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This thesis presents new computational tools for quantifying deformations and motion of anatomical structures from medical images as required by a large variety of clinical applications. Generic deformable registration tools are presented that enable deformation analysis useful for improving diagnosis, prognosis and therapy guidance. These tools were built by combining state-of-the-art medical image analysis methods with cutting-edge machine learning methods.

First, we focus on difficult inter-subject registration problems. By learning from given deformation examples, we propose a novel agent-based optimization scheme inspired by deep reinforcement learning where a statistical deformation model is explored in a trial-and-error fashion showing improved registration accuracy.

Second, we develop a diffeomorphic deformation model that allows for accurate multiscale registration and deformation analysis by learning a low-dimensional representation of intra-subject deformations. The unsupervised method uses a latent variable model in form of a conditional variational autoencoder (CVAE) for learning a probabilistic deformation encoding that is useful for the simulation, classification and comparison of deformations.

Third, we propose a probabilistic motion model derived from image sequences of moving organs. This generative model embeds motion in a structured latent space, the motion matrix, which enables the consistent tracking of structures and various analysis tasks. For instance, it leads to the simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation.

Finally, we demonstrate the importance of the developed tools in a clinical application where the motion model is used for disease prognosis and therapy planning. It is shown that the survival risk for heart failure patients can be predicted from the discriminative motion matrix with a higher accuracy compared to classical image-derived risk factors.

Résumé

Cette thèse présente de nouveaux outils informatiques pour quantifier les déformations et le mouvement de structures anatomiques à partir d'images médicales dans le cadre d'une grande variété d'applications cliniques. Des outils génériques de recalage déformable sont présentés qui permettent l'analyse de la déformation de tissus anatomiques pour améliorer le diagnostic, le pronostic et la thérapie. Ces outils combinent des méthodes avancées d'analyse d'images médicales avec des méthodes d'apprentissage automatique performantes.

Dans un premier temps, nous nous concentrons sur les problèmes de recalages inter-sujets difficiles. En apprenant à partir d'exemples de déformation donnés, nous proposons un nouveau schéma d'optimisation basé sur un agent inspiré de l'apprentissage par renforcement profond dans lequel un modèle de déformation statistique est exploré de manière itérative montrant une précision améliorée de recalage.

Dans un second temps, nous développons un modèle de déformation difféomorphe qui permet un recalage multi-échelle précis et une analyse de déformation en apprenant une représentation de faible dimension des déformations intra-sujet. La méthode non supervisée utilise un modèle de variable latente sous la forme d'un autoencodeur variationnel conditionnel (CVAE) pour apprendre une représentation probabiliste des déformations qui est utile pour la simulation, la classification et la comparaison des déformations.

Troisièmement, nous proposons un modèle de mouvement probabiliste dérivé de séquences d'images d'organes en mouvement. Ce modèle génératif décrit le mouvement dans un espace latent structuré, la matrice de mouvement, qui permet le suivi cohérent des structures ainsi que l'analyse du mouvement. Ainsi cette approche permet la simulation et l'interpolation de modèles de mouvement réalistes conduisant à une acquisition et une augmentation des données plus rapides.

Enfin, nous démontrons l'intérêt des outils développés dans une application clinique où le modèle de mouvement est utilisé pour le pronostic de maladies et la planification de thérapies. Il est démontré que le risque de survie des patients souffrant d'insuffisance cardiaque peut être prédit à partir de la matrice de mouvement discriminant avec une précision supérieure par rapport aux facteurs de risque classiques dérivés de l'image.

v Mots-clés: imagerie médicale, recalage d'images, modélisation du mouvement, intelligence artificielle, apprentissage profond, autoencodeur variationnel, mort cardiaque subite.
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Can we automatically derive relevant information from medical images to learn accurate deformation and motion models that can be helpful for diagnosis, prognosis and therapy planning?

Clinical Context

The typical clinical workflow consists of four main stages: diagnosis, prognosis, therapy planning and therapy. Starting point is the patient who feels sick and arrives at the hospital to get cured. The first main task of the physician is to collect relevant information such as symptoms, patient health history, vital signs, lab parameters and medical images.

The physician analyzes all these information with the help of multi-dimensional analysis tools to form a diagnosis. After a potential disease has been identified, a prognosis is made to evaluate the future impact of the disease such as duration and likely outcomes.

In the next step, therapy planning is done by taking into account all potential treatment measures given the previous information. Finally, the therapy which has the best chances of curing the patient or reducing the symptoms is carried out. These four stages will repeat until the endpoint is reached where the patient is healthy again (or has died).

Medical images are increasingly important to help clinicians at all four stages of the clinical workflow for a large variety of applications in healthcare. The importance and additional insights clinicians gain from medical images is also shown in the fact that more than one billion radiological exams are performed worldwide every year [Krupinski, 2010]. In the US, medical imaging accounts for over 40% of all hospital procedures reported in the discharge report leading to a market volume at the size of $56 billion which is 0.5% of the GDP (in 2004) [Krupinski, 2010].

Today, many different medical image acquisition devices and protocols are used in healthcare. An overview of these systems and the physics behind is given in [START_REF] Webb | [END_REF] and more recently in [START_REF] Maier | [END_REF].

With the rise of medical imaging systems comes the need for maximizing the insights clinicians can obtain from images. Automatic computational image analysis has a high value for diagnosis, prognosis and therapy as it can extract information in a fast and objective fashion that cannot be measured directly. This not only overcomes the problem of a high inter-rater variability but also allows the processing and comparison of a large amount of data which would be too time-consuming to be done manually. Thus, the last decades have seen large advances and progress in the automatic analysis of medical images using computer vision techniques.

One major need is to deal with multiple images of the same or overlapping body regions. Deformable registration and motion analysis tools aim at finding corresponding locations in images to define the mapping from one to the other image(s). This mapping describes the image deformations and is essential for the comparison, integration or fusion of medical images which can support diagnosis, prognosis and therapy of various diseases.

In general, multiple medical images are acquired to get more accurate information for a better understanding and examination of the human body. The images can be taken from various fields of view from the same image modality (mono-modal). For example in x-ray imaging, multiple images help to not oversee structures and abnormalities that are invisible in projections from certain directions. Sometimes, images are acquired from different modalities (multi-modal) to benefit from the advantages of each imaging principles, such as ultrasound and magnetic resonance images (MRI) of the same organ (e.g. prostate [Puech, 2013;Marks, 2013]). Another example is fusing anatomical and functional features provided by Computer Tomography (CT) scans and Positron Emission Tomography (PET) scans respectively.

During a surgery, images need to be registered to other images taken before the surgery from the same or a different modality in order to guide the surgeons. In another example of registration, one would like to compare images of a patient with a reference image with known information (such as structure boundaries, anatomical landmarks or disease) or with images from a population of patients suffering from the same disease for prognostic or therapeutic reasons. This type of registration is known as inter-subject registration. Fusion of mono-or multi-modal and on the other hand of intra-or inter-subject information is required in numerous clinical applications such as in the investigation of organ function and pathologies. The medium of such analysis tasks are typically image deformations in the regions around the organ of interest or pathology. Using two images to extract such deformations is known as pairwise registration. Having multiple images to register is referred to as motion or group-wise registration.

Sequences of images that are acquired to track structural changes over time are of particular clinical interest to study. In longitudinal studies, for example, registered images acquired over longer time intervals allow to measure disease progression (e.g. neurodegenerative diseases) or tumor growth. Sequences of images are also acquired to analyze the motion of moving organs or to compensate for motion that introduces artifacts such as respiratory motion. One organ of particular interest for studying motion is the heart [Zerhouni, 1988] as cardiovascular diseases are one of the most common disease groups around the world. An impaired heart function such as in heart failure (HF) patients can cause large implications and even lead to the death of a patient. Motion analysis can be very useful in HF as for example certain heart motion features (e.g. ventricular ejection fraction) that are computed manually from images are able to predict outcomes such as sudden cardiac death (SCD) [START_REF] Adabag | Sudden cardiac death in heart failure patients with preserved ejection fraction[END_REF].

In conclusion, all these applications of deformable registration are examples where the integration or fusion of two or more images is an essential task for improving one or many of the four stages of the clinical routine: diagnosis, prognosis, therapy planning and therapy.

Objectives and Organization of the Thesis

In this thesis, we present tools based on artificial intelligence for the study of deformations between two images and motion from a time series of images. These tools allow for robust image registration but also aim to improve the estimation of motion indices (such as ejection fraction or cardiac strain). This can help to directly guide the diagnosis, prognosis or therapy of diseases, not only but especially for dynamic organs. Given the context above, we first focus on the development of a robust registration tool for difficult registration scenarios by learning from existing examples of deformations.

Then, we study probabilistic deformation and motion models derived from a large database of images which capture population-specific representations of those deformation characteristics. The interest for such learned models is multiple as they allow to quantify, simulate and compare deformation and motion patterns of different patients. For example, this could support diagnosis by detecting similar patients with known diagnosis. Furthermore, predicting the disease progression in a patient could be used for therapy planning such as for survival risk prediction for cardiac diseases. In particular, we investigate the following research questions in the remaining chapters of this thesis:

• In many registration problems such as for inter-subject registration, a large variability in appearance and large deformations increase the difficulty for successful registration. Can we learn a robust registration algorithm from given examples that explores the solution space in small steps by trial-and-error to register images more accurately? (Chapter 3)

• Often, deformable registration is used for subsequent analysis tasks supporting diagnosis and prognosis. Can we learn a deformation model from images that inherently contains knowledge of physiological deformation patterns allowing for analysis tasks such as disease classification or simulation? (Chapter 4)

• Beyond pairwise registration, can we obtain a probabilistic motion model which is useful for consistent tracking of structures and motion simulation? Can we use the model to reconstruct motion from missing data? (Chapter 5)

• Having a compact motion model learned from images without supervision, does it capture discriminative factors that are useful for predicting disease outcomes? For example, can we predict the survival risk of heart failure patients? (Chapter 6)

The thesis is organized in the following way in accordance with the mentioned research questions:

In Chapter 2, the technical background of this thesis is discussed. We introduce a state-of-the-art of registration and motion methods including recent deep learning based approaches for deformable registration.

In Chapter 3, we investigate how a decision-making agent could help in difficult organspecific deformable registration problems. An artificial agent is trained to solve an intersubject registration task by exploring the parametric space of a statistical deformation model built from training data. Since it is difficult to extract trustworthy ground-truth deformation fields, we also present a training scheme with a large number of synthetically deformed image pairs requiring only a small number of real inter-subject deformations.

The proposed method has been evaluated on the difficult task of inter-subject prostate MR registration to solve motion compensation or atlas-based segmentation problems in prostate diagnosis. The method showed state-of-the-art registration accuracy in terms of structure overlaps and distance measures. The chapter was presented at MICCAI 2017, Quebec City, Canada [Krebs, 2017].

In Chapter 4, we propose to learn a low-dimensional probabilistic deformation model from data which can be used for registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, generate normal or pathological deformations for any new image or to transport deformations from one image pair to any other image. Additionally, our framework is diffeomorphic and provides multi-scale velocity field estimations. We have applied our framework on cardiac intra-subject MR registration and demonstrate state-of-the-art registration accuracy, regularity and the model's potentials for disease clustering, deformation simulation and transport. The chapter is published in the journal IEEE TMI [Krebs, 2019b] and is based on the previous conference presentation at Deep Learning in Medical Image Analysis DLMIA (in conjunction with MICCAI 2018, Granada, Spain) [START_REF] Krebs | [END_REF].

In Chapter 5, we extend our pairwise deformation model to a probabilistic latent motion model learned from a sequence of images for spatio-temporal registration problems. Our model encodes motion in a low-dimensional probabilistic space -the motion matrix -which enables various motion analysis tasks such as simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation. Furthermore, the motion matrix allows to transport deformations from one subject to another simulating for example a pathological motion in a healthy subject without the need of inter-subject registration. The diffeomorphic motion model was analyzed by using cardiac cine-MRI showing state-of-the-art registration regularity and accuracy. Furthermore, motion simulation and interpolation are demonstrated. The chapter is based on the previous conference presentation at Statistical Atlases and Computational Models of the Heart STACOM (in conjunction with MICCAI 2019, Shenzhen, China) [Krebs, 2020c] and has been submitted to IEEE TMI [Krebs, 2020b].

In Chapter 6, we present a learning-based method for personalized risk and survival prediction based on our motion model. We use the 4 chamber-view cine-MRI of a patient cohort suffering from heart failure to build a motion fingerprint, the motion matrix. We demonstrate the discriminative power of this compact representation by predicting risk scores from the fingerprint for disease outcomes. We show that such an imagederived risk score is a more predictive feature for HF endpoints such as hospitalization and sudden cardiac death than any relevant clinical factors. Based on the preliminary material presented in this chapter, a clinical journal submission is in preparation.

In Chapter 7, the main contributions of this thesis are summarized. Finally, potential future work and perspectives are discussed.
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Introduction

As shown before, the integration or fusion of medical images is essential for many diagnostic and interventional tasks. Therefore, research groups have been investigating deformable registration and motion modeling in great detail over the past 30 years. A tremendous number of methods and innovations have been proposed since then. However, the task of non-rigid registration is still mostly considered as an unsolved problem [ElGamal, 2016]. Classifications and reviews of traditional deformable registration algorithms can be found in [Modersitzki, 2004;[START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF][START_REF] Oliveira | Medical image registration: a review[END_REF]ElGamal, 2016]. Recently, over the past 3-4 years many deep learning-based (DL) approaches have been proposed for image registration. Specific review papers aim to summarize the contributions in this new group of algorithms [Haskins, 2020;[START_REF] Fu | [END_REF][START_REF] Hamid | Medical Image Registration Using Deep Neural Networks: A Comprehensive Review[END_REF].

In their recent paper, Boveiri et al. [START_REF] Hamid | Medical Image Registration Using Deep Neural Networks: A Comprehensive Review[END_REF] counted 80 contributions in DL-based image registration, combining rigid and non-rigid registration. In the remainder of this chapter, we aim to summarize and draw connections between both, traditional and DL-based registration. First, the general methodology for registration and motion modeling algorithms is introduced before we focus on the state-of-the-art of DL-based image registration.

Registration Algorithms

Registration is referred to as finding the spatial correspondences between two images where one is the moving M and the other the fixed image F . In order to be registered to F , the moving image M is deformed by applying a spatial transformation, the deformation field φ: M • φ where • denotes the warping functionality. The deformation field is defined by the sum of identity transform and displacement vector field u: φ(x) = x + u(x), x ∈ Ω for every position x in the image domain Ω. The registration process is illustrated in Fig. 2.1. Typically, an optimization problem is solved in order to find the optimal deformation field φ ∈ T within a set of possible transformations T which best aligns M to the fixed image F . Traditionally, one seeks to minimize an objective function of the following form:

arg min φ∈T D(F, M • φ) + R(φ), (2.1)
where D is a dissimilarity (or similarity) metric which measures how well the fixed and the deformed moving image are aligned and R denotes a regularizer enforcing pre-defined transformation properties such as the desired level of transformation smoothness. Due to the ill-posed nature of the high-dimensional registration problem, the deformation field φ needs to be regularized in order to obtain plausible transformations [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF]. Many different metrics have been proposed for both terms as shown below. Most image registration algorithms consist of three parts: a deformation model determining the set of allowed transformations T , an objective function with suitable dissimilarity D and regularization R metrics and an appropriate optimization strategy to find its minimum [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF]. The choice for these elements is highly dependent on the registration problem to be solved. Some deformation models, dissimilarity and regularization metrics might be better suited for mono-modal than for multi-modal registration. On the other hand, intra-subject registration may require different models than inter-subject problems. Typically, the optimization problem is solved by iterative gradient descent, derivative-free optimizers or by statistical, machine-learning based strategies.

Similarity Metrics

One can distinguish 2 main types of dissimilarity metrics. The first type, geometric methods, are based on the matching of corresponding features such as landmarks placed at anatomical meaningful locations. The difficulty hereby lies in the robust detection of landmarks. One way to automatically obtain landmarks is the SIFT algorithm and its variants [START_REF][END_REF]. Because of the need for extrapolating the deformation field between sparse landmarks and therefore resulting in a decrease in accuracy, landmarkbased similarity metrics have lost popularity [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF]. However, with the rise of DL-based algorithms, they have gained popularity again due to the fact that in learning- The second type of dissimilarity metrics relies on intensity-based quantities such as sum-of-squared or absolute differences (SSD or SAD), cross-correlation (CC) or mutual information (MI). The choice depends on the assumed relation between the signal intensities. In mono-modal registration for example, the noise assumption and the assumed correspondence between intensities dictate the choice. SSD assumes Gaussian noise while CC assumes a linear relation between intensities. In multi-modal registration, these metrics would not be a good choice as the same structures may have very different intensities in images from different modalities. That is why information theoretic approaches have been proposed for multi-modal registration. The most popular metric is MI [START_REF] Viola | Alignment by maximization of mutual information[END_REF][START_REF] Maes | [END_REF] as it assumes a non-parametric statistical relationship between image intensities. However, its generality can turn into drawbacks that have been tried to tackle in numerous works as discussed in Sotiras et al. [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF]. Besides SSD as one of the most commonly used similarity metrics for mono-modal registration, local cross-correlation (LCC) has been applied successfully due to its implicit estimation of the local affine scaling parameters as a good trade-off between SSD and MI [START_REF] Lorenzi | [END_REF]. In this work, LCC is defined as:

D LCC (F, M • φ) = Ω F (M • φ) F 2 • (M • φ) 2 (2.2)
with the local mean images F obtained from a mean filter with kernel size k.

Besides geometric and intensity-based dissimilarity metrics, many approaches build on hybrid models that combine both criteria [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF]. Most algorithms in the group of weakly supervised DL-based methods fall into this hybrid category and are discussed in 2.4.3.

Regularization and Deformation Models

The choices for a suitable deformation model and regularization metric determine the degrees of freedom (DoF) and complexity of the estimated deformation. The deformation model can limit the set of possible transformations T θ by parameterizing the transformations with parameters θ. These parameterizations can take very different forms and can range from a very small number of parameters (DoF), forming simple or very restricted deformation models to high-dimensional models including thousands or millions of parameters θ. Often no parameterization is used and the space of all dense deformation fields belongs to T . However, the more DoF a deformation model has the more the computational complexity rises and the need for a suitable regularization metric becomes necessary to obtain a well-posed problem [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF].

Interpolation-based Models

The number of parameters θ can be as small as 6 in the case of 3D rigid registration (3 rotation and 3 translation parameters). Affine registration adds another 3 scaling parameters. But in the case of deformable registration, the dimensionality of θ rises typically to thousands or millions. To keep the number reasonably low and constrain computational complexity, interpolation-based transformation models are commonly used. These models are for example based on radial basis functions [Yang, 2011b;Bookstein, 1991], elastic-body splines [Davis, 1997] or, most commonly, free-from deformations (FFD, [Rueckert, 1999;[START_REF] Schnabel | [END_REF]Wang, 2007]) where only displacements of sparse control points need to be predicted while the dense deformation field is obtained using interpolation.

Physically-inspired Models

In contrast to interpolation-based methods, many methods are derived from physical models [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF]. In most of these models, the deformation model allows to estimate the full number of possible parameters determined by all values in the deformation field. However, depending on the underlying physical assumptions on how the image is allowed to deform, the estimated deformations are regularized. Typically, physical models are elastic- [START_REF] Davatzikos | Spatial transformation and registration of brain images using elastically deformable models[END_REF]Pennec, 2005], fluid- [START_REF] Christensen | [END_REF] or diffusion-based [Thirion, 1998;Fischer, 2002;Vercauteren, 2007a]. Diffusion-based models are based on the fact that the Gaussian kernel is the Green's function of the diffusion equation. Under this assumption, non-parametric registration regularization can be efficiently applied using Gaussian filtering of the deformation field [Thirion, 1998].

Statistical Deformation Models

Another category of deformation models consists of statistically-constrained models [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF]. Statistical deformation models (SDM) have the power to reduce the dimensionality of deformations tremendously allowing for a simpler subsequent deformation analysis. However, a statistical model needs to be trained from an existing database whereby it is limited to the observations in this training set. Before the era of DL-based registration, the size of such databases were typically relatively small due to limited computational powers. A broadly applied statistical dimensionality reduction method is principal component analysis (PCA) which has been used to learn an SDM from FFDs [Rueckert, 2003]. In active shape models, the shape variability is learned from annotated points by using PCA [Cootes, 1995]. PCA has been also used in a generative manner by generating intermediate images through sampling along the PCA axes. By doing so, the registration process can be initialized for instance by projecting the moving image to the closest target image [Tang, 2009]. Similarly, Kim et al. [Kim, 2012] estimated the intermediate target image by using support vector regression.

Diffeomorphims and other Deformation Constraints

In addition, to the presented deformation models and regularization energies, constraints on the transformations have been applied to obtain special properties that are important in medical image analysis problems. Among others, such properties are for example inverse consistency, deformation symmetry, and diffeomorphisms [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF]. Since deformation are not inverse consistent in general, symmetric algorithms enforce symmetry by optimizing the objective function either 2 times in both directions (by exchanging moving and fixed image) or by constructing symmetry in the objective function, for example by registration to the midpoint between both images (cf. e.g. [START_REF] Vercauteren | [END_REF][START_REF] Lorenzi | [END_REF]). Diffeomorphisms are topology-preserving and invertible transformations which makes them suitable for many medical registration problems in which foldings are physically implausible [START_REF] Vercauteren | [END_REF]. Popular parameterizations of diffeomorphisms include the Large Deformation Diffeomorphic Metric Mapping (LD-DMM) [Beg, 2005;Cao, 2005;[START_REF] Zhang | [END_REF], a symmetric normalization approach [START_REF] Avants | [END_REF] or stationary velocity fields (SVF) [START_REF] Arsigny | A log-euclidean framework for statistics on diffeomorphisms[END_REF][START_REF] Vercauteren | [END_REF][START_REF] Lorenzi | [END_REF]. SVFs provide an efficient formulation of diffeomorphisms while still maintaining the desirable properties of time-varying LDDMMs. An SVF is not able to capture all possible diffeomorphisms, however, in practice, SVFs are often chosen due to their computational efficiency. SVFs are described as the exponential map of the velocity field v: φ = exp(v) which can be efficiently computed by the scaling and squaring algorithm [START_REF] Arsigny | A log-euclidean framework for statistics on diffeomorphisms[END_REF].

Motion: Adding the Temporal Dimension

Estimating the deformations within a sequence of images is highly related to pairwise registration -the mapping between 2 images. Consistent temporal registration is useful for tracking moving structures or organs, for motion compensation and for detecting pathological motion patterns. Traditionally, one can separate proposed approaches for motion estimation by physically-motivated or interpolation-based and biomechanically-or biophysically-inspired motion models. In principle, the former group extends interpolation-based or physically-motivated methods for pairwise registration by an additional temporal dimension t denoted as 2D+t or 3D+t registration. Most approaches are based on FFDs due to their efficiency where applications range from intra-subject motion estimation [LedesmaCarbayo, 2005;Vandemeulebroucke, 2011;De Craene, 2012], to inter-subject sequence registration [START_REF] Perperidis | [END_REF]Peyrat, 2010] and group-wise registration with the purpose of defining a reference frame [Metz, 2011].

Another example for a spatio-temporal physically-motivated model (besides [Peyrat, 2010]) computes cardiac strain from image sequences [START_REF] Mansi | [END_REF].

On the other hand, biophysical models are exploiting anatomical and physiological knowledge. Many models apply finite element methods (FEMs) for different organs and applications, for instance for tumor growth modeling, breast imaging or the prostate and its surrounding [Bharatha, 2001]. Also, a biomechanical model was used to generate synthetic training data for learning a statistical model of the prostate [START_REF][END_REF]. Electromechanical models also exist in cardiac imaging where motion analysis can help in diagnosis and therapy planning of many diseases [START_REF] Sermesant | Toward patient-specific myocardial models of the heart[END_REF].

Deep Learning-based Registration

The main difference between classical and learning-based, especially DL-based, registration is the transition from relying only on one pair of images to exploiting a large database of image pairs. Introducing this tremendous amount of data, the optimization strategy is mostly shifted to a training phase in order to retrieve rich implicit prior knowledge that allows to register a new image pair in almost real-time. This speed-up is regarded as one of the major benefits of using DL-based registration.

In general, a neural network is a function approximator which is parameterized by a large number of parameters ω, the network weights [START_REF] Goodfellow | [END_REF]. Applied to image registration, the deformation field φ can be obtained by a simple evaluation of such a trained function f ω that takes the image pair (F, M ) as input: In order to select the optimal network parameters ω * , the neural network is trained with respect to an objective function -the loss function. In DL-based registration, one can differentiate 3 classes of approaches [Haskins, 2020] on how to choose the loss function in order to learn the parameterized registration function f ω : Supervised, unsupervised and weakly supervised approaches. Hereby, supervision refers to the fact that extra information such as ground-truth deformation fields or labels are required during training (but typically not during testing). The different classes of approaches are discussed in the following.

φ = f ω (F, M ). ( 2 

Supervised

Supervised DL-based registration approaches aim at learning a similarity metric between the two images by providing a ground-truth deformation field φ GT . In this case, the learning objective turns into a regression problem of the following form: .4) where p(F, M, φ GT ) is the empirical data distribution of image pairs and ground-truth deformation and D describes a distance metric such as SSD or CC. The idea of regressing deformation fields directly, originates from optical flow estimations in the computer vision community, where large datasets with ground-truth flow fields exist [Dosovitskiy, 2015;[START_REF] Weinzaepfel | Deepflow: Large displacement optical flow with deep matching[END_REF]. Supervised approaches can be further differentiated as end-to-end or non-end-to-end depending on whether the learned similarity metric is used in a classical registration algorithm or directly applied for registration.

ω * = arg min ω E p(F,M,φ GT ) D(f ω (F, M ), φ GT ) , ( 2 

Non-End-to-End

As one of the first DL-based approaches, [START_REF] Wu | [END_REF] learned application-specific features that were used in traditional registration methods instead of manually extracted features. In a similar way, learned features were used for estimating the registration error in [Eppenhof, 2018b]. While these approaches are learning features that still need to be matched using a distance metric such as SSD or CC, Simonovsky et al. [START_REF] Simonovsky | A Deep Metric for Multimodal Registration[END_REF] proposed to learn a similarity metric for inter-subject brain MR T1-T2 registration which showed improved results compared to MI. Wright et al. [START_REF] Wright | [END_REF] used recurrent spatial co-transformer networks to iteratively register MR and US volumes showing a better quantified image similarity than self-similarity context descriptors for multi-modal registration.

End-to-End

To overcome the need of slow iterative registration procedures, supervised end-to-end approaches have been proposed that mostly have near real-time performance during testing. According to Eq. 2.4, approaches in this category require registered image pairs during training. In Fig. 2.2, a graphical representation of the typical supervised approach is shown. Due to the difficulty of finding dense ground truth voxel mappings, supervised methods need to rely on deformation predictions either from existing algorithms [START_REF][END_REF][START_REF] Rohé | SVF-Net: Learning Deformable Image Registration Using Shape Matching[END_REF]Cao, 2017], simulations [START_REF] Sokooti | Nonrigid image registration using multi-scale 3D convolutional neural networks[END_REF][START_REF] Uzunova | Training CNNs for Image Registration from Few Samples with Model-based Data Augmentation[END_REF]Eppenhof, 2018a] or a combination of both [Mahapatra, 2018;Krebs, 2017]. Instead of predicting the deformation field φ, diffeomorphic approaches predict parameterizations based on patches of the initial momentum of LDDMMs [START_REF][END_REF] or dense SVFs [START_REF] Rohé | SVF-Net: Learning Deformable Image Registration Using Shape Matching[END_REF].

In order to reduce the complexity but therefore limiting the use for large deformations, patch-wise approaches have been proposed [Cao, 2017;[START_REF] Sokooti | Nonrigid image registration using multi-scale 3D convolutional neural networks[END_REF][START_REF][END_REF].

In case of simulation-based approaches, Sokooti et al. [START_REF] Sokooti | Nonrigid image registration using multi-scale 3D convolutional neural networks[END_REF] used random transformations based on Gaussian kernels. Random transformations limit the realism and task-specificity of deformations such that, more sophisticated simulations were used by multi-scale, random transformations of aligned image pairs [Eppenhof, 2018a] or applying a statistical deformation model for data augmentation [START_REF] Uzunova | Training CNNs for Image Registration from Few Samples with Model-based Data Augmentation[END_REF]Krebs, 2017].

Another way of optimizing Eq. 2.4 is by using deep reinforcement learning (DRL) and implicitly quantifying image similarity through an agent [Haskins, 2020]. Hereby, an agent takes consecutive decisions on actions to apply based on the current state and future reward. This strategy allows to follow a trajectory towards the optimal transformation parameters while allowing to recover from mistakes. Due to limitations on the action space, most approaches have considered rigid registration only [Liao, 2017b;[START_REF] Ma | [END_REF]; Miao, 2018]. However, by using a low-dimensional SDM, we have shown that DRL is useful for difficult inter-subject registration tasks by showing improved registration accuracy compared to state-of-the-art algorithms (cf. Chapter 3, [Krebs, 2017]).

Supervised methods are free from the need of having to define a similarity metric (and most-often regularizer) manually, but the lack of ground-truth deformations either limits the approaches by the performance of existing algorithms or the realism of simulations. Furthermore, retrieving deformations from existing algorithms on a large database is time-consuming and increases the training complexity.

Unsupervised

To overcome the limitations of supervised approaches, end-to-end DL-based approaches that do not require ground-truth deformations have been considered more recently. The introduction of spatial transformer networks (STN, [START_REF] Jaderberg | Spatial transformer networks[END_REF]) allowed to integrate transformation models based on B-splines or linear interpolation for dense deformation fields in neural networks directly for an efficient and most importantly differentiable warping of the moving image. With a differentiable warping functionality, loss functions can be applied on the warped moving image, allowing to integrate the classical objective function for registration (Eq. 2.1) in the loss function of neural networks (cf. Fig. 2.3): .5) where p(F, M ) is the empirical data distribution of image pairs. The difference to classical registration is that the optimization is done over many training image pairs instead of one test image pair (F, M ). Similar learning approaches first appeared in the computer vision community [START_REF][END_REF][START_REF] Liang | [END_REF] and were recently applied to medical image registration [Vos, 2017;[START_REF] Ghosal | [END_REF]Yoo, 2017;[START_REF] Balakrishnan | [END_REF][START_REF] Krebs | [END_REF]Dalca, 2018;Mahapatra, 2018;Fan, 2018;Tanner, 2018;[START_REF] Li | [END_REF]Krebs, 2019b;[START_REF] Vos | [END_REF][START_REF] Balakrishnan | [END_REF]Dalca, 2019a;[START_REF] Sandkühler | Recurrent Registration Neural Networks for Deformable Image Registration[END_REF]. These approaches cover dense or B-spline [Vos, 2017;[START_REF] Vos | [END_REF] deformation models, diffeomorphic models [START_REF] Krebs | [END_REF]Dalca, 2018;Krebs, 2019b;Dalca, 2019a], single or multi-scale models [START_REF] Vos | [END_REF]Krebs, 2019b]. Common similarity and regularization metrics as in classical methods are applied (cf. 2.2.1-2.2.2).

ω * = arg min ω E p(F,M ) D(F, M • f ω (F, M )) + R(f ω (F, M )) , ( 2 
In an iterative fashion using recurrent networks, Sandkuhler et al. [START_REF] Sandkühler | Recurrent Registration Neural Networks for Deformable Image Registration[END_REF] obtained a more compact representation and a speedup of 15 compared to B-spline registration for 2D images. Dropping the need for choosing a pre-defined regularizer, Niethammer et al. proposed to learn a spatially adaptive regularizer using multi-Gaussian kernels [Niethammer, 2019].

In a different optimization scheme, adversarial approaches based on generative adversarial networks (GAN, [START_REF] Goodfellow | Generative adversarial nets[END_REF]) were used for the difficult case of multi-modal registration [Mahapatra, 2018;Fan, 2018;Tanner, 2018]. Besides, probabilistic approaches were proposed in [START_REF] Krebs | [END_REF]Dalca, 2018;Krebs, 2019b;Dalca, 2019a]. In our works [START_REF] Krebs | [END_REF]Krebs, 2019b], deformations are encoded in a low-dimensional structured space, similar to an SDM, which allows for a variety of analysis tasks as particularly discussed in the later chapters of this thesis.

Weakly Supervised

All methods that use the unsupervised objective (Eq. 2.5) and additionally make use of some extra information during training such as labels or few ground-truth deformation fields fall in the category of weakly supervised algorithms.

In the latter case, Fan et al. [START_REF][END_REF] combined supervised and unsupervised objective functions with dynamically changing weights between both, first focusing on learning from supervised deformation fields and later increasing the weight for the objective of Eq. 2.5 for fine-tuning.

On the other side, using the matching of extra labels such as landmarks or segmentation masks, has become popular in very recent approaches due to the fact that such anatomical guidance can improve registration performance in contrast to only intensity-based metrics. Furthermore, an advantage of DL-based approaches is unlike classical methods which are based on geometric similarity metrics, that such extra information are only necessary at the training stage, while test cases do not require labels. Following this principle, Hering et al. [Hering, 2019] introduced a label and similarity metric based loss function for deformable registration of 2D cine-MR images. Hu et al. [Hu, 2018] proposed to only optimize the matching of labels based on a multi-scale DICE loss and a deformation regularization duplicating the objectives of classical geometric approaches.

More recently, it has been proposed to learn a structure-enhanced representation from segmentations for helping with the registration of hard to register structures [START_REF] Lee | [END_REF].

The assumption that segmentation and registration can facilitate each other has let to approaches predicting both by combining the unsupervised registration objective Eq. 2.5 and a segmentation loss [Qin, 2018;[START_REF] Li | [END_REF]. The latter approach has been successfully applied on cardiac cine-MR sequences and showed solving registration and segmentation in a joint fashion helps to improve both tasks. In the previous chapter, we showed a state-of-the-art of deformable registration. This chapter focuses on inter-subject registration tasks which are difficult to solve using traditional methods because of the high variability in appearance and large deformations.

We try to overcome these difficulties by learning from known deformations and applying a decision-making process in order to optimize the parameters of a learned statistical deformation model. This approach can be classified as a supervised DL-based registration algorithm as it relies on simulated and ground-truth deformations. This chapter has been presented at the MICCAI 2017 conference [Krebs, 2017].

Introduction

Registration of images with focus on the ROI is essential in fusion and atlas-based segmentation (e.g. [Tian, 2015]). Traditional algorithms try to compute the dense mapping between two images by minimizing an objective function with regard to some similarity criterion. However, besides challenges of solving the ill-posed and non-convex problem many approaches have difficulties in handling large deformations or large variability in appearance. Recently, promising results using deep representation learning have been presented for learning similarity metrics [START_REF] Simonovsky | A Deep Metric for Multimodal Registration[END_REF], predicting the optical flow [Dosovitskiy, 2015] or the large deformation diffeomorphic metric mapping-momentum [Yang, 2016]. These approaches either only partially remove the above-mentioned limitations as they stick to an energy minimization framework (cf. [START_REF] Simonovsky | A Deep Metric for Multimodal Registration[END_REF]) or rely on a large number of training samples derived from existing registration results (cf. [Dosovitskiy, 2015;Yang, 2016]).

Inspired by the recent works in reinforcement learning [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF][START_REF] Ghesu | An artificial agent for anatomical landmark detection in medical images[END_REF], we propose a reformulation of the non-rigid registration problem following a similar methodology as in 3-D rigid registration of [Liao, 2017b]: in order to optimize the parameters of a deformation model we apply an artificial agent -solely learned from experience -that does not require explicitly designed similarity measures, regularization and optimization strategy. Trained in a supervised way the agent explores the space of deformations by choosing from a set of actions that update the parameters. By iteratively selecting actions, the agent moves on a trajectory towards the final deformation parameters. To decide which action to take we present a deep dual-stream neural network for implicit image correspondence learning. This work generalizes [Liao, 2017b] Inspired by [Liao, 2017b], we propose an alternative approach to optimize θ based on an artificial agent which decides to perform a simple action a t at each iteration t consisting in applying a fixed increment δθ at : θ t+1 = θ t + δθ at . If θ is a d-dimensional vector of parameters, we define 2d possible actions a ∈ A such that δθ 2i [j] = i δ j i and δθ 2i+1 [j] =i δ j i with i ∈ {0..d -1}. In other words the application of an action a t increases or decreases a specific parameter within θ t by a fixed amount where δ j i is an additional scaling factor per dimension that is set to 1 in our experiments but could be used e.g. to allow larger magnitudes first and smaller in later iterations for fine-tuning the registration.

The difficulty in this approach lies into selecting the action a t as function of the current state s t consisting of the fixed and current moving image: s t = (F, M t ). To this end, the framework models a Markov decision process (MDP), where the agent interacts with an environment getting feedbacks for each action. In reinforcement learning (RL) the best action is selected based on the maximization of the quality function a t = arg max a∈A Q (s t , a). In the most general setting, this optimal action-value function is computed based on the reward function defined between two states R(s 1 , a, s 2 ) which serves as the feed-back signal for the agent to quantify the improvement or worsening when applying a certain action. Thus, Q (s t , a) may take into account the immediate but also future rewards starting from state s t , as to evaluate the performance of an action a.

Recently, in RL powerful deep neural networks have been presented that approximate the optimal Q [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF]. [START_REF] Ghesu | An artificial agent for anatomical landmark detection in medical images[END_REF] used deep reinforcement learning (DRL) for landmark detection in 2-D medical images. In the rigid registration approach by Liao et al. [Liao, 2017b] the agent's actions are defined as translation and rotation movements of the moving image in order to match the fixed image.

In this work, the quality function y a (s t ) ≈ Q (s t , a) is learned in a supervised manner through a deep regression network. More precisely, we adopt a single-stage MDP for which Q (s t , a) = R(s t , a, s t+1 ), implying that only the immediate reward, i.e. the next best action, is accounted for. During training, a batch of random states, pairs of F and M, is considered with known transformation T θ GT (with F ≈ M • T θ GT ). The target quality is defined such that actions that bring the parameters closer to its ground truth value are rewarded:

Q (s t , a) = R(s t , a, s t+1 ) = θ GT -θ st 2 -θ GT -θ a s t+1 2 . (3.1)
The training loss function consists of the sum of L 2 -norms between the explicitly computed Q-values (Eq. 3.1) for all actions a ∈ A and the network's quality predictions 
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Inter-Subj. y a (s t ) per action. Having a training batch B with random states s b the loss is defined as:

L = s b ∈B a∈A y a (s b ) -Q (s b , a) 2 .
In testing, the agent iteratively selects the best action, updates the parameter θ t and warps the moving image M t as to converge to a final parameter set representing the best mapping from moving to fixed image (see Fig. 3.1b).

Statistical Deformation Model

One challenge of the proposed framework is to find a low dimensional representation of non-rigid transformations to minimize the number of possible actions (equal to 2d), while keeping enough degrees of freedom to correctly match images. In this work, we base our registration method on statistical deformation models (SDM) defined from Free Form Deformations (FFD). Other parametrizations could work as well. Typically, the dense displacement field is defined as the summation of tensor products of cubic B-splines on a rectangular grid. Rueckert et al. [Rueckert, 2003] proposed to further reduce the dimensionality by constructing an SDM through a principal component analysis (PCA) on the B-spline displacements.

We propose to use the modes of the PCA as the parameter vector θ describing the transformation T θ that the agent aims to optimize. The agent's basic increment per action i is normalized according to the mean value of each mode estimated in training. To have a stochastic exploration of the parameter space, predicted actions a t are selected in a stochastic manner among the 3 best actions with given fixed probabilities (see [Liao, 2017b]).

Fuzzy Action Control

Since parameters θ are the amplitudes of principal components, the deviation of θ 2m and θ 2m+1 from the mean µ m should stay within k-times the standard deviation σ m in testing. In order to keep θ inside this reasonable parametric space of the SDM, we propose fuzzy action controlling. Thus, actions that push parameter values of θ outside that space, are stochastically penalized -after being predicted by the network. Inspired by rejection sampling, if an action a moves parameter θ m to a value f m , then this move is accepted if a random number generated between [0, 1] is less than the ratio

N (f m ; µ m , σ m )/N (h; µ m , σ m ) where h m = µ m + kσ m , and N is the Gaussian distribution function. Therefore, if |f m -µ m | ≤ kσ m ,
the ratio is greater than 1 and the action is accepted. If |f m -µ m | > kσ m then the action is randomly accepted, but with a decreased likelihood as f m moves far away from µ m . This stochastic thresholding is performed for all actions at each iteration and rejection is translated into adding a large negative value to the quality function y a . The factor k controls the tightness of the parametric space and is empirically chosen as 1.5. By introducing fuzzy action control, the MDP gets more robust since the agent's access to the less known subspace of the SDM is restricted.

Training Data Generation

Since it is difficult to get trustworthy ground-truth (GT) deformation parameters θ GT for training, we propose to generate two different kinds of training pairs: Inter-and intra-subject pairs where in both moving and fixed images are synthetically deformed. The latter pairs serve as a data augmentation method to improve the generalization of the neural network.

In order to produce the ground truth deformations of the available training images, one possibility would be to apply existing registration algorithms with optimally tuned parameters. However, this would imply that the trained artificial agent would only be as good as those already available algorithms. Instead, we make use of manually segmented regions of interest (ROI) available for both pairs of images. By constraining the registration algorithms to enforce the correspondence between the 2 ROIs (for instance by artificially outlining the ROIs in images as brighter voxels or using point correspondences in the ROI), the estimated registration improves significantly around the ROI. From the resulting deformations represented on an FFD grid, the d principal components are extracted. Finally, these modes are used to generate the synthetic training samples by warping the original training images based on randomly drawn deformation samples according to the SDM. Amplitudes of the modes are bounded to not exceed the variations experienced in the real image pairs, similar to [Rueckert, 2003].

Intra-subject training pairs can be all combinations of synthetically deformed images of the same subject. Since the ground-truth deformation parameters are exactly known, it is guaranteed that the agent learns correct deformations. In the case of inter-patient pairs a synthetic deformed image i mb of one subject I m is allowed to be paired with any synthetic deformed image i nc of any other subject I n with b, c denoting random synthetic deformations (see Fig. 3.1a). Thereby, the GT parameters θ GT for image pair (i mb , i nc ) are extracted via composition of the different known deformations such that

((i mb • T i mb ,Im θ ) • T Im,In θ ) • T In,inc θ
. Note the first deformation would require the inverse of a known deformation that we approximate by its opposite parameters for reasons of computational efficiency. The additional error due to this approximation, computed on a few pairs, remained below 2% in terms of the DICE score.

Mini-batches are created online -during training -via random image pairing where intra-and inter-subject pairs are selected with the same probabilities. Through online random pairing the experience of new pairs is enforced since the number of possible image combinations can be extremely high (e.g. 10 12 ) depending on the number of synthetic deformations.

Experiments

We focused on organ-centered registration of MR prostate images in 2-D and 3-D with the use case of image fusion and atlas-based segmentation [Tian, 2015]. The task is very challenging since texture and anatomical appearance can vary a lot. 25 volumes were selected from the MICCAI challenge PROMISE121 and 16 from the Prostate-3T database2 including prostate segmentations. Same images and the cases with rectal probes were excluded. Randomly 8 cases were chosen for testing (56 pairs), 33 for training. As preprocessing, translation-based registration for all pairs was carried out in 3-D using the elastix-framework [Klein, 2010] with standard parameters followed by cropping and down sampling the images (to 100x100/75x75x20 pixels in 2-D/3-D respectively). For the 2-D experiments, the middle slice of each volume was taken. For the purpose of GT generation mutual information as similarity metric and a bending energy metric was used. The optimization function was further constrained by a Euclidean point correspondence metric. Therefore, equally distributed points were extracted from the given mask surfaces. elastix was used to retrieve the solution with the weights 1, 3 and 0.2 for the abovementioned metrics and a B-spline spacing of 16x16(x8) voxels. As a surrogate measure For testing, the initial translation registration was done with elastix by registering each of the test images to an arbitrarily chosen template from the training base. Table 3.1 shows that our method reaches a median DICE coefficient of .88/.76 in 2-D/3-D and therefore shows similar performance as in [Klein, 2010] with the best reported median DICE of .76

Tab. 3.1: Results of prostate MR registration on the 56 testing pairs. 2-D and 3-D results in comparison to elastix with B-spline spacing of 8 (e8) or 16 (e16) as proposed in [Klein, 2010] and the LCC-Demons [START_REF] Lorenzi | [END_REF] on a different data set. However, on our challenging test data our method outperformed the LCC-Demons [START_REF] Lorenzi | [END_REF] algorithm with manually tuned parameters and elastix, using similar parameters as proposed for prostate registration [Klein, 2010] Regarding the results of elastix and LCC-Demons, a rising DICE score was observed while HD increased due to local spikes introduced in the masks (visible in Fig. 3.2b) as we focused on the DICE scores during optimization for fair comparisons. In the 3-D* setting, DICE scores and HDs improved when applying fuzzy action control compared to not applying any constraints (see Table 3.1).

Conclusion

In this work, we presented a generic learning-based framework using an artificial agent for approaching organ-focused non-rigid registration tasks appearing in image fusion and atlas-based segmentation. The proposed method overcomes limitations of traditional algorithms by learning optimal features for decision-making. Therefore, segmentation or handcrafted features are not required for the registration during testing. Additionally, we proposed a novel ground-truth generator to learn from synthetically deformed and inter-subject image pairs.

In conclusion, we evaluated our approach on inter-subject registration of prostate MR images showing first promising results in 2-D and 3-D. In future work, the deformation parametrization needs to be further evaluated. Rigid registration as in [Liao, 2017b] could be included in the network or applied as preprocessing to improve results as shown in the experiments. Besides, the extension to multi-modal registration is desirable. In chapter 3, we have shown the successful application of a simple learned statistical deformation model (based on PCA) for difficult registration problems. In this chapter, we focus on learning a more sophisticated statistical deformation model from data that allows deformation analysis tasks such as disease clustering and simulation. We propose to learn a generative deformation model based on a conditional variational autoencoder which can be seen as a non-linear generalization of PCA. This model is trained without requiring ground-truth deformation fields or labels and thus, can be classified as an unsupervised DL-based registration algorithm. The chapter is published in the journal IEEE TMI [Krebs, 2019b] and is based on the previous conference presentation at DLMIA 2018 [START_REF] Krebs | [END_REF].

Introduction

Deformable image registration, the process of finding voxel correspondences in a pair of images, is an essential task in medical image analysis [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF]. This mappingthe deformation field -can be used for example in pre-op / post-op studies, to find the same structures in images from different modalities or to evaluate the progression of a disease. The analysis of geometric changes in successive images is important for instance for diagnosing cardiovascular diseases and selecting the most suited therapies. A possible approach is to register sequential images and analyze the extracted deformations for example by parallel transport [Lorenzi, 2014] or by creating an adapted low-dimensional subspace [START_REF] Rohé | Lowdimensional representation of cardiac motion using Barycentric Subspaces: A new group-wise paradigm for estimation, analysis, and reconstruction[END_REF].

We propose a registration algorithm that learns a deformation model directly from training images. Inspired by recent generative latent variable models, our method learns a low-dimensional probabilistic deformation encoding in an unsupervised fashion. This latent variable space encodes similar deformations close to each other and allows the generation of synthetic deformations for a single image and the comparison and transport of deformations from one case to another.

Deformable Image Registration

Traditionally, deformable registration is solved by numerical optimization of a similarity metric which measures the distance between the fixed and the deformed moving image. The moving image is warped given a predefined deformation model in order to get closer to the fixed image. Unfortunately, this results in an ill-posed problem which requires further regularization based on prior assumptions [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF]. Various regularization energies have been proposed including elastic- [START_REF] Davatzikos | Spatial transformation and registration of brain images using elastically deformable models[END_REF][START_REF] Burger | [END_REF] or diffusion-based methods [Thirion, 1998;Vercauteren, 2007b;[START_REF] Lorenzi | [END_REF] (cf. [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF]). Diffeomorphic transforms are folding-free and invertible. The enforcement of these properties in many medical applications has led to the wide use of diffeomorphic registration algorithms. Popular parametrizations of diffeomorphisms include the Large Deformation Diffeomorphic Metric Mapping (LDDMM) [Beg, 2005;Cao, 2005;[START_REF] Zhang | [END_REF], a symmetric normalization approach [START_REF] Avants | [END_REF] or stationary velocity fields (SVF) [START_REF] Arsigny | A log-euclidean framework for statistics on diffeomorphisms[END_REF][START_REF] Vercauteren | [END_REF].

In recent years, learning-based algorithms -notably Deep Learning (DL) -have been proposed to avoid long iterative optimization at test time. In general, one can classify these algorithms as supervised and unsupervised. Due to the difficulty of finding ground truth voxel mappings, supervised methods need to rely on predictions from existing algorithms [START_REF][END_REF][START_REF] Rohé | SVF-Net: Learning Deformable Image Registration Using Shape Matching[END_REF], simulations [START_REF] Sokooti | Nonrigid image registration using multi-scale 3D convolutional neural networks[END_REF][START_REF] Uzunova | Training CNNs for Image Registration from Few Samples with Model-based Data Augmentation[END_REF]Eppenhof, 2018a] or a combination of both [Krebs, 2017;Mahapatra, 2018]. The latter can be achieved for example by projecting B-spline displacement estimations in the space of a statistical deformation model from which one can extract simulations by sampling of its components [Krebs, 2017]. Diffeomorphic approaches predict patches of the initial momentum of LDDMMs [START_REF][END_REF] or dense SVFs [START_REF] Rohé | SVF-Net: Learning Deformable Image Registration Using Shape Matching[END_REF]. Supervised methods are either limited by the performance of existing algorithms or the realism of simulations.

Furthermore, retrieving deformations from existing algorithms on a large database is time-consuming and increases the training complexity.

Unsupervised approaches to registration aim to optimize an image similarity, often combined with a penalization or smoothing term (regularization). These learning approaches first appeared in the computer vision community [START_REF][END_REF][START_REF] Liang | [END_REF] and were recently applied to medical image registration [Vos, 2017;[START_REF] Balakrishnan | [END_REF][START_REF][END_REF]Dalca, 2018;Tanner, 2018]. Unlike traditional methods, learning-based approaches also can include task-specific information such as segmentation labels during training while not requiring those labels at test time. Instead of using an image similarity, Hu et al. [Hu, 2018] proposed to optimize the matching of labels based on a multi-scale DICE loss and a deformation regularization. Fan et al. [START_REF][END_REF] proposed to jointly optimize a supervised and unsupervised objective by regressing ground-truth deformation fields (from an existing algorithm), while simultaneously optimizing an intensity-based similarity criterion. The disadvantage of these semi-supervised approaches is that their training complexity is higher since label information needs to be collected, and for example deformations outside the segmented areas are not guaranteed to be captured.

Most unsupervised approaches use B-spline grids or dense deformation fields, realized with spatial transformer layers (STN [START_REF] Jaderberg | Spatial transformer networks[END_REF]) for an efficient and differentiable linear warping of the moving image. However, it has not been shown yet that these approaches lead to sufficiently regular and plausible deformations.

Deformation Analysis and Transport

Understanding the deformation or motion of an organ goes beyond the registration of successive images. Therefore, it has been proposed to compare and characterize shape and motion patterns by normalizing deformations in a common reference frame [Lorenzi, 2014;[START_REF] Duchateau | [END_REF] and for example by applying statistical methods to study the variation of cardiac shapes [START_REF] Bai | [END_REF]. In the diffeomorphic setting, various dimensionality reduction methods have been proposed. Vaillant et al. [START_REF] Vaillant | [END_REF] modeled shape variability by applying PCA in the tangent space to an atlas image. Qiu et al. used a shape prior for surface matching [Qiu, 2012]. While these methods are based on probabilistic inference, dimensionality reduction is done after the estimation of diffeomorphisms. Instead Zhang et al. [Zhang, 2014] introduced a latent variable model for principle geodesic analysis that estimates a template and principle modes of variation while infering the latent dimensionality from the data. Instead of having a general deformation model capable of explaining the deformations of any image pair in the training data distribution, this registration approach still depends on the estimation of a smooth template. Using the SVF parametrization for cardiac motion analysis, Rohé et al. [START_REF] Rohé | Lowdimensional representation of cardiac motion using Barycentric Subspaces: A new group-wise paradigm for estimation, analysis, and reconstruction[END_REF] proposed to build affine subspaces on a manifold of deformations, the barycentric subspaces, where each point on the manifold represents a 3-D image and the geodesic between two points describes the deformation.

For uncertainty quantification, Wassermann et al. [START_REF] Wassermann | [END_REF] used a probabilistic LDDMM approach applying a stochastic differential equation and Wang et al. [Wang, 2018] employed a low-dimensional Fourier representation of the tangent space of diffeomorphisms with a normal assumption. While both approaches contain probabilistic deformation representations, they have not been used for sampling and the representations have not been learned from a large dataset.

In the framework of diffeomorphic registration, parallel transport is a promising normalization method for the comparison of deformations. Currently used parallel transport approaches are the Schild's [Lorenzi, 2011] or pole ladder [Lorenzi, 2014;[START_REF] Jia | [END_REF] using the SVF parametrization or approaches based on Jacobi fields using the LDDMM parametrization [Younes, 2007;[START_REF] Louis | Parallel transport in shape analysis: a scalable numerical scheme[END_REF]. In general, these approaches aim to convert and apply the temporal deformation of one subject to another subject. However, this transport process typically requires multiple registrations, including difficult registrations between different subjects.

Learning-based Generative Latent Variable Models

Alternatively and inspired by recently introduced learning-based generative models, we propose to learn a latent variable model that captures deformation characteristics just by providing a large dataset of training images. In the computer vision community, such generative models as Generative adversarial networks (GAN) [START_REF] Goodfellow | Generative adversarial nets[END_REF], stochastic variational autoencoders (VAE) [Kingma, 2013] and adversarial autoencoders (AAE) [START_REF] Makhzani | Adversarial Autoencoders[END_REF] have demonstrated great performance in learning data distributions from large image training sets. The learned models can be used to generate new synthetic images, similar to the ones seen during training. In addition, probabilistic VAEs are latent variable models which are able to learn continuous latent variables with intractable posterior probability distributions (encoder). Efficient Bayesian inference can be used to deduce the posterior distribution by enforcing the latent variables to follow a predefined (simple) distribution. Finally, a decoder aims to reconstruct the data from that representation [Kingma, 2013]. As an extension, conditional variational autoencoders (CVAE) constrain the VAE model on additional information such as labels. This leads to a latent variable space in which similar data points are mapped close to each other. CVAEs are for example used for semi-supervised classification tasks [Kingma, 2014b].

Generative models also showed promising results in medical imaging applications such as in classifying cardiac diseases [Biffi, 2018] or predicting PET-derived myelin content maps from multi-modal MRI [Wei, 2018]. Recently, unsupervised adversarial training approaches have been proposed for image registration [Mahapatra, 2018;Fan, 2018;Tanner, 2018]. Dalca et al. [Dalca, 2018] developed a framework which enforces a multivariate Gaussian distribution on each component of the velocity field for measuring uncertainty. However, these approaches do not learn global latent variable models which map similar deformations close to each other in a probabilistic subspace of deformations.

To the best of the authors' knowledge, generative approaches for registration which allow the sampling of new deformations based on a learned low-dimensional encoding have not been proposed yet.

Probabilistic Registration using a Generative Model

We introduce a generative and probabilistic model for diffeomorphic image registration, inspired by generative latent variable models [Kingma, 2013;Kingma, 2014b]. In contrast to other probabilistic approaches such as [START_REF][END_REF]Dalca, 2018], we learn a low-dimensional global latent space in an encoder-decoder neural network where the deformation of a new image pair is mapped to and where similar deformations are close to each other. This latent space, learned in an unsupervised fashion, can be used to generate an infinite number of new deformations for any single image from the data distribution and not only for a unique template as in the Bayesian inference procedure for model parameter estimation in [Zhang, 2014]. From this abstract representation of deformations, diffeomorphic deformations are reconstructed by decoding the latent code under the constraint of the moving image. To the best of the author's knowledge, this method describes the first low-dimensional probabilistic latent variable model that can be used for deformation transport from one subject to another. Through applying a latent deformation code of one image pair on a new constraining image, deformation transport (and sampling from the latent space) is useful for instance for simulating cardiac pathologies or synthesizing a large number of pathological and healthy heart deformations for data augmentation purposes.

We use a variational inference method (a CVAE [Kingma, 2014b]) with the objective of reconstructing the fixed image by warping the moving image. The decoder of the CVAE is conditioned on the moving image to ease the encoding task: by making appearance information easily accessible in the decoder (in the form of the moving image), the latent space is more likely to encode deformation rather than appearance information. This implicit decoupling of deformation and appearance information allows to transport deformations from one case to another by pairing a latent code with a new conditioning image. The framework provides multi-scale estimations where velocities are extracted at each scale of the decoding network. We use the SVF parametrization and diffeomorphisms are extracted using a vector field exponentiation layer, based on the scaling and squaring algorithm proposed in [START_REF] Arsigny | A log-euclidean framework for statistics on diffeomorphisms[END_REF]. This algorithm has been successfully applied in neural networks in our previous work [START_REF] Krebs | [END_REF] and in [Dalca, 2018]. The framework contains a dense spatial transformer layer (STN) and can be trained endto-end with a choice of similarity metrics: to avoid asymmetry, we use a symmetric and normalized local cross correlation criterion. In addition, we provide a generic formulation to include regularization terms to control the deformation appearance (if required), such as diffusion regularization in form of Gaussian smoothing [START_REF] Lorenzi | [END_REF].

During training, similarity loss terms for each scale and a loss term enforcing a prior assumption on the latent variable distribution are optimized by using the concept of deep supervision (cf. [Lee, 2015]). During testing, the low-dimensional latent encoding, multi-scale estimations of velocities, deformation fields and deformed moving image are retrieved in a single forward path of the neural network.

We evaluate our framework on the registration of cardiac MRIs between end-diastole (ED) and end-systole (ES) and provide an intensive analysis on the structure of the latent code and evaluate its application for transporting encoded deformations from one case to another.

This paper extends our preliminary work [START_REF] Krebs | [END_REF] by adding:

• Detailed derivations of the probabilistic registration framework including a generic regularization model. • Deep supervision, multi-scale estimations and a normalized loss function to improve registration performances. • Analysis of size and structure of the latent variable space.

• Evaluation of the deformation transport by comparing it to a state-of-the-art algorithm [Lorenzi, 2014].

Methods

In image registration, the goal is to find the spatial transformation T z : R 3 → R 3 which is parametrized by a d-dimensional vector z ∈ R d . The optimal values of z are the ones which best warp the moving image M in order to match the fixed image F given the transformation T z . Both images F and M are defined in the spatial domain Ω ∈ R 3 . Typically, z is optimized by minimizing an objective function of the form:

arg min z F(z, M, F ) = D (F, M • T z ) + R(T z )
, where D is a metric measuring the similarity between fixed F and warped moving image M • T z . R is a spatial regularizer [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF]. Recent unsupervised DL-based approaches [START_REF][END_REF]Vos, 2017;[START_REF] Balakrishnan | [END_REF] try to learn to maximize such a similarity metric D using stochastic gradient descent methods and a spatial transformer layer (STN [START_REF] Jaderberg | Spatial transformer networks[END_REF]) for warping the moving image M .

In extension, we propose to model registration by learning a probabilistic deformation parametrization vector z from a set of example image pairs (M, F ). Thereby, we constrain the low-dimensional z to follow a prior distribution p(z). In other words, our approach contains two key parts: a latent space encoding to model deformations and a decoding function that aims to reconstruct the fixed image F from this encoded transformationby warping the moving image M . In addition, this decoding function is generative as it allows to sample new deformations based on p(z).

Probabilistic model for multi-scale registration

We assume a generative probabilistic distribution for registration p true (F |M ), capturing the deformation from M towards F . We aim at learning a parameterized model p θ (F |M ) with parameters θ which allows us to sample new F 's that are similar to samples from the unknown distribution p true . To estimate the posterior p θ we use a latent variable model parameterized by z. Following the methodology of a VAE [Kingma, 2013], we assume the prior p(z) to be a multivariate unit Gaussian distribution with spherical covariance I:

p(z) ∼ N (0, I). (4.1)
Using multivariate Gaussians offers a closed-form differentiable solution, however, p(z) could take the form of other distributions. In this work, we parameterize deformation fields φ by stationary velocity fields (SVF), denoted by velocities v: φ = exp(v) [START_REF] Arsigny | A log-euclidean framework for statistics on diffeomorphisms[END_REF]. These transformation maps φ are given as the sum of identity and displacements u(x) for every position x ∈ Ω: φ(x) = x + u(x). In the multi-scale approach, we define velocities v s at scale s ∈ S where S is the set of different image scales (s = 1 describes the original scale for which we omit writing s and s = 2, 3, ... the scale, down-sampled by a factor of 2 s-1 ). For each scale s, a family of decoding functions f s v is defined, parameterized by a fixed θ s ⊂ θ and dependent on z and the moving image M s :

v s = f s v (z, M s ; θ s ). (4.2)
In the training, the goal is to optimize θ s such that all velocities v s are likely to lead to warped moving images M * s that will be similar to F s in the training database. M * s is obtained by exponentiation of v s and warping of the moving image. Using Eq. 4.2, we can define the families of functions f s :

M * s := f s (z, M s ; θ s ) = M s • exp(f s v (z, M s ; θ s )). (4.3)
In order to express the dependency of f s on z and M s explicitly, we can define a distribution p(F s |z, M s ; θ s ). The product over the different scales gives us the output distribution: By using the law of total probability, this leads to the following stochastic process for computing p θ (F |M ) which is also visualized in Fig. 4.1a (cf. [Kingma, 2014b]):

p θ (F |z, M ) = s∈S p(F s |z, M s ; θ s ). ( 4 
p θ (F |M ) = z p θ (F |z, M )p(z)dz. (4.5) 
The likelihood p θ (F |z, M ) can be any distribution that is computable and continuous in θ.

In VAEs, the choice is often Gaussian, which is equivalent to adopting a sum-of-squared differences (SSD) criterion (cf. [Kingma, 2013]). We propose instead to use a local cross-correlation (LCC) distribution due to its robustness properties and superior results in image registration compared to SSD (cf. [START_REF] Lorenzi | [END_REF]Avants, 2011]). Thus, we use the following Boltzmann distribution as likelihood:

p s θ (F s |z, M s ) ∼ exp(-λD LCC (F s , M s , v s )), (4.6) 
where v s = f s v (z, M s ; θ s ) are the velocities and λ is a scalar hyperparameter. The symmetric D LCC is defined as:

D LCC (F s , M s , v s ) = 1 P x∈Ω i F * s x i -F * s x M * s x i -M * s x 2 i F * s x i -F * s x 2 i M * s x i -M * s x 2 + τ -1, (4.7)
with P pixels x ∈ Ω, the symmetrically warped images

M * s = M s • exp (v s /2) and F * s = F s • exp (-v s /2
). The bar F x symbolizes the local mean grey levels of F x derived by mean filtering with kernel size k at position x. i is iterating through this k × k-window.

A small constant τ is added for numerical stability (τ = 1e -15 ).

Learning the constrained deformation encoding

In order to optimize the parameterized model over θ (Eq. 4.5), two problems must be solved: First, how to define the latent variables z, for example decide what information these variables represent. VAEs assume there is no simple interpretation of the dimensions of z but instead assert that samples of z are drawn from a simple distribution p(z).

Second, the integral over z is intractable since one would need to sample a too large number of z's to get an accurate estimate of p θ (F |M ). Instead of sampling a large number of z's, the key assumption behind VAEs is to sample only z's that are likely to have produced F and compute p θ (F |M ) only from those. To this end, one needs to compute the intractable posterior p(z|F, M ). Due to this intractability, in VAEs [Kingma, 2013], the posterior is approximated by learning an encoding distribution q ω (z|F, M ), using a neural network with parameters ω (the encoder). This approximated distribution can be related to the true posterior using the Kullback-Leibler divergence (KL) which leads (after rearranging the terms) to the evidence lower bound (ELBO) of the log marginalized likelihood log p θ (F |M ) (cf. [Kingma, 2013;Kingma, 2014b]):

log p θ (F |M ) -KL [q ω (z|F, M ) p(z|F, M )] = E z∼q log p θ (F |z, M ) -KL [q ω (z|F, M ) p(z)] . (4.8)
The KL-divergence on the left hand side gets smaller the better q ω (z|F, M ) approximates p(z|F, M ) and ideally vanishes if q ω is of enough capacity. Thus, maximizing log p θ (F |M ) is equivalent to maximizing the ELBO on the right hand side of the equation consisting of encoder q ω and decoder p θ which can be both optimized via stochastic gradient descent.

Optimizing the ELBO

According to the right-hand side of Eq. 4.8, there are two terms to optimize, the KLdivergence of prior p(z) and encoder distribution q ω (z|F, M ) and the expectation of the reconstruction term log p θ (F |z, M ). Since the prior is a multivariate Gaussian, the encoder distribution is defined as

q ω (z|F, M ) = N (z|µ ω (F, M ), Σ ω (F, M ))
, where µ ω and Σ ω are deterministic functions learned in an encoder neural network with parameters ω. The KL-term can be computed in closed form as follows (constraining Σ ω to be diagonal):

KL[N (µ ω (F, M ), Σ ω (F, M )) N (0, I)] = 1 2 tr(Σ ω (F, M )) + µ ω (F, M ) -k -log det(Σ ω (F, M )) , 4.2 Methods
where k is the dimensionality of the distribution.

The expected log-likelihood E z∼q [log p θ (F |z, M )], the reconstruction term, could be estimated by using many samples of z. To save computations, we treat p θ (F |z, M ) as

E z∼q [log p θ (F |z, M )
] by only taking one sample of z. This can be justified as optimization is already done via stochastic gradient descent, where we sample many image pairs (F, M ) from the dataset X and thus witness different values for z. This can be formalized with the expectation over F, M ∼ X :

E F,M ∼X E z∼q log p θ (F |z, M ) -KL [q ω (z|F, M ) p(z)] .
To enable back-propagation through the sampling operation q ω (z|F, M ), the reparametrization trick [Kingma, 2013] is used in practice, where

z = µ ω + Σ 1/2
ω (with ∼ N(0, I)). Thus, for image pairs (F, M ) from a training dataset X the actual objective becomes:

E F,M ∼X E ∼N (0,I) log p θ (F |z = µ ω (F, M ) + Σ 1/2 ω (F, M ) * , M ) - KL [q ω (z|F, M ) p(z)] . (4.9)
After insertion of Eq. 4.4, the log of the product over the scales s ∈ S results in the sum of the log-likelihood distributions:

E F,M ∼X E ∼N (0,I) s∈S log p θ s (F s |z = µ ω (F, M ) + Σ 1/2 ω (F, M ) * , M s ) - KL [q ω (z|F, M ) p(z)] . (4.10)

Introducing regularization on velocities

So far, we have considered that at each scale s, a velocity field v s is generated by a decoding function f s v (z, M s ; θ s ) through a neural network. To have a better control of its smoothness, we propose to regularize spatially v s through a Gaussian convolution with standard deviation σ G :

vs = G σ G * v s (4.11)
Gaussian smoothing was applied here, but it could be replaced by any quadratic Tikhonov regularizer or by any functional enforcing prior knowledge about the velocity field.

In the remainder, we show how the regularization of velocities can be inserted into the proposed probabilistic framework. To make the notation less cluttered, we drop the scale s superscript in the velocity notations. Until now, the velocities v have been handled as fixed parameters v = f v (z, M ; θ). We can equivalently assume that velocities v are random variables with a Dirac posterior probability : p θ (v|z, M ) ∼ δ fv(z,M ;θ) (v).

We now introduce the random variable v * which represents the regularized velocities as shown in Fig. 4.1b. This quantity is linked to the regular velocities v through a Gaussian distribution p(v|v * ) = G(v * , 1) such that v is close to v * in terms of L 2 norm. Furthermore, we define a diffusion-like regularization prior on v * [Nielsen, 1997]:

log p(v * ) ∝ Ω ∞ i=1 σ 2i G 2 i i! ∂ i ∂Ω i v * 2 dΩ,
taking into account the Taylor expansion of the Fourier transform of the Gaussian. The maximum a posteriori of the regularized velocities v is then obtained through Bayes law:

v = arg max v * log p(v * |v) = arg max v * logp(v|v * ) + logp(v * )
which in this case is equivalent to solving the Heat equation [Nielsen, 1997] and leads to a Gaussian convolution:

v = G σ G * v.
Finally, we conveniently assume that the posterior probability of v * is infinitely peaked around its mode, i.e. p(v * |v) ∼ δ v(v * ) (assumption sometimes made for the Expectation-Maximization algorithm [Kurihara, 2009]). In the decoding process, we can now marginalize out the velocity variables v and v * by integrating over both such that only v remains:

p θ (F |M ) = z v v * p(F |v * , M ) p(v * |v) p θ (v|z, M ) p(z) dv dv * dz = z p(F |v, M ) p(z) dz.
(4.12)

Thus, the proposed graphical model leads to a decoder working with the regularized velocity field v instead of the v generated by the neural network. When combining regularized velocities vs at all scales, we get:

p θ (F |M ) = z s∈S p(F s |v s , M s ) p(z) dz. (4.13)
This can be optimized as before and leads to Gaussian convolutions at each scale if considering diffusion-like regularization. Thus, the multi-scale loss function per training image pair (F ,M ) for one sample is defined as (cf. Eq. 4.10):

arg min ω,θ 1 2 tr(Σ ω ) + µ ω µ ω -k -log det(Σ ω ) -λ s∈S D LCC (F s , M s , vs ), (4.14) 
where vs depends on v s and therefore on θ (cf. Eq. 4.2 and 4.11).

Network architecture

The encoder-decoder neural network takes the moving and the fixed image as input and outputs the latent code z, velocities v, the deformation field φ and the warped moving image M * . The last three are returned at the different scales s. The encoder consists of strided convolutions while the bottleneck layers (µ, σ, z) are fully-connected. The deconvolution layers in the decoder were conditioned by concatenating each layer's output with sub-sampled versions of M. Making appearance information of the moving image easily accessible for the decoder, allows the network to focus on deformation information -the differences between moving and fixed image -that need to pass through the latent bottleneck. While it is not guaranteed that the latent representation contains any appearance information, it comes at a cost to use the small bottleneck for appearance information. At each decoding scale, a convolutional layer reduces the number of filter maps to three. Then, a Gaussian smoothing layer (cf. Eq. 4.11) with variance σ 2 G is applied on these filter maps. The resulting velocities v s (a SVF) are exponentiated by the scaling and squaring layer [START_REF] Krebs | [END_REF] in order to retrieve the diffeomorphism φ s which is used by a dense STN to retrieve the warped image M * s . The latent code z is computed according to the reparametrization trick. During training, the network parameters are updated through back-propagation of the gradients with respect to the objective Eq. 4.10, defined at each multi-scale output. Finally during testing, registration is done in a single forward path where z is set to µ since we want to execute registration deterministically. One can also think of drawing several z using σ and use the different outputs for uncertainty estimation as in [Dalca, 2018] which we do not further pursue in this work. The network architecture can be seen in Fig. 4.2a. Besides registration, the trained probabilistic framework can be also used for the sampling of deformations as shown in Fig. 4.2b.

Experiments

We evaluate our framework on cardiac intra-subject registration. End-diastole (ED) frames are registered to end-systole (ES) frames from cine-MRI of healthy and pathological subjects. These images show large deformations. Additionally, we evaluate the learned encoding of deformations by visualizing the latent space and transporting encoded deformations from one patient to another. All experiments are in 3-D.

Data

We used the 334 ED-ES frame pairs of short-axis cine-MRI sequences. 184 cases were acquired from different hospitals and 150 cases were used from the Automatic Cardiac Diagnosis Challenge (ACDC) at STACOM 2017 [Bernard, 2018], mixing congenital heart diseases with images from adults. We used 234 cases for training and for testing 100 cases from ACDC, that contain segmentation and disease class information. The testing set contained 20 cases of each of the following cardiac diseases: dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), previous myocardical infarction (MINF), abnormal right ventricle (RV) and healthy (Normal). All images were resampled with a spacing of 1.5 × 1.5 × 3.15 mm and cropped to a size of 128 × 128 × 32 voxels, by equally removing voxels from all sides. These dimensions were chosen to save computation time and are not a limitation of the framework.

Experiments

Implementation details

Our neural network consisted of four encoding convolutional layers with strides (2, 2, 2, 1) and three decoding deconvolutional layers. Each scale contained two convolutional layers and a convolutional Gaussian layer with σ G = 3mm (kernel size 15) in front of an exponentiation and a spatial transformer layer using trilinear interpolation (cf. Fig. 4.2a).

The dimensionality of the latent code z was set to d = 32 as a compromise of registration quality and generalizability (cf. experiment on latent vector dimensionality). The number of trainable parameters in the network was ∼420k. LeakyReLu activation functions and L2 weight decay of 1 * 10 -4 were applied on all layers except the last convolutional layer in each scale where a tanh activation function was used in order to avoid extreme velocity values during training. All scales were trained together, using linearly down-sampled versions of the input images for the coarser scales. In all experiments, the number of iterations in the exponentiation layer was set to N = 4 (evaluated on a few training samples according to the formula in [START_REF] Arsigny | A log-euclidean framework for statistics on diffeomorphisms[END_REF]). During the training, the mean filter size of the LCC criterion was k = 9. The loss hyper parameter was empirically chosen as λ = 5000 such that the similarity loss was optimized while the latent codes roughly had zero means and variances of one. We applied a learning rate of 1.5 * 10 -4

with the Adam optimizer and a batch size of one. For augmentation purposes, training image were randomly shifted, rotated, scaled and mirrored. The framework has been implemented in Tensorflow using Keras1 . Training took ∼24 hours and testing a single registration case took 0.32s on a NVIDIA GTX TITAN X GPU.

Registration

We compare our approach with the LCC-demons (Dem, [START_REF] Lorenzi | [END_REF]) and the ANTs software package using Symmetric Normalization (SyN, [START_REF] Avants | [END_REF]) with manually tuned parameters (on a few training images) and the diffeomorphic DL-based method VoxelMorph [Dalca, 2018] (VM) which has been trained using the same augmentation techniques as our algorithm. For the latter, we set σ = 0.05, λ = 50000 and applied a reduced learning rate of 5 * 10 -5 for stability reasons while using more training epochs.

Higher values for λ led to worse registration accuracy. We also show the improvement of using a multi-scale approach (with 3 scales, S3) compared to a single-scale objective (S1).

We measure registration performance with the following surrogates: intensity root mean square error (RMSE), DICE score, 95%-tile Hausdorff distance (HD in mm). To quantify deformation regularity, we show the determinant of the Jacobian qualitatively, while we also computed the mean magnitude of the gradients of the determinant of the Jacobian (Grad Det-Jac). We decided to report this second-order description of deformations to better quantify differences in smoothness among the different methods, which are not obvious by taking the mean of the determinant of the Jacobian as bigger and smaller values tend to cancel each other out. DICE and HD scores were evaluated on the following anatomical structures: myocardium (LV-Myo) and epicardium (LV) of the left ventricle, left bloodpool (LV-BP), right ventricle (RV) and LV+RV (Fig. 4.5).

Table 4.1 shows the mean results and standard deviations of all algorithms. In terms of DICE scores, our algorithm using three scales (Our S3) shows the best performances on this dataset while the single-scale version (Our S1) performed similarly compared to the LCC-demons and the SyN algorithm. Hausdorff distances were significantly improved using both of our algorithms. Detailed registration results are shown in Fig. 4.3. Interestingly, we found that the SyN algorithm showed marginally better DICE scores than the LCC-demons which has been also reported on brain data [START_REF] Lorenzi | [END_REF].

Qualitative registration results of a pathological (HCM) and a healthy case (Normal) are presented in Fig. 4.4a2 . The warped moving image (with and wihout grid overlay) and the determinant of the Jacobian (Det. Jac.) are shown. Displacements are visualized using the color encoding as typical for the optical flow in computer vision tasks. Middle and coarse scale outputs of our multi-scale method are shown in Fig. 4.4b. We computed the determinant of the Jacobian using SimpleITK3 and found that for all methods no negative values were observed on our test dataset. Compared to the other algorithms, our approach produced smoother and more regular deformations as qualitatively shown by the determinant of the Jacobian in Fig. 4.4a and quantitatively by the significantly smaller mean gradients of the determinant of the Jacobian (Table 4.1) 4 . Despite the fact of being diffeomorphic, the voxelmorph algorithm produced more irregular deformation fields compared to all other algorithms. Our single-scale approach resulted in slightly smoother deformations which is probably due to the fact that it performed less accurately in compensating large deformations. We applied the Wilcoxon signed-rank test with p < 0.001 to evaluate statistical significance of the differences in the results of Fig. 4.3. This method is chosen as a paired test without the assumption of normal distributions. For all metrics, the results of our multi-scale algorithm (Our S3) showed significant differences compared to the results of all other methods (including Our S1). With respect to our single-scale algorithm (Our S1), only the differences in DICE scores were not statistically significant in comparison with the LCC-demons (Dem).

LV -BP RV LV -Myo LV LV+RV

Note, that higher DICE and HD scores can be achieved by choosing a higher latent dimensionality (cf. Experiment 4.3), which however comes at the cost of a more complex encoding space, making analysis tasks more difficult. We also tested the first version of voxelmorph [START_REF] Balakrishnan | [END_REF] on our dataset. We chose to show the results of the latest version [Dalca, 2018] due to the fact that this version is diffeomorphic and that its DICE and HD results were better (cf. [START_REF] Krebs | [END_REF]).
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Deformation encoding

For evaluating the learned latent space, we investigated (a) the effects of the size of the latent vector on the registration accuracy, (b) the structure of the encoded space by visualizing the distribution of cardiac diseases and showing simulated deformations along the two main axes of variations and (c) we applied our framework on deformation transport and compare its performance with a state-of-the-art algorithm.

Latent Vector Size In Fig. 4.6 we analyzed the influence of the size of the latent code vector with respect to registration accuracy in terms of DICE and HD scores. With a relatively small latent size of d = 8, competitive accuracy is achieved. With an increasing dimensionality, performance increases but reaches a plateau eventually. This behavior is expected, since CVAEs tend to ignore components if the dimensionality of the latent space is too high [Kingma, 2014b]. For the cardiac use case, we chose d = 32 components as a trade-off between accuracy and latent variable size.

Disease Distribution and Generative Latent Space

In this experiment, we used disease information and encoded z-codes of the test images to visualize the learned latent space.

Using linear CCA (canonical correlation analysis), we projected the z-codes (32-D) to a We compare our approach with the pole-ladder algorithm (PL [Lorenzi, 2014]). All intra-and inter-subject registrations required by the pole ladder were performed using the LCC-demons [START_REF] Lorenzi | [END_REF]. For the inter-subject pairs, we aligned the test data with respect to the center of mass of the provided segmentation and rotated the images manually for rigid alignment. This alignment step was done only for the pole ladder experiment 5 .

Qualitative results are shown in Fig. 4.9 where the predicted deformations of one hypertrophy (A, HCM) and one cardiomyopathy (B, DCM) case (step 1) were transported to two healthy (Normal) subjects (step 2, targets C and D). Note that our algorithm automatically determines orientation and location of the heart. In Table 4.2, we evaluated the average ejection fraction (EF) of the ED-ES deformation prediction of the pathologies (step 1) and the average EF after transport to normal subjects (step 2). Hereby, we assume that EFs, as a relative measure, stay similar after successful transport (such that the absolute difference, EF step 1 -EF step 2, is small). The table shows the average of transporting 5 HCM and 5 DCM cases to 20 normal cases (200 transports). For our algorithm, the absolute differences in EFs are much smaller for DCM cases and similarly close in HCM cases in comparison to the pole ladder. All test subjects were not used during training. The EF is computed based on the segmentation masks (warped with the resulting deformation fields). Besides, it can be seen, that predictions done by the Step 

Discussion and Conclusions

We presented an unsupervised multi-scale deformable registration approach that learns a low-dimensional probabilistic deformation model. Our method not only allows the accurate registration of two images but also the analysis of deformations. The framework is generative, as it is able to simulate deformations given only one image. Furthermore, it provides a novel way of deformation transport from one subject to another by using its probabilistic encoding. In the latent space, similar deformations are close to each other. The method enables the addition of a regularization term which leads to arbitrarily smooth deformations that are diffeomorphic by using an exponentiation layer for stationary velocity fields. The multi-scale approach, providing velocities, deformation fields and warped images in different scales, leads to improved registration results and a more controlled training procedure compared to a single-scale approach.

We evaluated the approach on end-diastole to end-systole cardiac cine-MRI registration and compared registration performance in terms of RMSE, DICE and Hausdorff distances to two popular algorithms [START_REF] Lorenzi | [END_REF][START_REF] Avants | [END_REF] and a learning-based method [Dalca, 2018], which are all diffeomorphic. While the performance of our single-scale approach was comparable to the LCC-demons and the SyN algorithm, our multi-scale approach (using 32 latent dimensions) showed statistically significant improvements in terms of registration accuracy. Generally, our approach produced more regular deformation fields, which are significantly smoother than the DL-based algorithm. Using our method with a non-generative U-net style network [Ronneberger, 2015] without a deformation encoding performed similarly compared to the proposed generative model.

Adding supervised information such as segmentation masks in the training procedure as in [Hu, 2018;[START_REF][END_REF] led to a marginal increase in terms of registration performance (∼1-2% in DICE scores), so we decided that the performance gain is not large enough in order to justify the higher training complexity. Theoretically, our method allows measurement of registration uncertainty as proposed in [Dalca, 2018] which we did not further investigate in this work.

The analysis of the deformation encoding showed that the latent space projects similar deformations close to each other such that diseases can be clustered. Disease classification could be potentially enforced in a supervised way as in [Biffi, 2018]. Furthermore, our method showed comparable quantitative and qualitative results in transporting deformations with respect to a state-of-the-art algorithm which requires the difficult step of inter-subject registration that our algorithm does not need.

It is arguable if the simple assumption of a multivariate Gaussian is the right choice for the prior of the latent space (Eq. 4.1). Possible other assumptions such as a mixture of Gaussians are subject to future work. The authors think that the promising results of the learned probabilistic deformation model could be also applicable for other tasks such as evaluating disease progression in longitudinal studies or detecting abnormalities in subject-to-template registration. An open question is how the optimal size of the latent vector changes in different applications. In future work, we plan to further explore generative models for learning probabilistic deformation models.

Xavier Pennec for the insightful discussions and Adrian Dalca for the help with the Voxelmorph [Dalca, 2018] experiments. In chapter 4, we presented a pairwise probabilistic deformation model and showed its applicability to a variety of deformation analysis tasks. In this chapter, we extend the model to a generative motion model that learns population-specific motion patterns from a database of image sequences. Such a motion model enables consistent tracking of structures, the simulation and temporal interpolation of motion. A temporal conditional variational autoencoder is implemented using a novel Gaussian process prior assumption. This chapter is based on the conference presentation at STACOM 2019 [Krebs, 2020b]. However, the presented version includes several methodological advancements and is currently under review as a journal paper.

Appendix

Introduction

Motion analysis is an important task in many medical image analysis problems such as organ tracking or longitudinal analysis of various diseases. For moving organs such as the heart, it is not only important to track anatomical structures but also to analyze motion indices that are useful for disease diagnosis or therapy selection [Girija, 2017].

Extracting motion patterns further allows to compensate for motion, handle missing data or do temporal super-resolution and motion simulation.

Motion in medical image sequences is typically analyzed by computing temporally consistent pairwise deformations where each frame in a sequence is registered to a target frame [Girija, 2017]. The resulting series of deformation fields can be utilized to track structures throughout the sequence and to identify abnormal motion patterns, for example by computing clinically relevant variables such as the ejection fraction (EF) of the heart [START_REF] Rohé | Lowdimensional representation of cardiac motion using Barycentric Subspaces: A new group-wise paradigm for estimation, analysis, and reconstruction[END_REF].

State-of-the-art

Registration algorithms typically seek to find the deformation field between two images by solving an optimization problem consisting of a similarity metric and a regularizer. The similarity metric measures the distance between the two images while the regularizer constrains the smoothness of the resulting deformation field. A large variety of registration algorithms using different similarity and regularizing metrics have been proposed [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF]. One group of registration methods aim to ensure diffeomorphic deformations due to their favorable properties. Diffeomorphisms are topology-preserving and invertible deformations which makes them suitable for many medical registration problems in which foldings are physically implausible [START_REF] Vercauteren | [END_REF]. This makes diffeomporphisms also appropriate for tracking anatomical structures in image sequences such as in cardiac imaging [Peyrat, 2010] (assuming structures do not go out of the field of view). Many diffeomorphic registration algorithms have been proposed such as [Beg, 2005;[START_REF] Zhang | [END_REF][START_REF] Vercauteren | [END_REF][START_REF] Vercauteren | [END_REF], the SyN algorithm [START_REF] Avants | [END_REF] and the LCC-demons [START_REF] Lorenzi | [END_REF]. Recently, learning-based algorithms for pairwise diffeomorphic registration have been proposed. These are based on supervised ground-truth deformations [START_REF][END_REF][START_REF] Rohé | SVF-Net: Learning Deformable Image Registration Using Shape Matching[END_REF] or on unsupervised learning [Dalca, 2018;Krebs, 2019b]. The latter are trained by minimizing a loss function consisting of an image similarity and a deformation regularizer, similarly to the traditional optimization problem. In these two works, diffeomorphisms are guaranteed by using the stationary velocity field (SVF) parameterization based on the scaling-squaring algorithm [START_REF] Arsigny | A log-euclidean framework for statistics on diffeomorphisms[END_REF].

For image sequences, one difficulty is to acquire temporally smooth deformations that are fundamental for consistent tracking. That is why registration algorithms with a temporal regularizer have been proposed [LedesmaCarbayo, 2005;Vandemeulebroucke, 2011;De Craene, 2012;Metz, 2011;Qin, 2018;Shi, 2013]. In the computer vision community, temporal video super-resolution and motion compensation are a related research topic [Caballero, 2017;Kappeler, 2016].

However, while these methods are able to capture temporally consistent deformations along a sequence of images, they do not extract intrinsic motion parameters crucial for building a comprehensive motion model that can be used for analysis tasks such as motion simulation, transport or classification as it is for example done in bio-mechanical models such as [START_REF] Sermesant | Toward patient-specific myocardial models of the heart[END_REF]. Yang et al. [Yang, 2011a] generated a motion prior using manifold learning from low-dimensional shapes. Qiu et al. [START_REF] Qiu | [END_REF] proposed to build an eigenspace of initial momenta using PCA. In an image-driven fashion, Rohé et al. [START_REF] Rohé | Lowdimensional representation of cardiac motion using Barycentric Subspaces: A new group-wise paradigm for estimation, analysis, and reconstruction[END_REF] introduced a parameterization, the Barycentric Subspaces, for cardiac motion analysis.

Learning a Probabilistic Motion Model

In contrast, we propose a probabilistic motion model that is built in a fully data-driven way from image sequences. Instead of defining a motion parameterization explicitly or learning from pre-processed shapes, our model learns a low-dimensional motion matrix in an unsupervised fashion. The goal is not only to retrieve a compact representation of the motion but to obtain a structured and generative encoding that allows for temporal interpolation (to predict missing frames) and to simulate an indefinite number of new motion patterns. These features could be helpful for data augmentation and to speed-up image acquisition as the model reconstructs a full cyclic motion from missing frames. Besides, the learned probabilistic encoding could be useful for group-wise analysis as it enables to transport motion characteristics to a new subject, simulating for example a pathological motion in a healthy subject.

In this work, we introduce a novel Gaussian Process (GP) prior to extend a conditional variational autoencoder (CVAE [Kingma, 2014b]), a latent variable model, for temporal sequences. A pairwise encoder-decoder neural network applies a temporal convolutional network (TCN) in its latent space in order to learn intrinsic temporal dependencies. Furthermore, we utilize a self-supervised training scheme based on temporal dropout (TD) to enforce temporal consistency and increase generalizability of the motion model. Smooth and diffeomorphic deformations are guaranteed by applying an exponentiation layer [Krebs, 2019b] and spatio-temporal regularization.

The proposed model demonstrates state-of-the-art registration accuracy measured on segmentation overlaps and distances and regularity for diffeomorphic tracking of cardiac cine-MRI. In addition, the potentials of the generated latent motion matrix for motion simulation, interpolation and transport are demonstrated. The main contributions are as follows:

• An unsupervised probabilistic motion model learned from medical image sequences • A conditional VAE model trained with a novel Gaussian process prior and selfsupervised temporal dropout using temporal convolutional networks • Demonstration of cardiac motion tracking, simulation, transport and temporal super-resolution This paper extends our preliminary conference paper [Krebs, 2020c] by replacing the standard unit Gaussian of the CVAE with a novel Gaussian Process Prior. We add detailed derivations of the motion model and show improved tracking accuracy and temporal smoothness. Finally, we show a first generalization of the model to 3-D+t sequences.

Methods

Typically, the motion of an image sequence I 0:T with T frames is described by deformation fields between one reference image, for example I 0 , and all other images in the sequence.

In order to extract consistent sequential deformations φ t with t ∈ [1, T ], we propose a temporal latent variable model that encodes the motion in a low-dimensional probabilistic space, the motion matrix z ∈ R D× T with T = T -1. Here, we define the reference image I 0 as moving image, while the other frames are fixed images I t . Each image pair (I 0 , I t ) is encoded by D latent variables, the z t -code, which are the columns of z. Each z t parameterizes the deformation field φ t while being conditioned on the moving image I 0 . The rows z d with length T of the motion matrix z represent the encoded deformation sequence per latent dimension d ∈ D.

Our motion model is learned from data by imposing a Normal prior distribution p(z) on the latent variables z that follows a Gaussian Process (GP) prior in the temporal dimension for each z d . In addition, we assume independence between the latent variables z d as in standard VAEs [Kingma, 2013]. Note, when z is written as part of a distribution like p(z), z is used as a vector of size D T rather than a matrix for simpler notation.

During training, we follow the learning paradigms of conditional variational autoencoders (CVAE [Kingma, 2014b;Kingma, 2014a]) with the exception of replacing the multivariate unit Gaussian prior with the proposed GP-prior. The approximated posterior is the output of a temporal convolutional neural network (TCN [Bai, 2018]) allowing for temporal regularization. To further facilitate temporal dependencies and handle missing data, temporal dropout (TD) is applied during the training procedure. In the following, the different parts of the method are explained. First, the probabilistic motion model using a GP-prior is defined. Then, posterior and data likelihood distributions are modeled using a encoder-decoder neural network. Lastly, the concept of temporal dropout is introduced.

Generative Motion Model using a Gaussian Process Prior

The proposed motion model consists of an encoder q ω (z|I 0:T ) and a decoder p θ (I 1:T |z, I 0 ) which are parameterized by ω and θ respectively. The encoder first independently maps each image pair (I 0 , I t ) to a latent representation γ t which is then temporally regularized by mixing all time steps to retrieve the motion matrix z. The decoder p θ projects the z t -codes to the deformations φ t while being conditioned on the moving image I 0 . The output of the decoder are he reference image I 0 warped with the φ t deformation fields.

The encoder approximates the posterior distribution and the decoder the data likelihood of the latent variable model. Using a prior distribution p(z) over latent variables z, we define the following generative process:

p θ (I 1:T |I 0 ) = z p θ (I 1:T |z, I 0 )p(z) dz, (5.1)
which is visualized in Fig. 5.1a. In this work, encoder q ω and decoder p θ are approximated using neural networks where ω and θ represent the encoder and decoder networks' weights which are optimized using amortized Variational Inference [Kingma, 2013]. The data likelihood p θ (I 1:T |z, I 0 ) can be seen as the fidelity of the reconstruction of the fixed images I 1:T by warping the moving image I 0 with appropriate deformations φ 1:T . An overview of the motion model can be seen in Fig. 

Gaussian Process Prior

The prior follows a zero-centered multivariate Gaussian distribution: p(z) ∼ N (0|Σ) where the covariance matrix Σ is a diagonal block matrix of dimensions D T × D T :

Σ = Diag D d=1 (K l ). (5.2)
Each diagonal element of Σ represents the temporal covariance matrix K l ∈ R T × T of a Gaussian time-continuous stochastic process whose kernels can be chosen by the user.

A typical choice in Gaussian Processes is the squared exponential kernel

K RBF l (τ, τ ) = σ 2 K exp (-|τ -τ | 2 /2l 2 )
with length scale l and variance σ 2 K . However, due to the fact that we want to model data that varies at multiple time scales, we consider the Cauchy kernel [Rasmussen, 2003;[START_REF] Vincent Fortuin | Multivariate time series imputation with variational autoencoders[END_REF]:

K Cauchy l (τ, τ ) = σ 2 K 1 - (τ -τ ) 2 l 2 -1 , (5.3)
with pre-defined σ K . This covariance matrix Σ allows temporally correlated latent variables while still assuming highest possible independence between the D latent dimensions. In other words, we extended the standard VAE latent space which only consists of the independence assumption between latent variables with a regularized temporal dimension. Latent variables are related over time according to the chosen kernel function K l while being independent of each other. An example of a covariance matrix can be seen in Fig. 5.1b.

Posterior and Likelihood Distributions

Similar to standard VAEs, the posterior q ω follows a multivariate Gaussian distribution q ω (z|I 0:T ) ∼ N (µ|Σ * (σ)) with data-driven predictions of mean vector µ ∈ R D T and variance vector σ ∈ R D . The full covariance matrix Σ * (σ) is defined as a block diagonal matrix of the following form: .4) where 1 defines a vector of ones of size T and vec(•) describes the vectorization function.

Σ * (σ) = vec σ1 Σ =        σ 1 K l 0 • • • 0 0 σ 2 K l • • • 0 . . . . . . . . . . . . 0 0 • • • σ D K l        , ( 5 
Mean and variance vectors (µ, σ) are the output of the encoder neural network. The kernel K l is kept the same as in the prior distribution and does not contain predicted parameters to guarantee a user-chosen temporal regularity.

Also, the likelihood p θ is assumed to follow a multivariate Gaussian distribution p θ (I 1:T |z, I 0 ) ∼ N (I 0 • φ 1:T (θ); 0|σ L * I D T ) where I D T is the identity matrix of size D T , f θ is the decoder neural network that outputs the diffeomorphisms φ 1:T and • denotes the image warping operation. The variance σ L is chosen to be a scalar constant, depicting for example the variance of intensity residuals of well registered images.

Learning the Motion Model via Variational Inference

In order to optimize the parameterized motion model over ω and θ, the evidence lower bound (ELBO) of the log-marginalized likelihood p θ (I 1:T |I 0 ) that is conditioned on the moving image I 0 , must be maximized (see [Kingma, 2013;Kingma, 2014b;Krebs, 2019b] for details):

E z∈qω(•|I 0:T ) log p θ (I 1:T |z, I 0 ) -KL q ω (z|I 0:T ) p(z) , (5.5) with KL denoting the Kullback-Leibler Divergence (KL). The first term in Eq. 5.5 enforces that the moving image I 0 is well registered to the fixed images I 1:T by maximizing the log likelihood. The second term structures the latent motion encoding by enforcing the posterior distribution q ω (z|I 0:T )) to be close to the prior distribution p(z). Following the definition of the KL divergence between 2 multivariate Gaussian distributions, we obtain the closed-from solution (see Appendix A): (5.6) with μi being the i-th segment of length T in µ.

KL q ω (z|I 0:T ) p(z) = 1 2 D i=1 σ 2 i T + μ i K -1 μi -log (σ 2 i ) -T ,
Recall that the log likelihood p θ (I 1:T |z, I 0 ) is also Gaussian. Thus, log p θ (I 1:T |z,

I 0 ) = -1 2 T t=1 I t -I 0 • φ t 2 /σ L
plus a constant which is equivalent to adopting a sumof-squared differences (SSD) criterion, commonly used as similarity metric in image registration (for example in [START_REF] Balakrishnan | [END_REF]).

During training of the model, parameters ω and θ are updated via stochastic gradient descent and back-propagation. In order to back-propagate through the sampling operation, the reparameterization trick is used [Kingma, 2013]. For full-covariance Gaussian distributions, the covariance matrix must be positive-definite as we use the Cholesky decomposition for the reparameterization (cf. [START_REF] Kingma | [END_REF]). The details on how to efficiently compute the Cholesky decomposition of the covariance matrix Σ * in Eq. 5.4 can be found in Appendix B. Diffusion-like regularization in spatial and temporal dimensions is applied by Gaussian smoothing kernels. This regularization follows the derivations of [Krebs, 2019b] and is omitted in Fig. 5.1a for reasons of clarity.

Neural Network Architecture

The encoder takes the image pairs (I 0 , I t ) as input and outputs the motion matrix z.

It consists of a feature extraction part and a temporal regularizer (TCN). The feature extraction part consists of convolutional and fully-connected layers for mean and variance predictions of the posterior [Kingma, 2014b]. These layers are temporally independent and share weights across all image pairs of a sequence. As the output of the feature extraction networks, the extracted features γ t of size R 2D are merged across different time steps by using a temporal convolutional network (TCN) leading to temporally regularized mean and variance vectors (µ, σ) that define the posterior distribution q ω (z|I 0:T ) ∼ N (µ|Σ * (σ)). The size of 2D is chosen for γ t such that each σ value can be influenced by features from the whole sequence. Note, that samples from the posterior distribution are vectors of size D T which are reshaped to retrieve the motion matrix z with z t -columns.

Following the recommended architecture, the TCN consists of multiple 1-D convolutional layers with increasing dilation and skip connections allowing to learn temporal dependencies of the latent variables γ t that were time-independent before [Bai, 2018]. We use zero-padding and non-causal convolutional layers to also take future time steps into account. The output tensor capturing (µ, σ) is of size R D T +D . Our TCN is shown in Fig. 5.3a. TCNs can handle sequences of varying time lengths and are advantageous compared to recurrent neural networks (RNN) due to a flexible receptive field and more stable gradient computations [Bai, 2018]. Another reason why the authors chose a TCN over RNNs is that RNNs are especially suitable to learn long-distance temporal relationships such as in natural language processing while the focus of this work is on rather short time sequences with higher local dependencies. One could use a cyclic padding instead of zero-padding for cyclic sequences, for example by linking the end of a sequence to its beginning. However, in the case of cardiac cine-MRI, 5-10% of the cardiac cycle are often omitted [Bernard, 2018] such that we chose to not assume cyclic sequences explicitly.

The decoder takes as input samples z t from the posterior distribution and the moving image I 0 and outputs the diffeomorphisms φ 1:T and the accordingly warped moving image. Deconvolutional and convolutional layers are used in the decoder which are shared across all time steps. It is desired that the latent representation z encodes deformation information on a semantic level, independent of the given subject. That is why the decoder is further conditioned on the moving image I 0 by concatenating downsampled versions of I 0 with the outputs of the deconvolutional layers at different scales. By providing subject-specific appearance information in form of the moving image, the motion model is driven to encode subject-independent deformation information in the limited dimensionality of z [Krebs, 2019b]. In order to ensure smooth and diffeomorphic deformations, we utilize a Gaussian smoothing layer with standard deviations of σ G and σ T in temporal and spatial domains respectively and an exponentiation layer for the stationary velocity field parameterization of diffeomorphisms [Krebs, 2019b]. The linear warping functionality is realized using a spatial transformer network layer [START_REF] Jaderberg | Spatial transformer networks[END_REF].

Missing Data and Temporal Dropout

To always predict a full sequence of T deformations, the size of the covariance matrix Σ * is kept identical across datasets with different time lengths T * . In case of shorter sequences, the features γ τ of all available image pairs (I 0 , I τ ) with τ ∈ T * are extracted and evenly distributed along T forming the matrix Γ ∈ R 2D× T . The remaining missing time steps are filled with a constant (typically zero). On the decoder side, the loglikelihood loss (first part of Eq. 5.5) is evaluated on all available time steps of the original sequence. If a sequence is longer than T , evenly distributed frames would be dropped to reach a lentgh of T . However, this should not happen normally as we assume to put T at least as the maximum experienced length in the data.

In addition, during training, further time steps (i.e. γ τ ) are dropped from Γ using temporal dropout (TD) in order to force the motion model to interpolate motion between available frames. To encourage the TCN to make use of its temporal connections and search for dependencies across time, our TC drops some of the γ τ while still trying to recover the deformations φ τ of all available image pairs (I 0 , I τ ). More precisely, in TD, instead of extracting features from an image pair (I 0 , I τ ), a vector of zeros is chosen as γ τ while still keeping the loss function on the decoder part for these time steps. A binary Bernoulli random variable r τ is used to randomly choose at each original time step τ if the zero vector is used instead of the extracted features given (I 0 , I τ ). All independent Bernoulli random variables r ∈ R T * have the success probability δ. The latent feature representation γ T D t using TD can thus be defined as:

γ T D τ = r τ * 0 + (1 -r τ ) * γ τ . (5.7)
Note, TD is used only during training as a sort of self-supervision to encourage generalizability and consistent motion simulation and interpolation of missing data. When encountering missing data at test time, one just needs to place the available encoded frame pairs at the desired temporal positions of Γ in order to predict the full motion consisting of T time steps (cf. Fig. 5.3b). A full motion simulation can be generated by setting all elements of Γ to zero. In this case, a sequence of deformations that are plausible with respect to the training data will be predicted given only the original image I 0 .

Optional Random Sub-Sequence Training: Since our motion model takes sequences of images as input and outputs a sequence of deformation fields, it comes naturally with high computational costs. This can lead to a model that may not be trainable on standard GPUs. Due to this limitation, we propose to train our model optionally with random subsequences. Let T be the maximum number of frames with which our model can be trained on a given GPU. In each training iteration, a random combination of T frames is selected from a training subject with T * frames in case T * > T . After sorting this combination, the given frame pairs are encoded and placed at their relative temporal position in Γ. In contrast to the TD procedure, only the selected T time steps are reconstructed in the decoder to limit the requirements of GPU memory. In case of shorter training sequences with T * ≤ T , the full sequence is used. By sampling different sub-sequences in each training epoch, the network will eventually see all parts of a sequence during the training stage.

Experiments

In this paper, we evaluate the proposed motion model on cardiac cine-MRI. Besides accurate temporal tracking and registration, we show the model's capabilities for motion simulation, interpolation and transport. The improved temporal latent space using the GP prior is demonstrated. Extensive results are presented for 2D+T sequences with more

5.3

Experiments limited quantitative evaluations on 3D+T sequences due to their heavy computational requirements. In all experiments, the end-diastolic (ED) frame was used as the moving image I 0 .

Databases

Two datasets forming 334 cardiac cine-MRI in total were used. First, 184 multi-centric short-axis sequences came from the EU FP7-funded project MD-Paedigree (Grant Agreement 600932), with congenital heart disease and healthy or pathological images from adults. In addition, 150 sequences originated from the Automatic Cardiac Diagnosis Challenge 2017 (ACDC [Bernard, 2018]). The images were acquired in breath hold using 1R-R or 2R-R intervals mixing retrospective or prospective gating. The original sequence lengths varied from 13 to 35 frames. The 100 training cases from ACDC that contain ED-ES segmentation information were used for testing while all other sequences were used for training. Slices were resampled with a spacing of 1.5×1.5 mm and cropped to a size of 128×128 pixels. In case of 3D+T sequences, 18 slices were used by adding zero slices at the top and bottom in case of fewer original slices.

Implementation Details

The time-independent neural network parts, the feature extraction part of the encoder and the decoder, followed the architecture proposed in [Krebs, 2019b]. The feature extractor consisted of 4 convolutional layers with (2,2,2,1)-strides and (16,32,32,4)feature maps and a fully-connected layer of size 2D, outputting γ t . The decoder p θ consisted of a 3 deconvolutional and 1 convolutional layer with (32,32,32,16)-feature maps. The TCN consisted of 4 1-D convolutional layers with (1,2,4,8)-dilations, same padding and skip connections (cf. Fig. 5.3a). All (de-)convolutional layers used a kernel size of 3. The last convolutional layer of the decoder was followed by a spatio-temporal Gaussian layer with spatial σ G = 3mm and temporal standard deviation σ T = 1.5, an exponentiation layer using 6 scaling-squaring iterations [Krebs, 2019b] and a linear warping layer [START_REF] Jaderberg | Spatial transformer networks[END_REF].

The latent dimensionality was set to D = 32 (as in [Krebs, 2019b]). We set the sequence length T to 35, the maximum sequence length found in the training data, resulting in a motion matrix z with D • T = 1088 elements. All sequences with fewer frames were handled as missing data as described in section 5.2.2. The number of trainable parameters (ω, θ) in the network summed up to ∼210k in 2D+T and ∼456k in 3D+T respectively. L2 weight decay of 1 • 10 -4 and LeakyReLu activation functions were applied on all layers except the last layer of the TCN and the last layer of the decoder. The former used no activation function for the µ-vector but used the exponential of the σ-vector to guarantee non-negative values close to 1. The last convolutional layer of the decoder p θ was followed by a tanh activation function for stability reasons during training. The Cauchy-kernel parameters were chosen as proposed in [START_REF] Vincent Fortuin | Multivariate time series imputation with variational autoencoders[END_REF] with l = 7 and σ K = 1.005. The variance of the data likelihood was set as the variance of intensity residuals of a few well-registered image sequences with σ L = 0.0045 in 2D+T and 0.00021 in 3D+T respectively.

For training, we used a first-order gradient-based method for stochastic optimization (Adam [Kingma, 2014a]) with a batch size of one and fixed learning rate of 0.00015. The TD probability δ was 0.5. Random sub-sequence training was only applied for 3D+T with T = 18. Online data augmentation containing randomly shifted, rotated, scaled and mirrored images has been applied. The model was implemented using Keras [Chollet, 2015] and Tensorflow [START_REF] Abadi | [END_REF]. The training time was ∼15h in 2D+T and 7 days for 3D+T sequences on a NVIDIA GTX TITAN X GPU. The LV volume curves extracted from the warped ED blood pool masks for 2 random test cases in ml, show the temporal smoothness and the distance to the ground-truth ED and ES volumes (marked with black points). The proposed algorithm (Our) shows slightly higher registration accuracy and temporally smoother deformations than the state-ofthe-art algorithms: SyN [START_REF] Avants | [END_REF], LPR [Krebs, 2019b], 4D-Elastix [Metz, 2011] and the previous version of our method without GP prior (No-GP [Krebs, 2020c]). ) for a test sequence. In 3D+T, smoother Jacobian determinants were obtained.

Registration and Motion Prediction

We compare our model in terms of registration accuracy and spatio-temporal deformation regularity with 3 state-of-the-art diffeomorphic methods: SyN [START_REF] Avants | [END_REF], the learning-based probabilistic pairwise registration (LPR [Krebs, 2019b]) and the temporal B-spline algorithm in elastix (4D-Elastix [Metz, 2011]). We also compare with the previous version of our method with Gaussian Process prior (No-GP [Krebs, 2020c]). SyN and 4D-Elastix have been manually tuned on a few training images following the recommendations in the original papers. The LPR algorithm has been trained on a 2D single scale version using all image pairs of a sequence instead of only the enddiastolic/end-systolic (ED, ES) pairs. We measured registration accuracy using the root mean square error (RMSE) of intensities and segmentation-based DICE scores and 95%tile Hausdorff distances (HD, in mm) on the five anatomical structures available in ACDC: left ventricle myocardium (LV-Myo), epicardium (LV), left ventricle bloodpool (LV-BP), right ventricle (RV) and LV+RV. In terms of registration regularity, we report spatial (Spatial Grad.) and temporal gradients (Temp. Grad.) of the deformation fields φ t with t ∈ [1, T ]. The reported results in Table 5.1 were measured on all 2D test sequences containing at least one mask (resulting in 677 sequences from 100 test subjects). DICE scores and Hausdorff distances are only reported for the frames with available ground-truth segmentation (ES images). Detailed box plots of the results together with LV volume curves are shown in Fig. 5.4. The LV volumes (in ml) were extracted by warping the ED mask according to the extracted deformation fields and computing the blood pool volume for all slices of one subject over time. The results indicate that our model achieves the same (RMSE) or slightly better (DICE and HD) registration accuracy compared to the reference methods while improving spatial and temporal regularity as shown by the deformation field gradients and the volume curves. In Table 5.2, we show the results on the 100 test sequences for our 3D+T model. In comparison to 4D-Elastix, our 3D+T model shows a similar registration accuracy but a significantly improved spatial and temporal regularity. In Fig. 5.5, the warped moving image I 0 and the Jacobian determinant are visualized for one test sequence in 2D+T and 3D+T. One can see, the Jacobian determinants are smoother in 3D+T compared to 2D+T sequences.

The new Gaussian Process prior leads to smoother deformations compared to the previous time-independent prior (No-GP version) while using the same deformation field regularizer. This can be also seen in Fig. 5.6 where the first 5 latent dimensions, the sequences z d with d ∈ [0, 4], are visualized for one test case. 

No-GP Our

Motion Simulation, Interpolation and Transport

To evaluate the performance on motion interpolation and simulation, we challenged our model to predict the motion for all time steps from a limited number of input frames. Thus, the goal was to predict motion patterns that are as close as possible to the observed motion of the full sequence (i.e. all registered frames obtained in the all frame model of the previous section 5.3.3). Just as in temporal dropout during training, all the missing frames were represented as zero columns γ t in the feature matrix Γ as shown in Fig. 5.3b. We compared the motion predictions from various input frame subsets that are provided to the model. First, we provided every 2nd or every 5th frame for motion interpolation.

Then, we provided the first 5 frames or only the 10th frame (0th + 10th) to see if the model is able to complete typical cardiac motion patterns. Finally, we tested the full motion simulation by letting the model find a motion sequence given only the moving image I 0 (only 0th) and setting feature matrix Γ to zero everywhere. We compared the simulated motion, with linear and cubic interpolation of the deformation fields (which are taken from the all frame model at the selected time steps). In the top of For the cases of providing every 2nd and every 5th frame, our model interpolated the motion similarly well as linear or cubic interpolation, while providing better results in the cases of providing the 0th+10th and first 5 frames signaling an improved learned cardiac motion model. The full simulation (only 0th) did not result in well fitted volume curves, which is expected as the model has to simulate the full motion sequence from just the ED frame. However, it is observable that the model learned realistic cardiac specific motion patterns as the volume curves for example show the plateau phase before atrial systole which can be also seen in the completed motion for the cases where we provide the first 5 and 0th+10th frames. For the full simulation, our model often slightly under-estimated the motion (cf. case 3 in Fig. 5.7) which can be related to the pathology distribution in the training dataset which contained many cases with reduced cardiac motion.

Furthermore, we demonstrate the model's capacity of motion transport in a qualitative way. Our model allows to transport motion patterns from one subject to another by taking the motion matrix z of one case and applying it on the moving image of another image sequence (ED frame). In this way, for example a pathological motion can be simulated in a healthy subject or vice versa. In Fig. 5.8, we present 2 subjects from the ACDC dataset, from which one is classified as healthy and the other as a dilated myopathy case (DCM). We extracted the motion matrices for both and applied them on the ED frame of the other case, such that we simulated a DCM typical motion in the healthy case while curing the pathological case. This can be seen for example from the LV contraction strengths in the Jacobian determinants or the related ejection fraction (EF). Note, that this form of parallel transport does not require any additional inter-subject registration.

Discussion and Conclusion

We presented a probabilistic motion model that can be useful for example for spatiotemporal registration, temporal super-resolution, data augmentation, shorter acquisition times and motion analysis. Based on a novel Gaussian Process prior conditional variational autoencoder, the model is learned in an unsupervised fashion from medical image sequences. Intrinsic motion patterns are encoded in a low-dimensional probabilistic space -the motion matrix -which allows for accurate diffeomorphic tracking, temporal interpolation, motion simulation and motion transport.

Our approach has shown state-of-the art registration accuracy and improved deformation regularity temporally and spatially in comparison to 3 state-of-the-art algorithms indicating that the low-dimensional motion encoding helps to regularize the registration problem of image sequences. We have shown that the novel Gaussian Process prior leads to a higher temporal consistency compared to the time-independent prior [Krebs, 2020c] both, in latent and deformation space. A temporally smoother latent space is desirable as it brings more structure and interpretability and is consistent with the temporally smooth motion we experience in deformation space. We have demonstrated motion simulation and interpolation from a very limited number of frames indicating that data acquisition could be speed up as fewer frames are required in order to retrieve an accurate motion.

In case of full simulations, our model showed a slightly reduced cardiac motion compared to healthy subjects. The authors believe this is due to a bias introduced from the disease distribution in the training data. To not end up with such a mean motion that merges several pathological motion patterns, one could think of generating disease-specific models. This could be achieved by training different motion models with training sets separated by diseases. As another extension to our previous work, we have shown first results on 3D+T sequences which showed smoother Jacobian determinants than the 2D+T version which can be explained by out-of-plane deformations. However, a limitation is the high computational costs for 3D+T sequences with long training times even for relatively low-dimensional images.

In future work, we aim to reduce this complexity and work on the generalization of the approach to other applications such as respiratory motion estimation. Furthermore, the authors believe the motion matrix as a compact representation of organ motion can be helpful as a quantitative new tool to guide the diagnosis, prognosis or therapy of diseases of dynamic organs.

Appendix

KL Divergence using the GP Prior

Given 2 multivariate Gaussian distributions with the same dimensionality, the KL divergence is defined in [Duchi, 2007]. Suppose, we take our prior distribution p(z) with zero-mean 0 and covariance Σ of the form of Eq. 5.2 and our posterior distribution q ω with mean µ and covariance Σ * with dimensionality D T :

KL[q ω (z|I 0:T ) p(z)] = 1 2 tr(Σ -1 Σ * ) + µ Σ -1 µ -D T + ln det Σ det Σ * . (5.8)
The determinants of the block diagonal matrices Σ, Σ * are det Σ = |K| D and det Σ * = |K| D D i=1 σ 2 i . Thus, the logarithm of the fraction of determinants in Eq. 5.8 becomes:

ln det Σ det Σ * = ln 1 D i=1 σ 2 i = - D i=1 ln σ 2 i (5.9)
When taking the sum over the D latent dimensions over the remaining terms, Eq. 5.8 simplifies to:

KL[q ω (z|I 0:T ) p(z)] = 1 2 D i=1 σ 2 i T + μ i K -1 μi -T -ln (σ 2 i ) (5.10)
with μi being the i-th segment of length T in µ. In the case of prior and posterior being identical, thus µ = 0 and σ = 1 the quantity in Eq. 5.10 becomes 0.

Cholesky Decomposition of Σ *

The Cholesky decomposition of a symmetric positive-definite matrix X equals the matrix product of a lower-diagonal L and its transposed: X = LL . The entries of L can be computed by the Cholesky-Banachiewicz algorithm:

L j,j = X j,j - j-1 k=1 L 2 j,k L i,j = 1 L j,j X i,j - j-1 k=1 L i,k Lj, k
for i > j. (5.11) In case of the block diagonal matrix Σ * the lower triangular matrix L * equals a block diagonal matrix with lower triangular matrices that are resulting from the Cholesky decompositions of the diagonal block elements of Σ * . Thus, in order to compute L * , the Cholesky decompositions of the i ∈ D diagonal elements σ i K must be computed. From Eq. 5.11 it follows that c

• X = ( √ c • L)( √ c • L ). Thus, σ i K = ( √ σ i • L K )( √ σ i • L K ) and L * is: L * = Diag D d=1 ( √ σ d • L K ). (5.12) 
Since the kernel matrix K is fixed in our framework, L K can be pre-computed using Eq. 5.11 and reused keeping the computational efforts minimal even for a large covariance matrix Σ * . This chapter is intended to show one specific clinical example on how the motion model developed in chapter 5 could be used to support prognosis and therapy planning. Using the motion model, the survival risks of heart failure patients can be predicted by obtaining a risk score from the latent motion matrix. Based on this estimated risk, an appropriate therapy can be chosen, for example, whether or not to implant a defibrillator. This demonstrates the discriminative power of the motion model trained on a cohort of heart failure patients. The chapter presents only preliminary results. A clinical journal submission is in preparation.

Introduction

Sudden cardiac death (SCD) in heart failure (HF) patients is one of the leading causes of natural death. SCD occurs when the electrical system of the heart is malfunctioning causing irregular heartbeats (arrythmias). Emergency treatment includes electric shocks (defibrillation) to restore the normal heart rhythm. For patients with a high risk of SCD, an implantable cardioverter-defibrillator (ICD) can be inserted as a preventive treatment.

An ICD monitors the heart activity and can apply electric shocks in case of extreme arrythmias.

Selecting patients for ICD treatment is a challenging task. It is crucial to predict the risk for SCD to justify potential complications that come along with an ICD treatment such as surgery risks, false shocks and a shorter life expectancy. Accurate SCD risk prediction helps to select only patients for ICD who benefit from it.

Currently, the main quantitative measure used to predict risk for SCD is left ventricular ejection fraction (LVEF), an imaging feature of cardiac structure and function [START_REF] Myerburg | [END_REF]. However, among patients receiving a primary prevention ICD based on an LVEF ≤35% [Tracy, 2013], the rate of appropriate therapies is very low with 2.6% at 30 months of follow-up [Sabbag, 2015]. In other words, many patients that receive ICD treatment do not require it. In addition, LVEF improvement occurs in up to 25-50% of patients and correlates with diminished SCD risk [Punnoose, 2011]. Thus, LVEF is far from being a comprehensive feature to predict SCD. Recently, other imaging features of cardiac structure and function have been found to be independent predictors of SCD. Such factors are right ventricular (RV) and left atrial (LA) [START_REF] Mischa T Rijnierse | Usefulness of left atrial emptying fraction to predict ventricular arrhythmias in patients with implantable cardioverter defibrillators[END_REF] function or the extent of heterogeneous myocardial tissue (gray zone) on late gadolinium enhancement (LGE) cardiac magnetic resonance images [Jablonowski, 2017]. This motivates the assumption that more unidentified SCD predictors are inherently present in cardiac images.

Deep learning is capable of addressing the high-dimensional vector space and extracting unrecognized features from medical images. Lou et al. [Lou, 2019] proposed to extract features from images to predict treatment outcomes in lung cancer patients by incorporating hand-crafted radiomics features in the training. Taking low-dimensional segmentations of the right ventricle as input, Bello et al. [Bello, 2019] predicted the survival risk for patients with pulmonary hypertension. While these approaches rely on hand-crafted features extracted from images, we have shown in our previous work (Chapter 5) that a motion fingerprint containing inherent features of the LV motion can be generated from cine-MRI images using a latent variable model. This population-specific fingerprint can be learned in an unsupervised fashion by training a probabilistic motion model using a conditional variational autoencoder (CVAE) [Krebs, 2020c].

We propose a novel learning-based method for personalized survival risk prediction for SCD that utilizes automatically derived image features from 4 chamber view cine-MRI.

Our model generates fingerprints of inherent imaging features of the cardiac motion which are used to predict risk scores for outcomes of HF patients such as hospitalization or SCD. In clinical practice, these risk scores can be used to select high-risk patients for ICD treatment while postponing ICD treatment for low-risk patients. In particular, the novel risk predictor uses an automatically extracted personalized cardiac motion fingerprint in combination with a risk prediction neural network. The risk prediction network is based on a non-linear Cox proportional hazard loss to make use of right-censored survival outcome data.

On a non-ischemic cohort of HF patients with clinical criteria for primary prevention ICD, the derived motion risk factor showed the highest statistical significance as an independent predictor for hospitalization among other relevant clinical factors that are associated with HF endpoints.

The main contributions are:

• A novel risk prediction framework for HF patients based on a cardiac motion fingerprint extracted from image sequences in an unsupervised fashion.

• State-of-the-art predictive accuracy for HF hospitalization on a non-ischemic patient cohort.

Methods

The risk prediction model is composed of two elements: A. a motion fingerprint extractor from image sequences and B. a survival predictor that estimates the risk for a given endpoint (or outcome) from the motion fingerprint. In this work, we apply two independent neural networks for these tasks. First, a probabilistic encoder-decoder neural network [Krebs, 2020c] is trained to learn motion characteristics from image sequences and extract a cardiac motion fingerprint in a fully unsupervised fashion. Second, an autoen-coder neural network is trained from the motion fingerprint by regressing HF outcomes.

To enable the use of censored data, a loss function inspired from the Cox proportional hazards model [Cox, 1972] is utilized. The two steps, A. and B. are schematically shown in Fig. 6.1 and are explained in detail in the following.

Motion Fingerprint Extractor

The motion model used in this chapter has the same inputs and outputs as the one presented in chapter 5. However, it includes some methodological differences as it applies a multivariate unit Gaussian prior, time-independent sampling and explicit time dependence. Detailed derivations of the fingerprint extractor can be found in our conference paper [Krebs, 2020c] and in the appendix 6.5.2. [Kingma, 2014b]). Instead of the left-ventricular motion as in [Krebs, 2020c], we learn a motion fingerprint of the full heart. Furthermore, in contrast to Chapter 5, a temporally independent unit Gaussian prior has been applied.

The
First, the encoder q ω with network weights ω maps each of the image pairs (I 0 , I t ) independently to a latent space denoted by zt ∈ R D . To this end, the encoder approximates the posterior distribution q ω (z|I 0:T ) of the latent variable model. Second, as the key component of temporal modeling, these latent vectors zt are jointly mapped to the motion matrix or motion fingerprint z by conditioning them on all past and future time steps and on the normalized time t: p γ (z|z 1:T , t1:T ). This regularizing network p γ with weights γ is realized using a temporal convolutional network (TCN [Bai, 2018]). Finally, the decoder p θ with trainable network weights θ aims to reconstruct the fixed image I t by warping the moving image I 0 with the deformation φ t . This deformation φ t is extracted from the temporally regularized z t -codes. The decoder is further conditioned on the moving image by concatenating the features at each scale with down-sampled versions of I 0 . It approximates the data likelihood p θ (I 1:T |z, I 0 ).

During training, a lower bound on the data likelihood is maximized with respect to a prior distribution p(z t ) of the latent space zt (cf. CVAE [Kingma, 2014b]). The prior p(z t ) is assumed to follow a multivariate unit Gaussian distribution with spherical covariance I: p(z t ) ∼ N(0, I). The loss function of the motion fingerprint extractor results in optimizing the expected log-likelihood p θ and the Kullback-Leibler (KL) divergence enforcing the posterior distribution q ω to be close to the prior p(z t ) for all time steps:

L Motion (ω, γ, θ) = T t=1 -E zt∼pγ (•|z 1:T , t1:T ) log p θ (I t |z t , I 0 ) + KL [q ω (z t |I 0 , I t ) p(z)] . (6.1)
Unlike the traditional CVAE model, the temporal regularized z t -code is used in the loglikelihood term p θ instead of the zt . We model p θ as a symmetric local cross-correlation Boltzmann distribution with the weighting factor ι. All network weights except the ones in the TCN are shared and thus independent of the time t. Their network architecture consists of convolutional and deconvolutional layers with fully-connected layers for mean and variance predictions in the encoder part [Kingma, 2014b]. We use an exponentiation layer for a stationary velocity field parameterization of diffeomorphisms [Krebs, 2019b], a linear warping layer and diffusion-like regularization with smoothing parameters σ G in spatial and σ T in temporal dimension. During training, we apply temporal dropout sampling as described in [Krebs, 2020c] in order to further ensure learning temporal dependencies and increase generalizability.

Survival Predictor

The survival predictor takes the motion fingerprint z, the compact representation of the motion, as input and predicts the survival risk score r which is defined by the logarithm of the hazard ratio in the Cox regression analysis [Cox, 1972]. This ratio contains the hazard h z (t) of a subject with fingerprint z with respect to the baseline hazard h 0 (t):

r = log h z (t) h 0 (t) , ( 6.2) 
where the subject hazard h z (t) symbolizes the probability of the subject of dying at time t and the baseline hazard describes the survival without an influence of covariates z. The hazard ratio is assumed to be constant over time behind the semi-parametric proportional hazard model of Cox [Cox, 1972]. Thus, the continuous risk score r allows to classify the outcome risk for a new patient at test time.

In contrast to standard Cox regression analysis, we define the risk r as a non-linear combination of input features z: r = r ν (e κ (z)) where r ν and e κ are two neural networks with network weights ν and κ. The full risk model is realized as autoencoder neural networks that reduce the fingerprint's dimensionality D T in order to retrieve the risk r.

The authors chose an encoder-decoder architecture in contrast to a direct prediction of r in order to constrain and regularize the risk predictor to avoid over-fitting [Bello, 2019;Lou, 2019].

The encoding and decoding branches of the risk autoencoder are denoted by e κ and d λ with network weights κ and λ respectively. A third network with weights ν is applied to obtain the risk score r ν (e κ (z)) from the latent space of the autoencoder e κ (z). In this work, the three networks consist of fully-connected layers due to the low dimensional fingerprints. In case of larger fingerprints, convolutional and deconvolutional layers in encoder respectively decoder networks could be used. The risk predictor is trained using multi-task learning by aiming to reconstruct the motion fingerprint and to predict the risk r at the same time. Thus, the loss function L Risk (κ, λ, ν) contains 2 terms, one for the fingerprint reconstruction L rec (κ, λ) and one for risk prediction L risk (κ, ν):

L Risk (κ, λ, ν) = L rec (κ, λ) + αL risk (κ, ν) (6.3)
where α denotes a weighting factor between both terms. For risk prediction, we apply the negative log partial likelihood as survival function over N censored training samples following standard Cox regression analysis [Cox, 1972]:

L risk (κ, ν) = - N i=1 δ i r ν (e κ (z i )) -log N j=1
R ij exp(r ν (e κ (z j ))) , (6.4) with z i being the fingerprint of the i-th training subject. The Boolean censoring indicator δ i equals 1 if the subject experienced SCD (or another endpoint of interest) at the given time τ . A subject is censored δ i = 0 if the patient was still alive at time τ but removed from the study afterwards. R is the risk matrix where R ij = 1 if τ j ≥ τ i and R ij = 0 if τ j < τ i , based on N training samples per batch. This represents a non-linear Cox proportional hazard model (cf. to [Lou, 2019]). The fingerprint reconstruction loss term is defined as the mean squared error between fingerprint z and reconstructed fingerprint z = d λ (e κ (z):

L rec (κ, λ) = 1 N N i=1 z i -d λ (e κ (z i ) 2 . (6.5)
The two modules of fingerprint extractor and survival predictor are trained in 2 steps. First, the motion fingerprint is trained alone and afterwards the survival predictor while fixing the motion fingerprint network. This keeps the motion fingerprint independent of the survival analysis and allows for example the training on additional data for the motion extraction where no survival data is available.

Experiments

In the experiments, we used a non-ischemic cohort of 167 HF patients with clinical criteria (low LVEF) for primary prevention ICD. These cases were collected from 3 different sites.

We used 4 chamber-view cine-MRI which were taken prior to ICD implantation. For the preliminary experiments in this study, we used HF hospitalization as endpoint to evaluate the proposed outcome predictor. HF hospitalizations was defined as the time point when a patient came into hospital with a documented primary diagnosis related to heart failure. In future and once we get clearance for the data, we plan to add results for SCD risk prediction and other HF endpoints. Using HF hospitalization as endpoint, this cohort consisted of 36% of subjects (60 subjects) with event times and right censored data for the remaining ones. Besides the censored data of the endpoint, the following clinical features were used as comparison risk predictors in this study computed with standard clinical tools: graymass (GM), minimum and maximum LA index volume (VminI respectively VmaxI), LA strain rate during LV systole (SRmax), preatrial contraction (SpreA) and atrial contraction (SRA). These features were selected as they are associated for being predictive for HF hospitalization and SCD [Issa, 2017;[START_REF] Mischa T Rijnierse | Usefulness of left atrial emptying fraction to predict ventricular arrhythmias in patients with implantable cardioverter defibrillators[END_REF]Jablonowski, 2017]. From this cohort, 60 subjects (36%) experienced HF hospitalization.

Implementation Details

The 4 chamber-view cine MRI were resampled to an image size of 128 by 128 pixels with a spacing of 2.2 mm. The implementation of the fingerprint extractor followed the details in [Krebs, 2020c]. We increased the latent dimensionality D to 64 motivated by the fact that 4 chamber view images contain more complex motion details than the LV motion alone. The survival predictor requires motion fingerprints z to have the same size for all patients. In order to retrieve same sized z, we interpolated the cine-MRI in temporal dimension to retrieve a fixed time length T . In this work, we used T = 25 as it represents the average sequence length in this cohort. We applied B-spline interpolation for resampling the image sequences that contained less or more than 25 frames. The Gaussian deformation field regularization was applied with σ G = 3mm and σ T = 1.5. The weighting factor between reconstruction and KL loss terms has been chose empirically as ι = 6 • 10 -4 .

In total, the neural network of the risk predictor contained 5 fully-connected layers. The encoder e κ consisted of two consecutive layers with 180 and respectively 10 units whose output created the latent space. On the one side, the decoder d λ used the latent code and applied two layers to retrieve the reconstructed fingerprint vector z . On the other side, a single dense layer was used to extract the scalar risk score r from the latent code. The output layer of the risk network r ν had a tanh activation function while the decoder's output did not apply an activation function. The remaining layers used relu activation functions. Furthermore, a dropout factor of 0.3 has been applied on the input layer. Dropout factor and number of units of the fully-connected layers were determined by a hyperparameter search using evolutionary optimization. The model has been trained using the Adam optimizer [Kingma, 2014a] with a learning rate of 0.0001 and batch size of 16. The framework has been implemented using Keras [Chollet, 2015] and Tensorflow [START_REF] Abadi | [END_REF].

Tab. 

Results

We evaluated our risk prediction model in comparison to the other clinical factors by fitting linear univariate and multivariate proportional hazard Cox models [Cox, 1972]. We used 6 fold stratified cross-validation, first for training the fingerprint extractor and second for the Cox models. The fingerprint extractor has been trained first, in a risk independent fashion. The extracted motion for 2 example cases, 1 with HF hospitalization event and one without, can be seen in the appendix 6.5.1. In Fig. 6.3 of the appendix, we further compared the motion model with the 4D Elastix algorithm [Metz, 2011] in terms of matching of intensities and deformation regularity.

For risk prediction, we report the mean concordance index (C) [START_REF] Harrell | [END_REF] over the 6 folds and compute hazard ratios (HR) including confidence intervals (CI) and statistical p-value by splitting all test results by their medium risk value, dividing the cohort in a low and high risk group. For the Cox analysis and HR computation, the python package lifelines [DavidsonPilon, 2020] has been used.

In Table 6.1, the results for the Cox analysis are shown using the different clinical features and the fingerprint risk score independently. The last two rows in table 6.1 show multivariate Cox analysis results for the joint predictive power of the best-performing combination of clinical features and the combination of these clinical features and the fingerprint risk. We tested all combinations of the 6 clinical features and show only the best combination here denoted by Best Clinical Params. In terms of testing results on C and HR scores, this best combination was found to contain VminI, VmaxI and SpreA features. In case of multivariate models, the linear Cox model showed signs of over-fitting by resulting in much better training but worse testing scores.

With an HR of 2.93 (CI 2.05-4.18) and an C-index of 0.69 (CI 0.60-0.72), the novel fingerprint risk score extracted from the motion model shows the highest prediction accuracy as independent predictor of HF hospitalization. In combination with the best clinical features, the multivariate Cox analysis showed an improved cross-validated C-index of 0.70 (CI 0.63-0.75) and HR of 3.02 .

In Fig. 6.2, we further show the Kaplan-Meier plots of 4 independent features and the 2 feature combinations. Kaplan-Meier estimates can be used to measure the fraction of subjects living for a certain amount of time [START_REF] Goel | [END_REF]. One can see the capability of different models to recognize low and high risk patients by analyzing the distance between high and low risk survival curves in the Kaplan-Meier plot. We split our cohort into low and high risk groups according to the median risk prognosticated by the Cox model (for test cases). It is shown that for example the gray mass (GM) is not a good predictor since low and high risk survival curves are highly overlapping. The best differentiation between both groups (characterized by a large gap between the survival lines) can be seen for the fingerprint risk score and the combination of fingerprint and clinical features. These results indicate that the proposed risk predictor based on an extracted motion fingerprint can more accurately predict HR hospitalization than other commonly used clinical features.

Discussion and Conclusions

In this work, we have proposed a novel image-driven risk predictor for personalized survival analysis by using a learned motion fingerprint -a low-dimensional encoding of the motion from a sequence of images. The proposed method showed promising first results in terms of predicting the risks for hospitalization of HF patients. These findings could be the first step to lead to a better patient selection for ICD treatment.

Besides HF hospitalization, we plan to add other endpoints such as SCD to this study. Furthermore, the authors think, the performance could be further improved by adding more features to the risk prediction network. One possible way could be by complementing the motion fingerprint with a cardiac structure fingerprint, extracted in a similar fashion as the motion fingerprint from for example late gadolinum enhancement images. The authors think that if multivariate models are used (combination of multiple clinical and motion features) the experienced over-fitting might be resolved by using a bigger dataset for fitting the linear Cox proportional hazard model or by using sparse estimation of Cox proportional hazards models that select the most relevant features in the survival prediction such as in [Evers, 2008;Su, 2016].

The two modules of fingerprint extractor and survival predictor can be also trained in an end-to-end fashion where all loss terms in Eq. 6.1 and Eq. 6.3 are combined in a single weighted loss function as for multitask training. In this way, the motion fingerprint is fine-tuned for personalized outcome risk prediction. However, the weighting between the different loss terms is more difficult and additional data for training the fingerprint extractor is not easily usable.

In future work, the model's lack of interpretability could be explored. As the model already contains two clearly separated modules of motion fingerprint and risk predictor it would be interesting to see which features are especially used and relevant for predicting the HF risks. Another possible future direction is to investigate the neural network features in depth from a clinical research perspective to potentially find unknown motion features that can be associated with HF or SCD.

6.5 Appendix The bottom shows boxplots of registration accuracy and deformation regularity in comparison to the 4D elastix algorithm in terms of root mean square (RMSE), local cross-correlation (LCC), gradient of the determinant of Jacobian (Grad. Det. Jac.), spatial and temporal gradients of the deformation field.

Detailed Derivations of the Fingerprint Extractor

Due to the fact that the used motion model in this chapter is different from the one presented in chapter 5 (e.g. not utilizing a Gaussian process prior), we add the full derivations here.

The following sections are based on the method section in [Krebs, 2020c].

The motion observed in an image sequence with T + 1 frames is typically described by deformation fields φ t between a moving image I 0 and the fixed images I t with t ∈ [1, T ]. Inspired by the probabilistic deformation model of [Krebs, 2019b] on conditional variational autoencoder (CVAE) [Kingma, 2014b], we define a motion model for temporal sequences. The model is conditioned on the moving image and parameterizes the set of diffeomorphisms φ t in a low-dimensional probabilistic space, the motion matrix z ∈ R D× T , where D is the size of the deformation encoding per image pair adn T = T -1. Each column's z t -code corresponds to the deformation φ t .

To take temporal dependencies into account, z t is conditioned on all past and future time steps. To learn this temporal regularization directly from data, we apply Temporal Convolutional Networks [Bai, 2018] with explicit time dependence and temporal dropout sampling enforcing the network to fill time steps by looking at given past and future deformations. An illustration of the model is shown in Fig. 6.4a.

Probabilistic Motion Model

Our motion model consists of three distributions. First, the encoder q ω (z t |I 0 , I t ) maps each of the image pairs (I 0 , I t ) independently to a latent space denoted by zt ∈ R d . Second, as the key component of temporal modeling, these latent vectors zt are jointly mapped to the motion matrix z by conditioning them in all past and future time steps and on the normalized time t: p γ (z|z 1:T , t1:T ). Finally, the decoder p θ (I t |z t , I 0 ) aims to reconstruct the fixed image I t by warping the moving image I 0 with the deformation φ t . This deformation φ t is extracted from the temporally regularized z t -codes. The decoder is conditioned on the moving image by concatenating the features at each scale with down-sampled versions of I 0 .

The distributions q ω , p γ , p θ are approximated by three neural networks with trainable parameters ω, γ, θ. During training, a lower bound on the data likelihood is maximized with respect to a prior distribution p(z t ) of the latent space zt (cf. CVAE [Kingma, 2014b]). The prior p(z t ) is assumed to follow a multivariate unit Gaussian distribution with spherical covariance I: p(z t ) ∼ N (0, I). The objective function results in optimizing the expected log-likelihood p θ and the Kullback-Leibler (KL) divergence enforcing the posterior distribution q ω to be close to the prior p(z t ) for all time steps: .6) Unlike the traditional CVAE model, the temporal regularized z t -code is used in the loglikelihood term p θ instead of the zt . We model p θ as a symmetric local cross-correlation Boltzmann distribution with the weighting factor λ. Encoder and decoder weights are independent of the time t. Their network architecture consists of convolutional and deconvolutional layers with fully-connected layers for mean and variance predictions in the encoder part [Kingma, 2014b]. We use an exponentiation layer for the stationary velocity field parameterization of diffeomorphisms [Krebs, 2019b], a linear warping layer and diffusion-like regularization with smoothing parameters σ G in spatial and σ T in temporal dimension.

T t=1 E zt∼pγ (•|z 1:T , t1:T ) log p θ (I t |z t , I 0 ) -KL [q ω (z t |I 0 , I t ) p(z)] . ( 6 

Temporal Convolutional Networks with Explicit Time Dependence

Since the parameters of encoder q ω and decoder p θ are independent of time, the temporal conditioning p γ plays an important role in merging information across different time steps. In our work, this regularization is learned by Temporal Convolutional Networks (TCN). Consisting of multiple 1-D convolutional layers with increasing dilation, TCN can handle input sequences of different lengths. TCN have several advantages compared to recurrent neural networks such as a flexible receptive field and more stable gradient computations [Bai, 2018].

The input of the TCN is the sequence of z concatenated with the normalized time t = t/T . Providing the normalized time explicitly, provides the network with information on where each z is located in the sequence. This supports the learning of a motion model from data representing the same type of motion with varying sequence lengths. The output of the TCN is the regularized motion matrix z. We use non-causal instead of causal convolutional layers to also take future time steps into account. We follow the standard implementation using zero-padding and skip connections. Each layer contains d filters. A schematic representation of our TCN is shown in Fig. 6.4b. For cyclic sequences, one could use a cyclic padding instead of zero-padding, for example by linking zT to z0 . However, in case of cardiac cine-MRI, one can not assume the end of a sequence coincides with the beginning as 5-10% of the cardiac cycle are often omitted [Bernard, 2018].

Training with Temporal Dropout Sampling

Using Eq. 6.6 for training could lead to learning the identity transform z ≈ z in the TCN p γ such that deformations of the current time step are independent of past and future time steps. To avoid this and enforce the model to search for temporal dependencies during the training, we introduce the concept of temporal dropout sampling (TDS). In TDS, some of the zt are sampled from the prior distribution p(z) instead of only sampling from the posterior distribution q ω (z t |I 0 , I t ) as typical for CVAE. At the time steps the prior has been used for sampling, the model has no knowledge of the target image I t and is forced to use the temporal connections within the TCN in order to minimize the objective.

More precisely, at each time step t, a sample from the prior distribution zprior t ∼ p(z t ) is selected instead of a posterior sample zpost t ∼ q ω (z t |I 0 , I t ) using a binary Bernoulli random variable r t . All independent Bernoulli random variables r ∈ R T have the success probability δ. The latent vector zt can be defined as:

zt = r t * zprior t + (1 -r t ) * zpost t .
(6.7) Fig. 6.4c illustrates the TDS procedure. At test time, for each time step independently, one can either draw zt from the prior or take the encoder's prediction.

Implementation Details and Training of the Fingerprint Extractor

The encoder q ω consisted of 4 convolutional layers with strides (2, 2, 2, 1) and dense layers of size D for mean and variance estimation of the VAE. The TCN consisted of four 1-D convolutional layers with dilations (1, 2, 4, 8), same padding, a kernel size of 3 and skip connections (cf. Fig. 6.4b). The decoder p θ had 3 deconvolutional and 1 convolutional layer before the exponentiation and warping layers (Fig. 6.4a). The loss weighting factor λ was chosen empirically as 6 • 10 4 . The dropout sampling probability δ was 0.5. We applied a first-order gradient-based method for stochastic optimization In this thesis, we presented computational frameworks for the analysis of medical image pairs and image sequences. We built upon state-of-the-art methods for designing accurate and reliable registration and motion analysis tools that can be applied in clinical research by facilitating diagnosis, prognosis and therapy of diseases.

The proposed methods utilize recent machine learning methods showing high computational efficiency. Furthermore, the use of artificial intelligence (AI) in this work demonstrates how powerful compact models can be learned from large datasets of images.

The developed tools were designed to find application in difficult inter-subject registration and in intra-subject motion tracking scenarios. For the latter, compact deformation and motion models from sequential images were proposed that enable a variety of analysis tools to quantify and compare deformations. The proposed algorithms were tested on publicly available datasets allowing to benchmark and compare results. While the first 5 chapters are intended for a broader range of applications focusing on the technical contributions of this thesis, in chapter 6, one potential clinical application is shown. It is demonstrated how the proposed motion model can directly support prognosis and therapy planning by predicting the survival risk of patients suffering from heart failure (HF). This could allow for a better patient selection for available therapies.

Main Contributions

In chapter 3, we proposed a generic learning-based framework using an artificial agent for difficult inter-subject registration tasks appearing in organ-focused non-rigid image fusion and atlas-based segmentation. The proposed method overcomes limitations of traditional algorithms by learning optimal features for registration. Inspired, by deep reinforcement learning the registration problem was reformulated as the iterative optimization of deformation parameters through an artificial agent. Hereby, the agent (a neural network) optimized the parameters of a simple statistical deformation model (SDM) learned from data. In an iterative fashion, the optimal transformation parameters were approached on a trajectory of small deformations. To restrict the agent to a set of reasonable transformations, fuzzy action control has been introduced which sets limits to the parameters of the SDM. During training, a novel ground-truth generator was used. This generator relied on simulated deformations from an SDM and a few ground-truth inter-subject deformation fields that were enhanced by segmentations. We showed that the agent-based approach trained with data from the novel ground-truth generator outperformed three state-of-the art registration algorithms in terms of structure overlaps and distances.

We presented an unsupervised deformable registration approach that learns a lowdimensional probabilistic deformation model in chapter 4. The deformation model is based on a conditional variational autoencoder (CVAE). It not only allows for accurately registering two images but also for analyzing corresponding deformations efficiently by using a novel generative deformation encoding. In this encoded latent space, similar deformations are close to each other. This enables to cluster and simulate deformations for a given image. Furthermore, it provides a novel way of transporting deformations from one subject to another without requiring inter-subject registration. The model can be seen as a non-linear and richer generalization of a simple statistical deformation model such as PCA. The unsupervised method is based on variational inference. In addition, we introduced a novel exponentiation layer to make DL-based registration algorithms diffeomorphic utilizing the SVF parameterization. An extended version, allows to train the model in a multi-scale fashion which results in higher accuracy. We evaluated the approach on end-diastole to end-systole cardiac cine-MRI registration. In comparison to 3 state-of-the-art algorithms, our multi-scale model showed significantly improved registration accuracy and regularity. The latent encoding showed convincing generative and deformation transport capabilities and showed a 83% classification accuracy for differentiating 5 cardiac diseases.

Beyond pairwise registration, we proposed a probabilistic motion model in chapter 5. This model can be useful for spatio-temporal registration, temporal super-resolution, data augmentation, shorter acquisition times and other motion analysis tasks. Intrinsic motion patterns are encoded in a low-dimensional probabilistic space -the latent motion matrix -which allows for accurate tracking of structures, temporal interpolation, motion simulation and motion transport. The diffeomorphic motion model is trained as a temporal latent variable model utilizing a novel Gaussian process prior acting on the latent motion encoding and following the training principles of CVAEs. Applied on cardiac cine-MRI, our approach has shown state-of-the art registration accuracy and improved temporal and spatial deformation regularity in comparison to 3 state-of-the-art algorithms. These results indicated that the latent motion encoding helps to regularize the registration problem of image sequences. Besides, we demonstrated the model's applicability for motion analysis by simulating realistic motion patterns, by transporting the motion to simulate a pathology in a healthy case and by an improved motion reconstruction from sequences with missing frames.

In chapter 6, we presented how our low-dimensional motion model can be applied for risk estimation and disease outcome prediction in heart failure patients. We have proposed a neural network risk predictor based on a non-linear Cox regression loss to estimate different disease endpoints from a motion fingerprint. Hereby, the fingerprint (the motion matrix) was extracted by applying the motion model from the previous chapter to 4 chamber-view cine-MRI. We evaluated the risk predictor on a cohort of heart failure patients with known endpoints such as hospitalization and sudden cardiac death (SCD). We have shown that the risk score predicted from the motion fingerprint is the most predictive independent feature for survival in comparison to other clinical features that have been known to be independently predictive for HF endpoints.

Perspectives and Future Applications

The proposed methods have proven to be accurate and suitable for the given applications in this thesis. However, one goal was to develop tools that are generalizable and applicable to other data and applications in medical image analysis. Therefore, we believe that the proposed tools could find further application for the study of registration and motion scenarios including different diseases, organs and imaging modalities. Due to the fact that the objective functions for the proposed deformation and motion model can include principally any differentiable similarity and regularization metric (as in traditional registration methods), it makes these models suitable to a large variety of applications including for example multi-modal registration. In addition, future work should focus on the interpretability of the proposed latent variable models.

Motion Model for Cardiac Sequences from other Modalities

In a first step of generalization, one can think of applying the proposed motion model from chapter 5 to cardiac sequences from other modalities such as ultrasound or computer tomography images. Cardiac ultrasound (or echocardiography) is the most widely used and readily available imaging modality to assess cardiac function and structure. We already conducted preliminary experiments that show the applicability of our method to a publicly available database of cardiac ultrasound image sequences, the Echonet [Ouyang, 2020]. This dataset contains 10.030 ultrasound videos. We extracted approximately one cardiac sequence given the annotated ED and ES frames. We followed the given division in 7550 training, 1287 validation, 1275 test splits and trained our motion model with the same hyperparameters as described for the cine-MRI. In Fig. in Fig. 7.2. These first preliminary results are promising and suggest that the motion model is also applicable to echocardiography sequences of the heart without major adjustments or modifications.

Interpretability and Causability in Deep Latent Variable

Models

In PCA, the different variables have a clear structure and the first components are often interpretable: they describe the direction of the largest possible variance of the data and each succeeding component has the highest possible variance while being orthogonal to the preceding components. On the other hand deep latent variable models, such as the ones presented in this thesis, do not offer equivalent means of interpretation for the individual latent variables. By making assumptions of certain prior distributions such as multivariate Gaussians, the latent variables are enforced to be more structured compared to standard autoencoder networks in the sense that similar data points are close to each other in the latent space [START_REF] Kingma | [END_REF]. This allows for example to interpolate between data points. However, a deeper interpretability of the latent variables is not available.

In future work, it is desirable to investigate the interpretability and causability of latent variable models as this can lead to an improved understanding of the latent encoded motion model and its reasoning [START_REF] Holzinger | [END_REF]. The goal is to not only provide a model that can be used for the tasks tackled in this manuscript but to also understand (in a human explainable way) which features and which characteristics of the images and its deformations are the most important ones for example for predicting disease outcomes. Providing such explainable decisions would make it easier for physicians to trust deep latent variable models and AI-based algorithms in general. A simple way to improve explainability is by looking at the model's feature maps and find distinctive patterns between different pathologies. In addition, it could be helpful to study the model's attention using saliency maps [START_REF] Simonyan | [END_REF].

While looking at the network's attention, gives more insights about which parts of the data lead to a certain prediction, a more clinically motivated future direction is to integrate known features into the latent space. In terms of cardiac motion, one could incorporate classical clinical features such as ejection fraction or strain values and thus, enhance interpretability. For risk prediction, the inclusion of clinical features at different stages of a standard autoencoder network has been preliminary investigated by Ji et al. [START_REF][END_REF].

In another possible approach, one could think of interpreting all or some latent variables as the parameters of a known biomechanical model. In this case, the decoding part to retrieve dense deformation fields could be replaced by the biomechanical model and the motion model would predict optimal parameter values for the biomechanical model solely from a pair or sequence of given images.

Beyond Predicting Heart Failure Disease Outcomes

We have shown the usefulness of the motion model for predicting disease outcomes such as hospitalization and SCD for heart failure patients. However, this is only the first step in the automatic image-driven feature analysis. The proposed risk prediction model and possible variants (e.g. using end-to-end learning) could be useful to identify and reveal unknown clinical features that are significantly predictive for disease outcomes such as the ones mentioned above. Closely related to the interpretability and causability of the model as mentioned above, these features could be extracted by introspection -by analyzing the neural networks' behavior in disease-specific cases. Besides, the diagnosis and prognosis for a single patient, this could impact clinical research directly and lead to a better understanding of heart failure and related risks.

Moreover, multiple other heart diseases that have been associated with an impaired cardiac motion could benefit from the proposed risk model. One example is pulmonary hypertension which is characterized by right ventricular dysfunction [Farber, 2004].

Here, an image-based automatic feature retrieval could also reveal new unknown cardiac motion factors that influence the disease. 

Deformation Model for Studying Neurodegenerative Diseases

The thesis focused on the development of a deformation and motion model of the heart from images of the same patient determining intra-subject deformations. While this is helpful for analyzing moving body organs, one future direction could be to learn a deformation model across patients depicting inter-subject deformations. Such a model could be useful for determining disease progression in a patient. An active research topic that comes to mind is the analysis of neurodegenerative diseases. The progress of Alzheimer's disease and aging are known to cause morphological changes in the human brain [START_REF] Rosen | [END_REF][START_REF] Ohnishi | [END_REF]. These changes can be extracted by image registration of a subject's brain MRI to a template. In combination with a learned template model (e.g. [Dalca, 2019b]), a low-dimensional generative deformation model could provide novel insights in the analysis of brain aging and neurodegenerative diseases. Further on, one could potentially predict the disease progression in a patient by comparing the evolution of healthy and unhealthy brains [START_REF] Sivera | [END_REF]Nader, 2020] (cf. Fig. 7.3). Thus, another way of applying the proposed motion model to neurodegenerative diseases is to learn the brain evolution in a patient. This could be done by learning a brain deformation model from longitudinal images where the temporal deformations depict structural brain changes over long time intervals rather than real-time organ motion as from the heart. Using such a low-dimensional temporal deformation model could help in characterizing the personalized disease progression in a patient and guide the therapy. However, modeling the more complex morphological changes in the brain may require Different breathing states are illustrated, free-breathing (FB), maximal inspiration (Insp) and maximal expiration (Exp) [START_REF] Callahan | Highresolution imaging of pulmonary ventilation and perfusion with 68 Ga-VQ respiratory gated (4-D) PET/CT[END_REF].

an adaptation of the latent motion matrix in order to deal with this extra amount of deformation complexity.

Respiratory Motion Model

Another potential area of application is the study of lung and respiratory motion. A crucial need in the analysis of images for lung diseases (such as CT) and for example for tumors in the abdomen is motion compensation [START_REF] Ozhasoglu | Issues in respiratory motion compensation during external-beam radiotherapy[END_REF]. In PET imaging for instance, respiratory motion causes artifacts in reconstructed images, which can lead to misinterpretations, imprecise diagnosis or the impairing of fusion with other modalities [START_REF] Reyes | [END_REF]. Often PET images need to be registered to CT images in order to map structural to functional images. In Fig. 7.4, one can see the misalignment between CT and PET images induced from respiratory motion as the images were taken at different breathing states [START_REF] Callahan | Highresolution imaging of pulmonary ventilation and perfusion with 68 Ga-VQ respiratory gated (4-D) PET/CT[END_REF]. A comprehensive probabilistic motion model could help in compensating for these motion artifacts within a mono-modal sequence (CT) and allow for reliable multi-modal registration in a second step.

Furthermore, a compact motion model could help in the diagnosis and prognosis of lung diseases. It has been shown that an impaired lung function is associated with increased mortality rates [Beaty, 1985]. The proposed motion model already demonstrated its capabilities for predicting disease outcomes from cardiac image sequences. Thus, we believe it can be also useful for motion-related lung diseases.

Deformation and Motion Modeling in Personalized Medicine

We conclude with a broader view on the positioning of this work in a long-term outlook.

In the past couple of years, machine-learning methods have been successfully applied to a wide variety of applications in medical image analysis [START_REF] Litjens | [END_REF]. Typically, these models are gathering experience from large databases in order to solve specific problems. The next logical step for personalized medicine is how to combine this specific knowledge to form something larger, a central system that is able to link information across applications. Already today, a physician has to take the patient's pre-existing conditions, his health history, his age and many other factors into account before reaching conclusions about diagnosis, prognosis and therapy. A system that helps in the analysis of the increasingly growing amount of information can be highly beneficial in the healthcare of tomorrow. Building a supporting system that combines a collection of computational models describing and simulating the human body of a patient has been termed virtual patient or digital twin. While such a model goes far beyond medical image analysis as it involves basically all available data of a patient, medical images, most certainly, will still be of crucial importance.

The models presented in this thesis are already designed to extract relevant information from medical images and create meaningful compact representations or task-specific fingerprints using modern machine learning techniques. Furthermore, we have shown that these personalized fingerprints enable a variety of analysis tasks such as predicting possible outcomes or simulating diseases. Thus, we believe that such personalized fingerprints of a patient can play an important role in the creation of a comprehensive digital twin. In terms of deformation and motion models, one could think of learning an ensemble of organ-specific and/or disease-specific models. This ensemble of fingerprints, could then be one part of the virtual patient helping and supporting the patient's health during all stages of the clinical workflow and whenever necessary. 

5.8

Transporting the motion matrix z from one subject and combining it with the enddiastolic frame of another subject allows for simulating a disease (dilated myopathy, DCM, red motion) in a healthy subject and vice versa (green motion). Ejection fraction (EF) of the simulated cases are more similar to the transported motion. .

6.1

The outcome risk prediction model consisting of learning a motion fingerprint from 
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Fig. 2 . 1 :

 21 Fig. 2.1: The registration process: the moving image M is matched to the fixed image F by applying the deformation field φ. (MR image origin [Bernard, 2018])

Fig. 2 . 2 :

 22 Fig. 2.2: The supervised end-to-end registration model. During training, the known deformation field φ GT of an image pair (F, M ) is regressed (red arrows).

Fig. 2 . 3 :

 23 Fig. 2.3: The unsupervised end-to-end registration model. During training, the similarity D between warped moving and fixed image are optimized together with a deformation regularizer R (red arrows).

  Fig. 3.1: (a) Training Data Generation: Synthetic deformations (blue arrows) and inter-subject GT deformations (black) are used for intra-(green) and inter-subject (red) image pairs for training. (b) Dual-stream network used for Q-value prediction y a including complete single-stage Markov Decision Process for testing (blue background).

(a) 2

 2 -D: Moving, Fixed, elastix-e8 (.84), elastix-e16 (.70), ours (.94). (b) 3-D: Moving, Fixed, elastix-e8 (.49), elastix-e16 (.59), LCC-Demons (.67), ours (.79).

Fig. 3 . 2 :

 32 Fig. 3.2: 2-D and 3-D registration results of extreme cases with segmentation masks overlays (fixed: green, moving: orange) and DICE scores in parenthesis.

  using Bspline spacing of 8 and 16 pixels. We found that better rigid registration can significantly improve the algorithm's performance as shown in the experiments with perfect rigid alignment according to the segmentation (3-D*). Extreme results are visually shown in Fig. 3.2. More 2-D and 3-D examples are shown in the appendix, Fig. 3.3-3.4.

Fig. 3 . 5 :

 35 Fig. 3.3: 2-D registration results showing moving and fixed image masks as overlays in orange and green respectively. Final DICE scores for the 3 cases are .90, .93, .92 with initial overlaps of .65, .70, .72.

  Fig. 4.1: (a) Generative process for registration representing the likelihood of the fixed image F given the latent variable vector z and moving M : p θ (F |z, M ), where ω and θ are fixed parameters. (b) Generative process for regularized image registration where the likelihood depends on the regularized velocities p θ (F |v * , M ).

Fig. 4 . 2 :

 42 Fig. 4.2: (a) Probabilistic multi-scale registration network based on a CVAE. An encoder maps deformations to latent variables z ∈ R d (with for example d = 32) from which a decoder extracts velocities and diffeomorphisms at different scales while being conditioned on the moving image M . (b) After training, the decoder network can be also used to sample and transport deformations: Apply z-code on any new image M .

  Fig. 4.3: Boxplots of registration results comparing the undeformed (Undef) case to the different algorithms: lcc-demons (Dem), SyN, voxelmorph (VM) and our single scale (S1) respectively multi-scale (S3) using RMSE, gradient of the determinant of the Jacobian, DICE scores (logit-transform) and Hausdorff distances (HD in mm). Mean values are denoted by red bars. Higher values are better.

Fig. 4 . 4 :

 44 Fig. 4.4: (a) Qualitative registration results showing a pathological (hypertrophy) and a normal case. Warped moving image M * , displacements u, warped moving image with grid overlay and Jacobian determinant are shown for LCC-demons (Dem), SyN, voxelmorph (VM) and our approach using 3 scales (Our S3). (b) Middle and coarse scale predictions of our multi-scale method (Our S3).

Fig. 4 . 5 :

 45 Fig. 4.5: Cardiac structures used only for measuring registration accuracy.

Fig. 4 . 6 :

 46 Fig. 4.6: Showing the influence of the latent vector size d on the registration accuracy in terms of DICE and Hausdorff distances in mm of the different anatomical structures with the mean of all structures shown in the grey boxes. The performance of the LCC-demons (Dem) is shown as reference with dashed lines.

Fig. 4 . 7 :

 47 Fig. 4.7: Cardiac disease distribution after projecting the latent variables z of the test images on a 2-D CCA (canonical correlation analysis) space. Using an 8-D CCA and applying SVM with 10-fold cross-validation leads to a classification accuracy of 83%

Fig. 4 . 8 :

 48 Fig. 4.8: Reconstruction of simulated displacements and an accordingly warped random test image after generating z-codes by equally sampling along the two largest principal components within a range of ±2.5 sigma around their mean values (red box). The PCA was fitted using all training z-codes. The blue box indicates the image closest to the identity deformation. One can see that the horizontal eigenvalue influences large deformations while the vertical eigenvalue focuses on smaller ones, for example the right ventricle.

Fig. 4 . 9 :

 49 Fig.4.9: Transport pathological deformation predictions (Step 1, hypertrophy HCM, myopathy DCM) to healthy (Normal) subjects by using the pole ladder (with LCC-demons) and our probabilistic method (Step 2). Note that the pole ladder algorithm requires the registration between pathological and normal subjects while our approach is able to rotate and translate deformations encoded in the latent space z automatically.
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 44424 Fig. 4.10: Qualitative registration results showing a dilated cardiomyopathy (DCM) and a hypertrophic cardiomyopathy (HCM) case. Warped moving image M * , displacements u, warped moving image with grid overlay and Jacobian determinant are shown for LCC-demons (Dem), SyN, voxelmorph (VM) and our approach using 3 scales (Our S3).

Fig. 5 .

 5 Fig. 5.1: (a) Generative process for the motion model representing the likelihood of fixed images I 1:T given the latent variables z and moving image I 0 : p θ (I 1:T |z, I 0 ), where ω and θ are fixed parameters and arrows denote dependencies between random variables. (b) Visualization of the covariance matrix Σ of the Gaussian prior p(z) with 5 latent dimensions, a sequence time length of 35 and a length scale of the Cauchy kernel of 7.

Fig. 5 . 2 :

 52 Fig. 5.2: Overview of the motion model including encoder and decoder neural networks. From sequential image pairs, temporally independent feature vectors γ t are extracted which are fed to a temporally convolutional network (TCN) to obtain the probabilistic motion matrix z. This compact representation is decoded to a sequence of diffeomorphic deformation fields φ t .

Fig. 5 .

 5 Fig. 5.3: (a) The temporal convolutional network (TCN) allows for temporal regularization of the independently extracted features γ t per time step t, for retrieving mean vector µ and variance vector σ of the posterior distribution p θ . (b) Sequences with missing time steps (motion interpolation or simulation) are encoded by a full feature matrix Γ by setting the columns of missing time steps to zero. The TCN handles these missing columns and still predicts a full temporal motion sequence of T time steps.

Fig. 5 . 4 :

 54 Fig. 5.4: Tracking results showing RMSE, spatial and temporal gradients of the displacement fields, DICE scores and Hausdorff distances for all 2D+T test sequences. The LV volume curves extracted from the warped ED blood pool masks for 2 random test cases in ml, show the temporal smoothness and the distance to the ground-truth ED and ES volumes (marked with black points).The proposed algorithm (Our) shows slightly higher registration accuracy and temporally smoother deformations than the state-ofthe-art algorithms: SyN[START_REF] Avants | [END_REF], LPR[Krebs, 2019b], 4D-Elastix[Metz, 2011] and the previous version of our method without GP prior (No-GP[Krebs, 2020c]).

Fig. 5 . 5 :

 55 Fig. 5.5: Showing 2D+T and 3D+T tracking results of the warped moving image I 0 with grid overlay and the Jacobian determinant (Det.-Jac.) for a test sequence. In 3D+T, smoother Jacobian determinants were obtained.
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 52 3D+T registration performance with mean and standard deviation scores of RSME, DICE, Hausdorff Distance (HD), spatial and temporal gradients of the deformation fields comparing the undeformed case (Undef), 4D-Elastix and the proposed method. 79.2 ±10 5.1 ±2.1 0.15 ±0.06 0.62 ±0.32 Our 0.16 79.5 ±09 5.4 ±2.1 0.07 ±0.02 0.09 ±0.03

Fig. 5 . 6 :

 56 Fig. 5.6: First 5 latent dimensions of the same test sequence shows a temporally smoother motion matrix z for the proposed model trained with the Gaussian process prior compared to the No-GP version.
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 5758 Fig. 5.7: Predicted simulated and interpolated motion from a limited number of frames. Provided frames are decreasing from all frames to only the 0th frame (full motion simulation). The volume errors with respect to the all frame prediction are compared with linear and cubic interpolation of the deformation fields. Two random test subjects are shown in the bottom.

Fig. 6 . 1 :

 61 Fig. 6.1: The outcome risk prediction model consisting of learning a motion fingerprint from 4-chamber view cine-MRI (A.) and a survival predictor neural network (B.) which estimates the outcome risk based on the motion fingerprint. The dashed black arrows symbolize training loss computations while the blue arrows symbolize the data flow during testing.

Fig. 6 . 2 :

 62 Fig. 6.2: Kaplan-Meier plots showing the average survival risk and its confidence interval for low and high risk patients depending on different predictors: gray mass (GM), SRmax, VminI, motion fingerprint and multivariate risks using clinical and the combination fingerprint and clinical features. The motion fingerprint helps to differentiate between low and high risk patients.

Fig. 6 . 3 :

 63 Fig. 6.3: The motion fingerprint extractor is able to learn motion patterns from 4 chamber view cine-MRI. The motion between end-diastolic (ED) and end-systolic (ES) frames are shown for two subjects, one with future HF hospitalization event and one without. The bottom shows boxplots of registration accuracy and deformation regularity in comparison to the 4D elastix algorithm in terms of root mean square (RMSE), local cross-correlation (LCC), gradient of the determinant of Jacobian (Grad. Det. Jac.), spatial and temporal gradients of the deformation field.

Fig. 6 . 4 :

 64 Fig. 6.4: Probabilistic motion model (a): The encoder q ω projects the image pair (I 0 , I t ) to a low-dimensional deformation encoding zt from which the temporal convolutional network p γ (b) constructs the motion matrix z ∈ R d×T conditioned on the normalized time t. The decoder p θ maps the motion matrix to the deformations φ t . The temporal dropout sampling procedure (c) randomly chooses to sample zt either from the encoder q ω or the prior distribution.

Fig. 7 . 1 :

 71 Fig. 7.1: After training the motion model on the Echonet dataset [Ouyang, 2020], an example test sequence with extracted tracking results, Jacobian determinants and motioncompensated images is shown.

Fig. 7 . 2 :

 72 Fig. 7.2: Transported Motion from a case with hihg ejection fraction (EF) to one case with low EF and vice versa.

Fig. 7 . 3 :

 73 Fig. 7.3: The Alzheimer's disease (AD) is assumed to have a faster morphological degeneration(aging) than healthy people[START_REF] Sivera | [END_REF].

Fig. 7 . 4 :

 74 Fig. 7.4: Registration misalignment for CT and PET images induced from respiratory motion.Different breathing states are illustrated, free-breathing (FB), maximal inspiration (Insp) and maximal expiration (Exp)[START_REF] Callahan | Highresolution imaging of pulmonary ventilation and perfusion with 68 Ga-VQ respiratory gated (4-D) PET/CT[END_REF].
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 565 latent dimensions of the same test sequence shows a temporally smoother motion matrix z for the proposed model trained with the Gaussian process prior compared to the No-GP version. . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 Predicted simulated and interpolated motion from a limited number of frames. Provided frames are decreasing from all frames to only the 0th frame (full motion simulation). The volume errors with respect to the all frame prediction are compared with linear and cubic interpolation of the deformation fields. Two random test subjects are shown in the bottom. . . . . . . . . . . . . . . . . . . . . . .
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 42 chamber view cine-MRI (A.) and a survival predictor neural network (B.) which estimates the outcome risk based on the motion fingerprint. The dashed black arrows symbolize training loss computations while the blue arrows symbolize the data flow during testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.2Kaplan-Meier plots showing the average survival risk and its confidence interval for low and high risk patients depending on different predictors: gray mass (GM), SRmax, VminI, motion fingerprint and multivariate risks using clinical and the combination fingerprint and clinical features. The motion fingerprint helps to differentiate between low and high risk patients. . . . . . . . . . . . . . . . . .6.3The motion fingerprint extractor is able to learn motion patterns from 4 chamber view cine-MRI. The motion between end-diastolic (ED) and end-systolic (ES) frames are shown for two subjects, one with future HF hospitalization event and one without. The bottom shows boxplots of registration accuracy and deformation regularity in comparison to the 4D elastix algorithm in terms of root mean square (RMSE), local cross-correlation (LCC), gradient of the determinant of Jacobian (Grad. Det. Jac.), spatial and temporal gradients of the deformation field. . . . .6.4Probabilistic motion model (a): The encoder q ω projects the image pair (I 0 , I t ) to a low-dimensional deformation encoding zt from which the temporal convolutional network p γ (b) constructs the motion matrix z ∈ R d×T conditioned on the normalized time t. The decoder p θ maps the motion matrix to the deformations φ t . The temporal dropout sampling procedure (c) randomly chooses to sample zt either from the encoder q ω or the prior distribution. . . . . . . . . . . . . . . . . . . .7.1After training the motion model on the Echonet dataset[Ouyang, 2020], an example test sequence with extracted tracking results, Jacobian determinants and motion-compensated images is shown. . . . . . . . . . . . . . . . . . . . . . . 7.Motion from a case with hihg ejection fraction (EF) to one case with low EF and vice versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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  Registration performance with mean and standard deviation scores (in brackets) of RMSE, DICE, Hausdorff Distance (HD in mm) and the mean gradient of the determinant of Jacobians (Grad Det-Jac, ×10 -2 ) comparing the undeformed case (Undef), LCCdemons (Dem), SyN, voxelmorph (VM) and our method.

	Method	RMSE	DICE	HD Grad Det-Jac
	Undef	0.37 (0.17) 0.707 (0.145) 10.1 (2.2)	-
	Dem	0.29 (0.16) 0.799 (0.096)	8.3 (2.7)	2.9 (1.0)
	SyN	0.32 (0.16) 0.801 (0.091)	8.1 (3.6)	3.4 (0.5)
	VM	0.24 (0.08) 0.790 (0.096)	8.4 (2.6)	9.2 (0.5)
	Our S1	0.31 (0.15) 0.797 (0.093)	7.9 (2.6)	1.2 (0.3)
	Our S3	0.30 (0.14) 0.812 (0.085) 7.3 (2.7)	1.4 (0.3)
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	Input Sequence		𝐼 0 𝐼 1	𝐼 0 𝐼 2	…	𝐼 0 𝐼 𝑇
	Feature Extraction			…
						Shared
	Encoder 𝑞 𝜔	TCN	𝛾 1	𝛾 2	…	𝛾 𝑇
	Motion Matrix	𝑧 1	𝑧 2 (𝜇, 𝜎)	𝑧 𝑇
	Decoder 𝑝 𝜃	𝐼 0	𝐼 0	𝐼 0 Shared …
	Deformations Warped 𝐼 0	𝜙 1	𝜙 2	…	𝜙 𝑇
	Conv.	Dense	Deconv.	Smooth.	Exponentiation

  Registration performance with mean and standard deviation scores of DICE (in %), Hausdorff Distance (HD in mm), spatial and temporal gradients of the deformation fields (×10 -2 ) comparing the undeformed case (Undef), SyN, learning-based pairwise registration (LPR), 4D-Elastix, our previous version without GP prior (No-GP) and the proposed method for all 2D+T sequences.

	Tab. 5.1: Method	DICE	HD Spat. Grad. Temp. Grad.
	Undef	72.8 ±14 9.70 ±4.20	-	-
	SyN	82.7 ±12 7.02 ±4.34 0.23 ±0.06	0.43 ±0.19
	LPR	82.1 ±10 6.60 ±3.07 0.16 ±0.06	0.32 ±0.13
	4D-Elastix 83.7 ±11 6.27 ±3.91 0.15 ±0.06	0.33 ±0.15
	No-GP	84.6 ±10 6.24 ±3.30 0.14 ±0.08	0.15 ±0.08
	Our	85.2 ±09 6.11 ±3.28 0.10 ±0.03	0.12 ±0.05
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  motion fingerprint is learned in an encoder-decoder neural network which represents a latent variable model. The input of the network are a sequence of image pairs (I 0 , I t ) with t ∈ [1, T ] from image sequences of length T . The output are a sequence of dense deformation fields φ t (between (I 0 , I t )) and a compact deformation representation z t ∈ R D of dimensionality D per timestep t. The sequence of encoded z t are combined in the motion matrix z ∈ R D× T with T = T -1 and D latent dimensions depicting the cardiac motion. In this work, we consider 2-dimensional image sequences of four chamber cine-MRI with a single slice. The model is trained using a conditional variational autoencoder (CVAE,

Best Clinical Params. 3.02 (2.11-4.32) 0.70 (0.63-0.75) <0.005

  6.1: Predictors of HF hospitalization using univariate and multivariate (for Clinical and Fingerprint+Clinical) Cox proportional hazard models. The results are obtained via 6-fold stratified cross-validation. HR, p-value (reject the null hypothesis that the HR equals one) and average concordance index (C) are reported including a 95% confidence interval (CI) in brackets. The motion fingerprint shows the highest prediction accuracy, independently and together with multiple clinical variables.

	Feature	HR	C p-value
	GM	0.92 (0.64-1.32) 0.52 (0.38-0.55)	0.66
	VmaxI	1.85 (1.31-2.60) 0.63 (0.55-0.69) <0.005
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	SRmax	2.30 (1.63-3.26) 0.65 (0.59-0.71) <0.005
	SRA	2.02 (1.43-2.85) 0.62 (0.55-0.68) <0.005
	SpreA	1.98 (1.41-2.79) 0.63 (0.56-0.69) <0.005
	Fingerprint	2.93 (2.05-4.18) 0.69 (0.60-0.72) <0.005
	Best Clinical Params.	2.39 (1.69-3.39) 0.67 (0.61-0.74) <0.005
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