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Introduction

It is a classical result of Shimura and Manin that the map that assigns to a cusp
form f its period polynomial rf is a Hecke equivariant map. This thesis aims to
generalize this property to dimension N . In the general setting, the period poly-
nomial attached to f is replaced by a family of rational functions in N variables.
For this purpose, we develop a theory of Hecke operators for the elliptic cocycle
recently introduced by Charollois. It is an (N − 1)-cocycle for GLN (Z) valued in
meromorphic functions on CN × CN . We start by recalling the classical setting of
modular forms and Hecke operators.

Period polynomial

Let τ be a point in the upper half-plane H and q = exp(2πiτ). Let f be a cusp
form of weight k on SL2(Z) with Fourier expansion f(τ) =

∑
n>0 af (n)q

n. The
associated L-function is given by

L(f, s) =
∑
n>0

af (n)n
−s. (1)

It is well-known that the L-function L(f, s) converges absolutely for Re(s) � 0 and
has an analytic continuation to the whole plane. The period polynomial rf (x) of f
is given by

rf (x) =

∫ i∞

0
f(τ)(τ − x)k−2 dτ. (2)

It is equivalent to

rf (x) = −
k−2∑
n=0

(k − 2)!L(f, n+ 1)

(k − 2− n)!(2πi)n+1
xk−2−n. (3)



Let Vk−2 be the vector space of polynomials of degree ≤ k − 2 in one variable x
with coefficients in C. The space Vk−2 is equipped with an action of GL2(C) by

(P |γ)(x) = (cx+ d)k−2P

(
ax+ b

cx+ d

)
, (4)

where P (x) ∈ Vk−2, γ =

(
a b

c d

)
∈ GL2(C). The element ϵ =

(
−1 0

0 1

)
acts by

(P |ϵ)(x) = P (−x) and splits Vk−2 into the direct sum of the spaces V+
k−2 and V−

k−2

of even and odd polynomials respectively. It is clear that rf (x) ∈ Vk−2 and satisfies
the following cocycle relation:

rf |(Id+S) = rf |(Id+U + U2) = 0, (5)

where S =

(
0 −1

1 0

)
and U =

(
1 −1

1 0

)
. Let

Wk−2 = {P ∈ Vk−2 |P + P |S = P + P |U + P |U2 = 0}.

The equation (5) shows that the period polynomial rf belongs to Wk−2. Wk−2 splits
into two parts: Wk−2 = W+

k−2 ⊕ W−
k−2 where W±

k−2 = Wk−2 ∩ V±
k−2. Similarly,

let r+f , r−f to be the even and odd part of rf respectively.

Hecke operators

Let N,m be two positive integers. Let MN (m) be the set of all N ×N integral
matrices of determinant m. Given a modular form f of weight k, the action of the
m-th Hecke operator is given by

Tmf(τ) = m
k
2
−1

∑
γ∈SL2(Z)\M2(m)

(f |kγ)(τ), (6)

where f |kγ is the slash operator given by

(f |kγ)(τ) =
det(γ)

k
2

(cτ + d)k
f

(
aτ + b

cτ + d

)
. (7)

The action of the Hecke operator on a modular symbol can be defined in a similar
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way. Let A be a GL2(Q)-module. An A-valued modular symbol is a function:

r : Z2\0× Z2\0 → A

(α, β) 7→ r{α, β}
(8)

satisfying

1. r{α, β} = 0 for all α ∈ Qβ,

2. r{α, β}+ r{β, δ} = r{α, δ} for all α, β, δ ∈ Z2\0.

Here 0 means the zero vector in Z2. A modular symbol r{α, β} is said to be homo-
geneous if

r{gα, gβ} = g · r{α, β} for all g ∈ SL2(Z) and α, β ∈ Z2\0. (9)

Then the action of the Hecke operator on a homogeneous modular symbol is
given by:

Tmr{α, β} =
∑

γ∈M2(m)/ SL2(Z)

γ · r{mγ−1(α, β)}. (10)

Here to distinguish the Hecke operator on modular forms, we use the notation Tm.
With the help of relation (5), the period polynomial can be extended to a ho-

mogeneous modular symbol. Let X = (X1, X2) be a vector and let

rf{e1, e2}(X) = Xk−2
2 rf

(
X1

X2

)
, (11)

where e1 = (1, 0)t, e2 = (0, 1)t. Let α, β ∈ Z2
prim be two column vectors, then due to

the cocycle relations (5), rf{α, β} is totally determined by the following conditions:

1. rf{α, β} = 0 if α ∈ Qβ,

2. rf{α, β}+ rf{β, δ} = rf{α, δ} for any α, β, δ ∈ Z2
prim,

3. rf{gα, gβ}(X) = rf{α, β}(Xg) for any g ∈ SL2(Z).

By the discussion above, r induces two maps:

r± : Sk → W±
k−2, (12)

where Sk is the space of cusp forms of weight k. The basic result of Eichler-Shimura
[Shi59] is the following:
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Theorem 0.0.1 (Eichler-Shimura). The map r− : Sk → W−
k−2 is an isomorphism.

The map r+ : Sk → W+
k−2 is an isomorphism onto a subspace W′

k−2 of W+
k−2 of

codimension 1.

Moreover, Manin [Man73] proved that the map r is Hecke equivariant (see also
Merel [Mer94]):

Theorem 0.0.2. Let f be a cusp form of weight k. Then for any vectors α, β ∈
Z2
prim, we have

Tmrf{α, β} = rTmf{α, β}. (13)

In particular, if f = q+af (2)q
2+af (3)q

3+ · · · is a Hecke eigenform, then rf{α, β}
is an eigenvector of the Hecke operator Tm with eigenvalue af (m).

Example 0.0.3. When k = 12, the space S12 is 1-dimensional generated by the
Ramanujan Delta function:

∆(τ) = q
∏
n≥1

(1− qn)24 = q − 24q2 + 252q3 − 1472q4 + 4830q5 + · · · . (14)

The space W+
10 is spanned by

P0(x) = x10 − 1, P1(x) = x8 − 3x6 + 3x4 − x2. (15)

The space W−
10 is spanned by

P2(x) = 4x9 − 25x7 + 42x5 − 25x3 + 4x. (16)

On the other hand, the period polynomial r∆(x) was calculated by Shimura [Shi59]:

r∆(x) =0.005958 . . . Ix10 + 0.0370771 . . . x9 − 0.1143790 . . . Ix8 − 0.2317319 . . . x7

+ 0.343137 . . . Ix6 + 0.389309 . . . x5 − 0.343137 . . . Ix4 − 0.2317319 . . . x3

+ 0.114379 . . . Ix2 + 0.037077 . . . x− 0.005958 . . . I

If we set ω+ = 0.0643382 . . . I and ω− = 0.0092692 . . . , we see that

r+∆(x) = ω+(36P0(x)− 691P1(x)), r−∆(X) = ω−P2(x). (17)

Elliptic cocycle

In this thesis, we will generalize Theorem 0.0.2 to higher dimension. Accord-
ing to the terminology introduced in [BCG20], Theorem 0.0.2 can be viewed as a
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compatibility identity attached to the reductive dual pair (GL2(Z);GL2(Z)). The
first factor corresponds to the operator Tm and the second factor corresponds to the
operator Tm. We will generalize this to the pair (GLN (Z);GL2(Z)). To motivate
the definition, we recall a result of Zagier [Zag91].

The definition of period polynomial can be extended to Eisenstein series. Let
k ≥ 4 be an even integer and

Gk(τ) = −Bk
2k

+

∞∑
n=1

σk−1(n)q
n. (18)

For Re(s) � 0, let

L∗(Gk, s) :=

∫ ∞

0

(
Gk(iy) +

Bk
2k

)
dy = (2π)−sΓ(s)L(Gk, s), (19)

where L(Gk, s) =
∑∞

n=1 σk−1(n)n
−s. Then rGk

is given by

rGk
(x) =

−Bk
2k(k − 1)

(xk−1 + x−1) +
k−2∑
n=0

i1−n
(
k − 2

n

)
L∗(Gk, n+ 1)xk−2−n. (20)

In this case, rGk
(x) is no longer a polynomial, but a rational function. Now let

ck(τ, x, y) =
∑
f∈Mk

eigenform

(rf (x)rf (y))
−

(2i)k−3(f, f)
f(τ), (21)

where the summation is taken over all weight k normalized eigenforms, both Eisen-
stein series and Hecke eigenforms and

(rf (x)rf (y))
− =

1

2
(rf (x)rf (y)− rf (−x)rf (−y)) . (22)

Zagier [Zag91] considered the following generating function that encodes all these
period polynomials:

C(τ, x, y, T ) =
(xy − 1)(x+ y)

x2y2
(2πiT )−2 +

∞∑
k=2

ck(τ, x, y)
(2πiT )k−2

(k − 2)!
. (23)

He found a closed formula for it:

Theorem 0.0.4 (Zagier). The function C(τ, x, y, T ) is given by

(2πi)2C(τ, x, y, T ) = K(τ, xT, yT )K(τ,−xyT, T ), (24)
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where K(τ, x, y) is the Kronecker theta function

K(τ, x, y) =
θ′τ (0)θτ (x+ y)

θτ (x)θτ (y)
, (25)

and θτ (z) is the Jacobi theta function:

θτ (z) =
∑
n∈Z

(−1)nq
1
2
(n+ 1

2
)2e
((

n+
1

2

)
z

)
. (26)

From the relation (5), one deduces that the function C(τ, x, y, T ) satisfies the
following linear relations:

C(τ, x, y, T ) + C

(
τ,−1

x
, y, xT

)
= 0, (27)

C(τ, x, y, T ) + C

(
τ, 1− 1

x
, y, xT

)
+ C

(
τ,

1

1− x
, y, (1− x)T

)
= 0. (28)

Such relations are the main 1-cocycle relations satisfied by products of two Kronecker
theta functions. More generally, we will construct an (N − 1)-cocycle E (τ, σ, x, x′)

for GLN (Z) valued in functions on H × CN × CN that involves the products of N
Kronecker theta functions. Here σ is an element of MN (Z) and x, x′ are vectors in
CN . The elliptic cocycle E was first introduced by Charollois [Cha1], [CS16][section
3]. We will further introduce the action of two kinds of Hecke operators Tm and Tm
on the elliptic cocycle E (τ, σ, x, x′). The operator Tm corresponds to the action of
GL2(Z) on the parameter τ in analogy with the Hecke operator on modular forms.
The operator Tm corresponds to the action of GLN (Z) on the parameter σ and it is
the analog of the Hecke operator Tm on the modular symbol as in (10).

The idea to consider such Hecke operators on the elliptic cocycle E originally
comes from the recent paper [BCG20], where Bergeron-Charollois-Garcia intro-
duced a differential form Eψ that realizes an Eisenstein theta correspondence for
the dual pair (GLN ; GL2).

Main results

As the definition of the Hecke operator on modular symbols, we can generalize the
definition of the Hecke operator to higher dimension directly. Let A be a GLN (Q)-
module and ZNprim be the set of primitive vectors in ZN . Let Ph(A) be the set of
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functions

r : (ZNprim)N → A

(σ1, · · · , σN ) 7→ r{σ1, · · · , σN}
(29)

satisfying the conditions

1. r{σ1, · · · , σN} = 0 if det(σ1, · · · , σN ) = 0,

2.
∑N

j=0(−1)jr{σ0, · · · , σ̂j , · · · , σN} = 0 for all σ0, · · · , σN ∈ ZNprim,

3. r{gσ1, · · · , gσN} = g · (r{σ1, · · · , σN}) for all g ∈ SLN (Z).

We define the operator Tm on the set Ph(A) by:

Tmr{σ1, · · · , σN} =
∑

γ∈MN (m)/SLN (Z)

γ ·
(
r{mγ−1σ1, · · · ,mγ−1σN}

)
, (30)

Then we will show that the elliptic cocycle E (τ, σ, x, x′) belongs to Ph(F(H×CN ×
CN )), where F(H×CN ×CN ) is the set of meromorphic functions on H×CN ×CN .
In Chapter 3, we prove the following theorem:

Theorem 0.0.5. Let m,N be two positive integers. Then for any x, x′ ∈ CN and
σ ∈MN (Z), we have the formula

TmE (τ, σ, x, x′) =
∑
d|m

A(N, d)Tm
d
E (τ, σ, x, dx′), (31)

where {A(N, d) | d = 1, 2, · · · } is a certain sequence of integers. The exact definition
is given in 3.3.23. We also give a table of the first A(N, d) in the appendix.

One part of the proof of this Theorem was inspired by the method of Borisov-
Gunnells used in [BG02], where they proved the Hecke stability of the space of the
products of Eisenstein series under the operator Tm. They also proved a kind of
Hecke equivariance for the products of two Eisenstein series.

With the help of Theorem 0.0.5, we are able to generalize the Theorem 0.0.4 and
Theorem 0.0.2. Let X = (X1, . . . , XN ), y ∈ C, σ ∈ MN (Z) and M ∈ MN (C) with
M +M t = 0, we define

B(τ, σ,M,X, y, T ) :=
1

(2πi)N
E (τ, σ,XT,MXtyT ). (32)

Such function can be viewed as a generalization of C(τ, x, y, T ) since when N = 2,
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we have
B(τ, Id, S, (X1, X2), y, T ) = C(τ,X2/X1, y,X1T ). (33)

Just like the function C(τ, x, y, T ), we will obtain the Laurent expansion of the
function B(τ, σ,M,X, y, T ) in T . The proof will be given in Theorem 5.2.6.

Theorem 0.0.6. The function B(τ, σ,M,X, y, T ) has the following Laurent expan-
sion in T :

B(τ, σ,M,X, y, T ) =P−N (σ,M,X, y)(2πiT )−N

+
∑
k≥4

∑
f eigenform

weight k

Pf (σ,M,X, y)f(τ)
(2πiT )k−N

(k −N)!
.

where P−N and Pf are certain rational functions in X and Pf/P−N are polynomials.

Theorem 0.0.6 provides the definition of Pf for a normalized eigenform f . We can
extend it to any modular form by linear combination. Combining with the Theorem
0.0.5, we can study the action of Hecke operators on the function Pf (σ,M,X, y).
The following theorem generalizes the Hecke equivariance to higher dimension.

Theorem 0.0.7. For any modular form f(τ), we have the following formula:

TmPf (σ,M,X, y) =
∑
d|m

A(N, d)PTm
d
f (σ,M,X, dy). (34)

In particular, if we write the Laurent expansion

Pf (σ,M,X, y) =
∑
t≥−N

P
(t)
f (σ,M,X)yt, (35)

and take f = af (0) + q+ af (2)q
2 + · · · to be a normalized eigenform, then if the ra-

tional function P
(t)
f (σ,M,X) is non-zero, it is an eigenvector of Tm with eigenvalue∑

d|mA(N, d)af
(
m
d

)
dt, i.e.

TmP
(t)
f (σ,M,X) =

∑
d|m

A(N, d)af

(m
d

)
dt

P
(t)
f (σ,M,X). (36)

We will also show that there are many non-zero rational functions P (t)
f (σ,M,X).

In fact, the space generated by

〈P (t)
f (Id,M,X) |M +M t = 0〉,

8



is an eigenspace for Tm with eigenvalue
∑

d|mA(N, d)af
(
m
d

)
dt, which is infinite

dimensional in most of the cases.
As an example, when N = 2, P (t)

f (Id,M,X) is exactly the odd or even part of
rf{e1, e2} up to the parity of t. When N = 3, we will also give some examples for
f = Gk and the Ramanujan Delta function in the section 5.4.

For each rational function P
(t)
f (σ,M,X), it corresponds a family of eigenvalues,

hence naturally we can consider the corresponding L-series :

L
(t)
f (s) =

∑
m≥1

∑
d|m

A(N, d)af

(m
d

)
dt

m−s. (37)

We have the following theorem

Theorem 0.0.8. Let f(τ) be an eigenform of weight k. Then for Re(s) > max{k,N+

t}, L(t)
f (s) converges absolutely. It has a meromorphic continuation to the whole

plane. Moreover, we have the decomposition

L
(t)
f (s) = L(f, s)

N−2∏
j=1

ζ(s− j − t),

where L(f, s) is the L-function associated to the eigenform f .

Outline of the thesis

In chapter 1, we recall the Kronecker theta function and its basic properties.
Then we will give a relation between the Kronecker theta function and Eisenstein
series. The Kronecker theta function can be written as a generating series of Eisen-
stein series.

In chapter 2, we will introduce the elliptic cocycle E (τ, σ, x, x′) and prove its
cocycle relation in dimension 2 and 3. We first prove a special case by considering
the poles of elliptic cocycle, and then extend it to the general case by using our
general extension theorem about cocycles for GLN when N = 2, 3.

In chapter 3, we consider the action of two kinds of Hecke operators Tm and Tm
on the elliptic cocycle E (τ, σ, x, x′). The main result in this chapter is the relation
between these two kinds of Hecke operators given in Theorem 3.3.23. The basic
technique is translating the summation over Hecke operator Tm to the counting of
number of lattices as shown in Theorem 3.3.21.

In chapter 4, we will introduce the Eisenstein cocycle that consists of products

9



of Eisenstein series. Such Eisenstein cocycle is obtained from the elliptic cocycle
E . Also, we will do the smoothing for the Eisenstein cocycle at some prime ℓ. This
allows us only to keep the main term. Then we recall Sczech’s cocycle on the Bianchi
group. By comparing our cocycle with Sczech’s cocycle, we show that they coincide
when we restrict to the group Γ0(ℓ) after smoothing at the prime ℓ. At last, we
study the algebraicity of the value of elliptic cocycle and Eisenstein cocycle when τ
is a CM point.

In chapter 5, attached to each modular form f , we construct a family of rational
functions Pf that are the generalization of the modular symbol attached to a cusp
form. We will prove the Hecke equivariance of these rational functions in Section
5.2. In particular, if we take f to be a normalized eigenform, then we can associate
a finite family of L-series to the function Pf . We calculate this L(t)

f (s) in Section
5.3 and establish that it possesses an Euler product and meromorphic continuation
to the whole s-plane. In Section 5.4, we will give some numerical examples when f

is Eisenstein series and the Ramanujan Delta function.
Finally, since the function Pf is a rational function in most cases, for a future

research, we look for a polynomial analog of Pf . Because the space of polynomial
solutions is finite dimensional, we are able to provide an exhaustive list of such
polynomial analogs Qf in low weight. We found a basis of eigenvectors for the
Hecke operator Tm for small m, compute the eigenvalues and identify the related
L-functions. The numerical evidences and open questions are displayed in Section
5.5.
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Chapter

1
Kronecker theta function

In this chapter, we will recall the Kronecker theta function. This is the basic
1-dimensional object that we need to get us started for higher dimension later. The
Kronecker theta function occurs in different work with different forms. For example,
in [Weil76], Weil refered the Kronecker theta function from the Kronecker double
series. In [Zag91], Zagier proved some basic properties of Kronecker theta function.
In this thesis, we will follow the idea of Weil, but with some normalization to adapt
to other cases.

1.1 Definition

We begin with the definition of Kronecker theta function. We follow the defini-
tion of [Weil76][Chap. VIII]:

Definition 1.1.1. Let x, x′ be two complex numbers and τ a point of the Poincaré
half plane H. We further assume that |q| < |e(x′)| < 1 and x /∈ Λ = Z + Zτ where
q = e(τ) and e(x) = exp(2πix). Then we define

K(τ, x, x′) =
∑
m∈Z

2πie(mx′)
qme(x)− 1

. (1.1)

Under the condition on x′, the series is convergent for all x not in Λ. If we
restrict x to |q| < |e(x)| < |q|−1 and x /∈ Z, then the Kronecker theta function has
the symmetric expansion:

K(τ, x, x′) =2πi

(
1− 1

1− e(x) −
1

1− e(x′)

−
∑
m,n≥1

qmn
(
e(nx+mx′)− e(−nx−mx′)

))
.

(1.2)

In the following, we will give the meromorphic continuation of K(τ, x, x′).



CHAPTER 1. KRONECKER THETA FUNCTION

Proposition 1.1.2. The Kronecker theta function K(τ, x, x′) has a meromorphic
continuation to C2 with simple poles at x, x′ ∈ Λ. Moreover, the residue of K(τ, x, x′)

at x = n + mτ equals e(−mx′), the residue of K(τ, x, x′) at x′ = n + mτ equals
e(−mx).

Proof. We choose a positive integer N and divide the last term of (1.2) into two
parts:∑

m≥1
1≤n<N

qmn(e(nx+mx′)− e(−nx−mx′)) +
∑
m≥1
n≥N

qmn(e(nx+mx′)− e(−nx−mx′))

=
∑

1≤n<N

∑
m≥1

qmn(e(nx+mx′)− e(−nx−mx′))

+
∑
m≥1

∑
n≥0

qmn(e(nx+mx′ +Nx)− e(−nx−mx′ −Nx))

 qNm

=
∑

1≤n<N

(
qne(nx+ x′)

1− qne(x′) − qne(−nx− x′)

1− qne(−x′)

)
+
∑
m≥1

(
e(Nx+mx′)

1− qme(x) − e(−Nx−mx′)

1− qme(−x)

)
qNm.

(1.3)

Now for any x′ ∈ C\Λ, we choose N large enough such that qN < |e(x′)| < q−N .
Then the series above is convergent absolutely. Thus we get the meromorphic con-
tinuation of K(τ, x, x′).

Now we consider the residue of K. By the symmetric property of K, we only
need to consider the pole x = n+mτ . If m = 0, the residue of − 2πi

1−e(x) equals to 1.
If m > 0, only the term −e(−Nx−mx′)

1−qme(−x) q
Nm has a simple pole at x = n+mτ , and it

is easy to see that the residue equals to e(−mx′). The case m < 0 is similar.

It is easy to see the symmetry K(τ, x, x′) = K(τ, x′, x) when |q| < |e(x)|, |e(x′)| <
1 and x, x′ /∈ Λ from equation (1.2). Then we can extend it to x, x′ ∈ C\Λ by the
meromorphic continuation.

1.2 Basic properties

In this section, we prove some properties of the Kronecker theta function. These
properties we will often use later. Some of them also appear in [Cha1].
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Proposition 1.2.1. The Kronecker theta function K satisfies the ellipticity prop-
erty:

K(τ, x+ k + lτ, x′) = e(−lx′)K(τ, x, x′) for any k, l ∈ Z, (1.4)

and the distribution relation

K(Dτ,Dx, x′) =
1

D

D−1∑
j=0

K
(
τ, x+

j

D
, x′
)
. (1.5)

where D is a positive integer.

Proof. These two properties follow directly from the definition. In fact, for the
elliptic property, we have

K(τ, x+ k + lτ, x′) =
∑
m∈Z

2πie(mx′)
qme(x+ k + lτ)− 1

=
∑
m∈Z

2πie((m− l)x′)

qme(x)− 1

=e(−lx′)K(τ, x, x′).

(1.6)

For the distribution relation,

1

D

D−1∑
j=0

K
(
τ, x+

j

D
, x′
)

=
1

D

D−1∑
j=0

∑
m∈Z

2πie(mx′)

qme
(
x+ j

D

)
− 1

=
1

D

∑
m∈Z

D−1∑
j=0

D−1∑
k=0

2πiqkme
(
mx′ + kx+ kj

D

)
qDme(Dx)− 1

.

(1.7)

We note that
1

D

D−1∑
j=0

e
(
−kj
D

)
=

0 if D - k,

1 if D|k.
(1.8)

Hence the sum (1.7) gives ∑
m∈Z

2πie (mx′)
qDme(Dx)− 1

,

which is exactly K(Dτ,Dx, x′). This completes the proof.

More generally, we have the following distribution relation over Λ/DΛ:

13
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Proposition 1.2.2. Let D be a positive integer. Then we have

1

D

D−1∑
y,y′=0

e(xy)K
(
τ,Dx,

x′ + yτ + y′

D

)
= K(τ, x, x′). (1.9)

Proof. Applying the distribution relation to y′, the left hand side of (1.9) equals

D−1∑
y=0

e(xy)K(Dτ,Dx, x′ + yτ). (1.10)

And applying the distribution relation again to the first variable, we have

1

D

D−1∑
y,j=0

e(xy)K
(
τ, x+

j

D
, x′ + yτ

)
. (1.11)

Then applying the elliptic property of K, we get

1

D

D−1∑
y,j=0

e
(
−jy
D

)
K(τ, x+

j

D
, x′). (1.12)

By using the formula (1.8), we complete the proof.

Now we are able to give the relation between the Kronecker theta function and
the classical theta function. First of all, we recall the definition of theta function in
[Cha1]:

Definition 1.2.3. Let x be a complex number and τ ∈ H. Then we define the theta
function by

θ(τ, x) = 2q
1
8 sin(πx)

∏
n≥1

(1− qne(x))(1− qne(−x)). (1.13)

From the definition, it is easy to see that

θ(τ, x+ τ) = −q−
1
2 e(−x)θ(τ, x). (1.14)

Now we can deduce Charollois’ definition of K(τ, x, x′):

Proposition 1.2.4. For any x, x′ ∈ C\Λ, we have

K(τ, x, x′) =
θ′(τ, 0)θ(τ, x+ x′)

θ(τ, x)θ(τ, x′)
. (1.15)

14
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Proof. We consider the function

F (τ, x, x′) =
K(τ, x, x′)θ(τ, x)θ(τ, x′)

θ(τ, x+ x′)
.

We note that the theta function θ(τ, x) has a zero of order 1 at x ∈ Λ and no poles
or zeros elsewhere. Moreover, since K(τ, x,−x) = K(τ,−x, x) = −K(τ, x,−x), we
have K(τ, x, x′) = 0 when x + x′ ∈ Λ. Hence by Proposition 1.1.2, F (τ, x, x′) is
holomorphic everywhere. With the help of elliptic property of K and the transfor-
mation property (1.14) of θ(τ, x), we see that F (τ, x, x′) is τ -periodic. It is obvious
that F (τ, x, x′) is 1-periodic. Thus F (τ, x, x′) is a holomorphic elliptic function in
x. By the symmetry property, it is also an elliptic function in x′. So F (τ, x, x′)

is a constant up to τ . To calculate this constant, we take the limit x → 0. By
Proposition 1.1.2, the residue of K(τ, x, x′) at x = 0 is 1, hence

lim
x→0

F (τ, x, x′) = θ′(τ, 0).

This completes he proof.

Remark 1.2.5. If we use the Jacobi theta function given by

θτ (x) =
∑
n∈Z

(−1)nq
1
2(n+

1
2)

2

e
((

n+
1

2

)
x

)
, (1.16)

then by the same method as above, we get the formula proved by Zagier in [Zag91][p.456]

K(τ, x, x′) =
θ′τ (0)θτ (x+ x′)

θτ (x)θτ (x′)
. (1.17)

Proposition 1.2.6. For any x, x′ ∈ C, we have the exponential formula:

K(τ, x, x′) =
x+ x′

xx′
exp

 ∑
k≥2

k even

2(xk + x′k − (x+ x′)k)Gk(τ)
(2πi)k

k!

 , (1.18)

where

Gk(τ) = −Bk
2k

+
∞∑
n=1

σk−1(n)q
n. (1.19)

Proof. It is well known that the theta function θτ (x) satisfies the following triple
Jacobi identity:

θτ (x) = q
1
8 sin(πx)

∏
n≥1

(1− qn)(1− qne(x))(1− qne(−x)). (1.20)

15
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After dividing by xθ′τ (0) and taking the logarithm, we get

log

(
θτ (x)

xθ′τ (0)

)
= log

(
sin(πx)

πx

)
+
∑
n≥1

log(1− qne(x)) + log(1− qne(−x))− 2 log(1− qn)

=−
∑
k≥1

ζ(2k)

k
x2k −

∑
n,m≥1

2qmn(cos(2πx)− 1)

m

=−
∑
k≥1

ζ(2k)

k
x2k −

∑
k≥1

∑
n,m≥1

2m2k−1qmn
(2πix)2k

(2k)!

=−
∑
k≥1

2G2k(τ)
(2πix)2k

(2k)!
.

(1.21)

Then this proposition follows immediately from the equation 1.17.

1.3 Relation with Eisenstein series

In this section, we connect the Kronecker theta function with the Eisenstein
series as in [Weil76].

Let x, x′ be two complex numbers and τ ∈ H. We denote Λ = Z+ Zτ . For each
x′ we may associate a character function ψ of Λ. We define

ψΛ(λ, x
′) = exp

(
λx̄′ − x′λ̄

A(Λ)

)
, (1.22)

where λ ∈ Λ, A(Λ) = Area(Λ)
π and Area(Λ) is the area of the fundamental domain of

Λ.
We consider the following series:

∑
λ∈Λ

ψΛ(λ, x
′)

x+ λ
, (1.23)

where we assume x /∈ Λ. However we see that such series don’t converge absolutely.
Hence we may consider the Eisenstein summation given by

lim
M→∞

M∑
m=−M

(
lim
N→∞

N∑
n=−N

ψΛ(n+mτ, x′)

x+ n+mτ

)
. (1.24)

In [Weil76][p.70], Weil proved

16
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Lemma 1.3.1. Let x, x′ ∈ C\Λ. We write x′ = α + βτ . If we further assume that
β /∈ Z, then we have

∑
λ∈Λ

ψΛ(λ, x
′)

x+ λ
= e(βx)K(τ, x, x′). (1.25)

Proof. First we observe that

ψΛ(n+mτ, x′) = e(mα− nβ).

By Proposition 1.2.1, we see that both two sides of formula (1.25) are 1-periodic in
β, hence we may assume that β ∈ (0, 1).

By using the formula

∑
n∈Z

e(−nβ)
x+ n

= 2πi
e(xβ)

e(x)− 1
for β ∈ (0, 1), (1.26)

the Eisenstein summation (1.24) gives

2πie(xβ)
∑
m∈Z

e(mx′)
qme(x)− 1

, (1.27)

which is e(xβ)K(τ, x, x′).

Now we define the Eisenstein series of weight k by:

Definition 1.3.2. Let k be a positive integer and x′ = α+ βτ ∈ C\Λ be a complex
number with β /∈ Z. We define

Ek(x
′) =

∑′

λ∈Λ

ψΛ(λ, x
′)

λk
. (1.28)

where
∑′

means the sum taken over all λ ∈ Λ except 0. When k = 1 or 2, the
series is defined by Eisenstein summation.

Following the formula (1.25), the Kronecker theta function gives the generating
series of Ek:

Proposition 1.3.3. Let x, x′ ∈ C\Λ be two complex numbers. We write x′ = α+βτ

17
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with β /∈ Z. Then we have

e(xβ)K(τ, x, x′) =
1

x
+
∑
k≥0

Ek+1(x
′)(−x)k. (1.29)

Example 1.3.4. We can also deduce the Fourier expansion of Ek from (1.2). For
example, if we write x = α+βτ with β ∈ (0, 1), then the Fourier expansion of E1(x)

is
2πi

(
1

2
+ β

)
− 2πi

1− e(x) − 2πi
∑
m,n≥1

qmn(e(mx)− e(−mx)). (1.30)

1.4 Eisenstein-Kronecker function

In this section, we want to extend the Eisenstein series Ek(x) to all points in C.
To do that, we recall the Eisenstein-Kronecker function. One can find more details
in [Weil76][Chapter VIII] or [Ban06][Section 1].

Definition 1.4.1. Let Λ be a lattice in C. Let a be a non-negative integer and
x, x′ ∈ C. For Re(s) > a

2 + 1, we define the Eisenstein-Kronecker function to be the
following series:

Ka(x, x
′, s; Λ) =

∑′

λ∈Λ

(x̄0 + λ̄)a

|x+ λ|2s
ψΛ(λ, x

′). (1.31)

where
∑′

means the sum taken over all λ ∈ Λ if x /∈ Λ, and except −x if x ∈ Λ.

We note that the Eisenstein-Kronecker function has an meromorphic continua-
tion to the whole complex s-plane. More precisely, the following proposition holds:

Proposition 1.4.2. The function Ka(x, x
′, s; Λ) has a meromorphic continuation to

the whole s-plane with possible poles at s = 0, 1. If a = 0 and x ∈ Λ, Ka(x, x
′, s; Λ)

has a pole at s = 0 with residue −ψΛ(x,−x′). If a = 0 and x′ ∈ Λ, Ka(x, x
′, s; Λ)

has a pole at s = 1 with residue A(Λ)−1. It satisfies the functional equation:

Γ(s)Ka(x, x
′, s; Λ) = A(Λ)a+1−2sΓ(a+1−s)Ka(x

′, x, a+1−s; Λ)ψΛ(x,−x′). (1.32)

Proof. See [Weil76][Chapter VIII §13].

Now we can extend the definition of Ek(x) to all x ∈ C using the Eisenstein-
Kronecker function Ka(x, x

′, s; Λ):

18
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We take a = s = 1, x = 0 and Λ = Z+ Zτ for some τ ∈ H. Then the functional
equation (1.32) gives

K1(x, 0, 1; Λ) = K1(0, x, 1; Λ).

As in [MS90], we can calculate the Fourier expansion of K1(x, 0, 1; Λ):

K1(x, 0, 1; Λ) =2πiβ +
∑
n∈Z

π cotπ(x+ nτ)

=2πiβ + πi
e(x) + 1

e(x)− 1
− 2πi

∑
m,n>0

qmn(e(mx)− e(−mx)),
(1.33)

where x = α + βτ . We see that this coincides with the Fourier expansion (1.30) of
E1(x). By the definition of Ka(x, x

′, s; Λ), we see that

∂

∂x̄
K2(x, 0, 1; Λ) = K1(x, 0, 1; Λ).

Hence it is not hard to show that

K2(0, x, 2; Λ) = E2(x). (1.34)

If k ≥ 3, we always have Kk(0, x, k; Λ) = Ek(x) since Ek(x) converges absolutely.
We note that Kk(0, x, k; Λ) is well-defined for all x ∈ C although it is not even
continuous at lattice points. So we can extend Definition 1.3.2:

Definition 1.4.3. Let k be a positive integer and x ∈ C. Then we define

Ek(x) = Kk(0, x, k; Λ). (1.35)

Remark 1.4.4. The continuation of Ek(x′) allows us to extend the Proposition
1.3.3 to all x, x′ ∈ C\Λ since both sides of (1.29) are continuous in x′ ∈ C\Λ.

By using the Eisenstein-Kronecker function, we are able to extend the distribu-
tion relation of Ek(x) to the following case:

Proposition 1.4.5. Let k be a positive integer and x ∈ C, then for any c ∈ OΛ =

{c ∈ C | cΛ ⊂ Λ}, we have

∑
r∈Λ/cΛ

Ek

(
x+ r

c

)
=

c

c̄k−1
Ek(x). (1.36)
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Proof. First we note that

∑
r∈Λ/cΛ

Ka

(
x+ r

c
, 0, s; Λ

)
=

∑
r∈Λ/cΛ

∑′

λ∈Λ

(x+rc + λ)
a

|x+rc + λ|2s

=
|c|2s

c̄a

∑
r∈Λ/cΛ

∑′

λ∈Λ

(x+ r + cλ)
a

|x+ r + cλ|2s
=

|c|2s

c̄a
Ka(x, 0, s; Λ).

(1.37)

By using the functional equation (1.32) of the Eisenstein-Kronecker function, we
have ∑

r∈Λ/cΛ

Ka

(
0,
x+ r

c
, s; Λ

)
=

|c|2(a+1−s)

c̄a
Ka(0, x, s; Λ). (1.38)

Now by taking a = s = k, we complete the proof.

We give some connections with modular forms now. Let l be a positive integer.
Let Λ[1l ] = {α ∈ C | lα ∈ Λ}/Λ be the group of l-torsion points modulo Λ and

Γ(l) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣
(
a b

c d

)
≡

(
1 0

0 1

)
(mod l)

}
. (1.39)

Then we have the following:

Theorem 1.4.6. Let k be a positive integer, and x0 ∈ Λ[1l ] be a non-zero torsion
point. Then the function Ek(x0) in τ is a modular form of weight k for the congru-
ence subgroup Γ(l).

Proof. The functional equation (1.32) gives

Ek(x0) = Kk(0, x0, k,Λ) =

(
Im(τ)

π

)1−k
Kk(x0, 0, 1; Λ)

=
1

Γ(k)

(
Im(τ)

π

)1−k ∑
λ∈Z+τZ

1

(x0 + λ)k|x0 + λ|2s

∣∣∣∣
s=1−k

.

(1.40)

The equation 9.3a of [Shi07] shows the invariance property of Ek(x0). Then this
theorem follows directly from [Shi07][Theorem 9.6].

Remark 1.4.7. Let x0 = p+qτ
l ∈ Λ[1l ] be a non-zero l-torsion point, the Fourier
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expansion of Ek(x0) is also given in [Shi07][Section 9.5]:

l

(−2i)kπ
Ek

(
p+ qτ

l

)
=− lk−1Bk(p/l)

k
+

∑
0<m∈p+lZ

n≥1

mk−1e
(
n(mτ + q)

l

)
−

∑
0<m∈−p+lZ

n≥1

(−m)k−1e
(
n(mτ − q)

l

)
.

(1.41)

At last, we prove a lemma that involves the products of Eisenstein series. One
can find a similar property in [LS][Lemma 1.5].

Lemma 1.4.8. Let N ≥ 1 be an integer, Λ = Z + τZ. Let x0, x1, . . . , xN ∈ C\Λ
satisfy

N∑
j=0

xj ∈ Z. (1.42)

Then the coefficient of tN in

N∏
j=0

1 +
∑
k≥1

Ek(xj)(−t)k
 (1.43)

equals 0.

Proof. We define

F (t) :=
N∏
j=0

K(τ, t, xj). (1.44)

It is clear that F (t+ 1) = F (t). By Proposition 1.2.1, we see that

F (t+ τ) =

N∏
j=0

K(τ, t+ τ, xj) = e

 N∑
j=0

xj

 N∏
j=0

K(τ, t, xj) = F (t). (1.45)

Hence F (t) is an elliptic function for the lattice Λ. Moreover, by Proposition 1.1.2,
F (t) has only one pole in the fundamental domain of C/Λ at t = 0 of order N + 1.
So the residue of F (t) at t = 0 is 0. By Proposition 1.3.3, we see that the residue of
F (t) at t = 0 is exactly the coefficient of tn in

N∏
j=0

e(tβj)

1 +
∑
k≥1

Ek(xj)(−t)k
 (1.46)
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where xj = αj + τβj . Since
∑

j xj ∈ Z, we have
∑

j βj = 0. This proves the
Lemma.

Corollary 1.4.9. If we put N = 2 in the Lemma above, then we have

E1(x1)E1(x2) +E1(x1)E1(x3) +E1(x2)E1(x3) = E2(x1) +E2(x2) +E2(x3), (1.47)

where x1 + x2 + x3 = 0. If we put N = 3, then we have

E1(x1)E1(x2)E1(x3) + E1(x1)E1(x2)E1(x4) + E1(x1)E1(x3)E1(x4)

+ E1(x2)E1(x3)E1(x4) =
∑
i ̸=j

E1(xi)E2(xj)−
4∑
j=1

E3(xj)
(1.48)

where x1 + x2 + x3 + x4 = 0.

Identity (1.47) also occurs in [BG02][Prop. 3.7]. In Chapter 4, we will see that
these identities give some naive cocycle relations of Eisenstein series.
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Chapter

2
Elliptic Cocycle

In this chapter, we will introduce the elliptic cocycle E (τ, σ, x, x′). This is an
(N − 1)-cocycle on the group GLN (Z) valued in meromorphic functions on H ×
CN × CN that was recently introduced by Charollois in [Cha1]. Explicit formulas
for the elliptic cocycle E consist of N -fold products of the Kronecker theta function
defined in Chapter 1. The main results in this chapter are Theorem 2.2.3 and
Theorem 2.2.6, which state the cocycle relation of E (τ, σ, x, x′) in dimensions 2

and 3 respectively. Charollois proved the general cocycle relation by taking the
summation of the trigonometric cocycle introduced by Sczech (see [CS16]). We will
give an independent proof in the cases N = 2, 3 directly from the definition. In
Chapter 4 and Chapter 5, we will specialize the elliptic cocycle E to obtain other
related cocycles. They have their own merits and will be studied in different ways.

2.1 Definition and basic properties of the elliptic cocy-
cle

First we give the definition of the elliptic cocycle E . Let N > 1 be an integer.
Fix two vectors x = (x1, . . . , xN ) ∈ CN , x′ = (x′1, . . . , x

′
N )

t ∈ CN , let

K (τ, x, x′) =
N∏
i=1

K(τ, xi, x
′
i) (2.1)

be the multivariable Kronecker theta function.

Definition 2.1.1. Let σ ∈MN (Z), x, x′ ∈ CN and τ ∈ H. If det(σ) 6= 0,

E (τ, σ, x, x′) =
1

detσ

∑
y,y′∈ZN/σZN

e(x · y)K (τ, xσ, σ−1(x′ + yτ + y′)). (2.2)

And if det(σ) = 0,
E (τ, σ, x, x′) = 0.
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Remark 2.1.2. In this thesis, we always assume that the columns of σ ∈ MN (Z)
are non-zero.

Proposition 2.1.3. For any σ ∈MN (Z) and g0 ∈ GLN (Z), the following homoge-
neous relation holds:

E (τ, g0σ, xg
−1
0 , g0x

′) = det(g0)E (τ, σ, x, x′). (2.3)

Proof. If det(σ) = 0, the homogeneous relation is obvious since both of two sides
equal to 0. Hence we assume that det(σ) 6= 0. By changing the variables y = g−1

0 z

and y′ = g−1
0 z′, we have

E (τ, g0σ, xg
−1
0 , g0x

′)

=
1

det(g0σ)

∑
z,z′∈ZN/g0σZN

e(xg−1
0 · z)K

(
τ, xσ, (g0σ)

−1(g0x
′ + zτ + z′)

)
=
det(g0)

det(σ)

∑
y,y′∈ZN/σZN

e(x · y)K
(
τ, xσ, σ−1(x′ + yτ + y′)

)
=det(g0)E (τ, σ, x, x′).

This completes the proof.

Following [Cha1], we give a more symmetric equivalent definition of E (τ, σ, x, x′).

Proposition 2.1.4. Let σ ∈ MN (Z) with D := det(σ) 6= 0. Then for any x, x′ ∈
CN , we have

E (τ, σ, x, x′) =
sign(D)

|D|N
∑

z∈ZN/ZN |D|σ−1

z′∈ZN/σZN

K

(
τ

|D|
,
x+ z

|D|
σ, σ−1(x′ + z′)

)
. (2.4)

Proof. First we note that by applying the Proposition 2.1.3 to any matrix g0 of
determinant −1 if D < 0, it reduces to the case of D > 0. Hence we may assume
that D > 0. By using the distribution relation of Kronecker theta function N times,
we have

E (τ, σ, x, x′) =
1

D

∑
z,z′∈ZN/σZN

e(x · y)K (τ, xσ, σ−1(x′ + zτ + z′))

=
1

DN+1

∑
j∈ZN/DZN

∑
z,z′∈ZN/σZN

e(x · z)K
(
τ

D
,
xσ + j
D

,σ−1(x′ + zτ + z′)

)
.
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Since the entries of Dσ−1 are integers and z ∈ ZN/σZN , we may apply Proposition
1.2.1 to K :

K

(
τ

D
,
xσ + j
D

,σ−1(x′ + zτ + z′)

)
=K

(
τ

D
,
xσ + j
D

,Dσ−1z
τ

D
+ σ−1(x′ + z′)

)
=e
(
−xσ + j

D
·Dσ−1z

)
K

(
τ

D
,
xσ + j
D

,σ−1(x′ + z′)

)
.

Thus E (τ, σ, x, x′) equals

1

DN+1

∑
j∈ZN/DZN

∑
z,z′∈ZN/σZN

e(−j · σ−1z)K

(
τ

D
,
xσ + j
D

,σ−1(x′ + z′)

)
.

We note that the summation over z ∈ ZN/σZN is given by:

1

D

∑
z∈ZN/σZN

e
(
j · σ−1z

)
=

1 if j ∈ ZNσ/DZN ,

0 else.

This implies that

E (τ, σ, x, x′) =
1

DN

∑
j∈ZNσ/DZN

∑
z′∈ZN/σZN

K

(
τ

D
,
xσ + j
D

,σ−1(x′ + z′)

)
.

Now we write j = yσ where y runs through ZN/Dσ−1ZN . This completes the
proof.

Now we define an action of GLN (Q) on E . Let g0 ∈ GLN (Q), and choose the
smallest positive integers λ1, · · · , λN such that g = g0λ ∈ MN (Z) where λ is the
diagonal matrix diag{λ1, · · · , λN}. Then

(g0 · E )(τ, σ, x, x′) :=
1

det(g)

∑
z,z′∈ZN/gZN

E
(
τ, σ, xg, g−1(x′ + zτ + z′)

)
e(x · z).

Then we will extend Proposition 2.1.3 to any matrix in GLN (Q). We first prove
a simple and useful lemma (see [CD14][lemma 2.9]).

Lemma 2.1.5. Let g1, g2 ∈ MN (Z) be two matrices and det(g1),det(g2) 6= 0. L

is a lattice in C. If we fix sets of representatives {y} and {z} for LN/g1LN and
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LN/g2L
N respectively, then the following map is a bijection

LN/g1L
N × LN/g2L

N → LN/g2g1L
N

(y, z) 7→ z + g2y.

Proof. If z + g2y = z′ + g2y
′ (mod g2g1L

N ) for some y, y′ ∈ LN/g1L
N and z1, z2 ∈

LN/g1L
N , then we have

z − z′ ∈ g2g1L
N + g2(y

′ − y) ⊂ g2L
N .

Since we have already fixed the set of representatives, then we have z = z′. The
same reason implies that y = y′. So this map is injective. Moreover, the cardinality
of the two sides equal to det(g1g2)

2. Hence it is a bijection.

Remark 2.1.6. [CD14][Remark 2.10] We need to note that such map is not a
group homomorphism. Such a correspondence depends on the choice of the set of
representatives.

Proposition 2.1.7. Let τ ∈ H and x, x′ ∈ CN . Let g0 ∈ GLN (Q) and g = g0λ ∈
MN (Z) for some diagonal matrix λ. Then we have

(g0 · E )(τ, σ, x, x′) = E (τ, gσ, x, x′). (2.5)

In particular, let λ be an invertible diagonal matrix. Then for any σ ∈ MN (Z), we
have

E (τ, σλ, x, x′) = E (τ, σ, x, x′). (2.6)

Proof. By definition of E , we have

(g0 · E )(τ, σ, x, x′) =
1

det(g)

∑
z,z′∈ZN/gZN

E
(
τ, σ, xg, g−1(x′ + zτ + z′)

)
e(xz)

=
1

det(gσ)

∑
z,z′∈ZN/gZN
y,y′∈ZN/σZN

K
(
τ, xgσ, σ−1g−1(x′ + (z + gy)τ + z′ + gy′)

)
e(x(z + gy)).

(2.7)

By Lemma 2.1.5, we know that the sets {z+ gy} and {z′+ gy′} give representatives
of ZN/gσZN . Hence the summation above equals

1

det(gσ)

∑
w,w′∈ZN/gσZN

K
(
τ, xgσ, σ−1g−1(x′ + wτ + w′)

)
e(xw)
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which is exactly E (τ, gσ, x, x′). In particular, if we take λ to be the diagonal matrix
diag{a1, · · · , aN}, then by applying Proposition 1.2.2 N times, we have

E (τ, σλ, x, x′)

=
1

det(σλ)

∑
z,z′∈ZN/σZN
y,y′∈ZN/λZN

K
(
τ, xσλ, λ−1σ−1(x′ + (z + σy)τ + z′ + σy′)

)
e(x(z + σy)).

=
1

det(σ)

∑
z,z′∈ZN/σZN

K
(
τ, xσ, σ−1(x′ + zτ + z′)

)
e(xz).

(2.8)

This proves that
E (τ, σλ, x, x′) = E (τ, σ, x, x′), (2.9)

which completes the proof.

Remark 2.1.8. From the equation (2.6), we can assume that the column vectors of
σ are primitive. Hence we always make this assumption in the following.

2.2 Cocycle relation

In this section, we will prove the cocycle relation of E in dimension 2 and 3.
The proof would divide into two parts: the first part is proving the cocycle relation
for some special cases, i.e. the Lemma 2.2.4 for dimension 2 and the Lemma 2.2.7,
2.2.8 for dimension 3. The second part is proving the extension theorem, i.e. the
Theorem 2.2.5 for dimension 2 and the Theorem 2.2.9 for dimension 3. These two
extension theorems are purely algebraic statements which holds for any GL2(Z) and
GL3(Z) module. The extension theorems allow us to extend the cocycle relation to
general cases.

We note that the cocycle relation of E is in fact an identity for meromorphic
functions of all variables x, x′. Our strategy of the main Lemma 2.2.4 is using the
fact that the residue of elliptic function for the lattice Z+ τZ must be 0. The case
of dimension 3 uses the same strategy and reduce to the case of dimension 2.

To start the proof, we first introduce a parameter t to E .

Definition 2.2.1. Let τ ∈ H, σ ∈ MN (Z) and x, x′ ∈ CN . Fix a non-zero vector
ν ∈ ZN , for any t ∈ C, we define

Eν(τ, σ, t, x, x
′) = E (τ, σ, x+ tν, x′).

27



CHAPTER 2. ELLIPTIC COCYCLE

Lemma 2.2.2. Fix τ, σ, x, x′, ν, the function t 7→ Eν(τ, σ, t, x, x′)K(τ, t, x′′) is Z+Zτ -
periodic, where x′′ = −ν · x′.

Proof. Since K(τ, x, x′) is 1-periodic in x and ν ∈ ZN , it is easy to see that

Eν(τ, σ, t+ 1, x, x′)K(τ, t+ 1, x′′) = Eν(τ, σ, t, x, x
′)K(τ, t, x′′).

For the part of τ -periodic, by the Proposition 1.2.1, we have:

K(τ, t+ τ,−ν · x′) = e(ν · x′)K(τ, t,−ν · x′),

and

Eν(τ, σ, t+ τ, x, x′)

=
1

detσ

∑
y,y′∈ZN/σZN

e((x+ tν + τν) · y)K (τ, (x+ tν + τν)σ, σ−1(x′ + yτ + y′))

=
1

detσ

∑
y,y′∈ZN/σZN

e((x+ tν + τν) · y)e(−ν · (x′ + yτ + y′))·

K (τ, (x+ tν)σ, σ−1(x′ + yτ + y′))

=
1

detσ

∑
y,y′∈ZN/σZN

e((x+ tν) · y)e(−ν · x′)K (τ, (x+ tν)σ, σ−1(x′ + yτ + y′))

=e(−ν · x′)Eν(τ, σ, t, x, x′).

Hence we see that Eν(σ, t, x, x′)K(τ, t, x′′) is τ -periodic. This completes the proof.

2.2.1 Dimension 2

In this subsection, we prove the following theorem:

Theorem 2.2.3. Let τ ∈ H, and x, x′ ∈ C2. Then for any vectors σ0, σ1, σ2 ∈ Z2
prim,

we have the following cocycle relation:

E (τ, (σ0, σ1), x, x
′)− E (τ, (σ0, σ2), x, x

′) + E (τ, (σ1, σ2), x, x
′) = 0. (2.10)

We first prove a special case:

Lemma 2.2.4. The cocycle relation holds for (2.10) for σ0 = (1, 0)t, σ1 = (0, 1)t,
σ2 = (r, s)t where 0 ≤ r < s. Namely, we have the identity:

E
(
τ,M0, x, x

′)− E
(
τ,M1, x, x

′)+ E
(
τ,M2, x, x

′) = 0
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where M0 =

(
0 r

1 s

)
, M1 =

(
1 r

0 s

)
, M2 =

(
1 0

0 1

)
.

Proof. For fixed σi, x, x
′, we choose a vector ν = (1, v) ∈ Z2 such that xσi

νσi
are

different for all i. For such vector ν, we introduce a function:

F (t) =
(
Eν(τ,M0, t, x, x

′)− Eν(τ,M1, t, x, x
′) + Eν(τ,M2, t, x, x

′)
)
K(τ, t, x′′),

where x′′ = −ν · x′. By writing the function F (t) in terms of the Kronecker theta
function, we have

F (t) =

(
K (τ, x+ tν, x′)− 1

s

∑
y,y′∈Z2/M1Z2

K
(
τ, (x+ tν)M1,M

−1
1 (x′ + yτ + y′)

)
− 1

r

∑
y,y′∈Z2/M2Z2

K
(
τ, (x+ tν)M2,M

−1
2 (x′ + yτ + y′)

))
K(τ, t, x′0).

(2.11)

Since K(τ, x, x0) has a simple pole at x = 0 with residue 1 and by the assumption
on ν, the function F (t) has a simple pole at t = 0,−x1,−x2

v ,−
rx1+sx2
r+vs .

Next we calculate the residue at each pole. For the pole −x1, the residue of
the first term of (2.11) equals to K(τ, x2 − vx1, x

′
2)K(τ,−x1, x′0). The residue of the

second term of (2.11) equals to:

1

s

s∑
y2,y′2=1

e(y2(x2 − vx1))K
(
τ, s(x2 − vx1),

x′2 + y2τ + y′2
s

)
K(τ,−x1, x′0). (2.12)

By the Proposition 1.2.2, we see that the summation equals to

K(τ, x2 − vx1, x
′
2)K(τ,−x1, x′0).

Since the third term of (2.11) is holomorphic at t = −x1, hence we have

Rest=−x1 F (t) = 0.

Similarly, the residue of F (t) at t = −x2
v and − rx1+sx2

r+vs are 0. This means that F (t)
has only a simple pole at t = 0. However, by the Lemma 2.2.2, F (t) is an elliptic
function, it forces Rest=0 F (t) = 0, which gives exactly the cocycle relation:

Rest=0 F (t) = E
(
τ,M0, x, x

′)− E
(
τ,M1, x, x

′)+ E
(
τ,M2, x, x

′) = 0.

29



CHAPTER 2. ELLIPTIC COCYCLE

To prove the Theorem 2.2.3, we need the following general extension theorem.
The extension theorem allows us to prove the general cocycle relation from special
cases as in Lemma 2.2.4. In the Theorem 2.2.5 and Theorem 2.2.9, we always assume
that the columns of matrix σ ∈M2(Z) or M3(Z) are non-zero.

Theorem 2.2.5. Denote M1
2 (Z) = {σ ∈ M2(Z) | det(σ) = 0 or 1}. Let L be a left

SL2(Z)-module. Let Φ :M1
2 (Z) → L be a map satisfing the following conditions:

1. Φ(σ) = 0 if det(σ) = 0,

2. The following two equations hold:

Φ

(
1 0

0 1

)
+Φ

(
0 −1

1 0

)
= 0, (2.13)

Φ

(
1 0

0 1

)
+Φ

(
0 −1

1 1

)
= Φ

(
1 −1

0 1

)
, (2.14)

3. Φ(gσ) = gΦ(σ) for any g ∈ SL2(Z) and σ ∈M1
2 (Z).

Then there exists a unique extension of Φ to Φ̂ :M2(Z) → L such that the following
conditions are satisfied:

(i) Φ̂|M1
2 (Z)

= Φ,

(ii) Φ(σ0, σ1)−Φ(σ0, σ2)+Φ(σ1, σ2) = 0 for any (σ0, σ1), (σ0, σ2), (σ1, σ2) ∈M2(Z),

(iii) Φ(gσ) = gΦ(σ) for any g ∈ SL2(Z) and σ ∈M2(Z).

Proof. The idea of the proof relies on the Hermite normal form of σ. Because of the
condition (3), we could always reduce to the case of Hermite normal form.

To prove the existence, we give the construction of Φ̂ by induction. Let σ =(
a b

c d

)
∈M2(Z). We first assume that the colums of σ are primitive. If det(σ) = 0

or 1, then we define
Φ̂(σ) = Φ(σ).

If det(σ) > 1, we know that there exists a unique g ∈ SL2(Z) such that σ = g

(
1 r

0 s

)
with 0 ≤ r < s. Then we define

Φ̂(σ) = g ·

(
Φ̂

(
1 0

0 1

)
− Φ̂

(
r 0

s 1

))
. (2.15)
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Since the determinant of

(
r 0

s 1

)
is less than s, Φ̂

(
r 0

s 1

)
is defined by induction

assumption. If det(σ) < 0, let

Φ̂

(
a b

c d

)
= −Φ̂

(
b a

d c

)
. (2.16)

Finally, if the columns of σ are not primitive, let

Φ̂(σ) = Φ̂

(
a/ gcd(a, c) b/ gcd(b, d)

c/ gcd(a, c) d/ gcd(b, d)

)
. (2.17)

Next we check that Φ̂ satisfies the 3 conditions. The conditions (i) and (iii)

follow by construction. So we only need to check the condition (ii). We note
that the equation (2.17) allows us to reduce to the case that σi are primitive. Let
k = max{|det(σ0, σ1)|, | det(σ0, σ2)|, | det(σ1, σ2)|}. We prove the condition (ii) by
induction on k.

When k = 1. Without loss of generality, we may assume that det(σ0, σ1) = 1.
Then multiplying by (σ0, σ1)

−1, the condition (ii) is equivalent to

Φ̂

(
1 0

0 1

)
+ Φ̂

(
0 c1

1 c2

)
= Φ̂

(
1 c1

0 c2

)
, (2.18)

for some c1, c2 ∈ Z. By our assumption, c1, c2 must be 0 or ±1. We will show the
cocycle relation for (c1, c2) = (1, 1), the other cases are easily deduced in the same

way. By taking the action of

(
0 1

−1 0

)
on the both sides of (2.14), we obtain

Φ̂

(
0 1

−1 0

)
+ Φ̂

(
1 1

0 1

)
= Φ̂

(
0 1

−1 1

)
. (2.19)

By the definition (2.16), and by acting the matrix

(
0 1

−1 1

)
on the equation (2.13),

we have

Φ̂

(
0 1

1 1

)
= Φ̂

(
1 0

1 1

)
= Φ̂

(
0 1

−1 1

)
. (2.20)

Combining with (2.19), we complete the proof of the (2.18) for (c1, c2) = (1, 1).

When k > 1. Without loss of generality, we assume that det(σ0, σ1) = k. By
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multiplying a suitable matrix in SL2(Z) on the left, we may assume that

(σ0, σ1, σ2) =

(
1 s c1

0 k c2

)
,

where 0 ≤ s < k and c1, c2 ∈ Z. The assumption k = max{|det(σ0, σ1)|, |det(σ0, σ2)|, | det(σ1, σ2)|}
implies that −k ≤ c2 ≤ k and |sc2 − kc1| ≤ k. The negative case of c2 is similar,
hence we may assume that 0 ≤ c2 ≤ k.

We note that |c1| ≤ k, otherwise |kc1−sc2| ≥ |kc1|−|sc2| ≥ k(k+1)−k(k−1) > k.

And if |c1| = k, we must have c2 = k, s = k − 1. But such case would not occur
since σ2 = (c1, c2)

t is assumed to be primitive. This means |c1| ≤ k − 1. Moreover,
since c2, s are non-negative, c1 must be non-negative.

By (2.15), we have

Φ̂

(
1 s

0 k

)
= Φ̂

(
1 0

0 1

)
− Φ̂

(
s 0

k 1

)
. (2.21)

If c2 = k, then 0 < c1 < c2. Hence the definition (2.15) gives:

Φ̂

(
1 c1

0 c2

)
= Φ̂

(
1 0

0 1

)
− Φ̂

(
c1 0

c2 1

)
. (2.22)

If c2 < k, the induction assumption also gives the same equation.

If |sc2 − rc1| < k, then by using the induction assumption to

(
s c1 0

k c2 1

)
, we

have

Φ̂

(
s c1

k c2

)
− Φ̂

(
s 0

k 1

)
+ Φ̂

(
c1 0

c2 1

)
= 0. (2.23)

Combining equations (2.21), (2.22), (2.23), we prove the condition (ii).

If sc2 − kc1 = k, then since s is coprime to k, it forces c2 = k. Hence s− c1 = 1.

We can find g1 ∈ SL2(Z) such that

(
s c1

k k

)
= g1

(
1 s1

0 k

)
with 0 ≤ s1 < k. So by

the definition of Φ̂

(
s c1

k k

)
, we have

Φ̂

(
s c1

k k

)
+ Φ̂

(
c1 (−ss1 + c1)/k

k 1− s1

)
= Φ̂

(
s (−ss1 + c1)/k

k 1− s1

)
. (2.24)
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Applying the induction assumption to(
s (−ss1 + c1)/k 0

k 1− s1 1

)

and (
s (−ss1 + c1)/k 0

k 1− s1 1

)
,

we have

Φ̂

(
s (−ss1 + c1)/k

k 1− s1

)
+ Φ̂

(
(−ss1 + c1)/k 0

1− s1 1

)
= Φ̂

(
s 0

k 1

)
, (2.25)

Φ̂

(
(−ss1 + c1)/k 0

1− s1 1

)
+ Φ̂

(
c1 (−ss1 + c1)/k

k 1− s1

)
= Φ̂

(
c1 0

k 1

)
. (2.26)

So combining equations (2.21), (2.22), (2.24), (2.25), (2.26), we have

Φ̂

(
1 s

0 k

)
+ Φ̂

(
s c1

k k

)

=Φ̂

(
1 0

0 1

)
− Φ̂

(
s 0

k 1

)
+ Φ̂

(
s (−ss1 + c1)/k

k 1− s1

)
− Φ̂

(
c1 (−ss1 + c1)/k

c2 1− s1

)

=Φ̂

(
1 0

0 1

)
− Φ̂

(
(−ss1 + c1)/k 0

1− s1 1

)
− Φ̂

(
c1 (−ss1 + c1)/k

k 1− s1

)

=Φ̂

(
1 0

0 1

)
− Φ̂

(
c1 0

k 1

)
= Φ̂

(
1 c1

0 k

)
.

If sc2− kc1 = −k, then it forces that c2 = k and s− c1 = −1. The proof is the same
as the case sc2 − kc1 = k.

The uniqueness is clear from the condition (ii). This completes the proof.

Proof of Theorem 2.2.3. As what we did in Lemma 2.2.4, for fixed σi, x, x
′, we

choose a vector ν = (1, v) ∈ Z2 such that xσi
νσi

are different for all i. For such
vector ν, we introduce a function:

F (t) =
(
Eν(τ, (σ0, σ1), t, x, x

′)− Eν(τ, (σ0, σ2), t, x, x
′) + Eν(τ, (σ1, σ2), t, x, x

′)
)
K(τ, t, x′′)

where x′′ = −ν · x′. By Lemma 2.2.2, F (t) is an elliptic function for the lattice
Z+ Zτ .
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We apply Theorem 2.2.5 to the function E (τ,−, x, x′)|M1
2 (Z)

. We take r, s ∈
{±1, 0} in Lemma 2.2.4. It implies that E (τ,−, x, x′)|M1

2 (Z)
satisfies the condition

(2) of Theorem 2.2.5. The condition (1) is clear from definition. The condition
(3) follows from Proposition 2.1.3. Then Theorem 2.2.5 shows that there exists
a unique extension ̂E (τ,−, x, x′)|M1

2 (Z)
. Moreover, Lemma 2.2.4 also implies that

E (τ,−, x, x′) coincides with the extension ̂E (τ,−, x, x′)|M1
2 (Z)

. Hence according to
Theorem 2.2.5, the extension ̂E (τ,−, x, x′)|M1

2 (Z)
must satisfy the cocycle relation

(2.10) for any σi.

2.2.2 Dimension 3

In this subsection, we prove the cocycle relation in dimension 3. The strategy is
similar to the case of dimension 2. We prove some special cases in Lemma 2.2.7 and
2.2.8. Then by using the extension theorem 2.2.9 to complete the proof.

Theorem 2.2.6. Let τ ∈ H and x, x′ ∈ C3. Let σ0, σ1, σ2, σ3 ∈ Z3
prim. For i =

0, 1, 2, 3, we denote Mi the matrix consists of σ0, σ1, σ2, σ3 which omits σi. Then we
have the following cocycle relation:

3∑
i=0

(−1)iE (τ,Mi, x, x
′) = 0. (2.27)

Proof. By using the same argument as for Theorem 2.2.3, we only need to check the
following 2 special cases and the extension Theorem 2.2.9.

Lemma 2.2.7. Let σ0 = (1, 0, 0)t, σ1 = (0, 1, 0)t, σ2 = (d, e, 0)t, σ3 = (a, b, c)t with
0 ≤ d < e, 0 ≤ a, b < c and 1 < e ≤ c. Let x, x′ ∈ C3. Then we have the following
cocycle relation

3∑
i=0

(−1)iE (τ,Mi, x, x
′) = 0.

Proof. We note that det(M3) = 0, hence E (τ,M3, x, x
′) = 0. By the definition,

E (τ,M2, x, x
′) gives

∑
z3∈Λ/cΛ

K(τ, x1, x
′
1 −

a

c
(x′3 + z3))K(τ, x2, x

′
2 −

b

c
(x′3 + z3))K(τ, x3,

1

c
(x′3 + z3))e(x3y3),

where we write z3 = y3τ + y′3. For fixed z3 ∈ Λ/cΛ, we denote x′′1 = x′1 − a
c (x

′
3 + z3)
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and x′′2 = x′2 − a
c (x

′
3 + z3). We observe that

E (τ,M2, x, x
′) =

∑
z3∈Λ/cΛ

E
(
τ,M ′

2, (x1, x2), (x
′′
1, x

′′
2)
t
)
K(τ, x3,

1

c
(x′3 + z3))e(x3y3)

where M ′
2 =

(
1 0

0 1

)
. Similarly, we have

E (τ,M1, x, x
′) =

∑
z3∈Λ/cΛ

E
(
τ,M ′

1, (x1, x2), (x
′′
1, x

′′
2)
t
)
K(τ, x3,

1

c
(x′3 + z3))e(x3y3),

E (τ,M1, x, x
′) =

∑
z3∈Λ/cΛ

E
(
τ,M ′

0, (x1, x2), (x
′′
1, x

′′
2)
t
)
K(τ, x3,

1

c
(x′3 + z3))e(x3y3),

where M ′
1 =

(
1 d

0 e

)
and M ′

0 =

(
0 d

1 e

)
. Hence by applying the Theorem 2.2.3 to

M ′
0,M

′
1,M

′
2, we complete the proof.

Lemma 2.2.8. Let σ0 = (1, 0, 0)t, σ1 = (0, 1, 0)t, σ2 = (0, 0, 1)t, σ3 = (a, b, c)t with
0 ≤ a, b < c. Let x, x′ ∈ C3. Then we have the following cocycle relation

3∑
i=0

(−1)iE (τ,Mi, x, x
′) = 0.

Proof. The proof is very similar to Lemma 2.2.7. So we omit the details.

To complete the proof of Theorem 2.2.6, we need the following extension theorem.
In the case of dimension 2, we prove the extension theorem by induction on the maxi-
mum value of the determinant of 3 matrices |det(σ0, σ1)|, |det(σ1, σ2)|, |det(σ0, σ2)|.
However, in dimension 3, such induction becomes combinatorially difficult. Inspired
by the method of Bykovskii [Byk03], we modify the proof by induction on the
determinant of the first matrix | det(σ0, σ1, σ2)|. To simplify the notation, for any
function F on M3(Z), we denote

∂F (σ0, σ1, σ2, σ3) = F (σ0, σ1, σ2)− F (σ0, σ1, σ3) + F (σ0, σ2, σ3)− F (σ1, σ2, σ3).

Theorem 2.2.9. Denote M1
3 (Z) = {γ ∈ M3(Z) | det(γ) = 0 or 1}. Let L be a left

SL3(Z)-module. Let Φ :M1
3 (Z) → L be a map satisfies the following conditions:
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1. Φ(σ) = 0 if det(σ) = 0,

2. For all (a, b, c) = (1, 0, 0), (0,−1, 0), (1,−1, 0), (1, 0, 1), (0,−1, 1), (1,−1, 1),
we have

∂Φ

1 0 0 a

0 1 0 b

0 0 1 c

 = 0, (2.28)

3. Φ(gσ) = gΦ(σ) for any g ∈ SL3(Z) and σ ∈M1
3 (Z).

Then there exists a unique extension Φ̂ of Φ to M3(Z) such that the following con-
ditions are satisfied:

(i) Φ̂|M1
3 (Z)

= Φ,

(ii) ∂Φ̂(σ0, σ1, σ2, σ3) = 0 for any non-zero vectors σ0, σ1, σ2, σ3 ∈ Z3;

(iii) Φ̂(gσ) = gΦ̂(σ) for any g ∈ SL3(Z) and σ ∈M3(Z).

Proof. The idea of this theorem is similar to the case of dimension 2. We reduce
to the case of Hermite normal form by the condition (3). First of all, we define the
extension Φ̂ by induction on the determinant of matrix. Let σ = (σij) ∈M3(Z), we
first assume that all the columns of σ are primitive. If det(σ) > 0, then there exist
a unique g ∈ SL3(Z) such that

σ = g

1 d a

0 e b

0 0 c

 ,

with 0 ≤ d < e, 0 ≤ a, b < c and 1 ≤ e ≤ c. If e = 1, we define Φ̂ by

Φ̂(σ) = g · Φ̂

1 0 0

0 1 0

0 0 1

+ g · Φ̂

1 0 a

0 0 b

0 1 c

− g · Φ̂

0 0 a

1 0 b

0 1 c

 .

If e > 1, we define it by

Φ̂(σ) = g · Φ̂

0 d a

1 e b

0 0 c

+ g · Φ̂

1 0 a

0 1 b

0 0 c

 .

We note that the determinants of the two matrices on the right hind side are strictly
less than det(σ), hence they are well-defined by induction assumption. If det(σ) < 0,
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then let Φ̂(σ) = Φ̂(σ′) where σ′ is obtained by exchanging the first and second column
of σ.

If some columns of σ are not primitive, we write σ = (σ1, σ2, σ3), and define Φ̂

by
Φ̂(σ) = Φ̂(σ1/ gcd(σ1), σ2/ gcd(σ2), σ3/ gcd(σ3)), (2.29)

where gcd(σi) is the gcd of each elements of σi.
The conditions (i) and (iii) are straight from definition. Now we check the

condition (ii). In the following, we always assume that σi is primitive due to the
equation (2.29).

Lemma 2.2.10. Let σ0, . . . , σ4 ∈ Z3
prim. For any function F on M3(Z), if

∂F (σ0, . . . , σ̂i, . . . , σ4) = 0

for all i = 1, 2, 3, 4, then ∂F (σ1, σ2, σ3, σ4) = 0.

Proof. We can check it by direct calculation, so we omit the proof.

Lemma 2.2.11. Let e1 = (1, 0, 0)t, e2 = (0, 1, 0)t, e3 = (0, 0, 1)t, σ0 = (a, b, c)t ∈
Z3
prim, then we have

∂Φ̂(e1, e2, e3, σ0) = 0. (2.30)

Proof. We prove it by induction on k = max{|a|, |b|, |c|}. When k = 1, then a, b, c =
0 or ±1. We show that the equation (2.30) holds for σ0 = (1, 1, 1)t. The other cases
can be deduced in the same way.

Multiplying by

1 0 0

0 0 1

0 −1 0

 on the left hand side of equation (2.28) for (a, b, c) =

(1,−1, 1), we have

Φ̂

1 0 0

0 0 1

0 −1 0

− Φ̂

1 0 1

0 0 1

0 −1 1

+ Φ̂

1 0 1

0 1 1

0 0 1

− Φ̂

 0 0 1

0 1 1

−1 0 1

 = 0. (2.31)

Multiplying by the same matrix on the left hand side of equation (2.28) for (a, b, c) =
(0,−1, 0), we have

Φ̂

1 0 0

0 0 1

0 −1 0

+ Φ̂

1 0 0

0 1 0

0 0 1

 = 0. (2.32)
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Similarly, we can prove that

Φ̂

1 0 1

0 0 1

0 1 1

 = Φ̂

1 0 1

0 0 1

0 −1 1

 , Φ̂

 0 0 1

0 1 1

−1 0 1

 = Φ̂

0 0 1

1 0 1

0 1 1

 . (2.33)

Combining the equations (2.31), (2.32), (2.33), we complete the proof of equation
(2.30) for (a, b, c) = (1, 1, 1).

Now we consider the case k > 1. Without loss of generality, we assume that c is
positive and maximal. Then by multiplying a suitable matrix on the left, we only
need to prove

∂Φ̂(e1, e2, e
′
3, σ

′
0) = 0,

where σ′0 = (a′, b′, c) with 0 ≤ a′, b′ < c, e′3 = (ϵ1, ϵ2, 1) with ϵ1 = a′−a
c , ϵ2 = b′−b

c .

Note that ϵ1, ϵ2 = 0 or ±1. Hence by the condition (2), we have ∂Φ̂(e1, e2, e′3, e3) = 0.
By the definition of Ψ̂, we have ∂Φ̂(e1, e2, e3, σ′0) = 0. We note that 0 ≤ a′, b′ < c,
then by the induction assumption, we have

∂Φ̂(e1, e3, e
′
3, σ

′
0) = ∂Φ̂(e2, e3, e

′
3, σ

′
0) = 0.

This completes the proof.

Now we back to the theorem. We will prove it by induction on the determinant
of d = | det(σ0, σ1, σ2)|.

If d = 0, if rank(σ0, σ1, σ2) = 1, it is clear that ∂Φ̂(σ0, σ1, σ2, σ3) = 0 since every
term is 0.

If rank(σ0, σ1, σ2) = 2, by multiplying a suitable element in GL3(Z), we may
assume that 0 ≤ a, b < c. We fix such σ3 = (a, b, c)t and introduce a new cocycle by

Ψσ3

(
a11 a12

a21 a22

)
:= Ψ̂

a11 a12 a

a21 a22 b

0 0 c

 . (2.34)

Here we assume that

(
a11 a12

a21 a22

)
∈M1

2 (Z), We see that Ψσ3 satisfies the 3 conditions

of Theorem 2.2.5. In fact, we only need to check the condition (2), by introducing
e3, then we can deduce it from Lemma 2.2.10 and Lemma 2.2.11. Hence according
to Theorem 2.2.5, it has a unique extension Ψ̂σ3 . Moreover, in the construction of
the extension, it coincides with the definition of Ψ̂. Hence (2.34) can be extended
to all matrix in M2(Z). Then ∂Φ̂(σ0, σ1, σ2, σ3) = 0 follows from Theorem 2.2.5.
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If d = 1, then it follows from Lemma 2.2.11.
Now for d > 1, by the Hermite normal form, we only need to consider the

case σ0 = e1, σ1 = (a12, a22, 0)
t, σ2 = (a13, a23, a33)

t with 0 ≤ a12 < a22 and 0 ≤
a13, a23 < a33. We introduce an auxiliary vector ei, here i = 3 if a22 = 1 and i = 2

if a22 6= 1. Then by definition, we see that ∂Φ̂(σ0, σ1, σ2, ei) = 0. By the induction
assumption, we have

∂Φ̂(σ0, σ1, ei, σ3) = ∂Φ̂(σ0, eiσ2, σ3) = ∂Φ̂(ei, σ1, σ2, σ3) = 0.

Thus by Lemma 2.2.10, we have ∂Φ̂(σ0, σ1, σ2, σ3) = 0. This completes the proof.

Remark 2.2.12. These two extension theorems remain true for GL2(Z) and GL3(Z)
if we assume L is a GL3(Z)-module, and modify the condition (2) in Theorem 2.2.9

to ∂Φ

1 0 0 a

0 1 0 b

0 0 1 c

 = 0 for all a, b, c ∈ {0,±1} and (a, b, c) 6= (0, 0, 0) and assume

the condition (3) holds for all g ∈ GL3(Z). The case of dimension 2 is similar.

At last, we want to state the general cocycle relation of E . Charollois [Cha1]
proved it by taking the summation of trigonometric cocycle introduced by Sczech
(see [CS16]).

Theorem 2.2.13. Let τ ∈ H and x, x′ ∈ CN . Let ZNprim be the set of primitive
vectors in ZN . Then for any σ0, σ1, . . . , σN in ZNprim, we have

N∑
i=0

(−1)iE (τ, (σ0, . . . , σ̂i, . . . , σN ), x, x
′) = 0. (2.35)
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Chapter

3
Hecke Operators

In this chapter, we will introduce the action of two kinds of Hecke operators
Tm and Tm on the elliptic cocycle E (τ, σ, x, x′) which was defined in Chapter 2.
The operator Tm corresponds to the action of GL2(Z) on the parameter τ . Such
operator is very similar to the classical Hecke operator on modular forms. The
operator Tm corresponds to the action of GLN (Z) on the parameter σ. The idea
to introduce such Hecke operators stems from the recent paper [BCG20], where
Bergeron-Charollois-Garcia considered a differential form Eψ that realizes an Eisen-
stein theta correspondence for the dual pair (GLN ; GL2). One can find more details
in [BCG20][section 13]. The main result of this chapter is a precise relation between
the Hecke operators Tm and Tm stated in Theorem 3.3.23. To prove the relation,
we will define a function fL,C1,C2(τ, x, x

′) associated to a certain lattice L and cone
C. Such function is very similar to the toric modular form defined by Borisov and
Gunnells in [BG01]. Borisov and Gunnells proved the stability of the vector space
of toric modular forms under the action of the Hecke operator Tm. We use a similar
method to prove the relation between these two Hecke operators on fL,C1,C2(τ, x, x

′)

in Theorem 3.3.16 and Theorem 3.3.21. Finally, we generalize this relation to the
elliptic cocycle E .

3.1 The operators Tm and Tm

We give the definition of the first kind of Hecke operator.

Definition 3.1.1. Let m,N be two positive integers. Fix two vectors x, x′ ∈ CN .
Then we define Tm by

TmE (τ, σ, x, x′) = mN−1
∑
a,d>0
ad=m

1

dN

d−1∑
b=0

E

(
aτ + b

d
, σ, ax, ax′

)
. (3.1)
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In particular, if p is a prime number, then the Hecke operator Tp is given by

TpE (τ, σ, x, x′) =
1

p

p−1∑
b=0

E

(
τ + b

p
, σ, x, x′

)
+ pN−1E (pτ, σ, px, px′). (3.2)

Proposition 3.1.2. Let k ≥ 2 be a positive integer and p be a prime number, then
for any x, x′ ∈ CN and σ ∈MN (Z), we have the formula:

TpkE (τ, σ, x, x′) = TpTpk−1E (τ, σ, x, x′)− pN−1Tpk−2E (τ, σ, px, px′).

Proof. By definition,

TpTpk−1E (τ, σ, x, x′) = Tp

k−1∑
t=0

pk−1−t−1∑
b=0

p(k−1)(N−1)

pN(k−1−t) E

(
ptτ + b

pk−1−t , σ, p
tx, ptx′

)
=
k−1∑
t=0

pk−1−t−1∑
b=0

p−1∑
r=0

p(k−1)(N−1)

pN(k−1−t)+1
E

(
ptτ + pk−1−tr + b

pk−t
, σ, ptx, ptx′

)

+
k−1∑
t=0

pk−1−t−1∑
b=0

pk(N−1)

pN(k−1−t)E

(
ptτ + b

pk−2−t , σ, p
t+1x, pt+1x′

)
.

For the first summation, we note that as r, b run through Z/pZ and Z/pk−1−tZ
respectively, pk−1−tr + b runs through Z/pk−tZ, hence the first summation gives

k−1∑
t=0

pk−t−1∑
b=0

p(k−1)(N−1)

pN(k−1−t)+1
E

(
ptτ + b

pk−t
, σ, ptx, ptx′

)
.

As for the second summation, if t 6= k − 1, then we write b = pk−2−tb1 + b2 where
b1 ∈ Z/pZ and b2 ∈ Z/pk−2−tZ. We note that E (τ, σ, x, x′) is Z-periodic in τ , hence
the second summation gives

k−2∑
t=0

pk−2−t−1∑
b2=0

pk(N−1)+1

pN(k−1−t) E

(
ptτ + b2
pk−2−t , σ, p

t+1x, pt+1x′
)
+ pk(N−1)E (pkτ, σ, pkx, pkx′).

We observe that this equals to

pN−1Tpk−2E (τ, σ, px, px′) + pk(N−1)E (pkτ, σ, pkx, pkx′).

42



3.1. THE OPERATORS TM AND TM

Combining all the calculation, we see that

TpTpk−1E (τ, σ, x, x′)

=
k−1∑
t=0

pk−t−1∑
b=0

p(k−1)(N−1)

pN(k−1−t)+1
E

(
ptτ + b

pk−t
, σ, ptx, ptx′

)
+ pk(N−1)E (pkτ, σ, pkx, pkx′)

+ pN−1Tpk−2E (τ, σ, px, px′)

=TpkE (τ, σ, x, x′) + pN−1Tpk−2E (τ, σ, px, px′).

The second kind of Hecke operator can be defined in more general setting. To
do that, we introduce some concepts:

Definition 3.1.3. Let A be a GLN (Q)-module. Let P(A) be the set of functions

r : ZN\0× · · · × ZN\0 → A

(σ1, · · · , σN ) 7→ r{σ1, · · · , σN}
(3.3)

satisfying the conditions

1. r{σ1, · · · , σN} = 0 if det(σ1, · · · , σN ) = 0,

2.
∑N

j=0(−1)jr{σ0, · · · , σ̂j , · · · , σN} = 0 for all σ0, · · · , σN ∈ ZN\0.

An element of P(A) is said to be homogeneous if for all g ∈ SLN (Z) and σ1, · · · , σN ∈
ZN\0, we have

r{gσ1, · · · , gσN} = g · (r{σ1, · · · , σN}). (3.4)

Let Ph(A) be the subset of homogeneous elements of P(A).

Definition 3.1.4. Let m be a positive integer. Then we can define the second kind
of Hecke operator on Ph(A) by:

Tmr{σ1, · · · , σN} =
∑

γ∈ΓN (m)

γ ·
(
r{mγ−1σ1, · · · ,mγ−1σN}

)
, (3.5)

where ΓN (m) is a finite set of representatives of MN (m)/ SLN (Z) and

MN (m) = {γ ∈MN (Z) | det(γ) = m}.

Lemma 3.1.5. The operator Tm is well-defined, i.e. it doesn’t depend on choice of
the set of representatives and it maps Ph(A) to Ph(A).
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Proof. Let γ′ = γgγ for some gγ ∈ SLN (Z). Then the homogeneous property of r
gives ∑

γ′∈ΓN (m)

γ′ ·
(
r{mγ′−1σ1, · · · ,mγ′−1σN}

)
=

∑
γ∈ΓN (m)

γgγ ·
(
r{mg−1

γ γ−1σ1, · · · ,mg−1
γ γ−1σN}

)
=

∑
γ∈ΓN (m)

γ ·
(
r{mγ−1σ1, · · · ,mγ−1σN}

)
.

(3.6)

This shows that the definition of Tm doesn’t depend on the choice of the set of
representativs. The cocycle property of Tmr can be checked directly:

N∑
j=0

Tmr{σ0, · · · , σ̂j , · · · , σN}

=
∑

γ∈ΓN (m)

N∑
j=0

γ · (r{mγ−1σ0, · · · , m̂γ−1σj , · · · ,mγ−1σN})

=0.

(3.7)

As for the homogeneous property, let g ∈ SLN (Z), then

Tmr{gσ1, · · · , gσN}

=
∑

γ∈ΓN (m)

γ ·
(
r{mγ−1gσ1, · · · ,mγ−1gσN}

)
=

∑
γ∈ΓN (m)

γ ·
(
r{mg(g−1γg)−1σ1, · · · ,mg(g−1γg)−1σN}

)
=

∑
γ∈ΓN (m)

g(g−1γg) ·
(
r{m(g−1γg)−1σ1, · · · ,m(g−1γg)−1σN}

)
=g · (Tmr{σ1, · · · , σN}).

(3.8)

The last equality holds since {g−1γg | γ ∈ ΓN (m)} is again a set of representatives
of ΓN (m). This completes the proof.

Proposition 3.1.6. Let m,n be two positive integers with no common factor. Then
we have

Tmn = TnTm.

In particular, Tm commutes with Tn.

Proof. By definition, it is enough to prove that ΓN (mn) = ΓN (m)ΓN (n). We note
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that we can choose the following representatives of ΓN (n):
a11 0 0 · · · 0

a21 a22 0 · · · 0
...

...
...

...
...

aN1 aN2 aN3 · · · aNN


where n = a11a22 · · · aNN and 0 ≤ aji < ajj for all 1 ≤ i < j ≤ N . It is easy to see
that the cardinal of ΓN (n) equals to∑

a22a
2
33 · · · aN−1

NN , (3.9)

where the sum is over all the sequences a11, a22, · · · , aNN such that

a11a22 · · · aNN = n. (3.10)

Hence if m,n have no common factor, then

|ΓN (mn)| = |ΓN (m)||ΓN (n)|. (3.11)

On the other hand, we consider the map

ϕ : ΓN (m)× ΓN (n) → ΓN (mn)

(γ, γ′) 7→ γγ′

We check that this map is injective. In fact, if γ1γ′1 = γ2γ
′
2g for some γi ∈ ΓN (m),

γ′i ∈ ΓN (n) and g ∈ SLN (Z), then we claim that

γ−1
2 γ1 = γ′2gγ

′−1
1 ∈ SLN (Z).

It is clear that γ′2gγ
′−1
1 ∈ SLN (Q). If some of the entries of γ′2gγ

′−1
1 doesn’t belong to

Z, the denominator must divides n. However, the denominators of entries of γ−1
2 γ1

divide m and gcd(m,n) = 1. Hence this forces that γ′2gγ
′−1
1 ∈ SLN (Z). This means

γ1 and γ2 belong to the same class. Hence γ1 = γ2 since we have already fixed a set
of representatives. So γ′1 and γ′2 also belong to the same class. This implies the map
ϕ is injective. But the cardinal of both sides of ϕ are the same, so ϕ is a bijection.
This proves that Tmn = TmTn.

Remark 3.1.7. The discussion in Chapter 2 shows that E (−, σ,−,−) belongs to
Ph(F(H×CN ×CN )) where F(H×CN ×CN ) is the set of meromorphic functions
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on H× CN × CN equipped with the action of GLN (Q) defined by

g · f(τ, x, x′) = f(τ, xg, det(g)g−1x′), (3.12)

where g ∈ GLN (Q) and f(τ, x, x′) ∈ F(H × CN × CN ). We note that instead of
writing N columns, we write a matrix σ in E (τ, σ, x, x′). Then the action of Tm on
E (τ, σ, x, x′) is given by

TmE (τ, σ, x, x′) =
∑

γ∈ΓN (m)

E (τ,mγ−1σ, xγ,mγ−1x′). (3.13)

So far, these two Hecke operators are well-defined on E (τ, σ, x, x′). The following
proposition shows the commutation of Tm and Tn on E (τ, σ, x, x′).

Proposition 3.1.8. Let m,n be two positive integers. Fix τ ∈ H, σ ∈ MN (Z) and
x, x′ ∈ CN . Then we have

TnTmE (τ, σ, x, x′) = TmTnE (τ, σ, x, x′). (3.14)

Proof. By the Definition 3.1.1 and the equation (3.13), we have

Tn(TmE )(τ, σ, x, x′) =
∑

γ∈ΓN (n)

TmE (τ, nγ−1σ, xγ, nγ−1x′)

=
∑

γ∈ΓN (n)

∑
a,d>0
ad=m

mN−1

dN
E

(
aτ + b

d
, nγ−1σ, axγ, anγ−1x′

)

=
∑
a,d>0
ad=m

mN−1

dN
TnE

(
aτ + b

d
, σ, ax, ax′

)
=Tm(TnE )(τ, σ, x, x′).

(3.15)

This completes the proof.

The Hecke operator Tm also shares a similar property as in Proposition 3.1.6.

Proposition 3.1.9. Let m,n be two positive integers with no common factor. Fix
τ ∈ H, σ ∈MN (Z) and x, x′ ∈ CN . Then we have

TmnE (τ, σ, x, x′) = TmTnE (τ, σ, x, x′) = TnTmE (τ, σ, x, x′). (3.16)
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Proof. Similar to the proof of Proposition 3.1.6, we have the following bijection:{(
a b

0 d

) ∣∣∣∣ ad = m, a, d > 0, b (mod d)

}
×

{(
a′ b′

0 d′

) ∣∣∣∣ a′d′ = n, a′, d′ > 0, b′ (mod d′)

}

→

{(
a′′ b′′

0 d′′

) ∣∣∣∣ a′′d′′ = mn, a′′, d′′ > 0, b′′ (mod d′′)

}
.

(3.17)

Hence by the Definition 3.1.1, we have

TmTnE (τ, σ, x, x′) =
∑
a,d>0
ad=m

d−1∑
b=0

mN−1

dN
TnE

(
aτ + b

d
, σ, ax, ax′

)

=
∑
a,d>0
ad=m

d−1∑
b=0

mN−1

dN

∑
a′,d′>0
a′d′=n

d′−1∑
b′=0

(n)N−1

dNd′N
E

(
aa′τ + a′b+ b′d

dd′
, σ, aa′x, aa′x′

)

=
∑

a′′,d′′>0
a′′d′′=mn

d′′−1∑
b′′=0

(mn)N−1

d′′N
E

(
a′′τ + b′′

d′′
, σ, a′′x, a′′x′

)

=TmnE (τ, σ, x, x′).

(3.18)

This completes the proof.

3.2 Dimension 1

In this section, we discuss the case of dimension 1. The case of dimension 1 is
much easier since all the results can be deduced from trigomometric summation. In
this case, the cocycle reduced to the Kronecker theta function. Similar to the Defi-
nition 3.1.1, we can define the Hecke operator Tm on the Kronecker theta function
by

TmK(τ, x0, x
′
0) =

∑
a,d>0
ad=m

1

d

d−1∑
b=0

K
(
aτ + b

d
, ax0, ax

′
0

)
. (3.19)

Theorem 3.2.1. Let p be a prime number, x0, x′0 ∈ C. Then we have

TpK(τ, x0, x
′
0) = K(τ, x0, px

′
0) +K(τ, px0, x

′
0). (3.20)

Proof. In fact, by using the Fourier expansion (1.2) of Kronecker function, we have
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1

2pπi

p∑
r=1

K
(
τ + r

p
, x0, x

′
0

)
= 1− 1

1− e(x0)
− 1

1− e(x′0)

− 1

p

p∑
r=1

∑
m,n≥1

e
(
mn

τ + r

p

)(
e(nx0 +mx′0)− e(−nx0 −mx′0)

)
=1− 1

1− e(x0)
− 1

1− e(x′0)
−
∑

m,n≥1
p|mn

q
mn
p
(
e(nx0 +mx′0)− e(−nx0 −mx′0)

)
.

We divide the summation into three parts:∑
m,n≥1
p|mn

q
mn
p
(
e(nx0 +mx′0)− e(−nx0 −mx′0)

)
=
∑
p|m

+
∑
p|n

−
∑

p|m,p|n

q
mn
p
(
e(nx0 +mx′0)− e(−nx0 −mx′0)

)
.

This gives the formula (3.20).

Theorem 3.2.2. Let m be a positive integer and x0, x′0 ∈ C, then we have

TmK(τ, x0, x
′
0) =

∑
d|m

K
(
τ, dx0,

m

d
x′0

)
. (3.21)

Proof. We first consider the case m = pk where p is a prime number and k is a
positive integer. We prove it by induction on k. When k = 1, this follows from
Theorem 3.2.1.

Now we assume that k > 1. By definition, we have

TpkK(τ, x0, x
′
0) =

1

pk

pk−1∑
b=0

K
(
τ + b

pk
, x0, x

′
0

)
+

∑
a′d=pk−1

a′,d>0

1

d

d−1∑
b=0

K
(
a′pτ + b

d
, a′px0, a

′px′0

)

=
1

pk

pk−1∑
b=0

K
(
τ + b

pk
, x0, x

′
0

)
+ Tpk−1K(pτ, px0, px

′
0).

By the induction assumption, the second term equals to

k−1∑
j=0

K(pτ, pj+1x0, p
k−jx′0).
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So we consider the first summation next:

1

pk

pk−1∑
b=0

K
(
τ + b

pk
, x0, x

′
0

)
= 1− 1

1− e(x0)
− 1

1− e(x′0)
−
∑
m,n

pk|mn

q
mn

pk e(nx0 +mx′0)

=1− 1

1− e(x0)
− 1

1− e(x′0)
∑

p-m,pk|n

q
mn

pk e(nx0 +mx′0) +
∑
m,n

pk−1|mn

q
mn

pk−1 e(nx0 +mpx′0)

=K(τ, pkx0, x
′
0)−K(pτ, pkx0, px

′
0) + 1− 1

1− e(x0)
− 1

1− e(px′0)

+
∑
m,n

pk−1|mn

q
mn

pk−1 e(nx0 +mpx′0)

= · · · =
k∑
j=0

K(τ, pjx0, p
k−jx′0)−

k−1∑
j=0

K(pτ, pj+1x0, p
k−jx′0).

This proves the formula (3.21) for m = pk. For the general case, the same argument
as the Proposition 3.1.9 shows that

T
p
k1
1 ···pkss

= T
p
k1
1

· · ·T
pkss
, (3.22)

where p1, · · · , ps are different primes. Combining the result above, we complete the
proof.

3.3 Dimension N

In this section, we will consider the case of dimension N . Inspired by the case of
dimension 1, we consider the Fourier expansion of the elliptic cocycle E . Since the
elliptic cocycle E is a product of N times Kronecker theta function, by expanding
the product, we see that it consists of the series:∑

m∈S1
n∈S2

qm·ne(x · n+m · x′) (3.23)

where the summation over certain subsets S1, S2 ⊂ ZN . Before giving the precise
definition, we present some basic concepts.
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3.3.1 Preliminary

The first concept we need is the lattice in N -dimensional Euclidean space where
we follows the standard reference [Cas71].

Definition 3.3.1. A discrete subset L of RN is called a lattice of rank N if it is the
Z-span of N vectors v1, . . . , vN which are linear independent over R.

Definition 3.3.2. Let L be a lattice in RN . A subset L′ ⊂ L is called a sublattice
of L when it is a subgroup of L of finite index. We denote the index of L′ in L by
[L : L′].

In this chapter, we will need to know how many sublattices there are with fixed
index. In fact, we establish the following formula:

Lemma 3.3.3. Let L be a lattice of rank N . Let p be a prime number and k ≥ 0

be an integer. Then the number of sublattices of L of index pk is

H(N, pk) :=

k∏
j=1

pN+j−1 − 1

pj − 1
. (3.24)

Proof. We first translate the question into counting the number of certain matrices.
In fact, every sublattice L′ of L of index pk corresponds to a matrix of the form

M =


pa1 0 . . . 0

b21 pa2 . . . 0
...

...
...

bN1 bN2 . . . paN


where 0 ≤ b21 < pa2 , . . . , 0 ≤ bN1, . . . , bN,N−1 < paN and a1+ · · ·+aN = k. To count
this number, we deduce a recursion formula for H(N, pk). If N = 1, it is not hard
to see that H(1, pk) = 1 for any k. If N ≥ 2, then for each aN ≤ k, bN1, . . . , bN,N−1

have paN choices. The number of submatrices
pa1 0 . . . 0

b21 pa2 . . . 0
...

...
...

bN−1,1 bN−12 . . . paN−1


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is exactly H(N − 1, pk−aN ). Hence we have the formula

H(N, pk) =
k∑
l=0

pl(N−1)H(N − 1, pk−l). (3.25)

Then for k ≥ 1, we have

H(N, pk) =H(N − 1, pk) + pN−1
k−1∑
l=0

pl(N−1)H(N − 1, k − 1− l)

=H(N − 1, pk) + pN−1H(N, pk−1).

(3.26)

Moreover if k = 0, then for any N ≥ 1, we have

H(N, 1) = H(N − 1, 1) = · · · = H(1, 1) = 1.

We observe that H(N, pk) is totally uniquely determined by the recursion formula
(3.26) and the value H(N, 1) and H(1, pk). On the other hand, if we denote the right
hand side of (3.24) by F (N, pk). It is easy to check that F (1, pk) = 1 for all k ≥ 0

and F (N, 1) = 1 for all N ≥ 1. Moreover, it satisfies the same recursion formula

F (N − 1, pk) + pN−1F (N, pk−1) =
k∏
j=1

pN+j−2 − 1

pj − 1
+ pN−1

k−1∏
j=1

pN+j−1 − 1

pj − 1

=

(
pN−1 − 1

pN+k−1 − 1
+ pN−1 pk − 1

pN+k−1 − 1

) k∏
j=1

pN+j−1 − 1

pj − 1

=F (N, pk).

Hence F (N, pk) must coincide with H(N, pk). This completes the proof.

Remark 3.3.4. We also have a formula for arbitrary index. Let d be a positive
integer with prime factorization d = pr11 . . . prss . Then the number of sublattices of L
of index d is

H(N, d) :=
s∏
i=1

ri∏
j=1

pN+j−1
i − 1

pji − 1
. (3.27)

We can use the similar method of Proposition 3.1.6 to prove that

H(N,mn) = H(N,m)H(N,n),

51



CHAPTER 3. HECKE OPERATORS

where gcd(m,n) = 1.

Lemma 3.3.5. Let L be a lattice of rank N . Let p be a prime number and j ≤ k

be two non-negative integers. Let ν be a vector contained in pjL but not contained
in pj+1L. Then the number of sublattices of L of index pk which contain ν is

j∑
l=0

pl(N−1)H(N − 1, pk−l).

Proof. Since ν is contained in pjL but not contained in pj+1L, by multiplying a
suitable element in SLN (Z), we may assume that ν = (0, . . . , 0, apj)t with p - a.
With the same idea as the lemma above, it is equivalent to count the number of
matrices

M =


pa1 0 . . . 0

b21 pa2 . . . 0
...

...
...

bN1 bN2 . . . paN


such that bij (mod pai) and (0, . . . , 0, apj)t ∈ MZN . It is easy to see that the
condition (0, . . . , 0, apj)t ∈ MZN is equivalent to aN ≤ j. For each aN ≤ j, the
(bN1, . . . , bN,N−1) has p(N−1)aN choices, and we have H(N − 1, pk−aN ) choices for
the upper-left submatrix. Hence the number of matrices M equals to

j∑
l=0

pl(N−1)H(N − 1, pk−l).

Beyond the lattice L, we also need its dual L∗ given by

Definition 3.3.6.

L∗ = {x ∈ (RN )∗ |x · y ∈ Z for all y ∈ L}.

Remark 3.3.7. In this thesis, we always fix a basis v1, . . . , vN of L such that L =

v1Z+ · · ·+ vNZ. We write y ∈ L as a N × 1 matrix under this basis.

The next concept we need is that of a cone. We follow the standard reference
[Ful93].
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Definition 3.3.8. A cone is a closed subset of RN of the form

C =

{
s∑
i=1

rivi | ri ∈ R≥0, i = 1, · · · , s

}
,

where v1, . . . , vs are fixed vectors in RN . We call s the rank of the cone C. The
vectors v1, . . . , vs are called the generators of the cone C. Moreover, given a lattice
L in RN , if the generators are belonging to L, then we call C rational cone with
respect to L.

As the dual lattice, to each cone, we associate a dual cone given by

C∗ = {x ∈ (RN )∗ |x · y ≥ 0 for all y ∈ C}.

Here the meaning of x · y is the same as what in dual lattice.
It is easy to check that C∗ is a cone. Moreover, if C is a rational cone with

respect to lattice L, then C∗ is a rational cone with respect to L∗.

Definition 3.3.9. Let C be a cone, and let x ∈ C∗, then the intersection of C and
the hyperplane

{y ∈ C |x · y = 0}

is called a face of C.

We state some properties of cone and its faces; one can also find them in
[Ful93][section 1.2]:

Proposition 3.3.10. Let C be a cone, then

1. C is a face of itself.

2. Every face F of C is a cone.

3. Every intersection of faces of C is a face of C.

4. Every face of a face is a face.

Definition 3.3.11. The relative interior of a cone C is the topological interior of
the cone C in the space R · C generated by C. We denote it by C◦.

3.3.2 Relation between Tp and Tp

In this subsection, we will give a relation between Tp and Tp. The main part of
the proof is inspired by Borisov-Gunnells [BG01]. They proved the Hecke stability
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of the space of toric modular form under Tp. They also proved a kind of Hecke
equivariance for products of two Eisenstein series. We further introduce the Hecke
operator Tp for GLN (Z) and then deduce the Hecke equivariance for the products of
N Eisenstein series in the next chapter. To do this, we first give a precise definition
of the series (3.23).

Definition 3.3.12. Let L be a lattice in RN and C a rational cone respect to L

generated by N linearly independent vectors. Let C1 be a face of C∗ and C2 be
a face of C. Let S = {x ∈ CN | Im(x · n) > 0 for all n ∈ L ∩ C − {0}} and
S′ = {x′ ∈ CN | Im(m · x′) > 0 for all m ∈ L∗ ∩C∗ −{0}}. Then for any x ∈ S and
x′ ∈ S′, we define the following series:

fL,C1,C2(τ, x, x
′) =

∑
m∈L∗∩C◦

1
n∈L∩C◦

2

qm·ne(x · n+m · x′). (3.28)

Lemma 3.3.13. The series (3.28) is absolutely convergent for all x ∈ S and x′ ∈ S′.

Proof. By assumption, we can choose linearly independent generators v1, . . . , vN and
their duals v∗1, . . . , v∗N such that

L ∩ C = v1Z≥0 + · · ·+ vNZ≥0,

and
L∗ ∩ C∗ = v∗1Z≥0 + · · ·+ v∗NZ≥0.

We write x = (x1, . . . , xN ) and x′ = (x′1, . . . , x
′
N ) under these bases respectively.

Then x ∈ S and x′ ∈ S′ means that Im(xi), Im(x′i) > 0 for all i = 1, . . . , N . Hence

∣∣∣∣ ∑
m∈L∗∩C◦

1
n∈L∩C◦

2

qm·ne(x · n+m · x′)
∣∣∣∣ < N∏

i=1

∑
mi,ni>0

|e(xi)|ni |e(x′i)|mi . (3.29)

So the series (3.28) is absolutely convergent.

Example 3.3.14. Suppose L = Z, C = R≥0. Then L∗ = Z and C∗ = R≥0. If we
take C1 = C∗ and C2 = C, then we have

fL,C1,C2(τ, x, x
′) =

∑
m,n>0

qmne(nx+mx′).

Example 3.3.15. Suppose L = Z2, C is generated by the vectors e1 = (1, 0)t and
e2 = (0, 1)t. Then L∗ and C∗ coincide with L and C respectively. If we take C1 = C∗
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and C2 = R>0e1, then we have

fL,C1,C2(τ, x, x
′) =

∑
m1,m2,n>0

qm1ne(nx1 +m1x
′
1 +m2x

′
2).

Similar to the case of E , we define the action of Hecke operator Tm on fL,C1,C2

by

TmfL,C1,C2(τ, x, x
′) = mN−1

∑
a,d>0
ad=m

1

dN

d−1∑
b=0

fL,C1,C2

(
aτ + b

d
, ax, ax′

)
.

Theorem 3.3.16. Let p be a prime number. Let L,C1, C2, x, x
′ be as in Definition

3.3.12. Then we have the following formula

TpfL,C1,C2(τ, x, x
′) =

∑
S

fS,C1,C2(τ, px, x
′)− pN−1 − p

p− 1
fL,C1,C2(τ, x, px

′), (3.30)

where S runs through the lattices such that L ⊂ S ⊂ 1
pL and [S : L] = pN−1.

Proof. We first calculate the left hand side of (3.30)

TpfL,C1,C2(τ, x, x
′)

=
1

p

p∑
r=1

∑
m∈L∗∩C◦

1
n∈L∩C◦

2

e
(
m · nτ + r

p
+ x · n+m · x′

)
+ pN−1fL,C1,C2(pτ, px, px

′)

=
∑

m∈L∗∩C◦
1

∑
n∈L∩C◦

2
p|m·n

q
m·n
p e(x · n+m · x′) + pN−1fL,C1,C2(pτ, px, px

′).

(3.31)

On the other hand, we calculate the first term of right hand side of (3.30)∑
S

fS,C1,C2(τ, px, x
′).

By definition, it equals to∑
S

∑
m∈L∗∩C◦

1
m·S⊂Z

∑′

n∈S∩C◦
2

qm·ne(px · n+m · x′).

By multiplying p and changing the variable, it becomes∑
R

∑
m∈L∗∩C◦

1
m·R⊂pZ

∑′

n∈R∩C◦
2

q
m·n
p e(x · n+m · x′), (3.32)
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where R runs through all sublattices of L of index p and contain pL.

For each m ∈ L∗, we consider the series:∑
R

m·R⊂pZ

∑′

n∈R∩C◦
2

q
m·n
p e(x · n+m · x′). (3.33)

If m /∈ pL∗, let Rm = {n ∈ L |m · n ≡ 0 (mod p)}. We note that Rm is a sublattice
of L of index p. In fact, the map:

L/Rm → Fp
n 7→ m · n (mod p)

is an isomorphism. It is easy to see that pL ⊂ Rm. Hence Rm is the only sublattice
that occurring in the summation. This means that the summation (3.33) equals to∑

n∈L∩C◦
2

p|m·n

q
m·n
p e(x · n+m · x′).

If m ∈ pL∗, then for any R, we always have m · R ⊂ pZ. If n ∈ pL ∩ C◦
2 , then

every R contains n, so such n occurs 1 + p + · · · + pN−1 times in the summation
(3.33). If n /∈ pL∩C◦

2 , then there exist 1+p+ · · ·+pN−2 R containing n, this means
(3.33) equals to

pN−1 − 1

p− 1

∑
n∈(L−pL)∩C◦

2

q
m·n
p e(x · n+m · x′) + pN − 1

p− 1

∑
n∈pL∩C◦

2

q
m·n
p e(x · n+m · x′)

=
pN−1 − 1

p− 1

∑
n∈L∩C◦

2

q
m·n
p e(x · n+m · x′) + pN−1

∑
n∈pL∩C◦

2

q
m·n
p e(x · n+m · x′)

=
pN−1 − 1

p− 1

∑
n∈L∩C◦

2

q
m·n
p e(x · n+m · x′) + pN−1

∑
n∈L∩C◦

2

qm·ne(px · n+m · x′).
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Combining the calculation above, we see that the series (3.32) equals to∑
m∈L∗∩C◦

1
m/∈pL∗

∑
n∈L∩C◦

2
p|m·n

q
m·n
p e(x · n+m · x′)

+
∑

m∈L∗∩C◦
1

m∈pL∗

pN−1 − 1

p− 1

∑
n∈L∩C◦

2

q
m·n
p e(x · n+m · x′) + pN−1

∑
n∈L∩C◦

2

qm·ne(px · n+m · x′)


=

∑
m∈L∗∩C◦

1

∑
n∈L∩C◦

2
p|m·n

q
m·n
p e(x · n+m · x′)

+
pN−1 − p

p− 1

∑
m∈L∗∩C◦

1
n∈L∩C◦

2

qm·ne(x · n+ pm · x′) + pN−1
∑

m∈L∗∩C◦
1

n∈L∩C◦
2

qpm·ne(px · n+ pm · x′).

Comparing with (3.31), we complete the proof.

As with the elliptic cocycle E (τ, σ, x, x′), we introduce a parameter σ ∈ MN (Z)
to fL,C1,C2 . We will mimic the equivalent definition introduced in Proposition 2.1.4
instead of the original definition of E .

Definition 3.3.17. Let σ ∈MN (Z). If D = det(σ) 6= 0,

fL,C1,C2(τ, σ, x, x
′) :=

sign(D)

|D|N
∑

z∈L∗/L∗Dσ−1

z′∈L/σL

fL,C1,C2

(
τ

|D|
,
(x+ z)σ

|D|
, σ−1(x′ + z′)

)
.

If D = 0,
fL,C1,C2(τ, σ, x, x

′) = 0.

Lemma 3.3.18. If det(σ) 6= 0, then we have

fL,C1,C2(τ, σ, x, x
′) = fσ−1L,C1,C2

(τ, xσ, σ−1x′).

Proof. We denote D = det(σ). First we note two summation formulas:

1

Dn−1

∑
z∈L∗/L∗Dσ−1

e
(zσn
D

)
=

1 if n ∈ Dσ−1L,

0 else,

and
1

D

∑
z′∈L/σL

e
(
mσ−1z′

)
=

1 if m ∈ L∗σ,

0 else.
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Then by definition and using the formulas above, we have

fL,C1,C2(τ, σ, x, x
′) =

1

DN

∑
z∈L∗/L∗Dσ−1

z′∈L/σL

∑
m∈L∗∩C◦

1
n∈L∩C◦

2

q
m·n
D e

(
(x+ z)σn

D
+mσ−1(x′ + z′)

)

=
∑

m∈L∗σ∩C◦
1

n∈Dσ−1L∩C◦
2

q
m·n
D e

(xσn
D

+mσ−1x′
)

=
∑

m∈L∗σ∩C◦
1

n∈σ−1L∩C◦
2

qm·ne(xσn+mσ−1x′)

=fσ−1L,C1,C2
(τ, xσ, σ−1x′).

Corollary 3.3.19. Let p be a prime number. Then we have

TpfL,C1,C2

(
τ, σ, x, x′

)
+
pN−1 − p

p− 1
fL,C1,C2(τ, σ, x, px

′)

=
∑

γ∈ΓN (p)

fL,C1,C2(τ, pγ
−1σ, xγ, pγ−1x′).

where the action of Tp on fL,C1,C2 (τ, σ, x, x
′) follows from fL,C1,C2 (τ, x, x

′) which is
given by

TpfL,C1,C2

(
τ, σ, x, x′

)
=

1

p

p−1∑
r=0

fL,C1,C2

(
r + τ

p
, σ, x, x′

)
+pN−1fL,C1,C2(pτ, σ, px, px

′).

Proof. We note that all the sublattices S of L/p of index p which contain L are
given by 1

pγL where γ ∈ ΓN (p). Hence by Theorem 3.3.16 and Lemma 3.3.18, we
have

TpfL,C1,C2(τ, σ, x, x
′) +

pN−1 − p

p− 1
fL,C1,C2(τ, σ, x, px

′)

=Tpfσ−1L,C1,C2
(τ, xσ, σ−1x′) +

pN−1 − p

p− 1
fσ−1L,C1,C2

(τ, xσ, pσ−1x′)

=
∑
S

fσ−1S,C1,C2
(τ, pxσ, σ−1x′)

=
∑

γ∈ΓN (p)

f 1
p
σ−1γL,C1,C2

(τ, pxσ, σ−1x′).

Moreover, we note that the entries of pγ−1 are integers, then we can apply the
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3.3. DIMENSION N

Lemma 3.3.18 to pγ−1σ again,∑
γ∈ΓN (p)

f 1
p
σ−1γL,C1,C2

(τ, pxσ, σ−1x′) =
∑

γ∈ΓN (p)

fL,C1,C2(τ, pγ
−1σ, xγ, pγ−1x′).

This proves the corollary.

Now we can give the relation between the Hecke operators Tp and Tp.

Theorem 3.3.20. Let p be a prime number. Fix two vectors x, x′ ∈ CN . Let
σ ∈MN (Z) be any matrix. Then we have

TpE (τ, σ, x, x′) = TpE (τ, σ, x, x′)− pN−1 − p

p− 1
E (τ, σ, x, px′). (3.34)

Proof. If det(σ) = 0, the result is trivial. Hence we only need to prove the case
det(σ) 6= 0. First we consider the case σ = Id. In this case,

E (τ, Id, x, x′) =

N∏
i=1

K(τ, xi, x
′
i).

We use the Fourier expansion (1.2) of the Kronecker theta function. Then E (τ, Id, x, x′)

gives

N∏
i=1

1− 1

1− e(xi)
− 1

1− e(x′i)
−
∑
m,n≥1

qmn
(
e(nxi +mx′i)− e(−nxi −mx′i)

) .

(3.35)
We note that the Fourier expansion of the Kronecker theta function K(τ, x0, x

′
0) con-

verges absolutely for |q| < |e(x0)|, |e(x′0)| < 1. Hence the equation (3.35) converges
absolutely in the domain |q| < |e(xi)|, |e(x′i)| < 1 for all i. Then we have

1− 1

1− e(xi)
− 1

1− e(x′i)
= −1−

∑
n≥1

e(nxi)−
∑
m≥1

e(mx′i).

Then the equation (3.35) gives

N∏
i=1

−

1 +
∑
n≥1

e(nxi) +
∑
m≥1

e(mx′i) +
∑
m,n≥1

qmn
(
e(nxi +mx′i)− e(−nxi −mx′i)

) .

(3.36)
Now we expand this product. Let I1, I2, I3, I4 be four subsets of {1, 2, . . . , N} which
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don’t intersect pairwise. if i /∈ I1 ∪ I2 ∪ I3 ∪ I4, then the term

1 +
∑
n≥1

e(nxi) +
∑
m≥1

e(mx′i) +
∑
m,n≥1

qmn
(
e(nxi +mx′i)− e(−nxi −mx′i)

)
(3.37)

contributes 1. If i ∈ I1, then the term (3.37) contributes
∑

n≥1 e(nxi). If i ∈ I2, then
the term (3.37) contributes

∑
m≥1 e(mx′i). If i ∈ I3, then the term (3.37) contributes∑

m,n≥1 q
mne(nxi + mx′i), and finally if i ∈ I4, then the term (3.37) contributes∑

m,n≥1−qmne(−nxi −mx′i). For each quadruple (I1, I2, I3, I4), we denote

fI1,I2,I3,I4(τ, x, x
′) =

∏
i1∈I1

∑
ni1

≥1

e(ni1xi1)
∏
i2∈I2

∑
mi2

≥1

e(mi2x
′
i2)∏

i3∈I3

∑
mi3

,ni3
≥1

qmi3
ni3e(ni3xi3 +mi3x

′
i3)
∏
i4∈I4

∑
mi4

,ni4
≥1

−qmi4
ni4e(−ni4xi4 −mi4x

′
i4)

(3.38)

Then we have

E (τ, Id, x, x′) = (−1)N
∑

I1,I2,I3,I4

fI1,I2,I3,I4(τ, x, x
′), (3.39)

where I1, I2, I3, I4 run through all the subsets of tand not intersect pairwise. Now we
want to apply the Corollory 3.3.19. So we set L = e1Z+ · · ·+ eNZ where e1, . . . , eN
is the standard basis of RN . Let e∗1, . . . , e∗N be the dual basis of e1, . . . , eN . Let

C =
⊕

i∈I1∪I2∪I3

eiR≥0 ⊕
⊕
i∈I4

eiR≤0. (3.40)

Then the dual cone of C is given by

C∗ =
⊕

i∈I1∪I2∪I3

e∗iR≥0 ⊕
⊕
i∈I4

e∗iR≤0. (3.41)

We denote

C1 =
⊕

i∈I2∪I3

e∗iR≥0 ⊕
⊕
i∈I4

e∗iR≤0, C2 =
⊕

i∈I1∪I3

eiR≥0 ⊕
⊕
i∈I4

eiR≤0, (3.42)

Then C1 is a face of C∗ and C2 is a face of C. Hence by Definition 3.3.12, we have

fZN ,C1,C2
(τ, x, x′) = (−1)|I4|fI1,I2,I3,I4(τ, x, x

′). (3.43)
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Combining with (3.39), we have

E (τ, Id, x, x′) =
∑

C,(C1,C2)

±fZN ,C1,C2
(τ, x, x′). (3.44)

Here the summation over the cone C determined by (3.40) and pairs (C1, C2) deter-
mined by (3.42). Now we consider any matrix σ with D = det(σ) 6= 0. We use the
equivalent definition in Proposition 2.1.4 of E :

E (τ, σ, x, x′) =
sign(D)

|D|N
∑

z∈ZN/ZN |D|σ−1

z′∈ZN/σZN

E

(
τ

|D|
, Id,

(x+ z)σ

|D|
, σ−1(x′ + z′)

)

=
sign(D)

|D|N
∑

z∈ZN/ZN |D|σ−1

z′∈ZN/σZN

∑
C,(C1,C2)

fZN ,C1,C2

(
τ

|D|
,
(x+ z)σ

|D|
, σ−1(x′ + z′)

)

=
∑

C,(C1,C2)

fZN ,C1,C2
(τ, σ, x, x′)

where the summation is over the same pairs (C1, C2) and C as in equation (3.44).
Thus the Theorem 3.3.20 follows from Corollary 3.3.19.

Finally, we have already established the identity (3.34) between meromorphic
functions on CN × CN on an open subset, hence it holds everywhere.

3.3.3 The general case

In this subsection, we will generalize the Theorem 3.3.20 to the relation between
Tm and Tm for any integer m. To start, we first consider the case of m = pk where
p is a prime number.

Theorem 3.3.21. Let p be a prime number and k be a positive integer, x ∈ S and
x′ ∈ S′ where S, S′ are defined in Definition 3.3.12. Let a(N, pt) be a family of
integers given by a(N, 1) = 1 and

a(N, pt) = H(N − 1, pt)−H(N − 1, pt−1) for t = 1, 2, . . . , (3.45)

where the number H(N, pt) is defined in the Lemma 3.3.3. Then we have the fol-
lowing formula

∑
S

fS,C1,C2(τ, p
kx, x′) =

k∑
t=0

a(N, pt)Tpk−tfL,C1,C2(τ, x, p
tx′), (3.46)
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where S runs through the lattices such that L ⊂ S ⊂ 1
pk
L and [S : L] = pk(N−1).

Proof. By definition, the left hand side of (3.46) equals to∑
m∈L∗∩C◦

1

∑
R

m·R⊂pkZ

∑
n∈R∩C◦

2

q
m·n
pk e(x · n+m · x′), (3.47)

where the summation over all lattices pkL ⊂ R ⊂ L with [L : R] = pk.

Let j be an integer with 0 ≤ j ≤ k. We consider the element m ∈ L∗ ∩ C◦
1

with m ∈ pjL∗, but m /∈ pj+1L∗. Here if j = k, then we don’t need the condition
m /∈ pj+1L∗. For such m we consider the following series:∑

R
m·R⊂pkZ

∑
n∈R∩C◦

2

q
m·n
pk e(x · n+m · x′). (3.48)

We consider the subset of L:

R(j)
m =

{
n ∈ L

∣∣∣ m · n
pj

≡ 0 (mod pk−j)

}
.

It is not hard to see that R(j)
m is a sublattice of L of index pk−j . We see that if

a sublattice R occurs in the series (3.48), then it must contained in R
(j)
m . Hence

only the sublattices of R(j)
m of index pj occurs in the summation (3.48). Let l be a

non-negative integer with 0 ≤ l ≤ j − 1, if n ∈ plR
(j)
m but n /∈ pl+1R

(j)
m , then by

Lemma 3.3.5, there exists
∑l

i=0 p
i(N−1)H(N − 1, pj−i) sublattices of R(j)

m of index
pj containing n. If n ∈ pjR

(j)
m , then all the sublattices of R(j)

m of index pj containing
n. Hence by Lemma 3.3.3, there exists H(N, pj) such sublattices. Thus the series
(3.48) equals

j∑
l=0

pl(N−1)H(N − 1, pj−l)
∑

n∈plR(j)
m ∩C◦

2

q
m·n
pk e(x · n+m · x′).

Combining the calculation above, we see that the series (3.47) equals

k−1∑
j=0

∑
pj ||m

j∑
l=0

∑
n∈plR(j)

m ∩C◦
2

pl(N−1)H(N − 1, pj−l)q
m·n
pk e(x · n+m · x′)

+
∑

m∈pkL∗∩C◦
1

k∑
l=0

∑
n∈plL∩C◦

2

pl(N−1)H(N − 1, pk−l)q
m·n
pk e(x · n+m · x′).

(3.49)
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Here the notation pj ||m means that m ∈ pjL∗ ∩ C◦
1 , but m /∈ pj+1L∗ ∩ C◦

1 .

We note that ∑
m∈pjL∗∩C◦

1

∑
n∈plR(j)

m ∩C◦
2

q
m·n
pk e(x · n+m · x′)

=
∑

m∈L∗∩C◦
1

∑
n∈L∩C◦

2
pk−j |m·n

q
m·n

pk−l−j e(plx · n+ pjm · x′).
(3.50)

To simplify the calculation, we denote the series (3.50) by b(l, j). Hence the
summation (3.49) equals to

k−1∑
j=0

j∑
l=0

pl(N−1)H(N − 1, pj−l) (b(l, j)− b(l, j + 1)) +

k∑
l=0

pl(N−1)H(N − 1, pk−l)b(l, k)

=
k∑
l=0

pl(N−1)b(l, l) +
k∑
j=1

j−1∑
l=0

pl(N−1)
(
H(N − 1, pj−l)−H(N − 1, pj−1−l)

)
b(l, j).

By taking t = j − l, it gives

k∑
l=0

pl(N−1)b(l, l)+

k∑
t=1

k−t∑
l=0

pl(N−1)
(
H(N − 1, pt)−H(N − 1, pt−1)

)
b(l, l+t). (3.51)

On the other hand, we consider the Hecke operator Tpk−t . By definition, we have

Tpk−tfL,C1,C2(τ, x, p
tx′)

=p(k−t)(N−1)
k−t∑
l=0

1

pN(k−t−l)

pk−t−l−1∑
b=0

fL,C1,C2

(
plτ + b

pk−t−l
, plx, pl+tx′

)

=
∑

m∈L∗∩C◦
1

n∈L∩C◦
2

k−t∑
l=0

plN

pk−t

pk−j−1∑
b=0

e
(
m · np

lτ + b

pk−t−l
+ plx · n+ pl+tm · x′

)

=
k∑
j=0

pl(N−1)
∑

m∈L∗∩C◦
1

∑
n∈L∩C◦

2
pk−t−l|m·n

q
m·n

pk−t−2l e(plx · n+ pl+tm · x′).

Hence the summation (3.51) equals to

TpkfL,C1,C2(τ, x, x
′) +

k∑
t=1

(H(N − 1, pt)−H(N − 1, pt−1))Tpk−tfL,C1,C2(τ, x, p
tx′).
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This completes the proof.

Theorem 3.3.22. Let k be a positive integer and p be a prime number. Then for
any x, x′ ∈ CN and σ ∈MN (Z), we have the formula:

TpkE (τ, σ, x, x′) =
k∑
t=0

a(N, pt)Tpk−tE (τ, σ, x, ptx′).

where a(N, pt) is the same as the Theorem 3.3.21.

Proof. Similar to Theorem 3.3.20.

Now we are able to give the general relation between the Hecke operators Tm
and Tm.

Theorem 3.3.23. Let m be a positive integer with the prime factorization m =

pk11 · · · pkss . Then for any x, x′ ∈ CN and σ ∈MN (Z), we have the formula:

TmE (τ, σ, x, x′) =
∑
d|m

A(N, d)Tm
d
E (τ, σ, x, dx′),

where d = p
k′1
1 · · · pk

′
s
s ,

A(N, d) =

s∏
i=1

a(N, p
k′i
i ), (3.52)

and a(N, pt) is given in the Theorem 3.3.21.

Proof. By Proposition 3.1.6, and applying Theorem 3.3.22 to T
pkss

we have

TmE (τ, σ, x, x′) =

ks∑
ts=0

T
p
k1
1

· · ·T
p
ks−1
s−1

a(N, pts)T
pks−ts
s

E (τ, σ, x, ptss x
′). (3.53)

By Proposition 3.1.8, the Hecke operator Tm commutes with Tn. Hence (3.53) equals
to

TmE (τ, σ, x, x′) =

ks∑
ts=0

a(N, pts)T
pks−ts
s

T
p
k1
1

· · ·T
p
ks−1
s−1

E (τ, σ, x, ptss x
′). (3.54)

Repeating this process s− 1 times, we obtain

TmE (τ, σ, x, x′) =

k1∑
t1=0

· · ·
ks∑
ts=0

a(N, ptss )Tpks−ts
s

· · · a(N, pt1s )Tpk1−t1
1

E (τ, σ, x, pt11 · · · ptss x′)

(3.55)
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At last, by applying Proposition 3.1.9, we have

TmE (τ, σ, x, x′)

=

k1∑
t1=0

· · ·
ks∑
ts=0

a(N, pt11 ) · · · a(N, p
ts
s )Tpk1−t1

1 ···pks−ts
s

E (τ, σ, x, pt11 · · · ptss x′)

=
∑
d|m

A(N, d)Tm
d
E (τ, σ, x, dx′).

(3.56)

This completes the proof.

Corollary 3.3.24. If N = 2, then for any positive integer m, the two Hecke opera-
tors Tm and Tm coincide on E (τ, σ, x, x′), i.e.

TmE (τ, σ, x, x′) = TmE (τ, σ, x, x′).

Proof. In fact, we note that for any positive integer l,

H(1, l) = 1.

Hence for any integer k ≥ 1 and prime number p, we have a(2, pk) = 0. Hence
the definition (3.52) of A(N, d) shows that A(2, d) = 0 for any d > 1. Then this
corollary follows directly from Theorem 3.3.23.
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Chapter

4
Eisenstein Cocycle

We recall that Corollary 1.4.9 gives relation of Eisenstein series:

E1(x1)E1(x2) + E1(x1)E1(−x1 − x2) + E1(−x1 − x2)E1(x2)

=E2(x1) + E2(x2) + E2(−x1 − x2),
(4.1)

where x1, x2 ∈ C\(Z + τZ) and x1 + x2 /∈ Z + τZ. In section 4.1, we will see that
this relation is an instance of a 1-cocycle relation for GL2(Q) valued in functions on
C2 × C2 as shown in Example 4.1.4. We will generalize this relation to an (N − 1)-
cocycle relation for GLN (Q) valued in functions on CN ×CN in Theorem 4.1.2. Our
goal in section 4.1 is to define a cocycle which only depends on one variable in CN .
We do it by two steps. First we specialize the elliptic cocycle E defined in Chapter
2 at x = 0 as given in Theorem 4.1.2. Then following [CD14], we do the smoothing
at prime number ℓ to get rid of the parameter x as shown in Theorem 4.1.6.

In section 4.2, we first recall the Sczech’s cocycle on the Bianchi group, and
then we do the same smoothing process for such Sczech’s cocycle. As an aside, we
compare in Theorem 4.2.3 the smoothed Eisenstein cocycle to the Sczech cocycle on
the Bianchi group.

In section 4.3, we study the algebraicity of the Eisenstein cocycle Ψ(N), the
smoothed Eisenstein cocycle Ψ

(N)
ℓ and the elliptic cocycle E at the CM points.

At last, we will construct a variant E of the elliptic cocycle E which consists of
the Eisenstein-Kronecker function defined in Chapter 1. Such cocycle only depends
on the lattice in C instead of the generators. We will prove a relation between the
Hecke operator Tm and Tm for E in Theorem 4.4.6.

4.1 The smoothed Eisenstein cocycle Ψ
(N)
ℓ

In this section, we introduce the Eisenstein cocycle which consists of the product
of Eisenstein series which was defined in Chapter 1. We want to deduce a new cocycle
valued in functions depending only on x′ by specializing the elliptic cocycle E of
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Chapter 2 at x = 0. To do that, we consider the Laurent expansion of E (τ, σ, xT, x′)

in T and take the constant term to be our Eisenstein cocycle Ψ(N). The exact
definition is given in 4.1.1. However, because of the pole at x = 0, the result still
depends rationally on x, see the equation (4.2). Following [CD14][Section 2], we
introduce the concept of smoothed cocycle. It enables us to eliminate the dependence
on x and simultaneously cancel the term of Eisenstein series of higher weight.

4.1.1 Definition of the Eisenstein cocycle Ψ(N)

Definition 4.1.1. Let A = (A1, . . . , AN ) ∈ GLN (Q)N . We denote σ(A) = (σj)

where σj is the product of a certain integer λ and first column of Aj such that σj
is a primitive vector in ZN . Let x, x′ ∈ CN such that the components of xσ(A) are
non-zero. Then we define the Eisenstein cocycle by:

If det(σ(A)) 6= 0,

Ψ(N)(A)(τ, x, x′) =
1

det(σ(A))

∑
z′∈σ(A)−1ΛN/ΛN

(
E1

(
w′
1 + z′1

)
. . . E1

(
w′
N + z′N

)
+
N−1∑
m=1

∑
si,ki

∏
s∈{si}◦

w−1
s

m∏
i=1

(−wsi)ki−1Eki(w
′
si + z′si)

)
,

(4.2)

where w = xσ(A), w′ = σ(A)−1x′, the summation over all subsets {s1, . . . , sm} ⊂
{1, 2, . . . , N} and non-negative integers ki such that

∑
ki = N , and {si}◦ denote the

set {1, . . . , N}\{s1, . . . , sm}. Here to simplify the formula, we take E0(x) = 1 for all
x. Furthermore, we need to assume that all the components w′

i + z′i /∈ Λ = Z+ τZ.
If det(σ(A)) = 0,

Ψ(N)(A)(τ, x, x′) = 0. (4.3)

Now we define an action of GLN (Q) on Ψ(N). Let g0 ∈ GLN (Q), we choose the
smallest integer λ such that g = λg0 ∈MN (Z). Then we define

(g0 ·Ψ(N))(A)(τ, x, x′) =
1

det(g)

∑
z,z′∈ZN/gZN

Ψ(N)(A)
(
τ, xg, g−1(x′ + zτ + z′)

)
.

(4.4)

Theorem 4.1.2. The Eisenstein cocycle Ψ(N) is a homogeneous (N−1)-cocycle for
GLN (Q) valued in the vector space F(CN × CN ) of functions on CN × CN :

Ψ(N) ∈ HN−1(GLN (Q),F(CN × CN )). (4.5)
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Proof. We begin with the elliptic cocycle E (τ, σ(A), xT, x′). Here we multiple x by
an independent element T . We write x′ = α+ βτ where α, β ∈ RN . Then

e(x · βT )E (τ, σ(A), xT, x′)

=
1

det(σ(A))

∑
y,y′∈ZN/σ(A)ZN

e(x · (β + y)T )K (τ, xσ(A)T, σ(A)−1(x′ + yτ + y′))

=
1

det(σ(A))

∑
z,z′∈σ(A)−1ZN/ZN

e(w · (β′ + z)T )K (τ, wt, w′ + zτ + z′)),

(4.6)

where w = xσ(A), w′ = σ(A)−1x′, β′ = σ(A)−1β. Now we use the Laurant expan-
sion (1.29) of Kronecker theta function, we see that e(x ·βT )E (τ, σ(A), xT, x′) gives

1

det(σ(A))

∑
z,z′∈σ(A)−1ZN/ZN

N∏
i=1

 1

wit
+
∑
k≥0

(−wi)kEk+1(w
′
i + z′i)T

k

 . (4.7)

Expanding the product and taking the constant term, we get the Eisenstein cocycle
Ψ(N).

When N = 2, the Eisenstein cocycle Ψ(2) has a simpler formula. In this case,
we consider the inhomogeneous cocycle, i.e. we always assume A1 = Id and A2 ∈
GL2(Q).

Corollary 4.1.3. Let A =

(
a0 b0

c0 d0

)
∈ GL2(Q), and (a, c)t be a primitive vector

in Z2 which is a scalar of (a0, c0)t. Let x, x′ ∈ C2 such that x1, ax1 + cx2 6= 0 and
x′2, cx

′
1 − ax′2 /∈ Λ. Then if c 6= 0,

Ψ(2)(A)(τ, x, x′) =
1

c

∑
r∈Λ/cΛ

E1

(
cx′1 − ax′2 − ar

c

)
E1

(
x′2 + r

c

)
− x1
c(ax1 + cx2)

E2(cx
′
1 − ax′2)−

ax1 + cx2
cx1

E2(x
′
2),

(4.8)

if c = 0,
Ψ(2)(A)(τ, x, x′) = 0. (4.9)

Proof. We only need to consider the case of c 6= 0. We take

σ =

(
1 a

0 c

)
.
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Then by the Theorem 4.1.2, we have

Ψ(2)(A)(τ, x, x′) =
1

detσ

∑
z′∈σ−1Λ2/Λ2

(
E1(w

′
1 + z′1)E1(w

′
2 + z′2)

− w1

w2
E2(w

′
1 + z′1)−

w2

w1
E2(w

′
2 + z′2)

)
.

(4.10)

Now we take {(−ar/c, r/c)t | r ∈ Λ/cΛ} to be the set of representatives of (σ−1Λ2/Λ2).
Moreover, we note that gcd(a, c) = 1, hence −ar runs through the set of represen-
tatives of Λ/cΛ as r runs through the set of representatives of Λ/cΛ. Then by the
distribution relation of E2, the last two terms of (4.10) equal to

∑
r∈Λ/cΛ

x1
c(ax1 + cx2)

E2

(
cx′1 − ax′2 − ar

c

)
+

∑
r∈Λ/cΛ

ax1 + cx2
cx1

E2

(
x′2 + r

c

)
=

x1
c(ax1 + cx2)

E2(cx
′
1 − ax′2) +

ax1 + cx2
cx1

E2(x
′
2).

(4.11)

This completes the proof.

Example 4.1.4. We will show how to recover the equation (4.1) from our Eisenstein
cocycle Ψ(2). Let

A1 =

(
1 0

0 1

)
, A2 =

(
0 −1

1 1

)
, A3 =

(
−1 −1

1 0

)
.

Then σ((A1, A2)) =

(
1 0

0 1

)
and by Definition 4.1.1, we have

Ψ(2)(A1, A2)(τ, x, x
′) = E1(x

′
1)E1(x

′
2)−

x1
x2
E2(x

′
1)−

x2
x1
E2(x

′
2). (4.12)

Similarly, we have

Ψ(2)(A1, A3)(τ, x, x
′) = E1(x

′
1 + x′2)E1(x

′
2)−

x1
x2 − x1

E2(x
′
1 + x′2)−

x2 − x1
x1

E2(x
′
2),

Ψ(2)(A2, A3)(τ, x, x
′) = E1(x

′
1+x

′
2)E1(−x′1)−

x2
x2 − x1

E2(x
′
1+x

′
2)−

x2 − x1
x2

E2(−x′1).

Hence the cocycle relation

Ψ(2)(A1, A2)(τ, x, x
′)−Ψ(2)(A1, A3)(τ, x, x

′) + Ψ(2)(A2, A3)(τ, x, x
′) = 0,
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gives

E1(x
′
1)E1(x

′
2)− E1(x

′
1 + x′2)E1(x

′
2)− E1(x

′
1 + x′2)E1(x

′
1)

=E2(x
′
1) + E2(x

′
2) + E2(x

′
1 + x′2).

(4.13)

This is exactly the equation (4.1). Here we note that Ek(x) = (−1)kEk(−x).

If we carry Definition 3.1.1 of the Hecke operator to the Hecke operator on Ψ(N),
then we can deduce the following result from Theorem 3.3.23:

Corollary 4.1.5. Let m be a positive integer, then for any σ ∈MN (Z) and x, x′ ∈
CN satisfying the conditions in Definition 4.1.1, we have∑

γ∈ΓN (m)

Ψ(N)(mγ−1A)(τ, xγ,mγ−1x′) =
∑
d|m

A(N, d)Tm
d
Ψ(N)(A)(τ, x, x′), (4.14)

where A(N, d) is the same as in Theorem 3.3.23.

4.1.2 The smoothed Eisenstein cocycle Ψ
(N)
ℓ

In this subsection, we will smooth the cocycle Ψ(N) at a prime ℓ which gives a
new cocycle Ψ

(N)
ℓ defined on a certain congruence subgroup.

Let ℓ be a prime number and let Z(ℓ) = Z[1/p, p 6= ℓ] be the localization of Z at
the prime ideal (ℓ). Let Γℓ denote the congruence subgroup

Γℓ := Γ0(ℓZ(ℓ)) =

A ∈ SLN (Z(ℓ)) |A ≡


∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗

 (mod ℓ)

 . (4.15)

Let πℓ be the following diagonal matrix

πℓ =


ℓ

1
. . .

1

 . (4.16)

For A = (A1, . . . , AN ) ∈ ΓNℓ , we define

A′ = πℓAπ−1
ℓ = (πℓA1π

−1
ℓ , . . . , πℓANπ

−1
ℓ ) ∈ GLN (Z(ℓ))

N . (4.17)
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It is easy to see that ℓπ−1
ℓ σ(A′) = σ(A).

Now we define the smoothed cocycle Ψ
(N)
ℓ of Ψ(N):

Ψ
(N)
ℓ (A)(τ, x, x′) = Ψ(N)(A′)(τ, ℓxπ−1

ℓ , πℓx
′)− ℓΨ(N)(A)(τ, x, x′). (4.18)

The following theorem shows that the smoothed Eisenstein cocycle is in fact
independent of x.

Theorem 4.1.6. The cocycle Ψ
(N)
ℓ is a linear combination of the product of N

Eisenstein series and independent of x. Thus we will omit the variable x later.
More precisely, if det(σ(A)) 6= 0, we have

Ψ
(N)
ℓ (A)(τ, x′) =

1

det(σ(A′))

∑
z′∈σ(A′)−1ΛN/ΛN

E1

(
ℓw′

1 − z′1
)
. . . E1

(
ℓw′

N + z′N
)

− 1

det(σ(A′))

∑
z∈σ(A)−1ΛN/ΛN

E1

(
w′
1 − z1

)
. . . E1

(
w′
N + zN

)
,

(4.19)

where w′ = σ(A)−1x′.

Proof. By multiplying a suitable matrix in SLN (Z), we may assume that the first
column of σ(A) is (1, 0, . . . , 0)t. We write

σ(A) =

(
1 a
0 M(A)

)
,

where a = (a2, . . . , aN ) and M(A) ∈ MN−1(Z). Then M(A) = ℓM(A′). We only
need to consider the case of det(M(A)) 6= 0 below.

We fix a set of representatives {z′ = (z′2, . . . , z
′
N )

t} of M(A′)−1ΛN−1/ΛN−1 and
a set of representative {r = (r2, . . . , rN )

t} of ΛN−1/ℓΛN−1, then {r+z′
ℓ } gives a set of

representatives of M(A)−1ΛN−1/ΛN−1. Moreover, if we put z′1 = a ·z′ and r1 = a ·r,
then

{(z1, z2, . . . , zN )t},

and {(
z1 + r1
ℓ

, . . . ,
zN + rN

ℓ

)t}
,

give the sets of representatives of σ(A′)−1ΛN/ΛN and σ(A)−1ΛN/ΛN respectively.
To prove this theorem, we want to find the cancellation between the terms of

Ψ(N)(A′)(τ, ℓxπ−1
ℓ , πℓx

′) and of ℓΨ(N)(A)(τ, x, x′). We consider the following term
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which occurs in Ψ(N)(A)(τ, x, x′)

1

det(σ(A))

∑
z′∈σ(A′)−1ΛN/ΛN

r∈ΛN/ℓπ−1
ℓ

ΛN

∏
s∈{si}◦

w−1
s

m∏
i=1∑
ki=N

wki−1
si Eki

(
w′
si +

z′si + rsi
ℓ

)
, (4.20)

wherem < N . We want to cancel the corresponding term in Ψ(N)(A′)(τ, ℓxπ−1
ℓ , πℓx

′).

If si 6= 1 for all i, then by applying the distribution relation of Eisenstein series
to each Eki , the term (4.20) equals to

1

ℓdet(σ(A′))

∑
z′∈σ(A′)−1ΛN/ΛN

∏
s∈{si}◦

w−1
s

m∏
i=1∑
ki=N

wki−1
si Eki

(
ℓw′

si + z′si
)
. (4.21)

If si = 1 for some i, we assume s1 = 1. Since m < N , there exists an integer
2 ≤ s ≤ N such that s 6= si for all i. Since ℓ - aj for all j, we fix all other ki and
apply the distribution relation to Ek1

(
w′
1 +

z′1+r1
ℓ

)
. It gives

∑
rk∈Λ/ℓΛ

Ek1

(
w′
1 +

z′1 + r1
ℓ

)
= ℓ2−k1Ek1

ℓw′
1 + z′1 +

∑
j ̸=s

ajrj

 = ℓ2−k1Ek1(ℓw
′
1+z

′
1).

(4.22)
The second equality holds since the Eisenstein series is Z-periodic. Then we can
apply distribution relation to other ki separably, which also gives

1

ℓdet(σ(A′))

∑
z′∈σ(A′)−1ΛN/ΛN

∏
s∈{si}◦

w−1
s

m∏
i=1∑
ki=N

wki−1
si Eki

(
ℓw′

si + z′si
)
. (4.23)

On the other hand, by definition, ℓxπℓσ(A′)−1 = x and σ(A′)−1πℓx
′ = ℓσ(A)x′ =

ℓw′. Hence we have

Ψ(N)(A′)(τ, ℓxπ−1
ℓ , πℓx

′) =
1

det(σ(A′))

∑
z′∈σ(A′)−1ΛN/ΛN

(
E1(ℓw

′
1 + z′1) . . . E1(ℓw

′
N + z′N )

+

N−1∑
m=1

∑
si,ki

∏
s∈{si}◦

w−1
s

m∏
i=1

wki−1
si Eki(ℓw

′
si + z′si)

)
.

(4.24)

By comparing the terms of higher weight, we see that they are cancelled. This proves
the theorem.
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Let m be an integer coprime to ℓ. By taking the following set of representatives of
ΓN (m), we can get a similar result of Theorem 3.3.23 for Ψ

(N)
ℓ : we denote ΓN (m, ℓ)

the set of matrices of the form
a11 0 · · · 0

ℓa21 a22 · · · 0
...

...
...

ℓaN1 aN2 · · · aNN

 ,

where
a11a22 . . . aNN = m,

and for all 1 ≤ j < i ≤ N ,
0 ≤ aij ≤ aii − 1.

Corollary 4.1.7. Let m be a positive integer coprime to ℓ. Then for any A ∈ ΓNℓ
and x′ ∈ CN satisfying the condition in Definition 4.1.1, we have∑

γ∈ΓN (m,ℓ)

Ψ
(N)
ℓ (mγ−1A)(τ,mγ−1x′) =

∑
d|m

A(N, d)Tm
d
Ψ

(N)
ℓ (A)(τ, x′) (4.25)

where A(N, d) is the same as in Theorem 3.3.23

Proof. By the definition, we have∑
γ∈ΓN (m,ℓ)

Ψ
(N)
ℓ (mγ−1A)(τ,mγ−1x′)

=
∑

γ∈ΓN (m,ℓ)

Ψ(N)(mπℓγ
−1Aπ−1

ℓ )(τ, ℓxγπ−1
ℓ ,mπℓγ

−1x′)− ℓΨ(N)(mγ−1A)(τ, xγ,mγ−1x′)

=
∑

γ∈ΓN (m)

Ψ(N)(mγ−1πℓAπ−1
ℓ )(τ, ℓxπ−1

ℓ γ,mγ−1πℓx
′)−

∑
γ∈ΓN (m,ℓ)

ℓΨ(N)(mγ−1A)(τ, xγ,mγ−1x′).

But we note that since m is coprime to ℓ, the set ΓN (m, ℓ) also gives a representative
of ΓN (m), hence by Corollary 4.1.5, the summation above equals to∑

d|m

A(N, d)Tm
d
Ψ(N)(πℓAπ−1

ℓ )(τ, ℓxπ−1
ℓ , πℓx

′)−
∑
d|m

A(N, d)Tm
d
ℓΨ(N)(A)(τ, x, x′)

=
∑
d|m

A(N, d)Tm
d
Ψ

(N)
ℓ (A)(τ, x, x′).

(4.26)

This completes the proof.
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4.2 Relation with Sczech’s cocycle on the Bianchi group

In this section, we will recall the Sczech’s cocycle on the Bianchi group and then
compare it with our Eisenstein cocycle.

4.2.1 Sczech’s cocycle on the Bianchi group

Let τ ∈ H such that F = Q(τ) is an imaginary quadratic field. Let Λ = Z+ τZ.
Let OΛ be a subring of C:

OΛ = {z ∈ C | zΛ ⊂ Λ}.

For any non-negative integer k, we denote

Gk(x) = Kk(x, 0, k; Λ), (4.27)

G(x) = K2(x, 0, 1; Λ), (4.28)

where Kk(x, x
′, s; Λ) is the Kronecker-Eisenstein function defined in Chapter 1. We

note that

G0(x) =

−1 x ∈ Λ,

0 x /∈ Λ.
. (4.29)

Definition 4.2.1. Let A =

(
a b

c d

)
∈ SL2(OΛ), and x ∈ C2. If c 6= 0, we define

ΨScz(A)(x) =
(a
c

)
G(x1) +

(
d

c

)
G(x∗1) +

a

c
G0(x1)G2(x2) +

d

c
G0(x

∗
1)G2(x

∗
2)

+
1

c

∑
r∈Λ/cΛ

G1

(
ar + ax1 + cx2

c

)
G1

(
r + x1
c

)
,

(4.30)

and if c = 0, we define

ΨScz(A)(x) =

(
b

d

)
G(x1) +

b

d
G0(x1)G2(x2), (4.31)

where x∗ = xA.

Sczech proved the theorem:
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Theorem 4.2.2. Ψ is a 1-cocycle, i.e. we have the cocycle relation:

ΨScz(AB)(x) = ΨScz(A)(x) + ΨScz(B)(xA). (4.32)

Proof. See [Ito87] or [Scz84].

4.2.2 Relation between the smoothed cocycles

We note that the cocycle Ψ(2)(A) only involve the first column of the matrix A
but with two parameters x and x′. ΨScz(A) involves all the entries of A but has
only one parameter. So there is little hope to have a relation directly between these
two cocycles. However, we have already seen that we can get rid of the parameter
x by smoothing the cocycle Ψ(2)(A) at the prime number ℓ. Moreover, if we do the
smoothing for the Sczech’s cocycle, we will get rid of the second column of A. We
are wondering there is a relation between these two smoothed cocycles. Now we are
going to do this.

Let Γℓ(OΛ) to be the congruence subgroup

Γℓ(OΛ) =

{
A ∈ SL2(OΛ)

∣∣∣A ≡

(
∗ ∗
0 ∗

)
(mod ℓ)

}
.

We define the smoothed Sczech’s cocycle on the Bianchi group in the same way. For
any A ∈ Γℓ(OΛ), let

ΨScz,ℓ(A)(x) = ΨScz(πℓAπ
−1
ℓ )(ℓxπ−1

ℓ )− ℓΨScz(A)(x). (4.33)

Moreover, if we assume that x1, ax1 + cx2 /∈ Λ, then G0(x1) = G0(ax1 + cx2) = 0.
Hence

ΨScz,ℓ

((
a b

0 d

))
(x) =

(
ℓb

d

)
G(x1)− ℓ

(
b

d

)
G(x1) = 0, (4.34)

and if c 6= 0,

ΨScz,ℓ

((
a b

c d

))
(x) =

ℓ

c

∑
z∈Λ/(c/ℓ)Λ

G1

(
ℓ(ar + ax1 + cx2)

c

)
G1

(
ℓ(r + x1)

c

)

−ℓ
c

∑
z∈Λ/cΛ

G1

(
ar + ax1 + cx2

c

)
G1

(
r + x1
c

)
.

(4.35)
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Let

Γ0(ℓ) =

{
A ∈ SL2(OΛ) |A ≡

(
∗ ∗
0 ∗

)
(mod ℓ)

}
.

With the help of the explicit expression of ΨScz,ℓ, by restricting A to the congruence
subgroup Γ0(ℓ), we have the following theorem:

Theorem 4.2.3. Let A =

(
a b

c d

)
∈ Γ0(ℓ). Then for any x1, x2 ∈ C with x1, ax1+

cx2 /∈ Λ, we have

Ψ
(2)
ℓ (A)((x1, x2)

t) = ΨScz,ℓ(A)((−x2, x1)). (4.36)

Proof. Note that by the functional equation (1.32), we have G1(x) = E1(x). Then
this theorem is clear by comparing the explicit expression (4.19) of Ψ(2)

ℓ and (4.34)

of ΨScz,ℓ.

This means that Ψ
(2)
ℓ (A)(x) can be extended to a cocycle for the group Γℓ(OΛ).

Then the natural question is can we extend the cocycle Ψ(N)
ℓ (A)(x) to a larger group?

And can we extend the cocycle Ψ(N)(A)(x, x′) to a larger group? By abusing the
notation, we denote

Γℓ(OΛ) =

A ∈ SLN (OΛ) |A ≡


∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗

 (mod ℓ)

 .

According to some numerical check, we can not extend the cocycle Ψ(N)(A)(x, x′)

to Γℓ(OΛ), even for N = 2. However, for the cocycle Ψ
(N)
ℓ (A)(x), the answer is not

clear yet.

4.3 Algebraicity

In this section, we study the algebraicity of the values of Ψ(N) and E at CM
points.

Let τ ∈ H such that F = Q(τ) is an imaginary quadratic field. We denote OF

the ring of integers of F . We take a basis (1, τ0) for OF with τ0 ∈ H. We associate
it a number

λ0 = 2π|η(τ0)|2,
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where η(τ0) is the Dedekind eta function given by

η(τ) = q
1
24

∞∏
n=1

(1− qn).

Then we recall a theorem which originally due to Damerell [Dam71]:

Theorem 4.3.1. Let τ be a CM point in H and F = Q(τ). Let k, b be two integers
such that 0 < b ≤ k. We denote Λ = Z+ Zτ . Then for any x0, x′0 ∈ F , the value

πk−bλ−k0 Kk(x0, x
′
0, b; Λ) (4.37)

is algebraic over Q. In particular, if we put k = b, then

λ−k0 Ek(x0) (4.38)

is algebraic over Q.

Proof. See [Weil76][Chapter VIII, §15].

Theorem 4.3.2. Let A ∈ GLN (Q)N , x ∈ Q̄N and x′ ∈ FN satisfying the condition
in Definition 4.1.1. Then we have

λ−N0 Ψ(N)(A)(τ, x, x′) ∈ Q̄. (4.39)

and
λ−N0 Ψ

(N)
ℓ (A)(τ, x′) ∈ Q̄. (4.40)

Proof. The Theorem 4.3.1 shows that

m∏
i=1

Eki(x
′
i) ∈ λN0 Q̄, (4.41)

where
∑m

i=1 ki = N . The Definition 4.1.1 shows that Ψ(N)(A)(τ, x, x′) is a linear
combination of the form (4.41) with coefficient in Q̄. This implies that

λ−N0 Ψ(N)(A)(τ, x, x′) ∈ Q̄. (4.42)

The Theorem 4.1.6 shows that Ψ
(N)
ℓ (A)(τ, x′) is a linear combination of the form

(4.41) with ki = 1 for all i. Hence we also have

λ−N0 Ψ
(N)
ℓ (A)(τ, x′) ∈ Q̄. (4.43)
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We know that the Eisenstein cocycle Ψ(N)(A)(τ, x, x′) is deduced from E (τ, σ, x, x′).
Hence we have a similar algebraicity property for the elliptic cocycle E (τ, σ, x, x′).

Theorem 4.3.3. Let σ ∈ MN (Z). Let x, x′ ∈ FN be two vectors such that at least
one of them belongs to QN . Assume E (τ, σ, x, x′) doesn’t have a pole at such x, x′,
then

λ−N0 E (τ, σ, x, x′) (4.44)

is algebraic over Q.

Proof. Let x0, x′0 ∈ F\Λ We note that by Lemma 1.3.1, if Im(x′0) /∈ Z, we have

K1(x0, x
′
0, 1; Λ) = e(x0β)K(τ, x0, x

′
0), (4.45)

where β = Im(x′0)/ Im(τ) ∈ Q. But the functions K1(x0, x
′
0, 1; Λ) and K(τ, x0, x

′
0)

are continuous away from the lattice points, hence the equation (4.45) holds for any
x′0 /∈ Λ. If x′0 is real, then e(x0β) = 1. If x0 is real, then e(x0β) is a root of unity
since β ∈ Q. Combining the Theorem 4.3.1, in both of the two cases, we see that

λ−1
0 K(τ, x0, x

′
0) (4.46)

is algebraic over Q. Then for any x, x′ ∈ FN and at least one of them belong to QN ,
the value

λN0 K (τ, x, x′) = λN0

N∏
i=1

K(τ, xi, x
′
i) (4.47)

is algebraic over Q. By using the equivalent definition of E in Proposition 2.1.4,
we see that E (τ, σ, x, x′) is a linear combination of multivariable Kronecker theta
function with coefficient in Q:

E (τ, σ, x, x′) =
sign(D)

|D|N
∑

z∈ZN/ZN |D|σ−1

z′∈ZN/σZN

K

(
τ

|D|
,
x+ z

|D|
σ, σ−1(x′ + z′)

)
. (4.48)

If x ∈ QN , then (x + z)σ ∈ QN for any z ∈ ZN/ZN det(σ)σ−1. If x′ ∈ QN , then
σ−1(x′ + z′) ∈ QN for any z ∈ ZN/σZN . Hence the value

λ−N0 E (τ, σ, x, x′)

is algebraic over Q.
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4.4 The cocycle E

In this section, we construct a new cocycle E from the Eisenstein-Kronecker
function. Such cocycle doesn’t depend on the choice of generators, it only depends
on the lattice Λ in C. We will prove some similar properties as the elliptic cocycle
E .

4.4.1 Definition

We first define the second kind of Kronecker theta function. Such Kronecker
theta function is the same as the Kronecker theta function K defined in Chapter 1
up to a factor when Λ = Z + Zτ . The advantage of this function is that it doesn’t
depend on the choice of the generators of the lattice Λ.

Definition 4.4.1. Let x0, x′0 ∈ C be two complex numbers, we define the second
kind of Kronecker theta function by

Θ(x0, x
′
0; Λ) = exp

(
x0x̄

′
0

A(Λ)

)
K1(x0, x

′
0, 1; Λ), (4.49)

where A(Λ) = Area(Λ)/π and Area(Λ) is the area of the fundamental domain of Λ.
Let y0, y′0 ∈ C, we define the translation Kronecker theta function by:

Θy0,y′0
(x0, x

′
0; Λ) := exp

(
−y0ȳ

′
0 + x0ȳ

′
0 + x′0ȳ0

A(Λ)

)
Θ(x0 + y0, x

′
0 + y′0; Λ). (4.50)

Definition 4.4.2. Let x, x′, y, y′ ∈ CN , and Λ be a lattice in C, then we define the
multivariable theta function by

Ty,y′(x, x
′; Λ) :=

N∏
i=1

Θyi,y′i
(xi, x

′
i; Λ). (4.51)

Let σ ∈MN (Z) with determinant D, if D 6= 0, we define

E(σ, x, x′; Λ) := 1

D

∑
y∈σ−1ΛN/ΛN

T0,y

(
xσ, σ−1x′; Λ

)
. (4.52)

If D = 0,
E(σ, x, x′; Λ) = 0. (4.53)

The cocycle relation of E is not obvious from the definition. To prove the cocycle
relation of E , we will give the relation between the two cocycles E and E first, and
then deduce the cocycle relation from E .
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Lemma 4.4.3. If Λ = Z⊕ τZ for some τ ∈ H, then the new cocycle coincides with
E up to a factor. More precisely, we have

E(σ, x, x′; Λ) = exp

(
xx′

A(Λ)

)
E (τ, σ, x, x′). (4.54)

Proof. We note that in the case Λ = Z ⊕ τZ, the relation between the Kronecker
function K and Θ is given in Lemma 1.3.1:

Θ(x, x′; Λ) = exp

(
xx′

A(Λ)

)
K(τ, x, x′). (4.55)

Hence for any z, z′ ∈ σ−1ZN/ZN and x, x′ ∈ CN , we have

T0,zτ+z′(x, x
′; Λ) =

N∏
i=1

Θ0,ziτ+z′i
(xi, x

′
i; Λ)

= exp

(
−x(zτ̄ + z′)

A(Λ)

)
exp

(
x(x′ + zτ + z′)

A(Λ)

)
K (τ, x, x′ + zτ + z′)

= exp

(
xx′

A(Λ)

)
e(xz)K (τ, x, x′ + zτ + z′).

(4.56)

Then by definition, we have

E(σ, x, x′; Λ) = 1

D

∑
y∈σ−1ΛN/ΛN

T0,y

(
xσ, σ−1x′; Λ

)
=

1

D

∑
z,z′∈σ−1ZN/ZN

T0,zτ+z′
(
xσ, σ−1x′; Λ

)
=

1

D

∑
z,z′∈σ−1ZN/ZN

exp

(
xx′

A(Λ)

)
e(xσz)K (τ, xσ, σ−1x′ + zτ + z′)

= exp

(
xx′

A(Λ)

)
E (τ, σ, x, x′).

(4.57)

This proves the lemma.

Lemma 4.4.4. Let u be a non-zero complex number, σ ∈ MN (Z) and x, x′ ∈ CN .
Let Λ be any lattice in C. Then we have

E(σ, ux, ux′;uΛ) = 1

uN
E(σ, x, x′; Λ). (4.58)

Proof. The proof is directly from definition. If det(σ) = 0, both of the two sides
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equal to 0. So we only need to consider the case of det(σ) 6= 0. We note that

A(uΛ) = |u|2A(Λ). (4.59)

Then for any λ, x′0 ∈ C, we have

ψuΛ(uλ, ux
′
0) = ψΛ(λ, x

′
0). (4.60)

Hence for any x0, x′0 ∈ C,

Ka(ux0, ux
′
0, s;uΛ) =

∑′

λ∈uΛ

(ux0 + λ̄)a

|ux0 + λ|2s
ψuΛ(λ, ux

′
0)

=
∑′

λ∈Λ

(ux0 + uλ)a

|ux0 + uλ|2s
ψuΛ(uλ, ux

′
0)

=
ūa

|u|2s
Ka(x0, x

′
0, s; Λ).

(4.61)

This implies that

Θuy0,uy′0
(ux0, ux

′
0;uΛ) =

1

u
Θy0,y′0

(x0, x
′
0; Λ). (4.62)

Hence

E(σ, ux, ux′;uΛ) = 1

D

∑
y∈σ−1(uΛ)N/(uΛ)N

T0,y

(
uxσ, uσ−1x′;uΛ

)
=

1

DuN

∑
y∈σ−1ΛN/ΛN

T0,y

(
xσ, σ−1x′; Λ

)
=

1

uN
E(σ, x, x′; Λ).

(4.63)

Theorem 4.4.5. Let σ0, σ1, . . . , σN ∈ Zprim. Then E satisfies the following cocycle
relation:

N∑
i=0

(−1)iE((σ0, . . . , σ̂i, · · · , σN ), x, x′; Λ) = 0. (4.64)

Proof. First we assume that Λ = Z⊕ τZ for some τ ∈ H. By Lemma 4.4.3, we have

E(σ, x, x′; Λ) = exp

(
xx′

A(Λ)

)
E (τ, σ, x, x′). (4.65)
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We note that the factor exp
(
xx′

A(Λ)

)
does not depend on σ, hence the cocycle property

of E follows from E .
In general, we choose generators u, v of Λ, i.e Λ = uZ⊕ vZ with Im

(
v
u

)
> 0. Let

τ = v
u , and we denote Λτ = Z⊕ τZ = 1

uΛ. Then by applying the Lemma 4.4.4, we
have

N∑
i=0

(−1)iE((σ0, . . . , σ̂i, · · · , σN ), x, x′; Λ)

=
1

uN

N∑
i=0

(−1)iE
(
(σ0, . . . , σ̂i, · · · , σN ),

x

u
,
x′

u
; Λτ

)
=0.

(4.66)

This completes the proof.

4.4.2 Hecke operators

Now we want to generalize Theorem 3.3.23 to the cocycle E . Similar to the
elliptic cocycle E , we can define the Hecke operator Tm by

TmE(σ, x, x′; Λ) =
∑

γ∈ΓN (m)

E(mγ−1σ, xγ,mγ−1x′; Λ). (4.67)

The Hecke operator Tm can be defined in a more symmetric way:

TmE(σ, x, x′; Λ) =
1

m

∑
Λ′

E(σ, x, x′; Λ′), (4.68)

where the Λ′ runs through all sublattices of 1
mΛ of index m that contain Λ.

Theorem 4.4.6. Let m be a positive integer and Λ be a lattice in C. Then for any
x, x′ ∈ CN and σ ∈MN (Z), we have

TmE(σ, x, x′; Λ) =
∑
d|m

A(N, d)Tm
d
E(σ, x, dx; Λ), (4.69)

where A(N, d) is the same in Theorem 3.3.23.

Proof. We first assume that Λ = Z ⊕ τZ for some τ ∈ H. Then we note that the
Hecke operator acting on E coincides with the Hecke operator acting on E up to a
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scalar. In fact, all the sublattices of 1
mΛ of index m that contain Λ are given by

Λ(a, b) :=
1

a
Z⊕ aτ + b

m
Z,

where a runs through all the factors of m and b = 0, 1, . . . , d− 1 with d = m
a . Then

by the definition of Hecke operator and Lemma 4.4.3, we have

TmE(σ, x, x′; Λ) =
1

m

∑
a|m

d−1∑
b=0

E(σ, x, x′; Λ(a, b))

=
1

m

∑
a|m

d−1∑
b=0

aN exp

(
a2xx′

A(aΛ(a, b))

)
E

(
aτ + b

d
, σ, ax, ax′

)

=exp

(
mxx′

A(Λ)

)
TmE (τ, σ, x, x′).

(4.70)

Here we note that A(aΛ(a, b)) = a
dA(Λ).

On the other hand, we apply Lemma 4.4.3 again,∑
γ∈ΓN (m)

E(mγ−1σ, xγ,mγ−1x′; Λ)

= exp

(
mxx′

A(Λ)

) ∑
γ∈ΓN (m)

E (τ,mγ−1σ, xγ,mγ−1x′).
(4.71)

Thus the formula follows from Theorem 3.3.20.
Now we consider the general case. We choose generators u, v of Λ, i.e Λ = uZ⊕vZ

with Im(v/u) > 0. Let τ = v/u, and we write Λτ = Z ⊕ τZ = 1
uΛ. Then we apply

Lemma 3.3.20, we have

TmE(σ, x, x′; Λ) =
1

m

∑
Λ′

E(σ, x, x′; Λ′) =
1

uN
TmE

(
σ,
x

u
,
x′

u
; Λτ

)
, (4.72)

and

TmE(σ, x, x; Λ) =
∑

γ∈ΓN (m)

E(mγ−1σ, xγ,mγ−1x′; Λ) =
1

uN
TmE

(
σ,
x

u
,
x′

u
; Λτ

)
.

(4.73)
Then the theorem follows from the special case for Λτ .
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Chapter

5
Relation With Modular
Forms

In this chapter, we will define a function B(τ, σ,M,X, y, T ) which is shown to
be an (N − 1)-cocycle for GLN (Z) in Proposition 5.2.4, where σ ∈MN (Z), M is an
anti-symmetric matrix, X = (X1, · · · , XN ) and y, T ∈ C. We define it in terms of
the elliptic cocycle E introduced in Chapter 2. Our function B in dimension 2 is a
homogeneous analogue of C(τ,X, Y, T ) defined by Zagier [Zag91]. One of the main
result in this chapter is Theorem 5.2.6 where we give the Laurent expansion of B in
T . Moreover, the coefficients of Tm are linear combinations of Hecke eigenforms with
coefficients that are rational functions Pf (σ,M,X, y). Then we define an operator
Tm on Pf (σ,M,X, y) that is siimilar to the operator Tm defined in Chapter 3. By
applying Theorem 3.3.23, we get another main result of this chapter: Theorem 5.2.10
shows that the coefficients of the rational function Pf (σ,M,X, y) in the Laurent
expansion at y = 0 are eigenvectors with respect to the operator Tm. We can make
up an L-series from these eigenvalues. We give an explicit formula for this L-series
in terms of the Riemann ζ function and the L-functions associated to modular forms
in Theorem 5.3.2. At last, we give some examples. We calculate the explicit formula
of Pf (σ,M,X, y) for the Eisenstein series and the Ramanujan Delta function in
some cases. For future research, we expect to find a polynomial analog Qfof Pf .
We explore this question numerically in low weight and present some computational
results in Section 5.5. By contrast, we compare the associated L-functions for Pf
and Qf .

5.1 Zagier’s results

In this section, we recall a result of Zagier [Zag91]. It shows that a product of
two Kronecker theta functions encodes all period polynomials of modular forms in
the level 1 case.

Let f be a cusp form of weight k on SL2(Z). The period polynomial of f is a
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polynomial of degree k − 2 defined by

rf (x) =

∫ i∞

0
f(τ)(τ − x)k−2 dτ.

If f is a Eisenstein series of weight k on SL2(Z), then the integral above diverges,
hence we need to modify the definition. Let

f(τ) =
∞∑
n=0

anq
n.

For Re(s) � 0, we define

L∗(f, s) :=

∫ ∞

0
(f(iy)− a0)y

s−1 dy = (2π)−sΓ(s)L(f, s),

where L(f, s) =
∑∞

n=1 ann
−s. Then we define rf by

rf (x) =
a0

k − 1
(xk−1 + x−1) +

k−2∑
n=0

i1−n
(
k − 2

n

)
L∗(f, n+ 1)xk−2−n.

In this case, rf (x) is a rational function. For any modular form f , let

(rf (x)rf (y))
− =

1

2
(rf (x)rf (y)− rf (−x)rf (−y)).

We define
ck(τ, x, y) =

∑
fweight k
eigenform

(rf (x)rf (y))
−

(2i)k−3(f, f)
f(τ),

where the summation over all normalized eigenforms of weight k, both Eisenstein
series and Hecke eigenforms. Here (f, f) is the Petersson product if f is a cusp form,
and when f = Gk, it means

(Gk, Gk) =
π(k − 1)!

3(4π)k
Ress=k

∑
n≥1

aGk
(n)aGk

(n)

ns

 =
(k − 2)!Bk
2k(4π)k

ζ(k − 1). (5.1)

Zagier considered the following generating function:

C(τ, x, y, T ) =
(xy − 1)(x+ y)

x2y2
(2πiT )−2 +

∞∑
k=2

ck(τ, x, y)
(2πiT )k−2

(k − 2)!
.

He obtained the following closed form for it in terms of the Kronecker theta function:
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Theorem 5.1.1 (Zagier). The function C(τ, x, y, T ) is given by

(2πi)2C(τ, x, y, T ) = K(τ, xT, yT )K(τ,−xyT, T ).

By the period relation:

rf |(1 + S) = rf |(1 + U + U2) = 0, (5.2)

where S =

(
0 −1

1 0

)
, U =

(
1 −1

1 0

)
, one deduces the identities:

C(τ, x, y, T ) + C

(
τ,−1

x
, y, xT

)
= 0, (5.3)

C(τ, x, y, T ) + C

(
τ, 1− 1

x
, y, xT

)
+ C

(
τ,

1

1− x
, y, (1− x)T

)
= 0. (5.4)

5.2 Generalization to higher dimensions

In this section, we will define a new cocycle B which generalize the function
C(τ, x, y, T ) to dimension N . We will get a cocycle relation in Proposition 5.2.4. In
Example 5.2.5, we will see that (5.3) and (5.4) are just special cases of the Propo-
sition 5.2.4. We will give the Laurent expansion of the cocycle B in Theorem 5.2.6
whose coefficients are certain rational functions Pf (σ,M,X, y). Then we will prove
the Hecke equivariance of Pf (σ,M,X, y) in Theorem 5.2.9. Such theorem is a gen-
eralization of the Hecke equivariance of period polynomials introduced in Theorem
0.0.2. At last, we will prove some non-vanishing properties of Pf (σ,M,X, y) in
subsection 5.2.3.

5.2.1 The cocycle B

We first construct a new cocycle from the elliptic cocycle E and give the Laurent
expansion of it. Let M be the set of matrices of the following form

0 m12 · · · m1N

m21 0 · · · m2N

...
...

...
mN1 mN2 · · · 0

 ,

with mij+mji = 0 for all 1 ≤ i < j ≤ N and satisfies one of the following conditions
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1. M is invertible,

2. The entries mij 1 ≤ i < j ≤ N are linear independent over Q.

The condition mij +mji = 0 for all 1 ≤ i < j ≤ N is equivalent to say that M is
anti-symmetric, i.e.

M +M t = 0. (5.5)

Lemma 5.2.1. For any g ∈ SLN (Z) and M ∈ M, we have gMgt ∈ M.

Proof. Since
gMgt + (gMgt)t = g(M +M t)gt = 0, (5.6)

the anti-symmetric property is stable. If M is invertible, then it is clear that gMgt

is invertible for all g ∈ SLN (Z). Hence we only need to check that another condition
is stable. We note that SLN (Z) is generated by the matrices Id+Eij 1 ≤ i 6= j ≤ N

where Eij is matrix with 1 at the position (i, j) and 0 elsewhere. Thus we only need
to check the stability under the generators. We check it for Id+E12 now. It is easy
to see that

(Id+E12)M(Id+E12)
t =


0 m12 m13 +m23 · · · m1N +m2N

−m12 0 m23 · · · m2N

...
...

...
...

−m1N −m2N −m2N −m3N · · · 0

 .

(5.7)
Hence the entries of upper triangular are linear independent over Q. This completes
the proof.

Remark 5.2.2. The conditions on M ensure that all the rows of gMgt are non-zero
for any g ∈ SLN (Z).

Definition 5.2.3. Let X = (X1, . . . , XN ), y ∈ C, σ ∈ MN (Z) and M ∈ M, we
define

B(τ, σ,M,X, y, T ) =
1

(2πi)N
E (τ, σ,XT,MXtyT ).

Following the cocycle relation of E , we have

Proposition 5.2.4. The function B(τ, σ,M,X, y, T ) satisfies the following cocycle
relation: for any vectors σ0, σ1, . . . , σN ∈ ZN\0, we have

N∑
i=0

(−1)iB(τ, (σ0, . . . , σ̂i, . . . , σN ),M,X, y, T ) = 0. (5.8)
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Proof. This follows directly from Theorem 2.2.13.

Example 5.2.5. When N = 2, by Theorem 5.1.1, we see that

B (τ, Id, S, (X1, X2), y, T ) = C

(
τ,
X2

X1
, y,X1T

)
. (5.9)

In fact, by the Definition 5.2.3, we have

B (τ, Id, S, (X1, X2), y, T ) =
1

(2πi)2
E (τ, Id, (X1T,X2T ), (−yX2T, yX1T )

t)

=
1

(2πi)2
K(τ,X1T,−yX2T )K(τ,X2T, yX1T ) = C

(
τ,
X2

X1
, y,X1T

)
.

Hence we see that B(τ, Id, S,X, y, T ) is a homogeneous version of C(τ,X, Y, T ).
Now we could recover the identities (5.3) and (5.4) by the cocycle relation (5.8).

Let σ0 = (1, 0)t, σ1 = (0, 1)t, σ2 = (−1, 0)t, then the cocycle relation (5.8) gives

0 = B(τ, Id, S, (1, X2), y, T ) + B(τ, S, S, (1, X2), y, T )

= B(τ, Id, S, (1, X2), y, T ) + B(τ, Id, S, (−X2, 1), y, T )

= C(τ,X2, y, T ) + C

(
τ,− 1

X2
, y,X2T

)
.

The second equality holds since for any σ ∈ SLN (Z), we have

B(τ, σ,M,X, y, T ) = B(τ, Id, σ−1Mσ−t, Xσ, y, T ),

which follows directly from Proposition 2.1.3. As for the identity (5.4), we put
σ0 = (1, 0)t, σ1 = (0, 1)t, σ2 = (−1, 1)t. Then with the same reasoning as above, we
have

0 = B(τ, Id, S, (1, X2), y, T ) + B(τ, SU2S, S, (1, X2), y, T ) + B(τ, SUS, S, (1, X2), y, T )

= B(τ, Id, S, (1, X2), y, T ) + B(τ, Id, S, (1−X2, X2), y, T ) + B(τ, Id, S, (X2, X2 − 1), y, T )

= C(τ,X2, y, T ) + C

(
τ,

1

1−X2
, y, (1−X2)T

)
+ C

(
τ,
X2 − 1

X2
, y,X2T

)
We recall that Proposition 1.2.6 gives the following identity:

K(τ, xT, x′T ) =
x+ x′

xx′T
exp

 ∑
k≥2

k even

2(xk + x′k − (x+ x′)k)Gk(τ)
(2πiT )k

k!

 .
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If we write it as a Laurent series of T , then the coefficient of T k−1 is of the form∑
f weight k

Pf (x, x
′)f(τ),

where the summation over a certain basis of quasimodular forms of weight k and
P (x, x′) is a rational function. The reason to take the matrix M in B(τ, σ,M,X, y, T )

is to cancel the quasimodular forms. More precisely, we have the following theorem:

Theorem 5.2.6. The function B(τ, σ,M,X, y, T ) has the following Laurent expan-
sion in T :

B(τ, σ,M,X, y, T ) =P−N (σ,M,X, y)(2πiT )−N

+
∑
k≥4

∑
f eigenform

weight k

Pf (σ,M,X, y)f(τ)
(2πiT )k−N

(k −N)!
. (5.10)

where P−N and Pf are rational functions and Pf/P−N are polynomials.

Proof. We first consider the case σ = Id. In this case, the function B(τ, Id,M,X, y, T )

is just a product of N Kronecker theta functions. Hence by the Proposition 1.2.6,
we have

B(τ, Id,M,X, y, T ) =
1

(2πi)N

N∏
i=1

K(τ,XiT, (MXt)iyT )

=
1

(2πi)N

N∏
i=1

Xi + y(MXt)i
yXi(MXt)iT

exp

∑
k≥2

k even

2(Xk
i + yk(MXt)ki − (Xi + y(MXt)i)

k)Gk(τ)
(2πiT )k

k!


=

(
N∏
i=1

Xi + y(MXt)i
yXi(MXt)i

)
(2πiT )−N

exp

∑
k≥2

k even

2

(
N∑
i=1

(
Xk
i + yk(MXt)ki − (Xi + y(MXt)i)

k
))

Gk(τ)
(2πiT )k

k!

 ,

(5.11)

where (MXt)i means the i-th component of the vector MXt. To cancel the quasi-
modular part, we only need to consider the coefficient of T 2 in the exponential. It
equals to

N∑
i=1

(
X2
i + y2(MXt)2i − (Xi + y(MXt)i)

2
)
G2(τ),
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up to a scalar. But we note that this equals to

(XXt + (XM t)(MXt)y2 − (X +XM ty)(Xt +MXty))G2(τ)

=−X(M +M t)XtyG2(τ).

Since we require the matrix M to be anti-symmetric, the G2(τ) term is cancelled.
To complete the proof in the case σ = Id, we just need to expand the exponential
in T . Now let σ ∈ GLN (Z), then by the homogeneous property of E , we have

B(τ, σ,M,X, y, T ) = E (τ, σ,XT,MXtyT )

=det(σ)E (τ, Id, XTσ, σ−1MXtyT )

=det(σ)B(τ, Id, σ−1Mσ−t, Xσ, y, T ).

(5.12)

By Lemma 5.2.1, σ−1Mσ−t is still in M. Hence by applying the result for σ = Id,
we deduce the result for σ ∈ GLN (Z).

For the general case, we prove it by induction on |det(σ)|. The case | det(σ)| = 0

is trivial. The case |det(σ)| = 1 has been proven above. By applying Proposition
2.1.7 to a suitable diagonal matrix, we may assume that each column of σ is prim-
itive. Then we can write σ in the form gσ′ where g ∈ GLN (Z) and σ′ = (σ′ij) is a
upper triangular matrix with

1 ≤ σ′11 ≤ · · · ≤ σ′NN .

With the same reason as (5.12), we have

B(τ, σ,M,X, y, T ) = B(τ, σ′, g−1Mg−t, Xg, y, T ).

Hence we may reduce the problem to the case σ = (σij) is an upper triangular
matrix with 1 ≤ σ11 ≤ · · · ≤ σNN . We write σ = (σ1, . . . , σN ). Suppose j is the
least number such that σjj > 1. We set σ0 to be the vector with 1 at the j-th
component and 0 elsewhere. For 0 ≤ t ≤ N , let

At = (σ0, σ1, · · · , σ̂t, · · · , σN ).

Hence by Proposition 5.2.4, we have

B(τ, σ,M,X, y, T ) =
N∑
t=1

(−1)t+1B(τ, At,M,X, y, T ).
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Moreover, by the construction, it is easy to see that

det(At) = 0 for t = 1, . . . , j − 1,

and
| det(At)| ≤

| det(σ)|
σjj

< | det(σ)| for t = j, . . . , N.

Hence this theorem follows directly from the induction assumption.

Remark 5.2.7. In the following, we always assume that the eigenforms f are nor-
malized. This means if we write

f(τ) = af (0) + af (1)q + af (2)q
2 + · · · ,

we always take af (1) = 1.

To end this subsection, we extend the definition of Pf to all modular forms by
linear extension. We write the modular form f as a linear combination of normalized
eigenforms f =

∑
j cjfj . Then we define Pf by

Pf =
∑
j

cjPfj . (5.13)

5.2.2 The Hecke equivariance of Pf

Let F(M×CN×C) be the set of functions on M×CN×C. Then Pf (σ,M,X, y) ∈
F(M× CN × C). We can deduce an action of GLN (Q) on F(M× CN × C) from
the action on B(τ, σ,M,X, y, T ) which is given by

g · (Pf (σ,M,X, y)) = Pf
(
σ,det(g)g−1Mg−t, Xg, y

)
. (5.14)

With the notation in section 3.1, we have :

Lemma 5.2.8. For any modular form f , Pf (σ,M,X, y) ∈ Ph(F(M× CN × C)).

Proof. This follows from Proposition 2.1.3. In fact, Proposition 2.1.3 tells us for any
g ∈ SLN (Z),

E (τ, gσ, xg−1, gx′) = E (τ, σ, x, x′). (5.15)

Hence for any g ∈ SLN (Z),

B(τ, gσ, gMgt, Xg−1, y, T ) = B(τ, σ,M,X, y, T ). (5.16)
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Then the homogeneous property of Pf (σ,M,X, y) follows directly when f is a nor-
malized eigenform. For an arbitrary modular form f , the homogeneous property of
Pf (σ,M,X, y) follows by linearity.

Now we can prove the Hecke equivariance for the rational function Pf (σ,M,X, y):

Theorem 5.2.9. Let f(τ) be a modular form. Then for any σ ∈ MN (Z) and
M ∈ M, we have

TmPf (σ,M,X, y) =
∑
d|m

A(N, d)PTm
d
f (σ,M,X, dy), (5.17)

where A(N, d) is defined in Theorem 3.3.23.

Proof. We first consider the case of normalized eigenform. Similar to the elliptic
cocycle E , we can define the two kinds of Hecke operators by

TmB(τ, σ,M,X, y, T ) = mN−1
∑
a,d>0
ad=m

1

dN

d−1∑
b=0

B
(
aτ + b

d
, σ,M, aX, y, T

)
, (5.18)

and

TmB(τ, σ,M,X, y, T ) =
∑

γ∈ΓN (m)

B(τ,mγ−1σ,mγ−1Mγ−t, Xγ, y, T ). (5.19)

The Theorem 3.3.23 gives the formula:

TmB(τ, σ,M,X, y, T ) =
∑
d|m

A(N, d)Tm
d
B(τ, σ,M,X, dy, T ). (5.20)

Let f(τ) be a normalized eigenform with Fourier expansion
∑

m≥0 af (m)qm. Then
Tmf(τ) = af (m)f(τ). Hence by Theorem 5.2.6, we have

TmB(τ, σ,M,X, y, T )

=σN−1(m)P−N (σ,M,X, y)(2πiT )−N +
∑
k≥4

∑
f eigenform

weight k

Pf (σ,M,X, y)Tmf(τ)
(2πiT )k−N

(k −N)!

=σN−1(m)P−N (σ,M,X, y)(2πiT )−N +
∑
k≥4

∑
f eigenform

weight k

af (m)Pf (σ,M,X, y)f(τ)
(2πiT )k−N

(k −N)!
.

(5.21)
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On the other hand,

TmB(τ, σ,M,X, y, T )

=
∑

γ∈ΓN (m)

P−N (mγ
−1σ,mγ−1Mγ−t, Xγ, y)(2πiT )−N

+
∑
k≥4

∑
f eigenform

weight k

∑
γ∈ΓN (m)

Pf (mγ
−1σ,mγ−1Mγ−t, Xγ, y)f(τ)

(2πiT )k−N

(k −N)!
.

(5.22)

By comparing the coefficients of T k−N of equations (5.21) and (5.22), we prove the
formula (5.17) for normalized eigenform.

The general case for an arbitrary modular form follows by linearity.

However, when N ≥ 3, the rational function Pf (σ,M,X, y) is not an eigenvector
of the operator Tm when f is an eigenform because of the factor d. Hence we consider
the Laurent expansion of Pf (σ,M,X, y) in y:

Pf (σ,M,X, y) =
∑
t≥−N

P
(t)
f (σ,M,X)yt.

Then following Theorem 5.2.9, we have:

Theorem 5.2.10. Let f(τ) be a modular form and t be an integer. Then for any
σ ∈MN (Z) and M ∈ M, we have

TmP
(t)
f (σ,M,X) =

∑
d|m

A(N, d)dtP
(t)
Tm

d
f (σ,M,X). (5.23)

In particular, if f is a normalized eigenform, and if the function P
(t)
f (σ,M,X) is

non-zero, then it is an eigenvector of Tm with eigenvalue
∑

d|mA(N, d)af
(
m
d

)
dt,

i.e.

TmP
(t)
f (σ,M,X) =

∑
d|m

A(N, d)af

(m
d

)
dt

P
(t)
f (σ,M,X).

5.2.3 Non-vanishing of P
(t)
f (σ,M,X)

A natural question is how many non-zero eigenvectors there are? Hence in this
subsection, we will discuss the range of t such that P (t)

f (σ,M,X) is non-zero. First
of all, the following proposition shows that there are only finitely many integers t
such that P (t)

f (σ,M,X) is non-zero.
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Proposition 5.2.11. Let f(τ) be a modular form of weight k. If f(τ) is an Eisen-
stein series, then the function P

(t)
f (σ,M,X) vanishes for t ≥ k and for t ≤ −N . If

f(τ) is a cusp form, then the function P
(t)
f (σ,M,X) vanishes for t ≥ k − 1 and for

t ≤ −N + 1.

Proof. It is easy to see that we only need to prove the case f is a normalized
eigenform. By the same method as Theorem 5.2.6, we reduce to the case σ = Id.
Let

Fl(M,X, y) =
N∑
i=1

X l
i + yl(MXt)li − (Xi + y(MXt)i)

l.

Then the equation (5.11) gives

B(τ, Id,M,X, y, T )

=

(
N∏
i=1

Xi + y(MXt)i
yXi(MXt)i

)
(2πiT )−N exp

∑
k≥2

k even

2Fk(M,X, y)Gk(τ)
(2πiT )k

k!

 .

(5.24)

We expand the exponential, then

P−N (Id,M,X, y) =

N∏
i=1

Xi + y(MXt)i
yXi(MXt)i

, (5.25)

and Pf (Id,M,X, y)/P−N (Id,M,X, y) is a linear combination of the form

s∏
j=1

Flj (M,X, y)

where l1 + · · ·+ ls = k. If we view Fl(M,X, y) as a polynomial in y, we see that the
constant term and the coefficient of yl vanish. Hence it is of degree l − 1. On the
other hand, P−N (Id,M,X, y) is a polynomial in 1/y of degree N . This implies that
P

(t)
f (σ,M,X) = 0 for t ≥ k and for t ≤ −N .

Moreover, if f(τ) is a cusp form, we note that it always comes from the prod-
uct of at least 2 Eisenstein series. This means that s ≥ 2. Hence if we write∏s
j=1 Flj (M,X, y) as a polynomial in y, then the coefficients of y0, y1, yk−1, yk van-

ish. This completes the proof.

The following proposition shows that there exists at least one integer t such
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that P (t)
f (Id,M,X) is non-zero. In the following, we will denote P (t)

f (Id,M,X) by
P

(t)
f (M,X).

Proposition 5.2.12. Let f(τ) be a normalized eigenform of weight k and M ∈ M.
Then

1. When f(τ) is an Eisenstein series, P (t)
f (M,X) is non-zero for −1 ≤ t ≤ k− 1

with t odd and for t = 0, k − 2.

2. When f(τ) is a cusp form, P (t)
f (M,X) is non-zero for 0 ≤ t ≤ k−2, t 6= k

2 −1.

Proof. The idea of this proof is to find at least one term of P (t)
f (M,X) is non-

zero. We consider the Laurent expansion of P (t)
f (M,X) to reduce the problem to

dimension 2. Then we prove it by showing the non-vanishing of the coefficients of
period polynomials.

Since we require that either the upper triangular entries of M are linear indepen-
dent over Q or M is invertible, it forces that there exists at least one non-zero entries
for each row. Without loss of generality, we assume that m12 6= 0. We consider the
coefficient of (X3 · · ·XN )

−1 of B(τ, Id,M,X, y, T ), which equals to

1

TN−2
K(τ,X1,m12X2yT )K(τ,X2,−m12X1yT ). (5.26)

Hence by the Theorem 5.1.1, we see that up to a non-zero scalar, the coefficient of
(X3 · · ·XN )

−1 in Pf (Id,M,X, y) equals to

Xk−2
1

(
rf

(
X2

X1

)
rf (−m12y)

)−
. (5.27)

Hence when t is an odd number, then

P
(t)
f (M,X) =

(−m12)
tr

(t)
f r+f

(
X2
X1

)
Xk−2

1

X3 · · ·XN
+ . . . , (5.28)

where r(t)f is the t-th coefficient of rf (x) and r+f (x) is the even part of rf (x). When
t is an even number then

P
(t)
f (M,X) =

(−m12)
tr

(t)
f r−f

(
X2
X1

)
Xk−2

1

X3 · · ·XN
+ . . . , (5.29)

where r−f (x) is the odd part of rf (x). So the function P
(t)
f (M,X) is non-zero when
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r
(t)
f is non-zero. If f(τ) = Gk(τ), we know that

rGk
= ω−

Gk
p−k + ω+

Gk
p+k ,

where
p+k (x) = xk−2 − 1, p−k (x) =

∑
−1≤n≤k−1

n odd

Bn+1Bk−n−1

(n+ 1)!(k − n− 1)!
xn,

and
ω−
Gk

= −(k − 2)!

2
, ω+

Gk
=
ζ(k − 1)

(2πi)k−1
ω−
Gk
.

Hence the non-vanishing of P (t)
Gk

(M,X) is clear. If f(τ) is a normalized Hecke
eigenform, it is well-known that the associated L-function L(f, s) doesn’t vanish
at s = 1, 2, · · · , k2 − 1, k2 +1, · · · , k− 1. This means that the s-th coefficient of rf (x)
is non-zero for s = 0, 1, · · · , k2 − 2, k2 , · · · , k− 2. Then the non-vanishing property of
P

(t)
f (M,X) is clear.

With more elaborate analysis, we can prove more non-zero terms:

Proposition 5.2.13. Let f be a normalized eigenform of weight k and M ∈ M,
then for any integer N ≥ 3,

1. If f = Gk, then P
(1−N)
Gk

(M,X) is non-zero,

2. if f is a cusp form, then P
(2−N)
f (M,X) is non-zero.

Proof. The idea of the proof is to find at least one non-zero term of P (t)
Gk

(M,X).
Following the equation (5.25), we see that

P
(t)
f (M,X)

N∏
i=1

Xi(MXt)i (5.30)

is a polynomial in X1, · · · , XN . If we view it as a polynomial in X1, we will prove
that the coefficient of Xk−1

1 is non-zero.
With the notation in Proposition 5.2.11, Pf (Id,M,X, y)/P−N (Id,M,X, y) is a

linear combination of functions of the form:

s∏
j=1

Flj (M,X, y),
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where l1 + · · ·+ ls = k and

Fl(M,X, y) =
N∑
i=1

X l
i + yl(MXt)li − (Xi + y(MXt)i)

l. (5.31)

If f = Gk, then only the term Fk(M,X, y) contributes to P
(1−N)
Gk

(M,X). This
implies that

P
(1−N)
Gk

(M,X) = 2
∏
i

1

(MXt)i

F
(1)
k (M,X)

k!
, (5.32)

where

F
(1)
k (M,X) = −k

N∑
j=1

Xk−1
j (MXt)j (5.33)

is the coefficient of y of Fk(M,X, y). Hence It is easy to see that P (1−N)
Gk

(M,X) is
non-zero.

If f is a cusp form, then we see that only the term of
∏s
j=1 Flj (M,X, y) with

s = 2 contributes to P (2−N)
f (M,X). This implies that

P
(2−N)
f (M,X) = 2

∏
i

1

(MXt)i

k−4∑
h=4
even

F
(1)
h (M,X)F

(1)
k−h(M,X)

(GhGk−h, f)

h!(k − h)!
, (5.34)

where (GhGk−h, f) is the Petersson product of GhGk−h and f . This product was
calculated by Rankin in [Ran82]:

(GhGk−h, f) =
1

(2i)k−1

(
k − 2

h− 1

)−1

r
(k−2)
f r

(h−1)
f , (5.35)

where r(n)f is the n-th coefficient of rf . By the definition (5.31), we see that

F
(1)
l (M,X) = l(MXt)1X

l−1
1 + ( lower terms in X1). (5.36)

Hence we have

P
(2−N)
f (M,X)

∏
i

(MXt)i

=2

k−4∑
h=4
even

h(k − h)r
(k−2)
f r

(h−1)
f

(2i)k−1h!(k − h)!
(
k−2
h−1

)(MXt)21X
k−2
1 + ( lower terms in X1)

(5.37)
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On the other hand, the definition of period polynomial gives

r−f (x) = −
k−3∑
h=1
odd

r
(h)
f xh. (5.38)

We note that 1 is a root of r−f (x). In fact, the cocycle relation (5.2) implies that

rf (x) + xk−2rf

(
−1

x

)
= rf (x) + xk−2rf

(
x− 1

x

)
+ (x− 1)k−2rf

(
− 1

x− 1

)
= 0.

(5.39)
We take x = 1, then it gives

rf (1) + rf (−1) = rf (1) + r
(0)
f + r

(k−2)
f = 0. (5.40)

But the functional equation of L(f, s) shows that r(0)f + r
(k−2)
f = 0. Hence 1 and −1

are the roots of rf (x). Then we have

k−4∑
h=4
even

h(k − h)r
(k−2)
f r

(h−1)
f

(2i)k−1h!(k − h)!
(
k−2
h−1

) =
−2r

(k−2)
f r

(1)
f

(2i)k−1(k − 2)!
. (5.41)

This number is non-zero since f is an Hecke eigenform. Hence

P
(2−N)
f (M,X)

∏
i

(MXt)i 6= 0. (5.42)

This proves the non-vanishing of P (2−N)
f (M,X).

According to Theorem 5.2.10, we see that the vector space generated by P (t)
f (M,X)

〈P (t)
f (M,X)|M ∈ M〉

is an eigenspace of Tm with eigenvalue
∑

d|mA(N, d)af
(
m
d

)
dt. We denote such space

by V (t)
f . So a natural question is how large is this eigenspace? In fact, we have the

following results:

Proposition 5.2.14. We suppose N = 2. Let f(τ) be a normalized eigenform of
weight k. Then

1. When f = Gk, then V
(t)
f is one dimensional for t = −1, 1, · · · , k − 1 and for

t = 0, k − 2. V (t)
f is zero for other t.
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2. When f is a cusp form, then V
(t)
f is one dimensional for t = 0, 1, · · · , k2 −

2, k2 , · · · , k − 3, k − 2. V (t)
f is zero for t > k − 2 and for t < 0.

Proof. This proposition follows directly from Proposition 5.2.12 since the matrix M
is unique up to a scalar.

Proposition 5.2.15. We suppose N ≥ 3. Let f(τ) be a normalized eigenform of
weight k. Then

1. When f(τ) is an Eisenstein series, the eigenspace V
(t)
f is of infinite dimen-

sional for −2 ≤ t ≤ k − 2 with t even and for t = −1, k − 3;

2. When f(τ) is a cusp form, the eigenspace V (t)
f is of infinite dimensional for

−1 ≤ t ≤ k − 3 except t = k
2 − 2.

Proof. The idea of the proof is to find a family of matrices M ∈ M such that
P

(t)
f (M,X) has exactly one different pole. Then this family of rational function
P

(t)
f (M,X) must be linearly independent. Let M = (mij) ∈ M. We consider the

coefficient of (X3 . . . XN−1(MXt)N )
−1 in B(τ, Id,M,X, y, T ). It equals to

1

yT
K
(
τ,X1T,

m1N

m2N
(m2NXN −m12X1)yT

)
K
(
τ,−m1N

m2N
X1T, (m2NXN −m12X1)yT

)
.

By the Theorem 5.1.1, it equals to

C

(
τ,−m1N

m2N
,
(m2NXN −m12X1)y

X1
, X1T

)
. (5.43)

Then the relation (5.9) shows that the coefficient of (X3 . . . XN−1(MXt)N )
−1 in

Pf (Id,M,X, y) equals to(
rf

(
−m1N

m2N

)
rf

(
(m2NXN −m12X1)y

X1

))−
Xk−2

1 . (5.44)

When we fix m2N , . . . ,mN−1,N and let m1N runs through C such that rf
(
−m1N
m2N

)
6=

0, then Pf (Id,M,X, y) always has a different pole at (MXt)N = 0. With the same
argument in Proposition 5.2.12, we can show that P (t)

f (M,X) is non-zero for the t
showed above.
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5.3 L-function

Since we have families of eigenvalues, it is natural to consider the associated
L-functions. Let t be an integer and f be a normalized eigenform. We denote

L
(t)
f (s) :=

∑
m≥1

∑
d|m

A(N, d)af

(m
d

)
dt

m−s. (5.45)

Before giving properties of L(t)
f (s), we first establish an identity on H(N, pj) =∏j

i=1
pN+i−1−1
pi−1

given in Lemma 3.24.

Lemma 5.3.1. For any positive integer N and prime number p, we have the for-
mula:

N−1∏
j=0

1

1− pjt
=

∞∑
j=0

H(N, pj)tj . (5.46)

Proof. We prove it by induction on N . When N = 1, we know that H(1, pj) = 1

for any j ≥ 0. Then the identity (5.46) is clear.
Now we assume that N ≥ 2. Then by the induction assumption, we have

N−1∏
j=0

1

1− pjt
=

∞∑
j=0

H(N − 1, pj)tj
∞∑
j′=0

p(N−1)j′tj
′

=
∞∑
j=0

 j∑
j′=0

p(N−1)j′H(N − 1, pj−j
′
)

 tj .

By the formula (3.25), we have

j∑
j′=0

p(N−1)j′H(N − 1, pj−j
′
) = H(N, pj).

This completes the proof.

Now we prove the following theorem.

Theorem 5.3.2. Let f(τ) be an eigenform of weight k. Then for Re(s) > max{k,N+

t}, L(t)
f (s) converges absolutely. It has a meromorphic continuation to the whole

plane. Moreover, we have the decomposition

L
(t)
f (s) = L(f, s)

N−2∏
j=1

ζ(s− j − t),
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where L(f, s) is the L-function associated to the modular form f .

Proof. First we note that H(N, pj) = O(pNj) as j → ∞. Then by definition

a(N, pj) = H(N − 1, pj)−H(N − 1, pj−1) = O(p(N−1)j) as j → ∞. (5.47)

If we write m = pj11 · · · pjll where p1, · · · , pl are different prime factors of m, then

A(N,m) = a(N, pj11 ) · · · a(N, pjll ). (5.48)

Hence A(N,m) = O(mN−1) as m → ∞. Since f(τ) is a modular form of weight k,
then af (m) = O(mk−1). Hence we have

O

∑
d|m

A(N, d)af

(m
d

)
dt

 = O
(
mk−1σN+t−k(m)

)
= O

(
mmax{k−1,N+t−1}

)
.

Hence for any Re(s) > max{k,N+t}, L(t)
f (s) converges absolutely. Now we consider

the decomposition. By the equation (5.48), we see that for any positive integers
m1,m2 with gcd(m1,m2) = 1, we have A(N,m1m2) = A(N,m1)A(N,m2). Hence
by the definition (5.45), we have

L
(t)
f (s) =

∑
d′≥1

af (d
′)

d′s

∑
d≥1

A(N, d)

ds−t

=L(f, s)
∏
p

∑
j≥0

a(N, pj)

pj(s−t)

 ,

where the product runs through all the prime number p.

By Lemma 5.3.1, we have

∑
j≥0

a(N, pj)

pj(s−t)
=1 +

∑
j≥1

H(N − 1, pj)

pj(s−t)
−
∑
j≥1

H(N − 1, pj−1)

pj(s−t)

=

N−2∏
j=0

1

1− pj+t−s
− 1

ps−t

N−2∏
j=0

1

1− pj+t−s

=
N−2∏
j=1

1

1− pj+t−s
.
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This implies that

L
(t)
f (s) = L(f, s)

∏
p

N−2∏
j=1

1

1− pj+t−s
= L(f, s)

N−2∏
j=1

ζ(s− j − t).

The meromorphic continuation immediately follows from the meromorphic continu-
ation of ζ and L(f, s).

5.4 Examples

5.4.1 N = 2

In this subsection, we consider the case N = 2.

Example 5.4.1. In this case, the matrix M is unique up to a scalar. Hence we

may fix M =

(
0 1

−1 0

)
. If σ = Id, then by Theorem 5.1.1, we have

Pf (Id,M, (X1, X2), y) =

(
rf

(
X2
X1

)
rf (y)

)−
(2i)k−3(f, f)

Xk−2
1 , (5.49)

where f is a normalized eigenform of weight k. If we consider the coefficients of the
Laurent series in y, then up to a scalar, we have

P
(t)
f (Id,M, (X1, X2)) = r±f

(
X2

X1

)
Xk−2

1 = r±f {e1, e2}(X1, X2), (5.50)

up to the parity of t. Moreover, let σ ∈ M2(Z), if we put α to be the first column
of σ, and β to be the second column of σ. Then the condition of modular sym-
bol rf{α, β} introduced in the introduction is equivalent to the cocycle relation of
P

(t)
f (σ,M, (X1, X2)). This implies that

P
(t)
f (σ,M, (X1, X2)) = r±f {α, β}(X1, X2), (5.51)

up to a scalar.
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5.4.2 Eisenstein series for N = 3

Example 5.4.2. When N = 3. Let σ = Id and M =

 0 a b

−a 0 c

−b −c 0

. The Proposi-

tion 5.2.12 and Proposition 5.2.13 showed that P (t)
Gk

is non-zero for −1 ≤ t ≤ k − 1

with t odd and for t = −2, 0, k − 2. For example:

P
(−2)
G12

(M,X) =
(−aX2 − bX3)X

11
1 + (aX11

2 + bX11
3 )X1 + (−cX3X

11
2 + cX11

3 X2)

27 · 34 · 52 · 7 · 11(aX2 + bX3)(−aX1 + cX3)(bX1 + cX2)
.

(5.52)
More generally, we can show that

P
(−2)
Gk

(M,X) =
2((−aX2 − bX3)X

k−1
1 + (aXk−1

2 + bXk−1
3 )X1 + (−cX3X

k−1
2 + cXk−1

3 X2))

(k − 1)!(aX2 + bX3)(−aX1 + cX3)(bX1 + cX2)
.

(5.53)
Let’s focus on the case k = 12. However, the general theorem above doesn’t tell

if the terms P (2)
G12

, P
(4)
G12

, P
(6)
G12

, P
(8)
G12

are zero or not. According to the calculation by
PARI/GP, we can check that they are non-zero, here we give an example for P (2)

G12

and more examples are put in the appendix.
P

(2)
G12

(M,X) = 1
28·33·52·691(aX2+bX3)(bX1+cX2)(aX1−cX3)

(
(13ca4−65c3a2+13c5)X3X

11
2 +(52cba3−

130c3ba)X2
3X

10
2 +(78cb2a2−65c3b2)X3

3X
9
2+52cb3aX4

3X
8
2+13cb4X5

3X
7
2−13ca4X7

3X
5
2−52cba3X8

3X
4
2+

(−78cb2 + 65c3)a2X9
3X

3
2 + (−52cb3 + 130c3b)aX10

3 X2
2 + (−13cb4 + 65c3b2 − 13c5)X11

3 X2 +O(x1)

)
.

5.4.3 The Ramanujan Delta function

In this subsection, we consider some examples for the Ramanujan Delta function:

∆(τ) =
∑
n≥1

τ(n)qn = q − 24q2 + 252q3 − 1472q4 + 4830q5 + · · · . (5.54)

Example 5.4.3. When N = 3. Let σ = Id and M =

 0 a b

−a 0 c

−b −c 0

. The

Proposition 5.2.11 shows that P (t)
∆ (M,X) = 0 for t > 10 and for t < −1. The

Proposition 5.2.12 and Proposition 5.2.13 show that P (t)
∆ (M,X) is non-zero for

t = −1, 0, · · · , 4, 6, · · · , 10. For example, we give the term P
(−1)
∆ (M,X) here:

P
(−1)
∆ (M,X) = 1

25·33·52·7·691(aX2+bX3)(bX1+cX2)(aX1−cX3)

(
(4a2X2

2 + 8baX3X2 + 4b2X2
3 )X

10
1 +

(−25a2X4
2−25baX3X

3
2−25baX3

3X2−25b2X4
3 )X

8
1+(25caX3X

4
2+25cbX2

3X
3
2−25caX3

3X
2
2−25cbX4

3X2)X
7
1+

(42a2X6
2+42baX3X

5
2+42baX5

3X2+42b2X6
3 )X

6
1+(−42caX3X

6
2−42cbX2

3X
5
2+42caX5

3X
2
2+42cbX6

3X2)X
5
1+
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(−25a2X8
2−25baX3X

7
2−25baX7

3X2−25b2X8
3 )X

4
1+(25caX3X

8
2+25cbX2

3X
7
2−25caX7

3X
2
2−25cbX8

3X2)X
3
1+

(4a2X10
2 +25baX3

3X
7
2−42baX5

3X
5
2+25baX7

3X
3
2+4b2X10

3 )X2
1+(−8caX3X

10
2 +25caX3

3X
8
2−25cbX4

3X
7
2−

42caX5
3X

6
2 + 42cbX6

3X
5
2 + 25caX7

3X
4
2 − 25cbX8

3X
3
2 + 8cbX10

3 X2)X1 + (4c2X2
3X

10
2 − 25c2X4

3X
8
2 +

42c2X6
3X

6
2 − 25c2X8

3X
4
2 + 4c2X10

3 X2
2 )

)
.

However, according to our results so far, we still don’t know whether the term
P

(5)
∆ (M,X) is zero or not. With the help of PARI/GP, we can verify that P (5)

∆ (M,X)

is also non-zero:
P

(5)
∆ (M,X) = 1

26·33·52·7·691X1X2X3(aX2+bX3)(bX1+cX2)(aX1−cX3)
(−252c7aX2

3X
13
2 −252c7bX3

3X
12
2 +

4837c7aX4
3X

11
2 +4837c7bX5

3X
10
2 −14511c7aX6

3X
9
2−14511c7bX7

3X
8
2+14511c7aX8

3X
7
2+14511c7bX9

3X
6
2−

4837c7aX10
3 X5

2 − 4837c7bX11
3 X4

2 + 252c7aX12
3 X3

2 + 252c7bX13
3 X2

2 +O(x1)).

More examples are put in the appendix.

So there is a natural question:

Question 5.4.4. what’s the range of t such that P (t)
f is non-zero?

After checking the examples for all eigenforms of weight ≤ 24 in dimension 3

and 4, we found that the term P
(t)
Gk

is non-zero for all −N + 1 ≤ t ≤ k − 1 and P
(t)
f

is non-zero for all −N + 2 ≤ t ≤ k − 2 when f is a Hecke eigenform.

5.5 Prospect

We have seen that the rational function P (t)
f (σ,M,X) is a kind of generalization

of the period polynomial rf . However, the P
(t)
f (σ,M,X) is not a polynomial in

dimension N > 2. So a natural question is that if there is a generalization in
polynomials? More precisely, we raise the question:

Question 5.5.1. Let X = (X1, . . . , XN ) and Ck,l[M, X] be the vector space of
homogeneous polynomials of degree k in X and also a homogeneous polynomial in
entries of matrices in M of degree l, where M is given in subsection 5.2.1. The
space Ck,l[M, X] is equipped with an action of GLN (Q) by

g ·Q(M,X) = Q
(
det(g)g−1Mg−t, Xg

)
. (5.55)

We recall a concept defined in Section 3.1. Let Ph(Ck,l[M, X]) be the set of maps

Q : (ZN\0)N → Ck,l[M, X]

(σ1, · · · , σN ) 7→ Q{σ1, · · · , σN}
(5.56)

satisfying the conditions

1. Q{σ1, · · · , σN} = 0 if det(σ1, · · · , σN ) = 0,
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2.
∑N

j=0(−1)jQ{σ0, · · · , σ̂j , · · · , σN} = 0 for all σ0, · · · , σN ∈ ZN\0.

3. Q{gσ1, · · · , gσN} = g · (Q{σ1, · · · , σN}) for all g ∈ SLN (Z).

Then is the space Ph(Ck,l[M, X]) non-zero? If the space Ph(Ck,l[M, X]) is non-
zero, then we can define the Hecke operator on them as introduced in Section 3.1.
So can we find the eigenvectors and the eigenvalues for Tm?

For this question, we don’t have an answer in general. But we have found some
examples when N = 3. The Theorem 2.2.9 shows that the map

Ph(Ck,l[M, X]) → Ck,l[M, X]

Q(σ,M,X) 7→ Q(Id,M,X)

is injective. Hence Ph(Ck,l[M, X]) is a finite dimensional vector space over C. In
the following, we will denote Q(Id,M,X) by Q(M,X). Then the question 5.5.1
reduces to a purely algebraic problem. According to the extension theorem 2.2.9, it
is equivalent to find all the polynomials in Ck,l[M, X] such that

Q(M,X)−

1 0 a

0 1 b

0 0 c

·Q(M,X)+

1 0 a

0 0 b

0 1 c

·Q(M,X)−

0 0 a

1 0 b

0 1 c

·Q(M,X) = 0.

(5.57)
for all non-zero (a, b, c) with a, b, c ∈ {0,±1}. Here if the determinant of matrix σ is
0, then we assume that σ ·Q(M,X) = 0. Then it is computable by PARI/GP. We
will give some computational results below.

Example 5.5.2. Charollois found some instances of Ph(Ck,l[X]) for small values
of k and l = 0. For example, he found that dim(Ph(C10,0[X])) = 1 and is generated
by the polynomial

Q3(X1, X2, X3) =(−X2
2 +X2

3 )X
8
1 + (3X4

2 − 3X4
3 )X

6
1 + (−3X6

2 + 3X6
3 )X

4
1

+ (X8
2 −X8

3 )X
2
1 + (−X2

3X
8
2 + 3X4

3X
6
2 − 3X6

3X
4
2 +X8

3X
2
2 ).

(5.58)

Moreover, the associated cocycle Q3(σ,X) is an eigenvector of Tm with eigenvalue
as shown in the table below which doesn’t depend on σ. All the data are computed
by PARI/GP.

Charollois observed that when m = p is a prime number, then the eigenvalue
seems to be pτ(p) + 1 where τ(p) is the p-th coefficient of the Ramanujan Delta
function.
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eigenvalue T2 T3 T4 T5 T7 T8 T9 T11

Q3 -47 757 -5935 24151 -117207 669905 -1022030 5880733

Table 5.1: Eigenvalues for Q3

More general, we also computed some vector spaces Ph(Ck,l[M, X]) for l = 2. Let

M =

 0 a −b
−a 0 c

b −c 0

. We found that the vector spaces Ph(C4,2[M, X]),Ph(C6,2[M, X])

are of dimension 1 and are generated by the following polynomials respectively:

QG4(M,X) = (a2−b2)X4
1 +(2cbX2−2caX3)X

3
1 +((b2−c2)X2

2 +(−a2+c2)X2
3 )X

2
1 +(−2cbX3

2 +

2caX3
3 )X1 + ((−a2 + c2)X4

2 + 2baX3X
3
2 + (a2 − b2)X2

3X
2
2 − 2baX3

3X2 + (b2 − c2)X4
3 ),

QG6(M,X) = (a2 − b2)X6
1 + (2cbX2 − 2caX3)X

5
1 + (−c2X2

2 + c2X2
3 )X

4
1 + (b2X4

2 − a2X4
3 )X

2
1 +

(−2cbX5
2 +2caX5

3 )X1+((−a2+ c2)X6
2 +2baX3X

5
2 − b2X2

3X
4
2 +a2X4

3X
2
2 −2baX5

3X2+(b2− c2)X6
3 ).

The spaces Ph(C8,2[M, X]),Ph(C10,2[M, X]) are of dimension 2. The generators
of Ph(C8,2[M, X]) are

QG8(M,X) = (a2 − b2)X8
1 + (2cbX2 − 2caX3)X

7
1 + (−c2X2

2 + c2X2
3 )X

6
1 + (b2X6

2 − a2X6
3 )X

2
1 +

(−2cbX7
2 +2caX7

3 )X1+((−a2+ c2)X8
2 +2baX3X

7
2 − b2X2

3X
6
2 +a2X6

3X
2
2 −2baX7

3X2+(b2− c2)X8
3 ),

Q
(1)
∆ (M,X) = (−a2+b2)X8

1+(16cbX2−16caX3)X
7
1+((−18b2+28c2)X2

2+(18a2−28c2)X2
3 )X

6
1+

(−72cbX3
2 + 72caX3

3 )X
5
1 + ((45b2 − 45c2)X4

2 + (−45a2 + 45c2)X4
3 )X

4
1 + (72cbX5

2 − 72caX5
3 )X

3
1 +

((−28b2 +18c2)X6
2 +(28a2 − 18c2)X6

3 )X
2
1 +(−16cbX7

2 +16caX7
3 )X1 +((a2 − c2)X8

2 +16baX3X
7
2 +

(−18a2 + 28b2)X2
3X

6
2 − 72baX3

3X
5
2 + (45a2 − 45b2)X4

3X
4
2 + 72baX5

3X
3
2 + (−28a2 + 18b2)X6

3X
2
2 −

16baX7
3X2 + (−b2 + c2)X8

3 ).

The generators of Ph(C10,2[M, X]) are

QG10(M,X) = (a2−b2)X10
1 +(−2caX3+2cbX2)X

9
1 +(c2X2

3 −c2X2
2 )X

8
1 +(−a2X8

3 +b2X8
2 )X

2
1 +

(2caX9
3 −2cbX9

2 )X1+((b2− c2)X10
3 −2baX2X

9
3 +a2X2

2X
8
3 − b2X8

2X
2
3 +2baX9

2X3+(−a2+ c2)X10
2 ),

Q
(2)
∆ (M,X) = (−4a2 + 4b2)X10

1 + (32cbX2 − 32caX3)X
9
1 + ((−75b2 − 36c2)X2

2 + (75a2 +

36c2)X2
3 )X

8
1+(−100cbX3

2+100caX3
3 )X

7
1+((210b2+175c2)X4

2+(−210a2−175c2)X4
3 )X

6
1+((−175b2−

210c2)X6
2 + (175a2 + 210c2)X6

3 )X
4
1 + (100cbX7

2 − 100caX7
3 )X

3
1 + ((36b2 + 75c2)X8

2 + (−36a2 −

75c2)X8
3 )X

2
1 + (−32cbX9

2 + 32caX9
3 )X1 + ((4a2 − 4c2)X10

2 + 32baX3X
9
2 + (−75a2 − 36b2)X2

3X
8
2 −

100baX3
3X

7
2 +(210a2+175b2)X4

3X
6
2 +(−175a2−210b2)X6

3X
4
2 +100baX7

3X
3
2 +(36a2+75b2)X8

3X
2
2 −

32baX9
3X2 + (−4b2 + 4c2)X10

3 ).
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The space Ph(C12,2[M, X]) is of dimension 3 which is generated by

QG12(M,X) = (a2 − b2)X12
1 + (−2caX3 + 2cbX2)X

11
1 + (c2X2

3 − c2X2
2 )X

10
1 + (−a2X10

3 +

b2X10
2 )X2

1+(−2caX11
3 +2cbX11

2 )X1+((b2−c2)X12
3 −2baX2X

11
3 +a2X2

2X
10
3 −b2X10

2 X2
3+2baX11

2 X3+

(−a2 + c2)X12
2 ),

Q
(3)
∆ (M,X) = (−36a2 +36b2)X12

1 +(−72cbX2 +72caX3)X
11
1 +((−691b2 +36c2)X2

2 +(691a2 −
36c2)X2

3 )X
10
1 + (1382cbX3

2 − 1382caX3
3 )X

9
1 + ((2073b2 − 691c2)X4

2 + (−2073a2 + 691c2)X4
3 )X

8
1 +

(−4146cbX5
2 + 4146caX5

3 )X
7
1 + ((−2073b2 + 2073c2)X6

2 + (2073a2 − 2073c2)X6
3 )X

6
1 + (4146cbX7

2 −
4146caX7

3 )X
5
1 + ((691b2 − 2073c2)X8

2 + (−691a2 +2073c2)X8
3 )X

4
1 + (−1382cbX9

2 +1382caX9
3 )X

3
1 +

((−36b2 + 691c2)X10
2 + (36a2 − 691c2)X10

3 )X2
1 + (72cbX11

2 − 72caX11
3 )X1 + ((36a2 − 36c2)X12

2 −
72baX3X

11
2 + (−691a2 + 36b2)X2

3X
10
2 + 1382baX3

3X
9
2 + (2073a2 − 691b2)X4

3X
8
2 − 4146baX5

3X
7
2 +

(−2073a2 + 2073b2)X6
3X

6
2 + 4146baX7

3X
5
2 + (691a2 − 2073b2)X8

3X
4
2 − 1382baX9

3X
3
2 + (−36a2 +

691b2)X10
3 X2

2 + 72baX11
3 X2 + (−36b2 + 36c2)X12

3 ),

Q
(1)
f16

(M,X) = (2a2 − 2b2)X12
1 + (−48cbX2 + 48caX3)X

11
1 + ((42b2 − 132c2)X2

2 + (−42a2 +

132c2)X2
3 )X

10
1 +(280cbX3

2−280caX3
3 )X

9
1+((−165b2+315c2)X4

2+(165a2−315c2)X4
3 )X

8
1+(−528cbX5

2+

528caX5
3 )X

7
1+((308b2−308c2)X6

2+(−308a2+308c2)X6
3 )X

6
1+(528cbX7

2−528caX7
3 )X

5
1+((−315b2+

165c2)X8
2 + (315a2 − 165c2)X8

3 )X
4
1 + (−280cbX9

2 +280caX9
3 )X

3
1 + ((132b2 − 42c2)X10

2 + (−132a2 +

42c2)X10
3 )X2

1 +(48cbX11
2 −48caX11

3 )X1+((−2a2+2c2)X12
2 −48baX3X

11
2 +(42a2−132b2)X2

3X
10
2 +

280baX3
3X

9
2+(−165a2+315b2)X4

3X
8
2−528baX5

3X
7
2+(308a2−308b2)X6

3X
6
2+528baX7

3X
5
2+(−315a2+

165b2)X8
3X

4
2 − 280baX9

3X
3
2 + (132a2 − 42b2)X10

3 X2
2 + 48baX11

3 X2 + (2b2 − 2c2)X12
3 ).

We also computed that dim(Ph(C14,2[M, X])) = 3. In a basis of eigenvectors,
one of them corresponds to G14, one of them corresponds to the Hecke eigenform f16

of weight 16, and the other one corresponds to the Hecke eigenform f18 of weight 18.
We checked in the range m ≤ 32 that all of these polynomials are the eigenvectors
of Tm with eigenvalue as shown in the following table:

Q

eigenvalues Tm T2 T3 T4 T5 T7 T8

QG4 73 757 4745 15751 117993 304265
QG6 265 6589 67913 390751 5765145 17386313
QG8 1033 59077 1057865 9765751 282475593 1083254345
QG10 4105 531469 16814153 16814153 244140751 68870771273
QG12 16393 4782997 268582985 6103515751 678223073193 4400463626825
Q

(1)
∆ -47 757 -5935 24151 -117207 669905

Q
(2)
∆ -95 2269 -23647 120751 -820455 5383073

Q
(3)
∆ -191 6805 -94399 603751 -5743191 43159361

Q
(1)
f16

433 -10043 55985 260551 19757193 -32568655

Table 5.2: Eigenvalues for the polynomials Q in low degrees
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The reason to index these polynomials by modular forms is that the eigenvalues
are related to the coefficients of modular forms for SL2(Z). Let λGk

(m) be the
eigenvalue of QGk

(σ,M,X) respect to Tm and λ
(t)
f (m) be the eigenvalue of Q(t)

f

respect to Tm for t ∈ Z. We computed all the eigenvalues of Tm for m ≤ 32, and
the following formulas for λGk

(m) and λ
(t)
f (m) are true for m ≤ 32:

λGk
(m) =

∑
d|m

d3σk−1(d), (5.59)

λ
(t)
f (m) =

∑
d|m

dtaf (d). (5.60)

More generally, for any even integer k ≥ 4, the polynomial
QGk (M,X) = (a2 − b2)Xk

1 + (2cbX2 − 2caX3)X
k−1
1 + (−c2X2

2 + c2X2
3 )X

k−2
1 + (b2Xk−2

2 −

a2Xk−2
3 )X2

1 +(−2cbXk−1
2 +2caXk−1

3 )X1+((−a2+c2)Xk
2 +2baX3X

k−1
2 −b2X2

3X
k−2
2 +a2Xk−2

3 X2
2 −

2baXk−1
3 X2 + (b2 − c2)Xk

3 ),

seems can be extended to a cocycle QGk
(σ,M,X). It seems that the polynomials

QGk
(σ,M,X) are eigenvectors of Tm with eigenvalues given by (5.59).

If the formulas (5.59) and (5.60) are true for any m, then we can associate the
eigenvalues λ(t)f (m) an L-function by

L
(t)
Q,f (s) =

∑
m≥1

λ
(t)
f (m)

ms
. (5.61)

We can give a explicit formula for L(t)
Q,f (s) in terms of ζ(s) and L(f, s):

L
(t)
Q,f (s) =

∑
m≥1

∑
d|m

dtaf (d)

ms
=

∑
d1,d2≥1

af (d2)

ds1d
s−t
2

. (5.62)

Hence we have
L
(t)
Q,f (s) = L(f, s− t)ζ(s). (5.63)

For comparison, we recall the L-functions associated to the rational functions ob-
tained in Theorem 5.3.2. In dimension 3,

L
(t)
f (s) = L(f, s)ζ(s− t− 1). (5.64)
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Appendix

The A(N, d)

N
A(N, d) d

1 2 3 4 5 6 7 8 9 10 11 12

2 1 0 0 0 0 0 0 0 0 0 0 0
3 1 2 3 4 5 6 7 8 9 10 11 12
4 1 6 12 28 30 72 56 120 117 180 132 336
5 1 14 39 140 155 546 399 1240 1170 2170 1463 5460

Table 5.3: A(N, d) for small N and d

Examples of P
(t)
G12

When N = 3. Let M =

 0 a b

−a 0 c

−b −c 0

. Then

P
(4)
G12

(M,X) = 1
27·34·5·7·691(aX2+bX3)(bX1+cX2)(aX1−cX3)

(
(26ca6−91c3a4−91c5a2+26c7)X3X

11
2 +

(156cba5−364c3ba3−182c5ba)X2
3X

10
2 +(390cb2a4−546c3b2a2−91c5b2)X3

3X
9
2+(520cb3a3−364c3b3a)X4

3X
8
2+

(−26ca6+390cb4a2−91c3b4)X5
3X

7
2+(−156cba5+156cb5a)X6

3X
6
2+((−390cb2+91c3)a4+26cb6)X7

3X
5
2+

(−520cb3+364c3b)a3X8
3X

4
2+(−390cb4+546c3b2+91c5)a2X9

3X
3
2+(−156cb5+364c3b3+182c5b)aX10

3 X2
2+

(−26cb6 + 91c3b4 + 91c5b2 − 26c7)X11
3 X2 +O(x1)

)
.

P
(6)
G12

(M,X) = 1
28·34·52·691(aX2+bX3)(bX1+cX2)(aX1−cX3)

(
((39a9 − 130b2a7 − 91b4a5 − 130b6a3 +

39b8a)X2 + (39ba8 − 130b3a6 − 91b5a4 − 130b7a2 + 39b9)X3)X
11
1 + · · ·

)
.

P
(8)
G12

(M,X) = 1
29·34·52·11·691(aX2+bX3)(bX1+cX2)(aX1−cX3)

(
((130a11−429b2a9−286b4a7−286b6a5−

429b8a3)X2 + (−429b3a8 − 286b5a6 − 286b7a4 − 429b9a2 + 130b11)X3)X
11
1 + · · ·

)
.



5Appendix

Examples of P
(t)
∆

When N = 4. Let σ = Id and M =


0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

. Proposition 5.2.11

shows that P (t)
∆ (M,X) is zero for t > 10 and for t < −2. Proposition 5.2.12 and

Proposition 5.2.13 show that P (t)
∆ (M,X) is non-zero for t = −2, 0, 1, · · · , 10 except

5. In fact, with the help of PARI, we can verify that P (−1)
∆ (M,X) and P

(5)
∆ (M,X)

are also non-zero:
P

(−1)
∆ (M,X) = 1

23·32·52·7·691X1X2X3X4(aX2+bX3+cX4)(−aX1+dX3+eX4)(−bX1−dX2+fX4)(−cX1−eX2−fX3)

(
(ca2X3+

X4ba
2)X3

2 +(2cbaX2
3 +(X4a

3 +(2X4b
2 +2X4c

2)a)X3 +2X2
4 cba)X

2
2 +(cb2X3

3 +(2X4ba
2 +(X4b

3 +

2X4c
2b))X2

3+(2X2
4 ca

2+(2X2
4 cb

2+X2
4 c

3))X3+X3
4 c

2b)X2+(X4b
2aX3

3+2X2
4 cbaX

2
3+X3

4 c
2aX3)X

12
1 +

· · · ).

P
(5)
∆ (M,X) = 1

24·3·52·691X1X2X3X4(aX2+bX3+cX4)(−aX1+dX3+eX4)(−bX1−dX2+fX4)(−cX1−eX2−fX3)

(
(−cba7X2

2+

((−cb2a6−cb6a2)X3+(−X4c
2ba6−X4c

6ba2))X2+(−cb7aX2
3+(−X4c

2b6−X4c
6b2)aX3−X2

4 c
7ba))X14

1 +

· · · ).
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