Secure Hardware Accelerators for Post Quantum Cryptography

Timo ZIJLSTRA

CNRS Lab-STICC, UBS

September 28, 2020

Context: Public Key Encryption (PKE)

Goal: share a secret message

- Alice generates pair of keys and sends the public key
- Bob encrypts his message and sends the ciphertext
- Alices decrypts the ciphertext using the secret key

- The data sent over the public channel (*C*, *PK*) must not reveil any information about *M*
- How to generate (*PK*, *SK*), *C*?

Context: Diffie-Hellman

Hypothesis: Discrete Logarithm (DL)

Let $p > 2^{2000}$ be some (public) prime number and g and s integers.¹ Given only g and $g^s \mod p$, it is practically impossible to compute s.

The security of the key exchange protocol is based on the hardness of DL:

The DL hypothesis is false in the presence of quantum computers [Sho97].

 ^{1}g must also be a generator and s should be large (> 2^{200})

Timo ZIJLSTRA (CNRS Lab-STICC, UBS)

PQC on FPGA

Context: Post Quantum Cryptography (PQC)

• Quantum computers do not yield any generic exponential speed-up \rightarrow only some specific mathematical problems are solved

Idea
Find computationally hard problems for which there does not exist
<mark>any fast quantum algorithm</mark> .

Quantum hard computational problems:

- Shortest vector problem
 - \rightarrow Lattice cryptography (LWE/NTRU)
- Decoding a random linear code
 - \rightarrow Code based cryptography (McEliece)
- Solving a system of multivariate quadratic equations
- Discrete logarithm over elliptic curve isogeny groups

Overview of the presentation

Introduction

- 2 Lattice based Cryptography
- 3 HLS Implementation of LWE based PKE on FPGA
- 4 SCAs and Countermeasures

Introduction

NIST Post Quantum Standardization Project

Goal

Select post quantum cryptographic algorithms for standardization.

Timeline:

- 12/2017: Candidates for 1st round announced (> 60 PKE candidates)
- 01/2019: 2nd round candidates announced (around 20 remaining)
- 06/2020: Start of round 3
- 2022-2024: Draft standards available

Round 3 PKE finalists:

• 3 out of 4 based on lattice problems

choose the best algorithms (most secure, most efficient, etc)

- Security evaluation by cryptographers around the world
- We focus on secure and optimized hardware implementations

FPGAs

- Programmable hardware devices
- Contain a number of elements:
 - Look up tables (LUT)
 - DSP blocks
 - BRAM

Xilinx DSP48E1 (from UG479)

Important metrics: computation time, resource utilization

High-Level Synthesis (HLS)

- FPGAs can be programmed using VHDL/Verilog language
 → a time consuming process!
- Or using HLS:
 - Program in C
 - HLS transforms it to VHDL description

 \rightarrow faster, easier and compiler assisted optimizations

example:

```
for(i=0; i<N; i++){
#pragma HLS pipeline
#pragma HLS unroll factor=2
    t = A[i]*B[i];
    C[i] = reduce_mod(t);
}
#pragma HLS allocation instances=mul limit=1 reduce_mod</pre>
```

- Explore many different directives combinations
- Generic implementations for complex algorithms

Side-Channel Attacks (SCAs)

SCA method

Obtain secret data by measuring physical quantities of the device.

Power consumption

- \longrightarrow SPA/DPA and variants
- 2 Computation time
 - \longrightarrow Timing analyisis
- Electromagnetic radiation
- Also: fault attacks
 - Security against SCA of RSA/ECC is well studied
 - For new PQC, not so much

Example

```
function(secret_bit):
if secret_bit == 1 then
compute g()
else
compute f()
```

 \longrightarrow need to study countermeasures against SCA for PQC

Lattice based Cryptography

Lattice Problems

Lattice (definition)

A lattice \mathcal{L} is an additive subgroup of \mathbb{Z}^n for some n. It is generated by n basis vectors $\mathbf{b}_1, \ldots, \mathbf{b}_n$:

$$\mathcal{L} = \left\{ \sum_{i=1}^{n} x_i \mathbf{b}_i : x_i \in \mathbb{Z} \right\}$$
(1)

- Example in \mathbb{Z}_{12}^2
- Generated by 2 basis vectors
- Shortest vector problem (SVP): find smallest vector $\neq 0$

Learning With Errors (LWE)

- LWE problem definition:
 - Let \overline{s} be some secret vector in some finite field
 - 2 Let $A = (a_{i,j})$ be some public random matrix
 - **3** Given A and $\overline{b} \approx A\overline{s}$, find \overline{s} .
- Equation (=) instead of ($\approx)\implies$ Easy, using Gaussian elimination
- With added noise $(pprox) \implies$ Very hard
- [Reg05] LWE is at least as hard as SVP using quantum computers \rightarrow useful for PQC

Encryption Scheme ([Reg05][LPR10])

Plaintext: μ

Alice (KeyGen, Decrypt):Bob (Encrypt
$$\mu$$
):A $\stackrel{\$}{\leftarrow}$ random matrixBob (Encrypt μ):s, e $\stackrel{\$}{\leftarrow}$ vector w/ small coefficients $e_1, e_2, e_3 \stackrel{\$}{\leftarrow}$ smallb \leftarrow A \cdot s + e $\stackrel{A,b}{\rightarrow}$ $e_1, e_2, e_3 \stackrel{\$}{\leftarrow}$ small $c_1 \leftarrow$ A \cdot $e_1 + e_2$ $c_1 \leftarrow$ A \cdot $e_1 + e_2$ $\mu' \leftarrow \mathcal{D}(\mathbf{c}_2 - \mathbf{c}_1^\mathsf{T}\mathbf{s})$ $\stackrel{\mathbf{c}_{1, \mathbf{c}_2}}{\leftarrow}$ $\mathbf{c}_2 \leftarrow$ $\mathbf{b}^\mathsf{T}\mathbf{e}_1 + \mathbf{e}_3 + \mathcal{E}(\mu)$

Possible SCA vulnerability: computation of $c_1^T s$

Structured and Unstructured Lattices

- Matrix multiplication is expensive (many finite field operations)
 → use structured lattices to reduce complexity [LPR10]
- Secret key: some LWE secret $\mathbf{s} \in \mathcal{R}_q^k := \left(\mathbb{Z}_q[x]/(x^n+1)
 ight)^k$

Parameters and corresponding algorithms in NIST competition

		polynomial	vector	
	based	degree	length	modulus
scheme	on	п	k	q
FrodoKEM	LWE	1	640/976/1344	$2^{15}/2^{16}$
NewHope	RLWE	1024	1	12289
Kyber	MLWE	256	2/3/4 > 1	7681

Secret key is

- a $8 \times k$ matrix over \mathbb{Z}_q in FrodoKEM
- a polynomial in $\mathbb{Z}_{12289}/(x^{1024}+1)$ in NewHope
- a vector in $\left(\mathbb{Z}_{7681}[x]/(x^{256}+1)\right)^k$ in Kyber

Contributions of the thesis (yellow = presented in this talk)

- ILS Implementation of finite field arithmetic for FPGAs
 - Analyse impact of various algorithms on HLS implementation results
 - Compas 2019 (national conference)
- PFGA implementation of post-quantum cryptosystems
 - Based on LWE, RLWE and MLWE
 - Acceleration using parallelism
 - Timing / area trade-offs often better than state of the art
 - CPA and CCA2 secure solutions
 - Analysis of perfomance of various PRNGs used in the schemes
 - Submitted to IEEE Transactions on Computers, under major revision
- Ountermeasures against SCAs
 - Show that cryptoscheme is vulnerable to SCA (simulation)
 - Implement existing countermeasures
 - Masking, Shifting, Blinding
 - Propose new countermeasures
 - Secret key randomization using redundant number representation
 - Shuffling (using 2 different methods)
 - IndoCrypt 2019 (international conference)

HLS Implementation of LWE based PKE on FPGA

Implementation of LWE based Encryption

- Main part of encryption:
 - **(**) Sample from binomial distribution: 640×8 matrix **E**₁
 - 2 Generate public key 640×640 matrix **A**
 - **3** Compute $\mathbf{E}_1^{\mathsf{T}} \mathbf{A}$
- Bottleneck: matrix multiplication ($640^2 \times 8$ 15-bit multiplications)
- Speed up using *error packing* technique from [LFK⁺19]
- Speed up by parallelization of operations:

Matrix Multiplication Base Implementation Architecture

• Base implementation uses 4 DSP (encryption time: $2181 \mu s$)

- Further speed up by increasing the level of parallelization
- Parallelization factor f: compute products between f PK coefficients and f columns of E₁ simultaneously
- Write generic codes for *f* and parameters using HLS

RLWE vs MLWE

RLWE	MLWE				
polynomials	small matrices of polynomials				
<i>n</i> = 1024	n = 256				
q = 12289	q = 7681				

• Polynomial multiplication uses NTT \rightarrow large NTT (RLWE) vs multiple smaller NTTs (MLWE)

• Base implementation results:

Parallelization of RLWE/MLWE Encryption

 $\bullet\,$ Tested many (> 100) different combinations of HLS directives

RLWE:

compute NTT(e₁) and NTT(e₂) simultaneously

 \rightarrow also works for MLWE

MLWE:

• compute vector multiplication $\mathbf{e}_1 \cdot \mathbf{a}$ in parallel. Instead of

$$\mathbf{e}_1^{(0)} \mathbf{a}^{(0)} + \mathbf{e}_1^{(1)} \mathbf{a}^{(1)} + \dots + \mathbf{e}_1^{(k-1)} \mathbf{a}^{(k-1)}$$

compute k products $\mathbf{e}_1^{(0)} \mathbf{a}^{(0)}, \mathbf{e}_1^{(1)} \mathbf{a}^{(1)}, \dots, \mathbf{e}_1^{(k-1)} \mathbf{a}^{(k-1)}$ simultaneously • compute the k NTT's of $\mathbf{e}_1^{(0)}, \mathbf{e}_1^{(1)}, \dots, \mathbf{e}_1^{(k-1)}$ in parallel

Speeding up LWE/RLWE/MLWE Encryption

- Throughput for 3 degrees of parallelism (3 points of each curve)
- Parallelized LWE very slow w.r.t. RLWE/MLWE
- MLWE can be accelerated more than RLWE
 - Matrix/vector structures are easily parallelized in MLWE
 - In RLWE the NTT is the main bottleneck

Timo ZIJLSTRA (CNRS Lab-STICC, UBS)

PQC on FPGA

Comparison with other Works

Source	Туре	FPGA	μ s	DSP, BRAM, Slices, LUT			
RLWE-1024							
[KLC ⁺ 17]	K-E	xc7z020	79	8, 14, n.a. 20826			
[OG17]	K-E	xc7a35t	1532	2, 4, n.a., 4498			
[ZYC ⁺ 20]	CPA	xc7z020	62	2, 8, n.a, 6781 (*)			
This work	CPA	xc7a200	63	4, 10, 3701, 10112 (*)			
LWE-640							
[HMOR19]	CCA	Artix-7	4624	4, 0, 1338, 4620			
This work	CCA	xc7a200	2972	5, 37, 12951, 39077 (*)			
MLWE-1024							
[AEL ⁺ 20]	CCA	xc7a35t	6900	4, 34, n.a., 1738			
This work	CCA	xc7a200	170	11, 16, 11567, 33707 (*)			

SCAs and Countermeasures

Side Channel Analysis Model

- Attack each modular multiplication separately during decryption
- Hypothesis: for each $c \cdot s \mod q$, the power trace allows to guess:

 $\mathsf{HW}(c \cdot \mathbf{s} \bmod q) + \mathcal{N}(0, \sigma)$

Correlation Power Attack:

- Generate random ciphertexts
- Predict power traces
- Secord power traces during decryption
- Ompute correlation between traces and predictions
- Maximum correlation is obtained for the correct guess

PQC on FPGA

Side Channel Attack Simulation

Simulate Correlation Power Attack in SageMath:

- Machine executing one instruction per cycle
- Attack 1 single coefficient of RLWE-256 decryption
- Correlations for all subkey guesses:

sigma = 2.0

Countermeasures

- Randomize computations
- How to obtain correct results from randomized computations?
 - Masking [RRVV15]
 - [RRVV15] reports FPGA implementation
 - Masked decryption 3 times slower than unmasked
 - We optimize and re-implement it on FPGA
 - Ø Blinding and Shifting at algorithmic level [Saa18]
 - We implement it on FPGA
 - Shuffling (randomize the order of computations)
 - We propose 2 methods
 - New redundant secret key representation

• Implemented for RLWE-256 but can be applied to MLWE as well

Countermeasure: Masked Decryption [RRVV15]

Use linearity: $\mathbf{a}(\mathbf{b} + \mathbf{c}) = \mathbf{a}\mathbf{b} + \mathbf{a}\mathbf{c}$

Generate a uniform random s' and let s'' ← s - s'

 \rightarrow then $\mathbf{s} = \mathbf{s}' + \mathbf{s}''$

- Compute (part of) the decryption function for both shares:
 - $\mathbf{d}' \leftarrow \mathbf{c}_2 \mathbf{c}_1 \mathbf{s}'$ • $\mathbf{d}'' \leftarrow -\mathbf{c}_1 \mathbf{s}''$

Then $\mathcal{D}(\mathbf{d}' + \mathbf{d}'') = \mu$

- Use masked decoder to extract μ from d' and d"
 - [RRVV15]: probabilistic decoder
 - We propose a deterministic decoder
 - Implement both solutions on FPGA

ReminderDECRYPT($\mathbf{c}_1, \mathbf{c}_2$) = $\mathcal{D}(\mathbf{c}_2 - \mathbf{c}_1 \mathbf{s})$

Countermeasure: Blinding [Saa18]

For all integers *a*, *b*:

$$a\mathbf{c}_1 \cdot b\mathbf{s} = (ab)(\mathbf{c}_1 \cdot \mathbf{s})$$

- Ick some random $a, b \in \mathbb{Z}/q\mathbb{Z}$ and compute $(ab)^{-1}$
- Compute ac₁ · bs
- Multiply by (ab)⁻¹ and subtract c₂ to obtain correct d

Reminder DECRYPT $(\mathbf{c}_1, \mathbf{c}_2) = \mathcal{D}(\mathbf{c}_2 - \mathbf{c}_1 \mathbf{s})$

- Oecode
 - \rightarrow [Saa18]: use pre-computed roots of unity $\omega^{i}, \omega^{j}, \omega^{n-i-j}$
 - \bullet Computation of $\boldsymbol{c}_1 \cdot \boldsymbol{s}$ randomized at each run
 - $\mathbf{d} = \mathbf{c}_2 \mathbf{c}_1 \mathbf{s}$ is not randomized \implies decoding algorithm is not protected
 - \rightarrow use blinding in combination with another countermeasure

Timo ZIJLSTRA (CNRS Lab-STICC, UBS)

Countermeasure: Shifting [Saa18]

- **(**) Multiply **s** and **c**₁ by x^i and x^j respectively, for random i, j < n
- **2** Obtain $c_1 sx^{i+j}$
- 3 Multiply by $x^{-(i+j)}$
 - In $\mathbb{Z}_q[x]/(x^n+1)$: multiply by $x^i \iff$ shift *i* positions to the right \rightarrow easy to compute
 - NTT domain: pointwise multiplication by NTT(xⁱ) = (1, ωⁱ, ω²ⁱ, ...) → still easy to compute (since ωⁱ is pre-computed for all i < n)

Shifted decryption:

- Get random indices i, j < n
- **2** Compute $NTT(x^i) \odot \mathbf{s}$, $NTT(x^j) \odot \mathbf{c}_1$ and $NTT(x^{i+j}) \odot \mathbf{c}_2$
- **③** Decrypt and shift i + j positions to the left

Countermeasure: Shuffling

- Pointwise multiplications can be computed in any order
- Instead of:

$$\mathbf{a}_0 \cdot \mathbf{b}_0, \mathbf{a}_1 \cdot \mathbf{b}_1, \dots$$

compute:

$$\mathbf{a}_{\sigma(0)} \cdot \mathbf{b}_{\sigma(0)}, \mathbf{a}_{\sigma(1)} \cdot \mathbf{b}_{\sigma(1)}, \dots$$

for some random permutation $\boldsymbol{\sigma}$

- Also works for pointwise multiplications in the NTT \rightarrow protects against [PPM17] SPA attack
- 2 permutation methods:
 - LFSR counter
 - Cheap: initial state defines random permutation
 - Only 255 permutations possible for n = 256
 - Permutation network
 - Uses $\frac{n}{2} \log(n)$ random bits
 - $n^{n/2}$ different permutations possible

Countermeasure: Redundant Representation

Use a redundant representation to randomize secret key

- In RSA/ECC:
 - Secret key is scalar or exponent in some group
 - ② Randomize by adding multiples of the group order → new secret key is still a valid decryption key
- We apply this to RLWE crypto:
 - **1** Secret key: *n* coefficients in $\mathbb{Z}/q\mathbb{Z}$
 - 2 For each coefficient: add a small random multiple of q
 - Series Perform computations in $\mathbb{Z}/(2^r q)\mathbb{Z}$ $\rightarrow r$ is the redundancy parameter
- Increase $r \implies$ increase security against SCA
- Using HLS: easy to obtain implementations for various values of r
- Generic implementations for different security levels

Does it work?

- Correlation analysis for different redundancy levels
 - Attacking one single modular multiplication
 - Hamming Weight model assuming noiseless observations
- Simulations in SageMath ($\sigma = 0$):

Implementation on Artix-7 FPGA using HLS, RLWE-256

Protection	Source	Implem.	Time (μs)	Slice, LUT, DSP, BRAM
None	-	[RRVV15]	23.5	-, 1713, 1, -
Masking	[RRVV15]	[RRVV15]	75.2	-, 2014, 1, -
None	-	This work	<mark>7.8</mark>	483, 1163, 2, 3
Masking	[RRVV15]	This work	10.1	<mark>2187</mark> , 5500, 5, 6
Our Mask.	This work	This work	10.1	<mark>1722</mark> , 4269, 5, 6
Blinding	[Saa18]	This work	10.6	941, 2284, 3, 4
Shifting	[Saa18]	This work	<mark>14.8</mark>	832, 2150, 3, 4
Shift + Blind	[Saa18]	This work	<mark>14.7</mark>	1063, 2781, 3, 4
Permutation	This work	This work	11.4	3183, 7385, 2, 4
LFSR ctr.	This work	This work	10.3	1069, 2861, 2, 3
Redund. $r = 1$	This work	This work	8.5	629, 1599, 2, 3
r = 2	This work	This work	8.2	611, 1664, 2, 3
r = 3	This work	This work	8.9	807, 2067, 2, 3
r = 4	This work	This work	<mark>8.5</mark>	872, 2285, 2, 3
r = 5	This work	This work	<mark>9.0</mark>	990, 2677, 2, <mark>6</mark>

Conclusion

Conclusion

- Uncertain when (or if) there will be a quantum computer
- PQC in stage of developement
 - Theoretic security
 - Cost-efficiency (speed/size of implementations)
 - Side channel security
- In this thesis:
 - Proposed fast and small FPGA implementations for LWE/RLWE/MLWE based encryption schemes, and modular arithmetic
 - Improved and implemented various countermeasures against SCAs
 - Proposed new countermeasures
- Perspectives:
 - Analyse security of proposed countermeasures
 - \rightarrow Side channel analysis
 - Optimize area utilization of HLS implementations
 - \rightarrow sharing of resources, BRAM efficiency

Publications and Presentations

- Publications:
 - T. Zijlstra, K. Bigou, and A. Tisserand. "FPGA Implementation and Comparison of Protections against SCAs for RLWE", presented at IndoCrypt 2019 (acceptance rate = 25%).
 - L. Djath, T. Zijlstra, K. Bigou, A. Tisserand. "Comparaison d'algorithmes de réduction modulaire en HLS sur FPGA", COMPAS 2019.
- Submitted work:
 - T. Zijlstra, K. Bigou, and A. Tisserand. "Lattice-based Cryptosystems on FPGA: Parallelization and Comparison", submission to IEEE Transactions on Computers (under major revision).
- Presentations:
 - T. Zijlstra. "Countermeasures against physical attacks on ring-LWE encryption schemes" presented at WRAC'H 2019.
 - T. Zijlstra. "Introduction to Post Quantum Cryptography", presented at the internal seminar of the MOCS team, 2019.
 - Various presentations related to post quantum cryptography at GT Sécu meetings.

Thank you for your attention!