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Synthese en francais

0.1 Introduction

0.1.0.1 Motivations

Dans le monde d’aujourd’hui, les personnes et objets tendent a étre de plus en
plus connecté a travers les communications sans fil. L’énorme quantité de données
échangées sur ces réseaux requiert des algorithmes des communications plus rapides,
plus fiables et plus flexibles. Le fait que les utilisateurs d’un réseau sans fil partagent
I'air comme moyen de communication crée des difficultées dues a des problemes
d’interférence. Des utilisateurs proches géographiquement ne peuvent utiliser le
réseau simultanément sans mélanger leurs messages, les rendant illisibles. Ce genre
de probléeme d’acceés a une ressource partagée, populaire en probabilité appliquée
depuis au moins 50 ans, a de nombreuses applications des centres d’appels, aux
acces Wi-Fi et réseaux pair-a-pair.

De maniére générale, un grand nombre de questions associées a des algorithmes
de communication peuvent étre formuler de la maniére suivante: “Comment allouer
la ressource partagée?”, “Comment mesurer lefficacité/optimalité dans un algo-
rithme?”, “Est-ce que cet algorithme est efficace/optimal?”; “Quel est le comporte-
ment dans telle condition?”, etc... La théorie des files d’attente donne un cadre
formel pour répondre a ces questions. Par exemple en établissant des garanties
théoriques pour des indicateurs de performances diiment définies. Les utilisateurs
du réseau sont modélisés par des files d’attente avec des flux d’arrivés. Chaque file
posséde un espace d’attente ou stocker les requétes avant de pouvoir les servir. Les
files seront aussi appelées noeuds , utilisateurs, terminaux ou serveurs en fonction
du contexte.

Laisser une autorité centrale prendre les décisions en fonction de I’état actuel du
réseau conduit en général a de meilleures performances si I'information est utilisée
de maniére adéquate. D’un autre c6té, une autorité centrale induit des désavan-
tages. Une attaque sur une autorité centrale peut causer une panne généralisée
du réseau. De plus, recueillir des informations exactes sur le réseau entier est un
labeur pénible et hasardeux, surtout quand le nombre de terminal est élevé. Plus
précisément, dans le cas d’un réseau Wi-Fi pour smartphones, les noeuds entrent
et sortent du réseau de maniere continue sans heurts, ce qui complique la collecte
d’informations car celle-ci peut étre incomplete ou datée. D’un autre coté, on
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pourrait préférer laisser les utilisateurs prendre les décisions en fonction de leurs
environnements dans le réseau. Il est plus facile pour les utilisateurs d’évaluer leurs
voisinages géographique respectifs de maniere précise. Il s’agit ensuite d’utiliser
cette information & des fins d’ordonnancement de maniere distribuée, c’est-a-dire
en laissant chaque terminal prendre ses décisions en fonction de l'information lo-
cale. Cela peut mener a des comportements “gloutons” pour les utilisateurs et de
I'inefficacité pour tout le monde. De leurs points de vue, les utilisateurs veulent
utiliser le plus de ressource possible pour minimiser leurs temps d’attente. Ce genre
de comportement pénalise les autres utilisateurs en limitant leurs acces et peut
mener a une utilisation inefficace de la ressource. Le réseau étant plus encombré
qu’il ne pourrait I’étre, cela entraine des temps d’attente moyens plus longs pour
tout le monde. Une question cruciale dans ce domaine de recherche est de trouver
un algorithme distribué ayant pour mission de partager la ressource entre les util-
isateurs de maniere efficace et juste. Les algorithmes distribués sont plus appropriés
a la nature changeante des réseaux et sont directement applicable a des réseaux de
grande taille.

0.1.0.2 Etat de ’art

Ce travail de rédaction a également été accompagné par une recherche bibliographique
dont on rend compte des grandes lignes ici. On distingue trois axes pour exposer nos
références: le premier est la littérature reliée aux algorithmes d’acces a une ressource
partagée, le second est la littérature orientée vers les problémes d’homogénéisation,
le troisieme est les résultats de limites fonctionels types limites fluides et charge
lourde.

Pour le premier axe, on se restreint dans cette synthese a des probléme d’ordonnancement

sur un graphe d’interférence G = (V, E): les nceuds du graphes sont les utilisateurs
du réseau et une aréte entre deux noeuds représente I'impossibilité pour eux de trans-
mettre en méme temps voir 1.1.2 pour d’autre exemples de problemes et 0.2.0.2 pour
plus de détails sur S l’ensemble des décisions admissibles. On commence par une
définition de l'algorithme Max-Weight. Cet algorithme introduit dans [TE92] par
Tassiulas et Ephremides a été I'un des premier avec des garanties théoriques sur ses
performances. C’est un algorithme a temps discret tel que quand les files d’attente
sont dans 1’état ¢, la decision de service est donnée par

o € argmax Z pvf(Qv(t)>7

pES veV

pour f croissante et S ’ensemble de décisions admissibles. L’étude de ’algorithme
Max-Weights est riche et encore vivante pres de 30 ans apres son début: dans [TE92]
les auteurs prouvent I'optimalité de la région de stabilité:

Auw(S) ={Xe RY, (Q(t))>0 avec taux d’arrivé A est un processus de Markov ergodique} ,
en prouvant que cette région peut se réécrire
A*(S) == {1 €[0,1]V | 3p € Co(S),\ < p coordoné par coordoné }.

Plus récement, [MS16] établit I'optimalité de cet algorithme au sens du délai a
I’équilibre dans un régime de charge lourde.
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On mentionne ensuite les algorithmes CSMA encore utilisé aujourd’hui en télé-
comunication. Dans cet algorithme, chaque nceud a une “fugacité” inhérente qui
peut étre vu comme un taux d’activation instantané. Ce taux reste fixé. Une fois ac-
tivé, un noeud reste actif pour une durée exponentielle de parametre v, € (0,1). Un
neeud inactif écoute le canal pour vérifier si il y aurai des problémes d’interférences
avec sa communication. Si il n’y en a pas, il s’active au bout d’une durée expo-
nentielle de parametre 1 — v,,. On présente finalement les algorithme QB-CSMA
introduit par Rajagopolan, Shah et Shin dans [RSS09]. On refére & [Yun+12] pour
une liste de références sur le sujet. Ces algorithmes ont étés introduits avec I’objectif
d’approximer les décisions de service de 'algorithme Max-Weight de maniere dis-
tribué. La maniere dont cela est achevé est astucieuse: d’une maniere schématique,
on utilise la méme procédure que CSMA avec des fugacité données par des fonctions

d’activations

. ef(qv)
Vi) = T el (@)’

avec f parametre de l'algorithme. Grace a ce choix, la mesure invariante de
I'ordonanceur se concentre exponentiellement sur les ensemble stables de poid max-

et ¥ (q) =1-Vi(q),

imum:

(o) o eXP(Z ovf(qv))s

veV

a une constante de renormalisation pres. Il a été prouvé dans [SS12] que cet al-
gorithme a une region de stabilité optimale dés que f croit assez lentement mais
on expose dans la Section 1.2.3.3 une conjecture (confirmée par certains résultats
commes ceux de [BBL11]) comme quoi f croissant rapidement peut améliorer le
délai, dans une certaine mesure. Se reporter a la Section 1.2.3.3 pour plus de dé-
tails. Voir Section 1.2 pour plus une présentation plus fournie de ces algorithmes
et d’autres non mentionés ici. L’idée de cette theése est d’étudier QB-CSMA avec
f croissant le plus vite possible en conservant la propriété de stabilité maximum
prouvée dans [SS12].

Pour le deuxieme axe, on parle prinicpalement d’un principe d’homogénéisation.
L’étude d’un systéme complexe est souvent extremement compliqué a décrire, d’autant
plus quand ’espace d’état est grand. Une maniere de simplifier 'analyse est de par-
tir du principe qu’une des composante évolue sur une échelle de temps différente
des autres. On reprend ici exemple du Chapitre 10 de [Gril4]: partons d’un pen-
dule suspendu a une base mobile. Si la base évolue & une vitesse comparable ou
plus grande a la vitesse du bout du pendule, les effets d’élan vont rendre ’analyse
particulierement pénible. Si au contraire la base évolue lentement par rapport aux
vas et viens du pendule on pourra la considérer comme immobile pour étudier les
oscilations de celui ci. L’étude rigoureuse de tels comportements est appellée dans
la litérature“homogénéisation” ou “séparation d’échelle de temps”. Nous n’avons
pas pu appliquer directement les méthodes présentes dans la littérature, et nous
avons du coup développé une nouvelle méthode. On mentionne ici la méthode de
Freidlin et Wentzell [FW12] se basant sur la théorie des perturbations, la méthode
de [PSV77] developée dans [Kur92] basée sur une approche de martingales et la
méthode de Luczak et Norris [LN13]. Cette derniére méthode est la plus proche
de la notre avec une utilisation de “fonctions correctrices” proche des solutions aux
equations de Poissons. Notre méthode est cependant mieux adaptée a des pro-
cessus de Markov. L’homogénisation s’occupe de modeles variations autours d’un
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processus de Markov (Q%, o) de générateur

LN[f)(a,0) = LI y[f (- 0))(a) + NL{ y[f(g,)](0).

Il est séparé en deux parties: L?, n agit sur les fonctions de o mais dépend de la
valeur de ¢ et Lg y agit sur les fonctions de ¢ mais dépend de la valeur de o. Avec
cette hypothese, on contraint ) et o & ne pas changer en méme temps mais cette
hypothese peut étre relachée dans une certaine mesure. Le générateur Lg y est
considéré lent quand on le compare & N L?’ N ou les transitions se passent sur une
echelle de temps bien plus rapide quand N — +oo. L’idée générale est que o évolue
si vite que Q n’interagit avec o qu’a travers 7V'Q la probabilité invariante de Lg N
Le but est de comparer la dynamique du processus de générateur LY avec celle du
processus de Markov de générateur

L n[f](q) = (L 5([f](9)], quel que soit g € NV,

avec V4 f] la probabilité invariante de L{ - On renvoie le lecteur vers la Section
1.3 pour plus d’informations, une description plus détaillée des méthodes existentes
et références sur ce sujet.

Finalement, on aborde le troisieme axe avec les théoremes de limite fonctionelle.
L’idée de ces résultats est de fournir un équivalent fonctionels a la loi des grand
nombre et au théoréme de la limite centrale. Soit (Xpy)nyen une suite de variable
ii.d. La loi des grands nombres (voire [Kal02], Théoréme 3.23) nous dit que tant
que E [| X1]] < 400,

N

1

N Z X — E[X;] presque stirement quand N — +o0.
k=1

De la méme maniere, si X (t)est 'interpolation linéaire de

K
X(K) =YXy
k=1

Quel que soit t > 0,

X(Nt)
N

— tIE [X;] presque siirement quand N — +o0.

En fait (X (Nt)/N)i>o convergege presque siirement pour la topologie de la conver-
gence uniforme. On définit la convergence uniforme sur les compactes par le fait
que quel que soit T' < 400,

X (Nt)

sup |——— — E [X1] t| — 0 presque siirement quand N — +o0.
| N

De la méme maniere, si on prend un échantillon N qui croit et on renormalise la
moyenne empirique par N, on a convergence vers une limite deterministe. Ainsi
quel que soit 0 < T' < 400,

X(Nt)

sup| ——=| — 0 presque stirement quand N — +oc0.
< N
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Le fait que la limite soit nulle suggere que 1'on devrait prendre plus de termes
pour avoir une limite non triviale. Le deuxieme résultat important est le théoréme
de la limite centrale, voire Proposition 5.9 de [Kal02]. Soit (Xn)nyen une suite de
variables aléatoires i.i.d. de moyenne O et variance 1. Alors

1 &
N Z Xk = N,
k=1
avec N loi normale standard et = la convergence en distribution, définie dans la
Définition 2.3. Une conséquence directe est que quel que soit ¢ > 0,

X (N?t)
—N = N,
avec N loi normale avec moyenne 0 et variance t. Encore une fois, on peut renforcer
ce résultat avec une convergence uniforme sur les compactes vers un mouvement
brownien:

(X(N 2t)
N
avec B un mouvement brownien.

)t=0 — B en distribution,

L’idée est d’utiliser le méme genre de renormalisation pour des problémes de file
d’attente pour obtenir des approximations de premier et second ordre. Les methodes
de limites fluides ont plus de quarantes ans: on cite par exemple [MM79] ou les au-
teurs prouvent les propriété de récurrence/transience de marches aléatoires sur Z? et
73 par des méthodes de limites fluides. Celles ci ont été utilisé de maniére extensive
pour répondre a des questions de stabilité depuis. On cite par exemples le chapitre
9 de [Rob03] pour une introduction sur le sujet. Voir également deux articles fon-
damentaux traitant de questions de stabilité: [RS92] et [Dai95]. Voir Section 1.4.1
pour une description substantielle de ces articles. Les limites fluides de QB-CSMA
ont également été étudiées mais dans un cas différent de celui présenté dans cette
these. Dans [GBW14], les auteurs s’interessent au cas d’activation/deactivations
polynomiale dans la taille des files avec une puissance assez grande. Dans ce cas,
ils prouvent que pour un certain choix de graphe d’interférence, les limites fluides
de QB-CSMA se comportent comme 'algorithme RCA de [FPR10] (et les deux
algorithmes ont donc la méme région de stabilité). Avec cette procédure, un noeud
reste actif jusqu’au moment ot il est (presque) vide. Les auteurs de [GBW14] prou-
vent que pour certains graphes d’interférences, ce type d’algorithme n’atteint pas
la région de stabilité optimale. Les résultats des Chapitre 4 et 5 se placent dans le
complémentaire de ce résultat: on donnera les limites fluides de QB-CSMA quand
la puissance dans les taux polynomiaux est assez petit. Cela change completement
le comportement asymptotique qui devient la solution d’une EDO.

L’idée d’évaluer les performance d’un algorithme en étudiant son comportement
en présence d’'une charge lourde n’est également pas nouvelle. Il y a pres de 60 ans,
Kingman s’interroge sur ’évolution du délai a 1’équilibre lors ce que 'utilisation
d’un réseau ”simple“ tend vers 100% dans les articles [Kin61] et [Kin62]. On renvoie
vers [Whi02] pour une revue des résultats standards de charge lourde. Le résultat
présenté dans cette these est inhabituel ne rentre pas dans la catégorie de résultat
standard. On renvoie vers la Section 1.4.2 pour plus de détails et des références
vers des résultats de charge lourde non standards.
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0.2 Elements techniques, Définitions

Dans cette partie, on présente les définitions discussions et résultats préliminaires
du Chapitre 2.

0.2.0.1 Définitions

On commence par des notations utilisées tout au long de cette thése et synthese.
Ces définitions et d’autres utilisée dans le manuscrit sont définies dans la Section
2.1.1. Soit V un ensemble de n < oo noeuds . La pseudo-norme L; usuelle sur
RY est notée ||-||, : pour n'importe quel z € RY, et b > 0, elle est définie par
[zl = (X, ey 2%)18. De la méme maniere, pour b > 0 et ¢ € RY on utilise s,(q)
pour écrire Y oy, ¢b. Soit G = (V, E) un graphe simple non orienté et soit S(G)
Pensemble des ensembles stables de G. La définition formelle de S(G) est donnée
dans la prochaien section. On utilise la notation 0 pour dénoter ’ensemble stable

vide et la configuration ol toutes les files sont vides (0 = Ogv ).

Quel que soient n > 0, f : R" — R et U C R", on note ||f| . ; la norme
uniforme sur U: sup,cy | f(z) |. Quand U = R™, on utilise la notation Hf||oo Avec
un leger abus de notation, on utilise la méme dénomination pour la norme uniforme
de vecteurs de R™: pour z € R", ||z|, = maxy|z,|. Pour g : R — U, On note le
temps de sortie de U pour g de la maniere suivante:

FU(f) =inf {t >0, g(t) ¢ U}.
Soit f : R™ — R réguliere, quel que soient 7, 7 < n on note J; sa dérivé partielle
selon ¢; et 8% sa dérivé seconde selon g; et g;, i.e.,

o2 f
9q:q;

_of

Oif = 5o et 92 f =

Tout au long du manuscrit, on utilise la lettre C' pour noter une constante
positive finie dont la valeur exacte n’influe pas fondamentalement les résultats et
dont la valeur peut changer d’une ligne a ’autre. On ne ’autorise pas a dépendre de
quantité qui vont évoluer avec la renormalisation (comme N) mais peut dépendre
de A, a, constantes de localisations dans la définition de U, etc...

Pour un processus de Markov a temps continue, ’opérateur crucial est le généra-
teur LY muni de son domaine D(L?). On définitégalement ici le carré du champs de
I'opérateur L° dont I'importance est expliquée dans la Proposition 2.1/0.1 redonné
plus bas. Soit L° le générateur d’un processus de Markov & espace d’état discret

LOf)@) = ) Loz, a") (f(&) = f(x)).

z'#x

Le carré du champs de cet opérateur est donné par

LO[f)(x) = L[f*](2) — 2/ (@) L°[f](2).
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On peut réécrire cette expression par
LOf)(@) = D L0(x,a') (f(a') = f())”
x'#x

Proposition 0.1
Soit L° générateur de (It)t>0 un processus de Markov non explosif, quelle que soit
f telle que f et f2 € D(L®) le processus

t

My(0) = 100~ So) — [ EU1G)as

0
est une martingale locale avec processus croissant prévisible
t
a0 = [ T
Respectivement, (I5)s>0 est le seul processus tel que
t
£ = @) = [ L011(0)0s

est une martingale quelle que soit f telle que f et f2 € D(LY).

On définitégalement ici la convergence en probabilité:

Définition 0.2
Soient (XN)N.E]N etY des variables aléatoires a valeur dans le méme espace métrique

X. On dit que XN converge vers Y en probabilité, noté XN LA Y, si

P (XN —Y|>¢€) — 0 quand N — +o0.

Soit 7w une mesure de probabilité et f une fonction sur le méme espace de défi-
nition X. On utilise la notation 7[f] pour décrire laction de 7 sur f:

= [ sar.

0.2.0.2 Déscription du model

On présente ici une déscription succinte du modele étudié dans cette these.

Soit V' un ensemble fini de n nceuds. Chaque neeud est muni d’une file M/M/1
avec politique “premier arrivé premier servi” et vacations dues aux interférences. Les
taux d’arrivés sont notés dans un vecteur V-dimensionel X. Le processus @, (t) € N
compte le nombre de requéte en attente au serveur v et au temps t et o(t) € {0,1}"
represente le vecteur d’activité instantané: le serveur v est actif et traite une requéte
(siil y en a une) a taux 1 quand o,(t) = 1 et attend son tour sinon.

Les noeuds sont placés sur un graphe simple non dirigé G = (V, E). Une aréte
entre deux nceuds indique qu’ils ne peuvent pas étre actifs en méme temps. On
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utilise le signe ~ pour signifier 'existence d’une aréte entre deux nceuds (v ~ w <
{v,w} € E). Une configuration admissible de taux de service est un ensemble stable
de G, un élément de S(G) définitici:

S(G)={ocec{0,1}V |v~w= 0, +0, <1}.

Etant donné I’état de 'ordonnanceur o, le processus de files d’attente ) évolue
comme n files M/M/1 indépendantes avec taux d’arrivés A et taux de départ o.
D’un autre c6té, o évolue également: étant donné le processus de file d’attente @,
un noeud actif v se désactive a taux ¥_(Q,) pour une fonction de désactivation ¢ _.
De la méme maniére un nceud inactif s’active a ’aide d’une fonction d’activation
1 quand aucun de ses voisins n’est actif.

D’une maniére plus formelle, (Q, o) est un processus de Markov sur NV x {0, 1}V
de générateur L qui peut étre décomposé en une somme de deux générateurs:

o le générateur L7 du processus lent ) dont la dynamique dépend de o,

e le générateur L{ du processus rapide o dont la dynamique dépend de Q.

La terminologie rapide et lent vient de I’homogénéisation, voir Section 1.3.1 pour
plus de détails. Le générateur L de (Q, o) agi sur les fonctions f : NV x S(G) — R
de la manieére suivante:

L{fl(o,q) = LI[f(o,)l(@) + LELf (- @)](o)

avec

LZ[gl(a) = D Ao (9(a+¢') = g(a) + D oulg>0(gla—€") —g(@) (1)

veV veV

et

Li[R)(0) = Y ov¥—(q,) (h(o =€) = h(a))
veV

+> [T —0u)1=0,)¥i(a) (h(o +e') —h(0)) (2)

veV w~v

avec g : NV — R et h: S(G) — R fonctions arbitraires et e¥ € {0,1}" avec des
0 partout sauf a la vieme coordonée égale a 1. On peut vérifier que quel que soit
qge NV, L{ a une unique probabilité invariante 79. Pour des raison de performances
exposées plus en détails Section 1.2.3.3, on choisit

W, () = (x+1)°

= m €[0,1] et U_(x)=1—-", (x), z €N,

avec a > 0 parametre de l'algorithme. Dans ce cas, ¢ est donnée par

[T (1+g,)*

1Uy) — veV o .
(o) S T +q) € 5(G)

pES(G)veV
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En plus de 79, on définit également

m(v) = NLHEOO (o, =1).

Cette quantité va avoir de 'importance pour les résultats de renormalisations dans
les Chapitres 4 et 5. Voir Section 2.1.2 pour plus de détails.

0.2.0.3 Analyse fonctionelle

On présente maintenant les résultats fondamentaux d’analyse fonctionelle utilisé au
cours de ce manuscrit. Voir Section 2.2.1 pour plus de détails. Contrairement au
manuscrit, on définit ces notions directement pour L{.

Définition 0.3
On définitles notions suivantes:

e La forme de Dirichlet de L} définie pour f,g € L'(m?),

EUf.g) =—(f, L[g]),a

o Le trou spectral de L°, définitpar
EUS, )

01 = i B
fIVara ()0 Varga(f)

avec

Varwa(f) = > |f(@) = f(y) 7 (2)7 (y).

z,y€S(G)
e La constante de Log-Sobolev de L, définie par

a_ o EULT)

al = inf ,
ca(fyzo LI(f)

avec

T 2
= f<x>2log<f ( L)ﬂx).

z€S(G)

On définit également la distance en variation totale entre deux mesures pour
exposer des considérations de temps de mélange.

Définition 0.4
Soient p et v deur mesures de probabilités sur X. La variation totale entre u et v
est donnée par

drv(nv) = 5 3 n(x) — v(a)].

reX

La distance en variation totale est lié a une autre pseudo-distance utilisé dans
le manuscrit: la divergence de Kullback-Leibler. Voir Section 2.2.1 pour plus de
détails sur les relations entre ces notions. La constante de Log-Sobolev apparrait
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naturellement dans le raisonnement que ’on va utiliser et il convient donc d’en avoir
une bonne approximation. Cette approximation se fait grace au trou spectral et au
temps de mélange de la dynamique L{.

Définition 0.5
Soit my (t) la distribution au temps t d’un processus de Markov de générateur L
avec condition initiale x € S(G).

On définit Tynix le temps de mélange de L de la maniére suivante:

1
T :==infdt>0: d ), 7)) < — 5.
ix ln{ >0 max v (mg(t), 7) 26}

Cette quantité est aisément estimable et on a de plus en regroupant des résultats
standards de processus de Markov la proposition suivante (Proposition 2.11 dans le
manuscrit):

Proposition 0.6 e On a

01 cal< 11
IO X 7
2— log(ﬂ-gnin)
e De plus,
1 1 2e
E_l\Tr%1X<gqlog( q )
En particulier
1< et o > L .
Trglix +1 (2 - log(ﬁglin))(zﬁlix + 1)

0.2.0.4 Trou spectral/temple de mélange de L{

Le trou spectral/temps de mélange de L{ va avoir une grande influence dans notre
résultat. Pour une dynamique avec des taux d’activation/déactivation fixe, cette
quantité donne une idée sur le temps que prend le taux de service a chacune des files
d’atteindre un équilibre. On refere par exemple & [LY93] pour une borne générale
sur le trou spectrale de la dynamique de Glauber sur un graphe cubique. On refere
a [RT98] et ses références pour plus de détails sur le trou spectral de L. Qaund
lobjectif est d’étudier QB-CSMA, une approche peut étre de voir quelle est la
dépendence de £7 en ||g|| . Cela peut faire perdre en précision mais borner le trou
spetral de cette maniere apporte une séparation de l'espace d’état pratique pour
I'analyse. Quand le rapport entre taux d’activation et de déactivation est de la
forme exp(f(gy)), la plupart des bornes utilisées sont de la forme

" = exp(=Bf(lldlls0))-

Par exemple dans [SS12], en utilisant I'inégalité de Cheeger, les auteurs obtiennent
une borne valable quel que soit le graphe d’interférence:

01 > exp (—2(T+1)f(llgll ) -
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avec T la taille du plus grand ensemble stable de G. On vera dans les conditions des
théoremes des sections suivantes qu’une meilleur borne sur le trou spectral permet
d’obtenir un plus grand choix pour le parameétre a. De maniére informelle, on définit
Bo(G):

Bo(G) =inf{b>0]0>C|qg+1]* vge NV},

On ommetra le plus souvent la dépendence de By en G. Le but est de trouver
une borne pour By aussi petite que possible (dans tous les cas grace au résultat de
[SS12], o < 2(T + 1)).

On prouve dans la Section 2.3.2 deux résultats impliquant que 8y = 1 est 'ordre
de grandeur optimal pour ¢¢ dans le cas d'un graphe complet:

Lemme 0.7
On suppose que G est un graphe d’interférence complet. Il existe C > 0 tel que quel

que soit g € NV,
c

0> —
llg + 1|

et
ngix 2 C ||q + 1”20 :

Quand cela aidera & la présentation, on notera 8(G) pour insister sur la dépen-
dence de § dans le graphe d’interférence mais elle sera omise dans la plupart des
cas. Les preuves de ces deux résultats reposent sur le Lemme 0.6. Voir Section 2.3.2
pour plus de détails.

0.3 Equation de Poisson

Dans cette section, on présentera les résultats nouveaux relatifs a I’homogénéisations
grace a la solution de ’équation de Poisson. Cette partie reprend les définition et
résultats du Chapitre 3 de la these. Dans ce chapitre, on obtient une borne explicite
pour "lerreur d’homogénéisation" pour le model définitdans la section 0.2.0.2. Plus
précisément on bornera la différence entre

L{[R)(0) = Y ou¥—(q,) (h(o =€) = h(a))

veV
+> [ =0w)d—00)¥i(q) (h(o +e') = (o)), (3)
veV w~v
et
Lulgl(@) = D> Ao (gla+€”) = g(@)+ D> 7 (0w = Vg0 (9(g —€*) —9(9)) - (4)
veV veV

apres avoir été intégrés le long d’une trajectoire de (@, o). La quantité d’interet
pour ce chapitre est

/0 ' (L5 = Ln ) [9)(@(s))ds|. (5)
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avec ¢ : RK — R4 réguliere et T' < +oc0. Cette quantité nous permet de comparer
la dynamique du processus lent avec celle du processus homogénéisé de générateur
Ly. On rapelle la définition de 7:

U=7YQN)=inf{t>0,Q ) ¢U}.
Le but du chapitre est de prouver le Théoréme 3.1 réécrit ici:

Théoréme 0.1
Soit U C RY tel que 0 < mingey 79(0) . Soit g : U — R bornée deux fois différen-
tiable sur U. Alors, pour nimporte quel T > 1

t
E| sup / (L2 — L) [g)(Q(s))ds| | < CBomax |0yg]loe iy T
t<TATU |Jo veV
2
+ CVT <Iglea§ 009l oo.cr + \FTWH)}J% ||8w,v9||oo,y) )
avec

1
Qo = (— log(min77(0)))*/? ———
0 = (= log(min %(0))) —l
et
032 Qo

By =

. 1 a . .
MiyeV,qeU QU+ My eV,qeU Qv

0.3.0.1 Définition

Le principal outil de cette section est ’équation de Poisson, accompagnée de ses
solutions. Une définition formelle pour QB-CSMA est donnée dans la Définition 3.2
et réécrite ici:

Définition 0.8
Soit g : S(G) — R et ¢ € NV l'unique solution d l’équation de poisson associée au
générateur L et fonction g est notée ¢g4(q, -) i.e., ¢4(q, -) est Vunique solution de
l’équation en ¢

LY[¢] = g — w[g), 79[6] = 0. (6)

En particulier, ¢,(q, ) est solution de (6) avec g(c) = o, pour v € V, qui satisfait
pour ¢ € NV et n € S(G)

L{ [pu(g, )] (n) = 0o — 7 (0w = 1) et m[¢y(q, )] = 0. (7)

0.3.0.2 Elements de preuve

La preuve du Théoreme 3.1 se fait en deux étapes: on commence par donner une
borne a 'expression en fonction de quantités reliés aux solutions de 1’équation de
Poisson, puis controler ces solutions séparément. Ces deux étapes sont entreprises
dans les sections 3.2.1 et 3.2.2 respectivement. La discussion suivante sert & motiver
l'utilisation de solutions & des équations de Poisson. En utilisant (3) et (4), on peut
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réécrire la différence des générateurs

(L$Y = Li)lgl(@) = Y (o0 = 70y = 1))Lg,>0(g(a — ") = 9(a)).
veV

De (7), on obtient
oy =m0y = 1) = Li[¢u(q, -)](0).
Soit g € D(Ly,) fixé, on définit f,(q) == g(¢ — €”) — g(g). Puisque f, ne depends pas

de o, on peu réécrire 'expression précédante

(0 =70y =1)) fu (q) = L? [Fu(q, -)] (o)

avec F,(q,0) = ¢,(q,0) fu(q). Puisque l'intégrale de la trajectoire de (Q, o) s’arrete
avant 7V le temps de sortie de U pour Q, on a 1g,(s)>0 = 1 quel que soit v € V
et s < 7Y car U C (0,+00)". Par définition de F,, en intégrant sur une trajectoire,
on obtient

(K@wu&%ﬂmwﬁzZAX%@—WW%ZWﬁ@@NS@
veV

- Z/o L?(S) [F,(Q(s), -)] (o(s))ds.

veV
Pour prouver Théoreme 0.1, on bornera chaque
t t
[;@NQ—Wm”wUZU)HQ@DMZﬂALm”@d@@%ﬁﬂ%@ﬂd@ﬁs

individuellement pour une fonction générique f dans le Lemme 3.3 en utilisant la
méme décomposition et sommant sur v. L’équation de Poisson nous donne une
maniére alternative d’écrire o, — 7?(0, = 1). En utilisant (8) et Proposition 0.1, on
obtient I’ équation (3.5) réécrite ici:

Aﬁwwmmwnmmw=mwwaw—a@@mmn

%mw—/x@mmmmw@m.®

0

C’est avec cette expression qu’on prouvera le Lemme 3.3 dans la section 3.2.1.

0.3.0.3 Lemmes cruciaux

On explique maintenant avec plus de détails les deux étapes de la preuve du
Théoréme 3.1. On commence par définir les quantités

Q= sup |¢g(q, )|, et B:=  sup max |og(gte’,0) — d4(q,0)].
6l lglo<t > 4€U, |lgll <1 VEV:TES(G) !

Pour cette section, on considére v € V fixé. On rapelle que 7V est le temps de
sortie de U Pour ) et C une constante numérique pouvant dépendre de certains
parametres dont la valeur exacte n’a pas d’importance. La premiére étape menée
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dans la section 3.2.1 est de prouver le lemme suivant:

Lemme 0.9
Quels que soient v € V', horizon fini T >0 et f: U — Ry différentiable, on a

|

< CQ|fl oy +CVT [nfnoo,U (24 B(1+VT)) 4+ max [Dugll e o A1+ VT)|

E sup

0<t<TAFY

[ (o006) - 7200 = 1) s @G as

La preuve découle de (9): on obtient

/0 (70(5) = 720, = 1)) J (Q(s)) ds = [F(Q(1), ™ (1)) ~ F(Q(0), 7(0))]~ M (1)

- / L7 [F(Q(s), )] (o(s))ds.  (10)

0

avec F(q,0) = ¢y(q,0)f(q). Pour les termes en F,

1F (g, )| < || flloc, v (11)

En utilisant le fait que

LIf(g) = > [ (Fla+€”) = £(q) + owlg,>o0 (flg— €)= f(a)],

weV

pour le termes en LI[F] , on utilise le fait que

Fla+e®,0) = F(g,0)] < max [0 flc.s @+ |l B, (12)

car f(gxe”)— f(q) = fol Ow f(q £ ue*)du pour obtenir le résultat.

Le terme de martingale est controlé de maniére similaire en utilisant le carré du
champs du générateur de (Q, o), I'inégalité de Doob et I'isométrie d’1to.

On présente maintenant les bornes obtenues dans la section 3.2.2 pour la deux-
iéme étape de la preuve: elles sont regroupées dans le Lemme 3.6 et retranscrite
ici:

Lemme 0.10
Soient g € NV et v € V. On défini

() = (~ log(n?(0)))*/> L

Iz
“ Q(q) Q(q)?
q q
B =
S
Alors,

199(q, )l < Cllgll 2(q) et e |pg(q £€”,0) — dg(q,0)| < Cllgll Bu(q)-
(13)
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De plus,

supQ(q) < Qo et sup B,(q) < Bo. (14)
qeU qeUveV

La borne entre Qg et ||¢,4|| est un résultat usuel sur les solutions d’équations
de Poissons et découle de I'expression explicite du cas général

bg(x) = — /OOO (m¢[g] — mlg]) dt.

La borne entre la dérivé discrete de ¢4 et B résulte d’une identification entre ¢4 (q+
e”,-) — ¢g4(q,-) et la solution d’une autre équation de Poisson.

Plus précisément, on pose
H(q,0) = Li[¢g(q —€",") — d4(q,")](0),
et on obtient que ¢4(q — e”,-) — Pq4(g, -) est la solution de 1’équation de Poisson
L{l¢] = H(g, ).

Le Théoreme 0.1 est une conséquence directe de ces deux résultats.

0.3.0.4 Renormalisation

En dehors d’un processus renormalisé, ce résultat n’est pas extremement efficace.
On lappliquera au processus (@, o) renormalisé en temps et en espace de la maniére
suivante:

et

o (t) = o(N%),
avec 0 € {1,1 + a}. Cette étude est menée dans la Section 3.3 du manuscrit, se
rapporter a cette section pour plus de détails. Le cas 6 = 1 donne une approximation
a la loi des grands nombre et le cas § = 1 + a apparait naturellement dans le as
d’un graphe complet en charge lourde. On donne une définition des générateurs
renormalisés: pour(q,o) € %]NV x S(Q),

oalfl)) =5 A (£ (a4 5) = 1) +outasa (£ (0= 5 ) - 100)).

veV

Le générateur du processus rapide devient (q,0) € %]NV x S(Q),

L{ y[h)(0) = N~ 0,¥_(Ngy) (h(o — ") = h(0))
veV

+ N [T 0w = 00) ¥4 (Naw) (h(o +€*) = h(0)),

veV w~v
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et le générateur homogénéisé:

Lun[fl(q) = N’ Z |:)\v (f (CH— j:;) - f(CI)> +7No, = 1)1,4,50 (f (q— j\j) —f(q))} )

veV

Ainsi, on considére

0 yev
N v
[ X (o) =790, = 1) (9 (@¥0) - ) ~ 9@ (D)) as
0 veV
N
- [ (59 - n) @) (15)
avec g™ (¢q) = g(7). En utilisant le Théoréme 0.1 et (15), on obtient Le corollaire
3.7:

Corollaire 0.11
On suppose que QN (0) — ¢° € (C_,C1)Y, soit g : RY — R deux fois différentiable.
On suppose qu’il existe B et C € (0,+00) tels que quel que soient ¢ € U et N > 1,

(N> C|Ng+ 1277 .

Alors, quel que soient @ > 0 et N assez grand,

E| sup

< OT max ||0,g]| o NOTeEA=D=210g(N)3
t<TATY v ’

/Ot (L;]L(S) - LhJV) (9)(Q" (s))ds

2 0+af—2 3/2
+OT max [|85.,9] ., N7 log(N)
+ CVT max 1009l o017 Nz tas-1 log(N)3/2,

Pour un graphe d’interférence complet et § = 1+ a, on obtient

E | sup

t<TATU

/Ot (L‘;IIVV(S) — Lh,N) (9)(QN (s))ds

2 2a-1 3/2
+CTUI7?U%)%/”8”’1”9HOO,UN " log(N)*/=.

< CTmax [|0,9]l o 17 N2 log(N)?

La deuxieme partie du résultat sur le graphe complet nécessite un examen plus

minutieux de .
E [/ aév(t)dt} ~ N~
0
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0.4 Limites fluides

Dans cette partie, on présente les résultats du Chapitre 4. Dans ce chapitre, on
présente deux résultats de limites fluides pour l'algorithme QB-CSMA présenté
plus haut. Le premier résultat partant d’une condition initiale positive, stoppé au
moment ou une des file touche 0 est une application directe des résultats du chapitre
précédent. Le deuxieme résultat s’affranchi de certaines hypotheses réstrictive mais
n’est valable que dans le cas d’'un graphe d’interférence complet. L’étude complete
de ce cas donne des indications sur les obstacles a franchir pour le cas général. La
principale difficulté de ce chapitre consiste en gerer les reflections en zero. Cette
étude relativement technique est résumé dans le Lemme 4.14 et la preuve formelle
est donnée en Appendice B. Le processus d’interet dans ce chapitre est
QNt)

QN (1) = =5 oM (1) = o(NY).

On commencera par identifier et analyser le processus limite puis on présentera les
résultats principaux du Chapitre 4. On présentera finalement des éléments pour
prouver ces résultats.

0.4.0.1 Processus limite

La premiere partie de ce chapitre consiste en une étude de 'EDO limite dans les
deux cas d’étude dans les Sections 4.2.1 et 4.2.2. On résume ici les résultats de ces
sections (Lemmes 4.1, 4.3 et 4.4). On reprend la définition de ’équation différentielle

limite donnée en (4.2):
{ fr=9(f) ) (16)

f(0)=4°
avec
g:(0,+00)V = [-1,1]V (17)
q — A =74
Lemme 0.12 o Graphe d’interférence général: Si ¢° € (0,+00)V, il existe une
unique solution a (16) définie jusqu’au moment ot une coordonée touche 0.
On la nome q*(-,q°) et on note Tux(q°) la borne superieur de son support.

e Graphe d’interférence complet: si ¢° € [0,+00)V, il existe une fonction q*
telle que (16) est vérifiée pour tout t tel que ¢*(t) # 0 et de plus s1(q*(t)) =
max(s1(¢°) + (s1(\) — 1)¢,0). En excluant le temps 0, toutes les coordonées
touchent zero au méme moment.

L’ennoncé dans le cas du graphe comlet peut étre lourd mais il veut fondamen-
talement dire quelque chose de simple: si s1(\) < 1 et ¢*(t) = 0, alors quel que soit
s 20, ¢*(t + s) = 0, autrement dit le processus est absorbé en zero. Dans le cas
contraire, si s1(\) > 1 ou ¢° # 0 toutes les coordonées deviennent positives quel que
soit t > 0 assez petit. Si s1(A) < 1, quelle que soit la condition initiale, le processus
limite approche zero en temps fini. Tous les ¢ restent positifs jusqu’au moment ou
q*(t) = 0. La premiere partie du résultat est une application directe du Théoréme
de Cauchy-Lipschitz et du résultat d’homogénéisation du chapitre précédent. La
question est plus délicate dans le deuxiéme cas & cause des conditions initiales pos-
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siblement nulles et de I’horizon arbitraire. Les preuves de ces résultats ainsi que
d’autre lemmes préliminaires sont fournies dans la Section 4.3.

Pour faciliter l'exposition, on étend ¢* sur [0,+00) en disant que ¢* aréte
d’évoluer aprés Ty (q°):

q* (Text(qo) + 5) = q*(Text(qO))VS 2 0.

0.4.0.2 Résultat principaux

Maintenant que l'on a définit ¢*, on peut énoncer les théoremes principaux de ce
chapitre: les Théoremes 4.5 et 4.6. Soit G le graphe d’interférence fixé. Avec un
leger abus de notation, on note 8 une constante telle que

0> Cllg+ 1)

Techniquement 5 depend de GG mais comme on ne distingue que le cas général et le
graphe complet (ot 8 = 1) on omet cette dépendence.

Théoréme 0.2

On suppose que les hypothéses suivantes sont vérifiées:

e a >0 esttel que 2a8 <1 ;

e QN (0) — q° pour un ¢° € (0, +00)V.
Alors QN (-) L q*(+,q°) as N — +oo uniformément sur les ensembles compacts de
[OvTezt(qo))'

Théoréme 0.3
Soient ¢° € [0,4+00)" et X € RK fixés. On suppose que les hypothéses suivantes
sont vérifiées:

e QN (0) — ¢° quand N — +oo,
o (G est un graphe d’interférence complet,

o a<

=

P . , .
Alors QN = ¢* uniformément sur les intervals de temps compacts avec q* charac-
térisée comme dans le Lemme 0.12.

On note encore une fois la différence entre ces deux résultats: le premier requiert
une condition initiale positive et est valable pour le processus stoppé au moment ot
une des coordonées asymptotique touche zero mais n’a pas d’hypothese sur le graphe
d’interférence (seulement sur a). Le deuxiéme est valable pour n’importe quelle con-
dition initiale et horizon de temps mais uniquement pour un graphe d’interférence
complet.
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0.4.0.3 Elements de preuve

Dans les deux cas, la preuve est entreprise avec un argument de localisation expliqué
plus en détails dans le chapitre suivant. Pour résumer, la convergence est prouvée
pour n’importe quel horizon de temps finis pour un processus stoppé au temps ou
il s’echappe d’un tube autour du processus limite. Cela implique que Q" ne peut
jamais s’echaper d’un tube autour du processus limite. On renvoie vers la Section
4.3.1 pour plus de détails. L’idée générale de la preuve est de partir de I’équation

Ny _ x4y — ON() _ o* —tass— Loay(s)°
R R R A O e e

o)+ / <q<q(<)>> - sﬁg%)) ds / (+" O 0) — ol (s)) ds.

Il s’agit ensuite d’utiliser un résultat d’homogénéisation pour que le deuxieme terme
disparaisse et de réarranger le premier terme pour utiliser le Lemme de Gronwall.

ds + MN(t)

Un autre élément commun au deux cas est la relative compacité de QW et le
fait que n’importe quel point d’adhérence est une fonction continue. Ceci est la
conséquence d’'un critere usuel et la preuve est donnée dans la Section 4.3.

0.4.0.4 Cas général

La preuve dans le cas général est une application directe du Corollaire 0.11 et de
I'argument de localisation. La preuve repose sur le fait que g est localement Lips-
chitz et le Lemme de Gronwall ([EK86] Appendix 5) pour prouver que la différence
entre le processus des files d’attente et le processus limite ne peut pas croitre signi-
ficativement. La théoréme 0.11 donne

¢
E [/ (erQN(s)(v) — ijv(s)) ds} — 0 quand N — +o00,
0

et g est lipschitz en dehors de 0. Cela nous permet de prouver la convergence avant
qu’une des files touche zero en utilisant le fait que la limite doit étre continue. Voir
Section 4.4 pour plus de détails.

0.4.0.5 Graphe complet

La preuve dans le cas du graphe complet repose en partie sur les résultats du
cas général mais doit en plus fournir un équivalent du Lemme 0.12 pour le pro-
cessus de file d’attente. Plus particuliérement, il convient de fournir une preuve
de labsorbtion en 0 du processus de file d’attente (donné a la fin de la preuve du
Théoréme 4.6) et le Lemme 4.14 justifiant I'utilisation du résultat d’homogénéisation.
On le redonne ici

Lemme 0.13
Siq® #0 or Y vev M > 1, alors quel que soit € > 0 assez petit, il existe t. > 0, tel
que

P o (TE(QN) >t) =0 as N — +oo.
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De plus, t. — 0 as e — 0.

L’idée derriere ce lemme est qu'une file peu remplie par rapport au nombre total
de requéte dans le réseau va en moyenne croitre entre deux activations d’un nceud
déja grand car ce noeud reste actif longtemps par rapport au temps d’activation de
la file moins remplie. Pour un nombre adéquat d’activation d’une file “remplie” les
files “vide” vont avoir crii presque stirement et le nombre total de requéte ne va pas
avoir eu le temps de tomber a zero. Le processus limite étant tendu avec un unique
points adhérents, cela est suffisant pour prouver la convergence uniforme partant
d’une condition initiale dans [0; +00)"". Voir Appendices B pour plus de détails sur
la preuve du Lemme 0.13 et Section 4.5 pour la preuve du cas graphe complet.

0.5 Charge lourde

Le dernier résultat présenté dans cette thése concerne le comportement de QB-
CSMA en charge lourde avec un graphe d’interférence complet. Le résultat est
développé dans le Chapitre 5 est se distingue des résulats de charge lourde usuels
de deux maniére: la renormalisation n’est pas N?/N avec une renormalisation en
temps le carré de la renormalisation en espace mais N'*%/N avec a € (0,1/2)
parametre de QB-CSMA et la limite est déterministe. Dans ce chapitre, le processus
d’interet est Nitap

@ (1), 0" )0 = (2D
Cette distinction rend le résultat plus interessant, d’autant plus que la source de ce
comportement inhabituel est identifié: il s’agit de la fraction du temps d’inactivité
dans le réseau, inhérente au partage distribué de la ressource. L’ordre de grandeur
de cette quantité fait que I’echelle de temps a laquelle le nombre total de requéte dans
le réseau évolue est N1 et le fait que 1+a < 2 implique que les processus de Poisson
n’ont pas le temps de s’éloigner de maniere significative de leurs interpolations
linéaire. Cette derniére observation suggere une limite deterministe sans la garantir
mais le résultat d’homogénéisation du Chapitre 3 permet de négliger les fluctuations
diies a I'ordonnanceur.

y U(N1+at))t>0.

0.5.0.1 Intuition effondrement de ’espace d’état

A cause du graphe d’interférence complet, au plus une file peut étre active a un
moment donné dans le temps. Si s1(A) < 1, on peut trouver un algorithme stabil-
isant le processus des files d’attentes. Si s1(A) > 1, on peut borner le nombre total
de paquets dans le réseau par une M/M/1 transiente. Il reste le cas critique quand
s1(A\) = 1. Pour mieux comprendre pourquoi le processus des files d’attente subit
un effondrement de 1’espace d’état, on peut regarder ¢* la solution de 'EDO de la



0.5. CHARGE LOURDE xxiii

section précédente. Soit

I= {xEIRX: Yo eV, A, =7"(v)} (18)
= {x eRY: Aoz, = A %y, v,w e V}
1/a
={zeRY iz, =" —s1(z), veV .
{ + Sl/a(/\) 1( ) }

Si ¢° € I, par définition de ¢*, ¢*(t) = ¢° quel que soit ¢ > 0. Si ¢° ¢ I, la distance
entre ¢* et I décroit exponentiellement. Soit
Av
ma(v) )

On remarque que d*°(q) = 0 si et seulement si ¢ € I, et d*°(¢q) > 0 donc d*° peut
étre vu comme une pseudo-distane & I. On présente maintenant la Proposition 5.1:

d®(q) = dgr, (A, 71) = Y Ay log (

veV

Proposition 0.14
Quel que soit ¢° € RY \ {0}, sis1(X\) =1 et G est un graphe d’interférence complet,

C'a

Et)

(d* o q*)(t) < d*®(¢")(0) exp(—

La preuve utilise la définition de ¢*, les dérivées en g de d*° et des relations entre
[|]l, et d>°. ce résultat nous dit que dans le cas critique, quel que soit ¢° € [0, +00)",
I'equation aux dérivées partielles de ¢* du chapitre précédent a un unique point fixe
attractif: 'élément g de I tel que s1(¢°) = s1(q). Ces points vont servir de conditions
initiales aux processus d’interet pour cette section mais cette hypothése peut étre
relachée grace au Lemme (.13 et Proposition 0.14. Voir Section 1.3.3 pour une
discussion plus fournie et des références sur I'effondrement d’espace d’état. Pour ce
model, la discussion dans la Section 5.1.1 apporte plus de détails.

On présente également ici les discussions developées dans les Sections 5.1.2; 5.1.3
et 5.1.4, voir ces sections pour plus de details de références. La fraction du temps que
passe le serveur a étre inactif ne peut pas étre évité en conservant un algorithme dis-
tribué. En effet, en se reposant sur I’écoute du canal pour autoriser des activations,
il va forcément y avoir une periode d’inactivité entre les activations de deux noeuds.
La durée de ces periodes d’inactivité en fonction de la taille des files enttraine une
renormalisation différente de celle utilisé habituellement en charge lourde: on re-
garde lechelle de temps N/N'*¢ au lieu de N/N? ol la renormalisation en temps
est le carré de celle en espace. Une métrique de performance impactée par cette
inactivité est le délai en charge lourde. Le fait que 1+a < 2 implique que les proces-
sus de Poisson pour les départs et arrivés n’ont pas le temps de s’éloigner de leurs
interpolations linéaires pour la topologie uniforme. Les seules sources d’aléatoires
sont donc les fluctuations de taux de services diies a 'ordonnanceur. On montrera
grace au résultat d’homogénéisation que ces fluctuations sont négligeables asymp-
totiquement et la limite est déterministe.

On suppose qu’il existe une suite pV telle que

i(AU—A{Y) = Yo
PN
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avec les mémes méthodes que celles présentées dans ce chapitre, on peut prouver que
la renormalisation “correcte” est (p™)1/e/(pN)1+1/e ie. on prend N = (pN)~1/e,
On peut comparer a Max-Weights avec une renomalisation de la taille des files en
(o)1 ou les résultats de [SBB14] qui prouvent une renormalisation en (p?V)~2
dans un cas d’étude de QB-CSMA différent. Cependant, les auteurs argumentent
sur le fait que le délai ne peut pas descendre sous la barre des (p™)~2 & cause de la
fraction du temps ou aucune file n’est active. Ceci suggere que la condition a < 1/2
est optimale pour optenir I’homogénéisation avec une renormalisation charge lourde.
On aurait sinon Q(N'*%t) =~ (p™)~1/* avec a > 1/2.

0.5.0.2 Résultat principal

Le résultat principal de ce chapitre est le Théoreme 5.4:

Théoréme 0.4

On suppose que les trois assertions suivantes sont vraies:

o a<1/2;
e s1(\)=1;

e QN (0) — q° pour ¢° € T\ {0}.

Alors QN LA q uniformément sur les intervales de temps compact, ot q est unique-
ment définie par: q(t) € I quelque soitt > 0 et s10q et l'unique solution de ’EDO
& = pa=" avec condition initiale x(0) = s1(¢q") avec p = s1,4(N)*.

Le processus limite ¢ a une expression explicite: quel que soient v € V et t > 0,

1/a
v

1/(a+1)
Sl/a(A) -

3o(t) = (u(a+ 1)t +s1(¢%)*H1)
Remark 0.15

Ce résultat peut étre généralisé au cas presque critique avec les mémes arguments
techniques. Cela donne lieu a une discussion interessante sur la relation entre la
distance au bord de la Tégion de stabilité et l'ordre de grandeur de la taille des files
mais cette étude n’est pas incluse dans le manuscrit. Voir [Cas+20] pour une étude
du cas présque critique.

On entreprend ’étude du processus de files d’attente en le stoppant quand il
quitte un “tube” autour du processus limite. Cela nous permet de borner les files
d’attentes et les borner loins de zero. On introduit

2 1 1
= 28(T), —— = = min A/,
Cy max( S( )’S(O)’2> et C Coaile ml}n)\”

On définit aussi

TV = 75 (QV,q) = int {t >0: (@Y () —a@)|, > C;}’
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et le sous ensemble de IRK denommé U:

1
U= {qER N < s1(q) < Cy et minqi>C’_},

et le temps de sortie de U pour Q*V:
Vi=inf{t>0:Q"(t) ¢ U}.

Les constantes C_ et Cy sont définies de telle sorte que le lemme suivant est vrais.
Voir Section 5.3.2 pour plus de détails.

Lemme 0.16
Presque sirement, TN < 7Y. En particulier, QN (t NTN) € U quel que soit t > 0.

0.5.0.3 Heuristique et effondrement de ’espace d’état

L’idée pour la preuve du résultat de ce chapitre est de considerer 1’évolution du
nombre total de requéte dans le réseau. Cette évolution est donnée dans 1’ équation
(5.6):

s1(QY (1)) — (1) = 51(Q™(0)) - S(0) +/0 (N“Uév - S(Z)J ds
+Z/ s)lgn (s—ods + M (t). (19)

veV

Pour mieux comprendre I’effondrement de ’espace d’état, il convient d’enlever
et ajouter le terme homogénéisé:

t " 1
s1QY(1) = 5(t) = 51(QY(0) — 5(0) + / (N % - N“+sa(QN(S))> &

|, (rramy stm) e+ B, At i)
(20

Le terme avec 1o (5)=o disparait quand on stoppe le processus avant 7Y, Chacun
des termes entre parentheses est géré séparément. Le premier terme est I'erreur
d’homogénéisation pour le temps d’inactivité. Cette quantité est asymptotique-
ment négligable grace aux résultats du Chapitre 3 (Théoreme 3.1/0.1). Grace a
I'effondrement de l’espace d’état, on peut réécrire le deuxiéme terme comme une
fonction de |S(s) — 51(QN(s))|. L’inégalité de Gronwall nous permet ensuite de
prouver la convergence de s;(Q") vers S. On expose ici les résultats principaux
pour la preuve du Théoréme 5.4, voir Section 5.3.4 pour plus de détails.

Premiere étape: Homogénéisation

Proposition 0.17
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Soit f : U — R deux fois différentiable et soit T > 1. Alors

! o (s) N a—% 3/2
E | sup / (LS7N — Lh,N> (9)(Q™ (s))ds|| < Cmax [|0vg| ., N2 log(V)
t<TATY |Jo v
2 2a—1 3/2
—l—CUr’?U%)%/Hav,ngOO}UN log(N)~/<.
Proof. ce résultat est une répétition du Corollaire 3.7. O

Deuxiéme étape: Effondrement de 1’espace d’état

En utilisant le résultat d’homogénéisation, on prouve le résultat suivant:

Proposition 0.18
Quand N — oo,

E

sup dOO(QN(s))] — 0.
0StSTATN

La preuve se fait en deux étapes: On controle d’abord I'action du générateur
homogénéisé sur d* puis on utilise ce résultat pour controler d>® o QV grace au
résultat précédent. Ce résultat est prouvé dans la Section 5.4, la preuve repose sur
léquation (5.4):

QN (1) = d=(Q (0) + / LN @)@ (s))ds

0

+ / (LY — I [d®)(QV (5), 0™ (5))ds + ML (1), (21)

Troisiéme étape: Preuve principale Pour conclure cette preuve, on utilise I’équation
(5.6)/(19) et le fait que grace a 'inégalité de Pinsker

g% — \usa(9)?]* < Cd™®(q)

pour obtenir dans un premier temps la convergence de s;(Q%) puis obtenir la con-
vergence des files individuelles car I est 1-dimensionelle. Cette preuve est menée
dans la Section 5.5.2

0.6 Conclusion, perspectives de recherche

Dans la conclusion de ce manuscrit, on présente plusieurs pistes pour des recherches
futures. Ces pistes de recherches peuvent étre organisé en 3 axes principaux:
généralisation des résultats de limite fluide, généralisation des résultats de charge
lourde et généralisation des résultats d’homogénéisations.
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0.6.0.1 Généralisation des résultats de limites fluide

On identifie deux approches pour généraliser le résultat de limites fluides: on peut
exhiber une classe de graphe G ayant la propriété suivante, analogue du Lemme
0.13 pour le processus limite. On note 70 = 7(R+)",

Définition 0.19
Soit G l’ensemble des graphes d’interférences tel que quels que soient G € G , et
q°, ) € (0,+00)V,

(4% (4°) = (51 2 ¢“(-,¢"))-

Une fois G identifié, il suffit de justifier du comportement des files proche de 0
pour prouver le résultat suivant:

Conjecture 0.20
Soient ¢° € (0,+00)¥, A € RY. On suppose que

e la condition initiale QN (0) converge vers ¢° as N — +o0,
e Geg,

e ct le trou spectral est tel que 2a3(G) < 1.

Alors Q)
)P G 0
N 4 )

uniformément sur les compacts N — +o0, avec ¢ solution de (16).

Pour prouver cette conjecture, il conviendrait de prouver que si A € (14+€)A*(5),
le processus de file d’attente ne touche jamais 0 et qu’il est absorbé par cet état en
temps fini des que A € (1 — €)A*(S). On pourrait également inclure des conditions
initiales nulles avec un équivalent du Lemme 4.14 (Lemme 0.13) pour un graphe
d’interférence non complet. Lemme 4.4 (deuxiéme énoncé du Lemme 0.12) nous dit
que G contient le graphe d’interférence complet quel que soit le nombre de noeuds.
Dans certain graphes, la propriété

2(q%(,¢°)) = (5104 (-, ¢"))

peut dépendre des taux d’arrivé ou de 1’état initial. Par exemple, pour 4 nceuds
sur un carré. on peut activer simultanément deux coins oposé du carré mais pas
deux consécutifs. Les files 1 et 3 ont le méme taux de service au premier ordre. Si
@) = g3 et A\; < A3 ou A\ & A3 et g) > ¢?, il est raisonnable de s’attendre & voir la
file 1 toucher zero avant la file 3.

Pour cette raison on pourrai s’interesser au résultat d’homogénéisation lors
ce qu'une des files touche zero. Les résultats des Chapitres 4 et 5 peuvent étre
légerement amélioré: on explique dans la Remarque 4.8 que l'on peut obtenir
un résultat d’homogénéisation jusqu’au moment on Q(Nt) devient plus petit que
Nmax(aB+1/2.38) e résulat nlest pas suffisant pour résoudre des cas simples
comme celui présenté dans la Section 4.2.4 ou la somme des exposants doit étre
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O, ®

Figure 1: Graphe carré avec 4 noeuds Figure 6.1

1. 1l peut étre interessant d’améliorer ce résultat pour inclure des situations ou
certaines files sont peu remplies. Ces situations apparraissent naturellement quand
les noeds appartiennent a des ensembles stables maximaux de taille différentes.

0.6.0.2 Généralisation du résultat en charge lourde

On peut améliorer le Théoreme 0.4 pour avoir une limite dans le cas presque critique
plus habituel en charge lourde: on consideére des taux d’arrivé AV tels que il existe
A € OA*(S) ou 0 donne le bord de 'ensemble A*(.S). Plus précisément, on suppose
qu'il existe une suite p"V telle que
1 N

— ()\1, — A, ) — Y.

PN
En fonction du rapport entre pY et N trois comportements peuvent étre observé,
I'étude est menée dans [Cas+20]. Quand pV ~ N~% la dynamique limite a un
unique point stable g € ]RK. Ce point est de plus attractif. Si QN (0) — ¢, le
processus limite est constant et cela suggere de regarder a une echelle de temps plus
rapide comme pour le théoreme de la limite centrale. Dans le cas du graphe complet,
il semble que l'echelle de temps suivante est N2/N ot on devrait commencer a
observer des deviations entre les processus de Poisson et leurs interpolations linéaire.
Notre résultat d’homogénéisation ne peut pas directement s’appliquer dans ce cas
on s’attend au résultat suivant:

Conjecture 0.21
On suppose que Q™ (0) — @, G est un graphe d’interférence complet et a < 1/2.

Alors QN converge vers un processus gaussien avec une dérive et une variance
qui dépendent de [’état du processus limite.

Voir section 6.2.2 pour plus de détails.
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0.6.0.3 Résultat d’homogénéisation

On peut reformuler les résultats du Chapitre 3 pour avoir un résultat dans un cardre
plus général: soit L le générateur d’un processus de Markov irréductible tel que quel
que soit ¢ € NV et o € S° avec S finie,

LIf)(g,0) = L[f(q,))(o) + LILf (-, 0)](a)-

On suppose que quel que soit ¢ € INV, L{ a une unique mesure de probabilité
invariante 77 . On peut reformuler Théoréme 0.1 a 'aides des quantités suivantes:

e La constante de Log-sobolev de L{:
al,
e La dérivé en ¢ des taux de saut pour o:

— q Y.
) = 3 L)

e et les dérivé en ¢ de la mesure invariante de L{

dr(q) = max  Oym’(c).

Dans ce cadre légérement plus général, on obtient la borne suivante:

B [ (12 - 20120) @

2
+ Ctmax ||avg||oo,U ||aq||m,U ||leOO,U
veV
2
+ C\/iHOéquo,U (quleagi H5v9||oo,U + ﬂvf?uag‘i/ Hav,ngqu) :

Un objectif pour mes futures recherches seraient d’étudier d’autres modeles que
QB-CSMA ayant un phénomene d’homogénéisation et d’investiguer les interactions
avec d’autres spécificité du modele, par exemple a travers une étude des phénomeénes
de méta-stabilité ou de grande déviations. Voir Sections 6.3.1 et 6.3.2 pour plus de
détails.

< Ct Iglea‘;( ||8Ug||oo,U ||aq||oo,U Hdﬂ'Hoc,U






Chapter 1

Introduction

Contents
1.1 Generaldiscussion . . . . . v v v v v v v v vt 1
1.1.1  Motivation . . . . . . ... 1
1.1.2  Wireless networks modeling . . . . . ... .. ... ... ... 2
1.2 Main algorithms . . ... ... ... ... 0000000 4
1.2.1 Max-Weight . . . . . . ... oo 5
1.2.2  Greedy maximal scheduling, Longest Queue First . . . . . . . 6
1.2.3 CSMA-type algorithm . . . . ... ... ... ... ..... 7
1.24 Polling . . . . ... . e 12
1.2.5 Load balancing algorithms . . . . . .. .. .. ... ... ... 12
1.3 Homogenization and State Space Collapse . ... ... .. 13
1.3.1 Stochastic Averaging . . . . . . . . ... ... 13
1.3.2 Poisson equation and Stein’s method . . . . . . ... ... .. 17
1.3.3 State Space Collapse, Skorokhod problem . . . ... ... .. 19
1.4 Functional limit theorems . ... ... ... ......... 20
1.4.1 Fluid limits . . . . . .. .0 o 22
1.4.2 Heavy traffic . . . ... ... ... .. .. 24

1.1 General discussion

1.1.1 Motivation

People and object tend to be more and more connected through wireless communi-
cations. The huge amount of data exchanged on wireless networks requires faster,
more reliable and more flexible communication schemes. Users of a wireless network
share the air as common resource for communications, which creates some difficul-
ties. If users that are close geographically try to access the wireless network on the
same bandwidth, their request will get mixed and interference will occur. From
applications in peer to peer networks and Wi-Fi access to call centers, this type of
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resource sharing problem has been a central part of research in applied probability
for at least 50 years.

In a broad sense, many questions associated with communication algorithm can
be stated as “How to allocate the shared communication resource?”, “How to mea-
sure efficiency in communication networks?”, “Is this algorithm efficient /optimal (in
what sense?)?”, “How does it behave under such conditions?”, and so on. Queuing
theory provides a methodological framework to be able to deal with this kind of
questions. For instance establishing theoretical guaranty for duly defined perfor-
mance metrics of communication schemes or model and simulate the behavior of a
real communication network. Users of a real network are modeled as queues with
incoming jobs. Each queue has buffer area to store incoming jobs before being able
to serve them. From a terminology standpoint, queues will be refered to as nodes,
users or server depending on the context. Similarly, jobs will also be refered to as
request.

Having a central authority making decisions taking into account the state for the
whole network can usually lead to more efficient decisions and good performance
if the information is used to its full extent. However, having a central authority
allocating the resource also induces some drawbacks. An attack on a central au-
thority could cause a major breakdown of the system and gathering information
about the whole network can be challenging. Nodes like smartphones are required
to seamlessly enter or exit the network which makes gathering information both
time consuming because of the number of nodes and unreliable because of informa-
tion that may be incomplete or dated. On the opposite of a central authority, one
could prefer to let users take decisions based on their surroundings in the network.
In addition to the reasons provided previously, it seems more reasonable to rely
on individual users to gather information in their surroundings and make decisions
using this information but without any coordination, this could lead to greedy be-
havior by individual stations and inefficiency for everyone. From an individual point
of view, users want to be able to use as much of the resource possible to minimize
the amount of time they have to wait before completion of their jobs. However this
type of behavior penalizes other users because it limits their access to the resource.
This could prevent the resource to be efficiently distributed. A major question is
to find a fully distributed algorithm designed to efficiently and fairly share the re-
source between users. This type of distributed algorithm is more appropriated with
the constant changing nature of wireless networks and easier to scale as the size of
networks grows.

1.1.2 Wireless networks modeling

Markov processes provide a rigorous mathematical framework to study the per-
formance of different types of algorithms. In addition, queuing theory provides a
rigorous framework to study congestion phenomenon. A qualitative approach is to
consider the stability of the queuing process. Formally, a Markov process is said to
be stable if its distribution is tight. Stability of the queueing process gives a first
qualitative idea: the number of jobs waiting in the network is closely related to the
waiting time in equilibrium through Little’s Law, stating that the average number
of customers in a system is equal to the product of the average arrival rate A\ and
the average time spent in the system. Informaly, if the total number of jobs in the
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system diverges, so does the mean waiting time jobs in the system. See for instance
[LGO8] Chapter 12 Section 2. If it exists, the steady state average of the process of
queue lengths gives a good approximation of the queueing process when run for a
long time.

One major challenge in wireless communication is interference. There are two
main ways to mathematically model interference: Boolean interference graphs and
Signal to Interference + Noise Ratio (SINR).

Gilbert proposed a graph modeling for telephone central offices as an application
for his paper on random graphs in [Gil59]. Nodes of the network are offices and
links represent a communication route between offices. His result can be applied to
compute the probability of the existence of a route between each office and launched
the study of percolation in random graphs. A Boolean interference graph is a more
advanced interference situation. Consider a set of users with communication links
between them. A user can only communicate with one other user at any given
time. The line graph of the network is the graph whose edges are users of the
network and nodes are communication links between users. This line graph is
used as interference graph. Each station can be in contact with at most one other
station so the scheduling decision needs to be an independent set of the interference
graph or equivalently a matching of the network graph. Sampling independent sets/
matching is an integral part of randomized scheduling. This example comes from
peer-to-peer networks but the technique is not limited to it. The interference graph
is not necessarily the line graph of a network. As soon as there is some interference,
the messages concerned are lost and cannot be recovered by the recipient. This is
not the case for the SINR model.

The intuition behind SINR can be found in [Gil61] with the introduction of
stochastic geometry and percolation. The model studied in [Gil61] is constructed
with a Poisson process on a plane. Points of the Poisson process that are at a
distance less than R > 0 are joined by an edge. He studies the existence of an
infinite component and the probability of a typical node being in this component.
This model can be used for a communication network where stations can transmit
with a range R. SINR was formalized more recently in [DBT03] and [Dou+06]. See
[BB09] for an overview of the results on SINR models. With the SINR modeling,
each node has a signal strength attached and the quality of the signal degrades
over the distance it travels. When trying to transmit, each user emits its message
on the same channel. Depending on how close, neighboring users will also receive
the message as interference. If the ratio between the signal strength and the signal
and noise coming from all the other stations is above a threshold then the message
passes through. Otherwise, the destination is not able to decipher the message.
This modeling is more realistic and it is in fact a lot more complicated to study
than the previous one. In this manuscript we will only consider the interference
graph case.

Another distinction is also made between single-hop and multi-hop. In single-
hop once a request is treated by a server it leaves the system. In multi-hop, once
it is treated by a server it may need to jump a certain amount of time to other
servers. Similarly, all of those models can be discriminated with respect to the size
of their waiting area or the service policy at each queue. Each queue can have a
finite or infinite buffer for the number of requests that can be in standby waiting
to get service. The service policy gives the order in which jobs are processed in the
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waiting line of each queue.

In practice any distribution could be used for inter-arrival times and service
requirement. In this manuscript, we will only consider exponential interarrivals and
service times: the size of each job will be an exponential variable and the time
between new jobs arrival is exponential. With jobs of exponential distribution and
Poisson arrivals, the process of queue lengths is a finite dimensional Markov process.
If the job distribution is not exponential, it is still possible to define a Markov process
but this one will be measure valued (infinite dimensional, which is impractical to
study). We mention here the existence of multi-type networks where different types
of job may arrive in the network. Jobs of different types can have another size
distribution, mean, have to folow a specific route in the network, ... In some cases,
only the mean, variance and higher order moments of the job size distribution
influence performance metrics. Insensitivity in the job size distribution have been
introduced in [BP02] for a load balancing situation. Insensitivity results present a
particular interest for applications by allowing network designer to dimension their
networks without the need to know in advance the precise distribution of the lengths
of transmissions. We mention as well [Ven+10] for an example on CSMA networks.
They establish insensitivity of the stationary distribution in the distribution of job
size and back-off times. Insensitivity results are very important for applicability
because it removes the need for exponential job size to apply bounds proved on the
Markov process. The exponential case is usually easier to study than the general
case.

Servers can use different service disciplines governing the order in which they
process the request in their queue: priority, First Come First Serve (FCFS), proces-
sor sharing (PS) for instance. For FCFS jobs are served in the order of their arrival
at each queue. For PS the service capacity is evenly distributed all jobs. We also
mention Head of Line PS where each server with a non-empty queue gets an equal
fraction of the service capacity and servers process one job at a time in a FCFS
fashion. For the priority queue, for each server, establish a list of priority rank for
different type of jobs. Customer of a higher class will always get priority over lower
classes. If a job with a rank higher than the one currently being served, the lower
rank interrupts its service to let the high priority job be processed. Then the server
resumes the job where it was interrupted.

1.2 Main algorithms

In the context of queueing theory, the question “How to allocate the shared commu-
nication resource?” can be declined in multiple subjects of research. How to allocate
the resource can mean different things depending on the context. For instance, there
can be a fixed number of servers to allocate for a fixed number of queues sharing
the service capacity. This is called a polling system. A second resource sharing
model is to consider an interference graph. In this situation, the question becomes
for which queue do we allow transmission at any given time, knowing that activat-
ing one node prevents all neighbors from transmitting. This is called a scheduling
problem. Next we can also think about a centralized system with a fixed number
of queues where jobs arrive at a central dispatcher which is tasked with finding the
best possible route for each job. This is called a routing problem. An important
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example of scheduling problem is that of a switched network. A switched network
is an array of N x K queues. The scheduling constraint is that at most one queue
can be active on any column and any row of the matrix. This type of constaints
come from physical switches in telephone network.

To study the performance of those algorithms, a Markovian framework can be
useful by providing rigorous performance metrics. The question “How to measure
efficiency in communication networks?” can be specified further into qualitative
result and quantitative ones. Heuristically to measure performance, once could
for instance measure the time it takes for a new job entering the system to get
service. This is called delay. Delay can usually be related to the number of jobs
present at each of the queues. One possible qualitative performance metric is the
recurrence/transience of dynamics related. For instance if the queuing process is a
positive recurrent Markov process, the total number of jobs in the system remains in
a compact set of IN with high probability even for large times. From a quantitative
standpoint, since the process of queue lengths is Markov, if it is stable (otherwise
said positive recurrent), computing the steady state delay gives an indication on
the waiting time users experience at each queue when the network has already been
running a long time. Heavy traffic approximations can also be seen as a third strain
of performance results: they give an approximation of the process of queue lengths
when the network is on the verge of overloading.

1.2.1 Max-Weight

An important algorithm in the field of scheduling is the celebrated Max-Weight
algorithm from the seminal paper [TE92]. It was introduced for constrained queue-
ing network in a multi-hop multi-type setting. We explain the procedure here on
a simple scheduling example. We have V a finite set of queues and S be the set
of possible service decisions. Elements of S are seen as elements of V1%1} as con-
figurations of admissible service rates. Let Let f : IN — R, increasing, with some
additional technical assumptions not detailed here. The f-Max-Weight algorithms
is a discrete time algorithm that chooses a service decision o € S such that

o € argmax 3 puf(Qu(t)), (1.1)

Pe veV

where ties between service decisions of maximum weights being cut uniformly at ran-
dom. In general, solving this optimization problem is complex even approximately.
The appeal of this procedure is that it provides good performance in practice and
theoretical guaranty, the drawbacks are its centralized nature and computational
complexity. The stability region of Max-Weight can be defined as

Auw(S) ={Xe RY, (Q(t)):>0 with arrival rates \ is an ergodic Markov process} .

We call capacity region the set of \ € RK such that there exists p € Co(S), with
A < p component-wise and Co(S) the convex hull of S, with elements of S seen as
elements of RK. This capacity region is the largest possible stability region in the
sense that if A is not in this set, for any scheduling algorithm, the norm of process
of queue lengths diverges to infinity as t — +o00. Let

A*(S) =={X€[0,1)V | 3p € Co(S),\ < p component-wise }
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be the capacity region. For any A € A*(S), the authors of [TE92] proved that the
process of queue lengths is stable. For any A € A*, they presented a Lyapunov
function whose mean is decreasing over time, meaning that Ayw(S) = A*(S). An
algorithm with this stability region is said to be throughput optimal.

1.2.2 Greedy maximal scheduling, Longest Queue First

Instead of choosing independent sets with maximum weights, there are multiple
algorithms that schedule maximal independent sets. Maximal independent sets
are sets of nodes such that any added node makes the independent set condition
fail. This is much easier to implement and yields some decent performance. In
general this type of algorithm is still centralized but only requires solving a simple
optimization problem (comparing the size of two or more queues).

A natural algorithm to provide a simple approximation of Max-Weight is the
LQF (Longest Queue First) algorithm introduced in [McK95]. To find the schedule
selected by the algorithm schedule the queue with the longest backlog. Remove all
servers that interfere with the selected server and schedule again the server with
the longest backlog. Repeat the operation until the set of possible nodes to add is
empty. In [DWO06], Dimakis and Walrand provided some sufficient conditions for the
optimality of the stability region of this algorithm for general service distributions
using fluid limits as defined in Section 1.4.1. Their necessary condition involves
“complete local pooling”, a structural property of the interference graph. In fact,
the fraction of the optimal stability region achieved by LQF is equal to the local
pooling factor defined in [JLS09] and [LBX11]. For any subgraph G’ = (V', E’) of
G, let M(G’) be a 0 — 1 matrix with | V' | rows and whose columns are maximal
stable sets of G. The pooling factor of G’ is defined as

o%(G") = sup{c > 0| 3a € [0,1]V], ce < aM(G) < ¢}

with e the vector of size cardinality of the sets of stable sets of G with 1 for every
coordinate and « seen as a line vector. The local pooling factor of G is

o*(G) = min{c"(S), S subgraph of G}.

A dual representation for the definition of 0°(G’) is given by

max w
z,w>=0
subject to max (x,0) <1,
cindependent set of G’
min (z,0) 2w

oindependent set of G’

The local pooling factor essentially measures how evenly can the resource be dis-
tributed. For any scheduling policy, let v*(G) be defined as

¥*(G) == sup{vy| Queue lengths are stable for any A € yA*(G)}.

The result in [JLS09] states that for LQF, v*(G) = ¢*(G). Later, [Bir+12] provided
a simple characterization of network graphs such that 0*(G) = 1. This entails that
LQF is throughput optimal on those graphs. Essentially, the condition states that
if G contains at most one cycle of size 5 or 7, then LQF is throughput optimal.
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1.2.3 CSMA-type algorithm
1.2.3.1 Classical CSMA

The celebrated CSMA algorithm is a classical algorithm for scheduling queues in a
wireless network. Its implementation is simple and it has been extensively studied
in the literature. The acronym CSMA stands for Carrier-Sense-Multiple-Access.
This indicates that servers have a carrier sensing capability enabling them to listen
to the communication channel, sensing when an interfering user is occupying it,
and multiple access means that multiple servers may be active at the same time.
The carrier sensing ability enables the scheduler to completely avoid collision of
messages in the continuous time case. In discrete time, collisions can occur but
the only possibility is if two or more queues start transmiting at the same time.
Without this kind of assumptions, the performance of scheduling algorithms is quite
bad. In [Lie+09], the authors presented some Back-of-the-Envelope computation to
estimate the quality of approximation between the idealized mathematical model
and real wireless networks.

We mention for instance the ALOHA protocol [Abr70] where nodes enter a
back-off period refraining from transmiting after collisions. ALOHA only collects
information about collisions after they occur. With ALOHA, users try to use the
network whenever they want. If there is no collision, they are free to send the next
job whenever they want. If there is a collision, nodes are forced to enter a random
back-off period where they refrain from competition. For any positive arrival rates,
the queue lengths are not stable when operating ALOHA. Tt is possible to refine this
algorithm. For instance, the more collisions happen in a row, the longer the back-off
periods can become. This is a way to diminish the pressure on the channel when the
network is heavily loaded. In a landmark paper, Aldous proved in [Ald87] that even
with this refinement of the algorithm, its stability region is empty. Using the carrier
sensing ability provides a non-negligible advantage to CSMA-type algorithms.

For CSMA, the schedule follows a Markovian dynamic with rates independent
from the process of queue lengths. The schedule actually follows a single site update
dynamic for the hard-core model: the Glauber dynamic described below. Each node
v has a fixed “fugacity” v,. The term fugacity is borrowed from statictical physics
and can be seen as an activation rate. When a node is active, it will remain that
way for a duration that is exponential with parameter ﬁ When a server is
inactive, it checks if some of its neighbors are active with its carrier sensing ability.
If none of them are active, the server runs an exponential clock with parameter
to determine when to activate. When a neighbor of v becomes active, v’s

Vy
14vy
clock freezes and resumes when the channel is clear. All interfering queues compete

for activation. This is done to avoid any collision between messages. The long term
throughput at each node is given by the invariant measure of the dynamic of the
schedule: a Glauber dynamic on the stable sets of G ; each node updates its state
at a fix rate, conditioned in staying a stable set of the interference graph.

One of the feature that distinguishes CSMA-type algorithm from ALOHA is that
because of the carrier sensing ability, collisions can only happen if two competing
servers activate at the same time. For the continuous Markov chains, this does not
happen with probability 1. For discrete time, interference can only happen at the
start of an active period for a server.
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If the arrival rate are in the capacity region and known, it is possible to design
the fugacities such that the long term throughput of each queue is greater than the
average input and the process is stable. The long term throughput of the algorithm
is given by the invariant measure of the Glauber dynamics. This measure indicates
the fraction of the time each schedule is chosen. With a vector of fugacities v, the
invariant measure is given for any o € S(G) by

e (I autonn))

v o veV
m (O’) = v ’
with
VAR Z eXp(Z pvlog(vy)).
peS(G) veV

For the cross product of elements ¢, € R, we will use the notation

(0,q) = Z Ovquv-

veV

If A € (1 —¢€)A*(S(Q)), it is possible to find v such that m, (o, = 1) > A, for all
v € V by Proposition 1 of [JW10]. If the arrival rates are not known, designing
fugacities in advance to handle any configuration of arrival rates is not possible.
Assign weight log(v,) to node v for each v € V. As max, v,, — +00 this invariant
measure concentrates on independent sets of largest weights. Many algorithms
where the fugacities evolve over time have been designed since then in order to be
able to use this type of algorithm in situations where the arrival rates and/or the
interference graph is not known. The idea behind those is either to find fugacities
such that the throughput rate is greater than the input rate at every queue or to
approximate the service decisions of a known good algorithm such as Max-Weight.

In addition to their insensitivity result, the authors of [Ven+10] also prove con-
ditions on the arrival rates such that CSMA with given fixed activation rates is
stable. Their result is quite different from the usual question which is: with given
arrival rates, find activation rate such that the process of queue lengths is stable.
Their question is much more challenging as soon as the interference graph is not
complete.

1.2.3.2 Rate-based adaptive CSMA

One approach to provide for an “adaptive” CSMA is the rate based CSMA algorithm
introduced in [JW10]. The idea behind it is to update fugacities in the classical
CSMA algorithm so that the long term throughput matches the input rate. The
idea is to estimate the arrival rates on the fly. In the first article, they assume a
technical assumption, which is proven in the later technical report [Liu+08]. The
proof relies on the study of stochastic sub-gradient algorithms modulated by a
Markov chain. Essentially, the idea is to match the time average of the time spent
at each node with their arrival rates. The key is to gradually improve the invariant
measure of CSMA by running it with fixed parameter for some time, and then
update by solving an optimization problem with the empirical arrival rates during
that period. If the parameters of CSMA are changed slowly enough, the schedule
will reach equilibrium and the empirical arrival rates will be close to their mean
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before the next update happens.

If A € A*(G), for any o € S(G) there exists p, € (0,1) not necessarily unique
such that such that
Ay = Z DoOv-

ceS(G)

For any configuration of fugacities v, recall the long term fraction of the time
schedule o is chosen given in the previous discussion

vy _ exp({o,log(v)))
(o) = —

The goal of the algorithm is to maximize the “log-likelihood function”:

FoN = 3 o log(n(a)).

ceS(G)

If the function F(v,)) is maximized in Y, then )\, < 2 pes(@) po”’ (p) for all
v € V. They prove that this optimization problem has a solution with v* < 400
component-wise as soon as A € A*(G).

1.2.3.3 QB-CSMA

The next algorithm presented is the one that is studied throughout this manuscript:
Queue-Based CSMA (QB-CSMA). The general idea behind Queue-based CSMA is
similar to the classical CSMA: nodes decide in a distributed fashion who is permitted
to transmit. The main difference is that fugacities evolve over time and actually
depend on the number of jobs at each of the queue. In practice, this means that
the fugacities from classical CSMA become v,, — exp(f(gv)).

One of the key feature of QB-CSMA is that it is throughput optimal if f in-
creases slowly enough. To prove this result, the usual method is to establish a fully
coupled stochastic averaging principle where the schedule averages in such a way
that its service decisions are approximate solutions to the Max-Weight problem
(1.1). The literature on optimal CSMA algorithms is rich and the interested reader
is for instance referred to the thorough survey by Yun et al. [Yun+12] for more
details. In this manuscript we are interested in the class of QB-CSMA algorithms
initially proposed by Rajagopalan, Shah and Shin [RSS09]. The main idea of these
algorithms is to have activation deactivation rates ¥4 and ¥ being adapted as a
function of queue lengths. Rajagopalan, Shah and Shin study in particular the case

where
eWol(a)
v

_ v — 1 _ QY
V0 = Ty Ad VE(9) =1 - W),

with
W (q) = max(f(gv), h(f(max qu))), (1.2)

for some functions f and h. The main result of [GS10]; [RSS09]; [SS12] is that this
algorithm is throughput-optimal for any interference graph provided f increases
slowly enough, namely sub-polynomially. In essence, for any ¢ € INV, they use
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fugacities v,(q) = exp(W,(q)), which gives an invariant measure

exp((o, W(9)))

n1(g) = TRAT D),

with Z9 the normalizing constant. The main property of this probability measure
is proved in Lemma 2.19. It states that for any 0 < € < 1, there exists ¢* € Ry
such that for any ¢ € RY with max, ¢, > ¢*,

m[(, 1og(W(g)))] = (1 —¢) max, (p,log(W(q))) -

If the schedule at time ¢ is effectively distributed close to 7%(®), it can serve as an
approximation of the decisions of the Max-Weight algorithm for the weights log(W).
See Section 2.3.3 for a discussion about the function h and its role. In [SS12], the
authors proved a time scale separation for h(z) = v/x as long as for any ¢ € (0,1),

Jimexp(f(@)) /(£ (0 f(2))) = 0.

These algorithms also use some information on the current maximum queue length
and this can hurt the performance of the algorithm. Results of [GBW14] can use
h(z) = 0 and suggest that if f grows polynomially, then it is only throughput-
optimal for some interference graph, depending on the relation between the graph
topology and the exponent of the polynomial growth of f. Under the assumption
that the fluid limit (as defined in Section 1.4.1) converges and under a time scale
separation assumption, the authors of [GBW14] prove that QB-CSMA is throughput
optimal. A rigorous justification for their assumption is given in Chapter 4 on a
complete interference graph.

The intuition for seeking fast-increasing functions f is that the fraction of the
time no queue is active decreases faster with ||¢|| ., when f grows fast. More formally,
a folklore result has it that delay is improved with faster increasing functions f, an
intuition which is backed up by results in [BBL11]. They consider fixed arrival
rates A\, and service rates u,. The activation and deactivation rates may depend
on the state of the network. Let p and v be two vectors in IRK. The deactivation
rate of node v with queue size g, is given by ¢,(q,) = 1V, (¢,) and activation
rate f,(qu) = 1y ¥4 (gs). Let f~* and g~' be the inverse applications of f and g.
In essence, their result states that if the f, = f is a concave positive and strictly
increasing function and ¥V (q) = 1, for any clique N of G,

Ay
£ ZQU] > S g (AN )

vs L+ pn 1—pn

with Ay = >0 carAw and par = > o po With p, = % There is a symmetric

result if U4 (¢) = 1 and g, = g is a decreasing convex function:

> quu] > png <(1W)VN> 7

veN PN

E

with var = > ca Vo In some interference graphs, having an activation ratio in-
creasing too fast can be nocuous to performance: this is the center of the result
from [GBW14] stating that if the deactivation rate decreases too fast queues stay
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active until they are almost empty.

Polynomial activation and deactivation functions should therefore achieve the
optimal trade-off between throughput and delay for this class of algorithms, be-
cause it is not possible to achieve a time scale separation if the activation function
increase faster than polynomially, see Section 2.3.3 for a more detailed discussion
on the matter. Note that in the case of a complete interference graph as considered
here, the algorithm is throughput-optimal for any functions ¥, and ¥_ satisfying
U, (¢) > 1and ¥_(gq) — 0 as ¢ — oo, so that we need not worry about stability
issues for such polynomial activation and deactivation functions, as may be the case
in a more general setting.

1.2.3.4 Q-CSMA

One final refinement of CSMA mentionned here is the Q-CSMA introduced by J.
Ni, B. Tan and R. Srikant in [NTS09] more or less simultaneously to Rate based
and QB-CSMA. The idea for this algorithm is also to distributively approximate
the decisions of the Max-Weight algorithm by updating multiple nodes at a time
with probabilities that depend on their queue lengths. They provide a proof of
throughput optimality under a time scale separation assumption using the same
proof method and Lyapunov function as for Max-Weight. They also indicate a
proof method following the lines of Lemma 12 of [RSS08] to prove the time scale
separation assumption, similarly to [SS12]. This is done by a careful consideration
of the evolution speed of the target invariant measure and the mixing time of the
dynamic with fixed fugacities.

The procedure for Q-CSMA has multiple steps and multiple degrees of refine-
ment in terms of applicability. We present here the simplest version. The procedure
operates in discrete time.

e At the beginning of time slot &, select an independent set m”.

e For all v such that m* = 1, if no queue neighbor of v was active in the time
slot k — 1, set 0,(k) = 1 with probability p,(Q.,(k — 1)) and o, (k) = 0 with
probability 1 — p,(Q,(k — 1)). If node v has some neighbors that were active
in time slot k — 1, let o, (k) = 0.

e Nodes that were not present in m* do not change their status.

Servers that are active process jobs at unit rate. One of the drawbacks of this
method is the need to generate a new independent set m* at each time slot in order
to decide which node to update. This dynamic is a multi-site generalization of the
classical Glauber dynamics used for CSMA, with adaptative rates. They use the
same type of activation rates as CSMA but the fugacities actually depend on the
state of the network in a fashion similar to QB-CSMA. For activation and deacti-
vation rates, they use the same ¥, and ¥_ as QB-CSMA and result in the same
invariant measure. If the queue lengths were fixed, the multi-site dynamic reaches
equilibrium faster than the single site dynamic and most of what has been proved
for QB-CSMA could realistically be adapted for Q-CSMA. The need to generate
an additional independent set for the update decision creates additional commu-
nication overhead between nodes and the need for a central supervisor overseeing
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the update procedure. Communication between nodes is usually handled with a
“control” time slot dedicated to this exchange of information. More information to
be transferred means more time allocated to this slot and longer queue sizes.

1.2.4 Polling

When the interference graph is a complete graph, at most one queue can be active
at any given time. A scheduling algorithm is then the answer to two questions:
“How long does a server stay active?” and “In which order do servers activate?”.
This is called a polling model. There are multiple popular answers to the first
question: exhaustive service (the server only releases the channel when it is empty),
gated service (the server releases the channel when all the jobs that were present
when it started serving have been processed), fixed service (server processes a fixed
number of jobs before releasing), threshold service (the server provides service un-
til its backlog becomes smaller than a fixed threshold), the server may process a
random number of requests, etc ... When a queue deactivates, there may or may
not be some idling time before the next queue activates. In the literature there
is a distinction between polling models with and without switch-over times. For
the second question, there are also multiple answers: the next active queue can be
random (with a distribution that may depend on the current queue lengths) or fixed
(Round-robin with the server visiting each queue one time in each cycle or more
complex route).

On a complete interference graph, CSMA and QB-CSMA are in fact a polling
systems with switchover time and random activation duration. This equivalence has
been exploited to use results for polling systems where the server only processes one
job before moving to the next queue and a probabilistic routing policy. It has been
used to analize CSMA algorithms where nodes deactivate at a fixed (non-queue-
based) rate, see for instance [Cec+16] and [Dor+15]. We will go in greater details
about this comparison in Chapter 5, that focuses solely on the case of the complete
interference graph with a heavy traffic result.

1.2.5 Load balancing algorithms

Load balancing algorithms answer a simple question. All jobs arrive at a central
dispatcher. That dispatcher sends each job to a queue where it will eventually
receive some service. The problem is to decide where to send each new job. A naive
way to balance the load would be to send jobs to a server uniformly at random.
This random balancing is very simple and easy to implement but not efficient at all
because this does nothing to prevent situations where some server may spend some
time without processing any job and waste service capacity while another one has a
lot of job waiting for service. Depending on the amount of communication between
nodes, different algorithms have been proposed. The ideal situation is when the
state of the network is fully known by an outside observer. In order to maximize
the use of all servers, a solution might be to always send jobs to the server that has
shortest queue. This is known as JSQ (Join the Shortest Queue). This algorithm
requires an exact knowledge of the state of every server’s queue length at the time
of each arrival. In situation where this is not possible, the Power of d algorithm was
designed to limit the required amount of communication overhead and knowledge
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on the state of the network. Each time a new job enters the network, the dispatcher
selects d servers and probes their queue sizes. Then it routes the incoming job to
the shortest of the d queues. If there are n queues, Power of n is JSQ and power
of 1 is random routing. Between those two policies there is a large range of load
balancing algorithms. In addition, one can mention the celebrated JIQ (Join the Idle
Queue) where servers that are empty send a token to the dispatcher signaling their
availability. The dispatcher sends jobs in priority to idle queues and needs to make
a decision if no server is idle, for instance using a Power of d algorithm. The benefit
from this procedure is that it significantly diminishes the communication overhead
needed to run the algorithm. Most of the gain in terms of delay is obtained when
changing from random routing to Power of 2. See for instance [Mit92],[VDK96]
and [Mit01] where the authors establish that the distribution of the waiting time

has tails that decreases like 7(Q > k) = )\dj%ld for the power of d algorithm when
the arrival rate is A < 1 and d > 2. In comparison, this double exponential decay
is much faster than the decay for random routing: in this case all queues evolve
independently and have a geometric invariant measure. The rate of decay for the
tail distribution of the waiting time is exponential with random routing. Bramson
established optimality of the stability region for JSQ in a general setting (general
service distribution, multiple types of jobs, ...) in [Brall]. He then studies a model
with a service distribution such that JSQ is not as efficient as one could think in
terms of workload.

1.3 Homogenization and State Space Collapse

1.3.1 Stochastic Averaging

The study of a complex interacting system is often untractable. That is especially
true when the state space of the process is huge, for instance the space of configura-
tions on a large set. One way to simplify such problems is to assume that parts of
this interacting system evolve on a faster time scales than others. In many physical
systems, this type of behavior can significantly simplify the analysis. We begin with
a simple example with a two stage pendulum, taken from Chapter 10 of [Gril4]. To
explain the time scale separation phenomenon, they talk about the simple example
of a pendulum whose support is oscillating very slowly. If the support goes slow
enough compared to the speed of the pendulum, the system will behave in a simple
way where the base can be considered fixed when considering the oscillations of the
pendulum but over long period of times, the basis of the pendulum will have moved.

In a Markovian setting, assume that two components of a Markov process evolve
on different time scales, and given the slow process the fast component is Markov.
We can expect the fast process to reach a steady state equilibrium before the slow
process has time to evolve significantly. We will say that one process is fast com-
pared to the other if the mixing time of the fast process given the slow one is
“much” smaller than the time it takes the slow process to evolve significantly. If
in turn the value of the fast process influences the dynamic of the slow one, this is
called a fully coupled stochastic system and stochastic averaging is also called fully
coupled stochastic averaging principle. For each value of the slow process, there is
a corresponding invariant measure for the fast process. Over long time scales, the
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slow process only interacts with the fast process through its steady state average
corresponding to the current value of the slow process. In this section, we are go-
ing to explore the classical ways of proving that such a behavior occurs. We are
going to focus on three approaches: a dynamical system approach by Freidlin and
Wentzell in [FW12], a martingale approach developed by Papanicolaou, Stroock
and Varadhan [PSV77] and adapted by Kurtz [Kur92|, and a corrector function
approach developped by Luczak and Norris in [LN13]. The idea of such a behavior
was already present in [RSS09] and [SS12] introducing the algorithm that we study
in this manuscript.

The first approach presented is the dynamical system framework developed in
[FW12]. The randomized process is seen as a small perturbation of the homogenized
process and the authors make use of perturbation theory to prove convergence. Sec-
ond, in [PSV77] the authors develop a general martingale approach that was later
reformulated in [Kur92] and applied to loss networks in [HK94]. Third, Luczak and
Norris [LN13] also developed a new method which they applied to a variant of the
supermarket model. The method in [LN13] allows for a better identification of the
limiting process and is closest to the one we developed. Using Poisson equations,
we obtain explicit bounds on the distance between the process and the homoge-
nized version. Rigorous proofs of stochastic averaging principles were established
for polling systems [CPR95],[CPRI8] and [Jenl0], for models of distributed hash
tables [FR14], for the X model [PW13] and the supermarket model in [LN13].

In the context of stochastic networks, the stochastic averaging principle was put
forth for loss networks in the famous work by Hunt and Kurtz [HK94] but, as men-
tioned in Feuillet and Robert [FR14], “outside this class of networks, there are, up
to now, few examples of stochastic networks for which a fully coupled stochastic
averaging principle occurs”. Establishing a fully coupled stochastic averaging prin-
ciple is in general a challenging task and, in the queueing literature, many works
actually restrict their study to the so-called homogenized process, assuming that a
timescale separation indeed occurs. The type of problems described in the previous
paragraph where such situation can arise are usually variation around the theme of
a two components Markov process (Q™V, o) such that its generator is given by

LY[f1(q,0) = LIN[f (- 0))(@) + NL{ v [£(g,)](0). (1.3)

It is separated in two distinct parts: L?’ y acts on functions of ¢ but depends on
the value of ¢ and L7 y acts on functions of ¢ but depends on the value of 0. With
this decomposition we assume that () and o cannot jump at the same time but this
assumption can be weakened. The generator Lg y is considered slow when compared
to N L?’ ~ Where transitions occur on a much faster time scale when N — +o00. The
main idea is that o evolves so fast that @ only interacts with o through 7™'% the
invariant measure of LSN. Heuristically, the goal is to compare the original process
with the Markov process of generator given by

Ly n[f)(@) = 7™[L; x[f](q)], for any ¢ € N,

with 7V9[f] being the integration of the function f with respect to the measure
74, See Section 2.1.1 for more details on notations. The generator Ly, N is the
homogenized version of L{ where the transition rates of the slows process are aver-
aged with respect to the invariant measure of the slow process.
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Dynamical system approach:

The random setup in [FW12] is taylored for situations where the process of
interest is such that
dQ*

(S5)(0) = ebl@“ (1), 0 (1),

with o a random process, and do a time change X¢(¢) = Qe(é), which gives

dxe . t
(0 = b(X(D), 7 (5)).

(

They assume the existence of a function b such that for any § > 0, and any g,

T
lim P (’;/t b(q,o(s))ds — b(q)| > 5) =0. (1.4)

T—~+o00

If for instance b is bounded, X evolves much slower than () under suitable
conditions. Under suitable assumptions, the homogenization result states that X¢€
converges to ¢ the solution to the ODE problem f' = b(f). This result is a direct
consequence of the theory of perturbation in dynamical systems. They also prove
a second order approximation for normal variations around the limit and a large
deviation principle. Condition (1.4) is obvious if ¢ is an ergodic Markov process
but the goal is to have this kind of result for interacting systems. The method has
been generalized in [Ver00] and [Verl3] to include different cases of interactions be-
tween slow and fast components. Let Wy, Wi, W5 and W3 be independent Brownian
motions. In [Ver00], the author proves a large deviation principle under suitable
conditions on the functions fy, f1, f2, f3, f4 and f5 for systems of the form

{ dQ(t) = fo(Q<(1), o°(2))dt + e(f1(Q°(2), o°(£)) AW (1) + fo(Q“(2), 0°(¢))AW> ()
doe(t) = e 2 f3(Q°(t), oe(t))dt + e (fa(o*(£)) AW (t) + f5 (0 (t))dWs ().

In [Verl3], he proves the same kind of theorem for systems of the form

{ dQ“(t) = fo(Q(1), o°(t))dt
doc(t) = e 2 f1(Q(1), o (1))dt + e fo(Q(L), o (1)) AW (1)

Martingale approach:

Most of the previous works, in particular [FR14], [HK94] and [PW13], rely on
the machinery from [Kur92]. The setup is based on some martingale problems:
Kurtz assumes the existence of two operator A and B such that the processes

- / ALf)(Xn(s), o (s))ds

and

g(UN(t))—/O By Blgl(Xn(s),0n(s))ds + 65 (t),

with Sy — 400 and 3 Néév — 0 are martingales for a set of function dense in the
space of continuous functions. He considers the occupancy measure LV for the fast
process V. It is a random measure which takes values in P(R; x S(G)) the space
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of probability measures on Ry x S(G). It is given by

t
EN((O,t) X A) :/ ]lo'N(s)EAdS7
0

and they manage to prove that (Q~,¥") is tight so they simply need to identify the
limit. To do that they rely on martingale arguments. Assume the existence of the
limiting generators given by L{™? = limy_, 4 L?,N and L7 = lmy 400 L v
Notice that any limiting point (g, %) of (QY, ") must be such that for any f,g
bounded, such that L[f] and L[g] are bounded, the processes

£y - / / L2 )(a(s))2(ds, do),

and
/Ot / L g)(0)3(ds, do)

are martingales. This is true because their prelimit equivalent are. Because of their
assumption on the time scales of the two processes, the martingale component of
the slow process must converge 0. The second martingale is continuous and has
finite variation as an integral of a bounded function, so it must be constant to its
initial value: 0. As it happens, the first marginal of X is absolutely continuous with
respect to the Lebesgue measure on R. There exists a measure valued process 7y
such that

Z((O,t)xA):/O ~e(A)ds.

Because of this decomposition and their assumptions, they are able to identify 4
as the unique invariant measure of L;° 9), for any t > 0, and ¢ in the domain of

L7 for all g,
t —
| [ goranas =0
0

Thus, for any ¢ in the domain of L{™? for all g,

[ £ lglon(do) =0

for almost every s > 0, and so if D(L;~?) is dense in the space of continuous
bounded functions, s is the invariant measure of LfOo ) 5o we write Va(s) instead
to highlight the dependency in q. Once 3 has been identified, the first martingale
gives an identification of ¢ in terms of Markov processes: ¢ must be a Markov
process of generator

Lif](g) = / L2 [](q)7q(do).

Corrector function approach:

The starting point for the method in [LN13] is to extract slow coordinates of the
form X = z(§) = (;(§))i=1,...,», and a fast component ¥V := y(&) from a Markov
process (£(t))i>0. Let’s define two accessory processes and state spaces: £(t) € X
and Y (t) € I both state space of countable. Let us define the projections on the
slow and fast variables x : X — R"™ and y : X — I. If LY is the generator of ¢, the
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key is to assume the approximations

and for any ¢° € X and v € I such that y' # y(£°),
> L)~ g((€), y(€), y)
§'eX, y(€)=y’

hold for a suitable b and g. The function ¢ must be such that for any z° € R", the
operator given by (g(ﬁco,y1,y2))y1,y2€ 1 is a Markovian generator having a unique
invariant distribution 7% . In other words, we have to be able to approximate the
transition rates for Y (¢) using only the values of X (¢) and Y (¢). They define the
average drift for the slow process:

b(z®) = 7" [b(a", ).

Using “corrector function”, they prove explicit bounds on the difference between
the slow process and ¢ the solution to the ODE

{ f b(f)
f(0) =a°

The general idea of the method is that solutions to Poisson equations provide a
“corrector function” giving an alternate description for

b(‘rov yO) - b(‘ro)

In order to use a Gronwall inequality, they assume that b is a Lipschitz function.
We will see in Chapter 5 an example where this condition fails.

1.3.2 Poisson equation and Stein’s method

The problem of Poisson equations and their solutions isn’t recent and the literature
on the subject is dense. We refer the reader to Section 2.2.2 for a formal definition of
Poisson equations and the explicit formula for their solutions. If LY is the generator
of a Markov process of invariant measure 7 and g a function such that g is integrable
with respect to 7, a Poisson equation is the equation with unknown ¢,

L°¢)(x) = g(x) — w[g], w[¢] = 0.

Since the seminal paper [Nev71] and book [Rev84] outlining Poisson equations and
their role in the classical potential theory for Markov processes much has been done.
See for instance [PV01], [PV03] and [PV05] for a detailed account of its application
for diffusion approximations in a SPDE context using solutions to Poisson equations.
They have already been used to prove homogenization in discrete state space as well,
see [PSV77] and [LN13]. The general idea in these papers is to use the solutions to
Poisson equations as “corrector functions”. These functions control the difference
between the transition rates of the slow process and their homogenized versions. One
of the contribution of this thesis in Chapter 3 is to provide bounds on the regularity
of solutions to Poisson equations when the generator depends on a parameter. To
the best of our knowledge few such bounds exist in our setting, see for instance
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[LN13] where the authors proved similar bounds.

One of the most common use of the Poisson equation today would be the cele-
brated Stein’s method. Introduced by Stein in [Ste72], it was first used to bound the
distance between the empirical measure for a sum of dependent random variables
and a Gaussian distribution. Let W be a random variable of the distribution of
interest. The general idea is to analyze the difference between the averages of g(W)
and g(N) with N a gaussian variable by finding a suitable function f such that

g(W) = E[g(N)] = f'(W) = Wf(W)

and then use the structure of W to estimate E [f/(W) — W f(W)]. By replacing f
with F’ (and f’ by F"') this equation can be interpreted as a Poisson equation

g(W) —c = A[F|(W),
with A the generator of an Ornstein-Uhlenbeck process given by

Alfl(z) = f"(x) = 2f'(2).

The method was later improved to be able to handle different distributions. One of
the first refinement was by Chen [CheT75], it enables Poisson approximations to be
obtained finding a functional application g — f4 such that it solves another Poisson
equation in g, given by

wf(w) = Af(w+1) = g(w) —¢,

and even convergence rates as exposed in [Bar88]. Later diffusion approximations
were also considered by Barbour [Bar90]. Apart from some ad hoc tricks for sum
of dependent random variables, the common point of these methods is the use of a
“Stein’s kernel” which is simply a Markov generator which has the target probability
as invariant measure. Let H be a functional space. We define the dy; distance
between two probability measures as

dsa (1) = sup ] [ @)~ [ v

heH | x X
By choosing H, we can obtain some usual distances: for instance by taking H to be
the space of 1-Lipschitz functions, we get the Wasserstein distance and by taking
‘H to be indicators of Borelian sets, we get the total variation distance. The idea is
then to write the distance between two probability measures as the supremum over
a suitable class of functions of the mean of Stein’s kernel applied to the solution to
the Poisson equation. Let us define M; a random variable of distribution u. Let A
be a Markov generator of invariant measure v and for any suitable f, let ¢ be the
solution to the Poisson equation

f(@) = v[f] = Alo5)(2).

We get

dw(p,v) < sup E [A[gp](M1)].
heH

Once this is done, the method requires to use the specific structure of M; and the
generator A to obtain some bounds on the error between the two distributions. See
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[Ros11] for more details and a survey of the method in different contexts. Choosing
the right Markovian dynamic is not always easy and is of independent interest.
The interpretation of Stein’s method in terms of infinitesimal generator enabled the
method to be used for an even wider range of distribution using solutions to the
respective Poisson equations.

Stein’s method has also been used in the context of queueing networks. Three
of he first papers to use this method were [Gurl4|, [BDF16] and [BD17]. In those
papers, they establish some explicit error bounds for the difference between the
diffusion approximations and their steady state average for the Erlang-A, Erlang-C
models and M/Ph/n+M queues. In [BDF16], the authors discuss the Erlang-A
and Erland-C models and prove that the rate of convergence to a limiting diffusion
process scales like ip when the load of the network (as will be defined in 1.4.1)
p — 1. We mention as well [GW19] that provides explicit bounds for the heavy
traffic approximation of a single queue. In an M/G/1 queue with arrival rate A and
arbitrary job size distribution S, let’s call p = AIE [S] and W the stationary waiting
time. It is well known (see for instance [Kin62]) that

(1-pW — B |57] Z -1
— as
P E (5] 7
in probability with Z an exponential variable with parameter 1. Their bound
pertains to dw the Wasserstein distance between p and v the distributions of

%W and Z respectively. They prove that

E [$°] E[S] (1)
3(E[S?])%p

dW(Ma V) < 4

They also manage to prove that

3
(1—p) <dw(,v) < (1—p)(1+ 4]%)7

with 1 being the distribution of %W. It means that the O(1 — p) scaling
is in fact optimal. They provide two different proofs for this result both using
Stein’s method: a coupling approach and a generator approach. See [GW19] and

the references therein for more details and applications of Stein’s method.

1.3.3 State Space Collapse, Skorokhod problem

The term “State Space Collapse” comes from the works of Reiman [Rei84a] and
[Rei84b]. In both those papers, the author proves convergence of the total number
of jobs in the network to a reflected Brownian motion. The first paper considers an
open network comprised of two queues where jobs flow randomly from one server
to another before eventually leaving, the second considers priority queues, a load
balancing situation implementing JSQ, and networks with one ‘bottleneck’ station.
In all those examples the multidimensional process of queue lengths converges to
a one dimensional process. When the limiting process is random it is driven by
a 1-dimensional Brownian motion. In [Bra98] and [Wil98], a technical condition
(resource pooling) that ensures that when the network is heavily loaded, the state
space of an open multiclass Jackson network collapses to a one dimensional manifold.
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The resource pooling condition ensures that only one node is critically loaded. For
Max-Weight scheduling, [SW12] proved a collapse of the state space even when the
resource pooling condition fails, but the manifold needs not be 1-dimensional. In
[KW12], Kang and Williams made progress towards a heavy traffic result for Max-
Weight without resource pooling by assuming that all stations are heavily loaded.
They consider a N x N switched network (with N? communication links) and prove
that the process of queue lengths lives on a manifold of dimension 2N — 1. Before
we go in further details about the proof method for convergence, the general idea
behind the state space collapse is that there is a lower dimensional manifold that is
attractive for the sample paths of the limiting fluid limits process.

In [Bra98], [Wil98], [SW12] and [KW12], the authors characterize the limiting
process using a Skorokhod problem, introduced in [Sko61la] and [Sko61b] in dimen-
sion 1. The goal was to study a diffusion with different reflection property when
reaching the boundary. It was later generalized to a multidimensional process in
[Tan79]. Let d € IN and P a d x d matrix, with spectral gap less than 1. If YV
is a cadlag function with values in R? such that Y (0) > 0, there exists a unique
couple of functions Xy = (Xy,;,i=1,...,d) and R, = (Ry;,7 = 1,...,d) cadlag
functions such that for ¢t > 0 and 1 <17 < d,

o Xy(t)=Y(t)+ (I — P)Ry(t);
e Xy,i(t) > 0 and Ry, is non-decreasing with Ry ;(0) = 0.

e (X, R) satisfies the reflection condition

+o0
Xy’i(s)dRy,i(S) =0.
0

For any Y, there exists a unique explicit solution (Xy, Ry ). Moreover, the appli-
cation Y — (Xy, Ry) solutions to the Skorokhod problem is continuous for the
topology of uniform convergence. See Theorem 1 of [HR81]. If a sequence of pro-
cesses are solutions to a sequence of Skorokhod problem and the processes converge,
any limiting point must be the unique solution to the limiting Skorohod problem.

More recently, the authors of [MS16] proved a State Space collapse in steady
state for Max-Weight on a switched network. In steady state, the drift of certain
functions must be null, which can be seen as constraints on the queue lengths. This
method has been introduced in [ES12]. This state space collapse ensures that the
queue lengths are always in a cone not touching 0. The main result of [MS16] is
that Max-Weight is delay optimal in steady state.

1.4 Functional limit theorems

Functional limit theorems are functional versions of laws of large numbers and the
central limit theorems. Let (Xy)nenw be a sequence of independent identically
distributed random variables. The law of large numbers (see [Kal02], Theorem
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3.23) states that as long as I [| X1]] < +oo,

N

1

N ZX’“ — E[X;] almost surely as N — 4o0.
k=1

Similarly, define X (¢): the linear interpolation of

X(K) =Y Xj.
k=1

For any ¢ > 0,

X (Nt

% — tIE [X7] almost surely as N — +o0.
In fact, the convergence is almost sure for the topology of uniform convergence over
compact time sets. Almost sure uniform convergence over compact time set means
that for any T' < 400,

X (Nt)

— E[X;]t| — 0 almost surely as N — +oo.
t<T

Similarly to the law of large numbers, if we take a sample that grows with NV
and rescale the cumulative samples by the same parameter N, it converges to a
deterministic limit. A direct consequence is that if we assume that E [X;] = 0, for
any 0 < T < 400,

X(Nt)

sup| ——=| — 0 almost surely as N — +oo0.
i<t N

The fact that the limiting process is constant suggests that we need to look
further in time to see variation around the initial value. There is a second impor-
tant limit theorem called central limit theorem, see Proposition 5.9 of [Kal02]. If
(XN)nen is a sequence of i.i.d. random variables with 0 mean and variance 1,

N2
% Z X = N,
k=1
with A a standard Gaussian random variable and = the convergence in distribution,
defined in 2.3. A direct consequence of the central limit theorem is that for any
t>0,
X(N?t)
N
with N’ a Gaussian variable with 0 mean and variance t. Once again, the result is
uniform in a functional space: as processes, uniformly over compact time sets,

= N,

X(N?t)

(T)t>0 — B in distribution,

with B a standard Brownian motion.

The kind of results that we prove in this manuscript is similar to those behaviors.
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In Chapter 4, we will prove an equivalent to the law of large number for QB-CSMA.
In the context of queueing networks, this is called fluid limits. In Chapter 5, we
will prove result similar to a central limit theorem but uncommon in two different
ways.

1.4.1 Fluid limits

When considering stability of queueing networks, in terms of tightness of its distri-
bution, it is common to consider a rescaling in time and space of the process and
let the scaling parameter go to +0o. When the scaling is the same in time and
space, the limiting points (if they exist) are called “fluid limits”. When unique, the
fluid limit can serve as a first order approximation of the process for large N and
stability of the original process can be deduced from the behavior of the fluid limit.
See Chapter 9 of [Rob03] for an introduction on the subject and some examples.
This method is more than 40 years old: it has been introduced in [MM79] where
the authors use it to establish the transient/recurrent behavior of random walks on
72 and 7Z3. We next discuss further the fundamental papers [RS92] and [Dai95]
and their main question.

For the type of communication schemes we introduced, we can define the load of
each node as the ratio between the average number of jobs entering the queue and
the average service rate. A natural necessary condition for stability for this kind of
network is that the load of each node is smaller than 1, meaning that there is on
average less work arriving in the system than it is able to process. If this condition
is not met, there is a queue where the amount of work arriving is greater than the
service capacity of this queue and thus it will increase endlessly. Whether or not
this condition is also sufficient in a given communication scheme still is a central
question in queueing theory.

To illustrate this notion of load, let’s present Jackson Networks, first introduced
in [Jac57]. Consider n queues and K types of jobs each type of job has a different size
(for instance all have an exponential distribution but with a different parameter).
Jobs of type k first get served in queue s(k) and then follow a Markov chain on
the set of servers. Once a job is served in queue i, it becomes a job of type j with
probability p; ; and leaves the network with probability 1 — " i Dij- Jobs of type j
are served in station s(j). The matrix (p; ;)i j=1,....n is sub-Markovian. This model
is a multiclass extension of Jackson networks introduced, where queues and types
are in bijection. Assume all service rates are given by p > 0. The load of a node is

defined as
APt 2 AjPuk
Pyl = y
1
the ratio between ingoing and outgoing traffic at node v. If p, < 1 for all v € V,

the process of queue lengths is stable.

In [RS92], the authors study a network of two queues in tandem. Jobs arrive
at each of the queues, and flow from one queue to the other after a service. Jobs
enter the other queue waiting line when they complete a service in their queue of
origin. Once they complete their second service, jobs leave the system. They study
two service policies: FCFS and a priority queue, both with exponential job sizes.
In the priority queue, a server will only serve jobs that have already been served by
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the other queue when it does not have any of its own request waiting. If we number
the queues 1 and 2, queue i receives jobs of type i at rate \;. Those jobs will flow
from queue i to queue j # ¢ when they complete a service in queue i. When a type
i job is processed at server k, it takes a time that has an exponential distribution
with parameter v; . For (i,7) = (1,2) or (2,1), they define the load of each node
as the mean amount of work they receive:

pi = Aivii + Ay

The authors prove that p; < 1 for all ¢ is sufficient for stability when using
the FCFS service discipline. More surprisingly, they also give a simple example
where this condition is not sufficient with the priority queue. If type 1 jobs have
an absolute priority over type 2 jobs when being served by queue 1, they construct
an example where p; V pa < 1 but the fluid limits diverge as ¢t — 4+o00. Bramson in
[Bra94] provided one of the first simple FCFS example where p < 1 is not enough
for stability. He studies a model that is similar to the priority queue: jobs that enter
at one of two stations i and j. A job arriving at station ¢ completes an exponential
service at this station. Once this service is done, it has to complete a fixed number of
exponential service in the other queue before receiving a final service at its original
queue. If the amount of time a job of type ¢ has to spend in station j is very large,
heuristically, the time it takes for jobs of type i to leave station j is huge compared
to the time it takes a job of type j to leave the same station, which resembles
the behavior of the priority queue. Since the server processes requests in a FCFS
fashion, it will have time to fully complete a service of the other type only if none
of its own jobs are pending because each time the replicating job finishes, it goes
back to the end of the queue to await for another service a large number of time.

In [Dai95], the author used a fluid limit to give a general necessary condition
for the stability of multiclass multihop extensuin of Jackson networks. The result
of Dai states that if the fluid limit reaches 0 in finite time and stays absorbed, the
process is stable. He applies this criterion to prove that p; < 1 for all i is sufficient
for stability in specific cases. To handle possible reflections, the authors of [DM95]
use a multidimensional Skorokhod problem. The examples are a general Jackson
network, a single queue with multiple types of jobs or a single type Jackson network
with K nodes and routing matrix py x+1 = 1 for k¥ < K and 0 everywhere else. See
also [DM95] where the authors derive the limits of moments of queue lengths.

The main result of [GBW14] is a fluid limit approximation. In QB-CSMA with
polynomial activation rates, when the exponent of the polynomial is too big, queues
are unable to release the channel until they are almost empty. This behavior is sim-
ilar to the so-called “Random Capture Algorithm” (RCA) introduced in [FPR10].
They introduce it for a polling system where only one queue can be active at any
given time. With the RCA scheduling policy, an active server remains active until
it has no job to process, with server activating either in a random or a fixed order.
This procedure can be extended to general interference graphs. To generalize it,
simply assign an activation rate. For queues with no active neighbors in the inter-
ference graph let an exponential clock run and the first one to tick is allowed to
activate until it is empty. The main result of [FPR10] is throughput optimality of
RCA for K-partite interference graphs and a description of the fluid limit. Fluid
limits serve both as a qualitative and quantitative approximation for queue lengths.
Absorption of the fluid limit in 0 implies stability. In addition, the delay before a
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new job gets some service is related to the number of jobs in the system through
Little’s law, stating that the average number of customers in a system is equal to
the product of the average arrival rate and the average time spent in the system.

The fluid approximations of QB-CSMA with polynomial activation/deactivation
ratio from [GBW14] has some interesting properties. In fact, they prove that if the
exponent is large enough, on the fluid scale, queues cannot deactivate before being
(almost) empty. In fact, the authors of [GBW14] prove that in a specific graph
topology, QB-CSMA with polynomial activation/deactivation ratio with parameter
a > 1 and RCA of [FPR10] have the same fluid limits (and thus the same stability
region for instance). We expect this to be true in any graph topology: if a > 1
and the queue is of order N, if the queues were fixed, the deactivation time would
have been of order N¢. The real queue lengths decreases linearly during that time.
The back-off times are exponentially distributed. The memory-less property ensures
that there is no early deactivation until the queue is (almost) empty. Essentially,
when the queue is large, the time it takes for a queue to deactivate will remain
larger than the time for the queue to be almost empty with high probability. Using
this fluid limits arguments, they prove that in some graph topology, RCA creates
some inefficiency and is not throughput optimal. The results of Chapter 4 lie in
the complementary of [GBW14] : consider a small enough so that the schedule
can rapidly alternate between activity states and averages around a steady state
equilibrium. The authors of [GBW14] proved that in any graph topology under a
homogenization hypothesis and if the fluid limits converge, the queueing process is
stable.

1.4.2 Heavy traffic

When implementing real life network, administrators usually want to minimize
costs. It is an incentive to responsively design the number of servers, service capac-
ity, etc... It is then relevant to evaluate the performance of an algorithm when the
network is as loaded as it can be while remaining stable, corresponding to an opti-
mal use of the resource. This is the central question behind heavy traffic analysis of
queueing networks. Another way to look at it is to consider a dimensioning problem
as in [HW81]. The authors answer the questions of the type: “how many server
should there be in a load balancing problem as the arrival rate goes to inifinity. The
result in [HW81] states that if the arrival rate is V x A the total number of servers
should greater than N + ¢v/N to maintain the queue lengths stable. In a broad
sense, this type of questioning is close to 60 years old. Some of the first mentions
come from a series of papers by Kingman: [Kin61], [Kin62]. These seminal papers
mainly focus on the performances in steady state and prove results on the asymp-
totic of the steady state delay as the load goes to 1. Their proof methods rely on
Laplace transforms. The general idea about heavy traffic result is to take a sequence
of networks under a specific algorithm and let the arrival rates AV converge to a A
on the border of the stability region. To ensure that the process of queue lengths is
stable for N < 400, AN approach A from inside the stability region. Usually when
at criticality, some key element of the fluid limit remains constant and we need to
go at a faster time scale to see fluctuations around the limit. The critical behavior
of most queueing networks that we know of is akin to a functional CLT: the time
scale usually needs to be the square of the space scale and the limit is a diffusion,
typically a reflected Brownian motion. The most common is a scaling N in time
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and VN in space. With AV arrival rates and p”¥ departure rates, the usual heavy
traffic assumption is,

Yo, \/]V()\v—)\ﬁ])%cvelRasN%—i—oo,

with A be on the border of the stability region. All coordinates must converge to
criticality at the same rate and the vector (¢,)yey usually gives an indication about
the drift of the limiting process. Sometimes, it is assumed that ¢, > 0 to ensure
that AV stays inside the stability region for all N € IN.

As we already mentioned the heavy traffic result is a functional form of the cen-
tral limit theorem. Instead of considering the limit of the steady state distribution,
a popular approach is to prove functional limit theorems. In the same way that fluid
limits serve as a first order approximation, the heavy traffic limit provides a long
term approximation when the fluid limits are constant. In [Rei84a], Reiman proved
that the process of queue lengths converges to a reflected Brownian motion with
drift ¢ in an open Jackson network as N — +oo under the heavy traffic assump-
tion mentioned above and a mild moment assumption on inter-arrival and service
distributions. The proof is based on a multidimensional Skorohod problem and
ad-hoc computations. In [Bra98]; Bramson studied a switched multiclass multihop
network in heavy traffic. Jobs of different types have the same service requirement
when at the same station. He considers several service disciplines: FCFS, Head of
line processor sharing (HLPPS with servers sharing the resource evenly but each
of them proceeding in a FCFS fashion serving only the first job of each type) and
static priority queues (certain type of jobs have a strict priority over other types
when served by a given queue). With those service disciplines, Reiman gives a full
description of the fluid limit and proves that the process of queue lengths collapses
on a lower dimensional manifold for large time horizons. Finally he establishes a
Semi-martingale Reflected Brownian Motion as a heavy traffic limit. An additional
assumption of “complete resource pooling” ensures that the state space collapse is
one dimensional. Bramson in [Bra98] proves that the line of the state space collapse
must be attractive for any fluid sample path. Almost simultaneously with the pa-
per by Bramson, Williams published another paper [Wil98] on the subject of heavy
traffic for an open multiclass Jackson network. Under the assumption that a state
space collapse holds on a 1 dimensional manifold, she proves some new diffusion
approximations for Kelly networks; queueing models with service rates depending
on queue lengths with a specific balance property ensuring a product form for the
steady state average of queue lengths.

In [MS16], the authors prove a state space collapse for the steady state distri-
bution of queue lengths. This property helps them prove asymptotic optimality of
Max-Weight from a delay standpoint for a switched network. See [Whi02] for an
overview of heavy traffic results in a standard setting. The heavy traffic result in
this thesis falls outside of this category of conventional results with both an unusual
scaling and limit. One of the first example of unconventional heavy traffic result
was published in [HW96]. The authors studied a closed system of two queues with
a particular priority scheme. Because of their particular scheme, over a time frame
of size N, some coordinate are of size N while others are of size VN leading to a
“mixed” scaling. The limit they obtained is constructed from a Brownian motion
but is not the usual reflected Brownian semi-martingale. Some other recent works
investigate single-server queues with nonstandard heavy traffic limits. For instance,
Atar and Cohen [AC19] study a multiclass single-server queue which, subject to the
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usual CLT scaling, converges to a Walsh Brownian motion. Another example is
Puha [Puh14], who studies the SRPT (Shortes Remaining Processing Time) policy:
there the scaling is nonstandard but the limiting diffusion is conventional, i.e., the
heavy traffic limit is a reflected Brownian motion.
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2.1 Introduction

2.1.1 General notations

First, let’s gather some notations that will be used throughout the manuscript.
Introduce V, a finite set of n nodes. The usual L;-pseudonorm on IRK is denoted
by [|-[|s for b > 0: for any « € RY and b > 0 it is defined by ||lz||l, = (32, 25)'/°.
Similarly, for any b > 0 and ¢ € RY we use s5(q) to denote D vev ¢. Let G = (V,E)
be a graph and let S(G) be the set of stable sets of G.

For any n > 0, f: R" — R, if U C R", we write ||f|lv,00 = sup,cy|f(x)| and
[Ifllco := sup|f|. With a slight abuse in notation it is possible to use the infinity
norm for vectors and write the supremum norm ||¢||cc = max,|g,| for ¢ € R™.

Whenever f : R"™ — R is smooth enough, for any ¢,j < n we denote by 0; its

27
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partial derivative along ¢; and ﬁfj its second-order derivative along ¢; and g;, i.e.,

0%f
3%‘%.

of

Oif = 90

and 8i2jf =

We will alto consider the discrete partial derivatives Ag,i f for a function f: R"™ —
R, given by

AY fle)=f (q + ]ev) - f(9),

with e! € {0,1}V the vector with i in its i'" component and 0 elsewhere. Thus,
NAiif — +0;,f as N — oo for f differentiable. If f : R — R"™, we design its
derivative by f’.

For convenience, we will use the letter C' to denote positive and finite constants,
whose precise value is irrelevant and that may change from line to line. It is allowed
to depend on ), a, the interference graph, localization constants and parameters in
specific lemmas. It does not depend on quantities that will change when scaling the
process like the size of queue lengths or time horizons.

Let X be a countable set, 7 a probability measure on X and f a function on X.
If f is integrable with respect to m we write f € L!(). For any f € L!(7) we use
the bracket notation to denote integration:

reX

One of the key elements from standard Markov theory that we will use repeatedly
is the martingale problem (or martingale decomposition). If LY is the generator of
a Markov jump process, let D(L°) be the domain of LY. For any f € D(L°), we
can write

LOf)@) = Y LO(z,2") (f(2') = f(x)).

o' #x

Let I'° be the carré du champ operator associated to the generator L°: for any f
such that f, f2 € D(L°), T°[f] is given by

LOlf)(z) = LO[f?)(2) — 2f () L°[f](2).
Elementary computations show that
Plf1(e) = Y L,a) (') = f(@))°.
z'#x

Proposition 2.1
If L° is the generator of (It)i>0 a non explosive Markov process, for any function f
such that f and f? € D(L®) the process

My (#) = £(01) — £(lo) — / LO[](1)ds

0

is a local martingale with increasing process

(My) (1) = /0 TO[f](1,)ds.
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Proof sketch. We give here an idea of the proof, see Chapter VIII, Lemma 3.68 of
[JS03] for a proof of this result. The proof uses notions of semi-martingales and
stochastic integration that we did not define here so we will just explain heuristically
the identification of the quadratic variation. Let us define F; = o(l,,u < t). To
prove that My is a martingale, it suffices to check that

E [Ms(t+s) — Ms(t) | F¢] = 0.

To prove the previous equality, one can use the Kolmogorov equation

d
ZE (7)) = E [L1f1(1)].

and obtain the result using Markov property.

More precisely,
t+s
BIMy(t+9)| 7=l | 7] -E | [ LU0 | 7

~ k(0] - [ (L)~ E [ / T ) | ft]

because Ey, [ [ LO[f](l)du] = E UHS LOTf](1,)du | }}} by the Markov property.

t

To identify the quadratic variation, let F; = fot LO[f](ly)du and G == My +

f(lo) — F, ie. Gy = f(l) for any t > 0. In the same fashion, we define F and G
from M2 and f(l,)%. By definition, G2 = G. We have

G=Go+Mp+F.
Using stochastic integrals for Poisson processes and formula 1.4.45 of [JS03] we get
G=G*=G2+2G_-M;+2G_-F+ (My).

Both My» and 2G_ - My are martingales starting at 0. Similarly, Fand 2G_-F +
(M) have finite variation by definition of (M) and because L°[f](l,,) and L°[f?](l,,)
are bounded. Since (M) is predictable, by Proposition 4.23 in Chapter I of [JS03],
such a decomposition is unique and we get My> = 2G_-My and F =2G_-F+(Mj).

Finally,
<Mf>(t):}~772G F

Lof] du—2/f (ly)du

t
LO[f?)(1,)du — 2 /f YLO[£](1,)du

-

rf

I
S— S— —
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This concludes the argument. O

We now define the two convergences we will use for random variables: first the
convergence in probability,

Definition 2.2
Let XN and Y be random variables with value in X. If for any € > 0,

P (XN -Y|>€) >0 as N— +oo,

we say that XN converges to Y in probability and denote it X~ Ly,

Then convergence in distribution

Definition 2.3

We will say that a sequence of random variables X~ on X converges in distribution
to pu a probability measure on X and write it XN = pu if for any f : X — R
measurable, continuous and bounded,

E [£(XV)] - / F(@)u(de).
X

We will also write XN =Y if XN converges in distribution to the distribution of
Y.

2.1.2 Model description

We consider a finite set V of n nodes. Each node v € V represents an M /M /1 queue
with the FIFO service discipline and vacation, its arrival rate is denoted by A, > 0.
We denote by Q,(t) € N :={0,1,...,} the length of v’s backlog at time ¢ and by
(05(t))vev € {0,1}" the activity process: the server at v is active and processing
pending requests at unit rate whenever o,(t) = 1, and o,(t) = 0 otherwise. Put
differently, o, (t) is the instantaneous service rate of node v at time ¢. Next, we
define A :== (A\y,v € V), Q(t) = (Q(t),v € V) and o(t) := (0,(t),v € V).

Those nodes are placed on a simple undirected graph G = (V| E). An edge
between two nodes indicates that they cannot be active at the same time. This is
used to model interference constraints in a wireless network. The ~ sign will be
used to signify the existence of an edge (v ~ w < {v,w} € E). We will have two
equivalent representations for the schedule: we will sometimes see it as a subset
of nodes ¢ C V when speaking of “adding” or “removing” a node in the schedule
and otherwise as a vector of {0,1}" by identifying nodes currently active in the
schedule with non-zero entries of the service rate vector. The admissible service
rates can be seen as stable sets of the interference graph: a stable set of G is given
by o € {0,1}V such that v ~ w = o, + 0, < 1. The admissible service decisions
are elements of

S(G)={oc{0,1}V |v~w= 0, + 0, <1}

Given the current schedule o, the queue-length process @ evolves as n independent
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M/M/1 queues with service rates o, input rates A and FIFO service discipline. On
the other hand, o also evolves: given the queue-length process @), an active node v
with o, = 1 deactivates at rate ¥_(Q,) for some deactivation function ¥_, and an
inactive node v with o, = 0 activates at rate ¥, (Q,) for some activation function
W, provided no neighboring node is active.

To be more formal, (Q, o) is a Markov process on NV x {0, 1}V with infinitesimal
generator L that can be decomposed as the sum of two generators:

o the generator LZ of the slow queue-length process () whose dynamic depends
on o;

e and the generator L{ of the fast activity process o whose dynamic depends
on q.

The terminology slow and fast refers to the time scales in the stochastic averaging
principle from Section 1.3.1. Thus, L acts on functions f : NV x S(G) — R as

L{f)(o,q) = LI[f (o, ))(q) + L{[f (-, @)l(0)

with

LIgl() = > Mo (gla+€”) = g(@) + Y oullg,50 (9lg — €”) —g(q))  (2.1)

veV veV

and

Li[h)(0) = Y ov¥—(q,) (h(o —€") = (o))

+> [0 =0u)1=0,)¥i(q) (h(o +e') —h(0) (22)

veV w~v

with g : NV — R and h : S(G) — R arbitrary functions and e¥ € {0,1}" with
0’s everywhere except at the vth coordinate equal to 1. One can check that for
any ¢ € INV, L{ admits a unique reversible distribution denoted 77. For reasons
explained in the introduction, we consider polynomial activation and deactivation
functions of the form

W, () = (x 4+ 1)

= m S [071] and \I/_(aj)zl_\ll+(x)7 me]N’

with @ > 0 the parameter of this algorithm. In this case, 7¢ is given by

[T (1+q,)*

Uy) — veV o .
(o) S T +q) € 5(G)

peS(G)veV
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With the generator L, the carré du champ is given by

=Y A (f(g+e0) = flg.0)) (2.3)
veV
+ > oulg,s0 (f (g —€',0) = flg,0))°
veV
+UEZV (g0 — ) = f(g,0)) m
2 wav(l - Uw)(]- - J'u)
+§/ (g0 +€e")— flg,0)) g 1) .

An important tool to understand the behavior of the network is the so-called “ho-
mogenized process” where the service rates are replaced by their steady state dis-
tribution. Let g : NV — R. The generator is given by

=Y N(glg+e’) —g(@) + Ym0y = Dlg,0 (9(q — €”) — g(q)) -
veV veV
(2.4)
When all queue lengths are large, only the stable sets of largest size will matter
in the invariant measure. For any o € S(G), |o] is its size (the number of active
nodes). We can define the constant T := max,eg(c)|o| (we omit the dependency
in G) and define

S*={o€SG)||o|=T}.

When g, is larger than 0 for every v, for a large parameter N, 7V ~ 74 given
by

H anv
7wl (o) =0if o ¢ S* and 7L (o) = % ifoceS*.

pES* vEV

The instantaneous service rate will be given by 7(v) = 7% (0, = 1) for all v € V.
There is a partially uniform result:

Lemma 2.4
Let C_ >0 and Cy < 4+00. We have

Yv eV, sup |7V (o, = 1) = 7(v)| = 0 as N — +o0.
C_<miny gy <maxy quw <C+7q6%]NV

(2.5)

Proof sketch. The general idea is to decompose 7V4(g, = 1) along the size of in-
dependent sets and provide a Taylor expansion in order to obtain explicit bounds
depending only on C_, C; and N. We have to check that the influence of stable
sets of size smaller than the maximum vanishes as N — +oo. Notice that

Mo, =1) = 3 o)+ Y i),

ces* pES(G)\S*



2.2. Functional analysis 33

If p € S(G)\ S*, |p| <Y — 1. Then for any p € S(G) \ S*,

[1 (1+ Ngy)*

alpl
Ng(,) — VeV <M Nt S 0as N
T (p) Z H (1+qu)a77v X NG,T B as —+00.
neS(G) veV

Similarly, if ¢ € §*, and min, g, > 0

I G+ a0 Il G+
Nq _ ve ~ veE q 3
[N ~ — 7wl (0) as N — +00.
S S e T A T S T e BT

neS(G) veV neS* veVvV

This concludes the proof for point-wise convergence. See Appendix A for the proof
of uniform convergence. O

2.1.3 Localization

On multiple occasions, we will use stopping times constructed from a trajectory to
stop the process once it leaves a set convenient for analysis. In Chapters 4 and 5
we will be able to remove this localization using properties of the limiting process.
We present the general definition here and will specify as necessary. For any € > 0,
integer p and trajectory f € (RE)®+, and U C R, let us define

(f) =inf{t >0, ke {1,....p} | fult) <€}, 20)
and
U(f) =1inf{t >0, f(t) ¢ U}.

To lighten notation, we will omit dependency in the trajectory when it is @ (or a
scaled version when unambiguous).

Similarly in both fluid and heavy traffic limits, we will prove convergence up to
the time the process escapes a “tube” around the candidate limit and then remove
localization. This will help us deal with reflection and regularity issues by bounding
queues away from 0. Let € > 0, and f,g: Ry — IRK, let us define the stopping time

T(f,9) = inf{t >0, [|f(t) —g(t)ll > €}-

This will be applied to the scaled queue lengths and their candidate limiting pro-
cesses.

2.2 Functional analysis

For the rest of the chapter, let L° be the infinitesimal generator of a reversible
positive recurrent Markov process with invariant probability = on X a finite set.
We will use m{ to denote the distribution of X; the Markov process of generator
LY at time t conditioned on Xy =z € X.

This section will be divided in two parts: in the first one, we will begin by
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introducing general notions from functional analysis, mainly spectral gaps and log-
Sobolev constants. Then we define two distances for probability measures and
link them together. Finally, we give standard results for the convergence speed of
Markov chains to their steady state average.

In the second part, we define the notions of Poisson equations and their solutions.
This notion will be at the center of the next chapter and is of paramount importance
for homogenization. One of the ideas behind the Poisson equation and its solutions
is to find a functional application such that g — ¢, acts like an inverse for a given
generator L, i.e., for a given g € IL' (), find ¢ such that

L(¢)(x) = g(x) — 7lg], 7[¢] =0.

Without the m[¢,] = 0 condition, the previous equation could have an infinite
number of solutions so this condition serves as a normalization. Poisson equations
can be used for homogenization by giving the ability the rewrite the difference
between a function and its steady state average. We then bound the norm of the
solutions using the log-Sobolev constant.

2.2.1 General notions

We begin this section with the definition of three crucial quantities related to the
generator L°.

Definition 2.5
Let us define these notions:

e The Dirichlet form of L° defined for any f,g € L(r),

g(fvg) = - <f7L0[g]>ﬂ—'

e The spectral gap of L°, defined by
e, 1)

= 1n
fIVar. ()0 Varg(f)

)

with

Vare(f) = > |f(@) = f(y)Pr(a)n(y).

T,yeX
o The log-Sobolev constant of L°, defined by

e, 1)

a= inf ———=

c(H#o L(f)

with

L) =Y fa)log (f (@) ) ().

2
sex 17112

Next, let us define the total variation distance between two measures:
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Definition 2.6
Let i1 and v be two probability measures on X. The total variation distance between
w and v is given by

drv(mw) = 3 3 ) = v(@)]

reX

On multiple occasions, we will use the relative entropy between two probability
measures, also called Kullback Leibler divergence. With the convention log(%) x0 =
0, we get the definition:

Definition 2.7
For any two positive measures p and v on X with p absolutely continuous with

respect to v,
dxu(p,v) = log (5Eg> ().

zeX
Even though it is not a distance it has some interesting properties exposed in
the next proposition:

Proposition 2.8
For any two positive measures p and v on X with p absolutely continuous with
respect to v,

e dir(p,v) 20,

o dxn(p,v) =0 <= p=v,

Pinsker inequality: 2drv (u, v)? < dxi(p, v).

o dir(u,v) < ||l — V”?, With Vmin = Mingex v(x).

min

Proof. See [DSC96] for a proof of these results. The last inequality is standard in
the litterature and a proof can be seen in [GSS19]. O

The speed at which a reversible ergodic Markov process converges to its invariant
measure is exponential in the log-Sobolev constant.

Proposition 2.9

If L° is reversible, v € X, t > 0, dxr(m?,m)) < log (ﬂ(lz)) e—dat

Proof. We refer the interested reader to [DSC96] for proofs of this result. O

In addition to the relation between the log-Sobolev constant and the spectral
gap, there are some significant links between different deterministic times related
to the distribution of a reversible Markov process.

Definition 2.10
We have
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o Let T,uix be the mizing time of L°:

. 1
Trix = inf {t >0: rmnea)%{dqﬂv(mf,ﬂ) < 26} )
o Let Tyt be its random target hitting time:

Thiy = e XW(A)EJC(TA),

with Ta the hitting time of A for X;:
Ty :mf{tZO, XtGA}, ACX.
We now explicit the relation between those times, the spectral gap and the
log-Sobolev constant. To lighten notations, let i, = mingey 7(x).

Proposition 2.11 e We have

_t !
2 —log(mmin) 2
e Also,
1 1 2e
-—1 g Tmix < -1 .
7 i

e There is a constant ¢y > 0 independent from the Markov process such that,

Tmix < coThis-

In particular

1 1
> ———anda > .
coThiy + 1 (2 — log(mmin))(coThit + 1)

Proof. For the first point see [SC97], for the second and third ones see [LPW17]
and [Ald81] for a proof of these results in the discrete time case (though the proof
readily applies to a continuous case). Combining the two previous results we get
the last point directly. O

2.2.2 Poisson equation

The reason we are interested in the log-Sobolev constant is to use it to bound the
norm of solutions to the Poisson equation which we define here:

Definition 2.12
For g € LY(7), a Poisson equation associated with g, L° is the equation in ¢ : X —

R
L[¢)(z) = g(x) — wlg], w[¢] =0 (2.7)

These equations have explicit solutions:
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Proposition 2.13
For any g € L'(w) bounded, the equation (2.7) has a unique solutiong,. It is given

by

bg(z) = /Ooo (m®[g] — m[g]) dt.

Proof. We can check that ¢, given by

+oo
bol) = / (m#[g] — wlg) dt

is a solution to the Poisson equation. This quantity makes sense because the distance
between m{ and m decreases exponentially fast with ¢ by Proposition 2.9. Since X
is a finite state space, L° commutes with the integral. Thus with this expression
for ¢4, we get

+o00
L[gy)(z) = — / LO(m: g]) () dt.

Using Kolmogorov forward equation, we get that L°(m;[g])(x) = d;m¥[g]. Replac-
ing in the integral,

+oo
L0pg)(x) = — / dyme[gldt = —[mZ (g},

At time 0, m? is a Dirac measure on {z}. When t — +o00, m} converges in
distribution to the invariant measure 7, see for instance [LPW17], Theorem 4.9 and
thus mf[g] — 7[g] by the dominated convergence theorem because g is bounded.
We get

LOgg)(2) = g(2) — 7lg].

This also proves the existence of a solution to the Poisson equation. We have
7[pg] = 0 because for any t > 0, w[m;[g]] = m[g] by the invariance property of 7.

For uniqueness, consider ¢ and ¢’ solutions to the same Poisson equation. Then
Vo e X, L¢p — ¢](x) =0 .

This implies that (¢ — ¢')(l;) is a martingale by Proposition 2.1. Let € X, and
recall the definition of T:

T, = inf{t >0, X, = z}.

Since X is finite and L irreducible, we know that T}, is almost surely finite, which
implies that (¢ — ¢)(ltaT,) is also a martingale by the optional stopping theorem.
For any y € X,

(6—0")(y) = By [(¢ — &) (10)] = By [(6 — ) linr.)] L By [(6 — ¢)(Im,)] = (6—¢')(x).

Equality (a) is due to the optional stopping theorem. Thus ¢ — ¢’ is a constant
function. ]

We now explain how the spectral gap and Poisson equations are linked: recall
the notation myy = mingex 7(x).
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Proposition 2.14
For any g : X — R, we have

V2
199lloe < =7 ll9llo (—log(mmin)) "2 (2 = log(mmin))-
If Tmin g 6727

\/i(_ log(ﬂ—min))3

/2

2
[CH /S

Proof. The explicit expression from Proposition 2.13 gives

+oo
n¢gwmfz2ugnmlé dry (mi, m)dt

and then

1/2

+o0 1
ol <2lol [ (Gmilen)

where ¢F = log(m? /=), by Pinsker’s inequality from Proposition 2.8, we get by
Proposition 2.9 that

dKL(mf, m) = my [‘Pf] < - 1Og(7rmin)ei4ata

while Proposition 2.11 gives

¢
D —
a@= 2 — log(mmin)

This gives
I6gll o < 9]l 0 V2(—log(mmin))'/? /+ I O
g R 191l Og(Tmin ; exp 2_10g(ﬂ-min) ’

and thus,

—lo Tmin 1/2 2—-1lo Tmin
6], < v BT T2~ loglmmn)) o

ﬁ%ﬁ@@bamMWﬂQA%mm»

This concludes the proof. O

2.3 Glauber dynamics for QB-CSMA

2.3.1 Historical results

We are mainly interested in the spectral gap of the Glauber dynamics. It gives an
idea of the time it takes for the throughput at each queue to reach their steady state
equilibrium. The literature on the spectral gap of the Glauber dynamics is rich. See
[LY93] for a general bound on the spectral gap of the Glauber dynamics on a cubic
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graph. The Glauber dynamic can for instance be used to sample independent sets
according to a Gibbs distribution. See [Vig01] where the authors use a coupling
argument to bound the mixing time of the Glauber dynamics to estimate the gener-
ation speed of independent sets. Their focus was to see how the mixing time scales
with the number of nodes. They consider activation rates equal to 1~VTV across the
graph and deactivation rates IJ%V With T the maximum size of an independent set
in G and n the number of nodes, if v < 525, the mixing time scales like O(n log(n))
for large n. This result was first proved in triangle free graph in [LV99]. We refer
the reader to [RT98] to see how the mixing time, the spectral gap, the log-Sobolev
constants and other quantities are used in order to compare the performance of
different dynamics related to the Glauber dynamic. This type of bounds has been
used for the study of the classical CSMA to prove that the dynamic of the schedule
reaches an equilibrium fast enough. If the fugacities are small enough, the mixing
time of the dynamic scales polynomially in the number of nodes.

2.3.2 Spectral gap of Glauber dynamics for QB-CSMA

When the goal is to study QB-CSMA, one possible approach is to see how the
spectral gap of L{ (the generator defined in (2.2)) scales with ||g|| .. The value of
% the spectral gap of ||¢|| . may not have this form and for instance use information
about queues with smaller size but having this bound allows us to bound the spectral
gap as soon as the maximum of queue lengths is smaller than a constant. This allows
for a practical way of slicing the state space: the set {q € NV, max, ¢, < K} is
finite for any K < +o0o. When the activation/deactivation ratio is of the form
ef() most of the bounds on the spectral gap have the form

1 = exp(=Bf(llall)- (2.8)

As an example, in [SS12], using Cheeger’s inequality the authors prove a bound
which indicates that in any interference graph,

1 = exp (=2(T + 1) f(llall ) - (2.9)
In an unpublished note, Laurent Miclo proved that we can sometimes improve this
bound. Fix a numberings of the nodes V' = {vy,...,v,}, we define the sequential
boundary :

VEeN,1<k<n, Vy={veV|Fie{l,....k} st. (v,v;) € E}\ {v1,...,vx}}.

(2.10)
Let v(G) be the maximum degree of a node in G and ¢(G) the maximum over k of
the size of V. The bound obtained becomes

(1> Cexp(— (2 +min(n — 1, (1 +0(G))u(G))) f(llall ))-
We can optimize the bound by minimizing ¢(G) over numbering of V.

This method relies on a geometric path argument. See for instance proposition
1 of [SCI7]. The general idea is to first assign a path to all oriented pairs (n,7') €
S(G)2. For any two schedules (n1,72) € S(G)? that are subsequent on at least a
path, define a weight that acts like a congestion measure: this weight is computed
by summing the weight of each path over all paths containing the 7, to 7, transition,
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normalized by w%(n1)L{(n1,7m2) the steady state rate of transitions from 7y to 7.
The weight of a path is given by its length multiplied by the steady state average of
both extremities. In order to have a bound on the spectral gap, take the maximum
over all couples of schedules and minimize over the chosen set of paths to optimize
the bound.

From now on, we consider the case of polynomial activation functions, i.e.

1

f(g) = alog(g+1) and ¥_(q) = [ENCESICE

Informally, let
Bo=inf{b>0]1>Cllqg+1]"" Vg e NV},
with C' a numerical constant depending only on the interference graph. Let

log (¢4
Bo= sup limsup —M.
f increasing g—+o00 f(”q”oo)

Because of the previous bounds, for any interference graph, 5y < +oo. Because
of (2.9), the supremum over increasing function is finite. In fact, by (2.9), By <

2(T+1). By definition of 5y, for any € > 0, and activation function there is K < 400
such that for any ¢ € NV with [|¢|| , > K,

~ log(9)

) SPHe

which can be rewritten as

01 = exp(—(Bo +€) f([lall))-

The constant [y is the smallest number with this property. When considering
bounds on the spectral gap, we may refer to bounds on §y for inequalities such as
(2.8), i.e. for instance Sy < b means that there exists C' independent from b such
that ¢7 > C ||q + 1||;Oab when ||q|| . Heuristically, a lower fy implies a wider range
of a for which we can prove homogenization.

O——CO——0O

Figure 2.1: line graph with n nodes

Neither of the general bounds discussed in the previous discussion is tight and
depending on the graph topology one or the other might yield a better bound for
large n. In the case of a complete interference graph, the maximum size on an
independent set is 1, the maximum degree is n — 1 and for any numbering of the
nodes, there are n — 1 nodes in ¥ from (2.10). The bound of [SS12] yields By < 4
for any size when the unpublished one gives 8y < n+ 1 with n the number of nodes.
The bound of [SS12] is better as soon as n > 3. If the interference graph is a line of
size n (see Fig: 2.2), the largest independent set will have approximately % nodes,
the maximum degree is always two and if we number the nodes successively on the
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G'AQ

Figure 2.2: Complete interference graph with 5 nodes

line, the size of the sequential boundary from (2.10) will always be one. Thus the
first bound gives essentially n+ 2 while the second one gives 5 for any n. The bound
from [SS12] is worst as soon as n > 3. The important thing is the existence of this
Bo < 400 depending only on the graph G.

We prove at the end of the section the following lemma.

Lemma 2.15
If G is a complete interference graph, then for any ¢ € NV we have
04 Z L
llg +101%

We can also provide a lower bound for the mixing time independently from
spectral gap considerations:

Lemma 2.16
For any interference graph, we have

Thix 2 Cllg+ 1%, -

This implies 5 > 1.

Proof. The mixing time cannot scale slower than ||g + 1||%, . Indeed, if the schedule
starts with a queue with a large ¢, active, the exit time of the first state for the
schedule will be an exponential variable with mean 14 (g,+1)*. Using concentration
inequalities for exponential variables, we can prove that the probability of the exit
time for the initial state being smaller than C(g, +1)%? converges to 0 as g, — +00
if § < 1. Thus the mixing time for this dynamic cannot be smaller than C ||g + 1||Zf
for any 5 < 1.

Thus

2e
m4(0)

1 a
log () > T > C g+ 1%

This is enough for the statement about 3 because

1 1

7?(0) = > ot
O = s @1 2 Toale s 1




42 Chapter 2. Technical elements

If
1< Cllg+ 1 log(2e(1 + n flg + 1[15,))-

It is not possible to have ¢ > C'||q + 1”;0(16 and 8 < 1 because

Cllg+ 1" > Cllg + 1| log(2e(1 + nllg + 1%.)

for large [lg + 1| - O

In K-partite complete interference graph, we expect this conjecture to hold:

Conjecture 2.17
For G a complete K-partite graph, the spectral gap of L{ can be bounded by:

0> C g+ 10T

Proof stub: Our conjecture is true in a complete interference graph but it should
also hold for complete partite graphs: to switch between maximal schedules, all
the queues in a configuration must deactivate before the next activation. The rate
at which all the queues in a given schedule deactivate before an activation is at
worst C' exp (— T f(max, ¢,)). Using again concentration inequalities for exponential
variables, we get that from any state, the hitting time of 0 should be at most
Cexp (T f(max, q,)). The hitting time of 0 from any starting schedule o should
also be of the same order of magnitude. Using the strong Markov property, it can
be decomposed in failure cycles where it does not visit o before going back to 0 and
a success to visit 0. We already established that the time it takes to reach back 0 is
at most C'exp (T f(max, ¢,)). Moreover, the number of failures before a success is
by construction a geometric variable. Because the activation/deactivation ratio is
always greater than 1, the time it takes for a trajectory to go from 0 to ¢ should be
smaller than the time it takes to go the other way around. For this reason, we expect
the random target hitting time from last section to be C'exp(Y f(max, ¢,)). O

We will use the random target hitting time, Proposition 2.11 and the probabilis-
tic construction of Markov chains for our bound in the complete interference graph
case.

Proof of Lemma 2.15. Because of Proposition 2.11 in order to prove the desired
bound, we only need to prove that Tk, < C|lg + 1]|%. In this proof we use the
notation EZ to denote the mean of the process generated by L{ given that the
starting state is 0 € S(G). Recall the definition of Tht:

Thit = Emax m(A)E,(Ta).

Necessarily for any A C S(G), Ta < X ca
exists 00 € A such that T4 = T,o, and thus

T,, because by definition of T4, there

q q
T < max Z() ELy(T,).

Since a schedule in the case of a complete interference graph is either an active node
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or the empty schedule, this actually reduces to proving that
E3(To) < Cllg+ 1% and EG(T,) < Cllg + 1%, (2.11)

for any v € V by identifying the schedule {v} with the node v. Indeed, for v* #
v € V the process 1 needs to pass through 0 to go from v° to v and so the strong
Markov property gives

EY,(T,) = B, [To)] + B4 [T5,].

v

So let us prove (2.11). The bound on E¢(Tp) is obvious since by definition Ty under
2 is an exponential random variable with parameter ¥_(qg,) so that

1
V_(qv)

E¢ [To] = =1+ (g +1)" < Cllg + 1|5

Let us now prove that Eg [T,] < C||g + 1]|%. Under P, decompose the trajectory
into cycles away from 0: in the k-th cycle, the schedule stays in 0 for a duration Xy,
then moves to some ¢ € V where it stays for a duration Y and then comes back to 0.
Y). depends on the chosen node but it can be bounded above by }7k an exponential

variable with parameter m independently from everything. Similarly,

X can be bounded above by Xj the minimum of n exponential with parameter
%. If K € IN denotes the number of cycle before the schedule visits v, we can thus

write
K

T, = Z(Xk +Yi) + Xki1.
k=1
It is possible to bound K + 1 with a geometric variable with a parameter depending
only on the number of nodes: to do that use the probabilistic construction of Markov
process with independent exponential variables for each jump. Indeed, for any g € F
the intensity of activation of node v is at least % Similarly, the intensity of activation
of any node is at most 1. Hence the probability that a given queue activates after any

given idle period is greater than 5 /2_‘1_{2 Ty = 2n 7+ Since the trlals are independent,
K +1 can be coupled with a geometric variable with parameter 5-— which is always

larger. In particular,

G
T, < Z X, + Ye)
k=1

with G' a geometric random variable with parameter 5—— independent from the X K
and Yk s. it follows that

E{ [T,] < E[G] (Eg [fﬁ} +Eg {ﬁD ;

with
(5[]

Sl

)

and B
Ef V1] < Cllg + 1.

Gathering the previous bounds yields the desired result. O
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2.3.3 Influence of threshold function

Recall the activation rates from [RSS09], [GS10] and [SS12]: for any ¢ € NV,

eWol(a)

vl (q) = TEeme@’ and ¥? (¢) =1 -V (q),

with
W (q) = max(f(go), h(f(max gu)))- (2.12)

We will explain in this section the reason why such a function is used and the
drawbacks for this function h. When some queues are too small, a small variation
in ¢ can make big changes in the invariant measure of the dynamic with fixed q.
Even though the schedule reaches its equilibrium faster than the time it takes for
llgll,, to change significantly, if the invariant measure of the dynamic with fixed ¢
can evolve even faster, the equilibrium reached by the schedule will not be the one
corresponding to the current state of the queue lengths. The proof of [GS10] can
be tweaked to prove a time scale separation for polynomial rates but this requires
h to be linear. If f(q) = alog(g), T the maximum size of an independent set in
G and h(x) = dx, there is a time scale separation if a8 < 4, with 8 satisfying
(2.8). This ensures that the speed at which the invariant measure evolves is slower
than the mixing time of the dynamic. The logarithmic f corresponds to polynomial
activation rates. If ||¢||, is large, the mixing time of the dynamic with fixed ¢ is
essentially

exp(B1(lalloe))-

The “speed” at which the invariant measure of the fixed ¢ dynamic evolves with ¢
is given by

(o) — 7= & f (R (lall)))-

Since the mixing time is exponential, f cannot grow faster than log. Otherwise, but
cummulating increments, the time it takes for distribution of the Markov process
of generator L{ to reach 77 is too long compared to the time it takes for 79® to
evolve significantly. With f increasing slower than a logarithm, we get the “speed”
of the invariant measure smaller than

exp(~ F(llall0)).

using the linear threshold. The af < § condition ensures that the invariant measure
evolves slower than the mixing time of the fixed ¢ dynamic.

This information about max,, ¢,, induces some communication overhead between
nodes to be able to estimate this quantity. The goal of this threshold function is
to make it so that even when queues are small, their activation/deactivation rates
do not change fast. The evolution speed of the weights of queues that have a
small queue lengths is slowed because of the inclusion of h # 0 in the weights.
The authors of [RSS09] proposed a distributed scheme to estimate max,, ¢,, using
only gossiping between neighboring nodes. Even when reducing the communication
overhead required, the problem with this threshold function is that it degrades the
approximation of Max-Weight by the invariant measure. With the weights described
in (1.2) the invariant measure of L{ concentrates exponentially on

Wi(a),
arggglsa()é)< (q),0)
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when ¢ becomes large. Once of the advantage of QB-CSMA is that its invariant
measure approximates decisions of Max-Weights. The next discussion shows that
with weights of the form (2.12), Max-Weights can give bad service decisions.

When h(z) = dx and ¢ is chosen too big, it can even prevent Max-Weight with
weight W from being stable: picture a network with n+ 1 nodes arranged in a star.
There is one central node numbered 0 and Y outer nodes. If we used weights such
as in (2.12) and take Y9 > 1, when the queue lengths are large, queue 2 can never
have the maximum weight because even if queue 2 has the longest queue length the
combined weight of the T outer queues is Y0 f(max, ¢,).

Lemma 2.18
The Max-Weight algorithm on a star interference graph (Figure 2.3) is transient
with weight of the form

W (g) = max(f(gv), 0 f(max gu)),

for any function f and \ € RJ‘:, as soon as 0 > 1.

Proof. For any ¢ € NV, max,ecs(a) (W(q), o) = 0T f(|lqll,,) because 6T > 1. In
order to always schedule the independent set of maximum weight, the central node
can never be scheduled and thus grows to infinity even when the arrival rates are

in the capacity region. O
Node 3
Wa(q) = 0f(llall)
Node 2 Node 4
Wa(q) =2 6f(llall) Wa(q) =2 6f(llall)
Node 0

We(q) < f(llallo)

Node 1 Node 5
Wilq) = 6f(llqll) Ws(q) = 6 f(llall o)

Figure 2.3: Star interference graph with 6 nodes
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If ¢ > 1 and there is a time scale separation, the fraction of the time the central
schedule is chosen is negligible as ||¢||,, regardless of the configuration of queue
lengths. Even if max-Weight is stable with weights W, the next lemma explains
how the function h “degrades” the approximation of Max-Weight with weights f(q)
for QB-CSMA. Even when throughput optimality is preserved, approximating Max-
Weight with weights W means it is not maximizing with weights f(q) anymore. It
is expected that delay is worse with weights W than with weights g(q).

Lemma 2.19
There is a distinction between two cases:

e h(x) = dx: For any € > Y4, there exists q' such that for any configuration
q € NV with ||q]l, > ¢",

™ [(f(9), )] = (1 —¢€) max (f(q),p).

pES(G)

e h(z) = o(x): For any € > 0, , there exists q* such that for any configuration
q € NV with [|q|l > ¢'

T [(f(g),)] = (1 =€) max (f(q),p)-

PES(G)

We get the result by letting € — 0.

Proof. Fix € > 0 and X7 := {n € S(G) : {f(¢),n) < (1 =€) max (f(q),p)}. We
pES(G)

aim at proving that if ||g|| . is large enough, 79(X?) can be as small as desired.

RXN = 3 7o)

peEXY
B Z eW(a).p)
o Z e(W(q)7p>
PEXT L 5(G)
exp((f(q) + h(f(llgll.)), r))
<2 S W @)
pexs peS(G)
exp((1 —¢€) max (f(q),p))exp(Th(f(llall)))
<y peS(G)
= S eW@wp)
pexd pES (@)

Furthermore
Y W@ s 3 M@ o0, (U @)e)
peS(G) pES(G)
and so m4(X9) < 2" exp(Th(f(l|qlloo))—€Wmaz). Whenever h(f(|lqll..)) = o(f(llall)),

this bound goes to 0 when W4, grows to +oo for any € > 0. If h(f(|lqll.)) =
§f(llgll..)s there is ¢* for which 7(X) < € as soon as |||, > ¢ if T <€
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Under the conditions stated above, in both cases, for any ¢ > 0,

wt (7€ 50, (fla)o) < (1-9 o (F@))) <.

and so for any ¢ > 0,

m[{f(g),)] =2 1 =1 =€) max (f(q),p)

peS(G)

for max, g, large enough, which concludes the proof by letting ¢ — 0.
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3.1 Main result

In this Chapter, we present explicit bounds for the “homogenization error” for the
model described in Section 2.1.2. Recall the generator of this process given in (2.1)
and (2.2), and the homogenized version from (2.4). Recall that for any ¢ € NV and
o€ S(G),

Li[h)(o) = Y 00V () (h(o — ") = h(o))

veV
+ > 10 = 0w = 0) ¥ () (Ao +€*) = h(0)),
veV w~v
and
Lulg)(@) = D> Ao (9lg+€”) —9(@) + Y 7(00 = Dlg,50 (9(q — €”) — g()) -
veV veV

Notice that the 0 — 1 service rate in L{ is replaced by a steady state average in Ly,.
The main goal in this section is to provide some bounds on the difference between

49
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those two generators when integrated over finite time intervals:

/ " (229 - 1) @) (3.1)

with g : ]RK — R, smooth enough and 7' < +oo0. This quantity allows us to
compare the dynamic of the slow process with its homogenized version, the queueing
process of generator Ly,. Let U C (0, +00)" and recall that 0 is the empty schedule
and

7V =inf{t >0, Q(t) ¢ U}.

We will prove the following theorem.
Theorem 3.1

Assume U is such that 0 < mingey 79(0) . Assume g : U — R is bounded and twice
differentiable. Then, for any T > 1

t
E| swp | [ (L9~ L)lg)@)ds| | < CBomax 0,9l T
t<TArY [Jo veV '
2
+ VTS0 (a0l + VT i 02,00l )
with 1
Qg = (— log(min79(0)))*/>———
0= ( og(gggﬂ( ) —l
and
02 Qo

Bo= I+ae " min '
My eV,qeU Qv veV,qeU Qv

We now define the main tool of this chapter:

Definition 3.2

For any function g : S(G) — R and any ¢ € NV we denote by ¢,4(q, -) the unique
solution to the Poisson equation associated to the fast generator L{ and the function
g, i.e., ¢4(q, -) is the unique solution to the equation with unknown ¢

L{l¢] = g — mg], n?[¢] = 0. (3.2)

In particular, ¢,(q, -) is the solution to (3.2) with g(o) = o, for v € V, which
therefore satisfies for any ¢ € NV and any n € S(G)

L{ [¢u(q, )] (n) =0y — 7(0p = 1) and 7[¢y(q, )] = 0. (3-3)

The proof of Theorem 3.1 has two steps: first, provide a bound in terms of
solutions to the Poisson equation (3.2) and then controlling these solutions. These
two steps are performed in Sections 3.2.1 and 3.2.2 respectively. To see how the
Poisson equation comes into play, let us proceed with the following preliminary
computation. Using (2.1) and (2.4), we can rewrite the difference in generator as

(L™ — Ly)[g)(q) = Z(Uv — (0, = 1))1g,>0(9(q — €”) — g(q))-
veV
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We get from (3.3)
Oy — Wq(av = ]-) = L?[(bv(q? ! )](U)

Fix a function g € D(Ly) and define f,(q) = g(q — €”) — g(g). Since f, does not
depend on o, this makes it possible to rewrite

(UU - 7T-q(av = 1)) fv (Q) = L? [Fv(qa )] (0)

with F,(q,0) = ¢(q,0)f.(q). Integrating over a trajectory of (@, o) and stopping
before 7¥ means that 1g, (550 = 1 for all v € V and s < 7Y because U C
(0,+00)Y. We omit the indicator in the next computation. In addition, making use
of Proposition 2.1, by integrating over a trajectory, we finally rewrite this as

/ t (L2~ L) [9)(@Q(s))ds = 3 / t (70(5) = 799 (00 = 1) £ (Q(5)) s (3.4)
0 vev /0

=3 [ Y R@e). o)

veV

In order to prove Theorem 3.1, we will individually bound all

/o (7u(s) =790, = 1)) £ (Q(s)) ds = / L9 [6,(Q(s), ) F(Q(s))] (0 (s))ds

0

for a generic function f in Lemma 3.3 using the same decomposition and then sum
over v. The Poisson equation gives us an alternative representation of o, — 7%(c, =
1). Using the fact that for any h € D(L),

L[h](g,0) = L{[h(q,)](0) + LI [h(- 0)](q),

and Proposition 2.1, we get

/ LEW[F,(Q(s), )] (0(s))ds = [F,(Q(t), o (t)) — F(Q(0),(0))]

Mg (t) - / L2 [F,(, 0(s))] (Q(s)ds.  (3.5)

It is with this expression that we will prove Lemma 3.3.

3.2 Proof of the main result

3.2.1 Control in terms of solutions to the Poisson equation

This section provides a first step toward the proof of Theorem 3.1. We will first
derive a quantity useful to bound (3.4) in terms of the following constants:

Q= s lopa .. andB=  sup  max|6,(q£e"0) — dy(a.0)].
gcU, lgllu<t © > g€, |lgllo<1vEV0ES(G) * !

During this section, we consider v € V fixed. Recall that 7V is the exit time of
U for the process of queue lengths and we use C' as a numerical constant that may
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depend on the interference graph, the arrival rates and whose value is irrelevant to
the proof. The goal will be to prove this lemma:

Lemma 3.3
For any v € V, finite time horizon T > 0 and any f : U — Ry differentiable, we

have

< CQ|floy +CVT [|f||oo,U (4 B(1+VT)) + max [Dugll e o A1+ VT)|

E / (o(s) = 79, = 1)) £ (Qs)) ds

0

sup
0t TAFY

From (3.5), we get

/0 (70(5) = 720, = 1)) 1 (Q(s)) ds = [F(Q(1), ™ (1)) ~ F(Q(0), 7(0))]~ M ()

- / L2 [F(Q(s), )] (o(s))ds,  (3.6)

0

with F(q,0) = ¢y(q,0)f(q). We will deal with the martingale term in Lemma 3.4.
For the F terms, we will use

1F(g,0) < [[flloo, 2 (3.7)

Recall that

LI[fl(g) = > [ (fla+e”) = £(q)) + ouwlg, >0 (flg— €)= f(a))],

weV

so for the LI[F] term,

[Flg£e®,0) = Flg,0)| < max [0 fll oo iy 2+ | flloc,v B, (3.8)

because f(g+e*) — f(q) = fol Ow [ (g £ ue*)du.

We now explain how we control the martingale term:

Lemma 3.4
Recall F(q,0) = ¢y(q,0)f(q). We have

E| sup |Mp(t)

0<t<TATY

< OOV (Il + mx 071 ) + OV If s B

Proof. Using Doob’s inequality for the first inequality, Itd’s isometry for the first
equality and Proposition 2.1 for the second equality, we have:
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E| sup (M§(t)

t<TATY

AE [(Mp(T A 7Y))?]

=4E [(Mp) (T A7Y)]

=4FE /0 " TIF(Q(s),0(s))ds| .

According to (2.3), we have

= 3" N (Flg+e®.0) — F(q,0))?

weV
+ > owlgy > 0(F(g—e*,0) = F(g,0))*
weV
a
+ Lo—eY)—F(q0))} ——4—— 3.9
l;/ (g0 —e" (¢,0)) 15 (g £ 1) (3.9)
1—0yu)(1—0y,)
, ) — F(q, 2 Huna . 3.10
+l§ (g0 +¢€") = F(q,0)) It (gt 1" (3.10)

We integrate this quantity over the trajectory (Q,o) for t < T A 7Y: along this
trajectory we bound the terms o,(s), 1/(14+(Qw(s)+1)*) and 1/(14+(Qw(s)+1)~%)
by one. Recall that F(q,0) = f(q)¢y(q,0): thus for ¢ € U, using (3.7) and (3.8),
we obtain

TNAT 2
B[ TIFQE).oe)ds| < 207 (107 4 1| B) 4201 0P,
0 v

Using /22 + y? < |z| + |y| and Cauchy-Schwartz inequality, we obtain

B| s Mr(0)] < OVET (Il + 0510, ) +VET i B
0KtKTATY ’ veV ’ ’
This gives the announced result. O
Remark 3.5

This lemma can be improved in the case of a complete interference graph: in this
case we use the bounds

Oy < 1

1+ (Q'u + ]_)a = InianU,wGV QZ;

and

[[O-ow)-0,) =1,

wn~v
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in (3.9) and (3.10). Recall that og = 1y—9. We will then control

/OT oo(s)ds.

The bound then becomes

. +CQ\/Tmea‘3( 100 fll ooz

mingey,vev 4y

TATY
/ oo(s)ds
0

With this improvement, and T > 1 the bound in Theorem 3.1 becomes

0<tKTATY

sup |MF(t)] < CQ\/THJCHOO,U

+COL\E 2l + CVT [ flloow B-

B [ (29 - 1) @enas

sup
t<TATU

T TATU
CcTO H? N 9, 1/— E d
* Our,riluae}\(/H ”*“’gHOO’U—F Orgnea&(” ngO"’U mingeyvev 49 * /0 7o(s)ds

cQ 0 .
+ Orjnea‘}( || 39||DO7U

< CBy max 10vglloo,r T

Next let’s prove Lemma 3.3 and explain how to use this bound in order to control
the homogenization term.

Proof of Lemma 3.3. Using decomposition as in (3.6), we obtain

| (706 =720, = 1)) £ (@(s)) ds| < 1F(@(0). 0)

+ sup  [F(Q(t),0(t))]

0t TATU

sup
0<t<TATY

+ sup
0<t<TATY

+ sup |Mp(t)].
0<t<TATY

/ L2 [F (-, o(s))] (Q(s))ds

0

As Q(t) € U for t < 7Y, using (3.7) and (3.8), we have a control on the three
first terms in the right-hand side of the previous display. First by definition of F'
and (2,

[F(Q0),0(0))[+  sup [F(Q(t),a(t))] < Clflloo,uf2

0<t<TATY

Second, recall that

LI[g)(@) = > A (gla+€") —g(a) + > oulg,0 (9(g — €) — 9(a))

veV veV
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so it is essentially a sum of discrete derivatives, and thus by (3.8),

sup
0t TAFY

[ 129 P (o) @s)ds

0

< CTQmax 10 fllso.r + CT [ flloo,v B.
Third, by Lemma 3.4,

E| sup |[Mp(t)|

0<t<TATY

< OWT (Ifleys +mas 03511 ) + VTSl B

Combining these bounds gives the result:

t
swp | [ (0(9) = 19, = 1)) £ @) s < COVTfl
0<t<TATY |J0
+ CQ\FTIJnea‘} 10 fll oo.cr
+CVT||fllow B
+CTO max 10 fll oo.tr
+ CT|| flloo,u B
+ Ol flloo,u 2.
Factorizing this inequality gives the result. -

3.2.2 Control of solutions to the Poisson equation

In the previous section we have established a bound on some averaging quantity in
terms of the constants 2 and B. The goal of this section is to provide a bound on
those quantities.

For ¢ € NV introduce a? and ¢9 are the log-Sobolev constant and spectral
gap associated to L, respectively, and recall ¢4(q, -) the solution to the Poisson
equation

Li[p] = g — m[p], np] = 0.

Lemma 3.6
Forqe NV andv eV let

7
e ) Qg
q q
Bv(Q) - qo + 1 + q11)+a
Then

1649, )l < Cllgllo 2(g) and e 0g(q £ €”,0) = dg(q,0)| < Cllgll Bu(q)-

(3.11)
Moreover,

sup Q(q) < Qo and sup B,(q) < By. (3.12)
qeU qeUweV
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Proof. The bounds from (3.12) are direct consequences of the definitions of U, Q(q), Qo, By (q)
and B .

The first bound of (3.11) on ||¢4(q, - )|l is actually the result of Proposition 2.14.

We now prove the second bound of (3.11). Fix temporarily v € V, and let ¢ € NV

with ¢, > 0. Let ® == ¢4(q — €, -) — dq4(q, -) and

H(q,0) = L{[®](0).

Since m?[L{[f]] = 0 for any f, 79[H(q,-)] = 0 by the previous identity. In addition,
again by the previous identity, ® is the solution to the Poisson equation associated
to H(q,-): ®(q,") = ¢n(q,)(q,-) and the first bound in (3.11) implies

16g(a =", ) = bg(a )l < 2Aa) [l
Since by definition of ¢, we have LI[¢,(q, - )](c) = g(or) — 79[g] We obtain
H(q,0) = L{[pg(q — e’ -) — d4(q, -)](0)
= (Lf = L8 ) [bgla— e, (o) + LT [Bgla — ", )](0) = L1y (a: ))(@)
= (L= L) bgla— e D (@) = D2 (77 () = 79(p))a(p)

pES(G)

and so

1) < ||(2 = 28) [Bala— e || +llgll 3

oa

w17 (o) — 79(0)].

For any function h we have according to (2.2)

(27 = L) (o) = 00 (Va0 = 1) = ¥—(0,)) (h(or = ") = h(o)
+00 (g, = 1) = ¥4(0.)) (ko + €)= h(o)

and so since U4 + W_ = 1, this gives
|z = 2a) ]| < bl 19 a0 — 1) - 2 @)1
Therefore, using again the bound (3.11) gives
, 1
[(z ~ 2) oo = 1| <49 Lol [ 1¥4ta, —w)ldu

Direct calculation yields

a
v (g,) = —
-0 = T (1 (g + 12
and so |\If’_(qv - u)| < % < ¢, 17 as long as u < 1. Similarly, we now need

to compute the partial derivative for 77(c). One can check that

_ _am?(0)mi(o, = 1)

0,7(0) 1

)
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and if o is not the empty schedule,

_ami(o)mi(oy, =1)  an?(o)

Oymi(o) =

gy +1 gy +1 o=t
In any case, |0,7(0)| < qv% The same reasoning still applies for ¢ + €.
Gathering the previous bounds gives the result. O

Proof of Theorem 3.1. In Lemma 3.3, take f,(q) := g(q¢—e”)—g(q). Notice that if ¢
is twice differentiable, for every v, f, is also twice differentiable. Notice as well that
[ folloo,rr < maxy [[0ugll, ¢y and maxy, [|Ow foll o0 p < maXy,w HagngOO. Lemma 3.6
states that 2 < Qg and B < By so we get the result by summing over V.

3.3 Scaled process

3.3.1 General considerations

The explicit bounds that we obtained in the previous sections allow us to go further
and obtain some asymptotic results for renormalizations of the process. We give
a proof for a bound here and refer to the next chapters for more applications and
detailed discussions. We consider queue size starting from a large order of magnitude

N. We want to study the evolution of N Since we rescale the process in space,

it takes a long time to evolve, that is why we also speed up time by N? to have a
non-trivial dynamic. We consider 6 > 0 fixed in this section. Let

QN’Y)
N

QN(t) =

and

o (t) = o(N%),
with 6 € {1,1 + a}. The case § = 1 will give us a first order approximation d la
law of large number, we will also consider # = 1 4 a in the critical case to obtain a
heavy traffic result. We compare the evolution of the network with the evolution in

the homogenized case. The generators for the scaled queueing process thus become
for any (¢,0) € +INV x S(G),

oalfl)) =5 A (£ (a4 5) = 1) +outasa (£ (0= 5 ) - 100)).

veV

The generator for the fast process becomes for any (q,0) € %]NV x S(Q),

L{ y[h)(0) = N~ 0,¥_(Ngy) (h(o — ") = h(0))
veV

+ N [T 0w)(d = 00) ¥4 (Naw) (h(o +€*) = h(0)),

veV w~v
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and the homogenized generator:

Lun[fl(q) = N’ Z |:)\v (f (CH— j:;) - f(CI)> +7No, = 1)1,4,50 (f (q— j\j) —f(q))} )

veV

This leads us to consider
t N
| (239 L) 6@ ())as
0

- [ Y (o) - 79, = 1)) (9 (%0 - 5 ) ~ @) as

veV
[ % (o) =2 =) (o (@) - ) o1 o
= [T (0 - 1) @ (313)

with g%V (g) = g(3). For localization, we will need a candidate limiting process for
explicit bounds. The localization set U for QV will take the form:

U={qcRY |qe(C_,C)"}, (3.14)

with C_ > 0 and C > 0 independent from N. We then use Theorem 3.1 with gv
and T/ = NT. In Chapter 4 we will choose # = 1 to obtain a fluid limits first order
approximation. In Chapter 5 we will choose 6 = 1+ a. We will see that § = 1+a is
the correct time scale to see the evolution of the sum of coordinates in the critical
case in a complete interference graph. We will derive a second order heavy traffic
approximation. See the discussions in Chapter 5 for more details on this time scale

Corollary 3.7
Assume QN (0) = ¢° € (C_,C1)Y, let g : RY — R be twice differentiable. Assume
that there exist § and C' € (0,400) such that for any ¢ € U and N > 1,

Ne > C||Ng+ 127

Then for any 8 > 0 and N large enough,

E sup

ISTAFU (QN)

/Ot (L;Z[(S) — Lh7N> (9)(QN (s))ds

] < CT max ||9yg| o iy NOTF D=2 log(N)?
2 0+apB—2 3/2

+ C’Tvr’xllﬂae)%/ ||8U7wg||m7UN log(N)
+ CVT max[|9yg| . N0 log(N)?/2.

In the case of a complete interference graph and 6 =1+ a, we get

E sup

t<TATY(QN)

/Ot (L:;]]VV(S) _ Lh,N) (9)(Q" (s))ds

+ CT’UI,I’Lané)%/ H@g,ngooﬂ N2t 1og(N)3/2.

< OT max |0y 9]l o 1s N3 log(N)3



3.3. Scaled process 59

Proof. Picking up from (3.13), we need to provide a bound on

E

s | . (£e® — 1) [gNKQ(s»ds]

0Kt NOTATY

Recall the result from Theorem 3.1

E| sup

t<TATY

229 - L @enas

0

< CB v T
] CBo max [[0vg]| oo i
2
+ CVTQ, (m§ 10091 c,ir + VT macx, Haw,ugHoo,U) )

For the first part let’s apply Theorem 3.1 with a time horizon NT and ¢V. By
stopping the process before 7V (Q"), using Lemma 3.6 and the localization, we are
able to prove that Qy < CN%? log(N)3/2. From Lemma 2.16, we get that § cannot
be smaller than 1. For this reason af — 1 < 2a8 — 1 — a and

By < ON?871=05g(N)? 4 CN¥P~1log(N)3/2 < CN?*P~1-]og(N)3.

8vgNHOOJ\[U = % ||avg||oo,U

E

s [ " (o - L) [gNMQ(s))ds]

0Kt NOTATY

< ON*P71log(N)*N ™" max 99l o, N'T
IS !
+CVNOT N log(N)3/2 <ma&(||8vg||ooUN_1+\/WN maD%/Haw 'ugH ) :
ve ? w,ve

Gathering the terms, we get the first result.

The second part is a direct consequence of Lemma 2.15, Remark 3.5 and Lemma
5.8. Lemma 2.15 states that in the case of a complete interference graph g =1, we
will prove in Lemma 5.8 in Chapter 5 that,

E oo(s)ds

NF(rArY (QY))
/ < CT(N + N?).

0

The localization argument will allow us to bound scaled queue lengths away from

0 and thus ———— < CN—%. For more details regarding either scalings, see
ming cyN yev v

the respective chapter. O

3.3.2 Fluid limits in a complete interference graph

Let’s consider the case § = 1. Integrate the scaled T"and [|0,g|| . ;; and max,, ,ev |\a§,7vg||oo U

in the constant C. In the full interference graph, 5 = 1 and the term of leading



60 Chapter 3. Homogenization through Poisson equation

order of magnitude becomes N “=3 and we get

E sup

t<STARU (QN)

/Ot (L;JJ\:’(S) _ Lh7N> (g)(QN(S))ds

1 < CN® 2 log(N)3/?

Our condition for the homogenization error to vanish as N — 400 becomes a <
1

5 and that may be somewhat surprising. On the one hand when queue lengths
are of an order of magnitude N, they take a time of order N to evolve. On the
other hand, the mixing time of Lévq is of order N* by Lemma 2.15 so we could
expect homogenization to occur as soon as a < 1 because in this case the schedule
homogenize faster than the time it takes for queue lengths to evolve. Instead, we
are able to prove that homogenization holds as soon as a < 1/2. We do not know
whether our condition for homogenization is tight. We may have lost possible values

for a because of the rough absolute value bound we use

|pu(q,0) — ¢v(QaU/)| <20

in (3.9) and (3.10) for instance. We would either need another proof method or
better knowledge of the solution to some Poisson equations to check if the condition
is also necessary. Whether the error terms from Corollary 3.7 continue to vanish
for 1/2 < a < 1 and 6§ = 1 constitutes in our view an interesting open problem,
which also testifies from the difficulty to prove fully coupled stochastic averaging
principles even in seemingly simple cases.

1.2
1
2 0.8 "
e
[2)
c
2 0.6 - —Q,+Q,+Q;
—
—Q
S 2
&0.4; _q,
0.2
0 L L 1 L |
0 2 4 6 8 10

Time

Figure 3.1: Evolution of 3 nodes with QB-CSMA, a=0.4, N=1e7

Both figures represent the evolution of queue lengths for the same A = (0.2,0.3,0.5)
but different values for a. In both cases, the sum of coordinates converges to a con-
stant process but when a > 0.5, it is unclear wether the convergence still holds. If
it does, the convergence seems a lot slower as soon as a > 0.5.
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Queue lengths

1.2

0.8 -
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> WMMW

Time

Figure 3.2: Evolution of 3 nodes with QB-CSMA, a=0.7, N=1e7
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Fluid Limits of QB-CSMA
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4.1 Context

In this chapter, we will prove fluid limit results using the homogenization result
from last chapter. As before we ignore the dependency in G for all notations. We
will distinguish two cases: general and full interference graphs and specify only
when necessary. Without any information on the interference graph, starting from
a positive initial condition at each node, we are able to prove convergence of the
fluid limits to a deterministic process governed by an ODE up to the time this ODE
hits 0 in one of its coordinates. In the case of a complete interference graph, we
are able to go further and distinguish (sub/super)critical cases giving three possible
behaviors and we give a proof for convergence of the fluid limits for any initial
condition, any arrival rates and any finite time horizon. In this chapter, the process

63
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of interest will be denoted (Q,o") and is given by

Q(N?)
N

QN (t) = and o (t) :== o(Nt).

To be rigorous, we would have to add a superscript to the unscaled process: we
actually consider a sequence of networks where the initial condition may depend on
N. For the sake of clarity of exposition, we will omit this dependency in IV for the
initial state. We will consider situations where % —¢">0as N = +oo. We
will use the scaled generators from Section 3.3 L y and L{  with 6 = 1.

In this case the identification step from [Kur92] mentioned in the introduction
Section 1.3.1 is not clear because deactivation rates converge to 0 in the limit. In
particular, the asymptotic generator

L= lim L9
N—+oco

describes a reducible dynamic: it starts at 0 and then jumps to one of the possible
states eV € S(G) from which schedules where nodes interfering with v are active
become inaccessible as long as the scaled queue lengths remain positive. A situa-
tion with the absence of uniqueness has been studied in [HK94] for a general loss
network. They show that any accumulation point must be a linear combination of
the different stationary measures but no general method seems to exist to charac-
terize this combination. To be more precise, it is possible to identify any limiting
point of the occupation measure of the schedule as an invariant measure of L7,
see Theorem 3 of [HK94]. In our case, for any bounded f : S(G) — R4 and any ¢
bounded away from 0, L{™9(f) is given by

L (f)(0) =Y [[ (0= ow)(1 =00) (h(o +€”) = h(0)) .

veV w~v

Any Dirac measure on maximal stable sets (or mixture of such measures) is an
invariant measure for this generator and thus this will not be enough to identify
the limit. We postpone the discussion about the method from [LN13] to the next
chapter as the interest of our method becomes more obvious.

4.2 Main results and heuristic

4.2.1 Limiting process: general interference graph

Recall the definition of S*:
5" ={o € 5(G) | |of =T},
and the definition of the stoping times 7¢:
7¢(f) = inf{t > 0, mvinfv(t) < €}

We begin by identifying a potential limit using the homogenized process. On the
homogenized process, because of Lemma 2.4, we will localize the process such that
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the asymptotic service rate will be given for any v € V' by

ao.
Oy H qw w

T(v) = 7d(0y =1) = Z Lapw-
iy s Z H quw

pES* weV

Let
g:(0,4+0)V  —[-1,1]V

q — A\ — 71 (4'1)

be the difference between arrival rates and homogenized departure rates. The func-
tion g is locally Lipschitz on (0, +00)Y by differentiability. Let ¢° € (0, +00)Y. We
will consider the equation with unknown f with values in (0, +-00)":

{4 (12)

Lemma 4.1

For any ¢° € (0,+00)V, there exists at least one solution of (4.2) defined in an open
interval D C R containing 0.

If Dy and Do are two open intervals containing 0 such that ¢' : Dy — (0,400)"
and ga : Dy — (0,+00)Y are two solutions of (4.2), then ¢'(t) = ¢*(t) for any
te DN Ds.

Proof. Since g is locally Lipschitz on (0, +00)Y, this is a direct application of the
Cauchy Lipschitz Theorem, see Chapter 5 Section 3.1 and 3.3 of [Dem16]. O

Technically, each definition set I gives a different solution but since for any given
t € R there is at most one possible value for the solution evaluated at time ¢, any
solution can be extended to a unique maximal solution that has the largest (for
the inclusion) definition interval. There exists an open interval D* C R such that
any solution to (4.2) is a restriction of the maximal solution defined on D*. By the
maximality criterion of [Dem16] Chapter 5 Section 2.6, the solution ¢™** : D* —
(0,+00)Y is maximal if it escapes any compact of (0, +00)" when t — sup D* or
sup D* = 400 and similarly, inf D* = —oo or the solution escapes compacts of
(0, 4+00)" before that time. By the characterization of compact of (0,400)" this
means that sup D* = 400 or lim;_,sup p+ ¢ (t) = 0 or +oo for some v € V. The exit
time only depends on the initial condition and we denote it

Text (qO) = sup D*.
In fact we are interested in solutions with a domain contained in [0, +00).

Definition 4.2
For any ¢° € (0,+00)V, we call

q*(-,q°) : [0,400) — RY

the restriction on [0,+00) of the mazimal solution of (4.2) with initial condition

q°. The solution is extended after T..;(q°) by stating that

Vs 2 07 q* (Text(qo) + S, qo) = tﬁ’]l’im(qo) q* (ta qO)
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4.2.2 Identification of the limit: Complete interference graph

In this section, we go further in the case where G is a complete interference graph.
Let’s define a slightly different equation. We introduce the next equation in order
to specify what happens when approaching 0 or starting in this state. When G is
a complete interference graph, let’s define ¢’ as the only (existence and uniqueness
are proved in Lemma 4.3) function f: Ry — ]RK that is continuous, differentiable
almost everywhere (everywhere except at t = 0 if ¢° = 0 or inf {t > 0, f(t) = 0}),

such that
fr=9g(f) if f#0
s1(f)(t) = max(s1(¢°) + (s1(A\) — 1)t,0) (4.3)
£(0) =¢°

We now give an informal description of two important lemmas that will justify this
definition and link solutions to this initial value problem with solutions to (4.2).

We will show in Lemma 4.4 that the only possibility for queue lengths to reach 0
is if they do it at the same time. Imposing this behavior for the sum of coordinates
of the solution to (4.3) ensures that either the sum of coordinates is increasing
and is never null for ¢ > 0 or the sum of coordinates decreases to 0 and stays
absorbed. Hence this behavior is consistent with the extension of solutions to (4.2)
from Definition 4.2. We will see in Lemma 4.3 that this is enough to uniquely
characterize the solution.

As long as ¢f(t) # 0 the condition on the sum is redundant by summing the
derivatives over V. Without the condition on the sum, the initial value problem is
not well defined when ¢° = 0. We explain in the next discussion why the condition
on the sum allows for a unique characterization of the solution. By imposing the
condition

s1(¢;)(t) = max(s1(¢°) + (s1(A) — 1)t,0),

it ensures that if s;(\) > 1 and ¢° = 0 the solution escapes 0 instantaneously and
if s1(A) <1 and s1(g:(t)) = 0 then s1(g%(t + s)) = 0 for any s > 0.

Lemma 4.3 states that ¢*(-,¢") with ¢V € (0,4+00)V has a unique limit as
¢ — ¢° € RY. This limit is noted ¢} (-, ¢°).
e If ¢° € (0, +00)V this limit is the solution to (4.2) with initial condition ¢°.

o If ¢ € RY \ ((0,400)" U{0}), the initial value problem (4.2) has a unique
solution on [0, +00) for a complete graph.

e If ¢ = 0 and s;(A\) < 1 the limit is the process constant equal to 0.

e If ¢ = 0 and s1(A\) > 1, there exists a unique continuous function differ-
entiable everywhere except at ¢ = 0 such that f(0) = 0 and s1(f)(t) =
(s1(A) = 1)t for any ¢t > 0 and f'(t) = g(f(t)) for any ¢ > 0. We also call it

q:(-,0) and we have ¢*(-,¢") — ¢:(-,0).

If ¢° € RY \ ((0,+00)¥ U{0}), let’s extend the definition of Tey:

Text(qo) = Nl—lgkloo Tcxt(qN)'
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If s1()\) > 1, we will see that Ty (q°) = 400 so there is a unique solution to (4.2)
whose domain is [0, +00). If s1(A\) = 1 and s1(¢°) > 0 the same behavior occurs.

If s1(A) < 1, all the coordinates reach 0 at the same time. After that time,
we will prove that the process of queue lengths remains absorbed in 0 on the fluid
scale. Because of that, it is natural to further extend the domain of the solution
q* up to (0,+00) by stating that in this case once ¢*(t) = 0, ¢*(t + s) = 0 for any
s 2 0. We now give a more formal description of the behavior mentioned above.

Lemma 4.3
Let ¢V € (0,400)" such that ¢V — ¢° € RK.
e If° >0 forallv eV, ¢ (-,¢") — ¢*(-,q°) uniformly on compact time sets .
e If there exists v € V such that ¢0 = 0, the limit is still unique and
1- * . N = * . 0
yim " (a) =q"(,4")

is a solution to the initial value problem (4.3).

o Forany ¢° € IRK, the solution to the initial value problem (4.3) is unique.
Proof. See Section 4.3.2 for a proof of this result. O

Uniqueness in this lemma is in the same sense as in the previous one. To prove
this lemma, we explain in the next lemma why the complete interference graph
constitutes a particular case: the dynamic (4.3) ensures that all coordinates touch
0 at the same time if they do at all. Recall the definition of the stopping times

70(f) = inf{t > 0, min f,(t) < 0}.
v
The next lemma is required to prove uniqueness of solutions of (4.3). We will
justify the existence of solutions in the proof of this result and then prove that the
properties desribed hold for any solution to (4.3).
Lemma 4.4

Let ¢° € RY and ¢* any solution to (4.3). Then 7°(g}) = 7°(s1 0 ¢}). In addition,

e Ifsi(\)>1,7%s10q}) = +o0.

s 0
o If s1(\) <1, 7%(s1 0 qF) = 1_15(3(3)

e Ifsi(\)=1and ¢ # 0, 7°(s10¢}) = +o0.
e Ifsi\)=1and ¢’ =0, %(s10¢}) =0.
Proof stub. The general idea is that no coordinate cannot be decreasing when too

small compared to the sum. The expressions for 7°(s; 0 ¢*) are direct consequences
of the description of the sum. See Section 4.3.2 for a proof of this result. O
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Because of this Lemma, we keep the ¢*(-,¢°) notation for solutions to (4.3)
when unambiguous: they coincide with the extension given in Definition 4.2 when
q° € (0,+00)" and ¢} is the only solution of (4.2) defined on [0, 4+oc) when ¢ = 0
for some v.

4.2.3 Main result

The main theorem of this chapter concerns the fluid limit of the system. It states
that over small enough time horizon, the scaled process of queue lengths converges
uniformly in probability to ¢* given in the previous section. Recall the definition of
the process

and f is such that
> Cllg+1]7

For instance 8 = 1 in the case of a complete interference graph. Recall that LN
denotes the convergence in probability from Definition 2.2.

Theorem 4.5
Assume that the two following assumptions hold:

e 2a5 <1 ;

e QN(0) — ¢° for some ¢° € (0,+00)V.
Then QN (+) LA q*(-,q°) as N — +oo uniformly over compact sets of [0, Test(q°)).

Because of Lemma 4.4, this theorem is enough to state that in the case of a
complete interference graph, if s1(\) > 1 and Q™ (0) — ¢° with ¢ > 0 for every
veV,

QY 5 ¢*(¢")

uniformly over compact time intervals: in this case, Toyt(¢°) = +00. The compar-
ison to an ODE is troublesome when some queues start empty or after they reach
0 because homogenization may fail when some queues lengths are too small but
this does not happen in the super critical case. In general, for any interference
constraints and initial condition ¢° such that Tux(¢°) = 400 and ¢% > 0 for every
v € V, this theorem is enough to prove convergence of @~ uniformly over compact
of (0, 4+00). We now justify why if A € A*(S(G)), Text(¢") < 400 for any ¢° € INV.
If ¢ # 0, 72, (S*) = 1 and thus,

Z ml(v) = Z 7d o] =T.
veV veV

For any ¢ such that ¢*(t) > 0 for all v € V,
s1() (8) = D X =77 D (v)

veV
= s51(\) — T. (4.4)
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If A€ (1—e)A*(S(@)), s1(N\) < (1—€)T: any element of A*(S(G)) can be expressed
as a convex combination of stable sets of size Y. If A € (1 — ¢)A*(S(G)),

A) < (1- =7
sV < (1 —€) max 51(0)
Thus, s1(¢*)'(t) < —€Y as long as ¢*(t) # 0. For any € > 0, if A € (1 —¢)A*(S(G)),
s1(A) < (1 — €)Y and s1(g*) is decreasing linearly. It continues to decrease until at
least one of the coordinates reaches 0. When G is a complete graph, it is possible
to control potential reflections at the boundary separately to obtain the following
result:

Theorem 4.6
Let ¢° € [0,+0)V and X € IRK be fized. Assume the following:

e QN(0) = ¢° as N — +o0,
o GG is a complete interference graph,

° anda<%.

Then QN R q* uniformly over compact time interval for ¢* characterized as the
unique solution to (4.3).

The proof of the first theorem relies heavily on two essential results that we
prove in Section 4.3. First Q¥ is tight and any limiting point is a continuous
function. As usual with fluid limits, there does not lie the difficulty and the proof is
straightforward. Second the homogenization result Corollary 4.13, a straightforward
application of Corollary 3.7.

Theorem 4.5 is a direct consequence of these results. Using homogenization,
we are able to bound the distance between Q" and its homogenized version until
q* reaches the boundary of its state space. We will see in the next section how
the boundary behavior can make the problem more complex and how the complete
interference graph allows us to deal with reflections at the boundary: we prove in
Lemma 4.14 that when starting with some null queues, all queues become positive
for positive time and then use property of the limiting process to prove convergence.
In the next section we will discuss an example where this is not the case: the line
graph where some boundary issues arise in the analysis, and the time horizons for
which we can prove convergence are bounded above.

4.2.4 Heuristic, line network
4.2.4.1 Homogenization objective

The rest of the section is dedicated to outlining the difficulties in proving a theorem
such as 4.6. We will have to deal with boundary behaviors and potential reflections:
the bounds we obtained for homogenization do not scale well when some but not
all coordinates are large. These boundary behaviors are the most challenging part
of this chapter: the homogenization bounds we obtain in the previous chapter may
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fail but we are able to prove convergence nonetheless for a complete interference
graph. In this section, we outline the difficulties arising in a line interference graph,
as in Figure 2.2. Doing so, we will give insight as to the method we use to prove
Theorem 4.6.

Consider a line interference graph with three nodes (Figure 2.2 with n = 3) and
number the nodes successively on the line: 1 and 3 are called “outer nodes” and 2
the “central node”. Because of Lemma 2.4, if all the queues start with an order of
magnitude N, the service rate of the central node will remain at 0, at least up until
the time one of the queue reaches 0 on the fluid scale. More formally, on the line
graph, any solution of (4.2) with positive initial condition gives

q*(0) = ¢°

gi(t) =g +t( - 1)
) =¢ +ths—-1)
() = g9 +th

until one of the coordinates reaches 0. This happens in finite time if min(A1, Ag) < 1.
Indeed node 2 is not in an independent set of maximum size and 74(Jo| < T) = 0.
In this case, (o) is given by

(g1 +1)%gz + 1) + (g0 + 1)° .
on—1)— ) @ F D@+ P+ @+ ) (@t )T (@ e 1.3}
U (g + 11 ifo=2

(@1 +1)*gs +1)*+ (1 + 1)+ (g2 + 1)* + (g3 + 1)° (45)
When all three nodes are “large” it is reasonable to expect (Q1(Nt), Q2(Nt), Q3(Nt))
to reach a state with order of magnitude (N7, N, N'77): if Q1(Nt)Q3(Nt) >
Q2(Nt) node 2 does not receive any service, and if Q1(Nt)Qs3(Nt) < Q2(Nt),
nodes 1 and 3 do not receive any service. This type of order of magnitude ensures
that both outer and central queues have a non-trivial homogenized service rate.
It may be reasonable to expect that one queue reaches 0 before the other and we
have a situation where v = 0 with only one of the outer queue being of order N
while the other is 1. We do not know how to handle transitions between order of
magnitudes for the scaled process so we focus on the v = 1/2 as a “most balanced”
case. Assume that the localization set is such that each queue length remains of
the same order of magnitude throughout the studied period. To be more precise,
the localization set U for @ is of the form

UV ={qeRY, YoeV, LIt € (C-.C4)}, (4.6)

with 9 = v3 = 1/2 and 2 = 1. Say we choose a sequence of starting states
(N) ~
Q™) (0) such that % — ¢Y for v = 1,3 and Qsz) — ¢3, and define QN (t) =
N ~
(%)U:LQ,;; . This gives us a scaled generator for Q*:
- e? ev
ox (D@ =N [0 (7 (a4 )~ £@) + ot (£ (0 ) - f@) ]
veV

Corollary 3.7 is not enough to prove homogenization in this case:

Lemma 4.7
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For any interference graph, let g be a function on ]RK twice differentiable with
bounded derivatives. Assume that T > 1 and

0> Cllg+ 1)

With the localization set defined in (4.6), for any N large enough,

E sup

t<TATUN (Q)/N

/Ot (z;f;(s) _ fhyN) 91O (s))ds

] < CTN2a,@—a/2—1 log(N)3

+ CTN log(N)3/2.

Proof. Similarly to Corollary 3.7, we apply Theorem 3.1 with ¢V scaled in space de-
fined by ¢V (¢q) = 9((§5 )vev ). Because of the scaling, we have max,ey H(’?UgNHOO U S

N2 and ——L—— > ON~'/2. Similarly, max, ,ev Hag,'ngHOo,U <N

ming ;N ey dv
O
Remark 4.8
It is possible to generalize the previous result: let us define a localization set
UV ={geRY, weV, L e(C_,0p)}, (4.7)

N

with v, € [0,1] and v = min, v,,. The closer to 0 queue lengths are, the less efficient
our homogenization result becomes: for any interference graph, let g be a function
on ]RK twice differentiable with bounded derivatives, under the same spectral gap
assumption as the previous lemma. With the localization set defined in (4.7), for
any N large enough,

E sup < CTN?B=7240) Jog(N)?

t<TATUN (Q)/N

/Ot (ZZ];[(S) _ Ehﬂ) (9)(QN ())ds

+ CTN**3-7 og(N)3/2.

Unfortunately, to have the convergence to 0 of (4.11) below, it is not possible to
take v < 1/2 because as soon as a >0, 1/2 < 1/2+af. In order for the right-hand
side to vanish, we need v > max(af + 1/2, 221—‘2) For the complete interference
graph, v = 1 is sufficient so we just need af3 + % < 1. In the case of the line
v = 1/2 is indeed the best bound we can obtain but it is not enough. In fact, we can
prove convergence in Theorem 4.5 when queue start with an order of manitude N
until they reach an order of magnitude N™ex(@B+1/2,38) A minimal condition for
homogenization is af < 1 in order to let the schedule homogenize before the queue
lengths change significantly. Under this assumption, the leading term is N*#+1/2
so the bound on the homogenization error we get with this result does not vanish as

N — 4o0.
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4.2.4.2 Homogenized process

Assuming homogenization, we have some ideas about the behavior of the limit:
whenever Q) (0) € UV, looking at the limit for WQ(N)(O)(O'U = 1) we can expect
that in some specific arrival configurations, the scaled process may keep this order
of magnitude over finite time intervals. Let ¢ = ¢¥ x N7 with 43 = 43 = 1/2 and
~v2 = 1. From (4.5), by factorizing N¢, we get

o )= (0195)° (g0)" 0y iy —
™o =D = ey () T N @) + (g T O =13
ﬂ-qN (0-2 — ) ~ (qg)a (N—a)

T (69)° + (afd)e
The generator of the homogenized process is given by

Bt~ N Y [ (1 (0 57 ) = 1@) 70, = 1) (1 (4 57 ) - 50)) |

veV

We have a handy approximation for the homogenized generator for ¢ € U for
large NV:

Bunlfll@) ~ NS [AU (f <q n N) - f(q>> g o2l F Locay (0165)° (f <q - N) - f(q)ﬂ -

= 4 + (q1q3)*

For any ¢q € ]R‘j_, let’s define
2% = q3 + (q1g3)”

Using the martingale problem on the homogenized process @N of generator Eh, N
and the approximation previously described for the invariant measure, we get

QY (t) ~ ¢f + \/JV/Ot (Al - (Q{V%?f’ffs”a) ds + o(VN) + M{ (1),

QY (t) zqg+\/N/OtA3 - st+o(\/ﬁ)+M§(t), and

ég(t)zq%/ot <)‘2_(QZ€N((SS)))Q> ds + MY ().

The martingale term in the dynamic of node 2 vanishes as N — 4o00. Because of
the v/N scaling in space for the outer queues, MY and MY do not vanish for large
N but they remain of order of magnitude 1. For instance the carré du champ of
MY} is given by

Ny "M+ 01(Ns)? 6 — )2 to $ds
Fl(t)/o(m)Q d fA1t+/O L(s)ds.

Because of the v/N in front of the integral for the dynamic of node 1 and 3 tightness
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is not obvious for @N as the process is not necessarily bounded. If nodes 1 and 3
have the same arrival rate
)\0 = )\1 = Ag,

nodes 1 and 3 have the same first order asymptotic dynamic. If QVN is tight, we can
even expect to reach an equilibrium state where

1
)\0— = ~
RO
1+ (Groore’

2l

to ensure that the right hand side is bounded. Such a state space collapse would
allow us to compare the dynamic of Q% to the solution to an ODE and give us a
candidate limiting process: if A\g — G}V o ~ 0, we have
-2 7 \Na
H(é{\’m@?m)
Ao

_ 20 yl/a
I—AO) '

QY ()QY (1) ~ Q3 (1)(
We can rewrite the dynamic of @év :

(QY ()"
$))*(1+ 125
~ qg +t()\2 + )\0 - 1)

ds + MY (t)

. t
QQ(t)w%/OAQ—@N(
2

If \g+ X2 > 1 and ¢¥ > 0 for all v, this would ensure that it is impossible for any
queue to reach 0 during any finite time interval if we assume that queues remain
bounded. We could define a bounded and bounded away from 0 localization set
U such that @N (t) remains in U over any finite time intervals in the super-critical
regime. Since both of the outer queues have the same asymptotic dynamic, in the
subcritical case, it seems possible that they do not reach 0 on the fluid scale at the
same time if they have different starting points. Looking further at a second order
approximation of the service rate, we see that in fact the distance between QY
and QY has a negative drift component. Using the approximation of the invariant
measure given at the begining of the section, we get that

t AN a AN a
QY O-@ () = -y [ ()" — Q) 4o a1y - M (1),
; 70N (s)

Since the martingales have an order of magnitude 1, this ensures that

QY - QY|
decreases extremely fast. If we managed to prove the homogenization result from
Lemma 4.7, we would be able to have a result similar to Theorem 4.6 for a line
interference graph. One of the problem is that the process QY Q% evolves much
faster than Q) because of their size. Queues that are of order VN take a time of
order v/N to evolve significantly.

4.3 Preliminary

We will begin this section by proving a tightness result for the process of queue
lengths. Then, we will spend the next subsection defining the localization set and
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proving the homogenization result as a direct consequence of Corollary 4.13 deriva-
tive of Corollary 3.7. Finally, we will prove the results stated in the preliminary
section.

Recall that C denotes a numerical constant allowed to depend on a, n, A\, G and
€. We begin with a definition:

Definition 4.9
The martingale from 2.1 associated with (QN,o™) and f(q,0) = q, is M.

vt >0, MN(t) = QN (t) — /t (Ao — o (s)) ds
0

Having bounds on this martingale will prove to be useful so we provide one here.

Lemma 4.10
For any initial condition,

T A 1
E [sup| MY (t)|| <24/ Tlmaxy Ay + 1) — 0 as N — +o0. (4.8)
t<T N

Proof. Indeed,

(a)
E [sulefV(t)] <L/ E [sup Mév(t)ﬂ
t<T \ " Li<r

<o\ (1))

— 2 /E[(M)(T)

v

T N
N/ 7& + 0y (s) ds]
0

—~

c

=2,|E

N

N2

<9 [T(max, Ay + 1).
N

Inequality (a) comes from Jensen’s inequality, (b) comes from Doob’s inequality
and (¢) comes from the definition of the carré du champ. O

Proposition 4.11

For any tight sequence initial condition Q™ (0), QN is tight for the topology of
uniform convergence over compact time sets. Any limiting point is a distribution
on continuous functions.

Proof. To obtain this property, recall the definition of the modulus of continuity of
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QY from Chapter 2 of [Bil99]: for any § > 0,

won (6) = sup QY (1) — QY ()]

s, t<T,[t—s|<IveV

= s (O o @)du MY ) - MY 9)

s, t<T,[t—s|<I,veV

<dmax(Ay VA, — 1)) +2 sup |[MN ()]
v t<T eV

To conclude the proof of this proposition, use Markov inequality on (4.8) to obtain:
P (wQN((S) > 0(max(A, V |A, — 1]) + u)) —0as N — +oo for any v >0, (4.9)

which implies the result with a slight modification of Theorem 7.3 in [Bil99]. O

4.3.1 Localization and homogenization

Let us define a localization set of the form U C RK such that
U= {qGRK:VUGV,qu(C,,CjL)}, (4.10)

Recall ¢* the solution of (4.2) or (4.3) depending on the context, and

7¢(f) = inf {t >0, gg‘l/lfv(t) S 6} :

By continuity of ¢*, for any T' < +o00, there exists a Cp such that

supmax g, (t) < Cr.
t<T Y

For any fixed ¢° € (0, +00)" and 0 < € < min, ¢?, let us fix T a finite horizon
such that T' < 7¢(¢*). To obtain convergence uniformly over compact sets contained
in [0,7%(¢")) define U in (4.10) with C_ = § and C; = 3C;(4-) (we emphasize
the dependency in € only here but omit it until needed in the rest of the chapter).
Recall the exit time of Q" from U™:

FUQN) =inf {t>0:QN(t) ¢ U}.

Define also

T = TGENC@)(QN, ¢*) = inf {t > 0,

QY(t) — a*(t)]| , > min(C-,C4/3)} .

We present here a lemma used to remove the localization by replacing it with a
“tube condition” around the limiting process. The behavior of the limiting process
allows us to remove this tube condition as well in some cases.

Lemma 4.12
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Almost surely TN, . < 77 (QN). In particular, QN (t ATN,.) € UN for allt <T.

Proof. Recall that by definition of the finite time horizon

e< inf qi(t) < sup  qp(t) < Creggeys

0<t<T,veV " 0<t<T,wEV
or equivalently
3C_ < inf “(t) < su “(t) < CL/3.
Ogth,vEVq’U( ) Ogthl?vEqu( ) X +/

Since the jump size of QY is 3- wehave sup ||Q™(t) — ¢*(t) HOO < min(C_,C4/3)+
thCIXbe

%. In addition, for large N, % is smaller than min(C_,Cy/3). A direct conse-

quence is that

3. —2C_ < inf  QN@t)<  sup  QN(t) <3C./3.

0StST N AT 0<t<TN, AT

tube

Said otherwise, T, . < 7Y(Q™) almost surely. O

ube

Using the localization set from (4.10), we are able to state the homogenization
result that is used in this chapter.

Corollary 4.13
Assume that
(1> Cllg+ 1]

ForanyveV,t<T, ifaf < 1/2 we have

E sup < CN®P=1210g(N)3/2. (4.11)

0SESTATY (QN)

/Ot (af,v(s) - FNQN(S)(U)) ds

Proof. Using Corollary 3.7, we just have to notice that for any a > 0,8 > 0,
aff — % > a8 — 1. Notice also that af — % >a(28—1)—1 as long as aff < % O

4.3.2 Proof of preliminary results

We begin by proving the preliminary results stated earlier in the section. First
Lemma 4.4, then 4.3.

Proof of Lemma /.4. Let ¢° € RY. If ¢° € (0, +00)V, let ¢* = ¢*(-,¢°) solution to
(4.2). If ¢° € RY \ (0, +00)", assume the existence of a solution (they necessarily
exist for ¢° € RY \ {0}, see the proof of Lemma 4.3 for more details). We use ¢*
to denote an arbitrary solution to (4.3). If ¢° # 0, the expression of 7%(s1 o ¢*) is
a direct consequence of the expression of the sum. For any ¢ € INV, there always

exists q, > Slflq) because otherwise "S?TM) < s1(q) by summing over V. Hence,

salq) = (2.
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We now prove that 70(s1 0 ¢*) = 7°(¢*) if s1(\) > 1. For any ¢° € IRK7 t >0 we
get

If g5 (1) < () /" LG we get (¢5)(5) > 3. T 3 < (5) /=2 g5(0)
cannot become smaller than 2¢: if at some point ¢}(t) < (&)Y “Mt, by
continuity of ¢*, for any s > 0,

A

at+s)=qt) + ?Us

Similarly, If ’\” > (%)1/ awn)fl), by continuity, ¢} (t) cannot become smaller
than (2 )ant because as soon as ¢ (t) < (%)UGWZZ we get

(¢;)'(t) > % > (%yMW.

Thus for every v € V, and t > 0,

which implies 7%(¢*) = 7%(s1 0 ¢*) = +0.

We next prove that 79(¢*) = 7°(s10¢*) if ¢° # 0 and s1(\) < 1. The first step is
done now: we prove that coordinates which started empty become positive for any
small enough positive time. If s1(\) = 1, s1(¢*) is constant and thus always greater

than %qo). If s1(A) < 1, for t < ﬁgﬁll’ we have s1(¢*(t)) > %qo). In both
cases, there is t° > 0 and € > 0 such that inf s;(¢*)(t) > € for any ¢ < t°. Moreover,
for any € > 0, if s1(¢*(t)) > €, we can give a lower bound to the derivative in time
for solutions to (4.3). Using the definition of the ODE, and s,(q) > (slT(q)) , we

get

(@20 =~ S
NEIHORS
>0 (TEG) (412
10

For any ¢t > 0 if s3(A) = 1 or ¢t < % if s1(A) < 1, whenever ¢(t) <

()‘2—“)1/(1 %‘10), it follows that (g})'(t) > 2. So there is t°,¢ > 0 such that any v

n
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with ¢¥ < € gets ¢} increasing for t € (0,°). Even if some queues start null, they
become positive for ¢ > 0 small enough.

We now prove that if they do touch 0, all coordinates reach it simultaneously.

It is only possible for queue lengths to touch 0 if s;(A) < 1. By (4.12), if ¢} (¢) <
Ae e w, we have (g)'(t) > 2¢. If 7°(¢*) < 7°(s10¢*), this would mean that
s1(¢*)(7%(g*)) > 0. Without loss in generality, assume that ¢ (t) — 0 ast — 7°(q*).
Since ¢ is continuous and ¢i(t) — 0 as t — 7°(¢*), there exists a time interval
(t_,7%(q*)) such that ¢’(t) < (%”)1/(1 Sl(q*)(nﬂ and ¢ is decreasing. Since
s1(N\) < 1, s10q* is decreasing so s1(q*)(t) > s1(¢*)(7%(¢*)) for any t € (t_,7%(q")).
This leads to a contradiction because (¢*)'(t) > 2 when ¢(t) < (’\7”)1/(1 %*(t)).

2
Hence 7°(¢*) = 7%(s1 0 ¢*). O

We now prove Lemma 4.3.

Proof of Lemma 4.5. Let ¢v € (0,+00)" be such that ¢V — ¢° € RY. Let the
maximal solution to (4.2) on a complete interference graph with ¢%(0) = ¢~ be
denoted

" : DN = (0,+00)V.

For any N, there is Text(qN) = sup DV > 0. Because of Lemma 4.4,
Toxt(q™) = 7°(s1 0 gV).

Lemma 4.4 states that if s1(A) > 1, Toye (¢) = +00,if 51(N) < 1 Toge(¢V) = f_li‘i](v/\))

and if s1(A\) = 1, Text (¢7V) = +o00 but we will see that the limiting process may reach
0 if ¢V — 0.

If s1(\) < land ¢° = 0, 7%(s10¢") — 0as N — +00s0 ¢*(-,¢") — 0 uniformly
over compact time sets.

If s1(\) = 1 or ¢° # 0, let us consider D = (0, liminf y Ty (¢™V)) and gV : D —
]RK, the restriction of ¢V on D. The first step is to prove convergence of gV for
the uniform convergence and then extend to the positive half real line. Because
Toxt (@) = fqull(\;?) and ¢° # 0, we have liminfy Ty (¢V) > 0, and thus there is
t9 > 0 such that (0,t°) C D. Since ¢V — ¢° € RY, |g/l.. < 1 and (¢V)'(t) =
g(@V)(t), gV is relatively compact in C(I,RY) for the convergence uniform over
compact time sets by the Arzela-Ascoli theorem (see Theorem 7.2 in Chapter 2 of
[Bil99]). Indeed, for any ¢ > 0,

sup [l (t) — 45 (s)ll oo < llgllc 6-
t,s<T,|[t—s|<d

Let N be a subsequence such that ¢’V* — ¢ uniformly over compact sets of D.
Note that compact sets of D are bounded away from 0. We will prove that ¢ must
be a solution to (4.3).

First we prove that g(g") — ¢(¢) uniformly over compact time sets of D. Fix a
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time horizon T' < sup I and v > 0. By definition of D,

inf g (t)=n>0.
l/étér’ll“,vev o ( ) Zn=
First, g is Lipschitz continuous on (1, C7)Y because it has bounded derivative, so
it is uniformly continuous. By definition of uniform continuity, for any € > 0, there
exists 6 > 0 such that for any ¢,¢’ € (n,Cr)Y with [j¢ — ¢'|| , <,

lg(a) — 9(¢ )l <e

Let No be such that sup,<p gV (t) — (j(t)HOO < 0 for any N > Ny. Then for any

N > Ny,
sup ||g(@)(t) — g(@(t))| . <e,
0<t<T

ie. g(¢V) — g(q) uniformly over compact time sets of D.

Since ¢V — ¢° € IRK, @) = g(@), @& — g and g(g") — g¢(q) uniformly
over compact time sets of (0,t%), by Theorem 7.17 of [Rud76], g is differentiable
and (¢") — ¢ uniformly over compact time sets of (0,t%). For any 0 < ¢ < t°, by
uniqueness of the limit ¢'(t) = g(q)(¢), and thus ¢ must be a continuous function
such that for any t € (0,t°) we have ¢'(t) = g(g)(t). This also proves the existence
of solutions to (4.3). We only used Lemma 4.4 for solutions of (4.2) with positive
initial condition so there is no logic loop.

We now prove uniqueness of solutions to (4.3). Let g: D1 — I[{K and ¢ : Dy —
]RK be two solutions starting from ¢° at time ¢ = 0. For ¢t € D; N Dy, the sum can
be expressed as

¢(t) = max(sl(qo) + (s1(N) = 1)t,0).

If s1(\) > 1 and ¢° # 0, ¢ will never reach 0. If s;(\) < 1, it will in finite time.

Let tq4 € D1N D5 be the first time that g(t) # q(¢t). We first make the assumption
that t4 is also the infimum of times such that s,(qG(t)) > s,(g(t)) and deal with the
complementary later. By continuity there is t4 > 0 and § > 0 such that g(s) # q(s)
and s4(g(s)) > sq(q(s))for any s € (tq,tq +9) C D1 N Da.

_ ~ q,(s) qu(s)
For any v such that g,(s) < ¢,(s), we have G0 < matatsy and thus,

7u(s) = @o(s) <0 = (7,(s) = ,(s)) > 0.

By continuity of the solutions, since G(tq) = G(tq), sq(q(s)) > sa(q(s)) implies
T,(s) = Gu(s) for all v € V, for all s € (tq,tq + 0) because as soon as g, (t) would
become smaller than ¢, (¢), ¢, (t) would become increasing. Since s1(q) = s1(q) the
only possibility is that g,(s) = g,(s) for all v € V which contradicts s,(q(s)) >
$4(q(s)) for any s € (tq,tq+ ). The first time ¢ and ¢ are different is different from
the first time s, o ¢ and s, o ¢ are different.

Let us introduce for any ¢ € [tq,tq + 9),
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Ca(t) = 5a(q(t)) = sa(a(?)).

We can rewrite (4.3) as

, _ o,
f'(t) A A0 f¢a(t) >0 )
si(f) = ’
0) =¢°

For any v € V, and t > 0, such that g,(t) — ¢,(t) > 0 we have

_ () —g,(0)"

— ~
q,(t) —q,(t) = < 0 because a > 0.
©-20=""2%

Once again by continuity of the solutions, this implies G,(t) < @, (t) for any
t € D1 N Dy and equality since s1(q) = $1(¢). Thus there is a unique maximal
solution defined up to the exit time of (0, 4+00)". By Lemma 4.4,

lim ¢g(t)= lim ¢q(t)=0.
A q(t) A q(t)

We extend the solution as in Definition 4.2 to obtain convergence on R . O

4.4 General interference graph up to 7°(¢*), Theo-
rem 4.5

Recall the definitions:
U= {qGRK Yo eV, q, € (C'_,C'+)},
and
T, = TEN@) QN %) = inf {t > 0, QY (8) - ¢*(1)]| , > min(C_,C}/3)} ,

with C_ > 0 and C} < 4o00. To prove Theorem 4.5, we will establish its equivalent
for the stopped process Q™ (- ATN, AT) using Gronwall’s lemma. We then transfer
the result on the stopped process to QY (- A T') using Lemma 4.12. This gives us
uniform convergence over compact sets of [0, 7¢(¢*)) for any € > 0. We also give the
arguments to extend up to 7°(¢*) at the end of the proof.

Proof of Theorem /.5. Recall that for any t < T < 7¢(¢*),

) =q¢"+ /Ot (A —ﬁq*(s)) ds.
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Using the martingale problem and adding/subtracting

i
/ (WNQN“)(UU =1)+79"® (v)) ds,

0

we get
Ny x4y — ON() — 0 ' ﬁq*(s)v_ﬁQN(s)v s N
Y0 -am = QY0 -+ [ (7O (v)) as + MY (1)

t
_|_-/ (ﬁQN(S) (’U) _ ,/TNQN(S) (Uu — ]_) + ,].(.NQN(S) (UU — 1) — ]lQ{,\](s)>OU1J;V(8)> ds.
0

Define

0 =1Q)(0) — qd] + 0l (T) + b)Y (T) + ) (T),
were

t/\TéZbe N N
n¥ 1) =sup| [ (79" O) - 200, = 1)) s,
t<T |Jo
AT e N
W) =sup| [ (7Y O 0, = 1)~ Lgym002(5)) as
t<T 0
and

py (T) = sup  |MY(#)].

tSTATH,

We get for allv e V,

A tll\ibe -
QAT e n T | <O+ [ 70 ) - 79O )] as
0

Remark f : U — RY defined by f(q) = 77 is Lipschitz. So there exists C' < +o0
such that for any ¢q,¢' € U

1f(@) = f ) <Clla—dl,

and thus,

/Ot )ﬁq*(s) (v) — ﬁQN(s)(v)‘ ds < C/Ot QN (s) — q*(s)|| as.

To sum up, for any ¢t < T/\Tt]l\fbe, by summing over v, and denoting OV = D vev enN,

0¥ - a' ], <0+ [ Q¥ -], as



82 Chapter 4. Fluid Limits of QB-CSMA

By Gronwall lemma ([EKS86], Appendix 5), for any t < T A TY,., we get
HQN(t) Hl < 0N exp(Ct) < OV exp(CT).

By Lemma 2.4 for all v € V, E [n)Y(T)] — 0 as N — +o0. Further Corollary
4.13 states that IE [} (T)] — 0 as N — +o0 if a < 1/2. Every pl) converges to
0 in the mean, by Lemma (4.10). Finally, QY (0) — ¢ — 0 as N — +oo. Thus
E [6N] — 0 as N — +o0. To conclude the first part of this proof, we can state
that for any ¢° € (0,+00)V, € < min, ¢2, T < 7¢(¢*) and § > 0,

E

Sup HQN(t)—q*(t)H] —0as N — +oo.
0<t<TATN

tube

Let us now remove the localization and prove that Q~ LA ¢* uniformly on [0, T.
In order to do so, it is enough to show that P(TY, . > T) — 1: indeed for any & > 0,

P (fggHQN(t) -t > 5) <P < sup QY (1) — a* ()| . = 6, Titpe = T)

t<TATN

tube

+P (Ttube <T)

@( p |1@N<t>—q*<t>noo>a)+1P<T5§be<T).

N
t<TAT (pe

We already proved that the first term on the right hand side converges to 0,
P(TN,, >T) — 1 would mean that the second term also vanishes as N — +o0.
By definition of T1, _, we have

||QN tube q* (thl\lfbe)Hl ]lTN <+oo > mln(c C+/3)]]'TNb <+oo*

tube

Since TN, . AT = TX, _ on the event {TY, . < T}, this entails

P (Ttube = ) (HQN( tube A T) —4q (Ttube A T ||1 > mln(c—a O+/3) tube < T)

Since we have proved that Q~ (- AT, .) LA ¢* uniformly on [0,7] for any T <
7¢(¢*), the previous probability vanishes.

To sum up, for any ¢,6 > 0, for any T < 7¢(¢*),
( sup HQ (t)Hooéé) — 0as N — +o0.
0<t<T

By continuity of ¢*, since min, ¢0 > 0, we have

lim 7*(¢") = 7°(¢")

e—0

and
¢ (7°(¢%)) = ¢*(7°(¢*)) as € = 0.

For any T < 79(¢*), there is € > 0 such that T < 7¢(¢*), and thus QV — ¢
uniformly over compact time sets of [0, 7%(g*)). O
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4.5 Complete interference graph

This section only deals with a complete interference graph so we omit dependency
in the graph in all of the statements. Recall the definitions:

T7(s1 0 QN) = inf{t > 0, sl(QN(t)) < €},

and
T¢(s10¢%) = inf{t > 0, s1(¢*)(t) < €}.

Introduce as well
T (f) = inf{t > 0, min f,(t) > €}.

We will prove that queue lengths become positive for small positive times and then
identify the limit as the solution to (4.3) using Theorem 4.5 up to Tey(q°). This is
where we have to distinguish three cases:

. (I) 81()\) <1,
. (II) 81()\) > 1,

o (III) s;(\) = 1.

In (I) we will show that the sum of queue lengths stays absorbed at 0 when it
reaches it. In case (II) we will show that queue lengths converge to 400 linearly in
all coordinates. For case (III) we will rely on the two previous cases: if ¢ = 0 the
process stays absorbed at 0, if ¢° # 0 all coordinates are positive in positive time
and they do not reach 0 in finite time. In the next section, we will prove Theorem
4.6.

4.5.1 Proof of Theorem 4.6

Theorem 4.6 strengthens Theorem 4.5 to include any initial condition and stop at
any finite time horizon. The proof will rely on Theorem 4.5. We then handle the
behavior when some queues are small using a lemma roughly stating that it takes
a time very small for the limit of Q™ to cross small thresholds:

Lemma 4.14
If ¢° # 0 or Y wev Mo > 1, for any € > 0 small enough, there is t. >0 , such that

Ppo (T(QY) > t.) = 0 as N — +oo.
In addition, t. — 0 as € — 0.
Proof stub: The proof is based on an induction argument: we will recursively add
nodes in a non-decreasing subset of nodes with bounded below queue lengths. To

do that, for any ¢ > 0 we will define a succession of thresholds €?, stopping times
©N(c) and time horizons ¥ such that the set of nodes

TN ={v eV, QY (¢ (c) > e}
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is increasing with i and ) (c) < tU almost surely. At step k of the induction
argument, we will prove that the probability of {k € J,iv } goes to 1 as N — +o0.
The thresholds are defined in a way such that if v is not in JY ;(c), QY increases
on the mean, at least until the next threshold. On the other hand, once v € .J. ,iv , We
choose the time intervals such that for any k' > k, v € J,ﬁ\,[ with high probability.
Because the proof is quite technical for such an intuitive result and the proof does
not give major insights we refer the interested reader to Appendix B for a proof of

this result. O

Given this lemma, the proof of Theorem 4.6 is straightforward using tightness
and uniqueness of solutions of (4.3):

Proof of Theorem J.6: By Proposition 4.11, Q is tight and any limiting point is
a continuous function. Let N be a subsequence such that Qv = g as k — 400
and QN+ (0) — ¢° € [0,4+00)Y. We know that § must be almost surely continuous
by Proposition 4.11. Let’s sum up the proof method for this theorem.

e In case (I) the queue process reaches 0 in finite time and stays absorbed.

e In case (II), after some time all queues are positive and the dynamic evolves
as in Theorem 4.5. Starting from an initial condition positive at each node,
Theorem 4.5 is enough to obtain a convergence uniform over compact sets.

e The case (IIT) can be handled similarly to case (I) or (II) depending on the
initial state: the variation of the sum of queue lengths is only due to the frac-
tion of the time no queue is active and thus it takes a long time to evolve. On
the fluid scale, the scaled sum remains constant. If s1(¢°) = 0, all components
remain at 0 as in case (I). Starting from a non trivial state, the queue lengths
will evolve according to the ODE given by (4.3). If s1(¢°) # 0, even if some
queues start empty, all coordinates will be positive for positive time. Like for
case (IT), 7°(¢*) = +o00. See Section 5.1.1 for more details on the critical case.

We first prove convergence of QY up to Tey (") starting from any initial condition.
If ¢° > 0 for all v € V, this is Theorem 4.5 so we assume min, ¢0 = 0 for the first
part of this proof. Since we already know that Q7 is tight and any limiting point
is in the space of continuous functions, we simply need to uniquely identify any
potential limit.

First, min, ¢, is a continuous function almost surely because ¢ is as well. Let us
call g7! the generalized inverse of min, qy:

g (t) == inf{s > 0, ming,(s) > t}.
By Lemma 2.10 in Chapter 6 of [JS03], g~! is almost surely cg and the set

J={t>0, P(q " is not continuous in t) > 0},

of fixed time discontinuities of 7! is countable. Let (e,),en € J¢ be a sequence of

real number converging to 0. By definition of 7, ¢~! is almost surely continuous at
€p for every p € IN and €, — 0 as p — +00. Said otherwise,

P (q_lcontinuous at ep) =1
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for all p € IN. Consider T as an operator on cadlag functions. By Proposition 2.11
of Chapter 6 in [JS03], 7" is almost surely continuous at ¢ because by definition

of €,, ¢~! is continuous at €,. By the continuous mapping theorem (Theorem 2.7
from [Bil99]), since the limit of Q" is g and it is continuous and T is almost surely
continuous at ¢, for any p € IN,

(@Y, T (QY)) = (3, T (q)).
Using the joint convergence from the continuous mapping theorem, for any p € IN,
QN (T (QNF) + ) = (T (q) + ) as k — +oo.

Next, we explain how shifting the trajectory with the stopping time 77 (Q"*) gives
another description of the limit using Theorem 4.5. By definition of T (Q"*),

QT Q™)) > .
We get QN (T (QNr)) = ¢(T™(q)), with q,(T*(q)) > €,. By Theorem 4.5, and
the strong Markov property, as k — 400,

QYT (@M + ) = ¢"(, 4T (9)).
By uniqueness of the limit, it is necessary to have
AT (q) +) = ¢ (a(T (2)).

By Lemma 4.14, for any p > 0, there is ¢, such that

P (T (q) > t,) =0,

with t, — 0 as p — +o00. Since T (g) < t, almost surely and ¢, — 0 as p — 400,
T (q) — 0 almost surely, and by continuity of g, ¢(T* (7)) = ¢° as p — +o0.

In order to use uniform convergence to exchange the limits in k£ and p, we use
Skorohod representation theorem (see for instance Theorem 6.7 of [Bil99]). It states
that since IRK is separable, and Q™V* = ¢ uniformly over compact sets, it is possible
to construct a probability space such that @V — ¢ almost surely for the topology
of uniform convergence on compact sets. Until the end of the proof, consider Q™V*
and ¢ constructed in such a way.

To conclude, uniformly over compact sets of [0, Tex (¢°)): for any p and N greater
than 0,

sup [|QM(t) — q*(t,¢")|| . < sup [|QN () — QNF(t+ T (QM))]|
0<t<T 0<t<T
+ sup [|QM(t+ T Q™) — ¢* (1, d(T™(@))]| .

0<t<T

+ sup lq*(t,a(T (@) — ¢ (t,q")|

0<t<T >

By letting N — 400 then p — 400, we get

In cases where Tiy:(¢") = +00, Theorem 4.6 is proved. This regroups the case
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where s1(\) > 1 and the case where s1(\) = 1 and ¢° # 0.

We now focus on the case s1(A\) < 1. The first part of the proof stated that
starting from any initial condition, the scaled sum of queue lengths will reach 0 in
finite time (7°(¢*) < +00). We will now prove that when Q™ (0) — 0, the limit
of the sum of queue lengths remains absorbed at 0. Recall the definition of the
stopping times 7 (s; o Q) given by

T (510 QM) = inf{t > 0, 51(QN(t)) = €}.

Here we emphasize the dependency in the trajectory but to ease notations later,
we will only emphasize in the computation when it depends on the trajectory shifted
after some time. Introduce the set R (¢) by

R ()= e o, i) €[5 5+ 10

Note that for any € > 0, RV (e) is a finite set. For ¢ € RY, the notation P,
denotes P conditionally on Q™ (0) = ¢. Let’s fix € > 0 and call

@)= sup P, (T° <t).
qERN (¢)

Since RN (e) is a finite set, there exists ¢ (t) € R" (¢) such that N (t) = Pyn ) (T€ < t).

Fix t < +o0 and € > 0, assume QV (0) — 0 as N — +o0. We will prove that for
€ > 0, the probability that the sum exceeds € in finite time goes to 0 as N — +o0.
The argument is essentially the same as with a deterministic system: to reach a level
€, the sum should first reach ¢/2 and then be increasing between €/2 and e which is
not possible. For any v probability measure, we use IP,, to denote the probability
measure > v V(q)P (- | Q(0) = q), if v = J, a Dirac measure, P, = P;. We get

P o) (TS <t) =Pgn (o) (Ti/2 <HT (510 (QV(-+T9?) <t — Ti/z)
< Py (T2 < 0T (51 0 (Q (- +T7*) <)
— €/2
= Egn () | Lo/ Povere) (T2 < 1) (4.14)

where the last equality is obtained using the strong Markov property. As it turns
out, since jump size is 4, almost surely on {Ti/2 < t}, we have QN(TE/Q) € RN (e)
. For this reason,

€ € N
Pon o) (T€ < t) < Lpeerz P ow peeray (T <t) < fFY(1). (4.15)

We now prove that fN(t) — 0 for all ¢. Since fV is bounded by 1, for any ¢
N (t) is tight as a sequence of real numbers and we only need to prove uniqueness
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of the limit in terms of subsequence. For any ¢, there exists a subsequence such
that ¢™*(t) — ¢(t) because they too are tights. Any ¢(t) obtained in that way has
51(q(t)) = & because ¢V (t) € RN (e).

By the first part of the proof, starting from any ¢~ € R™(e) bounded away from
0, the sum of queue lengths should decrease to 0 before being able to reach e.

Necessarily, 7°(s; o Q) LN m by the first part of the proof. Define
vev v
t* = m Assume that ¢ g t , We get

FYE) =Py (TS
<) + Pyvgy (T <6, TS > t)
+Pyv iy (T (s10 QN (- + 1)) <t —t¥)

|

=

2

=

=)
N NN
o+ o+
S— )ﬂ

Similarly, by the Markov property,

Pov iy (TEQN (4 17)) <t —1%) = Bgvy [Pone) (TS <t — )]

Finally, since for any sequence ¢ € R¥(¢), under P,~, QN (%) LA 0, we can
apply the same reasoning as in (4.14) to prove that

Poney (T8 <t —t%) < V(=)L
To sum this up, fN(t) < fN(t*) + fV(t — t*) 154, and iterating, we get
N 3 N /%
) < TN,

We can conclude the proof by using convergence up to 7°(¢*) to prove that
JN@*) = 0as N — +oo: fN(t*) = Pyn ey (T (s1 0 QN) < t*) but since ¢V (t*) €
RN (€), Text(¢™(t*)) — t* and the limiting process will reach 0 at t* because
s1(gV (#) > 5.






Chapter 5

Heavy traffic of QB-CSMA
in a complete interference
graph

Contents
5.1 Intuition and discussion . . ... ... ... ..., .. 920
5.1.1 Fluid limits in the critical case, State space collapse . . . . . 90
5.1.2 Idleness in random-access settings . . . .. ... .. .. ... 93
5.1.3 Nonstandard behavior . . . . .. .. ... ... ... ..... 94
5.1.4 Beyond a < % ........................... 94
5.1.5 Initial state, limiting ODE . . . . . . ... ... ... .. ... 95
5.2 Mainresult . . . ... . 0 00 oo s 95
5.3 Notation and main steps of the proof . ... ... ..... 97
5.3.1 General notations . . .. .. .. .. 97
5.3.2 Localization, constants . . . . . . .. .. ... ... ... 98
5.3.3 Distanceto I . . . .. .. .. oo 98
5.3.4 Mainsteps . . . . . .o 99
5.4 Statespacecollapse . . . ... ... ... .. 101
541 Proof of E(EN) =0 . ... ... .. 103
55 Proofofmainresult .. .. ............. .00, 104
5.5.1 First step: convergence of the sumto S . . .. ... .. ... 104
5.5.2  Second step: proof of Theorem 5.4 . . . . ... ... ..... 107

In this chapter, we will prove a heavy traffic result for Queue-Based CSMA on
a complete interference graph. Once again, homogenization plays a central role.
In addition, we will prove that the process of queue lengths collapses to a one-
dimensional manifold. The process of interest will be

Q(NlJrat)

@Y (1), ™ ()20 = (= o (N T*1))iz0.
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Chapter 5. Heavy traffic of QB-CSMA in a complete interference
920 graph

5.1 Intuition and discussion

5.1.1 Fluid limits in the critical case, State space collapse

In this chapter we prove a heavy traffic result with the scheduling algorithm defined
in Section 2.1.2. Since at most one queue can be active at any given time in a
complete interference graph, if s1(\) < 1 one can find a scheduling algorithm such
that the process of queue lengths is ergodic. For instance schedule g, a fraction of

the time 1’\(“)\) forallv € V. If s1(\) > 1, for any scheduling algorithm the queueing

process is transient. The critical case is then s1(\) = 1. To understand the behavior
of the queueing process for long time horizons, it is insightful to consider the limiting
ODE for the fluid limits. Recall ¢* from Definition 4.2. From (4.3) we obviously get
51(q*(t)) = s1(q°) for all t > 0. We now explain why the process of queue lengths
experiences a state space collapse. To understand why this phenomenon occurs,
let’s look at the long term behavior of the solution to (4.3). Let

I={zeRf:WweV, A =10} (5.1)
= {:r eRY: AoV x, = Ay, v,w e V}

v A
— x€R+:xU:81/a()\)sl(a:),v€V .

We omit the dependency in ¢° as it will remain constant during this section. If
q° € I, by definition of I and (4.3), ¢*(t) = ¢° for any ¢ > 0. It is also possible to
prove that even when the initial state does not lie in I, Proposition 5.1 states that
the distance between ¢*(t) and I converges to 0 asymptotically. To be more precise,
we will actually show in this section that the distance to the manifold is decreasing
monotonically.

Proposition 5.1
For any ¢° € RY \ {0}, if s1(\) =1 and G is a complete interference graph,

!

(d 0 ")(t) < d*(g")(0) exp(——1)

In order to control the distance to the invariant manifold I given by (5.1), i.e. to
control the state space collapse property, we will use the Kullback-Leibler divergence
between A and (7(v),v € V) (note that both are probability measures on V). More
precisely, for g € (0,400)Y, let

a(g) = dKLu,wq)—ZAvlog( ol )

veV 7_141(1])

Note that d*°(¢) = 0 if and only if ¢ € I, and d*°(q) > 0 so d*° can indeed be seen
as a pseudo-distance to I.

Lemma 5.2
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For anyv €V, g€ (0,+00)",

a(X, — (v
A )}
Qv
Proof. For any v € V, #(v) = ngjq). Thus,
am?(v T (w
8,077'('(1(’[)) _ ( )Zu);ﬁv ( )’
Qo
and for w # v,
=4 ()74
9,79 (w) = _am (Uq)ﬂ' (w)

In addition, since 0,d*°(q) = — ),y AwOy log(7?(w)) we get

0,(q) = - L Y vy 4 3 e LI

w4
do™ (U) wF#v wF#v
a
=— |-\ 7 (w) + 7 (v Aw
o 1; (w) + 79 )u;
a _
= £(-h +710)

The last inequality is due to the fact that in the critical case, Ew “v Aw=1=X,. O

We can easily translate this into a result for the solutions to (4.3). Recall ¢¥ the
solution to the ODE (4.3).

Corollary 5.3
For any initial condition ¢° € (0,400)", for anyt >0,

(d*0q")'(t) <0.
As long as min, ¢ (t) > e,

00 * a —
(@ 0q7) (1) < =2 A =73

Proof. Simply notice that (d*oq*)'(t) = >, v/ (Ae=T%(v))0ud™(q¢*(t)) = = > cv 2= ()"

Qv

O

Proof of Proposition 5.1. Using the same reasoning as in the proof of Lemma 4.4,
since s1(g*)(t) is constant and ¢ > 0 for all v, we know that for any ¢ > 0,

1/a_ ;o
qﬁﬂ>a=mn@$&vﬁ@)>

w n
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Since inf ¢i(t) >,

veV,t>0
a a a
in 7 O0R) > — > ¢ -
™) 2 ) 2w O e (@)
We can rewrite dpyv (A, 7?) as 2||A —79[|;. Second, [-||; and |||, are equivalent

norms. By the last inequality of Proposition 2.8,

1 _
d=(q) < 1A =793

ming,ey 79(v)

To sum up, using the equivalence between |[|-||; and |||,

w112 / w12 ! .
T e N e )

Using the bound on 79",

(@ 00V (1) <~ (@ o)),

Using Corollary 5.3 and the previous inequality, we know that

/., a—1
< _Claem (d> o ¢*)(t).

A—70 W] <
T 2 ns1(qv)e

C'ae1
d>® o a*) (¢ <=5
@ oq ) < -

Let u(t) = exp(— Clae® t). Using the product rule,

ns1(q%)®

(d*oq*) )/(t) _ (d>® o ¢*) (t)u(t) — gdoo o ¢*) () (t)
! u(t)
C'aev 1 - . o
< @ (@ 0 ) @u(t) = (@ 0 ) (Bu(®)
=0

(

Hence (doouoq*) is decreasing and bounded by its initial value.

(do": q) ) < (do": q)

(0) = (d 0 ¢*)(0).

To sum up, (d* o g*)(t) < (d* o ¢*)(0) exp(fCT/at) — 0 as t = 4o0. O

The facts that there are initial states for which the fluid limit is constant and
these points are attractive for the limiting ODE suggest to look at faster time scales
to see a non-trivial evolution. The convergence of the multidimensional process to
a process unidimensional is called state space collapse. The goal of Section 5.4 is to
prove that such a state space collapse holds for the process of queue lengths. This
will play an important role for the proof of convergence for the process of queue
lengths scaled by N1*¢ in time. Because this time scale is so much faster than the
previous one, the state space collapse will happen instantaneously when not starting
on the manifold.

The reason behind the state space collapse property for queue lengths is simple
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to understand based on the stochastic averaging principle and Proposition 5.1. Once
again, an averaging principle holds and we have the approximation

/ F(QV(s),0™(s)) ds ~ / TNV [F (QN(s),-)] ds. (5.2)
0 0

In Section 5.4, we use this approximation and the method from Proposition 5.1 to
prove its equivalent for queue lengths Proposition 5.10.

5.1.2 Idleness in random-access settings

In QB-CSMA, nodes deactivate at a state-dependent rate in order for the system
to be able to alternate between different activity states in a distributed way. In
particular, nodes may deactivate even when they have work to process. This makes
the system non work-conserving and induces additional idleness compared to that
owing to queues being empty.

For classical queueing models and stochastic networks, it is fairly well-understood
that what happens when servers are idle can have a significant impact on the heavy
traffic behavior and performance, for instance through reflection terms in diffusion
limits. However, in these “classical” settings, idleness occurs when queues are empty
or resources get stranded because of concurrency requirements.

In contrast, in random-access settings like ours, idleness occurs even when there
are large queues, and is simply part of a distributed mechanism to share resources
without explicit information exchange. In this distributed setting, the impact of
idleness on heavy traffic behavior is more subtle and model-dependent. For in-
stance, considering QB-CSMA in a different regime than the one studied here, a

lingering effect was highlighted in [SBB14] leading to a heavy traffic scaling ﬁ,

compared to the usual ﬁ due to idleness. In the present model, the fraction
of idleness is inversely proportional to (a power of) the queue lengths, yielding a
yet different impact on the heavy traffic behavior. After the model and main re-
sults are presented, we will describe this behavior in greater detail in Section 5.1.3,
and in particular explain why the N/N!T% scaling emerges and the heavy traffic is
deterministic.

It is interesting to compare our results with those on Max-Weight. Indeed, QB-
CSMA algorithms were designed with the purpose of mimicking Max-Weight in a
decentralized manner, and indeed Shah and Shin [SS12] establish the throughput-
optimality of these algorithms by applying the same Lyapunov function as for Max-
Weight. Thus, as far as throughput is concerned, QB-CSMA algorithms behave
very similarly as Max-Weight. What we show here is that the comparison breaks
down at criticality concerning delay. Indeed, Stolyar [Sto04] showed that the crit-
ical behavior of Max-Weight is “standard”, i.e., consists in the usual CLT scaling
and leads to a reflected Brownian motion. We mention as well [MS16], where the
author proved that the delay scales like (1 — p)~'(1 — 5-) as the load of a n x n
switched network grows to 1. Here the behavior is completely different because of
the additional idleness induced by the decentralized nature of QB-CSMA. We will
argue in Remark 5.5 that because of idle time, queue lengths scale like p~1/% as the
load approaches 1.
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5.1.3 Nonstandard behavior

Taking the state space collapse and the stochastic averaging principle for granted,
back-of-the-envelope computation can give insight into the nonstandard critical be-
havior observed for our system. As mentioned above, a consequence of the stochastic
averaging and the criticality assumption is that 79(v) = \,. However, taking into
account the idle time induced by the necessary scheduling of the empty state which,
when queue lengths are of the order of N, is of the order 77(0) &~ N %, gives rise
to the second-order approximation where A\, — 79(v) is of the order of N~¢. This
suggests that node v € V behaves as a near-critical M/M/1 queue with arrival rate
Ay and service rate A, — N~ % What is the right time scale for such a queue? A
first-order asymptotic expansion of its generator can give a clue, namely, if time is
sped up by N? then the action on its generator on a function f is given by

NP, (f <q+ ?;) f(q)> + NP (A = N7%) <f (q ;) f(q)> .

The leading term is N*~%~! f/(¢) which suggests to take b = a+1, as turns out to be
indeed the case. Moreover, we see that only first-order terms are dominant, which
explains why the limiting process is deterministic and no diffusion term arises.
This discussion also clearly highlights the key impact of idleness on the system
performance at criticality, as without idleness, i.e., if we had A, — 7% of the order
of 1/N, then we would see the usual N/N? scaling and a diffusion process in the
limit.

The critical behavior of most queueing networks that we know of is akin to
a functional CLT: the time scale needs to be the square of the space scale and
the limit is a diffusion, typically a reflected Brownian motion. See for instance
[Whi02] for a review of standard results. In the model studied here, the behavior is
nonstandard in both ways: if N is the space scale, the suitable time scale is V!¢
with a € (0,1/2) a parameter of the algorithm, and the limit is actually deterministic
and governed by an ordinary differential equation (ODE). In particular, the time
scale is in-between the usual fluid and diffusion time scales N and N2, respectively.
This peculiar scaling is due to the idleness which arises as a consequence of the
distributed nature of QB-CSMA.

5.1.4 Beyond a < %

Proposition 5.9 below shows that the averaging approximation (5.2) holds for a <
1/2 but this is not the condition that is expected for it to hold: since the typical
time scale of the slow process is IV and the mixing time of the fast process N¢,
the condition a < 1 reflects that the fast process evolves much faster than the slow
process, which is the condition expected for homogenization to hold.

However, our condition in Theorem 5.4 is the more stringent condition a <
1/2. To see why this condition pops up, consider the following semimartingale
decomposition of Q" :

¢
QYN (t)-QN(0) = N“/ ()\v - WNQN(S)(’U)) ds+(martingale term)+(error terms).
0
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The martingale term can be shown to vanish for a < 1, but we see that in order
for the error term to also vanish we would need to show that the integral from
Proposition 5.9 decreases to 0. Proposition 5.9 shows that this term is O(1/N/2 4
1/N'=9) and so although it is o(1) for a < 1, in order to have it o(N~%) we need
to assume that a < 1/2. We also note that this threshold 1/2 corresponds to the
threshold at which the lingering effect pointed out in [SBB14] kicks in. Indeed, in
the near-critical case A, = A0 — v,& with € > 0, then the steady state should be of
the order of e~/ For a > 1/2 this would suggest a scaling e~1/% « 72 but the
lingering effect discussed in [SBB14] suggests that because of idleness consideration,
one cannot go beyond this e =2 scaling. This would constitute an argument against
homogenization for a > 1/2, although it is not clear in our view that the lingering
effect indeed kicks in in the case of the complete interference graph.

5.1.5 Initial state, limiting ODE

We fix throughout an initial state ¢° € I\ {0} and assume that QV(0) — ¢°.
Moreover, we consider S = (S(¢),¢t > 0) the solution to the ODE & = px~® with
initial condition S(0) = s1(¢°), i.e.,

1/(a+1)

S(t) = (u(a+ 1)t + s1(¢°)*) , t>0.

We also consider ¢ = (g(t),t > 0) the RY-valued function with s; o ¢ = S and
q(t)y eI forallt >0, ie.,
A

7, (1) = S(t),t>0,0€V.
@u(t) SN (t)

With some extra work, but without giving much more insight on the system’s
behavior, our result could be generalized to an arbitrary initial condition ¢° € IRK.
If ¢° = 0 nothing changes in the statement of the above result, while if ¢° & I then
the convergence holds uniformly on compact time-sets from (0, +o00) because the
limiting process immediately jumps at time 0+ to the invariant manifold I even
if it does not start there. The rest of this introduction is devoted to present then
discuss this result in more details.

5.2 Main result

Recall the sequence ((QV,oV), N > 1) of scaled processes given by

oN(t)=0o (N*T't) and QN(t) = %Q (N**1t), t > 0.

In the sequel we use P to denote wealk convergence as N — oco. The following
result is the main result of the paper, which describes the behavior of the queue-
length process in the critical case s1(\) = 1.

Theorem 5.4
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Assume that the three following assumptions hold:

e a<1/2;
e 51(\)=1;

e QN (0) — q° for some ¢° € I'\ {0}.

Then QN LN q uniformly on compact time-sets, where q is uniquely characterized
as follows: q(t) € I for every t > 0 and sy o q is the unique solution to the ODE
& = pa™ with initial condition x(0) = s1(¢°) where p = s1/4(N\)".

Note that the limiting process q actually has an explicit expression, namely for
every v € Vand t > 0,
)\1/a

v

1/(a+1)
Sl/a(/\) .

3o(t) = (m(a+ 1)t +s1(¢°)*H1)

In the rest of the chapter we assume that the conditions of this theorem are
enforced, i.e., we assume throughout that a < 1, that s1(\) = 1 and that Q™ (0) —
q° €1\ {0}.

Remark 5.5

Our result could also be generalized to the near-critical case where A, = A0 — e,
forv eV, for some e € Ry and vectors \° = (\),v € V) € RY with s1(\°) =1
and v = (y,v € V) € RY. Up until the time queue lengths reach an order of
magnitude €'/, the difference between the arrival rates for positive € and its limit
has a negligible influence on the dynamic. As long as ||¢¢||,, < € '/, we have

e < 1 (0),

Which leads to increasing queue lengths . In this case, in order to see both the
influence of idle time and convergence to the border of the stability region, the
correct scaling is also nonstandard and given by

Q°(t) = e¥/Q(e~ v t),e > 0,t > 0.

If the queue lengths have an order of magnitude larger than =1/, the idle time will
have a negligible influence on the dynamic because as long as |||, > e~ /%, we
have

e> 7 (0),

which leads to decreasing queue lengths until they reach the order of magnitude
el Ase — 0, we have Q° LN q with q constrained to one-dimensional manifold
I and such that sy o q is the unique solution to the ODE

/

¥ = pa = 51(),

with = (3_,cy )\,1,/“)“. Ezcept in the case s1(y) = 0, there seems to be no explicit
solution to this ODE. What can be proved however is that if s1(v) < 0 then z(t) — oo
while if s1(y) > 0 then x(t) — (u/s1(7))Y®.
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5.3 Notation and main steps of the proof

5.3.1 General notations

Since we impose that only one node can be active at a time, whenever convenient
we will identify o with the active node, or put ¢ = 0 if no node is active (empty
schedule). We will thus either consider ¢ € {0,1}V when seeing o as the vector
of instantaneous service rates, or o € Vj with V5 = V U {0} when seeing o as the
current schedule. Because a schedule is associated to a node, we will sometimes
use the notation ¢, to denote the vth coordinate of the vector ¢ € IRK, with v the
only non-zero coordinate of ¢, and in this case we will adopt the convention gg = 0.
Note that with this convention, we have o9 = 1 — Zvev Oy.

The generators and carré du champ used in this Chapter are the same ones

from Section 3.3 with # = 1 + a. Said otherwise, for any f : %]NV x Vo — R,

g: +NY -5 R, h: Vo — R, ¢ € +INV in the respective domains, LV[f], LYg]

and LY7[h] are given for ¢ € +INV and o € V; by
LY f(g,0) = N*HLfY(Ng,0), LJ7g(g) = N**'LIg" (Nq)

and
LY (o) = N LN h(o)

with f¥(q,0) = f(q/N,o) and ¢~ (¢) = g(q/N). From Proposition 2.1, for a
suitable f,

M (1) = F(QY (1), 0™ (1) —f(QN(O)vaN(O))—/O LY Q" (5),0™ (5))ds

is a local martingale with increasing process

(MY (1) = / TN QY (s), 0™ (5))ds,

with T'V the carré du champ associated to LY.

For N > 1 we consider the homogenized generator L' acting on functions
f: %]NV — R as

D=3 (1 (44 %) - )
veV
PN 0 (1 (o) 1) 63)

This is the same generator as the (scaled) slow process LZ given by (2.1), but where
the instantaneous service rate o, of node v is replaced by its average value 74(v).
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5.3.2 Localization, constants

Most of the proof of Theorem 5.4 is carried out for a localized process Q™ (t AT™)
with TV the first time that QY significantly departs from q. More precisely, in
the rest of the paper we fix some finite time horizon 7' > 0 and we consider the
following two constants:

2 1 1
O+ = max <QS(T), TO), 2> and C_ = W min )\U/ .

v

Here and in the sequel, we will treat as constants all numerical parameters that
only depend on a, n, and A as these are fixed throughout the entire chapter. Recall
that C' is a finite constant that only depends on a, n, T, A and ¢° whose precise
value is irrelevant and that may change from line to line.

We then define
N o= N = . N _ C_
T =T7= (Q",q) = inf t>0:HQ (t)—q(t)H1>7 ,
the set U C R%}

1
U= {q eRY: c, < s1(¢) < C+ and ml_inqi > C},

its intersection U™ with %INV
UN =Un IV
N )
and the exit time of QV from U (or UY):
™ i=inf{t>0:QN(t) ¢ U}.
Because jumps of Q¥ are of size 1/N, at time TV we have ||QN(TV) — q(TV)]| <
C_/2+1/N. The constants C_ and C; have been chosen such that the following

result holds. The proof is similar to Lemma 4.12 in the previous chapter so we omit
it here.

Lemma 5.6
We have TN < V. In particular, QN (¢t ATN) € UN for all t > 0.

5.3.3 Distance to [

In order to control the distance to the invariant manifold I given by (5.1), i.e., to
control the state space collapse property, we will use the Kullback-Leibler divergence
between A and (7%(v),v € V) (note that the latter is not a probability measure).
More precisely, for g € RK and N > 1 let

dV(g) = Aylog (WNA;’(UJ .

veV
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When N — oo and (g,0) € U x Vg, by Lemma 2.4, since 77 = 74, for a complete
interference graph, we have 7V4(o) — 7 (o) where

with the convention gg = 0. We thus introduce

d®(q) =Y _ A log (w?i?v)) :

veV

Note that d*°(¢) = 0 if and only if ¢ € I, so d*° can indeed be seen as a distance to
I. As the next lemma shows, as long as ¢ stays in U the two distances d and d*
are close to each other.

Lemma 5.7
As N — oo we have
sup |dN(q) — d“(q)| — 0.

qeUN
Proof. For any ¢ € UV,
N oo _ ’/Tgo(v)
|d (q) d (q)‘ - Z )‘v 1Og(7qu(U))
veV
Z, N—a+ . ( . +N—1)a
< 3o (et | ¢ o2
< Z Ao ( 10%((1+11)a) + (log <Na + Z(% + Nl)a> — log(sa(q))
veV Ngy veV

) |

To conclude the proof, compute Taylor expansions of log(m) and log(t* +
sq(q + 1)) for t a neighbourhood of 0 and use the fact that

C_ <ming, < maxgq, < Cy
v

v

to obtain an explicit bound depending only on N,C_ and C,, that vanishes as
N — 4o00. O]

5.3.4 Main steps

In order to be able to use the improved bounds from Corollary 3.7, we need to prove
this lemma on idle time:

Lemma 5.8
We have

E < CTN *+ CTN* log(N)?,

TATN
/ o (s)ds
0
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or equivalently

Nte(TATN)

E op(s)ds| < CTN + CTN?**log(N)?,

0

Proof. Note that

NQN(5) (@) — 1
O = T NN ) T e

and so since Qév(s) > C_ for t < TV, we have V@ (®) (0) KON~ for s < TN
and so

E <CTN *+E

TATN TATN N
/0 o ()ds /0 (agv (s) — PN )(0)) ds] .

We now deal with the homogenization term: recall ¢o(qg,-) the solution to the
Poisson equation

L¢o(q,)](0) = 0o — 7(0).

We get
TATN N NO(s) 1 Nt (TATY) o)
E /0 (UO (s) — (0)) ds| = E NT/O oo(s) — 79 (0)ds
= ﬁE [0 (QIN“TH (T ATN) ,o(N“TH (T ATY))]
Nt (TATY)
B ﬁE VO LI®) (go(-,0(s)) (Q(s)) dS]
1

+ W¢0 (Q(0),0(0)).
By definition of LS we have

Lg (¢0( T U)) (CI) = Z AvAf,vd)O(% 0) + Z O—v]lq,,>OA]—V,v¢0(qa U)'

veV veV

From Lemma 3.6, with U as localization set, we get

TATN
E /O (aéV (s) — WNQN(S)(O)> ds] < N-oiT (CN“ log(N)/2 4 CNo+i+a-1 1og(N)3) .

The last quantity is smaller than CN%~!log(N)3. O

First step: homogenization

Recall that C' denotes a numerical constant allowed to depend on a, n and A.
We begin by stating the homogenization result:

Proposition 5.9
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If f : U — R is twice continuously differentiable and T > 1 then

! o™ (s) N a—1 3/2
E| s | (L0~ Luy) @@ ()ds]| < Cmax gl N log(V)
t<TATU(QN) |Jo v
2 2a—1 3/2
+C’Ur7£10a€>%/f|8v,ngOO,UN log(N)~/<.
Proof. This result is a restatement of Corollary 3.7. O

Second step: State Space Collapse

Using the averaging result of Proposition 5.9, the next step is to prove the
following state space collapse result.

Proposition 5.10
As N — oo we have

E sup  d®(QN(s))| — 0.

0<tKTATN

The proof proceeds in two steps: we first control the action of the homogenized
generator LY on d" and then use this result to control d® o Qv thanks to the
averaging result of Proposition 5.9. This result is proved in Section 5.4.

Third step: full proof

The third step of the proof consists in showing that Q" (- AT™) LA q. The proof
proceeds in two steps: first we establish the convergence of the one-dimensional
total queue length process s; o QN (- A TYN) LA s1 0q = S by using Gronwall’s
lemma. Together with the state space collapse property of Proposition 5.10, this
gives the convergence of the entire n-dimensional process Q™ (- A T™) stopped at
time TN .

We finally conclude the proof: because the limiting process g does not exit the
set U by time T, we prove that with high probability @ also stays in U by time 71"
this implies in particular that P(T" > T) — 1 which makes it possible to transfer
the convergence result from the stopped process Q™ (- AT¥) to the unstopped one

QY.

5.4 State space collapse

In this section we prove Proposition 5.10 through a series of lemmas. We start by
writing

¥ QY (1)) = d¥(QN(0)) + / LN [@V)(@QV (s))ds

0

" / (LY — I a)(QV (5), 0™ (s))ds + M (). (5.4)
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In the above expression, in order to give sense to LVd" we consider d¥(q,0) =
d™ (g). Consider the following lemma, which we will prove later on.

Lemma 5.11
For any q € 2 INV N U we have LY [dN](¢) < CN~0-9),

Then defining

cT
= dN(QN(O)) + sup ’Mé\[v (t)| + m
0<t<TATN

/ (@Y — @M@V (). 0™ (s)ds|  (5.5)

0

+ sup
0<t<TATN

we obtain d™(QN(t)) < ZN for any t < TV. In particular, in order to prove
Proposition 5.10 we only have to prove Lemma 5.11 and that IE(Z) — 0. We first
prove Lemma 5.11 and then E(ZY) — 0 in the next section.

Proof of Lemma 5.11. Let ¢ € UN and for each v € V, let (Y such that

e’ 1
(02 5) = 0 £ 5000 + 3086,

Then

Ly [aN)(q) = N*F Y A, AY N (g )+N““Z7r"’q )AN N (q)

veV v=v
= Not! ;A ( dpd™ (q) + W&ﬂ dN(gj;)>

a+1 N 1 N 2 N (v
£ 100 (gt @)+ ()
= N> 0,dV(9)5) (q)

veV

s O (02,4 (€A + 02,08 (C)n ()

veV

+

with 6% (¢) = A\, — #™¥9(v). Similarly to Lemma 5.2t may be checked through
elementary algebra that

N
. (g) =~ 219
QU+W
and that
52 a¥(g) = L@ Far @AM 1 1

(qv + %)2 (QU + *) 02

Plugging in these expressions and bounds in the previous expression for LY [dV] we
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thus obtain

LN[dNKq) < —aN¢ Z 511)V(Q)2 + 1
h X = T + % Nl—acz

which gives the result. O

5.4.1 Proof of E(ZV) — 0

We now prove that IE(Z) — 0 through a series of lemmas. As explained above,
this implies Proposition 5.10. In view of the expression (5.5) of ZV, we have four
terms to control. The third term CTN~(1=%) vanishes because a < 1. The first
term d™¥ (Q™V(0)) also vanishes, because @V (0) — ¢° € I and in view of Lemma 5.7.
The next two lemmas show that the other two terms also vanish, which concludes
the desired proof of E(ZV) — 0.

Lemma 5.12
We have

E sup

0<t<TATN

tATN
/0 (LN — L)AVQN (), o™ (s))ds

FO.

Proof. This lemma is a direct consequence of Proposition 5.9 because dV is twice

differentiable with bounded derivative. O
Lemma 5.13
We have
CVT
E sup | MN O] € =5
0<KtKTATN ‘ a ’ N(=a)/2

Proof. Proceeding as in the proof of Lemma 3.4 we obtain

TATN
E sup MM (1)?]| <ANTE / Z AN LAYV (QN (s5))3ds
0StSTATN eV
TATN
+4NHE / > (AN dV QN (s ))2d51.
veV

The result then follows from the same Taylor expansion as in the proof of Lemma 5.11.
O

The proof of Proposition 5.10 is therefore complete.

Remark 5.14
If ¢° is not on I, [EN] does not converge to 0. Using the same method as in

Proposition 5.1 it is possible to prove that T [H(SN(QN(S))H;] — 0 as N — 400 for
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almost every t > 0: indeed,
TATY N /AN 2 —a ( JN(AN N /AN 2 a—1 N
/0 16V (@N(s))[; ds < ON=* (a¥ (@Y (0)) = Y@V (B)[|; + CN“"1 + M (1))

tATN
LON" sup / (TN — L)@ (), o™ (s))ds]

0<tKTATN

If ¢° > 0 for every v, dN(QN(0)) remains bounded. This means that the right hand
side converges to 0. This is enough to prove uniform convergence of s1(QY), but
only enough for

E

/0 le% () =" (s)] ds] — 0 as N — +oo.

5.5 Proof of main result

To prove Theorem 5.4, we will establish its equivalent for the stopped process
QN (- ATN) using Gronwall’s lemma. We then transfer the result on the stopped
process to QN using Lemma 5.6.

Because of the N1t time scale, QN can have variation of order N® even for
small times. The process has a continuous limit because the homogenized service
rates are close to the arrival rates, which slows down the variation speed for queue
lengths. The crucial part of this argument is that s, 0 QY evolves slow enough to be
tight and have a continuous function as a limit. We do not need to prove this result
because we will directly show that the distance between the process and its limit
decreases uniformly to 0. To identify the limit, we use the fact that when q € I, it
is possible to write

Lu[s1](q) = -
which indicates an ODE-type behavior.

One of the major disadvantages of the method from [LN13] is that it is required
to approximate the dynamic of the fast variable with rates that only depend on
the slow variable. For this time scale, QY evolves too fast for this method to be
applicable. In addition, without the state space collapse, it is not possible to express
the activation/deactivation rates of a specific queue using only information about
the sum of queue lengths. Finally, in order to prove the collapse of the state space
for the queue lengths, it is necessary to prove a homogenization result beforehand
in order to replace the service rate by their steady state average in order to use the
same method as in Proposition 5.1.

5.5.1 First step: convergence of the sum to S

The first step is to prove that s; o QN (- A TY) L S uniformly on [0, 7], which
we do now. Starting from the definition of LY? and using Y ., Ay = 1 and
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> wev Ov = 1 — 0¢ we obtain

Lév’“[sl](q) =N* - N?¢ Z oylg,>0 = N%o+ N Z oy14,=0.
veV veV

The semlmartingale decomposition of s; o @V and the fact that S(t) = S(0) +
I fo ~“ds by definition of S then leads to

(@ (0) = 50) = (@ (0) - 50) + (N“aéV - S(”)) s

+Z/ $)lon (s)=ods + MI (t). (5.6)

=
Define N (1) = 51(QN(0)) — S(0) + 1™ (1) + N (8) + BV () + MY (1)
where
MO /OMTN (Na n sa@lN(s) +1/N) Sa@%V(S))) "
o= | " (o w@vwr)®
and

WV (1) = N° /0 n (o—g]v (s) — aNQY ) (0)) ds.

Since QN (s) > 0 for t < TV, starting from (5.6) and plugging in the above expres-
sions, we obtain

N Ny - t ! - o
@V AT =50 =50+ [ (v - g ) d

Since z € [C_,C1] — x~* is Lipschitz and all queue lengths are in [C_, C] before
time TV, we finally obtain

t
5@V (EAT)) — S| < [N ()] + c/ 152(QN (s A TV)) — S(s)]| ds
0
and Gronwall’s lemma from [EK86] Appendix 5 implies

sup |s1( QN (tATN)) - S(t)]

0<t<T

g<|31(QN(0))—S(0)\+77N+5N+1%N+ sup |M;Y(t)}> T
with
1

0<t<TATN
N TATN 1
K :/0 N=*+5,(QN(s) + 1/N)  54(QN(5))

TATN
eV = /
0

‘ ds,

sa(@N(s))  s1(QN(s))"
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and

RN = N*  sup
0<t<TATN

/0 t (o—gV (s) — WNQN<S>(0)) ds| .

By assumption we have s;(Q%~(0)) — S(0) and so in order to prove the desired
result s; 0 QN (- ATN) B Son [0, 7], we only have to prove that 77V, &N, A" and
the martingale term vanish. The fact that 7% 5ois straightforward (using that
QN (tATYN) € U). The martingale term is handled with the exact same arguments
as the previous martingale terms in Lemmas 3.4 and 5.13, the proof is omitted. The
next two lemmas show that the other two terms also vanish.

Lemma 5.15
We have eN 5 0.

Proof. Let € > 0: since Ao QN (- ATV) Eo according to Proposition 3.3, we only
have to prove that P(e" > e, X <n) — 0 for > 0 small enough, where

X= sup  d¥Q"()).
0<t<TATN

Actually, we will show that if 7 is small enough, then X < 7 implies eV < ¢. For
q € U we have

1 W
salq)  s1(q)”
Using Pinsker’s inequality and elementary algebra, one can show that if d*(g) <7
with 7 small enough, then |s1(q)* — psq(q)| < Cn/?. Combining the above bounds,
we see that if X <, then for every ¢ < TN we have

< C|s1(9)" — usa(q)|

1 _ %
5a(Q@N(s))  s1(QN(s))"

which proves the result. O

< 0771/2

Lemma 5.16
We have E(hYN) — 0.

Proof. Since o9 =,y 0y and 79(0) = >, 79 (v) we have

nN < N sup
ooy OSESTATN

/Ot (af]v(s) - WNQN(S)(U)) ds

and so Proposition 3.3 with f = 1 implies that

PN (log N)*/2
B(T) < O mma

As a < 1/2 we have the result. O
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5.5.2 Second step: proof of Theorem 5.4

We now conclude the proof of Theorem 5.4. Fix v € V, we write

sup |QY(1)" — @ (t)*] < el +ef +ef

0<t<TATN
with
e = sup QY ()" = Msa(@Y (1)
0<t<TATN
)\’U a
= s esa@Y(0)T - s (@Y (1)
0<t<TATN H
and A\
€§,V — e sup |51(QN(t))a — S(t)a| .

K o<t<TATN

We have just proved that 3 B o. Moreover, using similar arguments as in the

previous step, we can prove that e’ 0. The first term eV also vanishes because
by Pinsker’s inequality, for ¢ < T we have

QY ()" = Xosa(@V ()] < Ca®(QN (1)
and so £V Lo according to Proposition 5.10. We thus have QN (- A TY) LN q
uniformly on [0, 7.

Let us now remove the localization and prove that Q~ LN @ uniformly on [0, T.
In order to do so, it is enough to show that P(T™ > T) — 1. By definition of T,
we have o
|l (™) —ar™)|, = =

Since TN AT =TV in the event {T™ < T}, this entails

P(TY <T)<P (HQN(TN AT) =g TN AT)||, > (’;‘) :

Since we have proved that Q™ (- A TY) LN ¢ uniformly on [0,7], the previous
probability vanishes. This concludes the proof of Theorem 5.4.
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In this thesis, we presented some advances in provable approximations for QB-
CSMA. To be able to prove those approximations, we developed a new method
to obtain a stochastic averaging principle. Because of this phenomenon, we are
able to prove convergence of % in a general setting and Q(NTHH) in a complete
interference graph for critical arrival rates as N — 400 to deterministic processes

governed by ODEs.

6.1 Generalizing the fluid limits result

For fluid limits, the limiting ODE is given by (4.2):

{ f=9(f)

f0)=¢" 7
with
g:RY\{0} —[-1,1]V
q — A =79,
and 7(v) = 74 (0, = 1) and 7 (0) = limy_ 1o 7V9(0) for any v € V and

o € S(G). Remember from Chapter 4 that (4.2) has a unique maximal solution

109



110 Chapter 6. Conclusion

defined up to Tux (") the exit time of (0,4+00)Y. In this section, it is important
to highlight the dependence of the solution to (4.2) on the interference graph. For
any graph G, let’s use the notation ¢© for the solution from Definition 4.2 when the
interference graph is G. The dependence in the interference graph is also emphasized
in § from (2.8) which actually depends on G.

The two first discussions regard the study of the solution to the ODE (4.2)
while the third discussion regards problems related to homogenization when some
coordinates are too small in the queueing model.

6.1.1 How/when do coordinates of solutions to the ODE
reach 07

Theorem 4.5 is limited in time by Tu(¢°). It would be interesting to identify
situations where T, (q°) = +o00. For instance if A\, > 1 for every v, the input rate
at each ¢¥ is greater than the decrease rate so no queue can reach 0. As we saw
in Section 4.2.3 when A € (1 — €)A*(S(G)), at least one coordinate will reach 0 in
finite time. It would be interesting to characterize interference graphs such that a
result analogous to Lemma 4.4 can be proved. It essentially states that the only
possibility for solutions of (4.2) to exit (0, +00)" is by approaching 0.

To formalize this question, let us define two classes of graphs:

Definition 6.1
Let G be the set of graphs such that for any G € G, ¢°, A € (0, +00)V,

(4% (- 4") = (51 2 ¢“(-,¢"))-
We will say that G € G(\, ¢°) if

(q%(,¢°)) = (510 ¢“ (-, ¢"))

Lemma 4.4 states that G contains the complete interference graphs with any
finite number of nodes. Identifying a family of graph in G can be a challenging
question for the future. In some interference graph, having 7°(¢%(-,¢%)) = 7°%(s; o
q%(-,¢%)) may also depend on the initial state or the arrival rates. We mention for
instance the case of 4 nodes on a square where that may be the case. It is only
possible to schedule two nodes at the same time if they are on opposit corners of the
square. We will go in further details about this example at the end of the section.

Once G has been identified, it suffice to identify the behavior when some queues
start null to prove the folowing conjecture:

Conjecture 6.2
Let ° ¢ RY, N € R_‘f, and assume that

e The initial condition Q™ (0) converges to ¢° as N — +oc.
e The interference graph G is an element of G.

e The condition on the spectral gap is 2aB(G) < 1.
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Then Q)
)P
N — CIG(HQO)

uniformly over compact time sets, as N — 400, with ¢¢ from Definition /.2.

If ¢° € (0,+00)V, this conjecture is proved in the same way as Theorem 5./

@ ©,

O, ®

Figure 6.1: Square interference graph with 4 nodes

Depending on arrival rates and initial conditions it is possible that
(g% (- a") # (51 2 ¢“(-,¢"))-

For the situation described in Figure 6.1, if ¢ is close to 0 and \; < Az, it is
reasonable to expect ¢ to touch 0 before q3G and end up with a situation similar
to three nodes on a line. This intuition comes from the fact that the derivative of
¢ is smaller than the one of ¢§. If ¢! = ¢ and A\; = A3 because of the strong
symmetries in the network, since ¢§ and qf have the same derivatives, we expect
them to touch 0 at the same time. In order to keep the exit rate at each queue
positive, one group of two oposite nodes cannot approach 0 without the other.

6.1.2 Homogenization when touching 0

The major flaw in the homogenization result proved in this thesis is that the upper
bound goes to infinity when queue lengths are too small. In order to prove con-
vergence for any finite time horizon, it would be helpful to have a homogenization
result that is more efficient when queue lengths become small. As seen in Remark
4.8, we can prove homogenization up to the time Q(Nt) becomes smaller than
Nmax(@B+1/2.350) | This is not sufficient for the example from Section 4.2.4 with
three nodes on a line because in order to have all queues with non-zero service rate,

it is required to have at least one queue of order of magnitude smaller than v/ V.
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6.2 Generalizing the Heavy traffic result

6.2.1 Additional time scales, State space collapse

When the arrival rates are critical, we prove at the end of Chapter 4 that the solution
to (4.2) converges as t — 400 to a state where input rates and exit rates are equal.
This is obviously not true in any interference topology. Recall the example of three
nodes on a line from Section 4.2.4 where the outer queues will stay at 0. This is
due to the difference in the size of independent sets of the interference graph. If
for instance every node is in an independent set of maximum size, does there exist
a configuration of queue lengths g.q where A = w%a? When the arrival rates are
critical, we have

Z Ay = Z 7(v) for any ¢ € RY \ {0}

veV veV
so the sum of coordinates evolves on a slower time scale than individual queue
lengths but it is unclear if there exists geq € (0, +00)" such that

A = qdea,
When they exist, are such states always attractive stable points for the fluid limits?

For any interference graph, recall A*(S(G)) interior of the convex hull of S(G).
First, if A € (1 — e)A*(S(G)), we expect the queue lengths to reach 0 and stay
absorded. By (4.4) and the discussion after, second if A € (1 + ¢)A*(S(G)), it is
reasonable to expect s1(Q(N’t)) to be of order of magnitude N so if we renormalize
the process of queue lengths with N in space, the limit should be infinite as soon
as b > 1. If X\ is on the border of the capacity region, with a reasoning similar
to (4.4), the sum of coordinate should evolve very slowly. We saw in Chapter
5 the behavior of the queue lengths when the arrival rates are on the border of
A*(S(@)). In this configuration, the fluid limit converges to a deterministic value
as t — 400. The limit is a state such that arrival rates and homogenized departure
rates are equal and this state is attractive. For fluid limits, we only need to consider
74, = limy_, 400 7V9 the first order approximation. As a probability measure,
7wl € A*(S(G)). Whenever there exists ¢ such that A\, = 74 (0, = 1), we can
expect the fluid limit to converge to such a state. Since this happens in the case of
a complete interference graph, we looked at a faster time scale to see the evolution
of the total number of request in the system. If

I = {q elNV, \, = wd (o = 1)}

is attractive for the fluid limits, any fluid limit starting in I should remain in I but
could potentially still evolve. There is a sequence of time scales N'7%¢ for more and
more precise approximations of the invariant measure that could entail variation for
the limiting ODE for £ = 0,...,T — 1. For k > 0, the N'7% time scale makes it
so that the schedules of size greater than T — k have a non-negligible influence on
the dynamic of queue lengths. The last time scale N't¢T gives the influence of idle
time on the dynamic of queue lengths. Depending on the topology of the graph,
the sum of coordinates might evolve in the critical case for time scales larger than
N.

Let’s illustrate this discussion with the example from Figure 6.1. For any g € ]Ri,
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and N < +oo,

(Ng1 +1)* 4+ (Ngs + 1)%(Ngs + 1)*

(o) =1) =
14+ (Ng1+1)%(Ngs +1)* + (Ngs + 1)4(Ng2 + 1) + > oy (Ngy + 1)@

_ (@ +N"H(gs + N~H?
(@1 + N7 (gs + N7 + (g4 + N71)*(q2 + N7H)* + O(N =)

(6.1)
+ (g + N1
Ne((qr+N"12(gs + N "D+ (g2 + N1 (qo + N1 + 0((N_)a>)'
6.2

On the fluid scale, the influence of (6.2) in the invariant measure vanishes as N —
4+00. When A\ = A3 =1 — Ay =1 — )y, the expected state space collapse is given

by
I={qeRY, (@) _ }
{q + (q193)® + (g2q4)® !

For any value of g1, ¢2 > 0 it is possible to find g3, ¢4 such that (¢y)v=1,...
the manifold is actually two dimensional. The manifold should also be attractive as
well: if for instance g € IRK is such that g1q3 is too small compared to the value it
should be to be on the manifold, the solution to the fluid ODE with coordinates in
configuration ¢ has ¢} and g3 decreasing. For any b > 0, assuming homogenization,
the martingale problem for queue 1 on the time scale N gives

Q1(N") ~ Q1(0) +Nb—1/t A — <Q1(NbS)Q3(NbS))a LO(N"1%) + MM (1),
0

N N N

As explained before, after the fluid time scale b = 1, the next time scale of interest
is b =1+ a. On this time scale, the part of the invariant measure given in (6.2)
will play a role in the dynamic. On the time scale b =1+ a, let

Q(NlJrat)

Q¥(H) = ==

The dynamic of QY is given by

QN (5)QY (5))°
X)) + QY QY ()
: QY (s)°
* / @) + QY )Y ()

Qf(t)zQ{V(owN“/o N s+ MY ()

ds

The only possibility for the limit of Q" to be a cadlag function is if Q¥ is close to
I because of the N® in front of the integral. In order to understand the importance
of this time scale, consider QI — Q¥': the martingale problem gives

(@3 (s)* = (@Y ()
JQY (5))* + (QY (5)QY (s))

Because of this, the difference between nodes that are in the same maximal stable
set tend to become equal as t — +o00. Let’s define the manifold I C I such that

NV_oN#) ~ ON (0 —0oN ! s N ().
QY -0 1) ~ QY 0)-QY O+ | e st (1)

q € I if and onlyif g€ I'and ¢ —q3 = g2 — qu = 0. If QV LA ¢ uniformly over
compact time sets and ¢ is continuous, the influence of the stable sets of size 1
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suggests that
|71 (t) — q3(t)] — 0 as — +oo.

The additional time scales due to successive approximations of the invariant measure
seem to lead to state space collapses on manifold of decreasing dimensions.

6.2.2 Diffusive time scale

Our second time scale is not the usual N2 from heavy traffic results. In fact,
with this time scale because N'*¢ is slower than N?2, the queueing process do
not “diffuse”. The martingale terms in the evolution of queue lengths all vanish
as N — +oo. What happens on the N? time scale is linked to the asymptotic
behavior of the ODE for the fluid limits. If s1(\) = 1 in a complete interference
graph, ¢(t) — +oo as t — +00 so Q(N?t) may not be O(N). The standard heavy
traffic assumption is that there exists A on the border of the stability region, v € ]RK
and (pn)nen a sequence converging to 0 such that
1

poe (Ao = A)) = 7.

b
For any b > 0, looking at the generator for Q”(Jf,v ) in a complete interference

graph, assuming the distance to the state space collapse is N~ (which can be
justified formally), we get

NPAY (f <q+ jv) - f(q)> +N" (A, N7 <f (q - ?V) - f@)
=30 =) (£ (a4 5 ) = @) + 8 0 =) (£ (0= ) - 50).

Using a second order Taylor expansion with integral remainder,

v v

ev

fla+ ) =2@)+ fla =) = 5 [ dfla+

ue
N

ue
N

) +8U2f(q— )du

N N

If the second derivative of f is bounded and b < 2, the generator can be approxi-
mated by

N’y (f (q + jv) - f(q)) + NP (f (q - j\;) - f(q)) :

Thus it is reasonable to take b = —a — 1 and N*~!px = O(1). Recall from 5.1.3
that if v, > 0 for all v € V' the corresponding ODE for queue lengths has a unique
stable point ¢° given by ¢° € T and s1(¢°) = (Sl’(‘v))l/a with p = (3, cv )\},/a)a.
When starting with ¢°, the limit is constant. Because this state is attractive, we
can expect that Q(N'1%) = ¢® as long as a < § < 1. When 6 = 1, N'*? is actually
the usual diffusion time scale. On the N2 time scale, we expect the limit to be
some kind of semi-martingale reflected Brownian motion with a drift towards the
attracting set. For any a, Corollary 3.7 is not enough to prove homogenization
occurs on this time scale so we need to improve the homogenization result as well.
After the result from Chapter 5, it is natural to pose a conjecture on the N? time

scale: let QN (t) = Q(%%)
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Conjecture 6.3
Assume QN (0) — ¢° € (0,+00), G is a complete interference graph and a < 1/2.
Then QN converges to a Gaussian process with state dependent drift and variance.

6.3 Generalizing the homogenization result

Looking at Chapter 3 and the proof of the homogenization result, we see that it
is easy to generalize it to other types of queueing models. Assume that L is the
irreducible generator of a queueing model such that for any ¢ € NV, and o € S°,
with S° finite,
Lf(q,0) = L{[f(g,))(o) + LI[f (-, )] (q)-

Assume that L{ has a unique invariant measure 79. The bounds we obtain on
the regularity of solution to Poisson equations in their parameters are essentially
functions of L, its invariant measure and its Log-Sobolev constant:

e The log-Sobolev constant
af,

e the derivative of the transition rates of the fast process

di(q) = max 9,L%(o,0");

veV,o,0'€S0

e and the derivative of its invariant measure

dr(q) = ver\??)e(so Oy (0).

Redefining a localization set U and denoting ¢4(g, -) the solution to the Poisson
equation

L{[d4(q, -))(0) = g(o) — w[g],
we get that for any q € U,

2
ma [0 (g £ €”,0) = 00, 0)| < Cllgll (107 e 1l + 0% s il ) -

If the size of jumps are bounded, with this we can provide the next bound:

=U

tAT
E / (L5 = 79OLID)) [£1(Q(s))ds | < Ctmax [9g]lc,pr 0] 1l o

2
+ Ctmax 10,01, 091 o 1]
OV (0l + VE g 00 ).
which when scaled properly, can give a homogenization result. We now informally

present two potential future research projects expanding on this homogenization
argument.
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6.3.1 Metastability phenomenon

The hypothesis on the generator is a bit restrictive: because of the separation
between the two components, we are not able to handle cases where o and ¢ jump
at the same time. For instance in wireless networks, we want a queue to deactivate
at the same time as it finishes its last job. Such transitions are not allowed with
our decomposition because the schedule and queue lengths cannot jump at the
same time. If this type of transition does not occur often, our result should still
holds, provided this type of jump does not make the invariant measure change too
much. If those simultaneous jumps significantly change the invariant measure (for
instant by being a bottleneck for transitions between two regions of the state space),
some interesting metastable phenomena can occur. For instance, let (Q™, o) be a
sequence of Markov processes whose generators are given for any ¢,0 € NV x S,
by
LN[fl(0,0) = NLAF(, ))(0) + LI1f(0,))(@) + Lunn[)(0 0)-

Assume that L? is reducible and L, y contains transitions between fractions of the
state space that would not be connected otherwise with all rates uniformly bounded
and bounded away from zero. Assume the state space of o can be decomposed in
irreducible classes S, ..., Sy such that L{ restricted to each S; is irreducible. For
each i < k, there exists a unique invariant measure m; invariant for L{. If there
is a time scale separation for the Markov process of generator NL{[f(-,q)](c) +
L2[f(0,)](q) on all S;, 1 < i < k, the dynamic we can expect for QV, 0% is a
mixture between the homogenized processes on each S;. As N — +oo, oV will
randomly switch between fractions of S° at a bounded rate and thus the limiting
dynamic randomly switches its “driving invariant measure” depending on which
fraction of the state space the fast process is.

6.3.2 Large deviations

The convergence to a deterministic process indicates that the distribution of the
trajectory concentrates on a single element of the space of continuous trajectories.
It is also interesting to understand just how the distribution concentrates. One
natual future research consists in establishing a large deviation result for QB-CSMA
in any of the two regimes considered in this thesis. It would be interesting as well
to have a better understanding of large deviation results for homogenized process
in a fully coupled model. Freidlin and Wentzell proved in [FW12] a homogenization
and a large deviation result for the solution to the problem

(6.3)

or
d¢e(t) = b(X“(t), ¢ ())dt + —=g(¢*(2))dW (1),

with W (t) a Brownian motion, under the conditions of the existence of b such that
for any z € X and § > 0,
> 5> 0

t+T _
% /t b(, C(s))ds — b(z)ds

sup lim P
t>OT—>+oo
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and of a function H such that for any step-functions ¢4 and g,

' 1 T _ T
lim elog (MeXp (6/0 <as,b(¢s,<(8/6))>d8>> —/O H(¢s, as)ds,

with M a numerical constant. They prove the existence of a function D on the
space of continuous functions such that for any A ¢ C((0,7"),R’}) not containing
the limit,

lim —elog(P (X€ € A)) = sup D(f).

e—0 feA
In a time scale separation framework, both components could deviate from their
theoretical limit. Is it possible to identify the influence of the fast and the slow
variables in the rate function if a large deviation result hold. Does the mixing time,
the log-Sobolev constant and other quantities related to the fast variable play a role
in the rate function or even the speed at which IP (X€ € A) — 0? For instance for
QB-CSMA with polynomial rates, how does the parameter a influence the result.






Appendix A

Asymptotic approximation of
service rates

Proof of Lemma 2.4: Fix v € V, for any q € %]NV such that C_ < ming g, <
max,, ¢, < Cy, we get

> ou I (Ngy +1)%7
o 1) __ o€eSs weV

™ Oy =
L+ > T (Ngw + 1)o7
oceSweV
> oo 11 (g + )+ 3 N=oy T (qu + )"
pES* weV oceS\M wevV
N—av 4 Z Na(lo|-v) H (qw + %)ao’w

oceS weV

Since every coordinate of ¢ is bounded by M and bounded away from 0,

> Nellel=Yg, T (quw + &)

€S\ M weV —a (QCJF)Q(Til)
N-—av Z Nea(lol=v) H (Qw + %)aaw X CET
g€eS weV

If v is not in a stable set of maximum size, 7V%(c, = 1) < CN~% and 7(v) = 0 so
the convergence holds. Assume now that there is p € S* such that p, = 1. With
the previous computation, we know that

Z Po H (Quz+%)apw Z Pv H Q™

peS™* weV peS* weV

N—av 4 Z Na(lo|—-v) H (qw + %)aaw Z H qﬂ«jpw
og€eS weV pES* weV

+CN™°.

7N (o = 1)-7(v)] <

So we are left to deal with

Z Pv H (Qw+ %)aﬂw Z Po H qgfe

€N( ) L peES™ weV _ peS* weV
T N S N T ()t 2 T a
oS wevV pES* weV
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In order to obtain convergence, we now add and subtract the intermediary quantity:

> oo T (quw+ 7)"

pES* weV

> I @™

peES* weV

Using the triangular inequality we get

> po Il (QwJF N ) > po I (QwJF N )P

€N( )< peS™ weV pES* weV
S N Y NeGo ) T (g + )2 > 11 ™
og€eS weV pES* weV
> po I (quw+ )apw > po I1 air
peES™ weV . pES* weV
Z H qfupw Z H qap'w
pES* weV peES* weV
> oo T (g + 5) > po I (quw + 5)%
< pES* weV pES* weV
S Z H (Qw+ )llpw 4 Z Na(\cr\ v) H (qw )aaw Z H qapw
pES* weV oceS\M weV pES* weV
= H > | [] @1 R ||
w peES™ weV weV

peES* weVvV

I (quw + )apw [1 (qw+ N )

weV - weV
< Z Pv Z H (qw+ )an + Z Na(lo|=v) H (Q'w )aaw Z H anw

pES* weV oceS\M weV pES* wEV
Z Pv H qul™ H (1 + ﬁ)apw B 1‘
+ peS™ weV weV
> 11 e
pES* weV

The idea to conclude the proof is to write Taylor expansions for

Z APw IOg + 7)

wevV
and
1
tr 4+ 3 11 (quw )2’
pES* weV

for ¢ in a neighbourhood of 0, when min,, g, > C_. O
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Contents
B.1 Generalremarks . . . . . .. .0ttt et 121
B.2 Main steps of theproof . . . . ... ... ........... 122
B.3 Proofs using coupling . . ... ... ... ... ... ... 128

The only thing left is to prove Lemma 4.14. It will be helpful to accurately
describe a coupling for the different activation time/duration. We present in the
last part of this appendix an exact construction of the process. This construction

will enable us to formally prove that all queues are positive for positive times.

B.1 General remarks

For all practical matters, it is possible to replace the Poisson processes for arrivals
and departures by their “compensated” quantity. Recall Proposition 2.1 and Lemma
4.10. Because of theses results, regardless of homogenization, for any 7" < 400 and

veV,

t
P (sup QY0 QX0 - A+ [ (a0
t<T 0

> N—l/?))

=P <supM5V(t) > N1/3) < NY3Y2 4 0as N = +oo. (B.1)
t<T

In particular, since

t
sup QYO+t = [ o) Laymods < [Q¥O)| + N T.
veV,t<T 0

121
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we get that for any v € V,

P (suvaN(t) > HqOHOO + |)\|OOT+N_1/3) —0as N — +oo.
t<T

All of the next discussion will be in the event

{Sup|MN(t)| < N1/3},
t<T

and the N~/3 term will be omitted in the computations. This choice does not
change the result and is only made to alleviate notations. For the previous proba-
bility, we would for instance state that

P (sup Q2 (0> "] + AL T) 0 s N +ox
t<T

The proof of Lemma 4.14 will be provided in a series of lemmas using a coupling
argument. We will only deal with the case where HqOHOO > 0 because the case
s1(A) > 1 can be handled similarly: if HqOHOo =0and s;(A) > 1, for any ¢ > 0 there
is a queue bounded below. Since s1(c™¥(t)) < 1, by summing over coordinates in

P (sl(QN(t)) > 51 (QN(0)) + (s1(\) — 1)t — nN—1/3) S 1as N — +oo.

In order for s1(q) to be greater than e, there is at least one v such that ¢, >

Necessarily,
(s1(A) = 1)t
n

£
o

WV

—1as N — +oo.

P (max QY (1)

veV

After any positive time, there is at least one queue with bounded below queue
length. Recall the hitting time

T (QN) =inf {t >0, QN (t) = ¢}.
In terms of hitting times, if s1(\) > 1 and HqOHOO =0,
P (7T (maxQY) < — " ) s las N — +oo.
N v v 81()\) -1

With the strong Markov property, the reasoning in the next sections can be handled
given which queue is above € at time 7 (max, Q) on the shifted process, and then
integrate over v € V.

B.2 Main steps of the proof

Introduce
V'i={q€eRY, ¢ >0} and ¢ = Hli&l Q.
veV’
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Lemma 4.14 will be proved by induction on the nodes not in V’. From now on
assume V' # () and V \ V' # (. Fix v € V' \ V' and introduce

8 nll¢°1%
Ktime == 1\ a
min, A, €f
Without loss in generality assume that min, A, < 1. Otherwise, on the fluid scale,
all queue lengths are increasing and any level € is trivially reached in a time linear
in e. With the convention 1/0 = +00, let €1 > 0 be such that

Ve 2le, 1
’ H)‘HOOEO‘K'time7 Ktime(l — min, )‘v)

€1 < 6Eomin ll, 21_%/(1 (mvinx\v>
In this section, we first present the technical Lemma B.1 that allows us to prove
Lemma 4.14. It provides a bound on crossing time of €; for Qf)\g The probability
that the hitting time exceeds a linear function of €; goes to 0 as N — +4o0. If the
hitting time is small enough, queues that are in ¥V’ do not have time to reach 0 on the
fluid scale before Qi\{) reaches €1. After briefly justifying Lemma B.1, we present the
proof of Lemma 4.14 using Lemma B.1. The proof relies on an induction argument
on the nodes in V' \ V'. Next, we present some auxiliary lemmas for the proof of
Lemma B.1. Once the three auxiliary lemmas are stated the proof of Lemma B.1 is
provided using a reasoning on events. Lemmas B.2, B.3 and B.4 rely on a coupling
argument.

The time €1 Ktime is constructed in such a way that because of (B.1), by definition
of €0,
min QvN(t) > e — (1 —min A, )t + Mév(t)

veV’ veV
Since .
K ime < 0 )
e 2(1 — minyey Ay)
we get
. €0
i <'U€V,,512£1Ktime Q{}V(S) > 571;6\/, ssélelfKnme QUN(S) S ||QOHOO " ”)\”OO Ethime) -l
Introduce the events
EN@®) = inf N(s) = 0 B.2
=) {ve&{s@@v ()25 (B2)
and
Eiv(t) = { sup QN(s) <2 HqOHOO} : (B.3)
s<t,veV
Since ||\l o, €1Ktime < HqOHOO,
P (EN (e1K¢ime) N EY (61K4ime)) — 1 as N — +oc. (B.4)

Lemma B.1
With the parameters defined before this lemma,

P ( min QN (T (QN)) > €1> —1as N — +oo,
veV/u{vo}

as N — +oo.
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and
P (T(QN) < €1Kime) — 1 as N — +oo0.

The proof of this lemma relies heavily on a coupling argument that will be
explained in the next section. The general idea is to observe the evolution of node
10 over N'=*K,. activations of v°. The proof of Lemma B.1 will be split in three

auxiliary lemmas:

e The first lemma ensures that the large number of activations can occur in a
time smaller than Ne; Kiime so that a node that was in V’ does not have time
to reach 0 on the fluid scale. In addition bounding this time ensures that all
queue lengths will remain bounded before it. This is necessary to be able to
iterate the procedure and prove that the crossing time of a level € converges
to0ase— 0.

e The second auxiliary lemma states that over this large number of activations
of v9, the fraction of the time this node was active is smaller than half its
arrival rate, at least until it reaches €1, provided all queues in V' keep their

queues lengths above .

e The third lemma states that this large number of activations occurs in a time
of order of magnitude N. This means that over a non-negligible period of
time queue v° will be increasing, at least until it reaches ¢;.

Before formally stating these lemmas, we provide the proof of Lemma 4.14 using
Lemma B.1.

Proof of Lemma 4.14. By Lemma B.1,
P (T(QM) < €1K4time) — 1 as N — +o0,

so T (QR) is a stopping time asymptitocally finite. By the strong Markov property,
the process QY (- + T (QN)) is a Markov process with the same dynamic as Q™
and starting point Q™ (T (QN)). Again by Lemma B.1, we get

IP< min QN (T ( %))261)%1&8]\[*}4*00,

veV/U{vo}
and
P (||QN(T£1(Q1])\(])))HOO >2 ||qOHOC) —0as N — 4o0,
because T (Qf)\é)) < €1 Kiime and € Kiime < ||”‘1;H||OO.

As long as V \ V' U {v°} # 0, it is possible to iterate the procedure with V’
replaced by V/U{v"} and €, replaced by €; for the shifted process Q™ (-+T(QN)).
Since there is a finite number of nodes, the time it takes for the minimum of queue
lengths to reach a positive threshold e vanishes with probability close to one as
N — +o0 and € — 0.
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Recall the definition of Kijme:

4 )

Kiime = .
T neg [l
When iterating the procedure at step k > 0, we need to chose a constant:

81+an1+(k—1)a (1 81+an1+(n—1)a 0fla
Kumo(k) = la°ll5 19”115

: a = . a )
min, Ay€f_, min, A€},

with a sequence (ex)g—o, . |1\v’| such that: e; = minyey- ¢b,

2177 l¢°f| 1
|/\||oo €l€[(time(k')7 Ktime(k')(l — minv Av) ’

€k . 1 ) 1/a
€rt1 < Emln [1, SiF1/a (mvln)\v) , |

and € < €)y\yv|, which is possible for € small enough. In this case,

VAV
P TE(QN) > Z Kiime(k)er —0as N = +o0.
k=1

When € — 0, it is possible to choose Zlcvz\lv | e,lﬁ_“ as small as desired. O

We now present the three lemmas used to prove Lemma B.1. Their proofs are
provided in the next section. Omnce those three lemmas are formally stated, we
present a proof of Lemma B.1 at the end of the section. Introduce the constant:

— 61I(time
T a0

and the stopping time
d(N'"K,.) = Time of the N'"?K!" deactivation for v°,

see (B.8) for more details.

Lemma B.2

As N — 400,
P (d(N'""Kaet)) < Net Kgime) — 1.
Consequently,
P EN(M) =P inf QN(8)>€—O —1 as N = +oo
- N vEV/ ,Ns<d(N1—2 Kyt )) v ~ 2 ’
and

d(N'7*K
P (Ef((aﬁ))) =P sup QY (s) <2|d —1as N — +oo.
N VEV, Ns<d(N1=2 Kocr) >
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The idea is to reason in the event

EY (1 Ktime) = { sup Q' (s) <2 HQOHOO} ’

veV, s<e1 Kiime

and use the fact that its probability goes to 1. When proving that d(N'~¢K,.) is
smaller than Ney Kjme, only the value of queue lengths before Nej Kyjme is impor-
tant. In Eiv (61K time), it is possible to bound each activation duration using the
coupling described in the next section. The second part of the result is a direct
consequence of (B.4).

Introduce the event
EN ={T9(QN) > d(N'""Kat) } N EN(A(N'"Koer)). (B.5)
The next lemma uses this event:

Lemma B.3
As N — 400, we get

d(N' " Kact) Apo
P / 0,0 (S)dS > d(NliaKact)%in\([’ — 0.
0

In particular, because of Lemma B.2

Ayo
2

P (T“ (QN) < A(N'""K,et) or QN (d(N' ™ " Kowt)) > d(Nl‘“Kact)> — 1 as N — +oo.

0 is small enough and all queues in

This is quite intuitive: as long as queue v
V' are large, queue v° cannot be active for a large fraction of the time compared
to nodes in V’. This entails that Qf)\é must be increasing during this period until
it reaches €; with probability close to one. Because of (B.1), we can bound the
probability that v° is small provided all queues in V' stay above 2. In the first
case, Lemma B.2 is enough to prove Lemma B.1. Otherwise, we need to prove that

2N61

P (d(Nl_aKact) > ) —1as N — +o0.

’UD
This ensures that Qf}\ﬁ has had time to cross the level ¢; before d(N1=*K ).

Lemma B.4
With the constants described at the beginning of the section,

2N
P (d(NlaKact) < A—el Ef(d(NlaKact))> — 0 as N — +oo.

0
In particular, because of Lemma B.2,

2N€1
Ao

P (d(Nl‘“Kact) > ) — 1 as N — +oo.

Given these three lemmas, the proof of Lemma B.1 can be based on the study
of events whose probability goes to one:
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Proof of Lemma B.1: In terms of event,

{Til( UNO) < d(Nl_aKact)}m{d(Nl_aKact) < Nethirne} - {Til( 1%) < Nfthime} .

(B.6)
Similarly,
d(N'7*K,et) Ao d(N'7K,. Ayod N=K,.
{/o ov0(s)ds < AN Kaer) =3 }C{ & N ) Awdl oN t)},
and

N (d(Nl—“Kact))>)\vod(Nl—aKact) L[ 2Ne
N 2N Ao

C {T(QN) < N Kime} - (B.7)

< d(Nl_aKact) < Nethime}

By (B.6) and (B.7), {T*(QN) < Neé1 Kime } contains

1—a 1—a
({NTQ(Q%) < d<N1_aKact)} U { %(d(N Kact) > )‘UOd(N Kact) })

N )2 2N

2N
N { 2\ o1 < d(Nl_aKact) < Nethime} .

20

In conclusion,

2N61
Ao

€1(Q%) 1-a N Kncr) 1—a Ao
N {NT ) < d(N Km)} u 0w ()ds < AN " Kact) 5= 1 ] )-
0

P (T(Q) < Ne1Kiime) > IP({ S AN Kaer) < NﬂKcimc}

We now justify why the probability on the right hand side converges to 1. As we
already mentionned, because of Lemma B.3,

d(leaKact)) N Ao d(N' 7K e)
N - 2N

P <{NT§1 (QN) < A(N'" Ko} U { 2o ( }) —~1as N — 4oo.

By Lemmas B.2 and B.4,

IN
P ( b AN "Kpe) < Nethime) —1as N = +oc.

20

Since both probabilities converge to 1, the probability of the intersection converges
to 1 as well.

For the second part, in the event
{T(QN) < e1Kime ) »
we get

inf QN(s)= it QN(s).

vEV’,séTﬁl (Q%) veV’,s<€e1 Kime
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Since €; < ¢ and P (Ef(ethime)) — 1, we get by definition of E™(¢) that

IP( inf Qf)\[(s)261>—>1aSN—>+oo.
VeV s<T L (QN,)

By definition of the stopping time, QN,(T*(QX,)) > €1, which proves the second
part of the result. O

B.3 Proofs using coupling

Lemma B.2 is proved independently from the rest using only the coupling described
below. Recall the definition of the events from (B.2) and (B.3)

EN(t):{ inf QN(S)>€20}7

veV’ s<t v

and

Ef(t):{ sup QiV(S)<2||q0Hoo}’

veV, s<t

The results in Lemmas B.3 and B.4 are proved using the coupling and Lemma B.2
to state that

P (EN(d(N'™"Kaet)) N EY (A(N' " Kae))) — 1 as N — +00.

Let £()) denote the exponential distribution with parameter A and G(p) the geomet-
d
ric distribution with success probability p. We use the symbol @ to denote equality

d
in distribution. Elementary computations show that if G @ G(p) and (Ey)ken an
i.4.d. family of exponential variables with parameter \ are independent,

—

5 Qepy), min B L ey and B 2 ()£,

N

Ma

k=1

Given the schedule, the dynamic of @) is easy to construct. Arrivals at each node
v € V happen at the points of independent Poisson processes on R, of intensities
Avi let (Py)yev be n independent Poisson processes on Ry of intensities (A, )yev -
They will serve as arrival processes. Similarly, let (R,),ev also be independent unit
intensity Poisson processes. Departures from queue v € V happen at the points of

R,(t) = Rv(fg 1o, (s)>000(s)ds). All P, and R, are independent.

For the scheduler, we will construct the dynamic between each activation of
the node fixed at the beginning of the previous section v° € V'\ V'. Let (b(1));en
and (d(I));ew the successive activation and deactivation times of node v°: assume
o(0) = 0, then d(0) = 0 and for all k¥ > 0,

b(k) = inf{t > d(k — 1), o(t) = 0"}, d(k) = inf{t > b(k), o(t) = 0}. (B.8)

Between each time the schedule is empty, n inhomogeneous exponential variables
1

compete to activate their nodes. For each v € V, the activation rate is

(Qu(t) + 1)~ + 1"
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Let’s define d§ = d(k), and for any m > 1,

bE, = inf {t> dr ., o(t) # 0} and d¥ = inf {t > bE, o(s) = 0}.
More formally, let (A¥(m))ren men, vev be a family of unit parameter independent
exponential variables. The m‘" time a node deactivates after d(k), all nodes enter
competition for the next activation. If this deactivation occured before the k + 1**
activation of v, the deactivation happened at time d¥, and the next activation
occurs at time

¢ ds
k in inf Ak 1 g/ B.
dm—l—grél‘r/lln t>0, Ay(m+1) T+ (Qu(d 1) 414’ (B.9)

where for every w, before any activation,
Qu(dy, +.) = Qu(dy,) + Pu(dy, +.) = Pu(dy,). (B.10)

The queue that activates is the one realising the minimum in (B.9). Let G(k) > 0
be the number of times a node different from v° activates between the k** and
k + 1t activation of v°. For any k,m € IN, the variables (A¥(m)),cy are only
used to determine the idle period and the active queue before the m!”* activation
of a node after the k' activation of v° provided v° has not activated k + 1 times.
An important remark that we will use multiple times in this section is that the
activation rates of any node can be bounded regardless of the state of the network:
for any Q € Ry,

1
1/2<¢ ————— <1
/ 1+(Q@+1)~@

Similarly, for any m > 0, if v is the m*® node to activate after the k" acti-
vation of v°, this activation occurs at time b¥,, it will have an activation duration
noted d*(m)—b*(m) that can be expressed as another “inhomogeneous exponential”

variable:

¢ ds
d¥ — bk = inf t>07Dk</ } B.11
m m m { m 0 1+(Qu(b§1+3)+1)a ( )

with (D )reN men unit intensity 4.i.d. exponential variables, discarded after each
deactivation. For consistency purposes, the activation duration of node v° is con-
structed similarly with (D§)rew a family of 4.4.d. exponential variables with unit
parameter independent from the rest: for the k" activation period of v°,

. t ds
d(k) — b(k) = inf {t >0, Dp < /0 L+ (Quo(b(k) +5) + 1) } '

Before any deactivation, the evolution of the active node is given by
Qubh, +1) = Qu(bh,) + Po(by, + 1) — Po(bl) — Ro(b, +1) + Ro(0],).

Each inactive node evolves as in (B.10). Once node v° activates k+1 times, discard
all (Aﬁ(m))'ueV,mE]N and (Dykn)mE]N-

Proof of Lemma B.2. The first step is to consider the intersection between Ef(el Kiime)
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and {d(N'""Kuct) < Ne1Kiime }- In EY (€1 Kiime), if the m'™ activation of a node
between the k" and k + 1*" activations of node v is such that

dfn < Nethimeu
by (B.11), d*, — bk, is smaller than

t
inf t>o,Dfn<}=N4 Ol yepk .
u{ vty ) = VIl

—a

Similarly, for any k < N*! acts

t

d(k) — b(k) < inf{t S0, D
O (N4 g0l

} — (V4||||)" Dk

There are exactly N'~?K,. activations of node v° before d(N 1_‘1Kact). Between
each activation of node v°, the number of times a node other than v° activates can
be bounded by a geometric variable with parameter ﬁ because of (B.9): recall
G(k) the number of times a node different from v activates between the k* and
k + 1*" activation of v°. By (B.9), G(k) is smaller than the number of times a
queue different from v° would activate if the activation rate of node v* was 3 and
the activation rates of all other queues were 1. More formally, G(k) is smaller than

G(k): the number of p > 0 such that

min | min Ay (p), 245 (p) | # 2450 (p),

| v#00

before the first time

min | miny A3(p), 2450 (p) | = 245 (p).

Queue v° will necessarily activate if

min | min Ak (p), 245 (p) | = 24%(p),

vFEV

but the activation of v° may occur for a smaller p’, thus G(k) < G(k). By indepen-
dence of (AJ'(P))m,peN,vev

B.12
2n — 1) ( )
and is independent from (DF) kelN,vev. For any p > 0, the queue realizing the mini-
mum of the pt"* competition is independent from min [minwgvo AF(p), 21450 (p)] and
from the result of the competition for a different & or p. This is due to independence
of (Aq]f(p))k:,pelN,UEV and the fact that

2n —1
2

),
(B.13)

exp(—t

2
: .k k _ Ak k _
P (mln |:£I;élv% AL (p),24%:(p)| = A, Asi(p) > t) =51
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and

P (imin iy 45000, 248 )| = 248 ). 2480) > 1) =

v U

2n—1

Since the activation rate is greater than , the associated idle period is smaller

than
4

2n—1

Ek(p) = 2min {mlnA (p), 24k, (p)} @ E(1),

v#£v0
which is independent from G(k). The independence between G(k) and the duration
of each idle period comes from (B.13), (B.14) and independence of (A¥(p))k peN,vev -
Let us define

N7 K, G(k)

Y= 33 (B + aN [] D).
k=1 p=0

with the convention that A% = A](C}(k which is still independent from (G(k))xen-
The term with p = 0 handles the activation duration of node v° and the last idle
period before v¥ activates. Because of the use of different (A¥(m))yev.men after
the k -+ 1*" activation of v°, (G(k))ren forms an i.i.d. family of geometric variables.

Hence, D is a sum of i.i.d. variables.

Recall the event

EY (61 Kiime) = { sup QY (s) <2 HqOHOO}-

veV, s<e1 Kiime

The coupling ensures that

]

P (d(N'""Kaet) < Ne1Kiime, EY (€1Ktime)) = P (

1 — E1-K’time >
=P DN < . EY (61 K time
<NKact Koot + (1 Kiime)

N < N€1Ktimea Ef(elK‘cime))

By construction of the coupling, (gk (P))k,pen and (D )k penN from two i.i.d. fam-
ilies, independent from G(k) for any k& > 0. By 1ndependence of (G(k))en,
(g’;) k’peﬂ\j7(D§) &,pen and independence between those variables, by the law of large
numbers

Nl_aKact

1 N Kact G(k
Z Z ( +4 ||q0||oo)“D’;> — p2lt2e ||q0||zo almost surely as N — +oo0.
(B.15)

By definition of Kyet,

_ €1 Ktime €1 Ktime
ST A [|gO], T 2 2en [|¢0]12,

and so K
142 ola €18 time
ot 2, < Diime,
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From (B.4), we get
P (EY (Ne1Kiime)) — 1 as N — +o0,

and so,
P (d(N'"*Kaet) < Ne1Kiime) — 1 as N — +oo.

The second part of the result comes from the fact that on {d(N'=%K,t) < Nei Kiime},
we get

sup QY < sup QY <2,
vEV, t<d(NT—2 Koer) veV,t<Ney Kact
and .
inf N > inf Ny > 2
116V/,t<;PN1*aKact)QU (t) > vGV’,tlénNelKact Qv (t) > 2

In this situation, (B.4) and the definition of the events in (B.2) and (B.3) are
sufficient to state that

d(N17°K,. dA(N17*K,.
P <Ef((Nt)) N EJ_V(%) A AN K pet) < Nethime}) S 1as N — +oo.

O

We now turn to the proof of Lemma B.3. Recall the definition of the event:

By = { sup w(s) <e } NEN(d(N'"Kqct)).-
Ns<d(N'=2K,ct)

Proof of Lemma B.3. By definition of the activation periods,

N Ko

A(N* " Kaet)
/0 o(s)ds = S (d(k) — b(k)).

k=1
In EN, for any k < N7 K,

4
(261)a

by (B.11), because in the event EY, QX (¢) is bounded above by € for ¢t <
d(N'=%K,). By independence of (D¥)ren pev and the deterministic nature of
the parameter, the bound on activation durations form an 4.i.d. family of exponen-
tial variables. Similarly, it is possible to lower bound d(N'~*K) using once again
(B.11). In EX, every node in V’ has queue lengths uniformly bounded below by 2L
until d(N17%K,). For any k < N'7%K, . and m < G(k), such that o,(bF) =1

for some v € V’,

d(k) — b(k) < inf {t >0, DF < } = (2¢1)°DE,

NEO
2

There are N} ~2K, ., activations for node v° before d(N 1*“Kact). Inbetween activa-
tions for node v, there is a number of times where a node in V' activates. Because
of (B.9), the activation rate of a node in V"’ is greater than % The maximum acti-
vation rate of any queue is 1. After any activ/ation, the probability that a node in
V' is the next to activate is greater than STV regardless of the evolution of the
network, each try being independent from the others because of the competition

m m

D%
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between new A¥(m). The number of times a queue in V' activates between the k"
and k 4 1*" activations of v° is greater than G(k) constructed similarly to (B.12):
a geometric variable counting the number of times a queue in V'’ activates before a
queue not in V' activates:

V'l

).

The independence between (A¥(m))k.men,vev and (DE)k men and deterministic
nature of the intensities ensures that G(k) is independent from (DE,)s men. This
discussion amounts to the bounds

(N K,c) N7 Ko
/ o0 (s)ds < (2Nep)? DY,
0 k=1
and
N Kact G(k NG
AN K,) > Z Z =9 (B.16)
m=1

Let’s call

In the event EY, we get
P lemd(k)—d(k)>d(N1—aK )M BN | <P | (2Ne) ZMD ZamD
v act) 5> Buo | < . ; A
L e A D
Py, 2 Garph- T

By construction, since we use new (Ak"’l(p))pem’vev and (DF+1),, e after the

k+1t" activation of v?, ((261)aDk 0 ®)ken is an i.i.d. family of random variables
whose mean is given by

Apo Dy Apo€d(2n — [V'])

ank _ a
E[(zel) Dy = =5 }_(261) - i

Notice that

0 (Ao (n— VDY e o\l
P (M) > g () >

because |V'| < n. By the law of large numbers

1 N1 Kae \oD
a k VO Uk )
]P m kz:l ((261) D’L)O — 2) > O — 0 as N — +OO,

which proves the first part of the result.

>0
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For any t > 0, since by Lemma B.2

IP( inf QN(S)>€0)—>1aSN—>+oo,
veV! ,Ns<d(N'=2K,et) 2

we get as a consequence of the first part that

d(N'7*K) Ao
P / ow0(s)ds > d(N'TK) =, sup QN(s)<e | = 0as N — +oo.
0 2 Ns<d(N'-aK)

(B.17)
With probability close to one, either
T61 (QN) (Nl aKact)

or

A(N'"*Kact) Moo
/ op0(s)ds < d(le‘zKact)%.
0

In the latter case, by (B.1),

N O(NTTOK ) A(N'7K,t)

Ao
v0 ( N ) = N

2

(o — 222,

More formally,

d(N'—°K,. Ay
P i\{)(g) > d(Nl’“KaCt) 0, sup Qf)\{)(s) <€
N 2 Ns<d(N1'=2K,ct)

d(N' =" Kact) Ayo
<P / opo(8)ds > d(N'" " Kae) =, sup QN(s)<e | =0as N — +oo
0 2 Ns<AN'-9Kaet)

O

Proof of Lemma B./J. This proof relies on the coupling argument given in (B.16)
(see the discussion there for the justification). In the event

. €0
inf Nig)y > =2
{uGV’,ngd(NlaKact)Qv (5) 2 }’

it states that

N'"K,q N Koo G(k)

W) > 3 De= X 3 (Ko

with G(k) i.i.d. and independent from (D¥,)x men, of common distribution g(%)

Obviously, because of that,

_ 2N61 . €0
P d(N'"""K,) < , f Nig)y= =2
( ( ) A0 vev',nglL?(Nl—aKact)Q” (s) 2)
Nl-af N'—eK
Aot __ 2N61 ]. Aot __ 261
<P D < =P —— Dy <
’; * /\vo Nl_aKact I; * Kact)\vo




B.3. Proofs using coupling 135

J— l1—a J—
By independence of the Dy, and the law of large numbers, N1+Km ivzl Kot Dy, —

E ml] almost surely. Elementary computations give

ex(2n —|V'))
E[D.]=202" 1"V
rk} 2a|V/| )
and thus since

K 6l—Kv‘cime 1

act = T =€ 5, .
nd e g0l e Ao
Notice that
261 minv )\v 68(2n — n) ES(QTL _ |V/D -
- < =E[D
Av0 Ktime Ao 2an, 2LL|V/| [ k]a

where the last inequality is due to the fact that the right hand side is decreasing in
[V']. We get

1 NliaKact

Nl_aKact k

261

P
Kact)‘vo

ﬁk <
=1

—0as N — +oo.

This entails

2Ne; EN(d(NliaKact))
Ao N

P (d(NlaKact) < ) —0as N — +oo.

By Lemma B.2,

p (07 )

N >—>1aSN—>+oo

and the result is proved. O
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Résumé — L'objet de cette thése est de présenter une analyse rigoureuse
d’un algorithme de communication. Elle est menée dans le cadre mathématique de
la théorie des files d’attente, I’étude des phénomenes de congestion. Le modele que
nous présentons est un raffinement d’un algorithme classique d’ordonnancement.
QB-CSMA (Queue-Based Carrier Sense Multiple Access) est un algorithme sim-
ple et distribué, créé pour ordonnancer des files d’attente placées sur un graphe.
De nouvelles requétes arrivent aux points d’un processus de Poisson dans les files
d’attente des serveurs. Elles requieérent un temps de service exponentiel avant de
quitter le réseau. Des nceuds voisins sur le graphe ne peuvent pas servir leurs re-
quétes simultanément sans interférence. Les termes “Carrier Sense” indique que les
serveurs sont capables d’écouter le canal pour voir si leurs voisins sont actifs et évi-
tent de transmettre quand c’est le cas. L’amélioration du CSMA vient de “Queue
Based”, signifiant que les taux auxquels les serveurs commencent et arrétent leurs
transmissions dépendent de ’état du réseau.

L’algorithme CSMA est simple: chaque noeud a une “fugacité” fixée. Quand il
est actif, un noeud se désactive apres un temps exponentiel avec parametre fonction
de la fugacité. Les nceuds qui ne sont pas actifs laissent tourner une horloge expo-
nentielle qui s’arréte quand des voisins s’activent. Un neceud s’active quand ’horloge
sonne et le taux d’activation est une fonction de la fugacité. Avec QB-CSMA, la
fugacité de chaque nceud dépend du nombre de requétes que le serveur doit traiter.
Pour chaque taille des files, il y a une dynamique et une mesure invariante différente
pour 'ordonnanceur. Contrairement aux algorithmes CSMA classiques, QB-CSMA
n’a pas besoin d’information sur le graphe d’interférence ou les taux d’arrivé pour
produire de bons choix d’ordonnancement. Dans certains cas, cet algorithme adap-
tatif peut étre utilisé pour approcher Max-Weight, un algorithme cotiteux a mettre
en place d'un point de vue complexité mais avec de bonnes performances.

Dans le Chapitre 3, nous prouvons des bornes explicites sur la différence entre
les moyennes en temps des décisions d’ordonnancement et leurs moyennes pour
I’équilibre de la dynamique associée a la taille courante des files. Pour chaque
valeur des files d’attente, il y a une dynamique pour I’ordonnanceur et une unique
mesure invariante associée a cette dynamique. C’est cette distribution évoluant avec
le temps que la mesure d’occupation de I'ordonnanceur approche. Pour prouver
ce genre de résultat, ce manuscrit utilise des notions d’analyse fonctionnelle. Les
concepts au cceur du raisonnement sont 1’équation de Poisson et sa solution. Les
solutions de ces équations agissent comme un inverse pour le générateur de processus
markoviens et donnent une facon alternative d’écrire la différence entre une fonction
et sa moyenne a ’équilibre. Pour borner la moyenne temporelle de la différence entre
le taux de service et sa moyenne, il est suffisant de borner la norme des solutions
de I’équation de Poisson et connaitre leurs régularités par rapport a la taille des
files. La norme de la solution & une équation de Poisson est bornée par la constante
de log-Sobolev du générateur correspondant. Cette quantité est reliée au temps de
mélange de la dynamique associée a ce générateur. Nous prouvons également dans
le Chapitre 3 une borne sur la régularité de ces solutions dans la taille des files.
Elle dépend essentiellement de la régularité des taux de transitions et de la mesure
invariante par rapport a la taille des files.

Dans le Chapitre 4, nous prouvons un théoréeme limite fonctionnel. La renor-
malisation fluide usuelle du processus de file d’attente converge vers une fonction
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déterministe solution d’une equation différentielle ordinaire. L’étape principale de
la preuve repose sur un résultat d’homogénéisation, conséquence des bornes du
chapitre précédent. Le probléme est que nos bornes se comportent mal quand une
taille de file est trop faible. Nous ne sommes pas capables de prouver la conver-
gence que jusqu’au temps ou une des files atteint 0 sur I’échelle fluide. La difficulté
principale du Chapitre 4 est I’étude des limites fluides pour n’importe quel horizon
fini dans le cas du graphe complet (GC). Dans ce cas, il est possible de gérer les
réflexions en 0 séparément.

Dans le chapitre 5, pour un GC et un taux d’arrivée critique, nous prouvons
un deuxieme théoreme limite fonctionnel. La limite fluide converge en temps long
temps vers un état invariant ou la limite reste constante car les taux d’arrivée et
les taux de service moyennés sont en équilibre. A cause de la nature distribuée de
QB-CSMA, il y a forcément un temps non nul ot aucun des serveurs n’est actif.
Le but de I’échelle de temps du Chapitre 5 est d’étudier I'influence de ce temps de
repos sur la dynamique des files d’attente. Sur cette deuxieéme échelle de temps, la
limite est également déterministe, ce qui peut étre surprenant. Le processus de files
d’attente s’effondre instantanément sur une variété de dimension 1 et I’évolution de
la somme des coordonnées est donnée par une EDO déterminée par la fraction du
temps ol aucune file n’est active.

Mots clés : Convergence et comportement en temps long de chaines et pro-
cessus de Markov, théorémes limite fonctionnels, réseaux stochastiques, ensembles
indépendants, homogénéisation

Abstract — The subject of this thesis is to provide a rigorous analysis of a
communication scheme. This analysis is carried out in the mathematical context of
queueing theory, the study of congestion phenomena. The model that we study is a
refinement of a classical distributed scheduling algorithm. The Queue-Based Carrier
Sense Multiple Access (QB-CSMA) algorithm is a distributed algorithm designed
to schedule queues on a graph. From a complexity standpoint, its execution is
simple and requires little cooperation between nodes. Jobs arrive at the waiting
area of queues, also called servers or nodes, along a Poisson process. Each job
has an exponential service time before exiting the network. Two or more nodes
that are neighbors on the interference graph cannot provide service to their jobs
simultaneously without interfering. The “Carrier Sensing” means that nodes can
sense when their neighbors are already transmitting, they refrain from using the
channel when that happens. The “Queue Based” element is the refinement from
the classical CSMA algorithm: it means that the rates at which queues start and
end transmissions actually evolve over time and depend on the current state of the
network.

The classical CSMA algorithm is quite simple: each node has a fixed “fugacity”.
When it is active, a node deactivates after an exponential time with a parameter
function of the fugacity. Nodes that are not active let an exponential clock run when
none of their neighbors are active and stop the clock when their neighbors activate.
An activation occurs when the exponential clock ticks and the activation rate deter-
mined by the fugacity. With QB-CSMA the fugacity of each server actually depends



Bibliography 147

on the number of jobs they have to process. For each value of the queue lengths,
there is a different dynamic for the schedule, with a unique generator and an invari-
ant measure associated to it. Contrary to the classical, this adaptive CSMA does
not require any prior knowledge on the interference graph/arrival rates to be able
to produce good service decisions. In some cases, it can be used to distributively
approximate the Max-Weight algorithm, a procedure that is onerous to put in place
from a complexity point of view but celebrated for its good performance.

In Chapter 3, we prove some explicit bounds on the difference between the time
average of the occupation measure of the schedule and its steady state average
associated with the current value of the queue lengths. For each value of queue
lengths, there is a dynamic for the schedule, this dynamic has a unique invariant
measure. This is the time evolving steady state average that the occupation measure
approaches. In order to prove this, this manuscript uses tools from functional
analysis. The main concepts that we use are Poisson equations and their solutions.
The solutions to Poisson equations act as an inverse application for the generator of a
Markov process and give an alternate way to write the difference between a function
and its average with respect to the invariant measure of the generator. To bound the
time average of the difference between the service rate and its steady state average, it
is sufficient to bound solutions to Poisson equations and understand their regularity
in the size of queue lengths. The norm of solutions to Poisson equations can be
bounded by the log-Sobolev constant of the generator of the schedule with fixed
queue lengths. This quantity is closely related to the mixing time of this dynamic.
Some bounds on the regularity of solution to Poisson equations are also proved
in Chapter 3. The regularity of solutions essentially depends on the regularity in
the size of the queues for the transition rates of the schedule and for the invariant
measure.

In Chapter 4, we prove a functional limit theorem. The usual fluid limit scaling
of the queue lengths converges to a deterministic process governed by an ODE. The
main part of the proof is a homogenization result proven from the bounds of Chapter
3. The problem is that this bound does not behave well when some coordinates are
too small. Because of that the result on a general interference graph is only proved
up to the time one of the queue reaches 0 in the fluid scale. The main difficulty
in Chapter 4 lies on the study of the Complete Interference Graph (CIG) over any
finite time interval. In this case the possible reflections at 0 are treaded separately.
Three cases are distinguished between sub-critical, super-critical and critical arrival
rates.

In Chapter 5, in the case of a CIG with critical arrival rates a second functional
limit theorem is proved. The fluid limit converges for long time to an invariant state
where the process is constant because the arrival rates and the averaged departure
rates coincide. Because of the distributed nature of the algorithm, there is always
some non-null time where no queue is active between two activations. The idea
behind the time scale in Chapter 5 is to investigate the influence of idle time to
the dynamic. On this second time scale, the limit is also deterministic which is
surprising. The process of queue lengths instantaneously collapses to a one dimen-
sional manifold and the evolution of the sum of coordinates is given by an ODE
determined by the idle time.

Keywords: convergence and long time behavior of Markov processes, func-
tional limit theorems, homogenization, stochastic networks, distributed scheduling,
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