

N°d’ordre NNT : 2020LYSEI080

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de

l’INSA de Lyon

Ecole Doctorale N° 512

Mathématiques et Informatique (InfoMaths)

Spécialité/ discipline de doctorat :

Informatique

Soutenue publiquement le 29/09/2020, par :

Romain Mathonat

Rule Discovery in Labeled Sequential
Data: Application to Game Analytics

Devant le jury composé de :

Atzmüller, Martin Professeur, Osnabrueck University Rapporteur

Termier, Alexandre Professeur, Université Rennes 1 Rapporteur

Amer-Yahia, Sihem Directrice de recherche, CNRS Examinatrice

Forestier, Germain Professeur, Université de Haute-Alsace Examinateur

Laurent, Anne Professeure, Université de Montpellier Examinatrice
Raïssi, Chedy Chargé de recherche, INRIA et UBISOFT Examinateur

Boulicaut, Jean-

François

Professeur, INSA-LYON Directeur de

thèse

Kaytoue, Mehdi Maître de conférences HDR, INSA-LYON et

INFOLOGIC R&D
Co-directeur

de thèse

Département FEDORA – INSA Lyon - Ecoles Doctorales – Quinquennal 2016-2020

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

CHIMIE CHIMIE DE LYON

http://www.edchimie-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
secretariat@edchimie-lyon.fr
INSA : R. GOURDON

M. Stéphane DANIELE
Institut de recherches sur la catalyse et l’environnement de Lyon
IRCELYON-UMR 5256
Équipe CDFA
2 Avenue Albert EINSTEIN
69 626 Villeurbanne CEDEX
directeur@edchimie-
lyon.fr

E.E.A. ÉLECTRONIQUE,
ÉLECTROTECHNIQUE,
AUTOMATIQUE

http://edeea.ec-lyon.fr
Sec. : M.C. HAVGOUDOUKIAN
ecole-doctorale.eea@ec-lyon.fr

M. Gérard SCORLETTI
École Centrale de Lyon
36 Avenue Guy DE COLLONGUE
69 134 Écully
Tél : 04.72.18.60.97 Fax 04.78.43.37.17
gerard.scorletti@ec-lyon.fr

E2M2 ÉVOLUTION, ÉCOSYSTÈME,
MICROBIOLOGIE,
MODÉLISATION

http://e2m2.universite-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
INSA : H. CHARLES
secretariat.e2m2@univ-lyon1.fr

M. Philippe NORMAND
UMR 5557 Lab. d’Ecologie Microbienne
Université Claude Bernard Lyon 1
Bâtiment Mendel
43, boulevard du 11 Novembre 1918
69 622 Villeurbanne CEDEX
philippe.normand@univ-lyon1.fr

EDISS INTERDISCIPLINAIRE
SCIENCES-SANTÉ

http://www.ediss-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
INSA : M. LAGARDE
secretariat.ediss@univ-lyon1.fr

Mme Sylvie RICARD-BLUM
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
(ICBMS) - UMR 5246 CNRS - Université Lyon 1
Bâtiment Curien - 3ème étage Nord
43 Boulevard du 11 novembre 1918
69622 Villeurbanne Cedex
Tel : +33(0)4 72 44 82 32
sylvie.ricard-blum@univ-lyon1.fr

INFOMAT
HS

INFORMATIQUE ET
MATHÉMATIQUES

http://edinfomaths.universite-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
Tél : 04.72.43.80.46
infomaths@univ-lyon1.fr

M. Hamamache KHEDDOUCI
Bât. Nautibus
43, Boulevard du 11 novembre 1918
69 622 Villeurbanne Cedex France
Tel : 04.72.44.83.69
hamamache.kheddouci@univ-lyon1.fr

Matériau
x

MATÉRIAUX DE LYON

http://ed34.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Tél : 04.72.43.71.70
Bât. Direction
ed.materiaux@insa-lyon.fr

M. Jean-Yves BUFFIÈRE
INSA de Lyon
MATEIS - Bât. Saint-Exupéry
7 Avenue Jean CAPELLE
69 621 Villeurbanne CEDEX
Tél : 04.72.43.71.70 Fax : 04.72.43.85.28
jean-yves.buffiere@insa-lyon.fr

MEGA MÉCANIQUE, ÉNERGÉTIQUE,
GÉNIE CIVIL, ACOUSTIQUE

http://edmega.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Tél : 04.72.43.71.70
Bât. Direction
mega@insa-lyon.fr

M. Jocelyn BONJOUR
INSA de Lyon
Laboratoire CETHIL
Bâtiment Sadi-Carnot
9, rue de la Physique
69 621 Villeurbanne CEDEX
jocelyn.bonjour@insa-lyon.fr

ScSo ScSo *

http://ed483.univ-lyon2.fr
Sec. : Véronique GUICHARD
INSA : J.Y. TOUSSAINT
Tél : 04.78.69.72.76
veronique.cervantes@univ-lyon2.fr

M. Christian MONTES
Université Lyon 2
86 Rue Pasteur
69 365 Lyon CEDEX 07
christian.montes@univ-lyon2.fr

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

Remerciements

Je remercie Alexandre Termier, Professeur à l’Université de Rennes et Martin Atzmüller, Pro-
fesseur à l’université d’Osnabrueck, d’avoir accepté le rôle de rapporteur de ma thèse, ainsi que
leur travail de lecture approfondi et intéressé.

Je remercie également Sihem Amer-Yahia, directrice de recherche CNRS, Germain Forestier,
Professeur à l’Université de Haute-Alsace, Anne Laurent, Professeur à l’Université de Montpel-
lier, et Chedy Raïssi, chargé de recherche à l’INRIA et directeur du pôle Science des Données
chez Ubisoft, pour leur participation au jury de thèse, ainsi que l’intérêt porté à ce travail de
trois années.

Je remercie vivement l’entreprise Atos qui m’a accueillie durant ces trois années afin d’appliquer
le fruit de mes recherches à des cas d’études industriels concrets, et en particulier Christophe
Boulard pour sa bienveillance.

Concernant mon encadrement scientifique je remercie tout d’abord Jean-François Boulicaut.
Premièrement, pour avoir accepté de travailler avec un jeune un peu taquin et obstiné. Deux-
ièmement, pour m’avoir fait confiance et partagé tes expériences afin de me guider dans cette
expérience si particulière qu’est la thèse. Enfin, et de manière plus générale, merci pour ta bi-
enveillance, ta franchise, ta sensibilité et ton soutien. Je remercie ensuite Mehdi Kaytoue, pour
ton encadrement scientifique pointu qui m’a aidé à me sortir de situations délicates. Merci de
m’avoir apporté une autre vision qui m’a permis d’acquérir une certaine prise de recul vis-à-vis
de mon travail et de la science en général. Merci aussi pour ta confiance, ta considération à mon
égard, et la possibilité que tu m’as accordée de pouvoir arbitrer mes propres choix. Enfin merci
de m’avoir proposé une nouvelle aventure, où nous allons continuer de travailler ensemble.

Je remercie tous les doctorant(e)s et docteur(e)s que j’ai rencontrés, avec qui les échanges
ont très souvent été enrichissants. Je remercie en particulier Mohamed et Tarek qui très tôt dans
la thèse m’ont permis de prendre du recul vis-à-vis de celle-ci. Je salue aussi Adnane, Aimene,
Alexandre, Anes, Corentin, Marie et tous les autres.

J’embrasse mes amis proches pour leur soutien et leur amitié : Nicolas, Pauline, Yoan,
Aurélie, Guillaume, rencontrés à l’INSA, Morgan, Alexis, Lucas, Pierre, rencontrés bien avant,
parmi tant d’autres.

Bien sûr je remercie toute ma famille, qui m’a toujours supporté, et soutenu, en particulier
mes parents, qui m’ont apporté beaucoup d’amour. Merci du fond du coeur.

La thèse a été une expérience très riche, qui aura probablement eu une influence positive
sur la personne que je suis devenu, mais elle est aujourd’hui officiellement terminée. Cependant
il y a un évènement important qui restera et a eu lieu durant cette thèse, c’est la rencontre
avec une personne formidable, qui m’a soutenu et supporté au jour le jour ces dernières années.
Cette personne c’est Diana, ma chère Diana, je te le dis avec mon plus bel accent russe : � teb�

l�bl�.
Enfin je tiens à remercier ma merveilleuse grand-mère Marguerite, qui m’a encouragé à me

lancer dans cette aventure. Mon seul regret aura été que tu ne sois plus là aujourd’hui pour que
nous fêtions cet évènement ensemble.

Au fond, on ne sait que lorsqu’on sait peu. Avec le savoir croît le doute.
Johann Wolfgang von Goethe

iii

iv

Contents

1 Introduction 5

1.1 Context . 5

1.2 Supervised rule discovery . 6

1.3 Contributions . 7

1.3.1 Bandit model and Monte Carlo tree search for supervised rule discovery
in sequences of itemsets . 7

1.3.2 Monte Carlo tree search for supervised rule discovery in high dimensional
numerical data . 8

1.3.3 Application to player behaviour detection in game analytics 8

1.4 Structure of the thesis . 9

1.5 List of publications . 11

2 Supervised Rule Discovery 13

2.1 Introducing pattern mining task . 13

2.1.1 A simple formalisation . 13

2.1.2 Apriori and extracting association rules 14

2.2 Supervised rule discovery: problem definition . 17

2.3 Search space exploration strategies . 20

2.3.1 Enumeration-based methods . 20

2.3.2 Extracting rules from predictive global modeling 21

2.3.3 Heuristic Methods . 23

2.4 Supervised Rule Discovery for sequences . 25

2.4.1 Sequential pattern mining . 25

2.4.2 Extracting interesting rules from sequential data 27

1

Contents

2.5 Conclusion . 28

3 Bandit Models and Monte Carlo Tree Search 29

3.1 Multi-armed Bandit Model . 29

3.1.1 Problem settings . 29

3.1.2 Exploitation-exploration tradeoff . 30

3.2 Monte Carlo Tree Search . 30

3.2.1 Game Theory . 30

3.2.2 Method . 32

3.2.3 Applications . 35

3.3 Conclusion . 35

4 Mining interesting rules from sequences of itemsets 39

4.1 Background . 39

4.2 SeqScout: SEQuential patterns Scouting . 40

4.2.1 Adapting the multi armed bandit model to subsequence mining 40

4.2.2 SELECT Policy: Sequence Selection . 41

4.2.3 ROLLOUT Policy: Subsequence Generalization 43

4.2.4 Filtering step . 43

4.2.5 Local optimum search . 43

4.2.6 Quality Measure Selection . 44

4.2.7 Efficient Computation of Quality Scores 44

4.3 MCTSExtent . 45

4.3.1 Applying MCTS in a bottom-up way . 45

4.3.2 Algorithm Description . 45

4.3.3 Example . 46

4.3.4 Computing a Longest Common Subsequence 46

4.4 Experiments . 52

4.4.1 Datasets . 52

4.4.2 Baselines . 52

4.4.3 Settings . 53

2

4.4.4 Performance Evaluation using WRAcc . 53

4.4.5 Quality w.r.t. Number of Iterations . 54

4.4.6 Using other Quality Measures . 54

4.4.7 Performance Study under Varying θ . 54

4.4.8 Performance Study under Varying top-k 59

4.4.9 Sequence Lengths . 59

4.4.10 Non Diversified Beam Search . 59

4.4.11 Bitset vs. Integer Set Representation . 59

4.4.12 Local Optima Search . 60

4.5 Conclusion . 60

5 Mining Interval patterns in high dimensional numerical data 63

5.1 Introduction . 63

5.2 Supervised Rule Discovery in Numerical Data 64

5.3 Closed on the Positive Interval Patterns . 65

5.4 MonteCloPi: Monte carlo tree search on Closed on the PosItives 66

5.4.1 Applying MCTS in a bottom-up way on interval patterns 66

5.4.2 SELECT Policy: numerical object selection 66

5.4.3 EXPAND Policy: meet with positive object 68

5.4.4 ROLLOUT policy: interval pattern generalization 68

5.4.5 UPDATE . 69

5.4.6 Adaptation of MonteCloPi for Time Series of Different Lengths. 69

5.5 Related Work . 69

5.6 Quantitative Experimental Study . 70

5.6.1 Datasets . 70

5.6.2 Baselines . 71

5.6.3 Overall Performance . 72

5.6.4 Varying Time Budget . 72

5.6.5 Classification Performance . 73

5.7 Conclusion . 74

3

Contents

6 Application to Game Analytics: player behaviour detection 77

6.1 Introduction . 77

6.2 Data and Methodology . 78

6.2.1 Skill inventory . 79

6.2.2 Data collection and Feature Selection . 79

6.2.3 Merging with inputs data . 80

6.2.4 Interesting rules discovery . 81

6.2.5 Dataset re-encoding . 84

6.3 Related Work . 84

6.4 Experiments . 85

6.4.1 Dataset . 86

6.4.2 Experimental setup . 86

6.4.3 Influence of the number of mined patterns 87

6.4.4 Pattern quality w.r.t. accuracy . 87

6.4.5 Impact of diversity on accuracy . 87

6.4.6 Predictive performance of the method . 87

6.4.7 Comparison to 1-NN DTW . 88

6.4.8 Using numerical variables only . 88

6.4.9 Classify goals . 88

6.4.10 Performances of MonteCloPi . 89

6.4.11 Pattern interpretability . 89

6.5 Discussion . 90

7 Conclusion 93

7.1 Summary . 93

7.2 Perspectives . 94

7.2.1 Improving MCTSExtent and MonteCloPi 94

7.2.2 Going further with the Rocket League use case 95

Bibliography 97

4

Chapter 1

Introduction

1.1 Context

This thesis has been completed in collaboration with Atos, an IT services and consulting com-
pany. One of the specificity of the work with such a company in terms of research projects is
that interesting use cases often originate externally, coming from Atos’ clients. Nevertheless,
Atos aims at capitalizing on data science methods, knowledge and results, in order to potentially
apply the developed solutions to other clients. This exhibits the requirement for genericity of
methods we were going to propose. To do so, we first had to prospect the needs of different
industrial clients, in order to identify similar needs to work on. Two important points have been
isolated.

First, it was clear that there is a need for a better understanding of existing systems. Indeed,
whether it is for a door opening system on trains, or the cloud environment maintenance of a
company, clients want to understand the cause of different events. Particularly, they want to
isolate causes of failures. Second, they also want to be able to predict those failures, but without
using black box models: they want their tools to provide interpretable predictions. Indeed,
domain experts already predict some failures, but they want their expertise to be boosted,
instead of being replaced. They want to validate proposed predictions, with justification, with
a human in the loop, whether it is due to the lack of trust in “AI” systems, or legal constraints,
or simply to improve system reliability.

A promising approach to tackle these two problems is the use of pattern mining [54]. Roughly
speaking, it consists in exploring and extracting interesting patterns, i.e., descriptions, from data.
The language for descriptions is, by design, readable and interpretable by analysts and data
owners, which makes this approach appealing. Moreover, using relevant discriminative quality
measures to assess patterns quality will help us find patterns both explaining and predicting a
given class.

In this industrial context, the main data types we encountered are sequences and time series:
systems evolve over time, and at some point an event fires. The prediction of failures in a
cloud environment offers an illustrative example of such an industrial use case. Data generated
by such a system are sequences of events, and can be labeled with failures, i.e., presence or
absence of a breakdown. Applying classification techniques helps answering to the question:
“will a failure event occur?” (e.g., [131]), while applying sequential event prediction helps
determining “what is the next event to occur?” (e.g., [81]). Nevertheless, another need is to

5

https://atos.net/

Chapter 1. Introduction

explain, or at least, to provide hypotheses on the why. Given data sequences, labeled with
classes, we aim at automatically finding discriminative patterns for these classes. Considering
this cloud environment example, the goal would be to compute patterns “that tend to occur
with breakdowns”. Such patterns provide valuable hypotheses for a better understanding of the
target system. Once validated by domain experts, the patterns can then be used to support
maintenance planning tasks.

In this Thesis, due to confidentiality requirements, we are not going to focus on Atos clients
use cases. Note also that our work on urban farming (growing plants in controlled environment)
with a client of Atos is an exception, and resulted in a publication [91] that we are not going to
detail here. In what follows, we will present algorithms to tackle generic problems. However, in
order to assess the relevancy of proposed approaches, we will introduce a difficult game analytics
use case based on the game Rocket League1. This choice has been motivated by my interest
in this use case, the fact that I have an expertise in this game, and that the DM2L research
team of LIRIS lab in which I am working already has an expertise in game analytics domain
[23], [29], [30]. We will show that we can collect and process data in time series format, and
that we can use them to extract interesting patterns characteristic of players behaviour in-game.
Those patterns can then be used to classify those behaviours in real-time, which is of interest to
different actors: players, analysts, game editor and e-sport teams.

1.2 Supervised rule discovery

The general problem we address in this Thesis is to find interpretable rules extracted from
a dataset, composed of conjunctions of restrictions on different variables, in order to extract
knowledge for a variable of interest. This can be illustrated by the following simplistic example.
Suppose we are looking for lung cancer risk factors, i.e., the rules such as:

age ≥ 72 ∧ smoke = True→ LungCancer = True

Being able to extract such hypotheses from data is of great value to present to experts for
further validation. Moreover, as we will explain in more details in the following, we are interested
in finding the set of the best non-redundant rules. Informally, two rules are non-redundant if the
sets of data they appear in are disjoint enough. Our motivation is twofold. First, extracting
redundant rules often comes with extracting too much of them, each being a small variation of
another. This confuses the end user and decreases her trust in the method. Second, it helps
reducing discovery of false hypotheses.

Indeed, by construction, keeping only non-redundant rules will keep only those of highest
quality, removing those which are similar, i.e., covering a similar set of data. As a fictional
example, let us assume that we find rules smoke = True→ LungCancer = True and Sport =
False→ LungCancer = True. In general, people practicing sport do not smoke (or smoke less
than no-sport practitioners). If the (hypothetical) ground truth is that it is smoking that causes
lung cancer, the rule Sport = False→ LungCancer = True is less interesting, and could lead
to a false hypothesis. Indeed, practicing sport would not decrease lung cancer chances per se,
but is negatively co-occurring with smoking, leading to the discovery of this rule which is not
really isolating the true reason. Under hypotheses that data are of correct quality, and that
rule quality can be assessed by a good measure, i.e., it will foster the rule smoke = True →
LungCancer = True, the non-redundancy will help removing this kind of false hypotheses.

1https://www.rocketleague.com/

6

https://liris.cnrs.fr/equipe/dm2l
https://www.rocketleague.com/

1.3. Contributions

Table 1.1: Results of success of treatment A and treatment B, discerning cases on calculi size

Treatment A Treatment B
Calculi ≤2cm 81/87 = 93% 234/270 = 87%
Calculi > 2cm 192/263 = 73% 55/80 = 69%

Total 273/350 = 78% 289/350 = 83%

Another important component of knowledge discovery is the place of the domain expert.
Some methods are purely based on data, and one could think of it as a replacement for the
expert. However, in our work, we consider proposed methods not as a replacement, but as a
tool to boost expert knowledge. This can be illustrated through the example of the Simpson
paradox [118], on a case of renal calculi treatment [31], with the analysis inspired by [83].
The aim of this study was to evaluate the impact of different treatments on renal calculi. For
simplification, let us consider only two among four experimented treatments, that we are going
to call “Treatment A” for open surgery and “Treatment B” for percutaneous nephrolithotomy.
If we do not consider expert knowledge, data tell us that Treatment A was successful in 78% of
cases, and Treatment B in 83% of cases. Those results, of course, would make us recommend
Treatment B, which gave better results. However, incorporating domain expert knowledge in
the analysis would have helped us avoiding an important bias. Indeed, the experimental studies
were performed on different groups, introducing a bias: depending on the size of calculi, methods
were applied in different proportions. Detailed results are given in Table. 1.1.

As we can see, if we consider a more precise data description, i.e., considering the case of
calculi of size greater or less than two centimeters, we can see that Treatment A is the best
for the first case, with 93% of success. However, it is also the best for the second case. We
then have two local descriptive rules showing that A is the best treatment, whereas globally,
the B treatment seems to give better results. This paradox can be explained by the following:
treatment A was more often applied in the case of calculi measuring more than two centimeters.
Chances of success were clearly less in this case, whatever the treatment was, leading to a worse
metric for treatment A: it is easy to make a treatment look better than it really is by “cherry
picking” cases to which to apply, selecting the easier ones.

Note that when considering very specific subsets of data, one can imagine always finding very
local rules that would say the contrary of the reality of the underlying phenomena, whether due
to statistical randomness, or incorrectness with the method used to collect data. This problem
leads to the question of isolating causality. This is not the subject of this Thesis, but interested
reader can refer to the work of Judea Pearl on causality [102].

Due to this very complex problematic, methods proposed in this Thesis are not claiming
to directly isolate causes, but to propose hypotheses extracted from data, that would require
further studies with expert knowledge in order to validate them.

1.3 Contributions

1.3.1 Bandit model and Monte Carlo tree search for supervised rule discovery
in sequences of itemsets

Labeled sequential data are ubiquitous. This makes supervised rule discovery applicable to many
application domains, for instance, text or video data analysis [98], industrial process supervision

7

Chapter 1. Introduction

[133], biomedical genomics sequential data analysis [116], web usage mining [105], video game
analytics [23], etc.

The problem of finding interesting rules in sequences of itemsets has attracted few atten-
tion. In particular, methods are often focusing on sequences of items, or are dependent on the
quality measure used to assess rule qualities. Existing methods also often focus either on explo-
ration of search space, i.e., sampling methods, or purely on exploitation, i.e., hill-climbing-like
methods. We propose two algorithms, namely SeqScout based on a multi-armed bandit model,
and MCTSExtent, based on the Monte Carlo Tree Search [25]. They present several advantages:
they are independent of the used quality measure, they use a trade-off between exploration and
exploitation, they are quite simple and perform well. Note that their adaptations to our prob-
lems explore, contrary to most of existing methods, the search space of patterns extent, i.e., of
objects covered by rules, in a bottom-up way, whereas traditional approaches explore the search
space of patterns in a top-down way, from the most general description towards specific data
objects. Another important property is that all generated and explored patterns cover at least
one dataset object. This is important when dealing with sequences of itemsets, as the size of
the search space becomes quickly gigantic, and that it contains a large majority of uninteresting
patterns that do not cover any object.

1.3.2 Monte Carlo tree search for supervised rule discovery in high dimen-
sional numerical data

Let us consider the video game data analytics domain. The video game industry generated 134.9
billions of dollars in 2018, a number that keeps growing each year 2, making it an impactful and
interesting domain to work on. Game activities usually provide sequences of time-tagged data
points, i.e., time series. One interesting challenge is then to design efficient and interpretable
prediction models on time series for a variety of tasks (e.g., predicting player behaviour for
game customization or ad placement, user profiling for adaptive skill mastery training, etc.).
We proposed to address the problem of supervised rule discovery in time series as the challeng-
ing problem of supervised rule discovery in high-dimensional numerical data. Indeed, we can
transform the original time series into potentially high-dimensional numerical data, and then
take advantage of the numerical pattern interpretability. We then proposed an algorithm called
MonteCloPi, inspired from MCTSExtent, which explores only closed on the positives patterns
(COTP) [52] [16] reducing the search space size. It consists in a Monte Carlo Tree Search on the
search space of patterns extents in a bottom-up way, with a property of completeness on closed
on the positives if given enough time and if dataset times series have the same length. Moreover,
we showed that integrating such an approach to classify time series presents an advantage of
being able to classify them in real time, contrary to kNN DTW [94], even with time series of
varying lengths.

1.3.3 Application to player behaviour detection in game analytics

In the context of online games, or e-sport, understanding player behaviour is important for
several actors. First, for game creators, collecting data from the use of their product and
analyzing them helps to better understand the players, and then how to better act to improve
the game. Secondly, it is interesting for players and e-sport team in order to understand players

2https://en.wikipedia.org/wiki/Video_game_industry

8

https://en.wikipedia.org/wiki/Video_game_industry

1.4. Structure of the thesis

weaknesses and strengths, to optimize their training, or to better anticipate opponents strategies
and play-styles in future matches. Finally, as e-sport matches have commented games with
public, it is propitious to improve game analysis to deliver a better commentary and to better
explain to the public what is happening. Indeed, when watching professionals playing, whether
in traditional sport or e-sport, it can be difficult for an inexperienced spectator to understand
all rules, strategies, mindsets and plays of players. Commentators and analysts are here to
entertain, but also to explain the different degrees of depths in matches to public, so helping
them in this task is of interest. In particular, here, we focused on the game Rocket League.

Basically, Rocket League is a game where players control a car on a footbal field. Those con-
trols are very precise, and various: turn left, right, jump, double jump, boost, rotate in the air,
etc. Interestingly, matches replays can be stored and de-compiled, so that each match’s infor-
mation can be extracted: players positions, velocity, accelerations, etc, at each game timestamp.
Furthermore, we can collect player inputs to enrich those data. The problem we proposed to
tackle is the automatic discovery and classification of players figures, called “skillshots”. Indeed,
similarly to traditional sport, players can perform particular and characteristic figures to take
advantage on their opponent, like the nutmeg in football, for example. One of the challenges
of this problem is that data contain a lot of noise: as controls of the car are very precise, two
instances of the same skillshot will always be different, even for the same player. In addition to
this noise in player sequences of inputs, contextual information in matches replay also vary: the
ball position and speed will change, as the one of the player etc. Moreover, it is important to
note that skillshots are created by the community, so they evolve through time, and they can
be very complex to understand and perform.

We proposed a method to deal with this problem, using supervised rule discovery for se-
quences. We implemented the full workflow of proposed methodology, from skillshots definition
to skillshot classification, generating, pre-processing and formatting data by our means, making
the resulting dataset open to the community. We showed that proposed workflow gave very
good results, and proposed ways of improvement to bring this kind of method to game analytics
state-of-the-art.

Note that there is a parallel between detecting those skillshots and detecting failures in a
cloud environment. Indeed, scoring a goal constitutes a generic event, which we then classify to
know what “type of goal” it is, just like a occurring failure constitutes a generic event, which
we could classify to know the type of failure we are dealing with.

1.4 Structure of the thesis

This Thesis is organized as follows. Chapter 2 provides the background of pattern mining
and formally defines the supervised rule discovery task. Chapter 3 introduces the multi-arms
bandit problem with one of its solutions, the Upper Confidence Bound (UCB) strategy, and its
evolution, the Monte Carlo Tree Search (MCTS). Those are the methods from game theory that
we are going to exploit in our algorithms to tackle our supervised rule discovery tasks. Chapter
4 presents our first contribution, tackling the problem of supervised rule discovery for sequences
of itemsets. We propose to adapt the UCB strategy and the MCTS to this problem, exploring
the search space of extents of rules in a bottom-up way, and present an empirical study on
several datasets to assess the validity of proposed methods. This contribution has been partially
published in the proceedings of the French conference Extraction et Gestion de Connaissances
EGC’19 [87], a more mature approach has been published in the proceedings of the 6th IEEE

9

Chapter 1. Introduction

International Conference on Data Science and Advanced Analytics DSAA 2019 [89], and an
extended version is currently under review for the journal Knowledge and Information Systems
KAIS. Chapter 5 proposes a solution to address the problem of supervised rule discovery for high
dimensional numerical data and time series. We also used an MCTS approach on the search
space of pattern extent in a bottom-up way, but we take advantage of the notion of closed on
the positive patterns here. We proceed to several batches of experiments to assess the validity
of this method. A paper describing this contribution is currently under review for a major
data mining conference. Chapter 6 presents our use case on the video game Rocket League,
with the goal of classifying users behaviour in real time using their controller inputs as well as
contextual matches information contained in replay files. We present a complete workflow that
we implemented, from the data collection task to the prediction, using expert knowledge and
supervised rule discovery. This application has been published in the proceeding of the 2020
IEEE Conference on Games COG 2020 [88]. Finally, Chapter 7 concludes the Thesis and gives
several perspectives for further research.

10

1.5. List of publications

1.5 List of publications

Peer-reviewed international conferences with proceedings:

• Romain Mathonat, Jean-François Boulicaut, Mehdi Kaytoue: A behavioral pattern min-
ing approach to model players skills in Rocket League. In 2020 IEEE Conference on Games,
COG 2020, Kindai University, Osaka, Japan, August 2020, 8 pages

• Alexandre Millot, Romain Mathonat, Rémy Cazabet, Jean-François Boulicaut: Action-
able Subgroup Discovery and Urban Farm Optimization. In Advances in Intelligent Data
Analysis XVIII - 18th International Symposium on Intelligent Data Analysis, IDA 2020,
Konstanz, Germany, April 27-29, 2020, Proceedings: 339-351

• Romain Mathonat, Diana Nurbakova, Jean-François Boulicaut, Mehdi Kaytoue: Se-
qScout: Using a Bandit Model to Discover Interesting Subgroups in Labeled Sequences.
In 2019 IEEE International Conference on Data Science and Advanced Analytics, DSAA
2019, Washington, DC, USA, October 5-8, 2019: 81-90

Peer-reviewed international workshops:

• Romain Mathonat, Jean-Francois Boulicaut and Mehdi Kaytoue: A Behavioral Pattern
Mining Approach to Model Player Skills in Rocket League. In the Proceeding of the 7th
Workshop on Machine Learning and Data Mining for Sports Analytics co-located with
2020 European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD 2020), Ghent, Belgium, September 14-18, 2020.

Peer-reviewed French national conferences:

• Romain Mathonat, Jean-François Boulicaut, Mehdi Kaytoue: Découverte de sous-
groupes à partir de données séquentielles par échantillonnage et optimisation locale. In
Extraction et Gestion des connaissances, EGC 2019, Metz, France, January 21-25, 2019:
153-164

The following works are currently undergoing the reviewing process:

International journals:

• Romain Mathonat, Diana Nurbakova, Jean-François Boulicaut, Mehdi Kaytoue: Any-
time mining of sequential discriminative patterns in labeled sequences, In Knowledge and
Information Systems Journal. Submited revision under evaluation, 2020.

Peer-reviewed international conferences with proceedings:

• Romain Mathonat, Diana Nurbakova, Jean-François Boulicaut, Mehdi Kaytoue: Any-
time subgroup discovery in high dimensional numerical data, In SIAM International Con-
ference on Data Mining, SDM 2021

11

Chapter 1. Introduction

12

Chapter 2

Supervised Rule Discovery

This chapter aims at introducing supervised rule discovery as well as main definitions we are
going to use in this thesis. In Section 2.1, we introduce the pattern mining task with a pioneer
work of data mining, that influenced the field and inspired further problem formalizations and
resolutions. In Section 2.2 we present definitions and we formalize the generic problem of this
thesis. Then, in Section 2.3, we present general strategies used to solve instances of the problem
presented in the previous section. Finally, in Section 2.4 we instantiate this generic problem to
sequences of itemsets, and present existing works on it.

2.1 Introducing pattern mining task

In this section we introduce the pattern mining task, and illustrate it with the example of
frequent itemset mining, introduced by Agrawal et al. in [1]. Here, we refer to this pioneering
work of the domain in order to facilitate the understanding of the problems tackled in this thesis.

2.1.1 A simple formalisation

The general pattern mining task can be formalized as follows [86]:

Th(S,D, q) = {p ∈ S | q(p,D) is true}

where D is a database of objects, S is the search space of a pattern description language, and
q is a selection predicate. S is the set of all possible patterns that can cover database objects.
The selection predicate is a boolean function indicating if a pattern p satisfies a constraint (or
a combination of constraints).

Definition 1 (Covering relation) For each pattern mining task, there is a relation between
any pattern p from the pattern description language S, and objects o ∈ D. This covering relation
is of the form f : D × S → {false, true}. We will denote it covers(p, o) with p ∈ S and o ∈ D.

Definition 2 (Extent and support) The extent of a pattern is the set of database objects it
covers:

ext(p,D) = {o ∈ D | covers(p, o) is true}

13

Chapter 2. Supervised Rule Discovery

The support of a pattern is the cardinality of its extent:

supp(p,D) = |ext(p,D)|

The support is then the number of objects covered by p.

Often, the search space S is structured. The two following definitions are inspired by Belfodil
in [14]. Interested reader will find there much more details about search spaces formalization,
with an order theory point of view.

Definition 3 (Binary relation) For each pattern mining task, there is a binary relation R ⊆
S2 that is reflexive, transitive and anti-symmetric. We will denote it p R p′ with p, p′ ∈ S2,
meaning p is in relation with p′, in this order.

Definition 4 (Pattern ordering and search space) In this thesis, a search space of pat-
terns S, coupled to a binary relation R, is called a partially ordered set, i.e., not every pair of
S are comparable.

This binary relation will naturally order the search space for each pattern mining task. By
convention, we will represent the search space by putting the pattern > for which the relation
>R p holds for any other pattern p, i.e., the most general pattern, on the top (level 0).

Each level St ⊂ S is defined as follows:

St = {pt ∈ S |∃ pt−1 ∈ St−1 s.t. pt−1 R pt ∧ @p′ ∈ S s.t. pt−1 R p′, p′ R pt}

2.1.2 Apriori and extracting association rules

Frequent itemset mining can then be described as a pattern mining task. Let I be a set of items.
Each subset X ⊆ I is called an itemset. A database object o is an itemset. In this case,
each pattern p ∈ S is also an itemset. The covering relation is covers(p, o) = p ⊆ o. The
predicate selection q is true i.f.f supp(p,D) ≥ minSupp, with minSupp ∈ R+, defined by the
user. Note that the search space is composed of all possible subsets of I, it is then of size 2|I|.
Its binary relation is the inclusion relation ⊆. Note that in the case of itemsets the covering
and binary relations are the same.

To tackle this problem, Agrawal et Al. proposed the Apriori algorithm in [1]. The search
space can be represented as in Fig. 2.1. The more general pattern, i.e., the pattern covering
all database objects, is represented at the top of the figure. Each transition between a level
to its direct down neighbor is done by a direct pattern refinement. Informally, a refinement is
a minimal operation making the pattern more specific, covering less instances. In the case of
itemsets, it means creating a new pattern p′ from p by adding an item i ∈ I s.t i 6∈ p. We then
have p ⊂ p′.

The key idea of this algorithm is to exploit a property that prunes search space to reduce its
size: if an itemset p is frequent, all of its generalisation p′, where p′ ⊆ p, are frequent. Conversely,
if an itemset p is infrequent, all of its specialisation p′′, where p ⊆ p′′, are infrequent. Going
from the most general pattern >, in a Breadth First Search way, i.e., level by level, using this
property for pruning the search space, the Apriori explores the search space in a top-down way.

14

2.1. Introducing pattern mining task

Search Space

⊤

Minimum support

Figure 2.1: Illustration of Apriori.

VeilType GillSpacing Bruises Poisonous
partial crowded no no
partial close no yes
partial crowded no no

universal close no yes
partial close yes no

universal distant no yes

Table 2.1: Mushrooms toy dataset

Once frequent itemsets have been extracted, for each pattern p, each possible rule of the form
body → head is generated, where body and head are itemsets body ⊆ p and head ⊆ p\body. Each
rule quality is assessed with its precision (also called confidence, or accuracy, or p(head|body)
[76]), defined by:

P(body → head) = supp(body,Dhead)
supp(body,D)

with Dhead being the subset of objects of D containing the itemset head,
Table. 2.1 is a toy dataset inspired by the mushroom dataset from the UCI repository 3. It

represents observations made by experts over different observed mushrooms.
Here each line corresponds to a database object. Such a dataset can easily be transformed

to a boolean matrix, indicating for each database object what items appear in it, in order to be
exploited by Apriori. Transformed dataset is given in Table. 2.2. Note that here the first row
of the table corresponds in fact to I.

Association rules mined with Apriori, with a minimum support threshold of 10% and a
minimum confidence of 0.95 for rules, are:

GillSpacing : crowded→ V eilType : partial
3https://archive.ics.uci.edu/ml/datasets/Mushroom

15

Chapter 2. Supervised Rule Discovery

VeilType:
partial

VeilType:
universal

GillSpacing:
crowded

GillSpacing:
close

GillSpacing:
distant Bruises Poisonous

1 0 1 0 0 0 0
1 0 0 1 0 0 1
1 0 1 0 0 0 0
0 1 0 1 0 0 1
1 0 0 1 0 1 0
0 1 0 0 1 0 1

Table 2.2: Boolean Matrix transformation of 2.1

GillSpacing : distant→ V eilType : universal

GillSpacing : distant→ Poisonous

Bruises→ V eilType : Partial

V eilType : universal→ Poisonous

Bruises→ GillSpacing : close

Bruises, V eilType : partial→ GillSpacing : close

Bruises,GillSpacing : close→ V eilType : partial

GillSpacing : close, V eilType : universal→ Poisonous

Poisonous, V eilType : partial→ GillSpacing : close

GillSpacing : distant, Poisonous→ V eilType : universal

GillSpacing : distant, V eilType : universal→ Poisonous

Summarizing, the idea of Apriori is to extract interpretable rules in two steps. First,
frequent itemsets are mined, exhibiting groups of dataset objects being frequent enough, i.e.,
there is a minimum support threshold that needs to be satisfied for extracted patterns. Secondly,
association rules in the form body → head are extracted from those frequent itemsets: extracted
rules have then more chances to cover a sufficient proportion of data.

Resulting rules can be of interest, but this method presents however several drawbacks. It
is not anytime, i.e., the algorithm needs to finish to give results. Also, interesting rules can also
exist below the user-specified minSupp. It can generate a large amount of itemsets, in which
each association rule needs to be evaluated, which can be computationally expensive and give a
too large set of rules. Here with such a small dataset with a very high confidence constraint we
already have twelve rules. In other words, this approach consists in filtering the search space,
then exploring this filtered set exhaustively to find interesting rules, using the precision measure.
However such an approach does not scale with large I, even more if applied to more complex
pattern description languages having bigger search space. Finally, user may prefer to enumerate
rules having a variable of interest in its right part: in that case we would be more interested in
mushrooms characteristics that are discriminative of its poisonous property, in order to better
identify them.

In order to reduce the size of the search space of frequent itemsets, it has been shown that
exploring only a subset of patterns was sufficient: the closed patterns, introduced by Pasquier
et Al. in [101].

16

2.2. Supervised rule discovery: problem definition

Definition 5 (Closed pattern) A pattern p ∈ S is closed iff @p′ s.t. p R p′, ext(p) = ext(p′).

A closed pattern is then a most specific pattern possible for a given extent. This concept
has been historically used in many other pattern description languages. It is said to compress
the set of frequent patterns because it prunes patterns having the same extent as closed ones.
Example of algorithms exploiting closed patterns are CHARM [136], CBO [74] or Dryade [124].

2.2 Supervised rule discovery: problem definition

The general problem we want to tackle in this thesis is to find a set of interesting rules. Several
formalisms have been proposed to address this problem: subgroup discovery [130], emerging
patterns [38] or contrast sets [13]. It has been shown that those approaches are different faces
of the same problem in [97], under the term of supervised descriptive rules discovery. This is
the terminology we are going to use in this thesis, with one simple variation: we consider the
discovery of any rule, not only descriptive, as the predictive or descriptive value of a rule can be
controlled by the chosen quality measure. Moreover, it has been shown in the very exhaustive
and interesting work of Fürnkranz, Gamberger and Lavrac [49] that supervised descriptive rules
discovery and standard rule learning are the two faces of the same coin.

To better formalize the problem, we need to introduce some definitions.

Definition 6 (Rule) A rule is composed of a pattern p ∈ S, with S being the search space of all
possible patterns of the pattern description language, and a target class c. It is denoted p→ c.

Definition 7 (Quality measure) Let S be the set of all possible patterns in a dataset, and C
the set of all possible target classes of a dataset D. A quality measure

ϕ : S → R

maps every pattern p ∈ S to a real number to reflect its interestingness (inspired from [2]).

For instance, the quality measure Precision is a quality measure evaluating the proportion
of positive elements covered by the rule, i.e., its discriminating power. Rougly speaking, a
discriminating rule, and so, interesting, means that, in the dataset mined, if the pattern
appears in an object, then there are chances that the class of the object is the one of the rule.
As an example taken from [75], in Fig. 2.4, we have rules extracted from a dataset where
objects represent medical conditions of people, and their class represent their diseases. A rule
like RespiratoryIllness = Y es and Smoker = Y es and Age ≥ 50 → LungCancer is easily
interpretable: if the pattern appears, then the class of the object, i.e., the disease of the person
in this case, is probably known.

The precision measure then fosters discriminating rules, without considering the pattern
support, i.e., at which point it covers data. This can lead to the discovery of non-interesting
rules, as a rule covering only one positive element would have a maximal precision, but would
not be interesting for the end user, as it is too specific, i.e., true in a very specific setting. There
is a trade-off to find between rule discriminating power, and generality. One of the most popular
quality measure well balancing this trade-off is the Weighted Average Accuracy [76].

Definition 8 (Frequency) The frequency of a pattern p is freq(p,D) = supp(p,D)/|D|.

17

Chapter 2. Supervised Rule Discovery

Figure 2.2: Illustration of supervised rule discovery

Definition 9 (Weighted Relative Accuracy) The Weighted Relative Accuracy, or WRAcc,
is a quality measure commonly used for supervised rules discovery. It compares the proportion of
positive elements in the extent of the pattern to the proportion of positive elements in the whole
database. Let c ∈ C be a class value and p be a pattern,

WRAcc(p→ c) = freq(p,D)×
(
supp(p,Dc)
supp(p,D) −

|Dc|
|D|

)
.

WRAcc is a weighted difference between the precisions P(p→ c) and P(〈〉 → c). The weight is
defined as freq(p,D) to avoid the extraction of infrequent rules. WRAcc value ranges in [-0.25,
0.25] in the case of a perfect balanced data set, i.e., containing 50% of positive elements. A
visual explanation is given in Fig. 2.2.

In the case of labeled dataset, i.e., having a class for each object, closed on the positive pat-
terns were introduced in order to offer a condensed representation of patterns covering positive
objects [52, 16, 15]. In the same way as closed patterns pruned the search space for frequent pat-
terns, closed on the positive prunes the search space for discriminative patterns, i.e., interesting
patterns in the sense of characterising a target label.

Definition 10 (Positive object/element) An object of the database labeled with the target
class is called a positive element.

Definition 11 (Closed on the positive pattern) Let ext+(p) be the set of objects labeled
with the class + for a pattern p. p is said to be a closed on the positive iff 6 ∃p′ s.t. p R p′, ext+(p) =
ext+(p′).

Once rules have been extracted, it is interesting to give to the end user not only the best
extracted rule, but the set of best found rules. Indeed, whether the goal is a descriptive or a
predictive analysis, having only one rule would probably cover only a subset of the dataset. This
would lead either to a partial understanding of the underlying domain where data are generated
from in the case of a descriptive analysis, or an over simplified model, i.e., having a high bias, in
the case of predictive analysis. In order to deal with this problem, we can return a set of top-k
non θ-redundant rules. The notion of non-redundancy is used to give to the end user rules that

18

2.2. Supervised rule discovery: problem definition

cover different subsets of objects, i.e., they have a different meaning. This is important to not
decrease the trust of the user in the system, but also to keep the rule set interpretable. Note also
that contrary to frequent itemsets mining, where the number of mined patterns can be gigantic,
here we focus only on a subset of k rules, in order to not overwhelm the user.

Definition 12 (Non θ-redundant rules) A set of rules P ⊆ S, is non θ-redundant if given
θ ∈ [0; 1] and ∀p1, p2 ∈ S, where p1 6= p2, we have: sim(p1, p2) ≤ θ, where sim is a similarity
function. In the following we will use the Jaccard index as a similarity measure as in [79]:

sim(p1, p2,D) = |ext(p1,D) ∩ ext(p2,D)|
|ext(p1,D) ∪ ext(p2,D)| .

Now we can formalize the general problem we want to tackle in this thesis:

Problem 1 For a database D, an integer k, a real number θ, a similarity measure sim, a
quality measure ϕ and a target class c ∈ C, the non redundant rule discovery task consists
in computing the set Sp of the best non θ-redundant rules of size |Sp| = k, mined w.r.t the quality
measure ϕ.

This problem is a pattern mining task that can be formalized as proposed in [86]. The
predicate q can be defined as:

q(p,D) = 1(p ∈ { argmax
P⊂S,|P|=k

∑
p∈P

ϕ(p) | ∀p1, p2 ∈ P2, sim(p1, p2) ≤ θ})

This problem is illustrated in in Fig. 2.2. Here only two classes are displayed. For the multi-
class setting, we will use a one-versus-rest approach, i.e., we will consider object as positives if
they have the target class, and negative if not.

Now for each instance of our general problem, we will need to redefine four elements:

• The dataset object definition

• The pattern definition

• The covering relation between a pattern and database objects

• The binary relation between patterns of the search space

Rules extraction attracted attention since decades, and is of particular interest nowadays.
Indeed, with the apparition of deep learning methods [55], the need for interpretability has been
exacerbated. Rules extraction algorithms gives interpretable rules. Note that, somehow counter
intuitively, simple rules are not always really preferred by users, and on some domains, longer
and more complex rules are more convincing, as showed recently by Fürnkranz et al. [50].

Note that the particular case of black box explanation models like Lime [110], Shap [85]
or Anchors [111] are also based on rule discovery: to explain a prediction, the database object
used for this prediction is perturbed with small variations, each one being given to the black
box model. This results in a list of predictions, creating a new dataset that is mined to extract
interpretable rules giving insights on why the model gives those predictions.

19

Chapter 2. Supervised Rule Discovery

2.3 Search space exploration strategies

2.3.1 Enumeration-based methods

Many enumeration techniques enable to mine patterns from different pattern description lan-
guage like, for example, boolean, numerical, sequential or graph data [54]. The main idea of
such methods is to visit each candidate pattern only once while pruning large parts of the search
space. Indeed, we know how to exploit formal properties (e.g., monotonicity) of many user-
defined constraints. Their quality measure is thus computed either during or after the discovery
step.

Adopting the general strategy of Apriori, the algorithm Apriori-C [68] and Apriori-SD
[69] have been proposed. The main idea is to first launch APriori, and then to post process
resulting rules with different strategies.

Years after the Apriori [1] algorithm has been presented, the FP-Growth algorithm has been
proposed [58]. The idea is still to explore the search space in a top-down Breadth First Search
way with smart pruning of the search space, based on the fact that the more we go down on the
search space, the lesser the support. However the new idea here is to build a particular data
structure during the search space exploration, called the FP-Tree. By reordering transactions
according to frequencies of items, the FP-Tree can represent prefixes of the least frequent parts
of the transaction (conditional pattern database). By recursively constructing new FP-Trees on
conditional pattern databases, the algorithm makes a complete exploration of the search space,
that can be limited with a minimal support constraint. The advantages over Apriori is that
the database representation is smaller at each step, speeding up the process, and that it removes
costly candidate generation from Apriori.

This method has been adapted to supervised rule discovery through the Subgroup Discovery
framework with SD-Map[5] and SD-Map* [3]. They generalize the approach to numerical and
categorical attributes, i.e., all database objects are vectors of elements that can take either a
numerical or a categorical value, requiring a discretisation on the first one.

Zaki et al. [134] proposed a vertical representation of the database in order to increase the
efficiency of the computation.

Cremilleux and Boulicaut proposed to use δ-strong rules to characterise classes [34]. Simply
saying, a δ-strong rule is a rule which we tolerate to cover dataset objects labeled with an
incorrect class δ times, i.e., we tolerate body → class to not hold for δ cases. They proposed to
mine this subset, and showed that it reduced greatly the number of proposed rules.

Recently, the OSMIND algorithm has been proposed [90], adapted from [70] which were specific
to the case of frequent patterns in numerical data. The strategy here consists in completely
exploring the search space with in a depth-first-search (or Branch and Bound) way, with smart
pruning strategies based on optimistic estimates and branch reordering. This method is also of
interest because it does not relies on numeric discretisation, and explores a subset of the search
space, i.e., reducing its size, containing however all interesting patterns, the closed patterns [51].
The approach proposed by Belfodil et al. named FSSD [15] also tackles the problem of rule set
discovery, using a branch and bound algorithm, with the specificity of focusing on the quality
measure of the rule set instead of each individual rules. The general strategy used by those
methods are represented in Fig. 2.3.

The idea of using closed patterns to reduce the search space size has also attracted interest, for
example with the algorithm RMiner [119]. Note that this algorithm propose to tackle the problem

20

2.3. Search space exploration strategies

Search Space

⊤

Pruning

Figure 2.3: Illustration of Depth First Search-like algorithms.

of mining patterns in multi-relational data. It is based on the proposition of an exhaustive divide
and conquer method proposed by Boley et al. [19].

2.3.2 Extracting rules from predictive global modeling

Several works have been done with the idea of optimizing the predictive power of a global model
in first intention. The goal is to first predict globally, i.e., for each possible possible dataset
object, then to extract interpretable rules.

One of the probably most popular approach using this idea is the decision tree [24]. One of the
drawbacks of decision trees is that created rules have the constraint of not being overlapping, i.e.,
to be non-redundant at all (θ = 0). This results in bigger rules set than necessary, being harder
to interpret. This has been shown and called the replicated subtree problem by Pagalo and
Haussler in [100]: identical subtrees can appear in the decision tree, due to this non-overlapping
constraint, leading to difficulties of interpreting resulting rules.

Another well-known rule based models are decision lists, whose decision tree rules are a
subset of [112], where if-else-then rules are extracted. One issue of this approach, as showed in
[75], is that rules from decision lists can be difficult to interpret. Indeed, their if-else-then nature
can create particularly complex rules when observing a small subset of data, because they are
depending on previous extracted rules. This is illustrated in Fig. 2.4. Each rule of a decision
list is depending on previous ones, making it more difficult to interpret.

In [64], authors proposed to fit a logistic regression in order to classify, with the particularity
of selecting rules in their pattern description language (n-grams) as features. Then, once this
logistic regression global model is trained, features having the biggest weights can be extracted
to directly give interpretable rules, i.e., they predict the target class.

21

Chapter 2. Supervised Rule Discovery

Figure 2.4: Example of interpretable decision set (left) vs example decision list (right) (from [75])

Figure 2.5: Decision Tree global decision (left) vs example of local rule (right) (from [18])

Note that in fact, rules extracted from those derived methods, i.e., the goal is first to fit a
global model to predict, then to extract interpretable rules, constitutes a subset of all possible
rules S. This type of method can lead to several issues. Rules can, for example, be difficult to
interpret, as they may trade precision for coverage. Another drawback of those approaches can
be illustrated with decision (or regression) trees. Their predictions form rules by conjunctions of
if-else statement taken by the path leading to a leaf. However, as showed in [18], this can prevent
to find interesting rules that have high accuracy on a data subset, which can be of high value to
better understand the underlying domain. For example, on Fig. 2.5, a decision tree of two level
deep has been fitted to a dataset having two numerical attributes, and one categorical label to
predict. As the decision tree needs to model globally, it can miss interesting local pattern that
would be interesting, whether it is to better understand the underlying domain, or to better
predict.

More recently, Interpretable Decision Sets have been presented [75]. The idea here is to find
interpretable and accurate rule sets. They present the problem as an optimization one, with
several target functions to optimize: model length, accuracy, rules overlapping, dataset covering.
In fact, this function is a quality measure to optimize, that assesses the quality of obtained rules
set, which are extracted thanks to a smart and theoritically guaranteed search space heuristic
exploration. The problem addressed can then be seen as an instance of the problem 1 formulated
in this thesis.

22

2.3. Search space exploration strategies

Being able to predict with high confidence on different subsets of data, and saying "I don’t
know" on others can be powerful [41]. This idea is also supported by Fürnkranz [48]: rule sets
can be viewed as global models, but rules constituting it are locals. In particular, Knobbe et
al. proposed the framework LeGo [72] to formalize a general and flexible method using a set of
local rules as features to build predictive global models.

2.3.3 Heuristic Methods

An interesting trend to support supervised rules discovery is to avoid exhaustive search and to
provide high quality patterns available anytime during the search, ideally with some guarantees
on their quality. Examples of such guarantees are the distance to the best solution pattern [16]
or the guarantee that the best solution can be found given a sufficient budget [22]. Let us discuss
some of the heuristic approaches that have been proposed so far.

Beam search is a widely used heuristic algorithm. It traverses the search space level-wise
from the most general to the most specific pattern and it restricts each level to a subset of
non-redundant patterns of high quality [42]. The greedy and exploitation-only nature of beam
search is its major drawback. For example, a pattern whose parents are bad could be ignored
by this algorithm. However, it allows to quickly discover some interesting patterns. Removing
redundancy of patterns at each step of beam search has shown interesting results with DSSD
by Van Leeuwen et Al. [79]. A visual representation of beam-search is given in Fig. 2.7.
Note that beam-search is implemented in free software such as CORTANA 4, VIKAMINE [4]
or PYSUBGROUP [80], among other algorithms.

The CN2-SD algorithm [77] uses multiple beam search instances to select best rules w.r.t to
an adapted Weighted Relative Accuracy measure [76] to build a classifier. The idea is to bias
database objects with weights whose values depends if they have already been covered by other
rules. Each new created rule corresponds to a new beam search launched. The RIPPER [33],
FOIL [106] or CPAR [33] algorithms aim at creating classifiers using local rules. They used greedy
heuristics to discover rules, selecting sequentially the best attributes w.r.t a quality measure to
add to a rule body, with different stopping criterion.

Boley et al. proposed a two-step sampling approach giving the guarantee to sample patterns
proportionally to different measures, namely: frequency, squared frequency, area, or discrimina-
tivity [20]. However this method only works on these measures. To consider another measure,
Moens and Boley had to design a new method [92]. Dzyuba et al. [43] also proposed a sampling
algorithm combined to an exhaustive one, agnostic of the quality measure to sample interesting
pattern sets.

A visual representation of this kind of sampling methods is given in 2.6
Another set of techniques are those based on genetic algorithms [8], for example SSDP+ [84],

MESDIF [17], NMEEF [28] or SDIGA [35]. Genetic algorithms are meta-algorithms generaly used to
solve optimization problems. To do so, they mimic the evolution process by creating individuals,
i.e., rules in the case of rule discovery, whose quality is assessed thanks to a fitness function,
i.e., a quality measure. Once the number of individuals is set, creating a population, the quality
of each one is assessed. Best individuals are then selected, and combined together (crossover)
to generate new individuals. To prevent the method from staying in a bad local optima, the
notion of mutation is used, where some elements of individual are randomly changed, with a new

4http://datamining.liacs.nl/cortana.html

23

Chapter 2. Supervised Rule Discovery

Search Space

⊤

Object
generalisation

Figure 2.6: Illustration of sampling algorithms.

Search Space

⊤

Beam width

Figure 2.7: Illustration of beam-search algorithms.

Search Space

⊤

Built Tree

Figure 2.8: Illustration of MCTS4DM algorithm.

Search Space

⊤

New pattern created
from parentsPattern mutated

Figure 2.9: Illustration of genetic algorithms.

parameter controlling this probability. A visual representation of genetic algorithms is given in
Fig. 2.9.

Genetic algorithms, however, presents several drawbacks. First they do not give any sort of
guarantees on obtained patterns. Second the quality of resulting rules can vary a lot on two
different algorithm launch, depending on the area exploited, which is partially random due to
the mutation factor. Finally, the setting of parameters can be cumbersome: the user needs to
set the number of generations, the population size and the mutation factor.

Belfodil et al. proposed a method called RefineAndMine [16], that extracts interesting
patterns in numerical data, with the property of anytime, i.e., a results is available at any time,
results improve time, and search converges to an exhaustive one if given enough time. Moreover,
they provide interesting theoretical guarantees on mined patterns.

Bosc et al. used Monte Carlo Tree Search to support subgroup discovery, i.e., supervised
rules discovery, from labeled categorical and numerical data [22]. They proposed an approach
based on sampling, where each draw improves the knowledge about the search space. Such

24

2.4. Supervised Rule Discovery for sequences

a drawn object guides the search to achieve an exploitation/exploration trade-off. A visual
representation of this algorithm (MCTS4DM) is given in Fig. 2.8.

2.4 Supervised Rule Discovery for sequences

Many works have been done on sequences, and are often influenced from methods presented in
the previous section. One of the biggest difference of sequential pattern mining with itemset
mining is that the search space can be order of magnitude bigger. Indeed, as shown in [104] and
[107], the formula for counting the number of possible sequences is:

wk =
k−1∑
i=0

wi

(
|I|
k − i

)

SearchSpaceSize =
kmax∑
k=1

wk

with kmax being the length maximal of a sequence, w0 = 1 and w1 = n and |I| being the set
of possible items. As an example, if we consider the well-known UCI dataset promoters [40],
with |I| = 4 and k = 57, the size of the search space is approximately 1041.

In the same manner as Apriori for frequent itemsets, sequential pattern mining historically
first dealt with the problem of finding frequent subsequences.

2.4.1 Sequential pattern mining

Sequences can be seen as generalisation of itemset: they are ordered list of itemsets. If itemsets
of sequences all contain only one item, they are called "sequences of items".

The problem of sequential pattern mining can be explained in a visual way. A sequence
of itemsets can be represented as showed in Fig. 2.10. Each vertical segment corresponds to
an itemset, and each square of colour represents an item within this itemset. For example this se-
quence of itemset could be written: 〈{greySquare}, {greySquare, brownSquare}, {greySquare},
{greySquare, blueSquare}...〉. A dataset of sequences of itemset is then composed of different
sequences like represented in Fig. 2.10 and Fig. 2.12. The goal of sequential pattern mining is
then to extract patterns, i.e., subsequences, appearing in dataset, whose quality is assessed with
quality measures, like frequency for frequent sequential pattern mining. A pattern p appearing
on the first sequence is represented in Fig. 2.11 and for the second sequence in Fig. 2.13. Vi-
sually, we can see that a pattern, i.e., a subsequence, covers a sequence, i.e., an object, if its
itemsets are included in itemsets of the sequence, in the same order and with a potential gap
between them.

More formally, let I be a set of items. Each subset X ⊆ I is an itemset.

Definition 13 (Sequence of itemsets) A sequence o = 〈X1...Xn〉 is an ordered list of n > 0
itemsets. The size of a sequence o is denoted n, and l = ∑n

i=1 |Xi| is its length. A database D
is a set of |D| sequences (see Table 2.3 for an example).

Definition 14 (Subsequence and covering function) A sequence p = 〈X1...Xnp〉 is a sub-
sequence of a sequence o = 〈X ′1...X ′no

〉, denoted p v o, i.e., o is covered by p, iff there exists

25

https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Promoter+Gene+Sequences)

Chapter 2. Supervised Rule Discovery

Figure 2.10: Sequence of itemsets 1

Figure 2.11: A pattern p appearing in sequence 1

Figure 2.12: Sequence of itemsets 2

Figure 2.13: A pattern p appearing in sequence 2

1 ≤ j1 < ... < jnp ≤ no such that X1 ⊆ X ′j1 ...Xnp ⊆ X ′jnp
. In Table 2.3, 〈{a}{b, c}〉 is a

subsequence of o1 and o2. In other words, ext(〈{a}{b, c}〉) = {o1, o2}. In this pattern mining
task, patterns are subsequences, and S is the search space of all possible subsequences.

Note that v is also the binary relation for this pattern mining task, and is the same as the
covering relation.

The first problem of sequential pattern mining has first been to find frequent subsequences,
in a similar way as the pattern mining task for itemsets was first to find frequent ones. This
resulted in methods exploring the search space in a similar way to frequent itemsets mining
methods.

One of the first impactful work was the proposition of the GSP algorithm [120], which can
be seen as an adaptation of the Apriori algorithm, i.e., a Breadth First Search strategy with
pruning of the search space. With a Depth First Search strategy, the Spade algorithm [135]
was proposed, and has been adapted for sequence classification based on frequent patterns [137].

Table 2.3: An example database D.

id s ∈ D c

o1 〈{a}{a, b, c}{a, c}{d}{c, f}〉 +
o2 〈{a, d}{c}{b, c}{a, e}〉 +
o3 〈{e, f}{a, b}{d, f}{c}{b}〉 −
o4 〈{e}{g}{a, b, f}{c}{c}〉 −

26

2.4. Supervised Rule Discovery for sequences

The idea of Spade was to represent the database in a vertical way (id-list), and to use the notion
of equivalence classes to reduce the search space size, leading to better performances compared
to GSP.

The PrefixSpan algorithm also uses a DFS approach, and is inspired by FP-Growth [58].
The idea is then to decompose sequences by prefixes, and iteratively and recursively finding
frequent ones and creating their projected database, reducing the cost of support computing.

The algorithm SPAM [7] pushes further the idea of Spade with a bitset representation of
database, to decrease support computing cost.

Extending PrefixSpan, algorithms CloSpan [132] and BIDE [128] have been proposed. They
reduce the size of the search space exploring only closed patterns.

Main issues of sequential pattern mining using only frequency as a quality measure to opti-
mize are the same as frequent itemsets mining: the number of candidate can be too large and
there is redundancy between them. Note also that a problem with frequent sequential pattern
used in the context of supervised sequential rules discovery is that a pattern which is frequent
for a class does not mean it is discriminative of this class. For example, consider sequences of
words, i.e., phrases, labeled by the book they are extracted from. The pattern "there is" can be
frequent in a particular book, so it would be detected by algorithms of this section. However
this pattern may not be interesting for the user, as it could also be frequent in other books: it
is not discriminative. Extracted rules can then be of poor values, depending on the user desire.

2.4.2 Extracting interesting rules from sequential data

Several works have been done to tackle the problem of supervised rules discovery for sequences.
Morchen et al. [47] proposed an adaptation of BIDE to the problem of finding classification

rules, i.e., subsequences, in order to build a classification system. However this method is
quality-measure dependent.

He et al. in [60] and [59] used a top-down approach on sequences of items, using contrast sets
[13] denomination. They propose a new way of removing redundant patterns, based on a property
of the growth rate measure, which let them prune search space by removing subsequences from
a pattern if this property is over a user-specified threshold. This method is then focused on
sequences of items, is measure dependant, and requires several user parameters.

Ji et Al. [66] also proposed an interesting approach based on search space pruning for
finding the best discriminative subsequences under a gap constraint. However, their work is
also specific to only one quality measure. It requires to tune several parameters, including a
minimum support, and it has been designed for processing sequences of items only, and not
sequences of itemsets.

Gsponer et al. adapted the strategy of [64] on sequences of items, where a linear model
is trained on a set of features extracted from sequences of the dataset [56]. Those features
correspond to the search space of all possible subsequences. By minimizing a loss function,
they can directly look at weights of their model to determine the most predictive subsequences.
However, this approach is only applied on sequences of items, with numeric classes, and it can
not choose a quality measure to optimize. For example, using this algorithm to find patterns
corresponding to more general predictive rule covering many instances of the dataset with a
lesser proportion of positive elements is not possible.

In a similar way as [20] for itemsets, Diop et al. proposed an approach which guarantees that

27

Chapter 2. Supervised Rule Discovery

the probability of sampling a sequential pattern is proportional to its frequency [37]. However
this method focuses on the frequency measure only.

Egho et al. have proposed the measure agnostic method misère [44]. Given a time budget,
their idea is to generate random sequential patterns covering at least one object while keeping
a pool of the best patterns obtained so far. It provides a result anytime, empirically improving
over time, but there is no use of previous sampling: this is an exploration-only strategy. No-
tice however that it lacks a convergence guarantee. Sqn2Vec [95] proposed a new approach to
represent sequences of items with embedding. An embedding represents symbols belonging to
the corresponding sequence, and sequential patterns. It automatically finds the most discrimi-
native ones thanks to a relatively simple neural network architecture, in order to then use this
embedding, i.e., feature vector, to classify, or cluster sequences.

There are other problems, with other pattern mining language that propose interesting
solutions. For example, Guyet et al. [57] proposed NegSpan, to discover negative sequential
patterns, adding a specificity to the pattern description language for sequences of itemsets: an
item can be expressly desired to not appear in sequences. The problem of finding maximal
sequential pattern, i.e., pattern that are not sub-pattern of any other patterns in the dataset
(then removing redundancy), has attract some interest, for example in [46].

To summarize, most of existing approaches present several drawbacks (or way of improve-
ment) to tackle the problem of finding interesting rules in sequential data. The first issue is that
some methods focus only on sequences of items. Second, methods searching for frequent rules
among sequences having a class of interest can lead to non-discriminating (and non-interesting)
patterns. The lack of theoretical guarantees can be problematic, as is the the number of pa-
rameters to set. Finally, many works are quality-measure dependent. As a lot of different ones
exist, chosen depending on the type of rules the user may want, we want to propose methods
agnostic of the quality measure.

2.5 Conclusion

The problematic of finding interesting rules in data, whether for descriptive or predictive analysis,
is a subject of interest since decades. One of the main strengths of those approaches it that they
give interpretable rules that can be used by domain experts: the goal is then not to replace them,
but to boost their expertise with sophisticated tools. In particular, state of the art on supervised
rule discovery for sequences has still open challenges: better dealing with the potentially huge
search space, reducing the number of parameters to set or being able to be agnostic from the
quality measure, for example.

28

Chapter 3

Bandit Models and Monte Carlo
Tree Search

The multi-armed bandit model is well known in the Game Theory literature [26]. Several
methods with guarantees have been proposed in order to solve problems that can be modelled
with multi-arms bandit. Roughly speaking, they help choosing the best possibility in a sequential
decision problem in order to maximize a reward function. This model is presented in Section. 3.1.
As an evolution of those methods, the Monte Carlo Tree Search (MCTS) has been proposed.
It consists in successive samplings of the search space, following an exploration-exploitation
trade-off. The MCTS framework is presented in Section. 3.2.

3.1 Multi-armed Bandit Model

3.1.1 Problem settings

Bandit problems are sequential decision problems. At each iteration, one needs to select the best
choice among k possible. This is modeled as a multi-armed bandit representing multiple slot
machines in casinos, each one having its own reward distribution. The aim is to maximize the
cumulative reward. The more an arm is played, the more information about its reward distri-
bution we get. However, to what extent is it needed to exploit a promising arm (exploitation),
instead of trying others that could be more interesting in the long term (exploration)? The
formulation is then as follows: having a number N of plays, what is the best strategy, i.e., how
to choose arms sequentially, to maximize the reward ? In fact, the problem is often presented as
its dual: instead of maximizing the reward, one can minimize her regret, which is defined, after
N plays as:

Rn = µ∗n−
K∑
j=1

µjE[Tj(n)] (3.1)

where µ∗ is the best possible expected value of an arm among k possible, µj is the expected
value of the jth arm, and E[Tj(n)] is the expected number of play of arm j in the first n plays.
Informally, this corresponds to the loss one can have if she does not play the best arm at each
iteration.

29

Chapter 3. Bandit Models and Monte Carlo Tree Search

3.1.2 Exploitation-exploration tradeoff

Auer et al. proposed a strategy called UCB1 [6], for Upper Confidence Bound. It has the
mathematical guarantee of having an expected logarithmic growth of regret uniformly over n.
The idea is to give each arm a score, and to choose the one that maximizes it:

UCB1(j) = x̄j +
√

2ln(n)
nj

, (3.2)

where x̄j is the empirical mean of the jth arm, nj is the number of plays of the jth arm and
n is the total number of plays. The first term encourages the exploitation of arms with good
reward, while the second encourages the exploration of less played arms by giving less credit to
the ones that have been frequently played.

An example of the UCB1 strategy is given in Fig. 3.1. Each slot machine is represented with
its (yet unknown) reward probability distribution on top. Yellow points represent a play of a
slot machine, and the yellow vertical line represents the mean reward of the corresponding slot
machine (or arm). The n = 3 on top left corner means that 3 plays have been performed, and
nj = 1 next to each slot denotes the number of time the arm has been played. For N = 3 we
compute the UCB1 for each slot machine, and select the best one, which is the first here. We
then play this arm, giving a new reward and updating its mean reward. This then decreases the
value of the UCB1 of the machine 1 for two reasons: the mean reward decreased, and we played
this machine more than the other. This results in selecting the third machine to play, giving a
new reward, updating its mean reward and then its UCB1 value, etc.

The more we play arms, the more precise is the estimated value of the true expected value
of each arm. Considering the second part of the UCB1 formula, we also foster on slot machine
having less play, in case the randomness gave us a false mean estimation.

3.2 Monte Carlo Tree Search

3.2.1 Game Theory

Monte Carlo Tree Search has first been proposed as a strategy to explore search spaces, composed
of different states, to choose the best action to perform for a decision problem. In game theory,
this decision problem consists in finding the next action to perform, in order to win the game in
the long run. A game can be described with a set of possible states, i.e., game configurations, a
set of terminal configurations (where game finishes), a number of players, a set of actions that
can be applied to states to make them progress, a state transition function, a reward function,
assessing the quality of the configuration for a given player, and a function indicating the next
player that needs to play for a given state.

MCTS can be seen as a bandit model approach, with memory. Roughly, the idea is to simu-
late, from an initial state, numerous final states, exploring the search space with an exploration
exploitation trade-off. Those successive simulations give information about the search space,
and they weight each created nodes with a value expressing to which point it leads to a "good"
state, the notion of good depending on the problem and the reward function.

30

3.2. Monte Carlo Tree Search

Figure 3.1: Illustration of the UCB strategy.

31

Chapter 3. Bandit Models and Monte Carlo Tree Search

3.2.2 Method

The Monte Carlo Tree Search general approach is described in Fig . 3.2, and the pseudo code
of one of its most popular instance, the Upper Confidence bound for Trees (UCT), is given in
Algorithm 1. In Fig. 3.2, the top node corresponds to the initial state s0, and each node
corresponds to another state. Edges correspond to transitions between states. Each node, i.e.,
state, has a reward in [0, 1], assessing its relevance for the given problem. A Monte Carlo Tree
Search is composed of four steps being repeated iteratively.

The SELECT step First, the SELECT step (line 12-20 in Algorithm. 1) consists in exploring
the already built tree and selecting the best node, i.e., state, that is not already fully expanded.
A node is said to be fully expanded if all possible states accessible by performing one transition,
i.e., its children node, have been expanded. The exploration exploitation dilemma is important
here: do we try to exploit search space areas where we know there are interesting states, as we
have sample them in previous ROLLOUT iterations, or do we try to explore the search space
in area we do not have enough information yet ? Kocsis and Szepesvari first proposed in [73] to
use the UCB1 from [6] to tackle this issue. The adapted formula of UCB1 for Monte Carlo Tree
Search is:

UCT (s, s′) = Q(s′) + 2Cp

√
2ln(N(s))
N(s′) , (3.3)

where s′ is a child of s, N(s) being the number of time the node s has been selected, Q(s′)
is the reward of the node s′, and Cp is a strictly positive constant. The value of Cp can be
tuned to foster more the exploration or the exploitation. Starting from the initial node, the
UCT is computed for each child, choosing the one having the best, recursively, until a non-fully
expanded node is reached.

The EXPAND step Once a node has been selected, it is expanded. This means that a
random child of the selected node is created, i.e., a random possible transition from the state
corresponding to selected node is chosen, and added to the built tree.

The ROLLOUT step The ROLLOUT step corresponds to a simulation that will give infor-
mation to the following question: does the state of the expanded node leads to other interesting
states ? This information is crucial to guide the search in next iterations of the MCTS. This
step needs to be as computationally inexpensive as possible in order to maximise the number
of MCTS iterations. Indeed, more iterations given to the tree means more information about
the search space, so more probabilities of isolating its interesting areas. This is similar to the
bandit problem, where the number of pulled arms needs to be order of magnitude greater than
the number of arms to give a relevant mean estimation of underlying distributions. In order to
perform a ROLLOUT, random transitions are successively performed from the expanded node,
until reaching a terminal node. Note that the notion of terminal node depends on the underlying
search space the MCTS is launched on. For example, on a search space of game configuration
between two players, a terminal node corresponds to a configuration where one player wins. The
reward of this terminal node is then computed.

32

3.2. Monte Carlo Tree Search

Figure 3.2: Steps of Monte Carlo Tree Search, inspired by [25]

The UPDATE step Once the reward has been computed, the information it gives is back-
propagated through all nodes that have been visited during the current iteration, i.e., expanded
node, selected node and all its chosen parents. Each of this node sees its quality Q(s) updated
with the new reward (its mean is re-computed). This way, if the reward is good, those nodes
mean reward quality will increase leading to better chances of selecting them in next iterations.

This four steps are then performed successively, until no time budget is left or all search
space has been explored. Then, the children having the best mean reward Q(s) is selected: it is
the one that tends to lead to best states for the initial problem.

Monte Carlo Tree search presents several characteristics making it interesting to use in our
search space exploration setting. First, it is aheuristic, meaning that it can be applied directly
on a search space that can be ordered as a tree to explore without requiring domain knowledge.
However, domain-specific knowledge can be incorporated, for example as it has been done with
the game of Go [39]. Second, it is anytime, meaning that the algorithm can be stopped at
any moment, giving results, and that those results improve over time. Tree growing is also
asymmetric, i.e., the tree tends to grow more to promising regions due to the UCT formula.
This is a reason why the algorithm gives better results quicker than a Breadth First Search,
for example: it can grow toward interesting area without having to enumerate all previous
nodes. Finally, MCTS has an exhaustive search guarantee if given enough time. Contrary
to purely random sampling strategies, MCTS will stop if all search space has been explored,
before consuming all time budget. In this case, the algorithm becomes deterministic.

We present an illustration of some Monte Carlo Tree Search iterations on a case of a two-
player game Tic-Tac-Toe on Fig. 3.3. It is the turn of the green player, and she faces the
problem of choosing the next action to play. To do so, an MCTS is launched from the initial
game configuration in (a). On (b), (c), (d) and (e), full cycles of MCTS are performed. As
there are four possibilities of play from the initial state, there are four children nodes. In those
four MCTS iterations, the selected node is directly the initial one, as it is not fully-expanded.
Once the initial node is selected, is it expanded, creating a new configuration where green player
places a circle on the board. In order to estimate the quality Q of this game configuration, the
ROLLOUT step is launched: random successive plays are performed, until reaching a terminal
state where one player has won. This terminal state gives information about whether or not the
expanded node is an interesting configuration for the current player or not. The information is
then back-propagated in the UPDATE step. For example, in (f), the third child of the initial
node has been selected a second time (N = 2). The ROLLOUT led to a configuration where
green player wins each time, the quality of the node is then Q = 1. Once the game search

33

Chapter 3. Bandit Models and Monte Carlo Tree Search

Algorithm 1 UCT
1: function MCTS(budget)
2: create root node s0 for current state
3: while computational budget do
4: ssel ← Select(s0)
5: sexp ← Expand(ssel)
6: ∆← Rollout(sexp)
7: Update(sexp,∆)
8: end while
9: return the child s of s0 with the highest Q(S)

10: end function
11:
12: function Select(s)
13: while s is non-terminal do
14: if s is not fully-expanded then
15: return s
16: else
17: s← BestChild(s)
18: end if
19: end while
20: end function
21:
22: function Expand(s)
23: randomly choose sexp from non expanded children of ssel
24: add new child sexp to ssel
25: return sexp
26: end function
27:
28: function Rollout(s)
29: ∆← 0
30: while s is non-terminal do
31: choose randomly a child s′ of s
32: s← s′

33: end while
34: return the reward of the terminal state s.
35: end function
36:
37: function Update(s,∆)
38: while s 6= s0 do
39: Q(s)← N(s)∗Q(s)+∆

N(s)+1
40: N(s)← N(s) + 1
41: s← parent of s
42: end while
43: end function
44:
45: function BestChild(s)
46: return argmax

s′ in children of s
UCT (s, s′)

47: end function
48:34

3.3. Conclusion

space has been fully explored, or time budget limit is reached, the algorithms stops. Qualities of
children of the initial node are then compared, and the action corresponding to the one having
the biggest is selected: it is the configuration that statistically leads to better configurations for
green player.

3.2.3 Applications

MCTS have been widely used in game theory [25], and particularly with the game of go [78].
One of the reason of the success of MCTS methods applied to the game of go is that it has a
high branching factor, i.e., a big search space to explore, compared to chess where the use of the
Minimax algorithm couple to good heuristics outperforms human expert decades ago [27]. More
recently, MCTS methods received a lot of attention, in particular with the winning of AlphaGo
against top world players [117].

Concerning data mining and machine learning approaches, MCTS have been applied to the
feature selection problem with the algorithm FUSE [53]. The first application of MCTS to
pattern mining and rules discovery has been proposed by Bosc et al. in [22]. They showed that
this paradigm gave good results, particularly considering the diversity of obtained patterns.

Nunes et al. proposed to adapt the framework of MCTS to Decision Trees Learning [99].
They enumerate the search space of possible Decision Tree, and launch an adapted UCT to this
problem, showing that resulting Decision Trees have overall better predictive power.

Note that in those cases, MCTS have some particularities compared to MCTS used in game
theory. First, every node of the search space has a quality that can be assessed, in contrast to
the original definition of UCT, where non-terminal nodes take the mean quality of simulations
run from them. Second, there is only one player, so the problem can be modeled as a single
player game. Finally, the goal is not to weight children nodes of the initial state to select the
best among them in a next action, but to explore the search space and to find the best possible
patterns.

In this thesis we will use the MCTS framework to control the search for supervised rules
discovery. As shown by Bosc et al. in [22], using MCTS to explore the search space efficiently
requires tuning of its different steps. Moreover, they showed that this approach works greatly
on classical transactional data, but when dealing with bigger search spaces, like sequences of
itemsets, time series or high dimension numerical data, this method is not as efficient. To
deal with this issue, we propose different algorithms using bandit models or MCTS approaches,
but in contrast to MCTS4DM, we propose to explore the search space of extents in a bottom-up
way, restricting the search space by exploring elements having a non-null support to reduce its
size without pruning interesting patterns. We will also define new policies for EXPAND and
ROLLOUT steps of MCTS to deal with data types we are interested in. In particular, we pay
attention to have ROLLOUT steps as quick as possible, as this is the key of the performance of
MCTS to perform well by taking advantage of the UCT formula.

3.3 Conclusion

Methods to solve the multi-armed bandit problem like UCB1, and Monte Carlo Tree Search
strategies like UCT come from decision and game theory, i.e., they were originally proposed to
answer decision problems. However, they have some properties that make them interesting to

35

Chapter 3. Bandit Models and Monte Carlo Tree Search

Figure 3.3: 5 iterations of MCTS to the Tic-Tac-Toe game (from [21])

36

3.3. Conclusion

adapt to other problems, as it has already been showed. In particular, using them to explore
rules search spaces using an exploration-exploitation trade-off can be particularly relevant: rules
qualities assessed by the chosen quality measure becomes the reward function, and the goal now
it not to select the next best decision, but to extract interesting patterns from the search space.
In the next chapter, we will take interest in adapting those methods to the problem of supervised
rules discovery for sequences of itemsets.

37

Chapter 3. Bandit Models and Monte Carlo Tree Search

38

Chapter 4

Mining interesting rules from
sequences of itemsets

Considering an exploitation/exploration trade-off for pattern mining has already been proposed
with itemsets and numerical by means of Monte Carlo Tree Search [22]. When dealing with a
huge search space, using sampling guided by such a trade-off can give good results. However,
contrary to [22], we consider here the search space of extents, and not the one of possible
patterns, on sequence of itemsets. Exploring the search space of extents guarantees to find
patterns with non null support while exploring the search space of possible patterns leads to the
discovery of many having a null support. This is a crucial issue when dealing with sequences of
itemsets. This chapter is organized as follows: we formally define the problem in Section 4.1.
We then describe our solution algorithms SeqScout in Section 4.2 and MCTSExtent in Section
4.3. Section 4.4 presents an empirical study on several datasets to assess qualities of proposed
methods.

4.1 Background

Let us now formalize our pattern mining task. It is an instance of Problem. 1, adapted to se-
quences of itemsets, which are database objects. A pattern is a subsequence, i.e., a sequence.
The covering relation between patterns and database objects and the binary relation be-
tween patterns, ordering the search space, has been given in Definition. 14.

Other definitions need to be introduced here to understand proposed methods. We summa-
rize the notations in Table 4.1.

Definition 15 (Set-extension) A sequence ob is a set-extension by x ∈ I of a sequence oa =
〈X1X2...Xn〉 if ∃i, 1 ≤ i ≤ n + 1 such that ob = 〈X1...{x}i...Xn+1〉. In other words, we have
inserted an itemset Xi = {x} at the ith position of oa.

Definition 16 (Item-extension) A sequence ob is an item-extension by x ∈ I of a sequence
oa = 〈X1X2...Xn〉 if ∃i, 1 ≤ i ≤ n such that ob = 〈X1...Xi ∪ {x}, ..., Xn+1〉.

For example, 〈{a}{c}{b}〉 is a set-extension of 〈{a}{b}〉 and 〈{a, b}{b}〉 is an item-extension
of 〈{a}{b}〉.

39

Chapter 4. Mining interesting rules from sequences of itemsets

Table 4.1: Notations

Notation Description
I set of possible items

m = |I| number of possible items
x ∈ I item
X ⊆ I itemset
D database
C set of classes
S set of all subsequences, i.e., search space

o = 〈X1...Xn〉 sequence of itemsets
Xj
i the ith itemset in oj
n size of a sequence o = 〈X1...Xn〉

l = ∑n
i=1 |Xi| length of a sequence

c ∈ C class
p v o p is a subsequence of o
ext(p) extent of p
supp(p) support of p
freq(p) frequency of p

ϕ quality measure
Neighborhood(s) neighborhood of s

Definition 17 (Reduction) A sequence ob is a reduction of oa if oa is an set-extension or
item-extension of ob.

Definition 18 (Local optimum) Let Neighborhood(p) be the neighborhood of p, i.e., the set
of all item-extensions, set-extensions and reductions of p. r? is a local optimum of S w.r.t. the
quality measure ϕ iff ∀r ∈ Neighborhood(r?), ϕ(r?) ≥ ϕ(r).

In the context of sequential pattern mining, the search space is a priori infinite. However, we
can define the border of the search space (the bottom border in Fig. 4.1) by excluding patterns
having a null support. As the most specific patterns having a non-null support are database
sequences, each element of this border is a sequence within the database. Therefore, the search
space shape depends on the data.

4.2 SeqScout: SEQuential patterns Scouting

4.2.1 Adapting the multi armed bandit model to subsequence mining

The SeqScout algorithm is a sampling approach that exploits generalizations of database se-
quences, and searches for local optima w.r.t. the chosen quality measure. Fig. 4.1 provides an
illustration of the method.

The main idea of the SeqScout approach is to consider each sequence of the labeled data as
an arm of a multi-armed bandit when selecting the sequences for further generalization, using
the Upper Confidence Bound (UCB) principle (see Algorithm 2). We recall that the idea of the

40

4.2. SeqScout: SEQuential patterns Scouting

Figure 4.1: Illustration of SeqScout.

UCB is to give a score to each sequence, that quantifies an exploration-exploration trade-off,
and to choose the sequence with the best one.

First (Lines 2-4), priority queues, π and scores, are created. π stores encountered patterns
with their quality, and scores keeps in memory the list of UCB scores of each sequence of the
dataset, computed by using equation 3.2 (see subsection 4.2.2). data+ contains the list of all
sequences of the dataset labeled with the target class. Indeed, taking sequences having the
target class will lead to generalizations having at least one positive element. Then, the main
procedure is launched as long as computational budget is available. The best sequence w.r.t.
UCB is chosen (Line 9). This sequence is ‘played’ (Line 10), meaning that it is generalized
(see Section 4.2.3) and its quality is computed (see subsection 4.2.7). The created pattern is
added to π (Line 11). Finally, the UCB score is updated (Line 12). As post processing steps,
the top-k best non-redundant patterns are extracted from scores using the filtering step (see
subsection 4.2.4). Finally, these patterns are processed thanks to a local optimization procedure
(see subsection 4.2.5).

Moreover, SeqScout needs other modules that concern the selection of the quality measure
(see Section 4.2.6) and the quality score computation (see Section 4.2.7).

4.2.2 SELECT Policy: Sequence Selection

We propose to model each sequence of the dataset as an arm of amulti-armed bandit slot machine.
The action of playing an arm corresponds to generalizing this sequence to obtain a pattern, and
the reward then corresponds to the quality of this pattern. Following an exploitation/exploration
trade-off, sequences leading to bad quality patterns will be avoided, leading to the discovery of
better pattern.

We then use the UCB1 (eq. 3.2) formula to score each sequence of the dataset, and we select

41

Chapter 4. Mining interesting rules from sequences of itemsets

Algorithm 2 SeqScout
1: function SeqScout(budget)
2: π ← PriorityQueue()
3: scores← PriorityQueue()
4: data+ ← FilterData()
5: for all sequence in data+ do
6: scoresucb.add(sequence,∞)
7: end for
8: while budget do
9: seq, qual,Ni ← scores.bestUCB()

10: seqp, qualp ← PlayArm(seq)
11: π.add(seqp, qualp)
12: scores.update(seq, Ni∗qual+qualp

Ni+1 , Ni + 1)
13: end while
14: π.add(OPTIMIZE(π))
15: return π.topKNonRedundant()
16: end function
17:
18: function OPTIMIZE(π)
19: topK ← π.topKNonRedundant()
20: for all pattern in topK do
21: while pattern is not a local optima do
22: pattern, qual← BestNeighbor(pattern)
23: end while
24: end for
25: return pattern, qual
26: end function

42

4.2. SeqScout: SEQuential patterns Scouting

the one maximizing it.

4.2.3 ROLLOUT Policy: Subsequence Generalization

After the best sequence w.r.t. UCB1 is chosen, it is generalized, meaning that a new more
general pattern is built. It enables to build a pattern with at least one positive element. Indeed,
most of the patterns in the search space have a null support [107]. SeqScout generalizes a
sequence s in the following way. It iterates through each item within each itemset Xi ∈ s, and
it removes it randomly according to the following rule:{

remain, if z < 0.5
remove, if z ≥ 0.5 , where z ∼ U(0, 1).

The quality of the pattern is then computed, to update the UCB1 value of the sequence from
which the pattern has been generated.

4.2.4 Filtering step

To limit the redundancy of found patterns, a filtering process is needed. We adopt a well-
described set covering principle from the literature (see, e.g., [22, 79]) that can be summarized
as follows. First, we take the best element, and then we remove those that are similar within
our priority queue π. Then, we take the second best, and continue this procedure until the k
best non-redundant elements are extracted.

4.2.5 Local optimum search

Finally, a local optimum search is launched w.r.t. Definition 18. Various strategies can be
used. The first possible strategy is the Steepest Ascend Hill Climbing [113]. It computes
the neighborhood of the generalized pattern, i.e., all its item-extensions, set-extensions and
reductions. Then, it selects the pattern among those of the neighborhood maximizing the quality
measure. This is repeated until there is no more patterns in the neighborhood having a better
quality measure. Another possible strategy is the Stochastic Hill Climbing [113]: a neighbor is
selected at random if its difference with the current one is “large enough”. Notice however that
it introduces a new parameter. Depending on the dataset, the branching factor can be very
important. Indeed, for m items and n itemsets in the sequence, there are m(2n + 1) patterns
in its neighborhood (see Theorem 1). To tackle this issue, we use First-Choice Hill Climbing
[113]. We compute the neighborhood until a better pattern is created, then we directly select it
without enumerating all neighbors.

Theorem 1 For a sequence s, let n be its size, l its length, and m the number of possible items,
the number of neighbors of s, denoted |Neighborhood(s)|, is m(2n+ 1).

Proof 1 The number of item-extensions is given by:

|Iext| =
n∑
i=1
|I| − |Xi| = nm−

n∑
i=1
|Xi| = nm− l.

We have now to sum the number of reductions, set-extensions and item-extensions:

|Neighborhood(s)| = l +m(n+ 1) + |Iext| = m(2n+ 1).

43

Chapter 4. Mining interesting rules from sequences of itemsets

4.2.6 Quality Measure Selection

The choice of the quality measure ϕ is application dependent. Our approach can deal with any
known measures that support class characterization, such as the F1 score, informedness or the
Weighted Relative Accuracy [76].

We consider objective quality measures that are solely based on pattern support in databases
(whole dataset, or restricted to a class). It enables a number of optimizations. Using random
draws makes it particularly difficult as each draw is independent: we cannot benefit from same
data structures as classical exhaustive pattern mining algorithms do (see, e.g., [7]).

4.2.7 Efficient Computation of Quality Scores

To improve the time efficiency of support computing, bitset representations have been proposed.
For instance, SPAM uses a bitset representation of a pattern when computing an item- or set-
extension at the end of a sequence [7]. In our case, we consider that an element can be inserted
anywhere. Therefore, we use a bitset representation that is independent from the insertion
position. Its main idea lies in keeping all bitset representations of encountered itemsets in a
hash table (memoization), and then combining them to create the representation of the desired
sequence.

The main idea of our strategy is given in Fig. 4.2. Assume we are looking for the bitset
representation of 〈{ab}, {c}〉. Let 〈{c}〉 be an already encountered pattern (i.e., its representation
is known) while 〈{ab}〉 was not. This can not be handled by the SPAM technique as a new
element has to be added before a known sequence. The algorithm will first try to find the
bitset representation of 〈{ab}〉. As it does not exist yet, it will be generated and added to the
memoization structure. Then, position options for the next itemset are computed (Line 2 in
Fig. 4.2). The latter is then combined with a bitset representation of 〈{c}〉 using bitwise AND
(Line 4). The support of the generated sequence can then be computed.

Figure 4.2: Bitset representation and support computing.

44

4.3. MCTSExtent

4.3 MCTSExtent

4.3.1 Applying MCTS in a bottom-up way

We now propose an extension of SeqScout that we call MCTSExtent. It is a logical evolution
of SeqScout when looking towards a better trade-off between exploration and exploitation of a
sampling strategy over the search space. It is based on the Monte Carlo Tree Search. Like for
SeqScout, our idea here is to explore the search space in a bottom-up way, contrary to classical
search space exploration in pattern discovery. Indeed, instead of beginning the exploration by
selecting general patterns, we start by isolating very specific patterns covering only few objects
having the target label, and we construct better ones by adding other interesting objects of the
database. In other terms, we directly explore groups of objets, i.e., extents having at least one
positive element.

4.3.2 Algorithm Description

The pseudo-code of MCTSExtent is given in Algorithm 3. The main loop of the algorithm runs
as long as a computational budget is available (Lines 4-11) making the algorithm anytime. Each
node of the MCTS tree contains a list of positive instances, its extent, and a pattern covering
them and only them.

The first step is to SELECT a node (Lines 15-23), i.e., choosing the best node in the
tree following the exploration-exploitation trade-off w.r.t UCB value. This step helps to guide
the search towards promising areas of the search space, having good quality patterns, without
ignoring that other non-explored parts can also be interesting. Thus, at each iteration, the
algorithm checks if the current node is fully-expanded, according to Definition 19. If not, it is
selected, and if yes, the SELECT procedure continues.

Definition 19 (Fully-expanded Node) A fully-expanded node is a node which has already
been expanded in all possible ways. Here it means there are no positive sequence to add to its
extent to compute an unseen Longest Common Subsequence (LCS see Subsection 4.3.4).

Then, a new node is created with the EXPAND step (Lines 25-29):

• a new positive different object is added to the ones that are in the selected node

• the Longest Common Subsequence (see Subsection 4.3.4) between this object and the
pattern of the selected node is computed

• the extent of this LCS is then computed

We need to perform this last step because the LCS can cover more objects of the database
than the union of the previous extent and the new positive object. It enables to get one of the
most specialized pattern covering at least selected node objects and the new positive object,
and its computational cost is negligible compared to support counting. Moreover, it creates a
pattern having positive elements: it can lead to the creation of a good quality pattern if it covers
less negative elements.

The next step is the ROLLOUT (Lines 31-38), where the node is generalized the same way as
explained in Subsection 4.2.3. Finally, the score of the ROLLOUT is used to update the quality

45

Chapter 4. Mining interesting rules from sequences of itemsets

Figure 4.3: MCTSExtent Principle.

of the path followed to reach it: the expanded node, the selected node, and all its parents until
the root. This step can be seen as a back-propagation of the result: the search space has been
sampled, and we update the quality of nodes of the tree to indicate if this area is interesting or
not for the next iterations.

Finally, once time budget is reached, the algorithm returns the top-k non-redundant elements,
i.e., performing the same redundancy filtering step as SeqScout.

4.3.3 Example

An example of MCTSExtent steps is given in Figure 4.4. First, the SELECT function starts from
the root node and it selects the best node to expand thanks to UCB. Node containing Object 3
is not fully expanded, so it is selected. Then the EXPAND function first takes a random positive
element, which is 2 in this case, and adds it to the node. Then the LCS between the pattern of
the selected node and Object 2 is computed: the extent of the node is now {1,2,3}. From this
node, we can now make a ROLLOUT and the pattern is generalized. Finally, nodes from the
path are updated with the reward of the ROLLOUT to provide feedback about the quality of
this area of the search space.

4.3.4 Computing a Longest Common Subsequence

MCTSExtent needs the classical concept of Longest Common Subsequence (LCS). Hirschberg et
al. have described a dynamic programming algorithm that solves this problem in polynomial
time for sequences of items [63]. However, it does not work on sequences of itemsets. Vlachos
et al. [127] introduced an algorithm for sequences of multidimensional real-values items, having
parameters to enforce constraints on the difference between real values. This is a different

46

4.3. MCTSExtent

Algorithm 3 MCTSExtent
1: function MctsExtent(budget)
2: π ← PriorityQueue()
3: create s0 empty root having all instances as children
4: while computational budget do
5: ssel ← Select(s0)
6: sexp, qualexp ← Expand(ssel)
7: sroll,∆← Rollout(sexp)
8: Update(sexp,∆)
9: π.add(sexp, qualexp)

10: π.add(sroll,∆)
11: end while
12: return π.topKNonRedundant()
13: end function
14:
15: function Select(s)
16: while s is not root do
17: if s is not fully-expanded then
18: return s
19: else
20: s← BestChild(s)
21: end if
22: end while
23: end function
24:
25: function Expand(s)
26: s+ ← randomly choose a positive instance
27: sexp ← ext(LCS(s, s+))
28: return sexp, rewardsexp

29: end function
30:
31: function Rollout(s)
32: for item in each itemset in s do
33: if random > 0.5 then
34: s.remove(item)
35: end if
36: end for
37: return s, rewards
38: end function
39:
40: function Update(s,∆)
41: while s 6= s0 do
42: Q(s)← N(s)∗Q(s)+∆

N(s)+1
43: N(s)← N(s) + 1
44: end while
45: end function
46:
47: function BestChild(s)
48: return arg maxs′ in children of s UCB(s, s′)
49: end function
50:

47

Chapter 4. Mining interesting rules from sequences of itemsets

Figure 4.4: Illustration of MCTSExtent.

48

4.3. MCTSExtent

problem. Egho et al. have proposed an algorithm to compute the number of distinct common
subsequences between two sequences of itemsets [45]. Such an algorithm does not generate the
needed longest common subsequence.

Theorem 2 Let two sequences of itemsets S1 and S2 of size n and m. We denote S1
≤i the prefix

of S1, i.e., S1
≤i = 〈X1...Xi〉. Let LCS(S1, S2) be the set of the longest common subsequences of

S1 and S2, or more formally:

LCS(S1, S2) = arg max
s∈CS(S1,S2)

length(s)

with length(s) the length of s, and CS(S1, S2) the set of all common subsequences between S1

and S2.
We then have:

LCS(S1
≤i, S

2
≤j) = arg max

s∈χ
length(s)

with

χ =
⋃

LCS(S1
≤i−1, S

2
≤j−1) ∪ (X1

i ∩X2
j) (CaseA)

LCS(S1
≤i−1, S

2
≤j) (CaseB)

LCS(S1
≤i, S

2
≤j−1) (CaseC)

Note that it generalizes the theorem of LCS for sequences of items from [63], where X1

i ∩X2
j

is an itemset of size 1. If last items are equals, LCS(S1
≤i−1, S

2
≤j) and LCS(S1

≤i, S
2
≤j−1) are less

or equally long than LCS(S1
≤i−1, S

2
≤j−1)) + 1, so it is not necessary to look at it to compute the

LCS.
To prove this theorem, we will need the following lemma.

Lemma 1 ∀s1, s2 ∈ S2, s1 v S1, s2 v S2:

LCS(s1, s2) ∈ CS(S1, S2)

This comes from the fact that LCS(s1, s2) v s1 and LCS(s1, s2) v s2, so by transitivity,
LCS(s1, s2) v S1 and LCS(s1, s2) v S2.

Proof 2 Reductio ad absurdum: Let us assume we have an LCS which is not in a case of this
theorem. We are not in Case B, a LCS(S1

≤i−1, S
2
≤j). The LCS can then finish with an item of

X1
i . Let us assume this is the case for this demonstration. Symmetrically, it can finish with an

item of X2
j for Case C.

The considered LCS then finishes with an itemset composed of elements from X1
i ∪X2

j (it must be
common, by definition). As it must be the longest, the last itemset of this LCS is X = X1

i ∩X2
j .

We then have a LCS of the form Y +X, with Y /∈ LCS(S1
≤i−1, S

2
≤j−1), because we cannot be in

the Case A. There is then only two possibilities for Y : whether Y is not common to S1 and S2,
or Y is smaller than LCS(S1

≤i−1, S
2
≤j−1). In both cases, it violates the definition of LCS. Thus,

we showed by contradiction that:

LCS(S1
≤i, S

2
≤j) ⊆ A ∪B ∪ C. (4.1)

49

Chapter 4. Mining interesting rules from sequences of itemsets

Knowing that S1
≤i−1 v S1

≤i and given Lemma 1, we can derive that

LCS(S1
≤i−1, S

2
≤j) ∈ CS(S1

≤i, S
2
≤j) (4.2)

Symmetrically,
LCS(S1

≤i, S
2
≤j−1) ∈ CS(S1

≤i, S
2
≤j) (4.3)

LCS(S1
≤i−1, S

2
≤j−1) ∈ CS(S1

≤i, S
2
≤j) (4.4)

X1
i ∩X2

j ∈ CS(S1
≤i, S

2
≤j) (4.5)

We can deduce from (3), (4), (5) and (6) that:
A ∪B ∪ C ⊆ CS(S1

≤i, S
2
≤j) (4.6)

From (2) and (7), we can conclude that the theorem is proven.

The pseudo-code of the dynamic programming procedure computing a LCS of two sequences
of itemsets is presented in Algorithm 4. First the matrix C is filled with 0. Then, we use a
bottom-up approach to fill the matrix with correct values, using the previous theorem. Note
that a i, j cell contains the length of LCS(S1

≤i−1, S
2
≤j−1). Once the computation of the length

of the LCS is done, a backtracking procedure is launched, to construct the solution (Lines 1-21).
We begin by looking at the “bottom-right” of the matrix (Line 32). We then check if there is an
intersection between itemsets i and j (Line 5). If this is the case, we check if the sub-problem
at rank i − 1 or j − 1 have the same LCS (those cases are here to check what path the LCS
procedure took). Else, we add the intersection to the LCS, and we jump to the sub-problem of
size i − 1, j − 1. If the intersection is null, we go to the sub-problem i − 1 or j − 1 having the
maximum LCS (Lines 17-21). The procedure stops if we reach a sub-problem of 0 (Lines 2-3).

An example is given in Figure 4.5. The matrix is filled from the top-left cell to the bottom-
right. At each step, following the theorem, we take the maximum value between the left cell, the
upper cell, and the cell in the upper-left diagonal plus the length of the intersection of current
itemsets.

Figure 4.5: An example of the dynamic programming for LCS

Complexity Let l1 and l2 be the length of S1 and S2. Let Xmax be the largest itemset
present in the dataset. The computing of each cell of the matrix requires to look at 3 cells and
to compute the intersection of two itemsets. This operation has a complexity of O(3+|Xmax|), so
the time complexity of LCS is O(l1 ∗ l2 ∗ |Xmax|). The worst case of the backtracking procedure
is O(l1 + l2), which is negligible comparing to the complexity of LCS. The space complexity is
O(l1 ∗ l2).

50

4.3. MCTSExtent

Algorithm 4 LCS
1: function backtrack_LCS(C, S1, S2, i, j, lcs)
2: if i = 0 or j = 0 then
3: return
4: end if
5: inter ← S1

i ∩ S2
j

6: if inter 6= ∅ then
7: if C(i− 1, j) = C(i, j) then
8: return backtrack_LCS(C, S1, S2, i− 1, j, lcs)
9: end if

10: if C(i, j − 1) = C(i, j) then
11: return backtrack_LCS(C, S1, S2, i, j − 1, lcs)
12: else
13: lcs.insert(0, inter)
14: return backtrack_LCS(C, S1, S2, i− 1, j − 1, lcs)
15: end if
16: else
17: if C(i, j − 1) > C(i− 1, j) then
18: return backtrack_LCS(C, S1, S2, i, j − 1, lcs)
19: else
20: return backtrack_LCS(C, S1, S2, i− 1, j, lcs)
21: end if
22: end if
23: end function
24:
25: function LCS(budget)
26: Initialize C with dimensions size(S1) ∗ size(S2) filled with 0’s
27: for i=1 to size(S1) + 1 do
28: for j=1 to size(S2) + 1 do
29: inter ← S1

i ∩ S2
j

30: C(i, j)← max(C(i− 1, j − 1) + length(inter), C(i− 1, j), C(i, j − 1))
31: end for
32: end for
33: final_lcs← list()
34: backtrack_LCS(C, S1, S2, length(S1), length(S2), final_lcs)
35: return final_lcs
36: end function

51

Chapter 4. Mining interesting rules from sequences of itemsets

Table 4.2: Datasets

Dataset |D| |I| lmax Search Space Size
promoters [40] 106 4 57 1.59 ∗ 1041

context [40] 240 47 123 5.25 ∗ 10224

splice [40] 3,190 8 60 3.29 ∗ 1062

sc2 [23] 5,000 30 30 6.48 ∗ 1048

skating [93] 530 41 120 1.16 ∗ 10212

jmlr [121] 788 3,836 228 1.84 ∗ 10853

rl 148 16 157 2.77 ∗ 10212

4.4 Experiments

4.4.1 Datasets

We used several popular benchmark datasets to evaluate the behavior of our algorithms, namely
promoters [40], context [40], splice [40] and skating [93].

We also apply our algorithms on the real life dataset sc2 that has been used in [23]. It was
extracted from Starcraft II games. Starcraft II is a Real Time Strategy (RTS) game that is well
known within the AI community. Recently, it has attracted more attention after the publication
of the Google DeepMind AlphaStar results, an AI defeating human players [126].

We also use jmlr, a dataset consisting of abstracts of articles published in the Journal of
Machine Learning Research [121]. In this dataset, we consider sequences of words. As class
labels, we used the occurrence of the word “svm” in a sequence, i.e., we label by “+” sequences
of words containing the word “svm”, removing words after it, and “-” for others.

Finally, we used an original dataset rl for Rocket League5 game analytic, composed of
traces of player inputs.

Table 4.2 summarizes the statistics of used datasets.

4.4.2 Baselines

To the best of our knowledge, we are the first to address the problem of supervised discriminative
rule discovery in sequences of itemsets, and therefore, there are not available algorithms that
can be used directly as baselines for the evaluation. However, there are several algorithms
for processing sequences of items. Therefore, to evaluate SeqScout and MCTSExtent, we have
modified two algorithms, namely misère [44] and Beam Search [79], such that they process
sequences of itemsets.

First, we implemented a simple extension of misère [44], the original version of which was
handling sequences of events only but not sequences of itemsets. Second, we implemented Beam
Search as a sequence-oriented version of a beam search algorithm. To deal with sequences of
itemsets, we consider item-extensions and set-extensions at each given depth. Moreover, for the
sake of non-redundancy in the returned patterns, we modify its best-first search nature so that
the expanded nodes get diverse as defined in [79]. Moreover, to ensure fair comparisons, we
removed the post-processing optimization of SeqScout that is studied more precisely in Section
4.4.12.

5https://www.rocketleague.com/

52

https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Promoter+Gene+Sequences)
https://archive.ics.uci.edu/ml/datasets/Protein+Data
https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Splice-junction+Gene+Sequences)
https://starcraft2.com
https://www.rocketleague.com/

4.4. Experiments

Figure 4.6: Mean WRAcc of top-5 best patterns (10K iterations)

4.4.3 Settings

If not stated otherwise, we use the following settings. Each algorithm has been launched 5
times, and the reported results are averaged over these runs. For Beam Search, we empiri-
cally set the parameter width = 50. For all algorithms, we set θ = 0.5, time_budget = ∞,
iteration_num = 10, 000, and top_k = 5. Note that instead of giving a fixed time budget for
running an algorithm on each dataset, we chose to limit the number of iterations iteration_num,
one iteration corresponding to a single computation of the quality measure. Indeed, this compu-
tation is the most time consuming one as such objective measures need to compute the extent
w.r.t. the whole dataset. Therefore, using the same time budget on different datasets would not
provide a fair comparison: having 50,000 iterations on a small dataset versus 50 on a larger one
with the same time budget is not relevant.

4.4.4 Performance Evaluation using WRAcc

To assess the performance of the algorithms, let us first use the mean of theWRAcc of the top-k
non redundant patterns given by misère, Beam Search, SeqScout and MCTSExtent. Fig. 4.6
provides absolute results. MCTSExtent is clearly the best solution on each dataset. Interestinly,
we can note that Beam Search is sometimes inefficient (see on splice).

We plotted relative improvements of algorithms (quality improvement ratio) in a one-vs-one

53

Chapter 4. Mining interesting rules from sequences of itemsets

Table 4.3: Mean values of measures for top-5 patterns.

Dataset Informedness F1

Algorithm misere BeamS. SeqScout MCTSExtent misere BeamS. SeqScout MCTSExtent

promoters 0.081 0.089 0.088 0.144 0.600 0.545 0.565 0.636
context 0.465 0.462 0.470 0.472 0.581 0.569 0.586 0.586
splice 0.373 0.041 0.392 0.397 0.428 0.086 0.452 0.451

sc2 0.013 0.006 0.011 0.015 0.531 0.533 0.541 0.550
skating 0.419 0.389 0.423 0.423 0.391 0.402 0.393 0.402

jmlr 0.439 0.545 0.449 0.545 0.330 0.402 0.337 0.421
rl 0.697 0.689 0.758 0.779 0.697 0.726 0.739 0.733

way on Fig. 4.7-4.11. We can clearly see that MCTSExtent and SeqScout perform particularly
well on splice compared to Beam Search. Overall, MCTSExtent provides better results.

To achieve a comprehensive evaluation, we fixed a relatively small time budget of 60 seconds
to compare the performances of algorithms, i.e., the limiting factor here is not the number of
iterations but the given time budget. Results can be seen in Fig. 4.6. MCTSExtent generally
outperforms other algorithms in terms of average WRAcc. We can also note that similarly to
misère, SeqScout shows a significant decrease of performance on jmlr. Indeed, it seems that
the strategy of taking a sequence and generalizing it is not efficient in a short time budget on
this dataset. In contrast, MCTSExtent guides the search toward promising patterns more quickly,
resulting in better performances.

4.4.5 Quality w.r.t. Number of Iterations

We show the result quality in terms of WRAcc over the number of iterations. Fig. 4.13, 4.14,
4.15, 4.16, 4.17, 4.18, depict the results for the top-5 non-redundant patterns on each dataset.
Note that for the same data, the results may vary from run to run, due to the random component
of misère and SeqScout. It explains some fluctuations of the quality. Nevertheless, for each
iteration_num setting, MCTSExtent has shown better results.

4.4.6 Using other Quality Measures

To empirically illustrate the measure agnostic characteristic of SeqScout and MCTSExtent, we
have used other quality measures, namely F1-score and Informedness. The results are shown
in Table 4.3. Our algorithms generally give better results.

4.4.7 Performance Study under Varying θ

We also evaluate performances of the algorithms when varying the value of the similarity thresh-
old θ. Fig. 4.19 shows the performance on the dataset context (results are similar on other
datasets). We did not include the results for θ = 0 because it would mean finding patterns with
totally disjoint extents. It results in finding a number of patterns lesser than k for all algorithms,
such that the mean would be misleading. We can see from the plot that relative performances
of algorithms are approximately the same for all θ values.

54

4.4. Experiments

Figure 4.7: SeqScout vs. misere Figure 4.8: SeqScout vs. Beam Search

Figure 4.9: MCTSExtent vs. misere Figure 4.10: MCTSExtent vs. Beam Search

Figure 4.11: MCTSExtent vs. SeqScout

55

Chapter 4. Mining interesting rules from sequences of itemsets

Figure 4.12: Mean WRAcc of top-5 best patterns (time budget: 60s)

56

4.4. Experiments

Figure 4.13: Average WRAcc for top-5
patterns w.r.t. iterations (promoters)

Figure 4.14: Average WRAcc for top-5
patterns w.r.t. iterations (context)

Figure 4.15: Average WRAcc for top-5
patterns w.r.t. iterations (splice)

Figure 4.16: Average WRAcc for top-5
patterns w.r.t. iterations (sc2)

Figure 4.17: Average WRAcc for top-5
patterns w.r.t. iterations (skating)

Figure 4.18: Average WRAcc for top-5
patterns w.r.t. iterations (jmlr)

57

Chapter 4. Mining interesting rules from sequences of itemsets

Figure 4.19: Mean WRAcc of top-5
patterns vs. similarity
threshold θ (context)

Figure 4.20: Mean WRAcc of top-k
patterns vs. k (sc2)

Figure 4.21: Length of top-5 best patterns - 10K iterations

58

4.4. Experiments

Beam Search Diversified Non-Diversified
promoters 0.075 X
context 0.073 0.073
splice 0.002 0.002
sc2 0.116 0.119

skating 0.043 0.044
jmlr 0.036 0.036
rl 0.092 0.099

Table 4.4: WRAcc for top-5 patterns on diversified vs. non-diversified Beam Search

4.4.8 Performance Study under Varying top-k

We investigate the performance of the search for top-k patterns when changing the k parameter.
Fig. 4.20 shows the results when considering the sc2 dataset (the behaviour is similar on
other datasets). MCTSExtent gives better results. Note that the mean WRAcc decreases for all
algorithms, as increasing k leads to the selection of lower quality patterns.

4.4.9 Sequence Lengths

The pattern lengths on all datasets are reported in Fig. 4.21. Let us consider the splice dataset:
Beam Search gives short patterns (max 8), which is significantly less than MCTSExtent, SeqScout
and misère. This may explain why the Beam Search result quality is bad on this dataset (see
Fig. 4.6). One hypothesis could be that it does not have enough iterations to go deep enough
in the search space. Another hypothesis is that Beam Search cannot find good patterns having
bad parents w.r.t. WRAcc: its good patterns are short ones. Another interesting observation
is that on jmlr, the length of sequences is 1 or 2. This means that interesting patterns of this
dataset are short ones, and are in fact itemsets: that is why Beam Search performs very well
on it. In fact, using a subgroup discovery algorithm exploiting itemset descriptions should give
similar results.

4.4.10 Non Diversified Beam Search

Leeuwen et Al. [79] proposed to filter redundant patterns during the beam-search procedure.
We wanted to check if this strategy remains efficient in the case of sequences of itemsets. In
fact, the main issue with the classical Beam Search approach is that when filtering is done
in post-processing, we can get less than k patterns, depending on the configuration. In fact,
a classical Beam Search is not relevant to solve our problem. A comparison of the two Beam
Search strategies is given in Table 4.4. We added a “X” when the number of found patterns is
lower than k.

4.4.11 Bitset vs. Integer Set Representation

We investigate the usefulness of bitset representation by comparing it against an integer set
representation where each item is represented by an integer. Therefore, we have compared
the number of iterations SeqScout made for a fixed time budget on each dataset. We set
time_budget = 10 seconds. The results are summarized in Table 4.5. We can see that the

59

Chapter 4. Mining interesting rules from sequences of itemsets

Table 4.5: Number of iterations in Bitset vs. Integer set representation

Dataset Integer Set Bitset Variation(%)
promoters 7,185 8,858 24
context 4,651 2,667 -47
splice 289 254 -12
sc2 943 605 -36

skating 4,001 1,283 -68
jmlr 704 31 -95
rl 8839 7799 -12

bitset representation tends to give a performance gain for datasets with smaller search space
size upper bound, but leads to a decrease of performances for the majority of the datasets. For
example, context, skating and jmlr have sequences of large lengths leading to large bitset
representations. Those bitsets are then split into different parts to be processed by the CPU.
If the number of splits is too large, the bitset representation becomes inefficient, and using a
classical integer set representation is a better option.

4.4.12 Local Optima Search

The local optima search uses more iterations. This over cost depends on the dataset. In Fig.
4.26, we plot the ratio of the additional iterations necessary for local optima search w.r.t. the
number of iterations given in the main search (also referred to as the cost). The more iterations
we have, the more negligible the ratio is. However, note that we did not plot the additional
cost of jmlr. Indeed, in the particular case of text data, the number of possible items is large,
leading to a very long local optima search (110,000 iterations for 5 patterns in our experiments).
Consequently, we note that the local optima search may not be the relevant choice with this
kind of dataset.

We also added it as a post-processing step to each of our algorithm to compare general quality
increase depicted in Fig. 4.22-4.25. As we can see, the more initial iterations are given, the better
the mean quality is, and the lesser the local optima search is interesting. This emphasizes on
the fact that MCTSExtent performs a good exploration of the search space. Note that on some
dataset, like promoters, this local search generally leads to an important quality increase.

4.5 Conclusion

We have discussed the problem of finding dicriminative patterns in labeled sequences of itemsets.
We have presented two algorithms SeqScout and MCTSExtent to discover relevant rules for this
type of data. Though we are not aware of available algorithms to solve the same problem, we
have implemented the adaptations of two other algorithms, namely misère and Beam Search,
such that they could be applied for the case of sequences of itemsets. This has been useful to
support our empirical evaluation.

Furthermore, to implement MCTSExtent, we have also introduced a new algorithm to compute
a Longest Common Subsequence between two sequences. Our experiments have shown that
MCTSExtent outperforms all other algorithms, without the need for additional parameter tuning
as needed in the case of Beam Search.

60

4.5. Conclusion

Figure 4.22: Added value of local
optima search for 1,000 iterations

Figure 4.23: Added value of local optima
search for 3,000 iterations

Figure 4.24: Added value of local
optima search for 6,000 iterations

Figure 4.25: Added value of local optima
search for 10,000 iterations

Figure 4.26: Additional cost of local optima search

61

Chapter 4. Mining interesting rules from sequences of itemsets

Interestingly, we can note that the method of MCTSExtent can be easily adapted to other
pattern description languages, by redefining the "ROLLOUT" step (or generalization) and the
"Common pattern" step, i.e., the Longest Common Subsequence here.

62

Chapter 5

Mining Interval patterns in high
dimensional numerical data

5.1 Introduction

In this chapter, we address the problem of supervised rule discovery in time series as the chal-
lenging problem of supervised rule discovery in high-dimensional numerical data. Indeed we can
transform the original time series into potentially high-dimensional numerical data, and then
take advantage of the numerical pattern interpretability.

Exhaustive algorithms for categorical data are applied on discretized data or directly on nu-
merical data with greedy discretization during the exploration (SD-MAP [5]). Greedy algorithms
such as beam search (e.g., DSSD [79]) are widely used and have been popularized by the “Cor-
tana” platform6. Finally, two anytime algorithms have been recently proposed, attempting to
take the best of both paradigms: a best first search that explores the whole search space if given
enough time budget and which produces a result anytime keeping improving over time. First,
Monte Carlo Tree Search (MCTS) can explore the whole interval pattern search space focusing
on both unvisited and promising parts thanks to an exploration-exploitation trade-off (MCTS4DM
[22]). Second, an exhaustive interval pattern search can be iteratively operated on finer data
discretizations (Refine&Mine [16]). Note that in the case of high-dimensional numerical data,
both MCTS4DM and Refine&Mine are inefficient. MCTS4DM considers interval patterns in a top-
down fashion sampling the search space with random draws that are costly, and thus, it hardly
reaches lower parts of the search space (where interesting patterns can be hidden). Refine&Mine
runs fast on very rough data representation, but not when it reaches some finer representations
for high dimensional numerical data.

Our contributions can be summarized as follows:

• We extend previous works on the closed on the positive (COTP) interval patterns [52, 16,
15] by defining and proving a key property, allowing to explore COTPs only without loss
of the relevance of the search space for discriminating the target class.

• We propose a MCTS-based algorithm called MonteCloPi that performs a bottom-up best
first search exploration based on the above mentioned mathematical property.

6http://datamining.liacs.nl/cortana.html

63

http://datamining.liacs.nl/cortana.html

Chapter 5. Mining Interval patterns in high dimensional numerical data

• Through an extensive set of experiments, we demonstrate that MonteCloPi can be applied
to collections of multivariate time series of both equal and different lengths and show
that the extracted interval patterns enable to derive competing interpretable classification
models.

The chapter is organized as follows. We formalize our rule discovery task in Section 5.2.
We define COTP interval patterns and discuss one of their properties in Section 5.3. Section
5.4 describes our algorithm and some related work is discussed in Section 5.5. A quantitative
experimental study is reported in Section 5.6 before concluding.

5.2 Supervised Rule Discovery in Numerical Data

Let us again formalize our problem as in instance of Problem. 1. Database objects of a
numerical dataset with n attributes are points in the n-dimensional Euclidean space. Interval
patterns are multi-dimensional intervals, i.e., boxes or hyper-rectangles with sides parallel to
the plane axes [70]. The covering function between patterns and database objects is given in
Definition. 21. The extent of an interval pattern is thus the set of data points that fall within
this rectangle. The binary relation between patterns is the interval inclusion, structuring the
search space.

Definition 20 (Numerical dataset D(O,A, C)) Let O, A and C be respectively a set of ob-
jects, a set of numerical attributes, and a set of class labels. When an object o takes a value v
for an attribute attr, we write attr(o) = v. The finite domain of a numerical attribute attr ∈ A
in a given dataset is denoted by Dom(attr): it is the set of distinct values it takes in the dataset.
The mapping f : O 7→ C associates each object to a unique class label.

Definition 21 (Interval pattern and covering function) An interval pattern of length n
is a vector of intervals p = 〈I1, I2..., In〉, with Ii = [ai, bi] ai, bi ∈ R2 ai ≤ bi. An object o ∈ O is
covered by an interval pattern i.f.f: ∀Ii ∈ p , attri(o) ∈ Ii.

Definition 22 (Interval pattern ordering and search space) The search space of all in-
terval patterns is ordered with the inclusion as the binary relation of this problem: p1 v
p2 ⇐⇒ [a2

i , b
2
i] v [a1

i , b
1
i],∀i ≤ n. It is composed of ∏n

i=1
|Dom(attri)|×(|Dom(attri)|+1)

2 elements.

A subgroup is composed of a pattern, its extent, and a score that reflects its interestingness
such as the Weighted Relative Accuracy [76]. When the context is clear, we use the terms
pattern and subgroup interchangeably.

Example 1 Table 5.1 provides a numerical dataset with 4 objects, 6 attributes and 2 labels.
p = 〈[1, 2], [4, 5], [3, 4], [7, 8], [5, 7], [8, 9]〉 is an interval pattern whose support is 2. Accordingly
(o1, o3) is the subgroup w.r.t. p and WRAcc(p,D,D+) = 0.25. As example for ordering relation,
we have 〈[1, 4], [2, 4]〉 v 〈[1, 3], [3, 3]〉.

Note that the minimal and maximal values of the WRAcc depends on the proportion of the
target class in the dataset. Using directly its value to assess its discriminating power could then
bias user interpretation. For example, a WRAcc of 0.09 for a class which is represented at 10%

64

5.3. Closed on the Positive Interval Patterns

Table 5.1: Toy dataset

ID attr1 attr2 attr3 attr4 attr5 attr6 class(.)
o1 1 5 3 8 7 9 +
o2 8 9 0 1 2 1 -
o3 2 4 4 7 5 8 +
o4 5 5 1 2 3 2 -

would mean that the pattern covers all elements having this class, and only them, i.e., it would
be somehow the best pattern. However, on a dataset with a representation of this class at 50%,
it would be much less relevant. We then propose to normalize the WRAcc.

Definition 23 (Normalized Weighted Relative Accuracy) The Normalized Weighted Rel-
ative Accuracy, or NWRAcc, takes its values in [−1, 1] and is defined by:

NWRAcc(p, c) = WRAcc(p,D,Dc)
WRAccmax(D,Dc)

NWRAcc can be used to compare patterns that discriminate different classes of different sizes.

Lemma 2 The maximum value the WRAcc can take on a dataset D for a class c, Dc being the
set of its elements labeled by class c, is WRAccmax(c) = |Dc|

|D|

(
1− |Dc|

|D|

)
.

Proof 3
WRAcc(p,D,Dc) = supp(p,D)

|D|
×
(
supp(p,Dc)
supp(p,D) −

|Dc|
|D|

)
Note that supp(p,D) = supp(p,Dc) + supp(p,Dc). We then have:

WRAcc(p,D,Dc) =
1
|D|
×
(
supp(p,Dc)(1−

|Dc|
|D|

)− supp(p,Dc)
|Dc|
|D|

)
To maximise the WRAcc, the rightmost term must be minimized. This is the case for

supp(p,Dc) = 0: it means the pattern does contain only element with positive class. Notice also
that supp(p,D) = bβ|Dc|c, with 0 ≤ β ≤ 1 as the number of elements having the target class
must be a subset of all elements having the target class. We then have:

WRAccmax(D,Dc) = β
|Dc|
|D|

(
1− |Dc|

|D|

)
Directly, β needs to be set to 1 to maximize the WRAcc.

5.3 Closed on the Positive Interval Patterns

It has been shown that our problem is equivalent to the discovery of closed on the positive
patterns (COTP) [52] as a general case, and to the discovery of closed on the positive interval
patterns within numerical data [16, 15]. The key idea is that any sub-interval of a COTP will
drop at least one positive object, thus, reducing the true positive rate, hence many measures
such as WRAcc (see [16] for details).

65

Chapter 5. Mining Interval patterns in high dimensional numerical data

Definition 24 (MEET operator) For ∀p, q ∈ P2, the MEET operator u is defined as u(p, q) =
〈I1, ..., In, 〉 with Ii = [min(api , a

q
i),max(bpi , b

q
i)]. For example 〈[1, 2], [6, 7]〉 u 〈[1, 1], [8, 9]〉 =

〈[1, 2][6, 9]〉.

Proposition 1 The MEET of two COTP interval patterns is a COTP.

Proof 4 For any interval pattern p′ s.t. p v p′, where p is the MEET of two closed on the
positive interval patterns, we have a restriction (i.e., a smaller interval) on at least one interval
compared to p. As bounds of those intervals are extracted from values of COTP patterns, i.e.,
they are as “tight” as possible, any restriction on it would lead to a decrease of the extent
of positive elements of p. By definition, p is then a COTP interval pattern. Note that any
“widening” of an interval would create an interval pattern p′′. If p′′ could have the same extent
as p, we would have p v p′′ and ext+(p) = ext+(p′), which is a contradiction with the definition
of a COTP pattern for p: the MEET is unique by definition.

5.4 MonteCloPi: Monte carlo tree search on Closed on the
PosItives

5.4.1 Applying MCTS in a bottom-up way on interval patterns

Classical lattice exploration methods, like Beam Search, are top-down by nature, going from the
most general description (i.e., pattern) down in the search space through successive refinements.
In contrast, we suggest to use a bottom-up strategy. Thus, the idea is to consider positive objects
of the database, i.e., objects labeled with the target class, and to compute their MEET with
other positive objects, successively climbing the search space of COTP, containing discriminative
patterns. We aim at creating patterns that are the most restrictive descriptions that cover a set
of chosen positive elements, i.e., they are by definition discriminating the positive class. We then
use a Monte Carlo Tree Search (MCTS) strategy. The idea is to iteratively explore the search
space using sampling and provide an anytime property. We propose an algorithm MonteCloPi
(MONTE carlo tree search for CLOsed on the PosItives). MCTS typically consists of 4 steps (i.e.,
SELECT, EXPAND, ROLLOUT, UPDATE) that are repeated successively. Its idea is to grow
an asymmetric tree following an exploration-exploitation trade-off to quickly find interesting
area of the search space. Hereafter, we explain these generic steps and how we instantiate them
to our problem. The schema describing MonteCloPi is given in Fig 5.1, and its pseudocode
is given in Alg. 5. Note that each node of the tree is composed of a set of database objects, i.e.,
its extent, and a pattern covering those objects.

5.4.2 SELECT Policy: numerical object selection

The first step consists in selecting a non fully-expanded node. The idea is to choose the most
relevant area of the search space to explore. To do so, we use the UCB function (see equation
3.2) to guide us through the tree, using an exploration-exploitation trade-off. We begin with
the ⊥ node, being the starting point node of the search having all database objects as children.
We compute the UCB of all its children and select the one maximizing it. We perform this step
recursively until reaching a non fully-expanded node. Note that UCB gives a better score to
nodes (i.e., patterns with their extent) that are good patterns, but also to nodes that are less
explored.

66

5.4. MonteCloPi: Monte carlo tree search on Closed on the PosItives

Algorithm 5 MonteCloPi algorithm
1: function MonteCloPi(timeBudget)
2: π ← PriorityQueue()
3: create ⊥ initial node having all objects as children
4: while within timeBudget do
5: psel ← Select(⊥)
6: pexp, qualexp ← Expand(psel)
7: proll,∆← Rollout(pexp)
8: Update(pexp,∆)
9: π.add(pexp, qualexp)

10: π.add(proll,∆)
11: end while
12: return π.topK()
13: end function
14:
15: function Select(p)
16: while p is not > do . > is the most general pattern
17: if p is not fully-expanded then
18: return p
19: else
20: p← BestChild(p)
21: end if
22: end while
23: return p
24: end function
25:
26: function Expand(p)
27: o+ ← randomly choose a positive object
28: p+ ← IntervalPattern(o+) . Transform each ai into [ai, ai]
29: pexp ← meet(p, p+)
30: return pexp, ϕ(pexp)
31: end function
32:
33: function Rollout(p)
34: j ← Rand(1, n) . Randomly pick an index of one of n intervals constituting p
35: for i in [1, j − 1] ∪ [j + 1, n] do . Exclude the jth interval Ij of p, i.e., p \ Ij
36: p[i]← [−∞,+∞]
37: end for
38: return p, ϕ(p)
39: end function
40:
41: function Update(p,∆)
42: while p 6= ⊥ do
43: ϕ(p)← N(p)∗ϕ(p)+∆

N(p)+1 . N(p) is the number of times p has been chosen
44: N(p)← N(p) + 1
45: p← parent of p
46: end while
47: end function
48:
49: function BestChild(p)
50: return argmax

p′∈C(p)
UCB(p, p′) . C(p) is the set of children of p

51: end function

67

Chapter 5. Mining Interval patterns in high dimensional numerical data

1 2

1,3

3

Select

1 2

1,3

3

Expand-1

2,3

1 2

1,3

3

Expand-2

1,2,3

2,3

ext(⊓(2,3))

1 2

1,3

3

Rollout

1,2,3

1 2

1,3

3

Update

1,2,3

Δ

Δ

Figure 5.1: Simple illustration of MonteCloPi steps

Note that in Alg. 5, > corresponds to the most general pattern, i.e., the empty pattern
present in all database objects. In Fig. 5.1, the blue node is the initial bottom node ⊥. It is
fully expanded, so the SELECT procedure will choose its best child w.r.t. UCB. Suppose the
node “3” has the best UCB, and has not been fully expanded, then, it is selected (given in red).

5.4.3 EXPAND Policy: meet with positive object

Then, the selected node is expanded. This step consists in taking a positive element (o+ in
Alg. 5), i.e., an object labeled with the target class, transforming it to an interval pattern,
and computing its MEET with the interval pattern of the current node. Next, the extent
of this MEET is computed: we create a pattern with the most restrictive description that
covers elements from the selected node plus this positive element. Note that the transformation
step from object to pattern is straightforward: each attribute attri(o) becomes an interval
[attri(o), attri(o)].

In Fig. 5.1, we take the node covering the positive element “3”, add the positive element “2”
(node “2,3”). We then compute the MEET of their pattern, its quality, and finally the extent
of this MEET: it covers elements “3”, “2”, but also “1” (node “1,2,3”). Note that the pattern
obtained from an object labeled with the target class o+ is COTP, and the first iterations of the
current procedure consider single objects descriptions, i.e., COTP patterns. From Proposition
1, it follows that this EXPAND step recursively creates a new COTP pattern.

5.4.4 ROLLOUT policy: interval pattern generalization

The ROLLOUT step here consists in taking the corresponding interval pattern of the expanded
node, randomly choosing an interval among n available ones (Ij), and removing restrictions on
all others, i.e., setting them to [−∞,∞]. We then widen this interval by picking a random
upper and lower value among possible ones in the dataset. This corresponds to going “up” in
the search space, until reaching the first level of the search space in a top-down approach (see
the top red node in Fig. 5.1). We then compute the quality of this pattern. Note that Monte
Carlo strategies consist in drawing a large number of samples, so they require a fast ROLLOUT
policy to be efficient.

68

5.5. Related Work

5.4.5 UPDATE

Finally, we update parent nodes of the ROLLOUT node with its computed quality ∆. These
parent nodes include the expanded node, the selected node and all nodes chosen in the SELECT
step until reaching the selected node. The UCB will orient the tree exploration towards the
nodes whose ROLLOUTs give good qualities, so they will be prioritized on the next iterations
of MCTS, leading to the discovery of interesting patterns.

Steps 1-4 are repeated iteratively until the time budget has not been reached or until the
whole search space is explored.

The time complexity of MonteCloPi is proportional to the number of iterations it performs
(IterNum). For one iteration, the most costly task is the computation of the quality measure,
in the step 3 and 4. This complexity is O(n|D|), with n the number of attributes of time series.
The memory complexity is O(IterNum), as the whole tree needs to be held in memory.

Theorem 3 Our described enumeration method is equivalent to exploring all closed-on-the-
positive interval patterns.

Proof 5 We have shown that the EXPAND step creates a COTP. We now need to show that
∀c ∈ COTP , c will be enumerated by our method. By construction: let c be a COTP interval
pattern. If we remove positive objects from ext(c) one by one, and compute the corresponding
COTP interval pattern, we create a list of COTP interval patterns until we reach a COTP
interval pattern containing only one object (or a set of identical objects). This list of successive
COTP interval patterns is exactly the list built by our method in reverse order, by adding objects
one by one and computing the meet in Expand step.

As a COTP interval pattern created from the meet of two COTP interval patterns is unique
(see Proposition 1), our enumeration method will create c.

5.4.6 Adaptation of MonteCloPi for Time Series of Different Lengths.

To deal with time series of different lengths that we can collect in many application settings,
two small modifications of the algorithm are required. First, we adapt the computation of the
MEET for two interval patterns: we randomly remove intervals from the longest one to have
two interval patterns of the same length, and then compute their MEET. Second, we re-define
the notion of coverage: a time series transformed into a numerical object o of length nts is said
to be covered by an interval pattern p of length np iif: ∃1 ≤ i1 ≤ . . . ≤ inp ≤ nts s.t. attri1(o) ∈
I1, . . . , attrinp(o) ∈ Inp. Note that we loose here the guarantee of exhaustiveness on COTP, as
the MEET operator is no more unique.

To summarize, MonteCloPi is an anytime algorithm. It explores COTP patterns, with a
guarantee of exhaustiveness, if given enough time budget. It is agnostic of the quality measure.
In contrast to MCTS4DM, it explores the search space in a bottom-up way, exploring only COTPs
by redefining in an original way the EXPAND and the ROLLOUT steps.

5.5 Related Work

Mörchen and Ultsch [93] proposed a new language (TSKR) on interval time series. The ad-
dressed problem is different from ours: events have a duration instead of being instantaneous

69

Chapter 5. Mining Interval patterns in high dimensional numerical data

(e.g., injection of a drug in medical conditions), and they look for frequent rather than discrimi-
native patterns. Similarly, Batal et al. [12] worked on predictive frequent time-interval patterns.
Atzmueller et al. [108] propose a method for the classification of time series. They discretize
data with SAX, incurring information loss. Features are extracted with the FRESH algorithm
from raw time series, and anomaly detection is done to improve the overall workflow. It requires
human-in-the-loop. Nanlin Jin et al. used SD in Smart Electricity Meter Data [67]. Using
Beam Search, they explored different quality measures on data similar to time series but also
containing categorical data. They showed the relevance of a SD approach to create interpretable
rules used further in classification in the context of energy consumption. They claim that “The
usefulness and effectiveness of subgroup discovery algorithms need to be empirically evaluated
through their predictive power and classification accuracy, both being important to industrial
practitioner”. Nguyen et al. [96] propose a method that learns a linear classifier on discretized
data (SAX or SFA). A feature (pattern) with the largest weight is considered the most dis-
criminating. The goal is first to classify, then to extract patterns from the model. They use a
smart pruning strategy to minimize the loss function, dynamically selecting features. However,
such an approach ignores the quality measure (e.g., it is impossible to specify to Precision or
Lift maximization). Notice also that they cannot process multivariate time series. Top-down
approaches using tight optimistic estimates like the recent work of Millot et al. [90], or using
those optimistic estimates to prune the search space for Beam Search can also be considered.
However, they are dependent on the quality measure. Besides, using optimistic estimates when
looking for a non-redundant pattern set, where non-redundancy is performed as post-processing,
is quite difficult. To avoid pruning interesting search space areas, it would require to know the
quality of the last top-k non-redundant patterns w.r.t. the quality measure at any time. It
would have a high computational cost. misère, by Egho et al. [44] has been proposed to sample
interesting rules (originally in the case of sequences of itemsets) in a simple way, giving good
results when those rules are used to build a classifier. Genetic algorithm can be considered to
tackle this problem, but they do not offer strong guarantees like exhaustiveness or exploring
only COTPs. For example, Lucas et al. proposed SSDP to mine top-k discriminative rules in
high-dimensional data [84]. However, they only consider categorical and discrete attributes.

Considering the classification of time series, most of the recommended methods (e.g., [9])
require time series to have the same length, whether it is BOSS [115], COTE [10], Shapelet
Transform [62], or Time Series Forest [36]. In the use case presented later on, time series have
different lengths. The 1-Nearest Neighbor Dynamic Time Warping 1NN DTW [94] is said to be a
good baseline. However, the prediction step in K-NN can take a long time, even more because
the DTW distance has a complexity of O(n2) for time series of size n.

5.6 Quantitative Experimental Study

We conduct a series of experiments to assess the performance of MonteCloPi. In the first set
of experiments, we focus on supervised rule discovery in time series of equal lengths.

5.6.1 Datasets

We consider benchmark datasets of time series domain [11]. We add our original dataset Rock-
etLeague containing annotated video game traces. We describe its generation process in chapter
6. We transform time series data into numerical data similarly to approach [67]. Basically,

70

5.6. Quantitative Experimental Study

a multivariate time series of fixed length dataset is composed of a set of variables X at each
timestamp in T . The corresponding numerical dataset is then given by (O, X × T, C): each
numerical attribute gives the value of a variable at a given time. The properties of the resulting
datasets are summarized in Table 5.2.

5.6.2 Baselines

To provide a fair evaluation, we test MonteCloPi against the following algorithms:

• Beam Search [42]: Starting from the most general subgroup, i.e., containing intervals
in the form [min(Dom(attr)),max(Dom(attr))], ∀attr ∈ A, it explores the search space
level-wise, taking the best elements (beam width) at each level. Each restriction (going
down by one level) consists in taking an interval and splitting it in 6 equal-sized bins [].
It prevents the search space from exploding, but forfeits exhaustiveness. We set the beam
width to 50. Other settings can be used, but they do not impact significantly the reported
results.

• misère [44]: It draws uniformly an object from the data, and then generates random
generalizations to find the best possible prediction rules for this object. It iterates until
the time budget is exhausted. Notice that this is an exploration-only search algorithm.

• MCTS4DM [22]: It is a MCTS-based top-down approach that processes numerical data with-
out discretization. Its strategy guides the search following an exploration-exploitation
trade-off to compute non-redundant patterns. It explores the lattice of patterns, contrary
to MonteCloPi that explores the lattice of extents.

We also tried to use Refine&Mine [16]. This algorithm dedicated to numerical subgroup
discovery was able to provide only extremely rough initial discretization on all the datasets. We
decided not to report further.

For each of the algorithms, we apply the following procedure. Given a time budget, each
algorithm extracts the best patterns. Next, the following post-processing routine is applied for
removing redundant patterns: we sort patterns by quality, keep the best, while removing similar
patterns (in terms of Jaccard index) of poorer quality. Then we take the second best, etc, until
we obtain k patterns or there is no pattern left.

Table 5.2: Datasets statistics.

Dataset |D| n m |(C)| Multivariate Search Space Size
Computers 250 720 1 2 False 1.31 ∗ 109

Earthquakes 322 512 1 2 False 1.02 ∗ 1011

ECG5000 500 140 1 5 False 3.41 ∗ 1011

Gunpoint 50 150 1 2 False 4.16 ∗ 109

Lightning2 60 637 1 2 False 3.20 ∗ 1011

Worms 182 900 1 5 False 2.37 ∗ 1012

Yoga 300 426 1 2 False 3.46 ∗ 1012

Handwriting 150 152 3 26 True 2.85 ∗ 1025

JapaneseVowels 270 29 12 9 True 6.38 ∗ 1084

NATOPS 180 51 24 6 True 3.88 ∗ 10184

RacketSports 151 30 6 4 True 1.77 ∗ 1041

RocketLeague 298 64 8 18 True 1.44 ∗ 1055

StandWalkJump 12 2,500 4 3 True 1.26 ∗ 1024

UWaveGestureLibrary 2,238 315 3 8 True 7.07 ∗ 1027

71

Chapter 5. Mining Interval patterns in high dimensional numerical data

If not specified otherwise, the default parameters for the algorithms are the following: 60s
of time budget, θ = 0.8, top_k = 5. All experiments were conducted on a laptop (Intel Core
i7-8750H CPU and 16GB RAM).

Quality Measure We explore performances of algorithms on different datasets, and study
the impact of varying available time budget. In the following, if not stated otherwise, we use
NWRAcc as the quality measure. We average it over top-5 non-redundant patterns of 5 runs of
the algorithms. Note that our approach is agnostic of the quality measure, and that any other
discriminative quality measure could be considered.

Classification To assess the usefulness of MonteCloPi, we evaluate the classification accu-
racy of a classifier built upon mined patterns. We propose an instance of the LeGo framework
[72], where a set of interesting patterns is mined and then used as features to build a global
model. Mind that our goal here is to analyse the interest of this pattern mining approach to
build intelligible models. Therefore, creating a time series classifier to compete with the state-
of-the-art algorithms is out of the scope of this work. First, we launch MonteCloPi on each
target class in a one-vs-rest fashion. We then re-encode the dataset using extracted patterns:
each pattern corresponds to a binary feature, with value 1 set if the pattern appears in the
transaction, and 0, otherwise. Finally, we train a Random Forest classifier of 100 trees on this
re-encoded dataset to evaluate the performance of this pipeline. Note that, as explained by
Knobbe et al. in [72], the non-redundant step is important to remove redundant features that
tend to hinder machine learning procedures.

In the case of univariate time series, we compare our classifier to Mr-SEQL [96], and 1NN DTW
[9]. The latter is considered to be a strong baseline that is hard to beat [9]. For the multivariate
case, we choose to compare to 1NN DTW that remains a strong baseline. Notice that Mr-SEQL is
unable to deal with multivariate time series.

5.6.3 Overall Performance

First, we examine the overall performance of MonteCloPi in terms of NWRAcc compared
to Beam Search, misère and MCTS4DM. In Fig. 5.2, we plot the results for all datasets. As
we can see, MonteCloPi is the best approach on nearly all the datasets. Beam Search may
also be a good solution, as the algorithm is simple, and results are quite stable over datasets.
However, our approach clearly outperforms it in the majority of cases. As for misère, its results
vary significantly depending on the dataset. For instance, it performs very well on GunPoint,
while returning patterns having a zero quality on UWaveGestureLibrary. Finally, MCTS4DM
that performs a MCTS-based approach but in a “top-down” way on patterns clearly gives less
interesting results on such datasets.

5.6.4 Varying Time Budget

We traced the performance of MonteCloPi, Beam Search, and misère versus time budget
in Fig. 5.3. As we can see, MonteCloPi quickly gives better results, improving over time.
Moreover, those results are quite stable over runs of the same duration, contrary to misère.
Our hypothesis is that this is due to the exploration-exploitation trade-off, where we focus on
interesting areas of the search space, whereas misère performs a pure exploration. Another

72

5.6. Quantitative Experimental Study

Figure 5.2: Mean NWRAcc of top-5 patterns with different algorithms. Bar errors represent the 95%
confidence intervals

problem faced by misère is that for this type of data, the number of patterns one can create
from a time series is very large. It results in a strong dependency of the quality of a pattern on
the object that was randomly drawn. It explains the large variability of the results for misère.

5.6.5 Classification Performance

First, we consider univariate time series. We set the time budget to 60s to mine patterns
for each class. We also compare classification performances using patterns from misère and
Beam Search. The results in terms of accuracy are given in Table 5.3. Unsurprisingly, as
quality of patterns from MonteCloPi were better, resulting classifier outperforms those build
upon patterns of misère and Beam Search. As we can see, the MonteCloPi pipeline achieves
results comparable to the state-of-the-art classification algorithms on most datasets, except
Worms and Yoga, where the results are somewhat inferior. However, it should be noted that
our method achieves these good results within the training time of only few minutes, contrary
to 1NN DTW, which takes several hours to finish in our implementation (for the comparison given

73

Chapter 5. Mining Interval patterns in high dimensional numerical data

Figure 5.3: NWRAcc vs time budget on RocketLeague (left) and ECG5000 (right)
averaged over 5 runs. The shaded areas represent the 95% confidence interval.

in Table 5.3, we used the results of 1NN DTW reported in [9]), and more importantly, once the
classifier is trained it can classify in real time. Results of Mr-SEQL are very good, however, this
algorithm is focused on classification and not on pattern mining: we cannot control the type of
patterns we are interested in with a quality measure, the algorithm is not anytime, and it does
not work on multivariate time series.

Let us now consider multivariate time series. As we can see in Table 5.4, the results of
MonteCloPi are overall quite good, except for the HandWriting dataset. However, contrary
to 1NN DTW, our method trains a model that gives instant results at the classification step (a
few milliseconds), when 1NN DTW can take much longer (over fifteen minutes), just like in the
univariate case. Therefore, in a context where data are multivariate time series of different
lengths, and where a real time classification is required, as in the case of the Rocket League
use case described in next chapter, 1NN DTW cannot be used, and the MonteCloPi pipeline
becomes particularly relevant.

5.7 Conclusion

We presented MonteCloPi, an efficient solution for subgroup discovery in numerical data. It
is generic and can be easily adapted to other types of data. To do so, only two modifications
are required: redefinition of the MEET operator and adaptation of the ROLLOUT step. For

Table 5.3: Classifiers accuracy for univariate datasets

Dataset MonteCloPi Mr-SEQL 1NN DTW Beam Misere
Computers 0.656 0.720 0.659 0.612 0.596
Earthquakes 0.748 0.748 0.747 0.748 0.748
ECG5000 0.918 0.934 0.940 0.891 0.912
Gunpoint 0.940 0.980 0.964 0.833 0.953
Lightning2 0.688 0.672 0.710 0.606 0.540
Worms 0.519 0.623 0.673 0.467 0.428
Yoga 0.692 0.871 0.863 0.720 0.540

74

5.7. Conclusion

instance, we can examine the possibility of applying MonteCloPi to graphs.
MonteCloPi can deal with multivariate time series of different lengths, and be used to

classify them in real time, providing valuable interpretable features. Though we reported results
on a video game skill classification use case, various industrial processes can benefit from our
findings. Time series are ubiquitous, and the need for interpretable rules is constantly growing.

Moreover, the property of exhaustiveness on COTP, that contains discriminating patterns
and are a subset of all possible patterns, gives the guarantee of finding the best elements and
automatically stopping the algorithm, if given enough time. However, this property does not
remain valid for the case of time series of different lengths, in a same manner as MCTSExtent.
To overcome this limitation, one could compute all possible maximal common patterns between
two elements in the EXPAND step. More investigations are needed, as the number of these
patterns could be significantly high depending on the pattern description language.

Table 5.4: Classifiers accuracy for multivariate datasets

Datasets MonteCloPi 1NN DTW Beam Misere
Handwriting 0.161 0.316 0.095 0.101

JapaneseVowels 0.932 0.959 0.173 0.873
NATOPS 0.833 0.850 0.667 0.167

RacketSport 0.809 0.842 0.618 0.816
RocketLeague 0.801 0.574 0.482 0.726

StandWalkJump 0.333 0.333 0 0.333
UWaveGestureLibrary 0.840 0.868 0.584 0.125

75

Chapter 5. Mining Interval patterns in high dimensional numerical data

76

Chapter 6

Application to Game Analytics:
player behaviour detection

6.1 Introduction

Competitive gaming, or esports, is now a well-established phenomena [122]. Online and offline
tournaments flourish for hundreds of video games, at any level of player expertise. The most
prestigious offer cash prizes up to several US$ millions, and are widely followed on video game
live streaming platforms [71, 123]. For the game industry, designing games that can be played
as an esport comes with a difficult trade-off between game difficulty and reward/fun. Indeed,
a game shall be difficult enough so that professional gamers exhibit extraordinary skills that
casual players will enjoy to watch on live streaming platforms. However, the game should also
provide an attractive learning curve and clear segments of skills. One should play with/against
players of approximately the same level of skills. They finally should also feel a progress in the
learning of the game. As popularized by the famous board game Othello’s slogan, many esports
take “A minute to learn, a lifetime to master”. When the trade-off between game difficulty and
reward is well handled, a game has better chances to see its life time extended, a major goal for
the industry, especially for games with staggering budgets.

Consequently, a major challenge is to understand the level of a player and to evaluate its
progression. Match making systems rank players, generally, following an ELO-like scoring [61],
and depending only on previous victories and losses of the player. It suffers from the cold-start
problem, but most importantly, it does not bring any factual elements such as a player profile of
skills and mastered strategies. Furthermore, skills and strategies are not given beforehand - and
this is probably one of the reasons why such games are so attractive - but are discovered with
time. Hopefully, several games provide access to game logs storing enough information to replay
the game. Analyzing these logs enables one to exhibit behavioral patterns, that is, discovering
patterns that correspond to strategies and skills. Logs are generated not only for competitive
games, but also training sessions, so a profile can be updated with any game.

In this chapter, we focus on the game Rocket League played as an esport, which can be
described as “soccer, but with rocket-powered cars”. Released in 2015, it now counts more than
10 millions sales and tens of thousands active players [129]. The game should be played com-
petitively at an international event for the next Olympic Games in Tokyo [65]. Each player
controls a car on a soccer field, and has to score just like for classical soccer. The rules are

77

https://www.rocketleague.com/

Chapter 6. Application to Game Analytics: player behaviour detection

Skill inventory Data collec-
tion/selection

Data
augmenta-

tion/labelling

Pattern
Mining

Data
re-encoding

Supervised
Classification

Figure 6.1: Methodology (domain expert interventions in red).

simple, however the control of the car is very precise and requires thousands of hours of play to
master. Actually, even years after the release of the game, the community discovers new ways
of playing, and new skills that impact the way professionals play. Those skills are recognizable
by commentators when games are streamed. Adding a system that can detect them automat-
ically could enhance players ranking, help commentators recognize skills among the spectrum
of available ones, or create new game modes based on skills execution (rewarding players given
difficulty of skills they executed during the game).

Identifying skillshots from game traces is challenging as each occurrence is unique from a
pure data point of view. Therefore, advanced data analysis techniques must be involved. Our
contributions are as follows: (i) we provide an original dataset, composed of sequences of Rocket
League game states (replay), manually labeled with skillshots, and augmented with player actions
thanks to a self-made capture program, (ii) we design a non trivial data-centric approach for the
automatic detection of skillshots involving discriminant pattern mining based on an adaptation
of SeqScout and supervised classification, (iii) we support our claims with an extensive set of
experiments. All our experiments, data collection workflow and data are provided with the code
of our solution online: https://github.com/Romathonat/RocketLeagueSkillsDetection.

This chapter is organised as follows. Section 6.2 describes our data and methodology. Section
6.3 provides related works. Section 6.4 presents experimental results supporting our claims, and
Section 6.5 discusses them.

6.2 Data and Methodology

We focus here on building an interpretable prediction model taking a game log in real-time and
outputting each time a skillshot is detected. To the best of our knowledge, there exists no dataset
of Rocket League game logs labeled with skillshots. Thus, we first build a dataset, perform a
number of transformations and manually annotate it with skillshots. Then, the resulting dataset
is mined and behavioral patterns that strongly characterize skillshots are extracted. Finally, such
patterns are used to re-encode the initial dataset, and a model is trained to predict skillshots
given unseen player’s trace segments. The fact that patterns are used in training enable to
produce an interpretable model (in contrast to black box models) which is required to build an
interpretable player skill profile. The general workflow is given in Figure 6.1.

78

https://github.com/Romathonat/RocketLeagueSkillsDetection

6.2. Data and Methodology

Figure 6.2: Decomposition of the “Musty Flick”

6.2.1 Skill inventory

This expert knowledge can be found on community websites, e.g., [109]. We focus on the most
popular skillshots, namely Ceiling Shot, Power Shot, Waving Dash, Air Dribbling, Front Flick,
and Musty Flick. Figure 6.2 illustrates the Musty Flick: first, the player accelerates and boosts
to make the ball roll on top of the car (1, 2), then she jumps making both the car and the ball
go up (3). Next, she orientates the car towards the floor (4), jumps again, orientating the car
backward (5), resulting in lobbing the ball (6).

6.2.2 Data collection and Feature Selection

After a game of Rocket League, the game client stores a replay file. It is composed of contextual
information about the cars and the ball for every frame of the game. It allows to replay the game
with the game engine at any moment. Replays can be parsed7 to extract dozens of variables on
the ball and players such as a speed vector, positions vector, rotations vector, rotation speed,
each composed of 3 dimensions, and this for each actor on the field (players and balls), several
times per second. It results in a large sequence of game states, each containing values for a set
of variables, e.g., 〈{time : 1.256, Px : 578, Py : 5768, Pz : 2245, Pvx : 22425, Pvy : 15848, Pvz :
354, Prx : 0, Pry : 589, Prz : 23, Ballx : 5588, Bally : 789, Ballz : 22, ...}, {time : 1.298, Px :
7578, Py : 254, Pz : 4678, Pvx : 511, Pvy : 555, Pvz : 7863, Prx : 6365, Pry : 5665, Prz : 6, Ballx :
568, Bally : 8663, Ballz : 665, ...}, {...}, ...〉, with Pi being a position of the car in dimension i,
Psi its velocity, Rri its rotation, etc.

In order to deal with such a number of features, we can reduce it with feature selection/engi-
neering, using expert knowledge. As an example, using the information of the position of a static
boost pad (an item on the field giving boost to players) will not help to classify the action the
player is performing. The list of relevant information is given in Tab. 6.1. The wall distance,

7https://github.com/jjbott/RocketLeagueReplayParser

79

https://github.com/jjbott/RocketLeagueReplayParser

Chapter 6. Application to Game Analytics: player behaviour detection

ceiling distance and ball distance can easily be computed using positions of the ball and players
by retro-engineering the positions of the walls and ceiling in replays of games already played.

Contextual information Data type
Wall distance (not backboard) Numeric

Ceiling distance Numeric
Ball distance Numeric
Ball speed Numeric

Ball acceleration Numeric
Car speed Numeric
Goal Scored Boolean

Table 6.1: Contextual information selected by the expert

6.2.3 Merging with inputs data

Unfortunately, Rocket League replay files contain only contextual information on the cars and the
ball (position, speed, ...), but do not contain player inputs (turn left, accelerate, ...). To overcome
this limitation, during each game, we also gathered player inputs. To do so, we executed a
program listening to the game controller (joystick) to detect sequences of buttons, say inputs,
a player presses. It then generates a sequence of inputs, for example: 〈{accelerate, boost, time :
1.2}, {accelerate, right, boost, time : 1.25}, {jump, time : 1.34}, {accelerate, up, left, time :
1.6}, {accelerate, jump, down, boost, time : 1.7}, ...〉.

This sequence is then merged with the contextual sequence. Indeed, the sequence of player
inputs alone is not enough to tell if a skill has been executed. For example, entering the sequence
of inputs for a “Power shot” when the ball is far away will just result in flipping the player. On
the other hand, contextual information alone does not provide player inputs, which are required
to produce interpretable behavioral patterns.

The workflow of the data augmentation process is given in Fig 6.3. The sequence of contex-
tual information (obtained from the game replay on which feature selection is operated) and the
sequence of player inputs are merged. Then, in order to improve the computational efficiency of
the next steps, we filter out a sequence state Xi (built in the previous subsection) if its previous
state Xi−1 has the same inputs. Indeed, behavioral patterns will be built only on states resulting
from player’s actions.

An expert then labels sequences with skillshots performed using the in-game replay viewer:
she defines the beginning and the end of sequences corresponding to a particular skill, leading to
the creation of our labelled dataset. Sequences are then split according to the beginning and the
end chosen by the expert (the end is often set when a goal is scored). A simplified example of a
labeled sequence is the following (a for accelerate, DW for DistanceWall etc.): 〈({a, b}, {Time :
1.2, DW : 2131, ...}), ({{a, r, b}, {Time : 1.25, DW : 1801, ...}), ({j}, {Time : 1.34, DW : 1325,
...}), ({a, u, l}, {Time : 1.6, DW : 600, ...}), ({a, j, d, b}, {Time : 1.7, DW : 233, ...})〉, figure :
MustyF lick.

Note that those steps that may appear straightforward as described here are in fact tech-
nically complex. As replays are meant to be replayed and not to extract data, a lot of retro
engineering is necessary to adjust x, y, z orientations, and to synchronize sequences from replays
and players actions inputs. Note also that when visualizing the replay for labelling, the time is

80

6.2. Data and Methodology

One large sequence of
inputs-context

Labeled Sequences of
inputs-context

Raw
Game Data

Game
Replay

One large
sequence
of inputs

Player game

Inputs detector Decompile

Timing sync +
Feature selection/engineering

Sequence labelization
(replay viewer)

Figure 6.3: Data augmentation

a bit faster than the real play, leading to difficulties of synchronization with timing of inputs
that we corrected thanks to a linear regression.

6.2.4 Interesting rules discovery

6.2.4.1 Background

Using supervised rules discovery for sequences has shown to be relevant patterns in the case of
game analytic (e.g., [23]). In this subsection, we first formally introduce an original behavioral
pattern mining technique, put then in practice with an adaptation of an existing algorithm.

Definition 25 (Complex Event Sequence) Let I be a set of items. Each subset I ⊆ I is
called an itemset. A complex event sequence, or database object, is an ordered list of states
o = 〈X1...Xn〉 where each state Xi = (ti, I,N) is composed of a timestamp ti, an itemset I and
a list of numerical valued variables N ×R. Note that each state is composed of a list of the same
numerical variables.

Each labeled sequence produced in the previous step can be represented as a complex event
sequence (Table 6.2).

Definition 26 (Behavioral pattern) A behavioral pattern is a complex event sequence gen-
eralization and can be written as an ordered list of states p = 〈X1...Xm〉 where each state
Xi = (I,N) is composed of an itemset I of player actions and a list of numerical interval valued
variables N × [a, b] with a, b ∈ R denoting the contextual information ranges of the event.

It is precisely the ranges of contextual variables (intervals) that enable behavioral patterns
to grasp slight variations of the different executions of a skillshot, along with common subsets of

81

Chapter 6. Application to Game Analytics: player behaviour detection

id Sequences class
1 {a,b}, {a,r,b},{j}, {a,u,l}, {a,j,d,b} +
2 {a,r}, {j}, {j}, {l} -
3 {a,b}, {a,b},{a,j}, {a,u}, {r}, {j,d} +
4 {a,b}, {a,b},{a,j}, {j,u} -

Table 6.2: Toy dataset. “+” means the sequence is a “Musty Flick”. Her we only included player inputs
for readability.

player actions. Patterns thus represent skillshot generalizations, resistant to noise and variations
of execution.

Definition 27 (Covering relation of behavioral pattern) A behavioral pattern p = 〈X1...Xmp〉
covers a complex event sequence, , i.e., is a generalization of, o = 〈X ′1...X ′mo

〉, denoted p v o,
iff there exists 1 ≤ j1 < ... < jmp ≤ mo such that X1 ⊆ X ′j1 , ..., Xmp ⊆ X ′jmp

. Here, Xi ⊆ Xj

means that Ai ⊆ Aj and that ∀[ai, bi]k ∈ Ni, njk ∈ Nj , aik ≤ njk ≤ bik. o is then covered by p.

Example 2 Example: The pattern 〈({a}, 〈[1, 3], [2, 5]〉), ({b}, 〈[2, 3], [4, 5]〉)〉 is a generalization
of the complex event sequence 〈({a, b}, 〈2, 2〉), ({c}, 〈7, 0〉), ({b}, 〈3, 5〉)〉.

As the number of patterns grows exponentially w.r.t. the number of complex event sequences,
we focus on patterns that discriminate skillshots, that is, whose support sequence are strongly
correlated to a skillshot. .

Example 3 Given the arbitrary pattern p, using only player inputs for simplification, p =
〈({a, b}), ({j, d})〉 and the data D given in Table 6.2, we have ext(p,D) = {1, 3}, support(p,D) =
2, and WRAcc(p,+,D) = 2

4 × (2
2 −

2
4) = 0.25. Notice that we have more than two labels for our

skillshot classification task. We consider a one versus all scheme, i.e., we will focus on a target
class, say the positive class while all the others will be merged to build the negative one.

In order to demonstrate visually the challenge of the task, we plotted two examples of
sequences of inputs, without representing contextual information for the sake of clarity, in Fig.
6.5 and Fig. 6.7. The two of them are performances of ceiling shots. Our goal is to find patterns
appearing in a given skillshot, and not in others. An example of such patterns is represented in
Fig. 6.6 and Fig. 6.8.

6.2.4.2 SeqScout adaptation

The SeqScout algorithm [89] presented in Chapter. 4 can mine discriminative patterns in se-
quences of itemsets. In the following, present a slight adaptation of SeqScout to mine behavioral
patterns.

We recall that the idea of SeqScout is to iteratively select a sequence of the dataset following
a trade-off between exploration and exploitation, using UCB [6], and then to generalize this
element (“going up” in the search space) creating a new pattern. The quality of this pattern,
i.e., its discriminating power, is then computed with the chosen quality measure, the WRAcc
in our case. Once the time budget has been reached, patterns are filtered to make sure they

82

6.2. Data and Methodology

Figure 6.4: Player inputs legend

Figure 6.5: Sequence of inputs ceiling shot 1

Figure 6.6: Pattern p appearing first ceiling shot

Figure 6.7: Sequence of inputs ceiling shot 2

Figure 6.8: Pattern p appearing in second ceiling shot

83

Chapter 6. Application to Game Analytics: player behaviour detection

are non-redundant following Jaccard index, using a parameter θ (see [89], and the top-k are
returned. To adapt this algorithm to our problem, we need to reconsider the generalisation step
as complex event sequences also contains vectors of intervals.

6.2.4.3 Sequence generalisation

The sequence generalisation consists of two steps. In the first, each itemset of inputs I is
considered, for the selected sequence. Each item in I is removed following the rule:{

remain, if z < 0.5
remove, if z ≥ 0.5 , where z ∼ U(0, 1).

If I is empty, the entire corresponding state X is removed. Then in the second step, each
numerical variable is considered. Each n ∈ N is mutated following the rule, given nleft ∈ Dom(n)
s.t. nleft ≤ n, nright ∈ Dom(n) s.t nright ≥ n and α ∈ [0, 1], where Dom(v) represents the set
of values taken by variable v in the dataset:{

[−∞,∞], if z < α
[nleft, nrigth], if z ≥ α where z ∼ U(0, 1)

For example, considering the sequence:

〈(1, {jump}, {speed = 158, DistanceBall = 10}),
(2, {right, slide}, {speed = 102, DistanceBall = 29}〉

One possible generalisation is:

〈(2, {slide}, {speed = [88, 107], DistanceBall = [−∞,∞]}〉

Removing constraints of random variables leads to the creation of patterns with restrictions only
on a subset of variables from the state. It helps to find more interesting patterns faster.

6.2.5 Dataset re-encoding

In the following we propose a solution that fit into the LeGo framework [72]. Once a set of
patterns has been extracted, we re-encode the dataset. We create a feature for each pattern,
putting a Boolean "1" value if the pattern appears in the sequence, "0" otherwise, as illustrated
in Table 6.3. As explained in [44], “The binary feature construction process is certainly the
most straightforward but has also shown good predictive performance”. As we know that those
features are discriminative, they will give good insights about the class we need to predict. Note
that we need to mine discriminative patterns of each class to classify all of them.

Once the dataset in transformed into a binary transaction labeled dataset, classical machine
learning algorithms can be used to predict the skillshot the player is performing.

6.3 Related Work

Understanding and analyzing players behavior is an important subject. For unlabeled data,
time series clustering approaches were applied to different games, on free-to-play game data to
find relevant patterns in [114], or to discover seasonal patterns in [125].

84

6.4. Experiments

id Pattern 1 Pattern 2 Pattern 3 class
1 1 1 0 +
2 0 0 1 -
3 1 1 0 +
4 1 0 1 -

Table 6.3: Toy dataset re-encoded with 3 patterns

Concerning labeled data, we take interest in the identification of "skills", or "moves". In
games, it is most of the time done with expert knowledge and ad-hoc techniques. For example,
in fighting games, multiple precise combinations of controller inputs lead to the execution of
particular attacks or combos. To do so, exact pattern matching is used [138]. However in a
game like Rocket League, such an approach cannot be used. Indeed, each player has a full and
precise control of her car, in a 3D space, including all possible rotations, speed, acceleration,
even the reaction of bumping other cars. Having such a huge space of possible configurations
leads to the fact that each performance of a skill is unique: positions, speeds, rotations of the
car and the ball will not be the same, and even inputs pressed by the player can vary a lot
(many micro-adjustments of trajectory). This makes the problem of automatically classifying
(or detecting) the action of the player difficult. Rocket League seems to use in-game a system
using ad-hoc rules such as "if the ball touched the back of the car and then scored, it is a
backward goal", but this approach is limited to simple rules, based purely on expert knowledge,
that would not work on more complex skills.

In our context, we need to take into account inputs of the player, to know what she wanted
to perform, but we also need the contextual information of the game. For instance, performing
a "front flip" in its own goal without touching the ball and doing it to hit the ball will impact
the game differently. We are then in the presence of the so called complex event sequences [131].

In fact, we can transform the event part of the sequence in booleans taking 0 values by default,
and 1 when the event fires. It reduces the problem to a multivariate time series classification
problem [9]. Most of the recommended methods require time series to have the same length,
whether it is BOSS [115], COTE [10], Shapelet Transform [62], or Time Series Forest [36]. In our
case here, time series have different lengths. The 1-Nearest Neighbor Dynamic Time Warping
(1-NN DTW) [94] is said to be a good baseline [9]. However, the prediction step in KNN can
take a long time, even more because the DTW distance has a complexity of O(n2) for sequences
of size n. It would make a good candidate to compare to in our experiments though.

Finally, it should be highlighted that we were not able to find any data analytics article
on Rocket League in the literature. It strengthens our first contribution: it appears useful to
provide a dataset mixing contextual information and player actions, along with the needed tools
to create new datasets.

6.4 Experiments

The whole methodology has been fully implemented and a thorough experimental study has
been carried out. All materials are publicly available, including our original dataset, scripts,
algorithms, and our self-made program for capturing inputs from joysticks. In this section, we
discuss a number of experiments that indicate to which extent our methodology can automati-
cally detect skillshot from previously unseen games.

85

Chapter 6. Application to Game Analytics: player behaviour detection

6.4.1 Dataset

Following the presented workflow, we generated data with the help of experienced players of
the game. We describe the resulting dataset in Table 6.4. The max. size corresponds to the
maximum number of states in a sequence. We recall that each state is composed of 7 variables
and between 1 and 11 events, creating long sequences nearly impossible to read for a human.
Note that during labelling step we added failed skills, i.e., missing goals, or not hitting the ball
while performing the skill, and random non-skill sequences in games as "noise". Indeed, to train
our classifier to perform in real conditions, we need to be able do detect when player fails. We
also added classes distribution in Table 6.5. The min and max values of the variables are given
in Figure 6.14.

6.4.2 Experimental setup

We ran the first series of experiments not reported here to determine the best default parameters
for building a reasonable classifier: we will study how each parameter affects the results when
other parameters are fixed to their default value. As such, when not specified, the default
parameters in experiments are the following. We used 5-fold stratified cross validation to assess
the robustness of our classifier. We took the top-5 best patterns given by SeqScout, on each
class of the dataset, as features for the classifier. We gave 1,000 iterations for SeqScout, which
seemed a reasonable trade-off between pattern quality and time taken by the algorithm. The non-
redundancy parameter θ is set to 0.8. The parameter α, controlling the sequence generalisation,
is set to 0.9, and the Decision Tree (from [103]) is chosen for the final classification step, for its
simplicity and interpretability.

With this experimental setup, we provide answer elements to the following questions.

• How many patterns are required to maximize the accuracy of our classifier?

• How does the α parameter affect patterns quality?

• How does the qualities of computed patterns affect the quality of the classification and
how many iterations does SeqScout need to perform well?

• How does the non-redundancy of patterns affect the classification?

• What is the best classification method to use?

• What is the performance of our method compared to a state-of-the-art algorithm like 1-NN
DTW?

• Using only sequences of variables (and not player inputs), can we still accurately predict
performed skills?

• How can we use our classifier in real-time to detect performed skills?

Table 6.4: Dataset

Sequences # Inputs # Variables Max. size # Classes
298 11 7 64 7

86

6.4. Experiments

6.4.3 Influence of the number of mined patterns

We evaluated how the number of mined patterns influences the mean accuracy of our method.
Note that the pattern number corresponds to the number of mined patterns for each class with
SeqScout. For example, this means that for 20 mined patterns, having 8 classes in our dataset,
we re-encode our dataset with 160 features. Results are given in Fig. 6.9. Here we can see that
the predictive power of our method quickly increases with the number of patterns, and then
tends to decrease a bit. Setting this parameter between 10 and 30 seems to be a reasonable
choice.

In Fig. 6.10, we tested the influence of the parameter α from the generalisation step on the
quality of patterns. Note that the WRAcc takes its values in [−0.25, 0.25] (see [89] for more
information). Here we can see that we have an optimum for α = 0.8. This means that the
method gives better results when we remove restrictions on a numeric with the probability 0.8.

6.4.4 Pattern quality w.r.t. accuracy

Increasing the time budget leads to an increase of the mean pattern quality [89]. We then
propose to evaluate the impact of the time we give to SeqScout. As we can see in Fig. 6.11, the
more iterations we give (and equivalently, time), the better are the predictions. Finding good
discrimative patterns leads to the design of good discriminative features.

6.4.5 Impact of diversity on accuracy

In Fig. 6.12, we show the impact of the θ parameter. We recall that θ is the threshold above
which patterns are considered similar when filtering resulting pattern. Having a low θ means
we want SeqScout to give us patterns which have few or no sequences in common, and a high
θ that we accept similar patterns as the output. Interestingly, this parameter does not seem to
have an impact on the accuracy. It is important if we want to filter patterns to an end-user,
to show non-redundant results, but in the case of classification, we can choose to remove this
costly step without impacting the prediction quality.

6.4.6 Predictive performance of the method

We evaluated the performance of different state-of-the-art classification methods on the re-
encoded dataset. In light of preceding results, we chose here the best found parameters: α = 0.8,
θ = 1, 20 extracted patterns, and a number of iteration of 10,000. We tested Decision Tree (DT),
Random Forest (RF), SVM, Naive Bayes from sk-learn [103] and XGBoost (XGB) from [32], all
with default parameters values. As we can see in Fig. 6.13, RF, XGboost and SVM seem to
give the best results.

Table 6.5: Class Distribution

Noise Ceiling Power Waving Air Flick Musty
43 30 60 38 45 46 36

87

Chapter 6. Application to Game Analytics: player behaviour detection

Table 6.6: Comparaison of 1-NN DTW vs our method

Acc Train Acc Test Time Train Time Test
Best Approach 94.1 84.9 14 min -
1-NN DTW - 71.5 - 7 min

Table 6.7: Confusion matrix of our classifier

N
oi
se

C
ei
lin

g
sh
ot

Po
we

r
sh
ot

W
av
in
g
D
as
h

A
ir

D
rib

bl
e

Fl
ick

M
us
ty

Fl
ick

Noise 12 38 0 0 0 38 12
Ceiling shot 0 100 0 0 0 0 0
Power shot 0 0 100 0 0 0 0
Waving Dash 0 0 0 100 0 0 0
Air Dribble 0 0 0 0 100 0 0

Flick 10 0 0 0 0 90 0
Musty Flick 0 0 12 0 0 0 88

6.4.7 Comparison to 1-NN DTW

If we transform events to booleans taking 1 values when event fires, and 0 otherwise, we can
reduce the problem to a multivariate timeseries classification. We then compare ourselves to
1-NN DTW, without forgetting to z-normalize timeseries as specified in [9]. We used a DTW
implementation8. Results are shown in Table 6.6. Our method improves significantly the ac-
curacy. Moreover, we have the strong advantage of being able to classify in nearly-real time,
contrary to 1-NN DTW. This is important to create a system that could classify directly in
game what players are doing. Note also that there is a trade-off between the duration of the
training and the accuracy of our method, as we can tune the number of iterations we give to
SeqScout.

6.4.8 Using numerical variables only

We tried the approach on sequences of purely numerical variables, meaning that we removed
the player inputs information. In a 5-fold stratified cross-validation, we found a mean accuracy
of 73.9%. We can then deduce that the information of players inputs leads to a clear increase
of accuracy of the system. It supports the need for the proposed data augmentation step.

6.4.9 Classify goals

An example of confusion matrix given in the stratified 5-fold cross-validation is given in Table
6.7.

8https://github.com/pierre-rouanet/dtw

88

6.4. Experiments

As we can see, the classifier has difficulties to classify the "noise" class, composed of failed
goals, and random part of games. Using sliding windows to detect skills in real time in a game
would then probably give poor results. However, in real setting, the vast majority of figures
are ways of scoring goals. To deal with the previous issue and to increase the accuracy of our
system, we can introduce a bit more of expert knowledge: we classify the sequence only if a goal
has been scored. This way, our system could be directly used in real settings, extracting the
sequence of actions before a goal, and feeding it to our classifier. After filtering sequences of
our dataset by keeping only those having a "goal" in it, and using our method, we have a mean
accuracy of 87.6%.

6.4.10 Performances of MonteCloPi

As explained before, the Rocket League dataset can be transformed to a multivariate time series
dataset, having varying lenghts. Using MonteCloPi, we reached a classification accuracy of
80.1%, with 5-fold stratified cross-validation, a training time of 1 hour, and nearly immediate
classification during test time. Results are not as the good as the SeqScout adaptation. We make
the hypothese that this is due to the generalisation step. With MonteCloPi, we systematically
go to the top of the search space, whereas we can sample any pattern, in theory, with SeqScout.
On this dataset, this generalisation strategy is then better.

6.4.11 Pattern interpretability

One of the interest of using a pattern mining approach is its interpretability.
The two following patterns are the top-1 patterns extracted respectively for the "Musty

Flick" and the "Ceiling Shot" by SeqScout. Note that here for simplicity of notation we removed
variables whose intervals were [−∞,∞].

〈{accelerate}, {down jump}, {goal}〉 (WRAcc = 0.0863)
〈{accelerate, jump,DistanceCeil = [1.52, 1233.51]}}〉

(WRAcc = 0.0755)

Interestingly here, the pattern corresponding to the "Musty Flick" only takes into account the
inputs of the user, with no restrictions on variables. The sequence of inputs is indeed a part of
the required inputs to perform the "Musty Flick". The pattern is only a "part of" the required
inputs because in fact the beginning of the sequence of inputs for the "Musty Flick" is common
to the "Front Flick": SeqScout returns only the discriminative part, i.e., the part that is present
in "Musty Flick" figures, and not in others. That is why this method gives good results: the
more discriminative patterns are, the better are the feature for the classification step.

Moreover, the best found pattern discriminative of the "Ceiling Shot" is in fact composed of
only one state, which is enough to discriminate the skill here: if the player jumps when she is
near the ceiling (1,200 corresponds approximately to the medium position between ceiling and
floor), it often leads to a goal, in our dataset.

89

Chapter 6. Application to Game Analytics: player behaviour detection

6.5 Discussion

We introduced a new original dataset collected by our means, and a method to classify skillshots
of players in Rocket League. This methodology could be applied to other games, as the type of
required data is generic enough. We obtained good results with a mean accuracy of 87.6%, a
high score for a multi-class classification problem.

The classifier training can take some time, depending on the time budget the user want to
allocate, but the classification can be performed in real-time, contrary to 1-NN DTW.

However, there also exists some drawbacks that could be addressed in future works. The
biggest one is the noise problem, as it is difficult to discern failed skills from well executed ones.
We dealt with this issue by filtering only sequences finishing with a goal. This approach would
not work in the case of classifying skills that do not finish with a goal. Moreover, all existing
skills are not present in this dataset, as it would require a lot of additional work with several
different experts to increase the diversity of performed and labeled skills.

One may notice when looking at the confusion matrix that many examples of noise are
considered as other figures by the classifier. This is due to the fact that noise is composed of
different "failed" figures. As they are similar to correctly performed figures, they are difficult to
discern. To deal with that, a possibility would be to add a new label for each figure corresponding
to its failed or succeeded execution, and to reserve the "noise" class to random moves. Our
classifier would then give the intention of the player, and another classifier would give the
success or not of this intention.

Note also that this project is a proof-of-concept, that used some "hacks" in the data collection
process. A production-ready system would require inputs data directly recorded by the game.
In the case of new skill appearing in-game, the system would need to be trained again with new
data, to keep being up-to-date with the new meta game.

Some skillshots are also not present in the dataset because our expert players cannot perform
them consistently. Indeed, the better the player, the more consistent she is at performing skills,
as already showed in [23], and so the easier it is to classify (professional players have less
variability when repeating strategies). Moreover, at very high level, it is not only one skill at
a time that is performed, but more a sequence of skills. Using a system like presented in this
paper would be beneficial to several actors. For players, a histogram of skills detected during
games could be used for player profiling. For game editor, such a system may help to better
rank them, or to detect "smurfing", i.e., playing with another account to improve her ranking
[29]. It could also improve analytics for esport structures to better know their future opponents
by better understanding their play-style. It would also be interesting to create new game modes
where the goal is to perform skills on increasing difficulty (like the game of "horse" in basketball).
Finally, this type of analytics could help to study the evolution of the meta-game during seasons,
as Rocket League is already a game with an history, and is probably going to keep growing over
the next years.

90

6.5. Discussion

0 25 50 75 100 125
Pattern number

0.55

0.60

0.65

0.70

0.75

Figure 6.9: Mean accuracy w.r.t. the number of
patterns

0.0 0.2 0.4 0.6 0.8 1.0
alpha

0.03

0.04

0.05

0.06

Figure 6.10: Mean WRAcc vs α

2000 4000 6000 8000 10000
Iteration number

0.55

0.60

0.65

0.70

0.75

Figure 6.11: Accuracy w.r.t. the number of itera-
tions

0.0 0.2 0.4 0.6 0.8 1.0
Theta

0.55

0.60

0.65

0.70

Figure 6.12: Accuracy w.r.t. θ

DT RF XGB SVM NB
Classifier

0.0

0.2

0.4

0.6

0.8

Figure 6.13: Comparison of accuracy of different
classifiers

Numeric Min Max
BallAcceleration -319123 294344

Time 0 13.4
DistanceWall 0 4043
DistanceCeil 0.07 2020
DistanceBall 115 9509
PlayerSpeed 27 229999
BallSpeed 0 329814

Figure 6.14: variables min and max values

91

Chapter 6. Application to Game Analytics: player behaviour detection

92

Chapter 7

Conclusion

7.1 Summary

In this thesis we proposed to tackle the problem of supervised rule discovery, or subgroup
discovery, for two types of data, namely sequences of itemsets and high dimension numerical
data. Note that the last can also be applied directly to time series.

The problem of finding interesting rules in the presence of labeled sequences of itemsets has
attracted few attention. This is probably due to the size of the search space, which quickly
grows making an exhaustive search infeasible. Some rare propositions have been made, however
they often focus on sequences of items, or are dependant on the used quality measure.

Some of them like misère [44] or the popular Beam Search[42] are interesting to tackle this
problem, but they present several drawbacks. misère does not use information of previous
drawings, making this algorithm focusing on exploration of the search space only. Beam Search,
on the other hand, can be seen as several hill climbing procedures exploring the search space in a
top-down way, making this algorithm focusing on exploitation only. We proposed two algorithms,
namely SeqScout and MCTSExtent that are able to find a trade-off between the exploitation, i.e.,
visiting search space areas near already known good patterns, and exploration, i.e., exploring
unknown search space areas to gather new information. Both method use the well known UCB1
[6] formula, proposed in the game theory literature, to deal with this trade-off.

SeqScout tackled this issue with a multi-armed bandit model, where the action of playing
a bandit arm is seen as choosing a sequence and then generalising it. This method presents
the advantage of being simple, and to give interesting results. MCTSExtent pushes further this
idea by applying a Monte Carlo Tree Search [25] on the search space of extends, by successively
grouping positive elements and computing their longest common subsequences, i.e., finding one
of the most specific description that cover those elements. This create patterns that cover at
least those interesting elements, meaning that they may probably be interesting. To do so,
we also proposed a dynamic programming algorithm to find a longest common subsequence
between two sequences of itemsets. This algorithm is anytime, so time budget given to it can
be controlled, and results tend to improve over time, as search space interesting areas are better
estimated iteration after iteration. One of the strength of those methods is that they reduce
the size of the search space by considering only patterns having a non-null support, which are
numerous when enumerating all possible ones for sequences of itemset.

Inspired by the idea of MCTSExtent and its good results, we proposed to tackle the problem of

93

Chapter 7. Conclusion

finding interesting rules in high dimensional data, in particular because time series can be seen as
an instance of this problem. We then proposed MonteCloPi, which has the property of exploring
closed on the positive patterns, reducing the size of the search space with the guarantee of keeping
only interesting patterns. In particular, we showed that when considering (multivariate) time
series of same lengths, MonteCloPi is exhaustive on the closed on the positives.

In order to assess the relevance of our algorithms, we proposed to tackle the problem of
classifying player behaviour in a competitive e-sport game, Rocket League. We described and
implemented a complete workflow including domain expert knowledge and intervention to do
so. We successively identified behaviours we wanted to detect, played matches, gathered data,
pre-processed and merged them from different sources, and finally labeled them. Once those
steps have been performed, we embraced the LeGo method [72] by adapting SeqScout to deal
with data specificities, re-encoding the dataset to create a binary matrix, and using a random
forest classifier. We showed that we were able to detect figures players performed in real-time,
which is of interest to game commentators, e-sport teams analysts, or to integrate new game
modes or improve the ranking system, for example.

7.2 Perspectives

7.2.1 Improving MCTSExtent and MonteCloPi

Improving the roll-out step of MonteCloPi to cover only closed on the positives

One way of improvement for the MonteCloPi algorithm would be to change the roll-out
step in order to force it to create a closed on the positive. Indeed, the actual roll-out step,
or generalisation, consists in removing restrictions on all intervals excepting one. Even if this
strategy gave good results experimentally, it creates a pattern which can be a non closed on
the positives. Moreover, as the number of iterations increases, the probability of sampling an
already discovered pattern increases too. It may be more interesting to take advantage of the
need to perform a roll-out do discover a new pattern each time. One proposition that may be
interesting to investigate would be the following: computing the meet of all positive elements,
except k among positive elements that are not in the extent of the expanded node. Indeed, when
considering closed on the positives, the most general pattern is the meet of all positive elements.
Each level of the search space of closed on the positive is in fact composed of the meet of |D+|−k
positive elements, where |D+| is the number of positive elements of the dataset. The idea would
then be to roll-out only unseen patterns, creating a new tree at the top of the search space. As
it would cover elements of the expanded node and additional positive ones, it would indeed be a
generalisation of the expanded node, and would help covering the search space of closed on the
positive quicker.

Making algorithms exhaustive on all cases

One of the issue of MCTSExtent is that it does not have the property of exhaustiveness.
MonteCloPi has also this issue when dealing with time series of different lengths. This is due
to the fact the meet (or longest common subsequence for MCTSExtent) is not unique. When
enumerating the search space with successive expand steps, important and interesting patterns
could be missed, as we compute only one meet. In order to make the search exhaustive, we would

94

7.2. Perspectives

need to compute all meets, and to create as many expanded node as possible meets. However,
the number of common patterns between two positives elements can be gigantic, as showed by
Egho et al. in [45] for sequences of itemsets. Further investigations would be needed to tackle
this difficult problem.

Parallelisation
Monte Carlo Tree Search offers different way of parallelisation to improve results quality for a
same time budget: the leaf parallelisation, the root parallelisation and the tree parallelisation
[25]. The leaf parallelisation seems to be the simplest applied to our setting, as it does not require
the use of a mutex. The idea of the leaf parallelisation is to run several roll-outs in parallel after
expanding a node, giving a better appreciation of its quality. One of the drawbacks of the leaf
parallelisation in classical MCTS is that the time of the roll-out step will be the longest among
roll-outs launched in parallel. However in our case our roll-out strategy should take approxi-
mately the same time for any possible roll-out. Moreover, considering previous improvement
of making the roll-out step create a pattern closed on the positive, this leaf parallelisation step
would decrease the time needed to explore the search space exhaustively.

Applying this methodology to other pattern description languages

The methodology proposed with MCTSExtent and MonteCloPi is in fact generic enough to
be applied to other types of data, not only numericals or sequences of itemsets. Indeed, this
idea of exploring the search space of positive extends, iteratively grouping positive objects and
computing their meet in order to create interesting patterns, coupled to the use of the Monte
Carlo Tree Search, could be applied to graphs or categorical data, for example. The only two
steps that need to be redefine is the meet step, and the generalisation step.

7.2.2 Going further with the Rocket League use case

Improving the classification in Rocket League

One possible way of improvement for the Rocket League use case would be to better deal
with the "noise" problem. Indeed, in our settings, we chose to create a class containing noise, i.e.,
random moves and failed figures. However as those failed figures are very similar to successful
ones, our classifier tend to classify those objects as figures the player wanted to perform. A
better approach would be to reserve the "noise" class to only random moves, and to add a
new "succeeded" label for each object, denoting the success or not of the figure. The classifier
we proposed in this article would then be used to detect the intention of the user. After this
classifier identifies user intention, another one would detect the success or not of the figure. A
possibility would be to re-use an approach similar to the first one focusing on classifying the
success of a figure. Another simpler, yet probably effective approach would be to use the simple
rule "if a goal is scored quick after player performed the figure, we considered it successful".

Automatic detection of new classes

One problem in a game like Rocket League is that the number of skillshots that can be

95

Chapter 7. Conclusion

performed, i.e., the number of classes, increases over time. Indeed, the community still discovers
new mechanics, and new ways of scoring goals: the "musty flick" was unknown to game devel-
opers, but it emerged and became quickly famous. Such a system of figure classification would
have to deal with this issue: the number of class increases over time. To tackle this problem,
one possibility would be to have an expert monitor matches to identify new skillshots. Once
this is the case, new label data would need to be collected for this new class. However we
could imagine to take advantage of the pattern mining approach presented in this thesis. Each
figure is re-encoded to a boolean vector, each value corresponding to the presence or not of a
previously mined pattern. Figures of the same class should form clusters in the feature space.
As the number of class is known at a time t, it would be possible to use a clustering algorithm
like k-means[82], for example, to assess this hypothesis. Then, we could automatically detect
outliers that are far away from other centroïds, and are grouped together. This would trigger
an alarm indicating that one or several new classes appeared, so that the system would need to
take this into account in order to keep performing correctly. Note that this approach could be
applied not only to this use case: a production system exhibiting and classifying time series, or
more generally classifying users behaviour, could take advantage of such an approach to evolve
over time.

96

Bibliography

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases.
In Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94,
page 487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[2] M. Atzmueller. Subgroup discovery. Wiley Int. Rev. Data Min. and Knowl. Disc.,
5(1):35–49, Jan. 2015.

[3] M. Atzmueller and F. Lemmerich. Fast subgroup discovery for continuous target concepts.
In Proceedings of the 18th International Symposium on Foundations of Intelligent Systems,
ISMIS ’09, page 35–44, Berlin, Heidelberg, 2009. Springer-Verlag.

[4] M. Atzmueller and F. Lemmerich. Vikamine – open-source subgroup discovery, pattern
mining, and analytics. In P. A. Flach, T. De Bie, and N. Cristianini, editors, Machine
Learning and Knowledge Discovery in Databases, pages 842–845, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[5] M. Atzmüller and F. Puppe. Sd-map - A fast algorithm for exhaustive subgroup discovery.
In Proc. PKDD, pages 6–17, 2006.

[6] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2):235–256, May 2002.

[7] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a bitmap
representation. In Proceedings ACM SIGKDD 2002, pages 429–435, 2002.

[8] T. Back, D. B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation. IOP
Publishing Ltd., GBR, 1st edition, 1997.

[9] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time series classifica-
tion bake off: a review and experimental evaluation of recent algorithmic advances. Data
Min. Knowl. Discov., 31(3):606–660, 2017.

[10] A. Bagnall, J. Lines, J. Hills, and A. Bostrom. Time-series classification with cote: The
collective of transformation-based ensembles. IEEE Transactions on Knowledge and Data
Engineering, 27(9):2522–2535, Sep. 2015.

[11] A. Bagnall, J. Lines, W. Vickers, and E. Keogh. The UEA & UCR time series classification
repository, 2017. www.timeseriesclassification.com.

[12] I. Batal, D. Fradkin, J. H. Harrison, F. Mörchen, and M. Hauskrecht. Mining recent tem-
poral patterns for event detection in multivariate time series data. Proc. ACM SIGKDD,
pages 280–288, 2012.

97

www.timeseriesclassification.com

Bibliography

[13] S. Bay and M. Pazzani. Detecting group differences: Mining contrast sets. Data Mining
and Knowledge Discovery, 5, 01 2001.

[14] A. Belfodil. An Order Theoretic Point-of-view on Subgroup Discovery. Theses, Université
de Lyon, Sept. 2019.

[15] A. Belfodil, A. Belfodil, A. Bendimerad, P. Lamarre, C. Robardet, M. Kaytoue, and
M. Plantevit. Fssd - a fast and efficient algorithm for subgroup set discovery. In 2019
IEEE International Conference on Data Science and Advanced Analytics (DSAA), pages
91–99, 2019.

[16] A. Belfodil, A. Belfodil, and M. Kaytoue. Anytime subgroup discovery in numerical do-
mains with guarantees (best student paper). In Proc. ECML/PKDD, pages 500–516, 2018.

[17] F. Berlanga, M. J. del Jesus, P. González, F. Herrera, and M. Mesonero. Multiobjective
evolutionary induction of subgroup discovery fuzzy rules: A case study in marketing.
In P. Perner, editor, Advances in Data Mining. Applications in Medicine, Web Mining,
Marketing, Image and Signal Mining, pages 337–349, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[18] M. Boley. The power of saying “i don’t know”—an introduction to subgroup discovery
and local modeling, 2017.

[19] M. Boley, T. Horváth, A. Poigné, and S. Wrobel. Listing closed sets of strongly accessible
set systems with applications to data mining. Theoretical Computer Science, 411(3):691
– 700, 2010.

[20] M. Boley, C. Lucchese, D. Paurat, and T. Gärtner. Direct local pattern sampling by
efficient two-step random procedures. In Proceedings ACM SIGKDD 2011, pages 582–590,
2011.

[21] G. Bosc. Anytime discovery of a diverse set of patterns with Monte Carlo tree search.
(Découverte d’un ensemble diversifié de motifs avec la recherche arborescente de Monte
Carlo). PhD thesis, University of Lyon, France, 2017.

[22] G. Bosc, J.-F. Boulicaut, C. Raïssi, and M. Kaytoue. Anytime discovery of a diverse set
of patterns with monte carlo tree search. Data Min. Knowl. Discov., 32(3):604–650, May
2018.

[23] G. Bosc, P. Tan, J.-F. Boulicaut, C. Raïssi, and M. Kaytoue. A Pattern Mining Approach
to Study Strategy Balance in RTS Games. IEEE Trans. Comput. Intellig. and AI in
Games, 9(2):123–132, June 2017.

[24] L. Breiman, J. Friedman, R. Olshen, and C. J. Stone. Classification and regression trees.
Chapman and Hall/CRC, 1984.

[25] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search
methods. IEEE Trans. Comput. Intellig. and AI in Games, 4(1):1–43, March 2012.

[26] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012.

98

[27] M. Campbell, A. Hoane, and F. hsiung Hsu. Deep blue. Artificial Intelligence, 134(1):57
– 83, 2002.

[28] C. J. Carmona, P. Gonzalez, M. J. d. Jesus, and F. Herrera. Nmeef-sd: Non-dominated
multiobjective evolutionary algorithm for extracting fuzzy rules in subgroup discovery.
IEEE Transactions on Fuzzy Systems, 18(5):958–970, 2010.

[29] O. Cavadenti, V. Codocedo, J. Boulicaut, and M. Kaytoue. When cyberathletes con-
ceal their game: Clustering confusion matrices to identify avatar aliases. In 2015 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pages 1–10,
2015.

[30] O. Cavadenti, V. Codocedo, J. Boulicaut, and M. Kaytoue. What did i do wrong in my
moba game? mining patterns discriminating deviant behaviours. In 2016 IEEE Inter-
national Conference on Data Science and Advanced Analytics (DSAA), pages 662–671,
2016.

[31] C. R. Charig, D. R. Webb, S. R. Payne, and J. E. Wickham. Comparison of treatment
of renal calculi by open surgery, percutaneous nephrolithotomy, and extracorporeal shock-
wave lithotripsy. BMJ, 292(6524):879–882, 1986.

[32] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–
794, 2016.

[33] W. W. Cohen. Fast effective rule induction. In A. Prieditis and S. Russell, editors, Machine
Learning Proceedings 1995, pages 115 – 123. Morgan Kaufmann, San Francisco (CA), 1995.

[34] B. Crémilleux and J.-F. Boulicaut. Simplest rules characterizing classes generated by δ-
free sets. In M. Bramer, A. Preece, and F. Coenen, editors, Research and Development in
Intelligent Systems XIX, pages 33–46, London, 2003. Springer London.

[35] M. J. del Jesus, P. Gonzalez, F. Herrera, and M. Mesonero. Evolutionary fuzzy rule
induction process for subgroup discovery: A case study in marketing. IEEE Transactions
on Fuzzy Systems, 15(4):578–592, 2007.

[36] H. Deng, G. Runger, E. Tuv, and M. Vladimir. A time series forest for classification and
feature extraction. Information Sciences, 239:142 – 153, 2013.

[37] L. Diop, C. T. Diop, A. Giacometti, D. Li, and A. Soulet. Sequential pattern sampling
with norm-based utility. Knowl. Inf. Syst., 2020.

[38] G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differ-
ences. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’99, page 43–52, New York, NY, USA, 1999. Association
for Computing Machinery.

[39] P. Drake and S. Uurtamo. Move ordering vs heavy playouts: Where should heuristics be
applied in monte carlo go. In 3rd North America Game-On Conf, pages 35––42, 2007.

[40] D. Dua and E. Karra Taniskidou. UCI machine learning repository, 2017.

99

Bibliography

[41] W. Duivesteijn, A. Feelders, and A. Knobbe. Different slopes for different folks: Mining
for exceptional regression models with cook’s distance. In Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12,
page 868–876, New York, NY, USA, 2012. Association for Computing Machinery.

[42] W. Duivesteijn, A. J. Feelders, and A. Knobbe. Exceptional model mining. Data Min.
Knowl. Discov., 30(1):47–98, Jan 2016.

[43] V. Dzyuba, M. Leeuwen, and L. De Raedt. Flexible constrained sampling with guarantees
for pattern mining. Data Mining and Knowledge Discovery, 31, 10 2016.

[44] E. Egho, D. Gay, M. Boullé, N. Voisine, and F. Clérot. A user parameter-free approach
for mining robust sequential classification rules. Knowl. Inf. Syst., 52(1):53–81, July 2017.

[45] E. Egho, C. Raïssi, T. Calders, N. Jay, and A. Napoli. On measuring similarity for
sequences of itemsets. Data Min. Knowl. Discov., 29(3):732–764, May 2015.

[46] P. Fournier-Viger, C.-W. Wu, A. Gomariz, and V. S. Tseng. Vmsp: Efficient vertical
mining of maximal sequential patterns. In M. Sokolova and P. van Beek, editors, Advances
in Artificial Intelligence, pages 83–94, Cham, 2014. Springer International Publishing.

[47] D. Fradkin and F. Mörchen. Mining sequential patterns for classification. Knowledge and
Information Systems, 45, 01 2015.

[48] J. Fürnkranz. From local to global patterns: Evaluation issues in rule learning algorithms.
In K. Morik, J.-F. Boulicaut, and A. Siebes, editors, Local Pattern Detection, pages 20–38,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[49] J. Fürnkranz, D. Gamberger, and N. Lavrač. Foundations of rule learning. Springer,
Berlin, Heidelberg, 01 2012.

[50] J. Fürnkranz, T. Kliegr, and H. Paulheim. On cognitive preferences and the plausibility
of rule-based models. Machine Learning, 12 2019.

[51] B. Ganter, R. Wille, and C. Franzke. Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, Berlin, Heidelberg, 1st edition, 1997.

[52] G. C. Garriga, P. Kralj, and N. Lavrač. Closed sets for labeled data. J. Mach. Learn.
Res., 9:559–580, 2008.

[53] R. Gaudel and M. Sebag. Feature selection as a one-player game. In ICML, 2010.

[54] A. Giacometti, D. H. Li, P. Marcel, and A. Soulet. 20 years of pattern mining: A biblio-
metric survey. SIGKDD Explor. Newsl., 15(1):41–50, Mar. 2014.

[55] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016.

[56] S. Gsponer, B. Smyth, and G. Ifrim. Efficient sequence regression by learning linear models
in all-subsequence space. In Proceedings ECML/PKDD 2017 (2), pages 37–52, 2017.

[57] T. Guyet and Q. René. Negpspan: efficient extraction of negative sequential patterns with
embedding constraints. Data Mining and Knowledge Discovery, pages 563–609, 04 2020.

100

[58] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
SIGMOD Rec., 29(2):1–12, May 2000.

[59] Z. He, S. Zhang, F. Gu, and J. Wu. Mining conditional discriminative sequential patterns.
Inf. Sci., 478:524–539, 2019.

[60] Z. He, S. Zhang, and J. Wu. Significance-based discriminative sequential pattern mining.
Expert Systems with Applications, 122:54 – 64, 2019.

[61] R. Herbrich, T. Minka, and T. Graepel. Trueskill(tm): A bayesian skill rating system. In
Advances in Neural Information Processing Systems, pages 569–576, 2007.

[62] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. Classification of time series
by shapelet transformation. Data Min. Knowl. Discov., 28(4):851–881, July 2014.

[63] D. S. Hirschberg. Algorithms for the longest common subsequence problem. Journal of
the ACM, 24(4):664–675, Oct. 1977.

[64] G. Ifrim, G. Bakir, and G. Weikum. Fast logistic regression for text categorization with
variable-length n-grams. In Proceedings of the 14th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 354–362, 2008.

[65] Intel. Intel World Open, Accessed March 28, 2020. https://www.intelworldopen.gg/
rocket-league/.

[66] X. Ji, J. Bailey, and G. Dong. Mining minimal distinguishing subsequence patterns with
gap constraints. Knowl. Inf. Syst., 11(3):259–286, Apr 2007.

[67] N. Jin, P. Flach, T. Wilcox, R. Sellman, J. Thumim, and A. Knobbe. Subgroup discovery
in smart electricity meter data. IEEE Trans. on Industrial Informatics, 10(2):1327–1336,
2014.

[68] V. Jovanoski and N. Lavrač. Classification rule learning with apriori-c. In Proceedings of
The10th Portuguese Conference on Artificial Intelligence on Progress in Artificial Intel-
ligence, Knowledge Extraction, Multi-Agent Systems, Logic Programming and Constraint
Solving, EPIA ’01, page 44–51, Berlin, Heidelberg, 2001. Springer-Verlag.

[69] B. Kavšek, N. Lavrač, and V. Jovanoski. Apriori-sd: Adapting association rule learning to
subgroup discovery. In M. R. Berthold, H.-J. Lenz, E. Bradley, R. Kruse, and C. Borgelt,
editors, Advances in Intelligent Data Analysis V, pages 230–241, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg.

[70] M. Kaytoue, S. O. Kuznetsov, and A. Napoli. Revisiting numerical pattern mining with
formal concept analysis. In Proc. IJCAI, page 1342–1347, 2011.

[71] M. Kaytoue, A. Silva, L. Cerf, W. Meira, and C. Raïssi. Watch me playing, i am a
professional: A first study on video game live streaming. In WWW (companion volume),
page 1181–1188, 2012.

[72] A. J. Knobbe, B. Crémilleux, J. Fürnkranz, and M. Scholz. From local patterns to global
models: The {LeGo} approach to data mining. In From Local Patterns to Global Models:
Proceedings of the ECML/PKDD-08 Workshop (LeGo-08), pages 1–16, 2008.

101

https://www.intelworldopen.gg/rocket-league/
https://www.intelworldopen.gg/rocket-league/

Bibliography

[73] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In J. Fürnkranz, T. Schef-
fer, and M. Spiliopoulou, editors, Machine Learning: ECML 2006, pages 282–293, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[74] S. Kuznetsov. A fast algorithm for computing all intersections of objects in a finite semi-
lattice. Automatic Documentation and Mathematical Linguistics, 27:11–21, 01 1993.

[75] H. Lakkaraju, S. H. Bach, and J. Leskovec. Interpretable decision sets: A joint framework
for description and prediction. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, page 1675–1684, New
York, NY, USA, 2016. Association for Computing Machinery.

[76] N. Lavrač, P. A. Flach, and B. Zupan. Rule evaluation measures: A unifying view. In
Proceedings ILP 1999, pages 174–185, 1999.

[77] N. Lavrač, B. Kavšek, P. Flach, and L. Todorovski. Subgroup discovery with cn2-sd. J.
Mach. Learn. Res., 5:153–188, Dec. 2004.

[78] C.-S. Lee, M. Müller, and O. Teytaud. Special issue on monte carlo techniques and
computer go. Computational Intelligence and AI in Games, IEEE Transactions on, 2:225
– 228, 01 2011.

[79] M. V. Leeuwen and A. J. Knobbe. Diverse subgroup set discovery. Data Min. Knowl.
Discov., 25(2):208–242, 2012.

[80] F. Lemmerich and M. Becker. pysubgroup: Easy-to-use subgroup discovery in python. In
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 658–662, 2018.

[81] B. Letham, C. Rudin, and D. Madigan. Sequential event prediction. Machine Learning,
93(2):357–380, Nov 2013.

[82] S. P. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf. Theory, 28:129–136,
1982.

[83] D. Louapre. Le paradoxe de simpson, 2013.

[84] T. Lucas, T. C. Silva, R. Vimieiro, and T. B. Ludermir. A new evolutionary algorithm for
mining top-k discriminative patterns in high dimensional data. Applied Soft Computing,
59:487 – 499, 2017.

[85] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 4765–
4774. Curran Associates, Inc., 2017.

[86] H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1:241–258, 1997.

[87] R. Mathonat, J. Boulicaut, and M. Kaytoue. Découverte de sous-groupes à partir de
données séquentielles par échantillonnage et optimisation locale. In M. Rousset and
L. Boudjeloud-Assala, editors, Extraction et Gestion des connaissances, EGC 2019, Metz,
France, January 21-25, 2019, volume E-35 of RNTI, pages 153–164. Éditions RNTI, 2019.

102

[88] R. Mathonat, J.-F. Boulicaut, and K. Mehdi. A behavioral pattern mining approach to
model players skills in rocket league. In IEEE Conference on Games, 2020.

[89] R. Mathonat, D. Nurbakova, J. Boulicaut, and M. Kaytoue. Seqscout: Using a bandit
model to discover interesting subgroups in labeled sequences. In Proc. IEEE DSAA, pages
81–90, 2019.

[90] A. Millot, R. Cazabet, and J. Boulicaut. Optimal subgroup discovery in purely numerical
data. In H. W. Lauw, R. C. Wong, A. Ntoulas, E. Lim, S. Ng, and S. J. Pan, editors, Ad-
vances in Knowledge Discovery and Data Mining - 24th Pacific-Asia Conference, PAKDD
2020, Singapore, May 11-14, 2020, Proceedings, Part II, volume 12085 of Lecture Notes
in Computer Science, pages 112–124. Springer, 2020.

[91] A. Millot, R. Mathonat, R. Cazabet, and J.-F. Boulicaut. Actionable subgroup discovery
and urban farm optimization. In M. R. Berthold, A. Feelders, and G. Krempl, editors,
Advances in Intelligent Data Analysis XVIII, pages 339–351, Cham, 2020. Springer Inter-
national Publishing.

[92] S. Moens and M. Boley. Instant exceptional model mining using weighted controlled
pattern sampling. In Proceedings IDA 2014, pages 203–214, 2014.

[93] F. Mörchen and A. Ultsch. Efficient mining of understandable patterns from multivariate
interval time series. Data Min. Knowl. Discov., 15(2):181–215, Oct 2007.

[94] A. Mueen and E. Keogh. Extracting optimal performance from dynamic time warping. In
Proceedings ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, page 2129–2130, 2016.

[95] D. Nguyen, W. Luo, T. D. Nguyen, S. Venkatesh, and D. Phung. Sqn2vec: Learning
sequence representation via sequential patterns with a gap constraint. In M. Berlingerio,
F. Bonchi, T. Gärtner, N. Hurley, and G. Ifrim, editors, Machine Learning and Knowledge
Discovery in Databases, pages 569–584, Cham, 2019. Springer International Publishing.

[96] T. Nguyen, S. Gsponer, I. Ilie, M. O’reilly, and G. Ifrim. Interpretable time series classi-
fication using linear models and multi-resolution multi-domain symbolic representations.
Data Min. Knowl. Discov., 33(4):1183–1222, 2019.

[97] P. K. Novak, N. Lavrač, and G. I. Webb. Supervised descriptive rule discovery: A unifying
survey of contrast set, emerging pattern and subgroup mining. Journal Machine Learning
Research, 10:377–403, June 2009.

[98] S. Nowozin, G. Bakir, and K. Tsuda. Discriminative subsequence mining for action clas-
sification. In Proceedings IEEE ICSV 2007, pages 1–8, Oct 2007.

[99] C. Nunes, M. De Craene, H. Langet, O. Camara, and A. Jonsson. Learning decision
trees through monte carlo tree search: An empirical evaluation. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, page e1348, 02 2020.

[100] G. Pagallo and D. Haussler. Boolean feature discovery in empirical learning. Mach. Learn.,
5(1):71–99, May 1990.

103

Bibliography

[101] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets
for association rules. In C. Beeri and P. Buneman, editors, Database Theory — ICDT’99,
pages 398–416, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[102] J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, USA,
2nd edition, 2009.

[103] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. J.
Mach. Learn. Res., 12:2825–2830, 2011.

[104] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu.
Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE Trans. on
Knowl. and Data Eng., 16(11):1424–1440, Nov. 2004.

[105] J. Pei, J. Han, B. Mortazavi-asl, and H. Zhu. Mining access patterns efficiently from web
logs. In T. Terano, H. Liu, and A. L. P. Chen, editors, Knowledge Discovery and Data
Mining. Current Issues and New Applications, pages 396–407, Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg.

[106] J. R. Quinlan and R. M. Cameron-Jones. Foil: A midterm report. In P. B. Brazdil,
editor,Machine Learning: ECML-93, pages 1–20, Berlin, Heidelberg, 1993. Springer Berlin
Heidelberg.

[107] C. Raïssi and J. Pei. Towards bounding sequential patterns. In Proceedings ACM SIGKDD
2011, pages 1379–1387, 2011.

[108] E. Ramirez, M. Wimmer, and M. Atzmueller. A computational framework for interpretable
anomaly detection and classification of multivariate time series with application to human
gait data analysis. In AIME International Workshops KR4HC/ProHealth and TEAAM
Revised Selected Papers, pages 132–147, 2019.

[109] Reddit. All Rocket League moves / skills with descriptions, Accessed March
28, 2020. https://www.reddit.com/r/RocketLeague/comments/adiu96/all_rocket_
league_moves_skills_with_descriptions/.

[110] M. T. Ribeiro, S. Singh, and C. Guestrin. "why should i trust you?": Explaining the pre-
dictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2016.

[111] M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-agnostic expla-
nations. In AAAI, 2018.

[112] R. L. Rivest. Learning decision lists. Machine Learning, 2:229–246, 1987.

[113] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall Press,
Upper Saddle River, NJ, USA, 3rd edition, 2009.

[114] A. Saas, A. Guitart, and A. Periáñez. Discovering playing patterns: Time series clustering
of free-to-play game data. In Proceedings IEEE Conference on Computational Intelligence
and Games, pages 1–8, Sep. 2016.

104

https://www.reddit.com/r/RocketLeague/comments/adiu96/all_rocket_league_moves_skills_with_descriptions/
https://www.reddit.com/r/RocketLeague/comments/adiu96/all_rocket_league_moves_skills_with_descriptions/

[115] P. Schäfer. The BOSS is concerned with time series classification in the presence of noise.
Data Min. Knowl. Discov., 29(6):1505–1530, 2015.

[116] R. She, F. Chen, K. Wang, M. Ester, J. L. Gardy, and F. S. L. Brinkman. Frequent-
subsequence-based prediction of outer membrane proteins. In Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’03, page 436–445, New York, NY, USA, 2003. Association for Computing Machinery.

[117] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. Mastering the game of go with deep neural networks and tree search. Nature,
529:484–489, 2016.

[118] E. H. Simpson. The interpretation of interaction in contingency tables. Journal of the
royal statistical society series b-methodological, 13:238–241, 1951.

[119] E. Spyropoulou, T. De Bie, and M. Boley. Interesting pattern mining in multi-relational
data. Data Min. Knowl. Discov., 28(3):808–849, May 2014.

[120] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and perfor-
mance improvements. In P. Apers, M. Bouzeghoub, and G. Gardarin, editors, Advances in
Database Technology — EDBT ’96, pages 1–17, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg.

[121] N. Tatti and J. Vreeken. The long and the short of it: Summarising event sequences with
serial episodes. Proceedings ACM SIGKDD 2012, pages 462–470, 08 2012.

[122] T. L. Taylor. Raising the Stakes:E-Sports and the Professionalization of Computer Gaming.
MIT Press, 2012.

[123] T. L. Taylor. Watch Me Play: Twitch and the Rise of Game Live Streaming. Princeton
University Press, 2018.

[124] A. Termier, M. C. Rousset, and M. Sebag. Dryade: a new approach for discovering closed
frequent trees in heterogeneous tree databases. In Fourth IEEE International Conference
on Data Mining (ICDM’04), pages 543–546, 2004.

[125] D. Vihanga, M. Barlow, E. Lakshika, and K. Kasmarik. Weekly seasonal player population
patterns in online games: A time series clustering approach. In IEEE Conference on
Games, pages 1–8, 2019.

[126] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. Czarnecki,
A. Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds, D. Horgan, M. Kroiss,
I. Danihelka, J. Agapiou, J. Oh, V. Dalibard, D. Choi, L. Sifre, Y. Sulsky, S. Vezh-
nevets, J. Molloy, T. Cai, D. Budden, T. Paine, C. Gulcehre, Z. Wang, T. Pfaff,
T. Pohlen, D. Yogatama, J. Cohen, K. McKinney, O. Smith, T. Schaul, T. Lil-
licrap, C. Apps, K. Kavukcuoglu, D. Hassabis, and D. Silver. AlphaStar: Mas-
tering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

105

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Bibliography

[127] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing multi-dimensional
time-series with support for multiple distance measures. In Proceedings ACM SIGKDD
2003, pages 216–225. ACM, 2003.

[128] J. Wang, J. Han, and C. Li. Frequent closed sequence mining without candidate mainte-
nance. IEEE Transactions on Knowledge and Data Engineering, 19(8):1042–1056, 2007.

[129] Wikipedia. Rocket League, Accessed March 28, 2020. https://en.wikipedia.org/wiki/
Rocket_League.

[130] S. Wrobel. An algorithm for multi-relational discovery of subgroups. In PKDD, volume
1263 of LNCS, pages 78–87. Springer, 1997.

[131] Z. Xing, J. Pei, and E. Keogh. A brief survey on sequence classification. SIGKDD Explor.
Newsl., 12(1):40–48, 2010.

[132] X. Yan, J. Han, and R. Afshar. Clospan: Mining closed sequential patterns in large
datasets. In In SDM, pages 166–177, 2003.

[133] M. Zaki, N. Lesh, and M. Ogihara. Planmine: Predicting plan failures using sequence
mining. Artif. Intell. Rev., 14:421–446, 12 2000.

[134] M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowledge
and Data Engineering, 12(3):372–390, 2000.

[135] M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine Learning,
42(1):31–60, Jan 2001.

[136] M. J. Zaki and C.-J. Hsiao. Charm: An efficient algorithm for closed itemset mining. In
Proceedings of the 2002 SIAM International Conference on Data Mining, pages 457–473,
2002.

[137] C. Zhou, B. Cule, and B. Goethals. Pattern based sequence classification. IEEE Trans.
Knowl. Data Eng., 28:1285–1298, 2016.

[138] G. L. Zuin, Y. P. Macedo, L. Chaimowicz, and G. L. Pappa. Discovering combos in fight-
ing games with evolutionary algorithms. In Proceedings ACM Genetic and Evolutionary
Computation Conference GECCO, page 277–284, 2016.

106

https://en.wikipedia.org/wiki/Rocket_League
https://en.wikipedia.org/wiki/Rocket_League

Abstract

It is extremely useful to exploit labeled datasets not only to learn models and perform
predictive analytics but also to improve our understanding of a domain and its available targeted
classes. The subgroup discovery task has been considered for more than two decades. It concerns
the discovery of rules covering sets of objects having interesting properties, e.g., they characterize
a given target class. Though many subgroup discovery algorithms have been proposed for both
transactional and numerical data, discovering rules within labeled sequential data has been much
less studied.

In that context, exhaustive exploration strategies can not be used for real-life applications
and we have to look for heuristic approaches. In this thesis, we propose to apply bandit models
and Monte Carlo Tree Search to explore the search space of possible rules using an exploration-
exploitation trade-off, on different data types such as sequences of itemset or time series. For a
given budget, they find a collection of top-k best rules in the search space w.r.t chosen quality
measure. They require a light configuration and are independent from the quality measure used
for pattern scoring. To the best of our knowledge, this is the first time that the Monte Carlo Tree
Search framework has been exploited in a sequential data mining setting. We have conducted
thorough and comprehensive evaluations of our algorithms on several datasets to illustrate their
added-value, and we discuss their qualitative and quantitative results.

To assess the added-value of one or our algorithms, we propose a use case of game analyt-
ics, more precisely Rocket League match analysis. Discovering interesting rules in sequences of
actions performed by players and using them in a supervised classification model shows the effi-
ciency and the relevance of our approach in the difficult and realistic context of high dimensional
data. It supports the automatic discovery of skills and it can be used to create new game modes,
to improve the ranking system, to help e-sport commentators, or to better analyse opponent
teams, for example.

Keywords: Knowledge Discovery in Databases, Pattern Mining, Game analytics.

Résumé

Exploiter des jeux de données labelisés est très utile, non seulement pour entrainer des modèles
et mettre en place des procédures d’analyses prédictives, mais aussi pour améliorer la com-
préhension d’un domaine. La découverte de sous-groupes a été l’objet de recherches depuis
deux décennies. Elle consiste en la découverte de règles couvrants des ensembles d’objets ayant
des propriétés intéressantes, qui caractérisent une classe cible donnée. Bien que de nombreux
algorithmes de découverte de sous-groupes aient été proposés à la fois dans le cas des données
transactionnelles et numériques, la découverte de règles dans des données séquentielles labelisées
a été bien moins étudiée.

Dans ce contexte, les stratégies d’exploration exhaustives ne sont pas applicables à des cas
d’application rééls, nous devons donc nous concentrer sur des approches heuristiques. Dans
cette thèse, nous proposons d’appliquer des modèles de bandit manchot ainsi que la recherche
arborescente de Monte Carlo à l’exploration de l’espace de recherche des règles possibles, en
utilisant un compromis exploration-exploitation, sur différents types de données tels que les
sequences d’ensembles d’éléments, ou les séries temporelles. Pour un budget temps donné, ces
approches trouvent un ensemble des top-k règles decouvertes, vis-à-vis de la mesure de qualité
choisie. De plus, elles ne nécessitent qu’une configuration légère, et sont indépendantes de
la mesure de qualité utilisée. A notre connaissance, il s’agit de la première application de la
recherche arborescente de Monte Carlo au cas de la fouille de données séquentielles labelisées.
Nous avons conduit des études appronfondies sur différents jeux de données pour illustrer leurs
plus-values, et discuté leur résultats quantitatifs et qualitatifs.

Afin de valider le bon fonctionnement d’un de nos algorithmes, nous proposons un cas
d’utilisation d’analyse de jeux vidéos, plus précisémment de matchs de Rocket League. La
decouverte de règles intéressantes dans les séquences d’actions effectuées par les joueurs et leur
exploitation dans un modèle de classification supervisée montre l’efficacité et la pertinence de
notre approche dans le contexte difficile et réaliste des données séquentielles de hautes dimen-
sions. Elle permet la découverte automatique de techniques de jeu, et peut être utilisée afin de
créer de nouveaux modes de jeu, d’améliorer le système de classement, d’assister les commenta-
teurs de "e-sport", ou de mieux analyser l’équipe adverse en amont, par exemple.

Mots-clés: Découverte de connaissances, fouille de motifs, analyse de jeu

FOLIO ADMINISTRATIF

THESE DE L’UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON

NOM : MATHONAT DATE de SOUTENANCE : 29/09/20
(avec précision du nom de jeune fille, le cas échéant)

Prénoms : Romain

TITRE : Rule Discovery in Labeled Sequential Data : Application to Game Analytics

NATURE : Doctorat Numéro d'ordre : 2020LYSEI080

Ecole doctorale : InfoMaths (ED 512)

Spécialité : Informatique

RESUME :
Exploiter des jeux de données étiquetées est très utile, non seulement pour entrainer des modèles et mettre en place des
procédures d'analysesS prédictives, mais aussi pour améliorer la compréhension d'un domaine. La découverte de sous-
groupes a été l'objet de recherches depuis deux décennies. Elle consiste en la découverte de règles couvrants des ensembles
d'objets ayant des propriétés intéressantes, qui caractérisent une classe cible donnée. Bien que de nombreux algorithmes de
découverte de sous-groupes aient été proposés à la fois dans le cas des données transactionnelles et numériques, la
découverte de règles dans des données séquentielles étiquetées a été bien moins étudiée.
Dans ce contexte, les stratégies d'exploration exhaustives ne sont pas applicables à des cas d'application réels, nous devons
donc nous concentrer sur des approches heuristiques. Dans cette thèse, nous proposons d'appliquer des modèles de bandit
manchot ainsi que la recherche arborescente de Monte Carlo à l'exploration de l'espace de recherche des règles possibles, en
utilisant un compromis exploration-exploitation, sur différents types de données tels que les séquences d'ensemble d'éléments,
ou les séries temporelles. Pour un budget temps donné, ces approches trouvent un ensemble des top-k règles découvertes,
vis-à-vis de la mesure de qualité choisie. De plus, elles ne nécessitent qu'une configuration légère, et sont indépendantes de la
mesure de qualité utilisée. A notre connaissance, il s'agit de la première application de la recherche arborescente de Monte
Carlo au cas de la fouille de données séquentielles étiquetées. Nous avons conduit des études approfondies sur différents jeux
de données pour illustrer leurs plus-values, et discuté leur résultats quantitatif et qualitatif.
Afin de valider le bon fonctionnement d'un de nos algorithmes, nous proposons un cas d'utilisation d'analyse de jeux vidéos,
plus précisément de matchs de Rocket League. La découverte de règles intéressantes dans les séquences d'actions effectués
par les joueurs et leur exploitation dans un modèle de classification supervisé montre l'efficacité et la pertinence de notre
approche dans le contexte difficile et réaliste des données séquentielles de hautes dimensions. Elle permet la découverte
automatique de techniques de jeu, et peut être utilisée afin de créer de nouveaux modes de jeu, d'améliorer le système de
classement, d'assister les commentateurs de "e-sport", ou de mieux analyser l'équipe adverse en amont, par exemple.
MOTS-CLÉS : Découverte de connaissances, fouille de motifs, analyse de jeu

Laboratoire (s) de recherche : Laboratoire d'InfoRmatique enImage et Systèmes d'information(LIRIS)

Directeur de thèse:
Jean-François Boulicaut (Professeur des Universités, INSA de Lyon)
Mehdi Kaytoue (Maître de conférences HDR, INSA de Lyon)

Président de jury :

Composition du jury :
Atzmüller, Martin Professeur (Osnabrueck University)
Termier, Alexandre (Professeur, Université Rennes)
Amer-Yahia, Sihem (Directrice de recherche, CNRS)
Forestier, Germain (Professeur, Université de Haute-Alsace)
Laurent, Anne (Professeure, Université de Montpellier)
Raïssi, Chedy (Chargé de recherche, INRIA et UBISOFT)

110

	Remerciements
	Contents
	Introduction
	Context
	Supervised rule discovery
	Contributions
	Bandit model and Monte Carlo tree search for supervised rule discovery in sequences of itemsets
	Monte Carlo tree search for supervised rule discovery in high dimensional numerical data
	Application to player behaviour detection in game analytics

	Structure of the thesis
	List of publications

	Supervised Rule Discovery
	Introducing pattern mining task
	A simple formalisation
	Apriori and extracting association rules

	Supervised rule discovery: problem definition
	Search space exploration strategies
	Enumeration-based methods
	Extracting rules from predictive global modeling
	Heuristic Methods

	Supervised Rule Discovery for sequences
	Sequential pattern mining
	Extracting interesting rules from sequential data

	Conclusion

	Bandit Models and Monte Carlo Tree Search
	Multi-armed Bandit Model
	Problem settings
	Exploitation-exploration tradeoff

	Monte Carlo Tree Search
	Game Theory
	Method
	Applications

	Conclusion

	Mining interesting rules from sequences of itemsets
	Background
	SeqScout: SEQuential patterns Scouting
	Adapting the multi armed bandit model to subsequence mining
	SELECT Policy: Sequence Selection
	ROLLOUT Policy: Subsequence Generalization
	Filtering step
	Local optimum search
	Quality Measure Selection
	Efficient Computation of Quality Scores

	MCTSExtent
	Applying MCTS in a bottom-up way
	Algorithm Description
	Example
	Computing a Longest Common Subsequence

	Experiments
	Datasets
	Baselines
	Settings
	Performance Evaluation using WRAcc
	Quality w.r.t. Number of Iterations
	Using other Quality Measures
	Performance Study under Varying Theta
	Performance Study under Varying top-k
	Sequence Lengths
	Non Diversified Beam Search
	Bitset vs. Integer Set Representation
	Local Optima Search

	Conclusion

	Mining Interval patterns in high dimensional numerical data
	Introduction
	Supervised Rule Discovery in Numerical Data
	Closed on the Positive Interval Patterns
	MonteCloPi: Monte carlo tree search on Closed on the PosItives
	Applying MCTS in a bottom-up way on interval patterns
	SELECT Policy: numerical object selection
	EXPAND Policy: meet with positive object
	ROLLOUT policy: interval pattern generalization
	UPDATE
	Adaptation of MonteCloPi for Time Series of Different Lengths.

	Related Work
	Quantitative Experimental Study
	Datasets
	Baselines
	Overall Performance
	Varying Time Budget
	Classification Performance

	Conclusion

	Application to Game Analytics: player behaviour detection
	Introduction
	Data and Methodology
	Skill inventory
	Data collection and Feature Selection
	Merging with inputs data
	Interesting rules discovery
	Dataset re-encoding

	Related Work
	Experiments
	Dataset
	Experimental setup
	Influence of the number of mined patterns
	Pattern quality w.r.t. accuracy
	Impact of diversity on accuracy
	Predictive performance of the method
	Comparison to 1-NN DTW
	Using numerical variables only
	Classify goals
	Performances of MonteCloPi
	Pattern interpretability

	Discussion

	Conclusion
	Summary
	Perspectives
	Improving MCTSExtent and MonteCloPi
	Going further with the Rocket League use case

	Bibliography
	Abstract
	Résumé

