus have that for the dual block B† of type bb+, one
has that a† = a, b† = b by definition. Then, Lemma 4.3.12, the commutation
of convolution wih shifts and Proposition 4.3.6 imply that

kB[ε][−j]⊕kB† [ε][−j−1] ∼=
{

k]a,b[ ? Kε[−j] if ε < b−a
2

k[a+b
2
,a+b

2
] ? Kε− b−a

2
[−j − 1] if ε > b−a

2
.

(4.17)
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This formula (4.17) is precisely the formula for k]a,b[ ? Kε according to
Proposition 3.2.5. We obtain a commutative diagram similar to (4.13) in
the same way as in Lemma 4.3.11. This concludes the proof of claim 2.
Assertion 3 follows immediately of assertion 2 and the fact that the canon-
ical translation maps of persistence modules are sent to the canonical maps
kB[−j] ? Kε → kB[−j] ? Kε′ .

4. Assume MMV ∼= N
MV. By Theorem 4.2.6, we can decompose

M ∼=
⊕
j∈Z

 ⊕
BM∈Bj(M)

SBMj [−j]

 and N ∼=
⊕
j∈Z

 ⊕
BN∈Bj(N)

SBNj [−j]


into Mayer-Vietoris blocks. Since (−)

MV
commutes with direct sum and

shifts (by property 1), we have isomorphisms⊕
j∈Z

⊕
BM∈Bj(M)

SBMj [−j]
MV

∼=
⊕
j∈Z

⊕
BN∈Bj(N)

SBNj [−j]
MV

⊕
j∈Z

⊕
BM∈Bj(M)

SBMj
MV

[−j] ∼=
⊕
j∈Z

⊕
BN∈Bj(N)

SBNj
MV

[−j].

For any vertical, horizontal or bb− type block B, Proposition 4.3.6 tells
us that SBj

MV ∼= kI(B) where I(B) is a non-empty interval (uniquely deter-
mined by p(B ∩∆)). If B is of type db+, then

SBj
∼= kI(B†)[j − 1]

according to definition 4.2.3 and 4.4.2. Therefore, we have an isomomor-
phism

⊕
j∈Z

( ⊕
BM∈Bj(M)\Bbb+

j (M)

kI(BM )[−j]
)
⊕

⊕
BM∈Bbb+

j (M)

kI(B†M )[−j − 1]


∼=
⊕
j∈Z

( ⊕
BN∈Bj(N)\Bbb+

j (N)

kI(BN )[−j]
)
⊕

⊕
BN∈Bbb+

j (N)

kI(B†N )[−j − 1]


(4.18)

of constructible sheaves. Here Bbb+
j (M), Bbb+

j (N) are the subsets of those
bars that are of type bb+ in the respective decompositions of M and N .
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By unicity of the decomposition in Theorem 3.1.2, we obtain degreewise
bijections between the set of associated graded barcodes {I(BM), BM ∈
Bj(M)} and {I(BN), BN ∈ Bj(N)} and therefore bijections σj : Bj(M) ∼=
Bj(N) with the property that for any BM ∈ Bj(M), σj(BM) is a block
of the same type as BM and which is equal to BM except maybe on the
boundary.

Lemma 4.4.5
Let B,B′ be sets of MV blocks of types db, vb, db and bb−. If there is a
bijection σ : B → B′ such that for any B ∈ B, σ(B) is equal to B except
maybe on the boundary, then

dMV
I

(⊕
B∈B

SBj ,
⊕
B′∈B′

SB
′

j

)
= 0.

It is enough to check that, if B and B′ are two blocks of the same type
which differs only on their boundary, then B and B′ are ε-interleaved for
any ε > 0. This property follows from Lemma 2.1.32 and an immediate
application of the definition of the blocks of each type. Then the direct
sum of those interleavings relating each B to σ(B) gives a ε-interleaving
in between

⊕
B∈B S

B
jB

and
⊕

B′∈B′ S
B′
jB′

for every ε > 0; the lemma follows.
The claimed property 3 follows from the lemma since we have proved just
above that we can find such a permutation relating Bj(M), Bj(N) for each
degree j.

�

Let u : X → R be a continuous map. Then we have the derived functors
of the direct image: Riu∗kX ∈ Mod(kR) which are the cohomology groups
of the derived functor Ru∗kX ∈ D+(kR). Note that this is just a special
case of derived direct image, defined for any continuous map φ : X → Y ,
which is a functor Rφ∗ : D+(kX)→ D+(kY ). In particular, the

assignment u 7→
⊕
i∈N

Riu∗(kX)[−i] defines a functor

R(−)k(−) : Top|R → D(k)op. (4.19)

A morphism φ : (X, f)→ (Y, g) is mapped by this functor to the linear
map

⊕
Riφ∗ : Rig∗kY → Rif∗kX and the fact that this defines a functor

is an immediate consequence of the composition formula R(ψ ◦ κ)∗ ∼=
Rψ∗ ◦ Rκ∗ (corollary A.2.21).
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Proposition 4.4.6
AssumeX is locally contractible and paracompact. Then there is an natural
isomorphism

L∗(u)
MV ∼=

⊕
i∈N

Riu∗kX [−i].

Proof
By example 4.2.14 and definition 4.4.2, we have

L∗(u)
MV ∼=

⊕
i∈N

Q(Hsing
i (u−1(−)))[−i].

Now, from definition 4.3.3, we have that Hsing
i (u−1(−)) is the sheafification

of the presheaf

Op(R) 3 U 7→ lim←−
]−x,y[⊂U

Homk

(
Hsing
i (u−1(]− x, y[)),k

)
∼= Hi

sing(u
−1(U))

since k is a field (and therefore the cohomology of the dual of a chain com-
plex is the dual of the homology) and every open in R is a disjoint union
of intervals. It is well-known that for u : X → Y and any sheaf F , Riu∗(F )
is the sheaf associated to the presheaf Op(Y ) 3 U 7→ Hi(u−1(U), F ) (see
[Ive86, Proposition 5.11] for instance). Furthermore, when X is locally con-
tractible and paracompact, one has an isomorphism of presheaves (theorem
A.2.23) :

V 7→ Hi(V ;kX) ∼= Hi(V ;kV ) ∼= Hi
sing(V ),

where the first isomorphism is for the sheaf cohomology with value in a
constant sheaf and its restriction kX |V ∼= kV to an open subset, and the last
isomorphism is the usual identification of sheaf cohomology with value on
a constant sheaf with singular cohomology for locally contractible spaces.

�

4.4.2 The functor Ψ

We now turn to the construction of a section of the sheafification of
MV-systems. We have the following intrinsic definition.

Definition 4.4.7
Given F ∈ D

(
kR
)
and i ∈ Z, we define Ψ(F )i to be the object of Pers(k∆+

)
given, for (x, y) ∈ ∆+ by :

Ψ(F )i(x, y) = HomMod(k)

(
RiΓ (]− x, y[;F ) ,k

)
. (4.20)
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It follows from lemma 4.3.1 that Ψ(F )i is a persistence module. For con-
structible sheaves, one can give a simpler formula using their decomposition
as direct sums of constant sheaves.

Lemma 4.4.8
Let F be in Db

Rc(kR). Then one has an isomorphism of persistence modules
over ∆+, given by the pointwise formula :

Ψ(F )i(x, y) ∼=
⊕
k+l=i

HomMod(k)

(
RkΓ

(
]− x, y[,Hl(F )

)
,k
)
, (4.21)

for any i ∈ Z, and (x, y) ∈ ∆+.

Note that since F is assumed to be constructible, there are only finitely
many pairs (k, l) such that the right-hand-side vector space is non zero.

Proof
The reader who knows the spectral sequences associated to hypercohomol-
ogy can immediately deduce the result of the lemma by noticing that the
assumption on F implies its degeneracy at the E2-page which is exactly the
right hand side of (4.21).

Alternatively, let F be any complex of sheaves on a space X. Then
according to definition 4.4.7 Ψ(F )i is the persistent object given by the
composite functor

∆+ ι // Op(R)
R∗Γ(−,F ) // D(Mod(k))op Hi(−) //Mod(k)op Homk(−,k) //Mod(k).

(4.22)
Now we asume F ∈ Db

Rc(kR). By Theorem 3.1.4, we have an isomorphism
of complexes of sheaves F ∼=

⊕
j∈Z H

j(F )[−j]. Therefore we can replace
F by its homology in (4.22). Then, we can take I to be the direct sum of
injective resolutions of each Hj(F )[−j]. The lemma follows thanks to the
fact that only finitely many k and l in (4.21) gives non-zero terms as noted
above and therefore the functors in (4.22) commutes with the (finite) direct
sum.

�

Remark 4.4.9
The functor Ψ is not faithful. Indeed for any a < b < c, one has a non-split
exact sequence of sheaves

0→ k[a,b[ → k[a,c[ → k[b,c[ → 0
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which gives a non zero homomorphism k[b,c[ → k[a,b[[1] in Db
Rc(kR). However

there are no non-zero Mayer-Vietoris systems homomorphism in between
Ψ(k[b,c[) and Ψ(k[a,b[[1]) = Ψ(k[a,b[)[1] as follows from Proposition 4.4.14
(there are no non-zero homomorphims in between MV systems associated
to horizontal blocks in different degrees).

Note also that the isomorphism of lemma 4.4.8 is not natural in F
for similar reasons. For instance, the right hand side of (4.21) maps the
non zero morphism k[b,c[ → k]a,b[[1] (induced by the short exact sequence
0→ k]a,b[ → k]a,c[ → k[b,c[ → 0) to 0 but Ψ does not.

Remark 4.4.10
The functor Ψ is thus essentially defined as the dual of the derived section
of F and not just as the dual of the homology sheaf of F which could have
been a more naive approach. The main reason is that the latter will not
carry a Mayer-Vietoris structure; in other words, it will forget too much of
the structure of the constructible sheaf. However, the derived construction
carries such a structure in a natural way as we will now see.

Proposition 4.4.11
The family (Ψ(F )i)i∈Z carries a natural structure of a Mayer-Vietoris sys-
tem. In addition, if F ∈ Db

Rc(kR), then it is strongly pointwise finite dimen-
sional (Definition 4.4.1).

Proof
We have already seen that Ψ(F )i is a persistence module over ∆+ as an
immediate consequence of lemma 4.3.1. For s = (s1, s2) ∈ R2

>0 and i ∈ Z,
we have to build the connection morphism δ2

i . Let I ∈ Cb(kR) an injective
resolution of F . Consider (x, y) ∈ ∆+, then we have the Mayer-Vietoris
sequence associated to the cover ]−x−s1, y[∪]−x, y+s2[ of ]−x−s1, y+s2[
which is the short exact sequence of complexes of sheaves

0 −→ Γ(]−x− s1, y+ s2[, I) −→ Γ(]−x− s1, y[, I)⊕Γ(]−x, y+ s2[, I) −→

Γ(]− x, y[, I) −→ 0.

For short, let us write Hi(U, I) for the i-th cohomology groups RiΓ(U, I).
Passing to cohomology, we thus obtain a long exact sequence

. . . −→ Hi(]−x−s1, y+s2[, I) −→ Hi(]−x−s1, y[, I)⊕Hi(]−x, y+s2[, I)

−→ Hi(]− x, y[, I)
δ−→ Hi+1(]− x− s1, y + s2[, I) −→ . . . . (4.23)
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Since by definition of sheaf cohomology, one has, Hi(]−x, y[, I) ∼= RiΓ ((]x, y[, F ),
the linear dual of the maps δ given by the exact sequence (4.23) yields linear
maps δsi : Ψ(F )i(x, y) → Ψ(F )i[s](x, y) for all (x, y) ∈ ∆+. The exactness
of (4.23) and Lemma 4.3.1 also implies that the collection (Ψ(F )i, δ

s
i )i,s is

a Mayer-Vietoris system over R.
When F is constructible, it satisfies for all (x, y) ∈ ∆+ that the k-

vector spaces RiΓ(] − x, y[;F ) are finite dimensional. Therefore Ψ(F ) is
pointwise finite dimensional. Now the proof that Ψ(F ) is strongly finite
dimensional is an argument similar to the proof of property 4 in Proposi-
tion 4.3.4. Alternatively, one can simply use the structure theorem 3.1.4
and proposition 4.4.14 below to conlude directly since strongly pointwise
finite dimensional modules are stable under locally finite direct sums.

Proposition 4.4.12
The rule F 7→ Ψ(F ) := (Ψ(F )i, δ

s
i )i,s defines functors Ψ : Db

Rc(kR)op →
MV(R)sf, Ψ : D(kR)op → MV(R) fitting in a commutative diagram:

D(kR)op Ψ //MV(R)

Db
Rc(kR)op Ψ //
?�

OO

MV(R)sf
?�

OO

Furthermore, these functors are additive and commutes with shifts associ-
ated to the canonical triangulated structure of the derived category.

Proof
Since the definition of Ψi is functorial and the connecting morphism in
Mayer-Vietoris long exact sequences is also functorial, we obtain that Ψ
is indeed a functor. Proposition 4.4.11 gives the fact that Ψ sends the
subcategory of constructible sheaves to the one of strongly pointwise finite
dimensional systems. The last assertion follows from the fact that hyper-
chohomology commutes with direct sums and shifts.

�

Example 4.4.13
Let F =

⊕
I kI [nI ] be constructible (derived) sheaf over R. Then by Propo-

sition 4.4.4 and Lemma 4.4.8 we obtain, for any (x, y) ∈ ∆+, the simple
formula

Ψ(F )i(x, y) ∼=
⊕
I

⊕
k

RkΓ (]−, x, y[,kI) [ni + k]

for Ψ(F ) (one can also note that the only values of k for which we have a
non zero term are 0 and 1 from Proposition 4.3.6).
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Recall definition 4.2.3 of the canonical MV-systems SBi associated to
blocks as well as Lemma 4.3.9. The following is the analogue of proposi-
tion 4.3.6, that is, it describes the action of Ψ on the building blocks of a
constructible sheaf. Together with example 4.4.13, it allows to compute the
value of Ψ explicitly.

Proposition 4.4.14
Let I = 〈a, b〉 be an interval in R.

1. If I is open, then Ψ(k]a,b[[−i]) ∼= S
B

[a,b]
d

i .

2. If I =]a, b], then Ψ(k]a,b][−i]) ∼= SB
[a,b[
v

i .

3. If I = [a, b[, then Ψ(k[a,b[[−i]) ∼= S
B

]a,b]
h

i .

4. If I is compact, then Ψ(k[a,b][−i]) ∼= S
B

]a,b[
b

i .
Here all the isomorphisms are isomorphisms of Mayer-Vietoris systems and
the blocks are given by lemma 4.3.9.

Remark 4.4.15
Note that when applying Ψ on an interval, the closed boundary becomes
an open boundary lines in the associated block of the image and the open
ones become closed.

As will be made clear by the proof, the claim 1 relies heavily on the fact
that we have taken a derived functor approach for the definiton of Ψ.

Proof
Let us first prove the open interval case. In view of the proof of proposi-
tion 4.4.11, using compatibility with shifts and direct sums, we only need
to compute the cohomology groups of RkΓ (]− x, y[;kI) which by definition
(see [KS90]) is isomorphic to ExtkkR

(
k]−x,y[,kI

)
. By Propositions 3.2.9 and

3.2.11, we have that it is always 0 for k > 1. Furthermore, the only case
for which it is non-zero for k = 1 is when I is an open whose closure is
included in ] − x, y[. In that latter case (which means, if I =]a, b[, that
[a, b] ⊂]−x, y[ i.e. x > −a and y > b) we then have Ext1

kR

(
k]−x,y[,kI

) ∼= k.
Therefore, by functoriality of the Ext1

kR
(−,kI) functor in its left variable,

it follows that the persistence module associated to Ext1
kR

(−,kI) in Ψ(kI)
is either 0 if I is not open or, if I is open, is precisely the block module in
degree 1 which is supported on the type bb+ block whose infimum is (−a, b)
and contains none of its boundary lines. Here, by block module we refer
to Definition 2.1.26. Therefore, by definition of duality 2.1.29, for an open
I =]a, b[ , the contribution of Ext1

kR
(−,kI) in Ψ(kI) is precisely k(B

[a,b]
d )†[−1]

in degree 1 supported on the type bb+ block dual to the deathblock B[a,b]
d .
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It remains to compute the image of the Ext0
kR

(
k]−x,y[,kI

)
. By Proposi-

tions 3.2.1 and 3.2.11, we find that if I is open,

Ext0
kR

(
k]−x,y[,kI

) ∼= { k if ]− x, y[⊂ I
0 else.

For I =]a, b[, the condition ] − x, y[⊂]a, b[ can be rewritten as x ≤ −a
and y ≤ b. Using functoriality of Ext again, we thus find that, when
I is open, the persistence module associated to kI is the block module
kB

[a,b]
d concentrated in degree 0 and supported on the type db block BI

d .
Combining the degree 0 and 1 part, the functoriality of the the Mayer-
Vietoris long exact sequence (4.23) then shows that Ψ(kI) is precisely the

MV-block module SB
[a,b]
d

0 as in Definition 2.1.26.
Now for the three other types of intervals, the computation is easier since

we only have to consider Ext0
kR

(
k]−x,y[,kI

)
in the computation of Ψ(kI) (all

other degrees are 0 by the Ext computations of chapter 3). Arguing as for
the open interval case, using Propositions 3.2.1 and 3.2.11, we obtain that
the persistence modules Ext0

kR
(k−,kI) are respectively the block modules

SB
[a,b[
v

0 , SB
]a,b]
H

0 and SB
]a,b[
b

0 when I is of the type ]a, b], [a, b[ or [a, b].

�

Proposition 4.4.16
Let F ∈ Db

Rc(kR). For any ε ≥ 0, there is an isomorphism of MV-systems
Ψ(F ? Kε) ∼= Ψ(F )[~ε].

Proof
Using theorem 3.1.2, we have that F ∼=

⊕
α∈A kIα [−nα]. By compatibility

of convolution with direct sums and shifts, it is thus enough to prove the
result for kI for an interval I.

Let us start with the case where I = [a, b] is compact. Then by Propo-
sition 3.2.5, we obtain

Ψ(k[a,b][−i] ? Kε) ∼= Ψ(k[a−ε,b+ε][−i]) ∼= S
B
〈a−ε,b+ε〉
b

i (4.24)

where the last isomorphism is given by Proposition 4.4.14. Note that,
by definition, the block Bb is of type bb− (see Lemma 4.3.9 and defini-

tion 4.2.3). Therefore as a persistence module over ∆+, we have SB
〈a−ε,b+ε〉
b

i
∼=

kB
〈a−ε,b+ε〉
b [−i]. By lemma 2.1.32 and remark 4.3.8 we find that

kB
〈a−ε,b+ε〉
b ∼= kB

〈a,b〉
b [~ε].
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Combining the last two isomorphisms with (4.24), we find that

Ψ(k[a,b][−i] ? Kε) ∼=
(
kB
〈a,b〉
b [−i]

)
[~ε] ∼= Ψ

(
k[a,b][−i]

)
[~ε] (4.25)

using again Proposition 4.4.14 for the last isomorphism. Similarly, in the
case where I is half-open, we obtain, for any ε ≥ 0 and i ∈ Z,

Ψ(k[a,b[[−i] ? Kε) ∼=
(
kB
〈a,b〉
h [−i]

)
[~ε] ∼= Ψ

(
k[a,b[[−i]

)
[~ε]. (4.26)

Ψ(k]a,b][−i] ? Kε) ∼=
(
kB
〈a,b〉
v [−i]

)
[~ε] ∼= Ψ

(
k]a,b][−i]

)
[~ε]. (4.27)

It remains to cover the case of an open interval ]a, b[. Again by Propo-
sition 3.2.5, we have

Ψ(k]a,b[[−i] ? Kε) ∼=
{

Ψ(k]a+ε,b−ε[[−i]) if ε < b−a
2

Ψ(k[b−ε,a+ε][−i]) if ε 6 b−a
2

(4.28)

∼=

 S
B
〈a+ε,b−ε〉
d

i if ε < b−a
2

S
B
〈b−ε,a+ε〉
b

i if ε 6 b−a
2

(4.29)

where the last isomorphism is given by proposition 4.4.14. Note that by
definition the blockBd is of type db+ (see Lemma 4.3.9 and definition 4.2.3).

Therefore as a persistence module over ∆+, we have, for ε <
b− a

2
, that

S
B
〈a+ε,b−ε〉
d

i
∼= kB

〈a−ε,b+ε〉
d [−i]⊕ k(B

〈a−ε,b+ε〉
d )† [−i− 1]

where the dual block (B
〈a−ε,b+ε〉
d )† is of type bb+. By Lemma 2.1.32 and

Remark 4.3.8 we find that

kB
〈a−ε,b+ε〉
d [−i]⊕k(B

〈a−ε,b+ε〉
d )† [−i−1] ∼= (kB

〈a,b〉
d [−i])[~ε]⊕(k(B

〈a,b〉
d )† [−i−1])[~ε].

Combining these last two isomorphisms with (4.28), we find that, for ε <
b− a

2
,

Ψ(k]a,b[[−i] ? Kε) ∼= S
B
〈a,b〉
d

i [~ε] ∼= Ψ(k]a,b[[−i])[~ε] (4.30)

as claimed.

It remains to consider the case ε ≥
b− a

2
. We have still Ψ(k]a,b[[−i])[~ε] ∼=

S
B
〈a,b〉
d

i [~ε]. As a graded persistence module over ∆+, by Lemma 2.1.32, we
have that

S
B
〈a,b〉
d

i [~ε] ∼= k
(
B
〈a,b〉
d −~ε

)
[−i]⊕ k

(
(B
〈a,b〉
d )†−~ε

)
[−i− 1].
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But since ε ≥
b− a

2
, we have that the death block

(
B
〈a,b〉
d −~ε

)
is concentrated

below the anti-diagonal ∆, that is in R2 \∆+
>0 and therefore k

(
B
〈a,b〉
d −~ε

)
∼= 0.

Similarly, the birth block module
(
(B
〈a,b〉
d )† − ~ε

)
is of type bb− precisely

for ε ≥
b− a

2
. The infimum of the points included in this birth block has

coordinates (ε− b, a+ ε). Therefore,

k
(

(B
〈a,b〉
d )†−~ε

)
∼= kB

〈b−ε,a+ε〉
b .

Taking the (shifted) direct sum of this last two isomorphisms thus obtain,

that, for ε ≥
b− a

2
, we have

S
B
〈a,b〉
d

i [~ε] ∼= 0⊕ SB
〈b−ε,a+ε〉
b

i

and therefore the claim follows from the last case of (4.28).

�

Remark 4.4.17
Note that we will generalize this result in section 5.5, without needing a
decomposition theorem.

4.4.3 The isometry theorem between the interleaving
distance on ∆+ and the graded bottleneck
distance for sheaves

In this section, we will state and prove our main isometry theorem.
Before that, we derive a few corollaries of the results we have obtained in
sections 4.4.2 and 4.4.1.

Corollary 4.4.18
Consider (the restrictions) Ψ : Db

Rc(kR)→ MV(R)sf and (−)
MV

: MV(R)sf →
Db

Rc(kR). For any F ∈ Db
Rc(kR), one has an isomorphism

( · )MV ◦Ψ(F ) ∼= F.

In other words, Ψ is a natural “object-wise”section of the functor (−)
MV

on strongly pointwise finite dimensional modules.
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Proof
Since both functors ( · )MV and Ψ commutes with shifts and direct sums
(propositions 4.4.4 and 4.4.12), in view of the structure theorem 3.1.2, it
is enough to construct the isomorphism for sheaves of the form kI . Now
Proposition 4.4.4.2 (for ε = 0) and Proposition 4.4.14 we have

(Ψ(kI))MV ∼= kI (4.31)

which is precisely giving such a claimed isomorphism for an interval.

�

Let H∗(−) : Db
Rc(kR)→ Db

Rc(kR) be the endofunctor given by the coho-
homology sheaf, that is, for any complex of sheaves F , by

H∗(F ) :=
⊕
i∈Z

Hi(F )[−i].

Note that although H∗ is essentially surjective, it is by no means an
auto-equivalence. We claim that there is a natural isomorphism of functors
( · )MV ◦Ψ ' H∗(−). Since the construction of the natural isomorphism is
rather technical, and we do not need this result for the following, we omit
the proof.

Corollary 4.4.19
The functor (−)

MV
: MV(R)sf → Db

Rc(kR) is essentially surjective.

Proof
For any constructible sheaf F , Ψ(F ) is a strongly pointwise finite dimen-
sional Mayer-Vietoris system and Corollary 4.4.18 gives a natural isomor-
phism F ∼= (Ψ(F ))

MV
. Therefore, F is in the essential image of (−)

MV
.

�

Corollary 4.4.20
Let M ∈ MV(R)sf be a strongly point-wise finite dimensional Mayer-
Vietoris system. Then

dMV
I (M,Ψ(M

MV
)) = 0.

In other words, though Ψ ◦ (−)
MV

is not an equivalence, it maps an object
to an object which is at distance 0 fom itself.
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Proof
By statement 3 of Proposition 4.4.4, it is sufficient to prove that MMV

and Ψ(M
MV

)
MV

are isomorphic in Db
Rc(kR). But Corollary 4.4.18 implies

Ψ(M
MV

)
MV
∼= M

MV and the result follows.

�

We can now state our isometry theorem

Theorem 4.4.21 (Theorem 4.21 - [BGO19])
The functors (−)MV and Ψ are isometries between the interleaving distance
and the convolution and bottleneck distances for sheaves. That is, for all
M,N ∈ MV(R)sf, one has equalities

dI(M,N) = dC(M
MV
, N

MV
) = dB(B(M

MV
),B(N

MV
)).

And for all constructible sheaves F,G ∈ Db
Rc(kR), one has

dB(B(F ),B(G)) = dC(F,G) = dI(Ψ(F ),Ψ(G)).

Proof
Theorem 3.4.18 implies already the equality between bottleneck and con-
volution distances.

By Proposition 4.4.4, the Mayer-Vietoris sheafification functor (−)
MV

:
MV(R)sf → Db

Rc(kR) maps the shift functor [~ε] onto the convolution functor
(−) ?Kε and therefore if M,N ∈ MV(R)sf are ε-interleaved, then MMV ∼ε
N

MV in Db
Rc(kR). Thus, for all M,N ∈ MV(R)sf, one has

dC(M
MV
, N

MV
) 6 dI(M,N). (4.32)

Similarly, Proposition 4.4.16 implies that Ψ sends the convolution (−) ?Kε

functor to the shift functor and thus, we also have that, for all F, G ∈
Db

Rc(kR), one has
dI(Ψ(F ),Ψ(G)) 6 dC(F,G). (4.33)

From (4.32) and (4.33) we get, for all M,N ∈ MV(R)sf, that

dI(Ψ
(
M

MV)
,Ψ
(
N

MV)
) 6 dC(M

MV
, N

MV
) 6 dI(M,N). (4.34)

The triangular inequality and Corollary 4.4.20 implies

dI(M,N) 6 dI(Ψ
(
M,Ψ

(
M

MV)
)+dI(Ψ

(
M

MV)
,Ψ
(
N

MV)
)+dI(Ψ

(
N

MV)
, N)

= dI(Ψ
(
M

MV)
,Ψ
(
N

MV)
) (4.35)
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Combining inequality (4.35) with (4.34), we obtain that all inequalities
in (4.34) are equalities, which gives the first claim

dI(M,N) = dC(M
MV
, N

MV
).

To prove the remaining one, we use Corollary 4.4.18. This gives us, for
any F, G ∈ Db

Rc(kR) isomorphisms F ∼= Ψ(F )
MV

and G ∼= Ψ(G)
MV

and
therefore we have

dC(F,G) = dC
(
Ψ(F )

MV
,Ψ(G)

MV)
= dI(Ψ(F ),Ψ(G)) (4.36)

since we just proved that (−)
MV

is an isometry. The equality (4.36) con-
cludes the proof of the theorem.

�

In particular the theorem allows to compute the bottleneck or convolu-
tion distance for sheaves using interleaving distance for persistence modules
and vice-versa. Furthermore, we recover as a corollary the following result
of [KS18a].

Corollary 4.4.22
If X is a locally contractible compact topological manifold, and u, v : X →
R are continuous constructible functions, one has:

dC(Ru∗kX ,Rv∗kX) ≤ sup
x∈X
‖u(x)− v(x)‖

Proof
Theorem 4.4.21 and proposition 4.4.6 imply that

dC(Ru∗kX ,Rv∗kX) = dI(L∗(u),L∗(v)) 6 sup
x∈X
‖u(x)− v(x)‖

by Proposition 4.2.17.

�

4.5 Applications
In this section, we provide concrete applications of theorem 4.4.21. We

first go back to our example of section 3.5.1. We then prove that the MV-
interleaving distance can actually be computed in a graded-fashion. This
result allow a much simpler expression of both the MV-interleaving distance
and the convolution distance in terms of bottleneck distances matching
blocks degree-wise.
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R R

f(x, y) = x p(x, y) = 0

S1 ⊂ R2 S1 ⊂ R2

H0(Rf∗kS1) H0(Rp∗kS1)

H1(Rf∗kS1) H1(Rp∗kS1)

−1 1 −1 10

[ ]

( )

∅

•

•

Figure 4.2 – The map f and p together with the intervals on which are
supported the degree 0 and 1 part of the associated sheaves, see (4.37) and
proposition 4.5.1.

4.5.1 Back to the circle

We illustrate the use of the theorems of this chapter with the example
of the projection from the circle that we encountered in section 3.5.1.

Let S1 = {(x, y) ∈ R2 | x2 + y2 = 1} be the circle embedded in R2.
Let f : S1 → R be the first coordinate projection and p : S1 → R be the
constant map with value zero.

From example 4.2.14 we obtain two Mayer-Vietoris systems L∗(f) and
L∗(p), which are given, for any (x, y) ∈ ∆+, by L∗(f)(x, y) = H∗(f−1(] −
x, y[)) and L∗(p)(x, y) = H∗(p−1(]− x, y[)).

Using the same notation as in Lemma 4.3.9 we have.

Proposition 4.5.1
One has

L∗(f) ∼= S
B

]−1,1[
b

0 ⊕ SB
[−1,1]
d

0 , L∗(p) ∼= S
B

]0,0[
b

0 ⊕ SB
]0,0[
b

1 .

In particular, L∗(f)
MV
' k(−1,1)⊕k[−1,1] and L∗(p)

MV
' k{0}⊕k{0}[−1].

Furthermore, Ψ(k(−1,1) ⊕ k[−1,1]) ∼= L∗(f) and Ψ(k{0} ⊕ k{0}[−1]) ∼= L∗(p).
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k

k

k⊕ k

k⊕ k[−1]

{0}

{0}

(−1,−1)

(0, 0)

k⊕ k[−1]

{0}

{0}

Figure 4.3 – On the left, the value of the MV system L∗(f) where the blue
part is a birth block and the red part are a death block and its dual. On
the right, the value of the MV system L∗(p) where the yellow part refers
to the (reunion of) two birthblocks. The dashed lines pictures boundary
which are not inside the blocks.

Proof
The preimage of f satisfies

f−1(]−x, y[) =


∅ if − x > 1 or y 6 −1,
S1 if − x < −1 and y > 1,
two intervals if − 1 6 −x < y 6 1,
one interval if − x < −1 < y 6 1 or − 1 6 −x < 1 < y.

This gives that L∗(f) has the module decomposition given in figure (4.5.1)
which is exactly the decomposition of L∗(f) into a bb− module with in-
fimum (−1,−1) in degree 0 and a module associated to the deathblock
with supremum (1, 1). The image of Ψ is given by adidtivity and Proposi-
tion 4.4.14:

Ψ(Rf∗kS1) ∼= Ψ(k(−1,1)⊕k[−1,1]) ∼= Ψ(k(−1,1))⊕Ψ(k[−1,1]) ∼= S
B

]0,0[
b

0 ⊕SB
]0,0[
b

1
∼= L∗(f).

Applying Corollary 4.4.18 (or using Proposition 4.4.4 directly) yields L∗(f)
MV

=
Rf∗kS1 . Similarly, we have that

p−1(]− x, y[) =

{
S1 if − x < 0 < y
∅ else.
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and thus L∗(p) ∼= S
B

]0,0[
b

0 ⊕ SB
]0,0[
b

1 as can be seen in figure (4.5.1) as well.
We apply again Proposition 4.4.14 and Corollary 4.4.18 to conclude.

�

In particular we recover the computation of chapter 3 for the derived images
sheaves Rf∗kS1 and Rp∗kS1 :

Rf∗kS1
∼= k]−1,1[ ⊕ k[−1,1], Rp∗kS1

∼= k{0} ⊕ k{0}[−1]. (4.37)

Furthermore, we can find 1-interleaving between SB
[−1,1]
d

0 and SB
]0,0[
b

1 as well

as 1-interleaving between SB
]−1,1[
b

0 and SB
]0,0[
b

0 . Therefore, the decomposition
of the proposition gives a 1-interleaving for L∗(f) and L∗(p).

4.5.2 Degree-wise description of dMV
I

The content of this chapter has been to prove that the category of
Mayer-Vietoris systems contain most of the derived behaviour of derived
constructible sheaves, although it has a much simpler algebraic structure to
work with. This will allow us to give a new equivalent formulation of the
MV-interleaving distance.

We start by setting some notations. We denote by dI the usual inter-
leaving distance on Pers(k∆+

). If M and N in Pers(k∆+

) are ε-interleaved,
we shall write M ∼ε N . If M is pfd and middle-exact, we denote B(M) its
barcode.

Let MV(R)sf be the category of strongly pointwise finite dimensional
Mayer-Vietoris systems over R. We denote by dMV

I the interleaving distance
in MV (R). If S and NT in MV (R) are ε-MV-interleaved, we shall write
S ∼MV

ε T . If S is spfd, we denote BMV(S) its barcode. Recall that for MV
systems, blocks of type bb+ are paired with their dual block of type db,
and that we only record the birth block of type bb+ in BMV(S).

Let dB be the bottleneck distance associated to dI between middle-exact
pointwise finite dimensional persistence modules over ∆+ (see definition
2.1.17). The following result was proved by Bjerkevik, and will be of use to
prove our theorem.

Theorem 4.5.2 ( [Bje16] - Theorem 3.3)
Let M and N be pointwise finite dimension middle exact persistence mod-
ules over ∆+. IfM and N are ε-interleaved, then there exists an ε-matching
between B(M) and B(N).

In particular:
dI(M,N) = dB(M,N).
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We have the following lemma:

Lemma 4.5.3
Let B,B′ be blocks of type bb±, hb or vb. (That is, blocks that are used
to parametrize the barcodes of MV-systems). Then for all i ∈ Z and ε ≥ 0,

SBi ∼MV
ε SB

′

i ⇐⇒ kB ∼ε kB
′
.

Consequently:
dMV
I (SBi , S

B′

i ) = dI(kB,kB
′
).

Proof
The only difficult case is for B and B′ of type bb+, where there exists a
derived”behaviour. We assume without loss of generality that i = 1. In this
situation, for j ∈ Z :

SBj =


kB if j = 1,

kB
†
if j = 0,

0 otherwise,
and SB

′

j =


kB
′
if j = 1,

kB
′†
if j = 0,

0 otherwise.

The key observation to conclude is then the following, for any ε ≥ 0:

kB ∼ε kB
′

=⇒ kB
† ∼ε kB

′†
.

We can now state our degree-wise description of dMV
I .

Theorem 4.5.4
Let S = (Si, δ

s
i ) and T = (Ti, µ

s
i ) be two strongly pointwise finite dimen-

sional Mayer-Vietoris systems over R. Then, for all ε ≥ 0:

S ∼MV
ε T ⇐⇒ ∀i ∈ Z, Si ∼ε Ti.

Consequently:
dMV
I (S, T ) = max

i
dI(Si, Ti).

Proof
By definition, an ε-MV-interleaving between S and T induces some ε-
interleaving between Si and Ti for all i.

Conversely, let ε such that Si ∼ε Ti for all i. By Bjerkevik’s above
result (theorem 4.5.2), there exists a ε-matching σi between the barcode
of persistence modules of Si and Ti. A matching between block preserves
the types of the blocks, except maybe for blocks of type db that can be
matched to 0.
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Since MV-barcodes contain only blocks of type bb, hb or vb, the collec-
tion (σi) induces a degree-wise bijection between the blocks in BMV(S) and
BMV(T ). This bijection induces a ε-MV-interleaving according to lemma
4.5.3.

Applying our main isometry theorem 4.4.21, we obtain:

Corollary 4.5.5
Let F and G in Db

Rc(kR). Then:

dC(F,G) = max
i

dI(Ψ(F )i,Ψ(G)i).

Therefore, to compute the convolution distance between F and G, two
constructible sheaves on R, it is sufficient to compute the degree-wise usual
interleaving distance between the persistence modules Ψ(F )i and Ψ(G)i,
and take the maximum over i. Moreover by Bjerkevik’s result (theorem
4.5.2), those distances can be computed as matching problems, hence can
be easily implemented.

We now consider the particular case where F andG are the pushforwards
of the constant sheaf over a paracompact and locally contractible topological
space X, through two continuous functions u, v : X → R, that is, F =
Ru∗kX and G = Rv∗kX . Then by proposition 4.4.6 and theorem 4.4.21 we
deduce

dC(Ru∗kX ,Rv∗kX) = dMV
I (L∗(u),L∗(v)) = max

i
dI(Li(u),Li(v)).

Combining all these results, we have proved that the convolution dis-
tance between Ru∗kX and Rv∗kX is the maximum over the degree of ho-
mology i of the bottleneck distances between the usual barcodes of the i-th
level-sets persistence homology modules of u and v.

4.5.3 Discussion

Our analysis has shown that graded barcodes of sheaves can be com-
puted from the barcodes of level-sets persistence modules. Thanks to our
description of the algebraic structure of Mayer-Vietoris systems, we are also
able to compare and prove the equality between the convolution distance of
two sheaves and the maximum of the interleaving distances between their as-
sociated level sets persistence modules. This last result seems important to
us in the view of applications. Indeed, it indicates that up to reformulation
in the language of Mayer-Vietoris systems, the problem of matching sheaf
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graded barcodes (which has a fundamentally derived behaviour) is equiva-
lent to a degree-wise matching problem. Moreover, some software solutions
already exists in order to compute level-sets persistence barcodes [Mor]. Ul-
timately, our work proves that depending on the research question, one can
enjoy the best properties of both constructions : the computational sim-
plicity of level-sets persistence on the one hand, the theoretical power of the
Grothendieck’s six operations formalism of sheaf theory on the other hand.
We think that the two following research questions could be of interest in
the future :

Data analysis : to the best of our knowledge, the collection of level-
sets barcode have not been used yet as a descriptor of datasets. Our
sheaf interpretation of the collection of level-sets persistence barcodes
shows that it carries information that should be valuable for machine
learning tasks such as classification.

Symplectic topology : the filtered Floer Hamiltonian homology nat-
urally admits a sublevel sets filtration by the action function, giving
it a structure of a one-parameter persistence module [BHS18]. Al-
though it is not obvious how to equip this homology theory with a
filtration turning it into a level sets persistence module, this could
lead to new interesting invariants of Hamiltonian diffeomorphisms.





c
h

a
p

t
e

r 5Ephemeral persistence modules
and distance comparison

Abstract

We provide a definition of ephemeral multi-persistence module and
further prove that the quotient of persistence modules by the

ephemeral ones is equivalent to the category of γ-sheaves. In the case
of one dimensional persistence, our definition agree with the usual one
showing that the observable category and the category of γ-sheaves
are equivalent. We also also establish isometry theorems between the
category of persistence modules and γ-sheaves both endowed with
the interleaving distances. Finally, we compare the interleaving and
convolution distances.

This chapter presents the results obtained in collaboration with
François Petit in [BPar] and is to appear in Algebra and Geometric
Topology.
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5.1 Introduction

One of the initial motivation of persistent homology was to provide
a mean to estimate the topology of space from a finite sample of itself.
Persistent homology and more generally the concept of persistence have
since been developed and have spread among many areas of mathematics.

Though persistence theory is well understood in the one-parameter case
(see for instance [Oud15] for an extensive exposition of the theory and its
applications), its generalization to the multi-parameter case remains less un-
derstood, yet is important for applications [LW15]. The first approach to
study the category of multi-parameter persistence modules was with an eye
coming from algebraic geometry and representation theory [CZ09]. Roughly
speaking, the idea was to consider persistence modules as graded-modules
over a polynomial ring. This allowed to link the theory of persistence with
more classical areas of mathematics and allowed to show that a complete
classification of persistence modules with more than one parameter is im-
possible. Nevertheless, one thing not to be forgotten is that the category
of persistence modules is naturally endowed with the interleaving distance.
Having applications in mind, one is more interested in computing the dis-
tance between two persistence modules, than to explicate the structural
difference between those.

In his thesis, J. Curry [Cur14] had the idea to take a sheaf-theorical
point of view on persistence. More recently, M. Kashiwara and P. Schapira
in [KS18a,KS18b] introduced derived sheaf-theoretic methods in persistent
homology. Persistent homology studies filtration of topological spaces in-
dexed by partially ordered groups. We will study here the case where the
filtrations are indexed by the elements of an ordered vector space V, de-
fined by the choice of a closed convex proper cone γ ⊂ V. Hence, the idea
underlying both approaches is to endow V with a topology depending on
this cone. Whereas J. Curry’s approach relies on Alexandrov’s topology,
M. Kashiwara and P. Schapira’s approach relies on the γ-topology which
was introduced by the same authors in [KS90]. The goal of this chapter
is to compare these two approaches. A key feature of persistence theory
is that the various versions of the space of persistence modules can be en-
dowed with pseudo-distances. We focus our attention on two main types
of pseudo-distances: the interleaving distances studied by several authors
among which [CdSGO16,dMS18,Les12,Les15] and the convolution distance
introduced in [KS18a] and studied in detail in the one-dimensional case in
the two previous chapters. Besides comparing the various categories of
sheaves used in persistence theory (and especially multi-parameter persis-
tence), we establish isometry theorems between these categories endowed
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with their respective distances.
To compare Alexandrov sheaves and γ-sheaves, we first study morphism

of sites between the Alexandrov and the γ-topology. We make precise the re-
sults of [KS18a, Section 1.4] by introducing two morphisms of sites α : Vγ →
Va and β : Va → Vγ where Va denotes the vector space V endowed with the
Alexandrov topology while Vγ designates V endowed with the γ-topology.
This provides us with three distinct functors α∗, β−1 : Mod(kVγ )→ Mod(kVa)
and β∗ = α−1 : Mod(kVa) → Mod(kVγ ) where Mod(kVγ ) (resp. Mod(kVa))
is the category of sheaves of k-modules on Vγ (resp. Va). The properties
of these functors allows us to define a well-behaved notion of ephemeral
modules in arbitrary dimensions (Definition 5.3.4). They correspond to
Alexandrov sheaves which vanishes when evaluated on open subset of the γ-
topology. In dimension one, our notion of ephemeral module coincides with
the one introduced in [CdSGO16] and further studied in [CCBdS16]. Then,
we show that the quotient of the category Mod(kVa) (which is equivalent to
the category of persistence modules over V equipped with the order asso-
ciated to the cone γ - see Theorem 5.2.7) by its subcategory of ephemeral
modules is equivalent to the category Mod(kVγ ) (Proposition 5.3.6). Spe-
cializing again our results to the situation where dimV = 1, we obtain
a canonical equivalence of categories between the observable category Ob
of [CCBdS16] and the category Mod(kVγ ) (Corollary 5.3.9). This provides
a natural description of the category of observable persistence modules and
highlights the significance of the theory of γ-sheaves for studying persistent
homology. We extend all these results to the derived setting.

We establish an isometry theorem between the category of Alexandrov
sheaves and γ-sheaves on V endowed with their respective interleaving
distances (Theorem 5.4.21). Note that our approach does not rely on a
structure-theorem for persistence modules (as they are not available in ar-
bitrary dimension) but on the properties of the morphisms of sites α and
β. We also study the properties of ephemeral modules with respects to the
notion of interleaving and show that they correspond to modules which are
interleaved with zero in all the directions allowed by the Alexandrov topol-
ogy. This shows that the notion of ephemeral modules is more delicate in
higher dimension than in dimension one. This being essentially due to the
fact that in dimension one the boundary of the cone associated with the
usual order ≤ on R is of dimension zero.

Finally, we study the relation between the interleaving and the convo-
lution distances on the category of γ-sheaves. The convolution distance
depends on the choice of a norm on V. Given an interleaving distance with
respects to a vector v in the interior of the cone γ, we introduce a preferred
norm (see formula (5.13)) and show that under a mild assumption on the
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persistence modules considered the convolution distance associated with
this norm and interleaving distance associated with v are equal (Corollary
5.5.5).

5.2 Sheaves on γ and Alexandrov topology

5.2.1 γ and Alexandrov topology

γ-topology

Following [KS18a], we briefly review the notion of γ-topology. For more
details, we refer the reader to [KS90].

Let V be a finite dimensional real vector space. We write s for the sum
map s : V× V→ V, (x, y) 7→ x+ y and a : x 7→ −x for the antipodal map.
If A is a subset of V, we write Aa for the antipodal of A, that is the subset
{x ∈ V| − x ∈ A}.

A subset C of the vector space V is a cone if

(i) 0 ∈ C,

(ii) R>0C ⊂ C.

We say that a convex cone C is proper if Ca ∩ C = {0}.
Given a cone C ⊂ V, we define its polar cone C◦ as the cone of V∗

C◦ = {ξ ∈ V∗ | ∀v ∈ C, 〈ξ, v〉 ≥ 0}.

From now on, γ denotes a

closed proper convex cone with non-empty interior. (5.1)

We still write V for the vector space V endowed with the Euclidian topology.
We say that a subset A of V is γ-invariant if A = A + γ. The set

of γ-invariant open subset of V is a topology on V called the γ-topology .
We denote by Vγ the vector space V endowed with the γ-topology. We
write φγ : V→ Vγ for the continuous map whose underlying function is the
identity.

If A is a subset of V, we write Int(A) for the interior of A in the usual
topology of V.

Lemma 5.2.1
Let U be a γ-open. Then U =

⋃
x∈U x+ Int(γ)
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Proof
The inclusion

⋃
x∈U x+ Int(γ) ⊂ U is clear. Let us prove the reverse inclu-

sion. Let y ∈ U . Since 0 ∈ γ = Int(γ), there exists a sequence (un)n∈N, of
points of Int(γ), such that limn→∞ un = 0. Hence, for n sufficiently large
y−un is in U as it is open and un ∈ Int(γ). As y = y−un+un, this implies
that y ∈

⋃
x∈U x+ Int(γ).

�

γ-sheaves

In this section, following [KS90], we recall the notion of γ-sheaves and
results borrowed to [KS18a] and [GS14].

We denote by kVγ the constant sheaf on Vγ and write Mod(kVγ ) for the
abelian category of kVγ -modules, D(kVγ ) for its derived and Db(kVγ ) for its
bounded derived category.

We now state a result due to M. Kashiwara and P. Schapira that says
that the derived category of γ-sheaves is equivalent to a subcategory of
the usual derived category of sheaves Db(kV). This subcategory can be
characterized by a microsupport condition. Given F in Db(kV), one denotes
by SS(F ) its microsupport. We refer the reader to [KS90, Chapter V] for
the definition and properties of the microsupport.

Following [KS18a], we set

Db
γ◦,a(kV) = {F ∈ Db(kV); SS(F ) ⊂ γ◦,a}

Modγ◦,a(kV) = Mod(kV) ∩Db
γ◦,a(kV)

Theorem 5.2.2 ( [KS18a, Theorem 1.5])
Let γ be a proper closed convex cone in V. The functor Rφγ∗ : Db

γ◦,a(kV)→
Db(kVγ ) is an equivalence of triangulated categories with quasi-inverse φ−1

γ .

Corollary 5.2.3
The functor φγ∗ : Modγ◦,a(kV) → Mod(kVγ ) is an equivalence of categories
with quasi-inverse φ−1

γ .

Consider the following maps:

s : V× V→ V, s(x, y) = x+ y

qi : V× V→ V (i = 1, 2) q1(x, y) = x, q2(x, y) = y

Let F and G in Db(kV), we set
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F ∗
np
G = Rs∗(q

−1
1 F ⊗ q−1

2 G) = Rs∗(F �G).

The reader shall beware that ∗
np

differs from the covolution ? that we

have introduced in Definition 2.2.4, by the fact that we consider here the
ordinary pushforward by s, and not the pushforward with compact support.

We denote by kγa the sheaf associated to the closed subset γa. The
canonical map kγa → k{0} induces a morphism

F ∗
np
kγa → F. (5.2)

Proposition 5.2.4 ( [GS14, Proposition 3.9])
Let F ∈ Db(kV). Then F ∈ Db

γ◦,a(kV) if and only if the morphism (5.2) is
an isomorphism.

We finally recall the following notion extracted from [KS18a].

Definition 5.2.5
Let A be a subset of V. We say that A is γ-proper if the map s is proper
on γ × A.

Alexandrov sheaves

The datum of a closed proper convex cone γ of V endows V with the
order

x ≤γ y if and only if x+ γ ⊂ y + γ.

Let γ be a a closed proper convex cone of V we write it Va(γ) for the topo-
logical space V endowed with the Alexandrov topology (proposition 2.2.1)
associated to the pre-order ≤γ. When the context is clear, we will write Va.
An Alexandrov sheaf is an object of the abelian category Mod(kVa). We
denote by D(kVa) its derived category.

We denote by V≤γ the category whose objects are the elements of V and
given x and y in V, there is exactly one morphism from x to y if an only if
x ≤γ y . If there is no risk of confusion, we simply write V≤ and set

Mod(V≤) := Fun((V≤)op,Mod(k)) = Pers(k(V,≤op)).

In this chapter only, for simplicity, we take the convention of calling
the objects of Mod(V≤) “persistence modules over V≤”.

In order to compare γ-sheaves and Alexandrov sheaves we use mor-
phisms of sites. These are morphisms between Grothendieck topologies
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and in particular usual topologies considered as Grothendieck topologies.
It is important to keep in mind that some morphisms of sites between usual
topological spaces are not induced by continuous maps. This is why we use
this notion. Operations on sheaves can also be defined for morphisms of
sites. These operations on sheaves generalize the ones induced by continu-
ous maps between topological spaces. We refer the reader to [KS06] for a
detailed presentation. Here, we provide, for the convenience of the reader,
the definition of a morphism of sites in the special cases of topological spaces
as it is sufficient for our needs.
Definition 5.2.6
Let X and Y be two topological spaces. A morphism of sites f : X → Y is
a functor f t : Op(Y )→ Op(X) such that
(i) for any U, V ∈ Op(Y ), f t(U ∩ V ) = f t(U) ∩ f t(V ),
(ii) for any V ∈ Op(Y ) and any covering V = {Vi}i∈I of V , f t(V) =
{f t(Vi)}i∈I is a covering of f t(V ).

We write Vtop
≤ for V≤ endowed with the trivial Grothendieck topology

(that is the one for which all the sieve are representable). Note that on Vtop
≤

all presheaves are sheaves. Hence, the forgetful functor for : Vtop
≤ → V≤

induces an equivalence

Mod(kVtop
≤

)
∼→ Mod(V≤)

For this reason, we will not distinguished between Vtop
≤ and V≤. There is a

morphism of sites θ : Va → V≤ defined by

θt : V≤ → Op(Va), x 7→ x+ γ.

The following statement is due to J. Curry. We refer to [KS18a] for a proof.

Theorem 5.2.7
The functor

θ∗ : Mod(kVa)→ Mod(V≤)

is an equivalence of categories.

5.2.2 Relation between γ-sheaves and Alexandrov
sheaves

Let V be a finite dimensional real vector space and γ a cone of V sat-
isfying hypothesis (5.1). Recall that we have defined a preorder ≤ on V as
follow:
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x ≤γ y ⇔ x+ γ ⊂ y + γ.

We denote by Va(γ) the Alexandrov topology on V associated to the preorder
≤γ. If there is no risk of confusion, we write Va instead of Va(γ). By
definition the open sets (x+ γ)x∈V = (D(x))x∈V form a basis of the topology
Va.

We define the functor αt : Op(Va)→ Op(Vγ) by

αt : Op(Va)→ Op(Vγ), U =
⋃
x∈U

x+ γ 7→
⋃
x∈U

x+ Int(γ).

Lemma 5.2.8
The functor αt is a morphism of sites α : Vγ → Va.

Proof
The functor αt preserves covering. Let us check that it preserves finite
limits. For that purpose it is sufficient to check that it preserves the final
object (clear) and fibered products which reduces in this particular setting
to show that

αt(U ∩ V ) = αt(U) ∩ αt(V ).

On one hand

αt(U ∩ V ) =
⋃

x∈U∩V

x+ Int(γ).

On the other hand

αt(U) ∩ αt(V ) =
⋃

z∈αt(U)∩αt(V )

z + Int(γ).

Hence, αt(U) ∩ αt(V ) ⊂ αt(U ∩ V ). As U ∩ V is included in U and V it
follows by functoriality that αt(U ∩V ) is included in αt(U) and αt(V ). This
proves the reverse inclusion

�

We also have the following morphism of sites

β : Va → Vγ, βt(x+ Int(γ)) = x+ Int(γ)

The composition of β and α satisfies β ◦ α = id.
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The morphism of sites α and β provides the following adjunctions

α−1 : Mod(kVa)
//Mod(kVγ ) : α∗oo

β−1 : Mod(kVγ )
//Mod(kVa) : β∗.oo

We define the functor

α† : Fun(Op(Va)
op,Mod(k))→ Fun(Op(Vγ)

op,Mod(k)), F 7→ α†F

where
for every U ∈ Op(Vγ), α

†F (U) = colim
U⊂αt(V )

F (V ).

Recall that by definition α−1F is the sheafification of α†F .

Proposition 5.2.9
(i) The functors α−1 ' α† ' β∗ are isomorphic,
(ii) the functor α∗ is fully faithful,
(iii) the functor β−1 is fully faithful.

Proof
(i) Let F ∈ Mod(kVa). Then,

α†F (U) = colim
U⊂αt(V )

F (V ) = F (U) = β∗F (U).

Hence, α† ' β∗. Since α†F is a sheaf, it follows that α−1 ' α†.

(ii) Let F, G ∈ Mod(kVγ ). The isomorphism of functors β∗α∗ ' id im-
plies that the morphism HomkVγ

(F,G)
α∗−→ HomkVa

(α∗F, α∗G) is injective.
Let φ ∈ HomkVa

(α∗F, α∗G). Set ψx+Int(γ) := φx+γ. Since {x + Int(γ)}x∈Vγ
is a basis of Vγ, the family (ψx+Int(γ))x∈Vγ defines a morphism of sheaves
ψ : F → G and α∗ψ = φ. This proves that α∗ is fully faithful.

(iii) This follows from [KS06, Exercise 1.14].

�

We have the following sequence of adjunctions β−1 a β∗ ' α−1 a α∗.
The functor α∗ and β−1 are different as the following example shows.

We set V = R and γ =]−∞, 0]. We consider the γ-closed set [t,+∞[ with
t ∈ R and the sheaf k[t,+∞[ associated with it. Consider the sheaves

β−1k[t,+∞[ and α∗k[t,+∞[.
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We compute the stalk at t of these two sheaves. For the first one, observe
that the continuous map β : Va −→ Vγ is the identity on the elements of
V. Therefore, we have (β−1k[t,+∞[)t ' (k[t,+∞[)t ' k. For the second one,

(α∗k[t,+∞[)t ' α∗k[t,+∞[(t+ γ)

' k[t,+∞[(]−∞, t[)
' 0.

5.2.3 Compatibilities of operations

In this subsection, we study the compatibility between operations for
sheaves in γ and Alexandrov topologies.

Let V and W be two finite dimensional real vector spaces endowed with
cones γ and λ satisfying the hypothesis (5.1).

Lemma 5.2.10
Let f : V→W be a linear map. The following statements are equivalent.

(i) f(γ) ⊂ λ,

(ii) f : Vγ →Wλ is continuous,

(iii) f : Va(γ) →Wa(λ) is continuous.

Proof
(i)⇒(ii) Let y ∈ W. Let us show that f−1(y + Int(λ)) is a γ-open. As V
and W are finite dimensional, f is continuous for the usual topology. Hence
f−1(y+Int(λ)) is open. The inclusion f−1(y+Int(λ)) ⊂ f−1(y+Int(λ))+γ
is clear. Let us show the reverse inclusion. Let x ∈ f−1(y + Int(λ)) + γ.
There exists u ∈ f−1(y + Int(λ)) and v ∈ γ such that x = u + v. Then
f(x) = y+l+f(v) with l ∈ Int(λ) and f(v) ∈ λ. Since Int(λ) = Int(λ)+λ it
follows that f(x) ∈ y+Int(λ). Hence f−1(y+Int(λ))+γ = f−1(y+Int(λ)).
This proves that f−1(y + Int(λ)) is a γ-open.
(ii)⇒(i) Since f(0) = 0 and f is continuous, for every ε > 0 there exists
η > 0 such that f(B(0; η)+γ) ⊂ B(0, ε)+λ. Hence, if v ∈ γ, f(v) ∈ λ = λ.
(i)⇒(iii) The statement (i) implies that f : (V,≤γ) → (W,≤λ) is order
preserving. Hence, f : Va(γ) →Wa(λ) is continuous.
(iii)⇒(i) λ is an open subset of Wa(λ). As f−1(λ) is an open subset of Va(γ)

such that 0 ∈ f−1(λ) it follows that γ ⊂ f−1(λ). Hence f(γ) ⊂ λ.

�
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Let f : V → W be a linear map. Assume that f(γ) ⊂ λ. We denote by
f̃ : Va(γ) → Wa(λ) the continuous map between V and W endowed with
the Alexandrov topologies respectively associated to the cones γ and λ and
whose underlying linear map is f .

Proposition 5.2.11
(i) Assume that f(γ) ⊂ λ. Then the following diagram of morphisms of

sites is commutative.
Va

β //

f̃
��

Vγ

f
��

Wa
β //Wλ

(ii) Assume that f(Int(γ)) ⊂ Int(λ). Then the following diagram of mor-
phisms of sites is commutative.

Vγ
α //

f
��

Va

f̃
��

Wλ
//α //Wa

Proof
(i) is clear.
(ii) Let y ∈W. On one hand, we have

αt ◦ f̃ t(y + λ) = αt(
⋃

{x∈V|f(x)∈y+λ}

x+ γ)

=
⋃

{x∈V|f(x)∈y+λ}

x+ Int(γ).

On the other hand,

f t ◦ αt(y + λ) = f t(y + Int(λ))

=
⋃

{x∈V|f(x)∈y+Int(λ)}

x+ Int(γ).

The inclusion

⋃
{x∈V|f(x)∈y+Int(λ)}

x+ Int(γ) ⊂
⋃

{x∈V|f(x)∈y+λ}

x+ Int(γ)

is clear. Let us prove the reverse inclusion. Let z ∈
⋃
{x∈V|f(x)∈y+λ} x +

Int(γ). Then z = x+ g with g ∈ Int(γ) and f(z) = y + l+ f(g) with l ∈ λ.
As f(g) ∈ Int(λ) then l + f(g) ∈ Int(λ). It follows that f(z) ∈ y + Int(λ).
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�

In (ii) the hypothesis f(Int(γ)) ⊂ Int(λ) is necessary as shown in the
following example.

On R, consider the cone γ = {x ∈ R|x ≤ 0} and on R2 consider the
cone λ = {(x, y) ∈ R2|x ≤ 0 and y ≤ 0}. Let f : R → R2, x 7→ (x, 0).
Then, computing both f tαt(λ) and αtf̃ t(λ), we get

f tαt(λ) = f t(Int(λ))

= ∅
αtf̃ t(λ) = αt(γ)

= Int(γ)

Note that the condition f(Int(γ)) ⊂ Int(λ) is automatically satisfied
when f is surjective.

5.3 Ephemeral persistence modules

5.3.1 The category of ephemeral modules

In this section, we propose a notion of ephemeral persistence module
in arbitrary dimension, generalizing the one of [CdSGO16]. For the con-
venience of the reader, we start by recalling the definition of a Serre sub-
category and of the quotient of an abelian category by a Serre subcategory
that we subsequently use. We refer the reader to [Gab62] and [Sta19, Tag
02MN].

Definition 5.3.1
Let A be an abelian category. A Serre subcategory C is a full subcategory
of A, which contains 0, such that given an exact sequence

X → A→ Y

with X and Y in C and A ∈ A then A ∈ C.
If C is closed under isomorphism, we say that it is a strict Serre subcat-

egory of A.

Lemma 5.3.2
Let A be an abelian category and C be a Serre subcategory of A. There
exists an abelian category denoted A/C and an exact functor Q : A → A/C
whose kernel is C satisfying the following universal property: For any exact
functor F : A → B such that C ⊂ Ker(G) there exists a factorization F =
G ◦Q for a unique exact functor G : A/C → B.

https://stacks.math.columbia.edu/tag/02MN
https://stacks.math.columbia.edu/tag/02MN
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Proposition 5.3.3 ( [Gab62, Ch.2 §2 Proposition 5])
Let L : A → B be an exact functor between abelian categories. Assume that
L has a fully faithful right adjoint R. Then KerL is a Serre subcategory of
A and L induces an equivalence between A/Ker(L) and B.

We now introduce our notion of ephemeral module.

Definition 5.3.4
An object G ∈ Mod(kVa) is ephemeral if and only if β∗G ' 0. We denote by
Eph(kVa) the full subcategory of Mod(kVa) spanned by ephemeral modules.

In other words, an object G ∈ Mod(kVa) is ephemeral if and only if for
every open subset of the usual topology of V, G(U + γ) = 0.

Lemma 5.3.5
The full subcategory Eph(kVa) of Mod(kVa) is a Serre subcategory, stable
by limits and colimits.

Proof
Since β∗ ' α−1, Eph(kVa) ' ker(α−1). Since α−1 is exact, Eph is a Serre
subcategory of Mod(kVa). Since β∗ commutes with limits (it is a right
adjoint) and α−1 commutes with colimits (it is a left adjoint), Eph(kVa) has
limits and colimits.

�

Proposition 5.3.6
The functor α−1 : Mod(kVa) → Mod(kVγ ) induces an equivalence of cate-
gories between Mod(kVa)/Eph(kVa) and Mod(kVγ ).

Proof
This is a direct consequences of Proposition 5.2.9 and 5.3.3.

�

5.3.2 Ephemeral module on (R,≤)

Ephemeral modules on (R,≤) were introduced in [CdSGO16] as a way to
express the intuition of persistence modules that cannot be measured with
respect to the interleaving distance. The category of observable modules on
R was then introduced and studied in [CCBdS16], as the quotient category
of persistence modules by the subcategory of ephemeral ones. We show that
our notion of ephemeral module generalize to arbitrary dimension the one
of [CdSGO16] and [CCBdS16].
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The choice of the order ≤ on R is equivalent to the choice of the proper
closed convex cone γ = [0,+∞[. We write dI for the standard interleaving
distance between one parameter persistence modules (see section 2.1.2).

Lemma 5.3.7
Let F ∈ Mod(kRa(γ)

). The following are equivalent :
(i) F ∈ Eph(kRa(γ)

),
(ii) the restriction morphism ρt,s : F (s + γ) → F (t + γ) is null whenever

s < t,
(iii) dI(F, 0) = 0.

Proof
(i)⇒(ii). There exists u ∈ R such that s < u < t and by hypothesis
F (u+ Int(γ)) ' (0). Hence, we have the following commutative diagram

F (s+ γ)

ρu+Int(γ),s $$

ρt,s // F (t+ γ)

(0)

ρt,u+Int(γ)

::
.

This implies that ρt,s = 0.

(ii)⇒(i). As the family (x + Int(γ))x∈R is a basis of the γ-topology on
R, it is sufficient to show that for every x ∈ R, F (x + Int(γ)) = (0). Let
x ∈ R. Since F is a sheaf for the Alexandrov topology, we have the following
isomorphism

lim
u+γ⊂x+Int(γ)

ρx+Int(γ),u : F (x+ Int(γ))
∼→ lim

u+γ⊂x+Int(γ)
F (u+ γ). (5.3)

Since u + γ ⊂ x + Int(γ), x < u. Then, there exists t ∈ R such that
x < t < u. Hence, ρx+Int(γ),u = ρt,u ◦ ρx+Int(γ),t = 0. It follows that the
isomorphism (5.3) is the zero map. This implies that F (x+ Int(γ)) ' 0.
(iii) ⇐⇒ (ii) is an easy consequence of the definition of the interleaving
distance for one-parameter persistence modules.

�

We refer the reader to [CCBdS16, Definition 2.3] for the definition of
the observable category denoted Ob and recall the following result by the
same authors
Theorem 5.3.8 ( [CCBdS16, Corollary 2.13])
There is the following equivalence of categoriesOb ' Mod(kRa(γ)

)/Eph(kRa(γ)
).
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Corollary 5.3.9
The observable category Ob is equivalent to the category Mod(kRγ ).

Proof
Using Proposition 5.3.6 and Theorem 5.3.8, we obtain the following se-
quence of equivalence

Ob ' Mod(kRa(γ)
)/Eph(kRa(γ)

) ' Mod(kRγ ).

Note that we already obtained this result in corollary [?], but our ap-
proach was relying on a decomposition theorem, which is not the case here.
This is precisely why it allows to generalize the notion of ephemeral persis-
tence modules to higher dimensional vector spaces.

5.3.3 Ephemeral modules in the derived category

We write D(kVa) for the derived category of Alexandrov sheaves and
D(kVγ ) for the one of γ-sheaves.

It follows from the preceding subsections that we have the following
adjunctions

β∗ = α−1 : D(kVa) // D(kVγ ) : β−1, Rα∗oo
oo

Proposition 5.3.10
(i) the functor β−1 is fully faithful,
(ii) the functor Rα∗ is fully faithful.

Proof
(i) follows from Proposition 5.2.9 as β∗ and β−1 are exact.
(ii) This follows from [KS06, Exercices 1.14].

�

We write DEph(kVa) for the full subcategory of D(kVa) consisting of ob-
jects F ∈ D(kVa) such that for every i ∈ Z, Hi(F ) ∈ Eph(kVa). Since
Eph(kVa) is a thick abelian subcategory of Mod(kVa), DEph(kVa) is a trian-
gulated subcategory of D(kVa). We consider the full subcategory of D(kVa)

Kerα−1 = {F ∈ D(kVa) | α−1F ' 0}.

Recall that a subcategory C of a triangulated category T is thick if it is
triangulated and it contains all direct summands of its objects. It is clear
that Kerα−1 is thick.
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Lemma 5.3.11
The triangulated category DEph(kVa) is equivalent to the triangulated cat-
egory Kerα−1.

Proof
This follows immediately form the exactness of α−1.

�

We now briefly review the notion of Verdier localization of triangulated
categories. References are made to [KS06] and [Kra2].

Let T be a triangulated category and N be a triangulated full subcat-
egory of T . We write W (N ) for the set of maps f : X → Y of T which sit
into a triangle of the form

X
f→ Y → Z

+1→
where Z ∈ N . By definition the Verdier quotient of T by N is the local-
ization of T with respects to the set of maps W (N ). That is

T /N := T [W (N )−1]

together with the localization functor

Q : : T → T /N .
The following proposition is well-known
Proposition 5.3.12 ( [Kra2] - Prop. 2.3.1)
Let L : C � D : R be an adjunction. Assume that the right adjoint R is
fully faithful. Then L : C → D is the localization of C with respect to the
set of morphisms

W = {f : X → Y ∈ Mor(C) | L(f) is an isomorphism}.
Proposition 5.3.13
The category D(kVγ ) is the Verdier quotient of D(kVa) by DEph(kVa) via the
localization functor α−1 : D(kVa)→ D(kVγ ). In particular, D(kVa)/DEph(kVa) '
D(kVγ ).

Proof
Let W = {f ∈ Mor(C) | α−1(f) is an isomorphism}. Let f : F → G be a
morphism of D(kVa). By the axiom of triangulated categories, f sits in a
distinguished triangle

F
f→ G→ H

+1→ .

Hence α−1(f) is an isomorphism if and only if α−1H ' 0. That is if
H ∈ DEph(kVa). This proves the claim.

�
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5.4 Distances on categories of sheaves

5.4.1 Preliminary facts

Let V be a finite dimensional vector space, γ ⊂ V be a convex, proper
cone with non-empty interior and v ∈ V. The map

τv : V→ V, x 7→ x− v

is continuous for the Euclidean, Alexandrov and the γ topologies on V. Let
v, w ∈ V and assume that w ≤γ v.

Alexandrov & γ-topology

Let F ∈ D(kVa). Since w + γ ⊂ v + γ, it follows that for every U ∈
Op(Va), U + w ⊂ U + v. hence, replacing F by an homotopically injective
resolution I, and using the restriction morphisms, we obtain a morphism
of sheaves

τv∗I → τw∗I

This provides a morphism

χa
v,w(F ) : τv∗F → τw∗F.

It follows that there is a morphism of functors from D(kVa) to D(kVa)

χa
v,w : τv∗ → τw∗. (5.4)

In a similar way, we obtain a morphism of functors from D(kVγ ) to D(kVγ )

χγv,w : τv∗ → τw∗. (5.5)

One immediately verify that for every F ∈ D(kVa) and G ∈ D(kVγ )

β∗χ
a
v,w(F ) ' χγv,w (β∗F ). (5.6)

Rα∗χ
γ
v,w(G) ' χa

v,w (Rα∗G). (5.7)

Lemma 5.4.1
For every F ∈ D(kVγ ), there is the following canonical isomorphism

β−1χγv,w(F ) ' χa
v,w (β−1F ).
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Proof
Let F ∈ D(kVγ ) and consider the canonical morphism.

χa
v,w(β−1F ) : τv∗β

−1F → τw∗β
−1F.

Since β−1 is fully faithful and commutes with τv∗ and τw∗, there exists a
unique morphism f : τv∗F → τw∗F such that the following diagram com-
mutes

τv∗β
−1F

χa
v,w(β−1F )

//

o
��

τw∗β
−1F

o
��

β−1τv∗F
β−1f // β−1τw∗F.

Hence, β∗χa
v,w(β−1F ) ' β∗β

−1f . It follows from the fully faithfulness of β−1

and from Formula (5.6) that

f ' χγv,w(F ).

Applying β−1 to the above isomorphism, we get that β−1χγv,w(F ) ' χa
v,w(β−1F ).

Let F ∈ D(kVa) and G ∈ D(kVγ ). If w = 0 and v ∈ γa, the morphisms
(5.4) and (5.5) provide respectively the canonical morphisms

χa
v,0 : τv∗F → F,

χγv,0 : τv∗G→ G.

Remark 5.4.2
In the abelian cases i.e. for the categories Mod(kVa) and Mod(kVγ ) similar
morphisms exist. They can be constructed directly or induced from the
derived cases by using the following facts. If A is an abelian category and
D(A) is its derived category, then the canonical functor

ι : A → D(A)

which send an object of A to the corresponding complex concentrated in
degree zero is fully faithful. Moreover, H0 ◦ ι ' id and for every v ∈ V ,
τv∗ commutes with H0. Hence, we will focus on the derived situations as it
implies, here, the abelian case.
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The microlocal setting

We now construct similar morphisms for sheaves in Db
γ◦,a(kV). This

construction is classical (see for instance [GS14]). We provide it for the
convenience of the reader.

Lemma 5.4.3
Let F ∈ Db

γ◦ a(kV) and u ∈ V. Then there is a functorial isomorphism

τu∗F ' k−u+γa ∗
np
F.

Proof
It follows from Proposition 5.2.4 that the canonical morphism kγa ∗

np
F → F

is an isomorphism and τu ◦ s = s ◦ (τu × id). Hence

τu∗F ' τu∗(kγa ∗
np
F )

' s∗(τu × id)∗(kγa � F )

' k−u+γa ∗
np
F.

For w ≤γ v, the canonical map

k−v+γa → k−w+γa

induces a morphism of functors

k−v+γa ∗
np

(·)→ k−w+γa ∗
np

(·). (5.8)

Using the Lemma 5.4.3, we obtain a morphism of functors from Db
γ◦ a(kV)

to Db
γ◦ a(kV)

χµv,w : τv∗ → τw∗. (5.9)

Lemma 5.4.4
Let F ∈ Db

γ◦ a(kV) and G ∈ Db(kVγ ). There are the following canonical
isomorphisms

Rφγ∗χ
µ
v,w(F ) ' χγv,w(Rφγ∗F ), (5.10)

φ−1
γ χγv,w(G) ' χµv,wφ

−1
γ (G). (5.11)
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Proof
Let F ∈ Db

γ◦ a(kV) and U a γ-open set. Then we have the following com-
mutative diagram

RHomkVγ
(kU , Rφγ∗τv∗F )

RHomkVγ
(kU ,Rφγ∗χ

µ
v,w)

//

��

RHomkVγ
(kU ,Rφγ∗τw∗F )

��
RHomkV(τ−1

v kU , F )

��

RHomkV(τ−1
w kU , F )

��
RHomkVγ

(kU+v,Rφγ∗F ) // RHomkV(kU+w,Rφγ∗F )

As Rφγ∗ : Db
γ◦ a(kV) → Db(kVγ ) is an equivalence of categories, it follows

from the enriched Yoneda lemma that the bottom arrow on the diagram is
induced by the canonical map kU+w → kU+v and hence is RHomkVγ

(kU+v, χ
γ
v,wRφγ∗).

which proves formula (5.10). The formula (5.11) follows by pre- and post-
composing the preceding one by χγv,wRφγ∗ and using that Rφγ∗φ

−1
γ ' id and

φ−1
γ Rφγ∗ ' id.

�

Let F ∈ Db
γ◦ a(kV). Again, if w = 0 and v ∈ γa, the morphism (5.9)

provides the canonical morphism

χµv,0 : τv∗F → F.

Remark 5.4.5
Here, again, using Remark 5.4.2, we obtain, for every F ∈ Modγ◦ a(kVγ ) and
every w ≤γ v, a canonical morphism τv∗F → τw∗F by setting χµv,w(F ) :=

H0(χµv,w(ι(F )).

5.4.2 Interleavings and distances

Let C be any of the following category D(kVa), D(kVγ ), Db
γ◦ a(kVγ ),

Mod(kVa), Mod(kVγ ), Modγ◦ a(kVγ ). In the following, we will extend the
notion of interleavings with respect to a vector.

Definition 5.4.6
Let F , G ∈ C, and v ∈ γa. We say that F and G are v-interleaved if there
exists f ∈ HomC(τv∗F,G) and g ∈ HomC(τv∗G,F ) such that the following
diagram commutes.
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τ2v∗F

##

χ2v,0(F )

$$τv∗f // τv∗G

!!

g // F

τ2v∗G

;;

χ2v,0(G)

::
τv∗g // τv∗F

==

f // G

Definition 5.4.7
With the same notations, define the interleaving distance between F and
G with respect to v ∈ γa to be the possibly infinite value:

dvI(F,G) := inf({c ≥ 0 | F and G are c · v − interleaved} ∪ {∞}).

Proposition 5.4.8
The interleaving distance dvI is a pseudo-extended metric on the objects of
C, that is it satisfies for F,G,H objects of C :

1. dvI(F,G) ∈ R≥0 ∪ {+∞},
2. dvI(F,G) = dvI(G,F ),

3. dvI(F,H) ≤ dvI(F,G) + dvI(G,H).

We write dvIa for the interleaving distance on D(kVa), dvIγ for the inter-
leaving distance on D(kVγ ), dvIµ for the interleaving distance on Db

γ◦ a(kVγ ).
We write dv

Iab
a

for the interleaving distance on Mod(kVa) and use similar
notation in the cases of Mod(kVγ ) and Modγ◦ a(kVγ ).

Remark 5.4.9
Again, here we focus on the derived case as the abelian one can be deduced
from the derived one by using Remark 5.4.2.

Interleavings and ephemeral modules

This subsection is dedicated to the study of the relations between the
notions of interleavings and ephemeral modules. We characterize ephemeral
modules in terms of interleavings, and prove that they are exactly those
modules which are at distance 0 from 0 for any direction of interleaving.
Once again, we concentrate our attention on the derived setting as the
abelian case can be deduced from the derived one by using Remark 5.4.2.
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Proposition 5.4.10
Let F and G in D(kVa). The set

Inter(F,G) = {v ∈ Int(γa) | F and G are v − interleaved}

is Alexandrov-closed.

Proof
It is sufficient to show that Inter(F,G) + γa = Inter(F,G). The inclusion
Inter(F,G) ⊂ Inter(F,G) + γa is clear. We prove the reverse inclusion. Let
w ∈ γa and v ∈ Inter(F,G). Let

f : τv∗F → G g : τv∗G→ F

be a v-interleaving between F and G. The maps

τv+w∗F
τw∗f−→ τw∗G

χa
w,0−→ G τv+w∗G

τw∗g−→ τw∗F
χa
w,0−→ F

provides a v + w interleaving between F and G as the following diagram

τ2(v+w)∗F
τv+2w∗f // τv+2w∗G

χa
v+2w,v+w // τv+w∗G

τ∗g // τw∗F
χw,0 // F

τ2(v+w)∗F
τ2w∗τv∗f //

χa
2(v+w),0

33τv+2w∗G
τ2w∗g //

χa
v+2w,v+w

;;

τ2w∗F
χ2w,0 //

χa
2w,w

<<

F

and its analogue with F and G interchanged are commutative.

�

Corollary 5.4.11
Let w ≥γa v. Then,

dvIa ≥ dwIa .

Remark 5.4.12
The proof of Proposition 5.4.10 proves also that for F, G ∈ D(kVγ ),

Inter(F,G) + γa = Inter(F,G).

Hence, if w ≥γa v. Then, dvIγ ≥ dwIγ .
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Lemma 5.4.13
Let F ∈ D(kVa) and v ∈ Int(γa). Then F is v-interleaved with 0 if and only
if the canonical morphism χa

v,0(F ) : τv∗F → F is null.

Proof
If χa

v,0(F ) is zero then F is v-interleaved with zero.
Let us prove the converse. Suppose F is ephemeral and let v ∈ Int(γa).

Since γ is closed, proper and convex, Int(γa)+γa = Int(γa) and v
2
∈ Int(γa).

Hence, we have the following sequence of inclusion

γ ⊂ Int(γ) +
v

2
⊂ γ + v

inducing for any U ∈ Op(Va), the sequence of inclusions:

U ⊂ U + Int(γ) +
v

2
⊂ U + v.

Replacing F by a homotopically injective resolution I, we obtain the fol-
lowing commutative diagram

Γ(U ; I)
χa
v,0 //

((

Γ(U + v; I)

Γ(U + Int(γ) + v
2
; I).

55

In D(kVa), Γ(U+Int(γ)+ v
2
; I) ' RΓ(U+Int(γ)+ v

2
;F ) ' 0 as U+Int(γ)+

v
2
∈ Op(V) and F is ephemeral. This proves that the canonical map χa

v,0 is
0. Hence F is v-interleaved with 0.

�

The following propositions and corollaries prove that our notion of ephemeral
modules captures the idea of “algebraic features of persistence modules that
do not persist”, and give a purely metric characterization of ephemeral
Alexandrov sheaves.
Proposition 5.4.14
Let F ∈ Mod(kVa), then F is ephemeral if and only if

Inter(F, 0) = Int(γa).

Proof
(i) Assume F is ephemeral. Let v ∈ Int(γa) and U be an object of Op(Va).
We have the following sequence of inclusion

U ⊂ U + Int(γ) +
v

2
⊂ U + v
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and U+Int(γ)+ v
2
∈ Op(V). Hence Γ(U+Int(γ)+ v

2
;F ) ' 0. It follows that

χa
v,0(F ) : τv∗F → F factors through zero. This implies that v ∈ Inter(F, 0).

(ii) The proof is similar to the one of Lemma 5.3.7. Assume that Inter(F, 0) =
Int(γa). Let us show that β∗F ' 0. It is sufficient to show that for every
x ∈ V, F (x+ Int(γ)) ' 0. Let x ∈ V. Then,

lim
u+γ⊂x+Int(γ)

ρx+Int(γ),u : F (x+ Int(γ))
∼→ lim

u+γ⊂x+Int(γ)
F (u+ γ). (5.12)

Let u ∈ x+Int(γ), there exists v ∈ Int(γa) such x = u+v and by assumption

χa
v,0(F ) : τv∗F → F

factor through zero. Hence, the restriction map ρx+Int(γ),u is zero. This
implies that the isomorphism (5.12) is null. It follows that F (x+Int(γ)) ' 0
which proves the claim.

�

Remark 5.4.15
The previous proposition can be expressed in the language of graded mod-
ules over real polyhedral group, following the work of Ezra Miller [Mil20]. It
precisely characterizes ephemeral persistence modules as those whose upper
boundary [Mil20, Definition 3.11] atop the interior of the cone vanishes.

Corollary 5.4.16
Let F ∈ D(kVa), then F is ephemeral if and only if

Inter(F, 0) = Int(γa).

Proof
(i) Assume F is ephemeral. Then the proof is similar to the proof of Lemma
5.4.13.
(ii) Assume that Inter(F, 0) = Int(γa). Then for every i ∈ Z, Inter(Hi(F ), 0) =
Int(γa). Then the results follow from Proposition 5.4.14.

�

Corollary 5.4.17
Let v ∈ Int(γa) and F ∈ D(kVa). Then, F is ephemeral if and only if
dvIa(F, 0) = 0.

Proof
The left to right implication is a direct consequence of corollary 5.4.16.
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Let us prove the converse. Since dvIa(F, 0) = 0, for all ε > 0, ε · v ∈
Inter(F, 0). Let us prove that Inter(F, 0) = Int(γa). Let u ∈ Int(γa). Since
Int(γa) is open for the euclidean topology, there exists η > 0 such that
u− η · v ∈ Int(γa). Therefore u = η · v+ (u− η · v). The first element of the
sum belongs to Inter(F, 0), and the second to Int(γa). By proposition 5.4.10,
Inter(F, 0) is Alexandrov-closed, hence stable under addition by elements
of Int(γa). This ends the proof.

�

Isometry theorems

We prove that there is an isometry between the category of Alexandrov
sheaves and the category of γ-sheaves both of them endowed with their
respective version of the interleaving distance.

Proposition 5.4.18
Let F ∈ D(kVa), then

(i) Inter(F, β−1α−1F ) = Int(γa),

(ii) Inter(F,Rα∗β∗F ) = Int(γa).

Proof
(i) We first prove that Inter(F, β−1α−1F ) = Int(γa). Let v ∈ Int(γa), we
first assume that F ∈ (kVa) the category of chain complexes of kVa-modules
and remark that

τv∗β
−1α−1F ' (α ◦ β ◦ τ−v)−1F.

Let U and V be open subsets of Va. As αβτ−v(V ) = V + Int(γ) + v, if
U ⊂ αβτ−v(V ) then, U ⊂ αβτ−v(V ) ⊂ V . Hence, the restriction morphism
F (V )→ F (U) provides a map

(α ◦ β ◦ τ−v)†F (U) ' colim
U⊂αβτ−v(V )

F (V )→ F (U).

Sheafifying, we get a map

f : τv∗β
−1α−1F → F.

Let U be an open subset of Va and let v ∈ Int(γa). Then U ⊂ U +
Int(γ) +v. Thus, by definition of the following colimit, there is a morphism

F (U + v)→ colim
U⊂V+Int(γ)

F (V ).
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This induces a morphism of sheaves

g : τv∗F → β−1α−1F.

A straightforward computation shows that

τ2v∗β
−1α−1F

τv∗f−→ F
g−→ τv∗β

−1α−1F and τ2v∗F
τv∗f−→ β−1α−1F

g−→ τv∗F

are respectively equals to the morphisms χa
2v,0(β−1α−1F ) and χa

2v,0(F ).
If F ∈ D(kVa), the preceding construction also provide an interleaving

between F and β−1α−1F , as the functors τv∗, τ2v∗, β−1, α−1 are exact.

(ii) Let v ∈ Int(γa) and I be an homotopically injective resolution of F .
For every U ∈ Op(Va),

U ⊂ αt(U) + v ⊂ U + v.

Hence, we get the morphisms of sheaves

f : τv∗α∗β∗I → I g : τv∗I → α∗β∗I.

The morphisms f and g defines a v-interleaving between I and α∗β∗I.
Hence, between F and Rα∗β∗F .

�

Corollary 5.4.19
Let F ∈ Mod(kVa), then
(i) Inter(F, β−1α−1F ) = Int(γa),
(ii) Inter(F, α∗β∗F ) = Int(γa).

Lemma 5.4.20
Let v ∈ Int(γa) and denote by dvIa (resp. dvIγ ) the interleaving distance on
D(kVa) (resp. D(kVγ )). Then:
(i) The functor Rα∗, β−1 (resp β∗) sends v-interleavings of D(kVγ ) (resp.

D(kVa)) to v-interleavings of D(kVa) (resp. D(kVγ )),
(ii) Let F, G in D(kVγ ) then, dvIγ (F,G) = dvIa(β

−1F, β−1G) = dvIa(Rα∗F,Rα∗G),

(iii) Let F, G in D(kVa) then, dvIa(F,G) = dvIa(β
−1α−1F, β−1α−1G),

(iv) Let F, G in D(kVa) then, dvIa(F,G) = dvIa(Rα∗β∗F,Rα∗β∗G).

Proof
(i) This is a consequence of the fact that both morphisms of sites α and

β commute with τv, combined with the isomorphisms (5.6), (5.7) and
Lemma 5.4.1.
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(ii) This follows from the fully faithfulness of Rα∗ and beta−1 and that
they commute with τv∗..

(iii) Using the triangular inequalities, we obtain

dvIa(F,G) ≤ dvIa(F, β
−1α−1F ) + dvIa(β

−1α−1F, β−1α−1G) + dvIa(β
−1α−1G,G)

≤ dvIa(β
−1α−1F, β−1α−1G)

as dvIa(F, β
−1α−1F ) = dvIa(β

−1α−1G,G) = 0 by Proposition 5.4.18.
Moreover, β−1α−1 preserves interleaving. Hence,

dvIa(β
−1α−1F, β−1α−1G) ≤ dvIa(F,G)

It follows that dvIa(β
−1α−1F, β−1α−1G) = dvIa(F,G).

�

Theorem 5.4.21 (Theorem 4.21 - [BP])
Let v ∈ Int(γa), F , G ∈ D(kVa) and denote by dvIa (resp. dvIγ ) the interleav-
ing distance on D(kVa) (resp. D(kVγ )). Then :

dvIa(F,G) = dvIγ (β∗F, β∗G).

Proof
By Lemma 5.4.20 (i), β∗ preserves v-interleavings. Hence, we obtain the
inequality

dvIγ (β∗F, β∗G) ≤ dvIa(F,G).

By Lemma 5.4.20 (ii), dvIa(F,G) = dvIa(β
−1α−1F, β−1α−1G) and β−1 pre-

serves interleavings. Then,

dvIa(β
−1α−1F, β−1α−1G) ≤ dvIγ (α

−1F, α−1G)

Finally, as β∗ = α−1,

dvIa(F,G) ≤ dvIγ (β∗F, β∗G).

Hence, dvIa(F,G) = dvIγ (β∗F, β∗G).

�

Let v ∈ Int(γa), We write dvIµ for the interleaving distance associated
with v on Db

γ◦ a(kVγ ).

Proposition 5.4.22
The functor Rφγ∗ : Db

γ◦ a(kV)→ Db(kVγ ) and its quasi inverse φ−1
γ are isome-

tries i.e.
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(i) for every F, G ∈ Db
γ◦ a(kVγ ), dvIµ(F,G) = dvIγ (Rφγ∗F,Rφγ∗G),

(ii) for every F, G ∈ Db(kVγ ), dvIγ (F,G) = dvIµ(φ−1
γ F, φ−1

γ G).

Proof
First remark that the application φγ commutes with τv and that τv∗ ' τ−1

−v .
Finally, the result follows from Lemma 5.4.4.

�

The following lemma is a generalization of theorem 2.3.15.

Lemma 5.4.23
Let v ∈ Int(γa), ιa : Mod(kVa)→ D(kVa) the functor which sends an object
of Mod(kVa) to the corresponding complex in degree zero, dv

Iab
a

the inter-
leaving distance on Mod(kVa) and dvIa the interleaving distance on D(kVa).
Then, for every F, G ∈ Mod(kVa),

dvIa(ι(F ), ι(G)) = dvIab
a

(F,G).

Proof
Clear in view of Remark 5.4.2.

�

Remark 5.4.24
Similar results hold when replacing

1. ιa : Mod(kVa)→ D(kVa) by ιγ : Mod(kVγ )→ D(kVγ )

(resp. ιµ : Modγ◦ a(kVγ )→ Db
γ◦ a(kVγ )),

2. Mod(kVa) by Mod(kVγ ) (resp. Modγ◦ a(kVγ )),

3. D(kVa) by D(kVγ ) (resp. Db
γ◦ a(kVγ )),

4. dv
Iab
a

by dv
Iab
γ

(resp. dv
Iab
µ
),

5. dvIa by dvIγ (resp. dvIµ).

Corollary 5.4.25
Let v ∈ Int(γa), F , G ∈ Mod(kVa) and denote by dvIa (resp. dvIγ ) the
interleaving distance on Mod(kVa) (resp. Mod(kVγ )). Then :

dvIa(F,G) = dvIγ (β∗F, β∗G).
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5.5 Comparison of the convolution and the
interleaving distance

We first review the notion of gauge (also called Minkowski functional)
associated to a convex. We refer the reader to [Roc70, Ch. 15] for more
details.

In all this subsection V is a finite dimensional real vector space
endowed with a norm ‖ · ‖.

Definition 5.5.1
Let K be a non-empty convex of V such that 0 ∈ IntK. The gauge of K is
the function

gK : V→ R, x 7→ inf{λ > 0 | x ∈ λK}.

The following proposition is classic. We refer the reader to [Roc70,
Theorem 15.2] for a proof.

Proposition 5.5.2
Let K be a symmetric closed bounded convex subset of (V, ‖ · ‖) such that
0 ∈ IntK. Then gK is a norm on V .

Assume now that V is endowed with a closed proper convex cone γ with
non-empty interior. Let v ∈ Int(γa) and consider the set

Bv := (v + γ) ∩ (−v + γa).

Lemma 5.5.3
The set Bv is a symmetric closed bounded convex subset of V such that
0 ∈ IntBv.

Proof
The set Bv is symmetric by construction and is closed and convex as it is
the intersection of two closed convex sets. Since v ∈ Int(γ), there exists
ε > 0 such that B(v, ε) ⊂ γ. Hence B(0, ε) is a subset of (v + γ) and
(−v + γa). This implies that 0 ∈ IntBv.

Assume that Bv is unbounded. Hence, there exists a sequence (xn)n∈N of
points of Bv such that ‖xn‖ −→

n∞
∞. The sequence (xn/‖xn‖)n∈N is valued

in the the compact ∂B(0, 1). Thus, there is a subsequence (νnyn)n∈N of
(xn/‖xn‖)n∈N with |νn| −→

n∞
0 and such that for every n ∈ N, yn ∈ Bv and

yn converges to a limit y. By [Roc70, Theorem 8.2],

y ∈ {z ∈ V | ∀x ∈ Bv,∀λ ≥ 0, x+ λz ∈ Bv}.
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Since 0 ∈ Bv the half line R≥0 y is contained in Bv. As Bv is symmetric it
follows that −y ∈ Bv, this implies that R y ⊂ Bv ⊂ −v + γ. This is absurd
as γ is a proper cone. Hence Bv is bounded.

�

It follows from the previous lemma that the gauge

gBv(x) = inf{λ > 0 |x ∈ λBv}. (5.13)

is a norm, the unit ball of which is Bv. From now on, we consider V equipped
with this norm. In the rest of this section the balls are taken with
respects to this norm.

Moreover, to distinguish between the different notions of interleavings
for sheaves, we will say in this section that F,G ∈ Db(kV) are c-isomorphic,
if they are c-interleaved in the sense of definition 2.2.6. Recall that γ-
properness is introduced in definition 5.2.5.

Proposition 5.5.4
Let v ∈ Int(γa), c ∈ R≥0 and F,G ∈ Db

γ◦ a(kV). Assume that supp(F ) and
supp(G) are γ-proper subsets of V. Then F and G are c · v-interleaved if
and only if they are c-isomorphic.

Proof
Let F,G ∈ Db

γ◦ a(kV). Assume that supp(F ) and supp(G) are γ-proper
subsets of V and that they are c · v-interleaved. We set w = c · v. Hence,
we have the maps

α : τw∗F → G β : τw∗G→ F

such that the diagrams commute

τ2w∗F
τw∗α //

χµ0,2a(F )

<<τw∗G
τw∗β // F τ2w∗G

τw∗β //

χµ0,2a(G)

;;τw∗F
τw∗α // G.

Using Lemmas 5.4.3 and 5.4.4, we obtain

k2w+γa ∗
np
F

k2w+γa ∗
np
f

//

χ2w,0 ∗
np
F

66kw+γa ∗
np
G

kw+γa ∗
np
g

// F.



5.5. COMPARISON OF THE CONVOLUTION AND THE
INTERLEAVING DISTANCE 179

Hence, using the γ-properness of the supports of F and G and that for
every c ≥ 0,

kc·v+γa ' kc·Bv+γa ' Kc ? kγa ,

as well as Proposition 5.2.4, we get

K2c ? F
Kc?f //

χ2c,0?F

77kBc ? G
g // F .

Similarly we obtain the following commutative diagram

K2c ? G
Kc?g //

χ2c,0?G

77kBc ? F
f // G .

Hence, F and G are c-isomorphic.
A similar argument proves that if F and G are c-isomorphic then they

are c · v-interleaved.

�

Corollary 5.5.5
Let v ∈ Int γa, F,G ∈ Db

γ◦ a(kV). Assume that supp(F ) and supp(G) are
γ-proper subsets of V. Then

dC(F,G) = dvIµ(F,G)

where dC is the convolution distance associated with the norm gBv (defini-
tion 2.2.8).
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In this thesis, we have made precise the analogies that existed at dif-
ferent levels between persistence and sheaf theory. We started in the one-
parameter case, where both theories enjoy a decomposition theorem. We
first proved that the convolution distance between constructible sheaves
over R is equal to its associated bottleneck distance, which is reminiscent of
the isometry theorem for pointwise finite dimensional one-parameter per-
sistence modules. We then constructed two functors between the categories
of constructible sheaves on R and Mayer-Vietoris systems which, given a
reasonably tame function f : X → R, exchange the derived direct image of
the constant sheaf on X by f with the collection of level-sets persistence
modules associated to f . We proved that these functors induce an isomet-
ric correspondence between the sheaf barcodes and the level-sets persistence
barcodes. One particular important consequence of this result is that bar-
codes of sheaves can actually be computed using software solutions already
implemented by the TDA community.

A second feature of our work has been to develop connections between
multi-parameter persistence modules seen as sheaves for the Alexandrov
topology and sheaves for the γ-topology. More precisely, we identified the
category of γ-sheaves as the reflexive localization of the category of persis-
tence modules by the full sub-category of ephemeral persistence modules,
whose objects are persistence modules whose interleaving distance with the
null persistence module is worth 0. We proved that the localization func-
tor preserves the interleaving distance, and then compared the interleav-
ing and convolution distances between γ-sheaves, by proving that under
γ-properness assumptions, they coincide.

The guiding principle of our work has been to allow persistence the-
ory and sheaf theory to enjoy best of both worlds’ properties : computer
friendliness on the one hand, theoretical deepness on the other. We hope
that our work on the links between level-sets persistence and sheaves on R
will reignite the interest for machine learning applications of level-sets per-
sistence, by giving it a new theoretical framework. Moreover, it could be
interesting to study the implications of our classification of Mayer-Vietoris
systems to symplectic topology. Lastly, our identification of the observable
category of multi-parameter persistence modules equipped with the inter-
leaving distance, as the full sub-category of the category of sheaves for the
usual topology equipped with the convolution distance, whose objects are
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sheaves with a certain micro-support condition, allow for the use of oper-
ations that do not exist in the formalism of persistence modules, such as
derived direct image of arbitrary continuous functions. We believe that
this observation should be carefully studied in the future, in view to obtain
dimension reduction techniques for multi-parameter persistence.
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Abstract

This appendix aims at introducing the formalism of sheaves of
vector-spaces in the derived setting. To read it, we assume ba-

sic knowledge in homological algebra, category theory and algebraic
topology that can be found in many textbooks, such as [Wei94].
Our exposition will closely follow the one of Kashiwara-Schapira
in [KS90]. Although we will expose the main definitions and re-
sults of the theory, a complete and detailed presentation is out of the
scope of this section. We refer the reader who is interested in learning
more about the details of the proofs to chapters 1 and 2 of [KS90].

A.1 Abelian categories and their derived category . . . . . . . . . . 183
A.1.1 Abelian categories and functors . . . . . . . . . . . . . . . . . 183
A.1.2 Categories of complexes . . . . . . . . . . . . . . . . . . . . . 186
A.1.3 Derived category and derived functors . . . . . . . . . . . . . 191
A.2 Sheaves of vector-spaces . . . . . . . . . . . . . . . . . . . . . . 197
A.2.1 Sheaves and operations . . . . . . . . . . . . . . . . . . . . . . 197
A.2.2 Sheaves in the derived setting . . . . . . . . . . . . . . . . . . 202

A.1 Abelian categories and their derived
category

A.1.1 Abelian categories and functors

Let C be a category. We denote by Obj(C ) its class of objects. Given
X, Y ∈ Obj(C ), HomC (X, Y ) denotes the collection of morphisms X → Y
in C . Given another category C ′, we write Fun(C ,C ′) the category of
functors from C to C ′ and natural transformations. LetSet be the category
of sets.
Definition A.1.1
A representable functor is a functor F from a category C to Set such that
there exists X ∈ C such that F is isomorphic to the functor HomC (X, ·).

In this case, X is unique up to isomorphism.
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Definition A.1.2
An additive category C is a category C such that:

1. for any pair (X, Y ) of objects of C , HomC (X, Y ) has the structure of
an abelian group, and the composition law is bilinear,

2. there exists an object 0 such that HomC (0, 0) = 0,

3. for any pair (X, Y ) of objects of C the functor from C to Set defined
by

W 7→ HomC (X,W )× HomC (Y,W ) is representable,

4. for any pair (X, Y ) of objects of C the functor from C to Set defined
by

W 7→ HomC (W,X)× HomC (W,Y ) is representable.

It is a classical result that the representatives in 3. and 4. are isomor-
phic. We shall denote it by X ⊕ Y and call it the direct sum of X and
Y .

Definition A.1.3
An additive functor is a functor F : C → C ′ between additive cate-
gories such that, for any pair (X, Y ) of objects of C , the induced map
HomC (X, Y )→ HomC ′(F (X), F (Y )) is a group homomorphism.

From now on, C is an additive category.

Definition A.1.4
Let f ∈ HomC (X, Y ).

1. If the functor:

Z 7→ {u ∈ HomC (Z,X) | f ◦ u = 0}

is representable, its representative is called the kernel of f , and noted
Kerf .

2. Similarly if the functor:

Z 7→ {u ∈ HomC (Y, Z) | u ◦ f = 0}

is representable, its representative is called the cokernel of f , and
noted Cokerf .

3. Assume that f has a kernel. Then there exists a natural morphism
α : Kerf → X. If α has a cokernel, we shall call it the coimage of f ,
noted Coimf .
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4. Similarly if f has a cokernel, there exists a natural morphism γ : Y →
Cokerf . If γ has a kernel, we shall call it the image of f , noted Imf .

It follows from the universal properties of kernel and cokernel that if
Coimf and Imf exist, there exists a natural morphism Coimf → Imf .

Definition A.1.5
An additive category C is an abelian category if it satisfies:

1. Every morphism f : X → Y admits a kernel and a cokernel.

2. The canonical morphism Coimf → Imf is an isomorphism.

Example A.1.6
The main example of an abelian category one shall have in mind is, given a
commutative ring R with unit, the category of left R-modules and R-linear
maps noted Mod(R). A result of Freyd and Mitchell [Mit65] asserts that
any abelian category can be embedded as a full sub-category of Mod(R),
for a certain ring R.

We now assume C to be an abelian category.

Definition A.1.7
Let X f−→ Y

g−→ Z be a sequence of morphisms in C . It is said to be an
exact sequence if :

1. g ◦ f = 0,

2. the natural morphism Imf → Kerg is an isomorphism.

Definition A.1.8
A left-exact functor (resp. right-exact functor) is a functor F : C → C ′

between abelian categories such that for any exact sequence in C of the
form:

0→ X → X ′ → X ′′

(resp. X → X ′ → X ′′ → 0), the sequence

0→ F (X)→ F (X ′)→ F (X ′′)

(resp. F (X)→ F (X ′)→ F (X ′′)→ 0) is exact.
If F is both left and right exact, it is said to be an exact functor .

Example A.1.9
For any X ∈ C , the functor HomC (X,−) is left-exact, but not exact in
general.
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Definition A.1.10
Let A and B be two categories. Then F : A → B and G : B → A are
adjoint functors if there exists a natural isomorphism of functors:

HomB(F−,−)
∼−→ HomA (−, G−).

This is equivalent, for any X ∈ A and Y ∈ B, to the data of a bijection
ΦX,Y : HomB(F (X), Y )

∼−→ HomA (X,G(Y )) which satisfies for any other
X ′, Y ′ objects of A and B and morphisms f : Y → Y ′ and g : X ′ → X
that the following diagram is commutative:

HomB(F (X), Y )
ΦX,Y //

Hom(F (g),f)

��

HomA (X,G(Y ))

Hom(g,G(f))

��
HomB(F (X ′), Y ′)

ΦX′,Y ′
// HomA (X ′, G(Y )′)

.

In this situation, we will say that F is left-adjoint to G (resp. G is
right-adjoint to F ), and we will denote:

F : A
--
B : Gmm .

Example A.1.11
For R a commutative ring with unit, and M a left R-module, we have the
following adjunction

−⊗RM : Mod(R)
//
Mod(R) : HomMod(R)(M,−)nn .

Proposition A.1.12
Let C and C ′ be two abelian categories, and a pair of adjoint functors:

F : C
--
C ′ : Gll .

Then F is right-exact, and G is left-exact.

A.1.2 Categories of complexes

Let C be an additive category.
Definition A.1.13
A chain complex X in C consists of the data (Xn, dnX)n∈Z such that for all
n ∈ Z:

Xn ∈ C , dnX ∈ HomC (Xn, Xn+1), and dn+1
X ◦ dnX = 0.

The collection dX = (dnX)n∈Z is called the differential of the complex X. A
morphism of complexes f : X → Y is a collection of morphisms (fn : Xn →
Y n)n∈Z such that for any n:dnY ◦ f = fn+1 ◦ dnX .
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We denote by C(C ) the category thus obtained of complexes of C . It
is an abelian category whenever C is abelian.

Definition A.1.14
A complex X ∈ C(C ) is said to be a bounded complex (resp. bounded
below complex , resp. bounded above complex ) if Xn = 0 for |n| >> 0 (resp.
n << 0, resp. n >> 0).

The full subcategory of C(C ) consisting of bounded complexes (resp.
bounded below complexes resp. bounded above complexes), is noted Cb(C )
(resp. C+(C ), resp. C−(C )).

Definition A.1.15
Let k ∈ Z and X ∈ C(C ). One defines a new complex X[k] by setting :{

(X[k])n = Xn+k

dnX[k] = (−1)kdn+k
X

Given a morphism f : X → Y in C(C ), one defines f [k] : X[k]→ Y [k]
by setting

f [k]n = fn+k.

The functor ·[k] from C(C ) to C(C ) is called the shift functor of degree k.

Definition A.1.16
A morphism f : X → in C(C) is said to be homotopic to zero if there exists
a sequence of morphisms (sn : Xn → Y n−1)n∈Z in C such that

fn = sn+1 ◦ dnX + dn−1
Y ◦ sn.

Given an other morphism g : X → Y , one says that f is homotopic to
g if f − g is homotopic to zero.

We denote by Ht(X, Y ) the subgroup of HomC (X, Y ) consisting of mor-
phisms homotopic to zero. Then the composition in C send Ht(X, Y ) ×
HomC (Y, Z) and HomC (X, Y )×Ht(Y, Z) into Ht(X,Z). This ensures that
the following is well-defined :

Definition A.1.17
The homotopy category of C , noted K(C ), is defined by:{

Obj(K(C )) = Obj(C(C )),

HomK(C )(X, Y ) = HomC(C )(X, Y )/Ht(X, Y ).
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One similarly defines the categories Kb(C ), K+(C ), K−(C ), which are
full subcategories of K(C ). Note that K(C ) is not abelian in the general
case, even when C is. All of these categories are additive, although not
abelian in the general case.

Until the end of the background section, we assume that C is abelian.

Definition A.1.18
For X ∈ C(C ), one sets :

Zk(X) = KerdkX , B
k(X) = Imdk−1

X ,

Hk(X) = Coker(Bk(X)→ Zk(X)) = ”Zk(X)/Bk(X)”.

One calls Hk(X) the k-th cohomology of X.

Note that the mappingX 7→ Hk(X) is functorial, and defines an additive
functor from C(C ) to C . We also have the relation Hk = H0 ◦ ·[k]. If
f : X → Y is homotopic to zero, then Hk(f) = 0 for all k. This shows that
Hk induces a well defined additive functor from K(C ) to C .

Proposition A.1.19 (Long exact sequence in cohomology)
Let 0 → X → Y → Z → 0 be an exact sequence in C(C ). Then there
exists a canonical long exact sequence in C :

... // Hn(X) // Hn(Y ) // Hn(Z) δn // Hn+1(X) // ...

and for any other exact sequence 0→ X ′ → Y ′ → Z ′ → 0 that fits in a
commutative diagram in C(C ):

0 // X //

��

Y //

��

Z //

��

0

0 // X ′ // Y ′ // Z ′ // 0

all the diagrams:

Hn(Z) δn //

��

Hn+1(X)

��
Hn(Z ′) δ′n // Hn+1(X ′)

commute.
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Definition A.1.20
Let f : X → Y . The mapping cone of f , notedM(f), is the object of C(C )
defined by: 

M(f)n = Xn+1 ⊕ Y n,

dnM(f) =

(
dnX[1] 0

fn+1 dnY

)
.

Recall that dnX[1] = −dn+1
X .

We introduce the morphisms α(f) : Y → M(f) and β(f) : M(f) →
X[1] by:

α(f)n =

(
0

idY n

)
,

β(f)n =
(
idXn+1 0

)
.

Proposition A.1.21
The sequence:

0 // Y
α(f)//M(f)

β(f) // X[1] // 0

is exact in C(C ).

Lemma A.1.22
For any f : X → Y in C(C ), there exists φ : X[1] → M(α(f)) in C(C )
such that:

(i) φ is an isomorphism in K(C ),
(ii) The following diagram commutes in K(C ) :

Y
α(f)//

idY
��

M(f)

idM(f)

��

β(f) // X[1]
−f [1] //

φ

��

Y [1]

idY [1]

��
Y

α(f)
//M(f)

α(α(f))
//M(α(f))

β(α(f))
// Y [1]

A triangle in K(C ) is a sequence of morphisms X → Y → Z → X[1],
and a morphism of triangle is a commutative diagram in K(C ):

X //

φ

��

Y //

��

Z //

��

X[1]

φ[1]

��
X ′ // Y ′ // Z ′ // X ′[1]
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Definition A.1.23
A distinguished triangle in K(C ) is a triangle isomorphic to a triangle

X
f // Y

α(f)//M(f)
β(f) // X[1] ,

for some f in C(C ).

For short, we will sometimes denote a distinguished triangle by:

X // Y // Z
+1 // .

Proposition A.1.24 (K(C ) is a triangulated category)
The collection of distinguished triangles in K(C ) satisfies the following
properties :

(TR 0) It is closed under isomorphism in K(C ).

(TR 1) For any X ∈ K(C ), X
idX // X // 0 // X[1] is a distin-

guished triangle.
(TR 2) Any f : X → Y in K(C ) can be embedded in a distinguished

triangle X
f // Y // Z // X[1] .

(TR 3) X
f // Y

g // Z h // X[1] is a distinguished triangle if and
only if

Y
g // Z

h // X[1]
−f [1] // Y [1] is a distinguished triangle.

(TR 4) Given two distinguished triangles

X
f // Y // Z // X[1] and X ′

f ′ // Y ′ // Z ′ // X ′[1],

any commutative diagram in K(C ):

X
f //

u
��

Y

v
��

X ′
f ′ // Y ′

can be embedded in a morphism of triangle (not necessarily unique).
(TR 5) (octahedral axiom) Given two distinguished triangles

X // Y // Z ′
+1 // and Y // Z // X ′

+1 // ,

and a morphism X → Z, there exists a unique Y ′ (up to isomor-
phism in K(C )) together with the dotted morphisms such that the
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following diagram commutes in K(C ), and any sequence of three
aligned morphisms is a distinguished triangle :

X

''

// Y

��

// Z ′

��

+1 //

Z

&&

��

Y ′

+1

&&

+1 //

��
X ′

+1

��

+1

  

Definition A.1.25
A triangulated category is an additive category D endowed with an additive
endofunctor ·[1] : D → D and a class of triangles ∆ which satisfies axioms
(TR 0)-(TR 5). The triangles in ∆ are called the distinguished triangles of
D .

A.1.3 Derived category and derived functors

Let C be a category, and let S be a family of morphisms in C .

Definition A.1.26
One says that S is a multiplicative system if it satisfies the following :

(S1) For any X ∈ C , idX ∈ S.
(S2) For any pair (f, g) of S such that the composition g ◦ f exists,

g ◦ f ∈ S.
(S3) Any diagram:

Z

g
��

X
f // Y

with g ∈ S, can be completed to a commutative diagam:

W //

h
��

Z

g
��

X
f // Y

with h ∈ S. Same thing with all the arrows reversed.
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Definition A.1.27
The category CS, called the localization of C by S is defined by:

Obj(CS) = Obj(C ),

for any pair (X, Y ) of Obj(C ),

HomCS(X, Y ) = {(X ′, s, f) | X ′ ∈ Obj(C ), s : X ′ → X, f : X ′ → Y, s ∈ S}/R

where R is the equivalence relation:

(X ′, s, f)R(X ′′, t, g)

if and only if there exists a commutative diagram

X

X ′

s

<<

f ""

X ′′′oo

u

OO

// X ′′

t

bb

g
||

Y

with u ∈ S. The composition of (X ′, s, f) ∈ HomCS(X, Y ) and (Y ′, t, g) ∈
HomCS(Y, Z) is defined as follows, using (S3) to find a commutative dia-
gram:

X ′′

t′

}}

h

!!
X ′

s

~~ f !!

Y ′

t}}

g

  
X Y Z

with t′ ∈ S, and we set:

(Y ′, t, g) ◦ (X ′, s, f) = (X ′′, s ◦ t′, g ◦ h).

Using the axioms (S1)-(S4), one can prove that CS is indeed a category.

Definition A.1.28
We define the localization functor with respect to S, noted by QS, as the
functor from C to CS given by :{

QS(X) = X, for X ∈ C ,

QS(f) = (X, idX , f) for f ∈ HomCS(X, Y ).
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Proposition A.1.29
1. For s ∈ S, QS(s) is an isomorphism in CS.
2. Let C ′ be another category and F : C → C ′ a functor that sends

morphisms of S to isomorphisms in C ′. Then F factors uniquely
through QS.

We let C be an abelian category. We shall apply the preceeding con-
struction to the triangulated category K(C ). A morphism f : X → Y
in C(C ) is said to be a quasi-isomorphism (qiso for short) if Hn(f) is an
isomorphism for all n. The definition generalizes readily for morphisms in
K(C). One can prove easily that:

S = {f ∈ HomK(C )(X, Y ) | f is a qiso}

is a multiplicative system in K(C ).

Definition A.1.30
The derived category of C is the category K(C )S.

By replacingK(C ) withKb(C ), (resp. K+(C ), resp. K−(C )), we define
the derived categories Db(C ) (resp. D+(C ), resp. D−(C )). Observe that by
proposition A.1.29, the functors Hn : K(C )→ C factors uniquely through
D(C ).

Proposition A.1.31
1. The category Db(C ) (resp. D+(C ), resp. D−(C ))) is equivalent to the

full subcategory of D(C ) consisting of objects X such that Hn(X) = 0
for |n| >> 0 (resp. n << 0, resp. n >> 0).

2. The composition of functors C → K(C ) → D(C ) is fully faithfull.
Therefore, C is equivalent to the full subcategory of D(C ) consisting
of objects such that Hn(X) = 0 for n 6= 0.

Proposition A.1.32
Let X be an object of D(C ). Then X ' 0 if and only if Hn(X) ' 0 for all
n. Similarly, for f : X → Y ∈ C(C ). The image of f in D(C ) is 0 iff there
exists a qiso g such that f ◦ g is homotopic to 0.

Proposition A.1.33
Let I be a full additive subcategory of C such that:for any object X of C ,
there exists an object X’ of I and an exact sequence 0→ X → X ′.

Then:
1. for anyX ∈ K+(C ), there existsX ′ ∈ K+(I ) and a quasi-isomorphism
X → X ′.
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2. Let S ′ be the family of quasi-isomorphisms K+(I ). Then the canon-
ical functor:

K+(I )S′ −→ D+(C )

is an equivalence.
3. Assume in addition that there exists d ≥ 0 such that, for any exact

sequence in C , X0 → X1 → .. → Xd → 0 with Xj objects of I for
j < d, we have Xd in I . Then for any object X of Kb(C ) there exists
an object X ′ in Kb(I ) and a quasi-isomorphism X → X ′.

Definition A.1.34
Let I and P be objects of the abelian category C . We say that I is injective
(resp. P is projective) if the functor HomC (−, I) (resp. HomC (P,−)) is
exact.

We say that C has enough injectives (resp. enough projectives) if for
any object X of C , there exists an injective object I (resp. a projective
object P ) and a monomorphism X → I (resp. an epimorphism P → X).

Proposition A.1.35
Assume C has enough injectives. Let I be the full subcategory of C
consisting of injective objects and let S ′ be the family of qiso of I . Then
the following composition:

K+(I ) −→ K+(I )S′ −→ D+(C )

is an equivalence of categories.

Let F : C → C ′ be an additive functor between abelian categories. We
shall denote by Q (resp. Q′) the natural localization functor K+(C ) →
D+(C ) (resp. K+(C ′) → D+(C ′)). We denote by K+(F ) the functor
induced by F from K+(C ) to K+(C ′).

Definition A.1.36
The right-derived functor of F , if it exists, is the functor noted RF :
D+(C ) → D+(C ′) defined as the left Kan extension of the functor Q′ ◦
K+(F ) along Q.

Equivalently, it is a triangulated functor T : D+(C )→ D+(C ′) together
with a natural transformation of functors s : Q′ ◦K+(F ) ⇒ T ◦ Q, which
satisfies that for any other functor of triangulated categories G : D+(C )→
D+(C ′), the morphism:

Hom(T,G)
s−→ Hom(Q ◦K+(F ), G ◦Q)

is an isomorphism.
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D+(C )

T=RF

%%
s

��K+(C )
Q′◦K+(F )

//

Q
99

D+(C ′)

The functor Hn ◦ RF will be noted RnF and is called the n-th derived
functor of F .

Example A.1.37
If F : C → C ′ is an exact functor, thenQ′◦K+(F ) sends quasi-isomorphisms
to isomorphisms in D+(C ′). Therefore, if one denotes by S the family
of quasi-isomorphisms of K+(C ), Q′ ◦ K+(F ) factorizes uniquely through
K+(C )S ' D+(C ). One can prove that this factorization defines the right-
derived functor of F , and can be computed by applying F degree-wise to
an object X of D+(C ).

In the following, we will give a method to compute explicitly a derived
functor for a left-exact functor F : C → C ′.
Definition A.1.38
A full subcategory I of C is called F -injective if :

1. for any object X of C , there exists an object X ′ of I and an exact
sequence 0→ X → X ′,

2. if 0→ X ′ → X → X ′′ → 0 is an exact sequence in C , and if X ′ and
X ′′ are objects of I , then so is X,

3. if 0→ X ′ → X → X ′′ → 0 is an exact sequence of objects of I , then
the sequence 0→ F (X ′)→ F (X)→ F (X ′′)→ 0 is exact.

We assume that F admits a F -injective subcategory I . We still denote
by S ′ the family of quasi-isomorphisms of I . Observe that K+(F ) sends
elements of S ′ to quasi-isomorphisms. Hence, it factors through K+(I )S′
which is equivalent to D+(C ) by proposition A.1.35.

K+(I )
K+(F ) //

Q ((

K+(C ′)
Q′ // D+(C ′)

K+(I )S′ ' D+(C )

66

RF

33

Proposition A.1.39
The functor D+(C )→ D+(C ′) constructed above is the right-derived func-
tor of F .
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Remark A.1.40
Therefore, given a left-exact functor F : C → C ′ which admits a F -injective
category I , we can compute RF (X) for X an object of D+(C ) as fol-
lows. First, find an object X ′ of K+(I ) such that there exists a quasi-
isomorphism X → X ′. Then, apply F degree-wise on X ′, that is, compute
K+(F )(X). Finally, RF (X) ' K+F (X) in D+(C ′).

Example A.1.41
The fundamental example of derived functor we will encounter is the situ-
ation of a left exact functor F : C → C ′ where C has enough injectives.
In this case, it is easy to see that the full subcategory of C consisting of
injective objects is F -injective (since any short exact sequence of injective
objects splits). Therefore, every left-exact functor from C to an abelian
category admits a right-derived functor.

Proposition A.1.42
Let F : C → C ′ and F ′ : C ′ → C ′′ be two left-exact functors between
abelian categories. Assume that there exist an F -injective category I and
an F ′-injective category I ′ satisfying F (Obj(I )) ⊂ Obj(I ′). Then F ′ ◦F
admits a right-derived functor, and:

R(F ′ ◦ F ) ' RF ′ ◦ RF.

We now briefly explain how to derive left-exact bi-functors.
Let C ,C ′,C ′′ be three abelian categories. Let G : C × C ′ → C ′′ be

a functor. G will be refered to as a bi-functor. Given two complexes X
in C+(C ) and X ′ in C+(C ′), G(X,X ′) has the structure of a bi-complex.
There is a classical construction to associate functorially a simple complex
to G(X,X ′), noted by s(G(X,X ′)). In particular, one has

s(G(X,X ′))k =
⊕

k=n+m

G(Xn, X ′m).

Observe that the direct sum is finite since X and X ′ are bounded from
below.

One can similarly define the notion of right-derived bi-functor as the
right Kan extension (if it exists) of

Q′′ ◦K+(s(G)) = K+(C )×K+(C ′) −→ K+(C ′′′) −→ D+(C ′′)

along the product of the localization functors Q×Q′ : K+(C )×K+(C ′)→
D+(C )×D+(C ′).

G will be said to be left-exact if it is with respect to each of its variables.



A.2. SHEAVES OF VECTOR-SPACES 197

Definition A.1.43
For I (resp. I ′) a full additive subcategory of C (resp. C ′) we say
that (I ,I ′) is G-injective if for any object X ∈ Obj(I ) and any X ′ ∈
Obj(I ′), I is G(−, X ′)-injective and I ′ is G(X,−)-injective.

Theorem A.1.44
Suppose G : C × C ′ → C ′′ is a left exact bifunctor such that there exists
two full subcategories I ⊂ C ,I ′ ⊂ C ′) such that (I ,I ′) is G-injective.
Then G admits a right derived functor. Moreover, it can be computed
as follows. For X ∈ Obj(D+(C )) and X ′ ∈ Obj(D+(C ′)), there exists
Y ∈ Obj(K+(I )) (resp. Y ′ ∈ Obj(K+(I ′)) ) and a quasi-isomorphism
in K+(C ) (resp. K+(C ′) ) X → Y (resp. X ′ → Y ′). Then, there is an
isomorphism in D+(C ′′′) :

RG(X,X ′) ' s(G(Y, Y ′)).

A.2 Sheaves of vector-spaces

A.2.1 Sheaves and operations

Let k be a field, X be a topological space and OP(X) be the collection
of its open subsets. The category of open sets of X, noted by OP(X) is
given by: {

Obj(OP(X)) = OP(X)

HomOP(X)(V, U) = {∗} if V⊂ U , ∅ otherwise.

Definition A.2.1
A presheaf of k-vector spaces onX is a functor fromOP(X)op, the opposite
category of open sets of X, to Mod(k), the category of vector spaces over
k. Morphisms of presheaves are natural transformations of functors. The
category obtained is written PSH(X).

It is easy to observe that PSH(X) is an abelian category. Given U an
open set of X, an element s ∈ F (U) is called a section of F on U . If one
considers another open set V ⊂ U , one defines the restriction of s to V ,
defined by s|V := F (U → V )(s). For x ∈ X, one sets:

Fx = lim−→
W3x

F (W )

where W ranges over the open sets of X containing x. The vector space
Fx is called the stalk of F at x. For x ∈ U , the image of s ∈ F (U) in Fx is
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called the germ of s at x, written sx. The restriction of F to the topological
space U whose open sets are the open sets of X contained in U , is noted
F |U .

Definition A.2.2
A pre-sheaf F of k-vector spaces on X is a sheaf if it satisfies the following
conditions:

(S1) for any open set U ⊂ X, any open covering U = ∪i∈IUi, any section
s ∈ F (U), s|Ui = 0 for all i implies s = 0

(S2) for any open set U ⊂ X, any open covering U = ∪i∈IUi, any
family si ∈ F (Ui), if si|Ui∩Uj = sj|Ui∩Uj for all pairs (i, j), there
exists s ∈ F (U) such that s|Ui = si for all i.

Note that (S1)-(S2) are equivalent to saying that for any open covering
U = ∪i∈IUi stable by finite intersection, the morphism F (U)→ lim←−i F (Ui)
is an isomorphism. In particular if F is a sheaf, F |U is a sheaf on U .

The support of a sheaf F , noted supp(F ) is defined as the set complement
of the union of the open sets U ⊂ X such that F |U = 0. One also defines
the support of a section s ∈ F (U) by supp(s) = {x ∈ X | sx 6= 0}.

We denote by Mod(kX) the full subcategory of PSH(X) whose objects
consist of sheaves. One defines the functor Γ(U ;−) : Mod(kX) → Mod(k)
given by Γ(U ;F ) = F (U).

Proposition A.2.3
Let φ : F → G be a morphism in Mod(kX). Then φ is an isomorphism if
and only if φx : Fx → Gx is an isomorphism for all x ∈ X.

Proposition A.2.4
The inclusion functor ι : Mod(kX) → PSH(X) admits a right adjoint
functor noted (−)+ : PSH(X) → Mod(kX), F 7→ F+. F+ is called the
sheaf associated to F , or the sheaffification of F .

For M ∈ Mod(k), one defines the constant sheaf on X with stalk M ,
noted by MX as the sheafification of the presheaf U 7→ M . One can prove
that MX is the sheaf of locally constant functions on X with value in M ,
that is, MX(U) is isomorphic to the k-vector space of locally constant func-
tions on U with value in M .

More generally, a sheaf F on X is locally constant if for every x ∈ X
there exists an open neighborhood U of x in X such that F |U is constant.

Proposition A.2.5
The sheafification functor has the following properties.

1. For F ∈ PSH(X) and x ∈ X, Fx ' (F+)x.
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2. Let φ : F → G be a morphism in Mod(kX). Then, φ has a kernel and
a cokernel in Mod(kX). More precisely, the presheaf U 7→ Ker(φU :
F (U)→ G(U)) is a sheaf, and it is the kernel of φ. The sheafification
of the presheaf U 7→ Coker(φU : F (U)→ G(U)) is the cokernel of φ.

One should beware that the cokernel of a morphism φ in Mod(kX) should
not equal to the cokernel computed in PSH(X) (ie the cokernel of ι ◦ φ).

Corollary A.2.6
The category Mod(kX) is abelian.

Definition A.2.7
Let F and G be two sheaves of k-vector spaces on X. The sheaf of solutions
of F in G, noted Hom kX (F,G) is defined by U 7→ HomMod(kU )(F |U , G|U)
(one can easily verify that it is indeed a sheaf).

The tensor product of F and G, noted F ⊗kX G, is defined as the sheafi-
fication of the presheaf U 7→ F (U)⊗k G(U).

Proposition A.2.8
Let F,G,H be sheaves of k-vector spaces on X. There is an isomorphism
(functorial in F,G,H):

Hom kX (H ⊗kX F,G)
∼−→Hom kX (F,Hom kX (H,G))

This result proves that the functors Hom kX (F,−) and Hom kX (−, F )
are left-exact. Also, the functors F ⊗kX− ' −⊗kX F are right-exact. Since
we are considering sheaves of vector spaces, the tensor product of sheaves
is in fact exact. Note that this would not be true if k were only a ring and
not a field.

Let u : Y → X be a continuous map between topological spaces.

Definition A.2.9
1. Let G be a sheaf on Y . The direct image of G by u, noted u∗G, is the

sheaf on X defined by:

U 7→ u∗G(U) := G(u−1(U)).

2. Let F be a sheaf on X. The inverse image of F by u, noted u−1F , is
the sheaf associated to the presheaf:

V 7→ lim−→
U⊃u(V )

F (U),

where U ranges over the open neighborhoods of u(V ) in X.
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It is clear that u∗ and u−1 induce functors:

u∗ : Mod(kX)→ Mod(kY ),

u−1 : Mod(kY )→ Mod(kX).

One fundamental example of direct image functor is given by Γ(X;−).
Indeed, if one denotes by aX : X → {∗} the constant map from X to the set
with one element, then there is an isomorphism of functors aX∗ ' Γ(X;−).

Proposition A.2.10
Let F be a sheaf on X, G be a sheaf on Y , and x ∈ X. Then:

(u−1G)x ' Gu(x).

Therefore, u−1 is an exact functor.

Proposition A.2.11
There is an adjunction :

u−1 : Mod(kY )
..
Mod(kX) : u∗nn .

For Z a closed subset of X, equipped with the induced topology, we
denote by j : Z → X the inclusion. We define for F ∈ Mod(kX):

F |Z = j−1F ∈ Mod(kZ),

Γ(Z;F ) = Γ(Z; j−1F ),

FZ = j∗j
−1F ∈ Mod(kX).

Thanks to the adjunction j−1 ←→ j∗, there is a natural morphism
F → FZ . Moreover: {

FZ |Z = F |Z ,
FZ |X\Z = 0.

In particular, (FZ)x = Fx for x ∈ Z and (FZ)x = 0 if x 6∈ Z.
If U ⊂ X is open, one defines

FU := Ker(F → FX\U).

We can generalize this construction to locally closed sets, that is, sets
of the form Z = U ∩A with U an open set of X, and A a closed set. Then,
we define FZ = (FU)A. One can show that this definition does not depend
on the decomposition Z = U ∩ A.
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Example A.2.12
LetM ∈ Mod(k) and Z ⊂ X be a locally closed subset. The constant sheaf
on Z with stalk M is defined by MZ := (MX)Z .

Proposition A.2.13
Let F be a sheaf on X. Let V be an open subset of X and T be a closed
subset of X. Then, for any open subset U of X, one has:

FV (U) =

{
F (U) if U ⊂ V,

0 otherwise.

Moreover, FT is the sheaffification of the presheaf:

U 7→

{
F (U) if U ∩ T 6= ∅,
0 otherwise.

Definition A.2.14
For M a real analytic manifold, and F ∈ Obj(Mod(kM)), F is said to be
weakly R-constructible if there exists a locally finite sub-analytic strat-
ification of M = tαMα, such that for each stratum Mα, the restriction
F|Mα is locally constant. If, in addition, the stalks Fx are of finite dimen-
sion for every x ∈ M , we say that F is R-constructible. We will often
say constructible instead of R-constructible, since it is the only notion of
constructibility we use.

Proposition A.2.15
Let Z be a locally closed subset of X and F be a sheaf on X. Then:

1. the functor (−)Z is exact,
2. let Z ′ be another locally closed subset of X, then:(FZ)Z′ = FZ∩Z′ ,
3. let Z ′ be a closed subset of X, then there is an exact sequence:

0→ FZ\Z′ → FZ → FZ′ → 0,

4. let Z1, Z2 be two closed subsets of X, then there is an exact sequence:

0 −→ FZ1∪Z2

α−→ FZ1 ⊕ FZ2

β−→ FZ1∩Z2 −→ 0,

where α = (α1, α2) and β = (β1,−β2), with αi and βi being the
natural morphisms FZ1∪Z2 → FZi and FZi → FZ1∩Z2 ,

5. let U1, U2 be two open subsets of X, then there is an exact sequence:

0 −→ FU1∩U2

α−→ FU1 ⊕ FU2

β−→ FU1∪U2 −→ 0,

where α = (α1, α2) and β = (β1,−β2), with αi and βi being the
natural morphisms FU1∩U2 → FUi and FUi → FU1∪U2 .
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Corollary A.2.16
Let Z be a closed subset of the topological space X, and F be a sheaf on
X. There is an exact sequence:

0 −→ FX\Z −→ F −→ FZ −→ 0

Assume X is locally compact. A continuous map u : Y → X (Y being
not necessarily locally compact) is proper if it is closed (it sends closed sets
to closed sets), its fibers are relatively Hausdorff (two points in a fiber have
disjoints open neighborhoods in Y ) and compact.

Definition A.2.17
Let G be a sheaf on Y . We define the direct image with proper supports of
G by u, noted u!G, by:

Γ(U ;u!G) = {s ∈ Γ(U ;G) | u : supp(s)→ X is proper}.

One can prove that u!G is indeed a sheaf, and in fact, a subsheaf of u∗G.
Moreover, the functor u! is left-exact. A natural question to ask is whether
u! is an adjoint functor. We will see in the sequel that we need to go at the
level of the derived category to construct a right-adjoint to Ru!.

One defines the global sections with compact support of the sheaf F on
X by:

Γc(X;F ) = aX !F = {s ∈ Γ(U ;F ) | supp(s) is compact and Hausdorff}.

One of the crucial properties of proper direct image is the following :

Proposition A.2.18
Let X and Y be locally compact spaces (in particular, they are Hausdorff),
u : Y → X a continuous map, and G a sheaf on Y . Then for x ∈ X, the
canonical morphism:

(u!G)x → Γc(u
−1(x), G|u−1(x))

is an isomorphism.

A.2.2 Sheaves in the derived setting

Let u : Y → X be a continuous map between locally compact topological
spaces, and U be an open subset of Y . So far, we have constructed the
bifunctors Hom kX (−,−) and−⊗kX− which are respectively left-exact and
exact. We also have constructed the left exact functors Γ(U ;−), Γc(U ;−),
u∗ and u!, and the exact functor u−1.
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Proposition A.2.19
The category Mod(kX) has enough injectives.

Therefore, all the aforementioned functors admit a right-derived functor.
For the exact ones, this can be computed by example A.1.37. For the
left-exact ones, one can use the procedure explained in example A.1.41.
For short, we will denote by D(kX) the derived category of Mod(kX), and
D+(kX), D−(kX), Db(kX) its bounded counterparts. We will still call the
objects of these categories by "sheaf".

Proposition A.2.20
Let u : Y → X be a morphism of topologcal spaces. The functor u∗ sends
injective sheaves of Mod(kY ) to injective sheaves of Mod(kX).

Combined with proposition A.1.42, this gives:

Corollary A.2.21
Let u : Y → X and v : X → Z be two morphisms of topological spaces.
Then there is an isomorphism of functors:

R(v ◦ u)∗ ' Rv∗ ◦ Ru∗.

Let u, v : Y → X be two continous maps between topological spaces,
and F be an object of D+(kX).

The spaces RnΓ(X;F ) will be called the sheaf cohomology groups of F .
These groups generalize and unify the construction of many cohomology
theories in algebraic topology. Let us give an illustration of this motto in
the following.

The adjunction u−1 ↔ u∗ gives rise to a natural transformation idMod(kX) ⇒
u∗ ◦ u−1 which induces a natural morphism:

u# : RΓ(X;F ) −→ RΓ(Y ;u−1F )
(
' RΓ(X;u∗u

−1F )
)

Theorem A.2.22 (Homotopy invariance of sheaf cohomology)
Assume that u and v are homotopic. Assume also that F is locally constant.
Then there exists an isomorphism θ : RΓ(Y ;u−1F )

∼−→ RΓ(Y ; v−1F ) such
that θ ◦ u# = v.

RΓ(X;F )

u#

ww

v#

''
RΓ(Y ;u−1F )

θ

∼ // RΓ(Y ; v−1F )
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We denote by Hn
sing(X;k) the n-th singular cohomology group of X with

coefficients in k. The proof of the following result can be found in [Mus].

Theorem A.2.23 (singular vs. sheaf cohomology)
Assume X is locally contractible and paracompact. Then there are natural
isomorphisms:

RnΓ(X;kX) ' Hn
sing(X;k),

for all n ≥ 0.

The formalism of the derived category also allows us to construct a
right-adjoint to the functor Ru!. We say that the functor u! has finite
cohomological dimension if there exists r ≥ 0 such that for all F ∈ Mod(kY )
and j > r, Rju!F = 0.

Theorem A.2.24 (Poincaré-Verdier duality)
Let u : Y → X be a continuous map of locally compact spaces, such that
u! has finite cohomological dimension. Then there exists a triangulated
functor u! : D+(kX)→ D+(kY ) which is right-adjoint to Ru!.

Ru! : D+(kY )
..
D+(kX) : u!

nn .
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Titre : Persistance et Faisceaux: de la Théorie aux Applications.

Mots clés : Persistance, Faisceau, Distances d’Entrelacements, Analyse de Données Topologique

Résumé : L’analyse de données topologique est un
domaine de recherche récent qui vise à employer les
techniques de la topologie algébrique pour concevoir
des descripteurs de jeux de données. Pour être utiles
en pratique, ces descripteurs doivent être calculables,
et posséder une notion de métrique, afin de pouvoir
exprimer leur stabilité vis à vis du bruit inhérent à
toutes données réelles. La théorie de la persistance
a été élaborée au début des années 2000 comme
un premier cadre théorique permettant de définir de
tels descripteurs - les désormais bien connus code-
barres. Bien que très bien adaptée à un contexte
informatique, la théorie de la persistance possède
certaines limitations théoriques. Dans ce manuscript,
nous établissons des liens explicites entre la théorie
dérivée des faisceaux munie de la distance de convo-
lution (d’après Kashiwara-Schapira) et la théorie de la
persistance.
Nous commençons par montrer un théorème
d’isométrie dérivée pour les faisceaux constructibles
sur R, c’est à dire, nous exprimons la distance de
convolution comme une distance d’appariement entre
les code-barres gradués de ces faisceaux. Cela nous
permet de conclure dans ce cadre que la distance de
convolution est fermée, ainsi que la classe des fais-
ceaux constructibles sur R munie de la distance de

convolution forme un espace topologique localement
connexe par arcs.
Nous observons ensuite que la collection des
modules de persistance zig-zag associée à une
fonction à valeurs réelle possède une structure
supplémentaire, que nous appelons systèmes de
Mayer-Vietoris. Sous des hypothèses de finitude,
nous classifions tous les systèmes de Mayer-Vietoris.
Cela nous permet d’établir une correspondence fonc-
torielle et isométrique entre la catégorie dérivée des
faisceaux constructibles sur R équipée de la dis-
tance de convolution, et la catégorie des systèmes
de Mayer-Vietoris fortement finis munie de la distance
d’entrelacement. Nous en déduisons une méthode de
calcul des code-barres gradués faisceautiques à par-
tir de programmes informatiques déjà implémentés
par la communauté de la persistance.
Nous terminons par donner une définition purement
faisceautique de la notion de module de persistance
éphémère. Nous établissons que la catégorie obser-
vable des modules de persistance (le quotient de la
catégorie des modules de persistance par la sous-
catégorie des modules de persistance éphémères)
est équivalente à la catégorie bien connue des γ-
faisceaux.

Title : Persistence and Sheaves: from Theory to Applications

Keywords : Persistence, Sheaf Theory, Interleaving Distances, Topological Data Analysis

Abstract : Topological data analysis is a recent field
of research aiming at using techniques coming from
algebraic topology to define descriptors of datasets.
To be useful in practice, these descriptors must be
computable, and coming with a notion of metric, in
order to express their stability properties with res-
pect to the noise that always comes with real world
data. Persistence theory was elaborated in the early
2000’s as a first theoretical setting to define such des-
criptors - the now famous so-called barcodes. Howe-
ver very well suited to be implemented in a compu-
ter, persistence theory has certain limitations. In this
manuscript, we establish explicit links between the
theory of derived sheaves equipped with the convolu-
tion distance (after Kashiwara-Schapira) and persis-
tence theory.
We start by showing a derived isometry theorem for
constructible sheaves over R, that is, we express
the convolution distance between two sheaves as a
matching distance between their graded barcodes.
This enables us to conclude in this setting that the

convolution distance is closed, and that the collec-
tion of constructible sheaves over R equipped with the
convolution distance is locally path-connected.
Then, we observe that the collection of zig-zag/level
sets persistence modules associated to a real valued
function carry extra structure, which we call Mayer-
Vietoris systems. We classify all Mayer-Vietoris sys-
tems under finiteness assumptions. This allows us to
establish a functorial isometric correspondence bet-
ween the derived category of constructible sheaves
over R equipped with the convolution distance, and
the category of strongly pfd Mayer-Vietoris systems
endowed with the interleaving distance. We deduce
from this result a way to compute barcodes of sheaves
from already existing software.
Finally, we give a purely sheaf theoretic definition
of the notion of ephemeral persistence module. We
prove that the observable category of persistence mo-
dules (the quotient category of persistence modules
by the sub-category of ephemeral ones) is equivalent
to the well-known category of γ-sheaves.
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