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Introduction

This HDR thesis is an extensive summary of a major part of the work done since my PhD defense in 2011. Following the PhD focusing on audio signal processing, I first worked on audio related topics such as non-negative matrix factorization (NMF)-based audio source separation [1,2,3,4,5,6,7,8,9,10,11], audio synchronization using fingerprinting techniques [12,13], and audio zoom using beamforming techniques [14]. Then in the deep learning era, thanks to the collaboration with a number of colleagues and PhD/Master's students, I have extended my research interest to the application of machine learning techniques in audio/image manipulation and multimodal data analysis. In the first area, I have considered multiple problems such as audio style transfer [15], speech inpainting [16], and image inpainting [17]. In the second area, I have investigated other challenges such as audio-visual source separation [18,19], audio-visual representation learning applied to event/object classification and localization [20,21,22], image/video interestingness [23,24,25,26], and image/video memorability [27,28,29] for visual content assessment. Especially, to push forward for research in such high level concepts of how media content can be interesting and memorable to viewers, I co-founded two series of international challenges in the MediaEval benchmarch 1 : Predicting Media Interestingness Task running in 2016 [30], 2017 [31],

and Predicting Media Memorability Task running in 2018 [32], 2019 [33]. These tasks have greatly interested the multimedia research community as shown by a large number of international participants.

As most of my work applies machine learning techniques (whether it is a conventional model such as NMF or the emerging deep learning approach) to analyse audio and multimodal data, I entitle the thesis as "Contributions in Audio Modeling and Multimodal Data Analysis via Machine Learning" and decide to present in this document mostly about the work described in four major publications as follows:

• Paper 1 [8]: a novel user-guided audio source separation framework based on NMF
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with group sparsity constraints is introduced for single-channel setting. The NMFbased generic source spectral models (GSSM) that govern the separation process are learned on-the-fly from audio examples retrieved online.

• Paper 2 [11]: a combination of the GSSM introduced in the paper 1 with the fullrank spatial covariance model within a unified Gaussian modeling framework is proposed to address multichannel mixtures. In particular, a new source variance separation criterion is considered in order to better constrain the intermediate source variances estimated in each EM iteration.

• Paper 3 [22]: a novel multimodal framework that instantiates multiple instance learning (MIL) is proposed for audio-visual (AV) representation learning. The learnt representations are shown to be useful for performing several tasks such as event/object classification, audio event detection, audio source separation and visual object localization. Especially, the proposed framework has capacity to learn from unsynchronized audio-visual events.

• Paper 4 [29]: this work focuses on understanding the intrinsic memorability of visual content. For this purpose, a large-scale dataset (VideoMem10k) composed of 10,000 videos with both short-term and long-term memorability scores is introduced to the public. Various deep neural network-based models for the prediction of video memorability are investigated, and our model with attention mechanism provides insights of what makes a content memorable.

The remainder of this thesis is structured as follows. Chapter 1 presents the contributions in audio source separation mainly described in the papers [8,11]. Chapter 2 focuses on the contributions in the application of machine learning for audio-visual scene analysis described in the paper [22]. Chapter 3 is dedicated to my recent works in multimodal multimedia interestingness and memorability, which were published in a number of papers [23,26,34,27,28,29], and especially the paper [29]. Chapter 4 briefly summarizes my other works on different applications: audio synchronization [35,13], audio zoom for smartphones [14], audio classification [36,37,38], audio style transfer [15], speech inpainting [16], and image inpainting [17]. Finally, Chapter 5 is devoted to the conclusion and some future research perspectives. The four major papers [8,11,22,29] together with my Curriculum Vitae are annexed at the end of the thesis.

I must acknowledge that I did not do all the work mentioned in this thesis alone, but with many collaborators including colleagues and the students whom I co-supervised. I am very grateful to all these people, and without them this work would not be possible.
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Thus, from now on in this manuscript, unless I intend to express my personal opinion, I will use "we" and "our" while speaking about the work.
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Chapter 1

Audio source separation

Supervision: Hien-Thanh Duong (PhD student), Dalia El Badawyd (MSc intern), Luc Le Magarou (MSc intern)

Main collaborator: Alexey Ozerov (Technicolor).

This chapter summarizes our work on audio source separation, both in single-channel [8] and multichannel setting [11]. Some works target consumer application such as onthe-fly source separation [3,6,8], while others focus more on professional scenarios considered at Technicolor such as text-informed source separation [1,1,2] and interactive user-guided source separation [4,5]. Two types of information are generally exploited for the task: spectral cues and spatial cues. In our work, the former model is based on NMF, and the latter (when applied) is based on the full-rank spatial covariance model.

The organization of the chapter is as follows. We begin by the problem formulation and motivation in Section 1.1. We then present the background of NMF model for supervised source separation in Section 1.2. Our contributions in single-channel setting and multichannel setting exploiting the generic source spectral model (GSSM) are presented in Section 1.3 and Section 1.4, respectively. Section 1.5 briefly summarizes other works on text-informed and interactive source separation. Finally we conclude in Section 1.6.

Motivation and problem formulation

Audio plays a central role in both human perception of surrounding environments and machine listening tasks. Real-world audio data has a complex structure due to the superposition of different sound sources. For instance, speech recordings often include concurrent speakers, music background, or environmental noise. Such noisy mixtures
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challenge both human and machine to localize, separate, and understand a target sound source. Thus audio source separation, which aims at extracting individual sound sources from an observed noisy mixture signal, has been an active research topic in audio community for several decades. It is a desired processing step within many real-world applications such as automatic speech recognition, hearing aids, sound post-production, robotics, etc [START_REF] Benesty | Speech Enhancement[END_REF].

Several settings have been considered in the literature. When the number of sources J is smaller than or equal to the number of observed channel I, the problem is overdetermined or determined, and techniques based on independent component analysis (ICA) have been actively used during 1990s [START_REF] Hyvarinen | Independent component analysis: algorithms and applications[END_REF]. When I < J, the problem is illposed, and is known as under-determined case. In the extreme single-channel case when I = 1, the problem is highly ill-posed and, without training data to learn the source spectral patterns, additional assumptions about the sources such as temporal continuity or sparsity must be made in order to solve such an inverse problem [START_REF] Virtanen | Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparse criteria[END_REF]. Another axis of research known as informed audio source separation [START_REF] Liutkus | An overview of informed audio source separation[END_REF][START_REF] Ewert | Score-informed source separation for musical audio recordings: An overview[END_REF], where the separation process is guided by some auxiliary information, has also attracted a lot of research interest since classical blind approaches often do not lead to satisfactory performances in many practical applications. Recently, with the advances of deep neural network (DNN), various powerful DNN-based approaches have been proposed [HKHS15, HCRW16, LAPGH20, KWS + 20] which offer very promising results. However, they usually require a large amount of labeled data for training and the training is usually computationally expensive. As most of our works was done before the DNN-based source separation era, we will not discuss more about such approaches in this chapter.

Let us denote by s j (t) the contribution of j-th source at the microphone array and let x(t) denote the observed mixture. The mixing model is written as:

x(t) = J j=1 s j (t) (1.1)
The goal of source separation is to recover s j (t) given x(t). In reverberant mixing conditions, s j (t) results from the convolution of the original source with a mixing filter characterizing the acoustic environment. This convolution in the time domain is often approximated by a simple multiplication in the time-frequency (T-F) domain by means of the short-term Fourier transform (STFT). Besides, as audio sources are often sparse and non-overlapped in the T-F domain [START_REF] Jourjine | Blind separation of disjoint orthogonal signals: Demixing N sources from 2 mixtures[END_REF], most audio source separation algorithms operate in such T-F domain. In our works, we considered non-negative matrix 1.2 Background of NMF-based supervised audio source separation factorization (NMF) [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF][START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF] for the source spectrogram model and the local Gaussian model [39] for multichannel reverberant mixing conditions when applicable.

1.2 Background of NMF-based supervised audio source separation Let us denote by X ∈ C F ×N and S j ∈ C F ×N the STFT coefficients of the x(t) and s j (t), respectively, where F is the number of frequency bins and N is the number of time frames. The mixing model (1.1) is written in the T-F domain as

X = J j=1 S j . (1.2) 
Let V = |X| .2 be the power spectrogram of the mixture, where X .p is the matrix with entries [X] p il , .p denotes an element-wise operation. In NMF, it is decomposed into two smaller non-negative matrices W ∈ R F ×K and H ∈ R K×N such that V ≈ V = WH.

The factorization is usually done by solving the following optimization problem [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF] W * , H * = arg min

H≥0,W≥0 D(V WH), (1.3) 
where

D(V V) = F,N f,n=1 d(V f n Vfn ) (1.4) 
and d(• •) is a scalar divergence measure. With power spectrogram matrix, Itakura-Saito (IS) divergence is often used thank to its scale invariance property and is defined as [START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF] d IS (x y) = x y -log x y -1. Note that, one can also use magnitude spectrogram (when p = 1) and other distance measures such as Euclidean and Kullback-Leibler divergence. The parameters θ = {W, H} are usually initialized with random nonnegative values and are iteratively updated via multiplicative update (MU) rules [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF][START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF]. With IS divergence used in our work, the MU rules are as follow:

H ← H W T (WH) .-2 V W T (WH) .-1
(1.5)

W ← W (WH) .-2 V H T (WH) .-1 H T (1.6)
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where denotes the Hadamard entry-wise product.

In supervised setting, we assume that some training examples are available for each source. Thus a spectral model for each source j, denoted by W (j) , can be first learned (1.7)

In the separation step, the time activation matrix H is estimated via the MU rules as (1.5), while W is kept fixed. Note that the activation matrix is also partitioned into horizontal blocks as

H = [H T (1) , . . . , H T (J) ] T , (1.8) 
where H (j) denotes the block characterizing the time activations for the j-th source.

Once the parameters θ = {W, H} are obtained, Wiener filtering is applied to compute the source STFT coefficients as

Ŝj = W (j) H (j) WH X, (1.9) 
Finally, the inverse STFT is used to produce the time domain source estimates.

1.3 Single-channel audio source separation exploiting the generic source spectral model (GSSM)

Motivation, challenges, and contributions

So far source separation has been considered as a difficult task, and mostly performed by audio signal processing experts. In order to make audio source separation simple and accessible by non expert people, we introduced a friendly user-guided framework named on-the-fly audio source separation inspired by on-the-fly visual search methods [START_REF] Parkhi | On-the-fly specific person retrieval[END_REF][START_REF] Chatfield | Visor: Towards on-the-fly large-scale object category retrieval[END_REF] from the computer vision research. In this framework, a user only needs to provide some search keywords. Such keywords describe the sources in the mixture so that the corresponding audio examples can be retrieved on-the-fly from the internet.

These examples are then used to learn the generic source spectral models (GSSM) via non-negative matrix factorization to guide the separation process. The workflow of the proposed approach is shown in Figure 1.1.

Although the on-the-fly approach simplifies the user interactions as they are now 1.3 Single-channel audio source separation exploiting the generic source spectral model (GSSM)

.1: General workflow of the proposed on-the-fly framework. A user listens to the mixture and types some keywords describing the sources. These keywords are then used to retrieve examples to learn spectral models for the described sources. Optionally, the user may listen to the retrieved examples and discard irrelevant ones (figure is from [8]).

carried out at a higher semantic level, there are several challenges that need to be addressed as follows:

• (C1) Irrelevant examples: Some retrieved examples may contain sounds with entirely different spectral characteristics than those of the source in the mixture, e.g., searching for "bird chirps" and obtaining some "chirp signal" examples too. Those examples should be automatically eliminated by the optimization algorithm.

• (C1) Noisy examples: Some retrieved examples are actually mixtures of relevant and irrelevant sounds, e.g., "speech" with a music in the background. Those examples may still be useful but need carefully handling by the algorithm.

• (C1)

Missing examples: This may happen when the user describes only the sources of interest and ignores the remaining sources or when the search engines do not return results for some of the provided keywords. We refer to this challenge as the semi-supervised case where all non-described sources that possibly appear in the mixture should be grouped as one background source.

The on-the-fly paradigm was published in two conference papers [3,6] and a journal paper [8]. The main contributions are summarized as follows:

• We introduced a general framework for on-the-fly audio source separation which greatly simplifies the user interaction.

• We proposed several group sparsity constraints for the task and showed their benefit in both supervised and the semi-supervised cases where training examples for some sources are missing.
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• We derived several algorithms for parameter estimation when different group sparsity constraints are used.

• We performed a range of evaluations, including both supervised and semi-supervised scenarios, and a user-test to validate the benefit of the proposed framework. In order to address all the mentioned challenges concerning the on-the-fly framework, we considered a so-called generic source spectral models (GSSM) learned in advance

GSSM construction and model fitting

from training examples, with sparsity constraints on the activation matrix in order to enforce the selection of only a few representative spectral patterns during the model fitting. The idea of GSSM was first used as "universal background model" for speaker verification in [RQD], and was later introduced in [START_REF] Sun | Universal speech models for speaker independent single channel source separation[END_REF] as "universal speech model" for the separation of speech and noise.

Let us denote by V jp the spectrogram of the p-th training example corresponding to the j-th source. First, V jp is used to learn the NMF spectral model, denoted by W jp , by optimizing the criterion (similar to (1.3)):

H * jp , W * jp = arg min H jp ≥0,W jp ≥0 D(V jp W jp H jp ), (1.10) 
where H jp is the corresponding time activation matrix. Given W jp for all examples, the GSSM for the j-th source is constructed as

W (j) = [W j1 , . . . , W jP j ] (1.11)
1.3 Single-channel audio source separation exploiting the generic source spectral model (GSSM)

where P j is the number of retrieved examples for the j-th source.

Model fitting for supervised source separation In the supervised setting, we assume having GSSM for all the sources in the mixture as the users describe all of them. W (j) constructed in (1.11) is actually a large matrix when the number of examples increases, and it is often redundant since different examples may share similar spectral patterns. Therefore, in the NMF decomposition of the mixture, the need for a sparsity constraint arises to fit only a subset of each W (j) to the source in the mixture. In other words, the mixture is decomposed in a supervised manner, given W constructed from W (j) as in (1.7) and fixed, by solving the following optimization problem

H * = arg min H≥0 D(V WH) + Ψ(H) (1.12)
where Ψ(H) denotes a penalty function imposing sparsity on the activation matrix H.

Model fitting for semi-supervised source separation

We refer to a semi-supervised setting when not all of the source models can be learned in advance. In our considered on-the-fly approach, this occurs either when the user only describes the sources of interest and not all of them or when the search engine fails to retrieve examples for a given query. We can model all the "missing" sources as one (1.13)

Note that, unlike as in (1.12), in this setting W b is updated as well and there is no group sparsity-inducing penalty on H b . The reason is that, as opposed to W, W b is neither an overcomplete dictionary nor has an underlying structure that can be exploited for regularization.

Group sparsity constraints

The general group sparsity-inducing penalty is defined as

Ψ gr (H) = J j=1 λ j G j g=1
log + H (j,g) 1 , (1.14)
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where H (j,g) (g = 1, . . . , G j ) are the groups within the activation sub-matrix H (j)

corresponding to the j-th GSSM (see equation (1.8) for the definition of H (j) ), G j the total number of groups for the j-th source, • 1 denotes the 1 matrix norm, > 0 and λ j ≥ 0 are trade-off parameters determining the contribution of the penalty for each source. Note that in the remainder of the paper, H (j,g) should not be confused with (1.10). In [3,8], we investigated two options for defining the groups H (j,g) and derive the corresponding MU rules for the parameter estimation in both supervised and semi-supervised settings as follows.

H jp in

Block sparsity-inducing penalty

As in [START_REF] Sun | Universal speech models for speaker independent single channel source separation[END_REF], we considered the groups to be sub-matrices of H (j) corresponding to the spectral models W jp trained using the p-th example (see (1.10) for the definition of W jp ). In that case the indices g and p coincide and G j = P j . This block sparsityinducing strategy allows filtering out irrelevant spectral models W jl , thus dealing with irrelevant retrieved examples (challenge C 1 ). An illustration for the estimated activation matrix H for that case is shown in Figure 1.3-middle where blocks corresponding to irrelevant examples for each source are set to zero.

Component sparsity-inducing penalty

As an alternative solution to fitting the universal model, we proposed the groups to be rows of H (j) corresponding to different spectral components (in that case the number of groups G j is simply equal to the number of rows in H (j) ). This so-called component sparsity-inducing strategy allows filtering out irrelevant spectral components, thus dealing with noisy retrieved examples (challenge C 2 ). Figure 1.3-right shows an estimated activation matrix H where rows corresponding to irrelevant spectral components for each source are set to zero.

Relative group sparsity constraints

With the group sparsity penalty, we observed that, in some practical cases, the group of different sources are fit together using the same source model, instead of separately using their designated models. This makes the separation impossible. We called this as "source vanishing" phenomenon. This issue is even worse in the semi-supervised case where the entire mixture is fit by the estimated background model only. This is due to the fact that W b and H b are now fully unconstrained in (1.13), whereas W is fixed and H is constrained by the group sparsity-inducing penalty. To solve this problem, we 

← λ j + H (j,g) 1 Q (j,g) ← λ j G j γ j H (j) 1
end for P = [P T

(1,1) , . . . , P T (1,G 1 ) , . . . , P T (J,1) , . . . ,

P T (J,G J ) ] T Q = [Q T (1,1) , . . . , Q T (1,G 1 ) , . . . , Q T (J,1) , . . . , Q T (J,G J ) ] T H ← H W T (V V.-2 )+Q W T ( V.-1 )+P .η V ← WH until convergence Algorithm 1.
2 MU rules for NMF with group sparsity in the semi-supervised case (without formulas in red). When relative group sparsity is applied, formulas in red are added. Require: V, W, λ, η Ensure: H Initialize H, H b , and introduced a relative sparsity-inducing penalty and formulated it as:

W b randomly V ← WH + W b H b repeat for j = 1, . . . , J, g = 1, . . . , G j do P (j,g) ← λ j + H (j,g) 1 Q (j,g) ← λ j G j γ j H (j) 1 end for P = [P T (1,1) , . . . , P T (1,G 1 ) , . . . , P T (J,1) , . . . , P T (J,G J ) ] T Q = [Q T (1,1) , . . . , Q T (1,G 1 ) , . . . , Q T (J,1) , . . . , Q T (J,G J ) ] T H ← H W T (V V.-2 )+Q W T ( V.-1 )+P .η H b ← H b W T b (V V.-2 ) W T b V.-1 .η W b ← W b (V V.-2 )H T b V.-1 H T b .η Normalize W b and H b component-wise V ← WH + W b H b until convergence 1. AUDIO SOURCE SEPARATION
Ψ rel (H) = J j=1 λ j G j g=1 log + H (j,g) 1 H (j) γ j 1 , (1.15) 
where γ j are some non-negative constants. The penalty (1.15) can also be rewritten as

Ψ rel (H) = Ψ gr (H) - J j=1 λ j γ j G j log H (j) 1 . (1.16)
One can easily see that, while the new penalty keeps the group sparsity property thanks to Ψ gr (H) defined in (1.14), it prevents (when γ j > 0) the supergroups from vanishing since if H (j) 1 tends to zero, thenlog H (j) 1 tends to +∞. This formulation generalizes the group sparsity constraint in the sense that (1.15) reduces to (1.14) for γ j = 0. One can then introduce either the relative block sparsity-inducing penalty or the relative component sparsity-inducing penalty by defining a group H (j,g) to be either a block or a row in H. Note that while we presented relative group sparsity within the context of NMF, the idea can also be extended to other dictionary decomposition schemes.

1.4 Multichannel audio source separation exploiting the GSSM

Algorithms for parameter estimation and results

In NMF formulation, multiplicative update (MU) rules are usually used for the parameter estimation as they are simple and they guarantee a the non-increasing value of the optimization function after each iteration [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF][START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF]. The derivation of such MU rules for the group sparsity is straightforward and almost identical to the one proposed in [START_REF] Lefèvre | Itakura-Saito non-negative matrix factorization with group sparsity[END_REF], except that in our case the groups are defined differently and W is not updated. The overall algorithms for supervised case (criterion (1.12)) and semi-supervised case (criterion (1.13)) are summarized in Algorithms 1.1 and 1.2, respectively, without considering the formulas in red color. In these algorithms η > 0 is a constant parameter, P (j,g) is a matrix of the same size as H (j,g) whose entries have the same value, and P is a matrix concatenating all P (j,g) . When relative group sparsity is applied, some modifications in red color are added to take into account the effect of the group normalization.

We reported on-the-fly source separation results (including a user test) with the use of the (relative) group sparsity constraints in [8]. Later, these proposed group sparsity constraints were investigated in the context of single-channel speech enhancement in [7,40]. More details about the algorithm derivation and experimental results can be found in our corresponding papers.

Multichannel audio source separation exploiting the

GSSM

In multichannel setting, i.e., when more microphones are available, additional information about the source locations can be exploited thanks to the phase and intensity differences of signals recorded at different microphones. Such spatial cues play an important role and are usually combined with spectral models to offer better source separation performance compared to the single-channel case. In my PhD, I proposed a spatial model named full-rank source spatial covariance matrices and investigated it within a Gaussian modeling framework for multichannel audio source separation [39].

The work was continued for some time after my PhD and we published a journal paper [42] where some prior knowledge about the source location is considered. In that work, we proposed two alternative probabilistic priors over the spatial covariance matrices, which are consistent with the theory of statistical room acoustics, and we derived EM algorithms for maximum a posteriori (MAP) estimation.

Motivated by the success of both the GSSM (for single-channel audio mixtures) and the source spatial covariance model (for multichannel mixtures), we investigated their combination in multichannel audio source separation [11]. The general workflow is shown in Figure 1.4 and the contributions of the work are summarized as follows:

• We proposed two criteria to constrain the source variances in the GSSM-based Gaussian modeling framework.

• We derived algorithms for the parameter estimation, and studied their convergence and stability with respect to the parameter settings.

• We validated the effectiveness of the proposed approach in speech enhancement scenario using a benchmark dataset from the 2016 Signal Separation Evaluation Campaign (SiSEC 2016).

Local Gaussian modeling

Let us denote by s j (n, f ) the I × 1 vector of the STFT coefficients of the contribution of j-th source at I microphones, where n is time frame index and f is the frequency bin. The mixing model in equation (1.1) is written in the frequency domain and in the 1.4 Multichannel audio source separation exploiting the GSSM multichannel setting as:

x(n, f ) = J j=1 s j (n, f ).
(1.17)

In the LGM, s j (n, f ) is modeled as a zero-mean complex Gaussian random vector

with covariance matrix Σ j (n, f ) = E(s j (n, f )s H j (n, f ))
, where H indicates the conjugate transposition. Such a covariance matrix is then factorized as

Σ j (n, f ) = v j (n, f ) R j (f ), (1.18) 
where v j (n, f ) are scalar time-dependent variances encoding the spectro-temporal power of the sources and R j (f ) are time-independent I×I spatial covariance matrices encoding their spatial characteristics when sources and microphones are assumed to be static.

Under the assumption that the source images are statistically independent, the mixture vector x(n, f ) also follows a zero-mean multivariate complex Gaussian distribution with the covariance matrix computed as

Σ x (n, f ) = J j=1 v j (n, f ) R j (f ). (1.19)
With a further assumption that the mixture STFT coefficients at all time-frequency (T-F) bins are independent, the likelihood of the set of observed mixture vectors x = {x(n, f )} n,f given the set of parameters θ = {v j (n, f ), R j (f )} j,n,f is given by

P (x|θ) = n,f 1 det (πΣ x (n, f )) e -tr(Σ -1 x (n,f ) Ψx(n,f )) , (1.20) 
where det represents the determinant of a matrix, tr() stands for matrix trace, and

Ψ x (n, f ) = E(x(n, f )x H (n, f ))
is the empirical covariance matrix, which can be numerically computed by local averaging over neighborhood of each T-F bin (n , f ) as [43].

The parameters are then estimated by minimizing the negative log-likelihood:

L(θ) = n,f tr Σ -1 x (n, f ) Ψ x (n, f ) + log det πΣ x (n, f ) , (1.21) 
Under this model, once the parameters θ are estimated, the STFT coefficients of the source images are obtained in the minimum mean square error (MMSE) sense by
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multichannel Wiener filtering as

ŝj (n, f ) = v j (n, f ) R j (f )Σ -1 x (n, f )x(n, f ). (1.22)
Finally, the expected time-domain source images ŝj (t) are obtained by the inverse STFT of ŝj (n, f ).

NMF-based source variance model

As can be seen in the previous section, NMF has been widely applied to single channel audio source separation where the mixture spectrogram is factorized into two latent matrices characterizing the spectral basis and the time activation [START_REF] Vincent | From Blind to Guided Audio Source Separation: How models and side information can improve the separation of sound[END_REF][START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF].

When adapting NMF to the considered LGM framework, the nonnegative source variances v j (n, f ) can be approximated as [41] v j (n, f ) =

K j k=1 w jf k h jkn , (1.23) 
where w jf k is an entry of the spectral basis matrix W (j) , h jkn is an entry of the activation matrix H (j) .

Source variance fitting with GSSM and group sparsity constraint

We proposed two strategies for the source variance fitting as follows.

Source variance denoising. The activation matrix is estimated by optimizing the criterion: min

H (j) ≥0 D( V j W (j) H (j) ) + λΨ(H (j) ), (1.24) 
where

V j = {v j (n, f )} n,f ∈ R F ×N +
is the matrix of j-th source variances, W (j) is constructed as (1.11) and fixed, Ψ(H (j) ) represents a penalty function imposing sparsity on the activation matrix H (j) (1.14), and λ is a trade-off parameter determining the contribution of the penalty.

Source variance separation. Let V = J j=1 V j be the matrix of the total source variance estimate, it is decomposed by solving the following optimization problem

min H≥0 D( V WH) + λΨ(H) (1.25)

Multichannel audio source separation exploiting the GSSM

where H = [H (1) , ..., H (J) ] ∈ R K×N + , K = J j=1 P j the total number of rows in H. This criterion can be seen as an additional NMF-based separation step applied on the source variances, while criterion (1.24) and other existing works [41] [START_REF] Ozerov | A general flexible framework for the handling of prior information in audio source separation[END_REF][START_REF] Fakhry | Audio source separation in reverberant environments using beta-divergence based nonnegative factorization[END_REF] do not perform any additional separation of the variances, but more like denoising of the already separated variances.

Inspired by the advantage of two penalty functions inducing block and component sparsity (1.14) presented in Section 1.3, we investigated their combination in a more general form as

Ψ(H) = γ P p=1 log( + H p 1 ) + (1 -γ) K k=1 log( + h k 1 ), (1.26) 
where the first term on the right hand side of the equation represents the block sparsityinducing penalty, the second term represents the component sparsity-inducing penalty, and γ ∈ [0, 1] weights the contribution of each term. In (1.26),

h k ∈ R 1×N + is a row (or component) of H, H
p is a subset of H representing the activation coefficients for p-th block, P is the total number of blocks, is a non-zero constant, and . 1 denotes 1 -norm operator. In the considered setting, a block represents one training example for a source and P is the total number of used examples (i.e., P = J j=1 P j ). Similar formula can also be written for the Ψ(H (j) ) in (1.24).

Algorithms for parameter estimation and results

By putting (1.26) into (1.25), we now have a complete criterion for estimating the activation matrix H given V and the pre-trained spectral model W in the source variance separation case. Similar procedure can be derived for the source variance denoising case (1.24). Within the LGM, a generalized EM algorithm has been used to estimate the parameters {v j (n, f ), R j (f )} j,n,f by considering the set of hidden STFT coefficients of all the source images {c j (n, f )} n,f as the complete data. For the proposed approach as far as the GSSM concerned, the E-step of the algorithm remains the same. In the M-step, we additionally perform the optimization defined either by (1.24) or by (1.25). This is done by the MU rules so that the estimated intermediate source variances v j (n, f ) are further updated with the supervision of the GSSM.

We validated the performance and properties of the proposed approach in speech enhancement use case where we know already two types of sources in the mixture: speech and noise. For better comparison with the state of the art, we used the benchmark development dataset of the "Two-channel mixtures of speech and real-world background noise" (BGN) task1 within the SiSEC 2016 [LSR + 17]. This devset contains stereo mixtures of 10 second duration and 16 kHz sampling rate. They were mixtures of male/female speeches and real-world noises recorded from different public environments: cafeteria (Ca), square (Sq), and subway (Su). Table 1.1 shows the speech separation performance in terms of the signal-to-distortion ratio (SDR), the signal to interference ratio (SIR), the overall perceptual score (OPS), and the target-related perceptual score (TPS) [VGF06, EVHH12], the higher the better, obtained by the proposed approaches and other state-of-the-art methods in the SiSEC campaign.

We also investigated the algorithm convergence by varying the number of EM and MU iterations, and observed that with 10 to 25 MU iterations, the algorithm converges nicely and saturates after about 10 EM iterations. We further investigated the separation results with different choice of the hyper-parameters λ and γ. The algorithm is less sensitive to the choice of γ, while more sensitive to the choice of λ and λ > 10 greatly decreases the separation performance. The best choice for these parameters in 1.5 Other contributions in audio source separation term of the SDR are λ = 10, γ = 0.2. Please refer to the paper [11] for details about the algorithm derivation and evaluations.

1.5 Other contributions in audio source separation

Text-informed source separation

In this work, we presented a novel text-informed framework in which textual information in form of text transcript associated with speech source is used to guide its separation from other sources in the mixture. The separation workflow is as follows. First, a speech example is artificially generated via either a speech synthesizer or by a human reading the text. Then, this example is used to guide source separation. For that purpose, a new variant of the non-negative matrix partial co-factorization (NMPCF) model based on an excitation-filter channel speech model is introduced. Such a modeling allows coupling the linguistic information between the speech example and the speech in the mixture. The corresponding multiplicative update (MU) rules are eventually derived for the estimation of the parameters. We performed extensive experiments to assess the effectiveness of the proposed approach in terms of source separation and alignment performance [2].

Interactive user-guided source separation

In order to boost the source separation performance in real-world post-production application, we considered a temporal annotation of the source activity along the mixture given by a user. We then proposed weighting strategies incorporated in the NMF formulation so as to better exploit such annotation to guide the separation process [4]. A video demonstration is online 1 . In another work [5], we proposed an interactive source separation framework that allows end-users to provide feedback at each separation step so as to gradually improve the result. A prototype graphical user interface (GUI) is developed to help users annotating time-frequency regions where a source can be labeled as either active, inactive, or well-separated within the displayed spectrogram. Such user feedback information is then taken into account in an uncertainty-based learning algorithm to constraint the source estimates in a next separation step. Both the considered approaches were based on non-negative matrix factorization and were shown to be effective in real-world settings.

AUDIO SOURCE SEPARATION

Informed source separation via compressive graph signal sampling

In this work, we investigated a novel informed source separation method for audio object coding based on a recent sampling theory for smooth signals on graphs. At the encoder, we assume to know the original sources, and thus the ideal binary time-frequency (T-F) mask considering only one source is active at each T-F point. This ideal mask is then sampled with a compressive graph signal sampling strategy that guarantees accurate and stable recovery in order to perform source separation at the decoder side. The graph can be built using feature vectors, computed using non-negative matrix factorization at both encoder and decoder sides. We show in our paper [9] that the proposed approach performs better than the state-of-the-art methods at low bitrate.

Conclusion

In this chapter we have presented the application of NMF model in audio source separation. We have considered single-channel case where some novel sparsity-inducing constraints were proposed to extract relevant spectral patterns from an over-complete source spectral dictionary. We have also extended the work to multi-channel settings within the local Gaussian modeling framework. Some other works on informed audio source separation have also been mentioned, which was done in close collaboration with

Technicolor production services for the real use cases.

Chapter 2

Audio-visual scene analysis (2016)(2017)(2018)(2019) and presented in the journal paper [22]. The work focuses on multimodal machine learning approach for audio-visual event identification and localization, and visual informed audio source separation. The organization of the chapter is as follows.

We begin by briefly discussing the motivation and related works in Section 2.1. Then the proposed weakly supervised representation learning framework and its application for tackling classification and localization is described in Section 2.2. This is followed by some implementation details in Section 2.3. Results on benchmark datasets (i.e., the DCASE smart cars challenge [MHD + 17a] and the instrument dataset [KCS + 17]) are discussed in Section 2.4. Finally, we conclude in Section 2.5.

Motivation and related works

Audio and visual cues appear everywhere in real life, and as humans we have great ability to perceive such information in order to analyse and understand the surrounding scenes. As an example, when a car passes by, we can instantly identify both audio and visual components that characterize this event. In many cases, information from audio cues can help better perceiving visual information and vice versa. For building machines with such scene analysis and understanding capabilities, it is important to design systems for jointly exploiting both audio and visual cues. Such approaches

AUDIO-VISUAL SCENE ANALYSIS

should be able to learn meaningful audio-visual (AV) representations from large-scale real-world data. This work presents a step in that potential direction. We formulated the considered AV problem (shown in Figure 2.1) as follows. Given a video labeled as "train horn", we would like to:

• (1) identify the event (classification problem);

• (2) localize its visual presences and the associated temporal audio segment(s) (localization problem);

• (3) separate the target sound source from the others (source separation problem).

To seek a unified solution, we opt for a weakly supervised learning approach which exploits audio-visual data with only general video-level event labels without temporal and spatial information about the AV events. As the train horn may sound before or after the train is visible, the targeting model, when designed, must be able to deal with such unsynchronized AV events. When this work was started, to our best knowledge, there was no existing literature that use a weakly supervised multimodal deep learning framework to address all three targets mentioned above. However, there were relevant works in audio community for audio scene analysis [MHDV15, ZZHJH10 

Weakly supervised representation learning framework

In order to tackle simultaneously all three tasks mentioned above, in [22] 

L(w) = 1 CB B l=1 C c=1 max 0, 1 -y (l) c φ c (V (l) ; w) . (2.1) 
where w denotes all network parameters (weights and biases), φ c (V (l) ; w) ∈ R C is the predicted output label.

Some implementation details and variant

Visual proposals and feature extraction. We sub-sampled frame sequences of each video at a rate of 1 frame per second, then generated class-agnostic region proposals on each extracted frame using EdgeBoxes algorithm [START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF]. EdgeBoxes additionally generated a confidence score for each bounding box characterizing a region proposal. To reduce the computational load and redundancy, we used this score to select the top M img proposals from each sampled frame and use them for feature extraction. A fixed-length feature vector is obtained from each region proposal using Fast-RCNN implementation For source separation task as a variant, the STFT magnitude spectrogram X of the original audio track is first decomposed into K non-negative components as

X ≈ K k=1 w k h k , (2.2) 
where w k and h k represent k-th spectral pattern and its temporal activation, respectively. Then K NMF tracks are obtained from w k , h k for k ∈ [1, K] by the inverse STFT with the phase of the original track. These tracks are chunked into temporal segments similar to the original tracks to obtain more M aud × K audio proposals. Such proposals are passed through the same VGGish audio network to generate embeddings. When performing NMF blindly, we do not know which NMF components belong to an audio source. However, the two stream architecture in the considered system will help to score each NMF component with respect to its relevance for a particular class c ∈ C. These relevance scores can then be appropriately aggregated to obtain a global score (denoted as α c k ), which weights the contribution of k-th NMF component on a targeted audio source. Several aggregation strategies are discussed in detail in [22]. Finally source separation can be obtained as:

S c = K k=1 α c k w k h k K k=1 w k h k X (2.3)
Here S c is the estimate of c-th source and is converted back to the time domain using the inverse STFT. 
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Results

In the experiment with different settings in the paper [22], we showed that the learnt representations are useful for performing several tasks such as event/object classification, audio event detection, audio source separation, and visual object localization. We also demonstrated the model's capacity to learn from unsynchronized audio-visual events. In other words, higher score implies better visibility (B) Bottom: This is a case from the evaluation data where due to lighting conditions, the visual object is not visible. However the system correctly localizes in audio and predicts the 'motorcycle' class (figure is from [22]).

we used the presented two-stream framework for audio scene classification task and participated in the DCASE 2019 challenge. Classification results obtained with several settings and a late fusion of several models were reported in [38].

Conclusion

We have presented a deep AV scene understanding approach that can be trained jointly using weak labels. [31,34] and VideoMem10k [29]; the organization of two MediaEval benchmark campaigns: media interestingness prediction task (2016, 2017) [30,31] and video memorability prediction task (2018, 2019) [32,33]; and the pioneering work on video memorability [28,29].

MEDIA INTERESTINGNESS AND MEMORABILITY

The chapter is organized as follows. We first briefly summarize our work on image and video interestingness in Section 3.1. We then discuss more in-depth work on video memorability in Section 3.2. Finally we draw conclusions in Section 3.3.

Image and video interestingness

Interestingness usually refers to arousing interest, curiosity, as well as the ability of holding or catching attention [START_REF] Berlyne | Conflict, arousal and curiosity[END_REF]. Existing studies in psychology and vision research [START_REF] Chen | An examination of situational interest and its sources[END_REF][START_REF] Elazary | Interesting objects are visually salient[END_REF] revealed that interest is determined by certain factors like novelty, uncertainty, conflict, complexity, and their combinations. This finding was also supported in the appraisal theory presented in [START_REF] Paul | What is interesting? exploring the appraisal structure of interest[END_REF], where the author explained that appraisals like the novelty, the comprehensibility, and the complexity of an event are likely to arouse interest in this event. However, understanding and predicting visual interestingness remains challenging as its judgment is highly subjective and usually context-dependent.

Following the literature, we distinguished two different notions, namely socially-driven interestingness and content-driven interestingness. The former is derived from media sharing websites such as Flickr1 and Pinterest2 , where contextual information may greatly affect the judgement. The latter refers to human annotations that assess interestingness solely on the perceived media content. As an example, in our annotation protocol for content-driven interestingness, users only view two images or videos side by side on the screen and vote for which one they are more interested [30]. Our work brings contributions in both these notions and are summarized as follows:

• In [30,31] By analizing the dataset and the prediction systems, we provided an in-depth analysis of the crucial components for visual interestingness prediction in a book chapter [25] and a journal paper in revision [34]. • In [44,23] we applied DNN techniques for multimodal video interestingness prediction on both socially-driven dataset (i.e., Flickr videos) and content-driven

Interestingness10k dataset [30]. The workflow of the investigated approach is shown in Figure 3.3. We tested various deep neural DNN architectures, includ-
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ing our proposed one combining several recurrent neural networks (RNNs), so as to handle several temporal samples at the same time. We then investigated different strategies for dealing with unbalanced dataset to improve the prediction results. We found that multimodality, as the mid-level fusion of audio and visual information, brings benefit to the task.

Figure 3.3: Proposed computational models for video interestingness prediction. Black arrows represent the workflow for our multimodal approach, whereas blue dash lines and green dash-dot lines represent monomodal workflows for visual-based and audio-based systems, respectively (figure is from [23]).

• In [24,26] we focused on socially-driven interestingness and collected a large-scale interestingness dataset (LaFin) from Flickr website (images and their associated metadata), which was released for public use 

Video memorability

While some contents have the power to be stored in our memories for a long time, others are quickly forgotten. Memorability of media contents such as images and videos has [27] and obtained a better prediction performance than the state of the art on the well-known LaMem dataset [START_REF] Khosla | Understanding and predicting image memorability at a large scale[END_REF]. However, our more significant and pioneer contributions are on video memorability (VM), which will be presented in the remainder of this section.

VM dataset creation

MovieMem660. As research on computational understanding of video memorability is in its early stage, there is no publicly available dataset for modelling purposes. A few previous attempts provided protocols to collect video memorability data that would be difficult to generalize [HCS + 15, SSS + 17]. In [28] we presented a very first work on longterm video memorability where we measured the memory performances of participants from weeks to years after memorization to build a dataset of 660 videos. The videos were chosen as follows. We first established a list of 100 occidental movies, taking care of mixing popularity and genres. We then manually selected seven videos of 10 seconds from each movie. To maintain a high intra video semantic cohesion, we did not make cuts that would impair the understanding of the scene, nor did we aggregate shots that belong to different scenes. 104 people (22 to 58 years of age; age average = 37.1; 26% female; mostly educated people) participated in the experiment in a wellcontrolled environment (a quiet room equipped with subdued lights, the videos with high quality were displayed on a 60 inch monitor). The participants were first asked to fill a questionnaire during about 20 minutes about whether they remembered watching fully the movie, their confidence about the answer, the number of times they saw the movie, and when was the last time they saw the movie. Based on the answers to the questionnaire, an algorithm automatically selected 80 targets (i.e., videos from seen movies) and 40 fillers (i.e., videos from never seen movies) among the movies associated with the highest degree of certitude, with a maximum of two videos from the same movie. The fillers enabled to quantify the reliability of the annotations. Given such 120 videos selected, participants performed a recognition task where they saw the videos separated by an inter-stimuli interval of 2 seconds. On average, each video of our dataset had been viewed as a target by 10.7 participants, which corresponds to the mean number of observations that enter into the calculation of a memorability score.

The memorability score assigned to each video is simply defined as the correct recognition rate of the video when viewed as target. Please refer to [28] for more details about the video selection, the annotation protocol, the memorability score calculation,

Video memorability

and the dataset analysis. This dataset, together with a list of pre-computed features (C3D1 , AudioSet2 , SentiBank3 , Affect [START_REF] Hanjalic | Video affective content analysis: A survey of state-of-the-art methods[END_REF], Image captions4 ), are made available for the research community5 .

VideoMem10k. This is the first large scale VM dataset, which is composed of 10,000 soundless videos of 7 seconds extracted from raw footage used by professionals when creating content. Videos contain only one semantic scene, but the scenes are varied (animal, food and beverages, nature, people, transportation, etc). Unlike the MovieMem660, our proposed protocol to annotate the VideoMem10k relies on crowdsourcing and is inspired by the protocol introduced in [IXP + 14, IXTO11] for image. The protocol includes two steps to measure both human short-term and long-term memory performances for videos, and is shown in Figure 3.4. Step #1 consists of interlaced viewing and recognition tasks. Participants hired via Amazon Mechanical Turk (AMT) crowdsourcing platform watch a series of videos, some of them -the targets -repeated after a few minutes. Their task is to press the space bar whenever they recognize a video.

Once the space bar is pressed, the next video is displayed, otherwise the current video continues till its end. Each participant watched 180 videos, that contain 40 targets, repeated once for memory testing, 80 fillers (i.e., non target videos), and 20 so-called vigilance fillers which were repeated quickly after their first occurrence to monitor the participant's attention to the task. Step #2 took place 24 to 72 hours after step #1: the same participants performed similar recognition task to collect long-term annotations.

They watched a new sequence of 120 videos, composed of 80 fillers (randomly chosen totally new videos) and 40 targets (randomly selected from the non-vigilance fillers of step #1). Note that, to guarantee the quality of the annotation, we used several controls: the vigilance task (step #1), a minimum correct recognition rate (15%, step #2), a maximum false alarm rate (30% for step #1; 40% for step #2), and a false alarm rate lower than the recognition rate (step #2 only). Finally, we had 9,402 participants for short-term, and 3,246 participants for long-term memorability who passed the vigilance controls. On average, a video was viewed as a repeated target 38 times (and at least 30 times) for the short-term task, and 13 times (at least 9 times) for the long-term task due to the lower number of participants in step #2.

We assigned a first raw memorability score to each video, defined as the percentage of correct recognitions by participants, for both short-term and long-term memorability. Then, motivated by a similar work for image [IXP + 14], the short-term raw scores were further refined by applying a linear transformation that takes into account the memory retention duration. Please refer to [29] for more details about the video selection, the annotation protocol, the memorability score calculation, and the dataset analysis. This dataset, together with a list of pre-computed features (C3D1 , HMP [START_REF] Ciptadi | Movement pattern histogram for action recognition and retrieval[END_REF], Inception-V3, Aesthetic visual features, etc.) are made available for the research community2 .

VM understanding

From two datasets, i.e., MovieMem660 and VideoMem10k, we investigated a number of factors concerning the video memorability such as mean correct recognition rate, the memorability consistency over time, the memorability with respect to response time, the human vs. annotation consistency. Please refer to the papers [28,29] for more details about the investigation. As an example, Figure 3.5 shows the mean correct recognition rate as a function of the retention interval between the memorization (i.e., last view of video) and the measure of memorability performance for the MovieMem660 dataset (left) and the VideoMem10k dataset (middle for short-term VM, right for long-term VM). In line with other findings and as expected, recognition rate decreases linearly over time for the short-term, while long-term memory performances does not significantly change between 24 and 72 hours after memorization.

Human consistency vs. annotation consistency

We first followed the method proposed in [IXP + 14] for IM to measure human consistency when assessing VM. For this purpose, we randomly split our participants in each dataset into two groups of same size and computed VM scores independently in each group. A Spearman's rank correlation between the two groups of scores was computed and averaged over 25 random half-split trials. Figure 3.6-left shows this human consistency as a function of the mean number of annotations per video for MovieMem660 dataset. The consistency of 0.70 is achieved from only about 18 annotations. This number is comparable to the maximal consistency obtained in image memorability (0.75 in [START_REF] Isola | What makes an image memorable?[END_REF] and 0.68 in [START_REF] Khosla | Understanding and predicting image memorability at a large scale[END_REF] with 80 annotations), but with much less number of annotations. This may be explained by the fact that videos contain much more information than images, thus they are more memorable. For the VideoMem10k dataset, human consistency of 0.481 is observed for short-term memorability and of 0.192 for long-term memorability.

When splitting the number of participants into two groups, it is possible to have groups with unbalanced number of annotations per video. For this reason, we proposed a new metric named annotation consistency. We reproduced the previous process of human consistency computation but on videos which received at least N annotations and the split ensuring a balance number of annotations per video. By doing so, we obtained the annotation consistency as a function of the number of annotations per video, as presented in Fig. 3.6-middle and right for the VideoMem10k dataset. As can be seen, the annotation consistency reaches 0.616 (respectively 0.364) for the shortterm (resp. long-term) task for 38 (resp. 13) annotations. Again, this value of 0.616 for short-term memorability is to be compared to the one found in [KRTO15] (0.68) for images. We can also see that long-term consistency follows the same evolution as short-term consistency.

VM prediction

For the VM prediction with the VideoMem10k dataset, we investigated the use of various image based baselines (i.e., MemNet [START_REF] Khosla | Understanding and predicting image memorability at a large scale[END_REF], Squali et al., [27], ResNet proposed in [START_REF] Engilberge | Sodeep: a sorting deep net to learn ranking loss surrogates[END_REF]. Similar types of image-based and video-based features were investigated for the MovieMem660 dataset. Please refer to our papers [28,29] for a detailed description of each considered systems and the discussion of the findings. Table 3.1 shows the final prediction result in terms of the Spearman's rank correlation between predicted and groundtruth memorability scores on the validation and test sets, and on the 500 most annotated videos of the VideoMem10k dataset (test(500)).

We also compare with the average and the best results obtained from the MediaEval 2018 campaign for the same test set. As can be seen, baselines designed for IM prediction offer quite good results on VM prediction. This means that the memorability of a video is correlated to some extent with the memorability of its constituent frames. All the models show poorer performance at predicting long-term memorability compared with short-term VM prediction. This might be due to the fact that the memorability scores for long-term are based on a smaller number of annotations than for short-term, so they probably capture a smaller part of the intrinsic memorability. Finally, our proposed semantic embedding model outperforms all other systems for both short-term and long-term VM prediction. Intra-memorability visualization. To better understand what makes a video frame memorable, we visualize the 2D attention map obtained after the conv+softmax layer (orange branch in Figure 3.7). This attention map is actually trained to learn which regions in each frame contribute more to the prediction. Some frame examples are shown in Figure 3.8. Our empirical study of the resulting attention maps tends to separate them in two categories. In the first one when frames contain roughly one main object, the model seems to focus on the main object and even, in the case of clear faces, on details of the faces, as if trying to remember the specific features of faces.

Models

In the second category that groups all other frames, with several main and secondary objects, textured background, etc., it seems on the contrary that the model focuses on other little details that differentiate the image from another similar one. In other words, the second category shows results that might be interpreted as a second memorization process, once the first one -focusing on the main object -has already been achieved.

Conclusion

We have presented our pioneering works on media interestingness and memorability.

Large-scale datasets about image/video interestingness and video memorability were constructed, analyzed, and released for the public use. Two series of MediaEval campaigns namely Media Interestingess Prediction Task (2016-2017), and Video Memorability Prediction Task (2018-2019) were organized and attracted great attention from the community. We also investigated various computational models for the media interestingness/memorability prediction and studied intrinsic factors that might make a content interesting or memorable. This chapter briefly summarizes our other contributions in applying signal processing and machine learning techniques to different problems.

Audio synchronization using fingerprinting

Consumers today often use their smartphones or tablets whilst watching TV. This has opened the door to personalized TV applications where additional services and related content can be accessed on the web to accompany the main TV view. Targeting such emerging applications, we looked for a technique to assure fast and accurate synchronization of media components streamed over different networks to different rendering devices. Focusing on audio processing, we considered fingerprinting techniques [START_REF] Wang | An industrial-strength audio search algorithm[END_REF] and generalized cross correlation [START_REF] Brandstein | A robust method for speech signal time-delay estimation in reverberant rooms[END_REF], where the former can greatly reduce computational cost and the latter can offer sample-accurate synchronization. In [35], we proposed an approach combining these two techniques, where coarse frame-accurate synchronization positions were first found by fingerprint matching, and then a possible accurate synchronization position was verified by generalized cross correlation with phase transform (GCC-PHAT). Experimental results in a real-world setting confirmed the accuracy and the rapidity of the proposed approach.
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In [13] we investigated another audio synchronization use case for movie: synchronizing multiple versions of the same movie, with an objective of automatically transferring metadata available on a reference version to other ones. We first adapted an existing audio fingerprinting technique [START_REF] Wang | An industrial-strength audio search algorithm[END_REF] to find all possible temporal matching positions between two audio tracks associated with two movie versions. We then proposed additional steps to refine the match and eliminate outliers. The proposed approach was shown to efficiently handle situations where temporal scene edits occur like scene addition, removal, and even the challenging scene re-ordering case. Experimental results over synthetic editorial data showed the effectiveness of the approach with respect to the state-of-the-art dynamic time warping (DTW) based solution.

Audio zoom via beamforming technique

This work focused on a practical application called audio zoom in smartphones, where sound capture focuses on the front direction while attenuating progressively surrounding sounds when recording a video. For this purpose, we first developed a novel approach that combines multiple Robust Minimum Variance Distortionless Response (RMVDR) beamformers [START_REF] Bitzer | Superdirective microphone arrays[END_REF][START_REF] Mestre | On diagonal loading for minimum variance beamformers[END_REF] having different look directions with a post-processing algorithm. Then, spatial zooming effect is created by leveraging the microphone signals and the enhanced target source. The general workflow of the proposed audio zoom implementation is shown in Figure 4.1. Subjective test with real-world audio recordings using a mock-up simulating an usual shape of the smartphone confirms the rich user experience obtained by the proposed system [14]. A demo was presented at the ICASSP 2016 conference1 .

Audio classification

We have been interested in audio classification task for several years along with the emergence of deep learning. We participated in the 2016 Detection and Classification of Acoustic Scenes and Events (DCASE) challenges where we started from low-level feature representation for segmented audio frames and investigated different time granularity for feature aggregation. We studied the use of support vector machine (SVM) together with two popular neural network (NN) architectures, namely multi-layer perceptron (MLP) and convolutional neural network (CNN) and tested on benchmark datasets provided in the DCASE 2013 and 2016. We observed that a simple feature as averaged Mel-log-spectrograms can obtain comparable performance with the best systems in the DCASE 2013 challenge [36].

Audio classification

Participating in the DCASE 2019 challenge with enlarged dataset, we used models exploiting multiple instance learning (MIL) method as a way of guiding the network attention to different temporal segments of a recording. We then proposed a simple late fusion of results obtained by the three investigated MIL-based models by multilayer perceptron (MLP) layers. With such fusion, we obtained a better result on the development and the leaderboard dataset of the challenge [38].

In another work [37] we addressed a problem of discriminating the natural human voices and those played back by any kind of audio devices in the context of interactions with in-house voice user interface. The tackled problem finds relevant applications in (1) the far-field voice interactions of vocal interfaces such as Google Home, Facebook Portal, Amazon Echo, etc, and (2) the replay spoofing attack detection. The detection of loudspeaker emitted speech will help avoiding false wake-ups or unintended interactions with the devices in the first application, while eliminating attacks involve the replay of recordings collected from enrolled speakers in the second one. In this work, we first collected a real-world dataset under well-controlled conditions containing two classes: recorded speeches directly spoken by numerous people (considered as the natural speech), and recorded speeches played back from various loudspeakers (considered as the loudspeaker emitted speech). We then built DNN-based prediction models exploiting the combination of features extracted from different existing state-of-the-art DNN architectures. The combination of audio embeddings extracted from SoundNet
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[YAT16] and VGGish [HCE + 17a] network yields the classification accuracy up to about 90% and thus confirms the feasibility of the task.

Audio style transfer

Image style transfer has recently emerged with success and has become a very popular technology thanks to the power of convolution neural networks (CNNs). In this work we investigated the analogous problem in the audio domain: How to transfer the style of a reference audio signal to a target audio content? To the best of our knowledge, our paper [15] was one of the earliest formal publications in this topic. We proposed a flexible framework for the task, which uses a sound texture model to extract statistics characterizing the reference audio style, followed by an optimization-based audio texture synthesis to modify the target content. In contrast to mainstream optimization-based visual transfer method, the proposed process is initialized by the target content instead of random noise, and the optimized loss is only about texture, not structure. In order to extract features of interest, we investigated different architectures, whether pre-trained on other tasks, as done in image style transfer, or engineered based on the human auditory system. The overall framework is shown in 

Speech inpainting

Audio inpainting in general consists in filling in missing portions of an audio signal.

It exists in different forms such as audio declipping, clicks removal, and bandwidth extension. The problem of speech inpainting specifically consists in recovering some parts in a speech signal that are missing for some reasons. To our best knowledge none of the existing methods allows satisfactory inpainting of missing parts of large size such as one second and longer. In this work we addressed this challenging scenario with the assumption that the full text uttered in the speech signal is known (as in the case of such long missing parts entire words can be lost). We thus formulated a new concept of textinformed speech inpainting and proposed a method that is based on synthesizing the missing speech by a speech synthesizer, on modifying its vocal characteristics via a voice conversion method, and on filling in the missing part with the resulting converted speech sample [16]. We carried subjective listening tests to compare the proposed approach with two baseline methods. In recent years, data-driven paradigm has bloomed and found wide applications in most domains thanks to the deep learning. In line with this, we investigated the use of deep neural networks for various audio and visual tasks, which were found to be difficult for conventional model-based approaches before. These tasks include e.g., audio style transfer, large-hole image inpainting, audio classification, audio-visual object detection and localization, image/video interestingness, and image/video memorability. For the media interestingness and memorability, we have led several activities in the research community such as constructing new datasets, organizing international challenges, and proposing computational models for prediction.

Image inpainting

As a researcher in industry, my research projects have been driven by the actual needs of the company. Alongside the supervision of two PhD students and one postdoc, other projects usually aimed to investigate practical challenges over a few months. Thus, I have had great opportunities to study various problems and extend my research, originally in audio processing, to areas in multimedia and computer vision with which I was not familiar. For each target problem, we were mostly successful to have at least one patent submission and one scientific paper.

Future directions

My research program aims to understand the real-world environment via multimodal data (e.g., audio-visual scene) analysis. From this understanding, smart devices will be able to respond to users' needs. A specific direction could target multimodal question answering system (MQA), which finds great application in intelligent assistants such as Amazon Alexa, Google Home, Apple Siri, etc. While new frontiers in visual question We are now in the deep learning era where powerful DNN models for various complicated tasks are being published almost every month, or even week. However, most DNN architectures are fixed during the design, training, and inference stages so they are not easily adapted to the possible variation of the hardware and/or computational resources. Thus, another research direction I am exploring focuses on flexible DNN architectures, which offer memory efficiency and can be easily adapted to the available resources on the fly. Such flexible models (e.g., motivated from the multi-scale dense networks [HCL + 18] or slimmable networks [YH]) can be configured to fit to e.g., edge computing or IoT devices with limited computing power when needed. The use of in-place knowledge distillation (IPKD) motivated from the teacher assistant strategy [MFL + 19] to guide the efficient training of such flexible models is currently under investigation. Yet another interesting line of research is the unsupervised or weaklysupervised learning, where robust data-driven machine learning models can be built Abstract-This article addresses the challenging problem of single-channel audio source separation. We introduce a novel user-guided framework where source models that govern the separation process are learned on-the-fly from audio examples retrieved online. The user only provides the search keywords that describe the sources in the mixture. In this framework, the generic spectral characteristics of each source are modeled by a universal sound class model learned from the retrieved examples via non-negative matrix factorization. We propose several group sparsity-inducing constraints in order to efficiently exploit a relevant subset of the universal model adapted to the mixture to be separated. We then derive the corresponding multiplicative update rules for parameter estimation. Separation results obtained from automated and user tests on mixtures containing various types of sounds confirm the effectiveness of the proposed framework.

Index Terms-On-the-fly audio source separation, user-guided, non-negative matrix factorization, group sparsity, universal sound class model.

I. INTRODUCTION

A UDIO source separation is a desired processing step within many real-world applications such as sound postproduction, robotics, and audio enhancement [1]. However, it has remained a challenging task especially when the input is a single-channel mixture. Indeed, in this case the problem is highly ill-posed and, in contrast to multichannel mixing case, additional spatial information about the sources is not available. Earlier approaches usually assume that the sources are sparse in the short-time Fourier transform (STFT) domain and estimate the predominant source's STFT coefficients via e.g. binary masking [2] or 1 -minimization [3], [4]. The separation performance achievable by these techniques is very limited in reverberant environments [5], [6] where the sources' STFT coefficients are quite overlapped. A more recent class of algorithms known as informed source separation [7], [8] utilizes prior information about the sources to guide the separation process, and was shown to be successful in many contexts using different types of prior information. For instance, such information may include musical scores of the corresponding music sources [7], [9], [10] or text of the corresponding speech sources [8]. In some approaches this symbolic information is then converted to audio using a MIDI synthesizer for musical scores [9], [10] or a speech synthesizer for text [8]. These D. El Badawy is a student at EPFL, Switzerland, e-mail: (dalia.elbadawy@epfl.ch).

N. Q. K. synthesized signals (that may also include cover tracks as in [11]) called deformed references in [12] can be used to roughly learn the spectral and temporal characteristics of one or more sources in the mixtures so as to guide the separation process [8]- [10], [12]. A subclass of informed source separation approaches is user-guided separation methods where the prior information is provided by a user. Such information can be e.g., user-"hummed" sounds that mimic the sources in the mixture [13] or source activity annotation along time [14] or in a time-frequency plane [15]; the annotation information is then used, instead of training data, to guide the separation process. Furthermore, recent publications disclose an interactive strategy [16], [17] where the user can perform annotations on the spectrogram of intermediate separation results to gradually correct the remaining errors. Note however that most of the existing approaches need to use prior information which may not be easy to acquire in advance (e.g., musical score, text transcript), is difficult to produce (e.g., user-hummed examples), or simply requires very experienced users while being very time consuming (e.g., time-frequency annotations).

The main motivation of this work is to introduce a simple framework that enables everyone to easily perform source separation. We hence present the new concept of on-the-fly source separation inspired by on-the-fly visual search methods [18], [19] from the computer vision research community. More specifically, the proposed framework only requires the user to listen to the mixture and type some keywords that describe the sources to be separated; in other words, the user interaction is now carried out at a higher semantic level. For instance, a user would request to separate the "wind noise" (source 1 description) from the "bird song" (source 2 description). The given descriptions or keywords are then used to search the internet for similar audio examples that will be employed to govern the separation process. For this purpose, supervised approaches based on e.g., nonnegative matrix factorization (NMF) [20], [21] or its probabilistic formulation known as Probabilistic Latent Component Analysis (PLCA) [13], [22],

where retrieved examples can be used to pre-learn the spectral dictionaries of the corresponding sources, are of great interest. Other methods in the prior art that couple the decomposition of the reference signals together with the mixture could also be considered [8], [11], [12], [23]. Regardless of the approach, several challenges, as detailed in Section II, arise in this on-the-fly framework due to (i) the unknown quality of the retrieved examples and (ii) possible lack of source descriptions (i.e. some sources may not be described by the user). In our preliminary work [24], we investigated several strategies to handle issues with the quality of the retrieved examples and found that the one using a universal sound class model (USCM) 1 learned from examples via NMF with a group sparsity constraint is generally more efficient than the others. Note that since the USCM is actually an over-complete dictionary, a sparsity constraint is needed to help fit the most relevant spectral patterns to the sources in the mixture.

This article extends our preliminary work [24], [27] by providing the algorithms along with their mathematical derivations in addition to new results from a user test. Altogether, the main contributions of our proposed on-the-fly paradigm work are four-fold:

• We introduce a general framework for on-the-fly audio source separation which greatly simplifies the user interaction.

• We propose a novel so called relative group sparsity constraint and show its benefit in the semi-supervised case

where training examples for some sources are missing.

• We derive several algorithms for parameter estimation when different group sparsity-inducing penalties and relative group sparsity-inducing penalties are used.

• We perform a range of evaluations, including both supervised and semi-supervised scenarios, and a user-test to validate the benefit of the proposed framework. The remainder of this paper is organized as follows. Section II gives an overview of the on-the-fly framework and the related challenges. In Section III, we recall some background on supervised source separation based on NMF. We then propose several algorithms for parameter estimation with the use of different sparsity-inducing constraints in Section IV. Evaluation results with a user-test are presented in Section V. Finally, we conclude in Section VI.

II. ON-THE-FLY FRAMEWORK AND CHALLENGES A. Overview and challenges

The proposed framework only requires minimal user input enabling inexperienced users to apply source separation to essentially any mixture.It is applicable as well when relevant training examples for some sources are either not readily available offline or not representative enough, which is likely the case for uncommon sounds such as animal or environmental sounds. The general workflow is shown in Fig. 1. The user inputs a few keywords specifying the sources in the mixture (e.g., "dog barking", "wind", etc.,), then a search engine retrieves relevant source examples accordingly. The source spectral models are then learned on-the-fly and used for supervising the separation. This approach is actually analogous to on-the-fly methods in visual search where a user types a persons name (e.g., "Clint Eastwood") [18] or an objects description (e.g., "car") [19] and a classifier is trained using example images retrieved via Google Image Search.

Although the on-the-fly approach simplifies the user interaction and eliminates the need for offline training samples, there are several challenges that need to be addressed as follows: the user describes only the sources of interest and ignores the remaining sources or when the search engines do not return results for some of the provided keywords. We refer to this challenge as the semisupervised case where all non-described sources that possibly appear in the mixture should be grouped as one background source.

(C 1 )
In fact in our previous work [24] to handle the first challenge, we investigated the use of a simple example preselection scheme based on the spectral similarity between the examples and the mixture to discard irrelevant examples. Thus, one can imagine having additional user interaction after specifying the keywords. For instance, the user may screen the list of retrieved examples and subjectively select a more relevant subset for training. This is the "Examples Refinement" step in Fig. 1.

B. Graphical User Interface

We implemented the system along with a graphical user interface (GUI) as shown in Fig. 2 and employed it for our user-tests. It features the ability to listen to a mixture and input one or more keywords describing the different sources. Then, per source, an online search for audio is performed. Next, the user can listen to the list of retrieved audio examples as well as view their waveforms or spectrograms (useful for the more advanced users). The optional example selection is then done by ticking the corresponding checkboxes. USCMs are then learned on-the-fly to guide the separation. The last step is to output the separated sources. A video showing a demo is available online at http://youtu.be/mBmJW7cy710/. On the practical side, the data transferred between the user and the server consists of the keywords and the mixture file as well as the separated sources which are sent back to the user. On the server, each example file requires computing the STFT followed by NMF; the examples are independent and these operations can thus be done in parallel. Then once the USCMs have all been constructed, the separation step is faster as the multiplicative updates are performed only one time. The overall complexity thus mostly depends on the number of training examples and the size of USCMs. Thus on an average PC, it would take from 30 seconds to a few minutes to get the separation results back. 

III. BACKGROUND ON NMF-BASED SOURCE SEPARATION

A. Conventional supervised approach

We discuss in this section a standard supervised source separation approach. We base our framework on NMF since it is one of the most popular and well-suited models in the state of the art on audio source separation. As per e.g. [22], [25], first source spectral models are learned on-the-fly from training data retrieved online. Then these models are used to supervise the separation.

Assuming J sources, let X ∈ C F ×N and S j ∈ C F ×N be the STFT coefficients of the single channel mixture signal and the j-th source signal, respectively, where F is the number of frequency bins and N the number of time frames. Usual additive mixing is assumed as

X = J j=1 S j . (1) 
Let V = |X| .2 be the power spectrogram of the mixture, where X .p is the matrix with entries [X] p il , .p denotes an element-wise operation. Then, NMF algorithms construct two non-negative matrices W ∈ R F ×K and H ∈ R K×N such that V ≈ V = WH. The factorization is usually done by solving the following optimization problem [20], [28] W * , H * = arg min

H≥0,W≥0 D(V WH), (2) 
where

D(V V) = F,N f,n=1 d(V f n Vfn ) (3) 
and d(• •) is a scalar divergence measure. We use the Itakura-Saito (IS) divergence defined as

d IS (x y) = x y -log x y -1 (4) 
which is appropriate for audio signals due to its scale invariance [20]. The parameters θ = {W, H} are usually initialized with random non-negative values and are iteratively updated via multiplicative update (MU) rules [20], [28].

In the training step of the supervised setting, a spectral model for each source j, denoted by W (j) , is first learned from the corresponding training examples concatenated together by optimizing criterion (2). Then the spectral model for all sources W is obtained by concatenating the source models as:

W = [W (1) , . . . , W (J) ]. (5) 
Then in the separation step, the time activation matrix H is estimated via the MU rules optimizing (2) [20], while W is kept fixed. Note that the activation matrix is also partitioned into horizontal blocks as

H = [H T (1) , . . . , H T (J) ] T , (6) 
where H (j) denotes the block characterizing the time activations for the j-th source.

Once the parameters θ = {W, H} are obtained, Wiener filtering is applied to compute the source STFT coefficients as

Ŝj = W (j) H (j) WH X, (7) 
where denotes the element-wise Hadamard product and the division is also element-wise. Finally, the inverse STFT is computed to produce the time domain source estimates.

B. USCM-based approach

The conventional supervised approach as described in Section III-A assumes using all retrieved (or user-selected) examples for a given source to learn the source spectral model. This may not be suitable in the current framework due to the challenges mentioned in Section II where the noisy examples may lead to a poor spectral model. Thus, in this section we propose an efficient and flexible approach to better utilize the examples, when available, for guiding the separation, while also handling the case of missing examples. In the following, the training examples refer to either the full list of retrieved examples or the user-selected examples in case of user intervention. We employ a so-called universal sound class model, learned in advance from training examples, with sparsity constraints on the activation matrix H in order to enforce the selection of only few representative spectral patterns during the model fitting. In the following, we first present the USCM construction, and then the optimization criterion for model fitting.

1) USCM construction: Assuming that the j-th source is described by the user and some examples are retrieved for it, we denote by V jp the spectrogram of the p-th example corresponding to the j-th source. First, V jp is used to learn the NMF spectral model, denoted by W jp , by optimizing the criterion (similar to (2)):

H * jp , W * jp = arg min Hjp≥0,Wjp≥0 D(V jp W jp H jp ), (8) 
where H jp is the corresponding time activation matrix. Given W jp for all examples, the USCM for the j-th source is constructed as

W (j) = [W j1 , . . . , W jPj ] (9) 
where P j is the number of retrieved examples for the j-th source.

2) Model fitting for supervised source separation: In the supervised setting, we assume having source models for all the sources in the mixture, that is to say that for every source, the user gave its description and examples were successfully retrieved. It can be seen that the USCM W (j) constructed in (9) becomes a large matrix when the number of examples increases, and it is often redundant since different examples may share similar spectral patterns. Therefore, in the NMF decomposition of the mixture, the need for a sparsity constraint arises to fit only a subset of each W (j) to the source in the mixture. In other words, the mixture is decomposed in a supervised manner, given W constructed from W (j) as in (5) and fixed, by solving the following optimization problem

H * = arg min H≥0 D(V WH) + Ψ(H) (10) 
where Ψ(H) denotes a penalty function imposing sparsity on the activation matrix H. Different penalties can be chosen, as will be discussed in Section IV, resulting in a sparse matrix H as visualized in Fig. 3b and Fig. 3c.

3) Model fitting for semi-supervised source separation: We describe in this section a so-called semi-supervised setting where not all of the source models can be learned in advance [25]. This occurs either when the user only describes the sources of interest and not all of them or when the search engine fails to retrieve examples for a given query.

We propose to model all the "missing" sources as one background source whose spectrogram can be approximately factorized as W b H b , where W b and H b are the corresponding spectral model and activation matrix, respectively. The parameter θ b = {W b , H b } can be randomly initialized with a small number of components (i.e. number of columns in W b ) K b . All the other sources, for which some examples are available, are modeled as in the supervised case by θ = {W, H} (see Fig. 4e and Fig. 4f). The parameters are estimated altogether by optimizing the following criterion (11) We see that in contrast to criterion (10) W b is updated as well and there is no group sparsity-inducing penalty on H b . The reason is that, as opposed to W, W b is neither an overcomplete dictionary nor has an underlying structure that can be exploited for regularization.

H * , W * b , H * b = arg min H≥0,W b ≥0,H b ≥0 D(V WH + W b H b ) + Ψ(H).

IV. SPARSITY CONSTRAINTS AND ALGORITHMS

In this section we consider two classes of sparsity constraints, namely group sparsity and a newly proposed relative group sparsity for the optimization problem (10) and (11). In each case, two variations are considered: a block sparsityinducing penalty and a component sparsity-inducing penalty. For every constraint, we give the corresponding algorithm for estimating the parameters.

A. Group sparsity constraints and parameter estimation algorithm

We consider a group sparsity-inducing penalty defined as

Ψ gr (H) = J j=1 λ j Gj g=1 log + H (j,g) 1 , (12) 
where H (j,g) (g = 1, . . . , G j ) are the groups within the activation sub-matrix H (j) corresponding to the j-th USCM (see equation (6) for the definition of H (j) ), G j the total number of groups for the j-th source, • 1 denotes the 1 matrix norm, > 0 and λ j ≥ 0 are trade-off parameters determining the contribution of the penalty for each source. Note that in the remainder of the paper, H (j,g) should not be confused with H jp in (8). We introduce two options for defining the groups H (j,g) and derive the corresponding MU rules for the parameter estimation as follows. 1) Block sparsity-inducing penalty: As in [25], we restrict the groups to be sub-matrices of H (j) corresponding to the spectral models W (j,p) trained using the p-th example (see (8) for the definition of W (j,p) ). In that case the indices g and p coincide and G j = P j . This so-called block sparsity-inducing strategy allows filtering out irrelevant spectral models W (j,l) , thus dealing with irrelevant retrieved examples (challenge C 1 in Section II). An illustration for the estimated activation matrix H for that case is shown in Fig. 3b where blocks corresponding to irrelevant examples for each source are set to zero.

2) Component sparsity-inducing penalty: As an alternative solution to fitting the universal model, we restrict the groups to be rows of H (j) corresponding to different spectral components (in that case the number of groups G j simply equals to the number of rows in H (j) ). This so-called component sparsity-inducing strategy allows filtering out irrelevant spectral components, thus dealing with noisy retrieved examples (challenge C 2 in Section II). Fig. 3c shows an estimated activation matrix H where rows corresponding to irrelevant spectral components for each source are set to zero.

3) MU rules for parameter estimation: MU rules for the optimization of criterion (10) (supervised case) and (11) (semisupervised case) are summarized in Algorithms 1 and 2, respectively, where η > 0 is a constant parameter, P (j,g) is a matrix of the same size as H (j,g) whose entries have the same value, and P is a matrix concatenating all P (j,g) . This algorithm is almost identical to the one proposed in [21], except that the groups are defined differently and W is not updated. It is proven in [21] using a majorizationminimization [29] formulation that these updates with η = 1/2 are monotonic, i.e., the cost function is non-increasing after each iteration.

Algorithm 1 MU rules for NMF with group sparsity in supervised case Input: V, W, λ Output: H Initialize H randomly V = WH repeat for j = 1, . . . , J, g = 1, . . . , G j do P (j,g) ← λj + H (j,g) 1 end for P = [P T

(1,1) , . . . , P T (1,G1) , . . . , P T (J,1) , . . . , (1,1) , . . . , P T (1,G1) , . . . , P T (J,1) , . . . ,

P T (J,GJ ) ] T H ← H W T (V V.-2 ) W T V.-1 +P .η V ← WH until convergence
P T (J,GJ ) ] T H ← H W T (V V.-2 ) W T ( V.-1 )+P .η H b ← H b W T b (V V.-2 ) W T b V.-1 .η W b ← W b (V V.-2 )H T b V.-1 H T b .η
Normalize W b and H b component-wise (see, e.g., [20])

V ← WH + W b H b until convergence
Note that the updates of H are identical in both the supervised and semi-supervised cases. Additionally, in the semisupervised case, since the derivations of (11) with respect to W b and H b are not affected by the sparsity constraint Ψ(H), the updates of W b and H b are straightforwardly derived as in [30].

B. Relative group sparsity constraints and parameter estimation algorithm

For the separation to be feasible, we require that every learned source model has a corresponding non-zero activation; however, this constraint is not enforced by the group sparsity penalty in (12) where it can happen that a group of different sources are fit together using the same source model, instead of separately using their designated models, rendering their separation impossible. We observed this "source vanishing" phenomenon in practice as illustrated in Fig. 4a (in case of
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H (1,1) using the block sparsity-inducing penalty) and Fig. 4c (in case of using the component sparsity-inducing penalty) in the supervised case. Moreover, the problem worsens in the semisupervised case, depicted in Fig. 4e for the block sparsity case, where the entire mixture is fit by the estimated background model only (the same effect occurs for the component sparsity case). This is due to the fact that W b and H b are now fully unconstrained in (11), whereas W is fixed and H is constrained by the group sparsity-inducing penalty. It can also be seen that increasing the trade-off parameters λ j in the penalty (12) (thus decreasing the number of active groups) increases the chances of source vanishing in both the supervised and semisupervised cases. In this section, we present a novel sparsityinducing penalty which helps prevent this problem completely. 1) Relative group sparsity-inducing penalties: This observation motivates us to introduce a general solution based on a new notion, namely relative group sparsity. While we present it here within the context of NMF, the idea extends to other dictionary decomposition schemes. We assume that the groups are organized into so-called supergroups (i.e. H (j) corresponding to a USCM is considered as a supergroup), and we characterize the relative group sparsity constraint Ψ(H) by the following properties

H (1,2) H (1,3) H b
• It induces the sparsity of the groups (as in group sparsity), and at the same time

• It induces the anti-sparsity of the supergroups (i.e. prevents them from vanishing entirely). In other words, the group sparsity property is now considered relative to the corresponding supergroup H (j) and not within the full set of coefficients in H. It is formulated as [27] 

Ψ rel (H) = J j=1 λ j Gj g=1 log + H (j,g) 1 H (j) γj 1 , (13) 
where γ j are some non-negative constants. Penalty ( 13) can be also rewritten as

Ψ rel (H) = Ψ gr (H) - J j=1 λ j γ j G j log H (j) 1 , (14) 
and one can easily see that, while the new penalty keeps the group sparsity property thanks to Ψ gr (H) defined in (12), it prevents (when γ j > 0) the supergroups from vanishing since if H (j) 1 tends to zero, thenlog H (j) 1 tends to +∞. This formulation generalizes the group sparsity constraint in the sense that (13) reduces to (12) for γ j = 0. So while we only require that γ j is non-zero for the relative group sparsity to be active, in our experiments we show results for γ j = 1 and γ j = 1 Gj . The latter was chosen to act as a normalization such that the effect of the penalty is even across the USCMs regardless of their size.

Note also that one can introduce either the relative block sparsity-inducing penalty or the relative component sparsityinducing penalty by defining a group H (j,g) to be either a block or a row in H similar to what has been presented in Section IV-A.

2) MU rules for parameter estimation: MU rules for parameter estimation when using the new penalty Ψ rel (H) are derived in the same way as the rules for group sparsity in Section IV-A. The resulting algorithms for both supervised and semi-supervised cases are summarized in Algorithm 3 and Algorithm 4, respectively. Details on the derivation of Algorithm 3 are given in the Appendix, and that of Algorithm 4 is very similar. Note that P (j,g) and Q (j,g) are matrices of the same size as H (j,g) whose entries have the same value, and P and Q are concatenations of P (j,g) and Q (j,g) , respectively.

V. EXPERIMENTS

We start by describing the data set, parameter settings, and evaluation metrics in Section V-A. We then evaluate the performance of the proposed supervised and semi-supervised on-the-fly audio source separation algorithms in Section V-B. The sensitivity of the different algorithms with respect to the choice of the trade-off parameter λ j which determines the contribution of the sparsity penalty is presented in Section V-C. We finally present user-test results in Section V-D.

A. Data, parameter settings, and evaluation metrics

We evaluated the performance of the proposed on-the-fly algorithms on a data set of 15 single-channel mixtures of Algorithm 3 MU rules for NMF with relative group sparsity in the supervised case Input: V, W, λ Output: H Initialize H randomly V = WH repeat for j = 1, . . . , J, g = 1, . . . , G j do P (j,g)

← λj + H (j,g) 1 Q (j,g) ← λj Gj γj H (j) 1
end for P = [P T

(1,1) , . . . , P T (1,G1) , . . . , P T (J,1) , . . . ,

P T (J,GJ ) ] T Q = [Q T (1,1) , . . . , Q T (1,G1) , . . . , Q T (J,1) , . . . , Q T (J,GJ ) ] T H ← H W T (V V.-2 )+Q W T ( V.-1 )+P .η V ← WH until convergence
Algorithm 4 MU rules for NMF with relative group sparsity in the semi-supervised case Input: V, W, λ Output: H Initialize H, H b , and

W b randomly V ← WH + W b H b repeat for j = 1, . . . , J, g = 1, . . . , G j do P (j,g) ← λj + H (j,g) 1 Q (j,g) ← λj Gj γj H (j) 1
end for P = [P T

(1,1) , . . . , P T (1,G1) , . . . , P T (J,1) , . . . ,

P T (J,GJ ) ] T Q = [Q T (1,1) , . . . , Q T (1,G1) , . . . , Q T (J,1) , . . . , Q T (J,GJ ) ] T H ← H W T (V V.-2 )+Q W T ( V.-1 )+P .η H b ← H b W T b (V V.-2 ) W T b V.-1 .η W b ← W b (V V.-2 )H T b V.-1 H T b .η
Normalize W b and H b component-wise (see, e.g., [20])

V ← WH + W b H b until convergence
two sources artificially mixed at 0 dB signal to noise ratio (SNR). Note that during the mixing, we made sure that two sources had more or less the same duration so that in all the mixtures both sources appear most of the time. The mixtures were sampled at either 16000 Hz or 11025 Hz and their duration varies between 1 and 13 seconds. The sources in the mixtures were selected as follows: (female speech, traffic), (female speech, cafe), (male speech, bells), (male speech, car), (woman singing, restaurant), (drums, guitar), (applause, electric guitar), (piano, ringtone), (violin, cough), (bat, owl), (chirps, rooster), (chirps, river), (siren, dog), (cat, dog), and (ocean, cricket). The speech samples (female speech, male speech) were obtained from the "American English" ITU-T P.5012 dataset. The following sources cafe, car, and restaurant were obtained from DEMAND3 from one channel out of the 16 channels. The music instruments (drums, electric guitar, guitar, piano, violin, woman singing) were obtained from QUASI 4 . The remainder were from various websites, mostly www.grsites.com/archive/sounds/ (bells, cat, chirps, dog, rooster, river, traffic), but also www.sounddogs.com (bat, owl) and www.wavlist.com (cricket), among others. The diversity in the types of sources should demonstrate the advantage of the proposed on-the-fly strategy since, as opposed to speech where pre-trained models are fairly common, having a pretrained model for every possible sound class is not viable. In the implementation of the framework, sound examples for training were retrieved from www.findsounds.com, a search engine for audio, as well as from www.freesound.org, a database of user-uploaded sounds. Note that these two websites are different from the ones used to get the sources in the mixtures; thus the possibility that the training set contains a source from the mixtures is very small. The retrieved files were restricted to those with sampling rates at least as high as that of the mixture, and the ones with higher sampling rates were down-sampled accordingly. For retrieval in our experiments, we differentiate between two types of search keywords: i) reference keywords given by an expert (the first author) who prepared the dataset and thus had also listened to the separate sources and not only the mixtures and ii) user keywords given by non-expert users in our user test. It is important to note that the reference keywords are not the only "correct" keywords since other synonyms can be used. Table I lists the reference keywords and the corresponding user keywords along with the number of times a keyword was given by the users. Note that some reference keywords like "male speech" or "female speech" are repeated in more than one mixture, thus the count of their corresponding user keywords is more than the number of users.

Other parameters were set as follows. The STFT was calculated using a sine window and a frame length of 47 ms with 50% overlap, the number of iterations for MU updates was 200 for learning the USCM W (j) and 100 for separating the mixture, and the number of NMF components for each spectral model learned from one example W (j,p) was set to 32. In the semi-supervised case, the number of NMF components for the background source was K b = 10 to avoid overfitting since W b is unconstrained. Additionally, since the number of training examples P j per source was different depending on the availability of the data (search results), the trade-off parameter λ j determining the contribution of the sparsityinducing penalty was set to λ 0 F N P j (where λ 0 is a constant) so that λ j is greater when more examples are available. The intuition here is that the smaller the USCM W (j) is, which happens when few examples are available, the lower the level of sparsity that should be imposed in the decomposition. We found these settings to generally result in a good separation performance. The source separation performance was evaluated in terms of the normalized signal-to-distortion ratio (NSDR), which measures the overall signal distortion, and the normalized signal-to-interference ratio (NSIR) which measures the leakage of the other sources [31], [32]. Recall that the normalized values are computed by subtracting the SDR and SIR of the original mixture signal from those of the separated sources [32]. The normalization serves to show the gain of using the proposed source separation system as opposed to a naive method that simply assigns the mixture as a source estimate. These metrics are measured in dB and are averaged over all sources and all mixtures for the different algorithms.

B. Separation results using reference keywords

In this experiment, we use the reference keywords given by the expert for retrieval. The goal is to evaluate and compare the performance of the different algorithms. For the supervised case (i.e., Algorithm 1 and Algorithm 3), two keywords were used to retrieve examples for both sources in the mixture, while only one keyword was used for the semi-supervised case (i.e., Algorithm 2 and Algorithm 4). Note that, in the semi-supervised scenario, we tested two cases as follows (i) a keyword was provided for source 1 only and (ii) a keyword was provided for source 2 only; we then averaged the obtained separation results.

We compare the average separation performance obtained using the four sparsity-inducing penalties presented in the paper: block sparsity as the baseline [25], the proposed component sparsity, relative block sparsity, and relative component sparsity. Results for the supervised case (i.e., Algorithm 1 for block sparsity and component sparsity, and Algorithm 3 for relative block sparsity, and relative component sparsity) are shown in Table II, while those for the semi-supervised case (i.e., Algorithm 2 and Algorithm 4) are shown in Table III. In each case, we run the algorithms with different values of the trade-off parameter λ 0 , and the value resulting in the highest average NDSR is chosen and shown in the tables along with the corresponding NSDR and NSIR. Note that the result shown in Table II is 1.8 dB NDSR higher than that reported in our previous work [24]. The reason is that: (1) the dataset (training and testing set) is enlarged by the size and the variation of the sound sources; and (2) the parameter λ j is here adapted per mixture and not constant for the whole dataset. Also, for easier reading here, we do not compare again the separation performance with the standard supervised NMF setting without using USCM model nor with some other baselines as it has been investigated in our previous study [24]. For the relative sparsity cases, we tested two values for the hyper-parameter γ j : a fixed γ j = 1 as a natural choice, and γ j = 1 Gj such that the denominator term H (j) γj 1 in the penalty ( 13) is adaptively normalized with respect to the size of the group G j .

First, as expected, the results obtained in the supervised case are much better than those achieved in the semi-supervised 

Method NSDR NSIR

Block sparsity [25] (λ 0 = 1 × 10 -4 ) 5. case where examples for one source are missing. Second, using an adaptive γ j = 1 Gj in the supervised case improved the NSDR for the relative block sparsity by 0.25 dB but had no significant effect on the relative component sparsity; in contrast it negatively affected the performance in the semisupervised case. Third, we note that the proposed component sparsity-inducing penalty achieves a better separation performance than the block sparsity-inducing penalty which was exploited in [25], in both supervised and semi-supervised cases. A possible explanation is that the former offers more flexibility by exploiting the most representative spectral patterns from different spectral models that match the mixture. Last, it is worth noting that the proposed relative component sparsityinducing penalty performs the best in both supervised and semi-supervised cases in terms of both NSDR and NSIR, the advantage being more significant in the semi-supervised case likely because the source vanishing problem is more severe. We note that the corresponding average signal-to-artifact ratio (SAR) for the different algorithms was on the order of 11 dB. In particular, the SAR corresponding to the relative component sparsity-inducing penalty was 10.98 dB and 11.35 dB for the adaptive γ j .

In general, the methods would fail if the retrieved examples are quite dissimilar from the actual sources in the mixture. As an example, a mixture of of an electric guitar and applause (cheers and whistles) had low NSDR for both source estimates (0.54 dB and -0.49 dB respectively). In this case, we observed that the retrieved training files for the applause contained mostly just clapping sounds and as such the learned USCM did not capture the cheers; similarly for the guitar where most retrieved examples were not close to the chords in the mixture.

C. Separation results with different choices of λ j

One of the most important parameters in the presented algorithms in the on-the-fly framework is the trade-off parameter λ j determining the contribution of the sparsity-inducing penalty. We propose to set λ j = λ 0 F N P j so that it is normalized with respect to the size of the USCM and is larger when more examples are used. In this experiment, we varied λ 0 and assessed the sensitivity of the different algorithms described in Section V-B to this choice in the semi-supervised scenario. The dataset and other parameter settings are the same as described before. The results are shown in Fig. 5 where λ 0 = {10 -5 , 5 × 10 -5 , 10 -4 , 5 × 10 -4 , 10 -3 } for the block/relative block sparsity algorithms and λ 0 = {10 -7 , 5 × 10 -7 , 10 -6 , 5 × 10 -6 , 10 -5 } for the component/relative component sparsity algorithms. Note that the range of λ 0 is different for the (relative) block and component sparsity algorithms as they are different types of penalties so their optimal range is different.

As can be seen, the relative block sparsity and relative component sparsity algorithms are generally more stable than the block sparsity and component sparsity algorithms over a large range of λ 0 where the results obtained by the former algorithms drop sharply for the last point. Within a good range, i.e. the first four points, the relative block sparsity with γ j = 1 Gj is the most stable one as its NSDR varies at most 0.2 dB. The relative component sparsity algorithm, which offers the highest performance in general, is not very sensitive to the considered parameter though it has more than 1 dB NSDR difference within the considered range.

D. Separation results for the user test

In the second experiment, our goal was to evaluate the performance of the proposed on-the-fly framework when practically used by non-expert users. We also test the effect of the examples refinement step on learning the USCM. The algorithms based on the proposed relative block/component sparsity-inducing penalties, which perform better than those using the block/component sparsity-inducing penalties as shown in Section V-B, were tested using the input from 9 different users who were of different age groups, technical backgrounds, and were all not native English speakers. The best parameter settings as determined from Section V-B were used. Using the GUI described in Section II-B, the users were asked to process each of the 15 mixtures as follows. First, they were asked to listen to the mixture and accordingly type keywords describing the two sources. They were instructed to change the keywords in case the search engine did not return results. Then, they were required to listen to the retrieved examples and select those that sound more similar to the sources in the mixture; at least one example was required to be selected. Given the recorded user input (keywords and selected examples), we examine two possibilities of using the examples in guiding the separation process as follows:

• All retrieved examples are used (All).

• Only the subset of examples selected by the user is used (Subset). The source separation performance, averaged over all 9 users and over all mixtures per method, is shown in Table IV and Table V for the supervised and semi-supervised cases, respectively. We note that the results for the average user are mostly lower than those for the expert in the supervised case due to the following issues. As can be seen from the keywords in Table I, some sounds like bat and owl were sometimes not recognized by the users and were confused with other sounds (e.g., bird sounds). Also, some spelling mistakes can be found (e.g, caugh instead of cough). This may have negatively affected the results. Additionally, one of the mixtures included a popular ringtone composed of marimba notes; however, the retrieved examples mainly included classical telephone rings, perhaps "marimba" would have been a better choice for searching. In the semi-supervised case, the expert results are not better than the average user. The reason is likely that the guidance is reduced in this setting and the overall performance is quite lower compared to the supervised case.

Nevertheless, the performance globally follows the same trend as presented in Section V-B: relative component sparsity generally outperforms relative block sparsity, especially in the semi-supervised case, with the SAR on the order of 9 dB. It is interesting to observe the effect of selecting a subset of examples. As can be seen in Table IV, using a subset of examples selected by the users only improves the performance in the supervised case. However, in the semi-supervised case, such a pre-selection even negatively affects the results as can be observed in Table V. This is likely due to the fact that having few selected examples (only one in the extreme case) leads to having fewer components in the learned spectral model for which a sparse decomposition is not optimal. Thus, it seems to be better to keep all retrieved examples for the known source and let the relative component sparsity penalty induce the appropriate selection. 

VI. CONCLUSION

In this paper, we presented the novel concept of on-thefly audio source separation and described several algorithms to implement it. Specifically, we proposed using a universal sound class model learned by NMF from retrieved examples and imposing group sparsity-inducing constraints to efficiently handle the selection of the most representative spectral patterns. Additionally, we introduced the notion of relative group sparsity to overcome a so-called source vanishing problem that occurs in the considered on-the-fly paradigm. In contrast to other state-of-the-art user-guided approaches, the considered framework greatly simplifies the user interaction with the system such that everyone, not necessarily an expert, can do source separation by just typing keywords describing the audio sources in the mixture. Experiments on mixtures containing various types of sounds confirm the potential of the proposed framework as well as the corresponding algorithms. Future work may be devoted to running real-world experiments, studying the use of a different group sparsity model that induces dynamic relationships between atoms or groups [33], as well as extending the framework to multichannel mixtures where spatial source models (e.g. those from [34] or [35]) may also be learned. Additionally, investigating the optimal USCM model size for different types of sound sources would be an interesting direction.

APPENDIX DERIVATION OF MU RULES IN ALGORITHM 3

Let C(H) denote the right part of criterion (10) with relative group sparsity penalty Ψ(H) = Ψ rel (H) defined as in (13) and D(• •) being IS divergence specified as in equations ( 3) and ( 4). The partial derivative of C(H) with respect to h kn writes

∇ h kn C(H) = F f =1 w f k 1 [WH] f n - v f n [WH] 2 f n + λ j + H (j,g) 1 - λ j G j γ j H (j) 1 (15) 
Following a standard approach for MU rules derivation (see e.g., [20], [28]), we represent ∇ h kn C(H) as

∇ h kn C(H) = ∇ + h kn C(H) -∇ - h kn C(H) (16) 
with ∇ + h kn C(H), ∇ - h kn C(H) ≥ 0 defined as

∇ + h kn C(H) F f =1 w f k 1 [WH] f n + λ j + H (j,g) 1 , (17) 
∇ - h kn C(H) F f =1 w f k v f n [WH] 2 f n + λ j G j γ j H (j) 1 , (18) 
and we update each parameter h kn as

h kn ← h kn ∇ - h kn C(H) ∇ + h kn C(H) .η , (19) 
where η = 0.5 following the derivation in [21]. Rewritten in a matrix form, we obtain the updates of the activation matrix H in Algorithm 3.
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Abstract-As blind audio source separation has remained very challenging in real-world scenarios, some existing works, including ours, have investigated the use of a weakly-informed approach where generic source spectral models (GSSM) can be learned a priori based on nonnegative matrix factorization (NMF). Such approach was derived for single-channel audio mixtures and shown to be efficient in different settings. This paper proposes a multichannel source separation approach where the GSSM is combined with the source spatial covariance model within a unified Gaussian modeling framework. We present the generalized expectation-minimization (EM) algorithm for the parameter estimation. Especially, for guiding the estimation of the intermediate source variances in each EM iteration, we investigate the use of two criteria: (1) the estimated variances of each source are constrained by NMF, and (2) the total variances of all sources are constrained by NMF altogether. While the former can be seen as a source variance denoising step, the latter is viewed as an additional separation step applied to the source variance. We demonstrate the speech separation performance, together with its convergence and stability with respect to parameter setting, of the proposed approach using a benchmark dataset provided within the 2016 Signal Separation Evaluation Campaign.
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I. INTRODUCTION

Real-world recordings are often mixtures of several audio sources, which usually deteriorate the target one. Thus many practical applications such as speech enhancement, sound post-production, and robotics use audio source separation technique [1], [2] to extract individual sound sources from their mixture. However, despite numerous effort in the past decades, blind source separation performance in reverberant recording conditions is still far from perfect [3], [4]. To improve the separation performance, informed approaches have been proposed and emerged recently in the literature [5], [6]. Such approaches exploit side information about either the sources themselves or the mixing condition in order to Thanh Thi Hien Duong is with International Research Institute MICA and Hanoi University of Mining and Geology, Vietnam, e-mail: (duongthihienthanh@humg.edu.vn).
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guide the separation process. Examples of the investigated side information include deformed or hummed references of one (or more) source(s) in a given mixture [7], [8], text associated with spoken speeches [9], temporal annotation of the source activity along the mixtures [10], core associated with musical sources [11], [12], and motion associated with audio-visual objects in a video [13]. Following this trend, some recent works including ours have proposed to use a very abstract semantic information just about the types of audio sources existing in the mixture to guide the source separation. If one source in the mixture is known as "speech", then several speaker-independent speech examples can be used to create a universal speech model as presented in [14]; if several types of sound sources in the mixture are known (e.g., birdsong, piano, waterfall), their audio examples found by internet search can be used to learn the corresponding universal sound class models as presented in [15]. Such universal models were shown to be effective in guiding the source separation algorithm and resulted in promising performance. Inspired by this idea, we have further investigated the use of generic speech and noise model for single-channel speech separation in [16] and shown its promising result in (a) the supervised case, where both speech GSSM and noise GSSM are learned during training phase, and (b) the semi-supervised case, where only the speech GSSM is pre-learned. Furthermore, we have proposed to combine the block sparsity constraint investigated in [14] with the component sparsity constraint presented in [17] in a common formulation in order to take into account the advantage of both of them [18].

It should be noted that the works cited above [9], [12], [16], [18] considered only a single channel case, where the mixtures are mono, and exploited non-negative matrix factorization (NMF) [19], [20] to model the spectral characteristics of audio sources. Some recent works have investigated the use of the deep neural networks (DNN) to model the source spectra, where basically the types of sources in the mixture also need to be known as a side information in order to collect training data. Such DNN-based approaches were shown to offer very promising results in single-channel speech and music separation [21]- [23], multichannel speech separation [24], [25]. However, they require a large amount of labeled data for training, which may not always be available and the training is usually computationally expensive.

When more recording channels are available thanks to the use of multiple microphones, a multichannel source separation algorithm should be considered as it allows to exploit important information about the spatial locations of audio sources. Such spatial information is reflected in the mixing process (usually with reverberation), and can be modeled by e.g., the interchannel time difference (ITD) and interchannel intensity difference (IID) [26]- [29], the rank-1 time-invariant mixing vector in the frequency domain when following the narrowband assumption [30]- [33], or the full-rank spatial covariance matrix in local Gaussian model (LGM) where the narrowband assumption is relaxed [34]- [36].

In this paper, we present an extension of the previous works [15], [16], [18] to the multichannel case where the NMF-based GSSM is combined with the full-rank spatial covariance model in a Gaussian modeling paradigm. Around this LGM, existing works have investigated several source spectral models such as Gaussian mixture model (GMM) [37], NMF as a linear model with nonnegativity constraints [36], [38], continuity model [39], kernel additive model [40], heavy-tailed distributionsbased model [41], [42], and recently DNN [24]. Focusing on NMF in this study, our work is most closely related to [38] and [36] as both of them use NMF within the LGM to constrain the source spectra in each EM iteration. However, our work is different from [38] in the sense that we use the pre-trained GSSM, so that potentially the algorithm is less sensitive to the parameter initialization, and it does not suffer from the wellknown permutation problem. Our work is also different from [36] as we exploit the mixed group sparsity constraint to guide the optimization, which allows the algorithm to automatically select the most representative spectral components in the GSSM. In addition, instead of constraining the variances of each source by NMF as done in [36], [38], we propose to constrain the total variances of all sources altogether by NMF and show that this novel optimization criterion offers better source separation performance.While part of the work was presented in [43], this paper provides more details regarding the algorithm derivation and the parameter settings. Furthermore, the source separation performance analysis and the comparison with existing approaches are extended.

The rest of the paper is organized as follows. We discuss the problem formulation and the background in Section II. We present the proposed GSSM-based multichannel source separation approach in Section III. In this section, we first present two ways of constructing the GSSM based on NMF. Then, to constrain the intermediate source variance estimates, two optimization criteria are introduced, which can be seen as either performing source variance denoising or source variance separation. The generalized EM algorithm is derived for the parameter estimation. We finally validate the effectiveness of the proposed approach in speech enhancement scenario using a benchmark dataset from the 2016 Signal Separation Evaluation Campaign (SiSEC 2016) in Section IV. For this purpose, we first analyze the convergence of the derived algorithm and investigate its sensitivity to the parameter settings in terms of source separation performance. We then show that the proposed algorithm outperforms most state-of-the-art methods in terms of the energy-based criteria.

II. PROBLEM FORMULATION AND MODELING

In this section, we review the formulation and the Gaussian modeling framework for multichannel audio source separation.

Let us formulate the problem in a general setting, where J sources are observed by an array of I microphones. The contribution of each source, indexed by j, to the microphone array is denoted by a vector c j (t) ∈ R I×1 and the I-channel mixture signal is the sum of all source images as

x(t) = J j=1 c j (t). (1) 
The objective of source separation is to estimate the source images c j (t) given x(t). As the considered algorithm operates in the frequency domain, we denote by c j (n, f ) and x(n, f ) the complex-valued short-term Fourier transforms (STFT) of c j (t) and x(t), respectively, where n = 1, 2, .., N is time frame index and f = 1, 2, ..., F the frequency bin index. Equation ( 1) can be written in the frequency domain as

x(n, f ) = J j=1 c j (n, f ). (2) 

A. Local Gaussian model

We consider the existing nonstationary LGM as it has been known to be robust in modeling reverberant mixing conditions and flexible in handling prior information [34], [37]. In this framework, c j (n, f ) is modeled as a zeromean complex Gaussian random vector with covariance matrix

Σ j (n, f ) = E(c j (n, f )c H j (n, f )): c j (n, f ) ∼ N c (0, Σ j (n, f )), (3) 
where 0 is an I × 1 vector of zeros and H indicates the conjugate transposition. Furthermore, the covariance matrix is factorized as

Σ j (n, f ) = v j (n, f ) R j (f ), (4) 
where v j (n, f ) are scalar time-dependent variances encoding the spectro-temporal power of the sources and R j (f ) are time-independent I × I spatial covariance matrices encoding their spatial characteristics when sources and microphones are assumed to be static. Under the assumption that the source images are statistically independent, the mixture vector x(n, f ) also follows a zero-mean multivariate complex Gaussian distribution with the covariance matrix computed as

Σ x (n, f ) = J j=1 v j (n, f ) R j (f ). (5) 
Assuming that the mixture STFT coefficients at all timefrequency (T-F) bins are independent, the likelihood of the set of observed mixture vectors x = {x(n, f )} n,f given the set of variance and spatial covariance parameters θ = {v j (n, f ), R j (f )} j,n,f is given by

P (x|θ) = n,f 1 det (πΣ x (n, f )) e -tr(Σ -1 x (n,f ) Ψx(n,f )) , (6) 
where det represents determinant of a matrix, tr() stands for matrix trace, and

Ψ x (n, f ) = E(x(n, f )x H (n, f ))
is the empirical covariance matrix. It can be numerically computed by local averaging over neighborhood of each T-F bin (n , f ) as [36], [44]:

Ψ x (n, f ) = n ,f w 2 nf (n , f )x(n , f )x H (n , f ), (7) 
where w nf is a bi-dimensional window specifying the shape of the neighborhood such that n ,f w 2 nf (n , f ) = 1. We use Hanning window in our implementation. The quadratic T-F presentation as Ψ x (n, f ) aims to improve the robustness of the parameter estimation as it exploits the observed data in several T-F points instead of a single one. The negative log-likelihood derived from ( 6) is

L(θ) = n,f tr Σ -1 x (n, f ) Ψ x (n, f ) + log det πΣ x (n, f ) , (8) 
Under this model, once the parameters θ are estimated, the STFT coefficients of the source images are obtained in the minimum mean square error (MMSE) sense by multichannel Wiener filtering as

ĉj (n, f ) = v j (n, f ) R j (f )Σ -1 x (n, f )x(n, f ). (9) 
Finally, the expected time-domain source images ĉj (t) are obtained by the inverse STFT of ĉj (n, f ).

B. NMF-based source variance model

NMF has been a well-known technique for latent matrix factorization [19] and shown to be powerful in modeling audio spectra [6], [20]. It has been widely applied to single channel audio source separation where the mixture spectrogram is usually factorized into two latent matrices characterizing the spectral basis and the time activation [20]. When adapting NMF to the considered LGM summarized in Section II-A, the nonnegative source variances v j (n, f ) can be approximated as

v j (n, f ) = Kj k=1 w jf k h jkn , (10) 
where w jf k is an entry of the spectral basis matrix W j ∈ R

F ×Kj +

, h jkn is an entry of the activation matrix H j ∈ R Kj ×N + , and K j the number of latent components in the NMF model.

To our best knowledge, this NMF formulation for the source variances within the LGM was first presented in [38], and then further discussed in [36], [37]. However, in those works, the basis matrix W j is not a GSSM as proposed in this article (presented in Section III-A), and thus the parameters {W j , H j } were estimated differently.

C. Estimation of the model parameters

The set of parameters θ is estimated by minimizing the criterion (8) using a generalized EM algorithm (GEM) [45]. This algorithm consists in alternating between E step and M step. In the E step, given the observed empirical covariance matrix Ψ x (n, f ) and the current estimate of θ, the conditional expectation of the natural statistics is computed as [31] Σ

j (n, f ) = G j (n, f ) Ψ x (n, f )G H j (n, f ) + (I -G j (n, f ))Σ j (n, f ), (11) 
where

G j (n, f ) = Σ j (n, f )Σ -1
x (n, f ) is the Wiener gain, I is an I ×I identity matrix. Then in the M step, given Σ j (n, f ) the parameters θ j = {v j (n, f ), R j (f )} n,f associated to each j-th source are updated in the maximum likelihood sense by optimizing the following criterion [34]:

L(θ j ) = n,f tr Σ -1 j (n, f ) Σ j (n, f ) + log det πΣ j (n, f ) . (12 
) By computing the derivatives of L(θ j ) with respect to v j (n, f ) and each entry of R j (f ) and equating them to zero, the iterative updates for these parameters are found as

R j (f ) = 1 N N n=1 1 v j (n, f ) Σ j (n, f ) (13) 
v j (n, f ) = 1 I tr(R -1 j (f ) Σ j (n, f )) (14) 
At each EM iteration, once v j (n, f ) is updated in the M step by ( 14), it will be further constrained by NMF as (10). For this purpose, given the matrix of the current source variance estimate V j ∈ R F ×N + whose entries are v j (n, f ), the corresponding NMF parameters are estimated by minimizing the Itakura-Saito divergence, which offers scale-invariant property, as

min Hj ≥0,Wj ≥0 D(V j W j H j ), (15) 
where

D(V j W j H j ) = N n=1 F f =1 d IS v j (n, f ) w jf k h jkn , and 
d IS (x y) = x y -log x y -1. (16) 
The parameters {W j , H j } are usually initialized with random non-negative values and are iteratively updated via the wellknown multiplicative update (MU) rules [19], [20].

III. PROPOSED GSSM-BASED MULTICHANNEL APPROACH

The global workflow of the proposed approach is depicted in Fig. 1. In the following, we will first review a training phase for the GSSM construction based on NMF in Section III-A. We then propose the NMF-based source variance model fitting with sparsity constraint in Section III-B. Finally, we derive the generalized EM algorithm for the parameter estimation in Section III-C. Note that we focus on NMF as the spectral model in this paper, however, the whole idea of the proposed approach can potentially be used for other spectral models than NMF such as GMM or DNN. 

A. GSSM construction

In this section, we review the GSSM construction, which was introduced in [14], [17]. We assume that the types of sources in the mixture are known and some recorded examples of such sounds are available. This is actually feasible in practice. For instance, in the speech enhancement, one target source is speech and another is noise and one can easily find speech and noise recordings. We need several examples for each type of source as one recording is usually not fully representative of the others and a source like "noise" is poorly defined. Let us denote by s l j (t) a l-th single-channel learning example of j-th source and its corresponding spectrogram obtained by STFT S l j . First, S l j is used to learn the corresponding NMF spectral dictionary, denoted by W l j , by optimizing the similar criterion as (15):

min H l j ≥0,W l j ≥0 D(S l j W l j H l j ) (17) 
where H l j is the time activation matrix. Given W l j for all examples l = 1, ..., L j of the j-th source, the GSSM for the j-t source is constructed as

U j = [W 1 j , . . . , W Lj j ], (18) 
then the GSSM for all the sources is computed by

U = [U 1 , . . . , U J ]. (19) 
As an example for speech and noise separation, in the practical implementation, we may need several speech examples for different male voices and female voices (e. 

We will show in the experiment that this way of constructing the GSSM does not provide as good source separation performance as the one presented before by (18).

B. Proposed source variance fitting with GSSM and mixed group sparsity constraint

As the GSSM is constructed to guide the NMF-based source variance constraint, we propose two fitting strategies as follows:

1) Source variance denoising: Motivated by the source variance model (10), when exploiting the GSSM model we propose a variant as

v j (n, f ) = Pj k=1 u jf k hjkn , (21) 
where u jf k is an entry of U j , hjkn is an entry of the corresponding activation matrix H j ∈ R

Pj ×N +

. This leads to a straightforward extension of the conventional optimization criterion described by (15) where H j is now estimated by optimizing the criterion:

min Hj ≥0 D(V j U j H j ) + λΩ( H j ), (22) 
where U j is constructed by (18) or (20) and fixed, Ω( H j ) presents a penalty function imposing sparsity on H j , and λ is a trade-off parameter determining the contribution of the penalty. Note that as the GSSM U j constructed in ( 18) becomes a large matrix when the number of examples L j for each source increases, and it is actually a redundant dictionary since different examples may share similar spectral patterns. Thus to fit the source variances with the GSSM, sparsity constraint is naturally needed in order to activate only a subset of U j which represents the spectral characteristics of the sources in the mixture [46]- [48].

2) Source variance separation: We propose another source variance model as

v(n, f ) = K k=1 u f k hkn , (23) 
where v(n, f ) = J j=1 v j (n, f ), u f k is an entry of the GSSM model U constructed as (19) and fixed, K = J j=1 P j . Under this model, let V = J j=1 V j be the matrix of the total source variance estimate, it is then decomposed by solving the following optimization problem

min H≥0 D( V U H) + λΩ( H) (24) 
where Ω( H) presents a penalty function imposing sparsity on the activation matrix H = [ H 1 , ..., H J ] ∈ R K×N + the total number of rows in H. This criterion can be seen as an additional NMF-based separation step applied on the source variances, while criterion (22) and other existing works [36]- [38] do not perform any additional separation of the variances, but more like denoising of the already separated variances. For the sake of simplicity, in the following, we only present the algorithm derivation for the criterion (24), but a strong synergy can be found for the criterion (22).

Recent works in audio source separation have considered two penalty functions, namely block sparsity-inducing penalty [14] and component sparsity-inducing penalty [17]. The former one enforces the activation of relevant examples only while omitting irrelevant ones since their corresponding activation block in H will likely converge to zero. The latter one, on the other hand, enforces the activation of relevant components in U only. It is motivated by the fact that only a part of the spectral model learned from an example may fit well with the targeted source in the mixture, while the remaining components in the model do not. Thus instead of activating the whole block, the component sparsity-inducing penalty allows selecting only the more likely relevant spectral components from U. Inspired by the advantage of these penalty functions, in our recent work we proposed to combine them in a more general form as [18] Ω( H) = γ

P p=1 log( + H p 1 ) + (1 -γ) K k=1 log( + h k 1 ), ( 25 
)
where the first term on the right hand side of the equation presents the block sparsity-inducing penalty, the second term presents the component sparsity-inducing penalty, and γ ∈ [0, 1] weights the contribution of each term. In (25),

h k ∈ R 1×N
+ is a row (or component) of H, H p is a subset of H representing the activation coefficients for p-th block, P is the total number of blocks, is a non-zero constant, and . 1 denotes 1 -norm operator. In the considered setting, a block represents one training example for a source and P is the total number of used examples (i.e., P = J j=1 L j ). By putting ( 25) into (24), we now have a complete criterion for estimating the activation matrix H given V and the pretrained spectral model U. The derivation of MU rule for updating H is presented in the Appendix.

C. Proposed multichannel algorithm

Within the LGM, a generalized EM algorithm used to estimate the parameters {v j (n, f ), R j (f )} j,n,f by considering the set of hidden STFT coeffients of all the source images {c j (n, f )} n,f as the complete data. The overview for the GEM derivation are presented in Section II-C, and more details can be found in [34], [37].

For the proposed approach as far as the GSSM concerned, the E-step of the algorithm remains the same as in [34]. In the M-step, we additionally perform the optimization defined either by (22) (for source variance denoising) or by (24) (for source variance separation). This is done by the MU rules so that the estimated intermediate source variances v j (n, f ) are further updated with the supervision of the GSSM. The detail of overall proposed algorithm with source variance separation is summarized in Algorithm 1.

Note that this generalized EM algorithm requires the same order of computation compared to the existing method [37], [38] as sparsity constraint and bigger GSSM size does not significantly affect the overall computational time. As an example, for separating a 10-second long mixture presented in our experiment, both [38] and our proposed method (when non-optimally implemented in Matlab) take about 400 seconds when running in a laptop with Intel Core i5 Processor, 2.2 GHz, and 8 GB RAM.

IV. EXPERIMENTS A. Dataset and parameter settings

We validated the performance of the proposed approach in an important speech enhancement use case where we know already two types of sources in the mixture: speech and noise. For a better comparison with the state of the art, we used the benchmark development dataset of the "Two-channel mixtures of speech and real-world background noise" (BGN) task 1 within the SiSEC 2016 [4]. This devset contains stereo They were the mixture of male/female speeches and real-world noises recorded from different public environments: cafeteria (Ca), square (Sq), and subway (Su). Overall there were nine mixtures: three with Ca noise, four with Sq noise, and two with Su noise. The signal-to-noise ratio was drawn randomly between -17 and +12 dB by the dataset creators.

Our works in single-channel case [16], [18] and preliminary tests on multichannel case show that only a few examples for each source could be enough to train an efficient GSSM. Thus, for training the generic speech spectral model, we took only one male voice and two female voices from the SiSEC 20152 . These three speech examples are also 10-second length. We performed the listening check to confirm that these examples used for the speech and noise model training are different from those in the devset, which were used for testing. For training the generic noise spectral model, we extracted five noise examples from the Diverse Environments Multichannel Acoustic Noise Database (DEMAND) 3 . Again they were 10second length and contained three types of environmental noise: cafeteria, square, metro. The STFT window length was 1024 for all train and test files. The number of NMF components in W l j for each speech example was set to 32, while that for noise example was 16. These values were found to be reasonable in [15] and our work on single-channel case [18]. Each W l j were obtained by optimizing ( 17) with 20 MU iterations.

Initialization of the spatial covariance matrices: As suggested in [34], we firstly tried to initialize the spatial covariance matrix R j (f ) by performing hierarchical clustering on the mixture STFT coefficients x(n, f ). But this strategy did not give us a good separation performance as the noise source in the considered mixtures is diffuse (i.e., it does not come from a single direction). Thus we initialized the noise spatial covariance matrix based on the diffuse model where noise is assumed to come uniformly from all spatial directions. With this assumption, the diagonal entries of the noise spatial covariance matrix are one and the off-diagonal entries are realvalued computed as in [49] 

r 1,2 (f ) = r 2,1 (f ) = sin(2πf d/v) 2πf d/v , ( 26 
)
where d is the distance between two microphones and v = 334 m/s the sound velocity. The spatial covariance matrix for the speech source was initialized by the full-rank di-rect+diffuse model detailed in [34] where the speech's direction of arrival (DoA) was set to 90 degrees. This DoA initialization was chosen for balancing the fact that the speech direction can vary between 0 degree and 180 degrees in each mixture and we did not have access to the ground truth information while performing the test.

The source separation performance for all approaches was evaluated by two sets of criteria. The four power-based criteria: the signal to distortion ratio (SDR), the signal to interference ratio (SIR), the signal to artifacts ratio (SAR), and the source image to spatial distortion ratio (ISR), measured in dB where the higher the better [50]. The four perceptually-motivated criteria: the overall perceptual score (OPS), the target-related perceptual score (TPS), the artifact-related perceptual score (APS), and the interference-related perceptual score (IPS) [51], where a higher score is better. As power-based criteria are more widely used in source separation community, the hyper-parameters for each algorithm were chosen in order to maximize the SDR -the most important metric as it reflects the overall signal distortion.

B. Algorithm analysis 1) Algorithm convergence: separation results as functions of EM and MU iterations:

We first investigate the convergence in term of separation performance of the derived Algorithm 1 by varying the number of EM and MU iterations and computing the separation results obtained on the benchmark BGN dataset. In this experiment, we set λ = 10 and γ = 0.2 as we will show in next section that these values offer both the stability and the good separation performance. The speech and noise separation results, measured by the SDR, SIR, SAR, and ISR, averaged over all mixtures in the dataset, illustrated as functions of the EM and MU iterations, are shown in Fig. 2.

As it can be seen, generally the SDR increases when the number of EM and MU iterations increases. With 10 or 25 MU iterations, the algorithm converges nicely and saturates after about 10 EM iterations. The best separation performance was obtained with 10 MU iterations and 15 EM iterations. It is also interesting to see that with a small number of MU iterations like 1, 2, or 3, the separation results are quite poor and the algorithm is less stable as it varies significantly even with a large number of EM iterations. This reveals the effectiveness of the proposed NMF constraint (24).

2) Separation results with different choices of λ and γ: We further investigate the sensitivity of the proposed algorithm to two parameters λ and γ, which determine the contribution of sparsity penalty to the NMF constraint in (24). For this purpose, we varied the values of these parameters, λ = {1, 10, 25, 50, 100, 200, 500}, γ = {0, 0.2, 0.4, 0.6, 0.8, 1}, and applied the corresponding source separation algorithm presented in the Algorithm 1 on the benchmark BGN dataset. The number of EM and MU iterations are set to 15 and 10, respectively, as these values guarantee the algorithm's convergence shown in Fig. 2. The speech and noise separation results, measured by the SDR, SIR, SAR, and ISR, averaged over all mixtures in the dataset, represented as functions of λ and γ, are shown in Fig. 3.

It can be seen that the proposed algorithm is less sensitive to the choice of γ, while more sensitive to the choice of λ, and the separation performance greatly decreases with λ > 10.

The best choice for these parameters in term of the SDR are λ = 10, γ = 0.2. With the small value of λ (e.g., λ = 1), varying γ does not really affect the separation performance as the evaluation criteria are quite stable. We noted that with γ = 0.2, the algorithm offers 0.2 dB and 1.0 dB SDR, which are higher than when γ = 0 and γ = 1, respectively. This confirms the effectiveness of the mixed sparsity penalty (25) in the multichannel setting.

C. Comparison with the state of the art

We compare the speech separation performance obtained on the BGN dataset of the proposed approach with its close prior art (i.e. Arberet's algorithm [38]) and other state-of-theart methods presented at the SiSEC campaign over different Algorithm 1 Proposed GSSM + SV separation algorithm Require:

Mixture signal x(t)

List of examples of each source in the mixture {s l j (t)} j=1:J,l=1:Lj Hyper-parameters λ, γ, MU-iteration Ensure: Source images ĉj (t) separated from x(t) -Compute the mixture STFT coefficients x(n, f ) ∈ C F ×N and then Ψ x (n, f ) ∈ C I×I by ( 7) -Construct the GSSM model U j by (18), then U ∈ R F ×K + by ( 19) -Initialize the spatial covariance matrices R j (f ), ∀j, f (see Section IV-A) -Initialize the non-negative time activation matrix for each source H j randomly, then

H = [ H 1 , . . . , H J ] v ∈ R K×N + -Initialize the source variance v j (n, f ) = [U j H j ] n,f
// Generalized EM algorithm for the parameter estimation: repeat // E step (perform calculation for all j, n, f ): 11) // M step: updating spatial covariance matrix and unconstrained source spectra

Σ j (n, f ) = v j (n, f )R j (f ) // eq. (4) Σ x (n, f ) = J j=1 v j (n, f ) R j (f ) // eq. (5) G j (n, f ) = Σ j (n, f )Σ -1 x (n, f ) // Wiener gain Σ j (n, f ) = G j (n, f ) Ψ x (n, f )G H j (n, f ) + (I - G j (n, f ))Σ j (n, f ) // eq. (
R j (f ) = 1 N N n=1 1 vj (n,f ) Σ j (n, f ) // eq. (13) v j (n, f ) = 1 I tr(R -1 j (f ) Σ j (n, f
)) // eq. ( 14)

V j = {v j (n, f )} n,f V = J j=1 V j
// MU rules for NMF inside M step to further constrain source spectra by the GSSM for iter = 1, ..., MU-iteration do for p = 1, ..., P do

Y p ← 1 + Hp 1 end for Y = [Y 1 , . . . , Y P ] for k = 1, ..., K do z k ← 1 + h k 1 end for Z = [z 1 , . . . , z K ] // Updating activation matrix V = U H H ← H U ( V V .-2 ) U ( V .-1 )+λ(γY+(1-γ)Z)
. 1 2 // eq. ( 31) end for v j (n, f ) = [U j H j ] n,f // updating constrained spectra until convergence -Source separation by multichannel Wiener filtering (9) -Time domain source images ĉj (t) are obtained by the inverse STFT of ĉj (n, f ). years since 2013. The results of these methods were submitted by the authors and evaluated by the SiSEC organizers [4], [52], [53]. All comparing methods are summarized as follows:

• Martinez-Munoz's method (SiSEC 2013) [52]: this algorithm exploits source-filter model for the speech source and the noise source is modeled as a combination of pseudo-stationary broadband noise, impulsive noise, and pitched interferences. The parameter estimation is based on the MU rules employed in non-negative matrix factorization.

• Wang's method [54] (SiSEC 2013): this algorithm performs well-known frequency domain independent component analysis (ICA). The associated permutation problem is solved by a novel region-growing permutation alignment technique.

• Le Magoarou's method [9] (SiSEC 2013): this approach uses text transcript of the speech source in the mixture as prior information to guide the source separation process.

The algorithm is based on the nonnegative matrix partial co-factorization.

• Bryan's method [55] (SiSEC 2013): this interactive approach exploits human annotation on the mixture spectrogram to guide and refine the source separation process.

The modeling is based on the probabilistic latent component analysis (PLCA), which is equivalent to NMF.

• Rafii's method [56] (SiSEC 2013): this technique uses a similarity matrix to separate the repeating background from the non-repeating foreground in a mixture. The underlying assumption is that the background is dense and low-ranked, while the foreground is sparse and varied.

• Ito's method [57] (SiSEC 2015): this is a permutationfree frequency-domain blind source separation algorithm via full-band clustering of the time-frequency (T-F) components. The clustering is performed via MAP estimation of the parameters with EM algorithm.

• Liu's method [4] (SiSEC 2016): the algorithm performs Time Difference of Arrival (TDOA) clustering based on GCC-PHAT.

• Wood's method [58] (SiSEC 2016): this recently proposed algorithm first applies NMF to the magnitude spectrograms of the mixtures with channels concatenated in time. Each dictionary atom is clustered to either the speech or the noise according to its spatial origin.

• Arberet's method [38]: using the similar local Gaussian model, the algorithm further constrains the intermediate source variances by unsupervised NMF with criterion (15). Such algorithm is implemented by Ozerov et. al. in [37]. This method is actually the most relevant prior art to compare with as it falls in the same LGM framework.

The proposed approach with different variants are summarized as:

• GSSM + SV denoising: The proposed GSSM + full-rank spatial covariance approach where the estimated variances of each sources V j are further constrained by criterion (22). We submitted results obtained by this method to the SiSEC 2016 BGN task and obtained the best performance over the actual test set in term of SDR [4].

• GSSM + SV separation: The proposed approach with source variance separation by optimizing criterion (24). In order to investigate the benefit of the sparsity constraint, we further report the results obtained by this method when λ = 0. Finally, to confirm the effectiveness of the GSSM construction by ( 18), we report the results obtained when the GSSM of the same size is learned jointly by concatenating all example's spectrograms S l j as (20). In this case, only the component sparsity is applied (i.e., γ = 0) as block does not exist. This setting is named "GSSM'+component sparsity" in Table 1. The separation results obtained by different methods for each noisy environment (Ca, Sq, Su), and the average overall mixtures are summarized in Table 1. The boxplot to illustrate the variance of the results obtained by the two proposed approaches is shown in Fig. 4. It is interesting to see that the results obtained by the proposed approach without sparsity constraint were lower than that of Arberet's method for all noisy environments, even the former used the pre-trained GSSM while the latter is completely unsupervised. It reveals that the GSSM itself is redundant and contains some irrelevant spectral patterns with the actual sources in the mixture. Thus constraining the source variances by the GSSM without a relevant spectral pattern selection guided by the sparsity penalty is even worse than the unsupervised NMF case where the spectral patterns are randomly initialized and then updated by MU rules. The importance of such sparsity penalty is explicitly confirmed by the fact that the results obtained by the proposed approach with sparsity constraint are far better than the setting without the sparsity constraint. Also, it is not surprising to see that the "GSSM + SV denoising" clearly outperforms Arberet's method (except for the ISR and the TPS) in all noisy environments as the former exploits additional information about the types of sources in the mixtures in order to learn the GSSM in advance. The "GSSM + SV separation" offers better separation performance in terms of SDR, SIR, OPS, IPS, on square and subway environments as well as on average compared to the "GSSM + SV denoising" and the "GSSM' + component sparsity". This confirms the effectiveness of the proposed source variance separation criterion (24) and the GSSM construction (18).

When compared to the top-performing state-of-the-art methods in the SiSEC campaigns, the proposed approach performs generally better in terms of the energy-based criteria but worse for the perceptually-motivated ones. Especially in Ca environment the OPS obtained by the proposed approach is far below those offered by other methods. This may be due to the fact that the hyper-parameters were optimized for the SDR, but not the OPS. The "GSSM + SV separation" with sparsity constraint outperforms all other methods, but Wang's approach, in terms of the SDR, the most important energybased criterion, at all noisy environment. This confirms the effectiveness of the proposed approach where the GSSM is successfully exploited in the LGM framework. It should be noted that Wang's method [54] is based on the frequencydomain ICA so it is not applicable for under-determined mixtures where the number of sources is larger than the number of channels. Also, in this method, an additional postfiltering technique was applied to the separated speech source so as to maximize the denoising capability.

V. CONCLUSION

In this paper, we have presented a novel multichannel audio source separation algorithm weakly guided by some source examples. The considered approach exploits the use of generic source spectral model learned by NMF within the well-established local Gaussian model. In particular, we have proposed a new source variance separation criterion in order to better constrain the intermediate source variances estimated in each EM iteration. Experiments with the benchmark dataset from the SiSEC campaigns have confirmed the effectiveness of the proposed approach compared to the state of the art. Motivated by the effectiveness of the GSSM, future work can be devoted to extending the current approach in order to exploit in addition the use of a generic spatial covariance model, which remains to be defined. In addition, the theoretical grounding of the source variance separation criterion needs to be further investigated. Another promising investigation could be extending the idea of source variance separation to DNNbased models inspired by the work of Nugraha et al. [24].

VI. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers of this manuscript and [43] for their helpful and constructive comments that greatly contributed to improving the quality of the paper. We also would like to thank Professor Nobutaka Ono for providing us results of the SiSEC 2013 and the SiSEC 2015.

APPENDIX DERIVATION OF MU RULE FOR UPDATING THE ACTIVATION MATRIX IN ALGORITHM1

Let L( H) denote the minimization criterion (24) with the mixed sparsity constrained Ω( H) defined as in (25) being IS divergence. The partial derivative of L( H) with respect to an entry h kn is

∇ h kn L( H) = F f =1 u f k 1 [U H] n,f - v(n, f ) [U H] 2 n,f + λ.γ + H p 1 + λ.(1 -γ) + h k 1 (27) 
This ∇ h kn L( H) can be written as a sum of two nonnegative parts, denoted by ∇ + h kn L( H) ≥ 0 and ∇ - h kn L( H) ≥ 0, respectively, as

∇ h kn L( H) = ∇ + h kn L( H) -∇ - h kn L( H) (28) 
with

∇ + h kn L( H) F f =1 u f k 1 [U H] n,f + λ.γ + H p 1 + λ.(1 -γ) + h k 1 , ∇ - h kn L( H) F f =1 u f k v(n, f ) [U H] 2 n,f . (29) 
Following a standard approach for MU rule derivation [19], [20]), h kn is updated as

h kn ← h kn ∇ - h kn L( H) ∇ + h kn L( H) .η , (30) 
where η = 0.5 following the derivation in [47], [59], which was shown to produce an accelerated descent algorithm.

Putting ( 29) into (30) and rewriting it in a matrix form, we obtain the updates of H as Abstract-Audio-visual representation learning is an important task from the perspective of designing machines with the ability to understand complex events. To this end, we propose a novel multimodal framework that instantiates multiple instance learning. We show that the learnt representations are useful for performing several tasks such as event/object classification, audio event detection, audio source separation and visual object localization. The system is trained using only video-level event labels without any timing information. An important feature of our method is its capacity to learn from unsynchronized audiovisual events. We also demonstrate our framework's ability to separate out the audio source of interest through a novel use of nonnegative matrix factorization. State-of-the-art classification results are achieved on DCASE 2017 smart cars challenge data with promising generalization to diverse object types such as musical instruments. Visualizations of localized visual regions and audio segments substantiate our system's efficacy, especially when dealing with noisy situations where modality-specific cues appear asynchronously.

H ← H U ( V V .-2 ) U ( V .-1 ) + λ(γY + (1 -γ)Z) . 1 2 , (31) 
Index Terms-Audio-visual fusion, multimodal deep learning, multiple instance learning, event classification, audio-visual localization, audio source separation

I. INTRODUCTION

We are surrounded by events that can be perceived via distinct audio and visual cues. Be it a ringing phone or a car passing by, we instantly identify the audio-visual (AV) components that characterize these events. This remarkable ability helps us understand and interact with our environment. For building machines with such scene understanding capabilities, it is important to design algorithms for learning audio-visual representations from real-world data.

This work is a step in that direction, where we aim to learn such representations through weak supervision.

Specifically, we are interested in designing a system that simultaneously tackles multiple related scene understanding tasks which include video event classification, spatial-temporal visual object localization and corresponding audio object enhancement and temporal localization. Obtaining precisely annotated data for doing so is an expensive endeavor, made even more challenging by multimodal considerations. The annotation process is not only error prone and time consuming but also subjective to an extent. Often, event boundaries in audio, extent of video objects or even their presence is ambiguous. Thus, we opt for a weakly-supervised learning as "train horn", we would like to: (i) identify the event, (ii) localize both, its visual presence and the temporal segment(s) containing the characteristic sound, and (iii) segregate the characteristic audio cue from the background. Note that the train horn may sound before the train is visible. Our model can deal with such unsynchronized AV events. approach using data with only video-level event labels, that is labels given for whole video documents without timing information.

A. Problem description

To motivate our tasks and method, consider a video labeled as "train horn", depicted in Fig. 1. Assuming that the train is both visible and audible at some time in the video, in addition to identifying the event, we are interested in learning representations that help us answer the following:

• Where is the visual object or context that distinguishes the event? In this case it might be the train (object) or tracks, platform (context) etc. We are thus aiming for their spatio-temporal localization in the image sequence.

• When does the sound event occur? Here it is the train horn. We thus want to temporally localize the audio event.

• How to enhance the audio object? Here we are interested in audio source extraction i.e. segregating the source of interest from the background sounds. The variety of noisy situations that one may encounter in unconstrained environments or videos adds to the difficulty of this very challenging problem. Apart from modality-specific noise such as visual clutter, lighting variations and low audio signal-to-noise ratio, in real-world scenarios the appearance of audio and visual elements characterizing the event are often unsynchronized in time. This is to say that the train horn may sound before or after the train is visible, as in previous example. In the extreme, not so rare case, the train may not appear at all. The latter is also commonly referred to as "offscreen" audio [1]. We are interested in designing a system to tackle the aforementioned questions and situations.

Prior research has utilized audio and visual modalities for classification and localization tasks in various contexts. Fusing modality-specific hand-crafted or deep features has been a popular approach for problems such as multimedia event detection and video concept classification [2]- [5]. On the other hand, AV correlations have been utilized for localization and representation learning in general, through feature space transformation techniques such as canonical correlation analysis (CCA) [6], [7] or deep networks [8]- [12]. However, a unified multimodal framework for our task, that is learning data representations for simultaneously identifying real world events and extracting the AV cues depicting them has not been extensively studied in previous works.

B. Contributions and outline

In this work, we present a complete AV event understanding framework where the modality-specific modules can be trained jointly to perform multiple tasks such as event/object classification, spatio-temporal visual localization, temporal audio localization and source separation. Key attributes and results of our approach are summarized below:

• We report state-of-the-art event classification performance on DCASE smart cars challenge data [13] and demonstrate usefulness of AV complementatrity. We also show results on an instrument dataset [14] to validate our framework's application to diverse object types.

• To highlight flexibility provided by our modular design, we propose several task-specific instantiations. These include changes to allow detection of synchronously appearing AV cues and capability to enhance the audio source of interest.

• Additionally, we also show encouraging qualitative visual localization results. Paper outline. We begin by briefly mentioning connections and distinctions with related works in Section II. This is followed by a description of the proposed framework and its instantiations for tackling classification and localization in Section III. Finally, we validate the usefulness of the learnt representations for these tasks with a thorough analysis in Section IV.

II. RELATED WORK

To position our work, we briefly discuss some relevant literature that employs weakly supervised learning for visual object localization, audio event detection and source separation. We also delineate several distinctions between the present study and recent multimodal deep learning approaches.

A. Audio scene analysis

Detection and segregation of individual sources in a mixture is central to computational auditory scene analysis [15]. A significant amount of literature exists on supervised audio event detection (AED) [16]- [19]. However, progress with weakly labeled data in the audio domain has been relatively recent. An early work [20] showed the usefulness of MIL techniques to audio using SVM and neural networks.

The introduction of the weakly-labeled audio event detection task in the 2017 DCASE challenge [21] 1 , a challenge on DCASE, along with the release of Google's AudioSet data2 [22], has led to accelerated progress in the recent past. AudioSet is a large-scale weakly-labeled dataset of audio events collected from YouTube videos. A subset of this data was used for the DCASE 2017 task on large-scale AED for smart cars. 3 Several submissions to the task utilized sophisticated deep architectures with attention units [23], as well as max and softmax operations [24]. Another recent study introduced a CNN with global segment-level pooling for dealing with weak labels [25]. It is worth noting that the field is growing rapidly. Concurrent and subsequent studies have greatly exploited the MIL and attention-based learning paradigm [26]- [28]. While we share with these works the high-level goal of weakly-supervised learning, apart from our multimodal design, our audio sub-module, as discussed in the next section, is significantly different.

Audio source separation research in weakly supervised regime has followed a similar trend. Recent progress includes several vision-inspired [29] and vision-guided [30]- [32] systems. Use of NMF basis vectors is particularly interesting in [32]. Our proposed separation technique goes in this direction with several key differences discussed in Sec. III-D1.

B. Visual object localization and classification

There is a long history of works in computer vision applying weakly supervised learning for object localization and classification. MIL techniques have been extensively used for this purpose [33]- [39]. Typically, each image is represented as a set of regions. Positive images contain at least one region from the reference class while negative images contain none. Latent structured output methods, e.g., based on support vector machines (SVMs) [40] or conditional random fields (CRFs) [41], address this problem by alternating between object appearance model estimation and region selection. Some works have focused on better initialization and regularization strategies [39], [42], [43] for solving this non-convex optimization problem.

Owing to the exceptional success of convolutional neural networks (CNNs) in computer vision, recently, several approaches have looked to build upon CNN architectures for embedding MIL strategies. These include the introduction of operations such as max pooling over regions [35], global average pooling [38] and their soft versions [44]. Another line of research consists in CNN-based localization over classagnostic region proposals [36], [37], [45] extracted using a state-of-the-art proposal generation algorithm such as Edge-Boxes [46], Selective Search [47], etc. These approaches are supported by the ability to extract fixed size feature maps from Image sequence Audio Fig. 2. High level view of the proposed approach: Given a video captured using a single microphone and camera, we propose the depicted framework for weakly supervised representation learning.

CNNs using region-of-interest [48] or spatial pyramid pooling [49]. Our work is related to such techniques. We build upon ideas from the two-stream architecture [37] for classification and localization. State-of-the-art end-to-end object detection networks such as Faster RCNN [50] and its instance segmentation extension Mask RCNN [51] incorporate proposal generation as part of the system (region proposal network) instead of a separate stage. Nonetheless, these approaches require label annotations for different regions. It is also worth mentioning that some works have extended class-agnostic proposal generation from 2D images to video tube proposals for tasks such as action localization [52] and object detection [53]. However, these involve a computationally expensive pipeline preventing largescale usage.

C. Differences with recent AV deep learning studies

We formulate the problem as a MIL task using classagnostic proposals from both video frames and audio. This allows us to simultaneously solve the classification and localization problems. Finally, by construction, our framework deals with the difficult case of asynchronous AV events. This is significantly different from recent multimodal deep learning based studies on several counts: Contrary to prior works, where unsupervised representations are learnt through audio-image correlations (temporal co-occurrence), we adopt a weakly-supervised learning approach using event classes. Unlike [8], [9], [11], we focus on localizing discriminative audio and visual components for real-world events.

III. PROPOSED FRAMEWORK AND ITS INSTANTIATIONS

The tasks under consideration can be naturally formulated as MIL problems [54]. MIL is typically applied to cases where labels are available over bags (sets of instances) instead of individual instances. The task then amounts to jointly selecting appropriate instances and estimating classifier parameters. In our case, a video can be seen as a labeled bag, containing a collection of visual and audio proposals. The term proposal refers to image or audio "parts" that may potentially constitute the object of interest. This step is at the core of our approach.

The key idea, as illustrated in Fig. 2, is to extract features from generated proposals and transform them for: (1) scoring each according to their relevance for class labels; (2) aggregating these scores in each modality and fusing them for video-level classification. This not only allows us to train both the sub-modules together through weak-supervision but also enables localization using the proposal relevance scores. Moreover, use of both the modalities with appropriate proposals makes the system robust against noisy scenarios. We present different task-specific variants of this general framework.

We now formalize the design of each building block to specifically tackle event classification, visual object and audio event localization. An overview is provided in Fig. 3. We model a video V as a bag of M selected image regions, R = {r 1 , r 2 , . . . , r M }, obtained from sub-sampled frames and S audio segments, A = {a 1 , a 2 , . . . , a S }. Given L such training examples, V = {V (l) } L l=1 , organized into C classes, our goal is to learn a representation to jointly classify and localize image regions and audio segments that characterize a class. Each block from proposal generation to classification is discussed below in detail.

A. Generating proposals and extracting features

Visual Proposals. Generating proposals for object containing regions from images is at the heart of various visual object detection algorithms [55], [56]. As our goal is to spatially and temporally localize the most discriminative region pertaining to a class, we choose to apply this technique over subsampled video frame sequences. In particular, we sub-sample the extracted frame sequences of each video at a rate of 1 frame per second. This is followed by class-agnostic region proposal generation on the selected frames using EdgeBoxes [46]. This proposal generation method builds upon the insight that the number of contours entirely inside a box is indicative of the likelihood of an object's presence. Its use in our pipeline is motivated by experiments confirming better performance in terms of speed/accuracy tradeoffs over most competing techniques [57]. EdgeBoxes additionally generates a confidence score for each bounding box which reflects the box's "objectness". To reduce the computational load and redundancy, we use this score to select the top M img proposals from each sampled image and use them for feature extraction. Hence, given a 10 second video, the aforementioned procedure would leave us with a list of M = 10×M img region proposals.

A fixed-length feature vector, x vis (r m ; V ) ∈ R dv is obtained from each image region proposal, r m in V , using a convolutional neural network altered with a region-of-interest (RoI) pooling layer. An RoI layer works by computing fixed size feature maps (e.g. 6 × 6 for caffenet [58]) from regions of an image using max-pooling [48]. This helps to ensure compatibility between convolutional and fully connected layers of a network when using regions of varying sizes. Moreover, unlike Region-based CNN (RCNN) [56], the shared computation for different regions of the same image using Fast-RCNN implementation [48] leads to faster processing. In Fig. 3 we refer to this feature extractor as the base visual network. In practice, feature vectors x vis (•) are extracted after RoI pooling layer and passed through two fully connected layers, which are fine-tuned during training. Typically, standard CNN architectures pre-trained on ImageNet [59] classification are used for the purpose of initializing network weights.

Audio Temporal Segment Proposals.

We first represent the raw audio waveform as a log-Mel spectrogram [START_REF] Davis | Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences[END_REF]. Each proposal is then obtained by sliding a fixed-length window over the obtained spectrogram along the temporal axis. These are the so called audio temporal segment proposals, also referred to as Temporal Segment Proposals (TSPs). The dimensions of this window are chosen to be compatible with the audio feature extractor. For our system we set the proposal window length to 960ms and stride to 480ms.

We use a VGG-style deep network known as vggish for base audio feature extraction. Inspired by the success of CNNs in visual object recognition Hershey et al. [START_REF] Hershey | CNN architectures for large-scale audio classification[END_REF] introduced this state-of-the-art audio feature extractor as an audio parallel to networks pre-trained on ImageNet for classification. vggish has been pre-trained on a preliminary version of YouTube-8M [START_REF] Abu-El-Haija | Youtube-8M: A large-scale video classification benchmark[END_REF] for audio classification based on video tags. It stacks 4 convolutional and 2 fully connected layers to generate a 128 dimensional embedding, x aud (a s ; V ) ∈ R 128 for each input log-Mel spectrogram segment a s ∈ R 96×64 with 64 Melbands and 96 temporal frames. Prior to proposal scoring, the generated embedding is passed through a fully-connected layer that is learnt from scratch.

B. Proposal scoring network and fusion

So far, we have extracted base features for each proposal in both the modalities and passed them through fully connected layers in their respective modules. Equipped with this transformed representation of each proposal, we use the two-stream architecture proposed by Bilen et al. [37] for scoring each of them with respect to the classes. There is one scoring network of the same architecture for each modality as depicted in Fig. 3. Thus, for notational convenience, we generically denote the set of audio or visual proposals for each video by P and let proposal representations before the scoring network be stacked in a matrix Z ∈ R |P|×d , where d denotes the dimensionality of the audio/visual proposal representation.

The architecture of this module consists of parallel classification and localization streams. The former classifies each region by passing Z through a linear fully connected layer with weights W cls , giving a matrix A ∈ R |P|×C . On the other hand, the localization layer passes the same input through another fully-connected layer with weights W loc . This is followed by a softmax operation over the resulting matrix B ∈ R |P|×C in the localization stream. The softmax operation on each element of B can be written as: After performing the above stated operations for both audio and visual sub-modules, in the final step, the global videolevel scores are 2 normalized and added. In preliminary experiments we found this to work better than addition of unnormalized scores. We hypothesize that the system trains better because 2 normalization ensures that the scores being added are in the same range.

C. Classification loss and network training

Given a set of L training videos and labels, {(V (l) , y (l) )} L l=1 , we solve a multi-label classification problem. Here y ∈ Y = {-1, +1} C with the class presence denoted by +1 and absence by -1. To recall, for each video V (l) , the network takes as input a set of image regions R (l) and audio segments A (l) . After performing the described operations on each modality separately, the 2 normalized scores are added and represented by φ(V (l) ; w) ∈ R C , with all network weights and biases denoted by w. All the weights, including and following the fully-connected layer processing stage for both the modalities, are included in w. Note that both sub-modules are trained jointly.

The network is trained using the multi-label hinge loss on a batch of size B:

L(w) = 1 CB B l=1 C c=1 max 0, 1 -y (l) c φ c (V (l) ; w) . (2) 
To summarize, we have discussed a general instantiation of our framework, capable of processing spatio-temporal visual regions, temporal audio segments for event classification and localizing characteristic proposal in each modality. Dealing with each proposal independent of the time at which it occurs allows tackling AV asynchronicity.

D. Variants

In the proposed framework (depiced in Fig. 2) module design can be flexibly modified in a task-specific manner. To demonstrate this, we discuss next two variants that allow performing audio source enhancement and synchronous AV fusion, respectively. 1) Source enhancement variant: Here we propose to design novel audio proposals using NMF with the goal of enhancing the audio source of interest. The primary reason for performing such a decomposition is the hope that each of the resulting spectral patterns would represent a part of just one source. Specifically, using NMF we decompose audio magnitude spectrograms Q ∈ R F ×N + consisting of F frequency bins and N short-time Fourier transform (STFT) frames, such that,

Q ≈ WH, (3) 
where W ∈ R F ×K + and H ∈ R K×N + are nonnegative matrices that can be interpreted as the characteristic audio spectral patterns W ∈ R F ×K + and their temporal activations H ∈ R K×N + , respectively. Here K is the total number of spectral patterns.

We then apply soft mask based filtering [START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF] to an audio recording to decompose it into K tracks (also referred to as NMF components) each obtained from w k , h k for k ∈ [1, K], where w k and h k denote spectral pattern and activation vectors corresponding to the k th component, respectively. This is depicted in Fig. 4.

They can now be considered as proposals that may or may not belong to the class of interest. Specifically, we chunk each NMF component into temporal segments, which we call NMF Component proposals or NCPs. We denote the set of NCPs by D = {d k,t }, where each element is indexed by the component, k ∈ [1, K] and temporal segment t ∈ [1, T ]. The same audio network is used for both TSPs and NCPs. Thus, for each NMF component or track we follow the TSP computation procedure. However, this is done with a non-overlapping window for reducing computational load.

Our system scores each NMF component with respect to its relevance for a particular class. These relevance scores can be appropriately aggregated to perform source enhancement. We proceed as follows:

• Denoting by β k,t the score for k th component's t th temporal segment, we compute a global score for each component as

α k = max t∈T β k,t .
It is worth mentioning that other pooling strategies such as mean or weighted rank pooling [44] could also be considered instead of the max operation. However, in our preliminary experiments we found them to yield similar results.

• Next, we apply min-max scaling between [0,1]:

α k = α k -α l α u -α l , where α l = min k (α k ), α u = max k (α k )
Fig. 5. Synchronized variant -herein audio and visual scores over each temporal segment are aggregated and the best temporal segment is chosen for classification.

• This is followed by soft mask based source and noise spectrogram reconstruction using complex-valued mixture STFT X. Note that we can optionally apply a hard threshold τ on α k to choose the top ranked components for the source. This amounts to replacing α k by the indicator function 1[α k ≥ τ ] in the following reconstruction equations:

S = K k=1 α k w k h k WH X (4) 
N = K k=1 (1 -α k )w k h k WH X (5) 
Here S and N are the estimates of source of interest and of background noise, respectively. These can be converted back to the time domain using inverse STFT. It is worth noting two key differences with the approach in [32]: (i) In [32] only the NMF basis vectors are used for training without their corresponding activations. Hence no temporal information is utilized. (ii) Unlike us, they perform a supervised dictionary construction step after training to decompose a test signal.

2) Synchronous fusion variant: Framework instantiation depicted in Fig. 3 constructs the global score vector for each modality by combining scores over all the proposals, regardless of their temporal index. As noted, such a system is capable of dealing with asynchronous appearance of cues in both the modalities. On the other hand, we could envision a synchronized variant, where we only add scores of visual and audio proposals appearing in the same temporal segment. And construct the global score vector by choosing for each class the best scoring temporal segment. This is illustrated in Fig. 5. This essentially allows us to determine temporal segments where AV cues appear simultaneously. We list below specific changes made to the proposal score computation and fusion module:

1) Firstly, in the localization stream the softmax operation is performed over proposals from each temporal window separately. This amounts to replacing |P| by |P t | in equation (1), where the proposals are indexed by the temporal segment they belong to. For the visual branch this corresponds to region proposals from a frame within the t th temporal segment. 2) Secondly, after obtaining E i.e. the output of the two stream classification, we compute a class score vector for each temporal interval by summing up proposal scores separately over p ∈ P t . This gives us a matrix with dimensions C ×T in each modality. Their addition gives us a synchronous AV temporal score. 3) Finally, for each class, the best AV temporal segment is chosen through a log -sumexp operation. This gives us the class score vector φ required for weaklysupervised training using multi-label hinge loss (refer to equation ( 2)).

IV. EXPERIMENTAL VALIDATION

A. Setup

All systems except that of [23], including variants, are implemented in Tensorflow. They were trained for 25K iterations using Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with a learning rate of 10 -5 and a batch size of 24. We use the MATLAB implementation of EdgeBoxes for generating region proposals, obtaining approximately 100 regions per video with M img = 10 and a duration of 10 sec. The implementation is used with default parameter setting. Base visual features, x vis ∈ R 9216 are extracted using caffenet [58] with pre-trained ImageNet weights and RoI pooling layer modification [48]. With 6 × 6 RoI pooling we get a 9216 (= 256 × 6 × 6) dimensional feature vector. For this, the Fast-RCNN Caffe implementation is used [48]. The fully connected layers, namely f c 6 and f c 7 , each with 4096 neurons, are fine-tuned, with 50% dropout during training.

For audio, each recording is resampled to 16 kHz before processing. Log-Mel spectrum over the whole file is computed with a window size of 25ms and 10ms hop length. The resulting spectrum is chunked into segment proposals using a 960-ms window with a 480-ms stride.

For a 10-second recording, this yields 20 segments of size 96 × 64. We use the official Tensorflow implementation of vggish. 4B. Datasets DCASE Smart Cars. We use the recently introduced dataset for the DCASE challenge on large-scale weakly supervised sound event detection for smart cars [21]. This is a subset of Audioset [22] which contains a collection of weakly-annotated unconstrained YouTube videos of vehicle and warning sounds spread over 17 classes. It is categorized as follows (abbreviations used in experiment tables are given in parenthesis that follow each category):

• Warning sounds: Train horn (trn-hrn), Air/Truck horn (air-hrn), Car alarm (car-alm), Reversing beeps (rv-bps), Ambulance siren (amb), Police car siren (pol-car), Fire engine/fire truck siren (f-eng), Civil defense siren (civdef), Screaming (scrm).

• Vehicle sounds: Bicycle (bik), Skateboard (skt), Car (car), Car passing by (car-pby), Bus (bus), Truck (trk), Motorcycle (mbik), Train (trn). This multi-label dataset contains 51,172 training, 488 validation and 1103 testing samples. Despite our best efforts, due to download issues, we were able to fetch 48,719 training, 462 validation and 1030 testing clips. It is worth mentioning that the training data is highly unbalanced with the number of samples for the classes ranging from 175 to 24K. To mitigate the negative effect of this imbalance on training, we introduce some balance by ensuring that each training batch contains at least one sample from some or all of the under-represented classes. Briefly, each batch is generated by first randomly sampling labels from a specific list, followed by fetching examples corresponding to the number of times each label is sampled. This list is generated by ensuring higher but limited presence of classes with more examples. We use a publicly available implementation for this purpose [23]. 5Kinetics instruments (KI). We also use a subset of the Kinetics dataset [14] that contains 10-s YouTube videos from 15 music instrument classes. From a total of 10,267 videos, we create training and testing sets that contain 9199 and 1023 videos, respectively. For source enhancement evaluation, we handpicked 45 "clean" instrument recordings, 3 per class. Due to their unconstrained nature, the audio recordings are mostly noisy, i.e. videos are either shot with accompanying music/instruments or in acoustic environments containing other background events. In that context, "clean" refers to solo instrument samples with minimal amount of such noise.

In what follows, we thoroughly evaluate the proposed framework's performance on various scene analysis tasks. In particular, we compare the asynchronous and synchronous variants of our system against several strong baselines for event classification on the DCASE smart cars benchmark. Generalization to diverse object types is shown through results on KI. This is followed by results for temporal localization of the audio event on DCASE. For completeness, we also present experiments on segregating the audio source of interest, as discussed in our prior work [START_REF] Parekh | Identify, locate and separate: Audio-visual object extraction in large video collections using weak supervision[END_REF]. This allows us to demonstrate our system's capability to perform good source enhancement while training just for weak label classification. This is done by utilizing NMF-based proposals as described in Sec. III-D1. We conclude this section with a discussion of qualitative visual localization examples that show how we deal with extreme noise, including asynchronous AV cues.

C. Event classification

Baselines. To our best knowledge, there is no prior work on deep architectures that perform the task of weakly supervised classification and localization for unsynchronized AV events. Our task and method are substantially different from recently proposed networks like L3 [10], [11] which are trained using synchronous AV pairs on a large collection of videos in a self-supervised manner. However, we designed several strong baselines for comparison and an ablation study. In particular, we compare against the following networks:

1) AV One-Stream Architecture: Applying MIL in a straight-forward manner, we could proceed only with a single stream. That is, we can use the classification stream followed by a max operation for selecting the highest scoring regions and segments for obtaining global video-level scores. As done in [37], we choose to implement this as a multimodal MIL-based baseline.

We replace the max operation by the log -sumexp operator, its soft approximation. This has been shown to yield better results [34]. The scores on both the streams are 2 normalized before addition for classification. This essentially amounts to removing from Fig. 3 the localization branches and replacing the summation over proposals with the soft-maximum operation described above. To avoid any confusion, please note that we use the term 'stream' to refer to classification and localization parts of the scoring network.

2) Visual-Only and Audio-Only Networks: These networks only utilize one of the modalities for classification. However, note that there are still two streams for classification and localization, respectively. For a fair comparison and ablation study we train these networks with 2 normalization. In addition, for completeness we also implement Bilen et al.'s architecture for weakly supervised deep detection networks (WSDDN) with an additional softmax on the classification stream. As the scores are in the range [0,1], we train this particular network with C binary log-loss terms [37]. When discussing results we refer to this system as WSDDN-Type.

3) CVSSP Audio-Only [23]: This state-of-the-art method is the DCASE 2017 challenge winner for the audio event classification sub-task. The system is based on Gated convolutional RNN (CRNN) for better temporal modeling and attention-based localization. They use no external data and training/evaluation is carried out on all the samples. We present results for both their winning fusion system, which combines prediction of various models and Gated-RCNN model trained with log-Mel spectrum. Results and discussion. We show in Table I the microaveraged F1 scores for each of the systems described in this paper. In particular, systems (a)-(b) in Table I are the proposed asynchronous and synchronous AV systems respectively and (c)-(f) present variants of (a) which are also treated as baselines, (g)-(h) denote results from CVSSP team [23], winners of the DCASE AED for smart cars audio event tagging task. The proposed systems and their variants are trained with audio temporal segment proposals only. Our proposed two stream multimodal and audio-only systems (a,b,c) outperform all the other approaches by a significant margin. Among the multimodal systems, the two-stream architecture performs much better than the one-stream counter-part, designed with only a classification stream and soft-maximum for region selection.

On the other hand, the state-of-the-art CVSSP fusion system, which combines predictions of various models, achieves a better precision than the other methods. It is also worth mentioning that performance of the sync. AV system (b) is lower than the unsynchronized one (a). This is expected as the dataset contains some samples with asynchronously appearing cues. However, the sync. system would still be useful for detecting temporal segments where the AV cues appear together. Several important and interesting observations can be made by looking at these results in conjunction with the class-wise scores reported in Table II.

Most importantly, the results emphasize the complementary role of visual and audio sub-modules for this task. To see this, we could categorize the data into two sets: (i) classes with clearly defined AV elements, for instance car, train, motorcycle; (ii) some warning sounds such as, e.g., reverse beeping, screaming, air horn, where the visual object's presence is ambiguous. The class-wise results of the video only system are a clear indication of this split. Well-defined visual cues enhance the performance of the proposed multimodal system over audio-only approaches, as video frames carry vital information about the object. On the other hand, in the case of warning sounds, video frames alone are insufficient as evidenced by results for the video-only system. In this case, the presence of audio assists the system in arriving at the correct prediction. The expected AV complementarity is clearly established through these results.

Note that for some warning sounds the CVSSP method achieves better results. In this regard, we believe better temporal modeling for our audio system could lead to further improvements. In fact, we currently operate with a coarse temporal window of 960ms, which might not be ideal for all audio events. RNNs could also be used for further improvements. We think such improvements are orthogonal and were not the focus of this study. We also observe that results for under-represented classes in the training data such as air horn and reversing beeps are relatively lower. This can possibly be mitigated through data augmentation strategies.

In Table III we report results for the case where all layers of vggish are fine-tuned. For this, we remove the FC adaptation layer from the audio network (refer to Fig. 3). It is also worth noting that for these experiments, we reduced the batch size to one due to memory constraints. For DCASE data, which contains approximately 48K training samples, this results in significantly more number of variable updates. Thus, to avoid overfitting, we run the system for 10 epochs and report results with the model that gives the lowest validation error. As expected, fine-tuning vggish results in improved performance as the audio features are better adapted to the dataset. We also see competitive instrument classification performance with KI, where the multimodal system fairs better than audio alone.

D. Audio temporal localization

We show the sound event detection performance on DCASE smart cars data in Table IV. Following DCASE evaluation protocol, here we report segment-wise aggregated F1 score and error rate (ER) for each system. The official metric, ER, computes total number of substitution, deletion and insertion errors by comparing the ground truth and estimated output using one second long sub-segments [13].

The results for the proposed systems are computed by simply thresholding the two-stream output from the audio sub-module at τ = 0 for the predicted label(s). We note that the results are comparable with the best performing CVSSP system. Note that the winning system for this subtask from Lee et al. [START_REF] Lee | Ensemble of convolutional neural networks for weakly-supervised sound event detection using multiple scale input[END_REF] employs an ensemble method to optimally weigh multiple learned models, using ER as the performance metric to make the final selection. No such fine tuning is performed in our case.

E. Audio source enhancement

Systems. We evaluate audio-visual (V + A) systems with different audio proposal types, namely:

• A (NCP): NMF component proposals, • A (TSP, NCP): all TSPs and NCPs are put together into the same bag and fed to the audio network.

vggish is fine-tuned (as discussed earlier) for the systems listed above to adapt to NCP input.

Baselines. We compare with the following NMF related methods:

• Supervised NMF [START_REF] Févotte | Single-channel audio source separation with NMF: divergences, constraints and algorithms[END_REF]: We use the class labels to train separate dictionaries of size 100 for each music instrument with stochastic mini-batch updates. At test time, depending on the label, the mixture is projected onto the appropriate dictionary for source reconstruction.

• NMF Mel-Clustering [START_REF] Spiertz | Source-filter based clustering for monaural blind source separation[END_REF]: This blind audio-only method reconstructs source and noise signals by clustering melspectra of NMF components. We take help of the example code provided online for implementation in MATLAB [START_REF]NMF Mel Clustering Code[END_REF]. Testing protocol. We corrupt the original audio with background noise corresponding to recordings of environments such as bus, busy street, park, etc. using one audio file per scene from the DCASE 2013 scene classification dataset [START_REF] Stowell | Detection and classification of acoustic scenes and events[END_REF]. The system can be utilized in two modes: label known and label unknown. For the former, where the source of interest is known, we simply use the proposal ranking given by the 55.5 0.66 corresponding classifier for reconstruction. For the latter, the system's classification output is used to infer the source. Results and discussion. We report, in Table V, average Source to Distortion Ratio (SDR) [START_REF] Vincent | Performance measurement in blind audio source separation[END_REF] over 450 audio mixtures created by mixing each of the 45 clean samples from the dataset with 10 noisy audio scenes. The results look promising but not state-of-the-art. This performance gap can be explained by noting that the audio network is trained for the task of audio event detection and thus does not yield optimal performance for source enhancement. The network focuses on discriminative components, failing to separate some source components from the noise by a larger margin, possibly requiring adaptive thresholding for best results. In other words, as the component scores vary for each example, a single threshold for all cases proves to be sub-optimal. It is worth noting that performance for the proposed systems does not degrade when used in "Label Unknown" mode, indicating that despite incorrect classification the system is able to cluster acoustically similar sounds. Performance of supervised NMF seems to suffer due to training on a noisy dataset. Separation results on in-the-wild YouTube videos are made available on our companion website. 6 

F. Qualitative visual localization

In Fig. 6 we present some visual localization results for the 'train' category from DCASE. Localization in extreme asynchronous conditions is also discussed in Fig. 7. In the first case A, the sound of a car's engine is heard in the first two seconds followed by music. The normalized audio localization heatmap at the bottom displays the scores assigned to each temporal audio segment, s t by the car classifier. The video frames placed above are roughly aligned with the audio temporal axis to show the video frame at the instant when the car sounds and the point where the visual network localizes. The localization is displayed through a yellow bounding box. To better understand the system's output, we modulate the opacity of the bounding box according to the system's score for it. Higher the score, more visible the bounding box. As expected, we do not observe any yellow edges in the first frame. Clearly, there exists temporal asynchrony, where the system locks onto the car, much later, when it is completely visible. B depicts an example, where due to extreme lighting conditions the visual object is not visible. Here too, we localize the audio object and correctly predict the 'motorcycle' class.

For full videos and more such examples we refer the reader to our companion website. 6 V. CONCLUSION Building upon ideas from multiple instance learning, we have proposed a modular deep AV scene understanding framework that can be trained jointly to perform several tasks simultaneously. Exploiting our method's modularity, we investigate several instantiations capable of dealing with unsynchronized AV cue appearance, determining synchronous temporal segments and segregating the audio into constituent Fig. 7. Qualitative results for unsynchronized AV events. For both the cases A and B, the heatmap at the bottom denotes audio localization over segments for the class under consideration. For heatmap display, the audio localization vector has been scaled to lie between [0,1]. The top row depicts video frames roughly aligned to the audio temporal axis. (A) Top: Here we show a video where the visual object of interest appears after the audio event. This is a 'car' video from the validation split. The video frames show bounding boxes where edge opacity is controlled by the box's detection score. In other words, higher score implies better visibility (B) Bottom: This is a case from the evaluation data where due to lighting conditions, the visual object is not visible. However the system correctly localizes in audio and predicts the 'motorcycle' class.

sources. The latter is made possible through a novel use of NMF decomposition, where, unlike most earlier methods, we only use the given weak labels for training. We report state-of-the-art event classification performance on DCASE 2017 smart cars data along with promising results for spatiotemporal visual localization, audio event detection and source separation. The method generalizes well to diverse object types. Experiments have have also shown that a more accurate audio temporal modeling would be needed to better cope with situations where the visual modality is inefficient. Furthermore, we believe the presented method could benefit from appropriately incorporating several recent developments in feature and modality fusion [START_REF] Lu | Hierarchical question-image co-attention for visual question answering[END_REF], [START_REF] Tian | Audio-visual event localization in unconstrained videos[END_REF].

Introduction

While some contents have the power to burn themselves into our memories for a long time, others are quickly forgotten [17]. Evolution made our brain efficient to remember only the information relevant for our survival, reproduction, happiness, etc. This explains why, as humans, we share a strong tendency to memorize/forget the same images, which translates into a high human consistency in image memorability (IM) [20], and probably also a high consistency for video memorability (VM). Although, like for any other perceptual concept, we can observe individual differences while memorizing content, in this paper we target the capture and prediction of the part of the memorability that is shared by humans, as it can be assessed by averaging individual memory performances. This shared-acrossobservers part of the memorability, and especially longterm memorability, has a very broad application range in various areas including education and learning, content retrieval, search, filtering and summarizing, storytelling, etc.

The study of VM from a computer vision point of view is a new field of research, encouraged by the success of IM since the seminal work of Isola et al. [17]. In contrast to other cues of video importance, such as aesthetics, interestingness or emotions, memorability has the advantage of being clearly definable and objectively measurable (i.e., using a measure that is not influenced by the observer's personal judgement). This certainly participates to the growing interest for its study. IM has initially been defined as the probability for an image to be recognized a few minutes after a single view, when presented amidst a stream of images [17]. This definition has been widely accepted within subsequent work [24,21,3,20,23]). The introduction of deep learning to address the challenge of IM prediction causes models to achieve results close to human consistency [20,1,34,18,31,12]. As a result of this success, researchers have recently extended this challenge to videos [14,30,7,5]. However, this new research field is nascent. As argued in [7], releasing a large-scale dataset for VM would highly contribute to launch this research field, as it was the case for the two important dataset releases in IM [17,20]. Such a dataset should try to overcome the weaknesses of the previously released datasets. In particular, previous research on IM focused on the measurement of memory performances only a few minutes after memorization. However, passage of time is a factor well-studied in psychology for its influence on memory, while having been largely ignored by previous work on IM, probably because of the difficulty to collect long-term annotations at a large scale, in comparison with short-term ones. Measuring a memory performance a few minutes after the encoding step is already a measure a long-term memory, since short-term memory usually lasts less than a minute for unrehearsed information [28]. However, memories continue to change over time: going through a consolidation process (i.e., the time-dependent process that creates our lasting memories), some memories are consolidated and others are not [25]. In other words, short-term memory performances might be poor predictors of longer term memory performances. In the following, we refer to measures of long-term memory a few minutes after memorization as measures of short-term memorability, and use the term long-term memorability for measures of long-term memory performance after one day. Since long-term memorability is more costly and difficult to collect than short-term memorability, it would nevertheless be interesting to know if the former can be inferred from the latter, which would also push forward our understanding of what makes a video durably memorable. A way to achieve this consists in measuring memorability for the same videos at two points of time. These two measures would be particularly interesting if spaced by a time interval in which forgetting is quite significant, to maximize the size of the potentially observable differences depending on the different video features. Observing the different forgetting curves in long-term memory (e.g. Ebbinghauss seminal work [9]), one can observe that the drop in long-term memory performance in recall follows an exponential decay and is particularly strong in the first hour, and to a lesser extent in the first day, immediately after the memorization. Measuring long-term memory a few minutes after encoding (as done in studies of IM [17,20]), and again one day or more after (i.e., to obtain a measure close to very long-term memory), sounds therefore a good trade-off.

The main contributions of this work are fivefold:

• We introduce a new protocol to objectively measure human memory of videos at two points of time (a few minutes and then 24-72 hours after memorization) and release VideoMem, the premier large-scale dataset for VM, composed of 10,000 videos with short-term and long-term memorability scores (Sections 3.1 and 3.2). • Through an analysis of the dataset, we address the problem of understanding VM, by highlighting some factors involved in VM (Section 4). 

Related work

If long-term memory has been studied for over a century in psychology, since the seminal experimental studies of Ebbinghaus [10], its study from a computer vision point of view started quite recently, with [17]. Images and videos had long been used as material to assess memory performances [32,2,13], proving that human possessess an extensive long-term visual memory. The knowledge accumulated in psychology helped to measure memory using classical memory tests (see [29] for an extensive overview) such as recognition tests [17,20,14,7] or textual question-based recall surveys [30]. Several factors are highlighted in the psychological literature for their critical influence on long-term memory, including emotion [19], attention [8], semantics [27], several demographic factors [6], memory re-evocation [26], or passage of time [25], also providing computer vision researchers with insights to craft valuable computational features for IM and VM prediction [24,16,7].

Focusing on IM in computer vision, most studies made use of one of the two available large datasets, specifically designed for IM prediction, where IM was measured a few minutes after memorization [17,20], and consequently focused on predicting a so-called short-term IM [24,21,3,20,1,23,31,12]. The pioneering work of [17] focused primarily on building computational models to predict IM from low-level visual features [17], and showed that IM can be predicted to a certain extent. Several characteristics have also been found to be relevant for predicting memorability in subsequent work, for example saliency [24], interestingness and aesthetics [16], or emotions [20]. The best results were finally obtained by using fine-tuned or pre-extracted deep features, which outperformed all other features [20,1,31,12], with models achieving a Spearman's rank correlation near human consistency (i.e., .68) when measured for the ground truth collected in [17,20].

VM study is more recent. To the best of our knowledge, there exist only three previous attempts at measuring it [14,30,7]. Inspired by [17], Han et al. built a similar but far much heavier protocol to measure VM: the long time span of the experiment makes the generalization of this protocol difficult, in particular if one targets the construction of an extensive dataset. Another approach uses questions instead of a classic visual recognition task to measure VM [30]. As a results, memorability annotations collected for the videos may reflect not only the differences in memory performances but also the differences of complexity between the questions, especially since the authors use the response time to calculate memorability scores, which might critically depend on the questions' complexity. The most recent attempt at measuring VM, and the only one, to our knowledge, resulting in a publicly available dataset, comes from [7]. The authors introduced a novel protocol to measure memory performance after a significant retention period -i.e., weeks to years after memorization -without needing a longitudinal study. In contrast with previous work, the annotators did not pass through a learning task. It was replaced with a questionnaire designed to collect information about the participants' prior memory of Hollywoodlike movies. However, such a protocol implies a limited choice of content: authors needed contents broadly disseminated among the population surveyed, as the participants should have seen some of them before the task (hence the Hollywood-like movies), leading to a number of annotations biased towards most famous content. Furthermore, the absence of control of the memorizing process and the answers of the questionnaire based on subjective judgments make the measure of memory performance not fully objective. To sum up, none of the previous approaches to measure VM is adapted to build a large-scale dataset with a ground truth based on objective measures of memory performance. Results obtained for VM prediction are yet far from those obtained in IM prediction. Han et al. proposed a method which combines audio-visual and fMRIderived features supposedly conveying part of the brain activity when memorizing videos, which in the end enables to predict VM without the use of fMRI scans [14]. However, the method would be difficult to generalize. Shekhar et al. investigated several features, including C3D, semantic features obtained from some video captioning process, saliency features, dense trajectories, and color features, before building their memorability predictor [30]. They found that the best feature combination used dense trajectories, captioning, saliency and color features.

VideoMem: large-scale video memorability dataset

In Section 3.1, we describe the collection of source videos that compose the VideoMem dataset. We then introduce a new protocol to collect short-term and long-term memorability annotations for videos (Section 3.2), before explaining the computation of VM scores (Section 3.3).

Video collection

The dataset is composed of 10,000 soundless videos of 7 seconds shared under a license that allows their use and redistribution for research purpose only. In contrast to previous work on VM, where videos came from TRECVID [30,14] or were extracted from Hollywood-like movies [7], videos in our dataset were extracted from raw footage, mainly from staged settings, dedicated to be further edited by professionals when creating new content, e.g. a new motion picture, video clip, television show, advertisements, etc. Because such video footage is typically used to save shooting new material, it is usually generic enough to be easily integrated in different sorts of creations. As such, they are context-independent and contain only one semantic scene. By this choice of content, we expect these basic building units to be relevant to train models which generalize on other types of videos. We are also confident that observers never saw the videos before participating in the experiment. Videos are varied and contain different scene types such as animal, food and beverages, nature, people, transportation, etc. A few of them contain similarities, e.g. same actor, same place but slightly different action, as it is the case in everyday video consumption (< 1%). A small fraction is also slow-motion. Each video comes with its original title, that can often be seen as a list of tags (textual metadata). Example video keyframes are shown in Fig. 1.

The original videos are of high quality (HD or 4k) and of various durations (from seconds to minutes). As it will be described in Section 3.2, our protocol relies on crowdsourcing. For the sake of fluency during the annotation collection and consistency between the videos, we rescaled the videos to HD and re-encoded them in .webm format, with a bitrate of 3,000 kbps for 24 fps. To satisfy to the protocol's con- straints, i.e., minimal delay before measuring memory performance and maximal duration of the tasks to avoid user fatigue, we also cut the videos to keep only the first 7 seconds. Most videos are short (< a few minutes) and contain one semantic scene. Those 7 seconds should therefore be representative of their content. Videos are soundless, firstly because a large part of the original data came without audio, and secondly, because it is difficult to control the audio modality in crowdsourcing. Accordingly, memorability would be linked only to the visualization of a semantic unit, which sounds a reasonable step forward for VM prediction, without adding a potentially biasing dimension.

Annotation protocol

To collect VM annotations, we introduced a new protocol which enables to measure both human short-term and long-term memory performances. Inspired by what was proposed in [16,17] for IM, we also used recognition tests for our memorability scores to reflect objective measures of memory performance. However, our protocol differs in several ways, not mentioning the fact that it is dedicated to videos. Firstly, as videos have an inherent duration, we had to revise 1) the delay between the memorization of a video and its recognition test and 2) the number of videos, for the task not be too easy. Secondly, in contrast to previous work on IM, where memorability was measured only a few minutes after memorization, memory performance is measured twice to collect both short-term and long-term memorability annotations: a few minutes after memorization and again (on different items) 24-72 hours later. The retention interval between memorization and measure is not as important as in [7], where it lasts weeks to years. As previously explained, we hope, however, that this measure reflects very-long term memory performance instead of short-term memory, as forgetting happens to a large extent during the first day following the memorization.

Fig. 2 illustrates our protocol, that works in two steps.

Step #1, intended to collect short-term annotations, consists of interlaced viewing and recognition tasks. Participants watch a series of videos, some of them -the targets -repeated after a few minutes. Their task is to press the space bar whenever they recognize a video. Once the space bar is pressed, the next video is displayed, otherwise current video goes on up to its end. Each participant watches 180 videos, that contain 40 targets, repeated once for memory testing, and 80 fillers (i.e., non target videos), 20 of which (so-called vigilance fillers) are also repeated quickly after their first occurrence to monitor the participant's attention to the task. The 120 videos (not counting the repetitions) that participate to step #1 are randomly selected among the 1000 videos that received less annotations at the time of the selec-tion. Their order of presentation is randomly generated by following the given rule: the repetition of a target (respectively a vigilance filler) occurs randomly 45 to 100 (resp. 3 to 6) videos after the target (resp. vigilance filler) first occurrence. In the second step of the experiment, that takes place 24 to 72 hours after step #1, the same participants are proposed another similar recognition task, intended to collect long-term annotations. They watch a new sequence of 120 videos, composed of 80 fillers (randomly chosen totally new videos) and 40 targets, randomly selected from the non-vigilance fillers of step #1. Apart from the vigilance task (step #1 only), we added several controls, settled upon the results on an in-lab test: a minimum correct recognition rate (15%, step #2 only), a maximum false alarm rate (30%, step #1; 40%, step #2) and a false alarm rate lower than the recognition rate (step #2 only). This allows to obtain quality annotations by validating each user's participation; a participant could participate only once to the study. We recruited participants from diverse countries and origins via the Amazon Mechanical Turk (AMT) crowdsourcing platform.

Memorability score calculation

After a filtering of the participants to keep only those that passed the vigilance controls, we computed the final memorability scores on 9,402 participants for short-term, and 3,246 participants for long-term memorability. On average, a video was viewed as a repeated target 38 times (and at least 30 times) for the short-term task, and 13 times (at least 9 times) for the long-term task (this difference is inherent to the lower number of participants in step #2, as a large part of participants in step#1 did not come back). We assigned a first raw memorability score to each video, defined as the percentage of correct recognitions by participants, for both short-term and long-term memorability.

The short-term raw scores are further refined by applying a linear transformation that takes into account the memory retention duration to correct the scores. Indeed, in our protocol, the repetition of a video happens after variable time intervals, i.e., after 45 to 100 videos for a target. In [16], using a similar approach for images, it has been shown that memorability scores evolve as a function of the time interval between repeats while memorability ranks are largely conserved. We were able to prove the same relation for videos, i.e., memorability decreases linearly when the retention duration increases (see Fig. 3, left). Thus, as in [20], we use this information to apply a linear correction (shown in Fig. 3) to our raw memorability scores to explicitly account for the difference in interval lengths, with the objective for our short-term memorability scores to be the most representative of the typical memory performance after the maximal interval (i.e., 100 videos). Note that the applied correction has nevertheless little effect on the scores both in terms of absolute and relative values. Note also that we did not apply any correction for long-term memorability scores (Fig. 3, right). Indeed, we observed no specific, strong enough relationship between retention duration and long-term memorability. This was somehow expected from what can be found in the literature : according to our protocol, the second measure was carried out 24 to 72 hours after the first measure. After such a long retention duration, it is expected that the memory performance is no more subjected to substantial decrease due to the retention duration. In the end, the average short-term memorability score is 0.859 (instead of 0.875) and the average long-term memorability score is 0.778, all values showing a bias towards high values.

Understanding video memorability 4.1. Human consistency vs. annotation consistency

Following the method proposed in [16], we measured human consistency when assessing VM. For this purpose, we randomly split our participants into two groups of equal size (4,701 for short-term memorability, 1,623 for longterm memorability), and computed VM scores independently in each group as described in Section 3.3. We then calculated a Spearman's rank correlation between the two groups of scores. Averaging over 25 random half-split trials, an average Spearman's rank correlation, i.e., a global human consistency, of 0.481 is observed for short-term memorability and of 0.192 for long-term memorability.

Such a method divides the number of annotations that is taken into account for the score computation at least by a factor of 2. Moreover, it may end with groups with unbalanced number of annotations per video as the split is randomly applied on the participants, not taking into account which videos they watched. For this reason, we proposed a new metric named annotation consistency, more representative of the performance consistency of the users. We repro-duced the previous process of human consistency computation but on successive subparts of the dataset by considering for each sub-part only videos which received at least N annotations. Each subpart is then split in two groups of participants while ensuring a balance number of participants per video. By doing so, we obtain the annotation consistency as a function of the number of annotations per video, as presented in Fig. 4. This allows us to interpolate the following values: Annotation consistency reaches 0.616 (respectively 0.364) for the short-term (resp. long-term) task, for a number of annotations of 38 (resp. 13). Both values represent strong (resp. moderate) correlations according to the usual Spearman scale of interpretation. Hence, choosing larger mean number of annotations provides more stable annotations, i.e., 0.616 (resp. 0.364) rather than 0.481 (resp. 0.192) for the short-term (resp. long-term) task.

The value of 0.616 for short-term memorability is to be compared to 0.68 for images as found in [20]. Slightly lower, VideoMem consistency was nevertheless obtained with less annotations than in [20], which is consistent with [7]. The maximum consistency is also slightly higher for VM than for IM (0.81 against 0.75 in [17] and 0.68 in [20]). An explanation is that videos contain more information than images and thus are more easily remembered. However, one should keep in mind that the protocols to collect annotations differ in several ways, making these results not fully comparable. Fig. 4 also shows that long-term and short-term consistencies follow the same evolution. 

Memorability consistency over time

In this study, we are interested in assessing how well memorability scores remain consistent over time, i.e., if a video highly memorable after a few minutes of retention remains also highly memorable after 24 to 72 hours. The Spearman's rank correlation coefficient between the long-term and short-term memorability scores for the 10,000 videos exhibits a moderate positive correlation (ρ = 0.305, p < .0001) between the two variables, as also shown in Fig. 5. To discard a potential bias that would come from the highest number of annotations in step #1 compared to step #2, we computed the correlation for the 500 most annotated videos in the long-term task (that have at least 21 annotations) and then again for the 100 most annotated (at least 28 annotations), observing similar Spearman values of ρ = 0.333, p < .0001 and ρ = 0.303, p < .0001, respectively. This result suggests that memory evolves with time and in a non-homogeneous manner depending on the videos: a video highly memorable a few minutes after visualization might not remain highly memorable in long-term memory. This finding is consistent with the hypothesis we proposed in the introductory section, that the information important for a content to be memorized might not be the same for short-term and long-term memorization. 

Memorability and response time

We observed negative Pearson correlations between the mean response time to correctly recognize targets and their memorability scores, both for short-term (r = 0.307, p < .0001) and long-term (0.176, p < .0001) memorability, as also illustrated in Fig. 6. This tends to prove that, globally, participants tended to answer more quickly for the most memorable videos than for the less memorable ones. This is consistent with [7], where the authors propose two explanations to this result: either the most memorable videos are also the most accessible in memory, and/or the most memorable videos contain more early recognizable elements than the less memorable ones. As videos in VideoMem consist of semantic units with often one unique shot -with most of the information already present from the beginning -the first explanation sounds more suitable here. This also suggests that participants tend to quickly answer after recognizing a repeated video (even though they did not receive any instruction to do so), maybe afraid of missing the time to answer, or to alleviate their mental charge. This correlation highlights that the average response time might be a useful feature to further infer VM in computational models.

The correlation is, however, lower for long-term memorability. One explanation might be that, after one day, remembering is more difficult. In connection with this explanation, we observed a significant difference between the mean response time to correctly recognize a video during step #1 and during step #2 (1.43sec. vs. 3.37sec.), as showed by a Student's t-test (t(9999) = -122.59, p < 0001). Note that the Pearson correlation (0.291) between average response time per video for short-term and long-term memorability is close to the Pearson correlation (0.329) observed between short-term and long-term memorability scores (see Fig. 5, right). Note that the mean response time for a false alarm was 3.17sec. for step #1 and 3.53sec. for step #2. 

Predicting video memorability

In this section we focus on predicting VM using various machine learning approaches. We pose the VM score prediction as a standard regression problem. We first benchmark several state-of-art video-based models on our data (Section 5.2), against performances of IM models (Section 5.1). We then focus on assessing how a very recent stateof-the-art image captioning based model, fine-tuned on our data, performs for VM prediction. The aim is here to see if the finding in [31,7] that semantics highly intervenes in IM prediction still stands for VM prediction. In Section 5.4, we analyze the prediction results of all models and give insights to understand the correlation between IM and VM. Last, in Section 5.5, we modify the advanced IC model by adding an attention mechanism that helps us better understand what makes a content memorable. Note that, for training (when applied) and evaluating the considered models, we split VideoMem dataset into training (6500 videos), validation (1500), and test (2000) sets, where the test set contains 500 videos with a greater number of annotations. Similarly to previous work in IM and VM, the prediction performance is evaluated in term of the Spearman's rank correlation between the ground truth and the predicted scores. 

Image memorability-based baselines

In order to investigate the correlation between IM and VM and to build some first baselines on the dataset, we directly used two state-of-the-art models for IM prediction to compute a memorability score for 7 successive frames in the video (one per second): MemNet proposed in [20] and Squalli et al. in [31]. The final VM score for one video is obtained by averaging the 7 corresponding frame scores.

Video-based models

In a first attempt to capture the inherent temporal information of the videos, we investigated the performances of two classic, yet temporal, features: C3D [33] and HMP [4] as input features to some MLP layers. We tested them alone and concatenated, using some grid search for hyperparameter optimisation. Best results were obtained for the features alone, with the parameters: two hidden layers with 10 neurons for HMP and one hidden layer with 100 neurons for C3D, optimizer=IBLGS, activation=tanh, learning rate (lr)=1e-3. Second, instead of using a fix feature extractor, we directly fine-tuned the state-of-the-art ResNet3D model (based on ResNet34) [15]. For this, we replaced the last fully connected layer of ResNet3D by a new one dedicated to our considered regression task. This last layer was first trained alone for 5 epochs (Adam optimizer, batchsize=32, lr=1e-3), then the whole network was re-trained for more epochs (same parameters, but lr=1e-5).

Semantic embedding-based model

As scene semantic features derived from an image captioning system (IC) [22] have been shown to well characterize the memorability of images [31] and videos [7], we also investigated the use some IC system. Also, following the idea of model fine-tuning, we fine-tuned a state-of-art visual semantic embedding pipeline used for image captioning [11], on top of which a 2-layer MLP is added, to regress the feature space to a single memorability score. The overall architecture is shown in Fig. 7, in the green pipeline. As the model in [11] remains at the image-level, we first predict scores for the same 7 frames as in Section 5.1, then compute the final prediction at video level by averaging those 7 values. It is fine tuned on both VideoMem and LaMem [20] datasets, for short-term memorability only, because LaMem only provides short-term annotations. The training is done using the Adam optimizer and is divided in two steps: in the first 10 epochs only the weights of the MLP are updated while those of the IC feature extractor remain frozen. Later the whole model is fine-tuned. The learning rate is initialized to 0.001 and divided in half every three epochs. It is important to note that the original IC model was trained with a new ranking loss (i.e., Spearman surrogate) proposed in [11]. This new loss has proved to be highly efficient for ranking tasks as claimed in [11]. For the fine-tuning however, the training starts with a 1 loss as initialization step, before coming back to the ranking loss. The reason is that the original model was indeed trained for scores in [-1;1], while our memorability scores are in [0;1]. Thus the 1 loss forces the model to adapt to this new range.

Prediction results

From the results in Table 1, we may draw several conclusions. Additional results are presented in the supplementary material. First, it is possible to achieve already quite good results in VM prediction using models designed for IM prediction. This means that the memorability of a video is correlated to some extent with the memorability of its constituent frames. For both C3D and HMP-based models, it seems that the simple MLP layers put on top of those features did not successfully capture the memorability. This might be explained by the fact that most of the videos contain no or little motion (62%), whereas 11% only contain high motion. However, the comparison between short-term and long-term performances exhibits some interesting information: HMP performs better than C3D for short-term and the inverse is true for long-term, as if direct motion information was more relevant for short-term than for long-term memorability. This is a first finding on what distinguishes the two notions. Also, the two fine-tuned models, dedicated to the task, show significantly higher performances. The fine-tuned ResNet3D, although purely video-based, is exceeded by the fine-tuned semantic embedding-based model. However, for the latter, data augmentation was performed using the LaMem dataset [20], which was not possible for the former as LaMem only contains image memorability information. This indeed biases the comparison between the two models, but current results still show that, as expected, leveraging both a dedicated fine-tuning and the use of high level semantic information from some image captioning system, gives an already quite high prediction performance. For all models, we note that performances were lower for long-term memorability. One interpretation might be that the memorability scores for long-term are based on a smaller number of annotations than for short-term, so they probably capture a smaller part of the intrinsic memorability. However, it may also highlight the difference between short-term and long-term memorability, the latter being more difficult to predict as it is more subjective, while both being still -though not perfectly -correlated. The performances of our models on the 500 most annotated videos are better. This reveals that our dataset might benefit from a larger number of annotations. Last, compared to annotation consistency values, performances remain lower, showing that there is still room for improvement.

Intra-memorability visualization

To better understand what makes a video frame memorable, we added an attention mechanism to our best model. It will then learn what regions in each frame contribute more to the prediction. For this purpose, a convolutional layer is added in parallel with the last convolutional layer of the feature extractor part. It outputs a 2D attention map which goes through a softmax layer and is multiplied with the last convolution map of the visual pipeline as shown in Fig. 7 (orange branch). An empirical study of the resulting attention maps tends to separate them in two categories. In the first one, when image frames contain roughly one main object and no or rare information apart from this main object (this might be because the background is dark or uniform), it seems that the model focuses, as expected intuitively, on the main object and even, in the case of large enough faces, on details of the faces, as if trying to remember the specific features of faces. Example results for images in the first category can be found in Fig. 8, first row. In the second category that groups all other frames, with several main and secondary objects, cluttered background, etc., it seems on the contrary that the model focuses on all but the main objects/subjects of the images, as if trying to remember little details that will help it differentiate the image from another similar one. Or said differently, the second category shows results that might be interpreted as a second memorization process, once the first one -focusing on the main object -is already achieved. Examples for the second category can be found in the second row of Fig. 8. More results and insights are given in the supplementary material. 

Conclusions

In this work, we presented a novel memory game based protocol to build VideoMem, a premier large-scale VM dataset. Through an in-depth analysis of the dataset, we highlighted several important factors concerning the understanding of VM: human vs. annotation consistency, memorability over time, and memorability vs. response time. We then investigated various models for VM prediction. Our proposed model with spatial attention mechanism allows to visualize, and thus better understand what type of visual content is more memorable. Future work would be devoted to further study the differences between short-term and long-term memorability, and improve prediction results with a particular focus on temporal aspects of the video, e.g. by adding temporal attention model and recurrent neural network blocks to the workflow. 

COLLABORATIVE PROJECTS

➢ MAD (French ANR project on Missing Audio Data Inpainting): developed new audio inpainting concepts and algorithms relying on signal processing and machine learning (completed).

➢ VERSAMUS (INRIA Associate Team with the SOno lab, University of Tokyo): integrated probabilistic music representation for versatile music content processing (completed).
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  from such training examples by optimizing criterion (1.3) during training phase. Then the spectral model for all sources W is obtained by concatenating the individual source models as: W = [W (1) , . . . , W (J) ].
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 12 Figure 1.2: Example of an GSSM construction.

  background source whose spectrogram can be approximated by W b H b , where W b and H b are the corresponding spectral model and activation matrices, respectively. All the other sources, for which some examples are available, are modeled as in the supervised case by θ = {W, H}. The parameter θ b = {W b , H b } can be randomly initialized with a small number of components. All unknown parameters are then estimated altogether by optimizing the following criterion H * , W * b , H * b = arg min H≥0,W b ≥0,H b ≥0 D(V WH + W b H b ) + Ψ(H).

Figure 1 . 3 :

 13 Figure 1.3: Estimated activation matrix H for two sources in a mixture where two training examples for each source were used for constructing the GSSM: (left) without a sparsity constraint, (middle) with a block sparsity-inducing penalty (blocks corresponding to poorly fitting models are zero), and (right) with a component sparsity-inducing penalty (rows corresponding to poorly fitting spectral components from different models are zero).
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 14 Figure 1.4: General workflow of the proposed approach. Green dashed boxes indicate the novelty compared to the existing works [OVB12, FSO17][41].
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 21 Figure 2.1: Pictorial representation of the considered problem (figure is from [22]).
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 22 Figure 2.2: General workflow of the proposed weakly supervised representation learning approach.
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 23 Figure 2.3: Qualitative results for unsynchronized AV events. For both the cases A and B, the heatmap at the bottom denotes audio localization over segments for the class under consideration. For heatmap display, the audio localization vector has been scaled to lie between [0,1]. The top row depicts video frames roughly aligned to the audio temporal axis. (A) Top:Here we show a video where the visual object of interest appears after the audio event. This is a 'car' video from the validation split. The video frames show bounding boxes where edge opacity is controlled by the box's detection score. In other words, higher score implies better visibility (B) Bottom: This is a case from the evaluation data where due to lighting conditions, the visual object is not visible. However the system correctly localizes in audio and predicts the 'motorcycle' class (figure is from[22]).
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 31 Figure 3.2 depict examples of the images/videos, their interestingness scores, and the annotation agreements from the dataset. The interestingness prediction task greatly attracted the multimedia research community as shown by the largest number of 3.1 Image and video interestingness international participants compared to other MediaEval tasks in the same years.
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 31 Figure 3.1: Examples from the Interestingnes10k image dataset: images annotated as interesting are on the right, whereas non-interesting images are on the left. Images at the top have higher annotation agreement, while images at the bottom have lower annotation agreement (figure is from [34]).
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 32 Figure 3.2: Examples from the Interestingnes10k video dataset: videos annotated as interesting are on the right, whereas non-interesting videos are on the left. Videos at the top have higher annotation agreement, while videos at the bottom have lower annotation agreement. Each video is depicted with a key-frame (figure is from [34]).

Figure 3 . 4 :

 34 Figure 3.4: Proposed protocol to collect both short-term and long-term video memorability annotations. The second recognition task measures memory of videos viewed as fillers during step #1, to collect long-term memorability annotations (figure is from [29]).

Figure 3 . 5 :

 35 Figure 3.5: Mean correct recognition rate vs. the retention interval between the memorization and the measure of memory performance [28, 29]. Left: MovieMem660 dataset; Middle: Recognition rate decreases linearly over time for the short-term VM in VideoMem10k dataset; Right: long-term memory performances does not significantly change between 24 and 72 hours after memorization in VideoMem10k. Blue lines represent linear fitting.

Figure 3 . 6 :

 36 Figure 3.6: Consistency analysis [28, 29]. Left: human consistency in MovieMem660 dataset, middle: annotation consistency in VideoMem10k short-term VM, right: annotation consistency in VideoMem10k long-term VM. A greater number of annotations per video provides more reliable memorability scores.

[

  HZRS16]), video-based models with spatio-temporal features (C3D [TBF + 15], HMP [CGR14], ResNet3D [HKS17]), and the proposed semantic embedding-based model. For the latter, we fine-tuned a state-of-the-art visual semantic embedding pipeline used for image captioning [ECPC19], on top of which a 2-layer MLP is added, to regress the feature space to a single memorability score. The overall architecture is shown in Figure 3.7 and the training was done with a new ranking loss (i.e., Spearman surrogate)

Figure 3 . 7 :

 37 Figure 3.7: Semantic embedding model without (green pipeline) and with an attention mechanism (orange branch) (figure is from [29]).

Figure 3 . 8 : 4

 384 Figure 3.8: What makes a video/image memorable? Visualization of the attention mechanism's output for some video frames. The model focuses either on clear faces (first row) or main objects when background texture is dark or uniform or blurry (second row). In another type of images which contains several objects and textured background (third row), the model focuses rather on some details.

Figure 4 . 1 :

 41 Figure 4.1: General workflow of the proposed audio zoom implementation (figure is from [14]).

Figure 4 . 2 .

 42 In this figure, given an audio texture extraction model (artificial neural net or auditory model), the content sound is iteratively modified such that its audio texture matches well the one of the style sound. If required by texture model, raw signals are mapped to and from a suitable representation space by pre/post-processing. Experimental results on different types of audio signal confirm the potential of the proposed approach/ transfer in our experiments.

4. 6 Figure 4 . 2 :

 642 Figure 4.2: Proposed audio style transfer framework (figure is from [15]).

Figure 4 . 3 :

 43 Figure 4.3: Given an incomplete scene (left image), the proposed context encoder produces a plausible structural completion (middle image), which can be subsequently refined for texture and details with a patch-based inpainting method (right image) (figure is from [17]).

Figure 4 . 4 : 5 Conclusion 5 . 1 Achievements

 44551 Figure 4.4: Proposed structural CE: The encoder-decoder architecture is trained with a structural loss that compares the reconstructed central image part with the original one through deep features.In a second training stage, the adversarial loss is added to the total loss, with a co-trained network in charge of declaring whether an input image patch is natural or produced by the competing CE. Learnable nets are in blue, orange ones are fixed (figure is from[17]).

  answering (VQA) and multimodal fusion have been achieved recently 1 , most state-ofthe-art approaches treat VQA as a conventional classification problem where the list of possible answers is fixed in the dataset [GKSS + 17, KMK + 19]. This makes VQA systems less flexible in responding to the real needs of the users. Besides, multimodal sensors have been well investigated in different tasks such as activity recognition, but less investigated in the context of VQA. Thus, with a future PhD student, we would like to build a novel semantic multimodal question answering (MQA) framework that exploits the latest advances in deep learning research and multimodal fusion. This framework may go beyond the conventional classification approach thanks to the integration of reasoning techniques [YSY + 17, ZBFC18].

1

  https://visualqa.org/workshop.html 60 5.2 Future directions without or with a small amount of labeled data.On-the-fly audio source separation -a novel user-friendly framework Dalia El Badawy, Ngoc Q. K. Duong, Member, IEEE and Alexey Ozerov, Member, IEEE

Fig. 1 .Fig. 2 .

 12 Fig. 1. General workflow of the proposed on-the-fly framework. A user listens to the mixture and types some keywords describing the sources. These keywords are then used to retrieve examples to learn spectral models for the described sources. Optionally, the user may listen to the retrieved examples and discard irrelevant ones.

Time

  

Fig. 3 .

 3 Fig. 3. Estimated activation matrix H for two sources in a mixture containing a rooster and bird chirps where two retrieved examples for each source were used for training the USCMs: (a) without a sparsity constraint, (b) with a block sparsity-inducing penalty (blocks corresponding to poorly fitting models are zero), and (c) with a component sparsity-inducing penalty (rows corresponding to poorly fitting spectral components from different models are zero).

Algorithm 2

 2 MU rules for NMF with group sparsity in semisupervised case Input: V, W, λ Output: H, H b , W b Initialize H, H b , and W b randomly V = WH + W b H b repeat for j = 1, . . . , J, g = 1, . . . , G j do P (j,g) ← λj + H (j,g) 1 end for P = [P T

Fig. 4 .

 4 Fig. 4. Examples of estimated activation matrices H for two sources in a mixture containing a rooster and bird chirps where two retrieved examples for each source were used for training the USCMs. Left column: (a) block sparsity in the supervised case, (c) component sparsity in the supervised case, and (e) block sparsity in the semi-supervised case. Right column: same settings as in the left column, but for the proposed relative block/component sparsity.

  sparsity (γ j = 1, λ 0 = 1 × 10 -4 ) 4.78 9.27 Rel. component sparsity (γ j = 1, λ 0 = 1 × 10 -6 )

Fig. 5 .

 5 Fig. 5. Separation performance of the different algorithms, in terms of NSDR (a) and NSIR (b), as a function of λ 0 .

Fig. 1 .

 1 Fig. 1. General workflow of the proposed source separation approach. Top green dashed box decribles training phase for the GSSM construction. Bottom blue boxes indicate processing steps for source separation. Green dashed boxes indicate the novelty compared to the existing works [36]-[38].

  g., 5 examples in total), and examples of different types of noise such as those from outdoor environment, cafeteria, waterfall, street, etc.,. (e.g., 6 examples in total). Note that as another variant investigated in this work, the GSSM U j can be constructed differently by first concatenating all examples for each source (S j = [S 1 j , . . . , S Lj j ]), and then performing NMF on the concatenated spectrogram only once by optimizing the criterion min Hj ≥0,Uj ≥0 D(S j U j H j ).

Fig. 2 .

 2 Fig. 2. Average separation performance obtained by the proposed method over stereo mixtures of speech and noise as functions of EM and MU iterations. (a): speech SDR, (b): speech SIR, (c): speech SAR, (d): speech ISR, (e): noise SDR, (f): noise SIR, (g): noise SAR, (h): noise ISR

Fig. 3 .

 3 Fig. 3. Average separation performance obtained by the proposed method over stereo mixtures of speech and noise as functions of λ and γ. (a): speech SDR, (b): speech SIR, (c): speech SAR, (d): speech ISR, (e): noise SDR, (f): noise SIR, (g): noise SAR, (h): noise ISR

Fig. 4 .

 4 Fig. 4. Boxplot for the speech separation performance obtained by the proposed "GSSM + SV denoising" (P1) and "GSSM + SV separation" (P2) methods.

1 + 1 + h k 1 .

 111 where V = U H, Y = [Y 1 , . . . , Y P ] with Y p , p = 1, . . . P an uniform matrix of the same size as H p whose entries are Hp 1 , and Z = [z 1 , . . . , z K ] with z k , k = 1, . . . K a uniform vector of the same size as h k whose entries are Weakly Supervised Representation Learning for Audio-Visual Scene Analysis Sanjeel Parekh, Slim Essid, Alexey Ozerov, Senior Member, IEEE, Ngoc Q.K. Duong, Senior Member, IEEE, Patrick Perez, and Gael Richard, Fellow, IEEE

Fig. 1 .

 1 Fig.1. Pictorial representation of the problem: Given a video labeled as "train horn", we would like to: (i) identify the event, (ii) localize both, its visual presence and the temporal segment(s) containing the characteristic sound, and (iii) segregate the characteristic audio cue from the background. Note that the train horn may sound before the train is visible. Our model can deal with such unsynchronized AV events.

Fig. 3 .

 3 Fig. 3. Module design: Given a video, we consider the depicted pipeline for going from audio and visual proposals to localization and classification. Here W cls and W loc refer to the fully-connected classification and localization streams respectively; σ denotes softmax operation over proposals for each class, refers to element-wise multiplication; Σ to a summation over proposals and 2 to a normalization of scores. During training we freeze the weights of blocks denoted in blue.

  [σ(B)] pc = e bpc |P| p =1 e b p c , ∀(p, c) ∈ (1, |P|) × (1, C). (1) This allows the localization layer to choose the most relevant proposals for each class. Subsequently, the classification stream output is weighted by σ(B) through element-wise multiplication: E = A σ(B). Class scores over the video are obtained by summing the resulting weighted scores in E. Concurrent work by [63] discusses a similar MIL module for audio classification.

Fig. 4 .

 4 Fig. 4. NMF component proposals depiction where spectral patterns, w k and corresponding activation vectors, h k are shown in the same colour. Furthermore, each part in h k refers to a non-overlapping temporal segment.

Fig. 6 .

 6 Fig. 6. Visual localization on DCASE test video frames from the 'train' category. The localization results are shown in green bounding boxes. Below each image we display the scaled region proposal (top) and audio segment scores for the class of interest as heatmaps.The visual heatmap is a concatenation of proposals from all the sub-sampled frames, arranged in temporal order. More results on our companion website.6 

Figure 1 :

 1 Figure 1: Example keyframes from videos of VideoMem, sorted by decreasing long-term memorability (from left to right, and top to bottom).

  Step #1. Interlaced encoding and recognition tasks.

  Step #2. Second recognition task after 24 to 72 hours.

Figure 2 :

 2 Figure 2: Proposed protocol to collect both short-term and long-term video memorability annotations. The second recognition task measures memory of videos viewed as fillers during step #1, to collect long-term memorability annotations.

  (a) Step #1. Recognition rate decreases linearly over time. (b) No significant change in memory performance between 24 and 72 hours after memorization.

Figure 3 :

 3 Figure 3: Mean correct recognition rate vs. the retention interval between the memorization and the measure of memory performance. Blue lines represent linear fitting.

Figure 4 :

 4 Figure 4: Annotation consistency vs. mean number of annotations per video (left: short-term, right: long-term).

Figure 5 :

 5 Figure 5: Short-term vs. long-term scores (left) and average response times (correct detections only) (right).

Figure 6 :

 6 Figure 6: Average response time (correct recognitions only) as a function of memorability scores, for short-term (left) and long-term memorability (right).

Figure 7 :

 7 Figure 7: Semantic embedding model without (green pipeline) and with an attention mechanism (full workflow).

Figure 8 :

 8 Figure 8: Visualization of the attention mechanism's output. The model focuses either on close enough faces or main objects when the background is dark or uniform (row #1), or it focuses on details outside the main objects (row #2).
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  MU rules for NMF with group sparsity in the supervised case (without formulas in red). When relative group sparsity is applied, formulas in red are added.

	1.3 Single-channel audio source separation exploiting the generic source
	spectral model (GSSM)
	Algorithm 1.1 Require: V, W, λ, η
	Ensure: H
	Initialize H randomly
	V = WH
	repeat
	for j = 1, . . . , J, g = 1, . . . , G j do
	P (j,g)

Table 1 .

 1 1: Speech separation performance obtained on the devset of the BGN task of the SiSEC campaign.

	1. AUDIO SOURCE SEPARATION						
		Ca1	Sq1		Su1		Average
	Methods	SDR SIR SDR SIR SDR SIR SDR SIR
		OPS IPS OPS IPS OPS IPS OPS IPS
	Liu*	-1.0 9.5 16.8 14.2 18.9 21.2 15.7 14.2 17.5 4.9 -8.5 -2.9 -12.8 -8.0 -7.0 -1.4
	Le Magoarou* [MOD14]	9.2 11.6 31.3 29.3 38.9 45.2 22.9 24.6 32.8 35.3 4.0 6.2 -5.2 -4.5 3.7 5.6
	Rafii* [RP13]	8.8 13.0 29.2 27.3 34.6 38.7 23.9 21.6 30.4 31.1 6.2 9.6 -2.7 -2.7 5.1 8.0
	Ito* [IAN13]	7.2 25.9 23.7 9.1 ----	5.6 -	--	7.4 -	--
	Wood* [WR16]	3.0 33.7 60.7 38.6 60.5 25.9 47.6 34.1 57.7 9.4 1.9 2.4 0.2 -2.6 1.9 3.6
	Arberet [41][OVB12]	9.1 10.0 13.3 10.9	3.3 8.3 10.5 10.2 3.3 -0.2 -1.2 3.7	4.4 10.4	4.6 9.1
	GSSM + SV denoising	10.5 11.8	7.0	8.5	5.1	5.6	7.7	9.0
	(λ = 10, γ = 0.2)	8.4 12.7	8.5 14.7 11.3	7.8	18.1 12.5
	GSSM + SV separation	10.6 13.5	7.8 11.1	5.0	7.1	8.1 11.0
	(λ = 10, γ = 0.2)	11.4 13.0 31.6 31.4 23.7 27.8 23.1 24.5

* indicates submissions by the authors and "-" indicates missing information.

Table 2

 2 

	.1: Results on DCASE smart cars task test set [MHD + 17a]. We report here
	the averaged F1 score, precision and recall values, and compare with state-of-the-art
	approaches. TS is an acronym for two-stream (table is from [22]).	
	System	F1	Precision Recall
	(a) AV Two Stream	64.2	59.7	69.4
	(b) Sync. AV Two Stream	62.0	57.2	67.6
	(c) TS Audio-Only	57.3	53.2	62.0
	(d) TS Video-Only	47.3	48.5	46.1
	(e) TS Video-Only WSDDN-Type [BV16]	48.8	47.6	50.1
	(f) AV One Stream	55.3	50.4	61.2
	(g) CVSSP -Fusion system [XKWP17]	55.6	61.4	50.8
	(h) CVSSP -Gated-CRNN-logMel [XKWP17] 54.2	58.9	50.2

Table 3 .

 3 2: Results in terms of Spearman's rank correlation between predicted and ground-truth memorability scores, on the validation and test sets, and on the 500 most annotated videos of the dataset (test (500)) that were placed in the test set.

		short-term memorability	long-term memorability
		validation	test	test (500) validation	test	test (500)
	MemNet	0.397	0.385	0.426	0.195	0.168	0.213
	Squalli et al.	0.401	0.398	0.424	0.201	0.182	0.232
	IC-based model	0.495	0.441	0.517	0.233	0.204	0.199
	ResNet101	0.498	0.46	0.527	0.222	0.218	0.219
	C3D+HMP	0.424	0.337	0.412	0.324	0.121	0.120
	ResNet3D	0.508	0.462	0.535	0.23	0.191	0.202
	MediaEval'2018 -average	-	0.395	-	-	0.174	-
	MediaEval'2018 -best	0.484	0.497	-	0.261	0.257	-
	Semantic embedding model	0.503	0.494	0.565	0.260	0.256	0.275

  Handling irrelevant examples: Some retrieved examples may contain sounds with entirely different spectral characteristics than those of the source in the mixture, e.g., searching for "bird chirps" and obtaining some "chirp signal" examples too. Those examples should not be used in training. (C 2 ) Handling noisy examples: Some retrieved examples are actually mixtures of relevant and irrelevant sounds, e.g., "female speech" with a dog barking in the background. Those examples may still be useful and should not be discarded entirely. (C 3 ) Handling missing examples: This may happen when

TABLE I REFERENCE

 I KEYWORDS AND THE CORRESPONDING USER KEYWORDS.

	Reference keywords	User keywords
	applause bat bells cafe car cat chirps cough cricket dog drums electric guitar female speech guitar male speech ocean owl piano restaurant ringtone river	background noise, cheers, concert, concert crowd, crowd, crowd cheering (2), crowd concert, people cheering bird (2), bird cackling, bird chirping, birds sound, monkey (2), jungle, night animal bell tone, bells, bells church, church bell (3), church bells (3) chattering, crowd, crowd speech, crowd talking (2), many people talking, party, people, people talking aeroplane noise, ambient noise, boat motor, calm noise, car, drive, nothing, thunder storm, wind cat (7), cat meow, cat meowing bird (4), bird chirping (6), birds (2), birds chirping (2), birds sing (2), night creatures, sparrows caugh, cough (2), coughing (5), man caughing bird, birds, birds sing, cricket (2), night, night animal, night creatures, tweet-tweet dog (5), dog bark, dog barking (2), dogs bass drum, drum (3), drum beats, drums, percussion, rythmic, tap beats electric guitar, guitar (2), guitar concert, music (3), music playing, riff guitar female speech (3), female voice (2), female voice english, girl read, girl talking (5), woman, woman read, woman speak, woman speaking, woman speech, woman talking (2), woman voice acoustic guitar, electronic organ, guitar (7) male english speech (3), male speech english, man reading, man speak, man speaking (2), man speech, man talking (4), man voice, men speech, poetry recitation, read (2) car, driving a car, road traffic, sea waves, storm, street, traffic noice, waterfall, waves dog, dog moaning, owl (4), owl hooting, pigeon, woodpecker pianist, piano (4), piano music (3), soft piano strings chattering ambiance, crowd (2), crowd noise with photo clicks, crowd speech, crowd talking, people noise, people talking (2) jingle phone ringing, mobile ringtone (2), phone ringing, phone ringtone, ring, ringing, ringtone, smartphone ring motor engine noise

, river, river flowing, sea, stream, water

(2)

, water boiling, water flowing rooster cock (2), cock cluck, cock-a-doodle-do, hen (2), rooster (3) siren ambulance, police, police car, police siren (5), siren traffic car, car passing, car running, road traffic, road with cars, street traffic, traffic noice, traffic noise, traffic sound violin cello strings orchestra, music album, music (2), piano, soundtrack, violin (3) woman singing brasilian woman singing, brazilian song, girl singing (3), singing woman, woman singing (3)

TABLE II SUPERVISED

 II CASE: AVERAGE SOURCE SEPARATION PERFORMANCE.

  and D(• •)

	Methods	SDR OPS	SIR IPS	Ca1 SAR APS	ISR TPS	SDR OPS	SIR IPS	Sq1 SAR APS	ISR TPS	SDR OPS	Su1 SIR IPS	SAR APS	ISR TPS	SDR OPS	Average SIR SAR IPS APS	ISR TPS
	Martinez-Munoz* Wang* [54] Le Magoarou* [9] Bryan* [55] Rafii* [56] Ito* [57] Liu* Wood* [58]	5.4 -10.4 41.9 9.2 31.3 5.6 -8.8 29.2 7.2 --1.0 9.5 3.0 33.7	15.4 -21.6 60.4 11.6 29.3 18.4 -13.0 27.3 25.9 -4.9 16.8 9.4 60.7	6.1 -12.8 52.9 13.4 52.8 5.9 -12.1 58.0 7.2 -19.7 77.1 5.0 39.0	--13.5 58.8 19.8 77.9 --13.3 56.2 --4.1 42.3 3.7 40.5	9.6 -10.3 37.4 4.0 38.9 10.2 -6.2 34.6 8.9 --8.5 14.2 1.9 38.6	17.3 -19.1 51.8 6.2 45.2 15.6 -9.6 38.7 23.7 --2.9 18.9 2.4 60.5	10.7 -12.3 53.3 8.3 39.9 12.1 -8.9 55.8 9.1 -15.1 70.2 4.0 43.3	--15.0 55.7 20.4 75.6 --10.7 60.7 --1.9 38.8 7.5 57.6	1.5 -8.1 33.1 -5.2 22.9 4.2 --2.7 23.9 4.9 --12.8 21.2 0.2 25.9	5.8 -19.3 52.4 -4.5 24.6 13.6 --2.7 21.6 15.3 --8.0 15.7 -2.6 47.6	5.8 -10.0 42.3 2.7 34.8 4.9 -4.4 51.3 5.6 -7.6 60.0 1.3 31.7	--10.7 43.7 9.7 28.3 --11.0 50.4 --3.8 49.5 2.5 24.4	6.4 -9.8 37.9 3.7 32.8 7.3 -5.1 30.4 7.4 --7.0 14.2 1.9 34.1	14.1 -20.0 54.8 5.6 35.3 16.1 -8.0 31.1 22.6 --1.4 17.5 3.6 57.7	7.9 -12.0 50.7 8.8 43.1 7.6 -9.0 55.5 7.7 -15.0 70.3 3.7 39.3	--13.5 54.1 17.8 65.9 --11.6 56.9 --3.1 42.3 5.1 44.5

TABLE I RESULTS

 I ON DCASE SMART CARS TASK TEST SET. WE REPORT HERE THE MICRO-AVERAGED F1 SCORE, PRECISION AND RECALL VALUES AND COMPARE WITH STATE-OF-THE-ART. TS IS AN ACRONYM FOR TWO-STREAM.

	System	F1	Precision Recall
	(a) AV Two Stream (b) Sync. AV Two Stream (c) TS Audio-Only (d) TS Video-Only (e) TS Video-Only WSDDN-Type [37]	64.2 62.0 57.3 47.3 48.8	59.7 57.2 53.2 48.5 47.6	69.4 67.6 62.0 46.1 50.1
	(f) AV One Stream	55.3	50.4	61.2
	(g) CVSSP -Fusion system [23] (h) CVSSP -Gated-CRNN-logMel [23] 54.2 55.6	61.4 58.9	50.8 50.2

TABLE II CLASS

 II -WISE COMPARISON ON TEST SET USING F1 SCORES. WE USE TS, OS AND FS AS ACRONYMS TO REFER TO TWO-STREAM, ONE-STREAM AND FUSION SYSTEM, RESPECTIVELY. CLASS ABBREVIATIONS ARE DETAILED IN SEC. IV-B

	TABLE III RESULTS ON DCASE AND KI WITH FINE TUNED VGGISH
	Systems	F1	DCASE Precision	Recall	KI Accuracy
	AV TS -VGGISH FT AO TS -VGGISH FT 61.7 65.0	64.9 61.5	65.0 61.9	84.5 75.3

TABLE V

 V 

	AVERAGE SDR OVER MIXTURES CREATED BY COMBINING CLEAN
	INSTRUMENT EXAMPLES WITH ENVIRONMENTAL SCENES.
	System	Label Known	Label Unknown
	Supervised NMF NMF Mel-Clustering V + A (NCP), soft V + A (NCP), τ = 0.1 V + A (NCP), τ = 0.2 V + A (NCP, TSP), soft	2.3 -3.3 3.8 3.6 2.1	-4.3 3.3 3.9 3.6 2.2

Table 1 :

 1 Results in terms of Spearman's rank correlation between predicted and ground truth memorability scores, on the validation and test sets, and on the 500 most annotated videos of the dataset (test (500)) that were placed in the test set.

	Models	short-term memorability validation test test (500) validation long-term memorability test test (500)
	MemNet (Sec. 5.1)	0.397	0.385	0.426	0.195	0.168	0.213
	Squalli et al. (Sec. 5.1)	0.401	0.398	0.424	0.201	0.182	0.232
	C3D (Sec. 5.2)	0.319	0.322	0.331	0.175	0.154	0.158
	HMP (Sec. 5.2)	0.469	0.314	0.398	0.222	0.129	0.134
	ResNet3D (Sec. 5.2) Semantic embedding model (Sec. 5.3)	0.508 0.503	0.462 0.494	0.535 0.565	0.23 0.26	0.191 0.256	0.202 0.275
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The term "universal speech model" was introduced in[25] for the separation of speech and noise, and was inspired by the term "universal background model" used for speaker verification[26]. We here extend it to "universal sound class model", since our framework deals with the separation of sources belonging to any sound class.
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