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Abstract

This HDR manuscript summarizes our work concerning the applications of
machine learning techniques to solve various problems in audio and multi-
modal data. First, we will present nonnegative matrix factorization (NMF)
modeling of audio spectrograms to address audio source separation prob-
lem, both in single-channel and multichannel settings. Second, we will focus
on the multiple instance learning (MIL)-based audio-visual representation
learning approach, which allows to tackle several tasks such as event/object
classification, audio event detection, and visual object localization. Third,
we will present contributions in the multimodal multimedia interestingness
and memorability, including novel dataset constructions, analysis, and com-
putational models. This summary is based on major contributions published
in three journal papers in the IEEE/ACM Transactions on Audio, Speech,
and Language Processing, and a paper presented at the International Con-
ference on Computer Vision (ICCV). Finally, we will briefly mention our
other works in different applications concerning audio synchronization, au-
dio zoom, audio classification, audio style transfer, speech inpainting, and
image inpainting.
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Introduction

This HDR thesis is an extensive summary of a major part of the work done since my
PhD defense in 2011. Following the PhD focusing on audio signal processing, I first
worked on audio related topics such as non-negative matrix factorization (NMF)-based
audio source separation [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], audio synchronization us-
ing fingerprinting techniques [12, 13], and audio zoom using beamforming techniques
[14]. Then in the deep learning era, thanks to the collaboration with a number of
colleagues and PhD/Master’s students, I have extended my research interest to the
application of machine learning techniques in audio/image manipulation and multi-
modal data analysis. In the first area, I have considered multiple problems such as
audio style transfer [15], speech inpainting [16], and image inpainting [17]. In the sec-
ond area, I have investigated other challenges such as audio-visual source separation
[18, 19], audio-visual representation learning applied to event/object classification and
localization [20, 21, 22], image/video interestingness [23, 24, 25, 26], and image/video
memorability [27, 28, 29] for visual content assessment. Especially, to push forward for
research in such high level concepts of how media content can be interesting and mem-
orable to viewers, I co-founded two series of international challenges in the MediaEval
benchmarch1: Predicting Media Interestingness Task running in 2016 [30], 2017 [31],
and Predicting Media Memorability Task running in 2018 [32], 2019 [33]. These tasks
have greatly interested the multimedia research community as shown by a large number
of international participants.

As most of my work applies machine learning techniques (whether it is a conven-
tional model such as NMF or the emerging deep learning approach) to analyse audio
and multimodal data, I entitle the thesis as "Contributions in Audio Modeling and Mul-
timodal Data Analysis via Machine Learning" and decide to present in this document
mostly about the work described in four major publications as follows:

• Paper 1 [8]: a novel user-guided audio source separation framework based on NMF
1http://www.multimediaeval.org/
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with group sparsity constraints is introduced for single-channel setting. The NMF-
based generic source spectral models (GSSM) that govern the separation process
are learned on-the-fly from audio examples retrieved online.

• Paper 2 [11]: a combination of the GSSM introduced in the paper 1 with the full-
rank spatial covariance model within a unified Gaussian modeling framework is
proposed to address multichannel mixtures. In particular, a new source variance
separation criterion is considered in order to better constrain the intermediate
source variances estimated in each EM iteration.

• Paper 3 [22]: a novel multimodal framework that instantiates multiple instance
learning (MIL) is proposed for audio-visual (AV) representation learning. The
learnt representations are shown to be useful for performing several tasks such
as event/object classification, audio event detection, audio source separation and
visual object localization. Especially, the proposed framework has capacity to
learn from unsynchronized audio-visual events.

• Paper 4 [29]: this work focuses on understanding the intrinsic memorability of
visual content. For this purpose, a large-scale dataset (VideoMem10k) composed
of 10,000 videos with both short-term and long-term memorability scores is intro-
duced to the public. Various deep neural network-based models for the prediction
of video memorability are investigated, and our model with attention mechanism
provides insights of what makes a content memorable.

The remainder of this thesis is structured as follows. Chapter 1 presents the con-
tributions in audio source separation mainly described in the papers [8, 11]. Chapter
2 focuses on the contributions in the application of machine learning for audio-visual
scene analysis described in the paper [22]. Chapter 3 is dedicated to my recent works
in multimodal multimedia interestingness and memorability, which were published in
a number of papers [23, 26, 34, 27, 28, 29], and especially the paper [29]. Chapter
4 briefly summarizes my other works on different applications: audio synchronization
[35, 13], audio zoom for smartphones [14], audio classification [36, 37, 38], audio style
transfer [15], speech inpainting [16], and image inpainting [17]. Finally, Chapter 5 is
devoted to the conclusion and some future research perspectives. The four major papers
[8, 11, 22, 29] together with my Curriculum Vitae are annexed at the end of the thesis.

I must acknowledge that I did not do all the work mentioned in this thesis alone, but
with many collaborators including colleagues and the students whom I co-supervised. I
am very grateful to all these people, and without them this work would not be possible.
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Thus, from now on in this manuscript, unless I intend to express my personal opinion,
I will use "we" and "our" while speaking about the work.
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Chapter 1

Audio source separation

Supervision: Hien-Thanh Duong (PhD student), Dalia El Badawyd (MSc intern), Luc
Le Magarou (MSc intern)
Main collaborator: Alexey Ozerov (Technicolor).

This chapter summarizes our work on audio source separation, both in single-channel
[8] and multichannel setting [11]. Some works target consumer application such as on-
the-fly source separation [3, 6, 8], while others focus more on professional scenarios con-
sidered at Technicolor such as text-informed source separation [1, 1, 2] and interactive
user-guided source separation [4, 5]. Two types of information are generally exploited
for the task: spectral cues and spatial cues. In our work, the former model is based on
NMF, and the latter (when applied) is based on the full-rank spatial covariance model.
The organization of the chapter is as follows. We begin by the problem formulation and
motivation in Section 1.1. We then present the background of NMF model for super-
vised source separation in Section 1.2. Our contributions in single-channel setting and
multichannel setting exploiting the generic source spectral model (GSSM) are presented
in Section 1.3 and Section 1.4, respectively. Section 1.5 briefly summarizes other works
on text-informed and interactive source separation. Finally we conclude in Section 1.6.

1.1 Motivation and problem formulation

Audio plays a central role in both human perception of surrounding environments and
machine listening tasks. Real-world audio data has a complex structure due to the
superposition of different sound sources. For instance, speech recordings often include
concurrent speakers, music background, or environmental noise. Such noisy mixtures

13



1. AUDIO SOURCE SEPARATION

challenge both human and machine to localize, separate, and understand a target sound
source. Thus audio source separation, which aims at extracting individual sound sources
from an observed noisy mixture signal, has been an active research topic in audio com-
munity for several decades. It is a desired processing step within many real-world ap-
plications such as automatic speech recognition, hearing aids, sound post-production,
robotics, etc [BMC05].

Several settings have been considered in the literature. When the number of sources
J is smaller than or equal to the number of observed channel I, the problem is over-
determined or determined, and techniques based on independent component analysis
(ICA) have been actively used during 1990s [HO00]. When I < J , the problem is ill-
posed, and is known as under-determined case. In the extreme single-channel case when
I = 1, the problem is highly ill-posed and, without training data to learn the source
spectral patterns, additional assumptions about the sources such as temporal continuity
or sparsity must be made in order to solve such an inverse problem [Vir07]. Another
axis of research known as informed audio source separation [LDDR13, EPMP14], where
the separation process is guided by some auxiliary information, has also attracted a
lot of research interest since classical blind approaches often do not lead to satisfactory
performances in many practical applications. Recently, with the advances of deep neural
network (DNN), various powerful DNN-based approaches have been proposed [HKHS15,
HCRW16, LAPGH20, KWS+20] which offer very promising results. However, they
usually require a large amount of labeled data for training and the training is usually
computationally expensive. As most of our works was done before the DNN-based
source separation era, we will not discuss more about such approaches in this chapter.

Let us denote by sj(t) the contribution of j-th source at the microphone array and
let x(t) denote the observed mixture. The mixing model is written as:

x(t) =

J∑

j=1

sj(t) (1.1)

The goal of source separation is to recover sj(t) given x(t). In reverberant mixing con-
ditions, sj(t) results from the convolution of the original source with a mixing filter
characterizing the acoustic environment. This convolution in the time domain is often
approximated by a simple multiplication in the time-frequency (T-F) domain by means
of the short-term Fourier transform (STFT). Besides, as audio sources are often sparse
and non-overlapped in the T-F domain [AJY00], most audio source separation algo-
rithms operate in such T-F domain. In our works, we considered non-negative matrix

14



1.2 Background of NMF-based supervised audio source separation

factorization (NMF) [LS01, FBD09] for the source spectrogram model and the local
Gaussian model [39] for multichannel reverberant mixing conditions when applicable.

1.2 Background of NMF-based supervised audio source sep-
aration

Let us denote by X ∈ CF×N and Sj ∈ CF×N the STFT coefficients of the x(t) and
sj(t), respectively, where F is the number of frequency bins and N is the number of
time frames. The mixing model (1.1) is written in the T-F domain as

X =

J∑

j=1

Sj . (1.2)

Let V = |X|.2 be the power spectrogram of the mixture, where X.p is the matrix with
entries [X]pil,

.p denotes an element-wise operation. In NMF, it is decomposed into two
smaller non-negative matrices W ∈ RF×K and H ∈ RK×N such that V ≈ V̂ = WH.
The factorization is usually done by solving the following optimization problem [LS01]

W∗,H∗ = arg min
H≥0,W≥0

D(V‖WH), (1.3)

where

D(V‖V̂) =

F,N∑

f,n=1

d(Vfn‖V̂fn) (1.4)

and d(·‖·) is a scalar divergence measure. With power spectrogram matrix, Itakura-
Saito (IS) divergence is often used thank to its scale invariance property and is defined as
[FBD09] dIS(x‖y) = x

y−log
(
x
y

)
−1. Note that, one can also use magnitude spectrogram

(when p = 1) and other distance measures such as Euclidean and Kullback-Leibler
divergence. The parameters θ = {W,H} are usually initialized with random non-
negative values and are iteratively updated via multiplicative update (MU) rules [LS01,
FBD09]. With IS divergence used in our work, the MU rules are as follow:

H← H�
WT

(
(WH).−2 �V

)

WT (WH).−1
(1.5)

W←W �

(
(WH).−2 �V

)
HT

(WH).−1 HT
(1.6)
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1. AUDIO SOURCE SEPARATION

where � denotes the Hadamard entry-wise product.

In supervised setting, we assume that some training examples are available for each
source. Thus a spectral model for each source j, denoted by W(j), can be first learned
from such training examples by optimizing criterion (1.3) during training phase. Then
the spectral model for all sources W is obtained by concatenating the individual source
models as:

W = [W(1), . . . ,W(J)]. (1.7)

In the separation step, the time activation matrix H is estimated via the MU rules
as (1.5), while W is kept fixed. Note that the activation matrix is also partitioned into
horizontal blocks as

H = [HT
(1), . . . ,H

T
(J)]

T , (1.8)

where H(j) denotes the block characterizing the time activations for the j-th source.

Once the parameters θ = {W,H} are obtained, Wiener filtering is applied to com-
pute the source STFT coefficients as

Ŝj =
W(j)H(j)

WH
�X, (1.9)

Finally, the inverse STFT is used to produce the time domain source estimates.

1.3 Single-channel audio source separation exploiting the
generic source spectral model (GSSM)

1.3.1 Motivation, challenges, and contributions

So far source separation has been considered as a difficult task, and mostly performed
by audio signal processing experts. In order to make audio source separation simple
and accessible by non expert people, we introduced a friendly user-guided framework
named on-the-fly audio source separation inspired by on-the-fly visual search methods
[PVZ12, CZ12] from the computer vision research. In this framework, a user only needs
to provide some search keywords. Such keywords describe the sources in the mixture
so that the corresponding audio examples can be retrieved on-the-fly from the internet.
These examples are then used to learn the generic source spectral models (GSSM) via
non-negative matrix factorization to guide the separation process. The workflow of the
proposed approach is shown in Figure 1.1.

Although the on-the-fly approach simplifies the user interactions as they are now

16



1.3 Single-channel audio source separation exploiting the generic source
spectral model (GSSM)

Figure 1.1: General workflow of the proposed on-the-fly framework. A user listens to
the mixture and types some keywords describing the sources. These keywords are then
used to retrieve examples to learn spectral models for the described sources. Optionally,
the user may listen to the retrieved examples and discard irrelevant ones (figure is from
[8]).

carried out at a higher semantic level, there are several challenges that need to be
addressed as follows:

• (C1) Irrelevant examples: Some retrieved examples may contain sounds with en-
tirely different spectral characteristics than those of the source in the mixture, e.g.,
searching for “bird chirps" and obtaining some “chirp signal" examples too. Those
examples should be automatically eliminated by the optimization algorithm.

• (C1) Noisy examples: Some retrieved examples are actually mixtures of relevant
and irrelevant sounds, e.g., “speech" with a music in the background. Those
examples may still be useful but need carefully handling by the algorithm.

• (C1)Missing examples: This may happen when the user describes only the sources
of interest and ignores the remaining sources or when the search engines do not
return results for some of the provided keywords. We refer to this challenge as
the semi-supervised case where all non-described sources that possibly appear in
the mixture should be grouped as one background source.

The on-the-fly paradigm was published in two conference papers [3, 6] and a journal
paper [8]. The main contributions are summarized as follows:

• We introduced a general framework for on-the-fly audio source separation which
greatly simplifies the user interaction.

• We proposed several group sparsity constraints for the task and showed their
benefit in both supervised and the semi-supervised cases where training examples
for some sources are missing.

17



1. AUDIO SOURCE SEPARATION

• We derived several algorithms for parameter estimation when different group spar-
sity constraints are used.

• We performed a range of evaluations, including both supervised and semi-supervised
scenarios, and a user-test to validate the benefit of the proposed framework.

1.3.2 GSSM construction and model fitting

Figure 1.2: Example of an GSSM construction.

In order to address all the mentioned challenges concerning the on-the-fly framework,
we considered a so-called generic source spectral models (GSSM) learned in advance
from training examples, with sparsity constraints on the activation matrix in order to
enforce the selection of only a few representative spectral patterns during the model
fitting. The idea of GSSM was first used as “universal background model” for speaker
verification in [RQD], and was later introduced in [SM13] as “universal speech model”
for the separation of speech and noise.

Let us denote by Vjp the spectrogram of the p-th training example corresponding
to the j-th source. First, Vjp is used to learn the NMF spectral model, denoted by
Wjp, by optimizing the criterion (similar to (1.3)):

H∗jp,W
∗
jp = arg min

Hjp≥0,Wjp≥0
D(Vjp‖WjpHjp), (1.10)

where Hjp is the corresponding time activation matrix. Given Wjp for all examples,
the GSSM for the j-th source is constructed as

W(j) = [Wj1, . . . ,WjPj ] (1.11)

18



1.3 Single-channel audio source separation exploiting the generic source
spectral model (GSSM)

where Pj is the number of retrieved examples for the j-th source.
Model fitting for supervised source separation
In the supervised setting, we assume having GSSM for all the sources in the mixture

as the users describe all of them. W(j) constructed in (1.11) is actually a large matrix
when the number of examples increases, and it is often redundant since different exam-
ples may share similar spectral patterns. Therefore, in the NMF decomposition of the
mixture, the need for a sparsity constraint arises to fit only a subset of each W(j) to
the source in the mixture. In other words, the mixture is decomposed in a supervised
manner, given W constructed from W(j) as in (1.7) and fixed, by solving the following
optimization problem

H∗ = arg min
H≥0

D(V‖WH) + Ψ(H) (1.12)

where Ψ(H) denotes a penalty function imposing sparsity on the activation matrix H.
Model fitting for semi-supervised source separation
We refer to a semi-supervised setting when not all of the source models can be

learned in advance. In our considered on-the-fly approach, this occurs either when the
user only describes the sources of interest and not all of them or when the search engine
fails to retrieve examples for a given query. We can model all the “missing” sources as one
background source whose spectrogram can be approximated by WbHb, where Wb and
Hb are the corresponding spectral model and activation matrices, respectively. All the
other sources, for which some examples are available, are modeled as in the supervised
case by θ = {W,H}. The parameter θb = {Wb,Hb} can be randomly initialized with
a small number of components. All unknown parameters are then estimated altogether
by optimizing the following criterion

H∗,W∗
b,H

∗
b = arg min

H≥0,Wb≥0,Hb≥0
D(V‖WH + WbHb) + Ψ(H). (1.13)

Note that, unlike as in (1.12), in this setting Wb is updated as well and there is no group
sparsity-inducing penalty on Hb. The reason is that, as opposed to W, Wb is neither
an overcomplete dictionary nor has an underlying structure that can be exploited for
regularization.

1.3.3 Group sparsity constraints

The general group sparsity-inducing penalty is defined as

Ψgr(H) =
∑J

j=1
λj
∑Gj

g=1
log
(
ε+ ‖H(j,g)‖1

)
, (1.14)
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1. AUDIO SOURCE SEPARATION

where H(j,g) (g = 1, . . . , Gj) are the groups within the activation sub-matrix H(j)

corresponding to the j-th GSSM (see equation (1.8) for the definition of H(j)), Gj the
total number of groups for the j-th source, ‖ · ‖1 denotes the `1 matrix norm, ε > 0 and
λj ≥ 0 are trade-off parameters determining the contribution of the penalty for each
source. Note that in the remainder of the paper, H(j,g) should not be confused with
Hjp in (1.10). In [3, 8], we investigated two options for defining the groups H(j,g) and
derive the corresponding MU rules for the parameter estimation in both supervised and
semi-supervised settings as follows.

Block sparsity-inducing penalty

As in [SM13], we considered the groups to be sub-matrices of H(j) corresponding to
the spectral models Wjp trained using the p-th example (see (1.10) for the definition
of Wjp). In that case the indices g and p coincide and Gj = Pj . This block sparsity-
inducing strategy allows filtering out irrelevant spectral models Wjl, thus dealing with
irrelevant retrieved examples (challenge C1). An illustration for the estimated activation
matrix H for that case is shown in Figure 1.3-middle where blocks corresponding to
irrelevant examples for each source are set to zero.

Component sparsity-inducing penalty

As an alternative solution to fitting the universal model, we proposed the groups to
be rows of H(j) corresponding to different spectral components (in that case the number
of groups Gj is simply equal to the number of rows in H(j)). This so-called component
sparsity-inducing strategy allows filtering out irrelevant spectral components, thus deal-
ing with noisy retrieved examples (challenge C2). Figure 1.3-right shows an estimated
activation matrix H where rows corresponding to irrelevant spectral components for
each source are set to zero.

1.3.4 Relative group sparsity constraints

With the group sparsity penalty, we observed that, in some practical cases, the group
of different sources are fit together using the same source model, instead of separately
using their designated models. This makes the separation impossible. We called this
as “source vanishing” phenomenon. This issue is even worse in the semi-supervised case
where the entire mixture is fit by the estimated background model only. This is due
to the fact that Wb and Hb are now fully unconstrained in (1.13), whereas W is fixed
and H is constrained by the group sparsity-inducing penalty. To solve this problem, we

20



1.3 Single-channel audio source separation exploiting the generic source
spectral model (GSSM)

Algorithm 1.1 MU rules for NMF with group sparsity in the supervised case (without
formulas in red). When relative group sparsity is applied, formulas in red are added.
Require: V, W, λ, η
Ensure: H
Initialize H randomly
V̂ = WH
repeat
for j = 1, . . . , J, g = 1, . . . , Gj do

P(j,g) ← λj
ε+‖H(j,g)‖1

Q(j,g) ← λjGjγj
‖H(j)‖1

end for
P = [PT

(1,1), . . . ,P
T
(1,G1)

, . . . ,PT
(J,1), . . . ,P

T
(J,GJ )

]T

Q = [QT
(1,1), . . . ,Q

T
(1,G1)

, . . . ,QT
(J,1), . . . ,Q

T
(J,GJ )

]T

H← H�
(

WT (V�V̂.−2)+Q

WT (V̂.−1)+P

).η

V̂←WH
until convergence

Algorithm 1.2 MU rules for NMF with group sparsity in the semi-supervised case
(without formulas in red). When relative group sparsity is applied, formulas in red are
added.
Require: V, W, λ, η
Ensure: H
Initialize H, Hb, and Wb randomly
V̂←WH + WbHb

repeat
for j = 1, . . . , J, g = 1, . . . , Gj do

P(j,g) ← λj
ε+‖H(j,g)‖1

Q(j,g) ← λjGjγj
‖H(j)‖1

end for
P = [PT

(1,1), . . . ,P
T
(1,G1)

, . . . ,PT
(J,1), . . . ,P

T
(J,GJ )

]T

Q = [QT
(1,1), . . . ,Q

T
(1,G1)

, . . . ,QT
(J,1), . . . ,Q

T
(J,GJ )

]T

H← H�
(

WT (V�V̂.−2)+Q

WT (V̂.−1)+P

).η

Hb ← Hb �
(

WT
b (V�V̂.−2)
WT

b V̂.−1

).η

Wb ←Wb �
(

(V�V̂.−2)HT
b

V̂.−1HT
b

).η

Normalize Wb and Hb component-wise
V̂←WH + WbHb

until convergence
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1. AUDIO SOURCE SEPARATION

Figure 1.3: Estimated activation matrix H for two sources in a mixture where two
training examples for each source were used for constructing the GSSM: (left) without a
sparsity constraint, (middle) with a block sparsity-inducing penalty (blocks correspond-
ing to poorly fitting models are zero), and (right) with a component sparsity-inducing
penalty (rows corresponding to poorly fitting spectral components from different models
are zero).

introduced a relative sparsity-inducing penalty and formulated it as:

Ψrel(H) =
∑J

j=1
λj
∑Gj

g=1
log

(
ε+ ‖H(j,g)‖1
‖H(j)‖γj1

)
, (1.15)

where γj are some non-negative constants. The penalty (1.15) can also be rewritten as

Ψrel(H) = Ψgr(H)−
∑J

j=1
λjγjGj log

(
‖H(j)‖1

)
. (1.16)

One can easily see that, while the new penalty keeps the group sparsity property thanks
to Ψgr(H) defined in (1.14), it prevents (when γj > 0) the supergroups from vanishing
since if ‖H(j)‖1 tends to zero, then − log

(
‖H(j)‖1

)
tends to +∞. This formulation

generalizes the group sparsity constraint in the sense that (1.15) reduces to (1.14) for
γj = 0. One can then introduce either the relative block sparsity-inducing penalty or
the relative component sparsity-inducing penalty by defining a group H(j,g) to be either
a block or a row in H. Note that while we presented relative group sparsity within
the context of NMF, the idea can also be extended to other dictionary decomposition
schemes.
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1.4 Multichannel audio source separation exploiting the GSSM

1.3.5 Algorithms for parameter estimation and results

In NMF formulation, multiplicative update (MU) rules are usually used for the param-
eter estimation as they are simple and they guarantee a the non-increasing value of the
optimization function after each iteration [LS01, FBD09]. The derivation of such MU
rules for the group sparsity is straightforward and almost identical to the one proposed
in [LBF11], except that in our case the groups are defined differently and W is not up-
dated. The overall algorithms for supervised case (criterion (1.12)) and semi-supervised
case (criterion (1.13)) are summarized in Algorithms 1.1 and 1.2, respectively, without
considering the formulas in red color. In these algorithms η > 0 is a constant param-
eter, P(j,g) is a matrix of the same size as H(j,g) whose entries have the same value,
and P is a matrix concatenating all P(j,g). When relative group sparsity is applied,
some modifications in red color are added to take into account the effect of the group
normalization.

We reported on-the-fly source separation results (including a user test) with the use
of the (relative) group sparsity constraints in [8]. Later, these proposed group sparsity
constraints were investigated in the context of single-channel speech enhancement in
[7, 40]. More details about the algorithm derivation and experimental results can be
found in our corresponding papers.

1.4 Multichannel audio source separation exploiting the
GSSM

In multichannel setting, i.e., when more microphones are available, additional infor-
mation about the source locations can be exploited thanks to the phase and inten-
sity differences of signals recorded at different microphones. Such spatial cues play an
important role and are usually combined with spectral models to offer better source
separation performance compared to the single-channel case. In my PhD, I proposed
a spatial model named full-rank source spatial covariance matrices and investigated it
within a Gaussian modeling framework for multichannel audio source separation [39].
The work was continued for some time after my PhD and we published a journal paper
[42] where some prior knowledge about the source location is considered. In that work,
we proposed two alternative probabilistic priors over the spatial covariance matrices,
which are consistent with the theory of statistical room acoustics, and we derived EM
algorithms for maximum a posteriori (MAP) estimation.

Motivated by the success of both the GSSM (for single-channel audio mixtures)
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1. AUDIO SOURCE SEPARATION

Figure 1.4: General workflow of the proposed approach. Green dashed boxes indicate
the novelty compared to the existing works [OVB12, FSO17][41]

.

and the source spatial covariance model (for multichannel mixtures), we investigated
their combination in multichannel audio source separation [11]. The general workflow
is shown in Figure 1.4 and the contributions of the work are summarized as follows:

• We proposed two criteria to constrain the source variances in the GSSM-based
Gaussian modeling framework.

• We derived algorithms for the parameter estimation, and studied their convergence
and stability with respect to the parameter settings.

• We validated the effectiveness of the proposed approach in speech enhancement
scenario using a benchmark dataset from the 2016 Signal Separation Evaluation
Campaign (SiSEC 2016).

1.4.1 Local Gaussian modeling

Let us denote by sj(n, f) the I × 1 vector of the STFT coefficients of the contribution
of j-th source at I microphones, where n is time frame index and f is the frequency
bin. The mixing model in equation (1.1) is written in the frequency domain and in the
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1.4 Multichannel audio source separation exploiting the GSSM

multichannel setting as:

x(n, f) =
J∑

j=1

sj(n, f). (1.17)

In the LGM, sj(n, f) is modeled as a zero-mean complex Gaussian random vector
with covariance matrix Σj(n, f) = E(sj(n, f)sHj (n, f)), where H indicates the conjugate
transposition. Such a covariance matrix is then factorized as

Σj(n, f) = vj(n, f) Rj(f), (1.18)

where vj(n, f) are scalar time-dependent variances encoding the spectro-temporal power
of the sources and Rj(f) are time-independent I×I spatial covariance matrices encoding
their spatial characteristics when sources and microphones are assumed to be static.
Under the assumption that the source images are statistically independent, the mixture
vector x(n, f) also follows a zero-mean multivariate complex Gaussian distribution with
the covariance matrix computed as

Σx(n, f) =
J∑

j=1

vj(n, f) Rj(f). (1.19)

With a further assumption that the mixture STFT coefficients at all time-frequency
(T-F) bins are independent, the likelihood of the set of observed mixture vectors x =

{x(n, f)}n,f given the set of parameters θ = {vj(n, f),Rj(f)}j,n,f is given by

P (x|θ) =
∏

n,f

1

det (πΣx(n, f))
e−tr(Σ−1

x (n,f)Ψ̂x(n,f)), (1.20)

where det represents the determinant of a matrix, tr() stands for matrix trace, and
Ψ̂x(n, f) = E(x(n, f)xH(n, f)) is the empirical covariance matrix, which can be numer-
ically computed by local averaging over neighborhood of each T-F bin (n′, f ′) as [43].
The parameters are then estimated by minimizing the negative log-likelihood:

L(θ) =
∑

n,f

tr
(
Σ−1x (n, f)Ψ̂x(n, f)

)
+ logdet

(
πΣx(n, f)

)
, (1.21)

Under this model, once the parameters θ are estimated, the STFT coefficients of
the source images are obtained in the minimum mean square error (MMSE) sense by
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1. AUDIO SOURCE SEPARATION

multichannel Wiener filtering as

ŝj(n, f) = vj(n, f) Rj(f)Σ−1x (n, f)x(n, f). (1.22)

Finally, the expected time-domain source images ŝj(t) are obtained by the inverse STFT
of ŝj(n, f).

1.4.2 NMF-based source variance model

As can be seen in the previous section, NMF has been widely applied to single channel
audio source separation where the mixture spectrogram is factorized into two latent
matrices characterizing the spectral basis and the time activation [VBGB14, FBD09].
When adapting NMF to the considered LGM framework, the nonnegative source vari-
ances vj(n, f) can be approximated as [41]

vj(n, f) =

Kj∑

k=1

wjfkhjkn, (1.23)

where wjfk is an entry of the spectral basis matrix W(j), hjkn is an entry of the acti-
vation matrix H(j).

1.4.3 Source variance fitting with GSSM and group sparsity con-
straint

We proposed two strategies for the source variance fitting as follows.

Source variance denoising. The activation matrix is estimated by optimizing the
criterion:

min
H(j)≥0

D(V̂j‖W(j)H(j)) + λΨ(H(j)), (1.24)

where V̂j = {vj(n, f)}n,f ∈ RF×N+ is the matrix of j-th source variances, W(j) is
constructed as (1.11) and fixed, Ψ(H(j)) represents a penalty function imposing sparsity
on the activation matrix H(j) (1.14), and λ is a trade-off parameter determining the
contribution of the penalty.

Source variance separation. Let Ṽ =
∑J

j=1 V̂j be the matrix of the total source
variance estimate, it is decomposed by solving the following optimization problem

min
H≥0

D(Ṽ‖WH) + λΨ(H) (1.25)
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1.4 Multichannel audio source separation exploiting the GSSM

where H = [H>(1), ...,H
>
(J)]
> ∈ RK×N+ , K =

∑J
j=1 Pj the total number of rows in H.

This criterion can be seen as an additional NMF-based separation step applied on the
source variances, while criterion (1.24) and other existing works [41][OVB12, FSO17]
do not perform any additional separation of the variances, but more like denoising of
the already separated variances.

Inspired by the advantage of two penalty functions inducing block and component
sparsity (1.14) presented in Section 1.3, we investigated their combination in a more
general form as

Ψ(H) = γ
P∑

p=1

log(ε+ ‖Hp‖1) + (1− γ)
K∑

k=1

log(ε+ ‖hk‖1), (1.26)

where the first term on the right hand side of the equation represents the block sparsity-
inducing penalty, the second term represents the component sparsity-inducing penalty,
and γ ∈ [0, 1] weights the contribution of each term. In (1.26), hk ∈ R1×N

+ is a row
(or component) of H, Hp is a subset of H representing the activation coefficients for
p-th block, P is the total number of blocks, ε is a non-zero constant, and ‖.‖1 denotes
`1-norm operator. In the considered setting, a block represents one training example
for a source and P is the total number of used examples (i.e., P =

∑J
j=1 Pj). Similar

formula can also be written for the Ψ(H(j)) in (1.24).

1.4.4 Algorithms for parameter estimation and results

By putting (1.26) into (1.25), we now have a complete criterion for estimating the acti-
vation matrix H given Ṽ and the pre-trained spectral model W in the source variance
separation case. Similar procedure can be derived for the source variance denoising case
(1.24). Within the LGM, a generalized EM algorithm has been used to estimate the pa-
rameters {vj(n, f),Rj(f)}j,n,f by considering the set of hidden STFT coefficients of all
the source images {cj(n, f)}n,f as the complete data. For the proposed approach as far
as the GSSM concerned, the E-step of the algorithm remains the same. In the M-step,
we additionally perform the optimization defined either by (1.24) or by (1.25). This is
done by the MU rules so that the estimated intermediate source variances vj(n, f) are
further updated with the supervision of the GSSM.

We validated the performance and properties of the proposed approach in speech
enhancement use case where we know already two types of sources in the mixture: speech
and noise. For better comparison with the state of the art, we used the benchmark
development dataset of the “Two-channel mixtures of speech and real-world background
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1. AUDIO SOURCE SEPARATION

Methods
Ca1 Sq1 Su1 Average

SDR SIR SDR SIR SDR SIR SDR SIR
OPS IPS OPS IPS OPS IPS OPS IPS

Liu* -1.0 4.9 -8.5 -2.9 -12.8 -8.0 -7.0 -1.4
9.5 16.8 14.2 18.9 21.2 15.7 14.2 17.5

Le Magoarou* [MOD14] 9.2 11.6 4.0 6.2 -5.2 -4.5 3.7 5.6
31.3 29.3 38.9 45.2 22.9 24.6 32.8 35.3

Rafii* [RP13] 8.8 13.0 6.2 9.6 -2.7 -2.7 5.1 8.0
29.2 27.3 34.6 38.7 23.9 21.6 30.4 31.1

Ito* [IAN13] 7.2 25.9 23.7 9.1 5.6 - 7.4 -
- - - - - - - -

Wood* [WR16] 3.0 9.4 1.9 2.4 0.2 -2.6 1.9 3.6
33.7 60.7 38.6 60.5 25.9 47.6 34.1 57.7

Arberet [41][OVB12] 9.1 10.0 3.3 3.3 -0.2 -1.2 4.4 4.6
13.3 10.9 8.3 10.5 10.2 3.7 10.4 9.1

GSSM + SV denoising
(λ = 10, γ = 0.2)

10.5 11.8 7.0 8.5 5.1 5.6 7.7 9.0
8.4 12.7 8.5 14.7 11.3 7.8 18.1 12.5

GSSM + SV separation
(λ = 10, γ = 0.2)

10.6 13.5 7.8 11.1 5.0 7.1 8.1 11.0
11.4 13.0 31.6 31.4 23.7 27.8 23.1 24.5

Table 1.1: Speech separation performance obtained on the devset of the BGN task of
the SiSEC campaign. ∗ indicates submissions by the authors and “-" indicates missing
information.

noise" (BGN) task1 within the SiSEC 2016 [LSR+17]. This devset contains stereo
mixtures of 10 second duration and 16 kHz sampling rate. They were mixtures of
male/female speeches and real-world noises recorded from different public environments:
cafeteria (Ca), square (Sq), and subway (Su). Table 1.1 shows the speech separation
performance in terms of the signal-to-distortion ratio (SDR), the signal to interference
ratio (SIR), the overall perceptual score (OPS), and the target-related perceptual score
(TPS) [VGF06, EVHH12], the higher the better, obtained by the proposed approaches
and other state-of-the-art methods in the SiSEC campaign.

We also investigated the algorithm convergence by varying the number of EM and
MU iterations, and observed that with 10 to 25 MU iterations, the algorithm converges
nicely and saturates after about 10 EM iterations. We further investigated the sepa-
ration results with different choice of the hyper-parameters λ and γ. The algorithm is
less sensitive to the choice of γ, while more sensitive to the choice of λ and λ > 10

greatly decreases the separation performance. The best choice for these parameters in

1https://sisec.inria.fr/sisec-2016/bgn-2016/
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1.5 Other contributions in audio source separation

term of the SDR are λ = 10, γ = 0.2. Please refer to the paper [11] for details about
the algorithm derivation and evaluations.

1.5 Other contributions in audio source separation

1.5.1 Text-informed source separation

In this work, we presented a novel text-informed framework in which textual information
in form of text transcript associated with speech source is used to guide its separation
from other sources in the mixture. The separation workflow is as follows. First, a speech
example is artificially generated via either a speech synthesizer or by a human reading
the text. Then, this example is used to guide source separation. For that purpose, a
new variant of the non-negative matrix partial co-factorization (NMPCF) model based
on an excitation-filter channel speech model is introduced. Such a modeling allows
coupling the linguistic information between the speech example and the speech in the
mixture. The corresponding multiplicative update (MU) rules are eventually derived
for the estimation of the parameters. We performed extensive experiments to assess
the effectiveness of the proposed approach in terms of source separation and alignment
performance [2].

1.5.2 Interactive user-guided source separation

In order to boost the source separation performance in real-world post-production ap-
plication, we considered a temporal annotation of the source activity along the mixture
given by a user. We then proposed weighting strategies incorporated in the NMF for-
mulation so as to better exploit such annotation to guide the separation process [4]. A
video demonstration is online1. In another work [5], we proposed an interactive source
separation framework that allows end-users to provide feedback at each separation step
so as to gradually improve the result. A prototype graphical user interface (GUI) is de-
veloped to help users annotating time-frequency regions where a source can be labeled
as either active, inactive, or well-separated within the displayed spectrogram. Such
user feedback information is then taken into account in an uncertainty-based learning
algorithm to constraint the source estimates in a next separation step. Both the con-
sidered approaches were based on non-negative matrix factorization and were shown to
be effective in real-world settings.

1https://www.youtube.com/watch?v=EjpLKvphpMot=16s
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1. AUDIO SOURCE SEPARATION

1.5.3 Informed source separation via compressive graph signal sam-
pling

In this work, we investigated a novel informed source separation method for audio object
coding based on a recent sampling theory for smooth signals on graphs. At the encoder,
we assume to know the original sources, and thus the ideal binary time-frequency (T-F)
mask considering only one source is active at each T-F point. This ideal mask is then
sampled with a compressive graph signal sampling strategy that guarantees accurate
and stable recovery in order to perform source separation at the decoder side. The graph
can be built using feature vectors, computed using non-negative matrix factorization at
both encoder and decoder sides. We show in our paper [9] that the proposed approach
performs better than the state-of-the-art methods at low bitrate.

1.6 Conclusion

In this chapter we have presented the application of NMF model in audio source sep-
aration. We have considered single-channel case where some novel sparsity-inducing
constraints were proposed to extract relevant spectral patterns from an over-complete
source spectral dictionary. We have also extended the work to multi-channel settings
within the local Gaussian modeling framework. Some other works on informed audio
source separation have also been mentioned, which was done in close collaboration with
Technicolor production services for the real use cases.
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Chapter 2

Audio-visual scene analysis

Supervision: Sanjeel Parekh (PhD student)
Main collaborators: Alexey Ozerov (Technicolor, InterDigital), Slim Essid (Telecoms
ParisTech), Patrick Pérez (Technicolor, Valeo.ai), Gaël Richard (Telecoms ParisTech).

This chapter summarizes part of the work done during the PhD of Sanjeel Parekh
(2016-2019) and presented in the journal paper [22]. The work focuses on multimodal
machine learning approach for audio-visual event identification and localization, and
visual informed audio source separation. The organization of the chapter is as follows.
We begin by briefly discussing the motivation and related works in Section 2.1. Then
the proposed weakly supervised representation learning framework and its application
for tackling classification and localization is described in Section 2.2. This is followed
by some implementation details in Section 2.3. Results on benchmark datasets (i.e.,
the DCASE smart cars challenge [MHD+17a] and the instrument dataset [KCS+17])
are discussed in Section 2.4. Finally, we conclude in Section 2.5.

2.1 Motivation and related works

Audio and visual cues appear everywhere in real life, and as humans we have great
ability to perceive such information in order to analyse and understand the surrounding
scenes. As an example, when a car passes by, we can instantly identify both audio
and visual components that characterize this event. In many cases, information from
audio cues can help better perceiving visual information and vice versa. For building
machines with such scene analysis and understanding capabilities, it is important to
design systems for jointly exploiting both audio and visual cues. Such approaches

31



2. AUDIO-VISUAL SCENE ANALYSIS

should be able to learn meaningful audio-visual (AV) representations from large-scale
real-world data. This work presents a step in that potential direction. We formulated
the considered AV problem (shown in Figure 2.1) as follows. Given a video labeled as
“train horn”, we would like to:

• (1) identify the event (classification problem);

• (2) localize its visual presences and the associated temporal audio segment(s)
(localization problem);

• (3) separate the target sound source from the others (source separation problem).

To seek a unified solution, we opt for a weakly supervised learning approach which
exploits audio-visual data with only general video-level event labels without temporal
and spatial information about the AV events. As the train horn may sound before or
after the train is visible, the targeting model, when designed, must be able to deal with
such unsynchronized AV events.

Figure 2.1: Pictorial representation of the considered problem (figure is from [22]).

When this work was started, to our best knowledge, there was no existing literature
that use a weakly supervised multimodal deep learning framework to address all three
targets mentioned above. However, there were relevant works in audio community for
audio scene analysis [MHDV15, ZZHJH10, MHD+17b] and computer vision community
for visual object localization and classification [ZPV06, BPT14, OBLS15, KOCL16,
BV16]. Another line of work exploits audio-visual correlations thanks to feature space
transformation techniques such as canonical correlation analysis (CCA) for localization
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2.2 Weakly supervised representation learning framework

and representation learning in general [ISS13, KSE05]. We also started some works on
motion-informed and video-guided audio source separation [18, 19]. It is worth noting
that the field has been growing rapidly. Some parallel works have learnt meaningful
representation through audio–image correlations in an unsupervised manner [AZ17,
OIM+16, OWM+16]. Other works have exploited the multiple instant learning (MIL)
and attention-based architectures [KYI+19, CWSB19, WLM19] for the similar weakly
supervised learning paradigm. Similarly for audio source separation, parallel progress
reveals several visual-guided systems using deep learning paradigm [ZGR+18, EML+18,
GFG18]. While we share the high-level goal of weakly-supervised representation learning
with some existing works, our multimodal design and our audio sub-module, as discussed
in the next section, is significantly different.

2.2 Weakly supervised representation learning framework

In order to tackle simultaneously all three tasks mentioned above, in [22] we propose
a novel multimodal framework based on multiple instance learning (MIL). Such MIL-
based framework uses class-agnostic proposals from both video frames and audio, and
exploits weak labels from data to learn a robust joint audio-visual representation. The
general workflow is shown in Figure 2.2 and comprises four major steps: (a) audio/visual
proposal extraction, (b) higher-level feature extraction and learning, (c) proposal scoring
and aggregation, and finally (d) fusion and classification. Thanks to the cascaded deep
neural network (DNN) layers, the model can be trained end-to-end using only video-level
event labels without any timing information in a supervised way.

Let us model a video V as a bag ofM selected visual proposals R = {r1, r2, . . . , rM}
(e.g., image regions obtained from sub-sampled frames in our experiment), and S audio
proposals, A = {a1, a2, . . . , aS} (e.g., temporal segments from the original sound track
or from the separated signals constructed by NMF components in our experiment). Such
visual and audio proposals are passed through DNN blocks to extract the corresponding
features. Then we adopt two-stream (localization Wloc and classification Wcls) archi-
tecture proposed by Bilen et al. [BV16] for scoring each of the feature with respect to
the classes. This architecture allows the localization layer to choose the most relevant
proposals for each class. Subsequently, the classification stream output is multiplied
with an attention weight through element-wise multiplication. The class scores over the
video are obtained by summing the resulting weighted scores from all proposals. After
performing the above stated operations for both audio and visual sub-modules, in the
final step, the global video-level scores are `2 normalized and added.
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2. AUDIO-VISUAL SCENE ANALYSIS

Figure 2.2: General workflow of the proposed weakly supervised representation learning
approach.

Given a set of L training videos and corresponding groundtruth labels organized in
C classes, {(V (l), y(l))}Ll=1, where y ∈ Y = {−1,+1}C with the class presence denoted
by +1 and absence by −1, we implement a multi-label classification problem. Both
audio and visual sub-modules are trained jointly using the multi-label hinge loss on a
batch of size B:

L(w) =
1

CB

B∑

l=1

C∑

c=1

max
(

0, 1− y(l)c φc(V (l);w)
)
. (2.1)

where w denotes all network parameters (weights and biases), φc(V (l);w) ∈ RC is the
predicted output label.

2.3 Some implementation details and variant

Visual proposals and feature extraction. We sub-sampled frame sequences of
each video at a rate of 1 frame per second, then generated class-agnostic region proposals
on each extracted frame using EdgeBoxes algorithm [ZD14]. EdgeBoxes additionally
generated a confidence score for each bounding box characterizing a region proposal. To
reduce the computational load and redundancy, we used this score to select the topMimg

proposals from each sampled frame and use them for feature extraction. A fixed-length
feature vector is obtained from each region proposal using Fast-RCNN implementation
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[Gir15] (a CNN with a region-of-interest (RoI) pooling layer). The feature vectors
extracted after RoI pooling layer are passed through two fully connected layers, which
are learned during training.

Audio proposals and feature extraction. For the localization and classification
task, we extracted Maud audio proposals as temporal segments with fixed-length win-
dow along the audio log-Mel spectrogram. The window length is 960 ms with 50%
overlapping. Each log-Mel spectrogram proposal as ∈ R96×64 with 64 Mel-bands and
96 temporal frames is passed through a VGGish deep network [HCE+17b] to generate a
128 dimensional embedding as a base audio feature. This network was pre-trained on a
YouTube-8M dataset [AEHKL+16] for audio classification based on video tags. Similar
to visual part, prior to proposal scoring by two-stream module, the generated audio
embeddings are passed through a fully-connected layer that is learned during training.

For source separation task as a variant, the STFT magnitude spectrogram X of the
original audio track is first decomposed into K non-negative components as

X ≈
K∑

k=1

wkhk, (2.2)

where wk and hk represent k-th spectral pattern and its temporal activation, respec-
tively. Then K NMF tracks are obtained from wk,hk for k ∈ [1,K] by the inverse STFT
with the phase of the original track. These tracks are chunked into temporal segments
similar to the original tracks to obtain more Maud×K audio proposals. Such proposals
are passed through the same VGGish audio network to generate embeddings. When
performing NMF blindly, we do not know which NMF components belong to an audio
source. However, the two stream architecture in the considered system will help to score
each NMF component with respect to its relevance for a particular class c ∈ C. These
relevance scores can then be appropriately aggregated to obtain a global score (denoted
as αck), which weights the contribution of k-th NMF component on a targeted audio
source. Several aggregation strategies are discussed in detail in [22]. Finally source
separation can be obtained as:

Sc =

∑K
k=1 α

c
kwkhk∑K

k=1 wkhk
X (2.3)

Here Sc is the estimate of c-th source and is converted back to the time domain using
the inverse STFT.
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2. AUDIO-VISUAL SCENE ANALYSIS

Table 2.1: Results on DCASE smart cars task test set [MHD+17a]. We report here
the averaged F1 score, precision and recall values, and compare with state-of-the-art
approaches. TS is an acronym for two-stream (table is from [22]).

System F1 Precision Recall

(a) AV Two Stream 64.2 59.7 69.4
(b) Sync. AV Two Stream 62.0 57.2 67.6
(c) TS Audio-Only 57.3 53.2 62.0
(d) TS Video-Only 47.3 48.5 46.1
(e) TS Video-Only WSDDN-Type [BV16] 48.8 47.6 50.1

(f) AV One Stream 55.3 50.4 61.2

(g) CVSSP - Fusion system [XKWP17] 55.6 61.4 50.8
(h) CVSSP - Gated-CRNN-logMel [XKWP17] 54.2 58.9 50.2

2.4 Results

In the experiment with different settings in the paper [22], we showed that the learnt rep-
resentations are useful for performing several tasks such as event/object classification,
audio event detection, audio source separation, and visual object localization. We also
demonstrated the model’s capacity to learn from unsynchronized audio-visual events.
State-of-the-art classification results are achieved on the Detection and Classification of
Acoustic Scenes and Events (DCASE) 2017 smart cars dataset [MHD+17a] with promis-
ing generalization to diverse object types such as musical instruments. As an example,
Table 2.1 compares the event classification performance on the DCASE dataset of the
proposed approach with several strong baselines (audio-only two stream architecture,
video-only two stream architectures, AV one stream architecture) and state-of-the-art
systems [XKWP17, BV16].

Figure 2.3 shows qualitative examples of the localization result (displayed through a
yellow bounding box) in extreme asynchronous conditions. The video frames are placed
above while the normalized audio localization heatmap at the bottom displays the scores
assigned to each temporal audio segment. As expected in this temporal asynchronous
case A, the system does not detect any yellow edges in the first frame. But the car is
detected much later when it is completely visible. B depicts an example, where due
to extreme lighting conditions the visual object is not visible. Here too, the system
localizes the audio object and correctly predicts the ‘motorcycle’ class.

Following the PhD work of Sanjeel Parehk, with Valentin Bilot, a Master’s intern,
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Figure 2.3: Qualitative results for unsynchronized AV events. For both the cases A
and B, the heatmap at the bottom denotes audio localization over segments for the
class under consideration. For heatmap display, the audio localization vector has been
scaled to lie between [0,1]. The top row depicts video frames roughly aligned to the
audio temporal axis. (A) Top: Here we show a video where the visual object of interest
appears after the audio event. This is a ‘car’ video from the validation split. The video
frames show bounding boxes where edge opacity is controlled by the box’s detection
score. In other words, higher score implies better visibility (B) Bottom: This is a
case from the evaluation data where due to lighting conditions, the visual object is not
visible. However the system correctly localizes in audio and predicts the ‘motorcycle’
class (figure is from [22]).

we used the presented two-stream framework for audio scene classification task and
participated in the DCASE 2019 challenge. Classification results obtained with several
settings and a late fusion of several models were reported in [38].

2.5 Conclusion

We have presented a deep AV scene understanding approach that can be trained jointly
using weak labels. The proposed framework can perform several tasks (i.e., classifica-
tion, localization, source separation) simultaneously. State-of-the-art event classification
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and detection performance is reported on the DCASE 2017 smart cars data and quali-
tative result confirms that the framework can tackle challenging case of unsynchronized
AV events. As research in DNN advances quickly, the considered framework can ben-
efit from other novel model-specific feature extraction techniques and modality fusion
networks.
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Media interestingness and
memorability

Supervision: Roman Cohendet (postdoc), Karthik Yadati (PhD intern), Yuesong Shen
(MSc intern), Eloïse Berson (MSc intern), Hammad Squalli-Houssain (MSc intern)
Main collaborators: Claire-Hélène Demarty (Technicolor, InterDigital), Mats Sjöberg
(Aalto University), Bogdan Ionescu (University Politehnica of Bucharest), Thanh-Toan
Do (University of Liverpool).

Understanding and predicting user perceptions on visual content is a very active re-
search domain in multimedia and computer vision communities. It offers a wide range of
practical applications in content retrieval, education, summarization, advertising, con-
tent filtering, recommendation systems, etc. With recent advances in machine learning,
such visual perceptions have moved from low-level features (such as intensity, colors,
saliency) [FRC10] towards challenging high level subjective concepts such as visual aes-
thetics [BSS10, DOB11], emotion [RDP+11, SCKP09], popularity [KSH13, CMS15],
interestingness [GGR+13, ZdJSJ16, DSC+17, CRZI19], and memorability [IXTO11,
SZM+17a, EVC20]. In this chapter, we will summarize our pioneering works in two
emerging concepts: interestingness and memorability, both for image and video. The
contributions cover dataset construction, analysis, and prediction via machine learning
models. Major impacts to the research community include the release of the large-scale
datasets such as Interestingness10k [31, 34] and VideoMem10k [29]; the organization
of two MediaEval benchmark campaigns: media interestingness prediction task (2016,
2017) [30, 31] and video memorability prediction task (2018, 2019) [32, 33]; and the
pioneering work on video memorability [28, 29].
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The chapter is organized as follows. We first briefly summarize our work on image
and video interestingness in Section 3.1. We then discuss more in-depth work on video
memorability in Section 3.2. Finally we draw conclusions in Section 3.3.

3.1 Image and video interestingness

Interestingness usually refers to arousing interest, curiosity, as well as the ability of hold-
ing or catching attention [Ber60]. Existing studies in psychology and vision research
[CDP01, EI08] revealed that interest is determined by certain factors like novelty, uncer-
tainty, conflict, complexity, and their combinations. This finding was also supported in
the appraisal theory presented in [Sil05], where the author explained that appraisals like
the novelty, the comprehensibility, and the complexity of an event are likely to arouse
interest in this event. However, understanding and predicting visual interestingness re-
mains challenging as its judgment is highly subjective and usually context-dependent.
Following the literature, we distinguished two different notions, namely socially-driven
interestingness and content-driven interestingness. The former is derived from media
sharing websites such as Flickr1 and Pinterest2, where contextual information may
greatly affect the judgement. The latter refers to human annotations that assess in-
terestingness solely on the perceived media content. As an example, in our annotation
protocol for content-driven interestingness, users only view two images or videos side
by side on the screen and vote for which one they are more interested [30]. Our work
brings contributions in both these notions and are summarized as follows:

• In [30, 31] we proposed a Predicting Media Interestingness Task in 2016 and
2017 within the MediaEval benchmarch3. For this purpose, we built a first pub-
licly available4 content-driven interestingness dataset for both images and videos
based on a real-world Video on Demand (VOD) use case scenario. This Inter-
estingness10k dataset contains 9,831 images and more than 4 hours of video,
interestigness scores determined based on more than 1M pair-wise annotations
of about 800 trusted annotators around the world. Figure 3.1 and Figure 3.2
depict examples of the images/videos, their interestingness scores, and the anno-
tation agreements from the dataset. The interestingness prediction task greatly
attracted the multimedia research community as shown by the largest number of

1https://www.flickr.com/
2https://www.pinterest.com/
3http://www.multimediaeval.org/
4https://www.interdigital.com/data_sets/intrestingness-dataset
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international participants compared to other MediaEval tasks in the same years.
By analizing the dataset and the prediction systems, we provided an in-depth
analysis of the crucial components for visual interestingness prediction in a book
chapter [25] and a journal paper in revision [34].

Figure 3.1: Examples from the Interestingnes10k image dataset: images annotated as
interesting are on the right, whereas non-interesting images are on the left. Images
at the top have higher annotation agreement, while images at the bottom have lower
annotation agreement (figure is from [34]).

Figure 3.2: Examples from the Interestingnes10k video dataset: videos annotated as
interesting are on the right, whereas non-interesting videos are on the left. Videos
at the top have higher annotation agreement, while videos at the bottom have lower
annotation agreement. Each video is depicted with a key-frame (figure is from [34]).

• In [44, 23] we applied DNN techniques for multimodal video interestingness pre-
diction on both socially-driven dataset (i.e., Flickr videos) and content-driven
Interestingness10k dataset [30]. The workflow of the investigated approach is
shown in Figure 3.3. We tested various deep neural DNN architectures, includ-

41



3. MEDIA INTERESTINGNESS AND MEMORABILITY

ing our proposed one combining several recurrent neural networks (RNNs), so
as to handle several temporal samples at the same time. We then investigated
different strategies for dealing with unbalanced dataset to improve the prediction
results. We found that multimodality, as the mid-level fusion of audio and visual
information, brings benefit to the task.

Figure 3.3: Proposed computational models for video interestingness prediction. Black
arrows represent the workflow for our multimodal approach, whereas blue dash lines and
green dash-dot lines represent monomodal workflows for visual-based and audio-based
systems, respectively (figure is from [23]).

• In [24, 26] we focused on socially-driven interestingness and collected a large-scale
interestingness dataset (LaFin) from Flickr website (images and their associated
metadata), which was released for public use1. Given this LaFin dataset, where
the ground-truth interestingness label is given by Flickr, we studied factors that
may affect the users’ interest such as image tags, titles, comments, and built
deep learning-based computational models for the interestingness prediction. Our
DNN models exploited different types of features such as VGG16 [SZ14], semantic
features derived from an image captioning system [KSZ14], Word2Vec features
[MCCD13] computed from Flickr tags, and their combinations. Table 3.1 shows
that exploiting relevant contextual information derived from social metadata (i.e.,
Flickr tags) could greatly improve the prediction result, and offer the accuracy
over 92% in both training, validation, and test set.

3.2 Video memorability

While some contents have the power to be stored in our memories for a long time, others
are quickly forgotten. Memorability of media contents such as images and videos has

1https://www.interdigital.com/data_sets/intrestingness-dataset
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Inputs and features Accuracy (%)
Train Validation Test

Image
VGG16 78.07 75.54 76.45

Image
IC 76.3 75.53 76.35

Flickr tags
Word2Vec 89.96 89.68 89.63

Generated tags
Word2Vec 65.42 63.47 65.12

Image
VGG16+IC 85.27 83.34 83.59

Image + Generated tags
VGG16+Word2Vec 78.82 76.48 75.65

Image+Flickr tags
VGG16+Word2Vec 92.76 90.99 91.08

Image+Flickr tags
VGG16+IC+Word2Vec 93.72 92.46 92.59

Table 3.1: Prediction results in terms of accuracy obtained by models with different
sets of input features on our constructed LaFin dataset [26]. Here VGG16 and Image
Captioning (IC) features are used for image, Word2Vec feature is used for Flickr tags
and generated tags. The best performing system (last row) is multimodal where both
VGG16, IC, and Word2Vec features are exploited.

become an important research subject not only for psychologists, behavior specialists,
but also for computer scientists. Psychological literature has highlighted several factors
which have critical influence on long-term memory, including emotion [KS08], visual
attention [Cow98], semantics [Qui66], demographic information [CGDSLC16], or pas-
sage of time [McG00]. These factors have indeed provided computer vision researchers
with insights to craft valuable computational features for the media memorability pre-
diction [MLM13, IXP+14]. In computer vision and machine learning, the seminal work
of Isola et al. [IXTO11] defined image memorability (IM) as the probability for an
image to be recognized a few minutes after a single view, when presented amidst a
stream of images. This definition has been widely accepted within subsequent work
[KYP13, CEE13, KRTO15, LEOEQ16], and was adapted to short-term video memora-
bility (VM) in our work [29]. Various machine learning models have been investigated
for the prediction of image memorability [IXTO11, KRTO15, FAMR18], and more re-
cently video memorability [HCS+15, SSS+17]. Recent studies also showed that style
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transfer can be used to increase image memorability [SZM+17b, SZM+19]. We first
worked on image memorability [27] and obtained a better prediction performance than
the state of the art on the well-known LaMem dataset [KRTO15]. However, our more
significant and pioneer contributions are on video memorability (VM), which will be
presented in the remainder of this section.

3.2.1 VM dataset creation

MovieMem660. As research on computational understanding of video memorability
is in its early stage, there is no publicly available dataset for modelling purposes. A few
previous attempts provided protocols to collect video memorability data that would be
difficult to generalize [HCS+15, SSS+17]. In [28] we presented a very first work on long-
term video memorability where we measured the memory performances of participants
from weeks to years after memorization to build a dataset of 660 videos. The videos
were chosen as follows. We first established a list of 100 occidental movies, taking
care of mixing popularity and genres. We then manually selected seven videos of 10
seconds from each movie. To maintain a high intra video semantic cohesion, we did
not make cuts that would impair the understanding of the scene, nor did we aggregate
shots that belong to different scenes. 104 people (22 to 58 years of age; age average
= 37.1; 26% female; mostly educated people) participated in the experiment in a well-
controlled environment (a quiet room equipped with subdued lights, the videos with
high quality were displayed on a 60 inch monitor). The participants were first asked to
fill a questionnaire during about 20 minutes about whether they remembered watching
fully the movie, their confidence about the answer, the number of times they saw the
movie, and when was the last time they saw the movie. Based on the answers to the
questionnaire, an algorithm automatically selected 80 targets (i.e., videos from seen
movies) and 40 fillers (i.e., videos from never seen movies) among the movies associated
with the highest degree of certitude, with a maximum of two videos from the same
movie. The fillers enabled to quantify the reliability of the annotations. Given such 120
videos selected, participants performed a recognition task where they saw the videos
separated by an inter-stimuli interval of 2 seconds. On average, each video of our dataset
had been viewed as a target by 10.7 participants, which corresponds to the mean number
of observations that enter into the calculation of a memorability score.

The memorability score assigned to each video is simply defined as the correct
recognition rate of the video when viewed as target. Please refer to [28] for more details
about the video selection, the annotation protocol, the memorability score calculation,
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and the dataset analysis. This dataset, together with a list of pre-computed features
(C3D1, AudioSet2, SentiBank3, Affect [HX05], Image captions4), are made available for
the research community5.

VideoMem10k. This is the first large scale VM dataset, which is composed of
10,000 soundless videos of 7 seconds extracted from raw footage used by professionals
when creating content. Videos contain only one semantic scene, but the scenes are
varied (animal, food and beverages, nature, people, transportation, etc). Unlike the
MovieMem660, our proposed protocol to annotate the VideoMem10k relies on crowd-
sourcing and is inspired by the protocol introduced in [IXP+14, IXTO11] for image. The
protocol includes two steps to measure both human short-term and long-term memory
performances for videos, and is shown in Figure 3.4. Step #1 consists of interlaced
viewing and recognition tasks. Participants hired via Amazon Mechanical Turk (AMT)
crowdsourcing platform watch a series of videos, some of them – the targets – repeated
after a few minutes. Their task is to press the space bar whenever they recognize a video.
Once the space bar is pressed, the next video is displayed, otherwise the current video
continues till its end. Each participant watched 180 videos, that contain 40 targets,
repeated once for memory testing, 80 fillers (i.e., non target videos), and 20 so-called
vigilance fillers which were repeated quickly after their first occurrence to monitor the
participant’s attention to the task. Step #2 took place 24 to 72 hours after step #1: the
same participants performed similar recognition task to collect long-term annotations.
They watched a new sequence of 120 videos, composed of 80 fillers (randomly chosen
totally new videos) and 40 targets (randomly selected from the non-vigilance fillers of
step #1). Note that, to guarantee the quality of the annotation, we used several con-
trols: the vigilance task (step #1), a minimum correct recognition rate (15%, step #2),
a maximum false alarm rate (30% for step #1; 40% for step #2), and a false alarm rate
lower than the recognition rate (step #2 only). Finally, we had 9,402 participants for
short-term, and 3,246 participants for long-term memorability who passed the vigilance
controls. On average, a video was viewed as a repeated target 38 times (and at least 30
times) for the short-term task, and 13 times (at least 9 times) for the long-term task
due to the lower number of participants in step #2.

We assigned a first raw memorability score to each video, defined as the percentage
of correct recognitions by participants, for both short-term and long-term memorability.

1https://github.com/facebook/C3D
2https://github.com/tensorflow/models/tree/master/research/audioset
3http://www.ee.columbia.edu/ln/dvmm/vso/download/sentibank.html
4https://github.com/karpathy/neuraltalk2
5https://www.interdigital.com/data_sets/movie-memorability-dataset
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Figure 3.4: Proposed protocol to collect both short-term and long-term video memo-
rability annotations. The second recognition task measures memory of videos viewed
as fillers during step #1, to collect long-term memorability annotations (figure is from
[29]).

Then, motivated by a similar work for image [IXP+14], the short-term raw scores were
further refined by applying a linear transformation that takes into account the memory
retention duration. Please refer to [29] for more details about the video selection, the
annotation protocol, the memorability score calculation, and the dataset analysis. This
dataset, together with a list of pre-computed features (C3D1, HMP [CGR14], Inception-
V3, Aesthetic visual features, etc.) are made available for the research community2.

3.2.2 VM understanding

From two datasets, i.e., MovieMem660 and VideoMem10k, we investigated a number
of factors concerning the video memorability such as mean correct recognition rate, the
memorability consistency over time, the memorability with respect to response time, the
human vs. annotation consistency. Please refer to the papers [28, 29] for more details
about the investigation. As an example, Figure 3.5 shows the mean correct recognition
rate as a function of the retention interval between the memorization (i.e., last view
of video) and the measure of memorability performance for the MovieMem660 dataset
(left) and the VideoMem10k dataset (middle for short-term VM, right for long-term
VM). In line with other findings and as expected, recognition rate decreases linearly over
time for the short-term, while long-term memory performances does not significantly

1https://github.com/facebook/C3D
2https://www.interdigital.com/data_sets/video-memorability-dataset

46



3.2 Video memorability

Figure 3.5: Mean correct recognition rate vs. the retention interval between the mem-
orization and the measure of memory performance [28, 29]. Left: MovieMem660
dataset; Middle: Recognition rate decreases linearly over time for the short-term VM in
VideoMem10k dataset; Right: long-term memory performances does not significantly
change between 24 and 72 hours after memorization in VideoMem10k. Blue lines rep-
resent linear fitting.

change between 24 and 72 hours after memorization.

Human consistency vs. annotation consistency

We first followed the method proposed in [IXP+14] for IM to measure human consis-
tency when assessing VM. For this purpose, we randomly split our participants in each
dataset into two groups of same size and computed VM scores independently in each
group. A Spearman’s rank correlation between the two groups of scores was computed
and averaged over 25 random half-split trials. Figure 3.6-left shows this human con-
sistency as a function of the mean number of annotations per video for MovieMem660
dataset. The consistency of 0.70 is achieved from only about 18 annotations. This num-
ber is comparable to the maximal consistency obtained in image memorability (0.75 in
[IXTO11] and 0.68 in [KRTO15] with 80 annotations), but with much less number of
annotations. This may be explained by the fact that videos contain much more infor-
mation than images, thus they are more memorable. For the VideoMem10k dataset,
human consistency of 0.481 is observed for short-term memorability and of 0.192 for
long-term memorability.

When splitting the number of participants into two groups, it is possible to have
groups with unbalanced number of annotations per video. For this reason, we proposed
a new metric named annotation consistency. We reproduced the previous process of
human consistency computation but on videos which received at least N annotations
and the split ensuring a balance number of annotations per video. By doing so, we
obtained the annotation consistency as a function of the number of annotations per
video, as presented in Fig. 3.6-middle and right for the VideoMem10k dataset. As can
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Figure 3.6: Consistency analysis [28, 29]. Left: human consistency in MovieMem660
dataset, middle: annotation consistency in VideoMem10k short-term VM, right: anno-
tation consistency in VideoMem10k long-term VM. A greater number of annotations
per video provides more reliable memorability scores.

be seen, the annotation consistency reaches 0.616 (respectively 0.364) for the short-
term (resp. long-term) task for 38 (resp. 13) annotations. Again, this value of 0.616

for short-term memorability is to be compared to the one found in [KRTO15] (0.68)
for images. We can also see that long-term consistency follows the same evolution as
short-term consistency.

3.2.3 VM prediction

For the VM prediction with the VideoMem10k dataset, we investigated the use of
various image based baselines (i.e., MemNet [KRTO15], Squali et al., [27], ResNet
[HZRS16]), video-based models with spatio-temporal features (C3D [TBF+15], HMP
[CGR14], ResNet3D [HKS17]), and the proposed semantic embedding-based model. For
the latter, we fine-tuned a state-of-the-art visual semantic embedding pipeline used for
image captioning [ECPC19], on top of which a 2-layer MLP is added, to regress the
feature space to a single memorability score. The overall architecture is shown in Figure
3.7 and the training was done with a new ranking loss (i.e., Spearman surrogate)
proposed in [ECPC19]. Similar types of image-based and video-based features were
investigated for the MovieMem660 dataset. Please refer to our papers [28, 29] for a
detailed description of each considered systems and the discussion of the findings.

Table 3.1 shows the final prediction result in terms of the Spearman’s rank correla-
tion between predicted and groundtruth memorability scores on the validation and test
sets, and on the 500 most annotated videos of the VideoMem10k dataset (test(500)).
We also compare with the average and the best results obtained from the MediaEval
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Figure 3.7: Semantic embedding model without (green pipeline) and with an attention
mechanism (orange branch) (figure is from [29]).

2018 campaign for the same test set. As can be seen, baselines designed for IM predic-
tion offer quite good results on VM prediction. This means that the memorability of a
video is correlated to some extent with the memorability of its constituent frames. All
the models show poorer performance at predicting long-term memorability compared
with short-term VM prediction. This might be due to the fact that the memorability
scores for long-term are based on a smaller number of annotations than for short-term,
so they probably capture a smaller part of the intrinsic memorability. Finally, our pro-
posed semantic embedding model outperforms all other systems for both short-term
and long-term VM prediction.

Models short-term memorability long-term memorability
validation test test (500) validation test test (500)

MemNet 0.397 0.385 0.426 0.195 0.168 0.213
Squalli et al. 0.401 0.398 0.424 0.201 0.182 0.232

IC-based model 0.495 0.441 0.517 0.233 0.204 0.199
ResNet101 0.498 0.46 0.527 0.222 0.218 0.219
C3D+HMP 0.424 0.337 0.412 0.324 0.121 0.120
ResNet3D 0.508 0.462 0.535 0.23 0.191 0.202

MediaEval’2018 - average – 0.395 – – 0.174 –
MediaEval’2018 - best 0.484 0.497 – 0.261 0.257 –

Semantic embedding model 0.503 0.494 0.565 0.260 0.256 0.275

Table 3.2: Results in terms of Spearman’s rank correlation between predicted and
ground-truth memorability scores, on the validation and test sets, and on the 500 most
annotated videos of the dataset (test (500)) that were placed in the test set.

Intra-memorability visualization. To better understand what makes a video
frame memorable, we visualize the 2D attention map obtained after the conv+softmax
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layer (orange branch in Figure 3.7). This attention map is actually trained to learn
which regions in each frame contribute more to the prediction. Some frame examples
are shown in Figure 3.8. Our empirical study of the resulting attention maps tends
to separate them in two categories. In the first one when frames contain roughly one
main object, the model seems to focus on the main object and even, in the case of clear
faces, on details of the faces, as if trying to remember the specific features of faces.
In the second category that groups all other frames, with several main and secondary
objects, textured background, etc., it seems on the contrary that the model focuses on
other little details that differentiate the image from another similar one. In other words,
the second category shows results that might be interpreted as a second memorization
process, once the first one – focusing on the main object – has already been achieved.

3.3 Conclusion

We have presented our pioneering works on media interestingness and memorability.
Large-scale datasets about image/video interestingness and video memorability were
constructed, analyzed, and released for the public use. Two series of MediaEval cam-
paigns namely Media Interestingess Prediction Task (2016-2017), and Video Memora-
bility Prediction Task (2018-2019) were organized and attracted great attention from
the community. We also investigated various computational models for the media in-
terestingness/memorability prediction and studied intrinsic factors that might make a
content interesting or memorable.
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Figure 3.8: What makes a video/image memorable? Visualization of the attention
mechanism’s output for some video frames. The model focuses either on clear faces
(first row) or main objects when background texture is dark or uniform or blurry (second
row). In another type of images which contains several objects and textured background
(third row), the model focuses rather on some details.
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This chapter briefly summarizes our other contributions in applying signal processing
and machine learning techniques to different problems.

4.1 Audio synchronization using fingerprinting

Consumers today often use their smartphones or tablets whilst watching TV. This has
opened the door to personalized TV applications where additional services and related
content can be accessed on the web to accompany the main TV view. Targeting such
emerging applications, we looked for a technique to assure fast and accurate synchro-
nization of media components streamed over different networks to different rendering
devices. Focusing on audio processing, we considered fingerprinting techniques [Wan03]
and generalized cross correlation [BS97], where the former can greatly reduce com-
putational cost and the latter can offer sample-accurate synchronization. In [35], we
proposed an approach combining these two techniques, where coarse frame-accurate
synchronization positions were first found by fingerprint matching, and then a possi-
ble accurate synchronization position was verified by generalized cross correlation with
phase transform (GCC-PHAT). Experimental results in a real-world setting confirmed
the accuracy and the rapidity of the proposed approach.
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In [13] we investigated another audio synchronization use case for movie: synchroniz-
ing multiple versions of the same movie, with an objective of automatically transferring
metadata available on a reference version to other ones. We first adapted an existing
audio fingerprinting technique [Wan03] to find all possible temporal matching positions
between two audio tracks associated with two movie versions. We then proposed ad-
ditional steps to refine the match and eliminate outliers. The proposed approach was
shown to efficiently handle situations where temporal scene edits occur like scene ad-
dition, removal, and even the challenging scene re-ordering case. Experimental results
over synthetic editorial data showed the effectiveness of the approach with respect to
the state-of-the-art dynamic time warping (DTW) based solution.

4.2 Audio zoom via beamforming technique

This work focused on a practical application called audio zoom in smartphones, where
sound capture focuses on the front direction while attenuating progressively surrounding
sounds when recording a video. For this purpose, we first developed a novel approach
that combines multiple Robust Minimum Variance Distortionless Response (RMVDR)
beamformers [BS10, ML03] having different look directions with a post-processing al-
gorithm. Then, spatial zooming effect is created by leveraging the microphone signals
and the enhanced target source. The general workflow of the proposed audio zoom
implementation is shown in Figure 4.1. Subjective test with real-world audio recordings
using a mock-up simulating an usual shape of the smartphone confirms the rich user
experience obtained by the proposed system [14]. A demo was presented at the ICASSP
2016 conference1.

4.3 Audio classification

We have been interested in audio classification task for several years along with the
emergence of deep learning. We participated in the 2016 Detection and Classification of
Acoustic Scenes and Events (DCASE) challenges where we started from low-level feature
representation for segmented audio frames and investigated different time granularity
for feature aggregation. We studied the use of support vector machine (SVM) together
with two popular neural network (NN) architectures, namely multi-layer perceptron
(MLP) and convolutional neural network (CNN) and tested on benchmark datasets
provided in the DCASE 2013 and 2016. We observed that a simple feature as averaged

1https://www2.securecms.com/ICASSP2016/ST-3.asp

54



4.3 Audio classification

Figure 4.1: General workflow of the proposed audio zoom implementation (figure is
from [14]).

Mel-log-spectrograms can obtain comparable performance with the best systems in the
DCASE 2013 challenge [36].

Participating in the DCASE 2019 challenge with enlarged dataset, we used models
exploiting multiple instance learning (MIL) method as a way of guiding the network
attention to different temporal segments of a recording. We then proposed a simple
late fusion of results obtained by the three investigated MIL-based models by multi-
layer perceptron (MLP) layers. With such fusion, we obtained a better result on the
development and the leaderboard dataset of the challenge [38].

In another work [37] we addressed a problem of discriminating the natural human
voices and those played back by any kind of audio devices in the context of interactions
with in-house voice user interface. The tackled problem finds relevant applications in
(1) the far-field voice interactions of vocal interfaces such as Google Home, Facebook
Portal, Amazon Echo, etc, and (2) the replay spoofing attack detection. The detection
of loudspeaker emitted speech will help avoiding false wake-ups or unintended inter-
actions with the devices in the first application, while eliminating attacks involve the
replay of recordings collected from enrolled speakers in the second one. In this work,
we first collected a real-world dataset under well-controlled conditions containing two
classes: recorded speeches directly spoken by numerous people (considered as the nat-
ural speech), and recorded speeches played back from various loudspeakers (considered
as the loudspeaker emitted speech). We then built DNN-based prediction models ex-
ploiting the combination of features extracted from different existing state-of-the-art
DNN architectures. The combination of audio embeddings extracted from SoundNet
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[YAT16] and VGGish [HCE+17a] network yields the classification accuracy up to about
90% and thus confirms the feasibility of the task.

4.4 Audio style transfer

Image style transfer has recently emerged with success and has become a very popular
technology thanks to the power of convolution neural networks (CNNs). In this work
we investigated the analogous problem in the audio domain: How to transfer the style
of a reference audio signal to a target audio content? To the best of our knowledge,
our paper [15] was one of the earliest formal publications in this topic. We proposed a
flexible framework for the task, which uses a sound texture model to extract statistics
characterizing the reference audio style, followed by an optimization-based audio texture
synthesis to modify the target content. In contrast to mainstream optimization-based
visual transfer method, the proposed process is initialized by the target content instead
of random noise, and the optimized loss is only about texture, not structure. In order to
extract features of interest, we investigated different architectures, whether pre-trained
on other tasks, as done in image style transfer, or engineered based on the human
auditory system. The overall framework is shown in Figure 4.2. In this figure, given
an audio texture extraction model (artificial neural net or auditory model), the content
sound is iteratively modified such that its audio texture matches well the one of the
style sound. If required by texture model, raw signals are mapped to and from a
suitable representation space by pre/post-processing. Experimental results on different
types of audio signal confirm the potential of the proposed approach/ transfer in our
experiments.

4.5 Speech inpainting

Audio inpainting in general consists in filling in missing portions of an audio signal.
It exists in different forms such as audio declipping, clicks removal, and bandwidth
extension. The problem of speech inpainting specifically consists in recovering some
parts in a speech signal that are missing for some reasons. To our best knowledge none
of the existing methods allows satisfactory inpainting of missing parts of large size such
as one second and longer. In this work we addressed this challenging scenario with the
assumption that the full text uttered in the speech signal is known (as in the case of such
long missing parts entire words can be lost). We thus formulated a new concept of text-
informed speech inpainting and proposed a method that is based on synthesizing the
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Figure 4.2: Proposed audio style transfer framework (figure is from [15]).

missing speech by a speech synthesizer, on modifying its vocal characteristics via a voice
conversion method, and on filling in the missing part with the resulting converted speech
sample [16]. We carried subjective listening tests to compare the proposed approach
with two baseline methods.

4.6 Image inpainting

Figure 4.3: Given an incomplete scene (left image), the proposed context encoder pro-
duces a plausible structural completion (middle image), which can be subsequently re-
fined for texture and details with a patch-based inpainting method (right image) (figure
is from [17]).

Visual inpainting or scene completion, is the task of filling in a plausible way a
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region in an image [BSCB00]. Successful approaches for small and medium missing
regions include patch-based inpainting [CPT04, BDTL15] and iterative optimization-
based approaches [AFCS11, BSFG09]. Recently, with the power of CNNs, Pathak et
al. [PKD+16] have introduced convolutional “context encoders” (CEs) for unsupervised
feature learning through image completion tasks. With the additional help of adversarial
training, CEs turned out to be a promising tool to complete complex structures in real
inpainting problems. In this work we proposed to push further this approach by relying
on perceptual reconstruction losses at training time [17]. The overall workflow of the
proposed structural CE is shown in Figure 4.4. We showed on various visual scenes the
merit of the approach for structural inpainting, and confirmed it through a user study.
Combined with the optimization-based refinement of [YLL+16] with neural patches, our
context encoder opens up new opportunities for prior-free visual inpainting. Example
of the qualitative results are shown in Figure 4.3.

Figure 4.4: Proposed structural CE: The encoder-decoder architecture is trained with
a structural loss that compares the reconstructed central image part with the original
one through deep features. In a second training stage, the adversarial loss is added to
the total loss, with a co-trained network in charge of declaring whether an input image
patch is natural or produced by the competing CE. Learnable nets are in blue, orange
ones are fixed (figure is from [17]).
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Chapter 5

Conclusion

5.1 Achievements

This thesis summarizes my work in collaboration with other colleagues and students
after the PhD. Particularly, we solved various problems ranging from different types of
data (i.e., audio, speech, text, image, and video). These works mostly exploited statis-
tical signal processing and machine learning techniques for audio and multimodal data
modeling and analysis. Concerning audio source separation, while my PhD focused on
spatial source model (i.e., the full-rank spatial covariance model), we mostly investi-
gated the use of spectral source model based on NMF with sparsity constraints for a
wide range of informed use cases. Such use cases cover supervised/semi-supervised,
text-informed, user-guided, annotation-based, interactive, motion-informed, and video-
informed audio source separation.

In recent years, data-driven paradigm has bloomed and found wide applications in
most domains thanks to the deep learning. In line with this, we investigated the use of
deep neural networks for various audio and visual tasks, which were found to be difficult
for conventional model-based approaches before. These tasks include e.g., audio style
transfer, large-hole image inpainting, audio classification, audio-visual object detection
and localization, image/video interestingness, and image/video memorability. For the
media interestingness and memorability, we have led several activities in the research
community such as constructing new datasets, organizing international challenges, and
proposing computational models for prediction.

As a researcher in industry, my research projects have been driven by the actual
needs of the company. Alongside the supervision of two PhD students and one postdoc,
other projects usually aimed to investigate practical challenges over a few months. Thus,
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5. CONCLUSION

I have had great opportunities to study various problems and extend my research,
originally in audio processing, to areas in multimedia and computer vision with which
I was not familiar. For each target problem, we were mostly successful to have at least
one patent submission and one scientific paper.

5.2 Future directions

My research program aims to understand the real-world environment via multimodal
data (e.g., audio-visual scene) analysis. From this understanding, smart devices will be
able to respond to users’ needs. A specific direction could target multimodal question
answering system (MQA), which finds great application in intelligent assistants such as
Amazon Alexa, Google Home, Apple Siri, etc. While new frontiers in visual question
answering (VQA) and multimodal fusion have been achieved recently1, most state-of-
the-art approaches treat VQA as a conventional classification problem where the list
of possible answers is fixed in the dataset [GKSS+17, KMK+19]. This makes VQA
systems less flexible in responding to the real needs of the users. Besides, multimodal
sensors have been well investigated in different tasks such as activity recognition, but less
investigated in the context of VQA. Thus, with a future PhD student, we would like to
build a novel semantic multimodal question answering (MQA) framework that exploits
the latest advances in deep learning research and multimodal fusion. This framework
may go beyond the conventional classification approach thanks to the integration of
reasoning techniques [YSY+17, ZBFC18].

We are now in the deep learning era where powerful DNN models for various com-
plicated tasks are being published almost every month, or even week. However, most
DNN architectures are fixed during the design, training, and inference stages so they
are not easily adapted to the possible variation of the hardware and/or computational
resources. Thus, another research direction I am exploring focuses on flexible DNN
architectures, which offer memory efficiency and can be easily adapted to the avail-
able resources on the fly. Such flexible models (e.g., motivated from the multi-scale
dense networks [HCL+18] or slimmable networks [YH]) can be configured to fit to e.g.,
edge computing or IoT devices with limited computing power when needed. The use
of in-place knowledge distillation (IPKD) motivated from the teacher assistant strat-
egy [MFL+19] to guide the efficient training of such flexible models is currently under
investigation. Yet another interesting line of research is the unsupervised or weakly-
supervised learning, where robust data-driven machine learning models can be built

1https://visualqa.org/workshop.html
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without or with a small amount of labeled data.
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On-the-fly audio source separation - a novel
user-friendly framework

Dalia El Badawy, Ngoc Q. K. Duong, Member, IEEE and Alexey Ozerov, Member, IEEE

Abstract—This article addresses the challenging problem of
single-channel audio source separation. We introduce a novel
user-guided framework where source models that govern the
separation process are learned on-the-fly from audio examples
retrieved online. The user only provides the search keywords
that describe the sources in the mixture. In this framework,
the generic spectral characteristics of each source are modeled
by a universal sound class model learned from the retrieved
examples via non-negative matrix factorization. We propose
several group sparsity-inducing constraints in order to efficiently
exploit a relevant subset of the universal model adapted to
the mixture to be separated. We then derive the corresponding
multiplicative update rules for parameter estimation. Separation
results obtained from automated and user tests on mixtures
containing various types of sounds confirm the effectiveness of
the proposed framework.

Index Terms—On-the-fly audio source separation, user-guided,
non-negative matrix factorization, group sparsity, universal
sound class model.

I. INTRODUCTION

AUDIO source separation is a desired processing step
within many real-world applications such as sound post-

production, robotics, and audio enhancement [1]. However,
it has remained a challenging task especially when the input
is a single-channel mixture. Indeed, in this case the problem
is highly ill-posed and, in contrast to multichannel mixing
case, additional spatial information about the sources is not
available. Earlier approaches usually assume that the sources
are sparse in the short-time Fourier transform (STFT) domain
and estimate the predominant source’s STFT coefficients via
e.g. binary masking [2] or `1-minimization [3], [4]. The
separation performance achievable by these techniques is very
limited in reverberant environments [5], [6] where the sources’
STFT coefficients are quite overlapped. A more recent class
of algorithms known as informed source separation [7], [8]
utilizes prior information about the sources to guide the separa-
tion process, and was shown to be successful in many contexts
using different types of prior information. For instance, such
information may include musical scores of the corresponding
music sources [7], [9], [10] or text of the corresponding speech
sources [8]. In some approaches this symbolic information is
then converted to audio using a MIDI synthesizer for musical
scores [9], [10] or a speech synthesizer for text [8]. These
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synthesized signals (that may also include cover tracks as in
[11]) called deformed references in [12] can be used to roughly
learn the spectral and temporal characteristics of one or more
sources in the mixtures so as to guide the separation process
[8]–[10], [12]. A subclass of informed source separation
approaches is user-guided separation methods where the prior
information is provided by a user. Such information can be
e.g., user-“hummed” sounds that mimic the sources in the
mixture [13] or source activity annotation along time [14] or
in a time-frequency plane [15]; the annotation information is
then used, instead of training data, to guide the separation pro-
cess. Furthermore, recent publications disclose an interactive
strategy [16], [17] where the user can perform annotations on
the spectrogram of intermediate separation results to gradually
correct the remaining errors. Note however that most of
the existing approaches need to use prior information which
may not be easy to acquire in advance (e.g., musical score,
text transcript), is difficult to produce (e.g., user-hummed
examples), or simply requires very experienced users while
being very time consuming (e.g., time-frequency annotations).

The main motivation of this work is to introduce a simple
framework that enables everyone to easily perform source
separation. We hence present the new concept of on-the-fly
source separation inspired by on-the-fly visual search methods
[18], [19] from the computer vision research community. More
specifically, the proposed framework only requires the user to
listen to the mixture and type some keywords that describe the
sources to be separated; in other words, the user interaction
is now carried out at a higher semantic level. For instance,
a user would request to separate the “wind noise” (source 1
description) from the “bird song” (source 2 description). The
given descriptions or keywords are then used to search the
internet for similar audio examples that will be employed to
govern the separation process. For this purpose, supervised
approaches based on e.g., nonnegative matrix factorization
(NMF) [20], [21] or its probabilistic formulation known as
Probabilistic Latent Component Analysis (PLCA) [13], [22],
where retrieved examples can be used to pre-learn the spectral
dictionaries of the corresponding sources, are of great interest.
Other methods in the prior art that couple the decomposition
of the reference signals together with the mixture could
also be considered [8], [11], [12], [23]. Regardless of the
approach, several challenges, as detailed in Section II, arise
in this on-the-fly framework due to (i) the unknown quality
of the retrieved examples and (ii) possible lack of source
descriptions (i.e. some sources may not be described by the
user). In our preliminary work [24], we investigated several
strategies to handle issues with the quality of the retrieved
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examples and found that the one using a universal sound
class model (USCM)1 learned from examples via NMF with a
group sparsity constraint is generally more efficient than the
others. Note that since the USCM is actually an over-complete
dictionary, a sparsity constraint is needed to help fit the most
relevant spectral patterns to the sources in the mixture.

This article extends our preliminary work [24], [27] by
providing the algorithms along with their mathematical deriva-
tions in addition to new results from a user test. Altogether,
the main contributions of our proposed on-the-fly paradigm
work are four-fold:
• We introduce a general framework for on-the-fly audio

source separation which greatly simplifies the user inter-
action.

• We propose a novel so called relative group sparsity con-
straint and show its benefit in the semi-supervised case
where training examples for some sources are missing.

• We derive several algorithms for parameter estimation
when different group sparsity-inducing penalties and rel-
ative group sparsity-inducing penalties are used.

• We perform a range of evaluations, including both super-
vised and semi-supervised scenarios, and a user-test to
validate the benefit of the proposed framework.

The remainder of this paper is organized as follows. Section
II gives an overview of the on-the-fly framework and the
related challenges. In Section III, we recall some background
on supervised source separation based on NMF. We then
propose several algorithms for parameter estimation with the
use of different sparsity-inducing constraints in Section IV.
Evaluation results with a user-test are presented in Section V.
Finally, we conclude in Section VI.

II. ON-THE-FLY FRAMEWORK AND CHALLENGES

A. Overview and challenges
The proposed framework only requires minimal user input

enabling inexperienced users to apply source separation to
essentially any mixture.It is applicable as well when relevant
training examples for some sources are either not readily
available offline or not representative enough, which is likely
the case for uncommon sounds such as animal or environ-
mental sounds. The general workflow is shown in Fig. 1.
The user inputs a few keywords specifying the sources in
the mixture (e.g., “dog barking”, “wind”, etc.,), then a search
engine retrieves relevant source examples accordingly. The
source spectral models are then learned on-the-fly and used for
supervising the separation. This approach is actually analogous
to on-the-fly methods in visual search where a user types
a persons name (e.g., “Clint Eastwood”) [18] or an objects
description (e.g., “car”) [19] and a classifier is trained using
example images retrieved via Google Image Search.

Although the on-the-fly approach simplifies the user interac-
tion and eliminates the need for offline training samples, there
are several challenges that need to be addressed as follows:

1The term “universal speech model” was introduced in [25] for the
separation of speech and noise, and was inspired by the term “universal
background model” used for speaker verification [26]. We here extend it to
“universal sound class model”, since our framework deals with the separation
of sources belonging to any sound class.

(C1) Handling irrelevant examples: Some retrieved ex-
amples may contain sounds with entirely different
spectral characteristics than those of the source in
the mixture, e.g., searching for “bird chirps” and
obtaining some “chirp signal” examples too. Those
examples should not be used in training.

(C2) Handling noisy examples: Some retrieved examples
are actually mixtures of relevant and irrelevant sounds,
e.g., “female speech” with a dog barking in the
background. Those examples may still be useful and
should not be discarded entirely.

(C3) Handling missing examples: This may happen when
the user describes only the sources of interest and
ignores the remaining sources or when the search
engines do not return results for some of the provided
keywords. We refer to this challenge as the semi-
supervised case where all non-described sources that
possibly appear in the mixture should be grouped as
one background source.

In fact in our previous work [24] to handle the first
challenge, we investigated the use of a simple example pre-
selection scheme based on the spectral similarity between
the examples and the mixture to discard irrelevant examples.
Thus, one can imagine having additional user interaction after
specifying the keywords. For instance, the user may screen
the list of retrieved examples and subjectively select a more
relevant subset for training. This is the “Examples Refinement”
step in Fig. 1.

B. Graphical User Interface

We implemented the system along with a graphical user
interface (GUI) as shown in Fig. 2 and employed it for our
user-tests. It features the ability to listen to a mixture and
input one or more keywords describing the different sources.
Then, per source, an online search for audio is performed.
Next, the user can listen to the list of retrieved audio examples
as well as view their waveforms or spectrograms (useful for
the more advanced users). The optional example selection is
then done by ticking the corresponding checkboxes. USCMs
are then learned on-the-fly to guide the separation. The last
step is to output the separated sources. A video showing a
demo is available online at http://youtu.be/mBmJW7cy710/.
On the practical side, the data transferred between the user
and the server consists of the keywords and the mixture file
as well as the separated sources which are sent back to the
user. On the server, each example file requires computing the
STFT followed by NMF; the examples are independent and
these operations can thus be done in parallel. Then once the
USCMs have all been constructed, the separation step is faster
as the multiplicative updates are performed only one time.
The overall complexity thus mostly depends on the number of
training examples and the size of USCMs. Thus on an average
PC, it would take from 30 seconds to a few minutes to get the
separation results back.
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Fig. 1. General workflow of the proposed on-the-fly framework. A user listens to the mixture and types some keywords describing the sources. These
keywords are then used to retrieve examples to learn spectral models for the described sources. Optionally, the user may listen to the retrieved examples and
discard irrelevant ones.

(a)

(b)

Fig. 2. Screenshots of the proposed GUI. (a) The user can listen to a mixture,
and then type keywords describing different sources within it. (b) A set of
retrieved examples (waveforms or spectrograms can be displayed) for each
source with checkboxes so that the user can select the most appropriate ones
to be used for training the source spectral model.

III. BACKGROUND ON NMF-BASED SOURCE SEPARATION

A. Conventional supervised approach

We discuss in this section a standard supervised source
separation approach. We base our framework on NMF since
it is one of the most popular and well-suited models in the
state of the art on audio source separation. As per e.g. [22],
[25], first source spectral models are learned on-the-fly from
training data retrieved online. Then these models are used to
supervise the separation.

Assuming J sources, let X ∈ CF×N and Sj ∈ CF×N
be the STFT coefficients of the single channel mixture signal
and the j-th source signal, respectively, where F is the number
of frequency bins and N the number of time frames. Usual

additive mixing is assumed as

X =
J∑

j=1

Sj . (1)

Let V = |X|.2 be the power spectrogram of the mixture,
where X.p is the matrix with entries [X]pil,

.p denotes an
element-wise operation. Then, NMF algorithms construct two
non-negative matrices W ∈ RF×K and H ∈ RK×N such that
V ≈ V̂ = WH. The factorization is usually done by solving
the following optimization problem [20], [28]

W∗,H∗ = arg min
H≥0,W≥0

D(V‖WH), (2)

where

D(V‖V̂) =

F,N∑

f,n=1

d(Vfn‖V̂fn) (3)

and d(·‖·) is a scalar divergence measure. We use the Itakura-
Saito (IS) divergence defined as

dIS(x‖y) =
x

y
− log

(
x

y

)
− 1 (4)

which is appropriate for audio signals due to its scale invari-
ance [20]. The parameters θ = {W,H} are usually initialized
with random non-negative values and are iteratively updated
via multiplicative update (MU) rules [20], [28].

In the training step of the supervised setting, a spectral
model for each source j, denoted by W(j), is first learned from
the corresponding training examples concatenated together
by optimizing criterion (2). Then the spectral model for all
sources W is obtained by concatenating the source models
as:

W = [W(1), . . . ,W(J)]. (5)

Then in the separation step, the time activation matrix H is
estimated via the MU rules optimizing (2) [20], while W is
kept fixed. Note that the activation matrix is also partitioned
into horizontal blocks as

H = [HT
(1), . . . ,H

T
(J)]

T , (6)

where H(j) denotes the block characterizing the time activa-
tions for the j-th source.
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Once the parameters θ = {W,H} are obtained, Wiener
filtering is applied to compute the source STFT coefficients as

Ŝj =
W(j)H(j)

WH
�X, (7)

where � denotes the element-wise Hadamard product and the
division is also element-wise. Finally, the inverse STFT is
computed to produce the time domain source estimates.

B. USCM-based approach

The conventional supervised approach as described in
Section III-A assumes using all retrieved (or user-selected)
examples for a given source to learn the source spectral
model. This may not be suitable in the current framework
due to the challenges mentioned in Section II where the
noisy examples may lead to a poor spectral model. Thus, in
this section we propose an efficient and flexible approach to
better utilize the examples, when available, for guiding the
separation, while also handling the case of missing examples.
In the following, the training examples refer to either the full
list of retrieved examples or the user-selected examples in
case of user intervention. We employ a so-called universal
sound class model, learned in advance from training examples,
with sparsity constraints on the activation matrix H in order
to enforce the selection of only few representative spectral
patterns during the model fitting. In the following, we first
present the USCM construction, and then the optimization
criterion for model fitting.

1) USCM construction: Assuming that the j-th source is
described by the user and some examples are retrieved for
it, we denote by Vjp the spectrogram of the p-th example
corresponding to the j-th source. First, Vjp is used to learn
the NMF spectral model, denoted by Wjp, by optimizing the
criterion (similar to (2)):

H∗jp,W
∗
jp = arg min

Hjp≥0,Wjp≥0
D(Vjp‖WjpHjp), (8)

where Hjp is the corresponding time activation matrix. Given
Wjp for all examples, the USCM for the j-th source is
constructed as

W(j) = [Wj1, . . . ,WjPj
] (9)

where Pj is the number of retrieved examples for the j-th
source.

2) Model fitting for supervised source separation: In the
supervised setting, we assume having source models for all
the sources in the mixture, that is to say that for every source,
the user gave its description and examples were successfully
retrieved. It can be seen that the USCM W(j) constructed
in (9) becomes a large matrix when the number of examples
increases, and it is often redundant since different examples
may share similar spectral patterns. Therefore, in the NMF
decomposition of the mixture, the need for a sparsity constraint
arises to fit only a subset of each W(j) to the source in
the mixture. In other words, the mixture is decomposed in
a supervised manner, given W constructed from W(j) as in
(5) and fixed, by solving the following optimization problem

H∗ = arg min
H≥0

D(V‖WH) + Ψ(H) (10)

where Ψ(H) denotes a penalty function imposing sparsity on
the activation matrix H. Different penalties can be chosen, as
will be discussed in Section IV, resulting in a sparse matrix
H as visualized in Fig. 3b and Fig. 3c.

3) Model fitting for semi-supervised source separation:
We describe in this section a so-called semi-supervised setting
where not all of the source models can be learned in advance
[25]. This occurs either when the user only describes the
sources of interest and not all of them or when the search
engine fails to retrieve examples for a given query.

We propose to model all the “missing” sources as one
background source whose spectrogram can be approximately
factorized as WbHb, where Wb and Hb are the correspond-
ing spectral model and activation matrix, respectively. The
parameter θb = {Wb,Hb} can be randomly initialized with
a small number of components (i.e. number of columns in
Wb) Kb. All the other sources, for which some examples
are available, are modeled as in the supervised case by
θ = {W,H} (see Fig. 4e and Fig. 4f). The parameters are
estimated altogether by optimizing the following criterion

H∗,W∗
b,H

∗
b =

arg min
H≥0,Wb≥0,Hb≥0

D(V‖WH + WbHb) + Ψ(H). (11)

We see that in contrast to criterion (10) Wb is updated as
well and there is no group sparsity-inducing penalty on Hb.
The reason is that, as opposed to W, Wb is neither an
overcomplete dictionary nor has an underlying structure that
can be exploited for regularization.

IV. SPARSITY CONSTRAINTS AND ALGORITHMS

In this section we consider two classes of sparsity con-
straints, namely group sparsity and a newly proposed relative
group sparsity for the optimization problem (10) and (11).
In each case, two variations are considered: a block sparsity-
inducing penalty and a component sparsity-inducing penalty.
For every constraint, we give the corresponding algorithm for
estimating the parameters.

A. Group sparsity constraints and parameter estimation algo-
rithm

We consider a group sparsity-inducing penalty defined as

Ψgr(H) =
∑J

j=1
λj
∑Gj

g=1
log
(
ε+ ‖H(j,g)‖1

)
, (12)

where H(j,g) (g = 1, . . . , Gj) are the groups within the
activation sub-matrix H(j) corresponding to the j-th USCM
(see equation (6) for the definition of H(j)), Gj the total
number of groups for the j-th source, ‖ · ‖1 denotes the `1
matrix norm, ε > 0 and λj ≥ 0 are trade-off parameters
determining the contribution of the penalty for each source.
Note that in the remainder of the paper, H(j,g) should not
be confused with Hjp in (8). We introduce two options for
defining the groups H(j,g) and derive the corresponding MU
rules for the parameter estimation as follows.
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Fig. 3. Estimated activation matrix H for two sources in a mixture containing
a rooster and bird chirps where two retrieved examples for each source were
used for training the USCMs: (a) without a sparsity constraint, (b) with a block
sparsity-inducing penalty (blocks corresponding to poorly fitting models are
zero), and (c) with a component sparsity-inducing penalty (rows corresponding
to poorly fitting spectral components from different models are zero).

1) Block sparsity-inducing penalty: As in [25], we restrict
the groups to be sub-matrices of H(j) corresponding to the
spectral models W(j,p) trained using the p-th example (see (8)
for the definition of W(j,p)). In that case the indices g and p
coincide and Gj = Pj . This so-called block sparsity-inducing
strategy allows filtering out irrelevant spectral models W(j,l),
thus dealing with irrelevant retrieved examples (challenge C1

in Section II). An illustration for the estimated activation
matrix H for that case is shown in Fig. 3b where blocks
corresponding to irrelevant examples for each source are set
to zero.

2) Component sparsity-inducing penalty: As an alternative
solution to fitting the universal model, we restrict the groups
to be rows of H(j) corresponding to different spectral com-
ponents (in that case the number of groups Gj simply equals
to the number of rows in H(j)). This so-called component
sparsity-inducing strategy allows filtering out irrelevant spec-
tral components, thus dealing with noisy retrieved examples
(challenge C2 in Section II). Fig. 3c shows an estimated
activation matrix H where rows corresponding to irrelevant
spectral components for each source are set to zero.

3) MU rules for parameter estimation: MU rules for the
optimization of criterion (10) (supervised case) and (11) (semi-
supervised case) are summarized in Algorithms 1 and 2,
respectively, where η > 0 is a constant parameter, P(j,g)

is a matrix of the same size as H(j,g) whose entries have
the same value, and P is a matrix concatenating all P(j,g).
This algorithm is almost identical to the one proposed in
[21], except that the groups are defined differently and W
is not updated. It is proven in [21] using a majorization-
minimization [29] formulation that these updates with η = 1/2
are monotonic, i.e., the cost function is non-increasing after

each iteration.

Algorithm 1 MU rules for NMF with group sparsity in
supervised case
Input: V, W, λ
Output: H

Initialize H randomly
V̂ = WH
repeat

for j = 1, . . . , J, g = 1, . . . , Gj do
P(j,g) ← λj

ε+‖H(j,g)‖1
end for
P = [PT(1,1), . . . ,P

T
(1,G1)

, . . . ,PT(J,1), . . . ,P
T
(J,GJ )

]T

H← H�
(

WT (V�V̂.−2)

WT V̂.−1+P

).η

V̂←WH
until convergence

Algorithm 2 MU rules for NMF with group sparsity in semi-
supervised case
Input: V, W, λ
Output: H,Hb,Wb

Initialize H, Hb, and Wb randomly
V̂ = WH + WbHb

repeat
for j = 1, . . . , J, g = 1, . . . , Gj do

P(j,g) ← λj

ε+‖H(j,g)‖1
end for
P = [PT(1,1), . . . ,P

T
(1,G1)

, . . . ,PT(J,1), . . . ,P
T
(J,GJ )

]T

H← H�
(

WT (V�V̂.−2)

WT (V̂.−1)+P

).η

Hb ← Hb �
(

WT
b (V�V̂.−2)
WT

b V̂.−1

).η

Wb ←Wb �
(

(V�V̂.−2)HT
b

V̂.−1HT
b

).η

Normalize Wb and Hb component-wise (see, e.g., [20])
V̂←WH + WbHb

until convergence

Note that the updates of H are identical in both the su-
pervised and semi-supervised cases. Additionally, in the semi-
supervised case, since the derivations of (11) with respect to
Wb and Hb are not affected by the sparsity constraint Ψ(H),
the updates of Wb and Hb are straightforwardly derived as
in [30].

B. Relative group sparsity constraints and parameter estima-
tion algorithm

For the separation to be feasible, we require that every
learned source model has a corresponding non-zero activation;
however, this constraint is not enforced by the group sparsity
penalty in (12) where it can happen that a group of different
sources are fit together using the same source model, instead
of separately using their designated models, rendering their
separation impossible. We observed this “source vanishing”
phenomenon in practice as illustrated in Fig. 4a (in case of
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Fig. 4. Examples of estimated activation matrices H for two sources in a
mixture containing a rooster and bird chirps where two retrieved examples for
each source were used for training the USCMs. Left column: (a) block sparsity
in the supervised case, (c) component sparsity in the supervised case, and (e)
block sparsity in the semi-supervised case. Right column: same settings as in
the left column, but for the proposed relative block/component sparsity.

using the block sparsity-inducing penalty) and Fig. 4c (in
case of using the component sparsity-inducing penalty) in the
supervised case. Moreover, the problem worsens in the semi-
supervised case, depicted in Fig. 4e for the block sparsity case,
where the entire mixture is fit by the estimated background
model only (the same effect occurs for the component sparsity
case). This is due to the fact that Wb and Hb are now fully un-
constrained in (11), whereas W is fixed and H is constrained
by the group sparsity-inducing penalty. It can also be seen
that increasing the trade-off parameters λj in the penalty (12)
(thus decreasing the number of active groups) increases the
chances of source vanishing in both the supervised and semi-
supervised cases. In this section, we present a novel sparsity-
inducing penalty which helps prevent this problem completely.

1) Relative group sparsity-inducing penalties: This obser-
vation motivates us to introduce a general solution based
on a new notion, namely relative group sparsity. While we
present it here within the context of NMF, the idea extends
to other dictionary decomposition schemes. We assume that
the groups are organized into so-called supergroups (i.e. H(j)

corresponding to a USCM is considered as a supergroup), and

we characterize the relative group sparsity constraint Ψ(H) by
the following properties
• It induces the sparsity of the groups (as in group sparsity),

and at the same time
• It induces the anti-sparsity of the supergroups (i.e. pre-

vents them from vanishing entirely).
In other words, the group sparsity property is now considered
relative to the corresponding supergroup H(j) and not within
the full set of coefficients in H. It is formulated as [27]

Ψrel(H) =
∑J

j=1
λj
∑Gj

g=1
log

(
ε+ ‖H(j,g)‖1
‖H(j)‖γj1

)
, (13)

where γj are some non-negative constants. Penalty (13) can
be also rewritten as

Ψrel(H) = Ψgr(H)−
∑J

j=1
λjγjGj log

(
‖H(j)‖1

)
, (14)

and one can easily see that, while the new penalty keeps the
group sparsity property thanks to Ψgr(H) defined in (12), it
prevents (when γj > 0) the supergroups from vanishing since
if ‖H(j)‖1 tends to zero, then − log

(
‖H(j)‖1

)
tends to +∞.

This formulation generalizes the group sparsity constraint in
the sense that (13) reduces to (12) for γj = 0. So while we
only require that γj is non-zero for the relative group sparsity
to be active, in our experiments we show results for γj = 1
and γj = 1

Gj
. The latter was chosen to act as a normalization

such that the effect of the penalty is even across the USCMs
regardless of their size.

Note also that one can introduce either the relative block
sparsity-inducing penalty or the relative component sparsity-
inducing penalty by defining a group H(j,g) to be either a
block or a row in H similar to what has been presented in
Section IV-A.

2) MU rules for parameter estimation: MU rules for pa-
rameter estimation when using the new penalty Ψrel(H) are
derived in the same way as the rules for group sparsity in
Section IV-A. The resulting algorithms for both supervised
and semi-supervised cases are summarized in Algorithm 3 and
Algorithm 4, respectively. Details on the derivation of Algo-
rithm 3 are given in the Appendix, and that of Algorithm 4 is
very similar. Note that P(j,g) and Q(j,g) are matrices of the
same size as H(j,g) whose entries have the same value, and P
and Q are concatenations of P(j,g) and Q(j,g), respectively.

V. EXPERIMENTS

We start by describing the data set, parameter settings,
and evaluation metrics in Section V-A. We then evaluate the
performance of the proposed supervised and semi-supervised
on-the-fly audio source separation algorithms in Section V-B.
The sensitivity of the different algorithms with respect to the
choice of the trade-off parameter λj which determines the
contribution of the sparsity penalty is presented in Section
V-C. We finally present user-test results in Section V-D.

A. Data, parameter settings, and evaluation metrics

We evaluated the performance of the proposed on-the-fly
algorithms on a data set of 15 single-channel mixtures of
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Algorithm 3 MU rules for NMF with relative group sparsity
in the supervised case
Input: V, W, λ
Output: H

Initialize H randomly
V̂ = WH
repeat

for j = 1, . . . , J, g = 1, . . . , Gj do
P(j,g) ← λj

ε+‖H(j,g)‖1
Q(j,g) ← λjGjγj

‖H(j)‖1
end for
P = [PT(1,1), . . . ,P

T
(1,G1)

, . . . ,PT(J,1), . . . ,P
T
(J,GJ )

]T

Q = [QT
(1,1), . . . ,Q

T
(1,G1)

, . . . ,QT
(J,1), . . . ,Q

T
(J,GJ )

]T

H← H�
(

WT (V�V̂.−2)+Q

WT (V̂.−1)+P

).η

V̂←WH
until convergence

Algorithm 4 MU rules for NMF with relative group sparsity
in the semi-supervised case
Input: V, W, λ
Output: H

Initialize H, Hb, and Wb randomly
V̂←WH + WbHb

repeat
for j = 1, . . . , J, g = 1, . . . , Gj do

P(j,g) ← λj

ε+‖H(j,g)‖1
Q(j,g) ← λjGjγj

‖H(j)‖1
end for
P = [PT(1,1), . . . ,P

T
(1,G1)

, . . . ,PT(J,1), . . . ,P
T
(J,GJ )

]T

Q = [QT
(1,1), . . . ,Q

T
(1,G1)

, . . . ,QT
(J,1), . . . ,Q

T
(J,GJ )

]T

H← H�
(

WT (V�V̂.−2)+Q

WT (V̂.−1)+P

).η

Hb ← Hb �
(

WT
b (V�V̂.−2)
WT

b V̂.−1

).η

Wb ←Wb �
(

(V�V̂.−2)HT
b

V̂.−1HT
b

).η

Normalize Wb and Hb component-wise (see, e.g., [20])
V̂←WH + WbHb

until convergence

two sources artificially mixed at 0 dB signal to noise ratio
(SNR). Note that during the mixing, we made sure that
two sources had more or less the same duration so that in
all the mixtures both sources appear most of the time. The
mixtures were sampled at either 16000 Hz or 11025 Hz and
their duration varies between 1 and 13 seconds. The sources
in the mixtures were selected as follows: (female speech,
traffic), (female speech, cafe), (male speech, bells), (male
speech, car), (woman singing, restaurant), (drums, guitar),
(applause, electric guitar), (piano, ringtone), (violin, cough),
(bat, owl), (chirps, rooster), (chirps, river), (siren, dog), (cat,
dog), and (ocean, cricket). The speech samples (female speech,
male speech) were obtained from the “American English”

ITU-T P.5012 dataset. The following sources cafe, car, and
restaurant were obtained from DEMAND3 from one channel
out of the 16 channels. The music instruments (drums, electric
guitar, guitar, piano, violin, woman singing) were obtained
from QUASI4. The remainder were from various websites,
mostly www.grsites.com/archive/sounds/ (bells, cat, chirps,
dog, rooster, river, traffic), but also www.sounddogs.com (bat,
owl) and www.wavlist.com (cricket), among others. The diver-
sity in the types of sources should demonstrate the advantage
of the proposed on-the-fly strategy since, as opposed to speech
where pre-trained models are fairly common, having a pre-
trained model for every possible sound class is not viable.
In the implementation of the framework, sound examples for
training were retrieved from www.findsounds.com, a search
engine for audio, as well as from www.freesound.org, a
database of user-uploaded sounds. Note that these two web-
sites are different from the ones used to get the sources in the
mixtures; thus the possibility that the training set contains a
source from the mixtures is very small. The retrieved files were
restricted to those with sampling rates at least as high as that
of the mixture, and the ones with higher sampling rates were
down-sampled accordingly. For retrieval in our experiments,
we differentiate between two types of search keywords: i)
reference keywords given by an expert (the first author) who
prepared the dataset and thus had also listened to the separate
sources and not only the mixtures and ii) user keywords given
by non-expert users in our user test. It is important to note that
the reference keywords are not the only “correct” keywords
since other synonyms can be used. Table I lists the reference
keywords and the corresponding user keywords along with
the number of times a keyword was given by the users. Note
that some reference keywords like “male speech” or “female
speech” are repeated in more than one mixture, thus the count
of their corresponding user keywords is more than the number
of users.

Other parameters were set as follows. The STFT was
calculated using a sine window and a frame length of 47 ms
with 50% overlap, the number of iterations for MU updates
was 200 for learning the USCM W(j) and 100 for separating
the mixture, and the number of NMF components for each
spectral model learned from one example W(j,p) was set to 32.
In the semi-supervised case, the number of NMF components
for the background source was Kb = 10 to avoid overfitting
since Wb is unconstrained. Additionally, since the number
of training examples Pj per source was different depending
on the availability of the data (search results), the trade-off
parameter λj determining the contribution of the sparsity-
inducing penalty was set to λ0FNPj (where λ0 is a constant)
so that λj is greater when more examples are available. The
intuition here is that the smaller the USCM W(j) is, which
happens when few examples are available, the lower the level
of sparsity that should be imposed in the decomposition. We
found these settings to generally result in a good separation
performance.

2http://www.itu.int/rec/T-REC-P.501
3http://parole.loria.fr/DEMAND/
4http://www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi/
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TABLE I
REFERENCE KEYWORDS AND THE CORRESPONDING USER KEYWORDS.

Reference keywords User keywords
applause background noise, cheers, concert, concert crowd, crowd, crowd cheering (2),

crowd concert, people cheering
bat bird (2), bird cackling, bird chirping, birds sound, monkey (2), jungle, night animal

bells bell tone, bells, bells church, church bell (3), church bells (3)
cafe chattering, crowd, crowd speech, crowd talking (2), many people talking, party, people, people talking
car aeroplane noise, ambient noise, boat motor, calm noise, car, drive, nothing, thunder storm, wind
cat cat (7), cat meow, cat meowing

chirps bird (4), bird chirping (6), birds (2), birds chirping (2), birds sing (2),
night creatures, sparrows

cough caugh, cough (2), coughing (5), man caughing
cricket bird, birds, birds sing, cricket (2), night, night animal, night creatures, tweet-tweet

dog dog (5), dog bark, dog barking (2), dogs
drums bass drum, drum (3), drum beats, drums, percussion, rythmic, tap beats

electric guitar electric guitar, guitar (2), guitar concert, music (3), music playing, riff guitar
female speech female speech (3), female voice (2), female voice english, girl read, girl talking (5), woman, woman read,

woman speak, woman speaking, woman speech, woman talking (2), woman voice
guitar acoustic guitar, electronic organ, guitar (7)

male speech male english speech (3), male speech english, man reading, man speak, man speaking (2),
man speech, man talking (4), man voice, men speech, poetry recitation, read (2)

ocean car, driving a car, road traffic, sea waves, storm, street, traffic noice, waterfall, waves
owl dog, dog moaning, owl (4), owl hooting, pigeon, woodpecker

piano pianist, piano (4), piano music (3), soft piano strings
restaurant chattering ambiance, crowd (2), crowd noise with photo clicks, crowd speech, crowd talking,

people noise, people talking (2)
ringtone jingle phone ringing, mobile ringtone (2), phone ringing, phone ringtone, ring,

ringing, ringtone, smartphone ring
river motor engine noise, river, river flowing, sea, stream, water (2), water boiling, water flowing

rooster cock (2), cock cluck, cock-a-doodle-do, hen (2), rooster (3)
siren ambulance, police, police car, police siren (5), siren
traffic car, car passing, car running, road traffic, road with cars, street traffic, traffic noice,

traffic noise, traffic sound
violin cello strings orchestra, music album, music (2), piano, soundtrack, violin (3)

woman singing brasilian woman singing, brazilian song, girl singing (3), singing woman, woman singing (3)

The source separation performance was evaluated in terms
of the normalized signal-to-distortion ratio (NSDR), which
measures the overall signal distortion, and the normalized
signal-to-interference ratio (NSIR) which measures the leak-
age of the other sources [31], [32]. Recall that the normalized
values are computed by subtracting the SDR and SIR of the
original mixture signal from those of the separated sources
[32]. The normalization serves to show the gain of using
the proposed source separation system as opposed to a naive
method that simply assigns the mixture as a source estimate.
These metrics are measured in dB and are averaged over all
sources and all mixtures for the different algorithms.

B. Separation results using reference keywords
In this experiment, we use the reference keywords given by

the expert for retrieval. The goal is to evaluate and compare
the performance of the different algorithms. For the supervised
case (i.e., Algorithm 1 and Algorithm 3), two keywords were
used to retrieve examples for both sources in the mixture,
while only one keyword was used for the semi-supervised
case (i.e., Algorithm 2 and Algorithm 4). Note that, in the
semi-supervised scenario, we tested two cases as follows (i) a
keyword was provided for source 1 only and (ii) a keyword
was provided for source 2 only; we then averaged the obtained
separation results.

We compare the average separation performance obtained
using the four sparsity-inducing penalties presented in the

paper: block sparsity as the baseline [25], the proposed compo-
nent sparsity, relative block sparsity, and relative component
sparsity. Results for the supervised case (i.e., Algorithm 1
for block sparsity and component sparsity, and Algorithm 3
for relative block sparsity, and relative component sparsity)
are shown in Table II, while those for the semi-supervised
case (i.e., Algorithm 2 and Algorithm 4) are shown in Table
III. In each case, we run the algorithms with different values
of the trade-off parameter λ0, and the value resulting in the
highest average NDSR is chosen and shown in the tables
along with the corresponding NSDR and NSIR. Note that the
result shown in Table II is 1.8 dB NDSR higher than that
reported in our previous work [24]. The reason is that: (1) the
dataset (training and testing set) is enlarged by the size and
the variation of the sound sources; and (2) the parameter λj
is here adapted per mixture and not constant for the whole
dataset. Also, for easier reading here, we do not compare
again the separation performance with the standard supervised
NMF setting without using USCM model nor with some other
baselines as it has been investigated in our previous study
[24]. For the relative sparsity cases, we tested two values for
the hyper-parameter γj : a fixed γj = 1 as a natural choice,
and γj = 1

Gj
such that the denominator term ‖H(j)‖γj1 in the

penalty (13) is adaptively normalized with respect to the size
of the group Gj .

First, as expected, the results obtained in the supervised case
are much better than those achieved in the semi-supervised
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TABLE II
SUPERVISED CASE: AVERAGE SOURCE SEPARATION PERFORMANCE.

Method NSDR NSIR

Block sparsity [25] (λ0 = 1× 10−4) 5.14 9.80
Component sparsity (λ0 = 1× 10−6) 5.91 10.67

Rel. block sparsity (γj = 1, λ0 = 1× 10−4) 4.78 9.27
Rel. component sparsity (γj = 1, λ0 = 1× 10−6) 6.15 10.70

Rel. block sparsity (γj = 1
Gj
, λ0 = 1× 10−4) 5.03 9.44

Rel. component sparsity (γj = 1
Gj
, λ0 = 1× 10−6) 5.96 10.72

TABLE III
SEMI-SUPERVISED CASE: AVERAGE SOURCE SEPARATION PERFORMANCE.

Method NSDR NSIR

Block sparsity (λ0 = 1× 10−4) 0.74 4.66
Component sparsity (λ0 = 2× 10−8) 1.98 6.22

Rel. block sparsity (γj = 1, λ0 = 4× 10−4) 1.68 6.03
Rel. component sparsity (γj = 1, λ0 = 5× 10−7) 2.31 6.64

Rel. block sparsity (γj = 1
Gj
, λ0 = 1× 10−4) 1.09 5.74

case where examples for one source are missing. Second,
using an adaptive γj = 1

Gj
in the supervised case improved

the NSDR for the relative block sparsity by 0.25 dB but had
no significant effect on the relative component sparsity; in
contrast it negatively affected the performance in the semi-
supervised case. Third, we note that the proposed component
sparsity-inducing penalty achieves a better separation perfor-
mance than the block sparsity-inducing penalty which was ex-
ploited in [25], in both supervised and semi-supervised cases.
A possible explanation is that the former offers more flexibility
by exploiting the most representative spectral patterns from
different spectral models that match the mixture. Last, it is
worth noting that the proposed relative component sparsity-
inducing penalty performs the best in both supervised and
semi-supervised cases in terms of both NSDR and NSIR, the
advantage being more significant in the semi-supervised case
likely because the source vanishing problem is more severe.
We note that the corresponding average signal-to-artifact ratio
(SAR) for the different algorithms was on the order of 11 dB.
In particular, the SAR corresponding to the relative component
sparsity-inducing penalty was 10.98 dB and 11.35 dB for the
adaptive γj .

In general, the methods would fail if the retrieved examples
are quite dissimilar from the actual sources in the mixture. As
an example, a mixture of of an electric guitar and applause
(cheers and whistles) had low NSDR for both source estimates
(0.54 dB and -0.49 dB respectively). In this case, we observed
that the retrieved training files for the applause contained
mostly just clapping sounds and as such the learned USCM
did not capture the cheers; similarly for the guitar where most
retrieved examples were not close to the chords in the mixture.

C. Separation results with different choices of λj
One of the most important parameters in the presented

algorithms in the on-the-fly framework is the trade-off param-
eter λj determining the contribution of the sparsity-inducing
penalty. We propose to set λj = λ0FNPj so that it is
normalized with respect to the size of the USCM and is

larger when more examples are used. In this experiment,
we varied λ0 and assessed the sensitivity of the different
algorithms described in Section V-B to this choice in the
semi-supervised scenario. The dataset and other parameter
settings are the same as described before. The results are
shown in Fig. 5 where λ0 = {10−5, 5 × 10−5, 10−4, 5 ×
10−4, 10−3} for the block/relative block sparsity algorithms
and λ0 = {10−7, 5 × 10−7, 10−6, 5 × 10−6, 10−5} for the
component/relative component sparsity algorithms. Note that
the range of λ0 is different for the (relative) block and
component sparsity algorithms as they are different types of
penalties so their optimal range is different.

As can be seen, the relative block sparsity and relative
component sparsity algorithms are generally more stable than
the block sparsity and component sparsity algorithms over a
large range of λ0 where the results obtained by the former
algorithms drop sharply for the last point. Within a good
range, i.e. the first four points, the relative block sparsity with
γj = 1

Gj
is the most stable one as its NSDR varies at most 0.2

dB. The relative component sparsity algorithm, which offers
the highest performance in general, is not very sensitive to the
considered parameter though it has more than 1 dB NSDR
difference within the considered range.

D. Separation results for the user test

In the second experiment, our goal was to evaluate the
performance of the proposed on-the-fly framework when prac-
tically used by non-expert users. We also test the effect of
the examples refinement step on learning the USCM. The
algorithms based on the proposed relative block/component
sparsity-inducing penalties, which perform better than those
using the block/component sparsity-inducing penalties as
shown in Section V-B, were tested using the input from 9
different users who were of different age groups, technical
backgrounds, and were all not native English speakers. The
best parameter settings as determined from Section V-B were
used. Using the GUI described in Section II-B, the users were
asked to process each of the 15 mixtures as follows. First,
they were asked to listen to the mixture and accordingly type
keywords describing the two sources. They were instructed to
change the keywords in case the search engine did not return
results. Then, they were required to listen to the retrieved
examples and select those that sound more similar to the
sources in the mixture; at least one example was required to be
selected. Given the recorded user input (keywords and selected
examples), we examine two possibilities of using the examples
in guiding the separation process as follows:
• All retrieved examples are used (All).
• Only the subset of examples selected by the user is used

(Subset).
The source separation performance, averaged over all 9

users and over all mixtures per method, is shown in Table
IV and Table V for the supervised and semi-supervised cases,
respectively. We note that the results for the average user are
mostly lower than those for the expert in the supervised case
due to the following issues. As can be seen from the keywords
in Table I, some sounds like bat and owl were sometimes
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Fig. 5. Separation performance of the different algorithms, in terms of NSDR (a) and NSIR (b), as a function of λ0.

not recognized by the users and were confused with other
sounds (e.g., bird sounds). Also, some spelling mistakes can be
found (e.g, caugh instead of cough). This may have negatively
affected the results. Additionally, one of the mixtures included
a popular ringtone composed of marimba notes; however,
the retrieved examples mainly included classical telephone
rings, perhaps “marimba” would have been a better choice for
searching. In the semi-supervised case, the expert results are
not better than the average user. The reason is likely that the
guidance is reduced in this setting and the overall performance
is quite lower compared to the supervised case.

Nevertheless, the performance globally follows the same
trend as presented in Section V-B: relative component sparsity
generally outperforms relative block sparsity, especially in the
semi-supervised case, with the SAR on the order of 9 dB.
It is interesting to observe the effect of selecting a subset
of examples. As can be seen in Table IV, using a subset of
examples selected by the users only improves the performance
in the supervised case. However, in the semi-supervised case,
such a pre-selection even negatively affects the results as
can be observed in Table V. This is likely due to the fact
that having few selected examples (only one in the extreme
case) leads to having fewer components in the learned spectral
model for which a sparse decomposition is not optimal. Thus,
it seems to be better to keep all retrieved examples for the
known source and let the relative component sparsity penalty
induce the appropriate selection.

TABLE IV
USER TEST IN THE SUPERVISED CASE: AVERAGE SOURCE SEPARATION

PERFORMANCE.

Method NSDR NSIR
Relative block sparsity (All) 2.42 7.53

Relative block sparsity (Subset) 3.16 8.24
Relative component sparsity (All) 2.91 7.75

Relative component sparsity (Subset) 2.98 8.19

TABLE V
USER TEST IN THE SEMI-SUPERVISED CASE: AVERAGE SOURCE

SEPARATION PERFORMANCE.

Method NSDR NSIR
Relative block sparsity (All) 1.88 7.50

Relative block sparsity (Subset) 1.24 7.34
Relative component sparsity (All) 2.78 8.04

Relative component sparsity (Subset) 1.53 7.60

VI. CONCLUSION

In this paper, we presented the novel concept of on-the-
fly audio source separation and described several algorithms
to implement it. Specifically, we proposed using a universal
sound class model learned by NMF from retrieved examples
and imposing group sparsity-inducing constraints to efficiently
handle the selection of the most representative spectral pat-
terns. Additionally, we introduced the notion of relative group
sparsity to overcome a so-called source vanishing problem that
occurs in the considered on-the-fly paradigm. In contrast to
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other state-of-the-art user-guided approaches, the considered
framework greatly simplifies the user interaction with the
system such that everyone, not necessarily an expert, can do
source separation by just typing keywords describing the audio
sources in the mixture. Experiments on mixtures containing
various types of sounds confirm the potential of the proposed
framework as well as the corresponding algorithms. Future
work may be devoted to running real-world experiments,
studying the use of a different group sparsity model that
induces dynamic relationships between atoms or groups [33],
as well as extending the framework to multichannel mixtures
where spatial source models (e.g. those from [34] or [35])
may also be learned. Additionally, investigating the optimal
USCM model size for different types of sound sources would
be an interesting direction.

APPENDIX
DERIVATION OF MU RULES IN ALGORITHM 3

Let C(H) denote the right part of criterion (10) with relative
group sparsity penalty Ψ(H) = Ψrel(H) defined as in (13) and
D(·‖·) being IS divergence specified as in equations (3) and
(4). The partial derivative of C(H) with respect to hkn writes

∇hkn
C(H) =

F∑

f=1

wfk

(
1

[WH]fn
− vfn

[WH]2fn

)
+

λj
ε+ ‖H(j,g)‖1

− λjGjγj
‖H(j)‖1

(15)

Following a standard approach for MU rules derivation (see
e.g., [20], [28]), we represent ∇hkn

C(H) as

∇hkn
C(H) = ∇+

hkn
C(H)−∇−hkn

C(H) (16)

with ∇+
hkn

C(H),∇−hkn
C(H) ≥ 0 defined as

∇+
hkn

C(H) ,
F∑

f=1

wfk
1

[WH]fn
+

λj
ε+ ‖H(j,g)‖1

,(17)

∇−hkn
C(H) ,

F∑

f=1

wfk
vfn

[WH]2fn
+
λjGjγj
‖H(j)‖1

, (18)

and we update each parameter hkn as

hkn ← hkn

(
∇−hkn

C(H)

∇+
hkn

C(H)

).η
, (19)

where η = 0.5 following the derivation in [21]. Rewritten in
a matrix form, we obtain the updates of the activation matrix
H in Algorithm 3.
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Gaussian modeling-based multichannel audio source
separation exploiting generic source spectral model

Thanh Thi Hien Duong, Ngoc Q. K. Duong Senior Member, IEEE, Phuong Cong Nguyen, and Cuong Quoc
Nguyen

Abstract—As blind audio source separation has remained
very challenging in real-world scenarios, some existing works,
including ours, have investigated the use of a weakly-informed
approach where generic source spectral models (GSSM) can
be learned a priori based on nonnegative matrix factorization
(NMF). Such approach was derived for single-channel audio
mixtures and shown to be efficient in different settings. This
paper proposes a multichannel source separation approach where
the GSSM is combined with the source spatial covariance model
within a unified Gaussian modeling framework. We present the
generalized expectation-minimization (EM) algorithm for the
parameter estimation. Especially, for guiding the estimation of
the intermediate source variances in each EM iteration, we
investigate the use of two criteria: (1) the estimated variances
of each source are constrained by NMF, and (2) the total
variances of all sources are constrained by NMF altogether.
While the former can be seen as a source variance denoising
step, the latter is viewed as an additional separation step applied
to the source variance. We demonstrate the speech separation
performance, together with its convergence and stability with
respect to parameter setting, of the proposed approach using a
benchmark dataset provided within the 2016 Signal Separation
Evaluation Campaign.

KEYWORDS

Multichannel audio source separation, local Gaussian
model, nonnegative matrix factorization, generic spectral
model, group sparsity constraint.

I. INTRODUCTION

Real-world recordings are often mixtures of several audio
sources, which usually deteriorate the target one. Thus many
practical applications such as speech enhancement, sound
post-production, and robotics use audio source separation
technique [1], [2] to extract individual sound sources from
their mixture. However, despite numerous effort in the past
decades, blind source separation performance in reverberant
recording conditions is still far from perfect [3], [4]. To
improve the separation performance, informed approaches
have been proposed and emerged recently in the literature
[5], [6]. Such approaches exploit side information about either
the sources themselves or the mixing condition in order to
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guide the separation process. Examples of the investigated
side information include deformed or hummed references of
one (or more) source(s) in a given mixture [7], [8], text
associated with spoken speeches [9], temporal annotation of
the source activity along the mixtures [10], core associated
with musical sources [11], [12], and motion associated with
audio-visual objects in a video [13]. Following this trend,
some recent works including ours have proposed to use a
very abstract semantic information just about the types of
audio sources existing in the mixture to guide the source
separation. If one source in the mixture is known as ”speech”,
then several speaker-independent speech examples can be used
to create a universal speech model as presented in [14]; if
several types of sound sources in the mixture are known (e.g.,
birdsong, piano, waterfall), their audio examples found by
internet search can be used to learn the corresponding universal
sound class models as presented in [15]. Such universal models
were shown to be effective in guiding the source separation
algorithm and resulted in promising performance. Inspired
by this idea, we have further investigated the use of generic
speech and noise model for single-channel speech separation
in [16] and shown its promising result in (a) the supervised
case, where both speech GSSM and noise GSSM are learned
during training phase, and (b) the semi-supervised case, where
only the speech GSSM is pre-learned. Furthermore, we have
proposed to combine the block sparsity constraint investigated
in [14] with the component sparsity constraint presented in
[17] in a common formulation in order to take into account
the advantage of both of them [18].

It should be noted that the works cited above [9], [12], [16],
[18] considered only a single channel case, where the mixtures
are mono, and exploited non-negative matrix factorization
(NMF) [19], [20] to model the spectral characteristics of
audio sources. Some recent works have investigated the use
of the deep neural networks (DNN) to model the source
spectra, where basically the types of sources in the mixture
also need to be known as a side information in order to
collect training data. Such DNN-based approaches were shown
to offer very promising results in single-channel speech and
music separation [21]–[23], multichannel speech separation
[24], [25]. However, they require a large amount of labeled
data for training, which may not always be available and the
training is usually computationally expensive.

When more recording channels are available thanks to the
use of multiple microphones, a multichannel source separa-
tion algorithm should be considered as it allows to exploit
important information about the spatial locations of audio
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sources. Such spatial information is reflected in the mixing
process (usually with reverberation), and can be modeled by
e.g., the interchannel time difference (ITD) and interchannel
intensity difference (IID) [26]–[29], the rank-1 time-invariant
mixing vector in the frequency domain when following the
narrowband assumption [30]–[33], or the full-rank spatial
covariance matrix in local Gaussian model (LGM) where the
narrowband assumption is relaxed [34]–[36].

In this paper, we present an extension of the previous works
[15], [16], [18] to the multichannel case where the NMF-based
GSSM is combined with the full-rank spatial covariance model
in a Gaussian modeling paradigm. Around this LGM, existing
works have investigated several source spectral models such as
Gaussian mixture model (GMM) [37], NMF as a linear model
with nonnegativity constraints [36], [38], continuity model
[39], kernel additive model [40], heavy-tailed distributions-
based model [41], [42], and recently DNN [24]. Focusing on
NMF in this study, our work is most closely related to [38] and
[36] as both of them use NMF within the LGM to constrain
the source spectra in each EM iteration. However, our work
is different from [38] in the sense that we use the pre-trained
GSSM, so that potentially the algorithm is less sensitive to the
parameter initialization, and it does not suffer from the well-
known permutation problem. Our work is also different from
[36] as we exploit the mixed group sparsity constraint to guide
the optimization, which allows the algorithm to automatically
select the most representative spectral components in the
GSSM. In addition, instead of constraining the variances of
each source by NMF as done in [36], [38], we propose to
constrain the total variances of all sources altogether by NMF
and show that this novel optimization criterion offers better
source separation performance.While part of the work was pre-
sented in [43], this paper provides more details regarding the
algorithm derivation and the parameter settings. Furthermore,
the source separation performance analysis and the comparison
with existing approaches are extended.

The rest of the paper is organized as follows. We discuss
the problem formulation and the background in Section II.
We present the proposed GSSM-based multichannel source
separation approach in Section III. In this section, we first
present two ways of constructing the GSSM based on NMF.
Then, to constrain the intermediate source variance estimates,
two optimization criteria are introduced, which can be seen as
either performing source variance denoising or source variance
separation. The generalized EM algorithm is derived for the
parameter estimation. We finally validate the effectiveness of
the proposed approach in speech enhancement scenario using a
benchmark dataset from the 2016 Signal Separation Evaluation
Campaign (SiSEC 2016) in Section IV. For this purpose, we
first analyze the convergence of the derived algorithm and
investigate its sensitivity to the parameter settings in terms
of source separation performance. We then show that the
proposed algorithm outperforms most state-of-the-art methods
in terms of the energy-based criteria.

II. PROBLEM FORMULATION AND MODELING
In this section, we review the formulation and the Gaussian

modeling framework for multichannel audio source separation.

Let us formulate the problem in a general setting, where
J sources are observed by an array of I microphones. The
contribution of each source, indexed by j, to the microphone
array is denoted by a vector cj(t) ∈ RI×1 and the I-channel
mixture signal is the sum of all source images as

x(t) =

J∑

j=1

cj(t). (1)

The objective of source separation is to estimate the source
images cj(t) given x(t). As the considered algorithm operates
in the frequency domain, we denote by cj(n, f) and x(n, f)
the complex-valued short-term Fourier transforms (STFT) of
cj(t) and x(t), respectively, where n = 1, 2, .., N is time
frame index and f = 1, 2, ..., F the frequency bin index.
Equation (1) can be written in the frequency domain as

x(n, f) =

J∑

j=1

cj(n, f). (2)

A. Local Gaussian model

We consider the existing nonstationary LGM as it has
been known to be robust in modeling reverberant mixing
conditions and flexible in handling prior information [34],
[37]. In this framework, cj(n, f) is modeled as a zero-
mean complex Gaussian random vector with covariance matrix
Σj(n, f) = E(cj(n, f)cHj (n, f)):

cj(n, f) ∼ Nc(0,Σj(n, f)), (3)

where 0 is an I × 1 vector of zeros and H indicates the
conjugate transposition. Furthermore, the covariance matrix is
factorized as

Σj(n, f) = vj(n, f) Rj(f), (4)

where vj(n, f) are scalar time-dependent variances encoding
the spectro-temporal power of the sources and Rj(f) are
time-independent I × I spatial covariance matrices encoding
their spatial characteristics when sources and microphones
are assumed to be static. Under the assumption that the
source images are statistically independent, the mixture vector
x(n, f) also follows a zero-mean multivariate complex Gaus-
sian distribution with the covariance matrix computed as

Σx(n, f) =

J∑

j=1

vj(n, f) Rj(f). (5)

Assuming that the mixture STFT coefficients at all time-
frequency (T-F) bins are independent, the likelihood of the
set of observed mixture vectors x = {x(n, f)}n,f given
the set of variance and spatial covariance parameters θ =
{vj(n, f),Rj(f)}j,n,f is given by

P (x|θ) =
∏

n,f

1

det (πΣx(n, f))
e−tr(Σ−1

x (n,f)Ψ̂x(n,f)), (6)

where det represents determinant of a matrix, tr() stands for
matrix trace, and Ψ̂x(n, f) = E(x(n, f)xH(n, f)) is the
empirical covariance matrix. It can be numerically computed
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by local averaging over neighborhood of each T-F bin (n′, f ′)
as [36], [44]:

Ψ̂x(n, f) =
∑

n′,f ′

w2
nf (n′, f ′)x(n′, f ′)xH(n′, f ′), (7)

where wnf is a bi-dimensional window specifying the shape
of the neighborhood such that

∑
n′,f ′ w

2
nf (n′, f ′) = 1. We

use Hanning window in our implementation. The quadratic
T-F presentation as Ψ̂x(n, f) aims to improve the robustness
of the parameter estimation as it exploits the observed data
in several T-F points instead of a single one. The negative
log-likelihood derived from (6) is

L(θ) =
∑

n,f

tr
(
Σ−1x (n, f)Ψ̂x(n, f)

)
+ log det

(
πΣx(n, f)

)
,

(8)
Under this model, once the parameters θ are estimated, the
STFT coefficients of the source images are obtained in the
minimum mean square error (MMSE) sense by multichannel
Wiener filtering as

ĉj(n, f) = vj(n, f) Rj(f)Σ−1x (n, f)x(n, f). (9)

Finally, the expected time-domain source images ĉj(t) are
obtained by the inverse STFT of ĉj(n, f).

B. NMF-based source variance model

NMF has been a well-known technique for latent matrix
factorization [19] and shown to be powerful in modeling audio
spectra [6], [20]. It has been widely applied to single channel
audio source separation where the mixture spectrogram is
usually factorized into two latent matrices characterizing the
spectral basis and the time activation [20]. When adapting
NMF to the considered LGM summarized in Section II-A, the
nonnegative source variances vj(n, f) can be approximated as

vj(n, f) =

Kj∑

k=1

wjfkhjkn, (10)

where wjfk is an entry of the spectral basis matrix Wj ∈
RF×Kj

+ , hjkn is an entry of the activation matrix Hj ∈
RKj×N

+ , and Kj the number of latent components in the NMF
model.

To our best knowledge, this NMF formulation for the source
variances within the LGM was first presented in [38], and
then further discussed in [36], [37]. However, in those works,
the basis matrix Wj is not a GSSM as proposed in this
article (presented in Section III-A), and thus the parameters
{Wj ,Hj} were estimated differently.

C. Estimation of the model parameters

The set of parameters θ is estimated by minimizing the
criterion (8) using a generalized EM algorithm (GEM) [45].
This algorithm consists in alternating between E step and M
step. In the E step, given the observed empirical covariance
matrix Ψ̂x(n, f) and the current estimate of θ, the conditional
expectation of the natural statistics is computed as [31]

Σ̂j(n, f) = Gj(n, f)Ψ̂x(n, f)GH
j (n, f) +

(I−Gj(n, f))Σj(n, f), (11)

where Gj(n, f) = Σj(n, f)Σ−1x (n, f) is the Wiener gain, I

is an I×I identity matrix. Then in the M step, given Σ̂j(n, f)
the parameters θj = {vj(n, f),Rj(f)}n,f associated to each
j-th source are updated in the maximum likelihood sense by
optimizing the following criterion [34]:

L(θj) =
∑

n,f

tr
(
Σ−1j (n, f)Σ̂j(n, f)

)
+ log det

(
πΣj(n, f)

)
.

(12)
By computing the derivatives of L(θj) with respect to vj(n, f)
and each entry of Rj(f) and equating them to zero, the
iterative updates for these parameters are found as

Rj(f) =
1

N

N∑

n=1

1

vj(n, f)
Σ̂j(n, f) (13)

vj(n, f) =
1

I
tr(R−1j (f)Σ̂j(n, f)) (14)

At each EM iteration, once vj(n, f) is updated in the M step
by (14), it will be further constrained by NMF as (10). For
this purpose, given the matrix of the current source variance
estimate Vj ∈ RF×N+ whose entries are vj(n, f), the cor-
responding NMF parameters are estimated by minimizing the
Itakura-Saito divergence, which offers scale-invariant property,
as

min
Hj≥0,Wj≥0

D(Vj‖WjHj), (15)

where D(Vj‖WjHj) =
∑N
n=1

∑F
f=1 dIS

(
vj(n, f)‖wjfkhjkn

)
,

and

dIS(x‖y) =
x

y
− log

(
x

y

)
− 1. (16)

The parameters {Wj ,Hj} are usually initialized with random
non-negative values and are iteratively updated via the well-
known multiplicative update (MU) rules [19], [20].

III. PROPOSED GSSM-BASED MULTICHANNEL
APPROACH

The global workflow of the proposed approach is depicted
in Fig. 1. In the following, we will first review a training phase
for the GSSM construction based on NMF in Section III-A.
We then propose the NMF-based source variance model fitting
with sparsity constraint in Section III-B. Finally, we derive
the generalized EM algorithm for the parameter estimation in
Section III-C. Note that we focus on NMF as the spectral
model in this paper, however, the whole idea of the proposed
approach can potentially be used for other spectral models
than NMF such as GMM or DNN.
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Fig. 1. General workflow of the proposed source separation approach. Top green dashed box decribles training phase for the GSSM construction. Bottom
blue boxes indicate processing steps for source separation. Green dashed boxes indicate the novelty compared to the existing works [36]–[38].

A. GSSM construction

In this section, we review the GSSM construction, which
was introduced in [14], [17]. We assume that the types of
sources in the mixture are known and some recorded examples
of such sounds are available. This is actually feasible in
practice. For instance, in the speech enhancement, one target
source is speech and another is noise and one can easily find
speech and noise recordings. We need several examples for
each type of source as one recording is usually not fully
representative of the others and a source like “noise” is poorly
defined. Let us denote by slj(t) a l-th single-channel learning
example of j-th source and its corresponding spectrogram ob-
tained by STFT Slj . First, Slj is used to learn the corresponding
NMF spectral dictionary, denoted by Wl

j , by optimizing the
similar criterion as (15):

min
Hl

j≥0,Wl
j≥0

D(Slj‖Wl
jH

l
j) (17)

where Hl
j is the time activation matrix. Given Wl

j for all
examples l = 1, ..., Lj of the j-th source, the GSSM for the
j-t source is constructed as

Uj = [W1
j , . . . ,W

Lj

j ], (18)

then the GSSM for all the sources is computed by

U = [U1, . . . ,UJ ]. (19)

As an example for speech and noise separation, in the prac-
tical implementation, we may need several speech examples
for different male voices and female voices (e.g., 5 examples

in total), and examples of different types of noise such as
those from outdoor environment, cafeteria, waterfall, street,
etc.,. (e.g., 6 examples in total).

Note that as another variant investigated in this work, the
GSSM Uj can be constructed differently by first concatenating
all examples for each source (Sj = [S1

j , . . . ,S
Lj

j ]), and then
performing NMF on the concatenated spectrogram only once
by optimizing the criterion

min
Hj≥0,Uj≥0

D(Sj‖UjHj). (20)

We will show in the experiment that this way of construct-
ing the GSSM does not provide as good source separation
performance as the one presented before by (18).

B. Proposed source variance fitting with GSSM and mixed
group sparsity constraint

As the GSSM is constructed to guide the NMF-based
source variance constraint, we propose two fitting strategies
as follows:

1) Source variance denoising: Motivated by the source
variance model (10), when exploiting the GSSM model we
propose a variant as

vj(n, f) =

Pj∑

k=1

ujfkh̃jkn, (21)

where ujfk is an entry of Uj , h̃jkn is an entry of the
corresponding activation matrix H̃j ∈ RPj×N

+ . This leads to
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a straightforward extension of the conventional optimization
criterion described by (15) where H̃j is now estimated by
optimizing the criterion:

min
H̃j≥0

D(Vj‖UjH̃j) + λΩ(H̃j), (22)

where Uj is constructed by (18) or (20) and fixed, Ω(H̃j)

presents a penalty function imposing sparsity on H̃j , and λ is a
trade-off parameter determining the contribution of the penalty.
Note that as the GSSM Uj constructed in (18) becomes
a large matrix when the number of examples Lj for each
source increases, and it is actually a redundant dictionary since
different examples may share similar spectral patterns. Thus
to fit the source variances with the GSSM, sparsity constraint
is naturally needed in order to activate only a subset of Uj

which represents the spectral characteristics of the sources in
the mixture [46]–[48].

2) Source variance separation: We propose another source
variance model as

v(n, f) =

K∑

k=1

ufkh̃kn, (23)

where v(n, f) =
∑J
j=1 vj(n, f), ufk is an entry of the GSSM

model U constructed as (19) and fixed, K =
∑J
j=1 Pj . Under

this model, let Ṽ =
∑J
j=1 Vj be the matrix of the total

source variance estimate, it is then decomposed by solving
the following optimization problem

min
H̃≥0

D(Ṽ‖UH̃) + λΩ(H̃) (24)

where Ω(H̃) presents a penalty function imposing sparsity
on the activation matrix H̃ = [H̃>1 , ..., H̃

>
J ]> ∈ RK×N+ the

total number of rows in H̃. This criterion can be seen as an
additional NMF-based separation step applied on the source
variances, while criterion (22) and other existing works [36]–
[38] do not perform any additional separation of the variances,
but more like denoising of the already separated variances. For
the sake of simplicity, in the following, we only present the
algorithm derivation for the criterion (24), but a strong synergy
can be found for the criterion (22).

Recent works in audio source separation have considered
two penalty functions, namely block sparsity-inducing penalty
[14] and component sparsity-inducing penalty [17]. The for-
mer one enforces the activation of relevant examples only
while omitting irrelevant ones since their corresponding activa-
tion block in H̃ will likely converge to zero. The latter one, on
the other hand, enforces the activation of relevant components
in U only. It is motivated by the fact that only a part of
the spectral model learned from an example may fit well
with the targeted source in the mixture, while the remaining
components in the model do not. Thus instead of activating the
whole block, the component sparsity-inducing penalty allows
selecting only the more likely relevant spectral components
from U. Inspired by the advantage of these penalty functions,

in our recent work we proposed to combine them in a more
general form as [18]

Ω(H̃) = γ
P∑

p=1

log(ε+ ‖Hp‖1) + (1− γ)
K∑

k=1

log(ε+ ‖hk‖1),

(25)
where the first term on the right hand side of the equation
presents the block sparsity-inducing penalty, the second term
presents the component sparsity-inducing penalty, and γ ∈
[0, 1] weights the contribution of each term. In (25), hk ∈
R1×N

+ is a row (or component) of H̃, Hp is a subset of H̃
representing the activation coefficients for p-th block, P is
the total number of blocks, ε is a non-zero constant, and ‖.‖1
denotes `1-norm operator. In the considered setting, a block
represents one training example for a source and P is the total
number of used examples (i.e., P =

∑J
j=1 Lj).

By putting (25) into (24), we now have a complete criterion
for estimating the activation matrix H̃ given Ṽ and the pre-
trained spectral model U. The derivation of MU rule for
updating H̃ is presented in the Appendix.

C. Proposed multichannel algorithm

Within the LGM, a generalized EM algorithm used to
estimate the parameters {vj(n, f),Rj(f)}j,n,f by considering
the set of hidden STFT coeffients of all the source images
{cj(n, f)}n,f as the complete data. The overview for the GEM
derivation are presented in Section II-C, and more details can
be found in [34], [37].

For the proposed approach as far as the GSSM concerned,
the E-step of the algorithm remains the same as in [34]. In
the M-step, we additionally perform the optimization defined
either by (22) (for source variance denoising) or by (24) (for
source variance separation). This is done by the MU rules so
that the estimated intermediate source variances vj(n, f) are
further updated with the supervision of the GSSM. The detail
of overall proposed algorithm with source variance separation
is summarized in Algorithm 1.

Note that this generalized EM algorithm requires the same
order of computation compared to the existing method [37],
[38] as sparsity constraint and bigger GSSM size does not
significantly affect the overall computational time. As an
example, for separating a 10-second long mixture presented
in our experiment, both [38] and our proposed method (when
non-optimally implemented in Matlab) take about 400 seconds
when running in a laptop with Intel Core i5 Processor, 2.2
GHz, and 8 GB RAM.

IV. EXPERIMENTS
A. Dataset and parameter settings

We validated the performance of the proposed approach in
an important speech enhancement use case where we know
already two types of sources in the mixture: speech and
noise. For a better comparison with the state of the art, we
used the benchmark development dataset of the “Two-channel
mixtures of speech and real-world background noise” (BGN)
task1 within the SiSEC 2016 [4]. This devset contains stereo

1https://sisec.inria.fr/sisec-2016/bgn-2016/
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Fig. 2. Average separation performance obtained by the proposed method over stereo mixtures of speech and noise as functions of EM and MU iterations.
(a): speech SDR, (b): speech SIR, (c): speech SAR, (d): speech ISR, (e): noise SDR, (f): noise SIR, (g): noise SAR, (h): noise ISR

mixtures of 10-second duration and 16 kHz sampling rate.
They were the mixture of male/female speeches and real-world
noises recorded from different public environments: cafeteria
(Ca), square (Sq), and subway (Su). Overall there were nine
mixtures: three with Ca noise, four with Sq noise, and two
with Su noise. The signal-to-noise ratio was drawn randomly
between -17 and +12 dB by the dataset creators.

Our works in single-channel case [16], [18] and preliminary
tests on multichannel case show that only a few examples for
each source could be enough to train an efficient GSSM. Thus,
for training the generic speech spectral model, we took only
one male voice and two female voices from the SiSEC 20152.
These three speech examples are also 10-second length. We
performed the listening check to confirm that these examples
used for the speech and noise model training are different
from those in the devset, which were used for testing. For
training the generic noise spectral model, we extracted five
noise examples from the Diverse Environments Multichannel
Acoustic Noise Database (DEMAND)3. Again they were 10-
second length and contained three types of environmental
noise: cafeteria, square, metro. The STFT window length
was 1024 for all train and test files. The number of NMF
components in Wl

j for each speech example was set to 32,
while that for noise example was 16. These values were found
to be reasonable in [15] and our work on single-channel case
[18]. Each Wl

j were obtained by optimizing (17) with 20 MU

2https://sisec.inria.fr/sisec-2015/2015-underdetermined-speech-and-music-
mixtures/.

3http://parole.loria.fr/DEMAND/.

iterations.
Initialization of the spatial covariance matrices: As

suggested in [34], we firstly tried to initialize the spatial
covariance matrix Rj(f) by performing hierarchical clustering
on the mixture STFT coefficients x(n, f). But this strategy
did not give us a good separation performance as the noise
source in the considered mixtures is diffuse (i.e., it does not
come from a single direction). Thus we initialized the noise
spatial covariance matrix based on the diffuse model where
noise is assumed to come uniformly from all spatial directions.
With this assumption, the diagonal entries of the noise spatial
covariance matrix are one and the off-diagonal entries are real-
valued computed as in [49]

r1,2(f) = r2,1(f) =
sin(2πfd/v)

2πfd/v
, (26)

where d is the distance between two microphones and v =
334 m/s the sound velocity. The spatial covariance matrix
for the speech source was initialized by the full-rank di-
rect+diffuse model detailed in [34] where the speech’s di-
rection of arrival (DoA) was set to 90 degrees. This DoA
initialization was chosen for balancing the fact that the speech
direction can vary between 0 degree and 180 degrees in each
mixture and we did not have access to the ground truth
information while performing the test.

The source separation performance for all approaches was
evaluated by two sets of criteria. The four power-based criteria:
the signal to distortion ratio (SDR), the signal to interference
ratio (SIR), the signal to artifacts ratio (SAR), and the source
image to spatial distortion ratio (ISR), measured in dB where
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Fig. 3. Average separation performance obtained by the proposed method over stereo mixtures of speech and noise as functions of λ and γ. (a): speech SDR,
(b): speech SIR, (c): speech SAR, (d): speech ISR, (e): noise SDR, (f): noise SIR, (g): noise SAR, (h): noise ISR

the higher the better [50]. The four perceptually-motivated
criteria: the overall perceptual score (OPS), the target-related
perceptual score (TPS), the artifact-related perceptual score
(APS), and the interference-related perceptual score (IPS)
[51], where a higher score is better. As power-based criteria
are more widely used in source separation community, the
hyper-parameters for each algorithm were chosen in order to
maximize the SDR - the most important metric as it reflects
the overall signal distortion.

B. Algorithm analysis

1) Algorithm convergence: separation results as functions
of EM and MU iterations: We first investigate the convergence
in term of separation performance of the derived Algorithm
1 by varying the number of EM and MU iterations and
computing the separation results obtained on the benchmark
BGN dataset. In this experiment, we set λ = 10 and γ = 0.2
as we will show in next section that these values offer both
the stability and the good separation performance. The speech
and noise separation results, measured by the SDR, SIR, SAR,
and ISR, averaged over all mixtures in the dataset, illustrated
as functions of the EM and MU iterations, are shown in Fig.
2.

As it can be seen, generally the SDR increases when the
number of EM and MU iterations increases. With 10 or 25 MU
iterations, the algorithm converges nicely and saturates after
about 10 EM iterations. The best separation performance was
obtained with 10 MU iterations and 15 EM iterations. It is also
interesting to see that with a small number of MU iterations
like 1, 2, or 3, the separation results are quite poor and the
algorithm is less stable as it varies significantly even with a

large number of EM iterations. This reveals the effectiveness
of the proposed NMF constraint (24).

2) Separation results with different choices of λ and γ: We
further investigate the sensitivity of the proposed algorithm to
two parameters λ and γ, which determine the contribution
of sparsity penalty to the NMF constraint in (24). For this
purpose, we varied the values of these parameters, λ =
{1, 10, 25, 50, 100, 200, 500}, γ = {0, 0.2, 0.4, 0.6, 0.8, 1},
and applied the corresponding source separation algorithm
presented in the Algorithm 1 on the benchmark BGN dataset.
The number of EM and MU iterations are set to 15 and
10, respectively, as these values guarantee the algorithm’s
convergence shown in Fig. 2. The speech and noise separation
results, measured by the SDR, SIR, SAR, and ISR, averaged
over all mixtures in the dataset, represented as functions of λ
and γ, are shown in Fig. 3.

It can be seen that the proposed algorithm is less sensitive
to the choice of γ, while more sensitive to the choice of λ,
and the separation performance greatly decreases with λ > 10.
The best choice for these parameters in term of the SDR are
λ = 10, γ = 0.2. With the small value of λ (e.g., λ = 1),
varying γ does not really affect the separation performance
as the evaluation criteria are quite stable. We noted that with
γ = 0.2, the algorithm offers 0.2 dB and 1.0 dB SDR, which
are higher than when γ = 0 and γ = 1, respectively. This
confirms the effectiveness of the mixed sparsity penalty (25)
in the multichannel setting.

C. Comparison with the state of the art
We compare the speech separation performance obtained

on the BGN dataset of the proposed approach with its close
prior art (i.e. Arberet’s algorithm [38]) and other state-of-the-
art methods presented at the SiSEC campaign over different
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Algorithm 1 Proposed GSSM + SV separation algorithm
Require:

Mixture signal x(t)
List of examples of each source in the mixture
{slj(t)}j=1:J,l=1:Lj

Hyper-parameters λ, γ, MU-iteration
Ensure: Source images ĉj(t) separated from x(t)

- Compute the mixture STFT coefficients x(n, f) ∈ CF×N
and then Ψ̂x(n, f) ∈ CI×I by (7)
- Construct the GSSM model Uj by (18), then U ∈ RF×K+

by (19)
- Initialize the spatial covariance matrices Rj(f),∀j, f (see
Section IV-A)
- Initialize the non-negative time activation matrix for each
source H̃j randomly, then H̃ = [H̃>1 , . . . , H̃

>
J ]v ∈ RK×N+

- Initialize the source variance vj(n, f) = [UjH̃j ]n,f

// Generalized EM algorithm for the parameter estimation:
repeat

// E step (perform calculation for all j, n, f ):
Σj(n, f) = vj(n, f)Rj(f) // eq. (4)
Σx(n, f) =

∑J
j=1 vj(n, f) Rj(f) // eq. (5)

Gj(n, f) = Σj(n, f)Σ−1x (n, f) // Wiener gain
Σ̂j(n, f) = Gj(n, f)Ψ̂x(n, f)GH

j (n, f) + (I −
Gj(n, f))Σj(n, f) // eq. (11)

// M step: updating spatial covariance matrix and uncon-
strained source spectra
Rj(f) = 1

N

∑N
n=1

1
vj(n,f)

Σ̂j(n, f) // eq. (13)

vj(n, f) = 1
I tr(R−1j (f)Σ̂j(n, f)) // eq. (14)

Vj = {vj(n, f)}n,f
Ṽ =

∑J
j=1 Vj

// MU rules for NMF inside M step to further constrain
source spectra by the GSSM
for iter = 1, ...,MU-iteration do

for p = 1, ..., P do
Yp ← 1

ε+‖Hp‖1
end for
Y = [Y>1 , . . . ,Y

>
P ]>

for k = 1, ...,K do
zk ← 1

ε+‖hk‖1
end for
Z = [z>1 , . . . , z

>
K ]>

// Updating activation matrix
V̂ = UH̃

H̃← H̃�
(

U>(Ṽ�V̂.−2)

U>(V̂.−1)+λ(γY+(1−γ)Z)

). 12
// eq. (31)

end for
vj(n, f) = [UjH̃j ]n,f // updating constrained spectra

until convergence

- Source separation by multichannel Wiener filtering (9)
- Time domain source images ĉj(t) are obtained by the
inverse STFT of ĉj(n, f).

years since 2013. The results of these methods were submitted
by the authors and evaluated by the SiSEC organizers [4], [52],
[53]. All comparing methods are summarized as follows:

• Martinez-Munoz’s method (SiSEC 2013) [52]: this algo-
rithm exploits source-filter model for the speech source
and the noise source is modeled as a combination of
pseudo-stationary broadband noise, impulsive noise, and
pitched interferences. The parameter estimation is based
on the MU rules employed in non-negative matrix fac-
torization.

• Wang’s method [54] (SiSEC 2013): this algorithm per-
forms well-known frequency domain independent compo-
nent analysis (ICA). The associated permutation problem
is solved by a novel region-growing permutation align-
ment technique.

• Le Magoarou’s method [9] (SiSEC 2013): this approach
uses text transcript of the speech source in the mixture as
prior information to guide the source separation process.
The algorithm is based on the nonnegative matrix partial
co-factorization.

• Bryan’s method [55] (SiSEC 2013): this interactive ap-
proach exploits human annotation on the mixture spec-
trogram to guide and refine the source separation process.
The modeling is based on the probabilistic latent compo-
nent analysis (PLCA), which is equivalent to NMF.

• Rafii’s method [56] (SiSEC 2013): this technique uses
a similarity matrix to separate the repeating background
from the non-repeating foreground in a mixture. The un-
derlying assumption is that the background is dense and
low-ranked, while the foreground is sparse and varied.

• Ito’s method [57] (SiSEC 2015): this is a permutation-
free frequency-domain blind source separation algorithm
via full-band clustering of the time-frequency (T-F) com-
ponents. The clustering is performed via MAP estimation
of the parameters with EM algorithm.

• Liu’s method [4] (SiSEC 2016): the algorithm performs
Time Difference of Arrival (TDOA) clustering based on
GCC-PHAT.

• Wood’s method [58] (SiSEC 2016): this recently pro-
posed algorithm first applies NMF to the magnitude
spectrograms of the mixtures with channels concatenated
in time. Each dictionary atom is clustered to either the
speech or the noise according to its spatial origin.

• Arberet’s method [38]: using the similar local Gaussian
model, the algorithm further constrains the intermediate
source variances by unsupervised NMF with criterion
(15). Such algorithm is implemented by Ozerov et. al. in
[37]. This method is actually the most relevant prior art
to compare with as it falls in the same LGM framework.

The proposed approach with different variants are summa-
rized as:

• GSSM + SV denoising: The proposed GSSM + full-rank
spatial covariance approach where the estimated variances
of each sources Vj are further constrained by criterion
(22). We submitted results obtained by this method to the
SiSEC 2016 BGN task and obtained the best performance
over the actual test set in term of SDR [4].
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• GSSM + SV separation: The proposed approach with
source variance separation by optimizing criterion (24). In
order to investigate the benefit of the sparsity constraint,
we further report the results obtained by this method
when λ = 0. Finally, to confirm the effectiveness of
the GSSM construction by (18), we report the results
obtained when the GSSM of the same size is learned
jointly by concatenating all example’s spectrograms Slj as
(20). In this case, only the component sparsity is applied
(i.e., γ = 0) as block does not exist. This setting is named
“GSSM’+component sparsity” in Table 1.

Fig. 4. Boxplot for the speech separation performance obtained by the
proposed “GSSM + SV denoising” (P1) and “GSSM + SV separation” (P2)
methods.

The separation results obtained by different methods for
each noisy environment (Ca, Sq, Su), and the average overall
mixtures are summarized in Table 1. The boxplot to illustrate
the variance of the results obtained by the two proposed
approaches is shown in Fig. 4. It is interesting to see that the
results obtained by the proposed approach without sparsity
constraint were lower than that of Arberet’s method for all
noisy environments, even the former used the pre-trained
GSSM while the latter is completely unsupervised. It reveals
that the GSSM itself is redundant and contains some irrelevant
spectral patterns with the actual sources in the mixture. Thus
constraining the source variances by the GSSM without a rel-
evant spectral pattern selection guided by the sparsity penalty
is even worse than the unsupervised NMF case where the
spectral patterns are randomly initialized and then updated by
MU rules. The importance of such sparsity penalty is explicitly
confirmed by the fact that the results obtained by the proposed
approach with sparsity constraint are far better than the setting
without the sparsity constraint. Also, it is not surprising to
see that the “GSSM + SV denoising” clearly outperforms
Arberet’s method (except for the ISR and the TPS) in all noisy
environments as the former exploits additional information
about the types of sources in the mixtures in order to learn
the GSSM in advance. The “GSSM + SV separation” offers
better separation performance in terms of SDR, SIR, OPS,
IPS, on square and subway environments as well as on average
compared to the “GSSM + SV denoising” and the “GSSM’ +
component sparsity”. This confirms the effectiveness of the

proposed source variance separation criterion (24) and the
GSSM construction (18).

When compared to the top-performing state-of-the-art meth-
ods in the SiSEC campaigns, the proposed approach performs
generally better in terms of the energy-based criteria but
worse for the perceptually-motivated ones. Especially in Ca
environment the OPS obtained by the proposed approach is
far below those offered by other methods. This may be due
to the fact that the hyper-parameters were optimized for the
SDR, but not the OPS. The “GSSM + SV separation” with
sparsity constraint outperforms all other methods, but Wang’s
approach, in terms of the SDR, the most important energy-
based criterion, at all noisy environment. This confirms the
effectiveness of the proposed approach where the GSSM is
successfully exploited in the LGM framework. It should be
noted that Wang’s method [54] is based on the frequency-
domain ICA so it is not applicable for under-determined
mixtures where the number of sources is larger than the
number of channels. Also, in this method, an additional post-
filtering technique was applied to the separated speech source
so as to maximize the denoising capability.

V. CONCLUSION

In this paper, we have presented a novel multichannel
audio source separation algorithm weakly guided by some
source examples. The considered approach exploits the use
of generic source spectral model learned by NMF within the
well-established local Gaussian model. In particular, we have
proposed a new source variance separation criterion in order
to better constrain the intermediate source variances estimated
in each EM iteration. Experiments with the benchmark dataset
from the SiSEC campaigns have confirmed the effectiveness
of the proposed approach compared to the state of the art.
Motivated by the effectiveness of the GSSM, future work
can be devoted to extending the current approach in order
to exploit in addition the use of a generic spatial covariance
model, which remains to be defined. In addition, the theoretical
grounding of the source variance separation criterion needs to
be further investigated. Another promising investigation could
be extending the idea of source variance separation to DNN-
based models inspired by the work of Nugraha et al. [24].
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APPENDIX
DERIVATION OF MU RULE FOR UPDATING THE ACTIVATION

MATRIX IN ALGORITHM1

Let L(H̃) denote the minimization criterion (24) with the
mixed sparsity constrained Ω(H̃) defined as in (25) and D(·‖·)
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Methods
Ca1 Sq1 Su1 Average

SDR SIR SAR ISR SDR SIR SAR ISR SDR SIR SAR ISR SDR SIR SAR ISR
OPS IPS APS TPS OPS IPS APS TPS OPS IPS APS TPS OPS IPS APS TPS

Martinez-Munoz* 5.4 15.4 6.1 - 9.6 17.3 10.7 - 1.5 5.8 5.8 - 6.4 14.1 7.9 -
- - - - - - - - - - - - - - - -

Wang* [54] 10.4 21.6 12.8 13.5 10.3 19.1 12.3 15.0 8.1 19.3 10.0 10.7 9.8 20.0 12.0 13.5
41.9 60.4 52.9 58.8 37.4 51.8 53.3 55.7 33.1 52.4 42.3 43.7 37.9 54.8 50.7 54.1

Le Magoarou* [9] 9.2 11.6 13.4 19.8 4.0 6.2 8.3 20.4 -5.2 -4.5 2.7 9.7 3.7 5.6 8.8 17.8
31.3 29.3 52.8 77.9 38.9 45.2 39.9 75.6 22.9 24.6 34.8 28.3 32.8 35.3 43.1 65.9

Bryan* [55] 5.6 18.4 5.9 - 10.2 15.6 12.1 - 4.2 13.6 4.9 - 7.3 16.1 7.6 -
- - - - - - - - - - - - - - - -

Rafii* [56] 8.8 13.0 12.1 13.3 6.2 9.6 8.9 10.7 -2.7 -2.7 4.4 11.0 5.1 8.0 9.0 11.6
29.2 27.3 58.0 56.2 34.6 38.7 55.8 60.7 23.9 21.6 51.3 50.4 30.4 31.1 55.5 56.9

Ito* [57] 7.2 25.9 7.2 - 8.9 23.7 9.1 - 4.9 15.3 5.6 - 7.4 22.6 7.7 -
- - - - - - - - - - - - - - - -

Liu* -1.0 4.9 19.7 4.1 -8.5 -2.9 15.1 1.9 -12.8 -8.0 7.6 3.8 -7.0 -1.4 15.0 3.1
9.5 16.8 77.1 42.3 14.2 18.9 70.2 38.8 21.2 15.7 60.0 49.5 14.2 17.5 70.3 42.3

Wood* [58] 3.0 9.4 5.0 3.7 1.9 2.4 4.0 7.5 0.2 -2.6 1.3 2.5 1.9 3.6 3.7 5.1
33.7 60.7 39.0 40.5 38.6 60.5 43.3 57.6 25.9 47.6 31.7 24.4 34.1 57.7 39.3 44.5

Arberet [37], [38] 9.1 10.0 16.1 19.5 3.3 3.3 10.4 15.3 -0.2 -1.2 9.5 11.7 4.4 4.6 12.1 15.9
13.3 10.9 70.4 50.5 8.3 10.5 82.3 47.5 10.2 3.7 56.6 23.4 10.4 9.1 72.6 43.2

GSSM + SV denoising
(λ = 10, γ = 0.2)

10.5 11.8 27.7 16.2 7.0 8.5 22.0 9.8 5.1 5.6 20.7 8.1 7.7 9.0 23.6 11.6
8.4 12.7 83.0 49.9 8.5 14.7 77.6 39.0 11.3 7.8 61.8 27.6 18.1 12.5 75.9 40.1

GSSM + SV separation
(No sparsity constraint)

7.9 10.2 20.2 11.2 -1.1 -2.6 17.6 8.0 -1.6 -3.2 20.4 7.6 1.8 1.5 19.1 8.9
25.0 19.3 64.1 55.8 32.4 29.4 55.0 60.2 18.7 11.4 56.0 35.7 18.8 22.0 58.2 53.3

GSSM + SV separation
(GSSM’ + component sparsity)

7.3 10.0 19.4 9.7 4.4 6.1 16.0 6.9 2.4 1.8 18.3 8.8 4.9 6.5 17.7 8.3
20.7 18.2 66.2 48.1 30.3 28.3 57.9 52.8 21.6 16.5 56.0 43.0 21.3 22.3 60.3 49.1

GSSM + SV separation
(λ = 10, γ = 0.2)

10.6 13.5 25.6 19.6 7.8 11.1 19.3 12.3 5.0 7.1 18.7 9.5 8.1 11.0 21.3 14.1
11.4 13.0 81.6 61.0 31.6 31.4 62.0 57.4 23.7 27.8 47.3 37.6 23.1 24.5 65.2 54.2

TABLE I
SPEECH SEPARATION PERFORMANCE OBTAINED ON THE DEVSET OF THE BGN TASK OF THE SISEC CAMPAIGN. ∗ INDICATES SUBMISSIONS BY THE

AUTHORS AND “-” INDICATES MISSING INFORMATION.

being IS divergence. The partial derivative of L(H̃) with
respect to an entry hkn is

∇hkn
L(H̃) =

F∑

f=1

ufk

(
1

[UH̃]n,f
− v(n, f)

[UH̃]2n,f

)
+

λ.γ

ε+ ‖Hp‖1
+
λ.(1− γ)

ε+ ‖hk‖1
(27)

This ∇hkn
L(H̃) can be written as a sum of two nonnegative

parts, denoted by ∇+
hkn
L(H̃) ≥ 0 and ∇−hkn

L(H̃) ≥ 0,
respectively, as

∇hkn
L(H̃) = ∇+

hkn
L(H̃)−∇−hkn

L(H̃) (28)

with

∇+
hkn
L(H̃) ,

F∑

f=1

ufk
1

[UH̃]n,f
+

λ.γ

ε+ ‖Hp‖1
+
λ.(1− γ)

ε+ ‖hk‖1
,

∇−hkn
L(H̃) ,

F∑

f=1

ufk
v(n, f)

[UH̃]2n,f
. (29)

Following a standard approach for MU rule derivation [19],
[20]), hkn is updated as

hkn ← hkn

(
∇−hkn

L(H̃)

∇+
hkn
L(H̃)

).η
, (30)

where η = 0.5 following the derivation in [47], [59], which
was shown to produce an accelerated descent algorithm.

Putting (29) into (30) and rewriting it in a matrix form, we
obtain the updates of H̃ as

H̃← H̃�
(

U>(Ṽ � V̂.−2)

U>(V̂.−1) + λ(γY + (1− γ)Z)

). 12
, (31)

where V̂ = UH̃, Y = [Y>1 , . . . ,Y
>
P ]> with Yp, p = 1, . . . P

an uniform matrix of the same size as Hp whose entries
are 1

ε+‖Hp‖1 , and Z = [z>1 , . . . , z
>
K ]> with zk, k = 1, . . .K

a uniform vector of the same size as hk whose entries are
1

ε+‖hk‖1 .
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Weakly Supervised Representation Learning for
Audio-Visual Scene Analysis

Sanjeel Parekh, Slim Essid, Alexey Ozerov, Senior Member, IEEE, Ngoc Q.K. Duong, Senior Member, IEEE,
Patrick Perez, and Gael Richard, Fellow, IEEE

Abstract—Audio-visual representation learning is an important
task from the perspective of designing machines with the ability
to understand complex events. To this end, we propose a
novel multimodal framework that instantiates multiple instance
learning. We show that the learnt representations are useful
for performing several tasks such as event/object classification,
audio event detection, audio source separation and visual object
localization. The system is trained using only video-level event
labels without any timing information. An important feature of
our method is its capacity to learn from unsynchronized audio-
visual events. We also demonstrate our framework’s ability to
separate out the audio source of interest through a novel use
of nonnegative matrix factorization. State-of-the-art classification
results are achieved on DCASE 2017 smart cars challenge data
with promising generalization to diverse object types such as
musical instruments. Visualizations of localized visual regions
and audio segments substantiate our system’s efficacy, especially
when dealing with noisy situations where modality-specific cues
appear asynchronously.

Index Terms—Audio-visual fusion, multimodal deep learning,
multiple instance learning, event classification, audio-visual lo-
calization, audio source separation

I. INTRODUCTION

We are surrounded by events that can be perceived via
distinct audio and visual cues. Be it a ringing phone or a car
passing by, we instantly identify the audio-visual (AV) com-
ponents that characterize these events. This remarkable ability
helps us understand and interact with our environment. For
building machines with such scene understanding capabilities,
it is important to design algorithms for learning audio-visual
representations from real-world data.

This work is a step in that direction, where we aim to learn
such representations through weak supervision.

Specifically, we are interested in designing a system that
simultaneously tackles multiple related scene understanding
tasks which include video event classification, spatial-temporal
visual object localization and corresponding audio object
enhancement and temporal localization. Obtaining precisely
annotated data for doing so is an expensive endeavor, made
even more challenging by multimodal considerations. The
annotation process is not only error prone and time consuming
but also subjective to an extent. Often, event boundaries
in audio, extent of video objects or even their presence is
ambiguous. Thus, we opt for a weakly-supervised learning

S. Parekh, S. Essid and G. Richard are with Telecom ParisTech, Paris,
France

A. Ozerov and N. Duong are with Technicolor R&I, Cesson Sevigne, France
P. Perez is with Valeo.ai, Paris, France

Fig. 1. Pictorial representation of the problem: Given a video labeled
as “train horn”, we would like to: (i) identify the event, (ii) localize both,
its visual presence and the temporal segment(s) containing the characteristic
sound, and (iii) segregate the characteristic audio cue from the background.
Note that the train horn may sound before the train is visible. Our model can
deal with such unsynchronized AV events.

approach using data with only video-level event labels, that
is labels given for whole video documents without timing
information.

A. Problem description

To motivate our tasks and method, consider a video labeled
as “train horn”, depicted in Fig. 1. Assuming that the train
is both visible and audible at some time in the video, in
addition to identifying the event, we are interested in learning
representations that help us answer the following:
• Where is the visual object or context that distinguishes

the event? In this case it might be the train (object) or
tracks, platform (context) etc. We are thus aiming for their
spatio-temporal localization in the image sequence.

• When does the sound event occur? Here it is the train
horn. We thus want to temporally localize the audio event.

• How to enhance the audio object? Here we are interested
in audio source extraction i.e. segregating the source of
interest from the background sounds.

The variety of noisy situations that one may encounter in
unconstrained environments or videos adds to the difficulty of
this very challenging problem. Apart from modality-specific
noise such as visual clutter, lighting variations and low audio
signal-to-noise ratio, in real-world scenarios the appearance of
audio and visual elements characterizing the event are often
unsynchronized in time. This is to say that the train horn
may sound before or after the train is visible, as in previous
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example. In the extreme, not so rare case, the train may not
appear at all. The latter is also commonly referred to as “off–
screen” audio [1]. We are interested in designing a system to
tackle the aforementioned questions and situations.

Prior research has utilized audio and visual modalities
for classification and localization tasks in various contexts.
Fusing modality-specific hand-crafted or deep features has
been a popular approach for problems such as multimedia
event detection and video concept classification [2]–[5]. On
the other hand, AV correlations have been utilized for local-
ization and representation learning in general, through feature
space transformation techniques such as canonical correlation
analysis (CCA) [6], [7] or deep networks [8]–[12]. However,
a unified multimodal framework for our task, that is learning
data representations for simultaneously identifying real world
events and extracting the AV cues depicting them has not been
extensively studied in previous works.

B. Contributions and outline

In this work, we present a complete AV event understanding
framework where the modality-specific modules can be trained
jointly to perform multiple tasks such as event/object clas-
sification, spatio-temporal visual localization, temporal audio
localization and source separation. Key attributes and results
of our approach are summarized below:
• We report state-of-the-art event classification performance

on DCASE smart cars challenge data [13] and demon-
strate usefulness of AV complementatrity. We also show
results on an instrument dataset [14] to validate our
framework’s application to diverse object types.

• To highlight flexibility provided by our modular design,
we propose several task-specific instantiations. These
include changes to allow detection of synchronously
appearing AV cues and capability to enhance the audio
source of interest.

• Additionally, we also show encouraging qualitative visual
localization results.

Paper outline. We begin by briefly mentioning connections
and distinctions with related works in Section II. This is
followed by a description of the proposed framework and
its instantiations for tackling classification and localization in
Section III. Finally, we validate the usefulness of the learnt
representations for these tasks with a thorough analysis in
Section IV.

II. RELATED WORK

To position our work, we briefly discuss some relevant liter-
ature that employs weakly supervised learning for visual object
localization, audio event detection and source separation. We
also delineate several distinctions between the present study
and recent multimodal deep learning approaches.

A. Audio scene analysis

Detection and segregation of individual sources in a mixture
is central to computational auditory scene analysis [15]. A
significant amount of literature exists on supervised audio

event detection (AED) [16]–[19]. However, progress with
weakly labeled data in the audio domain has been relatively
recent. An early work [20] showed the usefulness of MIL
techniques to audio using SVM and neural networks.

The introduction of the weakly-labeled audio event detec-
tion task in the 2017 DCASE challenge [21]1, a challenge
on DCASE, along with the release of Google’s AudioSet
data2 [22], has led to accelerated progress in the recent past.
AudioSet is a large-scale weakly-labeled dataset of audio
events collected from YouTube videos. A subset of this data
was used for the DCASE 2017 task on large-scale AED
for smart cars.3 Several submissions to the task utilized
sophisticated deep architectures with attention units [23], as
well as max and softmax operations [24]. Another recent
study introduced a CNN with global segment-level pooling
for dealing with weak labels [25]. It is worth noting that the
field is growing rapidly. Concurrent and subsequent studies
have greatly exploited the MIL and attention-based learning
paradigm [26]–[28]. While we share with these works the
high-level goal of weakly-supervised learning, apart from our
multimodal design, our audio sub-module, as discussed in the
next section, is significantly different.

Audio source separation research in weakly supervised
regime has followed a similar trend. Recent progress includes
several vision–inspired [29] and vision–guided [30]–[32] sys-
tems. Use of NMF basis vectors is particularly interesting in
[32]. Our proposed separation technique goes in this direction
with several key differences discussed in Sec. III-D1.

B. Visual object localization and classification

There is a long history of works in computer vision applying
weakly supervised learning for object localization and classi-
fication. MIL techniques have been extensively used for this
purpose [33]–[39]. Typically, each image is represented as a
set of regions. Positive images contain at least one region from
the reference class while negative images contain none. Latent
structured output methods, e.g., based on support vector ma-
chines (SVMs) [40] or conditional random fields (CRFs) [41],
address this problem by alternating between object appearance
model estimation and region selection. Some works have fo-
cused on better initialization and regularization strategies [39],
[42], [43] for solving this non-convex optimization problem.

Owing to the exceptional success of convolutional neural
networks (CNNs) in computer vision, recently, several ap-
proaches have looked to build upon CNN architectures for
embedding MIL strategies. These include the introduction of
operations such as max pooling over regions [35], global
average pooling [38] and their soft versions [44]. Another
line of research consists in CNN-based localization over class-
agnostic region proposals [36], [37], [45] extracted using a
state-of-the-art proposal generation algorithm such as Edge-
Boxes [46], Selective Search [47], etc. These approaches are
supported by the ability to extract fixed size feature maps from

1http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/
2https://research.google.com/audioset/
3http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/

task-large-scale-sound-event-detection
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Fig. 2. High level view of the proposed approach: Given a video captured using a single microphone and camera, we propose the depicted framework for
weakly supervised representation learning.

CNNs using region-of-interest [48] or spatial pyramid pooling
[49]. Our work is related to such techniques. We build upon
ideas from the two-stream architecture [37] for classification
and localization.

State-of-the-art end-to-end object detection networks such
as Faster RCNN [50] and its instance segmentation extension
Mask RCNN [51] incorporate proposal generation as part of
the system (region proposal network) instead of a separate
stage. Nonetheless, these approaches require label annotations
for different regions. It is also worth mentioning that some
works have extended class-agnostic proposal generation from
2D images to video tube proposals for tasks such as action
localization [52] and object detection [53]. However, these
involve a computationally expensive pipeline preventing large-
scale usage.

C. Differences with recent AV deep learning studies

We formulate the problem as a MIL task using class-
agnostic proposals from both video frames and audio. This
allows us to simultaneously solve the classification and lo-
calization problems. Finally, by construction, our framework
deals with the difficult case of asynchronous AV events.
This is significantly different from recent multimodal deep
learning based studies on several counts: Contrary to prior
works, where unsupervised representations are learnt through
audio–image correlations (temporal co-occurrence), we adopt
a weakly-supervised learning approach using event classes.
Unlike [8], [9], [11], we focus on localizing discriminative
audio and visual components for real-world events.

III. PROPOSED FRAMEWORK AND ITS INSTANTIATIONS

The tasks under consideration can be naturally formulated as
MIL problems [54]. MIL is typically applied to cases where
labels are available over bags (sets of instances) instead of
individual instances. The task then amounts to jointly selecting
appropriate instances and estimating classifier parameters. In

our case, a video can be seen as a labeled bag, containing a
collection of visual and audio proposals. The term proposal
refers to image or audio “parts” that may potentially constitute
the object of interest. This step is at the core of our approach.

The key idea, as illustrated in Fig. 2, is to extract fea-
tures from generated proposals and transform them for: (1)
scoring each according to their relevance for class labels; (2)
aggregating these scores in each modality and fusing them for
video-level classification. This not only allows us to train both
the sub-modules together through weak-supervision but also
enables localization using the proposal relevance scores. More-
over, use of both the modalities with appropriate proposals
makes the system robust against noisy scenarios. We present
different task-specific variants of this general framework.

We now formalize the design of each building block to
specifically tackle event classification, visual object and audio
event localization. An overview is provided in Fig. 3. We
model a video V as a bag of M selected image regions,
R = {r1, r2, . . . , rM}, obtained from sub-sampled frames
and S audio segments, A = {a1, a2, . . . , aS}. Given L such
training examples, V = {V (l)}Ll=1, organized into C classes,
our goal is to learn a representation to jointly classify and
localize image regions and audio segments that characterize a
class. Each block from proposal generation to classification is
discussed below in detail.

A. Generating proposals and extracting features

Visual Proposals. Generating proposals for object contain-
ing regions from images is at the heart of various visual object
detection algorithms [55], [56]. As our goal is to spatially and
temporally localize the most discriminative region pertaining
to a class, we choose to apply this technique over sub-
sampled video frame sequences. In particular, we sub-sample
the extracted frame sequences of each video at a rate of 1
frame per second. This is followed by class-agnostic region
proposal generation on the selected frames using EdgeBoxes
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Fig. 3. Module design: Given a video, we consider the depicted pipeline for going from audio and visual proposals to localization and classification. Here
Wcls and Wloc refer to the fully-connected classification and localization streams respectively; σ denotes softmax operation over proposals for each class, �
refers to element-wise multiplication; Σ to a summation over proposals and `2 to a normalization of scores. During training we freeze the weights of blocks
denoted in blue.

[46]. This proposal generation method builds upon the in-
sight that the number of contours entirely inside a box is
indicative of the likelihood of an object’s presence. Its use
in our pipeline is motivated by experiments confirming better
performance in terms of speed/accuracy tradeoffs over most
competing techniques [57]. EdgeBoxes additionally generates
a confidence score for each bounding box which reflects the
box’s “objectness”. To reduce the computational load and
redundancy, we use this score to select the top Mimg proposals
from each sampled image and use them for feature extraction.
Hence, given a 10 second video, the aforementioned procedure
would leave us with a list of M = 10×Mimg region proposals.

A fixed-length feature vector, xvis(rm;V ) ∈ Rdv is
obtained from each image region proposal, rm in V , using a
convolutional neural network altered with a region-of-interest
(RoI) pooling layer. An RoI layer works by computing fixed
size feature maps (e.g. 6 × 6 for caffenet [58]) from
regions of an image using max-pooling [48]. This helps
to ensure compatibility between convolutional and fully
connected layers of a network when using regions of varying
sizes. Moreover, unlike Region-based CNN (RCNN) [56],
the shared computation for different regions of the same
image using Fast-RCNN implementation [48] leads to faster
processing. In Fig. 3 we refer to this feature extractor as
the base visual network. In practice, feature vectors xvis(·)
are extracted after RoI pooling layer and passed through
two fully connected layers, which are fine-tuned during
training. Typically, standard CNN architectures pre-trained
on ImageNet [59] classification are used for the purpose of
initializing network weights.

Audio Temporal Segment Proposals.
We first represent the raw audio waveform as a log-Mel

spectrogram [60]. Each proposal is then obtained by sliding a
fixed-length window over the obtained spectrogram along the

temporal axis. These are the so called audio temporal segment
proposals, also referred to as Temporal Segment Proposals
(TSPs). The dimensions of this window are chosen to be
compatible with the audio feature extractor. For our system
we set the proposal window length to 960ms and stride to
480ms.

We use a VGG-style deep network known as vggish for
base audio feature extraction. Inspired by the success of CNNs
in visual object recognition Hershey et al. [61] introduced this
state-of-the-art audio feature extractor as an audio parallel to
networks pre-trained on ImageNet for classification. vggish
has been pre-trained on a preliminary version of YouTube-8M
[62] for audio classification based on video tags. It stacks 4
convolutional and 2 fully connected layers to generate a 128
dimensional embedding, xaud(as;V ) ∈ R128 for each input
log-Mel spectrogram segment as ∈ R96×64 with 64 Mel-
bands and 96 temporal frames. Prior to proposal scoring, the
generated embedding is passed through a fully-connected layer
that is learnt from scratch.

B. Proposal scoring network and fusion
So far, we have extracted base features for each proposal in

both the modalities and passed them through fully connected
layers in their respective modules. Equipped with this trans-
formed representation of each proposal, we use the two-stream
architecture proposed by Bilen et al. [37] for scoring each of
them with respect to the classes. There is one scoring network
of the same architecture for each modality as depicted in Fig.
3. Thus, for notational convenience, we generically denote the
set of audio or visual proposals for each video by P and let
proposal representations before the scoring network be stacked
in a matrix Z ∈ R|P|×d, where d denotes the dimensionality
of the audio/visual proposal representation.

The architecture of this module consists of parallel clas-
sification and localization streams. The former classifies each
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region by passing Z through a linear fully connected layer with
weights Wcls, giving a matrix A ∈ R|P|×C . On the other hand,
the localization layer passes the same input through another
fully-connected layer with weights Wloc. This is followed by a
softmax operation over the resulting matrix B ∈ R|P|×C in the
localization stream. The softmax operation on each element of
B can be written as:

[σ(B)]pc =
ebpc

∑|P|
p′=1 e

bp′c
, ∀(p, c) ∈ (1, |P|)× (1, C). (1)

This allows the localization layer to choose the most rele-
vant proposals for each class. Subsequently, the classification
stream output is weighted by σ(B) through element-wise
multiplication: E = A � σ(B). Class scores over the video
are obtained by summing the resulting weighted scores in E.
Concurrent work by [63] discusses a similar MIL module for
audio classification.

After performing the above stated operations for both audio
and visual sub-modules, in the final step, the global video-
level scores are `2 normalized and added. In preliminary
experiments we found this to work better than addition of
unnormalized scores. We hypothesize that the system trains
better because `2 normalization ensures that the scores being
added are in the same range.

C. Classification loss and network training
Given a set of L training videos and labels,

{(V (l),y(l))}Ll=1, we solve a multi-label classification
problem. Here y ∈ Y = {−1,+1}C with the class presence
denoted by +1 and absence by −1. To recall, for each video
V (l), the network takes as input a set of image regions R(l)

and audio segments A(l). After performing the described
operations on each modality separately, the `2 normalized
scores are added and represented by φ(V (l);w) ∈ RC , with
all network weights and biases denoted by w. All the weights,
including and following the fully-connected layer processing
stage for both the modalities, are included in w. Note that
both sub-modules are trained jointly.

The network is trained using the multi-label hinge loss on
a batch of size B:

L(w) =
1

CB

B∑

l=1

C∑

c=1

max
(
0, 1− y(l)c φc(V

(l);w)
)
. (2)

To summarize, we have discussed a general instantiation of
our framework, capable of processing spatio-temporal visual
regions, temporal audio segments for event classification and
localizing characteristic proposal in each modality. Dealing
with each proposal independent of the time at which it occurs
allows tackling AV asynchronicity.

D. Variants
In the proposed framework (depiced in Fig. 2) module

design can be flexibly modified in a task–specific manner.
To demonstrate this, we discuss next two variants that allow
performing audio source enhancement and synchronous AV
fusion, respectively.

Fig. 4. NMF component proposals depiction where spectral patterns, wk

and corresponding activation vectors, hk are shown in the same colour.
Furthermore, each part in hk refers to a non-overlapping temporal segment.

1) Source enhancement variant: Here we propose to design
novel audio proposals using NMF with the goal of enhancing
the audio source of interest. The primary reason for performing
such a decomposition is the hope that each of the resulting
spectral patterns would represent a part of just one source.
Specifically, using NMF we decompose audio magnitude
spectrograms Q ∈ RF×N

+ consisting of F frequency bins and
N short-time Fourier transform (STFT) frames, such that,

Q ≈WH, (3)

where W ∈ RF×K
+ and H ∈ RK×N

+ are nonnegative matrices
that can be interpreted as the characteristic audio spectral pat-
terns W ∈ RF×K

+ and their temporal activations H ∈ RK×N
+ ,

respectively. Here K is the total number of spectral patterns.
We then apply soft mask based filtering [64] to an audio

recording to decompose it into K tracks (also referred to as
NMF components) each obtained from wk,hk for k ∈ [1,K],
where wk and hk denote spectral pattern and activation vectors
corresponding to the kth component, respectively. This is
depicted in Fig. 4.

They can now be considered as proposals that may or may
not belong to the class of interest. Specifically, we chunk each
NMF component into temporal segments, which we call NMF
Component proposals or NCPs. We denote the set of NCPs by
D = {dk,t}, where each element is indexed by the component,
k ∈ [1,K] and temporal segment t ∈ [1, T ]. The same audio
network is used for both TSPs and NCPs. Thus, for each NMF
component or track we follow the TSP computation procedure.
However, this is done with a non-overlapping window for
reducing computational load.

Our system scores each NMF component with respect to its
relevance for a particular class. These relevance scores can be
appropriately aggregated to perform source enhancement. We
proceed as follows:
• Denoting by βk,t the score for kth component’s tth

temporal segment, we compute a global score for each
component as

αk = max
t∈T

βk,t.

It is worth mentioning that other pooling strategies such
as mean or weighted rank pooling [44] could also be
considered instead of the max operation. However, in our
preliminary experiments we found them to yield similar
results.

• Next, we apply min-max scaling between [0,1]:

α′k =
αk − αl

αu − αl
, where αl = min

k′
(α′k), α

u = max
k′

(α′k)
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Fig. 5. Synchronized variant - herein audio and visual scores over each
temporal segment are aggregated and the best temporal segment is chosen for
classification.

• This is followed by soft mask based source and noise
spectrogram reconstruction using complex-valued mix-
ture STFT X. Note that we can optionally apply a hard
threshold τ on α′k to choose the top ranked components
for the source. This amounts to replacing α′k by the indi-
cator function 1[α′k ≥ τ ] in the following reconstruction
equations:

S =

∑K
k=1 α

′
kwkhk

WH
X (4)

N =

∑K
k=1(1− α′k)wkhk

WH
X (5)

Here S and N are the estimates of source of interest and
of background noise, respectively. These can be converted
back to the time domain using inverse STFT.

It is worth noting two key differences with the approach
in [32]: (i) In [32] only the NMF basis vectors are used
for training without their corresponding activations. Hence no
temporal information is utilized. (ii) Unlike us, they perform
a supervised dictionary construction step after training to
decompose a test signal.

2) Synchronous fusion variant: Framework instantiation
depicted in Fig. 3 constructs the global score vector for
each modality by combining scores over all the proposals,
regardless of their temporal index. As noted, such a system is
capable of dealing with asynchronous appearance of cues in
both the modalities. On the other hand, we could envision a
synchronized variant, where we only add scores of visual and
audio proposals appearing in the same temporal segment. And
construct the global score vector by choosing for each class
the best scoring temporal segment. This is illustrated in Fig.
5. This essentially allows us to determine temporal segments
where AV cues appear simultaneously. We list below specific
changes made to the proposal score computation and fusion
module:

1) Firstly, in the localization stream the softmax operation
is performed over proposals from each temporal window
separately. This amounts to replacing |P| by |Pt| in
equation (1), where the proposals are indexed by the

temporal segment they belong to. For the visual branch
this corresponds to region proposals from a frame within
the tth temporal segment.

2) Secondly, after obtaining E i.e. the output of the two
stream classification, we compute a class score vector for
each temporal interval by summing up proposal scores
separately over p ∈ Pt. This gives us a matrix with
dimensions C×T in each modality. Their addition gives
us a synchronous AV temporal score.

3) Finally, for each class, the best AV temporal segment
is chosen through a log−sum − exp operation. This
gives us the class score vector φ required for weakly–
supervised training using multi–label hinge loss (refer
to equation (2)).

IV. EXPERIMENTAL VALIDATION

A. Setup

All systems except that of [23], including variants, are im-
plemented in Tensorflow. They were trained for 25K iterations
using Adam optimizer [65] with a learning rate of 10−5 and
a batch size of 24. We use the MATLAB implementation of
EdgeBoxes for generating region proposals, obtaining approx-
imately 100 regions per video with Mimg = 10 and a duration
of 10 sec. The implementation is used with default parameter
setting. Base visual features, xvis ∈ R9216 are extracted using
caffenet [58] with pre-trained ImageNet weights and RoI
pooling layer modification [48]. With 6 × 6 RoI pooling we
get a 9216 (= 256 × 6 × 6) dimensional feature vector. For
this, the Fast-RCNN Caffe implementation is used [48]. The
fully connected layers, namely fc6 and fc7, each with 4096
neurons, are fine-tuned, with 50% dropout during training.

For audio, each recording is resampled to 16 kHz before
processing. Log-Mel spectrum over the whole file is computed
with a window size of 25ms and 10ms hop length. The
resulting spectrum is chunked into segment proposals using
a 960–ms window with a 480–ms stride.

For a 10–second recording, this yields 20 segments of size
96 × 64. We use the official Tensorflow implementation of
vggish.4

B. Datasets

DCASE Smart Cars. We use the recently introduced
dataset for the DCASE challenge on large-scale weakly su-
pervised sound event detection for smart cars [21]. This is
a subset of Audioset [22] which contains a collection of
weakly-annotated unconstrained YouTube videos of vehicle
and warning sounds spread over 17 classes. It is categorized
as follows (abbreviations used in experiment tables are given
in parenthesis that follow each category):
• Warning sounds: Train horn (trn-hrn), Air/Truck horn

(air-hrn), Car alarm (car-alm), Reversing beeps (rv-bps),
Ambulance siren (amb), Police car siren (pol-car), Fire
engine/fire truck siren (f-eng), Civil defense siren (civ-
def), Screaming (scrm).

4https://github.com/tensorflow/models/tree/master/research/audioset
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• Vehicle sounds: Bicycle (bik), Skateboard (skt), Car (car),
Car passing by (car-pby), Bus (bus), Truck (trk), Motor-
cycle (mbik), Train (trn).

This multi-label dataset contains 51,172 training, 488
validation and 1103 testing samples. Despite our best efforts,
due to download issues, we were able to fetch 48,719 training,
462 validation and 1030 testing clips. It is worth mentioning
that the training data is highly unbalanced with the number
of samples for the classes ranging from 175 to 24K. To
mitigate the negative effect of this imbalance on training,
we introduce some balance by ensuring that each training
batch contains at least one sample from some or all of the
under-represented classes. Briefly, each batch is generated by
first randomly sampling labels from a specific list, followed
by fetching examples corresponding to the number of times
each label is sampled. This list is generated by ensuring higher
but limited presence of classes with more examples. We
use a publicly available implementation for this purpose [23].5

Kinetics instruments (KI). We also use a subset of the
Kinetics dataset [14] that contains 10-s YouTube videos from
15 music instrument classes. From a total of 10,267 videos,
we create training and testing sets that contain 9199 and 1023
videos, respectively. For source enhancement evaluation, we
handpicked 45 “clean” instrument recordings, 3 per class.
Due to their unconstrained nature, the audio recordings are
mostly noisy, i.e. videos are either shot with accompanying
music/instruments or in acoustic environments containing
other background events. In that context, “clean” refers to
solo instrument samples with minimal amount of such noise.

In what follows, we thoroughly evaluate the proposed
framework’s performance on various scene analysis tasks. In
particular, we compare the asynchronous and synchronous
variants of our system against several strong baselines for
event classification on the DCASE smart cars benchmark.
Generalization to diverse object types is shown through results
on KI. This is followed by results for temporal localization of
the audio event on DCASE. For completeness, we also present
experiments on segregating the audio source of interest, as
discussed in our prior work [66]. This allows us to demonstrate
our system’s capability to perform good source enhancement
while training just for weak label classification. This is done
by utilizing NMF-based proposals as described in Sec. III-D1.
We conclude this section with a discussion of qualitative visual
localization examples that show how we deal with extreme
noise, including asynchronous AV cues.

C. Event classification

Baselines. To our best knowledge, there is no prior work on
deep architectures that perform the task of weakly supervised
classification and localization for unsynchronized AV events.
Our task and method are substantially different from recently
proposed networks like L3 [10], [11] which are trained using
synchronous AV pairs on a large collection of videos in a

5https://github.com/yongxuUSTC/dcase2017 task4 cvssp/blob/master/
data generator.py

self-supervised manner. However, we designed several strong
baselines for comparison and an ablation study. In particular,
we compare against the following networks:

1) AV One-Stream Architecture: Applying MIL in a
straight-forward manner, we could proceed only with
a single stream. That is, we can use the classifica-
tion stream followed by a max operation for selecting
the highest scoring regions and segments for obtaining
global video-level scores. As done in [37], we choose
to implement this as a multimodal MIL-based baseline.
We replace the max operation by the log−sum − exp
operator, its soft approximation. This has been shown to
yield better results [34]. The scores on both the streams
are `2 normalized before addition for classification.
This essentially amounts to removing from Fig. 3 the
localization branches and replacing the summation over
proposals with the soft-maximum operation described
above. To avoid any confusion, please note that we
use the term ‘stream’ to refer to classification and
localization parts of the scoring network.

2) Visual-Only and Audio-Only Networks: These networks
only utilize one of the modalities for classification.
However, note that there are still two streams for
classification and localization, respectively. For a fair
comparison and ablation study we train these networks
with `2 normalization. In addition, for completeness we
also implement Bilen et al.’s architecture for weakly
supervised deep detection networks (WSDDN) with an
additional softmax on the classification stream. As the
scores are in the range [0,1], we train this particular
network with C binary log-loss terms [37]. When dis-
cussing results we refer to this system as WSDDN-Type.

3) CVSSP Audio-Only [23]: This state-of-the-art method
is the DCASE 2017 challenge winner for the audio
event classification sub-task. The system is based on
Gated convolutional RNN (CRNN) for better temporal
modeling and attention-based localization. They use no
external data and training/evaluation is carried out on all
the samples. We present results for both their winning
fusion system, which combines prediction of various
models and Gated-RCNN model trained with log-Mel
spectrum.

Results and discussion. We show in Table I the micro-
averaged F1 scores for each of the systems described in this
paper. In particular, systems (a)-(b) in Table I are the proposed
asynchronous and synchronous AV systems respectively and
(c)-(f) present variants of (a) which are also treated as base-
lines, (g)-(h) denote results from CVSSP team [23], winners
of the DCASE AED for smart cars audio event tagging task.
The proposed systems and their variants are trained with audio
temporal segment proposals only. Our proposed two stream
multimodal and audio-only systems (a,b,c) outperform all the
other approaches by a significant margin. Among the mul-
timodal systems, the two-stream architecture performs much
better than the one-stream counter-part, designed with only a
classification stream and soft-maximum for region selection.
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On the other hand, the state-of-the-art CVSSP fusion system,
which combines predictions of various models, achieves a
better precision than the other methods. It is also worth
mentioning that performance of the sync. AV system (b)
is lower than the unsynchronized one (a). This is expected
as the dataset contains some samples with asynchronously
appearing cues. However, the sync. system would still be
useful for detecting temporal segments where the AV cues
appear together. Several important and interesting observations
can be made by looking at these results in conjunction with
the class-wise scores reported in Table II.

Most importantly, the results emphasize the complementary
role of visual and audio sub-modules for this task. To see
this, we could categorize the data into two sets: (i) classes
with clearly defined AV elements, for instance car, train,
motorcycle; (ii) some warning sounds such as, e.g., reverse
beeping, screaming, air horn, where the visual object’s pres-
ence is ambiguous. The class-wise results of the video only
system are a clear indication of this split. Well-defined visual
cues enhance the performance of the proposed multimodal
system over audio-only approaches, as video frames carry
vital information about the object. On the other hand, in the
case of warning sounds, video frames alone are insufficient
as evidenced by results for the video-only system. In this
case, the presence of audio assists the system in arriving at
the correct prediction. The expected AV complementarity is
clearly established through these results.

Note that for some warning sounds the CVSSP method
achieves better results. In this regard, we believe better tem-
poral modeling for our audio system could lead to further
improvements. In fact, we currently operate with a coarse
temporal window of 960ms, which might not be ideal for all
audio events. RNNs could also be used for further improve-
ments. We think such improvements are orthogonal and were
not the focus of this study. We also observe that results for
under-represented classes in the training data such as air horn
and reversing beeps are relatively lower. This can possibly be
mitigated through data augmentation strategies.

In Table III we report results for the case where all layers of
vggish are fine-tuned. For this, we remove the FC adaptation
layer from the audio network (refer to Fig. 3). It is also worth
noting that for these experiments, we reduced the batch size
to one due to memory constraints. For DCASE data, which
contains approximately 48K training samples, this results in
significantly more number of variable updates. Thus, to avoid
overfitting, we run the system for 10 epochs and report results
with the model that gives the lowest validation error. As ex-
pected, fine-tuning vggish results in improved performance
as the audio features are better adapted to the dataset. We also
see competitive instrument classification performance with KI,
where the multimodal system fairs better than audio alone.

D. Audio temporal localization

We show the sound event detection performance on DCASE
smart cars data in Table IV. Following DCASE evaluation
protocol, here we report segment–wise aggregated F1 score
and error rate (ER) for each system. The official metric, ER,

TABLE I
RESULTS ON DCASE SMART CARS TASK TEST SET. WE REPORT HERE THE

MICRO-AVERAGED F1 SCORE, PRECISION AND RECALL VALUES AND
COMPARE WITH STATE-OF-THE-ART. TS IS AN ACRONYM FOR

TWO-STREAM.

System F1 Precision Recall

(a) AV Two Stream 64.2 59.7 69.4
(b) Sync. AV Two Stream 62.0 57.2 67.6
(c) TS Audio-Only 57.3 53.2 62.0
(d) TS Video-Only 47.3 48.5 46.1
(e) TS Video-Only WSDDN-Type [37] 48.8 47.6 50.1

(f) AV One Stream 55.3 50.4 61.2

(g) CVSSP - Fusion system [23] 55.6 61.4 50.8
(h) CVSSP - Gated-CRNN-logMel [23] 54.2 58.9 50.2

computes total number of substitution, deletion and insertion
errors by comparing the ground truth and estimated output
using one second long sub–segments [13].

The results for the proposed systems are computed by
simply thresholding the two–stream output from the audio
sub–module at τ = 0 for the predicted label(s). We note that
the results are comparable with the best performing CVSSP
system. Note that the winning system for this subtask from Lee
et al. [67] employs an ensemble method to optimally weigh
multiple learned models, using ER as the performance metric
to make the final selection. No such fine tuning is performed
in our case.

E. Audio source enhancement

Systems. We evaluate audio-visual (V + A) systems with
different audio proposal types, namely:
• A (NCP): NMF component proposals,
• A (TSP, NCP): all TSPs and NCPs are put together into

the same bag and fed to the audio network.
vggish is fine-tuned (as discussed earlier) for the systems
listed above to adapt to NCP input.

Baselines. We compare with the following NMF related
methods:
• Supervised NMF [68]: We use the class labels to train

separate dictionaries of size 100 for each music instru-
ment with stochastic mini-batch updates. At test time,
depending on the label, the mixture is projected onto the
appropriate dictionary for source reconstruction.

• NMF Mel-Clustering [69]: This blind audio-only method
reconstructs source and noise signals by clustering mel-
spectra of NMF components. We take help of the example
code provided online for implementation in MATLAB
[70].

Testing protocol. We corrupt the original audio with
background noise corresponding to recordings of environments
such as bus, busy street, park, etc. using one audio file per
scene from the DCASE 2013 scene classification dataset [71].
The system can be utilized in two modes: label known and
label unknown. For the former, where the source of interest
is known, we simply use the proposal ranking given by the
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System Vehicle Sounds Warning Sounds

bik bus car car-pby mbik skt trn trk air-hrn amb car-alm civ-def f-eng pol-car rv-bps scrm trn-hrn

AV TS 75.7 54.9 75.0 34.6 76.2 78.6 82.0 61.5 40.0 64.7 53.9 80.4 64.4 49.2 36.6 81.1 47.1
Sync. AV TS 65.0 55.6 75.7 25.6 74.0 80.5 85.1 57.8 28.4 65.7 54.1 82.1 61.3 52.6 39.6 70.6 48.8
TS Audio-Only 42.1 38.8 69.8 29.6 68.9 64.9 78.5 44.0 40.4 58.2 53.0 79.6 61.0 51.4 42.9 72.1 46.9
TS Video-Only 72.5 52.0 61.2 15.0 54.1 64.2 73.3 49.7 12.0 33.9 13.5 68.6 46.5 19.8 21.8 44.1 32.1

AV OS 68.2 53.6 74.1 25.6 67.1 74.4 82.8 52.8 28.0 54.7 20.6 76.6 60.4 56.3 18.8 49.4 36.2

CVSSP - FS 40.5 39.7 72.9 27.1 63.5 74.5 79.2 52.3 63.7 35.6 72.9 86.4 65.7 63.8 60.3 91.2 73.6

TABLE II
CLASS-WISE COMPARISON ON TEST SET USING F1 SCORES. WE USE TS, OS AND FS AS ACRONYMS TO REFER TO TWO-STREAM, ONE-STREAM AND

FUSION SYSTEM, RESPECTIVELY. CLASS ABBREVIATIONS ARE DETAILED IN SEC. IV-B

TABLE III
RESULTS ON DCASE AND KI WITH FINE TUNED VGGISH

DCASE KI
Systems F1 Precision Recall Accuracy

AV TS - VGGISH FT 65.0 64.9 65.0 84.5
AO TS - VGGISH FT 61.7 61.5 61.9 75.3

TABLE IV
F1 SCORE AND ERROR RATE FOR SOUND EVENT DETECTION TASK

System F1 ER

AV TS 51.0 0.76
AO TS 48.5 0.78
AV TS - VGGISH FT 52.3 0.74
AO TS - VGGISH FT 53.0 0.75

CVSSP - Fusion system [23] 51.8 0.73
CVSSP - Gated-CRNN-logMel [23] 47.5 0.78

SNU - Ensemble method [67] 55.5 0.66

corresponding classifier for reconstruction. For the latter, the
system’s classification output is used to infer the source.

Results and discussion. We report, in Table V, average
Source to Distortion Ratio (SDR) [72] over 450 audio mixtures
created by mixing each of the 45 clean samples from the
dataset with 10 noisy audio scenes. The results look promising
but not state-of-the-art. This performance gap can be explained
by noting that the audio network is trained for the task
of audio event detection and thus does not yield optimal
performance for source enhancement. The network focuses
on discriminative components, failing to separate some source
components from the noise by a larger margin, possibly
requiring adaptive thresholding for best results. In other words,
as the component scores vary for each example, a single
threshold for all cases proves to be sub-optimal. It is worth
noting that performance for the proposed systems does not
degrade when used in “Label Unknown” mode, indicating that
despite incorrect classification the system is able to cluster
acoustically similar sounds. Performance of supervised NMF
seems to suffer due to training on a noisy dataset. Separation
results on in-the-wild YouTube videos are made available on
our companion website.6

6http://bit.ly/2HEJbrl

TABLE V
AVERAGE SDR OVER MIXTURES CREATED BY COMBINING CLEAN

INSTRUMENT EXAMPLES WITH ENVIRONMENTAL SCENES.

System Label Known Label Unknown

Supervised NMF 2.3 –
NMF Mel-Clustering – 4.3
V + A (NCP), soft 3.3 3.3
V + A (NCP), τ = 0.1 3.8 3.9
V + A (NCP), τ = 0.2 3.6 3.6
V + A (NCP, TSP), soft 2.1 2.2

F. Qualitative visual localization

In Fig. 6 we present some visual localization results for
the ‘train’ category from DCASE. Localization in extreme
asynchronous conditions is also discussed in Fig. 7. In the
first case A, the sound of a car’s engine is heard in the
first two seconds followed by music. The normalized audio
localization heatmap at the bottom displays the scores assigned
to each temporal audio segment, st by the car classifier. The
video frames placed above are roughly aligned with the audio
temporal axis to show the video frame at the instant when the
car sounds and the point where the visual network localizes.
The localization is displayed through a yellow bounding box.
To better understand the system’s output, we modulate the
opacity of the bounding box according to the system’s score
for it. Higher the score, more visible the bounding box. As
expected, we do not observe any yellow edges in the first
frame. Clearly, there exists temporal asynchrony, where the
system locks onto the car, much later, when it is completely
visible. B depicts an example, where due to extreme lighting
conditions the visual object is not visible. Here too, we localize
the audio object and correctly predict the ‘motorcycle’ class.

For full videos and more such examples we refer the reader
to our companion website.6

V. CONCLUSION

Building upon ideas from multiple instance learning, we
have proposed a modular deep AV scene understanding frame-
work that can be trained jointly to perform several tasks
simultaneously. Exploiting our method’s modularity, we in-
vestigate several instantiations capable of dealing with un-
synchronized AV cue appearance, determining synchronous
temporal segments and segregating the audio into constituent



10

Fig. 6. Visual localization on DCASE test video frames from the ‘train’ category. The localization results are shown in green bounding boxes. Below each
image we display the scaled region proposal (top) and audio segment scores for the class of interest as heatmaps. The visual heatmap is a concatenation of
proposals from all the sub-sampled frames, arranged in temporal order. More results on our companion website.6

Fig. 7. Qualitative results for unsynchronized AV events. For both the cases A and B, the heatmap at the bottom denotes audio localization over segments
for the class under consideration. For heatmap display, the audio localization vector has been scaled to lie between [0,1]. The top row depicts video frames
roughly aligned to the audio temporal axis. (A) Top: Here we show a video where the visual object of interest appears after the audio event. This is a ‘car’
video from the validation split. The video frames show bounding boxes where edge opacity is controlled by the box’s detection score. In other words, higher
score implies better visibility (B) Bottom: This is a case from the evaluation data where due to lighting conditions, the visual object is not visible. However
the system correctly localizes in audio and predicts the ‘motorcycle’ class.

sources. The latter is made possible through a novel use
of NMF decomposition, where, unlike most earlier methods,
we only use the given weak labels for training. We report
state-of-the-art event classification performance on DCASE
2017 smart cars data along with promising results for spatio-
temporal visual localization, audio event detection and source
separation. The method generalizes well to diverse object
types. Experiments have have also shown that a more ac-
curate audio temporal modeling would be needed to better
cope with situations where the visual modality is inefficient.
Furthermore, we believe the presented method could benefit
from appropriately incorporating several recent developments
in feature and modality fusion [73], [74].
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Abstract

Humans share a strong tendency to memorize/forget
some of the visual information they encounter. This pa-
per focuses on understanding the intrinsic memorability of
visual content. To address this challenge, we introduce a
large scale dataset (VideoMem) composed of 10,000 videos
with memorability scores. In contrast to previous work on
image memorability – where memorability was measured a
few minutes after memorization – memory performance is
measured twice: a few minutes and again 24-72 hours after
memorization. Hence, the dataset comes with short-term
and long-term memorability annotations. After an in-depth
analysis of the dataset, we investigate various deep neu-
ral network-based models for the prediction of video mem-
orability. Our best model using a ranking loss achieves a
Spearman’s rank correlation of 0.494 (respectively 0.256)
for short-term (resp. long-term) memorability prediction,
while our model with attention mechanism provides insights
of what makes a content memorable. The VideoMem dataset
with pre-extracted features is publicly available1.

1. Introduction
While some contents have the power to burn themselves

into our memories for a long time, others are quickly for-
gotten [17]. Evolution made our brain efficient to remem-
ber only the information relevant for our survival, repro-
duction, happiness, etc. This explains why, as humans, we
share a strong tendency to memorize/forget the same im-
ages, which translates into a high human consistency in im-
age memorability (IM) [20], and probably also a high con-
sistency for video memorability (VM). Although, like for

1https://www.technicolor.com/dream/
research-innovation/video-memorability-dataset

any other perceptual concept, we can observe individual dif-
ferences while memorizing content, in this paper we target
the capture and prediction of the part of the memorability
that is shared by humans, as it can be assessed by averag-
ing individual memory performances. This shared-across-
observers part of the memorability, and especially long-
term memorability, has a very broad application range in
various areas including education and learning, content re-
trieval, search, filtering and summarizing, storytelling, etc.

The study of VM from a computer vision point of view
is a new field of research, encouraged by the success of IM
since the seminal work of Isola et al. [17]. In contrast to
other cues of video importance, such as aesthetics, inter-
estingness or emotions, memorability has the advantage of
being clearly definable and objectively measurable (i.e., us-
ing a measure that is not influenced by the observer’s per-
sonal judgement). This certainly participates to the grow-
ing interest for its study. IM has initially been defined as
the probability for an image to be recognized a few min-
utes after a single view, when presented amidst a stream
of images [17]. This definition has been widely accepted
within subsequent work [24, 21, 3, 20, 23]). The introduc-
tion of deep learning to address the challenge of IM predic-
tion causes models to achieve results close to human con-
sistency [20, 1, 34, 18, 31, 12]. As a result of this suc-
cess, researchers have recently extended this challenge to
videos [14, 30, 7, 5]. However, this new research field is
nascent. As argued in [7], releasing a large-scale dataset for
VM would highly contribute to launch this research field,
as it was the case for the two important dataset releases
in IM [17, 20]. Such a dataset should try to overcome the
weaknesses of the previously released datasets. In particu-
lar, previous research on IM focused on the measurement of
memory performances only a few minutes after memoriza-
tion. However, passage of time is a factor well-studied in
psychology for its influence on memory, while having been



largely ignored by previous work on IM, probably because
of the difficulty to collect long-term annotations at a large
scale, in comparison with short-term ones. Measuring a
memory performance a few minutes after the encoding step
is already a measure a long-term memory, since short-term
memory usually lasts less than a minute for unrehearsed
information [28]. However, memories continue to change
over time: going through a consolidation process (i.e., the
time-dependent process that creates our lasting memories),
some memories are consolidated and others are not [25].
In other words, short-term memory performances might be
poor predictors of longer term memory performances. In
the following, we refer to measures of long-term memory a
few minutes after memorization as measures of short-term
memorability, and use the term long-term memorability for
measures of long-term memory performance after one day.
Since long-term memorability is more costly and difficult to
collect than short-term memorability, it would nevertheless
be interesting to know if the former can be inferred from the
latter, which would also push forward our understanding of
what makes a video durably memorable. A way to achieve
this consists in measuring memorability for the same videos
at two points of time. These two measures would be par-
ticularly interesting if spaced by a time interval in which
forgetting is quite significant, to maximize the size of the
potentially observable differences depending on the differ-
ent video features. Observing the different forgetting curves
in long-term memory (e.g. Ebbinghauss seminal work [9]),
one can observe that the drop in long-term memory perfor-
mance in recall follows an exponential decay and is partic-
ularly strong in the first hour, and to a lesser extent in the
first day, immediately after the memorization. Measuring
long-term memory a few minutes after encoding (as done
in studies of IM [17, 20]), and again one day or more after
(i.e., to obtain a measure close to very long-term memory),
sounds therefore a good trade-off.

The main contributions of this work are fivefold:

• We introduce a new protocol to objectively measure
human memory of videos at two points of time (a few
minutes and then 24-72 hours after memorization) and
release VideoMem, the premier large-scale dataset for
VM, composed of 10,000 videos with short-term and
long-term memorability scores (Sections 3.1 and 3.2).

• Through an analysis of the dataset, we address the
problem of understanding VM, by highlighting some
factors involved in VM (Section 4).

• We benchmark several video-based DNN models for
VM prediction (Section 5.2) against image-based
baseline models (Section 5.1).

• We prove that, similarly to IM, semantics is highly rel-
evant for VM prediction, through the study of a state-
of-the-art image-captioning model (Section 5.3). This
best model reaches a performance of 0.494 for Spear-

man’s rank correlation on VideoMem for short-term
memorability and 0.256 for long-term memorability.

• We propose an extension of the best performing model
with an attention mechanism to localize what in an im-
age makes it memorable (Section 5.5).

2. Related work
If long-term memory has been studied for over a cen-

tury in psychology, since the seminal experimental studies
of Ebbinghaus [10], its study from a computer vision point
of view started quite recently, with [17]. Images and videos
had long been used as material to assess memory perfor-
mances [32, 2, 13], proving that human possessess an exten-
sive long-term visual memory. The knowledge accumulated
in psychology helped to measure memory using classical
memory tests (see [29] for an extensive overview) such as
recognition tests [17, 20, 14, 7] or textual question-based re-
call surveys [30]. Several factors are highlighted in the psy-
chological literature for their critical influence on long-term
memory, including emotion [19], attention [8], semantics
[27], several demographic factors [6], memory re-evocation
[26], or passage of time [25], also providing computer vi-
sion researchers with insights to craft valuable computa-
tional features for IM and VM prediction [24, 16, 7].

Focusing on IM in computer vision, most studies made
use of one of the two available large datasets, specifi-
cally designed for IM prediction, where IM was measured
a few minutes after memorization [17, 20], and conse-
quently focused on predicting a so-called short-term IM
[24, 21, 3, 20, 1, 23, 31, 12]. The pioneering work of [17]
focused primarily on building computational models to pre-
dict IM from low-level visual features [17], and showed
that IM can be predicted to a certain extent. Several char-
acteristics have also been found to be relevant for predict-
ing memorability in subsequent work, for example saliency
[24], interestingness and aesthetics [16], or emotions [20].
The best results were finally obtained by using fine-tuned or
pre-extracted deep features, which outperformed all other
features [20, 1, 31, 12], with models achieving a Spear-
man’s rank correlation near human consistency (i.e., .68)
when measured for the ground truth collected in [17, 20].

VM study is more recent. To the best of our knowl-
edge, there exist only three previous attempts at measuring
it [14, 30, 7]. Inspired by [17], Han et al. built a simi-
lar but far much heavier protocol to measure VM: the long
time span of the experiment makes the generalization of
this protocol difficult, in particular if one targets the con-
struction of an extensive dataset. Another approach uses
questions instead of a classic visual recognition task to mea-
sure VM [30]. As a results, memorability annotations col-
lected for the videos may reflect not only the differences in
memory performances but also the differences of complex-
ity between the questions, especially since the authors use



the response time to calculate memorability scores, which
might critically depend on the questions’ complexity. The
most recent attempt at measuring VM, and the only one,
to our knowledge, resulting in a publicly available dataset,
comes from [7]. The authors introduced a novel protocol
to measure memory performance after a significant reten-
tion period – i.e., weeks to years after memorization – with-
out needing a longitudinal study. In contrast with previous
work, the annotators did not pass through a learning task. It
was replaced with a questionnaire designed to collect infor-
mation about the participants’ prior memory of Hollywood-
like movies. However, such a protocol implies a limited
choice of content: authors needed contents broadly dissem-
inated among the population surveyed, as the participants
should have seen some of them before the task (hence the
Hollywood-like movies), leading to a number of annota-
tions biased towards most famous content. Furthermore,
the absence of control of the memorizing process and the
answers of the questionnaire based on subjective judgments
make the measure of memory performance not fully objec-
tive. To sum up, none of the previous approaches to mea-
sure VM is adapted to build a large-scale dataset with a
ground truth based on objective measures of memory per-
formance. Results obtained for VM prediction are yet far
from those obtained in IM prediction. Han et al. pro-
posed a method which combines audio-visual and fMRI-
derived features supposedly conveying part of the brain ac-
tivity when memorizing videos, which in the end enables
to predict VM without the use of fMRI scans [14]. How-
ever, the method would be difficult to generalize. Shekhar
et al. investigated several features, including C3D, seman-
tic features obtained from some video captioning process,
saliency features, dense trajectories, and color features, be-
fore building their memorability predictor [30]. They found
that the best feature combination used dense trajectories,
captioning, saliency and color features.

3. VideoMem: large-scale video memorability
dataset

In Section 3.1, we describe the collection of source
videos that compose the VideoMem dataset. We then in-
troduce a new protocol to collect short-term and long-term
memorability annotations for videos (Section 3.2), before
explaining the computation of VM scores (Section 3.3).

3.1. Video collection

The dataset is composed of 10,000 soundless videos of
7 seconds shared under a license that allows their use and
redistribution for research purpose only. In contrast to pre-
vious work on VM, where videos came from TRECVID
[30, 14] or were extracted from Hollywood-like movies
[7], videos in our dataset were extracted from raw footage,
mainly from staged settings, dedicated to be further edited

by professionals when creating new content, e.g. a new mo-
tion picture, video clip, television show, advertisements,
etc. Because such video footage is typically used to save
shooting new material, it is usually generic enough to be
easily integrated in different sorts of creations. As such,
they are context-independent and contain only one seman-
tic scene. By this choice of content, we expect these basic
building units to be relevant to train models which gener-
alize on other types of videos. We are also confident that
observers never saw the videos before participating in the
experiment. Videos are varied and contain different scene
types such as animal, food and beverages, nature, people,
transportation, etc. A few of them contain similarities, e.g.
same actor, same place but slightly different action, as it is
the case in everyday video consumption (< 1%). A small
fraction is also slow-motion. Each video comes with its
original title, that can often be seen as a list of tags (textual
metadata). Example video keyframes are shown in Fig. 1.

The original videos are of high quality (HD or 4k) and of
various durations (from seconds to minutes). As it will be
described in Section 3.2, our protocol relies on crowdsourc-
ing. For the sake of fluency during the annotation collection
and consistency between the videos, we rescaled the videos
to HD and re-encoded them in .webm format, with a bitrate
of 3,000 kbps for 24 fps. To satisfy to the protocol’s con-

Figure 1: Example keyframes from videos of VideoMem,
sorted by decreasing long-term memorability (from left to
right, and top to bottom).

straints, i.e., minimal delay before measuring memory per-
formance and maximal duration of the tasks to avoid user
fatigue, we also cut the videos to keep only the first 7 sec-
onds. Most videos are short (< a few minutes) and contain
one semantic scene. Those 7 seconds should therefore be
representative of their content. Videos are soundless, firstly
because a large part of the original data came without au-
dio, and secondly, because it is difficult to control the au-
dio modality in crowdsourcing. Accordingly, memorability
would be linked only to the visualization of a semantic unit,
which sounds a reasonable step forward for VM prediction,
without adding a potentially biasing dimension.

3.2. Annotation protocol

To collect VM annotations, we introduced a new proto-
col which enables to measure both human short-term and



7 sec 1 sec

…

Vigilance repeat
3 to 6 videos

Target repeat
45 to 100 videos

(a) Step #1. Interlaced encoding and recognition tasks.

7 sec 1 sec

…

Target repeat Target repeat

(b) Step #2. Second recognition task after 24 to 72 hours.

Figure 2: Proposed protocol to collect both short-term and long-term video memorability annotations. The second recognition
task measures memory of videos viewed as fillers during step #1, to collect long-term memorability annotations.

long-term memory performances. Inspired by what was
proposed in [16, 17] for IM, we also used recognition tests
for our memorability scores to reflect objective measures
of memory performance. However, our protocol differs in
several ways, not mentioning the fact that it is dedicated to
videos. Firstly, as videos have an inherent duration, we had
to revise 1) the delay between the memorization of a video
and its recognition test and 2) the number of videos, for the
task not be too easy. Secondly, in contrast to previous work
on IM, where memorability was measured only a few min-
utes after memorization, memory performance is measured
twice to collect both short-term and long-term memorabil-
ity annotations: a few minutes after memorization and again
(on different items) 24-72 hours later. The retention interval
between memorization and measure is not as important as in
[7], where it lasts weeks to years. As previously explained,
we hope, however, that this measure reflects very-long term
memory performance instead of short-term memory, as for-
getting happens to a large extent during the first day follow-
ing the memorization.

Fig. 2 illustrates our protocol, that works in two steps.
Step #1, intended to collect short-term annotations, con-
sists of interlaced viewing and recognition tasks. Partici-
pants watch a series of videos, some of them – the targets
– repeated after a few minutes. Their task is to press the
space bar whenever they recognize a video. Once the space
bar is pressed, the next video is displayed, otherwise current
video goes on up to its end. Each participant watches 180
videos, that contain 40 targets, repeated once for memory
testing, and 80 fillers (i.e., non target videos), 20 of which
(so-called vigilance fillers) are also repeated quickly after
their first occurrence to monitor the participant’s attention to
the task. The 120 videos (not counting the repetitions) that
participate to step #1 are randomly selected among the 1000
videos that received less annotations at the time of the selec-

tion. Their order of presentation is randomly generated by
following the given rule: the repetition of a target (respec-
tively a vigilance filler) occurs randomly 45 to 100 (resp. 3
to 6) videos after the target (resp. vigilance filler) first oc-
currence. In the second step of the experiment, that takes
place 24 to 72 hours after step #1, the same participants
are proposed another similar recognition task, intended to
collect long-term annotations. They watch a new sequence
of 120 videos, composed of 80 fillers (randomly chosen to-
tally new videos) and 40 targets, randomly selected from
the non-vigilance fillers of step #1. Apart from the vigilance
task (step #1 only), we added several controls, settled upon
the results on an in-lab test: a minimum correct recognition
rate (15%, step #2 only), a maximum false alarm rate (30%,
step #1; 40%, step #2) and a false alarm rate lower than the
recognition rate (step #2 only). This allows to obtain quality
annotations by validating each user’s participation; a partic-
ipant could participate only once to the study. We recruited
participants from diverse countries and origins via the Ama-
zon Mechanical Turk (AMT) crowdsourcing platform.

3.3. Memorability score calculation

After a filtering of the participants to keep only those
that passed the vigilance controls, we computed the final
memorability scores on 9,402 participants for short-term,
and 3,246 participants for long-term memorability. On av-
erage, a video was viewed as a repeated target 38 times (and
at least 30 times) for the short-term task, and 13 times (at
least 9 times) for the long-term task (this difference is inher-
ent to the lower number of participants in step #2, as a large
part of participants in step#1 did not come back). We as-
signed a first raw memorability score to each video, defined
as the percentage of correct recognitions by participants, for
both short-term and long-term memorability.

The short-term raw scores are further refined by applying



a linear transformation that takes into account the memory
retention duration to correct the scores. Indeed, in our pro-
tocol, the repetition of a video happens after variable time
intervals, i.e., after 45 to 100 videos for a target. In [16],
using a similar approach for images, it has been shown that
memorability scores evolve as a function of the time interval
between repeats while memorability ranks are largely con-
served. We were able to prove the same relation for videos,
i.e., memorability decreases linearly when the retention du-
ration increases (see Fig. 3, left). Thus, as in [20], we use
this information to apply a linear correction (shown in Fig.
3) to our raw memorability scores to explicitly account for
the difference in interval lengths, with the objective for our
short-term memorability scores to be the most representa-
tive of the typical memory performance after the maximal
interval (i.e., 100 videos). Note that the applied correction
has nevertheless little effect on the scores both in terms of
absolute and relative values. Note also that we did not ap-
ply any correction for long-term memorability scores (Fig.
3, right). Indeed, we observed no specific, strong enough re-
lationship between retention duration and long-term mem-
orability. This was somehow expected from what can be
found in the literature : according to our protocol, the sec-
ond measure was carried out 24 to 72 hours after the first
measure. After such a long retention duration, it is expected
that the memory performance is no more subjected to sub-
stantial decrease due to the retention duration. In the end,
the average short-term memorability score is 0.859 (instead
of 0.875) and the average long-term memorability score is
0.778, all values showing a bias towards high values.

4. Understanding video memorability

4.1. Human consistency vs. annotation consistency

Following the method proposed in [16], we measured
human consistency when assessing VM. For this purpose,
we randomly split our participants into two groups of equal
size (4,701 for short-term memorability, 1,623 for long-
term memorability), and computed VM scores indepen-
dently in each group as described in Section 3.3. We then
calculated a Spearman’s rank correlation between the two
groups of scores. Averaging over 25 random half-split tri-
als, an average Spearman’s rank correlation, i.e., a global
human consistency, of 0.481 is observed for short-term
memorability and of 0.192 for long-term memorability.

Such a method divides the number of annotations that is
taken into account for the score computation at least by a
factor of 2. Moreover, it may end with groups with unbal-
anced number of annotations per video as the split is ran-
domly applied on the participants, not taking into account
which videos they watched. For this reason, we proposed a
new metric named annotation consistency, more representa-
tive of the performance consistency of the users. We repro-

duced the previous process of human consistency computa-
tion but on successive subparts of the dataset by consider-
ing for each sub-part only videos which received at least N
annotations. Each subpart is then split in two groups of par-
ticipants while ensuring a balance number of participants
per video. By doing so, we obtain the annotation consis-
tency as a function of the number of annotations per video,
as presented in Fig. 4. This allows us to interpolate the fol-
lowing values: Annotation consistency reaches 0.616 (re-
spectively 0.364) for the short-term (resp. long-term) task,
for a number of annotations of 38 (resp. 13). Both values
represent strong (resp. moderate) correlations according to
the usual Spearman scale of interpretation. Hence, choosing
larger mean number of annotations provides more stable an-
notations, i.e., 0.616 (resp. 0.364) rather than 0.481 (resp.
0.192) for the short-term (resp. long-term) task.

The value of 0.616 for short-term memorability is to be
compared to 0.68 for images as found in [20]. Slightly
lower, VideoMem consistency was nevertheless obtained
with less annotations than in [20], which is consistent with
[7]. The maximum consistency is also slightly higher for
VM than for IM (0.81 against 0.75 in [17] and 0.68 in [20]).
An explanation is that videos contain more information than
images and thus are more easily remembered. However, one
should keep in mind that the protocols to collect annotations
differ in several ways, making these results not fully com-
parable. Fig. 4 also shows that long-term and short-term
consistencies follow the same evolution.

(a) Step #1. Recognition rate de-
creases linearly over time.

(b) No significant change in mem-
ory performance between 24 and
72 hours after memorization.

Figure 3: Mean correct recognition rate vs. the retention in-
terval between the memorization and the measure of mem-
ory performance. Blue lines represent linear fitting.

4.2. Memorability consistency over time

In this study, we are interested in assessing how well
memorability scores remain consistent over time, i.e., if
a video highly memorable after a few minutes of re-
tention remains also highly memorable after 24 to 72
hours. The Spearman’s rank correlation coefficient be-
tween the long-term and short-term memorability scores for



Figure 4: Annotation consistency vs. mean number of an-
notations per video (left: short-term, right: long-term).

the 10,000 videos exhibits a moderate positive correlation
(ρ = 0.305, p < .0001) between the two variables, as also
shown in Fig. 5. To discard a potential bias that would come
from the highest number of annotations in step #1 compared
to step #2, we computed the correlation for the 500 most
annotated videos in the long-term task (that have at least 21
annotations) and then again for the 100 most annotated (at
least 28 annotations), observing similar Spearman values of
ρ = 0.333, p < .0001 and ρ = 0.303, p < .0001, re-
spectively. This result suggests that memory evolves with
time and in a non-homogeneous manner depending on the
videos: a video highly memorable a few minutes after visu-
alization might not remain highly memorable in long-term
memory. This finding is consistent with the hypothesis we
proposed in the introductory section, that the information
important for a content to be memorized might not be the
same for short-term and long-term memorization.

Figure 5: Short-term vs. long-term scores (left) and average
response times (correct detections only) (right).

4.3. Memorability and response time

We observed negative Pearson correlations between the
mean response time to correctly recognize targets and their
memorability scores, both for short-term (r = 0.307, p <
.0001) and long-term (0.176, p < .0001) memorability, as
also illustrated in Fig. 6. This tends to prove that, globally,
participants tended to answer more quickly for the most
memorable videos than for the less memorable ones. This
is consistent with [7], where the authors propose two expla-
nations to this result: either the most memorable videos are

also the most accessible in memory, and/or the most memo-
rable videos contain more early recognizable elements than
the less memorable ones. As videos in VideoMem consist
of semantic units with often one unique shot – with most
of the information already present from the beginning – the
first explanation sounds more suitable here. This also sug-
gests that participants tend to quickly answer after recogniz-
ing a repeated video (even though they did not receive any
instruction to do so), maybe afraid of missing the time to
answer, or to alleviate their mental charge. This correlation
highlights that the average response time might be a useful
feature to further infer VM in computational models.

The correlation is, however, lower for long-term memo-
rability. One explanation might be that, after one day, re-
membering is more difficult. In connection with this ex-
planation, we observed a significant difference between the
mean response time to correctly recognize a video during
step #1 and during step #2 (1.43sec. vs. 3.37sec.), as
showed by a Student’s t-test (t(9999) = −122.59, p <
0001). Note that the Pearson correlation (0.291) be-
tween average response time per video for short-term and
long-term memorability is close to the Pearson correlation
(0.329) observed between short-term and long-term mem-
orability scores (see Fig. 5, right). Note that the mean re-
sponse time for a false alarm was 3.17sec. for step #1 and
3.53sec. for step #2.

Figure 6: Average response time (correct recognitions only)
as a function of memorability scores, for short-term (left)
and long-term memorability (right).

5. Predicting video memorability
In this section we focus on predicting VM using various

machine learning approaches. We pose the VM score pre-
diction as a standard regression problem. We first bench-
mark several state-of-art video-based models on our data
(Section 5.2), against performances of IM models (Section
5.1). We then focus on assessing how a very recent state-
of-the-art image captioning based model, fine-tuned on our
data, performs for VM prediction. The aim is here to see
if the finding in [31, 7] that semantics highly intervenes in
IM prediction still stands for VM prediction. In Section 5.4,
we analyze the prediction results of all models and give in-
sights to understand the correlation between IM and VM.



Last, in Section 5.5, we modify the advanced IC model by
adding an attention mechanism that helps us better under-
stand what makes a content memorable. Note that, for train-
ing (when applied) and evaluating the considered models,
we split VideoMem dataset into training (6500 videos), val-
idation (1500), and test (2000) sets, where the test set con-
tains 500 videos with a greater number of annotations. Sim-
ilarly to previous work in IM and VM, the prediction per-
formance is evaluated in term of the Spearman’s rank cor-
relation between the ground truth and the predicted scores.

Figure 7: Semantic embedding model without (green
pipeline) and with an attention mechanism (full workflow).

5.1. Image memorability-based baselines

In order to investigate the correlation between IM and
VM and to build some first baselines on the dataset, we di-
rectly used two state-of-the-art models for IM prediction to
compute a memorability score for 7 successive frames in
the video (one per second): MemNet proposed in [20] and
Squalli et al. in [31]. The final VM score for one video is
obtained by averaging the 7 corresponding frame scores.

5.2. Video-based models

In a first attempt to capture the inherent temporal infor-
mation of the videos, we investigated the performances of
two classic, yet temporal, features: C3D [33] and HMP [4]
as input features to some MLP layers. We tested them alone
and concatenated, using some grid search for hyperparam-
eter optimisation. Best results were obtained for the fea-
tures alone, with the parameters: two hidden layers with 10
neurons for HMP and one hidden layer with 100 neurons
for C3D, optimizer=IBLGS, activation=tanh, learning rate
(lr)=1e-3. Second, instead of using a fix feature extractor,
we directly fine-tuned the state-of-the-art ResNet3D model
(based on ResNet34) [15]. For this, we replaced the last
fully connected layer of ResNet3D by a new one dedicated
to our considered regression task. This last layer was first
trained alone for 5 epochs (Adam optimizer, batchsize=32,
lr=1e-3), then the whole network was re-trained for more
epochs (same parameters, but lr=1e-5).

5.3. Semantic embedding-based model

As scene semantic features derived from an image cap-
tioning system (IC) [22] have been shown to well character-
ize the memorability of images [31] and videos [7], we also

investigated the use some IC system. Also, following the
idea of model fine-tuning, we fine-tuned a state-of-art vi-
sual semantic embedding pipeline used for image caption-
ing [11], on top of which a 2-layer MLP is added, to regress
the feature space to a single memorability score. The overall
architecture is shown in Fig. 7, in the green pipeline. As the
model in [11] remains at the image-level, we first predict
scores for the same 7 frames as in Section 5.1, then com-
pute the final prediction at video level by averaging those 7
values. It is fine tuned on both VideoMem and LaMem [20]
datasets, for short-term memorability only, because LaMem
only provides short-term annotations. The training is done
using the Adam optimizer and is divided in two steps: in
the first 10 epochs only the weights of the MLP are up-
dated while those of the IC feature extractor remain frozen.
Later the whole model is fine-tuned. The learning rate is
initialized to 0.001 and divided in half every three epochs.
It is important to note that the original IC model was trained
with a new ranking loss (i.e., Spearman surrogate) proposed
in [11]. This new loss has proved to be highly efficient for
ranking tasks as claimed in [11]. For the fine-tuning how-
ever, the training starts with a `1 loss as initialization step,
before coming back to the ranking loss. The reason is that
the original model was indeed trained for scores in [-1;1],
while our memorability scores are in [0;1]. Thus the `1 loss
forces the model to adapt to this new range.

5.4. Prediction results

From the results in Table 1, we may draw several conclu-
sions. Additional results are presented in the supplemen-
tary material. First, it is possible to achieve already quite
good results in VM prediction using models designed for
IM prediction. This means that the memorability of a video
is correlated to some extent with the memorability of its
constituent frames. For both C3D and HMP-based models,
it seems that the simple MLP layers put on top of those fea-
tures did not successfully capture the memorability. This
might be explained by the fact that most of the videos con-
tain no or little motion (62%), whereas 11% only contain
high motion. However, the comparison between short-term
and long-term performances exhibits some interesting infor-
mation: HMP performs better than C3D for short-term and
the inverse is true for long-term, as if direct motion infor-
mation was more relevant for short-term than for long-term
memorability. This is a first finding on what distinguishes
the two notions. Also, the two fine-tuned models, dedicated
to the task, show significantly higher performances. The
fine-tuned ResNet3D, although purely video-based, is ex-
ceeded by the fine-tuned semantic embedding-based model.
However, for the latter, data augmentation was performed
using the LaMem dataset [20], which was not possible for
the former as LaMem only contains image memorability
information. This indeed biases the comparison between



Models short-term memorability long-term memorability
validation test test (500) validation test test (500)

MemNet (Sec. 5.1) 0.397 0.385 0.426 0.195 0.168 0.213
Squalli et al. (Sec. 5.1) 0.401 0.398 0.424 0.201 0.182 0.232

C3D (Sec. 5.2) 0.319 0.322 0.331 0.175 0.154 0.158
HMP (Sec. 5.2) 0.469 0.314 0.398 0.222 0.129 0.134

ResNet3D (Sec. 5.2) 0.508 0.462 0.535 0.23 0.191 0.202
Semantic embedding model (Sec. 5.3) 0.503 0.494 0.565 0.26 0.256 0.275

Table 1: Results in terms of Spearman’s rank correlation between predicted and ground truth memorability scores, on the
validation and test sets, and on the 500 most annotated videos of the dataset (test (500)) that were placed in the test set.

the two models, but current results still show that, as ex-
pected, leveraging both a dedicated fine-tuning and the use
of high level semantic information from some image cap-
tioning system, gives an already quite high prediction per-
formance. For all models, we note that performances were
lower for long-term memorability. One interpretation might
be that the memorability scores for long-term are based on
a smaller number of annotations than for short-term, so they
probably capture a smaller part of the intrinsic memora-
bility. However, it may also highlight the difference be-
tween short-term and long-term memorability, the latter be-
ing more difficult to predict as it is more subjective, while
both being still – though not perfectly – correlated. The per-
formances of our models on the 500 most annotated videos
are better. This reveals that our dataset might benefit from
a larger number of annotations. Last, compared to annota-
tion consistency values, performances remain lower, show-
ing that there is still room for improvement.

5.5. Intra-memorability visualization

To better understand what makes a video frame memo-
rable, we added an attention mechanism to our best model.
It will then learn what regions in each frame contribute more
to the prediction. For this purpose, a convolutional layer
is added in parallel with the last convolutional layer of the
feature extractor part. It outputs a 2D attention map which
goes through a softmax layer and is multiplied with the last
convolution map of the visual pipeline as shown in Fig. 7
(orange branch). An empirical study of the resulting atten-
tion maps tends to separate them in two categories. In the
first one, when image frames contain roughly one main ob-
ject and no or rare information apart from this main object
(this might be because the background is dark or uniform),
it seems that the model focuses, as expected intuitively, on
the main object and even, in the case of large enough faces,
on details of the faces, as if trying to remember the specific
features of faces. Example results for images in the first
category can be found in Fig. 8, first row. In the second
category that groups all other frames, with several main and
secondary objects, cluttered background, etc., it seems on

the contrary that the model focuses on all but the main ob-
jects/subjects of the images, as if trying to remember little
details that will help it differentiate the image from another
similar one. Or said differently, the second category shows
results that might be interpreted as a second memorization
process, once the first one – focusing on the main object – is
already achieved. Examples for the second category can be
found in the second row of Fig. 8. More results and insights
are given in the supplementary material.

Figure 8: Visualization of the attention mechanism’s output.
The model focuses either on close enough faces or main
objects when the background is dark or uniform (row #1),
or it focuses on details outside the main objects (row #2).

6. Conclusions

In this work, we presented a novel memory game based
protocol to build VideoMem, a premier large-scale VM
dataset. Through an in-depth analysis of the dataset, we
highlighted several important factors concerning the under-
standing of VM: human vs. annotation consistency, mem-
orability over time, and memorability vs. response time.
We then investigated various models for VM prediction.
Our proposed model with spatial attention mechanism al-
lows to visualize, and thus better understand what type of
visual content is more memorable. Future work would be
devoted to further study the differences between short-term
and long-term memorability, and improve prediction results
with a particular focus on temporal aspects of the video,
e.g. by adding temporal attention model and recurrent neu-
ral network blocks to the workflow.
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pp. 73-80, Springer,  2010. 

[7] S. Araki, A. Ozerov, V. Gowreesunker, H. Sawada, F. Theis, G. Nolte, D. Lutter, and N. Q. K. 

Duong, “The 2010 signal separation campaign (SiSEC2010) -  Audio source separation,” Proc. Int. 

Conf. on Latent Variabe Analysis and Signal Separation (LVA/ICA), Vol. 6365/2010, pp. 114-122, 
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