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Résumé long

La modélisation des écoulements turbulents aérodynamiques à l’aide des simulation
numérique est une tâche difficile, principalement en raison des questions liées à la modélisation
de la turbulence. C’est ce qu’on appelle le problème de fermeture, visant à modéliser
l’influence de la partie non résolue du spectre dans la partie résolue. Ces modèles ont com-
mencé à être proposés il y a plusieurs décennies et c’est encore un sujet de recherche actif
à ce jour. Ils diffèrent fondamentalement en fonction de la portion du spectre modélisée.
Par exemple, les simulations numériques directes (DNS) tentent de résoudre le spectre
entier, là où rien n’est modélisé. C’est bien sûr la méthode la plus coûteuse et, dans de
nombreuses applications industrielles, elle n’est pas réalisable avec les ordinateurs actuels.
Les simulations par grands tourbillons (LES) visent à utiliser le maillage sur lequel le
problème est discrétisé comme un filtre, de sorte que les fluctuations non résolues sont
celles qui ne peuvent pas être résolues sur ce maillage. Ce type de modélisation peut
encore être très coûteux. En effet, si des couches limites sont présentes, le maillage doit
y être bien affiné pour que la simulation soit précise. Un autre type de modélisation est
le modèle RANS (Reynolds-Averaged Navier-Stokes), où seul l’écoulement moyen dans
le temps est résolu et la totalité des fluctuations est modélisée. C’est le modèle le plus
simple à résoudre et aussi le plus utilisé à l’industrie. Cependant, il produit souvent des
solutions imprécises, surtout en présence de décollemet. Il pourrait donc être avantageux
d’incorporer des données de plus haute fidélité afin de corriger ces défauts de la solution
et, en conséquence, d’augmenter sa valeur prédictive. C’est l’objectif de l’assimilation
de données. Dans ce travail, nous traiterons de l’assimilation de données variationnelles
où on un paramètre de réglage lié au modèle est ajusté de telle sorte que la solution du
modèle soit aussi proche que possible des données de haute fidélité. Dans la première
partie de ce manuscrit, nous aborderons ce problème en utilisant un modèle RANS par-
ticulier, le modèle Spalart-Allmaras. Ceci veut dire que nous evisageons de reconstruire
le champ moyen seulement. Deux types de paramètres d’accord seront utilisés, à savoir
une force volumique et un paramètre liè directement au modèle de Spalart-Allmaras.
Nous étudierons leurs performances en fonction du type de donnés à être assimilés, allant
des champs de vitesse denses (provenant éventuellement d’une Particule Image Velocime-
try bien résolue), aux mesures ponctuelles telles que la pression de paroi et la vitesse,
obtenues par des tubes de Pitot. La configuration étudiée ici est une marche descendente
à Re = 28275.

Dans la deuxième partie du manuscrit, nous étudierons le rôle de la reconstruction
des fluctuations à l’aide d’une analyse du Resolvent des équations linéarisés sur le champ
moyen. Il s’agit d’une technique linéaire où la forme des modes, à une fréquence donnée,
peut être prédite, sous certaines hypothèses assez générales. Cependant, comme cette
technique est linéaire, l’énergie de ces modes (ou leur amplitude, en d’autres termes) ne
peut pas être déterminée. Pour cette raison, nous utiliserons des données externes pour
les régler. Ces données, cette fois-ci, doivent être résolus en temps, ce qui diffère de la
première partie où seules des données moyennes (moyennes) ont été utilisées, mais elles
peuvent être extrêmement peu nombreuses, généralement quelques sondes ponctuelles. Le
principal inconvénient de cette approche est la nécessité de connâıtre a priori le champ
moyen. Pour cette raison, une possibilité serait d’appliquer les techniques présentées
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dans la première partie du manuscrit pour obtenir ce champ moyen et d’appliquer ensuite
l’analyse de Resolvent pour récupérer la fluctuation. Cependant, comme nous disposons
d’un modèle pour la fluctuation, nous pourrions incorporer ses effets dans la modélisation
du champ moyen, ce qui éviterait d’avoir besoin des données du flux moyen et permettrait
de reconstruire le flux moyen et la fluctuation à partir de quelques données ponctuelles
résolues dans le temps. Cette technique sera appliquée à deux flux de transition (sur
un cylindre de section carrée, Re = 100, et une marche descendente, Re = 500) et un
flux turbulent (sur un cylindre carré, Re = 22000), où un modèle de turbulence (de
nouveau Spalart-Allmaras) est résolu avec le flux moyen et sa fluctuation par l’analyse de
Resolvent.

Dans une troisième partie, nous nous concentrerons sur l’analyse du résolvant lorsqu’elle
est appliquée au flux autour du cylindre carré à Re = 22000. Pour cette configuration,
nous observons deux phénomènes distincts. Le premier est le détachement de vortex
périodique, typique des écoulements sur les corps peu profilés. L’autre phénomène est le
mode de Kelvin-Helmholtz, produit au niveau des couches de cisaillement qui se déplacent
selon la fréquence de détachement de vortex. Pour pouvoir saisir cette caractéristique,
nous proposons un cadre pour l’opérateur résolvant dans lequel nous examinons la fluctua-
tion à partir des équations linéarisées autour du détachement ve cortex. Cette linéarisation
est naturelle si nous considérons la triple décomposition où le champ moyen, ainsi que
les modes de détachement de vortex sont séparés des phénomènes de fréquence à large
bande, représentés par le Kelvin-Helmholtz. Cela conduit à un opérateur de résolution de
type Floquet, qui est calculé ici de manière quasi-stationnaire.
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Chapter 1

Introduction

1 Context and Motivations
Experimental and numerical fluid dynamics have been used for several years as tools to
investigate and understand the physics of fluid flow phenomena. Separately, they provide
both useful and different insights on those phenomena. From the point of view of the
numerical scientist or engineer, we usually have complete control on the numerical simu-
lation we run in the sense that we can design the geometry of the physical settings, apply
different boundary or initial conditions and investigate several regimes of non-dimensional
numbers, such as the Reynolds and Mach numbers, etc. However, all this freedom has a
drawback since, in order to produce a solution that represents a real physical experiment,
we need to precisely know those actual quantities, such as boundary and initial conditions.
Furthermore, apart from those aspects, the numerical model itself is often seen as a major
source of discrepancy between the resulting numerical solution and what happens in real
flow phenomena, especially in turbulent flow simulations, as it will be discussed later.
On the other hand, experimental scientists and engineers have developed several tools to
probe fluid flows, generating data from real experiments that are often regarded as more
valuable than numerical ones. However, this experimental approach suffers from several
drawbacks as well. For example, the data extracted this way are often insufficient for
describing, in a complete manner, the fluid flow. For example, having the wall-pressure
only does not provide direct and precise information of what goes on the bulk of the flow.
Another related issue is the fact that the extracted data is often contaminated by external
noise and errors intrinsic to the measurement, leading to an uncertainty on those quan-
tities. For those reasons, those two techniques are regarded as complementary and have
been extensively used in parallel as cross-validation of one another. For example, having
a numerical solution that matches well with the experimental data gives us confidence to
extrapolate this solution to regions where the probes could not reach, enlarging this way
our understanding of the physical phenomenon. Although this approach provides several
insights, it becomes less useful when the numerical solution does not match well the ex-
perimental data. In those cases, the numerical simulation (including the model, boundary
and initial conditions, etc), becomes questionable and may lose its predictive power. It
is interesting then to modify the model such that its solution matches the experimental
data, improving this way its quality and, hopefully, its predictability in regions far from
the probe locations. For this purpose, the data-assimilation procedure has been designed
as a mathematically well-defined manner to include the experimental data in the model,

1



2 Chapter 1. Introduction

correcting it. In the literature, several approaches in several different contexts have been
developed in order to solve this problem. In what follows, we provide a brief description
of the most common approaches, identified in two (maybe overlapping) groups, Kalman
Filters and Variation data-assimilation, followed by some of their applications in the con-
text of Fluid Mechanics. We will then precise what is the goal of the present thesis, for
which we present a brief state-of-the-art, followed by an overview of the thesis.

2 Data-Assimilation Techniques

2.1 Kalman Filters (KF)
The data-assimilation concept goes back to the theory of modern control of linear dynam-
ical systems (see Kalman [1960]), where an estimation of the whole state of the system
from limited partial measurements is needed in order to act on the system with a control
law, stabilizing it. One can show that, for deterministic linear systems (under the con-
dition of observability), one can always design a (not unique) dynamical system, called
observer, mimicking the dynamics of the original one, such that its output tends towards
the true state as time progresses. However, if noise is present, the performance of such
observer can be drastically deteriorated and the error committed in the prediction of the
state can be large. The Kalman filter is the design of such observer so that its prediction
is as close as possible to the actual state. The final form of this filter can be seen as a
prediction step, where the model of the dynamical system is applied on the a priori state,
and a correction step, where the external data (or measure) is taken into account through
the filter, which is constructed based on the covariance matrix of the state vector. We
remark that, in this procedure, not only the state vector is propagated in time, but also
its corresponding covariance matrix. For this reason, this approach is mainly used when
the system has only a few degrees of freedom, as it is often the case in many engineering
application, not involving Partial Differential Equations (PDE). However, in cases where
the dimension of the state vector is prohibitively large, the propagation of the covariance
matrix becomes unfeasible. For this purpose, the Kalman filter has been modified with
an approximation of this matrix, consisting in the propagation of a cloud of points (or
ensemble) in the phase space, instead of only one point. The evolution of this cloud pro-
vides, if the number of points is sufficiently large, an estimation of the statistics. In those
circumstances, this filter is called Ensemble Kalman Filter (EnKF, see Evensen [2009]).
This concept was first introduced by Evensen [1994] in the context of oceanography.

In fluid mechanics, this technique has been applied for several purposes: the estimation
of velocity field from Particle-Tracking Velocimetry snapshots in a planar-jet configuration
at Re = 2000 (Suzuki [2012]), the recovery of low-Reynolds wall-bounded turbulent flows
from wall measure (Colburn et al. [2011]), estimation of Mach number, angle of attack and
eddy-viscosity field at high Reynolds number flows in complex flow configuration Kato
et al. [2015].

2.2 Variational data-assimilation (VDA)
The variational data-assimilation technique is based on the theory of optimal control
(see, for example Lions [1971]) where we act on a system such that its output satisfies
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as closely as possible some target task. In the data-assimilation context we dispose in
general of some tuning parameter, that plays the role of the control variables, which is
related to the model that we effectively solve (which can be initial/boundary conditions,
the spatial distribution of an unknown forcing term, etc). This tuning parameter will
be found such that the model’s solution is as close as possible to the external reference
data. One of the earliest applications of this technique was on the weather forecast
problem (Talagrand and Courtier [1987], Liu et al. [2008]) under the name of 3D/4D-Var
where the tuning parameters were the initial condition of the dynamical model such that
some cost, function of the error between the model’s prediction and the external data,
is minimal. In this context, we can see that the main difference between this approach
and Kalman Filters is that, VDA can be posed as an optimal problem on the initial
condition where EnKF can be view as a way to correct an a priori condition with the
information of the external data. Indeed, in general, VDA problems can be viewed as
optimization under constraint ones and, when the number of tuning parameters becomes
large, gradient-descent methods need to be employed so that the optimization procedure
reaches a local minimum efficiently. This gradient is often obtained with the aid of the
Lagrangian formalism where the adjoint problem needs to be solved. This adjoint problem
represents in general a supplementary numerical tool (other than the model’s resolution)
and may pose some difficulties.

Several examples can be presented in the context of fluid mechanics and aerodynamics,
such as estimation of boundary and/or initial conditions from PIV data using DNS in low
Reynolds numbers configurations (Gronskis A. [2013], Yegavian et al. [2015]), estimation
of fluid flow from a sequence of sparse snapshots (Heitz and Mémin [2010]), as a tool
for determining pollutant sources in urban areas, where Large Eddy Simulations (LES),
coupled with Proper Orthogonal Decomposition (POD), are used in the data-assimilation
scheme (Mons et al. [2017b]), and to determine the fluid flow on a POD-based lower order
system (D’Adamo et al. [2007]).

We remark that, although those two techniques differ in nature, some hybrid ones may
exist as well. For example, in order to bypass the need for an adjoint solver, necessary
for VDA, we may consider instead the idea of ensembles, where, in order to compute the
sensitivity of the cost functional with respect to the control parameters, a cloud of points
is propagated, each one of those points presenting a different outcome. This technique is
called Ensemble-based Variational assimilation (EnVar). It was first designed by Liu et al.
[2008] in the context of weather prediction. More recently, Mons et al. [2016]), performed
some studies on this technique, in comparison with EnKF and VDA in the context of
Fluid Mechanics.

3 Goal of the Present Work
At this point, data-assimilation has been presented in a very general manner, together
with a few applications it may have in Fluid Mechanics. In what follows, we intent to
present a more specific overview of the precise problem we will consider in this work. This
particularization will come mainly from the type of problem we will consider as numerical
model and on the measures that will be the most compatible with the problem.

In most of the engineering applications, for example in aerodynamics, the time-
averaged (mean) flow is sufficient for the global understanding of the fluid flow, allowing
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us to design mechanical components, to evaluate loads on structures, etc. Indeed, in
most of industrial wind tunnel facilities, the nature of the data extracted is usually time-
averaged. Examples of such data are the mean wall-pressure or friction distributions or
mean-velocity fields, obtained with either point-wise probes (such as Pitot) or Particle
Image Velocimetry (PIV) techniques. From the numerical point of view, a very common
tool used in industry is the Reynolds-Averaged Navier-Stokes (RANS) equations, whose
solution represents the mean-flow. Since those equations are steady in nature, their so-
lution does not require a fine time-stepping procedure, minimizing the computational
effort to solve them. This makes them very popular in industry, where the procedure of
engineering design often demands easily obtainable solutions. The RANS equations are
formally derived from the Navier-Stokes ones, by applying the Reynolds decomposition
of the fluid flow variables, separating them into a mean-flow component and a fluctuation
around it. Due to nonlinearities, the mean-flow variables in RANS equations will depend
on the statistics of the fluctuation, given by the Reynolds-stress tensor. Those statistics
cannot be explicitly computed since the fluctuation is not known, once we solve only the
mean-flow component. Several models exist that attempt to provide an expression of this
tensor in terms of mean-flow quantities and possibly of supplementary variables. This is
the so-called closure problem. Generally those models are build using physical consid-
erations such as eddy-viscosity, mixing-lengths, scaling laws, boundary layer theory, etc.
This physical reasoning, in general, is capable of fixing somewhat the structure of the
model, but may leave a set of parameters or coefficients to be specified. The specification
of those parameters is done by considering some benchmark physical configurations, pro-
viding a calibration for them. This means that, for those configurations, the models are
designed to work well. However, if we consider other configurations far away from those
design points, typically with strong separation regions, the model may lose its accuracy
when compared with experimental or higher-fidelity numerical data.

The main goal here is then to modify those models (or propose others) in a way that
their solution matches the best some higher-fidelity data. We can see that this kind
of problem can easily be posed in the logic of Variational Data-Assimilation (VDA) by
identifying a tuning parameter, related with the Reynolds-stress tensor itself or with the
closure model. This is the main goal of this work. In what follows, we present the brief
state-of-the-art of mean-flow data-assimilation, together with a common application of
it, the mean-flow stability analysis (in a broad sense), which will also be explored in the
present work. This analysis is capable to provide an approximation for the nonlinear
fluctuation around this mean-flow.

3.1 Mean-flow data-assimilation
The mean-flow data-assimilation, as presented in the previous section, has been considered
in the past few years mainly from the point of view of variational data-assimilation, where
some parameters related to the Reynolds-stress tensor are tuned such that the solution
of RANS equations matches the best with external data. Foures et al. [2014] proposed
a model consisting in the laminar, steady Navier-Stokes, where the correction parameter
is a volume-force modeling directly the divergence of the Reynolds-stress tensor. They
showed that, in a laminar / transitional context (Re = O(102)) that this model performs
well to assimilate synthetic Particle Image Velocimetry (PIV) data. The same model
was applied in a higher-Reynolds number context (Re = O(104), Symon et al. [2017]).
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They reported some difficulties related to the use of the laminar equations in a higher
Reynolds number configuration. To circumvent those difficulties, a series of increasing
Reynolds number data-assimilation needed to be performed, which can be costly. Other
approaches, more appropriate for high-Reynolds number flows, rely on a RANS turbulence
model. For example Li et al. [2017] tuned the κ − ω model’s parameters such that its
solution is the closest to reference ones. Singh and Duraisamy [2016], on the other hand,
proposed a field inversion method where a spatially-dependent parameter related to the
eddy-viscosity production term is tuned. In their work, the output solution was used
for machine learning techniques such that the considered model becomes improved by
learning the modifications caused by the data-assimilated procedure. We remark that,
although those techniques are based on Variational Data-Assimilation, ensemble-based
assimilation can also be used in a steady (mean) flow simulations contexts. Kato and
Obayashi [2013] used ensemble techniques by varying the parameters (constants) in the
Spalart-Allmmaras model, and a further Kalman filter, where the external measure was
applied, leading to the converged optimal set of parameters. We remark that this kind
of approach is somewhat equivalent to variational assimilation, where if the statistics are
generated in an iterative procedure, with a large enough ensemble, VDA and KF solutions
will be similar (Iglesias et al. [2013]).

3.2 Beyond mean-flow: stability analysis
In this paragraph we make a few remarks on the mean-flow and how it can be used
to investigate aspects of the nonlinear fluid flow other than mean velocity-field, mean
wall-pressure, etc. It was shown that, stability analysis (in a broad sense) using the
mean-flow, instead of the steady-state solution, could provide an approximation of the
unsteady nonlinear fluctuation around this mean-flow. Those studies have been formalized
by Barkley [2006], who applied this technique to the flow around a circular cylinder at low
Reynolds number. He showed that the nonlinear solution corresponds to a periodic limit-
cycle, that can be decomposed in a mean-flow and on a fluctuation around it. The stability
analysis of this mean-flow leads to an eigenvalue whose real part was zero and whose
imaginary part matched very well with the nonlinear frequency. Later, Sipp and Lebedev
[2007a] and Mezić [2013] provided conditions for the validity of this kind of analysis
in the context of oscillator flows (flows whose dynamics in not dependent on external
forces) and showed that, under this conditions, the eigenmode provided an approximation
for the first harmonics of the fluctuation, represented by the periodic limit-cycle. An
extension of this analysis for flows whose eigenspectrum does not indicate unstable or
neutral mode (for example, ”noise amplifiers”) was investigated by McKeon and Sharma
[2010], Beneddine et al. [2016]. They proposed the use of Singular-Value decomposition
of the Resolvent operator (transfer function of the mean-flow linearized system) rather
than the eigenvalue/eigenvector analysis. They showed that, at a given frequency, if the
leading Singular Value is much higher that the others, the nonlinear fluctuation could be
approximated by the leading (left) Singular Vector at that frequency. They argued that
this condition is verified in most flows presenting a strong instability mechanism. We
remark however that, since this analysis is linear, it is not capable to determine alone
the amplitudes (or energies) of those modes at each frequency. For this reason, most of
the studies aiming to obtain the actual fluctuation needed time-resolved data, which is
usually point-wise information, from which we can extract, for each frequency, the energy
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of the mode, together with its phase. Furthermore, if this low-rank representation of the
Resolvent operator holds, in principle only one (or a few, for robustness) time-resolved
probe is sufficient for determining those amplitudes. We remark that even if this kind of
measure is not time-averaged ones, the very low quantity of those probes still leaves this
kind of technique feasible. For this reason, in the past few years, the determination of
the mean-flow by variational data-assimilation and its further Resolvent-based analysis is
increasingly popular technique, since it allows one to obtain an approximation of the full
flow field from mean-flow measurements and very few time-resolved probes (see Symon
et al. [2019a], Symon et al. [2019b], He et al. [2019a]).

4 Overview of the Thesis
In this work, we will investigate a few techniques for mean-flow data-assimilation, together
with mean-flow analysis. More precisely, in the chapters 2 and 3, we will consider the
modification of the RANS equations for mean-flow data-assimilation purposes, by tuning
some parameters of the model. In the chapters 4, 5 and 6, we will deal with mean-flow
analysis and Resolvent-based data-assimilation. A detailed description of each chapter
individually is provided:

• Chapter 2: In this chapter, we will discuss the mean-flow data-assimilation with
the aid of the RANS equations, completed by a turbulence model, the Spalart-
Allmaras. More precisely, we will introduce two different tuning parameters related
to a correction of those equations. The first will be a volume force, following Foures
et al. [2014], modeling the corrective force supplementary to the one coming from the
eddy-viscosity provided by the SA model. We note that the high-Reynolds number
issues reported by Symon et al. [2017] will not occur in our case since we dispose
of a backup model (SA), providing enough eddy-viscosity such that the unforced
solution (the original RANS-SA one) is well posed. This way, we avoid the need
for iterative assimilation for increasing Reynolds numbers. The second one is a
corrective source term acting in the SA equation (similar to Singh and Duraisamy
[2016]), modifying how the production or destruction of the turbulent eddy-viscosity
was designed. The data to be assimilated will be the mean-velocity field, either in
the whole domain, to investigate controlability aspects of the proposed model, or
at partial/sparse velocity measurements, as we would have using point-wise Pitot
probes. By doing so we assess how those models perform in function on the quantity
of information. The flow configuration will be a Backward-Facing Step (BFS) at
Re = 28275, investigated in Dandois et al. [2007] with Direct Numerical Simulations
(DNS), which will be used as ground-truth.

• Chapter 3: In this chapter we essentially investigate the same models as in the
Chapter 2 but changing now the nature of the data to be assimilated. Here, we con-
sider wall-information (pressure and friction). In a first time, we derive the adjoint
equations for the laminar regime (without turbulence model), as their boundary
conditions will be non standard, due to the wall-measurements. This formalism
will also be, at first, tested in a laminar configuration. Then, we perform those
data-assimilation on the turbulent case presented on Chapter 2, studying how the
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different models manage to assimilate this type of data, together with a few studies
on the number of wall-probes necessary for convergence.

• Chapter 4: The mean-flow Resolvent analysis, as presented in §3.2, has been exten-
sively used for the recovering of the nonlinear fluctuation. Most of the studies con-
sider the mean-flow as a given quantity, both directly from experiments (or higher-
precision numerical simulations) or from previous mean-flow data-assimilation. How-
ever, we remark that, if we know an approximation for the fluctuation, we can also
have an approximation of the mean-flow. Indeed, from this fluctuations, we can
compute the Reynolds-stress tensor and thus the forcing term on the RANS equa-
tions, that we could use to compute the mean-flow itself. For this reason, we propose
here to skip the a priori knowledge of the mean-flow, proposing instead a nonlin-
ear model composed by the mean-flow equation coupled with the Resolvent modes
through the Reynolds-stress tensor. This model is not closed since, as mentioned
before, the amplitudes of each mode (for each frequency) is unknown and will be
tuned such that some quantity of the reconstructed flow matches the best with
some external ones. Note that this measure can, in principle, be the same few
time-resolved point-wise probes used by Beneddine et al. [2017] or Symon et al.
[2019a], since their frequency spectra provide, individually for each frequency, the
point-wise energy of the fluctuation. Moreover, those quantities may provide the
information about which frequencies our model should have. For this reason, from
the point of view of the input information needed, this as an extremely efficient
data-assimilation technique. This technique will be applied on transitional flows:
a squared-section cylinder, an example of flows whose instabilities saturate into a
periodic limit cycle (oscillator flows), and a backward-facing step, an example of
flows driven by external noise (noise amplifiers).

• Chapter 5: In this chapter we investigate the mean-flow stability analysis on flows
whose fluctuation is composed by a quasi-periodic component and a broadband
one. The application case is a squared-section cylinder at Re = 22000, whose quasi-
periodic component is in fact represented by the periodic vortex-shedding and its
broadband fluctuation is partially composed by Kelvin-Helmholtz (KH) structures
located at the shear layer generated from the detachment point. To obtain both
structures from mean-flow analysis (obtained from DNS), we decompose the flow
variables using the triple decomposition as proposed by Mezić [2013], where the
Koopman formalism is used, leading to two different equations, one for each one of
them. The periodic vortex-shedding mode is obtained with a classical mean-flow
stability. We investigate here the need of taking in consideration an eddy-viscosity,
modeling the broadband fluctuation’s nonlinear interactions and computed from the
DNS statistics. The Kelvin-Helmholtz structures, on the other hand were obtained
with a Resolvent analysis based on the linearized equations around the periodic
component, instead of the mean-flow, similarly to what is done in Floquet stability
theory. By using this formalism, we are able to capture the oscillation of those KH
structures with the periodic vortex-shedding, which is also observed in DNS.

• Chapter 6: In this chapter, we intend to extend the Resolvent-based data-assimilation
technique (presented in chapter 4) to the turbulent flow around the square cylin-
der, same configuration presented in chapter 5. This is a much more challenging
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task since now we have both periodic and broadband components to be taken into
account. Numerically, this is a costly task and will be circumvented here with the
use of a URANS model. The chosen one is the Spalart-Allmaras. This model pro-
vides naturally an eddy-viscosity, necessary for the resolution of the vortex-shedding
mode and for the mean-flow equation, modeling on part of the Reynolds-stress ten-
sor. The final model is composed by the vortex-shedding mode, whose amplitude is
tuned similarly to what was done in the third chapter, coupled with the mean-flow
equations.



Chapter 2

Data-Assimilation for minimal
Corrections of RANS equations

1 Introduction
Experimental measurements are commonly used to validate numerical simulations. Yet,
experimental measurements and numerical simulations can also be more intimately com-
bined to generate an improved picture that makes a compromise between numerical mod-
eling and experimental measurements. In this view, data-assimilation aims at establishing
a mathematically well-defined procedure to take advantage of the knowledge of few ex-
perimental measurements to complete or correct an incomplete or imprecise numerical
model. Data assimilation historically emerged in the field of meteorological forecasts
(Lorenc [1986], Liu et al. [2008]), where the lack of accurate models, uncertain initial and
boundary conditions yield poor predictions. Several data-assimilation algorithms were de-
signed that can be classified into two categories: direct-adjoint optimization techniques,
also called 3D/4D Var, where correction terms or boundary conditions in the numerical
model are tuned to minimize the measurement mismatch between the experiment and
the numerical solution Le Dimet and Talagrand [1986], and ensemble based-techniques,
where a state estimate is corrected using the measurement mismatch Evensen [2009]. In
other areas of fluid mechanics, the use of these kind of techniques has been increasing
in the past years. The motivations for this were multifold: estimation of initial or inlet
boundary conditions in open flows Gronskis et al. [2013], Mons et al. [2016], interpolation
of velocity fields between a sequence of images Heitz and Mémin [2010], Yang et al. [2015],
identification of pollutant release in urban area Mons et al. [2017b] and even as a theo-
retical tool to investigate aspects of the decay of large scales in homogeneous isotropic
turbulence Mons et al. [2014]. In aerodynamics, the recovery of time-averaged quanti-
ties is in many applications sufficient. For example, in industrial wind-tunnels, most of
the measurements consist in time-averaged pressure distributions and forces and from
a numerical point of view, engineers commonly solve Reynolds-Averaged Navier-Stokes
equations with turbulence models to predict the mean features of the flow around a body.
In so far, a time-averaged approach is more suited and the data assimilation problem
should rather be considered in the framework of inverse problems (see Foures et al. [2014]
for the direct-adjoint optimization approach and Iglesias et al. [2013], Kato and Obayashi
[2013] for the ensemble-based framework). Concerning the direct-adjoint optimization
approach, Foures et al. [2014] started with a low-Reynolds cylinder flow (Re = O(102))

9
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exhibiting vortex shedding. They tuned a volume-force (modeling the force associated
to the Reynolds-stress) acting in the steady Navier-Stokes equations such that its cor-
responding solution best matches velocity measurements, mimicking a real experimental
situation where such measurements are provided by a Particle Image Velocimetry setup.
The same procedure was applied at a higher Reynolds number (Re = O(104)) by Symon
et al. [2017] on a flow around an idealized airfoil. This time, additional difficulties related
to the well-posedness of the steady Navier-Stokes equations at such high Reynolds number
had to be faced. They overcame this problem by performing several optimization steps
for increasing Reynolds numbers, which can be costly. Another possible approach at high
Reynolds-numbers is to consider turbulence models. This was, for example, employed by
Li et al. [2017], where a set of model-related coefficients (in their work, RANS-k−ω) have
been tuned such that the solution of the model is as close as possible to some given par-
tial higher-fidelity-data. Yet, such an approach is strongly constrained by the structure
of the model and does not allow a high-enough flexibility to adjust the model to regions
exhibiting different behaviors. Concerning the ensemble approach, Kato and Obayashi
[2013], Kato et al. [2015] generated an ensemble by varying abritrarily the coefficients
of the Spalart-Allmaras model and a Kalman filtering method than led to the tuning of
optimal values of these coefficients with respect to given measurements. The difficulty
here is again that the Reynolds stresses need to comply with the structure of the Spalart-
Allmaras model (in particular the Boussineq approximation) which is known to be very
constraining. Duraisamy et al. [2019] also employed data-assimilation techniques to tune
production terms in RANS models to mean-flow data obtained by DNS or experiments.
They then used the assimilated eddy-viscosity quantities to design new turbulence models
with deep-learning techniques.

In this opening chapter, we extend the time-averaged direct-adjoint optimization ap-
proach introduced by Foures et al. [2014], Symon et al. [2017] to higher Reynolds numbers
by using as a baseline model RANS equations combined with turbulence models instead
of the steady (laminar) Navier-Stokes equations. Contrarily to Li et al. [2017], the tun-
ing parameters are space-dependent functions related to a correction of the modelled
Reynolds-stress tensor. In the present work, we choose the Spalart-Allmaras model (SA)
Spalart and Allmaras [1994] for its numerical simplicity, even though other models could
also be used. Within this model, we explore two correction possibilities.

The first consists in a volume-force acting in the momentum equations. This force is
supposed to stand for a correction of the viscous force induced by the eddy-viscosity pro-
duced by the SA model. This therefore allows the turbulent stresses not to be constrained
by the Boussinesq assumption, which is known to be only well adapted in shear dominated
regions. Since this correction is not attached to the turbulence model itself, this approach
may be considered as an extension of Foures et al. [2014] and Symon et al. [2017], the
difference being the consideration of a background eddy-viscosity that evolves with the
data-assimilation process according to a turbulence model (in this work, SA). This mod-
eling is better suited for turbulent flows. For example, the uncorrected solution (for which
the correction term is null), which is needed to initialize the optimization algorithm, now
corresponds to the RANS-SA solution. Such an initial solution may easily be obtained
with standard algorithms and is already much closer to the targeted mean-flow than an
initial condition obtained with a laminar model. The assimilation procedure therefore
only needs to compensate the small imperfections of the initial turbulence model, while
using a laminar model for turbulent flows implies compensating for the whole discrepancy
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between the laminar steady solution and the targeted mean-flow.
The second correction possibility is a source term acting on the SA equation that

governs the eddy-viscosity. This time the control parameter acts within the turbulence
model, correcting the production and dissipation terms of the used turbulence model.
It is worth-mentioning that a similar technique was employed by Singh and Duraisamy
[2016] and Parish and Duraisamy [2017] to identify correction terms in turbulence models:
they tuned a space-dependent function modulating the strength of the turbulent-viscosity
production term. More recently, this very same procedure was used by He et al. [2019b]
to assimilate some PIV measurements. We believe however that an additive source term
in the equation governing the eddy viscosity is more general and robust.

This chapter is organized as follows. First (§2), we will describe the physical con-
figuration of interest, by showing the reference solution (obtained by DNS) and the
corresponding (uncorrected) RANS-SA solution, pointing out the differences between
them, motivating the need for data-assimilation. This configuration consists of a rounded
backward-facing step (Dandois et al. [2007]), for which the SA model provides a bad pre-
diction of the re-circulation length. Then (§2), we will introduce the two models for data-
assimilation mentioned above, together with the direct-adjoint optimization procedure to
tune the correction fields. Finally (§4), we will present the data-assimilation results on
the backward-facing step configuration, by comparing the assimilated flowfields obtained
with the two approaches to the true mean-flow. We will also assess the performance of
the reconstruction as a function of the sparsity of the used velocity measurements.

2 Flow Configuration and numerical solutions
Before introducing the mathematical models and the formalism for data-assimilation, we
briefly introduce the physical configuration on which we will apply this technique, together
with the reference (DNS) and a priori (RANS-SA) solutions. We will in particular high-
light and discuss the errors of the (RANS-SA) solution, motivating the data-assimilation
procedure.

The chosen configuration, is a rounded Backward-Facing Step (BFS) at Reynolds
number Re = 28275, based on the height of the step and on the inflow velocity. Those
quantities will also be used to make all variables dimensionless in the following. This
configuration was considered in Dandois et al. [2007] and consists of a smooth expansion,
generating a re-circulation region that detaches at xd = 0.53 and reattaches at xr = 3.93,
those positions being measured after the start of the expansion. The geometry of the
rounded step is given by the equation:

y(x) = [sin(aπx)− aπx]/(2π) + 1, 0 ≤ x ≤ 2/a (2.1)

where a = 0.703. As detailed in Dandois et al. [2007], the Direct Numerical Simu-
lation (DNS) was fed at the inlet with fluctuations generated from a time-dependent
zero-pressure-gradient turbulence simulation (see Lund [1998]). This allows to describe a
situation where the incoming boundary layer is fully turbulent. The resulting mean-flow
can be seen in Figure 2.1. We now turn our attention to the solution given by the RANS
equations coupled with the Spalart-Allmaras model. Here we consider the incompressible
Navier-Stokes equations, describing the velocity ũ and pressure p̃ (the ·̃ notation refer-
ring to quantities obtained by a model), together with an extra equation governing an
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Figure 2.1: DNS solution: streamwise mean-velocity field. Dashed lines represent negative
values

eddy-viscosity-related quantity ν̃:

ũ · ∇ũ +∇p̃−∇ · ((ν + νt(ν̃))∇sũ) = 0 (2.2)
∇ · ũ = 0 (2.3)

ũ · ∇ν̃ −∇ · (η(ν̃)∇ν̃) = P (ν̃,∇ũ) +D(ν̃,∇ũ) + C(∇ν̃) (2.4)
= s(ν̃,∇ν̃,∇ũ),

where η(ν̃) is the diffusivity of ν̃, P (ν̃,∇ũ) the production term, D(ν̃,∇ũ) the destruction
term and C(∇ν̃) the cross diffusion term, all of them being lumped into a single source
term s(ν̃,∇ν̃,∇ũ). More information about the original baseline model (especially the
functions νt(ν̃), P (ν̃,∇ũ), D(ν̃,∇ũ) and C(ν̃,∇ũ)) and the chosen implementation can
be found in Crivellini et al. [2013] and Oliver [2008], as well as in Appendix A. To properly
solve this set of equations, we need to specify boundary conditions, especially the inflow
velocity profile (a sketch of the flow domain, with the remaining boundary conditions is
provided in figure 2.2). We will consider here that the inflow boundary layer is known and
mimics the inflow conditions of the DNS (this constraint can in principle be removed by
tuning or assimilating this inflow boundary condition with respect to some measurements
more downstream; yet, this is not the focus of this work and has not been studied). One
of the issues here concerns the value of ν̃, which should reflect the value of the shear-
stress in the DNS. For this variable, we will keep it simple and impose a constant value
(ν̃/ν)∞ with a fast-decay to zero very close to the wall. We have made a parametric study
for values of this quantity ranging from (ν̃/ν)∞ = 3 (recommended for a fully-turbulent
boundary layer, see Allmaras et al. [2012]) to (ν̃/ν)∞ = 0. The stream-wise velocity, the
normalized eddy-viscosity νt/ν, the wall-pressure and friction coefficients of the RANS-SA
solution for (ν̃/ν)∞ = 3 are respectively shown in Figures 2.3 (a,b,c,d). The dependency
of the incoming boundary layer (at the step location) as a function of (ν̃/ν)∞ is shown in
Figure 2.3 (e), indicating a small sensitivity with respect to the choice of (ν̃/ν)∞. In table
2.1, we can see that the re-circulation length is strongly overestimated by the RANS-
SA model and that the choice of (ν̃/ν)∞ strongly affects these overestimated results.
This overestimation may be due to the fact that the Spalart-Allmaras model has been
initially tuned for higher Reynolds numbers and the gradients are not sufficiently strong
in the present shear-layer to strengthen the eddy-viscosity (and reduce the re-circulation
length). For this reason, throughout this work, we fix that value to be (ν̃/ν)∞ = 3,
which is consistent with the fact that the DNS itself was performed with a fully-turbulent
incoming boundary-layer. As mentioned above, the RANS-SA solution over-predicts
the reattachment length by 70%. This also reflects in a strong mismatch in the pressure
and friction coefficients (Figure 2.3 (c,d)). These discrepancies motivate the use of data-
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Figure 2.2: Sketch of computational domain, together with its boundary donditions.

(a) (b)

(c) (d)

(e)

Figure 2.3: RANS-SA solution: (a): streamwise velocity field for solution with (ν̃/ν)∞ =
3, (b): corresponding normalized eddy viscosity νt/ν, (c): pressure coefficient, (d): friction
coefficient, (e): streamwise velocity at x = 0 for RANS-SA solution with different values of
(ν̃/ν)∞ and for time-averaged DNS-solution. In figures (c,d), the dotted line corresponds
to the time-averaged DNS solution, and the solid-line to the RANS-SA solution.
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assimilation techniques to improve the recovery of the right flow features. In this study, we
will consider the time-averaged DNS as the reference solution from which measurements
will be extracted to feed the assimilation process.

Table 2.1: Comparison of separation and reattachment points for RANS, LES, and DNS
simulations for the smooth backward-facing step, Re = 28275

(ν̃/ν)∞ xs xr
3 0.50 6.67

RANS - SA 3 · 10−6 0.46 6.87
(present studies) 0 0.40 7.35

DNS Dandois et al. [2007] – 0.53 3.93
LES Dandois et al. [2007] – 0.51 3.96

3 Models and Data assimilation procedure
In this section, we will discuss the models we consider for the data-assimilation process.
We recall that the time-averaged u and pressure p quantities are governed by the RANS
equations:

u · ∇u +∇p−∇ · (ν∇su) = −∇ ·
(
u′ ⊗ u′

)
= −∇ · τ = f , (2.5)

where τ is the Reynolds-stress tensor, and the notation u ⊗ v stands for the tensor
[uivj]i,j=1,···. This tensor contains all the nonlinear interactions of the non-resolved fluc-
tuations u′. For this reason, those equations are not closed and several hypotheses /
approximations / models exist in the literature to close the problem, that is provide a
closure τ = τ(u, p, + supplementary variables ). It is thus clear that quantities related to
this closure can legitimately be used as tuning functions for our data-assimilation proce-
dure. In the following, we will describe two possible tuning functions, both of them relying
on the SA-turbulence model. The first one corresponds to adding a volume-force in the
momentum equations and the second one to adding a volume source in the ν̃ equation.

3.1 Model 1: source term in momentum equation
The first model considered here is given by a volume force on the momentum equations.
However, using the Navier-Stokes equations with solely a molecular viscosity as a base-
model and compensating the measurement mismatch through only a volume-force (as
done in Foures et al. [2014]) may be prone of difficulties at high Reynolds numbers for
several reasons: Symon et al. [2017] had to perform several expensive optimization steps
at increasing Reynolds numbers to deal with a case at Re = O(104), the correction term
may be very large since the uncorrected laminar steady state is usually very far from the
turbulent mean, and in some cases, this laminar state may not even exist or there might
be lots of such steady states Sipp et al. [2010]. All these reasons render the assimilation
process difficult and expensive. In any case, it seems a good idea to have an assimilation
process with an initial guess that is easy to obtain and not too far from the targeted
solution so that only a small discrepancy needs to be compensated by the optimization
process.

In order to keep the physical idea of a volume-force in the momentum equations and to
improve the robustness of the assimilation process, we choose to use existing turbulence
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models in connection with a momentum force in the RANS equations to serve as a model
for the optimization. This means that the Reynolds stress tensor will be divided into a
modeled and a tuned part:

f = −∇ · τ ≈ −∇ · (2/3κI − νt∇sũ) + f̃x. (2.6)

The first term on the right-hand-side of equation (2.6) corresponds to the Boussinesq
term, stating that part of the Reynolds-stresses can be modeled by an eddy-viscosity νt
(the term involving the turbulent kinetic energy κ = u′ · u′/2 being incorporated in the
pressure). The second term is the correction term f̃x, which can in principle account for
non-Boussinesq effects or other modelling errors. With this approximation, instead of
(2.2), we consider the following forced momentum equations:

ũ · ∇ũ +∇ (q̃ + 2/3κ)︸ ︷︷ ︸
p̃

−∇ · ((ν + νt)∇sũ) = f̃x, (2.7)

where the turbulent kinetic energy p̃ = q̃+ 2κ/3 has been lumped into the pressure term.
The eddy viscosity νt present in these equations is given by a turbulence model, here the
Spalart-Allmaras model νt(ν̃) where ν̃ is governed by (2.4).

3.2 Model 2: source term in ν̃ equation
The second tuning function considered corresponds to a source term in the equation
governing ν̃. Equation (2.4) is replaced by

ũ · ∇ν̃ −∇ · (η(ν̃)∇ν̃) = s(ν̃,∇ν̃,∇ũ) + f̃ν̃ . (2.8)

The correction f̃ν̃ only has an indirect effect on the velocity ũ and pressure p̃ fields, since
f̃ν̃ only modifies the source-production-diffusion term s acting on ν̃, which then modifies
the eddy-viscosity νt that appears in the momentum equations (2.3). The Reynolds stress
tensor therefore remains constraint by the Boussinesq assumption, which is nevertheless
a valid assumption in a great variety of flows, especially in shear-dominated flows. This
model is sufficiently flexible to allow for example correction of a wrong free shear-layer ex-
pansion ratio, as is the case in figure 2.3 (a). Model 2 is nevertheless far more constrained
than model 1, since with model 1 we are able to encompass all corrections obtained by
model 2, while the reverse is not true. Yet, this should not just be seen as drawback
for model 2, since the associated solution will be forced to remain in a subspace that
might in some cases be more physical (or representative of the exact DNS solution) than
the solution obtained with a much more free model, such as model 1. One has to keep
in mind that depending on the number of measurements that are available, the inverse
problem that aims at determining the tuning function that yields the best measurement
match is more or less severely under-determined: for example, in presence of sparse (resp.
many) measurements, it might be better to pick model 2 (resp. model 1) that is more
constrained (resp. freer).

3.3 Data Assimilation procedure
In this section, we describe the data-assimilation procedure employed. Let m be a set of
higher-fidelity or experimental measurements that correspond to information extracted
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from the flow and M(·) the measurement operator that allows to extract the corre-
sponding measure from our simulation result ũ. In this chapter, since we are dealing
only with velocity measurements, this operator will act on the velocity field, ũ, yielding
m̃ =M(ũ) ∈ M (other measure operators will be considered in the next chapter). M is
the measurement space, whose norm is given, generically, by || · ||M . The data-assimilation
problem can now be cast into an optimization one, for which we want to tune the forcing
terms (either f̃x or f̃ν̃) such that the cost functional:

J (q̃) = 1
2 ||M(q̃)−m||2M (2.9)

is minimal, with the following constraints:

ũ · ∇ũ +∇p̃−∇ · ((ν + νt(ν̃))∇sũ) = f̃x (2.10)
∇ · ũ = 0 (2.11)

ũ · ∇ν̃ −∇ · (η(ν̃)∇ν̃)− s(ν̃,∇ν̃,∇ũ) = f̃ν̃ , (2.12)

where here, for conciseness, we consider a general framework in which both f̃x and f̃ν̃
could simultaneously be considered in the optimization process. To solve this optimization
problem, following Foures et al. [2014], Parish and Duraisamy [2017], Singh and Duraisamy
[2016] or Mons et al. [2014], we choose a gradient-based algorithm. For the descent
algorithm, we pick the low memory version of the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm, which is far more efficient than a simple steepest gradient-descent
one. It requires in particular the computation of the cost functional gradient with respect
to the forcing parameter, ∇f̃x

J or ∇f̃ν̃
J . For this, we resort to a Lagrangian formalism,

in which the state is augmented with a set of Lagrange multiplier (or adjoint) variables
(ũ†, p̃†, ν̃†) and we look for critical points of the Lagrangian functional:

L([ũ, p̃, ν̃], [ũ†, p̃†, ν̃†], [f̃x, f̃ν̃ ]) =J (ũ)
+
(
ũ†, ũ · ∇ũ +∇p−∇ · ((ν + νt(ν̃))∇sũ)− f̃x

)
Ω

+
(
p̃†,∇ · ũ

)
Ω

+
(
ν̃†, ũ · ∇ν̃ −∇ · (η(ν̃)∇ν̃)− s(ν̃,∇ν̃,∇ũ)− f̃ν̃

)
Ω
,

(2.13)

where (v1,v2)Ω =
∫

Ω v1 · v2dΩ represents the inner product related to the classical (real
valued) energy-norm. Setting the variation of this Lagrangian with respect to the adjoint
variables to zero, yields the governing equations (2.10, 2.11, 2.12). Setting its variation
with respect to the direct variables, we obtain the adjoint equations:

ũ† · (∇ũ)T − ũ · ∇ũ† −∇ · ((ν + νt)∇sũ†)−∇p̃† (2.14)

+ν̃†∇ν̃ +∇ · (ν̃†∂∇ũs) = −
(
∂M
∂ũ

)†
(M(ũ)−m)

∇ · ũ† = 0 (2.15)
−ũ · ∇ν̃† −∇ · (η∇ν̃†) + (∂ν̃η)∇ν̃† · ∇ν̃ + (∂ν̃νt)∇ũ† : ∇sũ

−(∂ν̃s)ν̃† +∇ · (ν̃†∂∇ν̃s) = 0, (2.16)
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where the boundary conditions for this adjoint variables are given by:

No− slip/Inflow : ũ† = 0, ν̃† = 0 (2.17)
Outflow : n ·

(
ũ† ⊗ ũ + (ν + νt)∇sũ† + Ip̃† + (∂∇ũs)ν̃†

)
= 0 (2.18)

n ·
(
ũν̃† + η∇ν̃† − ν̃†(∂ν̃η)∇ν̃ − (∂∇ν̃s)ν̃†

)
= 0 (2.19)

Slip : ∂yũ†x = 0, ũ†y = 0, η∂yν̃
† = (∂∂y ν̃s)ν̃†. (2.20)

Although here we derive the strong equations for the adjoint problem, together with its
boundary conditions, in practice we use the discrete adjoint, meaning the transpose of the
Jacobian matrix. This procedure is fully justified in a Finite-Element Framework, since
it provides an actual FEM discretization of the adjoint equations. For further details on
this issue, see Appendix B 4. Taking now the variation of the Lagrangian with respect to
the forcing terms (either f̃x or f̃ν̃), we have:(

∂L
∂ f̃x

, δf̃x

)
Ω

= −
(
ũ†, δf̃x

)
Ω
→ ∇f̃x

J = −ũ† (2.21)(
∂L
∂f̃ν̃

, δf̃ν̃

)
Ω

= −
(
ν̃†, δf̃ν̃

)
Ω
→ ∇f̃ν̃

J = −ν̃†. (2.22)

At this point we have all the necessary ingredients for the BFGS optimization algorithm.
A brief description of the iterative procedure is depicted in figure 2.4. Roughly speaking,
this algorithm is more elaborate than usual gradient-descent methods, since the descent di-
rection is obtained by inverting an approximation of the Hessian matrix, constructed from
previous gradient evaluations. This procedure allows one to capture the second-derivative
behaviour of the cost functional J , which, formally provides a second-order convergence
of the optimization (further details on its implementation with a finite-element solver in
Appendix B). It is interesting to notice that, in the case where we use the f̃x tuning pa-
rameter, even if the original gradient is modified by the Hessian matrix, the finally chosen
descent direction is still divergence-free, just as in Foures et al. [2014] for the adjoint ve-
locity field ũ†. However, since we now have a background eddy-viscosity, the total force in
2.6 that acts on the momentum equations is not anymore divergence-free. We remark as
well that, at any iteration of the optimization procedure, the forcing term f̃x may have a
non zero projection onto the space of all forces compatible with a Boussinesq hypothesis.
This means that the eddy-viscosity νt = νt(ν̃) does not hold anymore the ’total amount’
of eddy-viscosity, a part of which can as well be contained in f̃x. This slightly hides the
physical meaning of the sole term νt.

4 Results
We will now analyze the reconstruction results of the backward-facing step flow for two
different measurement operators. Firstly, we will consider the complete mean velocity
field as known in order to evaluate the ability of the two models to accurately reconstruct
the velocity, pressure and Reynolds stress forcing. This is interesting because the nature
of the forcing terms in the two models is different, which induces different constraints
on the reconstructed fields, so that the ensemble of reachable velocity-pressure fields is
different between the two models. For example, the mean-flow generated by the DNS /



18 Chapter 2. Data-Assimilation for minimal Corrections of RANS equations

Figure 2.4: Sketch of the BFGS algorithm for a general problem, having f as a control
parameter and q as state. The adjoint variable is denoted by q†.

LES solutions might in fact not be fully compatible with the Boussinesq approximation
of model 2. Secondly, we will use only few point-wise velocity measurements such as
those given by a Pitot probe or a hot-wire measurement that is moved along a line to
extract cross-stream velocity profiles. Such a situation is actually much more realistic
when considering industrial wind-tunnels, since optical measurements such as Particle-
Image-Velocimetry (PIV) measurements remain difficult to implement in such facilities.
We actually expect different behaviors between model 1 and model 2 when only few
measurements are available since the reconstruction constraints are different between the
two models. Foures et al. [2014] and Symon et al. [2017] have already explored point-wise
measurements in the case of a laminar model at lower Reynolds numbers: in particular,
Symon et al. [2017] showed that a measurement operator involving a spatial averaging of
the measure over a finite region improved the quality of the reconstruction by smoothing
the gradients of the reconstructed velocity field in the vicinity of the measurements. We
will apply here a similar approach.

4.1 Complete velocity field measurements
We consider the measure as being the whole exact (mean) velocity field m = u. This
field was extracted from the DNS results of Dandois et al. [2007] and then interpolated
on our mesh, which is coarser than the one from the DNS. The measure is thus defined
on the same mesh as the solution itself. For this reason, the measurement space M ends
up being the velocity space itself. Its norm also simplifies into || · ||M = || · ||Ω, the norm
induced by the kinetic energy inner product (without the pressure component). We then
have:

−
(
∂M
∂ũ

)†
(M(ũ)−m) = −(ũ− u) (2.23)

Under those conditions, the optimization of the tuning fields f̃x and f̃ν̃ proceeds as shown
in figure 2.5. Model 1 with the optimization of the volume-force f̃x manages to reconstruct
the time-averaged DNS solution extremely accurately due to the large flexibility of this
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Figure 2.5: Convergence history Jn/J0 as a function of the iteration count n when opti-
mizing f̃x (solid line) or f̃ν̃ (dashed line).

model: the decrease in the cost functional Jn/J0 is around 10−4, which is very good. Note
also that this decrease is achieved in less than 200 iterations, which is much quicker than
the 103 iterations required by Foures et al. [2014] to achieve similar results. This gain is
due to the choice of far-superior l-BFGS optimization algorithm, which provides an ap-
proximation of the Hessian matrix based on previous gradient evaluations, improving the
descent direction estimation. When using model 2, the optimization procedure reaches a
plateau after n ≈ 10 iterations. In this case, the reduction of the cost functional is of the
order of Jn/J0 ≈ 0.13. This is less accurate than with model 1. Yet, it is coherent with
the fact that the control parameter f̃ν̃ only indirectly affects the velocity field ũ (through
νt) , leading to a far more constrained reconstructed solution. As for the reconstructed
velocity fields, we can clearly see that model 1 (figure 2.6) manages to accurately rep-
resents the streamlines of the reference solution (in dashed lines), whereas the model 2
only approximately achieves this goal. For example, the resulting reattachement point is
around xr = 4.64 for model 2, the reference solution of the DNS being xr = 3.93 while
the uncorrected RANS-SA gave xr = 6.67. Yet, the overall picture provided by model
2 is still acceptable and definitely improves the base-line results provided by RANS-SA
model. It is interesting to note that for model 1, which involves the tuning of the mo-
mentum forcing f̃x, the final eddy-viscosity values (figure 2.7 (a)) have decreased with
respect to the baseline values (the maximum is now around νt/ν ≈ 140, compared to 240
for the uncorrected RANS-SA solution). This indicates that the baseline SA turbulence
model induces errors that may be compensated most efficiently by replacing part of the
Reynolds-stresses induced by the SA model by a general unconstrained forcing. In model
2, where the source term f̃ν̃ is optimized for in the ν̃ equation, the final eddy-vicosity
νt values have strongly increased for the bubble to become shorter (figure 2.7 (b)), its
maximum value being here νt/ν ≈ 330. We can also see that the Reynolds-stress induced
forcing produced in the momentum equations (either stemming from the viscous contri-
bution alone for model 2 or combined with the volume-force f̃x for model 1) are similar
and located in the vicinity of the separation point (figures 2.7 (c,d)) and agree with the
overall characteristics of the actual forcing term f (figure 2.7 (f)). We however remark
that, for model 1, those two forcing terms are not exactly the same (compare figure (c)
and (e)), even though their corresponding velocity fields are very close. The same issue
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(a)

(b)

Figure 2.6: Complete velocity field assimilation: optimal velocity field when optimizing
(a) f̃x (model 1) and (b) f̃ν̃ (model 2). The reference (DNS) is provided in dashed lines
in both plots.

(a) (b)

(c) (d)

(e)

Figure 2.7: Complete velocity field assimilation: νt/ν for model 1 (optimization of f̃x)
(a) and model 2 (optimization of f̃ν̃) (b). Total stream-wise momentum forcing for (c)
volume-force correction (∇ · (νt∇sũ) + f̃x), (d) SA-correction (∇ · (νt∇sũ)) and (e) exact
one f .
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(a) (b)

Figure 2.8: Complete velocity field assimilation: (a) wall-pressure and (b) wall-friction.
Red dots correspond to the RANS-SA baseline solution, blue dots to the time-averaged
DNS, continuous black line to model 1 and black dashed line to model 2.

was reported by Foures et al. [2014], who explained this discrepancy by the fact that
the adjoint fields (and thus the forcing term f̃x) are divergence-free by construction if no
pressure measurements are considered in the cost functional. This constraint ends up
preventing the pressure to be fully reconstructed, since we have no information on the
potential part of the forcing term. It is interesting to notice however that, despite this
fact, the wall-pressure (figure 2.8 (a)) is well represented. To explain this, we turn our
attention to the exact RANS equations (2.5) and the approximated ones (2.7). We can
see that subtracting the two equations yields:

∇(p̃− p) + (ũ · ∇ũ− u · ∇u)−∇ · (ν∇s(ũ− u)) = f̃x +∇ · (νt∇sũ)− f . (2.24)

To evaluate the difference between the approximated wall-pressure p̃ and the exact one
p, we evaluate this equation on the tangential direction at the solid wall. From the no-
slip condition (satisfied both by the approximation and by the DNS), we have ũ = u =
f = 0. We also have that the viscous term ∇ · (νt∇sũ) has to vanish at the wall, since
∇· (νt∇sũ) = νt∇·∇sũ+∇νt ·∇sũ, the first term being zero since νt = 0 at the walls and
the second being also zero since, with the Spalart-Allmaras model ∇νt = ∂ν̃νt∇ν̃, which
is zero because ∂ν̃νt|ν̃=0 = 0. Moreover, by imposing the divergence-free property of both
the reference velocity field and the approximated one and projecting the result onto the
wall-tangential direction t we have:

∂t(p̃− p)− ν∆(ũt − ut) = ∂t(p̃− p)− ν∂nn(ũt − ut) = f̃x · t. (2.25)

Since, at any iteration of the optimization procedure, the forcing term f̃x is a combination
of adjoint variables that satisfy the no-slip boundary condition, we have f̃x = 0 at the wall.
If we apply the approximation ũ ≈ u (true at the end of successful optimization process),
we have that the variation of the pressure difference along the wall is approximately null
∂t(p̃ − p) ≈ 0, justifying the good estimation of the wall-pressure. We remark that this
approximation is valid only if, at the wall, the reconstructed tangential velocity field
exhibits normal-derivatives that are close to the reference ones ν∂nnũt ≈ ν∂nnut. This
condition is therefore only met if the quality of the reconstruction is very good near the
wall, as is the case here with complete velocity measurements. Also, as mentioned before,
this approximation for the pressure obtained at the wall does not hold anymore in the
bulk of the flow (see figure 2.9). This is due to the fact that the evolution of f̃x is restricted
to a solenoidal vector space. In order to study this error in the pressure field, following
Foures et al. [2014], (2.24) shows that the pressure difference is related to the optimal
forcing f̃x, the actual DNS forcing f and the eddy-viscosity term through:

∇(p̃− p) ≈ f̃x +∇ · (νt∇sũ)− f . (2.26)
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(a)

(b) (c)

(d) (e)

Figure 2.9: Assimilated pressure (a) p̃ (thick solid lines), reconstructed one p̃ − φ̃ + φ
(thin solid lines) and DNS one p (dashed lines). The divergence-free forcing terms f̃x + f̃s
coming from the model (b) is also compared with the one coming from the DNS f s (c). The
turbulent kinetic energy 2/3κ (computed from DNS statistics) (d) and the combination
of the potentials −φ̃+ φ (e).

The forcing term f̃x is solenoidal and the pressure error p̃−p appears as a scalar potential.
In order to identify in this equation solenoidal and scalar-potential parts, we perform a
Helmholtz decomposition of the DNS forcing term f and of the eddy-viscosity term related
to turbulence model:

f = f s +∇φ (2.27)
∇ · (νt∇sũ) = f̃s +∇φ̃ (2.28)

where f s and f̃s are the solenoidal functions and φ and φ̃ are the scalar potentials. We
therefore have:

p− φ ≈ p̃− φ̃ (2.29)
f s ≈ f̃x + f̃s, (2.30)

where on the left-hand-side we have only terms stemming from the reference itself (thus
the notation ·) while those on the right-hand-side are linked to the optimal reconstruction
(thus the notation ·̃). If we plot the reconstructed pressure p̃ + φ − φ̃, we can see that
it matches very well with the actual pressure p (figure 2.9 (a)). The ”divergence-free”
component of the DNS forcing term f s compares now much better with the optimal one
f̃x+ f̃s (figure 2.9(b,c)). Also, in (2.7), we have seen that p̃ = q̃+2/3κ, so that φ̃−φ ≈ 2/3κ
if we assume that q̃ = p, which is also verified (see figure 2.9 (d,e)).

4.2 Sparse velocity measurements

4.2.1 Sparse velocity measurement operator

Now that we have performed and analysed the complete-velocity field measure, we turn
our attention to a more realistic case where fewer (but still) velocity measurements are
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considered in the assimilation process. Instead of a ’spatial average’ of the velocity field
around the measurement location, we will consider a measure operator under the form:

M(ũ) = {ũ(xim)}i=1,··· ,N . (2.31)

Here xim are N points where the velocity measurements are performed. Typically, these
N measurements may correspond to cross-stream profiles of Ny points at Nx stream-wise
stations, such that N = Nx × Ny. Experimentally, this would correspond a Pitot probe
that is moved in the cross-stream direction at Nx different stations, a rather common
measure in experimental fluid dynamics. This way, the cost functional reads:

J = 1
2

N∑
i=1

(ũ(xim)−mi)2, (2.32)

where mi = u(xim). With this definition of the measurement operator, the right-hand-side
of the adjoint equations becomes:

−
(
∂M
∂ũ

)†
(M(ũ)−m) = −

N∑
i=1

(ũ(xim)−mi)δxim (2.33)

where δxm is the Dirac-mass centered at xm. With this right-hand-side defined, we can
perform the data-assimilation for both models.

4.2.2 Reconstruction results using model 1 and model 2

Results of the reconstruction using model 1 and model 2 are presented in figure 2.10
for Nx = 3 and Ny = 10. From this figure, we can see that the volume-force model
produces a solution which, although it respects the measurements (Jn/J0 ≈ 10−6), does
not correspond well to the reference u. We can see from figure 2.10 (a) that the iso-
contours of the assimilated velocity are not smooth and non physical. For example,
the wall-friction shown in figure 2.10 (e) shows a (rather large) secondary re-circulation
bubbles, a feature that does not exist neither in the RANS-SA solution nor in the DNS.
We can explain these observations by noticing that the optimal forcing term f̃x is given by
a linear combination of adjoint fields with right-hand-sides given by (2.33). Since those
equations are excited on the momentum equation by a sum of Dirac masses, the velocity-
adjoint variables are ’peaked’ around the measurements, which contaminates the solution,
leading to those undesired oscillations. On the other hand, this does not occur in the f̃x-
data-assimilation, since the ν̃-adjoint is not forced directly by the Dirac masses, leaving
the gradients smooth. Furthermore, one can see that the result for model 2 is very similar
to the complete velocity field assimilation. If we look at the wall-pressure or wall-friction
plot (figure 2.10 (d,e)), we can see that the results in the sparse case present the same
general features as in the complete case, including the (rather small) re-circulation bubble
presented before. Model 2 therefore appears to be more robust than model 1 in the sense
that, seemingly, for any type of velocity measurements (dense, sparse), the results of the
reconstruction will be almost the same. This is confirmed when looking at the global
errors:

eΩ =
√

1
VΩ

∫
Ω

(ũ− u)2dΩ, (2.34)
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(a)

(b)

(c)

(d) (e)

Figure 2.10: Sparse-velocity measurement assimilation: assimilated velocity field ũ (solid
lines) together with reference solution u (dashed lines) for (a) f̃x, (b) f̃ν̃ and (c) f̃x with
penalized gradients. Green dots correspond to measurement locations xim. Wall-pressure
(d) and wall-friction (e) are plotted as well. Blue dots correspond to the DNS solution,
continuous black line to model 1, black dashed line to model 2 and orange line to model
1 with γ-penalisation.

Table 2.2: Global error eΩ and convergence results for partial-velocity data-assimilations

eΩ Jn/J0

fx fx, γ2 = 1 fν̃ fx fx, γ2 = 1 fν̃

Total Measure ∼ 10−3 – 0.035 ∼ 10−4 – 12.3 %
Ny = 5 0.051 0.042 0.036 ∼ 10−6 0.1 % 8.7 %

Nx = 3 Ny = 10 0.037 0.031 0.037 ∼ 10−6 0.3 % 8.7 %
Ny = 20 0.030 0.028 0.037 ∼ 10−6 0.4 % 9.0 %
Ny = 5 0.042 0.035 0.037 ∼ 10−6 0.1 % 11.9 %

Nx = 6 Ny = 10 0.032 0.030 0.037 ∼ 10−6 0.5 % 9.4 %
Ny = 20 0.027 0.027 0.038 ∼ 10−6 1.1 % 13.4 %

RANS-SA 0.094 –
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which are provided in table 2.2. Indeed, for several values of Nx, Ny, the optimization
based on model 2 leads to very similar values for eΩ. whereas for model 1, those values
become smaller if more measurements are considered. From table 2.2 we can also see
that, in the cases where few measurements are provided (Ny = 5, for example), the error
made with model 2 is smaller than with model 1. This means that, whenever we have
only few measurements, it is preferable to use the more robust model 2 than the more
flexible model 1 as a means to compensate the lack of knowledge of the actual reference
flow.

4.2.3 Optimization with gradient penalization of model 1

However, in the case of denser velocity measurements, we may still prefer to use the more
flexible model 1, since we have shown a more drastic reduction in eΩ for model 1 than
for model 2. Yet, we need to improve the reconstruction associated to model 1 by trying
to damp the oscillations seen in the solution (see figure 2.10 (a)). For this, we suggest to
penalize the forcing term by modifying the cost functional J̃ following:

J̃ = J
J0

+ γ2

2

∫
Ω
|∇f̃ |2 dΩ (2.35)

We remark that, by dividing the original cost functional by its value at the first iteration,
we are normalizing the penalization with a unity value, making the penalization term in-
dependent of the measurement and only dependent on the parameter γ2. This parameter
should not be taken too small (the penalization needs to be effective) and not too big (the
optimization should not get stuck in the vicinity of the RANS-SA solution). It tells the
algorithm to favor a solution that is smoother, since the tuning term f̃ in the momentum-
equations will exhibit smaller gradient values. This is a physically sound constraint since
we know that the Reynolds-stress forcing is very smooth. The results for this modified
data-assimilation procedure with model 1 are shown in figure 2.10 (c) for γ2 = 1. We can
see that the resulting solution is smoother and still matches well with the measurements
(Jn/J0 / 1%), suggesting that the kind of penalisation employed (here derivatives of
f̃x) still allows enough freedom for the tuning field to match the measurements, while
constraining the solution in a smooth subspace. Furthermore, except for the very sparse
setup (Nx = 3, Ny = 5), the penalized algorithm even manages to give a better recon-
struction of the flow away from the measurement points (see table 2.2). Indeed, for all
such test-cases, the penalized model 1 solution always manages to outperform both the
non-penalized model 1 reconstruction and the model 2 reconstruction.

4.3 Understanding the ’rigidity’ of model 2 through observabil-
ity Gramian analysis

This section is devoted to the understanding of the rigidity of model 2, pointed out in the
last section. One possible way to understand this observation is to examine the linearized
optimization problem, say, around the RANS-SA solution. In this linear framework, a
variation of the control parameter δf̃ (here, either f̃x or f̃ν̃) induces a variation of the state
variable q̃ = (ũ, p̃, ν̃):

δq̃ =
(
∂R
∂q̃

)−1

Pδf̃ = (∂q̃R)−1Pδf̃ (2.36)
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where R(q̃) is the nonlinear residual composing the RANS-SA equations and P being an
operator that transforms the variation of the control parameter into the actual forcing
term of the Jacobian. This variation in the state induces a variation on the observable
data according to:

δm̃ = ∂M
∂q̃

δq̃ = (∂q̃M)δq̃ = (∂q̃M)(∂q̃R)−1Pδf̃ = Aδf̃ (2.37)

To be able to identify which forcing terms induce the most energetic variation on the
measure we may optimize the gain:

G(δf̃ , δm̃) = ||δm̃||
2
M

||δf̃ ||2
= 〈δm̃, δm̃〉M

(δf̃ , δf̃)Ω
, (2.38)

which is equivalent to solving the Singular-Value decomposition of the operator A =
(∂q̃M)(∂q̃R)−1P :

A†Aδf̃i = λ2
i δf̃i, (2.39)

where λ2
i are the ranked squared singular-values (λ2

i ≥ λ2
i+1). The values λi represent the

measurement variations along the unit optimal measurement directions δm̃i (=λ−1
i Aδf̃i)

associated to the unit optimal forcing directions δf̃i. If all those singular-values are of the
same order, we can say that any measurement δm̃ is equally reachable (or, more suitably,
’observable’). If we have a strong separation of singular-values, that is λ2

0 � λ2
i for some

index i, we have measurement states that cannot be reached (’observed’) with the chosen
model. This can be seen by considering that, for a given δf̃ , the resulting perturbation
on the measure is given by:

δm̃ = Aδf̃ = A
∑
i

αiδf̃i =
∑
i

αiλiδm̃i = λ0
∑
i

αi
λi
λ0
δm̃i. (2.40)

Since δm̃i is unit norm, this shows that the amplitude αi required for the forcing term
to reach measurement δm̃i scales as λ0/λi, which can be very large, and therefore not
achievable. In figure 2.11, we have plot the quantities (λi/λ0)2 for model 1 and model 2,
taking as measurement operator the full velocity fieldM(q̃) = ũ. We can see that the f̃x
model 1 is much more flexible than the f̃ν̃ model 2 so that more measurement states δm̃
can be reached. As for the f̃ν̃ model 2, we can see that the separation is very strong and
increases very rapidly for i > 1.

5 Conclusion
In this chapter, we have introduced two models for the reconstruction of mean-flow fea-
tures from mean-velocity measurements. The first one consists in the perturbation of the
momentum equations by a volume-force in a similar fashion as in Foures et al. [2014], the
difference being that we have a background eddy-viscosity turbulence model, making the
numerical procedure more robust and well-posed for high Reynolds number flows. The
second one consists in the correction of the equation governing the eddy-viscosity (here the
Spalart-Allmaras model). The physical configuration on which those models are tested is
a smooth backward-facing step. We can show that, if the whole velocity field is considered
as measured (like in a PIV setup), the f̃x model 1 produces a solution that matches exactly
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(
λi
λ0

)2

Figure 2.11: Separation of Singular-Values (λi/λ0)2 for the f̃x model 1 (black dots) and
the f̃ν̃ model 2 (white dots), computed around the RANS-SA solution.

the reference, showing the high flexibility of the model. Moreover, we could also show that
the optimal forcing parameter matches almost perfectly the projection of the real forcing
term onto the space of solenoidal functions, in a similar way as Foures et al. [2014]. As for
the f̃ν̃ model 2, we showed that, if a complete velocity field measurement is available, it is
not capable to reproduce exactly the reference state. The model is too ’rigid’ and lots of
measurements are not accessible with this model. If now only sparse point-wise velocity
measurements are available, we show that the first model, despite its high flexibility to
exactly recover the measurements, may lead to noisy / unphysical state reconstructions.
For this reason, an additional penalisation on the gradients of the tuning field needed to
be considered to obtain smooth solutions. As for the second model, it turned out to be
more rigid in the sense that, independently of the quantity of available measurements, the
optimal state was approximately the same. This behaviour could be analysed by perform-
ing a singular value decomposition of the linear operator between the forcing space and
the measurement space. We showed that the controlability/observability of the second
model was actually restricted to a rather small subspace. However, such a rigidity may
be helpful whenever the number of measurements is very low since its optimal solution is
almost independent of the number of measurements. Hence, model 2 can provide in such
cases a better reconstruction of the flow field than the much more flexible model 1.
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Chapter 3

Wall-measure assimilation for RANS
equations

1 Introduction
In the second chapter, we dealt with the case where the information or data to be assim-
ilated was considered to be sparse velocity-field information. The measure of this kind
of quantity from experiments can be easy to do if not many probes are used, employing,
for example, hot-wire or Pitot probes. However if one needs a great number of veloc-
ity measurements, more refined experimental techniques may be needed (for example,
Particle Image Velocimetry, Raffel et al. [2018]), the drawback in those cases being the
requirement of more sophisticated experimental apparatus. Instead, in this chapter, we
evaluate other quantities that are more easily obtained experimentally, for example, the
wall-pressure and friction. We remark that those measures are more indirect, regarding
the velocity field itself, and their assimilation’s performance needs to be investigated. It
is interesting to note that, from a practical point of view, the assimilation of, say, the
wall-friction, can be useful even in cases where sufficiently bulk velocity field information
is available since it provides an easy way to express the localized behavior of the flow near
the wall, making the optimization procedure to impose its correct behavior there.

From a mathematical point of view, in an incompressible framework, the derivation
of the gradient for this cost functional is less straightforward than the velocity measure
one. The reasons for that are related with a seemingly over-constrained set of boundary
conditions for the adjoint problem. Since this issue is not so much discussed in the
literature (even if similar physical problems have already been addressed, with the correct
adjoint equations, see Bewley and Protas [2004]), we will dedicate the next section to
the exposure of the mathematical problem and to the proper derivation of the adjoint
equations on a laminar case, together with a few numerical results on the transitional flow
around a circular cylinder (as in Foures et al. [2014]), where the control parameter will be
a volume-force acting on momentum equations. Then, we will apply this procedure in the
case of the turbulent Backward-Facing Step (BFS), already introduced in the previous
paragraph, using for this purpose the two models discussed there. As we will see, this
case is much more challenging since, depending on the model used and on the quantity we
measure, the model will provide a solution that corresponds more or less to the reference.
For instance, if the wall-friction information for assimilation using model 2 (f̃ν̃), the
optimal solution will produce a re-circulation bubble that is much thinner than the actual
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one, over-estimating the pressure. This chapter can thus be viewed as an extension of the
first, since the overall goals and methods will essentially be the same.

2 Wall-measure for laminar RANS equations

2.1 Theoretical developments on laminar equations
In this section, we introduce the theoretical aspects of the adjoint derivation for the wall-
information measure operator. For the sake of clarity, we choose to place ourselves first in
the case where the flow is governed by the laminar RANS equations. We remark that all
technicalities related to the adjoint boundary conditions, that will allow us to assimilate
wall-information are present in the same manner if we consider a turbulence model. The
exact RANS equations, starting point of the analysis, are given by:

u · ∇u +∇p− ν∆u = −∇ ·
(
u′ ⊗ u′

)
= f , ∇ · u = 0, (3.1)

which differ from the steady solution equation by the presence of the right-hand side term
f , coming from the nonlinear interactions of the fluctuation u′. Following Foures et al.
[2014], Symon et al. [2017], we will use this right-hand side term as tuning parameter for
our assimilation procedure. Its goal will be then to find the forcing term f̃ , satisfying:

ũ · ∇ũ +∇p̃− ν∆ũ = f̃ , ∇ · ũ = 0, (3.2)

such that the following cost functional:

JΓ(ũ, p̃) = 1
2 ||MΓ(∇ũ, p̃)−mΓ||2MΓ

(3.3)

is minimal. MΓ is now a (rather general) measure operator that takes as input the
information of the gradient of velocity field and pressure at (a portion of) the wall Γ and
gives the measure output on the measure space MΓ:

MΓ : (∇ũ, p̃)|Γ 7→ MΓ(∇ũ, p̃) ∈MΓ (3.4)

and mΓ = MΓ(∇u, p) represents the measure applied on the actual reference solution.
We note that, since we suppose the measure operator acts on a solid wall Γ, on which the
no-slip boundary conditions are assumed, it does not make sense to measure the velocity
field. However, in order to measure the wall-friction, its derivatives are needed. The
measure space is equipped with a norm || · ||MΓ that will quantify the distance from the
measure of our model and the actual target data to be assimilated mΓ. Just as before, in
order to derive the gradient, we consider the Lagrangian:

L = JΓ + (ũ†, ũ · ∇ũ +∇p̃− ν∆ũ− f̃)Ω + (p̃†,∇ · ũ)Ω (3.5)

The variations of this Lagrangian with respect to the adjoint variables will, again, lead to
the set of direct equations (3.2). Its variations with respect to the state (ũ, p̃) will lead
to the adjoint equations, which will be slightly different from those found in the previous
chapter. The reason for this, will be the nature of the measure operator, that takes as
input boundary terms. As we will see, this fact will change the forcing term of the adjoint



2. Wall-measure for laminar RANS equations 31

equations from a volume force to a non-homogeneous boundary condition. To properly
derive them, we will proceed with the formal derivation of the Lagrangian:(

∂L
∂(ũ, p̃) , δ(ũ, p̃)

)
Ω

=
(
MΓ(∇ũ, p̃)−mΓ,

∂MΓ

∂(∇ũ, p̃) · (∇δũ, δp̃)
)
MΓ

+
(
ũ†, ũ · ∇δũ + δũ · ∇ũ +∇δp̃− ν∆δũ

)
Ω

+
(
p̃†,∇ · δũ

)
Ω

= 0
(3.6)

We remark that, for any linear operator that acts on the boundary such as:

AΓ : uΓ 7→ AΓu ∈MΓ (3.7)

we can define its adjoint as:

(m, AΓu)MΓ
=
(
A†Γm, u

)
Γ

(3.8)

where (v1,v2)Γ =
∫

Γ v1 · v2dΓ. With this in mind, and performing the appropriated
integration by parts, we can derive the adjoint equations to be:

ũ† · (∇ũ)T − ũ · ∇ũ† −∇p̃† − ν∆ũ† = 0, ∇ · ũ† = 0 (3.9)

We remark that, since the measure operator acts now on the boundary of the domain, the
adjoint equations are no longer forced by a volume term. Those equations must however
be completed with a set of boundary conditions. For the inflow ΓI , outflow ΓO and slip
ΓS boundaries the boundary conditions are exactly the ones obtained by Foures et al.
[2014]. However, since now we are performing some measurements on the solid wall Γ,
the classical no-slip boundary condition does not hold anymore. To re-establish those
conditions there, we have to impose that all boundary terms, coming from integration by
parts, vanish (having in mind that δũ = 0 at Γ). Those terms can be written as:−νn⊗ ũ† +

[
∂MΓ

∂∇ũ

]†
(MΓ(∇ũ, p̃)−mΓ),∇δũ


Γ

+
n · ũ† +

[
∂MΓ

∂p̃

]†
(MΓ(∇ũ, p̃)−mΓ), δp


Γ

= 0, ∀(δũ, δp̃)
(3.10)

At a first glance, this seems impossible since, if we take ∇δũ = 0, we see that we need to
impose that the normal adjoint velocity has to be driven by the measure operator on the
pressure:

n · ũ† = −
[
∂MΓ

∂p̃

]†
(MΓ(∇ũ, p̃)−mΓ) (3.11)

Inversely, if we take δp̃ = 0, we have that:

νn⊗ ũ† =
[
∂MΓ

∂∇ũ

]†
(MΓ(∇ũ, p̃)−mΓ) (3.12)

which not only demands the imposition of all the adjoint velocity on the wall but also
imposes some restrictions on the measure operator itself, since the above equation is a
tensor-equation. We can see then that, instead of having a tensor-like equation, we should
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have a scalar one, such that, together with 3.11, a complete set of boundary conditions for
ũ† is given. To try to achieve that, we will simplify the first term of equation 3.10 using the
fact that, along the wall, the test function must not change (in fact it is identically zero).
This condition can be written as t · ∇δũ = 0, where t is any tangent vector (t · n = 0).
In what follows, the choice for t will be fixed to be t = (−ny, nx) (in a 2D configuration).
With this arbitrary choice for the tangent direction, we can rewrite this condition as:

t · ∇δũx = tx∂xδũx + ty∂yδũx = −ny∂xδũx + nx∂yδũx = 0

t · ∇δũy = tx∂xδũy + ty∂yδũy = −ny∂xδũy + nx∂yδũy = 0
For a general point on the solid wall (for which nxny 6= 0), we can solve this set of
equations for ∂xδũy and ∂yδũx. Those extra scalar equations establish two links between
the components of the tensor ∇δũ, reducing the possible variations of it:

∇δũ =
[
∂xδũx ∂xδũy
∂yδũx ∂yδũy

]
=
[

∂xδũx nx/ny∂yδũy
ny/nx∂xδũx ∂yδũy

]
(3.13)

Using those conditions on equation (3.10), we now can re-derive a new equation for the
boundary conditions for ũ†, taking again δp̃ = 0. Since we use now a supplementary
vector-like equation (t · ∇δũ = 0), we manage to reduce the previous equation from a
tensor-like one to a vector-like one. However, we still observe contradiction with respect
to the boundary condition (3.11). For this reason, at this point, we also suppose that
∇ · δũ = 0 at Γ. This hypothesis may seem arbitrary, since the test function δũ does
not need, in general, to satisfy one of the volume-differential equations (continuity) of our
model, specially at the boundary Γ. However, one may make this argument rigorous by
changing the space of our test functions such that it verifies ∇ · δũ = 0 at Γ. With this
extra condition, the quantity ∇δũ becomes:

∇δũ =
[

1 −nx/ny
ny/nx −1

]
∂xδũx = D∂xδũx (3.14)

Replacing this assumption on the first term of equation 3.10, we have:−νn⊗ ũ† : D +
[
∂MΓ

∂∇ũ
: D
]†

(MΓ(∇ũ, p̃)−mΓ), ∂xδũx


Γ

(3.15)

Where the notation A : B stands for ∑i,j Ai,jBi,j. We can see that we now have a scalar
equation that will lead to only one extra boundary condition for the adjoint, to be imposed
with (3.11). If we simplify the term:

− νn⊗ ũ† : D = −ν∂xδux
{
ũ†x
nx
−
ũ†y
ny

}
= ν(nxny)−1∂xδuxt · u† (3.16)

we notice that, for the boundary-integral term to vanish, we need to impose the tangential
velocity from the measurements on the viscous friction together with the normal velocity
from the pressure at the wall:

t · ũ† =− 2(nxny)
ν

{
∂MΓ

∂∇ũ
: D
}†

(MΓ(∇u, p)−mΓ)

n · ũ† =−
[
∂MΓ

∂p̃

]†
(MΓ(∇ũ, p̃)−mΓ)

(3.17)
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(a) (b)

(c) (d)

Figure 3.1: (a) Unstable steady-state (longitudinal velocity) solution and also the starting
point of our optimization procedure and (b) mean-flow and exact divergence Reynolds-
stress tensor fx, f y (c,d)

With those boundary conditions, equations (2.1) are well posed. Lastly, by taking the
variation of the Lagrangian with respect to the forcing term (in a similar way as before),
we obtain the gradient ∇f̃JΓ = −ũ†. With those tools, we are ready to perform wall-
measure data-assimilation. We will first apply this technique on a laminar/transitional
flow, described in the next paragraph.

2.2 Physical Description of the Considered Laminar Flow
The physical configuration that will be treated here is the same as the one in Foures
et al. [2014], the flow around a cylinder at Re = 150. The corresponding steady solution
(figure 3.1 (a)) is unstable and the time-dependent solution deviates from it, saturating
into a nonlinear limit cycle, whose time-average ux can be depicted in figure 3.1 (b),
together with the corresponding divergence of the Reynolds-stress tensor f (figure 3.1
(c,d)). The re-circulation bubble’s length is much shorter for the mean-flow velocity
field (LDNS = 1.55, when LSteady = 9.75). The goal of the optimizations described on this
section will be to get as close as possible to those fields. The reference mean-flow state was
obtained through a two-dimensional Direct Numerical Simulation of equations (5.1). This
simulation was performed in the software FreeFem++, using P1

b ,P1
b ,P1 discretization (see

Hecht [2012]) on a mesh of around 70000 triangles with local refinement on the cylinder’s
surface and on the wake region. This simulation will also provide the necessary data to
perform the assimilation in the following sections.

2.3 Results
In this section we will evaluate how our optimization procedure works for wall-pressure
and wall-friction information assimilation.
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(a) (b) (c)

Figure 3.2: Results for pressure on the wall optimization: (a) convergence of the cost
functional, (b) wall-pressure and (c) wall-friction in function of the angular coordinate of
the cylinder’s surface, starting at the stagnation point (θ = 0).

2.3.1 Wall-Pressure Assimilation

To account for the wall-pressure, the generic measure operator introduced before needs
to be particularized. Since here we do not perform any measure on the velocity-gradient-
related quantities, this operator takes the form:

MΓ(∇ũ, p̃) = p̃ (3.18)

We remark that, by this choice of measure-operator, we implicitly suppose that the infor-
mation of wall-pressure of the reference state (DNS presented in the last section) is given
on the same computational mesh as the solution. This hypothesis may hold in practice
when several pressure probes are available on the surface of the cylinder. However, here,
for the laminar case, since our goal is to validate the assimilation procedure, we will not
be interested in coarsening the spatial distribution of the measure. For this reason, the
measure space MΓ will be the set of all the functions with support on the boundary. A
natural norm for this space is given by || · ||Γ = (

∫
Γ(·)2dΓ)1/2. We can thus infer that:

∂MΓ

∂∇ũ
= 0, ∂MΓ

∂p̃
= I ⇒

[
∂MΓ

∂p̃

]†
= I (3.19)

And, consequently, we have that, in a simplified manner:

t · ũ† = 0, n · ũ† = −(MΓ(∇ũ, p̃)−mΓ) = −(p̃− p) (3.20)

With those considerations, the optimization procedure leads to the results presented in
figure 3.2 and 3.3.

We can see that the wall-pressure reconstruction manages to exactly capture the actual
reference pressure coming from the DNS. Moreover, it does so in a very small number of
iterations (Figure 3.2), such that the cost functional ((JΓ)n/(JΓ)0) converges in a near-
exponential manner. We can safely say then that the data-assimilation procedure, based
on the theory presented in the last section, was successful for the pressure measurement.
Furthermore, we can see that, by measuring the pressure, one also reduces the error in
the wall-friction (3.2). Looking now at the reconstructed velocity field (3.3 (a)), we can
see that, although the re-circulation bubble is now shorter (L ≈ 5.15), it is still far away
from the actual one from the DNS (LDNS = 1.55), showing that wall-pressure information
may be insufficient for reconstruction of the reference state. Furthermore, we can see that
the spatial structure of the forcing term (3.3 (b)) does not compare with the DNS one
(Figure 3.1 (c,d)) and is localized around the cylinder due to the inhomogeneity of the
adjoint’s boundary condition.
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(a) (b)

Figure 3.3: Reconstructed velocity field (a) and Reynolds-stress tensor force (b) for wall-
pressure assimilation.

(a) (b) (c)

Figure 3.4: Results for wal-friction assimilation: (a) convergence of the cost functional, (b)
wall-pressure and (c) wall-friction in function of the angular coordinate of the cylinder’s
surface, starting at the stagnation point (θ = 0).

2.3.2 Wall-Friction Assimilation

We turn now our attention to the wall-friction measure. In this case, the measure operator
will be given by:

MΓ(∇ũ, p̃) = νt · ∇sũ · n = ν(n⊗ t + t⊗ n) : ∇ũ (3.21)

As before, the norm of the measure space is given by || · ||Γ = (
∫

Γ(·)2dΓ)1/2, leading to:

∂MΓ

∂p̃
= 0, ∂MΓ

∂∇ũ
= ν(n⊗ t + t⊗ n)⇒

{
∂MΓ

∂∇ũ
: D
}†

= ν(n⊗ t + t⊗ n) : D (3.22)

The boundary conditions for the adjoint in this case are:

t · ũ† = −(MΓ(∇ũ, p̃)−mΓ), n · ũ† = 0 (3.23)

The results for this optimization, presented in figures 3.4 and 3.5 are close to the
pressure-measurements one. First of all, as before, we can see that the convergence of
the cost functional is very fast and the reconstructed wall-friction matches perfectly with
the one coming from the DNS. The wall-pressure distribution, although not considered
in the cost functional, is also better represented. Furthermore, the reconstructed velocity
field presents a re-circulation bubble of L ≈ 5.20, which is very similar with the one
previously shown. Moreover, the forcing term, although slightly different from the one
obtained for the pressure measurement, is still concentrated near the wall, also a symptom
of the inhomogeneous boundary conditions for the adjoint variable, now on the tangential
velocity field.
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(a) (b)

Figure 3.5: Reconstructed velocity field (a) and Reynolds-stress tensor force (b) for wall-
friction assimilation.

3 Wall-measure for turbulent RANS
Once the data-assimilation is now validated, we proceed to the turbulent case. Although
now the equations are more complex than in the laminar case, due to the consideration of
the Spalart-Allmaras model, the volume-adjoint equations remain the same as the ones
presented in the previous chapter, with a null volume-forcing term:

ũ† · (∇ũ)T − ũ · ∇ũ† −∇ · ((ν + νt)∇sũ†)−∇p̃† (3.24)
+ν̃†∇ν̃ +∇ · (ν̃†∂∇ũs) = 0 (3.25)

∇ · ũ† = 0 (3.26)
−ũ · ∇ν̃† −∇ · (η∇ν̃†) + (∂ν̃η)∇ν̃† · ∇ν̃ + (∂ν̃νt)∇ũ† : ∇sũ

−(∂ν̃s)ν̃† +∇ · (ν̃†∂∇ν̃s) = 0, (3.27)

The boundary conditions for those equations on the solid wall are derived in a similar
manner as before. We note that, since the variation of the turbulent variable at the
wall is strictly null in the Lagrangian formalism, the adjoint boundary equation does not
differ from those presented for the laminar case (equation (3.17)), the difference being the
imposition of a homogeneous Dirichlet boundary condition for the variable ν̃† = 0 on the
solid wall. We remark that, for both models (model 1 and 2), the adjoint equations are
the same. Furthermore, the gradient expressions, in function of the model, are the same
ones given in the previous chapter.

3.1 Results for turbulent backward-facing step
We now apply those data-assimilation techniques on the turbulent Backward-Facing Step,
already presented in the last chapter. As we will see, contrarily to the laminar case where
the final optimal state seems to be almost independent on the measurement of wall-
pressure or friction, the final solution now can greatly depend on the measure performed
and on the model (1 or 2). We will first present the results of the wall-friction measurement
in detail, that seems to be the most difficult quantity to be assimilated. Then we will
present the wall-pressure assimilation that, in a way, resembles the partial bulk-velocity
assimilation, presented in the previous chapter.

3.1.1 Wall-Friction Information

We turn our attention now to the wall-friction measure. As before, we will consider a
complete knowledge of the wall-friction at every point of our computational mesh, limited
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to the interval x ∈ (0, 10), in which we find the whole re-circulation bubble. The results
of such data-assimilation are plotted in figure 3.6 through 3.8. Starting with the model 2,

(a) (b)

Figure 3.6: Wall-friction assimilation: wall-pressure (b) and wall-friction (c) for model 1
(black curve), model 2 (black dots) and γ = 1 penalized model 1 (orange curve). DNS
results present in blue dots. The color-code will be retained in all the plots in the following

we can see that the wall-friction assimilation leads to some nonphysical results. Indeed,
even if the wall-friction is well represented (apart from an oscillation located at x ≈ 1,
see figure 3.6 (b)), the pressure is well over-estimated (figure 3.6 (a)). Another aspect
of this solution, is that the velocity field (figure 3.7 (b)) seems to be ’squeezed’ at the
wall (all dark-blue lines are very near the wall, contrarily to the dotted lines or the
other assimilation solutions) and this has an important reflection on the velocity-error,
summarized on the table 3.1. As for the model 1, we can see that it almost exactly

Table 3.1: Global results of wall-friction data-assimilation

eΩ (JΓ)n/(JΓ)0

fx fx, γ2 = 1 fν̃ fx fx, γ2 = 1 fν̃

Optimal Solution 0.060 0.065 0.080 0.6% 1.2% 13%
RANS-SA 0.094 –

reconstructs the wall-friction (figure 3.6 (b)), producing however a small overestimation
of the wall-pressure. Looking close to what goes on near the wall, we see that the boundary
layer profiles for this model (black solid lines in figure 3.8 (a,b,c)) are distant from the
DNS, specially the one at x = 4.5, where, in order to match the wall-friction, the velocity
profile creates an inflection point and a negative-velocity zone near the wall, leaving the
impression that the re-circulation bubble is actually bigger than it is. This problem is
due to the particular form of the forcing term f̃x, which is non null at the wall and very
localized there (see figure 3.8 (d)). We note that this characteristics of the forcing term
is not representative of what happens with the reference solution, since the actual term
f = −∇ · τ is null at the wall. This may be at the origin of this anomalous behavior of
the wall-friction data-assimilation using the model 1. We note however that, even with
this theoretical inconsistency on f̃x, one can still produce a solution that is less distorted.
For example, in the laminar case presented before, where the Reynolds number was much
lower, the velocity field did not seem to produce such behavior. This is consistent with the
fact that the viscosity was much higher, allowing the forcing term and its corresponding
solution to be smoother. To simulate those conditions in this high-Reynolds number flow,
we propose the penalization of the gradients of the forcing term on the cost functional,
in the same way presented in the second chapter. We make clear, however, that this
proposition does not at all solve the actual theoretical inconsistency problem discussed,
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as the inhomogeneous boundary conditions will still exist. It only attenuates one symptom
of it at high Reynolds number flows. We can see that this strategy manages to correct
the tendency of the velocity profiles (3.8), while keeping a good representation of the
wall-friction. However, in terms of global velocity-error, the error increases slightly (see
table 3.1). From this table, we can also see that neither of the proposed models managed
to recover well the actual velocity field from the wall-friction. For this reason, we will set
aside this measure and focus on the wall-pressure in the next section.

(a)

(b)

(c)

Figure 3.7: Wall-friction assimilation: ux iso-contours for model 1 (a), model 2 (b) and
γ = 1 penalized model 1 (c).

3.1.2 Wall-Pressure Information

We consider now the complete information of the pressure distribution along the wall as
our measure, restricted to the interval x ∈ (0, 10). The main results are presented in
figures 3.9 and 3.10.

By performing such data-assimilation for the two models, we can see that, in terms
of the reduction of the cost-functional, the model 1 manages to converge precisely to the
exact pressure, whereas the second one, although it produces a very good agreement in
most of the wall-region, fails to capture the exact pressure at x ∈ (0.5, 1). It is as well
at this region where the corresponding wall-friction (figure 3.9 (d)) oscillates the most,
provoking a (rather small) secondary bubble. This is coherent with the relation between
the pressure variation along the wall and the concavity of the wall-normal velocity-error
(deduced in the second chapter) ∂t(p̃− p) = ν∂nn(ũt−ut), allowing an (adverse) error in
wall-pressure to gradually modify the inflection of the normal velocity profile, causing the
separation. For the model 1, a (small) secondary bubble also occurs around x ≈ 1.9. We
can also see that both models make similar reconstructions for the re-circulation bubble
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(a) (b) (c)

(d) (e)

Figure 3.8: Wall-friction assimilation: profiles of ux(y) velocity at x = 3.5 (a), x = 4 (b)
and x = 4.5 (c). Stream-wise component of the optimal forcing for (d) non-penalized case
and (e) penalized case. Black lines represent two streamlines.

(a) (b)

Figure 3.9: Wall-pressure assimilation: wall-pressure (a) and wall-friction (b) for models
1 and 2.

(a)

(b)

Figure 3.10: Wall-pressure assimilation: ux iso-contours for model 1 (a) and model 2 (b).
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length (L ≈ 5.2), which corresponds to an intermediate value between RANS-SA and the
DNS.

It is interesting to note as well that, for the model 1, the fact that f̃x ·n 6= 0 at the wall
did not seem to affect the solution in the same way it did for the wall-friction measure.
Indeed, the uy velocity profiles obtained from data-assimilation of both models (3.11) are
close to each other and do not present the ”anomalous” behavior as in the case of wall-
friction measure. The explanation for this fact is given by the Helmholtz decomposition
of the forcing term f̃x, similarly to those used in the second chapter. Indeed, we have:

f̃x = f̃ sx +∇φ (3.28)

where f̃ sx is solenoidal, satisfying f̃ sx · n = 0 at the solid wall Γ and φ is a scalar potential.
We note that, although the forcing term f̃x is solenoidal (in the bulk), since it holds non-
null value at Γ, it can produce a scalar potential different from zero φ 6= 0. Indeed, by
taking the divergence of this equation, we have that φ is given by a Laplace equation
−∆φ = 0 in Ω and n · ∇φ = f̃x · n 6= 0 at the wall. This fully determines φ. Since φ is
a scalar potential, its contribution, which holds the non-null component of f̃x · n, can be
merged into the pressure, leaving unchanged the actual forcing acting on the velocity field
alone. For this reason, the fact that f̃x · n 6= 0 does not seem to be an important issue.
It is important to note that the present argument does not apply for the previous case
of wall-friction assimilation, since the boundary condition for φ comes from the normal
component of f̃x ·n, and not from the tangential component f̃x ·t. Having elucidated those

(a) (b) (c)

Figure 3.11: Wall-pressure assimilation: profiles of ux(y) velocity at x = 3.5 (a), x = 4
(b) and x = 4.5 (c).

theoretical aspects of the wall-pressure measure, we now proceed to the sparse-measure
of the pressure. Here, we suppose that the we dispose of Nw measurements mi. Those
measurements are supposed to be localized at some discrete locations on the wall, given
by the points xi. For numerical simplicity of the imposition of the adjoint boundary
conditions, we will assume that those measures will correspond to the following quantity:

m̃i =
∫

Γ
p(x)gxidΓ ≈

∫
Γ
p(x)δxidΓ = p(xi) (3.29)

where gxi is a normalized Gaussian function centered at xi. The typical standard-deviation
of those Gaussian functions are of a few mesh-elements. The boundary conditions of the
adjoint problem are given by:

ũ† · n = −
Nw∑
i=1

gxi(m̃i −mi), ũ† · t = 0 (3.30)
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We also suppose that those measure points xi will be evenly distributed in the interval
x ∈ (0, 10). The results of this data-assimilation are summarized in figure 3.12, where the
wall-pressure and wall-friction are plotted, together with a vertical gray line, indicating
the measure locations. We can see that the pressure is indeed satisfied at the measure
locations for both models 1 and 2. We can also see that both models present a reluctance
to reconstruct well the pressure around x ∈ (0.5, 1). This was already observed by the
dense wall-pressure measure for the model 2. Thus, this seems to be a difficult region for
the pressure assimilation, probably because of the presence of the detachment point. We
can also see from figure 3.12 that the resulting wall-friction is globally similar to the one
obtained by the full information of the pressure. However, it is interesting to note that,
due to the sharp/localized nature of the gradient, given by the measure, the forcing term
will also be sharp and may lead to some oscillation on the wall-friction, especially for the
model 1, where the forcing term acts more directly on the momentum equations. This
issue can be attenuated, again, with the aid of the penalization term of the gradients of
f̃x. This leads to smoother wall-frictions, but not necessarily to better global velocity-
field reconstructions (see table 3.2). From the point of view of the global velocity fields

(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Wall-pressure assimilation for three numbers of probes Nw = 5, 10 and
20: wall pressure (a,c,e) and wall-friction (b,d,f). Blue points correspond to the DNS,
solid lines correspond to model 1, dashed black lines to the model 2 and orange lines to
the model 1 with f̃x-gradient penalization. The location of pressure measurements are
indicated by gray lines.

reconstruction, we can see that the model 2 produces systematically a better solution
than the first model. We can see that, although the model 1 is more adaptable to fit
data (as presented throughout the second chapter), the information of the pressure is not
sufficient for it to reconstruct a correct solution. On the other hand, since the second
model is more rigid than the first one, we can, again, take advantage of this to produce
better solutions, for example, with Nw ≥ 10. We can see as well that, for the model 2,
the value of the error is approximately the value obtained with velocity data-assimilation,
presented in the second chapter.
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Table 3.2: Global results of wall-pressure data-assimilation

eΩ (JΓ)n/(JΓ)0

fx fx, γ
2 = 1 fν̃ fx fx, γ

2 = 1 fν̃

Total Measure 0.057 – 0.037 ∼ 10−5 – 6%
Nw = 5 0.061 0.061 0.045 ∼ 10−5 ∼ 10−5 ∼ 10−5

Nw = 10 0.057 0.057 0.038 ∼ 10−5 ∼ 10−4 0.7%
Nw = 20 0.057 0.057 0.036 ∼ 10−5 0.2% 0.2%

RANS-SA 0.094 –

3.1.3 Combined Measure: Wall-Pressure and Velocity

In the last paragraph, we investigated how the data-assimilation procedure performs under
sparse wall-pressure assimilation. We could see that, for the models 2, the final assimilated
solution was almost independent on the number of measure points. This solution was
also very similar to the one obtained with velocity data-assimilation. For this reason,
the combined measure will not be performed with this model. However, since the model
1 is fully controlable, it may be interesting to understand the compromise between the
pressure or velocity assimilation. For this purpose, we perform two assimilations, one with
minimal information (Nx = 3, Ny = 5 and Nw = 5) and other with maximum information
(Nx = 6, Ny = 20 and Nw = 20). We can see from table 3.3 that the data assimilation
results do not change much with the addition of the wall-pressure measure. This suggests
that, from the point of view of the global error eΩ, the wall-pressure does not include
much extra information with respect to the velocity measurement. If, however, wall-
pressure probes are preferred instead of bulk velocity ones, we may look for minimizing
the amount of the last ones. For this purpose, we could look for optimally place those
velocity probes on top of the wall-pressure ones such that the information provided by
them is not redundant (see, for example, Mons et al. [2017a]), allowing us to explore
directions not observed by wall-pressure probes. This will be considered however out of
the scope of the present work.

Table 3.3: Global results of sparse wall-pressure/velocity data-assimilation for model 1
(f̃x) with penalization γ2 = 1

eΩ

Pressure/Velocity Velocity alone Pressure alone
Nx = 3, Ny = 5 Nw = 5 0.041 0.042 0.061
Nx = 6, Ny = 20 Nw = 20 0.027 0.027 0.057

4 Conclusions
We could see from the presented wall-measure data assimilation that indeed this informa-
tion is not in general sufficient to reconstruct correctly the velocity field. In particular,
the wall-friction assimilation produced some unexpected results. For example, the second
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model produced a much thinner re-circulation bubble, over-estimating the wall-pressure.
Since the control parameter is completely associated with the turbulence model, we may
expect that, by considering other models, we could obtain more appropriated results. As
for the model 1, we could notice strong gradients of the forcing term near the wall, leading
to a solution that oscillates there, creating a seemingly larger re-circulation bubble. This
is shown to be related to some inconsistencies related to a inhomogeneous wall-boundary
condition for the adjoint, leading to non-null values for forcing term, which is not the
case of the actual forcing term coming from the Reynolds-stress tensor. A possible way
to attenuate this effect is to penalize the gradients of the forcing term, smoothing it and
consequently the final solution as well.

As for the wall-pressure assimilation, the results obtained are much more coherent
with those obtained with the velocity-field, presented on chapter 2. The model 1 does
not manage to reconstruct well the velocity field, and we conclude that the wall-pressure
is not sufficient information for the capture of the velocity field. The second model, on
the other hand, even with few pressure probes, manages to reconstruct the velocity field
in the same manner as with the velocity-field data-assimilation. This issue was already
explained in the second chapter, where the rigidity of this model was exposed and its use
with very few measure was proposed.
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Chapter 4

Resolvent-based Data-Assimilation

1 Introduction
The reconstruction of a time-averaged (mean) flow together with the fluctuation around
it is a topical issue within data-assimilation in fluid mechanics. In the previous chapters,
we explored the mean-flow data-assimilation only through a variational minimization
algorithm, where some tuning parameter of the considered model for the mean flow is
adjusted so that the resulting approximation of the mean-flow is as close as possible
to some input data, coming from experiments of higher-fidelity numerical simulations.
However, one common drawback of this approach is the fact that, in order for the final
assimilated solution to represent well the reference one, a sufficiently large number of
probes is needed. This issue is intimately related to the large number of tuning parameters
considered then since, if few measurements are provided, the gradient of those spatially-
distributed tuning parameters may be sharp and may demand regularization (such as the
gradient penalization employed with sparse velocity measurements, present in the second
chapter).

Although those techniques can lead to correct mean-flow reconstructions, they remain
purely steady approaches, where mean-flow information is used to reconstruct the mean-
flow itself. In the case where one desires to obtain a time-resolved assimilated field, one
has to resort to unsteady data-assimilation techniques. Classically, those methods belong
to two (possibly overlapping) categories: 3/4DVar (Le Dimet and Talagrand [1986]) and
Ensemble Kalman filters (Evensen [2009]). Those methods have been extensively applied
in the context of meteorology (Lorenc [1986], Liu et al. [2008]) and more recently in fluid
mechanics (Mons et al. [2016], Gronskis A. [2013], D’Adamo et al. [2007]), and Meldi
[2018]. This kind of data-assimilation requires some obvious extra numerical elements
that were not needed before, such as a time-stepper code, and possibly a time-adjoint
code (for 4DVar) and/or a statistical treatment of an ensemble of points in the phase
space (for Ensemble Kalman filter).

Another approach proposed in this chapter, more suited for statistically-steady flows,
and which does not require many extra numerical tools, relies on the analysis of the linear
Navier-Stokes operator around the mean-flow. The origin of such analysis lies in the work
of Barkley [2006], where he observed that, in the case of the supercritical flow around
a circular cylinder, the stability analysis of the linearized Navier-Stokes operator on the
time-averaged (mean) flow (instead of the steady solution, or the base-flow) gives rise to
a mode whose eigenvalue is purely imaginary and its frequency matches well with the

45
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one coming from the nonlinear limit cycle. The theoretical explanation of this fact was
further explored by Sipp and Lebedev [2007a] with the aid of weakly-nonlinear analysis
near the bifurcation. They also noticed that the mode coming from this analysis should
approximate the first harmonic of the nonlinear limit-cycle. Later, this lead Mantic-
Lugo et al. [2015] to develop a self-consistent model describing the nonlinear saturation
of such flow, where the steady solution evolves to the mean-flow through the action of
the Reynolds-stress tensor, that can be reconstructed with the mode coming from the
stability analysis. All the previously mentioned references concerned oscillator flows (see
Chomaz [2005]). The extension of the mean-flow analysis to flows whose spectral content
is arbitrarily spread in frequency has been conducted by Beneddine et al. [2016], who
showed that, under some fairly general assumptions, the Fourier mode of the nonlinear
fluctuation around the mean-flow at a given frequency is proportional to the leading
mode of the Singular Value Decomposition of the Resolvent operator around the mean-
flow, evaluated at that frequency. This means that with the knowledge of the mean-flow
one can estimate the spatial structure of the fluctuation, at a given frequency, up to
a (complex) multiplicative constant, modeling the energy and the phase of that mode.
This constant could be estimated with some extra (sparse) information of the fluctuation
field, typically some pointwise time-resolved signal. This procedure was validated for
turbulent flow over a backward-facing step, in which case the mean-flow was obtained
through a time-resolved simulation (ZDES, see Deck [2005]). The main drawback of this
approach is of course the need for the a priori knowledge of the mean-flow. To overcome
this issue, we propose here to combine the estimation of the fluctuation field from the
Resolvent analysis in order to reconstruct the Reynolds-stress tensor and the mean-flow
equation involving this Reynolds-stress tensor. By doing so, we obtain a nonlinear model
whose unknown parameters are the amplitudes of the Resolvent modes at each considered
frequency. For this reason, one could consider this model as an a priori reduced order
model for the unsteady flow, which is then used for data-assimilation. In addition, only
very sparse information is needed for the reconstruction of not only the mean-flow but
also the fluctuation around it.

In this chapter, this procedure will be applied to simple model problems of transi-
tional laminar flows. The first configuration will be the flow around a square cylinder
(Re = 60, 100), falling in the category of oscillator flows, for which the frequency spec-
trum exhibits an important peak on the vortex-shedding frequency and smaller ones on
its honlinear interactions. This means that only one Resolvent mode is needed at one fre-
quency (and thus only one parameter) for the reconstruction procedure. We will show that
the velocity at some point in the flow then suffices for the estimation of the mean-flow and
the fluctuation field. The second configuration is the two-dimensional backward-facing
step (Re = 500), a typical example of noise amplifier Hervé et al. [2012]. For this flow, the
spectral content of the fluctuation will strongly depend on the external noise that triggers
the dynamics. We will consider two different cases, one for which the noise is character-
ized by two incommensurable frequencies and the other for which it is a broadband white
noise. The frequency content of the flow, which can be inferred from time-resolved signals
at some points of the flow, can then be used as an input signal for the data assimilation
process or as a reference signal to assess the quality of the reconstruction.

This chapter proceeds as follows. First (§2), we present the model combining the
mean-flow and the perturbation equations. In particular, we show how to solve for this
problem for a given set of Resolvent amplitudes. Then, we successively present the results
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of the data-assimilation procedure to the cylinder flow case (§3) and then to the backward
facing step flow (§4).

2 Theory
This section is devoted to the derivation of the model that will be used in the data-
assimilation procedure. We consider an incompressible flow, whose velocity and pressure
fields are given by the Navier-Stokes equations :

∂tu + u · ∇u +∇p− Re−1∆u = 0, ∇ · u = 0 (4.1)

where Re = U∞L/ν is the Reynolds number based on an arbitrary velocity U∞ and a
characteristic length L, which are used to make all the variables non-dimensional. Those
equations can be recast into a more compact form:

B∂tq + L0q +N(q,q) = 0 (4.2)

where the state vector q is composed by the concatenation of the velocity and pressure
fields q = (u, p) and the operators B, L0 (Stokes operator) and N(q1,q2) (nonlinear
convection, sometimes also denoted by N(u1,u2) since it is independent on the pressure
fields) are given by:

B =
[
I 0
0 0

]
, L0 =

[
−Re−1∆() ∇()
∇ · () 0

]
, N(q1,q2) =

[
u1 · ∇u2 + u2 · ∇u1

0

]
(4.3)

Since we focus on statistically steady regimes, we may decompose the instantaneous
state q(x, t) into a mean and a fluctuating component, as

q(x, t) = q(x) + q′(x, t) (4.4)

where the time-averaged operator is defined as

(·) = lim
T→+∞

1
T

∫ T

0
(·)(t)dt. (4.5)

Introducing the decomposition (4.4) into the Navier-Stokes equations (4.2) and taking
the time-average yields the mean flow equation:

N(q,q) + L0q = −N(q′,q′) = P f (4.6)

which differs from the fixed point solution equation by the presence of the right-hand side
term f = −u′ · ∇u′ (acting on the equations through a prolongation P = (I, 0)T ) that
expresses the time-averaged effect of the fluctuating velocity induced by the quadratic
non-linearity (forcing term coming from the Reynolds stress tensor). The goal here is to
model this term by approximating the fluctuation u′ by singular vectors of the Resolvent
operator (Beneddine et al. [2016]). To do so, we subtract the mean flow equation (4.6)
from the instantaneous equations (4.2), leading to:

B∂tq′ + Lqq′ = P f ′ (4.7)
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where the operator Lq = L0 +Nq = L0 +N(q, ·) +N(·,q) is the linearized Navier-Stokes
operator and f ′ = −u′ · ∇u′ + u′ · ∇u′ represents the nonlinear fluctuations, acting as a
forcing term. We then try to find solutions of this equation in the frequency space by
using the ansatz q′ = q̂eiωt + c.c. and f ′ = f̂eiωt + c.c. (where ”c.c.” stands for complex
conjugate), leading to :

(iωB + Lq)q̂ = P f̂ (4.8)
This equations represents an (infinite-dimensional) input/output relation between the

forcing term f̂ and its perturbation q̂. In our approach we would like to simplify this
equation, retaining only the dynamics that maximizes the gain in kinetic energy:

G(ω) = ||û||
2

||f̂ ||2
= (P q̂, P q̂)

(f̂ , f̂)
= (R†(q;ω)R(q;ω)f̂ , f̂)

(f̂ , f̂)
(4.9)

where R(q, ω) is the so-called Resolvent operator, defined as R(q, ω) = P T (iωB+Lq)−1P
and its adjoint R†(q, ω) given by the general definition (R†a,b) = (a, Rb),∀a,b. Here
we consider the energy inner product (a,b) =

∫
Ω a∗ · bdΩ.

We can show that the extraction of such dynamics is equivalent to the Singular Value
Decomposition of the Resolvent operator R(q, ω), i.e:

R†(u;ω)R(u;ω)f̂k = µ2
k(ω)f̂k, ||f̂k|| = 1 (4.10)

where µ2
k are the Singular Values (ordered such that µ2

0 ≥ µ2
1 ≥ · · · ≥ 0), f̂k are the Right

Singular Functions or the optimal forcing (f̂0 being the optimal forcing term). The Left
Singular Functions are defined as ûk = µ−1

k R(u;ω)f̂k. Alternatively, one can write the
SVD problem for the variables ûk directly. To do so, we apply the operator µ−1

k R(u;ω)
on equation (4.10), leading to:

R(u;ω)R†(u;ω)ûk = µ2
k(ω)ûk, ||ûk|| = 1 (4.11)

If the nonlinear term f̂(ω) is expanded in the orthonormal basis constituted of the
Right Singular Vectors f̂k and if we apply the Resolvent operator on it, we obtain an
expansion of û(ω) in terms of the Left Singular Vectors:

û(x, ω) =
+∞∑
k=0

µk(ω)ûk(x, ω)
(
f̂k(ω), f̂(ω)

)
(4.12)

This expression indicates that, when the forcing Fourier modes f̂(ω) is not precisely
known, the perturbation û cannot be exactly determined. However, when the flow presents
a strong convective unstable behavior, one dominant mode is expected such that µ0 �
µk, k > 0. In this case, a good approximation of the Fourier mode of the fluctuation is
given by the first term in (4.12):

û(x, ω) ≈ µ0(ω)û0(x, ω)
(
f̂0(ω), f̂(ω)

)
= A(ω)û0(x, ω) (4.13)

where the (complex) function A(ω) holds the information of the energy and phase of the
mode at frequency ω. At this point, this approximation of the Fourier representation
of the fluctuation is still not suited for numerical purposes as it is not yet ’discrete’ in
frequency space. In the following, we consider two distinct cases: first a simple case where
the frequency content is mostly ’peaked’ (oscillator flows) around one frequency and then,
a more complex one, where it is more broadband (amplifier flow).



2. Theory 49

2.1 Time-periodic flows
Many flows present a periodic behaviour such as the flows around bluff bodies. In those
cases the steady-state solution is unstable and the instability develops into a saturated
periodic limit-cycle. Furthermore, it is not uncommon that most of the energy of this
periodic limit-cycle is concentrated at the fundamental frequency ω0 (see Turton et al.
[2015a]). For those flows, a single-frequency description of the fluctuation may be accept-
able:

u′ ≈ Aû0e
iω0t + c.c. (4.14)

where the parameter A is now a single complex scalar. Based on this, we can approximate
the Reynolds-stress tensor and the force acting on the mean flow equation following f̃ =
−2|A|2Re{û0 · ∇û∗0}. Considering the mean flow equation 4.6, an approximation ũ of the
mean-flow u may be obtained through:

N(q̃, q̃) + L0q̃ = P f̃ = −2|A|2Re{N(û0, û∗0)} (4.15a)
R(ω0)R†(ω0)û0 = µ2

0(ω0)û0 (4.15b)

where R(ω0) = R(q̃;ω0).
At this point, we remark that the system formed by the mean flow equation and the

Resolvent analysis (4.15) is a closed set of nonlinear equations, if one knows the frequency
of the nonlinear signal ω0 and its energy |A|2. Arguably, already from a data-assimilation
point of view, one can know a priori the frequency of the flow from a time-resolved
signal from the flow, for instance a hot-wire or a point-wise wall-pressure measurement.
An additional measure (amplitude of the oscillations, length of re-circulation bubble,
strength of backflow, ...) can then be used to determine the energy of the fluctuation
|A|2, since, for every value of |A|2 one can solve for the nonlinear solution of 4.15 and
therefore tune this parameter so that the solution matches to the actual measure. The
output of this procedure is the full flow-field u composed of the reconstructed mean-flow
ũ and the fluctuation u′ given in equation (4.14). The strength of the following approach
lies in the simplicity of the optimization problem, since it only involves a single parameter
contrarily to the procedure described in Foures et al. [2014], where complete spatial fields
had to be determined.

2.2 Broadband Flows
For broadband flows , the previous approximation is no longer suited. In those cases we
have thus to consider a multiple (N) frequency approach {ωj}j=1,··· ,N , for which (Aj =
A(ωj)):

u′ =
N∑
j=1

Ajûj0eiωjt + c.c. (4.16)

This approximation is only valid if the dominant frequencies of the unsteadiness are
located within a frequency range where the assumption of separation of the first singular
value holds. This is usually the case in flows dominated by shear-driven unsteadiness,
such as jets, wakes, shear-layers, etc.
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If we consider this approximation in the mean flow equation 4.6, we have the following
equation governing the mean flow ũ:

N(q̃, q̃) + L0q̃ = P f̃ = −2
N∑
j=1
|Aj|2Re{N(ûj0, ûj,∗0 )} (4.17a)

R(ωj)R†(ωj)ûj0 = µ2
0(ωj)ûj0 (4.17b)

The choice of the discrete frequencies {ωj} will depend on the knowledge of the physics
of the problem, and can be determined from few point-wise measurements located at
highly energetic regions of the flow. Moreover, similarly as before, the energy of each
frequency |Aj|2 can be tuned using some measurements of the flow field through the
model 4.17. The major difference here lies in the fact that the optimization procedure
now involves N parameters (|A0|, |A1|, · · · ) ∈ RN to be tuned. The output of this model
is as before the reconstructed mean flow ũ and the corresponding fluctuations at the
sampling frequencies ωj, given by 4.16.

2.3 Numerical resolution of models
In this paragraph we provide some elements on how we chose to solve the system of
nonlinear equations given by 4.15 (or 4.17). One possible way is to iteratively solve the
mean flow for a given SVD mode and then solve a new SVD problem with the new
mean flow and keep alternating in this way up to the point where the solution remains
fixed. This method was employed by Mantic-Lugo et al. [2015] and Mantic-Lugo and
Gallaire [2016] on a similar model than ours. However, it was observed that for relatively
high values of |A|, the method needs a quite low under-relaxation factor, making the
convergence quite slow. Here we propose an alternative, which is to regard the set of
equations 4.15 as a whole nonlinear system and apply the Newton method to it. To do
so, first of all, we note that the SVD eigensystem (equation 4.11) is not yet suited for
this purpose, since, to extract the complete Jacobian matrix, we need to calculate, for
example, the variations of those equations with respect to the state q̃, which does not
show itself explicitly. To pose the same problem in a more suitable way, we write an
eigensystem for the variables (q̂0, â0):

λ(iω0B + Lq̃)q̂0 = Bâ0, q̂∗,T0 Bq̂0 = 1
(iω0B + Lq̃)∗â0 = Bq̂0

(4.18)

such that û0 = P T q̂0, f̂0 = µ2
0P

T â0 and λ = µ2
0. The variable â0 is defined as â0 =

(iω0B+Lq̃)−1,∗Bq̂0. We remark here that, for the sake of clarity, we keep the ’continuous’
notation introduced in previous paragraphs, even if now those objects are discrete, since
we are dealing with the numerical method. For example, q̃, û0, etc, are now vectors and
B,Lq̃, etc, matrices.

Together with those equations, we need to solve the mean-flow equation as well (for
simplicity, we only show the single-frequency case given by equation 4.15). Its lineariza-
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tion, together with the linearization of the rewritten eigensystem leads to:
Lq̃ |A|2Nq̂∗

0
(·) + |A|2Nq̂0(·)∗ 0 0

λN(·)q̂0 λ(iω0B + Lq̃) (iω0B + Lq̃)q̂0 −B
0 q̂∗,T0 B(·) 0 0

N∗,T(·) â0 −B 0 (iω0B + Lq̃)∗,T



δq̃
δq̂0
δλ
δâ0

 =


−L0q̃ −N(q̃, q̃)− |A|2N(q̂0, q̂∗0)− |A|2N(q̂∗0, q̂0)

Bâ0 − λ(iω0B + Lq̃)q̂0
(1− q̂∗,T0 Bq̂0)/2

Bq̂0 − (iω0B + Lq̃)∗,T â0


(4.19)

The iterative solution of this system of equations and the update of the solution leads
to the aforementioned Newton method. It was observed that the convergence of such
method was often difficult and the reason for this is not fully understood. However, we
could observe that, by changing slightly the equations, the convergence of the method
was improved. First of all, we no longer suppose that λ is a real parameter, and we will
let it free to evolve in the complex plane as the solution converges. Moreover, since now
we have added a new variable to the system, namely the imaginary part of λ, we need a
supplementary equation for the Jacobian of the system to be a square matrix. Note that
if, instead of having an SVD problem, we had an eigenvalue one to be solved, involving
a non-normal operator (such as, for example Mantic-Lugo et al. [2015]), the eigenvalue
should not be considered to be real and this extra equation had to be considered. For
this purpose, we remark that, from equations 4.10, 4.11 or 4.18, the Singular Modes are
defined up to an arbitrary phase eiφ. We construct then the extra equation that fixes
this phase, which can be, for example the imposition that the imaginary part of some
point-wise quantity of the mode is null. This strategy leads to a nonlinear system that
converges much better than the previous one. We remark that, in order to have a valid
solution of the SVD system, the imaginary part of λ needs to be verified to be null once
the residual has been decreased. Indeed, for all computations here presented, the ratio
between imaginary and real parts of λ is of order 10−12. This linear system is then solved
with an GMRES iterative solver, preconditioned with the lower triangular matrix (lower
Gauss-Seidel), meaning that the equation for δq̃ are solved first, followed by the equation
for δq̂0 and δâ0.

3 An ”Oscillator” Flow - Squared-Section Cylinder
The two-dimensional flow around a squared-section cylinder is a typical example of os-
cillator flows. For Reynolds number larger than Re ≈ 50 (see Sohankar et al. [1998] for
discussions around the critical value), it naturally develops an unsteady behaviour, corre-
sponding to a periodic limit cycle, characterized by a single frequency and its harmonics.
Below, we will first (§3.1) present the details of the configuration and the numerical im-
plementations. Then (§3.2), we will consider a single time resolved measurement in the
wake of the cylinder to reconstruct both the mean-flow and the perturbation dynamics.
Finally (§3.3), the case of other measurements solely based on mean-flow characteristics
will be explored.
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Figure 4.1: Sketch of the physical domain and inflow boundary condition for the square
cylinder case. The re-circulation bubble’s length is indicated in the figure and will be
defined as L.

3.1 Configuration and numerical implementation
A sketch of the computational domain and the inflow boundary condition is provided in
Figure 4.1. The inflow boundary is located 15 diameters away from the center of the cylin-
der and the velocity profile imposed is uniform. Two Reynolds numbersRe = DU∞/ν have
been considered here, Re = 60, 100. The side walls are located 20 diameters away from the
cylinder, on which we impose a slip condition. The outflow boundary condition is imposed
30 diameters downstream of the cylinder and reads (pI−Re−1∇u)·n = 0. Both the Direct
Numerical Solution and the models are solved on the same two-dimensional mesh. All
codes are second order in space and are based on finite elements. The DNS solver employs
a second-order semi-implicit temporal scheme for time-advancement. All implementations
have been performed in the FreeFEM++ open source code (Hecht [2012]).

In Table 4.1, we show various quantities of interest to characterize the mean- and
unsteady features of the flowfield: the re-circulation bubble’s length L (for the steady
solution and the time-averaged unsteady solutions), the fundamental frequency ω0 and
the amplitude |ADNS| of the Fourier mode at the fundamental frequency in the unsteady
simulation. Results are given for 3 meshes of different density. All of them are strongly
refined around the square and in its wake and are coarsened in the freeflow region. We can
see that mesh 2 provides a good agreement with the finer mesh 3 for all observed quantities.
Mesh 2 will therefore be chosen as the default mesh in all following computations. In
particular, the model will be computed on this mesh.

3.2 Single point velocity measurement
Let us first assume that we only know the time evolution of (for example) the cross-stream
velocity component at a single point in the wake of the cylinder, here xm = (x, y) =
(2, 0). This quantity is represented in figures 4.2(a,d) for the two Reynolds numbers.
The frequency content of this signal may be extracted by considering harmonic averages
Arbabi and Mezić [2017]:

ψ̌(ω) = lim
T→+∞

1
T
FT (ψ)(ω), (4.20)
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Table 4.1: Mesh dependency of steady and unsteady simulations for square cylinder at
Re = 100 - chosen mesh for the computations in boldface. Observed parameters are re-
circulation bubble’s length L, nonlinear frequency ω0, first harmonic energy |ADNS| and
dominant gain, evaluated at the nonlinear frequency µ2

0(ω0).

Steady Solution DNS
# triangles L µ2

0(ω0) L ω0 |ADNS|2
Mesh 1 43000 8.42 213775 2.43 0.913 2.131
Mesh 2 32000 8.42 211745 2.43 0.912 2.130
Mesh 3 12000 8.40 206077 2.44 0.912 2.128

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Square cylinder flow at Re = 60 (a,b,c) and Re = 100 (d,e,f): (a,d) measured
signal corresponding to the cross-velocity uy at (x, y) = (2, 0), (b,e) Discrete Fourier
Transform of signal in (a,d), giving the modulus of the Fourier coefficient (|ǔy|(ω0) =
0.09/0.21) at the fundamental frequency ω0 = 0.77/0.91 and (c,f) comparison of this
quantity with the one given by model (4.15) for several values of |A|, the optimal one
being |A| ≈ 1.71/2.23.

where FT (ψ)(ω) represents the Fourier transform on the finite time interval (0, T ):

FT (ψ)(ω) =
∫ T

0
e−iωtψ(t)dt. (4.21)

The quantity ψ̌(ω) is finite and independent of the value of T . The amplitude
|ǔy(xm, ω)|, represented as a function of ω in figures (b,e), indicates that the fundamental
mode at ω0 strongly dominates those of the harmonics pω0 with p ≥ 2. This suggests that
a reconstruction with a single frequency may be sufficient. The fundamental frequencies
of the periodic limit cycles are equal respectively to ω0 = 0.77 and 0.91 for Re = 60 and
Re = 100, while the amplitudes correspond to |ǔy(xm, ω0)| = 0.09 and 0.21.

Since there is only one free parameter |A| in the model 4.15, we may explore its
reconstruction ability by evaluating how the solution depends on |A| and comparing it
with the actual measurement data shown in figures 4.2(a,b,d,e). From a numerical point
of view, this does not necessarily represent a high computational effort since one may
proceed by progressively increasing the value of |A| and restart each new computation
from the solution corresponding to the highest available |A| (if no solution is available,
we may start from |A| = 0, the steady solution). By doing so and by changing the value
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|A| slowly within the nonlinear solver, each nonlinear solver converges in a few iterations.
This convergence deteriorates when the gap between two values of |A| becomes large. For
example, if we desire to solve the model for a relatively high value of |A| from the steady
solution (|A| = 0), we may need, for example, 10 iterations to solve it for |A| = 1, 5 or 20
iterations for |A| = 2.2.

Once those solutions obtained, in order to compare the model’s solution in function of
|A| with the available information, we apply the operator (̌·) to the fluctuation predicted
by model (4.14):

|ǔy(ω0)| =
∣∣∣∣∣ lim
T→+∞

1
T

∫ T

0
e−iω0u′(xm, t)dt

∣∣∣∣∣ = |A||û0(xm)| (4.22)

We can now investigate which value of |A| provides a solution for which the quantity
|A||û0(xm)| is closest to the measurement |ǔy(ω0)|. To do so, we have represented in
figure 4.2 (c,f), the measurement of the model |A||û0(xm)| as a function of the parameter
|A|. The dashed horizontal line indicates the value linked to the measurement. We can see
that the prediction of the amplitude by the model increases monotonically with |A| and
that it crosses the measurement value for a particular value of parameter |A|: |A| = 1.71
(resp. 2.23) for Re = 60 (resp. 100). These values slightly overestimate the actual DNS
values, since |ADNS| = 1.68 (resp. 2.13) for Re = 60 (resp. 100). This is due to the fact
that the model only considers the fundamental harmonic and lacks a representation of
the higher order harmonics. The effect of the latter modes on the mean-flow distortion is
taken into account by a slight overestimation of the amplitude of the fundamental Fourier
mode.

The reconstructed solution of the model 4.15 at the crossing point is respectively
shown in figure 4.3 (resp. 4.4) for Re = 60 (resp. 100). We can see that the reconstructed
streamwise component of the mean-flow (a), the reconstructed streamwise component
of the fundamental mode at frequency ω0 (b) and the reconstructed streamwise mean-
component of the Reynolds stress tensor induced force (c) compare extremely well with
their DNS counterparts (b,d,f). This is confirmed if we focus on the reconstruction of these
quantities on the symmetry line y = 0: figure 4.5 shows that for both considered Reynolds
numbers the streamwise profiles of mean-velocity, first-harmonic and force induced by
Reynolds stress tensor closely follow the results obtained by the DNS.

3.3 Other measurements
Other quantities can be considered as inputs to tune the perturbation amplitude |A|. For
example, this parameter can also be identified with mean quantities such as the mean-re-
circulation length, the mean-drag or the mean-velocity field. In figure 4.6, we have assessed
the quality of the reconstruction considering the above mentioned mean-measurements.

We can see that the mean measurements based on the re-circulation length and mean-
drag vary monotonically (either increasing or decreasing) with |A|, showing that the
stronger the fluctuations, the smaller the re-circulation bubble and the higher the average
drag. As before, if we know the actual value of these mean-measurements, we can find a
particular perturbation amplitude |A| that matches the measurement value. It turns out
that all of these predictions for |A| are consistent and also correspond to the particular
value of |A| for which the error on the full mean-velocity field is minimal. However, since
these are mean-quantities, it is not possible to predict the fundamental frequency. To asses
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Comparison between reconstructed unsteady flows (left column) and DNS
(right column) for the square-cylinder configuration at Re = 60. Stream-wise component
of (a,b) mean flow velocities (c,d) first-harmonic velocities Aû0 and (e,f) mean force
induced by the Reynolds stress tensor f̃ = 2|A|2Re{û0 · ∇û∗0} with |A| = 1.71. The black
curves delimit the re-circulation regions of the reconstructed mean flow. The frequency
of the periodic flows is respectively ω0 = 0.77 and the amplitude of the Fourier mode at
the fundamental frequency is |ADNS| = 1.68.

(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Comparison between reconstructed unsteady flows (left column) and DNS
(right column) for the square-cylinder configuration at Re = 100. Stream-wise component
of (a,b) mean flow velocities (c,d) first-harmonic velocities Aû0 and (e,f) mean force
induced by the Reynolds stress tensor f̃ = 2|A|2Re{û0 · ∇û∗0} with |A| = 2.23. The black
curves delimit the re-circulation regions of the reconstructed mean flow. The frequency
of the periodic flows is respectively ω0 = 0.91 and the amplitude of the fundamental
frequency is |ADNS| = 2.13.
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(a) (b)

(c) (d)

Figure 4.5: Details of reconstructed quantities for Re = 60 (a,c) and Re = 100 (b,d).
Mean velocity field (a,b) and Reynolds-stress divergence forcing (c,d) f̃ at the centerline
y = 0.

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Other possible measures: for Re = 60, we have (a) the length of the re-
circulation bubble, (b) Mean drag coefficient (c) global error ‖ũ− u‖2. For each different
measure, we may have a different (but close) value of the estimated |A|. Idem for Re =
100, (b,d,f).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: (ω, |A|) parametric study : (a,b) global error (minimal value marked by a
black dot), (c,d) bubble’s length and (e,f) mean drag. Results presented for Re = 60, 100,
respectively. Reference (DNS) measured quantities marked in thick line and reference
frequency and first-harmonic’s amplitude (ω, |A|) represented by the red dot.

the dependency of those quantities with respect to the chosen fundamental frequency, we
can perform a parametric study in the (|A|, ω) plane. Results are shown in figure 4.7 for
Reynolds numbers 60 (left column) and 100 (right column).

We can see that the re-circulation bubble’s length (2nd row) and the mean drag (3rd
row), at a fixed frequency, exhibit a behavior that is similar to the results shown before
with ω = ω0: all curves are monotonic and they all eventually cross the actual value from
the DNS. This means that we cannot uniquely determine a frequency from this data.
If we observe now the global error in the mean-velocity field (1st row), we can see an
elongated ’valley’ in the frequency direction. This suggests that a precise knowledge of
the chosen frequency is not crucial for the mean-flow estimation. The minima in these
’valleys’ (black solid symbols) lie on points that do not necessarily correspond to the DNS
frequency ω0 (red solid symbols), since these minima are reached for (|A|, ω) = (1.68, 1.01)
at Re = 60 and (|A|, ω) = (2.2, 1.08) at Re = 100. Note finally, that as discussed above,
the amplitude parameter |A| that enables a fit to the measured DNS quantities (black
solid symbols and thick solid lines) always slightly overestimate the amplitude of the
Fourier mode in the DNS. This is due to the fact that the model lacks a representation
of the higher order harmonics, whose effect on the mean-flow is taken into account by a
slight overestimation of the amplitudes of the fundamental Fourier mode.
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Figure 4.8: Sketch of the physical domain and inflow boundary condition for the backward-
facing step case. The length of the main re-circulation bubble, the detachment and
reattachment points are indicated in the figure and defined to be L, xd and xr, respectively.

At this point, we remind that a similar model was proposed by Mantic-Lugo et al.
[2015] for the flow around a circular cylinder, where instead of using the Resolvent for-
malism the classic stability analysis was used for the approximation of the harmonics.
However, instead of taking external data to provide a criterion for the choice of |A|, their
model stopped for a value of |A| such that the eigenmode was critically stable. This
condition is justified whenever the effect of the second harmonics on the first is negligible.
However, even if this method is similar to the here presented one, it is almost exclu-
sive to ”oscillator” flows, where its owns dynamics triggers the nonlinear saturation. For
this reason, in the next section we show the generality of the proposed formalism on a
backward-facing step flow, where the fluctuation is triggered by external noise, amplified
through linear mechanisms (Marquet and Sipp [2010]).

4 Noise Amplifier Flows - Backward-facing step
In this section, we consider the (more challenging) backward facing step flow configura-
tion. After a brief presentation of the configuration (§4.1), we assess the reconstruction
procedure in two distinct noise environements. The first case (§4.2) corresponds to a
quasi-periodic flow with two incommensurable frequencies, while the second one (§4.3)
refers to a broadband white noise excitation.

4.1 Configuration
The configuration chosen for representing the noise amplifier type flow is the Backward-
facing step described in Barkley et al. [2002], Hervé et al. [2012]. The Reynolds number,
based on the height of the step H and the maximum velocity U∞ of the Poiseuille flow
imposed at the inlet, is fixed at Re = U∞H/ν = 500. The inflow boundary condition is
located at 5H upstream of the step and the outflow is located at 50H downstream, where,
again, the boundary condition (pI−Re−1∇u) ·n = 0 is imposed. The other boundaries of
the domain correspond all to solid walls on which a no-slip boundary condition is imposed.
A sketch of the computational domain is given in Figure 4.8.

For the present flow conditions, there exists a steady-state solution that is globally sta-
ble (see Barkley et al. [2002], Blackburn et al. [2008]) but which exhibits strong transient
mechanisms. The latter can be triggered by considering upstream stochastic noise, whose
amplitude is tuned so that the dynamics of the perturbations is nonlinear and develops a
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Table 4.2: Mesh dependency of steady and unsteady simulations for backward-facing
step (|ADNS1 | and |ADNS2 | represent the amplitudes of the Fourier modes ǔ(ω1 = 0.48) and
ǔ(ω2 = 0.7) in the case of 2-frequencies external noise) - chosen mesh for the computations
in boldface

Steady Solution DNS - 2 frequencies
# triangles L xd xr L xd xr |A1| |A2|

Mesh 1 35000 10.875 8.688 17.508 7.455 5.765 10.390 0.448 0.282
Mesh 2 17000 10.870 8.685 17.508 7.461 5.761 10.405 0.461 0.292

mean-flow. In the present study, we pick:

f(x, t) =
(

0
φ(x)

)
w(t), (4.23)

where w(t) contains the temporal dependency (and thus frequency content) of the noise
and φ(x) = e−|x−xG|2/σ2 is a Gaussian function centered at xG = (−0.5, 0.25) and of width
σ = 0.1 (for further details, see Hervé et al. [2012]). The precise choice of w(t) will be
given below and will enable us to consider different flow environments.

In table 4.2, we provide some brief mesh-convergence results for the steady solution
and the case of two incommensurable frequencies. Two meshes with different refinement
levels have been generated. Both meshes are characterized by a higher refinement near the
step location x = (0, 0) and a smooth coarsening towards the outflow (downstream of the
main re-circulation bubble, which ends around x ≈ 10). We can see that for both meshes
all observed quantities are almost identical (up to ∼ 3%). For this reason, we found
reasonable to keep the coarser mesh (Mesh 2) as the default mesh for all subsequent
computations.

4.2 Upstream noise with two incommensurable frequencies: ω =
0.48 and ω = 0.70

In this section, we investigate the case where the dynamics of the backward-facing step flow
is triggered with two distinct frequencies. The first frequency is the one that maximizes
the Resolvent gain of the base-flow, ω1 = 0.48. The second one is chosen such that it lies in
the zone where the Resolvent mode is still important and such that it is incommensurable
with ω1. The second frequency is chosen to be ω2 = 0.70. The time-signal presented in
the external noise can thus be rewritten as:

w(t) = E1e
iω1t + E2e

iω2t + c.c. (4.24)

where the amplitudes of the forcing are equal to E1 = E2 = 0.5.
Some characteristics of the unsteady flow are presented in figure 4.9 and in table 4.2.

Compared to the base-flow, the mean-flow (figure 4.9 (a)) exhibits a shorter main re-
circulation bubble (L = 7.5 versus 10.9 for the base-flow) and also a smaller secondary
bubble at the top wall (xd = 5.8 and xr = 10.4 versus 8.7 and 17.5 for the base-flow).
The spectra of the cross-velocity ǔy, probed at y = 0.2 and x = 1, 4 and 15 show that
as the perturbation is convected downstream, higher-order harmonics which are different
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(a)

(b)

(c)

(d)

(h) (i) (j)

Figure 4.9: (a) Exact time-averaged flow (with L = 7.5, xd = 5.8 and xr = 10.4), (b)
Fourier mode at ω = 0.48, (c) at ω = 0.70, (d) at ω = 0.70 − 0.48 = 0.22 and spectrum
of the cross-velocity-spectra field at (e) (x, y) = (1, 0.2), at (f) (x, y) = (4, 0.2) and (g)
(x, y) = (15, 0.2).

from the two original frequencies are generated. The Fourier modes of the streamwise ǔx
and crossstream velocity ǔy fields are shown in figures 4.9 (b,c,d,e,f,g) for three different
frequencies, ω1, ω2 and ω2 − ω1 = 0.22.

The reconstruction is achieved using only the two incommensurable frequencies ω1
and ω2, even if the signals contain many more peaks. This is justified by the fact that
these two peaks are stronger than those generated by the nonlinear interactions in almost
all measured signals. In the following, we will denote |A1| and |A2| the amplitudes of
the normalized Resolvent modes. Since we only have two tuning parameters, we can
easily explore the full parameter-space by performing a (rather coarse, but enlightening)
(|A1|, |A2|) ∈ R2 parametric study. In the same time, we will monitor the evolution of
the main quantities (measurements) that may be used to tune these two parameters. The
results are presented in figure 4.10. Each figure is relative to a different measure, the thick
solid line in figs (b-h) denoting the values measured in the DNS and the red solid symbol
designating the true DNS amplitudes (|A1|, |A2|) of the normalized Fourier modes.

Focusing first on the mean-flow measurements (figs a-d), we observe that the DNS
re-circulation bubbles’ length and positions (L, xd,xr) can be recovered by tuning either
|A1| and / or |A2|. This is consistent with the elongated ’valley’ obtained for the total
mean-flow error e = ||ũ − u||2 (fig. a). This means that any values of (|A1|, |A2|) within
the valley will produce correct mean-flow bubbles’ sizes, the minimum being obtained for
(|A1|, |A2|) ≈ (0.77, 0.44). If we compare these values with those of the DNS, we see that
the model needs to overestimate the amplitudes of the modes to have a good representation
of the mean-flow. This was also the case for the flow over the square cylinder, however,
to a less extent. This can easily be explained by the fact that the model is based on only
two-frequencies while the reference flow is characterized by many more peaks. Hence,
the model needs to compensate the absence of these peaks by overestimating those at
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.10: (|A1|, |A2|) parametric study: (a) total L2 error of the mean-flow e =
||ũ − u||2, (b) main re-circulation bubble’s length L, (c) detachment position xd and
(d) reattachment position xr of the secondary re-circulation bubble. The mean-flow is op-
timally reconstructed at (|A1|, |A2|) = (0.77, 0.44), while the actual energy of the Fourier
modes at those frequencies are (|A1|, |A2|) = (0.45, 0.28) (red dots). Fourier coefficients
for ω1 and ω2 at three locations of the flow at (e,f) x = 4, (g,h) x = 10 and x = 15.
Thicker lines correspond to exact quantities, coming from the DNS.
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ω1 and ω2. The reconstructed flowfield (mean-flow and Fourier modes) for the optimal
parameters (|A1|, |A2|) = (0.77, 0.44) corresponding to the minimum of ē and their exact
DNS counterparts are presented in figure 4.11. We can see that, even if the energy of the
mode for ω1 is over-predicted, its spatial structure is well represented by the resolvent
mode. This is also the case for ω2, especially in the high-amplitude region close to the
bubbles. Comparing the model’s Reynolds stress-tensor (u′xu′y component) with the one
of the reference flow, we see that they have similar spatial structure and amplitude,
confirming that the contribution of harmonics that are not considered in the model may
be accounted for by overestimating the amplitudes of the modes retained in the model.

If we now consider measures involving the fluctuation amplitudes at given points,
figures 4.10(e-j) indicate that the reconstructed fluctuation amplitude at frequency ω1
(resp. ω2) exhibits nearly a linear behaviour as a function of |A1| (resp. |A2|) and
does only weakly depend on |A2| (resp. |A1| ), especially when x ≥ 10 (see figs (g-j)).
Deviations from this behavior observed with the measurements at x = 4 may be attributed
to the fact that, at those considered frequencies, the resolvent modes are only energetic
if the re-circulation bubble’s length L is sufficiently short. This can be seen through
the similarity of the plots in figures 4.10 (b) and (e). Considering the measurements at
x = 15 (see figs. i,j), the fluctuation amplitude at ω1 obtained in the DNS (thick solid
line in fig. i) is best-recovered for |A1| ≈ 0.4, while the best-fit for the amplitude at
frequency ω2 is obtained for |A2| ≈ 0.2 (see fig. j). Those amplitudes are not far from the
DNS ones (red solid symbols). However, the mean-flow is not well represented with these
parameter values (see figs a,b,c,d). This means that one cannot, with the two frequencies
model, well represent at the same time the quantities related to the mean-flow and its
fluctuations. This nevertheless points out an interesting feature: if one is interested only
in the mean-flow and Reynolds-stress tensor reconstruction, one may consider a model
with few frequencies and tune the few parameters by mean-flow measurements (such as
L, xr or xd). This may be considered as a very efficient way to perform mean-flow data-
assimilation with extremely sparse data. However, if, in addition to the mean-flow, one
desires to have a good estimate of the fluctuation, more frequencies need to be included
in the model. This will be shown in the next section dealing with the BFS forced with
white-noise external perturbation.

4.3 Upstream noise with broadband white noise forcing
We consider now the case where the dynamics is triggered with a (time) white-noise
w(t). Since the noise-amplification mechanism associated to the linearized Navier-Stokes
equations in the case of the present configuration is a broadband low-frequency band,
we expect the output fluctuations to exhibit the same feature. This is in stark contrast
with respect to the cylinder flow and the two-frequencies backward-facing step flow cases
discussed before. The harmonic averages used above, that extract Koopman modes, now
converge to zero for all frequencies. Following Arbabi and Mezić [2017], a more suited
quantity for the frequency analysis consists in considering the two-time auto-correlation
function. For a given point x in space, this function can be given by:

Tx,x(t) =E[u′(x, τ)u′(x, τ + t)] = lim
T→+∞

1
T

∫ T

0
u′(τ)u′(τ + t)dτ. (4.25)

Since no Koopman modes (i.e. quasi-periodic component) exist in the present configura-
tion, this function Tx,x(t) tends to 0 for large t, so that it is square integrable. Hence,
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(a)

(b)
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(d)
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Figure 4.11: Reconstructed fields with optimal parameters (|A1|, |A2|) = (0.77, 0.44) mini-
mizing ē : reconstructed (a) and exact (b) mean flows, reconstructed (normalized) Fourier
modes at ω1 = 0.48 (c) and (e) ω2 = 0.7 and reference ones (d,f). Reynolds stress tensor
u′xu

′
y for the model (g) and DNS (h). Identical colour-bars have been used for recon-

structed and DNS fields to help comparison.
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(a) (b) (c) (d)

Figure 4.12: DNS results for white-noise external forcing: Power-Spectral Density (PSD)
of the cross-wise velocity field at (a) (x, y) = (0, 0.2), (b) (x, y) = (4, 0.2), (c) (x, y) =
(10, 0.2) and (d) (x, y) = (15, 0.2) , obtained with the Welch algorithm from a 5000
non-dimensional time-interval, subdivided in 99 bins with 50 % overlap

one may express the tensor under the form of a Fourier decomposition:

Tx,x(t) = 1
2π

∫ +∞

−∞
Tω

x,xe
iωtdω, (4.26)

where the Fourier modes may be obtained from:

Tω
x,x = lim

T→+∞

1
T
E[|FT (u′)(ω)|2]. (4.27)

For t = 0, we obtain that the time-averaged energy of the signal is equal to:

Tx,x(0) = lim
T→+∞

1
T

∫ T

0
u′(τ)2dτ = 1

2π

∫ +∞

−∞
Tω

x,xdω = 1
π

∫ +∞

0
Tω

x,xdω, (4.28)

which establishes that Tω
x,x is also the Power Spectral Density (PSD) of the signal.

Coming back to the description of the flow unsteadiness, if we probe the resulting
unsteady flow (presented in figure 4.12) at several flow locations, we can see that, as
expected, the further we go downstream, the stronger and the more dominant are the
low-frequencies in the PSD, shown in figure 4.12 (a-d).

4.3.1 Objective functional

We now turn to the model used for the reconstruction of the flow using partial measure-
ments. The auto-correlation function in the case where the fluctuation field is approxi-
mated by eq. (4.16) reads:

Tx,x(t) =
N∑
j=1
|Aj|2|ûj0(x)|2

(
e−iωjt + eiωjt

)
. (4.29)

For t = 0, the time-averaged energy of the signal therefore reads:

Tx,x(0) =
N∑
j=1

2|Aj|2|ûj0(x)|2 (4.30)

We therefore note that the PSD in the reference signal is dense (see ((4.28)) and figure
4.13 (a)), while the PSD in the model (see ((4.30)) and figure 4.13 (b)) is discrete. For
the model, that contains a finite number of discrete Fourier modes, to be representative
of the whole energy contained in the DNS, the two PSDs need to match. To establish this
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(a) (b)

Figure 4.13: Power Spectral Density (PSD) for a broadband flow (a). Its integral on five
(N = 5) frequency intervals are compared with the discrete-in-frequency energies coming
from the model (b).

connection, we associate each term 2|Aj|2|ûj0(x)|2 (in equation (4.3.1)) to the correspond-
ing integral of Tω

x,x in frequency domain (in equation (4.28)). To do so, we discretize
the frequency space by considering {Ωj}j=1,N+1, where ωj = (Ωj + Ωj+1)/2 falls into the
center of the interval (Ωj,Ωj+1). In our case, we fix the first frequency to be Ω0 = 0 and
ΩN+1 = 2, since Fourier modes corresponding to frequencies higher than ΩN+1 = 2 are
weak and located upstream only (figure 4.12), near the location of the external forcing.
Moreover, we pick a uniform frequency discretization such that ∆ω = Ωj+1 − Ωj for all
j. This choice is in accordance with the actual PSDs of the DNS signal, in which only
one ’bump’ at low frequencies is visible. However, in the case where several ’bumps’ in
frequency would exist, a non-uniform distribution of Ωjs could be considered. The energy
of the signal at point x contained within the frequency band (Ωj,Ωj+1) is:

Ix,ωj =
∫ Ωj+1

Ωj
Tω

x,xdω = 2π|Aj|2|ûj0(x)|2 (4.31)

With this, one can, as previously, compare the energy of the fluctuation at a measure
point xm predicted by the model to the one measured. The measure of the error associated
to this quantity is given by:

Jωj ,xm =
(

2π|Aj|2|ûj0(x)|2
Ix,ωj

− 1
)2

. (4.32)

We note that this new objective functional to be minimized, contrarily to the mean-
flow related ones (such as L, xr, xd), should be capable to discriminate efficiently between
the different frequency contributions associated to each {|Aj|}j=1,N . Indeed, following
the recommendations of Beneddine et al. [2016], we will choose the measurement points
at regions where the Resolvent modes are energetic to maximize the robustness of the
reconstruction. The spatial distribution of the energy of the Resolvent modes is shown
in figure 4.14. We can see that for high frequencies (ω ≥ 1), the resolvent modes are
concentrated near the step location above the main re-circulation bubble, where for low
frequencies the Resolvent modes tend to be more spread towards the outflow. For this
reason, we choose to consider for data-assimilation the frequency content of different
points of the domain. For high frequencies, we will consider the signal at x = 4, while for
low frequencies, we consider two different possible points x = 10, 15. This leads to two
cost functions to quantify the error for the data-assimilation procedure:

J1 =
∑
ωj<1

Jωj ,x=10 +
∑
ωj≥1

Jωj ,x=4, J2 =
∑
ωj<1

Jωj ,x=15 +
∑
ωj≥1

Jωj ,x=4 (4.33)



66 Chapter 4. Resolvent-based Data-Assimilation

(a) (b)

Figure 4.14: Spatial distribution of the energy, evaluated on the line y = 0.2, of the
resolvent modes on the mean flow (solid lines) and Fourier modes (dashed lines) at several
frequencies (both modes are normalized).

(a) (b)

Figure 4.15: Convergence of the amplitudes |Aj| and the cost functional Jn/J0 for the
cost functional J1 (solid lines) and J2 (dashed lines). Case N = 5.

4.3.2 Optimization procedure

Now that the cost functionals have been precisely defined, we can proceed with the op-
timization procedure. We note that this white-noise case is richer in frequency domain.
For this reason, it is interesting to evaluate how the assimilated solution will change as a
function of the number of considered frequencies N . For that purpose, we will consider
the cases N = 2, 5, 10. We can see now that a parametric study (similar to the one per-
formed for the two-frequencies case) is no longer feasible. Hence, we need to resort to an
automatized optimization algorithm, where the cost functional J(|Aj|) is minimized. For
simplicity, here we choose a gradient-free algorithm, which provides good performance if
the number of frequencies is not too large. We picked here the COBYLA algorithm, a
simplex-based algorithm, where the optimal condition is evaluated within a N−simplex
evolving in the parameter space. For further details on this algorithm, see Powell [1994].
To speed up the convergence for the cases N = 5 and 10, we first perform the optimization
for the case N = 2, which is quick. Then, we initialize the |Aj| coefficients for N = 5 by
computing the Resolvent modes based on the mean-flow determined with N = 2 and by
setting |Aj| =

√
Ixm,ωj/2π/|û

j
0(xm)|, where xm is the measurement point. We repeat the

same procedure to initialize the optimization for N = 10 based on the mean-flow obtained
for N = 5.

4.3.3 Reconstruction results

In figure 4.15 we represent the convergence of the optimization process for the case N =
5 for two cost functionals described. We can see that starting from the case N = 2
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Table 4.3: Reconstructed parameters in function of number of frequencies considered N .

L xd xr e = ||ũ− u||2 A =
√

1
T

∫ T
0
∫

Ω |u′|2

DNS 7.07 5.62 9.99 – 1.07
J1 J2 J1 J2 J1 J2 J1 J2 J1 J2

N = 2 7.42 9.39 5.91 7.57 9.31 13.34 0.10 0.70 1.20 0.81
N = 5 6.25 8.67 5.24 6.93 8.16 12.01 0.05 0.40 1.33 0.92
N = 10 6.02 7.78 5.35 6.77 7.80 10.40 0.09 0.20 1.41 1.11

provides indeed a good initial guess, especially for J1, since the optimization did not drift
apart too much from the initialization and the optimisation did not take more than 20
iterations to converge up to a precision of Jn/J0 ≈ 10−2. For the cost functional J2,
the convergence needed slightly more iterations, mainly because of a poor estimation of
the initial amplitude for ω2 = 1. Furthermore, we observe that the estimation of the
amplitude for ω0 = 0.2 and ω1 = 0.6 is considerably lower than those predicted for J1.
The rate of convergence of the cost functional Jn/J0 is almost exponential for both cost
functionals considered.

In table 4.3, we have compared, for the 2 cost functionals and 3 numbers of frequen-
cies N , some overall features of the reconstructed flow with those of the DNS. Those
features are the detachment and reattachment points, the mean-flow error and the the
overall amplitude of the fluctuations, defined as A =

√
1
T

∫ T
0
∫

Ω |u′|2, which is equal to
A =

√∑
j 2|Aj|2 for our model. We could observe that, by refining the frequency dis-

cretization (increasing N), the value of A increased for both cost functionals. This in-
crease of this value lead to a mean-flow that was more saturated, leading to a decrease of
almost all detachment / attachment points, with exception of xf for the cost functional
J1. Indeed, this variable seemed less sensitive to the increase in A. Globally, the cost
functional that met the best value for A was J2, whereas for best mean-flow approxima-
tion was J1. This is explained, in part, by the mismatch between the resolvent modes
and the actual Fourier (Spectral Proper Orthogonal Decomposition, SPOD, as it will be
explained shortly) modes. Indeed, in Figure 4.14, it is seen that the Resolvent modes only
approximately reconstruct the Fourier modes and that significant discrepancies may exist.
For example, for ω = 0.2, at the point used to tune the amplitudes (x = 10 or 15), the
amplitude of the normalized Resolvent mode is either lower (x = 10) or higher (x = 15)
than the normalized Fourier mode. In particular, tuning the Resolvent amplitude with
the value of the Fourier mode at x = 10 will lead to an over-prediction of the fluctuation
level and thus higher values of A.

We turn now our attention to the comparison of the assimilated fields with the ones
coming from the DNS, namely the mean-flow and the Fourier modes. The definition of the
Fourier modes is here based on the more general two-point, two-time correlation tensor
(see Towne et al. [2018]), whose components are the (time) correlation between the state
vector at two distinct points in space:

Ti,j(t) = E[u′(xi, τ)u′(xj, τ + t)].

Since there are no Koopman modes, all components of the correlation tensor tend to 0



68 Chapter 4. Resolvent-based Data-Assimilation

when t becomes large, so that one may define the Fourier transform:

Tω
i,j = F∞(Ti,j)(ω). (4.34)

The diagonal entries (for which xi = xj) of this tensor correspond to the PSDs defined
earlier. This tensor can also be expressed in terms of the Fourier transforms of u′ as:

Tω
i,j = lim

T→+∞

1
T
E[FT (u′)(xi, ω)F∗T (u′)(xj, ω)]. (4.35)

The explicit computation of this tensor from the DNS data is performed in the following
way: we divide our total time-signal into Nb ’bins’ (with 50% of overlap), each one with a
(sufficiently large) time-duration T , and we perform the average of each Fourier transform
of each ’bin’:

Tω ≈ 1
T

1
Nb

Nb∑
k=1
FkT (u′)(ω)Fk,∗T (u′)(ω) (4.36)

To extract the most coherent structure over all bins, ie the Fourier mode, we look for the
largest eigenvalue of Tω:

Tωyω = (λω0 )2yω0 , ||yω0 || = 1. (4.37)
The Fourier mode is then:

ǔSPOD(ω) = λω0 yω0 . (4.38)
In figure 4.16 we compare the reconstructed fields for J2 and N = 5 with the DNS.

We can see that the mean-flow is well represented, as well as the Fourier modes. This
shows the validity of the presented data-assimilation procedure, where, from point-wise
time-resolved sensors, we manage to estimate the whole steady and unsteady features of
a given flowfield.

5 Conclusions and Perspectives
In this chapter, we presented a data-assimilation technique based on Resolvent modes
around the mean-flow. The technique was based on a model composed of a mean-flow
equation coupled with Resolvent modes corresponding to left singular vectors of the Resol-
vent operator. The model is not closed since the amplitudes of those modes are unknown
and need to be tuned with the help of measurements. This technique is essentially dif-
ferent from what was presented in the second and third chapters since the model has
typically few degrees of freedom to be tuned, corresponding to the energies of each mode.
This feature allows one to assimilate also very sparse data, without, for example, the need
for supplementary penalization or regularization. This data can come from various types
of measurements, such as mean-flow characteristics (length of separation) or point-wise
time-resolved information (easily obtainable with, for example, a Pitot probe). Further-
more, the optimization / tuning procedure is much simpler, not involving necessarily an
adjoint solver. This technique was applied on an oscillator flow, whose frequency con-
tent was essentially monochromatic. For this reason, the data-assimilation results showed
that we are indeed capable of recovering not only the mean-flow but also the fluctuation
around it. This technique was also applied on a backward-facing step where the dynamics
is driven by an external forcing. Two cases were considered: the first where the forcing
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Figure 4.16: Comparison between reconstructed (a,c,e,f,i,k) and reference (b,d,f,h,j,l)
fields: mean-flow (a,b) and (normalized) Fourier modes at ω = 0.2 (c,d), ω = 0.6 (e,f),
ω = 1.0 (g,h), ω = 1.4 (i,j), ω = 1.8 (h,l).
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spectrum was discrete in frequency and composed of two incommensurable frequencies
and, the second, continuous, with white-noise broadband forcing. In the first case, even if
the data from the DNS showed more than those two peaks in frequency, we chose to use a
two-frequencies model. With this model, we could only obtain partial information about
the complete flow, meaning that we could either accurately reconstruct the unsteady fea-
tures (the amplitudes of the actual Fourier modes) or the mean-flow-related quantities. A
natural way of completing the model and solving those issues would be to add higher-order
harmonics as done in Symon et al. [2019a]. However, this would lead to a much more
complex model than the one proposed by them, since in their work the mean-flow equa-
tion was not solved, and the mean-flow was estimated from variational data-assimilation
and frozen for all subsequent Resolvent analysis. The second case dealt with white-noise
external perturbation, that lead to a dense (or broadband) frequency content. This is an
essentially different test-case since before, the nature of the fluctuation was discrete in
frequency (given by the Koopman modes, see Arbabi and Mezić [2017]), and so was our
model. For this reason, a connection between this broadband fluctuation and our model
needed to be established. This connection is based on the integral of the Power-Spectral
Density, which is a finite quantity either for the actual reference flow and for our model.
By enforcing our model to satisfy those quantities at certain point locations, where the
velocity field was measured, we were able to obtain a solution that reproduced this time
both mean-flow quantities and the fluctuation as well. The reconstruction results show
an increase of the fluctuation energy content when the frequency-refinement is increased.
We could also see that the assimilated solution depends somewhat on the spatial location
of the measurements. This comes from a mismatch between the SPOD modes and the
Resolvent ones. However, as pointed out by Towne et al. [2018], those two modes are the
same if the projection coefficient of the actual nonlinear forcing onto the Left-Singular
Vectors (Resolvent-forcing) are uncorrelated between the optimal mode and its subopti-
mal ones. This suggests that, even in this broadband case, nonlinear interactions may be
produced and may be important.



Chapter 5

Mean-flow analysis for the mixed
periodic/broadband fluctuations on
turbulent flows

1 Introduction
The mean-flow stability analysis was formally introduced for transitional flows, particu-
larly the flow around a circular cylinder, where the unsteady behavior was produced by
a global instability that saturates into a periodic limit cycle. In this case, Barkley [2006]
showed that the eigensystem formed by the linearized Navier-Stokes equations around the
time-averaged (mean) flow lead to an eigenmode whose eigenvalue was (almost) purely
imaginary, predicting very well the nonlinear frequency of the periodic limit-cycle for
a range of Reynolds numbers near the bifurcation. Further applications (Turton et al.
[2015b]) and theoretical elucidations (Sipp and Lebedev [2007b], Mezić [2013]) lead to
the conclusion that, if the nonlinear forcing acting on the, say, first harmonic equation
was negligible, this mean-flow analysis could reproduce the main features of the nonlinear
limit-cycle, namely the frequency (from the eigenvalue) and the structure of this harmonic
(from the eigenmode). In the laminar/transitional regime this concept has widely been
successfully employed, for example for control purposes (Sipp et al. [2010]) or for design-
ing models for the self-sustained dynamics of periodic limit-cycles (Mantič-Lugo et al.
[2014]). In a turbulent context, for example in bluff-body configurations, this concept has
also been applied with success in determining the frequency and the spatial structure of
the vortex-shedding mode (see Mettot et al. [2014b], Meliga et al. [2012].

Although the mean-flow stability analysis (based on the solution of the eigensystem
of the linearized equations) was successful for determining dynamics in the context of
oscillator flows, whose corresponding fluctuation is characterized by a discrete frequency
distribution, noise-amplifier-like flows that hold a broadband-frequency representation, do
not, in general, exhibit a neutral/unstable mode (Ehrenstein and Gallaire [2005], Ehren-
stein and Gallaire [2008]). Rather, they may exhibit several (quasi-neutral) stable modes.
In those cases, a more suitable formalism is given by the Resolvent operator that estab-
lishes the linear input/output transfer function from the linearized equations around the
mean-flow. The Singular-Value Decomposition of this operator provides then a frame-
work (McKeon and Sharma [2010]) where the most energetically-amplified input/output
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(a) (b)

Figure 5.1: Sketch of the frequency representation of a flow’s signal containing the vortex-
shedding and the Kelvin-Helmholtz (coherent contributions) and the remaining (uncoher-
ent) fluctuations (a). The time-signal from which this sketch was produced is given in (b)
and corresponds to a point on the oscillating shear-layer.

dynamics are evidenced. Furthermore, it was shown (Beneddine et al. [2016]) that, if those
Singular-Values are well separated from one-another, the flow dynamics can be described
by a low-rank approximation of the (infinite dimensional) Resolvent operator. This tech-
nique has been extensively applied in several contexts: to highlight coherent turbulent
mechanisms (Cossu et al. [2009], Pujals et al. [2009], Schmidt et al. [2018]), as a tool for
data-assimilation (Symon et al. [2019a]) and control (Leclercq et al. [2019]), to mention
a few.

In this chapter, we apply those concepts to the flow around a squared-section cylinder
at Re = 22000 on the reference solution coming from a DNS run. This flow is characterized
by a periodic component at a well defined frequency, corresponding to the vortex-emission,
a common feature of flows around bluff-bodies, and a broadband-frequency one. This last
contribution holds both a coherent part, corresponding to the well-defined structure of
the Kelvin-Helmholtz instabilities happening at the shear-layer of the separation region,
and an uncoherent/turbulent part. A sketch of such signal is depicted in figure 5.1 (a).

In what follows, we wish to recover both coherent components, namely the vortex-
shedding and Kelvin-Helmholtz, through mean-flow stability or Resolvent analysis. To
do so, we apply one version of the triple decomposition to the complete fully-developed
turbulent signal. This decomposition was first introduced by Reynolds and Hussain [1972]
and used to extract a periodic-wave component from the background turbulence. Further
work, employed other versions of this decomposition in order to extract (not necessarily
periodic) coherent structures (Hussain [1983], Hussain [1986]). Since then, several studies
have been carried out using this framework in numerous contexts, for example, in turbu-
lence modeling (Speziale [1991], Palkin et al. [2016]) or in experimental data-treatment
(Lyn et al. [1995]). More recently, Mezić [2013] proposed another version of this de-
composition based on the Koopman operator formalism where the flow is separated in
a quasi-periodic component (holding possibly multiple well-defined frequencies) from a
broadband one. In this work, the latter will be preferred since its rigorous application
leads automatically to two separate equations, one for the (quasi-)periodic component
and the second one for the broadband component.

The first one corresponds to a nonlinear set of equations, where the influence of
the broadband fluctuation (coherent and uncoherent) is given classically through the
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Reynolds-stress tensor, which is modeled by an eddy-viscosity (Boussinesq hypothesis),
leading to a similar formalism as in URANS. This eddy-viscosity is then computed from
treating the statistics from a DNS run. Upon further decomposition of the periodic com-
ponent into mean-flow and periodic fluctuation, we can establish the mean-flow equations,
where the eignvalue analysis is performed to recover the vortex-shedding mode.

The second one can be viewed as forced linear equation, where the forcing term comes
from the quadratic nonlinearities of the broadband component itself and the linear opera-
tor corresponds to the linearized Navier-Stokes equations around the periodic component,
in a similar way as in Floquet stability theory. In order to establish the input/output
relation (Resolvent) in this Floquet-like framework, we consider that both the forcing
term and the perturbation depend not only on the imposed frequency but also on the
vortex-shedding time scale. By doing so, we are able to recover the dependency of the
high-frequency Kelvin-Helmholtz modes on the phase of the slow and periodic movement
of the shear layer, given by the vortex-shedding frequency. It is interesting to note that
this phenomenon is observed in experiments (see Brun et al. [2008]) and also in the DNS
performed in this work. For example, if we probe the unsteady flow at some point within
the oscillatory motion of the shear-layer (figure 5.1 (b)), we can see that, according to the
phase of the periodic movement, we can observe the Kelvin-Helmholtz structures or not
at all.

This chapter will be structured as follows: in the section §2, we will introduce and
apply the concepts of the triple decomposition, giving rise to the equations governing
periodic and broadband components. Then, in section §3 we will present the DNS in
more detail and the mean-flow analysis deduced in the previous section. Finally, we
provide some conclusions and discussions.

2 Triple Decomposition and Mean-Flow analysis
The goal of this section is to provide the theoretical framework for Resolvent analysis in
general turbulent flows. We suppose here that those flows are governed by the incom-
pressible Navier-Stokes equations:

∂tu + u · ∇u +∇p−∇ · (ν∇su) = 0, ∇ · u = 0, (5.1)

where ∇s is a shortcut for ∇+∇T . In general, a turbulent flow may hold a contribution
whose frequency content is discrete (quasi-periodic part) and a contribution that is contin-
uously spread over a frequency band. In so far, following Mezić [2013], we may decompose
any fully-developed ergodic velocity / pressure field into a quasi-periodic component, 〈u〉
and 〈p〉, and a broadband one u′ and p′ such that:

u(x, t) = 〈u〉 (x, t) + u′(x, t), p(x, t) = 〈p〉 (x, t) + p′(x, t). (5.2)

The extraction of the quasi-periodic component 〈u〉 (t) of any given signal u(t) can be
formally expressed in terms of the Koopman operator theory. According to Arbabi and
Mezić [2017], Mezić [2013], there exists a countable set of frequencies {ωk} such that the
harmonic averages, defined as

û(ωk) = lim
T→+∞

1
T

∫ T

0
e−iωktu(t) dt, (5.3)
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converge to a finite non-zero quantity. Typically this set of discrete frequencies is com-
posed of few fundamental (incommensurable) frequencies, that arise, for example, from
global instability mechanisms (absolute instabilities, Huerre and Monkewitz [1985],Sipp
et al. [2010]), and their nonlinear interactions (see, for example Leclercq et al. [2019]).
The resulting modes û(ωk) are called Koopman modes. The quasi-periodic component is
then reconstructed as the Koopman Mode Decomposition (KMD):

〈u〉 (t) ≡
∑
ωk

eiωktû(ωk) + c.c., (5.4)

where, here we can see that the notation 〈·〉 is used to group together the extraction of
the quasi-periodic component of u described by equations (5.3) and (5.4). The remainder
of the original signal u′ = u − 〈u〉 holds a broadband-like distribution in frequency,
as the corresponding harmonic averages of û′(ω) converge to zero for any frequency ω.
As stated by Mezić [2013] the Koopman approach provides an extension of the triple
decomposition concept, that was initially introduced by Reynolds and Hussain [1972] and
based on phase-average of the time-signals. We remark here that this decomposition does
not necessarily separate the flow field into a coherent and an uncoherent part, since there
are many well-known physical instabilities that manifest in the form of coherent structures
over a continuous broadband frequency range. A typical example of this is the convective
Kelvin-Helmholtz instability occurring in shear-layers (see Beneddine et al. [2016]). In
the following, we aim at modeling not only the coherent part linked to the quasi-periodic
component but also the coherent contribution associated to the broadband component.

To proceed, we write the equations respectively governing the quasi-periodic compo-
nent 〈u〉 and the broadband fluctuation u′:

∂t 〈u〉+ 〈u〉 · ∇ 〈u〉 +∇〈p〉 − ∇ · (ν∇s 〈u〉) =−∇ · 〈u′ ⊗ u′〉 , (5.5)
∂tu′ + 〈u〉 · ∇u′ + u′ · ∇ 〈u〉 +∇p′ −∇ · (ν∇su′) = f ′, (5.6)

where f ′ = ∇· (〈u′ ⊗ u′〉−u′⊗u′) represents the nonlinear interactions of the fluctuation
u′. The derivation of those equations relies on some properties of the operatior 〈·〉 that
extracts the quasi-periodic component of a given flowfield such as: 〈fg〉 = 〈f〉 〈g〉+ 〈f ′g′〉
and 〈f ′〉 = 0. A more complete description of those properties is given in Reynolds and
Hussain [1972] and are verified to be true even in the Koopman framework [Mezić, 2013].

In the following, we will separetely consider the modelling of the quasi-periodic com-
ponent 〈u〉 and the broadband component u′.

2.1 Modelling of quasi-periodic component
In equation (5.5) governing the quasi-periodic component, the term 〈u′ ⊗ u′〉 corresponds
to the Reynolds stress tensor stemming from the broadband contribution u′. Even though
u′ may involve a part related to coherent structures, we model this tensor using the
Boussinesq hypothesis:

− 〈u′ ⊗ u′〉+ 2
3 〈κ〉 I ≈ 〈νt〉∇s 〈u〉 , (5.7)

where 〈νt〉 = 〈νt〉 (t) is an eddy viscosity that is, in general, quasi-periodic as well, and
thus the slightly unusual notation for it around the brackets 〈·〉. This approximation
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results in the following equation:

∂t 〈u〉+ 〈u〉 · ∇ 〈u〉+∇〈p〉 − ∇ · ((ν + 〈νt〉)∇s 〈u〉) = 0, (5.8)

where, in an abuse of notation, the turbulent kinetic energy 〈κ〉 = 〈u′ · u′〉 /2 has been
incorporated in the pressure term 〈p〉.

This equation governs the quasi-periodic part of the flowfield. If a turbulence model
is provided f(〈νt〉 , 〈u〉) = 0, then this equation is closed and may be solved for by time-
stepping. In general, such an equation may exhibit various types of solutions: fixed-points,
periodic limit-cycle solutions linked for example to Hopf bifurcations of these fixed-points,
or even multi-frequency quasi-periodic solutions linked to secondary instabilities of the
periodic limit-cycles. Hence, classical stability analysis may be performed around fixed
points [Crouch et al., 2009, Meliga et al., 2012, Mettot et al., 2014a] or Floquet type
stability analysis around limit cycles. Yet, one has to keep in mind that only quasi-
periodic solutions to this equation are ”strictly” relevent.

2.1.1 Modelling with mean-flow marginal global modes

As explained in Mettot et al. [2014b], a mean-flow approach may be favoured to char-
acterize the unsteady quasi-periodic component of 〈u〉 from the sole knowledge of the
time-averaged mean-flow ū. Indeed, from Mezić [2013], it is known that the Koopman
mode corresponding to the fundamental harmonic of a time-periodic limit-cycle associated
to equation (5.8) corresponds to a marginal eigenvalue of the linearized operator around
the mean ū. There are actually two conditions for this result to hold: either the limit-
cycle should be purely harmonic (only the fundamental) or the amplitudes of all Koopman
modes (Fourier modes) be weak. We thus further decompose the quasi-periodic compo-
nent into its time-average (denoted with (·)) and its corresponding fluctuation (denoted
with (̃·)), completing the triple decomposition. We remark that the eddy-viscosity 〈νt〉,
having the same time-dependency as 〈u〉, may have, in general, a fluctuation associated
to it. Introducing the decompostion

〈u〉 (x, t) = u(x) + ũ(x, t), 〈p〉 (x, t) = p(x) + p̃(x, t), 〈νt〉 (x, t) = νt(x) + ν̃t(x, t)
(5.9)

in the phase-average equation (5.8) yields the equations governing the mean-flow (with in
particular additional Reynolds stresses stemming from the quasi-periodic component ũ):

u · ∇u +∇p−∇ · ((ν + νt)∇su) = −ũ · ∇ũ +∇ · (ν̃t∇sũ), (5.10)

and the linearized equations around the mean-flow:

∂tũ + u · ∇ũ + ũ · ∇u +∇p̃−∇ · ((ν + νt)∇Sũ)−∇ · (ν̃t∇su) = 0, (5.11)

If a turbulence model is at hand, we may explicitly relate the fluctuations ν̃t to variations
of the closure model. If not, we neglect this term, which we will assume in the following to
make it simple. We finally look for eigenvalues of these linearized equations in the form:

ũ = ûeλt, (5.12)

so that (with a slight abuse of notations since the pressure term has been omitted)

λû + L(u, νt)û = 0, (5.13)
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where the operator L(u, νt) represents the linearized Navier-Stokes operator for a given
mean-flow u and a given mean eddy-viscosity νt and λ = σ+iω is the eigenvalue, dictating
how the mode will decay (with σ) and oscillate (with ω). We can see that, in a natural
manner, the mean-eddy-viscosity is incorporated in this operator. This is in accordance
with Meliga et al. [2012], where, to obtain the vortex-shedding mode, the eddy-viscosity,
coming from the URANS (Spalart-Allmaras) model, was taken into account. In Mettot
et al. [2014b], it was argued that in most of the cases, the frequency of the eigenmode was
not really sensitive to ν̄t, so that a crude approximation ν̄t = 0 could also be considered
in some cases.

According to Mezić [2013], if one of the two conditions mentioned above are met, then
the eigenvalue λ of (5.13) should be marginal with a frequency equal to the fundamental
frequency of the limit cycle. Also, the eigenvector should correspond to the Koopman
mode at the fundamental frequency. Note also that considering eigenvalues of the lin-
earized operator (rather than resolvent modes) complies with the discrete nature of the
Koopman modes.

2.1.2 How to obtain νt

The mean eddy-viscosity ν̄t may be obtained through different ways. If a turbulence model
is used, then a straightforward time-average of 〈νt〉 may be performed. If the fluctuation
field u is obtained by a DNS, then by taking the time-average of equation 5.8, we obtain:

− u′ ⊗ u′ + 2
3κI = νt∇su + ν̃t∇sũ. (5.14)

Applying the hypothesis ν̃t = 0 mentioned above leads to the following mean eddy-
viscosity:

νt = ∇su : (−u′ ⊗ u′ + 2/3κI)
∇su : ∇su

. (5.15)

Note that a DNS computation generally straightforwardly provides the mean-flow u, the
periodic fluctuation ũ (by performing harmonic-averages) and the statistics u⊗ u. These
statistics may be related to the u′ ⊗ u′ through: u′ ⊗ u′ = u⊗ u− u⊗ u− ũ⊗ ũ.

The hypothesis (ν̃t = 0) may suffice as a first-order approximation, that leads to
qualitatively correct global modes. However, a finer definition of ν̃t could be found either
by a more detailed study of the snapshots from the DNS (if available) or through a
data-assimilation technique (see Camarri et al. [2017]).

2.2 Resolvent analysis for broadband component
For the recovery of the broadband component, a frequency domain input-output approach,
such as the resolvent formalism, is more suited. However, we remark that the linearized
operator involved in the equations modeling the broadband component u′, equation (5.6),
is quasi-periodic, since the field around which the equations are linearized, 〈u〉 (t), is quasi-
periodic:

∂tu′ + L(〈u〉 (t))u′ = f ′. (5.16)
Here, for the sake of clarity, we will suppose it is only periodic. This formalism is similar
to the one appearing in Floquet stability theory, where we suppose that the solution may
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be written in the form
u′ = ǔ(t)eλt,

where ǔ(t) is a T -periodic mode that grows/decays with the Floquet exponent λ. Here,
instead of analyzing the stability of the operator (as done in Floquet stability theory), we
study its input/output relation. To do so, and similarly to Floquet stability analysis, we
look for solutions of the forcing term and its corresponding response under the separated
form:

f ′ = f̌(t)eiωt + c.c., u′ = ǔ(t)eiωt + c.c. (5.17)

where ǔ(t), f̌(t) are T-periodic fields and ω is a given frequency. Here we suppose that the
frequency ω does not cöıncide with a Floquet exponent eigenvalue λ = iω of the periodic
operator ∂t + L(〈u〉 (t)), which is the case if stable periodic limit-cycles are considered.
We may then rewrite equation (5.16) as:

∂tǔ + iωǔ + L(〈u〉 (t))ǔ = f̌ . (5.18)

This equation establishes the input/output relation mentioned before, since, for to a given
T-periodic forcing term f̌ , corresponds a T-periodic response ǔ, upon integration of 5.18.
We remark however that only a T -periodic solution to this equation makes sense. One way
of recovering this periodic solution can be to resort to feedback control techniques, where
an extra forcing term is considered, penalizing the non-periodic component (similarly to
Shaabani-Ardali et al. [2017]). Another way is to enforce periodicity by construction. This
is the basic idea of, for example, the Floquet-Fourier-Hill Method (FFHM, see Deconinck
and Kutz [2006]), where the solution ǔ, the forcing term f̌ and the operator L(〈u〉 (t)) are
expanded as Fourier series, i.e.:

ǔ(t) =
∑
n

ǔneinω0t, f̌(t) =
∑
n

f̌neinω0t, L(〈u〉 (t)) =
∑
n

Lne
inω0t, (5.19)

where ω0 = 2π/T and (ǔn, f̌n, Ln) are the different harmonics. With this, equation (5.18)
can be recast in the form:

(iωI + L)U = F , L =



. . .
...

...
... . .

.

· · · L0 + iω0I L−1 L−2 · · ·
· · · L1 L0 L−1 · · ·
· · · L2 L1 L0 − iω0I · · ·

. .
. ...

...
...

. . .


, (5.20)

where the vectors U ,F represent collections of the harmonics of the perturbation and
forcing terms. The matrix L is the so-called Hill matrix (Lazarus and Thomas [2010])
and plays the same role as the operator L(u) in the case of mean-flow analysis. We can
see thus that, in this case, there exists a generalization for the Resolvent operator, where:

R(ω) = (iωI + L)−1. (5.21)

Equation (5.20) formally establishes the existence of the T-periodic response ǔ(t) if ω does
not coincide with any of the eigenvalues of L (since in such a case the matrix iωI + L
is invertible). The gain to be optimized under the constraint U = RF should be viewed
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as an energy-ratio between the fluctuation and the forcing term, both integrated over the
period T . A possible form of such a gain is given by:

G(ω) =
1
T

∫ T
0 ||ǔ(t)||2dt

1
T

∫ T
0 ||f̌(t)||2dt

=
∑
n ||ǔn||2∑
n ||f̌n||2

≡ |||U|||
2

|||F|||2
, (5.22)

where the last equality is the application of Parseval’s theorem and || · || denotes the usual
space energy norm || · ||2 =

∫
Ω | · |2dΩ. We can see that this energy gain is a natural

extension of the usual steady one.
This system is costly to solve, as it requires inversions of the operator iωI + L, if

the FFHM is preferred or many forward/backward time-integrations, if time-methods
are preferred. In what follows, we propose two simplifications, namely the steady-flow
〈u〉 ≈ u and the quasi-static approximations.

2.2.1 Steady flow approximation: 〈u〉 ≈ u

In the case 〈u〉 ≈ u, we may avoid the complexity of equations (5.18) or (5.20)and recover
the more usual Resolvent formalism. In this approximation, the modes f̌ , ǔ would evolve
on top of the mean-flow and their time-dependency would be eliminated: ∂tǔ = 0. We
recover then the classical Resolvent operator:

ǔ(ω) = R(u, ω)f̌(ω), R(u, ω) = (iωI + L(u))−1. (5.23)

Following Beneddine et al. [2016], we are interested in the pair (f̌ , ǔ) that maximizes the
energy gain:

G(ω) = ||ǔ||
2

||f̌ ||2
. (5.24)

This is equivalent to studying the Singular-Value Decomposition of R(·) ≡ R(ω,u)(·) =∑
i µiûi(f̌i, ·), where the modes (f̌i, ǔi) are obtaining by solving:

RR†f̌i = µ2
i f̌i, R†Rǔi = µ2

i ǔi, ||ǔi|| = ||f̌i|| = 1 (5.25)

Note that the approximation 〈u〉 ≈ u may be valid as soon as the forcing f̌i and response
ǔi (or more precisely the wavemaker region associated to (f̌i, ǔi), see Brandt et al. [2011])
are located in a region where 〈u〉 ≈ u.

2.2.2 Quasi-static Approximation

Another possible simplification of equations (5.18) is possible when the evolution time-
scale of the periodic component 〈u〉 is slow in comparison with the excitation frequency ω.
In those cases, we may postulate that the modes ǔ, f̌ also evolve on the slow time-scale.
This hypothesis can be formally translated by the introduction of the slow time-scale
τ = εt that is involved in the fields (〈u〉 (τ), ǔ(τ), f̌(τ)). Therefore ∂tǔ = ε∂τ ǔ and
focusing on the leading-order equation, yields:

iωǔ + L(〈u〉 (τ))ǔ = f̌ ⇒ ǔ(τ) = Hτ f̌(τ). (5.26)

We can see that the resulting equation is nothing but the Resolvent operator linearized
around the instantaneous phase-averaged flow Hτ ≡ R(ω, 〈u〉 (τ)). This means that, in
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this model, the modes f̌ and ǔ coincide with the classical Resolvent analysis based on
the high frequency ω and snapshots of 〈u〉 (τ) taken along the slowly evolving quasi-
periodic component. For this reason, we will refer to this approach as the quasi-static
approximation. Furthermore, the gains from the SVD of the operator Hτ

G(ω, τ) = ||ǔ(τ)||2

||f̌(τ)||2
, (5.27)

that classically are solely dependent on the frequency ω are now dependent on τ as well
and denoted by µτi (ω).

2.3 Remarks on the choice of averaging procedure and eddy-
viscosity

In the previous sections, we proposed a theoretical decomposition of the flow variables
based on the Koopman formalism, leading to two separate equations, one for the quasi-
periodic component 〈u〉 and one for the broadband one u′. We remark, however, that
the broadband component u′, may itself be composed of a coherent and an uncoherent
part u′ = u′co + u′unco, the first one related to spatio-temporal coherent structures driven
by instability mechanisms, the second one related rather to chaotic/turbulent motion. In
equation (5.6) governing u′co, the effect of this latter uncoherent broadband term may
be modelled by an additional eddy-viscosity term, say ν ′t which is a priori different from
〈νt〉. Such a term then appears in equations (5.16) and (5.20) to take into account the
effects of the broadband uncoherent part u′unco on u′co. Such a modelling strategy for a
broadband uncoherent part was already discussed by Morra et al. [2019], who found, in
a case where no quasi-periodic component existed (〈u〉 ≈ u), that considering an eddy-
viscosity term in the linearized equations for the fluctuations improved the prediction of
the Resolvent modes. Furthermore, such an eddy viscosity term has been extensively
used, see for example, Cossu et al. [2009], Pujals et al. [2009], to model broadband large
scale coherent structures in shear-flows. However, in few cases [Beneddine et al., 2016],
it appears sufficient to consider solely the molecular viscosity (as done in the previous
section, 3 of this chapter) to reconstruct the coherent broadband fluctuation field. This
may stem for example from a lower Reynolds number so that u′ ≈ u′co, while at higher
Reynolds numbers the coherent part is always accompanied by an uncoherent part. The
modelling strategy described may be sketched in figure 5.2.

3 Mean-Flow analysis on DNS data
In this section, we illustrate the theory in the case of a squared-section cylinder at mod-
erately high Reynolds number. First, we will present the Direct Numerical Simulation
(DNS) results, exhibiting a well defined periodic component, corresponding to the vortex-
shedding phenomenon, and a broadband part, comprising in particular small Kelvin-
Helmholtz type vortices arising in the shear-layer that issues from the detachment point.
We will then analyse the fluctuation dynamics of the periodic and broadband components
with the Resolvent based techniques presented in the previous section.
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Figure 5.2: Proposed scenario for a decomposition and modeling of the flow field.

3.1 Direct Numerical Simulation solution
The configuration corresponds to the flow around a squared-section cylinder at Reynolds
number Re = U∞Dρ/µ = 22000, based on the cylinder’s diameter. It corresponds to
a benchmark study case for numerical methods in turbulent flows (Trias et al. [2015],
Nakayama and Vengadesan [2002], Verstappen and Veldman [1997]) and the assessment
of turbulence models (Bosch and Rodi [1998], Bao et al. [2011], Minguez et al. [2011]).

The DNS code solves the three-dimensional compressible Navier-Stokes equations,
with a standard Sutherland law for the dynamic viscosity. The code is run at a low
inflow Mach number, M = 0.1, representing a near-incompressible flow regime. The
spatial discretisation used in the solver corresponds to a finite-volume method based on
a modification of the AUSM+(P) scheme, which is second-order accurate. The time-
integration corresponds to the second-order accurate backward scheme of Gear, with a
non-dimensional time step (based on the inflow velocity and in the diameter of the cylin-
der) of 3×10−3, which is around 100 times smaller than the highest observed frequency in
the flow corresponding to the Kelvin-Helmholtz instability. For further details, see Dan-
dois et al. [2018] and references herein. We use the FastS code, developed by ONERA,
which is a highly optimised flow solver for high performance computing clusters.

The time-averaged flow is shown in figure 5.4 (b). A re-circulation length of L = 0.97
(measured from the center of the square) is obtained, which is in close agreement with
the literature (for example, L = 1.04 by Trias et al. [2015]). The main physical unsteady
feature of the flow corresponds to the vortex shedding phenomenon, as also observed
in other bluff-body configurations. The frequency of this phenomenon can be seen in,
for example, figure 5.3 (a), which represents the Fourier Transform of the cross-stream
velocity signal at a point on the symmetry axis in the wake of the cylinder. We can
see that the peak in frequency is sharp and corresponds to the frequency ω0 ≈ 0.83
(St ≈ 0.133, which is in a good agreement with Rodi [1997], Bosch and Rodi [1998],
Trias et al. [2015]). The spectrum also exhibits smaller sharp peaks at the harmonics, due
to the nonlinear interactions associated to the fundamental mode at ω0. Coming back
to the triple decomposition framework introduced in the last section, we will consider
this phenomenon as being discrete in frequency, and therefore accounted for in 〈u〉. The
structure of the Koopman mode at ω = ω0, given by the harmonic averaging procedure, is
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(a) (b)

Figure 5.3: DNS: FFT of signal for the (a) cross-wise velocity component at (0, 2.5) (sec-
ond green dot in figure 5.4) and (b) Power-Spectral Density for the stream-wise velocity
on the point (−0.45, 0.63) (first green dot)

(a) (b)

Figure 5.4: DNS: time average flow field (a) and Fourier mode of frequency ω0 ≈ 0.83 (b).

shown in 5.4 (b). The flowfield also holds a contribution at higher frequencies, shown as
a ’bump’ in figure 5.3 (b), which is relative to the frequency spectrum of the stream-wise
velocity near the upstream corner of the square. This broadband bump corresponds to
small-scale convective Kelvin-Helmholtz instabilities (see Brun et al. [2008], Trias et al.
[2015]) evolving in the shear-layer produced by the separation. This instability manifests
itself over a broad range of frequencies ωKH ≈ 10− 20 approximately. For this reason, we
will consider this phenomenon belonging to the broadband component u′.

3.2 Mean-Flow Stability Analysis: periodic component
In this section, we perform the stability analysis on the mean-flow operator to recover the
periodic component of the flow. As mentioned before, this analysis takes into account a
mean-eddy-viscosity νt which models the broadband fluctuations and will be computed
from the DNS statistics. This quantity is given by equation 5.15. We can see from
this definition that its spatial distribution is dependent on the numerator prod = ∇su :
(−u′ ⊗ u′+ 2/3κI), also referred to as the production term, and the denominator dest =
∇su : ∇su, referred to as the destruction term. The destruction (plotted in 5.5 (a)) is
a positive quantity and is only dependent on the gradients of the mean-flow. We can
see that this quantity is strong at the shear-layers and decays exponentially away from
the cylinder. The production term (plotted in 5.5 (b)) also follows a similar spatial
dependency. We remark that at some regions of the flow near the corners of the cylinder
and at the far wake, the production is negative. At those regions, in the computation of
the eddy-viscosity, the production value is set to zero. This is done to avoid ill-posedness
problem for the operator L(u, νt). The eddy viscosity is then given by the ratio between
the production and the destruction. However, at regions where the destruction term is
small, the value of νt can be large. To avoid this issue, we use instead a denominator
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(a) (b)

(c) (d)

Figure 5.5: Mean-eddy-viscosity computation: (a) production term (numerator in equa-
tion 5.15, prod = ∇su : (−u′ ⊗ u′+2/3κI), (b) destruction term (denominator in equation
5.15), dest = ∇su : ∇su and (c,d) computed eddy viscosity νt with penalisation terms
equal to ε = 0.01/10, respectively. The eddy-viscosity computed with ε = 0.01 (c) is
saturated with the maximal value of the eddy-viscosity computed with ε = 10 (d) and
completed with iso-contours (dashed white lines).

under the form
√
dest2 + ε, where ε is a regularizing parameter. We plot the resulting νt

for ε = 0.01 and ε = 10 in figure 5.5 (c,d). We can see that for ε = 0.01, the eddy-viscosity
is indeed large, leading to local Reynolds numbers of order 10. For this reason, we will
assume, if not mentioned otherwise, that the quantity νt was computed with ε = 10,
although some tests will be performed with ε = 0.01 as well.

With this definition of the eddy-viscosity we are now in means of performing the
stability analysis for the recovery of the periodic component. In figure 5.6 we provide
those results for three different strategies: the laminar one (assuming νt = 0, as in Mettot
et al. [2014b]), the frozen eddy-viscosity (as presented in section 2) and a third one which
takes into account the fluctuation of ν̃t. To do so, we assume that the eddy-viscosity
is governed by a URANS turbulence model (here the Spalart-Allmaras, see Spalart and
Allmaras [1992]) and suppose that the mean-flow and the eddy-viscosity computed from
the DNS are near to the ones issuing from a URANS run for this model. This hypothesis,
at least for the mean-flow u, could be supported since mean-flow URANS results have been
reported as been comparable with experiments and with the present DNS, for example in
Meliga et al. [2016], where their re-circulation bubble was around L = 1.11.

We can see that, for the laminar analysis (figure 5.6 (a,b)), although the frequency
is very well predicted (ω = 0.80), the unstable mode is far away from the neutral line
(σ = 0.38), and it corresponds to a mode whose spatial distribution is localized at a thin
shear-region around the square and almost nonexistent towards the outflow. However, we
can see that, taking into account the eddy-viscosity νt in the analysis (figure 5.6 (c,d)),
we are able to recover the overall features of the DNS Koopman mode (figure 5.4 (b)). Its
eigenvalue is much closer to the neutral line (σ = 0.03), presenting now a lower frequency
than before (ω = 0.69). In order to investigate if this effect comes from a lack of modeling
of the eddy-viscosity fluctuation, we perform as well the stability analysis considering the
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Spalart-Allmaras model (figure 5.6 (e,f)), as described before. We can see that, indeed,
the predicted frequency now is bigger than before (ω = 0.75), suggesting that, indeed,
the fluctuation of ν̃t can have a positive effect on the eigenmode. We remark that in a
URANS formalism, this fluctuation can be straightforwardly taken into account by the
consideration of the complete Jacobian of the nonlinear system. Lastly, another question
we may ask ourselves is the effect of the chosen eddy-viscosity between the ones computed
with the two regularization parameters introduced before ε = 10/0.01. To answer this,
we provide the modes coming from the eddy-viscosity computed with ε = 0.01 on the
eigen-spectra in figure 5.6 (c,e) by a red dot (the case ε = 10 was already discussed). We
can see that those modes tend to have a lower frequency and they tend to be closer to
the neutral axis, which is coherent with the fact that this eddy-viscosity is stronger than
the previous one. However, even with this (quite important) change in the eddy-viscosity
choice, the modification of the mode was not too important. This suggests that the region
most sensible to the quality eigenvalue is not at the wake of the cylinder, but at the shear
layers, where the destruction term dest is very important and the regularization procedure
is not active.

3.3 Resolvent analysis: broadband component
We now turn our attention to the reconstruction of the broadband component. First,
we will provide the results for the quasi-static approximation, then we will compare them
with the steady-flow one. As mentioned in section 2, this approach is valid if the frequency
ω is much higher than the one coming from the periodic flow, ω0 = 0.83. Thus, we place
ourselves in the interval ω ∈ (5, 35). The Resolvent gains for ω > 35 quickly decay to zero
and no more energetic input/output dynamics is recovered. In this interval, the Resolvent
gains are given in figure 5.7 (a-d) for four different times (or phases) of the baseline period,
corresponding to τ/T = 0, 1/4, 2/4 and 3/4, where the initial time was set such that the
y-velocity of the periodic flow at (0.5, 1) is maximal. From those plots, we can see a
clear ”bump” on the frequency range ω ≈ 10 − 20, which corresponds well to the region
in frequency where the probes on the DNS accused the Kelvin-Helmholtz instabilities.
We can see from the gains as well that the two first modes have similar energies while
the third and fourth modes are several orders of magnitude less energetic. This suggests
that they do not participate actively in the nonlinear fluctuation of the actual signal. It
is interesting to note that this ”bump” corresponding to the leading energy gain is also
present in the steady-flow analysis, 〈u〉 ≈ u, (blue/red curves on figure 5.7 (e), although
a little bit less energetic. We can say then that the present analysis, considering the
time-periodic Resolvent operator corresponds to a refinement of the classical mean-flow
procedure.

It is interesting to note that the baseline periodic flow has a special space/time sym-
metry, which reflects itself on the modes. Indeed, the fact that the Koopman mode (figure
5.4 (b)) is anti-symmetric with respect to the mean-flow implies that at a given phase τ ,
the field 〈u〉 (τ) is the mirror-symmetry of the field 〈u〉 (τ + T/2). This means that the
same physical mechanisms observed at a given phase τ will also be present in the phase
τ +T/2, meaning also that the same Resolvent modes found at τ should be found as well
at τ + T/2 as their mirror-symmetric counterpart. Indeed this phenomenon is observed.
We can see that the upper modes, given for the frequencies ω = 10/20, (marked in red
in figure 5.7 (f-i,k-n)) are mirror-symmetry version of the lower (blue) ones after a semi-
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(a)
(b)

(c)
(d)
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Figure 5.6: Stability analysis: (a,c,e) eigen-spectra and (b,d,f) unstable mode for laminar
viscosity approach (a,b), frozen eddy-viscosity (from figure 5.5 (d)) approach (c,d) and
variable eddy-viscosity approach (e,f), where ν̃t is modeled with the Spalart-Allmaras. Red
dots correspond to the unstable mode computed from the ε = 0.01 mean-eddy-viscosity.
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(a) (f) (k)

(b) (g) (l)

(c) (h) (m)

(d) (i) (n)

(e) (j) (o)

Figure 5.7: Resolvent analysis for the broadband high-frequency component. Quasi-static
approximation (a,b,c,d) for τ/T = 0 (a), 1/4 (b), 2/4 (c) and 3/4 (d): upper/lower modes
Resolvent gains (first column) and their respective modes at ω = 10 (second column) and
ω = 20 (third column). Red and blue modes correspond to upper/lower modes. (e)
Steady-flow approximation: optimal/sub-optimal gains (first column) and leading modes
for ω = 10 (second column) and ω = 20 (third column).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.8: Pressure p′ = p − 〈p〉 snapshots (a,d) at two different phases of the baseline
period, corresponding to τ/T = 0 and 1/2 (same phase as in figure 5.7 (a,f,k) and (c,h,m)).
The pressure of the modes p̌ at those phases are also plotted for ω = 10 (b,e) and ω = 20
(c,f). Streamlines correspond to 〈u〉. Steady-flow modes for ω = 10 and ω = 20 are also
provided in (g,h) for comparison.

period T/2. This is also true for their corresponding Resolvent gains, corresponding to
the same colour code as the modes. As for the static approach, we can see that, since
the mean-flow is symmetric, the two upper/lower modes do not exist anymore. Instead,
we have two identical modes, having the same Resolvent gain, corresponding this time
to a symmetric or an anti-symmetric structure. Their anti-symmetric counterpart only is
plotted in figure 5.7 (j,o), also for ω = 10/20.

We compare now those modes, obtained with the quasi-static approximation, with
(span-wise-averaged) snapshots of the actual DNS flow at two different phases, namely
τ/T = 0 and 1/2. This is achieved in figure 5.8. We can see that, indeed, the broadband
fluctuation, represented there by the pressure p′ = p − 〈p〉, depends on the phase of
the periodic velocity field. Furthermore, this fluctuation responds almost instantaneously
with changes of 〈u〉, validating the quasi-static approximation in this case. An interesting
observed feature is the fact that at the phase τ/T = 0, we can identify some structures
on the pressure snapshot that have the same wavelength as the mode obtained for ω = 20
and maybe some larger structures corresponding to the lower frequencies towards the
rightmost corner. This is coherent with the energy gains observed by the upper mode at
that phase (red curve in figure 5.7 (a)), that presents a peak near ω = 20. As for the
phase τ/T = 1/2, we can see that, most of the fluctuation on the shear layer is comparable
with the lower frequency ω = 10 instead. This is also coherent with the energy gains (red
curve in figure 5.7 (c)), which presents higher values for lower frequencies and almost no
amplification for frequencies such as ω = 20. Also, by comparing the fluctuations with the
modes coming from the steady-flow approximation, we can see that they do not match so
well, as those modes do not oscillate with the shear-layers.
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4 Conclusion
In this chapter, we performed flowfield reconstructions, based on linearized Navier-Stokes
equations, for a turbulent flow holding both a periodic large-scale low-frequency vortex
shedding component and a broadband small-scale high-frequency component (Kelvin-
Helmholtz type instabilities) evolving on top of the vortex-shedding mode. The triple
decomposition [Mezić, 2013] separates in an accurate and rigorous manner these two
components. The approaches employed for flow reconstruction are different for both
components.

For the periodic component, a mean-flow stability analysis with an eddy-viscosity
modelling had to be taken into account. The reconstruction accuracy even improved when
augmenting the Jacobian operator with a linearized Spalart-Allmaras model governing the
eddy-viscosity fluctuations.

For the broadband component, input-output linearized Navier-Stokes equations around
the vortex-shedding component naturally step in. This leads to optimal forcing and re-
sponse modes whose structure depends on the phase of the vortex-shedding cycle. We
note that with the triple-decomposition of the flow-field used here, no eddy-viscosity is
taken into account for those fluctuations; however, we believe that, if finer statistics of
the fluctuations were provided, an eddy-viscosity associated with the uncoherent/chaotic
component of the broadband spectrum could be taken into account and could improve
reconstruction accuracy. The general reconstruction problem involves an expensive input-
output problem to solve. We proposed two approximations, for which the complex input-
output problem simplifies into a classical resolvent analysis: the quasi-static and the
steady-state approximations. It was shown that the quasi-static approach gave finer re-
sults than the steady-state approach, and that the structure of the quasi-static resolvent
modes very accurately compared with DNS snapshots at different phases of the vortex
shedding cycle.
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Chapter 6

Resolvent-based Data-Assimilation
for the turbulent flow around a
squared-section cylinder

1 Introduction
In the fourth chapter, we explored the data-assimilation based on a model composed
by the mean-flow equation, coupled with the mean-flow resolvent modes, modeling the
fluctuation. In that context, the Reynolds number was small and the full complexity of
a general turbulent flow could not be assessed or discussed. Furthermore, in those cases,
we studied flows having either a quasi-periodic fluctuation, in which case only one or two
well-defined frequencies were taken into account by the model, or a (coherent) broadband
one, for which a frequency-discretization was employed. Generally, for turbulent flows,
we potentially have both behaviors together, as discussed in the fifth chapter. For this
reason, in the present chapter, we attempt to extend the idea of resolvent-based data-
assimilation to turbulent flows. More precisely, we wish to apply those ideas on the same
physical configuration considered in the fifth chapter, namely the turbulent flow around
a squared-section cylinder, where the same DNS is used as the reference solution. To do
so, we need a model composed by the mean-flow equation coupled with unsteady modes
coming from mean-flow analysis, whose amplitudes will be used as tuning parameters.
However, we can see now that designing a model for this configuration is a much more
challenging task than before. Indeed, in order to obtain the correct vortex-shedding
structure, necessary for the proper reconstruction of the Reynolds-stress tensor, we need
an eddy-viscosity, as shown in fifth chapter, which is a spatially-dependent function that
models the broadband nonlinear interactions. One could argue that this quantity could
be computed from the resolvent modes modeling the broadband component, in a similar
way we did for the white-noise forced BFS, presented in the fourth chapter. This would
however represent a difficult task since now the broadband signal is richer, presenting
not only coherent structures, as the Kelvin-Helmholtz modes but also uncoherent ones.
Furthermore, if we look to capture as well the time-dependency of those modes with
the vortex-shedding frequency (present in the quasi-static approximation), this time scale
needs also to be discretized, increasing even more the complexity of the model. For those
reasons, we choose instead to rely on an URANS turbulence model, here the Spalart-
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Allmaras. This is useful since it naturally provides a physically plausible eddy-viscosity.
Moreover, as we will see, this model predicts correctly the periodic component from the
DNS.

This chapter will be structured as follows: in the section §2, we will design the model,
based on URANS equations and its resolvent analysis, used in the data-assimilation con-
text. Then, in section §3 we will present the data-assimilation results, followed by con-
clusions.

2 Development of the model for Data-Assimilation
In this section we will present an extension of the model used for data-assimilation process
discussed in the fourth chapter in the laminar/transitional case. As discussed before, the
inclusion of broadband fluctuations in the model, coupling them with the mean-flow
equation through the Reynolds-stress tensor and with the vortex-shedding mode through
the eddy-viscosity leaves the model too complex. For this reason, we will drastically
simplify the problem by considering a URANS turbulence model. The chosen model will
the the Spalart-Allmaras model, as introduced in the second chapter. The solution of this
model, together with its steady version (RANS) will be presented in the next paragraph,
together with a model for the data-assimilation.

2.1 RANS and URANS Spalart-Allmaras Solutions
The starting point of our data-assimilation for this turbulent case will be the evaluation
of the RANS-SA solution, presented in figure 6.1. This helps to quantify how far we are
from the actual DNS solution by solving a spatial-only problem. This solution (U, P, Ñ)
is supposed to represent, in a way, the mean-flow U ≈ u. The RANS-SA equations can
be summarized in:

U · ∇U +∇P −∇ ·
(
(ν + νt(Ñ))∇sU

)
= 0 (6.1)

∇ ·U = 0 (6.2)
U · ∇Ñ −∇ · (η(Ñ)∇Ñ) = s(Ñ ,∇Ñ ,∇U), (6.3)

where s = s(Ñ ,∇Ñ ,∇U) is the nonlinear source term for the turbulent variable. For
a better description of it, see Appendix A. We can see however that this model fails to
capture its overall characteristics, presenting a much larger re-circulation bubble L ≈ 3.8.
This is actually a known fact that RANS modeling fails to predict the mean-flow in bluff-
body-like configuration. This comes from the fact that this kind of model was designed
for capturing small-scale turbulent motion. However, in this configuration, an important
large-scale motion exists, the vortex-shedding. Indeed, this flow is unstable and, if we
allow it to evolve in time (in an URANS manner), it will produce a much shorter mean-
re-circulation bubble (see Bosch and Rodi [1998]). Those URANS equations are given
by:

∂tU + U · ∇U +∇P −∇ ·
(
(ν + νt(Ñ))∇sU

)
= 0 (6.4)

∇ ·U = 0 (6.5)
∂tÑ + U · ∇Ñ −∇ · (η(Ñ)∇Ñ) = s(Ñ ,∇Ñ ,∇U) (6.6)
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(a) (b)

Figure 6.1: RANS solution: Ux velocity field (a) and eddy-visocisty Ñ/ν (b).

(a) (b)

(c) (d)

Figure 6.2: URANS solution: Ux mean-velocity field (a), mean-eddy-visocisty Ñ/ν (b),
first (c) and second (d) harmonic of velocity field. The ratio between their norms is
|AURANS0 |/|AURANS1 | = 6.7

The solution of those equations corresponds to a saturated periodic limit-cycle, whose
mean-flow (both velocity and eddy-viscosity) and nonlinear fluctuation, given by the first
and second harmonics are presented in figure 6.2. The mean-flow is similar to the one
coming from the DNS, with L ≈ 1.4. The nonlinear frequency of this solution happens to
be very close to the one coming from the DNS (ω ≈ 0.83). Also, the structure of the first
harmonic is very similar as well to the DNS one. Those results are in accordance to the
work of Bosch and Rodi [1998]. We remark that most of the energy of the fluctuation is
concentrated on the first harmonic (at ω0), the second one having a norm 6.7 times weaker
than the first one. We can see thus that this URANS framework provides a good basis for
capturing the vortex-shedding mode and for modeling the broadband structures. For this
reason, it will be used as guideline for the construction of the model in the following. This
model will focus on coupling the mean-flow equations with the vortex-shedding mode only,
in a very similar way we did for the laminar square-cylinder case, present in the fourth
chapter. However, before doing so, we investigate the predictability power of the resolvent
formalism in this case.
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(a) (b)

(c) (d)

Figure 6.3: Resolvent Analysis on (URANS) mean-flow: optimal (thick lines) and sub-
optimal gains (dashed lines) and leading mode at ω = 0.83 (grey vertical line) for (a,b)
frozen νt and (c,d) variable νt.

2.2 URANS Mean-Flow resolvent Analysis
In order to assess the effectiveness of the resolvent analysis in describing the vortex-
shedding mode, we perform here two distinct ones: the frozen-eddy-viscosity, where only
the momentum and continuity equations are taken in the Jacobian (where the fluctuation
is taken under the form (U′, P ′) = (Û, P̂ )eiωt), and the variable eddy-viscosity one, where
the SA model is linearized and included in the Jacobian as well (and the fluctuation
is taken under the form (U′, P ′, Ñ ′) = (Û, P̂ , N̂)eiωt). Those analyses arise when we
decompose the time-dependent variables U(t), P (t)(, Ñ(t)) into their mean-flow U, P ,N
and fluctuation U′, P ′(, Ñ ′), in a similar way we did in the last chapter. Note that for
the variable eddy-viscosity case, the linearization of the model needs to be done in order
to close the Jacobian matrix, which will now contain a variation Ñ ′ in the state vector.
We remark that, for this data-assimilation model, we will stay consistent with the fourth
chapter modeling, meaning that we will perform resolvent analysis for the recovery of
the vortex-shedding mode rather than a classical stability analysis. The reason for this
is that, in a way, the resolvent approach can be more general, allowing one to impose
the exact frequency coming from a time-resolved probe, avoiding the possible mismatch
of frequencies presented in the last chapter. Furthermore, in configurations that are
dominated by only one globally unstable mechanism, those approaches lead to similar
results (see Symon et al. [2018]).

We can see from figure 6.3 that the gains produced from both approaches are very
close together and have a maximal value for nearly the same frequency. The maximal
frequency for the frozen νt approach is slightly lower than the one coming from the DNS,
as it was the case for the DNS-based eddy-viscosity analysis discussed in the last chapter.
However, despite this small difference, we can see that the structure of the modes (both
computed at ω0 = 0.83) is virtually the same. This means that, for modeling the vortex-
shedding purposes, the frozen eddy-viscosity may suffice. Turning now our attention to
the eddy-viscosity fluctuation, in the case where it is modeled with the linearized SA
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(a)

(b) (c)

Figure 6.4: (a) resolvent mode for N̂ (variable Ñ analysis). We compare it with the
URANS first (b) and second (c) harmonics of Ñ .

equation, we can see that its structure is not corresponding to the one coming from the
URANS simulations (see figure 6.4). Moreover, it is interesting to notice as well that,
in the URANS computations, the second harmonics (2ω0) of this quantity is of the same
order of magnitude as the first one. This shows that the dynamics of the eddy-viscosity
is more complex than the one for the velocity field only. With this in mind, we are ready
to design our model for data-assimilation.

2.3 Data-Assimilation Model
In order to mimic the behavior of the URANS equations in a minimal way, the proposed
model will be composed by the mean-flow moment equation, coupled with the SA model
for the mean turbulent variable, together with the resolvent mode, modeling the vortex-
shedding. The complete nonlinear model is given by:

U · ∇U +∇P −∇ ·
(
(ν + νt(N))∇sU

)
= −2|A|2Re{Û∗0 · ∇Û0} (6.7)

∇ ·U = 0 (6.8)
U · ∇N −∇ · (η(N)∇N) = s(N,∇N,∇U) (6.9)

R(U, N, ω0)R†(U, N, ω0)Û0 = µ2
0Û0,

where the fluctuation of the velocity field is approximated by:

U′ = AÛ0e
iω0t + c.c. (6.10)

and the operator R = R(U, N, ω) corresponds to the linearized Navier-Stokes operator
around the mean-flow U with the (frozen) eddy-viscosity N . We notice that the non-
linearities in the mean-momentum equation (and in the SA equation for N) coming from
the fluctuation of the eddy-viscosity are neglected since we do not have a good estimation
for it, as discussed in the last paragraph. Moreover, the second-harmonics of the velocity
field is also neglected, since its energy is 6.7 times lower for the URANS simulation and
8.6 times lower for the DNS. The only non-linearity taken into account in this model,
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other than those already existent for the RANS-SA model itself, is the advection in the
momentum equation, similarly to what was proposed in the fourth chapter. Note that,
although we base our model on a URANS model, the amplitude of the vortex-shedding
mode is not necessarily the same as the one coming from the URANS run, and will be
tuned using external data. This gives the model and external parameter for it to adapt
to the DNS solution in a way that the URANS model itself cannot. In the next section,
we will present some results on the dependency of this model’s solution with respect
to the parameter |A|, also tuning the energy of the mode. We remark that, since the
model consists of a system of equations very similar to the one presented in the fourth
chapter, we use the same strategy to solve it numerically. This means we solve it with a
Newton method, once we rewrite the system as a set of nonlinear equations. It is worth-
mentioning that, in order accelerate the resolution of the model, only a half-domain mesh
was employed, where, at the center-line, symmetry conditions were used for the mean-flow
and anti-symmetry conditions were used for the vortex-shedding mode.

3 Results
In this section, we study how the solution of the previously introduced model varies
with |A|, in the same manner we did for the laminar case, where a parametric study is
employed, shown in figure 6.5 (continuous black lines). We can see that, by increasing the
value of |A|, the mean-flow related quantities represent better the actual DNS ones. The
re-circulation bubble becomes shorter and the mean-flow error (with respect to the DNS
mean-flow) also decreases and creates a minimum for |A| ≈ 2.18. We can see as well that
the quantities related to the fluctuation do not match the DNS ones necessarily at the
same value of |A|. For example, if we look at the magnitude of the resolvent mode at a
point close to the cylinder (|A||Û0|), we see that the model does not manage to react fast
when |A| is small. This issue was already discussed in the fourth chapter and it is related
to the fact that, at this range of parameter, the bubble is still too long and the resolvent
mode does not have important values close to the cylinder. However, for points far from
the cylinder, this quantity is almost linear. We can see that even quantities related to the
resolvent mode can hide a mean-flow dependency.

Another interesting aspect of the model would be to study how the eddy-viscosity,
produced naturally by the SA model, evolve with |A|. We can see from figure 6.6 that
this quantity becomes weaker with an increase in |A|, meaning that the model adjusts
itself in order to produce less eddy-viscosity whenever the saturation mechanism coming
from the vortex-shedding mode becomes important. Note that the effect of the eddy-
viscosity on the mean-flow is similar to the nonlinear forcing term, coming from the
vortex-shedding mode: an increase on both of them tends to reduce the re-circulation
bubble. In our model, this interplay between them is somewhat fixed and given by
the RANS-SA equation. However, this relation does not necessarily capture the actual
physical behavior. Indeed, for all the mean-flow related quantities, the predicted value of
|A| was always much higher |A| ≈ 2.3 than the DNS one |A|DNS = 1.58 or the URANS one
|A|URANS = 1.35. It seems that the eddy-viscosity produced by our model is not sufficient
to produce a short re-circulation bubble for lower values of |A|. Indeed, if we compare
the eddy-viscosity in figure 6.6 (d) (for which the predicted re-circulation bubble is not
too far from the URANS one) with the mean-eddy-viscosity from URANS in figure 6.2
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Solution of the model in function of |A|. Mean re-circulation bubble length
(a), global error of velocity field with respect to the mean-DNS (b) and mean-URANS
(c), amplitude of Fourier mode of the cross-velocity signals at (1.5, 0) (c) (2.5, 0) (d) and
(3.5, 0) (e). Black continuous curves correspond to the model given by (6.7) and dashed
ones to the comparative model where the νt is frozen to be the RANS-SA one. DNS value
of |A| ≈ 1.58 on blue vertical line and URANS value of |A| ≈ 1.35 on red vertical lines.
Exact values of each appropriate quantities are given in dashed horizontal lines for DNS
(blue) and URANS (red).

(b), we can see that we under-predict this quantity. To investigate how a different value
of eddy-viscosity would produce a different solution, we modify the model into a simpler
one, where we no longer solve the SA equations. Instead, we take the eddy-viscosity to
be fixed with |A| and equal to the RANS-SA one, which is much higher (see figure 6.6
(a)). The results for this model are also presented in figure 6.5 with a dashed line. We
can see that the mean flow quantities are predicted in the proper range of |A| ≈ 1.6,
where the mean-flow error is even smaller with this simplified model. Furthermore, the
resolvent mode-related quantities are also better represented at the same range of values
|A| ≈ 1.5− 1.8. This suggests that the SA equation, taking into account only mean-flow
quantities, may not be a good approximation and should also include nonlinear terms on
the fluctuation. Examples of such terms are the nonlinear advection U′ · ∇Ñ ′, a nonlinear
diffusion ∇· (∂ÑηÑ ′)∇Ñ ′ and the (second-order Taylor expanded) nonlinear source term,
exemplified by ∂Ñ∂Ñs(Ñ ′)2. We note that taking into account those terms is a challenging
task since we do not have a proper approximation for Ñ ′ from the mean-flow resolvent
analysis. Moreover, the last two terms rely on the truncation of a Taylor expansion,
that may itself represent a limited description of the whole dynamics, especially if the
fluctuation is large.

As for the reconstructed fields (mean-flow and vortex-shedding mode), the results are
presented in figure 6.7 for values of |A| for which the mean-flow error is minimal. We can
see that the vortex-shedding modes, although they represent the vortex-emission, as in the
DNS or URANS simulations, their structure can be a little ”discontinuous” along some
lines in the flow. This may be due to the fact that only the first harmonics is modeled
and its nonlinear interactions with the second harmonics could correct locally the spatial
distribution of the mode. We remark that this possible lack of the second harmonics in
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(a) (b)

(c) (d)

Figure 6.6: Results for reconstruction procedure: evolution of eddy-viscosity νt/ν for
increasing values of |A|, |A| = 0 (a), |A| = 1.4 (b), |A| = 2.0 (c), |A| = 2.4 (d) .
Iso-contours are saturated with mean-URANS eddy-viscosity color scale.

our model does not necessarily explain the over-prediction of the parameter |A| discussed
before since the ratio between the first and second harmonics energies is or order ≈ 7,
leading to an over-prediction of 14% for the quantity |A|, against ≈ 45% for the model.

4 Conclusion
This chapter dealt with the resolvent-based data-assimilation for the flow around a square
cylinder at Reynolds number Re = 22000, similarly to what was done in the fourth
chapter, where the vortex-shedding mode is coupled to the mean-flow equations, using a
URANS turbulence model to provide the turbulent eddy-viscosity. Although this model
managed to reproduce the overall features of the flow, it was less successful than the
one presented in the fourth chapter in the prediction of mean-flow quantities together
with unsteady ones. This comes from the fact that the URANS model did not produce
the necessary amount of eddy-viscosity such that, for example, the re-circulation bubble
predicted the correct one at the right range of vortex-shedding mode amplitude. Since the
fully nonlinear URANS equations actually predicted better the DNS one, we believe that
the model proposed is over-simplified and should take into account more nonlinear terms.
However, this is a challenging task because all the remaining terms depend on fluctuations
of Ñ ′, which is poorly reconstructed from the resolvent analysis. As a possible remedy
for this could be the use of a tuning source term in the SA equation, modeling all those
remaining terms, similarly to what was done in the second and third chapters of this
manuscript, where some other external data is considered in the assimilation.
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(a) (b)

(c) (d)

Figure 6.7: Results for reconstruction procedure: mean-flow (a) and normalized vortex-
shedding mode (b) for the model given by (6.7). The same is presented for the model
where the eddy-viscosity is fixed to be the RANS-SA one (c,d).
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Chapter 7

Conclusions and Perspectives

In this manuscript, we investigated some modeling techniques for data-assimilation of
aerodynamic flows. Those techniques can be divided into two large groups. The first
one was the recovery of the time-averaged (mean) flow through minimal modifications in
the RANS (Reynolds-Averaged Navier-Stokes) equations, performed by an optimization,
minimizing the error committed by the solution and some mean-flow external data. This
was the subject of chapters 2 and 3. The second one relied on the mean-flow analysis,
mainly based on the Resolvent formalism, subject of the subsequent chapters. For the
data-assimilation purposes, we were able to build a reduced order model given by the
mean-flow equation coupled with the Resolvent modes that provide a representation of the
fluctuation, from which we can compute the Reynolds-stress tensor, both in a transitional
and turbulent scenarios. Also, in a slightly different context from data-assimilation, we
provided a framework from which both periodic and broadband components could be
recovered from linear analysis. In the following we will provide a quick overview of the
methods and results discussed in the manuscript, together with ideas for future work for
each of them separately.

1 RANS-based Data-Assimilation
From the point of view of the first one (RANS-based data-assimilation), we investigated
two different models. The first (model 1) consisted by the tuning parameter on the mo-
mentum equations, which is an extension of what was done by Foures et al. [2014] to a
turbulent regime. The second one (model 2) consisted by a source term in the turbu-
lence model (Spalart-Allmaras, in the present case), correcting it. We investigated how
the choice of tuning parameter and the choice of the measure operator would change the
optimized procedure and the final solution. For example, we observed that, if the whole
velocity field information is provided, the model 1 manages to adapt itself to represent
correctly the whole velocity-field everywhere. For the model 2 however, we did not man-
age to capture the whole velocity-field and the overall error decreased of one order of
magnitude only. This shows that this model is not fully controlable. However, when
sparse velocity field is provided, the model 1 may produce some nonphysical behavior
related to the sharpness of the gradients, and further penalization on the derivatives of
the forcing term had to be considered to smooth it, leading to a more physical solution.
This was shown not to be the case for the model 2, where the gradients were smoother and
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the reconstructed final solution, although did not necessarily match the provided data,
could provide a better solution when very few measurements were provided. Moreover,
we observed that the model 2 produced almost the same solution independently on the
number of velocity measure points. We further explained this fact with an Observability
Gramian analysis, showing that this model presents a much more rigid behavior, where
only a few directions in the space of forcing terms are easily reachable/observable. This
rigidity was also observed when, for example, we considered wall-pressure measurements,
for example. In this case, we could show that, by considering enough wall measure points,
the final solution tended towards the same one produced by the velocity-field informa-
tion. However, for the model 1, even with complete wall-pressure information, we did
not manage to outperform the model 2, showing that, in this case, wall-pressure is not
enough.

With this in mind, we can propose a few directions for future studies. Firstly, the
Spalart-Allmaras model showed to be rigid when we considered a corrective forcing term
and this behavior could modify the final assimilated solution. For this reason, it would be
interesting to explore in a future work how other turbulence models would perform. If we
consider, say, the k − ω model instead of the SA, we could observe a different behavior.
For example, the model could present itself being a little less rigid than the SA, opening
more room for the solution to adapt to the data, if sufficient information is available.
Alternatively, even if this model ends up being as rigid as the SA, it would be interesting
to evaluate if it manages to produce an assimilated solution that is closer to the reference
one than the one with SA. This would mean that, even if the Observability Gramian
analysis still produces a large separation between the leading Singular Values and the
remaining ones (meaning that the model is still poorly observable), the leading Singular
Vectors may ”point” towards a better direction, on which the DNS field may lie. This
would favor the choice for this model instead of SA, since it appears to be more physical.

Another interesting direction would be the consideration of turbulence models that do
not rely on Boussinesq hypothesis for the data-assimilation. This was already the goal
of the model 1, where a free volume force was used as tuning parameter. However, the
restriction of this tuning parameter within such turbulence model would perhaps limit the
action of the actual forcing term to a more physical direction, improving the assimilated
solution when few (or localized) measurements are provided, always retaining the (to
be verified) fully controlability. This kind of model would be useful in bluff-body-like
configurations that do not satisfy the Boussinesq hypothesis and for which the volume-
forcing term was not capable to correctly assimilate, for example, the wall-pressure (as
in the cylinder flow presented in the third chapter). Examples of such models are the
Reynolds-stress tensor models (RSM, see for example Hanjalić and Launder [1972]), where
the Reynolds-stress tensor is not replaced by an eddy-viscosity and will be modeled by a
supplementary set of PDEs, typically one for each component of the tensor and another
one for the dissipation rate. In this case, the forcing/tuning parameter would be, for
example, a volume term in each of those extra equations.

2 Mean-flow analysis and Data-Assimilation
As for the Resolvent-based data-assimilation (presented in the fourth chapter), inspired on
the idea that the Resolvent modes can approximate the fluctuation around the mean-flow



2. Mean-flow analysis and Data-Assimilation 101

(McKeon and Sharma [2010], Beneddine et al. [2016]), we proposed a model composed
by the mean-flow equation coupled with leading Resolvent modes through the Reynolds-
stress tensor. This model represents a nonlinear set of equations, whose only unknown
parameters are the energies (or amplitudes) of each of those modes, one for each modeled
frequency. Since the unknowns are intimately related to the spectral (frequency) content
of the fluctuation, those amplitudes can be tuned by assimilating, for example, few point-
wise time-resolved probes. From an experimental point of view, this represents a gain,
with respect to the RANS-based data-assimilation, in the amount of information needed
to recover, not only the mean-flow but also the fluctuation around it. This procedure
was first applied in three different laminar/transitional configurations: squared-section
cylinder and the backward-facing step forced by two incommensurable frequencies and
with (time) white-noise. Generally, what was observed in those cases is that the success
of the reconstructed solution of this model, together with its robustness with respect to
the choice of point-wise data, can be assured if the mean-flow Resolvent modes do manage
to reconstruct the main features of the fluctuation and if all of the relevant frequencies
are taken into account. This tends to be the case when the reference flow does not present
strong nonlinearities. An example of flows having an important amount of nonlinearities
is the two-frequencies backward-facing step where, even if the external forcing contains
only two frequencies, the fluctuation contains more frequencies arising from nonlinear
interactions between the two fundamental ones. The presented model did not consider
those nonlinear interactions, limiting the quality of the reconstruction of the final solution.
In those cases, we may employ a finer model that captures those nonlinear terms. An
example of such approach is given by Symon et al. [2019a], where the fluctuation is solved
in a nonlinear manner for a given (frozen) mean-flow, assimilated with similar techniques
presented in the first two chapters of this manuscript. For this reason, the application
of this procedure is much more challenging in our case, where the mean-flow is also an
unknown of the problem. The inclusion of nonlinearities in the model of the fluctuation
can thus be considered as subject of future work.

As for the turbulent case, corresponding to the square cylinder at Re = 22000, we
considered first, in the fifth chapter, the mean-flow analysis (in a broad sense) for the
recovery of both periodic mode (vortex-shedding) and the coherent broadband compo-
nent (Kelvin-Helmholtz) that characterize this configuration and other flows around bluff
bodies. We showed that those components could be isolated using one version of the
triple decomposition, proposed by Mezić [2013]. We could recover the periodic compo-
nent with the usual mean-flow stability analysis, where, in order to model the broadband
component’s effect on the quasi-periodic one, we considered an eddy-viscosity computed
from the statistics of a DNS. We showed as well that the dependency of the broadband
component (here exemplified by the Kelvin-Helmholtz instability) on the quasi-periodic
component could be captured by the Resolvent operator, where the flow around which the
equations were linearized was the quasi-periodic one, in a similar manner as in Floquet
stability theory. Those modes showed themselves predictive when compared with DNS
snapshots, where the dependency of the Kelvin-Helmholtz structures on the oscillation of
the shear-layer is observed. For future work, it would be interesting to test this periodic
Resolvent technique on a flow configuration where the frequency of the periodic motion
is closer to the broadband structures one and the complete resolution of the modes with,
for example, the Floquet-Fourier-Hill technique would be required.

In the sixth chapter, we applied the Resolvent-based data-assimilation, tested for lam-
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inar flows, in a turbulent one, consisting also in the square cylinder, same configuration as
in the fifth chapter. Since this configuration is much more complex than those discussed
in the fourth chapter, we proposed the use of a URANS model, from which we could
use the eddy-viscosity, necessary for the prediction of the vortex-shedding mode and for
the mean-flow equation saturation. The model consisted then of the mean-flow equations
(momentum equations, together with the Spalart-Allmaras one) coupled through the non-
linear advection term with the resolvent mode modeling the vortex-shedding. This means
that this model did not resolve the coherent broadband component, since it would leave
the model much more complex. We observed that the solution of this model, although it
captured the overall feature of the reference flow, did not predict well the range of ampli-
tudes of the fluctuation of the reference flow (DNS or URANS). We could also show that
the balance between this amplitude and the eddy-viscosity was not quite the one present
in the URANS solution (and arguably in the DNS one). We believe the reason for that
was an over-simplification of the model where, the only nonlinear term considered for the
fluctuation was the nonlinear advection. The reason why the consideration of other non-
linear terms in the model is difficult is that the remaining ones are all dependent on the
fluctuation of the eddy-viscosity, which is poorly represented by the mean-flow analysis
when compared to the URANS one. Furthermore, the first harmonics of this quantity
is of the same order of the second one, suggesting that there may be strong nonlinear
interactions for this variable and a more complex dynamics for it needs to be used. One
possible direction for future work could be the design of a such more refined model for this
variable and its further use in the mean-flow equations through nonlinear terms. Another
possible solution would be the use of of a tuning parameter such as a source term in the
mean SA equation (similarly to what was done in chapters 2 and 3) that corrects this
erroneous balance between the eddy-viscosity production and the vortex-shedding ampli-
tude and its further determination with an optimization procedure. An obvious drawback
of this approach would be the need for more data to be assimilated since now we tune a
spatially-dependent function as well.



Appendix A

RANS - Spalart-Allmaras Numerical
Resolution

1 Incompressible RANS
In this section we are interested in giving some details on the (incompressible) RANS
equations, coupled with the Spalart-Allmaras model, together with its resolution in a
Finite-Element code, FreeFem++ (see Hecht [2012]). They are given by:

∂tu + u · ∇u +∇p−∇ · ((ν + νt)∇Su) = 0 (A.1a)
∇ · u = 0 (A.1b)

∂tν̃ + u · ∇ν̃ −∇ · (η(ν̃)∇ν̃) = s(ν̃,∇ν̃,∇u) (A.1c)
The last equation in A.1 is a nonlinear Advection-Diffusion-Reaction equation for the

auxiliary quantity ν̃, such that νt = νt(ν̃). In the next subsection, we introduce the
original Spalart-Allmaras model such that it was first proposed (Spalart and Allmaras
[1994]). Then, we will comment on its modifications, in order to make it more stable and
differentiable.

1.1 Original model
The dependency of νt with respect to ν̃ is given by:

νt = ν̃fv1, fv1 = χ3

χ3 + c3
v1
, χ = ν̃

ν
, η = σ−1(ν + ν̃) (A.2)

Moreover, the nonlinear term s(ν̃,∇ν̃,∇u) is composed by a production, cross-diffusion
and destruction terms, respectively given by:

s = cb1S̃ν̃ + σ−1cb2|∇ν̃|2 − cw1fw

(
ν̃

d

)2
= sP + sC + sD (A.3)

each of those terms correspond to nonlinear functions on the state, which are further
closed with the extra auxiliary parameters:

S̃ = S + ν̃

κ2d2fv2, fv2 = 1− χ

1 + χfv1
, S = |∇ × u| (A.4a)

fw = g

[
1 + c6

w3
g6 + c6

w3

]1/6

, g = r + cw2(r6 − r), r = ν̃

S̃κ2d2
, (A.4b)
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with the constants:

σ = 2/3, cb1 = 0.1355, cb2 = 0.622 (A.5a)
κ = 0.41, cw1 = cb1/κ

2 + (1 + cb2)/σ, cw2 = 0.3 (A.5b)
cw3 = 2, cv1 = 7.1, (A.5c)

The original model may have some issues when one tries to derive the Jacobian operator
corresponding to the nonlinear model, such as non differentiable terms or numerical prob-
lems related to the ill-posed structure of the resulting matrix. In the next subsections,
we will document all the modifications made and a brief explanation of them.

1.2 Modification in S

The simplest modification made was to replace the term S = |∇×u| by S =
√
|∇ × u|2 +M2−

M , where M is a user defined parameter (typically M = 10−4). This new definition of S
makes it differentiable, retaining the property S > 0 and S = 0 iif ∇× u = 0.

1.3 Negative ν̃ modifications
In the original model, it is possible to observe some undesirable phenomena that may not
occur in a continuous framework, but do occur in a discrete framework. One of them is the
apparition of negative values of ν̃ (Crivellini et al. [2013], Oliver [2008]) at the thin layer
that transitions from the turbulent to the free-stream region. This phenomenon, coupled
with a high-order representation may lead to highly oscillatory and unstable behavior
(Persson et al. [2006], Oliver and Darmofal [2007]).

A differentiable way to overcome this problem was given by Oliver [2008], in the
context of Discontinuous Galerkin Method discretization. His idea was to modify the
original ν̃ equation in such way that the energy of the turbulent variable ν̃2/2 to reduce
when ν̃ in negative. For this purpose, let us derive the equation for this quantity:

ν̃∂tν̃ + ν̃∇ · (uν̃) = 1
2
(
∂tν̃

2 +∇ · (uν̃)
)

= ν̃

σ
∇ · (η∇ν̃) + ν̃s. (A.6)

Let us define our domain Ω and let us divide it into two parts, one of them containing
positive Ω+ and negative Ω− values of ν̃. If we assume that ∂Ω∩ ∂Ω− = ∅, meaning that
the negative values of ν̃ only happen at the interior of Ω, then:

1
2

∫
Ω−
∂tν̃

2 + 1
2

∫
∂Ω−

uν̃2 −
∫
∂Ω−

ν̃

σ
ν̃∇ν̃ · n +

∫
Ω−
η
∇ν̃
σ
· ∇ν̃ =

∫
Ω−
ν̃s (A.7)

The second and third terms are null since, by continuity, ν̃|∂Ω− = 0. By opening the
source term s into its three terms, we have:

1
2

∫
Ω−
∂tν̃

2 =
∫

Ω−

cb2ν̃ − η
σ

∇ν̃ · ∇ν̃ +
∫

Ω−
cb1S̃ν̃

2 −
∫

Ω−
cw1fw

ν̃3

d2 (A.8)

Since the convective fluxes are null, the above equation represents the ”energy” of ν̃ in
the region where it is negative in a control volume Ω− moving with the flow. This means
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that, for the energy to be positive if ν̃ < 0, we have to ensure the right-hand-side to be
negative. For that matter, we start by choosing a modification on η:

η =
{

ν(1 + χ), χ ≥ 0
ν(1 + χ+ χ2/2), χ < 0 (A.9)

ensuring its positivity and ensuring the first integral to be negative if ν̃ < 0. The sign
of term ν̃sP = cb1S̃ν̃

2 is only dictated by the sign of S̃, that is positive (maybe unless
1 < χ < 18.4). For this reason, the following modification is used:

sP =
{
cb1S̃ν̃, χ ≥ 0
cb1Sν̃gn, χ < 0 (A.10)

where:
gn = 1− 103χ2

1 + χ2 . (A.11)

We remark that this modification does not always ensure ν̃sP < 0 when ν̃ < 0, since gn
has the ”wrong” sign if −

√
1/999 < χ < 0. However, this small interval is unavoidable

if the differentiability of the model has to be retained, since sP |χ=0 = 0 and ∂χsP |χ=0 =
cb1Sν ≥ 0. Finally, the last term ν̃sD = cw1fwν̃

3/d2 is negative (”wrong” sign) if fw < 0,
which happens for −1.185 < r < 0. Therefore, another modification is made:

sD =
{
cw1fw

ν̃
d2 , χ ≥ 0

−cw1
ν̃
d2 , χ < 0 (A.12)

Rewriting the whole nonlinear forcing term:

s =
{
cb1S̃ν̃ + cb2σ

−1|∇ν̃|2 − cw1fw
ν̃
d2 , χ ≥ 0

cb1Sν̃gn + cb2σ
−1|∇ν̃|2 + cw1

ν̃
d2 , χ < 0 (A.13)

In addition, inspired by the η modification and from the fact that negative diffusivity
coefficients may lead to an ill posed behavior, we also modify the turbulent viscosity νt
as:

νt = fv1 max(0, ν̃) (A.14)
This modification seems to be contrary to the general purpose of differentiability of the
model, however it is not the case, since the derivative of fv1ν̃ approaches 0 when χ→ 0.

1.4 Negative r modifications
We now discuss another issue with the original SA model, which is the possibility of
having negative values of the originally positive definite quantity r, being related to a
mixing length l such as r = l2/(κ2d2) > 0. This phenomenon can be better understood
by rewriting this function as:

r = ν̃

S̃(κ2d2)
= χ

S(κ2d2)
ν

+ χfv2
. (A.15)

We see that the function r is function of the two non dimensional groups χ, S(κ2d2)/ν, the
first being responsible for negative r, since the function fv2 can be negative for 1.003 <
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χ < 18.4. Moreover, it has a singular behavior for χfv2 = −S(κ2d2)/ν. A . As we
will see, the phenomenon of negative r (including its sigularity) may be a symptom
of other anomolous behavior. Indeed, if we write the nonlinear production term, say,
sPD = sP + sD = cb1S̃ν̃ − cw1fw(ν̃/d)2 as:

sPD =
(
νχ

d

)2 ( cb1
κ2r
− cw1fw

)
(A.16)

we can see that the production term inverts its signals for r < 0. Moreover the destruction
term also inverts its signal if fw < 0, which corresponds to the region −1.185 < r < 0.
This phenomenon may seem a small deviation of the ”normal behavior” of the model,
which tends to produce solutions for which r > 0. However, it may not be the case in
the convergence process, which in this work, is based on the Newton method. Indeed, the
term ∂sPD/∂ν̃ presents an oscillatory behaviour at the regions where r < 0 (see figure
A.1). This behaviour deteriorates drastically the convergence of the Newton algorithm
(Crivellini et al. [2013]).

Figure A.1: original SA parameters: r, sPD and its Jacobian ∂sPD/∂ν̃ as function of the
two non-domensional groups χ and S(κd)2/ν. The dashed lines on the plots represent the
set of parameters for which r is singular. Figure extracted from Crivellini et al. [2013].

To correct this behavior, we limit its value to rmax such that:

r∗ = ν̃

S̃κ2d2
, r(r∗) =


rmax r∗ < 0,
r∗ 0 ≤ r∗ < rmax,
rmax r∗ ≥ rmax.

(A.17)

This function is not differentiable (nor continuous) if we see it as r = r(r∗). However,
what wee need to have is a differentiable r = r(ν̃,u) or r = r(S(κ2d2)/ν, χ), as evoked
before.

On can from figure A.1 see that, below the singular line, the value of r∗ is negative.
Thus, in those regions, r = rmax. The same is true if we approach the singular line from
the positive r∗ region. We will have an increasing value of r∗, which also translates into
r = rmax. This means that at the originally singular line, the function r is differentiable
(and constant, r = rmax). Moreover, the only source of non differentiability is when
r∗ = rmax. At this region, the model is continuous, but not rigorously differentiable.
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However, one can calculate how much is the jump in ∂s/∂ν̃ at r∗ = rmax :

∂s
∂ν̃

∣∣∣
r∗=r+

max

= cb1

(
S̃ + ν̃

∂S̃

∂ν̃

)
− cw1

dfwdr ∂r

∂ν̃ r∗=r+
max︸ ︷︷ ︸

0

(
ν̃

d

)2
+ 2fw

ν̃

d2

 (A.18)

∂s
∂ν̃

∣∣∣
r∗=r−

max

= cb1

(
S̃ + ν̃

∂S̃

∂ν̃

)
− cw1

(
dfw
dr

∂r

∂ν̃ r∗=r−
max

(
ν̃

d

)2
+ 2fw

ν̃

d2

)
(A.19)

So that the jump itself on the quantity ∂s/∂ν̃ is:

d2

ν

[
∂s

∂ν̃

]
= cw1

dfw
dr

∣∣∣
r∗=r−

max

rmax

(
1− rmax

(
fv2 + χ

dfv2

dχ

))
χ (A.20)

This jump function depends directly on the factor dfw/dr|r∗=r−
max

. However, for r > 2 the
function fw stays at a plateau, and its derivative is almost zero. This means that, for a
sufficiently large value of rmax, the jump is almost nonexistent. In our work, this value is
set to be rmax = 10, as in Crivellini et al. [2013].

With this modification, the sPD function, together with its Jacobian are much more
smoother and lead to a much better Jacobian matrix (see figure A.2). We remark that the
production term sP was not in our code written in function of r, as presented before. For
this reason, the negative-production problem was not solved by this approach. However,
it was not observed to lead any convergence problems, as documented by A.1.

Figure A.2: r-Modified SA model: sPD and its Jacobian ∂sPD/∂ν̃. Figure extracted from
Crivellini et al. [2013].

2 Stabilization procedure - SUPG
Contrarily to finite volume, finite differences and, more recently, discontinuous Galerkin
methods, the Finite Element Method (FEM) does not provide a natural framework in
which one can add some ’upwind’ effect, which stabilizes the numerical scheme for high
Reynolds number flows. However, this effect can be achieved by modifying the variational
formulation through a method called Streamline-Upwind Petrov-Galerkin (SUPG). More
precisely, it was observed that the modification of the test function of a classical variational
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formulation in a precise way leads to stabilization of the scheme (Brooks and Hughes
[1982]). Several forms of such modifications are proposed in the literature (see Franca
et al. [1992], Franca and Frey [1992]). The main idea is to modify the test function of the
FEM through the advection operator, such that the scheme becomes decentralized and
stable. For the RANS equations, for simplicity, we only apply this modification of the
test function on the advection operators. This leads to a simpler variational formulation
than the ones from, for example, Franca et al. [1992]. However, this is extensively done in
the context of unsteady simulations, without loss in precision (see, for example Bao et al.
[2011], Haferssas et al. [2018]). The variational formulation employed is:

R([u, p, ν̃], [v, q, ν̌]) = RFEM([u, p, ν̃], [v, q, ν̌]) (A.21)
+ ∑

Ωk
∫

Ωk τ
NS
SUPGu · ∇v (u · ∇u) (A.22)

+ ∑
Ωk
∫

Ωk τ
SA
SUPGu · ∇ν̌ (u · ∇ν̃) (A.23)

where RFEM is the standard, unstable, FEM discretization. The parameters τNSSUPG and
τSASUPG are parameters tuning the amount of artificial diffusivity and should not be taken
too large, sacrificing precision, nor too low, sacrificing stability. A good compromise is
given by:

τ
NS/SA
SUPG = ξNS/SA(ReNS/SAh )hT

2|u| , (A.24)

where the parameters ξNS(ReNSh ) and ξSA(ReSAh ) are limiters, each function on the mesh
Reynolds numbers such that they saturate for Reh → +∞, preventing it to over-diffuse.
Here we introduce two different parameters for the NS and SA equations individually
since we will study their dependency on the final solution separately. Furthermore, this
parameters must tend to a constant whenever |u| → 0, such that τSUPG tends to a finite
value. Several expressions for those functions exist in the literature, all of them providing
similar results. The one we will use here is given by:

ξNS/SA =
{
Re

NS/SA
h /3 Re

NS/SA
h ≤ 3

1 Re
NS/SA
h > 3

(A.25)

where the definition of the mesh Reynolds numbers is given by:

ReNSh = |u|hT2µ , ReSAh = |u|hT2η (A.26)

where here we introduce two diffusivities, one for the NS equations µ and another one
for the SA equations η. The reason for this is that, in what follows, we will study how
their definitions can affect the solution, either by considering their laminar version (ν)
or their turbulent versions (for example, µ = ν + νt). Finally, the parameter hT is the
local element size. When the computational mesh contains high-aspect ratio elements,
it is preferable, in order to avoid over-diffusion (see Mittal [2000]), to take it as the
smallest length of the element. It was the case for the backward-facing step, treated in
the second and third chapters of this manuscript. For the square cylinder case, since the
mesh is essentially build with low aspect-ratio elements, this parameter is taken to be
the its largest length. However, in order to evaluate how the SUPG works and how it
converges in mesh refinement, it is interesting to modify this value to be equal to γ × ht,
so that the amount of artificial eddy-viscosity will be decreased with a small value of γ. In
what follows, we perform several tests using the models and numerical implementations
described above.
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(a) (b)

(c)

Figure A.3: Three meshes used for numerical tests. Mesh 1 (a), 2 (b), 3 (c).

3 Numerical tests and Mesh Convergence
In this section, we are going to provide some mesh-convergence on three different problems
related to the RANS-SA equations, applied on the square-section cylinder, considered in
the fifth chapter. The first one consists on the Newton algorithm for the convergence of
the RANS-SA equations. The second one consists on the Resolvent modes, in this case
the vortex shedding one. The third is the solution of the model considered in the fifth
chapter for data-assimilation. All those problems will be solved on three different meshes,
displayed on figure A.3. The first one ( 30000 elements) is the coarsest one, having a
relatively good refinement around the cylinder. The second ( 75000 elements) one is more
refined around the cylinder and on the wake up until x < 5. The third one ( 100000
elements) is essentially the same as the second one, however, with a finer refinement up
to the outflow boundary condition. We remark that all those meshes correspond to the
half-domain y > 0. Their use when the whole domain was needed (for example in the
fifth chapter) was done by constructing a full-domain mesh constructed by uniting the
original mesh with its symmetric.

3.1 RANS-SA Solution
This first problem we will consider here is the steady-flow equations, the RANS-SA ones.
Those equations are solved with the Newton method, together with an increase of the
Reynolds number. The strategy here is to give ourselves a few Reynolds numbers, starting
with 100, for which a solution can be easilly found, and, starting from this solution, we
converge a solution for Re = 500, then for Re = 2000, Re = 5000, Re = 10000 and finally
Re = 22000.

From the point of view of the final solution, in a first time, we investigate how the
final solution is modified with the mesh and with the diffusivity taken into account in
the SUPG stabilization. This diffusivity, here denoted µ for the Navier-Stokes equations
and ζ for SA equation, can either be considered as the laminar one ν or the turbulent
ones µ = ν + νt and ζ = ν + η. Those results are summarized in table A.1. We can see
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that the global quantities we chose to look at (namely the recirculation bubble length L,
the amount of eddy-viscosity produced ||ν̃|| and its baricenter

∫
Ω xν̃/

∫
Ω ν̃) do not depend

much on the choice of the diffusivity. Moreover, the number of iterations needed for
converging from Re = 10000 to Re = 22000 is almost independent on this choice. We
can see that the choice on the mesh seems to be more important than the choice on
the diffusivity. For this reason, if explicitly said otherwise, we will retain the definitions
µ = ν + νt and ζ = ν.

Table A.1: RANS-SA solutions for different implementations of SUPG stabilisation. The
diffusivity used in the local Reynolds number is varied between the laminar one and
the turbulent one in the Navier-Stokes equation and in the Spalart-Allmaras equation
separately.

Mesh (# triangles) Reh = |u|h
2µ Peh = |u|h

2σζ L ||ν̃||
∫

Ω xν̃/
∫

Ω ν̃

µ = ν ζ = ν 3.804 0.211 8.500
1 (29384) µ = ν + νt ζ = ν 3.800 0.213 8.497

µ = ν + νt ζ = ν + η 3.809 0.214 8.505
µ = ν ζ = ν 3.835 0.220 8.503

3 (99922) µ = ν + νt ζ = ν 3.832 0.221 8.501
µ = ν + νt ζ = ν + η 3.837 0.222 8.507

We now study how the effect of the extra diffusivity given by the version of SUPG
implemented as function of the mesh. To do so, we mask the mesh-size h that appears
in the computation of the SUPG functions by the factors γNSh (in NS equations) and γSAh
(in SA equation). By doing so, the SUPG functions will ”see” the element sizes smaller
than they are, minimizing their effect and thus the numerical diffusion. We can see from
table A.2 that, by taking smaller values of those γ parameters, the solution converges
towards a longer bubble. It is interesting to note that even the coarser mesh manages to
recover the same solution for the finer one, requiring only a sufficient small value for the
γ parameters. Moreover, the number of iterations that the Newton method takes, say for
the mesh 1 (coarser one), is similar to the one for the mesh 3 (finer one). This shows that,
even if we decrease the numerical diffusivity, the convergence is not altered. We note that
this is not true for the mesh 2 (intermediate one), where the discretization towards the
outflow border is very coarse. This is related to some oscillations of the variable ν̃ at the
outflow region where it transitions from the farfield value to the turbulent one inside the
bubble. Apparently, this is caused by a negative ν̃ that persists even with the corrections
mentioned in previous paragraphs. This effect is not fully understood and will be avoided
by considering meshes sufficiently refined at that region and more refined towards the
outflow.

3.2 Resolvent mode analysis
The Resolvent analysis (or the Stability analysis) is a much more different test case from
the RANS-SA solution, since it has a connection with the Jacobian matrix and not with
the residual itself and the SUPG stabilization may reflect differently for this problem. To
assess this difference, we consider only the vortex-shedding mode, corresponding to the
Resolvent mode on the RANS-SA solution, at frozen ν̃, at ω = 0.83 and investigate how
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Table A.2: RANS-SA solutions for different implementations of SUPG stabilisation. The
mesh element size is masked with a parameter γNSh and γSAh in the SUPG, tuning the
diffusivity of the method.

Mesh (# triangles) γNSh γSAh L ||ν̃||
∫

Ω xν̃/
∫

Ω ν̃ # iterations
1 1 3.800 0.213 8.497 5

1 (29384) 0.2 1 3.876 0.225 8.496 8
0.05 1 3.891 0.227 8.495 8
0.05 0.05 3.898 0.231 8.516 12

1 1 3.832 0.221 8.502 4
2 (74563) 0.2 1 3.886 0.228 8.505 8

0.05 1 3.896 0.230 8.505 19
0.05 0.05 3.900 0.231 8.514 10

1 1 3.832 0.221 8.501 7
3 (99922) 0.2 1 3.886 0.228 8.503 7

0.05 1 3.896 0.230 8.504 7
0.05 0.05 3.900 0.231 8.513 10

it converges. This results are summarized in table A.3, where the spatial distribution
of the energy of the mode is evaluated. We can see that whenever the mesh is coarse
and the SUPG used is the full version γNSh = 1, the energy tends to be more localized
at the vicinity of the cylinder where if the mesh is refined and/or the parameter γNSh is
decreased, the energy tends to be more distributed at the outflow region of the domain.
In particular, even for the coarsest mesh, we manage already to converge, if the parameter
γNSh is sufficiently small.

Table A.3: Mesh convergence for SVD modes for some SUPG implementations and mesh
refinements. The energy distribution of the Resolvent mode (given by κΩi =

∫
Ωi |û|

2) is
studied in function of the SUPG implementation, for Ω1 = (−0.75, 0.75)× (−0.75, 0.75),
Ω2 = (−0.75, 5)×(−0.75, 0.75)\Ω1 and Ω3 = Ω\(Ω1∪Ω2). Results presented for ζ = ν+νt

γNSh = 1/0.2/0.05
Mesh (# triangles) κΩ1 κΩ2 κΩ3

1 (29384) 2.8/2.0/1.9 % 33.0/27.2/26.8 % 64.2/70.8/71.2 %
2 (74563) 1.6/1.6/1.5 % 26.5/24.4/24.2 % 71.8/74.0/74.3 %
3 (99922) 1.8/1.7/1.7 % 26.2/24.8/24.6 % 72.0/73.5/73.7 %

3.3 Data-Assimilation model resolution
The final test for our model would be the resolution of the model proposed in the last
chapter for data-assimilation, where not only the mean-flow equation is solved with the
Resolvent vortex-shedding mode. This is thus some sort of combination between the two
last mesh-convergence studies. To perform this test, we solve the model for several values
of |A| and evaluate the model’s solution in function of it. This is performed for the three
meshes and for three parameters γNSh = 0.05/0.2/1. Those results are plotted in figure
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A.4. We can see from those results that indeed the model’s solution converges either with
a mesh refinement or with a decrease of γNSh , as observed before. Furthermore, the mesh
chosen for this kind of model, presented in the fourth chapter, is the coarser one, since
no observed quantity seemed to depend on the discretization.

(a) (b)

(c) (d)

Figure A.4: Convergence of the model for several meshes and SUPG implementations
((a,b) frozen νt and (c,d) variable νt). The triangles correspond to γNSh = 1, the squares
to γNSh = 0.2 and the solid lines to γNSh = 0.05. The red curves correspond to mesh 1, the
blue one to mesh 2 and the black curve to mesh 3.



Appendix B

BFGS Algorithm and its use with a
Finite-Element Solver

1 BFGS and Line search Methods
With the information of the gradient ∇f̃J of our cost functional J with respect to the
vector of control variables (here denoted f̃), several optimization algorithms can be used
to find the optimal conditions. They all rely on the building of a sequence of forcing
terms f̃n such that f̃n → f̃∗, where f̃∗ is the optimal forcing term, for which, ideally,
∇f̃J |f̃∗ = 0. A simple gradient-based method (employed, for example, in Foures et al.
[2014], Symon et al. [2017], etc) creates this sequence such that f̃n+1 = f̃n−εn∇f̃J , where
the parameter εn is determined, for example, with a line-search algorithm. However, this is
a first-order method since it relies solely on the information of the gradient. A well known
example of second-order method is the Newton method for optimization, that constructs
this sequence of forcing terms such that f̃n+1− f̃n = −εnH−1

n ∇fJ |fn , where Hn = ∇f∇fJ
is the Hessian matrix at iteration step n. This method is generally not so easy to apply
since one does not, in general, have the Hessian matrix. However, some methods try to
approximate it, retaining a good memory requirement (see Fletcher and Powel [1963],
Broyden [1983], Fletcher [1970], Nocedal and Wright [2006], Bonnans et al. [2006]). In
this context, we propose to use the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(l-BFGS) method. This method approximates the Hessian matrix from previous iterations
computations in the following way (with H0 = I):

Hn+1 = Hn + yny
T
n

yTn sn
− Hnsns

T
nHn

sTnHnsn
(B.1)

where yn = ∇fJ |fn+1 − ∇fJ |fn is the difference of the gradient between two successive
iterations and sn = fn+1−fn = εnpn (pn being the descent direction, pn = H−1

n ) the differ-
ence of control parameters. Since at every successive iteration this matrix is incremented
by two sets of line/column, we can use the Woodbury identity to invert it:

H−1
n+1 =

(
I − sny

T
n

yTn sn

)
H−1
n

(
I − yns

T
n

yTn sn

)
+ sns

T
n

yTn sn
(B.2)

Where, in order to respect some memory requirement, the storage of previous vectors sn,
yn is limited to a certain number k of previous iterations. Together with the estimation of
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the Hessian matrix, the method is coupled with a line search algorithm. This algorithm
finds the parameter εn such that the following (Wolfe) conditions are satisfied:

J (f̃n + εnpn) ≤ J(f̃n) + c1εnpTn∇f̃J |f̃n
−pTn∇f̃J |f̃n+εnpn ≤ −c2pTn∇f̃J |f̃n

(B.3)

for 0 < c1 < c2 < 1. This roughly summarizes how the BFGS algorithm works. In the
next section, we will discuss how to use it with a Partial Differential Equations (PDE)
solver, in particular with a Finite-Element solver.

2 BFGS with Finite-Element Solver

2.1 A toy model for EDP solver - Laplace equation
In what follows, we will be interested in applying the optimization procedure on a very
simple PDE, namely the Laplace equation (with homogeneous Cauchy boundary condi-
tions): {

−∆u = f x ∈ Ω
u = 0 x ∈ ∂Ω , Ω = (0, 1)× (0, 1) (B.4)

We remark however that the presentation of the discretization of those equation, together
with the optimization procedure are general and valid as well for nonlinear model, such
as the ones considered in this manuscript. The discrete version of the continuous problem
(B.4) is given here by the Finite-Element Method (FEM). This method arises from the
variational formulation associated with the strong equations (B.4). To derive it, we multi-
ply it by an arbitrary test function, integrate by parts and apply the boundary conditions,
leading to:

a(u, v) =
∫

Ω
∇u · ∇v dΩ =

∫
Ω
fv dΩ = l(v), ∀v (B.5)

In FEM, we give ourselves a set of base functions {φi} that will be used to span our
solution and the forcing term. We can say that:

u(x) =
∑
i

Uiφi(x), f(x) =
∑
i

Fiφi(x) (B.6)

where Ui, Fi are the coefficients that represent numerically the function u(x) and f(x).
Since the variational formulation has to be true for any v, we may choose v(x) = φj(x),∀j.
Each such choice of test function will lead to a line of the linear system:

KU = MF (B.7)

where U = {Ui}, F = {Fi}, Ki,j = a(φi, φj) is the so-called rigidity matrix and Mi,j =∫
Ω φiφjdΩ is the so-called mass matrix. We remark that the inner product associated with

the continuous problem is given in its discrete version by the mass matrix:

(u, v)Ω =
∫

Ω
uvdΩ = UTMV (B.8)

Once the discretization of the continuous equations are set, we proceed to the associated
optimization problem.
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2.2 Optimization Problem
The optimization problem will consist of finding the optimal forcing term f such that the
cost functional:

J = 1
2

∫
Ω

(u− ur)2dΩ (B.9)

is minimal, where the relation between u and f is given by the equation (B.4). Here
the reference state ur will consist on the solution of this Laplace equation imposing fr =
tanh(10(x− 0.5)) ∗ sin(πx) ∗ sin(πy), an arbitrary function. This problem can be viewed
in two different manners: a continuous one and a discrete one.

Continuous Formalism: The continuous version is essentially the one presented in
the main body of this manuscript in chapters 2 and 3 and consists of the Lagrangian
multiplier formalism posed for the continuous equations, where the adjoint system and
the gradient are set. The Lagrangian of this system is given by:

L = J + (u†,−∆u− f)Ω (B.10)

By deriving this functional with respect to the state, adjoint and forcing term, we have:{
−∆u† = −(u− ur) x ∈ Ω

u† = 0 x ∈ ∂Ω , ∇fJ = −u† (B.11)

The discrete version of those equations, necessary for numerical implementation, is given
by:

KU † = −M(U − Ur), Gc = −U † (B.12)
where Gc is the continuous gradient in this framework.

Discrete Formalism: The discrete formalism arises when we treat the optimization
problem as the minimization of the cost functional:

J (U) = 1
2(U − Ur)TM(U − Ur) (B.13)

whose inputs are the coordinates of the vector U and its relation with F is given by the
discrete system KU = MF . If we apply again the Lagrangian multiplier formalism, given
by the Lagrangian:

L = J + (U †)T (KU −MF ) (B.14)
If we regard this functional as being dependent on each component of the state Ui, the
adjoint U †i and the forcing term Fi, we can derive it with respect to each of those compo-
nents, leading to:

KU † = −M(U − Ur), Gd = −MU † = MGc (B.15)
We notice that the discrete gradient Gd differs from the continuous one by the factor of
the mass-matrix. This can be understood by noticing that the discrete gradient should
quantify the derivative of the cost functional with respect to the coefficients of the forcing
vector F , whereas the continuous one informs how the cost functional varies with respect
to an arbitrary variation of the forcing term f . Indeed, if we give ourselves a perturbation
in the forcing term δf = ∑

i δFiφi, a variation of the cost functional δJ will be given by:

δJ = GT
c MδF = GT

d δF = (∇fJ , δf)Ω (B.16)

In what follows, we will discuss the implications of the choise between those approaches
on the numerical results.
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(a) (b)

Figure B.1: Reference values for ur (a) and fr (b).

2.3 Optimization Results
The goal of this section is to, through the optimization procedure, find the pair (ur, fr),
displayed in figure B.1. At first, we will naively apply the continuous and discrete formal-
ism by providing BFGS either (J ,Gc) or (J ,Gd).

Continuous Formalism: By applying this formalism we were not able to converge
to any solution. This was the case not only in this simple Laplace equation model, but
also in any other PDE-constrained optimization problem considered in this manuscript.
In fact, the algorithm was not able to exit the very first global iteration, even if the
cost functional clearly decreased in the line-search procedure. Typically, the line-search
method kept decreasing the parameter ε until the point it became small enough for the
optimization procedure to stop. We are lead to believe that the main reason for that
is a norm-inconsistency between our PDE-based model and the internal BFGS routines.
Indeed, as mentioned in section 1, we can see that all the norms and inner products
performed by the BFGS algorithm are based on the euclidean norm UTV = ∑

i UiVi,
which does not have any physical or numerical meaning, if we regard U, V as finite-
element representations of their original functions. For this reason, we find necessary to
test the discrete formalism.

Discrete Formalism: Contrarily to the continuous formalism, the discrete one always
produces an optimal condition. The optimal solutions u∗ (figure B.2 (b,e)) correspond
very well to the reference one. However, we can see that, in function of the mesh, typically
if the mesh is structured or not, the forcing term may become very noisy. To understand
this, we need to take a closer look to how the gradient information Gd, provided by our
FEM solver, will be re-fed to it in the form of a new forcing term F . Indeed, for the sake
of clarity, if we place ourselves at the first global iteration, for which F1 − F0 = ε0Gd,0,
we can see that the solution of the next iteration will be given by the system:

KU1 = M(F0 + ε0Gd,0) = MF0 − ε0MMU †0 (B.17)

we can see that on the right-hand-side of this equation we have a term with a double
mass-matrix product, acting on a FEM representation of the adjoint function U †0 . This
procedure produces a forcing term that is inconsistent with the FEM. If the mesh we
consider is somewhat structured and uniform (as it is the case of the mesh 1), this incon-
sistency may produce some negligible effects, where the mass-matrix itself will be very
well structured and will not establish locally any preferential direction. However, if the
mesh is unstructured (mesh 2), this effect is quite visible. Furthermore, in those cases,
the number of iterations for the convergence of the optimization algorithm may increase
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(a) (b) (c)

(d) (e) (f)

Figure B.2: Discrete Formalism Optimization: mesh (a,d), optimal solution u∗ (b,e) and
optimal forcing term f ∗ (c,f).

Figure B.3: Discrete Formalism Optimization: Convergence of the cost functional Jn/J0.

drastically. Indeed, from figure B.3 we can see that, in order for the algorithm to correct
those effects of the forcing term (that may extend to the solution), it takes generally 200
iterations for a level of convergence of 10−7, while for the mesh 1, it takes 10-20 itera-
tions. This poses a real problem for the applications presented in this manuscript since
we cannot afford to have structured and uniform meshes.

Proposed Solution: Cholesky Decomposition It is interesting to note that, at the
same time where the Discrete Formalism produced the best results so far, it produces some
inconsistencies in the FEM formulation. On the other hand, the Continuous formalism
did not produce any result, but, if we look closely, we find that the inconsistency described
does not take place, since the gradient definition does not contain the mass-matrix. To
make this Continuous Formalism applicable on a BFGS algorithm, we have to perform a
change the variables, on which the Euclidean norm (performed inside BFGS) will make
sense both physically and numerically. Generally, this change of variables reads F̃ = LTF .
The Euclidean inner-product of two arbitrary vector is given the by:

(F̃1)T F̃2 = F T
1 LLTF2 = F T

1 MF2 = (f1, f2)Ω (B.18)

where the last two terms correspond to the imposition that this quantity represents the
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(a) (b)

(c) (d)

Figure B.4: Cholesky decomposition change of variables: final solution (a,c) and forcing
term (b,d) for meshes 1 (a,b) and 2 (c,d).

Figure B.5: Discrete Formalism Optimization: Convergence of the cost functional Jn/J0.

energy inner product of the two FEM functions f1, f2. We can see that the matrix L
has to be given by the Cholesky decomposition of the mass-matrix: M = LLT . For this
reason, the continuous gradient, written now in terms of this new variable becomes:

G̃c = ∇F̃J = LTGc (B.19)

We note that, with this changes of variables, not only all the norms performed within
BFGS will correspond to the physical (energy norm) ones, but also the FEM formulation
will be consistent, since the forcing term on the system B.17 will be:

KU1 = L(F̃0 + ε0G̃d,0) = MF0 − ε0MU †0 (B.20)

Indeed, with this kind of approach, we obtain better results (figure B.4). The are mesh-
independent and manage to reconstruct both the forcing term and the solution itself.
Furthermore, the convergence of the cost functional B.5 is also (almost) mesh-independent.
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3 Remarks on Navies-Stokes equations: Incompress-
ibility of f̃x

We notice as well that, for the model 1, where the tuning parameter is the volume force f̃x,
the incompressibility of this forcing term, discussed in the second chapter, is not obvious
since the Hessian matrix may modify the spatial structure of the gradients, leading to an
increment in f̃x that is not solenoidal. However, this is not the case as we will see here. To
be able to prove this, we need to show that the application of H−1

n+1 onto any divergence-
free vector z (here, the gradient) is also divergence-free. To do so, we use induction, where
we suppose it is true at some iteration n, i.e., DH−1

n z = 0 (true for n = 0 since H0 = I),
where D is the discrete-version of the divergence operator. If we suppose that Dsn = 0,
we have that:

DH−1
n+1z = D

(
I − sny

T
n

yTn sn

)
H−1
n

(
I − yns

T
n

yTn sn

)
z + D

sns
T
n

yTn sn
z

= DH−1
n

(
I − yns

T
n

yTn sn

)
z

= DH−1
n z − DH−1

n

yns
T
n

yTn sn
z = 0

(B.21)

which is zero since both terms on the last equation are applications of DH−1
n onto

divergence-free vectors.
We notice that the fact we used a linear transformation coming from the Cholesky

decomposition does not invalidate this argument since the vector z can be considered as
being already transformed by it and the matrix D modified to take into account for the
Cholesky matrix L incorporated in z.

4 Adjoint Discretization in FEM
In this section, we briefly discuss the adjoint problem for a (sufficiently) general nonlinear
Partial Differential Equation (PDE) and its further discretization in FEM. The main
goal here is to prove that the transpose of the Jacobian matrix provides indeed possible
discretization of the adjoint problem. For our purpose here, a nonlinear scalar advection-
diffusion equation under the form:

a · ∇u−∇ · (ν(u)∇u) = f,x ∈ Ω (B.22)

is sufficient. Here f is a forcing term similar to those used as tuning parameters in the
body of this work. The boundary conditions associated with this problem are typically
of Dirichlet or Neumann types:

ΓD : u = g(x), ΓN : ν(u)n · ∇u = 0 (B.23)

The Finite-Element discretization of such equation considers its weak-form, given by:

r(u, v) =
∫

Ω
(a · ∇uv + ν(u)∇u · ∇v − fv) dΩ = 0, ∀v (B.24)
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This (semi-linear) form provides a nonlinear residual that needs to be zero for all test
functions v so that u is a weak solution of our problem. In practice, it is achieved with
a Newton method, which converges towards a solution by successive inversions of the
Jacobian of the system, which corresponds to the linearization of this residual:

a(δu, v) =
∫

Ω
(a · ∇(δu)v + ν(u)∇(δu) · ∇v + ∂uν(u)(δu)∇u · ∇v) dΩ

= −r(u, v),∀v
(B.25)

where a(δu, v) is a bilinear form that leads to the Jacobian matrix upon discretization.
Here, for simplicity, we suppose that the solution guess u already satisfies the Dirichlet
boundary condition, meaning that the correction δu has to satisfy δu = 0 at ΓD. This
imposition of the Dirichlet boundary conditions is done through, for example, elimination
of columns and lines of the complete matrix corresponding to the degrees of freedom
on which we impose u = 0. Another way, which is default in FreeFEM++ and used
throughout this work, is the penalization of those degrees of freedom in the diagonal of
the matrix, freezing them.

We proceed now to the adjoint problem. This problem appears whenever we desire to
optimize some functional J under the PDE constraint. We consider the Lagrangian:

L = J +
(
u†, a · ∇u−∇ · (ν(u)∇u)− f

)
Ω

(B.26)

The variation of this Lagrangian with respect to u, and the further integration by parts
of the viscous terms lead to:(

∂L
∂u

, δu

)
Ω

=
(
∂J
∂u

, δu

)
Ω

+
(
u†, a · ∇δu−∇ · (ν(u)∇(δu) + ∂uν(u)(δu)∇u)

)
Ω

=
(
∂J
∂u

, δu

)
Ω

+ a†(u†, δu)−
(
u†, ν(u)n · ∇(δu) + ∂uν(u)(δu)n · ∇u

)
∂Ω

(B.27)

where, at this point we can identify the bilinear form a†(u†, δu) = a(δu, u†) in the for-
mulation of the adjoint equations. Since this form is the same as the one leading to the
Jacobian, only with changed arguments, we can see that the bilinear form a†(u†, δu) will
be represented numerically by the transpose of the Jacobian matrix. However, to be able
to fully justify the use of the transposed matrix as the adjoint one, we need to prove
two things: (a) that the last boundary term appearing in (B.27) is zero and (b) that
the adjoint variable should satisfy a Dirichlet boundary condition at ΓD. This last point
presents itself numerically in the imposition of the boundary condition by line/columns
elimination or penalization, and we need to ensure that the positions of the adjoint ma-
trix where this procedure was done are the same as the ones in the Jacobian matrix. We
remark that, if an homogeneous Dirichlet condition is verified at ΓD, the aforementioned
boundary term is only non null at ΓN , where, by application of the linearized Neumann
boundary conditions for δu, i.e., ν(u)n ·∇(δu) + ∂uν(u)(δu)n ·∇u = 0, we prove it is also
null. This means that both points (a) and (b) can be assured by showing that u† = 0 at
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ΓD. To do so, we continue the integration by parts in the adjoint derivation:(
∂L
∂u

, δu

)
Ω

=
(
−∇ · (u†a) + (∂uν(u))∇u† · ∇u−∇ · (ν(u)∇u†) + ∂J /∂u, δu

)
Ω

−
(
u†, ν(u)n · ∇(δu) + (∂uν)n · ∇u

)
∂Ω

+
(
νn · ∇u† + a · nu†, δu

)
∂Ω

(B.28)

This determines the volume (strong) equation for the adjoint problem as:

−∇ · (u†a) + (∂uν(u))∇u† · ∇u−∇ · (ν(u)∇u†) = −∂J /∂u (B.29)

and the boundary conditions. Indeed, at ΓN , by applying the linearized Neumann bound-
ary condition, we have that, to the boundary terms to be zero, n · (au† + ν(u)∇u†) = 0.
At ΓD, since δu = 0, to the remaining boundary terms to be zero, we have that u† + 0.
We have proven this way that the transpose of the Jacobian matrix provides indeed a
FEM discretization of the adjoint equations.
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optimization: theoretical and practical aspects. Springer Science & Business Media.

Bosch, G. and Rodi, W. (1998). Simulation of vortex shedding past a square cylinder
with different turbulence models. Int. J. Numer. Meth. Fl., 28(4):601–616.

Brandt, L., Sipp, D., Pralits, J. O., and Marquet, O. (2011). Effect of base-flow variation
in noise amplifiers: the flat-plate boundary layer. J. Fluid Mech., 687:503–528.

123



124 Bibliography

Brooks, A. and Hughes, T. (1982). Streamline upwind/petrov-galerkin formulations for
convection dominated flows with particular emphasis on the incompressible Navier-
Stokes equations. Comput. Method. Appl. M., 32(1-3):199–259.

Broyden, C. G. (1983). Quasi-Newton methods and their application to function mini-
mization. Maths. Comput., 21:368.

Brun, C., Aubrun, S., Goossens, T., and Ravier, P. (2008). Coherent structures and their
frequency signature in the separated shear layer on the sides of a square cylinder. Flow
Turbul. Combust., 81(1-2):97–114.

Camarri, S., Trip, R., and Fransson, J. H. (2017). Investigation of passive control of the
wake past a thick plate by stability and sensitivity analysis of experimental data. J.
Fluid Mech., 828:753–778.

Chomaz, J.-M. (2005). Global instabilities in spatially developing flows: Non-normality
and nonlinearity. Annu. Rev. Fluid Mech., 37:357–392.

Colburn, C., Cessna, J., and Bewley, T. (2011). State estimation in wall-bounded flow
systems. part 3. the ensemble Kalman filter. J. Fluid Mech., 682:289–303.

Cossu, C., Pujals, G., and Depardon, S. (2009). Optimal transient growth and very
large–scale structures in turbulent boundary layers. J. Fluid Mech., 619:79–94.

Crivellini, A., D’Alessandro, V., and Bassi, F. (2013). A Spalart–Allmaras turbulence
model implementation in a discontinuous galerkin solver for incompressible flow. J.
Comp. Phys., 241:388–415.

Crouch, J., Garbaruk, A., Magidov, D., and Travin, A. (2009). Origin of transonic buffet
on aerofoils. J. Fluid Mech., 628:357–369.

D’Adamo, J., Papadakis, N., Memin, E., and Artana, G. (2007). Variational assimilation
of POD low-order dynamical systems. J. Turbul., 8:1–22.

Dandois, J., Garnier, E., and Sagaut, P. (2007). Numerical simulation of active separation
control by a synthetic jet. J. Fluid Mech., 574:25–58.

Dandois, J., Mary, I., and Brion, V. (2018). Large-eddy simulation of laminar transonic
buffet. J. Fluid Mech., 850:156–178.

Deck, S. (2005). Zonal-detached-eddy simulation of the flow around a high-lift configura-
tion. AIAA J., 43 (11):2372–2384.

Deconinck, B. and Kutz, J. N. (2006). Computing spectra of linear operators using the
Floquet–Fourier–Hill method. J. Comp. Phys., 219(1):296–321.

Duraisamy, K., Iaccarino, G., and Xiao, H. (2019). Turbulence modeling in the age of
data. Annu. Rev. Fluid Mech., 51:357–377.

Ehrenstein, U. and Gallaire, F. (2005). On two-dimensional temporal modes in spatially
evolving open flows: the flat-plate boundary layer. J. Fluid Mech., 536:209–218.



Bibliography 125

Ehrenstein, U. and Gallaire, F. (2008). Two-dimensional global low-frequency oscillations
in a separating boundary-layer flow. J. Fluid Mech., 614:315–327.

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model
using Monte–Carlo methods to forecast error statistics. J. Geophys. Res., 99(C5):10143–
10162.

Evensen, G. (2009). Data-Assimilation: yhe ensemble Kalman filter. Springer-Verlag,
2nd edition.

Fletcher, R. (1970). A new approach to variable metric algorithms. Comp. J., 13:317.

Fletcher, R. and Powel, M. J. D. (1963). A rapidly convergent descent methods for
minimization. Comp. J., 6:163.

Foures, D. P. G., Dovetta, N., Sipp, D., and Schmid, P. J. (2014). A data–assimilation
method for Reynolds-averaged Navier–Stokes-driven mean ow reconstruction. J. Fluid
Mech., 759:404–431.

Franca, L. P. and Frey, S. L. (1992). Stabilized finite element methods: Ii. the incom-
pressible Navier-Stokes equations. Comput. Method. Appl. M., 99(2-3):209–233.

Franca, L. P., Frey, S. L., and Hughes, T. J. (1992). Stabilized finite element methods: I.
application to the advective-diffusive model. Comput. Method. Appl. M., 95(2):253–276.

Gronskis, A., Heitz, D., and Memin, E. (2013). Inflow and initial conditions for direct
numerical simulation based on adjoint data assimilation. J. Comp. Phys., 242:480–497.

Gronskis A., Heitz D., M. E. (2013). Inflow and initial conditions for direct numerical
simulation based on adjoint data assimilation. J. Comp. Phys., 242:480–497.

Haferssas, R., Jolivet, P., and Rubino, S. (2018). Efficient and scalable discretization of the
navier–stokes equations with LPS modeling. Comput. Method. Appl. M., 333:371–394.
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Titre : Stratégies de modélisation pour la reconstruction d’écoulements aérodynamiques à partir de mesures
partielles

Mots clés : turbulence, assimilation de données, modélisation

Résumé : Dans un premier temps, nous nous
intéresserons à la récupération du champ moyen
à partir d’informations partielles ou éparses, allant
des sondes de vitesse ponctuelles à la pression ou
frottement de paroi. Pour le réaliser, on considère
les équations de Reynolds-Averaged Navier-Stokes
(RANS), complétées par un modèle, ici le Spalart-
Allmaras. Ce type de modélisation a été conçu pour
quelques configurations d’écoulement de référence
et peut manquer de généralité, ce qui conduit à des
prédictions erronées, surtout lorsqu’il y a recircula-
tion. Nous modifions ce modèle avec un paramètre
de contrôle tel que la solution modifiée corresponde le
mieux aux données de champ moyen mentionnées ci-
dessus. La configuration considérée est une marche
descendante à Re = 28275, avec des données réelles
provenant d’une DNS.
Ensuite, nous nous intéressons à l’analyse linéaire
de champ moyen et à son utilisation pour prédire la
fluctuation non linéaire instationnaire. En particulier,
nous concevons un modèle d’ordre réduit, composé
de l’équation du champ moyen couplé aux modes
de résolvent, qui prédit la fluctuation pour chaque

fréquence existante. Les énergies de ces modes
sont utilisées comme paramètres à régler par la
procédure d’assimilation des données, qui nécessite
généralement (très) peu de donnée, typiquement des
signaux résolus en temps issus de sondes ponc-
tuelles. Cette technique sera appliquée dans des
écoulements transitoires tels que celui autour d’un
cylindre à section carrée, un cas de référence pour
les écoulements oscillateurs, et une marche descen-
dante, un écoulement type d’amplificateur de bruit.
Nous considérons ensuite un cas turbulent corres-
pondant à l’écoulement autour d’un cylindre à sec-
tion carrée à Re = 22000, ayant à la fois des ca-
ractéristiques d’oscillateur (émission périodique de
vortices) et d’amplificateur de bruit (représenté par les
structures Kelvin-Helmholtz). L’analyse classique de
stabilité de champ moyen est utilisée pour récupérer
le mode d’emission de vortex et une technique
de résolvent, basée sur les équations linéarisées
autour de la composante périodique, est utilisée
pour récupérer la dépendance des modes Kelvin-
Helmholtz avec l’emission de vortex.

Title : Modeling Strategies for Aerodynamic Flow Reconstruction from partial measurements

Keywords : turbulence, data-assimilation, modeling

Abstract : In a first moment we will be interested in
the recovery of the mean-flow quantities from partial
or sparse information, ranging from point-wise velocity
probes to wall-pressure and friction. This will be achie-
ved by considering the Reynolds-Averaged Navier-
Stokes (RANS) equations, completed with a model,
here the Spalart-Allmaras. This kind of modeling has
been conceived for some benchmark flow configura-
tions and may lack generality, leading to erroneous
predictions, especially when re-circulation is present.
We modify this model with a tuning parameter such
that its solution matches the best the aforementioned
mean-flow data. The configuration considered was a
Backward-Facing Step at Re = 28275, with actual data
stemming from a DNS.
Then, we turn our attention to linear mean-flow ana-
lysis and its use to predict the nonlinear unsteady
fluctuation. In particular, we design a reduced-order
model, composed by the mean-flow equation coupled

with the resolvent modes, predicting the fluctuation
for each existing frequency. The energies of those
modes are used as tuning parameters for the data-
assimilation procedure, that will take as input typically
(very) few point-wise time-resolved information. This
technique will be applied in transitional flows such as
the one around a squared-section cylinder, a bench-
mark case for oscillator flows, and a backward-facing-
step, a typical noise-amplifier flow.
We then consider a turbulent case corresponding
to the flow around a squared-section cylinder at
Re = 22000, having both oscillator (periodic vortex-
shedding) and noise-amplifier-like characteristics (re-
presented by the Kelvin-Helmholtz structures). Classi-
cal mean-flow stability analysis is used to recover the
the vortex-shedding mode and a resolvent technique,
based on the linearized equations around the periodic
component, is used to recover the dependency of the
Kelvin-Helmholtz modes with the vortex-shedding.
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