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Context: Public Key Encryption (PKE)

Goal: share a secret message

1 Alice generates pair of keys
and sends the public key

2 Bob encrypts his message
and sends the ciphertext

3 Alices decrypts the
ciphertext using the secret
key

Generate Public Key (PK)
and Secret Key (SK) Send PK

Use PK to encrypt
a message M and
obtain ciphertext C

Decrypt C using 
SK and obtain M

Send C

public channel

The data sent over the public channel (C , PK ) must not reveil any
information about M

How to generate (PK , SK ),C?
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Context: Diffie-Hellman

Hypothesis: Discrete Logarithm (DL)

Let p > 22000 be some (public) prime number and g and s integers.1

Given only g and g s mod p, it is practically impossible to compute s.

The security of the key exchange protocol is based on the hardness of DL:

Get random 
number a and 
compute ga

Get random 
number b and
compute gb

Compute (g )
ab

send gb
asend g

Compute (g )a b

Shared secret: (ga)b = (gb)a mod p

Public: g , ga, gb mod p

DL hypothesis true =⇒ secure

Hypothesis false =⇒ big problem

The DL hypothesis is false in the presence of quantum computers [Sho97].

1g must also be a generator and s should be large (> 2200)
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Context: Post Quantum Cryptography (PQC)

Quantum computers do not yield any generic exponential speed-up
→ only some specific mathematical problems are solved

Idea

Find computationally hard problems for which there does not exist
any fast quantum algorithm.

Quantum hard computational problems:

Shortest vector problem
→ Lattice cryptography (LWE/NTRU)

Decoding a random linear code
→ Code based cryptography (McEliece)

Solving a system of multivariate quadratic equations

Discrete logarithm over elliptic curve isogeny groups
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Introduction
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NIST Post Quantum Standardization Project

Goal

Select post quantum cryptographic algorithms for standardization.

Timeline:

12/2017: Candidates for 1st round announced (> 60 PKE candidates)

01/2019: 2nd round candidates announced (around 20 remaining)

06/2020: Start of round 3

2022-2024: Draft standards available

Round 3 PKE finalists:

3 out of 4 based on lattice problems

choose the best algorithms (most secure, most efficient, etc)

Security evaluation by cryptographers around the world

We focus on secure and optimized hardware implementations
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FPGAs

Programmable hardware devices

Contain a number of elements:

Look up tables (LUT)
DSP blocks
BRAM

Xilinx DSP48E1 (from UG479)

Important metrics: computation time, resource utilization
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High-Level Synthesis (HLS)

FPGAs can be programmed using VHDL/Verilog language
→ a time consuming process!

Or using HLS:
1 Program in C
2 HLS transforms it to VHDL description
→ faster, easier and compiler assisted optimizations

example:

Explore many different directives combinations

Generic implementations for complex algorithms
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Side-Channel Attacks (SCAs)

SCA method

Obtain secret data by measuring physical quantities of the device.

1 Power consumption
−→ SPA/DPA and variants

2 Computation time
−→ Timing analyisis

3 Electromagnetic radiation

4 Also: fault attacks

Security against SCA of
RSA/ECC is well studied

For new PQC, not so much

Example

function(secret bit):
if secret bit == 1 then

compute g()
else

compute f ()

−→ need to study countermeasures against SCA for PQC
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Lattice based Cryptography
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Lattice Problems

Lattice (definition)

A lattice L is an additive subgroup of Zn for some n. It is generated by n
basis vectors b1, . . . ,bn:

L =

{
n∑

i=1

xibi : xi ∈ Z

}
(1)

Example in Z2
12

Generated by 2 basis vectors

Shortest vector problem (SVP):
find smallest vector 6= 0

5 4 3 2 1 0 1 2 3 4 5 6
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Learning With Errors (LWE)

LWE problem definition:
1 Let s̄ be some secret vector in some finite field
2 Let A = (ai,j) be some public random matrix
3 Given A and b̄ ≈ As̄, find s̄.

Equation (=) instead of (≈) =⇒ Easy, using Gaussian elimination

With added noise (≈) =⇒ Very hard

[Reg05] LWE is at least as hard as SVP using quantum computers
→ useful for PQC
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Encryption Scheme ([Reg05][LPR10])

Plaintext: µ

Alice (KeyGen,Decrypt) : Bob (Encrypt µ) :

A
$←− random matrix

s, e
$←− vector w/ small coefficients

b← A · s + e
A,b−−→ e1, e2, e3

$←− small

c1 ← A · e1 + e2

µ′ ← D(c2 − cᵀ1s)
c1,c2←−−− c2 ← bᵀe1 + e3 + E(µ)

Possible SCA vulnerability: computation of cᵀ1s
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Structured and Unstructured Lattices

Matrix multiplication is expensive (many finite field operations)
→ use structured lattices to reduce complexity [LPR10]

Secret key: some LWE secret s ∈ Rk
q := (Zq[x ]/(xn + 1))k

Parameters and corresponding algorithms in NIST competition

polynomial vector

based degree length modulus

scheme on n k q

FrodoKEM LWE 1 640/976/1344 215/216

NewHope RLWE 1024 1 12289

Kyber MLWE 256 2/3/4 > 1 7681

Secret key is
a 8× k matrix over Zq in FrodoKEM
a polynomial in Z12289/(x1024 + 1) in NewHope

a vector in
(
Z7681[x ]/(x256 + 1)

)k
in Kyber
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Contributions of the thesis (yellow = presented in this talk)
1 HLS Implementation of finite field arithmetic for FPGAs

Analyse impact of various algorithms on HLS implementation results
Compas 2019 (national conference)

2 FPGA implementation of post-quantum cryptosystems
Based on LWE, RLWE and MLWE
Acceleration using parallelism
Timing / area trade-offs often better than state of the art
CPA and CCA2 secure solutions
Analysis of perfomance of various PRNGs used in the schemes
Submitted to IEEE Transactions on Computers, under major revision

3 Countermeasures against SCAs
Show that cryptoscheme is vulnerable to SCA (simulation)
Implement existing countermeasures

Masking, Shifting, Blinding

Propose new countermeasures
Secret key randomization using redundant number representation
Shuffling (using 2 different methods)

IndoCrypt 2019 (international conference)
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HLS Implementation of LWE based PKE on FPGA

Timo ZIJLSTRA (CNRS Lab-STICC, UBS) PQC on FPGA September 28, 2020 17 / 42



Implementation of LWE based Encryption

Main part of encryption:
1 Sample from binomial distribution: 640× 8 matrix E1

2 Generate public key 640× 640 matrix A
3 Compute Eᵀ

1A

Bottleneck: matrix multiplication (6402 × 8 15-bit multiplications)

Speed up using error packing technique from [LFK+19]

Speed up by parallelization of operations:

 e00||e10 e01||e11 . . .
...

...
e60||e70 e61||e71


︸ ︷︷ ︸

k columns

×


a00 a01 . . .
a10 a11

...

...
a(k−1)0


︸ ︷︷ ︸

k columns

=


c00 c01 . . .
c10

...
...

c70


︸ ︷︷ ︸

k columns

1
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Matrix Multiplication Base Implementation Architecture

Base implementation uses 4 DSP (encryption time: 2181µs)

PRRAM RAM

****

++ ++++ ++

15100

15 15 15 15 15 15 15 15

40 40 40 40

2525 25 25

120

Further speed up by increasing the level of parallelization

Parallelization factor f : compute products between f PK coefficients
and f columns of E1 simultaneously

Write generic codes for f and parameters using HLS
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LWE f = 2

BRAM
13 =
1.00×
13

Enc. time (µs)
1201 = 0.55 × 2181

Slice
1588 =
1.10×
1437

LUT
4053 =
1.04×
3884

DSP
9 = 1.8 × 5

0.0
0.2

0.4
0.6

0.8
1.0
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LWE f = 4

BRAM
17 =
1.30×
13

Enc. time (µs)
698 = 0.32 × 2181

Slice
1917 =
1.33×
1437

LUT
5000 =
1.28×
3884

DSP
17 = 3.4 × 5

0.0
0.2

0.4
0.6

0.8
1.0
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LWE f = 8

BRAM
25 =
1.92×
13

Enc. time (µs)
554 = 0.25 × 2181

Slice
2583 =
1.79×
1437

LUT
6683 =
1.72×
3884

DSP
33 = 6.6 × 5

0.0
0.2

0.4
0.6

0.8
1.0
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LWE f = 16

BRAM
41 =
3.15×
13

Enc. time (µs)
508 = 0.23 × 2181

Slice
3914 =
2.72×
1437

LUT
9296 =
2.39×
3884

DSP
65 = 13.0 × 5

0.0
0.2

0.4
0.6

0.8
1.0
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RLWE vs MLWE

RLWE MLWE
polynomials small matrices of polynomials
n = 1024 n = 256
q = 12289 q = 7681

Polynomial multiplication uses NTT
→ large NTT (RLWE) vs multiple smaller NTTs (MLWE)
Base implementation results:

enc. dec. DSP BRAM   slices (x100)
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Parallelization of RLWE/MLWE Encryption

Tested many (> 100) different combinations of HLS directives

RLWE:

compute NTT(e1) and NTT(e2) simultaneously
→ also works for MLWE

MLWE:

compute vector multiplication e1 · a in parallel. Instead of

e
(0)
1 a(0) + e

(1)
1 a(1) + · · ·+ e

(k−1)
1 a(k−1)

compute k products e
(0)
1 a(0), e

(1)
1 a(1), . . . , e

(k−1)
1 a(k−1) simultaneously

compute the k NTT’s of e
(0)
1 , e

(1)
1 , . . . , e

(k−1)
1 in parallel
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Speeding up LWE/RLWE/MLWE Encryption

0 5 10 15 20 25
DSP

0
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O
p
s/

s 
×

1
00

0

MLWE-512
MLWE-768
MLWE-1024
RLWE-1024
LWE-640
LWE-976
LWE-1344

Throughput for 3 degrees of parallelism (3 points of each curve)

Parallelized LWE very slow w.r.t. RLWE/MLWE
MLWE can be accelerated more than RLWE

Matrix/vector structures are easily parallelized in MLWE
In RLWE the NTT is the main bottleneck
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Comparison with other Works

Source Type FPGA µs DSP, BRAM, Slices, LUT

RLWE-1024

[KLC+17] K-E xc7z020 79 8, 14, n.a. 20826
[OG17] K-E xc7a35t 1532 2, 4, n.a., 4498

[ZYC+20] CPA xc7z020 62 2, 8, n.a, 6781 (*)
This work CPA xc7a200 63 4, 10, 3701, 10112 (*)

LWE-640

[HMOR19] CCA Artix-7 4624 4, 0, 1338, 4620

This work CCA xc7a200 2972 5, 37, 12951, 39077 (*)

MLWE-1024

[AEL+20] CCA xc7a35t 6900 4, 34, n.a., 1738
This work CCA xc7a200 170 11, 16, 11567, 33707 (*)
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SCAs and Countermeasures
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Side Channel Analysis Model

Attack each modular multiplication separately during decryption

Hypothesis: for each c · s mod q, the power trace allows to guess:

HW(c · s mod q) +N (0, σ)

memory modular
mul. HW

Correlation Power Attack:

1 Generate random ciphertexts

2 Predict power traces

3 Record power traces during decryption

4 Compute correlation between traces and predictions

5 Maximum correlation is obtained for the correct guess
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Side Channel Attack Simulation
Simulate Correlation Power Attack in SageMath:

Machine executing one instruction per cycle
Attack 1 single coefficient of RLWE-256 decryption
Correlations for all subkey guesses:
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Countermeasures

Randomize computations

How to obtain correct results from randomized computations?

1 Masking [RRVV15]

[RRVV15] reports FPGA implementation
Masked decryption 3 times slower than unmasked
We optimize and re-implement it on FPGA

2 Blinding and Shifting at algorithmic level [Saa18]

We implement it on FPGA

3 Shuffling (randomize the order of computations)

We propose 2 methods

4 New redundant secret key representation

Implemented for RLWE-256 but can be applied to MLWE as well
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Countermeasure: Masked Decryption [RRVV15]

Use linearity: a(b + c) = ab + ac

1 Generate a uniform random s′ and let
s′′ ← s− s′

→ then s = s′ + s′′

2 Compute (part of) the decryption
function for both shares:

d′ ← c2 − c1s′

d′′ ← −c1s′′
Then D(d′ + d′′) = µ

3 Use masked decoder to extract µ from
d′ and d′′

[RRVV15]: probabilistic decoder
We propose a deterministic decoder
Implement both solutions on FPGA

Reminder

Decrypt(c1, c2) =
D(c2 − c1s)
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Countermeasure: Blinding [Saa18]

For all integers a, b:
ac1 · bs = (ab)(c1 · s)

1 Pick some random a, b ∈ Z/qZ and
compute (ab)−1

2 Compute ac1 · bs
3 Multiply by (ab)−1 and subtract c2

to obtain correct d

4 Decode
→ [Saa18]: use pre-computed roots
of unity ωi , ωj , ωn−i−j

Reminder

Decrypt(c1, c2) = D(c2 − c1s)

Computation of c1 · s randomized at each run

d = c2 − c1s is not randomized =⇒ decoding algorithm is not
protected
→ use blinding in combination with another countermeasure
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Countermeasure: Shifting [Saa18]

1 Multiply s and c1 by x i and x j respectively, for random i , j < n

2 Obtain c1sx i+j

3 Multiply by x−(i+j)

In Zq[x ]/(xn + 1): multiply by x i ⇐⇒ shift i positions to the right
→ easy to compute

NTT domain: pointwise multiplication by NTT (x i ) = (1, ωi , ω2i , . . . )
→ still easy to compute (since ωi is pre-computed for all i < n)

Shifted decryption:

1 Get random indices i , j < n

2 Compute NTT (x i )� s, NTT (x j)� c1 and NTT (x i+j)� c2
3 Decrypt and shift i + j positions to the left
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Countermeasure: Shuffling

Pointwise multiplications can be computed in any order

Instead of:
a0 · b0, a1 · b1, . . .

compute:
aσ(0) · bσ(0), aσ(1) · bσ(1), . . .

for some random permutation σ

Also works for pointwise multiplications in the NTT
→ protects against [PPM17] SPA attack

2 permutation methods:

1 LFSR counter
Cheap: initial state defines random permutation
Only 255 permutations possible for n = 256

2 Permutation network
Uses n

2 log(n) random bits

nn/2 different permutations possible
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Countermeasure: Redundant Representation

Use a redundant representation to randomize secret key

In RSA/ECC:
1 Secret key is scalar or exponent in some group
2 Randomize by adding multiples of the group order
→ new secret key is still a valid decryption key

We apply this to RLWE crypto:
1 Secret key: n coefficients in Z/qZ
2 For each coefficient: add a small random multiple of q
3 Perform computations in Z/(2rq)Z
→ r is the redundancy parameter

Increase r =⇒ increase security against SCA

Using HLS: easy to obtain implementations for various values of r

Generic implementations for different security levels
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Does it work?
Correlation analysis for different redundancy levels

Attacking one single modular multiplication
Hamming Weight model assuming noiseless observations

Simulations in SageMath (σ = 0):
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Implementation on Artix-7 FPGA using HLS, RLWE-256

Protection Source Implem. Time (µs) Slice, LUT, DSP, BRAM

None - [RRVV15] 23.5 -, 1713, 1, -
Masking [RRVV15] [RRVV15] 75.2 -, 2014, 1, -

None - This work 7.8 483, 1163, 2, 3
Masking [RRVV15] This work 10.1 2187, 5500, 5, 6

Our Mask. This work This work 10.1 1722, 4269, 5, 6
Blinding [Saa18] This work 10.6 941, 2284, 3, 4
Shifting [Saa18] This work 14.8 832, 2150, 3, 4

Shift + Blind [Saa18] This work 14.7 1063, 2781, 3, 4
Permutation This work This work 11.4 3183, 7385, 2, 4

LFSR ctr. This work This work 10.3 1069, 2861, 2, 3
Redund. r = 1 This work This work 8.5 629, 1599, 2, 3

r = 2 This work This work 8.2 611, 1664, 2, 3
r = 3 This work This work 8.9 807, 2067, 2, 3
r = 4 This work This work 8.5 872, 2285, 2, 3
r = 5 This work This work 9.0 990, 2677, 2, 6
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Conclusion
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Conclusion

Uncertain when (or if) there will be a quantum computer

PQC in stage of developement

Theoretic security
Cost-efficiency (speed/size of implementations)
Side channel security

In this thesis:

Proposed fast and small FPGA implementations for
LWE/RLWE/MLWE based encryption schemes, and modular arithmetic
Improved and implemented various countermeasures against SCAs
Proposed new countermeasures

Perspectives:

Analyse security of proposed countermeasures
→ Side channel analysis
Optimize area utilization of HLS implementations
→ sharing of resources, BRAM efficiency
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Publications and Presentations

Publications:
T. Zijlstra, K. Bigou, and A. Tisserand. ”FPGA Implementation and
Comparison of Protections against SCAs for RLWE”, presented at
IndoCrypt 2019 (acceptance rate = 25%).
L. Djath, T. Zijlstra, K. Bigou, A. Tisserand. ”Comparaison
d’algorithmes de réduction modulaire en HLS sur FPGA”, COMPAS
2019.

Submitted work:
T. Zijlstra, K. Bigou, and A. Tisserand. ”Lattice-based Cryptosystems
on FPGA: Parallelization and Comparison”, submission to IEEE
Transactions on Computers (under major revision).

Presentations:
T. Zijlstra. ”Countermeasures against physical attacks on ring-LWE
encryption schemes”presented at WRAC’H 2019.
T. Zijlstra. ”Introduction to Post Quantum Cryptography”, presented
at the internal seminar of the MOCS team, 2019.
Various presentations related to post quantum cryptography at GT
Sécu meetings.
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Thank you for your attention!
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