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R É S U M É E N F R A N Ç A I S

Depuis son invention en par Nicéphore Niépce, la photographie s'est réinventée à de nombreuses reprises en termes d'applications, mais aussi de procédés. Du bitume de Judée au capteur photographique, en passant par les halogénures d'argent, le support d'enregistrement a beaucoup évolué au cours du XXe siècle. Cependant, la photographie classique ne permet de capturer la scène que d'un seul point de vue. Cela peut être contraignant car cela limite l'immersion du spectateur, qui est privé de plusieurs indices visuels qui sont souvent utilisés pour percevoir la profondeur dans les scènes réelles : parallaxe, accommodation, stéréopsie et convergence.

Pour remédier à cela, de nouvelles modalités d'imagerie sont apparues ces dernières années. L'une des modalités les plus prometteuses est le champ de lumière, qui décrit la lumière qui circule dans une scène comme un champ de rayons lumineux. On peut aussi le considérer comme un ensemble de photographies d'une scène prises simultanément à partir de di érents points de vue. En acquérant et en a chant des champs de lumière, un observateur est capable de percevoir la scène comme s'il y était. Dans le domaine de la vision par ordinateur, les di érents points de vue permettent généralement d'estimer la disparité et donc la profondeur. En n, des photographies classiques peuvent être générées à partir de champs de lumière où le point de vue, l'ouverture numérique et le plan de mise au point peuvent être modi és.

L'acquisition de champs de lumière se fait généralement avec deux types d'appareils : (a) avec une matrice de caméras régulièrement disposées sur un même plan, (b) avec une caméra plénoptique qui est composée d'un objectif principal, d'une grille de micro-lentilles et d'un capteur. Au début, les dispositifs d'acquisition de champs de lumière mis au point enregistraient des champs de lumière xes. Cependant, étant donné que les capteurs utilisés dans ces dispositifs sont les mêmes que ceux des caméras classiques (c'est-à-dire CMOS ou CCD) et si les bandes passantes des appareils sont su samment larges, il est possible d'acquérir des champs de lumière d'une scène à di érents moments. À cet égard, plusieurs jeux de données vidéos ont été récemment publiés, o rant une grande diversité de champs de lumière : synthétiques (générés avec des logiciels de synthèse d'images), enregistrés avec une matrice de caméras ou avec une caméra plénoptique.

L'extraction d'un champ de lumière utilisable à partir de ces appareils peut cependant s'avérer di cile car les deux types de dispositif nécessitent un traitement postacquisition lourd : démosaïquage, dévignettage, étalonnage, etc. Une partie importante de la littérature sur les champs de lumière est donc consacrée à cette question. Une autre partie de la recherche se concentre sur l'estimation de la profondeur et l'interpolation de points de vue. Ces tâches sont des étapes clés pour tout schéma de compression ou rendu post-acquisition. Développer des méthodes e caces de compression est en outre critique pour les champs de lumière car ce sont des objets très redondants et de grande dimension, d'autant plus lorsque l'on considère des vidéos de champs de lumières.

L'extraction d'un champ de lumière à partir d'une image plénoptique brute avec la meilleure qualité possible est cruciale pour de nombreuses applications. Un champ de lumière mal extrait aura un impact négatif sur les performances en matière d'estimation de la profondeur, d'interpolation des vues et de traitements post-acquisition. Par conséquent, chaque étape de l'extraction doit être soigneusement étudiée. Il faut notamment tenir compte de la structure sous-jacente donnée à l'image brute par le réseau de micro-lentilles d'une caméra plénoptique. Ceci nous amène à la première problématique de cette thèse :

. Comment extraire les vues d'un champ de lumière à partir des données du capteur d'une caméra plénoptique, en tenant compte de la structure lenticulaire de l'image brute ? Pour répondre à cette question, nous avons étudié les défauts du processus d'extraction le plus utilisé, étape par étape. Nous avons vu comment certaines étapes ne prennent pas en compte la structure lenticulaire de l'image brute et comment cela produit un champ de lumière avec des artefacts fantômes (c'est-à-dire que les vues périphériques du champ de lumière sont mélangées avec d'autres vues). Sur la base de ce constat, nous proposons quelques améliorations qui tiennent compte de la structure lenticulaire en utilisant une image blanche plénoptique pour guider les étapes d'interpolation. Nous montrons comment la méthode proposée permet d'éliminer les artefacts fantômes.

Une fois que les champs de lumière sont extraits des caméras plénoptiques ou des matrices de caméras, une utilisation courante consiste à récupérer des informations géométriques. De nombreuses méthodes ont déjà été proposées pour estimer des cartes de profondeur à partir de champs de lumière xes, mais très peu de recherches ont été menées sur l'analyse du mouvement à partir de vidéos de champs de lumière. Dans la littérature de la vision par ordinateur, les concepts de ux optique et de ux de scène sont souvent utilisés pour décrire le mouvement apparent dans une scène. Le ux optique est un champ vectoriel qui décrit le mouvement apparent en D de chaque pixel du capteur entre deux instants. Le ux de scène est une extension du ux optique dans laquelle des informations de profondeur sont ajoutées, i. e., l'estimation de la profondeur et de la variation de la profondeur. Intuitivement, les vidéos de champ de lumière doivent être appropriées pour estimer un ux de scène : chaque vue de la vidéo de champs de lumière peut être considérée comme une vidéo classique à laquelle on peut appliquer des méthodes de ux optique standard. Pour l'estimation de la profondeur, nous pourrions utiliser des paires de vues comme des images stéréoscopiques et appliquer des méthodes classiques d'estimation de disparité. Cependant, cela soulèverait deux problèmes : pre-mièrement, la distance entre chaque point de vue du champ de lumière pourrait être trop petite pour utiliser des méthodes stéréoscopiques classiques, deuxièmement les estimations du ux de scène pourraient être globalement incohérentes pour l'ensemble du champ de lumière. C'est ce qui nous amène à notre deuxième point :

. Comment estimer le ux de scène d'une vidéo de champs de lumière qui soit à la fois précis et cohérent entre chaque vue (i. e., angulairement cohérent) ? Nous proposons un modèle a ne D local pour décrire le ux de scène d'une vidéo de champs de lumière. Pour l'appliquer, nous divisons le champ de lumière en sousensembles et estimons les paramètres du modèle pour chaque sous-ensemble avec des estimations initiales du ux de scène. Le modèle renforce alors la cohérence du ux de scène dans le champ de lumière. Nous montrons deux applications de ce modèle : une méthode d'interpolation "épars-vers-dense" où le ux de scène initial est estimé sur un sous-ensemble limité de rayons, une méthode de régularisation où l'estimation du ux de scène initial est dense mais incohérent au sein du champ de lumière. Cette dernière application nous permet d'utiliser des méthodes d'apprentissage profond sur chaque vue de champ de lumière, puis de régulariser les estimations a n d'éliminer les valeurs aberrantes et les incohérences angulaires.

Une application habituelle des méthodes d'estimation du mouvement consiste à interpoler une image intermédiaire à partir de deux images consécutives dans une vidéo. Cette interpolation peut être utile pour la vidéo de champs de lumière, car certaines caméras plénoptiques vidéos ont une très faible fréquence d'images. De plus, comme la compression est cruciale pour le traitement des champs de lumière, la capacité à générer une vidéo de champs de lumière entière à partir de quelques champs de lumière est particulièrement intéressante. C'est de là que découle notre dernière problématique :

. En utilisant notre estimation du ux de scène, comment pouvons-nous générer un champ de lumière intermédiaire cohérent à partir de deux champs de lumière consécutifs ? Dans ce contexte, nous proposons une nouvelle méthode d'interpolation de vidéo de champs de lumière qui soit cohérente angulairement et temporellement. La cohérence angulaire est contrainte par la méthode d'estimation du ux de scène susmentionnée et la cohérence temporelle est renforcée par un réseau de neurones entraîné sur des vues individuelles.

La thèse est organisée de la manière suivante :

Le Chapitre dé nit formellement le concept de champ de lumière. Tout d'abord, l'histoire des champs de lumière est résumée. Ensuite, nous montrons comment le champ de lumière est dérivé de la fonction plénoptique. Di érentes façons de visualiser les champs de lumière sont présentées et des utilisations habituelles des champs de lumière sont données. Ensuite, nous détaillons les di érentes façons d'acquérir les champs de lumière : matrice de caméras et caméra plénoptique.

En n, nous présentons les di érentes méthodes qui ont été proposées pour extraire un champ de lumière à partir de matrices de caméras et de caméras plénoptiques.

Le Chapitre propose des améliorations sur l'un des processus d'extraction les plus utilisés pour les caméras plénoptiques. Tout d'abord, nous analysons et décrivons les défauts de ce processus. Pour mieux identi er les di érentes sources d'artefacts, notre analyse est e ectuée en générant des images plénoptiques brutes idéales à partir de champs de lumière synthétique et en les utilisant comme entrées du processus de décodage. Ensuite, nous détaillons une nouvelle méthode de démosaïquage basée sur les images blanches plénoptiques fournies qui servent de guide. En outre, nous montrons que ce type d'interpolation guidée peut être utile à d'autres étapes du pipeline de décodage. En n, nous évaluons la qualité de vues extraites de champs de lumière synthétiques et réels via des comparaisons visuelles ainsi que des mesures objectives.

Le Chapitre donne une vue d'ensemble sur plusieurs questions de vision par ordinateur liées à l'estimation du ux de scène. Plus précisément, nous présentons d'abord les di érents types de méthodes qui ont été proposées pour estimer la profondeur à partir de champs de lumière. Ensuite, nous passons en revue une partie de la littérature sur l'estimation de ux optique. Ensuite, di érentes publications sur l'estimation du ux de scène sont discutées. En n, nous détaillons plusieurs méthodes pour l'interpolation temporelle des vidéos.

Le Chapitre propose une nouvelle méthode d'estimation du ux de scène à partir de vidéos de champs de lumière. Nous introduisons d'abord un modèle local, a ne et D pour représenter les ux de scène, en tenant compte de la géométrie épipolaire des champs de lumière. Les paramètres du modèle sont estimés par sous-ensembles de rayons du champs de lumière. Ils sont obtenus en ajustant le modèle sur des estimations initiales de mouvement et de disparité obtenues par des techniques d'estimation de ux optique D. Nous montrons d'abord que le modèle peut être utilisé pour densi er des estimations de ux calculés sur un sous-ensemble restreint de rayons. Nous démontrons ensuite que le modèle est également très e cace pour l'estimation des ux de scène à partir de ux optiques D. Le modèle régularise les ux optiques et les cartes de disparité, et interpole les valeurs de variation de disparités dans les régions occultées. Le modèle proposé nous permet de béné cier des méthodes d'estimation des ux optiques D basées sur la théorie de l'apprentissage profond tout en assurant la cohérence de la géométrie épipolaire des ux de scène dans les quatre dimensions du champ de lumière.

Le Chapitre aborde le problème de l'interpolation temporelle des vidéos de champ de lumière en utilisant des ux de scènes denses. 

O P E N I N G I N T R O D U C T I O N

Since its invention in by Nicéphore Niépce, Photography reinvented itself many times in terms of applications but also in terms of process. From bitumen to electronic photodetector, trough silver halide, the recording medium changed a lot during the th century. However, standard photography remains trapped in recording a unique point of view of the scene at once. This unique point of view can be restricting as it limits the immersion of the observer who is deprived of several depth cues that are often used to perceive depth in real scenes: parallax, accommodation, stereopsis and convergence.

To cope with this, new imaging modalities have emerged these last years. One of the most promising modality is light eld, which describes light owing in a scene as a eld of light rays. Alternatively, it can be seen as a collection of photographs of a scene simultaneously recorded from di erent points of view. By capturing and displaying light elds, an observer is able to perceive the scene as if they were in it. From a computer vision perspective, di erent points of view typically allow for disparity estimation and thus depth estimation. Last, standard photographs can be generated from light elds where the point of view, the aperture and the focal plane are changed after the acquisition.

Capturing light elds is usually done with two types of devices: (a) with an array of cameras regularly placed on one plane, (b) with a plenoptic camera which is composed of a main lens, a lenslet array and a sensor. At rst, the developed light eld capturing devices were recording still light elds. However, given that the sensors used in these arrays of cameras and plenoptic cameras are the same as in standard cameras (i. e., CMOS or CCD) and provided that the bandwidths of the devices are large enough, recording light elds of a scene at di erent time instants is feasible. In this regard, several video datasets have been recently published o ering an important diversity of light elds: synthetic (generated with computer graphics softwares), captured with an array of cameras or with a plenoptic camera.

Retrieving a usable light eld from those devices can however be challenging as both types require heavy post-capture processing, e. g., demosaicing, devignetting, calibration. So, an important part of literature on light elds is dedicated to this issue. Another major part of research focus on depth estimation and view interpolation, which are key steps for any compression scheme or post-capture rendering. Having e cient methods to perform compression is especially needed for light elds as they are D and highly redundant, even more when we consider light eld videos.

Extracting a light eld from a plenoptic raw image with the best possible quality is crucial for a lot of applications. A badly extracted light eld will impact performance in depth estimation, view interpolation and post-capture rendering tasks. Therefore, every step of the extraction must be carefully investigated. Particularly, the underlying structure of the raw image given by the lenslet array of a plenoptic camera must be taken into account. This leads us to the rst question tackled in this thesis:

. How to retrieve the views of the light eld from the sensor data of a plenoptic camera, taking into account the lenticular structure of the raw image? To answer this question, we will investigate the aws of the most used extracting pipeline, step by step. We will see how some steps do not take into account the lenslet structure of the raw image and how it produces light eld with ghost artifacts (i. e., peripheral views of the light eld are blended with other views). Based on this assessment, we propose some improvements that take into account the lenslet structure by using a plenoptic white image to guide the interpolation steps. We show how our proposed method removes the ghost artifacts.

Once light elds are extracted from plenoptic cameras or arrays of camera, a common use of them is to retrieve geometry information. A lot of methods have already been proposed to estimate depth maps from still light elds but very few research has been conducted on motion analysis from light eld videos. In the computer vision litterature, the concepts of optical ow and scene ow are often used to describe the apparent motion in a scene. The optical ow is a vector eld that gives the apparent D motion of every pixel on the sensor between two time instants. The scene ow is an extension of the optical ow where some depth information is added, i. e., depth and depth variation estimation. Intuitively, light eld videos should be well suited for estimating scene ow: we can treat every view of the light eld video as a classical frame and apply standard optical ow methods. For depth estimation, we could use pairs of views as stereo images and apply common disparity estimation methods. However, this would raise two major issues: rst, the baseline between two di erent points of view of the light eld might be too small to use regular stereo methods, second the scene ow estimates can be inconsistent among views. This gives us our second point:

. How to estimate the scene ow of any light eld video that is both accurate and consistent between every view (i. e., angularly consistent)? We propose a local D a ne model to describe the scene ow of a light eld video. We split the light eld into clusters and estimate the model parameters for each cluster with initial scene ow estimates. The model enforces the consistency of the scene ow in every D cluster. We show two applications of this model: a sparse-to-dense interpolation method where the initial scene ow is estimated on a limited subset of rays, and a regularization method where the scene ow estimates are dense but inconsistent in the light eld volume. This last application allows us to use state-of-the-art deep learning methods on each light eld view and then to regularize the estimates to remove the outliers and the angular inconsistencies.

A usual application of motion estimation methods is to perform frame interpolation which consists in generating intermediate frames between two given consecutive frames. This is especially helpful for light eld video since some plenoptic cameras have a very low framerate. Furthermore, as compression is crucial for light eld processing, being able to generate a whole light eld video from a few light eld frames is a meaningful goal to aim for. From this arises our nal question:

. Using our scene ow estimation, how can we generate consistent intermediate light eld frames from two consecutive ones? In this context, we propose a new method for interpolating light eld frames from a light eld video that are angularly and temporally consistent. The angular consistency is constrained by the aforementioned scene ow estimation method and the temporal consistency is enforced with a neural network trained on individual views.

The rest of the thesis is organized in the following manner:

Chapter provides background on light eld imaging. First, the history of light eld is summarized. Then the light eld function is formally de ned and we show how it is derived from the plenoptic function. We exhibit di erent ways of visualizing light elds and we give usual applications of light elds. Next, we detail the di erent ways of capturing light elds: arrays of cameras and plenoptic camera. Finally, we review di erent methods that have been proposed to extract a light eld from arrays of cameras and plenoptic cameras.

Chapter proposes improvements on one of the most used extracting pipeline for plenoptic cameras. First, we analyze and describe the aws of the state-of-the-art pipeline. To better identify the di erent sources of artifacts, our analysis is performed by generating ideal lenslet images from synthetic light elds and use them as input of the decoding pipeline. Then, we detail a new method of demosaicing based on the provided white lenslet images serving as guide. Furthermore, we show that this kind of guided interpolation can be useful on other steps of the decoding pipeline. Finally, the quality of the resulting views is assessed for both synthetic and real light elds using visual comparisons as well as objective metrics.

Chapter gives an overview on several computer vision issues related to scene ow estimation. Namely, we rst exhibit the di erent types of methods that have been proposed to estimate depth from light elds. Then, we review some literature about optical ow estimation. Next, publications about scene ow estimation are discussed. Finally, we detail numerous state-of-the-art methods for frame interpolation.

Chapter proposes a new method of scene ow estimation from light eld videos. Chapter addresses the problem of temporal interpolation of light eld videos using dense scene ows. Given light elds at two time instants, the goal is to interpolate an intermediate light eld to form a spatially, angularly and temporally coherent light eld video sequence. We rst compute angularly coherent bidirectional scene ows between the two input light elds. We then use the optical ows and the two light elds as inputs to a convolutional neural network that synthesizes independently the views of the light eld at an intermediate time. In order to measure the angular consistency of a light eld, we propose a new metric based on epipolar geometry. Experimental results show that the proposed method produces light elds that are angularly coherent while keeping similar temporal and spatial consistency as state-of-the-art video frame interpolation methods.

Most of the described ndings and proposals are published in the following proceedings of international conferences and journals: 

I G H T F I E L D I M A G I N G 1 B A C K G R O U N D O N L I G H T F I E L D I M A G I N G .
Gabriel Lippmann, inventor of color photography and Nobel Prize winner is the rst scientist who proposed a system design which could capture a light eld. Back then, the expression light eld did not exist, Lippman used the expression "photographie intégrale", in English integral photography. In March , Lippman showed his theory in front of the French Academy of Science in a report named "Épreuve réversible, Photographie Intégrale" [ ]. However at that time, he did not have the technical means to manufacture his invention. From a theoritical point of view, Gershun is the rst scientist who used the term light eld in . He formalized this notion in a vectorial function in a monograph named "The light eld" [ ].

Gradually, from the s, the scienti c interest for light eld began to fall. Some scientist like Chutjian (in the s) and Dudnikov (in the s) however carried on some research. Rebirth of light eld occurred with the development of computer graphics and digital camera. Adelson published two papers in and respectively focused on the plenoptic function [ ] and the plenoptic camera [ ].

In , Marc Levoy and Pat Hanrahan, researchers at Stanford University, published a seminal paper named "Light Field Rendering" [ ], in which they described a new representation of light elds, which they called light slab. The article also showed how to extract new views from a limited number of recorded views. They proved it could be useful for many applications requiring interaction with D scenes and that the huge volume of data it produces could be compressed. This article truly boosted the trend around light elds in the scienti c community as it showed a practical use of light elds.

At the same time, there were also innovations in capturing light elds from real scenes. In , Stanford Computer Graphics Laboratory (the laboratory where Levoy and Hanrahan worked) built a multi-camera array. One of its application was to capture light elds [ ]. A few years later, in , Ren Ng, PhD student of Marc Levoy and Pat Hanrahan, published two important articles [ , ]. In the rst one, he developed a device to capture light elds without using a multi-camera array and in the other one, he demonstrated how to refocus a light eld image, using the Fourier domain. In , Ren Ng created a company called Lytro, which developed and sold plenoptic cameras. In , Christian Perwaß founded Raytrix, which develops another type of hand-held light eld cameras for industry and research. This type of light eld cameras is based on what Todor Georgiev called focused plenoptic camera in his eponymous article [ ], he sooner had demonstrated that it was bene cial to trade angular resolution for spatial resolution [ ].

. . . Plenoptic function

One of the simplest way to describe light and its interaction with matter is to model its propagation in terms of rays. In this model, a light source emits a discrete amount of rays in di erent directions. Each ray carries a part of the emitted energy and travels in straight lines in homogeneous medium. The rays can also be bend, re ected or absorbed when they encounter a new medium. This description of light has the advantage of being simple to compute and accurate when it comes to describe light interactions with objects that are much larger than the light ray wavelength (≈ 10 -3 mm). In this context, when trying to characterize human and computer vision, Adelson and Bergen [ ] proposed the plenoptic function P :

(X, Y, Z) Z X Y φ θ R(λ, t)
R = P (X, Y, Z, θ, φ, λ, t) ( . )
This function describes the radiance R perceived by an observer located at point (X, Y, Z) at a given time t, looking in the direction given by the spherical angular coordinates (θ, φ) for a wavelength λ. It is a dimensional function with geometrical dimensions (X, Y, Z, θ, φ) whose parametrization is shown in Figure . .

The plenoptic function can be used to describe any observable scene with any light capturing device. For example, a pinhole camera records a sampling of the plenoptic function at a xed position (X, Y, Z) at time t. The focal length of the lens and the size of the sensor determine the range of (θ, φ) and the color lter array placed over the sensor samples the visible wavelengths λ into three colors: red, green, blue. In practice, the plenoptic function is often simpli ed: instead of using the radiance of the light rays for every wavelength, [ ] directly uses the signal intensity of the sensor pixels I for three color channels (red, green, blue). Furthermore, the temporal dimension is also often omitted.

. . Light eld function

The plenoptic function is a complicated function that we cannot measure for now. However, for some scenes with non concave objects and without bulk attenuation, it is possible to reduce the function to four degrees of freedom. As the radiance remains the same along a light ray, a plenoptic function is very redundant, the ve geometrical dimensions of the plenoptic function can be reduced to four. In , [ ] and [ ] simultaneously proposed a new -dimensional parametrization of the reduced plenoptic function, that they respectively called light eld and lumigraph. In the rest of this thesis, we will refer to this reduced plenoptic function as light eld as it is currently the most commonly used in the literature. The parametrization described in [ ] and [ ] uses two parallel planes to de ne the light eld as we can see in Figure . . Note that this parametrization implies that the light eld function is only de ned in a half-space.

I = L(u, v, x, y) ( . )
This parametrization has the advantage of eliminating angular coordinates and getting closer to the parameterization of a conventional D image. Thus, if we take the same example of a pinhole camera shooting a scene, the camera samples the light eld function at a given position (u, v) for a range of (x, y) determined by the optical con guration of the camera. The (x, y) coordinates de ne a D image and (u, v) coordinates a point of view. By convention, we respectively call the (u, v) and (x, y) coordinates angular and spatial dimensions.

Other parametrizations were proposed by [ ]. They are shown in Figures . and . . In Figure . , a ray is de ned by two distinct points on a sphere. In the parametrization on Figure . , a ray is de ned by a point on any surface and an orientation.

Similarly to the plenoptic function, we can also de ne a light eld video function where a temporal dimension is added to the light eld function. By de nition, each frame of a light eld video is a light eld. 

φ 1 θ 1 φ 2 θ 2 R(λ, t)
V u 0 v 0 (x, y) = L(u 0 , v 0 , x, y) ( . )
Likewise we respectively denote horizontal and vertical epipolar plane images the following partial functions:

E h v 0 y 0 (u, x) = L(u, v 0 , x, y 0 ) ( . ) E v u 0 x 0 (v, y) = L(u 0 , v, x 0 , y) ( . )
These representations allow us to visualize the epipolar lines in the light eld and thus the geometry of the scene. The slopes of the lines vary with the depth of the D point they come from. The di erent presentations are shown in Figure . .

. . Possibilities o ered by light elds

Virtual and augmented reality

Once a light eld is captured or synthesized, the rst application is to display it. Research on light eld displays has been going on since when [ ] proposed new methods for dynamic rendering and autostereoscopic viewing of light elds. Then, an autostereoscopic viewing system was developped in [ ], using a lenslet array in front of a projector. Another possibility to view a light eld is to use multilayer displays, also know as tensor displays, as it is the case in [ , ].

Compared to standard D displays, light eld displays provide more depth cues: parallax, stereopsis, accommodation and potentially convergence. By projecting the individual light rays of the light eld with their original radiance, the observer theoretically has the same viewing experience as if the object displayed was really in the same room. This enhances the immersion of the observer and therefore opens a lot of opportunities for virtual [ ] and augmented [ ] reality applications. 

Post-capture image rendering

By having captured a light eld, a conventional image I can be produced from it, where we can change the point of view (u 0 , v 0 ), the aperture and the focus. A very basic way of doing so is via the shift-and-add procedure:

I λ,κ u 0 ,v 0 (x, y) = 1 (2κ + 1) 2 (∆u,∆v)∈Wκ L(u 0 + ∆u, v 0 + ∆v, x + λ∆u, y + λ∆v) ( . )
where W κ = [-κ, κ] 2 . The parameters λ and κ respectively control the depth of the virtual focal plane and the size of the aperture. Note that more sophisticated methods based on splatting kernels [ ] or Fourier transforms [ ] exist. They either produce higher quality images or have a shorter running time. This is just a very basic example of image rendering methods o ered by light elds. 

Depth estimation

As mentioned before, a light eld describes the radiance of a collection of light rays sampled in position and direction. If we consider that the light rays emitted in every direction by a point of an object have the same radiance (we then call the object lambertian), then it is possible to use this redundancy to estimate the distance between the light eld capturing device and the object. By applying this principle on the whole scene, we can estimate a depth map. Classically this redundancy has been exploited in three di erent ways: ( ) by nding correspondences between the di erent views of a light eld, similarly to stereo matching, ( ) by estimating the slopes in the EPI, ( ) by generating a collection of images with di erent focus (or focal stack) and analyzing the defocus cues. In practice, these methods do not directly give the actual depth of the scene but a representation of the depth, e. g., disparity, slope coe cient, defocus values. Other methods have been proposed, including learning-based approaches and a more thorough litterature review will be made in Chapter . . .

. . Camera arrays

The most straightforward way of capturing light elds is to use multiple standard cameras to capture di erent points of view. As mentioned before, a standard camera captures spatial information at xed angular position. Capturing a light eld with standard cameras can be done in two di erent ways: either by moving a camera on a gantry like [ , ] -this technique can only be used to capture a light eld of a still scene -or by placing multiple cameras on a regular grid like [ -]. The latter requires the cameras to be synchronized when shooting dynamic scenes. In both cases, a calibration is needed to compute the relative position of each point of view. The recent development of plenoptic cameras enables the instantaneous capture of light elds with both spatial and angular information of the scene, as opposed to traditional cameras which can only capture spatial information from a singular point of view. It is more compact than the array of cameras and does not require an alignment and calibration step. The optical design of a plenoptic camera is actually similar to the optical design of a traditional camera, with a main lens and a sensor (CCD or CMOS). A lenslet array is then precisely introduced between the last lens and the sensor. Depending on the distance between the lenslet array and the sensor, the imaging of light eld is completely di erent and de nes two types of plenoptic cameras, called . and . .

Plenoptic .

The rst model, originally described in [ ] and modernized by [ ], was popularized by its implementation in the Lytro cameras. In this design, the main lens focuses the objects on the lenslet array which separates the converging rays on the sensor (see Figure . ). In this con guration, the spatial resolution of the captured light eld is given by the number of lenslets and the angular resolution is given by the number of pixels behind every lenslet. For example, the Lytro camera has approximately 370 × 370 lenslets and 9 × 9 pixels behind each lenslet. Plenoptic .

The plenoptic . design, also called focused plenoptic, was proposed in [ ]. In this con guration, the image plane of the main lens is the object plane of the lenslet array (see Figure . ). So, the lenslet images on the sensor are in focus. For example, in Figure . , the wheel trim of the car is in focus. This design is used in Raytrix cameras and enables the users to control the trade-o between spatial and angular resolution. It is similar to the camera array con guration where each lenslet captures a di erent point of view, the main di erence is that one lenslet only captures a fraction of the scene. .

. . Calibrating camera arrays

When assembling a camera array to capture light eld, we want the camera to be coplanar and regularly spaced from each other. However there are always small mechanical misalignment between the cameras. This produces light eld with an irregular sampling of the angular coordinates which are complex to handle properly, even more so when the exact sampling is unknown. Furthermore, the di erent cameras always have di erent sensor responses which lead to inconsistent colors among every view. For these reasons, raw views captured with camera arrays are often recti ed to produce light elds with a regular angular sampling and homogeneous colors. In order to interpolate the new recti ed view, a geometrical and calibration step is needed to know the relative positions of the cameras. This can be done independently on every camera so, before explaining the di erent methods for calibrating a whole camera array, we will explain how one performs the geometrical calibration of one camera.

Background on classical geometrical camera calibration

In computer vision, a geometrical camera calibration describes a method to estimate the parameters of a lens and image sensor model. These parameters can then be used to correct for lens distortion, measure the actual size of an object, or determine the location of the camera in the scene.

One of the most used models in camera calibration is the pinhole model. The camera is approximated by a perfect pinhole, which has ve intrinsic parameters. We call intrinsic the camera parameters which are independent of the place of the camera in the world. These ve intrinsic parameters can be put in a 3 × 3 matrix K:

K =   α x γ u 0 0 α y v 0 0 0 1   ( . )
Where α x = f /a x and α y = f /a y , with f being the e ective focal length of the lens, a x and a y being the size of a pixel along the x-and y-axis. The parameters u 0 and v 0 are the coordinates of the optical center, and γ is the skew coe cient between the xand y-axis (often equal to ).

In a real lens, the pinhole plane of the model corresponds to the pupil plane and the rays passing through the center of the pupil/pinhole are the chief rays. So, when computing the intrinsic parameters α x , α y , we actually compute the distance between the sensor and the pupil in terms of pixels.

The pin-hole model does not take the distortion induced by the lenses into account. For narrow angle lenses, it is not much of a problem since the distortion is normally very small but for wide angle lenses, distortion cannot be ignored. Such distortions are well modeled using polynomial regression. The order of the regression depends on the precision we want to have. There are two types of coe cients: radial ones and tangential ones. For example, the third order distortion model is parameterized with ve coe cients three radial distortion coe cients k 1 , k 2 , k 3 and two tangential distortion coe cients p 1 , p 2 , such as:

x d = x u (1 + k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 2 (r 2 + 2x u 2 ) + 2p 1 x u y u y d = y u (1 + k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 1 (r 2 + 2y u 2 ) + 2p 2 x u y u ( . )
Where (x d , y d ) is the distorted image point as projected on image plane using speci ed lens, (x u , y u ) is the undistorted image point as projected by an ideal pinhole camera and

r 2 = (x u -u 0 ) 2 + (y u -v 0 ) 2
After having computed the intrinsic parameters and possibly the distortion coe cients, the third part of camera calibration is called extrinsic calibration: it computes the 3 × 3 rotation matrix R and the D translation vector T , which is the position of the origin of the world coordinate system (X, Y, Z) expressed in coordinates of the camera-centered coordinate system of the camera. Summarizing the whole development, we have the following relation:

w   x u y u 1   = K R T      X Y Z 1      ( . )

Camera array calibration

Most modern sensors use a color lter array to capture color images. This array is composed of red, green and blue lters and so, each pixel on the sensor lacks two color channels which can be retrieved by a process called demosaicing. In [ ], the views captured from the di erent cameras are rst demosaiced. Then a white-balance is applied using a medium gray area visible from every camera. This step is performed to have views with homogeneous colors. Next, based on the aforementioned distorted pinhole model, a standard intrinsic/extrinsic calibration is performed on every camera in order to apply a mapping homography on the views.

The authors in [ ] and [ ] have a more complex and global approach on calibration. First, for color calibration, inspired by [ ], they calculate the slopes and o sets of each camera sensor responses for each color channel by taking images of a white target under several di erent exposure levels. Then, after the color homogenization, they demosaic each raw image. For the geometric calibration, while having di erent approaches, both assume that the cameras are coplanar. In [ ], they compute the relative position of every camera on the array by measuring the parallax on several points. On the other hand, the authors in [ ] perform an intrinsic/extrinsic calibration of every camera using [ ] as bundle adjustment methods yield good results according to [ ]. Then, the authors interpolate pseudo-recti ed views.

. . Demultiplexing plenoptic cameras

In every design of plenoptic cameras, the lenslet image captured by a plenoptic camera is not directly interpretable and needs to be decoded. Because information is captured and arranged di erently on plenoptic . and . designs, their respective decoding pipelines are di erent. However, every plenoptic camera shares common aws that need to be handled during the decoding. First, the raw lenslet image has to be demosaiced. Then, images captured with a plenoptic camera have the same pattern as the lenslet array: each lenslet creates a small image on the sensor. These images su er from heavy vignetting, which means that the brightness at the periphery of the lenslets is reduced compared to the lenslet centers. Finally, there is always a slight misalignment between the sensor and the lenslet and this misalignment changes for every manufactured plenoptic cameras. This misalignment should be taken into account for the demultiplexing and therefore a calibration step is needed to determine the positions of the lenslet centers on the sensor.

Plenoptic .

Several demultiplexing pipelines have been proposed for plenoptic . designs. The pipeline proposed in [ ] will be detailed in the next chapter, as we will propose improvements.

The authors in [ ] rst apply a gamma correction on their raw image. Then, using a white raw image, they perform a white-balance and then demosaic the captured image. The next step is the lenslet array calibration: they compute the rotation of the lenslet array in the frequency domain using the Fourier Theorem, then they compute the centers of the lenslet array on the spatial domain using a triangular mesh (or Delaunay triangulation). Next, for every position around the lenslet centers, they extract the corresponding view by using a triangular mesh and performing a barycentric interpolation. Finally, they super-resolve their views using dictionary-learning with sparse coding.

In [ ], the parameters of the grid model of the lenslet array are rst optimized by solving a global optimization problem using a coarse-to-ne brute force search. Then, D demosaicing is performed: to demosaic each pixel of a lenslet image, the authors use the neighboring pixel color information as well as the pixels of the neighbor lenslet images. For the remaining steps, i. e., slicing the views from the raw image and color correction, the authors use the same methods as in [ ].

Plenoptic .

Plenoptic . cameras have di erent optical designs than plenoptic . . Therefore the way of extracting information from their raw sensor is also di erent. As [ ] showed, although it is possible to extract views and EPI from raw plenoptic . images, it is not the most natural way since it produces a lot of artifacts and we rst need to estimate a depth map. Instead, a focal stack is often extracted, e. g., in [ ]. A focal stack is a collection of pictures of the same scene but with di erent focal planes. With a plenoptic . camera, a focal stack can be generated by projecting each pixel (x, y) of the sensor associated with the lenslet (i, j) into a D image according to the following equation:

X Y = s g x y -C ij + C ij ( . )
Where (X, Y ) are the coordinates of the projected pixel on the D refocused image. Di erent (x, y) coordinates can be projected on the same (X, Y ) coordinates. In this case, the pixel value at location (X, Y ) is often averaged using splatting kernels. C ij denotes the coordinate of the center of the lenslet (i, j), s < 1 controls the size of the D refocused image, and g controls the plane which is in focus. The output image is s 2 times the sensor image size. In this formulation the size of the re-focus image is independent to the parameter g, and the small images are zoomed by sg. In order to generate a focal stack, a calibration is needed to estimate the positions of the lenslet centers C ij on the raw image as well as a demosaicing step.

For the calibration step, multiple methods have been proposed. They are not speci c to a certain design of plenoptic cameras as they rely on the lenslet structure of the raw image which is common to both designs. While proposing a whole decoding pipeline for plenoptic . cameras as mentioned in the last section, a signi cant contribution of [ ] is the calibration step in which the positions of the lenslet centers are individually estimated on a white lenslet image before being used to t grid parameters. This calibration method is strictly done in the spatial domain but several methods proposed to compute the grid parameters in the frequency domain. The authors in [ , ] use both spatial and frequency domains to estimate the grid parameters while the authors in [ ] only use the frequency domain.

F R O M R AW D AT A T O L I G H T F I E L D S .
In this chapter, we propose to improve the decoding pipeline for plenoptic . cameras described in [ ], by designing a new demosaicing and a new alignment method. The captured raw images have a particular lenslet structure which must be taken into account to retrieve the views which compose the light eld. We choose this pipeline [ ], referred to as Dansereau pipeline in the rest of the chapter, because it is widely used in the research community. For instance, it was chosen as part of the common test conditions for the JPEG-Pleno compression standard as well as the ICME Grand Challenge on Light Field Image Compression. Lastly, the code in [ ] is available. Our contributions are as follows: rst we analyze the aws of the pipeline and identify the link between the lenslet structure of the image and demosaicing artifacts, then we propose a demosaicing method guided by a white lenslet image, nally we propose an application of the same principle for the alignment step in the decoding pipeline. The proposed methods are assessed within Dansereau pipeline but would still be theoretically valid for any pipeline that performs these operations on the raw lenslet image.

As evidenced by the theoretical analysis in [ ], classical demosaicing methods are not suitable for images captured with plenoptic cameras. Three approaches have been studied in the demosaicing litterature for "plenoptic . cameras". First, we can directly demosaic the raw sensor image (also called lenslet image). The authors in [ ] use a D kernel regression method exploiting the lenslet structure. However, it performs independent interpolation of the color channels, which results in a loss of detail compared to a classical D demosaicing such as [ ]. In [ ], the pixels are projected in a depth-layered object space using a depth map computed on the raw image. The missing color values are then interpolated using nearest neighbors inside a layer. The second approach is demosaicing the views after having demultiplexed them. The authors in [ ] chose a dictionary learning based method to retrieve the missing colors, while [ ] used a disparity map to nd the missing colors in other decoded views. This second type of demosaicing presents a major drawback: every interpolation before extracting the views must be done in a nearest neighbor way. The resulting views have therefore some strong aliasing. Finally, the third approach consists in demosaicing the focal stack as in [ ]. While computing a focal stack from a set of views is straigtforward, retrieving high quality views from a focal stack is a more challenging problem [ ]. For these As mentionned in section . , lenslet images su er from heavy vignetting. The devignetting step consists in dividing the sensor data by a calibration image (or white lenslet image) that is chosen, depending on the zoom and focus settings, among a set of RAW pictures of a uniformly illuminated lambertian white surface. These calibration images exhibit the vignetting pattern of the lenslet array. Note that they are also used in the calibration phase to determine the positions of the lenslet centers on the sensor.

After correcting the vignetting of the raw image, the pipeline proceeds by demosaicing the lenslet images. It uses the gradient corrected interpolation method proposed in [ ]. This method computes the values of the missing RGB channels by bilinearly interpolating the neighbor values and correcting the output with the computed gradient of the present channel. The image is convolved with various kernels depending on the color lters of the pixels. The kernels are given in Figure . . The coe cients α, β and γ represent the strength of the gradient correction. They are chosen to be respectively equal to 1/2, 5/8 and 3/4. These values were selected empirically by the authors to minimize the mean square error on their test dataset.

Knowing the positions of the lenslet centers on the sensor (determined in the calibration phase), rotation, translation and . scaling are applied to the image to compensate for the misalignements between the lenslet array and the pixel grid (illustrated in Figure . ).
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The next step is to slice the lenslet image, i. e., demultiplex the lenslet image to extract the views. Now that the diameter D of each lenslet image is scaled to be an integer, we just have to pick a pixel every D pixels to form a view (see Figure . ).

As the lenslet array is hexagonal, the views su er from an hexagonal aliasing (see the two missing pixels in black in the extracted view in Fig.

. : every line over two is shifted by half a pixel). The pipeline removes this aliasing by resampling the views into a rectangular grid. 

. . . Synthetic lenslet image generation

In order to better analyze the pipeline, we developed a method to make a synthetic lenslet image from a synthetic light eld[ ] (see Fig. . ). We rst remove some peripheral views (in the corners), in order to have circular angular patches (as the captured plenoptic light eld are). Then we put the di erent angular patches near one another along a hexagonal grid. This operation is the exact inverse of the slicing or demultiplexing step in the decoding pipeline. Note that the diameter of the generated lenslet image is only (as we originally have x synthetic views) and that for a real plenoptic camera, the diameter is likely to be higher ( for the Lytro , for the Lytro Illum for example). Then we remove two channels from each pixel according to a Bayer pattern to generate ground truth demosaiced lenslet images.

Figure . shows the ground truth lenslet image and the right picture in Figure .  shows the same image demosaiced with Malvar's method [ ]. We can see that this method is not ideal as it creates color fringes on the borders of the lenslets. The fringes are due to the pixels that are out of the lenslet. As they get no signal, their value remains the same (if we ignore noise) between the raw image and a white image. So when we divide the raw image by the white image, these pixel values are . When interpolating the missing channels for a pixel at the border of a lenslet, the bilinear interpolation and the gradient corrections are both disturbed by these white pixels.

. . Proposed demosaicing method

Following this observation, we propose to discard the pixels that are out of the lenslets from the demosaicing step. To do this, we adapted the gradient corrected interpolation method by weighting the bilinear interpolation and gradient correction:

• First with a mask b : we do not want to interpolate data from di erent lenslets as this creates crosstalk artifacts. Knowing the lenslet grid parameters, we know the position of the lenslets centers and we can identify the pixels which belong to the same lenslets. • Then with a white image c : we have full con dence in the pixels that have the maximum values on the white image whereas we have less con dence in the pixels that are darker on the white image, as they are noisier.

(c) (a) (b) (d)
Let us take the example shown in Figure . where we want to compute the green value of the blue pixel located in the center of the cross (Image (a)). Let (i, j) be the coordinates of the blue pixel, G ij the green value to compute, B ij the measured blue value, (b ij ) the mask, (c ij ) the white image and (d ij ) the coe cients of the kernels mentioned in [ ] (see Figure . ).

Adapting the equations in [ ], the green value is computed as follows: ) where:

G ij = (k,l)∈N w bil kl G kl + α( (k,l)∈M d kl >0 w grad+ kl B kl - (k,l)∈M d kl <0 w grad- kl B kl ) ( . 
N = {(i -1, j), (i + 1, j), (i, j -1), (i, j + 1)} ( . ) M = {(i, j), (i -2, j), (i + 2, j), (i, j -2), (i, j + 2)}
and:

w bil kl = e kl (m,n)∈N e mn w grad+ kl = f kl (m,n)∈M dmn>0 f mn , w grad- kl = f kl (m,n)∈M dmn<0 f mn e kl = b kl × c kl f kl = b kl × c kl × d kl ( . )
Every other missing values of each pixel is computed in the same way, using (b ij ) and (c ij ) as weights (respectively illustrated by (b) and (c) in Figure . ). Figure . (a) and (b) show the results respectively with and without the contribution of the weights (b ij ) and (c ij ). In this experiment, the PSNR can be computed since the ground truth lenslet image is known. Note that the pixels out of the lenslets are ignored in the PSNR computation since they do not hold any signal and they are not necessary for the view reconstruction. In these conditions, a large PSNR gain of 23.77 dB is observed with our method.

. . Proposed alignment method

As explained above, before extracting the views, the sensor and the lenslet array need to be aligned. This alignment is performed by applying an a ne transformation on the pixel array followed by interpolation. As in the case of demosaicing, it is important to account for the borders of the micro-lenses in the interpolation process. Hence, instead of using a a simple bilinear interpolation, we propose a bilinear interpolation weighted by the white image and a mask which eliminates the pixels which do not belong to the same lenslet

To assess the bene t of our method, we rst generate a synthetic lenslet image where the lenslets are not perfectly aligned with the pixels. The grid de ned by the lenslets is slightly tilted with respect to the pixel grid (the angle is approximately the same as the Lytro , 0.05 • ). Then, as it is done in the pipeline, we demosaic and apply an a ne transformation to the lenslet image in order for the lenslets to be aligned with the pixels, using either a simple bilinear interpolation or our method (see Equations . -. ) to compute the pixel value I at non-integer position (x,y).

I(x, y) = (k,l)∈K w a kl I kl ( . ) w a kl = g kl (m,n)∈K g mn g kl = b kl × c kl × h kl ( . )
Where K comprises the four nearest neighbor integer positions, b kl and c kl are de ned as in the proposed demosaicing method and h kl are the simple bilinear interpolation coe cients.

As the slicing step is just a reorganization of the data to have light eld views, it introduces no further error. So, we apply the slicing step to better visualize the impact of the previous rotation and to compare it with the ground truth light eld.

As we can see in Figure . , the peripheral views are greatly degraded by the bilinear interpolation. On the other hand, using our white image guided interpolation successfully removes the line artifacts and doubles the global PSNR, going from 19.45 to 38.51 dB. If we use a perfectly demosaiced lenslet image (using the ground truth lenslet image), Dansereau's alignment method gives us a global PSNR of 23.12 dB whereas our method gives a PSNR of 39.84 dB. So, our interpolation method is shown to signi cantly improve the decoding pipeline for the synthetic lenslet images.

More experimental results on synthetic light elds are shown in Figure . . Our method provides peripheral views with less artifacts than [ ].

. We now test our method on real lenslet images. We use Lytro and Illum images [ ]. For a real lenslet image, the pixels at the border of the lenslets are not enough penalized when using the pixel values (c ij ) of the white image as coe cients. So we use the pixel values of the white image raised to the power of ten instead, which reduces the weights of the pixels at the border of the lenslets relatively to those at the centers. In Figures . and. , we can see that the peripheral views are sharper with the proposed demosaicing and alignment methods. Futhermore, thanks to the mask that separates each lenslet, the proposed approach avoids the crosstalk, which visibly reduces the ghosting artifacts of external views generated with the pipeline in [ ]. Indeed, we can see on the bottle in the foreground in Figure . and on the rose petals in Figure .  that our method produces less ghosting artifacts than [ ]. Finally, the colors of the peripheral views are closer to the colors of the central view, as raw pixels at the center of the lenslets have more weights than those at the borders that have attenuated colors.

. We developed a method to create lenslet images from synthetic light elds. With this synthetic lenslet images, we were able to analyze the light eld decoding pipeline chosen by JPEG-Pleno. We particularly evaluated the demosaicing and alignment steps. We noticed that the initial demosaicing and interpolation methods used in Dansereau's pipeline were not adapted to the lenslet images and that they created crosstalk artifacts and color patterns. In order to improve these steps, we developed methods of demosaicing and alignment guided by a white lenslet image. These proposed methods showed improvements on the synthetic and on the real lenslet images. The results are shown to reduce crosstalk artifacts and produce better colors on the decoded light elds views. Since the publication that was issued from this work, the proposed demosaicing and alignment methods have been used for a new view extraction pipeline in [ ]. They showed that the combination of our contributions with theirs signi cantly improves the quality of extracted views by performing objective and subjective tests. They also demonstrated the positive impact of the improved views on a number of applications such as compression, editing (e. g., recolorization impainting), or light eld rendering.

Ground Truth

Ours Part II

S C E N E F L O W E S T I M AT I O N A N D T E M P O R A L I N T E R P O L AT I O N S T AT E O F T H E A R T .
Light elds, by capturing light rays emitted by a scene along di erent orientations, enable a variety of computer vision applications, and in particular D scene modeling.

While the problem of depth estimation for D scene modeling has already been widely investigated [ -], the possibility to estimate the motion in a D scene from light elds remains widely open, despite the numerous applications, e. g., for robot navigation, augmented and virtual reality.

The measured displacement of each point in the D scene is referred to as a dense scene ow, concept that has rst been de ned in [ ]. Considering a multi-view set-up, the scene ow is estimated using an optical ow estimator for each view. The D scene ow is then computed by tting its projection on each view to the estimated optical ows, hence it is de ned by the real D motion (∆X, ∆Y, ∆Z) of each D point. However, in the recent literature (e. g., [ -]), the scene ow is instead de ned as a direct extension of the optical ow, where the depth (or disparity) d and the depth variation ∆d of objects along time is represented in addition to the apparent D motion (∆x, ∆y).

The problem of scene ow analysis has rst been addressed for stereo video sequences. The authors in [ -] estimate a scene ow (∆x, ∆y, ∆d, d) assuming that the scene can be decomposed into rigidly moving objects and using discrete-continuous optimization techniques. Several methods based on RGB-D videos have also been developed [ -]. The rst methods for scene ow analysis from light elds have been proposed in [ ] and [ ], based on variational models. The authors in [ ] propose oriented light eld windows to estimate the scene ow from a dense light eld. All these methods rely on epipolar plane images, and hence, are only applicable to densely sampled light elds (as those captured with plenoptic cameras). They are not suitable for sparse light elds (i. e., with large baselines), as for example those captured by rigs of cameras. Before reviewing prior work on scene ow estimation from multi-view captures and from light elds, we will give a quick overview of recent methods proposed for solving two strongly related problems, i. e., scene depth estimation from light elds but also optical ow estimation from videos. . We can classify depth estimation methods from light elds into three categories (see Figure . ) depending on whether they are based on light eld views, on epipolar plane images or on focal stacks.

In dense light elds with small baselines, pixels in the di erent views corresponding to the same D point form a line in the EPI, whose slope is proportional to the disparity between the views [ ]. This observation naturally led to estimating scene depth (related to the disparity or parallax between the views) by analyzing the EPI of dense light elds. The authors in [ ] use structure tensors to locally estimate these slopes, this local estimation being then placed in a global optimization framework using a variational approach. The authors in [ ] propose a spinning parallelogram operator for disparity estimation from EPIs, accompanied with a con dence measure to handle ambiguities and occlusions.

While the above methods are well suited for dense light elds, they fail in the case of light elds with large baselines for which stereo matching and optical ow estimation techniques yield more accurate estimates. As a consequence, several methods based on views have been proposed. To give a few examples, the authors in [ ] estimate disparity by computing a matching cost volume between the central sub-aperture image and sub-aperture images warped using the phase shift theorem. The approach in [ ] consists in estimating disparities between the four corner views, then propagating them to the target viewpoint. The authors in [ ] employ an empirical Bayesian framework to estimate scene-dependent parameters for inferring scene disparity.

Numerous depth estimation based on focal have been proposed as focal stack are easier to extract from plenoptic . cameras than views. A rst method was proposed in [ ] where the di erent planes of focus are detected. The proposed method does not however produce a depth map, simply a list of focal values where the captured scene appears sharp in the focal stack. In [ ], a focus map is estimated by searching for the strongest gradient in the focal stack, while [ ] exploits the symmetry of the focal stack in the focus direction. . Since the seminal work of [ ] and [ ], optical ow estimation has been a prominent issue in computer vision. Optical ow describes the apparent motion in a captured scene (see Figure . ). Formally it is often de ned as the combination of a horizontal and vertical displacement, respectively denoted ∆x and ∆y, sometimes the optical ow is also described in the polar coordinates system with an angle θ and a magnitude r.

In order to compare the di erent methods, benchmark data sets have been proposed. The two most popular datasets are the MPI Sintel Dataset [ ] and the KITTI Benchmark [ ]. The rst one consists in synthetic sequences taken from the movie Sintel. The second one consists in video sequences captured from a moving car, and is therefore better suited for autonomous driving applications.

When looking at the top ranking optical ow estimation methods with the two datasets, we can see that they are almost exclusively using a deep learning approach. To only cite a few methods, FlowNet[ ] was the rst end-to-end neural network to compute an optical ow from images. It is a trainable encoder-decoder network. The authors in [ ] further improve the network by stacking multiple encoder-decoder networks. However, the nal network is much bigger than the original one and needs to be trained sequentially for each encoder-decoder part to avoid over-tting. To reduce the size of the network and make it easier to train, a coarse-to-ne strategy, and the corresponding network called SpyNet, were proposed While the models used in these methods are not completely speci c for autonomous driving applications, they are however optimized and tested on the KITTI Benchmark [ ] which essentially consists of driving scenes. Using any of these methods on other types of scenes may require some changes in the parameters of the models.

Another way to estimate a scene ow is by using RGB-D images. In [ ], local and global constraints are combined in a variational framework to estimate a scene ow, assuming a locally rigid motion. The authors use the depth map to regularize the nal scene ow with an adaptive total variation formulation. Similarly to [ ], the authors in [ ] jointly perform segmentation and D motion estimation. The scene is decomposed into depth layers to handle occlusions and a scene ow model is computed for each layer. The method in [ ] rst performs geometric segmentation and then jointly estimates odometry and scene ow by isolating the static clusters.

Scene ow estimation from densely sampled light elds was rst tackled in [ ]. The authors jointly estimate the disparity and the optical ow assuming piecewise smoothness of the scene ow. A preconditioned primal-dual algorithm is used to solve a convex global energy functional, which also enforces consistency between the multiple views. On the other hand, the authors in [ ], [ ] and [ ] rst estimate the geometry of the scene by computing a disparity map and then estimate the apparent motion in the scene. In [ ], the disparity value in each point of the EPIs is derived by analyzing the structure tensor. The optical ow is estimated by minimizing an energy function that assumes spatio-angular smoothness and and takes into account occlusions between objects in the scene. The authors in [ ] also use an EPI-based method [ ] to compute the disparity maps at time t and t + 1. Then, they use oriented light-eld windows along with a coarse-to-ne strategy to minimize an energy function derived from SimpleFlow [ ]. A con dence measure is computed and used to regularize the scene ow in the coarse-to-ne iterations. The authors in [ ] st estimate a disparity map . Frame interpolation or temporal interpolation refers to the interpolation of one or several frames from at least two consecutive frames of a video. It can be used to increase the framerate of a video (i. e., give a slow-motion e ect to the video) or in the context of video compression, in this case we talk of motion compensation.

Let I 0 , I 1 be two consecutive frames of a video sequence, the aim of frame interpolation is to generate an intermediate frame I t , where t ∈ [0, 1] that is consistent with the two others. Some methods were also developed for frame extrapolation [ ], the only di erence is that t > 1. Last, several methods like [ ] use more than two frames as inputs.

With the recent development of deep learning, this eld of research has profoundly changed. Today, almost every method that occupies the top of the frame interpolation benchmarks uses deep learning. As showed in Figure . , we can classify interpolation methods in three groups. First, the majority of frame interpolation methods are based on optical ow or at least on motion estimation. Di erent deep learning models have been proposed that estimate the motion. The authors in [ ] use a simple U-Net architecture which is an autoencoder with skipped connections between the encoder and decoder layers. Their network estimates a ow that is used to back-warp and merge the two input images at the intermediate time instant. In [ ] and [ ], the network is divided into two sub-networks: a rst one estimates the optical ow while the second one uses the optical ow and the input frames to produce an intermediate frame.

The second group of frame interpolation methods is based on kernels. For each pixels of the output frame, a kernel is computed to convolve and merge the input frames. In [ , ], the authors use a U-Net architecture to achieve that. Moreover, some methods use both kernels and motion estimation: the authors in [ , ] use multiple parallel U-Nets to interpolate the same frame based on either kernels or motion estimation, alongside with occlusion and context extraction. They merge the parallel outputs with a nal network to generate the intermediate frame.

Finally, a few methods based on phase shift have been proposed [ , ]. The authors exploit the idea that a spatial displacement in an image results in a phase shift in the frequency domain. Therefore, these articles use the Fourier transform of the input images, interpolate a new phase image and then apply an inverse Fourier transform to retrieve the intermediate frame.

To the best of our knowledge, only one method has been proposed to temporally interpolate a light eld sequence [ ]. This approach considers a hybrid capture system composed of a plenoptic camera with a low frame-rate ( fps) and a classical camera with a standard frame-rate ( fps). Thanks to a neural network, the frames captured by the classical camera are warped to the di erent views of the the plenoptic camera.

L O C A L D A F F I N E M O D E L F O R S C E N E F L O W .
In this chapter, we focus on the problem of scene ow analysis from large baseline light eld videos. This problem is made di cult due to the large temporal and angular occlusions. Recent work (detailed in Chapter ) has shown the important bene ts of using deep learning for estimating optical ows, disparity maps or scene ows from stereo images or videos. However, extending and training network architectures that would take light elds as inputs is challenging. First, using light elds as inputs would increase the complexity of the architecture. Then, training a deep neural network typically requires very large datasets, particularly for high dimensional data such as light elds. Only a few light eld video datasets are available, which is insu cient for performing unsupervised learning. Furthermore, none of these datasets contain ground truth optical ows, disparity maps or scene ows which would be necessary in the context of supervised learning. To cope with the above di culties, we propose a D local a ne model for scene ow estimation. The model is de ned in the ray space and incorporates epipolar constraints to ensure consistency of the scene ow on all light eld views. We show how the proposed model can be used for (a) interpolating a scene ow from sparse estimates, (b) regularizing initial and independently computed optical ows and disparity maps in order to derive a coherent scene ow. In both applications, to estimate the model, we rst perform a D over-segmentation of the light eld at time t, then we compute initial optical ows, disparity maps and disparity variation estimates between the light eld at time t and t + 1. For each D cluster, the parameters of the a ne model are estimated by tting the model on the initial optical ow and disparity estimates. The approach is summarized in Figure . . The proposed regularization method and the corresponding D a ne model allow us to bene t from state-of-the-art deep learning-based optical ow estimation methods while ensuring scene ow geometry consistency in the dimensions of the light eld.

In order to validate the proposed model on sparse light elds, we have created synthetic light eld videos based on the Sintel movie (used in the optical ow benchmark [ , ]). The light eld views are provided with the corresponding ground truth scene ow (optical ow, disparity and disparity variation). Although the proposed scene ow method is designed for sparse light elds, we also assess our method on a dense light eld video dataset provided by the authors of [ ].

For the sparse dataset, the obtained scene ows are compared against those computed with the oriented window method in [ ] and with various stereo scene ow methods [ , ]. We also compared the estimated optical ow, disparity maps and disparity variation with the one given by a state-of-the-art optical ow estimation technique based on a deep learning architecture called PWC-Net [ ]. For the dense dataset, we compared our results with the full view method in [ ], with the aforementioned stereo scene ow methods [ , ] and with various light eld depth estimation methods like [ , , ].

While our sparse-to-dense interpolation method yields comparable results on optical ow and disparity variation as the state-of-the-art methods, our regularized scene ow estimation outperforms any other tested method in terms of accuracy of the estimated optical ow, disparity, and disparity variation for the sparse dataset, and achieves comparable results to state-of-the-art methods for the dense dataset.

. Let us consider a light eld video. We denote L t the light eld frame at time instant t. A view (u, v) of this frame is written V t uv . In the rest of the chapter, we assume that the vertical and horizontal baselines are the same. The scene ow can be divided in the following components:

• the optical ow: F = ∆x ∆y ,

• the disparity at time t: d t , • the disparity variation between t and t + 1: ∆d.

(u, v) In this chapter, we propose a local D a ne model to represent a scene ow in a light eld. The fundamental a ne model can be de ned as follows: ∆x(u, v, x, y) = θ 0 1 u + θ 0 2 v + θ 0 3 x + θ 0 4 y + θ 0 5 , ( . ) ∆y(u, v, x, y) = θ 0 6 u + θ 0 7 v + θ 0 8 x + θ 0 9 y + θ 0 10 , ( . ) d t (u, v, x, y) = θ 0 11 u + θ 0 12 v + θ 0 13 x + θ 0 14 y + θ 0 15 , ( . ) ∆d(u, v, x, y) = θ 0 16 u + θ 0 17 v + θ 0 18 x + θ 0 19 y + θ 0 20 , ( . )

(u, v + ∆v) t t + 1 V t uv V t uv+∆v V t+1 uv V t+1 uv+∆v P 0 • P 1 • P 2 • P 3 •
where θ 0 = θ 0 1 . . . θ 0 20 are the parameters of the model. However, this model does not take into account epipolar geometry of light elds, i. e.the fact that a D point in a scene is projected on D lines in EPIs, the slope of these lines being directly related to inter-view disparity. Hence, we derive in this section the equations for a reduced a ne model that also satis es the epipolar constraints.

. . Constraints on the Optical Flow

First, let us consider the vertical epipolar constraints. Given a non-occluded point in the D scene, we denote by P 0 , P 1 , P 2 and P 3 its respective projections on the views (u, v) and (u, v + ∆v) at the time instants t and t + 1, as shown in Figure . . The coordinates of the points P 0 , P 1 , P 2 and P 3 in the -dimensional space (u, v, x, y) are then related with the following equation:

          
P 1 = P 0 + ∆v • ν(P 0 , t), P 2 = P 0 + φ(P 0 ), P 3 = P 2 + ∆v • ν(P 2 , t + 1),

P 3 = P 1 + φ(P 1 ), ( . )
where ν(P, t) and φ(P ) are -dimensional vectors representing respectively the orientation of the vertical epipolar line passing by a point P at time t, and the optical ow of P from time t to t + 1. These vectors are expressed as:

ν(P, t) =      0 1 0 d t (P )      and φ(P ) =      0 0 ∆x(P ) ∆y(P )      . ( . )
We can derive from Equation ( . ) that the optical ow vectors φ(P 0 ) and φ(P 1 ) must satisfy the following equality to be angularly consistent:

φ(P 1 ) -φ(P 0 ) = ∆v • [ν(P 2 , t + 1) -ν(P 0 , t)] .
( . )

From the de nition of ν and φ in Equation ( . ), this equality can be rewritten:

∆x(P 1 ) -∆x(P 0 ) = 0, ∆y(P 1 ) -∆y(P 0 ) = ∆v • ∆d(P 0 ), ( . )

where we de ne ∆d(P 0 ) = d t+1 (P 2 ) -d t (P 0 ).

Let us now reintegrate these constraints into the a ne model. Knowing the relationship between the coordinates of P 0 and P 1 in Equation ( . ) and the expressions of ∆x and ∆y in Equations ( . ) and ( . ), we can express the variation of optical ow between P 0 and P 1 (i. e.along a vertical epipolar line) as a function of the model's parameters: ∆x(P 1 ) -∆x(P 0 ) = ∆v (θ 0 2 + θ 0 4 × d t (P 0 )) , ∆y(P 1 ) -∆y(P 0 ) = ∆v (θ 0 7 + θ 0 9 × d t (P 0 )) .

( . )

By combining Equations ( . ) and ( . ), we obtain the following constraints on the model's parameters:

θ 0 2 + θ 0 4 × d t (P 0 ) = 0, ( . ) θ 0 7 + θ 0 9 × d t (P 0 ) = ∆d(P 0 ). ( . ) 
.

Similarly, horizontal epipolar constraints give:

θ 0 1 + θ 0 3 × d t (P 0 ) = ∆d(P 0 ), ( . ) θ 0 6 + θ 0 8 × d t (P 0 ) = 0. ( . )
Note that one could directly replace d t (P 0 ) and ∆d(P 0 ) by their expressions in Equations ( . ) and ( . ). However, the model would lose its linearity and become more complex to solve. Instead, we choose to approximate the disparity d t (P 0 ) by a pre-estimated disparity value d. The derivation of d is detailed in Section . (see Equation ( . )). We also eliminate ∆d(P 0 ) by taking the di erence between Equations ( . ) and ( . ). We can then simplify our model and reduce the number of parameters as

θ 0 2 = -θ 0 4 × d, θ 0 7 = θ 0 1 + θ 0 3 × d -θ 0 9 × d, ( . 
)

θ 0 6 = -θ 0 8 × d.
So, the optical ow model becomes

∆x(P 0 ) = θ 0 1 u + θ 0 3 x + θ 0 4 × (y -dv) + θ 0 5 , ( . 
)

∆y(P 0 ) = θ 0 1 v + θ 0 3 dv + θ 0 8 (x -du) + θ 0 9 (y -dv) + θ 0 10 .
. . Constraints on the Disparity and Disparity Variation Furthermore, we can also reduce the number of parameters of the disparity and the disparity variation models. The epipolar geometry of a light eld requires that the disparity remains constant along a vertical or horizontal epipolar line. This constraint gives the following equations: d t (P 0 + ∆v • ν(P 0 , t)) -d t (P 0 ) = 0, d t (P 0 + ∆u • µ(P 0 , t)) -d t (P 0 ) = 0, ( . ) ∆d(P 0 + ∆v • ν(P 0 , t)) -∆d(P 0 ) = 0, ∆d(P 0 + ∆u • µ(P 0 , t)) -∆d(P 0 ) = 0.

By replacing the terms in Equation ( . ) by the expression of their model in Equations ( . )-( . ), we obtain the additional constraints:

θ 0 12 = -θ 0 14 × d, θ 0 11 = -θ 0 13 × d, ( . ) θ 0 17 = -θ 0 19 × d, θ 0 16 = -θ 0 18 × d.
The disparity and disparity variation models thus become: d t (P 0 ) = θ 0 13 (xdu) + θ 0 14 (ydv) + θ 0 15 , ( . )

∆d(P 0 ) = θ 0 18 (x -du) + θ 0 19 (y -dv) + θ 0 20 . ( . )
This allows us to reduce again the number of parameters from to . We denote θ = θ 1 . . . θ 13 the new parameters. The nal scene ow model is the following:

∆x(P 0 ) = θ 1 u + θ 2 x + θ 3 (y -dv) + θ 4 , ( . 
)

∆y(P 0 ) = θ 1 v + θ 2 dv + θ 5 (x -du) + θ 6 (y -dv) + θ 7 , d t (P 0 ) = θ 8 (x -du) + θ 9 (y -dv) + θ 10 , ∆d(P 0 ) = θ 11 (x -du) + θ 12 (y -dv) + θ 13 .
.

. . Clustering the light eld

The model previously described works under one assumption: our model is a ne, so the scene ow should not have discontinuities. As a consequence, we can partition our light eld into clusters that respect the assumption and t one model for each cluster. If the clusters correspond to the same object in the scene, the assumption will be valid. We therefore group pixels of similar color across the views and corresponding to the same scene area in D clusters, using the method proposed in [ ]. The method is inspired by the SLIC algorithm[ ]. Centroids are rst initialised on a reference view. Their disparity is then estimated and used to project the centroids to all the views. A k-means clustering is then simultaneously performed on all views. Using the centroid disparity, all the rays assigned to a cluster are projected back to the reference view to update the centroids colors and spatial positions. The approach is fast, free of any strong scene geometry prior and does not require a dense depth map estimation. For these reasons, we chose this method for our model.

To estimate the model parameters for each cluster, the model is tted to the initial optical ow and disparity estimates available in each cluster. The number of estimates may however not be su cient in some clusters. For this reason, we propose to build a graph connecting the di erent clusters. This graph enables us to look for the N nearest clusters of a given cluster, adding more estimates in the computation of the scene ow model of a given cluster.

. . Connecting the clusters with a weighted graph

In order to connect the di erent clusters, we build an undirected weighted graph G = {V, E, w}. V is the set of the K clusters computed in the clustering step (see Figure . ). A vertex i is connected to another one j if their corresponding clusters are adjacent to one another in at least one view of the light eld or if they are in the same range of disparity, that is if

|d t (C i ) -d t (C j )| < β max k∈V d t (C k ) -min k∈V d t (C k ) , ( . ) 
when C i and C j denote the clusters centroids and β ∈ [0, 1] a threshold coe cient. In the experiments, we x β = 0.1.

The weight between two connected nodes i and j is de ned as ) where Ω ij is the set of views where i and j are adjacent, P uv (C) the projection of the centroid C on the view (u, v) and α a parameter that we empirically x to 0.2. The distance D is based on spatial and color proximity and de ned as in [ ]:

w(i, j) = min (u,v)∈Ω ij exp [-αD (P uv (C i ), P uv (C j ))], ( . 
D = d c 2 + m 2 S 2 d s 2 ( . )
where S = H × W /K with W and H the width and height of a view. The parameter m has the same value as for the clustering step, it is used in the clustering step to control the compactness of the clusters. d c and d s are the color and spatial distances respectively de ned as euclidean distances in the CIELAB colorspace and the [xy] space:

d c (C i , C j ) = (L i -L j ) 2 + (a i -a j ) 2 + (b i -b j ) 2 ( . ) d s (C i , C j ) = (x i -x j ) 2 + (y i -y j ) 2 ( . )
Once the graph is computed, we can look for the N nearest neighbors of a given node i using Dijkstra's algorithm [ ]. In the search, we discard every vertex whose corresponding cluster contains no scene ow estimate (which can happen when the initial scene ow is sparse). The set of N neighbors of i (including itself) is denoted N i . It is used to have more scene ow estimates than those inside the cluster and in particular when the cluster i has no estimate inside itself.

. . Fitting a model with RANSAC

The approach we use to t the model described in Section . to the scene ow estimates that we have is inspired from the RANSAC method[ ]. The general idea is to choose m scene ow estimates, to compute the parameters of the model and then to evaluate the cost of the model.

Let SF i be the set of initial scene ow estimates contained in the cluster i, we have

SF i =    u 1 v 1 x 1 y 1 ∆x 1 ∆y 1 d t 1 ∆d 1 . . . . . . . . . . . . . . . . . . . . . . . . u n i v n i x n i y n i ∆x n i ∆y n i d t n i ∆d n i    ( . )
Equation ( .) is linear in θ so we build a block matrix A i and vector b i such that

A i θ -b i 2
represents the delity of a model θ to the initial scene estimates SF i .

A i =       A x i 0 0 A y i 0 0 0 A d i 0 0 0 A ∆ i       ( . )
where the sub-matrices A x i , A y i , A d i and A ∆ i are de ned as

A x i =    u 1 x 1 y 1 -d i v 1 1 0 0 0 . . . . . . . . . . . . . . . . . . . . . u n i x n i y n i -d i v n i 1 0 0 0    ( . ) A y i =    v 1 d i v 1 0 0 x 1 -d i u 1 y 1 -d i v 1 1 . . . . . . . . . . . . . . . . . . . . . v n i d i v n i 0 0 x n i -d i u n i y n i -d i v n i 1    ( . ) A d i = A ∆ i =    x 1 -d i u 1 y 1 -d i v 1 1 . . . . . . . . . x n i -d i u n i y n i -d i v n i 1    ( . )
Let b i be the corresponding vector to A i :

b i = b x i b y i b d i b ∆ i ( . )
with:

b x i = ∆x 1 • • • ∆x n i ( . ) b y i = ∆y 1 • • • ∆y n i ( . ) b d i = d t 1 • • • d t n i ( . ) b ∆ i = ∆d 1 • • • ∆d n i ( . )
In order to make our model linear, we approximate the disparity in Equations ( . ), ( . ), ( . ) and ( . ) by a pre-estimated disparity value. We compute one disparity estimate per cluster d i by averaging the disparity estimates contained in the cluster i and in its neighbors as

d i = j∈N i e -λw(i,j) n j k=1 b d j,k j∈N i e -λw(i,j) n j ( . )
The parameter λ controls the weight of the neighboring clusters in the average computation and b d j,k denotes the kth element of vector b d j . The more constant the disparity is in a cluster, the more correct the approximation is. For each cluster i, we search for the parameters θ of the model ( . ) that minimize the following cost function:

L i (θ) = j∈N i e -λw(i,j) • f j (θ) ( . )
where f j (θ) is the number of outliers produced by the model θ among the estimates which are inside the cluster j, that can be formally de ned as:

f j (θ) = 4n j k=0 |A j,k θ -b j,k | > τ ( . )
The symbols • denote the Iverson brackets, which return if the proposition inside the brackets is true and otherwise. A j,k denotes the kth row of A j . The hyperparameter τ is analogous to the threshold de ned in the classical RANSAC algorithm. It is xed to in our experiments. As with RANSAC algorithm, we generate an hypothesis θ for our model, we compute its cost function L i ( θ) and compare it with the best candidate θmin that we found so far (the one with the lowest cost function). We iterate N iter times.

Before iterating, we initialize our model to a constant model: we set every coordinate of θ to 0 except for θ4 , θ7 , θ10 and θ13 . This way, the scene ow inside a cluster is constant and equal to the weighted average scene ow estimate.

θ4 = ∆x i = j∈N i e -λw(i,j) n j k=1 b x j,k j∈N i e -λw(i,j) n j θ7 = ∆y i = j∈N i e -λw(i,j) n j k=1 b y j,k j∈N i e -λw(i,j) n j ( . ) θ10 = d i θ13 = ∆d i = j∈N i e -λw(i,j) n j k=1 b ∆ j,k j∈N i e -λw(i,j) n j
What di ers from classical RANSAC is the hypothesis generation. Classically, we would randomly choose rows from {A j | j ∈ N i } to form a matrix A s and the corresponding vector b s , and we would compute -if possible -θ = A -1 s b s . In our case, the process of selection of estimates is not totally random. At every iteration, we want to generate stable parameters θ. So, we need to form a matrix A s with a low condition number, which means with rows that are the most linearly independent from one another.

Inspired by the work in [ ], we propose to choose the samples in a careful way in order to perform our hypothesis generation step. More precisely, given a cluster i, we rst build the matrix and vector U i and v i such that

U i = j∈N i A j and v i = j∈N i b j , ( . )
where k X k denotes the vertical concatenation of the matrices X k .

Let M be the number of rows of U i and v i . Our goal is to nd a set S of 13 linearly independent rows among the M rows of U i . The general idea is to iteratively add samples to S taking into account the previous added samples.

We start with an empty set S. The rst sample which is added is randomly chosen. Then, for every iteration n from 2 to 13, we add a nth sample to the set S. To do so, we build the matrix U i (S, T ) with T being the range [1, n]. The resulting matrix of size (n, n -1) is of rank n -1 because every row is independent from one another. The nullspace of such matrix gives us the unique vector z that is orthogonal to all rows of this matrix. Then, in the normalized version of U i (R, T ) (with R = [1, M ]), we search for the row that is the most linearly dependent on the null vector, i. e., the most linearly independent of the rows of U i (S, T ). This constitutes the new sample added to our set. We continue until we can reach our 13 samples. Once the set S is complete, we can build a matrix and a vector A s = U i (S, T ) and b s = v i (S) with T = [1,13]. We nally generate an hypothesis θ = arg min θ A s θb s 2 . The hypothesis generation is fully detailed in Algorithm .

Another change to the classic RANSAC algorithm is that for each iteration and for each cluster, we also evaluate the models given by the neighboring clusters. This allows us to propagate correct models among the clusters and to make the algorithm converge faster.

. . . Sparse-to-dense interpolation

The method takes a reference view V t ref (usually we choose the central view). We denote by C : (I, I , S) → S the function that determines the set of points S in an image I that matches the set of seeds S in another image I.

ALGORITHM : Hypothesis generation for cluster i Input: Matrix U i and its corresponding vector v i Output: An hypothesis θ for the cluster i Then, a matching function C is used to respectively nd the correspondences S 1 and S 2 of S 0 in another view (u, v) at t and in the same view at t + 1. Again the matching function C is used to nd the respective correspondences S 1 3 and S 2 3 of S 1 and S 2 at the view (u, v) at t + 1. The nal step selects only the points that are both in S 1 3 and S 2 3 and estimates the scene ow at these points.

r 0 ← selectRandomRow(U i ); S ← {r 0 }; R ← [1, M ]; for n = 2 → 13 do T ← [1, n]; z ← nullspace(U i (S, T )); normalizeRows(U i (R, T )); b ← U i (R, T )z; r ← arg max k∈R |b k |; S ← S ∪ {r} end A s ← U i (S, T ); b s ← v i (S); θ ← arg min θ A s θ -b s 2 ; (u ref , v ref ) (u, v) t t + 1 V t ref V t uv V t+1 ref V t+1
We initialize a set of points S 0 regularly distributed on a grid in a reference view of the light eld at t, denoted L t ref .

Then, for every view that is not the reference view, we successively compute

S 1 = C(V t ref , V t uv , S 0 ), S 2 = C(V t ref , V t+1 ref , S 0 ) ( . ) S 1 3 = C(V t uv , V t+1 uv , S 1 ), S 2 3 = C(V t+1 ref , V t+1 uv , S 2 ).
For each point P 0 ∈ S 0 , we check if the seed has correspondences in S 1 3 and S 2 3 . Furthermore, we check if the correspondences are consistent with each other. That is if D(P 1 3 , P 2 3 ) < τ , where D is the distance described in Equation ( .) and τ a distance threshold that is xed to 10 in our experiments. The method is summarized in Figure . . Any remaining chain of points g = (P 0 , P 1 , P 2 , P 1 3 , P 2 3 ) is used to estimate a sparse scene ow. From g, we can compute the scene ow of two points of the light eld L t : on the reference view V t ref at P 0 and on the view V t uv at P 1 . With (x 0 , y 0 ), (x 1 , y 1 ), (x 2 , y 2 ), (x 1 3 , y 1 3 ) and (x 2 3 , y 2 3 ) the respective spatial coordinates of P 0 , P 1 , P 2 , P 1 3 and P 2 3 , we have

F init (P 0 ) = ∆x init (P 0 ) ∆y init (P 0 ) = x 2 -x 0 y 2 -y 0 ( . ) F init (P 1 ) = ∆x init (P 1 ) ∆y init (P 1 ) = x 1 3 -x 1 y 1 3 -y 1 ( . ) Let d t init , d t+1
init and ∆d init be the disparities at t and t + 1 and the disparity variation of both P 0 and P 1 . We have:

d t init = |∆u| x 1 -x 0 ∆u + |∆v| y 1 -y 0 ∆v |∆u| + |∆v| ( . ) d t+1 init = |∆u| x 2 3 -x 2 ∆u + |∆v| y 2 3 -y 2 ∆v |∆u| + |∆v| ( . ) ∆d init = d t+1 init -d t init ( . ) with ∆u = u ref -u and ∆v = v ref -v
Once we have these sparse scene ow estimates, we can perform an over-segmentation of the light eld, use the estimates and the clusters as inputs (see Figure . ) to estimate the dense D scene ow model in each cluster, as described in Section . .

. . Regularization

Most recent methods to estimate optical ows or disparity maps use deep neural networks. However, these methods require a huge amount of data to train the models. Because of the limited number of light eld video datasets with corresponding ground truth scene ows, extending deep scene ow estimation methods to light elds is very challenging. Instead, we propose to take advantage of D optical ow methods and then use our model to regularize the di erent ows in the D ray space in order to compute a scene ow that would be consistent across all views. For each view of the light eld, we estimate an optical ow independently. We also use the same optical ow method to estimate disparity maps at t and t + 1. For the experiments, we consider a stateof-the-art technique based on a deep learning architecture called PWC-Net [ ]. The initial disparity variation is estimated in regions where there is no temporal or angular occlusion by computing the di erence of disparity along the optical ow, using the initial optical ow and disparity maps at t and t + 1.

This approach requires to compute an occlusion mask in order to know where we can estimate reliable disparity variation. For that purpose, similarly to [ ], we compute an energy value for every point P (u, v, x, y) of L t , as

E = E c + λ 1 E ∇c + λ 2 E f + λ 3 E ∇f .
( . )

The terms E c and E ∇c are respectively color and color gradient consistency terms computed between each view and the same projected view from t + 1 to t, and are de ned as E c (P ) = L t+1 (P + φ init (P )) -L t (P ) 2 , ( . )

E ∇c (P ) = ∇ x L t+1 (P + φ init (P )) -∇ x L t (P ) 2 + ∇ y L t+1 (P + φ init (P )) -∇ y L t (P ) 2 . ( . )
The energy terms E f and E ∇f measure the consistency of the forward optical ow φ init and the backward optical ow φ b init , and are de ned as E f (P ) = φ init (P ) + φ b init (P + φ init (P )) 2 , ( . )

E ∇f (P ) = ∇ x φ init (P ) + ∇ x φ b init (P + φ init (P )) 2 + ∇ y φ init (P ) + ∇ y φ b init (P + φ init (P )) 2 ( . )
From this energy value, we can compute a con dence measure C as

C(P ) = exp - E(P ) 2σ 2 c ( . )
where σ c controls the "width" of the distribution. Finally, in order to generate a binary mask B, we threshold the con dence map as

B(P ) = 1 if C(P ) > 0.5 0 otherwise ( . )
For the experiments, we have chosen λ 1 = 2, λ 2 = 10, λ 3 = 20 and σ c = 0.5.

Using this mask, we can compute an initial scene ow F init , d t init , ∆d init where the optical ow and the disparity map at t are completely dense and where the disparity variation is only available on non-occluded regions. We can then use our model to regularize the optical ow and disparity and to interpolate the disparity variation in occluded regions (while also regularizing it in non-occluded regions).

. . . Scene Flow Datasets

In order to be able to compute objective performance measures, we have generated a synthetic light eld video dataset with the corresponding ground truth scene ow . For that purpose, we have used the production les of the open source movie Sintel [ ] and have modi ed them in the Blender D software [ ] in order to render an array of x views. Similarly to the MPI Sintel ow dataset [ , ], we have modi ed the scenes to generate not only the ' nal' render, but also a 'clean' render without lighting e ects, motion blur, or semi-transparent objects. Ground truth optical ow and disparity maps were also generated for each view. Since disparity variation maps could not be rendered within Blender, we have computed them using the disparity map and the optical ow. However, this process requires projecting the disparity map of a frame to the next frame using the optical ow, which results in unavailable disparity variation information in http://clim.inria.fr/Datasets/SyntheticVideoLF areas of temporal occlusion. We have processed two scenes of 3 × 3 views of 1024 × 436 pixels and 50 frames corresponding to the scenes 'Bamboo ' and 'Temple ' in [ ]. The disparities (in pixels) between neighboring views are in the range [-8, +52] for +9] for 'Temple '. We chose an angular con guration that is similar to the one of real light elds captured by rigs of cameras, such as in [ ] and [ ], which respectively provide 5 × 3 and 4 × 4 views. We also use the dataset of [ ] to test our method on a real light eld sequence: 'Bar'. Each frame is a 5 × 3 light eld, in which each view has a spatial resolution of 1920 × 1080 pixels. The horizontal and vertical baselines of the camera setup are di erent, the ratio between the two is . and the horizontal disparity ranges from to pixels. Finally, we assess our method on a dense synthetic light eld dataset provided by [ ]. The light elds have an angular resolution of 9 × 9 views and their spatial resolution is either 1024 × 720 or 412 × 290, respectively referred to as 'Big' and 'Small' in the rest of the article. This con guration simulates light elds captured with plenoptic cameras as in [ ] or captured with very dense camera arrays as in [ ].

. . In uence of hyperparameters

We have various hyperparameters in our method: the most critical ones are the number of clusters K, the number of nearest neighbors N we select and the number of iterations to compute an a ne model N iter . The density of scene ow estimates in the light eld is di erent for the sparse-to-dense interpolation and for the dense regularization. So, the optimal number of clusters K and of neighbors N may be di erent in each case.

For the experiments, we used three metrics to assess the scene ow estimations: the endpoint error for the optical ow (EPE OF), the mean absolute error for the disparity map at t (MAE d t ) and the mean absolute error for the disparity variation (MAE ∆d). The latter is only computed for disoccluded pixels because there is no ground truth on occluded pixels.

In order to search for the best combination of (N, K) hyperparameters for the sparseto-dense interpolation, we perform a grid search, using the aforementioned metrics for the whole Sintel dataset. We have tested di erent values of N = {1, 2, 5, 10, 20, 40} for di erent values of K = {625, 1250, 2500, 5000, 10000}. The results of the grid search are shown in Figure . . We can observe that the errors of the optical ow, the disparity map and the disparity variation behave di erently. Overall, the less clusters there are and the more neighbors we take into account, the lower the errors are. But for the disparity, there seems to be a limit where the clusters are too big. On the other hand, for the disparity variation and the optical ow, there is no such limit (although on the optical ow grid search, we can see that we have lower errors with clusters than with clusters for N > 5). This di erence of behavior is because an optical ow map is generally smoother than a disparity map. Furthermore, for the disparity variation, the sparse estimates are not estimated with direct correspondences but with chained correspondences (see Figure . ), : Grid search to nd the optimal parameters K and N for the scene ow regularization. Each image is an average error map for a set of (K, N ) computed with the whole Sintel dataset. The combination of hyperparameters that gives the lowest errors is K = 10000 and N = 10. so the concentration of outliers is higher. As a consequence, bigger clusters with more neighbors provide lower errors. We choose to take N = 40 and K = 5000, which are the best hyperparameters in the grid search.

Similarly to the sparse-to-dense interpolation, we performed a grid search to nd the combination of K and N that gives the lowest errors for the regularization. However, we limit our grid search to N ≤ 10. The reason is that the concentration of scene ow estimates is much higher than in the sparse case, so it becomes computationally expensive to regularize the scene ow.

From Figure . , we notice that the optical ow and the disparity grid search have approximately the same pro le: the errors decrease when the number of neighbors N and the number of clusters K increase. We also notice that the optical ow and disparity errors increase drastically when the number of clusters is small. This is due to some under tting of the model: there are too many estimates and our a ne model is not complex enough to t the data.

Contrary to the sparse-to-dense interpolation case, having K = 10000 does not increase the errors for the optical ow and disparity. This is because the concentration . The blue graph denotes the evolution of the cost in the case of dense regularization, the orange one denotes the sparse-to-dense interpolation cost. The costs are normalized by the cost of the initial model computed with Equation ( . ).

In both cases, the cost becomes almost constant from the third iteration.

of the initial disparity and optical ow estimates is much higher, so the case where there is not enough scene ow estimates per cluster appears for a higher number of clusters.

On the other hand, we see that the disparity variation pro le of the grid search is very similar to the one in the sparse-to-dense interpolation: the lowest error is obtained when the number of neighbors N is high and the number of clusters K is low. Again the di erence with the optical ow and disparity behavior is caused by the way we compute the initial disparity variation estimates: we compute an occlusion mask to remove outliers. If there are inaccuracies in the occlusion mask, outliers will be taken into account for the model tting. As a consequence, taking bigger clusters and more neighbors helps reducing the errors by decreasing the weight of an outlier among the estimates.

In our experiments, we choose K = 10000 and N = 10 for the scene ow regularization as it is the best combination for both optical ow and disparity estimations.

After selecting the optimal combination of N and K for the sparse-to-dense interpolation and the regularization methods, we need to determine the number of iterations N iter that the model needs to converge towards a stable solution. The evolution of the cost functions (written in Equation ( . )) of the sparse-to-dense interpolation and for the regularization are shown in Figure . . They are respectively denoted 'S D' and 'Reg' in the legend. In the gure, we normalized with the initial cost, that is the cost of the initial model as given in Equation ( . ). For both methods, the convergence rate is high and from the third iteration, the cost functions are quasi-constant. So, we have taken N iter = 3 for the following evaluations.

. . Comparison with state-of-the-art methods

The proposed methods are rst assessed using our sparse dataset. They are compared to the method in [ ] referred to here as OLFW (Oriented Light Field Window). The OLFW method was designed for dense light elds captured with plenoptic cameras and is hardly applicable when the baseline is large. However, the optical ow searched via the oriented window can be combined with disparity maps estimated with methods suitable for sparse light elds. In the test reported here, we have used ground truth disparity maps for this method, thus showing the best results it can give for the estimated scene ow. We also compare the disparity maps that we estimate, as part of our scene ow model, with the ones obtained with the deep learning based disparity estimation method in [ ], referred to here as FDE (Flexible Depth Estimation).

Besides, our methods are compared with the initial scene ow estimated as in . . , using PWC-Net [ ]. The optical ow estimation technique [ ] is used for separately estimating the optical ow in each view as well as the disparity between views. In order to have a dense disparity variation for this naive approach, we do not compute the occlusion mask. So, the disparity variation in occluded or disoccluded areas will never be consistent. Finally, we tested two stereo scene ow methods: [ , ], respectively denoted as OSF (Object Scene Flow) and PRSM (Piecewise Rigid Scene Model), using the central view and its right neighbour as stereo pair.

The results are summarized in Tables . , . and . . For each successive light eld frame of the four sequences (Bamboo and Temple , both rendered as clean and nal), we compute the optical ow EPE, the disparity and disparity variation MAE on every ray of the light eld and also on the central view only. We can observe that our regularization method always yields the most accurate optical ows (see Table . ), and disparity maps (see Table . ). Our method is only outperformed by the FDE method [ ] for the disparity of the central view on Bamboo clean & nal and Temple clean. However, even for these light elds, our method provides better average results than FDE when considering the disparity maps of all the views, which indicates a better consistency between views. Furthermore, the FDE method only estimates disparity (and not optical ow or disparity variation), while our approach computes the full scene ow. Even though, we did not choose the best combination of K and N parameters for the disparity variation, the mean absolute error is the lowest for the Temple sequence and the second lowest among every tested method for the Bamboo sequence (see Table . ). It is only outperformed by a small margin by our sparse-to-dense interpolation method. As for the optical ow and disparity estimation given this latter, the endpoint errors on the optical ow are comparable to state-of-theart method as PWC-Net [ ] but the mean absolute errors on disparity are the highest among the light eld based methods. Note that the two stereo methods failed to estimate an accurate disparity in the Temple sequence. These methods were mainly developed in the context of autonomous driving and their default parameters were ne-tuned for urban scenes.

We also performed some qualitative assessment of the methods on frames of Bamboo clean (Figure . ), Temple nal (Figure . ) and of Bar (Figure . ). We can notice that our two methods gives sharper optical ow and disparity maps than the initial scene ow computed by [ ], while correcting occlusion errors.

Finally, we tested our methods on a dense dataset provided by [ ]. In order to keep the complexity low for our our methods, we estimated an initial scene ow on a set of nine views (central view, corner views and top, bottom, left and right views). Then, clustering every views, we were able to t a scene ow model, interpolate and regularize the scene ow on every view of the light eld.

For the disparity estimation, some light eld depth estimation methods were added to compare: globally consistent depth labeling (GCDL)[ ], phase-shift based depth estimation (PSDE)[ ] and occlusion-aware depth estimation (OADE)[ ]. Note that the metric used to compute the disparity estimation is Root Mean Square Error (RMSE) as it was in the original paper[ ]. The results are given in Tables . and. . We see that, in terms of optical ow and disparity, our regularization method yields similar results to [ ] for the central view, and that, in most scenes, it gives more accurate estimation when taking every view into account. Both methods outperform every other tested method based on light elds or stereo images. As for the sparse-to-dense interpolation method, it gives comparable errors as our regularization method and the method in [ ] in terms of optical ow but higher errors in terms of disparity.

. . Model validation

In order to validate the a ne model, we used the ground truth scene ow as initial estimation and then we performed the clustering step as well as the tting of the model with the same hyperparameters as in Section . . . This gives us the minimum errors that can be obtained with our method, due to the model approximation. The results of this experiment for every scene and rendering are summarized in Table . . In comparison with state-of-the-art methods, the endpoint errors for the optical ow and the mean absolute errors for the disparity that we obtain are substantially lower by a factor of 6. The mean absolute errors for the disparity variation also decrease but less signi cantly, because they are already very low.

Visual comparisons between the estimated scene ow and the corresponding ground truth are also presented in Figures . and . for the light eld frames that have the highest endpoint errors in each scene rendered in nal mode. We observe that, although these frames are the worst frames in their respective sequences, thin structures are well reconstructed. However, our estimated optical ow is inaccurate for objects whose disparity is so high that it disappears in other views of the light eld, making it very di cult to accurately cluster the object and t an accurate a ne model. This is why the optical ow of the butter y on the bamboo frame in Figure . is visually di erent from the ground truth. Inaccuracies are also observed when small objects have colors that are very close to the background: this leads to a weighted graph with strong edges between the aforementioned object and the background clusters. This is the case for the optical ow of the dragons on the temple frame in Figure . .

In order to provide more insights on where our a ne model fails to accurately represent the ground truth, we measured the in uence of temporal occlusions, motion amplitude and disparity with the Sintel dataset. In Table . , we computed errors on temporally non-occluded and occluded regions, respectively referred to as NOC and OCC. The last row is the ratio of each region for the whole dataset (e. g., there are % pixels that are not occluded in the Sintel dataset). We can notice that the errors are much higher in occluded areas. Since occlusions are typically located on objects boundaries, a bad clustering that groups pixels from di erent objects will cause errors during the model tting step, thus giving a scene ow with more errors in the occluded areas.

In Table . , the impact of motion amplitude is measured. Let s = ∆x 2 + ∆y 2 be the amplitude of motion of a pixel, s , s -, s respectively represent the regions where s < 10, s ∈ [10, 40] and s > 40. The results show that the error of the model is larger for objects with a very large motion (s > 40).

Finally, we evaluate the in uence of disparity on the errors in Table . . Low disparity areas correspond to background objects, which tend to have lower motion amplitude than objects of the background whose disparities are higher. Therefore, high disparity and large motion are inherently related in the tested scenes, which explains why the areas with large disparity have higher errors. . . Complexity Using the optimal hyperparameters, the computation takes one hour light eld frame on average for the sparse dataset, with our laptop equipped with an Intel Core i -U CPU and GB RAM. Note that the aforementioned duration is calculated with a non-optimal and fully sequential implementation. However, most of the steps (i. e., scene ow initialization, clustering, nearest neighbor search, model tting) could bene t from a parallel implementation. The authors in [ ] implements their clustering on a GPU. Then, once the weighted graph is built, we can simultaneously search for the nearest neighbors of each cluster. Finally, the model tting step can be performed independently on each cluster.

Let M a × M a and M s × M s be the angular and spatial resolutions of our light eld, K be the number of clusters, N the number of neighbors, I the number of iterations and S the number of initial scene ow estimates per cluster. Then, the time complexity of tting our model to every cluster is O(13IKN 2 S), where corresponds to the number of parameters of our model. Complexity changes quadratically with the number of neighbors N due to the propagation step added in the RANSAC algorithm. The complexity of the sparse-to-dense interpolation is lower than the regularization one because S is lower (≈ 25 times lower with our setup), which is why we can a ord to use a higher number of neighbors N . In the case of regularization, where we estimate a initial scene ow on every view, we have S = M 2 a M 2 s /K and the complexity becomes O(13IN 2 M 2 a M 2 s ). However, if we want to reduce the complexity of our regularization method, we do not need to have an initial scene ow estimate on every view. This is what we did for the dense dataset, where we took 3 × 3 views (instead of 9 × 9 views) in the initialization step. In this case, the complexity becomes O(117IN 2 M 2 s ).

. . Limitations

We further test our methods (with the PWC-Net[ ] initialization) on dense synthetic datasets ray-traced using POV-Ray, Apples and Snails provided by [ ], that have very narrow baselines. Their angular resolution is 9 × 9 with a respective disparity range of [1.1, 1.7] and [0.3, 1.4]. The scenes are photo-realistic with strong specular re ections, strong shadows and non-lambertian surfaces. Therefore they are very challenging light elds. We compare the mean square errors (MSE) produced by our estimations with those obtained by the method proposed in [ ] (denoted PPDA for Preconditioned Primal-Dual Algorithm). The results are summarized in Table . . We can see that our methods fail to accurately estimate the scene ow on this dataset. In the case of regularization, this failure is mostly caused by the initialization step which produces too many outliers for the tting of the model. The method we used, i. e., PWC-Net [ ], is indeed not very robust to strong specularity and does not handle ambiguous situations, e. g., when a shadow is moving, it is unclear whether the optical ow should represent the apparent motion of the shadow or the motion of the surface the shadow is projected on. On the other hand, our sparse-to-dense method is more robust to these ambiguous situations but completely fails to estimate disparity. This is mostly due to the very small baseline of the light eld: for disparity less than a pixel patch-based methods are very inaccurate. The method in [ ] operating on epipolar plane images is on the contrary well suited for such light elds with narrow baselines but cannot be used when the disparity is large, the case we focus on in this chapter.

. In this chapter, we have presented a new model of scene ow that takes into account the epipolar structure of light elds. Using the developed model, we proposed two methods to estimate scene ows from light eld videos. These methods are based on the three following steps: rst an initial scene ow estimation, then a D clustering of the light eld, and nally a tting of the model for each cluster. One method use a sparse initial scene ow estimation while the other use a dense estimation. For the performance evaluation, we have generated a synthetic dataset from the open source movie Sintel in order to extend the popular MPI Sintel benchmark to sparsely sampled light elds and scene ow. We also assessed our methods on a dense light eld dataset. Some qualitative tests were nally run on real light elds using the Fraunhofer dataset. For the sparse dataset, our regularization method had lower errors for the optical ow, the disparity and the disparity variations than any other state-of-the-art scene ow approaches. Our sparse-to-dense method gave higher errors on optical ow and disparity estimation while yielding more accurate disparity variation estimation on several scenes. On the dense dataset, the regularization method gave comparable performances with the stateof-the-art light eld method regarding the horizontal and vertical displacements (i. e., the optical ow) and disparity of the central view while yielding more accurate results on the whole D light eld. On the other hand, even if the sparse-to-dense interpolation gives comparable errors to the regularization approach in terms of optical ow, its disparity estimate is less accurate. That is why we would advise using the regularization method instead to compute optical ows. Overall the regularization gives more accurate and provides convincing results on both sparse and dense datasets. Using the ground truth scene ow as initialization, we have shown that the ground truth locally conforms to our a ne model. This model is also a light way of describing a dense scene ow on the whole light eld as it requires only parameters per cluster. It could therefore be incorporated in a light eld coding scheme as it would provide a prediction of every view of the light eld at time t + 1, only transmitting the central view at t alongside with the scene ow parameters. At the very least, this scene ow method could be used to perform light eld frame interpolations, this is what the next chapter will demonstrate.

A N G U L A R L Y O N S I S T E N T F R A M E I N T E R P O L AT I O N .
Increasing the video frame rate by temporal frame interpolation has been a widely addressed problem, e. g., for compression purposes, or to create high quality videos or to produce slow motion e ects. In the meantime, light elds have shown that they could be useful in numerous computer vision and image processing applications such as depth estimation, optical ow, refocusing or view interpolation. In this chapter, we focus on synthesizing a whole light eld frame between two consecutive light elds frames. The synthesized light eld should be consistent with the previous and following frames but it should also preserve the epipolar structure. In a nutshell: the generated light eld sequence should be temporally and angularly consistent.

We choose to have a full light eld approach that does not require an additional single view video with higher frame rate to interpolate the light eld frames. We also take into consideration that there are very few light eld video datasets and therefore a neural network that would take light elds as inputs and outputs would be di cult to train. Furthermore, such an approach might require a model with a very larger number of parameters to handle the high dimensional data represented by light eld videos. Instead, we enforce the angular consistency of the light eld during the optical ow estimation. Then, temporal consistency is enforced by synthesizing individually every view of the light eld using a neural network trained on traditional videos and taking best advantage of the optical ows obtained previously. For the neural network architecture and model, we took inspiration from the arbitrary-time ow interpolation network of [ ].

In order to validate the proposed method, we use the synthetic light eld video dataset based on the Sintel movie detailed in Chapter . We assess our algorithm in comparison with the Super SloMo method in [ ], and with two other video frame interpolation methods, Separable Adaptive Convolution [ ] and Deep Voxel Flow [ ], that we separately apply on each view of the light eld. For each method, we estimate the PSNR and the SSIM of each interpolated view, alongside a new metric that we introduce to quantify the angular consistency of a given light eld frame. Experimental results show that the proposed method gives a better angular consistency among the synthesized light eld. While our PSNR and SSIM results are comparable to state-of-the-art video interpolation methods independently applied on each view, visual improvement is also observed, in particular for areas with large motion.

. Let L 0 and L 1 be two consecutive light elds in a video. The goal of this method is to synthesize a light eld L t at intermediate time instant t ∈ [0, 1]. First, we compute an angularly consistent bidirectional optical ow between L 0 and L 1 . Then, we use a convolutional neural network to re ne independently the ows of each view of the light eld and to synthesize the light eld at an intermediate time instant t. The method is summarized in Figure . .

. . D consistent optical ow

The rst step of the proposed light eld frame interpolation method is to estimate an optical ow for every view of the light eld (" D scene ow estimation" block in Figure . ). In order for the interpolation to be angularly consistent, we regularize optical ows of each view with the method described in Chapter . The method rst constructs clusters of light rays in the D space and then ts a D local a ne model to each cluster taking into account the epipolar structure of the light eld. We estimate a bidirectional optical ow, that is the optical ow φ 0→1 from L 0 to L 1 , and the optical ow φ 1→0 from L 1 to L 0 . The vectors φ 0→1 and φ 1→0 are de ned as in Equation ( . ) for each D point P = (u, v, x, y) of the light elds.

In order to interpolate the light eld at frame t, we then need to compute the intermediate optical ows φ 0→t and φ 1→t ("Intermediate ow estimation" block in Figure . ).

In [ ], this step is simply performed as a weighted mean of φ 0→1 and φ 1→0 . However, this approach does not estimate accurately the optical ow on the edges of an object and on the occluded areas. The authors used this simple estimation because it occurs between two convolutional neural networks (the rst one estimates a bidirectional optical ow and the second one performs the frame synthesis). Therefore, they need this step to be easily di erentiable in order to train simultaneously their two networks. However, in our case, we do not train a network to estimate a bidirectional optical ow. As a result, we are not constrained to use a di erentiable method.

We choose to use a method similar to the one described in [ ]. The algorithm is the following:

. Forward-warp the ow φ 0→1 to time t to obtain φ 0 t where:

φ 0 t (round(P + tφ 0→1 (P ))) = φ 0→1 (P ) ( . )
The ow vectors are splatted with a splatting radius of 0.5 and when multiple ow vectors are projected to the same pixel location, we choose the vector that provides the best photo-consistency, that is the ow vector φ 0→1 (P ) that minimizes the projection error |L 0 (P ) -L 1 (P + φ 0→1 (P ))|. . Forward-warp the ow φ 1→0 to time t to obtain φ 1 t where:

φ 1 t (round(P + (1 -t)φ 1→0 (P ))) = φ 1→0 (P ) ( . )
We perform the same splatting operation and photo-consistency check as in the previous step . Merge the two ows into φ t :

φ t (P ) =        +φ 0 t (P ) if φ 1 t (P ) is not de ned -φ 1 t (P ) if φ 0 t (P ) is not de ned (1 -t)φ 0 t (P ) -tφ 1 t (P ) otherwise ( . )
. Inpaint the holes in φ t using an outside-in interpolation . The nal intermediate ows are nally estimated as: . ) . . View-wise light eld synthesis network

φ t←0 = -tφ t ( . ) φ t←1 = (1 -t)φ t ( 
Once we have estimated the intermediate ows φ t←0 and φ t←1 , we could directly use them to back-warp the views of the light eld from L 0 or L 1 . However, this simple approach produces annoying artifacts especially around motion boundaries.

To tackle this issue, similarly to [ ], we use a convolutional neural network with a U-Net architecture to re ne independently the ows of each view of the light eld and to produce visibility maps that handle temporal occlusions ("View-wise light eld synthesis network" block in Figure . ). Let V t uv be a view of L t at angular position (u, v). For each view V t uv to estimate, we want the CNN to produce re ned optical ows φ r t←0 , φ r t←1 and soft visibility maps χ t←0 , χ t←1 such that: φ r t←0 = φ t←0 (u, v) + ∆φ t←0 ( . )

φ r t←1 = φ t←1 (u, v) + ∆φ t←1 ( . ) χ t←1 = 1 -χ t←0 w.r.t. χ t←0 ∈ [0, 1] ( . )
In practice, the neural network only gives χ t←0 ∈ [0, 1] and we then compute χ t←1 from it to ensure the validity of Equation . . Moreover, instead of directly estimating the re ned optical ows from the network, we make it generate ∆φ t←0 and ∆φ t←1 , this produces better results according to [ ].

Using the re ned optical ows, we produce back-warped views from V 0 uv and V 1 uv that we merge thanks to χ t←0 and χ t←1 to form the intermediate light eld view V t uv : ) where g(•, •), and respectively denote di erentiable back-warp operator, Hadamard product and pixel-wise division. α 0 , α 1 and Z are de ned as follows:

V t uv = ( α 0 g(V 0 uv , φ r t←0 ) + α 1 g(V 1 uv , φ r t←1 ) ) Z, ( . 
α 0 = (1 -t)χ t←0 and α 1 = tχ t←1 ( . ) Z = α 0 + α 1 ( . )
For the architecture of the CNN, we take the same model as in [ ], that is a U-Net architecture, consisting of an encoder and a decoder with skipped connections between encoder and decoder layers of the same size. The encoder consists of hierarchies which are composed of two convolutional and one Leaky ReLu (with α = 0.2) layers. Every hierarchy except the last one ends with an average pooling layer to decrease the spatial dimension by . The decoder consists of hierarchies that start with a bilinear upsampling layer to increase the spatial dimension by a factor of . It is followed by two convolutional and Leaky ReLU (α = 0.2) layers. For each convolutional layer, the kernel size is set to 3 × 3.

For the training, the loss function is a linear combination of a reconstruction loss L r , a warping loss L w , a perceptual loss L p and a smoothness loss L s . Compared to [ ] we only change the smoothness term, imposing the smoothing constraint to the nal optical ows. Originally, the smoothness constraint was applied on φ 0→1 and φ 1→0 since they were simultaneously estimated with another network.

L = w r L r + w w L w + w p L p + w s L s ( . ) with: L r = I t -Ît 1 ( . ) L w = I t -g(I 0 , φ r t←0 ) 1 + I t -g(I 1 , φ r t←1 ) 1 ( . ) L p = ψ(I t ) -ψ( Ît ) 2 ( . ) L s = ∇φ r t←0 1 + ∇φ r t←1 1 ( . )
where I t , Ît , ∇ and ψ respectively denote the ground truth intermediate frame, the synthesized frame estimated with Equation . , the gradient operator and the conv4_3 features of a pre-trained VGG model [ ].

Like in [ ], the weights are set to w r = 0.8, w w = 0.4, w p = 0.005 and w s = 1.

. . . Training

To generate an intermediate light eld frame, we choose a view-wise approach for the neural network. The reason is that nding enough light eld videos to train a neural network is very challenging. Instead, having a view-wise approach enables us to use D videos for the training. So, in order to train our network, we use the MPI Sintel dataset [ ]. We removed the Bamboo and Temple sequences from the training dataset since they will be used in the evaluation. We also need initial optical ows for these D frames. Since the purpose of the neural network is to re ne the optical ows and generate corresponding visibility maps for optimal warping, we have to use estimated optical ows as inputs. Hence, we need to estimate optical ows with similar accuracy as the ones produced by the method presented in Section . . , based on the D consistent optical ows of Chapter . Since this D approach cannot be applied to the D dataset, we use instead the PWC-Net [ ] optical ow estimation network that is used for the initialization step of Chapter .

First, because we have the same architecture and a similar loss function as in [ ], we initialize the weights of our network with those obtained by the training of [ ] on the adobe fps dataset. Then, in the training, for every clip of the MPI Sintel dataset, we use the odd frames as input frames and the even frames as targets. During the training, we perform some data augmentation on the frames such as random cropping, horizontal ip or time inversion.

. . Evaluation

To test our method and compare it with other state-of-the-art methods, we use Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between every view of the interpolated light eld and those of the ground truth light eld frame. While these metrics provide valuable insights on the quality of independently interpolated views, they fail to assess the angular consistency of the whole interpolated light eld. So, we de ne a new metrics that we call Light Field Epipolar Consistency (LFEC). 

Light Field Epipolar Consistency metric

Let N u × N v and W × H be the respective angular and spatial resolution of our light eld. In the synthetic dataset that we use, ground truth disparity maps are provided, so we can back-warp every non-central view into the central view, taking into account the angular occlusions. We respectively denote G t uv and Ḡt the warped views and the view obtained when averaging every warped views. Then, for every pixel of the central view, we can compute a variance of every warped colors. This gives us a variance map σ 2 :

σ 2 = 1 N u N v Nu,Nv u,v (G t uv -Ḡt ) 2 ( . )
The Light Field Epipolar Consistency LFEC of the synthesized light eld is then computed similarly to a PSNR:

LFEC = 10 log 10 d 2 σ 2 ( . )
where d is the color range of the pixel values (for an -bit encoded light eld, d = 255) and σ 2 the mean of σ 2 . This metric measures the color consistency of every ray of the light eld along the epipolar plane. If a ray has the wrong color but shares this color with the rest of rays along its epipolar plane, the metric will be high. Inversely, if none of the light eld rays aligned on an epipolar plane has the same value, the metric will be low. Therefore, it enables us to measure the angular consistency of an interpolated light eld.

PSNR, SSIM and LFEC measures

We compare our method with Super SloMo [ ], Separable Adaptive Convolution [ ] and Deep Voxel Flow [ ], respectively denoted SSM, SAC and DVF on the dataset proposed in Chapter . For each of the metrics, we separately compute them on the two scenes (Bamboo and Temple ) rendered with two methods ( nal and clean). The "clean" rendering has no lighting e ect or motion blur while the " nal" rendering is more photorealistic. In terms of PSNR, our method ranks second on the Bamboo sequences and third on the Temple sequences. For these latter results, we achieve very comparable results to [ ]. Our method gives a higher SSIM than [ ] and [ ] on every sequence and outperforms [ ] on Temple -nal. However, the PSNR and SSIM metrics are not ideal to assess the visual quality of the reconstructed views. If we look at visual comparisons for the four sequences (see Figure . ), we can see that our method provides more natural results for objects with large motions which are e ectively propagated at the expected intermediate position. On the other hand, [ ] which gives the highest SSIM and PSNR, shows blurry results in such areas. As a result, the frame interpolated with [ ] is visually more similar to the average of the two input frames (i. e., overlayed input in Figure . ). Although our method is close to [ ], our PSNR is higher. This is mostly because using our D approach of the scene ow estimation allows us to have more robust results than view-wise methods.

As for LFEC, our method systematically outperforms every other tested method, especially [ ], which had overall better results in terms of PSNR and SSIM. On the Temple -clean sequence, we are even . dB ahead of [ ]. If we look at the backwarp variance maps in Figure . , our method gives lower variance on occluded areas than [ , , ]. So, even though the method in [ ] gives higher PSNR and SSIM on a few sequences, the angular consistency of the generated light elds is the lowest among every tested method. On the other hand, our method o ers a good trade-o between angular and temporal consistency. for the rd frame (among the generated) and full sequences can be found on our project webpage . Our method gives the sharpest results on views and EPIs. We can observe sharp epipolar lines on our EPIs unlike those generated by [ , ]. Furthermore, we can notice that [ ] produces curved and discontinuous lines on the EPIs, proving that our method is more angularly consistent than any other tested method.

. In this chapter, we proposed a method to interpolate an angularly consistent intermediate light eld frame from a pair of two consecutive light eld frames. We divided the interpolation problem in two parts: motion estimation and view synthesis. To enforce the angular consistency of our method, we estimated an optical ow on the whole D light eld and to enforce the temporal consistency, we independently synthesized the light eld views using a convolutional neural network that we trained on a synthetic dataset. To estimate the angular consistency of the reconstructed light eld, we proposed a new metrics called LFEC. We compared our method with state-of-the-art deep learning approaches and achieved comparable results in terms of PSNR and SSIM. Visual inspection further indicates that our approach better keeps the temporal consistency in the case of large motions, where concurrent methods tend to produce blurred results. Furthermore, regarding the angular consistency, improved LFEC scores are obtained thanks to the use of D consistent optical ows, which was made possible by decoupling the optical ow estimation and the frame interpolation network. Therefore, our results demonstrate the advantage of taking into account angular information for the temporal interpolation of light eld videos. Future work in that direction would thus include a simultaneous processing of the light eld views, not only for the optical ow estimation, but also for the frame interpolation.

C L O S I N G G E N E R A L C O N C L U S I O N

Recently, light eld imaging has asserted itself as a promising imaging modality, particularly in the eld of Virtual and Augmented Reality. By capturing light as a collection of rays coming from di erent positions and directions, displaying light elds gives more immersion to the observer by adding depth cues. Light eld can also be used to retrieve information about the geometry of the captured scene.

There are two types of devices used to capture light eld: arrays of cameras and plenoptic cameras. Both can theoretically be used to capture still light elds and light eld videos. In both cases, the captured light elds need to be extracted and put into usable form. This is challenging, especially for plenoptic cameras where information on direction and position of rays is mixed together. Plus, raw images captured with plenoptic cameras have a lenticular structure caused by the optical design of plenoptic cameras.

In Chapter , we analyzed one of the most used extracting pipelines for plenoptic cameras. We created raw images from synthetic light elds and used them to nd the aws of the pipeline. We showed that the lenticular structure of the raw image needed to be taken into account for the demosaicing and alignment steps or else ghost artifacts would appear on the extracted views of the light eld. We developed two methods of demosaicing and alignment where the interpolations were guided by a white lenslet image. Replacing the demosaicing and alignment steps of the pipeline with our method, we showed that we were able to reduce artifacts and produce higher quality views on real light elds.

Once the light eld views had been correctly extracted from a plenoptic camera or an array of cameras, information on the geometry of the captured scene could be retrieved. Classically, a depth map is estimated from still light elds. This issue has been widely investigated and a lot of di erent methods have been proposed. However, fewer papers had considered light eld videos and the issue of motion analysis, i. e., optical ow or scene ow estimation. In Chapter , we proposed a model of scene ow that enforces consistency in the four dimensions of the light eld. Based on this model, we explored two applications: sparse-to-dense interpolation and regularization of scene ow. The proposed model is local and a ne, therefore in both cases, we perform a D clustering of the light eld and then estimate the parameters of the model in each cluster, using initial scene ow estimates that are sparse in one case, dense in the other. In order to assess how well our methods performed against state-of-the-art methods, we generated a synthetic video dataset of sparsely-sampled light elds, using the D scenes of the open source movie Sintel. We also evaluated our methods on a dense dataset and on real light elds captured with an array of cameras. We obtained the best results on light elds with wide baseline (i. e., taken with arrays of cameras). While the sparse-to-dense method provided less accurate optical ow and disparity estimations than state-of-the-art methods, it gave very accurate disparity variation maps. On the other hand, our regularization method had on average the lowest errors for optical ow, disparity and disparity estimation on our dataset and had similar results to the state-of-the-art methods on the dense dataset. Finally, we also showed that our a ne model locally conforms to the ground truth and is therefore accurate to describe scene ow.

In Chapter , we explored how our previously estimated scene ow could be used to perform temporal interpolation on light eld videos. Given two consecutive light eld frames, our goal was to propose a method that could enforce not only temporal consistency but also angular consistency across the views of the generated light eld. In this regard, we used our scene ow regularization method to estimate a bidirectionnal optical ow to enforce angular consistency and then we used a convolutional neural network to independently perform the view synthesis to enforce temporal consistency. In order to assess the angular consistency of the interpolated light eld, we proposed a metric called Light Field Epipolar Consistency. We compared our method to state-ofthe-art video interpolation methods that we had applied on the light eld views. Ours results were similar to the others in terms of PSNR and SSIM but we achieved a higher epipolar consistency. Visually, our interpolated frames were also sharper.

Di erent approaches could be examined to extend the work presented in this thesis. We proposed a method to demosaic lenslet images and tested it in a plenoptic . extracting pipeline in Chapter . However our method is not exclusive to plenoptic . and it could therefore be tested for plenoptic . raw images. Additionally, our methods still require to have a white lenslet image to guide the interpolations. We could dispose of this constraint by replacing it with a model based on the grid parameters and the vignetting pro le of the lenslet array. Furthermore, the weights of the demosaicing kernels were derived from the original paper and adapted using the white lenslet image. Future work could include designing optimal kernels from scratch or to use the synthetic lenslet image to learn the optimal kernel weights. One could also detect occlusions in the light eld and use occlusion masks to independently demosaic di erent depth layers. This would potentially help extracting views with sharper edges in occluded areas.

In Chapter , a D local a ne model for scene ow was presented. With only parameters per cluster, this model is a light way of describing a dense scene ow on the whole light eld. It could therefore be incorporated in a light eld video coding scheme as it would provide a prediction of every view of the light eld at time t + 1, only transmitting the central view at t alongside with the scene ow parameters. In the thesis, we tested our model with only one method of clustering. We could also explore other over-segmentation methods and observe if some methods are more adapted to our model. In the presented work, we nd the parameters of every cluster with a RANSAC approach and with a sampling that minimizes the condition number of the matrix to invert. We could also use other sampling methods to select the di erent estimates from which we generate the model. Furthermore, the model itself could also be changed. For example, instead of an a ne model and an over-segmentation of the light eld, we could imagine a more complex model (e. g., Gaussian mixture or learned dictionary-based models) and a semantic segmentation of the light eld.

The last contribution of this thesis was a method to interpolate an intermediate light eld frame from two consecutive ones. We showed how we could enforce angular consistency in the generated light eld by using an angularly consistent optical ow estimation. In this perspective, future work in that direction could include a simultaneous processing of the light eld views, not only for the optical ow estimation, but also for the frame interpolation. This would however be challenging as there are not so many light eld video datasets to train a neural network. Moreover, in Chapter , we only used the optical ow components of the scene ow we previously estimated. An interesting development could be to incorporate the depth information into the frame interpolation problem. We can imagine two ways of doing so: rst, we could propose a method to perform a light eld frame interpolation by only using the central views of two consecutive light eld frame and their corresponding scene ow. Second, we could also use depth maps as input of the view synthesis neural network. Theoretically, this would allow the neural network to better handle the temporal and angular occlusions.
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 . Figure . : Sketch from Lippmann's presentation
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 . Figure . : Geometrical representation of the plenoptic function
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 . Figure . : Geometrical representation of the light eld function

Figure

  Figure . : Alternative representation of the light eld function
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 . Figure . : Alternative representation of the light eld function
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 . Figure . : View and epipolar plane images of a light eld taken from [ ]
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 . Figure . : Sketch of a light eld display taken from [ ]
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 . Figure . : Example of post-capture image rendering: Left image is focused on a near plane with a wide aperture, right one has a slightly di erent point of view with a focus on a far plane and a narrow aperture
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 . Figure . : Illustration of the depth estimation principle using slopes in EPI

  Figure . : Optical con guration of an array of cameras

  Figure . : Optical con guration of a plenoptic camera .
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  Figure . : Raw image taken by a plenoptic camera .
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 . Figure . : Raw image taken by a plenoptic camera .

  Figure . : Pinhole model
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 . Figure . : Pipeline for extracting views from a raw lenslet image [ ]
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  Figure . : Kernels in [ ]
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 . Figure . : Misalignment between the sensor and the lenslets

Figure . :

 . Figure . : Extraction of a given view from a lenslet image: note how the hexagonal sampling of the raw lenslet image on the left results in missing pixels (in black) in the view on the right.

Figure . :

 . Figure . : From a synthetic light eld to a lenslet image: (a) is a x synthetic light eld, the red squares are representing the views and the black squares the pixels of a view; in (b) the views in the corners are removed; in (c) the light eld is resampled in order for each view to have an hexagonal grid of pixels; (d) is the nal lenslet image.
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 . Figure . : Lenslet image of Butter y [ ]
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 . Figure . : Assessment of our demosaicing method on a synthetic lenslet image in comparison with [ ]. The pixels which are outside the lenslets are ignored in the PSNR computation.
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 . Figure . : Assessment of our aligment method on a synthetic lenslet image in comparison with a simple bilinear interpolation. Top images show the views of the light eld, bottom ones show view V 2,2 .

  Figure . : Visual comparisons of our improved pipeline with [ ] on peripheral view V 2,2 of synthetic light elds taken from [ ].
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 . Figure . : Di erent ways of estimating depth with a light eld

  Last, [ ] and [ ] combine defocus cues from the focal stack and correspondence cues from views. Note that focal stack based method are often used for densely sampled light elds, since sparsely sampled light elds produce focal stacks with strong artifacts. Finally, we have recently seen the emergence of deep learning solutions, using in particular convolutional network architectures, for scene depth estimation from light elds. The architectures proposed in [ ], [ ] operate on EPIs, and hence are well suited for dense light elds only. A deep neural network, called Dispnet, is proposed in [ ] based on the optical ow estimation network Flownet [ ]. It computes D correlation instead of D correlation to be better suited for disparity estimation. The authors in [ ] propose a learning based depth estimation framework suitable for both densely and sparsely sampled light elds, that can learn depth maps for every viewpoint from any subset of input views.

  in [ ]. Finally, the authors in [ ], as in [ ], take advantage of coarse-to-ne approaches, and add a partial cost
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 . Figure . :The optical ow describes the apparent motion of an object. If a camera moves left while lming a sphere moving up, the direction of the optical ow observed between frames t and t + 1 will be up right. The optical ow (a) is visualized with the Middlebury color code (b), where the hue and saturation respectively represent the direction and amplitude of the optical ow.
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 . Figure . : Di erent ways of doing temporal interpolation
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 . Figure . : Block diagram of our method
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 . Figure . : Projections of one D scene point on 2 views of the light eld at time instants t and t + 1

Figure . :

 . Figure . : Sparse estimation of scene ow. A set of points S 0 is initialized on a regular grid in (u ref , v ref ) at time t. Then, a matching function C is used to respectively nd the correspondences S 1 and S 2 of S 0 in another view (u, v) at t and in the same view at t + 1. Again the matching function C is used to nd the respective correspondences S 1 3 and S 2 3 of S 1 and S 2 at the view (u, v) at t + 1. The nal step selects only the points that are both in S 1 3 and S 2 3 and estimates the scene ow at these points.

  Figure . : Initialization of the scene ow using a deep optical ow method (PWC-Net [ ] in our case).

  Figure . : Grid search to nd the optimal parameters K and N for the sparseto-dense interpolation. Each image is an average error map for a set of (K, N ) computed with the whole Sintel dataset. The combination of hyperparameters that gives the lowest errors is K = 5000 and N = 40.
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  Figure . : Grid search to nd the optimal parameters K and N for the scene ow regularization. Each image is an average error map for a set of (K, N ) computed with the whole Sintel dataset. The combination of hyperparameters that gives the lowest errors is K = 10000 and N = 10.

  Figure . : Evolution of the cost in the RANSAC model tting for iterations.The blue graph denotes the evolution of the cost in the case of dense regularization, the orange one denotes the sparse-to-dense interpolation cost. The costs are normalized by the cost of the initial model computed with Equation ( . ). In both cases, the cost becomes almost constant from the third iteration.
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 . Figure . : Visual comparison of our methods with [ , , , ] on a frame of Bamboo clean. The optical ows are visualized with the Middlebury color code, and the disparity maps and disparity variations are visualized using a gray-scale representation. The red pixels are the occlusion mask where there is no ground truth disparity variation available.

  Figure . : Visual comparison of the ground truth scene ow and the one obtained with our method using the ground truth scene ow as initialization, with a Bamboo nal frame.
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 . Figure . : Block diagram of our interpolation method.

  Figure . : Visual comparison of our method with [ , , ] for the central view.
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 . Figure . : Visual comparison of our method with [ , , ] for the rd interpolated frame of the central view.

  Étant donné des champs de lumière à deux instants, l'objectif est d'interpoler un champ de lumière intermédiaire pour former une séquence vidéo de champs de lumière cohérentes spatialement, angulairement et temporellement. Nous commençons par calculer les ux de scène bidirectionnels angulairement cohérents entre les deux champs de lumière d'entrée. Nous utilisons ensuite les ux optiques et les deux champs de lumière comme entrées d'un réseau de neurones convolutifs qui synthétise indépendamment les vues du champ de lumière à un moment intermédiaire. A n de mesurer la cohérence angulaire d'un champ de lumière, nous proposons une nouvelle métrique basée sur la géométrie épipolaire. Les résultats expérimentaux montrent que la méthode proposée produit des champs de lumière qui sont angulairement cohérents tout en conservant une cohérence temporelle et spatiale similaire à celle des méthodes d'interpolation temporelle de vidéos les plus avancées, qui elles ne permettent pas de s'assurer de la cohérence angulaire.
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  We rst introduce a local D a ne model to represent scene ows, taking into account light eld epipolar geometry. The model parameters are estimated per cluster in the D ray space. They are derived by tting the model on initial motion and disparity estimates obtained by D sparse or dense optical ow estimation techniques. The model is rst shown to enable dense scene ow estimation from sparse correspondences between pairs of views. We then demonstrate that the model is also very e ective for estimating scene ows from D optical ows. The model regularizes the optical ows and disparity maps, and interpolates disparity variation values in occluded regions. The proposed model allows us to bene t from deep learning-based D optical ow estimation methods while ensuring scene ow geometry consistency in the dimensions of the light eld.

Table . :

 . EPE of estimated optical ow for all pixels

			Bamboo		Temple	
			clean	nal	clean	nal
		OSF[ ]	.	.	.	.
		PRSM[ ]	.	.	.	.
	Central	OLFW[ ]	.	.	.	.
	View	PWC-Net[ ]	.	.	.	.
		Ours (S D)	.	.	.	.
		Ours (Reg)	.	.	.	.
	All Views	PWC-Net [ ] Ours (S D) Ours (Reg)	. . .	. . .	. . .	. . .

Table . :

 . MAE of estimated disparity for all pixels

			Bamboo			Temple		
			clean	nal	clean		nal
		OSF[ ]	.	.		.		.
	Central View	PRSM[ ] FDE[ ] PWC-Net[ ]	. . .	. . .	. .	.	. .	.
		Ours (S D)	.	.	.		.	
		Ours (Reg)	.	.	.		.	
	All Views	FDE[ ] PWC-Net [ ] Ours (S D)	. . .	. . .	. . .		. . .	
		Ours (Reg)	.	.	.		.	

.

Table . :

 . MAE of estimated disparity variation for all unoccluded pixels

				t		t + 1	
			Central view				
			(∆x, ∆y)		d t		∆d
	Ground Truth						
	Ours (S D)						
	Ours (Reg)						
	PWC-Net[ ]						
	OLFW[ ]			Bamboo clean	nal	Temple clean	nal
	PRSM[ ]	Central View	OSF[ ] PRSM[ ] OLFW[ ] PWC-Net [ ]	. . . .	. . . .	. . . .	. . . .
			Ours (S D)	.	.	.	.
	OSF[ ]	Views All	Ours (Reg) Ours (Reg) Ours (S D) PWC-Net [ ]	. . . .	. . . .	. . . .	. . . .

Table . :

 . EPE of estimated ow for all pixels

			NewSecretaire		Mario	Drawing	Balls			NewBalls
			Small Big	Small Big	Small Big	Small Big	Small Big
		PRSM[ ]	.	.	.	.	.	.	.	.	.	.
		OSF[ ]	.	.	.	.	-	.	.	.	.	.
	Central	LDOF[ ]	.	.	.	.	.	.	.	.	.	.
	View	OLFW[ ]	.	.	.	.	.	.	.	.	.	.
		FVOF [ ]	.	.	.	.	.	.	.	.	.	.
		Ours (S D)	.	.	.	.	.	.	.	.	.	.
		Ours (Reg)	.	.	.	.	.	.	.	.	.	.
	All	FVOF[ ]	.	.	.	.	.	.	.	.	.	.
	Views	Ours (S D)	.	.	.	.	.	.	.	.	.	.
		Ours (Reg)	.	.	.	.	.	.	.		.	.

Table . :

 . RMSE of estimated disparities all pixels

			NewSecretaire		Mario	Drawing	Balls			NewBalls
			Small Big	Small Big	Small Big	Small Big	Small Big
		GCDL[ ]	.	.	.	.	.	.	.	.	.	.
		PSDE[ ]	.	.	.	.	.	.	.	.	.	.
		OADE[ ]	.	.	.	.	.	.	.	.	.	.
	Central	PRSM[ ]	.	.	.	.	.	.	.	.	.	.
	View	OSF[ ]	.	.	.	.	-	.	.	.	.	.
		OLFW[ ]	.	.	.	.	.	.	.	.	.	.
		FVOF [	.	.	.	.	.	.	.	.	.	.
		Ours (S D)	.	.	.	.	.	.	.	.	.	.
		Ours (Reg)	.	.	.	.	.	.	.	.	.	.
	All	FVOF [ ]	.	.	.	.	.	.	.	.	.	.
	Views	Ours (S D)	.	.	.	.	.	.	.	.	.	.
		Ours (Reg)	.	.	.	.	.	.	.	.	.	.

Table . :

 . Validation of the ne model according to the scene

		Bamboo		Temple	
		clean	nal	clean	nal
	EPE (∆x, ∆y)	.	.	.	.
	MAE d t	.	.	.	.
	MAE ∆d	.	.	.	.

Table . :

 . In uence of occlusions on the ne model

		NOC	OCC
	EPE (∆x, ∆y)	.	.
	MAE d t	.	.
	MAE ∆d	.	/
	Ratio (%)		

Table . :

 . In uence of the motion amplitude on the a ne model

		s	s -	s
	EPE (∆x, ∆y)	.	.	.
	MAE d t	.	.	.
	MAE ∆d	.	.	.
	Ratio (%)			

Table . :

 . In uence of the disparity on the a ne model

		d t < 10	d t > 10
	EPE (∆x, ∆y)	.	.
	MAE d t	.	.
	MAE ∆d	.	.
	Ratio (%)		

Table . :

 . MSE of estimated optical ow and

			Apples	Snails
	MSE ∆x:	PPDA[ ] Ours (S D)	. .	. .
		Ours (Reg)	.	.
	MSE ∆y:	PPDA[ ] Ours (S D)	. .	. .
		Ours (Reg)	.	.
	MSE d t :	PPDA[ ] Ours (S D)	. .	. .
		Ours (Reg)	.	.

Table . :

 . PSNR of synthesized light eld for all views

		Bamboo		Temple	
		clean	nal	clean	nal
	DVF [ ]	.	.	.	.
	SAC [ ]	.	.	.	.
	SSM [ ]	.	.	.	.
	Ours	.	.	.	.

Table . :

 . SSIM of synthesized light eld for all views

		Bamboo		Temple	
		clean	nal	clean	nal
	DVF [ ]	.	.	.	.
	SAC [ ]	.	.	.	.
	SSM [ ]	.	.	.	.
	Ours	.	.	.	.
		Bamboo		Temple	
		clean	nal	clean	nal
	DVF [ ]	.	.	.	.
	SAC [ ]	.	.	.	.
	SSM [ ]	.	.	.	.
	Ours	.	.	.	.

.

Table . :

 . LFEC of synthesized light eld

  "Sintel. " In: ACM SIGGRAPH Computer Animation Festival. , pp. -(cited on p. ). Analyse de scène et rendu de vues à partir de champs de lumière Mot clés : champ de lumière -estimation de mouvement -interpolation temporelle Résumé : De nouvelles modalités d'imagerie ont récemment fait leur apparition. Parmi elles, les champs de lumière sont particulièrement intéressants car ils captent des rayons lumineux individuels provenant de différentes positions et directions. Cette caractéristique permet certains usages comme l'estimation de profondeur. Pour acquérir des champs de lumière, deux types d'appareils existent : les matrices de caméras et les caméras plénoptiques. Ces dernières nécessitent un traitement post-acquisition lourd pour récupérer un champ de lumière utilisable. Récemment, certains appareils ont même permis de capturer des vidéos de champs de lumière, ouvrant la voie à l'estimation de mouvement et l'interpolation temporelle. Le premier objec-tif de cette thèse est d'extraire des vues de champs de lumière de haute qualité à partir de caméras plénoptiques. Dans ce contexte, nous proposons de nouvelles méthodes de démosaïquage et d'interpolation qui prennent en compte la structure lenticulaire de l'image brute. Le second objectif du travail présenté est d'explorer de nouvelles approches pour l'analyse de scène, à savoir l'estimation du mouvement. Cela nous amène à concevoir un modèle pour représenter le flux de scène (ou mouvement apparent d'une scène). Couplé à des techniques d'apprentissage profond, nous pouvons alors effectuer un rendu temporel de vues du champ du lumière, angulairement et temporellement cohérent, ce qui constitue notre dernier objectif. New imaging modalities have recently emerged and among them, light field imaging is especially compelling for virtual and augmented reality as they allow to capture individual light rays coming from different positions and directions. This characteristic enables various functionalities including depth estimation or digital refocusing. To acquire light fields, two types of devices exist: arrays of cameras and plenoptic cameras. The latter demands heavy post-capture processing to retrieve a usable light field from the raw data. Recently, some devices have been able to capture light field videos, thus adding a temporal dimension. This new feature allows new applications for light fields: motion estimation and temporal interpolation. The first aim of this thesis is to extract high quality light field views from plenoptic cameras. In this context, we propose new methods of demosaicing and interpolations which take into account the lenslet structure of the raw image. The second aim of the presented work is to explore new approaches for scene analysis, namely motion estimation. This leads us to design a model to represent scene flow which describes the apparent 3D motion of a scene. This model is used in the context of sparse-to-dense interpolation and dense regularization. Coupled with deep-learning techniques, we are also able to perform temporal light field view rendering that is angularly and temporally consistent.
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