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Abstract
This thesis presents new computational tools for quantifying deformations and motion
of anatomical structures from medical images as required by a large variety of clinical
applications. Generic deformable registration tools are presented that enable deformation
analysis useful for improving diagnosis, prognosis and therapy guidance. These tools were
built by combining state-of-the-art medical image analysis methods with cutting-edge
machine learning methods.

First, we focus on difficult inter-subject registration problems. By learning from given
deformation examples, we propose a novel agent-based optimization scheme inspired
by deep reinforcement learning where a statistical deformation model is explored in a
trial-and-error fashion showing improved registration accuracy.

Second, we develop a diffeomorphic deformation model that allows for accurate multi-
scale registration and deformation analysis by learning a low-dimensional representation
of intra-subject deformations. The unsupervised method uses a latent variable model
in form of a conditional variational autoencoder (CVAE) for learning a probabilistic
deformation encoding that is useful for the simulation, classification and comparison of
deformations.

Third, we propose a probabilistic motion model derived from image sequences of moving
organs. This generative model embeds motion in a structured latent space, the motion
matrix, which enables the consistent tracking of structures and various analysis tasks. For
instance, it leads to the simulation and interpolation of realistic motion patterns allowing
for faster data acquisition and data augmentation.

Finally, we demonstrate the importance of the developed tools in a clinical application
where the motion model is used for disease prognosis and therapy planning. It is shown
that the survival risk for heart failure patients can be predicted from the discriminative
motion matrix with a higher accuracy compared to classical image-derived risk factors.

Keywords: medical imaging, image registration, motion modeling, artificial intelligence,
machine learning, variational autoencoder, sudden cardiac death.
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Résumé

Cette thèse présente de nouveaux outils informatiques pour quantifier les déformations et
le mouvement de structures anatomiques à partir d’images médicales dans le cadre d’une
grande variété d’applications cliniques. Des outils génériques de recalage déformable
sont présentés qui permettent l’analyse de la déformation de tissus anatomiques pour
améliorer le diagnostic, le pronostic et la thérapie. Ces outils combinent des méthodes
avancées d’analyse d’images médicales avec des méthodes d’apprentissage automatique
performantes.

Dans un premier temps, nous nous concentrons sur les problèmes de recalages inter-sujets
difficiles. En apprenant à partir d’exemples de déformation donnés, nous proposons
un nouveau schéma d’optimisation basé sur un agent inspiré de l’apprentissage par
renforcement profond dans lequel un modèle de déformation statistique est exploré de
manière itérative montrant une précision améliorée de recalage.

Dans un second temps, nous développons un modèle de déformation difféomorphe qui
permet un recalage multi-échelle précis et une analyse de déformation en apprenant une
représentation de faible dimension des déformations intra-sujet. La méthode non super-
visée utilise un modèle de variable latente sous la forme d’un autoencodeur variationnel
conditionnel (CVAE) pour apprendre une représentation probabiliste des déformations
qui est utile pour la simulation, la classification et la comparaison des déformations.

Troisièmement, nous proposons un modèle de mouvement probabiliste dérivé de séquences
d’images d’organes en mouvement. Ce modèle génératif décrit le mouvement dans un
espace latent structuré, la matrice de mouvement, qui permet le suivi cohérent des
structures ainsi que l’analyse du mouvement. Ainsi cette approche permet la simulation
et l’interpolation de modèles de mouvement réalistes conduisant à une acquisition et une
augmentation des données plus rapides.

Enfin, nous démontrons l’intérêt des outils développés dans une application clinique où
le modèle de mouvement est utilisé pour le pronostic de maladies et la planification de
thérapies. Il est démontré que le risque de survie des patients souffrant d’insuffisance
cardiaque peut être prédit à partir de la matrice de mouvement discriminant avec une
précision supérieure par rapport aux facteurs de risque classiques dérivés de l’image.
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Mots-clés: imagerie médicale, recalage d’images, modélisation du mouvement, intel-
ligence artificielle, apprentissage profond, autoencodeur variationnel, mort cardiaque
subite.
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Contents
1.1 Clinical Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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1.3 Publications and Awards . . . . . . . . . . . . . . . . . . . . . . . . . 6

In this chapter, we introduce the clinical context and objectives of the thesis. First, we
discuss current needs in clinical routine that motivate our work. We show the steps
from patient to diagnosis, to prognosis and therapy. Then, we explain and give concrete
examples to these steps that raise the main objectives of this thesis:

Can we automatically derive relevant information from medical images to learn accurate
deformation and motion models that can be helpful for diagnosis, prognosis and therapy
planning?

1.1 Clinical Context

The typical clinical workflow consists of four main stages: diagnosis, prognosis, therapy
planning and therapy. Starting point is the patient who feels sick and arrives at the
hospital to get cured. The first main task of the physician is to collect relevant information
such as symptoms, patient health history, vital signs, lab parameters and medical images.
The physician analyzes all these information with the help of multi-dimensional analysis
tools to form a diagnosis. After a potential disease has been identified, a prognosis is
made to evaluate the future impact of the disease such as duration and likely outcomes.
In the next step, therapy planning is done by taking into account all potential treatment
measures given the previous information. Finally, the therapy which has the best chances
of curing the patient or reducing the symptoms is carried out. These four stages will
repeat until the endpoint is reached where the patient is healthy again (or has died).

Medical images are increasingly important to help clinicians at all four stages of the
clinical workflow for a large variety of applications in healthcare. The importance and
additional insights clinicians gain from medical images is also shown in the fact that
more than one billion radiological exams are performed worldwide every year [Krupinski,
2010]. In the US, medical imaging accounts for over 40% of all hospital procedures
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reported in the discharge report leading to a market volume at the size of $56 billion
which is 0.5% of the GDP (in 2004) [Krupinski, 2010].

Today, many different medical image acquisition devices and protocols are used in
healthcare. An overview of these systems and the physics behind is given in [Webb,
2003] and more recently in [Maier, 2018].

With the rise of medical imaging systems comes the need for maximizing the insights
clinicians can obtain from images. Automatic computational image analysis has a high
value for diagnosis, prognosis and therapy as it can extract information in a fast and
objective fashion that cannot be measured directly. This not only overcomes the problem
of a high inter-rater variability but also allows the processing and comparison of a large
amount of data which would be too time-consuming to be done manually. Thus, the
last decades have seen large advances and progress in the automatic analysis of medical
images using computer vision techniques.

One major need is to deal with multiple images of the same or overlapping body regions.
Deformable registration and motion analysis tools aim at finding corresponding locations
in images to define the mapping from one to the other image(s). This mapping describes
the image deformations and is essential for the comparison, integration or fusion of
medical images which can support diagnosis, prognosis and therapy of various diseases.
In general, multiple medical images are acquired to get more accurate information for
a better understanding and examination of the human body. The images can be taken
from various fields of view from the same image modality (mono-modal). For example
in x-ray imaging, multiple images help to not oversee structures and abnormalities that
are invisible in projections from certain directions. Sometimes, images are acquired
from different modalities (multi-modal) to benefit from the advantages of each imaging
principles, such as ultrasound and magnetic resonance images (MRI) of the same organ
(e.g. prostate [Puech, 2013; Marks, 2013]). Another example is fusing anatomical and
functional features provided by Computer Tomography (CT) scans and Positron Emission
Tomography (PET) scans respectively.

During a surgery, images need to be registered to other images taken before the surgery
from the same or a different modality in order to guide the surgeons. In another example
of registration, one would like to compare images of a patient with a reference image with
known information (such as structure boundaries, anatomical landmarks or disease) or
with images from a population of patients suffering from the same disease for prognostic
or therapeutic reasons. This type of registration is known as inter-subject registration. Fu-
sion of mono- or multi-modal and on the other hand of intra- or inter-subject information
is required in numerous clinical applications such as in the investigation of organ function
and pathologies. The medium of such analysis tasks are typically image deformations in
the regions around the organ of interest or pathology. Using two images to extract such
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deformations is known as pairwise registration. Having multiple images to register is
referred to as motion or group-wise registration.

Sequences of images that are acquired to track structural changes over time are of par-
ticular clinical interest to study. In longitudinal studies, for example, registered images
acquired over longer time intervals allow to measure disease progression (e.g. neurode-
generative diseases) or tumor growth. Sequences of images are also acquired to analyze
the motion of moving organs or to compensate for motion that introduces artifacts such
as respiratory motion. One organ of particular interest for studying motion is the heart
[Zerhouni, 1988] as cardiovascular diseases are one of the most common disease groups
around the world. An impaired heart function such as in heart failure (HF) patients can
cause large implications and even lead to the death of a patient. Motion analysis can be
very useful in HF as for example certain heart motion features (e.g. ventricular ejection
fraction) that are computed manually from images are able to predict outcomes such as
sudden cardiac death (SCD) [Adabag, 2012].

In conclusion, all these applications of deformable registration are examples where the
integration or fusion of two or more images is an essential task for improving one or
many of the four stages of the clinical routine: diagnosis, prognosis, therapy planning
and therapy.

1.2 Objectives and Organization of the Thesis

In this thesis, we present tools based on artificial intelligence for the study of deformations
between two images and motion from a time series of images. These tools allow for
robust image registration but also aim to improve the estimation of motion indices (such
as ejection fraction or cardiac strain). This can help to directly guide the diagnosis,
prognosis or therapy of diseases, not only but especially for dynamic organs. Given the
context above, we first focus on the development of a robust registration tool for difficult
registration scenarios by learning from existing examples of deformations.

Then, we study probabilistic deformation and motion models derived from a large
database of images which capture population-specific representations of those deforma-
tion characteristics. The interest for such learned models is multiple as they allow to
quantify, simulate and compare deformation and motion patterns of different patients.
For example, this could support diagnosis by detecting similar patients with known
diagnosis. Furthermore, predicting the disease progression in a patient could be used for
therapy planning such as for survival risk prediction for cardiac diseases. In particular,
we investigate the following research questions in the remaining chapters of this thesis:

1.2 Objectives and Organization of the Thesis 3



• In many registration problems such as for inter-subject registration, a large vari-
ability in appearance and large deformations increase the difficulty for successful
registration. Can we learn a robust registration algorithm from given examples that
explores the solution space in small steps by trial-and-error to register images more
accurately? (Chapter 3)

• Often, deformable registration is used for subsequent analysis tasks supporting
diagnosis and prognosis. Can we learn a deformation model from images that
inherently contains knowledge of physiological deformation patterns allowing for
analysis tasks such as disease classification or simulation? (Chapter 4)

• Beyond pairwise registration, can we obtain a probabilistic motion model which is
useful for consistent tracking of structures and motion simulation? Can we use the
model to reconstruct motion from missing data? (Chapter 5)

• Having a compact motion model learned from images without supervision, does it
capture discriminative factors that are useful for predicting disease outcomes? For
example, can we predict the survival risk of heart failure patients? (Chapter 6)

The thesis is organized in the following way in accordance with the mentioned research
questions:

In Chapter 2, the technical background of this thesis is discussed. We introduce a
state-of-the-art of registration and motion methods including recent deep learning based
approaches for deformable registration.

In Chapter 3, we investigate how a decision-making agent could help in difficult organ-
specific deformable registration problems. An artificial agent is trained to solve an inter-
subject registration task by exploring the parametric space of a statistical deformation
model built from training data. Since it is difficult to extract trustworthy ground-truth
deformation fields, we also present a training scheme with a large number of synthetically
deformed image pairs requiring only a small number of real inter-subject deformations.
The proposed method has been evaluated on the difficult task of inter-subject prostate
MR registration to solve motion compensation or atlas-based segmentation problems in
prostate diagnosis. The method showed state-of-the-art registration accuracy in terms of
structure overlaps and distance measures. The chapter was presented at MICCAI 2017,
Quebec City, Canada [Krebs, 2017].

In Chapter 4, we propose to learn a low-dimensional probabilistic deformation model
from data which can be used for registration and the analysis of deformations. The latent
variable model maps similar deformations close to each other in an encoding space. It
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enables to compare deformations, generate normal or pathological deformations for
any new image or to transport deformations from one image pair to any other image.
Additionally, our framework is diffeomorphic and provides multi-scale velocity field
estimations. We have applied our framework on cardiac intra-subject MR registration and
demonstrate state-of-the-art registration accuracy, regularity and the model’s potentials
for disease clustering, deformation simulation and transport. The chapter is published in
the journal IEEE TMI [Krebs, 2019b] and is based on the previous conference presentation
at Deep Learning in Medical Image Analysis DLMIA (in conjunction with MICCAI 2018,
Granada, Spain) [Krebs, 2018].

In Chapter 5, we extend our pairwise deformation model to a probabilistic latent motion
model learned from a sequence of images for spatio-temporal registration problems. Our
model encodes motion in a low-dimensional probabilistic space – the motion matrix
– which enables various motion analysis tasks such as simulation and interpolation of
realistic motion patterns allowing for faster data acquisition and data augmentation.
Furthermore, the motion matrix allows to transport deformations from one subject to
another simulating for example a pathological motion in a healthy subject without the
need of inter-subject registration. The diffeomorphic motion model was analyzed by
using cardiac cine-MRI showing state-of-the-art registration regularity and accuracy.
Furthermore, motion simulation and interpolation are demonstrated. The chapter is
based on the previous conference presentation at Statistical Atlases and Computational
Models of the Heart STACOM (in conjunction with MICCAI 2019, Shenzhen, China)
[Krebs, 2020c] and has been submitted to IEEE TMI [Krebs, 2020b].

In Chapter 6, we present a learning-based method for personalized risk and survival
prediction based on our motion model. We use the 4 chamber-view cine-MRI of a patient
cohort suffering from heart failure to build a motion fingerprint, the motion matrix.
We demonstrate the discriminative power of this compact representation by predicting
risk scores from the fingerprint for disease outcomes. We show that such an image-
derived risk score is a more predictive feature for HF endpoints such as hospitalization
and sudden cardiac death than any relevant clinical factors. Based on the preliminary
material presented in this chapter, a clinical journal submission is in preparation.

In Chapter 7, the main contributions of this thesis are summarized. Finally, potential
future work and perspectives are discussed.
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2.1 Introduction

As shown before, the integration or fusion of medical images is essential for many di-
agnostic and interventional tasks. Therefore, research groups have been investigating
deformable registration and motion modeling in great detail over the past 30 years. A
tremendous number of methods and innovations have been proposed since then. How-
ever, the task of non-rigid registration is still mostly considered as an unsolved problem
[ElGamal, 2016]. Classifications and reviews of traditional deformable registration al-
gorithms can be found in [Modersitzki, 2004; Sotiras, 2013; Oliveira, 2014; ElGamal,
2016]. Recently, over the past 3-4 years many deep learning-based (DL) approaches
have been proposed for image registration. Specific review papers aim to summarize the
contributions in this new group of algorithms [Haskins, 2020; Fu, 2019; Boveiri, 2020].
In their recent paper, Boveiri et al. [Boveiri, 2020] counted 80 contributions in DL-based
image registration, combining rigid and non-rigid registration. In the remainder of
this chapter, we aim to summarize and draw connections between both, traditional
and DL-based registration. First, the general methodology for registration and motion
modeling algorithms is introduced before we focus on the state-of-the-art of DL-based
image registration.
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2.2 Registration Algorithms

Registration is referred to as finding the spatial correspondences between two images
where one is the movingM and the other the fixed image F . In order to be registered to F ,
the moving image M is deformed by applying a spatial transformation, the deformation
field φ: M ◦φ where ◦ denotes the warping functionality. The deformation field is defined
by the sum of identity transform and displacement vector field u: φ(x) = x+ u(x), x ∈ Ω
for every position x in the image domain Ω. The registration process is illustrated
in Fig.2.1. Typically, an optimization problem is solved in order to find the optimal
deformation field φ ∈ T within a set of possible transformations T which best aligns M
to the fixed image F . Traditionally, one seeks to minimize an objective function of the
following form:

arg min
φ∈T

D(F,M ◦ φ) +R(φ), (2.1)

whereD is a dissimilarity (or similarity) metric which measures how well the fixed and the
deformed moving image are aligned and R denotes a regularizer enforcing pre-defined
transformation properties such as the desired level of transformation smoothness. Due to
the ill-posed nature of the high-dimensional registration problem, the deformation field
φ needs to be regularized in order to obtain plausible transformations [Sotiras, 2013].
Many different metrics have been proposed for both terms as shown below. Most image
registration algorithms consist of three parts: a deformation model determining the set
of allowed transformations T , an objective function with suitable dissimilarity D and
regularization R metrics and an appropriate optimization strategy to find its minimum
[Sotiras, 2013]. The choice for these elements is highly dependent on the registration
problem to be solved. Some deformation models, dissimilarity and regularization metrics
might be better suited for mono-modal than for multi-modal registration. On the other
hand, intra-subject registration may require different models than inter-subject problems.
Typically, the optimization problem is solved by iterative gradient descent, derivative-free
optimizers or by statistical, machine-learning based strategies.

2.2.1 Similarity Metrics

One can distinguish 2 main types of dissimilarity metrics. The first type, geometric
methods, are based on the matching of corresponding features such as landmarks placed
at anatomical meaningful locations. The difficulty hereby lies in the robust detection
of landmarks. One way to automatically obtain landmarks is the SIFT algorithm and
its variants [Juan, 2007]. Because of the need for extrapolating the deformation field
between sparse landmarks and therefore resulting in a decrease in accuracy, landmark-
based similarity metrics have lost popularity [Sotiras, 2013]. However, with the rise of
DL-based algorithms, they have gained popularity again due to the fact that in learning-
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Fig. 2.1: The registration process: the moving image M is matched to the fixed image F by
applying the deformation field φ. (MR image origin [Bernard, 2018])

based algorithms, landmarks could be used as a support during training while not
requiring them at test time (cf. 2.4.3).

The second type of dissimilarity metrics relies on intensity-based quantities such as
sum-of-squared or absolute differences (SSD or SAD), cross-correlation (CC) or mutual
information (MI). The choice depends on the assumed relation between the signal inten-
sities. In mono-modal registration for example, the noise assumption and the assumed
correspondence between intensities dictate the choice. SSD assumes Gaussian noise
while CC assumes a linear relation between intensities. In multi-modal registration,
these metrics would not be a good choice as the same structures may have very different
intensities in images from different modalities. That is why information theoretic ap-
proaches have been proposed for multi-modal registration. The most popular metric is MI
[Viola, 1997; Maes, 1997] as it assumes a non-parametric statistical relationship between
image intensities. However, its generality can turn into drawbacks that have been tried
to tackle in numerous works as discussed in Sotiras et al. [Sotiras, 2013]. Besides SSD
as one of the most commonly used similarity metrics for mono-modal registration, local
cross-correlation (LCC) has been applied successfully due to its implicit estimation of the
local affine scaling parameters as a good trade-off between SSD and MI [Lorenzi, 2013].
In this work, LCC is defined as:

DLCC(F,M ◦ φ) =
∫

Ω

F (M ◦ φ)√
F 2 ·

√
(M ◦ φ)2

(2.2)

with the local mean images F obtained from a mean filter with kernel size k.

Besides geometric and intensity-based dissimilarity metrics, many approaches build on
hybrid models that combine both criteria [Sotiras, 2013]. Most algorithms in the group
of weakly supervised DL-based methods fall into this hybrid category and are discussed
in 2.4.3.
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2.2.2 Regularization and Deformation Models

The choices for a suitable deformation model and regularization metric determine the
degrees of freedom (DoF) and complexity of the estimated deformation. The defor-
mation model can limit the set of possible transformations Tθ by parameterizing the
transformations with parameters θ. These parameterizations can take very different
forms and can range from a very small number of parameters (DoF), forming simple or
very restricted deformation models to high-dimensional models including thousands or
millions of parameters θ. Often no parameterization is used and the space of all dense
deformation fields belongs to T . However, the more DoF a deformation model has the
more the computational complexity rises and the need for a suitable regularization metric
becomes necessary to obtain a well-posed problem [Sotiras, 2013].

Interpolation-based Models

The number of parameters θ can be as small as 6 in the case of 3D rigid registration (3
rotation and 3 translation parameters). Affine registration adds another 3 scaling param-
eters. But in the case of deformable registration, the dimensionality of θ rises typically
to thousands or millions. To keep the number reasonably low and constrain computa-
tional complexity, interpolation-based transformation models are commonly used. These
models are for example based on radial basis functions [Yang, 2011b; Bookstein, 1991],
elastic-body splines [Davis, 1997] or, most commonly, free-from deformations (FFD,
[Rueckert, 1999; Schnabel, 2001; Wang, 2007]) where only displacements of sparse
control points need to be predicted while the dense deformation field is obtained using
interpolation.

Physically-inspired Models

In contrast to interpolation-based methods, many methods are derived from physical
models [Sotiras, 2013]. In most of these models, the deformation model allows to esti-
mate the full number of possible parameters determined by all values in the deformation
field. However, depending on the underlying physical assumptions on how the image
is allowed to deform, the estimated deformations are regularized. Typically, physical
models are elastic- [Davatzikos, 1997; Pennec, 2005], fluid- [Christensen, 1996] or
diffusion-based [Thirion, 1998; Fischer, 2002; Vercauteren, 2007a]. Diffusion-based
models are based on the fact that the Gaussian kernel is the Green’s function of the diffu-
sion equation. Under this assumption, non-parametric registration regularization can be
efficiently applied using Gaussian filtering of the deformation field [Thirion, 1998].
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Statistical Deformation Models

Another category of deformation models consists of statistically-constrained models
[Sotiras, 2013]. Statistical deformation models (SDM) have the power to reduce the
dimensionality of deformations tremendously allowing for a simpler subsequent deforma-
tion analysis. However, a statistical model needs to be trained from an existing database
whereby it is limited to the observations in this training set. Before the era of DL-based
registration, the size of such databases were typically relatively small due to limited
computational powers. A broadly applied statistical dimensionality reduction method is
principal component analysis (PCA) which has been used to learn an SDM from FFDs
[Rueckert, 2003]. In active shape models, the shape variability is learned from annotated
points by using PCA [Cootes, 1995]. PCA has been also used in a generative manner
by generating intermediate images through sampling along the PCA axes. By doing so,
the registration process can be initialized for instance by projecting the moving image to
the closest target image [Tang, 2009]. Similarly, Kim et al. [Kim, 2012] estimated the
intermediate target image by using support vector regression.

Diffeomorphims and other Deformation Constraints

In addition, to the presented deformation models and regularization energies, constraints
on the transformations have been applied to obtain special properties that are important
in medical image analysis problems. Among others, such properties are for example
inverse consistency, deformation symmetry, and diffeomorphisms [Sotiras, 2013]. Since
deformation are not inverse consistent in general, symmetric algorithms enforce symme-
try by optimizing the objective function either 2 times in both directions (by exchanging
moving and fixed image) or by constructing symmetry in the objective function, for
example by registration to the midpoint between both images (cf. e.g. [Vercauteren,
2008; Lorenzi, 2013]). Diffeomorphisms are topology-preserving and invertible transfor-
mations which makes them suitable for many medical registration problems in which
foldings are physically implausible [Vercauteren, 2009]. Popular parameterizations of
diffeomorphisms include the Large Deformation Diffeomorphic Metric Mapping (LD-
DMM) [Beg, 2005; Cao, 2005; Zhang, 2015], a symmetric normalization approach
[Avants, 2008] or stationary velocity fields (SVF) [Arsigny, 2006; Vercauteren, 2009;
Lorenzi, 2013]. SVFs provide an efficient formulation of diffeomorphisms while still
maintaining the desirable properties of time-varying LDDMMs. An SVF is not able to
capture all possible diffeomorphisms, however, in practice, SVFs are often chosen due
to their computational efficiency. SVFs are described as the exponential map of the
velocity field v: φ = exp(v) which can be efficiently computed by the scaling and squaring
algorithm [Arsigny, 2006].
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2.3 Motion: Adding the Temporal Dimension

Estimating the deformations within a sequence of images is highly related to pair-
wise registration – the mapping between 2 images. Consistent temporal registration
is useful for tracking moving structures or organs, for motion compensation and for
detecting pathological motion patterns. Traditionally, one can separate proposed ap-
proaches for motion estimation by physically-motivated or interpolation-based and
biomechanically- or biophysically-inspired motion models. In principle, the former group
extends interpolation-based or physically-motivated methods for pairwise registration
by an additional temporal dimension t denoted as 2D+t or 3D+t registration. Most
approaches are based on FFDs due to their efficiency where applications range from
intra-subject motion estimation [LedesmaCarbayo, 2005; Vandemeulebroucke, 2011; De
Craene, 2012], to inter-subject sequence registration [Perperidis, 2005; Peyrat, 2010]
and group-wise registration with the purpose of defining a reference frame [Metz, 2011].
Another example for a spatio-temporal physically-motivated model (besides [Peyrat,
2010]) computes cardiac strain from image sequences [Mansi, 2011].

On the other hand, biophysical models are exploiting anatomical and physiological
knowledge. Many models apply finite element methods (FEMs) for different organs and
applications, for instance for tumor growth modeling, breast imaging or the prostate and
its surrounding [Bharatha, 2001]. Also, a biomechanical model was used to generate
synthetic training data for learning a statistical model of the prostate [Mohamed, 2002].
Electromechanical models also exist in cardiac imaging where motion analysis can help
in diagnosis and therapy planning of many diseases [Sermesant, 2008].

2.4 Deep Learning-based Registration

The main difference between classical and learning-based, especially DL-based, registra-
tion is the transition from relying only on one pair of images to exploiting a large database
of image pairs. Introducing this tremendous amount of data, the optimization strategy is
mostly shifted to a training phase in order to retrieve rich implicit prior knowledge that
allows to register a new image pair in almost real-time. This speed-up is regarded as one
of the major benefits of using DL-based registration.

In general, a neural network is a function approximator which is parameterized by a
large number of parameters ω, the network weights [Goodfellow, 2016]. Applied to
image registration, the deformation field φ can be obtained by a simple evaluation of
such a trained function fω that takes the image pair (F,M) as input:

φ = fω(F,M). (2.3)
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Fig. 2.2: The supervised end-to-end registration model. During training, the known deformation
field φGT of an image pair (F,M) is regressed (red arrows).

In order to select the optimal network parameters ω∗, the neural network is trained
with respect to an objective function – the loss function. In DL-based registration,
one can differentiate 3 classes of approaches [Haskins, 2020] on how to choose the
loss function in order to learn the parameterized registration function fω: Supervised,
unsupervised and weakly supervised approaches. Hereby, supervision refers to the fact
that extra information such as ground-truth deformation fields or labels are required
during training (but typically not during testing). The different classes of approaches are
discussed in the following.

2.4.1 Supervised

Supervised DL-based registration approaches aim at learning a similarity metric between
the two images by providing a ground-truth deformation field φGT. In this case, the
learning objective turns into a regression problem of the following form:

ω∗ = arg min
ω

Ep(F,M,φGT)
[
D(fω(F,M), φGT)

]
, (2.4)

where p(F,M, φGT) is the empirical data distribution of image pairs and ground-truth
deformation and D describes a distance metric such as SSD or CC. The idea of regressing
deformation fields directly, originates from optical flow estimations in the computer vision
community, where large datasets with ground-truth flow fields exist [Dosovitskiy, 2015;
Weinzaepfel, 2013]. Supervised approaches can be further differentiated as end-to-end or
non-end-to-end depending on whether the learned similarity metric is used in a classical
registration algorithm or directly applied for registration.
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Non-End-to-End

As one of the first DL-based approaches, [Wu, 2015] learned application-specific features
that were used in traditional registration methods instead of manually extracted features.
In a similar way, learned features were used for estimating the registration error in
[Eppenhof, 2018b]. While these approaches are learning features that still need to be
matched using a distance metric such as SSD or CC, Simonovsky et al. [Simonovsky,
2016] proposed to learn a similarity metric for inter-subject brain MR T1-T2 registration
which showed improved results compared to MI. Wright et al. [Wright, 2018] used
recurrent spatial co-transformer networks to iteratively register MR and US volumes
showing a better quantified image similarity than self-similarity context descriptors for
multi-modal registration.

End-to-End

To overcome the need of slow iterative registration procedures, supervised end-to-end
approaches have been proposed that mostly have near real-time performance during
testing. According to Eq. 2.4, approaches in this category require registered image pairs
during training. In Fig. 2.2, a graphical representation of the typical supervised approach
is shown. Due to the difficulty of finding dense ground truth voxel mappings, supervised
methods need to rely on deformation predictions either from existing algorithms [Yang,
2017; Rohé, 2017; Cao, 2017], simulations [Sokooti, 2017; Uzunova, 2017; Eppenhof,
2018a] or a combination of both [Mahapatra, 2018; Krebs, 2017]. Instead of predicting
the deformation field φ, diffeomorphic approaches predict parameterizations based on
patches of the initial momentum of LDDMMs [Yang, 2017] or dense SVFs [Rohé, 2017].
In order to reduce the complexity but therefore limiting the use for large deformations,
patch-wise approaches have been proposed [Cao, 2017; Sokooti, 2017; Yang, 2017].
In case of simulation-based approaches, Sokooti et al. [Sokooti, 2017] used random
transformations based on Gaussian kernels. Random transformations limit the realism
and task-specificity of deformations such that, more sophisticated simulations were used
by multi-scale, random transformations of aligned image pairs [Eppenhof, 2018a] or
applying a statistical deformation model for data augmentation [Uzunova, 2017; Krebs,
2017].

Another way of optimizing Eq. 2.4 is by using deep reinforcement learning (DRL) and
implicitly quantifying image similarity through an agent [Haskins, 2020]. Hereby, an
agent takes consecutive decisions on actions to apply based on the current state and future
reward. This strategy allows to follow a trajectory towards the optimal transformation
parameters while allowing to recover from mistakes. Due to limitations on the action
space, most approaches have considered rigid registration only [Liao, 2017b; Ma, 2017;
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Fig. 2.3: The unsupervised end-to-end registration model. During training, the similarity D
between warped moving and fixed image are optimized together with a deformation
regularizer R (red arrows).

Miao, 2018]. However, by using a low-dimensional SDM, we have shown that DRL
is useful for difficult inter-subject registration tasks by showing improved registration
accuracy compared to state-of-the-art algorithms (cf. Chapter 3, [Krebs, 2017]).

Supervised methods are free from the need of having to define a similarity metric (and
most-often regularizer) manually, but the lack of ground-truth deformations either limits
the approaches by the performance of existing algorithms or the realism of simulations.
Furthermore, retrieving deformations from existing algorithms on a large database is
time-consuming and increases the training complexity.

2.4.2 Unsupervised

To overcome the limitations of supervised approaches, end-to-end DL-based approaches
that do not require ground-truth deformations have been considered more recently.
The introduction of spatial transformer networks (STN, [Jaderberg, 2015]) allowed to
integrate transformation models based on B-splines or linear interpolation for dense
deformation fields in neural networks directly for an efficient and most importantly
differentiable warping of the moving image. With a differentiable warping functionality,
loss functions can be applied on the warped moving image, allowing to integrate the clas-
sical objective function for registration (Eq. 2.1) in the loss function of neural networks
(cf. Fig. 2.3):

ω∗ = arg min
ω

Ep(F,M)
[
D(F,M ◦ fω(F,M)) +R(fω(F,M))

]
, (2.5)

where p(F,M) is the empirical data distribution of image pairs. The difference to classical
registration is that the optimization is done over many training image pairs instead of one
test image pair (F,M). Similar learning approaches first appeared in the computer vision
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community [Jason, 2016; Liang, 2017] and were recently applied to medical image
registration [Vos, 2017; Ghosal, 2017; Yoo, 2017; Balakrishnan, 2018; Krebs, 2018;
Dalca, 2018; Mahapatra, 2018; Fan, 2018; Tanner, 2018; Li, 2018; Krebs, 2019b; Vos,
2019; Balakrishnan, 2019; Dalca, 2019a; Sandkühler, 2019]. These approaches cover
dense or B-spline [Vos, 2017; Vos, 2019] deformation models, diffeomorphic models
[Krebs, 2018; Dalca, 2018; Krebs, 2019b; Dalca, 2019a], single or multi-scale models
[Vos, 2019; Krebs, 2019b]. Common similarity and regularization metrics as in classical
methods are applied (cf. 2.2.1-2.2.2).

In an iterative fashion using recurrent networks, Sandkuhler et al. [Sandkühler, 2019]
obtained a more compact representation and a speedup of 15 compared to B-spline
registration for 2D images. Dropping the need for choosing a pre-defined regularizer,
Niethammer et al. proposed to learn a spatially adaptive regularizer using multi-Gaussian
kernels [Niethammer, 2019].

In a different optimization scheme, adversarial approaches based on generative adversar-
ial networks (GAN, [Goodfellow, 2014]) were used for the difficult case of multi-modal
registration [Mahapatra, 2018; Fan, 2018; Tanner, 2018]. Besides, probabilistic ap-
proaches were proposed in [Krebs, 2018; Dalca, 2018; Krebs, 2019b; Dalca, 2019a]. In
our works [Krebs, 2018; Krebs, 2019b], deformations are encoded in a low-dimensional
structured space, similar to an SDM, which allows for a variety of analysis tasks as
particularly discussed in the later chapters of this thesis.

2.4.3 Weakly Supervised

All methods that use the unsupervised objective (Eq. 2.5) and additionally make use of
some extra information during training such as labels or few ground-truth deformation
fields fall in the category of weakly supervised algorithms.

In the latter case, Fan et al. [Fan, 2019] combined supervised and unsupervised objective
functions with dynamically changing weights between both, first focusing on learning
from supervised deformation fields and later increasing the weight for the objective of
Eq. 2.5 for fine-tuning.

On the other side, using the matching of extra labels such as landmarks or segmentation
masks, has become popular in very recent approaches due to the fact that such anatomical
guidance can improve registration performance in contrast to only intensity-based metrics.
Furthermore, an advantage of DL-based approaches is unlike classical methods which
are based on geometric similarity metrics, that such extra information are only necessary
at the training stage, while test cases do not require labels. Following this principle,
Hering et al. [Hering, 2019] introduced a label and similarity metric based loss function
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for deformable registration of 2D cine-MR images. Hu et al. [Hu, 2018] proposed to
only optimize the matching of labels based on a multi-scale DICE loss and a deformation
regularization duplicating the objectives of classical geometric approaches.

More recently, it has been proposed to learn a structure-enhanced representation from
segmentations for helping with the registration of hard to register structures [Lee, 2019].
The assumption that segmentation and registration can facilitate each other has let to
approaches predicting both by combining the unsupervised registration objective Eq. 2.5
and a segmentation loss [Qin, 2018; Li, 2019]. The latter approach has been successfully
applied on cardiac cine-MR sequences and showed solving registration and segmentation
in a joint fashion helps to improve both tasks.
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In the previous chapter, we showed a state-of-the-art of deformable registration. This
chapter focuses on inter-subject registration tasks which are difficult to solve using
traditional methods because of the high variability in appearance and large deformations.
We try to overcome these difficulties by learning from known deformations and applying
a decision-making process in order to optimize the parameters of a learned statistical
deformation model. This approach can be classified as a supervised DL-based registration
algorithm as it relies on simulated and ground-truth deformations. This chapter has been
presented at the MICCAI 2017 conference [Krebs, 2017].

3.1 Introduction

Registration of images with focus on the ROI is essential in fusion and atlas-based
segmentation (e.g. [Tian, 2015]). Traditional algorithms try to compute the dense
mapping between two images by minimizing an objective function with regard to some
similarity criterion. However, besides challenges of solving the ill-posed and non-convex
problem many approaches have difficulties in handling large deformations or large
variability in appearance. Recently, promising results using deep representation learning
have been presented for learning similarity metrics [Simonovsky, 2016], predicting
the optical flow [Dosovitskiy, 2015] or the large deformation diffeomorphic metric
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mapping-momentum [Yang, 2016]. These approaches either only partially remove the
above-mentioned limitations as they stick to an energy minimization framework (cf.
[Simonovsky, 2016]) or rely on a large number of training samples derived from existing
registration results (cf. [Dosovitskiy, 2015; Yang, 2016]).

Inspired by the recent works in reinforcement learning [Mnih, 2015; Ghesu, 2016],
we propose a reformulation of the non-rigid registration problem following a similar
methodology as in 3-D rigid registration of [Liao, 2017b]: in order to optimize the
parameters of a deformation model we apply an artificial agent – solely learned from
experience – that does not require explicitly designed similarity measures, regularization
and optimization strategy. Trained in a supervised way the agent explores the space
of deformations by choosing from a set of actions that update the parameters. By
iteratively selecting actions, the agent moves on a trajectory towards the final deformation
parameters. To decide which action to take we present a deep dual-stream neural network
for implicit image correspondence learning. This work generalizes [Liao, 2017b] to non-
rigid registration problems by using a larger number of actions with a low-dimensional
parametric deformation model. Since ground-truth (GT) deformation fields are typically
not available for deformable registration and training based on landmark-aligned images
as in rigid registration (cf. [Liao, 2017b]) is not applicable, we propose a novel GT
generator combining synthetically deformed and real image pairs. The GT deformation
parameters of the real training pairs were extracted by constraining existing registration
algorithms with known correspondences in the ROI in order to get the best possible
organ-focused results. Thus, the main contributions of this work are: (1) The creation
and use of a low-dimensional parametric statistical deformation model for organ-focused
deep learning-based non-rigid registration. (2) A ground truth generator which allows
generating millions of synthetically deformed training samples requiring only a few
(<1000) real deformation estimations. (3) A novel way of fuzzy action control.

3.2 Method

3.2.1 Training Artificial Agents

Image registration consists in finding a spatial transformation Tθ, parameterized by θ ∈ Rd

which best warps the moving image M as to match the fixed image F. Traditionally,
this is done by minimizing an objective function of the form: arg minθ F(θ,M,F) =
D (F,M ◦ Tθ) +R(Tθ) with the image similarity metric D and a regularizer R. In many
cases, an iterative scheme is applied where at each iteration t the current parameter
value θt is updated through gradient descent: θt+1 = θt + λ∇F(θt,Mt,F) where Mt is
the deformed moving image at time step t: M ◦ Tθt .
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Inspired by [Liao, 2017b], we propose an alternative approach to optimize θ based
on an artificial agent which decides to perform a simple action at at each iteration t

consisting in applying a fixed increment δθat: θt+1 = θt + δθat . If θ is a d-dimensional
vector of parameters, we define 2d possible actions a ∈ A such that δθ2i[j] = εiδ

j
i and

δθ2i+1[j] = −εiδji with i ∈ {0..d − 1}. In other words the application of an action at

increases or decreases a specific parameter within θt by a fixed amount where δji is an
additional scaling factor per dimension that is set to 1 in our experiments but could be
used e.g. to allow larger magnitudes first and smaller in later iterations for fine-tuning
the registration.

The difficulty in this approach lies into selecting the action at as function of the current
state st consisting of the fixed and current moving image: st = (F,Mt). To this end,
the framework models a Markov decision process (MDP), where the agent interacts
with an environment getting feedbacks for each action. In reinforcement learning
(RL) the best action is selected based on the maximization of the quality function
at = arg maxa∈AQ?(st, a). In the most general setting, this optimal action-value function
is computed based on the reward function defined between two states R(s1, a, s2) which
serves as the feed-back signal for the agent to quantify the improvement or worsening
when applying a certain action. Thus, Q?(st, a) may take into account the immediate but
also future rewards starting from state st, as to evaluate the performance of an action
a.

Recently, in RL powerful deep neural networks have been presented that approximate the
optimal Q? [Mnih, 2015]. Ghesu et al. [Ghesu, 2016] used deep reinforcement learning
(DRL) for landmark detection in 2-D medical images. In the rigid registration approach
by Liao et al. [Liao, 2017b] the agent’s actions are defined as translation and rotation
movements of the moving image in order to match the fixed image.

In this work, the quality function ya(st) ≈ Q?(st, a) is learned in a supervised manner
through a deep regression network. More precisely, we adopt a single-stage MDP for
which Q?(st, a) = R(st, a, st+1), implying that only the immediate reward, i.e. the next
best action, is accounted for. During training, a batch of random states, pairs of F and M,
is considered with known transformation TθGT (with F ≈M ◦ TθGT ). The target quality
is defined such that actions that bring the parameters closer to its ground truth value are
rewarded:

Q?(st, a) = R(st, a, st+1) = ‖θGT − θst‖2 − ‖θGT − θast+1‖2 . (3.1)

The training loss function consists of the sum of L2-norms between the explicitly com-
puted Q-values (Eq. 3.1) for all actions a ∈ A and the network’s quality predictions
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Fig. 3.1: (a) Training Data Generation: Synthetic deformations (blue arrows) and inter-subject
GT deformations (black) are used for intra- (green) and inter-subject (red) image
pairs for training. (b) Dual-stream network used for Q-value prediction ya including
complete single-stage Markov Decision Process for testing (blue background).

ya(st) per action. Having a training batch B with random states sb the loss is defined as:
L =

∑
sb∈B

∑
a∈A ‖ya(sb)−Q?(sb, a)‖2 .

In testing, the agent iteratively selects the best action, updates the parameter θt and
warps the moving image Mt as to converge to a final parameter set representing the best
mapping from moving to fixed image (see Fig. 3.1b).

3.2.2 Statistical Deformation Model

One challenge of the proposed framework is to find a low dimensional representation of
non-rigid transformations to minimize the number of possible actions (equal to 2d), while
keeping enough degrees of freedom to correctly match images. In this work, we base our
registration method on statistical deformation models (SDM) defined from Free Form
Deformations (FFD). Other parametrizations could work as well. Typically, the dense
displacement field is defined as the summation of tensor products of cubic B-splines
on a rectangular grid. Rueckert et al. [Rueckert, 2003] proposed to further reduce the
dimensionality by constructing an SDM through a principal component analysis (PCA)
on the B-spline displacements.

We propose to use the modes of the PCA as the parameter vector θ describing the
transformation Tθ that the agent aims to optimize. The agent’s basic increment per action
εi is normalized according to the mean value of each mode estimated in training. To
have a stochastic exploration of the parameter space, predicted actions at are selected
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in a stochastic manner among the 3 best actions with given fixed probabilities (see
[Liao, 2017b]).

Fuzzy Action Control

Since parameters θ are the amplitudes of principal components, the deviation of θ2m

and θ2m+1 from the mean µm should stay within k-times the standard deviation σm

in testing. In order to keep θ inside this reasonable parametric space of the SDM, we
propose fuzzy action controlling. Thus, actions that push parameter values of θ outside
that space, are stochastically penalized – after being predicted by the network. Inspired
by rejection sampling, if an action a moves parameter θm to a value fm, then this
move is accepted if a random number generated between [0, 1] is less than the ratio
N (fm;µm, σm)/N (h;µm, σm) where hm = µm+kσm, and N is the Gaussian distribution
function. Therefore, if |fm − µm| ≤ kσm, the ratio is greater than 1 and the action is
accepted. If |fm−µm| > kσm then the action is randomly accepted, but with a decreased
likelihood as fm moves far away from µm. This stochastic thresholding is performed for
all actions at each iteration and rejection is translated into adding a large negative value
to the quality function ya. The factor k controls the tightness of the parametric space
and is empirically chosen as 1.5. By introducing fuzzy action control, the MDP gets more
robust since the agent’s access to the less known subspace of the SDM is restricted.

3.2.3 Training Data Generation

Since it is difficult to get trustworthy ground-truth (GT) deformation parameters θGT
for training, we propose to generate two different kinds of training pairs: Inter- and
intra-subject pairs where in both moving and fixed images are synthetically deformed.
The latter pairs serve as a data augmentation method to improve the generalization of
the neural network.

In order to produce the ground truth deformations of the available training images,
one possibility would be to apply existing registration algorithms with optimally tuned
parameters. However, this would imply that the trained artificial agent would only
be as good as those already available algorithms. Instead, we make use of manually
segmented regions of interest (ROI) available for both pairs of images. By constraining
the registration algorithms to enforce the correspondence between the 2 ROIs (for
instance by artificially outlining the ROIs in images as brighter voxels or using point
correspondences in the ROI), the estimated registration improves significantly around
the ROI. From the resulting deformations represented on an FFD grid, the d principal
components are extracted. Finally, these modes are used to generate the synthetic
training samples by warping the original training images based on randomly drawn
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deformation samples according to the SDM. Amplitudes of the modes are bounded to not
exceed the variations experienced in the real image pairs, similar to [Rueckert, 2003].

Intra-subject training pairs can be all combinations of synthetically deformed images of
the same subject. Since the ground-truth deformation parameters are exactly known,
it is guaranteed that the agent learns correct deformations. In the case of inter-patient
pairs a synthetic deformed image imb of one subject Im is allowed to be paired with
any synthetic deformed image inc of any other subject In with b, c denoting random
synthetic deformations (see Fig. 3.1a). Thereby, the GT parameters θGT for image pair
(imb, inc) are extracted via composition of the different known deformations such that
((imb ◦ T imb,Imθ ) ◦ T Im,Inθ ) ◦ T In,incθ . Note the first deformation would require the inverse
of a known deformation that we approximate by its opposite parameters for reasons of
computational efficiency. The additional error due to this approximation, computed on a
few pairs, remained below 2% in terms of the DICE score.

Mini-batches are created online – during training – via random image pairing where
intra- and inter-subject pairs are selected with the same probabilities. Through online
random pairing the experience of new pairs is enforced since the number of possible
image combinations can be extremely high (e.g. 1012) depending on the number of
synthetic deformations.

3.3 Experiments

We focused on organ-centered registration of MR prostate images in 2-D and 3-D with
the use case of image fusion and atlas-based segmentation [Tian, 2015]. The task is very
challenging since texture and anatomical appearance can vary a lot. 25 volumes were
selected from the MICCAI challenge PROMISE121 and 16 from the Prostate-3T database2

including prostate segmentations. Same images and the cases with rectal probes were
excluded. Randomly 8 cases were chosen for testing (56 pairs), 33 for training. As
preprocessing, translation-based registration for all pairs was carried out in 3-D using
the elastix-framework[Klein, 2010] with standard parameters followed by cropping and
down sampling the images (to 100x100/75x75x20 pixels in 2-D/3-D respectively). For
the 2-D experiments, the middle slice of each volume was taken. For the purpose of GT
generation mutual information as similarity metric and a bending energy metric was used.
The optimization function was further constrained by a Euclidean point correspondence
metric. Therefore, equally distributed points were extracted from the given mask surfaces.
elastix was used to retrieve the solution with the weights 1, 3 and 0.2 for the above-
mentioned metrics and a B-spline spacing of 16x16(x8) voxels. As a surrogate measure

1https://promise12.grand-challenge.org/
2https://wiki.cancerimagingarchive.net/display/Public/Prostate-3T
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(a) 2-D: Moving, Fixed, elastix-e8 (.84), elastix-e16 (.70), ours (.94).

(b) 3-D: Moving, Fixed, elastix-e8 (.49), elastix-e16 (.59), LCC-Demons (.67), ours (.79).

Fig. 3.2: 2-D and 3-D registration results of extreme cases with segmentation masks overlays
(fixed: green, moving: orange) and DICE scores in parenthesis.

of registration performance we used the DICE score and Hausdorff distance (HD) on the
prostate region. The extracted GT resulted in median DICE coefficients of .96 in 2-D and
.88 in 3-D. Given the B-spline displacements, the PCA was trained with d = 15 modes
in 2-D, d = 25 in 3-D (leading to 30 respectively 50 actions with a reconstruction error
< 5% (DICE score) as a compromise to keep the number of modes relatively small.

The network’s two independent processing streams contained 3 convolutional (with 32,
64, 64 filters and kernel size 3) and 2 max-pooling layers for feature extraction. The
concatenated outputs of the two streams were processed in 3 fully-connected layers (with
128, 128, 64 knots) resulting in an output with size 2d (equals the number of actions).
Batch normalization and ReLu units were used in all layers. The mini-batch size was
65/30 (2-D/3-D). For updating the network weights, we used the adaptive learning rate
gradient-based method RMSprop. The learning rate was 0.001 with a decay factor of
0.8 every 10k mini-batch back-propagations. Training took about 12 hours/ 1 day for
2-D and 3-D respectively. All experiments were implemented in Python using the deep
learning library Theano including Lasagne3. DL tasks ran on GPUs (NVIDIA GeForce GTX
TITAN X). During testing 200 MDP iterations (incl. resampling of the moving image)
took 10 seconds (GPU) in 2-D and 90 seconds in 3-D (GPU). The number of testing steps
was set empirically since registration results only change marginally when increasing the
number of steps. In empirical 2-D experiments with 1000 steps the agent’s convergence
was observable (see Fig. 3.5 in the appendix).

For testing, the initial translation registration was done with elastix by registering each of
the test images to an arbitrarily chosen template from the training base. Table 3.1 shows
that our method reaches a median DICE coefficient of .88/.76 in 2-D/3-D and therefore
shows similar performance as in [Klein, 2010] with the best reported median DICE of .76

3https://lasagne.readthedocs.io/en/latest
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Tab. 3.1: Results of prostate MR registration on the 56 testing pairs. 2-D and 3-D results in
comparison to elastix with B-spline spacing of 8 (e8) or 16 (e16) as proposed in
[Klein, 2010] and the LCC-Demons[Lorenzi, 2013] algorithm (dem). T are the initial
scores after translation registration with elastix. 3-D* are results with perfect rigid
alignment T*. nfc are our results with no fuzzy action control (HD in mm).

2-D 3-D
T e16 e8 our T e16 e8 dem our

DICE Mean .76 .74 .77 .87 .62 .63 .64 .67 .75
DICE Med. .78 .79 .81 .88 .61 .71 70 .67 .76
DICE StD. .10 .15 .13 .05 .11 .22 .20 .11 .06
HD Mean 11.6 15.2 14.5 7.7 16.1 21.2 25.3 15.9 11.8
HD Med. 11.7 13.2 13.0 7.2 15.2 18.0 21.7 15.8 11.2
HD StD. 4.3 6.8 6.7 2.5 3.9 10.7 10.9 3.9 2.9

3-D*
T* e16 e8 dem nfc our

DICE Mean .74 .72 .67 .79 .79 .80
DICE Med. .75 .77 .76 .80 .79 .81
DICE StD. .08 .17 .23 .07 .05 .04
HD Mean 9.2 13.4 14.5 10.4 8.9 8.0
HD Med. 9.0 11.6 13.5 10.8 8.8 7.9
HD StD. 2.3 6.8 6.4 2.5 2.2 1.9

on a different data set. However, on our challenging test data our method outperformed
the LCC-Demons[Lorenzi, 2013] algorithm with manually tuned parameters and elastix,
using similar parameters as proposed for prostate registration [Klein, 2010] using B-
spline spacing of 8 and 16 pixels. We found that better rigid registration can significantly
improve the algorithm’s performance as shown in the experiments with perfect rigid
alignment according to the segmentation (3-D*). Extreme results are visually shown in
Fig. 3.2. More 2-D and 3-D examples are shown in the appendix, Fig. 3.3-3.4.

Regarding the results of elastix and LCC-Demons, a rising DICE score was observed while
HD increased due to local spikes introduced in the masks (visible in Fig. 3.2b) as we
focused on the DICE scores during optimization for fair comparisons. In the 3-D* setting,
DICE scores and HDs improved when applying fuzzy action control compared to not
applying any constraints (see Table 3.1).

3.4 Conclusion

In this work, we presented a generic learning-based framework using an artificial agent
for approaching organ-focused non-rigid registration tasks appearing in image fusion and
atlas-based segmentation. The proposed method overcomes limitations of traditional
algorithms by learning optimal features for decision-making. Therefore, segmentation or
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handcrafted features are not required for the registration during testing. Additionally,
we proposed a novel ground-truth generator to learn from synthetically deformed and
inter-subject image pairs.

In conclusion, we evaluated our approach on inter-subject registration of prostate MR
images showing first promising results in 2-D and 3-D. In future work, the deformation
parametrization needs to be further evaluated. Rigid registration as in [Liao, 2017b]
could be included in the network or applied as preprocessing to improve results as shown
in the experiments. Besides, the extension to multi-modal registration is desirable.
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3.5 Appendix

2-D Results
Moving
Image

Result
Image

Fixed
Image

Case #1 Case #2 Case #3

Number of steps: 200

Final DICE scores 
Initial scores are in (.)
#1: .90 (.65)
#2: .93 (.70)
#3: .92 (.72)

Mask overlays:
- Moving (orange)
- Fixed (green)

Fig. 3.3: 2-D registration results showing moving and fixed image masks as overlays in orange
and green respectively. Final DICE scores for the 3 cases are .90, .93, .92 with initial
overlaps of .65, .70, .72.
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3-D Results
Moving
Image

Result
Image

Fixed
Image

Case #6 Case #7 Case #8

Number of steps: 200

Final DICE scores
Initial scores are in (.)
#6: .83 (.57)
#7: .85 (.54)
#8: .83 (.54)

Mask overlays:
- Moving (orange)
- Fixed (green)

Fig. 3.4: 3-D registration results with final DICE scores for the 3 cases of .83, .85, .83 with initial
overlaps of .57, .54, .54.
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Convergence
Moving
Image

Result
Image

Fixed
Image

Case #4 Case #5

2-D results after 1000 steps 
showing convergence by 
oscillation behavior  between 
neighboring states.

Final DICE scores
#4: .93 
#5: .85

Mask overlays:
- Moving (orange)
- Fixed (green)

Fig. 3.5: Convergence test, showing 2-D results after 1000 agent steps which is marked by
oscillation behavior between neighboring states (final DICE scores .93 and .85).
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In chapter 3, we have shown the successful application of a simple learned statistical
deformation model (based on PCA) for difficult registration problems. In this chapter,
we focus on learning a more sophisticated statistical deformation model from data that
allows deformation analysis tasks such as disease clustering and simulation. We propose
to learn a generative deformation model based on a conditional variational autoencoder
which can be seen as a non-linear generalization of PCA. This model is trained without
requiring ground-truth deformation fields or labels and thus, can be classified as an
unsupervised DL-based registration algorithm. The chapter is published in the journal
IEEE TMI [Krebs, 2019b] and is based on the previous conference presentation at DLMIA
2018 [Krebs, 2018].

4.1 Introduction

Deformable image registration, the process of finding voxel correspondences in a pair of
images, is an essential task in medical image analysis [Sotiras, 2013]. This mapping –
the deformation field – can be used for example in pre-op / post-op studies, to find the
same structures in images from different modalities or to evaluate the progression of a
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disease. The analysis of geometric changes in successive images is important for instance
for diagnosing cardiovascular diseases and selecting the most suited therapies. A possible
approach is to register sequential images and analyze the extracted deformations for
example by parallel transport [Lorenzi, 2014] or by creating an adapted low-dimensional
subspace [Rohé, 2018].

We propose a registration algorithm that learns a deformation model directly from
training images. Inspired by recent generative latent variable models, our method learns
a low-dimensional probabilistic deformation encoding in an unsupervised fashion. This
latent variable space encodes similar deformations close to each other and allows the
generation of synthetic deformations for a single image and the comparison and transport
of deformations from one case to another.

4.1.1 Deformable Image Registration

Traditionally, deformable registration is solved by numerical optimization of a similarity
metric which measures the distance between the fixed and the deformed moving image.
The moving image is warped given a predefined deformation model in order to get
closer to the fixed image. Unfortunately, this results in an ill-posed problem which
requires further regularization based on prior assumptions [Sotiras, 2013]. Various
regularization energies have been proposed including elastic- [Davatzikos, 1997; Burger,
2013] or diffusion-based methods [Thirion, 1998; Vercauteren, 2007b; Lorenzi, 2013]
(cf. [Sotiras, 2013]). Diffeomorphic transforms are folding-free and invertible. The
enforcement of these properties in many medical applications has led to the wide use
of diffeomorphic registration algorithms. Popular parametrizations of diffeomorphisms
include the Large Deformation Diffeomorphic Metric Mapping (LDDMM) [Beg, 2005; Cao,
2005; Zhang, 2015], a symmetric normalization approach [Avants, 2008] or stationary
velocity fields (SVF) [Arsigny, 2006; Vercauteren, 2008].

In recent years, learning-based algorithms – notably Deep Learning (DL) – have been
proposed to avoid long iterative optimization at test time. In general, one can classify
these algorithms as supervised and unsupervised. Due to the difficulty of finding ground
truth voxel mappings, supervised methods need to rely on predictions from existing
algorithms [Yang, 2017; Rohé, 2017], simulations [Sokooti, 2017; Uzunova, 2017;
Eppenhof, 2018a] or a combination of both [Krebs, 2017; Mahapatra, 2018]. The latter
can be achieved for example by projecting B-spline displacement estimations in the space
of a statistical deformation model from which one can extract simulations by sampling of
its components [Krebs, 2017]. Diffeomorphic approaches predict patches of the initial
momentum of LDDMMs [Yang, 2017] or dense SVFs [Rohé, 2017]. Supervised methods
are either limited by the performance of existing algorithms or the realism of simulations.
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Furthermore, retrieving deformations from existing algorithms on a large database is
time-consuming and increases the training complexity.

Unsupervised approaches to registration aim to optimize an image similarity, often
combined with a penalization or smoothing term (regularization). These learning
approaches first appeared in the computer vision community [Jason, 2016; Liang, 2017]
and were recently applied to medical image registration [Vos, 2017; Balakrishnan, 2018;
Fan, 2019; Dalca, 2018; Tanner, 2018]. Unlike traditional methods, learning-based
approaches also can include task-specific information such as segmentation labels during
training while not requiring those labels at test time. Instead of using an image similarity,
Hu et al. [Hu, 2018] proposed to optimize the matching of labels based on a multi-scale
DICE loss and a deformation regularization. Fan et al. [Fan, 2019] proposed to jointly
optimize a supervised and unsupervised objective by regressing ground-truth deformation
fields (from an existing algorithm), while simultaneously optimizing an intensity-based
similarity criterion. The disadvantage of these semi-supervised approaches is that their
training complexity is higher since label information needs to be collected, and for
example deformations outside the segmented areas are not guaranteed to be captured.
Most unsupervised approaches use B-spline grids or dense deformation fields, realized
with spatial transformer layers (STN [Jaderberg, 2015]) for an efficient and differentiable
linear warping of the moving image. However, it has not been shown yet that these
approaches lead to sufficiently regular and plausible deformations.

4.1.2 Deformation Analysis and Transport

Understanding the deformation or motion of an organ goes beyond the registration
of successive images. Therefore, it has been proposed to compare and characterize
shape and motion patterns by normalizing deformations in a common reference frame
[Lorenzi, 2014; Duchateau, 2011] and for example by applying statistical methods to
study the variation of cardiac shapes [Bai, 2015]. In the diffeomorphic setting, various
dimensionality reduction methods have been proposed. Vaillant et al. [Vaillant, 2004]
modeled shape variability by applying PCA in the tangent space to an atlas image. Qiu
et al. used a shape prior for surface matching [Qiu, 2012]. While these methods are
based on probabilistic inference, dimensionality reduction is done after the estimation
of diffeomorphisms. Instead Zhang et al. [Zhang, 2014] introduced a latent variable
model for principle geodesic analysis that estimates a template and principle modes of
variation while infering the latent dimensionality from the data. Instead of having a
general deformation model capable of explaining the deformations of any image pair in
the training data distribution, this registration approach still depends on the estimation
of a smooth template. Using the SVF parametrization for cardiac motion analysis, Rohé
et al. [Rohé, 2018] proposed to build affine subspaces on a manifold of deformations,
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the barycentric subspaces, where each point on the manifold represents a 3-D image and
the geodesic between two points describes the deformation.

For uncertainty quantification, Wassermann et al. [Wassermann, 2014] used a prob-
abilistic LDDMM approach applying a stochastic differential equation and Wang et
al. [Wang, 2018] employed a low-dimensional Fourier representation of the tangent
space of diffeomorphisms with a normal assumption. While both approaches contain
probabilistic deformation representations, they have not been used for sampling and the
representations have not been learned from a large dataset.

In the framework of diffeomorphic registration, parallel transport is a promising normal-
ization method for the comparison of deformations. Currently used parallel transport
approaches are the Schild’s [Lorenzi, 2011] or pole ladder [Lorenzi, 2014; Jia, 2018]
using the SVF parametrization or approaches based on Jacobi fields using the LDDMM
parametrization [Younes, 2007; Louis, 2017]. In general, these approaches aim to con-
vert and apply the temporal deformation of one subject to another subject. However, this
transport process typically requires multiple registrations, including difficult registrations
between different subjects.

4.1.3 Learning-based Generative Latent Variable Models

Alternatively and inspired by recently introduced learning-based generative models, we
propose to learn a latent variable model that captures deformation characteristics just
by providing a large dataset of training images. In the computer vision community,
such generative models as Generative adversarial networks (GAN) [Goodfellow, 2014],
stochastic variational autoencoders (VAE) [Kingma, 2013] and adversarial autoencoders
(AAE) [Makhzani, 2016] have demonstrated great performance in learning data distri-
butions from large image training sets. The learned models can be used to generate
new synthetic images, similar to the ones seen during training. In addition, probabilistic
VAEs are latent variable models which are able to learn continuous latent variables with
intractable posterior probability distributions (encoder). Efficient Bayesian inference can
be used to deduce the posterior distribution by enforcing the latent variables to follow a
predefined (simple) distribution. Finally, a decoder aims to reconstruct the data from that
representation [Kingma, 2013]. As an extension, conditional variational autoencoders
(CVAE) constrain the VAE model on additional information such as labels. This leads to a
latent variable space in which similar data points are mapped close to each other. CVAEs
are for example used for semi-supervised classification tasks [Kingma, 2014b].

Generative models also showed promising results in medical imaging applications such
as in classifying cardiac diseases [Biffi, 2018] or predicting PET-derived myelin content
maps from multi-modal MRI [Wei, 2018]. Recently, unsupervised adversarial training

36 Chapter 4 Learning a Probabilistic Model for Diffeomorphic Registration



approaches have been proposed for image registration [Mahapatra, 2018; Fan, 2018;
Tanner, 2018]. Dalca et al. [Dalca, 2018] developed a framework which enforces a
multivariate Gaussian distribution on each component of the velocity field for measuring
uncertainty. However, these approaches do not learn global latent variable models which
map similar deformations close to each other in a probabilistic subspace of deformations.
To the best of the authors’ knowledge, generative approaches for registration which allow
the sampling of new deformations based on a learned low-dimensional encoding have
not been proposed yet.

4.1.4 Probabilistic Registration using a Generative Model

We introduce a generative and probabilistic model for diffeomorphic image registration,
inspired by generative latent variable models [Kingma, 2013; Kingma, 2014b]. In
contrast to other probabilistic approaches such as [Yang, 2017; Dalca, 2018], we learn a
low-dimensional global latent space in an encoder-decoder neural network where the
deformation of a new image pair is mapped to and where similar deformations are close
to each other. This latent space, learned in an unsupervised fashion, can be used to
generate an infinite number of new deformations for any single image from the data
distribution and not only for a unique template as in the Bayesian inference procedure
for model parameter estimation in [Zhang, 2014]. From this abstract representation
of deformations, diffeomorphic deformations are reconstructed by decoding the latent
code under the constraint of the moving image. To the best of the author’s knowledge,
this method describes the first low-dimensional probabilistic latent variable model that
can be used for deformation transport from one subject to another. Through applying a
latent deformation code of one image pair on a new constraining image, deformation
transport (and sampling from the latent space) is useful for instance for simulating
cardiac pathologies or synthesizing a large number of pathological and healthy heart
deformations for data augmentation purposes.

We use a variational inference method (a CVAE [Kingma, 2014b]) with the objective of
reconstructing the fixed image by warping the moving image. The decoder of the CVAE
is conditioned on the moving image to ease the encoding task: by making appearance
information easily accessible in the decoder (in the form of the moving image), the
latent space is more likely to encode deformation rather than appearance information.
This implicit decoupling of deformation and appearance information allows to transport
deformations from one case to another by pairing a latent code with a new conditioning
image. The framework provides multi-scale estimations where velocities are extracted at
each scale of the decoding network. We use the SVF parametrization and diffeomorphisms
are extracted using a vector field exponentiation layer, based on the scaling and squaring
algorithm proposed in [Arsigny, 2006]. This algorithm has been successfully applied
in neural networks in our previous work [Krebs, 2018] and in [Dalca, 2018]. The
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framework contains a dense spatial transformer layer (STN) and can be trained end-
to-end with a choice of similarity metrics: to avoid asymmetry, we use a symmetric
and normalized local cross correlation criterion. In addition, we provide a generic
formulation to include regularization terms to control the deformation appearance (if
required), such as diffusion regularization in form of Gaussian smoothing [Lorenzi, 2013].
During training, similarity loss terms for each scale and a loss term enforcing a prior
assumption on the latent variable distribution are optimized by using the concept of
deep supervision (cf. [Lee, 2015]). During testing, the low-dimensional latent encoding,
multi-scale estimations of velocities, deformation fields and deformed moving image are
retrieved in a single forward path of the neural network.

We evaluate our framework on the registration of cardiac MRIs between end-diastole
(ED) and end-systole (ES) and provide an intensive analysis on the structure of the latent
code and evaluate its application for transporting encoded deformations from one case
to another.

This paper extends our preliminary work [Krebs, 2018] by adding:

• Detailed derivations of the probabilistic registration framework including a generic
regularization model.

• Deep supervision, multi-scale estimations and a normalized loss function to improve
registration performances.

• Analysis of size and structure of the latent variable space.
• Evaluation of the deformation transport by comparing it to a state-of-the-art algo-

rithm [Lorenzi, 2014].

4.2 Methods

In image registration, the goal is to find the spatial transformation Tz : R3 → R3

which is parametrized by a d-dimensional vector z ∈ Rd. The optimal values of z are
the ones which best warp the moving image M in order to match the fixed image F
given the transformation Tz. Both images F and M are defined in the spatial domain
Ω ∈ R3. Typically, z is optimized by minimizing an objective function of the form:
arg minz F(z,M,F ) = D (F,M ◦ Tz) +R(Tz), where D is a metric measuring the sim-
ilarity between fixed F and warped moving image M ◦ Tz. R is a spatial regularizer
[Sotiras, 2013]. Recent unsupervised DL-based approaches [Jason, 2016; Vos, 2017;
Balakrishnan, 2018] try to learn to maximize such a similarity metric D using stochastic
gradient descent methods and a spatial transformer layer (STN [Jaderberg, 2015]) for
warping the moving image M .
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In extension, we propose to model registration by learning a probabilistic deformation
parametrization vector z from a set of example image pairs (M,F ). Thereby, we constrain
the low-dimensional z to follow a prior distribution p(z). In other words, our approach
contains two key parts: a latent space encoding to model deformations and a decoding
function that aims to reconstruct the fixed image F from this encoded transformation –
by warping the moving image M . In addition, this decoding function is generative as it
allows to sample new deformations based on p(z).

4.2.1 Probabilistic model for multi-scale registration

We assume a generative probabilistic distribution for registration ptrue(F |M), capturing
the deformation from M towards F . We aim at learning a parameterized model pθ(F |M)
with parameters θ which allows us to sample new F ’s that are similar to samples from the
unknown distribution ptrue. To estimate the posterior pθ we use a latent variable model
parameterized by z. Following the methodology of a VAE [Kingma, 2013], we assume
the prior p(z) to be a multivariate unit Gaussian distribution with spherical covariance I:

p(z) ∼ N (0, I). (4.1)

Using multivariate Gaussians offers a closed-form differentiable solution, however, p(z)
could take the form of other distributions. In this work, we parameterize deformation
fields φ by stationary velocity fields (SVF), denoted by velocities v: φ = exp(v) [Arsigny,
2006]. These transformation maps φ are given as the sum of identity and displacements
u(x) for every position x ∈ Ω: φ(x) = x+ u(x). In the multi-scale approach, we define
velocities vs at scale s ∈ S where S is the set of different image scales (s = 1 describes
the original scale for which we omit writing s and s = 2, 3, ... the scale, down-sampled
by a factor of 2s−1). For each scale s, a family of decoding functions fsv is defined,
parameterized by a fixed θs ⊂ θ and dependent on z and the moving image M s:

vs = fsv (z,M s; θs). (4.2)

In the training, the goal is to optimize θs such that all velocities vs are likely to lead to
warped moving images M∗s that will be similar to F s in the training database. M∗s is
obtained by exponentiation of vs and warping of the moving image. Using Eq. 4.2, we
can define the families of functions f s:

M∗s := fs(z,M s; θs) = M s ◦ exp(fsv (z,M s; θs)). (4.3)

In order to express the dependency of f s on z and M s explicitly, we can define a
distribution p(F s|z,M s; θs). The product over the different scales gives us the output
distribution:

pθ(F |z,M) =
∏
s∈S

p(F s|z,M s; θs). (4.4)
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Fig. 4.1: (a) Generative process for registration representing the likelihood of the fixed image
F given the latent variable vector z and moving M : pθ(F |z,M), where ω and θ are
fixed parameters. (b) Generative process for regularized image registration where the
likelihood depends on the regularized velocities pθ(F |v∗,M).

By using the law of total probability, this leads to the following stochastic process for
computing pθ(F |M) which is also visualized in Fig. 4.1a (cf. [Kingma, 2014b]):

pθ(F |M) =
∫
z
pθ(F |z,M)p(z)dz. (4.5)

The likelihood pθ(F |z,M) can be any distribution that is computable and continuous in θ.
In VAEs, the choice is often Gaussian, which is equivalent to adopting a sum-of-squared
differences (SSD) criterion (cf. [Kingma, 2013]). We propose instead to use a local
cross-correlation (LCC) distribution due to its robustness properties and superior results
in image registration compared to SSD (cf. [Lorenzi, 2013; Avants, 2011]). Thus, we use
the following Boltzmann distribution as likelihood:

psθ(F s|z,M s) ∼ exp(−λDLCC(F s,M s, vs)), (4.6)

where vs = fsv (z,M s; θs) are the velocities and λ is a scalar hyperparameter. The
symmetric DLCC is defined as:

DLCC(F s,M s, vs) = 1
P

∑
x∈Ω

∑
i

((
F ∗sxi − F ∗sx

) (
M∗sxi −M∗sx

))2(∑
i

(
F ∗sxi − F ∗sx

)2
)(∑

i

(
M∗sxi −M∗sx

)2
)

+ τ
− 1, (4.7)

with P pixels x ∈ Ω, the symmetrically warped images M∗s = M s ◦ exp (vs/2) and
F ∗s = F s ◦ exp (−vs/2). The bar Fx symbolizes the local mean grey levels of Fx derived
by mean filtering with kernel size k at position x. i is iterating through this k× k-window.
A small constant τ is added for numerical stability (τ = 1e−15).
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Learning the constrained deformation encoding

In order to optimize the parameterized model over θ (Eq. 4.5), two problems must be
solved: First, how to define the latent variables z, for example decide what information
these variables represent. VAEs assume there is no simple interpretation of the dimensions
of z but instead assert that samples of z are drawn from a simple distribution p(z).

Second, the integral over z is intractable since one would need to sample a too large
number of z’s to get an accurate estimate of pθ(F |M). Instead of sampling a large
number of z’s, the key assumption behind VAEs is to sample only z’s that are likely to
have produced F and compute pθ(F |M) only from those. To this end, one needs to
compute the intractable posterior p(z|F,M). Due to this intractability, in VAEs [Kingma,
2013], the posterior is approximated by learning an encoding distribution qω(z|F,M),
using a neural network with parameters ω (the encoder). This approximated distribution
can be related to the true posterior using the Kullback-Leibler divergence (KL) which
leads (after rearranging the terms) to the evidence lower bound (ELBO) of the log
marginalized likelihood log pθ(F |M) (cf. [Kingma, 2013; Kingma, 2014b]):

log pθ(F |M)− KL [qω(z|F,M)‖p(z|F,M)] =

Ez∼q
[
log pθ(F |z,M)

]
− KL [qω(z|F,M)‖p(z)] . (4.8)

The KL-divergence on the left hand side gets smaller the better qω(z|F,M) approximates
p(z|F,M) and ideally vanishes if qω is of enough capacity. Thus, maximizing log pθ(F |M)
is equivalent to maximizing the ELBO on the right hand side of the equation consisting of
encoder qω and decoder pθ which can be both optimized via stochastic gradient descent.

Optimizing the ELBO

According to the right-hand side of Eq. 4.8, there are two terms to optimize, the KL-
divergence of prior p(z) and encoder distribution qω(z|F,M) and the expectation of
the reconstruction term log pθ(F |z,M). Since the prior is a multivariate Gaussian, the
encoder distribution is defined as qω(z|F,M) = N (z|µω(F,M),Σω(F,M)), where µω and
Σω are deterministic functions learned in an encoder neural network with parameters
ω. The KL-term can be computed in closed form as follows (constraining Σω to be
diagonal):

KL[N (µω(F,M),Σω(F,M))‖N (0, I)] =
1
2
(
tr(Σω(F,M)) + ‖µω(F,M)‖ − k − log det(Σω(F,M))

)
,

4.2 Methods 41



where k is the dimensionality of the distribution.

The expected log-likelihood Ez∼q [log pθ(F |z,M)], the reconstruction term, could be
estimated by using many samples of z. To save computations, we treat pθ(F |z,M) as
Ez∼q [log pθ(F |z,M)] by only taking one sample of z. This can be justified as optimization
is already done via stochastic gradient descent, where we sample many image pairs (F,M)
from the dataset X and thus witness different values for z. This can be formalized with
the expectation over F,M ∼ X :

EF,M∼X
[
Ez∼q

[
log pθ(F |z,M)

]
− KL [qω(z|F,M)‖p(z)]

]
.

To enable back-propagation through the sampling operation qω(z|F,M), the reparametriza-
tion trick [Kingma, 2013] is used in practice, where z = µω + εΣ1/2

ω (with ε ∼ N(0, I)).
Thus, for image pairs (F,M) from a training dataset X the actual objective becomes:

EF,M∼X
[
Eε∼N (0,I)

[
log pθ(F |z = µω(F,M) + Σ1/2

ω (F,M) ∗ ε,M)
]
−

KL [qω(z|F,M)‖p(z)]
]
. (4.9)

After insertion of Eq. 4.4, the log of the product over the scales s ∈ S results in the sum
of the log-likelihood distributions:

EF,M∼X
[
Eε∼N (0,I)

[∑
s∈S

log pθs(F s|z = µω(F,M) + Σ1/2
ω (F,M) ∗ ε,M s)

]
−

KL [qω(z|F,M)‖p(z)]
]
. (4.10)

4.2.2 Introducing regularization on velocities

So far, we have considered that at each scale s, a velocity field vs is generated by a
decoding function fsv (z,M s; θs) through a neural network. To have a better control of its
smoothness, we propose to regularize spatially vs through a Gaussian convolution with
standard deviation σG:

v̂s = GσG ∗ v
s (4.11)

Gaussian smoothing was applied here, but it could be replaced by any quadratic Tikhonov
regularizer or by any functional enforcing prior knowledge about the velocity field.

In the remainder, we show how the regularization of velocities can be inserted into the
proposed probabilistic framework. To make the notation less cluttered, we drop the scale
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Fig. 4.2: (a) Probabilistic multi-scale registration network based on a CVAE. An encoder maps
deformations to latent variables z ∈ Rd (with for example d = 32) from which a decoder
extracts velocities and diffeomorphisms at different scales while being conditioned on
the moving image M . (b) After training, the decoder network can be also used to
sample and transport deformations: Apply z-code on any new image M .

s superscript in the velocity notations. Until now, the velocities v have been handled
as fixed parameters v = fv(z,M ; θ). We can equivalently assume that velocities v are
random variables with a Dirac posterior probability : pθ(v|z,M) ∼ δfv(z,M ;θ)(v).
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We now introduce the random variable v∗ which represents the regularized velocities
as shown in Fig. 4.1b. This quantity is linked to the regular velocities v through a
Gaussian distribution p(v|v∗) = G(v∗, 1) such that v is close to v∗ in terms of L2 norm.
Furthermore, we define a diffusion-like regularization prior on v∗ [Nielsen, 1997]:

log p(v∗) ∝
∫

Ω

∞∑
i=1

σ2i
G

2ii!

[
∂i

∂Ωi
v∗
]2

dΩ,

taking into account the Taylor expansion of the Fourier transform of the Gaussian. The
maximum a posteriori of the regularized velocities v̂ is then obtained through Bayes law:

v̂ = arg max
v∗

log p(v∗|v) = arg max
v∗

logp(v|v∗) + logp(v∗)

which in this case is equivalent to solving the Heat equation [Nielsen, 1997] and leads to
a Gaussian convolution: v̂ = GσG ∗ v.

Finally, we conveniently assume that the posterior probability of v∗ is infinitely peaked
around its mode, i.e. p(v∗|v) ∼ δv̂(v∗) (assumption sometimes made for the Expectation-
Maximization algorithm [Kurihara, 2009]). In the decoding process, we can now
marginalize out the velocity variables v and v∗ by integrating over both such that only v̂
remains:

pθ(F |M) =
∫
z

∫
v

∫
v∗
p(F |v∗,M) p(v∗|v) pθ(v|z,M) p(z) dv dv∗ dz

=
∫
z
p(F |v̂,M) p(z) dz. (4.12)

Thus, the proposed graphical model leads to a decoder working with the regularized
velocity field v̂ instead of the v generated by the neural network. When combining
regularized velocities v̂s at all scales, we get:

pθ(F |M) =
∫
z

∏
s∈S

p(F s|v̂s,M s) p(z) dz. (4.13)

This can be optimized as before and leads to Gaussian convolutions at each scale if
considering diffusion-like regularization. Thus, the multi-scale loss function per training
image pair (F ,M) for one sample ε is defined as (cf. Eq. 4.10):

arg min
ω,θ

1
2
(
tr(Σω) + µ>ωµω − k − log det(Σω)

)
− λ

∑
s∈S
DLCC(F s,M s, v̂s), (4.14)

where v̂s depends on vs and therefore on θ (cf. Eq. 4.2 and 4.11).
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4.2.3 Network architecture

The encoder-decoder neural network takes the moving and the fixed image as input and
outputs the latent code z, velocities v, the deformation field φ and the warped moving
image M∗. The last three are returned at the different scales s. The encoder consists
of strided convolutions while the bottleneck layers (µ, σ, z) are fully-connected. The
deconvolution layers in the decoder were conditioned by concatenating each layer’s
output with sub-sampled versions of M. Making appearance information of the moving
image easily accessible for the decoder, allows the network to focus on deformation
information – the differences between moving and fixed image – that need to pass
through the latent bottleneck. While it is not guaranteed that the latent representation
contains any appearance information, it comes at a cost to use the small bottleneck
for appearance information. At each decoding scale, a convolutional layer reduces the
number of filter maps to three. Then, a Gaussian smoothing layer (cf. Eq. 4.11) with
variance σ2

G is applied on these filter maps. The resulting velocities vs (a SVF) are
exponentiated by the scaling and squaring layer [Krebs, 2018] in order to retrieve the
diffeomorphism φs which is used by a dense STN to retrieve the warped image M∗s. The
latent code z is computed according to the reparametrization trick. During training, the
network parameters are updated through back-propagation of the gradients with respect
to the objective Eq. 4.10, defined at each multi-scale output. Finally during testing,
registration is done in a single forward path where z is set to µ since we want to execute
registration deterministically. One can also think of drawing several z using σ and use
the different outputs for uncertainty estimation as in [Dalca, 2018] which we do not
further pursue in this work. The network architecture can be seen in Fig. 4.2a. Besides
registration, the trained probabilistic framework can be also used for the sampling of
deformations as shown in Fig. 4.2b.

4.3 Experiments

We evaluate our framework on cardiac intra-subject registration. End-diastole (ED)
frames are registered to end-systole (ES) frames from cine-MRI of healthy and patho-
logical subjects. These images show large deformations. Additionally, we evaluate
the learned encoding of deformations by visualizing the latent space and transporting
encoded deformations from one patient to another. All experiments are in 3-D.

Data

We used the 334 ED-ES frame pairs of short-axis cine-MRI sequences. 184 cases were
acquired from different hospitals and 150 cases were used from the Automatic Cardiac
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Fig. 4.3: Boxplots of registration results comparing the undeformed (Undef) case to the different
algorithms: lcc-demons (Dem), SyN, voxelmorph (VM) and our single scale (S1)
respectively multi-scale (S3) using RMSE, gradient of the determinant of the Jacobian,
DICE scores (logit-transform) and Hausdorff distances (HD in mm). Mean values are
denoted by red bars. Higher values are better.

Diagnosis Challenge (ACDC) at STACOM 2017 [Bernard, 2018], mixing congenital heart
diseases with images from adults. We used 234 cases for training and for testing 100
cases from ACDC, that contain segmentation and disease class information. The testing
set contained 20 cases of each of the following cardiac diseases: dilated cardiomyopathy
(DCM), hypertrophic cardiomyopathy (HCM), previous myocardical infarction (MINF),
abnormal right ventricle (RV) and healthy (Normal). All images were resampled with a
spacing of 1.5× 1.5× 3.15 mm and cropped to a size of 128× 128× 32 voxels, by equally
removing voxels from all sides. These dimensions were chosen to save computation time
and are not a limitation of the framework.

Implementation details

Our neural network consisted of four encoding convolutional layers with strides (2, 2, 2,
1) and three decoding deconvolutional layers. Each scale contained two convolutional
layers and a convolutional Gaussian layer with σG = 3mm (kernel size 15) in front of an
exponentiation and a spatial transformer layer using trilinear interpolation (cf. Fig. 4.2a).
The dimensionality of the latent code z was set to d = 32 as a compromise of registration
quality and generalizability (cf. experiment on latent vector dimensionality). The number
of trainable parameters in the network was ∼420k. LeakyReLu activation functions and
L2 weight decay of 1 ∗ 10−4 were applied on all layers except the last convolutional layer
in each scale where a tanh activation function was used in order to avoid extreme velocity
values during training. All scales were trained together, using linearly down-sampled
versions of the input images for the coarser scales. In all experiments, the number of
iterations in the exponentiation layer was set to N = 4 (evaluated on a few training
samples according to the formula in [Arsigny, 2006]). During the training, the mean
filter size of the LCC criterion was k = 9. The loss hyper parameter was empirically
chosen as λ = 5000 such that the similarity loss was optimized while the latent codes
roughly had zero means and variances of one. We applied a learning rate of 1.5 ∗ 10−4
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with the Adam optimizer and a batch size of one. For augmentation purposes, training
image were randomly shifted, rotated, scaled and mirrored. The framework has been
implemented in Tensorflow using Keras1. Training took ∼24 hours and testing a single
registration case took 0.32s on a NVIDIA GTX TITAN X GPU.

Registration

We compare our approach with the LCC-demons (Dem, [Lorenzi, 2013]) and the ANTs
software package using Symmetric Normalization (SyN, [Avants, 2008]) with manually
tuned parameters (on a few training images) and the diffeomorphic DL-based method
VoxelMorph [Dalca, 2018] (VM) which has been trained using the same augmentation
techniques as our algorithm. For the latter, we set σ = 0.05, λ = 50000 and applied a
reduced learning rate of 5 ∗ 10−5 for stability reasons while using more training epochs.
Higher values for λ led to worse registration accuracy. We also show the improvement
of using a multi-scale approach (with 3 scales, S3) compared to a single-scale objective
(S1).

We measure registration performance with the following surrogates: intensity root mean
square error (RMSE), DICE score, 95%-tile Hausdorff distance (HD in mm). To quantify
deformation regularity, we show the determinant of the Jacobian qualitatively, while we
also computed the mean magnitude of the gradients of the determinant of the Jacobian
(Grad Det-Jac). We decided to report this second-order description of deformations to
better quantify differences in smoothness among the different methods, which are not
obvious by taking the mean of the determinant of the Jacobian as bigger and smaller
values tend to cancel each other out. DICE and HD scores were evaluated on the following
anatomical structures: myocardium (LV-Myo) and epicardium (LV) of the left ventricle,
left bloodpool (LV-BP), right ventricle (RV) and LV+RV (Fig. 4.5).

Table 4.1 shows the mean results and standard deviations of all algorithms. In terms
of DICE scores, our algorithm using three scales (Our S3) shows the best performances
on this dataset while the single-scale version (Our S1) performed similarly compared
to the LCC-demons and the SyN algorithm. Hausdorff distances were significantly
improved using both of our algorithms. Detailed registration results are shown in Fig. 4.3.
Interestingly, we found that the SyN algorithm showed marginally better DICE scores
than the LCC-demons which has been also reported on brain data [Lorenzi, 2013].

Qualitative registration results of a pathological (HCM) and a healthy case (Normal) are
presented in Fig. 4.4a2. The warped moving image (with and wihout grid overlay) and

1https://keras.io/
2Qualitative registration results for all five diseases are also presented in Fig. 10-12 (available in the

supplementary files /multimedia tab).
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Fig. 4.4: (a) Qualitative registration results showing a pathological (hypertrophy) and a normal
case. Warped moving image M∗, displacements u, warped moving image with grid
overlay and Jacobian determinant are shown for LCC-demons (Dem), SyN, voxelmorph
(VM) and our approach using 3 scales (Our S3). (b) Middle and coarse scale predictions
of our multi-scale method (Our S3).

the determinant of the Jacobian (Det. Jac.) are shown. Displacements are visualized
using the color encoding as typical for the optical flow in computer vision tasks. Middle
and coarse scale outputs of our multi-scale method are shown in Fig. 4.4b. We computed
the determinant of the Jacobian using SimpleITK3 and found that for all methods no
negative values were observed on our test dataset. Compared to the other algorithms,
our approach produced smoother and more regular deformations as qualitatively shown
by the determinant of the Jacobian in Fig. 4.4a and quantitatively by the significantly
smaller mean gradients of the determinant of the Jacobian (Table 4.1)4. Despite the fact
of being diffeomorphic, the voxelmorph algorithm produced more irregular deformation

3http://www.simpleitk.org/
4Visualization of the gradients of the Jacobian determinant are presented in Fig. 13 (available in the

supplementary files /multimedia tab).
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Fig. 4.5: Cardiac structures used only for measuring registration accuracy.

fields compared to all other algorithms. Our single-scale approach resulted in slightly
smoother deformations which is probably due to the fact that it performed less accurately
in compensating large deformations.

Tab. 4.1: Registration performance with mean and standard deviation scores (in brackets) of
RMSE, DICE, Hausdorff Distance (HD in mm) and the mean gradient of the determinant
of Jacobians (Grad Det-Jac, ×10−2) comparing the undeformed case (Undef), LCC-
demons (Dem), SyN, voxelmorph (VM) and our method.

Method RMSE DICE HD Grad Det-Jac
Undef 0.37 (0.17) 0.707 (0.145) 10.1 (2.2) –
Dem 0.29 (0.16) 0.799 (0.096) 8.3 (2.7) 2.9 (1.0)
SyN 0.32 (0.16) 0.801 (0.091) 8.1 (3.6) 3.4 (0.5)
VM 0.24 (0.08) 0.790 (0.096) 8.4 (2.6) 9.2 (0.5)
Our S1 0.31 (0.15) 0.797 (0.093) 7.9 (2.6) 1.2 (0.3)
Our S3 0.30 (0.14) 0.812 (0.085) 7.3 (2.7) 1.4 (0.3)

We applied the Wilcoxon signed-rank test with p < 0.001 to evaluate statistical signif-
icance of the differences in the results of Fig. 4.3. This method is chosen as a paired
test without the assumption of normal distributions. For all metrics, the results of our
multi-scale algorithm (Our S3) showed significant differences compared to the results of
all other methods (including Our S1). With respect to our single-scale algorithm (Our
S1), only the differences in DICE scores were not statistically significant in comparison
with the LCC-demons (Dem).

Note, that higher DICE and HD scores can be achieved by choosing a higher latent
dimensionality (cf. Experiment 4.3), which however comes at the cost of a more complex
encoding space, making analysis tasks more difficult. We also tested the first version of
voxelmorph [Balakrishnan, 2018] on our dataset. We chose to show the results of the
latest version [Dalca, 2018] due to the fact that this version is diffeomorphic and that its
DICE and HD results were better (cf. [Krebs, 2018]).
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Fig. 4.6: Showing the influence of the latent vector size d on the registration accuracy in terms
of DICE and Hausdorff distances in mm of the different anatomical structures with the
mean of all structures shown in the grey boxes. The performance of the LCC-demons
(Dem) is shown as reference with dashed lines.

Deformation encoding

For evaluating the learned latent space, we investigated (a) the effects of the size of
the latent vector on the registration accuracy, (b) the structure of the encoded space
by visualizing the distribution of cardiac diseases and showing simulated deformations
along the two main axes of variations and (c) we applied our framework on deformation
transport and compare its performance with a state-of-the-art algorithm.

Latent Vector Size In Fig. 4.6 we analyzed the influence of the size of the latent code
vector with respect to registration accuracy in terms of DICE and HD scores. With a
relatively small latent size of d = 8, competitive accuracy is achieved. With an increasing
dimensionality, performance increases but reaches a plateau eventually. This behavior is
expected, since CVAEs tend to ignore components if the dimensionality of the latent space
is too high [Kingma, 2014b]. For the cardiac use case, we chose d = 32 components as a
trade-off between accuracy and latent variable size.

Disease Distribution and Generative Latent Space In this experiment, we used disease
information and encoded z-codes of the test images to visualize the learned latent space.
Using linear CCA (canonical correlation analysis), we projected the z-codes (32-D) to a
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Fig. 4.7: Cardiac disease distribution after projecting the latent variables z of the test images on
a 2-D CCA (canonical correlation analysis) space. Using an 8-D CCA and applying SVM
with 10-fold cross-validation leads to a classification accuracy of 83%

2-D space by using the two most discriminative CCA components. Fig. 4.7 shows that
the 100 test sets are clustered by classes in this space. Taking the 8 most discriminative
CCA components into account, the classification accuracy of the five classes is 83% with
10-fold cross-validation using support vector machines (SVM). In a second experiment,
we applied principal component analysis (PCA) on the z-codes of the training dataset.
We simulated deformations by sampling equally distributed values in the range of ±2.5
standard deviations of the two largest principal components and extracting the z-codes
through inverse projections. Fig. 4.8 shows reconstructed displacements and deformed
images when applying these generated z-codes on a random test image. One can see the
different influences of the two eigenvalues. The first eigenvalue (horizontal) focuses on
large deformations while the second one focuses on smaller deformations as the right
ventricle. The results of these two experiments which are solely based on applying simple
linear transformations, suggest that deformations that are mapped close to each other in
the deformation latent space have similar characteristics.

Deformation Transport Pathological deformations can be transported to healthy sub-
jects by deforming the healthy ES frames using pathological ED-ES deformations. Our
framework allows for deformation transport by first registering the ED-ES frames of a
given pathological case (Step 1), which we call prediction in this experiment. Secondly,
we use the z-codes from these predictions along with the ED frame of a healthy subject
to transport the deformations (Step 2, cf. Fig. 4.2b). Note, that this procedure does not
require any inter-subject registrations.
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Fig. 4.8: Reconstruction of simulated displacements and an accordingly warped random test
image after generating z-codes by equally sampling along the two largest principal
components within a range of ±2.5 sigma around their mean values (red box). The
PCA was fitted using all training z-codes. The blue box indicates the image closest to
the identity deformation. One can see that the horizontal eigenvalue influences large
deformations while the vertical eigenvalue focuses on smaller ones, for example the
right ventricle.

We compare our approach with the pole-ladder algorithm (PL [Lorenzi, 2014]). All
intra- and inter-subject registrations required by the pole ladder were performed using
the LCC-demons [Lorenzi, 2013]. For the inter-subject pairs, we aligned the test data
with respect to the center of mass of the provided segmentation and rotated the images
manually for rigid alignment. This alignment step was done only for the pole ladder
experiment5.

Qualitative results are shown in Fig. 4.9 where the predicted deformations of one
hypertrophy (A, HCM) and one cardiomyopathy (B, DCM) case (step 1) were transported
to two healthy (Normal) subjects (step 2, targets C and D). Note that our algorithm
automatically determines orientation and location of the heart. In Table 4.2, we evaluated
the average ejection fraction (EF) of the ED-ES deformation prediction of the pathologies
(step 1) and the average EF after transport to normal subjects (step 2). Hereby, we
assume that EFs, as a relative measure, stay similar after successful transport (such that
the absolute difference, EF step 1 - EF step 2, is small). The table shows the average
of transporting 5 HCM and 5 DCM cases to 20 normal cases (200 transports). For our
algorithm, the absolute differences in EFs are much smaller for DCM cases and similarly
close in HCM cases in comparison to the pole ladder. All test subjects were not used
during training. The EF is computed based on the segmentation masks (warped with
the resulting deformation fields). Besides, it can be seen, that predictions done by the

5The pipeline for the parallel transport experiment using the pole ladder algorithm is presented in Fig. 14
(available in the supplementary files /multimedia tab).
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Fig. 4.9: Transport pathological deformation predictions (Step 1, hypertrophy HCM, myopathy
DCM) to healthy (Normal) subjects by using the pole ladder (with LCC-demons) and
our probabilistic method (Step 2). Note that the pole ladder algorithm requires the
registration between pathological and normal subjects while our approach is able to
rotate and translate deformations encoded in the latent space z automatically.

Tab. 4.2: Mean Ejection fraction (EF in % with standard deviation in parentheses) of pathological
deformation predictions (Step 1) should stay similar to the mean EF after the transport
to healthy/normal subjects (Step 2). Our algorithm shows smaller absolute differences
compared to the pole ladder (PL).

Step 1: Prediction Step 2: Transport Difference
Path. PL (Dem) Our PL (Dem) Our PL Our
HCM 29.4 (6) 44.1 (7) 35.5 (8) 38.6 (13) 6.1 5.5
DCM 10.8 (2) 12.7 (7) 16.7 (4) 13.9 (7) 5.9 1.2

demons are underestimating the EFs for HCM cases which should be >40% according to
the ACDC data set specifications.

4.4 Discussion and Conclusions

We presented an unsupervised multi-scale deformable registration approach that learns
a low-dimensional probabilistic deformation model. Our method not only allows the
accurate registration of two images but also the analysis of deformations. The framework
is generative, as it is able to simulate deformations given only one image. Furthermore,
it provides a novel way of deformation transport from one subject to another by using
its probabilistic encoding. In the latent space, similar deformations are close to each
other. The method enables the addition of a regularization term which leads to arbi-
trarily smooth deformations that are diffeomorphic by using an exponentiation layer for
stationary velocity fields. The multi-scale approach, providing velocities, deformation
fields and warped images in different scales, leads to improved registration results and a
more controlled training procedure compared to a single-scale approach.
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We evaluated the approach on end-diastole to end-systole cardiac cine-MRI registration
and compared registration performance in terms of RMSE, DICE and Hausdorff distances
to two popular algorithms [Lorenzi, 2013; Avants, 2008] and a learning-based method
[Dalca, 2018], which are all diffeomorphic. While the performance of our single-scale
approach was comparable to the LCC-demons and the SyN algorithm, our multi-scale
approach (using 32 latent dimensions) showed statistically significant improvements
in terms of registration accuracy. Generally, our approach produced more regular de-
formation fields, which are significantly smoother than the DL-based algorithm. Using
our method with a non-generative U-net style network [Ronneberger, 2015] without a
deformation encoding performed similarly compared to the proposed generative model.
Adding supervised information such as segmentation masks in the training procedure as
in [Hu, 2018; Fan, 2019] led to a marginal increase in terms of registration performance
(∼1-2% in DICE scores), so we decided that the performance gain is not large enough
in order to justify the higher training complexity. Theoretically, our method allows
measurement of registration uncertainty as proposed in [Dalca, 2018] which we did not
further investigate in this work.

The analysis of the deformation encoding showed that the latent space projects similar
deformations close to each other such that diseases can be clustered. Disease classification
could be potentially enforced in a supervised way as in [Biffi, 2018]. Furthermore,
our method showed comparable quantitative and qualitative results in transporting
deformations with respect to a state-of-the-art algorithm which requires the difficult step
of inter-subject registration that our algorithm does not need.

It is arguable if the simple assumption of a multivariate Gaussian is the right choice for
the prior of the latent space (Eq. 4.1). Possible other assumptions such as a mixture
of Gaussians are subject to future work. The authors think that the promising results
of the learned probabilistic deformation model could be also applicable for other tasks
such as evaluating disease progression in longitudinal studies or detecting abnormalities
in subject-to-template registration. An open question is how the optimal size of the
latent vector changes in different applications. In future work, we plan to further explore
generative models for learning probabilistic deformation models.
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Fig. 4.10: Qualitative registration results showing a dilated cardiomyopathy (DCM) and a hy-
pertrophic cardiomyopathy (HCM) case. Warped moving image M∗, displacements
u, warped moving image with grid overlay and Jacobian determinant are shown for
LCC-demons (Dem), SyN, voxelmorph (VM) and our approach using 3 scales (Our
S3).
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Fig. 4.11: Qualitative registration results showing a myocardical infarction (MINF) and healthy
(Normal) case. Warped moving image M∗, displacements u, warped moving image
with grid overlay and Jacobian determinant are shown for LCC-demons (Dem), SyN,
voxelmorph (VM) and our approach using 3 scales (Our S3).
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Fig. 4.12: Qualitative registration results showing an abnormal right ventricle case (RV). Warped
moving image M∗, displacements u, warped moving image with grid overlay and
Jacobian determinant are shown for LCC-demons (Dem), SyN, voxelmorph (VM) and
our approach using 3 scales (Our S3).
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Fig. 4.13: The gradient of the determinant of the Jacobian of a random test case for LCC-demons
(Dem), SyN, voxelmorph (VM) and our approach using 1 and respectively 3 scales
(Our S1, Our S3). Our single-scale approach shows the most regular deformation.
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Fig. 4.14: (a) Symbolic pipeline for the parallel transport experiment using the pole ladder
approach. (b) Visualization of all pipeline steps for one example.
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In chapter 4, we presented a pairwise probabilistic deformation model and showed its
applicability to a variety of deformation analysis tasks. In this chapter, we extend the
model to a generative motion model that learns population-specific motion patterns from
a database of image sequences. Such a motion model enables consistent tracking of
structures, the simulation and temporal interpolation of motion. A temporal conditional
variational autoencoder is implemented using a novel Gaussian process prior assumption.
This chapter is based on the conference presentation at STACOM 2019 [Krebs, 2020b].
However, the presented version includes several methodological advancements and is
currently under review as a journal paper.
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5.1 Introduction

Motion analysis is an important task in many medical image analysis problems such
as organ tracking or longitudinal analysis of various diseases. For moving organs such
as the heart, it is not only important to track anatomical structures but also to analyze
motion indices that are useful for disease diagnosis or therapy selection [Girija, 2017].
Extracting motion patterns further allows to compensate for motion, handle missing data
or do temporal super-resolution and motion simulation.

Motion in medical image sequences is typically analyzed by computing temporally
consistent pairwise deformations where each frame in a sequence is registered to a
target frame [Girija, 2017]. The resulting series of deformation fields can be utilized to
track structures throughout the sequence and to identify abnormal motion patterns, for
example by computing clinically relevant variables such as the ejection fraction (EF) of
the heart [Rohé, 2018].

5.1.1 State-of-the-art

Registration algorithms typically seek to find the deformation field between two images
by solving an optimization problem consisting of a similarity metric and a regularizer.
The similarity metric measures the distance between the two images while the regu-
larizer constrains the smoothness of the resulting deformation field. A large variety
of registration algorithms using different similarity and regularizing metrics have been
proposed [Sotiras, 2013]. One group of registration methods aim to ensure diffeomorphic
deformations due to their favorable properties. Diffeomorphisms are topology-preserving
and invertible deformations which makes them suitable for many medical registration
problems in which foldings are physically implausible [Vercauteren, 2009]. This makes
diffeomporphisms also appropriate for tracking anatomical structures in image sequences
such as in cardiac imaging [Peyrat, 2010] (assuming structures do not go out of the
field of view). Many diffeomorphic registration algorithms have been proposed such as
[Beg, 2005; Zhang, 2015; Vercauteren, 2008; Vercauteren, 2009], the SyN algorithm
[Avants, 2008] and the LCC-demons [Lorenzi, 2013]. Recently, learning-based algorithms
for pairwise diffeomorphic registration have been proposed. These are based on super-
vised ground-truth deformations [Yang, 2017; Rohé, 2017] or on unsupervised learning
[Dalca, 2018; Krebs, 2019b]. The latter are trained by minimizing a loss function con-
sisting of an image similarity and a deformation regularizer, similarly to the traditional
optimization problem. In these two works, diffeomorphisms are guaranteed by using the
stationary velocity field (SVF) parameterization based on the scaling-squaring algorithm
[Arsigny, 2006].
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For image sequences, one difficulty is to acquire temporally smooth deformations that are
fundamental for consistent tracking. That is why registration algorithms with a temporal
regularizer have been proposed [LedesmaCarbayo, 2005; Vandemeulebroucke, 2011; De
Craene, 2012; Metz, 2011; Qin, 2018; Shi, 2013]. In the computer vision community,
temporal video super-resolution and motion compensation are a related research topic
[Caballero, 2017; Kappeler, 2016].

However, while these methods are able to capture temporally consistent deformations
along a sequence of images, they do not extract intrinsic motion parameters crucial
for building a comprehensive motion model that can be used for analysis tasks such as
motion simulation, transport or classification as it is for example done in bio-mechanical
models such as [Sermesant, 2008]. Yang et al. [Yang, 2011a] generated a motion prior
using manifold learning from low-dimensional shapes. Qiu et al. [Qiu, 2011] proposed
to build an eigenspace of initial momenta using PCA. In an image-driven fashion, Rohé et
al. [Rohé, 2018] introduced a parameterization, the Barycentric Subspaces, for cardiac
motion analysis.

5.1.2 Learning a Probabilistic Motion Model

In contrast, we propose a probabilistic motion model that is built in a fully data-driven
way from image sequences. Instead of defining a motion parameterization explicitly or
learning from pre-processed shapes, our model learns a low-dimensional motion matrix
in an unsupervised fashion. The goal is not only to retrieve a compact representation of
the motion but to obtain a structured and generative encoding that allows for temporal
interpolation (to predict missing frames) and to simulate an indefinite number of new
motion patterns. These features could be helpful for data augmentation and to speed-up
image acquisition as the model reconstructs a full cyclic motion from missing frames.
Besides, the learned probabilistic encoding could be useful for group-wise analysis as it
enables to transport motion characteristics to a new subject, simulating for example a
pathological motion in a healthy subject.

In this work, we introduce a novel Gaussian Process (GP) prior to extend a conditional
variational autoencoder (CVAE [Kingma, 2014b]), a latent variable model, for temporal
sequences. A pairwise encoder-decoder neural network applies a temporal convolutional
network (TCN) in its latent space in order to learn intrinsic temporal dependencies.
Furthermore, we utilize a self-supervised training scheme based on temporal dropout
(TD) to enforce temporal consistency and increase generalizability of the motion model.
Smooth and diffeomorphic deformations are guaranteed by applying an exponentiation
layer [Krebs, 2019b] and spatio-temporal regularization.
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The proposed model demonstrates state-of-the-art registration accuracy measured on
segmentation overlaps and distances and regularity for diffeomorphic tracking of cardiac
cine-MRI. In addition, the potentials of the generated latent motion matrix for motion
simulation, interpolation and transport are demonstrated. The main contributions are as
follows:

• An unsupervised probabilistic motion model learned from medical image sequences
• A conditional VAE model trained with a novel Gaussian process prior and self-

supervised temporal dropout using temporal convolutional networks
• Demonstration of cardiac motion tracking, simulation, transport and temporal

super-resolution

This paper extends our preliminary conference paper [Krebs, 2020c] by replacing the
standard unit Gaussian of the CVAE with a novel Gaussian Process Prior. We add detailed
derivations of the motion model and show improved tracking accuracy and temporal
smoothness. Finally, we show a first generalization of the model to 3-D+t sequences.

5.2 Methods

Typically, the motion of an image sequence I0:T with T frames is described by deformation
fields between one reference image, for example I0, and all other images in the sequence.
In order to extract consistent sequential deformations φt with t ∈ [1, T ], we propose a
temporal latent variable model that encodes the motion in a low-dimensional probabilistic
space, the motion matrix z ∈ RD×T̄ with T̄ = T − 1. Here, we define the reference
image I0 as moving image, while the other frames are fixed images It. Each image pair
(I0, It) is encoded by D latent variables, the zt-code, which are the columns of z. Each zt
parameterizes the deformation field φt while being conditioned on the moving image I0.
The rows zd with length T̄ of the motion matrix z represent the encoded deformation
sequence per latent dimension d ∈ D.

Our motion model is learned from data by imposing a Normal prior distribution p(z) on
the latent variables z that follows a Gaussian Process (GP) prior in the temporal dimension
for each zd. In addition, we assume independence between the latent variables zd as in
standard VAEs [Kingma, 2013]. Note, when z is written as part of a distribution like p(z),
z is used as a vector of size DT̄ rather than a matrix for simpler notation.

During training, we follow the learning paradigms of conditional variational autoencoders
(CVAE [Kingma, 2014b; Kingma, 2014a]) with the exception of replacing the multivariate
unit Gaussian prior with the proposed GP-prior. The approximated posterior is the output
of a temporal convolutional neural network (TCN [Bai, 2018]) allowing for temporal
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Fig. 5.1: (a) Generative process for the motion model representing the likelihood of fixed images
I1:T given the latent variables z and moving image I0: pθ(I1:T |z, I0), where ω and
θ are fixed parameters and arrows denote dependencies between random variables.
(b) Visualization of the covariance matrix Σ of the Gaussian prior p(z) with 5 latent
dimensions, a sequence time length of 35 and a length scale of the Cauchy kernel of 7.

regularization. To further facilitate temporal dependencies and handle missing data,
temporal dropout (TD) is applied during the training procedure. In the following, the
different parts of the method are explained. First, the probabilistic motion model using
a GP-prior is defined. Then, posterior and data likelihood distributions are modeled
using a encoder-decoder neural network. Lastly, the concept of temporal dropout is
introduced.

5.2.1 Generative Motion Model using a Gaussian Process Prior

The proposed motion model consists of an encoder qω(z|I0:T ) and a decoder pθ(I1:T |z, I0)
which are parameterized by ω and θ respectively. The encoder first independently maps
each image pair (I0, It) to a latent representation γt which is then temporally regularized
by mixing all time steps to retrieve the motion matrix z. The decoder pθ projects the
zt-codes to the deformations φt while being conditioned on the moving image I0. The
output of the decoder are he reference image I0 warped with the φt deformation fields.
The encoder approximates the posterior distribution and the decoder the data likelihood
of the latent variable model. Using a prior distribution p(z) over latent variables z, we
define the following generative process:

pθ(I1:T |I0) =
∫
z
pθ(I1:T |z, I0)p(z) dz, (5.1)

which is visualized in Fig. 5.1a. In this work, encoder qω and decoder pθ are approximated
using neural networks where ω and θ represent the encoder and decoder networks’
weights which are optimized using amortized Variational Inference [Kingma, 2013]. The
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data likelihood pθ(I1:T |z, I0) can be seen as the fidelity of the reconstruction of the fixed
images I1:T by warping the moving image I0 with appropriate deformations φ1:T . An
overview of the motion model can be seen in Fig. 5.2.
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Fig. 5.2: Overview of the motion model including encoder and decoder neural networks. From
sequential image pairs, temporally independent feature vectors γt are extracted which
are fed to a temporally convolutional network (TCN) to obtain the probabilistic motion
matrix z. This compact representation is decoded to a sequence of diffeomorphic
deformation fields φt.
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Gaussian Process Prior

The prior follows a zero-centered multivariate Gaussian distribution: p(z) ∼ N (0|Σ)
where the covariance matrix Σ is a diagonal block matrix of dimensions DT̄ ×DT̄ :

Σ = DiagDd=1(Kl). (5.2)

Each diagonal element of Σ represents the temporal covariance matrix Kl ∈ RT̄×T̄ of a
Gaussian time-continuous stochastic process whose kernels can be chosen by the user.
A typical choice in Gaussian Processes is the squared exponential kernel KRBF

l (τ, τ ′) =
σ2
K exp (−|τ − τ ′|2/2l2) with length scale l and variance σ2

K . However, due to the fact
that we want to model data that varies at multiple time scales, we consider the Cauchy
kernel [Rasmussen, 2003; Fortuin, 2019]:

KCauchy
l (τ, τ ′) = σ2

K

(
1− (τ − τ ′)2

l2

)−1
, (5.3)

with pre-defined σK . This covariance matrix Σ allows temporally correlated latent
variables while still assuming highest possible independence between the D latent
dimensions. In other words, we extended the standard VAE latent space which only
consists of the independence assumption between latent variables with a regularized
temporal dimension. Latent variables are related over time according to the chosen
kernel function Kl while being independent of each other. An example of a covariance
matrix can be seen in Fig. 5.1b.

Posterior and Likelihood Distributions

Similar to standard VAEs, the posterior qω follows a multivariate Gaussian distribution
qω(z|I0:T ) ∼ N (µ|Σ∗(σ)) with data-driven predictions of mean vector µ ∈ RDT̄ and
variance vector σ ∈ RD. The full covariance matrix Σ∗(σ) is defined as a block diagonal
matrix of the following form:

Σ∗(σ) = vec
((
σ1>

)>)Σ =


σ1Kl 0 · · · 0

0 σ2Kl · · · 0
...

...
. . .

...
0 0 · · · σDKl

 , (5.4)

where 1 defines a vector of ones of size T̄ and vec(·) describes the vectorization function.
Mean and variance vectors (µ, σ) are the output of the encoder neural network. The
kernel Kl is kept the same as in the prior distribution and does not contain predicted
parameters to guarantee a user-chosen temporal regularity.
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Also, the likelihood pθ is assumed to follow a multivariate Gaussian distribution pθ(I1:T |z, I0) ∼
N (I0 ◦ φ1:T (θ); 0|σL ∗ IDT̄ ) where IDT̄ is the identity matrix of size DT̄ , fθ is the decoder
neural network that outputs the diffeomorphisms φ1:T and ◦ denotes the image warping
operation. The variance σL is chosen to be a scalar constant, depicting for example the
variance of intensity residuals of well registered images.

Learning the Motion Model via Variational Inference

In order to optimize the parameterized motion model over ω and θ, the evidence lower
bound (ELBO) of the log-marginalized likelihood pθ(I1:T |I0) that is conditioned on the
moving image I0, must be maximized (see [Kingma, 2013; Kingma, 2014b; Krebs, 2019b]
for details):

Ez∈qω(·|I0:T )
[
log pθ(I1:T |z, I0)

]
− KL

[
qω(z|I0:T )‖p(z)

]
, (5.5)

with KL denoting the Kullback-Leibler Divergence (KL). The first term in Eq. 5.5 enforces
that the moving image I0 is well registered to the fixed images I1:T by maximizing the
log likelihood. The second term structures the latent motion encoding by enforcing the
posterior distribution qω(z|I0:T )) to be close to the prior distribution p(z). Following the
definition of the KL divergence between 2 multivariate Gaussian distributions, we obtain
the closed-from solution (see Appendix A):

KL
[
qω(z|I0:T )‖p(z)

]
= 1

2

D∑
i=1

σ2
i T̄ + µ̄>i K

−1µ̄i − log (σ2
i )− T̄ , (5.6)

with µ̄i being the i-th segment of length T in µ.

Recall that the log likelihood pθ(I1:T |z, I0) is also Gaussian. Thus, log pθ(I1:T |z, I0) =
−1

2
∑T
t=1 ‖It − I0 ◦ φt‖2/σL plus a constant which is equivalent to adopting a sum-

of-squared differences (SSD) criterion, commonly used as similarity metric in image
registration (for example in [Balakrishnan, 2018]).

During training of the model, parameters ω and θ are updated via stochastic gradient
descent and back-propagation. In order to back-propagate through the sampling opera-
tion, the reparameterization trick is used [Kingma, 2013]. For full-covariance Gaussian
distributions, the covariance matrix must be positive-definite as we use the Cholesky
decomposition for the reparameterization (cf. [Kingma, 2019]). The details on how to
efficiently compute the Cholesky decomposition of the covariance matrix Σ∗ in Eq. 5.4
can be found in Appendix B.
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Fig. 5.3: (a) The temporal convolutional network (TCN) allows for temporal regularization of
the independently extracted features γt per time step t, for retrieving mean vector µ
and variance vector σ of the posterior distribution pθ. (b) Sequences with missing time
steps (motion interpolation or simulation) are encoded by a full feature matrix Γ by
setting the columns of missing time steps to zero. The TCN handles these missing
columns and still predicts a full temporal motion sequence of T̄ time steps.

Diffusion-like regularization in spatial and temporal dimensions is applied by Gaussian
smoothing kernels. This regularization follows the derivations of [Krebs, 2019b] and is
omitted in Fig. 5.1a for reasons of clarity.

Neural Network Architecture

The encoder takes the image pairs (I0, It) as input and outputs the motion matrix z.
It consists of a feature extraction part and a temporal regularizer (TCN). The feature
extraction part consists of convolutional and fully-connected layers for mean and variance
predictions of the posterior [Kingma, 2014b]. These layers are temporally independent
and share weights across all image pairs of a sequence. As the output of the feature
extraction networks, the extracted features γt of size R2D are merged across different time
steps by using a temporal convolutional network (TCN) leading to temporally regularized
mean and variance vectors (µ, σ) that define the posterior distribution qω(z|I0:T ) ∼
N (µ|Σ∗(σ)). The size of 2D is chosen for γt such that each σ value can be influenced by
features from the whole sequence. Note, that samples from the posterior distribution are
vectors of size DT̄ which are reshaped to retrieve the motion matrix z with zt-columns.

Following the recommended architecture, the TCN consists of multiple 1-D convolutional
layers with increasing dilation and skip connections allowing to learn temporal depen-
dencies of the latent variables γt that were time-independent before [Bai, 2018]. We
use zero-padding and non-causal convolutional layers to also take future time steps into
account. The output tensor capturing (µ, σ) is of size RDT̄+D. Our TCN is shown in
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Fig. 5.3a. TCNs can handle sequences of varying time lengths and are advantageous
compared to recurrent neural networks (RNN) due to a flexible receptive field and more
stable gradient computations [Bai, 2018]. Another reason why the authors chose a
TCN over RNNs is that RNNs are especially suitable to learn long-distance temporal
relationships such as in natural language processing while the focus of this work is on
rather short time sequences with higher local dependencies. One could use a cyclic
padding instead of zero-padding for cyclic sequences, for example by linking the end
of a sequence to its beginning. However, in the case of cardiac cine-MRI, 5-10% of the
cardiac cycle are often omitted [Bernard, 2018] such that we chose to not assume cyclic
sequences explicitly.

The decoder takes as input samples zt from the posterior distribution and the moving
image I0 and outputs the diffeomorphisms φ1:T and the accordingly warped moving
image. Deconvolutional and convolutional layers are used in the decoder which are
shared across all time steps. It is desired that the latent representation z encodes
deformation information on a semantic level, independent of the given subject. That is
why the decoder is further conditioned on the moving image I0 by concatenating down-
sampled versions of I0 with the outputs of the deconvolutional layers at different scales.
By providing subject-specific appearance information in form of the moving image, the
motion model is driven to encode subject-independent deformation information in the
limited dimensionality of z [Krebs, 2019b]. In order to ensure smooth and diffeomorphic
deformations, we utilize a Gaussian smoothing layer with standard deviations of σG and
σT in temporal and spatial domains respectively and an exponentiation layer for the
stationary velocity field parameterization of diffeomorphisms [Krebs, 2019b]. The linear
warping functionality is realized using a spatial transformer network layer [Jaderberg,
2015].

5.2.2 Missing Data and Temporal Dropout

To always predict a full sequence of T deformations, the size of the covariance matrix
Σ∗ is kept identical across datasets with different time lengths T ∗. In case of shorter
sequences, the features γτ of all available image pairs (I0, Iτ ) with τ ∈ T ∗ are extracted
and evenly distributed along T forming the matrix Γ ∈ R2D×T̄ . The remaining missing
time steps are filled with a constant (typically zero). On the decoder side, the log-
likelihood loss (first part of Eq. 5.5) is evaluated on all available time steps of the original
sequence. If a sequence is longer than T , evenly distributed frames would be dropped to
reach a lentgh of T . However, this should not happen normally as we assume to put T at
least as the maximum experienced length in the data.

In addition, during training, further time steps (i.e. γτ ) are dropped from Γ using
temporal dropout (TD) in order to force the motion model to interpolate motion between
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available frames. To encourage the TCN to make use of its temporal connections and
search for dependencies across time, our TC drops some of the γτ while still trying to
recover the deformations φτ of all available image pairs (I0, Iτ ). More precisely, in TD,
instead of extracting features from an image pair (I0, Iτ ), a vector of zeros is chosen as
γτ while still keeping the loss function on the decoder part for these time steps. A binary
Bernoulli random variable rτ is used to randomly choose at each original time step τ if
the zero vector is used instead of the extracted features given (I0, Iτ ). All independent
Bernoulli random variables r ∈ RT ∗

have the success probability δ. The latent feature
representation γTDt using TD can thus be defined as:

γTDτ = rτ ∗ 0 + (1− rτ ) ∗ γτ . (5.7)

Note, TD is used only during training as a sort of self-supervision to encourage gener-
alizability and consistent motion simulation and interpolation of missing data. When
encountering missing data at test time, one just needs to place the available encoded
frame pairs at the desired temporal positions of Γ in order to predict the full motion
consisting of T time steps (cf. Fig. 5.3b). A full motion simulation can be generated
by setting all elements of Γ to zero. In this case, a sequence of deformations that are
plausible with respect to the training data will be predicted given only the original image
I0.

Optional Random Sub-Sequence Training: Since our motion model takes sequences of
images as input and outputs a sequence of deformation fields, it comes naturally with
high computational costs. This can lead to a model that may not be trainable on standard
GPUs. Due to this limitation, we propose to train our model optionally with random sub-
sequences. Let T be the maximum number of frames with which our model can be trained
on a given GPU. In each training iteration, a random combination of T frames is selected
from a training subject with T ∗ frames in case T ∗ > T . After sorting this combination,
the given frame pairs are encoded and placed at their relative temporal position in Γ. In
contrast to the TD procedure, only the selected T time steps are reconstructed in the
decoder to limit the requirements of GPU memory. In case of shorter training sequences
with T ∗ ≤ T , the full sequence is used. By sampling different sub-sequences in each
training epoch, the network will eventually see all parts of a sequence during the training
stage.

5.3 Experiments

In this paper, we evaluate the proposed motion model on cardiac cine-MRI. Besides
accurate temporal tracking and registration, we show the model’s capabilities for motion
simulation, interpolation and transport. The improved temporal latent space using the
GP prior is demonstrated. Extensive results are presented for 2D+T sequences with more
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limited quantitative evaluations on 3D+T sequences due to their heavy computational
requirements. In all experiments, the end-diastolic (ED) frame was used as the moving
image I0.

5.3.1 Databases

Two datasets forming 334 cardiac cine-MRI in total were used. First, 184 multi-centric
short-axis sequences came from the EU FP7-funded project MD-Paedigree (Grant Agree-
ment 600932), with congenital heart disease and healthy or pathological images from
adults. In addition, 150 sequences originated from the Automatic Cardiac Diagnosis
Challenge 2017 (ACDC [Bernard, 2018]). The images were acquired in breath hold using
1R-R or 2R-R intervals mixing retrospective or prospective gating. The original sequence
lengths varied from 13 to 35 frames. The 100 training cases from ACDC that contain
ED-ES segmentation information were used for testing while all other sequences were
used for training. Slices were resampled with a spacing of 1.5×1.5 mm and cropped to a
size of 128×128 pixels. In case of 3D+T sequences, 18 slices were used by adding zero
slices at the top and bottom in case of fewer original slices.

5.3.2 Implementation Details

The time-independent neural network parts, the feature extraction part of the encoder
and the decoder, followed the architecture proposed in [Krebs, 2019b]. The feature
extractor consisted of 4 convolutional layers with (2,2,2,1)-strides and (16,32,32,4)-
feature maps and a fully-connected layer of size 2D, outputting γt. The decoder pθ
consisted of a 3 deconvolutional and 1 convolutional layer with (32,32,32,16)-feature
maps. The TCN consisted of 4 1-D convolutional layers with (1,2,4,8)-dilations, same
padding and skip connections (cf. Fig. 5.3a). All (de-)convolutional layers used a kernel
size of 3. The last convolutional layer of the decoder was followed by a spatio-temporal
Gaussian layer with spatial σG = 3mm and temporal standard deviation σT = 1.5, an
exponentiation layer using 6 scaling-squaring iterations [Krebs, 2019b] and a linear
warping layer [Jaderberg, 2015].

The latent dimensionality was set to D = 32 (as in [Krebs, 2019b]). We set the sequence
length T to 35, the maximum sequence length found in the training data, resulting
in a motion matrix z with D · T̄ = 1088 elements. All sequences with fewer frames
were handled as missing data as described in section 5.2.2. The number of trainable
parameters (ω, θ) in the network summed up to ∼210k in 2D+T and ∼456k in 3D+T
respectively. L2 weight decay of 1 ·10−4 and LeakyReLu activation functions were applied
on all layers except the last layer of the TCN and the last layer of the decoder. The
former used no activation function for the µ-vector but used the exponential of the
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σ-vector to guarantee non-negative values close to 1. The last convolutional layer of
the decoder pθ was followed by a tanh activation function for stability reasons during
training. The Cauchy-kernel parameters were chosen as proposed in [Fortuin, 2019]
with l = 7 and σK = 1.005. The variance of the data likelihood was set as the variance of
intensity residuals of a few well-registered image sequences with σL = 0.0045 in 2D+T
and 0.00021 in 3D+T respectively.

For training, we used a first-order gradient-based method for stochastic optimization
(Adam [Kingma, 2014a]) with a batch size of one and fixed learning rate of 0.00015.
The TD probability δ was 0.5. Random sub-sequence training was only applied for
3D+T with T = 18. Online data augmentation containing randomly shifted, rotated,
scaled and mirrored images has been applied. The model was implemented using Keras
[Chollet, 2015] and Tensorflow [Abadi, 2016]. The training time was ∼15h in 2D+T
and 7 days for 3D+T sequences on a NVIDIA GTX TITAN X GPU.
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Fig. 5.4: Tracking results showing RMSE, spatial and temporal gradients of the displacement
fields, DICE scores and Hausdorff distances for all 2D+T test sequences. The LV volume
curves extracted from the warped ED blood pool masks for 2 random test cases in
ml, show the temporal smoothness and the distance to the ground-truth ED and ES
volumes (marked with black points). The proposed algorithm (Our) shows slightly
higher registration accuracy and temporally smoother deformations than the state-of-
the-art algorithms: SyN [Avants, 2008], LPR [Krebs, 2019b], 4D-Elastix [Metz, 2011]
and the previous version of our method without GP prior (No-GP [Krebs, 2020c]).
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Fig. 5.5: Showing 2D+T and 3D+T tracking results of the warped moving image I0 with grid
overlay and the Jacobian determinant (Det.-Jac.) for a test sequence. In 3D+T,
smoother Jacobian determinants were obtained.

5.3.3 Registration and Motion Prediction

We compare our model in terms of registration accuracy and spatio-temporal deformation
regularity with 3 state-of-the-art diffeomorphic methods: SyN [Avants, 2008], the
learning-based probabilistic pairwise registration (LPR [Krebs, 2019b]) and the temporal
B-spline algorithm in elastix (4D-Elastix [Metz, 2011]). We also compare with the
previous version of our method with Gaussian Process prior (No-GP [Krebs, 2020c]).
SyN and 4D-Elastix have been manually tuned on a few training images following the
recommendations in the original papers. The LPR algorithm has been trained on a
2D single scale version using all image pairs of a sequence instead of only the end-
diastolic/end-systolic (ED, ES) pairs. We measured registration accuracy using the root
mean square error (RMSE) of intensities and segmentation-based DICE scores and 95%-
tile Hausdorff distances (HD, in mm) on the five anatomical structures available in ACDC:
left ventricle myocardium (LV-Myo), epicardium (LV), left ventricle bloodpool (LV-BP),
right ventricle (RV) and LV+RV. In terms of registration regularity, we report spatial
(Spatial Grad.) and temporal gradients (Temp. Grad.) of the deformation fields φt with
t ∈ [1, T ].
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Tab. 5.1: Registration performance with mean and standard deviation scores of DICE (in %),
Hausdorff Distance (HD in mm), spatial and temporal gradients of the deformation
fields (×10−2) comparing the undeformed case (Undef), SyN, learning-based pairwise
registration (LPR), 4D-Elastix, our previous version without GP prior (No-GP) and the
proposed method for all 2D+T sequences.

Method DICE HD Spat. Grad. Temp. Grad.
Undef 72.8 ±14 9.70 ±4.20 – –
SyN 82.7 ±12 7.02 ±4.34 0.23 ±0.06 0.43 ±0.19
LPR 82.1 ±10 6.60 ±3.07 0.16 ±0.06 0.32 ±0.13
4D-Elastix 83.7 ±11 6.27 ±3.91 0.15 ±0.06 0.33 ±0.15
No-GP 84.6 ±10 6.24 ±3.30 0.14 ±0.08 0.15 ±0.08
Our 85.2 ±09 6.11 ±3.28 0.10 ±0.03 0.12 ±0.05

The reported results in Table 5.1 were measured on all 2D test sequences containing
at least one mask (resulting in 677 sequences from 100 test subjects). DICE scores
and Hausdorff distances are only reported for the frames with available ground-truth
segmentation (ES images). Detailed box plots of the results together with LV volume
curves are shown in Fig. 5.4. The LV volumes (in ml) were extracted by warping the ED
mask according to the extracted deformation fields and computing the blood pool volume
for all slices of one subject over time. The results indicate that our model achieves the
same (RMSE) or slightly better (DICE and HD) registration accuracy compared to the
reference methods while improving spatial and temporal regularity as shown by the
deformation field gradients and the volume curves.

Tab. 5.2: 3D+T registration performance with mean and standard deviation scores of RSME,
DICE, Hausdorff Distance (HD), spatial and temporal gradients of the deformation
fields comparing the undeformed case (Undef), 4D-Elastix and the proposed method.

RMSE DICE HD Spat. G. Temp. G.
Undef 0.19 70.1 ±12 7.7 ±2.7 – –
4D-El. 0.18 79.2 ±10 5.1 ±2.1 0.15 ±0.06 0.62 ±0.32
Our 0.16 79.5 ±09 5.4 ±2.1 0.07 ±0.02 0.09 ±0.03

In Table 5.2, we show the results on the 100 test sequences for our 3D+T model. In
comparison to 4D-Elastix, our 3D+T model shows a similar registration accuracy but a
significantly improved spatial and temporal regularity. In Fig. 5.5, the warped moving
image I0 and the Jacobian determinant are visualized for one test sequence in 2D+T
and 3D+T. One can see, the Jacobian determinants are smoother in 3D+T compared to
2D+T sequences.

The new Gaussian Process prior leads to smoother deformations compared to the pre-
vious time-independent prior (No-GP version) while using the same deformation field
regularizer. This can be also seen in Fig. 5.6 where the first 5 latent dimensions, the
sequences zd with d ∈ [0, 4], are visualized for one test case.
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Fig. 5.6: First 5 latent dimensions of the same test sequence shows a temporally smoother motion
matrix z for the proposed model trained with the Gaussian process prior compared to
the No-GP version.

5.3.4 Motion Simulation, Interpolation and Transport

To evaluate the performance on motion interpolation and simulation, we challenged our
model to predict the motion for all time steps from a limited number of input frames.
Thus, the goal was to predict motion patterns that are as close as possible to the observed
motion of the full sequence (i.e. all registered frames obtained in the all frame model of
the previous section 5.3.3). Just as in temporal dropout during training, all the missing
frames were represented as zero columns γt in the feature matrix Γ as shown in Fig. 5.3b.
We compared the motion predictions from various input frame subsets that are provided
to the model. First, we provided every 2nd or every 5th frame for motion interpolation.
Then, we provided the first 5 frames or only the 10th frame (0th + 10th) to see if the
model is able to complete typical cardiac motion patterns. Finally, we tested the full
motion simulation by letting the model find a motion sequence given only the moving
image I0 (only 0th) and setting feature matrix Γ to zero everywhere. We compared the
simulated motion, with linear and cubic interpolation of the deformation fields (which
are taken from the all frame model at the selected time steps). In the top of Fig. 5.7,
average LV volume errors (RMSE) with respect to the all frame model were computed
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for all 677 test sequences in comparison to linear and cubic interpolation. In the bottom
of Fig. 5.7, one can see the results of our model for the different interpolation cases in
terms of LV volume curves for two example sequences.
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Fig. 5.7: Predicted simulated and interpolated motion from a limited number of frames. Provided
frames are decreasing from all frames to only the 0th frame (full motion simulation).
The volume errors with respect to the all frame prediction are compared with linear
and cubic interpolation of the deformation fields. Two random test subjects are shown
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Fig. 5.8: Transporting the motion matrix z from one subject and combining it with the end-
diastolic frame of another subject allows for simulating a disease (dilated myopathy,
DCM, red motion) in a healthy subject and vice versa (green motion). Ejection fraction
(EF) of the simulated cases are more similar to the transported motion.

For the cases of providing every 2nd and every 5th frame, our model interpolated the
motion similarly well as linear or cubic interpolation, while providing better results in the
cases of providing the 0th+10th and first 5 frames signaling an improved learned cardiac
motion model. The full simulation (only 0th) did not result in well fitted volume curves,
which is expected as the model has to simulate the full motion sequence from just the ED
frame. However, it is observable that the model learned realistic cardiac specific motion
patterns as the volume curves for example show the plateau phase before atrial systole
which can be also seen in the completed motion for the cases where we provide the first
5 and 0th+10th frames. For the full simulation, our model often slightly under-estimated
the motion (cf. case 3 in Fig. 5.7) which can be related to the pathology distribution in
the training dataset which contained many cases with reduced cardiac motion.

Furthermore, we demonstrate the model’s capacity of motion transport in a qualitative
way. Our model allows to transport motion patterns from one subject to another by taking
the motion matrix z of one case and applying it on the moving image of another image
sequence (ED frame). In this way, for example a pathological motion can be simulated in
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a healthy subject or vice versa. In Fig. 5.8, we present 2 subjects from the ACDC dataset,
from which one is classified as healthy and the other as a dilated myopathy case (DCM).
We extracted the motion matrices for both and applied them on the ED frame of the
other case, such that we simulated a DCM typical motion in the healthy case while curing
the pathological case. This can be seen for example from the LV contraction strengths in
the Jacobian determinants or the related ejection fraction (EF). Note, that this form of
parallel transport does not require any additional inter-subject registration.

5.4 Discussion and Conclusion

We presented a probabilistic motion model that can be useful for example for spatio-
temporal registration, temporal super-resolution, data augmentation, shorter acquisition
times and motion analysis. Based on a novel Gaussian Process prior conditional varia-
tional autoencoder, the model is learned in an unsupervised fashion from medical image
sequences. Intrinsic motion patterns are encoded in a low-dimensional probabilistic
space – the motion matrix – which allows for accurate diffeomorphic tracking, temporal
interpolation, motion simulation and motion transport.

Our approach has shown state-of-the art registration accuracy and improved deforma-
tion regularity temporally and spatially in comparison to 3 state-of-the-art algorithms
indicating that the low-dimensional motion encoding helps to regularize the registration
problem of image sequences. We have shown that the novel Gaussian Process prior leads
to a higher temporal consistency compared to the time-independent prior [Krebs, 2020c]
both, in latent and deformation space. A temporally smoother latent space is desirable as
it brings more structure and interpretability and is consistent with the temporally smooth
motion we experience in deformation space. We have demonstrated motion simulation
and interpolation from a very limited number of frames indicating that data acquisition
could be speed up as fewer frames are required in order to retrieve an accurate motion.
In case of full simulations, our model showed a slightly reduced cardiac motion compared
to healthy subjects. The authors believe this is due to a bias introduced from the disease
distribution in the training data. To not end up with such a mean motion that merges sev-
eral pathological motion patterns, one could think of generating disease-specific models.
This could be achieved by training different motion models with training sets separated
by diseases. As another extension to our previous work, we have shown first results on
3D+T sequences which showed smoother Jacobian determinants than the 2D+T version
which can be explained by out-of-plane deformations. However, a limitation is the high
computational costs for 3D+T sequences with long training times even for relatively
low-dimensional images.
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In future work, we aim to reduce this complexity and work on the generalization of the
approach to other applications such as respiratory motion estimation. Furthermore, the
authors believe the motion matrix as a compact representation of organ motion can be
helpful as a quantitative new tool to guide the diagnosis, prognosis or therapy of diseases
of dynamic organs.
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5.5 Appendix

5.5.1 KL Divergence using the GP Prior

Given 2 multivariate Gaussian distributions with the same dimensionality, the KL diver-
gence is defined in [Duchi, 2007]. Suppose, we take our prior distribution p(z) with
zero-mean 0 and covariance Σ of the form of Eq. 5.2 and our posterior distribution qω
with mean µ and covariance Σ∗ with dimensionality DT̄ :

KL[qω(z|I0:T )‖p(z)] =
1
2

(
tr(Σ−1Σ∗) + µ>Σ−1µ−DT̄ + ln

( det Σ
det Σ∗

))
. (5.8)

The determinants of the block diagonal matrices Σ, Σ∗ are det Σ = |K|D and det Σ∗ =
|K|D

∏D
i=1 σ

2
i . Thus, the logarithm of the fraction of determinants in Eq. 5.8 becomes:

ln
( det Σ

det Σ∗
)

= ln
( 1∏D

i=1 σ
2
i

)
= −

D∑
i=1

ln σ2
i (5.9)

When taking the sum over the D latent dimensions over the remaining terms, Eq. 5.8
simplifies to:

KL[qω(z|I0:T )‖p(z)] = 1
2

D∑
i=1

σ2
i T̄ + µ̄>i K

−1µ̄i − T̄ − ln (σ2
i ) (5.10)
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with µ̄i being the i-th segment of length T in µ. In the case of prior and posterior being
identical, thus µ = 0 and σ = 1 the quantity in Eq. 5.10 becomes 0.

5.5.2 Cholesky Decomposition of Σ∗

The Cholesky decomposition of a symmetric positive-definite matrix X equals the matrix
product of a lower-diagonal L and its transposed: X = LL>. The entries of L can be
computed by the Cholesky-Banachiewicz algorithm:

Lj,j =

√√√√Xj,j −
j−1∑
k=1

L2
j,k

Li,j = 1
Lj,j

(
Xi,j −

j−1∑
k=1

Li,kLj, k

)
for i > j. (5.11)

In case of the block diagonal matrix Σ∗ the lower triangular matrix L∗ equals a block
diagonal matrix with lower triangular matrices that are resulting from the Cholesky
decompositions of the diagonal block elements of Σ∗. Thus, in order to compute L∗, the
Cholesky decompositions of the i ∈ D diagonal elements σiK must be computed. From
Eq. 5.11 it follows that c ·X = (

√
c ·L)(

√
c ·L>). Thus, σiK = (√σi ·LK)(√σi ·L>K) and

L∗ is:
L∗ = DiagDd=1(√σd · LK). (5.12)

Since the kernel matrix K is fixed in our framework, LK can be pre-computed using
Eq. 5.11 and reused keeping the computational efforts minimal even for a large covariance
matrix Σ∗.
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This chapter is intended to show one specific clinical example on how the motion model
developed in chapter 5 could be used to support prognosis and therapy planning. Using
the motion model, the survival risks of heart failure patients can be predicted by obtaining
a risk score from the latent motion matrix. Based on this estimated risk, an appropriate
therapy can be chosen, for example, whether or not to implant a defibrillator. This
demonstrates the discriminative power of the motion model trained on a cohort of
heart failure patients. The chapter presents only preliminary results. A clinical journal
submission is in preparation.

6.1 Introduction

Sudden cardiac death (SCD) in heart failure (HF) patients is one of the leading causes
of natural death. SCD occurs when the electrical system of the heart is malfunctioning
causing irregular heartbeats (arrythmias). Emergency treatment includes electric shocks
(defibrillation) to restore the normal heart rhythm. For patients with a high risk of SCD,
an implantable cardioverter-defibrillator (ICD) can be inserted as a preventive treatment.
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An ICD monitors the heart activity and can apply electric shocks in case of extreme
arrythmias.

Selecting patients for ICD treatment is a challenging task. It is crucial to predict the risk
for SCD to justify potential complications that come along with an ICD treatment such as
surgery risks, false shocks and a shorter life expectancy. Accurate SCD risk prediction
helps to select only patients for ICD who benefit from it.

Currently, the main quantitative measure used to predict risk for SCD is left ventricular
ejection fraction (LVEF), an imaging feature of cardiac structure and function [Myerburg,
2009]. However, among patients receiving a primary prevention ICD based on an LVEF
≤35% [Tracy, 2013], the rate of appropriate therapies is very low with 2.6% at 30 months
of follow-up [Sabbag, 2015]. In other words, many patients that receive ICD treatment
do not require it. In addition, LVEF improvement occurs in up to 25-50% of patients
and correlates with diminished SCD risk [Punnoose, 2011]. Thus, LVEF is far from
being a comprehensive feature to predict SCD. Recently, other imaging features of cardiac
structure and function have been found to be independent predictors of SCD. Such factors
are right ventricular (RV) and left atrial (LA) [Rijnierse, 2017] function or the extent of
heterogeneous myocardial tissue (gray zone) on late gadolinium enhancement (LGE)
cardiac magnetic resonance images [Jablonowski, 2017]. This motivates the assumption
that more unidentified SCD predictors are inherently present in cardiac images.

Deep learning is capable of addressing the high-dimensional vector space and extract-
ing unrecognized features from medical images. Lou et al. [Lou, 2019] proposed to
extract features from images to predict treatment outcomes in lung cancer patients by
incorporating hand-crafted radiomics features in the training. Taking low-dimensional
segmentations of the right ventricle as input, Bello et al. [Bello, 2019] predicted the
survival risk for patients with pulmonary hypertension. While these approaches rely
on hand-crafted features extracted from images, we have shown in our previous work
(Chapter 5) that a motion fingerprint containing inherent features of the LV motion can be
generated from cine-MRI images using a latent variable model. This population-specific
fingerprint can be learned in an unsupervised fashion by training a probabilistic motion
model using a conditional variational autoencoder (CVAE) [Krebs, 2020c].

We propose a novel learning-based method for personalized survival risk prediction for
SCD that utilizes automatically derived image features from 4 chamber view cine-MRI.
Our model generates fingerprints of inherent imaging features of the cardiac motion
which are used to predict risk scores for outcomes of HF patients such as hospitalization or
SCD. In clinical practice, these risk scores can be used to select high-risk patients for ICD
treatment while postponing ICD treatment for low-risk patients. In particular, the novel
risk predictor uses an automatically extracted personalized cardiac motion fingerprint in
combination with a risk prediction neural network. The risk prediction network is based
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Fig. 6.1: The outcome risk prediction model consisting of learning a motion fingerprint from
4-chamber view cine-MRI (A.) and a survival predictor neural network (B.) which
estimates the outcome risk based on the motion fingerprint. The dashed black arrows
symbolize training loss computations while the blue arrows symbolize the data flow
during testing.

on a non-linear Cox proportional hazard loss to make use of right-censored survival
outcome data.

On a non-ischemic cohort of HF patients with clinical criteria for primary prevention
ICD, the derived motion risk factor showed the highest statistical significance as an
independent predictor for hospitalization among other relevant clinical factors that are
associated with HF endpoints.

The main contributions are:

• A novel risk prediction framework for HF patients based on a cardiac motion
fingerprint extracted from image sequences in an unsupervised fashion.

• State-of-the-art predictive accuracy for HF hospitalization on a non-ischemic patient
cohort.

6.2 Methods

The risk prediction model is composed of two elements: A. a motion fingerprint extractor
from image sequences and B. a survival predictor that estimates the risk for a given end-
point (or outcome) from the motion fingerprint. In this work, we apply two independent
neural networks for these tasks. First, a probabilistic encoder-decoder neural network
[Krebs, 2020c] is trained to learn motion characteristics from image sequences and
extract a cardiac motion fingerprint in a fully unsupervised fashion. Second, an autoen-
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coder neural network is trained from the motion fingerprint by regressing HF outcomes.
To enable the use of censored data, a loss function inspired from the Cox proportional
hazards model [Cox, 1972] is utilized. The two steps, A. and B. are schematically shown
in Fig. 6.1 and are explained in detail in the following.

6.2.1 Motion Fingerprint Extractor

The motion model used in this chapter has the same inputs and outputs as the one presented
in chapter 5. However, it includes some methodological differences as it applies a multivariate
unit Gaussian prior, time-independent sampling and explicit time dependence. Detailed
derivations of the fingerprint extractor can be found in our conference paper [Krebs, 2020c]
and in the appendix 6.5.2.

The motion fingerprint is learned in an encoder-decoder neural network which represents
a latent variable model. The input of the network are a sequence of image pairs (I0, It)
with t ∈ [1, T ] from image sequences of length T . The output are a sequence of dense
deformation fields φt (between (I0, It)) and a compact deformation representation
zt ∈ RD of dimensionality D per timestep t. The sequence of encoded zt are combined
in the motion matrix z ∈ RD×T̄ with T̄ = T − 1 and D latent dimensions depicting
the cardiac motion. In this work, we consider 2-dimensional image sequences of four
chamber cine-MRI with a single slice. The model is trained using a conditional variational
autoencoder (CVAE, [Kingma, 2014b]). Instead of the left-ventricular motion as in
[Krebs, 2020c], we learn a motion fingerprint of the full heart. Furthermore, in contrast
to Chapter 5, a temporally independent unit Gaussian prior has been applied.

First, the encoder qω with network weights ω maps each of the image pairs (I0, It) inde-
pendently to a latent space denoted by z̃t ∈ RD. To this end, the encoder approximates
the posterior distribution qω(z̃|I0:T ) of the latent variable model. Second, as the key
component of temporal modeling, these latent vectors z̃t are jointly mapped to the motion
matrix or motion fingerprint z by conditioning them on all past and future time steps and
on the normalized time t̄: pγ(z|z̃1:T , t̄1:T ). This regularizing network pγ with weights γ is
realized using a temporal convolutional network (TCN [Bai, 2018]). Finally, the decoder
pθ with trainable network weights θ aims to reconstruct the fixed image It by warping
the moving image I0 with the deformation φt. This deformation φt is extracted from
the temporally regularized zt-codes. The decoder is further conditioned on the moving
image by concatenating the features at each scale with down-sampled versions of I0. It
approximates the data likelihood pθ(I1:T |z, I0).

During training, a lower bound on the data likelihood is maximized with respect to a
prior distribution p(z̃t) of the latent space z̃t (cf. CVAE [Kingma, 2014b]). The prior p(z̃t)
is assumed to follow a multivariate unit Gaussian distribution with spherical covariance I:
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p(z̃t) ∼ N(0, I). The loss function of the motion fingerprint extractor results in optimizing
the expected log-likelihood pθ and the Kullback-Leibler (KL) divergence enforcing the
posterior distribution qω to be close to the prior p(z̃t) for all time steps:

LMotion(ω, γ, θ) =
T∑
t=1
−Ezt∼pγ(·|z̃1:T ,t̄1:T )

[
log pθ(It|zt, I0)

]
+ KL [qω(z̃t|I0, It)‖p(z̃)] . (6.1)

Unlike the traditional CVAE model, the temporal regularized zt-code is used in the log-
likelihood term pθ instead of the z̃t. We model pθ as a symmetric local cross-correlation
Boltzmann distribution with the weighting factor ι. All network weights except the ones
in the TCN are shared and thus independent of the time t. Their network architecture
consists of convolutional and deconvolutional layers with fully-connected layers for mean
and variance predictions in the encoder part [Kingma, 2014b]. We use an exponentiation
layer for a stationary velocity field parameterization of diffeomorphisms [Krebs, 2019b],
a linear warping layer and diffusion-like regularization with smoothing parameters σG
in spatial and σT in temporal dimension. During training, we apply temporal dropout
sampling as described in [Krebs, 2020c] in order to further ensure learning temporal
dependencies and increase generalizability.

6.2.2 Survival Predictor

The survival predictor takes the motion fingerprint z, the compact representation of the
motion, as input and predicts the survival risk score r which is defined by the logarithm
of the hazard ratio in the Cox regression analysis [Cox, 1972]. This ratio contains the
hazard hz(t) of a subject with fingerprint z with respect to the baseline hazard h0(t):

r = log hz(t)
h0(t) , (6.2)

where the subject hazard hz(t) symbolizes the probability of the subject of dying at time
t and the baseline hazard describes the survival without an influence of covariates z. The
hazard ratio is assumed to be constant over time behind the semi-parametric proportional
hazard model of Cox [Cox, 1972]. Thus, the continuous risk score r allows to classify the
outcome risk for a new patient at test time.

In contrast to standard Cox regression analysis, we define the risk r as a non-linear
combination of input features z: r = rν(eκ(z)) where rν and eκ are two neural networks
with network weights ν and κ. The full risk model is realized as autoencoder neural
networks that reduce the fingerprint’s dimensionality DT̄ in order to retrieve the risk r.
The authors chose an encoder-decoder architecture in contrast to a direct prediction of r

6.2 Methods 87



in order to constrain and regularize the risk predictor to avoid over-fitting [Bello, 2019;
Lou, 2019].

The encoding and decoding branches of the risk autoencoder are denoted by eκ and dλ
with network weights κ and λ respectively. A third network with weights ν is applied
to obtain the risk score rν(eκ(z)) from the latent space of the autoencoder eκ(z). In this
work, the three networks consist of fully-connected layers due to the low dimensional
fingerprints. In case of larger fingerprints, convolutional and deconvolutional layers in
encoder respectively decoder networks could be used. The risk predictor is trained using
multi-task learning by aiming to reconstruct the motion fingerprint and to predict the
risk r at the same time. Thus, the loss function LRisk(κ, λ, ν) contains 2 terms, one for
the fingerprint reconstruction Lrec(κ, λ) and one for risk prediction Lrisk(κ, ν):

LRisk(κ, λ, ν) = Lrec(κ, λ) + αLrisk(κ, ν) (6.3)

where α denotes a weighting factor between both terms. For risk prediction, we apply
the negative log partial likelihood as survival function over N censored training samples
following standard Cox regression analysis [Cox, 1972]:

Lrisk(κ, ν) = −
N∑
i=1

δi

[
rν(eκ(zi))− log

N∑
j=1

Rij exp(rν(eκ(zj)))
]
, (6.4)

with zi being the fingerprint of the i-th training subject. The Boolean censoring indicator
δi equals 1 if the subject experienced SCD (or another endpoint of interest) at the given
time τ . A subject is censored δi = 0 if the patient was still alive at time τ but removed
from the study afterwards. R is the risk matrix where Rij = 1 if τj ≥ τi and Rij = 0
if τj < τi, based on N training samples per batch. This represents a non-linear Cox
proportional hazard model (cf. to [Lou, 2019]). The fingerprint reconstruction loss term
is defined as the mean squared error between fingerprint z and reconstructed fingerprint
z′ = dλ(eκ(z):

Lrec(κ, λ) = 1
N

N∑
i=1
‖zi − dλ(eκ(zi)‖2. (6.5)

The two modules of fingerprint extractor and survival predictor are trained in 2 steps.
First, the motion fingerprint is trained alone and afterwards the survival predictor while
fixing the motion fingerprint network. This keeps the motion fingerprint independent
of the survival analysis and allows for example the training on additional data for the
motion extraction where no survival data is available.
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6.3 Experiments

In the experiments, we used a non-ischemic cohort of 167 HF patients with clinical criteria
(low LVEF) for primary prevention ICD. These cases were collected from 3 different sites.
We used 4 chamber-view cine-MRI which were taken prior to ICD implantation. For
the preliminary experiments in this study, we used HF hospitalization as endpoint to
evaluate the proposed outcome predictor. HF hospitalizations was defined as the time
point when a patient came into hospital with a documented primary diagnosis related
to heart failure. In future and once we get clearance for the data, we plan to add
results for SCD risk prediction and other HF endpoints. Using HF hospitalization as
endpoint, this cohort consisted of 36% of subjects (60 subjects) with event times and
right censored data for the remaining ones. Besides the censored data of the endpoint,
the following clinical features were used as comparison risk predictors in this study
computed with standard clinical tools: graymass (GM), minimum and maximum LA
index volume (VminI respectively VmaxI), LA strain rate during LV systole (SRmax),
preatrial contraction (SpreA) and atrial contraction (SRA). These features were selected
as they are associated for being predictive for HF hospitalization and SCD [Issa, 2017;
Rijnierse, 2017; Jablonowski, 2017]. From this cohort, 60 subjects (36%) experienced
HF hospitalization.

6.3.1 Implementation Details

The 4 chamber-view cine MRI were resampled to an image size of 128 by 128 pixels
with a spacing of 2.2 mm. The implementation of the fingerprint extractor followed the
details in [Krebs, 2020c]. We increased the latent dimensionality D to 64 motivated by
the fact that 4 chamber view images contain more complex motion details than the LV
motion alone. The survival predictor requires motion fingerprints z to have the same
size for all patients. In order to retrieve same sized z, we interpolated the cine-MRI in
temporal dimension to retrieve a fixed time length T . In this work, we used T = 25 as it
represents the average sequence length in this cohort. We applied B-spline interpolation
for resampling the image sequences that contained less or more than 25 frames. The
Gaussian deformation field regularization was applied with σG = 3mm and σT = 1.5. The
weighting factor between reconstruction and KL loss terms has been chose empirically as
ι = 6 · 10−4.

In total, the neural network of the risk predictor contained 5 fully-connected layers. The
encoder eκ consisted of two consecutive layers with 180 and respectively 10 units whose
output created the latent space. On the one side, the decoder dλ used the latent code and
applied two layers to retrieve the reconstructed fingerprint vector z′. On the other side, a
single dense layer was used to extract the scalar risk score r from the latent code. The
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output layer of the risk network rν had a tanh activation function while the decoder’s
output did not apply an activation function. The remaining layers used relu activation
functions. Furthermore, a dropout factor of 0.3 has been applied on the input layer.
Dropout factor and number of units of the fully-connected layers were determined by
a hyperparameter search using evolutionary optimization. The model has been trained
using the Adam optimizer [Kingma, 2014a] with a learning rate of 0.0001 and batch size
of 16. The framework has been implemented using Keras [Chollet, 2015] and Tensorflow
[Abadi, 2016].

Tab. 6.1: Predictors of HF hospitalization using univariate and multivariate (for Clinical and
Fingerprint+Clinical) Cox proportional hazard models. The results are obtained
via 6-fold stratified cross-validation. HR, p-value (reject the null hypothesis that
the HR equals one) and average concordance index (C) are reported including a
95% confidence interval (CI) in brackets. The motion fingerprint shows the highest
prediction accuracy, independently and together with multiple clinical variables.

Feature HR C p-value
GM 0.92 (0.64-1.32) 0.52 (0.38-0.55) 0.66
VmaxI 1.85 (1.31-2.60) 0.63 (0.55-0.69) <0.005
VminI 2.03 (1.44-2.87) 0.66 (0.59-0.72) <0.005
SRmax 2.30 (1.63-3.26) 0.65 (0.59-0.71) <0.005
SRA 2.02 (1.43-2.85) 0.62 (0.55-0.68) <0.005
SpreA 1.98 (1.41-2.79) 0.63 (0.56-0.69) <0.005
Fingerprint 2.93 (2.05-4.18) 0.69 (0.60-0.72) <0.005
Best Clinical Params. 2.39 (1.69-3.39) 0.67 (0.61-0.74) <0.005
Fingerp. + Best Clinical Params. 3.02 (2.11-4.32) 0.70 (0.63-0.75) <0.005

6.3.2 Results

We evaluated our risk prediction model in comparison to the other clinical factors by
fitting linear univariate and multivariate proportional hazard Cox models [Cox, 1972].
We used 6 fold stratified cross-validation, first for training the fingerprint extractor and
second for the Cox models. The fingerprint extractor has been trained first, in a risk
independent fashion. The extracted motion for 2 example cases, 1 with HF hospitalization
event and one without, can be seen in the appendix 6.5.1. In Fig. 6.3 of the appendix,
we further compared the motion model with the 4D Elastix algorithm [Metz, 2011] in
terms of matching of intensities and deformation regularity.

For risk prediction, we report the mean concordance index (C) [Harrell, 1982] over the 6
folds and compute hazard ratios (HR) including confidence intervals (CI) and statistical
p-value by splitting all test results by their medium risk value, dividing the cohort in a
low and high risk group. For the Cox analysis and HR computation, the python package
lifelines [DavidsonPilon, 2020] has been used.
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In Table 6.1, the results for the Cox analysis are shown using the different clinical
features and the fingerprint risk score independently. The last two rows in table 6.1 show
multivariate Cox analysis results for the joint predictive power of the best-performing
combination of clinical features and the combination of these clinical features and the
fingerprint risk. We tested all combinations of the 6 clinical features and show only the
best combination here denoted by Best Clinical Params. In terms of testing results on
C and HR scores, this best combination was found to contain VminI, VmaxI and SpreA
features. In case of multivariate models, the linear Cox model showed signs of over-fitting
by resulting in much better training but worse testing scores.

With an HR of 2.93 (CI 2.05-4.18) and an C-index of 0.69 (CI 0.60-0.72), the novel
fingerprint risk score extracted from the motion model shows the highest prediction
accuracy as independent predictor of HF hospitalization. In combination with the best
clinical features, the multivariate Cox analysis showed an improved cross-validated
C-index of 0.70 (CI 0.63-0.75) and HR of 3.02 (CI 2.11-4.32).

In Fig. 6.2, we further show the Kaplan-Meier plots of 4 independent features and the 2
feature combinations. Kaplan-Meier estimates can be used to measure the fraction of
subjects living for a certain amount of time [Goel, 2010]. One can see the capability
of different models to recognize low and high risk patients by analyzing the distance
between high and low risk survival curves in the Kaplan-Meier plot. We split our cohort
into low and high risk groups according to the median risk prognosticated by the Cox
model (for test cases). It is shown that for example the gray mass (GM) is not a good
predictor since low and high risk survival curves are highly overlapping. The best
differentiation between both groups (characterized by a large gap between the survival
lines) can be seen for the fingerprint risk score and the combination of fingerprint and
clinical features. These results indicate that the proposed risk predictor based on an
extracted motion fingerprint can more accurately predict HR hospitalization than other
commonly used clinical features.

6.4 Discussion and Conclusions

In this work, we have proposed a novel image-driven risk predictor for personalized
survival analysis by using a learned motion fingerprint – a low-dimensional encoding of
the motion from a sequence of images. The proposed method showed promising first
results in terms of predicting the risks for hospitalization of HF patients. These findings
could be the first step to lead to a better patient selection for ICD treatment.

Besides HF hospitalization, we plan to add other endpoints such as SCD to this study.
Furthermore, the authors think, the performance could be further improved by adding
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VminI Fingerprint

Best Clinical Params Fingerprint + Clinical

GM SRmax

C: 0.53 (0.38-0.55)

HR:0.92 (0.64-1.32)

C: 0.65 (0.59-0.71)

HR:2.30 (1.63-3.26)

C: 0.66 (0.59-0.79)

HR:2.03 (1.44-2.87)

C: 0.69 (0.60-0.72)

HR:2.93 (2.05-4.18)

C: 0.67 (0.61-0.74)

HR:2.39 (1.69-3.39)

C: 0.70 (0.63-0.75)

HR:3.02 (2.11-4.32)

Fig. 6.2: Kaplan-Meier plots showing the average survival risk and its confidence interval for
low and high risk patients depending on different predictors: gray mass (GM), SRmax,
VminI, motion fingerprint and multivariate risks using clinical and the combination
fingerprint and clinical features. The motion fingerprint helps to differentiate between
low and high risk patients.

more features to the risk prediction network. One possible way could be by complement-
ing the motion fingerprint with a cardiac structure fingerprint, extracted in a similar
fashion as the motion fingerprint from for example late gadolinum enhancement images.
The authors think that if multivariate models are used (combination of multiple clinical
and motion features) the experienced over-fitting might be resolved by using a bigger
dataset for fitting the linear Cox proportional hazard model or by using sparse estimation
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of Cox proportional hazards models that select the most relevant features in the survival
prediction such as in [Evers, 2008; Su, 2016].

The two modules of fingerprint extractor and survival predictor can be also trained in an
end-to-end fashion where all loss terms in Eq. 6.1 and Eq. 6.3 are combined in a single
weighted loss function as for multitask training. In this way, the motion fingerprint is
fine-tuned for personalized outcome risk prediction. However, the weighting between
the different loss terms is more difficult and additional data for training the fingerprint
extractor is not easily usable.

In future work, the model’s lack of interpretability could be explored. As the model
already contains two clearly separated modules of motion fingerprint and risk predictor it
would be interesting to see which features are especially used and relevant for predicting
the HF risks. Another possible future direction is to investigate the neural network
features in depth from a clinical research perspective to potentially find unknown motion
features that can be associated with HF or SCD.
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6.5 Appendix

6.5.1 Motion Fingerprint Extraction

Undeformed Elastix 4D Our

No

Event

Event

ED frame ES frame Warped ED + Grid

Fig. 6.3: The motion fingerprint extractor is able to learn motion patterns from 4 chamber view
cine-MRI. The motion between end-diastolic (ED) and end-systolic (ES) frames are
shown for two subjects, one with future HF hospitalization event and one without.
The bottom shows boxplots of registration accuracy and deformation regularity in
comparison to the 4D elastix algorithm in terms of root mean square (RMSE), local
cross-correlation (LCC), gradient of the determinant of Jacobian (Grad. Det. Jac.),
spatial and temporal gradients of the deformation field.

6.5.2 Detailed Derivations of the Fingerprint Extractor

Due to the fact that the used motion model in this chapter is different from the one presented
in chapter 5 (e.g. not utilizing a Gaussian process prior), we add the full derivations here.
The following sections are based on the method section in [Krebs, 2020c].

The motion observed in an image sequence with T + 1 frames is typically described
by deformation fields φt between a moving image I0 and the fixed images It with
t ∈ [1, T ]. Inspired by the probabilistic deformation model of [Krebs, 2019b] based
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Fig. 6.4: Probabilistic motion model (a): The encoder qω projects the image pair (I0, It) to
a low-dimensional deformation encoding z̃t from which the temporal convolutional
network pγ (b) constructs the motion matrix z ∈ Rd×T conditioned on the normalized
time t̄. The decoder pθ maps the motion matrix to the deformations φt. The temporal
dropout sampling procedure (c) randomly chooses to sample z̃t either from the encoder
qω or the prior distribution.

on conditional variational autoencoder (CVAE) [Kingma, 2014b], we define a motion
model for temporal sequences. The model is conditioned on the moving image and
parameterizes the set of diffeomorphisms φt in a low-dimensional probabilistic space,
the motion matrix z ∈ RD×T̄ , where D is the size of the deformation encoding per
image pair adn T̄ = T − 1. Each column’s zt-code corresponds to the deformation φt.
To take temporal dependencies into account, zt is conditioned on all past and future
time steps. To learn this temporal regularization directly from data, we apply Temporal
Convolutional Networks [Bai, 2018] with explicit time dependence and temporal dropout
sampling enforcing the network to fill time steps by looking at given past and future
deformations. An illustration of the model is shown in Fig. 6.4a.

Probabilistic Motion Model

Our motion model consists of three distributions. First, the encoder qω(z̃t|I0, It) maps
each of the image pairs (I0, It) independently to a latent space denoted by z̃t ∈ Rd.
Second, as the key component of temporal modeling, these latent vectors z̃t are jointly
mapped to the motion matrix z by conditioning them in all past and future time steps
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and on the normalized time t̄: pγ(z|z̃1:T , t̄1:T ). Finally, the decoder pθ(It|zt, I0) aims to
reconstruct the fixed image It by warping the moving image I0 with the deformation φt.
This deformation φt is extracted from the temporally regularized zt-codes. The decoder
is conditioned on the moving image by concatenating the features at each scale with
down-sampled versions of I0.

The distributions qω, pγ , pθ are approximated by three neural networks with trainable
parameters ω, γ, θ. During training, a lower bound on the data likelihood is maximized
with respect to a prior distribution p(z̃t) of the latent space z̃t (cf. CVAE [Kingma,
2014b]). The prior p(z̃t) is assumed to follow a multivariate unit Gaussian distribution
with spherical covariance I: p(z̃t) ∼ N (0, I). The objective function results in optimizing
the expected log-likelihood pθ and the Kullback-Leibler (KL) divergence enforcing the
posterior distribution qω to be close to the prior p(z̃t) for all time steps:

T∑
t=1

Ezt∼pγ(·|z̃1:T ,t̄1:T )

[
log pθ(It|zt, I0)

]
− KL [qω(z̃t|I0, It)‖p(z̃)] . (6.6)

Unlike the traditional CVAE model, the temporal regularized zt-code is used in the log-
likelihood term pθ instead of the z̃t. We model pθ as a symmetric local cross-correlation
Boltzmann distribution with the weighting factor λ. Encoder and decoder weights are
independent of the time t. Their network architecture consists of convolutional and
deconvolutional layers with fully-connected layers for mean and variance predictions in
the encoder part [Kingma, 2014b]. We use an exponentiation layer for the stationary
velocity field parameterization of diffeomorphisms [Krebs, 2019b], a linear warping layer
and diffusion-like regularization with smoothing parameters σG in spatial and σT in
temporal dimension.

Temporal Convolutional Networks with Explicit Time Dependence

Since the parameters of encoder qω and decoder pθ are independent of time, the temporal
conditioning pγ plays an important role in merging information across different time
steps. In our work, this regularization is learned by Temporal Convolutional Networks
(TCN). Consisting of multiple 1-D convolutional layers with increasing dilation, TCN can
handle input sequences of different lengths. TCN have several advantages compared
to recurrent neural networks such as a flexible receptive field and more stable gradient
computations [Bai, 2018].

The input of the TCN is the sequence of z̃ concatenated with the normalized time t̄ = t/T .
Providing the normalized time explicitly, provides the network with information on
where each z̃ is located in the sequence. This supports the learning of a motion model
from data representing the same type of motion with varying sequence lengths. The
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output of the TCN is the regularized motion matrix z. We use non-causal instead of
causal convolutional layers to also take future time steps into account. We follow the
standard implementation using zero-padding and skip connections. Each layer contains d
filters. A schematic representation of our TCN is shown in Fig. 6.4b. For cyclic sequences,
one could use a cyclic padding instead of zero-padding, for example by linking z̃T to z̃0.
However, in case of cardiac cine-MRI, one can not assume the end of a sequence coincides
with the beginning as 5-10% of the cardiac cycle are often omitted [Bernard, 2018].

Training with Temporal Dropout Sampling

Using Eq. 6.6 for training could lead to learning the identity transform z ≈ z̃ in the TCN
pγ such that deformations of the current time step are independent of past and future
time steps. To avoid this and enforce the model to search for temporal dependencies
during the training, we introduce the concept of temporal dropout sampling (TDS). In
TDS, some of the z̃t are sampled from the prior distribution p(z̃) instead of only sampling
from the posterior distribution qω(z̃t|I0, It) as typical for CVAE. At the time steps the
prior has been used for sampling, the model has no knowledge of the target image It
and is forced to use the temporal connections within the TCN in order to minimize the
objective.

More precisely, at each time step t, a sample from the prior distribution z̃prior
t ∼ p(z̃t)

is selected instead of a posterior sample z̃post
t ∼ qω(z̃t|I0, It) using a binary Bernoulli

random variable rt. All independent Bernoulli random variables r ∈ RT have the success
probability δ. The latent vector z̃t can be defined as:

z̃t = rt ∗ z̃prior
t + (1− rt) ∗ z̃post

t . (6.7)

Fig. 6.4c illustrates the TDS procedure. At test time, for each time step independently,
one can either draw z̃t from the prior or take the encoder’s prediction.

Implementation Details and Training of the Fingerprint Extractor

The encoder qω consisted of 4 convolutional layers with strides (2, 2, 2, 1) and dense
layers of size D for mean and variance estimation of the VAE. The TCN consisted of
four 1-D convolutional layers with dilations (1, 2, 4, 8), same padding, a kernel size
of 3 and skip connections (cf. Fig. 6.4b). The decoder pθ had 3 deconvolutional and 1
convolutional layer before the exponentiation and warping layers (Fig. 6.4a). The loss
weighting factor λ was chosen empirically as 6 · 104. The dropout sampling probability
δ was 0.5. We applied a first-order gradient-based method for stochastic optimization
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(Adam [Kingma, 2014a]) with a learning rate of 0.00015 and a batch size of one. We
performed data augmentation on-the-fly by randomly shifting, rotating, scaling and
mirroring images. We implemented the model in Tensorflow [Abadi, 2016] with Keras
[Chollet, 2015]. The training time was 15h on a NVIDIA GTX TITAN X GPU.
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In this thesis, we presented computational frameworks for the analysis of medical image
pairs and image sequences. We built upon state-of-the-art methods for designing accurate
and reliable registration and motion analysis tools that can be applied in clinical research
by facilitating diagnosis, prognosis and therapy of diseases.

The proposed methods utilize recent machine learning methods showing high com-
putational efficiency. Furthermore, the use of artificial intelligence (AI) in this work
demonstrates how powerful compact models can be learned from large datasets of images.
The developed tools were designed to find application in difficult inter-subject registration
and in intra-subject motion tracking scenarios. For the latter, compact deformation and
motion models from sequential images were proposed that enable a variety of analysis
tools to quantify and compare deformations. The proposed algorithms were tested on
publicly available datasets allowing to benchmark and compare results. While the first
5 chapters are intended for a broader range of applications focusing on the technical
contributions of this thesis, in chapter 6, one potential clinical application is shown. It
is demonstrated how the proposed motion model can directly support prognosis and
therapy planning by predicting the survival risk of patients suffering from heart failure
(HF). This could allow for a better patient selection for available therapies.

7.1 Main Contributions

In chapter 3, we proposed a generic learning-based framework using an artificial
agent for difficult inter-subject registration tasks appearing in organ-focused non-
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rigid image fusion and atlas-based segmentation. The proposed method overcomes
limitations of traditional algorithms by learning optimal features for registration. Inspired,
by deep reinforcement learning the registration problem was reformulated as the iterative
optimization of deformation parameters through an artificial agent. Hereby, the agent
(a neural network) optimized the parameters of a simple statistical deformation model
(SDM) learned from data. In an iterative fashion, the optimal transformation parameters
were approached on a trajectory of small deformations. To restrict the agent to a set of
reasonable transformations, fuzzy action control has been introduced which sets limits to
the parameters of the SDM. During training, a novel ground-truth generator was used.
This generator relied on simulated deformations from an SDM and a few ground-truth
inter-subject deformation fields that were enhanced by segmentations. We showed that
the agent-based approach trained with data from the novel ground-truth generator
outperformed three state-of-the art registration algorithms in terms of structure overlaps
and distances.

We presented an unsupervised deformable registration approach that learns a low-
dimensional probabilistic deformation model in chapter 4. The deformation model is
based on a conditional variational autoencoder (CVAE). It not only allows for accurately
registering two images but also for analyzing corresponding deformations efficiently by
using a novel generative deformation encoding. In this encoded latent space, similar
deformations are close to each other. This enables to cluster and simulate deformations
for a given image. Furthermore, it provides a novel way of transporting deformations
from one subject to another without requiring inter-subject registration. The model can
be seen as a non-linear and richer generalization of a simple statistical deformation model
such as PCA. The unsupervised method is based on variational inference. In addition,
we introduced a novel exponentiation layer to make DL-based registration algorithms
diffeomorphic utilizing the SVF parameterization. An extended version, allows to train
the model in a multi-scale fashion which results in higher accuracy. We evaluated the
approach on end-diastole to end-systole cardiac cine-MRI registration. In comparison
to 3 state-of-the-art algorithms, our multi-scale model showed significantly improved
registration accuracy and regularity. The latent encoding showed convincing generative
and deformation transport capabilities and showed a 83% classification accuracy for
differentiating 5 cardiac diseases.

Beyond pairwise registration, we proposed a probabilistic motion model in chapter 5.
This model can be useful for spatio-temporal registration, temporal super-resolution,
data augmentation, shorter acquisition times and other motion analysis tasks. Intrinsic
motion patterns are encoded in a low-dimensional probabilistic space – the latent motion
matrix – which allows for accurate tracking of structures, temporal interpolation, motion
simulation and motion transport. The diffeomorphic motion model is trained as a
temporal latent variable model utilizing a novel Gaussian process prior acting on the
latent motion encoding and following the training principles of CVAEs. Applied on
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cardiac cine-MRI, our approach has shown state-of-the art registration accuracy and
improved temporal and spatial deformation regularity in comparison to 3 state-of-the-art
algorithms. These results indicated that the latent motion encoding helps to regularize
the registration problem of image sequences. Besides, we demonstrated the model’s
applicability for motion analysis by simulating realistic motion patterns, by transporting
the motion to simulate a pathology in a healthy case and by an improved motion
reconstruction from sequences with missing frames.

In chapter 6, we presented how our low-dimensional motion model can be applied for
risk estimation and disease outcome prediction in heart failure patients. We have
proposed a neural network risk predictor based on a non-linear Cox regression loss to
estimate different disease endpoints from a motion fingerprint. Hereby, the fingerprint
(the motion matrix) was extracted by applying the motion model from the previous
chapter to 4 chamber-view cine-MRI. We evaluated the risk predictor on a cohort of heart
failure patients with known endpoints such as hospitalization and sudden cardiac death
(SCD). We have shown that the risk score predicted from the motion fingerprint is the
most predictive independent feature for survival in comparison to other clinical features
that have been known to be independently predictive for HF endpoints.

7.2 Perspectives and Future Applications

The proposed methods have proven to be accurate and suitable for the given applications
in this thesis. However, one goal was to develop tools that are generalizable and
applicable to other data and applications in medical image analysis. Therefore, we
believe that the proposed tools could find further application for the study of registration
and motion scenarios including different diseases, organs and imaging modalities. Due
to the fact that the objective functions for the proposed deformation and motion model
can include principally any differentiable similarity and regularization metric (as in
traditional registration methods), it makes these models suitable to a large variety of
applications including for example multi-modal registration. In addition, future work
should focus on the interpretability of the proposed latent variable models.

7.2.1 Motion Model for Cardiac Sequences from other
Modalities

In a first step of generalization, one can think of applying the proposed motion model
from chapter 5 to cardiac sequences from other modalities such as ultrasound or computer
tomography images. Cardiac ultrasound (or echocardiography) is the most widely used
and readily available imaging modality to assess cardiac function and structure. We

7.2 Perspectives and Future Applications 101



Tracking𝑡

0

5

10

15

20

Det.-Jac.Original Tracking+Grid Compensation

Fig. 7.1: After training the motion model on the Echonet dataset [Ouyang, 2020], an example
test sequence with extracted tracking results, Jacobian determinants and motion-
compensated images is shown.

already conducted preliminary experiments that show the applicability of our method to a
publicly available database of cardiac ultrasound image sequences, the Echonet [Ouyang,
2020]. This dataset contains 10.030 ultrasound videos. We extracted approximately one
cardiac sequence given the annotated ED and ES frames. We followed the given division
in 7550 training, 1287 validation, 1275 test splits and trained our motion model with
the same hyperparameters as described for the cine-MRI. In Fig. 7.1, an example test
sequence, the tracking results, Jacobian determinants and motion-compensated images
are shown.

Furthermore, simulated motion is shown in case of transporting the motion matrix of a
test sequence with high ejection fraction (EF) to one sequence with low ejection fraction
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Fig. 7.2: Transported Motion from a case with hihg ejection fraction (EF) to one case with low
EF and vice versa.

in Fig. 7.2. These first preliminary results are promising and suggest that the motion
model is also applicable to echocardiography sequences of the heart without major
adjustments or modifications.

7.2.2 Interpretability and Causability in Deep Latent Variable
Models

In PCA, the different variables have a clear structure and the first components are often
interpretable: they describe the direction of the largest possible variance of the data and
each succeeding component has the highest possible variance while being orthogonal
to the preceding components. On the other hand deep latent variable models, such as
the ones presented in this thesis, do not offer equivalent means of interpretation for the
individual latent variables. By making assumptions of certain prior distributions such as
multivariate Gaussians, the latent variables are enforced to be more structured compared
to standard autoencoder networks in the sense that similar data points are close to each
other in the latent space [Kingma, 2019]. This allows for example to interpolate between
data points. However, a deeper interpretability of the latent variables is not available.
In future work, it is desirable to investigate the interpretability and causability of latent
variable models as this can lead to an improved understanding of the latent encoded
motion model and its reasoning [Holzinger, 2019]. The goal is to not only provide a
model that can be used for the tasks tackled in this manuscript but to also understand

7.2 Perspectives and Future Applications 103



(in a human explainable way) which features and which characteristics of the images
and its deformations are the most important ones for example for predicting disease
outcomes. Providing such explainable decisions would make it easier for physicians to
trust deep latent variable models and AI-based algorithms in general. A simple way to
improve explainability is by looking at the model’s feature maps and find distinctive
patterns between different pathologies. In addition, it could be helpful to study the
model’s attention using saliency maps [Simonyan, 2013].

While looking at the network’s attention, gives more insights about which parts of the
data lead to a certain prediction, a more clinically motivated future direction is to
integrate known features into the latent space. In terms of cardiac motion, one could
incorporate classical clinical features such as ejection fraction or strain values and thus,
enhance interpretability. For risk prediction, the inclusion of clinical features at different
stages of a standard autoencoder network has been preliminary investigated by Ji et
al. [Jin, 2019].

In another possible approach, one could think of interpreting all or some latent variables
as the parameters of a known biomechanical model. In this case, the decoding part to
retrieve dense deformation fields could be replaced by the biomechanical model and
the motion model would predict optimal parameter values for the biomechanical model
solely from a pair or sequence of given images.

7.2.3 Beyond Predicting Heart Failure Disease Outcomes

We have shown the usefulness of the motion model for predicting disease outcomes such
as hospitalization and SCD for heart failure patients. However, this is only the first step
in the automatic image-driven feature analysis. The proposed risk prediction model and
possible variants (e.g. using end-to-end learning) could be useful to identify and reveal
unknown clinical features that are significantly predictive for disease outcomes such
as the ones mentioned above. Closely related to the interpretability and causability of
the model as mentioned above, these features could be extracted by introspection – by
analyzing the neural networks’ behavior in disease-specific cases. Besides, the diagnosis
and prognosis for a single patient, this could impact clinical research directly and lead to
a better understanding of heart failure and related risks.

Moreover, multiple other heart diseases that have been associated with an impaired
cardiac motion could benefit from the proposed risk model. One example is pulmonary
hypertension which is characterized by right ventricular dysfunction [Farber, 2004].
Here, an image-based automatic feature retrieval could also reveal new unknown cardiac
motion factors that influence the disease.
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Fig. 7.3: The Alzheimer’s disease (AD) is assumed to have a faster morphological degeneration
(aging) than healthy people [Sivera, 2019].

7.2.4 Deformation Model for Studying Neurodegenerative
Diseases

The thesis focused on the development of a deformation and motion model of the heart
from images of the same patient determining intra-subject deformations. While this
is helpful for analyzing moving body organs, one future direction could be to learn a
deformation model across patients depicting inter-subject deformations. Such a model
could be useful for determining disease progression in a patient. An active research
topic that comes to mind is the analysis of neurodegenerative diseases. The progress of
Alzheimer’s disease and aging are known to cause morphological changes in the human
brain [Rosen, 2003; Ohnishi, 2001]. These changes can be extracted by image registration
of a subject’s brain MRI to a template. In combination with a learned template model
(e.g. [Dalca, 2019b]), a low-dimensional generative deformation model could provide
novel insights in the analysis of brain aging and neurodegenerative diseases. Further
on, one could potentially predict the disease progression in a patient by comparing the
evolution of healthy and unhealthy brains [Sivera, 2019; Nader, 2020] (cf. Fig. 7.3).
Thus, another way of applying the proposed motion model to neurodegenerative diseases
is to learn the brain evolution in a patient. This could be done by learning a brain
deformation model from longitudinal images where the temporal deformations depict
structural brain changes over long time intervals rather than real-time organ motion as
from the heart. Using such a low-dimensional temporal deformation model could help in
characterizing the personalized disease progression in a patient and guide the therapy.
However, modeling the more complex morphological changes in the brain may require
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Fig. 7.4: Registration misalignment for CT and PET images induced from respiratory motion.
Different breathing states are illustrated, free-breathing (FB), maximal inspiration
(Insp) and maximal expiration (Exp) [Callahan, 2014].

an adaptation of the latent motion matrix in order to deal with this extra amount of
deformation complexity.

7.2.5 Respiratory Motion Model

Another potential area of application is the study of lung and respiratory motion. A
crucial need in the analysis of images for lung diseases (such as CT) and for example for
tumors in the abdomen is motion compensation [Ozhasoglu, 2002]. In PET imaging for
instance, respiratory motion causes artifacts in reconstructed images, which can lead to
misinterpretations, imprecise diagnosis or the impairing of fusion with other modalities
[Reyes, 2007]. Often PET images need to be registered to CT images in order to map
structural to functional images. In Fig. 7.4, one can see the misalignment between CT
and PET images induced from respiratory motion as the images were taken at different
breathing states [Callahan, 2014]. A comprehensive probabilistic motion model could
help in compensating for these motion artifacts within a mono-modal sequence (CT) and
allow for reliable multi-modal registration in a second step.

Furthermore, a compact motion model could help in the diagnosis and prognosis of lung
diseases. It has been shown that an impaired lung function is associated with increased
mortality rates [Beaty, 1985]. The proposed motion model already demonstrated its
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capabilities for predicting disease outcomes from cardiac image sequences. Thus, we
believe it can be also useful for motion-related lung diseases.

7.2.6 Deformation and Motion Modeling in Personalized
Medicine

We conclude with a broader view on the positioning of this work in a long-term outlook.
In the past couple of years, machine-learning methods have been successfully applied
to a wide variety of applications in medical image analysis [Litjens, 2017]. Typically,
these models are gathering experience from large databases in order to solve specific
problems. The next logical step for personalized medicine is how to combine this specific
knowledge to form something larger, a central system that is able to link information
across applications. Already today, a physician has to take the patient’s pre-existing
conditions, his health history, his age and many other factors into account before reaching
conclusions about diagnosis, prognosis and therapy. A system that helps in the analysis of
the increasingly growing amount of information can be highly beneficial in the healthcare
of tomorrow. Building a supporting system that combines a collection of computational
models describing and simulating the human body of a patient has been termed virtual
patient or digital twin. While such a model goes far beyond medical image analysis as it
involves basically all available data of a patient, medical images, most certainly, will still
be of crucial importance.

The models presented in this thesis are already designed to extract relevant information
from medical images and create meaningful compact representations or task-specific
fingerprints using modern machine learning techniques. Furthermore, we have shown
that these personalized fingerprints enable a variety of analysis tasks such as predicting
possible outcomes or simulating diseases. Thus, we believe that such personalized
fingerprints of a patient can play an important role in the creation of a comprehensive
digital twin. In terms of deformation and motion models, one could think of learning an
ensemble of organ-specific and/or disease-specific models. This ensemble of fingerprints,
could then be one part of the virtual patient helping and supporting the patient’s health
during all stages of the clinical workflow and whenever necessary.
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